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Preface to the Second Edition

In the quarter century since the first edition of this book appeared, tremendous
development has occurred in operator theory and the topics covered here. However,
the new edition remains unchanged except that several mistakes and typographical
errors have been corrected. Further, a brief report on the current state of the double-
asterisk, open, problems is given along with references. No attempt is made to
describe other progress that has been made in the study of Toeplitz operators and
related topics nor has the bibliography been updated.

Still, itis hoped that a new generation of students will find useful the introduction
to operator theory given here.

College Station, Texas Ronald G. Douglas
July 1997



Preface to the First Edition

Operator theory is a diverse area of mathematics which derives its impetus and
motivation from several sources. It began as did practically all of modern analysis
with the study of integral equations at the end of the last century. It now includes
the study of operators and collections of operators arising in various branches
of physics and mechanics as well as other parts of mathematics and indeed is
sufficiently well developed to have a logic of its own. The appearance of several
monographs on recent studies in operator theory testifies both to its vigor and
breadth.

The intention of this book is to discuss certain advanced topics in operator
theory and to provide the necessary background for them assuming only the
standard senior-first year graduate courses in general topology, measure theory,
and algebra. There is no attempt at completeness and many “elementary” topics
are either omitted or mentioned only in the problems. The intention is rather to
obtain the main results as quickly as possible.

The book begins with a chapter presenting the basic results in the theory of
Banach spaces along with many relevant examples. The second chapter concerns
the elementary theory of commutative Banach algebras since these techniques are
essential for the approach to operator theory presented in the later chapters. Then
after a short chapter on the geometry of Hilbert space, the study of operator theory
begins in earnest. In the fourth chapter operators on Hilbert space are studied and
a rather sophisticated version of the spectral theorem is obtained. The notion of
a C*-algebra is introduced and used throughout the last half of this chapter. The
study of compact operators and Fredholm operators is taken up in the fifth chapter
along with certain ancillary results concerning ideals in C*-algebras. The approach
here is a bit unorthodox but is suggested by modern developments.

The last two chapters are of a slightly different character and present a systematic
development including recent research of the theory of Toeplitz operators. This

vii



viii Preface to the First Edition

latter class of operators has attracted the attention of several mathematicians
recently and occurs in several rather diverse contexts.

In the sixth chapter certain topics from the theory of Hardy spaces are developed.
The selection is dictated by needs of the last chapter and proofs are based on the
techniques obtained earlier in the book. The study of Toeplitz operators is taken
up in the seventh chapter. Most of what is known in the scalar case is presented
including Widom’s result on the connectedness of the spectrum.

At the end of each chapter there are source notes which suggest additional read-
ing along with giving some comments on who proved what and when. Although
a reasonable attempt has been made in the latter chapters at citing the appropriate
source for important results, omissions have undoubtedly occurred. Moreover,
the absence of a reference should not be construed to mean the result is due to
the author.

In addition, following each chapter is a large number of problems of varying
difficulty. The purposes of these are many: to allow the reader to test his under-
standing; to indicate certain extensions of the theory which are now accessible; to
alert the reader to certain important and related results of which he should be aware
along with a hint or a reference for the proof; and to point out certain questions for
which the answer is not known. These latter questions are indicated by a double
asterisk; a single asterisk indicates a difficult problem.

Stony Brook, New York Ronald G. Douglas
August 1971
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Chapter 1

Banach Spaces

1.1 We begin by introducing the most representative example of a Banach space.
Let X be a compact Hausdorff space and let C(X) denote the set of continuous
complex-valued functions on X. For f; and f; in C(X) and A a complex number,
we define:

D (i + 2)x) = Ailx) + f2(x);
(2) (Af1))(x) = Afi(x); and
3) (LX) = filx) f2(x).

With these operations C(X) is a commutative algebra with identity over the
complex field C.

Each function f in C(X) is bounded, since it follows from the fact that f is
continuous and X is compact that the range of f is a compact subset of C. Thus the
least upper bound of | f| is finite; we call this number the norm of f and denote it by

I1f lleo = sup{| f(x)| : x € X}.

The following properties of the norm are easily verified:

(D) I fllec = O if and only if f = 0O;
) HIAflloo = A1 flloos

3 1If + 8lloo = 1 flloo + 118110 and
@ 11f8llo = 1flloollglloo-

We define a metric p on C(X) by p(f, g) = ||f — glleo- The properties of a
metric, namely,

(1) p(f,g) =0ifand only if f = g,
() p(f.8 = p(g, f),and
3) p(f,h) < p(f,8) + (g h),
follow immediately from properties (1)~(3) of the norm. It is easily seen that
1



2 Banach Algebra Techniques in Operator Theory

convergence with respect to the metric p is just uniform convergence. An important
property of this metric is that C(X) is complete with respect to it.

1.2 Proposition. If X is a compact Hausdorff space, then C(X) is a complete
metric space.

Proof If { f,}°

n=

, is a Cauchy sequence, then

| f2(x) = fn Ol < || fa — fiulloo = P Sy fin)

for each x in X. Hence, { f,(x)}32, is a Cauchy sequence of complex numbers for
each x in X, so we may define f(x) = lim,_, o f»(x). We need to show that f isin
C(X) and thatlim,_, || f — fnlleo = 0. To thatend, given e > O, choose N such
that n, m > N implies || f, — fmlloo < €. For xp in X there exists a neighborhood
U of xg such that | fy(x9) — fy(x)| < & for x in U. Therefore,

(o) = @) S lim | fu(xo) — fw(xo)| + m | fv(xo) = fu ()]

+nl_i>rgolf~(x) — [a(X)|

<3¢
which implies f is continuous. Further, forn > N and x in X, we have
[fa(x) = f) = |fa(x) = lim f,(x)| = lim |fa(x) — fm(x)]
m—00 m—00

< lim SUP”fn — fmllo < &
m—>00

Thus lim, . || fx — flleoc = 0 and hence C(X) is complete. ]

We next define the notion of Banach space which abstracts the salient properties
of the preceding example. We shall see later in this chapter that every Banach space
is isomorphic to a subspace of some C(X).

1.3 Definition. A Banach space is a complex linear space ¥ with a norm || ||
satisfying

(D) |If]l =0ifand onlyif f =0,
@) HIAfll = IA 11|l for Ain C and f in &, and
3 If+gll <IIfll+1gll for f and gin &,

such that ¥ is complete in the metric given by this norm.

1.4 Proposition. Let & be a Banach space. The functions

a: X x % — X defineda(f,g) = f + g,
s: Cx ¥ — X defined s(A, f) = Af, and
n: X — R* defined n(f) = || f|l

are continuous.
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Proof Obvious. ]

1.5 Directed Sets and Nets The topology of a metric space can be described in
terms of the sequences in it that converge. For more general topological spaces
a notion of generalized sequence is necessary. In what follows it will often be
convenient to describe a topology in terms of its convergent generalized sequences.
Thus we proceed to review for the reader the notion of net.

A directed set A is a partially ordered set having the property that for each pair
« and B in A there exists y in A such that y > « and y > B. A net is a function
a —> A, on adirected set. If the A, all lie in a topological space X, then the net is
said to converge to A in X if for each neighborhood U of A there exists oy in A such
that A, is in U for @ > ay. Two topologies on a space X coincide if they have the
same convergent nets. Lastly, a topology can be defined on X by prescribing the
convergent nets. For further information concerning nets and subnets, the reader
should consult [71].

We now consider the convergence of Cauchy nets in a Banach space.

1.6 Definition. A net{f,}qca inaBanach space X is said to be a Cauchy net if for
every € > 0, there exists ap in A such that &y, or; > ap implies || fo, — foll <e.

1.7 Proposition. In a Banach space each Cauchy net is convergent.

Proof Let { fy}oca be a Cauchy net in the Banach space €. Choose «; such that
@ > o implies || f, — fu, | < 1. Having chosen {a;};_, in A, choose e, X2
such that @ > «,4; implies

1
| fee = fanan | < 1l

The sequence { f, }52, is clearly Cauchy and, since ¥ is complete, there exists f

in & such that lim,_, o fo, = f.

Itremains to prove thatlim,e4 f, = f.Givene > 0,choosen suchthat1/n < /2
and || fo, — f|| < &/2. Then for @ > «, we have

Ifao = FI < | fo = far| + | fon = F]| < V/n+e/2<e. =

We next consider a general notion of summability in a Banach space which will
be used in Chapter 3.

1.8 Definition. Let {fy}sca be a set of vectors in the Banach space ¥. Let
F = {F C A : Ffinite}. If we define F;, < F, for F; C F,, then ¥ is a
directed set. Foreach F in &, let gr = Y, ¢ fo. If the net {gr} res converges to
some gin, thenthesum ), , fe issaidtoconvergeand we write g = 3,4 fa-

1.9 Propeosition. If { f;}qe4 is a set of vectors in the Banach space ¥ such that
2_aca || fall converges in the real line R, then )", , fi converges in X.
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Proof 1t suffices to show, in the notation of Definition 1.8, that the net {gr}res
is Cauchy. Since ), || fx|| converges, for & > 0, there exists Fp in % such that

F > Fy implies
Dolfall =Y Nfull <&

a€eF a€eFy

Thus for Fy, F, > Fy we have

"gF, — 8K, " = Z Jo— Z fa
aeF 13923
= Z fd - Z fa
aeF\F, aeR\F;
< X fel+ X lfel
e\ F, a€F\Fy
<= Y =X Ifull <e
aeFIUR aeFy
Therefore, {gf} res is Cauchy and )., fo converges by definition. .

We now state an elementary criterion for a normed linear space (that is, a
complex linear space with a norm satisfying (1)-(3) of Definition 1.3) to be
complete and hence a Banach space. This will prove very useful in verifying
that various examples are Banach spaces.

1.10 Corollary. A normed linear space ¥ is a Banach space if and only if for
every sequence { f,,}, of vectors in & the condition ) _,- | || fll < oo implies the
convergence of 3 o2, fu.

Proof If X is a Banach space, then the conclusion follows from the preceding
proposition. Therefore, assume that {g,}52, is a Cauchy sequence in a normed
linear space ¥ in which the series hypothesis is valid. Then we may choose a
subsequence {g,,}32, such that Y ;2 ” 8ris1 — 8nx || < oo as follows: Choose
ny such that for i, j > n; we have |g; —g;| < 1; having chosen {n}_,,
choose ny41 > ny such that i, j > ny4 implies |g —g;| < 27V. If we
set fr = 8n, — 8n,_, for k > 1 and f; = gn,, then > o2, | full < oo, and the
hypothesis implies that the series Y ;- ; fi converges. It follows from the definition
of convergence that the sequence {gy, };>, converges in ¥ and hence so also does
{8n}32,. Thus & is complete and hence a Banach space. n

In the study of linear spaces the notion of a linear functional is extremely
important. The collection of linear functionals defined on a given linear space is
itself a linear space and this duality is a powerful tool for studying both spaces. In
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the study of Banach spaces the corresponding notion is that of a continuous linear
functional.

1.11 Definition. Let ¥ be a Banach space. A function ¢ from & to C is a bounded
linear functional if:

(1) @A fi +22f2) = Me(f1) + Ae(fo) for fi, fin X and Ay, A, in C; and
(2) There exists M such that |p(f)| < M || f| for every f in &.

1.12 Proposition. Let ¢ be a linear functional on the Banach space Z. The
following statements are equivalent:

(1) ¢ is bounded;
(2) ¢ is continuous;
(3) ¢ is continuous at 0.

Proof (1) implies (2). If {fy}aca is a net in & converging to f, then
limgey || f — £l = 0. Hence,

lim |p(fo) — (N =limle(fo — HI < limM | fo — fII =0
a€A a€A a€A

which implies that the net {¢(fy)}aca converges to ¢(f). Thus ¢ is continuous.
(2) implies (3). Obvious.

(3) implies (1). If ¢ is continuous at 0, then there exists § > O such that || f|| <
implies |¢(f)| < 1. Hence, for any nonzero g in X we have

2"8" «»( 5 g)\<3ugn
21l 5 18l

and thus ¢ is bounded. n

lo(®) =

We next define a norm on the space of bounded linear functionals which makes
it into a Banach space.

1.13 Definition. Let Z* be the set of bounded linear functionals on the Banach
space . For ¢ in ¥*, let

16l = up{pr(f)l

f#0 }
A
Then &* is said to be the conjugate or dual space of ¥.

1.14 Proposition. The conjugate space X* is a Banach space.

Proof That X* is a linear space is obvious, as are properties (1) and (2) for the
norm. To prove (3) we compute
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lor + ool = sup LD _ (1@ (H) + (D]
f#0 £ F40 £l
[(@1 ()] lp2(H)
- A T AT
= lleull + ligall -

Finally, we must show that &* is complete. Thus, suppose {¢,}, is a Cauchy
sequence in &*. For each f in & we have |¢,(f) — ¢n(f)] < llon — @all I fI
so that the sequence of complex numbers {¢,(f)}32, is Cauchy for each f in .
Hence, we can define ¢(f) = lim,_, o ¢,(f). The linearity of ¢ follows from
the corresponding linearity of the functionals ¢,. Further, if N is chosen so that
n,m > N implies ||¢, — ¢l < 1, then for f in ¥ we have

6N < 100 = on (D] + lon (D
Tim loa(f) = on(Hl + lon ()

IA

< limsup flgn —en |l £+ llenll £

=+ llexDIfI-

Thus ¢ is in ¥* and it remains only to show that lim,_, o [l¢ — @x|| = 0. Given
¢ > 0, choose N such that n, m > N implies ||¢, — ¢m|| < €. Then for f in &
and m,n > N, we have

1@ = @n)()] = (@ = em) (O + 1(m — @) (DI = (@ —em)(NHI+ S

Since limy, 00 (@ — 0n)(f)| = 0, we have |l¢ — ¢l < €. Thus the sequence
{@a}2, converges to ¢ and X* is complete. L

The reader should compare the preceding proof to that of Proposition 1.2.
We now want to consider some further examples of Banach spaces and to
compute their respective conjugate spaces.

1.15 ExaMpLES. Let [°°(Z*) denote the collection of all bounded complex func-
tions on the nonnegative integers Z* . Define addition and multiplication pointwise
and set || f|lo, = sup{|f(n)| : n € Z*). It is not difficult to verify that /°(Z") is a
Banach space with respect to this norm, and this will be left as an exercise. Further,
the collection of all functions f in [°°(Z*) such that lim,_, o, f () = Ois a closed
subspace of I°°(Z") and hence a Banach space; we denote this space by co(Z").

In addition, let /! (Z") denote the collection of all complex functions ¢ on Z*
such that Y o2 o |¢(n)| < oo. Define addition and scalar multiplication pointwise
and set ||¢]l; = Zf;o |p(n)|. Again we leave as an exercise the task of showing
that /; (Z*) is a Banach space for this norm.



Banach Spaces 7

We consider now the problem of identifying conjugate spaces and we begin
with ¢o(Z™"). For ¢ in I'(Z*) we define the functional ¢ on co(Z*) such that
o(f) = Z;:":O @(n) f(n) for f in co(Z™"); the latter sum converges, since

60| = fo o fm)| < i o)l 1£ ()|

< 1fle 3 1ot = 1 flls liol,
n=0

Moreover, since ¢ is obviously linear, this latter inequality shows that ¢ is in
co(Z*)* and that [lgl, > | @, where the latter is the norm of ¢ as an element of
co(Z*)*. Thus the map a(p) = ¢ from [;(Z*) to co(Z*)* is well defined and is
contractive. We want to show that « is isometric and onto co(Z*)*.

To that end let L be an element of co(Z*)* and define the function ¢, on Z*
so that ¢ (n) = L(ey) for n in Z*, where e, is the element of co(Z*) defined to
be 1 at n and O otherwise. We want to show that ¢, = L, and that |lg. ||, < [IL||.
For each N in Z* consider the element

N —

L(en)
fN = €n
§ IL(en)|

of co(Z*), where 0/0 is taken to be 0. Then | fvlloo < 1 and an easy computation
yields
L(en)

L(en)
IL(en)l "
hence ¢, isin [;(Z") and [|l¢. ||, < IIL||. Thus the map B(L) = ¢, from co(Z*)*

to I'(Z*) is also well defined and contractive. Moreover, let L be in co(Z*)* and
g bein cy(Z*); then

N
LI = IL(fw)] = ‘Z
n=0

N N
=Y IL(en)l = Y lpr(n);
n=0 n=0

=0

o]

N
lim Ng - Zg(n)en
n=0

i
N—->oo
and hence we have

N N
Lg) = ,}E“m[ ) g(n)L(en)} = lim [ ) g(n)soL(n)}

N
= ) gm)eL(n) = ¢L(g).
n=0

Therefore, the composition « o B is the identity on co(Z*)*. Lastly, since $ = 0
implies ¢ = 0, we have that « is one-to-one. Thus « is an isometric isomorphism
of Iy (Z*) onto co(Z+)*.

Consider now the problem of identifying the conjugate space of I;(Z*). For
f in I°(Z*) we can define an element f of I'(Z*)* as follows: f(p) =
Zf:o f(n)p(n). We leave as an exercise the verification that this identifies /! (Z+)*
as [®°(Z").
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1.16 We return now to considering abstract Banach spaces. If a sequence of
bounded linear functionals {¢,}3°, in Z* converges in norm to ¢, then it must
also converge pointwise, that is, lim,—, o, ¢ (f) = @(f) for each f in X. The
following example shows that the converse is not true.

For k in Z* and f in I'(Z*) define Ly(f) = f(k). Then Ly is in I}(Z*)*
and || L]l = 1 for each k. Moreover, lim_, o, Ly(f) = 0 for each f in I'(Z").
Thus, the sequence {L;}$2, converges “pointwise” to the zero functional O but
ILx — 0|l = 1 foreachk in Z™.

Thus, pointwise convergence in £* is, in general, weaker than norm conver-
gence; that is, it is easier for a sequence to converge pointwise than it is for it
to converge in the norm. Since the notion of pointwise convergence is a natural
one, we might expect it to be useful in the study of Banach spaces. That is indeed
correct and we shall define the topology of pointwise convergence after recalling
a few facts about weak topologies.

1.17 Weak Topologies. Let X be a set, Y be a topological space, and & be a
family of functions from X into Y. The weak topology on X induced by % is the
weakest or smallest topology J on X for which each function in & is continuous.
Thus J is the topology generated by the sets {f~!(U) : f € %, U open in Y}.
Convergence of nets in this topology is completely characterized by limye g x, = x
if and only if lim,es f(xy) = f(x) for every f in &F. Thus 7 is the topology of
pointwise convergence.

If Y is Hausdorff and % separates the points of X, then the weak topology is
Hausdorff.

1.18 Definition. For each f in ¥ let f denote the function on ¥* defined
f(p) = ¢(f). The w*-topology on X" is the weak topology on X" induced by the
family of functions {f : f € &}.

1.19 Proposition. The w*-topology on X" is Hausdorff.

I:roof If o1 # ¢, then there exists f in % such that 1 (f) # ¢2(f). Hence,
f(@1) # f(g2) so that the functions {f : f € %} separate the points of X£*. The
proposition now follows from the remark at the end of Section 1.17. u

We point out that the w*-topology is not, in general, metrizable (see Problem
1.13). Next we record the following easy proposition for reference.

1.20 Proposition. A net {¢,}qca in £* converges to ¢ in £* in the w*-topology
if and only if limge s 9o (f) = @(f) for every f in &.

The following shows that the w*-topology is determined on bounded subsets
of X* by a dense subset of & and this fact will be used in subsequent chapters.

1.21 Proposition. Suppose M is a dense subset of X and {@y }yca is a uniformly
bounded net in ¥* such that limgeas 0o (f) = @(f) for f in M. Then the net
{@a}aca converges to ¢ in the w*-topology.
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Proof Given g in € and ¢ > 0, choose f in M such that || f — g|l < ¢/3M,
where M = sup{lle|l, ll¢.ll : @ € A}. If ag is chosen such that @ > «( implies
loe () — @(f)l < &/3, then for ¢ > «p, we have

19 (8) — @) =< 19 (g) — Pu () + o (f) — @(F) + lo(f) — 9(g)]
Slgell If —gll+e/3+ el IIf —gll <e.

Thus {¢, }oca converges to ¢ in the w*-topology. n

1.22 Definition. The unit ball of a Banach space X is theset {f € X : || f] < 1}
and is denoted (%);.

1.23 Theorem. (Alaoglu) The unit ball (¥*); of the dual of a Banach space is
compact in the w*-topology.

Proof The proof is accomplished by identifying (%*); with a closed subset of a
large product space the compactness of which follows from Tychonoff’s theorem
(see [71]).

Foreach f in (%), let C{ denote a copy of the closed unit disk in C and let P denote
the product space X re(x), C{ . By Tychonoff’s theorem P is compact. Define A from
(%*); to Pby A(p) = ¢|(%),. Since A(p;) = A(p;) implies that the restrictions
of ¢; and ¢, to the unit ball of ¥ are identical, it follows that A is one-to-one.
Further, a net {@, }oca in X converges in the w*-topology to a ¢ in £* if and only

if limgea 0o (f) = @(f) for £ in & if and only if limaea A(9e)(f) = A(@)(S)
for f in (¥);. This latter statement is equivalent to limyes A(py) = A(p) in

the topology of P. Thus, A is a homeomorphism between (¥*); and the subset
A[(Z*)1] of P.

We complete the proof by showing that A[(¥X*);] is closed in P. Suppose
{A(¢a)}aea is a net in A[(X");] that converges in the product topology to ¥
inP.If f, g, and f + g are in (¥),, then

V(f + &) =lim A(pe)(f + &) = lim A(pe)(f) + lim A(p,)(g)
a€A a€A a€A
=v(f)+v(g).
Further, if f and Af are in (¥);, then

Y (Af) =1im A(g.)(Af) =lim g, (Af) = Alim @o (f) = LAY (f).
a€A a€A a€A

Hence ¥ determines an element v of (¥*); by the relationship

VO = IFIv S/ IFD

for f in . Since 1/7(~f) = ¥ (f) for f in (¥);, we see not only that ¥ is in (¥*),
but, in addition, A(¥) = . Thus A[(X*),] is a closed subset of P, and therefore
(X*); is compact in the w*-topology. ]
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The importance of the preceding theorem lies in the fact that compact spaces
possess many pleasant properties. We shall also use it to show that every Banach
space is isomorphic to a subspace of some C(X). Before doing this we need to
know something about how many continuous linear functionals there are on a
Banach space. This and more is contained in the Hahn-Banach theorem. Although
we are only interested in Banach spaces in this chapter, it is more illuminating to
state and prove the Hahn-Banach theorem in slightly greater generality. To do this
we need the following definition.

1.24 Definition. Let € be a real linear space and p be a real-valued function
defined on €. Then p is said to be a sublinear functional on 6 if p(f + g) <
p(f) + p(g) for f and g in € and p(Af) = Ap(f) for f in € and positive A.

1.25 Theorem. (Hahn-Banach) Let € be a real linear space and let p be a
sublinear functional on €. Let & be a subspace of € and ¢ be areal linear functional
on & such that ¢(f) < p(f) for f in &. Then there exists a real linear functional
® on € such that ®(f) = @(f) for f in F and ®(g) < p(g) for g in €.

Proof We may assume without loss of generality that &% # {0}. Take f notin &
andlet 9 = {g + Af : A € R, g € F}. We first extend ¢ to ¢ and to do this it
suffices to define ®( f) appropriately. We want ®(g + Af) < p(g+ Af) forall A
in R and g in %. Dividing by |A| this can be written ®(f — k) < p(f — h) and
¢(—f +h) < p(—f + h) for all h in F or equivalently,

—p(=f+h)+eh) <@(f) <p(f —h)+eh)

for all & in %. Thus a value can be chosen for @ (f) such that the resultant ® on
G has the required properties if and only if

iug{—,v(—f + k) + o)} < infrea{p(f — k) + @(k)}.
€

However, for 4 and k in &, we have
p(h) —pk) = (h —k) < p(h — k) < p(f —k) + p(h — f),
so that
—ph— f+em) < p(f -k +ok)

Therefore, ¢ can be extended to ® on % such that ®(h) < p(h) for h in 4.

Our problem now is to somehow obtain a maximal extension of ¢. To that end let
% denote the class of extensions of ¢ to larger subspaces satisfying the required
inequality. Hence an element of % consists of a subspace % of € which contains %
and a linear functional ®¢ on %G which extends ¢ and satisfies ¢(g) < p(g) forg
in 6. There is a natural partial order defined on P, where (4, ®g,) < (%, $g,) if
G C Gy and g, (f) = P, (f) for f in9;. To apply Zorn’s lemma to the class P,
we must show that for every chain {($,, P« )}aca in P there is a maximal element
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in @. (Recall that a chain is just a linearly ordered set.) If {(9y, P, )}xeca is achain
in P, let 4 = Uyep % and define @ on G by ®(f) = Pg,(f), where f is in
%,. Itis easily verified that G is a subspace of € which contains ¥; that & is well
defined, linear, and satisfies ®(f) < p(f) for f in9; and that (§,, ®g,) < (4, )
for each « in A. Thus the chain has a maximal element in & and Zorn’s lemma
implies that P itself has a maximal element (§g, ®o). If Gy were not €, then the
argument of the preceding paragraph would yield a strictly greater element in &P
which would contradict the maximality of ($p, $,). Thus %9y = % and we have
the desired extension of ¢ to 6. u

The form of this result which we need in this chapter is the following.

1.26 Theorem. (Hahn-Banach) Let AL be a subspace of the Banach space .
If ¢ is a bounded linear functional on M, then there exists ® in £* such that
@(f) = @(f) for f in Mand |®] = lle]|.

Proof If we cgnsider & as the real linear space %, then the norm is a sublinear
functional on & and ¥ = Regy is a real linear functional on the real subspace M. It

is evident that [|[¢|| < ll¢ll. Setting p(f) = llll || fIl we have ¥(f) < p(f) and
hence from the preceding theorem we obtain a real linear functional ¥ on & that
extends ¢ and satisfies W(f) < |l¢|l |||l for f in ¥. If we now define ® on £
by ®(f) = W(f) —i¥(if), then we want to show that ® is a bounded complex
linear functional on & that extends ¢ and has norm ||¢||.

For f and g in %, we have
O(f+8)=V(+8) —iVY(i(f+2)
=W(f)+ V() —iv(if)—iv(g)
=®(f)+ P(g)

Further, if A; and A, are real and f is in &, then ®(if) = V(if) —iV(—f) =
i®(f) and hence

O((M +ir) f) = P f) + PG f) = MP(f) +ir®(f)
= (A1 + ir2)D(f).
Thus, ® is a complex linear functional on . Moreover, for f in M we have
() =V() —iVGEf) = ¥(f) —iY(f) = Rep(f) — iRep(if)
= Rep(f) — iRe(ip()) = Rep(f) — i(—Ime(f)) = ¢(f).

Lastly, to prove ||®|| = ||W]| it suffices to show that ||®|] < ||¥|| in view of the
fact that ||W|| = ||| and @ is an extension of ¢. For f in & write ®(f) = re®.
Then
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D) =r =eTPD(f) = D™ f) = W(ef)
<|wE | < lolllfl,

so that ® has been shown to be an extension of ¢ to ¥ having the same norm. ®

1.27 Corollary. If f is an element of a Banach space &, then there exists ¢ in X*
of unit norm so that (f) = || f|.

Proof We may assume f # 0. Let M = {Af : A € C} and define ¥ on M
by ¥ (Af) = A|lfIl. Then ||¢|| = 1 and an extension of ¥ to & given by the
Hahn-Banach theorem has the desired properties. L

1.28 Corollary. If ¢(f) = 0 for each ¢ in ¥*, then f = 0.

Proof Obvious. [

We give two applications of the Hahn-Banach theorem. First we prove a theorem
of Banach showing that C(X) is a universal Banach space and then we determine
the conjugate space of the Banach space C([0, 1]).

1.29 Theorem. (Banach) Every Banach space ¥ is isometrically isomorphic to
a closed subspace of C(X) for some compact Hausdorff space X.

Proof Let X be (¥*); with the w*-topology and define 8 from ¥ to C(X) by
(Bf) (@) = o(f) For f; and f, in ¥ and A and A, in C, we have

B fi + A f2)(@) = (M1 fi + A2 f2) = Me(fi) + A20(f2)
= M B (@) + 228(f2) (),

and thus B is a linear map. Further, for f in ¥ we have

I1B(NNleo = sup 1B()@)= sup [(NH@|= sup lellifll <Ifl,

ee@*) pe@*) pe@*))

and since by Corollary 1.27 there exists ¢ in (¥*); such that o(f) = || fll, we
have that || 8(f)lloo = Il f1l- Thus B is an isometric isomorphism. n

The preceding construction never yields an isomorphism of & onto C((¥X*)1)
even if X is C(Y) for some Y. If X is separable, then topological arguments can
be used to show that X can be taken to be the closed unit interval.

Although this theorem can be viewed as a structure theorem for Banach spaces,
the absence of a canonical X associated with each ¥ vitiates its usefulness.

1.30 We now consider the problem of identifying the conjugate space of C ([0, 1]).
By this we mean finding some concrete realization of the elements of C([0, 1])*
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analogous with the identification obtained in Section 1.15 of the conjugate space
of I'(Z*) as the space [*°(Z*) of bounded complex functions on Z*. We shall
identify C ([0, 1])* with a space of functions of bounded variation on [0, 1]. We
shall comment on C(X)* for general X later in the chapter. We begin by recalling
a definition.

1.31 Definition. If ¢ is a complex function on [0, 1], then ¢ is said to be of
bounded variation if there exists M > 0 such that for every partition 0 = # <
H <--- <ty <tyy = 1,itis true that

n
Y le(tiv) — o) < M.
i=
The greatest lower bound of the set of all such M will be denoted by |l¢]l,.
An important property of a function of bounded variation is that it possesses
limits from both the right and the left at all points of [0, 1].

1.32 Proposition. A function of bounded variation possesses a limit from the left
and right at each point.

Proof Let ¢ be a function on [0, 1] not having a limit from the left at some ¢ in
(0, 1]; we shall show that ¢ is not of bounded variation on [0, 1].

If ¢ does not have a limit from the left at ¢, then for some ¢ > 0, it is true that
for each § > O there exists s and s’ in [0, 1] suchthatt —8 < s < s’ <t
and |¢(s) — ¢(s")| > &. Thus we can choose inductively sequences {s,}3>, and
{s/}2, suchthat 0 < sy < 5] < -+ < s, < s, <t and |p(sa) — @(s})| > .
Now consider the partition o = 0; tp41 = sy fork =0,1,..., N — Lty = s,
fork=1,2,...,N;and t,n54+; = 1. Then

2N N
,§,|¢('k+‘) — ()] > Zl l@(sy) — @(sn)| = Ne,

which implies that ¢ is not of bounded variation on [0, 1]. The proof that ¢ has a
limit from the right proceeds analogously. n

Thus, if ¢ is a function of bounded variation on [0, 1], the limit ¢ (¢ ™) of ¢ from
the left and the limit ¢(¢*) of ¢ from the right are well defined for ¢ in [0, 1]. (We
set (07) = ¢(0) and (1) = @(1).) Moreover, a function of bounded variation
can have at most countably many discontinuities.

1.33 Corollary. If ¢ is a function of bounded variation on [0, 1], then ¢ has at
most countably many discontinuities.

Proof Observe first that ¢ fails to be continuous at ¢ in [0, 1] if and only if
o(t) # o@*) or p(t) # ¢(t7). Moreover, if t, t, ..., t, are distinct points
of [0, 1], then
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N N
zo lo@) — o(6H)| + go le) — o) < llel, -

Thus for each ¢ > 0 there exists at most finitely many points # in [0, 1] such that
|¢(t) — <p(t+)| + |(p(t) — go(t‘)‘ > &. Hence the set of discontinuities of ¢ is at
most countable. [ |

We next recall the definition of the Riemann-Stieltjes integral. For f in C([0, 1])
and ¢ of bounded variation on [0, 1], we denote by fol f do, the integral of f with
respect to ¢; that is, fol f dg is the limit of sums of the form Y/, f(¢))[@(ti+1) —
()], where 0 = 19 < t; < ---1, < ty41 = 1 is a partition of [0, 1] and #
is a point in the interval [#;, #;1;]. (The limit is taken over partitions for which
max;<;<n |ti+1 — & tends to zero.) In the following proposition we collect the
facts about the Riemann-Stieltjes integral which we will need.

1.34 Proposition. If f is in C([0, 1]) and ¢ is of bounded variation on [0, 1],
then fol f do exists. Moreover:

(1) fyOifitrafo)de = Ay fy fidp+rs fy fadpfor fiand f2in C([0, 1),
A1 and A, in C, and ¢ of bounded variation on [0, 1];

@) [y fFdGgr +raga) = M1 fy fdor+ A2 fy £ den for f in C([0, 1]), Ay
and A, in C, and ¢; and ¢, of bounded variation on [0, 1]; and

3 | M fd<p| < Il Il@ll, for £ in C([0, 1) and ¢ of bounded variation on

[0, 1].

Proof Compare [65, p. 107]. ]

Now for ¢ of bounded variation on {0,1], let ¢ be the functional defined by
o(f) = fol fdy for f in C([0, 1]). That ¢ is an element of C ([0, 1])* follows
from the preceding proposition. However, if ¢ is a function of bounded variation
on [0,1], %, is a point in [0,1), and we define the function ¥ on [0,1] such that
() = @) fort # 1o and ¥ () = ¢(¢t7), then an easy computation shows
that fol fde = fol f dy for f in C([0, 1]). Thus if one is interested only in the
linear functional that a function of bounded variation defines on C([0, 1]), then
¢ and ¢ are equivalent, or more precisely, ¢ = 1Zr In order to avoid identifying
the conjugate space of C ([0, 1]) with equivalence classes of functions of bounded
variation, we choose a normalized representative from each class by requiring that
the distinguished function be left continuous on (0,1).

1.35 Proposition. Let ¢ be of bounded variation on [0,1] and ¥ be the function
defined ¥ (¢t) = @(¢™) for ¢ in (0,1), ¥ (0) = ¢(0), and ¥ (1) = @(1). Then ¢ is
of bounded variation on [0,1], ||¥ |}, < ll¢ll,, and
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1 1
ffd<p=/ fdy  for finC([0, 1]).
0 0

Proof From Corollary 1.33 it follows that we can list {s;};> the points of [0,1]
at which ¢ is discontinuous from the left. Moreover, from the definition of ¢ we
have Y (t) = p(t) fort # s; fori > 1.NowletO =t <t)j < - <ty <tpy1 =1
be a partition of [0,1] having the property that if # isin S = {sz : k > 1}, then
neither ;_; nor f; is. To show that ¢ is of bounded variation and ||¥ ||, < llell,,
it is sufficient to prove that

3 W) — ¥ @)1 < ligl, -
=0

Fixe > 0. Iff; isnotin Sori =0orn+ 1,thensett/ = ;. If ; is in S and
i # 0,n+ 1, choose ¢/ in (#;_1, #;) such that |<p(t,-') - (p(t,.’)| < &/2n + 2. Then
0=1ty,t] <---<t, <t = lisapartition of [0, 1] and

S W) — v = 3 et — 06|
i=0 i=0
<Y lets) — e )|+ X lelt ) — o))
i=0 i=0

+ 3 o) — o)
i=0

<¢&/2+ llell, +&/2.

Since ¢ is arbitrary, we have that ¥ is of bounded variation and that ||¥ ||, < |lell,.
To complete the proof, for N an integer let ny be the function defined ny () =0
for ¢ not in {51, 52, ...,5x} and py(sH = @(s;) — ¥ (s;) for 1 <i < N.Then it
is easy to show that limy_, l¢ — (¥ + nw)ll, = 0 and fol fdny =0for fin
C([0, 1]). Thus, we have from Proposition 1.34 that

folfdso=f01fd¢+A;i31wf01fan=f01fd,,,, .

Let BV[O0, 1] denote the space of all compiex functions on [0,1] which are of
bounded variation on [0,1], which vanish at 0, and which are continuous from the
left on (0,1). With respect to pointwise addition and scalar multiplication, B V[0, 1]
is a linear space, and || ||, defines a norm.

1.36 Theorem. The space BV[0, 1] is a Banach space.

Proof We shall make use of Corollary 1.10 to show that BV[0, 1] is complete and
hence a Banach space. Suppose {¢,}32, is a sequence of functions in BV[O0, 1]
such that 3 2| llgall, < oo. Since
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lon (D] < l@n(t) = ©a(0)| + l@n (1) — @u ()| < ll@nll,

for ¢ in [0,1], it follows that 3 > | @, (¢) converges absolutely and uniformly to a
function ¢ defined on [0,1]. It is immediate that ¢(0) = 0 and that ¢ is continuous
from the left on (0,1). It remains to show that ¢ is of bounded variation and that
limyo |9 = Ziy 0] =0.
If0=1t,<t <--- <t <ty = 1 is any partition of [0,1], then

k

k
Z{:}l‘ﬂ(tiﬂ) -l =)

t=0

Z On(tiv1) — Z on(ti)

n=1

n[VJ»

Z n(tir1) — @a (8]

[e*e) k ()
< Zl [E ln(tis1) — wn(t:)l] < Zl lleall, -

Therefore, ¢ is of bounded variation and hence in BV[0, 1]. Moreover, since the

inequality

k N

Z ((0 - Z (Pn) (i) — ( Z §0n) ()]

i=0 n=1
k 00 00
=21 2 ealtir)— 2 ea(t)
i=0 [n=N+1 n=N+1
k 00 00

<Y X lealtie) —en = X lgall,

i=0 n=N+1 n=N+1

holds for every partition of [0,1], we see that

N
“/"Z}%

o0

<= 2 lenly
v

n=N+1

for every integer N. Thus ¢ = Y - ; @, in the norm of BV[0, 1] and the proof is
complete. [

Recall that for ¢ of bounded variation on [0,1], we let ¢ be the linear functional
defined ¢(f) = f; f dg for f in C([0, 1]).

1.37 Theorem. (Riesz) The mapping ¢ — ¢ is an isometric isomorphism
between BV [0, 1] and C([O, 1])*.

Proof The fact that ¢ is in C ([0, 1])* follows immediately from Proposition 1.34
and we have, moreover, that || < ll¢ll,. To complete the proof we must, given

an L in C([0, 1])*, produce a function ¢ in BV[O, 1] such that @ = L and
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l¥ll, < IIL| and show ¥ is unique. To do this we first use the Hahn-Banach
theorem to extend L to a larger Banach space.

Let B[O, 1] be the space of all bounded complex functions on [0, 1]. It is by now
routine to verify that B[O, 1] is a Banach space with respect to pointwise addition
and scalar multiplication, and the norm || f|lg = sup{|f(t)| : 0 <t <1}.ForE a
subset of [0, 1], let Ir denote the characteristic (or indicator) function on E, that
is, Ig(t) is 1 if ¢ is in E and O otherwise. Then for every E the function I is in
B[O, 1].

Since C([0, 1]) is a subspace of B[0, 1] and since L is a bounded linear functional
on C([0, 1]), we can extend it (but not necessarily uniquely) to a bounded linear
functional L’ on B[O, 1] such that |L’| = ||L||. Moreover, L’ can be chosen to
satisfy L'(Ijg)) = 0, since we may first extend it in this manner to the linear span
of Ijg), and C([0, 1]) in view of the inequality

IL'(f + Mop| = ILOI < LI flleo < ILI | f + Mgy

which holds for f in C([0, 1]) and A in C.

Now for 0 < ¢ < 1 define ¢(t) = L'({o,1), where (0, ¢] is the half open interval
{s : 0 < s <t} and set ¢(0) = 0. We want first to show that ¢ is of bounded
variation and that ||¢]||, < ||L|l.

LetO0=1y <t <--- <t <ty = 1 be apartition of [0,1] and set
M = [0(tes1) — 9t/ l@(tes1) — ()]
if o(tx4+1) # (&) and 0 otherwise. Then the function
n
f =2 Ml
k=0
isin B[O, 1] and || f||s < 1. Moreover, we have

3 10ten) — o) = 3 Ae(0(ters) — 0(8)
k=0 k=0

n
= Z )"kL,(I('k,'kH])
k=0

=L'(f)<|L'| =L,

and hence ¢ is of bounded variation and ||¢||, < ||L]||.
We next want to show that L(g) = fol g dy for every function g in C([0, 1]). To
that end, let g be in C([0, 1]) and ¢ > 0; choose apartition 0 =1y < t; < -+ <
t, < th+1 = 1 such that

£
2L

lg(s) — g(s"| <
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for s and s’ in each subinterval [#, ;] and such that

1 n
U gdy — Y g@)(o(ter1) — (1))
0 k=0

&
< —.

2
Then we have for f = Z;::o 8t (4 1,11 + 8(0)I ) the inequality

1 1
‘L(g)—f0 gdw‘ <|L®-L'N|+ L’(f)—/0 gdy

n 1
<|L'|ne- £+ ‘gg(tk)(w(tk+1) — (%)) — fo gdsv’

&

<
_2+

=é£.

Thus L(g) = jg)l gdy for g in C([0, 1]).
Now the ¢ obtained need not be continuous from the left on (0, 1). However,

appealing to Proposition 1.35, we obtain ¥ in BV[0, 1] such that ||¢ ||, < [lell, <
IL]l and

1 1
,;,(g)=/0 gd¢=/0 gdp = L(g)

for g in C([0, 1]). Thus ¥ = L, and combining the inequality obtained in the first
paragraph of the proof with the one just above, we obtain ¥ ||, = ||L||. All that
remains now is to show that ¢ is unique, and this amounts to showing that the
mapping ¢ — ¢ is one-to-one.

Let ¢ be in BV[0, 1]. Fix # such that 0 < zp < 1 and let f, be the sequence of
functions in C ([0, 1]) defined such that

1 0<t=< (=),
Ja(t) = n(l - %) (%)to <t =<k,
0 fh<t<l.

Then the function (o) — f» is zero outside the open interval (("n;‘)to, tp). If we
define

e () n) 0<r= ()0,
on(t) = (1) ("n;l') o<t =<,
o(to) p<t<l,
then
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1 1
I/O (I(O,to] - fn)d§0| = "/(; (I(O,to] - fa) doy

< lenll, -

Now we claim that lim,,—, « ||¢ ||, = 0. Since ¢ is left continuous at ¢y, there exists
8 > Osuchthat 0 < tp — ¢t < § implies |p(t) —p(t)| <¢e/2.Let0 =14 <t <
.-+ < trg1 = 1 be a partition of [0, 1] for which ||gll, — Y_f_o [@(ti+1) — @(t)] <
&/2. We can assume that ty = f;, for some iy and that #;; — #;;_; < &. Then
|¢(t,-o) - rp(t,-o_l)l < %, and the variation of ¢ on the interval [#;,_;, ] is less than
&, which implies ||¢, ||, < € if 'f < 6. Thus

1 1
p(to) = f Io,1de = lim / fado
0 n—oo Jq

and ¢ = Oimplies ¢ = 0, which completes the proof. Thus BV [0, 1] = C)[0, 1])*.
[

1.38 The Conjugate Space of C(X). If X is an arbitrary compact Hausdorff
space, then the notion of a function of bounded variation on X makes no sense.
Thus one must search for a different realization of the elements of C(X)*. It can
be shown with little difficulty that each countably additive measure defined on the
Borel sets of X gives rise to a bounded linear functional on C(X). Moreover, just
as in the preceding proof we can extend a bounded linear functional on C(X) to
the Banach space of bounded Borel functions by the Hahn-Banach theorem and
then obtain a Borel measure by evaluating the extended functional at the indicator
functions for Borel sets. This representation of a bounded linear functional as
a Borel measure is not unique. If one restricts attention to the regular Borel
measures on X, then the pairing is unique and one can identify C(X)* with the
space M (X) of complex regular Borel measures on X. We do not prove this in
this book but refer the reader to [65]. This result is usually called the Riesz-
Markov representation theorem. We shall need it at least for X a compact subset
of the plane.

1.39 Quotient Spaces. Let & be a Banach space and M be a closed subspace
of Z. We want to show that there is a natural norm on the quotient space /M
making it into a Banach space. Let X/ denote the linear space of equivalence
classes {[f] : f € &}, where [f] = {f + g : g € M}, and define a norm on ¥/ M
by

ILAI = infeen L f + gll = infhegsy 2]l -

Then |[[fIl = O implies there exists a sequence {g,}5>, in M with
limp— | f + gnll = O. Since M is closed, it follows that f is in M so that
[f1=1[0]. Conversely, if [f] = [0], then f is in M and 0 < |[fIl <



20 Banach Algebra Techniques in Operator Theory

|f — fIl = 0. Thus, [[f1ll = O if and only if [f] = [0]. Further, if f, and
f> arein & and X is in C, then

IALAIN = IAAl = infgen IAS1 + gl = A infhen | f1 + B I = IAL LA

and

ILAT+ LRI = LA + 20l = infeen | i + 2+ gl
=infg gem I f1 + 81 + fo+ g2l Sinfyeu |l fi + g1l +infg,cun |l f2 + g2l
< AN+ LRI

Therefore, ||| is a norm on /M and it remains only to prove that the space is
complete.

If {[fz]};2, is a Cauchy sequence in &/, then there exists a subsequence
{fu}22, such that || [ fr,,,] — [fn]| < 1/2.If we choose Ay in [ £y, — fn, ] Such
that ||h:|| < 1 /2" , then Z,f‘;l 2%l < 1 and hence the sequence {A;} is absolutely
summable. Therefore, h = ) 5o, h« exists by Proposition 1.9. Since

k-1 k—1
[fnk - fn|] = Z,;[fmﬂ - fni] = 'Zl[hi]’

we have limy_, o[ fn, — fn,] = [A]. Therefore, limy_, o[ fn,1 = [+ f4,] and X/ M
is seen to be a Banach space.

We conclude by pointing out that the natural map n(f) = [f] from & to
% /M is a contraction and is an open map. For suppose f is in ¥, & > 0, and
Ne(f)={geZ:If —gl <e}If[h]isin

Ne(LfD = {[k] € &/ M : ILf] - [K]Il < €},

then there exists Ag in [2] such that | f — hg|| < &. Hence [A] and, in fact, all of
N:([f]) is in the image of N.(f) under the natural map. Therefore, the natural
map is open.

1.40 Definition. Let ¥ and %Y be Banach spaces. A linear transformation T from
% to Y is said to be bounded if

17
IT|| =sup —— < 0
T

The set of bounded linear transformations of ¥ to ¥ is denoted (%, ¥) with
(X, %) abbreviated (). A linear transformation is bounded if and only if it is
continuous.

1.41 Proposition. The space (X, Y) is a Banach space.

Proof The only thing that needs proof is the completeness of (¥, ¥) and that is
left as an exercise. [ |
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Although an essential feature of a Banach space is that it is complete in the
metric induced by the norm, we have not yet made any real use of this property.
The importance of completeness is due mainly to the applicability of the Baire
category theorem. We now present two of the principal applications, namely the
open mapping theorem and the uniform boundedness theorem.

1.42 Theorem. If % and Y are Banach spaces and T in (%, %Y) is one-to-one
and onto, then 7! exists and is bounded.

Proof The transformation T ! is well defined and we must show it to be bounded.
Forr > Olet (X), = {f € X : |Ifll < r). To show that T~! is bounded, it is
sufficient to establish T—!(¥), C (%), for some r > 0 or equivalently, that
(Y); C T(X)y for some integer N.

Since T is onto, we have (o, T[(¥,)] = %Y. Further, since ¥ is a complete
metric space, the Baire category theorem states that Y is not the countable union
of nowhere dense sets. Thus, for some N the closure clos{T[(¥)nx]} of T[(X)n]
contains a nonempty open set. It follows that there is an 4 in (¥)y and an ¢ > 0
such that

Th+ ¥)=(f €Y :||f —Th| <&} Cclos{T[(X)n]}.

Therefore, (¥), C —T + clos{T[(X)nx]} C clos{T[(X)2x]} so that (¥); C
clos{T[(¥),]}, where r = 2N /. Except for the fact that this is the closure, this is
what we need to prove. Thus we want to remove the closure.

Let f be in (¥),. There exists g; in (¥), with || f — Tgy|| < % Since f — Tg; is
in ()12, there exists gz in (X),2 with || f — Tg; — Tgz|l < %. Since f — Tg; —
Tg is in (Y)y/4, there exists g3 in (X),/4 with |f — Tg; — Tgy — Tgsll < 3.
Continuing by induction, we obtain a sequence {g,}32, such that ||g,|| < r/2n!
and | f — 30, Tgi|| < 1/2". Since

00 X,
Zl"gnllf 2 - —27',
n=

on—1

n=1

the series Z;’f_i_l gn converges to an element g in (¥X),,. Further,
n n
Tg=T (nl_lfgog gk) = nl-l+nolo,§l Tgr = f.
Therefore, (¥); C T[(¥)2,] which completes the proof. ]

1.43 Corollary. (Open Mapping Theorem) If € and % are Banach spaces and
T is an onto operator in (¥, ¥), then T is an open map.

Proof Since T is continuous, theset M = {f € & : Tf = 0} is a closed subspace
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of ¥. We want to define a transformation S (see accompanying figure) from the
quotient space ¥ /M to Y as follows: for [ f] in X/ M set

%./‘M

N

7
N

M—>F §
v

S[f]=Tgforgin[f]. Since g and g, in [ f]imply that g; — g; is in M, we have
Tg: = Tg> and hence § is well defined. Obviously, S is linear and the inequality

ISLAI = infees) ITgNl < T |l infgesy gl = T NLAIN,

which holds for [ f]in & /.M, shows that S is bounded. Moreover, if S[ f] = 0, then
Tf = 0, which implies that f is in M and [ f] = [0]. Therefore, S is one-to-one.
Lastly, S is onto, since T is, and hence the preceding theorem demonstrates that S
is an open map. Since the natural homomorphism 7 from ¥ to ¥/M is open and
T = Sm, we obtain that T is open. L]

1.44 Theorem. (Uniform Boundedness Theorem) If ¥ is a Banach space and
{on )22, is a sequence in &* such that sup{|o(f)| : n € Z¥} < oo for f in %, then
sup{llgall : n € Z*} < 0.

Proof Let u be the real-valued function defined for f in ¥ such that u(f) =
sup{le.(f)| : n € Z}, and let %; be the subset of ¥ defined for k in Z* such that
% = {f € Z : u(f) < k}. Because the ¢, are continuous, it follows that each
%, in closed. Moreover, since f is in % for k > u(f), we have Ukez+ % = Z.
Now, the Baire category theorem implies that some %, contains an open ball
{(feX:|lf — foll <8} for frinXand s > 0.

Now calculating, we obtain

1
l@nll = sup — 3 Iwn(g)l < 3 SUP lon(g + fo)l + < lcon(fo)l
ge¥s [{3:4;

1
< —ko+ u(fo),

)

and therefore

sup {llgall : n € Z*}) < E + < u(fo),

nezt
which completes the proof. u
We conclude this chapter with some classical examples of Banach spaces due

to Lebesgue and Hardy. (It is assumed in what follows that the reader is familiar
with standard measure theory.)
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1.45 The Lebesgue Spaces Let 1 be a probability measure on a o-algebra & of
subsets of a set X. Let &' denote the linear space of integrable complex functions
on X with pointwise addition and scalar multiplication, and let N be the subspace
of null functions. Hence, a measurable function f on X isin Lif j; |fldu < oo
and is in N if fx [fl dup = 0. We let L' denote the quotient space ¢! /N with
the norm ||[f]ll; = fx | f| du. That this satisfies the properties of a norm (that is,
(1)-(3) of Section 1.1) is easy; the completeness is only slightly more difficult.

Let {[f2]}32, be a sequence in L! such that E:‘_’_:l M <= M < oo
Choose representatives f,, from each [ f,]; then the sequence {2:":1 |l is
an increasing sequence of nonnegative measurable functions having the property
that the integrals

N N
fx > |nt) du= TIfl < M

are uniformly bounded. Thus, it follows from Fatou’s lemma that the function
h = Y22 | fal is integrable. Therefore, the sequence {Z,’,V:l fn}32, converges
almost everywhere to an integrable function & in ¢! Finally, we have that

N %) N
||[k1— U] =f S h-3f
n=1 1 X

n=1 n=1
<3 /Ifnldus 3 A
n=N+1J/X

n=N+1

du

and hence Y o2 [ fu] = [k]. Thus, L! is a Banach space.

For 1 < p < oo let £ denote the collection of functions f in £' which satisfy
Jx 1 fI? dpu < oo and set N¥ = N'N £P. Then it can be shown that £? is a linear

subspace of &' and that the quotient space L? = £ /N is a Banach space for

the norm
1/p
WA, = (/lel" d,u)

The details of this will be carried out for the case p = 2 in Chapter 3; we refer the
reader to [65] for details concerning the other cases.

Now let £ denote the subspace of £' consisting of the essentially bounded
functions, that is, the functions f for which the set

(xeX:|f&x)| > M}

has measure zero for M sufficiently large, and let || f || ., denote the smallest such M.
Ifweset N = NNEL*, then we can easily show that for f in £*° wehave || f ||, =
0 if and only if f is in N°°. Thus ||||, defines a norm on the quotient space L® =
£ /N, To show that L* is a Banach space we need only verify completeness
and we do this using Corollary 1.10. Let {[ £,1}32, be a sequence of elements of
L® such that 3 .2, I[falllo < M < o0o. Choose representatives f, for each | f;|
such that | f;| is bounded everywhere by ||[ f,]ll- Then for x in [0,1] we have
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; | fa@l < Zl Ilfallleo = M.

Therefore the function hA(x) = Z;'f:l Jan(x) is well defined, measurable, and
bounded since

Ih(x)] = i £00] < i o0 < M.

Thus, & is in £°° and we omit the verification that limy_, « ” [h] — Z:’:l [fx]l] =0.
Hence, L* is a Banach space.

Although the elements of an L? space are actually equivalence classes of
functions, one normally treats them as functions. Thus when we write f in L, we
mean f is a function in £' and f denotes the equivalence class in L! containing
f. Hereafter, we adopt this abuse of notation.

We conclude by showing that (L')* can be identified as L. This result should
be compared with that of Example 1.15. We indicate a different proof of this result
not using the Radon-Nikodym theorem in Problem 3.22.

For ¢ in L™ we let ¢ denote the linear functional defined by

¢(f)=/f(pd,u for finlL'.
X

1.46 Theorem. The map ¢ — @ is an isometric isomorphism of L* onto (L!)*.

Proof If g isin L™, thenfor f in L' we have |(¢f)(x)| < ¢l |.f (x)| for almost
every x in X. Thus f¢ is integrable, ¢ is well defined and linear, and

|e(H| = M{ fwdu’ < II¢IIOO/XIfI diw < lelleo 1 £y -

Therefore, ¢ is in (L')* and | @] < l¢lloo-

Now let L be an element of (L!)*. For E a measurable subset of X the indicator
function Iz is in L! and ||I¢|l; = fx Igdu = u(E). If we set A(E) = L(Ig),
then it is easily verified that A is a finitely additive set function and that |A(E)| <
1(E) IL|l. Moreover, if { E, }$° , is a nested sequence of measurable sets such that
21 En = @, then

] lim A(E,)
n—>oo

< lim |M(Ep)| < IIL|| lim u(E,) =0.
n—o00 n—00

Therefore, A is a complex measure on X dominated by . Hence by the Radon-
Nikodym theorem there exists an integrable function ¢ on X such that A(E) =
f « Ie@ dp for all measurable E. It remains to prove that ¢ is essentially bounded
by IIL|l and that L(f) = [y fedu for fin L.

For N an integer, set

1
ENz{xeX:IILII+N_<_|¢(X)|SN}-



Banach Spaces 25

Then Ey is measurable and Iz, ¢ is bounded. If f = ZLI c;ilIg; is a simple
step function, then it is easy to see that L(f) = f x fo du. Moreover, a simple
approximation argument shows that if f isin L! and supported on Ey, then again
L(f) = [y fedu. Let g be the function defined to be p(x)/ lp(x)| if x is in
Ey and ¢(x) # 0 and O otherwise. Then g is in L!, is supported on Ey and
llgll; = w(En). Therefore, we have

1
w(EN) LI = |L(8)] = V g¢du| = f lol Iey die > (IILII + ﬁ) K(EN)
X X

which implies (Ey) = 0. Hence, we obtain /.L(Uﬁ=1 Ey) = 0, which implies ¢
is essentially bounded and |l¢|l, < IIL|l. Moreover, the above argument can be
used to show that

L(f)=/f¢dy. for all finL!,
X

which completes the proof. u

We now consider the Banach spaces first studied by Hardy. Although these
spaces can be viewed as subspaces of the L? spaces, this point of view is quite
different from that of Hardy, who considered them as spaces of analytic functions
on the unit disk. Moreover, although we study these spaces in some detail in later
chapters, here we do little more than give the definition and make a few elementary
observations concerning them.

1.47 The Hardy Spaces. If T denotes the unit circle in the complex plane and p
is the Lebesgue measure on T normalized so that £(T) = 1, then we can define
the Lebesgue spaces L?(T) with respect to u. The Hardy space H? will be defined
as a closed subspace of L?(T). As in the previous section, we consider only the
cases p = 1 or co.

For n in Z let x, denote the function on T defined x,(z) = z". If we define

1 2
H1=[feL1(T):—f fxndt=0 for n=1,2,3,...,},
2 0
then H! is obviously a linear subspace of L!(T). Moreover, since the set
1 2
{f e L'(T): —/ fx,.dt=0}
27T 0

is the kernel of a bounded linear functional on L!(T), we see that H! is a closed
subspace of L' (T) and hence a Banach space.
For precisely the same reasons, the set

1 21
H°°={<peL°°(1T):-2—;f ¢xndt =0  for n=1,2,3,...,}
0

is a closed subspace of L>®(T). Moreover, in this case
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1 2r
{fp € L®(T): ——/ PxXndt = o}
2w 0
is the null space or kernel of the w*-continuous function

1 2
Xn(@) = o= f ©xndt
T Jo

and hence is w*-closed. Therefore, H* is a w*-closed subspace of L>®(T).
If we let Hg® denote the closed subspace

H°°'L i dt=0
(/XS “om pat =0¢,

then the conjugate space of H! can be shown to be naturally isometrically
isomorphic to L*(T)/Hg°. We do not prove this here but consider this question
in Chapter 6.

Notes

The basic theory of Banach spaces is covered in considerable detail in most textbooks
on functional analysis. Accounts are contained in Bourbaki [7], Goffman and Pedrick [44],
Naimark [80], Riesz and Sz.-Nagy [92], Rudin [95], and Yoshida [117]. The reader may
also find it of interest to consult Banach [5].

Exercises
Assume in the following that X is a compact Hausdorff space and that & is a
Banach space.

1.1 Show that the space C(X) is finite dimensional if and only if X is finite.

1.2 Show that every linear functional on ¥ is continuous if and only if % is finite
dimensional.

1.3 If M is a normed linear space, then there exists a unique (up to isomorphism) Banach
space & containing M such that closM = ¥.

1.4 Complete the proof begun in Section 1.15 that [!(Z+)* = I°(Z1).

1.5 Determine whether each of the following spaces is separable in the norm topology:
co(Z), 1NZ),1%°(Z"), and 1°(Z*)*.

Definition An element f of the convex subset K of & is said to be an extreme point of X

if for no distinct pair f; and f, in K is f = %(fl + f2).

1.6 Show that an element f of C(X) is an extreme point of the unit ball if and only if
|f(x)] =1 foreach x in X.

1.7 Show that the linear span of the extreme points of the unit ball of C(X) is C(X).

1.8 Show that the smallest closed convex set containing the extreme points of the unit
ball of C([0, 1]) is the unit ball. Show that the same is true for C(X).*

1.9 Show that the unit ball of ¢o(Z*) has no extreme points. Determine the extreme points
of the unit ball of /! (Z*). What about the extreme points of the unit ball of L! ([0, 1])?
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1.10 If K is a bounded w*-closed convex subset of %*, then {o(f) : ¢ € K} is a
compact convex subset of C for each f in . Moreover, if A¢ is an extreme point
of {¢(fo) : ¢ € K}, then any extreme point of the set {p € K : ¢(fo) = Ao} is an
extreme point of K.

1.11 If K is a bounded w*-closed convex subset of £*, then K contains an extreme point.*
(Hint: If { f;}aca is a well-ordering of ¥, define nested subsets {K,}aca such that

Ke={pe[)Kp:0(f)=Dat,

B<a

where A, is an extreme point of the set {p(f,) : ¢ € ﬂ‘ku Kpg}. Show that () .4 Ko
consists of a single point which is an extreme point of K.)

1.12 (Krein-Mil’man) A bounded w*-closed convex subset of £* is the w*-closed convex
hull of its extreme points.*

1.13 Prove that the relative w*-topology on the unit ball of * is metrizable if and only if
& is separable.

1.14 Let N be a subspace of &, x be in &, and set
d =inf{llx —yll : y e N}.

Ifd > 0, then show that there exists ¢ in * such that 9(y) = 0 for yin N, ¢(x) =1,
and ||| = 1/d.

1.15 Show that if we define the function f (¢) = @(f) for fin% and ¢ in ¥*, then f is
in ** and that the mapping f — f is an isometric isomorphism of ¥ into 2**.

Definition A Banach space is said to be reflexive if the image of % is all of Z**.

1.16 Show that ¥ is reflexive for & finite dimensional but that none of the spaces
co(Zh), 1NZ),1°(Z), C([0, 1], and L([0, 1]) is reflexive.

1.17 Let & and % be Banach spaces. Define the 1-norm || f ® gll; = || fIl + ligll and the
oo-norm || f @ glle, = sup{ll fll , ligll} on the algebraic direct sum € & %Y. Show that
% @ % is a Banach space with respect to both norms and that the conjugate space of
% ® %Y with the 1-norm is £* & Y* with the co-norm.

1.18 Let Z and % be Banach spaces and ||| be a norm on ¥ @ % making it into a Banach
space such that the projections 77} : £®Y — X and 7, : £DY — Y are continuous.
Show that the identity map between £ @ %Y in the given norm and ¥ @ ¥ with the
1-norm is a homeomorphism. Thus the norm topology on £ @& % is independent of
the norm chosen.

1.19 (Closed Graph Theorem) If T is a linear transformation from the Banach space ¥ to
the Banach space % such that the graph {(f, Tf) : f € &} of T is a closed subspace
of X & %Y, then T is bounded. (Hint: Consider the map f — (f, Tf).)

1.20 Give an example of a closed subset X of the plane R? satisfying | J,cz+ nK = R? for
which the origin is not an interior point. If we assume further that K contains the line
segment joining a point of K to the origin, is such an example still possible?
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1.21 If%isaBanachspaceand {p,}32, is asequencein Z* such that {, ()}, isaCauchy
sequence for each f in &, then lim,, o @, exists in the w*-topology. Moreover, the
corresponding result for nets is false.

1.22 Show that if € is a Banach space and ¢ is a (not necessarily continuous) linear
functional on %, then there exists a net {¢y}aca in £* such that limges 9o (f) =
@(f) for f in%.

1.23 Let ¥ and %Y be Banach spaces and T be a bounded linear transformation from & onto
. Show that if M = ker T, then Z/M is topologically isomorphic to Y.

Definition If is a Banach space, then the collection of functions {¢ € X*} defines a weak
topology on ¥ called the w-topology.

1.24 Show that a subspace M of the Banach space ¥ is norm closed if and only if it
is w-closed. Show that the unit sphere in ¥ is w-closed if and only if & is finite
dimensional.*

1.25 Show that if & is a Banach space, then % is w*-dense in £**.

1.26 Show that a Banach space ¥ is refiexive if and only if the w- and w*-topologies
coincide on ¥*.

1.27 Let ¥ and % be Banach spaces and T be in (%, ¥). Show that if ¢ is in Y* then
f — @(Tf) defines an element ¢ of *. Show that the map T*¢ = v isin (¥Y*, Z*).
(The operator T* is called the adjoint of T'.)

1.28 If % and Y are Banach spaces and T is in (¥, ¥), then T is one-to-one if and only
if T* has w*-dense range.

1.29 If % and % are Banach spaces and T is in (%, %), then T has a closed range if and
only if T* has a closed range. (Hint: Consider first the case when T is one-to-one and
onto.)

Definition If M is a subspace of the Banach space ¥, then the annihilator M* of M is
defined as M+ = {p € ¥* : p(x) = 0 forx € M).

1.30 If % is a Banach space and M is a closed subspace of &, then M* is naturally
isometrically isomorphic to £*/M*.

1.31 If ¥ is a Banach space and N is a subspace of Z*, then there exists a subspace M of
% such that M+ = N if and only if N is w*-closed.

1.32 If the restriction of a linear functional ¢ on the Banach space M(X) of complex
regular Borel measures on X to the unit ball of M(X) is continuous in the relative
w*-topology, then there exists a function f in C(X) such that

¢(u)=[fdu for pin M(X).*
X

(Hint: Obtain f by evaluating ¢ at the point measure 8, at x and use the fact that
measures of the form Y &, ;8y, for Y_i_, lej| < 1 are w*-dense in the unit ball of
M(X).)

1.33 (Grothendieck) A linear functional ¢ in £** is w*-continuous if and only if the
restriction of ¢ to (¥*), is continuous in the relative w*-topology.* (Hint: Embed &
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in C(X), extend ¢ to M (X) via the homomorphism from M (X) to M (X) J%t =%,
and show that the function f obtained from the preceding problem is in ¥.)

(Krein-Smul’yan) If % is a Banach space and A is a subspace of ¥*, then M is w*-
closed if and only if M N (X*), is w*-closed.* (Hint: Show that M is the intersection
of the null spaces of a collection of w*-continuous linear functionals on ¥*.)

(Banach) If % is a separable Banach space and M is a subspace of £*, then M is
w*-closed if and only if M is w*-sequentially complete.

Let Z and Y be Banach spaces and ¥ ®, %Y be the algebraic tensor product of ¥ and
% as linear spaces over C. Show that if for w in € ®, % we define

n n
"Mh=m42mMMMHJhuuhe%whuu%EQy1W=ZM®M],
i=1 —

i=l1
then ||-||,; is a norm on ¥ ®, Y. The completion of £ ®, Y is the projective tensor
product of % and % and is denoted ZR%Y.

Let & and % be Banach spaces and £ ®, Y be the algebraic tensor product of ¥ and
% as linear spaces over C. Show that if for w in ¥ ®, Y we define

Ewmwm:nwune%nmune%

lwll; = sup [

pe@XYve®)w= éxi®yl}v

then ||-||; is a norm on ¥ ®, Y. The completion of X ®, ¥ is the inductive tensor
product of ¥ and ¥ and is denoted X®Y.

For Z and % Banach spaces, show that the identity mapping extends to a contractive
transformation from Z&Y to XRY.

For X and Y compact Hausdorff spaces show that C(X)®C(Y) = C(X x Y). (Hint:
Show that it is sufficient in defining ||]|;, to take ¢ and ¥ to be extreme points of the
unit ball of ¥* and ¥*.)

For X and Y compact Hausdorff spaces show that
CX)®C(¥)=C(X xY)

if and only if X or Y is finite. (Hint: show that there are functions h(x,y) =
i1 fi(x)gi (y) for which ||kl = 1 but ||k||, is arbitrarily large.) Thus the tensor
product of two Banach spaces is not unique.



Chapter 2

Banach Algebras

2.1 In Chapter 1 we showed that C(X) is a Banach space and that every Banach
space is, in fact, isomorphic to a subspace of some C(X). In addition to being a
linear space, C(X) is also an algebra and multiplication is continuous in the norm
topology. In this chapter we study C(X) as a Banach algebra and show that C(X)
is a “universal” commutative Banach algebra in a sense which we will later make
precise. We shall indicate the usefulness and power of this result in some examples.

2.2 Recall that in Section 1.1 we observed that C(X) is an algebra over C
with pointwise multiplication and that the supremum norm satisfies || fgllo, <
Il fllo gl for f and g in C(X). These properties make C(X) into what we will
call a Banach algebra.

In the study of Banach spaces the notion of bounded linear functional is
important. For Banach algebras and, in particular, for C(X) the important idea
is that of a multiplicative linear functional. (We do not assume the functional to be
continuous because we show later that such a functional is necessarily continuous.)
Except for the zero functional, which is obviously both multiplicative and linear,
every multiplicative linear functional ¢ satisfies ¢ (1) = 1 since ¢ % 0 means there
exists an f in C(X) with ¢(f) # 0, and then the equation ¢(1)e(f) = @(f)
implies ¢(1) = 1. Thus we restrict our attention to the set Mc(x) of complex
multiplicative linear functionals ¢ on C(X) which satisfy ¢(1) = 1. Foreach x in
X we define the complex functional ¢, on C(X) such that ¢, (f) = f(x) for f in
C(X). It is immediate that ¢, is in M¢(x), and we let { denote the mapping from
X to Mc(x) defined ¥ (x) = ¢,. The following proposition shows that ¥ maps
onto MC(X)-

2.3 Proposition. The map ¥ defines a homeomorphism from X onto Mc(x),
where Mc(x) is given the relative w*-topology on C(X)*.

30
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Proof Let ¢ be in Mc(x) and set
R=kerp=(f € C(X):9(f) =0}

We show first that there exists xo in X such that f(xo) = O for each f in .
If that were not the case, then for each x in X, there would exist f, in R such
that f,(x) # 0. Since f, is continuous, there exists a neighborhood U, of x
on which f, # 0. Since X is compact and {U,},cx is an open cover of X,
there exist Uy, , ..., Ug, With X = JY_, U,,. f we set g = >y, fx, fxn» then
e@) = XN o(f.)e(f.,) = 0, implying that g is in R. But g # 0 on X and
hence is invertible in C(X). This in turn implies (1) = ¢(g) - ¢(1/g) = 0, which
is a contradiction. Thus there exists xo in X such that f(xo) = O for f in R.

If f isin C(X), then f —(f)-1isin R since o(f —@(f)-1) = ¢(f)—p(f) = 0.
Thus

F(x0) —(f) = (f —¢(f) - D(x0) =0,

since f — o(f) - 1 is in N and therefore ¢ = gy,.

Since each ¢ in M¢x, is bounded (in fact, of norm one), we can give Mc(x, the
relative w*-topology on C(X)* and consider the map ¥ : X — Mc(x). If x and
y are distinct points of X, then by Urysohns’s lemma there exists f in C(X) such
that f(x) # f(y). Thus

Yx)() = 0x(f) = fx) # F() = () =¥ (),

which implies that i is one-to-one.

To show that i is continuous, let {x,},ca be a net in X converging to x. Then
limyea f(xe) = f(x)for f in C(X) orequivalently limyea ¥ (xo)(f) = ¥ (x)(f)
foreach f in C(X). Thus the net { (x,)}«ca converges in the w*-topology to ¥ (x)
so that ¥ is seen to be continuous. Since ¥ is a one-to-one continuous map from
a compact space onto a Hausdorff space, if follows that ¢ is a homeomorphism.
This completes the proof. ]

We next state the definition of Banach algebra and proceed to show that the
collection of multiplicative linear functionals on a general Banach algebra can
always be made into a compact Hausdorff space in a natural way.

2.4 Definition. A Banach algebra B is an algebra over C with identity 1 which
has a norm making it into a Banach space and satisfying ||1|| = 1 and the inequality
Il fgll < IfIl ligll for f and g in B.

We let A denote the element of B obtained upon multiplying the identity by the
complex number A.

The following fundamental proposition will be used to show that the collection
of invertible elements in ‘B is an open set and that inversion is continuous in the
norm topology.
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2.5 Proposition. If f is in the Banach algebra 8 and ||1 — f|| < 1, then f is
invertible and

1
s ——.
17~ L=1=fl
Proof If wesetn = |1 — f|| < 1, then for N > M we have
N M N N
A=-H"=-XA=-H=| X a=-H"= X -1
n=0 n=0 n=M+1 n=M+1
N M+
= 2 "=
n=M+1 l1—n

and the sequence of partial sums {Z,I:’zo(l — "%, is seen to be a Cauchy
sequence. If g = Y o> (1 — f)", then

00 N
fe=01-0-/N]I g(l - f)") = lim ([1 -1-5H] Z_%)(l —f)")
= lim (1--H"") =1,

since limy_, [|(1 — £)¥*!|| = 0. Similarly, gf = 1 so that f is invertible with
f~! = g. Further,

N 1

< i — L
_ngnoog)lll £l == fI
2.6 Definition. For B a Banach algebra, let § denote the collection of invertible
elements in B and let §;, respectively, 4, denote the collection of left, respectively,
right invertible elements in B that are not invertible.

The following result will be of interest in this chapter only as it concerns % but
we will need the results about 9, and %, in Chapter 5 when we study index theory.

N
;0(1 - N

lgll = Jim

2.7 Proposition. If B is a Banach algebra, then each of the sets 9§, %;, and %; is
open in B.

Proof If fisinGand |If —gll < 1/|f7!|, then 1 > |[f7'| If —gl =
|1 — f~'g|- Thus the preceding proposition implies that f~'g is in % and hence
g = f(f~'g) is in . Therefore ¢ contains the open ball of radius 1/ | f ! || about
each element of f in 9. Thus % is an open set in B.

If f is in %y, then there exists & in ¥ such that Af = 1.If || f — gll < 1/ ||k||, then
1> |la| |f —gll = lhf — hgll = |1 — hgll. Again the proposition implies that
k = hg is invertible and the identity (k~'4)g = 1 implies that g is left invertible
so that %, is seen to contain the open ball of radius 1/ ||k]| about f. Thus % is
open. The proof that %; is open proceeds in the same manner. =
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2.8 Corollary. If B is a Banach algebra, then the map on ¢ defined f — f~'is
continuous. Thus,% is a topological group.

Proof If f is in <, then the inequality || f —gll < 1/2|f~!| implies that
|1 — £~'g|| < 4 and hence

Ean I Eatd I Vil ol (Canr- i I B [ P B

Thus the inequality
=gt =1 -2 I =2l 1f -l
shows that the map f — f~! is continuous. n

There is another group which is important in some problems.

2.9 Proposition. Let‘Bbe aBanach algebra, % be the group of invertible elements
in 8, and % be the connected component in § which contains the identity. Then %,
is an open and closed normal subgroup of %, the cosets of %y are the components
of 4, and /%, is a discrete group.

Proof Since % is an open subset of a locally connected space, its components are
open and closed subsets of 4. Further, if f and g are in %y, then f%y is a connected
subset of ¢ which contains fg and f. Therefore, 9o U £ is connected and hence
is contained in%y. Thus fg is in % so that %, is a semigroup. Similarly, f~'%,U%,
is connected, hence contained in %, and therefore 9 is a subgroup of 4. Lastly,
if f is in %, then the conjugate group f% f~! is a connected subset containing
the identity and therefore % f~! = %,. Thus, %, is a normal subgroup of 4 and
%4/% is a group.

Further, since f%p is an open and closed connected subset of % for each f in %,
the cosets of %y are the components of 4. Lastly, §/%, is discrete since % is an
open and closed subset of 4. n

2.10 Definition. If ¥ is a Banach algebra, then the abstract index group for B,
denoted A, is the discrete quotient group %9/%,. Moreover, the abstract index is
the natural homomorphism y from % to Ag.

We next consider the abstract index group for a Banach algebra in a little more
detail.

2.11 Definition. If B is a Banach algebra, then the exponential map on 9B, denoted
exp, is defined

1
expf=) ;f"-
n=0

The absolute convergence of this series is established just as in the scalar case
from whence follows the continuity of exp. If 8 is not commutative, then many
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of the familiar properties of the exponential function do not hold. The following
key formula is valid, however, with the additional hypothesis of commutativity.

2.12 Lemma. If B is a Banach algebra and f and g are elements of B which
commute, then exp(f + g) = exp fexpg.

Proof Multiply the series defining exp f and exp g and rearrange. L

In a general Banach algebra it is difficult to determine the elements in the
range of the exponential map, that is, the elements which have a “logarithm.” The
following lemma gives a sufficient condition.

2.13 Lemma. If B is a Banach algebra and f is an element of B such that
I1 — fll <1, then f is in expB.

Proof If we set g = Z:?_-x —(1/n)(1 — f)", then the series converges absolutely
and, as in the scalar case, substituting this series into the series expansion for exp g
yieldsexpg = f. u

Although it is difficult to characterize exp B for an arbitrary Banach algebra,
the collection of finite products of elements in exp B is a familiar object.

2.14 Theorem. If B is a Banach algebra, then the collection of finite products
of elements in exp B is Go.

Proof If f = expg,then f-exp(—g) = exp(g—g) = 1 = exp(—g) f,and hence
f is in %G. Moreover, the map ¢ from [0, 1] to exp B defined by ¢(A) = exp(Ag)
is an arc connecting 1 to f, and hence f is in %,. Thus exp B is contained in %,.
Further, if % denotes the collection of finite products of elements of exp B, then
% is a subgroup contained in Gp. Moreover, by the previous lemma & contains an
open set and being a subgroup hence & is an open set. Lastly, since each of the
left cosets of % is an open set, it follows that % is an open and closed subset of 9.
Since %y is connected we conclude that %9, = %, which completes the proof. =

The following corollary shows that the problem of identifying the elements of
a commutative Banach algebra which have a logarithm is much easier.

2.15 Corollary. If B is a commutative Banach algebra, then exp B = %,.

Proof By Lemma 2.12 if 8 is commutative, then exp B is a subgroup. n

Before continuing, we identify the abstract index group for C(X) with a more
familiar object from algebraic topology. This identification is actually valid for
arbitrary commutative Banach algebras but we will not pursue this any further
(see [40]).
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2.16 Let X be a compact Hausdorff space and let ¢ denote the invertible elements
of C(X). Hence a function f in C(X) is in § if and only if f(x) # O for all x in
X, that is, G consists of the continuous functions from X to C* = C\{0}. Since
4 is locally arcwise connected, a function f is in % if there exists a continuous
arc { fi}aepo,1) of functions in 4 such that fo = 1 and f; = f. If we define the
function F from X x [0, 1] to C* such that F (x, A) = f,(x), then F is continuous,
F(x,0) =1and F(x,1) = f(x) forx in X. Hence f is homotopic to the constant
function 1. Conversely, if g is a function in % which is homotopic to 1, then g
is in %,. Similarly, two functions g; and g, in G represent the same element of
A =%9/% if and only if g, is homotopic to g,. Thus A is the group of homotopy
classes of maps from X to C*.

2.17 Definition. If X is a compact Hausdorff space, then the first cohomotopy
group 7! (X) of X is the group of homotopy classes of continuous maps from X
to the circle group T with pointwise multiplication.

2.18 Theorem. If X is a compact Hausdorff space, then the abstract index group
A for C(X) and 7r'(X) are naturally isomorphic.

Proof We define the mapping ® from 7!(X) to A as follows: A continuous
function f from X to T determines first an element {f} of = !(X) and second,
viewed as an invertible function on X, determines a coset f + %o of A. We define
P({ f}) = f+%o. Toshow, however, that ® is well defined we need to observe that
if g is a continuous function from X to T such that { f} = {g}, then f is homotopic
to g and hence f+% = g+%. Moreover, since multiplication in both ! (X) and
4 is defined pointwise, the mapping ® is obviously a homomorphism. It remains
only to show that & is one to-one and onto.

To show & is onto let f be an invertible element of C(X). Define the function F
from X x [0, 1] to C* such that F(x,t) = f(x)/|f(x)|'. Then F is continuous,
F(x,0) = f(x) for x in X, and g(x) = F(x, 1) has modulus one for x in X.
Hence, f + % = g + %o so that ®({g}) = f + % and therefore & is onto.

If f and g are continuous functions from X to T such that ®({f}) = ®({g}), then
f is homotopic to g in the functions in %, that is, there exists a continuous function
G from X x [0, 1] to C* such that G(x,0) = f(x) and G(x, 1) = g(x) for x
in X. If, however, we define F(x,t) = G(x,t)/|G(x, )|, then F is continuous
and establishes that f and g are homotopic in the class of continuous functions
from X to T. Thus {f} = {g} and therefore ® is one-to-one, which completes
the proof. |

The preceding result is usually stated in a slightly different way.

2.19 Corollary. If X is acompact Hausdorff space, then A is naturally isomorphic
to the first Cech cohomology group H!(X, Z) with integer coefficients.
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Proof It is proved in algebraic topology (see [67]) that 7! (X) and H!(X, Z) are
naturally isomorphic. [ |

These results enable us to determine the abstract index group for simple
commutative Banach algebras.

2.20 Corollary. The abstract index group of C(T) is isomorphic to Z.

Proof The first cohomotopy group of T is the same as the first homotopy group
of T and hence is Z. u

We now return to the basic structure theory for Banach algebras.

2.21 Definition. Let B be a Banach algebra. A complex linear functional ¢ on
B is said to be multiplicative if:

(1) o(fg) = ¢(fHe(g) for f and g in B; and

The set of all multiplicative linear functionals on B is denoted by M = M.
We will show that the elements of M are bounded and that M is a w*-compact

subset of the unit ball of the conjugate space of . We show later that M is
nonempty if we further assume that $8 is commutative.

2.22 Proposition. If B is a Banach algebra and ¢ is in M, then ||g|| = 1.

Proof Let R =kerp = {f € B : ¢(f) = 0}. Since ¢(f —@(f)-1) =0, it
follows that every element in B can be written in the form A + f for some A in C
and f in R. Thus

lo(2)! o+ £l Al 1
loll = sup LN _ g G+ DL W _ g —1
el SR I Al SRl Rl
A#£0 A#£0

because |1 + || < 1 implies that 4 is invertible by Proposition 2.5, which implies
in turn that 4 is not in N. Therefore ||| = 1 and the proof is complete. ]

Whenever we deduce topological properties from algebraic hypotheses, com-
pleteness is usually crucial; the use of completeness in the proof of Theorem 1.42
was obvious. Less obvious is the role played by completeness in the preceding
proposition.

2.23 Proposition. If B is a Banach algebra, then M is a w*-compact subset of
(B

Proof Let{p,}qsca be anetof multiplicative linear functionals in M that converges
in the w*-topology on (B*); to a ¢ in (B*);. To show that M is w*-compact, it is
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sufficient in view of Theorem 1.23 to prove that ¢ is multiplicative and ¢(1) = 1.
To this end we have ¢(1) = limgea 9o (1) = limgeq 1 = 1. Further, for f and g
in B, we have

e(f8) = lim @ (fg) = lim @o (f)pa(g)
a€A €A
= lim @, (f) lim g, (g) = ¢(f) - 9(g)-
a€A a€A
Thus ¢ is in M and the proof is complete. L

Thus M is a compact Hausdorff space in the relative w*-topology. Recall that
for each f in B there is a w*-continuous function f : (B"); — C given by
f (9) = @(f). Since M is contained in (B*),, then f |M is also continuous. We
formalize this in the following:

2.24 Definition. For the Banach algebra B, if M # ¢, then the Gelfand transform
is the function T : B — C(M) given by ['(f) = f|M, that is, T'(f)(¢) = ¢(f)
forpin M.

2.25 Elementary Properties of the Gelfand Transform. If 8 is a Banach
algebra and I is the Gelfand transform on B, then:

(1) T is an algebra homomorphism; and

(2) ITflleo < £l for f inB.

Proof The only nonobvious property needed to conclude that " is an algebra
homomorphism is that I" is multiplicative and that argument goes as follows: For
f and g in B we have

F'(f8)(e) = o(fg) = o(fe(g) =T () -T()(p) =[T(f) - T©)le),

and hence I is multiplicative. To show that I" is a contractive mapping we let f
be in B and then

INfle = | FiM|_ < |7]_=1r1.

Thus I is a contractive algebra homomorphism and the proof is complete. n

2.26 Before proceeding we want to make a few remarks about the Gelfand
transform. Note first that I" sends all elements of the form fg — gf to 0. Thus, if
B is not commutative, then the subalgebra of C(M) that is the range of I' may
fail to reflect the properties of 8. (In particular, we indicate in the problems at the
end of this chapter an example of a Banach algebra for which M is empty.) In the
commutative case, however, M is not only not empty but is sufficiently large that
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the invertibility of an element f in 9B is determined by the invertibility of I'f in
C(M). This fact alone makes the Gelfand transform a powerful tool for the study
of commutative Banach algebras.

To establish this further property of the Gelfand transform in the commutative
case, we must first consider the basic facts of spectral theory. We will not assume,
in what follows, that B is commutative until this assumption is actually needed.

2.27 Definition. For B a Banach algebra and f an element of 8 we define the
spectrum of f to be the set

os(f) = {» € C: f — A is not invertible in B},
and the resolvent set of f to be the set
pn(f) = C\os ().
Further, the spectral radius of f is defined
ra(f) = sup{|A] : A € o(f)}.

When no confusion will result we omit the subscript ®8 and write only o (f),

p(f), and r(f).
The following elementary proposition shows that o (f) is compact. The fact

that o (f) is nonempty lies deeper and is the content of the next theorem.

2.28 Proposition. If B is a Banach algebra and f is in B, then o (f) is compact
and r(f) < I fIl-

Proof If we define the function ¢ : C — B by ¢(1) = f —A, then ¢ is continuous
and p(f) = ¢~1(%9) is open since ¢ is open. Thus the set o (f) is closed.

If |“'| > "f"y then

so that 1 — £/ is invertible by Proposition 2.5. Thus f — A is invertible. Therefore,
Aisin p(f), o (f) is bounded and hence compact, and r(f) < || f1l. L]

’

2.29 Theorem. If B isa Banach algebra and f is in 9B, then o (f) is nonempty.

Proof Consider the function F : p(f) — 8 defined by F(A) = (f —A)~L. We
show that F is an analytic B-valued function on p(f) which is bounded at infinity
and use the Liouville theorem to obtain a contradiction.

First, since inversion is continuous we have for Ao in p( f) that

F(A) — F(Xo) - lim {(f 20) M —2o) — (f —MISF =07 }
A—Ap }-—ﬂ-o A—2Xo

= lim (f =27 (f ~ V7' = (f M)

lim

A—>Ap
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In particular, for ¢ in the conjugate space B*, the function ¢(F) is a complex
analytic function on p(f).

Further, for |A| > || f|| we have, using Proposition 2.5, that 1 — f/A is invertible and

-1
(-8 <rim
A 1= f/Al
Jim [FQ)] = lim

i (4]

1 1
< lim sup— ——— =
= piseo P T= 1 £7A0

Thus it follows that

Therefore for ¢ in B* we have lim;_, o, 9(F (1)) = 0.

If we now assume that o (f) is empty, then p(f) = C. Thus for ¢ in B* it follows
that ¢(F) is an entire function which vanishes at infinity. By Liouville’s theorem
we have ¢(F) = 0. In particular, since for a fixed A in C we have ¢(F(1)) =0
for each ¢ in B*, it follows from Corollary 1.28 that F (1) = 0. This, however, is
a contradiction, since F(A) is by definition an invertible element of 8. Therefore
o (f) is nonempty. [

Note that although $B is not assumed to be commutative, the subalgebra of B
spanned by 1, £, and elements of form (f — A)~! is commutative, and the result
really concerns only this subalgebra.

2.30 The following theorem is an immediate corollary to the preceding and is
crucial in establishing the desired properties of the Gelfand transform. Recall that
a division algebra is an algebra in which each nonzero element is invertible.

2.31 Theorem. (Gelfand-Mazur) If B is a Banach algebra which is a division
algebra, then there is a unique isometric isomorphism of B onto C.

Proof If f is in B, then o (f) is nonempty by the preceding theorem. If A is in
o (f),then f — Ay is not invertible by definition. Since B is adivision algebra, then
J — As = 0. Moreover, for A # Ar we have f — A = Ay — A which is invertible.
Thus o (f) consists of exactly one complex number A5 for each f in 8. The map
¥ : B — Cdefined ¢ (f) = Ay is obviously an isometric isomorphism of 8 onto
C. Moreover, if ¥’ were any other, then ¥’(f) would be in o (f) implying that
¥ (f) = ¥'(f). This completes the proof.

2.32 Quotient Algebras. We now consider the notion of a quotient algebra. Let
8 be a Banach algebra and suppose that IR is a closed two-sided ideal of 8. Since
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I is a closed subspace of B, we can define a norm on B/IN following Section
1.39 making it into a Banach space. Further, since I is a two-sided ideal in B,
we also know that 8/ is an algebra. There remain two facts to verify before we
can assert that B/IN is a Banach algebra.

First, we must show that ||[[1]|| = 1, and this proof proceeds as follows:
Il = infgem 11 —gll = 1, for if [[1 —g|l < 1, then g is invertible by
Proposition 2.5.

Secondly, for f and g in B we have

ILA1elll = IILfglll = infrem Il f& — Al
< infp nem 1(f —h1)(@ — )l < infp,em | f — hill infr,em llg — hall

= [ILA1 HCell

so that |[[F1[g]ll < LA Nlg]ll. Thus B/ is a Banach algebra. Moreover, the
natural map f — [f] is a contractive homomorphism.

2.33 Proposition. If B is a commutative Banach algebra, then the set M of
multiplicative linear functionals on B is in one-to-one correspondence with the
set of maximal two-sided ideals in B.

Proof Let ¢ be a multiplicative linear functional on B and let R = kerp = {f €
B : ¢(f) = 0}. The kernel R of a homomorphism is a proper two-sided ideal and
if f is not in R, then

(- LN\, S
1_(1 ¢(f))+<p(f)’

Since (1 — f/@(f)) is in R, the linear span of f with R contains the identity 1.
Thus an ideal containing both R and f would have to be all of B so that R is seen
to be a maximal two-sided ideal.

Suppose I is a maximal proper two-sided ideal in 8. Since each element f of
IN is not invertible, then ||1 — f|| > 1 by Proposition 2.5. Thus 1 is not in the
closure of . Moreover, since the closure I of M is obviously a two-sided ideal
and M c M ¢ B, then M = M and M is closed. The quotient algebra B/M is a
Banach algebra which because It is maximal and B is commutative, is a division
algebra. Thus by Theorem 2.31, there is a natural isometric isomorphism ¥ of
B/M onto C. If = denotes the natural homomorphism of B onto B /I, then the
composition ¢ = ¥ is a nonzero multiplicative linear functional on 8. Thus ¢
is in M and I = ker .

Lastly, we want to show that the correspondence ¢ <> ker ¢ is one-to-one. If ¢,
and ¢, are in M with ker ¢; = ker ¢, = I, then

o1(f) =) = (f — (D) = (f — e1(/N))
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is both in I and a scalar multiple of the identity for each f in B and hence must
be 0. Therefore ker ¢; = ker ¢, implies ¢; = ¢, and this completes the proof. ®

This last proposition is the only place in the preceding development where the
assumption that B is commutative is required.
Hereafter, we refer to My as the maximal ideal space for B.

2.34 Proposition. If B is a commutative Banach algebra and f is in B, then f
is invertible in B if and only if I'(f) is invertible in C(M).

Proof If f is invertible in B, then I'(f~!) is the inverse of I'(f). If f is not
invertible in B, then My = {gf : g € B} is a proper ideal in B since 1 is
not in Y. Since B is commutative, Py is contained in some maximal ideal PX.
By the preceding proposition there exists ¢ in M such that ker¢ = IR. Thus
I'(f)(p) = ¢(f) = 0so that I'(f) is not invertible in C(M). ]

We summarize the results for the commutative case.

2.35 Theorem. (Gelfand) If B is a commutative Banach algebra, M is its
maximal ideal space, and " : B — C(M) is the Gelfand transform, then:

(1) M is not empty;

(2) T is an algebra homomorphism;

3) ITfllo < I f1l for f in B; and

(4) f isinvertible in B if and only if I'(f) is invertible in C(M).

The crucial fact about statement (4) is that it refers to I'(f) being invertible in
C (M) rather than in the range of I'.

We obtain two corollaries before proceeding to a result concerning the spectral
radius.

2.36 Corollary. If B is a commutative Banach algebra and f is in ‘B, then
o(f) = range I'f and r(f) = IT'fll -

Proof If A is not in o (f) then f — A is invertible in B by definition. This implies
that I'(f) — A is invertible in C (M), which in turn implies that (I' f —1)(¢) # O for
¢ in M. Thus (I'f)(¢) # A for ¢ in M. If A is not in the range of I'f, then I'f — A
is invertible in C (M) and hence, by the preceding theorem, f — A is invertible in
. Therefore, A is not in o (f) and the proof is complete. u

Ifo(z) = Y nop anz" is an entire function with complex coefficients and f is an
element of the Banach algebra B, then we let ¢( f) denote the element ) .- ) a, f"
of B.

2.37 Corollary. (Spectral Mapping Theorem) If 8 is a Banach algebra, f is in
B, and ¢ is an entire function on C, then
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a(e(N)) = () ={p) : 2 e a ().

Proof If p(z) = Y oo, asz" is the Taylor series expansion for ¢, then ¢(f) =
Y meodn f" can be seen to converge to an element of B. If By is the closed
subalgebra of B generated by 1, f, and elements of the form (f — A)~! for
Ain p(f) and (p(f) — ;L)_l for p in p(p(f)), then By is commutative and
on(f) = ow,(f) and o(¢(f)) = om,(¢(f)). Thus, we can assume that B is
commutative and use the Gelfand transform.

Using the preceding corollary we obtain

o (p(f)) = range I'(p(f)) = range p(T'f)
= g(range T'f) = ¢(o(f)),
since I'(¢(f)) = ¢(T'f) by continuity; thus the proof is complete. m

We next prove a basic result due to Beurling and Gelfand relating the spectral
radius to the norm.

2.38 Theorem. If B is a Banach algebra and f is in B8, then rg(f) = lim,_, o
It

Proof If B, denotes the closed subalgebra of B generated by the identity, f, and
{(f" —)7' : X € pa(f"),n € Z"}, then By is commutative and owp, (f") =
og(f") for all positive integers n. From the preceding corollary, we have
o, (f") = o3,(f)" and hence rg(f)" = rya(f") < || f"|; thus the inequality
ra(f) < liminf,_ o || f*]I'/" follows.

Next consider the analytic function
oo
fn
G =-1Y. T
n=0

which converges to (f — A)~! for |[A| > |||l by Proposition 1.9. For ¢ in 8*
the function — )72 ;@(A!=" f") is analytic for |A| > rg(f), since it equals
@((f —2)™1). The convergence of this series implies lim,—, 0o ¢(A' ™ f") = 0 for
each ¢ in B*. Hence, the uniform boundedness theorem (Theorem 1.44) implies
the existence of a number M, such that |A!=" f*|| < M, for all n. Therefore,

limsup | /*]"/" < timsup M)/" |27 /" = |
n—>oo n—>oo

Thus

1/n

r(f) = limsup | /*]"/" > timinf | £*|"" > ra(f),
n—00 R->00

from which the result follows. ]



Banach Algebras 43

2.39 Corollary. If 8 is a commutative Banach algebra, then the Gelfand trans-
form is an isometry if and only if | f2|| = || f||? for every f in 8.

Proof Since r(f) = ||T's fllo for f in B by Corollary 2.36, we see that ' is an
isometry if and only if 7(f) = || f|| for f in B. Moreover, since r(f2) = r(f)?
by Corollary 2.37, the result now follows from the theorem. n

We now study the self-adjoint subalgebras of C(X) for X a compact Hausdorff
space. We begin with the generalization due to Stone of the classical theorem
of Weierstrass on the density of polynomials. A subset 11 of C(X) is said to be
self-adjoint if f in 11 implies f is in 11.

2.40 Theorem. (Stone-Weierstrass) Let X be a compact Hausdorff space. If 1
is a closed self-adjoint subalgebra of C(X) which separates the points of X and
contains the constant function 1, then Il = C(X).

Proof If 11, denotes the set of real functions in 11, then U, is a closed subalgebra
of the real algebra C;(X) of continuous functions on X which separates points and
contains the function 1. Moreover, proof of the theorem reduces to showing that
U, = C(X).

We begin by showing that f in 11, implies that | f| is in 11,. Recall that the binomial
series for the function p(¢) = (1—1)"/2is Y 22 ) a,t", where o, = (—1)"( 1,/,2). Itis
an easy consequence of the comparison theorem that the sequence {Z,’,V:O ant"}¥_,
converges uniformly to ¢ on the closed interval [0, 1 — 5] for § > 0. (The sequence
actually converges uniformly to ¢ on [—1, 1].) Let f be in 11, such that || f||, < 1
and set g5 = 8 + (1 — 8) f% for § in (0, 1]; then 0 < 1 — g5 < 1 — §. For fixed
§>0,sethy = Y  a,(1 — g5)". Then hy is in 11, and

N
v — @), = sup gan(l - 85(0)" — (1 - gs(x))

N
Z ant" — ()
n=0

< sup
1€[0,1-5)

Therefore, limy oo | An — (85)"/?| o = 0, implying that (gs)/? is in UI;. Now
since the square root function is uniformly continuous on [0,1], we have lims_,¢
[1f1— (gs)'7?|_, =0, and thus | | is in U,.

We next show that 11; is a lattice, that is, for f and g in U1, the functions f v g
and f A g are in U, where (f Vv g)(x) = max{f(x), g(x)}, and (f A g)(x) =
min{ f (x), g(x)}. This follows from the identities

fveg=3f+g+If gl and  fAg=3{f+g—If—gl)

which can be verified pointwise.

Further, if x and y are distinct points in X and @ and b arbitrary real numbers, and
f is a function in II; such that f(x) # f(y), then the function g defined by
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f@)— fx)
F») = fx)

is in I and has the property that g(x) = @ and g(y) = b. Thus there exist functions
in 11, taking prescribed values at two points.

We now complete the proof. Take f in C,(X) and & > 0. Fix x, in X. For each x
in X, we can find a g, in I, such that g, (xo) = f(xo) and &x(x) = f(x). Since f
and g are continuous, there exists an open set U, of x such that g, M=fy+e
for all y in U,. The open sets {U,}ex cover X and hence by compactness, there
is a finite subcover Uy, Ux,, ..., Uy,. Let hyy = gz A gxy A+ A gy, Then hy,
isin Uy, hy,(x0) = f(x0), and hyy(y) < f(y) + & for y in X.

Thus for each xp in X there exists 4,, in U, such that hy(x0) = f(x0) and
hy(¥) < f(y) + ¢ for y in X. Since h,, and f are continuous, there exists an
open set Vy, of xo such that ., (y) > f(y) — ¢ for y in V,,. Again, the family

gi@)=a+ (b —a)

{Vio}xoex covers X, and hence there exists a finite subcover Viir Vg ooy Vi, IE
wesetk = hy,V hy,V---Vh, ,thenkisinl; and f(y) —e < k(y) < f)+e
for y in X. Therefore, || f — k||, < & and the proof is complete. u

241 If [a, b] is a closed interval of R, then the collection of polynomials {Zf:':o
anpt"} with complex coefficients is a self-adjoint subalgebra of C([a, b]) which
separates points and contains the constant function 1. Thus its closure must be
C([a, b)), and this is the statement of the Weierstrass theorem.

We now consider the closed self-adjoint subalgebras of C(X) containing the
constant function 1 that do not separate points and show that they can be identified
as C(Y) for some compact Hausdorff space Y.

Let X be a compact Hausdorff space and 1l be a closed subalgebra of C(X)
which contains the constant functions. For x in X we let g, denote the multiplicative
linear functional in My defined ¢.(f) = f(x). The following proposition is of
interest even in the nonself-adjoint case.

2.42 Proposition. If 7 is the map defined from X to My; so that n(x) = ¢, then
n is continuous.

Proof If {xq}eca is a net in X which converges to x, then limges f(xy) = f(x)
for f in ll. Therefore, limyea ¢x, (f) = ¢x(f) and hence limye 4 7(xy) = n(x) in
the topology of My;. Thus, 7 is continuous. u

In general, 7 is neither one-to-one nor onto. The latter property, however, holds
if U is self-adjoint.

2.43 Proposition. If 11 is self-adjoint, then 7 maps X onto My;.
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Proof Fix ¢ in My and set Ky = {x € X : f(x) = ¢(f)}. First of all, each K is
a closed subset of X, since f is continuous. Secondly, we want to show that not
only is each Ky nonempty but that the collection of sets {Ky : f € U} has the
finite intersection property. Suppose

Kfnanzn"'ann=®

for some functions fi, f2, ..., f in 1I. Then the function

n
8) = L1/ — ()
i=l1
does not vanish on X. Moreover, g is in 11 since the latter is a self-adjoint algebra.
Butg(x) > Oforx in X and the fact that X is compact implies that there existse > 0
such that 1 > g(x)/ llgllo > €, and hence such that |1 — (g/ lIgllo) |, < 1. But
then g~! is in I by Proposition 2.5 which implies ¢(g) # 0. However,

o(g) = ;1 (o) — o)) — 0(fi)) =0,

which is a contradiction. Thus the collection {K; : f € U} has the finite
intersection property. If x is in ﬂfeu Ky, then n(x) = ¢ and the proof is
complete. n

The reader should consider carefully how the self-adjointness of 11 was used in
the preceding proof. We give an example in this chapter of a subalgebra for which
n is not onto. Even for examples where 7 is onto, the Gelfand transform I" need
not be onto. It is, however, for self-adjoint subalgebras.

2.44 Proposition. If Il is a closed self-adjoint subalgebra of C(X) containing the
constant function 1, then the Gelfand transform I is an isometric isomorphism
from U onto C(My).

Proof For f inl there exists xo in X such that f (xo) = || f |l Since X is compact.
Therefore,

fllo = ITflleo = sup TSP = [(Tf)(nxo)l = f(x0) = I fllo »

YEMy

and hence I is an isometry. Since I' is known to be an algebraic homomorphism, it
remains only to prove that I' is onto. The range of T" is a subalgebra of C (M) that
contains 1 since I'1 = 1, is uniformly closed since I' is an isometry, and separates
points. Moreover, since by the preceding proposition for ¢ in My, there exists x in
X such that nx = ¢, we have for f in Il that

TH@) = TH) = THmx) = f&x) = f(x) =T(Fnx) = T(FH(e).
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Therefore, Tf = T'(f) and T'll is self-adjoint because 1 is. By the Stone—
Weierstrass theorem, we have I'll = C(M);) and the proof is complete. n

2.45 Lemma. Let X and Y be compact Hausdorff spaces and 6 be a continuous
map from X onto Y. The map 6* defined by 0* f = f o 6 from C(Y) into C(X)
is an isometric isomorphism onto the subalgebra of continuous functions on X
which are constant on the closed partition {§~!(y) : y € Y} of X.

Proof That 6* is an isometric isomorphism of C(Y) into C(X) is obvious.
Moreover, it is clear that a function of the form f o 6 is constant on the partition
{6~1(y) : y € Y}. Now suppose g is continuous on X and constant on each
of the sets §~1(y) for y in Y. We can unambiguously define a function f on Y
such that f o @ = g; the only question is whether this f is continuous. Suppose
{ye}aeca is a net of points in Y and y is in Y such that limycq y, = y. Choose
Xq in 0~ 1(y,) for each « in A and consider the net {x, }oca. In general, limye 4 Xq
does not exist; however, since X is compact there exists a subnet {x,, }gcp and an
x in X such that limgep x4y = x. Since € is continuous, we have 6(x) = y and
limgep g(xay) = g(x) = f(y); thus f is continuous and the proof is complete. B

2.46 Proposition. If 11 is a closed self-adjoint subalgebra of C(X) containing
the constant function 1, and # a continuous map from X onto M), then n* is an
isometric isomorphism of C(My;) onto 11 which is the left inverse of the Gelfand
transform, thatis, n* o' = 1.

Proof For f in Il and x in X, we have ((n* o T) f)(x) = (T'f)(nx) = f(x).
Therefore n* is the left inverse of the Gelfand transform. Since I' maps U1 onto
C(My) by Proposition 2.44, we have that n* maps C(My) onto 11. L]

We state and prove the generalized Stone-Weierstrass theorem after introducing
the following terminology. For X a set and 11 a collection of functions on X,
define the equivalence relation on X such that two points x; and x, are related if
f(x1) = f(xp) forevery f in l. This relation partitions X into the sets on which
the functions in U are constant. Let ITy; denote this collection of subsets of X.

2.47 Theorem. Let X be a compact Hausdorff space and I be a closed self-
adjoint subalgebra of C(X) which contains the constants. Then 1l is the collection
of continuous functions on X which are constant on the sets of ITy.

Proof This follows by combining Lemma 2.45 and Proposition 2.46. =

If U separates the points of X, then Iy consists of one-point sets and the usual
Stone-Weierstrass theorem follows.

2.48 As we have just seen, the self-adjoint subalgebras of C(X) are all of the
form C(Y) for some compact Hausdorff space Y. This is far from true, however,
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for the nonself-adjoint subalgebras. Let 1 be a closed subalgebra of C(X) which
contains the constant functions. If we let 8 denote the smallest closed self-adjoint
subalgebra of C(X) that contains 11, then B is isometrically isomorphic to C(Y),
where Y is the maximal ideal space of 8, and the Gelfand transform I' implements
the isomorphism. Then I'!1 is a closed subalgebra of C (Y') that contains the constant
functions and, more importantly, separates the points of Y. Therefore, rather than
study 11 as a subalgebra of C(X), we choose to study I'll as a subalgebra of C(Y).
Thus we make the following definition.

2.49 Definition. Let X be a compact Hausdorff space and 11 be a subset of C(X).
Then 11 is said to be a function algebra if 11 is a closed subalgebra of C(X) which
separates points and contains the constant functions.

The theory of function algebras is very extensive and draws on the techniques of
approximation theory and complex function theory as well as those of functional
analysis. In this book we will be limited to considering only a few important
examples of function algebras.

2.50 ExAMPLE. Let T denote the circle group {z € C : |z] = 1}. Forn in Z let
Xn be the function on T defined by x,(z) = z". Then xo = 1, x—n = X,, and
XmXn = Xm+n for n and m in Z. The functions in the set

N
> a,,x,,:oz,.eC]

n=—N

are called the trigonometric polynomials. Since P is a self-adjoint subalgebra
of C(T) which contains the constant functions and separates points, the uniform
closure of @ is C(T) by the Stone-Weierstrass theorem.

Let ?, = {2,’:’=0 QpXn : o € C}; the functions in P are called analytic
trigonometric polynomials. If we let A denote the uniform closure of P, in C(T),
then A is a function algebra, but at this point it is not obvious that A # C(T). We
prove this by showing that the maximal ideal space of A is not T. For this we need
a lemma.

2.51 Lemma. If "N o, x, isin ®, and w is in C, le <1, then

N
Z " = — (Eaan) (e ) we__“

n=0

Proof Expand 1/(1 — we™) = Y o(we™i*)™ where the series converges
uniformly for ¢ in [0, 27r]. Therefore,

(Z anxn) (e”) e @

n=0

1 N ) m
o Za,, Z w™ f & gy
n=0 m=0 0
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since (1/27) f;” €™ dt = 1 for k = 0 and 0 otherwise. n

For w in C and |w| < 1, define ¢, on &, such that

N N
w (’IZ aan) =) a,uw"
=0 n=0

It is clear that ¢, is a multiplicative linear functional on P .. However, since P,
is not a Banach algebra, that is, P, is not complete, we cannot conclude apriori
that ¢,, is continuous. That follows, however, from the preceding lemma since

N N
_ n it
w (’g)an)(n) = Z apw / (Zan)(n) (e ) we_"

n=0
2= 1
z% /0 Tt

Therefore, ¢, is bounded on P, and hence can be extended to a multiplicative
linear functional on A. Now for w in C and |w| = 1, let ¢,, denote the evaluation
functional on A, that is, ¢,,(f) = f(w) for f in A. The latter is well defined, since
Acc.

Now set D = {z € C: |z] = 1}, let M denote the maximal ideal space of A,
and let ¥ be the function from D to M defined by ¥(z) =

*27r

2.52 Theorem. The function ¥ is a homeomorphism of D onto the maximal
ideal space M of A.

Proof By the remarks preceding the theorem, the function v is well defined. If z,
and z; are in D, then ¥ (z1) = ¥ (z2) implies that z; = @, (X1) = ¢, (X1) = 22
thus ¥ is one-to-one.

If pisin M, then || x; || = 1 implies that z = ¢(x,) is in D. Moreover, the identity

N N n
gaan) = gan[fp(Xl)]

N N
= Z " =@, (”Z (X,.X,,)
n=0 =0

proves that ¢ agrees with ¢, on the dense subset 2, of A. Therefore, ¢ = ¢, and
Y is seen to be onto M.

Since both D and M are compact Hausdorff spaces and i is one-to-one and onto,
to complete the proof it suffices to show that v is continuous. To this end suppose
{zs)pep is anet in D such that limpep zg = z. Since supgp{ | @, |} = 1 and P,
is dense in A, and since

N N N
lim = lim %)= "
ﬁleB Pzp (né) aan) ﬁleB (nzi_:oanzﬂ) 2 oz

n=0
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N
Z aan)
=0

for every function Zﬁ,—_-o a, xn in P, it follows from Proposition 1.21 that ¢ is
continuous. L]

2.53 From Proposition 2.3 we know that the maximal ideal space of C(T) is just
T. We have just shown that the maximal ideal space of the closed subalgebra A of
C(Mis D. Moreover, if @, is a multiplicative linear functional on A, and |z| = 1,
then ¢, is the restriction to A of the “evaluation at z” map on C(T). Thus the
maximal ideal space of C(T) is embedded in that of A. This example also shows
how the maximal ideal space of a function algebra is, at least roughly speaking,
the natural domain of the functions in it. In this case although the elements of A
are functions on T, there are “hidden points” inside the circle which “ought” to be
in the domain. In particular, viewing x; as a function on T, there is no reason why
it should not be invertible; on D, however, it is obvious why it is not—it vanishes
at the origin.

Let us consider this example from another viewpoint. The element x; is
contained in both of the algebras A and C(T). In C(T) we have ocy(x1) = T
while in A we have o4 (x;) = D. Hence not only is the “A-spectrum” of x; larger,
but it is obtained from the C(T)-spectrum by “filling in a hole.” That this is true,
in general, is a corollary to the next theorem.

2.54 Theorem. (Silov) If B is a Banach algebra, 11 is a closed subalgebra of B,
and f is an element of 11, then the boundary of oy (f) is contained in the boundary
of o (f).

Proof If (f — A) has an inverse in 1, then it has an inverse in 8. Thus oy (f)
contains o (f) and hence it is sufficient to show that the boundary of oy (f) C
op(f). If Ao is in the boundary of oy (f), then there exists a sequence {A,}32,
contained in py(f) such that lim,_, , A, = Ap. If for some integer n it were true
that || (f — A)7"|| < 11/(Xo — A,)I, then it would follow that

I =20) = (f =)l < 1/ | (f =27
and hence f — Ao would be invertible as in the proof of Proposition 2.7. Thus we

have lim, o | (f —22)7!| =

If Ao were not in o (f), then it would follow from Corollary 2.8 that || (f — 1)~ ||
is bounded for A in some neighborhood of Ay, which is a contradiction.

2.55 Corollary. If B is a Banach algebra, U is a closed subalgebra of 8, and
f is an element of 11, then oy1(f) is obtained by adding to o (f) certain of the
bounded components of C\og(f).
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Proof Elementary topology and the theorem yield this result. =

2.56 ExaMPLE. We next consider an example for which the Gelfand transform is
not an isometry.

In Section 1.15 we showed that I!(Z™") is a Banach space. Analogously, if we
let /'(Z) denote the collection of complex functions f on Z such that Y oo _
| f (n)| < o0, then with pointwise addition and scalar multiplication and the norm
Il =3 _ | f(n)] < o0, 1'(Z) is a Banach space. Moreover, ' (Z) can also
be made into a Banach algebra in a nonobvious way. For f and g in /' (Z) define
the convolution product

o0
(fog)= X f(n—kgk).
k=—00
To show that this sum converges for each n in Z and that the resulting function is
in 11(Z), we write
o0

59_‘, I(fog)mI= X E: fn—k)gk)| < i OZOJ |f(n — k)| [gk)]

n=-—00 n=—00|k=—00 n=—00 k=—00

=Y g0l X lf(n—k)|=nf||1k§ 8!

k=—00 n=-—00 =—00

=111 liglh-

Therefore, f o g is well defined and is in /' (Z), and || f o gll; < I fl; ligll,. We
leave to the reader the exercise of showing that this multiplication is associative
and commutative. Assuming this, then /!(Z) is a commutative Banach algebra.
For n in Z let e, denote the function on Z defined to be 1 at n and 0 otherwise.
Then e is the identity element of I!(Z) and e, 0 € = €p4m for n and m in Z.
Let M be the maximal ideal space of I! (Z). For each z in T, let ¢, be the function
defined on [!(Z) such that @,(f) = Y ne _, f(n)Z". It is easily verified that ¢,
is well defined and in M. Thus we can define a function from T to M by setting

¥(@) = ¢

2.57 Theorem. The function ¥ is a homeomorphism from T onto the maximal
ideal space M of I'(Z).

Proof 1f z; and z; are in T, and ¢,, = ¢,,, then z; = @,,(e1) = @, (e1) = 225
hence v is one-to-one. Suppose ¢ is an element of M and z = ¢(e;); then

1 1
> =
lpe-0l ~ lletll

which implies that z is in T. Moreover, since ¢(e,) = [p(e1)]" = 2" = @.(en)
for n in Z, it follows that ¢ = ¢, = ¥ (z). Therefore, again ¥ is one-to-one and
onto and it remains only to show that ¥ is continuous, since both M and T are
compact Hausdorff spaces. Thus, suppose {zg}pes is a net of points in T such that
limgep 25 = z. Then for f in1'(Z) we have

’

1
1= lleilly = lp(en)| = lz| = 1] =
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02 (f) — ()] < | I):le(nn |25 — 2" +HZN|f<n>I |<5 — 27|
<Iflly sup |zg —2"|+2 X If ().
|n|<N |n|]>N

Hence for € > 0, if N is chosen such that Zlnl>N |f(n)] < /4 and By is then
chosen in B such that 8 > B, implies sup;, <y Iz;', — 7" < €/21fll,, then

l925(f) — ()| < & for B > Bo. Therefore, limgep ¢, (f) = ¢,(f) and ¥
is continuous and the proof is complete. L]

2.58 Using the homeomorphism v we identify the maximal ideal space of I!(Z)
with T. Thus the Gelfand transform is the operator I' defined from /!(Z) to C(T)
such that (T'f)(z) = Y e _o f(n)z" for z in T, where the series converges

uniformly and absolutely on T to I'f. The values of f on Z can be recaptured from
I'f, since they coincide with the Fourier coefficients of I" f. More specifically,

2
f(n) = Lf (C)E")e ™ dr for ninZ,
27 0

since
1 27 . int 1 2r X " y
rl ity —in dt — t(m—n dt
2 )y (Tf)(EeM)e m /; m=§_w f(m)e
1 e 2n " N
== Z f(m)[ e dt = f(n),
271.' M=o 0

where the interchange of integration and summation is justified since the series
converges uniformly. In particular, ¢ in C(T) is in the range of I" if and only if the
Fourier coefficients of ¢ are an absolutely convergent series, that is, if and only if

1 2 . .
114 —int dt
oy /(; p(e)e

0o

2

n=-—00

< OQ.

We leave to the exercises the task of showing that this is not always the case.

Since not every function ¢ in C(T) has an absolutely convergent Fourier series,
it is not obvious whether 1/¢ does if ¢ does and ¢(z) 7% 0. That this is the case is a
nontrivial theorem due to Wiener. The proof below is due to Gelfand and indicates
the power of his theory for commutative Banach algebras.

2.59 Theorem. If ¢ in C(T) has an absolutely convergent Fourier series and
@(z) # 0for z in T, then 1/¢ has an absolutely convergent Fourier series.

Proof By hypothesis there exists f in /!(Z) such that T'f = ¢. Moreover, it
follows from Theorem 2.35 that ¢(z) # O for z in the maximal ideal space T of
1(Z) implies that f is invertible in {!(Z).If g = f~, then
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1
1=T(e)=T(gof)=Tg-¢ or a:[‘g,

Therefore, 1/¢ has an absolutely convergent Fourier series and the proof is
complete. ™

2.60 ExaMpLE. We conclude this chapter with an example of a commutative
Banach algebra for which the Gelfand transform is as nice as possible, namely an
isometric isomorphism onto the space of all continuous functions on the maximal
ideal space.

In Section 1.45 we showed that L is a Banach space. If f and g are elements
of L%, then the pointwise product is well defined, is in L®, and || fgll, =<
Il flloo 18 1loo- (That is, N is an ideal in £*°.) Thus L* is a commutative Banach
algebra. Although it is not at all obvious, L™ is isometrically isomorphic to
C(Y) for some compact Hausdorff space Y. We prove this after determining the
spectrum of an element of L*. For this we need the following notion of range for
a measurable function.

2.61 Definition. If f is a measurable function on X, then the essential range
R(f) of f is the set of all A in C for which {x € X : | f(x) — A| < €} has positive
measure for every € > 0.

2.62 Lemma. If f is in L*, then R(f) is a compact subset of C and || f |, =
sup{|A| : & € R(N)}

Proof If X is not in R(f), then there exists £ > 0 such that the set {x € X :
| f (x) — A¢| < €} has measure zero. Clearly, then each A in the open disk of radius
€ about A fails to be in the essential range of f. Therefore, the complement of
R(f) is open and hence R(f) is closed. If Ay in C is such that Xy > [ f(x)| +
for almost all x in X, then the set {x € X : | f(x) — Ap| < §/2} has measure zero,
and hence sup{|A| : A € R(f)} < Il fllo- Thus R(f) is a compact subset of C for
fin L,

Now suppose f is in L™ and no A satisfying |A| = || fll, is in R(f). Then
about every such A there is an open disk D, of radius §, such that the set
{x € X : | f(x) — A] < &)} has measure zero. Since the circle {A € C : |A| =
Il fllo} is compact, there exists a finite subcover of open disks Dy, D;,, ..., Dy,
such that the sets {x € X : f(x) € D,,} have measure zero. Then the set
(xe X: fx)e ULI D,,} has measure zero, which implies that there exists
an £ > O such that the set {x € X : | f(x)| > || flloo — €} has measure zero. This
contradiction completes the proof. n

2.63 Lemma. If f is in L, then o' () = R(f).

Proof If Aisnotino (f),then1/(f —A\) is essentially bounded, which implies that
theset {x € X : | f(x) — A| < 1/2|(f — A)~"| .} has measure zero. Conversely,
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if {x € X : | f(x) — A| < 8} has measure zero for some § > 0, then 1/(f — 1) is
essentially bounded by 1/8, and hence A is not in o (f). Therefore o (f) = R(f).-
n

2.64 Theorem. If M is the maximal ideal space of L™, then the Gelfand
transform I is an isometric isomorphism of L* onto C(M).Moreover,I'f = I'(f)
for f in L™,

Proof We show first that I' is an isometry. For f in L* we have, combining the
previous lemma and Corollary 2.36, that range I'f = R(f), and hence

IT(f)llo =sup{IA| : A € range I'f} =sup{|A] : A € R()} = Il flloo -

Therefore I is an isometry and I"'(L) is a closed subalgebra of C(M).

For f in L™ set f = fi + if,, where each of f; and f; is real valued. Since
the essential range of a real function is real and range I'f; = R(f}) and range
T'f, = R(f2), we have

Tf =TA+iTH=Tfi—ilf=T(.

Therefore I'L* is a closed self-adjoint subalgebra of C(M). Since it obviously
separates points and contains the constant functions, we have by the Stone-
Weierstrass theorem that I' L*° = C (M) and the theorem is proved. n

Whereas in preceding examples we computed the maximal ideal spaces, in this
case the maximal ideal space is a highly pathological space having 22% points. We
shall have reason to make use of certain properties of this space later on.

2.65 It can be easily verified that /°°(Z*) (Section 1.15) is also a Banach algebra
with respect to pointwise multiplication. It will follow from one of the problems
that the Gelfand transform is an onto isometric isomorphism in this case also.
The maximal ideal space of [°°(Z*) is denoted BZ* and is called the Stone-Cech
compactification of Z+.

Notes

The elementary theory of commutative Banach algebras is due to Gelfand [41] but the
model provided by Wiener’s theory of generalized harmonic analysis should be mentioned.
Further results can be found in the treatises of Gelfand, Raikov and Silov [42], Naimark
[80], and Rickart [89]. The determination of the self-adjoint subalgebras of C (X) including
the generalization of the Weierstrass approximation theorem was made by Stone [105]. The

literature on function algebras is quite extensive but two excellent sources are the books of
Browder [10] and Gamelin [40].

Exercises
21 Let®={f € C([0,1]) : f' € C([0, 1))} and define || fll; = Il flloo + || || Show

that 9 is a Banach algebra and that the Gelfand transform is neither isometric nor
onto.
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22

23

2.4

2.5

Let X be a compact Hausdorff space, K be a closed subset of X, and
T={feCX): fx)=0 for x €K}
Show that ¥ is a closed ideal in C(X). Show further that every closed ideal in C(X)

is of this form. In particular, every closed ideal in C(X) is the intersection of the
maximal ideals which contain it.*

Show that every closed ideal in @ is not the intersection of the maximal ideals which
contain it.

Let % be a Banach space and (&) be the collection of bounded linear operators on
%. Show that () is a Banach algebra.

Show that if & is a finite (> 1) dimensional Banach space, then the only multiplicative
linear functional on (%) is the zero functional.

Definition An element T of (%) is finite rank if the range of T is finite dimensional.

2.6

2.7

2.8

29

Show that if ¥is a Banach space, then the finite rank operators form a two-sided ideal
in (%) which is contained in every proper two-sided ideal.

If f is a continuous function on [0,1] show that the range of f is the essential range
of f.

Let f be a bounded real-valued function on [0, 1] continuous except at the point %
Let U be the uniformly closed algebra generated by f and C([0, 1]). Determine the
maximal ideal space of 11.*

If X is a compact Hausdorff space, then C(X) is the closed linear span of the
idempotent functions in C(X) if and only if X is totally disconnected.

2.10 Show that the maximal ideal space of £ is totally disconnected.

2.11 Let X be a completely regular Hausdorff space and B(X) be the space of bounded

continuous functions on X. Show that B(X) is a commutative Banach algebra in
the supremum norm. If BX denotes the maximal ideal space of B(X), then the
Gelfand transform is an isometric isomorphism of B(X) onto C (8 X) which preserves
conjugation. Moreover, there exists a natural embedding 8 of X into $X. The space
BX is the Stone-Cech compactification of X.

2.12 Let X be a completely regular Hausdorff space, Y be a compact Hausdorff space, and

¢ be a continuous one-to-one mapping of X onto a dense subset of Y. Show that there
exists a continuous mapping ¥ from X onto Y such that ¢ = v o 8. (Hint: Consider
the restriction of the functions in C(Y) as forming a subalgebra of C(8X).)

2.13 Let B be a commutative Banach algebra and

R={feB:1+A1f €¢%4forreC}.

Show that R is a closed ideal in B.

Definition If B is a commutative Banach algebra, then

R={feB:1+rf eYforreC).

is the radical of B and B is said to be semisimple if R = {0}.
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2.14 If B is acommutative Banach algebra, then R is the intersection of the maximal ideals
in 8.

2.15 If B is a commutative Banach algebra, then B is semisimple if and only if the Gelfand
transform is one-to-one.

2.16 If B is a commutative Banach algebra, then B/3 is semisimple.

2.17 Show that L! ([0, 1]) ®C with the -norm (see Exercise 1.17) is a commutative Banach
algebra for the multiplication defined by

[Fencow]n = [uf(t) 250+ [ 020 dx} ® .

Show that L!([0, 1]) & C is not semisimple.

2.18 (Riesz Functional Calculus) Let B be a commutative Banach algebra, x be an element
of 8B, 2 be an open set in C containing o (x), and A be a finite collection of rectifiable
simple closed curves contained in 2 such that A forms the boundary of an open subset
of C which contains o (x). Let A(R2) denote the algebra of complex holomorphic
functions on £2. Show that the mapping

¢ — f p(@)(x —2)7'dz
A

defines a homomorphism from A(S2) to B such that a(go(x)) = go(or (x)) for ¢ in
A(S).

2.19 If B is a commutative Banach algebra, x is an element of B with o (x) C 2, and there
exists a nonzero ¢ in A(S2) such that ¢(x) = O, then o (x) is finite. Show that there
exists a polynomial p(z) such that p(x) = 0.

2.20 Show that forno constant M is it true that ZL_ ~ lazl < M || pll, forall trigonometric
polynomials p = Y% a,x, onT.

2.21 Show that the assumption that every continuous function on T has an absolutely
convergent Fourier series implies that the Gelfand transform on ! (Z) is invertible,
and hence conclude in view of the preceding problem that there exists a continuous
function whose Fourier series does not converge absolutely.*

Definition If B is a Banach algebra, then an automorphism on B is a continuous isomor-
phism from B onto B. The collection of all automorphisms on B is denoted Aut(B).

2.22 If X is a compact Hausdorff space, then every isomorphism from C(X) onto C(X) is
continuous.

2.23 If X is a compact Hausdorff space and ¢ is a homeomorphism on X, then (®f)(x) =
f(px) defines an automorphism @ in Aut[C(X)]. Show that the mapping ¢ — &
defines an isomorphism between the group Hom(X) of homeomorphisms on X and
Aut[C(X)].

2.24 If U is a function algebra with maximal ideal space M, then there is a natural
isomorphism of Aut(ll) into Hom(M).

2.25 If A is the disk algebra with maximal deal space the closed unit disk, then the range
of Aut(A) in Hom(D) is the group of fractional linear transformations on D, that is,
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the maps z — B(z — a)/(1 — @z) for complex numbers « and B satisfying |a| < 1
and |B| = 1.¥
Definition If U is a function algebra contained in C(X), then a closed subset M of X is a
boundary for W if || fllo, = sup{|f(m)|: m € M} for f in 1l

2.26 If U is a function algebra contained in C(X); M is a boundary for Il; fi, ..., f, are
functions in 1I; and U is the open subset of M defined by

xeX:|fix)<lfori=1,2,...,n},
then either M\U is a boundary for Ul or U intersects every boundary for U.

227 Silov) If Uis a func}ion algebra, then the intersection of all boundaries for U is a
boundary (called the Silov boundary for UI).*
2.28 Give a functional analytic proof of the maximum modulus principle for the functions
in the disk algebra A. (Hint: Show that
1

2n
ferey = o / k(@ — 1) f () dr,
T Jo

where the function k; (t) = Y mo . r"e'™ is positive.)

2.29 Show that the Silov boundary for the disk algebra A is the unit circle.

2.30 Show that the abstract index group for a commutative Banach algebra contains no
element of finite order.

2.31 If 9B, and B, are Banach algebras, then B, @B, and B, ®%D, are Banach algebras.
Moreover, if B; and B, are commutative with maximal ideal spaces M, and M>,
respectively, then M; x M is the maximal ideal space of both B, ®%B, and B, 0B,
(see Exercises 1.36 and 1.37 for the definition of ® and ®.)

2.32 If B is an algebra over C, which has a norm making it into a Banach space such that
[l 72l < Il ligll for f and g in B, then B @ C is a Banach algebra in the 1-norm
(see Exercise 1.17) for the multiplication
(fOMNEOR) =(fg+rg+uf)Drn
with identity O @ 1.
2.33 If ¢ is a multiplicative linear functional on B, then ¢ has a unique extension to

an element of Mggc. Moreover, the collection of nonzero multiplicative linear
functionals on B is a locally compact Hausdorff space.

2.34 Show that L' (R) is a commutative Banach algebra without identity for the multipli-
cation defined by

(fog)x)= foo fx—tg()dt  for fandginL'(R).

2.35 Show that for ¢ in R the linear function on L!(R) defined by
o0
@ (f) = f fx)e™ dx
—00
is multiplicative. Conversely, every nonzero multiplicative linear functional in L'(R)
is of this form.* (Hint: Every bounded linear functional on L' (R) is given by a ¢ in
L®°(R). Show for f and g in L' (R) that
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f f fx =g {e(x —)e(t) — p(x)}dtdx =0

and that implies ¢(x —t)@(t) = ¢(x) for (x, t) not in a planar set of Lebesgue measure
0.)

2.36 Show that the maximal ideal space of L!(R) is homeomorphic to R and that the
Gelfand transform coincides with the Fourier transform.



Chapter 3

Geometry of Hilbert Space

3.1 The notion of Banach space abstracts many of the important properties of
finite-dimensional linear spaces. The geometry of a Banach space can, however,
be quite different from that of Euclidean n-space; for example, the unit ball of
a Banach space may have corners, and closed convex sets need not possess a
unique vector of smallest norm. The most important geometrical property absent
in general Banach spaces is a notion of perpendicularity or orthogonality.

In the study of analytic geometry we recall that the orthogonality of two vectors
was determined analytically by considering their inner (or dot) product. In this
chapter we introduce the abstract notion of an inner product and show how a linear
space equipped with an inner product can be made into a normed linear space. If
the linear space is complete in the metric defined by this norm, then it is said to be
a Hilbert space. This chapter is devoted to studying the elementary geometry of
Hilbert spaces and to showing that such spaces possess many of the more pleasant
properties of Euclidean n-space. We will show, in fact, that a finite dimensional
Hilbert space is isomorphic to Euclidean n-space for some integer 7.

3.2 Definition. An inner product on a complex linear space ¥ is a function ¢
from &£ x & to C such that:

(D) (a1 fi+a2fz, 8) = a19(fi, ) +o2¢(f2, 8) foray, a2 inCand fi, f2, 8
in &;

(2) o(f, Big1+ B282) = B19o(f, 8)+ B9 (f, g2) for By, B, inC and f, g1, &2
in&;

(3) ¢(f,8) = ¢(g, f) for f and g in &; and

@ o(f, f) =0for f in & and ¢(f, f) = 0if and only if f = 0.

A linear space equipped with an inner product is said to be an inner product
space.

58
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The following lemma contains a useful polarization identity, the importance of
which lies in the fact that the value of the inner product ¢ is expressed solely in
terms of the values of the associated quadratic form y defined by ¥ (f) = ¢(f, f)
for fin &L.

3.3 Lemma. If £ is an inner product space with the inner product ¢, then

o(f.e)=3le(f+8 f+8 —o(f —g f—8+io(f +ig, f+ig)
—ip(f —ig, f—ig)}
for f and g in &.

Proof Compute. L

An inner product is usually denoted (,), that is, (f, g) = ¢(f, g) for f and g in
2.

3.4 Definition. If £ is an inner product space, then the norm || || on & associated
with the inner product is defined by || f|| = (f, f)"/? for f in L.

The following inequality is basic in the study of inner product spaces. We show
that the norm just defined has the required properties of a norm after the proof of
this inequality.

3.5 Proposition. (Cauchy-Schwarz Inequality) If f and g are in the inner
product space &£, then

(Al =IFI gl

Proof For f and g in & and A in C, we have
A7 llgl® + 2Re[A(£, &)1 + I I = (f + Ag, £ + Ag)
= If +2gl* > 0.

Setting A = te'®, where ¢ is real and e is chosen such that e (f, g) > 0, we
obtain the inequality

gl +21(f, It + I fI* = 0.
Hence the quadratic equation
lgl? 2 +21(f, lt+1fI>=0

in ¢ has at most one real root, and therefore its discriminant must be nonpositive.
Substituting we obtain

R2I(f, I —4lgl* I FI* <0,
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from which the desired inequality follows. L

3.6 Observe that the property (f, f) = O implies that f = O was not needed in
the preceding proof.

3.7 Proposition. If £ is an inner product space, then ||-|| defines a norm on &£.

Proof We must verify properties (1)—(3) of Definition 1.3. The fact that || f|| =0
if and only if f = 0 is immediate from (4) (Definition 3.2) and thus (1) holds.

Since
IAfIl = O f, A2 = (A, 1))
we see that (2) holds. Lastly, using the Cauchy-Schwarz inequality, we have
If+el>=(f+g f+ = N+fie)+( N+ 8

= I£I*+ lgh* + 2Re(f, &) < IIFI* + lgl* + 21(f, &)l
<NFIP+lgl*+ 2170 lgh < dLFIl+ Ng)?

for f and g in £. Thus (3) holds and |- || is a norm. u

Y2 _ Al Ifll forAinCand f in &,

3.8 Proposition. In an inner product space, the inner product is continuous.

Proof Let < be an inner product space and { f }oca and {gq }oca be nets in &£ such
that limge 4 fy = f and limges go = g. Then

I(f, 8) — (far 8| = [(f = S ) + |(farr 8 — 8o
SUf = fall g+ 1 fall g — 8ol

and hence limgea (fo» 82) = ([ 8)- "

3.9 Definition. In the inner product space £ two vectors f and g are said to be
orthogonal, denoted f L g,if (f, g) = 0. A subset ¥ of & is said to be orthogonal
if f L g for f and g in & and orthonormal if, in addition, || f|| = 1 for f in &.

This notion of orthogonality generalizes the usual one in Euclidean space. It is
now possible to extend various theorems from Euclidean geometry to inner product
spaces. We give two that will be useful. The first is the familiar Pythagorean
theorem, while the second is the result relating the lengths of the sides of a
parallelogram to the lengths of the diagonals.

3.10 Proposition. (Pythagorean Theorem) If {f), f2,..., fz} is an orthogo-
nal subset of the inner product space &, then

n 2 n
DAL =080
i=l1 i=1
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Proof Computing, we have

Y f
i=1

2 n

=YD 5]=D G+
j=1

i=1 i=1 ij=1
i#j

_S_ (fi, fi) = z A2
i=1 i=l1
|

3.11 Proposition. (Parallelogram Law) If f and g are in the inner product
space &, then

If+ &I+ 1 F —gl® =217 +21ligll?

Proof Expand the left-hand side in terms of inner products. n

As in the case of normed linear spaces the deepest results are valid only if the
space is complete in the metric induced by the norm.

3.12 Definition. A Hilbert space is a complex linear space which is complete in
the metric induced by the norm.
In particular, a Hilbert space is a Banach space.

3.13 ExaMPLES. We now consider some examples of Hilbert spaces.

For n a positive integer let C" denote the collection of complex ordered n-
tuples {x : x = (x;,x2,...,xn),x; € C}. Then C" is a complex linear space
for the coordinate-wise operations. Define the inner product (,) on C" such that
(x,y) = Y_i_, x;¥;. The properties of an inner product are easily verified and
the associated norm is the usual Euclidean norm |x|l, = (X7, Ix,-lz)l/z. To
verify completeness suppose {x*}%° is a Cauchy sequence in C". Then since
|xk — x| < ||x¥ —x™|,, it follows that {x¥}$>, is a Cauchy sequence in C for
1 <i<nIfwesetx = (x1,x,...,xx), where x; = limy_, o x¥, then x is in C"
and limy_,  x* = x in the norm of C". Thus C" is a Hilbert space.

The space C” is the complex analog of real Euclidean n-space. We show later
in this chapter, in a sense to be made precise, that the C"’s are the only finite-
dimensional Hilbert spaces.

3.14 We next consider the “union” of the C"’s. Let & be the collection of
complex functions on Z* which take only finitely many nonzero values. With
respect to pointwise addition and scalar multiplication, £ is a complex linear
space. Moreover, (f, g) = Y o, f(n)g(n) defines an inner product on £, where
the sum converges because all but finitely many terms are zero. Is £ a Hilbert
space? It is if £ is complete with respect to the metric induced by the norm

1£l, = (X2, I f () )1/2. Consider the sequence { f}$°, contained in £, where
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()" n=k
0 n>k.

One can easily show that { f;}72 | is Cauchy but does not converge to an element
of £. We leave this as an exercise for the reader. Thus &£ is not a Hilbert space.

fi(n) = [

3.15 The space & is not a Hilbert space because it is not large enough. Let us
enlarge it to obtain our first example of an infinite-dimensional Hilbert space.
(This example should be compared to Example 1.15.)

Let [2(Z") denote the collection of all complex functions ¢ on Z* such that
3% o lp(n)* < 0o. Then I2(Z*) is a complex linear space, since

I(f + P <21 f (> +21g(m))*.
For f and g in I2(Z"), define (f, g) = Y oo, f(n)g(n). Does this make sense,
that is, does the sum converge? For each N in Z%, the n-tuples

Fy =(fOI, DI, ..., [f(N)]) and Gy = (1gO0)], [g(D)], ..., [8(N)])
lie in CV. Applying the Cauchy-Schwarz inequality, we have

N
> |£mE®)| = 1Fx, G| < IFx] 1G]
n=0

N 12, n 1/2
=(Z|f(n)|2) (Z|g(n)|2> <1112 gl -

n=0 n=0

Thus the series Z:io f (n)—g_(r—z—f converges absolutely. That (,) is an inner product
follows easily.

To establish the completeness of /2 (Z") in the metric given by the norm|| ||,,
suppose { f¥}$° | is a Cauchy sequence in /2(Z"). Then for each nin Z", we have

|5y = i < | 7% = £,
and hence { f* (n)}g2, is a Cauchy sequence in C for each n in Z*. Define the
function f onZ* tobe f(n) = limy_, o f¥(n). Two things must be shown: that f
isin/?(Z*) and that limy, o | f — f* ||2 = 0. Since { f¥}2 , is a Cauchy sequence,
there exists an integer K such that for k > K we have || f k f K ||2 < 1. Thus we
obtain

N 1/2 N 1/2 N 1/2
[Zlf(n)F] < [Zlﬂn) - f"(n)lz} + [Z If"(n)lz}
n=0

n=0 n=0
N 172 N 1/2
skgxgo{zjlf"(n)—f"(n)lzl +[Z|f"(n)|2}
n=0 n=0

<timsup | £ = f5, + [ F50, < 1+ |75,
—00
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and hence f is in [2(Z*). Moreover, given & > 0, choose M such thatk, j > M
implies ||f" - f/ " < &. Then for k > M and any N, we have

N N
21 = sl = Jim 371 = rE ol
n=0

n=0

< lim sup "fj — f""; < &2
j—o0

Since N is arbitrary, this proves that H f-r* ||2 < & and therefore I>(Z") is a
Hilbert space.

3.16 The Space L? In Section 1.45 we introduced the Banach spaces L' and
L based on a measure space (X, ¥, ). We now consider the corresponding L?
space, which happens to be a Hilbert space.

We begin by letting 2 denote the set of all measurable complex functions f on
X which satisfy [ | f|*du < oco. Since the inequality | f + g|* < 2|fI* +2[g/[*
is valid for arbitrary functions f and g on X, we see that ¥? is a linear space for
pointwise addition and scalar multiplication. Let N° 2 be the subspace of functions
f in & for which /; x| f [*du = 0, and let L? denote the quotient linear space
LN

If £ and g are £?, then the identity

Ifgl = 2{Af1+18D* = 1 £ = 1g1%}

shows that the function f3 is integrable. If we define ¢(f, g) = x fgdu for f
and g in ¥?, then @ has all the properties of an inner product except one; namely,
@(f, f) = 0does not necessarily imply f = 0. By the remark following the proof
of the Cauchy-Schwarz inequality, that inequality holds for ¢. Thus, if f, f, g,
and g’ are functions in ¥ such that f — f’ and g — g’ belong to N2, then

lo(f,8) —o(f, &) < lo(f = &)+ |o(f', e — &)

Se(f=f =1 8
+o(f', e —8.8—8)=0.
Therefore, ¢ is a well-defined function on L2. Moreover, if ¢([f1, [f]1) = 0, then
fx |f|2 dp = 0and hence [ f] = [0]. Thus ¢ is an inner product on L? and we will
denote it from now on in the usual manner. Furthermore, the associated norm on
L? is defined by I[f1ll, = (f5 | fI>dw)'/2. The only problem remaining before
we can conclude that L? is a Hilbert space is the question of its completeness. This
is slightly trickier than in the case of L!.

We begin with a general inequality. Take f in %7 and define g on X such that
gx) = f(x)/ I fx)|if f(x) # 0and g(x) = 1 otherwise. Then g is measurable,
lgx)| = 1, and fg = | f|. Moreover, applying the Cauchy-Schwarz inequality,
we have

A1 =/;{lf|d#=fxf§du= ISl = Iflz gl =1£ll2-
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Therefore, | fll, < || fll, for f in %2

We now prove that L? is complete using Corollary 1.10. Let {[ fal}2, be a
sequence in L? such that Zf__l ILf2Jll, £ M < oo. By the preceding inequality
Y22 L ILf1ll, < M, and hence, by the proof in Section 1.45, there exists f in ¢!
such that Y o0 | f»(x) = f(x) for almost all x in X. Moreover

N 2 N 2 N
fngn dusfx(nglfnl) dp = [Ew]
N 2
< (Z ||[fn1u2> < M2,
n=1

2
and since limy_, o |):;V=1 f,,(x)' = lf(x)l2 for almost all x in X, it follows

2
2

from Fatou’s lemma that | f|? is integrable and hence f is in $?%. Moreover,
: 2 . . . .
since the sequence {(Xn_, 1 fal) }5., is monotonically increasing, it follows

that k = limy_, o0 (Z,’IV: A )2 is an integrable function. Therefore,

N N 2 172
Jim Lf1= Y (A1) = lim f f=2"f| du
n=1 2 X n=1
o 2 1/2
Nco X n=ZN;-1f

by the Lebesgue dominated convergence theorem, since | no v fa |2 < kforall
N and limy o0 |5 4y £u(x)|* = 0 for almost all x in X. Thus L is a Hilbert
space. Lastly, we henceforth adopt the convention stated in Section 1.45 for the
elements of L?; namely, we shall treat them as functions.

3.17 The Space H 2, Let T denote the unit circle, u the normalized Lebesgue
measure on T, and L2(T) the Hilbert space defined with respect to u. The
corresponding Hardy space H? is defined as the closed subspace

1 [ '
{feLz(T):E/(; fxndt =0 forn=1,2,3,...},

where x,, is the function x,(e'’) = €'™. A slight variation of this definition is

[f e’ M): (fixx) =0 for n=-1,-2,-3,...}.

3.18 Whereas in Chapter 1 after defining a Banach space we proceeded to deter-
mine the conjugate space, this is unnecessary for Hilbert spaces since we show in
this chapter that the conjugate space of a Hilbert space can be identified with the
space itself. This will be the main result of this chapter.
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We begin by extending a result on the distance to a convex set to subsets of
Hilbert spaces. Although most proofs of this result for Euclidean spaces make use
of the compactness of closed and bounded subsets, completeness actually suffices.

3.19 Theorem. If X is a nonempty, closed, and convex subset of the Hilbert
space ¥, then there exists a unique vector in X of smallest norm.

Proof If § = inf{|| f|l : f € X}, then there exists a sequence { f,}52, in X such
that lim,, » || fn|| = 8. Applying the parallelogram law to the vectors f,/2 and
Jfm/2, we obtain

fn_fm
2

2
=2

2

2 2
+2"f_m fn‘;fm

fa
2 2

Since X is convex, ( fy+ fin)/2is in% and hence ||(f, + f.)/2/|*> > 82. Therefore,
we have || f, — full®> < 21 fall* + 2l f||* — 482, which implies

limsup || fo — fml® <28 + 287 — 46> = 0.

n,m—0o0
Thus { f,}32, is a Cauchy sequence in ¥ and from the completeness of ¥ and the
fact that X is a closed subset of ¥ we obtain a vector f in X such thatlim,_, « f, =
f- Moreover, since the norm is continuous, we have || f|| = lim,— o || full = 8.

Having proved the existence of a vector in K of smallest norm we now consider
its uniqueness. Suppose f and g are in X with || f|| = ||gll = 8. Again using the
parallelogram law, we have

U N VA S T W] PR A
—1 =25 2121 = —=| ==+=-8*=0,
‘ 2 1 "2" 2 )
since ||(f + g)/2|l = 8. Therefore, f = g and uniqueness is proved. ]

If 7 is a plane and [ is a line in three-space perpendicular to = and both 7 and
! contain the origin, then each vector in the space can be written uniquely as the
sum of a vector which lies in 7 and a vector in the direction of /. We extend this
idea to subspaces of a Hilbert space in the theorem following the definition.

3.20 Definition. If M is a subset of the Hilbert space %, then the orthogonal
complement of M, denoted M™, is the set of vectors in ¥ orthogonal to every
vector in M.

Clearly M is aclosed subspace of ¥, possibly consisting of just the zero vector.

However, if M is not the subspace {0} consisting of the zero vector alone, then
ME £ .

3.21 Theorem. If M isaclosed subspace of the Hilbert space ¥ and f is a vector
in %, then there exist unique vectors g in M and 4 in M* such that f = g + h.
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Proof If we set X = {f —k : k € M}, then ¥ is a nonempty, closed and convex
subset of #. Let & be the unique element of X with smallest norm whose existence
is given by the previous theorem. If  is a unit vector in M, then & — (h, k)k is in
X, and hence

A1 < 1k = (B, KN = 1B — (A, k) (R, k) — (h, k)(B, k) + (B, k) (B, k) |Ik))2.

Therefore, |(h, k)| < 0, which implies (h, k) = 0, and hence & is in M. Since h
is in ¥, there exists g in M such that f = g + h and the existence is proved.

Suppose now that f = g; + h; = g, + h,, where g; and g, are in A while A,
and h, are in M. Then g —8 =h  —hyisinMN M*, and hence g2 — 8
is orthogonal to itself. Therefore, [lg2 — g11> = (g2 — 81,82 — g1) = 0 which
implies g; = g>. Finally, ) = h; and the proof is complete. L

3.22 Corollary. If M is a subspace of the Hilbert space ¥, then M+ = clos M.

Proof Thatclos M C M follows immediately for any subset M of 3. If f is in
M1, then by the theorem f = g + k, where g is in clos M and # is in M*. Since
f is in M, we have

0=(f,h)=(g+h,h)=(h,h)=|h|>.
Therefore, » = 0 and hence f is in clos M. .

If g is a vector in the Hilbert space 3¢, then the complex functional defined
9o (f) = (f, g) for f in K is clearly linear. Moreover, since |, ()| < I 1l ligll
for all f in %, it follows that g, is bounded and that |p,| < ligll. Since
lgl® = @g(8) < || gl we have ligl < |@, | and hence o, | = lgl.
The following theorem states that every bounded linear functional on ¥ is of this
form.

3.23 Theorem. (Riesz Representation Theorem) If ¢ is a bounded linear
functional on #, then there exists a unique g in J€ such that ¢(f) = (f, g) for f
in €.

Proof Let X be the kernel of ¢, thatis, X = {f € ¥ : o(f) = 0}. Since ¢ is
continuous, ¥ is a closed subspace of . If X = ¥ then o(f) = (f,0) for f in K
and the theorem is proved. If X # X, then there exists a unit vector 4 orthogonal
to X by the remark following Definition 3.20. Since 4 is not in X, then ¢ (k) # 0.
For f in %€ the vector f — (¢(f) /@) is in K since (f — (p(f)/e(h))h) = 0.
Therefore, we have

()

= h,h) = —===h, (M)A
o(f) = o(f)(h, h) ((p(h) w())

o(f) —) (w(f) —)
= — ——h,e(h)h ——h,p(h)h
(f oy e ) F Lo e ®
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= (f,p(h)h

for f in %, and hence ¢(f) = ([, g) for g = p(h)h.

If (f, 1) = (f, &) for f in ¥, then, in particular, (g1 — 82,81 — g2) = 0 and
hence g; = g,. Therefore, ¢(f) = (f, g) for a unique g in . n

Thus we see that the mapping from ¥ to ¥¢* defined g — ¢, is not only norm
preserving but onto. Moreover, a straightforward verification shows that this map
is conjugate linear, that is, @o, ¢, +ayg, = @194, + X200, for &) and o in C and g,
and g, in . Thus for most purposes it is possible to identify #* with ¥ by means
of this map.

3.24 In the theory of complex linear spaces, a linear space is characterized up to
isomorphism by its algebraic dimension. While this is not true for Banach spaces, it
is true for Hilbert spaces with an appropriate and different definition of dimension.
Before giving this definition we need an extension of the Pythagorean theorem to
infinite orthogonal sets.

3.25 Theorem. If {f,}eca is an orthogonal subset of the Hilbert space %,
then 3", 4 fo converges in % if and only if 3", , | fu*> < 00 and in this case

1 en fell® = Suen I full®

Proof Let & denote the collection of finite subsets of A. If 3", ., fo converges,
then by Definition 1.8, the continuity of the norm, and the Pythagorean theorem
we have

2 2 2
Yo ff = gnga = lim > fa
a€A aeF aeF

o 2 _ 2
=lim > el =3 Ifal?.
aeF acA

Therefore, if ), 4 f converges, then )", , Il fu II? < oo.

Conversely, suppose Y .4 Il fo I> < oo. Given & > 0, there exists Fp in % such
that F > Fo implies Y gcr | full* — Xger, | full* < €2 Thus, for Fi and F; in F
such that Fy, F, > Fy, we have

, ‘
Yo fum Y Sl = Y ML+ Y fl?

aEFl aer l!EF]\Fz aGFz\F|
< Y MfalP= D0 Ul < £
a€F|UF, acky

where the first equality follows from the Pythagorean theorem. Therefore, the net
{ Xuer fu}peg is Cauchy, and hence 3, ., fu converges by definition. =
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3.26 Corollary. If {e,}qca is an orthonormal subset of the Hilbert space € and
M is the smallest closed subspace of ¥ containing the set {e, : @ € A}, then

M= IZAaea A €C, ) Al < oo}.

a€A a€A

Proof Let ¥ denote the directed set of all finite subsets of A. If {A, }c4 is a choice
of complex numbers such that ), , A4 [* < 0o, then {Ayes}aea is an orthogonal
setand ), 4 1 Aaee I? < oo. Thus Y aca rao converges to a vector f in ¥ by
the theorem and since f = limgpeg Y, f Ao€a, the vector is seen to lie in

N= [Zkaea tAq € C,Z:lka,l2 < oo} .

a€cA a€A

Since N contains {e, : @ € A}, the proof will be complete once we show that N
is a closed subspace of ¥. If {Ay}aca and {Ue}aca satisfy 3,4 [Ael? < 00 and
Y ea liel® < 00, then

D e+ pal? 2) el +2) Il < oo

acA acA a€A

Hence N is a linear subspace of 7.

Now suppose {f"}32, is a Cauchy sequence contained in N and that f" =
Y wea Ae,. Then for each o in A we have

172
o=l < (She =) =171

€A

and hence A, = lim,—,00 A% exists. Moreover, for F in & we have

>l = lim Y- AP < lim 3RO = lim 71 < co.
aeF a€eF a€A

Hence, f = Zde A A€o is well defined and an element of N. Now given ¢ > 0,
if we choose N such that n, m > N implies || f* — f™|| < ¢ then for F in %, we
have

2 . 2 ..
;Ma —A?) =,,,11§3,°;I)~§M) AP < ll'zn_)s;p 1™ - )P <.
[*3 o
Therefore, for n > N, we have
=17 =3 e = A0 = lim Y |ra = 20" < €2,
«eF 'FegpaeF

and hence N is closed. u
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3.27 Definition. A subset {e,}sca Of the Hilbert space ¥ is said to be an or-
thonormal basis if it is orthonormal and the smallest closed subspace containing
itis #.

An orthonormal basis has especially pleasant properties with respect to repre-
senting the elements of the space.

3.28 Corollary. If {e,}qea is an orthonormal basis for the Hilbert space 7€ and f
is a vector in %, then there exist unique Fourier coefficients {A, }oca contained in
Csuch that f = Y __, Age,. Moreover, A, = (f, €,) for o in A.

a€A

Proof That {1, },ca exists such that f = Zae A Aa€y follows from the preceding
corollary and definition. Moreover, if & denotes the collection of finite subsets of
A and B is in A, then

(f, ep) = (Z Aaea, eﬂ) = Llel’g; (Zkaea, eﬂ)

€A a€eF

= gengAa(ea, ep) = lim Ap = Ap.
a€F BeF

(The limit is unaffected since the subsets of A containing 8 are cofinal in %.)
Therefore the set {A, }yca is unique, where A, = (f, ey) for @ in A. ]

3.29 Theorem. Every Hilbert space (# {0}) possesses an orthonormal basis.

Proof Let € be the collection of orthonormal subsets E of ¥ with the partial
ordering E, < E; if E; C E,. We want to use Zorn’s lemma to assert the
existence of a maximal orthonormal subset and then show that it is a basis. To
this end let {E)},ca be an increasing chain of orthonormal subsets of . Then
clearly Uyep Ey is an orthonormal subset of ¥ and hence is in €. Therefore, each
chain has a maximal element and hence ¢ itself has a maximal element E,,. Let
M be the smallest closed subspace of ¥ containing E . If M = ¥, then E, is an
orthonormal basis. If Ml # 7€, then for e a unit vector in Mt the set £y U {e}is an
orthonormal subset of ¥ greater than E . This contradiction shows that Ml = ¥
and E ) is the desired orthonormal basis. ]

Although there is nothing unique about an orthonormal basis, that is, there
always exist infinitely many if # # {0}, the cardinality of an orthonormal basis is
well defined.

3.30 Theorem. If {ex}sca and {fg}gep are orthonormal bases for the Hilbert
space %, then card A = card B.

Proof If either of A and B is finite, then the result follows from linear algebra.
Assume, therefore, that card A > Ry and card B > R,. For ¢ in A set B, =
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{B € B : (eq, fp) # O}. Since e, = Zﬁea("a’ fg) fs by Corollary 3.28 and
1 = |leg]® = ZﬂeB |(ea, fg)[ by Theorem 3.25, it follows that card B, < Ro.

Moreover, Since f5 = 3"y (€a» f3)ea, it follows that (e, f5) # O for some o
in A. Therefore, B = Uyea B, and hencecard B <), ,card B, <), . No =
card A since card A > 8. From symmetry we obtain the reverse inequality and

hence card A = card B. ]

3.31 Definition. If ¥ is a Hilbert space, then the dimension of ¥, denoted dim
7, is the cardinality of any orthonormal basis for .

The dimension of a Hilbert space is well defined by the previous two theorems.
We now show that two Hilbert spaces # and ¥ of the same dimension are
isomorphic, that is, there exists an isometric isomorphism from % onto X which
preserves the inner product.

3.32 Theorem. Two Hilbertspaces are isomorphic if and only if their dimensions
are equal.

Proof If % and ¥ are Hilbert spaces such that dim # = dim ¥, then there
exist orthonormal bases {ey}aca and { fo}oeea for ¥ and K, respectively. Define
the map @ from ¥ to K such that for g in ¥, we set &g = Y (8, €a) fa-
Since g = Y .48, e(,)e,, by Corollary 3.28, it follows from Theorem 3.25 that
Y oacal(g el = llglI%. Therefore, ®g is well defined and

I1Dgl? =) I(g> ea)l* = ligl® .

acA

That @ is linear is obvious. Hence, ® is an isometric isomorphism of ¥ to X.
Thus, ®¥ is a closed subspace of X which contains {f, : @ € A} and by the
definition of basis, must therefore be all of X. Lastly, since (g, g) = || gl? =
|Pg 1> = (dg, Dg) for g in K, it follows from the polarization identity that
(g, h) = (Pg, Ph) for g and h in H. ]

3.33 We conclude this chapter by computing the dimension of Examples 3.13,
3.15, 3.16, and 3.17. For C" it is clear that the n-tuples

{(1,0,...,0),(,1,...,0),...,(0,0,...,1)}

form an orthonormal basis, and therefore dim C" = n. Similarly, it is easy to
see that the functions {e,}%°, in [2(Z") defined by e,(m) = 1 if n = m and 0
otherwise, form an orthonormal subset of 12(Z*). Moreover, since f in I2(Z")
can be written f = Y oo f(n)e,, it follows that {e,}3° is an orthonormal basis
for 12(Z*) and hence that dim [[2(Z")] = Ro.

In the Hilbert space L2([0, 1]), the set {¢*""*},cz is orthonormal since
fol e¥inx gx = 1if n = 0 and 0 otherwise. Moreover, from the Stone-Weierstrass
theorem it follows that C ({0, 1]) is contained in the uniform closure of the subspace
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spanned by the set {e*™"* : n e Z} and hence C ([0, 1]) is contained in the smallest
closed subspace of L2([0, 1]) containing them. For f in L2([0, 1]) it follows from
the Lebesgue dominated convergence theorem thatlimy_, || f — fxll, = O, where

f&x), 1fx)| =<k,
filx) =
0, | f(xX)| > k.

Since C([0, 1]) is dense in L!([0, 1]) in the L'-norm, there exists for each k
in Z*, a function ¢ in C([0, 1]) such that |g¢(x)] < k for x in [0, 1] and
I fe — exll; < 1/k. Hence

1 1/2 1 1/2
lim sup (/ | fie — (pklzdx) < limsup (kf | fie — (Pkldx)
k—o00 0 k—o00 0

1\ /2
< lim sup (Z) =0.

k—o00

Thus, C([0, 1]) is adense subspace of L2([0, 1]) and hence the smallest closed sub-
space of L2([0, 1]) containing the functions {¢**"* : n € Z} is L?([0, 1]). There-
fore, {¢¥7i"%}, .z is an orthonormal basis for L2([0, 1]). Hence, dim {L?([0, 1])} =
Ro and therefore despite their apparent difference, 12(Z*) and L?([O, 1]) are
isomorphic Hilbert spaces.

Similarly, since a change of variables shows that {x,},cz is an orthonormal
basis for L2(T), we see that {x,},cz+ is an orthonormal basis for H 2 and hence
dim H? = Ry also.

We indicate in the exercises how to construct examples of Hilbert spaces for
all dimensions.

Notes

The definition of a Hilbert space is due to von Neumann and he along with Hilbert, Riesz,
Stone, and others set forth the foundations of the subject. An introduction to the geometry
of Hilbert space can be found in many textbooks on functional analysis and, in particular,
in Stone [104], Halmos [55], Riesz and Sz.-Nagy [92], and Akhieser and Glazman [2].

Exercises

3.1 Let A be a nonempty set and let
PA)={f:A>C:) If@I < oo}.
a€A
Show that I2(A) is a Hilbert space with the pointwise operations and with the inner

product (f, §) = Yy f(@)g(@). Show that dim I?(A) = card A.

3.2 Let &£ be a normed linear space for which the conclusion of the parallelogram law is
valid. Show that an inner product can be defined on £ for which the associated norm
is the given norm.

3.3 Show that the completion of an inner product space is a Hilbert space.
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34

35
3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

3.14
3.15

3.16

3.17

3.18

Show that C ({0, 1]) is not a Hilbert space, that is, there is no inner product on C ([0, 1])
for which the associated norm is the supremum norm.

Show that C([0, 1]) is not homeomorphically isomorphic to a Hilbert space.*

Complete the proof begun in Section 3.14 that the space & defined there is not
complete.

Give an example of a finite dimensional Banach space containing a closed convex set
which contains more than one point of smallest norm.*

Give an example of an infinite dimensional Banach space and a closed convex set
having no point of smallest norm.*

Let ¢ be a bounded linear functional on the subspace M of the Hilbert space #. Show
that there exists a unigue extension of ¢ to ¥ having the same norm.

Let ¥ and X be Hilbert spaces and 7€ @ ¥ denote the algebraic direct sum. Show that
(th1, ki), (ha, k2)) = (hy, h2) + (K1, k2)

defines an inner product on 3 @ X, that # & X is complete with respect to this inner
product, and that the subspaces # @ {0} and {0} & X are closed and orthogonal in
HoX.

Show that each vector of norm one is an extreme point of the unit ball of a Hilbert
space.

Show that the w*-closure of the unit sphere in an infinite-dimensional Hilbert space
is the entire unit ball.

Show that every orthonormal subset of the Hilbert space %€ is contained in an
orthonormal basis for ¥.

Show that if M is a closed subspace of the Hilbert space ¥, then dim M < dim %.

(Gram-Schmidt) Let { f,}32, be a subset of the Hilbert space 7€ whose closed linear
span is . Set e; = £/ || fill and assuming {e;};_, to have been defined, set

€yl = (fn+l - Z(fn+lv ek)ek)/
k=1

where e, is taken to be the zero vector if

forr =Y (fast, e

k=1

Jar1 — Z(f"“' er)ex

k=1

’

Show that {e,}>2, is an orthonormal basis for #.

Show that L%([0, 1]) has an orthonormal basis {en}o2, such that e, is a polynomial of
degree n.

Let &£ be a dense linear subspace of the separable Hilbert space . Show that &£
contains an orthonormal basis for €. Consider the same question for nonseparable
%.*

Give an example of two closed subspaces L and N of the Hilbert space ¥ for which
the linear span
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M+N={f+g:feMgeN}

fails to be closed.* (Hint: Take L to be the graph of an appropriately chosen bounded
linear transformation from ¥ to I and N to be K & {0}, where # = X & X.)

3.19 Show that no Hilbert space has linear dimension Ry. (Hint: Use the Baire category
theorem.)

3.20 If  is an infinite-dimensional Hilbert space, then dim ¥ coincides with the smallest
cardinal of a dense subset of 3.

3.21 Let ¥ and X be Hilbert spaces and let %?% denote the algebraic tensor product of
% and XK considered as linear spaces over C. Show that

(Zh ®k.,zh’®k’) ZZ(h,, B ki k)

Jj=1 i=1 j=1

defines an inner product on % ?‘.’IC Denote the completion of this inner product space
by # ® X. Show that if {ex}aca and {fg}gep are orthonormal bases for ¥ and ¥,
respectively, then {e, ® fg},8)caxp is an orthonormal basis for # ® K.

3.22 Let (X, ¥, 1) be a measure space with 4 finite and ¢ be a bounded linear functional
on L!(X). Show that the restriction of ¢ to L2(X) is a bounded linear functional on
L?(X) and hence there exists g in L*(X) such that o(f) = [, fg du for f in L*(X).
Show further that g is in L°(X) and hence obtain the characterization of L!(X)* as
L*(X). (Neither the result obtained in Chapter 1 nor the Radon-Nikodym theorem is
to be used in this problem.)

3.23 (von Neumann) Let p and v be positive finite measures on (X, &) such that v is
absolutely continuous with respect to . Show that f — x fdu is well defined and
a bounded linear functional on L2(u + v). If  is the function in L2(u + v) satisfying
Jx fed(u+v) = [ fdu, then (1 — @)/¢ is in L' (1) and

u(E)=/ 1—_¢d#
E @
for Ein &.

3.24 Interpret the results of Exercises 1.30 and 1.31 under the assumption that & is a Hilbert
space.



Chapter 4

Operators on Hilbert Space
and C*-Algebras

4.1 Most of linear algebra involves the study of transformations between linear
spaces which preserve the linear structure, that is, linear transformations. Such is
also the case in the study of Hilbert spaces. In the remainder of the book we shall be
mainly concerned with bounded linear transformations acting on Hilbert spaces.
Despite the importance of certain classes of unbounded linear transformations, we
consider them only in the problems.

We begin by adopting the word operator to mean bounded linear transformation.
The following proposition asserts the existence and uniqueness of what we shall
call the “adjoint operator.”

4.2 Proposition. If T is an operator on the Hilbert space ¥, then there exists a
unique operator S on ¥ such that

(Tf,8) = (f, Sg) for f and g in X.

Proof For a fixed g in ¥ consider the functional ¢ defined by ¢(f) = (Tf, g)
for f in ¥. It is easy to verify that ¢ is a bounded linear functional on ¥, and
hence there exists by the Riesz representation theorem, a unique 4 in 7€ such that
o(f) = (f, h) for f in H. Define Sg = h.

Obviously, S is linear and (T'f, g) = (f, Sg) for f and g in . Setting f = Sg
we obtain the inequality
ISgl> = (Sg. Sg) = (T'Sg,g) < IT| ISgll llgll for gin#.

Therefore, ||S|| < ||T|| and S is an operator on .

To show that S is unique, suppose Sy is another operator on ¥ satisfying ( f, Sog) =
(Tf, g) for f and g in . Then (f, Sg — Sog) = O for f in ¥ which implies
Sg — Sog = 0.Hence S = Sp and the proof is complete. L]

74
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4.3 Definition. If T is an operator on the Hilbert space ¥, then the adjoint of T,
denoted T*, is the unique operator on ¥ satisfying (T f, g) = (f, T*g) for f and
ginZ.

The following proposition summarizes some of the properties of the involution
T — T*.In many situations this involution plays a role analogous to that of the
conjugation of complex numbers.

4.4 Proposition. If 3¢ is a Hilbert space, then:

(1) T* = (T*)* = T for T in 2(%);

@) ITl =IT*) for T in Q_S%),

B) @S+ BT)* =aS*+ BT* and (ST)* = T*S*fore, BinCand S, T in
L(36);

@ (T*~! = (T~Y* for an invertible T in L(F); and

(5) ITI? = IIT*T|l for T in R(%€).

Proof (1) If f and g are in %, then
(T =(T"f,8) = T*f)=(Tg, /) =(f.Tg),

and hence 7** = T.

(2) In the proof of Proposition 4.2 we showed || T**|| < |T*|| < ||T||. Combining
this with (1), we have || T|| = ||T*|.

(3) Compute.

(49 Since TH(T™H* = (T7'T)* =1 = (TT™Y)* = (T1)*T* by (3), it follows
that T* is invertible and (7*)~! = (T~1)*.

(5) Since |T*T|| < IT*I ITIl = IT? by (2), we need verify only that ||T*T|| >
IT 11 Let { fa)o2, be a sequence of unit vectors in ¥ such that lim,_,o T /x|l =

[IT]l. Then we have

|T*T| = limsup | T*Tf,]| = limsup(T*Tfy, fu) = lim |Tfl? = T2,
n—>oo n—o00o n—o0o
which completes the proof. [ |

4.5 Definition. If T is an operator on the Hilbert space 3¢, then the kernel of T,
denoted ker T, is the closed subspace {f € ¥ : Tf = 0}, and the range of T,
denoted ran T, is the subspace {T'f : f € #}.

4.6 Proposition. If T is an operator on the Hilbert space %, then ker T =
(ran T*)* and ker T* = (ran T)*.

Proof ltis sufficient to prove the first relation in view of (1) of the last proposition.
To that end, if f is in ker 7, then (T*g, f) = (g, Tf) = O for g in ¥, and
hence f is orthogonal to ran T*. Conversely, if f is orthogonal to ran 7%, then
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(Tf,g) = (f,T*g) = 0 for g in ¥, which implies Tf = 0. Therefore, f is in
ker T and the proof is complete. L]

We next derive useful criteria for the invertibility of an operator.

4.7 Definition. An operator T on the Hilbert space € is bounded below if there
exists ¢ > O such that |[Tf|| > ¢ || f|| for f in F.

4.8 Proposition. If T is an operator on the Hilbert space ¥, then T is invertible
if and only if T is bounded below and has dense range.

Proof If T is invertible, then ran T = ¥ and hence is dense. Moreover,

1
1" (pal for find

1
ITAl 2 == IT7'Tf | = ==
"T—IH “ " "T‘

and therefore T is bounded below.

Conversely, if T is bounded below, there exists ¢ > 0 such that |[Tf|| > ¢ | f|
for f in %. Hence, if {T f,}2, is a Cauchy sequence in ran T, then the inequality

Ufo— foull < % \Tfo = Tl

implies {f,}32, is also a Cauchy sequence. Hence, if f = lim,_, f», then
Tf = limy,—0o Tfn is inran T and thus ran T is a closed subspace of . If we
assume, in addition, that ran T is dense, then ran T = . Since T being bounded
below obviously implies that T is one-to-one, the inverse transformation 7! is
well defined. Moreover, if g = Tf, then

_ 1 1
[T = IFI < = ITfl = = lgll
P e
and hence T~! is bounded. ]

4.9 Corollary. If T is an operator on the Hilbert space ¥ such that both T and
T* are bounded below, then T is invertible.

Proof 1f T* is bounded below, then ker 7* = {0}. Since (ran T)* = ker T* = {0}
by Proposition 4.6, we have (ran T)* = {0}, which implies clos[ranT] =
(ran 7)1+ = {0}+ = % by Corollary 3.22. Therefore, ran T is dense in # and the
result follows from the theorem. u

4.10 If T is an operator on the finite dimensional Hilbert space C" and {¢;}"_, is
an orthonormal basis for C”, then the action of T is given by the matrix {a;; | j=10
where a;; = (Te;, ej). The adjoint operator T* has the matrix {b;; }Z j=10 where
b,'j =Ej,' fOI'i,j = 1,2,...,n.
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The simplest operators on C" are those for which it is possible to choose an
orthonormal basis such that the corresponding matrix is diagonal, that is, such that
a;; = O0fori # j. An operator can be shown to belong to this class if and only if
it commutes with its adjoint. In one direction, this result is obvious and the other
is the content of the so called “spectral theorem” for matrices.

For operators on infinite dimensional Hilbert spaces such a theorem is no
longer valid. Hilbert showed, however, that a reformulation of this result holds
for operators on arbitrary Hilbert spaces. This “spectral theorem” is the main
theorem of this chapter.

We begin by defining the relevant classes of operators.

4.11 Definition. If T is an operator on the Hilbert space ¥, then:

(1) T isnormal if TT* = T*T;

(2) T is self-adjoint or hermitian if T = T*;
(3) T is positive if (Tf, f) > 0 for f in ¥; and
(4) T isunitary if T*T =TT* = I.

The following is a characterization of self-adjoint operators.

4.12 Proposition. An operator T on the Hilbert space ¥ is self-adjoint if and
only if (T f, f) isreal for f in ¥.

Proof If T is self-adjoint and f is in ¥, then
TLHH=ULTH=ULTH=TL 1)

and hence (T'f, f) isreal. If (T f, f) is real for f in %, then using Lemma 3.3, we
obtain for f and g in ¥ that (Tf, g) = (Tg, f) and hence T = T*. u

4.13 Corollary. If P is a positive operator on the Hilbert space ¥, then P is
self-adjoint.

Proof Obvious. [ ]

4.14 Proposition. If T is an operator on the Hilbert space 3, then T*T is a
positive operator.

Proof For f in % we have (T*Tf, f) = |Tfl* > 0, from which the result
follows. n

When we speak of the spectrum of an operator T defined on the Hilbert space %,
we mean its spectrum when T is considered as an element of the Banach algebra
(%) and we use o(T) to denote it. On a finite-dimensional space A is in the
spectrum of T if and only if A is an eigenvalue for 7. This is no longer the case
for operators on infinite-dimensional Hilbert spaces.
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In linear algebra one shows that the eigenvalues of a hermitian matrix are real.
The generalization to hermitian operators takes the following form.

4.15 Proposition. If T is a self-adjoint operator on the Hilbert space #(, then the
spectrum of T is real. Furthermore, if T is a positive operator, then the spectrum
of T is nonnegative.

Proof If A = « + i with «, B real and 8 # 0, then we must show that T — X is
invertible. The operator K = (T — «)/8 is self-adjoint and T — A is invertible if
and only if K — i is invertible, since K — i = (T — A)/B. Therefore, in view of
Proposition 4.9, the result will follow once we show that the operators K — i and
(K —i)* = K + i are bounded below. However, for f in 7, we have

IKEDFI>= (KL f, (K£i)f) = IKfI?Fi(Kf, £)Li(f, K+ IFIP
=IKfI*+ A2 = NP

and hence the spectrum of a self-adjoint operator is real.
If we assume, in addition, that T is positive and A < 0, then

1T =2 FIP =TSP =20(T S, )+ 221 FI = 221 fIP.

Since (T — A)* = (T — 1), then T — X is invertible by Proposition 4.9 and the
proof is complete. n

We consider now a special class of positive operators which form the building
blocks for the self-adjoint operators in a sense which will be made clear in the
spectral theorem.

4.16 Definition. An operator P on the Hilbert space ¥ is a projection if P is
idempotent (P? = P) and self-adjoint.

The following construction gives a projection and, in fact, all projections arise
in this manner.

4.17 Definition. Let M be a closed subspace of the Hilbert space ¥. Define Py
to be the mapping Py f = g, where f = g + h with g in M and 4 in M.

4.18 Theorem. If M is a closed subspace of ¥, then Py is a projection having
range L. Moreover, if P is a projection on #, then there exists a closed subspace
M(= ran P) such that P = Py.

Proof First we prove that Py is an operator on ¥. If fi, f, are vectors in ¥ and
A1, A2 complex numbers, then f; = g, + h; and f, = g2 + ha, where g, g, are
in M and A, h, are in M. Moreover

MA+ X fo = (g1 + Aag2) + (Mihy + Aahy),
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where A1 g + X282 isin M and (A1 h) + Azhy) isin ML By the uniqueness of such
a decomposition, we have

Puifi +22f2) = Mig1 + A8 = M Pufi + M Pufa
and hence Py is a linear transformation on 3. Moreover, the inequality

1Pwfill® = ligi? < Ngill® + B = 1A

shows that Py is bounded and has norm at most one. Therefore, P is an operator
on . Moreover, since

(Puf1, f2) = (81, 82 + h2) = (g1, &2) = (g1 + h1, 82) = (f1, Puf2),

we see that Py is self-adjoint. Lastly, if f is in M, then f = f 4+ 0 is the required
decomposition of f and hence Py f = f. Since ran Py = M, it follows that

Pj_ = Py and hence Py is idempotent. Therefore Py is a projection with range
M.

Now suppose P is a projection on # and set ML = ran P.If {Pf,}32 | is a Cauchy
sequence in ¥ converging to g, then

g = lim Pf, = lim P*f, = P[lim Pf,] = Pg.
n—oo n—o0o n—o0o

Thus g is in M and hence M is a closed subspace of %. If g is in M*, then || Pg||* =
(Pg, Pg) = (g, P?g) = 0, since P?g is in M, and hence Pg = 0. If f is in ¥,
then f = Pg + h, where h is in M* and hence Py f = Pg = P2g+ Ph = Pf
Therefore, P = Py.

Many geometrical properties of closed subspaces can be expressed in terms of
the projections onto them.

4.19 Proposition. If ¥ is a Hilbert space, {M;}!_, are closed subspaces of ¥, and
{P;}}_, are the projections onto them, then P, + P, + - - - + P, = I if and only if
the subspaces {M;}]_ =y are pairwise orthogonal and span % that is, if and only if
each f in ¥ has a unique representation f = f; + f> + - L+ Jn, Where f; isin
M;.

Proof If P, + P, + --- + P, = I, then each f in J has the representation
f =P f+Pf+---+ P, f and hence the M; span ¥. Conversely, if the {M;}]_,
span ¥ and the sum P; + P>+ - - - + P, is a projection, then it must be the identity
operator. Thus, we are reduced to proving that P, + P, +- - -+ P, is a projection if
and only if the subspaces {M;}_, are pairwise orthogonal, and for this it suffices
to consider the case of two subspaces.

Therefore, suppose P; and P, are projections such that P, + P; is a projection.
For f in M, we have

((Pi+ P f, ) = ((P1 + P)* £, f)
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= (Pof, PLf)+ (PLf, Pf) + (Pof, PLU) + (Pof, P2 f)
=P, N+ RO+, H+ (RS, f)
=((Pi+ P f, f) + 2P2f, ),

since P, f = f and thus 2 | P, f||®> = 2(P»f, Pof) = 2(P»f, f) = 0. Hence, f
and therefore M, is orthogonal to M,.

Conversely, if P; and P; are projections such that the range of P, is orthogonal to
the range of P,, then for f in #, we have

(Pr+ P)*f = (Pi+ P)Pif+ (P + P)Pof = PLf+ P2 f
=(P+ P)f,
since PP f = PP,f =0. n

The proof shows that the sum of a finite number of projections onto pairwise
orthogonal subspaces is itself a projection.

We next consider some examples of normal operators other than those defined
by the diagonalizable matrices on a finite-dimensional Hilbert space.

4.20 ExaMPLE. Let (X, d, 1) be a probability space. For ¢ in L°°(u) define the
mapping M, on L2(u) such that M,f = of for f in L?(u), where ¢fdenotes
the pointwise product, and let I = {M,, : ¢ € L®(u)}. Obviously M, is linear
and the inequality

1/2 1/2
M, £, = ( fx lof1? du) < ( fx (II¢I|ooIf|)2du) < 19lloo I £1l2

shows that M,, is bounded. Moreover, if E,, is the set

{x e X:lp(x)| = llpllw — 1/n},

" 1/2 1\2 5
du) > [ / (u«)uw——) 1z, | du]
X n

> (i1 =) I,

and hence | M, | = ll¢|loo. For f and g in L2() and ¢ in L®(u) we have
Mof.0) = [ lofigdn = [ f@wrdn = (/. Mz,

then

M1l = ( [ lote

12

2

which implies M; = M. Lastly, the mapping defined by W(¢) = M, from
L*®(u) to P is obviously linear and multiplicative. Therefore, W is a *-isometric
isomorphism of L®(u) onto IN. (The terminology *- is used to denote the fact
that conjugation in L*°(y) is transformed by W to adjunction in 2(L2(u)).)
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Since L*°(u) is commutative, it follows that M, commutes with M; and hence
is a normal operator. For ¢ in L*° () the operator M,, is self-adjoint if and only
if M, = M, and hence if and only if ¢ = @ or ¢ is real. Since M7 = Mz, the
operator M, is idempotent if and only if @? = g or ¢ is a characteristic function.
Therefore, the self-adjoint operators in I are the M, for which ¢ is real, and the
projections are the M, for which ¢ is a characteristic function.

Let us now consider the spectrum of the operator M,,. If ¢ — A is invertible in
L>(w), then M, — A = M(,_;, is invertible in R(L?(x)) with inverse M(,_j-1,
and hence o (M,) C R(p). To assert the converse inclusion we need to know that
if M, — A is invertible, then its inverse is in . There are at least two different
ways of showing this which reflect two important properties possessed by I¢.

4.21 Definition. If ¥ is a Hilbert space, then a subalgebra IR of X(¥) is said
to be maximal abelian if it is commutative and is not properly contained in any
commutative subalgebra of ().

4.22 Proposition. The algebra I = {M,, : ¢ € L°°(u)} is maximal abelian.

Proof Let T be an operator on L?(u) that commutes with I. If we set ¥ = T'1,
then ¥ isin L?(u) and T = TM,1 =M,T1 = ¢y for ¢ in L*(1). Moreover,
if E,isthe set {x € X : | (x)| = |IT|| + 1/n}, then

) 1/2
(ot

] , 1/2 1
> (||T|| 4 ;) (/X |1, du) > (uTu + ;) s,

Therefore, || Ik, |, = 0 and hence the set {x € X : |¢(x)| > ||T||} has measure
zero. Thus ¢ is in L*(u) and T = My¢ for ¢ in L>°(u). Since C(X) is dense
in L?(u) as proved in Section 3.33 and C(X) C L®(u), it follows that T = My
is in P¢. Therefore, P is maximal abelian. n

ITI |1,

2 z " TIEn

2= "‘//IE,,

2

4.23 Proposition. If ¥ is a Hilbert space and 2 is a maximal abelian subalgebra
of (M), then o (T) = oy (T) for T in Y.

Proof Clearly o (T) C oy(T) for T in U. If A is not in o (T'), then (T — A)~!
exists. Since (T — A)~! commutes with 2 and U is maximal abelian, we have
(T — )~ !isin Y. Therefore A is not in oy (7T) and hence oy (T) = o (T). ]

4.24 Corollary. If ¢ is in L*°(u), then o (M) = R(p).
Proof Since M = {My : y € L®(u)} is maximal abelian, it follows from the

previous result that ogp(T') = o (T). Since I and L*>°(u) are isomorphic, we have
om(T) = o1=(,)(T) and Lemma 2.63 completes the proof. L]
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We offer the alternate approach after giving an example of a subalgebra 2 of
(%) and an operator T in ¥ for which oy (T) # o (T).

4.25 ExaMPLE. Let [2(Z) denote the Hilbert space consisting of the complex
functions f on Z such that "% _ | f(n)|*> < oo. Define U on [3(Z) such that

WUf)(n) = f(n—1)for f inl*(Z). The operator U is called the bilateral shift. It
is clearly linear and the identity

NUFI3 = f’: WHWE = 3 If(n— D> =fII3

n=-00 n=—00

for f in I(Z) shows that U preserves the norm and, in particular, is bounded. If
we define A on [2(Z) such that (Af)(n) = f(n + 1) for f inI2(Z), we have

Uf. g

00

S UHmegm= 3 fn— g

n=-—0o0 n=—00

(o]

Y fmgn+1) =(f, Ag).
n=—00
Therefore, A = U* and a computation yields UU* = U*U = I or U~! = U*.
Thus U is a unitary operator.

From Proposition 2.28 we have o(U) C D and o (U™Y) = o(U*) c D.
If isin D,0 < Al < 1, then (U — MU' = A((1/A) — U~). Since 1/
is not in D, the operator A((1/A) — U™') is invertible and hence so is U — A.
Therefore o (U) is contained in T. For fixed 6 in [0,27] and n in Z*, let f,
be the vector in [2(Z) defined by f,(k) = (2n + 1)~'/2¢= for |k| < n and O
otherwise. A straightforward calculation shows that f, is a unit vector and that
limy— oo (U — €9) f, = 0. Therefore U — ¢'? is not bounded below, and hence ¢/?
isino(U). Thuso(U) =T.

Let ¥ denote the smallest closed subalgebra of 2(I%(Z)) containing / and U.
Then % is the closure in the uniform norm of the collection of polynomials in U,
that is,

N
A, = clos {Zoe,,U”:a,,eC].
n=0

If M denotes the closed subspace
{f €l*@): f(k) =0fork <0}

of 12(Z), then UM C M, which implies p(U)M C M for each polynomial
p. If for A in %A, we choose a sequence of polynomials {p,}2, such that
lim, 0 pa(U) = A, then Af = lim,— o p,(U)f implies Af is in M, if f
is, since each p,(U)f is in M. Therefore AM C M for A in 2. We claim that
U~ is not in U,. If e, is the vector in I2(Z) defined to be 1 at 0 and O otherwise,
then

(U 'eg)(—=1) = (U*ep)(—1) =1 # 0.
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Hence U~'M ¢ M which implies that U ~! is not in 9., Therefore, Ois in oy, (U),
implying oy, (U) # o (U).

The algebra A, can be shown to be isometrically isomorphic to the disk algebra
defined in Section 2.50 with U corresponding to x; and hence oy, (U) = D. We
return to this later.

The algebra U, is not maximal abelian, since it is contained in the obviously
larger commutative algebra {M,, : ¢ € L*(T)}. Equally important is that %A is
not a self-adjoint subalgebra of 53,(12 (Z)), since, as we will soon establish, such
algebras alsohave the property of preserving the spectrum. We consider the abstract
analog of a self-adjoint subalgebra.

4.26 Definition. If % is a Banach algebra, then an involution on ¥ is a mapping
T — T* which satisfies:

@ T =TforTin¥%
(i) (@S+BT)*=aS*+BT*for S, T in A and «, B in C; and
(iii) (ST)*=T*S*for Sand T in .

If, in addition, ||7*T|| = ||T||* for T in %, then A is a C *-algebra.

A closed self-adjoint subalgebra of 2(¥) for # a Hilbert space is a C*-algebra in
view of Proposition 4.4. Every C*-algebra can, in fact, be shown to be isometrically
isomorphic to such an algebra (see Exercise 5.26).

All of the various classes of operators whose definitions are based on the
adjoint can be extended to a C*-algebra; for example, an element T in a C*-
algebra is said to be self-adjoint if T = T*, normal if 7T* = T*T, and unitary if
I*T=TT*=1.

We now give a proof of Proposition 4.15 which is valid for C*-algebras. Our
previous proof made essential use of the fact that we were dealing with operators
defined on a Hilbert space.

4.27 Theorem. Ina C*-algebra a self-adjoint element has real spectrum.

Proof Observe first that if T is an element of the C*-algebra U, then the inequality
ITI? = |7*7| < |T*| ITI

implies that ||T|] < ||T*|| and hence |T|| = ||T*||, since T7** = T. Thus the
involution on a C*-algebra is an isometry.

Now let H be a self-adjoint element of ¥ and set U = expi H. Then from the fact
that H is self-adjoint and the definition of the exponential function, it follows that
U* = exp(i H)* = exp(—i H). Moreover, from Lemma 2.12 we have

UU*=exp(iH) exp(—iH)=exp(iH — iH)=1= exp(—iH) exp(iH)=U*U

and hence U is unitary. Moreover, since 1 = ||I|| = |[U*U|| = |U||* we see
that |U|| = |[U*| = |U~!| = 1, and therefore o (U) is contained in T. Since
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o(U) = exp(io(H)) by Corollary 2.37, we see that the spectrum of H must
be real. ]

4.28 Theorem. If ‘B is a C*-algebra, ¥ is a closed self-adjoint subalgebra of B,
and T is an element of ¥, then oy (T) = o (T).

Proof Since o9 (T) contains o (7T), it is sufficient to show thatif 7 — A is invertible
in B, then the inverse (T — A)~! is in A. We can assume A = 0 without loss of
generality. Thus, T is invertible in %8, and therefore T*T is a self-adjoint element
of U which is invertible in $B. Since oy (T*T) is real by the previous theorem, we
see that oy (T*T) = og(T*T) by Corollary 2.55. Thus, T*T is invertible in U
and therefore

T'=(T"'(r ") = (T T)'T*
is in ¥ and the proof is complete. ]

We are now in a position to obtain a form of the spectral theorem for normal
operators. We use it to obtain a “functional calculus” for continuous functions as
well as to prove many elementary results about normal operators.

Our approach is based on the following characterization of commutative C*-
algebras.

4.29 Theorem. (Gelfand-Naimark) If % is a commutative C*-algebra and M is
the maximal ideal space of %, then the Gelfand map is a *-isometric isomorphism
of A onto C(M).

Proof If T" denotes the Gelfand map, then we must show that T(T) = I'(TYH
and that |[I'(T)|loo = IT||. The fact that I" is onto will then follow from the
Stone-Weierstrass theorem.

IfTisin¥, then H = %(T +T*)and K = (T — T*)/2i are self-adjoint operators
inAsuchthat T = H+iK and T* = H —i K. Since the sets 0 (H) and o (K) are
contained in R, by Theorem 4.27, the functions I'(H) and I'(K) are real valued
by Corollary 2.36. Therefore,

C(T)y=T(H)+4+i'(K)=T(H)—-il'K)=T(H—-iK)=T(T"),

and hence I is a *-map.

To show that I' is an isometry, let 7 be an operator in 2. Using Definition 4.26,
Corollary 2.36, Theorem 2.38, and the fact that T*T is self-adjoint, we have

172k 172k

ITIE = |7°7] = |7 1)

= lim ||(T*T)2"
k—o00

= |r@* D, = Ir@HrD|,, = [INDE|, = INDIG -

Therefore I' is an isometry and hence a *-isometric isomorphism onto C(M). ®
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If 9 is a commutative C* algebra and T is in ¥, then T is normal, since T* is
also in A and the operators in 2 commute. On the other hand, a normal operator
generates a commutative C*-algebra.

4.30 Theorem. (Spectral Theorem) If 7 is a Hilbert space and T is a normal
operator on ¥, then the C*-algebra € generated by T is commutative. Moreover,
the maximal ideal space of €7 is homeomorphic to o (T'), and hence the Gelfand
map is a *-isometric isomorphism of €7 onto C(o (T)).

Proof Since T and T* commute, the collection of all polynomials in 7 and T*
forms a commutative self-adjoint subalgebra of (%) which must be contained in
the C*-algebra generated by 7. It is easily verified that the closure of this collection
is acommutative C*-algebra and hence must be €. Therefore €7 is commutative.
To show that the maximal ideal space M of € is homeomorphic to o (T'), define
¥ from M to o(T) by ¥ (¢) = I'(T)(p). Since the range of I'(T) is o (T) by
Corollary 2.36, ¥ is well defined and onto. If ¢, and ¢, are elements of M such
that ¥ (¢1) = ¥ (¢2), then

C(T)(p1) =T(T)(g2), ei(T) = ¢2(T),
and

o (T*) =T (T*)(p1) = T(T)(p1) =T(T)(g2) = T(T*)(g2) = p2(T"),

and hence ¢; and ¢, agree on all polynomials in 7 and 7*. Since this collection
of operators is dense in €y it follows that ¢; = ¢, and therefore ¥ is one-to-one.
Lastly, if {¢y}aca is a net in M such that lim,c4 9, = ¢, then

lim ¢ (py) = im I'(T)(g) = T (T)(p) = ¥ (p)
a€A a€A

and hence ¥ is continuous. Since M and o (T') are compact Hausdorff spaces, then
¥ is a homeomorphism and the proof is complete. u

4.31 Functional Calculus. If T is an operator, then a rudimentary functional
calculus for T can be defined as follows: for the polynomial p(z) = Z,’,V:o a,z",
define p(T) = ZLO a,T". The mapping p — p(T) is a homomorphism from
the algebra of polynomials to the algebra of operators. If ¥ is finite dimensional,
then one can base the analysis of T on this functional calculus. In particular, the
kernel of this mapping, that is, {p(z) : p(T) = 0}, is a nonzero principal ideal
in the algebra of all polynomials and the generator of this ideal is the minimum
polynomial for T'. If % is not finite dimensional, then this functional calculus may
yield little information.

The extension of this map to larger algebras of functions (see Exercise 2.18) is
a problem of considerable importance in operator theory.



86 Banach Algebra Techniques in Operator Theory

If T is a normal operator on the Hilbert space 9, then the Gelfand map estab-
lishes a *-isometric isomorphism between C (o' (T)) and €. For ¢ in C(o (T)), we
define (T) = I'"lg. It is clear that if ¢ is a polynomial in z, then this definition
agrees with the preceding one. Moreover, if A is an operator on ¥ that commutes
with T and T*, then A must commute with every operator in €7 and hence, in
particular, with ¢(T') for each ¢ in C (o (T)).

In the remainder of this chapter we shall obtain certain results about operators
using this calculus and then extend the functional calculus to a larger class of
functions.

4.32 Corollary. If T is a normal operator on the Hilbert space ¥, then T is
positive if and only if o (T') is nonnegative and self-adjoint if and only if o (T) is
real.

Proof By Proposition 4.15, the spectrum of T is nonnegative if T is positive.
Conversely, if T is normal, o (T') is nonnegative, and I" is the Gelfand transform
from €7 to C(o(T)), then I'(T) > 0. Thus there exists a continuous function ¢
on o (T) such that I'(T) = |¢|%. Then

T = [p(D)]le(D)] = o(T)*o(T)

and hence T is positive by Proposition 4.14.

If T is self-adjoint, then the spectrum of T is real by Proposition 4.15.If T' is normal
and has real spectrum, then y = I'(T') is a real-valued function by Corollary 2.36,
and hence T = ¢(T) = ¢ (T) = ¥ (T)* = T*. Therefore, T is self-adjoint. ™=

The preceding proposition is false without the assumption that T is normal,
that is, there exist operators with spectrum consisting of just zero which are not
self-adjoint.

The second half of the preceding proposition is valid in a C*-algebra, while
the first half allows us to define a positive element of a C*-algebra to be a normal
element with nonnegative spectrum.

We now show the existence and uniqueness of the square root of a positive
operator.

4.33 Proposition. If P is a positive operator on the Hilbert space %, then there
exists a unique positive operator Q such that Q> = P. Moreover, Q commutes
with every operator that commutes with P.

Proof Since the spectrum o (P) is positive, the square root function , /~ is contin-
uous on o (P). Therefore +/ P is a well-defined operator on ¥ which is positive by
Corollary 4.32, since a(fI;) = /o (P). Moreover, (x/F)2 = P by the definition
of the functional calculus, and ~/P commutes with every operator that commutes
with P by Section 4.31. It remains only to show that /P is unique.
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Suppose Q is a positive operator on ¥ satisfying Q? = P. Since QP =
00? = 0?Q = PQ, it follows from the remarks in Section 4.31 that the C*-
algebra U generated by P, VP, and Q is commutative. If " denotes the Gelfand
transform of 2 onto C(My), then I'(+~/P) and I'(Q) are nonnegative functions
by Proposition 2.36 and Theorem 4.28, while ['(VP)? = I'(P) = I'(Q)?, since
I' is a homomorphism. Thus I'P) =T(Q) implying Q = /P and hence the
uniqueness of the positive square root. n

4.34 Corollary. If T is an operator on ¥, then T is positive if and only if there
exists an operator S on J€ such that T = S*S.

Proof If T is positive, take S = +/T. If T = $*S, then Proposition 4.14 yields
that T is positive. |

Every complex number can be written as the product of a nonnegative number
and a number of modulus one. A polar form for linear transformations on C"
persists in which a positive operator is one factor and a unitary operator the other.
For operators on an infinite-dimensional Hilbert space, a similar result is valid and
the representation obtained is, under suitable hypotheses, unique. Before proving
this result we need to introduce the notion of a partial isometry.

4.35 Definition. An operator V on a Hilbert space ¥ is a partial isometry if
V£l =l fll for f orthogonal to the kernel of V; if, in addition, the kernel of V
is {0}, then V is an isometry. The initial space of a partial isometry is the closed
subspace orthogonal to the kernel.

On a finite-dimensional space every isometry is, in fact a unitary operator.
However, on an infinite-dimensional Hilbert space this is no longer the case. Let
us consider an important example of this which is related to the bilateral shift.

4.36 ExaMpLE. Define the operator U, on/2(Z*) by (U, f)(n) = f(n — 1) for
n > 0 and O otherwise. The operator is called the unilateral shift and an easy
calculation shows that U is an isometry. Moreover, since the function ey defined
to be 1 at 0 and O otherwise is orthogonal to the range of U, we see that U, is
not unitary. A straightforward verification shows that the adjoint U} is defined by
Wif)n) = f(n+1).

Let us next consider the spectrum of U,. Since U, is a contraction, that is,
U+l = 1, we have o(U,) C D. Moreover, for z in D the function f, is defined
by f;(n) = 7" is in 12(Z*) and Ui f: = Zf,. Thus z is in o(U,) and hence
o(U;) =D.

The question of whether a partial isometry exists with given subspaces for initial
space and range depends only on their dimensions, as the following result shows.

4.37 Proposition. If M and N are closed subspaces of the Hilbert space # such
that dim Ml = dim N, then there exists a partial isometry V with initial space M
and range N.
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Proof If M and N have the same dimension, then there exist orthonormal bases
{ex}aca and {fy}aca for M and N with the same index set. Define an operator
V on ¥ as follows: for g in % write g = h + ) 4 Aa€a With ALM and set
Vg = Y ,ca rafo. Then the kemnel of V is M* and |Vg| = |igll for g in M.
Thus, V is a partial isometry with initial space M, and range N L]

We next consider a useful characterization of partial isometries which allows
us to define the notion of partial isometry in a C*-algebra.

4.38 Proposition. Let V be an operator on the Hilbert space . The following
are equivalent:

(1) V is a partial isometry;

(2) V*is a partial isometry;

(3) VV*is aprojection; and

(4) V*V is a projection.
Moreover, if V is a partial isometry, then V V* is the projection onto the range of
V, while V*V is the projection onto the initial space.

Proof Since a partial isometry V is a contraction, we have for f in ¥ that
(I =V )= = V*VE O = IfIP=IVFI? = 0.

Thus I — V*V is apositive operator. Now if f is orthogonal toker V,then |V f|| =
Il which implies that ((I — V*V) £, f) = 0. Since |[(I — V*WV)V2f|* =
(I = V*V)f, f) = 0, we have (I — V*V)f = Oor V*Vf = f. Therefore,
V*V is the projection onto the initial space of V.

Conversely, if V*V is aprojection and f is orthogonal toker(V*V),then V*V f =
f. Therefore,

IVFIR = (V*VE, ) = (f, ) = IfI?,

and hence V preserves the norm on ker(V*V)*. Moreover, if V*Vf = 0, then
0= (V*Vf, = Vfll2 and consequently ker(V*V) = ker V. Therefore, V is
a partial isometry, and thus (1) and (4) are equivalent. Reversing the roles of V
and V*, we see that (2) and (3) are equivalent. Moreover, if V*V is a projection,
then (VV*)?2 = V(V*V)V* = VV*, since V(V*V) = V. Therefore, VV* is a
projection, which completes the proof. u

We now obtain the polar decomposition for an operator.

4.39 Theorem. If T is an operator on the Hilbert space ¥, then there exist a
positive operator P and a partial isometry V such that T = V P. Moreover, V and
P are unique if ker P =ker V.

Proof If we set P = (T*T)'/2, then
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IPfI? = (Pf, Pf) = (P*f, f) = (T*Tf, /) = ITfI*  for fin%.

Thus, if we define V on ran P such that V P f = Tf, then V is well defined and
is, in fact, isometric. Hence, V can be extended uniquely to an isometry from
clos[ran P] to %. If we further extend V to 3¢ by defining it to be the zero operator
on [ran P]*, then the extended operator V is a partial isometry satisfying 7 = VP
and ker V = [ran P]* = ker P by Proposition 4.6.

We next consider uniqueness. Suppose T = W Q, where W is a partial isometry,
Q is a positive operator, and ker W = ker Q, then P2 = T*T = QW*WQ = Q2,
since W*W is the projection onto

[ker WI* = [ker Q]* = clos[ran Q],

by Propositions 4.38 and 4.6. Thus, by the uniqueness of the square root, Propo-
sition 4.33, we have P = Q and hence WP = V P. Therefore, W = V on ran P.
But

[ran P]* =ker P =ker W =ker V,

and hence W = V on [ran P]*. Therefore, V = W and the proof is complete. ®

Although the positive operator will be in every closed self-adjoint subalgebra
of £(¥€) which contains 7, the same is not true of the partial isometry. Consider,
for example, the operator T = M,M, in %(L*(T)), where ¢ is a continuous
nonnegative function on T while ¥ has modulus one, is not continuous but the
product gV is.

In many instances a polar form in which the order of the factors is reversed is
useful.

4.40 Corollary. If T is an operator on the Hilbert space ¥, then there exists a
positive operator Q and a partial isometry W such that T = QW. Moreover, W
and Q are unique if ran W = [ker Q]+.

Proof From the theorem we obtain a partial isometry V and a positive operator
P such that T* = V P. Taking adjoints we have T = PV*, which is the form we
desire with W = V* and Q = P. Moreover, the uniqueness also follows from the
theorem since ran W = [ker Q] if and only if

ker V = ker W* = [ran W]t = [ker Q]* = ker P.

It T is anormal operator on a finite-dimensional Hilbert space, then the subspace
spanned by the eigenvectors belonging to a certain eigenvalue reduces the operator,
and these subspaces can be used to put the operator in diagonal form. If T is a not
necessarily normal operator still on a finite-dimensional space, then the appropriate
subspaces to consider are those spanned by the generalized eigenvectors belonging
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to an eigenvalue. These subspaces do not, in general, reduce the operator but are
only invariant for it.

Although no analogous structure theory exists for operators on an infinite-
dimensional Hilbert space, the notions of invariant and reducing subspace remain
important.

4.41 Definition. If T is an operator on the Hilbert space ¥ and M is a closed
subspace of ¥, then M is an invariant subspace for T if T M C M and a reducing
subspace if, in addition, T (M1) C M.

We begin with the following elementary facts.

4.42 Proposition. If 7 is an operator on ¥, M is a closed subspace of ¥, and
Py is the projection onto M, then M is an invariant subspace for T if and only if
Py TPy = T Py if and only if M* is an invariant subspace for T*; further, M
is a reducing subspace for T if and only if P47 = T Py if and only if M is an
invariant subspace for both T and T*.

Proof If M is invariant for T, then for f in 3¢, we have T Py f in M and hence
PMTP.Mf = TPMf; thus PMTPM = TPM. Conversely, if PMTPM = TPM, then
for f in M, we have Tf = TPyf = PuTPyf = PuTf, and hence Tf is in
M. Therefore, TM C M and M is invariant for T. Further, since I — Py is the
projection onto M+ and the identity

T*(I — Puw) = I — PWT* — Pu)

is equivalent to P4T* = Py T* Py, we see that " is invariant for T* if and only
if M is invariant for T. Finally, if M reduces T, then PyT = PyT Py = T Py by
the preceding result, which completes the proof. n

4.43 In the remainder of this chapter we want to extend the functional calculus
obtained in Section 4.31 for continuous functions on the spectrum to a larger
algebra of functions. This larger algebra of functions is related to the algebra of
bounded Borel functions on the spectrum.

Before beginning let us give some consideration to the uses of a functional
calculus and why we might be interested in extending it to a larger algebra of
functions. Some of the details in this discussion will be omitted.

Suppose T is a normal operator on the Hilbert space # with finite spectrum
o(T) = {A1, A2, ..., Ax}and let ¢ — @(T) be the functional calculus defined for
¢in C (a (T)). If ; is a point in the spectrum, then the characteristic function
I, is continuous on o (T) and hence in C(o(T)). If we let E; denote the
operator Ij;;)(T), then it follows from the fact that the mapping ¢ — (T) is
a *-isomorphism from C (or(T)) onto €, that each E; is a projection and that
E, + E;+ ...+ Ey = 1. If M; denotes the range of E;, then the {M;}_, are
pairwise orthogonal, their linear span is ¥, and M; reduces T by the preceding
proposition. Moreover, since
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N N
T=2T)= [ZA.-IM] (T) =) MEi,
i=l1

i=1
we see that T acts on each M; as multiplication by A;. Thus the space # decomposes
into a finite orthogonal direct sum such that T is multiplication by a scalar on each
direct summand. Thus the functional calculus has enabled us to diagonalize T in
the case where the spectrum of T is finite.

If the spectrum of T is not discrete, but is totally disconnected, then a slight
modification of the preceding argument shows that ¥ can be decomposed for such
a T into a finite orthogonal direct sum of reducing subspaces for T such that the
action of T on each direct summand is approximately (in the sense of the norm)
multiplication by a scalar. Thus in this case T can be approximated by diagonal
operators.

If the spectrum of T is connected, then this approach fails, since C (a (T))
contains no nontrivial characteristic functions. Hence we seek to enlarge the
functional calculus to an algebra of functions generated by its characteristic
functions. We do this by considering the Gelfand transform on a larger commutative
self-adjoint subalgebra of (). This algebra will be obtained as the closure of €
in a weaker topology. Hence we begin by considering certain weaker topologies

on L(%).

4.44 Definition. Let ¥ be a Hilbert space and 2(9€) be the algebra of operators
on ¥. The weak operator topology is the weak topology defined by the collection
of functions T — (Tf, g) from (%) to C for f and g in ¥. The strong operator
topology on (%) is the weak topology defined by the collection of functions
T — Tf from (%) to ¥ for f in .

Thus a net of operators {7, }oca converges to T in the weak [strong] operator
topology if

im(T.f,g)=(Tf,§) UmT.f=Tf] forevery fandgin.

Clearly, the weak operator topology is weaker than the strong operator topology
which is weaker than the uniform topology. We shall indicate examples in the
problems to show that these topologies are all distinct.

The continuity of addition, multiplication, and adjunction in the weak operator
topology is considered in the following lemma. We leave the corresponding
questions for the strong operator topology to the exercises.

445 Lemma. If ¥ is a Hilbert space and A and B are in (%), then the functions:

(1) a(S,T) =S + T from L(H) x L(F) to (),
(2) B(T) = AT from 2(¥) to L(30),

(3) y(T) = TB from (%) to (%), and

(4) 8(T) = T* from L(F) to (%),

are continuous in the weak operator topology.
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Proof Compute. [ ]

The enlarged functional calculus will be based on the closure of the C*-algebra
€7 in the weak operator topology.

4.46 Definition. If ¥ is a Hilbert space, then a subset 2 of %(#) is said to be
a W*-algebra on ¥ if U is a C*-algebra which is closed in the weak operator
topology.

The reader should note that a W*-algebra is a C*-subalgebra of (%) which is
weakly closed. In particular, a W*-algebra is an algebra of operators. Moreover, if
& is a *-isometric isomorphism from the W*-algebra % contained in (%) to the
C*-algebra B contained in £(¥), then it does not follow that B is weakly closed
in (). We shall not consider such questions further and refer the reader to [27]
or [28].

The following proposition shows one method of obtaining W*-algebras.

4.47 Proposition. If ¥ is a Hilbert space and I is a self-adjoint subalgebra of
12(%¢), then the closure U of P in the weak operator topology is a W*-algebra.
Moreover, U is commutative if IN is.

Proof That the closure of ¢ is a W*-algebra follows immediately from Lemma
4.45. Moreover, assume that is commutative and let {S, }4c4 and {73} 5 be nets
of operators in J¢ which converge in the weak operator topology to S and T,
respectively. Then for f and g in # and 8 in B, we have

(ST £, 8) = lim(SaTp f, 8) = im(TpSa £, &) = (TpSf, 8)-

Therefore, STg = TS for each f in B and a similar argument establishes
ST = TS. Hence, U is commutative if I is. =

4.48 Corollary. If % is a Hilbert space and T is a normal operator on ¥, then the
W*-algebra B generated by T is commutative. Moreover, if A7 is the maximal
ideal space of 7, then the Gelfand map is a *-isometric isomorphism of 87 onto
C(A7).

Proof This follows immediately from the preceding proposition along with The-
orem 4.29. =

4.49 If T is a normal operator on the separable Hilbert space ¥ with spectrum A
contained in C, then we want to show that there is a unique L*™ space on A and
a unique *-isometric isomorphism I'* : Wy — L which extends the functional
calculus I of Section 4.31, that is, such that the accompanying diagram commutes,
where the vertical arrows denote inclusion maps:
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Cr — C(A)

.

QBT—__) L*®

Thus, the functional calculus for T can be extended to W7 and Wr = {p(T) :
peL>®}.

We begin with some measure theoretic preliminaries concerning the following
illustrative example. Let A be a compact subset of the complex plane and v be a
finite positive regular Borel measure on A with support A. (The latter condition
is equivalent to the assumption that the inclusion mapping of C(A) into L®(v) is
an isometric isomorphism.) Recall that for each ¢ in L*°(v) we define M, to be
the multiplication operator defined on L?(v) by M, f = ¢f and that the mapping
@ — M, in a *-isometric isomorphism from L*(v) into 2(L?(v)). Thus we can
identify the elements of L*(v) with operators in 2(L2(v)).

The following propositions give several important relationships between v,
C(A), L*(v), and 2(L?(v)). The first completes the presentation in Section 4.20.

4.50 Proposition. If (X, &, ) is a probability space, then L*°(x) is a maximal
abelian W*-algebra in 2(L%(w)).

Proof In view of Section 4.19, only the fact that L*° (1) is weakly closed remains
to be proved and that follows from Proposition 4.47, since the weak closure is
commutative and hence must coincide with L (u). |

The next result identifies the weak operator topology on L*°(w) as a familiar
one.

4.51 Proposition. If (X, &, 1) is a probability space, then the weak operator
topology and the w*-topology coincide on L* ().

Proof We first recall that a function f on X is in L'(u) if and only if it can be
written in the form f = gh, where g and k are in L2(u).

Therefore a net {¢, }4c4 in L™(u) converges in the w*-topology to ¢ if and only
if

lim f vofd = f ofdu
a€A X X

if and only if
lim(M,, g, k) =lim/ Pughdu =/¢gﬁdu = (M, g, h)
acA €A X X

and therefore if and only if the net { M, }oca converges to M, in the weak operator
topology. n

The next proposition shows that the W*-algebra generated by multiplication by
zon L2(v) is L®(v).
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4.52 Proposition. If X is a compact Hausdorff space and u is a finite positive
regular Borel measure on X, then the unit ball of C(X) is w*-dense in the unit ball
of L°®°(w).

Proof A simple step function ¥ in the unit ball of L>°(ux) has the form ¢ =
ZLI a;Ig;, where |o;| < 1fori =1,2,...,n,the {E;}]_, are pairwise disjoint,
and U?=1 E; = X.Fori =1,2,...,n, let K; be a compact subset of E;. By
the Tietze extension theorem there exists ¢ in C(X) such that ||¢]lc < 1 and
¢(x) = q; for x in K;. Then for f in L!(u), we have

’f f(w—'lf)du‘sflfl o — vl dp
X X

=Z/ Ifllw—wldus2i I fldu.
i E\K;

i=1 i=1JE;\K;

Because u is regular, for fi, ..., f, in L' (1) and & > 0, there exist compact sets
K; C E; such that

/ If,l dp,<—8— for j=1,2,...,m.
Ei\K; 2n

This completes the proof. [

4.53 Corollary. If X is a compact Hausdorff space and u is a finite positive
regular Borel measure on X, then C(X) is w*-dense in L*(u).

Proof Immediate. n

We now consider the measure theoretic aspects of the uniqueness problem. We
begin by recalling a definition.

4.54 Definition. Two positive measures v; and v, defined on a sigma algebra
(X, &) are mutually absolutely continuous, denoted v; ~ v,, if v is absolutely
continuous with respect to v, and v, is absolutely continuous with respect to v;.

4.55 Theorem. If v; and v, are finite positive regular Borel measures on the
compact metric space X and there exists a *-isometric isomorphism ® : L*(v;) —
L°°(v,) which is the identity on C(X), then v; ~ v, L*(v;) = L*(v3), and &
is the identity.

Proof If E is a Borel set in X, then ®(Ig) is an idempotent and therefore a
characteristic function. If we set ®(Ig) = I, then it suffices to show that
E = Fuvy,—ae. (almost everywhere), since this would imply v;(E) = O if
and only if 7g = 0 in L*°(v;) if and only if /r = 0 in L*°(v,) if and only if
v2(F) = 0, and therefore if and only if v,(E) = 0. Thus we would have v, ~ v;
and L*®°(v;) = L*®(vy), since the L™ space is determined by the sets of measure
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zero. Finally, ® would be the identity since it is the identity on characteristic
functions and the linear span of the characteristic functions in dense in L*.

To show that E = Fuv,—a.e. it suffices to prove that F C Ev,—a.e., since
we would also have (X\F) C (X\E)v,—a.e. Further, we may assume that
E is compact. For suppose it is known for compact sets. Since v; and v, are
regular, there exists a sequence of compact sets {K,}32, contained in E such that
E = U2, K.,vi—ae. and E = |J32, K,v,—a.e. Thus, since ® and &~/ are
*-linear and multiplicative and hence order preserving, ¢ preserves suprema and
we have

Ir =sup®(lg,) <suplg, = IU:;'K" = Igvy—a.e.
n n

and therefore F is contained in Ev,—a.e. Therefore, suppose E is closed and for
nin Z* let ¢, be the function in C(X) defined by

1
1—n-dx,E) if dix,E)<-,

S

on(x) = 1
0 if dix,E)>—,

N

where d(x, E) = inf {p(x, y) : yeE} and p is the metric on X. Then I < ¢,
for each n and the sequence {¢,}S2, converges pointwise to /. Since ® is order

preserving and the identity on continuous functions, we have Ir < ¢,v,—a.e. and
thus F is contained in Ev,—a.e. ]

After giving the following definition and proving an elementary lemma, we
obtain the functional calculus we want under the assumption the operator has a
cyclic vector.

4.56 Definition. If ¥ is a Hilbert space and ¥ is a subalgebra of (%), then a
vector f in ¥ is cyclic for U if clos [¥ f] = ¥ and separating for A if Af = O for
A in U implies A = 0.

4.57 Lemma. If ¥ is a Hilbert space, U is a commutative subalgebra of (%),
and f is a cyclic vector for U, then f is a separating vector for 9.

Proof If B is an operator in ¥ and Bf = 0, then BAf = ABf = 0 for every A
in 9. Therefore, we have A f C ker B, which implies B = 0. L

The following theorem gives a spatial isomorphism between 7 and L™, if T
is anormal operator on #€ having a cyclic vector. (Note that such an ¥ is necessarily
separable.)

4.58 Theorem. If T is a normal operator on the Hilbert space ¥ such that €
has a cyclic vector, then there is a positive regular Borel measure v on C having
support A = o (T') and an isometric isomorphism y from % onto L?(v) such that



96 Banach Algebra Techniques in Operator Theory

the map I'™* defined from B to (L?(v)) by I'*A = yAy~! is a *-isometric
isomorphism from 87 onto L>(v). Moreover, I'* is an extension of the Gelfand
transform I" from €7 onto C(A). Lastly, if v, is a positive regular Borel measure
on C and I'} is a *-isometric isomorphism from 27 onto L*(v,) which extends
the Gelfand transform, then v; ~ v, L*(v;) = L®(v),and I'T =T"*.

Proof Let f be a cyclic vector for €7 of norm one and consider the functional
defined on C(A) by ¥ (p) = (¢(T) f, f). Since ¥ is obviously linear and positive
and

@) = (e, £)| < eI IFI? = llelo

there exists by the Riesz representation theorem (see Section 1.38) a positive
regular Borel measure v on A such that

f pdv = (o(T), f, f) for ¢ in C(A).
A

Now suppose that the support of v is not all of A, that is, suppose there exists an
open subset V of A such that v(V) = 0. By Urysohn’s lemma there is a nonzero
function ¢ in C(A) which vanishes outside of V. Since, however, we have

oM fI? = (p(D) f, o(T) f) = (lel*(D) f, f) = fA lol* dv =0,

and f is a separating vector for &7 by the previous lemma, we arrive at a
contradiction. Thus the support of v is A.

If we define yo from €7 f to L2(v) such that yo(¢(T) f) = ¢, then the computation
It = [ 101" dv = (9D, £) = o) £1P
A

shows that yp is a well-defined isometry. Since €7 f is dense in ¥ by assumption
and C(A) is dense in L?(v) by Section 3.33, the mapping y, can be extended to a
unique isometric isomorphism y from € onto L2(v). Moreover, if we define I'*
from Wy intoﬂng(v)) byI'*(A) = y Ay ~!, then I'* is a *-isometric isomorphism
of W into S(L (v)). We want to first show that I'* extends the Gelfand transform
I" on €. If ¥ is in C(A), then for all ¢ in C(A), we have

[T* (¥ (M)e = y¥(Ty o = y¥(De(T) f = y[(WeXT)fl1 =y = Myp
and since C(A) is dense in L?(v), it follows that ['*(¥(T)) = My = ' (y(T)).

Thus I'* extends the Gelfand transform.

To show that I'*(27) = L>®(v), we note that since I'* is defined spatially by y,
it follows from Proposition 4.51 that I'* is a continuous map from 287 with the
weak operator topology to L°°(v) with the w*-topology. Therefore, by Corollary
4.53, we have

*(BWr) = ' (weak oper clos [Er])
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= w*-clos[C(A)] = L®(v),

and thus I'* is a *-isometric isomorphism mapping L7 onto L*°(v).

Finally, if v; is a positive regular Borel measure on A and I'} is a *-isometric
isomorphism from 287 onto L*(v;) which extends the Gelfand transform, then
F‘Ff‘l is a *-isometric isomorphism from L*(v;) onto L*(v) which is the
identity on C(A). Hence, by Theorem 4.55, we have v; ~ v, L®(v;) = L®(v),
and I'*I'} ! is the identity. Therefore the proof is complete. [

4.59 The preceding result gives very precise information concerning normal
operators possessing a cyclic vector. Unfortunately, most normal operators do
not have a cyclic vector. Consider the example:

% = L*([0, 11) ® L*([0, 1])

and T = M, & M,, where g(t) = t. It is easy to verify that €7 has no cyclic
vector and this is left as an exercise. Thus the preceding result does not apply to
T. Notice, however, that

Cr={M,®M,:peC([0,1))} and Wy ={M,® M, : pcL>([0,1])},

and thus there still exists a *-isometric isomorphism I'* from 7 onto L*°([0, 1])
which extends the Gelfand transform on €. The difference is that I'* is no longer
spatially implemented.

To see how to obtain I'* in the general case, observe that f = 1@ 0is a separating
vector for Wy and that the space M = clos [Br f] is just L3([0, 1]) & {0};
moreover, M is a reducing subspace for 7 and the mapping A — A|/M defines a
*-isometric isomorphism from 27 onto the W*-algebra generated by T | M. Lastly,
the operator T'|M is normal and €4 has a cyclic vector; hence the preceding
theorem applies to it.

Our program is as follows: For a normal operator, T we show L7 has a separating
vector, that W7 and LWry are naturally isomorphic where M = clos [B7 f],
and that the theorem applies to T|M. Thus we obtain the desired result for
arbitrary normal operators. To show that 1 has a separating vector requires
some preliminary results on W*-algebras.

4.60 Proposition. If U is an abelian C*-algebra contained in (%), then there
exists a maximal abelian W*-algebra in (%) containing 9.

Proof The commutative C*-subalgebras of () which contain U are partially
ordered by inclusion. Since the norm closure of the union of any chain is a
commutative C*-algebra of £(¥) containing %, then there is a maximal element
by Zorn’s lemma. Since the closure of such an element in the weak operator
topology is commutative by Proposition 4.47, it follows that such an element is a
W*-algebra. n
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The following notion is of considerable importance in any serious study of
W*algebras.

4.61 Definition. If U is a subset of (¥) then the commutant of , denoted U,
is the set of operators in (%) which commute with every operator in 2.

Itis easy to show that if ¥ is a self-adjoint subset of R(¥), then A’ is a W*-algebra.

The following proposition gives an algebraic characterization of maximal abelian
W*-algebras.

4.62 Proposition. A C*-subalgebra 2 of L(¥) is a maximal abelian W*-algebra
if and only if A = A'.

Proof If A = A’, then A is a W*-algebra by our previous remarks. Moreover, by
definition each operator in 2’ commutes with every operator in 2 and therefore
9 is abelian. Moreover, if A an operator commuting with 9, then A is in A’ and
hence already in 2. Thus U is a maximal abelian W*-algebra.

Conversely, if % is an abelian W*-algebra, then % C %'. Moreover, if T is in %',
then T = H + iK, where H and K are self-adjoint and in U’. Since the W*-
algebra generated by U and either H or K is an abelian W*-algebra, then for U to
be maximal abelian, it is necessary for H and K tobe in A and hence A = UA'. =m

4.63 Lemma. If U is a C*-algebra contained in (%) and f is a vector in %,
then the projection onto the closure of % f is in A’

Proof In view of Proposition 4.42 it suffices to show that clos [ f] is invariant
for both A and A* for each A in 9. That is obvious from the definition of the
subspace and the fact that ¥ is self-adjoint. ]

The following proposition shows one of the reasons for the importance of the
strong operator topology.

4.64 Proposition. If ¥ is aHilbert space and { P, },<4 is a net of positive operators
on ¥ such that0 < P, < Pg < I and @ and B in A with @ < B, then there exists
P in £(¥) suchthat 0 < P, < P < I for @ and A and the net { P, },ca converges
to P in the strong operator topology.

Proof If Qisin () and0 < Q < I,then0 < Q% < Q < I since Q commutes
with (I — Q)2 by Proposition 4.33 and since

Q- 00 1) =(QU -0 f,d -~V f)=0 for fin%.

Further, for each f in # the net {( Py, f, f)}aca is increasing and hence a Cauchy
net. Since for 8 > «, we have

|(Ps — POF|* = ((Ps — P S, £) < ((Ps — Pu)fs f) = (Pof, ) — (Puf, ),
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it therefore follows that { P, f }yc4 is @ Cauchy net in the norm of ¥. If we define
Pf =limycy Py f, then P is linear,

IPFIl = lim [P fIl < W1, and 0 =<lm(Fef, f) = (Pf, ).

Therefore, P is a bounded positive operator, 0 < P, < P < I, for @ in A, and
{ Py}aca converges strongly to P, and the proof is complete. ]

The converse of the following theorem is also valid but is left as an exercise.

4.65 Theorem. If % is a maximal abelian W*-algebra on the separable Hilbert
space ¥, then ¥ has a cyclic vector.

Proof Let € denote the set of all collections of projections {Eq}qsca in U such
that:

(1) For each « in A there exists a nonzero vector f« in € such that E, is the
projection onto clos [ £, ]; and

(2) the subspaces {clos [ fy]}aca are pairwise orthogonal.

We want to show there is an element {E, }4¢c4 in € such that the span of the ranges
of the E, is all of 7.

Order € by inclusion, that is, { Eq }qca is greater than or equal to {Fg}gep if for
each fo in B there exists ap in A such that Fg, = E,,. To show that € is nonempty
observe that the one element set { Pios(91£;} is in € for each nonzero vector f in
#. Moreover, since the union of a chain of elements in € is in €, then € has a
maximal element {E, }4c4 by Zorn’s lemma.

Let & denote the collection of all finite subsets of the index set A partially
ordered by inclusion and let { Pr}r.s denote the net of operators defined by
Pr = ) . Eo. By the remark after Proposition 4.19, each Py is a projection
and hence the net is increasing. Therefore, by the previous proposition there exists
a positive operator P such that 0 < Pr < P < I forevery F in % and {Pr}rcg
converges to P in the strong operator topology. Therefore, { P2} g converges
strongly to P? and P is seen to be a projection.

The projection P is in U since U is weakly closed and the range M of P reduces A
since U is abelian. Thus, if f is a nonzero vector in M, then clos [ f] is orthog-
onal to the range of each E,. If we let Eg denote the projection onto clos [ ],
then {E, }acau(g) is an element in € larger than { E, }oc4 - This contradiction shows
that M* = {0} and hence that P = 1.

Since ¥ is separable, dimran E, > 0, and dim¥ = ), _,dimranE,, we
see that A is countable. Enumerate A such that A = {«;, ®,...} and set f =
Y i1 27 fai/ | fui |- Since Eo, f =277 fo,/ || fui |, We see that the range of E, is
contained in clos [ f]. Therefore, since the ranges of the E,, span ¥, we see that
f is a cyclic vector for 2 and the proof is complete. L]

The assumption that € is separable is needed only to conclude that A is countable.
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The following result is what we need in our study of normal operators.

4.66 Corollary. If U is an abelian C*-algebra defined on the separable Hilbert
space ¥, then 2 has a separating vector.

Proof By Proposition 4.60 % is contained in a maximal abelian W*-algebra B
which has a cyclic vector f by the previous theorem. Finally, by Lemma 4.57 the
vector f is a separating vector for 8 and hence also for the subalgebra . u

The appropriate setting for the last two results is in W*-algebras having the
property that every collection of pairwise disjoint projections is countable. While
for algebras defined on a separable Hilbert space this is always the case, it is not
necessarily true for W*-algebras defined on a nonseparable Hilbert space #(; for
example, consider 2(%).

Before we can proceed we need one more technical result concerning *-homomor-
phisms between C*-algebras.

4.67 Proposition. If 9 and B are C*-algebras and @ is a *-homomorphism from
A to B, then |®|| < 1 and ® is an isometry if and only if & is one-to-one.

Proof If H is a self-adjoint element of 2, then €4 is an abelian C*-algebra
contained in U and ®(€y) is an abelian *-algebra contained in B. If ¢ is a
multiplicative linear functional on the closure of ®(&y) then ¥ o ® defines a
multiplicative linear functional on €. If ¥ is chosen such that |y (®(H))| =
[[®(H)||, which we can do by Theorem 4.29, then we have | H|| > |1//(<I>(H ))| =
||®(H)|| and hence @ is a contraction on the self-adjoint elements of . Thus we
have for T in U that

ITI? = |T*T| = [®T*D)| = | o) ()| = I1®(D)I?

and hence ||®|| < 1.

Now for the second statement. Clearly, if & is an isometry, then it is one-to-
one. Therefore, assume that & is not an isometry and that T is an element of
A for which ||T|| = 1 and ||®(T)|| < 1. If weset A = T*T, then ||A| = 1
and ||[®(A)| = 1 — ¢ with ¢ > 0. Let f be a real-valued function in C ([0, 1])
chosen such that f(1) = 1 and f(x) = 0 for 0 < x < 1 — ¢. Then using the
functional calculus on &4 we can define f(A) and since by Corollary 2.37 we
have o (f(A)) = range I'(f(A)) = f(c(A)), we conclude that 1 is in & ( f(A))
and thus f(A) # 0. Since P is a contractive *-homomorphism, it is clear that
®(p(A)) = p(®(A)) for each polynomial and hence ®(f(4)) = f(P(A)).
Since, however, we have ||[P(A)]| = 1 — ¢, it follows that a(tb (A)) c[0,1—¢]
and therefore

o (P(f(A)) = f(o(®(A)) C f(0,1—¢]) = {0}.

Since ®(f(A)) is self-adjoint, we have ®(f(A)) = 0, which shows that & is not
one-to-one. L



Operators on Hilbert Space and C*-Algebras 101

Now we are prepared to extend the functional calculus for an arbitrary normal
operator on a separable Hilbert space.

4.68 Let ¥ be a separable Hilbert space and T be a normal operator on ¥. By
Corollary 4.66, the abelian W*-algebra 87 has a separating vector f. If we set
M = clos [B7 f], then M is a reducing subspace for each A in Wr, and hence
we can define the mapping ® from L to (M) by ©(A) = A|M for A in Br.
It is clear that @ is a *-homomorphism. We use the previous result to show that ®
is a *-isometric isomorphism.

4.69 Lemma. If % is a C*-algebra contained in (%), f is a separating vector
for A and M is the closure of U £, then the mapping & defined ®(A) = A|M for A
in 2 is a *-isometric isomorphism from ¥ into L(/1). Moreover, o (4) = o (A|M)
for A in 2.

Proof Since @ is obviously a *-homomorphism, it is sufficient to show that & is
one-to-one. If A is in ¥ and ®(A) = 0, then Af = 0, which implies A = 0 since
f is a separating vector for . The last remark follows from Theorem 4.28, since
we have

agn(A) = ou(A) = go@(AlM) = oguy(AlM).
n

Finally, we shall need the following result whose proof is similar to that of Theorem
1.23 and hence is left as an exercise.

4.70 Proposition. If U is a W*-algebra contained in (%), then the unit ball of
A is compact in the weak operator topology.
Our principal result on normal operators can now be given.

4.71 Theorem. (Extended Functional Calculus) If T is a normal operator on
the separable Hilbert space ¥ with spectrum A, and I is the Gelfand transform
from €7 onto C(A), then there exists a positive regular Borel measure v having
support A and a *-isometric isomorphism I'* from 287 onto L* (v) which extends
I'. Moreover, the measure v is unique up to mutual absolute continuity, while the
space L*(v) and I'* are unique.

Proof Let f be a separating vector for By, M be the closure of W7 f and ® be
the *-isometric isomorphism defined from 87 into (M) by ®(A) = A|M as in
Section 4.68. Further, let T8y be the W*-algebra generated by T |M. Since ® is
defined by restricting the domain of the operators, it follows that ® is continuous
from the weak operator topology on Br to the weak operator topology on 2(M),
and hence ®(W7r) C Wy. Moreover, it is obvious that if Iy is the Gelfand
transform from €74 onto C(A), thenT" = I'g o ®.

Since T'|M is normal and has the cyclic vector f, there exist by Theorem 4.58 a
positive regular measure v with support equal to o (T|M) = A by the previous
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lemma and a *-isometric isomorphism I'§ from 28 4 onto L°°(v) which extends the
Gelfand transform I'g on €7 4. Moreover, '} is continuous from the weak operator
topology on Wy to the w*-topology on L*°(v). Therefore, the composition
I'* = T o ® is a *-isometric isomorphism from Wy into L*°(v) which is
continuous from the weak operator topology on Bt to the w*-topology on L (v)
and extends the Gelfand transform I" on €.

The only thing remaining is to show that I'* takes 7 onto L>(v). To do this
we argue as follows: Since the unit ball of 287 is compact in the weak operator
topology, it follows that its image is w*-compact in L% (v) and hence w*-closed.
Since this image contains the unit ball of C(A), it follows from Proposition 4.52
that I'* takes the unit ball of 7 onto the unit ball of L®(v). Thus, I'* is onto.

The uniqueness assertion follows as in Theorem 4.58 from Theorem 4.55.X =

4.72 Definition. If T is a normal operator on the separable Hilbert space ¥, then
there exists a unique equivalence class of measures v on A such that there is a
*-isometric isomorphism I'* from 87 onto L®(v) such that I'* (¢(T)) = ¢ for ¢
in C(A). Any such measure is called a scalar spectral measure for 7. The extended
functional calculus for T is defined for ¢ in L°°(v) such that I'* ((p(T)) = @.If
I is a characteristic function in L (v), then I (T) is a projection in Wy called
a spectral projection for T, and its range is called a spectral subspace for T.

We conclude this chapter with some remarks concerning normal operators on
nonseparable Hilbert spaces and a proposition which will enable us to make use
of certain aspects of the extended functional calculus for such operators. We begin
with the proposition which we have essentially proved.

4.73 Proposition. If U is a norm separable C*-subalgebra of (%), then # =
Y wea D¥, such that each ¥, is separable and is a reducing subspace for .

Proof It follows from the first three paragraphs of the proof of Theorem 4.65 that
H =3 ,cs DKo, where each ¥, is the closure of U f, for some f, in ¥. Since
A is norm separable, each ¥, is separable and the result follows. n

4.74 From this result it follows that if T is normal on ¥, theneach T, = T|¥,, is
normal on a separable Hilbert space and hence has a scalar spectral measure vg.
If there exists a measure v such that each v, is absolutely continuous with respect
to v, then Theorem 4.71 can be shown to hold for 7. If no such v exists, then
the functional calculus for T is usually based on the algebra of bounded Borel
functions on A. In particular, one defines o(T) = )", , ®¢(T,) for each Borel
function ¢ on A. The primary deficiencies in this approach are that the range of
this functional calculus is no longer 8 and the norm of ¢(7T') is less accessible.

Sometimes the spectral measure E(-) for T is made the principal object of study.
If A is a Borel subset of A, then the spectral measure is defined by
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E(A) =IA(T) = Y ®IA(TL)
acA
and is a projection-valued measure such that (E A, f ) is countably additive for
each f in ¥. Moreover, the Stieltjes integral can be definedand T = [, zdE. We
shall not develop these ideas further except to show that the range of each spectral
measure for T lies in 7.

4.75 Proposition. If T is a normal operator on the Hilbert space ¥ and E(-) is a
spectral measure for T, then E(A) is in Wy for each Borel set A in A.

Proof Let T = ), ., ®T, be the decomposition of T relative to which the
spectral measure E(-) is defined, where each T, acts on the separable space ¥,
with scalar spectral measure u,. If & denotes the collection of finite subsets of A,
then Jpg Y ycr D¥o is a dense linear manifold in . Thus if A is a Borel subset
of A, it is sufficient to show that for fi, f3, ..., f, lying in Zae Fo @K, for some
Fp in % and ¢ > 0, there exists a continuous function ¢ such that 0 < ¢ < 1, and
[(e(T) — E(A)) fi| <efori=1,2,...,n. Since

[ - E@)AI" = T 1(e(T) — 1a(T) P f; &
a€rg

=Y [ lo— I |Px, fiI* dpta,
aeFy JA

this is possible using Proposition 4.52. u

We conclude this chapter with an important complimentary result. The following
ingenious proof is due to Rosenblum [93].

4.76 Theorem. (Fuglede) If T is a normal operator on the Hilbert space ¥ and
X is an operator in £(%) for which TX = XT, then X lies in B8

Proof Since Wy is generated by T and T*, the result will follow once it is
established that 7*X = XT*.

Since T*X = XT* for each k > 0, it follows that exp(iAT)X = X exp(iAT) for
each A in C. Therefore, we have X = exp(iAT)X exp(—iAT), and hence

F(A) = exp(iAT*) X exp(—iAT*)
= expli(AT + AT*)1X exp[—i (AT + AT*)]

by Lemma 2.12, since TT* = T*T. Since AT + AT* is self-adjoint, it follows
that exp[i (AT + AT*)] and exp[—i (AT + AT*)] are unitary operators for A in C.
Thus the operator-valued entire function F (1) is bounded and hence by Liouville’s
theorem must be constant (see the proof of Theorem 2.29). Lastly, differentiating
with respect to A yields
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F'(A) = iT* exp(iAT*) X exp(—iAT*)
+ exp(iAT*) X exp(—iAT*)(—iT*) = 0.
Setting A = O yields T*X = XT*, which completes the proof. n

Notes

The spectral theorem for self-adjoint operators is due to Hilbert, but elementary operator
theory is the joint work of a number of authors including Hilbert, Riesz, Weyl, von Neumann,
Stone, and others. Among the early works which are still of interest are von Neumann'’s
early papers [81], [82], and the book of Stone [104]). More recent books include Akhieser
and Glazman (2], Halmos [55], [58], Kato [70], Maurin [79], Naimark [80], Riesz and
Sz.-Nagy [92], and Yoshida [117].

We have only introduced the most elementary results from the theory of C*- and W*-
algebras. The interested reader should consult the two books of Dixmier [27], [28] for
further information on the subject as well as a guide to the vast literature on this subject.

Exercises

4.1 If T is a linear transformation defined on the Hilbert space ¥, then T is bounded if
and only if

sup{l(Tf, H)l: fe H, I fll =1} < o0.

Definition If T is an operator defined on the Hilbert space ¥, then the numerical range
W(T) of T is the set {(Tf, f) : feX,llfll = 1} and the numerical radius w(7T) is
sup{|A| : A € W(T)}.

4.2 (Hausdorff-Toeplitz) If T is an operator on ¥, then W (T) is a convex set. Moreover,
if %€ is finite dimensional, then W(T') is compact. (Hint: Consider W(T) for T
compressed to the two-dimensional subspaces of #.)

4.3 If T is a normal operator on %€, then the closure of W(T) is the closed convex hull of
o (T). Further, an extreme point of the closure of W (T') belongs to W(T') if and only
if it is an eigenvalue for T'.

4.4 If T is an operator on ¥, then o (T') is contained in the closure of W (T'). (Hint: Show
that if the closure of W(T) lies in the open right-half plane, then T is invertible.)

45 If T is an operator on the Hilbert space ¥, then r(T) < w(T) < |IT|| and both
inequalities can be strict.

4.6 (Hellinger-Toeplitz) If S and T are linear transformations defined on the Hilbert space
# such that (Sf,g) = (f, Tg) for f and g in %, then S and T are bounded and
T =S5*

4.7 If T is an operator on ¥, then the graph {(f, Tf) : fe ¥} of T is a closed subspace
of # & ¥ with orthogonal complement {(—T*g, g) : g € ¥}.

4.8 If T is an operator on ¥, then T is normal if and only if ||Tf|| = | T* f|| for f in %.
Moreover, a complex number A is an eigenvalue for a normal operator T if and only
if A is an eigenvalue for T*. The latter statement is not valid for general operators on
infinite-dimensional Hilbert spaces.
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4.9 If S and T are self-adjoint operators on ¥, then ST is self-adjoint if and only if S and
T commute. If P and Q are projections on ¥, then P Q is a projection if and only if
P and Q commute. Determine the range of P Q in this case.

4.10 If %€ and X are Hilbert spaces and A is an operator on # @ X, then there exist unique
operators Ay, Aj2, Az, and Ay, in (%), LXK, ¥), (K, K), and R(X), respectively,
such that

A(h, k) = (Anh + Ak, Azh + Apk).

In other words A is given by the matrix
[ An A ]
Az An |’
Moreover show that such a matrix defines an operator on % & X.

4.11 If % and X are Hilbert spaces, A is an operator on (¥, ¥), and J is the operator on
¥ @ X defined by the matrix
1 A
[o o]

then J is an idempotent. Moreover, J is a projection if and only if A = 0. Further, every
idempotent on a Hilbert space & can be written in this form for some decomposition
=X

Definition If 7} and 7; are operators on the Hilbert space #; and ¥, respectively, then
T, is similar (unitarily equivalent) to 75 if and only if there exists an invertible operator
(isometric isomorphism) S from ¥, onto ¥, such that 7, S = ST;.

4.12 If ¥ is a Hilbert space and J is an idempotent on ¥ with range M, then J and Py are
similar operators.

4.13 If (X, &, n) is a probability space and ¢ a function in L* (), then A is an eigenvalue
for M, if and only if the set {xeX : ¢(x) = A} has positive measure.

4.14 Show that the unitary operator U defined in Section 4.25 has no eigenvalues, while
the eigenvalues of the coisometry U7} defined in Section 4.36 have multiplicity one.

4.15 If A is a C*-algebra, then the set P of positive elements in U forms a closed convex
cone such that ? N —% = {0}. (Hint: Show that a self-adjoint contraction H in % is
positive if and only if ||/ — H|| < 1.)

4.16 If U is a C*-algebra, then an element H in ¥ is positive if and only if there exists
T in U such that H = T*T.* (Hint: Express T*T as the difference of two positive
operators and show that the second is zero.)

4.17 If P and Q are projections on ¥ such that || P— Q|| < 1,thendimran P = dimran Q.
(Hint: Show that (/ — P) + Q is invertible, that ker P Nran Q@ = {0}, and that
Plran Q] =ran P.)

4.18 An operator V on ¥ is an isometry if and only if V*V = I.If V is an isometry on %,
then V is a unitary operator if and only if V* is an isometry if and only if ker V* = {0}.

4.19 If ¥ and ¥ are Hilbert spaces and A is an operator on ¥ @ X given by the matrix
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[ An Ap ]

Ay An ]’

then ¥ @ {0} is an invariant subspace for A if and only if A;; = 0, and # & {0}
reduces A if and only if A;; = A, =0.

4.20 If U, is the unilateral shift, then the sequence {U}}32, converges to O in the weak
operator topology but not in the strong. Moreover, the sequence { U;"};";l converges

to 0 in the strong operator topology but not in the norm.

4.21 Show that multiplication is not continuous in both variables in either the weak or
strong operator topologies. Show that it is in the relative strong operator topology on
the unit ball of £(%().

422 If ¥ is a Hilbert space, then the unit ball of (%) is compact in the weak operator
topology but not in the strong. (Hint: Compare the proof of Theorem 1.23.)

4.23 If A is a W*-algebra contained in (%), then the unit ball of A is compact in the weak
operator topology.

424 If A is a *-subalgebra of (%), then Ay = {[4 9] : A € A} is a *-subalgebra of
(K @ ¥). Similarly, Uy, is a *-subalgebra of L(X & - - - ® K) for any integer N.
Moreover, U, is closed in the norm, strong, or weak operator topologies if and only
if 2 is. Further, we have the identity Ay, = Ay,

425 If A is a *-subalgebra of ¥, A is in A”, x), x5, ..., xu are vectors in ¥, and € > 0,
then there exists B in U such that || Ax; — Bx;|| < e fori = 1,2,..., N. (Hint: Show
first that for M a subspace of # @ - - - @ ¥, we have clos [Uy, M] = clos [Ay)M].)

4.26 (von Neumann Double Commutant Theorem) If U is a *-subalgebra of (%(), then U
is a W*-algebra if and only if %A = A" .*

4.27 If A is a C*-subalgebra of R(%), then A is a W*-algebra if and only if it is closed in
the strong operator topology.

4.28 If S and T are operators in the Hilbert spaces ¥ and X, respectively, then an operator
S ® T can be defined on % ® ¥ in a natural way such that ||[S® T|| = ||S|| ||IT|| and
STy =S*QT*

In Exercises (4.29-4.34) we are considering linear transformations defined on only a linear

subspace of the Hilbert space.

Definition A linear transformation L defined on the linear subspace @, of the Hilbert space
Cis closable if the closure in # @ ¥ of the graph {(f, Lf) : f € DL} of L is the graph of
a linear transformation L called the closure of L. If L has a dense domain, is closable, and
L =L, then L is said to be closed.

4.29 Give an example of a densely defined linear transformation which is not closable. If
T is a closable linear transformation with @7 = ¥, then T is bounded.

4.30 If L is a closable, densely defined linear transformation on ¥, then these exists a
closed, densely defined linear transformation M on ¥ such that (Lf, g) = (f, Mg)
for f in@; and g in D . Moreover, if N is any linear transformation on ¥ for which
(Lf,g) = (f,Ng) for f in D, and g in Dy, then Dy C Dy and Ng = Mg for
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g in Dy. (Hint: Show that the graph of M can be obtained as in Exercise 4.7 as the
orthogonal complement of the graph of L.)

Definition If L is a closable, densely defined linear transformation on %, then the operator
given in the preceding problem is called the adjoint of L and is denoted L*. A densely
defined linear transformation H is symmetric if (Hf, f) isreal for f in @y and self-adjoint
if H=H*.

4.31 If T is a closed, densely defined linear transformation on ¥, then T = T**.* (This
includes the fact that D1 = D7+.). If H is a densely defined symmetric transformation
on ¥, then H is closable and H* extends H.

4.32 If H is a densely defined symmetric linear transformation on ¥ with range equal to
%, then H is self-adjoint.

4.33 If T is a closed, densely defined linear transformation on ¥, then T*T is a densely
defined, symmetric operator. (Note: T*T f is defined for those f for which T f is in
gDTt )

4.34 If T is a closed, densely defined linear transformation on %, then T*T is self-adjoint.
(Hint: Show that the range of 7 + T*T is dense in ¥ and closed.)

4.35 If W is acommutative W*-algebra on # with € separable, then U is a *-isometrically
isomorphic to L*°(u) for some probability space (X, &, u).

4.36 Show that there exist W*-algebras U and B such that ¥ and B are *-isomorphic but
A’ and B’ are not.

4.37 If A is an abelian W*-algebra on ¥ for ¥ separable, then 2 is maximal abelian if and
only if U has a cyclic vector.

4.38 Give an alternate proof of Fuglede’s theorem for normal operators on a separable
Hilbert space as follows: Show that it is enough to prove that E(A;)X E(A;) = O for
A and A, disjoint Borel sets; show this first for Borel sets at positive distance from
each other and then approximate from within by compact sets in the general case.

4.39 (Putnam) If T\ and T, are normal operators on the Hilbert spaces #; and %,
respectively, and X in 2(%,, ¥,) satisfies ,X = XTj, then T,)X = XT;*. (Hint:
Consider the normal operator [’ 3,1 on %; @ %, together wth the operator [% J1).

4.40 If T) and T, are normal operators on the Hilbert spaces #; and ¥(,, respectively, then
T; is similar to 7, if and only if 7; is unitarily equivalent to 75.

4.41 Let X be a compact Hausdorff space, € be a Hilbert space, and ¢ be a *-isomorphism
from C (X) into (¥)). Show that if there exists a vector f in ¥ for which ®(C(X))(f)
is dense in ¥, then there exists a probability measure x on X and an isometric
isomorphism ¥ from L?(u) onto % such that YM,¥* = P(p) for ¢ in C(X).
(Hint: repeat the argument for Theorem 4.58.)

4.42 Let X be a compact Hausdorff space, 3 be a Hilbert space, and ® be a *-isomorphism
from C(X) into (%), then there exists a *-homomorphism ®* from the algebra
$B(X) of bounded Borel functions on X which extends ®. Moreover, the range of ®*
is contained in the von Neumann algebra generated by the range of ®. (Hint: use the
arguments of 4.74 and 4.75 together with the preceding exercise.)



Chapter 5

Compact Operators, Fredholm
Operators, and Index Theory

5.1 In the preceding chapter we studied operators on Hilbert space and obtained, in
particular, the spectral theorem for normal operators. As we indicated this result can
be viewed as the appropriate generalization to infinite-dimensional spaces of the
diagonalizability of matrices on finite-dimensional spaces. There is another class of
operators which are a generalization in a topological sense of operators on a finite-
dimensional space. In this chapter we study these operators and a certain related
class. The organization of our study is somewhat unorthodox and is arranged so
that the main results are obtained as quickly as possible. We first introduce the class
of compact operators and show that this class coincides with the norm closure of
the finite rank operators. After that we give some concrete examples of compact
operators and then proceed to introduce the notion of a Fredholm operator. We
begin with a definition.

5.2 Definition. If ¥ is a Hilbert space, then an operator T in L(¥) is a finite
rank operator if the dimension of the range of T is finite and a compact operator
if the image of the unit ball of % under T is a compact subset of ¥. Let F (),
respectively, RE(¥) denote the set of finite rank, respectively, compact operators.

In the definition of compact operator it is often assumed only that T[(¥),] has a
compact closure. The equivalence of these two notions follows from the corollary
to the next lemma.

5.3 Lemma. If ¥ is a Hilbert space and T is in £(¥), then T is a continuous
function from ¥ with the weak topology to ¥ with the weak topology.

Proof If {f,}eca is a net in ¥ which converges weakly to f and g is a vector in
¥, then

im(T fo, 8) = lim(fa, T*g) = (f, T*8) = (Tf, &),
a€A a€A
108



Compact Operators, Fredholm Operators, and Index Theory 109

and hence the net {T f,},ca converges weakly to 7f. Thus T is weakly contin-
uous. [ ]

5.4 Corollary. If ¥ is a Hilbert space and T is in (%), then T'[(¥),] is a closed
subset of 7.

Proof Since (), is weakly compact and T is weakly continuous, it follows that
T[(%),] is weakly compact. Hence, T[(¥),] is a weakly closed subset of ¥ and
therefore is also norm closed. u

The following proposition summarizes most of the elementary facts about finite
rank operators.

5.5 Proposition. If ¥ is a Hilbert space, then LF(¥) is the minimal two-sided
*_ideal in &(%).

Proof If S and T are finite rank operators, then the inclusion
ran(S+7T)CranS +ranT

implies that S + T is finite rank. Thus, F(¥) is a linear subspace. If S is a finite
rank operator and T is an operator in &(%), then the inclusion ran ST C ran §
shows that F () is a left ideal in L(¥). Further, if T is a finite rank operator,
then the identity

ran T* = T*[(ker T*)1] = T*[clos ran T]

which follows from Corollary 3.22 and Proposition 4.6, shows that T* is also a
finite rank operator. Lastly, if S is in Q(¥) and T is in F (%), then T* is in LF ()
which implies that 7*S* is in (%) and hence that ST = (T*S5*)* is in L (¥).
Therefore, XF(H) is a two-sided *-ideal in L(F).

To show that XF(¥) is minimal, assume that J is an ideal in £(¥) not (0). Thus
there exists an operator T # 0 in 3, and hence there is a nonzero vector f and a
unit vector g in ¥ such that 7 f = g. Now let k and k be arbitrary unit vectors in
# and A and B be the operators defined on # by Al = (I, g)k and Bl = (I, h) f
for / in . Then, S = AT B is the rank one operator in I which takes A to k. It is
now clear that <Y contains all finite rank operators and hence (%) is the minimal
two-sided ideal in L(%). [ ]

The following proposition provides an alternative characterization of compact
operators.

5.6 Proposition. If ¥ is a Hilbert space and T is in (%), then T is compact if
and only if for every bounded net { f, }4c4 in # which converges weakly to f it is
true that {7 f,},c4 converges in normto 7f.
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Proof If T is compact and { f, }aea is a bounded net in ¥ which converges weakly
to f, then {Tfy}4ca converges weakly to Tf by Lemma 5.3 and lies in a norm
compact subset by the definition of compactness. Since any norm Cauchy subnet
of {T fy}aeca must converge to T f, it follows that limyey4 Tf, = Tf in the norm
topology.

Conversely, suppose 7 is an operator in £(%) for which the conclusion of the
statement is valid. If {T f,}sc4 is a net of vectors in T[(¥),], then there exists a
subnet { fo,}gep Which converges weakly to an f. Moreover, since each fo, is in
the unit ball of %, it follows that {T fap)pen converges in norm to T f. Therefore,
T[(%€),] is a compact subset of # and hence T is compact. |

5.7 Lemma. The unit ball of a Hilbert space € is compact in the norm topology
if and only if ¥ is finite dimensional.

Proof If ¥ is finite dimensional, then ¥ is isometrically isomorphic to C" and
the compactness of (¥); follows. On the other hand if ¥ is infinite dimensional,
then there exists an orthonormal subset {e,}3°, contained in (3€); and the fact
that |le, — enll = ~/2 for n # m shows that (¥€); is not compact in the norm
topology. ]

The following property actually characterizes compact operators on a Hilbert
space, but the proof of the converse is postponed until after the next theorem. This
property does not characterize compact operators on a Banach space, however.

5.8 Lemma. If ¥ is an infinite-dimensional Hilbert space and T is a compact
operator, then the range of T contains no closed infinite-dimensional subspace.

Proof Let M be a closed subspace contained in the range of 7 and let Py be the
projection onto . It follows easily from Proposition 5.6 that the operator PyT
is also compact. Let A be the operator defined from ¥ to M by Af = PyTf for
f in #. Then A is bounded and onto and hence by the open mapping theorem is
also open. Therefore, A[(%€);] contains the open ball in M of radius § centered at
0 for some § > 0. Since the closed ball of radius § is contained in the compact set
Py T[()], it follows from the preceding lemma that M is finite dimensional.

We are now in a position to show that XE(¥) is the norm closure of LF ().
The corresponding result is not valid for all Banach spaces.

5.9 Theorem. If ¥ is an infinite-dimensional Hilbert space, then & (¥) is the
norm closure of KF(%).

Proof We first show that the closure of LF(¥) is contained in LE (). Firstly, it
is obvious that & (%) is contained in LE(FC). Secondly, to prove that LE(¥) is

closed, assume that {K,}° , is a sequence of compact operators which converges
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in norm to an operator K. If { f,}aca is a bounded net in ¥ that converges weakly
to f, and

M = sup{llfIl, | fell : @ € A},

then choose N such that |[K — Ky|| < £/3M. Since Ky is a compact operator, we
have by Proposition 5.6 that there exists g in A such that | Ky f, — Kn f|| < &/3
for @ > . Thus we have

IKfe — KfIl < I(K — KN) fall + IKn fo — Kn fII + (KN — K) fI

A

<8+8+€—s for a>¢«

37373 =%
and hence K is compact by Proposition 5.6. Therefore, the closure of XF(¥) is
contained in & (%0).

To show that F(#) is dense in LE(K), let K be a compact operator on ¥
and let K = PV be the polar decomposition for K. Let # = Y ., ®%, be a
decomposition of € into separable reducing subspaces for P given by Proposition
4.73, and set P, = P|¥,. Further, let 28, be the abelian W*-algebra generated by
P, on #, and consider the extended functional calculus obtained from Theorem
4.71 and defined for functions in L*°(v,) for some positive regular Borel measure
v, With support contained in [0, || P||]. If x. denotes the characteristic function of
the set [¢, || P|l], then x is in L*(v,) and E;, = x.(P,) is a projection on ¥,.
If we define ¥, on [0, || P||] such that Y(x) = 1/x fore < x < ||P] and O
otherwise, then the operator Q; = ¥, (P,) satisfies Q5 P, = P,Q% = EE. Thus
we have

ran (Z @Eﬁ) =ranP(E EBQf,) Cran P =ranK

a€A a€EA

and therefore the range of the projection ), , ®EZ is finite dimensional by
Lemma 5.8. Hence, P; = P()_ .4 ®E?) is in LF(¥) and thus so is P, V. Finally,
we have

IK = PV =||PV = P.V|| < ||P — P,|| = sup | P, — P,EZ]
acA

=sup sup [lx —xxe®)llo <&,
a€A 0=x<||P

and therefore the theorem is proved. ]
Notice that in the last paragraph of the preceding proof we used only the fact
that the range of K contained no closed infinite-dimensional subspace. Thus we

have proved the remaining half of the following result.

5.10 Corollary. If ¥ is an infinite-dimensional Hilbert space and T is an operator
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on 3, then T is compact if and only if the range of T contains no closed infinite-
dimensional subspaces.

5.11 Corollary. If ¥ is an infinite-dimensional Hilbert space, then E(¥) is
a minimal closed two-sided *-ideal in (). Moreover, if ¥ is separable, then
RE(F) is the only proper closed two-sided ideal in ().

Proof For the first statement combine the theorem with Proposition 5.5. For the
second, note by the previous corollary that if T is not compact, then the range
of T contains a closed infinite-dimensional subspace M. A simple application of
the open mapping theorem yields the existence of an operator S on %€ such that
TS = Py, and hence any two-sided ideal containing T must also contain /. This
completes the proof. =

5.12 ExaMPLE. Let K be a complex function on the unit square [0,1] x [0,1]
which is measurable and square-integrable with respect to planar Lebesgue mea-
sure. We define a transformation Tx on L2([0, 1]) such that

1
(Tx () = fo KG.y)fO)dy for fin L0, 1]).

The computation

1 1
/ (T )P dx = f
0 0

1 1 1
2 2 d
sfo [fo K (x9) dy]{fo O dy} .

1 1
= fI3 f f |K (x, y)I* dydx
0 0

which uses the Cauchy-Schwarz inequality, shows that Tk is a bounded operator
on L2([0, 1]) with

1 p1 1/2
||Txns||1<nz=[f0f0|K(x,y)|2dxdy} .

The operator Tk is called an integral operator with kernel K. We want to show
next that Tk is a compact operator.

If we let ® denote the mapping from L2([0, 1] x [0, 1]) to 2(L?([0, 11)) defined
by ®(K) = Tk, then ® is a contractive linear transformation. Let & be the
subspace of L2([0, 1] x [0, 1]) consisting of the functions of the form

N
K(x,y) = ;f:(x)gi(y),

2
dx

1
fo K(x, ) f () dy

where each f; and g; is continuous on [0,1]. Since & is obviously a self-adjoint
subalgebra of the algebra of continuous functions on [0,1] x [0,1] which contains
the identity and separates points, it follows from the Stone-Weierstrass theorem that
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C([0, 1] x [0, 1]) is the uniform closure of 9. Moreover, an obvious modification
of the argument given in Section 3.33 shows that @ is dense in L2([0, 1] x [0, 1])
in the L2-norm. Thus the range of ® is contained in the norm closure of ®(®) in
L{(L*([0, 1])).

Let f and g be continuous functions on [0,1] and let T be the integral operator
with kernel f(x)g(y). For A in L2([0, 1]), we have

1 1
(Th)(x) = fo FEEMRG)dy = f(x) ( fo g(y)h(y)dy),

and hence the range of T consists of multiples of f. Therefore, T is a rank one
operator and all the operators in & () are seen to have finite rank. Thus we have
by Theorem 5.9 that

@(L*([0, 1] x [0, 1])) C clos ®(D) C clos LF(L2([0, 1])) = LE(L*([0, 1)),

and hence each integral operator Tk is compact.

‘We will obtain results on the nature of the spectrum of a compact operator after
proving some elementary facts about Fredholm operators.

If ¥ is finite dimensional, then XE(¥) = L(HK). Hence, in the remainder of
this chapter we assume that ¥ is infinite dimensional.

5.13 Definition. If ¥ is a Hilbert space, then the quotient algebra (%) /QE(¥)
is a Banach algebra called the Calkin algebra. The natural homomorphism from
£(%€) onto (%) /LE (X)) is denoted by . The spectrum of 7 (T) is () /LE(¥)
for T in X(¥) is called the essential spectrum of 7 and is denoted o, (7).

That the Calkin algebra is actually a C*-algebra will be established later in this
chapter.

The Calkin algebra is of considerable interest in several parts of analysis.
Our interest is in its connection with the collection of Fredholm operators. The
following definition of Fredholm operator is convenient for our purposes and will
be shown to be equivalent to the classical definition directly.

5.14 Definition. If ¥ is a Hilbert space, then T in £(%() is a Fredholm operator
if w(T) is an invertible element of L(¥)/RE(F). The collection of Fredholm
operators on ¥ is denoted by F ().

The following properties are immediate from the definition.

5.15 Proposition. If ¥ is a Hilbert space, then %(¥) is an open subset of (%),
which is self-adjoint, closed under multiplication, and invariant under compact
perturbation.

Proof If A denotes the group of invertible elements in 2(%)/RE (%), then A is
open by Proposition 2.7 and hence so is #(¥#) = m~!(A), since 7 is continuous.
That (%) is closed under multiplication follows from the fact that 7 is multi-
plicative and A is a group. Further, if T is in (%) and X is compact, then T + K
is in #(¥) since 7 (T) = n(T + K). Lastly, if T is in F(¥), then there exist S in
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(%) and compact operators K; and K, suchthat ST = I+ K;and TS = I +K>.
Taking adjoints we see that 7 (T*) is invertible in the Calkin algebra and hence
% () is self-adjoint. n

The usual characterization of Fredholm operators is obtained after we prove
the following lemma about the linear span of subspaces. If Ml and N are closed
subspaces of a Hilbert space, then the linear span M+ N is, in general, not a closed
subspace (see Exercise 3.18) unless one of the spaces is finite dimensional.

5.16 Lemma. If ¥ is a Hilbert space, M is a closed subspace of ¥, and N is a
finite-dimensional subspace of ¥, then the linear span AL + N is a closed subspace
of 7.

Proof Replacing N, if necessary, by the orthogonal complement of /AL NN in N,
we may assume that Ml NN = {0}. To show that

M+N={f+g: feM geN}

is closed, assume that {f,};2, and {g,}32, are sequences of vectors in A and
N, respectively, such that {f, + g,}32, is a Cauchy sequence in ¥. We want to
prove first that the sequence {g,}32, is bounded. If it were not, there would exist

a subsequence {g,, }¢ ; and a unit vector 4 in N such that

jim Jenl =00 and  Jim £

— = h.
£ [ g, |

(This depends, of course, on the compactness of the unit ball of N'.) However, since
the sequence {(1/ || 8n, || )(fn, + 8n) )2, Would converge to 0, we would have

S

lim —— = —h.
oo |gn, |
This would imply that 4 is in both M and N and hence a contradiction.
Since the sequence {g,}22, is bounded, we may extract a subsequence {gn, }z2,

such that lim_, » g», = g for some g in N. Therefore, since
{(f + gnk)}iil

is a Cauchy sequence, we see that {f,, }72, is a Cauchy sequence and hence
converges to a vector f in M. Therefore, lim,, oo(f, + g:) = f + g and thus
M + N is a closed subspace of . [

The following theorem contains the usual definition of Fredholm operators.
5.17 Theorem. (Atkinson) If % is a Hilbert space, then T in (%) is a Fredholm

operator if and only if the range of T is closed, dim ker T is finite, and dim ker T*
is finite.
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Proof If T is a Fredholm operator, then there exist an operator A in (#) and a
compact operator K suchthat AT = I+ K.If f is a vector in the kernel of 7 + K,
then (/ + K) f = O implies that Kf = — f, and hence f is in the range of K.
Thus,

kerT C ker AT =ker(I + K) CranK

and therefore by Lemma 5.8, the dimension of ker T is finite. By symmetry, the
dimension of ker T* is also finite. Moreover, by Theorem 5.9 there exists a finite
rank operator F such that |[K — F| < % Hence for f in ker F, we have

NAINTAN = IATAl = Nf + KfIl=If+ Ff+Kf - Ffl
z IfI=IKf = Ffll = Ifli /2.

Therefore, T is bounded below on ker F, which implies that 7'(ker F) is a
closed subspace of ¥ (see the proof of Proposition 4.8). Since (ker F)* is finite
dimensional, it follows from the preceding lemma that ran7 = T (ker F) +
T[(ker F)'] s a closed subspace of ¥.

Conversely, assume that the range of T is closed, dim ker T is finite, and dim
ker T* is finite. The operator T, defined To f = Tf from (ker T)* toranT is
one-to-one and onto and hence by Theorem 1.42, is invertible. If we define the
operator S on ¥ such that Sf = To‘1 ffor finran T and Sf = O for f orthogonal
toranT, then S is bounded, ST = I — Py, and TS = I — P,, where P, is the
projection onto ker T and P, is the projection onto (ran T)* = ker T*. Therefore,
7(S) is the inverse of (T') in () /L{E (), and hence T is a Fredholm operator
which completes the proof. n

5.18 As we mentioned previously, the conclusion of the preceding theorem is the
classical definition of a Fredholm operator. Early in this century several important
classes of operators were shown to consist of Fredholm operators. Moreover, if T
is a Fredholm operator, then the solvability of the equation Tf = g for a given
g is equivalent to determining whether g is orthogonal to the finite-dimensional
subspace ker T*. Lastly, the space of solutions of the equation Tf = g for a given
g is finite dimensional.

At first thought the numbers dim ker 7 and dim ker 7* would seem to describe
important properties of 7', and indeed they do. It turns out, however, that the
difference of these two integers is of even greater importance, since it is invariant
under small perturbations of 7. We shall refer to this difference as the classical
index, since we shall also introduce an abstract index. We will eventually show
that the two indices coincide.

5.19 Definition. If ¥ is a Hilbert space, then the classical index j is the function
defined from %(¥) to Z such that j(T) = dimker T — dimker T*. Forn in Z, set
Fn={T € F3): j(T)=n}.
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We first show that &, is invariant under compact perturbations, after which we
obtain the classical Fredholm alternative for compact operators.

5.20 Lemma. If % is a Hilbert space, T is in % and K is in E(¥), then T + K
isin go.

Proof Since T is in %, there exists a partial isometry V by Proposition 4.37 with
initial space equal to ker 7 and final space equal to ker 7*. For f inker 7 and g
orthogonal to ker T, we have (T + V)(f + g) = Tg + Vf, and since Tg is in
ran T and V£ is orthogonal toran T then (T + V)(f + g) = O implies f +g = 0.
Thus T + V is one-to-one. Moreover, since T + V is onto, it follows that T + V
is invertible by the open mapping theorem.

Let F be a finite rank operator chosen such that ||K — F|| < 1/ [(T + V)7!|.
Then T 4+ V + K — F is invertible by Proposition 2.7, and hence T + X is the
perturbation of the invertible operator S = T 4 V 4 K — F by the finite rank
operator G = F — V. Now T + K is a Fredholm operator by Proposition 5.15,
and j(T + K) = j(§+ G) = j(I + S'G), since

ker(S + G) =ker (S( + 57'G))
and
ker ((S + G)*) = ker (I + §7'G)*S*) = $* ' ker (I + S7'G)*).

Thus it is sufficient to show that j(I + S7!G) = 0.

Since S~!G is a finite rank operator the subspaces ran (S~!G) and ran (S~'G)*
are finite dimensional, and hence the subspace M spanned by them is finite
dimensional. Clearly, (I + S~!G)M c M, + S7'G)*M C M, and (I +
S7'G)f = f for f orthogonal to M. If A is the operator on M defined by
Ag = (I + S7'G)g for g in M, then ker A = ker(I + S™!G) and ker A* =
ker ((I + S~'G)*). Since A is an operator on a finite-dimensional space, we have
dimker A = dimker A*, and therefore

dim(I + §7'G) = dim (( + 7' G)*).

Thus, j(I + S™!G) = 0 and the proof is complete. n

After recalling the definition of generalized eigenspace we will prove a theorem
describing properties of the spectrum of a compact operator.

5.21 Definition. If ¥ is a Hilbert space and T is an operator in £(¥), then the
generalized eigenspace €, for the complex number A is the collection of vectors
f such that (T — A)" f = O for some integer n.

5.22 Theorem. (Fredholm Alternative) If K is a compact operator on the
Hilbert space ¥, then o(K) is countable with O the only possible limit point,
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and if A is a nonzero element of o (K), then A is an eigenvalue of K with finite
multiplicity and A is an eigenvalue of K* with the same multiplicity. Moreover, the
generalized eigenspace €, for A is finite dimensional and has the same dimension
as the generalized eigenspace for K* for A.

Proof If A is a nonzero complex number, then —A[ is invertible, and hence K — A
is in & by Proposition 5.15. Moreover, since j(K —A) = j(—AI) = 0, then either
ker(K — A) = {0}, which implies ker(K* — 2) = {0} and A is not in o (K), or A
is an eigenvalue of K of finite multiplicity. In the latter case, since j(K — ) =
we see that A is an eigenvalue of K* of the same multiplicity.

If €, # én = ker(K — M)V for any integer N, then there exists an infinite

orthonormal sequence {k,; }?2,, such that k,; is in %, +1 © €,;. Since | K &r, "2 =

A%+ " (K — Mkn; || and the sequence {k,; }°° , converges weakly to 0, it follows
from Proposition 5.6 that 0 = lim;—o | K k n;| > Il which is a contradiction.
Thus 8, = ker(K — A)N for some integer N. Moreover, since (K — A)V is a
compact perturbation of (—A)V I, (K — 1)V is a Fredholm operator with index 0.
Therefore,

dimker[(K — A)V] = dimker[(K* — 1)V],

and since €, = ker(K — A)N for some N by the finite dimensionality of &;, it
follows that the dimension of the generalized eigenspace for K for A is the same
as that of the generalized eigenspace for K* for A.

Finally, to show that o (K) is countable with O the only possible limit point, it is
sufficient to show that any sequence of distinct eigenvalues converges to 0. Thus let
{An}32, be a sequence of distinct eigenvalues and let f, be an eigenvector of A,. If
we let My denote the subspace spanned by { f1, f2, - - -, fn} then M1§M2§M3§ ey
since the eigenvectors for distinct eigenvalues are linearly independent. Let {g,}72 |
be a sequence of unit vectors chosen such that g, is in M, and g, is orthogonal to
M. Ifhisavectorin¥, thenh = Y oo | (h, g,)8x+ 8o Where g is orthogonal to
all the {g,}%,. Since [|A||* = Y22, |(h, ga)I*+ lIgolI* by Theorem 3.25, it follows
that hm,,_,oo(g,,, h) = 0. Therefore, the sequence {g,}2, converges weakly to 0,

and hence by Proposition 5.6 the sequence { K g,}32; converges to 0 in norm. Since
&n is in M., there exist scalars {;}!_, such that g, = Z 1 @ fi, and hence

Kgn=§oti1<f. }:a.kf,-—k Za,f,+za,(x Y

i=1
= An&n + hn,
where h, is in M,,_;. Therefore,
lim [Af? < lim (1Al Igall? + In]2) = Tim 1K gall®

and the theorem follows. ]
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5.23 ExaMpPLE. We now return to a special integral operator, the Volterra integral
operator, and compute its spectrum. Let

1 ifx>y

K(x,y):{o ifx <y for (x,y)in [0, 1] x [0, 1]

and let V be the corresponding integral operator defined on L*([0, 1]) in Section
5.12. We want to show that o (V) = {0}. If A were a nonzero number in o (V),
then since V is compact by Section 5.12 it follows that A is an eigenvalue for V.
If f is an eigenvector of V for the eigenvalue A, then jg f()dy = Af(x). Thus,
we have

X 1
IAL1f )] s/ lfl dy 5/ lfldy < 1Ifll;
(] 0
using the Cauchy-Schwarz inequality. Hence, for x) in [0,1] and n > O, we have

1 X) 1 X1 prx
ol = o /0 el < o fo fo fCen)] dxs dxz < - -

1 X1 X2 Xn
fm;;f”f“zfo /(; /0 dxpyy---dx;

_ ISl X

- p\‘n+l n! °

Since

Ifll, %3

n—oc0 |A|"*! n! -

it follows that f = 0. Therefore, a nonzero A cannot be an eigenvalue, and hence
o (V) = {0}.
We digress to make a couple of comments.

5.24 Definition. If % is a Hilbert space, then an operator T in (%) is quasinilpo-
tent if o (T) = {0}.
Thus the Volterra operator is compact and quasinilpotent.

5.25 ExaMmpLE. Let T be a quasinilpotent operator and U be the commutative
Banach subalgebra of (%) generated by I, T, and (T — A)~! for all nonzero A.
Since T is not invertible, there exists a maximal ideal in 2 which contains 7', and
thus the corresponding multiplicative linear functional ¢ satisfies (/) = 1 and
(T) = 0. Moreover, since the values of a multiplicative linear functional on 2
are determined by its values on the generators and these are determined by its value
at T, it follows from Corollary 2.36 that the maximal ideal space of 2 consists
of just ¢. In particular, this example shows that the Gelfand representation for a
commutative Banach algebra may provide little aid in studying this algebra.

We now return to the study of Fredholm operators and define the abstract index.
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5.26 Definition. If ¥ is a Hilbert space, then the abstract index i is defined from
F(¥) to Ag/ec) such thati = y o m, where y is the abstract index for the
Banach algebra (%) /QE(3).

The following properties of the abstract index are immediate.

5.27 Proposition. If € is a Hilbert space and i is the abstract index, then i is
continuous and multiplicative, and i(T + K) = i(T) for T in %(¥) and K in
RE (7).

Proof Straightforward. [

5.28 We have defined two notions of index on the collection of Fredholm opera-
tors: the classical index j from % (%) to Z and the abstract index i from F(¥) to
A. Our objective is to show that these two notions are essentially the same. That
is, we want to produce an isomorphism « from the additive group Z onto A such
that the following diagram commutes.

To produce « we will show that for each n, the set &, = j ~1(n) is connected.
Since i is continuous and A is discrete, i must be constant on %,,. Thus the mapping
defined by a(n) = i(T) for T in &, well defined. The mapping « is onto, since
i is onto. Further, consideration of a special class of operators shows that ¢ is a
homomorphism. Finally, the fact that %, is invariant under compact perturbations
will be used to show that ker i = %, and hence that « is one-to-one.

Once this isomorphism is established, then the following results are immediate
corollaries: j is continuous and multiplicative, and is invariant under compact
perturbation.

We begin this program with the following proposition.

5.29 Proposition. If 2 is a W*-algebra of operators in £(¥), then the set of
unitary operators in ¥ is arcwise connected.

Proof Let U be a unitary operator in ¥ and let T8y be the W*-algebra generated
by U. As in the proof of Theorem 4.65 there exists a decomposition of # =
Y weca ®F, such that each ¥, reduces U and U, = U|¥, has a cyclic vector.
Moreover, by Theorem 4.58 there exists a positive regular Borel measure v, with
support contained in T and a functional calculus defined from L*(v,) onto Ly,
by an isometric isomorphism from L2(v,) onto ¥,,.

If we define the function ¥ on T such that ¥ (¢’) = ¢ for —m <t < m, then ¢
is in each L (v, ), and there exists a sequence of polynomials {p,}3°, such that
I pnll < 7 and
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Sup{lp,,(ei') - ilf(ei')l -7 +l <t < n} < -1—
n n

(Use the Stone-Weierstrass theorem to approximate a function which agrees with
Y on{e’ : —m + (1/n) <t < m} and is continuous.) Consider the sequence of
operators

a€A

o0
{pn (U)}iil = [ E @pn(Ua)}

n=1
in Wy and the operator H = Y wca ®Y (U, ) defined on . Using the identification
of #, as L?(vg), it is easy to check that the sequence { Pn(Ug)}2, converges to
¥ (Uy) in the strong operator topology. Since the operators

[e ]
{ Z @pn(Ua)}
a€A n=1

are uniformly bounded, it follows that the sequence converges strongly to H.
Therefore, H is in By and moreover ¢/ = U, since /¥ U«) = U, for each « in
A. If we define the function U, = ¢**# for A in [0,1], then for A, and A, in [0,1],
we have

|Ur, — Us, | = llexpiriH — expiraH|| = |expiri H(I —expi(d2 — A)H)|

= sup Iy —expi(Az — AD)Y (Ul

acA
<1 —expi(Az — AV |l = lexpidiw —expidym]|,

and therefore U, is a continuous function of A. Thus the unitary operator U is
arcwise connected to Up = I by unitary operators in 2. n

The following corollary is now easy to prove.

5.30 Corollary. If ¥ is a Hilbert space, then the collection of invertible operators
in (¥) is arcwise connected.

Proof Let T be an invertible operator in 2(¥) with the polar decomposition
T = UP. Since T is invertible, U is unitary and P is an invertible positive
operator. For A in [0,1] let Uy be an arc of unitary operators connecting the identity
operator Uy to U = U; and P, = (I —A)I + A P. Since each P, is bounded below,
it is invertible and hence U, P, is an arc connecting the identity operatorto 7. ®

Much more is true; a theorem of Kuiper [73] states that the collection of
invertible operators in (¥€) for a countably infinite-dimensional ¥ is a contractible
topological space.

5.31 Corollary. If % is a Hilbert space and T is an invertible operator in X(%(),
then i (T) is the identity in A.
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Proof Since n(T) is in the connected component A, of the identity in A, it is
clear that i (T') is the identity in A. ]

We now consider the connectedness of %,,.

5.32 Theorem. If ¥ is a Hilbert space, then for each n in Z the set %, () is
arcwise connected.

Proof Since (%, (9))" = F_,(0), it is sufficient to consider n > 0.If n > 0 and
T is in %,, then dimker T > dimker T*; thus there exists a partial isometry V
with initial space contained in ker T and range equal to ker T* = (ran T)*. For
each ¢ > O itis clear that T 4 ¢V is onto and hence is right invertible and

ker(T + eV) = ker(T) © init(V).

Hence it is sufficient to prove that if S and T are right invertible with dimker S =
dimker T, then S and T can be connected by an arc of right invertible operators
in%&,

Let S and T be right invertible operators with dimker S = dimker 7. Let U be
a unitary operator chosen such that ker SU = ker T and U, be an arc of unitary
operators such that Uy = I and U; = U. Then SU is connected to S in %, and
hence we can assume that the kernels of our two right invertible operators are
equal.

Hence, assume that S and T are right invertible operators with ker S = ker 7.
By Proposition 4.37, there exists an isometry W with range W = (ker §)* =
(ker T)*. Then the operators SW and TW are invertible and hence by Corollary
5.30 there exists an arc of invertible operators J, for 0 < A < 1 such that
Jo = SW and J; = TW. Since WW* is the projection onto the range of W,
we see that SWW* = S and TWW* = T. Hence J,W* is an arc of operators
connecting S and T, and the proof will be completed once we show that each
JLoW*isin %,. Since (J,, W*)(WJ[I) = I, it follows that J, W* is right invertible
and hence ker ((JyW*)*) = {0}. Further since ker(J, W*) = ker W* we see that
J(JraW*) = n for all A. This completes the proof. n

5.33 Recall now the unilateral shift operator U, on [?(Z*) introduced in Section
4.36.Itis easily established thatker U,. = {0}, whileker U} = {eo}. Since U, isan
isometry, its range is closed, and thus Uy is a Fredholm operator and j (U,) = —1.
Now define
yw _ ui n=>0,
+ = -
ui™ n<0.
Since for n > 0 we have ker U = {0} and
ker U\* = ker vy = V{eo, el ... en 1}
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it follows that j (U{™) = —n. Similarly since U™* = U;" for n < 0, we have
Jj (")) = —n for all integers n. The following extension of this formula will be

used in showing that the map to be constructed is a homomorphism.

If m and n are integers, then j(U('") @y = jWU™) + jWUP). We prove
this one case at atime. If m > Oandn > Oorm < Oand n < O, then
UMy = U™, and hence

j (Ui""Ufj”) =-m—n=j(U")+;(UP).

If m <0and n > 0, then

urtm =yt —m <,
U(m)U(n) — U* mUn —
U_T_ (n—m) U(n+m) m > n,

and again the formula holds. Lastly, if m > 0 and n < 0, then
ker UPUD =ker U™ = \/{eo. €11, e-ni}
and

ker [UUP] = ker (UpUL) =ker U U™ = \leo, ., emi),
and hence
J (Uim)U_(;‘)) —-n—-m=j (Uim)) +J (Uj,")) .

The next lemma will be used in the proof of the main theorem to show that each
of the &, is open.

5.34 Lemma. If ¥ is a Hilbert space, then each of the sets Fo and (J,, .o F» is
open in £(¥).

Proof Let T be in & and let F be a finite rank operator chosen such that T + F
is invertible. Then if X is an operator in (%) which satisfies ||T — H| <
1/ (T + F)7!|}, then X + F is invertible by the proof of Proposition 2.7, and
hence X is in %o by Lemma 5.20. Therefore, % is an open set.

If T is a Fredholm operator not in %, then there exists as in the proof of Lemma
5.20 a finite rank operator F such that T + F is either left or right invertible. By
Proposition 2.7 there exists ¢ > 0 such that if X is an operator in £(¥) such that
IIT + F — X|| < &, then X is either left or right invertible but not invertible. Thus
X is a Fredholm operator of index not equal to 0 and therefore so is X — F by
Lemma 5.20. Hence Un#) %, is also an open subset of X(¥). ]

We now state and prove the main theorem of the chapter.
5.35 Theorem. If ¥ is a Hilbert space, j is the classical index from Z(¥) onto

Z, and i is the abstract index from %(3€) onto A, then there exists an isomorphism
« from Z onto A such thata o j = i.
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Proof Since the dimension of  is infinite, we have % @ [?(Z*) isomorphic to ¥,
and hence there is an operator on ¥ unitarily equivalent to I @ Uf[‘ ). Therefore,
each %, is nonempty and we can define «(n) = i(T'), where T is any operator in
%,,. Moreover, « is well defined by Theorem 5.32. Since i is onto, it follows that
« is onto. Further, by the formula in Section 5.33, we have

am+m =i (1o U™ ™) =i((1evf™) (10 US™))

=i(1eu™)i(10Uf™) =atm - am),

and hence « is a homomorphism.

It remains only to show that « is one-to-one. Observe first that 7 (%) is disjoint
from 7 (\J,0 %»), since if T is in %o and S is in F, with 7(S) = 7(T), then
there exists K in RE&(¥) such that S+ K = T. However, Lemma 5.20 implies that
j(T) = 0, and hence 7 (%)) is disjoint from 7 (|, £0 %,). Since ¥, and U,,#o %,
are open and 7 is an open map, it follows that 77(%o) and 7z (U,.o %) are disjoint
open sets. Therefore, 7 (%)) is an open and closed subset of A and hence is equal
to the connected component A, of the identity in A. Therefore, 7 takes %, onto
Ao and hence i takes &, onto the identity of A. Thus « is an isomorphism. ]

We now summarize what we have proved in the following theorem.

5.36 Theorem. If ¥ is a Hilbert space, then the components of F(J) are
precisely the sets {%, : n € Z}. Moreover, the classical index defined by

j(T) = dimker T — dimker T*

is a continuous homomorphism from %(#) onto Z which is invariant under
compact perturbation.

We continue now with the study of LE(¥) and (%) /RE(¥) as C*-algebras.
(Strictly speaking, € (%) is not a C*-algebra by our definition, since it has no
identity.) This requires that we first show that the quotient of a C*-algebra by a two-
sided ideal is again a C*-algebra. While this is indeed true, it is much less trivial
to prove than our previous results on quotient objects. We begin by considering
the abelian case which will be used as a lemma in the proof of the main result.

5.37 Lemma. If % is an abelian C*-algebra and J is a closed ideal in %, then
is self-adjoint and the natural map  induces an involution on the quotient algebra
A/ with respect to which it is a C*-algebra.

Proof In view of Theorem 2.35, it is sufficient to consider 2 = C(X) for some
compact Hausdorff space X. Let Z be the set of common zeros of the functions in
3. If f in C(X) vanishes on an open subset U that contains Z and x is in X\U,
then there exists ¢y, in J such that ¢, (xo) # 0, and hence @x, is not zero on
some open subset V,, containing xo. By the compactness of X\U, we can choose

Pxys - - - @x, in S such that p = Y1, |<pxo|2 > ¢ > 0on X\U. Moreover, ¢ is in
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Sand g = f/¢isin C(X), where we define g tobe Oon U.Butthen f = ¢-gisin
3, and thus <3 contains all functions in C(X) that vanish on an open neighborhood
of Z.

We claim that the closure of this collection in the supremum norm is the ideal
Sz={f e CX)|f(x)=0forx € Z}.

For ¢ > 0, let n, be a continuous function from C to C that satisfies

(1) n, vanishes on a neighborhood of 0, and
(2) Ine(z) —z] <eforall zinC.

If f isin 3z, then n, o f vanishes on a neighborhood of Z and || f — n; o f|| < &.
Thus I = Jz and C(X)/J = C(X)/Iz. Moreover, it follows that C(X)/SJz is
isometrically isomorphic to C(Z) via the map f + 3z — flz. ]

We now proceed to the main result about quotient algebras.

5.38 Theorem. If % isa C*-algebraand J is a closed two-sided ideal in %, then
S is self-adjoint and the quotient algebra /S is a C*-algebra with respect to the
involution induced by the natural map.

Proof We begin by showing that J is self-adjoint. For T an element of S, set
H = T*T.For A > 0 the element A H? is positive, since it is the square of a self-
adjoint element, and therefore AH? + I is invertible in . Moreover, rearranging
the identity (\H? + I)(AH? + I)™! = I shows that the element defined by

U.=AH*+ D' — I =—-0QH*+D)"'\H?

is in 3. Moreover, if we set Sy = TU, + T, then S} S, = (A\H?+I)~2H and from
the functional calculus for €y, we have

IsiSi] = |aH? + D7*H|| < sup{ (X € or(H)}

X
(Ax2 4+ 1)2

x 9
<o (g +2 0} = T

where the last inequality is obtained by maximizing the function ¢(x) = x(Ax? +
1)~2 on R. Taking adjoints of the equation S = T U, + T and rearranging yields
3
. . 1 . _
Jim [T+ U,T*| = lim |S,)| < lim GO

Since each —U,T* is in &, and S is closed, we have T* in J and hence 3 is
self-adjoint.

Now /3 is a Banach algebra and the mapping (A + J)* = A* + J is the

involution induced by the natural map. Since we have |[(A +3)*| = |A + 3],
it follows that
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[+ @+3] < @+ Ja+3] = Ja+3],

and hence only the reverse inequality remains to be proved before we can conclude
that A/ is a C*-algebra.

Returning to the previous notation, if we set & = €y N 3, then & is a closed
two-sided self-adjoint ideal in the commutative C*-algebra €, and hence € /&
is a C*-algebra isometrically isomorphic to C(X) by the previous lemma and
Theorem 4.29. If we consider the closure 3 of the subalgebra w (€y) = €4 /J in
A /S, then we obtain an induced homomorphism 7’ : €4/ — 3. Moreover, 7’
defines a continuous map ¢ : Mg — X, which we claim is onto. If it is not, then
there exist disjoint nonempty open subsets U and V of X such that p(Mg) C U.
Let f and g be nonzero functions in C(X) satisfying f I“’(MS) =1,suppf C U,
and supp,g C V, and let F and G be the corresponding elements in &g /J.
Then FG = 0, which implies #’(F)7’(G) = 0, and hence n’(F) cannot be
invertible. But the image of 7/(F) under the Gelfand map is the restriction of f
to ¢(Mg) C X, which is identically 1. This fact contradicts Theorem 2.35, and
hence ¢ is onto. Therefore, for A in €, we have

oc, /(A + R) =06,,5(A+3)
and hence
lA+%R], %= 14+, /s = Peun(A+3) = pe,mA+R)
= A+ %R]¢,/n-

Thus, 7’ is an isometry and €4 /S is an abelian C*-algebra. Lastly, it follows
from the functional calculus for €4 /3 and the special form of the function
¥(x) = Ax%/(1 + Ax?), that

Il U = Al (EDI? (1 + 2 IIJt(H)Ilz)—l .

To complete the proof we use the identity T = S, — T U, to obtain

3 Al (DI
Iz (DI < 7 S)I + 7T 7 Ul < a7 T IR

Setting A = 1/ ||x (H) (1), we further obtain the inequality

3(lmHEIP2 1
— Tz I=MI

lm(T)Il <
and finally
I (DI < lx (DIl = |7 (T)*n(T)| .

Therefore, A/ is a C*-algebra. =
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In this book we have chosen to consider only algebras with unit. That is the
only reason RE&(¥) is not a C*-algebra in the sense of this book. Nonetheless,
we need to obtain some results about L& (¥) that are fundamental in the study of
C*-algebras. The following result has several important consequences. A subset
& of L(¥) is said to be irreducible if no proper closed subspace is reducing for
all Sin &,

5.39 Theorem. If ¥ is an irreducible C*-algebra contained in 2(3) such that
AN LEFH) # 0, then LE(¥) is contained in UA.

Proof If K is anonzero compact operator in %, then (K +K*) and (1/i)(K — K*)
are compact self-adjoint operators in 2. Moreover, since at least one is not zero,
there exists a nonzero compact self-adjoint operator H in . If A is a nonzero
eigenvalue for H which it must have, then the projection onto the eigenspace for
A is in €4, and hence in %, using the functional calculus. Moreover, since this
eigenspace is finite dimensional by Theorem 5.22, we see that % must contain a
nonzero finite rank projection.

Let E be a nonzero finite rank projection in % of minimum rank. Consider the
closed subalgebra A = {EAE : A € U} of A as a subalgebra of L(EX).
If any self-adjoint operator in % g were not a constant multiple of a scalar, then
A £ and hence A would contain a spectral projection for this operator and hence
a projection of smaller rank than E. Therefore, the algebra % ¢ must consist of
scalar multiples of E. Suppose the rank of E is greater than one and x and y are
linearly independent vectors in its range. Since the closure of {Ax : A € ¥} is a
reducing subspace for ¥, it follows that it must be dense in #. Therefore, there
must exist a sequence {A,}52, in U such that lim,_, [|A,x — y|| = 0, and hence
lim,_, |EApEx — y|| = 0. Since x and y are linearly independent, the sequence
{EA, E}3 , cannot consist of scalar multiples of E. Therefore, E must have rank

one.

We next show that every rank one operator is in 2 which will imply by Theorem
5.9 that R€(¥) is in . For x and y in %, let T, . be the rank one operator defined
by T;,,(z) = (z, x)y. For a unit vector x in E%, if {A4,}32, is chosen as above
such that lim,_, » ||Axxo — y|| = O, then the sequence {A, Ty, x,}32, is contained
in ¥ and limp—, 0o AnTxy,xy = Ty,x,- Similarly, using adjoints, we obtain that T, .
is in ¥ and hence finally that 7y x = Ty, x,Tx, x is in 2. Thus E() is contained
in % and the proof is complete. [

One of the consequences of this result is that we are able to determine all
representations of the algebra LE(H).

5.40 Theorem. If ® is a *-homomorphism of LE(H) into L(K), then there
exists a unique direct sum decomposition X = Ho & ) ., ®Hq, such that
each ¥, reduces ®(RE(H)), the restriction ®(T)|Ho = O for T in LE(¥), and
there exists an isometric isomorphism U, from ¥ onto ¥, for « in A such that
&(T)| Ky = U,TU for T in RE(K).
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Proof If @ is not an isomorphism, then ker @ is a closed two-sided ideal in & (%)
and hence must contain & (), in which case ®(T) = 0 for T in XE(¥). Thus,
if we set Xy = X, the theorem is proved. Hence, we may assume that ¢ is an
isometic isomorphism.

Now let {e;};c; be an orthonormal basis for # and let P; be the projection
onto the subspace spanned by e¢;. Then E; = ®(P;) is a projection on X.
Choose a distinguished element 0 in / and define V; on ¥ for i in I such that
V,~(ZJ.E, Ajej) = Age;. It is obvious that V; is a partial isometry with V;V;* = P;
and V*V; = Py. Hence W; = ®(V}) is a partial isometry on X and W*W; = Ep
and W; W* = E;. Let {x§}oca be an orthonormal basis for the range of Ey and set
xi = W;x§. Itiseasy to see that each x* is in the range of E; and that {x*};c/ ¢ea is
an orthonormal subset of X. Let X, denote the closed subspace of X spanned by the
{x{'}ier- The {¥,}xeca are pairwise orthogonal and hence we can consider the closed
subspace ), ., ®H, of H,. Lastly, let ¥, denote the orthogonal complement of
this subspace. We want to show that the subspaces {¥}, }xc4u(0} have the properties
ascribed to them in the statement of the theorem.

Since V; V" is the rank one operator on J€ taking e; onto e;, it is clear that the
norm-closed *-algebra generated by the {V;}ic; is 2E (). Therefore, ®(LE(%))
is the norm-closed *-algebra generated by the {W; };c; and hence each X, reduces
d>(53,@(%)). If we define a mapping U, from ¥ to ¥, by Uye; = x{*, then U,
extends to an isometric isomorphism and ®(T)|¥, = U,TU}. Therefore, ® is
spatially implemented on each X, .

Lastly, since each ¥, reduces ®(RE(%)), it follows that X also is a reducing
subspace and since

(Z Ei) (T) (Z E,-) = ®(T) for T in RE(%C),
iel iel

while 7 — ), ; E; is the projection onto ¥, we see that &(T)|¥o = 0 for T in
E@). ™

Such a result has a partial extension to a broader class of C*-algebras.

5.41 Corollary. If  is a C*-algebra on % which contains € (¥) and @ is a
*-homomorphism of U into (%) such that ®|LE(HK) is not zero and @ (YA) is
irreducible, then there exists an isometric isomorphism U from € onto € such
that ®(A) = UAU* for Ain ¥.

Proof If d>(2@: (%)) is not irreducible, then by the preceding theorem there exists
aproper closed subspace ¥’ of ¥ such that the projection P onto ¥’ commutes with
the operators @ (K) for K in & (¥), and there exists an isometic isomorphism U
from ¥ onto K’ such that ®(K)|H' = UKU* for K in RE(J). (The alternative
leads to the conclusion that ®|RE(F) = 0.) Then for A in ¥ and K in LE(HK),
we have
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[PP(A) — P(A)P]P(K) = PP(A)DP(K) — P(A)DP(K)P
= PP(AK) — P(AK)P =0,

since AK isin & (). If { Ey }oea is anet of finite rank projections in % increasing
to the identity, then {®(E,)|H'}qca converges strongly to P, and thus we obtain
PO (A)P = ®(A)P for every A in . Since ® () is self-adjoint and is assumed
to be irreducible, this implies #' = . Lastly, for A in 2 and K in LE(¥), we
have

P(K)[DP(A) —UAU*]1 = ®(KA) — (UKU*UAU™
=UKAU*-UKAU* =0,
and again using a net of finite projections we obtain the fact that ®(A) = UAU*
for A in 9. L

These results enable us to determine the *-automorphisms of () and LE(¥).

5.42 Corollary. If ¥ is a Hilbert space, then ® is a *-automorphism of (%) if
and only if there exists a unitary operator U in (%) such that ®(A) = UAU*
for A in (%).

Proof Immediate from the previous corollary. u

Such an automorphism is said to be inner and hence all *-automorphisms of
(%) are inner. A similar but significantly different result holds for RE(¥0).

5.43 Corollary. If ¥ is a Hilbert space, then @ is a *-automorphism of E&(#)
if and only if there exists a unitary operator U in £(%) such that ®(K) = UKU*
for K inQE(%6).

Proof Again immediate. n

The difference in this case is that the unitary operator need not belong to
the algebra and hence the automorphism need not be inner. The algebra Q€ (%)
has the property, however, that in each *-isomorphic image of the algebra every
*-automorphism is spatially implemented by a unitary operator on the space.

We conclude with an observation concerning the Calkin algebra.

5.44 Theorem. If ® is a *-isomorphism of the Calkin algebra R(%€)/QE(¥)
into 2(X), then & (2(#)/LE (%)) is not a W*-algebra.

Proof If ®(2(%) /2E(9¢)) were a W*-algebra, then the group of unitary elements
would be connected by Proposition 5.29, thus contradicting Theorem 5.36. L
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Notes

The earliest results on compact operators are implicit in the studies of Volterra and
Fredholm on integral equations. The notion of compact operator is due to Hilbert, while it
was F. Riesz who adopted an abstract point of view and formulated the so called “Fredholm
alternative.” Further study into certain classes of singular integral operators led Noether to
introduce the notion of index and implicitly the class of Fredholm operators. The connection
between this class and the Calkin algebra was made by Atkinson [4]. Finally, Gohberg and
Krein [48] systematized and extended the theory of Fredholm operators to approximately
its present form. The connection between the components of the invertible elements in the
Calkin algebra and the index was first established by Cordes and Labrouse [23] and Coburn
and Lebow [22].

Further results including more detailed historical comments can be found in Riesz and
Sz.-Nagy [92], Maurin [79], Goldberg [51], and the expository article of Gohberg and Krein
[48]. The reader can also consult Lang [74] or Palais [85] for a modern treatment of a slightly
different flavor. Again the results on C*-algebras can be found in Dixmier [28]. The proof
of Theorem 5.38 is taken from Naimark [80], whereas the short and clever proof of Lemma
5.7 is due to Halmos [58].

Exercises

5.1 If % is a Hilbert space and T is in (%), then T is compact if and only if (T*T)'/? is
compact.

5.2 If T is a compact normal operator on #, then there exists a sequence of complex
numbers {1,}22, and asequence {E,}32, of pairwise orthogonal finite rank projections

n=1

such that lim,_, o, A, = 0 and

N
lim "T— 3 AnE,| =0.

N—-oo n=1

5.3 If ¥ is a Hilbert space, then L& () is strongly dense in L(%).

5.4 If ¥ is a Hilbert space of dimension greater than one, then the commutator ideal of

L) is {(¥).

5.5 If K, and K, are complex functions in L2([0, 1] x [0, 1]) and T; and 75 thé integral
operators on L2([0, 1]) with kernels K and K>, respectively, then show that 7;* and
T, T, are integral operators and determine their kernels.

5.6 Show that for every finite rank operator F on L2([0, 1]), there exists a kernel K in
L2([0, 11 x [0, 1]) such that F = Tk.

5.7 If T is an integral operator on L2([0, 1]) with kernel X in
L2([0, 1] % [0, 1])
and { f,}%2, is an orthonormal basis for L2 ([0, 1]), then the series
00
Y (T fos f)P
n=1
converges absolutely to fo1 fol |K (x, ¥)I* dx dy. (Hint: Consider the expansion of K

as an element of L2([0,1] x [0,1]) in terms of the orthonormal basis

{fa ) fn O o=t
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5.8 Show that not every compact operator on L2([0, 1]) is an integral operator with kernel
belonging to L2([0, 1] x [0, 1]).

5.9 (Weyl) If T is a normal operator on the Hilbert space # and K is a compact operator
on ¥, thenany X in o (T) but not in o (T + K) is an isolated eigenvalue for T of finite
multiplicity.

5.10 If T is a quasinilpotent operator on ¥ for which T + T* is in €(¥), then T is in
RE).

5.11 If T is an operator on ¥ for which the algebraic dimension of the linear space #/ran T
is finite, then T has closed range.*

5.12 If T is an operator on ¢, then the set of A for which 7 — A is not Fredholm is compact
and nonempty.

5.13 (Gohberg) If T is a Fredholm operator on the Hilbert space ¥, then there exists £ > 0
such that

o = dimker(T — 1)

is constant for 0 < |A| < ¢ and ¢ < dimker 7.* (Hint: For sufficiently small A,
(T — ))|& is right invertible, where &£ is the closure of the eigenvectors for nonzero
eigenvalues, and ker(T — 1) C &£.)

5.14 If T is an operator on 7€, then the function dim ker(T — 1) is locally constant on the
open set on which T — A is Fredholm except for isolated points at which it is larger.

5.15 If H is a self-adjoint operator on ¥ and K is a compact operator on ¥, then
o(H + K)\o (H) consists of isolated eigenvalues of finite multiplicity.

5.16 If ¥ is a Hilbert space,  is the natural map from R(%) to the Calkin algebra
(%)/2E(%), and T is an operator on ¥, then 7 (T) is self-adjoint if and only if
T = H +iK, where H is self-adjoint and K is compact. Further, 7 (7T') is unitary if
and only if T = V + K, where K is compact and either V or V* is an isometry for
which I — VV*or I — V*V is finite rank. What, if anything, can be said if 7 (T’) is
normal?**!

5.17 (Weyl-von Neumann). If H is a self-adjoint operator on the separable Hilbert space
#, then there exists a compact self-adjoint operator K on ¥ such that H + K has
an orthonormal basis consisting of eigenvectors.* (Hint: Show for every vector x in
¥ there exists a finite rank operator F of small norm such that H 4 F has a finite-
dimensional reducing subspace which almost contains x and proceed to exhaust the
space.)

IThis question was answered in a fundamental study of extensions of C*-algebras (cf. Problems
7.27-17.32). A model for an essentially normal operator T, or one for which 7(T’) is normal, is given
up to compact perturbation as a direct sum of Toeplitz-like operators each defined on a Hilbert space of
analytic functions relative to an inner product defined using area measure on a planar domain. This result
was obtained with L.G. Brown and PA. Fillmore [Unitary equivalence modulo the compact operators
and extensions of C*-algebras, Proc. Conf. on Operator Theory, Springer-Verlag Lecture Notes 345,
58-128 (1973)]. It is also established there that an essentially normal operator T can be expressed as
T = N + K for some normal operator N and compact operator K if and only if ind(T — 1) =0
for every A for which T — A is Fredholm.
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5.18 If U is a unitary operator on the separable Hilbert space ¥, then there exists a compact
operator K such that U + K is unitary and # has an orthonormal basis consisting of
eigenvectors for U + K.

5.19 If U, is the unilateral shift on /2(Z..), then for any unitary operator V on a separable
Hilbert space %, there exists a compact operator K on [2(Z,.) such that U, + K is
unitarily equivalent to U, @ V on [>(Z,) @ %.* (Hint: Consider the case of finite-
dimensional ¥ with the additional requirement that X have small norm and use the
preceding result to handle the general case.)

5.20 If V; and V;, are isometries on the separable Hilbert space € and at least one is not
unitary, then there exists a compact perturbation of V; which is unitarily equivalent
to V, if and only if dimker V{* = dimker V.

Definition If % is a C*-algebra, then a state ¢ on 2 is a complex linear functional which
satisfies 9(A*A) > O for A in A and (1) = 1.

5.21 If ¢ is a state on the C*-algebra U, then (A, B) = ¢(B*A) has the properties of an
inner product except (A, A) = 0 need not imply A = 0. Moreover, ¢ is continuous
and has norm 1. (Hint: Use a generalization of the Cauchy-Schwarz inequality.)

5.22 If ¢ is a state on the C*-algebra U, then ¥ = {A € A : p(A*A) = 0} is a closed left
ideal in 2. Further, ¢ induces an inner product on the quotient space 2/, such that
m(B)(A+ N) = BA + N defines a bounded operator for B in U. If we let 7,(B)
denote the extension of this operator to the completion ¥, of A/N, then 7, defines
a *-homomorphism from U into L(¥,,).

5.23 If 2 is a C*-algebra contained in 2(¥) having the unit vector f as a cyclic vector,
then ¢(A) = (Af, f) is astate on 2. Moreover, if 7,, is the representation of ¥ given
by ¢ on ¥, then there exists an isometric isomorphism ¥ from ¥, onto X such that

A =yYm,(A)Y*.

5.24 (Krein ) If & is a self-adjoint subspace of the C*-algebra U containing the identity
and ¢y is a positive linear functional on &£ (that is, go(A) > 0 for A > 0), satisfying
@o(I) = 1, then there exists a state ¢ on Y extending ¢o. (Hint: Use the Hahn-Banach
theorem to extend ¢y to ¢ and prove that ¢ is positive.)

5.25 If A is a C*-algebra and A is in U, then there exists a state ¢ on U such that
@(A*A) = || A|)%. (Hint: Consider first the abelian subalgebra generated by A*A.)

5.26 If % isa C*-algebra, then there exist a Hilbert space # and a *-isometric isomorphism
7 from U into (). Moreover, if U is separable in the norm topology, then %
can be chosen to be separable. (Hint: Find a representation 4 of 2 for which
llma(A)]| = || Al for each A in U and consider the direct sum.)

5.27 The collection of states on a C*-algebra U is a weak *-compact convex subset of the
dual of 2. Moreover, a state ¢ is an extreme point of the set of all states if and only
if 1, () is an irreducible subset of R(¥,,). Such states are called pure states.

5.28 If % is a Banach algebra with an involution, no identity, but satisfying | T*T || = ||T I?
for T in ¥, then Y C can be given anorm which is unique making it into a C*-algebra.
(Hint: Consider the operator norm of % @ C acting on %.)
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5.29 Show that there are no proper closed two-sided ideals in € (#) & C except for
RE(¥) @ 0. (Hint: Assume I were such an ideal and show that a representation of
RE (%) @ C/S} given by Exercise 5.26 contradicts Theorem 5.40.)



Chapter 6

The Hardy Spaces

6.1 In this chapter we study various properties of the spaces H!, H?, and H® in
preparation for our study of Toeplitz operators in the following chapter. Due to
the availability of several excellent accounts of this subject (see Notes), we do not
attempt a comprehensive treatment and proceed in the main using the techniques
which we have already introduced.

We begin by recalling some pertinent definitions from earlier chapters. For n
in Z let x, be the function on T defined by x,(¢'®) = ¢/*®. For p = 1, 2, 00, we
define the Hardy space:

2
HP = {f € LP(T): f F(E@)xn(e®yd6 =0 for n > o}.
0

It is easy to see that each H? is a closed subspace of the corresponding LP(T),
and hence is a Banach space. Moreover, since {x,}.cz is an orthonormal basis
for L2(T), it follows that H? is the closure in the L?-norm of the analytic
trigonometric polynomials &... The closure of ?, in C(T) is the disk algebra
A with maximal ideal space equal to the closed unit disk D. Lastly, recall the
representation of L*(T) into 2(L%(T)) given by the mapping ¢ — M,, where
M,, is the multiplication operator defined by M, f = ¢f for f in L*(T).

We begin with the following result which we use to show that H* is an algebra.

6.2 Proposition. If ¢ is in L*=(T), then H? is an invariant subspace for M, if
and only if ¢ is in H*.

Proof If M,H? is contained in H?, then ¢ - | is in H2, since 1 is in H?, and hence
@ is in H*®. Conversely, if ¢ is in H*, then %P, is contained in H?, since for
p= Zﬁ—_o ajx;j in P, we have

133
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2r

N 2
(¢P)xn 6 = Za,-f ¢Xjsnd8 =0  for n>0.
j=0 70

Lastly, since H? is the closure of %, we have @ H? contained in H? which
completes the proof. n

6.3 Corollary. The space H® is an algebra.

Proof 1f ¢ and y are in H™, then M,, H?> = M,(MyH* C M,H? C H? by
the proposition, which then implies that ¢ is in H*°. Thus H* is an algebra. ®

The following result is essentially the uniqueness of the Fourier-Stieltjes trans-
form for measures on T.

6.4 Theorem. If u is in the space M (T) of complex regular Borel measures on
Tand f; xaduw =0 forninZ, then u = 0.

Proof Since the linear span of the functions {x,}cz is uniformly dense in C(T)
and M (T) is the dual of C(T), the measure u represents the zero functional and
hence must be the zero measure. u

6.5 Corollary. If f is a function in L!(T) such that
2r
fE@)xa(€®)d6 =0  for ninZ,
0
then f =0 a.e.

Proof If we define the measure  on T such that u(E) = [ f(e'®) d6, then our
hypotheses become fT xndu = 0 for n in Z, and hence 1 = 0 by the preceding
result. Therefore, f = 0 a.e. ]

6.6 Corollary. If f is a real-valued function in H', then f = « a.e. for some «
in R.

Proof If we seta = (1/27r)f02” f(e'%) d6, then « is real and
2
/ (f—a)xndbd =0 for n>0.
0

Since f — « is real valued, taking the complex conjugate of the preceding equation
yields
2r 27

(f —a)x,do = (f —a)x-ndb8 =0 for n>0.
0 0

Combining this with the previous identity yields
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2
f (f—a)xndd =0  for alln,
)

and hence f =« a.e. n

6.7 Corollary. If both f and f are in H!, then f = « a.e. for some « in C.

Proof Apply the previous corollary to the real-valued functions %( f+ f)and
1(f — f)/i which are in H' by hypothesis. ! [

We now consider the characterization of the invariant subspaces of certain
unitary operators. It was the results of Beurling on a special case of this problem
which led to much of the modern work on function algebras and, in particular, to
the recent interest in the Hardy spaces.

6.8 Theorem. If u is a positive regular Borel measure on T, then a closed
subspace M of L?(y) satisfies x;M = M if and only if there exists a Borel subset
E of T such that

M=Ly) ={f € L*(n): f(¢") =0fore" ¢ E}.

Proof If M = LZE(M), then clearly ;M = M. Conversely, if ;M = M, then
it follows that M = x_; x;M = x—;M and hence M is a reducing subspace for
the operator M,, on Lz(u.). Therefore, if F denotes the projection onto /M, then
F commutes with M,, by Proposition 4.42 and hence with M,, for ¢ in C(T).
Combining Corollary 4.53 with Propositions 4.22 and 4.51 allows us to conclude
that F is of the form M,, for some ¢ in L*° (1), and hence the result follows. =

The role of H? in the general theory is established in the following description
of the simply invariant subspaces for M,, .

6.9 Theorem. If u is a positive regular Borel measure on T, then a nontrivial
closed subspace M of L?(u) satisfies x; M C M and N,50x.M = {0} if and only
if there exists a Borel function ¢ such that |p|?> du = d6/2n and M = g H?.

Proof If ¢ is a Borel function satisfying |¢|*> du = d6/2m, then the function
Vf = of is u-measurable for f in H? and

1 2
Iwf2 = /T lof1? du = > /0 IfI> d6 = I fI3.

Thus the image M of H? under the isometry W is a closed subspace of L?(u) and
is invariant for M,,, since x1 (W f) = W(x1 f). Lastly, we have

DOXn-M'= v [ n XnHz] = {0}

>0
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and hence M is a simply invariant subspace for M, .

Conversely, suppose [ is a nontrivial closed invariant subspace for M,, which
satisfies Nps0x,M = {0}. Then £ = M © x; M is nontrivial and x,& = x,M O
Xn+1M, since multiplication by x; is anisometry on L?(u). Therefore, the subspace
Y o Dxn<L is contained in M and an easy argument reveals MO (X _re, ®xn L)
to be Np»0 xn M and hence {0}.

If ¢ is a unit vector in &£, then ¢ is orthogonal to x,.M and hence to x,¢ forn > 0,
and thus we have

0= (¢, xnp) = /; l@I? X—n die for n>0.

Combining Theorem 6.4 and Corollary 6.6, we see that |p|> du = d6/2n. Now
suppose & has dimension greater than one and ¢’ is a unit vector in &£ orthogonal
to . In this case, we have

0= (Xn@s Xm¥') = thpE’xn-m du  for n,m=>0,

and thus f3 xx dv = 0 for k in Z, where dv = @@ du. Therefore, p@’ = Op a.e.
Combining this with the fact that |¢|?> du = |<p’|2 du leads to a contradiction, and
hence & is one dimensional. Thus we obtain that %, is dense in M and hence
M = @ H?, which completes the proof. =

The case of the preceding theorem considered by Beurling will be given after
the following definition.

6.10 Definition. A function ¢ in H* is an inner function if |¢| = 1 a.e.

6.11 Corollary. (Beurling) IfT,, =M, |H 2, then anontrivial closed subspace
M of H? is invariant for 7}, if and only if ML = ¢ H? for some inner function ¢.

Proof If ¢ is an inner function, then ¢% is contained in H®, since the latter is
an algebra, and is therefore contained in H 2 Since ¢oH 2 is the closure of oP ., we
see that 9 H? is a closed invariant subspace for Ty, .

Conversely, if Al is a nontrivial closed invariant subspace for T}, then M satisfies
the hypotheses of the preceding theorem for du = d0/2n, and hence there exists
a measurable function ¢ such that Ml = ¢ H? and

lpl? d6/2m =d6/27.

Therefore, |p|> = 1 a.e., and since 1 is in H? we see that ¢ = ¢ - 1 is in H?; thus
@ is an inner function. ]

A general invariant subspace for M,, on L?(1) need not be of the form covered
by either of the preceding two theorems. The following result enables us to reduce
the general case to these, however.
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6.12 Theorem. If u is a positive regular Borel measure on T, then a closed
invariant subspace M for M, has aunique direct sum decomposition M = M, DM,
such that each of M; and M, is invariant for M,,, x;M; = M,, and Ny x. M2 =
{0}.

Proof If we set M; = N,>0x,M, then M, is a closed invariant subspace for M,,
satisfying x;M; = M,. To prove the latter statement observe that a function f is
in M, if and only if it can be written in the form x,g for some g in M for each
n > 0. Now if we set M, = M © M,, then a function f in M is in M, if and only
if (f, g) = Ofor all g in M. Since 0 = (f, g) = (x1.f, x18) and x,M; = M, it
follows that x; f is in M, and hence M, is invariant for M,,. If f isin Np>0xa M2,
then it is in M; and hence f = 0. Thus the proof is complete. u

Although we could combine the three preceding theorems to obtain a complete
description of the invariant subspaces for M,,, the statement would be very
unwieldy and hence we omit it.

The preceding theorems correspond to the multiplicity one case of certain
structure theorems for isometries (see [66], [58]).

To illustrate the power of the preceding results we obtain as corollaries the
following theorems which will be important in what follows.

6.13 Theorem. (F. and M. Riesz) If f is a nonzero function in HZ, then the set
{¢'* € T : f(e'*) = 0} has measure zero.

Proof Set E = {¢ € T: f(e*) = 0} and define
M= {g e H?:g(") =0fore”* € E).

It is clear that M is a closed invariant subspace for T, which is nontrivial since
f is in it. Hence, by Beurling’s theorem there exists an inner function ¢ such that
M = @H?. Since 1 is in H?, it follows that ¢ is in M and hence that E is contained
in {e”* € T : ¢(e'*) = 0}. Since || = 1 a.c., the result follows. ]

6.14 Theorem. (F. and M. Riesz) If v is a regular Borel measure on T such that
fT Xxndv = 0 for n > 0, then v is absolutely continuous and there exists f in H!
such that dv = f d6.

Proof If u denotes the total variation of v, then there exists a Borel function y
such that dv = ¥ du and || = 1 a.e. with respect to . If M denotes the closed
subspace of L?(u) spanned by {x, : n > 0}, then

(xn,W)=fxn¢du=/xn dv=0,
T T

and hence ¥ is orthogonal to M in L2().

Suppose M = M; @ M; is the decomposition given by Theorem 6.12. If E is the
Borel subset of T given by Theorem 6.8 such that M, = L% (w), then we have
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w(E) = fT WP Igdp = (¥, Y1) =0,

since ¥ 1g is in M,, and V¥ is orthogonal to M. Therefore, M, = {0} and hence
there exists a y-measurable function ¢ such that Ml = ph? and |p|? du = d6/2n
by Theorem 6.9. Since ¥, is in M, it follows that there exists g in H? such that
X1 = ¢g a.e. with respect to u, and since ¢ # Op a.e., we have that y is mutually
absolutely continuous with Lebesgue measure. If f is a function in L!(T) such
that dv = f d6, then the hypotheses imply that f is in H', and hence the proof is
complete. .

Actually, the statements of the preceding two theorems can be combined
into one: an analytic measure is mutually absolutely continuous with respect to
Lebesgue measure.

6.15 We now turn to the investigation of the maximal ideal space M, of the
commutative Banach algebra H*. We begin by imbedding the open unit disk D
in M. For z in D define the bounded linear functional @, on H! such that

1 2 i0
‘Pz(f)='—f —f—(ldB for finH'.
2 Jo 1 —ze

Since the function 1/(1 — ze~*®) is in L>®(T) and H! is contained in L'(T), it
follows that ¢, is a bounded linear functional on H'. Moreover, since
1/(1 — ze™®) = Y22 e™"z" and the latter series converges absolutely, we

see that
oo . 1 2 _
‘Pz(f)=gz (5;./0. kado).

Thus, if p is an analytic trigonometric polynomial, then ¢,(p) = p(z) and hence
@, is a multiplicative linear functional on % ;.. To show that ¢, is multiplicative on
H® we proceed as follows.

6.16 Lemma. If f and g are in H? and z is in D, then fg is in H' and
0.(f8) = :(f)e:(8)-

Proof Let{p,}32, and {g,}32 , be sequences of analytic trigonometric polynomials
such that

2
I

lim || f — pall* = lim ||g — gull, =0.
n—>oQ n—oo

Since the product of two L2-functions is in L', we have

| fg — Prgnlly < 1 fg — Paglly + | Png — Pranll;
<If = pall2 ligllz + llpnll; lig — gnll2,

and hence lim,_, || fg§ — Pnqrll; = O. Therefore, since each p,q, is in H I we
have fg in H!. Moreover, since ¢, is continuous, we have
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¢2(fg) = im @;(pngn) = lim ¢:(ps) Um ¢;(qn) = ¢:(f)¢:(8)-

With these preliminary considerations taken care of, we can now imbed D in
M.

6.17 Theorem. For z in D the restriction of ¢, to H*® is a multiplicative
linear functional on H*. Moreover, the mapping F from D into M, defined
by F(z) = ¢, is a homeomorphism.

Proof That ¢, restricted to H* is a multiplicative linear functional follows from
the preceding lemma.

Since for a fixed f in H', the function ¢, (f) is analytic in z, it follows that F is
continuous. Moreover, since ¢,(x;) = z, it follows that F is one-to-one. Lastly, if
{¢2. Jaca is a net in M, converging to ¢,, then

lim z, = lim ¢, (x1) = ¢:(x1) =z,
a€A acA
and hence F is a homeomorphism. u

From now on we shall simply identify D as a subset of M. Further, we shall
denote the Gelfand transform of a function f in H* by f . Note that f D is
analytic. Moreover, for f in H ! we shall let f denote the function defined on D
by f(z) = @,(f). This dual use of the "-notation should cause no confusion.

The maximal ideal space M, is quite large and is extremely complex. The
deepest result concerning M, is the corona theorem of Carleson, stating that D is
dense in M. Although the proof of this result has been somewhat clarified (see
[15], [39]) it is still quite difficult and we do not consider it in this book.!

Due to the complexity of M, it is not feasible to determine the spectrum of
a function f in H® using f , but it follows from the corona theorem that the
spectrum of f is equal to the closure of f(D). Fortunately, a direct proof of this
result is not difficult.

6.18 Theorem. If ¢ is a function in H*, then ¢ is invertible in H* if and only
if |D is bounded away from zero.

Proof If ¢ is invertible in H®, then ¢ is nonvanishing on the compact space M,
and hence Iqﬁ(z)l > & > 0 for z in D. Conversely, if I:ﬁ(z)] >¢g>0forzinD
and we set ¥ (z) = 1/¢(z), then ¥ is analytic and bounded by 1/¢ on D. Thus
has a Taylor series expansion ¥(z) = Y e, anz", which converges in D. Since
for0 <r < 1, we have

1A much simpler proof has been given by T. Wolff and further simplified by Gamelin (in J. Garnett,
Bounded Analytic Functions, Academic Press, New York, 1981).
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Zm Pron = —f [y (re)|* dr <5

n=0

it follows that Zn—O lax|? < 1/€2. Therefore, there exists a function f in H? such
that f =Y oo GnXn-

If = Y 02 o bnXn is the orthonormal expansion of ¢ as an element of H 2, then
$(2) = Y_peybuz" for z in D. Since ¢(z)¥(z) = 1, it follows that (3 ;2 baz")
(302 anz”) = 1 for z in D. Therefore, Y ooy (X p_o bxan—i)2" = 1 for z in D,
and hence the uniqueness of power series implies that

Zb"""“" = {o :ﬁ: :o

Since
N M
lim @ =Y baxa) = lim |f = amxm| =0,
N—>oo 0 M—oo =0 )
we have that
N N
i for = (Sboe) (Somre) | =0
o n=0 =0 1
which implies that
2N
Jim lof =D+ Y7 caxa| =0 for c= ) arbnr
n=N+1 1 k=n—N
Therefore,

I 1 ifk=0,

Zfo o xe d = {o ifk #0,
and hence ¢f = 1 by Corollary 6.6. It remains only to show that f is in L>(T)
and this follows from the fact that the functions { f;},¢(,1) are uniformly bounded

by 1/, where f;(e'") = f(re'), and the fact that lim,_,, || f — f,|l, = 0. Thus f
is an inverse for ¢ which lies in H®. n

The preceding proof was complicated by the fact that we have not investigated
the precise relation between the function f on D and the function f on T. It can
be shown that for f in H! we have lim,_,; f(re’’) = f(e'*) for almost all ¢ in
T. We do not prove this but leave it as an exercise (see Exercise 6.23).

Observe that we proved in the last paragraph of the preceding proof that if f is
in H? and £ is bounded on D, then f is in H*.
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We give another characterization of invertibility for functions in H* which
will be used in the following chapter, but first we need a definition.

6.19 Definition. A function f in H? is an outer function if clos [f®,] = H2.
An alternate definition is that outer functions are those functions in H? which
are cyclic vectors for the operator T,, which is multiplication by x; on H 2,

6.20 Proposition. A function ¢ in H® is invertible in H* if and only if ¢ is
invertible in L* and is an outer function.

Proof 1f 1/¢ is in H*, then obviously ¢ is invertible in L*°. Moreover, since
1
clos[gP,] = pH? D ¢ (—HZ) = H?,
¢

it follows that ¢ is an outer function. Conversely, if 1/¢ is in L*°(T), and ¢ is an
outer function, then o H 2 = clos[pP,]1=H 2, Therefore, there exists a function
¥ in H? such that 9y = 1, and hence 1/¢ = ¥ is in H2. Thus, 1/¢ is in H* and
the proof is complete. [

Note, in particular, that by combining the last two results we see that an outer
function can not vanish on D. The property of being an outer function, however,
is more subtle than this.

The following result shows one of the fundamental uses of inner and outer
functions.

6.21 Proposition. If f is a nonzero function in H?2, then there exist inner and
outer functions ¢ and g such that f = ¢pg. Moreover, f is in H* if and only if g
isin H®.

Proof 1If we set M = clos[ fP. ], then M is a nontrivial closed invariant subspace
for T,, and hence, by Beurling’s Theorem (Corollary 6.11), is of the form ¢ H?
for some inner function ¢. Since f is in M, there must exist g in H? such that
f = g. If we set N = clos[g?P.], then again there exists an inner function
¥ such that N = ¢ H?. Then the inclusion f®P, = ¢g®, C oy H? implies
9H? = clos[f®,] C @y H?, and hence there must exist # in H2 such that
@ = @¥h. Since ¢ and y are inner functions, it follows that ¥ = & and therefore
¥ is constant by Corollary 6.7. Hence, clos[gP ] = H? and g is an outer function.
Lastly, since | f| = |g|, we see that fis in H* if and only if g is. L

We next show as a corollary to the following proposition that the modulus of
an outer function determines it up to a constant.

6.22 Proposition. If g and 4 are functions in H? such that g is outer, then || < |g|
if and only if there exists a function k in H? such that A = gk and |k| < 1.
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Proof If h = gk and |k| < 1, then clearly |k| < |g|. Conversely, if g is an
outer function, then there exists a sequence of analytic trigonometric polynomials
{pa);2, such thatlim,_, o |1 — pngll, = 0.If |k < |g|, then we have

2 1 m 2 2 1 = 2 2
|Ihpn~hpmllz=§/0 [Pn — Pm|” |R] dGEZ{/; |pn — pml” 18" d6

= llgpn — gpmli3,

and hence {p,h};2 is a Cauchy sequence. Thus the sequence {p,h}32 | converges

to a function k in H?, and
ligk — hll; < lim |igli; Ik — pahll, + lim ligpn, — LI, IRl = O.
n—>oo n—00
Therefore, gk = h and the proof is complete. n

6.23 Corollary. If g, and g, are outer functions in H? such that |g;| = |g5|, then
g1 = Ag; for some complex number of modulus one.

Proof By the preceding result there exist functions # and k in H? such that ||,
k| <1, gy = hgy, and g, = kg,. This implies g = khg;, and by Theorem 6.13
we have that kh = 1. Thus h = k, and hence both / and % are in H2. Therefore,
h is constant by Corollary 6.7 and the result follows. [}

The question of which nonnegative functions in L? can be the modulus of a
function in H? is interesting from several points of view. Although an elegant
necessary and sufficient condition can be given, we obtain only those results that
we need. Our first result shows the equivalence of this question to another.

6.24 Theorem. If f is a function in L2(T), then there exists an outer function
g such that | f| = |g] a.e. if and only if clos[ f%..] is a simply invariant subspace
for M,,.

Proof If | f| = |g| for some outer function g, then f = ¢g for some unimodular
function ¢ in L*®(T). Then

clos[fP,] = clospg®.] = ¢ clos[gP,] = pH?,

and hence clos[ f%. ] is simply invariant.

Conversely, if clos[ f%..] is simply invariant for M, , then there exists a unimod-
ular function ¢ in L*°(T) by Theorem 6.9 such that clos[ fP,] = ¢H?. Since f
is in clos[ f®., ], there must exist a function g in H? such that f = ¢g. The proof
is concluded either by applying Proposition 6.21 to g or by showing that this g is
outer. ]

6.25 Corollary. If f is a function in L2(T) such that | f| > & > 0, then there
exists an outer function g such that |g| = | f|.
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Proof If we set M = clos[ fP, ], then M,, M is the closure of
{(fp:pePy, p0)=0}.

If we compute the distance from f to such an fp, we find that
2

2 1 [ 2 2 € 2 2 2
- S 1—p? do > — 1— pl* do > &2,
If — frlz 271'./0 [fI*11 = pl* d A 1 - p| >¢

and hence f is not in M, M. Therefore, M is simply invariant and hence the outer
function exists by the preceding theorem. u

We can also use the theorem to establish the following relation between
functions in H? and H'.

6.26 Corollary. If f is a function in H', then there exists g in H? such that
gl = | £l ae.

Proof If f = 0, then take g = 0. If f is a nonzero function in H!, then there
exists 4 in L2 such that |h|* = | f. It is sufficient in view of the theorem to show
that clos[#%P.] is a simply invariant subspace for M,,. Suppose it is not. Then
X—n~h is in clos[hP ] for N > 0, and hence there exists a sequence of analytic
trigonometric polynomials {p,}°2, such that

n=1

lim [|pah — x_whl? = 0.
n—o0
Since
1 2
- = puhlf = o / W x—an — 20 puxn + W p?| db
0
1 2
= -2—71-— A

= |P*x-n — K2@pn — P2xw)], »

|W2x—n — K*(2pn — P2xn)| d6

we see that h2x_y is in the closure, clos;[A2%P, ], of 2P, in L!(T). Since there
exists a unimodular function ¢ such that f = @h?, we see that the function
X-nf = @(x-nh?) is in pclos; [A?P,] = clos,[fP,] € H! for N > 0. This
implies f = 0, which is a contradiction. Thus clos[~%, ] is simply invariant and
the proof is complete. |

6.27 Corollary. If f is a function in H'!, then there exist functions g; and g; in
H? such that |g,| = |g2| = (If)"/? and f = g1g.

Proof 1f g is an outer function such that |g| = (| f|)"/2, then there exists a sequence
of analytic trigonometric polynomials {p,}32, such that

lim |lgp, — 11> =0.
n—oco
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Thus we have

I P2 = £PEN, < 1f(Pn = Pm)Pally + I F(Pn — Pm)Pmlly
< l1gpally 18(Pn — Pm)lz + 112Pm 12 18(Pn — Pm)ll2

and hence the sequence {fp? o 1 is Cauchy in the LY(T) norm and therefore
converges to some function ¢ in H'. Extracting a subsequence, if necessary, such
that lim,,_, oo (fP2) (") = @(e*) a.e. and lim,_, oo (gp,)(e™*) = 1 a.e., we see that
pg? = f.Since |g?| = | f| ae., we see that |p| = 1 a.e., and thus the functions
g1 = pgand g = g are in H” and satisfy f = g1g; and |g1| = |g2| = (I f"/>. ™

6.28 Corollary. The closure of @, in L1(T) is H'.

Proof If f is in H', then f = g;g, with g, and g, in H? If {p,}°, and
{gn}32, are sequences of analytic trigonometric polynomials chosen such that

limpo0 1181 — prll; = limps0 [182 — gnll; = O, then {pnga};2, is a sequence of
analytic trigonometric polynomials such that lim,_, || f — pngrll; = 0. u

With this corollary we can determine the dual of the Banach space H'. Before
stating this result we recall that H; denotes the closed subspace

1 2
[feHP:Z/ fd9=0} of H»  for p=1,2,00.
0

6.29 Theorem. There is a natural isometric isomorphism between (H!)* and
L*°(T)/Hg°.

Proof Since H! is contained in L>(T), we obtain a contractive mapping ¥ from
L°°(T) into (H)* such that

2r
[\D(w)l(f)=%f of do for @inL®(T) and fin H'.
0

Moreover, from the Hahn-Banach theorem and the characterization of L!(T)*,
it follows that given ® in (H!)* there exists a funetion ¢ in L%°(T) such that
lelle = Pl and W(p) = &. Thus the mapping ¥ is onto and induces an
isometric isomorphism of L>°(T)/ker¥ onto (H')*.

We must determine the kernel of W. If ¢ is a function in ker W, then

2

— ©xnd0 = [Y(@))(xx) =0  for n>0,
2w 0

since each x, is in H! and hence ¢ is in H§°. Conversely, if ¢ lies in Hg°, then
[¥()1(p) = O for each p in P, and hence ¢ is in ker ¥ by the prceeding
corollary. n

Although L'(T) can be shown not to be a dual space, the subspace H' is.
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6.30 Theorem. There is a natural isometric isomorphism between (C(T)/A)*
and H/.

Proof If ¢ is a function in HOl , then the linear functional defined
1 2
<I>(f)=—/ fodb for finC(T)
2 0

is bounded and vanishes on A. Therefore, the mapping

1 2
@o(f+ M) =0 =5 [ sods

T Jo

is well defined on C(T)/ A and hence defines an element of (C(T)/A)*. Moreover,
the mapping V(p) = @y is clearly a contractive homomorphism of Hol into
(C(M)/A).

On the other hand, if &, is a bounded linear functional on C(T)/A, then the

composition ®y o, where 7 is the natural homomorphism of C(T) onto C(T)/A,
defines an element v of C(T)* = M(T) such that

<1>0(f+A)=<1>(f)=fodv for finC(T)

and ||v]| = ||®o]|. Since this implies, in particular, that _/'T gdv=0forginA,
it follows from the F. and M. Riesz theorem that there exists a function ¢ in Hj
such that

1 2r
Do(f +A) = E./‘o fedé for finC(T) and lloll, = |lvll = |Poll .

Therefore, the mapping W is an isometric isomorphism of HO1 onto (C(T)/A)*.m

6.31 Observe that the natural mapping i of C(T)/A into its second dual
L*®(T)/H® (see Exercise 1.15) is i(f + A) = f + H. Since the natural map
is an isometry, it follows that i[C(T)/A] is a closed subspace of L*°(T)/H®™.
Hence, the inverse image of this latter subspace under the natural homomorphism
of L°°(T) onto L*(T)/H® is closed, and therefore the linear span H* + C(T)
is a closed subspace of L*(T). This proof that H* + C(T) is closed is due to
Sarason [97].

The subspace H*> + C(T) is actually an algebra and is just one of a large family
of closed algebras which lie between H*® and L°°(T). Much of the remainder
of this chapter will be concerned with their study. We begin with the following
approximation theorem.

6.32 Theorem. The collection 2 of functions in L*(T) of the form ¥ @ for ¢
in H* and ¢ an inner function forms a dense subalgebra of L>(T).
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Proof That Q is an algebra follows from the identities

2 (¥29,) = (Y1¥2) (P192)

and

Y19, + 20, = (Y1902 + ¥201) (@192).

Since 2 is a linear space and the simple step functions are dense in L, to conclude
that Q is dense in L (T) it suffices to show every characteristic function is in
closeo[2]. Thus let E be a measurable subset of T and let f be a function in H?
such that
1 et
£ ()] = { 2 fe ek
2 ife' ¢ E.

The existence of such a function follows from Corollary 6.25. Moreover, since f
is bounded, it is in H*° and consequently sois 1+ f" forn > 0.If 1 + f" = ¢,g,
is a factorization given by Proposition 6.21, where ¢, is an inner and g, is
an outer function, then |g,| = |1+ f*| > % and hence 1/g, is in H*® by
Proposition 6.20. Therefore, the function 1/(1 + f*) = (1/g,)®, is in 2, and
since limys00 |1 — 1/(1 + ")l = 0, we see that I is in close[2]. Thus, 2
is dense in L*°(T) by our previous remarks. =

We next prove a certain uniqueness result.

6.33 Theorem. (Gleason-Whitney) If ® is a multiplicative linear functional on
H® and L; and L, are positive linear functionals on L*°(T) such that L;|H® =
L2|H°° = (D, then Ll = Lz.

Proof If u is a real-valued function in L*°(T), then there exists an invertible
function ¢ in H*® by Proposition 6.20 and Corollary 6.25 such that |p| = e*.
Since L; and L, are positive, we have

|@(@)| = IL1()] < Li(lg]) = Li(e*)

(D@ st ) s

Multiplying, we obtain
1 u —-u
1 =|d(p)| |P " < Li(e*)La(e™)

and

and hence the function W(¢) = L;(e')Ly(e™"*) defined for all real ¢ has an
absolute minimum at ¢+ = 0. Since WV is a differentiable function of ¢ by the
linearity and continuity of L; and L,, we obtain
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W'(t) = Li(ue™)La(e™) — Li(e™)La(ue™).

Substituting ¢ = 0 yields 0 = ¥/(0) = L;(u)L,(1) — L;(1)L,(u), and hence
L, (u) = Ly(u) which completes the proof. [ |

6.34 Theorem. If % is a closed algebra satisfying H® C U c L*°(T), then the
maximal ideal space My of ¥ is naturally homeomorphic to a subset of M oo.

Proof If ® is amultiplicative linear functional on %, then ®] H* is a multiplicative
linear functional on H* and hence we have a continuous natural map n from My
into M. Moreover, let &’ denote any Hahn-Banach extension of ® to L>®(T).
Since L*°(T) is isometrically isomorphic to C(M.~) by Theorem 2.64, ®' is
integration with respect to a Borel measure v on My~ by the Riesz-Markov
representation theorem (see Section 1.38). Since v(Myx) = ®'(1) = 1 =
|] P’ " = |v| (ML), the functional &’ is positive and hence uniquely determined
by ®| H by the previous result. Therefore, the mapping 7 is one-to-one and hence
a homeomorphism. n

Observe that the maximal ideal space for % contains the maximal ideal space for
L°°(T) and, in fact, as we indicate in the problems, the latter is the Silov boundary
of 2.

We now introduce some concrete examples of algebras lying between H* and
Leo(D).

6.35 Definition. If 3, is a semigroup of inner functions containing the constant
function 1, then the collection {¢@ : ¥ € H*®, ¢ € 3} is a subalgebra of L>(T)
and the closure is denoted Us.

The argument that Uy is an algebra is the same as was given in the proof of
Theorem 6.32.

We next observe that H*° 4 C(T) is one of these algebras.

6.36 Proposition. If 2 (x) denotes the semigroup of inner functions {x, : n > 0},
then As(,y = H* + C(T).

Proof Since the linear span H*® + C(T) is closed by Section 6.31, we have
H® + C(T) = closeo[H™® + P]. Lastly, since

H®+®P ={yX,: ¥ € H®, n >0},
the result follows. ]
The maximal ideal space of U5 can be identified as a closed subset of M, by

Theorem 6.34. The following more abstract result will enable us to identify the
subset.
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6.37 Proposition. Let X be a compact Hausdorff space, 2 be a function algebra
contained in C(X) with maximal ideal space M, and 3 be a semigroup of
unimodular functions in 9. If Ay is the algebra

clos{yg: ¢ € U, ¢ € 3}
and Ms is the maximal ideal space of Us, then Ms can be identified with
{meM:|p(m)| =1forpe3},

where ¢ denotes the Gelfand transform.

Proof If W is amultiplicative linear functional on s, then W | is a multiplicative
linear functional on %, and hence n(¥) = W|¥ defines a continuous mapping
from Ms into M. If ¥, and W, are elements of M5 such that n(¥,) = n(¥;), then
W, |A = W,|A. Further, for ¢ in 3, we have

1
V(@) =¥, (5) =V ()" = Y(p) ™ = V()

and thus W, = W,. Therefore, 7 is a homeomorphism of M5 into M. Moreover,
since [W(¢)| < ll¢ll =1 and

— = |U(p ol =1,
@)l W@l < ol

we have |W(¢)| = 1 for ¥ in Ms and ¢ in J; therefore, the range of 7 is contained
in

{meM:|p(m)|=1forpe3}

and only the reverse inclusion remains.
Let m be a point in M such that |¢(m)| = 1 for every ¢ in 2. If we define W

on {Yg : ¥ € A, p € 3} such that ¥ (Yp) = ¥ (m)@(m), then W can easily be
shown to be multiplicative, and the inequality

WD)l = |Fem| [pem] = [Fom)| < vl = Iyl

shows that W can be extended to a multiplicative linear functional on Us. Since
n(¥) = m, the proof is complete. [ ]

6.38 Corollary. If 3 is a semigroup of inner functions, then the maximal ideal
space Ms of Ay can be identified with

{meMy: ]q?)(m)] = 1for ¢ € 3}.

Proof Since L*(T) = C(X) for some compact Hausdorff space X, the result
follows. ]
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Using the Gleason-Whitney theorem we can determine the Gelfand transform
in the following sense.

6.39 Theorem. There is a homeomorphism 7 from M into the unit ball of the
dual of L*°(T) such that y (m) = n(m)(¥) for ¥ in any algebra 9 lying between
H® and L*°(T) and m in My.

Proof For m in M, let n(m) denote the unique positive extension of m to L>(T)
by Theorem 6.33. Since a multiplicative linear functional on 2 extends to a positive
extension of m on L>°(T), we have Jf(m) = n(m)(¥) for ¥ in A. The only thing
to prove is that n is a homeomorphism. Recall that the unit ball of L>(T)* is
w*-compact. Thus if {my},ca is a net in My, which converges to m, then any
subnet of {n(my)}.c4 has a convergent subnet whose limit is a positive extension
of m and hence equal to n(m). Therefore, n is continuous and hence an into
homeomorphism. [ |

We now adopt the notation ¢(m) = n(m)(p) for ¢ in L*(T). The restriction
¢|D will be shown to agree with the classical harmonic extension of a function
in L°°(T) into the disk. We illustrate the usefulness of the preceding by proving
the following result showing the unique position occupied by H* + C(T) in the
hierarchy of subalgebras of L°°(T).

6.40 Corollary. If % is an algebra lying between H* and L°°(T), then either
A = H*® or A contains H*® + C(T).

Proof From Theorem 6.34 it follows that the maximal ideal space of 2 can be
identified as a subset My of M. If the origin in [ is not in My, then y; is invertible
in A(x; # 0), and hence C(T) is contained in A, whence the result follows. Thus
suppose the origin in D is in My. Since

1 2

defines a positive extension of evaluation at 0, it follows that ¢(0) =
(1/2m) jbz" @dt.If g is contained in % butnotin H, then (1/27) fo27r Qxadt #0
for some n > 0, and hence 0 # @x,(0) = $(0)%.(0) = 0. This contradiction
completes the proof. ]

One can also show that either My is contained in My, \D or A = H™.
Before we can apply this to H*® + C(T) we need the following lemma on
factoring out zeros.

6.41 Lemma. If ¢ is in H* and z is in D such that ¢(z) = O, then there exists ¥
in H* such that ¢ = (x; — 2)¥.

Proof If 6 is in H®, then 90(z) = $(2)(z) = 0. If 6p = Y2 a,x, is the
orthonormal expansion of 8¢ viewed as an element of H?, then
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o0
Y an" =09(z) =0
n=0
by Section 6.15, and hence

1 (o9 0 (o)
(0(’)’ 1 —Exl) B <nz=;a,.x,,,zznxn> =2 " =0.

n=0 n=0

Therefore, we have

1 [ X ? 1 [ _
il d9=(x X1 ) f OXk-1
1 0

o MT-2x “T-zn) 2 )y T-2zx,
1
=(Xk—l‘p’ — )=0
1-zZx1
for k=1,2,3,...,

and hence the function X;¢/(1 —zx) is in H*. Thus setting ¥ = X;¢/(1—2X ),
we obtain (x; — 2)¥ = ¢. [

6.42 Corollary. The maximal ideal space of H*™ + C(T) can be identified with
M \D.

Proof From Proposition 6.36 and Corollary 6.38, we have
Mysica = {m € Mw : |[1a(m)| = 1}.

It remains to show that this latter set is M, \[D. Let m be in My, such that
|%1(m)| < 1 and set §1(m) = z. If @ is in H™, then ¢ — $(z)1 vanishes at
z, and hence by the preceding lemma we have ¢ — ¢(z)1 = (x1 — 2)¥ for some
¥ in H*. Evaluating at m in M, we have

$(m) — $(2) = (Ra(m) — DY (2) =0,
and hence ¢(m) = @(z). Therefore, m = z and the proof is complete. u

In the next chapter we shall be interested in determining when functions in
H>® + C(T) are invertible. From this point of view, the preceding result seems
somewhat unfortunate since the only portion of the maximal ideal space of H*
over which we have some control, namely D, has disappeared. We shall show,
however, that the question of invertibility of functions in H*® + C(T) can be
answered by considering the harmonic extension of the function on D. Our
motivation for introducing the harmonic extension is quite different from that
considered classically. We begin by determining a more explicit representation for
@ on D.

6.43 Lemma. If z = re'® is in D and ¢ in L®(T), then
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P(2) = Z a,r'™en® = —f ek, (0 — 1) dt,

n=-—00

where

k. (1) —r and ! fu dt
e a —— — — .
" 1—2rcost +r2 "2 Jo $Xs

Moreover, [¢],, < 1¢/lo-
Proof The function k, is positive and continuous; moreover, since

14re" il in
b0 =Re{1* e,,} 3 g

n=—00

it follows that
1 2
el = 2—/ k() dt = 1.
T Jo

Therefore, we have

1 2 .
L fo 0@k 0 — 1) dt| < 19l Wl = Il -

2w

Lastly, since ¢(z) = Y po_ anr'™e™® where z = re%, for ¢ in H* it follows
that this defines a positive extension of evaluation at z. The uniqueness of the latter
by the Gleason-Whitney theorem completes the proof. L

6.44 Lemma. The mapping from H*® + C(T) to C(D) defined by ¢ — ¢|D is
asymptotically multiplicative, that is, for ¢ and ¥ in H* + C(T) and & > 0, there
exists K compact in D such that

b@¥@-¥@|<c  for zinD\K.

Proof Since H® + C(T) = clos[Up>0x-n H*], it is sufficient to establish the
result for functions of the form X,¢ for  in H®.If ¢ = Y72 ) a, x» is the Fourier
expansion of ¢, then for z = re’, we have

|G- ) (@) — %-n(2)9(2)]

< |rlk—n| k+n| Iak| + (_ —-r )

k=0

Z ax Xk

k=n+1

Thus, if |1 — 7| < &, then |(X—n9)(2) — X-no@)| <e.
Since for ¢; and ¢, in H* and z in D, we have
| (X=n9D) @) (X -m92) @) — K=n-mP1902) ()|
< | (x=r D) (@) X-m®2) (@) = £-n(2)$1(2) X-m (D) P2(2)]
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+ | X-n(DP1 (D X-m (DP2() = X-n-m (DP102(2)|
+ | X-n-m@DP102(2) = X-n-mP192) (D),
the result follows. »
An abstract proof could have been given for the preceding lemma, where the
compact set K isreplaced by aset{z € D) : l X l(z)] < 1—§}. Moreover, a similar

result holds for the algebras s and can be used to state an invertibility criteria
for functions in s in terms of their harmonic extension on D (see [30], [31]).

6.45 Theorem. If ¢ isin H* + C(T), then ¢ is invertible if and only if there
exist §, € > O such that

|¢(re”)| >e¢ for 1-86<r<1.

Proof Using the preceding lemma for € > O there exists § > 0 such that for
1-8 <r <1, wehave

<¢&

pre't)y—(re'") —1
Y

whence the implication follows one way if ¢ is chosen sufficiently small.
Conversely, let ¢ be a function in H* + C(T) such that

|p(re”)|=e>0 for 1-8<r<1.

Choose ¥ in H* and an integer N such that |l¢ — x-n ¥ ll,, < &/3. Then there
exists §; > Osuch that for 1 —8§; < r < 1, we have

Cuw ey = 3owtre e < 5.
Therefore, for 1 — §; < r < 1 we have using Lemma 6.43 that

2¢e
< =,

.q-)(reit) — PN eIV (reity s

and hence anr(re"’) > ¢/3 if we also assume r > 1 —§. Let z;, ..., zy be the

zeros of the analytic function ¥(z) on D counting multiplicities. (Since ¥ (z) is
not zero near the boundary, the number is finite.) Using Lemma 6.41 repeatedly
we can find a function 8 in H*® such that Y = p6, where

p=0n0—z)(x1—2z2) - (X1 — zZn)-

Since 1/} = f)é , we conclude that § does not vanish on D and is bounded away
from zero in a neighborhood of the boundary. Therefore, 8 is invertible in H* by
Theorem 6.18. Since p is invertible in C(T) and ¢ = p#, it follows that y_y ¥ is
invertible in H* + C(T).
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Lastly, since lim,, - [l — ¢ ||l = 0, where ¢, (¢/*) = p(re'*), we have |p(e*)| >
€ a.e., and hence |(x_N ) Cad )| > 2¢/3 a.e. Therefore,

_ 3
[oe-wvr™] < 5
and hence ¢ is invertible in H* + C(T) by Proposition 2.7. n

We conclude this chapter by showing that the harmonic extension of a contin-
uous function on T solves the classical Dirichlet problem.

6.46 Theorem. If ¢ is a continuous function on T, then the function ¢ defined
on the closed disk to be ¢ on D and ¢ on 8D = T is continuous.

Proof If p is a trigonometric polynomial, then the result is obvious. If ¢ is a
continuous function on T and {p,}32, is a sequence of trigonometric
polynomials such that lim, e l¢ — pall = 0, then lim, .o [|§ — pull = O,
since |¢(z) — pn(2)]l < ll¢ — pnllc by Lemma 6.43. Therefore, ¢ is contin-
uous on D. |

Notes

The classical literature on analytic functions in the Hardy spaces is quite extensive and
no attempt will be made to summarize it here. Some of the earliest and most important
results are due to F. Riesz [90] and F. and M. Riesz [91]. The proofs we have presented are,
however, quite different from the classical proofs and stem largely from the work of Helson
and Lowdenslager [62]. The best references on this subject are the books of Hoffman [66]
and Duren [39]; in addition, the books of Helson [61] and Gamelin [40] should be mentioned.

As we suggested in the text, the interest of the functional analyst in the Hardy spaces is
due largely to Beurling [6], who pointed out their role in the study of the unilateral shift. The
F. and M. Riesz theorem occurs in [91], but our proof stems from ideas of Lowdenslager
(unpublished) and Sarason [99]. Besides the work of Helson and Lowdenslager already
mentioned, the study of the unilateral shift was extended by Lax [75], [76], Halmos [56],
and more recently by Helson [61] and Sz.-Nagy and Foiag [107].

The study of H as a Banach algebra largely began in [100] and the deepest result that
has been obtained is the corona theorem of Carleson [14], [15].

The material covered in Theorem 6.24 is closely connected with what is called prediction
theory (see [54]). The algebra H* + C(T) first occurred in a problem in prediction theory
[63] and most of the results presented here are due to Sarason [97]. The study of the algebras
between H* and L*°(T) was suggested to the author [31] in studying the invertibility
question for Toeplitz operators. Theorem 6.32 is taken from [34] in which it is shown that
quotients of inner functions are uniformly dense in the measurable unimodular functions.
The Gleason-Whitney theorem is in [43]. The role of the harmonic extension in discussing
the invertibility of functions in H* + C(T) is established in [30].

Exercises
6.1 If  and ¢ are unimodular functions in L*(T), then ¢H? = ¥ H? if and only if
¢ = Ay for some A in C.

Definition A function f in H! is an outer function if clos; [ f®,] = H'.
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6.2 A function f in H' is outer if and only if it is the product of two outer functions in
H2.

6.3 A closed subspace M of H!' satisfies ;M C M if and only if M = @H' for some
inner function ¢. State and prove the corresponding criteria for subspaces of L' (T).*

6.4 If f is a function in H', then f = g for some inner function ¢ and outer function g
in H'.

6.5 If f is anonzero function in H', then the set {¢/* € T: f(e'*) = 0} has measure zero.

6.6 An analytic polynomial is an outer function in either H! or H? if and only if it does
not vanish on the interior of D.

6.7 Show that rotation on D induces a natural representation of the circle group in
Aut(H*®) C Hom(M,,). Show that the orbit of a point in M, under this group
of homeomorphisms is closed if and only if it lies in D.*

Definition If x, is the Gelfand transform of x; on M, then the fiber F; of M over A in
T is defined by F; = {m € My, : %1 (m) = A}.

6.8 The fibers F) of M, are compact and homeomorphic.

6.9 Ifgisin H* and A is in T, then ¢ is bounded away from zero on a neighborhood of
A in {A} U D if and only if ¢ does not vanish on F.

6.10 If ¢ isin H° and « is in the range of ¢| Fy, for some A in T, then there exists a sequence
{z2}%2, in D such that lim,_, » z, = A and lim,_, o, ¢(z,) = a.

n=1
6.11 Show that the density of D in M is equivalent to the following statement: For
01,02, -.., 95y in H® satisfying Z,N=1 |@:(z)] = & for z in D, there exist

¥1, ¥2, ..., ¥y in H*® such that Z;N=1 @iY; = 1. Prove this statement under the
additional assumption that the p; are in H* + C(T).

6.12 If U is a closed algebra satisfying H>® C U c L*®(T), then the maximal ideal space
of L™ is naturally embedded in My, as the Silov boundary of .

6.13 (Newman) Show that the closure of [ in M, contains the Silov boundary.

Definition An isometry U on the Hilbert space ¥ is pure if N,>oU"# = {0}. The
multiplicity of U is dim ker U*.

6.14 A pure isometry of multiplicity one is unitarily equivalent to Ty, on H?.

6.15 A pure isometry of multiplicity N is unitarily equivalent to Y, , ®T,, on
Zl <i<N GBH 2‘

6.16 (von Neumann-Wold) If U is an isometry on the Hilbert space %, then # = ¥;, ®¥,
such that ¥, and ¥, reduce U, U|¥, is a pure isometry, and U |¥; is unitary.

6.17 If U is an isometry on the Hilbert space ¥, then there exists a unitary operator W on
a Hilbert space X containing % such that WH C ¥ and W|¥ = U.

6.18 (Sz.-Nagy) If T is a contraction on the Hilbert space ¥, then there exists a unitary
operator W on a Hilbert space X containing % such that TV = Py W |¥ for N in
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6.20

6.21

6.22

6.23

6.24

6.25

6.26

The Hardy Spaces 155

Z . (Hint: Choose operators B and C such that (g g) is a coisometry and then apply
the previous result to the adjoint.)

(von Neumann) If T is a contraction on the Hilbert space %, then the mapping defined
¥ (p) = p(T) foreach analytic polynomial p extends to a contractive homomorphism
from the disk algebra to (). (Hint: Use the preceding exercise.)

Show that the w*-topology on the unit ball of L™(T) coincides with the topology
of uniform convergence of the harmonic extensions on compact subsets of D. (Hint:
Evaluation at a point of D is a w*-continuous functional.)

If f is a function in H! and f,(¢*) = f(rei’) for0 < r < 1 and ¢ in T, then
lim, || f — f+ll; = 0. (Hint: Imitate the proof of Theorem 6.46.)

If f is a function in L!(T) for which

2n t
1 f f(E)dt=0 and F@)= f (%) de,
27!' 0

-7

then the harmonic extension f satisfies
24

fore® = % f k@t)F©O —1) dt,

-
where
1-r2
k() = ————.
() 14 r2 —2rcost
(Hint: Observe that
1

Fere®y = = f " k0 - dF ),

2r J_,
and use integration by parts.)

(Fatou) [f f is a function in L!(T) and f is its harmonic extension of f to D, then
lim,_,; f(re’*) = f(¢'*) a.e.* (Hint: Show that

f(reio) = _2_17;f [_tkr(t)]{p(o"'i);p(e—t)] ds

and that lim,_,; f (re'®) exists and is equal to F’(@), whenever the latter derivative
exists.)

If p is a function in H* and § is its Gelfand transform on Mo, then |$| is subharmonic,

that is, if 1/7 is the harmoqic extension of a bounded real-valued function to M, such
that ¥ > |p| on T, then ¥ > || on M.

A function f in H' is an outer function if and only if the inequality | f| > |g| on T
implies |f| > |2| on M, for every g in H'.

(Jensen’s Inequality) If f is a function in H', then
. 1 [ .
loglf(o)[ < 5= / log | f(e™)| dt.*
2r 0

(Hint: Assume that f is in A and approximate log(] f| + €) by the real part u of a
function g in A; show that log | f (O)I — 1(0) < ¢ and let ¢ tend to zero.)
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6.27 (Kolmogorv-Krein) If u is a positive measure on T and p,, is the absolutely continuous
part of u, then

inf 1—-f1*d ='f/1— 2dusx
mole FP du= jof [ 11— 1 du

(Hint: Show that if F is the projection of 1 onto the closure of Ag in L2(u), then
1 — F =0a.e. u,, where p; is the singular part of x.)

6.28 A function f in H? is outer if and only if
inf = [ 1= kR 1£R 20 = |FO
heAo 21 0 - ’

(Hint: Show that f is outer if and only if 1 — f (0)/f is the projection of 1 on the
closure of Ag in L2(| f|* d9).)

6.29 (Szego) If p is a positive measure on T, then

1 2
. _ 2 — _
;g£OA|1 fI? du exp(zn-/o log do),

where £ is the Radon-Nikodym derivative of u with respect to Lebesgue measure.*
(Hint: Use Exercise 6.27 to reduce it to u of the form w d0; use the geometric-
arithmetic mean inequality for one direction and reduce to the case |2|? d6 for h an
outer function in the other.)

6.30 If A is a closed algebra satisfying H*® C % C L*(T), then U is generated by H*®
together with the unimodular functions u for which both u and # are in ¥. (Hint: If f
isin 2, then f + 2|l fll = ug, where u is unimodular and g is outer.)

6.31 If I is a group of unimodular functions in L*°(T), then the maximal ideal space Mr
of the subalgebra Ar of L>(T) generated by H* and I can be identified by

Mr = {m € M : |ii(m)| = 1 foru € T'}.

6.32 Is every Ur of the form YA for some semigroup 3, of inner functions?**!

6.33 Show that the closure of H® + H " is not equal to L°°(T).* (Hint: If arg z were in
the closure of H*® + H" ", then there would exist ¢ in H* such that ze? would be
invertible in H®.)

6.34 If misin F, and pu is the unique positive measure on M~ such that

@(m)=f @du  for gin L®(T),
Mo

then p is supported on Mz N Fy.* (Hint: Show that the maximum of |@| on F; is
achieved on My« N F, for ¢ in H*.)

6.35 If ¢ is a continuous function and  is a function in L*°(T), then (517/ and @Jf are
asymptotically equal on D and equal on Mo \D.

1Algebras of the form %y were called “Douglas algebras” by Sarason, who obtained many interesting
results about them [Function Theory on the Unit Circle, Virginia Poly. Inst. and State Univ., Blacksburg,
Virginia (1979)]. S.-Y. Chang [A characterization of Douglas subalgebras, Acta. Math. 137, 81-89
" (1976)] and D.E. Marshall [Subalgebras of L* containing H*, Acta. Math. 137, 91-98 (1976)]
together have shown that every algebra between H* and L is of this form.
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If ¢ is a function in L®(T), then the linear functional on H' defined by Lf =
(1/27) fol" f do is continuous in the w*-topology on H'! if and only if ¢ is in
H® + C(T).

Show that the collection PC of right-continuous functions on T possessing a limit
from the left at every point of T is a uniformly closed self-adjoint subalgebra of
L*°(T). Show that the piecewise continuous functions form a dense subalgebra of
PC. Show that the maximal ideal space of PC can be identified with two copies
of T given an exotic topology.

If ¢ is a function in PC, then the range of the harmonic extension of ¢ on Fj is the
closed line segment joining the limits of ¢ from the left and right at A.

Show that QC = [H*® + C(T)] N [H* + C(T)] is a uniformly closed self-adjoint
subalgebra of L (T) which properly contains C(T). Show that every inner function
in QC is continuous but that QC N H*® # A.* (Hint: There exists a real function ¢

‘in C(T) not in ReA; if ¥ is a real function in L2(T) such that ¢ + i is in H? then

e?tVY isin H*® and ¢'¥ is in QC.)
If u is a unimodular function in QC, then lﬁ[ = 1 on My, \D. Is the converse true?**?

Show that M, \D is the maximal ideal space of the algebra generated by H* and the
functions # in L% (T) for which |ii| has a continuous extension to D. Is this algebra
H® 4 C(T)?*2

Show that PC N QC = C(T). (Hint: Consider the unimodular functions in the
intersection and use Exercises 6.38 and 6.40.)

Show that there is a natural isometric isomorphism between H* and (L!(T)/H,')*.
Show that the analytic trigonometric polynomials %, are w*-dense in H*.

2 Sarason [Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207, 391-405 (1975)]
showed that QC consists of the functions in L* having vanishing mean oscillation, the “little-0”
analogue of bounded mean oscillation introduced earlier by Kohn and Nirenberg. This characterization
enabled him to answer both questions affirmatively.



Chapter 7

Toeplitz Operators

7.1 Despite considerable effort there are few classes of operators on Hilbert space
which one can declare are fully understood. Except for the self-adjoint operators
and a few other examples, very little is known about the detailed structure of any
class of operators. In fact, in most cases even the appropriate questions are not
clear. In this chapter we study a class of operators about which much is known
and even more remains to be known. Although the results we obtain would seem
to fully justify their study, the occurrence of this class of operators in other areas
of mathematics suggests they play a larger role in operator theory than would at
first be obvious.
We begin with the definition of this class of operators.

7.2 Definition. Let P be the projection of L2(T) onto H2. For ¢ in L*®(T) the
Toeplitz operator T, on H? is defined by T,, f = P(¢f) for f in H2.

7.3 The original context in which Toeplitz operators were studied was not that of
the Hardy spaces but rather as operators on [?(Z.,.). Consider the orthonormal basis
{xn : n € Z,} for H?, and the matrix for a Toeplitz operator with respect to it. If
¢ is a function in L*°(T) with Fourier coefficients ¢(n) = (1/2x) foz" @X-ndt,
then the matrix {@m »}m nez, for T, with respectto {x, : n € Z,} is

2
Ann = Ty Xn> Xm) = 5_{' f QXn-mdt = §(m —n).
0

Thus the matrix for T, is constant on diagonals; such a matrix is called a Toeplitz
matrix, and it can be shown that if the matrix defines a bounded operator, then its
diagonal entries are the Fourier coefficients of a function in L*(T) (see [11]).
We begin our study of Tooplitz operators by considering some elementary
properties of the mapping & from L®(T) to 2(H?) defined by £(¢) = T,,.

158
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7.4 Proposition. The mapping £ is a contractive *-linear mapping from L*(T)
into X(H?).

Proof That & is contractive and linear is obvious. To show that £(¢)* = £(p), let
f and g be in H2. Then we have

(T3 . 8) = (P@S). 8) = (f, 08) = (f. P(9®)) = (f. T,8) = (T, f. &),
and hence £(p)* = T, = T; = £(9). ]

The mapping & is not multiplicative, and hence £ is not a homomorphism. We
see later that £ is actually an isometric cross section for a *-homomorphism from
the C*-algebra generated by {T,, : ¢ € L*(T)} onto L*°(T), that is, if « is the
*-homomorphism, then « o & is the identity on L*®(T).

In special cases, £ is multiplicative, and this will be important in what follows.

7.5 Proposition. If ¢ is in L®(T) and ¥ and @ are functions in H*, then
T,,,T.I, = T¢,/, and ToTw = To‘,.

Proof If f is in H?, then ¢ f is in H? by Proposition 6.2 and hence Ty f =
P f) =y f.Thus

LTy f =T,(¥f) = P(e¥f) =Toy f and T,Ty = Tyy.

Taking adjoints reduces the second part to the first. L]

The converse of this proposition is also true [11] but will not be needed in what
follows.

Next we consider a basic result which will enable us to show that £ is an
isometry.

7.6 Proposition. If ¢ is a function in L*°(T) such that T, is invertible, then ¢ is
invertible in L°°(T).

Proof Using Corollary 4.24 it is sufficient to show that M|, is an invertible operator
if T,, is. If T,, is invertible, then there exists ¢ > O such that | T, f | > ¢ || |l for f
in H2. Thus for each n in Z and f in H?, we have

IMeGn )| = lloxa Il = Nof Il = 1PN = |Tpf| = el fll =€ llxafIl-

Since the collection of functions {x, f : f € H? n € Z} is dense in L2(T), it
follows that |M,g| > ¢ ligll for g in L?(T). Similarly, | M; f| > | f|l, since
T; = T; is also invertible, and thus M, is invertible by Corollary 4.9, which
completes the proof. L]

As a corollary we obtain the spectral inclusion theorem.
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7.7 Corollary. (Hartman-Wintner) If ¢ is in L*(T), then R(p) = o(M,) C
o (T,).

Proof Since T, — A = T,_, for A in C, we see by the preceding proposition that
o(M,) C o(T,). Since the identity R(p) = o (M,) was established in Corollary
4.24, the proof is complete. n

This result enables us to complete the elementary properties of &.

7.8 Corollary. The mapping £ is an isometry from L*°(T) into R(H?).

Proof Using Proposition 2.28 and Corollaries 4.24 and 7.7, we have for ¢ in
L>(T) that

el > [|To| = r(Tp) = supf{IAl : & € o (T,)}
> sup{|A| : A € R(@)} = ¢l »

and hence £ is isometric. [ ]

7.9 Certain additional properties of the correspondence are now obvious. If T, is
quasinilpotent, then R(p) C o (T,) = {0}, and hence T, = 0. If T, is self-adjoint,
then R(p) C o(T,) C R and hence ¢ is a real-valued function.

We now exhibit the homomorphism for which & is a cross section.

7.10 Definition. If S is a subset of L>®(T), then T(S) is the smallest closed
subalgebra of R(H?) containing {7}, : ¢ € S}.

7.11 Theorem. If € is the commutator ideal in T(L>°(T)), then the mapping
& induced from L>(T) to T(L*(T))/€ by & is a *-isometric isomorphism. Thus
there is a short exact sequence

©0) - € - F(L®M) 2> L®(T) — (0)
for which £ is an isometric cross section.
Proof The mapping & is obviously linear and contractive. To show that & is

multiplicative, observe for inner functions ¢; and ¢, and functions y; and ¥, in
H®>, that we have

EW19EW2p2) — EW@1Y2@2) = T!Im/"l T\ll2¢2 - Tllfﬂﬁl\lfth
=T, (Ty,T,, — Ty,5,) Ty,

1

=T} (Ty, Tp, — To Ty Ty,

1

Since Ty, T, — T, Ty, is a commutator and € is an ideal, it follows that the latter
operator lies in €. Thus &; is multiplicative on the subalgebra
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9 = {yp: ¥ € H®, ¢ an inner function}

of L°(T) and the density of 2 in L*°(T) by Theorem 6.32 implies that & is a
*-homomorphism.

To complete the proof we show that || T, + K || > |[ T¢|| for ¢ in L*(T) and K in
& and hence that &, is an isometry. A dense subset of operators in € can be written
in the form

n m
K = Zl AilTy,g, T'Il,-'@,f] H Taijﬁij’
i=

j=1

where A; is in T(L*(T)), the functions ¢;, ¢/, and B;; are inner functions, the
functions v;, ¥/, and «;; are in H*, and square brackets denote commutator. If
we set

n.m

6= Hﬁij(oi‘P,{,
i=1
p

then @ is an inner function and K (6f) = O for f in H>.

Fix ¢ > 0 and let f be a function in H? chosen such that | f|| = 1 and
|7, 7| = | To| — & If of = g1 + g2, where g, is in H?, and g; is orthogonal to
H?, then since 6 is inner we have that 8g, is in H? and orthogonal to g,. Thus

1T, + K)OH)| = |T,@H| = 1P
> 161l = gl = | T, f|| = | 0| —&.

and therefore | T, + K || > || T,

|, which completes the proof. m

A direct proof of this result which avoids Theorem 6.32 can be given based on
a theorem due to Bunce [12]. In this case the spectral inclusion theorem is then a
corollary.

The C*-algebra E(L“("IT)) is a very interesting one; the preceding result shows
that its study largely reduces to that of the commutator ideal & about which very
little is known. We can show that € contains the compact operators, from which
several important corollaries follow.

7.12 Proposition. The commutator ideal in the C*-algebra T(C(T)) is LE(H?).
Moreover, the commutator ideal of T(L(T)) contains LE(H?).

Proof Since the operator T, is the unilateral shift, we see that the commutator ideal

of E(C(T)) contains the nonzero rank one operator T, T, — Ty, T},. Moreover,

the algebra T (C(T)) is irreducible since T}, has no proper reducing subspaces by
Beurling’s theorem. Therefore, T(C(T)) contains LE(H?) by Theorem 5.39.
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Lastly, since the image of Ty, in E(C (1])2 /RE(H?) is normal and generates this
algebra, it follows that T(C(T))/LE(H?) is commutative, and hence LE(H?)
contains the commutator ideal of E(C(T)). To complete the identification of
RE(H?) as the commutator ideal in $(C(T)), it is sufficient to show that LQE(H?)
contains no proper closed ideal. If I were such anideal, then it would contain a self-
adjoint compact operator H. Multiplying H by the projection onto the subspace
spanned by a nonzero eigenvector, we obtain a rank one projection in J. Now the
argument used in the last paragraph of the proof of Theorem 5.39 can be applied,
and hence LE(H?) is the commutator ideal in T(C(T)). Obviously, LE(H?) is
contained in the commutator ideal of SZ(L°° ('ID). n

7.13 Corollary. There exists a *-homomorphism ¢ from the quotient algebra
F(L>(T))/LE(H?) onto L®(T) such that the diagram

T(L®(M) = T(L®(T))/RC(H?)
0 ¢
L®(T)

commutes.

Proof Immediate from Theorem 7.11 and the preceding proposition. n

7.14 Corollary. If ¢ is a function in L*(T) such that T, is a Fredholm operator,
then ¢ is invertible in L*°(T).

Proof If T, is a Fredholm operator, then 7 (7,,) is invertible in
T(L®(T))/LE(H?)

by Definition 5.14, and hence ¢ = ({ o )(T) is invertible in L (T). ]

7.15 Certain other results follow from this circle of ideas. In particular, it follows
from Corollary 7.13 that | T, + K| > || T, | for ¢ in L°(T) and K in 8E(H?),
and hence the only compact Toeplitz operator is O.

Let us consider again the Toeplitz operator T,,. Since the spectrum of Ty, is
the closed unit disk we see, in general, that the spectrum of a Toeplitz operator
T, is larger than the essential range of its symbol ¢. It is this phenomenon which
shall largely concern us. In particular, we are interested in determining criteria for
a Toeplitz operator to be invertible and, in addition, for obtaining the spectrum.
The deepest and perhaps the most striking result along these lines is due to Widom
and states that the spectrum of a Toeplitz operator is a connected subset of C. This
will be proved at the end of this chapter.

We now show that the spectrum of a Toeplitz operator cannot be too much
larger than the essential range of its symbol. We begin by recalling an elementary
definition and lemma concerning convex sets.
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7.16 Definition. If E is a subset of C, then the closed convex hull of E, denoted
h(E), is the intersection of all closed convex subsets of C which contain E.

7.17 Lemma. If E is a subset of C, then A(E) is the intersection of the open half
planes which contain E.

Proof Elementary plane geometry. u

The lemma and the following result combine to show that o (T},) is contained
in h(R(p)).

7.18 Proposition. If ¢ is an invertible function in L*°(T) whose essential range
is contained in the open right half-plane, then 7, is invertible.

Proof If A denotes the subset {z € C : |z — 1| < 1} then there exists an ¢ > 0
such that éR (@) = {ez : z € R(p)} C A. Hence we have |lep — 1| < 1 which
implies |I — T,,| < 1 by Corollary 7.8, and thus T,, = T, is invertible by
Proposition 2.5. n

7.19 Corollary. (Brown-Halmos) If ¢ is a function in L*°(T), then o(7,) C
h(R(9)-

Proof By virtue of Lemma 7.17 it is sufficient to show that every open half-plane
containing R(¢) also contains o (T,). This follows from the proposition after a
translation and rotation of the open half-plane to coincide with the open right
half-plane. |

We now obtain various results on the invertibility and spectrum of certain classes
of Toeplitz operators. We begin with the self-adjoint operators.

7.20 Theorem. (Hartman-Wintner) If ¢ is a real-valued function in L*°(T),
then

o (T,) = [essinfy, ess sup ¢].

Proof Since the spectrum of T, is real it is sufficient to show that T, — A invertible
implies that either ¢ — A > O for almost all ¢’ in T or ¢ — A < 0 for almost all
e in T. If T, — A is invertible for A real, then there exists g in H? such that
(T, — A)g = 1. Thus there exists A in Hg such that (p — A)g = 1 + h. Since
(¢ —A)g = 1+hisin H2, wehave (p — 1) |g|* = (1+h)gisin H!, and therefore
(¢ — 1) |g|* = « for some « in R by Corollary 6.6. Since g # 0 a.e. by the F. and
M. Riesz theorem, it follows that ¢ — A has the sign of « and the result follows. B

Actually much more is known about the self-adjoint Toeplitz operators. In par-
ticular, a spectral resolution is known for such operators up to unitary equivalence
(see Ismagilov [68], Rosenblum [94], and Pincus [86]).
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The Toeplitz operators with analytic symbol are particularly amenable to study.
If ¢ is in H*, then the operator T, is the restriction of the normal operator M,
on L%(T) to the invariant subspace H? and hence is what is called a subnormal
operator.

7.21 Theorem. (Wintner) If ¢ is a function in H®, then T, is invertible if and
only if ¢ is invertible in H*. Moreover, if ¢ is the Gelfand transform of ¢, then
o (T,) = clos[p(D)].

Proof If ¢ is invertible in H*, then there exists ¥ in H* such that oy = 1.
Hence I = T, T, = T, Ty by Proposition 7.5. Conversely, if T, is invertible, then
¢ is invertible in L*°(T) by Proposition 7.6. If ¥ is 1/¢, then Ty T, = Ty, = |
by Proposition 7.5, and hence Ty, is a left inverse for T,. Thus T, = Tw‘l and
therefore 1 = T,Ty, 1 = ¢ P(¥). Multiplying both sides by 1/¢ = v, we obtain
P(y¥) = ¢ implying that ¢ is in H* and completing the proof that ¢ is invertible
in H*. The fact that o (T},) = clos[¢(D)] follows from Theorem 6.18. u

This result yields especially nice answers for analytic ¢ to the questions of
when T, is invertible and what its spectrum is. It is answers along these lines that
we seek to determine for more general symbols. We next investigate the Toeplitz
operators with continuous symbol and find in this case that an additional ingredient
of a different nature enters into the answer. Our results on these operators depend
on an analysis of the C*-algebra T(C(T)).

We begin by showing the £ is almost multiplicative if the symbol of one of the
factors is continuous.

7.22 Proposition. If ¢ is in C(T) and ¢ is in L>(T), then T, Ty — T,y and
Ty T, — Ty, are compact.

Proof If ¢ isin L°(T) and f is in H?, then
Ty Ty, f = Ty P(x-1f) = PMy(x-1f — (f, Dx-1)
=P(¥x-1f) — (fi DP(¥x-1)
=Tyx_,f — (i DP@x-1),

and hence Ty, T, _, — Ty,_, is an at most rank one operator.

Suppose Ty Ty_, — Tyy_, has been shown to be compact for every ¥ in L*>(T)
and —N < n < 0. Then we have

TyTy noy = Tyxns = Ty Ty = Tyx DTy + Ty y Ty = Ty xomix-i)

and hence is compact. Since Ty Ty, = Ty, forn > 0by Proposition 7.5, it follows
that Ty, T, — Ty, is compact for every trigonometric polynomial p. The density of
the trigonometric polynomials in C(T)and the fact that & is isometric complete the
proof that Ty, T, — Ty, is compact for ¥ in L°°(T) and ¢ in C(T). Lastly, since
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(TTy —Toy)* =T3T5 — Ty,

we see that this operator is also compact. n

The basic facts about ¥(C(T)) are contained in the following theorem due to
Coburn.

7.23 Theorem. The C*-algebra T(C(T)) contains XE(H?) as its commutator
ideal and the sequence

0) > REH?) > F(C(T)) - C(M) - (0)

is short exact; that is, the quotient algebra T(C(T))/RE€(H?) is *-isometrically
isomorphic to C(T).

Proof 1t follows from the preceding proposition that the mapping ¢ of Corollary
7.13 restricted to T(C(T))/RE(H?) is a *-isometric isomorphism onto C(T), and
hence the result follows. n

Combining this with the following proposition yields the spectrum of a Toeplitz
operator with continuous symbol.

7.24 Proposition. (Coburn) If ¢ is a function in L°*°(T) not almost everywhere
zero, then either ker T, = {0} or ker T; = {0}.

Proof 1f f is in ker T, and g is in ker 77, then @f and g are in HOZ. Thus ¢f g
and @ fg are in Hol by Lemma 6.16, and therefore ¢f g is O by Corollary 6.7. If
neither f nor g is the zero vector, then it follows from the F. and M. Riesz theorem
that ¢ must vanish for almost all ¢'* in T, which is a contradiction. |

7.25 Corollary. If ¢ is a function in L*(T) such that T, is a Fredholm operator,
then T, is invertible if and only if j(7,) = 0.

Proof Immediate from the proposition. L

Thus the problem of determining when a Toeplitz operator is invertible has
been replaced by that of determining when it is a Fredholm operator and what is
its index. If ¢ is continuous, then this is readily done. The result is due to a number
of authors including Krein, Widom, and Devinatz although the approach used here
is due to Gohberg.

7.26 Theorem. If ¢ is a continuous function on T, then the operator 7, is a
Fredholm operator if and only if ¢ does not vanish and in this case j(7},) is equal
to minus the winding number of the curve traced out by ¢ with respect to the
origin.
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Proof First, T, is a Fredholm operator if and only if ¢ is invertible in C(T) by
Theorem 7.23. To determine the index of T;, we first observe that j(7,) = j(Ty)
if ¢ and ¢ determine homotopic curves in C\ {0}. To see this, let  be a continuous
map from [0, 1] x T to C\{0} such that (0, e’*) = ¢(¢*) and ®(1, €'*) = ¥ (e*)
for ¢ in T. If we set @, (e') = (A, ¢*), then the mapping A — T, is norm
continuous and each Ty, is a Fredholm operator. Since j (T, ) is continuous and
integer valued, we see that j(T,) = j(Ty).

If n is the winding number of the curve determined by ¢, then ¢ is homotopic in
C\{0} to x,.Since j(T,,) = —n,wehave j(T,) = —n and the result is completely
proved. L

7.27 Corollary. If ¢ is a continuous function on T, then T, is invertible if and
only if ¢ does not vanish and the winding number of the curve determined by ¢
with respect to the origin is zero.

Proof Combine the previous theorem and Corollary 7.25. u

7.28 Corollary. If ¢ is a continuous function on T, then
o(Ty) =R@@)U {r € C:i(p,r) # 0},

where i; (g, L) is the winding number of the curve determined by ¢ with respect
to A.

In particular, the spectrum of T, is seen to be connected since it is formed from
the union of R (¢) and certain components of the complement.

In this case the invertibility of the Toeplitz operator T, depends on ¢ being
invertible in the appropriate Banach algebra C(T) along with a topological criteria.
In particular, the condition on the winding number amounts to requiring ¢ to lie in
the connected component of the identity in C(T) or that ¢ represent the identity
in the abstract index group for C(T). Although we shall extend the above to the
larger algebra H* + C(T), these techniques are not adequate to treat the general
case of a bounded measurable function.

We begin again by identifying the commutator ideal in %(H ® 4+ C(T)) and
the corresponding quotient algebra.

7.29 Theorem. The commutator ideal in T(H> + C(T)) is RE(H?) and the
mappping §x = 7 o& from H®+C(T) to T(H*®+C(T))/RXE(H?) is an isometric
isomorphism.

Proof The algebra T(H> + C(T)) contains LE(H?), since it contains T(C (T))
and thus the mapping £k is well defined and isometric by Corollary 7.13 and
the comments in Section 7.15. If ¢ and ¢ are functions in H* and f and g are
continuous, then

TorfTytrg — Torpv+e) = Torf Ty — Tipa fyy + Tou f Tg — Tipt g

=TorfTg — T+
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by Proposition 7.5, and the latter operator is compact by Proposition 7.22. Thus
the commutator ideal is contained in € (H?) and hence is equal to it. Thus &x is
multiplicative, since

Ex(@+NEx (Y + 8) — Ex (0 + NW+8)) = T Tps s Tyr 5 — Tip+ pw+e)] = 0-

Therefore, £ is an isometric isomorphism, which completes the proof. u

Note that T(H> + C(T)) is not a C*-algebra, and hence the fact that 7,
is a Fredholm operator and 7(7,) has an inverse in R(H?)/RE(H?) does not
automatically imply that 7 (7,) has an inverse in T(H*® + C(T))/LE€(H?). To
show this we must first prove an invertibility criteria due to Widom and based on
a result of Helson and Szego from prediction theory.

7.30 Theorem. If ¢ is a unimodular in L*°(T), then the operator T, is left
invertible if and only if dist(¢, H*®) < 1.

Proof If dist(p, H®) < 1, then there exists a function ¥ in H* such that
llg — ¥llw < 1. This implies that ||1 — $¥llo, < 1 and hence |1 — T,z || < 1.
Thus T;T, = Ty, is invertible in L(H?) by Proposition 2.5 and therefore T, is
left invertible.

Conversely, if T, is left invertible, then there exists ¢ > 0 such that H I, f || >ellfll
for f in H2. Thus | P(¢f)ll = & || fI| = & ll¢f ||, and hence

lefII> = I = PY@AHI* + I1P@H)I* = I — P)@H)I* + ¢ llof 1.

Therefore, we have ||[(I — P)(¢f)ll < (1 — &) || fIl for f in H?, where § =
1— (1 —¢&Y2>0.If fisin H? and g is in HZ, then

1 2
L fo ofgdt

> = |(of, &)l = |(T = P)ef). g)| <A =8 IfI lgl.

If for h in H, we choose f in H? and g in H? by Corollary 6.27, such thath = fg
and [[All; = || fll2 ligll2, then we obtain

1 2t
— hdt
I
Thus, the linear functional defined by ®(h) = (1/27) f02 " hodt for h in H} has
norm less than one. Therefore, it follows from Theorem 6.29 (note that we are

using (H})* = L®(T)/H®), that there exists ¥ in H* such that [|¢ — ¢, < 1,
which completes the proof. n

=A== lAl,.

7.31 Corollary. If ¢ is a unimodular function in L*°(T), then T, is invertible if
and only if there exists an outer function v such that |l¢ — ¥[l, < 1.

Proof If ¢ — ¥ |lo < 1,then || > & > Ofore = 1— |l¢ — ¥||, and hence T,
is invertible by Theorem 7.21 and Proposition 6.20. Since Tv‘,‘ T, is invertible, we
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see that 7, is invertible. Conversely, if 7, is invertible and v is a function in H®
such that ||go ¥l < 1, then Ty is invertible since T,p T, is, and hence ¥ is an
outer function. n

As aresult of this we obtain a very general spectral inclusion theorem.

7.32 Theorem. If X is a closed subalgebra of 2(H?) containing T(H*) and
T, is in T for some ¢ in L(T), then o (T,) = og(T,).

Proof Obviously o(T,) is contained in og(T,). To prove the reverse inclusion
suppose T, is invertible. Using Corollary 6.25, we can write ¢ = uyr, where u is
aunimodular function and v is an outer function. Consequently, ¥ is invertible in
L*(T), and by Proposition 6.20 we obtain that 7, " is in &. Thus T, = T, T,

in T; moreover, T, and hence Tj is invertible in £(H?). Employing the preceding
corollary there exists an outer function 8 such that ||@ — i||,, < 1.Since T, T is in
Land |1 - T, Tl = |1 — ub|lo, < 1, we see that (T, Tp) ! is in T by Proposition
2.5. Since

T, =T,'T, = T, Ty(T, Tp) ™"
is in ¥, the proof is complete. ]

This leads to a necessary condition for an operator to be Fredholm.

7.33 Corollary. If % is a closed subalgebra of L>(T) containing H* + C(T)
and ¢ is a function in % for which 7, is a Fredholm operator, then ¢ is invertible
in .

Proof If T, is a Fredholm operator having index =, then T,,, is invertible by
Propositions 7.5 and 7.24, and the function x,¢ is also in Y. Therefore, by the
preceding result, 7, is in £(YU), and hence using Theorem 7.11 we see that x,¢
is invertible in p[%(%l)] = U. Thus ¢ is invertible in U, which completes the
proof. L]

The condition is also sufficient for H*® + C(T).

7.34 Corollary. If ¢ is a function in H* + C(T), then T, is a Fredholm operator
if and only if ¢ is invertible in H* + C(T).

Proof The result follows by combining the previous result and Theorem 7.29. m

We need one more lemma to determine the spectrum of T, for ¢ in H* + C(T).
Although this lemma is usually obtained as a corollary to the structure theory for
inner functions, it is interesting to note that it also follows from our previous
methods.
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7.35 Lemma. If ¢ is an inner function, then H? © ¢ H? is finite dimensional if
and only if ¢ is continuous.

Proof If ¢ is continuous, then T, is a Fredholrh operator by Theorem 7.26, and
hence H? © pH?* = ker(T})) is finite dimensional. Conversely, if H> © ¢H? is
finite dimensional, then T, is a Fredholm operator and hence ¢ is invertible in
H® + C(T). We need to show that this implies that ¢ is continuous.

By Theorem 6.45 there exist €, § > 0 such that |¢>(re“)| >egforl—-6<r<l1,
and hence ¢ has at most finitely many zeros z, 22, . - . , Z, in [ counted according
to multiplicity. Using Lemma 6.41 we obtain a function ¥ in H* such that
¥ [T, (x1 — zj) = ¢- Thus ¥ does not vanish on D and is bounded away from
zero on a neighborhood of the boundary. Therefore, v is invertible in H* by
Theorem 6.18. Moreover, since

le —zj| = |1 — z;e"| for ¢'inT,
we have
it .
e — ZJ _
T
1-—zjé

Thus the function ]_[N=1 (x1 — zj)/(1 — zj x1) is a continuous inner function, and
0=y ['[J'-V=,(l — Zjx1) has modulus one on T. Since 8 is invertible in H>, it
follows that & = 6! is in H* and hence that @ is constant. Thus

v= 0H<1 _Z]Xl)

and therefore is continuous. ]

7.36 Theorem. If ¢ is afunctionin H* + C(T), then T, is a Fredholm operator
if and only if there exist 8, £ > 0 such that |¢(re’*)| > e for1 -8 < r < 1, where
¢ is the harmonic extension of ¢ to . Moreover, in this case the index of T, is
the negative of the winding number with respect to the origin of the curve @(re'*)
forl—-86<r < 1.

Proof The first statement is obtained by combining Corollary 7.34 and Theorem
6.45.

If ¢ is invertible in H* + C(T) and ¢, § > 0 are chosen such that
|p(re™)| = &

for 1 —8 < r < 1, then choose ¥ in H* and a negative integer N such that
log — xv¥lleo < &/3.If weset g, = Ao+ (1 —A)xny for 0 < A < 1, then each
@x isin H® 4+ C(T) and |l¢ — ¢5lloc < €/3. Therefore, ]@A(re"')l > 2¢/3 for
1 — § < r < 1, and hence each ¢, is invertible in H*° + C(T) by Theorem 6.45.
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Hence each T, is a Fredholm operator and the winding number of the curve
@1(re") is independent of A and r for0 < A < land 1 — 8§ < r < 1. Thus it
is sufficient to show that the index of Ty, = Ty, is equal to the negative of the
winding number of the curve curve (xy ¥ )(re').

Since Ty = Ty_,Tyyy we see that Ty is a Fredholm operator. If we write
¥ = Yoy, where ¥, is an outer function and v; is an inner function, then Ty,
is invertible and hence Ty, is a Fredholm operator. Thus v; is continuous by the
previous lemma which implies xn; is in C(T) and we conclude by Theorem 7.26
that

F(Tyny) = j(Txyy) = —ir(Xn¥3)-
Since there exists by Lemma 6.44 a §; > 0 such that § > §; > 0 and
XN ¥ (re’) — XnPilre)Patre™)| < ; for 1—8 <r<1,
it follows that
i(OvP)(re™) = i (v re™)) + iy (Pore™))  for 1—8 <r <1.

Using the fact that VI; does not vanish on D and Theorem 6.46, we obtain the
desired result. [

We conclude our results for 7, with ¢ in H* 4 C(T) by showing that the
essential spectrum is connected. Although we shall show this for arbitrary ¢, a
direct proof would seem to be of interest.

7.37 Corollary. If ¢ is a function in H® + C(T), then the essential spectrum of
T, is connected.

Proof From Corollary 7.34 it follows that A is in the essential spectrum of T, for
@ in H*® + C(T) if and only if ¢ — A is not invertible in H* + C(T). Hence, by
Theorem 6.45 we have that A is in the essential spectrum of T, if and only if A is in

clos{p(ré):1>r>1-28) foreach 1>8>0.

Since each of these sets is connected, the result follows. u

We now take up the proof of the connectedness of the essential spectrum for an
arbitrary function in L*°(T). The proof is considerably harder in this case and we
begin with the following lemma.

7.38 Lemma. If ¢ is an invertible function in L*°(T), then T, is a Fredholm
operator if and only if Ty, is and moreover, in this case, j(T,) = —j(T1/p)-

Proof If we set ¢ = uy by Corollary 6.25, where ¥ is an outer function and u is
unimodular, then Ty, = T3Tyyy = Ty}, T, Ty/y by Proposition 7.5. Since Tyy is
invertible by Theorem 7.21, the result follows. n
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The proof of connectedness is based on the analysis of the solutions f, and g,
of the equations T, fy = 1 and Ty;-2 g = 1. Since we want to consider A
for which these operators are not invertible, the precise definition of f; and g, is
slightly more complicated.

7.39 Definition. If ¢ is a function in L*°(T), then the essential resolvent p.(7,)
for T, is the open set of those A in C for which T,,_, is a Fredholm operator. If A
isin pe(Ty) and j(T,-,) = n, then

-1 =1
Hh=T 0l and & =T, /e-nl

The basic result concerning the f; and g, is contained in the following. It is the
first instance in which the spectral variable A intervenes. Here, the function f; is
shown to be the solution of a first-order differential equation in A. Although f; is
a Banach-space-valued analytic function, it is sufficient for our purposes to view
it as a family of complex-valued analytic functions parametrized by z.

7.40 Proposition. If ¢ is a function in L*°(T) and X is in pe(T},), then fig, =1
and

1
Q—A

%f}(z)=ﬂ(z)-P[ }(z) for zinD.

Proof There exist functions u; and v, in Hg such that x,(¢ —A) A = 1+u, and
X-n82/(@ — 1) = 1 + v,. Multiplying these two identities, we obtain

Hig =14 (uy + v Fusvy),

where f1g, isin H' and uy + vy +uyv, isin H& and thus f; g, = 1. We also have
£1(2)8,(z) = 1 by Lemma 6.16.

Since the functions A - x,(¢ —A) and A — x_,/(¢ — A) are analytic L*-valued
functions, it follows from Corollary 7.8 that f, and g, are analytic H?-valued
functions. Differentiating the identity x,(¢ — A) fi = 1 + u, with respect to A
yields —xn fu + Xa(¢ — ) f = i) and hence fi = (¢ —A) fy — X-nit, Where u;
lies in Hoz. Multiplying both sides of this equation by g, /(¢ — A), we obtain

1 1

Y = py Afxgx = fi8r — (X=nity) (Xn (1 + B2))

= figr — 3 (1 + ).

Since f]gs isin H! and @}(1 + 9,) is in ﬁ(l), we have P{1/(¢ — M)} = fig-
Finally, again using the identity proved in the first paragraph, we reach the equation
fi = fiP{1/(¢ — 1)} and observing that evaluation at z in D commutes with
differentiation with respect to A we obtain the desired results. ]

It is possible to solve this latter equation to relate the f; which lie in the same
component of pe (7).
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7.41 Corollary. If ¢ is a function in L*°(T) and A and A, are endpoints of a
rectifiable curve I' lying in p.(T,), then
}(z) dp }

~ ~ 1
Si(@) = fr,(2) exp [/ P{
r Y —HKu
R . 1
8:(2) = 81,(2) exp [—f P [———](z)du]
r =K

Proof Foreach fixed z in D we are solving the ordinary first order linear differential
equation dx(A)/dA = F(L)x (L), where F (L) is an analytic function in A. Hence
the result follows for f; and the corresponding result for g, is obtained by using
the identity fx(Z)gx(z) =1. [ ]

and

for z in D.

We now show that no curve lying in p.(T,) can disconnect R(p).

7.42 Proposition. If ¢ is a function in L*°(T) and C is a rectifiable simple closed
curve lying in p.(7,), then R(p) lies either entirely inside or entirely outside of
C.

Proof Consider the analytic function defined by

1 1
F(z) = P {——](z) du foreach zinD.
wmi e lo—n

If A, is a fixed point on C, then it follows from the preceding corollary that
fi@ = fi, (@ exp2TiF(z)}  for zinD.

Therefore, exp{27i F(z)} = 1 whenever fxo (z) # 0, and hence for all z in D,
since f  is analytic. Thus the function F(z) is integer-valued and hence equal to
some constant N.

Now for each ¢ in T, the integral

1 1
2mi Jo oé) — i

equals the winding number of the curve C with respect to the point ¢(e'’). Thus
the function defined by
1 1

v = i )o@ —n du

is real valued. Since

1
Py = P{ZMcw w } 2m/ { }duzF
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is constant, we see that ¥ is constant a.e., and hence the winding number of C
with respect to R(¢) is constant. Hence R(g) lies either entirely inside or entirely
outside of C. ]

The remainder of the proof consists in showing that we can analytically continue
solutions to any component of C\p.(7,) which does not contain R(¢). Before
doing this we need to relate the inverse of T, ) to the functions f; and g.

7.43 Lemma. If ¢ is a function in L*®(T), A is in p(Ty), k is in H*, and
hy = fiP{X-ngik/(@ — M)}, then hy is in H? and T, p—ryhy, = k.

Proof If weseth, = (‘p_l)k then there exists / in H 2 such that x, (¢ — A)hy =
k + 1. Multiplying by x_,.gl/(ga A) = 1 4+ v, where v, is in Ho , we obtain

1 = _
&by = ——x-_aak +1(1 + 7))
@ —A

and hence g h) = P{x-ngrk/(p — L)}, since [(1 + v,) is in Hol. We now obtain
the desired result upon multiplying both sides by f, and again using the identity
fign =1 m

We need one more lemma before proving the connectedness result.

7.44 Lemma. If Q is a simply connected open subset of C, C is a rectifiable
simple closed curve lying in €2, and F)(z) is a complex function on  x D such
that F (z,) is analytic on 2 for z, in D, Fj,(z) is analytic on D for A, in 2, F;,
is in H? for A, in C and sup || Fy, |2 < 00, A,€C, then F; is in H? for A in the
interior of C and || Fy |2 < sup; (¢ | Fy, ll2-

Proof An analytic function ¢ on D is in H? if and only if

f ¥ @)%/ (n!)?

n=0

is finite, since f = Y oo, Y™ (0)(n!)"!x, is in H? and 7 = ¥: moreover
"f"Z = (Z;l..;o I]/f(")(O)lZ/(n!)_z)l/Z.

If ap, y, . . ., @y are arbitrary complex numbers, then
FP©
Z D= ] men)z L ettty di
k=0

is an analytic function of A for 0 < r < 1. Moreover, since

Z FP® ©
k!

k=0

N (k)
Xo

N 1/2
ak < sup || Fy, ll2 }:lan’) ,
ro€C =0

)LoeC k=0
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it follows that
N 2\ 172
X175 < sup || Py, ll2,
=0 : ro€C
and hence the result follows. n

7.45 Theorem. If ¢ is a function in L*°(T), then the essential spectrum of 7, is
a connected subset of C.

Proof 1t is sufficient to prove that if C is a rectifiable simple closed curve lying
in p(7,) with R(g) lying outside, then T,_, is a Fredholm operator for A in the
interior of C. Let 2 be a simply connected open set which contains C and the
interior of C and no point of the essential spectrum o, (7;,) exterior to C lies in Q.
We want to show that o.(T,) and 2 are disjoint.

Fix XA, in C. For each A in w let I' be a rectifiable simple arc lying in 2 with
endpoints A, and A and define

o 1
F\(z) = f,(2) exp {f P {—}(z)du}
r Qo — K

and

1
G (2) = 8,(2) exp {—f P {—}(z)du]
r —p

for z in D. Since P{1/(¢ — u)}(z)is analytic on the simple connected region €2,

it follows that F, (z) and G, (z) are well defined. Moreover, since F)(z) = fl ¢4
for A in some neighborhood of C by Corollary 7.41, it follows from the preceding
lemma that F, is in H? for all A in Q. Similarly, G, is in H? for each A in Q.

If we consider the function ¥ (L) = Ty, (-1 Fa — 1, then ¢ (A) lies in H 2 for A in
2. Moreover, for z in D the complex-valued function v (A)(z) is analytic in A on
€2 and vanishes on a neighborhood of C. Thus

Te-nFr =1

for A in €2, and in a similar manner we see that T,_ (,—)-1G, = 1 for A in Q. If k
is a function in H°, then

1
H,(2) = FA(Z)P{—X—nGAk}(Z)
©—A

defines a function satisfying the hypotheses of the preceding lemma. Thus, H, is
in H? and Ty, (o~ Hy = k for A in Q2. Moreover, we have

-1
1l < Sup 1y ll2 = SUp 1T, {y s Kl
0 0
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Therefore, if k is in H? and {k; }°°I is a sequence of functions in H* such that

lim;_, o [lk — kj|l2 = O, then the corresponding functions {H){ }$2, for a fixed A
in © form a Cauchy sequence and hence converge to a function H, such that
Ty, -2 Hy = k. Thus we see that Ty, (- is onto for A in 2. Since the same
argument applied to A on Q yields that T "G, is onto for A and €2, we see
that T,, - is invertible, and hence that T — A is a Fredholm operator, which
completes the proof. ]

7.46 Corollary. (Widom) If ¢ is a function in L*°(T), then o (7},) is a connected
subset of C.

Proof By virtue of Proposition 7.24, the spectrum of T, is formed from the union of
the essential spectrum plus the A for which T, — A is a Fredholm operator having
index different from zero. Since T, — A is a Fredholm operator for A in each
component of the complement of the essential spectrum and the index is constant,
it follows that the spectrum is obtained by taking the union of a compact connected
set and some of the components in the complement—and hence is connected. ®

Despite the elegance of the preceding proof of connectedness, we view it as
not completely satisfactory for two reasons: First, the proof gives us no hint as to
why the result is true. Second, the proof seems to depend on showing that the set
of some kind of singularities for a function of two complex variables is connected,
and it would be desirable to state it in these terms.

We conclude this chapter with a result of a completely different nature but of a
kind which we believe will be important in the further study of Toeplitz operators.
It involves a notion of “localization” and suggests that in order to understand
certain phenomena concerning Toeplitz operators it is necessary to consider other
representations of the C*-algebra I (L*°(T)).

We begin with a result concerning C*-algebras having a nontrivial center. The
center of an algebra is the commutative subalgebra consisting of those elements
which commute with all the other elements in the algebra. In the proof we make use
of the fact that an abstract C*-algebras has a *-isometric isomorphic representation
as an algebra of operators on some Hilbert space. Also we need to know that every
*-isomorphism of C(X) can be extended to the Borel functions on X. Although
we have not proved these results in the text, outlines of the proofs were given in
the Exercises in Chapter 4 and 5.

7.47 Theorem. If ¥ is a C*-algebra, U is a C*-algebra contained in the center
of ¥ having maximal ideal space My, and for x in My, 3, is the closed ideal in
& generated by the maximal ideal {Ae¥ : A(x) = O} in %, then

= {0}.

Xx€ M?I

In particular, if ®, is the *-homomorphism from ¥ onto £ /I, then ) My e,
is a *-isomorphism of ¥ into ). y OL/Ix. Moreover, T is invertible in T if
and only if ®,(T) is invertible in T/, for x in My.
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Proof By Proposition 4.67 it is sufficient to show that sup, My 1@ (T = |IT|
for T in . Fix T in £ and suppose that ||T|| — SUP.re My [|®L(T)|| =& > 0.For x,
in My let Oy, denote the collection of products SA, where S is in Tand Aisin A
such that A vanishes on a neighborhood of x,. Then O, is an ideal in ¥ contained
in ¥, , and since the closure of O, contains

{Ae : A(x,) = 0},

we see that £, = clos [Oy,]. Thus there exist S in ¥ and A in U such that A
vanishes on an open set U,, containing x, and ||®, (T)|| + /3 > ||IT + SA|l.
Choose a finite subcover {U,, }Y., of My and the corresponding operators {S;}Y_,
in T and {A;}Y, in U such that

& &€
ITH =5 2 125 (Dl + 7 2 T + SiAill

and A; vanishes on Uy,,.

Let ® be a *-isomorphism of & into L(¥) for some Hilbert space ¥ and let ¥, be
the corresponding *-isomorphism of C(My) into X(%) defined by ¥, = ® o',
where I" is the Gelfand isomorphism of % onto C(Myy). Since ® () is contained in
the commutant of ®(Z), it follows that v, (C (My)) is contained in the commutant
of ®(T), and hence there exists a *-homomorphism y from the algebra of bounded
Borel functions on My into the commutant of ® (<) which extends ¥,.

Let {A;}¥, be a partition of My by Borel sets such that A, is contained in Uy, for
i=1,2,...,N.then

O(T + S; AV p;) = P(T)YUa)
and hence

€ .
1S MY U = NST + Si A 1Y Ua) < ITl - 5 foreachl <i < N.

Since the {y (14, )}{"=1 are a family of commuting projections which reduce ®(7°)
and such that Z,"':] Y (Ia;) = I, it follows that

1P = sup [|P(T)PUa)l

1<i<N

and hence || ®(T)|| < ||IT|| — £/2. Since P is an isometry, this is a contradiction.

If T is invertible in ¥, then clearly &, (T) is invertible in &/, for x in My Hence
suppose ®,(T) is invertible in £/, for each x in My . For x, in My there exists S
in € by Theorem 4.28 such that ®, (ST — I) = 0. Repeating the argument of the
first paragraph, we obtain a neighborhood O, on which ||®,(ST — I)|| < %
for x in O,,. From Proposition 2.5 we obtain that ®,(ST) is invertible and
1P, (ST)™!| < 2 for x in O,,. Since ®,(T) is invertible, ®,(ST) ' D, (S) is its
inverse, and hence ||®,(7T)™!|| is bounded for x in O,,. A standard compactness
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argument shows that SUP e My D (T)!|| < oo. Therefore Z“Mu ®Y,(T) is

invertible in Y, My @/, and hence T is invertible in T by Theorem 4.28. @

7.48 The context in which we want to apply this result is the following. Although
the center of the C*-algebra SZ(L°° (T)) is equal to the scalars, the quotient algebra
Z(L>(T))/RE(H?) has a nontrivial center which contains T(C(T))/RC(H?) =
C(T) by Proposition 7.22. Thus we can “localize” the algebra T(L>°(T)) /RE(H?)
to the points of T.

For A in T let T, be the closed ideal in T(L*(T)) generated by

{T, : peC(T), p(2) =0},

and let T, be the quotient algebra T(L>®(T))/S;, and @, be the natural *-homo-
morphism from E(L*(T)) to ;.

7.49 Theorem. The C*-algebras ¥, are all *-isomorphic. If ® is the *-homo-
morphism defined by ® = Y, ; ®®, from T(L®(T)) to 3", .+ ®T,, then the
sequence

©) — LE(H?Y) — T(LPM) > ¥ 6Ty
reT
is exact at T(L>(T)).

Proof Since T(L(T)) is an irreducible algebra in L(H?), every nonzero closed
ideal contains € (H?) by Theorem 5.39. Thus € (H?) is contained in the kernel
of ® and hence ® induces a *-homomorphism ®. from the quotient algebra

Z(L>(T))/RE(H?) into ¥, .y BF,;. Since
Z(CM)/REHP)

is contained in the center of T(L>(T))/{E(H?), the preceding theorem applies,
and we conclude that & is a *-isomorphism. Rotation by A on T obviously induces
an automorphism on T(L*(T)) taking J; onto I, and hence there exists a
*-isomorphism from J; onto ;. ]

The usefulness of this result lies in the fact that it reduces all questions concern-
ing operators in i(L“(D) modulo the compacts to questions concerning the &,
Unfortunately, we do not know very much about the algebras T,. The following
proposition shows that the operators in &, depend only on local properties of the
defining functions.

Recall that M, \D is fibered by the circle such that

F), = {meMy, : X1(m) = A}

and that the Silov boundary of H® can be identified with the maximal ideal space
M, of L®(T). Let us denote the intersection F, N M, by 3 F).
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7.50 Proposition. If {¢; j}i’:’ j=1 are functions in L*°(T) with Gelfand transforms

@ij on M, and A is in T, then &, ( 3/, [T, T,, ) depends only on the functions
{‘ﬁijlaFA},{Yj=1-

Proof Itis sufficient to show that @, (7,,) = Oforg in L*°(T) such that|d F = 0.
By continuity and compactness, it follows that for ¢ > O there exists an open arc
U of T containing A such that ||¢lylle < &. If ¥ is a continuous function on T
which equals 1 on the complement of U and vanishes at A, then

Ty = Toty + Torpya-9) + Torpyus
where
NPA(Tor ) < 1 Tpuy |l < &, Pr(Typry,ya-w)) =0,
since
Iny(l—v¢)=0 and Pu(Torpyyv) = PalTory, )Pr(Ty) =0,

since Ty is in ;. Therefore, we have ||®,(7,)|| < & for ¢ > 0 and hence
®,(T,) =0. .

As corollaries, we obtain the following results proved originally by “localizing”
in H* + C(T).

7.51 Corollary. If ¢ is a function in L*°(T), then T, is a Fredholm operator if
and only if for each A in T there exists ¢ in L*(T) such that T, is a Fredholm

operator and ¢ = ¥ on 3Fj.

Proof From Theorem 7.49 and the definition, it follows that T, is a Fredholm
operator if and only if ®,(T,) is invertible for each A in T. If for A in T there
exists ¥ in L%°(T) such that Ty, is a Fredholm operator and ¢ = ¥ on 3 F,, then
®,(Ty) is invertible in T, and equal to ®, (T,) by the previous proposition. Thus
the result follows from Theorem 7.47. =

7.52 Coro[lary. If ¢ and ¢ are functions in L°°A(T) such that for each A in T
either ¢ — 6,|0 F), = 0 for some 6, inH or Y — 6|0 F, = O for some 6, in H*,
then T,,Ty, — T,y is compact.

Proof Since T, Ty — T,y is compact if and only if &, (T,) P, (Ty) = P (Tyy) for
each A in T by Theorem 7.49, the result is seen to follow from Proposition 7.5. ®

Notes

In an early paper [109] Toeplitz investigated finite matrices which are constant on
diagonals and their relation to the corresponding one- and two-sided infinite matrices. The
fundamental theorem in this line of study was proved by Szé&go (see [54]), and most of the
early work concerned this type of question. In [116] Wintner determined the spectrum of
analytic Toeplitz matrices, and he and Hartman set the tone for much of the work in this
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chapter in two papers [59] and [60] some twenty years later. The first systematic study of
Toeplitz operators emphasizing the mapping ¢ — T, was made by Brown and Halmos in
[11]. What might be called the algebra approach to these problems was first made explicit
in [29] and [30] and was based on the earlier papers [17] and [18] of Coburn.!

A vast literature exists for Wiener-Hopf operators beginning with the fundamental paper
of Wiener and Hopf [115]. Most of the early work concems the study of explicit operators
or operators with smooth kernels, and a good exposition of that development along with
a bibliography can be found in Krein [72]. The studies of Toeplitz operators and Wiener-
Hopf operators had parallel developments until Rosenblum observed [94] using Laguerre
polynomials that the two classes of operators were unitarily equivalent. Subsequently,
Devinatz showed in [25] that the canonical conformal mapping of the unit disk onto the upper
half-plane establishes the unitary equivalence between a Toeplitz operator and the Fournier
transform of a Wiener-Hopf operator. Thus a given result can be stated in the context of
either Toeplitz operators or of Wiener-Hopf operators.

The spectral inclusion theorem is due to Hartman and Wintner [60], although the
proof given here of Proposition 7.6 first occurs in [110]. Corollaries 7.8 and 7.19 as well
as the remarks following 7.9 are due to Brown and Halmos [11]. The existence of the
homomorphism in Theorem 7.11 as well as its role in these questions is established in [31].
In [103] Stampfli observed that a proof of Coburn in [17] actually yields Proposition 7.22.
The analysis of the C*-algebra T (C(T)) was made by Coburn in [17] and [18] while its
applicability to the invertibility problem for Toeplitz operators with continuous symbol was
observed in [29].1 Proposition 7.24 was proved by Coburn in [16]. The content of Corollary
7.27 is the culmination of several authors! including Krein [72], Calderon, Spitzer, and
Widom [13], Widom [110], and Devinatz [24]. The proof given here first appears! in [29]
and independently in [3], where Atiyah used the matrix analog in a proof of the periodicity
theorem. A related proof was given by Gohberg and Fel’dman [45]. The study of Toeplitz
operators with symbol in H* +C (T) was made in [30] with complements in [77] and [103].

The invertibility criteria stated in Theorem 7.30 and its corollary were given indepen-
dently by Widom [111] and Devinatz [24] and are based on a study in prediction theory
by Helson and Szégo [64]. The spectral inclusion theorem given in Theorem 7.32 is based
on an extension by Lee and Sarason [77] of a result of the author [31]. The question of
the connectedness of the spectrum of a Toeplitz operator was posed by Halmos in [57] and
answered by Widom in [113] and [114]. The proof of Theorem 7.45 is a slight adaptation
of that in [114] to cover the essential spectrum and avoiding certain measure theoretic
considerations as well as the use of the harmonic conjugate. The possibility of the essential
spectrum being connected was suggested to the author by Abrahamse.

Theorem 7.47 is closely related to various central decompositions in C*-algebraZ (see
[96]) but its application to Toeplitz operators is new, and these results were suggested by
the earlier Corollaries 7.51 and 7.52. The first corollary is due to Simonenko [102] and
independently to Douglas and Sarason [35] and extends a result of Douglas and Widom
[38]. The second corollary is due to Sarason [98].

Several further developments and additional topics should be mentioned. The invert-
ibility problem for symbols in the algebra of piecewise continuous functions has been
considered by Widom [110], Devinatz [24], and from the algebra viewpoint by Gohberg
and Krupnik [50]. The invertibility problem has also been considered for certain algebras of
functions which appear more natural in the context of the line. The algebra of almost periodic

1Actually this approach is due to Gohberg [On an application of the theory of normed rings to singular
integral equations, Uspekhi Mat. Nauk 7, 149-156 (1952)] and [On the number of solutions of a
homogeneous singular integral equation with continuous coefficients, Dokl. Akad. Nauk SSSR 122,
327-330 (1968)).

2Earlier results in which this idea occurred in the context of Banach algebras are due to I. Kaplansky.
[The structure of certain operator algebras, Trans. Amer. Math. Soc., 70, 219-255 (1951)], G.R. Allan
[Ideals of vector-valued functions, Proc. London Math. Soc. (3) 18, 193-216 (1968)] and J. Dans-R.H.
Hoffman [Representation of rings by sections, Memoirs Amer. Math. Soc., 93 Providence, R.L., 1968].
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functions was considered independently by Coburn and Douglas [19] and by Gohberg
and Fel’dman [46], [47]. Actually, the latter authors considered the Fourier transforms of
measures having no continuous singular part. The problem for the Fourier transform of an
arbitrary measure has been considered by Douglas and Taylor [37] using a deep result [108]
of the latter on the cohomology of the maximal ideal space of the convolution algebra of
measures. Lastly, Lee and Sarason [77] and Douglas and Sarason [36] have considered the
invertibility problem for certain functions of the form ¢ for inner functions ¢ and .

Generalizations of the notion of Toeplitz operator have been considered by many authors:
Douglas and Pearcy studied the role of the F. and M. Riesz theorem in [33]; Devinatz studied
Toeplitz operators on the H2-space of a Dirichlet algebra [24]; Devinatz and Shinbrot [26]
studied the invertibility of compressions of operators to subspaces; and Abrahamse studied
Toeplitz operators defined on the H?2-space of a finitely connected region in the plane [1].
A different kind of generalization is obtained by considering Wiener-Hopf operators. A
subsemigroup of an abelian group is prescribed, and convolution operators compressed to
the corresponding L? space of functions supported on it are studied. Certain basic results
for rather arbitrary semigroups are obtained by Coburn and Douglas in [20]. Earlier work
involving half-spaces is due to Goldenstein and Gohberg [52] and [53]. The case of the
quarter plane is of particular importance and coincides with Toeplitz operators defined on
H? of the bidisk. Results on this have been obtained by Simonenko [101], Osher [84],
MalySev [78], Strang [106], and Douglas and Howe [32]. In particular, the latter authors
obtain necessary and sufficient conditions for such a Toeplitz operator to be a Fredholm
operator. They show, moreover, that while such an operator must have index zero, it need
not be invertible.

In many of the preceding contexts, various topological invariants of the symbol enter
into the determination of when the corresponding operator is invertible, and usually these
invariants must be zero. In the case of a continuous sumbol on the circle, a nonzero invariant
corresponds to the operator being a Fredholm operator having a nonzero index. A start at
establishing similar results for the other classes of operators has been made by Coburm,
Douglas, Schaeffer, and Singer in [21] where a generalized notion of Fredholm operator
due to Breuer [8], [9] is utilized. It is expected that questions of this kind will prove important
in future developments.

Although attention in this book has been confined to the scalar case, the matrix case is
perhaps of even greater importance. The function ¢ is allowed to have n x n matrices as
values and to operate on a C"-valued H2-space. Many of the techniques of this chapter can
be carried over to this case using the device of the tensor product. More specifically, if %
is an algebra of scalar functions, %, is equal to A ® M,, where M, is the C*-algebra
of operators on the n-dimensional Hilbert space C”, and more importantly, T(U,) is
isometrically isomorphic to £(¥) ® M,. In particular, applying this to one of the exact
sequences considered in the chapter one obtains the exact sequence

©) - SE(HY) @ M, — z(cor)) ® M, - C(T)® M, — (0).

(The fact that the “scalar” sequence has a continuous cross section is also used.) Since
LE(H?) ® M, is equal to R€(H? ® C"), one obtains that a matrix Toeplitz operator with
continuous symbol is a Fredholm operator if and only if the determinant function does not
vanish on the circle. Moreover, the index can be shown to equal minus the winding number
of the determinant. (This latter argument uses the fact that every cotninuous mapping from
T into the invertible n x n matrices is homotopic to a mapping from T to the invertible
diagonal matrices.)

This latter result is due to Gohberg and Krein[49]. A generalization to certain operator-
valued analogs can be found in [31]. Additional results on the matrix and operator-valued
case are in [87] and [88].

Lastly, although this book does not comment on it, the study of Toeplitz and Wiener-Hopf
operators is important in various areas of physics and probability (see [54], [69], [83]) and
in examining the convergence of certain differences schemes for solving partial differential
equations (see [83]).
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Exercises

7.1 If % and B are C*-algebras and p is an isometric *-linear map from ¥ into B, then
o(T) C o(p(T)) for T in Y. (Hint: If T is not left invertible in %, then there exists
{Sz}2, in A such that ||S,]] = 1 and lim,_. [|S,T[| = 0.) If, in addition, U is
commutative, then o (o(T)) C hlo (T)] for T in U.

7.2 If ¢ is a nonconstant real function in L*(T), then T, has no eigenvalues.

7.3 An operator T in R(H?) is a Toeplitz operator if and only if
T TT,, =T.

7.4 If ¢ is anonzero function in L*°(T), then My, and T,, have no eigenvalues in common.

7.5 If ¢ is areal function, then Ty, is invertible if and only if the function 1 is in its range.

7.6 If pisin L%°(T), then W(T,) = h[R(p)].

7.7 If @1, ¢z, and @3 are functions in L*°(T) such that T, T,,, — T, is compact, then
P12 = @3.

Definition If {c,}32, is a bounded sequence of complex numbers, then the associated

Hankel matrix {a;; }ﬁ‘}.:o is defined by a;; = a;; for i, j in Z+.

7.8 (Nehari) If {a,}32 , is a bounded sequence, then the Hankel operator H defined by the
associated Hankel matrix is bounded if and only if there exists a function ¢ in L*(T)
such that

1 [ )
ap = ——f p(e") xn(e") dt.
2 0

Moreover, the norm of H is equal to the infimum of the norm ||¢|| for all such
functions ¢.* (Hint: Consider the linear functional L defined on H? by L(f) =
(Hg, h), where f = gh, and show that L is continuous if H is bounded.)

7.9 (Hartman) If {,}32, is a bounded sequence, then the associated Hankel operator is
compact if and only if there exists a continuous function ¢ on T such that

1 [ . .
a, = ——/ o) xn(e")dt for ninR*™.*
2 0

(Hint: Use Exercise 1.33 to show that a certain linear functional L is w*-continuous
if and only if H is compact and apply the analog of Exercise 6.36.)

7.10 An operator H in 2(H?) is a Hankel operator if and only if ToH=HT,.

7.11 If ¢ is in L°°(T), then 7(T,,) is unitary in (L (T))/RE(H?) if and only if ¢ is in
QC and unimodular.” (Hint: Show that the Hankel operator H,, is compact if and only
if 7 (T;) is an isometry in T(L®(T))/RE(H?).)

7.12 If g is in L°(T), then 7 (T,,) is in the center of T(L*®(T))/LE(H?) if and only if ¢

is in QC. Are there any other operators in the center?**3

3In [Local Toeplitz Operators, Proc. London Math. Soc. (3) 36, 243-272 (1978)] I completed the proof
that QC is the center of L(L>(I1))/RC(H?).
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7.13 Show that T} T,,—T,, is compact forevery x in L°(T) ifand only if @ isin H*+C(T).
(Hint: Ty Ty — Ty, should be rewritten in terms of Hankel operators.)

7.14 If p isin H* 4 C(T), then ¢ is invertible in L*°(T) if and only if 7, has closed range.

7.15 If 4 isin H*® + C(T) and A is in o (7,)\R (@), then either A is an eigenvalue for T,
or A is an eigenvalue for 7.

7.16 (Widom-Devinarz) If ¢ is an invertible function in L*(T), then T, is invertible if and
only if there exists an outer function g such that

larggol < m/2 -8
foré > 0.

7.17 Show that there exists a natural homomorphism y of Aut[Z(C(T))] onto the group
Hom, (T) of orientation preserving homeomorphisms of T. (Hint: If ¢ is in Hom, (T),
then there exists K in 2€(H?) such that T,, + K is a unilateral shift.)

7.18 Show that the connected component Autg[Z(C(T))] of the identity in Aut[(C(T))]
is contained in the kernel of y. Is it equal 7%*4

7.19 If ¢ is a unimodular function in QC and K is appropriately chosen in RC(H?),
then &(T) = (T, + K)*T (T, + K) defines an automorphism on E(C(T)) in the
kernel of y. Show that the automorphisms of this form do not exhaust ker y.* Is & in
Autg[T(C(T)))7**5

7.20 If V is a pure isometry on ¥ and E, is the projection onto V"¥, then U, =
3 o €™ (E, — Ept1) is a unitary operator on % for ¢ in T. If we set 8,(T) = U}TU,
for T in the C*-algebra €y generated by V, then the mapping I'(¢”') = B, is a
homomorphism from the circle group into Aut[€y] such that F(e!) = B,(T) is
continuous for T in €,. Is it norm continuous? Moreover, for V = T,,, the unitary
operator U, coincides with that induced by rotation by e on H?.

7.21 Identify the fixed points &y for the B, as a maximal abelian subalgebra of €y . (Hint:
Consider the case of V = Ty, , acting on 12(Z..).)

7.22 Show that the mapping p defined by
1 2
p(T) = ——f B (T) dt for TinGy
2 0

is a contractive positive map from €y onto $ which satisfies p(T F) — p(T)F for
TinCyand Fin &y .

7.23 If V; and V; are pure isometries on ¥, and %, respectively, such that there exists a
*-homomorphism ® from €y, to €y, with ®(V;) = V,, then P is an isomorphism.
(Hint: Show that p o @ = ® o p and that ®|Fy, is an isomorphism.)

7.24 If A and B are operators on ¥ and X, respectively, and ® is a *-homomorphism from
€4 to €p with ®(A) = B, then there exists *-isomorphism W from € 455 to €4 such
that W(A @ B) = A.

4Although there has been no progress on this problem, some related results have been obtained by
P.S. Muhly and J. Xia [Automorphisius of the Toeplite Algebra, Proc. Amer. Math. Soc. 116, no. 4,
1067-76 (1992)).

5See footnote 4.
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7.25 If V is a pure isometry on % and W is a unitary operator on ¥, then there exists a
*_isomorphism W from €ygw onto €y such that W(V & W) = V.

7.26 (Coburn) If V; and V, are nonunitary isometries on ¥; and %, respectively, then
there exists a *-isomorphism ¥ from €y, onto €y, such that ¥(V;) = V,.

Definition A C*-algebra % is said to be an extension of & by C(T), if there exists a
*_isomorphism ® from LE(#) into U and a *-homomorphism ¥ from ¥ onto C(T) such
that the sequence

0) — &%) 2 A L (M) — (0)

is exact. Two extensions %; and U, will be said to be equivalent if there exists a *-
isomorphism 6 from ¥, onto U, and an automorphism « in Aut[RE(¥)] such that the

diagram
LEE)—2» A

/ N
) a 6 Cc(M —» (0)

L2}

LE (%) %
commutes.5

7.27 If N is a positive integer and Ty is the C*-algebra generated by Ty, and RE€(H?),
then Ly is an extension of LE by C(T) with ¥ (T}, ) = x1. Moreover, Ty and Ty
are isomorphic C*-algebras if and only if N = M. (Hint: Consider index in Ey.)

7.28 Let K2 = L%*(T) © H?, Q be the orthogonal projection onto K2, and define
Se = OMy|K 2, If N is a negative integer and Sy is the C*-algebra generated
by S, and RE(K?), then Gy is an extension of & by C(T) with ¥(S,,) = xi-
Moreover, the extensions ¥y and Sy are all inequivalent despite the fact that the
algebras Ty and Gy are isomorphic.

7.29 Let E be aclosed perfect subset of T and i be a probability measure on T such that the
closed support of u is T and the closed support of the restriction w £ of u to E is also
E.If A is the C*-algebra generated by M,, on L?(x) and R€(L?(ug)), then A is
an extension of 8€ by C(T) with ¥(M,,) = x;. Moreover, two of these extensions
are equivalent if and only if the set E is the same.

7.30 If E is a closed subset of T, then E = Eo U {e : n > [}, where E, is a closed
perfect subset of T. Let u be a probability measure on T such that the closed support

SIn subsequent work it became apparent that the notion of equivalence for extensions most closely
connected with operator theory requires a to be the identity map. This study revealed fundamental
connections between operator algebras and algebraic topology and began the subject now known as
noncommutative topology and geometry. The basic results first appeared in joint work with L.G. Brown
and P.Q. Fillmore [Extensions of C*-algebras and K -homology, Ann. Math. (2) 105, 265-324 (1977)].
An overview of the subject can be found in [C*-algebra Extensions and K-homology, Ann. Math.
Studies 97, Princeton (1980)]. Connections with operator theory and the subject of this book are most
apparent when X is a subset of the plane. The extent to which the topic has grown can be seen in a
recent exposition by A. Connes [Noncommutative Geometry, Academic Press, San Diego (1994)].
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731

7.32

7.33

7.34

7.35

7.36

737

7.38

7.39

of p is T and the closed support of the restriction ug, of u to E, is also E,. If Ug
is the C*-algebra generated by W = M,, ® Y_,., ®M,in on L2(0) ® Y., ®I*(2)
and RE(L%(ug,) ® Y,.., ®I*(2)), then A is an extension of L& by C(T) with
W(W) = x; Moreover, two of these extensions are equivalent if and only if the sets
E are the same.

Every extension U of K€ by C(T) is equivalent to exactly one extension of the
form Ty, Sy, or Ug.* (Hint: Assume U is contained in A(F) and decompose the
representation of & on #. Use Exercises 5.18-5.19.)

If T is an operator on ¥ such that 0,(T) = T and T*T — TT* is compact, then the
C*-algebra generated by T is an extension of € by C(T) with W(T) = x;. Which
one is it?

If B? is the closure of the polynomials in L?(DD) with planar Lebesgue measure and
Pg is the projection of L2(D) onto B2, then the C*-algebra generated by the operators
{Ry, : ¢ € C(D)}, where R, = PpM,|B?, is an extension of C(T) by € with
W(R,,) = x1. Which one is it?*

If A is an extension of XE by C(T), determine the range of the mapping from Aut(2l)
to Aut(C(T)).*

If Aisin T and ¢ is in L°(T), then $(3F,) C o (®r(T,)) C h(9(dF,)), where @ is
the harmonic extension of ¢ to the Silov boundary of H.

(Widom) If ¢ is in PC, ¢* is the curve obtained from the range of ¢ by filling in the
line segments joining (e ") to ¢(e'**) for each discontinuity, then T, is a Fredholm
operator if and only if ¢¥ does not contain the origin. Moreover, in this case the index
of T, is minus the winding number of ¢*.* (Hint: Use Corollary 7.51 to show that T,
is a Fredholm operator in this case and that the index is minus the winding number of
o*. If p* passes through the origin, then small perturbations of ¢ produce Fredholm
operators of different indexes.)

(Gohberg-Krupnik) The quotient algebra T(PC)/QE(H?) is a commutative C*-
algebra. Show that its maximal ideal space can be identified as a cylinder with an
exotic topology.*

If X is an operator on H? such that T;XT, — X is compact for each inner function
@, thenis X = T, + K for some ¥ in L* and compact operator K 7**7

If for each z in C, ¢, is a function in L%°(T) such that ¢, (¢**) is an entire function in
z having at most N zeros for each ¢/ in T, then the set of z for which T, fails to be
invertible is a closed subset of C having at most N components.* (Repeat the whole
proof of Theorem 7.45.)

7Although this problem remains open, K. Davidson has shown [On Operators Commuting with Toeplitz
Operators Modulo the Compact Operators, J. Functional Analysis 24, 291-302 (1977)] that if the
commutator [T, X] is compact for each ¢ in H® + C, then X = Ty + K for some ¢ in H® + C

and K in X.
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