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Preface 

The classical theory of Fourier series and integrals, as well as La place trans­
forms, is of great importance for physical and technical applications, and 
its mathematical beauty makes it an interesting study for pure mathemati­
cians as well. I have taught courses on these subjects for decades to civil 
engineering students, and also mathematics majors, and the present volume 
can be regarded as my collected experiences from this work. 

There is, of course, an unsurpassable book on Fourier analysis, the trea­
tise by Katznelson from 1970. That book is, however, aimed at mathemat­
ically very mature students and can hardly be used in engineering courses. 
On the other end of the scale, there are a number of more-or-less cookbook­
styled books, where the emphasis is almost entirely on applications. I have 
felt the need for an alternative in between these extremes: a text for the 
ambitious and interested student, who on the other hand does not aspire to 
become an expert in the field. There do exist a few texts that fulfill these 
requirements (see the literature list at the end of the book), but they do 
not include all the topics I like to cover in my courses, such as Laplace 
transforms and the simplest facts about distributions. 

The reader is assumed to have studied real calculus and linear algebra 
and to be familiar with complex numbers and uniform convergence. On 
the other hand, we do not require the Lebesgue integral. Of course, this 
somewhat restricts the scope of some of the results proved in the text, but 
the reader who does master Lebesgue integrals can probably extrapolate 
the theorems. Our ambition has been to prove as much as possible within 
these restrictions. 
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Some knowledge of the simplest distributions, such as point masses and 
dipoles, is essential for applications. I have chosen to approach this mat­
ter in two separate ways: first, in an intuitive way that may be sufficient 
for engineering students, in star-marked sections of Chapter 2 and sub­
sequent chapters; secondly, in a more strict way, in Chapter 8, where at 
least the fundaments are given in a mathematically correct way. Only the 
one-dimensional case is treated. This is not intended to be more than the 
merest introduction, to whet the reader's appetite. 

Acknowledgements. In my work I have, of course, been inspired by exist­
ing literature. In particular, I want to mention a book by Arne Broman, 
lntroduction to Partial Differential Equations ... (Addison-Wesley, 1970), a 
compendium by Jan Petersson of the Chalmers Institute of Technology in 
Gothenburg, and also a compendium from the Royal Institute of Technol­
ogy in Stockholm, by Jockum Aniansson, Michael Benedicks, and Karim 
Daho. I am grateful to my colleagues and friends in Uppsala. First of all 
Professor Yngve Domar, who has been my teacher and mentor, and who 
introduced me to the field. The book is dedicateq to him. 1 am also partic­
ularly indebted to Gunnar Berg, Christer O. Kiselman, Anders Kăllstrom, 
Lars-Ăke Lindahl, and Lennart Salling. Bengt Carlsson has helped with 
ideas for the applications to control theory. The problems have been worked 
and re-worked by Jonas Bjermo and Daniel Domert. If any incorrect an­
swers still remain, the blame is mine. 

Finally, special thanks go to three former students at Uppsala University, 
Mikael Nilsson, Matthias Palmer, and Magnus Sandberg. They used an 
early version of the text and presented me with very constructive criticism. 
This actually prompted me to pursue my work on the text, and to translate 
it into English. 

Uppsala, Sweden 
January 2003 

Anders Vret blad 
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1 
Introd uction 

1.1 The classical partial differential equations 

In this introductory chapter, we give a brief survey of three main types of 
partial differential equations that occur in classical physics. We begin by 
establishing some convenient notation. 

Let n be a domain (an open and connected set) in three-dimensional 
space R 3 , and let T be an open interval on the time axis. By Ck(O), resp. 
Ck(n x T), we mean the set of all real-valued functions u(x, y, z), resp. 
u(x, y, z, t), with all their partial derivatives of order up to and including 
k defined and continuous in the respective regions. It is often practica! to 
collect the three spatial coordinates (x, y, z) in a vector x and describe the 
functions as u(x), resp. u(x, t). By ~ we mean the LAPLACE operator 

2 82 82 82 
~ = '\7 := 8x2 + 8y2 + 8z2 · 

Partial derivatives will mostly be indicated by subscripts, e.g., 

8u 
Ut=8t' 

The first equation to be considered is called the heat equation or the 
diffusion equation: 

1 8u 
~u = a2 ât' (x, t) E n X T. 
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As the name indicates, this equation describes conduction of heat in a 
homogeneous medium. The temperature at the point x at time t is given 
by u(x, t), and a is a constant that depends on the conducting properties 
of the medium. The equation can also be used to describe various processes 
of diffusion, e.g., the diffusion of a dissolved substance in the solvent liquid, 
neutrons in a nuclear reactor, BROWNian motion, etc. 

The equation represents a category of second-order partial differential 
equations that is traditionally categorized as pambolic. Characteristically, 
these equations describe non-reversible processes, and their solutions are 
highly regular functions (of class 0 00 ). 

In this book, we shall solve some special problems for the heat equa­
tion. We shall be dealing with situations where the spatial variable can be 
regarded as one-dimensional: heat conduction in a homogeneous rod, com­
pletely isolated from the exterior (except possibly at the ends of the rod). 
In this case, the equation reduces to 

1 
Uxx = 2Ut. 

a 

The wave equation has the form 

(x,t) E 0 X T. 

where c is a constant. This equation describes vibrations in a homogeneous 
medium. The value u(x, t) is interpreted as the deviation at time t from 
the position at rest of the point with rest position given by x. 

The equation is a case of hyperbolic equations. Equations of this category 
typically describe reversible processes ( the past can be deduced from the 
present and fu ture by "reversion of time"). Sometimes it is even sui table 
to allow solutions for which the partial derivatives involved in the equation 
do not exist in the usual sense. (Think of shock waves such as the sonic 
bangs that occur when an aeroplane goes supersonic.) We shall be studying 
the one-dimensional wave equation later on in the book. This case can, for 
instance, describe the motion of a vibrating string. 

Finally we consider an equation that does not involve time. It is called 
the Laplace equation and it looks simply like this: 

~u=O. 

It occurs in a number of physical situations: as a special case of the heat 
equation, when one considers a stationary situation, a steady state, that 
does not depend on time (so that Ut =O); as an equation satisfied by the 
potential of a conservative force; and as an object of considerable purely 
mathematical interest. Together with the closely related POISSON equa­
tion, ~u(x) = F(x), where Fis a known function, it is typical of equations 
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classified as elliptic. The solutions of the La place equation are very regular 
functions: not only do they have derivatives of all orders, there are even cer­
tain possibilities to reconstruct the whole function from its local behaviour 
near a single point. (If the reader is familiar with analytic functions, this 
should come as no news in the two-dimensional case: then the solutions 
are harmonic functions that can be interpreted (locally) as real parts of 
analytic functions.) 

The names elliptic, pambolic, and hyperbolic are due to superficial sim­
ilarities in the appearance of the differential equations and the equations 
of conics in the plane. The precise âefinitions of the different types are as 
follows: The unknown function is u = u(x) = u(x1.x2, ... ,xm)· The equa­
tions considered are linear; i.e., they can be written as asum of terms equal 
to a known function (which can be identically zero), where each termin 
the sum consists of a coefficient (constant or variable) times some deriva­
ti ve of u, or u itself. The derivatives are of degree at most 2. By changing 
variables (possibly locally around each point in the domain), one can then 
write the equation so that no mixed derivatives occur ( this is analogous to 
the diagonalization of quadratic forms). It then reduces to the form 

a1uu + a2u22 + · · · + amUmm + {terms containing Uj and u} = f(x), 

where Uj = 8uf8xj etc. If all the ai have the same sign, the equation is 
elliptic; if at least one of them is zero, the equation is parabolic; and if 
there exist ai 's of opposite signs, it is hyperbolic. 

An equation can belong to different categories in different parts of the 
domain, as, for example, the TRICOMI equation Uxx + xuyy = O ( where 
u = u(x, y)), which is elliptic in the right-hand half-plane and hyperbolic 
in the left-hand half-plane. Another example occurs in the study of the 
so-called velocity potential u(x, y) for planar laminary fluid flow. Consider, 
for instance, an aeroplane wing in a streaming medium. In the case of ideal 
flow one has ~u =O. Otherwise, when there is friction (air resistance), the 
equation looks something like (1-M2)uxx+uyy =O, with M = vfv0, where 
v is the speed of the flowing medium and vo is the velocity of sound in the 
medium. This equation is elliptic, with nice solutions, as long as v < v0 , 

while it is hyperbolic if v > vo and then has solutions that represent shock 
waves (sonic bangs). Something quite complicated happens when the speed 
of sound is surpassed. 

1.2 Well-posed problems 

A problem for a differential equation consists of the equation together with 
some further conditions such as initial or boundary conditions of some form. 
In order that a problem be "nice" to handle it is often desirable that it have 
certain properties: 
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1. There exists a solution to the problem. 

2. There exists only one solution (i.e., the solution is uniquely deter­
mined). 

3. The solution is stable, i.e., small changes in the given data give rise 
to small changes in the appearance of the solution. 

A problem having these properties ( the third condition must be made 
precise in some way or other) is traditionally said to be well posed. It is, 
however, far from true that all physically relevant problems are well posed. 
The third condition, in particular, has caught the attention of mathemati­
cians in recent years, since it has become apparent that it is often very 
hard to satisfy it. The study of these matters is part of what is popularly 
labeled chaos research. 

To satisfy the reader's curiosity, we shall give some examples to illuminate 
the concept of well-posedness. 

Example 1.1. It can be shown that for suitably chosen functions f E coo, 
the equation Ux + Uy + (x + 2iy)ut = f has no solution u = u(x, y, t) at 
all (in the class ofpomplex-valued functions) (Hans Lewy, 1957). Thus, in 
this case, condition 1 fails. O 

Example 1.2. A natural problem for the heat equation (in one spatial 
dimension) is this one: 

Uxx(x, t) = Ut(X, t), x >O, t > O; u(x, O) =O, x > O; u(O, t) =O, t > O. 

This is a mathematical model for the temperature in a semi-infinite rod, 
represented by the positive x-axis, in the situation when at time O the rod 
is at temperature O, and the end point x = O is kept at temperature O the 
whole time t > O. The obvious and intuitive solution is, of course, that the 
rod will remain at temperature O, i.e., u(x, t) =O for ali x >O, t >O. But 
the mathematical problem has additional solutions: let 

u(x, t) = t~2 e-x2 
/(4t) , x > O, t > O. 

It is a simple exercise in partial differentiation to show that this function 
satisfies the heat equation; it is obvious that u(O, t) = O, and it is an 
easy exercise in limits to check that Iim u(x, t) =O. The function must be 

t'\,0 
considered a solution of the problem, as the formulation stands. Thus, the 
problem fails to have property 2. 

The disturbing solution has a rather peculiar feature: it could be said to 
represent a certain (finite) amount of heat, located at the end point of the 
rod at time O. The value of u( v'2t, t) is .j(2/ejjt, which tends to +oo as 
t \.t O. One way of excluding it as a solution is adding some condition to 
the formulation of the problem; as an example it is actually suffi.cient to 
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demand that a solution must be bounded. (We do not prove here that this 
does sol ve the dilemma.) D 

Example 1.3. A simple example of instability is exhibited by an ordinary 
differential equation such as y"(t) + y(t) = f(t) with initial conditions 
y(O) = 1, y'(O) =O. If, for example, we take f(t) = 1, the solution is y(t) = 
1. Ifwe introduce a small perturbation in the right-hand member by taking 
f(t) = 1 +c:cost, where c: =/:O, the solution is given by y(t) = 1 +! c:tsint. 
As time goes by, this expression will oscillate with increasing amplitude 
and "explode". The phenomenon is called resonance. D 

1.3 The one-dimensional wave equation 

We shall attempt to find all solutions of class C2 of the one-dimensional 
wave equation 

Initially, we consider solutions defined in the open half-plane t >O. 
Introduce new coordinates (~, ry), defined by 

~ = X - ct, '17 = X + ct. 

It is an easy exercise in applying the chain rule to show that 

· 82u 82u 82u 82u 
Uxx = 8x2 = 8~2 + 2 8~ 8ry + 8ry2 

82u 2 (82u 82u 82u) 
Utt = 8t2 = C 8~2 - 2 8~ 8ry + 8ry2 . 

Inserting these expressions in the equation and simplifying we obtain 

8 (8u) 8~ 8ry =o. 

Now we can integrate step by step. First we see that 8u/8ry must be a 
function of only ry, say, 8u/8ry = h(ry). If 1/J is an antiderivative of h, another 
integration yields u = cp(~) + 1/J(ry), where cp is a new arbitrary function. 
Returning to the original variables (x, t), we have found that 

u(x, t) = cp(x- ct) + 1/J(x + ct). (1.1) 

In this expression, cp and 1/J are more-or-less arbitrary functions of one 
variable. If the solution u really is supposed to be of class C2, we must 
demand that cp and 1/J have continuous second derivatives. 

It is illuminating to take a closer look at the significance of the two terms 
in the solution. First, assume that 1/J(s) = O for all s, so that u(x, t) = 
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FIGURE 1.1. 

FIGURE 1.2. 

cp(x- ct). For t = O, the graph of the function x H u(x, O) looks just like 
the graph of cp itself. At a later moment, the graph of x H u(x, t) will 
have the same shape as that of cp, but it is pushed ct units of length to the 
right. Thus, the term cp(x- ct) represents a wave moving to the right along 
the x-axis with constant speed equal to c. See Figure 1.1! In an analogous 
manner, the term 'lj;(x + ct) describes a wave moving to the left with the 
same speed. The general solution of the one-dimensional wave equation 
thus consists of a superposition of two waves, moving along the x-axis in 
opposite directions. 

The lines x ± ct = constant, passing through the half-plane t > O, consti­
tute a net of level curves for the two terms in the solution. These lines are 
called the chamcteristic curves or simply chamcteristics of the equation. 
If, instead ofthe half-plane, we study solutions in some other region D, the 
derivation of the general solution works in the same way as above, as long 
as the characteristics run unbroken through D. In a region such as that 
shown in Figure 1.2, the function cp need not take on the same value on the 
two indicated sections that do lie on the same line but are not connected 
inside D. In such a case, the general solution must be described in a more 
complicated way. But if the region is convex, the formula (1.1) gives the 
general solution. 
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Remark. In a way, the general behavior of the solution is similar also in higher 
spatial dimensions. For example, the two-dimensional wave equation 

82u 82u 1 82u -+-=--8x2 8y2 c2 8t2 

has solutions that represent wave-shapes passing the plane in all directions, and 
the general solution can be seen as a sort of superposition of such solutions. But 
here the directions are infinite in number, and there are both planar and circular 
wave-fronts to consider. The superposition cannot be realized as a sum- one 
has to use integrals. It is, however, usually of little interest to exhibit the general 
solution of the equation. It is much more valuable to be able to pick out some 
particular solution that is of importance for a concrete situation. D 

Let us now solve a natural initial value problem for the wave equation 
in one spatial dimension. Let f(x) and g(x) be given functions on R. We 
want to find all functions u(x, t) that satisfy 

(P) { 
C2 Uxx = Utt , 
u(x, O) = f(x ), 

-oo < x < oo, t > O; 

Ut(x, O)= g(x), -oo < x < oo. 

(The initial conditions assert that we know the shape of the solution at 
t = O, and also its rate of change at the same time.) By our previous 
calculations, we know that the solution must have the form (1.1), and so 
our task is to determine the functions r.p and 1/J so that 

f(x) = u(x,O) = r.p(x)+'l/J(x), g(x) = Ut(x,O) = -c<p'(x)+c'l/J'(x). (1.2) 

An antiderivative of g is given by G(x) = J; g(y) dy, and the second formula 
can then be integrated to 

1 
-<p(x) + 'lj;(x) = - G(x) + K, 

c 

where K is the integration constant. Combining this with the first formula 
of (1.2), we can solve for r.p and 1/J: 

r.p(x) = ~ (t(x)- ~ G(x)- K), 'lj;(x) = ~ (t(x) + ~ G(x) + K). 
Substitution now gives 

u(x, t) = r.p(x- ct) + 'lj;(x + ct) 

1 ( 1 1 ) = 2 f(x- ct) - ~ G(x - ct) - K + f(x + ct) + ~ G(x + ct) + K 

f(x- ct) + f(x + ct) G(x + ct) - G(x - ct) 
= 2 + 2c 

x+ct 

_ f(x - ct) + f(x + ct) 1 j ( ) d 
- 2 + 2c g y y. (1.3) 

x-ct 
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(xo,to) 

x - c:t = const. x + c:t = const. 

--------L-----------~----------~-------+x xo-cto xo xo+cto 

FIGURE 1.3. 

The final result is called D' ALEMBERT'S formula. It is something a:s rare 
as an explicit ( and unique) solution of a problem for a partial differential 
equation. 

Remark. If we want to compute the value of the solution u(x, t) ata particular 
point (xo, to), d'Alembert's formula tells us that it is sufficient to know the initial 
values on the interval [xo- cto, x0 + ct0]: this is again a manifestation of the fact 
that the "waves" propagate with speed c. Conversely, the initial values taken on 
[xo- ct0 , x0 + ct0] are sufficient to determine the solution in the isosceles triangle 
with base equal to this interval and having its other sides along characteristics. 
See Figure 1.3. D 

In a similar way one can salve suitably formulated problems in other 
regions. We give an example for a semi-infinite spatial interval. 

Example 1.4. Find all solutions u(x, t) of Uxx = Utt for x >O, t >O, that 
satisfy u(x, O) = 2x and Ut(x, O) = 1 for x >O and, in addition, u(O, t) = 2t 
fort> O. 

Solution. Since the first quadrant of the xt-plane is convex, all solutions of 
the equation must have the appearance 

u(x, t) = cp(x- t) + 'lj;(x + t), X> 0, t > 0. 

Our task is to determine what the functions cp and 'ljJ look like. We need 
information about 'lj;(8) when 8 is a positive number, and we must find out 
what cp(8) is for all real 8. 

If t =O we get 2x = u(x, O)= cp(x) + 'lj;(x) and 1 = Ut(x, O)= -cp'(x) + 
'1/J'(x); and for x =O we must have 2t = cp( -t) +'lj;(t). To liberate ourselves 
from the magic of letters, we neutralize the name of the variable and call 
it 8. The three conditions then look like this, collected together: 

{ 
28 = cp(8) + 'lj;(8) 
1 = -cp1(8) + 'lj;1(8) 

28 = cp( -8) + 'lj;(8) 
8 >o. 
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The second condition can be integrated to -cp(s) + 'l/;(s) = s + C, and 
combining this with the first condition we get 

cp(s)=~s-~C, 'lj;(s)=~s+~C fors>O. 

The third condition then yields cp( -s) = 2s- 'lj;(s) = ~ s- ~ C, s > O, 
where we switch the sign of s to get 

cp(s) = -~ s- ~ C for s <O. 

Now we put the sol11tion together: 

{~(x- t) + ~(x + t) = 2x + t, x > t >O, 
uxt= x-t+ x+t= ( ' ) cp( ) '1/J( ) ~(t- x) + ~(x + t) = x + 2t, O< x < t. 

Evidently, there is just one solution of the given problem. 
A closer look shows that this function is continuous along the line x = t, 

but it is in fact not differentiable there. It represents an "angular" wave. 
It seems a trifle Jastidious to reject it as a solution of the wave equation, 
just because it is not of class C2 • One way to salve this conflict is furnished 
by the theory of distributions, which generalizes the notion of functions in 
such a way that even "angular" functions are assigned a sort of derivative. 

o 

Exercise 

1.1 Find the solution of the problem (P), when f(x) = e-"'2
, g(x) = -1 

1 
2 • 

+x 

1.4 Fourier's method 

We shall give a sketch of an idea that was tried by JEAN-BAPTISTE JOSEPH 
FOURIER in his famous treatise of 1822, Theorie analytique de la chaleur. 
It constitutes an attempt at solving a problem for the one-dimensional 
heat equation. If the physical units for heat conductivity, etc., are suitably 
chosen, this equation can be written as 

Uxx = Ut, 

where u = u(x, t) is the temperature at the point x on a thin rodat time 
t. We assume the rod to be isolated from its surroundings, so that no 
exchange of heat takes place, except possibly at the ends of the rod. Let 
us now assume the length of the rod .to be 11", so that it can be identified 
with the interval [0, 11"] of the x-axis. In the situation considered by Fourier, 
both ends of the rod are kept at temperature O from the moment when 
t = O, and the temperature of the rod at the initial moment is assumed to 
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be equal to a known function f(x). It is then physically reasonable that we 
should be able to find the temperature u(x, t) at any point x and at any 
time t >O. The problem can be summarized thus: 

{ 
(E) Uxx = Ut, 

(B) u(O, t) = u(1r, t) =O, 

(I) u(x, O)= f(x), 

o< X< 71", t >O; 

t >O; 

0<x<1l". 
(1.4) 

The letters on the left stand for equation, boundary conditions, and ini­
tial condition, respectively. The conditions (E) and (B) share a specific 
property: if they are satisfied by two functions u and v, then all linear 
combinations au + (Jv of them also satisfy the same conditions. This prop­
erty is traditionally expressed by saying that the conditions (E) and (B) 
are homogeneous. Fourier's idea was to try to find solutions to the partial 
problem consisting of just these conditions, disregarding (I) for a while. 

It is evident that the function u(x, t) = O for all (x, t) is a solution of 
the homogeneous conditions. It is regarded as a trivial and uninteresting 
solution. Let us instead look for solutions that are not identically zero. 
Fourier chose, possibly for no other reason than the fact that it turned out 
to be fruitful, to look for solutions having the particular form u(x, t) = 
X(x) T(t), where the functions X(x) and T(t) depend each on just one of 
the variables. 

Substituting this expression for u into the equation (E), we get 

X"(x) T(t) = X(x) T'(t), 0 <X< 71", t > 0. 

If we divide this by the product X(x) T(t) (consciously ignoring the risk 
that the denominator might be zero somewhere), we get 

X"(x) T'(t) 
X(x) = T(t) ' 

0 <X< 71", t > 0. (1.5) 

This equality has a peculiar property. If we change the value of the variable 
t, this does not affect the left-hand member, which implies that the right­
hand member must also be unchanged. But this member is a function of 
only t; it must then be constant. Similarly, if x is changed, this does not 
affect the right-hand member and thus not the left-hand member, either. 
Indeed, we get that both sides of the equality are constant for all the values 
of x and t that are being considered. This constant value we denote (by 
tradition) by -A. This means that we can split the formula (1.5) into two 
formulae, each being an ordinary differential equation: 

X"(x) + .XX(x) =O, O< x < 1r; T'(t) + .XT(t) =O, t >O. 

One usually says that one has separated the variables, and the whole method 
is also called the method of separation of variables. 
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We shall also include the boundary condition (B). Inserting the expres­
sion u(x, t) = X(x) T(t), we get 

X(O) T(t) = X(1r) T(t) =O, t >O. 

Now if, for example, X(O) =/=- O, this would force us to have T(t) = O for 
t > O, which would give us the trivial solution u(x, t) = O. If we want to 
find interesting solutions we must thus demand that X(O) =O; for the same 
reason we must have X(1r) = O. This gives rise to the following boundary 
value problem for X: 

X"(x) + AX(x) =O, O< x < 1r; X(O) = X(1r) =O. (1.6) 

In order to find nontrivial solutions of this, we consider the different possible 
cases, depending on the value of A. 

A < 0: Then we can write A = -a2 , where we can just as well assume 
that a > O. The general solution of the differential equation is then X ( x) = 
Aeax + Be-ax. The boundary conditions become 

{ O=X(O) =A+B, 
O= X(1r) = Aemr + Be-a1r. 

This can be seen as a homogeneous linear system of equations with A and 
Bas unknowns and determinant e-a1r- ea1r = -2sinha7r =/=-O. It has thus 
a unique solution A = B = O, but this leads to an uninteresting function 
X. 

A = 0: In this case the differential equation reduces to X"(x) =O with 
solutions X(x) = Ax+ B, and the boundary conditions imply, as in the 
previous case, that A = B = O, and we find no interesting solution. 

A > 0: Now let A = w2 , where we can assume that w > O. The general 
solution is given by X(x) = Acoswx + Bsinwx. The first boundary con­
dition gives O= X(O) =A, which leaves us with X(x) = Bsinwx. The 
second boundary condition then gives 

O= X(1r) = B sinw1r. (1.7) 

If here B = O, we are yet again left with an uninteresting solution. But, 
happily, (1.7) can hold without B having tobe zero. Instead, we can arrange 
it so that w is chosen such that sin w1r = O, and this happens precisely if w 
is an integer. Since we assumed that w > O this means that w is one of the 
numbers 1, 2, 3, .... 

Thus we have found that the problem (1.6) has a nontrivial solution 
exactly if A has the form A = n 2 , where n is a positive integer, and then 
the solution is of the form X(x) = Xn(x) = Bn sin nx, where Bn is a 
constant. 

For these values of A, let us also solve the problem T'(t) + AT(t) =O or 
T'(t) = -n2T(t), which has the general solution T(t) = Tn(t) = Cne-n2 t. 
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If we let BnCn = bn, we have thus arrived at the following result: The 
homogeneous problem (E)+(B) has the solutions 

2 
u(x, t) = un(x, t) = bn e-n t sin nx, n = 1, 2, 3, .... 

Because of the homogeneity, all sums of such expressions are also solutions 
of the same problem. Thus, the homogeneous sub-problem of the original 
problem (1.4) certainly has the solutions 

N 

u(x, t) = L bn e-n2 t sin nx, (1.8) 
n=l 

where N is any positive integer and the bn are arbitrary real numbers. The 
great question now is the following: among all these functions, can we find 
one that satisfies the non-homogeneous condition (I): u(x, O) = f(x) = a 
known function? 

Substitution in (1:8) gives the relation 

N 

f(x) = u(x,O) = Lbnsinnx, O< x < 1r. (1.9) 
n=l 

If the function f happens to be a linear combination of sine functions of 
this kind, we can consider the problem as solved. Otherwise, it is rather 
natural to pose a couple of questions: 

1. Can we permit the sum in (1.8) to consist of an injinity of terms? 

2. Is it possible to approximate a (more or less) arbitrary function f 
using sums like the one in (1.9)? 

The first of these questions can be given a partial answer using the theory 
of uniform convergence. The second question will be answered (in a rather 
positive way) later on in this book. We shall return to our heat conduction 
problem in Chapter 6. 

Exercise 

1.2 Find a solution of the problem treated in the text if the initial condition 
(1) is u(x, O) =sin 2x + 2 sin 5x .. 

Historical notes 

The partial differential equations mentioned in this section evolved during the 
eighteenth century for the description of various physical phenomena. The La­
place operator occurs, as its name indicates, in the works of PIERRE SIMON DE 
LAPLACE, French astronomer and mathematician (1749-1827). In the theory of 
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analytic functions, however, it had surely·been known to EliiLER before it was 
given its name. 

The wave equation was established in the middle of the eighteenth century 
and studied by severa! famous mathematicans, such as J. L. R. n'ALEMBERT 
(1717-83), LEONHARD EULER (1707-83) and DANIEL BERNOULLI (170Q-82). 

The heat equation carne into focus at the beginning of the following century. 
The most important name in its early history is JOSEPH FOURIER (1768-1830). 
Much of the contents of this book has its origins in the treatise TMorie analytique 
de la chaleur. We shall return to Fourier in the historical notes to Chapter 4. 



2 
Preparations 

2.1 Complex exponentials 

Complex numbers are assumed tobe familiar to the reader. The set of all 
complex numbers will be denoted by C. The reader has probably come 
across complex exponentials at some occasion previously, but, to be on the 
safe side, we include a short introduction to this subject here. 

It was discovered by EULER during the eighteenth century that a clase 
connection exists between the exponential function ez and the trigonomet­
ric functions cos and sin. One way of seeing this is by considering the 
Maclaurin expansions of these functions. The exponential function can be 
described by 

z2 z3 z4 oo zn 
ez = 1 + z + - + - + - + ... = "" -

2! 3! 4! L... n! ' 
n=O 

where the series is nicely convergent for all real values of z. Euler had the 
idea of letting z be a complex number in this formula. In particular, if z is 
purely imaginary, z = iy with real y, the series can be rewritten as 

eiy = 1 + iy + (iy)2 + (iy)3 + (iy)4 + ... 
2! 3! 4! 

. y2 . y3 y4 . y5 
= 1 + zy - - - z- + - + z- - · · · 

2! 3! 4! 5! 

= (1 - y2 + y4 - y6 + .. ·) + i (y - y3 + y5 - y 7 + .. ·) 
2! 4! 6! 3! 5! 7! . 
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In the brackets we recognize the well-known expansions of cos and sin: 

y2 y4 y6 
cos y = 1 - 2! + 4! - 6f + ... ' 

. y3 y5 y1 
sm y = y - 3! + 5T - 7! + .... 

Accordingly, we define 
eiy = cosy + isiny. (2.1) 

This is one of the so-called Eulerian formulae. The somewhat adventurous 
motivation through our manipulation of a series can be completely justified, 
which is best done in the context of complex analysis. For this book we shall 
be satisfied that the formula is true and can be used. 

What is more, one can define exponentials with general complex argu­
ments: 

The function thus obtained obeys most of the well-known rules for the real 
exponential function. Notably, we have these rules: 

1 -z -=e 
ez ' 

It is also true that ez # O for all z, but it need no longer be true that 
ez >O. 

Example 2.1. ei" =cos 1r + i sin 1r = -1 + i ·O= -1. Also, eni1r = ( -1)n 
if n is an integer (positive, negative, or zero). Furthermore, ei"'/2 = i is 
not even real. Indeed, the range of the function ez for z E C contains all 
complex numbers except O. O 

Example 2.2. The modulus of a complex number z = x + iy is defined 
as lzl = .Jz-2 = J x2 + y2 • As a consequence, 

Iezi= lex+iyl = iex · eiyl = exl cosy + isinyj = ex.Jcos2 y + sin2 y = ex. 

In particular, if z = iy is a purely imaginary number, then Iezi= ieiYI = 1. 
o 

Example 2.3. Let us start from the formula eixeiY = ei(x+y) and rewrite 
both sides of this, using (2.1). On the one hand we have 

eixeiy =(cos x + i sinx)(cos y + i sin y) 

=cos xcos y- sinx sin y + i(cos x sin y + sinx cos y), 

and on the other hand, 

ei(x+y) = cos(x + y) + i sin(x + y). 
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If we identify the real and imaginary parts of the trigonometric expressions, 
we see that 

cos(x + y) = cosxcosy- sinxsiny, sin(x + y) = cosxsiny + sinxcosy. 

Thus the addition theorems for cos and sin are contained in a well-known 
exponentiallaw! D 

By changing the sign of y in (2.1) and then manipulating the formulae 
obtained, we find the following set of equations: 

eiY + e-iy 

eiY = cosy + isiny cosy = 
2 

e-iy = cosy- isiny eiY- e-iy 
sin y = --2-i --

These are the "complete" set of Euler's formulae. They show how one can 
pass back and forth between trigonometric expressions and exponentials. 

Particularly in Chapters 4 and 7, but also in other chapters, we shall 
use the exponential expressions quite a lot. For this reason, the reader 
should become adept at using them by doing the exercises at the end of 
this section. If these things are quite new, the reader is also advised to find 
more exercises in textbooks where complex numbers are treated. 

Exercises 
2.1 Compute the numbers ei1r/2 , e-i1rl4 , e 57ri/6 , e 1n 2-i7r/6. 

2.2 Prove that the function f(z) = ez has period 27ri, i.e., that f(z+27ri) = f(z) 
for all z. 

2.3 Find a formula for cos 3t, expressed in cost, by manipulating the identity 
e3it = ( eit) 3. 

2.4 Prove the formula sin3 t =~sint-~ sin3t. 
2.5 Show that if Iezi = 1, then zis purely imaginary. 

2.6 Prove the DE MorvRE formula: 

(cost + i sin tt = cos nt + i sin nt, n integer. 

2.2 Complex-valued functions of a real variable 

In order to perform calculus on complex-valued functions, we should define 
limits of such objects. As long as the domain of definition lies on the real 
axis, this is quite simple and straightforward. One can use similar formu­
lations as.in the aU-real case, but now modulus signs stand for moduli of 
complex numbers. For example: if we state that 

lim f(t) =A, 
t--7oo 
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then we are asserting the following: for every positive number e, there exists 
a number R such that as soon as t > R we are assured that lf(t)- Al < e. 

If we split f(t) into real and imaginary parts, 

f(t) = u(t) + iv(t), u(t) and v(t) real, 

the following inequalities hold: 

iu(t)i::; lf(t)i, lv(t)i::; lf(t)i; lf(t)i::; iu(t)i + lv(t)i. (2.2) 

This should make it rather clear that convergence in a complex-valued 
setting is equivalent to the simultaneous convergence of real and imaginary 
parts. Indeed, if the latter are both small, then the complex expression 
is small; and if the complex expression is small, then both its real and 
imaginary parts must be small. In practice this means that passing to 
a limit can be done in the real and imaginary parts, which reduces the 
complex-valued situation to the real-valued case. 

Thus, if we want to define the derivative of a complex-valued function 
f(t) = u(t) + iv(t), we can go about it in two ways. Either we define 

!'(t) = limf(t + hl- f(t) , 
h-+0 

which stands for an e-8 notion involving complex numbers, or we can just 
say that 

f'(t) = u'(t) + iv'(t). (2.3) 

These definitions are indeed equivalent. The derivative of a complex-valued 
function of a real variable t exists if and only if the real and imaginary parts 
of f both have derivatives, and in this case we also have the formula (2.3). 
The following example shows the most frequent case of this, at least in this 
book. 

Example 2.4. If f(t) = ect with a complex coefficient c =a+ i{3, we can 
find the derivative, according to (2.3), like this: 

f'(t) =! (e0 t(cos{3t + isin{Jt)) = ! {eot cosf3t) + i! {eot sinf3t) 

= ae0 t cos {3t - e0 t {3 sin {3t + i { ae0 t sin {3t + e0 t {3 cos {3t) 

= e0 t( a+ i{3)( cos {3t + i sin {3t) = cect. 

o 
Similarly, integration can be defined by splitting into real and imaginary 

parts. If I is an interval, bounded or unbounded, 

1 f(t) dt = 1 (u(t) + iv(t)) dt = 1 u(t) dt + i 1 v(t) dt. 
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If the interval is infinite, the convergence of the integral on the left is 
equivalent to the simultaneous convergence of the two integrals on the 
right. 

A number of familiar rules of computation for differentiation and inte­
gration can easily be shown to hold also for complex-valued functions, with 
virtually unchanged proofs. This is true for, among others, the differentia­
tion of products and quotients, and also for integration by parts. The chain 
rule for derivatives of composite functions also holds true for an expression 
such as f(g(t)), when g is real-valued but f may take complex values. 

Absolute convergence of improper integrals follows the same pattern. 
From (2.2) it follows, by the comparison test for generalized integrals, that 
J f is absolutely convergent if and only if J u and J v are both absolutely 
convergent. 

The fundamental theorem of calculus holds true also for integrals of com­
plex-valued functions: 

d 1x dx a f(t) dt = f(x). 

Example 2.5. Let c bea non-zero real number. To compute the integral 
of ect over an interval [a, b], we can use the fact that ect is the derivative of 
a known function, by Example 2.4: 

1b [ ct] t=b 
ectdt = ~ 

a C t=a c 

D 

When estimating the size of an integral the following relation is often 
useful: 

11b f(t) dtl ::; 1b lf(t)l dt. 

Here the limits a and b can be finite or infinite. This is rather trivial if f 
is real-valued, so that the integral of f can be interpreted as the difference 
of two areas; but it actually holds also when f is complex-valued. A proof 
of this runs like this: The value of J: f(t) dt is a complex number J, which 
can be written in polar form as IIIeia for some angle a. Then we can write 
as follows: 

11b f(t) dtl =III= e-ia 1b f(t) dt = 1b e-ia f(t) dt =Re 1b e-ic.f(t) dt 

= 1b Re {e-ia f(t)} dt :S 1b1e-ia f(t)l dt = 1b lf(t)l dt. 

Here we used that the left-hand member is real and thus equal to its own 
real part. 
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Exercises 

2.7 Compute the derivative of f(t) = eit2 by separating into real and imaginary 
parts. Compare the result with that obtained by using the chain rule, as if 
everything were real. 

2.8 Show that the chain rule holds for the expression f(g(t)), where g is real­
valued and f is complex-valued, and t is a real variable. 

2.9 Compute the integral 1: eint dt, 

where nisan arbitrary integer (positive, negative, or zero). 

2.3 Cesaro summation of series 

We shall study a method that makes it possible to assign a sort of "sum 
value" to certain divergent series. For a convergent series, the new method 
yields the ordinary sum; but, as will be seen in Chapter 4, the method is 
really valuable when studying a series which may or may not be convergent. 

Let ak be terms (real or complex numbers), and define the partial sums 
Sn and the arithmetic means an of the partial sums like this: 

_ SI + S2 + · · · + Sn _ 1 ~ 
an- -- ~Sk· 

n n 
k=I 

(2.4) 

00 

Lemma 2.1 Suppose that the series ~ ak is convergent with the sum s. 
k=I -

Then also 
Iim an= s. 

n-+oo 

Proof. Let c > O be given. The assumption is that Sn -+ s as n -+ oo. This 
means that there exists an in te ger N such that / sn - s/ < c /2 for all n > N. 
For these n we can write 

/an _ s/ = 1 SI + s2 + · ~· + Sn - ns 1 

1 
= -i(si- s) + · · · + (sN- s) + (sN+l- s) + · · · + (sn- s)i 

n 

lN 1 n 1 1 c 0 c 
~;: L /sk- s/ + ;: L /sk- sj ~;:·O+;:· (n- N)2 ~ n + 2· 

k=I k=N+I 

Here, O is a non-negative constant (that does not depend on n), and so, 
if n > 20/ c, the first term in the last member is also less than c /2. Put 
no = max(N, 20/c). For all n > no we have then /an- s/ < c, which is the 
assertion. D 
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Definition 2.1 Let Bn and an be defined as in (2.4). We say that the 
series I:%"=1 ak is summable according to CESĂ.RO or CESARO summable 
or summable (C, 1) to the value, or "sum", s, if Iim an= s. 

n-too 

We write 
00 

:~:::ak = s (C, 1). 
k=l 

The lemma above states that if a series is convergent in the usual sense, 
then it is also summable ( C, 1), and the Cesaro sum coincides with the 
ordinary sum. 

Example 2.6. Let ak = (-1)k-1, k = 1,2,3, ... , which means that we 
ha ve the series 1 - 1 + 1 - 1 + 1 - 1 + · · ·. Then Bn = O if n is even and 
Bn = 1 if n is odd. The means an are 

1 
an = - if n is even, 

2 n 

n+1 
2n 

if n is odd. 

Thus we have an--+ ! as n--+ oo. This divergent series is indeed summable 
(C, 1) with sum !· D 

The reason for the notation ( C, 1) is that it is possible to iterate the 
process. If the an do not converge, we can form the means Tn = (a1 + · · · + 
an)/ n. If the T n converge to a number s o ne says that the original series is 
(C, 2)-summable to s, and so on. 

These methods can be efficient if the terms in the series have different 
signs or are complex numbers. A positive divergent series cannot be summed 
to anything but +oo, no matter how many means you try. 

Exercises 

2.10 Study the series 1 +O- 1 + 1 +O -1 + 1 +O-···, i.e., the series l::;:"=1 ak, 

where a3k+I = 1, a3k+2 =O and a3k+3 = -1. Compute the Cesaro means 
an and show that the series has the Cesaro sum ~ . 

2.11 The results of Example 2.6 and the previous exercise can be generalized as 
follows. Assume that the sequence of partial sums Sn is periodic, i.e., that 
there is a positive integer p such that Sn+p = Sn for all n. Then the series 
is summable (C, 1) to the sum (j = (s1 + s2 + · · · + sp)jp. Prove this! 

2.12 Show that if I: ak has a finite (C, 1) value, then 

lim Sn =O. 
n-too n 

What can be said about Iim ak / k ? 
k-too 

2.13 Prove that if ak ~ O and I: ak is (C, 1)-summable, then the series is con­
vergent in the usual sense. (Assume the contrary- what does that entail 
for a positive series?) 
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2.14 Show that the series 2::;:':1 (-1)k k is not summable (C, 1). Also show that 
it is summable (C,2). Show that the (C,2) sum is equal to -~. 

2.15 Show that, if x =f. n · 27!" (nE Z), 

2.16 Prove that 

00 

~+.L:coskx=O (C,1). 
k=l 

Loo n 1 
z --­

-1-z 
n=O 

(C, 1) for lzl :::; 1, z =f. 1. 

2.4 Positive summation kernels 

In this section we prove a theorem that is useful in many situations for 
recovering the values of a function from various kinds of transforms. The 
main idea is summarized in the following formulation. 

Theorem 2.1 Let I = (-a, a) be an interval (finite or infinite). Suppose 

that { Kn}~=l is a sequence of real-valued, Riemann-integrable functions 
defined on I, with the following properties: 

(1) Kn(s) ~O. 

(2) 1: Kn(s) ds = 1. 

(3) If 8 >O, then lim J Kn(s) ds =O. 
n-+oo 

o<lsl<a 

If f : I --+ C is integrable and bounded on I and continuous for s = O, we 
then have 

n~~ /_: Kn(s) f(s) ds = f(O). 

Proof. Let c: be a positive number. Since f is continous at the origin there 
exists a number 8 > O such that 

Isi :::; 8 =* lf(s)- f(O)I < c:. 

Furthermore, f is bounded on I, i.e., there exists a number M such that 
1 f ( s) 1 :::; M for ali s. Because of the property 2 we ha ve 

~ := /_: Kn(s) f(s) ds- f(O) = j_aa Kn(s) f(s) ds- f(O) j_aa Kn(s) ds 

= /_: Kn(s)(f(s)- f(O))ds. 
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We want to prove that Ll -+ O as n -+ oo. Let us estimate the absolute 
value of Ll, assuming that isi ~ 8: 

1.!.1 ~ V. K.(s) (/(s) - f(O)}ds ,; 1 Kn(s) lf(s) - /(0)1 d3 

li 

= J Kn(s) if(s)- f(O)i ds + J Kn(s) if(s)- f(O)i ds 

-li li<lsl<a 
li 

~ c J Kn(s) ds + J Kn(s) 2M ds ~ c + 2M J Kn(s) ds. 

-li li<lsl<a li<lsl<a 

The last integral tends to zero, by the assumptions, and so the second term 
of the last member is also less than c if n is large enough. This means that 
for large n we have iLli < 2c, which proves the theorem. O 

A sequence {Kn}~=l having the properties 1-3 is called a positive sum­
mation kemel. We illustrate with a few simple examples. 

Example 2. 7. Define Kn : R -+ R by 

K (s) _ {n, isi< 1/(2n), 
n - O, isi > 1/(2n) 

(see Figure 2.1a). It is obvious that the conditions 1-3 are fullfilled. See 
also Exercise 2.17. O 

Example 2.8. Let <p( s) = e-82 12/ ...f2ii, the density function of the normal 
probability distribution (Figure 2.1b). Define Kn(s) = n<p(ns). Then {Kn} 
is a positive summation kernel on R (check it!). O 

Example 2.9. The preceding example can be generalized in the following 
way: Let 'lj;: R-+ R be some function satisfying 'lj;(s) 2:: O and JR 'lj;(s) ds = 
1. Putting Kn(s) = n'lj;(ns), we have a positive summation kernel. O 

The examples should help the reader to understand what is going on: a 
positive summation kernel creates a weighted mean value of the function f, 
with the weight being successively concentrated towards the point s = O. 
If f is continuous at that point, the limit will yield precisely the value of f 
at s =O. 

A corollary of Theorem 2.1 is the following, where we move the concen­
tration of mass to some other point than the origin: 

Corollary 2.1 If {Kn}~=l is a positive summation kemel on the interval 
I, so is an interior point of I, and f is continuous at s = so, then 

lim { Kn(s) f(so- s) ds = f(so). 
n-+oo }I 
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n 

--------_~1-+~1--------.s 
2n 2n 

(a) (b) 

FIGtJRE 2.1. 

The proof is left as an exercise (do the change of variable s0 - s = u). 

Remark. The choice of the interval I is often rather unimportant. It is also easy 
to see that the condition 2 can be weakened, e.g., it suffices that the integrals of 
Kn over the interval tend to 1 as n -t oo. In consequence, kernels on all of R can 
also be used on any subinterval R having the origin in its interior. D 

Remark. The reader who is familiar with the notion of uniform continuity, can 
appreciate a sharper formulation of the corollary: if f is continuous on a compact 
interval K, the functions 

Fn(t) = 1 Kn(s)f(t- s) ds 

will converge to f(t) uniformly on K. The proof is practically unchanged, with 
the only addition that the number 8 occuring in the proof of Theorem 2.1 can be 
chosen so that it can be used simultaneously for all values of t that are involved. 

D 

Exercises 

2.17 Prove directly, without using the theorem, that if Kn is as in Example 2.7 
and fis continuous at the origin, then lim JR Kn(s)f(s) ds = f(O). 

n-+oo 

2.18 Prove that the "roof functions" 9n, defined by 9n(t) = n - n 2t for O ~ 
t ~ 1/n, 9n(t) = O for t > 1/n and Un( -t) = 9n(t), make up a positive 
summation kernel. Draw pictures! 

2.19 (a) Show that Kn(t) = ~ne-nltl describes a positive summation kernel. 
(b) Suppose that f is bounded and piecewise continuous on R, and 
lim f(t) = 1, lim f(t) = 3. Show that 
t)"O t\,.0 

lim ?:!:. { e-nltl f(t) dt = 2. 
n-+oo 2 }R 
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2.20 Show that if f is bounded on R and has a derivative f' that is also bounded 
on R and continuous at the origin, then 

Iim tn= se-ns/2 /(s)ds=/'(0). n3 1 2 2 

n-+oo y27l' R 

2.21 Let cp be defined by cp(x) = ~(x2 -1)2 for lxl < 1 and cp(x) =O otherwise. 
Let f be a function with a continuous derivative. Find the limit 

Iim 11 
n2cp'(nx) f(x) dx. 

n-+oo _ 1 

2.5 The Riemann-Lebesgue lemma 

The following theorem plays a central role in Fourier Analysis. It takes 
its name from the fact that it holds even for functions that are integrable 
according to the definition of Lebesgue. We prove it for functions that are 
absolutely integrable in the Riemann sense. First, let us very briefl.y recall 
what this means. 

A bounded function f on a finite interval [a, b] is integrable if it can be 
approximated by Riemann sums from above and below in such a way that 
the difference of the integrals of these sums can be made as small as we 
wish. This definition is then extended to unbounded functions and infinite 
intervals by taking limits; these cases are often called improper integrals. If 
I is any interval and f is a function on I such that the (possibly improper) 
integral 

11f(u)l du 

has a finite value, then f is said tobe absolutely integrable on I. 

Theorem 2.2 (Riemann-Lebesgue lemma) Let f be absolutely inte­
grable in the Riemann sense on a finite or infinite interval I. Then 

lim [ f(u)sin>.udu =O. 
>.-toc } 1 

Proof. We do it in four steps. First, assume that the interval is compact, 
I = [a, b], and that fis constant and equal to 1 on the entire interval. Then 

1b 1b [ >. ] u=b f(u)sin>.udu= sin>.udu= - co~ u = ~(cos>.a-cos>.b), 
a a u=a ). 

which gives 

1b f(u)sin>.udu :<::;~--+O as>.-+ oo. 
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The assertion is thus true for this f. 
Now assume that f is piecewise constant, which means that I (still as­

sumed to be compact) is subdivided into a finite number of subintervals 
h = (ak-1, ak), k = 1, 2, ... , N (ao = a, aN = b), and that f(u) has a 
certain constant value ck for u E h. This means that we can write 

N 

f(u) = L Ck gk(u), 
k=l 

where gk(u) = 1 on hand gk(u) =O outside of h. We get 

1b N 1b N 1ak 
f(u)sin.Audu= L ckgk(u)sin)..udu= L:ck sin.Audu. 

a k=l a k=l ak-1 
This is asum of finitely many terms, and by the preceding case each of 
these terms tends to zero as).. ---t oo. Thus the assertion is true also for this 
f. 

Let now f be an arbitrary function that is Riemann integrable on I = 
[a, b]. Let E be an arbitrary positive number. By the definition of the Rie­
mann integral, there exists a piecewise constant function g such that 

1b E 

a lf(u)- g(u)i du< 2. 

(Let g bea function whose integral is a Riemann sum of f.) Then, 

1b f(u) sin .Au du = 1b (f(u)- g(u)) sin .Au du+ 1b g(u) sin .Au du 

b lb :::; 1if(u) -g(u)ilsin.Auidu+ a g(u)sin.Audu 

:::; 1bif(u)-g(u)idu+ 1bg(u)sin.Audu. 

The last integral tends to zero as ).. ---t oo, by the preceding case. Thus there 
is a value )..0 such that this integral is less that c/2 for all).. > .Ao. For these 
).., the left-hand member is thus less than E, which proves the assertion. 

Finally, we no longer require that I is compact. Let E > O be prescribed. 
Since f is absolutely integrable, there is a compact subinterval J C I such 
that frv if(u)i du< E. We can write 
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where the first term tends to zero by the preceding case, and thus it is less 
than c: if >. is large enough; the second term is always less than c:. This 
completes the proof. D 

The intuitive content of the theorem is not hard to understand: For large 
values of I.AI, the integrated function f(u) sin .Au is an amplitude-modulated 
sine function with a high frequency; its mean value over a fixed interval 
should reasonably approach zero as the frequency increases. Of course, 
the factor sin .Au in the integral can be replaced by cos .Au or the complex 
function eiAu, with the same result. And, of course, we can just as welllet 
>. tend to -oo. 

2.6 *Some simple distributions 

In this section, we introduce, in an informal way, a sort of generalization of 
the notion of a function. (A more coherent and systematic way of defining 
these objects is given in Chapter 8.) As a motivation for this generalization, 
we begin with a few "examples." 

Example 2.10. In Sec. 1.3 (on the wave equation) we saw difficulties in the 
usual requirement that solutions of a differential equation of order n shall 
actually have (maybe even continuous) derivatives of order n. Quite natural 
solutions are disqualified for reasons that seem more of a "bureaucratic" 
nature than physically motivated. This indicates that it would be a good 
thing to widen the notion of differentiability in one way or another. D 

Example 2.11. Ever since the days of NEWTON, physicists have been 
dealing with situations where some physical entity assumes a very large 
magnitude during a very short period of time; often this is idealized so 
that the value is infinite at one point in time. A simple example is an elas­
tic collision of two bodies, where the forces are thought of as infinite at 
the moment of impact. Nevertheless, a finite and well-defined amount of 
impulse is transferred in the collision. How is this to be treated mathemat­
ically? D 

Example 2.12. A situation that is mathematically analogous to the 
previous one is found in the theory of electricity. An electron is considered 
( at least in classical quantum theory) to be a point charge. This means that 
there is a certain finite amount of electric charge localized at one point in 
space. The charge density is infinite at this point, but the charge itself has 
an exact, finite value. What mathematical abject describes this? D 

Example 2.13. In Sec. 2.4 we studied positive summation kernels. These 
consisted of sequences of nonnegative functions with integral equal to 1, 
that concentrate toward a fixed point as a par am eter, say, N, tends to 
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infinity, for example. Can we invent a mathematical abject that can be 
interpreted as the limit of such a sequence? D 

The problems in Examples 2.11 and 2.12 above have been addressed by 
many physicists ever since the later years of the nineteenth century by 
using the following trick. Let us assume that the independent variable is t. 
Introduce a "function" 8(t) with the following properties: 

(1) 8(t) 2:: O for - oo < t < oo, 

(2) 8(t) =O fort =1 O, 

(3) 1: 8(t) dt = 1. 

Regrettably, there is no ordinary real-(or complex)-valued function that 
satisfies these conditions. Condition 2 irrevocably implies that the integral 
in condition 3 must be zero. Nevertheless, using formal calculations involv­
ing the "function" 8, it was possible to arrive at results that were both 
physically meaningful and "correct." A name that is commonly associated 
with this is P. DIRAC, but he was not the only person (nor even the first 
one) to reason in this way. He has, however, given his name to the abject 
8: it is often called the Dirac delta function (or the Dirac measure, or the 
Dirac distribution). 

One way of making legitimate the formal 8 calculus is to follow an idea 
that is indicated in Example 2.13. If 8 occurs in a formula, it is at first 
replaced by a positive summation kernel KN; upon this we then do our 
calculations, and finally we pass to the limit. In a certain sense (which will 
be made precise in Chapter 8), it is true that 8 = Iim KN. 

N-+oo 
In this section, and in certain star-marked sections in the following chap-

ters, we shall accept the delta function and some of its relatives in an intu­
itive way. Thus, 8(t) stands for an abject that acts on a continuous function 
<p according to the formula 

1 8(t)cp(t) dt = cp(O), 

where the integral is taken over some interval that contains the origin in 
its interior. We also introduce the translates 8a, which can be described 
by either 8a(t) = 8(t- a) or J 8a(t)cp(t) dt = cp(a). It is essential that the 
point a, where the "pulse" appears, is located in the interior of the interval 
of integration. If the point coincides with an endpoint of the interval, the 
integral is not considered to be well-defined. 

Example 2.14. ]'he LAPLACE transform of a function fis defined tobe 
another function f, given by 
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for all s such that the integral is convergent (see Chapter 3). The Laplace 
transform of 8 cannot be defined in this way. We can, however, modify the 
definition so as to include the origin. It is indeed customary to write 

J(s) = ro f(t)e-st dt =Iim [')O f(t)e-st dt. 
}0_ k?o}k 

With this definition one finds that 8( s) = 1 for all s. Similarly, 8a ( s) = e-as, 
if a> O. D 

The HEAVISIDE function, or unit step function, H is defined by 

H(t) = {O fort< O, 
1 fort> O. 

The value of H(O) is mostly left undefined, because it is normally of no 
importance. The Heaviside function is useful in many contexts. One of 
these is when we are dealing with functions that are given by different 
formulae in different intervals. 

If a< b, the expression H(t-a) -H(t-b) is equal to 1 for a< t < b and 
equal to O outside the interval [a, b]. It might be called a "window" that 
lights up the interval (a, b) ( we do not in these situations care much about 
whether an interval is open or closed). For unbounded intervals we can also 
find "windows": the function H ( t - a) lights up the interval (a, oo), and 
the expression 1- H(t- b) the interval ( -oo, b). 

Example 2.15. Consider the function f: R---+ R that is given by 

{ 
1- t2 fort< -2, 

f(t) = t + 2 for - 2 < t < 1, 
1- t fort> 1. 

This can now be compressed into one formula: 

f(t) 

= (1- t2)(1- H(t + 2)) + (t + 2)(H(t + 2)-H(t -1)) + (1- t)H(t- 1) 

= (1- t2 ) + (-1 +t2 +t+2)H(t+2) + (-t- 2 + 1- t)H(t -1) 
= 1- t2 + (t2 + t + 1)H(t + 2) - (2t + 1)H(t- 1). 

D 

Heaviside's function is connected with the 8 function via the formula 

H(t) = [too 8(u) du. 

A very bold differentiation of this formula would give the result 

H'(t) = 8(t). (2.5) 
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Since H is constant on the intervals ]- oo, O[ and )0, oo[, and 8{t) is consid­
ered tobe zero on these intervals, the formula (2.5) is reasonable fort-:/:- O. 
What is new is that the "deriva ti ve" of the jump discontinuity of H should 
be considered tobe the "pulse" of 8. In fact, this assertion can be given a 
completely coherent background; this will be done in Chapter 8. 

If <pisa function in the class C\ i.e., it has a continuous derivative, and 
if in addition <p is zero outside some finite interval, the following calculation 
is clear: 

j oo cp'(t)H(t) dt = {oo cp'(t) dt = [cp(t)] :o =O- cp{O) = -cp{O). 
-oo Jo 

The same result can also be obtained by the following formal integration 
by parts: 

I: <p1(t)H(t)dt= [<p{t)H{t)]~oo-I: <p(t)H'(t)dt 

={O- O)-I: cp(t)8(t) dt = -<p{O). 

This is characteristic of the way in which these generalized functions can be 
treated: if they occur in an integral together with an "ordinary" function 
of sufficient regularity, this integral can be treated formally, and the results 
will be true facts. 

One can go further and introduce derivatives of the 8 functions. What 
would be, for example, the first derivative of 8 = 8o ? One way of finding out 
is by operating formally as in the preceding situation. Let <p be a function 
in C1 ' and let it be understood that all integrals are taken over an interval 
that contains O in its interior. Since 8(t) =O if t-:/:- O, it is reasonable that 
also 8'(t) =O fort-:/:- O. Integration by parts gives 

1b 8'(t)cp(t) dt = [<>(t)cp(t)J: -1b 8(t)cp'(t) dt ={O- O)- cp'{O) = -cp'{O). 

If 8 itself serves to pick out the value of a function at the origin, the 
derivative of 8 can thus be used to find the value at the same place of 
the derivative of a function. 

Another way of seeing 8' is to consider 8 to be the limit of a differentiable 
positive summation kernel, and taking the derivative of the kernel. An 
example is actually given in Exercise 2.20. As in Example 2.8 on page 23, 
we study the summation kernel 

K ( ) _ ~ -n2 t 2 /2 nt- ro=e , 
y27r 

(which consists in rescaling the normal probability density function). The 
derivatives are 
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FIGURE 2.2. 

q 

1/q 

-q 

FIGURE 2.3. 

These are illustrated in Figure 2.2. The fact that they approach -8'(t) is 
proved by integration by parts (which is what Exercise 2.20 is all about). 

In the theory of electricity, there occurs a phenomenon known as an 
electric dipole. This consists of two equal but opposite charges ±q at a 
small distance from each other (see Figure 2.3). If the distance is made 
smaller and charges increase in proportion to the inverse of the distance, 
the "limit object" is an idealized dipole. A mathematical model of this 
object consists of 8', just as a a point charge can be represented by 8. 

Higher derivatives of 8 can also be defined. Using integration by parts 
one finds that the nth derivative 8(n) should act according to the formula 

provided the function cp has an nth derivative that is continuous at the 
origin. 
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Exercises 
2.22 Compute the following integrals (taken over the entire real axis if nothing 

else is indicated): 
(a) j(t2 + 3t)(t5(t)- t5(t + 2)) dt (b) J0

00 e-•ttS'(t -1) dt 
(c) J e2tt5'(t) dt (d) J0': t5(n)(t) e-•t dt 

2.23 What should be meant by t5(2t), expressed using t5(t)? Investigate this by 
manipulating J rp(t)t5(2t) dt in a suitable way. Generalize to t5(at), a -:/= O. 
(The cases a > O and a < O should be considered separately.) 

2.24 Rewrite, using Heaviside windows, the expressions fi (t) = t/t + 1/, h(t) = 
e-ltl, fa(t) = sgn t = tf/t/ (t-:/= 0), /4(t) =A if t < a, = B if t > a. 

2. 7 *Computing with 8 

We shall now show how one can solve certain problems involving the 8 
distribution and its derivatives. 

The ordinary rules for computing with derivatives will stiU hold true. 
(We cannot really prove this at the present stage.) For example, the rule 
for differentiating a product is valid: (! g )' = !' g + f g'. 

Example 2.16. If x is a function that is continuous ata, what should be 
meant by the product x(t)8a(t)? Since 8a(t) is "zero" except for at t =a, it 
can be expected that the values of x(t) fort =1- a should not really matter. 
And we can write as follows: 

J (x(t)8a(t))rp(t) dt = J 8a(t)(x(t)<p(t)) dt = x(a)<p(a). 

There is no way to distinguish x(t)8a(t) from x(a)8a(t). Thus we have a 
simplification rule: the product of a delta and a continuous function is equal 
to a scalar multiple of the delta, with coefficient equal to the value of the 
function at the point where the pulse sits: 

x(t)8a(t) = x(a)8a(t). (2.6) 

If we encounter derivatives of 8, the matter is more complicated. What 
happens is this: start from (2.6) and differentiate: 

x'(t)8a(t) + x(t)8~(t) = x(a)8~(t). 

In the first term we can replace x' ( t) by x' (a) and then move this term to 
the other side. We get 

x(t)8~(t) = x(a)8~(t)- x'(a)8a(t). 

(On second thought, it should not be surprising that the product of a 
function and a 8' somehow takes into account the value of the derivative 
of the function as well.) 
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What happens when the second derivative is multiplied by a function is 
left to the reader to find out (in Exercise 2.25). D 

Example 2.17. Find the first two derivatives of f(t) = Iti. 

Solution. Rewrite the function without modulus signs, using Heaviside win­
dows: 

f(t) =Iti= -t(l- H(t)) + tH(t) = 2tH(t)- t. 

Differentiation then gives 

f'(t) = 2H(t) + 2t8(t) -1 = 2H(t)- 1. 

In the last step we used the formula (2.6). In plain language, the derivative 
of Iti is plus one for positive t and minus one for negative t, just as we 
know from elementary calculus; at the origin, the value of the derivative is 
undecided. We proceed to the second derivative: 

f"(t) = 28(t)- o= 28(t). 

This formula reflects the fact that f' has derivative zero everywhere outside 
the origin; whereas at the origin, the delta term indicates that f' has a 
positive jump of two units. This is characteristic of the derivative of a 
function with jumps. D 

Example 2.18. Another example of the same type, though more compli­
cated. The function f(x) = lx2 - 11 can be rewritten as 

f(x) = (x2 - l)H(x- 1) + (1- x2 )(H(x + 1)- H(x- 1)) 

+(x2 - 1)(1- H(x + 1)) 

= (x2 -1)(2H(x -1)- 2H(x + 1) + 1). 

This formula can be differentiated, using the rule for differentiating a prod­
uct: 

J'(x) = 2x(2H(x- 1)- 2H(x + 1) + 1) + (x2 -1)(28(x -1)- 28(x + 1)) 

= 2x(2H(x- 1)- 2H(x + 1) + 1). 

In the last step, we used (2.6). One more differentiation gives 

J"(x) = 2(2H(x -1)- 2H(x + 1) + 1) + 2x(28(x -1)- 28(x + 1)) 

= 2(2H(x- 1)- 2H(x + 1) + 1) + 48(x- 1) + 48(x + 1). 

The first term contains the classical second derivative of lx2 - 11, which 
exists for x-=/:- ±1; the two 8 terms demonstrate that f' has upward jumps 
of size 4 for x = ±1. The reader should draw pictures of J, J', and f". D 

In the two last examples, the first derivative at the "corners" of f is 
considered to be undecided. The classical point of view is to say that f does 
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not have a derivative at such a point; when working with distributions, the 
derivative is thought of as more of a global notion, that always exists, but 
may lack a precise value at certain points. 

Example 2.19. Solve the differential equation y' + 2y = c5(t -1) fort> O 
with the initial value y(O) = 1. 

Solution. The method of integrating factor can be used. An integrating 
factor is e2t: 

In rewriting the right-hand side we used (2.6). Now we can integrate: 

e2ty = e2H(t -1) + e, 

where e is a constant. To satisfy the initial condition, we must take e = 1. 
Thus the solution is 

y=e2- 2tH(t-1)+e-2t, t>O. 

(The reader is recommended to check the solution by differentiation and 
substitution into the original equation.) D 

Example 2.20. Find all solutions of the differential equation y" + 4y = c5. 

Solution. The cla,ssical method for this sort of problem amounts to first 
finding the general solution of the corresponding homogeneous equation, 
which is YH = el cos 2t + e2 sin 2t, where el and e2 are arbitrary con­
stants. Then we should find some particular solution of the inhomogeneous 
equation. What kind of expression yp could possibly, after differentiation 
and substitution into the left-hand side of the equation, yield the result 
c5? Apparently, something drastic happens at t = O. Since c5(t) = O for 
t < O, the equation can be said to be homogeneous during this period 
of time. Let us then guess that there is a particular solution of the form 
yp(t) = u(t)H(t), where u(t) is tobe determined. Differentiation gives 

y~(t) = u'(t)H(t) + u(t)H'(t) = u'(t)H(t) + u(O)c5(t), 

y~(t) = u" (t)H(t) +u' (t)H' (t) +u(O)c5' (t) 

= u" (t)H(t) +u' (O)c5(t) +u(O)c5' (t). 

Substitution into the equation gives 

(u"(t)H(t) + u'(O)c5(t) + u(O)c5'(t)) + 4u(t)H(t) = c5(t) 

or 
(u"(t) + 4u(t))H(t) + u'(O)c5(t) + u(O)c5'(t) = c5(t). 
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The function u should be chosen so that u" + 4u = O, u'(O) = 1 and 
u(O) =O. This means that u(t) = acos2t+bsin2t, where O= u(O) =a and 
1 = u' (O) = 2b. Thus, u = ! sin 2t, and yp = ! sin 2t H(t). The solutions of 
the problem are thus 

y = C1 cos2t + (C2 + !H(t)) sin2t. 

Again, the reader is recommended to check the solution. o 

Example 2.21. In Sec. 1.3, on the wave equation, the final example turned 
out to have a solution that was not really a differentiable function. Now 
we can put this right, by allowing the generalized derivatives introduced in 
this section. The solution involved the function cp, defined by 

cp(8) =! 8-! C for 8 >O, cp(8) = -! 8-! C for 8 <O. 

We can rewrite this definition, using Heaviside windows: 

cp(8) = (-! 8-! C)(1- H(8)) + (! 8-! C)H(8) = -! 8-! C + 8H(8). 

The two first derivatives are 

cp1(8) = -! + H(8) + 80(8) = -! + H(8), cp11(8) = 8(8). 

The complete solution of the problem in Sec. 1.3 can be written 

u(x, t) = cp(x- t) + '1/J(x + t) = cp(x- t) + ~(x + t) + ! C. 

Differentiating, and trusting that the chain rule holds as usual ( which it 
does, as will be proved in Chapter 8), we find 

Ux = cp'(x- t) + ~ = 1 + H(x- t), Uxx = o(x- t) 
and 

Ut = -cp'(x- t) + ~ = 2- H(x- t), Utt = 8(x- t). 

Thus, Uxx = Utt· as distributions, and u can be considered as a worthy 
solution of the wave equation. O 

Exercises 

2.25 Find a simpler expression for x(t)8~(t), where X is a C2 function. 

2.26 Determine the derivatives of order :::; 2 of the functions f(t) = e-ltl, g(t) = 
JtJe-ltl and h(t) = J sint J. Draw pictures! 

2.27 Let f : R-+ R be given by f(x) = 1- x2 if -1 < x < 1 and f(x) =O 
otherwise. Find f", and then simplify the expression ( x2 - 1) f" ( x) as far 
as possible. 

2.28 Find the derivatives f' and f", if f(t) = Jt3 - tJ. Sketch the graphs of j, 
f' of f" in separate pictures. 
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2.29 Find the general solution of the differential equation ~~ + 2ty = c5(t- a). 

2.30 Solve the problems (a) y"-y = tH(t+1), (b) y" +3y' +2y = tH(t)+c5'(t). 

2.31 Find y = y(x) that satisfies (1 + x2 )y'- 2xy = c5(x- 1) and y(O) = 1. 

2.32 Establish the following formula for an antiderivative (F being an antideriva-
tive of!): 

J f(t)H(t- a) dt = (F(t)- F(a))H(t- a)+ C. 

2.33 Find a function y = y(x) such that y' + 2xy = 2xH(x) - c5(x- 1) and 
y(2) = 1. (Hint: the result of the preceding exercise may be useful.) 

Historical notes 

Complex numbers began to pop up as early as the Renaissance era, when scholars 
such as CARDANO began solving equations of third and fourth degrees. But not 
until LEONHARD EULER (1707-83) did they begin tobe accepted as just as natural 
as the real numbers. The study of complex-valued functions was intensified in the 
nineteenth century; some famous names are AUGUSTIN CAUCHY (1789-1857), 
BERNHARD RIEMANN (1826-66), and KARL WEIERSTRASS (1815-97). 

The idea of "summing" certain divergent series was made precise by math­
ematicians such as the young Norwegian NIELS HENRIK ABEL (1802-29) and 
CARL FRIEDRICH GAUSS (1777-1855). The method presented in Sec. 2.3 is due 
to the Italian mathematician ERNESTO CESARO (1859-1906), but the German 
OTTO HOLDER (1859-1937) had the same idea at about the same time. 

RIEMANN is the originator of an integral definition which is even today in uni­
versal use for elementary education. His definition has certain disadvantages, that 
were remedied by HENRI LEBESGUE (1875-1941) in his 1900 thesis. The Lebesgue 
integral is, however, even after one century considered to be too complicated to 
be included in elementary courses. 

The theory of distributions is chronicled after Chapter 8. 

Problems for Chapter 2 

2.34 Show that the function f(z) = e4 z has period Tri/2. 

2.35 Let f be a continuous function on R. Assume that we know that it has 
period 21r and that it satisfies the equation 

f(t) = Ht(t- ~1r) + f(t + ~1r)) for all tE R. 

Show that f in fact has a period shorter than 27r, and determine this period. 

2.36 Let cp be a C 1 function such that cp and cp' are bounded on the real axis. 
Compute the limit 

. 2n3 1"" x hm - (1 2 2 ) 2 cp(x) dx. 
n-+oo 7r _00 + n X 
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2.37 Let F(x) = (1 - x2 )(H(x + 1) - H(x- 1)). Let g be continuous on the 
interval [-1, 1]. Find the limit 

lim ~ 11 
nF(nx) g(x) dx. 

n--+oo _ 1 

2.38 Find the derivatives of order :5 4 of f(t) = t 2 H(t). 

2.39 Find y(x) that solves the differential equation y' + x2 + 1 y = 8(x- 2) and 
X 

satisfies y{1) = 1. 

2.40 Let f : R-+ R be described by f(x) = (x2 - 1?(H(x + 1)- H(x- 1)). 
Show that f belongs to the class C 1 but not to C 2 • Also compute its third 
derivative. 



3 
Laplace and Z transforms 

3.1 The Laplace transform 

Let f bea function defined on the interval R+ = [0, oo[. Alternatively, we 
can think of f(t) as being defined for all real t, but satisfying f(t) =O for 
all t <O. This can be expressed by writing 

f(t) = f(t)H(t), 

where H is the Heaviside function. Now let s bea real (or complex, if you 
like) number. If the integral 

fes)= 100 f(t) e-st dt (3.1) 

exists (with a finite value), we say that it is the Laplace transform of f, 
evaluated at the point s. We shall write, interchangeably, fes) or .C[f](s). 
In applications, one also often uses the notation F(s) (capitalletter for the 
transform of the corresponding lower-case letter). 

Example 3.1. Let f(t) = eat, t :2: O. Then, 

{oo f(t) e-st dt = {oo eat-st dt = [e(a-s)t] oo = _1_' 
Jo lo a- s t=O s - a 

provided that a - s < O so that the evaluation at infinity yields zero. Thus 
we have fes)= 1/(s- a) for s >a, or 

1 
.C[eat](s) = --, s >a. 

s-a 
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In particular, if a = O, we have the Laplace transform of the constant 
function 1: it is equal to 1/ s for s > O. O 

Example 3.2. Let f(t) = t, t >O. Then, integrating by parts, we get 

J(s)= te-stdt= t·-e- +- 1·e-stdt 1oo [ -st] 00 11oo 
o -s t=O 8 o 

1 1 
=O+ -.C[1](s) = 2 . 

s s 

This works for s > O. O 

It may happen that the Laplace transform does not exist for any real 
value of s. Examples of this are given by f(t) = 1/t, f(t) = et2

• 

A profound understanding of the workings of the Laplace transform re­
quires considering it to be a so-called analytic function of a complex vari­
able, but in most of this book we shall assume that the variable s is real. We 
shall, however, permit the function f to take complex values: it is practica! 
tobe allowed to work with functions such as f(t) = ei01.t. 

Furthermore, we shall assume that the integral (3.1) is not merely conver­
gent, but that it actually converges absolutely. This enables us to estimate 
integrals, using the inequality 1 f f 1 :::; f lfl. 
Example 3.3. Let f(t) = eibt. Then we can imitate Example 3.1 above 
and write 

{oo f(t) e-st dt = {oo e(ib-s)t dt = [e~ib-s)t] oo 
J o } o zb - s t=O 

= ib ~ 8 [e-st(cosbt + isinbt)J:0 . 

For s > O the substitution as t --+ oo will tend to zero, because the factor 
e-st tends to zero and the rest of the expression is bounded. The result is 
thus that .C[eibt](s) = 1/(s- ib), which means that the formula that we 
proved in Example 3.1 holds true also when a is purely imaginary. It is 
left to the reader to check that the same formula holds if a is an arbitrary 
complex number and s > Re a. O 

It would be convenient to have some simple set of conditions on a function 
f that ensure that the Laplace transform is absolutely convergent for some 
value of s. Such a set of conditions is given in the following definition. 

Definition 3.1 Let k bea positive number. Assume that f has the follow­
ing properties: 

(i) f is continuous on [0, oo[ except possibly for a finite number of jump 
discontinuities in every finite subinterval; 

(ii) there is a positive number M such that 1 f ( t) 1 :::; M ekt for all t 2: O. 

Then we say that f belongs to the class ek. lf f E ek for some value of k, 
we say that f Ee. 
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Using set notation we can say that c = U Ck· Condition (ii) means that 
k>O 

f grows at most exponentially; this word lies behind the use of the letter 
c. If f E Ck for one value of k, then also f E Ck for all larger k. 

Theorem 3.1 lf f E Ck, then J(s) exists for all s > k. 

Proof. We begin by observing that condition (i) for the class Ck implies 
that the integral 

loT f(t) e-st dt 

exists finitely for all s and all T >O. Now assume s > k. Thus there exists 
a number M and a number t0 so that f(t)e-kt ::; M fort > t0 • Then we 
can estimate as follows: 

1 T lf(t)l e-st dt = 1T lf(t)l e-kt e-(s-k)t dt::; 1T Me-(s-k)t dt 
ta ta ta 

::; M e-(s-k)t dt ::; M e-(s-k)t dt = -- < 00. l oo 1oo M 
~ o s-k 

This means that the generalized integral over [to, oo[ converges absolutely, 
and then this is equally true for the integral over [0, oo[. D 

The result of the theorem can be "bootstrapped" in the following way. 
If ao = inf{k : f E ck}, then the Laplace transform exists for all s > ao. 
Indeed, let k = (s + ao)/2, so that ao < k < s; then f E Ck (why?), and 
the theorem can be applied. The number a0 is a reasonably exact measure 
of the rate of growth of the function f. In what follows we shall sometimes 
use the notation a0 or a0 (!) for this measure. 

As a consequence of the theorem we now know that a large set of common 
functions do have Laplace transforms. Among them are, e.g., polynomials, 
trigonometric functions such as sin and cos and ordinary exponential func­
tions; also sums and products of such functions. If you have studied simple 
differential equati.ons you may recall that these functions are precisely the 
possible solutions of homogeneous linear differential equations with con­
stant coefficients, such as, for example, 

y(v) + 4y(iv) - 8y111 + 15y" - 24y' = O. 

We shall soon see that Laplace transforms give us a new technique for solv­
ing these equations. We shall also be able to solve more general problems, 
like integral equations of this kind: 

lot f(t- x) f(x) dx + 3lot f(x) dx + 2t =O, t >O. (3.2) 

Another consequence of the theorem is worth emphasizing: if a Laplace 
transform exists for one value of s, then it is also defined for all larger 
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values of s. If we are dealing with several different transforms having various 
domains, we can always be sure that they are all defined at least in one 
common semi-infinite interval. It is customary to be rather sloppy about 
specifying the domains of definition for Laplace transforms: we make a tacit 
agreement that s is large enough so that all transforms occuring in a given 
situation are defined. 

Exercises 
3.1 Let f(t) = et2

, g(t) = e-t2
• Show that f ~ f.., whereas g E f..k for all k. 

3.2 Compute the Laplace transform of f(t) = eat, where a = o: + i/3 is a 
complex constant. 

3.3 Let f(t) =sint for O :S t :S 1r, f(t) =O otherwise. Find i(s). 

3.2 Operations 

The Laplace transformation obeys some simple rules of computation and 
also some less simple rules. The simplest ones are collected in the follow­
ing table. Everywhere we assume that s takes sufficiently large values, as 
discussed at the end of the preceding section. 

1. .C[o:f + ,Bg](s) = o:f(s) + pg(s), if o: and ,Bare constants. 

2 . .C[eatf(t)](s) = f(s- a), if a is a constant (damping rule). 

3. If we define f(t) =O fort< O and if a> O, then 

.C[f(t- a)](s) = e-as f(s) (delaying rule). 

1-
4 . .C[f(at)](s) = - f(sja), if a> O. 

a 

The proofs of these rules are easy. As an example we give the computa­
tions that yield rules 3 and 4: 

.C[f(t- a)](s) = rXJ f(t- a) e-st dt { d~: ~;a } 
lo t = O{::} u = -a 

= i: f(u) e-s(u+a) du= e-as i: f(u) e-su du 

=e-as loo J(u)e-sudu=e-asi(s); 
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Example 3.4. Using rule 1 and the result of Exarnple 3.3 in the preceding 
section, we can find the Laplace transforms of cos and sin: 

1 [ ibt -ibtl ( ) 1 ( 1 1 ) 8 .C[cosbt](s)= 2.Ce +e s =2 --.b+--.b =~b2' s-z s+z s + 
. 1 ibt -ibt 1 ( 1 1 ) b .C[smbt](s) = -2 . .C[e - e ](s) = -2. --.b- --.b = ~b2' 

z z s-z s+z s + 

Example 3.5. Applying rule 2 to the result of Example 3.4 we get 

.C[eat sinbt](s) = ( ~2 b2. 
s-a + 

A couple of deeper rules are given in the foliowing theorems. 

Theorem 3.2 lf f E ek0 , then (t 1--+ tj(t)) E Ck1 for k1 > ko and 

d-
.C[tf(t)](s) =- dsf(s). 

D 

D 

Proof. We shali use a theorem on differentiation of integrals. In order to keep 
it lucid, we assume that f is continuous on the whole of R+; otherwise we 
would have to split into integrals over subintervals where f is continuous, 
and this introduces certain purely technical complications. Since f E eko, 
we know that if(t)i :::; Mekot for some number M and ali sufficiently large 
t, say t > t1. Let 8 >O. Then there is a t2 such that iti < e0t fort> t2. If 
t > to = max(h, h) we have 

itf(t)i:::; eot. Mekot = Me(ko+O)t = Meklt, 

which means that tf(t) belongs to ek1 and has a Laplace transform. 
If we differentiate the formula J(s) = Jt f(t) e-st dt formaliy with re­

spect to s, we get (J)' (s) = J0
00 ( -t)j(t) e-st dt. According to the theorem 

concerning differentiation of integrals, this maneuver is permitted if we can 
find a "dominating" function g ( that may depend on t but not on s) such 
that the integrand in the differentiated formula can be estimated by g for 
all t 2: O and ali values of s that we consider, and which is such that J0

00 g 
is convergent. Let a be a number greater than the constant k1 and put 
g(t) = itf(t) e-ati· For ali s 2: a we have then i( -t) f(t) e-sti :::; g(t), and 

1oo g(t) dt = 1oo itf(t)ie-at dt:::; M 1oo eklt. e-at dt 

= M e-(a-k1 )t dt = -- < 00. 100 M 
o a- k1 
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This shows that the conditions for differentiating formally are fulfilled, and 
the theorem is proved. D 

Example 3.6. We know that .C[1](s) = 1/s for s >O. Then we can say 
that 

.C[t](s) = .C[t · 1](s) = --- =- -- = -, d 1 ( 1) 1 
ds s s 2 s2 

Repeating this argument (do it!) we find that 

1 
.C[tn](s) = 8;~ 1 , s >O. 

Example 3. 7. Also, rule 2 allows us to conclude that 

1 
.C[tn eat](s) = (s-:)n+l' s >O. 

s >o. 

D 

D 

A sort of reverse of Theorem 3.2 is the following. The notation f(O+) 
stands for the right-hand limit Iim f(t) =Iim f(t). 

t-tO+ t'\,0 

Theorem 3.3 Assume that f E C. is continuous on R+. Also assume that 
the derivative f'(t) exists for all t;::: O (with f'(O) interpreted as the right­
hand derivative) and that f' E C.. Then 

.C[f'](s) = s J(s)- f(O+ ). 

Proof. Suppose that f E Cka and f' E Ck1 , and take s to be larger than 
both k0 and k1 . Let T bea positive number. Integration by parts gives 

1T J' (t) e-st dt = f(T) e-sT- f(O+) e0 + s 1T f(t) e-st dt. 

When T-+ oo, the first termin the right-hand member tends to zero, and 
the result is the desired formula. D 

Theorem 3.3 will be used for solving differential equations. 

The following theorem states a few additional properties of the Laplace 
transform. 

Theorem 3.4 (a) If f E C., then 

Iim J(s) =O. 
s-too 

(3.3) 

(b) The initial value rule: If f(O+) exists, then 

Iim sJ(s) = f(O+). 
s-too 

(3.4) 
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(c) The final value rule: lf f(t) has a limit as t -t +oo, then 

Iim sf{s) = f( +oo) = Iim f(t). 
s \..O+ t--too (3.5) 

In applications, the rule (3.5) is useful for deciding the ultimate or 
"steady-state" behavior of a function or a signal. 

Proof. (a) Let e >O be given and choose 8 >O so small that 

fali lf(t)l dt < e. 

Let k >O be such that f E ek and let so > k. Then for s > so we get 

lf{s)l:::; fali lf(t)l e-st dt + 100 lf(t)l e-st dt 

:::; fali lf(t)l dt + 100 lf(t)l e-sote-(s-so)t dt 

:::; e + e-(s-so)li 1oo 1/(t)le-sot dt:::; e + ce-(s-so)li = e + Celiso. e-lis. 

The last term tends to zero as s -t oo and thus it is less than e if s is large 
enough. This proves that 1 J( s) 1 < 2e for ali sufficiently large s, and sin ce e 
can be arbitrarily small, we have proved (3.3). 

(b) The idea of proof is similar to the preceding. e > O is arbitrary, but 
now we choose 8 > O so small that lf(t) - f(O+ )1 < e for O < t < 8. With 
so as above we get, for s > so, 

sf{s) 

= s fali (f(t) - f(O+)) e-st dt + sf(O+) fali e-st dt + s ioa f(t) e-st dt. 

The modulus of the first term is 

:::; Se {li e-st dt :::; Se { 00 e-st dt = Se· ~ = e, lo Jo s if s >o. 

The second term can be computed: 

1 e-sli 
= sf(O+) - = f(O+ )(1- e-sli) -t f(O+) as s -t oo. 

s 

Finally, the modulus of the third term can be estimated: 

:::; s 1oo lf(t)le-sote-(s-so)t dt:::; se-sli. esoli 1oo lf(t)l e-sot dt = Cse-lis, 

which tends to zero as s -t oo. Just as in the proof of (3.3) we can draw 
the conclusion (3.4). 
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( c) This proof also runs along similar paths. We begin by writing 

81(8) = 8 loT f(t) e-st dt + 8 loo (f(t)- f(oo))e-st dt + f(oo)e-sT. 

Choose T so large that lf(t)- f(oo)l < e fort ~ T. The modulus of the 

first term can be estimated by 8 J0T l/1 ---t O as 8 ---t 0+, and the modulus 
of the second one is 

:::; 8 loo €. e-st dt = € e-sT :::; €. 

The proof is finished in an analogous way to the others. o 
We round off this section by a generalization of the rule for Laplace 

transformation of a power of t (cf. Example 3.6). To this end we need a 
generalization of factorials to non-integers. This is provided by EULER's 
Gamma function, whis is defined by 

f(x) = 100 Ux-le-u du, X> 0. 

It is easy to see that this integral converges for positive x. It is also easy 
to see that r(1) = 1. Integrating by parts we find 

r(x + 1) = 100 Uxe-u du= [ -Uxe-u] ~+X 100 
Ux-le-u du= xf(x). 

From this we deduce that r(2) = 1· r(1) = 1, r(3) = 2, and, by induction, 
f(n + 1) = n! for integral n. Thus, this function can be viewed as an 
interpolation of the factorial. 

Now we let f(t) =ta, where a> -1. It is then clear that f has a Laplace 
transform, and we find, for 8 >O, 

1(8) = {oo ta e-st dt { 8t = u } = {oo ('!!:.\a e-u du 
} 0 dt = du/ 8 }0 8} 8 

__ 1_ [00 a -ud - r(a+1) 
- 8a+l Jo u e u - 8a+l . 

If a is an integer, this reduces to the formula of Example 3.6. 

Exercises 

3.4 Find the Laplace transforms of (a) 2t2 - e-t 

(b)(t2 +1? (c)(sint-cost? (d)cosh2 4t (e)e2tsin3t (f)t3 sin3t. 

{ 1/c for O< t < c, 
3.5 Compute the Laplace transform of f(t) = h . 

O ot erw1se. 

{ 
(t- 1? fort > 1, 

3.6 Find the transform of f(t) = 0 h . 
ot erw1se. 
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i t 1- e-u 
3.7 Solve the same problem for f(t) = du. 

o u 

3.8 Compute 100 
te - 3t sint dt. (Hint: 7(3) !) 

3. 9 Find the La place transform of f, if we define f ( t) = t sin t for O :S: t :S: 1r, 

f(t) =O otherwise. (Hint: use the result of Exercise 3.3, p. 42.) 

3.10 Find the Laplace transform of the function f defined by 

f(t) = na for n- 1 :S: x < n, n = 1,2,3, .... 

3.11 Compute .C[te-tsint](s). 
2 

3.12 Explain why the function - 2
8 cannot be the Laplace transform of any 

s + 1 
f E c. 

3.13 Show that if f ·is periodic with period a, then 

J(s) = 1 la f(t) e-st dt. 
1- e-as o 

(Hint: J000 = 2:::~ J:~k+l). Let u = t- ak, use the formula for the sum of 
a geometric series.) 

3.14 Find the Laplace transform of the function with period 1 that is described 
by f(t) = t for O< t < 1. 

3.15 Verify the final value rule (3.5) for J(s) = 1/(s(s + 1)) by comparing f(t) 
and lim si(s). 

s-+0+ 

3.16 Prove that r(~) =..fii. What are the values of r(~) and r(~)? 

3.3 Applications to differential equations 

Example 3.8. Let us try to solve the initial value problem 

y" - 4y' + 3y = t, t > O; y(O) = 3, y' (O) = 2. (3.6) 

We assume that y = y(t) is a solution such that y, as well as y' and y", has 
a Laplace transform. By Theorem 3.3 we have then 

.C[y'](s) = sy- y(O) = sy- 3, 

.C[y"](s) = s.C[y'](s)- y'(O) = s(sy- 3)- 2 = s2y- 3s- 2. 

Due to linearity, we can transform the left-hand side of the equation to get 

(s2y- 3s- 2)- 4(sy- 3) + 3y = (s2 - 4s + 3)y- 3s + 10, 
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and this must be equal to the transform of the right-hand side, which is 
1/ s2 • The result is an algebraic equation, which we can solve for y: 

2 - 1 _ 383 - 1082 + 1 383 - 1082 + 1 
(8 -48+3)y-38+10 = 2 {:::=::} Y = 2 ( 2 4 3) = 2( 1)( )" s 8 8 - 8+ 8 8- 8-3 

The last expression can be expanded into partial fractions. Assume that 

383 - 1082 + 1 A B C D 
-:82'""'(-8 ---1.,....) (:-8-_-3...,..) = 82 + -; + -8 ---1 + -8 ---3 · 

Multiplying by the common denominator and identifying coeffi.cients we 
find that A= i, B = ~' C = 3, and D = -~. Thus we have 

-1141 1 41 
y = 3 . 82 + 9 . -; + 3 . 8 - 1 - 9 . s - 3. 

It so happens that there exists a function with precisely this Laplace trans­
form, namely, the function 

z = it+~+ 3et- ~e3t. 

Could it be the case that y = z ? One way of finding this out is by differ­
entiating and investigating if indeed z does satisfy the equation and initial 
conditions. And it does ( check for- yourself)! By the general theory of dif­
ferential equations, the problem (3.6) has a unique solution, and it follows 
that z must be the solution we are looking for. D 

The example demonstrates a very useful method for treating linear in­
titial value problems. There is one diffi.culty that is revealed at the end of 
the example: could it be possible that two different functions might have 
the same Laplace transform? This question is answered by the following 
theorem. 

Theorem 3.5 (Uniqueness for Laplace transforms) If f and g both 

belong to e, and 1(8) = g(8) for all (8ufficiently} large value8 of 8, then 
f(t) = g(t) for all value8 of t where f and g are continuou8. 

We omit the proof of this at this point. It is given in Sec. 7.10. In that 
section we also prove a formula for the reconstruction of f(t) when 1(8) 
is known - a so-called inver8ion formula for the Laplace transform. The 
present theorem, however, gives us the possibility to invert Laplace trans­
forms by recognizing functions, just as we did in the example. 

This requires that we have access to a table of Laplace transforms of 
such functions that can be expected to occur. Such a table is found at the 
end of the book (p. 247 ff), and similar tables are included in all decent 
handbooks on the subject. Several of the entries in such tables have already 
been proved in the examples of this chapter; others can be done as exercises 
by the interested student. 
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We point out that the uniqueness result as such does not rule out the 
possibility that a differential equation (or other problem) may have solu­
tions that have no Laplace transforms, e.g., solutions that grow faster than 
exponentially. To preclude such solutions one must look into the theory 
of differential equations. For linear equations there is a result on unique 
solutions for initial value problems, which may serve the purpose. If the 
coefficients are constants and the equation is homogeneous, one actually 
knows that all solutions have at most exponential growth. 

The Laplace transform method is ideally adapted to solving initial value 
problems. Strictly speaking, the method takes into consideration only what 
goes on for t ~ O. Very often, however, the expressions obtained for the 
solutions are also valid for t < O. 

We include some examples on using a table of Laplace transforms in a 
few more complicated situations. The technique may remind the reader of 
the integration of rational functions. 

. - 2s+3 
Example 3.9. Fmd f(t), when f(s) = 82 + 4s + 13 . 

Solution. Complete the square in the denominator: s2 +4s+13 = (s+2)2 +9. 
Then split the numerator to enable us to recognize transforms of cosines 
and sines: 

2s + 3 = 2(s + 2)- 1 = 2 . s + 2 1 3 
s2 + 4s + 13 (s + 2)2 + 32 (s + 2)2 + 32 - 3 · (s + 2)2 + 32 ' 

and now we can see that this is the transform of f ( t) = 2e-2t cos 3t -
~e-2t sin 3t. D 

Example 3.10. Find g(t), if g(s) = (s2 ~ l) 2 · 

Solution. We recognize the transform as a derivative: 

-( ) d 1 
gs =-dss2 +1' 

By Theorem 3.2 and the known transform ofthe sine we get g(t) = tsint. 
D 

Example 3.11. Salve the initial value problem 

y" + 4y' + 13y = 13, y(O) = y'(O) =O. 

Solution. ·Transformation gives 
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Expand into partial fractions: 

_ 1 s+4 1 s+2 2 3 
y = -;- (s + 2)2 + 9 = -;- (s + 2)2 + 9 - 3 · (s + 2)2 + 9 · 

The solution is found to be 

y(t) = (1- e-2t(cos3t + ~ sin3t))H(t). 

(Here we have multiplied the result by a Heaviside factor, to indicate that 
we are considering the solution only for t ;::: O. This factor is often omitted. 
Whether or not it should be there is often a matter of dispute among users 
of the transform.) D 

We can also treat systems of differential equations. 

Example 3.12. Solve the initial value problem 

{
x' = x+3y, 

y' = 3x + y; 
x(O) = 5, y(O) = 1. 

Solution. Laplace transformation gives 

{
sx -5= x+3y 

sy-1=3x+y 
{ 

(1- s)x + 3y = -5 

3x+(1-s)y=-1 

We can, for example, solve the second equation for x = i(s- 1)y- i and 
substitute this into the first, whereupon simplification yields (s2 -2s-8)Y = 
s + 14 and 

- s + 14 3 2 
y= =-----

(s-4)(s+2) s-4 s+2. 

We see that y = 3e4t- 2e-2t, and then we deduce, in one way or another, 
that x = 3e4t + 2e-2t. (Think of at least three different ways of performing 
this last step!) D 

Finally, we demonstrate how even a partial differential equation can be 
treated by Laplace transforms. The trick is to transform with respect to one 
of the independent variables and let the others stand. Using this technique 
often involves taking rather bold chances in the hope that rules of compu­
tation be valid. One way of regarding this is to view it precisely as taking 
chances - if we arrive at a tentative solution, it can always be checked by 
substitution in the original problem. 

Example 3.13. Find a solution of the problem 

âu 
ât' 

o< X< 1, t >O; 
u(O, t) = 1, u(1, t) = 1, t > O; 

u(x, O) = 1 +sin 1rx, O < x < 1. 
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Solution. We introduce the Laplace transform U(x, 8) of u(x, t), i.e., 

U(x, 8) = .C[t f-t u(x, t)](8) = 100 u(x, t) e-st dt. 

Here, x is thought of as a constant. Then we change our attitude and 
assume that this integral can be differentiated with respect to x, indeed 
twice, so that 

The differential equation is then transformed into 

â2U 
âx2 = 8U- (1 +sin 7rx), 0 <X< 1, 

and the boundary conditions into 

1 
U(0,8) = -, 

8 

1 
U(1,8) = -. 

8 

Now we switch attitudes again: think of 8 as a constant and salve the 
boundary value problem. Just to feel comfortable we could write the equa­
tion as 

U"- 8U = -1- sin 1l'X. (3.7) 

The homogeneous equation has a characteristic equation r 2 - 8 = O and 
its solution is U H = Aexvs + Be-xvs. (Here, the "constants" A and B 
are in general functions of s.) A particular solution to the inhomogeneous 
equation could have the form Up = a+ bsin 1l'X + ccos1l'x, and insertion 
and identification gives a = 1/8, b = 1/(8 + 11'2), c = O. Thus the general 
solution of (3.7) is 

~ ~ 1 sin7rx 
U(x, 8) = A(8)exv~ + B(8)e-xvs +- + --. 

8 8+11'2 

The boundary conditions force us to take A(8) = B(8) =O, so we are left 
. 1 sin 1l'X . . 

w1th U(x, 8) = - + --2 . Now we agam consider x as a constant and 
8 8+11' 

recognize that U is the Laplace transform of u(x, t) = 1 + e-1r2 t sin 7rx. 
The fact that this function really does salve the original problem must be 
checked directly (since we have made an assumption on differentiability of 
an integral, which might have been too bold). O 

Remark. This problem can also be attacked by other methods developed in later 
parts of the book (Chapter 6). O 
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Exercises 

3.17 Invert the following Laplace transforms: (a) 1 (b) 3 
s(s + 1) (s- 1)2 

(c) s(s! 2)2 (d) s2(s ~ 5)2 (e) (s- a)1(s- b) (f) 8 2 + 418 + 29 

3.18 Use partial fractions to find f when f{s) is given by 
(a) 8-2 (8 + 1)-I, (b) b28-1 (82 + b2)-1 , (c) 8(8- 3)-5 , 

(d) (82 +2)8- 1(8+1)- 1(8+2)-1. 

3.19 Invert the following Laplace transforms: (a) 1 + e-s 
8 

e-s 

(b) (s- 1)(s- 2) 

(c) ln 8 +3 (d) ln 82 + 1 
8 + 2 s(8 + 3) 

8+1 
(e) 84/3 

(f) vs- 1. 
8 

3.20 Sol ve the initial value problem y11 + y = 2et, t > O, y(O) = y1 (O) = 2. 

{ 
y11 (t) - 2y1 (t) + y(t) = t et sint, 

3.21 Solve the initial value problem ( ) 1 ( ) 
y o =o, y o =o. 

{ 
yC3) (t) - y11 (t) + 4y1 (t) - 4y(t) = -3et + 4e2t, 

3.22 Solve 1 11 
y(O) = O, y (O) = 5, y (O) = 3. 

{ 
x 1(t) + y1(t) = t, 

3.23 Solve the system x 11 (t) ~ y(t)
1 
= e~t, _ 

x(O) - 3, x (O) - -2, y(O) -O. 

{ 
x 1 (t) - y1 (t) - 2x(t) + 2y(t) =sint, 

3.24 Solve the system x 11 (t) + ~y1 (t) + x(t) =O, 
x(O) = x (O) = y(O) = O. 

3.25 Solve the problem 

{ 
1 t > 2 

y11 (t) - 3y1 (t) + 2y(t) = o: t < 2 

3.26 Solve the system 

{ 
dy = 2z- 2y + e-t 
dt 
dz - = y-3z 
dt 

3.27 Solve the differential equation 

t >O; 

y(O) = 1, y1(0) =O. 

y(O) = 1, z(O) = 2. 

2 (iv) + 111 11 1 _ t + 2 y y -y -y -y- , t >o, 

with initial conditions y(O) = y1 (O) = O, y11 (O) = y111 (O) = 1. 

3.28 Solve the differential equation 

y11 + 3y1 + 2y = e -t sint, t > O; y(O) = 1, y1(0) = -3. 
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3.4 Convolution 

In control theory, for example, one studies the effect on an incoming signal 
by a "black box" that transforms it into an "outsignal": 

insigna!-+ black 
box 

outsignal 
f---~---t 

Let the insignal be represented by the function t H x(t), t ~ O, and the 
outsignal by t H y(t), t ~O. We assume that the system has four important 
properties: 

(a) it is linear, which means that a linear combination of inputs results in 
the corresponding linear combination of outputs; 

(b) it is translation invariant, which means, loosely, that the black box 
operates in the same way at all points in time; 

( c) it is continuous in the sense that "small" changes in the in put generate 
"small" changes in the output ( which should be formulated more 
precisely when necessary); 

(d) it is causal, i.e., the outsignal at a certain moment t does not depend 
on the insignal at moments later than t. 

It can then be shown (see Appendix A) that there exists a function 
t H g(t), t ~O, such that 

y(t) = 1t x(u)g(t- u) du= 1t x(t- u)g(u) du. (3.8) 

The function g can be said to contain all information about the system. 
The formula (3.8) is an example of a notion called the convolution of 

the two functions x and g. (We shall encounter other versions of convolu­
tion in other parts of this book.) We shall now study this notion from a 
mathematical point of view. 

Thus, we assume that f and g are two functions, both belonging to e. 
The convolution f * g is a new function defined by the formula 

(f * g)(t) = f * g(t) =lat f(u) g(t- u) du, t ~o. 

It is not hard to see that this function is continuous on [0, oo[, and it might 
possibly belong to e. Indeed, it is not very difficult to show directly that 
if f E Ck1 and g E Ck2 , then f * g E ek for all k > max(k1, k2). (See 
Exercise 3.38.) Using the notation cro(f), introduced after Theorem 3.1, we 
could express this as cro(f * g):::; max(cro(f), cro(g)).) 
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Convolution can be regarded as an operation for functions, a sort of 
"multiplication." For this operation a few simple rules hold; the reader is 
invited to check them out: 

f*g=g*f 
f * (g * h) = (! * g) * h 
f * (g + h) = f * g + f * h 

(commutative law) 
(associative law) 
( distributive law) 

Example 3.14. Let f(t) = et, g(t) = e-2t. Then 

f * g(t) =lot eu e-2(t-u) du= lot eu-2t+2u du= e-2t lot e3u du 

t -2t 
= e-2t a e3uJ::~ = ~e-2t(e3t- 1) = e -3e . 

D 

Example 3.15. Ifg(t) = 1, thenf*g(t) = J~ f(u)du. Thus, "integration" 
can be considered to be convolution with the function 1. D 

When dealing with convolutions, the Laplace transform is useful because 
of the following theorem. 

Theorem 3.6 The Laplace tmnsform of a convolution is the product of 
the Laplace tmnsforms of the two convolution factors: 

.C[f * g](s) = l{s) g(s). 

Proof. Let s be so large that both l{s) and g(s) exist. We have agreed 
in section 3.1 that this means that the corresponding integrals converge 
absolutely. Now consider the improper double integral 

J J lf(u)g(v)je-s(u+v) dudv, 

Q 

where Q is the first quadrant in the uv plane. The integrated function being 
positive, the integral can be calculated just as we choose. For example, we 
can write 

JJ lf(u)g(v)je-s(u+v) dudv = looo du looo lf(u)jjg(v)je-sue-sv dv 

Q 

= looo lf(u)je-su du looo jg(v)je-sv dv. 

The two one-dimensional integrals here are assumed to be convergent, 
which means that the double integral also converges. But this in turn means 
that the improper double integral without modulus signs, 

<I>(s) = JJ f(u)g(v)e-s(u+v) dudv 

Q 
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is absolutely convergent. It can then also be computed in any manner, and 
we do it in two ways. One way is imitating the previous calculation: 

ci>(8) = 1oo du 1oo f(u)g(v)e-sue-sv dv 

= 100 f(u)e-su du 100 g(v)e-sv dv = 1(8) g(8). 

Another way is integrating on triangles DT : u 2:: O, v 2:: O, u + v ::; T. But 

1T f * g(t)e-st dt = 1T (1t f(u)g(t- u) du) e-su dt 

= 1T dt 1t f(u)e-su g(t- u)e-s(t-u) du 

= 1T f(u)e-sudu 1T g(t-u)e-s(t-u)dt= {~;:;v} 

= 1T f(u)e-su du 1T-u g(v)e-sv dv 

= J J j(u)g(v)e-8ue-sv dudv---+ ci>(8) 

DT 

as T---+ oo. This proves the formula in the theorem. o-

Example 3.16. As an illustration ofthe theorem we can take the situation 
in Example 3.14. There we have 

g(8) = 8~2' 
- 1 .! .! 
f(8)g(8) = (8- 1)(8 + 2) = 8 ~ 1 - 8! 2 = .C[f * g](8). 

D 

Example 3.17. Find a function f that satisfies the integral equation 

f(t) = 1 + 100 f(t- u) sin u du, t 2:: O. 

Solution. Suppose that f E c. Then we can transform the equation to get 

- 1 - 1 
f(8) = -; + f(8) · 82 + 1, 

from which we solve 

J( 8) = 82 + 1 . ~ = 82 + 1 = ~ + ~ ' 
82 8 83 8 83 
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and we see that f(t) = 1 + ~t2 ought to be a solution. Indeed it is, be­
cause this function belongs to e, and then our successive steps make up a 
sequence of equivalent statements. (It is also possible to check the solution 
by substitution in the given integral equation. This should be done, if time 
permits.) O 

Exercises 

3.29 Calculate directly the convolution of eat and ebt (consider separately the 
cases a =1- b and a = b). Check the result by taking Laplace transforms. 

3.30 Use the convolution formula to determine f if J(s) is given by 
(a) s-1(s + 1)-1, (b) s-1(s2 + a2)-1. 

2 

3.31 Find a function with the Laplace transform (s2 : 1)2 • 

3.32 Find a function f such that 

3.33 Find a solution of the integral equation 

3.34 Find two solutions of the integral equation (3.2) on page 41. 

3.35 Find a function y(t) that satisfies y(O) =O and 

21t (t- u)2 y(u) du+ y'(t) = (t- 1)2 fort> O. 

3.36 Find a function f(t) for t ;::: O, that satisfies 

f(O) = 1, J'(t) + 3f(t) + lt f(u)eu-t du= {O, O::; t < 2' 
o 1, t > 2 

3.37 Find a solution f of the integral-differential equation 

5e-t 1t eY cos 2(t- y) f(y) dy = !' (t) + f(t) - e-t, f(O) = O. 

3.38 Prove the following result: if f E Ck1 and g E Ck2 , then f * g E Ck for all 
k > max{k1, k2}. 
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3.5 *Laplace transforms of distributions 

Laplace transforms can be used in the study of physical phenomena that 
take place in a time interval that starts at a certain moment, at which the 
clock is set to t = O. It is possible to allow the functions to include instan­
taneous pulses and even more far-reaching generalizations of the classical 
notion of a function - i.e., to allow so-called distributions into the game. 
When we do so, it will normally be a good thing to allow such things to 
happen also at the very moment t = O, so we modify slightly the definition 
of the Laplace transform into the following formula: 

f{s) = {00 f(t)e-st dt =Iim {00 f(t)e-st dt. 
lo- e:'-.,;o}_e: 

If f is an ordinary function, the modified definition agrees with the former 
one. But if f is a distribution, something new may occur. 

As an example, let 8a(t) be the Dirac pulse at the point a, where a 2:: O. 
Then 

8:(s) = { 00 8a(t)e-st dt = e-as. 
lo-

In particular, if a= O, we get 8(s) = 1. We see that the rule that a Laplace 
transform must tend to zero as s -+ oo no longer need hold for transforms 
of distributions. 

The formula for the transform of a derivative must also be slightly mod­
ified. Indeed, integration by parts gives 

where f(O-) is the left-hand limit of f(t) at O. This may cause some confu­
sion when dealing with functions that are considered to be zero for negative 
t but nonzero for positive t. In this case it may now happen that f' includes 
a multiple of 8, which explains the different appearance of the formula. In 
this situation, it is preferable to be very explicit in supplying the factor 
H(t) in the description of functions. 

Example 3.18. Solve the initial value problem 

y" + 4y' + 13y = 8'(t), y(O-) = y'(O-) =O. 

Solution. Transformation gives 

s+2 2 3 
(s + 2)2 + 9 a· (s + 2)2 + 9 · 
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The solution is found to be 

y(t) = e-2t( cos 3t - ~sin 3t)H(t). 

We check it by differentiating: 

y' (t) = e-2t( -2 cos 3t + ~sin 3t- 3 sin 3t- 2 cos 3t)H(t) + 8(t) 

= e-2t( -4cos3t- ~ sin3t)H(t) + 8(t), 

y"(t) = e-2t(8cos3t + 13° sin3t + 12sin3t- 5cos3t)H(t)- 48(t) + 8'(t) 

= e-2t(3cos3t + ~6 sin3t)H(t)- 48(t) + 8'(t). 

Substituting this into the left-hand member of the equation, one sees that 
it indeed solves the problem. D 

Example 3.19. Find the general solution of the differential equation 
y" + 3y' + 2y = 8. 

Solution. It should be wellknown that the solution can be written as the 
sum of the general solution YH of the corresponding homogeneous equation 
y" + 3y' + 2y = O, and one particular solution yp of the given equation. We 
easily find YH = C1e-t + C2e-2t, and proceed to look for yp. In doing this 
we assume that yp(O-) = y~(O-) = O, which gives the simplest Laplace 
transforms. Indeed, y~ = syp and y~ = s2yp, so that 

s2yp + 3syp + 2yp = 1 {::::::::} YP = 1 = _1_ - _1_ 
(s+1)(s+2) s+1 s+2' 

Thus it turns out that 

This means that the solution of the given problem is 

y = C1e-t + C2e-2t + (e-t- e-2t)H(t) 

= (C1 +H(t))e-t + (C2-H(t))e-2t 

{ C1e-t + C2e-2t, t <O, 
= (C1 + 1)e-t + (C2- 1)e-2t, t >O. 

We can see that in each of the intervals t < O and t > O these expressions 
are solutions of the homogeneous equation, which is in accordance with 
the fact that 8 = O in the intervals. What happens at t = O is that the 
constants change value in such a way that the first derivative has a jump 
discontinuity and the second derivative contains a 8 pulse (draw pictures!). 

D 

The particular solution yp found in the preceding problem is called a 
fundamental solution of the equation. Let us now denote it by E; thus, 

E(t) = (e-t- e-2t)H(t). 
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It is useful in the following situation. Let f be any function, continuous for 
t ~ O. We want to find a solution of the problem y" + 3y' + 2y = f. If we 
assume y(O-) = y'(O-) =O, we get 

_ J(s) - 1 - -
y = s2 + 3s + 2 = f(s). s2 + 3s + 2 = f(s)E(s). 

This means that y can be found as the convolution of f and E: 

y(t) = f * E(t) =lot f(t- u)(e-u- e-2u) du. 

The fundamental solution thus provides a means for finding a particular 
solution for any inhomogeneuous equation with the given left-hand side. 

This idea can be applied to any linear differential equation with constant 
coeflicients. The left-hand member of such an equation can be written in 
the form P(D)y, where D is the differentiation operator and P(·) is a 
polynomial. For example, if P(r) = r 2 + 3r + 2, then 

P(D)y = (D2 + 3D + 2)y = y" + 3y' + 2y. 

The fundamental solution E is, in the general case, the function such that 

- 1 
E(s) = P(s), E(t) =O fort< O. 

Exercises 

3.39 Find a solution of the differential equation y 111 + 3y" + 3y' + y = H ( t- 1) + 
8(t- 2), that satisfies y(O) = y' (O) = y" (O) =O. 

3.40 Solve the differential equation y" +4y' +5y = 8(t), y(t) =O fort< O. Then 
deduce a formula for a particular solution of the equation y" + 4y' + 5y = 
j(t), where f is any continuous function such that j(t) = O for t < O. 

3.41 Find fundamental solutions for the following equations: (a) y" + 4y = 8, 
(b) y" + 4y' + 8y = 8, (c) y111 + 3y" + 3y' + y = 8. 

3.42 Find a function y such that y(t) =O fort~ O and 

y'(t) + 3y(t) + 21t y(u) du= 2(H(t -1)- H(t- 2)) fort> O. 

3.43 Find a function f(t) such that f(t) =O fort < O and 

l t+ 
e-t o- j(p) eP dp- j(t) + j'(t) = 8(t)- te-t H(t), -00 < t < 00. 
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3.6 The Z transform 

In this section we sketch the theory of a discrete analogue of the Laplace 
transform. We have so far been considering functions t H f(t), where t is a 
real variable (mostly thought of as representing time). Now, we shall think 
of t as a variable that only assumes the values O, 1, 2, ... , i.e., non-negative 
integer values. In applications, this is sometimes more realistic than con­
sidering a continuous variable; it corresponds to taking measurements at 
equidistant points in time. 

A function of an integer variable is mostly written as a sequence of num­
bers. This will be the way we do it, at least at the beginning of the section. 

Let {an}~=O bea sequence of numbers. We form the infinite series 

00 00 

A(z) = L :: = L anz-n. 
n=O n=O 

If the series is convergent for somez, then it converges absolutely outside of 
some circle in the complex plane. More precisely, the domain of convergence 
is a set of the type lzl > a, where O :S a :S oo. (It may also happen that 
the series converges at certain points on the circle lzl = a, but this is 
rarely of any importance.) Power series of this kind, that may encompass 
both positive aud negative powers of z, are called LAURENT series. (A 
particular case is Taylor series that do not contain any negative powers of z; 
in the present situation we are considering a reversed case, with no positive 
powers.) A necessary aud suffi.cient condition for the series to converge at 
all is that there exist constants M aud R such that 1 an 1 :S M Rn for all 
n. This condition is analogous to the condition of exponential growth for 
functions to have a Laplace transform. 

The function A( z) is called the Z transform of the sequence {an} ~=O. 
It can be employed to solve certain problems concerning sequences, in a 
manner that is largely analogous to the way that Laplace transforms can 
be used for solving problems for ordinary functions. Important applications 
occur in the theory of electronics, systems engineering, aud automatic con­
trol. 

When working with the Z transformation, one should be familiar with 
the geometric series. Recall that this is the series 

00 

where w is a real or complex number. It is convergent precisely if lwl < 1, 
aud its sum is then 1/(1- w). This fact is used "in both directions," as the 
following example shows. 
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Example 3.20. If an = 1 for all n 2': O, the Z transform is 

00 1 00 
( 1 \n 1 Z L zn = L -;J = -1 = z-1' 

n=O n=O 1--
z 

which is convergent for all z such that lzl > 1. On the other hand, if >. is a 
nonzero complex number, we can rewrite the function B(z) = zj(z- >.)in 
this way: 

Z 1 oo ().Jn oo ).n 
B(z) =- = -, =""' - = ""'-, z - >. A L..J z L..J zn 

1-- n=O n=O 
lzl > 1>.1, 

z 

which shows that B(z) is the transform of the sequence bn = >.n (n 2': 0). 
(Here we actually use the fact that Laurent expansions are unique, which 
implies that two different sequences cannot have the same transform.) D 

We next present a simple, but typical, problem where the transform can 
be used. 

Example 3.21. If we know that ao = 1, a1 = 2 and 

n =O, 1,2, ... , (3.9) 

find a formula for an. 

An equation of the type (3.9) is often called a difference equation. In many 
respects, it is analogous to a differential equation: if differential equations 
are used for the description of processes taking place in "continuous time," 
difference equations can do the corresponding thing in "discrete time." 

To salve the problem in Example 3.21, we multiply the formula (3.9) by 
z-n and add up for n = O, 1, 2, ... : 

(3.10) 

Now we introduce the Z transform of the sequence { an}~=o= 

00 

L -n 2 a2 a3 
A(z) = anZ = 1 + - + - +- + · · ·. z z2 z3 

n=O 
(3.11) 

We notice that, firstly, 

f: an+lz-n = f: akz-(k-l) = z (f: akz-k) = z (f: anz-n - ao) 
n=O k=l k=l n=O 

= z(A(z) - 1), 

and, secondly, 
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Thus, the equation (3.10) can be written as 

z2 ( A(z) -1- ~) = 3z(A(z)- 1)- 2A(z), 

from which A(z) can be solved. After simplification we have 

z 
A(z)=-. 

z-2 

We saw in the preceding example that this is the Z transform of the se­
quence 

an= 2n, n =O, 1, 2, .... 

We can check the result by returning to the statement of the problem: 
ao = 1 and a1 = 2 are ali right; and if an= 2n and an+l = 2n+1, then 

which is also right. D 

In the example, it is obvious from the bfginning that the solution is 
unique. If ao and a1 are given, the formula (3.9) produces the subsequent 
values of the an in an unequivocal way. In general, problems about number 
sequences are often uniquely determined in the same manner. However, 
just as for the Laplace transform, the Z transform cannot be expected to 
give solutions if these are very fast-growing sequences. 

We take a closer look at the correspondence between sequences { an}~=O 
and their Z transforms A(z). In order to have an effi.cient notation we write 
a= {an}~=O and A= Z[a]. Thus, Z denotes a mapping from (a subset of) 
the set of number sequences to the set of Laurent series convergent outside 
of some circle. 

Example 3.22. We have already seen that if a= pn}0 , then 

00 

Z[a](z) = L .Anz-n = z ~A, lzl > I.AI. 
n=O 

D 

Example 3.23. 
oo -n 

If a= {1/n!}Q', then Z[a](z) = L ~ = e11z, lzl >O. 
n=O n. 

D 
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Example 3.24. The sequence a = { n!}SO has no Z transform, because 
00 

the series L n! z-n diverges for all z. D 
n=O 

As stated at the beginning of this section, a sufficient ( and actually nec­
essary) condition for A(z) to exist is that the numbers an grow at most 
exponentially: lanl :::; MRn for some numbers M and R. It is easy to 
see that this condition implies the convergence of the series for all z with 
lzl >R. 

Some computational rules for the transformation Z have been collected in 
the following theorem. In the interest of brevity we introduce some notation 
for operations on number sequences ( which can be viewed as functions N --+ 
C). If we let a= { an}~=O and b = {bn}~=O• we write a+ b = {an+ bn}~=0 ; 
and if furthermore A is a complex number, we put Aa = {Aan}~=O· We also 
agree to write 

A= Z[a], B = Z[b]. 

The "radius of convergence" of the Z transform of a is denoted by a a: 
this means that the series is convergent for lzl > aa (and divergent for 
lzl < aa)· 

Theorem 3.7 (i) The transformation Zis linear, i.e., 

Z[Aa](z) = AZ[a](z), lzl > a a, 

Z[a + b](z) = Z[a](z) + Z[b](z), lzl > max(aa, ab)· 

(ii) lf A is a complex number and bn =Anan, n =O, 1, 2, ... , then 

B(z) = A(z/A), lzl > Aaa. 

(iii) lf k is a fixed integer >O and bn = an+k, n =O, 1, 2, ... , then 

B(z) = zk ( A(z)- a0 - : 1 - ... - ::=~) 
= zk A(z) - aozk - a1zk-1 - · · · - ak-1Z, lzl > O'a· 

(iv) Conversely, if k is a positive integer and bn = an-k for n ~ k and 
bn =O for n < k, then B(z) = z-k A(z). 

(v) lf bn = nan, n =O, 1, 2, ... , then 

B(z) = -zA'(z), lzl > O'a. 

Proof. The assertions follow rather immediately from the definitions. We 
saw a couple of cases of (iii) in Example 3.21 above. We content ourselves 
by sketching the proofs of (ii) and (v). For (ii) we find 
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And as for (v), the right-hand side is 

d = = = 
-z· dz L anz-n = -z L ( -n)anz-n-l = L nanz-n = left-hand side. 

n=O n=O n=O 

o 

Example 3.25. Example 3.23 and rule (ii) give us the transform of the 
sequence pn /n!}0, viz., 

o 
When solving problems concerning the Z transform, you should have a 

table at hand, containing rules of computation as well as actual transforms. 
Such a table is included at the end of this book (p. 250). 

Example 3.26. Find a formula for the so-called FIBONACCI numbers, 
which are defined by fo = h = 1, fn+2 = fn+l + fn for n :;:: O. 

Solution. Let F = Z[f]. Ifwe Z-transform the recursion formula, using (iii) 
from the theorem, we get 

z2 F(z)- z2 - z = (zF(z)- z) + F(z), 

whence (z2 - z- 1)F(z) = z2 and 

In order to recover f n, a good idea would be to expand into partial fractions, 
in the hope that simple expressions could be looked up in the table on 
page 250. A closer look at this table reveals, however, that it would be a 
good thing to have a z in the numerator of the partial fractions, instead 
of just a constant. Thus, here we have peeled off a factor z from F(z) and 
proceed to expand the remaining expression: 

where 

F(z) z A B 
--= =--+--, 

1 + y'5 
o:=---

2 ' 

z z2 - z - 1 z - o: z - (3 

1- y'5 
(3= -2-, 

y'5 -1 
B = 2v'5 . 

This gives 
F( ) _ Az Bz 

z ---+-­
Z-0: z-(3 



3.6 The Z transform 65 

and from the table we conclude that 

f = A n B(3n = J5 + 1 ( 1 + J5)n J5- 1 ( 1 - vg)n 
n a + 2J5 2 + 2J5 2 . 

This can be rewritten as 

= ...!._ [(1 + vg)n+l _ (1- vg)n+ll 
fn J5 2 2 ' n =O, 1,2, .... 

(In spite of all the appearances of V5 in the expression, it is an integer for 
all n 2:: 0.) D 

As you can see in this example, the method of expanding rational func­
tions into partial fractions can be useful in dealing with Z transforms, 
provided one starts out by securing an extra factor z tobe reintroduced in 
the numerators after the expansion. 

If a and b are two number sequences, we can form a third sequence, c, 
called the convolution of a and b, by writing 

n n 

Cn = .2::: an-kbk = .2::: akbn-k, n =O, 1, 2, .... 
k=O k=O 

One writes c = a * b, and we also permit ourselves to write things like 
Cn = (a* b)n· We determine the Z transform C = Z[c]: 

oo n oooo 

C(z) = .2::: .2::: an-kbk z-n = .2::: .2::: an-kbk z-n 
n=O k=O k=On=k 
~ ~ 00 00 

= L L an-kZ-(n-k) bkz-k = L bkz-k L an-kZ-(n-k) 
k=On=k k=O n=k 
00 00 

= .2::: bkz-k L amz-m = A(z)B(z). 
k=O m=O 

The manipulations of the double series are permitted for !zi > max(aa, ab), 
because in that region everything converges absolutely. 

This notion of convolution appears in, e.g., control theory, if a system is 
considered in discrete time (see Appendix A). 

Example 3.27. Find x(t), t =O, 1, 2, ... , from the equation 

t 

.2:3-kx(t-k)=Tt, t=0,1,2, .... 
k=O 
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Solution. The left-hand side is the convolution of x and the function t 1--t 

(1/3)t, so that taking Z transforms of both members gives 

z z 
--1 ·X(z) = --1. 
z-3 z-2 

(We ha ve used the result of Example 3.22.) We get 

and, using Example 3.22 and rule (iv) of Theorem 3.7, we see that 

{ 
1 fort= O, 

x(t) = (~)t- ~. (~)t-1 fort~ 1. 

The final expression can be rewritten as 

X(t) - (.!.- .!.) . (.!.)t-1-.!.. 21-t-.!.. 2-t t > 1 
- 2 3 2 -6 -3 ' -. 

D 

In a final example, we indicate a way of viewing the Z transform as 
a particular case of the Laplace transform. Here we use translates of the 
Dirac delta "function," as in Sec. 3.5. 

Example 3.28. Let {an}~=O bea sequence having a Z transform A(z), 
and define a function f by 

00 00 

n=O n=O 

The convergence of this series is no problem, because for any particular t 
at most one of the terms is different from zero. Its Laplace transform must 
be 

Thus, via a change of variable z = e8 , the two transforms are more or less 
the same thing. D 

Exercises 

3.44 Determine the Z transforms of the following sequences {an}~=O: 

(a)an=I_ (b)an=n·3n (c)an=n2 ·2n 
2n 

( n) n(n-l) .. ·(n-p+l) 
(d)an= = 1 forn2:p,=OforO::;n::;p(p 

p p. 

is a fixed in te ger). 
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3.45 Determine the sequence a = {an}~=O> if its Z transform is (a) A(z) 
z 1 

3z-2' (b)A(z)=~· 

3.46 Determine the numbers an and bn, n =O, 1, 2, ... , if ao =O, bo = 1 and 

n =O, 1,2, .... 

3.47 Find the numbers an and bn, n =O, 1, 2, ... , if ao =O, bo = 1 and 

n =O, 1,2, .... 

3.48 Find an, n =O, 1, 2, ... , such that ao = a1 =O and an+2- 3an+l + 2an = 
1 - 2n for n = O, 1, 2, .. .. 

3.49 Find an, n =O, 1, 2, ... , if ao = a1 =O and 

an+2 + 2an+l +an= ( -1tn, n =O, 1, 2, .... 

3.50 Find an, n = O, 1, 2, ... , if ao = 1, a1 = 3 and an+2 +an = 2n + 4 when 
n~O. 

3.51 Determine the numbers y(t) for t =O, 1, 2, ... , so that 

t {o t-o ~)t-k)3t-ky(k)= , =, 
1, t - 1, 2, 3, .... 

k=O 

n 

3.52 Find an for n ~ O, if ao = O and L kan-k - an+l = 2n for n ~ O. 
k=O 

3.53 Determine x(n) for n =O, 1, 2, ... , so that 

n 

x(n)+2L(n-k)x(k)=2n, n=0,1,2, .... 
k=O 

3. 7 Applications in control theory 

We return to the "black box" of Sec. 3.4 (p. 53). Such a box can often be 
described by a differential equation of the type P(D)y(t) = x(t), where x is 
the input and y the output. If x(t) is taken tobe a unit pulse, x(t) = 8(t), 
the solution y(t) with y(t) = O for t < O is called the pulse response, or 
impulse response, of the black box. The pulse response is the same thing as 
the fundamental solution. In the general case, Laplace transformation will 
give P(s)y(s) = 1 and thus y(s) = 1/P(s). The function 

1 
G(s) = P(s) 
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is called the transfer function of the box. When solving the general problem 

P(D)y(t) = x(t), y(t) =O fort < O, 

Laplace transformation will now result in 

P(s)y(s) = x(s) 

or 
y(s) = G(s)x(s). 

This formula is actually the Laplace transform of the convolution formula 
(3.8) of page 53. It provides a quick way of finding the outsignal y to 
any insigna! x. The function g in the convolution is actually the impulse 
response. 

In control theory, great importance is attached to the notion of stability. 
A black box is stable, if its impulse response is transient, i.e., g(t) tends 
to zero as time goes by. This means that disturbances in the input will 
affect the output only for a short time and will not accumulate. If P(s) is 
a polynomial, the impulse response will be transient if and only if all its 
zeroes have negative real parts. 

Example 3.29. The polynomial P1(s) = s2 + 2s + 2 has zeroes s = 
-1±i. Both have real part -1, so that the device described by the equation 
y" + 2y' + 2y = x ( t) is stable. In contrast, the polynomial P2 ( s) = 82 + 28- 1 
has zeroes 8 = -1 ± J2. One of these is positive, which implies that the 
corresponding black box is unstable. Finally, the polynomial P3 ( 8) = 8 2 + 1 
has zeroes 8 = ±i. These have real part zero; the impulse reponse is g(t) = 

sint, which is not transient. The situation is considered as unstable. (It is 
unstable also inasmuch as a small disturbance of the coefficients of P3(8) 
can cause the zeroes to move into the right half-plane, which gives rise to 
exponentially growing solutions.) D 

So far, we ha ve assumed that the black box is described in continuous 
time. In the real world, it is often more realistic to assume that time is 
discrete, i.e., that input and output are 8ampled at equidistant points in 
time. For simplicity, we assume that the sampling is done at t =O, 1, 2, ... , 
and that the input signal x(t) and the output y(t) are both zero fort < O. 
Then, of course, the Z transform is the adequate tool. 

A black box is often described by a difference equation of the type 

y(t+k)+ak-lY(t+k-1)+· · ·+a2y(t+2)+aly(t+1)+aoy(t) = x(t), tE Z. 
(3.12) 

We introduce the characteri8tic polynomial 

P(z) = zk + ak-lZk-l + · · · + a2z2 + a1z + ao. 

We assumed that x(t) and y(t) were both zero for negative t. Putting 
t = -k in (3.12), we find that 

y(O) = x( -k)- ak-lY( -1)- · · ·- a1y( -k + 1)- aoy( -k), 
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which implies that also y(O) = O. Consequently, putting t = -k + 1, also 
y(1) = O, and so on. Not until we have an x(t) that is different from 
zero do we find a y( t + k) different from z~ro. Thus we have initial values 
y(O) = · · · = y(k- 1) =O. By the rules for the Z transform, we can then 
easily transform the equation (3.12). With obvious notation we get 

P(z)Y(z) = X(z). 

Thus, 
X(z) 

Y(z) = P(z) = G(z)X(z), 

where G(z) = 1/ P(z) is the transfer function. Just as in the previous 
situation, it is also the impulse response, because it is the output resulting 
from inputting the signal 

8(t) = 1 fort= O, 8(t) =O otherwise. 

The stability of equation (3.12) hinges on the localization of the zeroes 
of the polynomial P(z). As can be seen from a table of Z transforms, a 
zero a of P(z) implies that the solution contains terms involving at. Thus 
we ha ve stability precisely if all the zeroes of P( z) are in the interior of the 
unit disc lzl < 1. 

Example 3.30. The difference equation y(t+2) + !Y(t+ 1) + ~y(t) = x(t) 

has P(z) = z2 +!z+~ with zeroes z = -~±4i. These satisfy lzl =! < 1, 
so that the equation is stable. The equation 

y(t + 3) + 2y(t + 2) - y(t + 1) + 2y(t) = x(t) 

is unstable. This can be seen from the constant term ( = 2) of the char­
acteristic polynomial; as is well known, this term is (plus or minus) the 
product of the zeroes, which implies that these cannot all be of modulus 
less than one. D 

More sophisticated methods for localizing the zeroes of polynomials can 
be found in the literature on complex analysis and in books dealing with 
these applications. 

Exercises 

3.54 Investigate the stability of the following equations: 
(a) y" +2y' +3y = x(t), (b) y"' +3y" +3y' +y = x(t), (c) y" +4y = x(t). 

3.55 Are these difference equations stable or unstable? 
(a) 2y(t + 2)- 2y(t + 1) + y(t) = x(t), 
(b) y(t + 2)- y(t + 1) + y(t) = x(t), 
(c) 2y(t + 3)- y(t + 2) + 3y(t + 1) + 3y(t) = x(t). 
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Summary of Chapter 3 

To provide an overview of the results of this chapter, we collect the main defini­
tions and theorems here. The precise details of the conditions for the validity of 
the results are sometimes indicated rather sketchily. Thus, this summary should 
serve as a memory refresher. Details should be looked up in the core of the text. 
Facts that rather belong in a table of transforms, such as rules of computation, 
are not included here, but can be found at the end of the book (p. 247 ff). 

Definit ion 
If f(t) is defined for t E R and f(t) =O for t < O, its Laplace transform is 
defined by 

J(s) = 100 f(t)e-st dt, 

provided the integral is abolutely convergent for some value of s. 

Theorem 
For f to exist it is sufficient that f grows at most exponentially, i.e., that 
lf(t)l ~ Mekt for some constants M and k. 

Theorem 
If J(s) = g(s) for all (sufficiently large) s, then f(t) = g(t) for all t where 
both f and g are continuous. 

Theorem 
If we define the convolution h = f * g by 

h(t) = f * g(t) =lat f(t- u)g(u) du= lat f(u)g(t- u) du, 

then its Laplace transform is h = fg. 
Definit ion 
If {an} ~=O is a sequence of numbers, its zeta transform is defined by 

00 

A(z) = L anz-n, 
n=O 

provided the series is convergent for some value of z. This holds if lanl ~ 
M Rn for some constants M and R. 

Historical notes 

The Laplace transform is, not surprisingly, found in the works of Pierre Simon 
de Laplace, notably his Theorie analytique des probabilites of 1812. In this book, 
he made free use of Laplace transforms and also generating functions (which are 
related to the Z transform) in a way that baffied his contemporaries. During the 
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nineteenth century, the technique was developed further, and also influenced by 
similar ideas such as the "operational calculus" of OLIVER HEAVISIDE (British 
physicist and applied mathematician, 185D-1925). With the development of mod­
ern technology in computing and control theory, the importance of these methods 
has grown enormously. 

Problems for Chapter 3 

3.56 Solve the system y' - 2z = (1 - t)e-t, z' + 2y = 2te-t, t > O, with initial 
conditions y(O) = O, z(O) = 1. 

3.57 Solve the problem y" + 2y' + 2y = 5e\ t >O; y(O) = 1, y'(O) =O. 

3.58 Solve the problem y"' + y" + y'- 3y = 1, t > O, when y(O) = y'(O) =O, 
y"(O) = 1. 

3.59 Solve the problem y" + 4y = j(t), t >O; y(O) =O, y'(O) = 1, where 

f(t) = { (t- 1?' t ;:::: 1 
o, o< t < 1. 

3.60 Find y = y(t) fort > O that solves y" -4y' +5y = c,o(t), y(O) = 2, y' (O) =O, 
where c,o(t) =O for t < 2, c,o(t) = 5 for t > 2. 

3.61 Find f(t) for t ;:::: O, such that f(O) = 1 and 

81t f(t- u) e-u du+ j'(t)- 3f(t) + 2e-t =O, t >O. 

3.62 Let f be the function described by 

f(t) =O, t ::; O; j(t) = t, O < t ::; 1; j(t) = 1, t > 1. 

Solve the differential equation y"(t) +y(t) = f(t) with initial values y(O) = 
O, y'(O) = 1. 

3.63 Solve y"' + y' = t - 1, y(O) = 2, y' (O) = y" (O) = O. 

3.64 Solve y"' + 3y" + 3y' + y = t + 3, t > O; y(O) = O, y' (O) = 1, y" (O) = 2. 

3.65 Solve the initial value problem 

{ 
z" - y' = e -t, 

t >O; 
y" + y' + z' + z = O, 

3.66 Find f such that f(O) = 1 and 

y(O) = O, y' (O) = 1; 
z(O) =O, z'(O) = -1. 

2e-t 1t (t-u) e"' f(u) du+ j' (t) + 2t2e-t =O. 

3.67 Solve the problem 

{ y" (t) + 2z' (t) - y(t) = 4et, 
t >O; 

z"(t)- 2y'(t)- z(t) =O, 
y(O) = O, y' (O) = 2, 

z(O) = z' (O) = O. 
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3.68 Solve y"' + y" + y' + y = 4e-t, t >O; y(O) =O, y'(O) = 3, y"(O) = -6. 

3.69 Find f that solves 

1t j(u)(t- u) sin(t- u) du- 2j'(t) = 12e-t, t >O; f(O) = 6. 

3.70 Solve y111 + 3y" + y'- 5y =O, t >O; y(O) = 1, y'(O) = -2, y"(O) = 3. 

3. 71 Sol ve y111 (t) + y" (t) + 4y' (t) + 4y(t) = 8t + 4, t > O, with initial values 
y(O) = -1, y'(O) = 4, y"(O) =O. 

3. 72 Sol ve y111 + y" + y' + y = 2e-t, t > O; y(O) =O, y' (O) = 2, y" (O) = -2. 

3.73 Find a solution y = y(t) fort> O to the initial value problem y" + 2ty'-
4y = 1, y(O) = y'(O) =O. 

3. 7 4 Find a solution of the partial differential equation Utt + 2ut + xu., + u = xt 
for x >O, t >O, such that u(x, O) = Ut(x, O) =O for x >O and u(O, t) =O 
fort> O. 

3. 75 Use Laplace transformation to find a solution of 

y"(t)- ty'(t) + y(t) = 5, t >O; y(O) = 5, y' (O) = 3. 

3.76 Find f such that j(t) =O fort< O and 

5e-t 1t eY cos2(t- y) f(y) dy = J'(t) + f(t)- e-t, t >O. 

3.77 Solve the integral equation y(t) + J;(t- u) y(u) du= 3sin2t. 

3. 78 Solve the difference equation an+2 - 2an+l +an = bn for n ~ O with initial 
values ao = a1 =O and right-hand member (a) bn = 1, (b) bn = en, 
(c) bo = 1, bn =O for n >O. 



4 
Fourier series 

4.1 Definitions 

We are going to solve, as far as we can, the approximation problem that 
was presented in Sec. 1.4. The strategy will perhaps appear somewhat 
surprising: starting from a function f, we shall define a certain series, and 
in due time we shall find that the function can be recovered from this series 
in various ways. 

All functions that we consider will have period 27!". The whole theory 
could just as well be carried through for functions having some other period. 
This is equivalent to the standard case that we treat, via a simple linear 
transformation of the independent variable. The formulae that hold in the 
general case are collected in Sec. 4.5. 

A function defined on R with period 271" can alternatively be thought of 
as defined on the unit circle T, the variable being the polar coordinate. 
We shall frequently take this point of view. For example, the integral of f 
over an interval of one period can be written IT f(t) dt. When we want to 
compute this integral, we can choose any convenient period interval for the 
actual calculations: 

[ = 11r = [21r = ra+21r' 
JT -1r Jo la 

aER. 

(If T is viewed as a circle, the integral IT f ( t) dt is not to be considered as a 
line integral of the sort used to calculate amounts of work in mechanics, or 
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that appears in complex analysis. lnstead, it is a line integral with respect 
to arc length.) 

One must be careful when working on T and speaking of notions such as 
continuity. The statement that f E C(T) must mean that fis continuous at 
all points of the circle. If we switch to viewing f as a 2n-periodic function, 
this function must also be continuous. The formula f(t) = t for -1r < t < n, 
for instance, defines a function that cannot be made continuous on T: at 
the point on T that corresponds tot= ±n, the limits of f(t) from different 
directions are different. 

Similar care must be taken when speaking of functions belonging to 
Ck(T), i.e., having continuous derivatives of orders up to and including 
k. As an example, the definition g(t) = t2 , Iti :S n, describes a function 
that is in C(T), but not in C1(T). The first derivative does not exist at 
t = ±n. This can be seen graphically by drawing the periodic continuation, 
which has corners at these points (sketch a picture!). 

Let us now do a preparatory maneuver. Suppose that a function fis the 
sum of a series 

00 

f(t) = L Cn eint = L Cn eint. (4.1) 
n=-oo nEZ 

We assume that the coefficients Cn are complex numbers such that 

By the Weierstrass M-test, the series actually converges absolutely and 
uniformly, since leintl is always equal to 1. Each term of the series is con­
tinuous and has period 2n, and the sum function f inherits both these 
properties. 

Now let m be any integer (positive, negative, or zero), and multiply the 
series by e-imt. It will still converge uniformly, and it can be integrated 
term by term over a period, such as the interval ( -7r, 1r): 

7r 7r J f(t) e-imt dt = J L Cn ei(n-m)t dt = L Cn i: ei(n-m)t dt. 
-1r -1r nEZ nEZ 

But it is readily seen that 

! 11" eikt dt = { 2n, k =O, 
-7!" o, k-=!= o. 

It follows that all the terms in the sum vanish, except the one where n-m = 
O, which is the same thing as n = m, and the result is that i: f(t) e-imt dt = 27rCm. 
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Thus, for an absolutely convergent series of the form (4.1), the coefticients 
can be computed from the sum function using this formula. This fact can 
be taken as a motivation for the following definition. 

Definition 4.1 Let f be a function with period 271' that is absolutely Rie­
mann-integrable over a period. Define the numbers Cn, nE Z, by 

1 1 . t 1 1'11' . t Cn = - f(t) e-m dt = - f(t) e-m dt. 
27!' T 271' -'11' 

These numbers are called the Fourier coefficients of f, and the Fourier 
series of f is the series 

Notice that the definition does not state anything about the convergence 
of the series, even less what its sum might be if it happens to converge. It 
is the main task of this chapter to investigate these questions. 

When dealing simultaneously with several functions and their Fourier 
coefficients it is convenient to indicate to what function the coefticients be­
long by writing things like Cn (!). Another commonly used way of denoting 
the Fourier coefficients of f is Î( n). 

When we want to state, as a formula, that f has a certain Fourier series, 
we write 

f(t) "' L Cn eint. 
nEZ 

This means nothing more or less than the fact that the numbers Cn are 
computable from f using certain integrals. 

There are a number of alternative ways of writing the terms in a Fourier 
series. For instance, when dealing with real-valued functions, the complex­
valued functions eint are often felt to be rather "unnatural." One can then 
write eint = cos nt + i sin nt and reshape the two terms corresponding to 
±n like this: 

Cneint + C-ne-int = Cn(Cosnt + i sin nt) + C-n(cosnt- i sin nt) 

= (Cn + C-n) cos nt + i(Cn- C-n) sin nt =an cos nt + bn sin nt, 

n = 1,2, .... 

In the special case n =O we have only one term, CQ. This gives a series of 
the form 

00 

co + L(an cosnt + bn sin nt). 
n=l 

The coefticients in this series are given by new integral formulae: 

an= Cn + C-n = _!_ r f(t)e-int dt + _!_ 1 f(t)eint dt 
27!' jT 271' T 
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=~ r f(t)~(eint+e-int)dt=~ r f(t)cosntdt, n=l,2,3, ... , 
~JT ~JT 

and similarly one shows that 

bn=~ r f(t)sinntdt, n=l,2,3, .... 
~ jT 

If we extend the validity of the formula for an to n = O, we find that 
a0 = 2c0 • For this reason the Fourier series is commonly written 

00 

f(t) rv ~ao + 'L)an cosnt + bn sin nt). (4.2) 
n=l 

This is sometimes called the "real" or trigonometric version of the Fourier 
series for f. It should be stressed that this is nothing but a different way 
of writing the series - it is really the same series as in the definition. 

The terms in the series ( 4.2) can be interpreted as vibrations of differ­
ent frequencies. The constant term ~ a0 is a "DC component," the term 
a1 cost + b1 sint has period 2~, the term with n = 2 has half the period 
length, for n = 3 the period is one-third of 2~, etc. These terms can be 
written in yet another way, that emphasizes this physical interpretation. 
The reader should be familiar with the fact that the sum of a cosine and 
a sine with the same period can always be rewritten as a single cosine ( or 
sine) function with a phase angle: 

a cos nt + b sin nt = J a2 + b2 ( a cos nt + b sin nt) J a2 + b2 J a2 + b2 

= y' a2 + b2(cosacosnt +sin a sin nt) = J a2 + b2 cos(nt- a), 

where the phase angle a is a number such that cos a = aj J a2 + b2, sin a = 
bjyfa2 + b2. This means that (4.2) can be written in the form 

00 

LAn cos(nt- an)· (4.3) 
n=O 

This is sometimes called the physical version of the Fourier series. In this 
formula one can immediately see the amplitude An of each partial fre­
quency. In this text, however, we shall not work with this form of the 
series, since it is slightly unwieldy from a mathematical point of view. 

When asked to compute the Fourier series of a specific function, it is 
normally up to the reader to choose what version to work with. This is 
illustrated by the following examples. 

Example 4.1. Define f by saying that f(t) = et for -~ < t < ~ and 
f(t + 2~) = f(t) for all t. (This leaves f(t) undefined for t = (2n + 1)~, 
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10 

FIGURE 4.1. 

but this does not matter. The value of a functionat one point or another 
does not affect the values of its Fourier coefficients!) We get a function with 
period 2rr (see Figure 4.1). Its Fourier coefficients are 

Cn = - et e-int dt = - e(l-in)t dt = - e . 1 111" 1 111" 1 [ (1-in)t]7r 

271" -1r 2rr -1r 2rr 1 - m t=-71" 

(-1)n(e7r- e-1r) (-1)nsinhrr 
= 

2rr(1- in) 2rr(1- in) rr(1- in) 

Here we used the fact that e±in7r = (-1)n. Now we can write 

!() 1 "'(-1)nsinhrr int _ sinhrr"' (-1)n int 
t "'-LJ e ---LJ--e . 

7r 1 - in 7r z 1 - in 
nEZ nE 

o 
We remind the reader of a couple of notions of symmetry that turn out 

to be useful in connection with Fourier series. A function f defined on R 
is said to be even, if f( -t) = f(t) for all t E R. A function f is odd, 
if f( -t) = - f(t). (The terms should bring to mind the special function 
f ( t) = tn, w hich is even if n is an even integer, odd if n is an odd integer.) 
An odd function f on a symmetric interval (-a, a) has the property that 
the integral over (-a, a) is equal to zero. This has useful consequences 
for the so-called real Fourier coefficients an and bn. If f is even and has 
period 271", the sine coefficients bn will be zero, and furthermore the cosine 
coefficients will be given by the formula 

f even => 2171" an = - f(t) cos nt dt. 
71" o 

In an analogous way, an odd function has all cosine coefficients equal to 
zero, and its sine coefficients are given by 

2171" fodd => bn=- f(t)sinntdt. 
71" o 
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FIGURE 4020 

When computing the Fourier series for an even or odd function these facts 
are often useful. 

Example 4.2. Let f be an odd function with period 21!', that satisfies 
f(t) = (7r- t)/2 for O< t < 1l'o Find its Fourier series! (See Figure 4020) 

Solutiono Notice that the description as given actually determines the func­
tion completely ( except for its value at one point in each period, which does 
not matter) o Because the function is odd we have an = O and 

217r 1l'- t bn =- -- sinntdt 
1l' o 2 

= ~ [(7r-t) -cosnt]7r + _..!._ r(-1)cosntdt 
1l' n t=O n1l' Jo 

= ~- - 1- [sinnt]n: =~o 
n n21l' t=O n 

Thus, 

f(t)"' f sin nt o 
n=l n 

D 

Example 4.3. Let f(t) = t2 for Iti :<::::; 1l' and define f outside of this 
interval by proclaiming it to have period 21!' (draw a picture!)o Find the 
Fourier series of this functiono 

Solutiono Now the function is even, and so bn =O and 

n#O 
21n: t 2 [ sin nt] n: 2 1n: an = - e cos nt dt = - t2 -- - - 2t sin nt dt 
1l' o 1l' n o n1l' o 

=-_±_ [t -cosnt]n:-~ r 10 cosntdt = 41l'COSn1l'- 0 = 4(-1)n 
n1l' n o n21l' Jo n21l' n2 

For n = O we must do a separate calculation: 

2 r 2 1!'3 21!'2 
ao = ; lo e dt = ; o 3 = 3 o 
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Collecting the results we get 

2 00 ( l)n 
f(t),..., ~ +4 L ~ cosnt. 

3 n=l n 

D 

The series obtained in Example 4.3 is clearly convergent; indeed it even 
converges uniformly, by Weierstrass. At this stage we cannot tell what its 
sum is. The goal of the next few sections is to investigate this. For the 
moment, we can notice two facts about Fourier coefficients: 

Lemma 4.1 Suppose that f is as in the definition of Fourier series. Then 

1. The sequence of Fourier coefficients is bounded; more precisely, 

lcnl :::; 2_ r lf(t)l dt for all n. 
27r jT 

2. The Fourier coefficients tend to zero as lnl -+ oo. 

Proof. For the Cn we have 

lcnl = 2~ Il f(t) e-int dt\ :S: 2~ llf(t)lle-intl dt = 2~ llf(t)l dt = M, 

where M is a fixed number that does not depend on n. (In just the same 
way one can estima te an and bn.) The second assertion of the lemma is just 
a case of Riemann-Lebesgue's lemma. D 

The constant term in a Fourier series is of particular interest: 

ao 1 111: 
co = 2 = 27r -11: f(t) dt. 

This can be interpreted as the mean value of the function f over one period 
(or over T). This can often be useful in problem-solving. It is also intuitively 
reasonable in that all the other terms of the series have mean value O over 
any period ( think of the graph of, say, sin nt). 

Exercises 

4.1 Prove the formulae Cn = ~(an- ibn) and C-n = ~(an+ ibn) for n 2': O 
(where b0 = 0). 

4.2 Assume that f and g are odd functions and h is even. Find out which of 
the following functions are odd or even: f + g, fg, jh, j 2, f + h. 

4.3 Show that an arbitrary function f on a symmetric interval (-a, a) can be 
decomposed as fE + fo, where fE is even and fo is odd. Also show that 
this decomposition is unique. Hint: put fE(t) = (f(t) + f( -t))/2. 



80 4. Fourier series 

4.4 Determine the Fourier series ofthe 21r-periodic function described by f(t) = 
t + 1 for iti < 1r. 

4.5 Prove the following relations for a (continuous) function f and its "com­
plex" Fourier coefficients en: 
(a) If f is even, then Cn = C-n for all n. 
(b) If f is odd, then Cn = -C-n for all n. 
(c) If f is real-valued, then Cn = C-n for alin (where- denotes complex 
conjugation). 

4.6 Find the Fourier series (in the "real" version) of the functions (a) f(t) = 
cos2t, (b) g(t) = cos2 t, (c) h(t) = sin3 t. Sens moml? 

4. 7 Let f ha ve the Fourier coefficients { Cn}. Prove the following rules for 
Fourier coefficients (F.c.'s): 
(a) Let a E Z. Then the function t 1-4 eiat f(t) has F.c.'s { Cn-a}· 

(b) Let b E R. Then the function t 1-4 f(t- b) has F.c.'s {e-inben}. 

4.8 Find the Fourier series of h(t) = e3it f(t- 4), when f has period 21r and 
satisfies f(t) = 1 for iti < 2, f(t) =O for 2 < iti < 1r. 

4.9 Compute the Fourier series of J, where f(t) = e-ltl, iti< 1r, f(t + 27r) = 
f(t), tE R. 

4.10 Let f and g be defined on T with Fourier coefficients en(f) resp. cn(g). 
Define the function h by 

h(t) = 2~ i f(t- u) g(u) du. 

Show that h is welldefined on T (i.e., h has also period 21r), and prove that 
en(h) = en(f) cn(g). {The function h is called the convolution of f and g.) 

4.2 Dirichlet's and Fejer's kernels; uniqueness 

It is a regrettable fact that a Fourier series need not be convergent. For 
example, it is possible to construct a continuous function such that its 
Fourier series diverges at a specified point (see, for example, the book by 
THOMAS KORNER mentioned in the bibliography). We shall see, in due 
time, that if we impose somewhat harder requirements on the function, 
such as differentiability, the results are more positive. 

It is, however, true that the Fourier series of a continuous function is 
Cesaro summable to the values of the function, and this is the main result 
of this section. 

We start by establishing a closed formula for the partial sums of a Fourier 
series. To this end we shall use the following formula: 

Lemma 4.2 

1 ( ~ ) 1 ~ . sin(N + .!. )u 
DN(u) :=- ! + L.J cos nu =- L.J emu = . 12 • 

7r n=l 2rr n=-N 2rr sm 2u 
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Proof. The equality of the two sums follows easily from Euler's formulae. 
Let us then start from the "complex" version of the sum and compute it 
as a finite geometric sum: 

N . . 2N . . 1 _ ei(2N+l)u 
21rDN(u) = """ emu = e-tNu """emu = e-tNu. . 

L..J L..J 1 - em 
n=-N n=O 

. ei(N+!lu(e-i(N+!)u _ ei(N+!lu) 
-tNu 

= e · eiu/2 ( e-iu/2 _ eiu/2) 

e-iNu+i(N+!)u -2isin(N + !)u sin(N + !)u 

eiu/2 . -2i sin l u sin lu 
2 2 

o 
The function DN is called the DIRICHLET kernel. Its graph is shown in 

Figure 4.3 on page 87. 
When discussing the convergence of Fourier series, the natural partial 

sums are those containing all frequencies up to a certain value. Thus we 
define the partial sum sN(t) tobe 

N N 

SN(t) := !ao+ L(ancosnt+bnsinnt) = L Cneint 
n=l n=-N 

Using the Dirichlet kernel we can obtain an integral formula for this sum, 
assuming the Cn to be the Fourier coefficients of a function f: 

N . N 1 ~n: . . 
SN(t) = L enemt = L - f(u) e-mu du. emt 

21r -n: n=-N n=-N 

= ~ /_: f(u) ·! n~N ein(t-u) du=/_: f(u) DN(t- u) du 

1 ~n: f( ) sin(N + !)u =- t-u . 1 du. 
21r -n: sm 2u 

In the last step we change the variable ( t - u is replaced by u) and make 
use of the periodicity of the integrand. We shall presently take another step 
and form the arithmetic means of the N + 1 first partial sums. To achieve 
this we need a formula for the mean of the corresponding Dirichlet kernels: 

Lemma 4.3 

·- 1 ~ _ 1 (sin !(N + 1)u)2 

FN(u) .- N + 1 t::o Dn(u)- 21r(N + 1) sin !u 
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The proof can be done in a way similar to Lemma 4.2 ( or in some other 
way). It is left as an exercise. The function FN(t) is called the FEJER kernel. 

N ow we can form the mean of the partial sums: 

aN(t) = so(t) + sl(t) + ... + BN(t) = _1_ t 11r f(t- u) Dn(u) du 
N + 1 N + 1 n=O -1r 

1 1r 1 N 11r 
= f(t- u) · Nl L Dn(u) du= f(t- u) FN(u) du. 

-1r + n=O -1r 
Lemma 4.4 The Fejer kernel FN(u) has the following properties: 

1. FN is an even function, and FN(u) 2:: O. 

2. f:.1r FN(u) du= 1. 

3. lf 8 >O, then limN-+oo f81r FN(u) du= O. 

Proof. Property 1 is obvious. Number 2 follows from 

1 1r 111r -1r Dn(u) du=; -1r G +cosu+· · ·+cosnu) du= 1, n= 0,1,2, ... ,N, 

and the fact that FN is the mean ofthese Dirichlet kernels. Finally, property 
3 can be proved thus: 

11r 1 17r sin2 l(N + 1)u 
O~ FN(u) du= 2 (N 1) ~ 2 1 du 

8 7r + 8 sm 2u 

< 1 r _1_ du = 1 7r - 8 = ___!!j_ -+ o 
- 21r(N + 1) }8 sin2 ~8 21r(N + 1) sin2 ~8 N + 1 

as N-+ oo. D 

The lemma implies that {FN }]V=1 is a positive summation kernel such 
as the ones studied in Sec. 2.4. Applying Corollary 2.1 we then have the 
result on Cesaro sums of Fourier series. 

Theorem 4.1 (Fejer's theorem) lf f is piecewise continuous on T and 
continuous at the point t, then Iim aN(t) = f(t). 

N-+oo 

Remark. Using the remark following Corollary 2.1, we can sharpen the result of 
the theorem a bit. If fis continuous in an interval Io =]ao,bo[, and I = [a,b] is 
a compact subinterval of Io, then O'N(t) will converge to f(t) uniformly on I. D 

If a series is convergent in the traditional sense, then its sum coincides 
with the Cesaro limit. This means that if a continuous function happens to 
have a Fourier series, which is seen to be convergent, in one way or another, 
then it actually converges to the function it comes from. In particular we 
have the following theorem. 
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Theorem 4.2 If f is continuous on T and its Fourier coefficients Cn are 
such that L: lcnl is convergent, then the Fourier series is convergent with 
sum f(t) for all tE T, and the convergence is even uniform on T. 

The uniform convergence follows using the Weierstrass M-test just as at 
the beginning of this chapter. 

This result can be applied to Example 4.3 of the previous section, where 
we computed the Fourier series of f(t) = t2 (Iti ~ 1r). Applying the usual 
comparison test, the series obtained is easily seen to be convergent, and 
now we know that its sum is also equal to f(t). We now have this formula: 

(Why does this formula hold even for t = ±1r ?) In particular, we can amuse 
ourselves by inserting various values of t just to see what we get. For t = O 
the result is 

From this we can conclude that 

oo (-l)n 71"2 

L:~=-12" 
n=l 

If t = 1r is substituted into (4.4), we have 

2 oo ( 1)n 2 oo 1 
1r2 = ~ +4""' ---(-l)n = ~ +4""'-, 

3 LJ n2 3 LJ n2 
n=l n=l 

which enables us to state that 

Thus, Fourier series provide a means of computing the sums of numeri­
cal series. Regrettably, it can hardly be called a "method": if one faces a 
more-or-less randomly chosen series, there is no general method to find a 
function whose Fourier expansion will help us to sum it. As an illustration 
we mention that it is rather easy to find nice expressions for the values of 

00 1 
((s) = ""'-LJ ns 

n=l 

for s = 2, 4, 6, ... , but no one has so far found such an expression for, say, 
((3). 

The following uniqueness result is also a consequence of Theorem 4.2. 
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Theorem 4.3 Suppose that f is piecewise continuous and that all its Fou­
rier coefficients are O. Then f(t) =O at all points where f is continuous. 

In fact, all the partial sums are zero and the series is trivially convergent, 
and by Theorem 4.2 it must then converge to the function from which it is 
formed. 

Corollary 4.1 If two continuous functions f and g have the same Fourier 
coefficients, then f = g. 

Proof Apply Theorem 4.3 to the function h = f- g. D 

Exercises 

4.11 Prove the formula for the Fejer kernel (i.e., Lemma 4.3). 

4.12 Study the function f(t) = t4 - 27r2t2 , iti < 1r, and compute the value of 
((4). 

4.13 Determine the Fourier series of f(t) = icosti. Prove that the series con­
verges uniformly to f and find the value of 

_ ~ (-It 
8 - ~ 4n2 -1 · 

n=l 

4.14 Prove converse statements to the assertions in Exercise 4.5; i.e., show that 
if f is continuous ( say), we can say that 
(a) if Cn = C-n for alin, then f is even; 
(b) If Cn = -C-n for ali n, then f is odd; 
( c) If Cn = C-n for ali n, then f is real-valued. 

4.3 Differentiable functions 

Suppose that f E C 1 (T), which means that both f and its derivative f' 
are continuous on T. We corn pute the Fourier coefficients of the derivative: 

~ ~ 

cn(f) = ~ jf'(t) e-int dt = ~ [f(t) e-intr - ~ jf(t)( -in)e-int dt 
2n 2n -~ 2n 

1 
= 211" (f(n)( -lt- f( -n)( -lt) +in cn(f) =in cn(f). 

(The fact that fis continuous on T implies that f( -1r) = f(n).) This means 
that if f has the Fourier series 2: Cn eint, then f' has the series 2: in Cn eint. 
This indeed means that the Fourier series can be differentiated termwise 
( even if we have no information at all concerning the convergence of either 
of the two series). 
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If f E C2 (T), the argument can be repeated, and we tind that the Fourier 
series of the second derivative is E( -n2 )cn eint. Since the Fourier coeffi­
cients of f" are bounded, by Lemma 4.1, we conclude that 1- n 2enl :::; M 
for some constant M, which implies that lcnl :::; Mjn2 for n =1- O. But then 
we can use Theorem 4.2 to conclude that the Fourier series of f converges 
to f(t) for all t. Here we have a first, simple, sufficient condition on the 
function f itself that ensures a nice behavior of its Fourier series. 

In the next section, we shall see that C2 can be improved to C1 and 
indeed even less demanding conditions. 

By iteration of the argument above, the following general result follows. 

Theorem 4.4 If f E Ck(T), then lenl:::; Mflnlk for some constant M. 

The smoother the function, the smaller the Fourier coefficients: a function 
with high differentiability contains small high-frequency components. 

The assertion of the theorem is really rather weak. Indeed, one can say 
more, which is exemplified in Exercises 4.15 and 4.17. 

The situation concerning integration of Fourier series is extremely favor­
able. It turns out that termwise integration is always possible, both when 
talking about antiderivatives and integrals over an interval. There is one 
complication: if the constant term in the series is not zero, the formally 
integrated series is no longer a Fourier series. However, we postpone the 
treatment of these matters until later on, when it will be easier to carry 
through. (Sec. 5.4, Theorem 5.9 on p. 122.) 

The fact that termwise differentiation is possible can be used when look­
ing for periodic solutions of differential equations and similar problems. We 
give an example of this. 

Example 4.4. Find a solution y(t) with period 27r of the differential­
difference equation y'(t) + 2y(t- 1r) =sint, -oo < t < oo. 

Solution. Assume the solution to be the sum of a "complex" Fourier series 
(a "real" series could also be used): 

y(t) = LCneint. 
nEZ 

If we differentiate termwise and substitute into the given equation, we get 

y'(t)+2y(t-7r) = Lineneint+2Lcneint-imr = L(in+2(-1t)eneint. 

(4.5) 
This should be equal to sint= (eit- e-it)/(2i) = !ie-it- !ieit. The 
equality must imply that the coefficients in the last series of ( 4.5) are zeroes 
for all n =f. ±1, and furthermore 

(-i- 2)c_1 = i. 
2 
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From this we so1ve c1 = lo (2i- 1), c_l = lo ( -2i- 1) (and Cn =O for all 
other n), which gives 

y(t) =el eit + C-1 e-it = _110 (eit + e-it) + 120 i(eit- e-it) 

= - ţ cos t + ţ i · 2i sint = ţ (- cos t - 2 sint). 

Check the so1ution by substituting into the original equation! 

Exercises 

4.15 Prove the following improvement on Theorem 4.4: If f E Ck(T), then 
Iim nkCn =O. 

n-+±oo 

o 

4.16 Find the values of the constant a for which the problem y"(t) + ay(t) = 
y(t+1r), tE R, has a solution with period 271" which is not identically zero. 
Also, determine all such solutions. 

4.17 Try to prove the following partial improvements on Theorem 4.4: 
(a) If f' is continuous and differentiable on T except possibly for a finite 
number of jump discontinuities, then lenl :::; M/lnl for some constant M. 
(b) If f is continuous on T and has a second derivative everywhere except 
possibly for a finite number of points, where there are "corners" (i.e., the 
left-hand and right-hand first derivatives exist but are different from each 
other), then lcnl :::; M/n2 for some constant M. 

4.4 Pointwise convergence 

Time is now ripe for the formu1ation and proof of our most general theorem 
on the pointwise convergence of Fourier series. We have already mentioned 
that continuity of the function invo1ved is not sufficient. Now let us assume 
that f is defined on T and continuous except possibly for a finite number of 
finite jumps. This means that f is permitted to be discontinuous at a finite 
number of points in each period, but at these points we assume that both 
the one-sided limits exist and are finite. For convenience, we introduce this 
notation for these limits: 

f(to-) = lim f(t), 
t/'to 

f(to+) = lim f(t). 
t\.to 

In addition, we assume that the "generalized 1eft-hand derivative" J'r,(to) 
exists: 

! ' (t ) _ 1. f(to + h)- f(to-) _ 1. f(to - u)- f(to-) 
LO-lm -lm . 

h/'0 h u\.0 -u 

If f happens tobe continuous at to, this coincides with the usual1eft-hand 
derivative; if f has a discontinuity at to, we take care to use the left-hand 
limit instead of just writing f(to). 
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21/(211") 

FIGURE 4.3. The graph of Dw 

Symmetrically, we shall also assume that the "generalized right-hand 
derivative" exists: 

!' (t ) _ 1. f(to + h)- f(to+) 
R o - 1m h . 

h'\.0+ 

Intuitively, the existence of these generalized derivatives amounts to the 
fact that at a jump discontinuity, the graphs of the two parts of the function 
on either side of the jump have each an end-point tangent direction. 

In Sec. 4.2 we proved the following formula for the partial sums of the 
Fourier series of f: 

1 11!" sin(N + l)u 
sN(t) = -2 f(t- u) . 1 2 du. 

1r -1r sm 2u 
(4.6) 

What complicates matters is that the Dirichlet kernel occurring in the 
integral is not a positive summation kernel. On the contrary, it takes a lot 
of negative values, which causes a proof along the lines of Theorem 2.1 to 
fail completely (see Figure 4.3). 

We shall make use of the following formula: . 

111!" sin(N + ~)u _ 
- . 1 du- 1. 
7r o sm 2u 

(4.7) 

This follows directly from the fact that the integrated function is 21r D N ( u) 
= 1+2E~ cos nu, where all the cosine terms have integral zero over [0,1r]. 

We split the integral ( 4.6) in two parts, each covering half of the interval 
of integration, and begin by taking care of the right-hand half: 
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Lemma 4.5 

1171' sin(N +.! )u 
Iim - f(to- u) . 1 2 du= f(to- ). 

N--too 1r 0 sm 2u 

Proof. Rewrite the difference between the integral on the left and the num­
ber on the right, using (4.7): 

1171' sin(N + ~)u - f ( to - u) . 1 du - f ( to-) 
1r o sm 2u 

1171' sin(N + ~)u 
=- (f(to- u)- f(to-)) . 1 du 

7r O ffin2U 

1171' f(to- u)- f(to-) -u . (N 1 ) d = - · -.-1- · sm + 2 u u. 1r 0 -u sm 2u 

The last integrand consists of three factors: The first one is continuous 
(except for jumps), and it has a finite limit as u --+ 0+, namely, fi(to). 
The second factor is continuous and bounded. The product of the two 
first factors is thus a function g(u) which is clearly Riemann-integrable on 
the interval [O, 1r]. By the Riemann-Lebesgue lemma we can then conclude 
that the whole integral tends to zero as N goes to infinity, which proves 
the lemma. D 

In just the same way one can prove that if f has a generalized right-hand 
derivative at to, then 

1 !o sin(N + .! )u 
Iim - f(to- u) . 1 2 du= f(to+). 

N--too 1r -71' sm 2u 

Taking the arithmetic mean of the two formulae, we have proved the con­
vergence theorem: 

Theorem 4.5 Suppose that f has period 21r, and suppose that to is a point 
where f has one-sided limiting values and (generalized} one-sided deriva­
tives. Then the Fourier series of f converges for t = to to the mean value 
~(f(to+) + f(to- )). In particular, if f is continuous at to, the sum of the 
series equals f(to). 

We emphasize that if f is continuous at to, the sum of the series is simply 
f(t0 ). At a point where the function has a jump discontinuity, the sum is 
instead the mean value of the right-hand and left-hand limits. 

It is important to realize that the convergence of a Fourier series at 
a particular point is really dependent only on the local behavior of the 
function in the neighborhood of that point. This is sometimes called the 
Riemann localization principle. 
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Example 4.5. Let us return to Example 4.2 on page 78. Now we finally 
know that the series f sinnt 

n 
n=l 

is indeed convergent for all t. If, for example, t = 1r /2, we ha ve sin nt equal 
to zero for all even values of n, while sin(2k + 1 )t = ( -1 )k. Since f is 
continuous and has a derivative at t = n/2, and f(n/2) = n/4, we obtain 

(In theory, this formula could be used to compute numerica! approximations 
to 1r, but theseries converges so extremely slowly that it is of no practica! 
use whatever.) D 

The most comprehensive theorem concerning pointwise convergence of 
Fourier series of continuous functions was proved in 1966 by Lennart CAR­
LESON. In order to formulate it we first introduce the notion of a zero set: 
a set E C T is called a zero set if, for every c: > O, it is possible to construct 
a sequence of intervals { wn}~1 on the circle, that together cover the set 
E and whose totallength is less that c:. 

Theorem 4.6 (Carleson's theorem) Jf f is continuous on T, then its 
Fourier series converges at all points of T except possibly for a zero set. 

In fact, it is not even necessary that f be continuous; it is sufficient 
that f E L2 (T), which will be explained in Chapter 5. The proof is very 
complicated. 

Carleson's theorem is "best possible" in the following sense: 

Theorem 4.7 (Kahane and Katznelson) Jf E is a zero set on T, then 
there exists a continuous function such that its Fourier series diverges pre­
cisely for all t E E. 

Exercises 

4.18 Define f by letting f(t) = tsint for Iti< 1r and f(t + 21r) = f(t) for all t. 
Determine the Fourier series of f and investigate for which values of t it 
converges to f ( t). 

4.19 If f(t) = (t + 1) cost for -7!" < t < 1r, what is the sum of the Fourier series 
of J fort= 37r? (Note that you do not have to compute the series itself!) 

4.20 The function f has period 27!" and satisfies 

f(t) = { t + 7!", -7!" < t < o, 
o, o:::; t:::; 7!". 
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(a) Find the Fourier series of f and sketch the sum of the series on the 
interval [-37r, 37r]. 

00 

(b) Sum the series L (2n ~ 1)2 • 

n=l 

4.21 Let f(x) be defined for -1r < x < 1r by f(x) =cos ~x and for other values 
of x by f(x) = f(x + 21r). Determine the Fourier series of f. For all real x, 
investigate whether the series is convergent. Find its sum for x = n · 1r /2, 
n = 1,2,3. 

4.22 Let a be a complex number but not an integer. Determine the Fourier 
series of cosat (iti~ 1r). Use the result to prove the formula 

N 

7rCOt7rz = lim ~ - 1-
N-+oo L...J z- n 

n=-N 

(z tj. Z) 

("expansion into partial fractions of the cotangent"). 

4.5 Formulae for other periods 

Here we have collected the formulae for Fourier series of functions with a 
period different from 27r. It is convenient to have a notation for the half­
period, so we assume that the period is 2P, where P > 0: 

f(t + 2P) = f(t) for all tE R. 

Put O = 1r / P. The number O could be called the fundamental angular 
frequency. A linear change of variable in the usual formulae results in the 
following set of formulae: 

f(t) "' L Cn ein!lt' 

nEZ 

and, alternatively, 

1 1p . 
where Cn = 2p f(t) e-m!lt dt, 

-P 

00 p 

~ . an 1! cos f(t)"' !ao+ L...J(ancosnOt+bnsmnOt), wherebn = p f(t)sin nOtdt. 
n=l -P 

In all cases, the intervals of integration can be changed from (-P, P) to 
an arbitrary interval of length 2P. If fis even or odd, we have the special 
cases 

f even::::} bn =O, an=; fop f(t)cosnf!tdt, 

f odd ::::} an= O, bn =; fop f(t)sinnf!tdt. 
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All results concerning summability, convergence, differentiability, etc., 
that we have proved in the preceding sections, will of course hold equally 
well for any period length. 

Exercises 

4.23 (a) Determine the Fourier series for the even function f with period 2 that 
satisfies f(t) = t for O < t < 1. 
(b) Determine the Fourier series for the odd function f with period 2 that 
satisfies f(t) = t for O < t < 1. 
(c) Compare the convergence properties of the series obtained in (a) and 
(b). Illuminate by drawing pictures! 

4.24 Find, in the guise of a "complex" Fourier series, a periodic solution with a 
continuous first derivative on R ofthe differential equation y" +y' +y = g, 
where g has period 47r and g(t) = 1 for Iti < 1r, g(t) =O for 1r < Iti < 21r. 

4.25 Determine a solution with period 2 of the differential-difference equation 
y' (t) + y(t- 1) = cos2 1rt. 

4.26 Compute the Fourier series of the odd function f with period 2 that satifies 
f(x) = x- x2 for O< x < 1. Use the result to tind the sum of the series 

oo (-1)n 

L (2n + 1)3 • 
n=O 

4.6 Some worked examples 

In this section we give a few more examples of the computational work that 
may occur in calculating the Fourier coefficients of a function. 

Example 4.6. Take f(t) = tcos2t for -1r < t < 1r, and assume f to have 
period 271'. First of all, we try to see if f is even or odd - indeed, it is odd. 
This means that it should be a good idea to compute the Fourier series 
in the "real" version; because all an will be zero, and bn is given by the 
half-range integral 

2111" bn =- tcos2tsinntdt. 
71' o 

The computation is now greatly simplified by using the product formula 

sinxcosy = Hsin(x + y) + sin(x- y)). 

Integrating by parts, we get 

bn = ~ J t(sin(n + 2)t + sin(n- 2)t) dt (n =/;2) 

= _!_ [t(- cos(n + 2)t _ cos(n- 2)t)] '~~" 
1r n+2 n-2 0 
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+.! r (cos(n + 2)t + cos(n- 2)t)dt 
1r Jo n + 2 n- 2 

= _ _!. 1r(cos(n + 2)7r + cos(n- 2)7r) + 0 = _ ( ( -1)n + ( -1)n) 
1r n+2 n-2 n+2 n-2 
2n{ -1)n 
n 2 -4 · 

This computation fails for n = 2. For this n we get instead 

b2=~ 11r t(sin4t+O)dt= ~[t-c~s 4t] + 4~ 11r cos4tdt 

=-~+0=-~. 

Noting that b1 = -i, we can conveniently describe the Fourier series as 

f(t)"' -i sint-~ sin2t- 2 f :~-~); sinnt. 
n=3 

o 

Example 4. 7. Find the Fourier series of the odd function of period 2 that 
is described by f(t) = t(1-t) for O~ t::::; 1. Using the result, find the value 
of the sum 

00 {-1)k 
81 = L {2k + 1)3 . 

k=O 

Solution. Since the function is odd, we compute a sine series. The coeffi.­
cients are 

bn = 2 { 1 t{1- t)sinn1rtdt = {integrations by parts) = 4( 1 -}~1)n), lo n 1r 

which is zero for all even values of n. Writing n = 2k + 1 when n is odd, 
we get the series 

f(t) "' ~ f sin{2k + 1)7rt. 
7r3 k=O {2k + 1)3 

A sketch of the function shows that f is everywhere continuous and has both 
right- and left-hand derivatives everywhere, which permits us to replace 
the sign"' by =. In particular we note that if t = ~' then sin{2k + 1)7rt = 
sin{k + ~)n = ( -1)k, so that 

o 
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FIGURE 4.4. 

Exercises 
4.27 Find the Fourier series of f with period 1, when f(x) = x for 1 < x < 2. 

Indicate the sum of the series for x = O and x = ~. Explain your answer! 
4.28 Develop into Fourier series the function f given by 

f(x) =sin~' -1r < x::; 1r; f(x + 27r) = f(x), x E R. 

4.29 Compute the Fourier series ofperiod 21r for the function f(x) = (lxl-7r?, 
lxl ::; 1r, and use it to find the sums 

00 (-1t-1 00 1 L n2 and L n2. 
n=l n=l 

4.7 The Gibbs phenomenon 

Let f be a function that satisfies the conditions for pointwise convergence 
of the Fourier series (Theorem 4.5) and that has a jump discontinuity at a 
certain point t 0 . If we draw a graph of a partial sum of the series, we discover 
a peculiar behavior: When t approaches t 0 , for example, from the left, the 
graph of sn(t) somehow grows restless; you might say that it prepares to 
take off for the jump; and when the jump is accomplished, it overshoots 
the mark somewhat and then calms down again. Figure 4.4 shows a typical 
case. 

This sort of behavior had already been observed during the nineteenth 
century by experimental physicists, and it was then believed to be due to 
imperfection in the measuring apparatuses. The fact that this is not so, but 
that we are dealing with an actual mathematical phenomenon, was proved 
by J. W. GIBBS, after whom the behavior has also been named. 

The behavior is fundamentally due to the fact that the Dirichlet kernel 
Dn(t) is restless near t = O. We are going to analyze the matter in detail 
in one special case and then, using a simple maneuver, show that the same 
sort of thing occurs in the general case. 
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FIGURE 4.5. 

Let f(t) be a so-called square-wave function with period 271", described 
by f(t) = 1 for O< t < 11", f(t) = -1 for -71" < t <O (see Figure 4.5). Since 
f is odd, it has a sine series, with coefficients 

2111" . 2 [ cos nt] 11" 2 n bn =- smntdt =- --- = -(1- (-1) ), 
7r o 7r n o n11" 

which is zero if n is even. Thus, 

!() 4 ~ sin(2k + 1)t 4 (. sin3t sin5t ) 
t rv-L....t =- smt+--+--+···. 

11" 2k + 1 11" 3 5 
k=O 

(4.8) 

Because of symmetry we can restrict our study to the interval (0, 7r /2). For 
a while we dump the factor 4/71" and consider the partial sums of the series 
in the brackets: 

Bn(t) =sint+! sin3t + i sin5t + · · · + - 1- sin(2n + 1)t. 
2n+1 

By differentiation we find 

n 

S~(t) =cost+ cos3t + · · · + cos(2n + 1)t =! L(ei(2k+l)t + e-i(2k+l)t) 

k=O 

2n+l 1 i2(2n+2)t · 2( 1)t 
= !e-i(2n+l)t ~ ei2kt = !e-i(2n+l)t - e = sm n + 

2 L....t 2 1 - ei2t 2 sint 
k=O 

(compare the method that we used to sum Dn(t)). The last formula does 
not hold for t = O, but it does hold in the half-open interval O < t :::; 7r /2. 
The derivative has zeroes in this interval; they are easily found to be where 
2(n+ 1)t = k7r or t = Tk = (k7r)/((2(n+ 1)), k = 1, 2, ... , n. Considering the 
sign of the derivative between the zeroes one realizes that these points are 
alternatingly maxima and minima of Sn. More precisely, since Sn(O) =O, 
integration gives 

S () = 1t sin2(n + 1)u d 
n t 2 . u, 

0 smu 

where the numerator of the integrand oscillates in a smooth fashion between 
the successive Tk, while the denominator increases throughout the interval. 
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Sn(t) 

0~------------~ 

FIGURE 4.6. 

This means that the first maximum value, for t = r1, is also the largest, 
and the oscillations in Sn then quiet down as t increases (see Figure 4.6). 

It follows that the maximal value of Sn(t) on ]0, 7!"/2] is given by 

( 
1l" ) ~ 1 . (2k + 1)7r 

An= Sn(r1) = Sn 2(n + 1) = 6 2k + 1 sm 2(n + 1) . 

We can interpret the last sum as a Riemann sum for a certain integral: Let 
tk = k7r/(n+1) and ~k = !(tk+tk+l)· Then the points O= to, t1, ... , tn+1 = 
1r describe a subdivision of the interval (O, 1r), the point ~k lies in the sub in­
terval (xk,Xk+l) and, in addition, ~k = (2k + 1)7r/(2(n + 1)). Thus we 
ha ve 

1 ~ sin~k 1 111" sinx 
An = 2 LJ -c--1lxk -+ 2 x dx as n -+ oo. 

k=O <"k O 

A more detailed scrutiny of the limit process would show that the numbers 
An decrease toward the limit. 

Now we reintroduce the factor 4/7r. We have then established that the 
partial sums of the Fourier series (4.8) have maximum values that tend to 
the limit 

~ r sint dt ~ 1.1789797, 
1r } 0 t 

and the maximal value of Sn(t) is taken at t = 1r /(2(n + 1)). On the right­
hand side of the maximum, the partial sums oscillate around the value 1 
with a decreasing amplitude, up to the point t = 1r /2. Because of symmetry, 
the behavior to the left will be analogous. What we want to stress is the 
fact that the maximal oscillation does not tend to zero when more terms 
of the series are added; on the contrary, it stabilizes toward a value that 
is approximately 9 percent of the total size of the jump. The point where 
the maximum oscillation takes place moves indefinitely closer to the point 
of the jump. It is even possible to prove that the Fourier series is actually 
uniformly convergent to 1 on intervals of the form [a, 1r- a], where a> O. 

Now let g be any function with a jump discontinuity at to with the size 
of the jump equal to 8 = g(to+) - g(t0- ), and assume that g satisfies the 
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FIGURE 4.7. 

conditions of Theorem 4.5 for convergence of the Fourier series in some 
neighborhood of to. Form the function h(t) = g(t) - ~8f(t- to), where 
f is the square-wave function just investigated. Then, h(to+) = h(t0 - ), 

so that h is actually continuous at t0 if one defines h(t0 ) in the proper 
way. Furthermore, h has left- and right-hand derivatives at t 0 , and so the 
Fourier series of h will converge nicely to hin a neighborhood of t = t0 . The 
Fourier series of g can be written as the series of h plus some multiple of a 
translate of the series of f; the former series is calm near to, but the latter 
oscillates in the manner demonstrated above. It follows that the series of g 
exhibits on the whole the same restlessness when we approach to, as does 
the series of f when we approach O. The size of the maximum oscillation is 
also approximately 9 percent of the size of the whole jump. 

If a Fourier series is summed according to Cesaro (Theorem 4.1) or 
Poisson-Abel (see Sec. 6.3), the Gibbs phenomenon disappears completely. 
Compare the graphs of s15 (t) in Figure 4.4 and 0'15(t) (for the same f) in 
Figure 4.7. 

4.8 *Fourier series for distributions 

We shall here consider the generalized functions of Sec. 2.6 and 2. 7 and 
their Fourier series. Since the present chapter deals with objects defined on 
T, or, equivalently, periodic phenomena, we begin by considering periodic 
distributions as such. 

In this context, the Heaviside function H is not really interesting. But 
we can still think of the abject 8a(t) as a "unit pulse" located at a point 
a E T, having the property 

L <p(t)8a(t) dt = <p(a) if <p is continuous ata. 

The periodic description of the same abject consists of a so-called pulse 
train consisting of unit pulses at all the points a+ n · 211', n E Z. As an 
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abject defined on R, this pulse train could be described by 

00 00 

L 8a+211"n(t) = L 8(t- a- 21rn). 
n=-oo n=-oo 

The convergence of this series is uncontroversial, because at any individual 
point t at most one of the terms is different from zero. 

The derivatives of 8a can be described using integration by parts, just as 
in Sec. 2.6, but now the integrals are taken over T (i.e., over one period). 
Because everything is periodic, the contributions at the ends of the interval 
will cancel: 

What would be the Fourier series of these distributions? Let us first 
consider 8a. The natural approach is to define Fourier coefficients by the 
formula 

1 1 . t 1 . Cn =- 8a(t)e-m dt =-·e-ma. 
271" T 271" 

The series then looks like this: 

In particular, when a = O, the Fourier coefficients are all equal to 1/(211"), 
and the series is 

8(t)"' 2_ L eint. 
271" z nE 

By pairing terms with the same values of JnJ, we can formally rewrite this 
as 

1 1 00 

8(t)"'- +-~ cosnt. 
271" 71" L..-

n=l 

Compare the Dirichlet kernel! We might say that 8 is the limit of D N as 
N--+ oo. 

These series cannot be convergent in the usual sense, since their terms do 
not tend to zero. But for certain values of t they can be summed according 
to Cesaro. Indeed, we can use the result of Exercise 2.16 on page 22. The 
series for 27r8a can be written (with z = ei(t-a)) 

00 -1 L ein(t-a) = L (ei( t-a)) n + L (ei( t-a)) n 

nEZ n=O n=-oo 
00 00 00 00 

= LZn + L (e-i(t-a))n = Lzn +zLzn 
n=O n=l n=O n=O 
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According to Exercise 2.16, both the series in the last expression can be 
summed (C, 1) if lzl = 1 but z =/= 1, which is the case if t =/= a, and the 
result will be 

_1_ + ~ = 1- z + z(1- z) = 1- zz = 1-lzl2 = 0 
1-z 1-z l1-zl2 l1-zl2 l1-zj2' · 

If t = a, all the terms are ones, and the series diverges to infinity. 
Thus the series behaves in a way that is most satisfactory, as it enhances 

our intuitive image of what Oa looks like. 
N ext we find the Fourier series of 8~. The coeffi.cients are 

Cn = 2..j11" 8~(t)e-int dt = _2_ . .!!:._ e-intl 
27!" -11" 271" dt t=a 

1 . t l in . = -- ( -ine-tn) =-e-ma. 
271" t=a 27!" 

We recognize that the rule in Sec. 4.3 for the Fourier coeffi.cients of a deriva­
tive holds true. The summation of the series 

8' (t) = _!:__ ""ne-ianeint = _!:__ ""nein(t-a) 
a 27!" ~ 271" ~ 

nEZ nEZ 

is tougher than that of 8a itself, because the terms now have moduli that 
even tend to infinity as lnl ---+ oo. It can be shown, however, that fort=/= a 
the series is summable ( C, 2) to O. 

We give a couple of examples to illustrate the use of these series. 

Example 4.8. Consider the function of Example 4.2 on page 78. Its 
Fourier series can be written 

!() ~ sinnt "" 1 int t ""'~--=~-e . 
n 2in 

n=l n~O 

(Notice that the last version is correct - the minus sign in the Euler 
formula for sin is incorporated in the sign of the n in the coeffi.cient.) 

The derivative of f consists of an "ordinary'' term - ~, which takes care 
of the slope between the jumps, and a pulse train that on T is identified 
with 1r • 8(t). This would mean that the Fourier series of the derivative is 
given by 

f'(t) = _.! + 7r8(t)""' _.! + 7r. 2_ ""eint 
2 2 271" ~ 

nEZ 
00 00 

= -~ + ~ L eint = ~ L(eint + e-int) = L cosnt. 
nEZ n=l n=l 

Notice that this is precisely what a formal differentiation of the original 
series would yield. O 
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Example 4.9. Find a 21r-periodic solution of the differential equation 
y' + y = 1 + 8(t) ( -7f < t < 7r). 

Solution. We try a solution of the form y = L": cneint. Differentiating this 
and expanding the right-hand member in Fourier series, we get 

L incneint + L Cneint = 1 + L ;1f eint' 
nEZ nEZ nEZ 

or 

Identification of coefficients yields c0 = 1 + 1/(27r) and, for n -1= O, Cn = 
1/(27r(1 +in)). A solution should thus be given by 

( 
1 ) 1 eint 

y(t) "' 1 + - + - I..: --. . 
21r 21r 1 + m 

n#O 

By a stroke of luck, it happens that this series has been almost encountered 
before in the text: in Example 4.1 on page 76 f. we foundthat 

f(u)"' sinh7r(1+"' (-1~n einu), 
1r L...J1-m 

n#O 

where f(u) =eu for -1r < u < 1r and f has period 21r. From this we can 
find that 

"'(-1~n einu = ~ J(u) -1. 
L.J 1 - m smh 1r 
n#O 

On the other hand, the series on the left of this equation can be rewritten, 
using ( -1)n = einn and letting t = 7f- u: 

(-1)n (-1)n ein(n-u) eint 
~ 1 - in einu = L 1 +in e-inu = L 1 +in = ~ 1 +in . 
n~O n#O n#O n~O 

This means that our solution can be expressed in the following way: 

y(t)"' (1+ 2
1 ) +-2

1 (~h j(u)-1) = 1+ 2 . \ f(u) = 1+ ~(~ ~ t). 1r 1r sm 1r sm 1r sm 1r 

In particular, 

en-t e1r 
y(t) = 1 + 2 . h = 1 + 2 . h e-t, O< t < 21r, 

sm 1r sm 1r 

since this condition on t is equivalent to -1r < 1r - t < 1r. At the points 
t = n · 21r, y(t) has an upward jump of size 1 (check this!). 
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Let us check the solution by substitution into the equation. Differenti­
ating, we find that y'(t) contains the pulse 8(t) at the origin, and between 
jumps one has y'(t) = -(y(t)- 1). This proves that we have indeed found 
a solution. D 

Exercises 

4.30 Let f be the even function with period 21r that satisfies f(t) = 1r - t for 
O ::; t ::; 1r. Determine f' and f", and use the result to find the Fourier 
series of f. 

4.31 Let f have period 21r and satisfy 

f(t)={et, ltl<?r/2, 
o, 1r/2 <Iti< 1r. 

Compute !' - f, and then determine the Fourier series of f. 

Summary of Chapter 4 

Definition 
If f is a sufficiently nice function defined on T, we define its Fourier coef­
ficients by 

Cn = _!_ 1 f(t)e-int dt 
27r T 

The Fourier series of f is the series 

or 

00 

resp. ~ao + L)an cos nt + bn sin nt). 
n=l 

If f has a period other than 27r, the formulae have to be adjusted accord­
ingly. If f is even or odd, the formulae for an and bn can be simplified. 

Theorem 
If two continuous functions f and g have the same Fourier coefficients, then 
f=g. 

Theorem 
If f is piecewise continuous on T and continuous at the point t, then, for 
this value of t, its Fourier series is summable (C, 1) to the value f(t). 

Theorem 
If fis continuous on T and its Fourier coefficients satisfy I: lenl < oo, then 
its Fourier series converges absolutely and uniformly to f(t) on ali of T. 
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Theorem 
If f is differentiable on T, then the Fourier series of the deriva ti ve !' can 
be found by termvise differentiation. 

Theorem 
If f E Ck(T), then its Fourier coefficients satisfy lenl::; Mflnlk. 

Theorem 
If fis continuous except for jump discontinuities, and if it has (generalized) 
one-sided derivatives at a point t, then its Fourier series for this value of t 
converges with the sum ! (! ( t+) + f ( t-)). 

Formulae for Fourier series are found on page 251. 

Historical notes 

JosEPH FoURIER was not the first person to consider trigonometric series of 
the kind that carne to bear his name. Around 1750, both Daniel Bernoulli and 
Leonhard Euler were busy investigating these series, but the standard of rigor in 
mathematics then was not sufficient for a real understanding of them. Part of the 
problem was the fact that the notion of a function had not been made precise, 
and different people had different opinions on this matter. For example, a graph 
pieced together as in Figure 4.2 on page 78 was not considered to represent one 
function but several. It was not until the times of BERNHARD RIEMANN and KARL 
WEIERSTRASS that something similar to the modern concept of a function was 
horn. In 1822, when Fourier's great treatise appeared, it was generally regarded as 
absurd that a series with terms that were smooth and nice trigonometric functions 
should be able to represent functions that were not everywhere differentiable, or 
even worse-discontinuous! 

The convergence theorem (Theorem 4.5) as stated in the text is a weaker 
version of a result by the German mathematician J. PETER LEJEUNE-DIRICHLET 
(1805-59). At the age of 19, the Hungarian LIPOT FEJER (188Q-1959) had the 
bright idea of applying Cesaro summation to Fourier series. 

In the twentieth century the really hard questions concerning the convergence 
of Fourier series were finally resolved, when LENNART CARLESON (1928-) proved 
his famous Theorem 4.6. The author of this book, then a graduate student, 
attended the series of seminars in the fall of 1965 when Carleson step by step 
conquered the obstacles in his way. The final proof consists of 23 packed pages in 
one of the world's most famous mathematical journals, the Acta Mathematica. 

Problems for Chapter 4 

4.32 Determine the Fourier series of the following functions. Also state what is 
the sum of the series for all t. 
(a) f(t) = 2 + 7cos3t- 4sin2t, -7r < t < 1r. 

(b) f(t) =!sint!, -7r < t < 7r. 
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(c) f(t) = (11'- t)('ll' + t), -71' < t < 1r. 

(d) f(t) = eltl, -71' < t < 71'. 

4.33 Find the cosine series of f(t) =sint, O< t < 7!'. 

4.34 Find the sine series of f(t) =cost, O< t < 7!'. Use this series to show that 

71'0 1 3 5 7 w = 22 - 1 - 62 - 1 + 102 - 1 - 142 - 1 + .... 
4.35 Let f be the 27!'-periodic continuation of the function H(t- a)- H(t- b), 

where -'Il' < a < b < 'Il'. Find the Fourier series of f. For what vaiues of t 
does it converge? Indicate its sum for for ali such tE [-11', 11']. 

4.36 Let f be given by f(x) = -1 for -1 < x <O, f(x) = x for O::; x::; 1 and 
f(x + 2) = f(x) for ali x. Compute the Fourier series of f. State the sum 
of this series for x = 10, x = 10.5, and x = 11. 

4.37 Deveiop f(t) = t(t - 1), O < t < 1, period 1, in a Fourier series. Quote 
some criterion that implies that the series converges to f(t) for ali vaiues 
of t. 

4.38 The function f is defined by f(t) = t2 for O ::; t ::; 1, f(t) =O for 1 < t < 2 
and by the statement that it has period 2. 
(a) Deveiop fin a Fourier series with period 2 and indicate the sum of the 
series in the interval [0, 5]. 

oo ( 1)n 
(b) Corn pute the vaiue of the sum 8 = L ~ . 

n=1 n 
4.39 Suppose that f is integra bie, has period T, and Fourier series 

00 

Determine the Fourier series of the so-calied autocorrelation function r of 
f, which is defined by 

11T r(t) = T 
0 

f(t + u) f(u) du. 

4.40 An application to sound waves: Suppose the variation in pressure, p, that 
causes a sound has period 2~2 s (seconds), and satisfies 

p(t)=1, 0<t<10~8' p(t) = -~, 10148 < t < 5~4' 

p(t) = ~, 5~4 < t < 10~8' p(t) = -1, 1;48 < t < 2~2' 
What frequencies can be heard in this sound? Which is the dominant fre­
quency? 

4.41 Compute the Fourier series of J, given by 

f(x) = lsin ~ 1, -7!' < x::; 'll'j f(x + 211') = f(x), x E R. 

Then find the vaiues of the sums 

00 1 
81 = L 4n2 -1 

00 (-1t 
and 82 = L 4n2 -1. 

n=1 n=1 
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4.42 Let f be an even function of period 211" described by f ( x) = cos 2x for 
O~ x ~ !1r and f(x) = -1 for !1r < x ~ 1r. Find its Fourier series and 
compute the value of the sum 

00 (-1)k 
8 = :E (2k + 1)(2k- 1)(2k + 3) · 

k=l 

4.43 Find all solutions y(t) with period 211" of the differential-difference equation 

y'(t) + y(t- !1r)- y(t -1r) =cost, -oo < t < oo. 

4.44 Let f be an even function with period 4 such that f(x) = 1-x for O~ x ~ 1 
and f(x) =O for 1 < x ~ 2. Find its Fourier series and compute 

00 1 
8 = :E (2k + 1)2 · 

k=O 

4.45 Let abea real number but not an integer. Define f(x) by putting f(x) == 
ei"'"' for -11" < x < 1r and f(x + 211") = f(x). By studying its Fourier series, 
prove the following formulae: 

11" 1 Loc 2(-1ta --=-+ 
sin 1ra a a 2 - n2 · 

n=l 

00 

1 
(a- n)2 · 

n=-oo 

4.46 Compute the Fourier series of the 27r-periodic function f given by f(x) = 
x3 -1r2x for -11" < x < 11". Find the sum 

00 (-1t+l 
8 =L(2n-1)3' 

n=l 

4.47 Let f be a 211"-periodic function with ("complex") Fourier coefficients Cn 

(nE Z). Assume that for an integer k >O it holds that 

Prove that fis of class Ck, i.e., that the kth derivative of fis continuous. 

4.48 Find the Fourier series of f with period 2 which is given for lxl < 1 by 
f(x) = 2x2 - x4 • The result can be used to find the value of the sum 

00 1 
((4) = L n4 · 

n=l 



5 
L2 Theory 

5.1 Linear spaces over the complex numbers 

We assume that the reader is familiar with vector spaces, where the scalars 
are real numbers. It is also possible, and indeed very fruitful, to allow scalars 
to be complex numbers. Thus, we consider now a set V, whose elements can 
be added to each other, and also can be multiplied by complex numbers, 
to produce new elements in V; and these operations are to obey the same 
rules of calculation as in ordinary real vector spaces. Simple examples .of 
such complex vector spaces are given by cn, which consists of n-tuples 
z = (z1,z2, ... ,zn) of complex numbers. Another example is the set of all 
complex-valued functions f defined onan interval [a, b]. 

It turns out that elementary complex linear algebra can be developed in 
almost exact parallel to its real counterpart. Linear dependence, subspaces, 
and dimension can be defined word for word in the same way, with the un­
derstanding that all scalars occurring in the process are complex numbers. 
This gives a new significance to the notion of dimension. For example, C 
is a one-dimensional complex vector space. It could also be considered as 
a real vector space, but then the dimension is 2. In the same manner, C n 

has complex dimension n but real dimension 2n. 
When we reach the notions of scalar product and distance, we must, 

however, modify the details. The old formula for the (standard) scalar 
product of two vectors z and w in n-space has the form (z, w) = z1w1 + 
z2w2 + · · · + ZnWn· This cannot be allowed to hold any more, because it 
does not work in a reasonable way. 
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Example 5.1. Consider the vector z = (1,i) E C 2 . With the usual 
formula for the scalar product we would get lzl 2 = 1 · 1 + i · i = 1- 1 =O. 
The length of the vector would be O, which is no good. Still more strange 
would be the case for the vector w = (1, 2i), which would not even have 
real length. D 

By considering the one-dimensional space C, we can get an idea for a 
more suitable definition. The vector, or number, z = x+iy is normally iden­
tified with the vector ( x, y) in R 2 • The length of this vector is the number 

Iz! = y' x 2 + y2 = "fZ'f. If the scalar product of two complex numbers z 

and w is defined tobe (z, w) = zw, we get the formula lzl 2 = (z, z). This 
means that we have to modify a few rules for the scalar product, but that 
price is well worth paying. Just to indicate that the rules of computation 
are no longer exactly the same, we choose to use the name inner product 
instead of scalar product. 

Definition 5.1 Let V be a complex vector space. An inner product on V 
is a complex-valued function (u, v) of u and v E V having the following 
properties: 

(1) (u, v) = (v, u) 
(2) (au+ j3v, w) = a(u, w) + j3(v, w) 
(3) (u, u) ~ O 
(4) (u,u)=O '* u=O 

(Hermitian symmetry) 
{Linearity in the jirst argument) 

(Positive-dejiniteness) 

Combining rules 1 and 2 we find the rul~ 

(5) (u, av + j3w) = a(u, v) + (J(u, w). 

Example 5.2. In C n, we can define an inner product ( using natural 
notation) by the formula 

D 

Example 5.3. Let C(a, b) be the set of continuous, complex-valued func­
tions defined on the compact interval [a, b], and put 

(f,g) = 1b f(x)g(x)dx. 

The fact that this is an inner product is almost trivial, except possibly 
for condition 4. That implication follows from the fact that if a continu­
ous function is non-negative on an interval and its integral is O, then the 
function must indeed be identically O (see textbooks on calculus). D 
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Example 5.4. More generally, let w be a fixed continuous function on 
[a, b] such that w(x) >O, and put 

(!, g) = 1b f(x) g(x) w(x) dx. 

o 
A complex vector space with a chosen inner product is called an inner 

product space. Because of rules 3 and 4 it is natural to define a measure of 
the size of a vector in such a space, corresponding to the length in the real 
case. One prefers to use the word norm instead of length and write 

the norm of u = llull = ~-

In the case described in Example 5.3 we thus have 

11!11 2 = 1b lf(xW dx. 

The following inequalities are wellknown in the real case, and they hold 
just as well in the new setting: 

Theorem 5.1 

l(u,v)l ~ llullllvll 
llu +vii ~ llull + llvll 

( Cauchy-Schwarz inequality) 

(Triangle inequality) 

Proof. (a) If u = O, then both members are O and the statement is true. 
Thus, let us assume that u i= O. Put a= -(v,u)j(u,u). Then, 

O~ llau + vll 2 = (au+ v, au+ v) = aa(u, u) + a(u, v) + a(v, u) + (v, v) 
_ (v, u) · (u, v) ( ) _ (v, u) ( ) _ (u, v) ( ) ( ) 
- ( ) 2 U, U ( ) u, V ( ) V, U + V, V u,u u,u u,u 

__ l(u,v)l2 ( ) - ( ) + v,v. u,u 

Rearranging this we arrive at the Cauchy-Schwarz inequality. 
(b) The triangle inequality is proved using Cauchy-Schwarz: 

llu + vll 2 = (u + v, u + v) = llull 2 + (u, v) + (v, u) + llvll 2 

= llull 2 + 2 Re (u, v) + llvll2 ~ llull 2 + 21 (u, v) 1 + llvll 2 

~ llull 2 + 2llullllvll + llvll 2 = (llull + llvllt 

Since both llu +vii and llull + llvll are non-negative numbers, the triangle 
inequality follows. O 
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Two vectors u and v are called orthogonal with respect to the chosen 
inner product, if (u, v) = O. A vector u is normed if llull = 1; and an 
orthonormal, or simply ON, set of vectors consists of normed and pairwise 
orthogonal vectors. 

Example 5.5. C(T) consists of the continuous complex-valued functions 
on the unit circle T, and let the inner product he defined hy 

1 r -
(!, g) = 271' JT f(x) g(x) dx. 

Let 'Pk(x) = eikx, k E Z. Then we have 

(cpm, 'Pn) = _ etmX e-tnX dX = _ et m-n X dX = l r 1 1 · · 1 171' ·( ) {O m ...J. n 
271' T 271' -1r 1, m = n 

The sequence {cpk}k'=-oo is thus an orthonormal set in C(T). o 
Just as in the case of real spaces one can show that a set of non-zero, 

pairwise orthogonal vectors is linearly independent. In a space with finite 
(complex) dimension N, an orthonormal set can thus contain at most N 
vectors. On the other hand, there always exists such a set. Starting from 
an arhitrary hasis in the space, one can use the Gram-Schmidt process to 
construct an ON hasis, working precisely as in the real case. 

Example 5.6. As a reminder of the Gram-Schmidt process, we construct an 
orthonormal hasis in the space of polynomials of degree at most 2, with the inner 
product 

(f,g) = 11 
j(x)g(x)(1+x)dx. 

The "raw material" consists of the vectors uo, u1, u2 defined hy 

uo(x) = 1, u1(x) = x, u2(x) = x2. 

As a tentative first vector in the new hasis we choose vo = uo, which is to he 
adjusted to have unit norm. Since 

llvoll 2 = (vo,vo) = 11 
1·1· (1 + x) dx = ~' 

the normed vector is descrihed hy 

vo(x) {; 
cpo(x) = llvoll =V 3. 

Next we adjust u1 so that it is orthogonal to <po. This is done hy suhtracting a 
certain multiple of <po according to the following recipe: 

V1 =u1- (ui,<po)<po. 

The inner product is 

(u1, <po) = 11 
x · ji(1 + x) dx =~li. 
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Thus, 

V1 (X) = X - ~li ·li = X - ~ · 
The squared norm of v1 is 

Thus the second normed hasis vector is 

5 
X- g (3( 5 rp1(x) = 113 = 6y 13 x- 9). 
VIOs 

The third vector is obtained by the following steps: 

2 68 5 { ) 21 
V2 =X - 65 X+ 26, V2, V2 = 2600, 

r,?2 = ~v'546(x2 - ~ x + -!6)· 

It is obvious that the computations quickly grow very involved, not least be­
cause the norms turn out to be rather hideous numbers. Mostly, therefore, one is 
satisfied with just orthogonal sets, instead of orthonormal sets. D 

There is also the following theorem, which should be proved by the 
re ader: 

Theorem 5.2 lf c.p1 , c.p2 , ... , c.p N is an ON basis in an N -dimensional in ner 
N 

product space V, then every u E V can be written as u = 2::: (u, 'Pj )'Pj, and 
j=l 

furthermore one has 

N 

llull 2 == L l(u, 'PiW (theorem of Pythagoras). 
j=l 

For the inner product of two vectors one also has the following formula: 

Exercises 

N 

(u,v) = L(u,c.pj)(v,c.pj)· 
j=l 

5.1 Let u = (1- 2i, 3, 2 + i) and V= (i, 1- 3i, O) be vectors in C 3 . Compute 
llull, llvll, and {u, v). 

5.2 Let C(-1,1) be as in Example 5.3 above, and let f and g E C(-1,1) be 
described by f(x) = x + 2, g(x) = ix + x2 . Compute {!, g). 

5.3 Are the functions 1, x, x2 , ..• , xn, sinx, cosx, ex linearly independent, 
considered as vectors in C(O, 1)? (n is some positive integer.) 
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5.4 Apply the Gram-Schmidt orthogonalization procedure to construct an or­
thogonal hasis in the subspace of C(O, 1) spanned by the polynomials 1, x 
and x 2 • 

5.5 Orthogonalize the following sets of vectors: 
(a) the vectors (1, 2, 3), (3, 1, 4) and (2, 1, 1) in C 3 ; 

(b) the functions 1, x, x2 i C(-1, 1); 
(c) the functions e-"', xe-"', x2e-"' in C(O,oo). 

5.6 Prove the following formula for the inner product: 

4(u, v) = //u + v/1 2 + il/u + iv/1 2 - 1/u- v/1 2 - il/u- iv/1 2 . 

5.2 Orthogonal projections 

The reader should recall the following fact from real linear algebra: Let 
{cpk}f=1 be an orthonormal set in the space V, and let u be an arbitrary 
vector in V. The orthogonal projection of u on to the subspace of V spanned 
by {cpk}f=1 is the vector 

N 

PN(u) = (u,cpt)'Pt + (u,cp2)cp2 + · · · + (u,cpN)'PN = ~)u,cpk)'Pk· 
k=l 

This definition works just as well in the complex case, and the projection 
thus defined has also the least-squares property described in the following 
theorem. 

Theorem 5.3 (Least squares approximation) Let {cpk}f=1 be an or­
thonormal set in an inner product space V and let u be a vector in V. 
Among all the linear combinations <P = 'Ef=l 'Yk'Pk, the one that minimizes 
the value of llu- <PII is the one with the coefficients 'Yk equal to (u, 'Pk), i.e., 
<l> = PN(u). 

Proof. For brevity, we write (u, 'Pk) = Ck. We get 

llu- <PII 2 = (u- <P, u- <P) = j u-t 'Yk'Pk, u-t 'Yk'Pk) 
\ k=l k=l 

~ (u, u) - ( u, t. ~·~•) -(t. ~w,, u) + (t. ~·~·· t. ~·~•) 
N N N N 

= (u, u)- L'Yk(u, 'Pk)- L 'Yk('Pk, u) + L L 'Yk'Yj('Pk, 'Pi) 
k=l k=l k=lj=l 
N N 

= (u, u) - L('Ykck + "fkCk) + L 'Yk'Yk 
k=l k=l 
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N N 

= llull 2 + Lhk'Yk - ;•fkck- "fkCk + ckck) - L lckl 2 

k=l k=l 
N N 

= l!ull 2 + L l"fk- ckl 2 - L lckl 2 • 

k=l k=l 

In the last expression, we note that u is given in the formulation of the 
theorem; also, since the 'Pk are given, the ck = (u, 'Pk} are given. But we 
have the "fk at our disposal, to minimize the value of the expression. In 
order to make it as small as possible, we choose the numbers "fk to be equal 
to ck, which proves the assertion. D 

A couple of consequences of the proof are worth emphasizing. When a 
vector u is approximated by the orthogonal projection PN(u), then the 
"error" u- PN(u) is called the residual. An important fact is that the 
residual is orthogonal to the projection. As for the "size" of the residual, 
we ha ve the identity ( "Pythagoras' theorem") 

If this is written out in full, it becomes 

N 2 N 

llu- L(u, 'Pk}'Pk" = l!ull 2 - L l(u, 'Pk}l2 • (5.1) 
k=l k=l 

Since the left-hand member of these equations is non-negative, we also have 

or, indeed, 
N 

L l(u, 'Pk)l2 :::; l!ull 2 · 

k=l 
If the ON set contains infinitely many vectors, we can let N-+ oo and get 
what is known as the BESSEL inequality: 

00 

L 1 (u, 'Pk} 12 :::; l!ull 2 • 

k=l 

Let us now concentrate on the case when the space V has infinite dimen­
sion. A system { 'Pj }~1 in V is said to be complete in V if, for every u E V 

and every c >O, there exists a linear combination E.f=,1 ajcţ}j such that 

N 

u- l:ajcţ}j < c. 
j=l 



112 5. L2 Theory 

This means that every u in V can be approximated arbitrarily closely, in the 
sense of the norm, by linear combinations of the elements in the set { 'Pj }. 
The theorem above shows that the best approximation must be given by 
the "infinite projection" I;~1 (u, cpj)'Pj of u. A condition that is equivalent 
to completeness is given by the following theorem: 

Theorem 5.4 The ON system {cpj}~ 1 is complete in V if and only if for 
every u E V it holds that 

00 

llull 2 = 2:: l(u, 'PjW 
j=l 

( the PARSEVAL formula or the completeness relation). 

The proof follows from (5.1). 
As a corollary we also have the following: 

Theorem 5.5 (Expansion theorem) lf the ON system { 'Pj }~1 is com­
plete in V, then every u E V can be written as u = I;~1 (u,cpj)cpj, where 

the series converges in the sense ofthe norm (i.e., llu-I;f=1 (u,cpj)'Pjll-+ 

OasN-+oo). 

Furthermore, one has the following theorem, which generalizes the usual 
formula (in finite dimension) for computing the inner product in an ON 
hasis: 

Theorem 5.6 lf the ON system {cpj}~ 1 is complete in V, then 

for all u, v E V. 

00 

(u,v) = L(u,cpj)(v,cpj) 
j=l 

Proof. Let Pn(u) be the projection of u on to the subspace spanned by the 
n first cp's: 

By Theorem 5.2 we have 

n 

Pn(u) = L(u, cpj)'Pj · 
j=l 

n 

(Pn(u), Pn(v)) = L(u, 'Pj)(v, 'Pj)· 
j=l 

Using the triangle and Cauchy-Schwarz inequalities, we get 

l(u, v)- (Pn(u), Pn(v))l 
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= l(u,v)- (u,Pn(v)) + (u,Pn(v))- (Pn(u),Pn(v))l 

~ l(u, V- Pn(v))l + l(u- Pn(u), Pn(v))l 

~ llullllv- Pn(v)ll + llu- Pn(u)IIIIPn(v)ll 
~ llullllv- Pn(v)ll + llu- Pn(u)llllvll· 

In the last part we also used Bessel's inequality. Now we know, because of 
completeness, that llv- Pn(v)ll ~O as n ~ oo, and similarly for u, which 
implies that the final member of the estimate tends to zero. Then also the 
first member must tend to zero, and so 

00 

(u,v) = Iim (Pn(u),Pn(v)) = ""(u,<pj)(v,<pj), 
n--too LJ 

j=l 

and the proof is complete. D 

Remark. Using an estimate of the same kind as in the proof, one can see that 
(u, v) is a continuous function of u and vin the sense that if Un --+ u and Vn --+ v 
(in the sense ofthe norm), then (un,vn)--+ (u,v). D 

In the interest of simplicity, we have throughout this section been working 
with orthonormal systems. In practice one is often satisfied with using 
orthogonal systems, since the normalizing factors can be quite unwieldy 
numbers. In such a case, our formulae have to be somewhat modified. 

The projection of u on to an orthogonal set of vectors { <{Jj }f=1 is given 
by 

N N 

PN(u) = L /u:<pj\ <{Jj = L (lui '':IJij <{Jj· 
j=l <pJ' <pJ j=l <pJ 

The other formulae must be adjusted in the same vein: every <{Jj that occurs 
has tobe divided by its norm, and this holds whether <{Jj is "free" or is part 
of an inner product. For example, the Parseval formula takes the form 

and the formula for inner products is 

( ) = ~ (u, <{Jj)(V0j)J 

u,v ~ 11 ·11 2 . 
J=l <pJ 

Exercises 

5. 7 Determine the polynomial p of degree at most 1 that minimizes 
J0

2 le"' -p(xW dx. (Hint: first find an orthogonal hasis for a suitably chosen 
space of polynomials of degree :5 1.) 
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5.8 Determine the constants a and b in order to minimize the integral 
f 1 lax+ bx2 -sin 7rxl 2 dx. 

5.9 Find the polynomial p(x) of degree at most 2 that minimizes the integral 

17r/2 

1 sinx- p(x)/ 2 cosx dx. 
-7r/2 

5.3 Some examples 

We have already seen the finite-dimensional inner-product spaces cn. A 
generalization of these spaces can be constructed in the following manner. 
Let M be an arbitrary set (with finitely or infinitely many elements). Let 
l2 ( M) be the set of all functions a : M -t C such that 

L ia(xW < oo. (5.2) 
xEM 

The fact that this defines a linear space can be proved in the following way. 
Because of the inequality 

(5.3) 

that holds for all complex numbers p and q, the following estimate is true: 

i>.a + ţtb/ 2 =(>.a+ ţtb)(Xa + Ţib) = l>-l 2 lal2 + /J.t/ 2 /b/ 2 + 2Re {>.Ţiab} 
:::; 1>-l 2 lal2 + IJ.ti 2 IW + 2/>.ai/J.tbl :::; 2(1>-l 2 la/2 + IJ.ti 2 IW). 

Using this, and the comparison test for positive series, one finds that if 
L /a(x)i2 and L /b(x)/ 2 are both convergent, then L i>.a(x) + ţtb(x)i2 is 
also convergent. This means that linear combinations of elements in l2 (M) 
also belong to l2 (M). Using (5.3) we also see that if both a and b are 
members of l2 (M), then the series 

L a(x) b(x) 
xEM 

will converge absolutely. This expression can be taken as the definition of 
an inner product (a, b). The square of the norm of a is then given by the 
left member of (5.2). 

If, as an example, we choose M = N = {0, 1, 2, ... }, we can write an 
instead of a(n) and get the inner product L::=o an bn. This certainly looks 
like a natural generalization of C n. 

When we gave examples of inner products in function spaces in Sec. 5.1, 
we assumed, for convenience, that all the functions were continuous. It is, 
however, often desirable to be able to work with more general functions. 
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One such class is the class of Riemann-integrable functions, which consists 
of functions that can be approximated in a certain way by so-called step 
functions; the class includes, for example, functions with a finite number of 
jumps. In order to get a really efficient theory, one should actually go still 
further and allow measumble functions in the sense of LEBESGUE. However, 
this is a rather complicated step, and in this text we shall confine ourselves 
to more "ordinary" functions. At one point (p. 121), we shall, however, 
mention how the Lebesgue functions obtrude upon us. 

In what follows, it will often be of no interest whether an interval contains 
its endpoints or not. For simplicity, we shall write (a, b), which can be 
interpreted at will to mean either [a, b] or [a, b[, etc. 

Let I be an interval, bounded or unbounded, and let w : I --+ ]0, oo[ be a 
positive, continuous, real-valued function on I. Let finally p bea number 
2: 1. The set LP ( I, w) is defined to consist of all (Lebesgue-measurable) 
functions f such that 

11f(x)IP w(x) dx < oo. 

(The integral may be improper in one way or another, without this being 
indicated when we write it.) It can be proved that this defines a linear 
space: if f and g belong to it, then the same goes for alllinear combinations 
a.f + f3g. The proof is very simple in the case p = 1: 

lla.f + f3gl w dx :::;.la.lllfl w dx + l/311191 w dx. 

For p = 2, it can be done in a way that is analogous to what was done 
for l2 (M) above (integrals replacing sums). For other values of p it is more 
difficult, and we skip it here. 

The space LP(I, w) is called the Lebesgue space with weight function w 
and exponent p. If the weight is identically 1 on all of I, one simply writes 
LP(J). For f E LP(J, w) one can definea norm 

that can be used to introduce a notion of distance 11!- gllp,w between two 
functions f and g. This, in turn, gives rise to a notion of convergence: we say 
that a sequence offunctions fn converges to g in LP(I, w) if llfn -gllp,w--+ O 
as n--+ oo. 

In order for this to make sense, it is necessary to modify slightly what is 
meant by equality between functions. Two functions f and g are considered 
to be equal if their mutual distance is zero; explicitly this means that 

11f(x)- g(x)IP w(x) dx =O. 
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This does not necessarily imply that f(x) = g(x) for all x, it means only 
that they are equal "almost everywhere": the set where they differ is a 
so-called zero set (see the text preceding Theorem 4.6 on page 89). When 
working with "nice" functions, which are continuous except for a finite 
number of jumps, this means that the function values are actually equal 
except possibly for at a finite number of points. 

We shall almost exclusively consider the case p = 2. It can be proved 
that only in this case can there exist an inner product (!, g) in LP(J, w) 
such that the norm is recovered through the formula 11!11 2 = (!, !). This 
inner product must be defined by 

(f,g) = 1f(x)g(x)w(x)dx. 

Let us now look at a few important cases. 

Example 5. 7. Let I = ( -71", 1r) or, equivalently, interpret I as the unit 
circle T, and take w(x) = 1. The inner product here is almost the same as in 
Example 5.5, page 108. There we showed that the functions ct'n(x) = einx 
are orthogonal in C(T), and this holds equally well in L2(T). Because 
the factor 1/(27r) is now missing in the inner product, they are no longer 
normed, however, but the norm of each ct'n is now ..;27r. 

The formula for projections on to an orthogonal set of vectors has the 
form 

N N N 
P (!) " (!, ct'n) " (!, ct'n) " 

N = ~ ( ) ct'n = ~ -~~-~~2 ct'n = ~Cn<pn, 
n=l (/)n, (/)n n=l (/)n n=l 

where 

Cn = (f,cpn) = ~ { f(x) einx dx = ~ { f(x) e-inx dx. 
llct'nll 2 271" jT 271" jT 

We recognize our good old Fourier coefficients. D 

Example 5.8. In the same space as in the preceding example we study the 
system consisting of firstly all the functions ct'n(x) = cosnx, n =O, 1, 2, ... , 
secondly all the functions 'l/Jn(x) =sin nx, n = 1, 2, 3, .... Using some suit­
able trigonometric formula (or Euler's formulae), it is easily proved that all 
these functions are mutually orthogonal, and furthermore (cpo, cpo) = 271", 
while all the other members of the system have the square of the norm 
equal to 71". Here, too, the coefficients in the orthogonal projections turn 
out tobe the well-known classical Fourier coefficients. D 

Example 5.9. In the space L2 (0,1r), the functions ct'n(x) = cosnx, 
n = 0,1,2, ... form an orthogonal set, and 'l/Jn(x) = sinnx, n = 1,2,3, ... 
another orthogonal set (check it!). However, as a rule, a ct'm is not orthog­
onal to a 'l/Jn· D 
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Examples 5. 7 and 5.8 provide a new viewpoint for considering Fourier 
series. Such series can be regarded as representations with respect to an 
orthogonal system. The general results in Sections 5.1-2 concerning such 
representations are thus valid for our Fourier expansions. As an example, 
we formulate what Theorem 5.3 purports in the case of "real" Fourier series. 

Theorem 5.7 Let f E L2(T) and let N be a fixed non-negative integer. 
Among all trigonometric polynomials of the form 

N 

PN(x) = !ao + L(an cosnx + ,Bn sin nx), 
n=l 

the polynomial that minimizes the value of the integml 

lif(x)- PN(xW dx 

is the one where the coefficients are the usual Fourier coefficients of f, viz., 
{using the ordinary notation} where an= an and ,Bn = bn. 

We have also, for example, Bessel's inequality, which can be written, in 
complex and real guise, respectively, as 

The question of completeness will be addressed in the next section. 

Remark. At this point, the reader will have been confronted by a number of 
different notions of convergence for sequences of functions. There is pointwise 
convergence and uniform convergence, and now we have also various versions of 
LP convergence. It is natural to ask whether there are any sensible connections 
between all these notions. 

It is trivial that uniform convergence implies pointwise convergence. If one 
works on a finite interval (a, b) with weight 1, it is also easy to see that uni­
form convergence implies convergence in LP(a, b). Indeed, suppose that fn """* f 
uniformly on (a, b). Then (p ~ 1) 

( 
b )1/p ( b )1/p 

llfn- fllp = 1 lfn(t)- f(t)IP dt ~ 1 sup lfn(t)- f(t)IP dt 
a a (a,b) 

( 
b )1/p 

= sup lfn(t)- f(t)l 1 dt = C sup l/n(t)- f(t)l """*O 
(a,b) a (a,b) 

as n """* oo. 
In the converse direction, LP convergence does not even imply pointwise con­

vergence. This is shown by the following example; for simplicity it is formulated 
in L 1 (0, 1), but the same functions can be used to prove the same thing in all 
LP(O, 1), and they are easily rescaled to suit other intervals. 
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o 1 o o 

FIGURE 5.1. 

Let /1 (t) = 1 on the interval I = (0, 1). Then Jl/1 lh = 1. Let then h be 1 
on (0, ~) and O on the rest of I; h is set to 1 on (~, ~) ahd O otherwise; /4 is 
1 on the intervals (~, 1) and (0, fi), and O otherwise. In general: fn is equal to 
1 on one or two intervals with total length equal to 1/n, and, in a manner of 
speaking, fn starts where fn-1 ends; and if you exceed the right-hand end of I 
you put the remainder on the far left of I and start again moving to the right 
(see Figure 5.1). Then it holds that Jlfnlh = 1/n, and so fn -+O in the sense of 
norm convergence in L 1 ( I). 

Since the series 

n=1 
is divergent, in the sense that its partial sums tend to plus infinity, the "piling of 
intervals" described above must run to an infinite number of ''turns." If x is an 
arbitrary point in I, there will thus exist arbitrarily large values of n such that 
fn(x) = 1, but also arbitrarily large values of n for which fn(x) = O. In other 
words, the sequence ofnumbers {fn(x)};:"=1 has no limitat ali, which means that 
the sequence of functions {fn} does not converge pointwise anywhere. 

The functions in this example are close to zero "in the mean": when n is large, 
f n ( x) is equal to zero on most of the interval. For this reason, LP convergence is 
often called convergence in the mean, more precisely in the LP mean. O 

Exercises 
5.10 Find the three first orthonormal polynomials with respect to the inner 

product 

(f,g) = 11 
f(x)g(x)xdx, 

by orthogonalizing the polynomials 1, x, x 2 • 

5.11 Solve the same problem as the preceding, when 

5.12 Determine the polynomial of degree::::; 2, that is the best approximation to 
f(x) = vTxf in the space L2 (I, w), where I = [-1, 1], w(x) = 1. 

5.13 Determine the complex numbers Cj (j = O, 1, 2, 3) in order to make the 
integral J0"' lco + c1 cos x + c2 cos 2x + C3 cos 3x - cos4 xl 2 dx as small as 
possible. 
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g 

FIGURE 5.2. 

5.4 The Fourier system is complete 

We are now prepared to prove the following result, which, in a way, crowns 
the classical Fourier theory. 

Theorem 5.8 The two orthogonal systems { eint}nEZ and {cos nt, n ~ 
O; sinnt, n ~ 1} are each complete in L2 (T). 

Proof. We want to prove that if f E L2 (T), then f can be approximated 
arbitrarily well by linear combinations of elements from one of the systems. 
Since the elements of one system are simple linear combinations of elements 
from the other system, it does not matter which ofthe systems we consider. 
Our proof will be incomplete in one way: we only show that functions f 
that happen to be piecewise continuous can be approximated; but this is 
really just due to the fact that we have not said anything about what a 
more general f might look like. 

Thus we assume that f is piecewise continuous. It is then bounded on T, 
so that 1/(t)l ::::; M for some constant M and all t. Now let c >O be given. 
By the definition of the Riemann integral, there exists a step function (i.e., 
a piecewise constant function) g such that 

[ €2 
}T lf(t)- g(t)l dt < 2M. 

Clearly we can choose g in such a way that lg(t)l ::::; M, and then it follows 
that 

III- Yll 2 = llf(t)- g(t)l 2 dt::::; l2Mif(t)- g(t)l dt::::; 2M. 2~ = c2 , 

and so 11/- Yll < c. 
In the next step of the proof we round off the corners of the step function 

g to obtain a C2 function h such that IIY- hll < c. At this point, the 
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author appeals to the reader's willingness to accept that this is possible 
(see Figure 5.2). The function h has a Fourier series E 'Yneint, where the 
coefficients satisfy I'Ynl ::::; C jn2 for some C {by Theorem 4.4), which implies 
that the series converges uniformly. If we take N sufficiently large, the 
partial sum s N ( t; h) of this series will thus satisfy 

c: lh{t) - SN(t; h)l < !<C., 
y27r 

From this we conclude that 

tE T. 

so that llh-sN( ·; h)ll ::::; c:. Finally, let SN be the corresponding partial sum 
of the Fourier series of the function f that we started with. Because of the 
Approximation theorem {Theorem 5.3), it is certainly true that 11! -sNII ::::; 
11!- sN( ·; h)ll· Time is now ripe for combining all our approximations in 
this manner: 

11!- SNII::::; 11!- SN(. j h)ll = 11!- g + g- h + h- SN{- j h)ll 
::::; llf- 911 + llg- hll + llh- BN(. j h)ll < C: + C: + C: = 3c:. 

This means that f can be approximated to within 3c: by a certain linear 
combination of the functions eint, and since c: can be chosen arbitrarily 
small we have proved the theorem. O 

As a consequence we now have the Parseval formula and the formula for 
the inner product (which is also often called Parseval's formula, sometimes 
qualified as the polarized Parseval formula). For the "complex" system these 
formulae take the form 

I_ { f(t) g(t) dt = L Cn dn, 
271" JT z nE 

and for the "real" system, 

(The reader will have to figure out independently how the letters on the 
right correspond to the functions involved.) 

Example 5.10. In Sec. 4.1, we saw that the odd function f with period 
271" that is described by f(t) = {1r- t)/2 for O< t < 1r has Fourier series 
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L:~(sinnt)fn. Parseval's formula ~ooks like this 

f _!_ = f>~ =.!. r (f(t))2 dt = ~ r (7r- t)2 dt = _!_ [(7r- t)3]1r 
n=l n2 n=l 7r }T 7r Jo 4 27r -3 o 

1 7r2 
= - (O- 7r3) = - . 

-67r 6 

This provides yet another way of finding the value of ((2). D 

Example 5.11. For f(t) = t2 on iti ~ 1r we had ao = 27r2 /3, an = 
4( -1)n fn2 for n ~ 1 and all bn =O. Parseval's formula becomes 

1 111" 4 1 ( 27r2 )2 00 1 
:;;: t dt := 2 3 + 16 L n4' 

-1r n=l 

which can be solved for ((4) = 7r4/90. D 

Suppose that f is defined only on the interval (0, 1r). Then f can be 
extended to an odd function on (-1r,1r) by defining f(t) = -f(-t) for 
-1r < t < O (if f(O) happens to be defined already, this value may have 
to be changed to O, but changing the value of a function at one point does 
not matter when dealing with Fourier series). The extended function can 
be expanded in a series containing only sine terms. Since ordinary Fourier 
series present a complete system in L 2 ( -1r, 1r), f can be approximated as 
closely as we want in this space by partial sums of this series. But then f 
is also approximated in L2 (0, 1r) by the same partial sums (for the square 
of the norm in this space is exactly one half of the norm in L 2 ( -1r, 1r) for 
odd functions, and, for that matter, even functions). We interpret this to 
say that the system 1/Jn(t) =sin nt, n ~ 1, is a complete orthogonal system 
on the interval (0,1r) (the orthogonality was pointed out in Example 5.9). 

In an analogous way, a function on (0, 1r) can be extended to an even 
function and be approximated by the partial sums of a cosine series. This 
shows that the orthogonal system 'Pn(t) = cosnt, n ~ O, is also complete 
on (0, 1r). 

We see that a function on (0, 1r) can be represented by either a sine series 
or a cosine series, whichever is suitable, and both these series converge 
to the function in the norm of L2 (0, 1r). This turns out to be useful in 
applications to problems for differential equations. 

Remark. The reader may now be asking the following question: suppose that 
{cn}nEZ is a sequence of numbers such that 2:: lcnl 2 converges. Does there then 
exist some f E L2 (T) having these numbers as its Fourier coefficients? The 
answer is yes- provided we admit functions that are Lebesgue-measurable but 
not necessarily Riemann-integrable. If we do this, we actually have a bijective 
mapping between L2 (T) and the space l2 (Z), so that f E L2 (T) corresponds to 
the sequence of its Fourier coefficients, considered as an element of l2 (Z). D 

As an application of Parseval we can prove the following nice theorem. 
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Theorem 5.9 Let f E L2(T). lf the Fourier series of f is integmted term 
by term over a finite interval (a, b), the series obtained is convergent with 

the sum J: f(t) dt. 

Note that we do not assume that the Fourier series of f is convergent in 
it self! 

Proof. Let us first assume that the interval (a, b) is contained within a 
period, for instance, -1r ::::; a < b ::::; 1r. We define a function g on T by 
letting g(t) = 1 for a < t < b and O otherwise. We compute the Fourier 
coefficients of g: 

g(n) = 2_ 1b e-int dt = [ e-i~t ] b = _i_ ( e-inb- e-ina)' 
27r a - 27rm a 21rn 

n :f: O; 

g(O) = 2_ 1b 1 dt = b-a . 
27r a 27r 

If now f "' L: Cn eint, the polarized Parseval relation takes the form 

1 1 - "- i b-a - f(t)g(t)dt= L.JCn -(e-inb_e-ina) +co--
27r T ...t. 27rn 21r 

nr-0 

1 ( einb _ eina ) 
= 27r L Cn in + co(b- a) . 

nf.O 

But the integral on the left is nothing but t f(t) dt divided by 21r, and the a . 
terms in the sum on the right are just what you get if you integrate Cn emt 

from a to b. After multiplication by 21r we have the assertion for this case. 
If the interval (a, b) is longer than 21r, it can be subdivided into pieces, 

each of them shorter than 21r, and then we can use the case just proved 
on each piece. When the results are added, the contributions from the 
subdivision points will cancel (convergent series can be added termwise!), 
and the result follows also in the general case. D 

If we choose a = O and let the upper limit of integration be variable 
and equal to t, the theorem gives a formula for the primitive functions 
( antiderivatives) of f: 

t eint 1 
F(t) = Jo f(u)du+K= LCn . - +cot+K, 

o nf.O zn 

where K is some constant. We shall rewrite this constant; first notice that, 
by the Cauchy-Schwarz inequality for sums, 

lenl ( 2)1;2( 1 )112 (IIIII)1/2(7r2)1/2 
LJ;f::::; Licnl Ln2 ::::; 2;;:- 3 <oo, 
nf.O nf.O nf.O 
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which means that the series Ln#O cnf(in) converges absolutely with sum 
equal to some number K 1 . Write C = K - K 1 and use the fact that 
convergent series can be added term by term, and we find that 

F(t) = L ~ eint + eot + C. 
n#Ozn 

This is the simplest form of the "formally" integrated Fourier series of 
f, and we ha ve thus shown that this integration is permitted and indeed 
results in a series convergent for all t. 

In general, the integrated series is no longer a Fourier series; this happens 
only if co = O, i.e., if f has mean value O. 

Exercises 

5.14 Using the result of Exercise 4.13 on page 84, find the value of the sum 

00 

L (4n2 ~ 1)2 · 
n=l 

5.15 We reconnect to Exercise 4.22 on page 90. By studying the series estab­
lished there on the interval (0, 11)2), prove the formula 

5.16 Let f be a continuous real-valued function on O < x < 1r such that f(O) = 
j(1r) =O and !' E L2 (0,1r). 
(a) Prove that J0"' (f(x)? dx:::; J0"' (f'(x)? dx. 
(b) For what functions does equality hold? 
(Hint: extend f to an odd function on ( -1r, 1r).) 

5.5 Legendre polynomials 

A number of "classical" ON systems in various L2 spaces consist of poly­
nomials. Polynomials are very practica! functions because their values al­
ways can be computed exactly using elementary operations ( addition and 
multiplication), which makes them immediately accessible to computers. 
If you want a value of a function such as ex or cos x, the effective calcu­
lation always has to be performed using some sort of approximation, and 
this approximation often consists of some polynomial ( or a combination of 
polynomials). 

The success of such approximations depends fundamentally on the va­
lidity of the following theorem. 
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Theorem 5.10 (The Weierstrass approximation theorem) An arbi­
trary continuous function f on a compact interval K can be approximated 
uniformly arbitrarily well by polynomials. 

In greater detail, the assertion is the following: If K is compact, f 
K -+ C is continuous and E: is any positive number, then there exists a 
polynomial P(x) such that lf(x)- P(x)l < E: for all x E K. 

A proof can be conducted along the following lines (which are best un­
derstood by a reader who is familiar with slightly more than the barest 
elements about power series expansions of analytic functions): By a linear 
change of variable, the interval can be assumed tobe, say, K = [0, 1r]. On 
this interval, f can be represented by a cosine series ( which involves, if you 
like, considering f tobe extended to an even function). The Fejer sums O'n 

of this series converge uniformly to f, according to the remark following 
Theorem 4.1. We can then choose n to make .supK lf(x) - an(x)l < t::/2. 
The function O'n is a finite linear combination of functions of the form 
cos kx. These can be developed in Maclaurin series, each converging to 
its cosine function uniformly on every compact set, in particular on K. 
Take partial sums of these series and construct a polynomial P, such that 
supK lan(x)- P(x)l < t::/2. Using the triangle inequality one sees that P 
is a polynomial with the required property. 

Now we make things concrete. Let the interval be K = [-1, 1], so that 
we live in the space L2 ( -1, 1), where the inner product is given by 

If we orthogonalize the polynomials 1, x, x2 , ••• , according to the Gram­
Schmidt procedure with respect to this inner product, the result is a se­
quence {Pn} of polynomials of degree O, 1, 2, .... They are traditionally 
scaled by the condition Pn(1) = 1. The polynomials obtained are called 
LEGENDRE polynomials. The first few Legendre polynomials are 

Po(x) = 1, P1(x) = x, P2(x) = ~(3x2 -1), P3(x) = ~(5x3 - 3x). 

We notice a few simple facts that are easily seen to be universally valid. 
The polynomial Pn has degree exactly n; for odd n it contains only odd 
powers of x and for even n only even powers of x. An arbitrary polynomial 
p(x) of degree n can, in a unique way, be written as a linear combination 
of Po, ... , Pn, with the coefficient in front of Pn different from zero. We 
illustrate this with the example p(x) = x2 + 3x: 

We saw in Sec. 5.3 that uniform convergence implies L2-convergence on 
bounded intervals. By Theorem 5.10, continuous functions can be uniformly 
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approximated by polynomials; these can be rewritten as linear combina­
tions of Legendre polynomials, and thus a continuous function on [ -1, 1] 
can be approximated arbitrarily well by such expressions in the sense of 
L2 . Just as in the proof of Theorem 5.8 it follows that the Legendre poly­
nomials make up a complete orthogonal system in L2 ( -1, 1). For historical 
reasons, they are not normed; instead one has 11Pnll 2 = 2/(2n + 1) (see 
Exercise 5 .17). 

The following so-called RODRIGUES formula holds for the Legendre poly­
nomials: 

(5.4) 

Example 5.12. Find the polynomial p(x) of degree at most 4 that mini­
mizes the value of 

Solution. By the general theory, the required polynomial can be obtained 
as the orthogonal projection of f(x) = sin 1l"X onto the first five Legendre 
polynomials: 

( ) ~ (!, Pk) ( ) 
p X = ~ (P. P. ) pk X . 

k=O k, k 

Since f is an odd function, its inner products with even functions are zero. 
Thus the sum reduces to just two terms: 

( ) (!, P1) ( ) (!, P3) ( ) 
p X = (PbP1) p1 X + (P3,P3) p3 X. 

The denominators are taken from a table, (Pk, Pk) = 2/(2k + 1), and the 
numerators are computed ( taking advantage of symmetries): 

11 11 2 (f,P1)= (sin7rx)·xdx=2 xsin7rxdx=-, 
-1 o 71" 

11 • 271"2 - 30 
(f,P3)=2 ~(5x3 -3x)sm7rxdx= 3 . 

o 71" 

Putting everything together, we arrive at 

In Figure 5.3 we can see the graphs of f and p. For comparison, we have 
also included the Taylor polynomial T(x) of degree 3, that approximates 
f(x) near x =O. It is clear that T and p serve quite different purposes: T 
is a very good approximation when we are close to the origin, but quite 
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FIGURE 5.3. Solid line: j, dashed: p, dotted: T 

worthless away from that point, whereas p is a reasonable approximation 
over the whole interval. O 

We have standardized the situation in this section by choosing the inter­
val to be ( -1, 1). By a simple linear change of variable everything can be 
transferred to an arbitrary finite interval (a, b). Here, the polynomials Qn 
make up a complete orthogonal system, if we let 

Qn(x) = Pn (2x ~~a a+ b))' 
and the norm is given by 

2 1b 2 b-a 
IIQnll = a IQn(x)l dx = 2n + 1 · 

When solving problems, use the formula collection in Appendix C, page 
254. 

Exercises 
5.17 Show that the polynomials defined by (5.4) are orthogonal and that IIPn/1 2 

= 2n ~ 1 . (Hint: write down (Pm, Pn), where m ~ n, and, integrating by 

parts, move differentiations from Pn to Pm. It is also possible to keep track 
of the leading coefficients.) 
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5.18 Find the best approximations with polynomials of degree at most 3, in the 
sense of L2 ( -1, 1), to the functions (a) H(x) (the Heaviside function), 
(b) 1/(1 + x2). Draw pictures! 

5.19 Compare the result of Exercise 5.4, page 110, with what is said in the text 
about Legendre polynomials on an interval (a, b). 

5.20 Let Po(x) = 1, Pl(x) = x, and define Pn for n ~ 2 by the recursion formula 
(n + 1)Pn+l(x) = (2n + 1)xpn(x)- npn-l(x) for n = 1, 2, .... Prove that 
Pn is the same as Pn. 

5.21 *Prove that u(x) = Pn(x), as defined by Rodrigues' formula, satisfies the 
differential equation 

(1- x2 )u"(x)- 2xu' (x) + n(n + 1) u(x) =O. 

5.6 Other classical orthogonal polynomials 

In this section we collect data concerning some orthogonal systems that 
have been studied ever since the nineteenth century, because they occur, 
for instance, in the study of problems for differential equations. Proofs 
may sometimes be supplied by an interested reader; see the exercises at 
the end of the section. When solving problems in the field, a handbook 
containing the formulae should of course be consulted. A small collection 
of such formulae is found on page 254 f. 

First we consider the L 2 space on the semi-infinite interval (0, oo) with 
the weight function w(x) = e-x, which means that the inner product is 
given by 

(f,g) = 100 f(x)g(x)e-xdx. 

The LAGUERRE polynomials Ln(x) can be defined by a so-called Rodrigues 
formula ( where D denotes differentiation with respect to x): 

(5.5) 

It is not hard to see that Ln is actually a polynomial of degree n; it is 
somewhat more laborious to check that (Lm, Ln) = ISmn; indeed these poly­
nomials are not only orthogonal but even normed. See Exercises 5.22-23. 

Next we take the interval tobe the whole axis R and the weight tobe 
w(x) = e-x2

• Thus the inner product is 

(!, g) = L f(x) g(x) e-x2 dx. 

The HERMITE polynomials Hn(x) can be defined by 

Hn(x) = (-ltex2 Dn(e-x2
). (5.6) 
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The facts that these functions are actually polynomials of degree equal to 
the index n and that they are orthogonal with respect to the considered 
inner product are left to the reader in Exercises 5.24-25. The polynomials 
are not normed; instead one has IIHnll 2 = n! 2n V1f. 

Finally, we return to a finite interval, taken to be ( -1, 1), and let the 
weight function be 1/v1- x2 : 

11 - dx 
(!, g) = _

1 
f(x) g(x) Jf=X2 . 

Orthogonal polynomials are defined by the formula Tn ( x) = cos( n arccos x). 
They are called CHEBYSHEV polynomials ( which can be spelled in various 
ways: Cebysev, Chebyshev, Tschebyschew, Tchebycheff, and qe6hlllleB are 
a few variants seen in the literature, the last one being (more or less) 
the original). That the formula actually defines polynomials is most easily 
recognized after the change of variable x = cos(}, O ~ (} ~ rr, which gives 
the formula Tn(cosO) = cosnO, and it is well known that cosnO can be 
expressed as a polynomial in cos O. In the case n = 2, for example, one has 
cos 2(} = 2 cos2 (} - 1, which means that T2 ( x) = 2x2 - 1. The orthogonality 
is proved by making the same change of variable in the integral (Tm, Tn)· 
One also finds that 11Toll 2 = 1r and 11Tnll2 = rr/2 for n >O. 

It can be proved that the polynomials named after Laguerre, Hermite, 
and Chebyshev actually constitute complete orthogonal systems in their 
respective spaces. 

We round off with a couple of examples. 

Example 5.13. Find the polynomial p(x) of degree at most 2, that min­
imizes the value of the integral 

Solution. The norm occurring in the problem belongs together with the 
Laguerre polynomials. These even happen tobe orthonormal (not merely 
orthogonal), which means that the wanted polynomial must be 

where f(x) = x3 • From a handbook we fetch Lo(x) = 1, L1(x) = 1- x, 
L 2 (x) = 1-2x+! x2 • When computing the inner products it is convenient 

to notice that J0
00 xn e-x dx = n!. We get 
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(J,L1)= 100 x3(1-x)e-xdx=3!-4!=6-24=-18, 

(!, L2) = 100 x3(1- 2x +! x2 ) e-x dx = 3!- 2 · 4! + ! · 5! = 18. 

Thus,p(x) = 6L0 (x)-18L1 (x)+18L2(x) = 6-18(1-x)+18(1-2x+! x 2 ) = 
6 - 18x + 9x2 . O 

Example 5.14. Let f(x) = v'1- x2 for lxl ~ 1. Find the polynomial 
p(x), of degree at most 3, that minimizes the value of the integral 

11 dx 
_

1
1/(x)- p(xW /f=X2. 

Solution. This inner product belongs with the Chebyshev polynomials. Be­
cause of "odd-even" symmetry, these have the property that a polynomial 
of even index contains only terms of even degree, and similarly for odd 
indices. Since f is an even function and the inner product itself has "even" 
symmetry, the wanted polynomial will only contain terms of even degree: 

( ) (!, To) ( ) (!, T2) ( ) 
p x = (T. T. ) T0 x + ('r. 'r. ) T2 x . o, o 2, 2 

The data required are taken from a handbook: To(x) = 1, T2 (x) = 2x2 -1, 
and the denominators are found above (and in the handbook), so all that 
remains to be computed are the numerators: 

(!, To) = 2 { 1 ,.h - x2 . 1 . ~ = 2, Jo 1- x2 

(J,T2)=2 { 1 ,.h-x2 ·(2x2 -1)· b=2 f 1 (2x2 -1)dx=-~. lo 1- x2 Jo 
Substituting we get 

2 2/3 1 2 
p(x) =- ·1-- (2x2 -1) = -(6- 8x2 + 4) =- (5- 4x2). 

7r 7r /2 37r 37r 

o 

Exercises 

5.22 Show that the formula (5.5) defines a polynomial of degree n. 

5.23 Show that the Laguerre polynomials are orthonormal. (Hint: the same as 
for Exercise 5.17.) 

5.24 Show that the formula (5.6) gives a polynomial of degree n. 

5.25 Show that the Hermite polynomials are orthogonal and IIHnll 2 = n! 2n "fir. 
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5.26 Expand e"/3 in a Laguerre series; i.e., determine the coefficients Cn in the 
formula 

X~ 0. 
n=O 

(The formula J0
00 e-at tn dt = n!/an+l may come in handy.) 

2 
5.27 Let f(x) = e" (H(x + 1)- H(x- 1)) Approximate f with a polynomial 

p( x) of degree at most 3 so as to minimize the expression 

5.28 Let f(t) = v'f=t2 for Iti ~ 1. Find a polynomial p(t) of degree at most 3 
that minimizes 

t lf(t)- (t)1 2 dt . 1-1 p J1- t 2 

5.29 Approximate f(x) = lxl on the interval ( -1, 1) with a polynomial of degree 
~ 3, first with the weight function 1 and secondly with weight 1/v1- x 2 • 

Thirdly, do the same with weight function (1- x 2 ) (but here you'll have to 
construct your own orthogonal polynomials). Compare the approximating 
polynomials obtained in the three cases. Draw pictures! Comment! 

Summary of Chapter 5 

In this chapter we studied vector spaces where the scalars are the complex 
numbers. Practically all results from real linear algebra remain valid in this 
case. The only important exception to this is the appearance of the inner 
product. 

A typical example of an inner product space is given by the set L2 ( I, w), 
where I is an interval on the real axis and w is a weight function, i.e., a 
function such that w(x) >O on I; the inner product in L2 (I,w) is defined 
by 

(f,g) = lt(x)g(x)w(x)dx. 

With the norm defined by llull = J(u,u), a notion of distance is given by 

llu-vll· 
Theorem 
In an inner product space the inequalities 

l(u,v)l ~ llullllvll, llu+vll ~ llull + llvll 
are valid. 

With respect to an inner product, one defines orthogonality and orthonor­
mal sets (or ON sets), as in the real case. Gram-Schmidt's method can be 
used to construct such sets. 
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If { cpk}f=1 is an ON set, the orthogonal projection of a u E V on to the 
subspace spanned by this set is the vector 

N 

P(u) = ~)u, 'Pk)'Pk· 
k=l 

Theorem 
If {'Pl. cp2 , ••• , 'PN} is an ON hasis in an N-dimensional inner product space 

N 
V, then every u E V can be written as u = 'E (u, 'Pi)'Pi• and furthermore 

j=l 
one has 

N 

llull 2 = L l(u, 'Pi)l2 (theorem of Pythagoras). 
j=l 

For the inner product of two vectors one also has the following formula: 

N 

(u,v) = L(u,cpi)(v,cpj)· 
j=l 

Theorem 
Let {cpk}f=1 be an orthonormal set in an inner product space V and let u 
bea vector in V. Among all the linear combinations 4? = 'E~=l "tk'Pk, the 
one that minimizes the value of llu- 4?11 is the orthogonal projection of u 
on to the subspace spanned by the ON set, i.e., 4? = P(u). Also, it holds 
that 

N 2 N 

u- L (u, 'Pk)'Pk = llull 2 - :2: l(u,cpkW· 
k=l k=l 

Theorem 
If {cpk}~1 is an ON set in V and u E V, then 

00 

L l(u, 'Pk)l2 :::; llull 2 (Bessel's inequality). 
k=l 

If every element in V can be approximated arbitrarily closely by linear 
combinations of the elements of { cpk}, then this set is said tobe complete 
in V. 

Theorem 
The system {cpk}~1 is complete in V if and only if for every u EVit holds 
that 

00 

llull 2 = :2: l(u,cpkW 
k=l 

(the PARSEVAL formula or the completeness relation). 
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Theorem 
If the system {<pk}k::1 is complete in V, then every u E V can be written 
as u = E~1 (u, <pk)<pk where the series converges in the sense of the norm, 

i.e., llu- E~=l (u, <pk)<pk 11 ~ O as N ~ oo ). 

Theorem 
If the system { <pk}k::1 is complete in V, then 

00 

(u, v) = :L)u, <pk) (v, <pk) 
k=l 

for all u, v E V. 
If the set { <pk} is not ON but merely orthogonal, all these formulae must 
be adjusted by dividing each occurrence of a <pk by its norm. 

Theorem 
The two orthogonal systems { eint}nEZ and {cos nt, n ~ O; sin nt, n ~ 1} 
are each complete in L2 (T}. 
As a consequence of this, Parseval's identities hold for ordinary Fourier 
series ( with conventional notation): 

lf - 1 ~ -; J ... f(t) g(t) dt = 2aoao + L..,.,(anan + bn,Bn)· 
T n=l 

Theorem 
The Fourier series of a function f E L2 (T) can always be integrated term by 
term over any bounded interval (a, b). The series obtained by this operation 
is always convergent, regardless of the convergence of the original Fourier 
series. 

Theorem 
(The Weierstrass approximation theorem) An arbitrary continuous func­
tion f on a compact interval K can be approximated uniformly arbitrarily 
well using polynomials. 

Historical notes 

The insight that certain notions of geometry, such as orthogonality and projec­
tions, can be fruitfully applied to sets of functions dawned upon mathematicians 
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in various situations during the nineteenth century. Round the turn of the cen­
tury, the Swedish mathematician IVAR FREDHOLM (1866-1927) treated certain 
problems for linear integral equations in a way that made obvious analogies with 
problems for systems of linear equations. Building on these ideas, the German 
DAVID HILBERT (1862-1943) and the Pole STEFAN BANACH (1892-1945) intro­
duced notions such as Hilbert and Banach spaces. The LP spaces mentioned in 
the present text are all Banach spaces (if one uses the Lebesgue integral in the 
definitions); and in particular L 2 spaces are Hilbert spaces. The latter spaces are 
infinite-dimensional, complex-scalar counterparts of ordinary Euclidean spaces, 
with a concept of distance that is coupled to an inner product. 

Parseval's formula, which can be seen as a counterpart of the theorem of 
Pythagoras, is named after an obscure French amateur mathematician, MARC­
ANTOINE PARSEVAL DES CHENES (1755-1836). 

ADRIEN-MARIE LEGENDRE (1752-1833) was an influential French mathemati­
cian who worked in many areas. EDMOND LAGUERRE (1834-86) and CHARLES 
HERMITE (1822-1901) were also French. Hermite is most famous for his proof 
that the number 7r is transcendental. PAFNUTY LVOVICH CHEBYSHEV (1821-94) 
founded the great Russian mathematical tradition that lives on to this day. 

Problems for Chapter 5 

5.30 Determine the Fourier series of the function 

f(x) = { cosx, O< x < 1r, 

-cosx, -7r < x <O. 

00 2 

Also compute the sum S = L (4n:_ 1)2 • 

n=l 

5.31 Let f be the even function with period 27r described by f(x) =sin~ x for 
O< x < 1r. Using the Fourier series of j, find the values of the sums 

00 1 
81 = L 4n2 -9' 

n=l 

00 (-1t 
82 = L 4n2 -9' 

n=l 

00 1 
83 = L (4n2- 9)2 · 

n=l 

5.32 Use the result of Problem 4.46 on page 103 to compute the value of 

00 1 

L (2n-1)6 · 
n=l 

5.33 Use the result of Problem 4.48 on page 103 to compute the value of ((8). 

5.34 Find a polynomial p(x) of degree at most 1 that minimizes the integral 
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5.35 Let Q be the square {(x,y): lxl ~ 1r, IYI ~ 1r}, and let L2 (Q) denote the 
set of functions f : Q --+ C that satisfy II Q if(x, y) 12 dx dy < oo. In this 
space we define an inner product by the formula 

(!, g) = J J f(x, y) g(x, y) dx dy. 

Q 

Define the functions 'Pmn E L 2 (Q) by 'Pmn(x, y) = ei(mx+ny), m, n E Z. 
Show that these functions are orthogonal with respect to ( ·, ·), and deter­
mine their norms in L 2 ( Q). 

5.36 Expand the function f(x) = e-ax in a Fourier-Hermite series: 

00 

f(x) rv L enHn(x). 
n=O 

5.37 Expand f(x) = x3 , x ~O, in a Fourier-Laguerre series: 

00 

f(x) rv L CnLn(x). 
n=O 

5.38 Prove this formula for Legendre polynomials: 

(2n + 1)Pn(x) = P~+l(x)- P~-1(x), n ~ 1. 

5.39 A function f(x), defined on ( -1, 1), can be expanded in a Fourier-Legendre 
series: 

00 

f(x) rv L CnPn(x). 
n=O 

What does the Parseval formula look like for this expansion? 

5.40 Determine the distance in L 2 ( -1, 1) from sin 1rx to the subspace spanned 
by 1, x, x 2 • (The distance is the norm ofthe residual.) 

5.41 The functions 1 and v'3 (2x- 1) constitute an orthogonal system in the 
space L 2 (0, 1). Find the linear combination of these that is the best ap­
proximation of cosx in L2 (0, 1). 

5.42 fis continuous on the interval [0, 1]. Moreover, 

11
f(x)xndx=O, n=0,1,2, ... ,. 

Prove that f(x) =O for all x in [0, 1]. 

5.43 Determine the coefficients ak, k =O, 1, 2, 3, so that the integral 

11 
lao + a1x + a2x2 + aax3 - x 4 12 dx 

-1 

is made as small as possible. 
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5.44 Let f(x) = cos7rx. Let V be the space of continuous functions on the 
interval (-1, 1] with the inner product 

(u,v) = 1: u(x)v(x)dx. 

M is the subspace in V consisting of polynomials of degree at most 3. Find 
the orthogonal projection of f onto M. 

5.45 Determine the numbers a, b och c so as to make the expression 

as small as possible. 

5.46 Let f(x) = sgnx = 2H(x)-1 for x E R. Approximate f with a third-degree 
polynomial in the sense of Hermite. 

5.47 Let f(x) = (1- x2) 312• Find a polynomial P(x) of degree at most 3 that 
minimizes 

11 lf(x)- P(x)l dx. 
-1 v'1- x2 



6 
Separation of variables 

6.1 The solution of Fourier's problem 

We now return, at last, to the problem stated in Sec. 1.4: heat conduction 
in a rod of finite length, with its end points kept at temperature O. The 
mathematical formulation of the problem was this: 

(E) Uxx = Ut, O < X < 7f, t > O; 

(B) u(O, t) = u(1r, t) =O, t >O; (6.1) 

(1) u(x, O)= f(x), O< x < 1r. 

We had found the following solutions of the homogeneous sub-problem 
consisting of the conditions (E) and (B): 

N 

u(x, t) = L bn e-n2 t sin nx. (6.2) 
n=l 

Then we asked two questions: can we allow N-+ oo in this sum? And can 
the coefficients be chosen so that (1) is also satisfied? Now we can answer 
these questions. 

Let f(x) be the initial values for O< x < 7f. By defining f(x) =- f( -x) 
for -1r < x < O we get an odd function. It can be expanded in a Fourier 
series, which is a sine series with coefficients 

217r bn = - f ( x) sin nx dx. 
7f o 
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The coefficients are bounded, \bnl ~ M, they even tend to zero as n--+ oo. 
This implies that the series 

00 

u(x, t) = L bn e-n2 t sin nx (6.3) 
n=l 

converges very nicely as soon as t >O. If a> O, we can estimate the terms 
like this for t ~ a : 

2 2 

lb e-n t sin nxj < M e-n a < Me-na = M n _ _ n, 

and L Mn is a convergent geometric series. The considered series then 
converges uniformly in the region t ~ a. If it is differentiated termwise 
with respect to t once, or with respect to x twice, the new series are also 
uniformly convergent in the same region (check this!). According to the 
theorem on differentiation of series, the function u, defined by (6.3), is 
differentiable to the extent needed, and since all the partial sums satisfy 
(E)+(B), so will the sum. 

To check that the initial values are right is somewhat more tricky. If f 
happens tobe so nice that L \bn! < oo, then we are home; for in this case 
the series will actually converge uniformly in the closed set O ~ x ~ 1r, 

t ~ O, and so the sum is continuous in this set, making 

00 

Iim u(x, t) = u(x, O) = ""'bn sin nx = f(x) 
t\,.0 ~ 

n=l 

( cf. Theorem 4.2, page 83). This holds, say, if the odd, 21r-periodic extension 
of f belongs to C2 ; it even holds under weaker assumptions, but this is 
harder to prove. 

If f E L2 (0, 1r), we can alternatively study convergence in the L2 sense. 
Let Vt be the restriction of u to time t, i.e., Vt(x) = u(x, t), O < x < 1r 

(here the subscript t does not stand for a derivative). The function Vt has 
Fourier coefficients bn e-n2t, and by Parseval we have 

Thus, Vt also belongs to L2(0, 1r) for each t > O. Now we investigate what 
happens if t '\t 0: 

00 

11/- Vtll2 = iL \bn\2(1- e-n2t)2 = <P(t). 
n=l 

The series defining <P(t) converges uniformly on t ~ O and its terms are 
continuous functions of t. Thus <P(t) is continuous on the right for t = O, 
and 

Iim <P(t) = <P(O) =O, 
t\,.0 
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which means that III- Vtll -+ O as t decreases to O. The solution u thus 
has the L 2-limit J, which is our way of saying that 

Iim (' lu(x, t)- f(x)l 2 dx =O. 
t',.O } 0 

The terms of the series representing the solution consist of sine functions, 
multiplied by exponentially decreasing factors. The higher the frequency of 
the sine factor, the faster does the term containing it tend to zero - small 
fiuctuations in the temperature along the rod are faster to even out than 
fiuctuations of longer period. As time goes by, the temperature of the entire 
rod will approach zero - which should be expected, considering the physical 
experiment that we have attempted to describe with our model. 

Remark. For t > O, the series in (6.3) can actually be differentiated an in­
definite number of times with respect to both variables. What happens to the 
term bne-n2

t sin nx when it is differentiated is that one or more factors n come 
out, that sin and cos may interchange and also the sign may change. But, for 
t 2: a > O, the resulting term can always be estimated by an expression of the 
form M np e-n2 t :S M np e-na = Qn, and it is easy to see that L Qn < oo 
(apply the ratio test). We conclude that all functions such as (6.3) are indeed of 

class C00 ; they are "infinitely smooth." o 

Exercises 

6.1 Find the solution ofFourier's problem when (a) f(x) = sin3 x for O< x < 71'; 

(b) f(x) = cos3x for O< x < 71'. 

6.2 Find a solution to the following modified Fourier problem (heat conduction 
in a rod of length 1; a is a positive constant): 

1 
Ut = 2Uxx, O< X< 1, t >O; 

a 
u(O, t) = u(1, t) =O, t >O; u(x, O) = f(x), O< x < 1. 

6.2 Variations on Fourier's theme 

In this section we perform some slight variations on the theme that has just 
been concluded. Later on in the chapter we shall indicate the possibility of 
more far-reaching variations. 

Example 6.1. Let us study the problem of heat conduction in a completely 
isolated rod, where there is no exchange of heat with the surroundings, not 
even at the end points. As before, the rod is represented by the interval 
[O, n], and the temperature at the point x at time t is denoted by u(x, t). 
Within the mathematical model that gives rise to the heat equation, the 
fl.ow of heat is assumed to run from warmer to colder areas in such a way 
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that the velocity of the flow is proportional to the gradient of the temper­
ature (and having the opposite direction). The mathematical formulation 
of the condition that no heat shall flow past the end points is then that the 
gradient of the temperature be zero at these points; in the one-dimensional 
case this condition is simply ux(O, t) = ux('rr, t) =O. If the temperature of 
the rodat time O is called f(x), we have the following problem: 

(E) Uxx = Ut, O <X < '11", t > O; 

(B) Ux(O, t) = Ux(1r, t) =O, t >O; 

(I) u(x, O)= f(x), O< x < 1r. 

(6.4) 

This problem is largely similar to the previous one, and we attack it 
by the same means (cf. Sec. 1.4). Thus we start by looking for nontrivial 
solutions of the homogeneous sub-problem (E)+(B), and we try to find 
solutions having the form u(x, t) = X(x)T(t). Substituting into (E) leads, 
just as before, to the separated conditions 

X"(x) + >.X(x) =O, T'(t) + >.T(t) =O. 

To satisfy (B) without having u identically zero we must also have X'(O) = 
X'(1r) =O. This leaves us with the following boundary value problem for 
X: 

X"(x) + >.X(x) =O, O< x < 1r; X'(O) = X'(1r) =O. (6.5) 

Just as in Sec. 1.4, we look through the different cases according to the 
value of>.. It will be sufficient for us to give account of "hasis vectors," so 
we omit scalar factors that can always be adjoined. 

For ali >. < O one finds that the only possible solution is X(x) = O 
(the reader should check this). If >. = O, the equation is X"(x) = O with 
solutions X(x) =A+ Bx. The boundary conditions are satisfied if B =O. 
This means that we have the solutions X(x) = Xo(x) =A= constant. For 
the same value of>., the T-equation also has the solutions T = constants; 
as a "hasis vector" we can choose 

uo(x, t) = Xo(x) To(t) = !· (6.6) 

When >. > O we can put >. = w2 with w > O. Thus we have X" + w2 X = O 
with solutions X(x) = Acoswx + Bsinwx and X'(x) = -wAsinwx + 
wB coswx. The condition X'(O) =O directly gives B =O, and then X'(1r) = 
O means that O= -wAsinw1r. This can be satisfied with A-=/= O precisely 
if w is a (positive) integer. Thus, for>.= n2 we have the solution X(x) = 
Xn(x) = cosnx and multiples of this function. The corresponding equation 
forT is solved by Tn(t) = e-n2t. In addition to (6.6), the problem (E)+(B) 
thus has the solutions 

Un(x, t) = Xn(x) Tn(t) = e-n2t cosnx, n = 1, 2, 3, .... 
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By homogeneity, series of the form 

00 

u(x, t) = ~ ao + Lan e-n2 t cos nx (6.7) 
n=l 

are solutions of (E)+(B), provided they converge nicely enough. It remains 
to be seen if it is possible to choose the constants an so that (1) can be 
satisfied. Direct substitution of t = O in the solution would give 

00 

f(x) = u(x,O) = ~ ao + L:ancosnx, O< x < 1r. 

n=l 

We can see that if f is extended to an even function on the interval ( -1r, 1r) 
and we let the an be the Fourier coefficients of this function, then we ought 
to have a solution to the whole problem. 

And, just as in the preceding section, everything works excellently if we 
know, for example, that 2: lanl < oo. 

It can be noted that the solution (6.7) has the property that all terms 
except for the first one tend rapidly to zero when t tends to infinity. One 
is left with the term ~ ao. As we have seen, this is equal to the mean value 
of f, and this is in accordance with the intuitive feeling for what ought to 
happen in the physical situation: a completely isolated rod will eventually 
assume a constant temperature, which is precisely the mean of the initial 
temperature distribution. O 

Example 6.2. Let us now modify the original problem in a few different 
ways. We let the rod be the interval (0, 2), and the end points are kept 
each at a constant temperature, but these are different at the two ends. 
To be specific, say that u(O, t) = 2 and u(2, t) = 5. Let us take the initial 
temperature tobe given by f(x) = 1- x2 • The whole problem is 

(E) Uxx = Ut, O < X < 2, t > O; 
(B) u(O, t) = 2, u(2, t) = 5, t > O; (6.8) 
(1) u(x,O) = 1- x 2 , O< x < 2. 

Here, separation of variables cannot be applied directly; an important 
feature of that method is making use of the homogeneity of the conditions, 
enabling us to add solutions to each other to obtain other solutions. For this 
reason, we now start by homogenizing the problem in the following way. 
Since the boundary values are constants, independent of time, it should be 
possible to write u(x, t) = v(x, t) + <p(x), where <p(x) should be chosen to 
make v the solution of a modified problem with homogeneous boundary 
conditions. Substitution into (E) gives 

Vxx(x, t) + <p11 (x) = Vt(x, t), 
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so it is desirable to have cp"(x) = O. If we can also achieve cp(O) = 2 and 
cp(2) = 5, we would get v(O, t) = v(2, t) = O. 

Thus we are faced with this simple problem for an ordinary differential 
equation: 

cp" (x) = O; cp(O) = 2, cp(2) = 5. 

The unique solution is easily found to be cp(x) = ~ x + 2. Substituting this 
into the initial condition of the original problem, we have 

1 - x2 = u(x, O) = v(x, O) + cp(x) = v(x, O) + ~ x + 2. 

We collect all the conditions to be satisfied by v: 

(E') 

(B') 

(I') 

Vxx = Vt, 0 <X< 2, 

v(O, t) = O, v(2, t) = O, 

v(x, O) = -x2 - ~ x- 1, 

t >O; 

t >O; 

0 <X< 2. 

(6.9) 

This problem is essentially of the sort considered and solved in Sec. 1.4 and 
6.1. A slight difference is the fact that the length of the rod is 2 instead of 7r, 

but the only consequence of this is that the sine functions in the solution will 
be adapted to this interval (as in Sec. 4.5). The reader is urged to perform 
all the steps that lead to the following formula for "general" solutions of 
(E')+(B'): 

oo ( n27r2 ) n7r 
v(x, t) =;an exp --4- t sin 2 x. 

Next, the coeffi.cients are adapted to (I'): 

an = ~ {2 (-x2 - ~ x - 1) sin n7r x dx = 16( -1 )n - 2 + 16(1 - ( -1 )n) . 
2 lo 2 2 n7r n37r3 

Finally, we put together the answer to the original problem: 

( ) _ 3 2 Loo (16(-1)n- 2 16(1- (-1)n)) -n2n:2t;4 . n1r 
u x,t - 2 x+ + + 3 3 e sm-2 x. 

n=l n7r n 7r 

As time goes by, the temperature along the rod will stabilize at the distri­
bution given by the function cp(x). This is called the stationary distribution 
of the problem. D 

Example 6.3. In our next variation we consider a rod with a built-in 
source of heat. The length of the rod is again 1r, and we assume that at the 
point with coordinate x there is generated an amount of heat per unit of 
time and unit of length along the rod, described by the function sin(x/2). 
It can be shown that this leads to the following modification of the heat 
equation: 

(E) 
. X 

Ut = Uxx + Sln 2, 0 <X< 71", t > 0. 
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We also assume that both ends are kept at temperature O for t > O and 
that the initial temperature along the rod is 1: 

(B) u(O, t) = u(7r, t) =O, t >O; (I) u(x,O) = 1, O< x < 71". 

Here there is an inhomogeneity in the equation itself. We try to amend this 
by using the same trick as in Example 2: put u(x, t) = v(x, t) + cp(x) and 
substitute into (E) and (B). (Do it!) We conclude that it would be very 
nice to have 

cp"(x) =-sin~, cp(O) = cp(7r) =O. 
2 

The first condition implies that cp must be of the form cp(x) = 4sin(x/2) + 
Ax+B, and the boundary conditions force us to take B =O and A= -4/71". 
As a consequence, v shall be a solution of the problem 

(E') Vxx=Vt, 0<x<1l", t>O; 
(B') v(O, t) =O, v(7r, t) =O, t >O; (6.10) 

(I') v(x,O) = 1- 4sin(x/2) + (4x)/7r, O< x < 71". 

The reader is asked to complete the calculations; the answer is 

. X 4 2 ~ 1-(-1)n(4n2 -5) -n2t . 
u(x,t)=4sm-2 --x+-L..J (42 ) e smnx. 

7r 7r n=l n n - 1 

o 

Example 6.4. We leave the heat equation and turn to the wave equation. 
We shall solve the problem of the vibrating string. 

Imagine a string (a violin string or guitar string), stretched between the 
points O and 7r of an x-axis. The point with coordinate x at time t has 
a position deviating from the equilibrium by the amount u(x, t). If the 
string is homogeneous, its vibrations are small and considered to be at 
right angles to the x-axis, gravitation can be disregarded; and the units of 
mass, length, and time are suitably chosen, then the function u will satisfy 
the wave equation in the simple form Uxx = Utt· The fact that the string 
is anchored at its ends means that u(O, t) = u(7r, t) = O. At time t = O, 
every point of the string is located at a certain position and has a certain 
speed of movement. We want to find u(x, t) fort > O and all the interesting 
values of x. This is collected into a problem of the following appearance: 

(E) Uxx = Utt, O < X < 71", t > O; 
(B) u(O, t) = u(7r, t) =O, t >O; 
(I1) u(x, O)= f(x), O< x < 71", 
(h) Ut(x,O) = g(x), 0 <X< 7rj 

(6.11) 

Again, (E) and (B) are homogeneous conditions. The usual attempt u(x, t) 
= X(x) T(t) this time leads up to this set of coupled problems: 

{ X"(x) + AX(x) =O, T"(t) + AT(t) =O. 
X(O) = X(7r) =O; 
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The X problem is familiar by now: it has nontrivial solutions exactly for 
A= n2 (n = 1, 2, 3, ... ), viz., multiples of Xn(x) =sin nx. For these values 
of A, the T problem is solved by Tn(t) = an cos nt + bn sin nt. Because of 
homogeneity we obtain the following solutions ofthe sub-problem (E)+(B): 

00 00 

u(x, t) = L Xn(x) Tn(t) = L(an cos nt + bn sin nt) sin nx. (6.12) 
n=l n=l 

Letting t =O in order to investigate (I1), we get 

00 

f(x) = u(x, O) = Lan sin nx. 
n=l 

Termwise differentiation with respect to t and then substitution of t = O 
gives for the second initial condition (I2 ) that 

00 

g(x) = Ut(X, O) = L nbn sin nx. 
n=l 

Thus, if we choose an to be the sine coefficients of ( the odd extension of) 
J, and choose bn so that nbn are the corresponding coefficients of g, then 
the series (6.12) ought to represent the wanted solution. 

As we saw already in Sec. 1.3, the wave equation may have rather irreg­
ular, non-smooth solutions. This is refiected by the fact that the series in 
(6.12) can converge quite "badly." See, for example, the solution of Exer­
cise 6.7, which is, after all, an attempt at a quite natural situation. If we 
allow distributions as derivatives, as indicated in Sec. 2.6-7, the mathemat­
ical troubles go away. It should also be borne in mind that the conditions 
of Exercise 6. 7 are not physically realistic: a string does not really have 
thickness O and cannot really take on the shape of an angle. D 

Remark. The typical term in the sum (6.12) can be rewritten in the form 
Ansin(nt + an)sinnx. Its musical significance is the nth partial tone in the 
sound emitted by the string. (The first partial is often called the fundamen­
tal.) Figure 6.1 illustrates in principle the shapes of the string that correspond to 
different values of n. These are also called the modes of vibrotions of the string. 
D 

Remark. Of considerable musical importance is the fact that the nth partial 
also vibrates in time with a frequency that is the nth multiple of the fundamental. 
This is what was noted already by PYTHAGORAS: if the length of the string is 
halved (making it vibrate in the same manner as the whole string would vibrate 
in the second mode), one hears a note sounding one octave higher. The successive 
partials are illustrated in Figure 6.2. The accidental .fstands for lowering the pitch 

by slightly more than a (tempered) semi-tone, while] and i indicate raising the 
pitch by slightly less or respectively more, than a semi-tone. Partial number 7 is 
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n=1 n=2 n=3 

n=4 n=5 n=6 

FIGURE 6.1. 

... 
... 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 
... 

FIGURE 6.2. 

wellknown to musicians ( especially brass players) as an ugly pitch that is to be 
avoided in normal music. Partials 11 and 13 are also bad approximations of the 
pitches indicated in the figure, but they are so high up that they cause relatively 
little trouble in normal playing. D 

We round off this section with a problem for the Laplace equation in a 
square. This sort of problem is called a DIRICHLET problem: the Laplace 
equation in a region of the plane, with values prescribed on the boundary 
of the region. 

Example 6.5. Find u(x, y) that solves Uxx + Uyy = O, O < x < n, O < 
y < n, with boundary conditions u(x,O) = sin3x- 3sin2x for O< x < n, 
u(x, n) = u(O, y) = u(n, y) =O, O< x, y < n. 

Solution. Draw a picture! We have a homogeneous equation, 

(E) Uxx + Uyy = 0, 

together with three homogeneous boundary conditions, 

u(O, y) = u(n, y) =O, u(x, n) =O, 
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and one non-homogeneous boundary condition, 

(B4) u(x, O) =sin 3x- 3 sin 2x. 

We begin by disregarding (B4) and look for nontrivial functions u of the 
special form u(x, y) = X(x)Y(y) satisfying the homogeneous conditions. 
Substitution into (E) gives 

X"(x)Y(y) + X(x)Y"(y) =O, 

which can be separated to look like 

X"(x) 
X(x) 

Y" (y) 
- Y(y) ' 

and by the same argument as in preceding cases we conclude that the two 
sides of this equation must be constant. This constant is (again by force of 
tradition) given the name -A. The boundary conditions (B1,2) can be met 
by saying that X(O) = X(1r) =O, and (B3 ) by putting Y(1r) =O. We find 
that we have the following couple of problems for X and Y: 

{ X"(x) + AX(x) =O 
X(O) = X(1r) =O 

{ Y"(y)- AY(y) =O 
Y(1r) =O 

The problem for X is, by now, wellknown. It has nontrivial solutions if 
and only if A = n2 for n = 1, 2, 3, ... , and these solutions are of the form 
Xn(x) = sin nx. For the same values of A, the Y problem is solved by 
Yn(Y) = AenY+Be-nY, where A and B shall be chosen to meet the condition 
Yn(7r) =O. This is done by letting B = -Ae2mr. We thus have the solutions 

un(x,y) = An(eny- en(21r-y)) sinnx, n = 1,2,3, ... , 

ofthe homogeneous conditions (E) and (B1,2,3 ). Because of the homogene­
ity, sums of these solutions are again solutions. A "general" solution is given 
by 

00 

u(x, y) = L An(eny- en(21r-y)) sin nx. 
n=l 

We now have to choose the coefficients An to meet the remaining condition 
(B4). The reader should check the computations that lead to the final result 

u(x,y) = - 3 (e2Y- e2(21r-y)) sin2x + 1 (e3Y- e3(21r-y)) sin3x. 
1 - e47r 1 - e67r 

D 

In the last example, the boundary condition was homogeneous on three of 
the edges of the square. A general Dirichlet problem for a square might be 
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taken care of by solving four problems of this kind, with non-homogeneous 
boundary values on one edge at a time, and adding the solutions. 

In the exercises the reader will have the opportunity to apply the basic 
ideas of the method of separation of variables to a variety of problems. In 
all cases, the success of the method is coupled to the fact that one reaches 
a problem for an ordinary differential equation together with boundary 
conditions. This problem turns out to have nontrivial solutions only for 
certain values of the "separation constant," and these solutions are a sort of 
building blocks out of which the solutions are constructed. This sort of ODE 
problem is called a STURM-LIOUVILLE problem and will be considered in 
Sec. 6.4 for its own sake. 

It is even possible to treat partial differential equations with more than 
two independent variables in much the same way. 

Exercises 

6.3 Find a solution of the heat problem Ut = Uxx for O < x < 1r, t > O, such 
that u"(O,t) = u"(1r,t) =O fort > O and u(x,O) = ~(1 + cos3x) for 
0 <X< 7r. 

6.4 Determine a solution of the problem 

{
u""=tut, 0<x<7r,t>1; 
u(O, t) = u(1r, t) =O, t > 1, 
u(x, 1) = sinx + 2sin3x, O< x < 1r. 

6.5 Find a solution of the non-homogeneous heat conduction problem 

{
u""=ut+sinx, O<x<1r, t>O; 
u(O, t) = u(1r, t) =O, t >O; 
u(x, O)= sinx + sin2x, o< X< 7r. 

6.6 Solve the following problem for the vibrating string: 

{ 
Uxx = Utt, O < X < 7r, t > O; 
u(x,O) = 3sin2x, Ut(x,O) = 5sin3x, 0 <X< 1r; 
u(O, t) = u(1r, t) =O, t >O. 

6. 7 The plucked string: a point on the string is pulled from its resting position 
and then released with no initial speed. If the string is plucked at its middle 
point, what tones are heard? In a mathematical formulation: Solve the 
problem (6.11), when f is given by 

f(x) =ax, O::; x::; ~ 1r, f(x) = a(1r- x), ~ 1r::; x::; 1r, 

and g(x) =O. 

6.8 Find u(x, t) if 

{ 
u""(x, t) = Utt(x, t), O< x < 1, t >O; 
u(O, t) = u(1, t) =O, t > O; 
u(x,O) = sin37rx, Ut(x,O) = sin7rXCOS2 7rx, O<x<l. 
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6.9 Find a solution of the following problem ( one-dimensional heat conduction 
with loss of heat to the surrounding medium) for h > O constant: Ut = 
u.,.,- hu, O< x < 1r, t >O, together with u(O, t) =O, u(1r, t) = 1 fort> O 
and u(x,O) =O for O< x < 1r. 

6.10 A Dirichlet problem: u.,., + Uyy =O for O< x, y < 1, u(x, O) = u(x, 1) =O, 
u(O,y) =O and u(1,y) = sin3 1ry. 

6.11 Find a solution u = u(x, t) of this problem: 

{ 
u.,., + ~ u = Ut, o < X < 71", t > O; 
u(O, t) =O, u(1r, t) = 1, t >O; 
u(x, O) = O, O < x < 1r. 

6.3 The Dirichlet problem in the unit disk 

We shall study a problem for the Laplace equation in two dimensions. Let 
u = u(x,y) bea function defined in an open, connected set n in R 2 . The 
Laplace equation in n is 

a2u a2u 
~u := ax2 + ay2 = 0, (x,y) E n. 

The solutions of this equation are called harmonic functions in n. The 
DIRICHLET problem is the task of finding all such functions with prescribed 
values on the boundary an. We shall study this problem in the case when 
n is the unit disk D : x2 + y2 < 1, so that the boundary an is the unit 
circle T: x2 + y2 = 1. Concisely, the problem is 

~u(x, y) =O, (x, y) E D; u(x, y) = g(x, y) = known function, (x, y) E T. 
(6.13) 

We shall describe two lines of attack: first a method that requires know­
ledge of the elementary theory of analytic ( or holomorphic) functions, then 
a different approach involving separation of variables. 

Method 1. Interpret (x,y) as a complex number z = rei0 • The boundary 
function g can then conveniently be considered as a function of the polar 
coordinate (}, so that we are looking for harmonic functions u = u(z) = 
u(rei0 ) for r < 1 with boundary values 

u(ei0 ) =Iim u(rei0 ) = g(O), -1r < (}:::;; 1r. 
r/'1 

The unit disk D is simply connected. By the theory of analytic functions, 
every harmonic function u inD has a conjugate-harmonic partner v such 
that the expression f(z) = u(z) + iv(z) is analytic inD. An analytic func­
tion in the unit disk is the sum of a power series: 

00 00 

u(z) + iv(z) = f(z) = L Anzn = L Anrn einO 
n=O n=cO 
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00 

= :2::: (Bn + iCn) rn (cos nO + i sin nO) 
n=O 

00 

= :2::: rn ( (Bn cos nO- Cn sin nO) + i( Cn cos nO + Bn sin nO)), 
n=O 

where the An are Taylor coeffi.cients with real parts Bn and imaginary parts 
Cn. Taking the real part of the whole equation one sees that u(z) must be 
representable by a series of the form 

00 

u(z) = u(rei9 ) = :2::: rn (Bn cos nO- Cn sin nO), 
n=O 

and, conversely, one realizes (by reading the equation backward) that all 
such series represent harmonic functions (provided the corresponding series 
L Anzn converges inD). 

In order to make the formula neater, we switch letters: put an = Bn and 
bn = -Cn for n 2: 1, ao = 2Bo, arid note that the value of Co is immaterial 
(sin ce sin O() = O for all O), and we get 

00 

u(rei9 ) = ~ a0 + :2::: rn (an cos nO + bn sin nO). 
n=l 

Method 2. We want to find solutions of the Laplace equation in the region 
described in polar coordinates by r < 1, -7!" ::; () ::; 7!". First we transform 
the equation into polar coordinates. Using the chain rule one finds that 
~u = O (for r > O) is equivalent to 

( the computations required are usually carried through in calculus text­
books as examples of the chain rule). We then proceed to find nontrivial 
solutions of the special form u(r,O) = R(r) e(O), i.e., solutions that are 
products of one function of r and one function of (). Substitution into the 
equation results in 

{=::::} r(rR1)
1e =-Re". 

We divide by Re and get 

1 1 1 e" 
Rr(rR) =-e· 

The left-hand member in this equation is independent of () and the right­
hand member is independent of r. Just as in Sec. 1.4 we can conclude that 
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both members must then be constant, and this constant value is called >.. 
The situation splits into the two ordinary differential equations 

e" + >.e =o, r(rR')'- >.R =O. 

In addition, there are a couple of "boundary conditions": in order that the 
function u = Re be uniquely determined in D, the function 8(0) must 
have period 211'. Furthermore, since u shall have a finite value at the origin, 
we demand that R( r) ha ve a finite limit R( 0+) as r '\t O . 

We begin with the problem for 8: 

{ e"(O) + >.e(o) =o, 
e(o + 211') = 8(0) for all o. 

As in Sec. 1.4, we work through the cases >. < O, >. = O and >. > O. In 
the first case there are no periodic solutions (except for 8(0) = 0). In 
the case>. =.0, all constant functions will do: 8 0 (0) = A0 • When >. >O, 
let >. = w2 with w > O, and we find the solutions 8w(O) = Aw coswO + 
Bw sin wO. These have period 211' precisely if w is a positive integer: w = n, 
n = 1, 2, 3, .... Summarizing, we have found interesting solutions of the e 
problem precisely when >. = n2 , n = O, 1, 2, .... 

For these >. we solve the R-problem. When >. = O, the equation becomes 

r(rR')' =O .ţ=:} rR' = C .ţ=:} R' = C .ţ=:} R = Cln r + D. 
r 

The value R(O+) exists only if C = O. In this case we thus have a solution 
u = Uo = eo(O)Ro(r) = Ao. D =constant. For reasons that will presently 
become evident we denote this constant by ~ao. 

When >. = n2 with n > O we have a so-called Euler equation: 

r(rR')'=n2R .ţ=:} r2R"+rR'-n2R=O. 

To solve it, we change the independent variable by putting r = e8 , which 
results in 

which has the solutions R = Cens +De-ns= Crn + Dr-n. We must take 
D = O to ascertain that R(O+) exists. Piecing together with e we arrive 
at the solution 

u(rei9) = Un(rei9 ) = en(O) Rn(r) = Cn rn (An cosnO + Bn sinnO) 

= rn (an cosnO + bn sin nO). 

The Laplace equation is homogeneous. Assuming convergence for the 
series, the solutions of ~u = O in the unit disk should be representable by 
series of the form 

00 

u(rei9 ) = ~ a0 + I:>n (an cos nO + bn sin nO). 
n=l 
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This is the same form for harmonic functions inD as obtained by "Method 
1" above. 

The formal solutions that we have obtained can, of course, also be written 
in "complex" form. Via Euler's formulae we find 

u(r,O) = u(reiB) = L enrlnleinB. 
nEZ 

Notice that the exponents on r have a modulus sign. 

(6.14) 

Now we turn to the boundary condition. As r /' 1, we wish that the 
values ofthe solution approach a prescribed function g(O). For simplicity, we 
assume that g is continuous. Let the numbers Cn be the Fourier coefficients 
of g: 

Cn = 2_ f g(O) e-inB dO, 
27r JT 

and, using these coefficients, form the function u(r, O) as in (6.14). By 
Lemma 4.1, there exists a number M such that lenl ~ M. Using the Weier­
strass M-test we can easily conclude that the series defining u converges 
absolutely and uniformly in every inner closed circular disk r ~ro, where 
r 0 < 1, and this still holds after differentiations with respect tor as well as 
O. According to the theorem on differentiation of series, termwise differenti­
ation is thus possible, and since each term of the series satisfies the Laplace 
equation and this equation is homogeneous, the sum function u will also 
satisfy the same equation. Now we turn to the boundary condition. The 
uniform convergence in r ~ ro allows us to interchange the order of sum 
and integral in the following formula: 

u(r, O)= L Cn rlnl ein(J = L rlnl ein6 _..!:.._ r g(t) e-int dt 
27r JT nEZ nEZ 

= r (_..!:.._ .L: rlnl ein(6-t)) g(t) dt. 
jT 27r z nE 

The sum in brackets can be computed explicitly - it is made up of two 
geometric series: 

-1 00 

2::: rlnl eins = 2::: r-n eins + 2::: rn eins 
nEZ n=-oo n=O 

oo . oo . r e-is 1 
= ""'rn e-ms + ""'rn e•ns = . + . 

L..J L..J 1- re-•s 1- re•s 
n=l n=O 

(1- rei8 )re-is + 1- re-is 1- r2 
= = -:--:::----

l1-reisl2 1+r2 -2rcoss' 
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We define the POISSON kernel to be the function 

1 L 1 1 . 1 1- r2 Pr(s) = P(s,r) =- rn ems =-. . 
27r z 27r 1 + r2 - 2rcoss 

nE 

This gives the following formula for u: 

u(r, O) = l Pr(O- t) g(t) dt = l Pr(t) g(O- t) dt. 

The Poisson kernel has some interesting properties: 

1. Pr(s) = Pr(-s) ~O for r < 1, sET. 

2. JTPr(s)ds = 1 for r < 1. 

3. If 8 > O, then 

Iim r Pr(s) ds =O. 
r/'l}o 

The proofs of 1 and 2 are simple (2 follows by integrating the series term 
by term, which is legitimate). The property 3 can be shown thus: since 
Pr ( s) is decreasing as s goes from O to 1r, we ha ve Pr ( s) ~ Pr ( 8) on the 
interval, and 

itr Pr(s) ds ~ Pr(8) itr ds = (1r- 8)Pr(8) -t O as r / 1. 

This sort of properties of a collection of functions should be familiar to the 
reader. They actually amount to the fact that Pr is a positive summation 
kernel of the kind studied in Sec. 2.4. The only difference is the fact that 
the present kernel is "numbered" by a variable r that tends to 1, instead 
of using an integer N tending to infinity. Theorem 2.1 can be used, and we 
get the result that we have constructed a solution of the Dirichlet problem 
with boundary values g(B) in the sense that 

Iim u(r, O) = g(B) 
r/'1 

at all points O where g is continuous. 
In addition, the solution is actually unique. This can be proved using 

a technique similar to that employed at the end of Sec. 4.2. First one 
proves that the problem with boundary values identically zero has only the 
solution identically zero, and then this is applied to the difference of two 
solutions corresponding to the same boundary values. 

Remark. We have here touched upon another method of summing series that 
may not be convergent. It is called POISSON or ABEL summation. For a numerical 
series E:'=o an it consists in forming the function 

00 

f(r) = Lanrn, O<r<l. 
n=O 
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If this function exists in the interval indicated, and if it has a limit as r /' 1, then 
this limit is called the Poisson or Abel sum of the series. It can be proved that this 
method sums a convergent series to its ordinary sum. It is also a quite powerful 
method: it is stronger than Cesaro summation in the sense that every Cesaro 
summable series is also Abel summable; and there exist series summable by Abel 
that are not summable by Cesaro, not even after any number of iterations. D 

Example 6.6. Find a solution of the Dirichlet problem in the disk having 
boundary values u(1, O) = cos40- 1. Express the solution in rectangular 
coordinates! 

Solution. It is immediately seen that in polar coordinates the solution must 
be 

u(r,O) = -1 + r4 cos40. 

We rewrite the cosine to introduce cos and sin of the single value O: 

u = -1 + r 4 (cos2 20- sin2 20) 

= -1 + r 4 ((cos2 O- sin2 0)2 - (2sin0cos0)2 ) 

= -1 + r 4 (cos4 O- 2cos2 Osin2 O+ sin4 O- 4sin2 Ocos2 O) 
= -1 + x4 - 6x2y2 + y4. 

Exercises 

o 

6.12 Find a solution of the Dirichlet problem in the unit disk such that u( ei6 ) = 
2 + cos39 + sin49. 

6.13 Find a solution of the same problem such that u(x, y) = x4 + y4 for 
x2 + y2 = 1. 

6.14 Solve the Dirichlet problem with boundary values u(l, 9) = sin3 9. 

6.15 Perform the details of the proof of the uniqueness of the solution of Dirich­
let's problem. 

6.4 Sturm-Liouville problems 

In our solutions of the problems in the preceding sections, a central role was 
played by a boundary value problem for an ordinary differential equation 
containing a parameter >.. This problem proved to have nontrivial solu­
tions for certain values of >., but these values had the character of being 
"exceptional". The situation seems loosely similar to a kind of problem that 
the reader should have been faced with in a seemingly completely different 
context, namely linear algebra: eigenvalue problems for an operator or a 
matrix. We shall see that this similarity is really not loose at all! 
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We start with a few definitions. Let V bea space with an inner product 
( ·, ·). A linear mapping A, defined in some subspace V A of V and having its 
values in V, is called an operator on V. Notice that this definition is slightly 
different from the one that is common in the case of finite-dimensional 
spaces: we do not demand that the domain of definition of the operator be 

the entire space V. We write V 2 V A ~ V or A : V A -t V. The image 
of a vector u E V A is written A( u) or, mostly, simply Au. 

Definition 6.1 An operator A: VA -t V is said to be symmetric, if 

(Au, v) = (u, Av) for all u, vE V A· 

Example 6. 7. Let V= L2 (T), V A= VnC2 (T) and let A be the operator 
-D2 , so that Au= -u". Since u E C2 (T), the image Au is a continuous 
function and thus belongs toV. We have 

(Au, v) =-L u"(x) v(x) dx =- [u'(x) v(x)]:11' + L u'(x) v'(x) dx 

= [u(x) v'(x)]:11'- L u(x) v"(x) dx = (u, Av). 

The integrated parts are zero, because all the functions are periodic and 
thus have the same values at -1!' and 1!'. O 

Definition 6.2 An operator A : V A -t V is said to have an eigenvalue A, 
if there exists a vector u E V A such that u =1- O and Au = AU. Such a vector 
u is called an eigenvector, more precisely, an eigenvector belonging to the 
eigenvalue A. The set of eigenvectors belonging to a particular eigenvalue 
A (together with the zero vector) make up the eigenspace belonging ta A. 

Example 6.8. We return to the situation in Example 6.7. If u(x) = 
a cos nx+bsin nx, where a and bare arbitrary constants and nisan integer 
2: O, then clearly Au= n 2u. In this situation we have thus the eigenvalues 
A = O, 1, 4, 9, .... For A =O, the eigenspace has dimension 1 (it consists of 
the constant functions), for the other eigenvalues the dimension is 2. (The 
fact that this is the complete story of the eigenvalues of this operator was 
shown in Sec. 6.3, "Method 2.") O 

For symmetric operators on a finite-dimensional space there is a spectral 
theorem, which is a simple adjustment to the case of complex scalars of the 
theorem from real linear algebra: If A is a symmetric operator defined on all 
of C n (for example), then there is an orthogonal hasis for C n, consisting 
of eigenvectors for A. The proof of this can be performed as a replica of 
the corresponding proof for the real case (if anything, the complex case is 
rather easier to do than a purely "real" proof). In infinite dimensions things 
are more complicated, but in many cases similar results do hold there as 
well. 

First we give a couple of simple results that do not depend on dimension. 
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Lemma 6.1 A symmetric operator has only real eigenvalues, and eigen­
vectors corresponding to different eigenvalues are orthogonal. 

Proof. Suppose that Au = .Xu and Av = ţ.LV, where u =F O and v =F O. Then 
we can write 

.X(u, v) = (.Xu, v) = (Au, v) = (u, Av) = (u, ţ.w) = Ji(u, v). (6.15) 

First, choose v = u, so that also J.L = .X, and we have that .XIIull 2 = "Xilull 2 . 

Because of u =F O we conclude that .X = "X, and thus .X is real. It follows 
that all eigenvalues must be real. But then we can return to (6.15) with the 
information that J.L is also real, and thus (.X-J.L)(u,v) =O. Ifnow A-J.L =F O, 
then we must have that (u, v) =O, which proves the second assertion. O 

Regrettably, it is not easy to prove in general that there are "sufficiently 
many" eigenvectors (to make it possible to construct a "hasis," as in finite 
dimensions). We shall here mention something about one situation where 
this does hold, the study of which was initiated by STURM and LIOUVILLE 
during the nineteenth century. As special cases of this situation we shall 
recognize some of the boundary value problems studied in this text, starting 
in Sec. 1.4. 

We settle on a compact interval I =[a, b]. Let pE C1(J) bea real-valued 
function such that p(a) =F O =F p(b); let q E C(J) be another real-valued 
function; and let w E C(J) be a positive function on the same interval 
(i.e., w(x) > O for x E J). We are going to study the ordinary differential 
equation 

(E) (pu')' + qu + .Xwu = O ~ 

d ( du) dx p(x) dx + q(x) u(x) + .Xw(x)u(x) =O, X E J. 

Here, .X is a parameter and u the "unknown" function. Furthermore, we 
shall consider boundary conditions, initially of the form 

Here, Aj and Bi are real constants such that (Ao, A1) =F (0, O) =F (B0 , Bt). 

Remark. If we take p(x) = w(x) = 1, q(x) =O, Ao = Bo = 1 and A1 = B1 =O, 
we recover the problem studied in Sec. 1.4. O 

The problem (E)+(B) is called a regular Sturm-Liouville problem. We 
introduce the space L2 (J, w), where w is the function occurring in (E). This 
means that we have an inner product 

(u, v) = 1 u(x) v(x) w(x) dx. 

In particular, all functions u E C ( I) will belong to L2 ( I, w), sin ce the 
interval is compact. 
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We define an operator A by the formula 

1 
Au= --((pu')' + qu), 

w 
'DA= {u E C2(I): Au E L2 (I,w) and u satisfies (B)}. 

Then, (E) can be written simply as Au = >.u. The problem of finding non­
trivial solutions of the problem (E)+(B) has been rephrased as the problem 
of finding eigenvectors of the operator A. (The fact that V A is a linear space 
is a consequence of the homogeneity of the boundary conditions.) 

The symmetry of A can be shown as a slightly more complicated parallel 
of Example 6. 7 above. On the one hand, 

b b 

(Au, v) =- j ~((pu')' + qu) vwdx =- j ((pu')' + qu)vdx 

a a 

b b b 

= - j (pu')'v dx - j q u v dx = - [P u' v]: + j (p u' v' - q u v) dx. 

a a a 

On the other hand (using the fact that p, q and w are real-valued), 

b b b 

(u,Av)= j u· (-~)((pv')'+qv)wdx=- j u(pv')'dx- j uqvdx 

a a a 
b 

= - [ u p v']: + J ( u' p v' - u q v) dx. 

a 

We see that 

[ l x-b 
b u(x) u'(x) -

(Au,v)- (u,Av) = [puv'- pu'v] = p(x) __ _ 
a v(x) v'(x) x=a 

But the determinant in this expression, for x = a, must be zero: indeed, we 
assume that both u and v satisfy the boundary condition (B) ata, which 
means that 

{ 
Aou(a) + A1u'(a) =O, 

Aov(a) + A1v'(a) =O. 

This can be considered to be a homogeneous linear system of equations 
with (the real numbers) Ao and A1 as unknowns, and it has a nontrivial 
solution (since we assume that (Ao,Al) -:f. (0,0)). Thus the determinant is 
zero. In the same way it follows that the determinant is zero at x = b. We 
conclude then that 

(Au, v) = (u, Av), 
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so that A is symmetric. 
In this case, the symmetry is achieved by the fact that a certain substi­

tution of values results in zero at each end of the interval. Clearly, this is 
not necessary. An operator can be symmetric for other reasons, too. We 
shall not delve deeper into this in this text, but refer the reader to texts 
on ordinary differential equations. 

For the case we have sketched above, the following result holds. 

Theorem 6.1 (Sturm-Liouville's theorem) The operator A, belong­
ing to the problem (E)+(B), has infinitely many eigenvalues, which can 
be arranged in an increasing sequence: 

The eigenspace of each eigenvalue has dimension 1, and if 'Pn is an eigen­
vector corresponding to An, then { 'Pn}~=l is a complete orthogonal system 
in L2 (I,w). 

This can be rewritten to refer directly to the differential equation prob­
lem: 

Theorem 6.2 The problem (E)+(B) has solutions for an infinite num­
ber of values of the parameter A, which can be arranged in an increasing 
sequence: 

A1 < A2 < A3 < · · · , where An -+ oo as n -+ oo. 

For each of these values of A, the solutions make up a one-dimensional 
space, and if 'Pn is a non-zero solution corresponding to An, the set { 'Pn}~=l 
is a complete orthogonal system in L2 (I, w). 

Proofs can be found in texts on ordinary differential equations. 
It is of considerable interest that one gets a complete orthogonal system. 

We already know this to be true in a couple of special cases. First we have 
the problem 

u"(x) + Au(x) =O, O< x < 7!'; u(O) = u(1t') =O, (6.16) 

that we first met already in Sec. 1.4; here the eigenfunctions are 'Pn(x) = 
sin nx, and according to Sec. 5.4 these are complete in L 2 (0, 7!') (with weight 
function 1). Secondly, we have seen this problem, treated in Example 6.1 
of Sec. 6.2: 

u"(x) + Au(x) =O, O< x < 7!'; u'(O) = u1(7l') =O. (6.17) 

There we found the eigenfunctions c.po ( x) = ~ and 'Pn ( x) = cos nx, and we 
have seen that they are also complete in L 2 (0, 7!'). 
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In the exercises, the reader is invited to investigate a few more problems 
that fall within the conditions of Theorem 6.2. 

If the assumptions are changed, the results may deviate from those of 
Theorem 6.2. We have already seen this in Examples 6. 7 and 6.8 of the 
present section. There, we studied the operator -D2 on T, which corre­
sponds to the problem 

u"(x) + >.u(x) =O, -n:::; x:::; n; u(-n) = u(n), u'(-n) = u'(n). 

The boundary conditions are of a different character from (B): they mean 
that u and u' have periodic extensions with period 2n (so that they can 
truly be considered to be functions on the unit circle T). They are also 
commonly called periodic boundary conditions. (In contrast, the conditions 
considered in (B) are said to be separated: the values at a and b have no 
connection with each other.) In this case the eigenspaces ( except for o ne) 
have dimension 2. If we choose orthogonal bases in each of the eigenspaces 
and pool all these together, the result is again a complete system in the 
relevant space, which is L2 (T). 

Yet another few examples are given in the next section. In one of these 
cases it happens that the function p goes to zero at the ends of the compact 
interval; in others the interval is no longer compact. It can be finite, but 
open, and o ne or more of the functions p, q, and w may ha ve singularities at 
the ends; the interval may also be a half-axis or even the entire real line. AU 
these situations give rise to what are known as singular Sturm-Liouville 
problems, and they sometimes occur when treating classical situations for 
partial differential equations. 

Exercises 

6.16 Determine a complete orthogonal system in L 2 (0, 7r) consisting of solutions 
of the problem 

u"(x)+Au(x)=O, 0<x<1l'; u(O) = u1 ~1l') =O. 

6.17 The same problem, but with boundary conditions 

u(O) = u(7r) +u'(7r) =O. 

6.18 Show that the problem 

dd(~ddu)+~u(x)=O, -1<x<1 
X X 1- x 2 

has the eigenvalues A = n2 (n = O, 1, 2, ... ) and eigenfunctions Tn(x) = 
cos(narccosx) for A= n2 • (You are not expected to prove that these are 
all the eigenvalues and eigenfunctions of the problem.) 



6.5 Some singular Sturm-Liouville problems 159 

6.5 Some singular Sturm-Liouville problems 

Some celebrated problems in classical physics lead up to problems for or­
dinary differential equations that are similar to the problems considered 
in the preceding section. We review some of these problems here, partly 
because of their historical interest, but also because they have solutions 
that are polynomials that we met in Sec. 5.5-6. 

The Legendre polynomials are solutions of the following singular Sturm­
Liouville problem. Let I = [-1, 1] and study the problem 

d 
dx((1-x2 )u'(x))+..\u(x)=O, -1<x<1, 

with no boundary conditions at all ( except that u( x) should be defined 
in the closed interval). Here we can identify p(x) = 1- x2 , q(x) =O and 
w(x) = 1. Since p(x) =O at both ends of the interval, the corresponding 
operator A will be symmetric if o ne takes V A = { u E C 2 ( I) : Au E L2 ( 1)} 
( the reader should check this, which is not difficult). It can be proved that 
this problem has eigenvalues ..\ = n(n + 1), n = O, 1, 2, ... , and that the 
eigenfunctions are actually (multiples of) the Legendre polynomials. 

Remark. The origin of this problem is the three-dimensional Laplace equation 
in spherical coordinates (r, (}, 4>), defined implicitly by 

{ 
x = rsin4Jcos (} 
y = rsin4Jsin(J 
z = rcos4J 

r:::: O, 
o:::; 4>:::; 71', 

-71' < (}:::; 71'. 

In these coordinates, the equation takes the form 

This can also be written as 

r(ru) + ~ (sin4J uci>) + + U99 =O. 
rr sm'l' </> sm 4> 

(6.18) 

A function f(x, y, z) is said to be homogeneous of degree n, if j(tx, ty, tz) = 
tn f(x, y, z) fort > O. This means that f is completely determined by its values 
on, say, the unit sphere, so that it can be written f(x,y,z) = rng(4J,(J) for a 
certain function g. We now look for solutions Un of (6.18) that are homogeneous 
of degree n; these solutions are called spherical harmonics. Write 

where Sn is called a spherical surface harmonic. Substitution into (6.18) and 
subsequent division by rn gives 
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Now we specialize once more and restrict ourselves to solutions Sn that are in­
dependent of B; denote them by Zn ( </J). The equation reduces to 

( ) 1 d ( . dZn) 
n + 1 nZn + sin </J d</J sm </J d</J = O. (6.19) 

Finally, we put x = cos</J and Pn(x) = Zn(</J). The reader is asked (in Exer­
cise 6.19) to check that the equation ends up as 

(1- x2 )P"(x)- 2xP'(x) + n(n + 1)Pn(x) =O. (6.20) 

This is the Legendre equation. D 

The Laguerre polynomials are solutions of the following singular Sturm­
Liouville problem. Take I = [0, oo[, p(x) = x e-x, q(x) =O and w(x) = e-x. 
The differential equation is 

d 
dx(xe-xu'(x))+Ae-xu(x)=O <::::::=> 

xu"(x) + (1- x)u'(x) + Au(x) =O, x;::: O, 

and the "boundary conditions" are that u(O) shall exist (of course) and 
that u(x)jxm shall tend to O as x ~ oo for some number m. (The latter 
condition can be phrased thus: u(x) is majorized by some power of x, as 
x ~ oo, or u(x) "increases at most like a polynomial" .) The eigenvalues of 
this problem are A= n =O, 1, 2, ... , and the Laguerre polynomials Ln are 
eigenfunctions. 

The Hermite polynomials come from the following singular Sturm-Liou­
ville problem. On I = R one studies the equation 

d 2 2 

dx (e-x u'(x)) + Ae-x u(x) =O 

with the "boundary condition" that the solutions are to satisfy u(x)jxm ~ 
O as lxl ~ oo for some m > O. Eigenvalues are the numbE;Jrs A = 2n, 
n = O, 1, 2, ... and the Hermite polynomials Hn are eigenfunctions. 

Exercise 

6.19 Check that the change of variable x = cos </J does transform the equation 
(6.19) into (6.20). 

Summary of Chapter 6 

The Method of Separation of Variables 
Given a linear partial differential equation of order 2, with independent vari­
ables (x, y) and unknown function u(x, y), together with boundary and/or 
initial conditions 
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1. If necessary (and possible), homogenize the equation and as many as 
possible of the other conditions. 

2. Look for solutions of the homogeneous sub-problem having the par­
ticular form u(x, y) = X(x)Y(y). This normally leads to a Sturm­
Liouville problem, and the result should be a sequence of solutions 
Un= Un(x, y) = Xn(x)Yn(y), n = 1, 2, 3, .... 

3. The homogeneous problem has the "general" solution u = 2:= CnUn, 
where the Cn are constants. 

4. Adapt the constants Cn to make the solutions satisfy also the non­
homogeneous conditions. 

5. If you began by homogenizing the problem, don't forget to re-adapt 
the solution to suit the original problem. 

Definit ion 
Assume p, q real, w > O on an interval I = [a, b]. Then the following is a 
regular Sturm-Liouville problem on I: 

{ (pu')' + qu + AWU = O 
Aou(a) + A1u'(a) =O, Bou(b) + B1u'(b) =O 

With the Sturm-Liouville problem we associate the operator A, defined for 
functions u that satisfy the boundary conditions by the formula 

Au=-~ ((pu')' + qu). 
w 

Theorem 
(The Sturm-Liouville theorem) The operator A, belonging to the Sturm­
Liouville problem, has infinitely many eigenvalues, which can be arranged 
in an increasing sequence: 

Al < A2 < A3 < · · · , where An --+ oo as n --+ oo. 

The eigenspace of each eigenvalue has dimension 1, and if 'Pn is an eigen­
vector corresponding to An, then { 'f!n}~=l is a complete orthogonal system 
in L2(I,w). 

Formulae for orthogonal polynomials are found on page 254 f. 

Historical notes 

JACQUES CHARLES FRANQOIS STURM (1803-55) and JOSEPH LIOUVILLE (1809-
82) both worked in Paris. Sturm was chiefly concerned with differential equations; 
Liouville also did remarkable work in the field of analytic functions and the theory 
of numbers. 



162 6. Separation of variables 

Problems for Chapter 6 

6.20 Using separation of variables, solve the problem Ut = u.,.,, O < x < 1, t > O; 
u(O, t) = 1, u(1, t) = 3, u(x, O) = 2x + 1 -sin 21rx. 

{ 
Uxx = Utt + 2ut, O < X < 1r, t > O; 

6.21 Find a solution ofthe problem u(O, t) = u(1r, t) =O, t >O; 

u(x, O) =O, Ut(x, O) = sin3 x, O < x < 1r. 

6.22 Find a solution of the differential equation Uxx = Ut + u, O < x < 1r, t > O, 
that satisfies the boundary conditions u(O, t) = u(1r, t) = O, t > O, and 
u(x,O) = x(1r- x), O< x < 1r. 

6.23 Find a function u(x, t) such that 

{ 
Ut = 4u.,.,, O< x < 4, t >O; 

u(O, t) = 10, u(4, t) = 50, t >O; 

u(x, O) = 30, O < x < 4. 

6.24 Find a solution of the following problem: 

{ 

Uxx = Utt, O< X< 1r, t >O; 

u(O, t) = u(1r, t) =O, t >O; 

u(x,O) = x(1r- x), O< x < 1r; 

Ut(x,O) = sin2x, O< x < 1r. 

6.25 Determine a solution of the boundary value problem 

{ 
Uxx + Uyy = X, 0 < X < 1, 0 < y < 1; 

u(x, O) = u(x, 1) =O, O < x < 1; 

u(O,y) = u(1,y) =O, O< y < 1. 

6.26 Find a solution in the form of a series to the Dirichlet problem 

{ 
Uxx + Uyy = O, 

u(x,y) = lxl, 
x2 + y2 < 1; 

x2 + y2 = 1. 

6.27 Solve the following problem for the two-dimensional Laplace equation 

{ 
Uxx + Uyy = 0, 0 <X< 1r, 0 < y < 1r; 

u.,(O,y) = u.,(1r,y) =O, O< y < 1r; 

u(x, O) = sin2 x, u(x, 1r) =O, O < x < 1r. 

6.28 Find a function u(x, t) such that 

Ut = Uxx + COSX, O< X< 1r, t >O; 

u.,(O, t) = u.,(1r, t) =O, t >O; u(x, O) = cos2 x + 2 cos4 x, O< x < 1r. 



Problems for Chapter 6 163 

6.29 Solve the following problem for a modified wave equation: 

Uxx = Utt + 2ut, O < X < 11", t > O; 

u(O, t) = u(1r, t) =O, t >O, 

u(x, O) =sin x +sin 3x, Ut(x, O) =O, O < x < 1r. 

6.30 Find u = u(x, t) that satisfies the equation u.,., = Ut +tu, O < x < 1r, 

t > O, with boundary conditions u(O, t) = u(1r, t) =O fort> O and initial 
condition u(x,O) = sin2x, O< x < 1r. 

6.31 Find a bounded solution of the problem for a vibrating beam: 

{ 
Utt + Uxxxx = O, O < X < 7r, t > O; 

u(O, t) = u(1r, t) = u.,.,(O, t) = u.,.,(1r, t) =O, t >O; 

u(x, O)= x(1r- x), Ut(x, O) =O, O< x < 1r. 

6.32 A (very much) simplified model of a nuclear reactor is given by the problem 

{ 
Ut = Au.,., + Bu, O < x < l, t > O; 

u(O, t) = u(l, t) = O, t > O. 

Here, u is the concentration of neutrons, while A and B are positive con­
stants. The term Au.,., describes the scattering of neutrons by diffusion, 
and the term Bu the creation of neutrons through fission. Prove that there 
is a critical value L of the length l such that if l > L, then there exist 
unbounded solutions; whereas if l < L, theii all solutions are bounded. 

6.33 In order to get good tone quality from a piano, it is desirable to have 
vibrations rich in overtoiles. An exception is the seventh partial, which 
results in musical dissonance, and should thus be kept low. Under certain 
idealizations the vibrations of a piano string are described by 

{ 

Utt = u.,.,, o < X < 11", t > O; 

u(O, t) = u(1r, t) =O, t >O; 

( O) _ 0 ( O) _ { 1/h, for a < x < a+ h, 
U X, - , Ut X, -

O otherwise. 

Here a describes the point of impact of the hammer; and h, the width of 
the hammer, is a small number. 
(a) In the form of a series, compute the limit of u(x, t) as h "')!O. 
(b) Where should the point a be located so as to eliminate the seventh 
partial tone? There are a number of possible answers. Which would you 
choose? Explain why! 



7 
Fourier transforms 

7.1 Introduction 

Suppose that f is piecewise continuous on [-P, P] ( and periodic with period 
2P). For the "complex" Fourier series of f we ha ve 

00 

f(t)"'" L Cnexp (in; t), (7.1) 
n=-oo 

where 
Cn = 2~ /_: f(t) exp (-in; t) dt. (7.2) 

One might say that f is represented by a (formal) sum of oscillations with 
frequencies mr / P and complex amplitudes Cn. 

Now imagine that P-+ oo, and we want to find a corresponding represen­
tation offunctions defined on the whole real axis (without being periodic). 
We define, provisionally, 

Î(P,w) = {P f(t)e-iwtdt, w E R, }_p (7.3) 

1 ~ 
so that Cn = 2p f(P,mr/P). The formula (7.1) is translated into 

n7r 
Wn=p· 

(7.4) 
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Because of ~wn = Wn+l - Wn = ; , this last sum looks rather like a 

Riemann sum. Now we let P--+ oo in (7.3) and define 

Î(w) = Iim Î(P,w) = 100 
f(t) e-iwt dt, w E R (7.5) P-+oo _00 

(at this point we disregard all details concerning convergence). If (7.4) had 
contained Î(wn) instead of Î(P, wn), the limiting process P --+ oo would 
have resulted in 

f(t)"' _!_ 1oo Î(w) eiwt dw. 
2tr _00 

(7.6) 

The formula couple (7.5) + (7.6) actually will prove tobe the desired coun­
terpart of Fourier series for functions defined on all of R. Our strategy will 
be the followi~g. Placing suitable conditions on J, we let (7.5) define a 
new function f, called the Fourier transform of f. We then investigate the 
properties of f and show that the formula (7.6) with a suitable interpreta­
tion ( and under certain additional conditions on !) constitutes a means of 
recovering f from f 

Loosely speaking this means that while a function defined on a finite 
interval ( such as (-P, P)) can be constructed as a sum of harmonic os­
cillations with discrete frequencies {wn = ntr/P: nE Z}, a function on 
the infinite interval J - oo, oo[ demands a continuous frequency spectrum 
{ w : w E R}, and the sum is replaced by an integml. 

7.2 Definition of the Fourier transform 

Assume that f is a function on R, such that the (improper) integral 

I: lf(t)l dt = L lf(t)l dt (7.7) 

is convergent; using the notation introduced in Chapter 5, this is the same 
as saying that f E L1(R). In practice we shall only encounter functions 
that are piecewise continuous, i.e., they are continuous apart from possibly 
a finite number of finite jumps in every finite sub-interval of R. For such 
an J, the following integral converges absolutely, and for every real w its 
value is some complex number: 

Î(w) = L f(t)e-iwt dt. (7.8) 

Definition 7.1 The function Î, defined by (7.8), is called the Fourier 
transform or Fourier integral of f. 
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Common notations, besides Î, are F[f] and F ("capital letter = the 
transform of lower-case letter"). In this connection, it is useful to work on 
two distinct real axes: one where f is defined, and the variable is called 
such things as t, x, y; and one where the transforms live and the variable is 
w, ~'.X, etc. We denote the former axis by R and the latter by R. 
Example 7.1. If f(t) = e-ltl, tE R, then f E L1(R), and 

Î(w) = r e-ltle-iwt dt = rXJ e-(l+iw)t dt + 1° e(1-iw)t dt 
JR k -oo 

1 1 2 
= 1 + iw + 1 - iw = 1 + w2 ' 

which can be summarized in the formula 

F[e-ltl](w) = _2_. 
1 +w2 

o 

Example 7.2. Let f(t) = 1 for Iti < 1, = O for Iti > 1 (i.e., f(t) = 
H(t+ 1)- H(t-1), where H is the Heaviside function as in Sec. 2.6). Then 
clearly f E L1(R), and 

Î(w) = 11 e-iwt dt = [-e--~w-t] 1 = ~. _ei_w_-_e-_i_w = 2sinw 
-1 -zw _1 w 2i w 

For w =O one has e-iwt = 1, so that Î(O) = 2 = lim Î(w). 
w--tO 

w#O. 

o 

The fact noticed at the end of the last example is not accidental. It is a 
case of (b) in the following theorem. 

Theorem 7.1 If f E L 1 (R), the following holds for the Fourier transform 

Î: 
(a) Î is bounded; more precisely, IÎ(w)l :::; L lf(t)l dt. 

(b) Î is continuous on R. 
(c) Iim Î(w) =O. 

w--t±oo 

Proof. (a) follows immediately from the estimate III cp(t) dtl :::; II lcp(t)l dt, 
which holds for any interval I and any Riemann-integrable function <p (even 
if it is complex-valued). 

(b) is more complicated, and we leave the proof as an exercise (see Ex­
ercise 7.3). 

(c) is a case of the Riemann-Lebesgue Lemma (Theorem 2.2, page 25). 
o 

When dealing with Fourier series on the interval ( -Jr, 1r), we have made 
use of special formulae in the case when the functions happen to be even or 
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odd. Something similar can be done for Fourier transforms. For example, 
if f is even, so that f( -t) = f(t), we have 

~ 1 17r 100 f(w) = -2 f(t)(coswt- i sinwt) dt = 2 f(t) coswt dt, 
7r -7r o 

(7.9) 

from which is seen that Î is real if f is real, and that Î is even (because 
cos( -wt) = coswt). Similarly, for an odd function g, g( -t) -g(t), it 
holds that 

g(w) = -2i 100 
g(t) sinwtdt; (7.10) 

if g is real, then g is purely imaginary, and furthermore g is odd. 
Integrals such as those in (7.9) and (7.10) are sometimes called cosine 

and sine transforms. 

Exercises 

7.1 Compute the Fourier transforms of the following functions, if they exist: 
(a) f(t) = t if Iti < 1, =O otherwise. 
(b) f(t) = 1 -Iti if Iti < 1, =O otherwise. 
(c) f(t) =sint. 
(d) f(t) = 1/(t- i). 
(e) f(t) = (sint)(H(t + 1r)- H(t -1r)) (H is the Heaviside function). 
(f) f(t) = (cos1rt)(H(t + ~)- H(t- ~)). 

7.2 Find the Fourier transforms of f(t) = e-t H(t) and g(t) = et(1- H(t)). 

7.3 A proof of the assertion (b) in Theorem 7.1 can be accomplished along the 
following lines: 

(i) Prove that IÎ(w + h)- Î(w)l ~ 2 JR lf(t)llsin0ht) 1 dt. 
(ii) Approximate f by a function g which is zero outside some bounded 
interval, as in the last step of the proof of Theorem 2.2, and use that 
1 sint 1 ~ Iti. The proof even gives the result that fis uniformly continuous 
onR. 

7.3 Properties 

In this section we mention some properties of Fourier transforms that are 
useful when applying them to, say, differential equations. 

Theorem 7.2 The mapping F : f r-+ Î is a linear map from the space 
L1(R) to the space C0 (R) of those continuous functions defined on R that 
tend to O at ±oo. 

Proof. The fact that Î E Co(R) is the content of (b) and (c) in Theorem 7.1. 
The linearity of F means just that 

F[f + g] = F[f] + F[g], F[.Xf] = .XF[f] 
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when f,g E L1(R) and .A is a scalar (i.e., a complex number). This is an 
immediate consequence of the definition. D 

Theorem 7.3 Suppose that f E L1(R) and let a be a real number. Then 
the tmnslated function fa(t) = f(t-a) and the function eiat f(t) also belong 
to L1(R), and 

Îa(w) = F[f(t- a)](w) = e-iaw Î(w), 

F[eiat f(t)](w) = Î(w- a). 

(7.11) 

(7.12) 

Proof. For the first formula, start with Îa(w) = fa f(t- a) e-iwt dt. The 
change ofvariable t-a= y gives the result. The proof ofthe second formula 
is maybe even simpler. D 

These results are often called the delay rule and the damping rule for 
Fourier transforms. Notice the pleasant mathematical symmetry of the for­
mulae. A similar symmetry holds for the next set of formulae. 

Theorem 7.4 Suppose that f is differentiable and that both f and f' be­
long to L1(R). Then 

(Dj)(w) = f(w) = F[f'](w) = iwÎ(w). (7.13) 

lf both f(t) and tf(t) belong to L1(R), then J is differentiable, and 

F[tf(t)](w) = iÎ'(w) = iDÎ(w). (7.14) 

The proof of (7,13) relies, in principle, on integration by parts: 

Î'(w) = I: f'(t)e-iwt dt = [f(t)e-iwt]:'oo-I: f(t)(-iw)e-iwt dt, 

and one has to prove that the integrated part is zero. We omit the details, 
which are somewhat technical; even though f E L1(R), it does not neces­
sarily have to tend to zero in a simple way as the variable tends to ±oo. 
The second formula can be proved using some theorem on differentiation 
under the integral sign. Indeed, if this operation is permissible, we will have 

iDÎ(w) =i d~ (L f(t)e-iwt dt) =iL! (f(t)e-iwt) dt 

=iL f(t)( -it)e-iwt dt = L tf(t)e-iwt dt. 

We shall immediately use Theorem 7.4 to find the Fourier transform of 
the function f(t) = e-t2

/ 2 • 

Differentiating, we get f'(t) = -te-t2
/ 2 , and we see that 

f'(t) + tf(t) =o. 
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It is easy to see that the assumptions for Theorem 7.4, both formulae, are 
fulfilled. Transformation gives iwÎ(w) + iÎ'(w) =O or, after division by i, 

Î'(w) + wÎ(w) =O. 

Thus, Î satisfies the same differential equation as f. The general solution of 
this equation is easily determined, for instance, using an integrating factor: 
y' +ty =O gives y = Ce-t2 12 , C = y(O). Thus, Î(w) = Ce-w212 , where 

C = Î(O) = L f(t)e-iOt dt = L e-t2 12 dt = ~-

Summarizing, we have found that 

Theorem 7.4 implies that Fourier transformation converts differentiation 
into an algebraic operation. This hints at the possibility of using Fourier 
transformation for solving differential equations, in a way that is analogous 
to the use of the Laplace transform. The usefulness of this idea is, how­
ever (at our present standpoint), somewhat limited, because the Fourier 
integral has problems with its own convergence. For example, the common 
homogeneous ordinary linear differential equations with constant coeffi­
cients cannot be treated at all: all solutions of this sort of equation consist 
of linear combinations and products of functions of the types cos at, sin at, 
ebt, and polynomials in the variable t. The only function of these types that 
belongs to L1(R) is the function that is identically zero. 

There are, however, categories of problems that can be treated. Later in 
this chapter, we shall attack some problems for the heat equation and the 
Laplace equation with Fourier transforms. Also, the introduction of distri­
butions has widened the range of functions that have Fourier transforms. 
We shall have a glimpse of this in Sec. 7.11, and a fuller treatment is found 
in Chapter 8. 

Exercises 

7.4 Assume that a is a real number =J. O and that f E L1 (R). Let g(t) = f(at). 
Express g in terms of f. 

7.5 Find the Fourier transform of (a) f(t) = e-ltl cost, (b) g(t) = e-ltl sint. 

7.6 If fis defined as in Exercise 7.1 (b), page 168, then f'(t) =O for Iti > 1, 
f'(t) = 1 for -1 < t <O, f'(t) = -1 for O< t < 1. Compute F[f'] in two 
ways, on the one hand using Theorem 7.4 and on the other hand by direct 
computation. 
Remark. The fact that f'(t) fails to existat some points evidently does 
not destroy the validity of (7.13). But f must be continuous. 
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7.7 Find f(w) if f(t) = (a) te-t212, (b) e-<t2+2tl. 
Hint for (b): complete the square, combine formula (7.11), the example fol­
lowing Theorem 7.4 and Exercise 7.4. Another way of solving the problem 
is indicated in the remark below. 

~ 4 
7.8 Suppose that f(t) has Fourier transform f(w) = e-w . Determine the trans-

forms of f(2t), f(2t + 1), f(2t + 1) eit. 

7.9 Does there exist an f E L1(R) such that Î(w) = 1- cosw? 

7.10 Suppose that f has the Fourier transform j: Find the transforms of 
f(t) cos at and f(t) cos2 at (a real =F 0). 

Remark on Exercise 7.7: Problems such as 7.7 (b) and 7.8 can also be solved by 
writing out the Fourier integral, then rewriting it and changing variables so as to 
reshape the integral into a recognizable transform. For example, 

F[e-(t2+2t)J (w) = i e-(t2+2t+l)+l e-iwt dt =ei e-{t+1)2 e-iwt dt 

t = JL - 1 _ ....:.._ 1 -y2 /2 -iw(y/V'2-1) d { 
t + 1 = yj.;2,} 

.;2 -.;2Re e y 

dt = dy/V'i 

el+iw 1 -y2 /2 -iywfV2 d 
= .;2 Re e y. 

The last integral is the Fourier transform of e -t2 /2, computed at the point w / .;2, 

which means v'21fexp(-~ (~J) = v'21fe-w2/4 • The answer to the problem is 

thus 
2 el+iw 2 1 2 T[ -(t +2t)J ( ) ~2 -w /4 t= l+iw--4 w .r e w = -- · v ..G7r e = v 1r e . 

V2 

7.4 The inversion theorem 

We now formulate the result that constitutes our promised precise version 
of the formula (7.6) on page 166. 

Theorem 7.5 {lnversion theorem) Suppose that f E L1 (R), that f is 
continuous except for a finite number of finite jumps in any finite interval, 
and that f(t) = ~(f(t+) + f(t- )) for all t. Then 

1 lA~ . f(to) = lim - f(w) e~wto dw 
A-too 27!" -A 

(7.15) 

for every to where f has (generalized} left and right derivatives. In partic­
ular, if f is piecewise smooth (i. e., continuous and with a piecewise contin­
uous derivative), then the formula holds for all t 0 E R. 
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The result, and also the proof, is very similar to the convergence theorem 
for Fourier series. Just as for these series, the convergence properties depend 
essentially on the local behavior of f(t) for t near t0 . To accomplish the 
proof we need an auxiliary lemma. 

Lemma 7.1 

for A> O. 

It is easy to check, by the change of variable Au = t, that the integral is 
independent of A (if A> 0), so one can just as well assume that A= 1. The 
integral is not absolutely convergent, and J0

00 in this case stands for the 

limit of fox as X --+ oo. There is no quite simple way to compute it. One 
method is using the calculus ofresidues, and textbooks on complex analysis 
usually contain precisely this integral as an example of that technique. 

Another attempt could build on the idea that 1/u = J0
00 e-ux dx, which 

might be substituted into the integral: 

{
00 sin u { 00 

{
00 

(
00 

( (
00 

) Jo -----:;;-du= Jo Jo e-uxsinudxdu= Jo Jo e-uxsinudu dx 

2 

There is, however, a difficulty here: the double integral is not absolutely 
convergent (the integrand is too large when x is close to 0), which makes 
it hard to justify the change of order of integration. However, we will not 
delve deeper into this problem. 

Proof of Theorem 7.5. Put 

1 !A ~ ·t s(to, A) = - f(w) e' ow dw 
27r -A 

and rewrite this expression by inserting the definition of Î(w): 

s(to, A) = 2~ I: (l: f(t) e-iwt dt) eiwto dw 

= ~ Joo fA j(t) eiw(to-t) dw dt = ~ Joo j(t) [~iw(to-t)] w=A dt 
27r _ 00 -A 27r _ 00 z( to - t) w=-A 

= ~ Joo f(t) sinA(to- t) dt = ~ Joo f(to- u) sin Au du. 
7r _ 00 to - t 7r _ 00 u 

Switching the order of integration is permitted, because the improper dou­
ble integral is absolutely convergent over the strip (t, w) E R x [-A, A], and 



7.4 The inversion theorem 173 

in the last step we have put t0 - t = u. We are now in a situation very much 
the same as in the proof of the convergence of Fourier series; but there is a 
complication inasmuch as the interval of integration is unbounded. Using 
the lemma we can write 2100 sin Au 2100 sin Au - f(to -u) --du- f(to-) = - (f(to -u)- f(to-)) --du. 
7r o u 7r o u 

(7.16) 
Now let c: > O be given. Since we have assumed that f E L1(R), there 
exists a number X such that 

2100 
- lf(to- u)l du< c:. 
7r X 

Changing the variable, we find that 

[oo sinAu du= [oo sint dt--+ O as A--+ oo. 
lx u lAx t 

(7.17) 

The last integral in (7.16) can be split into three terms: 

21x f(to- u)- f(to-) . A d 2100 !( ) sin Aud - ·sm u u+- t0 -u -- u 
7r O U 7r X U 

2 100 sinAu -- f(to-) --du= h +12 -h 
7r X U 

The term 13 tends to zero as A--+ oo because of (7.17). The term 12 can 
be estimated: 

1
2100 sinAu 1 2100 1121 = - f(to- u) --du ~- lf(to- u)l du~ c:. 
7rx u 7rx 

In the term h we have the function u f--+ g(u) = (f(t0 - u)- f(t0 ))/(-u). 
This is continuous except for jumps in the interval (0, X), and it has the 
finite limit g(O+) = fHto) as u '\t O; this means that g is bounded and thus 
integrable on the interval. By the Riemann-Lebesgue lemma, we conclude 
that It --+ O as A --+ oo. All this together gives, since c: can be taken as 
small as we wish, 

2100 sinAu - f(to - u) --du --+ f(to-) as A--+ oo. 
7r o u 

A parallel argument implies that the corresponding integral over ( -oo, O) 
tends to f(to+ ). Taking the mean value of these two results, we have com­
pleted the proof of the theorem. O 

Remark. If fa IÎ{w)l dw is convergent, i.e., Î E L1 (R), then (7.15) can be written 
as the absolutely convergent integral 

f(to) = 2~ 1: f(w) eiwto dw, 
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but in general one has to make do with the symmetric limit in (7.15). D 

Exarnple 7.3. For f(t) = e-ltl we have Î(w) = ~. Since fis piece-
1+w 

wise smooth it follows that 

e-ltl = - Iim -- dw. 
1 lA eiwt 

7r A-4oo -A 1 + w2 

In this case Îhappens tobe absolutely integrable, and we can write simply 

11oo eiwt 
e-ltl = - --2 dw. 

7r _00 1 + W 

We can switch letters in this formula- t and w are exchanged for each other 
- and then we also change the sign of w, and we get (after multiplication 
by 1r) the formula 

7r e-lwl = r e-iwt dt. 
}R 1 + t2 

In this way we have found the Fourier transform of 1/(1 + t2), which is 
rather diflicult to reach by other methods: 

.r[1~t2] (w)=7re-lwl. 

o 

Exarnple 7.4. For the function f in Example 7.2 (page 167) we have 

!~( ) 2 sinw I hi h . . . l. b l l w = --. n t s case, t e mversmn mtegra 1s not a so ute y conver-
w 

gent. The theorem here says that 

A . { 1 as Iti < 1, 
l . 11 SlnW iwt dw- 1 - ±1 1m- --e - 2 ast- , 

A-4oo 7r -A W 1 1 Oast>l. 

o 

Exarnple 7.5. When using a table of Fourier transforms (such as on page 
252 f. of this book), one can make use of the evident symmetry properties 
of the transform itself and the inversion formula in order to transform 
functions that are found "on the wrong side of the table." We have actually 
seen an instance of this idea in Example 7.3 above. As a further example, 
suppose that a table contains an item like this: 

f(t) Î(w) 

-4iw 
(1 + w2)2 
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From this one can find the transform of the function 

by performing two steps: 

-4it 
g(t) = (1 + t2)2 

1. Switch sides in the table, switching variables at the same time: 

-4it 
(1 + t2)2 

2. Multiply the right-hand side by 2n and change the sign of the variable 
there: 

-4it 
(1 + t2)2 

- 2nwe-l-wl 

This is now a true entry in the table. It may be an aesthetic gain to divide 
it by -4i to get 

t 

D 

Example 7.6. When working with even or odd functions, the Fourier 
transform can be rewritten as a so-called cosine or sine integral, respectively 
(see p. 168). In these cases, the inversion formula can also be rewritten so 
as to contain a cosine or a sine, instead of a complex exponential. Indeed, 
if g is even, one gets the following couple of formulae: 

g(w) = 2100 g(t)coswtdt, 

and if h is odd, it looks like this: 

h(w) = -2i 100 
h(t)sinwtdt, 

1100 g(t) = - g(w) cos tw dw, 
1f o 

I ~ '100 h(t) =- h(w)sintwdw. 
1f o 

(The reader should check this.) In applied literature, o ne often meets these 
"cosine" and "sine" transforms with slightly modified definitions. D 

Remark. In the literature one can find many variations of the definition of the 
Fourier transform. We have chosen the conventions illustrated by the formula 
couple 

1 !00 ~ . t f(t) ~ 27r -oo f(w)etw dw. 
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Other common conventions are described by 

Î(w) = 2~ I: f(t)e-iwt dt, 

f(w) = ~ 100 
f(t)e-iwt dt, 

v211" -oo 

f(w) = I: f(t)e-2?riwt dt, 

f(t) "'1: f(w)eiwt dw, 

f(t)"' ~ 1oo Î(w)eiwt dw, 
y211" -oo 

f(t) "'I: f(w)e2?ritw dw. 

It also happens that the minus sign in the exponent is moved from one integral 
to the other. As soon as Fourier transformation is encountered in reallife, one 
must check what definition is actually being used. This is true also for tables and 
handbooks. D 

Exercises 

7.11 Find the Fourier transforms of the following functions: 

7.12 

7.13 

(a) t2 +~t+2' (b) t2 +6~+13' (c) (1+\2 ) 2 • 

F• d h V • & f 1 - COSt m t e rouner trans1orm o t 2 • 

Find a function f(x), defined for x >O, such that 

100 1 
f(y)cosxydy = -1 2 . 

o +x 

(Hint: extend f to an even function and take a look at Example 7.3.) 

7.14 Assume that fis differentiable and has the Fourier transform 

f(w) = 1+iw. 
1 +w6 

Compute j'(O). (Note that you do not have to find a formula for f(t).) 

7.15 Suppose that f E L1 (R) and that fhas a finite number of zeroes. Prove 
that there cannot exist a function g E L1 (R) and a number a such that 
g(t +a) - g(t) = f(t) for -oo < t < oo. 

7.16 A consequence of Theorem 7.5 is that if Î(w) = O for ali w, then it must 
hold that f(t) = O for ali t where f is continuous. Using this, formulate 
and prove a uniqueness theorem for Fourier transforms. 

7.5 The convolution theorem 

Let f and g be two functions belonging to L1(R). The convolution f * g of 
them is now defined to be the function defined on R by the formula 

(f * g)(t) = f * g(t) = l f(t- y) g(y) dy = l f(y) g(t- y) dy. 
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It can be proved, using deeper insights in the theory of integration, that 
this integral is actually convergent and that the new function also belongs 
to L1(R). We content ourselves here with accepting these facts as true. 
The act of forming f * g is also phrased as convolving f and g. 

Theorem 7.6 {Convolution theorem} 

F[f * g] = F[f] F[g]. 

Formally, the proof runs like this: 

F[f * g](w) = L e-iwt (L f(t- y) g(y) dy) dt 

= !! e-iw(t-y+y) f(t-y)g(y)dtdy 

R2 

= L e-iwy g(y) dy L e-iw(t-y) f(t- y) dt 

= L e-iwy g(y) dy L e-iwt f(t) dt = g(w) Î(w). 

The legitimacy of changing the order of integration is taken for granted. 

Example 7. 7. What function f has the Fourier transform 

~ 1 
f(w) = (1 + w2)2? 

Solution. We start from the formula 

g(w) = 1 : w2 if g(t) = e-ltl. 

By the convolution theorem we get 

2 4 ~ 
F[g*g](w) = (g(w)) = (1 +w2)2 =4f(w). 

Clearly, f = t(g * g), and we thus have to convolve g with itself. Fort> O 
we get 

4f(t) = g * g(t) = 1oc e-lt-yi e-IYI dy = 1° + t + foc 
-oc -oc Jo lt 

= 1o e-(t-y) eY dy + t e-(t-y) e-Y dy + foc et-y e-Y dy 
-oc Jo lt 

= e-t 1° e2Y dy + e-t t dt + et foc e-2Y dy = (1 + t) e-t. 
-oc h h 
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{Check the computations for yourself!) Since Î is an even function, f is 
also even, and so we must have 

f(t) = ~{1 + jtl)e-ltl. 

D 

Example 7.8. If f(t) = 1/{1 + t2 ), find f * f. 
Solution. Put g = f * f. Computing the convolution directly is toilsome. 
Instead, we make use of Theorem 7.6. Let us start from the fact that 
Î(w) = 1re-lwl (Example 7.3, p. 174), which means that 

r e-iwt dt = 71' e-lwl. 
jR 1 + t2 

(7.18) 

Theorem 7.6 gives g(w) = (Î(w)) 2 = 7r2e-12wl. In (7.18) we now exchange 
w for 2w, multiply by 1r and make the change of variable 2t = y: 

1 1!'e-it·2w 1 1re-iyw dy 1 21re-iwt 
g(w) = 1r2 e-21wl = · dt = - = dt. 

R 1 + t2 R ( y ) 2 2 R 4 + t2 
1+ -

2 

271' 
We find that g(t) = --2 . Thus, we have proved the formula 

4+t 

100 dy 271' 

_ 00 (1 + y2)(1 + (t- y)2 ) = 4 + t2 ' 
tE R. 

D 

Just as in Example 7.7, convolution can be employed to find inverse 
Fourier transforms. Other applications occur in the solution of certain par­
tial differential equations, whose solutions are given in the form of convo­
lution integrals; and convolutions occur frequently in probability theory. 

Example 7.9. Prove the formula 

11 sin{t- y) dy = 11 siny eiyt dy, tE R. (7.19) 
-1 t- y -1 y 

Solution. Let f(t) = H(t + 1) - H(t- 1), and g(t) = {sin t)jt. From the 
table of Fourier transforms we recognize that Î(w) = g(w)j1r, and by the 
inversion formula we have g(w) = !f(w). The right-hand member of {7.19) 
can be written like this: 

11 . 1 smy . . - etyt dy = f(y)g(y)etyt dy 
-1 Y R 

= k 2g(w) · 7r f(w) eiwt dw = 271' k g(w) Î(w) eiwt dw. 
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The last formula consists of the inversion formula for the function whose 
Fourier transform is 271" fg, and this function must be the convolution of f 
and g. But that convolution is just the left-hand member of (7.19). O 

Example 7.10. Because of the formal symmetry between the Fourier 
transformation and the inversion formula, one can expect that there exists 
a formula involvning the convolution of transforms. Indeed, if Î and g are 
sufficiently nice, to ensure that the necessary integrals converge, it is true 
that the Fourier transform of the product f g is the convolution of the 
transforms (modified by a factor of 1/(27r)): 

- 1 r ~ 1 ~ 
fg(w) = 271" Jii f(w- o:) g(o:) do:= 271" f * g(w). 

o 

Exercises 

7.17 Let fa be defined for a positive number a as the function 

1 a 
fa(t) = ;: a 2 + t 2 , tE R. 

Compute the convolution fa 1 * fa 2 • Generalize to more than two convolution 
factors. 

7.18 Find a solution of the integral equation 

7.19 Determine some f such that 1: f(t- y) e-y2
/ 2 dy = e-t214 • 

7.20 Find a function f such that J~ 1 f(t- y) dy = e-lt-ll - e-lt+ll, tE R. 

7.21 Compute the integral 

1"" sin[5(t- u)] sin(6u) d 
-oo u(t- u) u, t E R. 

7.22 Let f E L1 (R) be such that f' is continuous and f' E L1 (R). Find a 
function g E L1 (R) such that 

g(t) = [too eu-t g(u) du+ f' (t), tE R. 
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7.6 Plancherel's formula 

We shall now indicate an intuitive deduction of a formula that corresponds 
to the Parseval formula for Fourier series. If these series are written in the 
"complex" version, we have 

where Cn = - f(t) e-mt dt. 1 17r . 
27r -7r 

A simple change of variables yields the corresponding formula on the in­
terval ( -P, P): put 

1 jp 
Cn = 2P f(t) e-inrrt/P dt, 

-P 

and we will have 
00 1 jp L lcnl 2 = 2p lf(tW dt. 

n=-oo -P 

(7.20) 

Just as on page 165 we introduce the "truncated" Fourier transform 

Î(P, W) = jp f(t) e-iwt dt, 
-P 

1 ~ 
so that Cn = 2p f(P,mr/P), and (7.20) takes the form 

1 ~ 1 ~ n1r 12 1 jP 2 
4p2 ~ f(P, p) = 2p lf(t)l dt 

n=-oo -P 

or 

1P 1 oo 1 ~ nJr 12 7r 
- lf(t)l 2 dt = 27r L f(P, p) . p· 

P n=-oo 

In the same way as on page 165 we can consider the right-hand member to 
be almost a Riemann sum, and if we let P ---+ oo we ought to obtain 

/_: lf(tW dt = 2~ /_: IÎ(wW dw. (7.21) 

In fact, this formula is actually true as soon as one knows that one of 
the integrals is convergent - if so, the other one will automatically con­
verge as well. A correct and consistent theory of these matters cannot be 
achieved without having access to the integration theory of Lebesgue. The 
formula (7.21) is known as the PLANCHEREL formula (also sometimes as 
the Parseval formula). 
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Example 7.11. The Plancherel formula enables us to compute certain 
integrals. lf f(t) = 1 for Iti < 1 and =O otherwise, then (see Example 7.2 

~ 2sinw . 
p. 167) f(w) = --. Plancherel now g1ves 

w 

11 _ 2_ 100 4sin2 w 
1dt- 2 2 dw, 

-1 7r -oo W 

or, after rewriting, 

100 sin2 t 
-2- dt = 'Tr. 

-oo t 

This integral is not very easy to compute using other methods. O 

Just as in Chapter 5, we can denote by L2(R) the set of functions f 
defined on R such that the integral JR lf(t)l2 dt is convergent. lf f and g 
are both in L2 (R), it can be seen (just as in Sec. 5.3) that we can define 
an inner product by the integral 

(!, g) = L f(x) g(x) dx. 

Introducing the L 2 norm in the usual way, 11!11 = Jff7), Plancherel's 
formula can be written in the compact form 

There are a number of variants of the Plancherel formula. One is related 
to the formula for inner products in an ON hasis and looks like this: 

100 1 100 
-oo f(t) g(t) dt = 27r -oo f(w) g(w) dw. 

This can be obtained from the ordinary Plancherel formula using the iden­
tity 

(!, g) = ! (li!+ 911 2 + illf + igll 2 - 11!- 911 2 - illf- igll 2)' 

which is easily proved (it is Exercise 5.6 on page 110). 
The following formula is another variation. Let f E L1(R) and g E 

L1(:R). (Thus, g is defined on the "wrong" real line.) Then it holds that 

/_: f(t) g(t) dt = /_: Î(w) g(w) dw. 

This is easily proved by considering the double integral 

11 f(t) g(w) e-itw dtdw, 

RxR 

(7.22) 
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and computing this in two different ways. The computation is completely 
legitimate, because the double integral is easily seen to be absolutely con­
vergent. The resulting formula (7.22) plays a central role in Chapter 8. 

Example 7.12. As an application ofthe last formula, we give a new proof 
of the formula 

11 sin(t- y) d -11 siny iyt d y- --e y, 
-1 t- y -1 y 

t ER. (7.23) 

(see Example 7.9 above). Let f(y) = H(y + 1) - H(y- 1) and g(w) = 
eitw f(w). Then 

Î(w) = 2sinw and g(y)= 2sin(y-t) = 2sin(t-y). 
w y-t t-y 

The identity J fg = J Î9 then gives the formula (after some preening). D 

Exercises 
7.23 Compute the integral 100 e 

-oo (1 + t2)2 dt 

by studying the odd function f defined by f(t) = e-t fort> O. 

7.24 Using the results of Exercise 7.5, compute the integrals 

100 t2 100 (t2 + 2? 
o (t4 + 4)2 dt and o (t4 + 4)2 dt. 

7. 7 Application 1 

We consider the following problem for the heat equation: 

(E) 
(I) 

Uxx = Ut, t > O, 
u(x, O) = f(x), 

xER, 
X E R. 

The solution u(x, t) represents the temperature at the point x of an infinite 
rod, isolated from its surroundings, if the tempera ture at time t = O is given 
by the function f ( x). 

Initially, we adopt the extra assumptions that f E L1(R) and that for 
every fixed t >O the function x t-t u(x, t) also belongs to L1(R). Then the 
Fourier transforms 

Î(w) = L f(x) e-iwx dx, 

U(w, t) = Fx[u(x, t)](w) = L u(x, t) e-iwx dx 



7.7 Application 1 183 

exist for all t ~ O. (The subscript x on F signifies that the transform is 
taken with respect to the variable x.) We also assume that we can treat 
the differentiations in a formal manner, by which we mean for one thing 
that the rule (7.13) of Theorem 7.4 can be used twice, for another that 

In this case, (E) and (1) are transformed into 

(E) 

(Î) 

-w2U =aU 
at ' 

U(w, O) = Î(w) 

t >o, w E R, 

w E R. 

(E) can be solved like a common ordinary differential equation (think for a 
moment of w as a constant): we get U = Cexp(--w2t), where the constant 
of integration C need not be the same for different values of w. lndeed, 
adapting to the initial condition (Î) we find that we should have C = Î( w), 
so that 

U(w, t) = Î(w) e-w2 t. 

For recovering u(x, t) we notice that U is a product of two Fourier trans­
forms. By performing a suitable change of variables in the formula 

we can find that 

Let E(x, t) be the expression that is being transformed here. Then we have 

U(w, t) = Fx[E(x, t)](w) · F[f](w). 

By the convolution theorem, 

1 100 
2 u(x, t) = E(x, t) * f(x) = . r::c; e-Y /(4t) f(x- y) dy, 

y41!'t -oo 
t >o. 

This integral formula has been deduced by formal calculations with Fourier 
transforms, but in its final appearance it does not contain any such trans­
forms. In fact, it works in far more general situations than those indicated 
by our assumptions. lndeed, it is sufficient to assume that f is a continuous 
and bounded function on R. Then the integral in the formula exists for all 
x E R and t > O (show it!) and satisfies the equation Uxx = Ut, and in ad­
dition it holds that lim u(x, t) = f(x). The last assertion follows from the 

t\,0 
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fact that E(x, t) is a positive summation kernel in the variable x, indexed 
by the variable t tending to O from above. 

The solution obtained also has a nice statistical interpretation. It is the 
convolution of the initial values by the density function of a normal prob­
ability distribution with expected value zero and a variance growing with 
time. Loosely speaking, this can be said to mean that the temperature is 
"smeared out" in a very regular way along the axis. 

Remark. As an example of this, let the initial temperature be given by u(x, O) = 
1 for JxJ < 1 and O otherwise. The solution will be 

u(x,t)= ~ exp(-(x-y)2/(4t))dy= ~ e-y2/(4t)dy. 1 11 1 1"'+1 
y471't -1 y471't x-1 

It is easy to see that the value of this integral is positive for all (x, t) with t > O. 
This is really a cause of concern: it means that points at arbitrary distance far 
away on the rod will, immediately after the initial moment, be aware of the fact 
that the temperature near the origin was positive when t was O. The information 
from the vicinity of the origin thus travels with infinite speed along the rod, which 
is in conflict with the weliknown statement from the theory of relativity: nothing 
can travel faster than light! 

This indicates that the mathematical model that gives rise to the heat equa­
tion must be physicaliy incorrect. What is wrong? Weli, for one thing, in this 
model, matter is considered to be a perfectly homogeneous medium, which is a 
macroscopic approximation that does not hold at ali on a smali scale: in reality, 
matter is something discrete, consisting of atoms and subatomic particles. Yet 
another thing is that in the model heat itself is considered to be a homogeneous, 
flowing substance: in reality, heat is a macroscopic "summary" of the movements 
of ali the particles of matter. 

Yet another example of the strange behaviour of the heat equation is the fol­
lowing, taken from THOMAS KORNER's book Fourier Analysis. Define a function 
h by letting 

h(t) = exp(- 2!2 ). t >O; h(t) =o, t ::; o. 

This function belongs to C00 (R), which is not very hard to prove. If we go on 
to define g(t) = h(t- 1) h(2- t), then g is a C 00-function which is positive for 
1 < t < 2 and zero elsewhere. Finally let 

00 g(m) (t) 2m 

u(x, t) = L (2m)! x . 
m=O 

Now we have a function u: R 2 -+ R with the foliowing properties: 

(a) Ut(x, t) = u.,.,(x, t) 
(b) u(x, t) =O 
(c) u(x, t) >O 

for ali (x, t) E R 2 , 

for ali t fţ. [1,2], x E R, 
for all t E]1, 2[, x E R. 

The proof of these assertions can be found in Korner's book, Sec. 67. 
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Thus, here we have an infinite rod, which has .at time O the temperature O 
everywhere. This state of affairs remains unt il time reaches 1: then suddenly the 
whole rod acquires positive temperature, which rises and then again falls back to 
zero at time 2. Korner calls this "the great blast of heat from infinity." 

We see again (cf. page 4) that the "natural" initial value problem for the heat 
equation behaves very badly as concerns uniqueness: indeed there are heaps of 
solutions. 1 cannot abstain from quoting Korner's rounding-off comment on this 
example: 

To the applied mathematician ... (this example] is simply an embar­
rassment reminding her of the defects of a model which allows an 
unbounded speed of propagation. To the numerica! analyst it is just 
a mild warning that the heat equation may present problems which 
the wave equation does not. But the pure mathematician looks at 
it with the same simple pleasure with which a child looks at a rose 
which has just been produced from the mouth of a respectable unele 
by a passing magician. 

Exercises 

o 

7.25 Show that the function E(x, t) = k exp (- ~:) is a solution of the 

heat equation in the region t > O. What are the initial values as t '\t O? 

7.26 For an infinite rod the units of length x and time tare chosen so that the 
heat equation takes the form u"" = Ut. The temperature at time t =O is 

2 21 
given by the function e-"' +e-"' 2 • Determine the function that describes 
the temperature at every moment t > O. 

7.27 A semi-infinite rod, materialized as the interval [0, oo[, has at time t = O 
2 

the temperature e"' for O < x < 1, O for x > 1. When t > O, the end point 
(i.e., the point x = O) is kept at a constant temperature of O. Determine 
the temperature for every x at time t = t. 
Hint: define boundary values f(x) for x <O by j(x) =- f( -x), to make f 
an odd function. Then solve the problem as if the rod were doubly infinite. 
Show that this actually gives a solution with the correct boundary values 
for x >O. 

7.28 Find, in the form of an integral, a solution u of u"" = Ut for t > O, such 
that u(x,O) = 1 if lxl < 1, =O if lxl > 1. 

7.8 Application 2 

We shall treat the following problem for the Laplace differential equation: 

{ 

Uxx + Uyy = O, X E R, y > O, 

u(x, O) = f(x), x E R, 

u bounded for y >O. 
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Under the additional assumption that, for every fixed y, the function x 1---t 

u(x, y) is of class L1(R), we can Fourier transform the problem with respect 
to x. Let U(w, y) denote this Fourier transform: 

U(w,y) =.Fx[u(x,y)](w) = L u(x,y)e-iwxdx. 

Let us also assume that differentiation with respect to y commutes with 
Fourier transformation: 

82 
.Fx[Uyy] = 8Y2 .Fx[u]. 

Then the Laplace equation is transformed into 

2 82 
-w U(w, y) + 8y2 U(w, y) =O. 

Now we temporarily regard w as a constant and solve this differential equa­
tion with the independent variable y. The general solution is 

U(w, y) = A(w)e-yw + B(w)eYw. 

For U to be bounded for y > O one must have A(w) = O for w < O and 
B(w) =O for w >O, which means that we can write U(w,y) = C(w)e-yiwi, 
where C(w) = A(w) + B(w). For y = O we get U(w, O) = Î(w) = C(w), 
which implies that 

U(w,y) = Î(w)e-yiwi. (7.24) 

By inversion of this Fourier transform one can obtain the desired function 
u. Using the convolution theorem, we can also establish a solution formula 
in the form of an integral. Since 

e-ylwl is the Fourier transform of'}!._ 2 
1 

2 = Py(x), 
1f y +X 

it holds that 

y ! 00 f(t) u(x,y)=(Py*f)(x)=- ( )2 2 dt. 
1f _ 00 X- t + y 

(7.25) 

This formula is commonly called the Poisson integral formula for the half­
plane y > O. Indeed, this formula holds under more general conditions 
than our derivation demands (for instance, it is sufficient to assume that 
f is continuous and bounded.) The boundary values are right, because the 
functions { Py} constitute a positive summation kernel, as y '\t O. 

In practice, it may sometimes be easier to invert the Fourier transform 
(7.24), in other cases it is better to use the integral formula (7.25). 

Exercise 
7.29 In the unbounded plane sheet {(x,y) : y 2: O} there is a stationary and 

bounded temperature distribution u. It is known that u(x, O)= 1/(x2 + 1). 
Determine u(x, y) for all y >O. 
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7.9 Application 3: The sampling theorem 

Here we give an important theorem with applications in the technology of 
sound recording. Let c bea positive number. Assuming that a signal f(t) 
is built up using angular frequencies w satisfying lwl :::; c, it is possible to 
reconstruct the entire signal by sampling it at discrete time intervals at 
distance 7r / c. More precisely, we shall prove the following 

Theorem 7.7 (Shannon's sampling theorem) Suppose that f is con­

tinuous on R, that f E L1 (R) and that Î(w) =O for lwl > c. Then 

f(t) = "!(n7r) sin(ct- n7r) , 
~z c ct- n7r 
nE 

where the sum is uniformly convergent on R. 

Proof. By the Fourier inversion formula, we have 

f(t) = ;7!" [ce Î(w) eitw dw. 

We shall rewrite this integral. We introduce a function g as follows: 

c ~ 
g(w) =- f(w), lwl < c. 

7r 

(7.26) 

This can be considered as a restriction to the interval ( -c, c) of a 2c-periodic 
function with Fourier series 

g(w),...., 2: en(g)ei(mr/c)w, 

nEZ 

where 

en(g) = ...!.._ r g(w) e-i(mr/c)w dw = _!_ r Î(w) e-i(mrfc)w dw = !(- n7r). 
2c 1-c 27r 1-c C 

We also consider the function h given by 

h(w) = e-itw' 

In the same way as for g, we ha ve 

lwl <c. 

h(w)"' L Cn(h)ei(mrfc)w, 
nEZ 

with 

1 le . . 1 [e-itw-i(mr/c)w]w=c Cn(h) = _ e-ttw e-t(mr/c)w dw = _ 
2c 2c · .n7r 

-c -~t- ~- w=-c 
c 
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We now go back to (7.26) and rewrite it, using the polarized Parseval 
formula for functions with period 2c: 

llcc~- llc -f(t) = - - f(w) e-iwt dw =- g(w) h(w) dw 
2c -c 7f 2c -c 

= "'cn(g)cn(h) = "'!(- n1f) sin(ct + 1rn) = "'!(n1f) sin(ct- 1rn). 
L... L... c ct + 1rn L... c ct - 1rn 
nEZ nEZ nEZ 

The convergence of the series is clear, since both g and h are L2 functions. 
Indeed, the convergence of symmetric partial sums s N = I:~ N is uniform in 
t, because estimates of the remainder are uniform. The theorem is proved. 

D 

Remark. The theorem explains why CD recordings and DAT tapes are possible. 
The human ear cannot hear sounds with a frequency above, say, 20 kHz. The 
sound signal can thus be considered to have its frequency spectrum totally within 
this range. If it is sampled at sufficiently small intervals, and if the sampling is 
precise enough, it is then possible to recover the sound from the digitalized sample 
record. Ordinary CD recorders use a sampling frequency of 44.1 kHz. O 

7.10 *Connection with the Laplace transform 

In this section we return to the Laplace transform. We also assume that 
the reader has some knowledge of complex analysis, in particular the the­
ory of residues. We shall demonstrate how the Laplace transform can be 
considered as a special case of the Fourier transform. 

Assume that f ( t) is defined and piecewise continuous for t E R and 
that f(t) = O for t < O. Also suppose that there exist constants to, M, 
and k so that lf(t)l :::; Mekt for all t > to: we say that f grows (at most) 
exponentially. Let s = CJ + iw be a complex variable, where CJ and w are 
real. The Laplace transform of f is defined as the function 

i(s) = r)() f(t)e-st dt = 100 f(t)e-ut e-iwt dt. 
Jo -oo 

(7.27) 

The integral converges absolutely as soon as CJ > k, where k is ţ!le number 
introduced just above. The integral then defines a function j, which is 
analytic at least in the half-plane CJ > k. This can be seen by noting that 
the functions 

are analytic and that Fn -+ f uniformly in every interior half-plane CJ ~ CJo, 

where CJo > k. The details are omitted here. 
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What is now of interest is the fact that the formula (7.27) shows that the 
La place transform of f can be seen as the Fourier transform of the function 
f ( t) e -<Yt. If we assume that f is such that the Fourier inversion formula 
can be applied, we can then write 

1 lA- . j(t)e-<7t = - Iim f(a + iw) e•tw dw. 
21!' A-too -A 

If this equality is multiplied by e<7t and we reintroduce a+ iw = s, we get 

1 1<Y+iA-
f(t) = -. lim f(s)ets ds, 

21!'2 A-too <7-iA 
(7.28) 

where the notation i dw = ds serves to indicate that the integral is a contour 
integral in the complex plane. The contour is a vertical line in the half-plane 
(J > k. 

Since we have assumed that f(t) = O for t < O, the integral in (7.28) 
will always be zero for negative values of t. For t positive, it can sometimes 
be calculated using residues and a half-circular contour to the left of the 
vertical line. We demonstrate this by an example. 

Example 7.13. Find the function whose Laplace transform is J(s) 
1/(s2 + 1). 

Solution. We want to compute 

l 1<Y+iA ets 
- lim --ds. 
27l'i A-too <Y-iA s2 + 1 

The integrand has simple poles at s = ±i and is analytic in the rest of the 
s-plane. We can choose a= 1, say, and make a closed contour by adjoining 
CA, the left-hand half of the cir ele 1 s - li = A. Taking account of the factor 
1/(21I'i) in the formula, the integral over the closed contour is the sum of 
the residues: 

ets ets eit 
Res-- = lim-- =-
s=i s2 + 1 s-ti s + i 2i ' 

ets ets e-it 
Res -- = lim --
s=-is2+1 s-t-iS-2 -2i' 

eit _ e-it 
I: Res = 2i = sint. 

The integral along the circular arc can be estimated, using the fact that 
Isi= ls -1 + 112: ls- ll-1 =A -1 and a= Res $ 1: 

- --ds <- ds <-I
l 1 est 1 1 1 e<Yt et 1 ldsi 

21l'i CA s2 + 1 - 21!' CA lsl 2 - 1 1 1 - 21!' CA (A- 1)2 - 1 
et A1l' 

= 21!'. (A-l)2 _ 1 --+0 asA--+oo. 
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The conclusion is that the desired limit, which is f(t) for t > O, is sint. D 

Exercises 

7.30 Check that the integral in Example 7.13 is zero fort< O. What is its value 
fort= O? 

7.31 Find the inverse Laplace transform of sj(s2 + 1) by the method of Exam­
ple 7 .13. What is the value of the integral for t = O? 

7.32 Example 7.13 can be generalized thus: Suppose that f(s) is analytic in the 

entire s-plane except for a finite number of isolated singularities, that J is 
analytic in Res > k, and that there is an estimate of the form if(s)i :S 
M/isi"' for isi ;:::: R, where a> O. Then, fort> O, f(t) = the sum of all the 

residues for the function ets J(s). Prove this (or "check" it)! 

7.11 *Distributions and Fourier transforms 

We shall now see what happens if we try to obtain Fourier transforms of 
simple distributions such as those considered in Sec. 2.6-7. At this point, 

we treat only expressions such as 8in)(t). The more revolutionary aspects 
of the theory are postponed to Chapter 8. 

It is rather obvious what the indicated transforms should be. We recall 
that 8in) (t) was defined so as to have the following effect on a sufficiently 
smooth function cp: 

In particular, if we take cp(t) = e-iwt, we should have 

8in)(w) = J 8inl(t)e-iwtdt= (-l)n(-iw)ne-iwa = (iw)ne-iaw. 

As a special case, we have that l(w) = 1 for all w. A physical interpretation 
of this is that the 8 "function" is composed out of all frequencies with 
equal amplitudes (or, rather, equal amplitude density). This kind of signal 
is sometimes given the name "white noise." If the situation is interpreted 
literally, it means that 8 has infinite energy, and thus it cannot be realized 
in physical reality. However, it can be treated as a formalism that turns 
out tobe useful. 

The convolution of 8 and a (smooth) function cp should reasonably work 
like this: 

8 * cp(t) = L 8(t- u)cp(u) du= cp(t). 

Thus, 8 acts as an algebraic identity with respect to the convolution op­
eration. Let us also accept that the convolution operation is commutative 
and associative, even when one of the objects involved is a 8. 
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If the functions involved are sufficiently nice, a convolution can be dif­
ferentiated past the integral sign. The result is the simple formula 

(! * g )' = !' * g = f * g'. 

The applications in Sec. 7. 7-8 can then be attacked along the following 
lines. Let us first study the heat equation, and assume that the initial values 
are c5: 

Uxx = Ut, X E R, t > O; u(x, O) = c5(x ), x E R. 

Fourier transformation gives, just as in Sec. 7.7, 

-w2U= dU ii O dt' WE ,t> j U(w,O) = 1, w E ii. 

Solving this differential equation we get 

U(w, t) = e-w2 t, 

and inverting this Fourier transform gives 

1 ( x2) u(x, t) = E(x, t) = J47rt exp - 4t . 

Now assume that fis some (continuous) function, not necessarily in L1(R), 
and consider the general initial value problem: 

Uxx = Ut, X E R, t > O; u(x, O)= f(x), x E R. 

If we put u = E * f, we will now have a solution of this problem. Indeed, 
since E satisfies the heat equation, it is clear that 

()2 â 
Uxx-Ut = âx2 E*f- ât E*f = Exx*f-Et*f = (Exx-Et)*f = O*f =O. 

And since E --+ c5 as t "-;. O, it should also follow that the boundary values 
are right: 

u(x, t) = E(x, t) * f(x)--+ c5 * f(x) = f(x). 
X 

We also give an example where we use Fourier transformation to solve 
an ordinary differential equation. 

Example 7.14. Find a solution of the equation y"(t)- y(t) = c5(t). 

Solution. Fourier transformation, and using the rule for the transform of a 
derivative, gives 

(iw) 2y(w)- y(w) = 1. 

If we solve for y, we find y(w) = -1/(1 +w2), which is a well-known trans­
form: apparently y(t) = -! e-ltl. And, indeed, if we look at this function, 



192 7. Fourier transforms 

we see that y"(t) = y(t) for all t =fi O; and at t =O, the first derivative has 
an upward jump of one unit, which confirms that we have found a solution. 

The reader should recognize this type of equation. Its homogeneous coun­
terpart has the solutions YH = Aet + ne-t' and thus the given equation 
has the general solution y = -~ e-ltl + YH· We seem to have lost all these 
solutions except for one. This depends on the fact that all the others ac­
tually cannot be Fourier transformed at all, not even as distributions. But 
as a means of finding a particular solution, the method obviously works in 
this case. O 

Exercise 
7.33 Find a solution of the equation y"(t) + 3y'(t) + 2y(t) = t5(t). 

Summary of Chapter 7 

Definition 
If f E L1(R), the Fourier transform of fis the function F[f] = Î given by 

Î(w) = L f(t)e-iwt dt, w E R. 

Theorem 
If f E L1 (R), then Î is a continuous function on ii that tends to O as 
lwl-+ oo. 

Theorem 
(Inversion theorem) Suppose that f E L1 (R), that fis continuous except 
for a finite number of finite jumps in any finite interval, and that f(t) = 
~(f(t+) + f(t-)) for all t. Then 

1 lA ~ . t f(to) = Iim - f(w) ezw 0 dw 
A-+oo 27f -A 

for every t0 where f has (generalized) left and right derivatives. In partic­
ular, if fis piecewise smooth (i.e., continuous and with a piecewise contin­
uous deriva ti ve), then the formula holds for all to E R. 

A collection of formulae for the Fourier transform begins on page 252. 

Historical notes 

The Fourier transform, or Fourier integral, first appears in the works of FOURIER 
himself. Its development has run parallel to that of Fourier series ever since. 
Recent developments in signal processing have triggered the result known as the 
sampling theorem, which is attributed to CLAUDE SHANNON (1916-2001). He was 
the founder of information theory. 
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Problems for Chapter 7 

7.34 Compute the Fourier transform of j, defined by 

f(x) = {2 -lxl, lxl < 2, 
O, lxl > 2. 

Use the result to compute I: ci;ty dt. 

7.35 The function fis continuous on R, and both f and f' belong to L 1 (R). 
Compute the Fourier transform of J, if 2f(x)- f(x+1)+ f'(x) = exp( -lxl), 
X E R. 

7.36 Find the Fourier transform of 2 4
1 

3 x + x+ 1 
1 eix 

7.37 Find the Fourier transforms of (a) 1 + 9x2 , (b) 1 + gx2 ' 

7.38 Find the Fourier transform of f(x) = (1 +xx2 ) 2 • 

sinx 
(c) 1 + 9x2 · 

7.39 A function fis defined by f(x) = 2x if lxl < 1, f(x) =O otherwise. 

(a) Compute.the Fourier transform f of f. 
(b) For all X E R, determine lim r Î(t) eitx dt. 

a-+OCl -a 

100 (sint cost)2 
(c) Compute -oo (2- -t- dt. 

7.40 Let !N(t) = 1rN2 for O< t < 1/N, f(t) =O fort> 1/N, and define fN(t) 
for t < O through the condition that /N be an odd function. Compute the 
Fourier transform of /N, and then find lim ÎN(w). 

N-+oo 

7.41 Find the Fourier transform of J, when f(t) = sint for Iti < 1r, = O for 
Iti ~ 1r, and use the result to compute 

Joo sin2 1rt 

-oo (t2- 1)2 dt. 

7.42 Show that I: (si~ x )2 dx = 1r by transforming the function 

{ 1, lxl < 1, 
f(x) = l l - and using the Plancherel formula. 

0, X > 1 

7.43 Let f(t) = 1 - t2 for Iti < 1, = O otherwise. Find f and use the result to 
find the values of the integrals I: sint ~3tcost dt and 100 (sint- tcost? d 

t6 t. 
-oo 

7.44 Compute the integral 

Joo sina 
F(w) = -oo a(1 + (w _ a) 2 ) da, -oo < w < oo. 
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7.45 Solve the integral equation 

1"" f(y) dy--a_ xER 
-oo (x- y)2 + 1 - a2 + x2' 

using Fourier transforms. Conditions on a? 

7.46 (a) Let f(x) = e-lxl. Find f * f(x) = 1: f(y) f(x- y) dy. 

(b) Using Fourier transforms, solve the differential equation 

y"(x)- y(x) = e-lxl x E R. 

7.47 Let the signal f(t) = A1 cos(w1t+lh)+A2cos(w2t+02) be given. Compute 

11T/2_ 
rxx(t) = Iim T f(u) f(t + u) du 

T-+oo -T/2 

(the auto-correlation function, ACF). Try to find the frequency spectrum 
Pxx ( w) of r xx ( this is called the energy spectrum of f; the connection be­
tween Pxx and rxx is called the Wiener-Khinchin relations). To determine 
Pxx correctly, you should know something about distributions (e.g., the 
Dirac measure o). 

7.48 Suppose that a certain linear system transforms an incoming signal f into 
an outgoing signal y that is a solution of 

y" (t) + ay' (t) + by(t) = f(t), 

where a and b are constants. Show that if the roots of the characteristic 
equation r 2 +ar + b = O both have their real parts < O, then the system is 
causal; i.e., the value y(t) at any time t depends only on the values of f(u) 
for u:::; t. 

7.49 Find all functions f E L1 (R) that satisfy the integral equation 

tER. 

7.50 Find the Fourier transform of the function f(x) = xe-lxl. 

7.51 Determine the Fourier transform of 

{
e-"', x >O, 

f(x) = -ex, X< 0, 

and then compute the integral 1: (1 ::2) 2 dx. 

7.52 Find a solution of the integral equation 

l: f(x- y) e-IYI dy = (1 + lxl) e-lxl. 
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7.53 Find a solution of the integral equation 

f(x) = e-lxl + ~ e"' 100 
e-y f(y) dy, -oo < x < oo. 

7.54 Using Fourier transformation, find a solution of the integral equation 

_.,2 -100 -4(x-y)2 J( ) d e - e y y. 
-oo 

100 sint eitx 
7.55 Compute -oo -t- · 1 + t 2 dt for -1 < x < 1. Be careful about the details! 



8 
Distributions 

8.1 History 

In star-marked sections in the previous chapters we have sketched how it is 
possible to extend the notion of function to include things such as "instan­
taneous pulses" and similar phenomena. The present chapter will present 
a more coherent introduction to these distributions. The presentation is 
biased in the way that it centers on the kind of distribution theory that 
appears to be natural in connection with Fourier theory, and it is not very 
far-reaching. A complete study of the theory of distributions is beyond the 
intended scape of this book. 

The reader should be able to study this chapter without having read the 
starred sections in the former chapters. This means that there is a certain 
duplication of examples, etc. This applies in particular to this introductory 
section, where a number of the following examples are repetitions of things 
that are also found in Sec. 2.6. 

We are going to indicate a number of more-or-less puzzling difficulties that 
had vexed mathematicians for a long time. Various ways of going around 
the problems were suggested, until at last time was ripe, in the 1930s and 
1940s, for the modern theory that we shall touch upon in this chapter. 

Example 8.1. Already in Sec. 1.3 (on the wave equation) we saw difficul­
ties in the usual demand that solutions of a differential equation of order n 
shall actually have (maybe even continuous) derivatives of order n. Quite 
natural solutions, such as those of Exercise 6.7, get disqualified for reasons 
that seem more of a "bureaucratic" than physical nature. This indicates 
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that it would be a good thing to widen the notion of differentiability in one 
~m~~. D 

Example 8.2. Ever since the days of NEWTON, physicists have been 
dealing with situations where some physical entity assumes a very large 
magnitude during a very short period of time; often this is idealized so 
that the value is infinite at one point in time. A simple example is an elas­
tic collision of two bodies, where the forces are thought of as infinite at 
the moment of impact. Nevertheless, a finite and well-defined amount of 
impulse is transferred in the collision. How is this to be treated mathemat­
ically? D 

Example 8.3. A situation that is mathematically analogous to the pre­
vious one is found in the theory of electricity. An electron is considered ( at 
least in classical quantum theory) to be a point charge. This means that 
there is a certain finite amount of electric charge localized at one point in 
space. The charge density is infinite at this point, but the charge itself has 
an exact, finite value. What mathematical abject describes this? D 

Example 8.4. In Sec. 2.4 we studied positive summation kernels. These 
consist of sequences of non-negative functions with integral equal to 1, that 
concentrate toward a fixed point, as a parameter tends to infinity. Can we 
invent a mathematical abject that can be interpreted as the limit of such 
a sequence? D 

Example 8.5. There is also a sort of inverted problem, compared with the 
ones in Examples 8.2-3 above. Suppose that we want to measure a physical 
quantity f(t), that depends on time t. Is it really possible to determine 
f(t) at a particular point in time? Every measurement takes some time 
to perform. A speedometer, for example, must be constructed so that it 
deals with time intervals of positive length, and the value indicated by it 
is necessarily some kind of mean value of the speed attained during the 
latest period of time. HEISENBERG's undecidedness principle actually tells 
us that cert ain types of measurement cannot be exact at all; the best we 
can hope for is to get some mean value. D 

Example 8.6. In Sec. 7. 7 and 7.8 we solved a couple of problems for partial 
differential equations using Fourier transformation. In order to be able to 
use this method we had to impose rather restrictive conditions on the 
solutions - they had to be integrable in a certain way, and differentiability 
past an integral sign had to be explicitly assumed. But in both of these 
cases, the result of the calculations was a formula that was actually valid 
in far more general situations than those demanded by the method. Is there 
something going on behind the stage, that we could drag out in clear view 
and enable us to do our Fourier transformations without hesitations and 
bad conscience? D 
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The problems in Examples 8.2 and 8.3 above have been treated by many 
physicists ever since the later years of the nineteenth century by using the 
following trick. Let us assume that the independent variable is t. Introduce 
a "function" 6(t) with the following properties: 

(1) 6(t) 2:: O for - oo < t < oo, 

(2) 6(t) =O for t -j. O, 

(3) i: 6(t) dt = 1. 

Regrettably, there is no ordinary real-(or complex)-valued function that 
satisfies these conditions. Condition 2 irrevocably implies that the inte­
gral in condition 3 must be zero. Nevertheless, using formal calculations 
involving the object 6, it was possible to arrive at results that were both 
physically meaningful and "correct." A name that is commonly associated 
with this is P. DIRAC, but he was not the only person (nor even the first 
one) to reason in this way. He has, however, given his name to the object 
6: it is often called the Dirac delta function ( or the Dirac measure, or the 
Dirac distribution). 

One way of making legitimate the formal 6 calculus is to follow the idea 
that is hinted at in Example 8.4. If 6 occurs in a formula, it is replaced by a 
positive summation kernel KN; upon this one then does one's calculations, 
and finally one passes to the limit. In a cert ain sense ( which will be made 
precise at the end of Sec. 8.4), it is true that 6 = Iim KN. 

N--+oo 
The problems presented by Example 8.5 can be tackled in a very uncon-

ventional way. We simply give up the requirement (or aspiration) that the 
"function" f actually does possess any values f(t) at all at precise points t. 
Instead, it is thought to have values at "fuzzy points"; i.e., it is possible to 
account for (weighted) means of f over intervals of positive length, these 
means being real or complex numbers. 

Our strategy now is the following. First we make precise what we mean by 
a fuzzy point (in Sec. 8.2). Then, in Sec. 8.3, we define our generalization of 
the notion of a function, which will be called a distribution. After that, we 
build the machinery that willlead to the solution of the dilemmas presented 
as Examples 8.1-6 (including numbers 1 and 6, which have not been more 
closely examined in the present discussion). 

The whole exposition is very sketchy. For a more complete theory we refer 
to more penetrating literature, such as the monumental standard work by 
LARS HORMANDER, The Analysis of Linear Partial Differential Operators, 
Volume 1. 
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8.2 Fuzzy points- test functions 

Here we introduce so-called test functions, which shall serve, among other 
things, as the "fuzzy points" mentioned at the end of last section. We do 
it in one dimension, but the whole theory is easily redone in an arbitrary 
finite dimension. 

Thus, we consider a real x-axis denoted by R, as usual. A test function 
is an infinitely differentiable complex-valued function, cp : R -+ C, cp E 
C 00 (R). In these connections one normally uses a more concise notation 
for the last-mentioned set: we write c = C00 (R). 

We shall define two important subsets of c. First we define the support 
of a function cp: 

support of cp = suppcp = {x E R: cp(x) =f. 0}. 

Thus, a point x belongs to supp cp if every neighborhood of x contains 
points where cp(x) =f. O; the fact that x is not in the support of cp means 
that cp(y) =O for all y in some neighbourhood of x. The support is always 
a closed set. 

Example 8.7. If cp(x) = 1- x2 for lxl < 1 and cp(x) =O for lxl :::=: 1, then 
suppcp = [-1, 1]. D 

Example 8.8. If cp is defined by cp(x) = sinx for lxl < 1r and O elsewhere, 
then suppcp = [-1r,1r]. Although cp(O) =O, the point x =O belongs to the 
support, because every neighborhood of this point contains points where 
cp(x) ,t: O. D 

Saying that suppcp is compact means that cp(x) = O outside of some 
compact interval. The set of test functions on R with compact support is 
denoted by 'D. The fact that such functions exist may not appear obvious 
to some readers, but indeed there are a wealth of them. If the reader is not 
prepared to accept this fact, some examples are constructed at the end of 
this section. 

We shall also introduce a class of test functions situated between 'D and 
c, which is the most important class in our exposition of the theory. 

Definition 8.1 We say that a function cp belongs to the Schwartz class S 
if cp has derivatives of all orders and these satisfy inequalities of the form 

(1 + lxlti'P(k)(x)l :::; Cn,k, x E R, 

where Cn,k are constants, for all integers n and k that are :::=: O. 

The import of the definition is that cp and all its derivatives tend to zero as 
x -+ ±oo faster than the inverted value of every polynomial. In particulari 
'D C S, but, in addition to this, S contains the function cp(x) = e-x 
(and lots of others). The class Sis named after LAURENT ScHWARTZ, who 
founded the theory of distributions in the 1940s. 
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In connection with S, there is sometimes reason to talk about moderately 
increasing or tempered functions. These are functions x that increase at 
most as fast as some polynomial, i.e., there are constants C and m such that 
lx(x)l ::::; C(l + lxl)m for all X. If X belongs to e, if X and all its derivatives 
are tempered, and if cp E S, then the product Xtp will also belong to S. 
Such a function x is called a multiplicator (more precisely, a multiplicator 
on the space S). The set of these multiplicators has no generally accepted 
notation, but we shall occasionally use the letter M for it. 

The sets 'D, S and e are vector spaces of infinite dimension. We want 
to be able to speak about convergence of sequences of elements in these 
spaces. In Chapter 5 we saw examples of how convergence could be defined 
by referring to various norms. The kind of convergence that we want now 
is more complicated to describe. Since our interest will be centered on the 
space S, we content ourselves with defining convergence in this space. 

Definition 8.2 A sequence { tpj }~1 C S is said to converge in S to a 
function 'ljJ E S, if for all integers n ~ O and k ~ O it holds that 

.Iim max(l + lxl)n lcp)k) (x) - '1/J(k) (x) 1 = O. 
J--tOO xER 

Thus, the functions cpi and all their derivatives are to converge toward 'ljJ 
and the respective derivatives of 1/J in such a manner that the convergence is 
uniform even after multiplication by arbitrary polynomials in the variable 
x. This is quite a restrictive notion of convergence, but it turns out to be 
"correct" for our future needs. We write 

s ·'· . cpi --+ '+' as J -+ oo. 

Remark. The spaces e, S, and 'D contain many more functions than those that 
justify the name "fuzzy points." It is, however, desirable to be able to work 
with linear spaces of test functions: and if such a space contains "fuzzy points" 
around all points x of the real axis, it will automatically contain a great number 
of functions that are not particularly "localized" (since a linear space is closed 
under addition and multiplication by scalars). For this reason, it is just as well 
to define test functions in the more generous way that we have done. D 

The fact that there actually exist test functions with compact support may 
not be obvious to everybody. We shall give a few examples to show that this is 
actually the case. First we prove a lemma (which is often taken for granted by 
students without really thinking). 

Lemma 8.1 Suppose that f is continuous in [a, b] and differentiable in ]a, b[, 
and suppose that the derivative f' ( x) has a li mit A, as x '\t a. Then f has a 
right-hand derivative for x = a, and this derivative has the value A. 

Proof. The mean-value theorem of Lagrange can be used on the subinterval [a, a+ 
h], where h > 0: 

f(a + h)- f(a) = /'(~) · h f(a + h~- f(a) = /'(~), 
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y=cp(x) 

FIGURE 8.1. 

where a < e < a+ h. If we let h ":. o, the right-hand member of the last equation 
tends to A, by the assumption; thus, the left-hand member also has the limit A, 
and the limit of the left-hand member is, by definition, the right-hand derivative 
of fat a. D 

Example 8.9. First definea function r.p by putting 

{o, X~ O; 
r.p(x) = -1/x O 

e , x > . 

The substitution 1/x = t and letting t -+ +oo, corresponding to x ":. O, shows 
that r.p is continuous also at x = O. For x > O, a few differentiations give 

'( ) _ -1/x 1 "( ) _ -1/x ( 1 2 ) "'( ) _ -1/x ( 1 6 6 ) r.p x -e ·-, r.p x -e --- , r.p x -e ---+- . 
~ ~ ~ ~ ~ ~ 

From this, one should realize that all the derivatives will have the form e- 1/x 
multiplied by a polynomial in the variable 1/x. The limit as x ":. O will in all 
cases be O. According to the lemma, r.p has then right-hand derivatives of all 
orders equal to O at the origin. The left-hand derivatives are also O, trivially. 
This means that r.p is indefinitely differentiable everywhere and its support is the 
interval [0, oo[. See Figure 8.1! Now define 'lj;(x) = r.p(x) r.p(1- x). This is a C 00 

function with support [0, 1]. D 

For the 'lj; of the example we thus have 'lj; E TI. Other elements of TI can be 
constructed by translations, dilatations, multiplication by arbitrary functions in 
e, addition, etc. In fact, TI is quite a rich space. 

The function 'lj;, after division by the number B = J0
1 'lj;(x) dx, can be inter­

preted as a "fuzzy point," localized around x = ~- Ifwe translate the localization 
to the origin by forming w ( x) = 'lj; ( x - ~) / B and then re-scale according to the 
model nw(nx), we do indeed obtain a positive summation kernel as in Sec. 2.4, 
which becomes less and less fuzzy as n increases. 

Example 8.10. With 'lj; and B as before, let 

1 lx w(x) = Ei -oo 7f;(y) dy. 

This gives a function in e, having the value o for X ~ o and 1 for X ::::>: 1. Then 
put rl(x) = \ll(x) - \lf(x- 1). Then n E 1>, with support [0, 2]. Furthermore, n 
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FIGURE 8.2. 

has the following property: 

00 

<P(x) = L n(x- n) = 1 for all X E R. 
n=-oo 

This can be shown in the following way (compare Figure 8.2). For any fixed x, 
at most two terms in the sum are different from zero, and so the series is very 
much convergent. Furthermore, it is easy to see that <P(x + 1) = <P(x), so that <P 
has period 1. Thus we can restrict our study to the interval1 ~ x < 2. For these 
x, the sum reduces to the terms n(x) + n(x- 1), and we get 

<P(x) = n(x) + n(x- 1) = 'W(x)- 'W(x- 1) + 'W(x- 1)- w(x- 2) 

= w(x)- w(x- 2) = 1- o= 1. 

D 

Example 8.10 shows that the function that is identically 1 for all real x can be 
decomposed as a sum of infinitely differentiable functions with compact supports. 
Such a representation of 1 is called a partition of unity. 

Exercise 

8.1 Show that if cp E S, then also cp' E S. Is the converse true: i.e., must an 
antiderivative of a test function in S also be in the same set? 

8.3 Distributions 

Distributions are mappings that assign to every test function in some space 
a complex number. If f is a distribution, we denote this value for a test 
function cp by writing f[cp], using square brackets. (In literature one often 
sees the notation (!, cp), but we shall avoid this, since it does not completely 
share the properties of the inner product in previous chapters.) Depending 
on which space of test functions one chooses, one gets different classes of 
distributions. In connection with Fourier analysis, it turns out that the 
space S is the most natural one. The distributions belonging to these test 
functions are called tempered distributions. 

Definition 8.3 A tempered distribution f is a mapping f: S-+ C having 
the properties 
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(1) linearity: f[c14?1 + C24?2] = cd[4?1] + c2f[tp2] for allrpk E S and scalars 
ck; 

(2) continuity: if IPJ ~ 'lj; as j ~ oo, then also Iim f[~PJ] = f['!f;]. 
]--+00 

The set of all tempered distributions is denoted S'. 

We give some examples. 

Example 8.11. Let f bea continuous function on R such that there are 
constants M and m such that lf(x)l :::; M(1 + lxl)m for all x. Then we can 
define a tempered distribution Tf by letting 

TJ[4?] = L f(x) rp(x) dx. 

It is clear that Tf is a linear mapping; the fact that it is continuous follows 
from the fact that convergence in S implies uniform convergence even after 
multiplication by expressions such as (1 + lxl)m+2: 

ITJ['PJ]- TJ['!f;]l =IL f(x)('PJ(x)- '!f;(x)) dxl 

:::; L M(1 + lxl)mi4?J(x)- 'lj;(x)l dx 

= L M(1 + lxl)m+2I'PJ(x)- '!f;(x)l· (1 :~xl) 2 
::;Mmax{(1+lxl)m+2I4?J(x)-'lj;(x)l}· { ( d~ l)2 ~O 

xER }R 1 + X 

as j ~ oo. It is customary to identify the distribution TJ with the function 
f and write f[rp] instead ofTJ[rp]. In this way, every continuous, moderately 
increasing function can be considered to be a distribution, and it is in this 
way that distributions can be seen as generalizations of ordinary functions. 

o 
It is not necessary that the f in Example 8.11 be continuous. It is suffi­

cient that it is locally integrable, i.e., that J: lf(x)l dx exists and is finite for 
all compact intervals [a, b]; on the other hand, it cannot be allowed to grow 
too fast as lxl ~ oo. An important distribution of this type is exhibited in 
the next example: 

Example 8.12. Let H be the Heaviside function, defined by 

H(x) =O if x <O, H(x) = 1 if x >O. 

(The value of H(O) is immaterial.) This defines a distribution by the formula 

H[rp] = L H(x) <p(x) dx = 100 
rp(x) dx. o 
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Example 8.13. Define o E S' by o[cp) = cp(O). (The reader is asked to 
check linearity and continuity.) This distribution is called the Dirac distri­
bution (Dirac function, Dirac measure), and this is the abject announced 
in Examples 8.2 and 8.3. D 

If f is an arbitrary distribution, as a rule there exists no "value at the 
point x" tobe denoted by f(x). In spite of this, one often writes the effect 
of f on a test function cp as an integral: 

f[cp] = L f(x) cp(x) dx. 

This is indeed a very symbolic notation, but, nevertheless, it turns out 
to be quite useful. The whole theory develops in such a way that those 
suggestions that are invoked by the integral symbolism will be "correct." 
As an example, one writes 

cp(O) = o[cp) = L o(x) cp(x) dx. 

If we symbolically translate the o function and write o(x- a), the ordinary 
rules for changing variables yield 

[ o(x- a) cp(x) dx = [ o(y) cp(y +a) dy = [cp(y +a)] =0 = cp(a). la la Y 

One often writes oa(x) = o(x- a), so that Oa is the distribution given by 
Oa[cp] = cp(a). 

We include another few very mixed examples. 

Example 8.14. The mapping f that is defined by 

f[cp) = 3cp(2)- 4cp'(2) + 7cp(8)(7r) + 13 cp"(x) cos 7x dx 

is a tempered distribution. D 

Example 8.15. The function 1/x cannot play the role of f in Exam­
ple 8.11, since the integral will be divergent at the origin, However, we can 
define f[cp) using a symmetric limit: 

f[cp)=lim J cp(x) dx= lim (1-e +100
) cp(x) dx 

e\,.0 X e').O _ 00 e X 
lxl>e 

= lim 1oo cp(x)- cp(-x) dx. 
e\,.0 e X 

The integral converges because the integrand in the last version has a finite 
limit as x '\t O, namely, 2cp'(O). It is not difficult to prove that the formula 
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actually defines a tempered distrîbution. This distribution is commonly 
called P.V.l/x, where P.V. stands for principal value, which means the 
symmetric limit in the formula. O 

Example 8.16. If f(x) = ex2
, then f does not describe a tempered dis­

tribution according to Example 8.11. Indeed, ifwe choose the test function 
cp(x) = e-x2

, which clearly belongs to S, the integral will diverge. The 
function f increases too fast. O 

Remark. If, instead of S, one starts with the test function sets 'Dor e (with suit­
abie definitions of convergence, which are omitted here), one obtains other classes 
of distributions. Starting from 'D, consisting of test functions with compact sup­
port, one gets the class 'D' of, simpiy, distributions. These comprise the tempered 
distributions as a subset, but also Iots of others. For exampie, the function f in 
Exampie 8.16 defines such a general distribution. 

If one starts with e - i.e., ali coc functions are included among the test 
functions - one gets a more restricted set e', consisting of ali distributions with 
compact support, which is defined in the next section. O 

Exercises 

8.2 Show that f(x) =In lxl defines a distribution according to Exampie 8.11. 
(What has to be proved is essentialiy that f is Iocaliy integrabie.) 

8.3 Which of the following formuiae define eiements of S'? 

(a) f[rp] = L (2x2 +3)rp"(x)dx, (b) f[rp] = L e"'rp(x)dx, 

(c) f[rp] = (rp(0)) 2 • 

8.4 Properties 

We are going to introduce some fundamental notions describing various 
properties of tempered distributions. (In the interest of brevity, we shall 
mostly omit the word "tempered.") 

Two distributions f and g are equal (or globally equal), if f[cp] = g[cp] 
for all cp E S. 

For J,g E S', the sum f + g is defined by (! + g)[cp] = f[cp] + g[cp] for all 
cp E S. If c is a scalar (a complex number), then cf is the distribution that 
is described by (cf)[cp] = c · f[cp]. With these operations, S' itself becomes 
a linear space. 

A distribution f is zero on an open interval I =]a, b[, if f[cp] = O for all 
cp E S that have supp cp C I. Two distributions f and g are equal on an 
open interval I if f- g is zero on I. For example, 8 = O on the interval 
]O,oo[. 
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If f and g are ordinary functions, equality on I means that f(x) = g(x) 
for all x E I except possibly for a set of measure zero (a zero set, cf. page 
89). Just as in Chapter 5, we consider such functions tobe equivalent (or, 
loosely speaking, tobe the same). 

The support supp f of a distribution f should be the smallest closed set 
where, loosely speaking, it really does matter what values are taken by the 
test functions; more precisely, a point x does not belong to the support if 
there is a neighborhood (an open interval) around x where fis zero. The 
support is always a closed set. 

Example 8.17. For a distribution that is a continuous function, f[cp] = 
fa fcp dx, the support of f as a distribution coincides with the support of 
f as a function. If f is discontinuous, the expression "f is zero" in the 
definition above should be changed to "! is zero except possibly for a set 
of measure zero". D 

Example 8.18. With the notation of Sec. 8.3, supp H = [0, oo[, supp 8 = 
{0}, supp8a ={a}. The support ofthe distribution in Example 8.14 is the 
set [2,3]U{7r}. D 

If X is a multiplicator function and f E S', we can define the product 
xf E S' by putting (xf)[cp] = f[xcp] for all cp E S. (Check that this is 
reasonable if f is an ordinary function, and that xf actually turns out to 
be a tempered distribution!) 

Example 8.19. What is the product x8? According to the definition we 
ha ve 

(x<l)[cp] = <l[xcp] = x(O) cp(O) = x(O) · &[cp]. 

This result is often written in the form 

x(x)o(x) = x(O)o(x). 

In the same way one sees that in general 

x(x)o(x- a)= x(a)o(x- a). (8.1) 

D 

Example 8.20. Let f be P.V.1/x, and x(x) = x. What is xf? Indeed, 

xf[cp] = f[xcp] = Iim { X· cp(x) dx = Iim { cp(x) dx 
c'-,.0 Jlxl>c X c'-,.0 Jlxl>c 

=joc cp(x) dx = [ 1 · cp(x) dx. 
-oo la 

We see that xf can be identified with the function which is identically 1, 
which we write simply as x · P.V.1/x = 1. O 
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Now, at last, we arrive at the promised generalization of the notion of a 
derivative. The starting point is the formula for integration by parts: 

1b f'(x) cp(x) dx = f(b)cp(b)- f(a)cp(a) -1b f(x) cp'(x) dx. 

If f is a moderately increasing function of class 0 1, and cp E S, we can let 
a --+ -oo and b --+ oo. The contributions at a and b will both tend to zero, 
and we are left with 

L f'(x) cp(x) dx =-L f(x) cp'(x) dx. 

This inspires the following definition: 

Definition 8.4 If f E S', a new tempered distribution f' is defined by 

f'[cp] = - f[cp'] for all cp E S. 

We call f' the derivative of f. 

It is not hard to check that actually f' E S'; here we profit from the 
rigorous conditions that we have placed upon our test functions! Let us 
investigate some common cases. If f E C 1(R), the new derivative will coin­
cide with the old one. But now, functions that did not have a derivative in 
the traditional sense will find themselves to have one, this being a distribu­
tion rather than an ordinary function. Also, the definition of the derivative 
can be iterated any number of times, and we find that all f E S' suddenly 
are endowed with derivatives of all orders! 

Example 8.21. Find the derivative of the Heaviside function H ! By 
definition, it should emerge from the following calculation: 

H'[cp] = -H[cp'] = -100 
cp'(x) dx =- [cp(x)J:=o = -(0- cp(O)) 

= cp(O) = 8[cp]. 

We see that H' = 8, the derivative of the Heaviside function is the Dirac 
"function." The latter is commonly illustrated graphically by a "spike" (see 
Figure 8.3). In general, it can be seen that the derivative of a jump of size 
cat a point x =a is given by c8a (or c8(x- a)). O 

Example 8.22. Find the derivatives of 8: 

8'[cp] = -8[cp'] = -cp'(O), 8"[cp] = -8'[cp'] = 8[cp"] = cp"(O). 

In general, 8(n) [cp] = ( -l)n cp(n) (0). o 
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o 

FIGURE 8.3. 

Example 8.23. What is the derivative of xf, where x belongs to M and 
f E S' ? On the one hand, 

and on the other, 

(x' f + xf')[cp] = (x' f)[cp] + (xf')[cp] = f[x' cp] + J'[xcp] 
= f[x'cp]- f[(xcp)'J = f[x'cp]- f[x'cp + xcp'J =-f[xcp'J. 

(Give some thought to what motivates each individual equality sign in these 
calculations!) One can see that the distributions (xf)' and x' f + xf' have 
the same effect on arbitrary test functions; thus we have proved the rule 

(xf)' = x' f + xf' if X is moderately increasing and f E S'. 

o 
In calculations involving functions that are defined by different formulae 

in different intervals, it is practica! to make use of translated Heaviside 
functions. If a < b, the expression H(t- a) - H(t- b) is equal to 1 for 
a < t < b and equal to O outside the interval [a, b]. It might be called a 
"window" that lights up the interval (a, b) ( we do not in these situations 
care much about whether an interval is open or closed). For unbounded 
intervals we can also find "windows": the function H ( t - a) lights up the 
interval (a, oo), and the expression 1 - H ( t - b) the interval (-oo, b) . 

Example 8.24. Consider the function f : R ---+ R that is given by 

{ 
1- t2 fort< -2, 

f ( t) = t + 2 for - 2 < t < 1, 
1- t fort> 1. 
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This can now be compressed into one formula: 

f(t) = (1- t2)(1- H(t + 2)) + (t + 2)(H(t + 2)- H(t- 1)) 
+(1- t)H(t- 1) 

= (1- t2 ) + ( -1 + t2 + t + 2)H(t + 2) + (-t- 2 + 1- t)H(t- 1) 
= 1- t2 + (t2 + t + 1)H(t + 2)- (2t + 1)H(t- 1). 

Example 8.25. The function f(x) = Jx2 - 1J can be rewritten as 

f(x) = (x2 - 1)H(x- 1) + (1- x2 )(H(x + 1)- H(x- 1)) 
+(x2 - 1)(1- H(x + 1)) 

= (x2 -1)(2H(x -1)- 2H(x + 1) + 1). 

D 

This formula can be differentiated, using the rule for differentiating a prod­
uct: 

f'(x) = 2x(2H(x -1)- 2H(x + 1) + 1) + (x2 -1)(28(x -1)- 28(x + 1)) 

= 2x(2H(x- 1)- 2H(x + 1) + 1). 

In the last step, we used the formula (8.1). One more differentiation gives 

f"(x) = 2(2H(x -1)- 2H(x + 1) + 1) + 2x(28(x -1)- 28(x + 1)) 

= 2(2H(x- 1)- 2H(x + 1) + 1) + 48(x- 1) + 48(x + 1). 

The first term contains the classical second derivative of Jx2 - 1J, which 
exists for x # ±1; the two 8 terms demonstrate that f' has upward jumps 
of size 4 for x = ±1. See Figure 8.4. D 

Example 8.26. Let a > O and b be real constants. If f E S', define g by 
g(x) = f(ax + b). This means that (using symbolic integrals) 

J J (y-b)dy j (x-b)dx g[cp] = f(ax+b)cp(x) dx = f(y) cp -a- ~ = f(x) 'P -a- ~' 

(8.2) 
i.e., 

What connection holds between the derivatives of f and g? By the defini­
tion of g' we should have 

g'[cp] = -g[cp'] =-J f(ax + b)cp'(x) dx. 
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What is the effect of the distribution h that is symbolically written h( x) = 
af'(ax + b)? Well, using the same change of variable as in (8.2) we get 

J J (x-b)dx 
h['P] =a J'(ax + b)'P(x) dx =a J'(x) 'P -a- ~ 

and the definition of f' then yields 

J d (X- b) 1 J (X - b) h['P] =- f(x) dx 'P -a- dx = -~ f(x) 'P' -a- dx, 

which, after a change of variable, proves to be - J f(ax + b) 'P'(x) dx. If 
a < O, the computations are analogous ( there will occur a couple of minus 
signs that cancel in the end). We ha ve then proved that the formula g' ( x) = 
af'(ax + b) holds even for distributions. (In fact, the chain rule will hold 
also for more general changes of variable than these, but we will not delve 
deeper into this. Too "general" changes of variable may lead us out of the 
spaces S and S' where we have chosen to stay in this exposition.) O 

Using the new notion of derivative, we have now a solution of the old 
trouble with the wave equation, c2uxx = Utt. If we let f and g be two 
functions on R and form 

u(x, t) = f(x - d) + g(x + d), 

we can take derivatives of f and g in the distribution sense. Using the chain 
rule as in Example 8.26 it is seen immediately that u satisfies the equation. 

In what follows we shall need the following result. 
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Theorem 8.1 If f E S', then f' = O if and only if f is a constant function. 

To prove the theorem we need a lemma. 

Lemma 8.2 A test function <p E S is the derivative of another function in 
S if and only if JR <p(x) dx =O. 

Clearly, if <p = <P', then J <p = <P( oo) - <P( -oo) = O, so the hard part 
is to prove the converse statement. If J <p = O, we can define a primitive 
function <P by 

<P(x) = j_xoo <p(y) dy = -1oo <p(y) dy. 

Obviously, <P is infinitely differentiable, for q>(k) = <p(k-1), and estimates of 
these derivatives are no problem. What remains is to show that the function 
itself tends to zero quickly enough. However, if nisan integer, we do know 
that \<p(y)\:::; C/(1 + \y\)n+2 for some C, and for x;::: O we then have 

{ 00 Cd 
(1 + \x\t!<P(x)\:::; (1 + \x\t lx (1 + \y\~n+2 

< (1 + \x\)n { 00 Cdy < C 
- (1 + \x\)n lx (1 + \y\) 2 - 1. 

For x < O, we can do the analogous thing to the other one of the integrals 
that define <P. This shows that <PE S', and the lemma is proved. 

Proof of Theorem 8.1. Saying that f is the constant c means that f is 
identified with the differentiable function f(x) = c; in this case, the new 
derivative coincides with the traditional one, so that f' = O. The converse 
is harder. Assume that f' =O. Then 

f[<p'] = - f'[<p] =O for all <p E S. (8.3) 

However, we must know what f' does to an arbitrary test function. Let '1/Jo 
bea fixed test function such that J '1/Jo(x) dx = 1. For an arbitrary <pE S, 
put A= J <p(x) dx. Then <p- A'l/Jo is a test function with integral O, and 
by the lemma it is the derivative of some function belonging to S. Put 
c = /['1/Jo]. Using (8.3) we find that 

O= f[<p- A'l/Jo] = f[<p]- Af['l/Jo] = f[<p]- J <p(x) dx · /['1/Jo] 

= f[<p]- c J <p(x) dx, 

and it follows that f[<p] = J c<p(x) dx, which means that f can be identified 
with the constant c. D 

Let li E S' for j = 1, 2, 3, .... Suppose that g E S' has the property 
that limj-+oo li [<p] = g[<p] for all <p E S. Then we say that the sequence 
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{fi} converges inS' to g, which we write as fi -+ g or, when precision is 

needed, fi ~ g. This sort of convergence is clearly simple and natural. An 
immediate consequence is that every positive summation kernel (Sec. 2.4) 
converges to the Dirac distribution. 

Remark. A curious reader is probably missing one operation among the defi­
nitions that we have made: multiplication. It turns out, however, that it is not 
possible to define the product of two distributions in general. It is possible to 
multiply certain couples, but other products cannot be given a meaningful inter­
pretation. In this text we have treated a simple case: the product of a so-called 
multiplicator function and a distribution. This case will be sufficient for our 
present needs. O 

Exercises 

8.4 Show that x 28111 = 68'. 

8.5 Prove the following formula: x(x)8'(x- a)= x(a)8'(x- a)- x'(a)8(x- a). 

8.6 Find the third derivative of \x3 - x2 - x + 1\. 

8.7 Show that the distributional derivative of ln \x\ is P.V.(1/x). 

8.8 Show that the derivative of f = P.V.(1/x) is described by the formula 

f'[cp] = -Iim { cp(x) ~ cp(O) dx. 
e\..0 }lxi?.e X 

8.9 Consider Exercise 2.20, page 25. Interpret this exercise as a result in distri­
bution theory. Sketch the graph of the "kernel" occurring in the problem. 

8.5 Fourier transformation 

If r.p E S, it is certainly true that r.p E L1 (R), and in addition r.p(k) E 
L1 (R) for all k ~ 1. This means that r.p and all its derivatives have Fourier 
transforms: 

cPW(w) = L r.p(k)(x) e-iwx dx. 

Integrating by parts and using the fact that r.p(ml(x) decreases rapidly as 
x -+ ±oo, one can see that 

Since the transform of r.p(k) is bounded (Theorem 7.1), it follows that 
lwlklcP(w)l ~ ck, i.e., cP decreases at least as fast as 1/lwlk at infinity; 
and this is true for all k ~ O. Furthermore, we can form the derivative of 
cP: 
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where differentiation under the integral sign is allowed because the resulting 
integral converges uniformly (again we use that rp(x) is small when lxl is 
large). Thus, cp E c=. But on the last integral we can again apply the 
same procedure as above to see that the derivatives also decrease rapidly 
as w ---+ ±oo. Collecting our results, we have proved part of the following 
theorem. 

Theorem 8.2 The Fourier transformation :F is a continuous bijection of 
the space S onto itself. 

In plain words: if rp E S on the x-axis, then :F( rp) = rp E S on the w-axis, 
and every function 'lj;(w) belonging to S is the Fourier transform of some 
function rp E S. The latter statement follows from the fact that if 'lj;(w) 
belongs to S, then one can form the inverse Fourier transform rp of 'lj;: 

rp(x) = - 'lj;(w) etxw dw. 1 h . 
2n R. 

(8.4) 

Just as in the argument before the theorem, one sees that rp will be a 
member of S on the x-axis and that the Fourier inversion formula gives 
that rp = 'lj;. 

The fact that the Fourier transformation is a continuous mapping from 

S to S means that if tpj ~ 'lj;, then also f; ~ ;;J. We omit the details of 
the proof of this fact; essentially it hinges on the fact that the expressions 

m~(1 + lwl)nlf;(k)(w)- ;j}(k)(w)l 
wER 

can be estimated by the corresponding expressions for (1 +lxl)k lrp;n) -'lj;(n) 1· 
(Roughly speaking, differentiation on one side corresponds to multiplication 
by the variable on the other side.) 

Again we stress that if rp E S, then the Fourier inversion formula (8.4) 
will always hold. There are no convergence problems for the integral, since 
cp( w) tends rapidly to zero at both infinities. The definition of S is tailored 
so that the Fourier transformation shall have all these nice properties. 

Now we want to define the Fourier transform of a distribution. As a 
preparation, we do a "classical" calculation. Assume that f ( x) and g( w) 
are functions belonging to Ll, each on its own axis: 

llfll1 = L lf(x)l dx < oo, llgll1 = k lg(w)l dw < oo. 

The Fourier transforms Î and g both exist: 

J(w) = L f(x) e-iwx dx, 

and they satisfy the inequalities IÎ(w)l :::; llfll1 and lg(x)l :::; llglll· The 
function f(x) g(w) e-ixw will then be absolutely integrable over the plane 
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R x îi, and the integral can be computed by iteration in two ways. This 
gives the identity 

JJ f(x)g(w)e-ixwdxdw= Lf(x)g(x)dx= kÎ(w)g(w)dw. 

RxR 

The equality of the two last members is our inspiration. It is, for example, 
true if g = <p E S and f is any L1 function. We extend its domain of validity 
in the following definition. 

Definition 8.5 The Fourier tronsform of fES' is the distribution Î that 
is defined by the formula 

Î[<p] = f[cp] for all <p E S. 

Just as in Chapter 7, we shall also write Î = F(f) (but now we use 
ordinary brackets instead of square ones, in order to avoid confusing it 
with the notation f[<p]). 

Remark. The equality J fii = J fg is sometimes considered to be a variant of 
the polarized version of the Plancherel formula. O 

We proceed to check that Î is actually a tempered distribution. It is clear 
that it is linear: 

Îtc1<p1 + c2<p2] = f[ (c1<p1 + c2<p2)"] =/[clipi+ c2<P'2J 

= cd[i{)l] + c2[<P'2] = c1Î[<p1] + c2Î[<p2]. 

The continuity is a simple consequence of the continuity of the Fourier 

transformation on S: if <pj ~ 'lj;, then 

Î[<pj] = ![~] --t ![~] = Î['lj;], 

which tells us precisely that Î is continuous, and thus a distribution. 
Let us compute the Fourier transforms of some distributions. We start 

with a few examples that are ordinary functions, but do not belong to 
L1(R). 

Example 8.27. Let f(x) = 1 for all x. What is the Fourier transform Î? 
We should have 

Î[<p] = f[cp] = L f(x) cp(x) dx = L cp(x) dx 

= 271' · ;71' L cp(x) eiOx dx = 2n<p(O) = 2m5[<p]. 

It follows that Î = 2n8, or Î(w) = 2n8(w) ifwe want to stress the name of 
the independent variable. (Notice that the test functions and their trans­
forms have reversed independent variables in this connection!) D 
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Example 8.28. Take f(x) = xn (n integer ~ 0). This function defines a 
tempered distribution, and its transform satisfies 

1[cp] = f[cp] = L xn cp(x) dx. 

By the ordinary rules for Fourier transforms we have that (ix)n cp(x) is the 
transform of the function cp(n), which means that xn cp(x) is the transform 
of ( -i)n cp(n). The inversion formula then gives that 1[cp] = 27r( -i)ncp(n)(O). 
In the preceding section we saw that the nth derivative of 8 is described 
by o<nl[cp] = (-l)ncp(n)(O). Thus we must have 1 = 21rino(n). D 

Before giving further examples we present a list of rules of computation, 
which on the face look quite familiar, but now are in need of new proofs. To 
simplify the formulation, we introduce two new notations. First, if f E S', 
then j is what could be symbolically written as f(-x); more precisely, 
we define j[cp] = J f(x)cp(-x)dx. We say that fis even if j = f, odd if 
1= -f. 

Secondly, if a E R and cp E S, we define the translated function 'Pa by 
'Pa(x) = cp(x- a). For f E S' the translated distribution fa is f(x- a), 
which means fa['P] = J f(x)cp(x +a) dx = f[cp-a]· (This notation is a 
generalization of the notation O a to arbitary distributions.) 

Theorem 8.3 If J, g E S', then 

(a) f is even/odd -{:::=> 1 is even/odd. 

--
(b) 1=21rj. 

(c) Îa = e-iaw j. 

(d) :F(eiax!) = (1)a· 

(e) 1' = iwf. 

(f) ;j = i(1)'. 

Proving these formulae are excellent exercises in the definitions of the 
notions involved. As examples, we perform the proofs of rules (d) and (e): 

(d): The effect ofthe left-hand member on a test function cp is rewritten: 

Each equality sign corresponds to a definition or a theorem: the first one 
is the definition of the Fourier transform; the second one is the definition 
of the product of a function and a distribution; the third one is a rule 
for "classical" Fourier transforms; the fourth is again the definition of the 
Fourier transform; and the last one is the definition of the translate of a 
distribution. 
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(e) is proved similarly; the reader is asked to identify the reason for each 
equality sign in the following formula: 

f[<p] = !'[cp] =-f[(cp)'] =- f[F( -iw<p)] = f[F(iw<p)] = 1[iw<p] 

= (iw1)[<p]. 

We proceed to give more examples of transforms of distributions. 
D 

Example 8.29. Transform f = P.V.1/x (Example 8.15, page 205): we 
have seen that x f = 1. Transformation gives iD 1 = 2·m5 = 2n H', which 
can be rewritten as iD(1 + 2niH) = O. By Theorem 8.1 it follows that 
1+2niH = c =constant, whence 1 = c-2niH. To determine the constant 
we notice that f is odd, and thus 1 must also be odd. This gives c = ni 
and 1 = ni(1- 2H). 

If we introduce the function sgnx = x/lxl (the sign of x), we can write 
the result as 1 = -nisgnx. D 

Example 8.30. H = the Heaviside function. In Example 8.29 we saw that 

1 . 
F{P.V.- )(w) = n~(1- 2H(w)). 

X 

Since both sides are odd distributions, rule (b) gives 

( 1)v 1 
niF(1- 2H)(w) = 2n P.V.;;; = -2nP.V.;;;. 

On the other hand, F(1- 2H) = Î- 2fi = 2n8- 2fi. From this we can 
sol ve 

~ 1 
H = n8(w)- iP.V.-. 

w 

As a finale to this section we prove the following result. 

D 

Theorem 8.4 If fES', then xf(x) is the zero distribution if and only if 
f = A8 for some constant A. 

Proof. Transformation of the equation xf(x) = O gives if = O, and by 
Theorem 8.1 this means that 1 = C, where C is a constant. Transform 
back again: since Î = 2n8, we find that f must bea constant times 8, and 
the proof is complete. D 

By translation of the situation in the theorem, it is seen that the following 
also holds: if fES' and (x- a)f(x) =O, then f = A8a for some constant 
A. This can be further generalized. If x is a multiplicator function that has 
a simple zero at the point x =a, and xf =O, then f = A8a. The proof is 
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built on writing x(x) = (x-a)'lj;(x), where '1/J(a) #-O, and then the previous 
result is applied to the distribution '1/J f. 

A different kind of generalization ofTheorem 8.4 is given in Exercise 8.14. 

Exercises 

8.10 Determine the Fourier transform of f(x) = e-x H(x). What is the transform 
of 1/(1 + ix)? Of x/(1- ix)? 

8.11 Let fr = P.V.1/x. Define recursively fn for n = 2, 3, ... by fn+1 = - J~jn. 
Prove that xn fn = 1 for n = 1, 2, 3, .... 

8.12 Find the Fourier transform of x3 /(1 + x 2 ). 

8.13 Find a tempered distribution f that solves the integral equation 

1= e-u f(t- u) du= H(t), -oo < t < oo, t =1- O. 

Check your result by substituting into the equation. 

8.14 Suppose that fES' is such that xn f =O for an integer n. Prove that f is 
a linear combination of c5(k), k =O, 1, ... , n- 1. 

8.15 Let f bea function of moderate growth on R such that 

111 f(x) = - f(x- t) dt for all x E R. 
2 -1 

(That is, f(x) is always equal to its mean value over the interval of length 
2 with x in its middle.) Prove that f must be a polynomial of degree at 
most 1. (Hint: take Fourier transforms and use the result of the preceding 
exercise.) 

8.6 Convolution 

Two test functions in S can always be convolved according to the recipe in 
Sec. 7.5, because the defining integral 

f * g(x) = l f(x- y)g(y) dy = l f(y)g(x- y) dy 

converges very nicely. But the operation of convolution can be extended to 
more general situations. If one of the functions is continuous and bounded, 
and the other one belongs to L1(R), it works nicely, too. Now we shall take 
one of them to be a distribution and the other one a test function: thus let 
f E S' and rp E S. By the convolution of f and rp we mean the function f * rp 
given by f * rp(x) = fl'f?x] = jy[rp(x- y)], where the subscript y indicates 
that the distribution acts with respect to the variable y. With a symbolic 
integral: f * rp(x) = J f(y)rp(x- y) dy. 



8.6 Convolution 219 

The convolution is thus an ordinary function of the variable x. One can 
also prove that it is infinitely differentiable. This follows from the fact that 
for each fixed x, the sequence of functions '1/Jh, defined by 

·'· () cp(x+h-y)-cp(x-y) 
y 1--+ 'f/h y = h , 

will converge in the sense of S, as h -t O (with the function y 1-+ cp'(x- y) 
as the limit). (The verification of this statement is somewhat complicated; 
it involves the notion of uniform continuity.) This implies that 

f * cp(x + h)- f * cp(x) = /y[cp(x + h- y)]- /y[cp(x- y)] = !['1/Jh] 
h h 

-t /y[cp'(x- y)] = f * cp'(x). 

The reasoning can be iterated, and one finds that f * cp has derivatives of 
all orders, that also satis!'y 

Dn(f * cp) = J * cp(n). 

What is the result of Fourier transforming a convolution of this type? 
The reader should be prepared for the answer. A proof of this runs along 
these lines: let '1/J be an arbitrary test function: 

cp7J['I/J] = cp * ![-$] = J cp * f(x) -if;(x) dx = J J cp(x- y) f(y) -if;(x) dx dy, 

rp Î['I/J] = Î['P'I/Jl = ![~] = f [2~ & * ,;;;] = f[cp * -$] 

=fx[fcp(y-x)-if;(y)dy] = JJ f(x)cp(y-x)-iJ;(y)dxdy. 

Sin ce cp7J and cp Î ha ve the same effect on any test function, they are 
the same distribution. (The proof may seem defective inasmuch as certain 
integrals are "symbolic", but this can be justified.) 

The definition of convolution can be extended further by going a round­
about way via the Fourier transform and the formula f * g = ;:-1 (Îg), but 
for this we refer to deeper texts. 

The Dirac distribution 8 has a special relation to the convolution oper­
ation. As soon as the convolution is defined, one has 8 * f = f. Indeed, if 
f is continuous, we have 

8 * f(x) = J 8(y)f(x- y) dy = [f(x- y)]y=O = f(x). 

Algebraically, this means that 8 is a unit element for the operation *· 
Exercises 
8.16 Compute the convolution 8(n) * j, where fis a function belonging to e. 
8.17 Prove that f * cp['ljl] = j[r,O * 'ljl], whenever f E S and cp, 'lji E S'. (This could 

be taken as an alternative definition of f * cp.) 
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FIGURE 8.5. 

8.7 Periodic distributions and Fourier series 

The intention of this section is to give just a hint about how distribution 
theory actually can be used to unify the classical notions of Fourier series 
and Fourier transforms to make them special cases of one notion. 

A tempered distribution fis said tobe periodic with period 2P, if f[cp] = 
f[it?2P] for all cp E S or, symbolically, J f(x)cp(x) dx = J f(x)cp(x- 2P) dx 
for all cp E S. 

Example 8.31. A simple example of a distribution with period 271' is the 
so-called pulse tmin (see Figure 8.5): 

III= L 821l'n or III(x) = L 8(x- n · 211'). 
nEZ nEZ 

That this is actually a tempered distribution hinges essentially on the fact 
that the sum 

III[cp] = L cp(x + n · 211') 
nEZ 

is convergent, which follows from the estimate jcp(x+n·27r)l::; M/(1+n2), 
which is true for all cp E S (with wide margins). O 

Let us investigate what the Fourier transform of a periodic distribution f 
should look like. For simplicity, we assume that the period is 27!', so that we 
have h7l' = f. Direct transformation gives, using rule ( c) in Theorem 8.3, 

Evidently, for all w such that e-27l'iw #- 1, Î must be zero; this holds for all 
w #- integer. At integer points w = n, the factor 1- e-27l'iw has a simple 
zero, i.e., it behaves essentially like a nonzero constant times the factor 
(w- n). Using Theorem 8.4 (in a "local" version) we see that Îhas a point 
mass at w = n, i.e., a multiple of 8n. Thus we can write 

Î = L "'fn8n or Î(w) = L "'fn8(w- n) 
nEZ nEZ 

for certain constants "Yn· 
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In order to identify the coefficients "fn, we consider the particular case 
when f is a "nice" 21r-periodic function. Then f has a nicely convergent 
ordinary Fourier series, so that we can write 

f(x) = :L: Cneinx' 
nEZ 

1 111' . Cn =- f(x) e-mx dx. 
27r -11' 

If it is permissible to form the Fourier transform term by term, we could 
use the fact that the transform of eiox is 2m50 , and we would get 

Î(w) = :L: Cn · 21r8(w- n). 
nEZ 

Thus it seems that the coefficients of the pulse train that makes up Î are 
nothing but the classical Fourier coefficients of f ( multiplied by the factor 
27r). 

Formally, the inversion formula for the periodic distribution f would look 
like this: 

1~~ . 1~"' . f(x)"'- ~ f(w)e•xw dw = - ~ ~ Cn · 27rc5(w- n) e•xw dw 
27r R 27r R z nE 

= L Cnc5n[eixw] = L Cneinx, 
nEZ nEZ 

i.e., the inversion formula is the ordinary Fourier series. 
All these calculations can in fact be justified, and this is dane in more 

complete texts. It turns out that an arbitrary 21r-periodic distribution f 
has a Fourier series/transform of the form L: Cneinx and 21r L: cn8n, re­
spectively, where the coefficients satisfy an equality of the form lcn 1 :::; 

M(1 + jnl)k for some constants M and k; and, conversely, a pulse train 
with such coefficients is the Fourier transform of some periodic distribu­
tion. 

Exercise 
8.18 Find the Fourier transform of the pulse train III in Example 8.31. 

8.8 Fundamental solutions 

Let P(r) bea polynomial in the variable r, with constant coefficients. P(r) 
is the characteristic polynomial of the differential operator P(D), which 
can operate on functions or distributions: 

P(r) = anrn + an-1rn-1 + · · · + a1r + ao, 

P(D) = anDn + an-1Dn-1 + · · · + a1D + ao, 

P(D)y = any(n) + an-1Y(n-1) + · · · + a1y' + aoy. 
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For example, P(D) can be considered as a linear mapping S'-+ S'. 
If P(D) operates on a convolution f * <p, where, say, f E S' and <p E S, 

then the linearity and the rule for differentiation of a convolution imply 
that the result can be written 

P(D)(f * <p) = (P(D)f) * <p = f * (P(D)<p). 

Now suppose that EE S' is a distribution such that P(D)E = 8, and let 
f be an arbitrary continuous function. Then we have 

P(D)(E * f) = (P(D)E) * f = 8 * f = f. 

Thus, if we have found such an E, we have a recipe for finding a particu­
lar solution of the differential equation P(D)y = J, where the right-hand 
member fis an arbitrary (continuous) function. One says that E is a fun­
damental solution of the operator P(D). 

Example 8.32. Let a > O. Let us find a fundamental solution of the 
familiar operator P(D) = D 2 + a2 , i.e., we want to find a distribution E 
such that E" + a2 E = 8. Fourier transformation gives 

(iw) 2E+a2E=8=1, 

and at least one solution of this ought to be found by solving for E like 
this: 

F; = 1 = _!_ (-1 __ 1 ) = _!_ ( 2 _ 2 ) . 
-w2+a2 2a w+a w-a 4a i(w+a) i(w-a) 

(The two fractions in. the last expression are interpreted as P.V.'s, as in 
Example 8.15.). We recognize that the Fourier transform ofsgnt is 2/(iw), 
which gives 

y(t) = _j_(e-iatsgnt- eiatsgnt) = _!_sgntsinat = _!_ sinat · (2H(t) -1). 
4a 2a 2a 

Just tobe safe, we check by differentiating: 

y' (t) =_!_(a cos at(2H(t) - 1) +sin at · 28(t)) = ~(cos at(2H(t) - 1) ), 
2a 

y"(t) = ~( -asinat(2H(t)- 1) + cosat · 28(t)) 

= -~ sinat · (2H(t)- 1) + 8(t) = -a2y(t) + 8(t). 

Exercise 

D 

8.19 Find fundamental solutions ofthe operators (a) P(D) =D-a, (b) P(D) = 
D 2 + 3D + 2, (c) P(D) = D 2 + 2D + 1, (d) P(D) = D 2 + 2D + 2. 
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8.9 Back to the starting point 

We round off the chapter by looking back at the first section, 8.1, where 
we presented a number of "problems." Most of these have now found some 
sort of solution. 

Problem 8.1 was settled in Example 8.26: even an angular wave-shape 
has derivatives in the distributional sense, and these derivatives satisfy the 
wave equation. 

Problems 8.2-4 dealt with point charges of different kinds; the solution, 
as we have seen throughout the chapter, is to make the o notion legitimate 
by viewing it as a distribution. 

Problem 8.5 may be said to have been solved by the very idea of consid­
ering distributions as linear functionals on a space of test functions. 

There remains Problem 8.6. Let us first take the heat problem with the 
unknown function u = u(x, t): 

Uxx = Ut, X E R, t > O; u(x, O) = f(x), x E R. 

We can now let f be a tempered distribution on R. Assume that for every 
fixed t, the thing that is symbolically denoted by x f-t u(x, t) is a tempered 
distribution, and also assume that one can reverse the order of differen­
tiation with respect to t and Fourier transformation with respect to x. If 
the Fourier transform of u with respect to x is denoted by U ( w, t), as in 
Sec. 7.7, we get the same transformed problem as we got there: 

2 au 
-w U = /!it, t > O; U(w,O) = f 

This differential equation can be solved just as before, and we get U(w, t) = 
2 ~ 

e-w t · J, where the right-hand member is now a product of a test function 
and a tempered distribution. Transforming back again we get u(x, t) = 
E(x, t) * J, which is a convolution of a test function and a tempered dis­
tribution, as in Sec. 8.6. An interesting fact is now that such a convolution 
is actually an ordinary function, and furthermore this function has deriva­
tives of all orders that actually satisfy the heat equation. The initial values 
are the distribution f in the sense that 

S' 
u(-, t) ---+ f as t \.t O. 

The Dirichlet problem in the half-plane, which was considered in Sec. 7.8, 
can be treated in a similar way. A minor complication is the fact that the 
Poisson kernel 

R ( ) y 1 
Y x =:; y2 + x2 

is not a test function, but the definition of convolution in Sec. 8.6 can be 
extended to encompass this case as well. 
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Summary of Chapter 8 

Definit ion 
We say that a function cp belongs to the Schwartz class S if cp has derivatives 
of all orders and these satisfy inequalities of the form 

where Cn,k are constants for all integers n and k that are 2: O. 

Definit ion 
A sequence {cpj}~ 1 C Sis said to converge inS to a function 'lj; E S iffor 
all integers n 2: O and k 2: O it holds that 

Iim max(l + [x[tfcp(k)(x)- 'lj;(k)(x)[ =O. 
J--tOO xER J 

Definit ion 
A tempered distribution f is a mapping f : S -+ C having the properties 

(1) linearity: J[c1cp1 + c2cp2] = cif[cpl] + c2f[cp2] for all 'Pk E S and scalars 
Cki 

(2) continuity: if cpj ~ 'lj; as j-+ oo, then also Iim f[cpj] = f['lf;]. 
J--tOO 

The set of all tempered distributions is denoted by S'. 

Intuitively, a distribution on R is a sort of generalized function; it need 
not have ordinary function values, but somehow it lives on the axis, and 
its "global" behavior is a sort of sum of its "local behavior". For example, 
the Dirac distribution o is zero everywhere except at the origin, where it is 
in a certain sense infinitely large. 

Definit ion 
If f E S', a new tempered distribution f' is defined by 

f'[cp] = - f[cp'] for all cp E S. 

We call f' the derivative of J. 
Theorem 
If f E S', then f' = O if and only if f is a constant function. 

Theorem 
The Fourier transformation :F is a continuous bijection of the space S onto 
itself. 
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Definit ion 
The Fourier transform of f E S' is the distribution Î that is defined by the 
formula 

Î[~P] = ![$] for all <p E S. 

If fES', then j is what could be symbolically written as f(-x); more 
precisely, j[<p] = J f(x)<p(-x)dx. We say that fis even if j = J, odd if 
1= -f. 

If a E R and <p E S, we define the translated function 4'a by 4'a(x) = 
<p(x- a). For f E S' the translated distribution fa is f(x- a), which means 
!a[4?] = J f(x)<p(x +a) dx = /[4'-al· 
Theorem 
If J,g E S', then 

(a) fis even/odd {=:=:} Îis even/odd. 

(b) f = 27rj. 

(c) Îa = e-iaw j 

(d) F(eiax!) = (Î)a· 

(e) Î' = iw[ 

(f) ;f=i(Î)'. 

Historical notes 

The notion of a point mass was imagined already by ISAAC NEWTON (1642-1727) 
in his description of the laws of gravity. Many physicists and applied mathe­
maticians, such as OLIVER HEAVISIDE, in the nineteenth century, used this and 
analogous concepts, with a varying sense of bad conscience, because they had no 
stringent mathematical formulation. PAUL DIRAC (1902-84), who won the No­
bel Prize in Physics in 1933, discussed the problem closely and his name was 
associated to the object c5. 

A mathematically acceptable definition of distributions was given around the 
middle of the twentieth century by LAURENT SCHWARZ (1915-2002). Simulta­
neously, a number of Russian mathematicians developed a similar theory in a 
quite different way. They talked about generalized functions, defined as limits of 
sequences of ordinary functions in a certain manner. It was soon discovered that 
the two definitions in fact give rise to equivalent notions. 

The definitions are easily extended to severa! dimensions, so that one talks 
about distributions on Rn. These objects have an enormous importance in the 
study of partial differential equations. There are also other sorts of generalizations 
to even more general objects, such as hyperfunctions. Research in the field is 
intensive today. 
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Problems for Chapter 8 

If the star-marked sections in Chapters 2-7 have not been studied previously, 
the exercises there could now be looked up and solved. Here are another few 
problems. 

8.20 Which of the following functions belong to S or/and M: e-x2
, e-lxl 5 , 

sin(x2), xn (n integer), 1/(1 + x2). 

8.21 Decide which of these functions can be considered as distributions: e2x, 

e-2x, e2xH(x), e-2xH(x), esinx, (x2 _ 1)3. 

8.22 Find the first and second derivatives (in the sense of distributions) of 
(a) xH(x), (b) lxl, (c) lx2 - xl. 

8.23 Simplify f(x) = '1jJ(x)8"(x- a), where 'ljJ E M. 
8.24 Compute f", where f(x) = 1 sinxl. Draw pictures of J, f', and f". 
8.25 An electric charge q at a point a on the x-axis can be represented by 

q8(x- a). Suppose that we have one charge n at the point 1/n and an 
opposite charge -n at the point -1/n. The "limit" of this system, as 
n -t oo, is called an electric dipole. Describe this limit as a distribution! 

8.26 Find ali tempered distributions f satisfying the differential equation 
f'(x) + 2xf(x) = 8(x- 2). 

8.27 Determine the Fourier transforms of (a) sinax, (b) cosbx, 
(c) xn H(x) (n =O, 1, 2, ... ), (d) 8(x- a)+ 8(x +a), (e) xo'(x). 

8.28 Let a> O. Find the Fourier transforms of e-ax H(x) and eax(l-H(x)) and 
finally of 1/(x + bi), where b is a real number. 

8.29 Find a solution in the form of a tempered distribution of the problem 
y" + a2 y = 8. Then show how this distribution can be used to construct a 
solution of the equation y" + a2 y = J, where fis an "arbitrary" function 
(i.e., a function belonging to some suitable class). 



9 
M uiti-dimensional Fourier analysis 

In this chapter we give a sketch of what Fourier series and integrals look like 
in the multivariable case. There are almost no proofs. Sections 9.1-2 tackle the 
problem of summing a series when the terms have no natm:al sequential order, 
which happens as soon as they are numbered in some other way than by index 
sequences such as 1, 2, 3, ... and similar sequences. In the next few sections we 
indicate what the Fourier analysis looks like. The intention behind these sections 
is to provide a sort of moral support for a student who comes across, say, in his 
physics studies, such things as Fourier transforms taken over all of 3-space - here 
a real mathematician is saying that these things do exist and can be used! 

We have not included anything about distributions. This would have gone far 
beyond the intended scope of this book. But the interested reader should know 
that distributions in Rn are an extremely useful tool, and the theory of these 
objects is both beautiful and exciting. Those who are interested should go on to 
some of the books mentioned in the bibliography. 

9.1 Rearranging series 

In this section we presuppose that the reader is acquainted with the ele­
ments of the theory of numerical series. By this we mean notions such as 
convergence, absolute convergence, and comparison tests. 

As is well known, if we want to compute the sum of finitely many terms, 
the order in which the terms are taken does not matter: 

1 + 2 + 3 + 4 + 5 = 4 + 1 + 5 + 3 + 2. 
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This need not be the case when there are infinitely many terms, i.e., when 
the sum is a series. 

Example 9.1. The series 

is convergent according to the so-called Leibniz test and has a certain sum 
s > ! (it can actually be shown that s = ln2). If we rearrange the terms so 
that each positive term is followed by two negative terms, so that we try 
to sum 

it is rather easy to show that the partial sums now tend to s/2 i= s. O 

The reason things can be as bad as in the example is the following: If we 
add those terms of the original series that are positive, which means that 
we write 

1 + l + ţ + ~ + .. · + 2L1 + .. ·, 
we get a divergent series; in like manner the negative terms also make up 
a divergent series: 

1 1 1 1 1 -2 - 4 - 6 - 8 - ... - 2k - •.. 

This means that the sum of the original series is really an expression of 
the type "oo - oo": there is an infinity of "positive mass" and an infinity 
of "negative mass." Actually, it is not very difficult to describe a process 
that can assign any given number as the sum of such a series, by taking the 
terms in a suitable order. It can also be made to diverge in various different 
ways. Se Exercise 9.1 below. 

A convergent series L:~1 ak of this type, i.e., such that L:%"=1 lakl is 
divergent (= +oo, as it is often written), is said tobe conditionally conver­
gent. The alternative is an absolutely convergent series. For such a series the 
troubles indicated above cannot happen. We are going to prove a theorem 
about this. First we want to give a proper definition of a rearrangement of 
a series. Let Z+ be the positive integers: Z+ = {1, 2, 3, ... }. 

Definition 9.1 Let cp : Z+ ---+ Z+ be a bijection, i.e., a one-to-one map­
ping of the positive integers onto themselves. Then we say that the series 
00 00 

L a..,(k) is a rearrangement of the series L ak. 
k=1 k=1 

Theorem 9.1 An absolutely convergent series remains absolutely conver­
gent and its sum does not change as a result of any rearrangement of its 
terms. 



9.1 Rearranging series 229 

Proof. Put 8 = I:%"=1 ak. Let r.p be a rearrangement bijection and put 
tn = '2::~= 1 acp(k). The starting point is that '2:: ak is absolutely convergent, 
i.e., that 

00 

L lakl =a < +oo. 
k=1 

Let M(n) = max19~n r.p(k). Then certainly 

n M(n) 

L lacp(k)l:::; L laii:::; a< +oo, 
k=1 j=1 

and since a does not depend on n it follows that the rearranged series is 
also absolutely convergent. Now let c >O be an arbitrary positive number. 
Then there exists an No = No(c) such that I:~No+llail < c. If m is large 
enough, the numbers r.p(l), r.p(2), r.p(3), ... , r.p(m) will surely include all the 
numbers 1, 2, 3, ... , No (and probably a lot of other numbers). Then we can 
estimate: for all sufficiently large values of m it holds that 

which means that tm --+ 8 as m --+ oo, and this is what we wanted to prove. 
D 

In certain situations it is natural to consider series with terms indexed by 
all integers: we have seen Fourier series in Chapter 4, and in complex anal­
ysis one considers Laurent series. Such a series I:kEZ ak is (classically) con­
sidered as convergent if the two "halves" I:%"=o ak and '2::~1 a_k are both 
separately convergent. As we have seen in Chapter 4, there are also other 
ways to detine the convergence of such a series. In the case of Fourier series 
it turns out to be natural to study the symmetric partial sums '2::~=-n ak. 

The example 
00 

_Lk 
k=-oo 

shows that these may well converge, although the series is divergent in the 
classical sense. 

Exercise 
9.1 (a) Describe (in principle) how to rearrange a conditionally convergent 

series (for example the one in the introductory example above) to make it 
converge to the sum 4. 
(b) Describe how to rearrange the same series so that it diverges to -oo. 
(c) The series can also be rearranged so that its partial sums make up a 
sequence that is dense in the interval [-13, 2003]. How? 
(d) The partial sums can be dense on the whole real axis. How? 
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FIGURE 9.1. 

9.2 Double series 

Let there be given a doubly indexed sequence of numbers, i.e., a set of 
numbers aij, where both i and j are integers (positive, say). We want to 
add all these numbers, that is to say we want to compute what could be 

00 

denoted by L aij. We immediately meet a difficulty: there is no "natural" 
i,j=l 

order in which to take the terms, when we want to define partial sums. The 
problem can be illustrated as in Figure 9.1: to each lattice point (i,j) (i.e., 
point with integer coordinates) in the first quadrant there corresponds the 
term aij. The terms can be enumerated in different ways, as indicated in 
the figure. None of these orderings is really more natural than the others. 
As seen in the previous section, we must expect to get different end results 
when we try different orderings. 

The mathematician's way out of this dilemma is to evade it. He restricts 
the choice of series that he cares to consider. Each way of enumerating 
the terms in the double series actually amounts to re-thinking it as an 
"ordinary'' series with a certain ordering of the terms. Suppose that one 
enumeration results in a series that turns out to be absolutely convergent. 
By Theorem 9.1, every other enumeration will also result in a series that is 
absolutely convergent, and which even has the same sum as the first one. 
This means that the order of summation does not really matter, and it can 
be chosen so as to be convenient in some way or other. 

00 

We summarize: A double series L aij is accepted as convergent only if 
i,j=l 

it is absolutely convergent. 
The following theorem, which deals with a different kind of rearrange­

ment, can also be proved. 
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00 

Theorem 9.2 Suppose that the double series L aij is ( absolutely) con-
i,j=l 

vergent with sum s. Put 

Then also 

00 00 

Vi= Laij• 
j=l 

Hj = L:aij· 
i=l 

00 00 

s= LVi= LHj, 
i=l j=l 

where all the occurring series are also absolutely convergent. 

(9.1) 

In plain words, the formula (9.1) says that the series can be summed 
"first vertically and then horizontally," or the other way round; (9.1) can 
be written as 

We omit the proof. 
An important case of double series occurs when two simple series are 

multiplied. 

00 00 

Theorem 9.3 Suppose that s = Lai and t = L bj are absolutely con-
i=l j=l 

00 

vergent series. Then the double series L aibj is also absolutely convergent 
i,j=l 

and has the sum s · t. 

Again, we omit the proof and round off with a few examples. 

1 00 

Example 9.2. It is well known that -- = ~ xk, where the series is 
1-x ~ 

k=O 
absolutely convergent for lxl < 1. Then, by Theorem 9.3, we also have 

1 1 1 00 00 00 

(1-x)2 = 1-x ·1-x = l:::XjLxk = L xj+k. 
j=O k=O j,k=O 

We choose to sum this series "diagonally" (draw a picture!): j + k = n, 
n = O, 1, 2, ... , and for fixed n we let j run from O to n: 

1 oo( ) oo(n ) oo (n) 
1 - x 2 = L L xj+k = L L xn = L xn L 1 

( ) n=O Hk=n n=O j=O n=O j=O 

00 

= L ( n + 1 )xn ( = 1 + 2x + 3x2 + 4x3 + ... ) , 
n=O 
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which must be absolutely convergent for lxl < 1. (The doubtful reader can 
check this by, say, the ratia test.) D 

Compare the calculations in the example and the ordinary maneuvers 
when switching the order of integration in a double integral! 

Example 9.3. Convolutions have been encountered a few times in dif­
ferent situations earlier in the book. (A unified discussion of this notion is 
found in Appendix A.) Here we take a look at the case of convolutions of 
sequences. If a= {ai}~-oo and b = {bi}~-oo are two sequences of num­
bers, a third sequence c = { Ci}~_00 , the convolution of a and b, is formed 
by the prescription 

00 

ci= L ai-jbj = L:ai-jbj, ali i E Z, 
j=-oo jEZ 

provided the series is convergent. If, say, a and b are absolutely summable, 
which means that the series L:~oo laii= s and L:~oo lbil =tare convergent, 
this is true, as is seen by the following computations: 

L::lcil= LILai-jbjl:::; LLiai-jbjl = LlbjiLiai-jl 
iEZ iEZ jEZ i j j i 

= L lbjl· s = t · s < +oo. 
j 

Not only does the convolution c exist, it is actually absolutely summable, 
too! One writes c = a * b. D 

In what follows, we shall even encounter series where the terms are num­
bered by indices of dimension greater than 2. For these series, the same 
results apply as in the case we have considered: by "convergence" one must 
mean absolute convergence, or else some particular order of summation 
must be explicitly indicated. 

Exercises 
00 00 

9.2 For a > O, compute the value of the sum L LT(ak+i). 

k=l j=l 

00 

9.3 Compute L k-n. 
k,n=2 

9.4 Suppose that f(x) "'L:aneinx and g(x) "'L:bneinx, where the Fourier 
series are assumed to be absolutely convergent (i.e., L: lanl < oo and 
L: lbnl < oo). Find the Fourier coefficients of h = fg. 
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9.3 Multi-dimensional Fourier series 

We shall indicate how to treat Fourier series in several variables. Practical 
computation with such series in concrete cases easily leads to volumes of 
computation that are hardly manageable by hand. Thus, there is no reason 
to try to acquire milch skill at such computations; but it is of great interest 
for applications that these series exist. 

We shall study functions defined on Td, where d is a positive integer. 
Td is the Cartesian product of d copies of the circle T and is called the 
d-dimensional torus. A typical element of Td is thus a d-tuple 

where Xk E T for k = 1, 2, ... , d. Thus, a function f : Td -+ C is a rule 
that to each x E Td assigns a complex number f(x) = f(x~, x2, ... , xd)· 

An alternative description is to consider functions f : R d -+ C that are 
21r-periodic in each argument, i.e., 

for all Xk E R and all integers nk, k = 1, 2, ... , d. 
Integration over Td should be interpreted and described in the following 

way: 

where the numbers a1, a2, ... , ad can be chosen at will (because of the peri­
odicity). The space LP(Td) consists of all (Lebesgue measurable) functions 
such that 

llf\I~P(Td) := J lf(x)IP dx < oo. 
Tă 

Most important are, as earlier in the book, the cases p = 1, when the 
functions are also called absolutely integrable, and p = 2. In the latter 
case, there is also an inner product 

(!, g) = J f(x) g(x) dx. 
Td 

Functions that agree except for a zero set are identified, just as before; what 
is meant by a zero set is, however, someting new. A zero set is something 
with the d-dimensional volume measure equal to zero. Thus, in T 2 a part 
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of a straight line is a zero set, in T 3 a part of a plane ( or some other smooth 
surface) is a zero set. 

We shall work with d-tuples of integers, which we write as 

These are the elements of the set zd. For X E Td and n E zd we form the 
"scalar product'' 

d 

n · x = n1x1 + n2x2 + · · · ndxd = 2:.:: nkXk. 

k=l 

For this product, a few natural rules hold. Some of these are the following, 
which the reader may want to prove (if it seems necessary): 

(m+n) ·X= m·x+n·x, n· (x+y) = n ·x+n·y. 

We shall also need the functions 'Pn, defined by 

They have a nice property in the space L2(Td): 

(cpm, 'Pn) = J eim·X ein·X dX = J ei{m-n)·X dX 

Td Td 

= J ei{m1-nl)x1 ei{m2-n2)X2 ... ei(md-nd)Xd dXl dx2 ... dXd 

Td 

d 

=IT f ei(mk-nk)xk dxk =O as soon as mk =F nk for some k. 
k=ljT 

It follows that 'Pm is orthogonal to 'Pn as soon as the d-tuple m is different 
from the d-tuple n. But if m = n, each of the integrals in the last product 
will be equal to 271", so that 

For a function f E L 2 (Td), we can define the Fourier coefficients 

Cn = Î(n) = (2~)d J f(x) e-in·x dx 
Td 

= (2~)d !···! f(xl,X2,···•xd)e-i(nlxl+n2x2+-·+ndxd)dxldx2 ... dxd. 

TP 
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The formal Fourier series can be written 

f(x) rv L Cn ein·X 

nEZd 
00 00 

= 2: 2: 
Because of Bessel's inequality, it will converge in the sense of L 2 . Indeed, 
it can be proved that the system {~n}nEZd is complete in L 2 (Td). 

The Fourier coefficients can also be defined if we only assume that 
f E L1 (Td), and we could try to imi tate the theory of Chapter 4. Conver­
gence theorems are, however, considerably more complicated to formulate 
and prove. For most practica! purposes it is sufficient to know that the 
Fourier series "represents" the function, without actually knowing whether 
it converges pointwise in some sense or other. 

Remark. A sufficient condition for pointwise convergence in the case d = 2 is that 
f E C1 (T2 ) and that in addition the mixed second derivative fxy is continuous 
on T 2 . Conditions of this type can, in principle, be established for any value of 
d. Higher dimension requires, in general, higher regularity of the function. D 

When the dimension is low, say, 2, it can be practica! to write such things 
as (x, y) and (m, n) instead of (x1, x2) and (n1, n2). We shall do so in the 
following example. 

Example 9.4. Let f be defined by f(x, y) = xy for lxl < 1r, IYI < 1r. We 
compute its Fourier coefficients Cmn· We shall need the value of the integral 

ak := 111" te-ikt dt = [t e-~kt]11" - ~ 111" e-ikt dt 
-71" -zk -11" -zk -11" 

(-1)k 
= 27ri -- for k E Z \ {0}, ao = O. 

k 

We get 

c = - xy e-t(mx+ny) dx dy 1 111"111" . 
.mn 471"2 -71" -71" 

1 171" . 111" . = - 2 x e-tmx dx y e-my dy 
471" -71" -71" 

G.mG.n (-1)m (-1)n (-1)m+n+l 
= ----- -'----'--- if mn -:1- O, 

m n mn 
Cmn =O if mn = O. 

The series can be written 

J(x,y) rv 

( 1)m+n+l 2: - ei(mx+ny). 
mn 

m,nEZ 
mn=#'O 
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D 

Example 9.5. Of course, other periods than 211" can be treated, and the 
periods need not be the same in different directions. Define f by f(x, y) = 

xy- x2 for -1 < x < 1 and O< y < 211", and assume the period tobe 2 in 
the x variable and 211" in the y variable. The Fourier coefficients are given 
by the formula 

Cmn = _1_11 dx {21r (xy - x2) e-i(mn+ny) dy. 
2 · 21r _1 } 0 

(Effective computation of these coefficients is rather messy, because there 
occur a number of cases such as for one or the other of m and n being zero, 
etc.) D 

It is also possible to study Fourier series for periodic distributions on R d, 

but we leave this out. 

9.4 Multi-dimensional Fourier transforms 

The theory of Fourier transforms is extended to R d in a way that is com­
pletely analogous to our treatment of Fourier series in the last section. 
Notation: elements of Rd are x = (xb x2, ... , xd), and elements of what 
is often called the dual space Rd are written as w = (w1,w2, ... ,wd)· We 
define a "scalar product" 

The fact that f : Rd -+ C belongs to the class L1 (Rd) means that (! is 
Legesgue measurable and) the integral 

llfll1 := Ld lf(x)l dx = J· · ·! lf(x1, x2, ... , xd)l dx1 dx2 · · · dxd 
Rd 

is convergent. Then for all w E Rd, the integral 

Î(w) = r j(x) e-iW·x dx, 
jRd 

exists, and the function Î: Rd -+ C is called the Fourier transform of 
f. Under suitable conditions, one can recover J, in principle, through the 
formula 

f(x) = (2!)d kd Î(w) eix·W dw. 

Sufficient conditions for this to hold pointwise are, for example, that Î E 
L1(Rd) or that fis sufficiently regular (has continuous derivatives of suffi­
ciently high order, and this order depends on the dimension d). But also in 
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other cases, the Fourier transform can be said to "represent" the function 
in some sense, and it can be used in various kinds of calculations. The L 2 

theory indicated in Section 7.6 (including Plancherel's theorem) can also 
be generalized to higher dimensions. 

Example 9.6. An important application of the transform is found in 
the theory of probability, where the multi-dimensional normal distribution 
is used. In dimension d, a normalized version of this is described by the 
density function 

1 12 2 2 1 12 
f(x)= (2rr)d/2 exp(-2(x1+x2+···+xd))= (2rr)d/2 exp(-21xl ). 

It holds that llfll1 = 1, and it is easy to compute the Fourier transform or 
characteristic function 

d 

Î(w) = 1 { e-lxl2 /2 e-iW·x dx = II 1 { e-x%/2 e-iwkxk dxk 
(2rr)d/2 }Rd k=1 (2rr)1/2 JR 

d 

=II e-w%/2 = exp( -!lwl2). 
k=l 

Here we have made use of our knowledge of the ordinary one-dimensional 
transform of the function e-x2 12 . O 



Appendix A 
The ubiquitous convolution 

The operation known as convolution appears, in a variety of versions, 
throughout the theory. We shall here indicate what also makes this op­
eration so important in applications. 

In a purely mathematical setting, we find that convolutions of number 
sequences occur when we multiply polynomials and related objects such as 
power series. Given two polynomials 

P(x) = ao+a1x+a2x+···+amxm, Q(x) = bo+b1 +b2x2+···+bnxn, 

we multiply these term by term to get a polynomial 

PQ(x) = co + C1X + c2x2 + · · · + Cm+nxm+n. 

It is easily seen that its coefficients are given by 

co = aobo, c1 = aob1 + a1bo, c2 = aob2 + a1b1 + a2bo, 

and, in general 

ck = aobk + a1bk-1 + a2bk-2 + · · · + akbo = 2.:: ajbj. 
i+j=k 

This formula exhibits the characteristic property of a convolution: two 
"numbered objects" are combined so that the sums of indices is constant, 
to form a new "numbered object". If the objects are "numbered" using a 
continuous variable, we have to deal with integrals instead of sums. 

Now we turn to applications. We study a "black box," i.e., a device that 
converts an insignal f(t) into an outsignal g(t). We shall assume that the 
device satisfies a few reasonable conditions, namely, the following: 
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(a) It is invariant under translation of time, which means that if we feed it 
a translated input f(t- a), then the output is similarly translated to 
have the shape of g(t- a). In plain words, this condition amounts to 
saying that the device operates in the same way whatever the clock 
says. 

(b) It is linear, which means that if we in put a linear combination such 
as aft(t) + f3h(t), the output looks like ag1(t) + f3g2(t) (with the 
natural interpretation of letters). This is a reasonable assumption for 
many (but certainly not all) black boxes. 

( c) It is continuous in some way ( which we shall not specify explicitly here), 
so that "small" alterations of the input generate "small" changes in 
the output. 

(d) It is causal, which means that the output at any point ta intime cannot 
be influenced by the values taken by f(t) fort > t0 . 

In the first case to consider, we assume that we sample both input and 
output at discrete points in time. This means that the input can be rep­
resented by a sequence f = {ft}~_00 , and the output is another sequence 
g = {gt}~_00 • For a start, we assume that the input is O for all t <O. The 
conditions (d) and (b) then force the output to have the same property. It 
will be practica! to denote these sequences as f =(!o, ft, /2, ... ). 

Let d be the input sequence (1, O, O, O, ... ), and suppose that it results 
in the output a := ( ao, a1. a2, ... ) ( the impulse response). By causality 
and translation invariance, it is then clear that the postponed input dn = 
(0, ... , O, 1, O, O, ... ) yields the output an= (0, ... , O, ao, a1, a2, ... ). By lin­
earity, then, the input 

n 

f= (fo,ft, ... ,fn,O,O, ... ) = Lfkdk 
k=O 

must produce the output 

n 

Lfkak 
k=O 

= (foao, foa1 + ftao, foa2 + fta1 + hao, ... , 'L,j=o !Jan-j, O, O, ... ). 

Finally, by continuity, we find that an arbitrary input f = (!o, h, /2, ... ) 
must produce an output g = (go,gl,g2, .. . ), where 

gn = foan + ftan-1 + han-2 + · · · + fnao, n =O, 1, 2, .... 

We call g the convolution of f and a, and we write g = f * a. 
Now we remove the condition that everything starts at time O. We return 

to the notation f = {ft} = Ut}~-oo· We we assume that an input f may 
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start at any time t = -T, where T may also be positive. The invariance 
of the bla~k box under translation of time indicates what_ must happen 
now. Let f and g be the translated sequences defined by_ft = ft-T and 
!it = gt-T fort :::0: O. By property (a) we must have g = f *a, where a is 
the sequence a above, extended by zeroes for negative indices. This means 
that !it = I:~=O akÎt-k for all t :::0: O. We rewrite this with t replaced by 
t + T and get 

t+T t+T 
gt = fit+T = L akft+T-k = L akft-k, t 2: -T. 

k=O k=O 

If we let ft =O for all t < -T, we can write this as 

00 t 

gt = L akft-k = L at-kft. 
k=O k=-oo 

This formula defines the convolution of two sequences a and f, where now 
all the ft may be different from zero - we can treat the case, theoretically 
possible, of an "input" that has no beginning. 

It is also possible to consider the same sort of notion where the other 
convolution factor a also has "no beginning." This leads us to the formula 
for the convolution of two doubly infinite sequences a = { at}~oo and f = 
{ft}~oo: 

00 00 

(A.l) 
k=-oo k=-oo 

This case may not be physically interesting for the description of (causal) 
black boxes and the like, but it is interesting as a mathematical construc­
tion. 

We now turn our interest to functions defined on a continuous t-axis. The 
analysis above, that depends on simple notions of linear algebra, cannot be 
imitated directly. Also, we do not attempt a completely stringent treatment, 
but content ourselves by a more intuitive approach. 

Let f(t) be the input and g(t) the output, as before, and introduce a 
"black box function" <p(t) that describes the device. In fact, let <p(t) be 
the impulse response, i.e., it descibes the output resulting from inputting a 
Dirac pulse 8(t) at t = 0; By causality and linearity, <p(t) =O fort < O. For 
any number u, by translation invariance, the input 8(t- u) must result in 
the output <p(t- u). Now consider an arbitrary input f(t). The properties 
of 8 imply that 

f(t) = i: f(u)8(t- u) du. (A.2) 

Linearity and continuity now imply that the output due to f should be 

g(t) = f * <p(t) = i: f(u)<p(t- u) du. (A.3) 
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(This conclusion could be supported in the following way: the integral 
in (A.2) might be approximated by "Riemann sums" E f(uk)8(t- uk), 
and linearity tells us that the response to this is the corresponding sum 
E f(uk)cp(t- uk), which is an approximation to (A.3). This is, however, 
not logically rigorous, because a Riemann sum involving 8 is really rather 
nonsensical.) 

In the considerations leading up to (A.3) we assumed that cp(t) = O for 
t < O, which means that the interval of integration is actually ] - oo, t[. 
If, in addition, the input does not start before t = O, the integral is to be 
taken over just [0, t], and we recognize the variant of the convolution that 
appears in connection with the Laplace transform. 

Just as in the discussion of sequences, these restrictions on f and cp can 
be totally removed for more general applications. 
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The discrete Fourier transform 

This appendix is an introduction to a discrete (i.e., "non-continuous") coun­
terpart of Fourier series. If you like, you can view it as an approximation 
to ordinary Fourier series, but it has considerable interest on its. own. In 
applications during the last half-century, it has acquired great importance 
for treating numerical data. One then uses a further development of the 
elementary ideas that are presented here, called the fast Fourier transform 
(FFT). 

For convenience, we study the interval (0, 27r). In this interval we single 
out the points Xk = k · 211"/N, k = 0,1, ... ,N -1, which make up a set 
G=GN: 

' { 27rk } G=GN={xk:k=0,1,2, ... ,N-1}= N: k=0,1,2, ... ,N-1 . 

Consider the set lN = l2 (GN) of functions f: GN--+ c (cf. Sec. 5.3). For 
each k, f(xk) is thus a complex number. The set lN is a complex vector 
space. It is easy to construct a natural hasis in this space: let en be the 
function on GN defined by en(xk) = 1 for k = n, =O for k =/= n; then it is 
easily seen that {en};;=:l makes up a linearly independent set, and for each 
f E lN it holds that f = r,:;:01 f(xk)ek, which means that { en} spans the 
space lN. Thus, the dimension of the complex vector space is N. 

In lN we define (just as in Sec. 5.3) an inner product by putting 

N-1 

{!, g) = L f(xk) g(xk). 
k=O 
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The hasis { en} is orthonormal with respect to this inner product. We now 
proceed to construct another hasis, which will prove to he orthogonal. Begin 
hy letting w = WN = exp(27ri/N) (w is a so-called primitive Nth root 
of unity). Then definea function 'Pn hy putting 'Pn(x) = einx, or, more 
precisely, 

'Pn(Xk) = exp(in · ~ · 27r) = wnk. 

Notice that this definition implies that 'Pn(xk) = w-nk. 

Theorem B.l {'Pn}~,:l is an orthogonal basis in lN, and II'Pnll 2 = N. 

Proof. The numher of vectors is right, so all that remains is to show that 
they are orthogonal. Let O ~ m, n ~ N- 1, and form 

N-1 N-1 

(cpm, 'Pn) = 2: wmkw-nk = 2: w(m-n)k. 
k=O k=O 

If m = n, all the terms in the sumare equal to 1, which gives (cpn, 'Pn) = N. 
If m =f: n, we have a finite geometric sum with the ratio wm-n =f: 1. (Since 
O ~ m, n ~ N - 1, it must hold that - N + 1 ~ m - n ~ N - 1, and in that 
case wm-n = 1 is possihle only if m - n = O.) The formula for a geometric 
sum then gives 

1- W(m-n)N 
(cpm, 'Pn) = 1 - wm-n 

But w(m-n)N = exp( 2;i · (m-n)N) = e21ri(m-n) = 1, which implies that 

(cpm, 'Pn) =O, and the theorem is proved. D 

Since we have an orthogonal hasis, we can represent an arhitrary f E lN 
as f = L Cn'fJn, where the coefficients are given hy 

(f, 'Pn) 1 (J ) 
Cn = ( ) = N ' 'Pn · 'Pn, 'Pn 

It is also common to write Cn = Î( n), which results in the formula 

With these Fourier coefficients we have thus 

N-1 

f = 2: Î(n)cpn, 
n=O 
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or, written out in full, 

N-1 N-1 N-1 

f(xk) = L Î(n)rpn(xk) = L Î(n)wnk = L Î(n)ei27rkn/N 
n=O n=O n=O 
N-1 

= L Î(n)einxk. 
n=O 

Compare the "complex" form of an ordinary Fourier series. (We could for­
mulate a "real" counterpart of this, too, but the formulae for that con­
struction are messier.) 

The theorem of Pythagoras or the Parseval formula for the system { 'Pn} 
looks like 11/11 2 = "L::o1 IÎ(n)i2II'Pnll2 , or 

N-1 N-1 

~ L lf(xk)l 2 = L IÎ(n)l2 • 

k=O n=O 

In practica! use, the computation of Î( n) can be speeded up by the use 
of an idea by COOLEY and TUKEY (1965) (the fast Fourier transform). The 
idea is that the right-hand member in the formula 

can be seen as a polynomial in the variable w-n, which is swiftly computed 
using the method of HORNER; this reduces the number of operations con­
siderably. Further rationalizations are possible, using factorization of the 
number N. More about this can be found in books on numerica! analysis. 
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Formulae 

C .1 La place transforms 

Take care to use the correct definition when dealing with distributions 
(cf. Sec 3.5, p. 57). 

f(t) J(s) = F(s) = .C[f](s) 

General rules 

.COL f(t) 

.C02. af(t) + (3g(t) 

.C03. tn f(t) 

.C04. e-at f(t), a constant 

.C05. f(t- a) H(t- a), a> O 

.C06. f(at), a >O 

.C07. f'(t) 

.C08. j(n)(t) 

.C09. lot f(u) du 

.ClO. f * g(t) =lot f(u)g(t- u) du 

looo e-st f(t) dt 

aF(s) + (3G(s) 
(-lt p(n)(s) 

F(s +a) 

e-as F(s) 

~F(~) 
sF(s)- f(O) 

sn F(s)- sn-1 f(O) 

-sn-2 J' (O) - ... - j(n-1) (O) 

F(s) 
s 

F(s) G(s) 
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Laplace transforms of particular functions 

.Cll. 

.C12. 

.C13. 

Cl4. 

.C15. 

.C16. 

.C17. 

.C18. 

.C19. 

.C20. 

.C21. 

.C22. 

.C23. 

.C24. 

.C25. 

.C26. 

.C27. 

.C28. 

.C29. 

.C30. 

6( t) 
J(n)(t) 

H(t) 

tn, n=0,1,2, ... 

cosbt 

sinbt 

tsinbt 

tcosbt 

2~3 (sin bt- bt cos bt) 

c5(t- a), a~ O 

sint 
t 

_a_ e-a2/(4t) a> O 
J41it3 ' 

et/n dn 
ln(t) = ""1if dtn (tne-t) 

lnt 

r'(t) -lnt 

ebt _ eat 
---, a,bER 

t 

2 {..;t 2 

Erf ( Vt) = y'7i Jo e-u du 

Ei (t) = _e- du l oo -u 

t u 

1 

1 

s 
n! 

8n+l 

1 

s+a 
r(a + 1) 
(s- c)a+l 

s 
s2 +b2 

b 
s2 + b2 

2bs 
(s2 + b2)2 

82- b2 

(s2 + b2)2 

1 

1 
arctan­

s 

(s- ~r 
(s+ ~r+l 

lns+'Y 
---'-, 'Y = 0.5772156 ... 

s 
lns 

s 

ln~~~ s-b 

1 

sJSTI 
ln(s + 1) 

s 



C.l Laplace transforms 

.C31. Si (t) = 1oo sin u du arctan8 

t u 8 

.C32. Ci(t) = 1oo cosu du ln(82 +1) 

t u 28 

.C33. Jo(t) (Bessel function) 
1 

V82 + 1 

.C34. Jo(2v't) 
e-1/s 

8 

f(x) = 100 
tx-le-t dt, X> 0. f(x + 1) = xf(x). 

r(n + 1) = n! for n =o, 1, 2,.. .. r(~) = y'iF. 

'Y = Euler's constant = n~~ ( t ~ -ln n) ~ 0.5772156. 
k=l 

249 
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C.2 Z transforms 
00 

A(z) = Z[a](z) = 2:::>nz-n, lzl >(!=(fa· 
n=O 

Inversion: an= 2~i J A(z)zn-1 dz, nE N, r >(fa· 

lzl=r 

A(z) 

General rules 

Zl. .Aan + ţ.J,bn .AA(z) + ţ.J,B(z) 
Z2. Anan A(zj.A) 

Z3. (k ~ O) : an+k z A(z)- a(O)--- .. ·-k( a(1) a(k-1)) 
z zk-1 

Z4. nan -zA'(z) 
n 

Z5. (a* b)n = L akbn-k A(z) B(z) 
k=O 

Particular sequences 

Z6. 1 
z 

z-1 

Z7. 
z 

n 
(z- 1)2 

Z8. n2 z2 + z 
(z- 1)3 

Z9. )..n z 
z-).. 

ZlO. n.An 
)..z 

(z- .A)Z 

(n + 1).An 
z2 

Z11. 
(z- )..)2 

Z12. ~n:m)>" 
zm+1 

(z _ )..)m+1 

Z13. :))..n 
)..mz 

(z- A_)m+l 

Z14. 
z2 - zcosa 

cos an 
z2 - 2z cos a + 1 

Z15. sin an 
zsina 

z2 - 2zcosa + 1 

Z16. 
)..n 

eAfz 
n! 
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C.3 Fourier series 

1 171" . where Cn =- f(x) e-mx dx resp. 
2rr -71" 

{ an=~ J::11" f(x) cosnxdx 

bn = ~ J::11" f(x) sin nx dx · 

2171" f even ==? bn =O and an=- f(x) cosnxdx. 
7r o 

2171" f odd ==?an= O and bn =- f(x)sinnxdx. 
7r o 

Parseval: 
2~ /_71" lf(x)l2 dx = f: lenl 2 

71" n=-oo 
~ /_71" lf(x)l2 dx= la~l 2 + f:(lanl 2 + lbnl 2 ) 

71" n=l 

11 171" - 00 

27r -1r f(x) g(x) dx = L Cn 'Yn 
Polarized Parseval: 71" n=~ oo 

1 - aoao --1 f(x)g(x)dx= - 2-+ L(anan+bnf3n) 
7r -71" n=l 

If f has period 2P, then ( PO = rr) 
00 00 

f(x) "'L:eneinnx"' ~ + L(ancosnOx+bnsinnOx), 
-oo n=l 

1 t+2P . 
Cn = 2P la f(x)e-mnx dx, 

an 1 1a+2P COS 
b = p f(x) . nOxdx. 

n a Slll 
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CA Fourier transforms 

General rules 

f(t) Î(w) 

FOI. f(t) /_: f(t) e-iwt dt 

.1'02. __!._ loo Î(w) eiwt dw 
27r -oo 

Î(w) 

.1'03. f even <===? Î even, f odd <===? Î odd 

.1'04. Linearity af(t) + {3g(t) aÎ(w) + pg(w) 

.1'05. Scaling f(at) (a -1- O) 1 ~(w) 
~~~ 

.1'06. f(-t) Î(-w) 

.1'07. f(t) Î(-w) 

.ros. Time translation f(t- T) e-iTw Î(w) 

.1'09. 
Frequency 

eint f(t) Î(w- O) 
translation 

.1'10. Symmetry g(t) 21rg(-w) 

.ru. Time derivative 
dn 
dtn J(t) (iw)n Î(w) 

Frequency ( -it)n f(t) 
dn ~ 

.1'12. 
deriva ti ve dwn f(w) 

.1'13. Time convolution /_: f(t- u) g(u) du Î(w) g(w) 

Frequency f(t) g(t) 1 100 ~ .1'14. 
convolution 27r -oo f(w- a) g(a) da 

Plancherel's formulae: 

/_: f(t)g(t)dt = 2~ /_: Î(w)g(w)dw, 

/_: lf(tW dt = 2~ /_: IÎ(wW dw. 
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Fourier transforms of particular functions 

j(t) Î(w) 

F15. 8(t) 1 

F16. 8(n) (t) (iwt 

F17. f(t) = 1 for \t\ < 1, =O otherwise 
2sinw 

w 

F18. j(t) = 1 -\t\ for \t\ < 1, =O otherwise (2si:~wy 

F19. e-t H(t) 1 
1 +iw 

F20. et(1- H(t)) 
1 

1- iw 

F21. e-ltl 2 

1+w2 

F22. e-ltl sgnt -2iw 

1+w2 

F23. sgnt 
2 
~w 

H(t) 
1 

F24. -:- + 1r8(w) 
~w 

F25. 1 21r8(w) 

F26. 
sinOt 

H(w +O) - H(w- O) 
7rt 

F27. 1 -t2 /2 e-w2/2 -e 
V2/ff 

F28. _1_ e-t2 /(4A) 

J47rA 
(A> O) e-Aw2 
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C.5 Orthogonal polynomials 

1!(a,b): (f,g) = J: f(t)g(t)w(t)dt, 11!11 = J(!,j). 

8kn = 1 if k = n, 8kn = 0 if k -=f n ("KRONECKER delta"). 

LEGENDRE polynomials Pn(x): (a, b) = ( -1, 1), w(t) = 1. 

Pl. Pn(t) = 2!n! Dn((t2 -1)n). 

P2. P0 (t) = 1, P1(t) = t, P2(t) = ~(3t2 -1), P3 (t) = ~(5t3 - 3t). 
00 

P3. (1- 2tz + z2)-112 = L Pn(t) zn (/z/ < 1, /ti :::; 1). 
n=O 

P4. (n + 1)Pn+l(t) = (2n + 1)tPn(t)- nPn-1(t). 

P5. 11 
Pn(t) Pk(t) dt = -2 

2 8nk· 
-1 n+ 1 

P6. (1- t2)P;:(t)- 2t P~(t) + n(n + 1)Pn(t) =O. 

LAGUERRE polynomials Ln(t): (a, b) = (0, oo), w(t) = e-t. 

et 
11. Ln(t) = l Dn(tne-t). 

n. 
12. L 0 (t) = 1, L1(t) = 1- t, L 2 (t) = 1- 2t + ~ t2. 

1 ( -tz) ~ 13. 1 _ z exp 1 _ z = f=o Ln(t) zn (/z/ < 1). 

14. (n + 1)Ln+1(t) = (2n + 1- t)Ln(t)- nLn-1(t). 

15. 100 Lk(t) Ln(t) e-t dt = 8kn. 

16. tL~(t) + (1- t)L~(t) + nLn(t) =O. 

HERMITE polynomials Hn(t): (a,b) = (-oo,oo), w(t) = e-t2
• 

Hl. Hn(t) = (-1)net2 Dn(e-t2). 

H2. H0 (t) = 1, H1(t) = 2t, H2(t) = 4t2 - 2, H3(t) = 8t3 -12t. 
oo n 

H3. e2tz-z2 = L Hn(t);. 
n=O n. 

H4. Hn+1(t) = 2tHn(t)- 2nHn-1(t). 

H5. /_: Hk(t)Hn(t)e-t2dt=n!2n..[if8kn· 

H6. H;:(t)- 2tH~(t) + 2nHn(t) =O. 
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CHEBYSHEV polynomials Tn(t): (a, b) = (-1, 1), w(t) = 1/~. 

Tl. 

T2. 

T3. 

T4. 

Tn(t) = cos(narccost), Tn(cosO) = cosnO, O::; O::; 1r. 

To(t) = 1, T1(t) = t, T2(t) = 2t2 -1, T3(t) = 4t3 - 3t. 

Tn(t) = 2tTn-1(t)- Tn-2(t). 

!1 Tk(t) Tn(t) h = ~11"8kn if k >O or n > O; 
-1 1- t 2 

= 71" if k = n =O. 

T5. (1- t2)T::(t)- tT~(t) + n2Tn(t) =O. 
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Answers to selected exercises 

Chapter 1 

1.1. u(x, t) = ~(e-(x-ct)2 + e-(x+ct) 2 ) + _!_(arctan(x + ct)- arctan(x- ct)). 
2c 

Chapter 2 

2.1. i, (1-i)/v'2, (-V3+i)/2, V3-i. 

2.3. cos 3t = 4 cos3 t - 3 cost. 

2.12. limak/k =O. 

2.23. t5(2t) = ~J(t); J(at) = l!l J(t). 

2.25. x(t)J~(t) = x(a)J~(t)- 2x'(a)t5~(t) + x"(a)t5a(t). 

2.27. J"(x) = -2H(x + 1) + 2H(x -1) + 2t5(x + 1) + 2t5(x -1); 

(x2 -1)f"(x) = 2f(x). 
2 2 2 

2.29. y =ea -t H(t- a)+ Ge-t , where C is an arbitrary constant. 

2.31. y= H1+x2)H(x-1)+1+x2 . 

2.33. y = (1- e-x2 )H(x)- e1-x2 H(x- 1) + (1 + e)e-x2
• 

2.36. ip1 (0). 

2.38. j'(t) = 2tH(t), f"(t) = 2H(t), J"'(t) = 2J(t), j<4 >(t) = 2J'(t). 
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2.40. f"'(x) = 24x(H(x + 1)- H(x -1) + 8(8(x + 1)- o(x -1)). 

Chapter 3 

3.3. i(s) = (1 + e-7rs)/(s2 + 1). 

3 4 ( ) 4 1 (b) s4 + 4s: + 24. (c) ~ __ 2 _. 
· · a s3 - 2 + 1 s s s2 + 4 

- 2e-• 
3.6. f(s) = - 3 . 

s 

3.7. J(s) = ~ ln1 8
:

1 1. 
- 1re-1rs 2s(e-1rs + 1) 

3.9. f(s) = s2 + 1 + (s2 + 1)2 . 

2(s + 1) 
3.11. ((s + 1)2 + 1)2. 

1-(1+s)e-• 
3.14. 2( ) . s 1- e-• 

3.17. (a) 1- e-t. (b) 3tet. c) -!(1- (2t + 1)e-2t). 

3.18. (a) e-t -1 + t. (b) 1- cosbt. 

3.19. (a) f(t) = 1 + H(t -1). (b) f(t) = (e2<t-l)- et-1 )H(t -1). 
-2t -3t 

(c) e - e 
t 

3.21. y = et(2- 2cost- tsint). 

3.23. x = 2 + ~(t2 + e-t +cost- 3sint), y = ~(2- e-t- cost+ 3sint). 

3.25. y(t) = 2et - e2t + H1 - e2<t-2) - 2et-2)H(t- 2). 

3.27. y = et - t - 1. 

3.29. _!___b(eat- ebt) if a "1= b; teat if a= b. 
a-

3.31. ~(tcost +sint). 

3.33. f(t) = 3. 

3.35. y(t) = e-t sint. 

3.37. f(t) = !(1- e-2t)- 4te-t. 

3.39. y = (1- ~(t2 + 1)e1-t)H(t- 1) + ~(t- 2)2e2-t H(t- 2). 

3.41. (a) E(t) = ~sin 2t H(t). (b) E(t) = ~e-2t sin 2t H(t). 

(c) E(t) = ~t2e-t H(t). 

3.43. f(t) = (2- e-t) H(t). 

2z 3z 2z2 + 4z z 
3.44. (a) 2z- 1 · (b) (z- 3)2 · (c) (z- 2)3 · (d) (z- 1)P+1 · 

3.45. (a) an= Hir- (b) a1 = 1, an= o ror an n -1= 1. 
n7r b 1 . n7r 3.47. an=1-cos2, n= -sm2. 
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3.49. an= (-l)n(~) = 1J(-lt(n3 - 3n2 + 2n). 

3.51. y(O) = ~' y(l) = -~, y(n) =~for all n 2:: 2. 
( ) 1 n 4 n1r 2 . n1r 

3.53. x n = 5 · 2 + 5 cos 2 - 5 sm 2 . 
3.55. (a) is stable, (b) and (c) are unstable. 

3.57. y = et- e-t sint. 

3.59. y = ~ sin2t + O(t- 1?- ~ + ~ cos2(t- l))H(t- 1). 

3.61. f(t)=etcos2t,t>0. 

3.63. y(t) = ~t2 -t+l+cost+sint. 

3.65. y(t) =sint, z(t) = e-t- cost. 

3.67. y(t) = 2(t + 1) sint, z = 2et- 2(t + 1) cost. 

3.69. f(t)=3t-3+8e-t+cos(tv'2)- ~sin(tv'2). 
3.71. y(t) = 2t- 1 + sin2t. 

3.73. y(t) = ~t2 . 

3.75. y(t) = 3t + 5. 

3.77. y(t) = 4sin2t- 2sint. 

Chapter 4 

00 ( t+l 
4.4. f(t) "' 1 + 2 L -ln sin nt. 

n=l 
4.6. (a) f(t) "'cos2t. (b) g(t)"' ~ + ~ cos2t. (c) h(t)"' ~sint-~ sin3t. 

Sens moral: If a function consists entirely of terms that can be terms 
in a Fourier series, then the function is its own Fourier series. 

1-e-71' 2 00 1-(-lte-71' 
4.9. f(t)"' +-""' 1 2 cosnt. 

1T 1T~ +n 
n=l 

oo (-It 7r4 
4.12. f(t) "'-fg 1r4 - 48 L ~ cosnt; ((4) = 90 . 

n=l 
4.16. If a has the form n 2 + (-l)n for some integer n =1- O, then the problem 

has the solutions y(t) = Aeint + Be-int, where A and B are arbitrary 
constants (the solutions can also be written in "real" form as y(t) = 
C1 cosnt+C2 sin nt). If a= 1 there are the solutions y(t) =constant. For 
other values of a there are no nontrivial solutions. 

oo ( It+l 
4.18. f(t)"' 1- ~cost+ 2""' - 2 cosnt. Converges to f(t) for all t. 

~ n -1 
n=2 

(Sketch the graph of f !) 

4 20 ( ) /( ) "' ~ 3_ ~ cos(2n - 1 )t _ ~ sin nt . 
· · a t 4 + 1r ~ (2n- 1)2 ~ n ' 

n=l n=l 
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sina7!" 2asina7!" Loc (-1t . 
4.22. cos at "' -- - 2 2 cos nt. The senes converges 

a1!" 7l" n -a 
n=1 

for all t to the periodic continuation of cos at. Substitute t = 71", divide by 
sina7!", and stir around; and the formula for the cotangent will materialize. 

. 1 
- 1 1 """"' sm 2n7l" int/2 

4.24. y(t) - 2 + - L..J ( 1 1 . ) e . 
7l" nEZ\{0} n 1 - 4n2 + 2m 

8 ~ sin(2k + 1)7l"x . . 7!"3 
4.26. f(x)"' 7!"3 L..J (2k + 1)3 ; the partiCular sum 1s 32 . 

k=O 

8 ~ n(-1)n . 
4.28. f(t) "'-:;;: L..J 4n 2 _ 1 sm nt. 

n=1 
7l" 2 eint 

4.30. J(t) "' 2 + :;;: L -;Ţ . 
n odd 

4.32. (a) f(t) rv ~ -4sin2t+7cos3t. 
00 

(b) f(t)"' ~ _ _i""""' cos2nt. 
7l" 7l" L..J 4n2 -1 

n=1 
4.33. The same as 4.32 (b) (draw pictures, as always!). 

b-a 1 L e-ina - e-inb . t 
4.35. f(t) "' -- + -. em . It is convergent for all t. 

271" 27l"z n 
nEZ\{0} 

The sum is s(t) = 1 for a < t < b, s(t) = ~ fort= a V t = b, s(t) =O for 
all other tE [-7!",7!"]. 

00 

4.37. f(t)"' -i +--\-""""' cos2;nt. 
7l" L..J n 

n=1 

nEZ 
00 

( ) 2 4 L cosnx 1 1 1 4.41. f X rv--- -4 2 1; 81 = 2• 82 = 2- 4 7!". 
7l" 7l" n-

n=1 
4.43. y( t) = eo + cost, where eo is any constant. 

4.45. J(x)"' ..!_""""' (-1)nsina7!" einx. 
1l"L..J a-n 

nEZ 
7 48 00 (-1t 7!"4 

4.48. f(x)"' 15 + 7!"4 L ~ cosn1l"x; ((4) = 90 . 
n=1 

Chapter 5 

5.1. llull = v'19, llvll = JIT, (u, v) = 1 + 8i. 

5.3. Yes. 

5.5. (a) (1, 2, 3), (5, -4, 1), (1, 1, -1). (b) 1, x, x2 -l· 
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5.7. p(x) = 3x + !(e2 - 7). 
7r 

5.9. p(x) = 27r2- 16 x. 

5.11. 7r-1/4, 7r-1/4y'2. x, 7r-1/4y'2(x2 _ ~ ). 

5.13. Co = ~' C2 = ~' Cl = C3 = 0. 

5.18. (a) p(x) = ~ + ~ x- ~ x3. (b) p(x) = .lf(3 -1r)x2 + ~(21r- 5). 

5.27. p(x) = 1'-(7- 2x2). 
3y7r 

p· 3 15 2 d 2 (1 4 2) h" d 5 35 2 5.29. 1rst Tii + 16x ; secon 37r + x ; t 1r 32 + 32x . 

5.31. 81 = -fs, 82 = (2 + 37r)/36, 83 = 1!4 7r2 - 1!2 . 

5.33. ((8) = 9;50 7r8. 

5.35. IIIPmnll = 27r. 

5.37. f(x) "'6Lo(x)- 18L1(x) + 18L2(x)- 6L3(x). 

5.39. [
1
1 lf(x)l2 dx = ~(n + ~)lcnl 2 -

5.41. The coefficients are sin 1 resp. (2 cos 1 +sin 1 - 2)vta. 

5.43. ao = -fs-, a2 = ~, a1 = a3 =O. 

5 45 = 3(20- 7r2) b =o = 15(7r2- 12) 
. . a 7r3 , , c 7r3 . 

5.47. P(x) = - 5
4 (11- 12x2). 

1 7r 

Chapter 6 

6.1. (a) u(x, t) = ~e-t sinx- ~e-9t sin 3x. 
00 

(b) u(x, t) = ~ L 4k2k_ 9 e-4 k 2t sin2kx. 
k=1 

6.3. u(x,t) = !{1+e-9tcos3x). 

6.5. u(x,t) = (2e-t -1)sinx+e-4tsin2x. 

6.7. The solution is u(x, t) = ~ f (2~-~):)2 cos(2k + 1)tsin(2k + 1)x. 
k=O 

Only partials with odd numbers are heard, which is natural because the 
even partials have vibration nodes at the middle point of the string. 

N-1 IL 

6 9 ( ) _ ~ L n(-1)n -(n2+h)t . sinhxvh 
.. u x, t - 2 h e sm nx + IL. 

1r n + sinh 1rv h 
k=O 

6.11. u(x, t) =sin~+~ f ( ~ 1)n~ eC:i-n2 )t sin nx. 
7r n=1 n - 4 

6.13. u(x, y) = ~ + Hx4 - 6x2y2 + y4 ). 

6.14. u(r,O) = ~rsinO- ir3sin30. 
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6.17. t,On(x) = sinwnx, where Wn are the positive solutions of the equation 
tan(w7r) = -w, n = 1, 2, 3, .... Draw a picture: it holds that 

1 n- 2 < Wn < n. 

6.21. u(x,t) = ~e-ttsinx- 1/0"e-t sin(tv'B)sin3x. 
8v2 

00 

( ) 40 ~ 1 -n21r2t . n?i"X 
6.23. u x, t) = lO(x + 1 +-;- ~;;; e sm - 2-. 

n=1 
oo ( 1)n+1 

6 25 ( ) _ 2 ~ - { n1ry n1r-n1ry) . 1 { 3 ) 
.. ux,y -11"3 ~n3(en"+ 1) e +e smn11"x+ 6 x -x. 

n=1 
71" _ y e2y _ e47T-2y 

6.27. u(x,y) = ~ + 2(e4" _ 1) cos2x. 

6.29. u(x, t) = e-t ( (1 + t) sinx + (costv'B + Js sin tv'B) sin3x). 

6 31 ( ) = ~ ~ cos(2k -1)2tsin(2k -1)x 
. . u x, t 71" ~ (2k- 1)3 . 

k=1 

2 Loo sinna . . 
6.33. (a) u(x,t) =- --smntsmnx. 

71" n 
n=1 

(b) a should satisfy sin 7a =O, i.e., a= ~ for some k = 1, 2, ... , 6. 
For practicat reasons one prefers k = 1 or 6 for a grand piano. 
(For an upright piano some other value may be more practicat.) 

Chapter 7 

7.1. (a) Î(w) = 2i wcosw; sinw' w =1- O; Î(o) =O. 
~ w ~ 

(b) f(w) = 2(1- cosw)j(w2 ) = 4sin2(w/2)/(w2), w =f. O; f(O) = 1. 

(c) and (d) f fţ. L1(R), and f does not exist. 

7.5. (a) Î(w) = 2(2 + w2 )/(w4 + 4), (b) g(w) = -4iw/(w4 + 4). 

7.7. (a) -iv'21fwexp( -~w2 ). (b) See the remark following the exercises. 

7.9. No (because 1- cosw does not tend to O as w-+ oo). 

7.11. (a) 11"eiw-lwl, (b) ~7re3i"'-2lwl, (c) -~ 11"iwe-lwl. 

7.13. f(x) = e-x for x >O. 

7.17. /a1 * /a2 = /a1 +a2 • In general, ~ fak = h:.n_ ak. 
k=1 k-1 

7.19. f(t) = ~ exp(-~t2). 
7rsin 5t 

7.21. -t- for t =f. O, 571" for t = O. 

7.23. The vatue of the integral is ~71". 

7.25. Boundary values are O for all x =f. O, oo for x =O (if one approaches 
the boundary at right angles). 
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7.26. u(x, t) = k. exp( - 1 :
2
4t) + ~ exp(- 2 :

2
4t). 

7.29. u(x,y) = 2 yt 1 
1)2' y ~O. 

X + y+ 
7.31. cost; if t = O, the integral is ~. 

7.33. The solution that is attainable by Fourier transformation is 
y(t) = (e-t- e-2t)H(t). 
~ 2 

7.35. f(w) = (1 2)(2 . . ) . +w -e•w +zw 
7.37. (a) ! 7l"e-lwl/3. (b) ! 7l"e-lw-1j/3. (c) 67!". ( e-lw-11/3 _ e-lw+1l/3). 

. z 
7.39. (a) f(w) = 4i . wcos:~ smw; (c) i. 

~ 2sin7l"w . . 71"2 
7.41. f(w) = i(1 - w2) . The mtegral1s 2 . 

~ sinw- wcosw . 2 7.43. f(w) = 4 3 . The mtegrals are 71"/2 resp. 15 71". 
w 

1 2(a-1) 
7.45. f(x) = -2 ( 1)2 2 , a> 1. 

7l" a- +x 

7.47. Txx =~A~ COSW1t +~A~ COSW2t. 

1 A2 4 2 

1 A2 4 1 

Pxx(w) 

1 A2 4 1 

1 A2 4 2 

----~------~------~------~-------L---~W 
-W2 -Wl W1 W2 

7.49. (1- ~ x2)e-x2 / 2. 

7.51. Î(w) = -2iw/(1 + w2 ), integral= ~ 7l". 

7.53. f(x) = ~ e-x H(x) + ~e"'/2 (1- H(x)). 

7.55. 7l" ( 1 - ~ cosh x) , lxl < 1. 

Chapter 8 

8.1. An antiderivative of cp E S belongs to S only if J cp(x) dx =O. 

8.3. (a) Yes. (b) No (e"' grows to fast as x ~ +oo). (c) No (not linear). 

8.6. / 111 (x) = 12H(x + 1)- 6 -16t5(x + 1) + 88'(x + 1). 

8.10. 1/(1 + iw), 27l"ew(1- H(w)) resp. 27ri(t5(w)- e-w H(w)). 

8.13. f(t) = t5(t) + H(t). 
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8.18. 2::: t5(w- n). 
nEZ 

8.19. (a) E(t) = eat(H(t) -1) if a> O, E(t) = ~ sgnt if a= O, 

E(t) = eatH(t) if a< O. (b) E(t) = (e-t- e-2t)H(t). 

8.20. e-x2 belongs to S (and thus also toM); e-lxl 5 has a discontinuous 

fifth derivative and belongs to none of the classes; all the others 

belong toM but not to S. 

8.21. Not e±2x and e2x H(x), but all the others. 

8.23. 'lj;(x)t5"(x- a)= 'I/J"(a)t5(x- a)- 2'1j;'(a)t5'(x- a)+ '1j;(a)t5"(x- a). 

8.24. f"(x) = -1 sinxf + 2 EnEZ t5(x- mr). 

8.25. nt5(x -1/n)- nt5(x + 1/n)--+ -2t5'(x) as n--+ oo. 

8.27. (a) i1r(6(w +a)- t5(w- a)). (b) 1r(6(w- b) + t5(w + b)). 

(c) in(7rt5(n)(w)- i(=~~:n!)· (d) 2cosaw. (e) -1. 

Chapter 9 

9.1. Let the positive terms be a1 2: a 2 2: ax 2: · · · --+O and the negative terms be 
b1 :::; b2 :::; b3 :::; · · · --+ O. Then 2::: an = +oo and 2::: bn = -oo. We can agree that 
we always take terms from the positive bunch in order of decreasing magnitude, 
and negative terms in order of increasing magnitude. Then we can obtain the 
various behaviours in the following ways: 
(a) Take positive terms until their sum exceeds 4. Then take negative terms until 
the sum becomes less than 4. Then switch to positive terms again, etc. Since 
the terms tend to O, the sequence of partial sums will oscillate around 4 with 
diminishing amplitudes and their limit will be 4. 
(b) Take negative terms until we get a sum less than -1. Then take one positive 
term. Then negative terms until we pass - 2; one positive term; negative terms 
past -3; etc. 
(c) Take negative terms until we pass -13; then positive terms until we exceed 
2003; negative terms again until we pass -13; and carry on like this till the cows 
come home. 
(d) Take positive terms until the sum exceeds 1; then negative terms until we 
come below -2; then positive terms to pass 3; negative to pass -4; etc. 

9.3. 1. 
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Literature 

This list does not attempt to be complete in any way whatsoever. First 
we mention a few books that cover approximately the same topics as the 
present volume, and on a similar level. 

R. V. CHURCHILL & J. W: BROWN, Fourier Series and Boundary Value 
Problems. McGraw-Hill, New York, 1978. 

J. RAY HANNA & JOHN H. ROWLAND, Fourier Series, Transforms, and 
Boundary Value Problems. Wiley, New York, 1990. 

P. L. WALKER, The Theory of Fourier Series and Integrals. Wiley, Chich­
ester, 1986. 

The following books are on a more advanced mathematicallevel. 

THOMAS W. KORNER, Fourier Analysis. Cambridge University Press; first 
paperback edition, 1989. 

THOMAS W. KORNER, Exercises for Fourier Analysis. Cambridge Univer­
sity Press, 1993. 

These books are excellent reading for the student who wants to go deeper 
into classical Fourier analysis and its applications. The applications treated 
cover a wide range: they include matters such as Monte Carlo methods, 
Brownian motion, linear oscillators, code theory, and the question of the 
age of the earth. The style is engaging, and the mathematics is 100 percent 
stringent. 
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YITZHAK KATZNELSON, An Introduction to Harmonic Analysis. Wiley, 
New York, 1968. 

This work goes into generalizations of Fourier analysis that have not been 
mentioned at all in the present text. It presupposes knowledge of Banach 
spaces and other parts of functional analysis. 

LARS HORMANDER, The Analysis of Linear Partial Differential Opemtors, 
I-IV. Springer-Verlag, Berlin-Heidelberg, 1983-85. 

This monumental work is the standard source for distribution theory. It is 
not an easy read, but it is famous for its depth, breadth, and elegance. 

Finally, for the really curious student, we mention a couple of research 
papers referred to in this text. 

LENNART CARLESON, On convergence and growth of partial sums of 
Fourier series. Acta Mathematica 116 {1966), 135-157. 

HANS LEWY, An example of a smooth linear partial differential equation 
without solution. Annals of Mathematics (2) 66 (1957), 91-107. 
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