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FOREWORD

The present book is meant as a basic text for a one-year course in algebra,
at the graduate level.

A perspective on algebra

As I see it, the graduate course in algebra must primarily prepare students
to handle the algebra which they will meet in all of mathematics: topology,
partial differential equations, differential geometry, algebraic geometry, analysis,
and representation theory, not to speak of algebra itself and algebraic number
theory with all its ramifications. Hence I have inserted throughout references to
papers and books which have appeared during the last decades, to indicate some
of the directions in which the algebraic foundations provided by this book are
used; I have accompanied these references with some motivating comments, to
explain how the topics of the present book fit into the mathematics that is to
come subsequently in various fields; and I have also mentioned some unsolved
problems of mathematics in algebra and number theory. The abc conjecture is
perhaps the most spectacular of these.

Often when such comments and examples occur out of the logical order,
especially with examples from other branches of mathematics, of necessity some
terms may not be defined, or may be defined only later in the book. I have tried
to help the reader not only by making cross-references within the book, but also
by referring to other books or papers which I mention explicitly.

I have also added a number of exercises. On the whole, I have tried to make
the exercises complement the examples, and to give them aesthetic appeal. I
have tried to use the exercises also to drive readers toward variations and appli-
cations of the main text, as well as toward working out special cases, and as
openings toward applications beyond this book.

Organization
Unfortunately, a book must be projected in a totally ordered way on the page
axis, but that’s not the way mathematics “is”, so readers have to make choices

how to reset certain topics in parallel for themselves, rather than in succession.

\'J



Vi FOREWORD

I have inserted cross-references to help them do this, but different people will
make different choices at different times depending on different circumstances.
The book splits naturally into several parts. The first part introduces the basic
notions of algebra. After these basic notions, the book splits in two major
directions: the direction of algebraic equations including the Galois theory in
Part II; and the direction of linear and multilinear algebra in Parts III and IV.
There is some sporadic feedback between them, but their unification takes place
at the next level of mathematics, which is suggested, for instance, in §15 of
Chapter VI. Indeed, the study of algebraic extensions of the rationals can be
carried out from two points of view which are complementary and interrelated:
representing the Galois group of the algebraic closure in groups of matrices (the
linear approach), and giving an explicit determination of the irrationalities gen-
erating algebraic extensions (the equations approach). At the moment, repre-
sentations in GL, are at the center of attention from various quarters, and readers
will see GL, appear several times throughout the book. For instance, 1 have
found it appropriate to add a section describing all irreducible characters of
GL,(F) when F is a finite field. Ultimately, GL, will appear as the simplest but
typical case of groups of Lie types, occurring both in a differential context and
over finite fields or more general arithmetic rings for arithmetic applications.

After almost a decade since the second edition, I find that the basic topics
of algebra have become stable, with one exception. I have added two sections
on elimination theory, complementing the existing section on the resultant.
Algebraic geometry having progressed in many ways, it is now sometimes return-
ing to older and harder problems, such as searching for the effective construction
of polynomials vanishing on certain algebraic sets, and the older elimination
procedures of last century serve as an introduction to those problems.

Except for this addition, the main topics of the book are unchanged from the
second edition, but I have tried to improve the book in several ways.

First, some topics have been reordered. I was informed by readers and review-
ers of the tension existing between having a textbook usable for relatively inex-
perienced students, and a reference book where results could easily be found in
a systematic arrangement. I have tried to reduce this tension by moving all the
homological algebra to a fourth part, and by integrating the commutative algebra
with the chapter on algebraic sets and elimination theory, thus giving an intro-
duction to different points of view leading toward algebraic geometry.

The book as a text and a reference

In teaching the course, one might wish to push into the study of algebraic
equations through Part II, or one may choose to go first into the linear algebra
of Parts IIT and IV. One semester could be devoted to each, for instance. The
chapters have been so written as to allow maximal flexibility in this respect, and
I have frequently committed the crime of 1€se-Bourbaki by repeating short argu-
ments or definitions to make certain sections or chapters logically independent
of each other.



FOREWORD  Vii

Granting the material which under no circumstances can be omitted from a
basic course, there exist several options for leading the course in various direc-
tions. It is impossible to treat all of them with the same degree of thoroughness.
The precise point at which one is willing to stop in any given direction will
depend on time, place, and mood. However, any book with the aims of the
present one must include a choice of topics, pushing ahead-in deeper waters,
while stopping short of full involvement.

There can be no universal agreement on these matters, not even between the
author and himself. Thus the concrete decisions as to what to include and what
not to include are finally taken on grounds of general coherence and aesthetic
balance. Anyone teaching the course will want to impress their own personality
on the material, and may push certain topics with more vigor than I have, at the
expense of others. Nothing in the present book is meant to inhibit this.

Unfortunately, the goal to present a fairly comprehensive perspective on
algebra required a substantial increase in size from the first to the second edition,
and a moderate increase in this third edition. These increases require some
decisions as to what to omit in a given course.

Many shortcuts can be taken in the presentation of the topics, which
admits many variations. For instance, one can proceed into field theory and
Galois theory immediately after giving the basic definitions for groups, rings,
fields, polynomials in one variable, and vector spaces. Since the Galois theory
gives very quickly an impression of depth, this is very satisfactory in many
respects.

It is appropriate here to recall my original indebtedness to Artin, who first
taught me algebra. The treatment of the basics of Galois theory is much
influenced by the presentation in his own monograph.

Audience and background

As I already stated in the forewords of previous editions, the present book
is meant for the graduate level, and I expect most of those coming to it to have
had suitable exposure to some algebra in an undergraduate course, or to have
appropriate mathematical maturity. I expect students taking a graduate course
to have had some exposure to vector spaces, linear maps, matrices, and they
will no doubt have seen polynomials at the very least in calculus courses.

My books Undergraduate Algebra and Linear Algebra provide more than
enough background for a graduate course. Such elementary texts bring out in
parallel the two basic aspects of algebra, and are organized differently from the
present book, where both aspects are deepened. Of course, some aspects of the
linear algebra in Part III of the present book are more “elementary” than some
aspects of Part II, which deals with Galois theory and the theory of polynomial
equations in several variables. Because Part II has gone deeper into the study
of algebraic equations, of necessity the parallel linear algebra occurs only later
in the total ordering of the book. Readers should view both parts as running
simultaneously.



viii FOREWORD

Unfortunately, the amount of algebra which one should ideally absorb during
this first year in order to have a proper background (irrespective of the subject
in which one eventually specializes) exceeds the amount which can be covered
physically by a lecturer during a one-year course. Hence more material must be
included than can actually be handled in class. I find it essential to bring this
material to the attention of graduate students.

I hope that the various additions and changes make the book easier to use as
a text. By these additions, I have tried to expand the general mathematical
perspective of the reader, insofar as algebra relates to other parts of mathematics.
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Logical Prerequisites

We assume that the reader is familiar with sets, and with the symbols N, U,
D, C, e.IfA, B are sets, we use the symbol A C B to mean that A is contained
in B but may be equal to B. Similarly for A O B.

If f: A — B is a mapping of one set into another, we write

x> f(x)

to denote the effect of f on an element x of A. We distinguish between the
arrows — and —. We denote by f(A4) the set of all elements f(x), with x € A.

Let /: A — B be a mapping (also called a map). We say that f is injective
if x # y implies f(x) # f(y). We say f is surjective if given b € B there exists
a € A such that f(a) = b. We say that f is bijective if it is both surjective and
injective.

A subset A of a set B is said to be proper if A # B.

Let f: A — B be a map, and A" a subset of A. The restriction of f to A’ is
a map of A’ into B denoted by f|A".

If f:A— B and g: B — C are maps, then we have a composite map g o f
such that (g o f)(x) = g(f(x)) for all x € A.

Letf: A —» B be a map, and B’ a subset of B. By f~!(B’) we mean the subset
of A consisting of all x € 4 such that f(x) e B'. We call it the inverse image of
B'. We call f(A) the image of f.

A diagram

A—L B
\ /
C
is said to be commutative if g o f = h. Similarly, a diagram

A—L B

'3

ix



X LOGICAL PREREQUISITES

is said to be commutative if go f =y o 9. We deal sometimes with more
complicated diagrams, consisting of arrows between various objects. Such
diagrams are called commutative if, whenever it is possible to go from one
object to another by means of two sequences of arrows, say

A h A, f2 S A,

and

then
ficio o1 = G ° 0 G0

in other words, the composite maps are equal. Most of our diagrams are
composed of triangles or squares as above, and to verify that a diagram con-
sisting of triangles or squares is commutative, it suffices to verify that each
triangle and square in it is commutative.

We assume that the reader is acquainted with the integers and rational
numbers, denoted respectively by Z and Q. For many of our examples, we also
assume that the reader knows the real and complex numbers, denoted by R
and C.

Let A and I be two sets. By a family of elements of A4, indexed by I, one
means a map f:I - A. Thus for each i € I we are given an element f(i) € A.
Although a family does not differ from a map, we think of it as determining a
collection of objects from A, and write it often as

{fDier

or
{a:}icrs

writing a; instead of f(i). We call I the indexing set.

We assume that the reader knows what an equivalence relation is. Let A
be a set with an equivalence relation, let E be an equivalence class of elements
of A. We sometimes try to define a map of the equivalence classes into some
set B. To define such a map f on the class E, we sometimes first give its value
on an element x € E (called a representative of E), and then show that it is
independent of the choice of representative x € E. In that case we say that f
is well defined.

We have products of sets, say finite products 4 x B,or 4, x --- x 4,, and
products of families of sets.

We shall use Zorn’s lemma, which we describe in Appendix 2.

We let #(S) denote the number of elements of a set S, also called the
cardinality of S. The notation is usually employed when S is finite. We also
write #(S5) = card(S).
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Part One

THE BASIC
OBJECTS OF
ALGEBRA

This part introduces the basic notions of algebra, and the main difficulty
for the beginner is to absorb a reasonable vocabulary in a short time. None
of the concepts is difficult, but there is an accumulation of new concepts which
may sometimes seem heavy.

To understand the next parts of the book, the reader needs to know
essentially only the basic definitions of this first part. Of course, a theorem
may be used later for some specific and isolated applications, but on the
whole, we have avoided making long logical chains of interdependence.



CHAPTER I

Groups

§1. MONOIDS

Let S be a set. A mapping
SxS-S8

is sometimes called alaw of composition (of S into itself). If x, y are elements of
S, the image of the pair (x, y) under this mapping is also called their product
under the law of composition, and will be denoted by xy. (Sometimes, we also
write x - y, and in many cases it is also convenient to use an additive notation,
and thus to write x + y. In that case, we call this element the sum of x and y.
It is customary to use the notation x + y only when the relation x + y =
y + x holds.)

Let S be a set with a law of composition. If x, y, z are elements of S, then we
may form their product in two ways: (xy)z and x(yz). If (xy)z = x(yz) for all
X, v, z in § then we say that the law of composition is associative.

An element e of S such that ex = x = xe for all xe S is called a unit
element. (When the law of composition is written additively, the unit element
is denoted by 0, and is called a zero element.) A unit element is unique, for if
¢’ is another unit element, we have

by assumption. In most cases, the unit element is written simply 1 (instead of e).
For most of this chapter, however, we shall write e so as to avoid confusion in
proving the most basic properties.

A monoid is a set G, with a law of composition which is associative, and
having a unit element (so that in particular, G is not empty).

S. Lang, Algebra

© Springer Science+Business Media LLC 2002



4 GROUPS 1, §1

Let G be a monoid, and x,, ..., x, elements of G (where n is an integer > 1).
We define their product inductively:

Hxvle'”xnz (xl"'xn—l)xn'

We then have the following rule:

m m+n

n
[T x- TTxmew = 1 %0,
n=1 v=1 v=1
which essentially asserts that we can insert parentheses in any manner in our
product without changing its value. The proof is easy by induction, and we shall
leave it as an exercise.
One also writes

m+n n
[T x, instead of [] xp+,
m+1 v=1

and we define

As a matter of convention, we agree also that the empty product is equal
to the unit element.

It would be possible to define more general laws of composition, i.e. maps
S; x §, - S5 using arbitrary sets. One can then express associativity and
commutativity in any setting for which they make sense. For instance, for
commutativity we need a law of composition

fiSxS->T

where the two sets of departure are the same. Commutativity then means
f(x,¥) = f(y, x), or xy = yx if we omit the mapping f from the notation. For
associativity, we leave it to the reader to formulate the most general combination
of sets under which it will work. We shall meet special cases later, for instance
arising from maps

Sx§->S and SxT->T.

Then a product (xy)z makes sense with xe S, ye S, and ze T. The product
x(yz) also makes sense for such elements x, y, z and thus it makes sense to say
that our law of composition is associative, namely to say that for all x, y, z as
above we have (xy)z = x(yz).

If the law of composition of G is commutative, we also say that G is com-
mutative (or abelian).
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Let G be a commutative monoid, and x,, ..., x, elements of G. Let { be a
bijection of the set of integers (1, ..., n) onto itself. Then

n n
[Txum = [Tx.
v=1 v=1

We prove this by induction, it being obvious for n = 1. We assume it for
n — 1. Let k be an integer such that ¥(k) = n. Then

n k-1 n—k
H Xy = H Xy Xyiky * l'[xmw
1 1 1

k—1 n—k
= Hx-mv) ’ H Xytke+v) " Xy(ky-
1 1

Define a map ¢ of (1, ..., n — 1) into itself by the rule
o(v) = Y(v) if v<k,
o(v) =yY(v+ 1) if v=k
Then

n k—1 —k
I:I Xy = H Xo(v) H Xt~ 1+v) " *n
1

n—1
= nxtp(v)'xn’
1

which, by induction, is equal to x, - - - x,, as desired.

Let G be a commutative monoid, let I be a set, and let f:1 - G be a
mapping such that f(i) = e for almost all i e I. (Here and thereafter, almost
all will mean all but a finite number.) Let I, be the subset of I consisting of
those i such that f(i) # e. By

[1/6)

iel
we shall mean the product

[1/0)
taken in any order (the value does not depend on the order, according to the
preceding remark). It is understood that the empty product is equal to e.
When G is written additively, then instead of a product sign, we write the
sum sign X.
There are a number of formal rules for dealing with products which it would
be tedious to list completely. We give one example. Let I, J be two sets, and
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f:I x J - G a mapping into a commutative monoid which takes the value e
for almost all pairs (i, j). Then

nlm f(i,j)] . [n f(i,j)]-

iel | jeJ jed Liel
We leave the proof as an exercise.

As a matter of notation, we sometimes write | | f(i), omitting the signs
ie I, if the reference to the indexing set is clear.

Let x be an element of a monoid G. For every integer n = 0 we define x"
to be

n

I1x

1
so that in particular we have x° = ¢, x! = x, x> = xx,.... We obviously have
x"*m = x"x™ and (x")" = x"™. Furthermore, from our preceding rules of
associativity and commutativity, if x, y are elements of G such that xy = yx,
then (xy)" = x"y". We leave the formal proof as an exercise.

If S, S’ are two subsets of a monoid G, then we define SS’ to be the subset
consisting of all elements xy, with x € S and y € §’. Inductively, we can define
the product of a finite number of subsets, and we have associativity. For in-
stance, if S, S', $” are subsets of G, then ($§5)S” = S($'S”). Observe that GG = G
(because G has a unit element). If x € G, then we define xS to be {x}S, where
{x} is the set consisting of the single element x. Thus xS consists of all elements
xy, with ye S.

By a submonoid of G, we shall mean a subset H of G containing the unit
element e, and such that, if x, y € H then xy € H (we say that H is closed under
the law of composition). It is then clear that H is itself a monoid, under the law
of composition induced by that of G.

If x is an element of a monoid G, then the subset of powers x" (n =0, 1,...)
is a submonoid of G.

The set of integers > 0 under addition is a monoid.

Later we shall define rings. If R is a commutative ring, we shall deal with
multiplicative subsets S, that is subsets containing the unit element, and such
that if x, y € S then xy e S. Such subsets are monoids.

A routine example. Let N be the natural numbers, i.e. the integers = 0.
Then N is an additive monoid. In some applications, it is useful to deal with a
multiplicative version. See the definition of polynomials in Chapter 11, §3, where
a higher-dimensional version is also used for polynomials in several variables.

An interesting example. We assume that the reader is familiar with the
terminology of elementary topology. Let M be the set of homeomorphism
classes of compact (connected) surfaces. We shall define an addition in M.
Let S, S’ be compact surfaces. Let D be a small disc in S, and D’ a small disc in
S’. Let C, C’ be the circles which form the boundaries of D and D’ respectively.
Let Dy, Dy be the interiors of D and D’ respectively, and glue S—D to S'—Dj by
identifying C with C’. It can be shown that the resulting surface is independent,
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up to homeomorphism, of the various choices made in the preceding construc-
tion. If o, ¢’ denote the homeomorphism classes of S and S’ respectively, we
define 6 + ¢’ to be the class of the surface obtained by the preceding gluing
process. It can be shown that this addition defines a monoid structure on M,
whose unit element is the class of the ordinary 2-sphere. Furthermore, if t
denotes the class of the torus, and -n denotes the class of the projective plane,
then every element o of M has a unique expression of the form

G =Nt + mn

where n is an integer > 0andm = 0, 1, or 2. We have3n =1 + 7.

(The reasons for inserting the preceding example are twofold: First to
relieve the essential dullness of the section. Second to show the reader that
monoids exist in nature. Needless to say, the example will not be used in any
way throughout the rest of the book.)

Still other examples. At the end of Chapter III, §4, we shall remark that
isomorphism classes of modules over a ring form a monoid under the direct sum.
In Chapter XV, §1, we shall consider a monoid consisting of equivalence classes
of quadratic forms.

§2. GROUPS

A group G is a monoid, such that for every element x € G there exists an
element y € G such that xy = yx = e. Such an element y is called an inverse for
x. Such an inverse is unique, because if y' is also an inverse for x, then

y =ye=y(xy) = (x)y=ey=y.
We denote this inverse by x~! (or by —x when the law of composition is
written additively).

For any positive integer n, we let x " = (x~!)". Then the usual rules for
exponentiation hold for all integers, not only for integers = 0 (as we pointed out
for monoids in §1). The trivial proofs are left to the reader.

In the definitions of unit elements and inverses, we could also define left
units and left inverses (in the obvious way). One can easily prove that these
are also units and inverses respectively under suitable conditions. Namely:

Let G be a set with an associative law of composition, let e be a left unit for

that law, and assume that every element has a left inverse. Then e is a unit,

and each left inverse is also an inverse. In particular, G is a group.

To prove this, let ae G and let b e G be such that ba = e. Then

bab = eb = b.
Multiplying on the left by a left inverse for b yields
ab = e,

or in other words, b is also a right inverse for a. One sees also that a is a left
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inverse for b. Furthermore,
ae = aba = ea = a,

whence e is a right unit.

Example. Let G be a group and S a nonempty set. The set of maps M(S, G)
is itself a group; namely for two maps f, g of S into G we define fg to be the
map such that

(f9)(x) = f(x)g(x),
and we define f ~! to be the map such that f ~!(x) = f(x)~ L. It is then trivial
to verify that M(S, G) is a group. If G is commutative, so is M(S, G), and when
the law of composition in G is written additively, so is the law of composition
in M(S, G), so that we would write f + g instead of fg, and —f instead of f 1.

Example. Let S be a non-empty set. Let G be the set of bijective mappings
of S onto itself. Then G is a group, the law of composition being ordinary com-
position of mappings. The unit element of G is the identity map of S, and the
other group properties are trivially verified. The elements of G are called
permutations of S. We also denote G by Perm(S). For more information on
Perm(S) when S is finite, see §5 below.

Example. Let us assume here the basic notions of linear algebra. Let k be
a field and V a vector space over k. Let GL(V) denote the set of invertible k-
linear maps of V onto itself. Then GL(V) is a group under composition of
mappings. Similarly, let k be a field and let GL(n, k) be the set of invertible
n X n matrices with components in k. Then GL(n, k) is a group under the
multiplication of matrices. For n = 2, this group is not commutative.

Example. The group of automorphisms. We recommend that the reader
now refer immediately to §11, where the notion of a category is defined, and
where several examples are given. For any object A in a category, its auto-
morphisms form a group denoted by Aut(A). Permutations of a set and the linear
automorphisms of a vector space are merely examples of this more general
structure.

Example. The set of rational numbers forms a group under addition. The
set of non-zero rational numbers forms a group under multiplication. Similar
statements hold for the real and complex numbers.

Example. Cyclicgroups. The integers Z form an additive group. A group
is defined to be cyclic if there exists an element a € G such that every element
of G (written multiplicatively) is of the form a” for some integer n. If G is written
additively, then every element of a cyclic group is of the form na. One calls a
a cyclic generator. Thus Z is an additive cyclic group with generator 1, and
also with generator —1. There are no other generators. Given a positive integer
n, the n-th roots of unity in the complex numbers form a cyclic group of order
n. In terms of the usual notation, e>™/" is a generator for this group. So is e2™//"
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with r € Z and r prime to n. A generator for this group is called a primitive
n-th root of unity.

Example. The direct product. Let G, G, be groups. Let G, X G, be
the direct product as sets, so G; X G, is the set of all pairs (x;, x,) with
x; € G;. We define the law of composition componentwise by

(x1, x)(¥1, ¥2) = (¥, X2¥2)-

Then G; X G, is a group, whose unit element is (e;, e,) (where ¢; is the unit
element of G;). Similarly, for n groups we define G; X --- X G, to be the set
of n-tuples with x; € G; (i = 1, ... , n), and componentwise multiplication.
Even more generally, let I be a set, and for each i € I, let G; be a group. Let
G=1I G, be the set-theoretic product of the sets G;. Then G is the set of all
families (x;);c; with x; € G;. We can define a group structure on G by compo-
nentwise multiplication, namely, if (x;);.; and (y;);c; are two elements of G, we
define their product to be (x;y;);c;- We define the inverse of (x;);c; to be (x; );¢;.
It is then obvious that G is a group called the direct product of the family.

Let G be a group. A subgroup H of G is a subset of G containing the unit
element, and such that H is closed under the law of composition and inverse
(i.e. it is a submonoid, such that if x e H then x~! € H). A subgroup is called
trivial if it consists of the unit element alone. The intersection of an arbitrary
non-empty family of subgroups is a subgroup (trivial verification).

Let G be a group and S-a subset of G. We shall say that S generates G,
or that S is a set of generators for G, if every element of G can be expressed as a
product of elements of S or inverses of elements of S, i.e. as a product x, - - x,
where each x; or x; ! is in S. It is clear that the set of all such products is a
subgroup of G (the empty product is the unit element), and is the smallest sub-
group of G containing S. Thus § generates G if and only if the smallest subgroup
of G containing S is G itself. If G is generated by S, then we write G = (§). By
definition, a cyclic group is a group which has one generator. Given elements
Xy, ..., X, € G, these elements generate a subgroup (x|, ... , x,), namely the
set of all elements of G of the form

xfroxkr owith kg, ..., ke Z
A single element x € G generates a cyclic subgroup.

Example. There are two non-abelian groups of order 8. One is the group

of symmetries of the square, generated by two elements o, 7 such that
o*=12=¢ and 707! =03

The other is the quaternion group, generated by two elements, i, j such that
if we put k = ij and m = i?, then

f=jt=ki=e ==k =m, ij=mj.

After you know enough facts about groups, you can easily do Exercise 35.
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Let G, G’ be monoids. A menoid-homomorphism (or simply homomorphism)
of G into G' is a mapping f: G — G’ such that f(xy) = f(x)f(y) for all x, y€ G,
and mapping the unit element of G into that of G'. If G, G’ are groups, a group-
homomorphism of G into G’ is simply a monoid-homomorphism.

We sometimes say: “Let f: G — G’ be a group-homomorphism” to mean:
“Let G, G’ be groups, and let f be a homomorphism from G into G'.”

Let f: G — G’ be a group-homomorphism. Then

feTh ="

because if ¢, ¢’ are the unit elements of G, G’ respectively, then
e =fle)=f(xx"1) =f(x)f(x7".
Furthermore, if G, G’ are groups and f: G — G’ is a map such that
f&xy) =f)f)

for all x, y in G, then f(e) = ¢ because f(ee) = f(e) and also = f(e)f(e).
Multiplying by the inverse of f(e) shows that f(e) = €.

Let G, G’ be monoids. A homomorphismf:G — G’ is called an isomorphism
if there exists a homomorphism g:G’ — G such that fog and g o f are the
identity mappings (in G" and G respectively). It is trivially verified that f is
an isomorphism if and only if f is bijective. The existence of an isomorphism
between two groups G and G’ is sometimes denoted by G ~ G". If G = G,
we say that isomorphism is an automorphism. A homomorphism of G into
itself is also called an endomorphism.

Example. Let G be a monoid and x an element of G. Let N denote the
(additive) monoid of integers = 0. Then the map f: N — G such that f(n) = x"
is a homomorphism. If G is a group, we can extend f to a homomorphism of Z
into G (x" is defined for all n € Z, as pointed out previously). The trivial proofs
are left to the reader.

Let n be a fixed integer and let G be a commutative group. Then one verifies
easily that the map

x> x"

from G into itself is a homomorphism. So is the map x> x~ 1.

x > x" is called the n-th power map.

The map

Example. Let I = {i}be an indexing set, and let {G,} be a family of groups.
Let G = [] G, be their direct product. Let

pi: G = G;
be the projection on the i-th factor. Then p; is a homomorphism.

Let G be a group, S a set of generators for G, and G’ another group. Let
f:S > G’ be a map. If there exists a homomorphism f of G into G' whose
restriction to S is f, then there is only one.
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In other words, f has at most one extension to a homomorphism of G
into G'. This is obvious, but will be used many times in the sequel.

Let f:G - G’ and g: G' > G" be two group-homomorphisms. Then the
composite map g o f is a group-homomorphism. If f, g are isomorphisms then
so is g of. Furthermore f~':G' — G is also an isomorphism. In particular,
the set of all automorphisms of G is itself a group, denoted by Aut(G).

Let f:G — G’ be a group-homomorphism. Let e, ¢’ be the respective unit
elements of G, G'. We define the kernel of f to be the subset of G consisting
of all x such that f(x) = ¢’. From the definitions, it follows at once that the
kernel H of fis a subgroup of G. (Let us prove for instance that H is closed
under the inverse mapping. Let x € H. Then

J&TH ) =f(e) = €.
Since f(x) = ¢, we have f(x~!) = ¢/, whence x ' e H. We leave the other
verifications to the reader.)

Let f:G — G’ be a group-homomorphism again. Let H' be the image of f.
Then H’ is a subgroup of G', because it contains ¢', and if f(x), f(y) € H’, then
f(xy) = f(x)f(y) lies also in H'. Furthermore, f(x~!) = f(x)~ ! is in H’, and
hence H' is a subgroup of G'.

The kernel and image of f'are sometimes denoted by Ker fand Im f.

A homomorphism f:G — G’ which establishes an isomorphism between
G and its image in G’ will also be called an embedding.

A homomorphism whose kernel is trivial is injective.

To prove this, suppose that the kernel of fis trivial, and let f(x) = f(y) for
some x, y € G. Multiplying by f(y~!) we obtain

fey™ D =f)f™H=e.
Hence xy ™! lies in the kernel, hence xy~! = ¢, and x = y. If in particular f is
also surjective, then f is an isomorphism. Thus a surjective homomorphism
whose kernel is trivial must be an isomorphism. We note that an injective
homomorphism is an embedding.
An injective homomorphism is often denoted by a special arrow, such as
f:G < G'.

There is a useful criterion for a group to be a direct product of subgroups:
Proposition 2.1. Let G be a group and let H, K be two subgroups such that

H n K =e, HK = G, and such that xy = yx for all xe H and ye K. Then
the map

HxK->G
such that (x, y) > xy is an isomorphism.

Proof. 1t is obviously a homomorphism, which is surjective since HK = G.
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If (x, y) is in its kernel, then x = y~!, whence x lies in both H and K, and x = e,
so that y = e also, and our map is an isomorphism.

We observe that Proposition 2.1 generalizes by induction to a finite number
of subgroups H,, . .., H, whose elements commute with each other, such that

H,---H,=G,
and such that
Hi, n(H;---H)=e
In that case, G is isomorphic to the direct product
H, x---x H,.

Let G be a group and H a subgroup. A left coset of H in G is a subset of
G of type aH, for some element a of G. An element of aH is called a coset
representative of aH. The map x — ax induces a bijection of H onto aH.
Hence any two left cosets have the same cardinality.

Observe that if a, b are elements of G and aH, bH are cosets having one
element in common, then they are equal. Indeed, let ax = by with x, ye H.
Then a = byx~!. But yx~'e H. Hence aH = b(yx™')H = bH, because for
any ze€ H we have zH = H.

We conclude that G is the disjoint union of the left cosets of H. A similar
remark applies to right cosets (i.e. subsets of G of type Ha). The number of left
cosets of H in G is denoted by (G : H), and is called the (left) index of H in G.
The index of the trivial subgroup is called the order of G and is written (G : 1).
From the above conclusion, we get:

Proposition 2.2. Let G be a group and H a subgroup. Then
(G:HYH:1)=(G:1),

in the sense that if two of these indices are finite, so is the third and equality
holds as stated. If (G : 1) is finite, the order of H divides the order of G.

More generally, let H, K be subgroups of G and let H > K. Let {x;} be a
set of (left) coset representatives of K in H and let {y;} be a set of coset repre-
sentatives of H in G. Then we contend that {y;x;} is a set of coset representa-
tives of K in G.

Proof. Note that
H=|)x;K (disjoint),

G=|JyH (disjoint).
j

Hence
G = U iji K.
i
We must show that this union is disjoint, i.e. that the y;x; represent distinct
cosets. Suppose
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ij,'K = yjfxi'K

for a pair of indices (j, i) and (j, i"). Multiplying by H on the right, and noting
that x;, x; are in H, we get

yjH = yj’Ha

whence y; = y;. From this it follows that x;K = x;; K and therefore that
X; = X;, as was to be shown.

The formula of Proposition 2.2 may therefore be generalized by writing
(G:K)=(G:H)H:K),

with the understanding that if two of the three indices appearing in this formula
are finite, then so is the third and the formula holds.

The above results are concerned systematically with left cosets. For the right
cosets, see Exercise 10.

Example. A group of prime order is cyclic. Indeed, let G have order p and
let a € G, a # e. Let H be the subgroup generated by a. Then #(H) divides p
and is ¥ 1, so #(H) = p and so H = G, which is therefore cyclic.

Example. LetJ, = {1, ..., n}. Let S, be the group of permutations of
J,. We define a transposition to be a permutation 7 such that there exist
two elements r # s in J, for which 7(r) = s, 7(s) = r, and 7(k) = k for all
k # r, s. Note that the transpositions generate S,,. Indeed, say o is a permutation,
o(n) = k # n. Let 7 be the transposition interchanging k, n. Then 1o leaves n
fixed, and by induction, we can write 70 as a product of transpositions in
Perm(J,_,), thus proving that transpositions generate S,,.

Next we note that #(S,,) = n!. Indeed, let H be the subgroup of S, consisting
of those elements which leave n fixed. Then H may be identified with §,_;. If
o;(i=1,...,n)is an element of S, such that o;(n) = i, then it is immediately
verified that oy, ... , 0, are coset representatives of H. Hence by induction

(S,: 1) =nH:1) =n!

Observe that for o; we could have taken the transposition 7;, which interchanges
i and n (except for i = n, where we could take o, to be the identity).

§3. NORMAL SUBGROUPS

We have already observed that the kernel of a group-homomorphism is a
subgroup. We now wish to characterize such subgroups.

Let f:G — G’ be a group-homomorphism, and let H be its kernel. If x is an
element of G, then xH = Hx, because both are equal to f ~!(f(x)). We can
also rewrite this relation as xHx ! = H.
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Conversely, let G be a group, and let H be a subgroup. Assume that for all
elements x of G we have xH < Hx (or equivalently, xHx ! < H). If we
write x~ ! instead of x, we get H < xHx™ !, whence xHx~' = H. Thus our
condition is equivalent to the condition xHx~! = Hforall x € G. A subgroup
H satisfying this condition will be called normal. We shall now see that a normal
subgroup is the kernel of a homomorphism.

Let G’ be the set of cosets of H. (By assumption, a left coset is equal to a right
coset, so we need not distinguish between them.) If xH and yH are cosets, then
their product (xH)(yH) is also a coset, because

xHyH = xyHH = xyH.

By means of this product, we have therefore defined a law of composition on G’
which is associative. It is clear that the coset H itself is a unit element for this
law of composition, and that x ™' H is an inverse for the coset xH. Hence G’ is a
group.

Let f:G — G’ be the mapping such that f(x) is the coset xH. Then f is
clearly a homomorphism, and (the subgroup) H is contained in its kernel. If
f(x) = H, then xH = H. Since H contains the unit element, it follows that
x € H. Thus H is equal to the kernel, and we have obtained our desired homo-
morphism.

The group of cosets of a normal subgroup H is denoted by G/H (which we
read G modulo H, or G mod H). The map f of G onto G/H constructed above
is called the canonical map, and G/H is called the factor group of G by H.

Remarks

1. Let {H;};.; be a family of normal subgroups of G. Then the subgroup
H = ﬂ Hi

iel
is a normal subgroup. Indeed, if y € H, and x € G, then xyx ! lies in each H;,
whence in H.

2. Let S be a subset of G and let N = Ny be the set of all elements xe G
such that xSx™! = S. Then N is obviously a subgroup of G, called the
normalizer of S. If S consists of one element a, then N is also called the
centralizer of a. More generally, let Zg be the set of all elements x € G such that
xyx~! = yforall ye S. Then Zs is called the centralizer of S. The centralizer
of G itself is called the center of G. It is the subgroup of G consisting of all
elements of G commuting with all other elements, and is obviously a normal
subgroup of G.

Examples. We shall give more examples of normal subgroups later when
we have more theorems to prove the normality. Here we give only two examples.

First, from linear algebra, note that the determinant is a homomorphism from
the multiplicative group of square matrices into the multiplicative group of a
field. The kernel is called the special linear group, and is normal.
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Second, let G be the set of all maps T,,: R — R such that
T, ,(x) = ax + b, witha # 0 and b arbitrary. Then G is a group under composition
of mappings. Let A be the multiplicative group of maps of the form T, 4 (iso-
morphic to R*, the non-zero elements of R), and let N be the group of translations
T, , with b € R. Then the reader will verify at once that T, , +> a is a homo-
morphism of G onto the multiplicative group, whose kernel is the group of
translations, which is therefore normal. Furthermore, we have G = AN = NA,
and N N A = {id}. In the terminology of Exercise 12, G is the semidirect
product of A and N.

Let H be a subgroup of G. Then H is obviously a normal subgroup of its
normalizer N. We leave the following statements as exercises:

If K is any subgroup of G containing H and such that H is normal in K, then
K c NH'

If K is a subgroup of Ny, then KH is a group and H is normal in KH.
The normalizer of H is the largest subgroup of G in which H is normal.

Let G be a group and H a normal subgroup. Let x, y e G. We shall write
x =y (mod H)

if x and y lie in the same coset of H, or equivalently if xy~! (or y~ 'x) lie in H.
We read this relation “x and y are congruent modulo H.”
When G is an additive group, then

x=0 (mod H)
means that x lies in H, and
x=y (modH)

means that x — y (or y — x) lies in H. This notation of congruence is used
mostly for additive groups.
Let
G5656G

be a sequence of homomorphisms. We shall say that this sequence is exact if
Im f = Ker g. For example, if H is a normal subgroup of G then the sequence
H>G%G6/H

is exact (where j = inclusion and ¢ = canonical map). A sequence of homo-
morphisms having more than one term, like

Glb'Gziz’Ga—’"‘f"_q’Gn,
is called exact if it is exact at each joint, i.e. if foreachi=1,...,n—2
Im f; = Ker f;,;.
For example letting 0 be the trivial group, to say that

b

0-G5G656G6" -0
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is exact means that f is injective, that Im f = Ker g, and that g is surjective. If
H = Ker g then this sequence is essentially the same as the exact sequence
0-H->G-G/H-O.

More precisely, there exists a commutative diagram

0 »G—L G 2L G —— 0
0 - H > G »G/H 0

in which the vertical maps are isomorphisms, and the rows are exact.

Next we describe some homomorphisms, all of which are called canonical.

(i) Let G, G" be groups and f:G — G’ a homomorphism whose kernel
is H Let ¢:G — G/H be the canonical map. Then there exists a unique
homomorphism f,, : G/H — G’ such that f = f, - ¢, and f, is injective.

To define f,, let xH be a coset of H. Since f(xy) = f(x) for all ye H, we
define f,(xH) to be f(x). This value is independent of the choice of coset
representative x, and it is then trivially verified that f, is a homomorphism, is
injective, and is the unique homomorphism satisfying our requirements. We
shall say that f, is induced by f.

Our homomorphism f,, induces an isomorphism

A:G/H - Imf

of G/H onto the image of f, and thus f can be factored into the following succes-
sion of homomorphisms:

G5 GH5ImfS G
Here, j is the inclusion of Im fin G'.

(ii) Let G be a group and H a subgroup. Let N be the intersection of all
normal subgroups containing H. Then N is normal, and hence is the smallest
normal subgroup of G containing H. Letf: G — G’ be a homomorphism whose
kernel contains H. Then the kernel of f contains N, and there exists a unique
homomorphism f, : G/N — G’, said to be induced by f, making the following
diagram commutative:

¢6— ¢

@ S

G/N
As before, ¢ is the canonical map.
We can define f,, as in (1) by the rule

S¥(xN) = f(x).

This is well defined, and is trivially verified to satisfy all our requirements.
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(iii) Let G be group and H D K two normal subgroups of G. Then K is normal
in H, and we can define a map of G/K onto G/H by associating with each coset
xK the coset xH. It is immediately verified that this map is a homomorphism,
and that its kernel consists of all cosets xK such that x € H. Thus we have a
canonical isomorphism

(G/K)/(H/K) ~ G/H.

One could also describe this isomorphism using (i) and (ii). We leave it to the
reader to show that we have a commutative diagram

0 > H e > G/H——0
j can J can J id
0 » H/K > G/K — G/H »0

where the rows are exact.

(iv) Let G be a group and let H, K be two subgroups. Assume that H
is contained in the normalizer of K. Then H n K is obviously a normal
subgroup of H, and equally obviously HK = KH is a subgroup of G. There
is a surjective homomorphism

H - HK/K

associating with each x € H the coset xK of K in the group HK. The reader
will verify at once that the kernel of this homomorphism is exactly H n K.
Thus we have a canonical isomorphism

H/(H n K) ~ HK/K.

(v) Let f: G —» G’ be a group homomorphism, let H' be a normal sub-
group of G, and let H = f~1(H").

G—GCG

]

fH) ——H
Thenf ™ !(H')isnormalin G. [Proof:1f xe G,thenf(xHx ™) = f(x) f (H) f(x)" !
is contained in H’, so xHx™! = H.] We then obtain a homomorphism
G-G->G/H

composing f with the canonical map of G’ onto G'/H’, and the kernel of this
composite is H. Hence we get an injective homomorphism

f:G/H - G'/H’
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again called canonical, giving rise to the commutative diagram

0——H » G » G/H >0
0 > H' > G’ >»G'/H’ » 0.

If f is surjective, then f'is an isomorphism.
We shall now describe some applications of our homomorphism statements.
Let G be a group. A sequence of subgroups

G=G;>2G,2G,>--->G,

is called a tower of subgroups. The tower is said to be normal if each G, , is
normal in G; (i = 0,...,m — 1). It is said to be abelian (resp. cyclic) if it is
normal and if each factor group G;/G;, , is abelian (resp. cyclic).

Let f: G — G’ be a homomorphism and let

G=Gy>G,>->G,

be a normal tower in G". Let G; = f ~(G)). Thenthe G;(i =0, ..., m)form a
normal tower. If the G; form an abelian tower (resp. cyclic tower) then the G,
form an abelian tower (resp. cyclic tower), because we have an injective homo-
morphism

Gi/Gi+ 1~ Gi/Giyy

for each i, and because a subgroup of an abelian group (resp. a cyclic group) is
abelian (resp. cyclic).
A refinement of a tower
GzGODGID"'DGm

is a tower which can be obtained by inserting a finite number of subgroups in
the given tower. A group is said to be solvable if it has an abelian tower, whose
last element is the trivial subgroup (i.e. G,, = {e} in the above notation).

Proposition 3.1. Let G be a finite group. An abelian tower of G admits a
cyclic refinement. Let G be a finite solvable group. Then G admits a cyclic
tower whose last element is {e}.

Proof. The second assertion is an immediate consequence of the first, and
it clearly suffices to prove that if G is finite, abelian, then G admits a cyclic
tower ending with {e}. We use induction on the order of G. Let x be an ele-
ment of G. We may assume that x # e. Let X be the cyclic group generated by
x. Let G' = G/X. By induction, we can find a cyclic tower in G’, and its in-
verse image is a cyclic tower in G whose last element is X. If we refine this
tower by inserting {e} at the end, we obtain the desired cyclic tower.

Example. In Theorem 6.5 it will be proved that a group whose order is a
prime power is solvable.
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Example. One of the major results of group theory is the Feit-Thompson
theorem that all finite groups of odd order are solvable. Cf. [Go 68].

Example. Solvable groups will occur in field theory as the Galois groups
of solvable extensions. See Chapter VI, Theorem 7.2.

Example. We assume the reader knows the basic notions of linear algebra.
Let & be a field. Let G = GL(n, k) be the group of invertible n X n matrices in
k. Let T = T(n, k) be the upper triangular group; that is, the subgroup of matrices
which are 0 below the diagonal. Let D be the diagonal group of diagonal matrices
with non-zero components on the diagonal. Let N be the additive group of matrices
which are 0 on and below the diagonal, and let U = I + N, where [ is the unit
n X n matrix. Then U is a subgroup of G. (Note that N consists of nilpotent
matrices, i.e. matrices A such that A” = 0 for some positive integer m. Then
(I—-A)7'=I+A+A%+ ...+ A™ 'is computed using the geometric series.)
Given a matrix A € T, let diag(A) be the diagonal matrix which has the same
diagonal components as A. Then the reader will verify that we get a surjective
homomorphism 7 5y sivenby A r diag(A).
The kernel of this homomorphism is precisely U. More generally, observe that
for r = 2, the set N"~! consists of all matrices of the form

(0 0 -~ 0 a;, - ap,
00 -+ 0 0 ay,e1 - ay

M =
0 0 v an_r+1,n
0 QO i 0
\0 QO o, 0 )

Let U, =1 + N". Then U, = U and U, D U, ,. Furthermore, U, ; is normal
in U,, and the factor group is isomorphic to the additive group (!) k"', under the
the mapping which sends I + M to the n — r-tuple (ay,+y, ... , Gy, ) €EK"77.
This n — r-tuple could be called the r-th upper diagonal. Thus we obtain an
abelian tower

TODU=U>U,D...0U,={I}

Theorem 3.2. Let G be a group and H a normal subgroup. Then G is solvable
if and only if H and G/H are solvable.

Proof. We prove that G solvable implies that H is solvable. Let
G =Gy DG, D... DG, = {e} be a tower of groups with G;,, normal in G,
and such that G;/G,, is abelian. Let H; = H N G;. Then H,,, is normal in H;,
and we have an embedding H;/H;,| — G;/G;,,, whence H;/H, ., is abelian,
whence proving that H is solvable. We leave the proofs of the other statements
to the reader.
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Let G be a group. A commutator in G is a group element of the form xyx~1y~!
with x, y € G. Let G° be the subgroup of G generated by the commutators. We
call G° the commutator subgroup of G. As an exercise, prove that G¢ is normal
in G, and that every homomorphism f: G — G’ into a commutative group G’
contains G¢ in its kernel, and consequently factors through the factor commutator
group G/G¢. Observe that G/G¢ itself is commutative. Indeed, if X denotes the
image of x in G/G¢, then by definition we have xyx ly"! = ¢, so x
and y commute. In light of the definition of solvability, it is clear that the
commutator group is at the heart of solvability and non-solvability problems.

A group G is said to be simple if it is non-trivial, and has no normal subgroups
other than {e} and G itself.

Examples. An abelian group is simple if and only if it is cyclic of prime
order. Indeed, suppose A abelian and non-trivial. Leta € A, a # e. If a generates
an infinite cyclic group, then a® generates a proper subgroup and so A is not
simple. If a has finite period, and A is simple, then A = (a). Let n be the period
and suppose n not prime. Write n = rs with r, s > 1. Then a” # e and a”
generates a proper subgroup, contradicting the simplicity of A, so a has prime
period and A is cyclic of order p.

Examples. Using commutators, we shall give examples of simple groups
in Theorem 5.5 (the alternating group), and in Theorem 9.2 of Chapter XIII
(PSL,(F), a group of matrices to be defined in that chapter). Since a non-cyclic
simple group is not solvable, we get thereby examples of non-solvable groups.

A major program of finite group theory is the classification of all finite
simple groups. Essentially most of them (if not all) have natural representa-
tions as subgroups of linear maps of suitable vector spaces over suitable fields,
in a suitably natural way. See [Go 82], [Go 86], [Sol 01] for surveys. Gaps in
purported proofs have been found. As of 2001, these are still incomplete.

Next we are concerned with towers of subgroups such that the factor groups
G;/G;+, are simple. The next lemma is for use in the proof of the Jordan-Hélder
and Schreier theorems.

Lemma 3.3. (Butterfly Lemma.) (Zassenhaus) Let U, V be subgroups
of a group. Let u, v be normal subgroups of U and V, respectively. Then
w(Unv) isnormalin uw(Un V),
wunVw isnormalin (U~ V),
and the factor groups are isomorphic, i.e.
wU N V)/u(Un v) = (U~ VounVw

Proof. The combination of groups and factor groups becomes clear if
one visualizes the following diagram of subgroups (which gives its name to the
lemma):



I, §3 NORMAL SUBGROUPS 21

ulv UNvo

In this diagram, we are given U, u, V, v. All the other points in the diagram
correspond to certain groups which can be determined as follows. The inter-
section of two line segments going downwards represents the intersection of
groups. Two lines going upwards meet in a point which represents the product
of two subgroups (i.e. the smallest subgroup containing both of them).

We consider the two parallelograms representing the wings of the butterfly,
and we shall give isomorphisms of the factor groups as follows:

wUNYV) unv _WUNnvp
wWUNov) @NWVUND @N Vo

In fact, the vertical side common to both parallelograms has U n V as its
top end point, and (u N VYU N v) as its bottom end point. We have an iso-
morphism

UV (unVYUnv) ~uUn V)uUn v).

This is obtained from the isomorphism theorem
H/(Hn N)~ HN/N

by setting H = U N Vand N = w(U N v). This gives us the isomorphism on
the left. By symmetry we obtain the corresponding isomorphism on the right,
which proves the Butterfly lemma.

Let G be a group, and let
G=06;,2G,>--2G, = {e},
G:Hl:)HZD...:)Hsz{e}

be normal towers of subgroups, ending with the trivial group. We shall say
that these towers are equivalent if » = s and if there exists a permutation of the



22 GROUPS l, §3

indicesi = 1,...,r — 1, written i+ i, such that
Gi/Giyy ® Hy/H; 4 4.

In other words, the sequences of factor groups in our two towers are the same,
up to isomorphisms, and a permutation of the indices.

Theorem 3.4. (Schreier) LetG bea group. Two normal towers of subgroups
ending with the trivial group have equivalent refinements.

Proof. Let the two towers be as above. Foreachi=1,...,r— 1 and
j=1,..., s we define
Gij = Giy(H; 0 Gy
Then G;, = G, ;, and we have a refinement of the first tower:
G=G;12G;;,2:2G6,-; 206,
=60,;206226G,-4,12 206, > {e}
Similarly, we define
Hj; = Hj, (G;nH)),
forj=1,...,s—landi=1,...,r This yields a refinement of the second

tower. By the butterfly lemma, fori=1,...,r—landj=1,...,5s— 1 we
have isomorphisms

Gij/Gi,j+1 ® Hy/Hj ;4 1.
We view each one of our refined towers as having (r — 1)(s — 1) + 1 elements,
namely G;;(i=1,...,r — 1;j=1,...,5 — 1) and {e} in the first case, H; and
{e} in the second case. The preceding isomorphism for each pair of indices
(i, /) shows that our refined towers are equivalent, as was to be proved.

A group G is said to be simple if it is non-trivial, and has no normal sub-
groups other than {e} and G itself.

Theorem 3.5. (Jordan-Hélder) Let G be a group, and let
G=G;2G,> 26, ={¢

be a normal tower such that each group G;/G,,  is simple, and G; # G;,,
fori=1,...,r — 1. Then any other normal tower of G having the same prop-
erties is equivalent to this one.

Proof. Given any refinement {G,,} as before for our tower, we observe
that for each i, there exists precisely one index j such that G;/G;,; = G;j/G; j+ .
Thus the sequence of non-trivial factors for the original tower, or the refined
tower, is the same. This proves our theorem.
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§4. CYCLIC GROUPS

The integers Z form an additive group. We shall determine its subgroups.
Let H be a subgroup of Z. If H is not trivial, let a be the smallest positive integer
in H. We contend that H consists of all elements na, with n € Z. To prove this,
let ye H. There exist integers n, r with 0 < r < a such that

y=na-+r.

Since H is a subgroup and r = y — na, we have r € H, whence r = 0, and our
assertion follows.

Let G be a group. We shall say that G is cyclic if there exists an element
a of G such that every element x of G can be written in the form a" for some
neZ (in other words, if the map f:Z — G such that f(n) = a" is surjective).
Such an element a of G is then called a generator of G.

Let G be a group and ae G. The subset of all elements a" (ne Z) is
obviously a cyclic subgroup of G. If m is an integer such that a”™ = eand m > 0
then we shall call m an exponent of a. We shall say that m > 0 is an exponent of
Gif x" =eforall xeG.

Let G be a group and ae G. Let f:Z — G be the homomorphism such that
f(n) = a" and let H be the kernel of f. Two cases arise:

1. Thekernelistrivial. Thenfis an isomorphism of Z onto the cyclic subgroup
of G generated by a, and this subgroup is infinite cyclic. If a generates G, then
G is cyclic. We also say that a has infinite period.

2. The kernel is not trivial. Let d be the smallest positive integer in the
kernel. Then d is called the period of a. If m is an integer such that a™ = e then
m = ds for some integer s. We observe that the elements ¢, a, ..., a?"! are
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distinct. Indeed, if " = a* withO=r,s=d — 1, and say r = 5, thena*™" =
e. Since 0 = s — r < d we must have s — r = 0. The cyclic subgroup generated
by a has order d. Hence by Proposition 2.2:

Proposition 4.1. Let G be a finite group of order n > 1. Let a be an element
of G, a ¥ e. Then the period of a divides n. If the order of G is a prime number
D, then G is cyclic and the period of any generator is equal to p.

Furthermore:

Proposition 4.2. Let G be a cyclic group. Then every subgroup of G is cyclic.
If f is a homomorphism of G, then the image of f is cyclic.

Proof. If G is infinite cyclic, it is isomorphic to Z, and we determined above
all subgroups of Z, finding that they are all cyclic. If f: G — G’ is a homo-
morphism, and a is a generator of G, then f(a) is obviously a generator of f(G),
which is therefore cyclic, so the image of f is cyclic. Next let H be a subgroup
of G. We want to show H cyclic. Let a be a generator of G. Then we have a
surjective homomorphism f: Z — G such that f(n) = a". The inverse image
f~Y(H) is a subgroup of Z, and therefore equal to mZ for some positive integer
m. Since f is surjective, we also have a surjective homomorphism mZ — H.
Since mZ is cyclic (generated additively by m), it follows that H is cyclic, thus
proving the proposition.

We observe that two cyclic groups of the same order m are isomorphic.
Indeed, if G is cyclic of order m with generator a, then we have a surjective
homomorphism f: Z — G such that f(n) = a”, and if kZ is the kernel,
with k positive, then we have an isomorphism Z/kZ =~ G, so k = m.
If u: Gy — Z/mZ and v: G, — Z/mZ are isomorphisms of two cyclic groups
with Z/mZ, then v™! o u: G, = G, is an isomorphism.

Proposition 4.3.

(i) Aninfinite cyclic group has exactly two generators (if a is a generator, then
a~ ! is the only other generator).

(ii) Let G be a finite cyclic group of order n, and let x be a generator. The set
of generators of G consists of those powers X" of x such that v is relatively
prime to n.

(ili) Let G be a cyclic group, and let a, b be two generators. Then there exists
an automorphism of G mapping a onto b. Conversely, any automorphism
of G maps a on some generator of G.

(iv) Let G be a cyclic group of order n. Let d be a positive integer dividing n.
Then there exists a unique subgroup of G of order d.

(v) Let G, G, be cyclic of orders m, n respectively. If m, n are relatively
prime then G; X G, is cyclic.
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(vi) Let G be a finite abelian group. If G is not cyclic, then there exists a prime
p and a subgroup of G isomorphic to C X C, where C is cyclic of order
.

Proof. We leave the first three statements to the reader, and prove the others.

(iv) Let d|n. Let m = n/d. Let f : Z — G be a surjective homomorphism.
Then f(mZ) is a subgroup of G, and from the isomorphism Z/mZ = G/f(mZ)
we conclude that f(mZ) has index m in G, whence f(mZ) has order d. Conversely,
let H be a subgroup of order d. Then f~'(H) = mZ for some positive integer
m, so H = f(mZ), Z/imZ = G/H, so n = md, m = n/d and H is uniquely
determined.

(v) Let A = (a) and B = (b) be cyclic groups of orders m, n, relatively prime.
Consider the homomorphism Z — A X B such that k > (a*, b¥). An element
in its kernel must be divisible both by m and s, hence by their product since m,
n are relatively prime. Conversely, it is clear that mnZ is contained in the kernel,
so the kernel is mnZ. The image of Z — A X B is surjective by the Chinese
remainder theorem. This proves (v). (A reader who does not know the Chinese
remainder theorem can see a proof in the more general context of Chapter 1I,
Theorem 2.2.)

(vi) This characterization of cyclic groups is an immediate consequence of
the structure theorem which will be proved in §8, because if G is not cyclic,
then by Theorem 8.1 and (v) we are reduced to the case when G is a p-group,
and by Theorem 8.2 there are at least two factors in the direct product (or sum)
decomposition, and each contains a cyclic subgroup of order p, whence G contains
their direct product (or sum). Statement (vi) is, of course, easier to prove than
the full structure theorem, and it is a good exercise for the reader to formulate
the simpler arguments which yield (vi) directly.

Note. For the group of automorphisms of a cyclic group, see the end of
Chapter 1I, §2.

§5. OPERATIONS OF A GROUP ON A SET

Let G be a group and let S be a set. An operation or an action of G on §
is a homomorphism

. G — Perm(S)

of G into the group of permutations of S. We then call § a G-set. We denote
the permutation associated with an element x € G by mr,.. Thus the homomorphism
is denoted by x > m,. Given s € S, the image of s under the permutation 7, is
m(s). From such an operation we obtain a mapping

GX§—>S,
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which to each pair (x, s) with x € G and s € § associates the element m,(s). We
often abbreviate the notation and write simply xs instead of m(s). With the
simpler notation, we have the two properties:

Forallx, y € Gand s € §, we have x(ys) = (xy)s.
If e is the unit element of G, then es = s for all s € S.

Conversely, if we are given a mapping G X § — S, denoted by (x, s) > xs,
satisfying these two properties, then for each x € G the map s — xs is a permu-
tation of S, which we then denote by n,(s). Then x — 7, is a homomorphism
of G into Perm(S). So an operation of G on S could also be defined as a map-
ping G x S — § satisfying the above two properties. The most important ex-
amples of representations of G as a group of permutations are the following.

1. Conjugation. For each xe G, let ¢,: G — G be the map such that
¢x(y) = xyx~!. Then it is immediately verified that the association x — ¢y is a
homomorphism G — Aut(G), and so this map gives an operation of G on itself,
called conjugation. The kernel of the homomorphism x — ¢, is a normal sub-
group of G, which consists of all x € G such that xyx~! = y forall y € G, i.e. all
x € G which commute with every element of G. This kernel is called the center
of G. Automorphisms of G of the form c, are called inner.

To avoid confusion about the operation on the left, we don’t write xy for
¢,(»). Sometimes, one writes

-1
e () =x"yx=p%,
1.e. one uses an exponential notation, so that we have the rules
y(xz) — (yx)z and ye —_

for all x, y, z € G. Similarly, *y = xyx~! and *(*y) = #y.

We note that G also operates by conjugation on the set of subsets of G.
Indeed, let S be the set of subsets of G, and let A € S be a subset of G. Then
xAx~! is also a subset of G which may be denoted by c,(4), and one verifies
trivially that the map

(x, A) > xAx!

of G x S — S is an operation of G on S. We note in addition that if A is a sub-
group of G then xAx~! is also a subgroup, so that G operates on the set of
subgroups by conjugation.

If A, B are two subsets of G, we say that they are conjugate if there exists
x € G such that B = xAx~*.

2. Translation. For each x € G we define the translation 7,: G — G by
T(y) = xy. Then the map
(x, ) xy = T(y)

defines an operation of G on itself. Warning: T, is not a group-homomorphism!
Only a permutation of G.
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Similarly, G operates by translation on the set of subsets, for if 4 is a
subset of G, then x4 = T(A) is also a subset. If H is a subgroup of G, then
T.(H) = xH is in general not a subgroup but a coset of H, and hence we see
that G operates by translation on the set of cosets of H. We denote the set of
left cosets of H by G/H. Thus even though H need not be normal, G/H is a
G-set. It has become customary to denote the set of right cosets by H\G.

The above two representations of G as a group of permutations will be used
frequently in the sequel. In particular, the representation by conjugation will be
used throughout the next section, in the proof of the Sylow theorems.

3. Example from linear algebra. We assume the reader knows basic
notions of linear algebra. Let k be a field and let V be a vector space over k. Let
G = GL(V) be the group of linear automorphisms of V. For A € G and
v € V, the map (A, v) > Av defines an operation of G on V. Of course, G is
a subgroup of the group of permutations Perm(V). Similarly, let V = k" be the
vector space of (vertical) n-tuples of elements of k, and let G be the group of
invertible n X n matrices with components in k. Then G operates on k" by
(A, X) > AX for A € G and X € k".

Let S, S’ be two G-sets, and f : § — S’ a map. We say that f is a morphism
of G-sets, or a G-map, if

f(xs) = xf(s)

forall x € Gand s € S. (We shall soon define categories, and see that G-sets form
a category.)

We now return to the general situation, and consider a group operating on
asetS. LetseS. The set of elements x € G such that xs = s is obviously a sub-
group of G, called the isotropy group of s in G, and denoted by G,.

When G operates on itself by conjugation, then the isotropy group of an
element is none other than the normalizer of this element. Similarly, when G
operates on the set of subgroups by conjugation, the isotropy group of a sub-
group is again its normalizer.

Let G operate on a set S. Let s, s be elements of S, and y an element of G
such that ys = s’. Then

Gs’ = szy' !

Indeed, one sees at once that yG,y~! leaves s’ fixed. Conversely, if
x's' = s’ then x'ys = ys, so y 'x’y € G, and x’ € yGy~'. Thus the isotropy
groups of s and s’ are conjugate.

Let K be the kernel of the representation G — Perm(S). Then directly from
the definitions, we obtain that

K= Q G, = intersection of all isotropy groups.



28 GROUPS I, §5

An action or operation of G is said to be faithful if K = {e}; that is, the kernel
of G — Perm(S) is trivial. A fixed point of G is an element s € § such that
xs = s for all x € G or in other words, G = G;.

Let G operate on aset S. Letse S. The subset of S consisting of all elements
xs (with x € G) is denoted by Gs, and is called the orbit of s under G. If x and y
are in the same coset of the subgroup H = G, then xs = ys, and conversely
(obvious). In this manner, we get a mapping

f:G/H-S

given by f(xH) = xs, and it is clear that this map is a morphism of G-sets. In
fact, one sees at once that it induces a bijection of G/H onto the orbit Gs.
Consequently:

Proposition 5.1.  If G is a group operating on a set S, and s € S, then the order
of the orbit Gs is equal to the index (G : Gy).

In particular, when G operates by conjugation on the set of subgroups, and
H is a subgroup, then:

Proposition 5.2. The number of conjugate subgroups to H is equal to the
index of the normalizer of H.

Example. Let G beagroup and H a subgroup of index 2. Then H is normal
in G.

Proof. Note that H is contained in its normalizer Ny, so the index of Ny
inGis1or2. Ifitis1,then we are done. Suppose itis2. Let G operate by con-
jugation on the set of subgroups. The orbit of H has 2 elements, and G operates
on this orbit. In this way we get a homomorphism of G into the group of
permutations of 2 elements. Since there is one conjugate of H unequal to H,
then the kernel of our homomorphism is normal, of index 2, hence equal to H,
which is normal, a contradiction which concludes the proof.

For a generalization and other examples, see Lemma 6.7.
In general, an operation of G on § is said to be transitive if there is only
one orbit.

Examples. The symmetric group S, operates transitively on {1,2,...,n}.
(See p. 30.) In Proposition 2.1 of Chapter VII, we shall see a non-trivial exam-
ple of transitive action of a Galois group operating on the primes lying above a
given prime in the ground ring. In topology, suppose we have a universal cov-
ering space p : X' — X, where X is connected. Given x € X, the fundamental
group 7;(X) operates transitively on the inverse image p~!(x).
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Example. Let $ be the upper half-plane; that is, the set of complex numbers
z = x + iy such that y > 0. Let G = SL,(R) (2 X 2 matrices with determinant
1). For

az + b

—(“ b) G, we let az =
a={_ JeG weletaz="——)

Readers will verify by brute force that this defines an operation of G on . The
isotropy group of i is the group of matrices

( cos O sin 8

ith 1.
—sin 8 cos 0) with 6 rea

This group is usually denoted by K. The group G operates transitively. You can
verify all these statements as easy exercises.

Let G operate on a set S. Then two orbits of G are either disjoint or are
equal. Indeed, if Gs, and Gs, are two orbits with an element s in common,
then s = xs, for some x € G, and hence Gs = Gxs; = Gs;. Similarly, Gs = Gs,.
Hence S is the disjoint union of the distinct orbits, and we can write

S = U, Gs, (disjoint), also denoted § = LE Gs;,

where I is some indexing set, and the s; are elements of distinct orbits. If S is
finite, this gives a decomposition of the order of § as a sum of orders of orbits,
which we call the orbit decomposition formula, namely

card(S) = ) (G:G,).

iel

Let x, y be elements of a group (or monoid) G. They are said to commute
if xy = yx. If G is a group, the set of all elements x € G which commute with all
elements of G is a subgroup of G which we called the center of G. Let G act on
itself by conjugation. Then x is in the center if and only if the orbit of x is x
itself, and thus has one element. In general, the order of the orbit of x is equal
to the index of the normalizer of x. Thus when G is a finite group, the above
formula reads

(G:1)= Y (G:G,)

xeC

where C is a set of representatives for the distinct conjugacy classes, and the
sum is taken over all x e C. This formula is also called the class formula.
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The class formula and the orbit decomposition formula will be used systematically
in the next section on Sylow groups, which may be viewed as providing examples
for these formulas.

Readers interested in Sylow groups may jump immediately to the next section.
The rest of this section deals with special properties of the symmetric group,
which may serve as examples of the general notions we have developed.

The symmetric group. Let S, be the group of permutations of a set
with n elements. This set may be taken to be the set of integers
J,=1{1,2,..., n}. Given any o € S,, and any integer i, | =i = n, we may
form the orbit of i under the cyclic group generated by o. Such an orbit is called
a cycle for o, and may be written

liyy i), so o() =iy..., a6, =i, o6,)=i.

Then {1, ..., n} may be decomposed into a disjoint union of orbits for the cyclic
group generated by o, and therefore into disjoint cycles. Thus the effect of o
on{l,..., n} is represented by a product of disjoint cycles.

Example. The cycle [132] represents the permutation o such that
o(1) =3, 6(3)=2, and o(2)=1.

We have ¢%(1) = 2, ¢3(1) = 1. Thus {1, 3,2} is the orbit of 1 under the cyclic
group generated by o.

Example. In Exercise 38, one will see how to generate S, by special types
of generators. Perhaps the most important part of that exercise is that if »n is
prime, ¢ is an n-cycle and 7 is a transposition, then o, 7 generate S,,. As an
application in Galois theory, if one tries to prove that a Galois group is all
of S, (as a group of permutations of the roots), it suffices to prove that the
Galois group contains an n-cycle and a transposition. See Example 6 of
Chapter VI, §2.

We want to associate a sign *1 to each permutation. We do this in the
standard way. Let f be a function of n variables, say f: Z" — Z, so we can
evaluate f(x,,..., x,). Let o be a permutation of J,. We define the function

m(0)f by
m(Of Xy, .oy X)) = [y - -+ s Xo()-
Then for o, 7 € S, we have w(o7) = 7(o)7(7). Indeed, we use the definition
applied to the function g = 7(7)f to get
m(O)m(Df(xy, . .., x) = (T ey - - - > Xow)
= f&araay -+ - Xor(n))

m(onf(xy, ..., X,).
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Since the identity in S, operates as the identity on functions, it follows that we
have obtained an operation of S, on the set of functions. We shall write more
simply of instead of m(o)f. It is immediately verified that for two functions f,
g we have

o(f+9) =oaof+og and o(fg) = (af)(og).

If ¢ is constant, then o(cf) = co(f).

Proposition 5.3. There exists a unique homomorphism €: S, — {*1} such
that for every transposition T we have (1) = —1.

Proof. Let A be the function
Alxy, ...y x,) = H (xj = x;),
i<j

the product being taken for all pairs of integers i, j satisfying 1 =i < j = n.
Let 7 be a transposition, interchanging the two integers r and s. Say r < s. We
wish to determine

TAK, .., X,) = Q (rry = Xrgi)-

For one factor involving j = s, i = r, we see that 7 changes the factor
(x; — x,) to —(x; — x,). All other factors can be considered in pairs as follows:
O — x)x — x,) ifk>s,
(g — ) — x) ifr <k <s,
(X, — x ), — x) fk<r.
Each one of these pairs remains unchanged when we apply 7. Hence we see that
™A = —A.
Let &(o) be the sign 1 or —1 such that A = &(0)A for a permutation o.

Since w(o1) = w(0o)7(7), it follows at once that ¢ is a homomorphism, and the
proposition is proved.

In particular, if ¢ = 7 --- 7, is a product of transpositions, then
g(g) = (—1)™. As a matter of terminology, we call o even if ¢(o) = 1, and odd
if e(o) = —1. The even permutations constitute the kernel of ¢, which is called

the alternating group A,,.

Theorem 5.4. Ifn = 5 then S, is not solvable.

Proof. We shall first prove that if H, N are two subgroups of S, such that
N C H and N is normal in H, if H contains every 3-cycle, and if H/N is abelian,
then N contains every 3-cycle. To see this, leti, j, k, r, s be five distinct integers
in J,, and let o = [ijk] and T = [krs]. Then a direct computation gives their
commutator
oro vl = [rki].
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Since the choice of i, j, k, r, s was arbitrary, we see that the cycles [rki] all lie
in N for all choices of distinct r, &, i, thereby proving what we wanted.
Now suppose that we have a tower of subgroups

S,,:H()DHIDHzD"'DHmZ{e}

such that H, is normal in H,_, forv = 1, ..., m, and H,/H,_ is abelian. Since
S, contains every 3-cycle, we conclude that H, contains every 3-cycle. By
induction, we conclude that H,, = {e} contains every 3-cycle, which is impossible,
thus proving the theorem.

Remark concerning the sign €(o). A priori, we defined the sign for a
given n, so we should write ¢,(d). However, suppose n < m. Then the restriction
of ¢, to §,, (viewed as a permutation of J, leaving the elements of J,, not in J,,
fixed) gives a homomorphism satisfying the conditions of Proposition 5.3, so
this restriction is equal to ¢,. Thus A,, N S, = 4,.

Next we prove some properties of the alternating group.

(a) A, is generated by the 3-cycles. Proof: Consider the product of two trans-
positions [ij]{rs]. If they have an element in common, the product is either the
identity or a 3-cycle. If they have no element in common, then

(ij1lrs] = [ijrlljrs],

so the product of two transpositions is also a product of 3-cycles. Since an even
permutation is a product of an even number of transpositions, we are done.

(b) If n = 5, all 3-cycles are conjugate in A,,. Proof: If vy is a permutation,
then for a cycle [i, ... i,] we have

iy oo inly ™ = G - Y]

Given 3-cycles [ijk] and [i'j'k'] there is a permutation 7y such that y(i) = i’,
¥(j) = j', and y(k) = k’. Thus two 3-cycles are conjugate in S,, by some element
v. If v is even, we are done. Otherwise, by assumption n = 5 there exist r, s
not equal to any one of the three elements i, j, k. Then [rs] commutes with [ijk],
and we replace vy by vy[rs] to prove (b).

Theorem 5.5. If n = 5 then the alternating group A, is simple.

Proof. Let N be a non-trivial normal subgroup of A,. We prove that N
contains some 3-cycle, whence the theorem follows by (b). Let c € N, o # id,
be an element which has the maximal number of fixed points; that is, integers
i such that o(i) = i. It will suffice to prove that ¢ is a 3-cycle or the identity.
Decompose J,, into disjoint orbits of (0}.Then some orbits have more than one
element. Suppose all orbits have 2 elements (except for the fixed points). Since
o is even, there are at least two such orbits. On their union, o is represented as
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a product of two transpositions [if][rs]. Let k #* i, j, r, s. Let 7 = [rsk]. Let
o = 101 'o”!. Then ¢’ is a product of a conjugate of oand o~ !, s0 0" € N.
But ¢’ leaves i, j fixed, and any element t € J,, t # i, j, r, s, k left fixed by o
is also fixed by o', so o’ has more fixed points than o, contradicting our

hypothesis.
So we are reduced to the case when at least one orbit of (o) has =3 elements,
say i, j, k,... . If ois not the 3-cycle [ijk], then o must move at least two other

elements of J,,, otherwise o is an odd permutation [ijkr] for some r € J,,, which
is impossible. Then let o move r, s other than i, j, k, and let 1 = [krs]. Let ¢’
be the commutator as before. Then ¢’ € N and o'(i) = i, and all fixed points
of o are also fixed points of ¢’ whence o' has more fixed points than o, a
contradiction which proves the theorem.

Example. For n = 4, the group A, is not simple. As an exercise, show
that A, contains a unique subgroup of order 4, which is not cyclic, and which
is normal. This subgroup is also normal in S,. Write down explicitly its elements
as products of transpositions.

§6. SYLOW SUBGROUPS

Let p be a prime number. By a p-group, we mean a finite group whose
order is a power of p (i.e. p" for some integer n = 0). Let G be a finite group
and H a subgroup. We call H a p-subgroup of G if H is a p-group. We call H
a p-Sylow subgroup if the order of H is p” and if p” is the highest power of p
dividing the order of G. We shall prove below that such subgroups always
exist. For this we need a lemma.

Lemma 6.1. Let G be a finite abelian group of order m, let p be a prime
number dividing m. Then G has a subgroup of order p.

Proof. We first prove by induction that if G has exponent n then the
order of G divides some power of n. Let be G, b # 1, and let H be the cyclic
subgroup generated by b. Then the order of H divides n since b" = 1, and n
is an exponent for G/H. Hence the order of G/H divides a power of n by
induction, and consequently so does the order of G because

(G:1) = (G:HYH: 1),

Let G have order divisible by p. By what we have just seen, there exists an
element x in G whose period is divisible by p. Let this period be ps for some
integer s. Then x* # 1 and obviously x® has period p, and generates a subgroup
of order p, as was to be shown.
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Theorem 6.2. Let G be a finite group and p a prime number dividing the
order of G. Then there exists a p-Sylow subgroup of G.

Proof. By induction on the order of G. If the order of G is prime, our
assertion is obvious. We now assume given a finite group G, and assume the
theorem proved for all groups of order smaller than that of G. If there exists a
proper subgroup H of G whose index is prime to p, then a p-Sylow subgroup of
H will also be one of G, and our assertion follows by induction. We may therefore
assume that every proper subgroup has an index divisible by p. We now let G
act on itself by conjugation. From the class formula we obtain

(G:1)=(Z:1) + Y (G:Gy).

Here, Z is the center of G, and the term (Z : 1) corresponds to the orbits having
one element, namely the elements of Z. The sum on the right is taken over the
other orbits, and each index (G : G,) is then > 1, hence divisible by p. Since p
divides the order of G, it follows that p divides the order of Z, hence in particular
that G has a non-trivial center.

Let a be an element of order p in Z, and let H be the cyclic group generated
by a. Since H is contained in Z, it is normal. Let f: G — G/H be the canonical
map. Let p" be the highest power of p dividing (G: 1). Then p"~! divides the
order of G/H. Let K' be a p-Sylow subgroup of G/H (by induction) and let
K =f"YK’). Then K o H and f maps K onto K'. Hence we have an iso-
morphism K/H ~ K'. Hence K has order p"~ !p = p", as desired.

For the rest of the theorems, we systematically use the notion of a fixed point.
Let G be a group operating on a set S. Recall that a fixed point s of G in S is
an element s of S such that xs = s for all x € G.

Lemma 6.3. Let H be a p-group acting on a finite set S. Then:
(@) The number of fixed points of H is = #(S) mod p.

(b) If H has exactly one fixed point, then #(S) = 1 mod p.

(c) Ifp | #(S), then the number of fixed points of H is = 0 mod p.

Proof. We repeatedly use the orbit formula
#(S) = 2 (H:H,).

For each fixed point s; we have H;, = H. For s; not fixed, the index
(H : H,) is divisible by p, so (a) follows at once. Parts (b) and (c) are special
cases of (a), thus proving the lemma.

Remark. In Lemma 6.3(c), if H has one fixed point, then H has at least p
fixed points.

Theorem 6.4. Let G be a finite group.
(i) IfH is a p-subgroup of G, then H is contained in some p-Sylow subgroup.
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(ii) All p-Sylow subgroups are conjugate.
(iii) The number of p-Sylow subgroups of G is =1 mod p.

Proof. Let P be a p-Sylow subgroup of G. Suppose first that H is contained
in the normalizer of P. We prove that H C P. Indeed, HP is then a subgroup
of the normalizer, and P is normal in HP. But

(HP:P)=(H:HNP),

so if HP # P, then HP has order a power of p, and the order is larger than #(P),
contradicting the hypothesis that P is a Sylow group. Hence HP = P and
HCP.

Next, let S be the set of all conjugates of P in G. Then G operates on S by
conjugation. Since the normalizer of P contains P, and has therefore index prime
to p, it follows that #(S) is not divisible by p. Now let H be any p-subgroup.
Then H also acts on S by conjugation. By Lemma 6.3(a), we know that H cannot
have 0 fixed points. Let Q be a fixed point. By definition this means that H is
contained in the normalizer of Q, and hence by the first part of the proof, that
H C @, which proves the first part of the theorem. The second part follows
immediately by taking H to be a p-Sylow group, so #(H) = #(Q), whence
H = Q. In particular, when H is a p-Sylow group, we see that H has only one
fixed point, so that (iii) follows from Lemma 6.3(b). This proves the theorem.

Theorem 6.5. Let G be a finite p-group. Then G is solvable. If its order is
> 1, then G has a non-trivial center.

Proof. The first assertion follows from the second, since if G has center
Z, and we have an abelian tower for G/Z by induction, we can lift this abelian
tower to G to show that G is solvable. To prove the second assertion, we use
the class equation

(G:1) = card(Z) + ) (G:G,),
the sum being taken over certain x for which (G:G,) # 1. Then p divides

(G : 1) and also divides every term in the sum, so that p divides the order of the
center, as was to be shown.

Corollary 6.6. Let G be a p-group which is not of order 1. Then there
exists a sequence of subgroups

{e}=6GycG,cGyc-- =G, =06
such that G; is normal in G and G, ,/G; is cyclic of order p.

Proof. Since G has a non-trivial center, there exists an element a # e in
the center of G, and such that a has order p. Let H be the cyclic group generated
by a. By induction, if G # H, we can find a sequence of subgroups as stated
above in the factor group G/H. Taking the inverse image of this tower in G
gives us the desired sequence in G.
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We now give some examples to show how to put some of the group theory
together.

Lemma 6.7. Let G be a finite group and let p be the smallest prime dividing
the order of G. Let H be a subgroup of index p. Then H is normal.

Proof. Let N(H) = N be the normalizer of H. Then N = Gor N = H. If
N = G we are done. Suppose N = H. Then the orbit of H under conjugation
has p = (G : H) elements, and the representation of G on this orbit gives a
homomorphism of G into the symmetric group on p elements, whose order is
p!. Let K be the kernel. Then X is the intersection of the isotropy groups, and
the isotropy group of H is H by assumption, so K C H. If K # H, then from

(G:K)=(G:H)YH:K)=pH:K),

and the fact that only the first power of p divides p!, we conclude that some
prime dividing (p — 1)! also divides (H : K), which contradicts the assumption
that p is the smallest prime dividing the order of G, and proves the lemma.

Proposition 6.8. Let p, g be distinct primes and let G be a group of order
pq. Then G is solvable.

Proof. Sayp < q. Let Q be a Sylow subgroup of order gq. Then Q has index
p, so by the lemma, Q is normal and the factor group has order p. But a group
of prime order is cyclic, whence the proposition follows.

Example. Let G be a group of order 35. We claim that G is cyclic.

Proof. Let H; be the Sylow subgroup of order 7. Then H; is normal by
Lemma 6.7. Let Hs be a 5-Sylow subgroup, which is of order 5. Then Hs
operates by conjugation on H-, so we get a homomorphism Hs — Aut(H;). But
Aut(H,) is cyclic of order 6, so Hs — Aut(H-) is trivial, so every element of
Hs commutes with elements of H;. Let Hs = (x) and H; = (y). Thenx, y commute
with each other and with themselves, so G is abelian, and so G is cyclic by
Proposition 4.3(v).

Example. The techniques which have been developed are sufficient to treat
many cases of the above types. For instance every group of order < 60 is solvable,
as you will prove in Exercise 27.

§7. DIRECT SUMS AND FREE ABELIAN GROUPS

Let {A;},; be a family of abelian groups. We define their direct sum

A=A

iel

to be the subset of the direct product II A, consisting of all families (x;);c; with
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x; € A; such that x; = 0 for all but a finite number of indices i. Then it is clear
that A is a subgroup of the product. For each index j € I, we map

by letting 4,(x) be the element whose j-th component is x, and having all other
components equal to 0. Then 4; is an injective homomorphism.

Proposition 7.1. Ler {f;: A; = B} be a family of homomorphisms into an
abelian group B. Let A = @ A;. There exists a unique homomorphism

f:A—>B
such that fo A; = f; for all j.
Proof. We can define a map f: A — B by the rule
f(xien) = Z filx).
iel

The sum on the right is actually finite since all but a finite number of terms are 0.
It is immediately verified that our map f is a homomorphism. Furthermore,
we clearly have f o A(x) = fi(x) for each j and each xe 4;. Thus f has the
desired commutativity property. It is also clear that the map f is uniquely
determined, as was to be shown.

The property expressed in Proposition 7.1 is called the universal property
of the direct sum. Cf. §11.

Example. Let A be an abelian group, and let {A4,},.; be a family of sub-
groups. Then we get a homomorphism

A — A suchthat (x;)+— S

iel
Theorem 8.1 will provide an important specific application.

Let A be an abelian group and B, C subgroups. If B + C = A and
B N C = {0} then the map

Bx(C-A

given by (x, y)— x + y is an isomorphism (as we already noted in the non-
commutative case). Instead of writing A = B x C we shall write

A=B@C

and say that A is the direct sum of B and C. We use a similar notation for the
direct sum of a finite number of subgroups B, ..., B, such that

B, +---+B,=4
and

Bi.,n(B,+- +B)=0.
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In that case we write
A=B,® - @®B,.

Let A be an abelian group. Let {e;} (i € ) be a family of elements of A. We
say that this family is a basis for A if the family is not empty, and if every
element of A has a unique expression as a linear combination

x = Ex,—e,-

with x; € Z and almost all x; = 0. Thus the sum is actually a finite sum. An
abelian group is said to be free if it has a basis. If that is the case, it is immediate
that if we let Z; = Z for all i, then A is isomorphic to the direct sum
A=Pz.
iel

Next let S be a set. We shall define the free abelian group generated by § as
follows. Let Z(S) be the set of all maps ¢ : § — Z such that ¢(x) = 0 for almost
all x € S. Then Z(S) is an abelian group (addition being the usual addition of
maps). If k is an integer and x is an element of S, we denote by k - x the map
¢ such that ¢(x) = kand ¢(y) = 0if y # x. Then it is obvious that every element
¢ of Z(S) can be written in the form

® = kl'xl +""+'kn'xn

for some integers k; and elements x; €S (i = 1, ..., n), all the x; being distinct.
Furthermore, ¢ admits a unique such expression, because if we have

¢ = E:kx'xzz E:k;.x

xeS xeS

then
0= ) (k. — ki) x,

xeS

whence k), = k, for all xe S.

We map S into Z{S) by the map f; = f such that f(x)=1-x. It is
then clear that f is injective, and that f(S) generates Z<S). If g:S—> Bisa
mapping of S into some abelian group B, then we can define a map

gy Z{S) > B
such that

g*( Dk X> = ) keg(x).

xeS xeS

This map is a homomorphism (trivial) and we have g, ° f = g (also trivial). It
is the only homomorphism which has this property, for any such homomorphism
g4 must be such that g, (1 - x) = g(x).
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It is customary to identify S in Z{S), and we sometimes omit the dot when
we write k,x or a sum Y k,x.

IfA:S — S’ is a mapping of sets, there is a unique homomorphism A making the
following diagram commutative:

s —If o 7¢8)

A 7
S = {8

In fact, A is none other than (fy o 4),., with the notation of the preceding para-
graph. The proof of this statement is left as a trivial exercise.

We shall denote Z(S) also by F,(S), and call F,,(S) the free abelian group
generated by S. We call elements of S its free generators.

As an exercise, show that every abelian group A4 is isomorphic to a factor
group of a free abelian group F. If A is finitely generated, show that one can
select F to be finitely generated also.

If the set S above consists of n elements, then we say that the free abelian
group F,.(S) is the free abelian group on n generators. If S is the set of n
letters x,,...,x,, we say that F,(S) is the free abelian group with free
generators X, ..., X,.

An abelian group is free if and only if it is isomorphic to a free abelian group
Fp(S) for some set S. Let A be an abelian group, and let S be a basis for A.
Then it is clear that A is isomorphic to the free abelian group F,;(S).

As a matter of notation, if A is an abelian group and T a subset of elements
of A, we denote by (T) the subgroup generated by the elements of T, i.e., the
smallest subgroup of A containing T.

Example. The Grothendieck group. Let M be a commutative monoid,
written additively. There exists a commutative group K(M) and a monoid-
homomorphism

y:M - K(M)

having the following universal property. If f: M — A is a homomorphism into
an abelian group A, then there exists a unique homomorphism f,: K(M) —> A
making the following diagram commutative:

M- KM)
N
A

Proof. Let F,i(M) be the free abelian group generated by M. We denote
the generator of F,,(M) corresponding to an element x e M by [x]. Let B be
the subgroup generated by all elements of type

bx+y] - [x] - D]
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where x, ye M. We let K(M) = F,(M)/B, and let
y: M > K(M)

be the map obtained by composing the injection of M into F, (M) given by
x > [x], and the canonical map

Fab(M) - Fab(M)/B

It is then clear that y is a homomorphism, and satisfies the desired universal
property.
The universal group K(M) is called the Grothendieck group.

We shall say that the cancellation law holds in M if, whenever x, y, ze M,
and x + z = y + z, we have x = y.

We then have an important criterion when the universal map y above is
injective:

If the cancellation law holds in M, then the canonical map y of M into its

Grothendieck group is injective.

Proof This is essentially the same proof as when one constructs the
integers from the natural numbers. We consider pairs (x, y) with x,ye M
and say that (x, y) is equivalent to (x', y') if y + x’ = x + y'. We define addi-
tion of pairs componentwise. Then the equivalence classes of pairs form a
group, whose 0 element is the class of (0,0) [or the class of (x,x) for any
x € M]. The negative of an element (x, ) is (y,x). We have a homomorphism

x > class of (0, x)

which is injective, as one sees immediately by applying the cancellation law.
Thus we have constructed a homomorphism of M into a group, which is
injective. It follows that the universal homomorphism must also be injective.

Examples. See the example of projective modules in Chapter III, §4. For
a relatively fancy context, see: K. Kato, Logarithmic structures of Fontaine-
Illusie, Algebraic Geometry, Analysis and Number Theory, Proc. JAMI Confer-
ence, J. Igusa (Ed.), Johns Hopkins Press (1989) pp. 195-224.

Given an abelian group 4 and a subgroup B, it is sometimes desirable to
find a subgroup C such that A = B @ C. The next lemma gives us a condition
under which this is true.

Lemma7.2. Let AL A bea surjective homomorphism of abelian groups,
and assume that A’ is free. Let B be the kernel of f. Then there exists a
subgroup C of A such that the restriction of f to C induces an isomorphism
of C with A', and such that A = B® C.

Proof. Let {x;},.,; be a basis of A’, and for each i € I, let x; be an element of
A such that f(x;) = x;. Let C be the subgroup of 4 generated by all elements
x;, i€ l. If we have a relation
Z n;x; = 0

iel
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with integers n;, almost all of which are equal to 0, then applying f yields
0=Yn ()= Y nxi,
iel iel
whence all n; = 0. Hence our family {x;};, is a basis of C. Similarly, one sees

that if ze C and f(z) = 0 then z = 0. Hence BN C =0. Let xe A. Since
f(x) e A’ there exist integers n;, i € I, such that

f) = Y nx,

iel

Applying f to x — Z n;x;, we find that this element lies in the kernel of f,
iel

say
X — Zn[xi = bEB.
iel
From this we see that x € B + C, and hence finally that A = B @ C is a direct
sum, as contended.

Theorem 7.3. Let A be a free abelian group, and let B be a subgroup. Then
B is also a free abelian group, and the cardinality of a basis of B is < the
cardinality of a basis for A. Any two bases of B have the same cardinality.

Proof. We shall give the proof only when A is finitely generated, say by a
basis {x,, ..., x,} (n = 1), and give the proof by induction on n. We have an
expression of 4 as direct sum:

A=1Ix, ® - & ZLx,.
Let f: A — Zx, be the projection, i.e. the homomorphism such that
flmyxy + -+ m,x,) = mx,

whenever m; € Z. Let B, be the kernel of f|B. Then B, is contained in the free
subgroup {x,, ..., x,». By induction, B, is free and has a basis with < n — 1
elements. By the lemma, there exists a subgroup C, isomorphic to a subgroup
of Zx, (namely the image of f|B) such that

B:BI®C1.

Since f(B) is either O or infinite cyclic, i.e. free on one generator, this proves
that B is free.

(When 4 is not finitely generated, one can use a similar transfinite argument.
See Appendix 2, §2, the example after Zorn’s Lemma.)

We also observe that our proof shows that there exists at least one basis
of B whose cardinality is < n. We shall therefore be finished when we prove
the last statement, that any two bases of B have the same cardinality. Let §
be one basis, with a finite number of elements m. Let T be another basis, and
suppose that T has at least r elements. It will suffice to prove that r < m (one
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can then use symmetry). Let p be a prime number. Then B/pB is a direct
sum of cyclic groups of order p, with m terms in the sum. Hence its order
is p™. Using the basis T instead of S, we conclude that B/pB contains an r-fold
product of cyclic groups of order p, whence p" < p™, and r < m, as was to
be shown. (Note that we did not assume a priori that T was finite.)

The number of elements in a basis of a free abelian group 4 will be called
the rank of 4.

§8. FINITELY GENERATED ABELIAN GROUPS

The groups referred to in the title of this section occur so frequently that it is
worth while to state a theorem which describes their structure completely.
Throughout this section we write our abelian groups additively.

Let A be an abelian group. An element a € A4 is said to be a torsion element
if it has finite period. The subset of all torsion elements of A is a subgroup of 4
called the torsion subgroup of 4. (If a has period m and b has period n then,
writing the group law additively, we see that a + b has a period dividing mn.)

The torsion subgroup of 4 is denoted by A,,,, or simply 4,. An abelian
group is called a torsion group if 4 = A4,,,, that is all elements of A are of finite
order.

A finitely generated torsion abelian group is obviously finite. We shall begin
by studying torsion abelian groups. If A is an abelian group and p a prime number,
we denote by A(p) the subgroup of all elements x € A whose period is a power
of p. Then A(p) is a torsion group, and is a p-group if it is finite.

Theorem 8.1 Let A be a torsion abelian group. Then A is the direct sum of
its subgroups A(p) for all primes p such that A(p) + 0.

Proof. There is a homomorphism

P Ap) — A
p

which to each element (x,) in the direct sum associates the element pr in A.
We prove that this homomorphism is both surjective and injective. Suppose x
is in the kernel, so Exp = 0. Let g be a prime. Then
x, = —Xp,).

Let m be the least common multiple of the periods of elements x, on the right-
hand side, with x, # 0 and p # g. Then mx, = 0. But also q"x, = 0 for some
positive integer r. If d is the greatest common divisor of m, ¢” then dx, = O,
butd = 1, so X, = 0. Hence the kernel is trivial, and the homomorphism is
injective.
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As for the surjectivity, for each positive integer m, denote by A,, the kernel
of multiplication by m, i.e. the subgroup of x € A such that mx = 0. We prove:

If m = rs with r, s positive relative prime integers, then A,, = A, + A,.

Indeed, there exist integers u, v such that ur + vs = 1. Then x = urx + vsx,
and urx € A; while vsx € A, and our assertion is proved. Repeating this process
inductively, we conclude:

Ifm= Hp"(l’) then A,, = 2 Apetr.
plm plm

Hence the map @ A(p) — A is surjective, and the theorem is proved.

Example. LetA = Q/Z. Then Q/Z is a torsion abelian group, isomorphic
to the direct sum of its subgroups (Q/Z)(p). Each (Q/Z)(p) consists of those
elements which can be represented by a rational number a/p* with a € Z and k
some positive integer, i.e. a rational number having only a p-power in the
denominator. See also Chapter IV, Theorem 5.1.

In what follows we shall deal with finite abelian groups, so only a finite
number of primes (dividing the order of the group) will come into play. In this
case, the direct sum is “the same as” the direct product.

Our next task is to describe the structure of finite abelian p-groups. Let
Fi,...,rs be integers = 1. A finite p-group A4 is said to be of type (p™,...,p")
if A4 is isomorphic to the product of cyclic groups of orders p™ (i = 1,..., s).
We shall need the following remark.

Remark. Let A be a finite abelian p-group. Let b be an element of
A, b # 0. Let k be an integer = 0 such that p*b # 0, and let p™ be the period
of p*b. Then b has period p**™. [Proof: We certainly have p**™p = 0, and if
p"b = 0 then first n = k, and second n = k +m, otherwise the period of p*b
would be smaller than p™.]

Theorem 8.2. Every finite abelian p-group is isomorphic to a product of

cyclic p-groups. If it is of type (p"', ..., p"™) with
rlérzz"’érsél,
then the sequence of integers (r|, . .., ry) is uniquely determined.

Proof. We shall prove the existence of the desired product by induction.
Let a; € A be an element of maximal period. We may assume without loss of
generality that A is not cyclic. Let A; be the cyclic subgroup generated by q,,
say of period p"!. We need a lemma.

Lemma 8.3. Let b be an element of A/A,, of period p". Then there exists a
representative a of b in A which also has period p'.
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Proof. Let b be any representative of b in A. Then p'b lies in A,, say
p'b = na, with some integer n = 0. We note that the period of b is < the period
of b. If n = 0 we are done. Otherwise write n = p*u where u is prime to p.
Then pa, is also a generator of A;, and hence has period p"i. We may assume
k = r,. Then p*ua, has period p"1~*. By our previous remarks, the element b

has period I

p

whence by hypothesis,r + r;, — k < r, and r < k. This proves that there exists
an element c € A, such that p'b = p’c. Leta = b — ¢. Then ais a representative
for b in 4 and p'a = 0. Since period (a) £ p" we conclude that a has period
equal to p".

We return to the main proof. By induction, the factor group 4/4, has a
product expression

A/A1=ZZ X "‘XZS

into cyclic subgroups of orders p", ..., p™ respectively, and we may assume
r,2---2r,. Let a; be a generator for A4; (i=2,...,s) and let g; be a

rep_r_esentative in A of the same period as g;. Let A4; be the cyclic subgroup
generated by a;. We contend that A is the direct sum of Ay, ..., A,.
Given x € A4, let X denote its residue class in A/A4;. There exist integers
m; =2 0(i =2,...,s)such that
)_C= mzaz + e +msds.
Hence x — mya, — --- — myaq, lies in A,, and there exists an integer m; = 0
such that

x =ma, + mya, + -+ + mya;.

Hence 4, + --- + A, = A.
Conversely, suppose that m, ..., m, are integers = 0 such that

0=mya; +--- + mya,.
Since q; has period p" (i = 1, ..., s), we may suppose that m; < p". Putting
a bar on this equation yields

0=m,a, + - + m,a,.
Since A/A, is a direct product of 4,, ..., A, we conclude that each m; = 0 for

i=2,...,s. Butthenm, =0 also, and henceallm; =0(@{ =1,...,s). From
this it follows at once that

Ay + -+ 4)n A4y =0

for each i = 1, and hence that A is the direct product of 4,, ..., A,, as desired.
We prove uniqueness, by induction. Suppose that A is written in two ways
as a direct sum of cyclic groups, say of type

(" ...,p") and (p™,...,p™)
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withri2---2ry2land m; =2 ---2m, 2 1. Then pA is also a p-group,
of order strictly less than the order of 4, and is of type
L., p ) and (p™mTYL ..., p™TY,

it being understood that if some exponent r; or m; is equal to 1, then the factor
corresponding to

pr.»—x or pm,-l
in pA is simply the trivial group 0. By induction, the subsequence of
ri—1...,r,=1
consisting of those integers > 1 is uniquely determined, and is the same as
the corresponding subsequence of
m,—1....,m — 1)

In other words, we have r, —~ 1 = m; — 1 for all those integers i such that
r,—1lorm; —12=1 Hencer;=m; for all these integers i, and the two se-
quences

(prl""7prs) and (p’"l9""pm,‘)

can differ only in their last components which can be equal to p. These cor-
respond to factors of type (p, ..., p) occurring say v times in the first sequences
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