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Foreword 

The present book is meant as a text for a course on complex analysis at 
the advanced undergraduate level, or first-year graduate level. The first 
half, more or less, can be used for a one-semester course addressed to 
undergraduates. The second half can be used for a second semester, at 
either level. Somewhat more material has been included than can be 
covered at leisure in one or two terms, to give opportunities for the 
instructor to exercise individual taste, and to lead the course in whatever 
directions strikes the instructor's fancy at the time as well as extra read­
ing material for students on their own. A large number of routine exer­
cises are included for the more standard portions, and a few harder 
exercises of striking theoretical interest are also included, but may be 
omitted in courses addressed to less advanced students. 

In some sense, I think the classical German prewar texts were the 
best (Hurwitz-Courant, Knopp, Bieberbach, etc.) and I would recommend 
to anyone to look through them. More recent texts have emphasized 
connections with real analysis, which is important, but at the cost of 
exhibiting succinctly and clearly what is peculiar about complex analysis: 
the power series expansion, the uniqueness of analytic continuation, and 
the calculus of residues. The systematic elementary development of for­
mal and convergent power series was standard fare in the German texts, 
but only Cart an, in the more recent books, includes this material, which 
I think is quite essential, e.g., for differential equations. I have written a 
short text, exhibiting these features, making it applicable to a wide vari­
ety of tastes. 

The book essentially decomposes into two parts. 
The first part, Chapters I through VIII, includes the basic properties 

of analytic functions, essentially what cannot be left out of, say, a one­
semester course. 

v 



VI FOREWORD 

I have no fixed idea about the manner in which Cauchy's theorem is 
to be treated. In less advanced classes, or if time is lacking, the usual 
hand waving about simple closed curves and interiors is not entirely 
inappropriate. Perhaps better would be to state precisely the homologi­
cal version and omit the formal proof. For those who want a more 
thorough understanding, I include the relevant material. 

Artin originally had the idea of basing the homology needed for com­
plex variables on the winding number. I have included his proof for 
Cauchy's theorem, extracting, however, a purely topological lemma of 
independent interest, not made explicit in Artin's original Notre Dame 
notes [Ar 65] or in Ahlfors' book closely following Artin [Ah 66]. I 
have also included the more recent proof by Dixon, which uses the 
winding number, but replaces the topological lemma by greater use of 
elementary properties of analytic functions which can be derived directly 
from the local theorem. The two aspects, homotopy and homology, both 
enter in an essential fashion for different applications of analytic func­
tions, and neither is slighted at the expense of the other. 

Most expositions usually include some of the global geometric proper­
ties of analytic maps at an early stage. I chose to make the preliminaries 
on complex functions as short as possible to get quickly into the analytic 
part of complex function theory: power series expansions and Cauchy's 
theorem. The advantages of doing this, reaching the heart of the subject 
rapidly, are obvious. The cost is that certain elementary global geometric 
considerations are thus omitted from Chapter I, for instance, to reappear 
later in connection with analytic isomorphisms (Conformal Mappings, 
Chapter VII) and potential theory (Harmonic Functions, Chapter VIII). 
I think it is best for the coherence of the book to have covered in one 
sweep the basic analytic material before dealing with these more geomet­
ric global topics. Since the proof of the general Riemann mapping theo­
rem is somewhat more difficult than the study of the specific cases con­
sidered in Chapter VII, it has been postponed to the second part. 

The second and third parts of the book, Chapters IX through XVI, 
deal with further assorted analytic aspects of. functions in many direc­
tions, which may lead to many other branches of analysis. I have em­
phasized the possibility of defining analytic functions by an integral in­
volving a parameter and differentiating under the integral sign. Some 
classical functions are given to work out as exercises, but the gamma 
functjon is worked out in detail in the text, as a prototype. 

The chapters in Part II allow considerable flexibility in the order they 
are covered. For instance, the chapter on analytic continuation, including 
the Schwarz reflection principle, and/or the proof of the Riemann map­
ping theorem could be done right after Chapter VII, and still achieve 
great coherence. 

As most of this part is somewhat harder than the first part, it can easily 
be omitted from a one-term course addressed to undergraduates. In the 
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same spirit, some of the harder exercises in the first part have been 
starred, to make their omission easy. 

Comments on the Third and Fourth Editions 

I have rewritten some sections and have added a number of exercises. I 
have added some material on harmonic functions and conformal maps, on 
the Borel theorem and Borel's proof of Picard's theorem, as well as D.J. 
Newman's short proof of the prime number theorem, which illustrates 
many aspects of complex analysis in a classical setting. I have made more 
complete the treatment of the gamma and zeta functions. I have also 
added an Appendix which covers some topics which I find sufficiently 
important to have in the book. The first part of the Appendix recalls 
summation by parts and its application to uniform convergence. The 
others cover material which is not usually included in standard texts on 
complex analysis: difference equations, analytic differential equations, fixed 
points of fractional linear maps (of importance in dynamical systems), 
Cauchy's formula for COC! functions, and Cauchy's theorem for locally 
integrable vector fields in the plane. This material gives additional insight 
on techniques and results applied to more standard topics in the text. 
Some of them may have been assigned as exercises, and I hope students 
will try to prove them before looking up the proofs in the Appendix. 

I am very grateful to several people for pointing out the need for a 
number of corrections, especially Keith Conrad, Wolfgang Fluch, Alberto 
Grunbaum, Bert Hochwald, Michal Jastrzebski, Jose Carlos Santos, Ernest 
C. Schlesinger, A. Vijayakumar, Barnet Weinstock, and Sandy Zabell. 
Finally, I thank Rami Shakarchi for working out an answer book. 

New Haven 1998 SERGE LANG 



Prerequisites 

We assume that the reader has had two years of calculus, and has some 
acquaintance with epsilon-delta techniques. For convenience, we have 
recalled all the necessary lemmas we need for continuous functions on 
compact sets in the plane. Section §1 in the Appendix also provides 
some background. 

We use what is now standard terminology. A function 

f: S-+ T 

is called injective if x =1= y in S implies f(x) =1= f(y). It is called surjective if 
for every z in T there exists XES such that f(x) = z. If f is surjective, 
then we also say that f maps S onto T. If f is both injective and 
surjective then we say that f is bijective. 

Given two functions f, 9 defined on a set of real numbers containing 
arbitrarily large numbers, and such that g(x) ~ 0, we write 

f~g or f(x) ~ g(x) for x -+ 00 

to mean that there exists a number C > 0 such that for all x sufficiently 
large, we have 

If(x) I ~ Cg(x). 

Similarly, if the functions are defined for x near 0, we use the same 
symbol ~ for x -+ 0 to mean that there exists C > 0 such that 

I f(x) I ~ Cg(x) 

ix 
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for all x sufficiently small (there exists b > 0 such that if Ixl < b then 
If(x)1 ~ Cg(x)). Often this relation is also expressed by writing 

f(x) = O(g(x)), 

which is read: f(x) is big oh of g(x), for x - 00 or x - 0 as the case 
may be. 

We use ]a, b[ to denote the open interval of numbers 

a < x < b. 

Similarly, [a, b[ denotes the half-open interval, etc. 
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CHAPTER 

Complex Numbers 
and Functions 

One of the advantages of dealing with the real numbers instead of the 
rational numbers is that certain equations which do not have any solu­
tions in the rational numbers have a solution in real numbers. For 
instance, x2 = 2 is such an equation. However, we also know some 
equations having no solution in real numbers, for instance x2 = -1, or 
x2 = - 2. We define a new kind of number where such equations have 
solutions. The new kind of numbers will be called complex numbers. 

I, §1. DEFINITION 

The complex numbers are a set of objects which can be added and 
multiplied, the sum and product of two complex numbers being also a 
complex number, and satisfy the following conditions. 

1. Every real number is a complex number, and if oc, p are real 
numbers, then their sum and product as complex numbers are 
the same as their sum and product as real numbers. 

2. There is a complex number denoted by i such that i2 = -1. 
3. Every complex number can be written uniquely in the form a + bi 

where a, b are real numbers. 
4. The ordinary laws of arithmetic concerning addition and multipli­

cation are satisfied. We list these laws: 

If oc, p, yare complex numbers, then (ocP)y = oc(Py), and 

(oc + f3) + y = oc + (P + y). 

3 



4 COMPLEX NUMBERS AND FUNCTIONS 

We have a(p + y) = afJ + ay, and (fJ + y)a = fJrx + yrx. 

We have rxfJ = fJrx, and rx + fJ = fJ + rx. 

If 1 is the real number one, then la = a. 

If 0 is the real number zero, then Oa = O. 

We have rx + ( -1)a = O. 

[I, §1] 

We shall now draw consequences of these properties. With each 
complex number a + bi, we associate the point (a, b) in the plane. Let 
rx := al + azi and fJ = bl + b2 i be two complex numbers. Then 

Hence addition of complex numbers is carried out "componentwise". 
For example, (2 + 3i) + (-1 + 5i) = 1 + 8i. 

bi ------------------..., a + bi = (a, b) 
I 

(0, I) = i -----.., 
I 
I 
I 
I 
I 

Figure 1 

I 
I 
I 
I 
I , 
I 
I 
I , 
I 

a 

In multiplying complex numbers, we use the rule iZ = - 1 to simplify 
a product and to put it in the form a + bi. For instance, let rx = 2 + 3i 
and fJ = 1 - i. Then 

rxfJ = (2 + 3i)(1 - i) = 2(1 - i) + 3i(1 - i) 

= 2 - 2i + 3i - 3i2 

= 2 + i - 3( -1) 

=2+3+i 

= 5 + i. 

Let rx = a + bi be a complex number. We define Ii to be a - bi. 
Thus if a. :::: 2 + 3i, then Ii = 2 - 3i. The complex number Ii is called the 
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conjugate of 0:. We see at once that 

With the vector interpretation of complex numbers, we see that o:ii is the 
square of the distance of the point (a, b) from the origin. 

We now have one more important property of complex numbers, 
which will allow us to divide by complex numbers other than O. 

If 0: = a + bi is a complex number =F 0, and if we let 

then o:l = lo: = 1. 
The proof of this property is an immediate consequence of the law of 

multiplication of complex numbers, because 

The number A. above is called the inverse of 0:, and is denoted by 0:-1 or 
1/0:. If 0:, fJ are complex numbers, we often write fJ/o: instead of (1.-1fJ (or 
fJo:-1), just as we did with real numbers. We see that we can divide by 
complex numbers =F O. 

Example. To find the inverse of (1 + i) we note that the conjugate 
of 1 + i is 1 - i and that (1 + i)(1 - i) = 2. Hence 

1 - i 
(1 + ifl = -2-' 

Theorem 1.1. Let 0:, fJ be complex numbers. Then 

ii = ex. 

Proof The proofs follow immediately from the definitions of addition, 
multiplication, and the complex conjugate. We leave them as exercises 
(Exercises 3 and 4). 

Let ex = a + bi be a complex number, where a, b are real. We shall 
call a the real part of 0:, and denote it by Re(ex). Thus 

0: + ii = 2a = 2 Re(ex). 



6 COMPLEX NUMBERS AND FUNCTIONS [I, §1] 

The real number b is called the imaginary part of a, and denoted by 
Im(a). 

We define the absolute value of a complex number a = al + ia2 (where 
aI' az are real) to be 

lal = Jai + a~. 

If we think of a as a point in the plane (aI, a2), then lal is the length of 
the line segment from the origin to a. In terms of the absolute value, 
we can write 

provided a :/= O. Indeed, we observe that lal2 = aa. 

CIt 

Figure 2 

If a = al + ia2, we note that 

Theorem 1.2. The absolute value of a complex number satisfies the 
following properties. If a, P are complex numbers, then 

laPI ::;:: lallPI, 

IIX + PI ~ lal + IPI. 

Proof We have 
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Taking the square root, we conclude that lailPI = laPI, thus proving 
the first assertion. As for the second, we have 

la + PI2 = (a + p)(a + p) = (a + P)(~ + P) 
= a~ + P~ + ap + pp 
= lal2 + 2 Re(p~) + IPI2 

because ap = pa;. However, we have 

2 Re(p~) ~ 21P~1 

because the real part of a complex number is ~ its absolute value. 
Hence 

la + PI2 ~ lal2 + 21P~1 + IPI2 

~ lal2 + 21Pllal + IPI2 

= (Ial + IPI)2. 

Taking the square root yields the second assertion of the theorem. 

The inequality 
la + PI ~ lal + IPI 

is called the triangle inequality. It also applies to a sum of several terms. 
If Zl' ••. ,Zn are complex numbers then we have 

Also observe that for any complex number z, we have 

I-zi = Izl· 
Proof? 

I, §1. EXERCISES 

1. Express the following complex numbers in the form x + iy, where x, yare 
real numbers. 
(a) (-1 + 3it1 

(c) (1 + i)i(2 - i) 
(e) (7 + ni)(n + i) 
(g) (J2i)(n + 3i) 

(b) (1 + i)(1 - i) 
(d) (i - 1)(2 - i) 
(f) (2i + l)ni 
(h) (i + l)(i - 2)(i + 3) 

2. Express the following complex numbers in the form x + iy, where x, yare 
real numbers. 
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(a) (1 + if1 (b) 
3 + i 

(c) 
2 + i 

(d) 
2 - i 2 - i 

1 + i 2i 
(h) (e) (f) 

1 + i 
(g) 

3 -i -1+i 

3. Let rx be a complex number *" O. What is the absolute value of rx/~? What 
is ~? 

4. Let rx, f3 be two complex numbers. Show that rxf3 = ~p and that 

rx + f3 = ~ + p. 

5. Justify the assertion made in the proof of Theorem 1.2, that the real part of a 
complex number is ~ its absolute value. 

6. If rx = a + ib with a, b real, then b is called the imaginary part of rx and we 
write b = Im(rx). Show that rx - ~ = 2i Im(rx). Show that 

7. Find the real and imaginary parts of (1 + i)100. 

8. Prove that for any two complex numbers z, w we have: 
(a) Izl ~ Iz - wi + Iwl 
(b) Izl - Iwl ~ Iz - wi 
(c) Izl - Iwl ~ Iz + wi 

9. Let rx = a + ib and z = x + iy. Let c be real > O. Transform the condition 

Iz - rxl = c 

into an equation involving only x, y, a, b, and c, and describe in a simple 
way what geometric figure is represented by this equation. 

10. Describe geometrically the sets of points z satisfying the following conditions. 
(a) Iz - i + 31 = 5 
(c) Iz - i + 31 ~ 5 
(e) 1m z > 0 
(g) Re z > 0 

I, §2. POLAR FORM 

(b) Iz - i + 31 > 5 
(d) Iz + 2il ~ 1 
(f) 1m z ~ 0 
(h) Re z ~ 0 

Let (x, y) = x + iy be a complex number. We know that any point in 
the plane can be represented by polar coordinates (r,O). We shall now 
see how to write our complex number in terms of such polar coordinates. 

Let () be a real number. We define the expression eilJ to be 

ei6 = cos 0 + i sin O. 

Thus ei6 is a complex number. 
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For example, if e = n, then e i1! = -1. Also, e21!i = 1, and ei1!/2 = i. 
Furthermore, e i (8+21!) = e i6 for any real e. 

rei' = x + iy 

y = r sin 8 

x=rcos8 

Figure 3 

Let x, y be real numbers and x + iy a complex number. Let 

If (r, e) are the polar coordinates of the point (x, y) in the plane, then 

x = r cos e and y = r sin e. 

Hence 

x + iy = r cos e + ir sin e = re i6• 

The expression re i6 is called the polar form of the complex number 
x + iy. The number e is sometimes called the angle, or argument of z, 
and we write 

e = arg z. 

The most important property of this polar form is given in Theo­
rem 2.1. It will allow us to have a very good geometric interpretation for 
the product of two complex numbers. 

Theorem 2.1. Let e, cp be two real numbers. Then 

Proof By definition, we have 

e i8+iqJ = e i (8+qJ) = cos(e + cp) + i sin(e + cp). 
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Using the addition formulas for sine and cosine, we see that the preced­
ing expression is equal to 

cos 0 cos cp - sin 0 sin cp + i(sin 0 cos cp + sin cp cos 0). 

This is exactly the same expression as the one we obtain by multiplying 
out 

(cos 0 + i sin O)(cos cp + i sin cp). 

Our theorem is proved. 

Theorem 2.1 justifies our notation, by showing that the exponential 
of complex numbers satisfies the same formal rule as the exponential of 
real numbers. 

Let 0( = ai + ia2 be a complex number. We define e" to be 

For instance, let 0( = 2 + 3i. Then e" = e2e3i• 

Theorem 2.2. Let 0(, P be complex numbers. Then 

Proof. Let 0( = ai + ia2 and P = hi + ib2 • Then 

Using Theorem 2.1, we see that this last expression is equal to 

By definition, this is equal to e"e fJ , thereby proving our theorem. 

Theorem 2.2 is very useful in dealing with complex numbers. We shall 
now consider several examples to illustrate it. 

Example 1. Find a complex number whose square is 4eilt/2• 

Let z = 2e ilt/4 • Using the rule for exponentials, we see that Z2 = 4e ilt/2 • 

Example 2. Let n be a positive integer. Find a complex number w 
such that w" = eilt/2 • 
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It is clear that the complex number w = ei1t/Zn satisfies our requirement. 
In other words, we may express Theorem 2.2 as follows; 

Let Zl = r 1ei6 , and Zz = rzei62 be two complex numbers. To find the 
product ZlZz, we multiply the absolute values and add the angles. Thus 

In many cases, this way of visualizing the product of complex numbers 
is more useful than that coming out of the definition. 

Warning. We have not touched on the logarithm. As in calculus, we 
want to say that eZ = w if and only if z = log w. Since e21tik = I for all 
integers k, it follows that the inverse function Z = log w is defined only 
up to the addition of an integer multiple of 2ni. We shall study the loga­
rithm more closely in Chapter II, §3, Chapter II, §5, and Chapter III, §6. 

I, §2. EXERCISES 

1. Put the following complex numbers in polar form. 
(a) 1 + i (b) 1 + ij2 (c) - 3 
(e) 1 - ij2 (f) -5i (g) -7 

(d) 4i 
(h) -1 - i 

2. Put the following complex numbers in the ordinary form x + iy. 
(a) e3in (b) e2in/3 (c) 3e in/4 (d) ne- i1C/3 

(e) e2ni/6 (f) e -in/2 (g) e -in (h) e - 5in/4 

3. Let IX be a complex number of. O. Show that there are two distinct complex 
numbers whose square is IX. 

4. Let a + bi be a complex number. Find real numbers x, y such that 

(x + iyf = a + bi, 

expressing x, y in terms of a and b. 

5. Plot all the complex numbers z such that z" = 1 on a sheet of graph paper, 
for n = 2, 3, 4, and 5. 

6. Let IX be a complex number # O. Let n be a positive integer. Show that 
there are n distinct complex numbers z such that z" = IX. Write these complex 
numbers in polar form. 

7. Find the real and imaginary parts of il/4, taking the fourth root such that its 
angle lies between 0 and n/2. 

8. (a) Describe all complex numbers z such that eZ = 1. 
(b) Let w be a complex number. Let IX be a complex number such that 

e' = w. Describe all complex numbers z such that eZ = w. 
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9. If eZ = eW, show that there is an integer k such that z = w + 2nki. 

10. (a) If (J is real, show that 

and 

(b) For arbitrary complex z, suppose we define cos z and sin z by replacing 
(J with z in the above formula. Show that the only values of z for which 
cos z = 0 and sin z = 0 are the usual real values from trigonometry. 

11. Prove that for any complex number z "* 1 we have 

z·+1 - 1 
1 + z + ... + z· = . 

z -1 

12. Using the preceding exercise, and taking real parts, prove: 

1 sin[(n + t)(JJ 
1 + cos (J + cos 2(J + ... + cos nO = - + ---.,---

2 2 . (J sm2 
for 0 < (J < 2n. 

13. Let z, w be two complex numbers such that zw "* 1. Prove that 

-- <1 I z-w I 
l-zw 

if Izl < 1 and Iwl < 1, 

-- =1 I z-w I 
1-zw 

if Izl = 1 or Iwl = 1. 

(There are many ways of doing this. One way is as follows. First check that 
you may assume that z is real, say z = r. For the first inequality you are 
reduced to proving 

(r - w)(r - w) < (1 - rw)(1 - rw). 

Expand both sides and make cancellations to simplify the problem.) 

I, §3. COMPLEX VALUED FUNCTIONS 

Let S be a set of complex numbers. An association which to each 
element of S associates a complex number is called a complex valued 
function, or a function for short. We denote such a function by symbols 
like 

f: S .... c. 
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If z is an element of S, we write the association of the value J(z) to z by 
the special arrow 

ZH J(z). 

We can write 

J(z) = u(z) + iv(z), 

where u(z) and v(z) are real numbers, and thus 

ZHU(Z), ZHv(Z) 

are real valued functions. We call u the real part of J, and v the imagi­
nary part of f. 

We shall usually write 

z = x + iy, 

where x, yare real. Then the values of the function J can be written in 
the form 

J(z) = J(x + iy) = u(x, y) + iv(x, y), 

viewing u, v as functions of the two real variables x and y. 

Example. For the function 

J(z) = x 3y + i sin(x + y), 

we have the real part, 

and the imaginary part, 

v(x, y) = sin (x + y). 

Example. The most important examples of complex functions are the 
power functions. Let n be a positive integer. Let 

Then in polar coordinates, we can write z = re i6, and therefore 

For this function, the real part is rn cos nO, and the imaginary part 
is r" sin nO. 
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Let 15 be the closed disc of radius 1 centered at the origin in C. In 
other words, 15 is the set of complex numbers z such that Izl ~ 1. If z is 
an element of 15, then z" is also an element of 15, and so z H z" maps 15 
into itself. Let S be the sector of complex numbers re i8 such that 

° ~ () ~ 2n/n, 

as shown on Fig. 4. 

Figure 4 

The function of a real variable 

rHr" 

maps the unit interval [0, 1] onto itself. The function 

()H n() 

maps the interval 

[0, 2n/n] --+ [0, 2nJ. 

In this way, we see that the function J(z) = z" maps the sector S onto the 
full disc of all numbers 

with ° ~ t ~ 1 and ° ~ cp ~ 2n. We may say that the power function 
wraps the sector around the disc. 

We could give a similar argument with other sectors of angle 2n/n 
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as shown on Fig. 5. Thus we see that z H zn wraps the disc n times 
around. 

Figure 5 

Given a complex number z = re i8, you should have done Exercise 6 
of the preceding section, or at least thought about it. For future refer­
ence, we now give the answer explicitly. We want to describe all com­
plex numbers w such that wn = z. Write 

Then 

o ~ t. 

If w" = z, then t n = r, and there is a unique real number t ~ ° such that 
t n = r. On the other hand, we must also have 

which is equivalent with 

imp == if) + 2nik, 

where k is some integer. Thus we can solve for cp and get 

The numbers 

(J 2nk 
cp=-+~. 

n n 

k == 0, 1, ... ,n -- 1 
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are all distinct, and are drawn on Fig. 6. These numbers wk may be 
described pictorially as those points on the circle which are the vertices 
of a regular polygon with n sides inscribed in the unit circle, with one 
vertex being at the point ei8/n• 

\Ill 
"'2 ei'/n = 1110 

Figure 6 

Each complex number 

is called a root of unity, in fact, an n-th root of unity, because its n-th 
power is 1, namely 

The points Wi are just the product of ei8/n with all the n-th roots of unity, 

One of the major results of the theory of complex variables is to 
reduce the study of certain functions, including most of the common 
functions you can think of (like exponentials, logs, sine, cosine) to power 
series, which can be approximated by polynomials. Thus the power func­
tion is in some sense the unique basic function out of which the others 
are constructed. For this reason it was essential to get a good intuition 
of the power function. We postpone discussing the geometric aspects 
of the other functions to Chapters VII and VIII, except for some simple 
exercises. 
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I, §3. EXERCISES 

1. Let J(z) = liz. Describe what J does to the inside and outside of the unit 
circle, and also what it does to points on the unit circle. This map is called 
inversion through the unit circle. 

2. Let J(z) = liz. Describe J in the same manner as in Exercise 1. This map is 
called reflection through the unit circle. 

3. Let J(z) = e2~iz . Describe the image under J of the set shaded in Fig. 7, 
consisting of those points x + iy with -t ~ x ~ t and y ~ B. 

- 'I: 

Figure 7 

4. Let J(z) = eZ • Describe the image under J of the following sets: 
(a) The set of z = x + iy such that x ~ 1 and 0 ~ y ~ n. 
(b) The set of z = x + iy such that 0 ~ y ~ 1t (no condition on x). 

I, §4. LIMITS AND COMPACT SETS 

Let rx be a complex number. By the open disc of radius r > 0 centered 
at rx we mean the set of complex numbers z such that 

Iz - rxl < r. 

For the closed disc, we use the condition Iz - rxl :;£ r instead. We shall 
deal only with the open disc unless otherwise specified, and thus speak 
simply of the disc, denoted by D(rx, r). The closed disc is denoted by 
D(rx, r). 

Let V be a subset of the complex plane. We say that V is open if for 
every point rx in V there is a disc D(rx, r) centered at rx, and of some 
radius r > 0 such that this disc D(rx, r) is contained in U. We have 
illustrated an open set in Fig. 8. 
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Figure 8 

Note that the radius r of the disc depends on the point~. As ~ comes 
closer to the boundary of U, the radius of the disc will be smaller. 

Examples of Open Sets. The first quadrant, consisting of all numbers 
z = x + iy with x > 0 and y > 0 is open, and drawn on Fig. 9 (a). 

(a) (b) 

Figure 9 

On the other hand, the set consisting of the first quadrant and the 
vertical and horizontal axes as on Fig. 9(b) is not open. 

The upper half plane by definition is the set of complex numbers 

z = x + iy 

with y > O. It is an open set. 
Let S be a subset of the plane. A boundary point of S is a point ~ 

such that every disc D(~, r) centered at ~ and of radius r > 0 contains 
both points of S and points not in S. In the closed first quadrant of Fig. 
9(b), the points on the x-axis with x ~ 0 and on the y-axis with y ~ 0 are 
boundary points of the quadrant. 

A point ~ is said to be adherent to S if every disc D(~, r) with r > 0 
contains some element of S. A point ~ is said to be an interior point of S 
if there exists a disc D(~, r) which is contained in S. Thus an adherent 
point can be a boundary point or an interior point of S. A set is called 
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closed if it contains all its boundary points. The complement of a closed 
set is then open. 

The closure of a set S is defined to be the union of S and all its 
boundary points. We denote the closure by S. 

A set S is said to be bounded if there exists a number C > 0 such that 

Izl ~ C for all z in S. 

For instance, the set in Fig. 10 is bounded. The first quadrant is not 
bounded. 

Figure 10 

The upper half plane is not bounded. The condition for boundedness 
means that the set is contained in the closed disc of radius C, as shown 
on Fig. 10. 

Let J be a function on S, and let 11. be an adherent point of S. Let 
w be a complex number. We say that 

w = lim J(z) 

if the following condition is satisfied. Given E > 0 there exists 8 > 0 such 
that if z E Sand Iz - 11.1 < 8, then 

IJ(z) - wi < E. 

We usually omit the symbols z E S under the limit sign, and write merely 

lim J(z). 

In some applications 11. E S and in some applications, 11. ~ S. 
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Let r:t. E S. We say that f is continuous at r:t. if 

lim f(z) = f(r:t.)· 
z-+~ 

[I, §4] 

These definitions are completely analogous to those which you should 
have had in some analysis or advanced calculus course, so we don't 
spend much time on them. As usual, we have the rules for limits of 
sums, products, quotients as in calculus. 

If {zn} (n = 1,2, ... ) is a sequence of complex numbers, then we say 
that 

w = lim Zn 
n-+<Xl 

if the following condition is satisfied: 

Given E > 0 there exists an integer N such that if n ~ N, then 

Let S be the set of fractions lin, with n = 1,2,.... Let f(1In) = Zn' 

Then 

lim Zn = W if and only if 
n-+<Xl 

lim f(z) = w. 
z-+O 
zeS 

Thus basic properties of limits for n --+ 00 are reduced to similar proper­
ties for functions. Note that in this case, the number 0 is not an element 
of S. 

A sequence {zn} is said to be a Cauchy sequence if, given E, there exists 
N such that if m, n ~ N, then 

Write 

Since 

and 

we conclude that {zn} is Cauchy if and only if the sequences {xn} and 
{Yn} of real and imaginary parts are also Cauchy. Since we know that 
real Cauchy sequences converge (i.e. have limits), we conclude that com­
plex Cauchy sequences also converge. 

We note that all the usual theorems about limits hold for complex 
numbers: Limits of sums, limits of products, limits of quotients, limits 



[I, §4] LIMITS AND COMPACT SETS 21 

of composite functions. The proofs which you had in advanced calculus 
hold without change in the present context. It is then usually easy to 
compute limits. 

Example. Find the limit 

for any complex number z. 

1. nz 
Im-­

n .... oo 1 + nz 

If z = 0, it is clear that the limit is O. Suppose z =1= O. Then the 
quotient whose limit we are supposed to find can be written 

But 

nz z 
1 +nz=-I­

-+z 
n 

lim (~ + z) = z. 
n .... oo n 

Hence the limit of the quotient is z/z = 1. 

Compact Sets 

We shall now go through the basic results concerning compact sets. Let 
S be a set of complex numbers. Let {Zll} be a sequence in S. By a point 
of accumulation of {Zll} we mean a complex number v such that given E 

(always assumed> 0) there exist infinitely many integers n such that 

IZII - vi < E. 

We may say that given an open set U containing v, there exist infinitely 
many n such that ZII E U. 

Similarly we define the notion of point of accumulation of an infinite 
set S. It is a complex number v such that given an open set U contain­
ing v, there exist infinitely many elements of S lying in U. In particular, 
a point of accumulation of S is adherent to S. 

We assume that the reader is acquainted with the Weierstrass-Bolzano 
theorem about sets of real numbers: If S is an infinite bounded set of real 
numbers, then S has a point of accumulation. 

We define a set of complex numbers S to be compact if every sequence 
of elements of S has a point of accumulation in S. This property is 
equivalent to the following properties, which could be taken as alternate 
definitions: 

(a) Every infinite subset of S has a point of accumulation in S. 
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(b) Every sequence of elements of S has a convergent subsequence 
whose limit is in S. 

We leave the proof of the equivalence between the three possible 
definitions to the reader. 

Theorem 4.1. A set of complex numbers is compact if and only if it is 
closed and bounded. 

Proof. Assume that S is compact. If S is not bounded, for each posi­
tive integer n there exists z" E S such that 

Then the sequence {ZII} does not have a point of accumulation. Indeed, 
if v is a point of accumulation, pick m> 21vl, and note that Ivl > O. 
Then 

This contradicts the fact that for infinitely many m we must have z,. close 
to v. Hence S is bounded. To show S is closed, let v be in its closure. 
Given n, there exists z" E S such that 

Iz" - vi < lIn. 

The sequence {z,,} converges to v, and has a subsequence converging to 
a limit in S because S is assumed compact. This limit must be v, whence 
v E Sand S is closed. 

Conversely, assume that S is closed and bounded, and let B be a 
bound, so Izi ~ B for all z E S. If we write 

z = x + iy, 

then Ixl ~ Band Iyl ~ B. Let {z,,} be a sequence in S, and write 

z" = XII + iy". 

There is a subsequence {z"J such that {XIII} converges to a real number 
a, and there is a sub-subsequence {Z"2} such that (y"2} converges to a 
real number b. Then 

converges to a + ib, and S is compact. This proves the theorem. 

Theorem 4.2. Let S be a compact set and let S1:::> S2 :::> ••• be a 
sequence of non-empty closed subsets such that S,,:::> S"H' Then the 
intersection of all S" for all n = 1, 2, ... is not empty. 
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Proof Let Zn E Sn. The sequence {zn} has a point of accumulation 
in S. Call it v. Then v is also a point of accumulation for each sub­
sequence {Zk} with k ~ n, and hence lies in the closure of Sn for each n, 
But Sn is assumed closed, and hence v E Sn for all n. This proves the 
theorem. 

Theorem 4.3. Let S be a compact set of complex numbers, and let f be 
a continuous function on S. Then the image of f is compact. 

Proof Let {wn } be a sequence in the image of J, so that 

for 

The sequence {zn} has a convergent subsequence {znJ, with a limit v in 
S. Since f is continuous, we have 

lim wnk = lim f(znk) = f(v). 
k-+oo k-+oo 

Hence the given sequence {wn } has a subsequence which converges in 
f(S). This proves that f(S) is compact. 

Theorem 4.4. Let S be a compact set of complex numbers, and let 

f: S-+R 

be a continuous function. Then f has a maximum on S, that is, there 
exists v E S such that f(z) ~ f(v) for all Z E s. 

Proof By Theorem 4.3, we know that f(S) is closed and bounded. 
Let b be its least upper bound. Then b is adherent to f(s), whence in 
f(S) because f(S) is closed. So there is some v E S such that f(v) = b. 
This proves the theorem. 

Remarks. In practice, one deals with a continuous function f: S -+ C 
and one applies Theorem 4.4 to the absolute value of f, which is also 
continuous (composite of two continuous functions). 

Theorem 4.5. Let S be a compact set, and let f be a continuous 
function on S. Then f is uniformly continuous, i.e. given E there exists b 
such that whenever z, WE Sand Iz - wi < b, then If(z) - f(w)1 < E. 

Proof Suppose the assertion of the theorem is false. Then there exists 
E, and for each n there exists a pair of elements z,,' Wn E S such that 

but 
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There is an infinite subset J1 of positive integers and some v E S such 
that Zn ~ v for n ~ 00 and n E J1 • There is an infinite subset J2 of J1 and 
u E S such that Wn ~ u for n ~ 00 and n E J2 • Then, taking the limit for 
n ~ 00 and n E J2 we obtain lu - vi = 0 and u = v because 

Hence f(v) - f(u) = o. Furthermore, 

Again taking the limit as n ~ 00 and n E J2 , we conclude that 

approaches o. This contradicts the assumption that 

and proves the theorem. 

Let A, B be two sets of complex numbers. By the distance between 
them, denoted by d(A, B), we mean 

d(A, B) = g.l.b.lz - wi, 

where the greatest lower bound g.l.b. is taken over all elements z E A and 
wEB. If B consists of one point, we also write d(A, w) instead of d(A, B). 

We shall leave the next two results as easy exercises. 

Theorem 4.6. Let S be a closed set of complex numbers, and let v be a 
complex number. There exists a point w E S such that 

d(S, v) = Iw - vi. 

[Hint: Let E be a closed disc of some suitable radius, centered at v, 
and consider the function z H Iz - vi for z E S n E.] 

Theorem 4.7. Let K be a compact set of complex numbers, and let S be 
a closed set. There exist elements Zo E K and Wo E S such that 

d(K, S) = Izo - wol. 

[Hint: Consider the function zHd(S, z) for Z E K.] 
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Theorem 4.8. Let S be compact. Let r be a real number > O. There 
exists a finite number of open discs of radius r whose union contains S. 

Proof Suppose this is false. Let Z 1 E S and let Dl be the open disc of 
radius r centered at Zl' Then Dl does not contain S, and there is some 
Z2 E S, Z2 =I Zl' Proceeding inductively, suppose we have found open 
discs D1 , ... ,Dn of radius r centered at points Z l' ... ,Zn, respectively, such 
that Zk+l does not lie in Dl U··· U Dk • We can then find Zn+l which does 
not lie in Dl U ... u Dn, and we let Dn+1 be the disc of radius r centered 
at Zn+l' Let v be a point of accumulation of the sequence {zn}. By 
definition, there exist positive integers m, k with k > m such that 

IZk - vi < rl2 and IZm - vi < r12. 

Then IZk - zml < r and this contradicts the property of our sequence {zn} 
because Zk lies in the disc Dm. This proves the theorem. 

Let S be a set of complex numbers, and let I be some set. Suppose 
that for each i E I we are given an open set Vi' We denote this associa­
tion by {VJiEI, and call it a family of open sets. The union of the family 
is the set V consisting of all Z such that Z E Vi for some i E I. We say 
that the family covers S if S is contained in this union, that is, every Z E S 
is contained in some Vi' We then say that the family {Vi}iEI is an open 
covering of S. If J is a subset of I, we call the family {~LJ a subfamily, 
and if it covers S also, we call it a subcovering of S. In particular, if 

is a finite number of the open sets Vi' we say that it is a finite subcover­
ing of S if S is contained in the finite union 

u.u· .. uu.. 
'1 'n 

Theorem 4.9. Let S be a compact set, and let {ViLEI be an open 
covering of S. Then there exists a finite subcovering, that is, a finite 
number of open sets Vi!' ... , Vi. whose union covers S. 

Proof. By Theorem 4.8, for each n there exists a finite number of open 
discs of radius lin which cover S. Suppose that there is no finite sub­
covering of S by open sets Vi' Then for each n there exists one of the 
open discs Dn from the preceding finite number such that Dn n S is not 
covered by any finite number of open sets Vi' Let Zn E Dn n S, and let w 
be a point of accumulation of the sequence {zn}. For some index io we 
have w E Vio' By definition, Vio contains an open disc D of radius r > 0 
centered at w. Let N be so large that 21N < r. There exists n> N such 
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that 

Any point of Dn is then at a distance ~ 21N from w, and hence Dn is 
contained in D, and thus contained in Uio. This contradicts the hypothe­
sis made on Dn , and proves the theorem. 

I, §4. EXERCISES 

1. Let ac be a complex number of absolute value < 1. What is lim ac O? Proof? 

2. If lacl > 1, does lim ac O exist? Why? 

3. Show that for any complex number z #: 1, we have 

zO+1 - 1 
1 + z + ... + ZO = . 

z-1 
If Izl < 1, show that 

lim (1 + z + ... + ZO) = _1_. 
0_'"' 1 - z 

4. Let I be the function defined by 

f(z) = lim -1 1 2 • 
0_,", + n z 

Show that I is the characteristic function of the set {OJ, that is, 1(0) = 1, and 
I(z) = 0 if z #: O. 

5. For Izl #: 1 show that the following limit exists: 

(
ZO -1) 

I(z) = lim -0-1 . 
0_,", z + 

Is it possible to define I(z) when Izl = 1 in such a way to make I continuous? 

6. Let 
ZO 

I(z) = lim --0 • 

• _,",1 + z 

(a) What is the domain of definition of f, that is, for which compiex numbers 
z does the limit exist? 

(b) Give explicitly the values of fez) for the various z in the domain of f 

7. Show that the series 
00 /I-I 

~ (1 - zn;(1 - zn+l) 
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converges to 1/(1 - Z)2 for Izl < 1 and to 1/z(1 - Z)2 for Izl > 1. Prove that 
the convergence is uniform for Izl ~ c < 1 in the first case, and Izl ~ b > 1 in 
the second. [Hint: Multiply and divide each term by 1 - z, and do a partial 
fraction decomposition, getting a telescoping effect.] 

I, §5. COMPLEX DIFFERENTIABILITY 

In studying differentiable functions of a real variable, we took such func­
tions defined on intervals. For complex variables, we have to select 
domains of definition in an analogous manner. 

Let U be an open set, and let z be a point of U. Let f be a function 
on U. We say that f is complex differentiable at z if the limit 

1. f(z + h) - f(z) 
1m .:.....c..._~--'--'--'-

h-+O h 

exists. This limit is denoted by f'(z) or dfldz. 
In this section, differentiable will always mean complex differentiable. 
The usual proofs of a first course in calculus concerning basic proper­

ties of differentiability are valid for complex differentiability. We shall 
run through them again. 

We note that if f is differentiable at z then f is continuous at z 
because 

lim (f(z + h) - f(z) = lim f(z + ~ - f(z) h 
h-+O h-+O 

and since the limit of a product is the product of the limits, the limit on 
the right-hand side is equal to o. 

We let f, g be functions defined on the open set U. We assume that 
J, g are differentiable at z. 

Sum. The sum f + g is differentiable at z, and 

(f + g)'(z) = f'(z) + g'(z). 

Proof. This is immediate from the theorem that the limit of a sum is 
the sum of the limits. 

Product. The product f g is differentiable at z, and 

(fg)'(z) = f'(z)g(z) + f(z)g'(z). 
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Proof To determine the limit of the Newton quotient 

J(z + h)g(z + h) - J(z)g(z) 
h 

we write the numerator in the form 

J(z + h)g(z + h) - J(z)g(z + h) + J(z)g(z + h) - J(z)g(z). 

Then the Newton quotient is equal to a sum 

J(z + h) - J(z) ( h) J( )g(z + h) - g(z) 
h gz+ + z h . 

Taking the limits yields the formula. 

[I, §5] 

Quotient. IJ g(z) =I- 0, then the quotient fig is differentiable at z, and 

(f/g)'(z) = g(Z)J'(Z~~l(Z)g'(Z) 

Proof This is again proved as in ordinary calculus. We first prove 
the differentiability of the quotient function l/g. We have 

1 
g(z + h) 

h 

Taking the limit yields 

1 
g(z) g(z + h) - g(z) 1 

h g(z + h)g(z) 

1 , 
- g(Z)2 g (z), 

which is the usual value. The general formula for a quotient is obtained 
from this by writing 

J/g = J·l/g, 

and using the rules for the derivative of a product, and the derivative of 
l/g. 

Examples. As in ordinary calculus, from the formula for a product 
and induction, we see that for any positive integer n, 
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The rule for a quotient also shows that this formula remains valid when 
n is a negative integer. 

The derivative of z2/(2z - I) is 

(2z - 1)2z - 2Z2 
(2z - If 

This formula is valid for any complex number z such that 2z - I "# O. 
More generally, let 

J(z) = P(z)/Q(z), 

where P, Q are polynomials. Then J is differentiable at any point z 
where Q(z) "# O. 

Last comes the chain rule. Let U, V be open sets in C, and let 

J:U~V and g:V~C 

be functions, such that the image of J is contained in V. Then we can 
form the composite function g 0 J such that 

(g 0 J)(z) = g(J(z)). 

Chain Rule. Let w = J(z). Assume that J is differentiable at z, and g is 
differentiable at w. Then g 0 J is differentiable at z, and 

(g 0 f)'(z) = g'(J(z))J' (z). 

Proof Again the proof is the same as in calculus, and depends on 
expressing differentiability by an equivalent property not involving de­
nominators, as follows. 

Suppose that J is differentiable at z, and let 

<p(h) = J(z + h~ - J(z) _ J'(z). 

Then 

(1) J(z + h) - J(z) = J'(z)h + h<p(h), 

and 

(2) lim <p(h) = O. 
h-'O 
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Furthermore, even though qJ is at first defined only for sufficiently small 
hand h oF 0, we may also define qJ(O) = 0, and formula (1) remains valid 
for h = O. 

Conversely, suppose that there exists a function qJ defined for suffi­
ciently small h and a number a such that 

(1') J(z + h) - J(z) = ah + hqJ(h) 

and 

(2) lim qJ(h) = o. 
" .... 0 

Dividing by h in formula (1') and taking the limit as h -+ 0, we see that 
the limit exists and is equal to a. Thus f'(z) exists and is equal to a. 
Hence the existence of a function qJ satisfying (1'), (2) is equivalent to 
differentiability. 

We apply this to a proof of the chain rule. Let w = J(z), and 

k = J(z + h) - J(z), 

so that 

g(j(z + h)) - g(j(z)) = g(w + k) - g(w). 

There exists a function t/I(k) such that lim t/I(k) = 0 and 
k .... O 

g(w + k) - g(w) = g'(w)k + kt/l(k) 

= g'(w)(J(z + h) - J(z)) + (J(z + h) - J(z))t/I(k). 

Dividing by h yields 

g 0 J(z + h) - 9 0 J(z) = '( ) J(z + h) - J(z) J(z + h) - J(z) '/'(k) 
h gw h + h '1'. 

As h -+ 0, we note that k -+ 0 also by the continuity of J, whence t/I(k) -+ 0 
by assumption. Taking the limit of this last expression as h -+ 0 proves 
the chain rule. 

A function J defined on an open set U is said to be differentiable if it 
is differentiable at every point. We then also say that J is holomorphic 
on U. The word holomorphic is usually used in order not to have to 
specify complex differentiability as distinguished from real differentiability. 
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In line with general terminology, a holomorphic function 

J:U~V 

from an open set into another is called a bolomorpbic isomorphism if 
there exists a holomorphic function 

g:V~U 

such that g is the inverse of f, that is, 

go J = idu and Jog = idv. 

A holomorphic isomorphism of U with itself is called a holomorphic 
automorphism. In the next chapter we discuss this notion in connection 
with functions defined by power series. 

I, §6. THE CAUCHY -RIEMANN EQUATIONS 

Let J be a function on an open set U, and write J in terms of its real 
and imaginary parts, 

J(x + iy) = u(x, y) + iv(x, y). 

It is reasonable to ask what the condition of differentiability means in 
terms of u and v. We shall analyze this situation in detail in Chapter 
VIII, but both for the sake of tradition, and because there is some need 
psychologically to see right away what the answer is, we derive the 
equivalent conditions on u, v for J to be holomorphic. 

At a fixed z, let f'(z) = a + bi. Let w = h + ik, with h, k real. Suppose 
that 

J(z + w) - J(z) = f'(z)w + u(w)w, 

where 

lim u(w) = o. 
w .... o 

Then 

f'(z)w = (a + bi)(h + ki) = ah - bk + i(bh + ak). 

On the other hand, let 
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be the map (often called vector field) such that 

F(x, y) = (u(x, y), vex, y)). 

We call F the (real) vector field associated with f. Then 

F(x + h, y + k) - F(x, y) = (ah - bk, bh + ak) + 0'1 (h, k)h + 0'2(h, k)k, 

where 0'1 (h, k), 0'2(h, k) are functions tending to 0 as (h, k) tends to O. 
Hence if we assume that f is holomorphic, we conclude that F is differ­
entiable in the sense of real variables, and that its derivative is repre­
sented by the (Jacobian) matrix 

This shows that 

and 

OU OU 
ox oy 

( a -b) JF(x, y) = b a = 
ov ov 

ox oy 

f'(z) = ou _ i OU 
ox oy 

OU ov 
ox = oy and 

These are called the Cauchy-Riemann equations. 
Conversely, let u(x, y) and v(x, y) be two functions satisfying the 

Cauchy-Riemann equations, and continuously differentiable in the sense 
of real functions. Define 

f(z) = f(x + iy) = u(x, y) + iv(x, y). 

Then it is immediately verified by reversing the above steps that f is 
complex-differentiable, i.e. holomorphic. 

The Jacobian determinant AF of the associated vector field F is 

( OU)2 (OV)2 (OU)2 (OU)2 
AF = a2 + b2 = ox + ox = ox + oy 
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Hence llF ~ 0, and is #0 if and only if f'(z) # o. We have 

We now drop these considerations until Chapter VIII. 
The study of the real part of a holomorphic function and its relation 

with the function itself will be carried out more substantially in Chapter 
VIII. It is important, and much of that chapter depends only on elemen­
tary facts. However, the most important part of complex analysis at the 
present level lies in the power series aspects and the immediate applica­
tions of Cauchy's theorem. The real part plays no role in these matters. 
Thus we do not wish to interrupt the straightforward flow of the book 
now towards these topics. 

However, the reader may read immediately the more elementary parts 
§1 and §2 of Chapter VIII, which can be understood already at this 
point. 

I, §6. EXERCISE 

1. Prove in detail that if u, v satisfy the Cauchy-Riemann equations, then the 
function 

f(z) = f(x + iy) = u(x, y) + iv(x, y) 

is holomorphic. 

I, §7. ANGLES UNDER HOLOMORPHIC MAPS 

In this section, we give a simple geometric property of holomorphic 
maps. Roughly speaking, they preserve angles. We make this precise as 
follows. 

Let U be an open set in C and let 

y:[a,b]-+U 

be a curve in U, so we write 

y(t) = x(t) + iy(t). 

We assume that y is differentiable, so its derivative is given by 

y'(t) = x'(t) + iy'(t). 
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Let I: U .... C be holomorphic. We let the reader verify the chain rule 

d 
dtJ(y(t» = !'(r(t»y'(t). 

We interpret y'(t) as a vector in the direction of a tangent vector at the 
point yet). This derivative y'(t), if not 0, defines the direction of the curve 
at the point. 

y'(t) y<b) 

)'(0) 

Figure 11 

Consider two curves y and '1 passing through the same point Zo. Say 

Then the tangent vectors y'(tO} and '1'(td determine an angle e which is 
defined to be the angle between the curves. 

Figure 12 

Applying f, the curves loy and 1 0 '1 pass through the point I(zo), and 
by the chain rule, tangent vectors of these image curves are 

and 

neorem 7.1. II !'(zo) =F 0 then the angle between the curves 'I, '1 at zo 
is the same as the angle between the curves loy, I 0 '1 at I(zo). 

Proof Geometrically speaking, the tangent vectors under I are 
changed by multiplication with !'(zo), which can be represented in polar 
coordinates as a dilation and a rotation, so preserves the angles. 
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We shall now give a more formal argument, dealing with the cosine 
and sine of angles. 

Let z. w be complex numbers, 

z = a + bi and w = c + di, 

where a, b, c. d are real. Then 

zw = ac + bd + i(bc - ad). 

Define the scalar product 

(1) (z, w) = Re(zw). 

Then (z. w) is the ordinary scalar product of the vectors (a, b) and (c, d) 
in R2. Let 9(z, w) be the angle between z and w. Then 

(2) 
(z. w) 

cos 9(z, w) = --. 
Izllwl 

Since sin (I = cos ( 9 - ~), we can define 

(3) . 0.( ) (z, -iw) sm z, w = . 
Izllwl 

This gives us the desired precise formulas for the cosine and sine of an 
angle. which determine the angle. 

Let /'(zo) = IX. Then 

(4) 

because aiX = 11X12 is real. It follows immediately from the above formulas 
that 

(5) cos O(IXZ, IXW) = cos O(z, w) and sin O(IXZ, IXW) = sin O(z. w). 

This proves the theorem. 

A map which preserves angles is called conformal. Thus we can say 
that a holomorphic map with non-zero derivative is conformal. The 
complex conjugate of a holomorphic map also preserves angles, if we 
disregard the orientation of an angle. 

In Chapter VII, we shall consider holomorphic maps which have in­
verse hoiomorphic maps, and therefore such that their derivatives are 



36 COMPLEX NUMBERS AND FUNCTIONS [I, §7] 

never equal to O. The theorem proved in this section gives additional 
geometric information concerning the nature of such maps. But the em­
phasis of the theorem in this section is local, whereas the emphasis in 
Chapter VII will be global. The word "conformal", however, has become 
a code word for this kind of map, even in the global case, which explains 
the title of Chapter VII. The reader will notice that the local property of 
preserving angles is irrelevant for the global arguments given in Chapter 
VII, having to do with inverse mappings. Thus in Chapter VII, we shall 
use a terminology which emphasizes the invertibility, namely the termi­
nology of isomorphisms and automorphisms. 

In this terminology, we can say that a holomorphic isomorphism is 
conformal. The converse is false in general. For instance, let U be the 
open set obtained by deleting the origin from the complex numbers. 
The function 

f: U -+ U given by 

has everywhere non-zero derivative in U, but it does not admit an in­
verse function. This function f is definitely conformal. The invertibility 
is true locally, however. See Theorem 5.1 of Chapter II. 



CHAPTER II 

Power Series 

So far, we have given only rational functions as examples of holomorphic 
functions. We shall study other ways of defining such functions. One 
of the principal ways will be by means of power series. Thus we shall see 
that the series 

Z2 Z3 
l+z+-+-+'" 

2! 3! 

converges for all z to define a function which is equal to eZ • Similarly, 
we shall extend the values of sin z and cos z by their usual series to 
complex valued functions of a complex variable, and we shall see that 
they have similar properties to the functions of a real variable which you 
already know. 

First we shall learn to manipulate power series formally. In elemen­
tary calculus courses, we derived Taylor's formula with an error term. 
Here we are concerned with the full power series. In a way, we pick up 
where calculus left off. We study systematically sums, products, inverses, 
and composition of power series, and then relate the formal operations 
with questions of convergence. 

II, §1. FORMAL POWER SERIES 

We select at first a neutral letter, say T. In writing a formal power series 

00 

L an Tn = ao + a1 T + a2 T2 + ... 
n=O 

37 
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what is essential are its "coefficients" ao, a1, a2, •.. which we shall take 
as complex numbers. Thus the above series may be defined as the func­
tion 

nl-+a" 

from the integers ~ 0 to the complex numbers. 
We could use other letters besides T, writing 

f(T) = 'La,.T", 
f(r) = 'La"T", 

f(z) = 'La,.z". 

In such notation, f does not denote a function, but a formal expression. 
Also, as a matter of notation, we write a single term 

a,.T" 

to denote the power series such that air; = 0 if k # n. For instance, we 
would write 

for the power series 

o + or + or2 + 5r3 + or'" + "', 

such that a3 = 5 and a" = 0 if k # 3. 
By definition, we call ao the constant term of f. 
If 

and g = 'Lb"T" 

are such formal power series, we define their sum to be 

f + g = 'Lc"T-, 

We define their product to be 

fg = 'Ld"T~, 

where Cn = a" + b". 

.. 
where d" = 'L a"b .. _t . 

1=0 

The sum and product are therefore defined just as for polynomials. The 
first few terms of the product can be written as 
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If IX is a complex number, we define 

to be the power series whose n-th coefficient is lXan • Thus we can multi­
ply power series by numbers. 

Just as for polynomials, one verifies that the sum and product are 
associative, commutative, and distributive. Thus in particular, if f, g, h 
are power series, then 

f(g + h) = fg + jh (distributivity). 

We omit the proof, which is just elementary algebra. 
The zero power series is the series such that an = 0 for all integers 

n ~ O. 
Suppose a power series is of the form 

f = arTr + ar+1 T r+1 + "', 

and ar =I O. Thus r is the smallest integer n such that an =I O. Then we 
call r the order of f, and write 

r = ord f 

If ord g = s, so that 

g = bs T S + bs+1 T s+1 + ... , 

and bs =I 0, then by definition, 

fg = arbs T r+s + higher terms, 

and arbs =I O. Hence 

ord fg = ord f + ord g. 

A power series has order 0 if and only if it starts with a non-zero 
constant term. For instance, the geometric series 

1 + T + T2 + T3 + ... 

has order O. 
Let f = L an Tn be a power series. We say that g = L bn Tn IS an 
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inverse for f if 

fg = 1. 

In view of the relation for orders which we just mentioned, we note that 
if an inverse exists, then we must have 

ord f = ord g = O. 

In other words, both f and g start with non-zero constant terms. The 
converse is true: 

If f has a non-zero constant term, then f has an inverse as a power 
series. 

Proof Considering ao1f instead of f, we are reduced to the case 
when the constant term is equal to 1. We first note that the old geo­
metric series gives us a formal inverse, 

1 
-- = 1 + r + r2 + .... 
1-r 

Written multiplicatively, this amounts to 

(1 - r)(1 + r + r2 + ... ) = 1 + r + r2 + ... - r(1 + r + r2 + ... ) 
=1+r+r2+"·-r-r2- ... 

=1. 

Next, write 

J=1-h, where h = -(a1 T + a2 T2 + "'). 

To find the inverse (1 - htl is now easy, namely it is the power series 

qJ = 1 + h + h2 + h3 + .... 

We have to verify that this makes sense. Any finite sum 

1 + h + h2 + ... + hm 

makes sense because we have defined sums and products of power series. 
Observe that the order of h" is at least n, because h" is of the form 

(-1)"a~ Til + higher terms. 
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Thus in the above sum (*), if m > n, then the term hm has all coefficients 
of order ~ n equal to o. Thus we may define the n-th coefficient of cp to 
be the n-th coefficient of the finite sum 

It is then easy to verify that 

(1 - h)cp = (1 - h)(1 + h + h2 + h3 + ... ) 

is equal to 

1 + a power series of arbitrarily high order, 

and consequently is equal to 1. Hence we have found the desired inverse 
for f 

Example. Let 

T2 T4 
cos T = 1 - - + - - ... 

2! 4! 

be the formal power series whose coefficients are the same as for the 
Taylor expansion of the ordinary cosine function in elementary calculus. 
We want to write down the first few terms of its (formal) inverse, 

1 

cos T 

Up to terms of order 4, these will be the same as 

1 (-1 1) = 1 +"2 T2 + 24 + 4 T4 + higher terms. 

This gives us the coefficients of 1/cos T up to order 4. 
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The substitution of h in the geometric series used to find an inverse 
can be generalized. Let 

be a power series, and let 

h(T) = Cl T + ... 

be a power series whose constant term is 0, so ord h ~ 1. Then we may 
"substitute" h in f to define a power series f 0 h or f(h), by 

in a natural way. Indeed, the finite sums 

are defined by the ordinary sum and product of power series. If m > n, 
then amhm has order > n; in other words, it is a power series starting 
with non-zero terms of order > n. Consequently we can define the 
power series f 0 h as that series whose n-th coefficient is the n-th coefficient 
of 

This composition of power series, like addition and multiplication, 
can therefore be computed by working only with polynomials. In fact, 
it is useful to discuss this approximation by polynomials a little more 
systematically. 

We say that two power series f = Lan Tn and g = Lbn Tn are con­
gruent mod TN and write f == g (mod TN) if 

for n = 0, ... ,N - 1. 

This means that the terms of order ~ N - 1 coincide for the two power 
series. Given the power series f, there is a unique polynomial P(T) of 
degree ~ N - 1 such that 

f(T) == P(T) (mod TN), 

namely the polynomial 
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and 

If hI' h2 are power series with zero constant term, and 

then 

Proof We leave the sum and product to the reader. Let us look 
at the proof for the composition fl 0 hI and f2 0 h2. First suppose h 
has zero constant term. Let PI' P2 be the polynomials of degree N - 1 
such that 

and 

Then by hypothesis, PI = P2 = P is the same polynomial, and 

Next let Q be the polynomial of degree N - 1 such that 

Write P = ao + a1 T + ... + aN-l TN-I. Then 

P(h1 ) = ao + a 1h1 + ... + aN_l hf- 1 

== ao + a1Q + '" + aN_IQN-l 

== ao + a1h2 + ... + aN_lh~-1 
== P(h2 ) (mod TN). 

This proves the desired property, that fl 0 hI == f2 0 h2 (mod TN). 

With these rules we can compute the coefficients of various operations 
between power series by reducing the computations to polynomial opera­
tions, which amount to high-school algebra. Indeed, two power series 
J, g are equal if and only if 

for every positive integer N. Verifying that f == g (mod TN) can be 
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done by working entirely with polynomials of degree < N. 

If fl' f2 are power series, then 

(fl + f2)(h) = fl (h) + f2(h), 

(fd2)(h) = fl (h)f2(h), and (fdf2)(h) = fl (h)lf2(h) 

if ord f2 = O. If g, h have constant terms equal to 0, then 

f{g(h» = (f 0 g)(h). 

Proof. In each case, the proof is obtained by reducing the statement 
to the polynomial case, and seeing that the required properties hold for 
polynomials, which is standard. For instance, for the associativity of 
composition, given a positive integer N, let P, Q, R be polynomials of 
degree ~ N - I such that 

f='P, g=.Q, 

The ordinary theory of polynomials shows that 

P{Q(R» = (P 0 Q)(R). 

The left-hand side is congruent to f(g(h», and the right-hand side is 
congruent to (f 0 g)(h) (mod TN) by the properties which have already 
been proved. lIenee 

f{g(h» =. (f 0 g)(h) (mod TN). 

This is true for each N, whence f(g(h)} = (f 0 g)(h), as desired. 

In applications it is useful to consider power series which have a finite 
number of terms involving liz, and this amounts also to considering 
arbitrary quotients of power series as follows. 

Just as fractions min are formed with integers m, nand n :F 0, we can 
form quotients 

fig = f(T)/g(T) 

of power series such that g :F O. Two such quotients fig and fdgl are 
regarded as equal if and only if 

which is exactly the condition under which we regard two rational num-
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bers min and mdni as equal. We have then defined for power series all 
the operations of arithmetic. 

Let 
f(T) = amTm + am+1 Tm+1 + ... = L anTn 

n;;;m 

be a power series with am =I- O. We may then write f in the form 

where h(T) has zero constant term. Consequently Ilf has the form 

1 1 
Ilf = am Tm 1 + h(T) 

We know how to invert 1 + h(T), say 

Then Ilf(T) has the shape 

It is a power series with a finite number of terms having negative powers 
of T. In this manner, one sees that an arbitrary quotient can always be 
expressed as a power series of the form 

J; C-m C- m+l 2 
"g = - + -- + .. , + c + c T + c T + ... 
I Tm T m- I 0 I 2 

If em =I- 0, then we call -m the order of fig. It is again verified as for 
power series without negative terms that if 

<P = fig and 

then 
ord <P<PI = ord <P + ord <PI • 

Example. Find the terms of order ;£ 3 in the power series for Ilsin T. 
By definition, 

sin T = T - T3/3! + T 515! -'" 

= T(l - T2/3! + T 4 /5! - '''). 



46 POWER SERIES [II, §1] 

Hence 

1 1 1 
sin T - T 1 - T2/3! + T 4 /5! + ... 

= ~ (1 + T2/3! - T4 /5! + (T2/3!)2 + higher terms 

1 1 (1 1) 3 • 
= T + 3! T + (3 !)2 - 5! T + higher terms. 

This does what we wanted. 

II, §1. EXERCISES 

We shall write the formal power series in terms of z because that's the way they 
arise in practice. The series for sin z, cos z, e%, etc. are to be viewed as formal 
senes. 

1. Give the terms of order ~ 3 in the power series: 

(a) e% sin z (b) (sin z)(cos z) (c) 
e% -1 

z 

e% - cos z 
(e) (f) 

cos z 
(d) 

sin z z cos z 

(g) 
sin z 

cos z 
(h) e%jsin z 

2. Let J(z) = Lanzn. Define J(-z) = Lan(-z)" = Lan(-l)nz•. We define J(z) to 
be even if an = 0 for n odd. We define J(z) to be odd if a. = 0 for n even. 
Verify that J is even if and only if J( -z) = J(z) and J is odd if and only if 
J( -z) = -J(z). 

3. Define the Bernoulli numbers Bn by the power series 

z 00 B " n. --= ,--z 
e% - 1 n=O n! • 

Prove the recursion formula 

BO Bl Bn - 1 {I if n = 1, 
n! O! + (n - 1)! 1! + ... + 1! (n - I)! = 0 if n> 1. 

Then Bo = 1. Compute B1 , B2 , B3 , B4 • Show that B. = 0 if n is odd * 1. 

4. Show that 
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Replace z by 2niz to show that 

5. Express the power series for tan z, z/sin z, z cot z, in terms of Bernoulli 
numbers. 

6. (Difference E ....... ). Given complex: numbers "0, 01, "1, "2 define tln for 
n~2 by 

If we have a factorization 

T2 -"1 T - U2 = (T - ex)(T - ex'), and ex #- ex', 

show that the numbers a" are given by 

a, = AIX' + Bex" 

with suitable ..4, B. Find A, B in terms of ao, ai' IX, ex'. Consider the power 
series 

co 

F(T) = L a, P. 
,=0 

Show that it represents a rational function. and give its partial fraction decom­
position. 

7. More generally, let flo, ... ,ar- 1 be given complex numbers. Let "1' ... ,ur be 
complex number such that the polynomial 

P(T) = T' - (U1 T,-l + ... + u,) 

has distinct roots ex1 , ••• ,ex,.. Define an for n ~ r by 

Show that there exist numbers AI' ... ,Ar such that for all n, 

II, §2. CONVERGENT POWER SERIES 

We first recall some terminology about series of complex numbers. 
Let {ZII} be a sequence of complex numbers. Consider the series 

00 

L ZII' 
,,=1 
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We define the partial sum 

n 

Sn= I Zk=Zl+ Z2+···+ Zn· 
k=l 

We say that the series converges if there is some w such that 

lim Sn = W 
n-+oo 

[II, §2] 

exists, in which case we say that w is equal to the sum of the series, that 
is, 

00 

w = I Zn· 
n=l 

If A = I exn and B = I Pn are two convergent series, with partial sums 

and 

then the sum and product converge. Namely, 

Let {cn } be a series of real numbers Cn ~ o. If the partial sums 

are bounded, we recall from calculus that the series converges, and that 
the least upper bound of these partial sums is the limit. 

Let I exn be a series of complex numbers. We shall say that this series 
converges absolutely if the real positive series 

converges. If a series converges absolutely, then it converges. Indeed, let 

be the partial sums. Then for m ~ n we have 
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whence 
n 

ISn - sml ~ L lockl· 
k=m+l 

Assuming absolute convergence, given E there exists N such that if n, 
m ~ N, then the right-hand side of this last expression is < E, thereby 
proving that the partial sums form a Cauchy sequence, and hence that 
the series converges. 

We have the usual test for convergence: 

Let L Cn be a series of real numbers ~ 0 which converges. If locnl ~ Cn 
for all n, then the series L ocn converges absolutely. 

Proof The partial sums 

are bounded by assumption, whence the partial sums 

n n 

L lockl ~ L ck 
k=l k=l 

are also bounded, and the absolute convergence follows. 

In the sequel we shall also assume some standard facts about abso­
lutely convergent series, namely: 

(i) If a series :E OCn is absolutely convergent, then the series obtained by 
any rearrangement of the terms is also absolutely convergent, and 
converges to the same limit. 

(ii) If a double series 

is absolutely convergent, then the order of summation can be inter­
changed, and the series so obtained is absolutely convergent, and 
converges to the same value. 

The proof is easily obtained by considering approximating partial 
sums (finite sums), and estimating the tail ends. We omit it. 

We shall now consider series of functions, and deal with questions of 
uniformity. 

Let S be a set, and f a bounded function on S. Then we define the 
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sup norm 
IIflls = Ilfll = sup If(z)l, 

zeS 

where sup means least upper bound. It is a norm in the sense that for 
two functions f, g we have Ilf + gil ~ 1If11 + IIgll, and for any number c 
we have Ilcfll = Jclllfil. Also f = 0 if and only if 1If11 = O. 

Let Un} (n = 1,2, ... ) be a sequence of functions on S. We shall say 
that this sequence converges uniformly on S if there exists a function f on 
S satisfying the following properties. Given E, there exists N such that if 
n ~ N, then 

We say that {.f..} is a Cauchy sequence (for the sup norm~ if given t, 
there exists N such that if m, n ~ N, then 

In this case, for each z E S, the sequence of complex numbers 

{.f..(z) } 

converges, because for each z E S, we have the inequality 

Ifn{z) - f ... (z)1 ~ 1If.. - f .. l1· 

Theorem 2.1. If a sequence {.r..} of functions on S is Cauchy, then it 
converges uniformly. 

Proof For each z E S, let 

f(z) = lim fn(z). 
n-+oo 

Given E, there exists N such that if m, n ~ N, then 

I.f..(z) - f",(z)1 < E, for all z E S. 

Let n ~ N. Given z E S select m ~ N sufficiently large (depending on z) 
such that 

Then 

If(z) -:- f ... (z)1 < E. 

If(z) - .f..(z)1 ~ If(z) - f ... (z)1 + If",(z) - .f..(z) I 

< E + II fm - .r..11 
<2E. 
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This is true for any z, and therefore II f - f" II < 2E, which proves the 
theorem. 

Remark. It is immediately seen that if the functions f" in the theorem 
are bounded, then the limiting function f is also bounded. 

Consider a series of functions, If". Let 

n 

Sn = I h = fl + f2 + ... + f" 
k=1 

be the partial sum. We say that the series converges uniformly if the 
sequence of partial sums {Sn} converges uniformly. 

A series If" is said to converge absolutely if for each z E S the series 

I I f,,(z) I 
converges. 

The next theorem is sometimes called the comparison test. 

Theorem 2.2. Let {cn } be a sequence of real numbers ~ 0, and assume 
that 

converges. Let {f,,} be a sequence of functions on S such that II f" II ~ Cn 

for all n. Then Ifn converges uniformly and absolutely. 

Proof Say m ~ n. We have an estimate for the difference of partial 
sums, 

n II 

Iisn - smll ~ I Ilhll ~ I Ck' 
k=m+l k=m+l 

The assumption that I Ck converges implies at once the uniform conver­
gence of the partial sums. The argument also shows that the convergence 
is absolute. 

Theorem 2.3. Let S be a set of complex numbers, and let {In} be a 
sequence of continuous functions on S. If this sequence converges uni­
formly, then the limit function f is also continuous. 

Proof You should already have seen this theorem some time during a 
calculus course. We reproduce the proof for convenience. Let oc E S. 
Select n so large that II f - f" II < E. For this choice of n, using the 
continuity of f" at oc, select b such that whenever Iz - atl < () we have 

If,,(z) - f,,(oc) I < E. 
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Then 

If(z) - f(lX) I ~ If(z) - fn(z) I + Ifn(z) - fn(lX) I + Ifn(lX) - f(IX)I· 

The first and third term on the right are bounded by II f - fnll < E. The 
middle term is < E. Hence 

If(z) - f(IX)1 < 3E, 

and our theorem is proved. 

We now consider the power series, where the functions fn are 

with complex numbers an' 

Theorem 2.4. Let {a,,} be a sequence of complex numbers, and let r be 
a number > 0 such that the series 

converges. Then the series L a"zn converges absolutely and uniformly 
for Izl ~ r. 

Proof Special case of the comparison test. 

Example. For any r > 0, the series 

Lz"ln! 

converges absolutely and uniformly for Izi ~ r. Indeed, let 

cn = r"ln!. 
Then 

cn+1 rn+1 n ! r 

Cn (n + I)! rn - n + l' 

Take n ~ 2r. Then the right-hand side is ~ 1/2. Hence for all n suffi­
ciently large, we have 

Therefore there exists some positive integer no such that 
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for some constant C and all n ~ no. We may therefore compare our series 
with a geometric series to get the absolute and uniform convergence. 

The series 
OCJ 

exp(z) = L zn/n! 
n=O 

therefore defines a continuous function for all values of z. Similarly, the 
series 

Z3 Z5 OCJ z2n+1 
sin z = z - - + - - . .. = L (- 1 t -:-::--------:-:-0 

3! 5! n=O (2n + 1)! 
and 

Z2 Z4 OCJ z2n 
cos Z = 1 - - + - - ... = L (-1t-

2! 4! n=O (2n)! 

converge absolutely and uniformly for all Izl ~ r. They give extensions of 
the sine and cosine functions to the complex numbers. We shall see later 
that exp(z) = eZ as defined in Chapter I, and that these series define the 
unique analytic functions which coincide with the usual exponential, sine, 
and cosine functions, respectively, when z is real. 

Theorem 2.5. Let L anz n be a power series. If it does not converge 
absolutely for all z, then there exists a number r such that the series con­
verges absolutely for Izl < r and does not converge absolutely for Izl > r. 

Proof Suppose that the series does not converge absolutely for all z. 
Let r be the least upper bound of those numbers s f'; 0 such that 

converges. Then L lanllzln diverges if Izl > r, and converges if Izl < r by 
the comparison test, so our assertion is obvious. 

The number r in Theorem 2.5 is called the radius of convergence of the 
power series. If the power series converges absolutely for all z, then we 
say that its radius of convergence is infinity. When the radius of conver­
gence is 0, then the series converges absolutely only for z = 0. 

If a power series has a non-zero radius of convergence, then it is 
called a convergent power series. If D is a disc centered at the origin and 
contained in the disc D(O, r), where r is the radius of convergence, then 
we say that the power series converges on D. 

The radius of convergence can be determined in terms of the co­
efficients. Let tn be a sequence of real numbers. We recall that a point of 
accumulation of this sequence is a number t such that, given E, there exist 
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infinitely many indices n such that 

Itn - tl < E. 

In other words, infinitely many points of the sequence lie in a given 
interval centered at t. An elementary property of real numbers asserts 
that every bounded sequence has a point of accumulation (Weierstrass­
Balzano theorem). 

Assume now that {tn} is a bounded sequence. Let S be the set of 
points of accumulation, so that S looks like Fig. 1. 

IIIII~IIII I 
Figure 1 

We define the limit superior, lim sup, of the sequence to be 

A = lim sup tn = least upper bound of S. 

Then the reader will verify at once that A is itself a point of accumulation 
of the sequence, and is therefore the largest such point. Furthermore, A 
has the following properties: 

Given E, there exist only finitely many n such that tn ~ A + E. There 
exist infinitely many n such that 

Proof If there were infinitely many n such that tn ~ A + E, then the 
sequence {tn} would have a point of accumulation 

contrary to assumption. On the other hand, since A itself is a point of 
accumulation, given the E-interval about A, there have to be infinitely 
many n such that tn lies in this E-interval, thus proving the second 
assertion. 

We leave it to the reader to verify that if a number A has the above 
properties, then it is the lim sup of the sequence. 

For convenience, if {tn } is not bounded from above, we define its 
lim sup to be infinity, written 00. 
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As an exercise, you should prove: 

Let {tIl}' {sIll be sequences of real numbers ~ O. Let 

t = lim sup tIl and s = lim sup s". 

Then 
lim sup(t" + s,,) ~ t + s. 

If t =F 0, then 

lim sup(t"s,,) ~ ts. 

If lim tIl exists, then t = lim t". 
" .... 00 

This last statement says that if the sequence has an ordinary limit, then 
that limit is the lim sup of the sequence. 

The second statement is often applied in case one sequence has a 
lim sup, and the other sequence has a limit =F O. The hypothesis t =F 0 is 
made only to allow the possibility that s = 00, in which case ts is under­
stood to be 00. If s =F 00, and t =F 00, and lim tIl exists, then it is true 
unrestrictedly that 

lim sup(t"s,,) = ts. 

Theorem 2.6. Let L a"z" be a power series, and let r be its radius of 
convergence. Then 

If r = 0, this relation is to be interpreted as meaning that the sequence 
{la,,1 1/"} is not bounded. If r = 00, it is to be interpreted as meaning 
that lim sup I a" 11/" = O. 

Proof Let t = lim suplanI1/". Suppose first that t =F 0, 00. Given E > 0, 
there exist only a finite number of n such that I an 11/" ~ t + E. Thus for all 
but a finite number of n, we have 

la,,1 ~ (t + E)", 

whence the series La"z" converges absolutely if Izl < 1/(t + E), by com­
parison with the geometric series. Therefore the radius of convergence r 
satisfies r ~ 1/(t + E) for every € > 0, whence r ~ lit. 
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Conversely, given E there exist infinitely many n such that lanl!/n ~ t - E, 

and therefore 

Hence the series I: anzn does not converge if Izl = 1/(1 - E), because its 
n-th term does not even tend to O. Therefore the radius of convergence r 
satisfies r ~ l/(t - E) for every E > 0, whence r ~ 1/t. This concludes the 
proof in case t '" 0, 00. 

The case when t = 0 or 00 will be left to the reader. The above 
arguments apply, even with some simplifications. 

Corollary 2.7. If lim lanl!/n = t exists, then r = l/t. 

Proof. If the limit exists, then t is the only point of accumulation of 
the sequence lanl!/n, and the theorem states that t = l/r. 

Corollary 2.8. Suppose that L anzn has a radius of convergence greater 
than O. Then there exists a positive number C such that if A > l/r then 

for all n. 

Proof. Let s = 1/ A so 0 < S < r at the beginning of the proof of the 
theorem. 

In the next examples, we shall use a weak form of Stirling's formula, 
namely 

where lim u!/n = 1. 

You can prove this estimate by comparing the integral 

J: log x dx = n log n - n + 1 

with the upper and lower Riemann sums on the interval [1, n], using the 
partition consisting of the integers from 1 to n. This is a very simple 
exercise in calculus. Exponentiating the inequalities given by the 
Riemann sums yields the weak form of Stirling's formula. 

Let {an}, {bn} be two sequences of positive numbers. We shall write 

for n .... 00 

if for each n there exists a positive real number Un such that lim u!/n = 1, 
and an = bnun. If lim a!/n exists, and an == bn, then lim b~/n exists and is 
equal to lim a!/lI. We can use this result in the following examples. 
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Example. The radius of convergence of the series L n! zn is O. Indeed, 
we have n! == nne-n and (n !)l/n is unbounded as n -+ 00. 

Example. The radius of convergence of L (lin !)zn is infinity, because 
lin! == enlnn so (lln!)l/n -+ 0 as n -+ 00. 

Example. The radius of convergence of L (n !jnn)zn is e, because 
n!jnn == e-n, so lim(n!/nn)l/n = e-1• 

Ratio Test. Let {an} be a sequence of positive numbers, and assume that 
lim an+l/an = A ~ O. Then lim a~/n = A also. 

Proof Suppose first A > 0 for simplicity. Given I" > 0, let no be such 
that A - I" ;;;; an+l/an ;;;; A + E if n ~ no. Without loss of generality, we can 
assume E < A so A - I" > O. Write 

Then by induction, there exist constants CI (E) and C2 (E) such that 

There exists N ~ no such that for n ~ N we have 

C{(E)I/n = I +J1(n) where IJ1(n)1 ;;;; E/(A - E), 

and similarly q(E)I/n = I +J2(n) with IJ2(n)1 ;;;; EI(A + E). Then 

This shows that la~/n - A I ;;;; 21", and concludes the proof of the ratio test 
when A > O. If A = 0, one can simply replace the terms on the left of the 
inequalities by 0 throughout. 

Example (The Binomial Series). Let 0: be any complex number:f=. O. 
Define the binomial coefficients as usual, 

( 0:) = 0:(0: - 1)··· (0: - n + 1), 
n n! 
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and the binomial series 

(1 + T)11. = BI1.(T) = f (IX) Tn. 
n=O n 

By convention, 

(~) = 1. 

The radius of convergence of the binomial series is 1 if IX is not equal to 
an integer ~ 0. 

Proof Under the stated assumption, none of the coefficients an are 0, 
and we have 

The limit is 1 as n ~ 00, so we can apply the ratio test. 

Warning. Let r be the radius of convergence of the series f(z). 
Nothing has been said about possible convergence if Izl = r. Many cases 
can occur concerning convergence or non-convergence on this circle. See 
Exercises 6 and 8 for example. 

II, §2. EXERCISES 

1. Let lexl < 1. Express the sum of the geometric series L::'=l ex" in its usual 
simple form. 

2. Let r be a real number, 0 ~ r < 1. Show that the series 

00 

L r"ei"B 
"=0 

and 
00 L rl"lei"B 

n=-Cl) 

converge (8 is real). Express these series in simple terms using the usual 
formula for a geometric series. 

3. Show that the usual power series for log(l + z) or log(l - z) from elementary 
calculus converges absolutely for Izi < 1. 

4. Determine the radius of convergence for the following power series. 

(a) L n"z" (b) L z"/n" 
(c) L 2"z" (d) L (log n)2z" 

(e) L 2-"z" (f) L n2z" 
~ n! ~ (n !)3 " 

(g) L... n" z" (h) L... (3n) ! z 
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5. Let /(z) = L a.z· have radius of convergence r > o. Show that the following 
series have the same radius of convergence: 
(a) L na.z· (b) L n2a.z· 
(c) L nda.z· for any positive integer d (d) L na.z·-1 

'51:1 

6. Give an example of a power series whose radius of convergence is 1, and 
such that the corresponding function is continuous on the closed unit disc. 
[Hint: Try L z·/n2.] 

7. Let a, b be two complex numbers, and assume that b is not equal to any 
integer ~ o. Show that the radius of convergence of the series 

a(a + 1)· ··(a + n) L z· 
b(b + 1)· ··(b + n) 

is at least 1. Show that this radius can be 00 in some cases. 

8. Let {a.} be a decreasing sequence of positive numbers approaching O. Prove 
that the power series L a.z· is uniformly convergent on the domain of z such 
that 

Izl ~ 1 and Iz -11 ~ 15, 

where 15 > O. [Hint: For this problem and the next, use summation by parts, 
see Appendix, §1.] 

00 

9. (Abel's Theorem). Let E a.z· be a power series with radius of convergence 
.=0 

00 

~ 1. Assume that the series L a. converges. Let 0 ~ x < 1. Prove that 
.=0 

00 00 

lim L a.x· = L a •. 
x-I n=O n=O 

Remark. This result amounts to proving an interchange of limits. If 

• 
s.(x) = L akxk, 

k=l 

then one wants to prove that 

lim lim s.(x) = lim lim s.(x). 
n ..... oo x-I x ..... 1 n-oo 

Cf. Theorem 3.5 of Chapter VII in my Undergraduate Analysis, Springer­
Verlag, 1983. 

10. Let L a.z· and L b.z· be two power series, with radius of convergence rand 
s, respectively. What can you say about the radius of convergence of the 
series: 
(a) L (a. + b.)z· 

11. Let IX, P be complex numbers with IIXI < IPI. Let 

J(z) = ~)3IX' - 5P·)z·. 
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Determine the radius of convergence of f(z). 

12. Let {a.} be the sequence of real numbers defined by the conditions: 

and a. = a.-1 + a.-2 for n ~ 2. 

Determine the radius of convergence of the power series 

<Xl 

L a.zn • 
• =0 

[Hint: What is the general solution of a difference equation? Cf. Exercise 6 
of §l.] 

13. More generally, let u1 , U2 be complex numbers such that the polynomial 

has two distinct roots with 1(X11 < 1(X21. Let ao, a1 be given, and let 

for n ~ 2. 

What is the radius of convergence of the series La. T·? 

II, §3. RELATIONS BETWEEN FORMAL AND 
CONVERGENT SERIES 

Sums and Products 

Let f = f(T) and 9 = g(T) be formal power series. We may form their 
formal product and sum, f + 9 and fg. If f converges absolutely for 
some complex number z, then we have the value f(z), and similarly for 
g(z). 

Theorem 3.1. If f, 9 are power series which converge absolutely on the 
disc D(O, r), then f + 9 and fg also converge absolutely on this disc. If a 
is a complex number, af converges absolutely on this disc, and we have 

(f + g)(z) = f(z) + g(z), (fg)(z) = f(z)g(z), 

(cif)(z) = a' f(z) 

for all z in the disc. 

Proof. We give the proof for the product, which is the hardest. Let 

and g=bI T", 
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so that 
n 

where Cn = L akbn- k·· 
k=O 

Let 0 < s < r. We know that there exists a positive number C such that 
for all n, 

and 

Then 

Therefore 

But lim (n + l)l/nC l /n = 1. Hence 

This is true for every s < r. It follows that lim sup Icnl 1/n ~ l/r, thereby 
proving that the formal product converges absolutely on the same disc. 
We have also shown that the series of positive terms 

00 n 

L L lakllbn_kllzln 
n=O k=O 

converges. 
Let 

and similarly, let gN(T) be the polynomial consisting of the terms of 
order ~ N in the power series for g. Then 

f(z) = lim fN(Z) and g(z) = lim gN(Z). 
N N 

Furthermore, 

00 n 

l(fg)N(Z) - fN(Z)gN(Z)1 ~ L L lakllbn_kllzln. 
n=N+l k=O 

In view of the convergence proved above, for N sufficiently large the 
right-hand side is arbitrarily small, and hence 

f(z)g(z) = lim fN(Z)gN(Z) = (fg)(z), 
N 
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thereby proving the theorem for the product. 

The previous theorem shows that a formal power series determines a 
function on the disc of absolute convergence. We can raise the question: 
If two formal power series f, g give rise to the same function on some 
neighborhood of 0, are they equal as formal power series? Subtracting g 
from f, this amounts to asking: If a power series determines the zero 
function on some disc centered at the origin, is it the zero series, i.e. are 
all its coefficients equal to O? The answer is yes. In fact, more is true. 

Theorem 3.2. 

(a) Let f(T) = 'LanTn be a non-constant power series, having a non­
zero radius of convergence. If f(O) = 0, then there exists s> 0 such 
that f(z) =1= 0 for all z with Izl ;::;;; s, and z =1= O. 

(b) Let f(T) = 'LanTn and g(T) = 'LbnTn be two convergent power 
series. Suppose that f(x) = g(x) for all points x in an infinite set 
having 0 as a point of accumulation. Then f(T) = g(T), that is 
an = bn for all n. 

Proof We can write 

f(z) = amzm + higher terms, and am =1= 0 

= amzm(l + btZ + b2 z2 + ... ) 
= amzm( 1 + h(z)), 

where h(z) = bt z + b2 z2 + ... is a power series having a non-zero radius 
of convergence, and zero constant term. For all sufficiently small Izl, the 
value Ih(z)1 is small, and hence 

1 + h(z) =1= O. 

If z =1= 0, then amzm =1= O. This proves the first part of the theorem. 
For part (b), let h(t) = f(T) - g(T) = L(an - bn)T". We have h(x) = 0 

for an infinite set of points x having 0 as point of accumulation. By part 
(a), this implies that h(T) is the zero power series, so an = bn for all n, 
thus proving the theorem. 

Example. There exists at most one convergent power series f(T) = 
~>n Til such that for some interval [ -E, E] we have f(x) = eX for all x in 
[ -E, E]. This proves the uniqueness of any power series extension of the 
exponential function to all complex numbers. Similarly, one has the 
uniqueness of the power series extending the sine and cosine functions. 



[II, §3] RELA TIONS BETWEEN FORMAL AND CONVERGENT SERIES 63 

Furthermore, let exp(z) = L znln!. Then 

exp(iz) = L (iz)n In!. 

Summing over even n and odd n, we find that 

exp(iz) = C(z) + is(z), 

where C(z) and S(z) are the power series for the cosine and sine of z 
respectively. Hence ei8 for real () coincides with exp(i()) as given by the 
power series expansion. 

Quite generally, if g(T), h(T) are power series with 0 constant term, then 

exp(g(T) +h(T)) = (expg(T))(exph(T)). 

Proof On one hand, by definition, 

and on the other hand, 

00 n (T)kh(Tr-k 
(expg(T)) (exph(T)) = ~{;g k!(n _ k)! 

= ~ (g(T) + h(T)r 
~ qed. 
n=O n! 

In particular, for complex numbers z, w we have 

exp(z + w) = (expz)(exp w), 

because we can apply the above identity to g(T) = zT and h(T) = wT, and 
then substitute T = 1. Thus we see that the exponential function eZ defined 
in Chapter I has the same values as the function defined by the usual power 
series exp(z). From now on, we make no distinction between eZ and exp(z). 

Theorem 3.2 also allows us to conclude that any polynomial relation 
between the elementary functions which have a convergent Taylor expan­
sion at the origin also holds for the extension of these functions as 
complex power series. 

Example. We can now conclude that sin2 z + cos2 Z = 1, where sinz = 
S(z), cosz = C(z) are defined by the usual power series. Indeed, the 
power series S(z)2 + C(z)2 has infinite radius of convergence, and has 
value I for all real z. Theorem 3.2 implies that there is at most one series 
having this property, and that is the series 1, as desired. It would be 
disagreeable to show directly that the formal power series for the sine and 
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cosine satisfy this relation. It is easier to do it through elementary calculus 
as above. 

Example. Let m be a positive integer. We have seen in §2 that the 
binomial series 

with (X = 11m has a radius of convergence ~ 1, and thus converges ab­
solutely for JzJ < 1. By elementary calculus, we have 

B(x)m = 1 + x 

when x is real, and JxJ < 1 (or even when JxJ is sufficiently small). There­
fore B(T)m is the unique formal power series such that 

B(x)m = 1 + x 

for all sufficiently small real x, and therefore we conclude that 

B(Tt = 1 + T. 

In this manner, we see that we can take m-th roots 

(1 + z)l/m 

by the binomial series when JzJ < 1. 

Quotients 

In our discussion of fonnal power series, besides the polynomial rela­
tions, we dealt with quotients and also composition of series. We still 
have to relate these to the convergent case. It will be convenient to 
introduce a simple notation to estimate power series. 

Let f(T) = L an rn be a power series. Let 

be a power series with real coefficients Cn ~ O. We say that f is domi­
nated by qJ, and write 

f«qJ or f(T) « qJ(T), 

if JanJ ~ Cn for all n. It is clear that if qJ, IjJ are power series with real co-
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efficients ~ 0 and if 

f -< cp, g -< 1jI, 
then 

f+g-<cp+1jI and fg -< cpljl. 

Theorem 3.3. Suppose that f has a non-zero radius of convergence, and 
non-zero constant term. Let g be the formal power series which is inverse 
to f, that is, fg = 1. Then g also has a non-zero radius of convergence. 

Proof Multiplying f by some constant, we may assume without loss 
of generality that the constant term is 1, so we write 

f = 1 + at T + a2 T2 + ... = 1 - h(T), 

where h(T) has constant term equal to O. By Corollary 2.8, we know 
that there exists a number A > 0 such that 

(We can take C = 1 by picking A large enough.) Then 

But 

1 
f(T) 

1 
-:-1 -~h:-:-(T-=-) = I + h(T) + h(T)2 + .... 

00 AT 
h(T) -< L AnTn = . 

n=l I-AT 

Therefore l/f(T) = g(T) satisfies 

But 

AT (AT)2 1 
g(T) -< 1 + 1 _ AT + (1 _ AT)2 + ... = AT 

1----
1- AT 

1 
--A-T- = (1 - AT)(1 + 2AT + (2AT)2 + ... ) 
1----

1- AT 

-< (1 + AT)(1 + 2A T + (2AT)2 + ... ). 

Therefore g(T) is dominated by a product of power series having non­
zero radius of convergence, whence g(T) itself a non-zero radius of con­
vergence, as was to be shown. 
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Composition of Series 

Theorem 3.4. Let 

and 

be convergent power series, and assume that the constant term of h is O. 
Assume that f(z) is absolutely convergent for Izl ~ r, with r > 0, and 
that s > 0 is a number such that 

Let 9 = f(h) be the formal power series obtained by composition, 

Then 9 converges absolutely for Izl ~ s, and for such z, 

g(z) = f{h(z)). 

Proof Let g(T) = L cn Tn. Then g(T) is dominated by the series 

and by hypothesis, the series on the right converges absolutely for Izl ~ s, 
so g(z) converges absolutely for Izl ~ s. Let 

be the polynomial of degree ~ N - 1 beginning the power series f Then 

and f{h(T)) = g(T) by definition. By the absolute convergence we con­
clude: Given E, there exists No such that if N ~ No and Izl ~ s, then 

Since the polynomials fN converge uniformly to the function f on the 
closed disc of radius r, we can pick No sufficiently large so that for 
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N ~ No we have 
IfN(h(z)) - f{h(z))1 < E. 

This proves that 

Ig(z) - f(h(z))1 < 2E, 

for every E, whence g(z) - f(h(z)) = 0, thereby proving the theorem. 

Example. Let rn be a positive integer, and let h(z) be a convergent 
power series with zero constant term. Then we can form the rn-th root 

(1 +h(z))l/m 

by the binomial expansion, and this rn-th root is a convergent power 
series whose rn-th power is 1 + h(z). 

Example. Define 
00 wn 

f(w) = L (_l)n-l_. 
n=l n 

Readers should immediately recognize that the series on the right is the 
usual series of calculus for 10g(1 + w) when w = x and x is real. This 
series converges absolutely for Iwl < 1. We can therefore define log z for 
Iz - 11 < 1 by 

log z = f(z - 1). 

We leave it as Exercise 1 to verify that exp log z = z. 

II, §3. EXERCISES 

1. (a) Use the above definition of log z for Iz - 11 < 1 to prove that exp log z = z. 
[Hint: What are the values on the left when z = x is real?] 

(b) Let Zo of. O. Let (1. be any complex number such that exp(o:) = Zo. For 
Iz - zol < IZol define 

(z) (z -zo) log Z = f ~ - 1 + IX = f -;;;- + (1.. 

Prove that exp log z = Z for Iz - zol < IZol. 

Warning. The above definitions in parts (a) and (b) may differ by a 
constant. Since you should have proved that exp log z = z in both cases, 
and since exp(wJ) = exp(w2) if and only if there exists an integer k such 
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that WI = W2 + 2nik, it follows that if we denote the two logs by log I and 
log2, respectively, then logl (z) = log2(z) + 2nik. 

2. (a) Let exp(T) = L.~o Tn/n! and log(1 + T) = L.~I (_I)k-I Tk /k. Show that 

exp log(l + T) = I + T and log exp(T) = T. 

(b) Let hI (T) and h2(T) be formal power series with 0 constant terms. Prove 
that log( (I + hI (T))(I + h2(T))) = log(l + hI (T)) + log(1 + h2(T)). 

(c) For complex numbers oc, p show that log(l + Tt = oc log(l + T) and 

3. Prove that for all complex z we have 

ei% + e- i% 

cos z = --2'--- and 
ei% _ e- i% 

sinz=---
2i 

4. Show that the only complex numbers z such that sin z = 0 are z = kn, where k 
is an integer. State and prove a similar statement for cos z. 

5. Find the power series expansion of J(z) = 1/(z + l)(z + 2), and find the radius 
of convergence. 

6. The Legendre polynomials can be defined as the coefficients P"(oc) of the series 
expansion of 

1 
J(z) = (1 _ 20cz + z2)1/2 

= 1 + PI (oc)z + P2 (OC)Z2 + ... + P,,(oc)z' + .... 

Calculate the first four Legendre polynomials. 

II, §4. ANALYTIC FUNCTIONS 

So far we have looked at power series expansions at the origin. Let f be 
a function defined in some neighborhood of a point Zo0 We say that f is 
analytic at Zo if there exists a power series 

and some r> 0 such that the series converges absolutely for Iz - zol < r, 
and such that for such z, we have 

00 

f(z) = L an(z - zo)n. 
n=O 
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Suppose f is a function on an open set U. We say that f is analytic on 
U if f is analytic at every point of U. 

In the light of the uniqueness theorem for power series, Theorem 3.2, 
we see that the above power series expressing f in some neighborhood of 
Zo is uniquely determined. We have 

f(zo) = 0 if and only if ao = o. 

A point Zo such that f(zo) = 0 is called a zero of f Instead of saying 
that f is analytic at zo, we also say that f has a power series expansion 
at Zo (meaning that the values of f(z) for z near Zo are given by an ab­
solutely convergent power series as above). 

If S is an arbitrary set, not necessarily open, it is useful to make the 
convention that a function is analytic on S if it is the restriction of an 
analytic function on an open set containing S. This is useful, for in­
stance, when S is a closed disc. 

The theorem concerning sums, products, quotients and composites of 
convergent power series now immediately imply: 

If f, g are analytic on U, so are f + g, fg. Also fig is analytic on the 
open subset of z E U such that g(z) =I- O. 

If g: U ..... V is analytic and f: V ..... C is analytic, then fog is analytic. 

For this last assertion, we note that if Zo E U and g(zo) = Wo, so 

g(z) = Wo + Lb,,(z - zo)" and f(w) = La,,(w - wo)" 
,,~1 ,,~o 

for w near Wo, then g(z) - Wo is represented by a power series h(z - zo) 
without constant term, so that Theorem 3.4 applies: We can "substitute" 

to get the power series representation for f(g(z) in a neighborhood of 

zoo 
The next theorem, although easy to prove, requires being stated. It 

gives us in practice a way of finding a power series expansion for a 
function at a point. 

Theorem 4.1. Let f(z) = L a"z" be a power series whose radius of con­
vergence is r. Then f is analytic on the open disc D(O, r). 

Proof We have to show that f has a power series expansion at an 
arbitrary point Zo of the disc, so IZol < r. Let s > 0 be such that 
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IZol + s < r. We shall see that J can be represented by a convergent 
power series at zo, converging absolutely on a disc of radius s centered 
at Zoo 

Figure 2 

We write 

so that 

Z" = (zo + (z - zo))". 
Then 

If Iz - zol < s then IZol + Iz - zol < r, and hence the series 

converges. Then we can interchange the order of summation, to get 

which converges absolutely also, as was to be shown. 

Example. Let us find the terms of order ~ 3 in the power series 
expansion of the function 

J(Z) = Z2/(Z + 2) 
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at the point Zo = 1. We write 

z = 1 + (z - 1), z + 2 = 3 + (z - 1). 

Let == denote congruence mod(z - 1)4 (so disregard terms of order > 3). 
Then 

Hence 

Z2 = 1 + 2(z - 1) + (z - 1)2 

Z + 2 = 3 (1 + ~(z - 1)) 
1 1 

z+2-3 1 
1 + 3(z - 1) 

1( 1 1 2 1 3 ) = 3 1 - 3(z - 1) + 32 (z - 1) - 33 (z - 1) +... . 

1 (1 1 2 1 3) 
X 3 1 - 3(z - 1) + 32 (z - 1) - 33 (z - 1) 

1 [5 (1 1 ) 2 (1 2 1 ) 3J = 3 1 + 3(z - 1) + 3 + 32 (z - 1) + -3 + 32 - 33 (z - 1) . 

These are the desired terms of the expansion. 

Remark. Making a translation, the theorem shows that if f has a 
power series expansion on a disc D(zo, r), that is, 

for Iz - zol < r, then f is analytic on this disc. 

II, §4. EXERCISES 

1. Find the terms of order ~ 3 in the power series expansion of the function 
J(z) = z2j(Z - 2) at z = 1. 

2. Find the terms of order ~ 3 in the power series expansion of the function 
J(z) = (z - 2)/(z + 3)(z + 2) at z = 1. 
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II, §5. DIFFERENTIATION OF POWER SERIES 

Let D(O, r) be a disc of radius r > 0. A function f on the disc for which 
there exists a power series L anzn having a radius of convergence ~ r 
and such that 

for all z in the disc is said to admit a power series expansion on this disc. 
We shall now see that such a function is holomorphic, and that its 
derivative is given by the "obvious" power series. 

Indeed, define the formal derived series to be 

Theorem 5.1. If f(z) = L anzn has radius of convergence r, then: 

(i) The series L nanzn- l has the same radius of convergence. 
(ii) The function f is holomorphic on D(O, r), and its derivative is equal 

to L nanzn- l. 

Proof By Theorem 2.6, we have 

lim sup lanl l /n = 1/r. 
But 

lim sup I nan I lin = lim sup nl/n I an I lin. 

Since lim nl/n = 1, the sequences 

and 

have the same lim sup, and therefore the series L anzn and L nanzn have 
the same radius of convergence. Then 

and 

converge absolutely for the same values of z, so the first part of the 
theorem is proved. 

As to the second, let Izl < r, and b > ° be such that Izl + b < r. We 
consider complex numbers h such that 

Ihl < b. 
We have 

f(z + h) = L an(z + ht 

= L an(zn + nzn-lh + h2p,,(z, h)), 
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where Pn(z, h) is a polynomial in z and h, with positive integer coeffi­
cients, in fact 

Note that we have the estimate: 

Subtracting series, we find 

and since the series on the left is absolutely convergent, so is the series 
on the right. We divide by h to get 

f(z + h) - f(z) _ ~ n-l = h ~ P. ( h) h L..- nanz L..- an n Z, • 

For Ihl < b, we have the estimate 

II anPn(z, h)1 ~ L lanllP,,(z, h)1 

~ ElanIPn(lzl,b). 

This last expression is fixed, independent of h. Hence 

As h approaches 0, the right-hand side approaches 0, and therefore 

lim Ih L anPn(z, h)1 = 0. 
h-+O 

This proves that f is differentiable, and that its derivative at z is given by 
the series I nanzn- 1, as was to be shown. 

Remark. Conversely, we shall see after Cauchy's theorem that a func­
tion which is differentiable admits power series expansion-a very re­
markable fact, characteristic of complex differentiability. 

From the theorem, we see that the k-th derivative of f is given by the 
series 
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where hk is a power series without constant term. Therefore we obtain 
the standard expression for the coefficients of the power series in terms of 
the derivatives, namely 

If we deal with the expansion at a point Zo, namely 

then we find 

It is utterly trivial that the formally integrated series 

f ~zn+l 
n=O n + 1 

has radius of convergence at least r, because its coefficients are smaller in 
absolute value than the coefficients of f Since the derivative of this 
integrated series is exactly the series for j, it follows from Theorem 6.1 
that the integrated series has the same radius of convergence as f 

Let j be a function on an open set U. If g is a holomorphic function 
on U such that g' = j, then g is called a primitive for f We see that a 
function which has a power series expansion on a disc always has a 
primitive on that disc. In other words, an analytic function has a local 
primitive at every point. 

Example. The function liz is analytic on the open set U consisting of 
the plane from which the origin has been deleted. Indeed, for Zo =f: 0, we 
have the power series expansion 

1 1 1 1 
z = Zo + z - Zo = Zo (1 + (z - zo)/zo) 

= ~(1 -~(z - zo) + ... ) 
Zo Zo 

converging on some disc Iz - zol < r. Hence liz has a primitive on such 
a disc, and this primitive may be called log z. 
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II, §5. EXERCISES 

In Exercises 1 through 5, also determine the radius of convergence of the given 
series. 

1. Let 
Z2n 

J(z) = I (2n) ! 

Prove that f"(z) = J(z). 

2. Let 

Prove that 

3. Let 
Z3 Z5 Z7 

J(z) = Z - - + - - - + ... 
3 5 7 . 

Show that f'(z) = 1/(z2 + 1). 

4. Let 
00 (_l)n (z)2n 

J(z) = n~o (n !)2 2 . 

Prove that 

Z2 J"(z) + zJ'(z) + Z2 J(z) = o. 

5. For any positive integer k, let 

Prove that 

00 (-If (z)2n+k 
Jk(z) = I ,-. 

n=O n !(n + k). 2 

6. (a) For Iz - 11 < 1, show that the derivative of the function 

00 (z - If 
log z = log(l + (z - 1)) = I (_l)n-l __ 

n=l n 

is liz. 

(b) Let Zo *- O. For Iz - zol < 1, define J(z) = I (-lr1«z - zo)/zo)nln. Show 
that f'(z) = liz. 
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II, §6. THE INVERSE AND OPEN MAPPING THEOREMS 

Let f be an analytic function on an open set U, and let f(U) = v. We 
shall say that f is an analytic isomorphism if V is open and there exists 
an analytic function 

g: V -+ U 

such that fog = idv and g 0 f = idu , in other words, f and g are inverse 
functions to each other. 

We say that f is a local analytic isomorphism or is locally invertible at 
a point Zo if there exists an open set U containing Zo such that f is an 
analytic isomorphism on U. 

Remark. The word "inverse" is used in two senses: the sense of §1, 
when we consider the reciprocal l/f of a function f, and in the current 
sense, which may be called the composition inverse, i.e. an inverse for the 
composite of mappings. The context makes clear which is meant. In this 
section, we mean the composition inverse. 

Theorem 6.1. 

(a) Let f(T) = a1 T + higher terms be a formal power series with 
a1 "# O. Then there exists a unique power series g(T) such that 
f(g(T» = T. This power series also satisfies g(f(T» = T. 

(b) If f is a convergent power series, so is g. 
(c) Let f be an analytic function on an open set U containing zoo 

Suppose that !'(zo) "# O. Then f is a local analytic isomorphism at 
zoo 

Proof We first deal with the formal power series problem (a), and we 
find first a formal inverse for f(T). For convenience of notation below 
we write f(T) in the form 

co 

f(T) = a1 T - L an Tn. 
n=2 

We seek a power series 

co 

g(T) = L bnTn 
n=1 

such that 

f(g(T» = T. 

The solution to this problem is given by solving the equations in terms 
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of the coefficients of the power series 

These equations are of the form 

and 

where p" is a polynomial with positive integer coefficients (generalized 
binomial coefficients). In fact, one sees at once that 

p"(a2' ... ,an' b1 , ... ,bn-d 

= a2 P2,n(b1 , ••• ,bn-d + ... + anp",n(b1 , ••• ,bn-d, 

where again Pt,n is a polynomial with positive coefficients. In this man­
ner we can solve recursively for the coefficients 

since bn appears linearly with coefficient a1 :F 0 in these equations, and 
the other terms do not contain bn • This shows that a formal inverse 
exists and is uniquely determined. 

Next we prove that g(f(T») = T. By what we have proved already, 
there exists a power series h(T) = C1 T + higher terms with C1 :F 0 such 
that g(h(T») = T. Then using J(g(T») = T and g(h(T») = T, we obtain: 

g(f(T») = g(f(g(h(T)))) = g(h(T») = T, 

which proves the desired formal relation. 
Assume next that J is convergent. 
We must now show that g(z) is absolutely convergent on some disc. 

To simplify the number of symbols used, we assume that a1 = 1. This 
loses no generality, because if we find a convergent inverse power series 
for a11J(z), we immediately get the convergent inverse power series for 
J(z) itself. 

Let 
J*(T) = T - L a:Tn 

n<:;2 

be a power series with a: real ~ 0 such that lanl ~ a: for all n. Let qJ(T) 
be the formal inverse of J*(T), so 

qJ(T) = L Cn Tn, 
n<:;1 

Then we have 
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with those same polynomials p" as before. By induction, it therefore 
follows that Cn is real ~ 0, and also that 

Ibnl ~ Cn' 

since bn = p"(a2 , ... ,bn-d. It suffices therefore to pick the series f* so 
that it has an easily computed formal inverse ({J which is easily verified to 
have a positive radius of convergence. 

It is now a simple matter to carry out this idea, and we pick for f* a 
geometric series. There exists A > 0 such that for all n we have 

(We can omit a constant C in front of An by picking A sufficiently large.) 
Then 

A2T2 
f*(T) = T - L AnTn = T - . 

nii;2 I-AT 

The power series ((J(T) is such that f*({J(T») = T, namely 

which is equivalent with the quadratic equation 

(A 2 + A)({J(T)2 - (1 + A T)({J(T) + T = O. 

This equation has the solution 

(T) = 1 + AT - J(1 + AT)2 - 4T(A2 + A) 
({J 2(A2 + A) 

The expression under the radical sign is of the form 

(1 AT)2 (1 _ 4T(A2 + A») 
+ (1 + AT)2 

and its square root is given by 

( 4T(A2 + A»)1/2 
(1 + AT) 1 - (1 + ATf . 

We use the binomial expansion to find the square root of a series of the 
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form 1 + h(T) when h(T) has zero constant term. It is now clear that 
cp(T) is obtained by composition of convergent power series, and hence 
has a non-zero radius of convergence. This proves that the power series 
g(T) also converges. 

Finally, for (c), suppose first that Zo = 0 and I(zo) = 0, so 1 is analytic 
on an open set containing o. This means that 1 has a convergent power 
series expansion at 0, so we view 1 as being defined on its open disc of 
convergence 

I:D--+C. 

Let Vo be an open disc centered at 0 such that Vo is contained in the disc 
of convergence of g, and such that g(Vo) c D. Such a neighborhood of 0 
exists simply because g is continuous. Let Uo = 1-1(VO) be the set of all 
zED such that I(z) c Vo. Let 

be the restriction of 1 to Uo. We claim that 10 is an analytic isomor­
phism. Note that g(Vo) c Uo because for WE Vo we have I(g(w)) = W by 
Theorem 3.4, so we consider the restrictIon go of g to Vo as mapping 

Again by Theorem 3.4, for Z E Uo we have go(Jo(z)) = z, which proves 
that 10 and go are inverse to each other, and concludes the proof of 
Theorem 6.1(c) in case Zo = 0 and I(zo) = O. 

The general case is reduced to the above case by translation, as one 
says. Indeed, for an arbitrary I, with I(z) = L an(z - zo)", change vari­
ables and let 

0() 

W=z-zo, F(w) = I(z) - I(zo) = L anw n. 
n=l 

Then we may apply the previous special case to F and find a local 
inverse G for F. Let Wo = I(zo), and let 

g(w) = G(w - wo) + zoo 

Then g is a local inverse for I, thus finishing the proof of Theorem 6.1. 

There are (at least) four ways of proving the inverse function theorem. 

1. The way we have just gone through, by estimating the formal in­
verse to show that it converges. 
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2. Reproducing the real variable proof for real functions of class C1. 

By the contraction principle, (shrinking lemma), one first shows that the 
map is locally surjective, and one constructs a local inverse, which is 
shown to be differentiable, and whose derivative satisfies, for w = J(z), the 
relation 

g'(W) = l/J'(z). 

The reader should be able to copy the proof from any standard book on 
analysis, (certainly from my Undergraduate Analysis [La 83]). 

3. Assuming the theorem for COO real functions. One can show (and 
we shall do so later when we discuss the real aspects of an analytic 
function) that an analytic function is Coo, as a function of (x, y), writing 

z = x + iy. 

The hypothesis J'(zo) =F 0 (namely a1 =F 0) is then seen to amount to the 
property that the Jacobian of the real function of two variables has non­
zero determinant, whence J has a Coo inverse locally by the real theorem. 
It is then an easy matter to show by the chain rule that this inverse 
satisfies the Cauchy-Riemann equations, and is therefore holomorphic, 
whence analytic by the theory which follows Cauchy's theorem. 

4. Giving an argument based on more complex function theory, and 
carried out in Theorem 1.7 of Chapter VI. 

All four methods are important, and are used in various contexts 
in analysis, both of functions of one variable, and functions of several 
variables. 

Let U be an open set and let J be a function on U. We say that J is 
an open mapping if for every open subset U' of U the image J(U') is 
open. 

Theorem 6.1 shows that the particular type of function considered 
there, i.e. with non-zero first coefficient in the power series expansion, is 
locally open. We shall now consider arbitrary analytic functions, first at 
the origin. 

Let 

be a convergent non-constant power series, and let m = ord J, so that 

J(z) = amzm + higher terms, 

= amzm(l + h(z», 
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where h(z) is convergent, and has zero constant term. Let a be a com­
plex number such that am = am. Then we can write f(z) in the form 

where h1 (z) is a convergent power series with zero constant term, ob­
tained from the binomial expansion 

(1 + h(z))l/m = 1 + h1(z), 

and 

f1(Z) = az{1 + h1(z)) = az + azh 1(z) 

is a power series whose coefficient of z is a =f. O. Theorem 6.1 therefore 
applies to f1 (z), which is therefore locally open at the origin. We have 

f(z) = f1 (zt· 

Let U be an open disc centered at the origin on which f1 converges. 
Then f1 (U) contains an open disc V. The image of V under the map 

is a disc. Hence f(U) contains an open disc centered at the origin. 

Theorem 6.2. Let f be analytic on an open set U, and assume that for 
each point of U, f is not constant on a given neighborhood of that 
point. Then f is an open mapping. 

Proof We apply the preceding discussion to the power series expan­
sion of f at a point of V, so the proof is obvious in the light of what we 
have already done. 

The construction in fact yielded the following statement which it is 
worthwhile extracting as a theorem. 

Theorem 6.3. Let f be analytic at a point zo, 

00 

f(z) = ao + L an(z - zot, 
n=m 

with m ~ 1 and am =f. O. Then there exists a local analytic isomorphism 
cp at 0 such that 
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We interpret Theorem 6.3 as follows. Let 

IjJ:U~V 

be an analytic isomorphism. We write w = ljJ(z). We may view IjJ as a 
change of coordinates, from the coordinate z to the coordinate w. In 
Theorem 6.3 we may therefore write 

where w = cp(z - zo). The expansion for I in terms of the coordinate 
w is therefore much simpler than in terms of the coordinate z. 

We also get a criterion for a function to have an analytic inverse on a 
whole open set. 

Theorem 6.4. Let I be analytic on an open set U, and assume that I is 
injective. Let V = I(U) be its image. Then I: U ~ V is an analytic 
isomorphism, and I'(z) '# 0 lor all z E U. 

Proof The function I between U and V is bijective, so we can define 
an inverse mapping g: V ~ U. Let Zo be a point of U, and let the power 
series expansion of I at Zo be as in Theorem 6.3. If m > 1 then we see 
that I cannot be injective, because the m-th power function in a neigh­
borhood of the origin is not injective (it wraps the disc m times around). 
Hence m = 1, and Theorem 6.1 now shows that the inverse function g is 
analytic at I(zo). This proves the theorem. 

Example 1. Let I(z) = 3 - 5z + higher terms. Then 1(0) = 3, and 

1'(0) = al = -5 '# O. 

Hence I is a local analytic isomorphism, or locally invertible, at O. 

Example 2. Let I(z) = 2 - 2z + Z2. We want to determine whether I 
is locally invertible at z = 1. We write the power series expansion of I at 
1, namely 

I(z) = 1 + (z - 1)2 = 1 + a2(z - 1)2. 

Here we have a1 = O. Hence I is not locally invertible at z = 1. 

Example 3. Let I(z) = cos z. Determine whether I is locally invertible 
at z = O. In this case, 

Z2 
I(z) = 1 - "2 + higher terms, 

so al = 0 and I is not locally invertible. 
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Example 4. Let f(z) = Z3. Then f'(z) = 3z2 and f'(0) = O. Thus f is 
not locally invertible at o. On the other hand, f'(z) i= 0 if z i= O. Hence 
if Zo i= 0 then f is locally invertible at zo. However, let U be the open 
set obtained by deleting the origin from C. Then f is not invertible on 
U. (Why?) 

II, §6. EXERCISES 

Determine which of the following functions are local analytic isomorphism at the 
given point. Give the reason for your answer. 

1. J(z) = eZ at z = O. 

2. J(z) = sin(z2) at z = O. 

3. J(z) = (z - l)/(z - 2) at z = 1. 

4. J(z) = (sin Z)2 at z = O. 

5. J(z) = cos z at z = 1t. 

6. Linear Differential Equations. Prove: 

Theorem. Let ao(z), ... ,ak(z) be analytic Junctions in a neighborhood oj O. 
Assume that ao(O) oF O. Given numbers co, ... 'Ck- 1 ' there exists a unique ana­
lytic Junction J at 0 such that 

D"f(O) = c. Jor n = 0, ... ,k - 1 

and such that 

[Hint: First you may assume ao(z) = 1 (why?). Then solve for J by a formal 
power series. Then prove this formal series converges.] 

7. Ordinary Differential Equations. Prove: 

Theorem. Let g be analytic at O. There exists a unique analytic Junction J at 0 
satisJying 

J(O) = 0, and f'(z) = g(J(z». 

[Hint: Again find a formal solution, and then prove that it converges.] 

[Note: You will find the above two problems worked out in the Appendix, §3, 
but please try to do them first before looking up the solutions.] 

II, §7. THE LOCAL MAXIMUM MODULUS PRINCIPLE 

This principle is an immediate application of the open mapping theorem, 
and so we give it here, to emphasize its direct dependence with the 
preceding section. On the other hand, we wait for a later chapter for less 
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basic applications mostly for psychological reasons. We want to alter­
nate the formal operations with power series and the techniques which 
will arise from Cauchy's theorem. The later chapter could logically be 
read almost in its entirety after the present section, however. 

We say that a function f is locally constant at a point Zo if there exists 
an open set D (or a disc) containing Zo such that f is constant on D. 

Theorem 7.1. Let f be analytic on an open set U. Let Zo E U be a 
maximum for If I, that is, 

If(zo) I ~ If(z)l, for all z E U. 

Then f is locally constant at Zo. 

Proof. The function f has a power series expansion at zo, 

If f is not the constant ao = f(zo), then by Theorem 6.2 we know that f 
is an open mapping in a neighborhood of zo, and therefore the image of 
f contains a disc D(ao, s) of radius s > 0, centered at ao. Hence the set 
of numbers If(z) I, for z in a neighborhood of zo, contains an open 
interval around ao, so I f(z) I > If(zo)1 for some z. Hence 

cannot be a maximum for f, a contradiction which proves the theorem. 

Corollary 7.2. Let f be analytic on an open set U, and let Zo E U be a 
maximum for the real part Re f, that is, 

Re f(zo) ~ Re f(z), for all z E U. 

Then f is locally constant at zo' 

Proof The function ef(z) is analytic on U, and if 

f(z) = u(z) + iv(z) 

is the expression of f in terms of its real and imaginary parts, then 

Hence a maximum for Re f is also a maximum for I ef(z) I, and the 
corollary follows from the theorem. 
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The theorem is often applied when 1 is analytic on an open set U 
and is continuous at the boundary of U. Then a maximum for I I(z) I 
necessarily occurs on the boundary of U. For this one needs that U 
is connected, and the relevant form of the theorem will be proved as 
Theorem 1.3 of the next chapter. 

We shall give here one more example of the power of the maximum 
modulus principle, and postpone to a later chapter some of the other 
applications. 

Theorem 7.3. Let 

be a polynomial, not constant, and say ad #- O. Then 1 has some com­
plex zero, i.e. a number Zo such that I(zo) = o. 

Proof. Suppose otherwise, so that l/l(z) is defined for all z, and 
defines an analytic function. Writing 

one sees that 
lim l/l(z) = O. 

Izl-+oo 

Let a be some complex number such that I(a) #- O. Pick a positive 
number R large enough such that lal < R, and if Izl ~ R, then 

1 1 
--<--
I/(z) I I/(a)I' 

Let S be the closed disc of radius R centered at the origin. Then S is 
closed and bounded, and l/l/(z)1 is continuous on S, whence has a maxi­
mum on S, say at Zo' By construction, this point Zo cannot be on the 
boundary of the disc, and must be an interior point. By the maximum 
modulus principle, we conclude that l/l(z) is locally constant at zo. This 
is obviously impossible since 1 itself is not locally constant, say from the 
expansion 

with suitable coefficients bo, ... ,bd and bd #- O. This proves the theorem. 



CHAPTER III 

Cauchy's Theorem, First Part 

III, §1. HOLOMORPHIC FUNCTIONS ON 
CONNECTED SETS 

Let [a, b] be a closed interval of real numbers. By a curve Y (defined on 
this interval) we mean a function 

')I: [a, b] -+ C 

which we assume to be of class Cl. 

'Y(b) 

Figure 1 

We recall what this means. We write 

where Yl is the real part of y, and Y2 is its imaginary part. For instance, 
the curve 

yeO) = cos 0 + i sin 0, o ~ 0 ~ 21t, 

is the unit circle. Of class C l means that the functions Yl(t), Y2(t) have 
continuous derivatives in the ordinary sense of calculus. We have drawn 

86 
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a curve in Fig. 1. Thus a curve is a parametrized curve. We cally(a) the 
beginning point, and y(b) the end point of the curve. By a point on the 
curve we mean a point w such that w = y(t) for some t in the interval of 
definition of y. 

We define the derivative y'(t) in the obvious way, namely 

y'(t) = Yl (t) + iy2(t). 

It is easily verified as usual that the rules for the derivative of a sum, 
product, quotient, and chain rule are valid in this case, and we leave this 
as an exercise. In fact, prove systematically the following statements: 

Let F: [a, b] -+ C and G: [a, b] -+ C be complex valued differentiable 
functions, defined on the same interval. Then: 

(F + G)' = F' + G', 

(FG)' = FG' + F'G, 

(FIG)' = (GF' - FG')/G 2 

(this quotient rule being valid only on the set where G(t) =F 0). 
Let t/I: [c, d] -+ [a, b] be a differentiable function. Then yo t/I is differ­

entiable, and 

(y 0 t/I)'(t) = y'(t/I(t»)t/I'(t), 

as illustrated on Fig. 2(i). 

s ~ ~ 
~~!~I ~ ~~~I ~ 
c d Q b 

Figure 2(i) 

Finally suppose y is a curve in an open set U and 

f: U-+C 

is a holomorphic function. Then the composite f 0 y is differentiable (as 
a function of the real variable t) and 

(f 0 y)'(t) = !'(y(t»)y'(t), 
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as illustrated on Fig. 2(ii). 

a b 

Figure 2(ii) 

It is technically convenient to deal with a generalization of curves. By 
a path we shall mean a sequence of curves, 

(so each curve Yj is C I) such that the end point of Yj is equal to the 
beginning point of Yj+I' If Yj is defined on the interval [aj' bJ, this means 
that 

We have drawn a path on Fig. 3, where Zj is the end point of Yj. We 
call YI(ad the beginning point of y, and Yn(bn) the end point of y. The path 
is said to lie in an open set U if each curve Yj lies in U, i.e. for each t, the 
point Yit) lies in U. 

Z\ 

ZO 

Z3 

Figure 3 

We define an open set U to be connected if given two points rx and P 
in U, there exists a path {YI' ... ,Yn} in U such that rx is the beginning 
point of YI and P is the end point of Yn; in other words, if there exists a 
path in U which joins rx to p. In Fig. 4 we have drawn an open set 
which is not connected. In Fig. 5 we have drawn a connected open set. 
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(The definition of connected applies of course equally well to a set which 
is not necessarily open. It is usually called pathwise connected, but for 
open sets, this coincides with another possible definition. See the appen­
dix of this section.) 

Figure 4 

Figure 5 

Theorem 1.1. Let U be a connected open set, and let f be a holomor­
phic function on U. If!' = 0 then f is constant. 

Proof. Let a, f3 be two points in U, and suppose first that y is a curve 
joining a to f3, so that 

y(a) = a and y(b) = f3. 

The function 

t~ f(y(t») 

is differentiable, and by the chain rule, its derivative is 

!'(y(t»)y'(t) = O. 

Hence this function is constant, and therefore 

f(a) = f(y(a») = f(y(b») = f(f3)· 
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Next, suppose that ')I = {')I1' ••. ,')In} is a path joining (X to p, and let Zj 

be the end point of ')Ij' putting 

Zo = (X, 

By what we have just proved, we have 

thereby proving the theorem. 

If f is a function on an open set U and 9 is a holomorphic function 
on U such that 9' = f, then we call 9 a primitive of f on U. Theorem 
1.1 says that on a connected open set, a primitive of f is uniquely 
determined up to a constant, i.e. if 91 and 92 are two primitives, then 
gl - 92 is constant, because the derivative of 91 - 92 is equal to O. 

In what follows we shall attempt to get primitives by integration. On 
the other hand, primitives can also be written down directly. 

Example. For each integer n::F -1, the function f(z) = zn has the 
usual primitive 

Let S be a set of points, and let Zo E S. We say that Zo is isolated in S 
if there exists a disc D(zo, r) of some radius r > 0 such that D(zo, r) does 
not contain any point of S other than Zo. We say that S is discrete if 
every point of S is isolated. 

Theorem 1.2. Let U be a connected open set. 

(i) If f is analytic on U and not constant, then the set of zeros of f 
on U is discrete. 

(ii) Let f, 9 be analytic on U. Let S be a set of points in U which is 
not discrete (so some point of S is not isolated). Assume that 
f(z) = g(z) for all z in S. Then f = 9 on U. 

Proof. We observe that (ii) follows from (i). It suffices to consider the 
difference f - g. Therefore we set about to prove (i). We know from 
Theorem 3.2 of the preceding chapter that either f is locally constant 
and equal to 0 in the neighborhood of a zero zo, or Zo is an isolated 
zero. 

Suppose that f is equal to 0 in the neighborhood of some point Zo. 
We have to prove that f(z) = 0 for all z E U. Let S be the set of points z 
such that f is equal to 0 in a neighborhood of z. Then S is open. By 
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Theorem 1.6 below, it will suffice to prove that S is closed in U. Let Zl 

be a point in the closure of S in U. Since f is continuous, it follows that 
f(z 1) = O. If z 1 is not in S, then there exist points of S arbitrarily close 
to z l' and by Theorem 3.2 of the preceding chapter, it follows that f is 
locally equal to 0 in a neighborhood of z l' Hence in fact z 1 E S, so S is 
closed in U. This concludes the proof. 

Remarks. The argument using open and closed subsets of U applies 
in very general situations, and shows how to get a global statement on a 
connected set U knowing only a local property as in Theorem 3.2 of the 
preceding chapter. 

It will be proved in Chapter V, §1, that a function is holomorphic if 
and only if it is analytic. Thus Theorem 1.2 will also apply to holomor­
phic functions. 

The second part of Theorem 1.2 will be used later in the study of 
analytic continuation, but we make some comments here in anticipation. 
Let f be an analytic function defined on an open set U and let g be an 
analytic function defined on an open set V. Suppose that U and V have 
a non-empty intersection, as illustrated on Fig. 6. If U, V are connected, 
and if f(z) = g(z) for all z E Un V, i.e. if f and g are equal on the 
intersection U n V, then Theorem 1.2 tells us that g is the only possible 
analytic function on V having this property. In the applications, we shall 
be interested in extending the domain of definition of an analytic func­
tion f, and Theorem 1.2 guarantees the uniqueness of the extended func­
tion. We say that g is the analytic continuation of f to v. 

Figure 6 

It is also appropriate here to formulate the global verSIon of the 
maximum modulus principle. 

Theorem 1.3. Let U be a connected open set, and let f be an analytic 
function on U. If Zo E U is a maximum point for If I, that is 

If(zo)1 ~ I f(z) I 

for all z E U, then f is constant on U. 
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Proof By Theorem 6.1 of the preceding chapter, we know that f is 
locally constant at Zo. Therefore f is constant on U by Theorem 1.2(ii) 
(compare the constant function and f). This concludes the proof. 

Corollary 1.4. Let U be a connected open set and U C its closure. Let f 
be a continuous function on UC, analytic and non-constant on U. If Zo 

is a maximum for f on U C, that is, If(zo)1 ~ I f(z) I for all z E U C, then Zo 

lies on the boundary of UC• 

Proof. This comes from a direct application of Theorem 1.3. 

Remark. If U C is closed and bounded, then a continuous function has 
a maximum on U C, so a maximum for f always exists in Corollary 1.4. 

Appendix: Connectedness 

The purpose of this appendix is to put together a couple of statements 
describing connectedness in various terms. Essentially we want to prove 
that two possible definitions of connectedness are equivalent. For pur­
poses of this appendix, we use the words path wise connected for the 
notion we have already defined. Let U be an open set in the complex 
numbers. We say that U is topologically connected if U cannot be ex­
pressed as a union U = V u W, where V, Ware open, non-empty, and 
disjoint. We start with what amounts to a remark. Let S be a subset of 
U. We say that S is closed in U if given Z E U and z in the closure of S, 
then Z E S. 

Lemma 1.5. Let S be a subset of an open set U. Then S is closed in U 
if and only if the complement of S in U is open, that is, U - S is open. 
In particular, if S is both open and closed in U, then U - S is also open 
and closed in U. 

Proof Exercise 1. 

Theorem 1.6. Let U be an open set. Then U is pathwise connected if 
and only if U is topologically connected. 

Proof of Theorem 1.6. Assume that U is pathwise connected. We 
want to prove that U is topologically connected. Suppose not. Then 
U = Vu W where V, Ware non-empty and open. Let Zl E V and Z2 E W. 
By assumption there exists a path y: [a, b] ~ U such that yea) = Zl and 
y(b) = Z2' Let T be the set of t E [a, b] such that yet) E V. Then T is not 
empty because a E T, and T is bounded by b. Let c be the least upper 
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bound of T. Then c "# b. By definition of an upper bound, there exists a 
sequence of real numbers tn' with c < tn ~ b such that y(tn) E W, and tn 
converges to c. Since y is continuous, it follows that y(c) = lim y(tn), and 
since W is closed in U, it follows that y(c) E W On the other hand, by 
definition of a least upper bound, there exists a sequence of real numbers 
Sn with a ~ Sn ~ C such that Sn converges to c, and y(sn) E V. Since y is 
continuous, it follows that y(c) = lim y(sn), and since V is closed in U, it 
follows that y(c) E V, which is a contradiction proving that U is topologi­
cally connected. 

Conversely, assume U is topologically connected. We want to prove 
that U is pathwise connected. Let Zo E U. Let V be the set of points in 
U which can be joined to Zo by a path in U. Then V is open. Indeed, 
suppose that there is a path in U joining Zo to Z 1. Since U is open, 
there exists a disc D(z 1, r) of radius r > 0 contained in U. Then every 
element of this disc can be joined to Z 1 by a line segment in the disc, and 
can therefore be joined to Zo by a path in U, so V is open. We assert 
further that V is closed. To see this, let {zn} be a sequence in V converg­
ing to a point u in U. Since U is open, there exists a disc D(u, r) of 
radius r > 0 contained in U. For some n the point Zn lies in D(u, r). 
Then there is a line segment in D(u, r) joining u and Zn' and so u can be 
joined by a path to Zo. This proves that V is closed. Hence V is both 
open and closed, and by assumption, V = U. This proves that U is 
path wise connected, and concludes the proof of Theorem 1.6. 

Warning. The equivalence of the two notions of connectedness for 
open sets may not be valid for other types of sets. For instance, consider 
the set consisting of the horizontal positive x-axis, together with vertical 
segments of length 1 above the points 1, 1/2, 1/3, ... , l/n, ... and also 
above o. Now delete the origin. The remaining set is topologically 
connected but not path wise connected. Draw the picture! Also compare 
with inaccessible points as in Chapter X, §4. 

III, §1. EXERCISES 

1. Prove Lemma 1.5. 

2. Let U be a bounded open connected set, {In} a sequence of continuous 
functions on the closure of U, analytic on U. Assume that {f,,} converges 
uniformly on the boundary of U. Prove that {f,,} converges uniformly on U. 

3. Let at, ... ,an be points on the unit circle. Prove that there exists a point Z on 
the unit circle so that the product of the distances from z to the aj is at least 
1. (You may use the maximum principle.) 
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III, §2. INTEGRALS OVER PATHS 

Let F: [a, b] ~ C be a continuous function. 
Write F in terms of its real and imaginary parts, say 

F(t) = u(t) + iv(t). 

Define the indefinite integral by 

f F(t) dt = f u(t) dt + i f v(t) dt. 

Verify that integration by parts is valid (assuming that F' and G' exist 
and are continuous), namely 

f F(t)G'(t) dt = F(t)G(t) - f G(t)F'(t) dt. 

(The proof is the same as in ordinary calculus, from the derivative of a 
product.) 

We define the integral of F over [a, b] to be 

r F(t) dt = r u(t) dt + i r v(t) dt. 

Thus the integral is defined in terms of the ordinary integrals of the real 
functions u and v. Consequently, by the fundamental theorem of calculus 
the function 

tH f F(s) ds 

is differentiable, and its derivative is F(t), because this assertion is true if 
we replace F by u and v, respectively. 

Using simple properties of the integral of real-valued functions, one 
has the inequality 

I r F(t) dtl ~ r IF(t)1 dt. 

Work it out as Exercise 11. 
Let f be a continuous function on an open set U, and suppose that y 

is a curve in U, meaning that all values y(t) lie in U for a ~ t ~ b. We 



[III, §2] INTEGRALS OVER PATHS 95 

define the integral of J along y to be 

I J = Lb J(y(t)y'(t) dt. 

This is also frequently written 

I J(z) dz. 

Example 1. Let J(z) = liz. Let y(O) = ei8• Then 

We want to find the value of the integral of J over the circle, 

so 0 ~ 0 ~ 2n. By definition, this integral is equal to 

f 21t I. f21t 
iii ie '8 dO = i dO = 2ni. 

o e 0 

As in calculus, we have defined the integral over parametrized curves. 
In practice, we sometimes describe a curve without giving an explicit 
parametrization. The context should always make it clear what is meant. 
Furthermore, one can also easily see that the integral is independent of 
the parametrization, in the following manner 

Let 
g: [a, b] -+ [c, d] 

be a C1 function, such that g(a) = c, g(b) = d, and let 

"': [c, d] -+ C 

oy(b) = l/!(d) 

oy(t) = l/!(s) and s = g(t) 

oy(a) = l/!(c) 

Figure 7 
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be a curve. Then we may form the composed curve 

We find: 

y(t) = t/I(g(t)). 

l J = r J(y(t))y'(t) dt 

= r J(t/I(g(t)))t/I'(g(t))g'(t) dt 

= ld J(t/I(s))t/I'(s) ds 

=tf. 
Thus the integral of J along the curve is independent of the parametriza­
tion. 

If y = {Yl' ... ,Yn} is a path, then we define 

to be the sum of the integrals of J over each curve Yi of the path. 

Theorem 2.1. Let J be continuous on an open set U, and suppose that J 
has a primitive g, that is, g is holomorphic and g' = f. Let IX, fJ be two 
points oj U, and let Y be a path in U joining IX to fJ. Then 

l J = g(fJ) - g(IX), 

and in particular, this integral depends only on the beginning and end 
point oj the path. It is independent oj the path itself. 

Proof. Assume first that the path is a curve. Then 

l J(z) dz = r g'(y(t))y'(t) dt. 

By the chain rule, the expression under the integral sign is the derivative 

d 
dtg(y(t)). 
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Hence by ordinary calculus, the integral is equal to 

g(y(t)) I: = g(y(b)) - g(y(a)), 

which proves the theorem in this case. In general, if the path consists of 
curves Yl' ... , Yn' and Zj is the end point of Yj' then by the case we have 
just settled, we find 

l J = g(Zl) - g(zo) + g(Z2) - g(Zl) + ... + g(zn) - g(Zn-l) 

= g(zn) - g(zo), 

which proves the theorem. 

Example 2. Let J(z) = Z3. Then J has a primitive, g(z) = z4/4. Hence 
the integral of J from 2 + 3i to 1 - i over any path is equal to 

(1 - i)4 

4 

(2 + 3i)4 
4 

Example 3. Let J(z) = eZ • Find the integral of J from 1 to in taken 
over a line segment. Here again I'(z) = J(z), so J has a primitive. Thus 
the integral is independent of the path and equal to e i1C - e1 = -1 - e. 

By a closed path, we mean a path whose beginning point is equal to 
its end point. We may now give an important example of the theorem: 

IJ J is a continuous Junction on U admitting a holomorphic primitive g, 
and Y is any closed path in U, then 

Example 4. Let J(z) = zn, where n is an integer"" -1. Then for any 
closed path Y (or any closed path not passing through the origin if n is 
negative), we have 

l zn dz = O. 

This is true because zn has the primitive zn+1/(n + 1). [When n is nega­
tive, we have to assume that the closed path does not pass through the 
origin, because the function is then not defined at the origin.] 
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Putting this together with Example 1, we have the following tabula­
tion. Let CR be the circle of radius R centered at the origin oriented 
counterclockwise. Let n be an integer. Then: 

zn z = i d {o if n =F - 1, 

CR 2ni if n = -1. 

Of course, in Example 1 we did the computation when R = 1, but you 
can check that one gets the same value for arbitrary R. In the exercises, 
you can check similar values for the integral around a circle centered 
around any point Zo' 

We shall see later that holomorphic functions are analytic. In that 
case, in the domain of convergence a power series 

can be integrated term by term, and thus integrals of holomorphic func­
tions are reduced to integrals of polynomials. This is the reason why 
there is no need here to give further examples. 

Theorem 2.2. Let U be a connected open set, and let f be a continuous 
function on U. If the integral of f along any closed path in U is equal 
to 0, then f has a primitive g on U, that is, a function g which is 
holomorphic such that g' = f 

Proof. Pick a point Zo in U and define 

g(z) = fZ f, 
Zo 

where the integral is taken along any path from Zo to z in U. If y, 11 are 
two such paths, and 11- is the reverse path of 11 (cf. Exercise 9), then 
{y, 11-} is a closed path, and by Exercise 9 we know that 

Therefore the integral defining g is independent of the path from Zo to z, 
and defines the function. We have 

g(z + h) - g(z) _ 1 fZ +h 

h - Ii f(C) dC, 
Z 
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and the integral from z to z + h can be taken along a segment in V from 
z to z + h. Write 

1(0 = I(z) + cP(O, 

where lim cp(O = 0 (this can be done by the continuity of I at z). Then 
, .... z 

1 IZ+h 1 IZ+h 1 IZ+h 
h z 1(0 dC = h Z I(z) dC + h z cp(O dC 

1 IZ+h 
= I(z) + h z cp(O dC. 

The length of the interval from z to z + h is Ihl. Hence the integral on 
the right is estimated by (see below, Theorem 2.3) 

1 
-Ihl max Icp(Ol, 
Ihl 

where the max is taken for C on the interval. This max tends to 0 as 
h - 0, and this proves the theorem. 

Remarks. The reader should recognize Theorems 2.1 and 2.2 as being 
the exact analogues for (complex) differentiable functions of the standard 
theorems of advanced calculus concerning the relation between the exist­
ence of a primitive (potential function for a vector field), and the inde­
pendence of the integral (of a vector field) from the path. We shall see 
later that a holomorphic function is infinitely complex differentiable, and 
therefore that I itself is analytic. 

Let y be a curve, y: [a, b] - C, assumed of class C 1 as always. The 
speed is defined as usual to be ly'(t)l, and the length L(y) is defined to be 
the integral of the speed, 

L(y) = r ly'(t)1 dt. 

If y = {Yl' ... ,Yn} is a path, then by definition 

n 

L(y) = I L(yJ 
i=l 

Let I be a bounded function on a set S. We let IIIII be the sup norm, 
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written Ilflls if the reference to S needs to be made for clarity, so that 

Ilfll = sup If(z) I 
zeS 

is the least upper bound of the values I f(z) I for z E S. 
Let f be continuous on an open set U. By standard results of elemen­

tary real analysis, Theorem 4.3 of Chapter I, the image of a curve or a 
path y is closed and bounded, i.e. compact. If the curve is in U, then the 
function 

tH f(y(t)) 

is continuous, and hence f is bounded on the image of y. By the 
compactness of the image of y, we can always find an open subset of U 
containing y, on which f is bounded. If y is defined on [a, b], we let 

Ilflly = max If(y(t))I. 
tela,b] 

Theorem 2.3. Let f be a continuous function on U. Let y be a path in 
U. Then 

If f I ~ IlfllyL(y). 

Proof. If Y is a curve, then 

II fl = ILb f(y(t))y'(t) dtl 

~ r If(y(t))lly'(t)1 dt 

~ IlfllyL(y), 

as was to be shown. The statement for a path follows by taking an 
appropriate sum. 

Theorem 2.4. Let Un} be a sequence of continuous functions on U, 
converging uniformly to a function f Then 

If L In is a series of continuous functions converging uniformly on U, 
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then 

Proof. The first assertion is immediate from the inequality. 

The second follows from the first because uniform convergence of a series 
is defined in terms of the uniform convergence of its partial sums, 

This proves the theorem. 

Example 5. Let f be analytic on an open set containing the closed 
disc 15(0, R) of radius R centered at the origin, except possibly at the 
origin. Suppose f has a power series expansion 

possibly with negative terms, such that the series with non-negative terms 

has a radius of convergence > R. Let CR be the circle of radius R 
centered at the origin. Then 

f. f(z) dz = 2nia_l· 
CR 

This is a special case of Theorem 2.4 and Example 4, by letting 

n 

fn(z) = L akzk. 
k=-m 

Each fn is a finite sum, so the integral of fn is the sum of the integrals of 
the individual terms, which were evaluated in Example 4. 
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III, §2. EXERCISES 

1. (a) Given an arbitrary point zo, let C be a circle of radius r > 0 centered at 
zo, oriented counterclockwise. Find the integral 

t (z - zordz 

for all integers n, positive or negative. 
(b) Suppose J has a power series expansion 

<Xl 

J(z) = L ak(z - zoY', 
k=-III 

which is absolutely convergent on a disc of radius > R centered at zoo 
Let CR be the circle of radius R centered at zoo Find the integral 

r J(z) dz. 
Jell 

2. Find the integral of J(z) = eZ from - 3 to 3 taken along a semicircle. Is this 
integral different from the integral taken over the line segment between the 
two points? 

3. Sketch the following curves with 0 ~ t ~ 1. 
(a) y(t) = I + it 
(b) yet) = e-ni• 

(c) y(t) = eni• 

(d) y(t) = I + it + t2 

4. Find the integral of each one of the following functions over each one of the 
curves in Exercise 3. 
(a) J(z) = Z3 

(b) J(z) = z 
(c) J(z) = liz 

5. Find the integral 1 zez2 dz 

(a) from the point i to the point - i + 2, taken along a straight line seg­
ment, and 

(b) from 0 to I + i along the parabola y = x2• 

6. Find the integral 

ISinzdz 

from the origin to the point I + i, taken along the parabola 
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7. Let u be a vertical segment, say parametrized by 

u(t) = Zo + itc, -1 ~ t ~ 1, 

where Zo is a fixed complex number, and c is a fixed real number> O. (Draw 
the picture.) Let IX = Zo + x and IX' = Zo - x, where x is real positive. Find 

lim f (_1 -_1 ,) dz. 
x-O " Z - IX Z - IX 

(Draw the picture.) Warning: The answer is not O! 

8. Let x > O. Find the limit: 

lim -- - -- dt. fB (1 1) 
B-oo -B t + ix t - ix 

9. Let y: [a, b] ..... C be a curve. Define the reverse or opposite curve to be 

y-: [a, b] ..... C 

such that y-(t) = y(a + b - t). Show that 

I- F= -IF. 
10. Let [a, b] and [c, d] be two intervals (not reduced to a point). Show that 

there is a function g(t) = rt + s such that g is strictly increasing, g(a) = c and 
g(b) = d. Thus a curve can be parametrized by any given interval. 

11. Let F be a continuous complex-valued function on the interval [a, b]. Prove 
that 

If F(t) dtl ~ f IF(t)1 dt. 

[Hint: Let P = [a = ao, ai' ... ,aft = b] be a partition of [a, b]. From the 
definition of integrals with Riemann sums, the integral 

r F(t) dt is approximated by the Riemann sum 
0-1 

L F(ak )(ak+1 - at) 
k=O 

whenever max(ak+1 - ak) is small, and 

r !F(t)1 dt is approximated by 
ft-1 
L IF(ak )l(ak+1 - at)· 

k=O 

The proof is concluded by using the triangle inequality.] 
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III, §3. LOCAL PRIMITIVE FOR A 
HOLOMORPHIC FUNCTION 

[III, §3] 

Let U be a connected open set, and let f be holomorphic on U. Let 
Zo E U. We want to define a primitive for f on some open disc centered 
at zo, i.e. locally at Zo' The natural way is to define such a primitive by 
an integral, 

g(z) = fZ f(O dC, 
Zo 

taken along some path from Zo to z. However, the integral may depend 
on the path. 

It turns out that we may define g locally by using only a special type 
of path. Indeed, suppose U is a disc centered at zoo Let z E U. We 
select for a path from Zo to z the edges of a rectangle as shown on 
Fig. 8. 

z 

zo.-J 
Zo 

Figure 8 

We then have restricted our choice of path to two possible choices as 
shown. We shall see that we get the same value for the integrals in the 
two cases. It will be shown afterwards that the integral then gives us a 
primitive. 

By a rectangle R we shall mean a rectangle whose sides are vertical or 
horizontal, and R is meant as the set of points inside and on the bound­
ary of the rectangle, so R is assumed to be closed. The path describing 
the boundary of the rectangle taken counterclockwise will be also called 
the boundary of the rectangle, and will be denoted by 

oR. 

If S is an arbitrary set of points, we say that a function f is holo­
morphic on S if it is holomorphic on some open set containing S. 
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Theorem 3.1 (Goursat). Let R be a rectangle, and let f be a function 
holomorphic on R. Then 

f f=O. 
aR 

Proof. Decompose the rectangle into four rectangles by bisecting the 
sides, as shown on Fig. 9. 

0 8 
0 8 

,. 

Figure 9 

Then 

f 4 f f= L f. 
aR ;=1 aR. 

Consequently, 

and there is one rectangle, say R(1), among R l , R z , R 3 , R4 such that 

Next we decompose R(l) into four rectangles, again bisecting the sides 
of R(l) as shown on Fig. 10. 

For one of the four rectangles thus obtained, say R(2), we have the 
similar inequality 
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R (2 ) 

Figure 10 

We continue in this way, to obtain a sequence of rectangles 

such that 

Then 

On the other hand, let Ln be the length of i}R(ft). Then 

so that by induction, 

where Lo = length of oR. 
We contend that the intersection 

00 n R(n) 

n=l 

consists of a single point Zo. Since the diameter of R(ft) tends to 0 as n 
becomes large, it is immediate that there is at most one point in the 
intersection. Let IXn be the center of R(ft). Then the sequence {IXn} is a 
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Cauchy sequence, because given E, let N be such that the diameter of 
R(N) is less than E. If n, m ~ N, then !In' !lm lie in R(N) and so 

Let Zo = lim !In' Then Zo lies in each rectangle, because each rectangle 
is closed. Hence Zo lies in the intersection of the rectangles R(N) for 
N = 1, 2, ... , as desired. (See also Theorem 4.2 of Chapter I.) 

Since ! is differentiable at zo, there is a disc V centered at Zo such 
that for all z E V we have 

!(z) = !(zo) + !'(zo)(z - zo) + (z - zo)h(z}, 

where 

lim h(z} = O. 

If n is sufficiently large, then R(n) is contained in V, and then 

+ f (z - zo)h(z} dz. 
oR(') 

By Example 4 of §2, we know that the first two integrals on the right of 
this equality sign are O. Hence 

f ! = f (z - zo)h(z} dz, 
oR(') oR(') 

and we obtain the inequalities 

In If! I ;;:; If! I ;;:; If (z - zo)h(z} dz I 4 oR oR(') oR(') 

;;:; ;n Lo diam R(n) suplh(z}l, 

where the sup is taken for all z E R(n). But diam R(n) = (1/2n) diam R. 
This yields 

I faR! I;;:; Lo diam R suplh(z}l· 
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The right-hand side tends to 0 as n becomes large, and consequently 

f f=O, 
oR 

as was to be shown. 

We carry out the program outlined at the beginning of the section to 
find a primitive locally. 

Theorem 3.2. Let U be a disc centered at a point Zoo Let f be 
continuous on U, and assume that for each rectangle R contained in U 
we have 

f f=O. 
oR 

For each point Zl in the disc, define 

f%1 

g(zd = f, 
%0 

where the integral is taken along the sides of a rectangle R whose 
opposite vertices are Zo and Zl' Then g is holomorphic on U and is a 
primitive for f, namely 

g'(Z) = f(z). 

Proof. We have 

z\ +h 

h2 
z\ 

h) 

~ i 
~ 

Zo 
----+ ~ 

Figure 11 
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The integral between ZI and ZI + h is taken over the bottom side hI and 
vertical side h2 of the rectangle shown in Fig. 11. Since J is continuous 
at ZI' there exists a function ",(z) such that 

lim ",(z) = 0 

and 

J(z) = J(z d + ",(z). 

Then 

f Z1 +h fZl+h 
g(ZI + h) - g(zd = J(zd dz + ",(z) dz 

%1 %1 

fZ1 +h 

= hJ(ZI) + ZI ",(z) dz. 

We divide by h and take the limit as h -+ O. The length of the path from 
ZI to ZI + h is bounded by Ihll + Ih2 1. Hence we get a bound 

where the sup is taken for z on the path of integration. The expression 
on the right therefore tends to 0 as h -+ O. Hence 

as was to be shown. 

1· g(Zl+ h)-g(Zd_ J() 1m h - ZI' 
h-O 

Knowing that a primitive for J exists on a disc U centered at Zo, we 
can now conclude that the integral of J along any path between Zo and z 
in U is independent of the path, according to Theorem 2.1, and we find: 

Theorem 3.3. Let U be a disc and suppose that J is holomorphic on U. 
Then f has a primitive on U, and the integral of f along any closed 
path in U is O. 

Remark. In Theorem 7.2 we shall prove that a hoi om orphic function 
is analytic. Applying this result to the function g in Theorem 3.2, we 
shall conclude that the function J in Theorem 3.2 is analytic. See Theo­
rem 7.7. 
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III, §4. ANOTHER DESCRIPTION OF THE 
INTEGRAL ALONG A PATH 

[III, §4] 

Knowing the existence of a local primitive for a holomorphic function 
allows us to describe its integral along a path in a way which makes no 
use of the differentiability of the path, and would apply to a continuous 
path as well. We start with curves. 

Lemma 4.1. Let y: [a, b] -+ U be a continuous curve in an open set U. 
Then there is some positive number r > 0 such that every point on the 
curve lies at distance ~ r from the complement of u. 

Figure 12 

Proof. The image of y is compact. Consider the function 

cp(t) = min Iy(t) - wi, 
w 

where the minimum is taken for all w in the complement of U. This 
minimum exists because it suffices to consider w lying inside some big 
circle. Then cp(t) is easily verified to be a continuous function of t, 
whence cp has a minimum on [a, b], and this minimum cannot be 0 
because U is open. This proves our assertion. 

Let P = [ao, ... ,an] be a partition of the interval [a, b]. We also write 
P in the form 

Let {Do, ... ,Dn} be a sequence of discs. We shall say that this sequence 
of discs is connected by the curve along the partition if D; contains the 
image y([a;, a;+1]). The following figure illustrates this. 

One can always find a partition and such a connected sequence of 
discs. Indeed, let EO > 0 be a positive number such that EO < r/2 where r is 
as in Lemma 4.1. Since y is uniformly continuous, there exists 0 such 
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Figure 13 

that if t, S E [a, b] and It - sl < J, then Iy(t) - y(s)1 < E. We select an 
integer n and a partition P such that each interval [aj, ai+1] has length 
< J. Then the image y([aj, ai+1]) lies in a disc Dj centered at y(aj) of 
radius E, and this disc is contained in U. 

Let/be holomorphic on U. Let Yj: [aj, aj+l] - U be the restriction of Y 
to the smaller interval [aj, aj+ d. Then 

f "-1 f 
11= j~ 1,/. 

Let yea;) = Zj, and let gj be a primitive of 1 on the disc Dj. If each Yj is 
of class C 1 then we find: 

Thus even though 1 may not have a primitive g on the whole open set 
U, its integral can nevertheless be expressed in terms of local primitives 
by decomposing the curve as a sum of sufficiently smaller curves. The 
same formula then applies to a path. 

This procedure allows us to define the integral of 1 along any continu­
ous curve; we do not need to assume any differentiability property of the 
curve. We need only apply the above procedure, but then we must show 
that the expression 

"-1 
L [gj(Zi+1) - gj(Zj)] 
j=O 

is independent of the choice of partition of the interval [a, b] and of the 
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choices of the discs Di containing y([ai, ai+1]). Then this sum can be 
taken as the definition of the integral 

The reader interested only in applications may omit the following consid­
erations. First we state formally this independence, repeating the con­
struction. 

Lemma 4.2. Let y: [a, b] -+ U be a continuous curve. Let 

be a partition of [a, b] such that the image y([aj, ai+1]) is contained in 
a disc Di, and Di is contained in U. Let f be holomorphic on U and let 
gi be a primitive of Jon Di . 

Let Zi = y(ai). Then the sum 

n-1 

L [gi(Zi+tl - gi(Zi)] 
i=O 

is independent of the choices of partitions, discs Di , and primitives gi on 
Di subject to the stated conditions. 

Proof. First let us work with the given partition, but let Bi be another 
disc containing the image y([ai, ai+1])' and Bi contained in U. Let hi be 
a primitive of f on Bi. Then both gi' hi are primitives of f on the 
intersection Bi n Di , which is open and connected. Hence there exists a 
constant Ci such that gi = hi + Ci on Bi n Di. Therefore the differences 
are equal: 

Thus we have proved that given the partition, the value of the sum is 
independent of the choices of primitives and choices of discs. 

Given two partitions, we can always find a common refinement, as in 
elementary calculus. Recall that a partition 

is called a refinement of the partition P if every point of P is among the 
points of Q, that is if each aj is equal to some bi • Two partitions always 
have a common refinement, which we obtain by inserting all the points 
of one partition into the other. Furthermore, we can obtain a refinement 
of a partition by inserting one point at a time. Thus it suffices to prove 
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that if the partition Q is a refinement of the partitIOn P obtained by 
inserting one point, then Lemma 4.2 is valid in this case. So we can 
suppose that Q is obtained by inserting some point c in some interval 
[ak, ak+l] for some k, that is Q is the partition 

We have already shown that given a partition, the value of the sum as in 
the statement of the lemma is independent of the choice of discs and 
primitives as described in the lemma. Hence for this new partition Q, we 
can take the same discs Di for all the old intervals [ai' ai+1 ] when i "# k, 
and we take the disc Dk for the intervals [ak , c] and [c, ak+1]. Similarly, 
we take the primitive gi on Di as before, and gk on Dk. Then the sum 
with respect to the new partition is the same as for the old one, except 
that the single term 

is now replaced by two terms 

This does not change the value, and concludes the proof of Lemma 4.2. 

For any continuous path y: [a, b] --+ U we may thus define 

for any partition [ao, a1, ... ,an] of [a, b] such that y([ai' ai+l]) is con­
tained in a disc Di, Di c U, and gi is a primitive of f on Di. We have 
just proved that the expression on the right-hand side is independent of 
the choices made, and we had seen previously that if y is piecewise C 1 

then the expression on the right-hand side gives the same value as the 
definition used in §2. It is often convenient to have the additional flexi­
bility provided by arbitrary continuous paths. 

Remark. The technique of propagating discs along a curve will again 
be used in the chapter on holomorphic continuation along a curve. 

As an application, we shall now see that if two paths lie "close to­
gether", and have the same beginning point and the same end point, then 
the integrals of f along the two paths have the same value. We must 
define precisely what we mean by "close together". After a repara­
metrization, we may assume that the two paths are defined over the same 
interval [a, b]. We say that they are close together if there exists a 
partition 
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and for each i = 0, ... ,n - 1 there exists a disc Dj contained in U such 
that the images of each segment [aj, ai+1] under the two paths y, " are 
contained in Dj , that is, 

and 

Lemma 4.3. Let y, " be two continuous paths in an open set U, and 
assume that they have the same beginning point and the same end point. 
Assume also that they are close together. Let f be holomorphic on U. 
Then 

Proof. We suppose that the paths are defined on the same interval 
[a, b], and we choose a partition and discs Dj as above. Let gj be a 
primitive of f on Dj • Let 

and 

We illustrate the paths and their partition in Fig. 14. 

Zo = 'Y (a) = '1/ (a) = Wo 

Figure 14 

But gi+1 and gj are primitives of f on the connected open set Dj+1 Ii Dj, 
so gi+1 - gj is constant on Di+1 Ii Dj. But Di+1 Ii Dj contains Zi+1 and 
Wi+1' Consequently 

gj+1(Zj+1) - gj+1(Wj+1) = gj(zi+d - gj(wi+d· 

Then we find 

f f - f f = ~f [gj(Zj+1) - gj(Zj) - (gj(wi+d - gj(Wj»)] 
1 ~ 1=0 

n-1 

= L [(gj(Zj+1) - gj(Wi+l») - (gj(Zj) - gj(Wj»)] 
j=O 
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=0, 

because the two paths have the same beginning point Zo = wo, and the 
same end point Zn = W n • This proves the lemmas. 

One can also formulate an analogous lemma for closed paths. 

Lemma 4.4. Let y, I'f be closed continuous paths in the open set U, say 
defined on the same interval [a, b]. Assume that they are close together. 
Let f be holomorphic on U. Then 

Proof. The proof is the same as above, except that the reason why we 
find ° in the last step is now slightly different. Since the paths are closed, 
we have 

and 

as illustrated in Fig. 15. The two primItIves gn-l and go differ by a 
constant on some disc contained in U and containing zo, Wo' Hence the 
last expression obtained in the proof of Lemma 4.3 is again equal to 0, 
as was to be shown. 

'Y __ --~ 

Figure 15 

III, §5. THE HOMOTOPY FORM OF CAUCHY'S THEOREM 

Let y, I'f be two paths in an open set U. After a reparametrization if 
necessary, we assume that they are defined over the same interval [a, b]. 
We shall say that y is homotopic to I'f if there exists a continuous function 

1/1: [a, b] x [c, d] --. U 
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defined on a rectangle [a, b] x [c, d], such that 

I/I(t, c) = y(t) and I/I(t, d) = '1(t) 

for all t E [a, b]. 
For each number s in the interval [c, d], we may view the function 1/1. 

such that 

I/I.(t) = I/I(t, s) 

as a continuous curve, defined on [a, b], and we may view the family of 
continuous curves 1/1. as a deformation of the path y to the path '1. The 
picture is drawn on Fig. 16. The paths have been drawn with the same 
end points because that's what we are going to use in practice. Formally, 
we say that the homotopy 1/1 leaves the end points fixed if we have 

I/I(a, s) = y(a) and I/I(b, s) = y(b) 

for all values of s in [c, d]. In the sequel it will be always understood that 
when we speak of a homotopy of paths having the same end points, then 
the homotopy leaves the end points fixed. 

Similarly, when we speak of a homotopy of closed paths, we assume 
always that each path 1/1. is a closed path. These additional requirements 
are now regarded as part of the definition of homotopy and will not be 
repeated each time. 

Theorem 5.1. Let y, '1 be paths in an open set U having the same 
beginning point and the same end point. Assume that they are homo­
topic in U. Let f be holomorphic on U. Then 

Theorem 5.2. Let y, '1 be closed paths in U, and assume that they are 

'Y (a) 

Figure 16 
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homotopic in U. Let f be holomorphic on U. Then 

In particular, if y is homotopic to a point in U, then 

Either of these statements may be viewed as a form of Cauchy's 
theorem. We prove Theorem 5.2 in detail, and leave Theorem 5.1 to the 
reader; the proof is entirely similar using Lemma 4.3 instead of Lemma 
4.4 from the preceding section. The idea is that the homotopy gives us a 
finite sequence of paths close to each other in the sense of these lemmas, 
so that the integral of f over each successive path is unchanged. 

The formal proof runs as follows. Let 

t/I: [a, b] x [c, d] -+ U 

be the homotopy. The image of t/I is compact, and hence has distance 
> 0 from the complement of U. By uniform continuity we can therefore 
find partitions 

a = ao ~ a1 ~ ••• ~ an = b, 

c = Co ~ C 1 ~ ••• ~ Cm = d 

of these intervals, such that if 

then the image t/I(Si) is contained in a disc Dij which is itself contained 
in U. Let t/lj be the continuous curve defined by 

j=O, ... ,m. 

Then the continuous curves t/lj' t/lj+l are close together, and we can apply 
the lemma of the preceding section to conclude that 

Since t/lo = y and t/lm = '1, we see that the theorem is proved. 

Remark. It is usually not difficult, although sometimes it is tedious, to 
exhibit a homotopy between continuous curves. Most of the time, one 
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can achieve this homotopy by simple formulas when the curves are given 
explicitly. 

Example. Let z, w be two points in the complex numbers. The seg­
ment between z, w, denoted by [z, w], is the set of points 

z + t(w - z), o ~ t ~ 1, 

or equivalently, 
(1 - t)z + tw, O~t~ 1. 

A set S of complex numbers is called convex, if, whenever z, w E S, then 
the segment [z, w] is also contained in S. We observe that a disc and a 
rectangle are convex. 

Lemma 5.3. Let S be a convex set, and let y, " be continuous closed 
curves in S. Then y, " are homotopic in S. 

Proof We define 

I/I(t, s) = sy(t) + (1 - s),,(t). 

It is immediately verified that each curve I/Is defined by I/Is(t) = I/I(t, s) is a 
closed curve, and 1/1 is continuous. Also 

I/I(t, 0) = ,,(t) and I/I(t, 1) = y(t), 

so the curves are homotopic. Note that the homotopy is given by a 
linear function, so if y, " are smooth curves, that is C1 curves, then each 
curve I/Is is also of class C1• 

We say that an open set U is simply connected if it is connected and if 
every closed path in U is homotopic to a point. By Lemma 5.3, a 
convex open set is simply connected. Other examples of simply con­
nected open sets will be given in the exercises. Simply connected open 
sets will be used in an essential way in the next section. 

Remark. The technique used in this section, propagating along curves, 
will again be used in the theory of analytic continuation in Chapter XI, §l, 
which actually could be read immediately as a continuation of this section. 

III, §5. EXERCISES 

1. A set S is called star-shapeel if there exists a point Zo in S such that the line 
segment between Zo and any point z in S is contained in S. Prove that a 
star-shaped set is simply connected, that is, every closed path is homotopic to 
a point. 
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2. Let U be the open set obtained from C by deleting the set of real numbers 
~ O. Prove that U is simply connected. 

3. Let V be the open set obtained from C by deleting the set of real numbers 
~ O. Prove that V is simply connected. 

4. (a) Let U be a simply connected open set and let J be an analytic function 
on U. Is J(U) simply connected? 

(b) Let H be the upper half-plane, that is, the set of complex numbers 
z = x + iy such that y> O. Let J(z) = e27tiz • What is the image J(H)? Is 
J(H) simply connected? 

III, §6. EXISTENCE OF GLOBAL PRIMITIVES. 
DEFINITION OF THE LOGARITHM 

In §3 we constructed locally a primitive for a holomorphic function by 
integrating. We now have the means of constructing primitives for a 
much wider class of open sets. 

Theorem 6.1. Let f be holomorphic on a simply connected open set U. 
Let Zo E U. For any point Z E U the integral 

g(Z) = I: f(O d, 
is independent of the path in U from Zo to z, and g is a primitive for j, 
namely g'(z) = J(z). 

Proof. Let Yl' Yz be two paths in U from Zo to z. Let Y; be the 
reverse path of Yz, from Z to Zo' Then 

is a closed path, and by the first form of Cauchy's theorem, 

f f + f _ f = f f = O. 
y, Y2 Y 

Since the integral of f over Y; is the negative of the integral of f over 
Yz, we have proved the first assertion. 

As to the second, to prove the differentiability of g at a point Z 1, if Z 

is near Z l' then we may select a path from Zo to Z by passing through 
Zl, that is 

g(z) = g(zd + 1z 
f, 

z, 
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and we have already seen that this latter integral defines a local primitive 
for f in a neighborhood of z l' Hence 

g'(z) = f(z), 
as desired. 

Example. Let U be the plane from which a ray starting from the 
origin has been deleted. Then U is simply connected. 

Proof Let y be any closed path in U. For simplicity, suppose the ray 
is the negative x-axis, as on Fig. 17. Then the path may be described in 
terms of polar coordinates, 

y(t) = r(t)e i8(t), a;;;; t ;;;; b, 

with -11: < O(t) < 11:. We define the homotopy by 

t/I(t, u) = r{ua + (1 - u)t)e i8(t)(1-u), 

Geometrically, we are folding back the angle towards 0, and we are 
contracting the distance r(t) towards r(a). It is clear that t/I has the 
desired property. 

Remark. You could also note that the open set U is star-shaped 
(proof?), and so if you did Exercise 1 of §5, you don't need the above 
argument to show that U is simply connected. 

Example (Definition of the Logarithm). Let U be a simply connected 
open set not containing 0. Pick a point Zo E U. Let Wo be a complex 

Figure 17 
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number such that 

(Any two such numbers differ by an integral multiple of 2ni.) Define 

jz 1 
logz = Wo + Zo ,d'. 

Then log z (which depends on the choice of Zo and Wo only) is a primi­
tive for liz on U, and any other primitive differs from this one by a 
constant. 

Let Lo(1 + w) = L (-lrlw"ln be the usual power series for the log 
in a neighborhood of 1. If z is near zo, then the function 

F(z) = Wo + LoU + (z - zo)lzo) 

defines an analytic function. By Exercise 6 of Chapter II, §5, we have 
F'(z) = liz. Hence there exists a constant K such that for all z near Zo 
we have log z = F(z) + K. Since both log Zo = Wo and F(zo) = wo, it 
follows that K = 0, so 

log z = F(z) for z near Zo. 

Consequently, by Exercise 1 of Chapter II, §3, we find that 

e10gz = z for z near Zo. 

Furthermore, given z 1 E U, we have 

j z JZI jZ 
Zo = Zo + ZI' 

so by a similar argument, we see that log z is analytic on U. The two 
analytic functions e10gz and z are equal near zoo Since U is connected, 
they are equal on U by Theorem 1.2 (ii), and the equation e10gz = z 
remains valid for all z E U. 

If L(z) is a primitive for liz on U such that eL(z) = z, then there exists 
an integer k such that 

L(z) = log z + 2nik. 

Indeed, if we let g(z) = L(z) - log z, then eg(z) = 1, so g(z) = 2nik for some 
integer k. 
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Example. Let V be the open set obtained by deleting the negative real 
axis from C, and write a complex number Z E V in the form 

with -Te < () < Te. 

We can select some Zo E V with 

For a positive real number r we let log r be the usual real logarithm, and 
we let 

log Zo = log ro + i()o. 

Then V is simply connected, and for all Z E V we have 

log Z = log r + i() with -Te < () < Te. 

For a numerical example, we have 

so 
1 - i = rei() = V2e i( -11:/4) , 

iTe 
log(l - i) = ! log 2 - 4". 

Example. On the other hand, let U be the open set obtained by de­
leting the positive real axis from C, i.e. U = C - R~o. Take ~ < () < 2Te. 

For this determination of the logarithm, let us find log(l - i). We write 

Then 
i7Te 

log(l - i) = ! log 2 + 4. 

We see concretely how the values of the logarithm depend on the choice 
of open set and the choice of a range for the angle. 

Definition of z« for any complex a. By using the logarithm, we can 
define z under the following conditions. 

Let U be simply connected not containing O. Let a be a complex 
number ¥= o. Fix a determination of the log on U. With respect to this 
determination, we define 

Then z« is analytic on U. 
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Example. Let U be the open set obtained by deleting the positive real 
axis from the complex plane. We define the log to have the values 

log re i9 = log r + ilJ, 

where 0 < lJ < 2n. This is also called a principal value for the log in that 
open set. Then 

log i = inl2 and log( - i) = 3ni12. 

In this case, 

Definition of log J(z). Let U be a simply connected open set and let J 
be an analytic function on U such that J(z) =F 0 for all z E U. We want 
to define log J(z). If we had this logarithm, obeying the same formalism 
as in ordinary calculus, then we should have 

d 1 I f'(z) 
dz log J(z) = J(z/ (z) = J(z)' 

Conversely, this suggests the correct definition. Select a point Zo E U. 
Let Wo be a complex number such that exp(wo) = J(zo). Since J is 
assumed to be without zeros on U, the function f'lJ is analytic on U. 
Therefore we can define an analytic function Lf on U by the integral 

The function Lf depends on the choice of Zo and wo, and we shall 
determine the extent of this dependence in a moment. The integral can 
be taken along any path in U from Zo to z because U is assumed to be 
simply connected. From the definition, we get the derivative 

Li(z) = f'(z)/J(z). 

This derivative is independent of the choice of Zo and wo, so choosing a 
different Zo and Wo changes Lf at most by an additive constant which we 
shall prove is an integral multiple of 2ni. We claim that 

exp Lf(z) = J(z). 

To prove this formula, abbreviate Lf(z) by L(z), and differentiate 
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e-L(Z)f(z). We find: 

~e-L(Z)f(z) = e-L(Z)( -L'(z»)f(z) + e-L(z)f'(z) 
dz 

= e-L(z) (- J'(z) J(z) + J'(Z)) 
J(z) 

=0. 

[III, §6] 

Therefore e-L(z)f(z) is constant on U since U is connected. By definition 

so the constant is 1, and we have proved that exp Lf(z) = f(z) for z E U. 
If we change the choice of Zo and Wo such that eWo = f(zo), then the 

new value for Lf(z) which we obtain is simply 

log f(z) + 2nik for some integer k, 

because the exponential of both values gives f(z). 

Remark. The integral for log f(z) which we wrote down cannot be 
written in the form ff(Z) 1 

-d( 
f(zo) C ' 

because even though U is simply connected, the image f(U) may 
not be simply connected, as you can see in Exercise 7. Of course, if 
y: [a, b] -+ U is a path from Zo to z, then we may form the composite 
path f 0 y: [a, b] -+ C. Then we could take the integral 

ff(Z) 1 
-dC 

f(zo)'/oy C 

along the path f 0 y. In this case, by the chain rule, 

f
f(Z) 1 ff(Y(b» 1 

-dC = -dC 
/(Zo)./ 0 Y C f( y(a»./ 0 y C 

= r f(:(t»)f'(y(t)h'(t) dt 

fz 1'(0 = -dC 
Zo,1 f(C) , 

which is the integral that was used to define Lf(z). 
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III, §6. EXERCISES 

1. Compute the following values when the log is defined by its principal value on 
the open set U equal to the plane with the positive real axis deleted. 
(a) log i (b) log( -i) (c) log( -1 + i) 
(d) i l (e) ( - i)i (f) ( _1)i 
(g) ( _1ti (h) log( -1 - i) 

2. Compute the values of the same expressions as in Exercise 1 (except (f) and 
(g») when the open set consists of the plane from which the negative real axis 
has been deleted. Then take -1t < () < 1t. 

3. Let U be the plane with the negative real axis deleted. Let y > O. Find the 
limit 

lim [log(a + iy) - log(a - iy)] 
y--+O 

where a > 0, and also where a < O. 

4. Let U be the plane with the positive real axis deleted. Find the limit 

lim [log (a + iy) - log(a - iy)] 
y--+O 

where a < 0, and also where a > O. 

5. Over what kind of open sets could you define an analytic function ZI/3, or 
more generally zl/n for any positive integer n? Give examples, taking the open 
set to be as "large" as possible. 

6. Let U be a simply connected open set. Let J be analytic on U and assume 
that J(z) =I- 0 for all z E U. Show that there exists an analytic function g on U 
such that g2 = f Does this last assertion remain true if 2 is replaced by an 
arbitrary positive integer n? 

7. Let U be the upper half plane, consisting of all complex numbers z = x + iy 
with y > O. Let q>(z) = e27<iz. Prove that q>(U) is the open unit disc from the 
origin has been deleted. 

8. Let U be the open set obtained by deleting 0 and the negative real axis from 
the complex numbers. For an integer m ~ 1 define 

Show that V_m(z) = Lm+1 (z), and that L'--l (z) = log z. Thus L_m is an m-fold 
integral of the logarithm. 

III, §7. THE LOCAL CAUCHY FORMULA 

We shall next give an application of the homotopy Theorem 5.2 to prove 
that a holomorphic function is analytic. The property of being analytic is 
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local: it means that a function has a power series expansion at every 
point (absolutely convergent on a disc of positive radius centered at the 
point). 

Theorem 7.1 (Local Cauchy Formula). Let 15 be a closed disc of 
positive radius, and let f be holomorphic on 15 (that is, on an open disc 
U containing 15). Let y be the circle which is the boundary of 15. Then 
for every Zo E D we have 

f(zo) = 21 . f f(z) dz. 
m y z - Zo 

Proof. Let Cr be the circle of radius r centered at zo, as illustrated on 
Fig. 18. 

z 

Figure 18 

Then for small r, y and Cr are homotopic. The idea for constructing the 
homotopy is to shrink y toward Cr along the rays emanating from Zo. 

The formula can easily be given. Let Zr be the point of intersection of a 
line through z and Zo with the circle of radius r, as shown on Fig. 18. 
Then 

z - Zo 
Zr =Zo + r--­

Iz - zol 

Let y(t) (0 ~ t ~ 2n) parametrize the circle y. Substituting y(t) for z we 
obtain 

y(t) - Zo 
y(t)r = Zo + r . 

Iy(t) - zol 

Now define the homotopy by letting 

h(t, u) = uy(t)r + (1 - u)y(t) for 0 ~ u ~ 1. 

Let U be an open disc containing 15, and let Uo be the open set obtained 
by removing Zo from U. Then h(t, u) E Uo, that is, Zo does not lie in the 
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image of h, because the segment between z and the point Zr lies entirely 
outside the open disc of radius r centered at Zo. Thus y is homotopic to 
Cr in Uo. 

Let 

g(z) = f(z) - f(zo) 
z - Zo 

for ZED and z -# zoo Then g is holomorphic on the open set Uo. By 
Theorem 5.2, we get 

f g(z) dz = r g(z) dz. 
y JCr 

Since f is differentiable at zo, it follows that g is bounded in a neighbor­
hood of Zo. Let B be a bound, so let Ig(z)1 ~ B for all z sufficiently close 
to Zo. Then for r sufficiently small we get 

I Lr g(z) dz I ~ B(length of Cr ) = B2rcr, 

and the right side approaches 0 as r approaches O. Hence we conclude 
that 

I g(z) dz = o. 

But then 

f f(z) dz = f f(zo) dz = !(zo) f _1_ dz. 
y z - Zo y z - Zo y z - Zo 

=f(zo) r _1_ dz Jcrz - Zo 

= f(zo)2rci. 

This proves the theorem. 

Theorem 7.2. Let f be holomorphic on an open set U. Then f is 
analytic on U. 

Proof. We must show that f has a power series expansion at every 
point Zo of U. Because U is open, for each Zo E U there is some R > 0 
such that the closed disc 15(zo, R) centered at Zo and of radius R is 
contained in U. We are therefore reduced to proving the following theo­
rem, which will give us even more information concerning the power 
series expansion of ! at Zo. 
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Theorem 7.3. Let f be holomorphic on a closed disc D(zo, R), R > O. 
Let CR be the circle bounding the disc. Then f has a power series 
expansion 

whose coefficients an are given by the formula: 

- 1 f(n)( ) - 1 i f(O dY an - , Zo - -2' (Y )n+1 "'. n. m CR '" - Zo 

Furthermore, if IlfliR denotes the sup norm of f on the circle CR , then 
we have the estimate 

In particular, the radius of convergence of the series is ~ R. 

Proof. By Theorem 7.1, for all z inside the circle CR , we have 

f(z) = ~ r fm dC. 
2m JCR C - Z 

Let 0 < S < R. Let D(zo, s) be the disc of radius s centered at zo0 We 
shall see that f has a power series expansion on this disc. We write 

C - z = C - Zo - (z - zo) = C - Zo z - Zo 
1 1 1 ( 1 ) 

1--­
C - Zo 

1 (1 z - Zo (z - zo)2 ) - + + + ... 
- C - Zo C - Zo C - Zo . 

This geometric series converges absolutely and uniformly for Iz - zol ~ s 
because 

Iz-z I C - z: ~ siR < 1. 

The function f is bounded on y. By Theorem 2.4 of Chapter III, we can 
therefore integrate term by term, and we find 

00 1 f fm f(z) = L -2' (C )n+1 dC' (z - zo)n 
n=O 1tl y - Zo 

00 

= L an(z - zo)n, 
n=O 
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where 

1 f fm 
an = -2' «( t+1 d(. m y - Zo 

This proves that f is analytic, and gives us the coefficients of its power 
series expansion on the disc of radius R. 

In particular, we now see that a function is analytic if and only if it is 
holomorphic. The two words will be used interchangeably from now on. 

There remains only to estimate the integral to get an estimate for the 
coefficients. The estimate is taken as usual, equal to the product of the 
sup norm of the expression under the integral sign, and the length of the 
curve which is 2nR. For all ( on the circle, we have 

,,- zol = R, 

so the desired estimate falls out. Taking the n-th root of lanl, we con­
clude at once that the radius of convergence is at least R. 

Remark. From the statement about the radius of convergence in Theo­
rem 7.3 we now see that if R is the radius of convergence of a power 
series, then its analytic function does not extend to a disc of radius > R; 
otherwise the given power series would have a larger radius of conver­
gence, and would represent this analytic function on the bigger disc. For 
example, let 

f(z) = eZ/(z - 1). 

Then f is analytic except at z = 1. From the theorem, we conclude: 

The radius of convergence of the power series for f at the origin is 1. 

The radius of convergence of the power series for f at 2 is 1. 

The radius of convergence of the power series for f at 5 is 4. 
The radius of convergence of the power series for f at - 3 is 4. 

A function f is called entire if it is holomorphic on all of C. We also 
conclude from the above remark and the theorem that if a function is 
entire, then its power series converges for all z E C, in other words the 
radius of convergence is 00. 

Corollary 7.4. Let f be an entire function, and let IlfliR be its sup 
norm on the circle of radius R. Suppose that there exists a constant C 
and a positive integer k such that 

for arbitrarily large R. Then f is a polynomial of degree ~ k. 
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Proof Exercise 3, but we carry out one important special case ex­
plicitly: 

Theorem 7.S (Liouville's Theorem). A bounded entire Junction is con­
stant. 

Proof If f is bounded, then IIJIIR is bounded for all R. In the 
preceding theorem, we let R tend to infinity, and conclude that the 
coefficients are all equal to 0 if n ~ 1. This proves Liouville's theorem. 

We have already proved that a polynomial always has a root in the 
complex numbers. We give here the more usual proof as a corollary of 
Liouville's theorem. 

Corollary 7.6. A polynomial over the complex numbers which does not 
have a root in C is constant. 

Proof Let J(z) be a non-constant polynomial, 

J(z) = a"z" + ... + ao, 

with a" :F O. Suppose that J(z) #= 0 for all z. Then the function 

g(z) = l/J(z) 

is defined for all z and analytic on C. On the other hand, writing 

J(z) = a"z"(l + bdz + ... + b,,/z") 

with appropriate constants bl , ... ,b" we see that I J(z) I is large when Izl is 
large, and hence that Ig(z)1 -+ 0 as IZI-+ 00. For sufficiently large radius 
R, Ig(t)1 is small for z outside the closed disc of radius R, and Ig(z)1 has a 
maximum on this disc since the disc is compact. Hence g is a bounded 
entire function, and therefore constant by Liouville's theorem. This is 
obviously a contradiction, proving that J must have a zero somewhere 
in C. 

We end this section by pointing out that the main argument of Theo­
rem 7.3 can be used essentially unchanged to define an analytic function 
and its derivatives by means of an integral, as follows. 

Theorem 7.7. Let y be a path in an open set U and let g be a 
continuous Junction on y (i.e. on the image y([a, b]) if y is defined on 
[a, b]). IJ z is not on y, define 

J(z) = f g«() d(. 
y (- z 
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Then f is analytic on the complement of y in U, and its derivatives are 
given by 

pn>(z) = n! f g(O d(. 
y((-zr 1 

Proof. Let Zo E U and Zo not on y. Since the image of y is com­
pact, there is a minimum distance between Zo and points on y. Select 
0< R < dist(zo, y), and take R also small enough that the closed disc 
15(zo, R) is contained in U. Now we are essentially in the situation of 
Theorem 7.3. We may repeat the arguments of the proof. We select 
0< s < R, and we simply replace f by g inside the integral sign. We 
expand 1/(( - z) by means of the geometric series, and proceed with­
out any further change to see that f has a power series expansion 
f = L an(z - zot, where now the coefficients an are given by 

We know from Chapter II, §5 that an = pn)(zo)/n!, which gives us the 
proof of Theorem 7.7. 

There is also another way of looking at Theorem 7.7. Indeed, from 
the formula for f, it is natural to think that one can differentiate with 
respect to z under the integral sign. This differentiation will be justified 
in Theorem A3, §6, Chapter VIII, which the reader may wish to look at 
now. Then one gets the integral formula also for the derivatives. 

From Theorem 7.7 we obtain a bound for the derivative of an analytic 
function in terms of the function itself. This is of course completely 
different from what happens for real differentiable functions. 

Corollary 7.8. Let f be analytic on a closed disc 15(zo, R), R> O. Let 
o < RJ < R. Denote by IlfliR the sup norm off on the circle of radius 
R. Then for z E 15(zo, RJ} we have 

Proof This is immediate by using Theorem 7.1, and putting g = f 
inside the integral, with a factor of 1/2ni in front. The factor R in the 
numerator comes from the length of the circle in the integral. The 2n in 
the denominator cancels the 2n in the numerator, coming from the 
formula for the length of the circle. 

Note that if RJ is close to R, then the denominator may be corre­
spondingly large. On the other hand, suppose RJ = R/2. Then the 
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estimate reads 

which is thus entirely in terms of f, n, and R. 
Finally we return to reconsider Theorem 3.2 in light of the fact that a 

holomorphic function is analytic. 

Theorem 7.9 (Morera's Theorem). Let U be an open set in C and let f 
be continuous on U. Assume that the integral of f along the boundary 
of every closed rectangle contained in U is O. Then f is analytic. 

Proof. By Theorem 3.2, we know that f has a local primitive g at 
every point on U, and hence that g is holomorphic. By Theorem 7.2, we 
conclude that g is analytic, and hence that g' = f is analytic, as was to be 
shown. 

We have now come to the end of a chain of ideas linking complex 
differentiability and power series expansions. The next two chapters treat 
different applications, and can be read in any order, but we have to 
project the book in a totally ordered way on the page axis, so we have 
to choose an order for them. The next chapter will study more system­
atically a global version of Cauchy's formula and winding numbers, 
which amounts to studying the relation between an integral and the 
winding number which we already encountered in some way via the 
logarithm. After that in Chapter V, we return to analytic considerations 
and estimates. 

III, §7. EXERCISES 

1. Find the integrals over the unit circle y: 

(a) f cos Z dz 
y z 

(b) f sin z dz 
y z 

(c) f COS(Z2) dz 
y z 

2. Write out completely the proof of Theorem 7.6 to see that all the steps in the 
proof of Theorem 7.3 apply. 

3. Prove Corollary 7.4. 



CHAPTER IV 

Winding Numbers and 
Cauchy's Theorem 

We wish to give a general global criterion when the integral of a holo­
morphic function along a closed path is O. In practice, we meet two 
types of properties of paths: (1) properties of homotopy, and (2) prop­
erties having to do with integration, relating to the number of times a 
curve "winds" around a point, as we already saw when we evaluated the 
integral 

f - 1- d( 
(-z 

along a circle centered at z. These properties are of course related, but 
they also exist independently of each other, so we now consider those 
conditions on a closed path y when 

If=O 
for all hoi om orphic functions f, and also describe what the value of this 
integral may be if not O. 

We shall give two proofs for the global version of Cauchy's theorem. 
Artin's proof depends only on Goursat's theorem for the integral of 
a hoi om orphic function around a rectangle, and a self-contained topo­
logical lemma, having only to do with paths and not holomorphic func­
tions. Dixon's proof uses some of the applications to holomorphic func­
tions which bypass the topological considerations. 

In this chapter, paths are again assumed to be piecewise C1, and curves 
are again C 1. 

133 
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IV, §1. THE WINDING NUMBER 

In an example of Chapter III, §2, we found that 

_1 f~dZ=1 
2ni y z ' 

if y is a circle around the origin, oriented counterclockwise. It is there· 
fore reasonable to define for any closed path y its winding number with 
respect to a point IX to be 

1 f 1 W(y, IX) = -2' -- dz, 
m yZ-1X 

provided the path does not pass through IX. If y is a curve defined on an 
interval [a, b], then this integral can be written in the form 

--dz = dt. f 1 Ib y'(t) 
y z - IX a y(t) - IX 

Intuitively, the integral of 1/(z - IX) should be called log(z - IX), but it 
depends on the path. Later, we shall analyze this situation more closely, 
but for the moment, we need only the definition above without dealing 
with the log formally, although the interpretation in terms of the log is 
suggestive. 

The definition of the winding number would be improper if the follow­
ing lemma were not true. 

Lemma 1.1. If y is a closed path, then W(y, IX) is an integer. 

Proof. Let y = {y l' ... ,y n} where each y i is a curve defined on an 
interval [ai' bJ. After a reparametrization of each curve if necessary, we 
may assume without loss of generality that bi = ai+l for i = 1, ... ,n - 1. 
Then y is defined and continuous on an interval [a, b], where a = a l , 

b = bn, and y is differentiable on each open interval ]ai' bi[, (at the end 
points, y is merely right and left differentiable). Let 

F(t) = II y'(t) dt. 
a y(t) - IX 

Then F is continuous on [a, b] and differentiable for t '# ai' bi' Its 
derivative is 

F'(t) = y'(t) . 
y(t) - IX 
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(Intuitively, F(t) = log(y(t) - a) except for the dependence of path and a 
constant of integration, but this suggests our next step.) We compute the 
derivative of another function: 

d dt e-F(t)(y(t) - a) = e-F(t)y'(t) - F'(t)e-F(t)(y(t) - a) = O. 

Hence there is a constant C such that e-F(t)(y(t) - IX) = C, so 

yet) - IX = CeF(t). 

Since y is a closed path, we have yea) = y(b), and 

CeF(b) = y(b) - a = yea) - a = CeF(a). 

Since yea) - a =I- 0 we conclude that C =I- 0, so that 

Hence there is an integer k such that 

F(b) = F(a) + 2nik. 

But F(a) = 0, so F(b) = 2nik, thereby proving the lemma. 

The winding number of the curve in Fig. 1 with respect to IX is equal 
to 2. 

Figure 1 

Lemma 1.2. Let y be a path. Then the function of IX defined by 

IXHf _l_dz 
y z - a 

for 0( not on the path, is a continuous function of IX. 
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Proof. Given lXo not on the path, we have to see that 

f ( 1 1) ----- dz 
y z - a z - lXo 

tends to ° as IX tends to ao. This integral is estimated as follows. The 
function t M IlXo - y(t)1 is continuous and not 0, hence it has a minimum, 
the minimum distance between ao and the path, say 

min lao - y(t)1 = s. 
t 

If IX is sufficiently close to ao, then la - y(t)1 ~ s/2, as illustrated in Fig. 2. 

Figure 2 

We have 

1 IX - ao -- - -- = -:---.,--,-----
Z - IX Z - lXo (z - IX)(Z - ao) 

whence the estimate 

I 1 1 I 1 -- - -- ~ -z-IIX - lXol. 
z - IX Z - lXo s /4 

Consequently, we get 

If (_1_ - _1_) dzl;;:; }/4 Ia - aoIL(y), 
y z - IX Z - ao s 

The right-hand side tends to ° as a tends to lXo, and the continuity is 
proved. 
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Lemma 1.3. Let y be a closed path. Let S be a connected set not 
intersecting y. Then the function 

IX 1---+ _1_ f _1_ dz 
2ni y z - IX 

is constant for IX in S. If S is not bounded, then this constant is O. 

Proof. We know from Lemma 1.1 that the integral is the winding 
number, and is therefore an integer. If a function takes its values in the 
integers, and is continuous, then it is constant on any curve, and conse­
quently constant on a connected set. If S is not bounded, then for IX 

arbitrarily large, the integrand has arbitrarily small absolute value, that 
is, 

Iz - IXI 

is arbitrarily small, and estimating the integral shows that it must be 
eq ual to 0, as desired. 

Example. Let U be the open set in Fig. 3. Then the set of points not 
in U consists of two connected components, one inside U and the other 
unbounded. Let y be the closed curve shown in the figure, and let OC l be 
the point inside y, whereas 1X2 is the point outside U, in the unbounded 
connected region. Then 

but 

Figure 3 
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We have drawn a curve extending from (X2 towards infinity, such that 
W(y, (X) = 0 for (X on this curve, according to the argument of Lemma 1.3. 

IV, §2. THE GLOBAL CAUCHY THEOREM 

Let U be an open set. Let y be a closed path in U. We want to give 
conditions that 

If=O 

for every holomorphic function f on U. We already know from the 
example of a winding circle that if the path winds around some point 
outside of U (in this example, the center of the circle), then definitely we 
can find functions whose integral is not equal to 0, and even with the 
special functions 

1 
f(z)=-, 

z-(x 

where (X is a point not in U. The remarkable fact about Cauchy's 
theorem is that it will tell us this is the only obstruction possible to 
having 

for all possible functions f. In other words, the functions 

1 
(X ¢ U, , 

z-(x 

suffice to determine the behavior of Jyf for all possible functions. With 
this in mind, we want to give a name to those closed paths in U having 
the property that they do not wind around points in the complement of 
U. The name we choose is homologous to 0, for historical reasons. 
Thus formally, we say that a closed path y in U is homologous to 0 in U 
if 

f _l_dz=O 
y z - (X 

for every point (X not in U, or in other words, more briefly, 

W(y, IX) = 0 

for every such point. 
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Similarly, let y, 1] be closed paths in U. We say that they are homolo­
gous in U if 

W(y, e<) = W(1], e<) 

for every point e< in the complement of U. It will also follow from 
Cauchy's theorem that if y and 1] are homologous, then 

for all holomorphic functions f on U. 

Theorem 2.1. 

(i) If y, 1] are closed paths in U and are homotopic, then they are 
homologous. 

(ii) If y, 1] are closed paths in U and are close together then they are 
homologous. 

Proof The first statement follows from Theorem 5.2 of the preceding 
chapter because the function 1/(z - e<) is analytic on U for e< ¢ U. The 
second statement is a special case of Lemma 4.4 of the preceding chapter. 

Next we draw some examples of homologous paths. 
In Fig. 4, the curves y and 1] are homologous. Indeed, if e< is a point 

inside the curves, then the winding number is 1, and if e< is a point in the 
connected part going to infinity, then the winding number is O. 

Figure 4 

In Fig. 5 the path indicated is supposed to go around the top hole 
counterclockwise once, then around the bottom hole counterclockwise 
once, then around the top in the opposite direction, and then around the 
bottom in the opposite direction. This path is homologous to 0, but not 
homotopic to a point. 
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Figure 5 

In Fig. 6, we are dealing with a simple closed curve, whose inside is 
contained in U, and the figure is intended to show that y can be de­
formed to a point, so that y is homologous to O. 

Figure 6 

Given an open set U, we wish to determine in a simple way those 
closed paths which are not homologous to O. For instance, the open set 
U might be as in Fig. 7, with three holes in it, at points Zl' Z2' Z3' so 
these points are assumed not to be in U . 

• 12 

Figure 7 
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Let Y be a closed path III U, and let 1 be holomorphic on U. We 
illustrate y in Fig. 8. 

Figure 8 

In that figure, we see that y winds around the three points, and winds 
once. Let Y1' Y2' Y3 be small circles centered at Z1' Z2' Z3 respectively, 
and oriented counterclockwise, as shown on Fig. 8. Then it is reasonable 
to expect that 

1/=1 1+1 1+1 f. 
1 11 12 13 

This will in fact be proved after Cauchy's theorem. We observe that 
taking Yl' Y2' Y3 together does not constitute a "path" in the sense we 
have used that word, because, for instance, they form a disconnected set. 
However, it is convenient to have a terminology for a formal sum like 
Y1 + Y2 + Y3' and to give it a name 1'/, so that we can write 

The name that is standard is the name chain. Thus let, in general, 
Y1' .. ·,Yn be curves, and let ml , ... ,mn be integers which need not be 
positive. A formal sum 

n 

Y = m1 Y1 + ... + mnYn = L miYi 
i=1 

will be called a chain. If each curve Yi is a curve in an open set U, we 
call Y a chain in U. We say that the chain is closed if it is a finite sum of 
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closed paths. If y is a chain as above, we define 

f f=I.mif f· 
Y Yi 

If y = I. miYi is a closed chain, where each Yi is a closed path, then its 
winding number with respect to a point (X not on the chain is defined as 
before, 

1 f 1 W(y, (X) = -. -- dz. 
2m Y z - (X 

If y, 1'/ are closed chains in U, then we have 

W(y + 1'/, (X) = W(y, (X) + W(I'/, (X). 

We say that Y is homologous to 1'/ in U, and write Y '" 1'/, if 

W(y, (X) = W(I'/, (X) 

for every point (X rf: U. We say that Y is homologous to 0 in U and write 
y",Oif 

W(y, (X) = 0 

for every point rx. ¢ u. 

Example. Let y be the curve illustrated in Fig. 9, and let U be the 
plane from which three points Zl' Z2' Z3 have been deleted. Let Yl' Y2, Y3 

be small circles centered at Zl' Z2' Z3 respectively, oriented counterclock­
wise. Then it will be shown after Cauchy's theorem that 

Figure 9 



[IV, §2] THE GLOBAL CAUCHY THEOREM 143 

so that for any function f holomorphic on U, we have 

f f=f f+2f f+ 2 f f· 
Y y, Y2 Yl 

The above discussion and definition of chain provided motivation for 
what follows. We now go back to the formal development, and state the 
global version of Cauchy's theorem. 

Theorem 2.2 (Cauchy's Theorem). Let Y be a closed chain in an open 
set U, and assume that y is homologous to 0 in U. Let f be holo­
morphic in U. Then 

A proof will be given in the next section. Observe that all we shall 
need of the holomorphic property is the existence of a primitive locally at 
every point of U, which was proved in the preceding chapter. 

Corollary 2.3. If y, 1] are closed chains in U and y, 1] are homologous in 
U, then 

Proof. Apply Cauchy's theorem to the closed chain y - ,.,. 

Before giving the proof of Cauchy's theorem, we state two important 
applications, showing how one reduces integrals along complicated paths 
to integrals over small circles. 

Theorem 2.4. 

(a) Let U be an open set and y a closed chain in U such that y is 
homologous to 0 in U. Let Zl' •.. 'Zn be a finite number of distinct 
points of U. Let Yi (i = 1, ... ,n) be the boundary of a closed disc 
Vi contained in U, containing Zi' and oriented counterclockwise. We 
assume that Vi does not intersect Vj if i =F j. Let 

mi = W(y,zJ 

Let U* be the set obtained by deleting Zl' "',Zn from U. Then y is 
homologous to L miYi in U*. 
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(b) Let I be holomorphic on U*. Then 

JI=tmiJ f 
1 1=1 11 

Proof Let C = Y - L miYi. Let ex be a point outside U. Then 

W( C, ex) = W(y, ex) - L mi W(Yi' ex) = 0 

because ex is outside every small circle Yi. If ex = z" for some k, then 
W(Yi' z,,) = 1 if i = k and 0 if i #: k by Lemma 1.3. Hence 

This proves that C is homologous to 0 in U*. We apply Theorem 2.2 to 
conclude the proof. 

The theorem is illustrated in Fig. 10. We have 

and 

JI=-J I-2J I-J I-2J f 
1 1, 12 1, 14 

Figure 10 

The theorem will be applied in many cases when U is a disc, say 
centered at the origin, and Y is a circle in U. Then certainly Y is homo­
topic to a point in U, and therefore homologous to 0 in U. Let Z1' ••• ,Zn 

be points inside the circle, as on Fig. 11. Then Theorem 2.4 tells us that 
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where Ci is a small circle around Zi' (Circles throughout are assumed 
oriented counterclockwise unless otherwise specified.) 

Figure 11 

In Example 5 of Chapter III, §2, we gave explicitly the values of the 
integrals around small circles in terms of the power series expansion of J 
around the points Z l' ... ,zn: We may also state the global version of 
Cauchy's formula. 

Theorem 2.5 (Cauchy's Formula). Let y be a closed chain in U, homo­
logous to 0 in U. Let J be analytic on U, let Zo be in U and not on y. 
Then 

1 f J(z) ~2' -- dz = W(y, zo)J(zo)· 
m y z ~ Zo 

Proof We base this proof on Theorems 2.2 and 2.4. An independent 
proof will be given below. By assumption, in a neighborhood of Zo, we 
have a power series expansion 

J(z) = ao + a l (z - zo) + higher terms, with ao = J(zo). 

Let C, be the circle of radius r centered at Zo for a small value of r. By 
Theorem 2.4, the integral over y can be replaced by the integral over C, 
times the appropriate winding number, that is 

1 f J(z) 1 f ~ n-l ~2' ~- dz = W(y, zd-2 . L... an(z - zo) dz = W(y, zo)ao, 
m y z - Zo m c. n=O 
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because we can integrate term by term by Theorem 2.4 of Chapter III, 
and we can apply Example 5 or Exercise 1 of Chapter III, §2, to con­
clude the proof. 

Example. Using Theorem 2.5, we find the integral 

f ez 
-dz 

y z 

taken over a path y not passing through the origin, and having winding 
number 1 with respect to 0, that is, W(y,O) = 1. We let U = C. Then y 
is homologous to ° in U, and in fact y is homotopic to a point. Hence 
Theorem 2.5 applies by letting Zo = 0, and we find 

f eZ dz = 2nieo = 2ni. 
y z 

Remark 1. We have shown that Theorem 2.2 (Cauchy's theorem) 
implies Theorem 2.5 (Cauchy's formula). Conversely, it is easily seen that 
Cauchy's formula implies Cauchy's theorem. Namely, we let Zo be a 
point in U not on y, and we let 

F(z) = (z - zo)j(z). 

Applying Cauchy's formula to F yields 

1 f 1 f F(z) -2' j(z) dz = -2' -- dz = F(zo) W(y, zo) = 0, 
m y m y z - Zo 

as desired. 

Remark 2. In older texts, Cauchy's theorem is usually stated for the 
integral over a simple closed curve, in the following form: 

Let U be an open set, j holomorphic on U and let y be a simple closed 
curve whose interior is contained in U. Then 

It was realized for a long time that it is rather hard to prove that a 
simple closed curve decomposes the plane into two regions, its interior 
and exterior. It is not even easy to define what is meant by "interior" or 
"exterior" a priori. In fact, the theorem would be that the plane from 
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which one deletes the curve consists of two connected sets. For all 
points in one of the sets the winding number with respect to the curve is 
1, and for all points in the other, the winding number is O. In any case, 
these general results are irrelevant in the applications. Indeed, both in 
theoretical work and in practical applications, the statement of Cauchy's 
theorem as we gave it is quite efficient. In special cases, it is usually 
immediate to define the "interior" and "exterior" having the above prop­
erty, for instance for circles or rectangles. One can apply Theorem 2.2 
without appealing to any complicated result about general closed curves. 

Dixon's Proof of Theorem 2.5 (Cauchy's Formula) 

The proof we gave of Theorem 2.5 was based on Theorem 2.2 via 
Theorem 2.4. We shall now reproduce Dixon's proof of Theorem 2.5, 
which is direct, and is based only on Cauchy's formula for a circle 
and Liouville's theorem. Those results were proved in Chapter III, §7. 
Dixon's proof goes as follows. 

We define a function g on U x U by: 

{
J(W) - J(z) 

g(z, w) = W - Z 

/,(z) 

if w =f: z, 

if W = z. 

For each w, the function z 1--+ g(z, w) is analytic. Furthermore, g is contin­
uous on U x U. This is obvious for points off the diagonal, and if 
(zo, zo) is on the diagonal, then for (z, w) close to (zo, zo) 

g(z, w) - g(zo, zo) = _1_ fW [/,(0 - /'(zo)] d(. 
w - z z 

The integral can be taken along the line segment from z to w. Estimat­
ing the right-hand side, we see that 1/lw - zl cancels the length of the 
interval, and the expression under the integral sign tends to 0 by the 
continuity of /" as (z, w) approaches (zo, zo). Thus g is continuous. 

Let V be the open set of complex numbers z not on y such that 
W(y, z) = O. By the hypothesis of Cauchy's theorem, we know that V 
contains the complement of U. Hence C = U u V. We now define a 
function h on C by two integrals: 

h(z) = ~ f g(z, w) dw if z E U, 
2m y 

h(z) = ~ f J(w) dw if z E V. 
2m y w - z 
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We note that for z E Un V, the two definitions of h coincide. We shall 
prove that h is a bounded entire function, whence constant by Liouville's 
theorem, whence equal to 0 by letting z tend to infinity for z E V, and 
using the definition of h. It is then clear that for z E U the first integral 
being zero immediately implies Cauchy's formula 

1 f J(w) 
-2' -- dw = J(z) W(y, z). 

m yW-Z 

We have already seen in Remark 1 that Cauchy's formula implies 
Cauchy's theorem. 

There remains therefore to prove that h is an analytic function and is 
bounded. We first prove that h is analytic. It is immediate that h is 
analytic on V. Hence it suffices to prove that h is analytic on U. So let 
Zo E U. From the uniform continuity of g on compact subsets of U x U 
it follows at once that h is continuous. To prove that h is analytic, by 
Theorem 3.2 of Chapter III, and the fact that a holomorphic function is 
analytic, it suffices to prove that in some disc centered at zo, the integral 
of h around the boundary of any rectangle contained in the disc is O. 
But we have 

f h(z) dz = -21 . f f g(z, w) dw dz 
BR m BR y 

= -21 . f f g(z, w) dz dw. 
m y BR 

Since for each w, the function z f--+ g(z, w) is analytic, we obtain the value 
0, thereby concluding the proof that h is analytic. 

As for the boundedness, suppose that z lies outside a large circle. 
Then 

f J(z) f 1 --dw=J(z) --dw = 0 
yW-Z yW-Z 

because the winding number of y with respect to z is 0 by Lemma 1.3 of 
Chapter IV. Furthermore, if Izl--+ 00 then 

f J(w) dw --+ O. 
y w-z 

It follows that h is bounded outside a large circle, whence bounded since 
h is analytic. This concludes the proof. 
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IV, §2. EXERCISES 

1. (a) Show that the association fH f'lf (where f is holomorphic) sends 
products to sums. 

(b) If P(z) = (z - ad·· ·(z - an), where aI' ... ,an are the roots, what is P'IP? 
(c) Let y be a closed path such that none of the roots of P lie on y. Show 

that 

~ f (P'IP)(z) dz = W(y, ad + ... + W(y, an)· 
2m 1 

2. Let f(z) = (z - zorh(z), where h is analytic on an open set U, and h(z) "# 0 for 
all z E U. Let y be a closed path homologous to 0 in U, and such that Zo does 
not lie on y. Prove that 

1 f f'(z) 
2ni 1 f(z) dz = W(y, zo)m. 

3. Let U be a simply connected open set and let Z\, ..• , Zn be points of U. Let 
U· = U - {z\, ... , zn} be the set obtained from U by deleting the points 
Z\, ... , Zn. Let / be analytic on U·. Let Yk be a small circle centered at Zk and 
let 

Let h(z) =/(z) - 'L-ak/(Z-Zk). Prove that there exists an analytic function H 
on U· such that H' = h. 

Note. The train of thought of the above exercises will be pursued systematically 
in Chapter VI, Theorem 1.5. 

IV, §3. ARTIN'S PROOF 

In this section we prove Theorem 2.2 by making greater use of topologi­
cal considerations. We reduce Theorem 2.2 to a theorem which involves 
only the winding number, and not the holomorphic function f, and we 
state this result as Theorem 3.2. The application to the holomorphic 
function will then be immediate by applying some results of Chapter III. 
We have already found that integrating along sides of a rectangle works 
better than over arbitrary curves. We pursue this idea. A path will be 
said to be rectangular if every curve of the path is either a horizontal 
segment or a vertical segment. We shall see that every path is homolo­
gous with a rectangular path, and in fact we prove: 

Lemma 3.1. Let y be a path in an open set U. Then there exists a 
rectangular path f/ with the same end points, and such that y, f/ are close 
together in U in the sense of Chapter III, §4. In particular, y and" are 
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homologous in U, and for any holomorphic function f on U we have 

Proof. Suppose y is defined on an interval [a, b]. We take a partition 
of the interval, 

such that the image of each small interval 

is contained in a disc Dj on which f has a primitive. Then we replace 
the curve y on the interval [ai' ajH ] by the rectangular curve drawn on 
Fig. 12. This proves the lemma. 

Zn 

Figure 12 

In the figure, we let Zj = y(aj). 
If y is a closed path, then it is clear that the rectangular path con­

structed in the lemma is also a closed path, looking like this: 

Figure 13 
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The lemma reduces the proof of Cauchy's theorem to the case when Y 
is a rectangular closed chain. We shall now reduce Cauchy's theorem to 
the case of rectangles by stating and proving a theorem having nothing 
to do with holomorphic functions. We need a little more terminology. 

Let Y be a curve in an open set U, defined on an interval [a, bJ. Let 

be a partition of the interval. Let 

be the restriction of y to the smaller interval [ai' ai+1J. Then we agree to 
call the chain 

Yl + Y2 + ... + Y .. 

a subdivision of y. Furthermore, if '1i is obtained from Yi by another 
parametrization, we again agree to call the chain 

'11 + '12 + ... + '1 .. 

a subdivision of y. For any practical purposes, the chains Y and 

'11 + '12 + ... + '1 .. 

do not differ from each other. In Fig. 14 we illustrate such a chain y and 
a subdivision '11 + '12 + '13 + '14' 

'Y 

Figure 14 

Similarly, if y = L miYi is a chain, and {'1ij} is a subdivision of Yi' we 
call 

a subdivision of y. 

Theorem 3.2. Let Y be a rectangular closed chain in U, and assume that 
Y is homologous to 0 in U, i.e. 

W(y, a) = 0 

for every point a not in U. Then there exist rectangles Rl,"" RN 
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contained in U, such that if oRi is the boundary of Ri oriented counter­
clockwise, then a subdivision of y is equal to 

for some integers mi. 

N 

Lmi· oR; 
;=1 

Lemma 3.1 and Theorem 3.2 make Cauchy's Theorem 2.2 obvious 
because we know that for any holomorphic function / on U, we have 

f /=0 
aRi 

by Goursat's theorem. Hence the integral of / over the subdivision of y 
is also equal to 0, whence the integral of / over y is also equal to O. 

We now prove the theorem. Given the rectangular chain y, we draw 
all vertical and horizontal lines passing through the sides of the chain, as 
illustrated on Fig. 15. 

Figure 15 

Then these vertical and horizontal lines decompose the plane into rectan­
gles, and rectangular regions extending to infinity in the vertical and 
horizontal direction. Let Ri be one of the rectangles, and let lXi be a 
point inside Ri • Let 
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For some rectangles we have mi = 0, and for some rectangles, we have 
mi # 0. We let R 1 , .•• ,RN be those rectangles such that m1 , .• • ,mN are 
not 0, and we let aRi be the boundary of Ri for i = 1, ... ,N, oriented 
counterclockwise. We shall prove the following two assertions: 

1. Every rectangle Ri such that mi # ° is contained in U. 

2. Some subdivision of y is equal to 

N 

L miaRi· 
i=l 

This will prove the desired theorem. 

Assertion 1. By assumption, rti must be in U, because W(y, rt} = ° for 
every point rt outside of U. Since the winding number is constant on 
connected sets, it is constant on the interior of R;, hence # 0, and the 
interior of Ri is contained in U. If a boundary point of R; is on y, then 
it is in U. If a boundary point of Ri is not on y, then the winding 
number with respect to y is defined, and is equal to m; # ° by continuity 
(Lemma 3.2). This proves that the whole rectangle R i , including its 
boundary, is contained in U, and proves the first assertion. 

Assertion 2. We now replace y by an appropriate subdivision. The 
vertical and horizontal lines cut y in various points. We can then find a 
subdivision IJ of y such that every curve occurring in IJ is some side of a 
rectangle, or the finite side of one of the infinite rectangular regions. The 
subdivision IJ is the sum of such sides, taken with appropriate multi­
plicities. If a finite side of an infinite rectangle occurs in the subdivision, 
after inserting one more horizontal or vertical line, we may assume that 
this side is also the side of a finite rectangle in the grid. Thus without loss 
of generality, we may assume that every side of the subdivision is also the 
side of one of the finite rectangles in the grid formed by the horizontal and 
vertical lines. 

It will now suffice to prove that 

Suppose 1] - I: miaRi is not the ° chain. Then it contains some horizontal 
or vertical segment (1, so that we can write 

where m is an integer, and C' is a chain of vertical and horizontal segments 
other than (1. Then (1 is the side of a finite rectangle Rk. We take (1 with 
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the orientation arising from the counterclockwise orientation of the 
boundary of the rectangle Rk . Then the closed chain 

does not contain G. Let (Xk be a point interior to Rk, and let (x' be a point 
near G but on the opposite side from (Xk, as shown on the figure. 

Figure 16 

Since 11 - L mioRi - moRk does not contain G, the points (Xk and (x' are 
connected by a line segment which does not intersect C. Therefore 

But W(l1, (Xk) = mk and W(oRi, (Xk) = 0 unless i = k, in which case 
W(oRk, (Xk) = 1. Similarly, if (x' is inside some finite rectangle Rj, so 
(x' = (Xj, we have 

W(8R (Xo) = {O if j =f k, 
k, 1 1 if j = k. 

If (x' is in an infinite rectangle, then W(oRk, (XI) = O. Hence: 

W(C,(Xk) = W(l1- LmioRi - mORk,(Xk) = mk - mk - m = -m; 

W( C, (XI) = W ( 11 - L mioRi - moRk, (XI) = O. 

This proves that m = 0, and concludes the proof that 11 - L mioRi = O. 



CHAPTER V 

Applications of Cauchy's 
Integral Formula 

In this chapter, we return to the ideas of Theorem 7.3 of Chapter III, 
which we interrupted to discuss some topological considerations about 
winding numbers. We come back to analysis. We shall give various 
applications of the fact that the derivative of an analytic function can be 
expressed as an integral. This is completely different from real analysis, 
where the derivative of a real function often is less differentiable than the 
function itself. In complex analysis, one can exploit the phenomenon in 
various ways. For instance, in real analysis, a uniform limit of a se­
quence of differentiable functions may be only continuous. However, in 
complex analysis, we shall see that a uniform limit of analytic functions 
is analytic. 

We shall also study a point where a function is analytic near the 
point, but not necessarily at the point itself. Such points are the isolated 
singular points of the function, and the behavior of the function can be 
described rather accurately near these points. 

V, §1. UNIFORM LIMITS OF ANALYTIC FUNCTIONS 

We first prove a general theorem that the uniform limit of analytic 
functions is analytic. This will allow us to define analytic functions by 
uniformly convergent series, and we shall give several examples, in text 
and in the exercises. 

Theorem 1.1. Let {J..} be a sequence of holomorphic functions on an 
open set U. Assume that for each compact subset K of U the sequence 
converges uniformly on K, and let the limit function be f. Then f is 
holomorphic. 

156 
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Proof Let Zo E U, and let DR be a closed disc of radius R centered at 
Zo and contained in U. Then the sequence {f..} converges uniformly on 
DR' Let CR be the circle which is the boundary of DR' Let DR/2 be the 
closed disc of radius R/2 centered at zoo Then for z E DR/2 we have 

f..(z) = ~ r f..(C) dC, 
2m JCII C - Z 

and" - zl ~ R/2. Since {f..} converges uniformly, for Iz - zol ~ R/2, we 
get 

J(z) = ~ r J(C) dC. 
2mJclI C-z 

By Theorem 7.7 of Chapter III it follows that f is holomorphic on a 
neighborhood of zoo Since this is true for every Zo in U, we have proved 
what we wanted. 

Theorem 1.2. Let {In} be a sequence oj analytic Junctions on an open 
set U, converging uniformly on every compact subset K oj U to a 
Junction J. Then the sequence oj derivatives {J:} converges uniformly 
on every compact subset K, and limJ: = 1'. 

Proof The proof will be left as an exercise to the reader. [Hint: 
Cover the compact set with a finite number of closed discs contained in 
U, and of sufficiently small radius. Cauchy's formula expresses the deriv­
ative J: as an integral, and one can argue as in the previous theorem.] 

Example. Let 
ao 1 

J(z) = L z' 
n=l n 

We shall prove that this function is holomorphic for Re z > 1. Each 
term 

f..(z) = n-Z = e-zlogn 

is an entire function. Let z = x + iy. We have 

Let c> 1. For x ~ c we have In-zi ~ n-C and the series 

ao 1 
Lc 

11=1 n 

converges for c > 1. Hence the series Lf..(z) converges uniformly and 
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absolutely for Re z ~ c, and therefore defines a holomorphic function for 
Re z > c. This is true for every c > 1, and hence f is holomorphic for 
Re z > 1. 

In the same example, we have 

By Theorem 1.2, it follows that 

f'(z) = f -lozgn 
.=1 n 

in this same region. 

V, §1. EXERCISES 

1. Let J be analytic on an open set U, let Zo E U and !'(zo) #- O. Show that 

2ni r 1 
!'(zo) = Jc J(z) - J(zo) dz, 

where C is a small circle centered at Zo. 

2. Weierstrass' theorem for a real interval [a, b] states that a continuous func­
tion can be uniformly approximated by polynomials. Is this conclusion still 
true for the closed unit disc, i.e. can every continuous function on the disc be 
uniformly approximated by polynomials? 

3. Let a > O. Show that each of the following series represents a holomorphic 
function: 

<Xl 

(a) L e-a• 2
% for Re z > 0; 

.=1 

00 e-anz 

(b) L -- for Re z > 0; 
.=1 (a + n)2 

<Xl 1 
(c) L -- for Re z > 1. 

.=1 (a + n)' 

4. Show that each of the two series converges uniformly on each closed disc 
Izl ~ c with 0 < c < 1: 

00 nz R 00 zn 
L -- and L 2" 

0=1 1 - z· 0=1 (1 - z·) 

5. Prove that the two series in Exercise 4 are actually equal. [Hint: Write each 
one in a double series and reverse the order of summation.] 
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6. Dirichlet Series. Let {a.} be a sequence of complex numbers. Show that the 
series I an/n S , if it converges absolutely for some complex s, converges abso­
lutely in a right half-plane Re(s) > 0'0' and uniformly in Re(s) > 0'0 + e for every 
E > O. Show that the series defines an analytic function in this half plane. 
The number 0'0 is called the abscissa of convergence. 

The next exercises give expressions and estimates for an analytic function in 
terms of integrals. 

7. Let f be analytic on a closed disc l5 of radius b > 0, centered at zoo Show 
that 

~ I r f(x + iy) dy dx = f(zo)· 
nb JD 

[Hint: Use polar coordinates and Cauchy's formula. Without loss of gen­
erality, you may assume that Zo = O. Why?] 

8. Let D be the unit disc and let S be the unit square, that is, the set of 
complex numbers z such that 0 < Re(z) < 1 and 0 < Im(z) < 1. Let f: D -+ S 
be an analytic isomorphism such that f(O) = (1 + i)/2. Let u, v be the real 
and imaginary parts of f respectively. Compute the integral 

I L[(::Y + (::Y] dxdy. 

9. (a) Let f be an analytic isomorphism on the unit disc D, and let 

cc 

f(z) = 2: anzn 
n=1 

be its power series expansion. Prove that 

cc 

area f(D) = n 2:nlanI2. 
n=1 

(b) Suppose that f is an analytic isomorphism on the closed unit disc l5, 
and that If(z)1 ~ 1 if Izl = 1, and f(O) = O. Prove that area f(D) ~ n. 

10. Let f be analytic on the unit disc D and assume that S SD Ifl2 dx dy exists. 
Let 

00 

f(z) = I a.z'. 
n==O 

Prove that 

~ If If(z)1 2 dx dy = I la.1 2/(2n + 2). 
2n D .=0 

For the next exercise, recall that a norm II lion a space of functions asso­
ciates to each function f a real number ~ 0, satisfying the following conditions: 

N 1. We have Ilfll = 0 if and only if f = O. 
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N 2. If c is a complex number, then Ilcfll = Icillfll· 

N 3. Ilf + gil ~ Ilfll + Ilgll· 

1l. Let A be the closure of a bounded open set in the plane. Let f, g be 
continuous functions on A. Define their scalar product 

(f, g) = f L f(z)g(z) dy dx 

and define the associated L2-norm by its square, 

Ilfll~ = f L If(zW dy dx. 

Show that IIfl12 does define a norm. Prove the Schwarz inequality 

I(f, g)1 ~ Ilf11211g112' 

On the other hand, define 

Ilflll = f L If(z)1 dy dx. 

Show that fH Ilflll is a norm on the space of continuous functions on A, 
called the Ll-norm. This is just preliminary. Prove: 
(a) Let 0 < s < R. Prove that there exist constants Cl , C2 having the fol­

lowing property. If f is analytic on a closed disc i5 of radius R, then 

Ilfll. ~ Cdlflll,R ~ C211f112,R, 

where II II. is the sup norm on the closed disc of radius s, and the U, L2 
norms refer to the integral over the disc of radius R. 

(b) Let {f.} be a sequence of holomorphic functions on an open set U, and 
assume that this sequence is L2-Cauchy. Show that it converges uni­
formly on compact subsets of U. 

12. Let U, V be open discs centered at the origin. Let f = f(z, w) be a continuous 
function on the product U x V, such that for each w the function ZH f(z, w) 
and for each z the function WH f(z, w) are analytic on U and V, respectively. 
Show that f has a power series expansion 

which converges absolutely and uniformly for Izl ~ rand Iwl ~ r, for some 
positive number r. [Hint: Apply Cauchy's formula for derivatives twice, with 
respect to the two variables to get an estimate for the coefficients am •. ] 
Generalize to several variables instead of two variables. 

Note. This exercise is really quite trivial, although it is not generally realized 
that it is so. The point is that the function f is assumed to be continuous. If that 
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assumption is not made, the situation becomes much more difficult to handle, 
and the result is known as Hartogs' theorem. In practice, continuity is indeed 
satisfied. 

V, §2. LAURENT SERIES 

By a Laurent series, we mean a series 

<Xl 

J(z) = L anzn. 
n= - 00 

Let A be a set of complex numbers. We say that the Laurent series 
converges absolutely (resp. uniformly) on A if the two series 

and 

converge absolutely (resp. uniformly) on A. If that is the case, then J(z) 
is regarded as the sum, 

Let r, R be positive numbers with 0;;:;; r < R. We shall consider the 
annulus A consisting of all complex numbers z such that 

r;;:;; Izl ;;:;; R. 

Figure 1 
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Theorem 2.1. Let A be the above annulus, and let J be a holomorphic 
Junction on A. Let r < s < S < R. Then J has a Laurent expansion 

00 

J(z) = L anz" 
n=-oo 

which converges absolutely and uniformly on s ~ Izl ~ S. Let CR and C, 
be the circles oj radius Rand r, respectively. Then the coefficients an 
are obtained by the usual Jormula: 

an = 2~i LR {!:~ dC if n~O, 

an = 2~i Lr {!:~ dC if n<O. 

Proof For some € > 0 we may assume (by the definition of what it 
means for J to be holomorphic on the closed annulus) that J is holo­
morphic on the open annulus U of complex numbers z such that 

r - E < Izl < R + E. 

The chain CR - C, is homologous to 0 on U, because if a point lies in 
the outer part then its winding number is zero by the usual Lemma 1.3 
of Chapter IV, and if the point lies in the disc inside the annulus, then its 
winding number is o. Cauchy's formula then implies that for z in the 
annulus, 

We may now prove the theorem. The first integral is handled just as 
in the ordinary case of the derivation of Cauchy's formula, and the 
second is handled in a similar manner as follows. We write 

Then 

I~I ~ rjs < 1, 

so the geometric series converges, 

~_1_=~(1 +f+(f)2 + ... ). 
z 1 - Cjz z z z 
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We can then integrate term by term, and the desired expansion falls out. 
To show the uniqueness of the coefficients, integrate the series E ansneinB 
against e- ikB for a given integer k, term by term from 0 to 211:. All terms 
drop out except for n = k, showing that the k-th coefficient is determined 
by f. 

An example of a function with a Laurent series with infinitely many 
negative terms is given by e1/z, that is, by substituting liz in the ordinary 
exponential series. 

If an annulus is centered at a point zo, then one obtains a Laurent 
series at Zo of the form 

00 

J(z) = L an(z - zot· 
n::::-C() 

Example. We want to find the Laurent series for 

1 
J(z) = z(z _ 1) 

for 0 < Izl < 1. We write J in partial fractions: 

1 1 
J(z)=---. 

z - 1 z 

Then for one term we get the geometric series, 

1 1 
--= ---= -(1 +Z+Z2+ ... ) 
z-l l-z 

whence 
1 2 f(z) = - - - 1 - z - z _ .... 
z 

On the other hand, suppose we want the Laurent series for Izl > 1. Then 
we write 

--=- -- =- 1+-+-+··· 1 l( 1 ) l( 1 1 ) 
z - 1 z 1 - liz z z Z2 

whence 
1 1 1 

J(z) = - + - + - + .... 
Z2 Z3 Z4 

V, §2. EXERCISES 

I. Prove that the Laurent series can be differentiated term by term in the usual 
manner to give the derivative of f on the annulus. 

2. Let f be holomorphic on the annulus A, defined by 0 < r ~ Izl ~ R. 
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Prove that there exist functions Jl' J2 such that Jl is holomorphic for 
Izl ~ R, J2 is holomorphic for Izl ~ rand 

on the annulus. 

3. Is there a polynomial P(z) such that P(z)e1/z is an entire function? Justify 
your answer. What is the Laurent expansion of e1/z for Izl "# O? 

4. Expand the function 
z 

J(z) = 1 + Z3 

(a) in a series of positive powers of z, and 
(b) in a series of negative powers of z. 
In each case, specify the region in which the expansion is valid. 

5. Give the Laurent expansions for the following functions: 
(a) z/(z + 2) for Izl > 2 (b) sin liz for z "# 0 

1 
(c) cos liz for z "# 0 (d) --) for Izl > 3 

(z - 3 
6. Prove the following expansions: 

00 1 
(a) eZ = e + e L ,(z - It 

"=1 n. 
00 

(b) liz = L (-l)"(z - 1)" for Iz - 11 < 1 
n=O 

00 

(c) 1/z2 = 1 + L (n + l)(z + 1)" for Iz + 11 < 1 
n=l 

7. Expand (a) cos z, (b) sin z in a power series about n/2. 

8. Let J(z) = 1 . Find the Laurent series for J: 
(z - l)(z - 2) 

(a) In the disc Izl < 1. 
(b) In the annulus 1 < Izl < 2. 
(c) In the region 2 < Izl. 

9. Find the Laurent series for (z + l)/(z - 1) in the region (a) Izl < 1; 
(b) Izl > 1. 

10. Find the Laurent series for 1/z2(1 - z) in the regions: 
(a) 0 < Izl < 1; (b) Izl > 1. 

11. Find the power series expansion of 

1 
J(z) = 1 + Z2 

around the point z = 1, and find the radius of convergence of this series. 
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12. Find the Laurent expansion of 

1 
f(z) = (z _ W(z + 1)2 

for 1 < Izl < 2. 

13. Obtain the first four terms of the Laurent series expansion of 

eZ 

f(z) = Z(Z2 + 1) 

valid for 0 < Izl < 1. 

*14. Assume that f is analytic in the upper half plane, and that f is periodic of 
period 1. Show that f has an expansion of the form 

where 

00 

f = L cne2"inz, 
-00 

c. = fOl f(x + iy)e-2"in(x+iy) dx, 

for any value of y > O. [Hint: Show that there is an analytic function f* 
on a disc from which the origin is deleted such that 

What is the Laurent series for f*? Abbreviate q = e2niz• 

*15. Assumptions being as in Exercise 14, suppose in addition that there exists 
Yo> 0 such that f(z) = f(x + iy) is bounded in the domain y ~ Yo. Prove 
that the coefficients en are equal to 0 for n < O. Is the converse true? 
Proof? 

V, §3. ISOLATED SINGULARITIES 

Let Zo be a complex number and let D be an open disc centered at zo. 
Let U be the open set obtained by removing Zo from D. A function f 
which is analytic on U is said to have an isolated singularity at zoo We 
suppose this is the case. 

Removable Singularities 

Theorem 3.1. Iff is bounded in some neighborhood of zo, then one can 
define f(zo) in a unique way such that the function is also analytic at 
zoo 
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Proof. Say Zo = O. By §2, we know that f has a Laurent expansion 

f(z) = L a"z" + L a"z" 
n~O n<O 

for 0 < Izi < R. We have to show an = 0 if n < o. Let n = -m with 
m > o. We have 

for any circle Cr of small radius r. Since f is assumed bounded near 0 it 
follows that the right-hand side tends to 0 as r tends to 0, whence 
a_m = 0, as was to be shown. (The uniqueness is clear by continuity.) 

In the case of Theorem 3.1 it is customary to say that Zo is a remov­
able singularity. 

Poles 

Suppose the Laurent expansion of f in the neighborhood of a singularity 
Zo has only a finite number of negative terms, 

J(z) = ( a_m r + ... + ao + a 1 (z - zo) + ... , 
Z - Zo 

and a_m # O. Then f is said to have a pole of order (or multiplicity m) at 
Zo0 However, we still say that the order of fat Zo is -m, that is, 

because we want the formula 

to be true. This situation is characterized as follows: 

f has a pole of order m at Zo if and only if f(z}(z - zor is holomorphic 
at Zo and has no zero at Zo. 

The proof is immediate and is left to the reader. 

If g is holomorphic at Zo and g(zo) # 0, then the function f defined by 

f(z) = (z - zormg(z) 
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in a neighborhood of Zo from which Zo is deleted, has a pole of order m. 
We abide by the convention that a pole is a zero of negative order. 

A pole of order 1 is said to be a simple pole. 

Examples. The function liz has a simple pole at the origin. 
The function 11sin z has a simple pole at the origin. This comes from 

the power series expansion, since 

and 

sin z = z(1 + higher terms), 

_.1_ = !(1 + higher terms) 
sm z z 

by inverting the series 1/(1 - h) = 1 + h + h2 + ... for Ihl < 1. 

Let J be defined on an open set U except at a discrete set of points S 
which are poles. Then we say that J is meromorphic on U. If Zo is such 
a point, then there exists an integer m such that (z - zotJ(z) is holo­
morphic in a neighborhood of Zo. Thus J is the quotient of two holo­
morphic functions in the neighborhood of a point. We say that J is 
meromorphic at a point Zo if J is merom orphic on some open set U 
containing zoo 

Example. Let P(z) be a polynomial. Then J(z) = 1IP(z) is a mero­
morphic function. This is immediately seen by factoring P(z) into linear 
factors. 

Example. A merom orphic function can be defined often by a UnI­

formly convergent series. For instance, let 

1 (.() Z 
J(z) = - + L 2 2 • 

Z n=l Z - n 

We claim that J is meromorphic on C and has simple poles at the 
integers, but is holomorphic elsewhere. 

We prove that J has these properties inside every disc of radius R 
centered at the origin. Let R > 0 and let N > 2R. Write 

J(z) = g(z) + h(z), 

where 

1 N Z 
g(z) = - + L 2 2 

Z n=l Z - n 
and 

co z 
h(z)= L 2 2' 

n=N+1 Z - n 
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Then g is a rational function, and is therefore meromorphic on C. 
Furthermore, from its expression as a finite sum, we see that g has 
simple poles at the integers n such that Inl ~ N. 

For the infinite series defining h, we apply Theorem 1.1 and prove that 
the series is uniformly convergent. For Izl < R we have the estimate 

The denominator satisfies 

for n > N > 2R. Hence 

for n ~ 2R. 

Therefore the series for h converges uniformly in the disc Izl < R, and h 
is holomorphic in this disc. This proves the desired assertion. 

Essential Singularities 

If the Laurent series has a infinite number of negative terms, then we say 
that zo is an essential singularity of f 

Example. The function f(z) = e1/% has an essential singularity at z = 0 
because its Laurent series is 

00 1 
L~' n=O Z n. 

Theorem 3.2 (Casorati-Weierstrass). Let 0 be an essential singularity 
of the function f, and let D be a disc centered at 0 on which f is 
holomorphic except at O. Let U be the complement of 0 in D. Then 
f(U) is dense in the complex numbers. In other words, the values of f 
on U come arbitrarily close to any complex number. 

Proof Suppose the theorem is false. There exists a complex number ex 
and a positive number s > 0 such that 

If(z) - exl > s for all z E U. 
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The function 

ISOLATED SINGULARITIES 

1 
g(z) = J(z) - IX 

169 

is then holomorphic on U, and bounded on the disc D. Hence 0 is a 
removable singularity of g, and g may be extended to a holomorphic 
function on all of D. It then follows that l/g(z) has at most a pole at 0, 
which means that J(z) - IX has at most a pole, contradicting the hypothe­
sis that J(z) has an essential singularity (infinitely many terms of negative 
order in its Laurent series). This proves the theorem. 

Actually, it was proved by Picard that J not only comes arbitrarily 
close to every complex number, but takes on every complex value except 
possibly one. The function e1/z omits the value 0, so it is necessary to 
allow for this one omission. See Chapter XI, §3 and Chapter XII, §2. 

We recall that an analytic isomorphism 

J: U -+ V 

from one open set to another is an analytic function such that there 
exists another analytic function 

g: V-+ U 
satisfying 

Jog = idv and go J = idu, 

where id is the identity function. An analytic automorphism of U is an 
analytic isomorphism of U with itself. 

Using the Casorati - Weierstrass theorem, we shall prove: 

Theorem 3.3. The only analytic automorphisms oj C are the Junctions 
oj the Jorm J(z) = az + b, where a, b are constants, a =1= O. 

ProoJ. Let J be an analytic automorphism of C. Mter making a 
translation by - J(O), we may assume without loss of generality that 
J(O) = O. We then have to prove that J(z) = az for some constant a. Let 

h(z) = J(I/z) for z =1= o. 

Then h is defined for all complex numbers except for the origin. We first 
prove that h cannot have an essential singularity at o. Since J is a local 
analytic isomorphism at 0, J gives a bijection between an open neighbor­
hood of 0 with some open neighborhood of o. Since J is also an analytic 
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isomorphism of C, it follows that there exists fJ > 0 and c > 0 such that if 
Iwl > 1/fJ then I J(w) I > c. Let z = 1/w or w = liz. Then Ih(z)1 > c for 
Izl < fJ. If 0 is an essential singularity, this contradicts the Casorati­
Weierstrass theorem. 

Let J(z) = E anzn so h(z) = E an(1/z)n. Since 0 is not an essential 
singularity of h, it follows that the series for h, hence for J, has only a 
finite number of terms, and 

is a polynomial of degree N for some N. If J has two distinct roots, then 
J cannot be injective, contradicting the fact that J has an inverse func­
tion. Hence J has only one root, and 

for some Zo. If N > 1, it is then clear that J is not injective so we must 
have N = 1, and the theorem is proved. 

V, §3. EXERCISES 

1. Show that the following series define a meromorphic function on C and 
determine the set of poles, and their orders. 

CD (-1). CD 1 CD 1 
(a) L (b) .~ Z2 + n2 

(c) L-.=0 n!(n + z) .=1 (z + n)2 

CD sin nz 1 CD [1 1] (d) .~ n!(z2 + n2) 
(e) -+ L -+-z ... 0 z - n n 

"=-00 
2. Show that the function 

is defined and continuous for the real values of z. Determine the region of 
the complex plane in which this function is analytic. Determine its poles. 

3. Show that the series 

f (z+~) . 
• =1 Z - I 

defines an analytic function on a disc of radius 1 centered at - i. 

4. Let {z.} be a sequence of distinct complex numbers such that 

1 
L Iz.13 converges. 
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Prove that the series 

00 (1 1) L 2-2 
.=1 (z - z.) z. 

defines a merom orphic function on C. Where are the poles of this function? 

5. Let f be meromorphic on C but not entire. Let g(z) = ef(z). Show that 9 is 
not merom orphic on C. 

6. Let f be a non-constant entire function, i.e. a function analytic on all of C. 
Show that the image of f is dense in C. 

7. Let f be meromorphic on an open set U. Let 

cp:V-+U 

be an analytic isomorphism. Suppose cp(zo) = wo, and f has order n at Woo 
Show that f 0 cp has order n at zo. In other words, the order is invariant 
under analytic isomorphisms. [Here n is a positive or negative integer.] 

8. A meromorphic function f is said to be periodic with period W if 
f(z + w) = f(z) for all Z E C. Let f be a meromorphic function, and suppose f 
is periodic with three periods WI, W2, W3 which are linearly independent over 
the rational numbers. Prove that f is constant. [Hint: Prove that there exist 
elements W which are integral linear combinations of WI, W2, W3 and arbitrarily 
small in absolute value.] The exponential function is an example of a singly 
periodic function. Examples of doubly periodic functions will be given in 
Chapter XIV. 

9. Let f be meromorphic on C, and suppose 

lim If(z) I = 00. 
1%1-00 

Prove that f is a rational function. (You cannot assume as given that f has 
only a finite number of poles.) 

10. (The Riemann Sphere). Let S be the union of C and a single other point 
denoted by 00, and called infinity. Let f be a function on S. Let t = l/z, and 
define 

g(t) = f(1/t) 

for t * 0, 00. We say that f has an isolated singularity (resp. is meromorphic 
resp. is holomorphic) at infinity if 9 has an isolated singularity (resp. is mero­
morphic, resp. is holomorphic) at o. The order of 9 at 0 will also be called 
the order of f at infinity. If 9 has a removable singularity at 0, and so can be 
defined as a holomorphic function in a neighborhood of 0, then we say that f 
is holomorphic at infinity. 

We say that f is meromorphic on S if f is meromorphic on C and is also 
meromorphic at infinity. We say that f is holomorphic on S if f is holo­
morphic on C and is also holomorphic at infinity. 
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Prove: 

The only meromorphic functions on S are the rational functions, that is, quo­
tients of polynomials. The only holomorphic functions on S are the constants. 
If f is holomorphic on C and has a pole at i'!/inity, then f is a polynomial. 

In this last case, how would you describe the order of f at infinity in terms 
of the polynomial? 

11. Let f be a meromorphic function on the Riemann sphere, so a rational 
function by Exercise 10. Prove that 

I ordpf = 0, 
p 

where the sum is taken over all points P which are either points of C, or 
P = 00. 

12. Let Pj (i = 1, ... , r) be points of C or 00, and let mj be integers such that 

r 

I mj=O. 
i=l 

Prove that there exists a meromorphic function f on the Riemann sphere 
such that 

for i= 1, ... ,r 

and ordp f = 0 if P # p;. 



CHAPTER VI 

Calculus of Residues 

We have established all the theorems needed to compute integrals of 
analytic functions in terms of their power series expansions. We first 
give the general statements covering this situation, and then apply them 
to examples. 

VI, §1. THE RESIDUE FORMULA 

Let 
ao 

J{z) = L an{z - zo)" 
n=-oo 

have a Laurent expansion at a point zoo We call a-1 the residue of fat 
zo, and write 

Theorem 1.1. Let Zo be an isolated singularity of f, and let C be a 
small circle oriented counterclockwise, centered at Zo such that f is 
holomorphic on C and its interior, except possibly at zoo Then 

L f(C) dC = 2nia_1 = 2ni Reszo f 

Proof Since the series for f(C) converges uniformly and absolutely for 
C on the circle, we may integrate it term by term. The integral of 

173 
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(( - zo)n over the circle is equal to 0 for all values of n except possibly 
when n = - 1, in which case we know that the value is 2ni, cf. Examples 
1 and 4 of Chapter III, §2. This proves the theorem. 

From this local result, we may then deduce a global result for more 
general paths, by using the reduction of Theorem 2.4, Chapter IV. 

Theorem 1.2 (Residue Formula). Let U be an open set, and y a closed 
chain in U such that y is homologous to 0 in U. Let f be analytic on U 
except at a finite number of points z l' .. , ,Zn' Let mi = W(y, zJ Then 

f f = 2n.J=l .t mi' Resz, f· 
y ,=1 

Proof Immediate by plugging Theorem 1.1 in the above mentioned 
theorem of Chapter IV. 

Theorem 1.2 is used most often when U is simply connected, in which 
case every closed path is homologous to 0 in U, and the hypothesis on y 
need not be mentioned explicitly. In the applications, U will be a disc, 
or the inside of a rectangle, where the simple connectedness is obvious. 

Remark. The notation J=1 is the standard device used when we 
don't want to confuse the complex number i with an index i. 

We shall give examples how to find residues. 
A pole of a function f is said to be simple if it is of order 1, in which 

case the power series expansion of f is of type 

and a-I =1= O. 

Lemma 1.3. 

f(z) = ~ + ao + higher terms, 
z - Zo 

(a) Let f have a simple pole at zo, and let g be holomorphic at zo. 
Then 

(b) Suppose f(zo) = 0 but f'(zo) =1= O. Then 11f has a pole of order 1 
at Zo and the residue of Ilf at Zo is 1/1' (zo)· 
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Proof. (a) Let f(z) = a_i/(z - zo) + higher terms. Say Zo = 0 for sim­
plicity of notation. We have 

f(z)g(z) = (a~i + ... }bo + biz + ... ) 

a_ibo h' h = -- + Ig er terms, 
z 

so our assertion is clear. 
(b) Let f(zo) = 0 but f'(zo) =1= O. Then f(z) = a i (z - zo) + higher 

terms, and a i =1= O. Say Zo = 0 for simplicity. Then 

f(z) = ai z(l + h) with ord h ~ 1, 

so 

_1_ = _1_(1 _ h + h2 _ •.. ) = _1_ + higher terms, 
f(z) aiz aiz 

so res(l/f) = a~i = 1/1'(0), as was to be shown. 

Remark. Part (a) of the lemma merely repeats what you should have 
seen before, to make this chapter more systematic. 

Example. We give an example for part (b) of the lemma. Let f(z) = 

sin z. Then f has a simple zero at z = n, because f'(z) = cos z and 
f'(n) = -1 =1= O. Hence l/f(z) has a simple pole at z = n, and 

1 1 
res,,-.- = -- = -1. 

8m z cos n 

2 

Example. Find the residue of f(z) = -!-1 at z = 1. 
z -

To do this, we write 

Z2 

f(z) = (z + 1Hz - 1) 

Note that g(z) = Z2/(Z + 1) is holomorphic at 1, and that the residue of 
l/(z - 1) is 1. Hence 

Resi f = g(l) = 1/2. 
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Example. Find the residue of (sin Z)/Z2 at z = O. We have 

= ~ + higher terms. 
z 

Hence the desired residue is 1. 

2 

Example. Find the residue of J(z) = (z + 1;(Z _ W at z = 1. 

We note that the function 

Z2 
g(z)=­

z+1 

is holomorphic at z = 1, and has an expansion of type 

g(z) = bo + bl(z - 1) + higher terms. 

Then 

g(z) bo bl 

J(z) = (z - W = (z - 1)2 + (z - 1) + ... 

[VI, §1] 

and therefore the residue of J at 1 is bl , which we must now find. We 
write z = 1 + (z - 1), so that 

1 + 2(z - 1) + (z + 1)2 
---

2(1 + t(z - 1») z + 1 

Inverting by the geometric series gives 

Z2 1 (3 ) -- = - 1 + -(z - 1) + ... . 
z + 1 2 2 

Therefore 
1 3/4 

J(z) = 2(z _ 1)2 + Z - 1 + ... 

whence Res l J = 3/4. 
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Example. Let C be a circle centered at 1, of radius 1. Let 

Z2 

J(z) = (z + l)(z _ 1)2· 

Find Ie f. 
The function J has only two singularities, at 1 and -1, and the circle 

is contained in a disc of radius > 1, centered at 1, on which J is 
holomorphic except at z = 1. Hence the residue formula and the preced­
ing example give us 

c 

-\ 

Figure 1 

If C is the boundary of the rectangle as shown on Fig. 2, then we also 
find 

C 

-\ \ 

Figure 2 
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Example. Let I(z) = Z2 - 2z + 3. Let C be a rectangle as shown on 
Fig. 3, oriented clockwise. Find 

C 
el +;..[2 

I 

el- ;..[2 

Figure 3 

The roots of I(z) are found by the quadratic formula to be 

2±J=8 
2 

and so are z 1 = 1 + iJ2 and z 2 = 1 - iJ2. The rectangle goes around 
these two points, in the clockwise direction. The residue of l/l(z) at Zl is 
l/(Zl - Z2) because I has a simple pole at Zl' The residue of l/l(z) at Z2 

is 1/(z2 - zd for the same reason. The desired integral is equal to 

- 2ni(sum of the residues) = O. 

Example. Let I be the same function as in the preceding example, but 
now find the integral of 1/1 over the rectangle as shown on Fig. 4. The 
rectangle is oriented clockwise. In this case, we have seen that the resi­
due at 1 - iJ2 is 

1 1 
--=--= 
Z2 - Zl -2i.Ji 

Therefore the integral over the rectangle is equal to 

-2ni(residue) = -2ni/( -2iJ2) = n/J2. 
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1 - i..[2 
• 

Figure 4 
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Next we give an example which has theoretical significance, besides 
computational significance. 

Example. Let f have a power series expansion with only a finite 
number of negative terms (so at most a pole), say at the origin, 

f(z) = amzm + higher terms, 

and m may be positive or negative. Then we can write 

where h(z) is a power series with zero constant term. For any two 
functions f, g we know the derivative of the product, 

(fg)' = I'g + fg', 

so that dividing by fg yields 

(fg)' I' g' 
-=-+-. 
fg f g 

Therefore we find for f(z) = (amzm)(1 + h(z)), 

I'(z) m h'(z) 
-~=-+---
f(z) z 1 + h(z) 

and h'(z)/(l + h(z)) is holomorphic at O. Consequently, we get: 
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Lemma 1.4. Let f be meromorphic at O. Then 

Reso I'lf = ordo f 

and for any point Zo where f has at most a pole, 

Theorem 1.5. Let y be a closed chain in U, homologous to 0 in U. Let 
f be meromorphic on U, with only a finite number of zeros and poles, 
say at the points Zl' ""Zn' none of which lie on y. Let mi = W(y, zJ 
Then 

{ 1'1 f = 2nJ=1 L mi ordzi f. 

Proof. This is immediate by plugging the statement of the lemma into 
the residue formula. 

In applications, y is frequently equal to a circle C, or a rectangle, and 
the points Z 1, •.. ,Zn are inside C. Suppose that the zeros of f inside C 
are 

and the poles are 

Then in the case, 

We follow our convention whereby the multiplicity of a pole is the nega­
tive of the order of f at the pole, so that 

by definition. 
If one counts zeros and poles with their multiplicities, one may re­

phrase the above formula in the more suggestive fashion: 

Let C be a simple closed curve, and let f be meromorphic on C and its 
interior. Assume that f has no zero or pole on C. Then 

L I'lf = 2ni (number of zeros - number of poles), 
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where number of zeros = number of zeros of f in the interior of C, and 
number of poles = number of poles of f in the interior of C. 

Of course, we have not proved that a simple closed curve has an 
"interior". The theorem is applied in practice only when the curve is so 
explicitly given (as with a circle or rectangle) that it is clear what "inte­
rior" is meant. 

Besides, one can (not so artificially) formalize what is needed of the 
notion of "interior" so that one can use the standard language. Let y be 
a closed path. We say that y has an interior if W(y,O() = 0 or 1 for every 
complex number 0( which does not lie on y. Then the set of points 0( 

such that W(y, O() = 1 will be called the interior of y. It's that simple. 

Theorem 1.6 (Rouche's Theorem). Let y be a closed path homologous to 
o in U and assume that y has an interior. Let f, g be analytic on U, 
and 

If(z) - g(z) I < I f(z) I 

for z on y. Then f and g have the same number of zeros in the interior 
of y. 

Proof Note that the assumption implies automatically that f, g have 
no zero on y. We have 

Ig(Z) - 11 < 1 
f(z) 

for z on y. Then the values of the function glf are contained in the open 
disc with center 1 and radius 1. Let F = glf Then F 0 Y is a closed path 
contained in that disc, and therefore 

W(F 0 y, 0) = 0 

because 0 lies outside the disc. If y is defined on [a, b] then 

o = W(F 0 y, 0) = r ~ dz = fb ~ttN y'(t) dt 
JFoY Z a yt 

= {F'IF 

= { g'lg - I'lf 

What we want now follows from Theorem 1.5, as desired. 
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Example. Let P(z) = Z8 - 5z3 + Z - 2. We want to find the number 
of roots of this polynomial inside the unit circle. Let 

For Izl = 1 it is immediate that 

IJ(z) - P(z)1 = I_Z8 - Z + 21 < I J(z) I = 5. 

Hence J and P have the same number of zeros inside the unit circle, and 
this number is clearly equal to 3. (Remember, you have to count multi­
plicities, and the equation 

has one zero with multiplicity 3.) 

We shall use Rouche's theorem to give an alternative treatment of the 
inverse function theorem, not depending on solving for an inverse power 
series as was done in Chapter II, §5. 

Theorem 1.7. Let J be analytic in a neighborhood oj a point zo, and 
assume f'(zo) "# 0. Then J is a local analytic isomorphism at zoo 

Proof. Making translations, we may assume without loss of generality 
that Zo = ° and J(zo) = 0, so that 

00 

J(z) = L anzn, 
n=m 

and m ~ 1. Since 1'(0) = a1 we have m = 1 and a1 "# 0. Dividing by a1 
we may assume without loss of generality that a1 = 1. Thus J has the 
power series expansion 

J(z) = z + h(z), 

where h(z) is divisible by Z2. In particular, if we restrict the values of z 
to some sufficiently small disc around 0, then there is a constant K > ° 
such that 

Let C, be the circle of radius r, and let IIXI < r/2. Let r be sufficiently 
small, and let 

Ja(z) = J(z) - IX and 
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We have the inequality 

If z is on C" that is Izl = r, then 

because Iz - al > r/2 and Kr2 < r/2 (for instance, taking r < 1/2K). By 
Rouche's theorem, fa and ga have the same number of zeros inside Cr, 
and since ga has exactly one zero, it follows that fa has exactly one zero. 
This means that the equation 

f(z) = a 

has exactly one solution inside Cr if lal < r/2. 
Let U be the set of points z inside Cr such that 

If(z) I < r/2. 

Then U is open because f is continuous, and we have just shown that 

f: U --+ D(O, r/2) 

is a bijection of U with the disc of radius r/2. The argument we have 
given also shows that f is an open mapping, and hence the inverse 
function 

<P: D(O, r/2) -+ U 

is continuous. There remains only to prove that <p is analytic. As in 
freshman calculus, we write the Newton quotient 

<p(W)-<P(Wl) Z-Zl 

W - W1 f(z) - f(zd' 

Fix W1 with I w11 < r/2, and let W approach W1 . Since <p is continuous, it 
must be that z = <p(w) approaches Zl = <P(Wl)' Thus the right-hand side 
approaches 

provided we took r so small that I' (z 1) "# 0 for all z 1 inside the circle of 
radius r, which is possible by the continuity of I' and the fact that 
1'(0) "# O. This proves that <p is holomorphic, whence analytic and con­
cludes the proof of the theorem. 
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Residues of Differentials 

Let J(T) = L an Tn be a power series with a finite number of negative 
terms. We defined the residue to be a-l' This was convenient for a 
number of applications, but in some sense so far it constituted an incom­
plete treatment of the situation with residues because this definition did 
not take into account the chain rule when computing integrals by means 
of residues. We shall now fill the remaining gap. 

Let U be an open set in C. We define a meromorphic differential on 
U to be an expression of the form 

(J) = J(z) dz 

where J is meromorphic on U. Let Zo E U. Then J has a power series 
expansion at zo, say 

00 

(1) J(z) = L an(z - zo)n = Jo(z - zo)· 
n=m 

Often one wants to make a change of coordinate. Thus we define a 
function w to be a local coordinate at Zo if w has a zero of order 1 at Zo. 

Then w is a local isomorphism at zo, and there is a power series h such 
that 

(2) z - Zo = h(w) = Cl w + higher terms with Cl =/: O. 

Then substituting (2) in (1) we obtain 

(3) J(z) dz = Jo(h(w))h'(w) dw = g(w) dw, 

where g(w) = Jo(h(w))h'(w) also has a power series expansion in terms of 
W. We denote the coefficients of this power series by bIt, so that 

00 

(4) g(w) = L b"w". 
n=m 

Since h(w) has order 1, h'(O) = Cl =/: 0, it follows that the power series for 
9 also has order m. Of course, the coefficients for the power series of 9 
seem to be complicated expressions in the coefficients for the power series 
for J. However, it turns out that the really important coefficient, namely 
the residue b_l , has a remarkable invariance property, stated in the next 
theorem. 

Theorem 1.S. Let w be a local coordinate at Zo. Let (J) be a mero­
morphic differential in a neighborhood oj zo, and write (J) = J(z) dz = 
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g(w) dw, where f, g are meromorphic functions, with the power series 
expansions as in (1) and (4) above. Then the residues of the power series 
for f and g are equal, that is 

Proof. Let y be a small circle around Zo in the z-plane. Let w = cp(z). 
Then 

b_ i = -21 . f g(w) dw = -21 . f f(z) dz = a_i , 
m 'Poy m y 

which proves the theorem. 

In light of Theorem 1.8, we define the residue of a meromorphic 
differential f(z) dz at a point Zo as follows. We let w be a local coordi­
nate at Zo. (Thus w may be z - zo, but there are plenty of other local 
coordinates.) We write the differential as a power series in w, 

OJ = g(w) dw with 

and we define the residue of the differential to be 

This value b_ i is independent of the choice of coordinate at Zo. Using 
residues of differentials rather than residues of power series will be espe­
cially appropriate when the change of variables formula enters into con­
sideration, for example in Exercises 35 and 36 below, when we deal with 
residues "at infinity" using the change of coordinate w = liz. 

Remark. We could have defined a merom orphic differential on U also 
as an expression of the form f dg where f and g are merom orphic. If w 
is a local coordinate at zo, then both f and g have power series expan­
sions in terms of w, so 

dg 
f dg = f(w) dw dw. 

However, if U is an open set and f is a merom orphic function on U, not 
constant, then note that d logf is a meromorphic differential on U, be­
cause 

f'(z) 
d logf(z) = f(z) dz. 

Even though logf itself is not well defined on U, because of the ambigu-
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ity arising from the constant of integration, taking the derivative elimi­
nates this constant, so that the differential itself is well defined. 

VI, §1. EXERCISES 

Find the residues of the following functions at O. 

1. (Z2 + 1)/z 

3. Z3/(Z - l)(z4 + 2) 

5. (sin Z)/Z4 

7. (sin Z)/Z6 

9. eZ/z 

11. eZ/z3 

13. Z-2 10g(1 + z) 

2. (Z2 + 3z - 5)/Z3 

4. (2z + 1)/z(z3 - 5) 

6. (sin Z)/Z5 

8. (sin z)/z 7 

10. ez/z 2 

12. ez/z4 

14. eZ/sin z 

Find the residues of the following functions at 1. 

15. 1/(z2 - l)(z + 2) 16. (Z3 - l)(z + 2)/(Z4 _ 1)2 

17. Factor the polynomial z· - 1 into factors of degree 1. Find the residue at 1 
of 1/(z' - 1). 

18. Let z l' ... ,z. be distinct complex numbers. Let C be a circle around z~ such 
that C and its interior do not contain Zj for j > 1. Let 

J(z) = (z - zd(z - Z2)"'(z - z.). 

Find 

19. Find the residue at i of 1/(z4 - 1). Find the integral 

where C is a circle of radius 1/2 centered at i. 

20. (a) Find the integral 

f 1 
2 dz, 

c z - 3z + 5 

where C is a rectangle oriented clockwise, as shown on the figure. 
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4~ ________ ~ _____ C~~ 

o 10 

Figure 5 

(b) Find the integral L 1/(z2 + z + 1) dz over the same C. 

(c) Find the integral L 1/(z2 - Z + 1) dz over this same C. 

187 

21. (a) Let Zl, ... ,Zn be distinct complex numbers. Determine explicitly the 
partial fraction decomposition (i.e. the numbers ai): 

a1 an 
.,------- = -- + ... + --
(z-ztl···(z-zn) Z-Zl z-z; 

(b) Let P(z) be a polynomial of degree ~ n - 1, and let a1, ... ,an be distinct 
complex numbers. Assume that there is a partial fraction decomposition 
of the form 

PW C1 ~ 
----'--'---~ = -- + ... +--
(z-ad···(z-an) Z-a1 z-a; 

Prove that 

and similarly for the other coefficients cj • 

22. Let 1 be analytic on an open disc centered at a point zo, except at the point 
itself where 1 has a simple pole with residue equal to an integer n. Show that 
there is an analytic function 9 on the disc such that 1 = g'/g, and 

g(z) = (z - zo)nh(z), where h is analytic and h(zo) f:. O. 

(To make life simpler, you may assume Zo = 0.) 

23. (a) Let 1 be a function which is analytic on the upper half plane, and on 
the real line. Assume that there exist numbers B > 0 and C > 0 such 
that 

B 
1/(0 ~ me 
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for all ,. Prove that for any z in the upper half plane, we have the 
integral formula 

f(z) = ~ foo f(t) dt. 
2m -00 t - z 

[Hint: Consider the integral over the path shown on the figure, and take the 
limit as R -> 00.] 

Figure 6 

The path consists of the segment from - R to R on the real axis, and the 
semicircle SR as shown. 
(b) By using a path similar to the previous one, but slightly raised over the 

real axis, and taking a limit, prove that the formula is still true if instead 
of assuming that f is analytic on the real line, one merely assumes that f 
is continuous on the line, but otherwise satisfies the same hypotheses as 
before. 

24. Determine the poles and find the residues of the following functions. 

(a) l/sin z (c) z/(l - cos z). 

25. Show that 

i cos e- Z 

--2- dz = 2ni· sin 1. 
Izl=l z 

26. Find the integrals, where C is the circle of radius 8 centered at the origin. 

f 1 f 1 (a) --dz (b) dz 
e smz e 1 - cos z 

(c) i~dZ e 1 - eZ 
(d) Ie tan z dz 

(e) . dz f 1 + z 
e 1 - smz 
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27. Let f be holomorphic on and inside the unit circle, Izl ~ 1, except for a pole 
of order 1 at a point zo on the circle. Let f = L a.z· be the power series for 
f on the open disc. Prove that 

. a. 
hm-=zo' 
n ..... oo an+1 

28. Let a be real> 1. Prove that the equation zea- z = 1 has a single solution with 
Izl ~ 1, which is real and positive. 

29. Let U be a connected open set, and let D be an open disc whose closure is 
contained in U. Let f be analytic on U and not constant. Assume that the 
absolute value If I is constant on the boundary of D. Prove that f has at 
least one zero in D. [Hint: Consider g(z) = f(z) - f(zo) with Zo ED.] 

30. Let f be a function analytic inside and on the unit circle. Suppose that 
If(z) - zl < Izl on the unit circle. 
(a) Show that 1/,(1/2)1 ~ 8. 
(b) Show that f has precisely one zero inside of the unit circle. 

31. Determine the number of zeros of the polynomial 

inside the circl" 
(a) of radius 1, 
(b) of radius 2, centered at the origin. 
(c) Determine the number of zeros of the polynomial 

2Z 5 - 6z2 + z + 1 = 0 

in the annulus 1 ~ Izl ~ 2. 

32. Let J, h be analytic on the closed disc of radius R, and assume that J(z) "# 0 
for z on the circle of radius R. Prove that there exists E > 0 such that J(z) 
and f(z) + Eh(z) have the same number of zeros inside the circle of radius R. 
Loosely speaking, we may say that f and a small perturbation of f have the 
same number of zeros inside the circle. 

33. Let f(z) = a.z· + ... + ao be a polynomial with a. =1= O. Use Rouche's theo­
rem to show that f(z) and a.z· have the same number of zeros in a disc of 
radius R for R sufficiently large. 

34. (a) Letfbe analytic on the closed unit disc. Assume that If(z)1 = 1 if Izi = 1, 
and f is not constant. Prove that the image of f contains the unit disc. 

(b) Letfbe analytic on the closed unit disc D. Assume that there exists some 
point Zo ED such that If(zo) I < 1, and that If(z)1 ~ 1 if Izi = 1. Prove 
that f(D) contains the unit disc . 

• 
35. Let P,,(z) = L Zk/k!. Given R, prove that p" has no zeros III the disc of 

k=O 
radius R for all n sufficiently large. 
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36. Let Zi' "',Zn be distinct complex numbers contained in the disc Izl < R. Let 
J be analytic on the closed disc D(O, R). Let 

Q(z) = (z - zd"'(z - zn). 

Prove that 

P(z) = -\ r J(C) 1 - Q(z)/Q(C) dC 
2mJc. C-z 

is a polynomial of degree n - 1 having the same value as J at the points 

37. Let J be analytic on C with the exception of a finite number of isolated 
singularities which may be poles. Define the residue at infinity 

res<rJ J(z) dz = --\ r J(z) dz 
2m Jlzl=R 

for R so large that J has no singularities in Izl ~ R. 
(a) Show that res", J(z) dz is independent of R. 
(b) Show that the sum of the residues of J at all singularities and the 

residue at infinity is equal to O. 

38. Cauchy's Residue Formula on the Riemann Sphere. Recall Exercise 2 of 
Chapter V, §3 on the Riemann sphere. By a (meromorphic) difl'erential w on 
the Riemann sphere S, we mean an expression of the form 

w = J(z)dz, 

where J is a rational function. For any point Zo E C the residue of w at Zo is 
defined to be the usual residue of J(z) dz at zoo For the point 00, we write 
t = liz, 

so we write 

1 
dt = --dz 

z2 
and 

1 
dz = --dt 

t2 ' 

w = J(l/t) ( -~) dt = -~J(l/t) dt. 

The residue of w at infinity is then defined to be the residue of -~J(l/t) dt 
at t = O. Prove: t 
(a) L residues w = 0, if the sum is taken over all points of C and also 

infinity. 
(b) Let y be a circle of radius R centered at the origin in C. If R is 

sufficiently large, show that 

-\ f J(z) dz = - residue of J(z) dz at infinity. 
2m y 
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(Instead of a circle, you can also take a simple closed curve such that all 
the poles of J in C lie in its interior.) 

(c) If R is arbitrary, and J has no pole on the circle, show that 

~ f J(z) dz = - L residues of J(z) dz outside the circle, 
2m Y • I d' h 'd mc u mg teres! ue at 00. 

[Note: In dealing with (a) and (b), you can either find a direct algebraic 
proof of (a), as in Exercise 38 and deduce (b) from it, or you can prove 
(b) directly, using a change of variables t = liz, and then deduce (a) from 
(b). You probably should carry both ideas out completely to understand 
fully what's going on.] 

39. (a) Let P(z) be a polynomial. Show directly from the power series expan­
sions of P(z) dz that P(z) dz has 0 residue in C and at infinity. 

(b) Let rx be a complex number. Show that dz/(z - rx) has residue -1 at 
infinity. 

(c) Let m be an integer ~ 2. Show that dz/(z - rx)m has residue 0 at infinity 
and at all complex numbers. 

(d) Let J(z) be a rational function. The theorem concerning the partial 
fraction decomposition of J states that J has an expression 

where rx l , .. , ,rx. are the roots of the denominator of J, aij are constants, 
and P is some polynomial. Using this theorem, give a direct (algebraic) 
proof of Exercise 37(a). 

40. Let a, bEe with lal and Ibl < R. Let CR be the circle of radius R. Evaluate 

f zdz 

c. J(z - a)(z - b)' 

The square root is chosen so that the integrand is continuous for Izl > Rand 
has limit 1 as Izl ..... 00. 

VI, §2. EVALUATION OF DEFINITE INTEGRALS 

Let f(x) be a continuous function of a real variable x. We want to 
compute 

Joo f(x) dx = lim JO f(x) dx + lim JB f(x) dx. 
-00 A .... oo -A B .... oo 0 

We shall use the following method. We let y be the closed path as 
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indicated on Fig. 7, consisting of a segment on the real line, and a 
semicircle. 

Figure 7 

We suppose that J(x) is the restriction to the line oj a Junction J on the 
upper half plane, meromorphic and having only a finite number oj poles. 
We let JR be the segment from - R to R, and let SR be the semicircle. If 
we can prove that 

lim f J=O 
R-+oo SR 

then by the residue formula, we obtain 

f~ J(x) dx = 2ni L residues of J in the upper half plane. 

For this method to work, it suffices to know that J(z) goes sufficiently 
fast to 0 when Izl becomes large, so that the integral over the semicircle 
tends to 0 as the radius R becomes large. It is easy to state conditions 
under which this is true. 

Theorem 2.1. Suppose that there exists a number B > 0 such that Jor 
alllzi sufficiently large, we have 

Then 

lim f J=O 
R-+oo SR 

and the above Jormula is valid. 

Proof The integral is estimated by the sup norm of J, which is B/R2 
by assumption, multiplied by the length of the semicircle, which is nR. 
Since nB/R tends to 0 as R -+ 00, our theorem is proved. 
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Remark. We really did not need an R2, only R1+a for some a> 0, so 
the theorem could be correspondingly strengthened. 

Example. Let us compute 

foo 1 
-4--1 dx. 

-00 x + 

The function 1/(z4 + 1) is meromorphic on C, and its poles are at the 
zeros of Z4 + 1, that is the solutions of Z4 = -1, which are 

e1tik/4, k = 1, - 1, 3, - 3. 

Let J(z) = Z4 + 1. Since !'(z) = 4z3 =F 0 unless z = 0, we conclude that all 
the zeros of J are simple. The two zeros in the upper half plane are 

and 

The residues of I/J(z) at these points are 1/!'(Zl)' 1/!'(z2)' respectively, 
by Lemma l.3(b), and 

The estimate 

1
_1 I~B/R4 
Z4 + 1 -

is satisfied for some constant B when Izl = R. Hence the theorem 
applies, and 

foo _1_ dx = 2ni(.1e- 31ti/4 + .1e-1ti/4 ) 
4 + 1 4 4 

-00 X 

= ni e-1ti/4(e-21ti/4 + 1) 
2 

= ~i C~i)(1- i) 

The estimate for 1/(z4 + 1) on a circle of radius R presented no 
subtlety. We give an example where the estimate takes into account a 
different phenomenon, and a different path. The fact that the integral 
over the part going to infinity like the semicircle tends to 0 will be due 
to a more conditional convergence, and the evaluation of an integral 
explicitly. 
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Fourier Transforms 

Integrals of the form discussed in the next examples are called Fourier 
transforms, and the technique shows how to evaluate them. 

Theorem 2.2. Let f be meromorphic on C, having only a finite number 
of poles, not lying on the real axis. Suppose that there is a constant K 
such that 

If(z) I ~ K/izi 

for all sufficiently large Izl. Let a> O. Then 

f:oo f(x)e iaX dx = 21ti L residues of eiGZf(z) in the upper half plane. 

Proof. For simplicity, take a = 1. We integrate over any rectangle as 
shown on Fig. 8, taking T = A + B. Taking A, B > 0 sufficiently large, 
it suffices to prove that the integral over the three sides other than the 
bottom side tend to 0 as A, B tend to infinity. 

-A +iT iT B+iT 

-A B 

Figure 8 

Note that 

In absolute value this is e-Y, and tends to 0 rapidly as y tends to infinity. 
We show that the integral over the top tends to O. Parametrizing the 
top by x + iT, with -A ~ x ~ B, we find 
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and in absolute value, this is less than 

e- T fB If(x + iT)1 dx ~ e-TK (A + B). 
-A T 

Having picked T = A + B shows that this integral becomes small as A, B 
become large, as desired. 

For the right-hand side, we pick the parametrization 

B + iy, with ° ~ y ~ T, 

and we find that the right-hand side integral is bounded by 

which tends to ° as B becomes large. A similar estimate shows that the 
integral over the left side tends to 0, and proves what we wanted. 

Next we show an adjustment of the above techniques when the func­
tion may have some singularity on the real axis. We do this by an 
example. 

Example. Let us compute 

I = foo sin x dx = ~ foo sin x dx. 
o x 2 -00 x 

= 21. lim [J-€ eix dx + foo eix dX]. 
l €--+O -00 X € X 

Note that the integral I converges, although not absolutely. It is an 
oscillatory integral. The estimate for convergence comes from integration 
by parts, and is left to the reader. We can then use the technique of 
complex analysis to evaluate the integral. We use the closed path C as 
shown on Fig. 9. To compute such an integral, one has to show that both 
limits exist, and then one can deal with the more symmetric expression 

Joo f(x) dx = lim JR f(x) dx. 
-00 R--+oo -R 

Figure 9 
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Let S(E) be the small semicircle from E to -E, oriented counterclock­
wise, and let S(R) be the big semicircle from R to - R similarly oriented. 
The function eizjz has no pole inside C, and consequently 

0= [ eizjz dz = [ + f- E 
- [ + fR eizjz dz. 

Jc JS(R) -R JS(E) E 

Hence 

f-E + fR eizjz dz = [ eizjz dz - [ eizjz dz 
-R E JS(E) JS(R) 

We now assert that 

lim IS(R) = O. 
R-+oo 

Proof We have for z = R(cos e + i sin e), 

so that 

f" f"/2 I IS(R) I ~ 0 e-Rsin9 de = 2 0 e-Rsin9 de. 

But if 0 ~ e ~ nj2, then sin e ~ 2ejn (any similar estimate would do), and 
hence 

n -R = -(1 - e ) 
R 

by freshman calculus. This proves our assertion. 

There remains to evaluate the limit of IS(E) as E ---t O. We state this as a 
general lemma. 

Lemma. Let 9 have a simple pole at O. Then 

lim [ g(z) dz = ni Reso(g). 
E-+O J S(E) 
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Proof. Write 

EVALUATION OF DEFINITE INTEGRALS 

a 
g(z) = - + h(z), 

z 
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where his holomorphic at O. Then the integral of hover S(E) approaches 
o as E -+ 0 because the length of S(E) approaches 0 and h is bounded near 
the origin. A direct integration of alz shows that the integral of alz over 
the semicircle is equal to nia. This proves the lemma. 

We may therefore put everything together to find the value 

Trigonometric Integrals 

f 00 sin x dx = n12. 
o x 

We wish to evaluate an integral of the form 

f 2" 

o Q(cos e, sin e) de, 

where Q is a rational function of two variables, Q = Q(x, y), which we 
assume is continuous on the unit circle. Since 

e i6 + e- i6 

cos e = 2 and 

we see that these expressions are equal to 

z + liz 
2 

and 

ei6 _ e- i6 

sin (J = 2i ' 

z - liz 
2i 

respectively, when z lies on the unit circle, z = ei6• It is therefore natural 
to consider the function 

Q(! (z + !),~ (z -!)) 
J(z) = 2 z. 2, z 

'z 

(the denominator iz is put there for a purpose which will become appar­
ent in a moment). This function J is a rational function of z, and in view 
of our assumption on Q, it has no pole on the unit circle. 
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Theorem 2.3. Let Q(x, y) be a rational function which is continuous 
when x 2 + y2 = 1. Let f(z) be as above. Then 

1
211 

o Q(cos e, sin e) de = 2ni L residues of f inside the unit circle. 

Proof Let C be the unit circle. Then 

L f(z) dz = 2ni L residues of f inside the circle. 

On the other hand, by definition the integral on the left is equal to 

1
211 1211 

o f(e i8 )ie i8 de = 0 Q(cos e, sin e) de, 

as desired. [The term iz in the denominator of f was introduced to 
cancel ie i8 at this point.] 

Example. Let us compute the integral 

I = de 1211 1 

o a + sin e 

where a is real > 1. By the theorem, 

I = 2n L residues of 2 2~i 1 inside circle. 
z + laz-

The only pole inside the circle is at 

Zo = -ia + iJa2=! 

and the residue is 

1 
--- = ----;0== 
Zo + ia Ja2=!' 

Consequently, 

1- 2n 
- Ja2=!' 
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Mellin Transforms 

We give a final example introducing new complications. Integrals of type 

foo dx 
f(x)x a -

o X 

are called Mellin transforms (they can be viewed as functions of a). We 
wish to show how to evaluate them. We assume that f(z) is analytic on C 
except for a finite number of poles, none of which lies on the positive real 
axis ° < x, and we also assume that a is not an integer. Then under 
appropriate conditions on the behavior of f near 0, and when x becomes 
large, we can show that the following formula holds: 

foo dx ne-1tia 

f(x)x a - = - -. - L residues of f(z)za-l at the 
o x sm na poles of f, excluding the residue at 0. 

We comment right away on what we mean by za-l, namely za-l is 
defined as 

za-l = e(a-l) log z, 

where the log is defined on the simply connected set equal to the plane 
from which the axis x ~ ° has been deleted. We take the value for the 
log such that if z = re i8 and ° < () < 2n, then 

log z = log r + if). 

Then, for instance, 

log i = nij2 and log( - i) = 3nij2. 

Precise sufficient conditions under which the formula is true are given 
in the next theorem. They involve suitable estimates for the function f 
near ° and infinity. 

Theorem 2.4. The formula given for the integral 

foo dx 
f(x)x a -, 

o X 
with a> 0, 

is valid under the following conditions: 
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1. There exists a number b > a such that 

If(z) I ~ l/Izlb for Izl- 00. 

2. There exists a number b' with 0 < b' < a such that 

If(z) I ~ l/Izlb' for Izl- o. 

The symbol ~ means that the left-hand side is less than or equal to 
some constant times the right-hand side. 

For definiteness, we carry out the arguments on a concrete example, 
and let the reader verify that the arguments work under the conditions 
stated in Theorem 2.4. 

Example. We shall evaluate for 0 < a < 2: 

('" _l_xa dx = n cos an/2 
J 0 x 2 + 1 x sin an 

We choose the closed path C as on Fig. 10. Then C consists of two line 
segments L + and L -, and two pieces of semicircles S(R) and - S(€), if we 
take S(€) oriented in counterclockwise direction. The angle q> which the 
two segments L + and L - make with the positive real axis will tend to O. 

-R R 

Figure 10 

We let 
1 g(z) = __ za-l. 

Z2 + 1 
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Then g(z) has only simple poles at z = i and z = - i, where the residues 
are found to be: 

at i' ~ e(a-l) log i = ~ e(a-l)"i/2 
. 2i 2i ' 

at -i' _~e(a-l)log(-i) = _~e(a-l)3"i/2 
. 2i 2i' 

The sum of the residues inside C is therefore equal to 

~i (e(a-l)1li/2 - e(a-l)31li/2) = _eD1li cos(an/2) , 

after observing that e"i/2 = i, e-3"i/2 = i, and factoring out ea"i from the 
sum. 

The residue formula yields 

where Ix denotes the integral of f(z) over the path X. We shall prove: 

The integrals IS(R) and IS(E) tend to 0 as R becomes large and E" becomes 
small, independently of the angle qJ. 

Proof First estimate the integral over S(R). When comparing func­
tions of R, it is useful to use the following notation. Let F(R) and G(R) 
be functions of R, and assume that G(R) is > 0 for all R sufficiently 
large. We write 

F(R) ~ G(R) (for R -. (0) 

if there exists a constant K such that 

IF(R)I ;£ KG(R) 

for all R sufficiently large. 
With this notation, using za-l = e(a-l)logz, and 

Ilog zl ;£ log R + () ;£ log R + 2n, 

we find 
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Consequently from 11/(z2 + 1)1 ~ 1/R2 for Izl = R, we find 

Since we assumed that a < 2, the quotient Ra/R2 approaches 0 as R 
becomes large, as desired. The estimate is independent of qJ. 

We use a similar estimating notation for functions of €, 

F(€) ~ G(€) (for € --. 0) 

if there exists a constant K such that 

IF(€)I ~ KG(€) 

for all € > 0 sufficiently small. With this notation, for Izl = €, we have 

Hence 

Again since we assumed that a > 0, the right-hand side approaches 0 and 
E tends to 0, as desired. The estimate is independent of qJ. 

There remains to analyze the sums of the integrals over L + and L - . 
We parametrize L + by 

z(r) = rei'P, 
I 

so that log z(r) = log r + iqJ. Then 

f !(z)e(a-l)logZ dz = fR !(rei'P)e(a-l)(logr+i'P)ei'P dr 
L+ • 

= f.R !(rei'P)e(a-l)i'Pei'Pra-l dr 

--. f.R !(x)xa - 1 dx as qJ --. O. 

On the other hand, - L - is parametrized by 

€ ~ r ~ R, 
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and log z(r) = log r + i(2n - cp). Consequently, 

L- f(z)e(a-l)logz dz = - f.R f(re- iq»ra- 1e(a-l)(2,,-iq»e i(2,,-iq» dr 

= - f.R f(reiq»ra-leai(2,,-q» dr 

~ - f.R f(x)x a- 1e2"ia dx as cp ~ 0. 

Hence as cp ~ 0, we find 

= e"ia f.R f(X)x a- 1(e-"ia - e"ia) dx 

= 2ie"ia sin na f.R f(x)x a- 1 dx. 

Let C = C(R, E, cp) denote the path of integration. We obtain 

f f(z)za-l dz = 2ni L residues of f(z)za-l except at ° 
C(R, ','1') 

= IS(R,q» + Is(.,q» + E(R, E, cp) 

+ 2ie"ia sin na f.R !(x)xa-- 1 dx. 

203 

The expression E(R, E, cp) denotes a term which goes to ° as cp goes to 0, 
and we have put subscripts on the integrals along the arcs of the circle 
to show that they depend on R, E, cp. We divide by 2ie"ia sin na, and let 
cp tend to O. Then E(R, E, cp) approaches O. Consequently, 

f(x)x a- 1 dx -~ L = lim S(~':~a . S(.,q». f R -"ia 1 + 1 

• sm na '1'-0 2ze sm na 

The right-hand side has been seen to be uniformly small, independently 
of cp, and tends to 0 when R ~ 00 and E ~ O. Taking the limits as 
R ~ 00 and E ~ 0 proves what we wanted. 

Finally, we observe that in situations of contour integrals as we just 
considered, it is often the practice to draw the limit contour as in Fig. 11. 
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It is then understood that the value for the log when integrating over 
the segment from E to R from left to right, and the value for the log 
when integrating over the segment from R to E, are different, arising from 
the analytic expressions for the log with values () = 0 for the first and 
() = 2n for the second. 

-R R 

Figure 11 

For the Mellin transform of the gamma function, which provides an 
interesting special concrete case of the considerations of this section, see 
Exercise 7 of Chapter XV, §2. 

VI, §2. EXERCISES 

Find the following integrals. 

foo 1 
1. (a) -6-- dx = 2n/3 

-00 x + 1 

(b) Show that for a positive integer n ~ 2, 

{OO_I_dx=~ 
J 0 1 + xn sin n/n· 

[Hint: Try the path from 0 to R, then R to Re2ni/n, then back to 0, or 
apply a general theorem.] 

2. (a) foo 4X2 1 dx = nJi/2 (b) (<Xl -/-- dx = n/6 
-<Xl X + Jox+l 

3. Show that 

fOO x-I 4n 2n 
-s--dx = -sin-. 

-00 x-I 5 5 



[VI, §2] EVALUATION OF DEFINITE INTEGRALS 

4. Evaluate 

~dz, f -z2 

y z 
where,), is: 
(a) the square with vertices 1 + i, -1 + i, -1 - i, 1 - i. 
(b) the ellipse defined by the equation 

(The answer is 0 in both cases.) 

5. (a) fOO :iDX dx = ne-D if a > 0 
-00 x + 1 

(b) For any real number a > 0, 

fOO cos X 
-2--2 dx = ne-D/a. 

-00 x + a 

205 

[Hint: This is the real part of the integral obtained by replacing cos x 
byeix.] 

6. Let a, b > O. Let T ~ 2b. Show that 

_. -_. dz - e- ba ~ -(1 - e-TD ) + e-TD. 
1

1 fT eiDZ 
I 1 

2m -T z - Ib Ta 

Formulate a similar estimate when a < O. 

7. Let c > 0 and a> O. Taking the integral over the vertical line, prove that 

10 if a < 1, 

1 fC+ iOO aZ 

-. - dz = t if a = 1, 
2m c-ioo Z 

1 ifa>1. 

If a = 1, the integral is to be interpreted as the limit 

f<+iOO f<+iT 
= lim 

c-iao T-oo c-iT 

[Hint: If a> 1, integrate around a rectangle with corners c - Ai, c + Bi, 
-X + Bi, -X - Ai, and let X --+ 00. If a < 1, replace -X by X.] 

8. (a) Show that for a > 0 we have 
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(b) Show that for a > b > 0 we have 

100 sin2 x . 
9. -2- dx = n/2. [Hint: Consider the integral of (1 - e2"')/x2.] 

o x 

foo • cos x nsma .. . 
10. -2--2 dx = -- for a > O. The mtegral IS meant to be mterpreted as 

-00 a - x a 
the limit: 

f
- a- 6 fa-6 fB 

lim lim + + . 
B"oo 6 .. 0 -B -a+6 a+6 

11 fOO cos x d = n Use the indicated contour: 
• -00 e" + e "x e"/2 + e ,,/2· 

-R + 7ri 7ri R + 7ri 

f 
( 

1 ~ -R R 

Figure 12 

12. roo x sin x dx = ~ne-a if a> o. 
Jo x 2 + a2 2 

13. -- dx = -- for 0 < a < 1. fOO ea" n 

-00 e" + 1 sin na 

100 (log X)2 
14. (a) -1--2 dx = n3/8. Use the contour 

o + x 

Figure 13 

roo log x 
(b) Jo (x2 + 1)2 dx = -n/4. 

100 xa dx n 
15. (a) -- - = -. - for 0 < a < 1. 

ol+xx smna 
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(b) foo ~ dx _ n for 0 < a < 3. Jo 1 + x3 X 3 sin(na/3) 

16. Let f be a continuous function, and suppose that the integral 

ioo dx 
f(x)x·-

o x 

is absolutely convergent. Show that it is equal to the integral 

If we put g(t) = f(e'), this shows that a Mellin transform is essentially a 
Fourier transform, up to a change of variable. 

i2n 1 2n 
17. 2 2 0 dO = --2 if 0 < a < 1. The answer comes out the 

o l+a - acos I-a 

negative of that if a > 1. 

in 1 
18. . 20 dO = n/J2. 

o 1 + sm 

in 1 
19. 3 2 0 dO = n/J5. 

o + cos 

n 
20 - -:-----::--c.----;:: in a dO i2n a dO 

• 0 a2 + sin2 0 - 0 1 + 2a2 - cos 0 ~. 

i"/2 1 n(2a + 1) 
21. . 2 2 dO = 2 3/2 for a> O. 

o (a + sm 0) 4(a + a) 

22. fz.. 1. 0 dO = 2n/Ji Jo 2 - sm 

23 f 2" 1 dO _ 2na for 0 < b < a . . Jo (a + b cos 0)2 - (a2 _ b2)3/2 

24. Let n be an even integer. Find 

f2n J 0 (cos 0)" dO 

by the method of residues. 



CHAPTER VII 

Conformal Mappings 

In this chapter we consider a more global aspect of analytic functions, 
describing geometrically what their effect is on various regions. Espe­
cially important are the analytic isomorphisms and automorphisms of 
various regions, of which we consider many examples. 

Throughout the chapter, we use the words isomorphisms and auto­
morphisms, omitting the word analytic, as there will be no others under 
consideration. We recall that an isomorphism 

f: U -+ V 

is an analytic map which has an inverse analytic map 

g:V-+U, 

that is, fog = idy and go f = idu. We say that f is an automorphism if 
U = V. We let Aut(U) be the set of automorphisms of U. 

The main general theorem concerning isomorphisms is the Riemann 
mapping theorem: 

If U is a simply connected open set which is not the whole plane, then 
there exists an isomorphism of U with the unit disc. 

The general proof will be postponed to a later chapter. In the present 
chapter, we are concerned with specific examples, where the mapping can 
be exhibited concretely, in a simple manner. 

It will also be useful to the reader to recall some simple algebraic 
formalism about isomorphisms and automorphisms, listed in the follow-

208 
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ing properties. 

Let I: U -+ V and g: V -+ W be two isomorphisms. Then 

go I: U -+ W 
is an isomorphism. 

Let I, g: U -+ V be isomorphisms. Then there exists an automorphism h 
01 V such that g = h 0 f. 
Let I: U -+ V be an isomorphism. Then there is a bijection 

Aut(U) -+ Aut(V) 

given by 

The proofs are immediate in all cases. For instance, an inverse for 
go I is given by 1-10 g-l as one sees at once by composing these two 
maps in either direction. For the second statement, we have h = g 0 I-I. 
As to the third, if ({J is an automorphism of U then 1 0 ({J 0 I-I is an 
automorphism of V, because it is an isomorphism of V with itself. Simi­
larly, if'" is an automorphism of V then I-I 0'" 0 I is an automorphism 
of U. The reader will then verify that the associations 

and 

give maps between Aut(U) and Aut(V) which are inverse to each other, 
and hence establish the stated bijection between Aut(U) and Aut(V). The 
association ({J ~ 1 0 ({J 0 I-I is called conjugation by f. It shows that if we 
know the set of automorphisms of U, then we also know the set of 
automorphisms of V if V is isomorphic to U: It is obtained by conjuga­
tion. 

We also recall a result from Chapter II, Theorem 6.4. 

Let I be analytic on an open set U. II I is injective, and V = I(U) is its 
image, then 

I: U -+ V 

is an analytic isomorphism, and in particular, f'(z) ::F 0 Ior all z in U. 

This result came from the decomposition f(z) = ({J(z)m, where ({J is a local 
analytic isomorphism in the neighborhood of a point Zo in U, cf. Theo­
rem 5.4. 

Note that if I is analytic and f'(z) ::F 0 for all z in U, then we cannot 
conclude that I is injective. For instance let U be the open set obtained 
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by deleting the origin from the plane, and let fez) = Z3. Then f'(z) =f:. 0 
for all z in U, but f is not injective. 

On the other hand, by restricting the open set U suitably, the map 
ZHZ3 does become an isomorphism. For instance, let U be the sector 
consisting of all complex numbers z = re i6 with r > 0 and 0 < () < re/3. 
Then z H Z3 is an analytic isomorphism on U. What is its image? 

VII, §1. SCHWARZ LEMMA 

Let D be the unit disc of complex numbers z with Izl < 1. 

Theorem 1.1. Let f: D .-. D be an analytic function of the unit disc into 
itself such that f(O) = O. Then: 

(i) We have If(z) I ~ Izl for all ZED. 

(ii) If for some Zo =f:. 0 we have If(zo)1 = IZol, then there is some com­
plex number Ct of absolute value 1 such that 

fez) = Ctz. 

Proof Let 
f(z)=a 1z+··· 

be the power series for f The constant term is 0 because we assumed 
f(O) = O. Then f(z)/z is holomorphic, and 

If~)1 < 1/r for Izl = r < 1, 

consequently also for Izl ~ r by the maximum modulus principle. Letting 
r tend to 1 proves the first assertion. If furthermore we have 

If~o)1 = 1 

for some Zo in the unit disc, then again by the maximum modulus 
principle f(z)/z cannot have a maximum unless it is constant, and there­
fore there is a constant Ct such that f(z)/z = Ct, whence the second asser­
tion also follows. 

In the above statement of the Schwarz lemma, the function was nor­
malized to map the unit disc into itself. The lemma obviously implies 
analogous statements when the functions satisfies a bound 

If(z) I ~ B on a disc Izl < R, and f(O) = O. 
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The conclusion is then that 

I J(Z) I ~ Blzl/R, 

and equality occurs at some point only if J(z) = ~ IXZ, where IX is a 
complex number of absolute value 1. 

The following statement dealing with f'(0) rather than the function 
itself will be considered as part of the Schwarz lemma. 

Theorem 1.2. Let J: D -+ D be an analytic Junction oj the unit disc into 
itself such that J(O) = O. Let 

J(z) = al z + higher terms. 

Proof Since J(O) = 0, the function J(z)/z is analytic at z = 0, and 

J(z) . 
- = al + hIgher terms. 

z 

Letting z approach 0 and using the first part of Theorem 1.1 shows that 
lall ~ 1. Next suppose lall = 1 and 

J(z) = al z + a",z'" + higher terms 

with a ... =F 0 and m ~ 2. Then 

J(z) = al + a",z",-l + higher terms. 
z 

Pick a value of z such that a",z ... -l = al . There is a real number C > 0 
such that for all small real t > 0 we have 

J(tz) = a + a t",-lZ ... -l + h 
tz 1 '" , 

where Ihl ~ Ctm. Since lall = 1, it follows that 

for t sufficiently small. This contradicts the first part of Theorem 1.1, 
and concludes the proof. 
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VII, §2. ANALYTIC AUTOMORPHISMS OF THE DISC 

As an application of the Schwarz lemma, we shall determine all analytic 
automorphisms of the disc. First we give examples of such functions. 

To begin with, we note that if q> is real, the map 

is interpreted geometrically as rotation counterclockwise by an angle q>. 
Indeed, if z = re l9, then 

Thus for example, the map z H iz is a counterclockwise rotation by 90° 
(that is, nI2). 

Let (X be a complex number with I(XI < 1, and let 

(X-z 
g .. (z) = g(z) = -1 _. 

- (XZ 

Then g is analytic on the closed disc Izl ~ 1. Furthermore, if Izl = 1, 
then z = ei9 for some real 0, and 

(X - e i9 

g(z) = i9( i9 iX). e e - (X 

Up to the factor ei9 which has absolute value 1, the denominator is equal 
to the complex conjugate of the numerator, and hence 

if Izl = 1 then Ig(z)1 = 1. 

We can argue by the maximum modulus principle, that if Izl ~ 1, then 
Ig(z)1 ~ 1. By the open mapping theorem, it follows that if Izl < 1 then 
Ig(z)1 < 1. Furthermore, g .. has an inverse function. As a trivial exercise, 
prove that 

g .. 0 g .. = id. 

Therefore g .. is its own inverse function on the unit disc, and thus g .. 
gives an analytic automorphism of the unit disc with itself. 

Observe that g«(X) = O. We now prove that up to rotations there are 
no other automorphisms of the unit disc. 
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Theorem 2.1. Let f: D ~ D be an analytic automorphism of the unit 
disc and suppose f(rx) = O. Then there exists a real number cp such that 

. rx-z 
f(z) = e"P --_ . 

1 - rxz 

Proof. Let g = g" be the above automorphism. Then f 0 g-l is an 
automorphism of the unit disc, and maps 0 on 0, i.e. it has a zero at O. 
It now suffices to prove that the function h(w) = f(g-l(W)) is of the form 

to conclude the proof of the theorem. 
The first part of Schwarz lemma tells us that 

Ih(z)1 ~ Izl if Izl < 1. 

Since the inverse function h-1 also has a zero at the origin, we also get 
the inequality in the opposite direction, that is, 

Izl ~ Ih(z)l, 

and the second part of Schwarz lemma now implies that h(z) = eilfJz, 
thereby proving our theorem. 

Corollary 2.2. If f is an automorphism of the disc which leaves the 
origin fixed, i.e. f(O) = 0, then f(z) = ei'Pz for some real number cp, so f 
is a rotation. 

Proof. Let rx = ° in the theorem. 

VII, §2. EXERCISES 

1. Let J be analytic on the unit disc D, and assume that IJ(z)1 < 1 on the disc. 
Prove that if there exist two distinct points a, b in the disc which are fixed 
points, that is, J(a) = a and J(b) = b, then J(z) = z. 

2. (Schwarz-Pick Lemma). Let f: D --> D be a holomorphic map of the disc into 
itself. Prove that for all a E D we have 

1f'(a)1 1 
---:-:--c= < ---
I -IJ(aW = I-laI2 ' 

[Hint: Let g be an automorphism of D such that g(O) = a, and let h be an 



214 CONFORMAL MAPPINGS [VII, §2] 

automorphism which maps f(a) on O. Let F = h 0 fog. Compute F'(O) and 
apply the Schwarz lemma.] 

3. Let IX be a complex number, and let h be an isomorphism of the disc D(IX, R) 
with the unit disc such that h(zo) = O. Show that 

h(z) = R(z - zo) ei9 

R2 - (z - IX)(Zo - ii) 

for some real number 8. 

4. What is the image of the half strips as shown on the figure, under the 
mapping zHiz? Under the mapping ZH -iz? 

(a) (b) 

Figure 1 

5. Let IX be real, 0 ~ IX < 1. Let U. be the open set obtained from the unit disc 
by deleting the segment [IX, 1], as shown on the figure. 
(a) Find an isomorphism of U. with the unit disc from which the segment 

[0, 1] has been deleted. 

Figure 2 
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(b) For an isomorphism of Uo with the upper half of the disc. Also find an 
isomorphism of U. with this upper half disc. 

[Hint: What does Zt-+Z2 do to the upper half disc?] 

Figure 3 

VII, §3. THE UPPER HALF PLANE 

Theorem 3.1. Let H be the upper half plane. The map 

~-i 
f: ZI-+--. 

Z+l 

is an isomorphism oj H with the unit disc. 

Proof. Let w = J(z) and z = x + iy. Then 

J(z) = x + (y - l)i . 
x + (y + l)i 

Since z is in H, y > 0, it follows that (y - W < (y + 1)2 whence 

and therefore 
Iz - il < Iz + ii, 
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so f maps the upper half plane into the unit disc. Since 

[§J-i W=-­
z + i' 

[VII, §3] 

we can solve for z in terms of w, because wz + wi = z - i, so that 

I z ~ _i w + I I w-l 

Write w = u + iv, with real u, v. By computing directly the real part of 
(w + 1)/(w - 1), and so the imaginary part of 

.w + 1 
-1--

w-l 

you will find that this imaginary part is > 0 if Iwl < 1. Hence the map 

w+l 
h:wH-i-­

w-l 

sends the unit disc into the upper half plane. Since by construction f 
and h are inverse to each other, it follows that they are inverse ISO­

morphisms of the upper half plane and the disc, as was to be shown. 

Example. We wish to give an isomorphism of the first quadrant with 
the unit disc. Since we know that the upper half plane is isomorphic to 
the unit disc, it suffices to exhibit an isomorphism of the first quadrant 
with the upper half plane. The map 

achieves this. 

Figure 4 
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If f: H -+ D is the isomorphism of the upper half plane with the unit disc 
then 

is the desired isomorphism of the first quadrant with the unit disc. Thus 
the function 

gives an isomorphism of the first quadrant with the unit disc. 

The existence of an isomorphism I: H -+ D of H with the unit disc 
also in some sense determines the automorphisms of H. By the general 
formalism of isomorphisms and automorphisms, we know that 

Aut(H) = 1-1 Aut(D)/, 

meaning that every automorphism of H is of the form 1-10 rp 0 I with 
some automorphism rp of D. The question is to give a more explicit 
description of Aut(H). In the exercises, you will develop a proof of the 
following theorem. 

Theorem 3.2. Let 

be a 2 x 2 real matrix with determinant 1. Let 1M be the mapping such 
that 

IM(Z) = az+b 
cz+d 

for z eH. 

Then f M is an automorphism 01 H, and every automorphism 01 H is 01 
the lorm 1M for some such matrix M. Furthermore, two such auto­
morphisms 1M' and 1M are equal if and only if M' = ± M. 

VII, §3. EXERCISES 

Let 

M= (: ~) 

be a 2 x 2 matrix of real numbers, such that ad - be > O. For z e H, define 
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l. Show that 

CONFORMAL MAPPINGS 

ImIM(z) = (ad - be)y 
lez+dl 2 

2. Show that 1M gives a map of H into H. 

[VII, §3] 

3. Let GLt(R) denote the set of all real 2 x 2 matrices with positive determinant. 
Then GLt(R) is closed under multiplication and taking multiplicative inverses, 
so GLt(R) is called a group. Show that if M, M' E GLt(R), then 

This is verified by brute force. Then verify that if I is the unit matrix, 

.Ii = id 

Thus every analytic map 1M of H has an analytic inverse, actually in GLt(R), 
and in particular 1M is an automorphism of H. 

4. (a) If e E R and eM is the usual scalar multiplication of a matrix by a number, 
show that IcM = 1M. In particular, let SL2(R) denote the subset of 
GLt(R) consisting of the matrices with determinant l. Then given 
ME GLt (R), one can find e > 0 such that eM E SL2 (R). Hence as far as 
studying analytic automorphisms of H are concerned, we may concern 
ourselves only with SL2(R). 

(b) Conversely, show that if 1M =IM' for M, M' E SL2(R), then 

M'=±M. 

5. (a) Given an element z = x + iy E H, show that there exists an element 
ME SL2(R) such that IM(i) = z. 

(b) Given Zl, Z2 E H, show that there exists ME SL2(R) such that IM(ZI) = Z2. 

In light of (b), one then says that SL2(R) acts transitively on H. 

6. Let K denote the subset of elements ME SL2(R) such that IM(i) = i. Show that 
if M E K, then there exists a real () such that 

M = (COS () -sin ()). 
sin () cos () 

All Automorpbisms of the Upper Half Plane 

Do the following exercises after you have read the beginning of §5. In particular, 
note that Exercise 3 generalizes to fractional linear maps. Indeed, if M, M' denote 
any complex non-singular 2 x 2 matrices, and FM, FM' are the corresponding 
fractional linear maps, then 
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Hence if I is the unit 2 x 2 matrix, then 

and 

7. Let I: H --> D be the isomorphism of the text, that is 

z-i 
I(z)=-.. 

Z+l 

219 

Note that I is represented as a fractional linear map, 1= FM where M is the 
matrix 

Of course, this matrix does not have determinant I. 
Let K be the set of Exercises 5. Let Rot(D) denote the set of rotations of the 

unit disc, i.e. Rot(D) consists of all automorphisms 

for weD. 

Show that IKrl = Rot(D), meaning that Rot(D) consists of all elements 
lolMorl with MeK. 

8. Finally prove the theorem: 

Theorem. Every automorphism 01 H is 01 the lorm 1M lor some Me SL2(R). 

[Hint: Proceed a follows. Let g e Aut(H). There exists Me SL2(R) such that 

IM(g(i)) = i. 

By Exercise 6, we have 1M 0 g e K, say 1M 0 g = h e K, and therefore 

thus concluding the proof.] 

From the Upper Half Plane to the Punctured Disc 

9. Let I (z) = e21tiz • Show that I maps the upper half plane on the inside of a disc 
from which the center has been deleted. Given B> 0, let H(B) be that part 
of the upper half plane consisting of those complex numbers z = x + iy with 
y ~ B. What is the image of H(B) under I? Is I an isomorphism? Why? How 
would you restrict the domain of definition of I to make it an isomorphism? 



220 CONFORMAL MAPPINGS [VII, §4] 

VII, §4. OTHER EXAMPLES 

We give the examples by pictures which illustrate various isomorphisms. 

Example 1. 

Isomorphism between first quadrant and upper half plane 

Figure 5 

Example 2. 

-1 0 

Isomorphism between quarter disc and half disc 

Example 3. 

Figure 6 

1 + Z 
ZI-+--

1 - Z 

Upper half disc with first quadrant 

Figure 7 

Example 4. By composing the above isomorphisms, we get new ones. 
For instance, let U be the portion of the unit disc lying inside the first 
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quadrant as in Example 2. We want to get an isomorphism of U with 
the upper half plane. 

All we have to do is to compose the isomorphisms of Examples 2, 3, 
and 1 in that order. Thus an isomorphism of U with H is given by the 
formula in the picture. 

( 1 + Z2 )2 
ZI--+ -­

I - z2 

Quarter disc with upper half plane 

Figure 8 

The next three examples concern the logarithm. 

Example 5. 

Z 1--+ log z 

Upper half disc with a half strip 

Figure 9 

Example 6. 

Z 1--+ log z 

o 

Upper half plane with a full strip 

Figure 10 

11; 

o 
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Example 7. 

Plane with deleted positive real axis with a full strip 

1 21ti , 
I 

Z f-+ log Z ~ 

I]J o 

Figure 11 

In the applications to fluid dynamics, we shall see in the next chapter 
that it is important to get isomorphisms of various regions with the 
upper half plane in order to be able to describe the flow lines. In 
particular, certain regions are obtained by placing obstacles inside 
simpler regions. We give several examples of this phenomenon. These 
will allow us to get an isomorphism from a strip containing a vertical 
obstacle with the upper half plane. 

Example 8. 

Example 9. 

Z f-+ e" 

Figure 12 

Z - 1 
Zf-+-­

Z + 1 

Figure 13 

, ib, 
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Example 10. 

Figure 14 

Remark. By composing the isomorphisms of Examples 8 and 9, using 
a dilation, and a rotation, and finally the isomorphism of Example 10, we 
get an isomorphism of the strip containing a vertical obstacle with the 
right half plane: 

Figure 15 

Another rotation would then yield the upper half plane. 

Example 11. In this example, the obstacle is a bump rather than a 
vertical line segment. We claim that the map 

1 
ZHZ+­

Z 

is an isomorphism of the open set U lying inside the upper half plane, 
above the unit circle, with the upper half plane. 
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The isomorphism is shown on the following figure. 

• • • • • -2 -I 0 1 2 
-I 

Figure 16 

Proof. Let w = z + liz so that 

w = X(1 + 2 1 2) + iY(1 - 2 1 2)' 
x +y x +y 

If z E U, then Izl > 1 so 1m w > 0 and WE H. The quadratic equation 

Z2 - zw + 1 = 0 

has two distinct roots except for W = ± 2. Given W E H, any root z = 
x + iy has the property that either y > 0 and X2 + y2 > 1, or y < 0 and 
X2 + y2 < 1. Since the product of the two roots is 1 (from the quadratic 
equation), and hence the product of their absolute values is also 1, it 
follows that not both roots can have absolute value > 1 or both have 
absolute value < 1. Hence exactly one root lies in U, so the map is both 
surjective and injective, as desired. 

Example 12. 

Z 1-+ sin Z 

n -I 

2 2 

Upper half strip with upper half plane 

Figure 17 

The sine function maps the interval [-nI2, n12] on the interval 
[ -1,1]. 
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Let us look also at what the sine does to the right vertical boundary, 
which consists of all points n/2 + it with t ~ O. We know that 

Hence 

eiz _ e- iz 

sinz=-~-
2i 

=---
2 

As t ranges from 0 to infinity, sin(n/2 + it) therefore ranges from 1 to 
infinity, so the image of the vertical half line is the part of the real axis 
lying to the right of 1. You can show similarly that the image of the left 
vertical boundary is the part of the real axis to the left of - 1. Thus we 
see precisely what the mapping z H sin z does to the boundary of the 
region. 

For the convenience of the reader, we also discuss the mapping on the 
interior of the region. Let z = x + iy with 

and 0< y. 

From the definition of sin z, letting w = sin z = u + iv, we find 

(1) u = sin x cosh y and v = cos x sinh y, 

where 
eY + e-Y 

cosh y = 2 and 
eY - e-Y 

sinhy= 2 

From (1) we get 

(2) 

(3) 

u2 v2 
-~-+--=1 
cosh2 y sinh2 y , 

u2 v2 
-----=1 
sin2 x cos2 x . 

If we fix a value of y > 0, then the line segment 

x + iy 



226 CONFORMAL MAPPINGS [VII, §4] 

gets mapped onto the upper half of an ellipse in the w-plane, as shown 
on the figure. Note that for the given intervals, we have u ~ O. 

iy sinh y 

cosh y 
-

2 2 

Figure 18 

Geometrically speaking, as y increases from 0 to infinity, the ellipses 
expand and fill out the upper half plane. 

One can also determine the image of vertical lines, fixing x and letting 
y vary, so half lines of the form x + iy with y > 0 and x fixed. Equation 
(3) shows that the image of such half lines are upper parts of hyperbolas. 
It is the right upper part if x > 0 and the left upper part if x < O. Since 
an analytic map with non-zero derivative is conformal, these hyperbolas 
are perpendicular to the above ellipses because vertical lines are perpen­
dicular to horizontal lines. 

X 1C sin x -
2 2 

Figure 19 

In the above examples, readers may have noticed that to a large extent 
knowledge of the behavior of the mapping function on the boundary of an 
open set determines the effect of the mapping inside this boundary, 
whatever inside means. We shall now give very general theorems which 
make this notion precise. Thus to verify that a certain mapping gives an 
isomorphism between open sets, it frequently suffices to know what the 
mapping does to the boundary. We shall give two criteria for this to 
happen. 
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Theorem 4.1. Let U be a bounded connected open set, [j its closure. Let 
I be a continuous lunction on [j, analytic on U. Suppose that I is not 
constant, and maps the boundary 01 U into the unit circle, so 

I/(z)1 = 1 lor all z E boundary 01 U. 

Then I maps U into the unit disc D and I: U --+ D is surjective. 

Proof That I maps U into D follows from the maximum modulus 
principle. Suppose there exists some IX E D but IX is not in the image of f 
Let ga be the automorphism of D interchanging 0 and IX, given in Chapter 
VII, §2, so ga extends continuously to the closed unit disc. Then ga 0 I 
satisfies the same hypotheses as f, but 0 (instead of IX) is not in the image 
of ga 0 I. Then l/ga 0 I is analytic on U, and continuous on [j, mapping 
the boundary of [j into the unit circle. If Zo E U so Ig", 0 l(zo)1 < 1, then 

Il/ga 0 l(zo)1 > 1, 

contradicting the maximum modulus principle, and concluding the proof. 

Remark. Suppose that I is injective in the first place. Then the above 
(which is very simple to prove) gives a criterion for I to be an iso­
morphism, entirely in terms of the effect of Ion the boundary, which can 
usually be verified more simply than checking that I has an inverse map. 

For the next theorems, we recall that the interior of a path (if it has 
one) was defined in Chapter VI, §1. 

Lemma 4.2. Let y be a piecewise C 1 closed path in an open set U 01 c. 
Suppose that y has an interior, denoted by Int(y). Then the union 

S = Int(y) u y 

(identifying y with its image in U) is compact. 

Proof To see this, we have to prove that S is closed and bounded. Let 
<zn> be a sequence in S, converging to some point in C. If the sequence 
contains infinitely many points ofInt(y), then for such points W(y, zn) = 1, 
so by continuity, the limit lies in Int(y) or on y. If the sequence contains 
infinitely many points on y, then the limit lies on y (because y is compact). 
This proves that S is closed. Furthermore Int(y) is bounded, because for 
all complex numbers IX with IIXI sufficiently large, W(y, IX) = 0 since y is 
homotopic to a point in a disc containing y but not IX. This proves the 
lemma. 

Theorem 4.3. Let y be a piecewise C 1 closed path in a connected open 
set U 01 C. Assume y homologous to 0 in U. Let I be analytic non-
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constant on U. Assume that y and loy have interiors and loy does 
not intersect I(Int y). Then I is injective on Int(y), and so induces an 
isomorphism ollnt(y) with its image. If in addition the interior 01 loy 
is connected, then 

I: Int(y) -+ Int(f 0 y) 

is an isomorphism. 

Proof For a E Int(y), let Irx(z) = I(z) - I(a). Then by the chain rule: 

1 J 1 W(Joy),j(a)) =2ni foy(-/(a) d( 

= _1 Jb f'(y(t))Y'(t) dt 
2ni a I(y(t)) - I(a) 

= -21 .J 1:11(1.(z) dz 
m y 

;?;;l 

ify: [a, b]-+ U 

because Irx has a zero in Int(y). By the definition of an interior and the 
assumption that loy has an interior, it follows that this final value of 
W(J 0 y,j(a)) is precisely 1, so 1'1. has only one zero, which is simple, and 
in addition we also see that I(a) E Int(f 0 y). Hence 

I: Int(y)-.Int(fo;;) 

is injective. This proves the first assertion. 

Suppose next that the interior of loy is connected. The image of 
Int(y) under I is an open subset, since we have shown that I maps Int(y) 
into the interior of loy. So it suffices to prove that 1(lnt(y)) is closed in 
the interior of loy. Let {zn} be a sequence of points in Int(y), such that 
{f(zn)} converges to some point w in Int(f 0 y). We have to show that 
w E/(lnt(y)). Passing to a subsequence of {zn} if necessary, and using the 
fact that the union of Int(y) and y is compact, we may assume without loss 
of generality that {zn} itself converges, either to a point in the interior 
Int(y), or to a point of y itself. If {zn} converges to a, and a E Int(y), then 
I(a) = w by continuity of f, and we are done. If a lies on y, then again 
by continuity I(a) = w, which is impossible since w is not on loy. This 
concludes the proof. 

Readers should go through the examples given in the text to see that 
the mapping property in Theorem 4.3 also applies to unbounded domains 
in those cases. Cf. Exercises 7 and 8 below for specific instances. Readers 
may also look at Exercise 2 of Chapter X, §l, which illustrates several 
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aspects of the way the mapping on the boundary affects the mapping 
inside, including aspects of reflection, to be discussed in greater detail in 
Chapter IX. 

VII, §4. EXERCISES 

1. (a) In each one of the examples, prove that the stated mapping is an iso­
morphism on the figures as shown. Also determine what the mapping 
does to the boundary lines. Thick lines should correspond to each other. 

(b) In Example to, give the explicit formula giving an isomorphism of the 
strip containing a vertical obstacle with the right half plane, and also with 
the upper half plane. Note that counterclockwise rotation by nl2 is given 
by multiplication with i. 

2. (a) Show that the function z I--> z + liz is an analytic isomorphism of the 
region outside the unit circle onto the plane from which the segment 
[ - 2, 2] has been deleted. 

(b) What is the image of the unit circle under this mapping? Use polar 
coordinates. 

1 
Zf-+Z+ ­

Z 

Figure 20 

I' ':" 2 1"'-=7 

(c) In polar coordinates, if w = z + l iz = u + iv, then 

and 

i ~ ' /:'2~ 

Show that the circle r = c with c > 1 maps to an ellipse with major axis 
e + lie and minor axis e - l ie. Show that the radial lines (J = c map 
onto quarters of hyperbolas. 

3. Let U be the upper half plane from which the points of the closed unit disc 
are removed, i.e. U is the set of z such that Im(z) > 0 and Izl > 1. Give an 
explicit isomorphism of U with the upper half disc D+ (the set of z such that 
Izi < 1 and Im(z) > 0). 
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4. Let a be a real number. Let U be the open set obtained from the complex 
plane by deleting the infinite segment [a, 00[. Find explicitly an analytic 
isomorphism of U with the unit disc. Give this isomorphism as a composite 
of simpler ones. [Hint : Try first to see what Jz does to the set obtained by 
deleting [0, oo[ from the plane.] 

5. (a) Show that the function w = sin z can be decomposed as the composite of 
two functions: 

and , = eiz = g(z) . 

(b) Let U be the open upper half strip in Example 12. Let g(U) = V. 
Describe V explicitly and show that g: U -+ V is an isomorphism. Show 
that 9 extends to a continuous function on the boundary of U and 
describe explicitly the image of this boundary under g. 

(c) Let W = f(V) . Describe W explicitly and show that f: V -+ W is an iso­
morphism. Again describe how f extends continuously to the boundary 
of V and describe explicitly the image of this boundary under f 

In this way you can recover the fact that w = sin z gives an iso­
morphism of the upper half strip with the upper half plane by using this 
decomposition into simpler functions which you have already studied. 

6. In Example 12, show that the vertical imaginary axis above the real line is 
mapped onto itself by z 1-+ sin z, and that this function gives an isomorphism of 
the half strip with the first quadrant as shown on the figure. 

Z 1-+ sin z 

I, 
0 1[ 0 

2 

Figure 21 

7. Let w = u + iv = f(z) = z + log z for z in the upper half plane H. Prove that f 
gives an isomorphism of H with the open set U obtained from the upper half 
plane by deleting the infinite half line of numbers 

u + in with u ~ -1. 

Remark. In the next chapter, we shall see that the isomorphism f allows us 
to determine the flow lines of a fluid as shown on Fig. 23. These flow lines in 
the (u, v)-plane correspond to the rays 8 = constant in the (x, y)-plane. In other 
words, they are the images under f of the rays 8 = constant. 
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y-axis 

- lOu-axis 
x-axis 

Figure 22 

Flow lines in the (u, v)-plane 

Figure 23 

231 

[Hint: Use Theorem 4.3 applied to the path consisting of the following pieces: 

The segment from R to € (R large, € small > 0). 

The small semicircle in the upper half plane, from € to -€. 

The segment from -€ to - R. 

The large semicircle in the upper half plane from - R to R. 

Note that if we write z = reiO, then J(z) = reiO + log r + iO.] 

8. Give another proof of Example 11 using Theorem 4.3. 

VII, §5. FRACTIONAL LINEAR TRANSFORMATIONS 

Let a, b, c, d be complex numbers such that ad - be =1= O. We may 

arrange these numbers as a matrix (: :). Let 

F(z) = az + b. 
cz + d 

We call F a fractional linear map, or transformation. We have already 
encountered functions of this type, and now we study them more system­
atically. First observe that if we multiply a, b, c, d by the same non-zero 
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complex number ..1., then the matrix 

gives rise to the same map, because we can cancel ..1. in the fraction: 

..1.az+..1.b az+b 

..1.ez + ..1.d = ez + d' 

It is an exercise to prove the converse, that if two matrices 

and ( a' b') 
e' d' 

of complex numbers with ad - be :F 0 and a'd' - b' e' :F 0 give the same 
fractional linear map, then there is a complex number ..1. such that 

a' = ..1.a, b' = ..1.b, e' = ..1.e, d' =..1.d. 

We shall now see that F gives an isomorphism. Note that 

, ad-be 
F (z) = (ez + d)2' 

The function F is not defined at z = -die, but is defined at all other 
complex numbers, and the formula for its derivative then shows that 
F'(z) :F 0 for all complex numbers z :F -die. 

The function F has an inverse. Indeed, let 

az + b 
w=--. 

ez + d 

We can solve for z in terms of w by simple algebra. Cross multiplying 
yields 

ezw + dw = az + b, 
whence 

dw-b 
z=---

-ew+a 

Thus the inverse function is associated with the matrix 

( d -b). 
-e a 
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Observe that the inverse function, which we denote by F-1, is not defined 
at z = ale. Thus F gives an isomorphism of C from which -die has been 
deleted with C from which ale has been deleted. 

To have a uniform language to deal with the "exceptional" points 
z = -die and z = ale, we agree to the following conventions. 

Let S be the Riemann sphere, i.e. the set consisting of C and a single 
point 00 which we call infinity. We extend the definition of F to S by 
defining 

Also we define 

F(oo) = ale 

F(oo) = 00 

F( -die) = 00 

if e =F 0, 

if e = O. 

if e =F O. 

These definitions are natural, for if we write 

F(z) = a + biz, 
e + dlz 

and let Izl-+ 00 then this fraction approaches ale as a limit. 
We may then say that F gives a bijection of S with itself. 
We now define other maps as follows: 

T,,(z) = z + b, called translation by b; 

J(z) = liz, called inversion through the unit circle; 

Ma(z) = az for a =F 0, called multiplication by a. 

Observe that translations, reflections, or multiplications are fractional 
linear maps. Translations should have been encountered many times pre­
viously. As for inversion, note: 

If Izl = 1 then liz = z and Il/zl = 1 also. Thus an inversion maps the 
unit circle onto itself. 

If Izl > 1 then Il/zl < 1 and vice versa, so an inversion interchanges 
the region outside the unit disc with the region inside the unit disc. Note 
that 0 and 00 correspond to each other under the inversion. 

Multiplication by a complex number a can be viewed as a dilation 
together with a rotation, by writing a = reiD. 

Thus each one of these particular linear maps has a simple geometric 
interpretation as above. 

Theorem 5.1. Given a fractional linear map F, there exist complex 
numbers IX, p, Y such that either F = IXZ + p, or 
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Proof Suppose c = O. Then F(z) = (az + b)/d and F = 1J, 0 M«, with 
P = b/d, IX = a/d. Suppose this is not the case, so c "# O. We divide a, b, 
c, d by c and using these new numbers gives the same map F, so without 
loss of generality we may assume c = 1. We let P = d. We must solve 

az+b IX 

Z + d = z + d + 1', 

or in other words, az + b = IX + yz + yd. We let y = a, and then solve for 
IX = b - ad "# 0 to conclude the proof. 

The theorem shows that any fractional linear map is a composition of 
the simple maps listed above: translations, multiplication, or inversion. 

Now let us define a straight Hne on the Riemann sphere S to consist of 
an ordinary line together with 00. 

Theorem 5.2. A fractional linear transformation maps straight lines 
and circles onto straight lines and circles. (Of course, a circle may be 
mapped onto a line and vice versa.) 

Proof By Theorem 5.1 it suffices to prove the assertion in each of the 
three cases of the simple maps. The assertion is obvious for translations 
and multiplications (which are rotations followed by dilations). There 
remains to deal with the inversion. 

Figure 24 

Let w = l/z = u + iv, so that 

and 

The equation of a circle or straight line in the (u, v) real plane has the 
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form 

with some real numbers A, B, C, D such that not all A, B, C are equal to 
O. Substituting the values for u, v in terms of x, y we find that under the 
inverse mapping the equation is equivalent to 

A + Bx - Cy = D(x2 + i), 

which is the equation of a circle or a straight line. This proves the 
theorem. 

As Exercise 2, you will prove that if F, G are fractional linear maps, 
then so is FoG. We shall use such compositions in the next considera­
tions. 

By a fixed point of F we mean a point Zo such that F(zo) = zoo 

Example. The point 00 is a fixed point of the map 

F(z) = az + b. 

Proposition 5.3. Let F be fractional linear map. If 00 is a fixed point 
of F, then there exist complex numbers a, b such that F(z) = az + b. 

Proof. Let F(z) = (az + b)/(cz + d). If c#-O then F( (0) = alc which is 
not 00. By hypothesis, it follows that c = 0, in which case the assertion 
is obvious. 

Theorem 5.4. Given any three distinct points z I' Z 2, Z 3 on the Riemann 
sphere, and any three distinct points WI' W2 , W3' there exists a unique 
fractional linear map F such that 

F(z;) = Wi for i = 1, 2, 3. 

Proof. We proceed stepwise, and first prove uniqueness. Let F, G be 
fractional linear maps which have the same effect on three points. Then 
F 0 G- I has three fixed points, and it suffices to prove the following 
lemma. 

Lemma 5.5. Let F be a fractional linear map. If F has three fixed 
points, then F is the identity. 

Proof. Suppose first that one fixed point is 00. By Proposition 5.3, we 
know that F(z) = az + b. Suppose z lEe and z I is a fixed point. Then 
aZI + b = ZI so (1 - a)zl = b. If a#- 1 then we see that ZI = b/(l - a) is 
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the only fixed point in C. If a = 1, then f(z) = z + b, and z + b = z if 
and only if b = 0, so f is the identity mapping. 

Suppose next that 00 is not a fixed point, so c -=1= 0. Let z be a fixed 
point, so that 

az + b 
--=Z. 
cz + d 

Cross multiplying shows that z is a root of the quadratic equation 

cz2 + (a - d)z + b = 0. 

This equation has at most two roots, so we see that f has at most two 
fixed points, which are the roots of this equation. Of course the roots 
are given explicitly by the quadratic formula. 

One can give an easy formula for the map F of Theorem 5.4. Note 
that the function z ~ z - Z 1 sends z 1 to 0. Then 

sends Zl to ° and Z2 to 00. To send Z3 to 1, all we have to do is 
multiply by the right factor, and thus we obtain: 

Theorem 5.6. The function 

Z-Z l Z3- Z2 
z~----­

Z-Z2 Z3- Z 1 

is the unique function such that F(Zl) = 0, F(Z2) = 00, F(Z3) = 1. If 
W = F(z) is the function such that F(z;) = Wi for i = 1, 2, 3 then wand z 
are related by the formula 

This final equation can be used to find F explicitly in special cases. 

Example. Find the map F in Theorem 5.4 such that 

F(1) = i, F(i) = -1, F( -1) = 1. 
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By the formula, 

or in other words, 

w-il+l z-I-1-i 
w+ll-i- z-i -1-1' 

w-i lz-1 
w+l 2z-i 

We can solve for w in terms of z to give 

z(1 + 2i) + 1 
W= . 

z + (1 - 2i) 

237 

To check the computation, substitute z = 1, z = i, z = -1 in this ex­
pression to see that you get the desired values i, - 1, and 1, respectively. 

Warning. I find it pointless to memorize the formula in Theorem 5.6 
relating z and w. However, the comments before Theorem 5.6 tell you 
how to reconstruct this formula in an easy way if you don't have it for 
reference in front of you. 

VII, §5. EXERCISES 

1. Give explicitly a fractional linear map which sends a given complex number 
z 1 to roo What is the simplest such map which sends ° to ro? 

2. Composition of Fractional Linear Maps. Show that if F, G are fractional 
linear maps, then so is FoG. 

3. Find fractional linear maps which map: 
(a) 1, i, -Ion i, -1, 1 
(b) i, -1,1 on -1, -i, 1 
(c) -1, - i, 1 on -1, 0, 1 
(d) -1, 0, 1 on -1, i, 1 
(e) 1, -1, i, on 1, i, -1 

4. Find fractional linear maps which map: 
(a) 0, 1, ro on 1, ro, 0 
(b) 0, 1, ro on 1, -1, i 
(c) 0, 1, ro on -1, 0, 1 
(d) 0,1, ro on -1, -i, 1 

5. Let F and G be two fractional linear maps, and assume that F(z) = G(z) for 
all complex numbers z (or even for three distinct complex numbers z). Show 
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that if 
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az + b 
F(z)=--d 

cz + 
and 

a'z + b' 
G(z) = -'--d' cz + 

then there exists a complex number A. such that 

a' = A.a, b' = A.b, c' = A.C, d' = A.d. 

Thus the matrices representing F and G differ by a scalar. 

[VII, §5] 

6. Consider the fractional linear map 

z-i 
F(z)=-.. 

z + I 

What is the image of the real line R under this map? (You have encountered 
this map as an isomorphism between the upper half plane and the unit disc.) 

7. Let F be the fractional linear map F(z) = (z - 1)/(z + 1). What is the image 
of the real line under this map? (Cf. Example 9 of §4.) 

8. Let F(z) = z/(z - 1) and G(z) = 1/(1 - z). Show that the set of all possible 
fractional linear maps which can be obtained by composing F and G above 
repeatedly with each other in all possible orders in fact has six elements, and 
give a formula for each one of these elements. [Hint: Compute F2, F3, G2, 
G3 , FoG, Go F, etc.] 

9. Let F(z) = (z - i)/(z + i). What is the image under F of the following sets of 
points: 
(a) The upper half line it, with t ;?; 0. 
(b) The circle of center 1 and radius 1. 
(c) The horizontal line i + t, with t E R. 
(d) The half circle Izl = 2 with 1m z ;?; 0. 
(e) The vertical line Re z = 1 and 1m z ;?; 0. 

10. Find fractional linear maps which map: 
(a) 0, 1, 2 to 1, 0, 00 

(b) i, -1, 1 to 1, 0, 00 

(c) 0, 1, 2 to i, -1, 1 

11. Let F(z) = (z + 1)/(z - 1). Describe the image of the line Re(z) = c for a real 
number c. (Distinguish c = 1 and c "'" 1. In the second case, the image is a 
circle. Give its center and radius.) 

12. Let z 1, Z2' Z3' Z4 be distinct complex numbers. Define their cross ratio to be 

(a) Let F be a fractional linear map. Let z; = F(z;) for i = 1, ... ,4. Show 
that the cross ratio of zi, Z2' z;, z~ is the same as the cross ratio of 
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Z1' Z2' Z3' Z4. It will be easy if you do this separately for translations, 
inversions, and multiplications. 

(b) Prove that the four numbers lie on the same straight line or on the same 
circle if and only if their cross ratio is a real number. 

(c) Let Z1' Z2' Z3, Z4 be distinct complex numbers. Assume that they lie on 
the same circle, in that order. Prove that 

Fixed Points and Linear Algebra 

13. Find the fixed points of the following functions: 

(a) 
z-3 

f(z)=-
z + 1 

(b) 
z-4 

f(z)=-
z+2 

z-i 2z - 3 
(c) f(z)=- (d) f(z)=--

z + 1 z + 1 

For the next two exercises, we assume that you know the terminology of 
eigenvalues from an elementary course in linear algebra. 

14. Let M be a 2 x 2 complex matrix with non-zero determinant, 

and ad - be #- o. 

Define M(z) = (az + b)/(ez + d) as in the text for z #- -die (e #- 0). If z = 
-die (e #- 0) we put M(z) = 00. We define M(oo) = ale if e #- 0, and 00 if 
e = O. 
(a) If L, M are two complex matrices as above, show directly that 

L(M(z» = (LM)(z) 

for z E C or z = 00. Here LM is the product of matrices from linear 
algebra. 

(b) Let 1, A.' be the eigenvalues of M viewed as a linear map on C2• Let 

and 

be the corresponding eigenvectors, so 

MW= 1W and MW'=l'W' 

By a fixed point of M on C we mean a complex number z such that 
M(z) = z. Assume that M has two distinct fixed points in C. Show that 
these fixed points are w = WdW2 and w' = wUw~. 
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(c) Assume that III < Il'j. Given z *" w, show that 

lim Mk(Z) = w'. 
k-oo 

Note. The iteration of the fractional linear map is sometimes called a dynam­
ical system. Under the assumption in (c), one says that w' is an attract­
ing point for the map, and that w is a repelling point. 



CHAPTER VIII 

Harmonic Functions 

In this chapter we return to the connection between analytic functions 
and functions of a real variable, analyzing an analytic function in terms 
of its real part. 

The first two sections, §1 and §2, are completely elementary and could 
have been covered in Chapter I. They combine well with the material in 
the preceding chapter, as they deal with the same matter, pursued to 
analyze the real part of analytic isomorphism more closely. 

In §3 and §4 we deal with those aspects of harmonic functions having 
to do with integration and some form of Cauchy's formula. We shall 
characterize harmonic functions as real parts of analytic functions, giving 
an explicit integral formula for the associated analytic function (uniquely 
determined except for a pure imaginary constant). 

VIII, §1. DEFINITION 

A function u = u(x, y) is called harmonic if it is real valued having contin­
uous partial derivatives of order one and two, and satisfying 

One usually defines the Laplace (differential) operator 

241 
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and so u is harmonic if and only if L1u = 0 (and u is of class C2 ). 

Suppose f is analytic on an open set U. We know that f is infinitely 
complex differentiable. By the considerations of Chapter I, §6, it follows 
that its real and imaginary parts u(x, y) and v(x, y) are Coo, and satisfy 
the Cauchy-Riemann equations 

and 

Consequently, taking the partial derivatives of these equations and using 
a a a a . 

the known fact that ax oy = oy ax YIelds: 

Theorem 1.1. The real part of an analytic function is harmonic. 

Example. Let r = J x2 + y2. Then log r is harmonic, being the real 
part of the complex log. 

We introduce the differential operators 

and 01(0 .0) -=- --f-
OZ 2 ax oy· 

The reason for this notation is apparent if we write 

and 

We want the chain rule to hold. Working formally, we see that the 
following equations must be satisfied. 

of of ax of oy 1 of 1 of 
-=--+--=--+-­
oz ax oz oyoz 2 ax 2i oy' 

of of ax of oy 1 of 1 of 
- = -- + -- = -- - --. 
oz ax oz oy OZ 2 ax 2i oy 

This shows that it is reasonable to define %z and %z as we have done. 
It is then immediately clear that u, v satisfy the Cauchy-Riemann equa­
tions if and only if 

(Carry out in detail.) Thus: 

of = 0 
oz . 

f is analytic if and only if of/oz = O. 
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Since taking partial derivatives commutes, one also finds immediately 

o 0 0 0 
4-- = 4-- = L1. 

oz oz oz oz 

(Do Exercise 1.) Also with the notation %z, if U = Re(f), we can write 
the complex derivative in the form 

(1) f'(z) = 2 ou = ou _ jOu. 
oz ox oy 

In Chapter I, §6, we had introduced the associated vector field 

F(x, y) = (u(x, y), -v(x, y»). 

Recall that in calculus courses, one defines a potential function for F to 
be a function qJ such that 

OqJ 
-=U 
ox 

and 

Theorem 1.2. Let g be a primitive for f on U, that is, g' = f. Write g 
in terms of its real and imaginary parts, 

g = qJ + ir/J. 

Then qJ is a potential function for F. 

Proof Go back to Chapter I, §6. By definition, g' = u + iv. The first 
computation of that section shows that 

OqJ 
-=U 
ox 

and 
OqJ 
-=-v oy , 

as desired. 

We shall prove shortly that any harmonic function is locally the real 
part of an analytic function. In that light, the problem of finding a 
primitive for an analytic function is equivalent to the problem of finding a 
potential function for its associated vector field. 

The expression (1) for the complex derivative suggests that we tabulate 
independently the integral in terms of real and imaginary parts, in a more 
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general context as follows. Let u be a real C1 function on some open set. 
Let y be a piecewise C1 path in the open set. Then setting dz = dx + i dy, 
we get 

The first integral is the usual integral from calculus, of grad u = 
(au/ox, ou/oy) along the curve. If we fix end points for the path, this 
integral is independent of the path since grad u admits a potential 
function, namely u itself. The second integral can be written as 

(3) t G: dy - :; dX) = {(grad u) . Ny 

where Ny is the normal to the curve. If y(t) = (x(t), y(t)), then by 
definition, 

Thus we find (without any need for Cauchy-Riemann): 

For a real C1 function u, we have 

(4) t 2 :: dz = t du + i t (grad u) . Ny. 

If Y is a closed path, then 

t 2 :: dz = it (grad u) . Ny. 

This kind of decomposition has not been relevant up to now, but when 
dealing explicitly with the real or imaginary part of an analytic function as 
we shall now do, such formulas come to the fore. 

The next theorem gives us the uniqueness of a harmonic function with 
prescribed boundary value. 

Theorem 1.3. Let U be a bounded open set. Let u, v be two continuous 
functions on the closure U of U, and assume that u, v are harmonic on 
U. Assume that u = v on the boundary of U. Then u = v on U. 

Proof Subtracting the two harmonic functions having the same bound­
ary value yields a harmonic function with boundary value O. Let u be 
such a function. We have to prove that u = O. Suppose there is a point 
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(xo, Yo) E U such that u(xo, Yo) > O. Let 

I/I(x, y) = u(x, y) + EX2 for (x, y) E fJ. 

We use repeatedly the fact that Ixl is bounded for (x, y) E fJ. Then 

I/I(xo, Yo) > 0 

for E small enough, and 1/1 is continuous on fJ, so 1/1 has a maximum 
on fJ. For E small, the maximum of 1/1 is close to the maximum of 
u itself, and in particular is positive. But u(x, y) = 0 for (x, y) on the 
boundary, and EX2 is small on the boundary for E small. Hence the 
maximum of 1/1 must be an interior point (Xl' Yl). It follows that 

and 

But 

so 

This contradiction proves the uniqueness. 

Remarks. In practice, the above uniqueness is weak for two reasons. 
First, many natural domains are not bounded, and second the function 
may be continuous on the boundary except at a finite number of points. 
In examples below, we shall see some physical situations with discontin­
uities in the temperature function. Hence it is useful to have a more 
general theorem, which can be obtained as follows. 

As to the unboundedness of the domain, it is usually possible to find 
an isomorphism of a given open set with a bounded open set such 
that the boundary curves correspond to each other. We shall see an 
example of this in the Riemann mapping theorem, which gives such 
isomorphisms with the unit disc. Thus the lack of boundedness of the 
domain may not be serious. 

As to discontinuities on the boundary, let us pick for concreteness the 
unit disc D. Let u, v be two functions on D which are harmonic on the 
interior D, and which are continuous on the unit circle except at a finite 
number of points, where they are not defined. Suppose that u and v are 
equal on the boundary except at those exceptional points. Then the 
function u - v is harmonic on the open disc D, and is continuous with 
value 0 on the boundary except at a finite number of points where it is 
not defined. Thus for the uniqueness, we need the following generaliza­
tion of Theorem 1.3. 

Theorem 1.4. Let u be a bounded function on the closed unit disc D. 
Assume that u is harmonic on D and continuous on the unit circle except 
at a finite number of points. Assume that u is equal to 0 on the unit 
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circle except at a finite number of points. Then u = 0 on the open disc 
D. 

The situation is similar to that of removable singularities in Chapter 
V, §3, but technically slightly more difficult to deal with. We omit the 
proof. If one does not assume that u is bounded, then the conclusion of 
the theorem is not true in general. See Exercise 6. 

Application: Perpendicularity 

Recall from the. calculus of several variables (actually two variables) that 

(au au) 
grad u = (DIu, D2u) = ax' ay . 

Let c be a number. The equation 

u(x, y) = c 

is interpreted as the equation of the level curve, consisting of those points 
at which u takes the constant value c. If u is interpreted as a potential 
function, these curves are called curves of equipotential. If u is interpreted 
as temperature, these curves are called isothermal curves. Except for such 
fancy names, they are just level curves of the function u. From calculus, 
you should know that grad u(x, y) is perpendicular (orthogonal) to the 
curve at that point, as illustrated on the figure. 

grad u(x. y) 

Figure 1 

Let A = (ai' a2) and B = (b l , b2) be vectors. You should know their 
dot product, 

and you should know that A is perpendicular to B if and only if their 
dot product is equal to O. 

Using this and the chain rule, we recall the proof that the gradient is 
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perpendicular to the level curve. We suppose that the level curve is 
parametrized, i.e. given in the form y(t) for t in some interval. Then we 
have 

u{y(t») = c for all t. 

Differentiating with respect to t yields by the chain rule 

grad u{y(t»· y'(t) = 0, 

which proves what we wanted. 
The following statement is an immediate consequence of the Cauchy­

Riemann equations. 

Let f = u + iv be analytic. Then grad u and grad v are perpendicular. 

Indeed, we take the dot product of 

(au au) 
ox'oy and (ov ov) 

ax' oy 

and apply the Cauchy-Riemann equations to find the value O. 
Two curves u = c and v = c' are said to be perpendicular at a point 

(x, y) if grad u is perpendicular to grad v at (x, y). Hence the above 
statement is interpreted as saying: 

The level curves of the real part and imaginary part of an analytic 
function are perpendicular (or in other words, intersect orthogonally). 

\ 

/ 
/ 

I 
I 

1III 
I u = constant 

Figure 2 

\ 
\ 

v = constant 
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In the case when u is given as the potential function arising from two 
point sources of electricity, then the level curves for u and v look like 
Fig. 2. 

Application: Flow Lines 

For each point (x, y) in the plane, we have an associated vector 

(x, y) 1-+ grad u(x, y). 

This association defines what is called a vector field, which we may 
visualize as arrows shown on Fig. 3. 

Figure 3 

Let us abbreviate 
G(x, y) = grad u(x, y). 

An integral curve for the vector field G is a curve y such that 

y'(t) = G(y(t)). 

This means that the tangent vector at every point of the curve is the 
prescribed vector by G. Such an integral curve is shown on Fig. 4. 

(x, y) 

Figure 4 
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If we interpret the vector field G as a field of forces, then an integral 
curve is the path over which a bug will travel, when submitted to such a 
force. 

Suppose that f = u + iv is analytic, as usual. We have seen that the 
level curves of v are orthogonal to the level curves of u. Thus the level 
curves of v have the same direction as the gradient of u. It can be shown 
from the uniqueness of the solutions of differential equations that the 
level curves of v are precisely the integral curves of the vector field 
G = grad u. Thus interpreting u as temperature, for instance, we may 
say: 

If u = Re f and v = 1m f, where f is analytic, then the heat flow of the 
temperature function u occurs along the level curves of v. 

Finally, let U be simply connected, and let 

f:U~H 

be an isomorphism of U with the upper half plane. We write f = u + iv 
as usual. The curves 

v = constant 

in H are just horizontal straight lines. The level curves of v in U 
therefore correspond to these straight lines under the function f. 

u 
H 

----~---+: 
-~ :~ 

• 
Figure 5 

Consider the example of Chapter VII, §4 given by 

f(z) = z + liz. 

You should have worked out that this gives an isomorphism as shown 
on the figure. We interpret the right-hand figure as that of a fluid 
flowing horizontally in the upper half plane, without obstacle. The bump 
provided by the semicircle in the left-hand figure provides an obstacle to 
the flow in the open set U. 

The nature of the physical world is such that the flow lines on the left 
are exactly the lines corresponding to the horizontal lines on the right 

) 

) 

) 

) 
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under the mapping function f! Thus the flow lines on the left are 
exactly the level curves v = constant in U. 

This shows how an isomorphism 

f: U-+H 

can be applied to finding flow lines. The same principle could be applied 
to a similar obstacle as in Fig. 6. The open set U is defined here as that 
portion of the upper half plane obtained by deleting the vertical segment 
(0, y) with 0 < y < n from the upper half plane. As an exercise, determine 
the isomorphism f to find the flow lines in U. Cf. Exercises 9, 10 and 
the examples of Chapter VII, §4. 

u 
-----~-----== ~------~) 

~ :~ -~ : 
H 

Figure 6 

VIII, §1. EXERCISES 

1. (a) Let A = (:x) \ (~ r· Verify that A = 4 :z :t" 
(b) Let / be a complex function on C such that both / and /2 are 

harmonic. Show that / is holomorphic or 1 is holomorphic. 

2. Let / be analytic, and 1 = u - iv the complex conjugate function. Verify that 
al/az = o. 

3. Let f: U -+ V be an analytic isomorphism, and let qJ be a harmonic function 
on V, which is the real part of an analytic function. Prove that the composite 
function qJ 0 f is harmonic. 

4. Prove that the imaginary part of an analytic function is harmonic. 

5. Prove the uniqueness statement in the following context. Let U be an open 
set contained in a strip a ~ x ~ b, where a, b are fixed numbers, and as usual 
z = x + iy. Let u be a continuous function on fJ, harmonic on U. Assume 
that u is 0 on the boundary of U, and 

lim u(x, y) = 0 

as y -+ 00 or y -+ -00, uniformly in x. In other words, given E there exists 
C > 0 such that if y> C or y < -C and (x, y) E U then lu(x, y)1 < E. Then 
u = 0 on U. 

) 

) 

) 

) 
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6. Let 

DEFINITION 

i + z 
u(x, y) = Re -. - for z * i 

l-Z 
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and u(O, 1) = O. 

Show that u harmonic on the unit disc, is 0 on the unit circle, and is 
continuous on the closed unit disc except at the point Z = i. This gives a 
counterexample to the uniqueness when u is not bounded. 

7. Find an analytic function whose real part is the given function. 
(a) u(x, y) = 3x2y - y3 (b) x - xy 

y 
(c) x2 + y2 (d) logJx2 + y2 

(e) Y2 2 where t is some real number. 
(x - t) + y 

8. Let f(z) = log z. If z = re i8, then 

f(z) = log r + iO, 

so the real parts and imaginary parts are given by 

u = log r and v = 8. 

Draw the level curves u = constant and v = constant. Observe that they 
intersect orthogonally. 

9. Let V be the open set obtained by deleting the segment [0, 1] from the right 
half plane, as shown on the figure. In other words V consists of all complex 
numbers x + iy with x > 0, with the exception of the numbers 0 < x ~ 1. 
(a) What is the image of V under the map Z ....... Z2. 

(b) What is the image of V under the map Z ....... Z2 - I? 
(c) Find an isomorphism of V with the right half plane, and then with the 

upper half plane. [Hint: Consider the function z ....... Jz2=l.] 
10. Let U be the open set discussed at the end of the section, obtained by 

deleting the vertical segment of points (0, y) with 0 ~ y ~ 1 from the upper 

·;1,1 z 1-+ jZ2=" 

Figure 7 
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half plane. Find an analytic isomorphism 

J: U -+H. 

[Hint: Rotate the picture by 90° and use Exercise 9.] 

11. Let rp be a complex harmonic function on a connected open set U. Suppose 
that rp2 is also harmonic. Show that rp or tp is holomorphic. 

12. Green's Theorem in calculus states: Let p = p(x, y) and q = q(x, y) be C l 

functions on the closure of a bounded open set U whose boundary consists of a 
finite number oj C l curves oriented so that U lies to the left of each one of these 
curves. Let C be this boundary. Then 

Ie p dx + q dy = J L G! -:) dy dx. 

Suppose that f is analytic on U and on its boundary. Show that Green's 
theorem implies Cauchy's theorem for the boundary, i.e. show that 

13. Let U be an open set and let Zo E U. The Green's function for U originating 
at Zo is a real function g defined on the closure [j of U, continuous except at 
zo, and satisfying the following conditions: 

GR 1. g(z) = loglz - zol + t/I(z), where t/I is harmonic on U. 

GR 2. g vanishes on the boundary of U. 

(a) Prove that a Green's function is uniquely determined if U is bounded. 
(b) Let U be simply connected, with smooth boundary. Let 

J: U-+D 

be an analytic isomorphism of U with the unit disc such that J(zo) = O. 
Let 

g(z) = Re log J(z). 

Show that g is a Green's function for U. You may assume that J 
extends to a continuous function from the boundary of U to the bound­
ary of D. 

VIII, §2. EXAMPLES 

We shall give examples, some of which are formulated in physical terms. 
Let V be an open set whose boundary is a smooth curve C. We shall 
assume throughout that any physical function mentioned is harmonic. 
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In physics, functions like temperature, potential functions, are harmonic. 
We shall also assume that the uniqueness of a harmonic function on U 
with prescribed boundary value holds if the boundary value is assumed 
bounded and continuous except at a finite number of points. 

Our examples are constructed for special open sets, which are simply 
connected. In general any such set is analytically isomorphic to the disc, 
or preferably to the upper half plane. Let 

f: U-H 

be such an isomorphism. In practice, it is clear how f behaves at the 
boundary of U, and how it maps this boundary on the boundary of H, 
i.e. on the real axis. To construct a harmonic function on U with pre­
scribed boundary values, it therefore suffices to construct a function qJ on 
H, and then take the composite qJ 0 f (see Exercise 3 of the preceding 
section). In practice, there always exist nice explicit formulas giving the 
isomorphism f. 

Example. We wish to describe the temperature in the upper half plane 
if the temperature is fixed with value 0 on the positive real axis, and 
fixed with value 20 on the negative real axis. As mentioned, temperature 
v(z) is assumed to be harmonic. We recall that we can define 

log z = r(z) + iO(z) 

for z in any simply connected region, in particular fo~ 

o ~ O(z) ~ n, r(z) > 0 

omitting the origin. We have 

O(z) = 0 if z is on the positive real axis, 

O(z) = n if z is on the negative real axis. 

The function 0 (sometimes denoted by arg) is the imaginary part of an 
analytic function, and hence is harmonic. The desired temperature is 
therefore obtainable as an appropriate constant multiple of O(z), namely 

20 20 
v(z) = -O(z) = -arg z. 

n n 

In terms of x, y we can also write 

O(z) = arctan y/x. 
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Figure 8 

Example. If the temperature on the first quadrant has value 0 on the 
positive real axis, and 20 on the positive imaginary axis, give a formula 
for the temperature on the whole first quadrant. 

Again we seek a harmonic function having the desired boundary 
values. We reduce the problem to the preceding example by using an 
analytic isomorphism between the first quadrant and the upper half 
plane, namely 

Therefore the solution of the problem in the present instance is given by 

20 40 
T(z) = -arg Z2 = -arctan y/x 

1t 1t 

if z = x + iy, and z lies in the first quadrant. 

Example. We assume that you have worked Exercise 5. Let A be the 
upper semidisc. We wish to find a harmonic function q> on A which has 
value 20 on the positive real axis bounding the semidisc, and value 0 on 
the negative real axis bounding the semidisc. Furthermore, we ask that 
oq>/on = 0 on the semicircle. 

3.p/ iln = 0 

Figure 9 
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The analytic function log z maps the semidisc on the horizontal strip 
as shown on Fig. 10. We may therefore solve the problem with some 
function v on the strip, and take lp(z) = v(log z) as the solution on the 
semidisc. 

z~ logz 

Figure 10 

The semicircle is mapped on the vertical segment bounding the strip, 
and the condition alp/an = 0 on this segment means that if we view v as 
a function of two variables (x, y) then av/ax = O. Thus v is a function of 
y alone, and it must have the value 20 on the negative real axis, value 0 
at any point x + ni. Such a function is 

Consequently, 

where 0 ~ 8(z) ~ n. 

20 
v(x, y) = 20 - - y. 

n 

20 
cp(z) = 20 - - 8(z), 

n 

Remark. The condition alp/an = 0 along a curve is usually interpreted 
physically as meaning that the curve is insulated, if the harmonic func­
tion is interpreted as temperature. 

VIII, §2. EXERCISES 

1. Find a harmonic function on the upper half plane with value 1 on the positive 
real axis and value - 1 on the negative real axis. 

2. Find a harmonic function on the indicated region, with the boundary values as 
shown. 
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Figure 11 

3. Find the temperature on a semicircular plate of radius 1, as shown on the 
figure, with the boundary values as shown. Value 0 on the semicircle, value 1 
on one segment, value 0 on the other segment. 

Figure 12 

4. Find a harmonic function on the unit disc which has the boundary value 0 on 
the lower semicircle and boundary value 1 on the upper semicircle. 

In the next exercise, recall that a function q>: U -+ R is said to be of class C1 if 
its partial derivatives Dl q> and D2 q> exist and are continuous. Let V be another 
open set. A mapping 

where f(x, y) = (u(x, y), v(x, y)) is said to be of class C1 if the two coordinate 
functions u, v are of class CI. 

If t/: [a, b] -+ V is a curve in V, then we may form the composite curve f 0 t/ 
such that 

(f 0 t/)(t) = f(t/(t)) . 
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Then Y = f 0'1 is a curve in u. Its coordinates are 

a b 

Figure 13 

5. Let y: [a,b] --> U c R2 be a smooth curve. Let 

be the expression of y in terms of its coordinates. The tangent vector is given by 
the derivative y'(t) = (y;(t),yW)). We define 

Ny(t) = N(t) = (y~(t), -y; (t)) 

to be the nonnal vector. We shall write vectors vertically. The nonnal derivative 
of a smooth function rp on U along the curve y is by definition 

DN,rp = (grad rp) . Ny = rp'(y)Ny , 

using the derivative q/(y), which at a value of t is a linear map 

(a) Prove that the condition DN,rp = 0 remains true under a change of 
parametrization of the interval of definition of y. 

(b) Let f: V --> U be analytic, '7: [a, b] --> V and y = f 0 '7 as above. Show 
that the Cauchy-Riemann equations imply 

Check the chain rule DN(,,)(rp 0 f) = rp'(f 0 '7)f'('7)N". Conclude that if 
DN(jo,,)rp = 0, then DN(,,)rp = O. 

6. Find a harmonic function rp on the indicated regions, with the indicated 
boundary values. (Recall what sin z does to a vertical strip.) 



258 HARMONIC FUNCTIONS [VIII, §2] 

(a) 

(b) 

(c) 

Figure 14 



[VIII, §3) BASIC PROPER TIES OF HARMONIC FUNCTIONS 

(d) 

(e) 

'11 = 1 - I a'll/on = 0 
I 

- -
oP, = 1 '11 = 0 

11 
, "2 

'11- 0 

Figure 14 (continued) 

'11 = 0 
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VIII, §3. BASIC PROPERTIES OF HARMONIC FUNCTIONS 

In §1 we saw that the real part of an analytic function is harmonic. Here 
we prove the converse. Recall that by definition, simply connected im­
plies connected. 

Theorem 3.1. Let U be a simply connected open set. Let u be harmonic 
on U. Then there exists an analytic function f on U such that u = 
Re f. The difference of two such functions is a pure imaginary constant. 

Proof. Let 

Then h has continuous partials of first order. Furthermore h is analytic, 
because 

oh 0 0 1 
- = 2- - u = zAu = O. oz oz oz 

Since V is assumed simply connected, by Theorem 6.1 of Chapter III, 
h has a primitive f on U, so f'(z) = h(z) for all z E U. Let Ul = Re(f) be 
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the real part of f. Then 

OU I oU I OUI 
h(z) = f'(z) = 2- = - - i-, 

OZ ox oy 

so U and UI have the same partial derivatives. It follows that there is a 
constant C such that U = UI + C. [Proof: Let Zo be any point of U, 
and let y: [a, b] ~ U be a curve joining Zo with a point z in U. Let 
9 = U - UI • Then the partial derivatives of 9 are O. By the chain rule we 
have 

d og ox og oy 
-g{y(t)) = -- + -- = O. 
dt ox ot oy ot 

Hence g{y(t)) is constant, so g(zo) = g(z). This is true for all points z E U, 
whence 9 is constant, as desired.] Subtracting the constant C from f 
yields the desired analytic function having the given real part u, and 
proves the existence. 

Uniqueness is based on the following more general lemma. 

Lemma 3.2. Let f, 9 be analytic functions on a connected open set U. 
Suppose f, 9 have the same real part. Then f = 9 + iK for some real 
constant K. 

Proof. Considering f - g, it suffices to prove that if the real part of 
an analytic function f on U is 0 then the function is a pure imaginary 
constant. But this is immediate from the open mapping Theorem 6.2 of 
Chapter II, because f cannot map an open set on a straight line, hence f 
is constant because U is connected by Theorem 1.2 of Chapter III. This 
constant is pure imaginary since the real part of f is O. This proves the 
lemma, and also the theorem. 

Remark. The condition that U is simply connected in Theorem 3.1 is 
needed in general; it is not sufficient that U is connected. Indeed, log r is 
a harmonic function on the open set obtained by deleting the origin from 
C, but there is no analytic function on that open set whose real part is 
log r. 

Remark. We consider composites of functions. In Exercise 3 of §l, you 
already considered a composite of a harmonic function with a holo­
morphic function. It was then assumed that the harmonic function was 
the real part of an analytic function, but now Theorem 3.1 tells us that 
this is always the case locally, that is in a neighborhood of a point. We 
then have the following properties, which are immediate, but which we 
record for possible future use. 
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Let f: U ----; V be an analytic function, and let g be a harmonic 
function on V. Then g 0 f is harmonic on U. 

Let f: U ----; V be analytic. Let V be the complex conjugate of V, 
that is the set of all points z with Z E V. Let g be harmonic on V. Then 
the function 

zl-+g(J(Z)) 
is harmonic. 

Prove these two statements as simple exercises. 

Theorem 3.3 (Mean Value Theorem). Let u be a harmonic function on 
an open set U. Let Zo E U, and let r > 0 be a number such that the 
closed disc of radius r centered at Zo is contained in U. Then 

Proof. There is a number r1 > r such that the disc of radius r1 cen­
tered at Zo is contained in U. Any r1 > r and close to r will do. By 
Theorem 3.1, there is an analytic function f on the disc of radius r1 such 
that u = Re f. By Cauchy's theorem, 

f(zo) = ~ r f(O d" 
2m]c'-zo 

where C is the circle of radius r centered at Zo. 

We parametrize the circle by , = Zo + re i6, so d, = ire i6 dO. The inte­
gral then gives 

If we write f = u + iv, then the desired relation falls out for the real part 
u. This concludes the proof. 

Theorem 3.4. 

(a) Let u be harmonic on a connected open set U. Suppose that u has 
a maximum at a point Zo in U. Then u is constant. 

(b) Let V be a connected open set and let D be its closure. Let u be a 
continuous function on D, harmonic on U. If u is not constant on 
V, then a maximum of u on D occurs on the boundary of V in D. 

Proof. First we prove that u is constant in a disc centered at Zo. By 
Theorem 3.1 there is an analytic function f on such a disc such that 
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Re f = u. Then ef(z) is analytic, and 

Since the exponential function is strictly increasing, it follows that a 
maximum for u is also a maximum for e", and hence also a maximum of 
lefl. By the maximum modulus principle for analytic functions, it follows 
that ef is constant on the disc. Then e" is constant, and finally u is 
constant, thus proving the theorem locally. 

We now extend the theorem to an arbitrary connected open set. Let S 
be the set of points z in U such that u is constant in a neighborhood of 
z with value u(zo). Then S contains zo, and S is open. By Theorem 1.6 
of Chapter III, it will suffice to prove that S is closed in U. So let Zl be 
a point in the closure of S, and Zl contained in U. Since u is continuous, 
it follows that u(zd = u(zo) because points of S can be found arbitrarily 
close to z l' Then u also has a maximum at z l' and by the first part of 
the proof is constant in a neighborhood of z l' which proves that z 1 E S, 
and concludes the proof of part (a). Part (b) is an immediate conse­
quence, thus concluding the proof of the theorem. 

As an application of the maximum modulus theorem for harmonic 
functions, we obtain a convexity property of the maximum modulus of 
an analytic function. 

Theorem 3.5 (Hadamard Three-Circle Theorem). Let f be holomorphic 
on a closed annulus 0 < r1 < Izl < r2 • Let 

log r1 -log r 
s= . 

log r2 - log r1 

Let M(r) = Mf(r) = lI!IIr = max I f(z) I for Izl = r. Then 

log M(r) ~ (1 - s) log M(rd + slog M(r2)' 

Proof Let 0( be a real number. The function 0( loglzl + loglf(z)I is 
harmonic outside the zeros of f. Near the zeros of f the above function 
has values which are large negative. Hence by the maximum modulus 
principle this function has its maximum on the boundary of the annulus, 
specifically on the two circles Izl = rl and Izl = r2. Therefore 

0( loglzl + log I f(z) I ~ max{O( log r1 + log M(r1 ), ex log r2 + log M(r2 ) 

for all z in the annulus. In particular, we get the inequality 

ex log r + log M(r) ~ max{lX log r1 + log M(rd, lX log r2 + log M(r2)' 
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Now let a be such that the two values inside the parentheses on the right 
are equal, that is 

log M(rz) - log M(r1 ) 
a = ---:;----------:----

log r1 - log rz 

Then from the previous inequality, we get 

log M(r) ~ a log r1 + log M(rd - a log r, 

which upon substituting the value for a gives the result stated in the 
theorem. 

Remark. Another proof of the Hadamard theorem will be given later 
as a consequence of the Phragmen-Lindelof theorem, giving another 
point of view and other convexity theorems. 

We shall now give further properties of harmonic functions on an 
annulus. The first result is a mean value theorem which is actually an 
immediate consequence of Theorem 3.7, but we want to illustrate a 
method of proof giving a nice application of Fourier series and techniques 
of partial differential operators. 

Theorem 3.6. Let u be harmonic in an annulus 0 < r1 < r < rz . Then 
there exist constants a, b such that 

fZ7t dO 
o u(r, 0) 2n = a log r + b. 

Proof We shall use elementary properties of Fourier series with which 
readers are likely to be acquainted. For each integer n let 

Thus un(r) is the n-th Fourier coefficient of the function 0 H u(r, 0) for a 
fixed value of r. Since u is infinitely differentiable, one can differentiate 
under the integral sign, SQ Un is infinitely differentiable. We let 

00 

u(r, 0) = L un(r)e in8 
-00 

be the Fourier series. Because u is Coo, one can differentiate the Fourier 
series term by term, and the Fourier coefficients are uniquely determined. 
Recall that the Laplace operator is given in polar coordinates for r i= 0 
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by the formula 

Differentiating the Fourier series with this operator, we note that the O-th 
Fourier coefficient uo(r) must satisfy the partial differential equation 

or multiplying by r, must satisfy the differential equation 

ruo(r) + u~(r) = o. 

This amounts to 

uo/u~ = -1/r, 

which can be integrated to give 

log u~ = -log r + C1 = 10g(l/r) + C1 

with some constant Cl. Therefore there is some constant a such that 

u~ = air, 

whence uo(r) = a log r + b for some constant b. But integrating the 
Fourier series term by term, we obtain 

f 21< 

o ein8 dO = 0 if n =F o. 

The integral of uo(r) with respect to () gives uo(r), which concludes the 
proof of the theorem. 

Next we consider harmonic functions on an annulus, which includes 
the special case of the punctured plane C* = C - {O} and the punctured 
disc D* = D - {O}. 

Theorem 3.7. Let U be an annulus 0 ~ r1 < Izl < r2 (with r2 possibly 
equal to (0). Let u be harmonic on U. Then there exists a real constant 
a and an analytic function g on U such that 

u - a log r = Re(g). 

Proof We consider the half annuli as illustrated on Figure 15. 
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Figure 15 

By Theorem 3.1, there exists an analytic function lIon the upper half 
annulus such that Re(fl) = u, and there exists an analytic function 12 on 
the left half annulus U2 such that Re(f2) = u. Then 11 and 12 have the 
same real part on the upper left quarter annulus, so 11 - 12 is constant 
on this quarter annulus by Lemma 3.2. After subtracting a constant 
from 12 we may assume that 11 = 12 on the upper left quarter annulus. 
Similarly, we obtain 13 on the lower half annulus such that 13 = 12 on 
the lower left quarter annulus and Re(f3) = u; and we obtain 14 on the 
right half annulus with Re(f4) = u and 14 = 13 on the lower half annulus. 
But in the final step, there is a constant Ki that we cannot get rid of 
such that 

14 = 11 + Ki on the upper quarter annulus. 

The condition Re(f4) = u implies that K is real. 
Now consider the functions 

K 
J;J.(z) - - log;(z) (j = 1, .. . ,4) on the j-th half disc, 

2n J 

where logj(z) is given by 

on the j-th half annulus and the angle 8j on the j-th half annulus satisfies 

n < 83 < 2n, 
3n n 
- < 84 < 2n + -2 2· 

Then log4(z) = 10g1 (z) + 2ni on the upper fourth quadrant. Hence 
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Therefore there is an analytic function g on u such that 

g = jj - (K/2n) logj 

on the j-th half annulus. This concludes the proof of the theorem. 

Remark 1. In the terminology of Chapter XI, we may say that the 
functions f1' f2' f3' f4 are analytic continuations of each other, and 
similarly for jj - (K/2n) logj for j = 1, ... ,4. 

Remark 2. The result of Theorem 3.7 is similar to a result in real 
analysis, which we recall. On R2 from which the origin is deleted, we 
have a vector field 

( -y x) 
G(x, y) = x2 + y2' x2 + y2 ' 

or in terms of differentials, 

-y X 
2 2 dx + 2 2 dy = dO 

x +y x +y 

as the reader will verify by the chain rule. Now let F be an arbitrary C1 

vector field on R2 minus the origin, F = (f, g) where f, g are C1 func­
tions. Assume that of/oy = og/ox (the so-called integrability conditions). 
Let y be the circle of radius 1 centered at the origin, and let 

K = l F'dy = t2
" F(y(O))'y'(O) dO. 

Then there exists a function ((J on R2 minus the origin such that 

K 
F = grad ((J + 2n G. 

Cf. Chapter 15, §4, Exercise 13, in my Undergraduate Analysis (Springer­
Verlag, 1983). 

Theorem 3.7 is of interest for its own sake: because it gives a first 
illustration of analytic continuation to whose general properties will be 
discussed later; and also because we shall use it in the next result, which 
proves for harmonic functions the analogue of the theorem concerning 
removable singularities for analytic functions. 
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Theorem 3.8. Let u be a harmonic function on the punctured disc D"'. 
Assume that u is bounded. Then u extends to a harmonic function 
on D. 

Proof By Theorem 3.7 there exists an analytic function 9 on D'" such 
that u(z) = Re(g(z)) + a log r. We then have the Laurent expansion 

and it suffices to show that there are no negative terms, i.e. a" = 0 for n 
negative, for then 9 is bounded in a neighborhood of 0, so a = 0 because 
u is bounded, and we are done. Suppose there are only a finite number 
of negative terms, so 9 has a pole or order N ~ 1 at the origin. Thus 

a-N a_1 h' h g(z) = -----,r + ... + - + Ig er terms 
z z 

and Q_ N # O. Consider values of z such that Izl = r approaches 0 and 
also such that a_Nz-N is real positive. Then 

I Re(g(z))1 ~ Qz-; + 0 (Izl~-l), 
and so u = Re(g(z)) + Q loglzl cannot be bounded for such z. Hence 9 
has an essential singularity at the origin. By the Casorati-Weierstrass 
theorem, 9 takes on values arbitrarily close to any given complex number 
on any disc of small radius. However, the equation 

Re(g(z)) = u(z) - Q log r 

shows that the set of values will miss the points in some region with real 
part large negative or large positive depending on the sign of a, and even 
if a = O. Hence we have shown that the Laurent expansion has only 
terms with n ~ 0, thereby concluding the proof of the theorem. 

Although we wanted to illustrate ideas of analytic continuation in the 
proof of Theorem 3.7, readers should also be aware of the following 
extension and a more powerful argument used to prove both results, as 
follows. 

Theorem 3.9. Let U be a simply connected open set in C. Let Zl, ... , Zn 
be distinct points in U, and let U' = U - {Zl, ... , zn} be the open set 
obtained by deleting these points. Let u be a real harmonic function on 
U·. Then there exist constants al, . .. , an and an analytic function f on 
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U* such that Jor all Z E U* we have 

u(z) - L:>k loglz - zkl = ReJ(z). 

Proof On each open disc W contained in U*, u is the real part of an 
analytic function A w, uniquely determined up to an additive constant. We 
want to determine the obstruction for u to be the real part of an analytic 
function on U*, and more precisely we want to show that there exist real 
constants ak and an analytic function J on U* such that 

We consider the functions Aw as above. For each W, the derivative A'w 
is uniquely determined, and the collection of such functions {A'w} defines 
an analytic function A' on U*. Let Yk be a small circle around Zk, and let 

ak = f:J A'(z) dz. 
7tl Yk 

Let Zo be a point in U* and let Yz be a piecewise C1 path in U* from Zo to 
a point z in U*. Let 

g(z) =A'(z) - L:ak-l-
k z -Zk 

and J(z) = J gm de + u(zo). 
Y. 

We claim that this last integral is independent of the path Yz, and gives the 
desired function. To show independence of the path, it suffices to show 
that for any closed path Y in U* we have J g(C) dC = O. By Theorem 2.4 
of Chapter IV, there are integers mk suchY that Y '" E mjYj. Then 

This proves that the definition of J(z) is independent of the path Yz, so J 
is an analytic function on U*. 

Next we claim that ak is real. Writing dz = dx + i dy and 

A'(z) = ou _ i OU 
ox oy 

we get 

A (z) dz = - dx + - dy + l - dy - - dx . J ' J(OU Ou) 'J(OU OU) 
ox oy ox oy 
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The first integral over the circle is 0 because it is f du over the circle, i.e. it 
is the integral of grad u, which has a potential function u. The second 
integral is pure imaginary, and dividing by 2ni yields a real number, as 
desired. 

Finally we want to prove that Re j(z) = u(z) - L: ak loglz - zkl. Let 
W be a disc in U* containing zoo We prove the above relation first for 
z E W. We can take the path Yz to be contained in W. We then write the 
integral defining j(z) as a sum of two integrals, to get 

Rej(z) = Re J A'w(O d( + u(zo) - L Re ak log(z - Zk) 
~ k 

= u(z) - L ak loglz - zkl· 

Finally we use the following lemma to conclude the proof. 

Lemma 3.10. Let U be a connected open set. Let u be harmonic on U, 
and j analytic on U. If u = Re(f) on some open disc contained in U, 
then u = Re(f) on U. 

Proof Let V be the union of all open subsets of U where u = Re(f). 
Then V is not empty and is open. We need only show that V is closed in 
U. Let {zn} be a sequence of points in V converging to a point WE U. 
Let D be a small open disc centered at wand contained in U, such that 
u = Re(g) for some analytic function g on D. Then D contains infinitely 
many Zn, and j, g have the same real part in a neighborhood of such Zn. 

Hence j - g is a pure imaginary constant on such a neighborhood, 
whence on D. Therefore u = Re(f) on D, so Dc V, WE V, and V is 
closed in U, which proves the lemma. 

Remark 1. We have encountered two similar situations with appli­
cations of Theorem 2.4 of Chapter IV, namely holomorphic functions and 
harmonic functions. In Appendix 6, we shall meet a third similar situation 
with locally integrable vector fields. 

Remark 2. One could delete disjoint discs from U instead of points. 
The conclusion and proof of the theorem are valid. With this more 
general assumption, the result then includes Theorem 3.7 as a special case. 

VIII, §3. EXERCISES 

1. The Gauss theorem (a variation of Green's theorem) can be stated as follows. 
Let y be a closed piecewise C 1 curve in an open set U, and suppose y has an 
interior contained in U. Let F be a C 1 vector field on U. Let n be the unit 
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normal vector on y. Then 

J F.n=JJ (divF)dydx. 
y Int(y) 

Using the Gauss theorem, prove the following. Let u be a C2 function on U, 
harmonic on the interior Int(y). Then 

Here Dnu is the normal derivative (grad u) . n, as in Exercise 5 of §2. 

Subharmonic Functions 

Define a real function cp to be subbarmonic if cp is of class C2 (i.e. has continuous 
partial derivatives up to order 2) and 

The next exercise gives examples of subharmonic functions. 

2. (a) Let u be real harmonic. Show that u2 is subharmonic. 
(b) Let u be real harmonic, u = u(x, y). Show that 

(grad U)2 = (grad u)· (grad u) 

is subharmonic. 
(c) Show that the function u(x, y) = x 2 + y2 - 1 is subharmonic. 
(d) Let u1 , U2 be subharmonic, and c l' C2 positive numbers. Show that 

Cl U1 + C2U2 is subharmonic. 

3. Let rp be subharmonic on an open set containing a closed disc of radius r, 
centered at a point a. For r < r1 let 

h(r) = cp(a + re i8 )_. f 2" dO 

o 2n 

Show that h(r) is increasing as a function of r. [Hint: Let u(r, 0) = <pea + rei8 ). 

Then 

d J2" a ( au) dO r dr (rh'(r)) = 0 r ar r ar 2n· 

Use the expression for A in polar coordinates, and the fact that the integral of 
iPu/iJ02 is 0 to show that rh'(r) is weakly increasing. Since rh'(r) = 0 for r = 0, 
it follows that rlt(r) ~ 0, so h'(r) ~ 0.] 
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4. Using Exercise 3, or any other way, prove the inequality 

f21< de 
rp(a) ~ 0 rp(a + reiO) 2n for every r. 

5. Suppose that cp is defined on an open set U and is subharmonic on U. Prove 
the maximum principle, that no point a E U can be a strict maximum for cp, 
i.e. that for every disc of radius r centered at a with r sufficiently small, we 
have 

cp(a) ~ max cp(z) for \z - a\ = r. 

6. Let cp be subharmonic on an open set U. Assume that the closure V is 
compact, and that cp extends to a continuous function on V. Show that a 
maximum for cp occurs on the boundary. 

7. Let U be a bounded open set. Let u, v be continuous functions on V such 
that u is harmonic on U, v is subharmonic on U, and u = v on the boundary 
of U. Show that v ~ u on U. Thus a subharmonic function lies below the 
harmonic function having the same boundary value, whence its name. 

Remarks. We gave a definition of subharmonic functions which would 
exhibit a number of properties rapidly, emphasizing the effect of the 
Laplace operator. Actually, in some of the most important applications, 
our definition is too strong, and one defines a function u to be sub­
harmonic if it is upper semicontinuous, allowing -00 as a value (with 
-00 < c for all real numbers c), and if u satisfies the maximum principle 
locally in the neighborhood of every point. For a wide class of con­
nected open sets U, not necessarily simply connected, one proves the 
existence of a harmonic function on U having given boundary value 
(satisfying suitable integrability conditions) by taking the sup of the sub­
harmonic functions having this boundary value. Taking the sup of two 
functions does not preserve differentiability but it preserves continuity at 
a point, so just for that reason (among others), one has more flexibility in 
dealing with subharmonic functions rather than harmonic functions. For 
a systematic treatment using this approach, see [Ah 66] and [Fi 83], 
especially Chapter 1, §3 and §4. 

The exercises on subharmonic functions will also be found worked 
out in [StW 71]. 

VIII, §4. THE POISSON FORMULA 

In this section, we express an analytic function in terms of its real part. 
We first prove the formula in a rather ad hoc way. After Theorem 4.2, we 
shall make some comments explaining more about the structure of the 
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formula. Some readers might prefer to look at these comments first, or 
simultaneously. We start with an identity for z = x + iy = re ilp : 

(I) 
I+z l-r2 l-r2 

Re--= = . 
I-z 1-2x+r2 1-2rcostp+r2 

Define the Poisson kernel PR, r for 0 ~ r < R by 

1 R2 - r2 
PR,r(O) = 2n R2 - 2Rr cos 0 + r2 . 

This is a real periodic function of O. From (I) one shows at once 
that 

1 Reif) +r 
PR r( 0) = -2 Re R Of) , , n e' - r 

(2) 

Theorem 4.1. Let f be holomorphic on the closed disc DR. Let z E DR. 
Then 

i2.. 0 Rel8 + z dO 
fez) = f(Re,8) Re R i8 -2' 

o e -z n 

Proof Write z = rei". Let CR denote the circle of radius R, 
parametrized by e = Re19, de = i Rei' dO. Then by Cauchy's theorem, 

fez) = ~ ( f(C) dC = (2 .. f(Rei9) oRei9 
0 dO. 

2m Jea C - z Jo Rei9 - re'" 2n 

On the other hand, let w = R2/Z = (R2/r)e i". Then C ...... f(C)/(c - w) is 
holomorphic on DR so 

0=_1 ( f(C) dC = (2 .. f(Re'9) 0 rei9 
0 dO. 

2ni Jea C - w Jo re,9 - Re'" 2n 

Subtract and collect terms. The desired identity comes directly from 
(2). 
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Let us decompose f into its real and imaginary part, so 

f = u + iv with u = Re f. 

Then the integral expression of the theorem gives separately an integral 
expression for both u and v. For the real part, we thus get 

f2" . Rei6 + z dO 
u(z) = u(Re'6) Re R i6 ~2' 

o e -z 1t 

In particular, for f itself, we get: 

Theorem 4.2. Let f be holomorphic on the closed disc DR' then there is 
a real constant K such that for all z E DR we have 

f2" . Rei6 + z dO 
f(z) = Re f(Re,6) R i6 ~2 + iK, 

o e -z 1t 

Proof The right-hand side is analytic in z. One can see this either by 
applying Theorem 7.7 of Chapter III, or by differentiating under the 
integral sign using Theorem A3 of §6, which justifies such differentiation. 
By Theorem 4.1, the right-hand side and the left-hand side, namely j, 
have the same real part. As we saw in Lemma 3.2, this implies that the 
right-hand side and the left-hand side differ by a pure imaginary constant, 
as was to be shown. 

Remark. In Theorem 3.1 we proved the existence of an analytic func­
tion having a given real part, say on a disc. Theorem 4.2 gives an 
explicit expression for this analytic function, useful to estimate both the 
function and its real part. Applications will be given in exercises. 

The Poisson Integral as a Convolution 

We shall now comment on the expression which occurs in the integral of 
Theorem 4.1, the Poisson kernel. 

Given two periodic functions g, h one defines their convolution g * h by 
the integral 

If g is an even function, that is g( -e) = g( e) for all e, then we can write 
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this integral in the form 

1211: 

(g * h)(rp) = 0 g(O - rp)h(O) dO. 

Then the integral of Theorem 4.1 is seen to be a convolution, namely 

f(z) = f(rei'l') = (PR,r * h)(rp), 

where h(O) = f(Re i{}). This type of convolution integral and more of its 
properties will appear again in the next section. 

Remarks. Suppose we are given a continuous function g on the unit 
circle. We can define its Cauchy transform 

1 i g(O h(z) = hiz) = -2' -y - d(, 
1tl c ... -z 

so that h is holomorphic on the unit disc. Cases of all types can occur 
when h does not extend to a continuous function on C, when h does 
extend to a continuous function on C but this continuous function is 
different from g, and when finally this continuous function is g itself. We 
now give some examples. 

Examples. Let g«() = (" when n is an integer ~ O. Then 

h(z) = z" 

by Cauchy's theorem. On the other hand, if n is a positive integer, and 
g«() = C", then from the expansion 

1 ao 1 (Z)k 
("«( - z) = k~O (,,+1 , 

we see that h = O. More generally, we can form series 

subject to suitable convergence to obtain more general functions. If g is 
an arbitrary continuous function on the circle, with, = ei9, then g has a 
Fourier series as above, and the elementary theory of Fourier series 
implies that L la,,1 2 converges. Because of the Schwarz inequality, one 
can integrate term by term, and the above example with negative powers 
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of , shows that under the Cauchy transform, all the negative terms 
disappear, and the corresponding holomorphic function h is given by the 
series 

00 

h(z) = L anzn. 
n=O 

If negative terms were present in the Fourier expansion of g, then cer­
tainly a continuous extension of h to the circle is not equal to g. 

On the other hand, if we pick z outside the unit circle, then under the 
Cauchy transform, the positive terms of the Fourier expansion will vanish 
rather than the negative terms. 

The Cauchy transform actually defines two holomorphic functions: one 
on the unit disc, and one outside the unit disc. When f is holomorphic 
on the closed unit disc, Theorem 4.1 and 4.2 show how they patch 
together to give rise to an integral expression for f in terms of what 
could be called the Poisson transform (the integral in Theorem 4.2), which 
will be reconsidered from another point of view in the next section. 

We now give an example of a continuous function on the unit circle 
whose Cauchy transform cannot be extended by continuity, say to the 
point 1. We let 

./) 1 
g(e l 

) = log(1/0) for 0 < 0 ~ 'It/4 

We extend this function of 0 linearly between 'It/4 and 'It so that at 0 = 'It 
the function is 0; and we extend the function by periodicity for other 
values of O. We leave it to the reader to verify that as z -+ 1, z real, the 
Cauchy transform tends to infinity. 

VIII, §4. EXERCISES 

1. Give another proof for Theorem 4.1 as follows. First by Cauchy's theorem, 

Let g be the automorphism of the disc which interchanges 0 and z. Apply the 
above formula to the function fog instead of f, and change variables in the 
integral, with w = g(n , = g-l(W). 

2. Define 
1 R2 _,2 

PR,r«(J) = 2n-=R"""2 ----=2--=Rr-co-S-:(J:-+-,"'"""2 

for 0 ~, < R. 
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Prove the inequalities 

for 0 ~ r < R. 

R-r R+r 
-- :;;; 2nPR r({) - rp) :;;; -­R+r- , -R-r 

3. Let f be analytic on the closed disc 15(a., R) and let u = Re(f). Assume that 
u ~ O. Show that for 0 ~ r < R we have 

R-r . R+r 
--u(a.) ~ u(a. + re·8 ) ~ --u(a.). 
R+r R-r 

After you have read the next section, you will see that this inequality holds 
also if u ~ 0 is harmonic on the disc, with a continuous extension to the 
closed disc 15( a., R). 

4. Let {un} be a sequence of harmonic functions on the open disc. If it converges 
uniformly on compact subsets of the disc, then the limit is harmonic. 

VIII, §5. CONSTRUCTION OF HARMONIC FUNCTIONS 

Let U be a simply connected open set with smooth boundary. By the 
Riemann mapping theorem, there is an analytic isomorphism of U with 
the unit disc, extending to a continuous isomorphism at the boundary. 
To construct a harmonic function on U with prescribed boundary value, 
it suffices therefore to do so for the disc. 

In this case, we use the method of Dirac sequences, or rather Dirac 
families. We recall what that means. We shall deal with periodic func­
tions of period 2n in the sequel, so we make that assumption from the 
beginning. By a Dirac sequence we shall mean a sequence of functions 
{KII} of a real variable, periodic of period 2n, real valued, satisfying the 
following properties. 

DIR 1. We have K/I(t) ~ 0 for all n and all x. 

DIR 2. Each K/I is continuous, and 

L2" K/I(t) dt = 1. 

DIR 3. Given € and 0, there exists N such that if n ~ N, then 

Condition DIR 2 means that the area under the curve y = K/I(t) is 
equal to 1. Condition DIR 3 means that this area is concentrated near 0 
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if n is taken sufficiently large. Thus a family {Kn} as above looks like 
Fig. 16. 

-7r 

Figure 16 

The functions {Kn} have a peak near O. In the applications, it is also 
true that the functions Kn are even, that is, Kn( - x) = Kn(x), but we 
won't need this. 

If f is any periodic function, we define the convolution with Kn to be 

Theorem 5.1. Let f be continuous periodic. Then the sequence {Kn * f} 
converges to f uniformly. 

Proof. Changing variables, we have 

On the other hand, by DIR 2, 

Hence 

fn(x) - f(x) = f~" [f(x - t) - f(x)]Kn(t) dt. 
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By the compactness of the circle, and the uniform continuity of f, we 
conclude that given E there is ~ such that whenever It I < ~ we have 

If(x - t) - f(x)1 < E 

for all x. Let B be a bound for f Then we select N such that if n ~ N, 

f-IJ fit 
-It + IJ Kn < 2~' 

We have 

To estimate the first and third integral, we use the given bound B for f 
so that If(x - t) - f(x)1 ~ 2B. We obtain 

L-: + Lit If(x - t) - f(x) I Kit) dt ~ 2B f:: + Lit Kn(t) dt < E. 

For the integral in the middle, we have the estimate 

This proves our theorem. 

We leave it as an exercise to prove that if Kn is of class C1, then 

This is merely differentiating under the integral sign. 
We shall work with polar coordinates r, 8. It is an exercise to see that 

the Laplace operator can be put in polar coordinates by 

It was convenient to formulate the general Dirac property for sequences, 
but we shall work here with families, indexed by r with 0 < r < 1 and r 
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tending to 1, rather than n tending to infinity. We define the Poisson 
kernel as 

The series is absolutely convergent, and uniformly so, dominated by a 
geometric series, if r stays away from 1. Simple trigonometric identities 
show that 

1 1 - r2 
P,.( 8) = 2n -'--1 ---2=-r-c-o-s --=-8-+----.-r2 . 

The smallest value of the denominator occurs when cos 8 = 1, and we 
therefore see that 

DIR 1. P"(8) ~ ° for all r, 8. 

Integrating the series term by term yields 

DIR 2. I~" P"(8) d8 = 1. 

This follows immediately from the values: 

I" eik6 d8 = {O 
-" 2n 

if k # 0, 
if k = 0. 

Finally, we have the third condition: 

DIR 3. Given E and 15 there exists ro, 0< ro < 1, such that if 

ro < r < 1, 

then 

I-a f" P,. + P,. < e. 
-" {) 

This is easily seen as follows. Consider for definiteness the interval 
[15, n]. Then on that interval, 

1 - 2r cos 8 + r2 ~ 1 - 2 cos 15 + r2. 

As r -+ 1, the right side approaches 2 - 2cost5 > 0, so there exists b > ° 
and r1 such that if r1 < r < 1 then 

1 - 2r cos 8 + r2 ~ b. 
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Hence 

Since 1 - r2 -+ 0 as r -+ 1, the desired estimate of DIR 3 follows. 

Thus we view {Pr } as a Dirac family, with r -t 1. We let j, = Pr * f 
and write f(r, 0) = j,(0). Then J,(O) is a function on the open disc. 
Theorem 5.1 yields: 

f..( fJ) -+ f( fJ) uniformly as r -+ 1. 

Theorem 5.2. Let f be a real valued continuous function, periodic of 
period 2n. Then there exists a function u, continuous on the closed disc 
and harmonic on the open disc, such that u = f on the circle, in other 
words u(l, 0) = f(O). This function is uniquely determined, and 

u(r, 0) = f..( 0) = p,. * f( 0). 

Proof The Laplace operator in polar coordinates can be applied to 
P"(fJ), differentiating the series term by term, which is obviously allowable. 
If you do this, you will find that 

Thus IlP = 0, where P denotes the function of two variables, 

P(r, fJ) = P"(fJ). 

Differentiating under the integral sign, we then obtain 

Il((p,. * f)(fJ) = (1lP"(fJ) * f = o. 

We view the original periodic function f as a boundary value· on the 
circle. The function 

u(r, fJ) = f..( fJ) = p,. * f( fJ) 

is defined by convolution for 0 ~ r < 1, and by continuity for r = 1 by 
Theorem 5.1. This yields the existence of a harmonic function u having 
the prescribed value f on the circle. Uniqueness was proved in Theorem 
1.3. 
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Remark. Theorem 5.2 gives an alternative proof of Theorem 4.1. 

In many applications, e.g. physical applications, but even theoretical 
ones, it is not convenient to assume that the boundary value function is 
continuous. One should allow for at least a finite number of discon­
tinuities, although still assuming that the function is bounded. In that 
case, an analysis of the proof shows that as much as one would expect of 
the theorem remains true, i.e. the reader will verify that the proof yields: 

Theorem 5.3. Let f be a bounded function on the reals, piecewise 
continuous, periodic of period 2n. Let S be a compact set where f is 
continuous. Then the sequence {Kn * f} converges uniformly to f on S. 
The function 

u(r, 0) = f..(0) = P, * f(O) 

is harmonic on the open disc 0 :;;£ r < 1 and 0 :;;£ 0 :;;£ 2n. 

Not only can we prove the existence of a harmonic function having a 
prescribed boundary value as in Theorem 5.2, but we can also prove 
directly the existence of an analytic function having this boundary value 
for its real part by using the Poisson integral formula as the definition. 
Nothing is asserted about the imaginary part, and the example given at 
the end of §4 shows that the analytic function need not itself extend by 
continuity to the boundary. 

Theorem 5.4. Let u be continuous on the closed unit disc D, and har­
monic on the disc D. Then there exists an analytic function f on D such 
that u = Re J, and two such functions differ by a pure imaginary con­
stant. In fact, 

li{+Z d{. f(z) = -2. -y -u({)y- + IK, 
1tI c"'-Z ." 

where C is the unit circle and K is a real constant. 

Proof The function f defined by the above integral is analytic on D by 
Theorem A3 of §6. We have to identify its real part with u. But the 
integrand is merely another expression for the convolution of the Poisson 
kernel with u. Indeed, the reader will easily verify that if z = re iO is the 
polar expression for z, then 

1 eil + Z 1 1 - r2 
P"(O - t) = 2n Re eil _ Z = 2n 1 _ 2r cos(O - t) + r2 • 
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The unit circle is parametrized by ( = eit, d( = eitidt, and so the expres­
sion for the real part of f can also be written 

1 f" eit + z . Re f = -2 Re-i-t -u(e·t ) dt, 
n _" e - z 

which is the convolution integral. Applying Theorem 5.1 shows that the 
real part Re f on D extends continuously -to the boundary and that its 
boundary value is precisely u. The uniqueness of harmonic functions 
with given boundary value shows that the real part of f is also equal to 
u on the interior, as was to be shown. 

The integral expression of Theorem 5.4 gives a bound for f in terms 
of its real part and f(O). Such a bound can be obtained in a simpler 
manner just using the maximum modulus principle, and we shall give 
this other proof in §3 of Chapter XII. 

We shall now give an application of the construction of a harmonic 
function with given boundary value. 

Theorem 5.5. Let u be continuous on an open set U. Suppose that u 
satisfies the mean value property locally at every point of U, that is for 
Zo E U and r sufficiently small, 

J2" dO 
u(zo) = 0 u(zo + rei8 ) 2n' 

Then U is harmonic on U. 

Proof We first prove that u satisfies the maximum principle locally. 
Suppose u(zo) ~ u(zo + rei8 ) for all r with 0 ~ r ~ ro. Then u is locally 
constant at Zoo Indeed, suppose that u(zd < u(zo) for some point zIon 
the circle of radius r. Then u(z) ~ u(zo) - e, for some e > 0 and all z 
sufficiently close to zIon the circle. It then follows that the above 
integral is < u(zo), a contradiction. This proves the local maximum prin­
ciple, and similarly the local minimum principle. 

Now to prove that u is harmonic, let Zo E U, and pick ro sufficiently 
small so that the mean value property holds with 0 ~ r ~ ro. Let U1 be 
the harmonic function on the disc D(zo, ro) having the given boundary 
value u on the circle of radius ro around zo, as guaranteed by Theorem 
5.4. Then u - U1 has boundary value 0, and satisfies the mean value 
property at every point of D(zo, ro)' Hence U - U1 has both its maximum 
and minimum on the boundary, so U - Ul = 0 and U = Ul' thus proving 
the theorem. 
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VIII, §5. EXERCISES 

One can also consider Dirac sequences or families over the whole real line. We 
use a notation which will fit a specific application. For each y> 0 suppose given 
a continuous function ?y on the real line, satisfying the following conditions: 

DIR 1. ?y(t) ~ 0 for all y, and all real t. 

DIR 2. f: ?yet) dt = 1. 

DIR 3. Given E, b there exists Yo > 0 such that if 0 < y < Yo, then 

f -b + foo ?yet) dt < t:. 

-00 b 

We call {?y} a Dirac family again, for y -+ O. Prove: 

1. Let f be continuous on R, and bounded. Define the convolution ?y * f by 

?y * f(x) = t: ?y(x - t)f(t) dt. 

Prove that ?y * f(x) converges to f(x) as y -+ 0 for each x where f is continuous. 
The proof should also apply to the case when f is bounded, and continu­

ous except at a finite number of points, etc. 

2. Let 
1 Y 

P(t)=---
y 1t t2 + y2 

for y> O. 

Prove that {Py} is a Dirac family. It is called the Poisson family for the upper 
half plane, and it is classical. 

3. Define for all real x and y > 0: 

F(x, y) = ?y * f(x). 

Prove that F is harmonic. In fact, show that the Laplace operator 

applied to 
y 

yields O. 
You will have to differentiate under an integral sign, with the integral being 

taken over the real line. You can handle this in two ways. 
(i) Work formally and assume everything is OK. 

(ii) Justify all the steps. In this case, you have to use a lemma like Theorem 
A4 of §6. 
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The above procedure shows how to construct a harmonic function on the 
upper half plane, with given boundary value, just as was done for the disc in the 
text. 

4. Let u be a bounded continuous function on the closure of the upper half plane 
(i.e. on the upper half plane and on the real line). Assume also that u is 
harmonic on the upper half plane, and that there are constants c > 0 and 
K > 0 such that 

1 
lu(t)1 ~ K ftF for all I tl sufficiently large. 

Using the Dirac family of the preceding exercise, prove that there exists an 
analytic function f on the upper half plane whose real part is u. [Hint: Recall 
the integral formula of Exercise 23 of Chapter VI, §1).] 

Remark. If u is not bounded, then the conclusion need not hold, as shown by 
the function u(x,y) = y, which has boundary value 0 on the real line. 

Let u be a continuous function on an open set U. We say that u satisfies the 
circle mean value property at a point Zo E U if 

I r21! 

u(zo) = 2n Jo u(zo + re ilJ ) dO 

for all r> 0 sufficiently small (so that in particular the disc D(zo, r) is contained in 
U). We say that u satisfies the disc mean value property at a point Zo E U if 

u(zo) = ~JJ- u dx dy, 
nr D(zo,r) 

for all r> 0 sufficiently small. We say that the function satisfies the mean value 
property (either one) on U if it satisfies this mean value property at every point of 
U. By Theorem 3.3 and Theorem 5.5 we know that u is harmonic if and only if u 
satisfies the circle mean value property. 

5. Prove that u is harmonic if and only if u satisfies the disc mean value property 
on U. 

6. Let H+ be the upper half plane. For Z E H+ define the function 

hz(()=-. ---_ 1 (1 1) 
2m (-z (-z 

Then hz is analytic on H+ except for a simple pole at z. Let f be an analytic 
function on H+ u R (i.e. on the closure of the upper half plane, meaning on an 
open set containing this closure). Suppose that f is bounded on H+ u R. Prove 
that J: f(t)hz(t) dt = J(z). 
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This is the analogue of Theorem 4.1 for the upper half plane. [Hint: Integrate 
over the standard region from the calculus of residues, namely over the interval 
[-R, R] and over the semicircle of radius R.] 

7. In Exercise 6, consider the case z = i. Let 

z-i 
W=--

z+i 
.w+ 1 

so z = -lw_1 

be the standard isomorphisms between the upper half plane and the unit disc D. 
Show that 

( _I __ I ) dz_dw 
z-i z+i -w· 

In light of Exercise I, this shows that the kernel function in Exercise 2 cor­
responds to the Poisson kernel under the isomorphism between H+ and D. 

8. Let x = r cos (J, Y = r sin (J be the formulas for the polar coordinates. Let 

f(x, y) = f(r cos (J, r sin (J) = g(r, (J). 

Show that 

For the proof, start with the formulas 

:~ = (DII) cos () + (Dd) sin () and ~: = -(DII)r sin () + (Dd)r cos (), 

and take further derivatives with respect to r and with respect to (J, using the 
rule for derivative of a product, together with the chain rule. Then add the 
expression you obtain to form the left-hand side of the relation you are 
supposed to prove. There should be enough cancellation on the right-hand side 
to prove the desired relation. 

9. (a) For t > 0, let 
1 2/4 K(t, x) = K,(x) = __ e-x '. 

J4,rt 

Prove that {K,} for t -+ 0 is a Dirac family indexed by t, and t -+ 0 
instead of n -+ 00. One calls K the beat kernel. 

(b) Let D = (a/ax)2 - a/at. Then D is called the beat operator (just as we 
defined a Laplace operator A). Show that DK = O. (This is the analogue 
of the statement that AP = 0 if P is the Poisson kernel.) 

(c) Let f be a piecewise continuous bounded function on R. Let F(t, x) = 
(K,'" f)(x). Show that DF = 0, i.e. F satisfies the heat equation. 
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VIII, §6. APPENDIX. DIFFERENTIATING UNDER 
THE INTEGRAL SIGN 

[VIII, §6] 

In this section, we used theorems of basic real analysis. We shall give here 
proofs in special cases which are sufficient for the applications we make 
here. We do this for the convenience of the reader. See Chapter XV, §l 
for a version specific to complex situations. We first deal with continuity, 
then with differentiability. 

Theorem At. Let f be a continuous function of two variables, f = f (x, y) 
with x, y in finite intervals, x E [a, b] and y E [c, d]. Let 

g(x) = r f(t, x) dt. 

Then g is continuous. 

Proof Since the rectangle [a, b] x [c, d] is compact, f is uniformly 
continuous on this rectangle. For x, x' E [a, b], we have 

Ig(x) - g(x')1 ~ r If(t, x) - f(t', x)1 dt. 

By uniform continuity, given E there exists J such that if Ix - x'i < J then 
If(t, x) - f(t',x)1 < E for all y E [c, d]. Hence 

Ig(x) - g(x')1 ~ E(d - c) 

which concludes the proof. 

Next we deal with an infinite interval, but still consider continuity. 

Theorem A2. Let f be a continuous function of two variables (t, x) 
defined for t ~ a and x in some compact set of numbers S. Assume that 
the integral 

Joo f(t, x) dt = lim JB f(t, x) dt 
a B-'>oo a 

converges uniformly for XES. Let 

g(x) = J: f(t, x) dt. 

Then g is continuous. 
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Proof For given XES we have 

g(x + h) - g(X) = J: f(t, x + h) dt - J: f(t, x) dt 

= J: (I(t,x+h) -f(t,x)) dt. 

Given E, select B such that for all YES we have 

I J: f(t, y) dtl < E. 

Then 

Jg(x + h) - g(x)J ~ I r (I(t, x + h) - f(t, x)) dtl 

+ I J: f(t, x + h) dtl + I J: f(t, x) dtl· 

We know that f is uniformly continuous on the compact set [a, B] x S. 
Hence there exists a such that whenever JhJ < a we have 

Jf(t, x + h) - f(t, x)J ~ EI B. 

The first integral on the right is then estimated by BEl B = E. The other 
two are estimated each by E, so we have a 3E-proof for the theorem. 

We shall now prove special cases of the theorem concerning differen­
tiation under the integral sign which are sufficient for our applications. 
They may be called the absolutely convergent cases. 

For a function f of two variables, we let Dd and D2f be the partial 
derivatives of f with respect to the first and second variable respectively. 

Theorem A3. Let f(t, x) be defined for a ~ t ~ b and x E U (either an 
interval for the real variable case, or an open set in C for the case of 
complex x). Suppose f and D2f defined and continuous. Let 

g(x) = 1: f(t, x) dt. 

Then g is differentiable, and 

g'(x) = f D2f(t,x)dt. 
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Proof We have by linearity, 

g(x + hl- g(x) _ r Dd(t, x) dt = 1: [f(t, x + ~ - f(t, x) - Dd(t, X)] dt. 

By the mean value inequality (see below), 

If(t, x + hl- f(t, x) _ Dd(t, X)I ~ s~p IDd(t, w) - Dd(t, x)1 

where the sup is taken for all w on the segment from x to x + h. Let S(h) 
be a closed interval or closed disc of radius Ihl centered at x, and 
contained in U. By the uniform continuity of Dd on compact sets, the 
right side approaches 0 as h - 0, uniformly for t E [a, bj. The conclusion 
of the theorem follows at once. 

Theorem A4. Let f be a function of two variables (t, x) defined for t ~ a 
and x either in a finite interval [c, dj, or on some open set U in C. 
Assume that Dd exists, and that both f and Dd are continuous. Assume 
that there are functions Ip(t) and I/I(t) which are ~O, such that 

If(t, x)1 ~ Ip(t) and IDd(t, x)1 ~ I/I(t), 

for all t, x, and such that the integrals 

J: Ip( t) dt and J: I/I(t) dt 

converge. Let 

g(x) = J: f(t, x) dt. 

Then g is differentiable, and 

Dg(x) = J~ D2f(t, x) dt. 

Proof Let S = [c, dj, or S = closed disc centered at x and contained in 
U. We have 

1 g(x + hl- g(x) - J: Dd(t, x) dtl 

~ J~ If(t, x + hl- f(t, x) - Dd(t, x)1 dt. 
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Select B so large that 

J: t/I(t) dt < f. 

Then we estimate our expression by 

Since Dd is uniformly continuous on [a, B] x S we can find 0 such that 
whenever Ihl < 0, 

f 
s~ IDd(t, w) - Dd(t, x)1 < B 

where the sup is taken for w on the segment between x and x + h. The 
integral between a and B is then bounded by f. The integral between B 
and 00 is bounded by 2f because 

supIDd(t, w) -Dd(t, x)1 ~ 2t/1(t). 
w 

This proves our theorem. 

Remark. In the above proof, we used the mean value theorem in its 
manifestation as a mean value inequality. We recall briefly how it is 
proved. 

For a continuously differentiable function f on some open U, a point 
x E U such that the interval between x and x + h is contained in U, we 
have the exact relation 

Jld 
f(x + h) - f(x) = 0 dtf(x + th) dt, 

and hence the estimate 

IJ~ f'(x + th) dtl ~ Ihl suo If' (x + th)l· 

This gives 

MVTl. If(x + h) - f(x) I ~ Ihl sup 1f'(w)l, 
w 

the sup being taken over all w on the segment. Apply this estimate to the 
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function g such that g(z) = f(z) - f'(x)z. Then we get 

MVT2. If (x + h) - f(x) - f'(x)hl ~ Ihl sup If'(w) - f'(x)l· 
w 

After dividing by h, this is precisely the inequality we used in the previous 
proofs. 



PART TWO 

Geometric Function Theory 

This part contains three chapters which give a very strong geometric 
flavor to complex analysis. These chapters are logically independent of 
the third part, and continue some ideas concerning analytic isomorphisms 
and harmonic functions. Thus these three chapters form one possible 
natural continuation of Chapters VII and VIII. 

On the other hand, the maximum modulus theorem and its applica­
tions give rise to another direction, taken up in Part Three, concerning 
the rate of growth of analytic functions. 

The ordering of the book fits the breakdown of courses into semesters, 
not the mathematical ideas. For instance, the analytic continuation along 
curves could be done immediately after the definition of the logarithm in 
Chapter I, §6. This continuation relies on the same idea of homotopy 
and curves close together. Similarly, the Riemann mapping theorem could 
be done immediately after Chapter VII, as giving the general result in the 
background of the specific mappings for simple concrete open sets iso­
morphic to the disc. However, students may prefer to get an overview of 
the simpler cases first, and get to the general theorems afterward. Unfor­
tunately, a book has to be projected in a totally ordered way on the 
page axis. Students should reorder the material according to their taste 
and individual ways of comprehension. 
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CHAPTER IX 

Schwarz Reflection 

Let f be an analytic function on an open set U, and let V be an open 
set. We shall give various criteria when f can be extended to an analytic 
function on U u V. The process of extending f in this way is called 
analytic continuation. If U, V are connected, and have in common an 
infinite set of points which have a point of accumulation in Un V, then 
an analytic continuation of f to U u V is uniquely determined. Indeed, if 
g is analytic on V and g = f on U n V, then g is the only such function 
by Theorem 1.2 of Chapter III. 

In this chapter, we deal with the analytic continuation across a bound­
ary consisting of a real analytic are, which will be defined precisely. We 
shall deal with the continuation of harmonic functions as well as analytic 
functions, following the pattern established in the last chapter. 

IX, §1. SCHWARZ REFLECTION 
(BY COMPLEX CONJUGATION) 

First, we set some notation which will remain in force in this section. 

Let U+ be a connected open set in the upper half plane, and suppose 
that the boundary of u+ contains an open interval I of real numbers. 
Let U- be the reflection of u+ across the real axis (i.e. the set of z 
with Z E U+), and as in Figure 1, let 

U = U+ ulu U-. 
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Figure 1 

Theorem 1.1. Suppose throughout this section that U is open. 

(i) Iff is a function on U, analytic on U + and U -, and continuous 
on I, then f is analytic on U. 

(ii) If f is a function on U+ u I, analytic on U+ and continuous on I, 
and f is real valued on I, then f has a unique analytic continuation 
F on U, and F satisfies 

F(z) = f(z). 

Proof We reduce (ii) to (i) if we define F by the above formula. 
From the hypothesis that f is real valued on I, it is clear that F is 
continuous at all points of I, whence on U. Furthermore, from the 
power series expansion of f at some point Zo in the upper half plane, it is 
immediate from the formula that F is analytic on U-. There remains to 
prove (i). 

We consider values of z near I, and especially near some point of I. 
Such values lie inside a rectangle, as shown on Fig. 2(a). This rectangle 
has a boundary C = C+ + C-, oriented as shown. 

c-

(a) (b) 

Figure 2 
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We define 
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1 i J(n g(z) = -. -dC, 
2m c C - z 

for z inside the rectangle. Then for z not on I, we have 

g(z) = ~ r J(C) dC + ~ r J(C) dC. 
2m J c+ C - z 2m J c- C - z 

Let C.+ be the rectangle as shown on Fig. 2(b). Then for z inside C.+, 
Cauchy's formula gives 

J(z) = ~ r J(C) dC. 
2m Jc+ C - z , 

An easy continuity argument shows that taking the limit as E ~ 0, we get 
in fact 

for z inside C.+, and hence inside C+. On the other hand, a similar 
argument combined with Cauchy's theorem shows that 

r J(C) dC = O. 
Jc- C - z 

Hence g(z) = J(z) if z is in U+ near I. By continuity, we also obtain that 
g(z) = J(z) if z is on I. By symmetry, the same arguments would show 
that g(z) = J(z) if z is in U-, and z is near 1. This proves that g(z) = J(z) 
for z near I in U, and hence that 9 is the analytic continuation of J in 
U, as was to be shown. 

Next we prove the analogue for harmonic functions. 

Theorem 1.2. Let v be a continuous Junction on U+ u I, harmonic on 
U+, and equal to 0 on I. Then v extends to a harmonic Junction on 
U+ulu U-. 

Proof Define v(z) = -v(z). Then v is harmonic on U-, because the 
property of being harmonic can be verified locally, and on a small disc 
centered at a point Zo in U+, v is the imaginary part of an analytic 
function f, so - v is the imaginary part of J, whence the definition of v 
on U- gives a harmonic function. From the hypothesis that v = 0 on I, 
we conclude that v is continuous on J, so v is continuous on all of U. 
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There remains only to show that v is harmonic at points of I. Let Xl E I, 
and let D(Xl' rl ) be a small disc centered at Xl' Since v is harmonic on U+ 
and U-, it satisfies the mean value property at points of U+ and U-. Since 
v(x l ) = 0, and v(z) = -v(z), it follows at once that v also satisfies the 
mean value property at XI. Hence by Theorem 5.5 of Chapter VIII, it 
follows that v is harmonic in a neighborhood of XI. This proves the 
theorem. 

Peter Jones showed me another elegant argument which avoids the 
classical use of Theorem 5.5 and runs as follows. Let D be a disc 
centered at a point of a real interval I. Let v be a continuous function 
on the closure of the upper half disc D+. We suppose that v is harmonic 
on D+, and v = 0 on the real segment. Define the function v on D­
by 

v(z) = -v(z). 

Then v is harmonic on D-, and since v = 0 on I, it follows that v is 
defined continuously on the closure of D. We have to prove that v is 
harmonic on D. By the existence and uniqueness theorem, there exists a 
unique harmonic function VI on D having continuous boundary value 
equal to v on the boundary circle. We want to show VI = 0 on the real 
segment. Define V2 on the closed disc by 

Then V2 is continuous on the closure of D, and harmonic on D. But V2 

also has the same boundary value as VI. Therefore V2 = VI. From the 
above equation, we conclude that 

VI (x) = -VI (x) for X on the real segment, 

whence VI (x) = 0 for x on the real segment. Finally VI has the same 
boundary value as v itself on the closed upper half disc, and is therefore 
equal to v on this upper half disc. This concludes the proof. 

Remark. Theorem 1.1 is also an immediate consequence of Theorem 
1.2, and readers should be aware of both approaches, via Cauchy's 
theorem and via harmonic functions. 

Next we consider cases when the analytic function may be an iso­
morphism. The next result will be applied in Theorem 2.5 to complement 
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the Riemann mapping theorem in the next chapter. We let H+ be the 
upper half plane and H- the lower half plane. 

Proposition 1.3. Let f be an analytic function on U, real valued on I. 
Assume in addition that f gives an isomorphism of U+ with f(U+) c H+ 
and an isomorphism of U- with f(U-) c H-. Then f is an isomorphism 
of U with f(U). 

Proof. We first show that f is a local isomorphism at each point of I. 
After making translations, we may assume without loss of generality that 
the point of I is 0, and that f(O) = O. Let 

f(z) = czm + higher terms, with c # 0 and m ~ 1 

be the power series expansion of f. Since f(l) c R, we must have creal. 
Since by hypothesis f(U+) c H+, we must have c > 0, as one sees by 
looking at values on z = re i8 with r > 0 and e small. Then m = 1, for 
otherwise, there is some e with 0 < e < n such that n < me < 2n, contra­
dicting the hypothesis that f(U+) c H+. Hence f'(z) # 0 for all z E I, 
and f is a local isomorphism at each point of I. 

There remains to prove that f is injective on I. Suppose f(zt) = f(Z2) 
with Zt # Z2 on I. Let Z E U+ be close to Z2. Then f(z) is close to f(zt) 
and lies in H +. But f gives an isomorphism of some disc centered at z t 
with a neighborhood of f(z t), and by hypothesis, f induces an isomor­
phism of the upper half of this disc with its image in H +, so f(z) = f(z') 
for some z' in the upper half of the disc, contradicting the hypothesis 
that f is injective on U + . This concludes the proof of the proposition. 
Figure 3 illustrates the argument. 

f 

Figure 3 

IX, §2. REFLECTION ACROSS ANALYTIC ARCS 

The theorems of the preceding section apply to more general situations 
which are analytically isomorphic to those of the theorems. More pre­
cisely, let V be an open set in the complex numbers, and suppose that V 
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is the disjoint union 
V=V+uyuV-, 

where V+ is open, V- is open, and y is some curve. We suppose that 
there exists an analytic isomorphism 

1/1: U -+ V 

such that 

1/1(1) = y, 

The notation U = U+ u I u U- is the same as at the beginning of §1. 

Theorem 2.1. 

(i) Given a function g on V which is analytic on V + and V -, and 
continuous on y, then g is analytic on V. 

(ii) If g is an analytic function on V+ which extends to a continuous 
function on V+ u y, and is real valued on y, then g extends to an 
analytic function on V. 

Proof Obvious, using successively parts (i) and (ii) of the theorem, 
applied to the function f = g 0 1/1. 

A standard example of this situation occurs when V + is an open set 
on one side of an arc of the unit circle, as on Fig. 4(b). It is then useful 
to remember that the map 

ZI-+l/z 

interchanges the inside and outside of the unit circle. 

(a) (b) 

Figure 4 
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We can also perform an analytic continuation in the more general 
situation, as in part (ii) of the theorem. More generally, let us define a 
curve 

1': [a, b] -> C 

to be real analytic if for each point to in [a, b] there exists a convergent 
power series expansion 

for all t sufficiently close to to. Using these power series, we see that I' 
extends to an analytic map of some open neighborhood of [a, b]. We 
shall say that I' is a proper analytic arc if I' is injective, and if y'(t) =I 0 for 
all t E [a, b]. We leave it as an exercise to prove: 

If I' is a proper analytic are, then there exists an open neighborhood W 
of [a, b] such that I' extends to an analytic isomorphism of W 

Let 1': [a, b] -> C be a proper analytic arc, which is contained in the 
boundary of an open set U (in other words, the image of I' is contained 
in the boundary of U). We shall say that U lies on one side of I' if there 
exists an extension Yw of I' to some open neighborhood W of [a, b] as 
above, such that yjf}(U) lies either in the upper half plane, or in the 
lower half plane and is an open neighborhood of [a, b] in that half plane. 
As usual, yuf (U) is the set of points Z E W such that Yw(z) E U. 

Let f be an analytic function on an open set U. Let I' be a proper 
analytic arc which is contained in the boundary of U, and such that U 
lies on one side of y. We say that f has an analytic continuation across I' 
if there exists an open neighborhood W of I' (without its end points) such 
that f has an analytic continuation to U u W 

Theorem 2.2. Let f be analytic on an open set U. Let I' be a proper 
analytic arc which is contained in the boundary of U, and such that U 
lies on one side of y. Assume that f extends to a continuous function on 
U u I' (i.e. U u Image 1'), and that f(y) is contained in a proper analytic 
arc 1], such that f(U) lies on one side of 1]. Then f has an analytic 
continuation across i. 

Proof. There exist analytic isomorphisms 

cp: ~ -> neighborhood of 1', 

1jJ: a-; -> neighborhood of 1], 

where ~, a-; are open sets as illustrated on Fig. 4, neighborhoods of 
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real intervals II and 12 , respectively. These open sets are selected suffi­
ciently small that U and f(U) lie on one side of y, '1, respectively. 

Define 
g = 1/1-1 0 f 0 qJ. 

Then g is defined and analytic on one side of the interval II' and is also 
continuous on II (without its end points). Furthermore g is real valued. 
Hence g has an analytic continuation by Theorem 1.1 to the other side 
of II' The function 

f 
) 

1· 1; 

E ) g 
) E j 

WI W2 

Figure 5 

then defines an analytic continuation of f on some open neighborhood of 
y (without its end points), as desired. 

The analytic continuation of f in Theorem 2.2 is also often called the 
reflection of f across y. 

In exactly the same way, we can extend Theorem 1.2 to a harmonic 
function. More precisely: 

Theorem 2.3. Let v be harmonic on an open set U. Let y be a proper 
analytic arc which is contained in the boundary of U, and such that U 
lies on one side of y. Assume that v extends to a continuous function on 
U u y, taking the value 0 on y. Then v extends to a harmonic function 
on some open set containing U u y. 

We shall now give some applications. Let U be an open set, and let 
{ZII} be a sequence in U. We shall say that this sequence approaches the 
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boundary of U if given a compact subset K of U there exists no such that 
Zn ¢ K for all n ~ no. This is the most convenient definition for the 
moment. Readers can convince themselves that this coincides with the 
naive notion of the distance between Zn and the boundary approaching o. 
For arguments showing the equivalence between the two notions, see 
Lemma 2.2 of Chapter X. 

For the next result, we need another definition. Let f: U --+ V be a 
continuous map (which in practice will be analytic). We define f to be a 
proper map if for every compact set K' c V the inverse image f-l(K') is 
compact. For instance, if f is an analytic isomorphism, then f is proper. 
Furthermore, let m be a positive integer. The map of C --+ C given by 
Z H zm is proper. 

Lemma 2.4. Let f: U --+ V be a proper analytic map. If {zn} is a 
sequence in U approaching the boundary of U, then {f(zn)} approaches 
the boundary of V. 

Proof. Given K' compact in V, let K = f-l(K'). There is some no 
such that for n ~ no we have Zn ¢ K, so !(zn) ¢ K' as desired. 

Example 1. Let f: U --+ D be an isomorphism of an open set with the 
unit disc. If {zn} is a sequence in U approaching the boundary of U, 
then If(zn)I--+ 1 as n --+ 00. 

Example 2. Let f: U --+ H be an isomorphism with the upper half 
plane. Let {zn} be a sequence in U approaching the boundary of U. 
Then {f(zn)} approaches the boundary of H, meaning that the values 
f(zn) either come close to the real numbers of become arbitrary large in 
absolute value, i.e. If(zn)1 --+ 00. 

Theorem 2.5. Let f: U --+ D be an analytic isomorphism. Let 'I be a 
proper analytic arc contained in the boundary of U and such that U lies 
on one side of y. Then f extends to an analytic isomorphism on U u y. 

Proof. In this proof we see the usefulness of dealing with harmonic 
functions globally. Let v(z) = log If(z)l. By Lemma 2.4, it follows that 

lim v(z) = O. 
z-+JU 

Therefore v extends to a continuous function on [j taking the value 0 on 
y. By Theorem 2.3, v extends to a harmonic function on an open set 
containing U u y. But locally, in a neighborhood of a point of 'I, v is the 
real part of an analytic function g, which extends analytically across y. 
Choosing the imaginary constant suitably makes g an analytic con-
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tinuation of log J(z) in a neighborhood of the point. Then eg gives the 
analytic continuation of J to U u y. By Proposition 1.3 (in its isomorphic 
form corresponding to the analytic arc y), we conclude that the analytic 
extension of J is injective on a sufficiently small open set containing U u y, 
thus concluding the proof. 

IX, §2. EXERCISES 

1. Let C be an arc of unit circle Izl = 1, and let U be an open set inside the 
circle, having that arc as a piece of its boundary. If J is analytic on U if J 
maps U into the upper half plane, J is continuous on C, and takes real values 
on C, show that J can be continued across C by the relation 

J(z) = J(1/z). 

2. Suppose, on the other hand, that instead of taking real values on C, J takes 
on values on the unit circle, that is, 

IJ(z) I = 1 for z on C. 

Show that the analytic continuation of J across C is now given by 

J(z) = l/J(l/z). 

3. Let f be a function which is continuous on the closed unit disc and analytic 
on the open disc. Assume that IJ(z)1 = 1 whenever Izl = 1. Show that the 
function J can be extended to a merom orphic function, with at most a finite 
number of poles in the whole plane. 

4. Let J be a merom orphic function on the open unit disc and assume that J has 
a continuous extension to the boundary circle. Assume also that J has only a 
finite number of poles in the unit disc, and that I J(z) I = 1 whenever Izl = 1. 
Prove that J is a rational function. 

5. Work out the exercise left for you in the text, that is: 

Let W be an open neighborhood oj a real interval [a, bj. Let g be analytic on W, 
and assume that g'(t) 'I- 0 for all t E [a, bj, and g is injective on [a, bj. Then there 
exists an open subset Wo of W containing [a, bj such that g is an analytic 
isomorphism of Wo with its image. 

[Hint: First, by compactness, show that there is some neighborhood of [a, bj 
on which g' does not vanish, and so g is a local isomorphism at each point of 
this neighborhood. Let {Wn } be a sequence of open sets shrinking to [a, b], for 
instance the set of points at distance < l/n from [a, bj. Suppose g is not 
injective on each Wn . Let Zn 'I- z~ be two points in Wn such that g(zn) = g(z~). 
The sequences {zn} and {z~} have convergent subsequences, to points on [a, bj. 
If these limit points are distinct, this contradicts the injectivity of g on the real 
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interval. If these limit points are equal, then for large n, the points are close to 
a point on the real interval, and this contradicts the fact that g is a local 
isomorphism at each point of the interval.] 

6. Let U be an open connected set. Let f be analytic on U, and suppose f 
extends continuously to a proper analytic arc on the boundary of U, and this 
extension has value 0 on the arc. Show that f = 0 on U. 

IX, §3. APPLICATION OF SCHWARZ REFLECTION 

We begin with a relevant example of an analytic isomorphism involving 
circles. Let Cl , C2 be two circles which intersect in two points Zl' Z2 

and are perpendicular to each other at these points, as shown on Fig. 6. 
We suppose that C2 does not go through the center of Cl' Let T be 
inversion. through Cl • By Theorem 5.2, Chapter VII, T maps C2 on 
another circle, and preserves orthogonality. Since every point of Cl is 
fixed under reflection, and since given two points on Cl there is exactly 
one circle passing through Zl and Z2 and perpendicular to Cl , it follows 
that T maps C2 onto itself. A point IX on C2 which lies outside Cl is 
mapped on a point IX' again on C2 but inside Cl • Thus T interchanges 
the two arcs of C2 lying outside and inside Cl , respectively. 

a' = inversion of a through C1 

aH = reflection of a through C1 

Figure 6 

For the next example, it is convenient to make a definition. Let U be 
the open set bounded by three circular arcs perpendicular to the unit 
circle, as on Fig. 7. We shall call U a triangle. We suppose that the 
circular sides of the triangle do not pass through the center. 
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Figure 7 

The remark implies that the reflection of V across anyone of its 
"sides" is again a triangle, whose sides are circular arcs perpendicular to 
the unit circle. 

Take three equidistant points on the unit circle, and join them with 
circular arcs perpendicular to the unit circle at these points. The region 

Figure 8 

bounded by these three arcs is what we have called a triangle V, as 
shown on Fig. 8. 

If we invert V across anyone of its sides, we obtain another triangle 
V' . Inverting successively such triangles, we obtain a figure such as is 
illustrated in Fig. 9. 
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Figure 9 

Let 
g: U --+ H and h: H --+ U 

by inverse analytic isomorphisms between the triangle U and the upper 
half plane. Such isomorphisms can always be found by the Riemann 
mapping theorem. Furthermore, we can always select h such that the 
three vertices Zo, Zl' Zoo are mapped on 0, 1, 00, respectively (why?). We 
proved in Theorem 2.5 that 9 can be extended continuously to the 
boundary of U, which consists of three analytic arcs. It follows that 9 
maps the three arcs on the intervals 

[ -00,0], [0,1], [1, 00] 

respectively, and in particular, 9 is real valued on each arc. 
By the Schwarz reflection principle, one may continue 9 analytically 

across each arc. It is not difficult to show that the union of all reflec­
tions of the original triangle repeatedly as above is equal to the whole 
unit disc but we omit the proof. Granting this we obtain a surjective 
analytic map 

g: D --+ C - {O, 1}. 

The inverse image of every point Z E C, Z ¥- 0, 1 consists of a discrete 
set of points in the disc. Readers acquainted with elementary topology 
will realize that we have constructed the universal covering space of 
C - {O, 1}. 

In the chapter on analytic continuation, we shall give a further appli­
cation of the above construction to prove Picard's theorem. 



CHAPTER X 

The Riemann 
Mapping Theorem 

In this chapter we give the general proof of the Riemann mapping theo­
rem. We also prove a general result about the boundary behavior. 

X, §1. STATEMENT OF THE THEOREM 

The Riemann mapping theorem asserts: 

Let U be a simply connected open set which is not the whole plane. 
Then U is analytically isomorphic to the disc of radius 1. More pre­
cisely, given Zo E U, there exists an analytic isomorphism 

f: U -+ D(O, 1) 

of U with the unit disc, such that f(zo) = O. Such an isomorphism is 
uniquely determined up to a rotation, i.e. multiplication by e ill for some 
real e, and is therefore uniquely determined by the additional condition 

!'(zo) > O. 

We have seen in Chapter VII, §2 that the only analytic automor­
phisms of the disc are given by the mappings 

306 
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1-aw' 
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where lal < 1 and <p is real. This makes the uniqueness statement obvi­
ous : If f, 9 are two analytic isomorphisms of U and D(O, 1) satisfying the 
prescribed condition, then f 0 g-1 is an analytic automorphism of the 
disc leaving the origin fixed and having positive derivative at the origin. 
It is then clear from the above formula that f 0 g-1 = id. 

There are two main ingredients in the proof of the theorem. First, we 
shall prove that there exist injective analytic maps of U into the disc, 
mapping a given point Zo to the origin. Furthermore, the family of such 
maps is relatively compact in the sense that given a sequence in the 
family, there exists a subsequence which converges uniformly on every 
compact subset of U. 

Second, we consider the derivative 1'(zo), which is bounded in abso­
lute value. We pick a sequence {In} in our family such that If:(zo)1 
converges to the supremum of all values 11'(zo)1 for f ranging in the 
family. We then prove that there is some element f in the family such 
that 11'(zo)1 is actually equal to this supremum, which is therefore actu­
ally a maximum, and we prove that such a mapping f gives the desired 
isomorphism from U to D. We reduce the proof to Theorem 1.2 of 
Chapter VII, namely the Schwarz lemma for the derivative. 

X, §1. EXERCISES 

1. Let U be a simply connected open set. Let z\, Z2 be two points of U. Prove 
that there exists a holomorphic automorphism / of U such that /(z\) = Z2 . 

(Distinguish the cases when U = C and U #- c. ) 

2. Let J(z) = 2z/(1 - Z2). Show that J gives an isomorphism of the shaded region 
with a half disc. Describe the effect of f on the boundary. 

ci rcle of r adius 2. center I 

1+ ..[2 

What is the effect of J on the reflection of the region across the y-axis? 
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X, §2. COMPACT SETS IN FUNCTION SPACES 

Let U be an open set. We cenote by Hol(U) the space of holomorphic 
functions on U. A subset ell of Hol(U) will be called relatively compact if 
every sequence in ell has a subsequence which converges uniformly on 
every compact subset of U, not necessarily to an element of ell itself. 
(Note: Instead of relatively compact, one sometimes calls such subsets 
normal, or normal families. The word relatively compact fits general 
notions of metric spaces somewhat better.) Recall that a subset S of 
complex numbers is called relatively compact if its closure is compact 
(closed and bounded). Such a subset S is relatively compact if and only 
if every sequence in S has a convergent subsequence. (The subsequence is 
allowed to converge to a point not in S by definition.) 

A subset ell of Hol(U) is said to be uniformly bounded on compact sets 
in U if for each compact set K in U there exists a positive number B(K) 
such that 

I/(z) I ~ B(K) for all 1 E ell, z E K. 

A subset ell of Hol(U) is said to be equicontinuous on a compact set K 
if, given ~, there exists a such that if z, z' E K and Iz - z'l < a, then 

I/(z) - l(z')1 < ~ for all 1 E ell. 

Ascoli's theorem from real analysis states that an equicontinuous 
family of continuous functions on a compact set is relatively compact. 
We shall actually reprove it in the context of the next theorem. 

Theorem 2.1. Let ell c:: Hol(U), and assume that ell is uniformly bounded 
on compact sets in U. Then ell is equicontinuous on each compact set, 
and is relatively compact. 

Proof After proving the equicontinuity, we shall use a diagonal 
procedure to find the convergent subsequence. 

Let K be compact and contained in U. Let 3r be the distance from K 
to the complement of U. Let z, z' E K and let C be the circle centered at 
z' of radius 2r. Suppose that Iz - z'l < r. We have 

1 1 z - z' 
c - z - C - z' = (C - z)( C - z')' 

whence by Cauchy's formula, 

, z - z' r I(C) 
I(z) - I(z ) = 21ti Jc (C _ z)(C _ z') dC. 
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Therefore 

I/(z) - l(z')1 < 21z - z'III/IIK(2r)!, 
r 

where the sup norm of f is taken on the compact set K(2r) consisting of 
those z E U such that dist(z, K) ;;; 2r. This proves the equicontinuity of 
the family on K. 

Given a sequence Un} in <1>, we now prove that there exists a sub­
sequence which converges uniformly on K by the standard proof for 
Ascoli's theorem. Let {Zj} be a countable dense subset of K. For each j, 
the sequence Un (Zj) } is bounded. There exists a subsequence {fn,d such 
that 

converges. There exists a subsequence {fn,2} of Un,d such that 

converges. Proceeding in this manner we get subsequences fn,j such that 

converge. Then the diagonal subsequence Un,n} is such that 

converges for each j. 
In fact, we now prove that {fn,n} converges uniformly on K. Given E, 

let b be as in the definition of equicontinuity. Then for some k, the 
compact set K is contained in the union of discs 

K C D(Zl' (j) U··· U D(Zb (j). 

Select N such that if m, n > N, then 

for j = 1, ... ,k. 

Let z E K. Then Z E D(Zi, (j) for some i, and we get 

Ifn,n(z) - fm,m(z) I ;;; Ifn,n(z) - fn,n(z;)1 + Ifn,n(Zi) - fm,m(z;)1 

+ Ifm,m(Zi) - fm,m(z)l. 

The first and third term are < E by the definition of equicontinuity. The 
middle term is < E by what was just proved. We have therefore obtained 
a subsequence of the original sequence which converges uniformly on K. 
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We now perform another diagonal procedure. 

Lemma 2.2. There exists a sequence of compact sets Ks (s = 1, 2, ... ) 
such that Ks is contained in the interior of Ks+l and such that the union 
of all Ks is U. 

Proof Let 15s be the closed disc of radius s, let fJ be the closure of U, 
and let 

Ks = set of points Z E fJ n 15s such that dist(z, boundary U) ~ l/s. 

Then Ks is contained in the interior of Ks+1' For instance, Ks is con­
tained in the open set of elements z E U n Ds+l such that 

dist(z, boundary U) > ~1 . 
s+ 

It is clear that the union of all Ks is equal to U. It then follows that any 
compact set K is contained in some Ks because the union of these open 
sets covers U, and a finite number of them covers K. 

Let {J,,} be the original sequence in <1>. There exists a subsequence 
Un.d which converges uniformly on K 1 , then a subsequence Un.2} which 
converges uniformly on K 2, and so forth. The diagonal sequence 

converges uniformly on each K s ' whence on every compact set, and the 
theorem is proved. 

X, §2. EXERCISES 

Let U be an open set, and let {K.} (s = 1,2, ... ) be a sequence of compact 
subsets of U such that K. is contained in the interior of K'+l for all s, and the 
union of the sets Ks is U. For I holomorphic on U, define 

u.(f) = min(1, IlfIIs), 

where 11/11. is the sup norm of Ion Ks. Define 

ro 1 
u(f) = $~ 2s u.(f). 

1. Prove that u satisfies the triangle inequality on Hol(U), and defines a metric 
on Hol(U). 
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2. Prove that a sequence {In) in Hol(U) converges uniformly on every compact 
subset of U if and only if it converges for the metric (J. 

3. Prove that Hol(U) is complete under the metric (J. 

4. Prove that the map fl-+ f' is a continuous map of Hol(U) into itself, for the 
metric (J. 

5. Show that a subset of Hol(U) is relatively compact in the sense defined in the 
text if and only if it is relatively compact with respect to the metric (J in the 
usual sense, namely its closure is compact. 

Using these exercises, you may then combine the fact that <I> is equicontinuous 
in Theorem 2.1, with the usual statement of Ascoli's theorem, without reproving 
the latter ad hoc, to conclude the proof of Theorem 2.1. 

6. Let <I> be the family of all analytic functions 

on the open unit disc, such that lanl ~ n for each n. Show that <I> is relatively 
compact. 

7. Let {In} be a sequence of analytic functions on U, uniformly bounded. Assume 
that for each Z E U the sequence {/n(z)} converges. Show that {In} converges 
uniformly on compact subsets of U. 

X, §3. PROOF OF THE RIEMANN MAPPING THEOREM 

The theorem will be proved by considering an appropriate family of 
mappings, and maximizing the derivatives at one point. We first make a 
reduction which makes things technically simpler later. We let D be the 
unit disc D(O, 1). 

Let U be a simply connected open set i= C, and let Zo E U. We consider 
the family of all holomorphic functions f: U ---> D such that f(zo) = 0 
and such that f is injective. We shall prove that this family is not empty, 
and it is uniformly bounded. We shall then prove that there exists an 
element in the family for which If'(zo)1 is maximal in the family, and that 
this element gives the desired isomorphism of U and D. Since the only 
automorphisms of D leaving the origin fixed are rotations, we may then 
rotate such f so that f' (zo) is real and positive, thus determining f 
uniquely. We now carry out the program. We recall: 

Lemma 3.1. Let U be an open connected set. Let f: U ---> C be analytic 
and injective. Then f'(z) i= 0 for all z E U, and f is an analytic iso­
morphism of U and its image. 

This is merely Theorem 6.4 of Chapter II. 
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Lemma 3.2. Let U be a connected open set, and let Un} be a sequence 
of injective analytic maps of U into C which converges uniformly on 
every compact subset of U. Then the limit function f is either constant 
or injective. 

Proof. Suppose f is not injective, so there exist two points z 1 =1= z 2 

in U such that 

Let gn = fn - fn(zl). Then {gn} is a sequence which converges uniformly 
to 

Since fn is assumed injective, it follows that gn has no zero on U except 
at z 1. Suppose that 9 is not identically zero, and hence not identically 
zero near Z2 since we assumed that U is connected. Then Z2 is an 
isolated zero of g. Let y be a small circle centered at Z2. Then Ig(z)1 has 
a lower bound =1= 0 on y (which is compact), and {l/gn } converges uni­
formly to l/g on y. By the formula of Chapter VI, §1 we know that 

Taking the limit as n ~ 00 by Theorem 2.4 of Chapter III, we conclude 
that ordz2 g = 0 also, a contradiction which proves the lemma. 

We now come to the main proof. We first make a reduction. We can 
always find some isomorphism of U with an open subset of the disc. To 
see this, we use the assumption that there exists some point a E C and 
IX If U. Since U is simply connected, there exists a determination 

g(z) = log(z - IX) 

for z E U which is analytic on U. This function 9 is injective, for 

whence Zl = Z2. If 9 takes on some value g(zo), then 

g(z) =1= g(zo) + 2ni 

for all z E U, as one sees again by exponentiating. We claim that there 
exists a disc around g(zo) + 2ni such that 9 takes on no value in this 
disc. Otherwise, there is a sequence Wn E U such that g(wn) approaches 
g(zo) + 2ni, and exponentiating shows that Wn approaches zo, so g(wn) 
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approaches g(zo), a contradiction. Hence the function 

1 
g(z) - g(zo) - 2ni 

is bounded on U, and is analytic injective. By a translation and mUltipli­
cation by a small positive real number, we may then obtain a function I 
such that I(zo) = 0 and 1 I(z) 1 < 1 for all z E U. This function I is injec­
tive, and so an isomorphism of U onto an open subset of the disc. 

To prove the Riemann mapping theorem, we may now assume with­
out loss of generality that U is an open subset of D and contains the 
origin. Let <I> be the family of all injective analytic maps 

I: U -+ D 

such that 1(0) = O. This family is not empty, as it contains the identity. 
Furthermore, the absolute values 11'(0)1 for I E <I> are bounded. This is 
obvious from Cauchy's formula 

2nil'(0) = f li~) d, 

and the uniform boundedness of the functions I, on some small closed 
disc centered at the origin. The integral is taken along the circle bound­
ing the disc. 

Let A be the least upper bound of 11'(0)1 for IE <1>. Let Un} be a 
sequence in <I> such that 1/:(0)1-+ A. Picking a subsequence if necessary, 
Theorem 2.1 implies that we can find a limit function f such that 

11'(0)1 = A, 

and I/(z)1 ~ 1 for all z E U. Lemma 3.2 tells us that I is injective, and 
the maximum modulus principle tells us that in fact, 

1 I(z) 1 < 1 for all z E U. 

Therefore IE <1>, and 11'(0)1 is maximal in the family <1>. The next result 
concludes the proof of the Riemann mapping theorem. 

Theorem 3.3. Let I E <I> be such that 11'(0)1 ~ Ig'(O)1 lor all g E <1>. 
Then I is an analytic isomorphism 01 U with the disc. 

Proof The Schwarz lemma for the derivative, Theorem 1.2 of Chapter 
VII, provides an essential case of the present theorem, and we reduce the 
proof to that case. All we have to prove is that f is surjective. Suppose 
not. Let IX E D be outside the image of f. Let T be an automorphism of 
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the disc such that T(rx) = 0 (for instance, T(z) = (rx - z)/(l - az), but the 
particular shape is irrelevant here). Then T 0 f is an isomorphism of U 
onto an open subset of D which does not contain 0, and is simply 
connected since U is simply connected. We can therefore define a square 
root function on T (J ( U) ), for instance we can define 

JT(f(z)) = exp(! log T(!(z))) for z E U. 

Note that the map 

zHJT(f(z)) for z E U 

is injective, because if Zl' Z2 are two elements of U at which the map 
takes the same value, then T!(zd = T!(Z2)' whence !(Zl) = !(Z2) because 
T is injective, and z\ = Z2 because f is injective. Furthermore VT(J(U)) 
is contained in D, and does not contain O. 

Let R be an automorphism of D which sends VT(J(O)) to O. Then 

g: zHR(JT!(z)) 

is an injective map of U into D such that g(O) = 0, so g E <1>. It suffices 
to prove that Ig'(O)1 > 1f'(0)1 to finish the proof. But if we let S be the 
square function, and we let 

then 

!(z) = <p(g(z)). 

Furthermore, <p: D --+ D is a map of D into itself, such that <p(0) = 0, and 
<p is not injective because of the square function S. By Theorem 1.2 of 
Chapter VII (the complement to the Schwarz lemma), we know that 
1<p'(0)1 < 1. But 

f'(0) = <p'(O)g'(O), 

so Ig'(O)1 > 1f'(0)1, contradicting our assumption that 1f'(0)1 is maximal. 
This concludes the proof. 

X, §4. BEHAVIOR AT THE BOUNDARY 

In Chapter IX, Theorem 2.5, we have seen that the Riemann mapping 
function extends analytically to a proper analytic arc on the boundary. 
This result is sufficient for all the applications I know of, but it may be 
of interest for its own sake to consider the more general situation, so I 
include a proof of the continuous extension to more general boundaries, 
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basically due to Linde16f and Koebe. This section should normally be 
omitted from a course, but provides further reading in analytic tech­
mques. 

We investigate the extent to which an isomorphism 

f: U-+D 

of U with the disc can be extended by continuity to the boundary of U. 
There is a standard picture which shows the type of difficulty (impossi­
bility) which can happen if the boundary is too complicated. In Fig. 1, 
the open set U consists of the interior of the rectangle, from which 
vertical segments as shown are deleted. These segments have their base 
point at lin for n = 1, 2, .... It can be shown that for such an open set 
U there is no way to extend the Riemann mapping function by continu­
ity to the origin, which in some sense is "inaccessible". 

Figure 1 

On the other hand, we shall now prove that the mapping can so be 
extended under more general conditions than before. 

Throughout this section, the word curve will mean continuous curve. 
No further smoothness is needed, and in fact it is useful to have the 
flexibility of continuity to work with 

c;='Y(b) 

Figure 2 
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Let U be an open set, and a a boundary point. We say that a is 
accessible if given a sequence of points Zn E U such that lim Zn == a, there 
exists a continuous curve 

y:[a,b]-+C 

such that y(b) = a, y(t) E U for all t #- b, and there exist tn E [a, b] such 
that y(tn) == Zn (in other words, the curve passes through the given se~ 

quence), and a < t1 < t2 < "', lim tn = b. Note that the curve lies en~ 
tirely in U except for its end point. 

Theorem 4.1. Let U be simply connected and bounded, and let 

f: U-+D 

be an isomorphism with the disc. If a is an accessible boundary point of 
U, then 

lim f(z) 
...... " 

exists for Z E U, and lies on the unit circle. 

Proof Suppose not. Then there exists a sequence {zn} in U tending 
to a, but {f(zn)} has no limit. We find a curve y as in the definition of 
accessibility. 

Lemma 4.2. 
lim If(y(t») I = 1. 
t->b 

Proof Suppose not. Given E there exists a sequence of increasing 
numbers Sn such that If(y(sn») I ~ 1 - E, and taking a subsequence if 
necessary, we may assume f(y(sn») converges to some w with Iwl ~ 1 - E. 

Let 
g: D -+ U 

be the inverse function to f Then 

and y(s,,) -+ g(w), so y(s,,) cannot tend to the boundary of U, a contradic­
tion which proves the lemma. 

Since {f(z,,)} has no limit, and since the closed disc jj is compact, 
there exist two subsequences of {z,,}, which we will denote by {z~} and 
{z;}, such that f(z~) tends to a point w' on the unit circle (by the 
lemma), and f(z;) tends to a point w" #- w' on the unit circle. Let 
z~ == y(t~) and z; = y(t;). Then t~ -+ band t; -+ b by assumption, Say 
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t~ ~ t~. By the uniform continuity of y, the image y([t~, t~]) is uniformly 
close to y(b) = r:t. for large n. Let Yn be the restriction of y to [t~, ta The 
image f(Yn) is a curve in D, joining f(z~) = w~ to f(z~) = w~, and f(Yn) 
tends to the unit circle uniformly by the lemma. The picture is as on 
Fig. 3. 

Figure 3 

Let us draw rays from the origin to points on the circle close to Wi, 

and also two rays from the origin to points on the circle close to w", as 
shown on the figure. We take n sufficiently large. Then for infinitely 
many n, the curves f(Yn) will lie in the same smaller sector. Passing to a 
subsequence if necessary, we may assume that for all n, the curves f(Yn) 
lie in the same sector. 

As before, we let g: D -t U be the inverse function to f, and we let 

h = g - IX, 

so h(w) = g(w) - r:t. for Iwl < 1. Then h(j(Yn») -t 0 as n -t 00. We wish to 
apply the maximum modulus, but we have to make an auxiliary con­
struction of another function which takes on small values on a curve 
surrounding the whole circle of radius 1 - En. This is done as follows. 
We state a general lemma, due to Lindelof and Koebe, according to 
Bieberbach. 

Lemma 4.3. Let h be analytic on the unit disc D, and bounded. Let Wi, 

w" be two distinct points on the circle. Let {w~} and {w~} be sequences 
in the unit disc D converging to Wi and w", respectively, and let !/In be a 
curve joining w~ with w~ such that !/In lies in the annulus 

1 - En < Iwl < I, 

and En ...... 0 as n ...... 00. Assume that r n > 0 is a sequence tending to 0 
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such that 
Ih(w)1 < rn for won I/In. 

Then h is identically O. 

Proof. Dividing h(w) by some power of w if necessary, we may assume 
without loss of generality that h(O) =/: o. Without loss of generality, after 
a rotation, we may assume that 

w"=w', 

so w' and w" are symmetric about the horizontal axis. We pick a large 
integer M and let L' be the ray having angle 2n/2M with the x-axis. Let 
L" be the ray having . angle - 2n/2M with the axis, as shown on Fig. 4. 

L' 

Figure 4 

We let I/In be defined on an interval [an, bn]. Let un be the largest 
value of the parameter such that I/In(un) is on L', and let Vn be the 
smallest value of the parameter > Un such that I/Iivn) lies on the x-axis. 
Then I/In restricted to [un' Vn] is a curve inside the sector lying between 
the x-axis and L', and connecting the point I/In(un) with the point I/Iivn). 
If we reflect this curve across the x-axis, then we obtain a curve which 
we denote by iiin' joining I/Iivn) with I/In(un). We let (Tn be the join of these 
two curves, so that (Tn is symmetric about the x-axis, and joins I/In(un) 
with I/In(un), passing through I/In(vn), as shown on Fig. 5. 

Then the beginning and end points of (Tn lie at the same distance from 
the origin. (This is what we wanted to achieve to make the next step 
valid.) Let T be rotation by the angle 2n/M. If we rotate (Tn by T 
iterated M times, i.e. take 

then we obtain a closed curve, lying inside the annulus 1 - En < Iwl < 1. 
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Figure 5 

Finally, define the function 

h*(w) = h(w)h(w), 
and the function 

G(w) = h*(w)h*(Tw) ... h*(TM-1W). 

Let B be a bound for Ih(w)l, wED. Each factor in the definition of G is 
bounded by B2. For any w on the above closed curve, some rotation 
Tkw lies on (In' and then we have 

Therefore G is bounded on the closed curve by 

For each ray L from the origin, let W L be the point of L closest to the 
origin, and lying on the closed curve. Let W be the union of all seg­
ments [0, wL ] open on the right, for all rays L. Then W is open, and the 
boundary of W consists of points of the closed curve. By the maximum 
modulus principle, it follows that 

IG(O)I ~ maxIG(w)l, 

where the max is taken for w on the closed curve. Letting n tend to 
infinity, we see that G(O) = 0, whence h(O) = 0, a contradiction which 
proves the lemma, and therefore also the theorem. 
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Theorem 4.4. Let U be bounded. Let f: U --+ D be an isomorphism with 
the disc, and let at, a2 be two distinct boundary points of U which are 
accessible. Suppose f extended to at and a2 by continuity. Then 

Proof. We suppose f(a t ) = f(a2)' After mUltiplying f by a suitable 
constant, we may assume f(aJ = -1. Let 

g: D --+ U 

again be the inverse function of f. Let Yt, Y2 be the curves defined on an 
interval [a, b] such that their end points are at , az, respectively, and 
Yi(t) E U for i = 1, 2 and t E [a, b], t =1= b. There exists a number c with 
a < c < b such that 

if c < t < b, 

and there exists b such that 

and 

do not intersect the disc D( -1, b) as shown on Fig. 6. Let 

A(<5) = D n D( -1, <5). 

o 

Figure 6 

Then A(b) is described in polar coordinates by 

and -<p(r) ~ () ~ <p(r) 



[X, §4l BEHAVIOR AT THE BOUNDARY 321 

with an appropriate function <p(r). Note that <p(r) < n/2. We have: 

Area g(A(b)) = If Ig'(zW dy dx 
A(d) 

fd I'P(r) 
= Ig'( -1 + reiOWr dO dr. 

o -cp(r) 

For each r < b let WI' w2 be on !(YI)' !(Y2), respectively, such that 

IWi + 11 = r, i = 1, 2, 

and 

Then 

where the integral is taken over the circular arc from WI to W2 in D, with 
center -1. For 0 < r < b we get 

whence by the Schwarz inequality, we find 

I 2 ~ r Ig'( -1 + re/oW dO. 
I ex - ex 12 ICP(r) 

4nr -cp(r) 

We integrate both sides with respect to r from 0 to b. The right-hand 
side is bounded, and the left-hand side is infinite unless ex I = ex 2 • This 
proves the theorem. 

The technique for the above proof is classical. It can also be used to 
prove the continuity of the mapping function at the boundary. Cf. for 
instance Hurwitz-Courant, Part III, Chapter 6, §4. 



CHAPTER XI 

Analytic Continuation 
Along Curves 

In this chapter we give further means to extend the domain of definition 
of an analytic function. We shall apply Theorem 1.2 of Chapter III in 
the following context. Suppose we are given an analytic function 1 of an 
open connected set U. Let V be open and connected, and suppose that 
Un V is not empty, so is open. We ask whether there exists an analytic 
function g on V such that 1 = g on Un V, or only such that I(z) = g(z) 
for all z in some set of points of U n V which is not discrete. The 
above-mentioned Theorem 1.2 shows that such a function g if it exists is 
uniquely determined. One calls such a function g a direct analytic contin­
uation of J, and we also say that (g, V) is a direct analytic continuation of 
(J, U). We use the word "direct" because later we shall deal with ana­
lytic continuation along a curve and it is useful to have an adjective to 
distinguish the two notions. For simplicity, however, one usually omits 
the word "direct" if no confusion can result from this omission. If a 
direct analytic continuation exists as above, then there is is unique ana­
lytic function h on U u V such that h = 1 on U and h = g on V. 

In the case of Schwarz reflection, the two sets have a common bound­
ary curve. We studied this situation in Chapter IX. 

In a final application, we shall put the Riemann mapping theorem 
together with Schwarz reflection to prove Picard's theorem, which fol­
lows conceptually in a few lines, once this more extensive machinery is 
available. 

XI, §1. CONTINUATION ALONG A CURVE 

Let Do be a disc centered at a point Zo. Let y be a path whose begin­
ning point is Zo and whose end point is w, and say y is defined on the 
interval [a, b]. In this section, smoothness of the path plays no role, and 

322 
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"path" will mean continuous path. Let 

be a partition of the interval. Let Di be a disc containing y(ai) as shown 
on Fig. 1. Instead of discs, we could also take convex open sets. The 
intersection of two convex sets is also convex. Actually, what we shall 
need precisely is that the intersection of a finite number of the sets 
Do, ... ,Dn is connected if it is not empty. 

Figure 1 

We shall say that the sequence 

is connected by the curve along the partition if the image y([ai, ai+l]) is 
contained in Di. Then the intersection Di n Di+1 contains y(ai+d. 

Let fo be analytic on Do. By an analytic continuation of (fo, Do) along 
a connected sequence [Do, ... ,Dn] we shall mean a sequence of pairs 

such that (ii+1' Di+d is a direct analytic continuation of (ii, Di ) for i = 
0, ... ,n - 1. This definition appears to depend on the choice of partition 
and the choice of the connected sequence {Do, ... ,Dn}. We shall prove in 
the next theorem that it does not depend on these choices. Thus we 
shall obtain a well-defined analytic function in a neighborhood of the end 
point of the path, which is called the analytic continuation of (fo, Do) 
along the path y. As a matter of notation, we may also denote this 
function by fy. 

Theorem 1.1. Let (go, Eo), ... ,(gm, Em) be another analytic continuation 
of (go, Eo) along a connected sequence {Eo, ... ,Em} with respect to a 
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partition of the path y. If fo = go in some neighborhood of zo, then 
gm = f" in some neighborhood of y(b), so (gm' Em) is a direct analytic 
continuation of (f", DII)' 

Proof. The proof that the analytic continuation does not depend on 
the choices of partition and discs or convex sets will be similar to that 
used in Chapter III, §4, when we dealt with the integral along a path. 
The proof here is equally easy and straightforward. 

Suppose first that the partition is fixed, and let 

be an analytic continuation along another connected sequence 

{Eo, ... ,E .. }. 

Suppose go = fo in a neighborhood of zo, which means that (go, Eo) is a 
direct analytic continuation of (fo, Do). Since Do n Eo is connected it 
follows that 10 = go on the whole set Do n Eo, which also contains Zj. 

By hypothesis, fl = fo on Do n Dl and g 1 = go on Eo n E l' Hence fl = 
gl on Do n Eo n Dl n El which contains Zl' Since Dl n El is connected, 
it follows that fl = gl on Dl n E1 • Thus (gl, E1 ) is a direct analytic 
continuation of (fl' Dd. We can now proceed by induction to see that 
(gil' Ell) is a direct analytic continuation of (fll' DII ), thus concluding the 
proof in this case. 

Next let us consider a change in the partition. Any two partitions 
have a common refinement. To show the independence of the partition it 
suffices to do so when we insert one point in the given partition, say we 
insert c in the interval [ak, aHtJ for some k. On one hand, we take the 
connected sequence 

where Dk is repeated twice, so that y([ak , c]) C Dk and y([c, aHl]) c Dk • 

Then 

is an analytic continuation of (fo, Do) along this connected sequence. On 
the other hand, suppose that 

is an analytic continuation of (go, Eo) along another connected sequence 
{Eo, ... ,Ek , E:, ... ,E,,} with respect to the new partition, and go = fo in 
some neighborhood of Zo' By the first part of the proof, we know that 
(gin Ek ) is a direct analytic continuation of (fb Dk ). By hypothesis, g: is 
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which contains zt = y(c). 

Therefore (g:, Et) is a direct analytic continuation of (ft. Dt). Again we 
can apply the first part of the proof to the second piece of the path 
which is defined on the interval [a1+1' a"+1]' with respect to the partition 
[a1+1.a1+2, ... ,a"+1J to conclude the proof of the theorem. 

Example. Let us start with the function log z defined by the usual 
power series on the disc Do which is centered at 1 and has radius < 1 
but > O. Let the path be the circle of radius 1 oriented counterclockwise 
as usual. If we continue log z along this path, and let (g, D) be its 
continuation, then near the point 1 it is easy to show that 

g(z) = log z + 21ti. 

Thus 9 differs from 10 by a constant, and is not equal to 10 near Zo = 1. 

Example. Let 
I(z) = e(1/2)logz. 

where 1 is defined in a neighborhood of 1 by the principal value for the 
log. [We could write I(z) = Jz in a loose way, but the square root sign 
has the usual indeterminacy, so it is meaningless to use the expression 
Jz for a function unless it is defined more precisely.] We may take the 
analytic continuation of 1 along the unit circle. The analytic continua­
tion of log z along the circle has the value 

log z + 21ti 

near 1. Hence the analytic continuation of 1 along this circle has the 
value 

g(z) = e(1/2)(lol,,+2 .. i} = _e(1/2)IoIlZ = -/(z) 

for z near 1. This is the other solution to the equation 

I(Z)2 = Z 

near 1. If we continue 9 analytically once more around the circle, then 
we obtain I(z), the original function. 

Remark. In some texts, one finds a picture of the "Riemann surface" 
on which "/(z) = Jz" is defined, and that picture represents two sheets 
crossing themselves, and looking as if there was some sort of singularity 
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at the ongm. It should be emphasized that the picture is totally and 
irretrievably misleading. The proper model for the domain of definition 
of f(z) is obtained by introducing another plane, so that the correspon­
dence between f(z) and z is represented by the map 

C-+C 

given by (H (2. The association (H (2 gives a double covering of C by 
C at all points except the origin (it is the function already discussed in 
Chapter I, §3). On every simply connected open set U not containing 0, 
one has the inverse function ( = zl/2, Z E U. 

More generally, let P be a polynomial in two variables, P = P(I;., 12), 
not identically zero. A solution (analytic) f(z) of the equation 

P(j(z), z) = ° 
for z in some open set is called an algebraic function. It can be shown 
that if we delete a finite number of points from the plane, then such a 
solution f can be continued analytically along every path. Furthermore, 
we have the following theorem. 

Theorem 1.2. Let P(I;., 12) be a polynomial in two variables. Let y be 
a curve with beginning point Zo and end point w. Let f be analytic at 
zo, and suppose that f has an analytic continuation fy along the curve 
y. If 

P(j(z), z) = ° for z near zo, 
then 

for z near w. 

Proof This is obvious, because the relation holds in each successive 
disc Do, D1 , ..• ,Dm used to carry out the analytic continuation. 

Theorem 1.3 (Monodromy Theorem). Let U be a connected open set. 
Let f be analytic at a point Zo of U, and let y, 11 be two paths from Zo 

to a point w of U. Assume: 

(i) y is homotopic to 11 in U. 
(ii) f can be continued analytically along any path in U. 

Let f y, f" be the analytic continuations of f along y and 11, respectively. 
Then fy and f" are equal in some neighborhood of w. 

Proof. The proof follows the ideas of Lemma 4.3 and Theorem 5.1 of 
Chapter III. Let 

"': [a, bJ x [c, dJ -+ U 

be a homotopy so that if we put yu(t) = ",(t, u), then y = Yc and 11 = Yd. 
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Then we have: 

Lemma 1.4. For each u E [c, d], if u' is sufficiently close to u, then a 
continuation oj J along Yu is equal to a continuation oj J along Yu' in 
some neighborhood oj w. 

Proof. Given a continuation along a connected sequence of discs or 
convex open sets 

along Yu, connected by the curve along the partition, it is immediately 
verified that if u' is sufficiently close to u, then this is also a continuation 
along Yu' (by the uniform continuity of the homotopy I/J). In Theorem 
1.1, we have seen that the analytic continuation along a curve does 
not depend on the choice of partition and Do, ... ,Dn. This proves the 
lemma. 

To finish the proof, define two paths, cx, P from Zo to w to be J­
equivalent if JrJ. and Jp are equal in some neighborhood of w. Let S be the 
set of points u E [c, dj such that Ye and Yu are J-equivalent. We claim that 
S = [c, dj, which implies the theorem. Note that c E S so S is not 
empty. By Lemma 1.4, S is open in [c, dj. We show that S is closed in 
[c, dj. Let u E [c, dj be in the closure of S. Then there exist points u' E S 
close to u, so again by Lemma 1.4, Yu is J-equivalent to Yu" so Yu is 
J-equivalent to Ye• Since [c, dj is connected, it follows that S = [c, d], as 
was to be shown. 

Remark. The proof of Theorems 5.1 and 5.2 in Chapter III could also 
have been formulated in terms of an equivalence, namely that the integrals 
of f along the two paths are equal. Lemmas 4.3 and 4.4 of Chapter III 
play the role of Lemma 1.4 used here. We presented both variations of 
the argument to illustrate different intuitions of the situation. 

Theorem 1.5. Let U be a simply connected open set. Let Zo E U, and let 
f be analytic at Zoo Assume that f can be continued along any path from 
Zo to any point in U. Let Yz be a path from Zo to a point Z in U, and let 
/yz (z) be the analytic continuation of f along this path. Then Jyz (z) is 
independent of the path from Zo to z, and the association ZH/yz(Z) defines 
an analytic function on U. 

Proof Suppose we have shown the independence from the path. Let Zl 

be some point in U and let Z be a variable point in a disc centered at Zl. 

Then the analytic continuation of f from Zo to Z may be first taken from 
Zo to Zl along some path, and then we take the continuation on the disc 
centered at Zl, which shows the analyticity. So it remains to deal with the 
independence from the path, which is a consequence of the following 
lemma, combined with Theorem 1.3. 
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Lemma 1.6. Let U be simply connected. Let y, 1'/ be two paths in U from 
a point Zo to a point z!. Then there is a homotopy in U between the two 
paths, leaving the end points zo, Z! fixed. 

Proof The arguments are routine. Cf. my Undergraduate Analysis, 
Second Edition, Springer-Verlag, 1997, Chapter XVI, §6, especially 
Theorem 6.4 and Proposition 6.6. These arguments do not involve 
complex analysis but merely juggling with homotopies which require being 
written down, or at least being clearly shown on pictures. We let readers 
look the matter up in the above reference, or work it out for themselves as 
an exercise. 

We now return to the analytic continuation, and the use of discs or 
other sets as in Lemma 1.4. Although for the general theory one thinks of 
Do, ... ,Dn as small discs, because the open set U may have a complicated 
shape and the curve may wind around a lot, in practice the set U may be 
much simpler. 

Example. Let U be obtained from C by deleting the origin. Let I be 
an analytic function on the upper half plane. We want to continue the 
function along all curves in U. Then we might choose only four sets Eo, 
E1 , E2 , E3 , which are the upper half plane, left half plane, lower half 
plane, and right half plane, respectively. The intersection of two succes­
sive sets is a quarter plane. 

Example. Let g be an analytic function on a connected open set U. 
We do not assume that U is simply connected. Let Zo E U. Let 10 be a 
primitive of g in some disc containing Zo, which we may choose to be 

where the integral is taken along any path from Zo to Z inside the disc. 
Then 10 can be analytically continued along any path in U, essentially by 
integration along the path. For instance let y be a path, and let Zl be a 
point on y. Say 

y:[a,b]-U, with y(a) = Zo, 

and Zl = y(c) with a < c ~ b. Then we can define 11 in a neighborhood 
of Z 1 by taking the integral of g along the path from Zo to Z 1, that is 
along the restriction of y to the interval [a, c], and then from Zl to Z 

along any path contained in a small disc D containing Z l' as illustrated 
in Fig. 2. 

In Fig. 2, we have drawn U with a shaded hole, so U is not simply 
connected. The monodromy theorem applies to this situation. 
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Figure 2 

A concrete case can be given as follows. Let R(z) be a rational 
function, that is a quotient of polynomials. We can factor the numerator 
and denominator into linear factors, say 

(z - ad ... (z - an) 
R(z) = . 

(z -- bd .. , (z - bm ) 

Then R has poles at bI , . . . ,bm (which we do not assume all distinct). Let 
V be the plane from which the numbers b1 , . •• ,bm are deleted. Then V is 
connected but not simply connected if m ~ 1. We can define the integral 

J(z) = f.:.1 R(O de 

along a path from Zo to z. This integral depends on the path, and in 
fact depends on the winding numbers of the path around the points 
bI , . .. ,bm • 

Example. The preceding example can be generalized, we do not really 
need g to be analytic on V; we need only something weaker. For 
instance, let V be the plane from which the three points 1, 2, 3 have been 
deleted. Then for any simply connected open set V in V, there is a 
function 

[(z - l)(z - 2)(z - 3)]1/2, 

i.e. a square root of (z - l)(z - 2)(z - 3), and any two such square roots 
on V differ by a sign. Starting from a point Zo in V, let 

1 
go(z) = [(z _ l)(z - 2)(z _ 3)]1 /2' 
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where the square root is one of the possible determinations analytic in a 
neighborhood of Zo. Then we can form the integral 

along any path in U from Zo to z. The integral will depend on the path, 
but the mondromy theorem applies to this situation as well. 

We end this section with an important special case of the monodromy 
theorem, which is the one to be used in §3. 

Theorem 1.7. Let U be a simply connected open set. Let f be analytic at 
a point Zo and assume that f can be continued along every path from Zo to 
every point in U. Then the analytic continuation of f along a path from 
Zo to a point w is independent of the path, and defines an analytic 
function on all of u. 

Proof This is a special case of Theorem 1.3, because two paths from Zo 
to ware homotopic. 

XI, §1. EXERCISES 

1. Let J be analytic in the neighborhood of a point zo. Let k be a positive 
integer, and let P(l1, ... , 1k) be a polynomial in k variables. Assume that 

P(f, DJ, ... ,Dkf) = 0, 

where D = d/dz. If J can be continued along a path y, show that 

2. (Weierstrass). Prove that the function 

J(z) = L zn' 

cannot be analytically continued to any open set strictly larger than the unit 
disc. [Hint: If z tends to 1 on the real axis, the series clearly becomes infinite. 
Rotate z by a k-th root of unity for positive integers k to see that the function 
becomes infinite on a dense set of points on the unit circle.] 

3. Let U be a connected open set and let u be a harmonic function on U. Let D 
be a disc contained in U and let J be an analytic function on D such that 
u = Re(f). Show that J can be analytically continued along every path in U. 

4. Let U be a simply connected open set in C and let u be a real harmonic 
function on U. Reprove that there exists an analytic function J on U such 
that u = Re(f) by showing that if (fo, Do) is analytic on a disc and Re(fo) = u 



[XI, §2] THE DILOGARITHM 331 

on the disc, then (fo, Do) can be continued along every curve in U. [Note: 
The result was proved as Theorem 3.1 of Chapter VIII.] 

XI, §2. THE DILOGARITHM 

For Izl < 1 we define the function 

J(z) = _log(1 - z) = f zn-l . 
Z n=l n 

This function is holomorphic at 0. Let now z =1= ° and let y be a path 
in C - {a, I} except for the beginning point at 0. We then have an 
analytic continuation Jiz), which depends on y. Since the continuation 
of log(1 - z) picks up a constant of integration after integrating around 
loops around 1, it follows that the analytic continuation of J may have a 
pole at 0, with residue an integral multiple of 2ni. Instead of integrating 
along paths starting at 0, we can use a slightly arbitrary device of picking 
some point, say 1/2, and defining J by analytic continuation from 1/2 to 
z, along paths y from 1/2 to z in C - {a, I}. 

The dilogarithm is defined for Izl < 1 by the integral and power series 

fz 00 zn 
L2 (z) = J(O d( = L 2' 

o n=l n 

and is defined by analytic continuation in general, so we get a function 
L 2 )z) for each path y as above. We may write 

fz d( 
L 2 ,y(z) = - logy (1 - 0 r' 

O,y .. 

Let U be the simply connected set obtained by deleting the set of real 
numbers ~ 1 from C. Then for Z E U, the function Jy(z) is independent of 
the path y in U, and may still be denoted by f. It is analytic. 

However, we are interested in the analytic continuation L2 ,y in general, 
and whatever problem arises has to do with the argument, which we now 
work out. 

Theorem 2.1. For z '# 0, 1 the Junction 

is independent oj the path y in C - {a, 1}. 

Sketch of Proof We proceed in steps. 
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First, if Y is homotopic to 1'/ in C - {O, I} then Dy = D~. 

Indeed, we have separately that argy(1 - z) = arg,,(1 - z) and 

because we can reduce these equalities to the case when the paths are 
close together, and to a local question in a small disc as usual. 

Second, if 1'/ differs from y by a loop winding once around 1, then 

arg,,(1 - z) = argy(1 - z) + 2n. 

This is immediate. 

z 

o 

Figure 3 

Third, suppose that 1'/ is homotopic to a path as shown in Fig. 3, so 
again differs from y by a loop winding once around 1. We prove that 
D" = Dy by a computation of the integra1. We may assume that Yl is 
contained in a small disc centered at 1. Then using the principal branch 
of (log(l - 0)1' we get: 

f log(1 - 0 d, = f log(1 - ') d, 
Y1' Y1 1 - (1 - ') 

= {1 log(1 - 0 Jo (1 - ,t d, 
ro (1 zt+1 1%1 f ro (1 Ct 

[by parts] = - L - 1 10g(1 - z) + L - 1 de 
""'0 n + %1.Y1 Y1 ""'0 n + 

l ) 
Y 

=0 

1

%1 
= log(z) 10g(1 - z) 

%111'1 

= (2ni) logpr(z d (where logpr is the principal value of log). 
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Two analytic continuation of (log(1 - We) in a neighborhood of 1 differ 
by m2ni/C for some integer m. Further, as we have seen, the argument of 
any branch of 10g(1 - 0 changes by 2n after continuation along 11' 
Therefore 

= - L 2,y(z) + (2ni)(loglzl + m2ni) 

= - L 2,y(z) + (2ni) loglzl - (2n)2m. 

with some m E Z 

But the left-hand side of this equality is - L 2 ,,,(z), so the proof of Theo­
rem 2.1 is concluded, since (2n)2m is real. 

The case when the two paths '1 and 1 differ by a loop around 0 can 
be carried out similarly. We omit this. We also omit a complete proof 
that any path is homotopic to one which is obtained by a combination 
of the above two types. We merely wanted to give a non-trivial example 
of analytic continuation along a path. 

The function D(z) is called the Bloch-Wigner function. The diloga­
rithm occurs in classical analysis, see for instance [Co 35] and [Ro 07]. 
The function D, which does not depend on the path, was discovered 
by David Wigner, and used extensively by Spencer Bloch and others 
in algebraic geometry and number theory, in fancy contexts. See, for 
instance, [Bl 77], [Za 88], [Za 90], [Za 91]. 
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XI, §2. EXERCISES 

1. We investigate the analytic continuation of the dilogarithm for the curves 
illustrated in Fig. 4. Let z 1 = 1/2. 

o 
2 

(a) (b) 

Figure 4 

1 

2 

(a) Let 1'1 be a curve as shown on Fig. 4(a), circling 1 exactly once. How 
does the analytic continuation of L2 along 1'1 differ from L2 in a neigh­
borhood of z 1 ? 

(b) How does the analytic continuation of L2 along the path Yo on Fig. 4(b) 
differ from L2 ? 

(c) If you continue L2 first around Yo and then around Yl' how does this 
continuation differ from continuing L2 first around Yl and then around 
Yo? [They won't be equal!] 

2. Let D be the Bloch-Wigner function. 
(a) Show that D(1/z) = - D(z) for z ::f: 0, and so D extends in a natural way 

to a continuous function on C u { oo}. 
(b) Show that D(z) = - D(1 - z). 

3. For k ~ 2 define the polylogaritbm function 

for Izl < 1. 

Show that for every positive integer N, 

Lk(ZN) = Nk-l I Lk(Cz) 
I;N=1 

where the sum is taken over all N-th roots of unity C. [Hint: Observe that if C 
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is an N-th root of unity, , "* 1, then 

4. Prove the relation n (1 - 'X) = 1 - X N, 
,N=l 

where the product is taken over all N-th roots of unity,. 

For other examples of such relations, see Chapter XV, formula r 8 of §2, and 
the exercise of Chapter XV, §3. 

XI, §3. APPLICATION TO PICARD'S THEOREM 

We return to the Schwarz reflection across circular triangles in the disc 
as in Chapter IX, §3, and we follow the notation of that section. Thus 
we have inverse isomorphisms 

g: U-+H and h: H -+ U, 

where U is the triangle. We could continue g analytically by reflection, 
but vice versa, one may continue h analytically across each interval, by 
reflection across the sides of the triangle. If hy denotes the analytic 
continuation of h along any path y not passing through 0, 1, then for 
any z on the real line, z =F 0, 1 we have hiz) on the side of some iterated 
reflection of the original triangle. For any complex number z "* 0, 1 the 
value hiz) lies inside the unit disc D. 

Picard's Theorem. Let f be an entire function whose values omit at 
least two complex numbers. Then f is constant. 

Proof After composing f with a linear map, we may assume that the 
omitted values are 0, 1. Without loss of generality, we may assume that 
there is some Zo such that f(zo) lies in the upper half plane. (Otherwise, 
we would proceed in a similar manner relative to the lower half plane.) 
The analytic function h(f(z)) for z near Zo maps a neighborhood of Zo 

inside U. We may continue this function h 0 f analytically along any 
path in C, because f may be so continued, and the image of any path in 
C under f is a path which does not contain ° or 1. Since C is simply 
connected, the analytic continuation of h 0 f to C is then well defined 
on all of C, and its values lie in the unit disc, so are bounded. By 
Liouville's theorem, we conclude that h 0 f is constant, whence f is con­
stant, which proves the theorem. 
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Remark. The crucial step in the proof was the use of the functions g 
and h. In classical times, they did not like functions defined essentially 
in an "abstract nonsense" manner. The situation of the triangle is so 
concrete that one might prefer to exhibit the desired functions explicitly. 
This can be done, and was done in Picard's original proof. He used the 
standard "modular function" denoted classically by A.. Its properties and 
definition follow easily from the theory of elliptic functions. Cf. for in­
stance my book on Elliptic Functions, [La 73] Chapter 18, §S. It is 
usually easier to deal with the upper half plane rather than the unit disc 
in such concrete situations, because the upper half plane is the natural 
domain of definition of the classical modular functions. 



PART THREE 

Various Analytic Topics 

This final part deals with various topics which are not all logically 
interrelated. For the most part, these topics involve analytic estimates, 
and the study of entire or meromorphic functions, and their rates of 
growth such as Jensen's formula. We give examples of special func­
tions, for instance, elliptic functions, the gamma function, and the zeta 
function. I recommend the classical British texts for other special func­
tions (e.g. Bessel functions, hypergeometric functions), including Copson, 
Titchmarsh, and Whittaker-Watson, listed in the Bibliography at the end 
of this book. 

The final chapter on the prime number theorem can be used for 
supplementary reading, partly because of the intrinsic interest of the 
theorem itself, and partly because it shows how complex analysis con­
nects with number theory. In particular, the proof of the prime number 
theory involves a very striking application and example of the calculus of 
residues. 
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CHAPTER XII 

Applications of the Maximum 
Modulus Principle and 
Jensen's Formula 

We return to the maximum principle in a systematic way, and give 
several ways to apply it, in various contexts. 

We begin the chapter by some estimates of an analytic function in 
terms of its zeros. Then we give the more precise exact relationship of 
Jensen's formula. This formula has a remarkable application to an old 
proof by Borel of Picard's theorem that an entire function omits at most 
one value. This application has been overlooked for many decades. I 
think it should be emphasized in light of the renewed importance of 
extensions of Jensen's formula by Nevanlinna. 

The remainder of the chapter consists of varied applications, somewhat 
independent of each other and in various contexts. 

One of the most striking applications omitted from standard courses, 
is to the problem of transcendence: Given some analytic function, de­
scribe those points z such that J(z) is an integer, or a rational number, or 
an algebraic number. This type of question first arose at the end of 
the nineteenth century, among analysts in Weierstrass' school (Stackel, 
Strauss). The question was again raised by P6lya, and Gelfond recog­
nized the connection with the transcendence problems. See the books on 
transcendence by, for instance, Baker, Gelfond, Lang, Schneider, in the 
Bibliography. In order not to assume too much for the reader, we shall 
limit ourselves in this chapter to the case when the function takes on 
certain values in the rational numbers. The reader who knows about 
algebraic numbers will immediately see how to extend the proof to that 
case. 
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XII, §1. JENSEN'S FORMULA 

The first result gives an inequality involving the zeros of a function and 
its maximum modulus. 

Theorem 1.1. Let f be holomorphic on the closed disc of radius R, and 
assume that f(O) =f. O. Let the zeros of f in the open disc be ordered by 
increasing absolute value, 

each zero being repeated according to its multiplicity. Then 

Proof Let 

J(z) 
and F(z) = g(z) . 

Then the function F is holomorphic on the closed disc of radius R, and 

IF(z) I = IJ(z) I when Izl = R. 

Hence the maximum modulus principle implies that 

IF(z)1 ;£ IIJIIR for Izl;£ R, 

and the theorem follows by putting z = O. 

The theorem is known as Jensen's inequality. Let v(r) be the number 
of zeros of f in the closed disc Izl ;£ r. Then 

N N iR dx fR v(x) L 10g(RI/znD = L - = - dx. 
n=l n=l IZnl x 0 x 

Hence we obtain another formulation of Jensen's inequality, 

f R v(x) 
- dx ;£ 10gllfllR -log/f(O)/. 

o x 

In many applications, the estimate given by Jensen's inequality suffices, 
but it is of interest to get the exact relation which exists between the 
zeros of f and the mean value on the circle. 

We begin with preliminary remarks. Let us assume that f is mero-
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morphic on the closed disc DR (centered at the origin). Then 1 has only 
a finite number of zeros and poles on this disc. For a E DR we abbreviate 

Observe that nf(a) = 0 except for the finite number of possibilities that 1 
has a zero of pole at a. Thus we may form the sum 

R L nf(a) log-, 
aEDR lal 
a,oO 

where the sum is taken over all elements a E DR and a #- O. The sum is 
really a finite sum, since only a finite number of terms are #- O. 

We omitted the term with a = 0 because we cannot divide by zero, so 
we have to deal with this term separately. For this purpose, we consider 
the power series expansion of 1 at 0, and we let cf be its leading 
coefficient: 

I(z) = cfzm + higher terms. 

We assume 1 is not constant, and so cf #- O. Thus 1 has order m at 0, 
and we have nf(O) = m. If 1 has no zero or pole at 0, then cf = 1(0). 

Even though 1 may have zeros or poles on the circle of radius R, we 
shall prove in a subsequent lemma that the improper integral 

converges. We may then state the main theorem of this section. 

Theorem 1.2 (Jensen's Formula). Let 1 be meromorphic and not con­
stant on the closed disc DR' Then 

In particular, if 1 has no zero or pole at 0, then the right side is equal to 
the constant 10glf(0) I. 

Proof Suppose first that 1 has no zeros or poles in the closed disc 
Izl ~ R. Then log I(z) is analytic on this disc, and 

1 i log I(z) f2" dO log 1(0) = ~. dz = log I(Re i8 ) -2 . 
2m Izl=R z 0 1t 

Taking the real part proves the theorem in this case. 
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Next, suppose f(z) = z. Then loglf(Re i8 )1 = log Rand nJ(O) = 1, so 
that the left side of Jensen's formula is equal to O. But cJ = 1, so the 
right side of Jensen's formula is 0 also, and the formula is true. 

Let rx be a complex number #- o. We shall now prove Jensen's for­
mula for the function 

f(z) = z - rx, 

with 0 < a ~ R. In this case, If(O) I = Irxl = a, and the formula to be 
proved is 

1 f21t 
log R = - 10giReiO - aei<P1 dO. 

2n 0 

It will therefore suffice to prove: 

Proof. Suppose first a < R. Then the function 

z 

is analytic for Izl ~ 1, and from this it is immediate that the desired 
integral is o. Next suppose a = R, so we have to prove that 

f 21t 
o 10gl1 - ei8 1 dO = O. 

To see this we note that the left-hand side is the real part of the complex 
integral 

f dz 
10g(1 - z)--;-, 

c lZ 

taken over the circle of radius 1, z = eiO, dz = ie iO• Let y(€) be the con­
tour as shown on Fig. 1. 

For Re z < 1 the function 
log(1 - z) 

z 
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-y(e) 

Figure 1 

is holomorphic, and so the integral is equal to 0: 

f log(l - z) dz = O. 
Y(El z 

The integral over the small indented circular arc of radius E is bounded 
in absolute value by a constant times E log E, which tends to 0 as E tends 
to O. This proves (*), settling the present case. 

We have now proved Jensen's formula in special cases, and the general 
case can be deduced as follows. Let 

h(z) = f(z) f1 (z - arnf(a). 
aeDr 

We have multiplied f by a rational function which cancels all the zeros 
and poles, so h has no zero and pole on DR' We can also write 

f(z) = h(z) f1 (z - atf(a). 
aeDR 

Thus we can go from h to f in steps by multiplication or division with 
factors of the special type that we considered previously, and for which 
we proved Jensen's formula. Therefore, to conclude the proof, it will 
suffice to prove: 

If Jensen's formula is valid for a function f and for a function g, then 
it is valid for fg and for fig. 
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This is easily proved as follows. Let LS(f) be the left side of Jensen's 
formula for the function J, and let RS(f) be the right side, so RS(f) = 

10g1CfI. We note that for two meromorphic functions f, g we have: 

LS(fg) = LS(f) + LS(g) and RS(fg) = RS(f) + RS(g). 

This is immediately verified for each term entering in Jensen's formula. 
For example, we have 

10glJgI = 10glJI + loglgl 

nfia) = nf(a) + ng(a); 

and similarly for the integral; 

We also have at once that LS(J-l ) = - LS(f) and RS(f-l) = - RS(f), 
because this relationship for the inverse of a function is also true for each 
term. From this formalism, it follows that if Jensen's formula is valid for 
J(z) and for (z - a), then it is valid for J(z)(z - a) and for J(z)/(z - a). 
Starting with h(z) we may then multiply and divide successively by fac­
tors of degree 1 to reach f This concludes the proof of Theorem 1.2. 

XII, §1. EXERCISES 

1. Let f be analytic on the closed unit disc and assume If(z) 1 ;;; 1 for all z in this 
set. Suppose also that f(1/2) = f(i/2) = O. Prove that If(O) 1 ;;; 1/4. 

2. Let f be analytic on a disc D(zo, R), and suppose f has at least n zeros in a 
disc D(zo, r) with r < R (counting multiplicities). Assume f(zo) #- O. Show that 

3. Let f be an entire function. Write z = x + iy as usual. Assume that for 
every pair of real numbers Xo < Xl there is a positive integer M such that 
f(x + iy) = O(yM) for y -+ 00, uniformly for Xo ;;; X ;;; Xl. The implied constant 
in the estimate depends on Xo, Xl and f Let al < a2 be real numbers. 
Assume that 11/ is bounded on Re(z) = a2. For T> 0, let Nf(T) be the 
number of zeros of / in the box 

and T;;;y;;;T+1. 

Prove that Nf(T) = O(log T) for T -+ 00. [Hint: Use an estimate as in Exercise 
2 applied to a pair of circles centered at a2 + iy and of constant radius.] 

Remark. The estimate of Exercise 3 is used routinely in analytic number 
theory to estimate the number of zeros of a zeta function in a vertical strip. 
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Next we develop extensions of the Poisson formula. We first set some nota­
tion. For a E DR' define 

R2 - (iz 
GR(z, a) = GR a(Z) = ---

, R(z - a) 

Then GR,a has precisely one pole on DR and no zeros. We have 

for Izl = R. 

4. Apply the Poisson formula of Chapter VIII, §4 to prove the following theorem. 

Poisson-Jensen Formula. Let f be meromorphic on DR' Let U be a simply 
connected open subset of DR not containing the zeros or poles of f Then there 
is a real constant K such that for z in this open set, we have 

f2X . Re i8 + z de 
log f(z) = loglf(Re"8)1 i8 - - I (orda f) log GR(z, a) + iK. ° Re - z 2n aeDR 

[For the proof, assume first that f has no zeros and poles on the circle CR' 
Let 

and apply Poisson to log h. Then take care of the zeros and poles on CR in the 
same way as in the Jensen formula.] 

5. Let f be meromorphic. Define nJ(O) = max (O,n[(O)), and: 

N[(oo,R) = 2.:: -(ordaf) log I~I + nil[(O) 10gR 
aEDR 

[(a)=oo 
a0;60 

R 
N[(O, R) = 2.:: (ordaf)log ~ + nJ(O)log R. 

aEDR 
[(a)=O 

a 0;60 

Show that Jensen's formula can be written in the form 

6. Let a be a positive real number. Define log+(a) = max(O,log IX). 
(a) Show that log a = log+(a) -log+(l/a). 
(b) Let f be meromorphic on jj R. For r < R define 
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Let G = G':,f. Show that 

(c) Following Nevanlinna, define the height function 

1f(r) = mAr) + NA 00, r). 

Deduce Nevanlinna's formulation of Jensen's formula: 

XII, §2. THE PICARD-BOREL THEOREM 

Picard's theorem states that an entire function which omits two distinct 
complex numbers is constant. We shall give a proof of this theorem due 
to Borel and dating back to 1887. For Picard's original proof, see Chap­
ter XI, §3. This section will not be used later and may be omitted by 
uninterested readers. We begin by setting some notation. 

Let 0( be a positive real number. We define 

log+(IX) = max(O, log oc). 

If 0(1' 0(2' ... ,O(n are positive, then 

and 

The first inequality is immediate, and for the second, the stronger in­
equality holds: 

For the proof, we note that 

Lemma 2.1. Let b E C. Then 



[XII, §2] THE PICARD~BOREL THEOREM 347 

Proof. If Ibl > 1 then loglb - zl for Izl < 1 + E is harmonic, and 
10g+lbl = loglbl, so the formula is true by the mean value property for 
harmonic functions. If Ibl < 1, then 

f 21[ . de f21[ . de 
o loglb - e'812n = 0 loglbe-18 -11 2n 

= 10gl-11 = 0 = 10g+lbl. 

If Ibl = 1, then the lemma has already been proved in Lemma 1.3. 

Let f be a merom orphic function. We define the proximity function 

The integral is of course an improper integral, which converges. The 
situation is similar to that discussed in Jensen's formula. Then the previ­
ous inequalities for log+ immediately yield: 

If f, g are meromorphic functions, then 

If f1' ···,fn are meromorphic functions, then 

We note that 

log+ IY.. - log+ lilY.. = log IY.. and Ilog IY..I = log+ IY.. + log+ lilY... 

Example. Suppose h is entire without zeros. Then 

mh = m1/h + 10glh(O)I· 

Indeed, from the definition and the preceding remark, we get 

by the mean value property of a harmonic function, Theorem 3.2 of 
Chapter VIII, §3. This proves the formula. 

We shall also need to count zeros of a function, and how many times 
a function takes a given value. Suppose f is an entire function. We had 
defined vf(r) to be the number of zeros of f in the closed disc of radius r. 



348 APPLICATIONS OF THE MAXIMUM MODULUS PRINCIPLE [XII, §2) 

It is now convenient to count the zeros in the open disc, so we define: 

n,(O, r) = number of zeros of f in the open disc of radius r, 
counted with multiplicities. 

If f(O) =F 0 we define 

N,(O, r) = f' n,(O, t) dt = L (ord,,!) log I!:.I, 
o t aeD, a 

",.0 
N,(b, r) = N'_b(O' r) if b E C is such that f(O) - b =F O. 

Proposition 2.2 (Cartan). Let f be an entire function. Then 

In particular, m, is an increasing function of r. 

Proof For each (J such that f(O) =F eill we apply Jensen's formula to 
the function f(z) - e ilJ, to get 

Then we integrate each side with respect to (J, and use Lemma 2.1 to 
prove the formula. That m, is increasing then follows because for each (J, 

the function 

is increasing. This proves the proposition. 

Let f be an entire function. We define 

where IlfliR = sup If(z)l. 
Izl=R 

Thus M, is the log of the maximum modulus on the circle of radius R. 
It is obvious that 

Conversely: 
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Theorem 2.3. Let f be an entire function. Then for r < R we have 

and in particular, Mf(r) ~ 3mf(2r). 

Proof. We shall use the theorem only when f has no zeros, and the 
proof in this case is slightly shorter. Hence we shall give the proof 
only in this case. The key step is to show that for r < R we have the 
inequality 

Since we assume that f is entire without zeros, we can define log f(z) as 
an entire function of z as in Chapter III, §6. We then apply Poisson's 
formula to the real part of log f(z), taking z = re itp and, = Rei6, to get 

f2" ., + z dO 
log I f(z) I ~ loglf(Re,6)1 Re-r --. 

o .. - z 2n 

But the max and min of Re((' + z)/(, - z)) occurs when cos(O - q» = 1 
or -1, so 

and we get 

f 2" . R + r dO R + r 
10glf(z)1 ~ 10g+lf(Re'O)I--- = --mf(R). 

o R - r 2n R - r 

Now take the sup for Izl = r and let R = 2r to conclude the proof. 

Corollary 2.4. Let f be an entire function. If mf is bounded for r --+ 00 

then f is constant. If there exists a constant k such that 

for a sequence of numbers R j --+ 00 then f is a polynomial of degree 
~ k. 

Proof. The first assertion follows from Theorem 2.3 and Liouville's 
theorem that a bounded entire function is constant. The second assertion 
is essentially Exercise 5 of Chapter V, §1, but we give the short proof. 
Select A large positive, and let R = Ar. By Cauchy's theorem, if f = 
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A+l 
loglanl ;£ Mf(R) - n log R ;£ A-I k 10g(Ar) - n 10g(Ar). 

If n > k, then for A sufficiently large, we also have n > k(A + l)/(A - 1). 
Letting R = Rj -+ 00 we find that an = O. Taking A sufficiently large 
shows that an = 0 if n > k, thus proving the corollary. 

We now turn to the main application. 

Theorem 2.5. Let h be an entire function without zeros. Then 

for all r lying outside a set of finite measure, and r -+ 00. 

The proof will require some lemmas. Recall that a set has finite measure 
if it can be covered by a union of intervals II' 12 , ••• such that the sum 
of the lengths is finite, i.e. 

00 

L length(ln) < 00. 
n=l 

Lemma 2.6. Let h be an entire function without zeros. Let 1 ;£ r < R. 
Then 

1 
mh'lh(r) ;£ log+ R + 210g+ -R + 2log+ mh(R) + a constant. 

-r 

Proof Note that log h is defined as an entire function, and we have 
the Poisson representation 

f21< . Re i9 + z dO 
log h(z) = loglh(Re,9)1 i9 - + iK 

o Re - z 2n 

for some constant K. Differentiating with respect to z with Izl < R we 
obtain 

Therefore we find the estimate 
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Taking log+ and integrating, we obtain the bound 

But as we saw at the beginning of the section, m1/h = mh - 10glh(O)I, so 
the lemma follows, with the constant log 2 -loglh(O)I. 

The lemma tells us that mh'/h(r) is very small compared to mh' pro­
vided we can find R slightly bigger than r such that mh(R) is not much 
bigger than mh(r). The next lemma shows that we can find arbitrarily 
large values of such numbers r. 

Lemma 2.7. Let S be a continuous, non-constant, increasing function 
defined for r > O. Then 

S (r + s~r)) < 2S(r) 

for all r > 0 except for r lying in a set of finite measure. 

Proof Let E be the exceptional set where the stated inequality is false, 
that is S(r + I/S(r)) ~ 2S(r). Suppose there is some r1 E E, S(r1) =f. O. Let 

r2 = inf{r E E such that r ~ r1 + ~)}. 
S(r1 

r3 = inf {r E E such that r ~ r2 + S(~2)}' 

Then r3 E E and r3 ~ r2 + I/S(r2). We continue in this way to get the 
sequence {rn }. 

Figure 2 

Since S is monotone, by construction we find 

S(rn+1) ~ s(rn + S(~n)) ~ 2S(rn) ~ 2nS(r1)' 

Hence 
1 2 

L S(rn) ~ S(r1)' 
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If the sequence {rn} is infinite, then it cannot be bounded, for otherwise 
one sees immediately that S would become infinite before the least upper 
bound, which does not happen since S is continuous. Then E is covered 
by the union of the intervals 

which has measure ~ 2/S(ri)' thereby proving the lemma. 

We apply the lemma to the function 

and we take 

in Lemma 2.6. This concludes the proof of Theorem 2.5. (See Exercise 
1.) 

We now come to Picard's theorem. 

Theorem 2.S. Let f be an entire function. Let a, b be two distinct 
complex numbers such that f(z) =1= a, b for all z. Then f is constant. 

Proof. Let 
w-a 

L(w)=--. 
b-a 

Then L carries a, b to 0,1. Thus after replacing f by L 0 f, we may 
assume without loss of generality that a = 0 and b = 1. Thus we let h be 
an entire function which has no zeros and such that 1 - h also has no 
zeros, and we have to prove that h is constant. Letting hi = hand 
h2 = 1 - h, we see that it suffices to prove: 

Theorem 2.9. Let hi, h2 be entire functions without zeros. If 

then hi, h2 are constant. 

Differentiating the given relation, we obtain two linear equations 

hi + h2 = 1, 

h~ + h; = O. 
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Write h~ = (h~/hdhl and h; = (h;/h2)h2. Solving for hl' say, we get 

unless the denominator is 0, in which case (h2/h 1 ),/(h2/h 1 ) = 0, and then 
h2/hl is constant, and it follows at once that both hl' h2 are constant. 
We then apply the inequalities for mfg and mf+g at the beginning of this 
section, and we find by Theorem 2.5 that 

for all r outside a set of finite measure. We have a similar inequality for 
mh2 . Then we get that 

mh, (r) + mh2(r) ~ log r + log mh, (r) + log mh2(r). 

It follows that 

for arbitrarily large values of r. By Corollary 2.4, we conclude that hl' 
h2 are polynomials, which are constant since they have no zeros. This 
concludes Borel's proof of Picard's theorem. 

XII, §2. EXERCISES 

1. Let h be an entire function without zeros. Show that mh is continuous. [This 
is essentially trivial, by the uniform continuity of continuous functions on 
compact sets.] 

2. Let f be a merom orphic function. Show that mf is continuous. This is less 
trivial, but still easy. Let Z l' ... ,Zs be the poles of f on a circle of radius r. 
Let Zj = re iOJ , and let [(OJ' D) be the open interval or radius D centered at OJ. 
Let [ be the union of these intervals. Then for 0 rt [, f(te i8 ) converges uni­
formly to f(re i8 ) as t ---> r, so as t ---> r, 

Given E, there exists D such that if 0 E [(OJ, D) for some j and It - rl < D, then 

and 

because If(z)1 is large when z is near Zj' But for Z near Zj' 

f(z) = (z - Zjreg(z), 
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where e > 0 and Ig(z)1 is bounded away from O. Hence for z near Zj, 

10glf(z)1 = -e loglz - zjl + bounded function. 

Then i '9 dO 
loglf(re' )1 2n 

geI(9J.6) 
and i '9 dO loglf(te' )1 -

8eI(8J .6) 2n 

are both small, because they essentially amount to 

up to a bounded factor. Put in the details of this part of the argument.] 

3, Let f be meromorphic. Let a be a complex number, Show that' 

1f(r) = 'Jf-.(r) + 0.(1), 

where 10.(1)1 :;£ 10g+lal + log 2. 

So far you will have proved the first main theorem of Nevanlinna theory. 
For a development of the theory, see Nevanlinna's book [Ne 53]. You can 
also look up the self-contained Chapters VI and VIII of [La 87]. 

The next sections deal with separate topics of more specialized interest. 
First we show how to estimate an analytic function by its real part. The 
method continues the spirit of the beginning of §1, using the maximum 
modulus principle. Next, we show that in the estimate of a function, one 
can use the fact that derivatives are small instead of the function having 
actual zeros to get bounds on the function. Such a technique is useful in 
contexts which deepen the result stated in §4 concerning rational values of 
entire or meromorphic functions. Then we go on to applications of the 
maximal modulus principle to regions other than discs, namely strips. These 
topics are logically independent of each other and can be covered in any 
order that suits the reader's tastes or needs. Readers may also wish to skip 
the next sections and go immediately to the next chapter. 

XII, §3. BOUNDS BY TH~ REAL PART, 
BOREL-CARATHEODORY THEOREM 

We shall now give a simple proof that an analytic function is essentially 
bounded by its real part. As usual, we use the technique of two circles. 
If u is a real function, we let SUPR u = sup u(z) for Izl = R. 

Theorem 3.1 (Borel-Caratheodory). Let f be holomorphic on a closed 
disc of radius R, centered at the origin. Let Ilfllr = max If(z) I for 
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I z I = r < R. Then 
2r R + r 

1I/IIr ~ R _ r SUPR Re 1+ R _ r 1/(0)1. 

Proof· Let A = SUPR Ref. Assume first that 1(0) = O. Then A;?; 0 
(why?). Let 

I(z) 
g(z) = z{2A - I(z))' 

Then g is holomorphic for Izl ~ R. Furthermore, if Izl = R, then 

12A - l(z)1 ;?; I/(z)l· 

Hence IlgliR ~ l/R. By the maximum modulus principle, we have the 
inequality Ilgllr ~ IlglIR' and hence, if Iwl = r, we get 

whence 

and therefore 

I I(w) I 1 
--:-::------:-~< -
rl2A - l(w)1 = R' 

2r 
1I/IIr ~ -R A, -r 

which proves the lemma in this case. 
In general, we apply the preceding estimate to the function 

h(z) = I(z) - 1(0). 
Then 

SUPR Re h ~ SUPR Re 1 + 1/(0)1, 

and if Iwl = r, we get 

I/(w) - 1(0)1 ~ ~ [A + 1/(0)1], 
R -r 

whence 

I I(w) I ~ R 2~ r [A + 1/(0)1] + 1/(0)1 

thereby proving the theorem. 

In Chapter VIII we gave a more precise description of the relationship 
which exists between an analytic function and its real part, by expressing 
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the function in terms of an appropriate integral involving only the real 
part and the Poisson kernel function. The analytic function is essentially 
uniquely determined by its real part, except for adding a constant, which 
explains the occurrence of the term J(O) in the above estimate. However, 
the proof here with the maximum modulus principle is so simple that we 
found it worthwhile including it anyway. Besides, we give an estimate in 
terms of SUPR Ref, not just IIReJIIR' This is significant in the next 
corollaries. 

Corollary 3.2. Let h be an entire Junction. Let p > O. Assume that 
there exists a number C > 0 such that Jor all sufficiently large R we 
have 

SUPR Re h ~ CW. 

Then h is a polynomial oj degree ~ p. 

Proof In the Borel-Caratheodory theorem, use R = 2r. Then we 
have Ilhllr ~ rP for r ~ 00. Let h(z) = L anzn. By Cauchy's formula we 
have lanl ~ IlhIIR/W for all R, so an = 0 if n > p, as desired. 

Corollary 3.3 (Hadamard). Let J be an entire Junction with no zeros. 
Assume that there is a constant C ~ 1 such that IIJIIR ~ CRP Jor all R 
sufficiently large. Then J(z) = eh(z) where h is a polynomial oj degree 
~ p. 

Proof By Chapter III, §6 we can define an analytic function log J(z) = 
h(z) such that eh(z) = J(z). The assumption implies that Re h satisfies the 
hypotheses of Corollary 3.2, whence h is a polynomial, as desired. 

XII, §4. THE USE OF THREE CIRCLES AND 
THE EFFECT OF SMALL DERIVATIVES 

We begin by illustrating the use of three circles in estimating the growth 
of a function in terms of the number of zeros. 

We study systematically the situation when an analytic function has 
zeros in a certain region. This has the effect of making the function 
small throughout the region. We want quantitative results showing how 
small in terms of the number of zeros, possibly counted with their multi­
plicities. If the function has zeros at points z 1, ... ,Zn with mUltiplicities 
kl' ... ,kn' then 

J(z) 

is again analytic, and the maximum modulus principle can be applied to 
it. On a disc of radius R centered at the origin such that the disc 
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contains all the points Z 1, ••• ,Zn, suppose that R is large with respect to 
IZll, ... ,lz"l, say IZjl :;;;; R/2. Then for Izi = R we get 

If we estimate the above quotient on the circle of radius R (which gives 
an estimate for this quotient inside by the maximum modulus principle) 
we obtain an estimate of the form 

Specific situations then compare IlfliR with the power of R in the denom­
inator to give whatever result is sought. In the applications most often 
the multiplicities are equal to the same integer. We state this formally. 

Theorem 4.1. Let f be holomorphic on the closed disc of radius R. Let 
Zl' ... ,ZN be points inside the disc where f h~s zeros of multiplicities 
~ M, and assume that these points lie in the disc of radius R l . Assume 

Let Rl :;;;; R2 :;;;; R. Then on the circle of radius R2 we have the esti-
mate 

Proof Let Iwl = R2 • We estimate the function 

Figure 3 
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on the circle of radius R. This function has precisely the value f(w) at 
Z = w. The estimate Iw - zjl ~ 2R2 is trivial, and the theorem follows at 
once. 

If a function does not have zeros at certain points, but has small 
derivatives, then it is still true that the function is small in a region not 
too far away from these points. A quantitative estimate can be given, 
with a main term which is the same as if the function had zeros, and an 
error term, measured in terms of the derivatives. 

Let Z 1, ... ,Z N be distinct points in the open disc of radius R, and let 

Let f be holomorphic on the closed disc of radius R. Let r be the circle 
of radius R, and let lj be a circle around Zj not containing Zk for k ¥ j, 
and contained in the interior of r. Then we have for Z not equal to any 
Zj: 

Hermite Interpolation Formula 

This formula, due to Hermite, is a direct consequence of the residue 
formula. We consider the integral 

r fm 1 
Jr Q(O (C - z) dC. 

The function has a simple pole at C = z with residue f(z)/Q(z). This gives 
the contribution on the left-hand side of the formula. The integral is also 
equal to the sum of integrals taken over small circles around the points 
Zl' ••. ,ZN' Z. To find the residue at Zj' we expand f(C) at Zj' say 

Looking at the quotient by Q(O immediately determines the residues at 
Zj in terms of coefficients of the expression, which are such that 

The formula then drops out. 
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It is easy to estimate If(z)l. Multiplying by Q(z) introduces the 
quotients 

Q(z) _ nN [(Z - Zj)JM 
Q(O - j=l «( - z) , 

which are trivially estimated. The denominator is small according as the 
radius of Ij is small. In applications, one tries to take the Ij of not too 
small radius, and this depends on the minimum distance between the 
points z, Z l' ... ,Z N' It is a priori clear that if the points are close 
together, then the information that the function has small derivatives at 
these points is to a large extent redundant. This information is stronger 
the wider apart the points are. 

Making these estimates, the following result drops out. 

Theorem 4.2. Let f be holomorphic on the closed disc of radius R. Let 
Z 1, ... ,Z N be distinct points in the disc of radius R l' Assume , 

and 

Let (J be the minimum of 1, and the distance between any pair of 
distinct points among Z l' ... ,Z N' Then 

Ilfll < IlfllRCMN + (CR / )MN I Dmf(zj) I 
R2 = (R/R )MN 2 (J ma~ " 2 m.J m. 

where C is an absolute constant. 

An estimate for the derivative of 1 can then be obtained from 
Cauchy's formula 

Dkf(z) = ~ r 1(Ok+1 d(. 
k! 2mJ"I=R2 «(-Z) 

from which we see that such a derivative is estimated by a similar 
expression, multiplied by 

We may summarize the estimate of Theorem 4.2 by saying that the 
first term is exactly the same as would arise if f had zeros at the points 
Zl' ••. ,ZN' and the second term ·is a correcting factor describing the 
extent to which those points differ from actual zeros. In practice, the 
derivatives of 1 are very small at these points, which thus do not differ 
too much from zeros. 
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XII, §5. ENTIRE FUNCTIONS WITH RATIONAL VALUES 

We shall give a theorem showing how the set of points where an entire 
function takes on rational values is limited. The method follows a classi­
cal method of Gelfond and Schneider in proving the transcendence of (1.1l 

(when (1., P are algebraic =F 0, 1 and P is irrational). It develops ideas of 
Schneider, who had partially axiomatized the situation, but in a manner 
which makes the theorem also applicable to a wider class of functions. 

We recall that an analytic function is said to be entire if it ill analytic 
on all of C. Let p > O. We shall say that f has strict order ~ p if there 
exists a number C > 1 such that for all sufficiently large R we have 

whenever JzJ ~ R. 

Two functions J, g are called algebraically independent if for any poly­
nomial function 

with complex coefficients aii , we must have aii = 0 for all i, j. 
We denote the rational numbers by Q, as usual. If f, g take on 

rational values at certain points, we shall construct an auxiliary function 
L biifigi which has zeros of high order at these points, and then estimate 
this latter function. 

Theorem 5.1. Let f1' ... ,f" be entire functions of strict order ~ p. 
Assume that at least two of these functions are algebraically indepen­
dent. Assume that the derivative d/dz = D maps the ring QU1'··· ,f,,] 
into itself, i.e. for each j there is a polynomial P.i with rational coeffi­
cients such that 

Dfj = P.i(f1' ... ,f,,). 

Let w1, ... ,WN be distinct complex numbers such that 

for j = 1, ... ,n and i = 1, ... ,N. Then N ~ 4p. 

The most classical application of the theorem is to the ring of 
functions 

Q[z, eZ ] 

which is certainly mapped into itself by the derivative d/dz = D. The 
theorem then implies that e W cannot be rational for any integer w =F o. 
For otherwise, 
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would be rational, so we would obtain infinitely many numbers at which 
the exponential takes on rational values, as well as the function z, which 
contradicts the theorem. The same argument works in the more general 
case when dealing with algebraic numbers, to show that e W is not alge­
braic when w is algebraic =I O. Cf. [La 62], Theorem 3, and [La 66], 
Chapter III, Theorem 1. 

Before giving the main arguments proving the theorem, we state some 
lemmas. The first, due to Siegel, has to do with integral solutions of 
linear homogeneous equations. 

Lemma 5.2. Let 

be a system of linear equations with integer coefficients aij' and n > r. 
Let A ~ 1 be a number such that laijl::£ A for all i, j. Then there 
exists an integral, non-trival solution with 

Proof. We view our system of linear equations as a linear equation 
L(X) = 0, where L is a linear map, L: Z(II) --+ Z(,), determined by the 
matrix of coefficients. If B is a positive number, we denote by Z(II)(B) the 
set of vectors X in Z(II) such that IXI ::£ B (where IXI is the maximum of 
the absolute values of the coefficients of X). Then L maps Z(II)(B) into 
Z(')(nBA). The number of elements in Z(II)(B) is ~ B" and ~ (2B + 1)". 
We seek a value of B such that there will be two distinct elements X, Y 
in Z(II)(B) having the same image, L(X) = L(Y). For this, it will suffice 
that Bn > (2nBA + 1)" and thus it will suffice that B = (3nA)'!(II-'). We 
take X - Y as the solution of our problem. 

The next lemma has to do with estimates of derivatives. By the size of 
a polynomial with rational coefficients we shall mean the maximum of 
the absolute values of the coefficients. A denominator for a set of rational 
numbers will be any positive integer whose product with every element of 
the set is an integer. We define in a similar way a denominator for 
a polynomial with rational coefficients. We abbreviate denominator by 
"den". 

Let 

be a polynomial with complex coefficients, and let 
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be a polynomial with real coefficients ;E;; O. We say that Q dominates P 
and write P -< Q, if I a(i) I ~ p(i) for all (i) = (ii' ... ,in)' It is then immedi­
ately verified that the relation of domination is preserved under addition, 
multiplication, and taking partial derivatives with respect to the variables 
11, ... ,7;.. Thus if P -< Q, then DjP -< DjQ, where Dj = a/or;. 

Lemma 5.3. Let fl' ... ,f" be functions such that the derivative D = 

d/dz maps the ring QUi"" ,f,,] into itself. There exists a number C1 

having the following property. If Q(11, ... , 7;.) is a polynomial with 
rational coefficients, of total degree ~ r, then 

where Qm E Q[11, ... ,7;.] is a polynomial satisfying: 

(i) deg Qm ~ r + md with d defined below. 
(ii) size Qm ~ (size Q)m! qn+r. 

(iii) There exists a denominator for the coefficients of Qm bounded by 
den(Q)qn+r. 

Proof Let ~(11, ... ,7;.) be a polynomial such that 

D jj = ~(fl' ... ,f,,). 

Let d be the maximum of the degrees of Pi' ... ,F". There exists a 
"differentiation" 15 on the polynomial ring Q[11, ... ,7;.] such that 

and for any polynomial P we have 

n 

D(P(11 , ... ,7;.») = L (Dj P)(11 , ... , 7;.)~(11, ... ,7;.). 
j=l 

This is just obtained by the usual chain rule for differentiation, and 

is the usual partial derivative. But the polynomial Q is dominated by 

Q -< size(Q)(l + 11 + '" + 7;.)r 

and each polynomial ~ is dominated by size(~)(l + 11 + ... + 7;.)d. Thus 
for some constant C2 we have 
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Proceeding inductively, we see that jjkQ is dominated by 

jjkQ -< size(Q)C~r(r + d) ... (r + kd)(1 + 11 + ... + T,,)'+kd. 

Since 
r(r + d) ... (r + kd) ~ dr(dr + d) ... (dr + kd) 

~ dk+1r(r + 1) ... (r + k), 

this product is estimated by 

dk+1 (r + k)! rk' < C+kk' 
r! k! . = 4 •• 

This proves the lemma. 

We apply the lemma when we want to evaluate a derivative 

at some point w, where I = Q(/1' ... ,J,,) is a polynomial in the func­
tions 11' ... ,J". Then all we have to do is plug in 11 (w), ... ,/n(w) in 
Qk(11 , ... ,T,,) to obtain 

If w is regarded as fixed, this gives us an estimate for Dkl(w) as in (ii) 
and (iii) of the theorem, whenever 11 (w), ... ,In(w) are rational numbers. 
Thus the previous discussion tells us how fast the denominators and 
absolute values of a derivative 

grow when w is a point such that 11 (w), ... ,Jiw) are rational numbers. 
We now come to the main part of the proof of the theorem. Let I, 9 

be two functions among /1' ... ,J" which are algebraically independent. 
Let L be a positive integer divisible by 2N. We shall let L tend to 
infinity at the end of the proof. 

Let 

have integer coefficients, and let L2 = 2MN. We wish to select the coeffi­
cients bij not all 0 such that 
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for m = 0, ... ,M - 1 and v = 1, ... ,N. This amounts to solving a system 
of linear equations 

L L bijDm(Jigi)(wy) = 0, 
i,i=l 

and by hypothesis Dm(Jigi)(wy) is a rational number for each v. We 
treat the bii as unknowns, and wish to apply Siegel's lemma. We have: 

Number of unknowns = L2, 

Number of equations = MN. 

Then our choice of L related to M is such that 

# equations = 1 
# unknowns - # equations . 

We multiply the equations by a common denominator for the coeffi­
cients. Using the estimate of Lemma 5.3, and Siegel's lemma, we can 
take the bij to be integers, whose size is bounded by 

for M -+ 00. 

Since j, g are algebraically independent, the function F is not identi­
cally zero. Let s be the smallest integer such that all derivatives of F up 
to order s - 1 vanish at all points WI' ""WN' but such that DSF does 
not vanish at one of the Wy , say WI' Then s ~ M. We let 

Then rx :1= ° is a rational number, and by Lemma 5.3 it has a denomina­
tor which is ~ q for s -+ 00. Let c be this denominator. Then crx is an 
integer, and its absolute value is therefore ~ 1. 

We shall obtain an upper bound for IDSF(wl)1 by the technique of 
Theorem 4.1. We have 

We estimate the function 

_ , F(z) 
H(z) - s. [( ) ( )]S n (WI - wy )" 

Z - WI ... Z - WN y,.l 

on the circle of radius R = SI/2p. By the maximum modulus principle, we 
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have 

for a suitable constant C. Using the estimate for the coefficients of F, 
and the order of growth of the functions fl' ... ,fn' together with the fact 
that L ~ M ~ s, we obtain 

CS ssCRPL C 3s ssC4sN 

II FII < 3 4 < 
R = RNs = -eN=s=(lo-::-Cgs"')/2.--:cp • 

Hence 

Taking logs yields 

Ns log s 
2p ~ 2s log s + C6 Ns. 

We divide by slog s, and let L --+ 00 at the beginning of the proof, so 
s --+ 00. The inequality 

N~4p 

drops out, thereby proving the theorem. 

XII, §6. THE PHRAGMEN-LiNDELOF AND 
HADAMARD THEOREMS 

We write a complex number in the form 

s = (J + it 
with real (J, t. 

We shall use the 0 notation as follows. Let f, 9 be functions defined 
on a set S, and 9 real positive. We write 

f(z) = O(g(z)) or I f(z) I ~ g(z) for Izl--+ 00 

if there is a constant C such that If(z) I ~ Cg(z) for Izl sufficiently large. 
When the context makes it clear, we omit the reference that Izl--+ 00. 

Consider a strip of complex numbers s such that the real part (J lies in 
some finite interval [(JI, (J2l. We are interested in conditions under which f 
is bounded in the strip. Suppose that If I ~ 1 on the sides of the strip. It 
turns out that if f has some bound on its order of growth inside the strip, 
then If I ~ 1 on the whole strip. The double exponential f(s) = ee" on the 
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strip [-n/2, n/2] gives an example when f is not bounded on the interior. 
However, one has: 

Theorem 6.1 (phragmen-LindeIOf). Let f be continuous on the strip 

-n/2 ~ a ~ n/2 

and holomophic on the interior. Suppose If I ~ I on the sides of the strip, 
and suppose there exists ° < IX < 1 and C > ° such that 

If(s)1 ~ exp(Ce,xlsl) 

for s in the strip with lsi ~ 00. Then If I ~ 1 in the strip. 

Proof Let IX < p < 1. For each E> 0, define 

gE(S) = f(s)e- 2E cos(fJs). 

We have 2 Re( cos ps) = (efJt + e-fJt)cos pa. Since ° < p < 1, it follows that 
there exists c> ° such that c ~ cos pa for all a E [-n/2, n/2]. Hence 

as lsi ~ 00, s in the strip. 

Since it is immediate that gE is bounded by I on the sides of the strip, it 
follows from the maximum modulus principle applied to truncated rec­
tangles of the strip that IgEI ~ 1 on the whole strip. Then we conclude that 

If(s) I ~ e2ERecosfJs for all s in the strip. 

We now fix some finite rectangle, and take s in this rectangle. The 
previous inequality holds for every E > 0, and the values Icos psi are 
bounded for s in the rectangle. This implies that If(s) I ~ 1 for s in the 
rectangle, and concludes the proof of the theorem. 

From Theorem 6.1 we shall obtain several variations. First, we say that 
a function f on a strip a\ ~ a ~ a2 is of finite order on the strip if there 
exists A > () such that 

loglf(s)I « IslA for lsi ~ 00, s in the strip. 

Theorem 6.2 (phragmen-LindeIOf, second version). Let f be continuous 
on a strip Re(s) E [a\, a2] and holomophic on the interior. Suppose 
If I ~ I on the sides of the strip, and f is of finite order on the strip. Then 
If I ~ 1 on the strip. 
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Proof By a linear change of variables s = aw + b = rp( w) we see that 
the given strip corresponds to a strip as in Theorem 6.1. It is immediately 
verified that f 0 rp satisfies the hypothesis of Theorem 6.1, so If 0 rpl ~ I, 
and finally If I :::;; 1, which proves the corollary. 

Remark. The bound of 1 on the sides is a convenient normalization. If 
instead If I ~ B on the sides of the strip for some B > 0, then by con­
sidering f / B instead of f one concludes that If I ~ B inside the strip. 

The Phragmen-Lindelof can be applied to give estimates for a func­
tion even when the function is not bounded in the strip. For instance, 
we obtain the following statement as an immediate consequence. 

Corollary 6.3. Suppose that f is of finite order in the strip, and that there 
is some positive integer M such that 

for Itl--+ 00 

and similarly for (12 instead of (11' that is 1 f(s) 1 is bounded polynomially 
on the sides of the strip. Then for s in the strip, we have 

for lsi --+ 00. 

Proof Let So be some point away from the strip. Then the function 

is bounded in the strip and we can apply the Phragment-Lindelof theo­
rem to conclude the proof. 

Example. Define the zeta function 

00 

((s) = L n-S • 

n=1 

It is easily shown that the series converges absolutely for Re(s) > 1, and 
uniformly on every compact subset of this right half-plane, thus defining 
a holomorphic function. It is also easily shown that 

((s) = n (1 - p-Sr 1 (called the Euler product), 
p 

where the product is taken over all the prime numbers. In Chapter XIII 
you will learn about the gamma function r(s). Define 

f(s) = s{l- s)n-S!2rG) ((s). 
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It can be shown that there is an extension of f to an entire function, 
satisfying the functional equation 

f(s) = f(1 - s). 

For Re(s) ~ 2, say, the Euler product is uniformly bounded. The func­
tional equation gives a bound 

for each u ~ -2. The Phragmen-Lindel6f theorem then gives a bound 
in the middle. 

In the Phragmen-Lindel6f theorem we were interested in the crude 
asymptotic behavior for large t. In the next theorem, we want a more 
refined behavior, and so we must assume that the function is holomor­
phic and bounded in a whole strip. 

Theorem 6.4 (First Convexity Theorem). Let s = u + it. Let f be 
holomorphic and bounded on the strip a ~ a ~ b. For each a let 

Mf(u) = M(u) = sup If(u + it)l. 
t 

Then log M(u) is a convex function of u. 

Proof The statement is defined to be the inequality 

b-u u-a 
log M(u) ~ b _ a log M(a) + b _ a log M(b) 

Expressed in multiplicative notation, this is equivalent with 

The case when M(a) = M(b) = 1 is simply a special case of the 
Phragmen-Lindel6f theorem. 

In general, let 

h(s) = M(a)<b-s)!(b-a) M(b)(s-a)!(b-a). 

Then h is entire, has no zeros, and 1/h is bounded on the strip. We have 

Ih(a + it)1 = M(a) and Ih(b + it)1 = M(b) 

for all t. Consequently, 
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The first part of the theorem implies that If/hi ~ 1, whence If I ~ Ihl, thus 
proving our theorem. 

Corollary 6.5 (Hadamard Three Circle Theorem). Let f(z) be holo­
morphic on the annulus a ~ Izl ~ p, centered at the origin. Let 

M(r) = sup If(z)l. 
Izl=r 

Then log M(r) is a convex function of log r. In other words, 

log(f3/rx) log M(r) ~ log(f3/r) log M(a) + log(r/rx) log M(f3). 

Proof. Let j*(s) = f(e S ). Then f* is holomorphic and bounded on the 
strip a ~ a ~ b, where ea = a and eb = f3. We simply apply the theorem, 
to get the corollary. 

In the next corollary, we analyze a growth exponent. Let f be holo­
morphic in the neighborhood of a vertical line a + it, with fixed a, and 
suppose that 

f(a + it) ~ I tfY 

for some pOSItIve number y. The inf of all such y can be called the 
growth exponent of f, and will be denoted by t{!(a). Thus 

f(a + it) ~ I tl1jJ(O")+, 

for every E > 0, and t{!(a) is the least exponent which makes this inequal­
ity true. 

Theorem 6.6 (Second Convexity Theorem). Let f be holomorphic in the 
strip a ~ a ~ b. For each a assume that f(a + it) grows at most like a 
power of Itl, and let t{!(a) be the least number ~o for which 

f(a + it) « Itl",(a)+. 

for every E > O. Assume also that f is of finite order in the strip. Then 
t{!(a) is convex as a function of a, and in particular is continuous on 
[a, b]. 

Proof. The corollary of the Phragmen-LindelOf theorem shows that 
there is a uniform M such that f(a + it) ~ Itl M in the strip. Let L,(s) be 
the formula for the straight line segment between t{!(a) + E and t{!(b) + E; 

in other words, let 

b-s s-a 
L.(s) = b _ a [t{!(a) + E] + b _ a [t{!(b) + E]. 
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The function 

/(s)( -isrL.(s) 

is then immediately seen to be bounded in the strip, and our theorem 
follows, since we get I/I(u) ~ L.(u) for each u in the strip, and every € > O. 

Example. We have already mentioned the zeta function. It is a stan­
dard fact that it has a pole of order 1 at s = 1, and is otherwise holo­
morphic. Hence let us put 

/(s) = (s - 1)(s). 

Then / is an entire function. We then have the corresponding 1/1 (u). The 
Riemann hypothesis states that all the zeros of (s) (or /(s)) in the strip 
o < u < 1 lie on the line Re(s) = 1/2. It can be shown fairly easily that 
this hypothesis is equivalent to the property that the graph of 1/1 is as 
shown on Fig. 4, in other words, I/I(u) = 0 for u ~ 1/2. Cf. my Algebraic 
Number Theory, Springer-Verlag, Chapter XIII, §5. 

The dotted line represents the behavior 
of the graph of I/I(u) under the Riemann hypothesis. 

, , 

o 

XII, §6. EXERCISES 

, , , , 

Phragmen-Lindelof for Sectors 

Figure 4 

1. Let U be the right half plane (Re z > 0). Let f be continuous on the closure 
of U and analytic on U. Assume that there are constants C > 0 and IX < 1 
such that 

If(z)1 ~ Ce1zl" 

for all z in U. Assume that f is bounded by 1 on the imaginary axis. Prove 
that f is bounded by 1 on U. Show that the assertion is not true if IX = 1. 
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2. More generally, let U be the open sector between two rays from the origin. 
Let f be continuous on the closure of U (Le. the sector and the rays), and 
analytic on U. Assume that there are constants C > 0 and IX such that 

I f(z) I ~ Cel' l" 

for all z E U. If niP is the angle of the sector, assume that 0 < IX < p. If f is 
bounded by 1 on the rays, prove that f is bounded by 1 on U. 

3. Consider again a finite strip 0'1 ~ 0' ~ 0'2. Suppose that f is holomorphic on 
the strip, If(s)1 -+ 0 as lsi -+ 00 with s in the strip, and If(s) I ~ 1 on the sides of 
the strip. Prove that If(s) I ~ 1 in the strip. 
(Remark. The bound of 1 is used only for normalization purposes. If f is 
bounded by some constant B, then dividing f by B reduces the problem to the 
case when the bound is 1.) 

4. Let f be holomorphic on the disc DR of radius R. For 0 ~ r < R let 

I(r) = - If(re i9W dO. 1 12
" 

2n 0 

Let f = L anzn be the power series for f 
(a) Show that 

(b) I(r) is an increasing function of r. 
(c) If(OW ~ I(r) ~ II!II;· 
(d) log I(r) is a convex function of log r, assuming that f is not the zero 

function. [Hint: Put s = log r, 

J(s) = I(eS ). 

J"J - (J')2 
Show that (log J)" = J2 . Use the Schwarz inequality to show 

that 
J"J - (J')2 ~ 0.] 



CHAPTER XIII 

Entire and Meromorphic 
Functions 

A function is said to be entire if it is analytic on all of C. It is said to be 
meromorphic if it is analytic except for isolated singularities which are 
poles. In this chapter we describe such functions more closely. We 
develop a multiplicative theory for entire functions, giving factorizations 
for them in terms of their zeros, just as a polynomial factors into linear 
factors determined by its zeros. We develop an additive theory for mero­
morphic functions, in terms of their principal part (polar part) at the 
poles. 

Examples of classical functions illustrating the general theory of 
Weierstrass products and Mittag-Leffler expansions will be given in the 
three subsequent chapters: elliptic functions, gamma functions, and zeta 
functions. For other classical functions (including hypergeometric func­
tions), see, for instance, Copson [Co 35]. 

XIII, §1. INFINITE PRODUCTS 

Let {un} (n = 1,2, ... ) be a sequence of complex numbers ¢ O. We say 
that the infinite product 

00 n Un 
n=1 

converges absolutely if lim un = 1 and if the series 

00 

L log Un 
n=1 

converges absolutely, i.e. L Ilog unl converges. For a finite number of n 

372 
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we take any determination of log Un' but if n is sufficiently large, then 
Un can be written in the form Un = 1 - rtn where lrtnl < 1, and then we 
let log Un = log(1 - rtn ) be defined by the usual series for the logarithm. 
Under this condition of absolute convergence, it follows that the series 

converges, so the partial sums 

N 

L log Un 
n=l 

have a limit. Since the exponential function is continuous, we can expon­
entiate these partial sums (which are the log of the partial products) and 
we see that 

exists. 

Lemma 1.1. Let {rtn } be a sequence of complex numbers rtn "# 1 for all 
n. Suppose that 

converges. Then 

converges absolutely. 

Proof. For all but a finite number of n, we have l1Xnl < t, so 

is defined by the usual series, and for some constant C, 

Hence the product converges absolutely by the definition and our as­
sumption on the convergence of L lrtnl. 

The lemma reduces the study of convergence of an infinite product to 
the study of convergence of a series, which is more easily manageable. 

In the applications, we shall consider a product 

where hn(z) is a function "# 1 for all z in a certain set K, and such that 
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we have a bound 

for all but a finite number of n, and all z in K. Taking again the partial 
sums of the logarithms, 

N 

L 10g{1 - hn(z}), 
n=1 

we can compare this with the sums of the lemma to see that these sums 
converge absolutely and uniformly on K. Hence the product taken with 
the functions hn(z} converges absolutely and uniformly for z in K. 

It is useful to formulate a lemma on the logarithmic derivative of an 
infinite product, which will apply to those products considered above. 

Lemma 1.2. Let {In} be a sequence of analytic functions on an open set 
U. Let J,.(z) = I + hn(z), and assume that the series 

converges uniformly and absolutely on U. Let K be a compact subset of 
U not containing any of the zeros of the functions J,. for all n. Then the 
product n J,. converges to an analytic function f on U, for z E K we have 

00 

f'lf(z) = L f:IJ,,(z), 
n=1 

and the convergence is absolute and uniform on K. 

Proof By covering K with a finite number of discs of sufficiently 
small radius, using the compactness, we may assume that K is a closed 
disc. Write 

N-1 00 

f(z} = n fn(z} n J,,(z}, 
n=1 n=N 

00 

where N is picked so large that L Jhn(z)J < 1. Then the series 
n=N 

00 00 

L 10gJ,,(z} = L log(l + hiz}) 
n=N n=N 

converges uniformly and absolutely, to define a determination of 

00 

log G(z}, where G(z} = n J,,(z}. 
n=N 

Then 
N 

J'/J(z} = L J:IJ,.(z} + G'/G(z}. 
n=1 
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But we can differentiate the series for log G(z) term by term, whence the 
expression for f'11(z) follows. If the compact set is away from the zeros 
of In for all n, then the convergence is clearly uniform, as desired. 

XIII, §1. EXERCISES 

1. Let 0 < lal < 1 and let Izl ~ r < 1. Prove the inequality 

l
a+lalzl l+r 

(1 - az)a ~ 1 - r' 

2. (Blaschke Products). Let {a.} be a sequence in the unit disc D such that 
a. "" 0 for all n, and 

<Xl 

L (1 - la.D 
.=1 

converges. Show that the product 

converges uniformly for Izl ~ r < 1, and defines a holomorphic function on 
the unit disc having precisely the zeros a. and no other zeros. Show that 
I f(z) I ~ 1, 

3. Let a. = 1 - l/n2 in the preceding exercise. Prove that 

lim f(x) = 0 if O<x<1. 
x-I 

In fact, prove the estimate for a'_1 < x < a.: 

.-1 .-1 a 
If(x)1 < n x - at < n l' - at < 2e-·f3 • 

k=1 1 - atx k=1 - at 

4. Prove that there exists a bounded analytic function f on the unit disc for 
which each point of the unit circle is a singularity. 

5. (q-Products). Let z = x + iy be a complex variable, and let t = U + iv with u, v 
real, v> 0 be a variable in the upper half-plane H. We define 

and 

Consider the infinite product 

<Xl 

(1 - qz) n (1 - q:qz)(1 - q:/qz)· 
0=1 

(a) Prove that the infinite product is absolutely convergent. 
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(b) Prove that for fixed t, the infinite product defines a holomorphic function 
of z, with zeros at the points 

m + nt, m, n integers. 

We define the second Bernoulli polynomial 

Define the Neron-Green function 

(c) Prove that for fixed t, the function n-+ 2(z, t) is periodic with periods 
1, t. 

XIII, §2. WEIERSTRASS PRODUCTS 

Let J, 9 be entire functions with the same zeros, at which they have the 
same multiplicities. Then fig is an entire function without zeros. We 
first analyze this case. 

Theorem 2.1. Let f be an entire Junction without zeros. Then there 
exists an entire function h such that 

J(z) = eh(z). 

Proof Since C is simply connected, this is merely a restatement of the 
result of Chapter III, §6 where we defined the logarithm log f(z) for any 
function f which has no zeros. 

We see that if f, 9 are two functions with the same zeros and same 
multiplicites, then 

f(z) = g(z)eh(z) 

for some entire function h(z). Conversely, if h(z) is entire, then g(z)eh(z) 
has the same zeros as g, counted with their multiplicities. 

We next try to give a standard form for a function with prescribed 
zeros. Suppose we order these zeros by increasing absolute value, so let 
ZI' Z2' ••• be a sequence of complex numbers =f:. 0, satisfying 

Assume that Iz"l-+ 00 as n -+ 00. If we try to define the function by the 
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product 

00 ( Z) II 1 - - , 
n=l zn 

then we realize immediately that this product may not converge, and so 
we have to insert a convergence factor. We do not want this factor to 
introduce new zeros, so we make it an exponential. We want it to be as 
simple as possible, so we make it the exponential of a polynomial, whose 
degree will depend on the sequence of Zn. Thus we are led to consider 
factors of the form 

The polynomial in the exponent is exactly what is needed to cancel the 
first n terms in the series for the log, so that 

Z2 zn-l 
log En(z) = log(l - z) + Z + - + ... + --

2 n - 1 

00 _Zk 

=I-· 
k=n k 

Lemma 2.2. If JzJ ~ 1/2, then 

Proof. 

Given the sequence {zn}, we pick integers kn such that the series 

converges for all positive real R. Since JZnJ--+ 00 we can find such kn , for 
instance kn = n, so that (R/JznJ)n ~ 1/2n for n ~ no(R). We let 

and 
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Note that 

Theorem 2.3. Given the sequences {Zn}, {kn}, {P n} as above; if the series 

00 (R)k. 
E IZnl 

converges for all positive real R (which is the case if kn = n), then the 
product 

converges uniformly and absolutely on every disc Izi ~ R, and defines an 
entire function with zeros at the points of the sequence {zn}, and no other 
zeros. 

Proof Fix R. Let N be such that 

IZNI ~ 2R < IZN+!I· 
Then for Izi ~ Rand n > N we have Izlznl ~ 1/2, and hence 

Therefore the series 
00 

L log En(z, zn) 
N+! 

converges absolutely and uniformly when Izi ~ R, thereby implying the 
absolute and uniform convergence of the exponentiated product. 

The limiting function obviously has the sequence {zn} as zeros, with 
the multiplicity equal to the number of times that Zn is repeated in the 
sequence. 'We still have to show that the limiting function has no other 
zeros. We fix some radius R and consider only Izi ~ R. Given E there 
exists No such that if N ~ No, then 

by the absolute uniform convergence of the log sequence proved pre­
viously. Hence the product 
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is close to 1. But 

No-1 N 

f(z) = Il E.(z, z.) lim Il En(z, z.) . 
• =1 N~C() No 

The first product on the right has the appropriate zeros in the disc 
Izl ~ R. The limit of the second product on the right is close to 1, and 
hence has no zero. This proves the theorem. 

The sequence {zn} was assumed such that Zn #- 0. Of course an entire 
function may have a zero at 0, and to take this into account, we have to 
form 

This function has the same zeros as the product in Theorem 2.3, with a 
zero of order m at the origin in addition. 

In most of the examples, one can pick kn - 1 equal to a fixed integer, 
which in all the applications we shall find in this book is equal to 1 or 2. 
The chapter on elliptic functions gives examples of order 2. We now give 
an example of order 1. 

Example 2.4. We claim that 

n2 1 

sin2 nz = .~z (z - n)2' 

cos nz 1 (1 1) n cot nz = n -.-- = - + L -- + - , 
sm nz z .,.0 z - n n 

sinnz = nz Il (l-:)e ZI• = nz fI (1- z:) . 
• ,.0 n .=1 n 

Proof Consider the difference 

(1) 1 (1 1) cos nz h(z)=-+ L -+- -n-.-. 
z n,.O Z - n n sm nz 

The function n cot nz has simple poles at the integers, with residue 1, and 
so does the sum on the right-hand side. Hence the difference on the 
right-hand side representing the function h is an entire function, which 
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we must prove is equal to O. We take the derivative 

(2) 
-1 n2 

h'(z) = " 2 + -·-2-· 
n~z (z - n) sm nz 

It is clear that h' is periodic of period 1 (but it would not be so 
immediate that the function h itself is periodic). Next we prove that h' is 
constant. By Liouville's theorem, it suffices to prove that h' is bounded. 
But for Iyl ~ 2 (say), putting z = x + iy, it is immediate that the series 

1 
L 1 . 12 neZ x + zy - n 

with 0 ~ x ~ 1 

is bounded, and in fact the series approaches 0 as Iyl ~ 00. Furthermore, 
substituting z = x + iy directly in the expression 

e i7tz _ e- i7tz 

sinnz=----
2i 

shows that 1/sin2 nz is also bounded in the cut-off strips 0 ~ x ~ 1, 
Iyl ~ 2, and approaches 0 as Iyl ~ 00 (like e- 21t1yl ). Since h' is entire, it 
follows that h' is continuous also for Iyl ~ 2, whence h' is bounded in the 
entire strip, and is therefore bounded on C by periodicity. Hence h' is 
constant by Liouville's theorem. Furthermore, this constant is 0 because 
as we have seen, h'(x + iy) ~ 0 as Iyl ~ 00. 

Having proved h' = 0 we now conclude that h itself is constant. Im­
mediately from the definition (1), one sees that h(O) = 0, whence h = 0 
and therefore the formula for cot nz has been proved. 

Finally we consider sin nz. We let Zn = n where n ranges over the 
integers #- 0 (possibly negative). Let kn = 2, kn - 1 = 1. The series 

00 

L (R/n)2 
n=1 

converges for all R. Hence Theorem 2.3 implies that the function 

J(z) = nz n (1 -~) ez/n 
n;"O n 

is an entire function with zeros of order 1 at the integers. We show that 
it is equal to sin nz. The Weierstrass product has the property stated in 
Lemma 1.2, and therefore taking the logarithmic derivative term by term 
yields 

J'/J(z) = ~ + L (_1_ + ~). 
Z n;"O Z - n n 
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But 

COS TtZ d(sin Ttz)/dz 
cot TtZ = Tt -.-- =. . 

sm TtZ sm TtZ 

Since the logarithmic derivatives of sin TtZ and J(z) are equal, we now 
conclude that there exists a constant C such that 

J(z} = C sin Ttz. 

We divide both sides by TtZ and let z tend to O. We then see that C = 1, 
thereby proving the Weierstrass product expression for sin Ttz. 

Remark. Of course, we gave two version of the Weierstrass product 
for sin Ttz. In the second version, the product is taken for n = 1, 2, '" 
ranging over the positive integers. As a simple exercise, justify the fact 
that we could combine the terms with n positive and the term with - n, 
so that the exponential factor cancels in this second version. 

XIII, §2. EXERCISES 

1. Let f be an entire function, and n a positive integer. Show that there is an 
entire function g such that gn = f if and only if the orders of the zeros of f 
are divisible by n. 

2. Prove that 

[Hint: Use the constant term of the Laurent expansion of n2jsin2 nz at z = 0.] 

3. More generally, show: 
<Xl <Xl 

(a) nz cot nz = 1 - 2 L L z2mjn2m, 
n=l m=l 

(b) Define the Bernoulli numbers B,. by the series 

t t <Xl t k 
-,-=1--+ L Bk -· 
e - 1 2 k=2 k! 

Setting t = 2inz and comparing coefficients, prove: 

If k is an even positive integer, then 

If k = 2, you recover the computation of Exercise 2. 
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4. In the terminology of algebra, the set E of entire functions is a ring, and in 
fact a subring of the ring of all functions; namely E is closed under addition 
and multiplication, and contains the function 1. By an ideal J, we mean a 
subset of E such that if f, 9 E J then I + 9 E J, and if h E E then hI E J. In 
other words, J is closed under multiplication elements of E, and under addi­
tion. If there exists functions II' ... ,I, E J such that all elements of J can be 
expressed in the form Adl + ... + A,I, with Ai E E, then we call II, ... ,I, 
generators of J, and we say that J is finitely generated. Give an example of an 
ideal of E which is not finitely generated. 

For finitely generated ideals, see the exercises of §4. 

XIII, §3. FUNCTIONS OF FINITE ORDER 

It is useful to have a simple criterion when the integers kn in· the 
Weierstrass product can all be taken equal to a fixed integer. Let p be a 
positive real number. 

An entire function f is said to be of order ~ p if, given E > 0, there 
exists a constant C (depending on E) such that 

for all R sufficiently large. 

or equivalently, 
for R .... 00. 

Observe that to verify such an asymptotic inequality, it suffices to verify 
it when R ranges through positive integers N, because we have 

for N sufficiently large. 

A function is said to be of strict order ~ p if the same estimate holds 
without the E, namely 

for R sufficiently large. 

The function is said to be of order p if p is the greatest lower bound of 
those positive numbers which make the above inequality valid, and simi­
larly for the definition of the exact strict order. 

Example. The function eZ has strict order 1 because lezi = eX ~ e1zl• 

Further examples will be given by constructing functions of order p 
using Weierstrass products, as follows. 

Let p > O. Let k be the smallest integer> p. Let {zn} be a sequence 
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of complex numbers =F 0, ordered by increasing absolute value, and such 
that 

converges for every E. As before let 

We call 

the canonical product determined by the sequence {zn} and the number p, 
or canonical product for short. Lemma 2.2 shows that it defines an 
entire function. 

Theorem 3.1. The above canonical product is an entire function of 
order ~ p. 

Proof Let E > 0 be such that p + E < k and let A. = p + E. There 
exists a constant C such that 

This is true for Izi ~ t by Lemma 2.2, and it is even more obvious for 
Izl ~ 1 and t ~ Izl ~ 1. Then 

thus proving the theorem. 

The next results essentially prove the converse of what we just did, by 
showing that all entire functions of order ~ p are essentially Weierstrass 
products of the above type, up to an exponential factor and a power of z. 

Theorem 3.2. Let f be an entire function of strict order ~ p. Let vf{R) 
be the number of zeros of f in the disc of radius R. Then 
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Proof. Dividing f by a power of z if necessary, we may assume 
without loss of generality that f does not vanish at the origin. The 
estimate is an immediate consequence of Jensen's inequality, but corre­
sponds to a coarse form of it, which can be proved ad hoc. Indeed, let 
z l' ... ,z" be the zeros in the circle of radius R, and let 

f(z) 
g(z) = ( ) ( )Zl···Z". 

Z - Zl ••• Z - z" 

Then g is entire, g(O) = ±f(0), and we apply the maximum modulus 
principle to the disc of radius 3R, say. Then the inequality 

I f(O) I ~ II f 113R12" 

falls out, thereby proving Theorem 3.2 directly. 

Theorem 3.3. Let f have strict order ~ p, and let {z,,} be the sequence 
of zeros =F 0 of J, repeated with their multiplicities, and ordered by 
increasing absolute value. For every ~ > 0 the series 

converges 

Proof. We sum by parts with a positive integer R -. 00: 

~ _1_ " ~ v(r + 1) - v(r) 
L.. I IPH ~ L.. pH l"nl;::;;R z" ,=1 r 

v(R) R v(r) 
~ RpH + L p+Hl + constant. 

,=1 r 

Each quotient v(r)/rP is bounded, so the first term is bounded, and the 
sum is bounded by L 11r1+6 which converges. This proves the theorem. 

Theorem 3.4 (Minimum Modulus Theorem). Let f be an entire function 
of order ~ p. Let z 1, Z 2, ... be its sequence of zeros, repeated according 
to their multiplicities. Let s > p. Let U be the complement of the 
closed discs of radius 1/Iz"I' centered at z,,' for Iz,,1 > 1. Then there 
exists ro(E, f) such that for z E U, Izl = r > ro(E, f) we have 

i.e. log I f(z) I > _rP+E• 
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Proof. We first prove the minimum modulus theorem for the canoni­
cal product. Let Izi = r. We write 

The third product over IZnl ~ 2r is seen to have absolute value > C- rPh 

by the usual arguments. Indeed, we have the analogous estimate from 
below instead of Lemma 2.2, namely: 

If Iwl ~ 1/2, then 

This is seen at once from the expansion 

00 wm wk 

-log Ek(W) = L - = -k· + higher terms, 
m=k m 

and the higher terms can be estimated by the geometric series. We put 
w = zlzn to obtain 

Since L 1/I znI P+< converges, we obtain the desired estimate 

for some constant C1 > 0: 

Consider next the second product. There is a constant C2 > 0 such 
that 

k-l 

-IP(z/zn)1 ~ - C2 L Iz/znl j · 

j=O 

If IZnl ~ r, then the term Iz/znl i is bounded and there are 

~ v(2r) ~ rP+< 

such terms. For IZnl < r we can replace j by its highest possible value 
k - 1. Then we obtain 

log I second product I ~ - C2 L ~ - 0(1). I Ik-l 

Iz"1 <r Zn 
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Using summation by parts, we find 

l~tl<r 1~lk-l ~ m~r v(m +m1} ~ v(m) 

v(r) v(m) 
~ k-l + L -k + constant 

r m~r m 

r P+ E 

~ k-l + rP+E-k+l + 0(1). 
r 

[XIII, §3] 

Combining this with the lower bound for log I second product I proves that 

log I second product I ~ _rP+E, 

as desired. 
In the first product we have 

Hence the first product satisfies the lower bound 

L log/I - : / ~ v(2r) - (s + 1) log(2r) 
Iz.I<2r n 

~ - C3r P+E log(2r) (by Theorem 3.2). 

which concludes the proof of the minimum modulus theorem for canoni­
cal products. 

Before proving the full minimum modulus theorem, we give the most 
important application of minimum modulus for Weierstrass products, 
which now allow us to characterize entire functions of finite order. 

Theorem 3.5 (Hadamard). Let J be an entire Junction oj order p, and 
let {zn} be the sequence oj its zeros =I 0. Let k be the smallest integer 
> p. Let P = p,.. Then 

J(z) = eh(zlzm n (1 -~) eP(z/znl, 

where m is the order oj J at 0, and h is a polynomial oj degree ~ p. 

Proof The series L 1/lznls converges for s > p. Hence for every r 
sufficiently large, there exists R with r ~ R ~ 2r such that for all n the 
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circle of radius R does not intersect the disc of radius l/Iznls centered at 
Zn' By the minimum modulus theorem, we get a lower bound for the 
canonical product E(z) on the circle of radius R, which shows that the 
quotient J(z)fE(z)zm is entire of order ~ p. We can apply Corollary 3.3 
of Chapter XII to conclude the proof. 

The full minimum modulus theorem for J is now obvious since the 
exponential term eh(z) obviously satisfies the desired lower bound. 

XIII, §3. EXERCISES 

1. Let f, g be entire of order p. Show that fg is entire of order ~ p, and f + g is 
entire of order ~ p. 

2. Let f, g be entire of order ~ p, and suppose f/ g is entire. Show that f / g is 
entire of order ~ p. 

XIII, §4. MEROMORPHIC FUNCTIONS, 
MITTAG-LEFFLER THEOREM 

Suppose J has a pole at zo, with the power series expansion 

We call 

J(z) = ~~ + ... + ao + al (z - zo) + .... 
(z - zor 

a_m a-I (1) Pr(f, zo) = ( )m + .,. + ( ) = p --
z - Zo z - Zo z - Zo 

the principal part of f at Zo' 

We shall consider the additive analogue to Section §2, which is to 
construct a meromorphic function having given principal parts at a 
sequence of points {zn} which is merely assumed to be discrete. 

Theorem 4.1 (Mittag-Leffler). Let {zn} be a sequence oj distinct com­
plex numbers such that IZnl-" 00. Let {P,,} be polynomials without con­
stant term. Then there exists a meromorphic Junction J whose only 
poles are at {zn} with principal part p,,(l/(z - zn». The most general 
Junction oj this kind can be written in the Jorm 

J(z) = ~ [p" C ~ z) -Qn(z) ] + <p(z), 
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where Qn is some polynomial, and qJ is entire. The series converges 
absolutely and uniformly on any compact set not containing the pples. 

Proof Since a principal part at 0 can always be added a posteriori, we 
assume without loss of generality that Zn ¥: 0 for all n. We expand 

in a power series of Z / Zn at the origin. This power series is a linear 
combination of power series arising from a single term 

with coefficients bj related to binomial coefficients (depending on k). In 
particular, since the radius of convergence of 1/(1 - T)k is I, we have 
the estimate 

for j - 00, 

with the implied constant depending on k. Let dn be a positive integer. It 
follows from these estimates that if we let Qn(T) be the polynomial of 
degree ~ dn - I in the power series expansion of Pn{I/(z - z,,)) at 0, then 
there exists a constant Bn (depending only on n) such that 

Therefore we can pick dn such that if Iz/z" I ~ 1/2, then 

Then the series 

converges absolutely and uniformly for Z in any compact set not contain­
ing the Zn. In fact, given a radius R, let R ~ IZNI, and split the series, 

f [p"(_1 ) -Qn(Z)] + f [p"(_l ) -Q,,(Z)]. 
,,=1 Z - Zn N+1 Z - Z" 
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The first part is a finite sum. If Izl:;£ R12, then the second sum is 
dominated by 2:: 1/2". The finite sum has the desired poles, and the 
infinite sum on the right has no poles in the disc of radius R12. This is 
true for every R, thereby completing the proof of the theorem. 

XIII, §4. EXERCISES 

1. Let 9 be a meromorphic function on C, with poles of order at most one, 
and integral residues. Show that there exists a meromorphic function I such that 
I'll = g. 

2. Given entire functions I, 9 without common zeros, prove that there exist entire 
functions A, B such that AI + Bg = 1. [Hint: By Mittag-Leffler, there exists a 
meromorphic function M whose principal parts occur only at the zeros of g, 
and such that the principal part Pr(M, z.) at a zero z. of 9 is the same as 
Pr(l/lg, z.), so M - llig is holomorphic at Zn' Let A = Mg, and take it from 
there.] 

3. Let I, 9 be entire functions. 
(a) Show that there exists an entire function h and entire functions 11' gl 

such that 1= hIl' 9 = hg1, and 11, gl have no zeros in common. 
(b) Show that there exist entire functions A, B such that AI + Bg = h. 

4. Let 11' ... ,fm be a finite number of entire functions, and let J be the set of all 
combinations Adl + ... + AmIm, where Ai are entire functions. Show that 
there exists a single entire function I such that J consists of all multiples of f, 
that is, J consists of all entire functions AI, where A is entire. In the language 
of rings, this means that every finitely generated ideal in the ring of entire 
functions is principal. 

5. Let {ad, {zd be sequences of non-zero complex numbers, with IZkl -t 00 and 
IZkl ~ IZk+l1 for all k. Let p be a real number >0 such that 

Define 

(a) Prove that A. = o(lznIP) for n -t 00, meaning the lim An/lznlP = O. 
(b) Let d be the smallest integer ~ p. Let Gd be the polynomial 

d-l 

Gd(Z) = :~::>n. 
n=O 

Define 
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Prove that the series 
00 

F(z) = LF(z, Zk) 
k=1 

converges absolutely and unifonnly on every compact set not containing 
any Zk. 

(c) Let S be a subset of C at finite non·zero distance from all Zk, that is, there 
exists c > 0 such that Iz - Zk I ~ c for all Z E S and all k. Show that 

for Z E S, Izl-+ 00. 

(d) Let U be the complement of the union of all discs D(Zk, 15k), centered at Zk, 
of radius 15k = l/Izkld. Show that 

F(z) = O(lzli>+d) for Z E U, Izl-+ 00. 

Note: For part (d), you will probably need part (a), but for (c), you won't. 



CHAPTER XIV 

Elliptic Functions 

In this chapter we give the classical example of entire and meromorphic 
functions of order 2. The theory illustrates most of the theorems proved 
so far in the book. A self-contained "analytic" continuation of the topics 
discussed in this chapter can be found in Chapters 3, 4, and 18 of my 
book on Elliptic Functions [La 73]. 

XIV, §1. THE LIOUVILLE THEOREMS 

Let WI' W2 be two complex numbers which are linearly independent over 
the real numbers. This means that there is no relation 

with a, b E R not both O. 

By the lattice generated by WI' W 2 we mean the set of all complex 
numbers of the form 

with m, n E Z. 

Thus a lattice looks like the set of points of intersections in the lines 
of the following diagram. We shall use the notation L = [w 1 , W2]' 

Observe that if w, w' E L, then W + w', and nw E L for all integers n. 
One may say that L is closed under addition and under multiplication by 
integers. Those who know the definition of a group will therefore see 
that a lattice is a subgroup of C. Furthermore, since C has dimension 2 

391 
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Figure 1 

as a vector space over R, we see also that WI' w 2 form a basis of C 
over R. 

Let z, WE C. We define z == W mod L to mean that z - WE L. We let 
the reader verify that the relation z == W mod L, called congruence modulo 
L, is an equivalence relation, that is: 

z == zmodL; 

if z == wand W == u then z == u; 

if z == W then W == z. 

The set of equivalence classes mod L is denoted by CIL, which we read 
C modulo L. Since congruence is an equivalence relation, we may add 
congruence classes. Also observe that if z == W mod Land n is an integer, 
then nz == nw mod L. If A is an arbitrary complex number # 0, then in 
general it is of course not true that AL c L, and even less true that 
AL = L. However, the reader can verify that if z == w mod L, then AL is 
also a lattice, and AZ == AW mod AL. 

If L = [W1' w2 ] as above, and ex E C, we call the set consisting of all 
points 

a fundamental parallelogram for the lattice (with respect to the given 
basis). We could also take the values 0 ~ tj < 1 to define a fundamental 
parallelogram. Let P be the fundamental parallelogram defined in this 
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latter fashion. Then one has: 

Given Z E C, there exists a unique element Zo E P such that Z == Zo mod L. 

Proof. First let rJ. = o. Write z = aWl + bW2 with a, bE R. Let m 
be the largest integer ~ a, and let n be the largest integer ~ b. Let 
t1 = a - m and t2 = b - n. Then 

Observe that 0 ~ ti < 1, so the congruence class of z mod L has a repre­
sentative in the fundamental parallelogram P. On the other hand, sup­
pose that 

with 0 ~ Si < 1. 

Then lSi - til < 1, but (Sl - t 1 )W 1 + (S2 - t2)W2 == 0 mod 1:-, so Si = ti for 
i = 1, 2. Thus Zo = t 1w 1 + t 2 w 2 is the unique element of P which is 
== z mod L. 

If rJ. -# 0, then we apply the above arguments to z - rJ., to get both the 
existence and uniqueness of an element Zo in a fundamental parallelo­
gram which is == z mod L. 

Since we assumed that w1 , W 2 are not real scalar multiples of each 
other (because they are linearly independent over R), it follows that 
w1/w2 or w2/w1 has a positive imaginary part. After changing the order 
in which we consider W1 and W2, we can achieve that the imaginary part 
of WdW2 is positive. 

Unless otherwise specified, we shall assume that Im(w 1 IW2) > 0, i.e. 
that WdW2 lies in the upper half plane H = {x + iy, y > O}. An elliptic 
function f (with respect to L) is a meromorphic function on C which is 
L-periodic, that is, 

f(z + w) = f(z) 

for all z E C and WE L. Note that f is periodic if and only if 

f(z + wd = f(z) = f(z + w2 )· 

An elliptic function which is entire (i.e. without poles) must be con­
stant. Indeed, the function on a fundamental parallelogram is continuous 
and so bounded, and by periodicity it follows that the function is bounded 
on all of C, whence constant by Liouville's theorem. 

Theorem 1.1. Let P be a fundamental parallelogram for L, and assume 
that the elliptic function f has no poles on its boundary 8P. Then the 
sum of the residues of f in P is O. 
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Proof. We have 

2ni L Res f = f f(z) dz = 0, 
ap 

this last equality being valid because of the periodicity, so the integrals 
on opposite sides cancel each other (Fig. 2). 

Figure 2 

Corollary. An elliptic function has at least two poles (counting multi­
plicities) in CIL. 

Theorem 1.2. Let P be a fundamental parallelogram, and assume that 
the elliptic function f has no zero or pole on its boundary. Let {ail be 
the singular points (zeros and poles) of f inside P, and let f have order 
mj at aj • Then 

Proof Observe that f elliptic implies that I' and I'lf are elliptic. We 
then obtain 

o = f f'lf(z) dz = 2nj=1 L Residues = 2nj=1 L mj, 
ap 

thus proving our assertion. 

Theorem 1.3. Hypotheses being as in Theorem 1.2, we have 

Proof This time, we take the integral 
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because 

On the other hand we compute the integral over the boundary of the 
parallelogram by taking it for two opposite sides at a time. One pair of 
such integrals is equal to 

f
ll+ ro1 f'(z) fa+rol+ro2 f'(z) 

z f( ) dz - z f( ) dz. 
a Z a+ro2 Z 

We change variables in the second integral, letting u = z - w2 • Both 
integrals are then taken from (X + w1 , and after a cancellation, we get the 
value 

for some integer k. The integral over the opposite pair of sides is done 
in the same way, and our theorem is proved. 

XIV, §2. THE WEIERSTRASS FUNCTION 

We now prove the existence of elliptic functions by writing some analytic 
expression, namely the Weierstrass function 

where the sum is taken over the set of all non-zero periods, denoted by 
L*. We have to show that this series converges uniformly on compact 
sets not including the lattice points. For bounded z, staying away from 
the lattice points, the expression in the brackets has the order of magni­
tude of 1/lwI3. Hence it suffices to prove: 

1 
Lemma 2.1. If A. > 2, then L -I I" converges. 

roEL* W 

Proof Let An be the annulus consisting of all z E C such that 

n -1 ~ Izl < n. 

The partial sum for Iwl < N can be decomposed into a sum for wEAn' 
and then a sum for 1 ~ n ~ N. We claim: 
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There exists a number C > 0 such that the number of lattice points in 
An is ~ Cn. 

Assuming this claim for a moment, we obtain 

which converges for A. > 2. 
Now to prove the claim, let d be a positive integer such that the 

diameter of a fundamental parallelogram is ~ d. Then An is contained in 
the annulus of complex numbers z such that 

n - 1 - d ~ Izl ~ n + d. 

By direct computation, the area of this annulus is C1 n for some constant 
C1 (depending on d). Let kn be the number of fundamental parallelo­
grams of the lattice which intersect An. The number of lattice points in 
An is certainly bounded by kn. But if P is a fundamental parallelogram, 
then 

kn(area of P) ~ area of the annulus{n - 1 - d ~ Izl ~ n + d} ~ C1n. 

This proves ,that kn ~ Cn, with C = Cd(area of P), and thus proves the 
claim. 

The series expression for tJ shows that it is merom orphic, with a 
double pole at each lattice point, and no other pole. It is clear that tJ is 
even, that is, 

tJ(z) = tJ( -z) 

(summing over the lattice points is the same as summing over their 
negatives). We get tJ' by differentiating term by term, 

tJ'(z) = -2 L ( 1 )3' 
wEL Z - 0) 

the sum being taken for all 0) E L. Note that tJ' is clearly periodic, and 
is odd, that is 

tJ'(-z) = -tJ'(z). 

From its periodicity, we conclude that there is a constant C such that 
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Let z = -wd2 (not a pole of go). We get 

and since go is even, it follows that C = O. Hence go is itself periodic, 
something which we could not see immediately from its series expansion. 

Theorem 2.2. Let f be an elliptic function periodic with respect to L. 
Then f can be expressed as a rational function of go and go'. 

Proof. If f is elliptic, we can write f as a sum of an even and an odd 
elliptic function, namely 

f( ) = f(z) + f( -z) f(z) - f( -z) 
z 2 + 2 . 

If f is odd, then the product f go' is even, so it will suffice to prove that if 
f is even, then f is a rational function of gJ. 

Suppose that f is even and has a zero of order m at some point u. Then 
clearly f also has a zero of the same order at -u because 

Similarly for poles. 

If u == - u (mod L), then the above assertion holds in the strong sense, 
namely f has a zero (or pole) of even order at u. 

Proof. First note that u == - u (mod L) is equivalent to 

2u == ° (mod L). 

In elL there are exactly four points with this property, represented by 

in a fundamental parallelogram. If f is even, then f' is odd, that is, 

f'(u) = -f'( -u). 

Since u == -u (mod L) and f' is periodic, it follows that f'(u) = 0, so that 
f has a zero of order at least 2 at u. If u =1= ° (mod L), then the above 
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argument shows that the function 

g(z) = 8O(Z) - 8O(U) 

has a zero of order at least 2 (hence exactly 2 by Theorem 1.2 and the 
fact that 80 has only one pole of order 2 on C mod L). Then fig is even, 
elliptic, holomorphic at u. If f(u)/g(u) #- 0, then ordJ = 2. If f(u)/g(u) = 

0, then fig again has a zero of order at least 2 at u and we can repeat 
the argument. If u == 0 (mod L) we use g = II fJ and argue similarly, thus 
proving that f has a zero of even order at u. 

Now let Uj (i = 1, ... ,r) be a family of points containing one represen­
tative from each class (u, - u) (mod L) where f has a zero or pole, other 
than the class of L itself. Let 

mj = ordu/ 

m· = -210rd f , "i 

if 2u j ¥= 0 (mod L), 

if 2u j == 0 (mod L). 

Our previous remarks show that for a E C, a ¥= 0 (mod L), the function 
8O(z) - 8O(a) has a zero of order 2 at a if and only if 2a == 0 (mod L), and 
has distinct zeros of order 1 at a and - a otherwise. Hence for all z ¥= 0 
(mod L) the function 

r n [80(z) - 8O(uj )]mi 

i=1 

has the same order at z as f This is also true at the origin because of 
Theorem 1.2 applied to f and the above product. The quotient of the 
above product by f is then an elliptic function without zero or pole, 
hence a constant, thereby proving Theorem 2.2. 

Next, we obtain the power series development of fJ and 80' at the 
origin, from which we shall get the algebraic relation holding between 
these two functions. We do this by brute force. 

where 

8O(Z) = - + '" - 1 + - + - + '" - -1 [ 1 ( Z (z)2 )2 1 ] 
Z2 w~* W 2 W W W 2 

1 00 (z)m 1 = 2" + L L (m + 1) - 1: z weL* m=l W W 

1 00 

= 2" + L cmzm, 
Z m=l 

m+ 1 
Cm = L ---.n:t=2. 

w,.o W 

Note that Cm = 0 if m is odd. 
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Using the notation 

we get the expansion 

1 00 

kJ(z) = 2" + L (2n + 1)s2n+2(L)z2n, 
Z n=l 

from which we write down the first few terms explicitly: 

and differentiating term by term, 

Proof We expand out the function 

at the origin, paying attention only to the polar term and the constant 
term. This is easily done, and one sees that there is enough cancellation 
so that these terms are 0, in other words, <p(z) is an elliptic function 
without poles, and with a zero at the origin. Hence <p is identically zero, 
thereby proving our theorem. 

The preceding theorem shows that the points (kJ(z), kJ'(z)) lie on the 
curve defined by the equation 

The cubic polynomial on the right-hand side has a discriminant given by 

fl = g~ - 27g~. 

We shall see in a moment that this discriminant does not vanish. 
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Let 

i = 1, 2, 3, 

h(z) = p(z) - ei 

has a zero at w;/2, which is of even order so that p'(w;/2) = 0 for 
i = 1, 2, 3, by previous remarks. Comparing zeros and poles, we con­
clude that 

Thus e 1, e2, e3 are the roots of 4x3 - g2X - g3. Furthermore, p takes 
on the value ei with multiplicity 2 and has only one pole of order 
2 mod L, so that ei =1= ej for i =1= j. This means that the three roots of the 
cubic polynomial are distinct, and therefore 

d = g~ - 27 g~ =1= O. 

XIV, §3. THE ADDITION THE.OREM 

Given complex numbers g2' g3 such that g~ - 27g~ =1= 0, one can ask 
whether there exists a lattice for which these are the invariants associated 
to the lattice as in the preceding section. The answer is yes. For the 
moment, we consider the case when g2' g3 are given as in the preceding 
section, that is, g 2 = 60s4 and g 3 = 140s6 · 

We have seen that the map 

zr-+(p(z), p'(z) 

parametrizes points on the cubic curve defined by the equation 

If z ¢ L then the image of z under this map is a point of the curve, and if 
z E L, then we can define its image to be a "point at infinity". If Zl ::= Z2 

(mod L) then Zl and Z2 have the same image under this map. 
Let 

and 

be two points on the curve. Let U3 = u1 + U2. Let 
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We also write 

Then we shall express X3, Y3 as rational functions of (Xl' yd and (X2' Y2)' 
We shall see that P3 is obtained by taking the line through Pl , P2 , 

intersecting it with the curve, and reflecting the point of intersection 
through the x-axis, as shown on Fig. 3. 

Figure 3 

Select Ul , U2 E C and ¢ L, and assume Ul =1= U2 (mod L). Let a, b be 
complex numbers such that 

,f.)'(U l ) = a,f.J(u l ) + b, 

,f.J'(U2) = a,f.J(u2) + b, 

in other words, Y = ax + b is the line through (,f.J(ud, ,f.)'(ud) and 
(,f.J(u2), ,f.J'(u2»). Then 

,f.J'(Z) - (a,f.J(z) + b) 

has a pole of order 3 at 0, whence it has three zeros, counting multi­
plicities, and two of these are at Ul and u2 • If, say, Ul had multiplicity 2, 
then by Theorem 1.3 we would have 

2u l + U2 == 0 (mod L). 

If we fix Ul , this can hold for only one value of U2 mod L. Let us 
assume that we do not deal with this value. Then both Ul' u2 have 
multiplicity 1, and the third zero lies at 
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again by Theorem 1.3. So we also get 

The equation 

has three roots, counting multiplicities. They are p(ud, P(U2)' P(U3)' 
and the left-hand side factors as 

Comparing the coefficient of x2 yields 

But from our original equations for a and b, we have 

Therefore from 

we get 

or in algebraic terms, 

Fixing u1 , the above formula is true for all but a finite number of 
U2 == U1 (mod L), whence for all U2 :f= U1 (mod L) by analytic continuation. 

For U1 == U2 (mod L) we take the limit as U1 --+ U2 and get 

1 (p"(U»)2 
.f<J(2u) = - 2.f<J(u) + 4 p'(u) . 

These give us the desired algebraic addition formulas. Note that the 
formulas involve only g2' g3 as coefficients in the rational functions. 
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XIV, §4. THE SIGMA AND ZETA FUNCTIONS 

Both in number theory and analysis one factorizes elements into prime 
powers. In analysis, this means that a function gets factored into an 
infinite product corresponding to its zeros and poles. 

In this chapter, we are concerned with the analytic expressions. 
Our first task is to give a universal gadget allowing us to factorize an 

elliptic function, with a numerator and denominator which are entire 
functions, and are as periodic as possible. 

One defines a theta function (on C) with respect to a lattice L, to be 
an entire function 0 satisfying the condition 

O(z + u) = O(z)e21t;[I(z.u)+c(un, ZE C, uEL, 

where I is C-linear in z, R-linear in u, and c(u) is some function depending 
only on u. We shall construct a theta function. 

We write down the Weierstrass sigma function, which has zeros of 
order 1 at all lattice points, by the Weierstrass product 

a(z) = z n (1 -~) ez/w +1/2(z/w)2. 

WEL· W 

Here L * means the lattice from which 0 is deleted, i.e. we are taking the 
product over the non-zero periods. We note that a also depends on L, 
and so we write a(z, L), which is homogeneous of degree 1, namely 

I a(Az, AL) = Aa(z, L), I A E C, A =F O. 

Taking the logarithmic derivative formally yields the Weierstrass zeta 
function 

a'(z) 1 [1 1 z ] ,(z, L) = ,(z) = - = - + L --+ - + 2 . 
a(z) z WEL· z - w w w 

It is clear that the sum on the right converges absolutely and uniformly 
for z in a compact set not containing any lattice point, and hence inte­
grating and exponentiating shows that the infinite product for a(z) also 
converges absolutely and uniformly in such a region. Differentiating ,(z) 
term by term shows that 

"(z) = - g;J(z) = -- - '" - - . 1 [1 1 ] 
Z2 w~. (z - W)2 w2 

Also from the product and sum expressions, we see at once that both 
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u and C are odd functions, that is 

u( - z) = - u(z) and C( -z) = -C(z). 

The series defining C(z, L) shows that it is homogeneous of degree -1, 
that is, 

1 
C(Az, AL) = ~:,<z, L). 

Differentiating the function C(z + w) - C(z) for any WE L yields 0 be­
cause the p-function is periodic. Hence there is a constant '7(w) (some­
times written '7",) such that 

C(z + w) = C(z) + '7(w). 

It is clear that '7(w) is Z-linear in w. If L = [WI' W2], then one uses the 
notation 

and 

As with C, the form '7(w) satisfies the homogeneity relation of degree -1, 
as one verifies directly from the similar relation for C. Observe that the 
lattice should strictly be in the notation, so that in full, the relations 
should read: 

C(z + w, L) = C(z, L) + '7(w, L), 

1 
'7(Aw, AL) = l'7(w, L). 

Theorem 4.1. The function u is a theta junction, and in fact 

where 

Proof. We have 

u(z + w) = I/I(w)e,,(ro)(z+rof2), 
u(z) 

I/I(W) = 1 

I/I(w) = -1 

if w/2 E L, 

if w/2 ¢ L. 

d u(z + w) 
dz log u(z) = '7(w). 
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Hence 
u(z + w) 

log u(z) = 1/(w)z + c(w), 

whence exponentiating yields 

u(z + w) = u(z)e,,(wlz+c(wl, 

which shows that u is a theta function. We write the quotient as in the 
statement of the theorem, thereby defining 1/1 (w), and it is then easy to 
determine I/I(w) as follows. 

Suppose that w/2 is not a period. Set z = - w/2 in the above relation. 
We see at once that I/I(w) = -1 because u is odd. On the other hand, 
consider 

u(z + 2w) 
u(z) 

u(z + 2w) u(z + w) 
u(z + w) u(z) . 

Using the functional equation twice and comparing the two sides, we see 
that I/I(2w) = I/I(W)2. In particular, if w/2 E L, then 

Dividing by 2 until we get some element of the lattice which is not equal 
to twice a period, we conclude at once that I/I(w) = (_1)2n = 1. 

The numbers 1/1 and 1/2 are called basic quasi periods of C. 

Legendre Relation. We have 

Proof. We integrate around a fundamental parallelogram P, just as we 
did for the .f.J-function: 

Q) +W) +W2 

Figure 4 
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The integral is equal to 

f (z) dz = 2ni L residues of ( 
ap 

= 2ni 

[XIV, §4] 

because ( has residue 1 at 0 and no other pole in a fundamental parallel­
ogram containing O. On the other hand, using the quasi periodicity, the 
integrals over opposite sides combine to give 

as desired. 

Next, we show how the sigma function can be used to factorize elliptic 
functions. We know that the sum of the zeros and poles of an elliptic 
function must be congruent to zero modulo the lattice. Selecting suitable 
representatives of these zeros and poles, we can always make the sum 
equal to O. 

For any a E C we have 

u(z + a + co) _ ./,( ) ,,«(J)(Z+ (J)/2) ,,«(J))a 
( ) -'I'coe e. 

uz+a 

Observe how the term '1(co)a occurs linearly in the exponent. It follows 
that if {ail, {bJ (i = 1, ... ,n) are families of complex numbers such that 

then the function 

n u(z - ail 
n u(z - bJ 

is periodic with respect to our lattice, and is therefore an elliptic function. 
Conversely, any elliptic function can be so factored into a numerator and 
denominator involving the sigma function. We write down explicitly the 
special case with the go-function. 

Theorem 4.2. For any a E C not in L, we have 

go(z) - go(a) = 
u(z + a)u(z - a) 

u2 (z)u2 (a) 



[XIV, §4] THE SIGMA AND ZETA FUNCTIONS 407 

Proof. The function f<J(z) - f<J(a) has zeros at a and -a, and has a 
double pole at O. Hence 

( ) _ () = C q(z + a)q(z - a) 
f<J z f<J a q2(Z) 

for some constant C. Multiply by Z2 and let z -+ O. Then q2(Z)/Z2 tends 
to 1 and Z2 f<J(z) tends to 1. Hence we get the value C = -1/q2(a), thus 
proving our theorem. 



CHAPTER XV 

The Gamma and 
Zeta Functions 

We now come to a situation where the natural way to define a function 
is not through a power series but through an integral depending on a 
parameter. We shall give a natural condition when we can differentiate 
under the integral sign, and we can then use Goursat's theorem to con­
clude that the holomorphic function so defined is analytic. 

We shall be integrating over intervals. For concreteness let us assume 
that we integrate on [0, ex) [. A function f on this interval is said to be 
absolutely integrable if 

tx> I f(t) I dt 

exists. If the function is continuous, the integral is of course defined as 
the limit 

lim fB I f(t) I dt. 
B-+oo 0 

We shall also deal with integrals depending on a parameter. This 
means f is a function of two variables, f(t, z), where z lies in some 
domain U in the complex numbers. The integral 

foo f(t, z) dt = lim fB f(t, z) dt 
o B-+oo 0 

is said to be uniformly convergent for Z E U if, given 10, there exists Bo 
such that if Bo < B} < B2, then 

408 
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The integral is absolutely and uniformly convergent for Z E U if this same 
condition holds with f(t, z) replaced by the absolute value If(t, z)l. 

XV, §1. THE DIFFERENTIATION LEMMA 

Lemma 1.1. Let I be an interval of real numbers, possibly infinite. Let 
U be an open set of complex numbers. Let f = f(t, z) be a continuous 
function on I x U. Assume: 

(i) For each compact subset K of U the integral 

1 f(t, z) dt 

is uniformly convergent for z E K. 

(ii) For each t the function z H f(t, z) is analytic. Let 

F(z) = 1 f(t, z) dt. 

Then F is analytic on U, Dzf(t, z) satisfies the same hypotheses as 
f, and 

F'(z) = 1 Dzf(t, z) dt. 

Proof Let {In} be a sequence of finite closed intervals, increasing to 1. 
Let D be a disc in the z-plane whose closure is contained in U. Let y be 
the circle bounding D. Then for each z in D we have 

f(t, z) = ~ f f(t, 0 dC, 
2m y C - z 

so 

F(z) = ~ f f f(t, C) dC dt. 
2m I y C - z 

If y has radius R, center zo, consider only z such that Iz - zol ~ R12. 
Then 

Ic ~ zl ~ 21R. 

For each n we can define 

F,,(z) = ~ f f f(t, 0 dC dt. 
2m In y C - z 
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In view of the restriction on z above, we may interchange the integrals 
and get 

F,,(z) = 2~i 1 C ~ z [In J(t, C) dtJ dC. 

Then Fn is analytic by Theorem 7.7 of Chapter III. By hypothesis, the 
integrals over I" converge uniformly to the integral over 1. Hence F is 
analytic, being the uniform limit of the functions F" for Iz - zol ~ R/2. 
On the other hand, F:(z) is obtained by differentiating under the integral 
sign in the usual way, and converges uniformly to F'(z). However 

F:(z) = 21 . r Dd(t, z) dt. 
1U lIn 

This proves the theorem. 

Observe that the hypotheses under which the theorem is proved are 
slightly weaker than in the real case, because of the peculiar nature 
of complex differentiable functions, whose derivative can be expressed as 
an integral. For the differentiation lemma see the Appendix of Chapter 
VIII. 

Example. Let J be a continuous function with compact support on 
the real numbers. (Compact support means that the function is equal to 0 
outside a compact set.) Consider the integral 

F(z) = f: f(t)e il% dt. 

Let Yo < Yl be real numbers. The integrand for 

Yo < 1m z < Yl 

is of the form 

and we have leil>:l = 1, whereas e-ty lies between e-tY1 and e-Iyo• Since 
J has compact support, the values of t for which J(t) ~ 0 are bounded. 
Hence eil% is bounded uniformly for Yo < 1m z < Yl' Thus the integral 
converges absolutely and uniformly for z satisfying these inequalities. 

Differentiating under the integral sign yields the integrand 
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and again the function itf(t) has compact support. Thus the same argu­
ment can be applied. In fact we have the uniform bound 

which is independent of z in the given regions. Therefore we obtain 

F'(z) = f: itf(t)e itz dt for Yo < 1m z < Yl. 

As this is true for every choice of Yo, y! we conclude that in fact F is 
an entire function. 

The similar result for continuity rather than differentiability from 
Theorem A2 of the Appendix of Chapter VIII can be used. We give here 
another version which will suffice in what follows. 

Lemma 1.2 (Continuity Lemma). Let I be an interval, U an open set in 
the complex numbers, and f(t, z) a continuous function on I x U. As­
sume that there exists a function cp on I which is absolutely integrable 
on I, and such that for all z E U we have 

If(t, z)1 ~ q>(t). 

Then the function F defined by 

F(z) = f f(t, z) dt 

is continuous. 

XV, §1. EXERCISES 

1. For Re(z) > 0, prove that 

[Hint: Show that the derivatives of both sides are equaL] 

2. Let f be analytic on the closed unit disc. Let 

1(z) -= f 1 f(t) de. 
o t + z 
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Show that I(z) + I( - z) log z is analytic for z in some neighborhood of O. 
[Hint: First consider z real positive, or if you wish, z with positive real part. 
Use the power series expansion I(t) = L clItt , and write t = t + z - z. Collect 
terms. The part '" i1 dt L CI«-z'f -

1<=0 0 t + z 

will give rise to the log term.] 

The Laplace Transform 

3. Let I be a continuous function with compact support on the interval [0,00[. 
Show that the function II given by 

L/(z) = 1'" I(t)e- zt dt 

is entire. 

4. Let I be a continuous function on [0, 00[, and assume that there is constant 
C > 1 such that 

I/(t)1 ~ C' for t ~ 00, 

i.e. there exist constants A, B such that I/(t)l ~ AeBl for all t sufficiently large. 
(a) Prove that the function 

Lf(z) =; So'" f(t)e-zt dt 

is analytic in some half plane Re z ~ (1 for some real number (1. In fact, 
the integral converges absolutely for some (1. Either such (J have no lower 
bound, in which case II is entire. or the greatest lower bound (10 is called 
the allscissa of COMerpDCe of die iategra~ and the function Lf is analytic 
for Re(z) > (10' The integral converges absolutely for 

Re z ~ (10 +t:, 

for every t: > O. 
The function l/ is called the Laplace trusfOl'Dl of f. 

(b) Assuming that I is of class C 1, prove by integrating by parts that 

L(r)(z) = zl/(z) - /(0). 

Find the Laplace transform of the following functions. and the abscissa of 
convergence of the integral defining the transform. In each case. a is a real 
number 'i= O. 

5. I(t) =; e-" 

7. f(t) = sin at 

6. f(t) = cos at 

8. f(t) = (e' + e-')/2 
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9. Suppose that f is periodic with period a > 0, that is f(t + a) ;:: f(t) for all 
t ;S;; O. Show that 

Lf( ) = fo e-%'f(t) dt for Re z > O. 
z 1 _ e a. 

XV, §2. THE GAMMA FUNCTION 

There are two natural approaches to the gamma function. One is via the 
Weierstrass product, and the other is via a Mellin transform integral. 
Certain properties are clear from one definition but not from the other, 
and there is also the problem of proving that the two definitions give the 
same function. There are many variations for achieving all this. I select 
one of them, starting with the Weierstrass product and its consequences, 
which constitute the more algebraic properties of the gamma function. 

Weierstrass Product 

Let y be the Euler constant, that is 

y = lim (1 + ~ + ... + ~ -log n). 
n-+oo 2 n 

By the general theory of Weierstrass products, there is an entire function 
g(z) whose zeros are the negative integers and 0, having the Weierstrass 
product 

We define the gamma function to be r(z) = 1/g(z), so that 

r 1. 

Thus the gamma function has poles of order 1 at the negative integers. 
We record at once its logarithmic derivative 

r 2. -r'/r(z) = g'/g(z) = ~ + y + f (_1_ - ~). 
z "=1 Z + n n 

The Euler constant is the unique constant such that the Weierstrass 
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product for g satisfies the property 

1 
g(z + 1) = -g(z), 

z 

and therefore the gamma function satisfies the property 

r 3. I r(z + 1) = zr(z). I 

To prove this, let gl(Z) = z-lg(Z), so that gl(O) = 1. Taking logarith­
mic derivatives, we find immediately from r 2 that 

1 ~ (1 1) g'/g(z + 1) = --1 +}' + L 1 --
z + n=l Z + n + n 

= gUgl(Z). 

Indeed, the term with l/z disappears in the Mittag-Leffler expansion of 
g;/gl, and looking at the partial sums of this expansion, we find that 
they differ from the partial sums of g'/g(z + 1) by a term l/(z + n + 1) 
which tends to 0 as n tends to 00. Therefore there is a constant C such 
that 

g(z + 1) = Cg1(z). 

Evaluating at z = 0 yields g(l) = Cg 1 (0) = C, so 

Hence 

log C = }' + f [lOg (1 + !) -!] 
n=l n n 

= }' + f [IOg(n + 1) -log n -!] 
n=l n 

=0, 

as one sees by looking at the partial sums and using the definition 

}' = lim (1 + ! + ... + ! - log n). 
n .... ~ 2 n 

Hence C = 1 and we are done. In addition we have also proved that for 
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positive integers n we have 

r 4. nn) = (n - I)! and nl) = 1. 

Next comes the identity 

r 5. 
11: 

nz)r(1 - z) = -.-. 
SIll 1I:Z 

To prove this, we note that from the Weierstrass product and Example 
2.4 of Chapter X, -

1 Cf) (Z2)-1 11: 
nz)n -z) = -2 n 1 - 2 = -. . 

Z n~l n z SIll 1I:Z 

Using r 3 the formula r 5 drops out. . 
Putting z = 1/2 and noting that nx) is positive when x is positive, we 

get nl/2)2 = 11:, and so 

rm=Jn. 
From r 5 we shall also obtain the residue of r at negative integers, 
namely: 

r 6. The residue of r at z = - n for n = 0, 1, 2, ... is ( -1 r/n !. 

To see this, we multiply both sides of r 5 by (z + n) and use the addition 
formula for the sine, to find 

(z + n)nz) = .1I:(z + n) (-It 
SIll 1I:(z + n) nl - z) 

We can evaluate the right side at z = -n to be (-1 r In!, which therefore 
gives the residue from the left side, as desired. Several other proofs will be 
given subsequently. 

Next we compute an alternate version of the Weierstrass product. 
Define 

z(z+l)···(z+n) 
gn(z) = , . n.nZ 

From the definition of gn(z), we get directly 

n 
gn(z) = Z II (( 1 + ~)e-Z/k )eZ(!+(i/2l+.+(i/nl-10gnl. 

k=l k 
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This product is a partial product for the Weierstrass product of Ijr. 
Thus we obtain the limiting value for the gamma function, that r(z) = 
lim Ijgn(z), or in other words, 

n ..... oo 

r7. 
, z 

r(z)=lim n.n 
n->oo z(z + 1) ... (z + n) 

uniformly for z in a compact set not containing 0 or a negative integer. 

The Gauss Multiplication Formula (Distribution Relation) 

Define the entire function 

Then 

rs. 

v'2ii ~ 
D(z) = r(z) = v2ng(z). 

For example, if N = 2 we find the duplication formula 

which allows us to express values of the gamma function at half integers 
in terms of gamma values at integers. 

To prove the general formula, the main idea is that the left side and 
right side have the same zeros and poles, so the quotient is an exponen­
tial function of order I, so of type ABz, and one has to determine A and 
B. Of course, there is a computational part to the proof, which we carry 
out. So we let 

N-l n r(z + j/N) 
j=O = AB% = h(z), say. 

r(Nz) 

By using r(z + 1) = zr(z) repeatedly, we find 

h(z + 1) = rt ~+ j/~ h(z) = N-Nh(z). 
j=O Z + ) 
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But from the definition of h, we also have h(z + 1) = Bh(z1 so 

There remains to determine A. We can evaluate r(z);r(Nz) at z = 0 to 
find N. Hence from the definition of h(z) = AB% at z = 0, we get 

N-l 

A = h(O) = N n r(j/N). 
j=l 

In particular, A> 0, and it suffices to compute A2. By r 4 we find: 

( A)2 N-l 
- = n r(j/N)r(1 - j/N) 
N j=l 

N-l N-l 
= nN- 1 n (sin nj/Nfl = (2nif-l n (e itej/N - e-itej/Nfl. 

j=l j=l 

But 
N-l N-l N-l n (e itej/N - e-itej/N) = n eitei/N n (1 - e-2teii/N) = iN-IN, 
j=l j=l j=l 

by using some simple algebraic identities. Indeed, we use 

N~l 

L j = (N - I)N/2, 
j=l 

and we note that e-2teij/N (j = 1, ... ,N - 1) ranges over all N-th roots of 
unity "# 1. From the factorization 

n (X - C) = X N - 1 
eN=l 

we find 

Substituting 1 for X on the right-hand side yields N. Then we note that 
iN- 1 cancels, so (A/N)2 = (2n)N-1/N. Then formula rs drops out. 

Remark. We formulated r S with the normalized function D so that 
the powers of n disappeared, for three reasons. First, the number of 
factors J2ic which occur is precisely the number of factors in the prod­
uct. Hence such factors might as well be incorporated from the start into 
the formula. 
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The second reason is that if one lets 

00 1 
,(s, z) = L (-+ )s 

0=0 z n 

and if we let ns, z) denote the derivative with respect to s, then one has 
the Lerch formula 

D(z) = exp( -nO, z»). 

Thus the normalization with D(z) gets rid of all extra constants in this 
Lerch formula. See Theorem 3.2 below. 

The third reason is that, when z ranges over rational numbers, then 
the term NNz-l/2 is a pure fractional root of an integer, and contains no 
transcendental factor involving n. It is a conjecture of Rohrlich that the 
only multiplicative relations of values of the gamma function at rational 
numbers (up to algebraic factors) are those which follow formally from 
r 3, r 5, and the multiplication formula r 8. 

Thus we see that the normalization D(z) instead of r(z) is much nicer 
in several respects. It exhibits the structure of relations involving the 
gamma function in a much clearer way, than when a random constant 
appears to be floating around. 

For another basic example of a distribution relation (or addition for­
mula) see the exercise of §3, and also Exercises 3, 4 of Chapter XI, §2. 

The (Other) Gauss Formula 

The Gauss Formula which follows is really a corollary of r2. 

r9. r'/r(z) = =-- __ e __ dt 1<X! ( -I -ZI) for Re(z) > O. 
o t 1 - e- I 

Proof We start with the simple fact that 

(1) for Re(z) > O. 

Indeed, both sides are analytic in z. We can differentiate under the 
integral sign, and we find liz for both sides. Evaluating each side at 
z = 1 we find O. Hence both sides are equal. 

Then directly from the logarithmic derivative r 2 and using the defini-
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tion of the Euler constant 

y = lim (1 + ! + ... + ~ - log N) 
N-oo 2 N 

we obtain 

(2) ( N-l 1 ) 
r'jr(z) = lim log N - L. -- . 

N .... oo n=Oz+n 

Using (1) and 

-- = e-(z+n)t dt, 1 foo 
z + n 0 

we see that a partial sum for r' /r(z) is given by 

N-l 1 foo [ N-l Jdt log N - L. -- = e-t - e-Nt - te- zt L. e-nt -

n=O Z + n 0 n=O t 

foo [ (1 e-Nt )Jdt = 0 e-t - e-Nt - te- zt 1 _ e-t - 1 _ e-t t 

= =---~ dt+ e-Nt ~-- dt. f oo ( -t -zt) foo (-zt 1) 
o t l-e 0 1-e t 

Since 

e-zt 1 
----= 0(1) 
1 - e-t t 

for t ~ 0, 

it follows at once that we can take the limit as N ~ <Xl under the in­
tegral sign, giving ° as this limit, and concluding the proof of the Gauss 
formula. 

Remark. Note that 1/ t is the principal part of e-zt j (1 - e-t ) in the 
sense of meromorphic functions in the variable t. Subtracting this 
principal part in the integrand makes the integral converge, and is known 
as regularizing the integral. 

From r 9 one immediately obtains: 

rio. 

rH. JOCi e-t - e-tz 

r' /r(z) = -y + 1 -t dt. 
o -e 
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The MeDin Transform 

We now start allover again. We suppose nothing known about the 
gamma function, and define the Euler integral 

r12. 

Then the integral fits the hypotheses of Lemma 1.1, provided 

0< a ~ Rez ~ b if 0 < a < b are real numbers. 

Therefore r(z) is an analytic function in the right half plane. (Give the 
details of the proof that the above integral satisfies the hypotheses of the 
lemma, and write down explicitly what the derivative is.) 

Remarks. An integral of the form 

JOO dt 
F(z) = qJ(tW-

o t 

is called the MeDin transform of a function 'P. We write dtlt because this 
expression is invariant under "multiplicative translations". This means: 
Let f be any function which is absolutely integrable on 0 < t < 00. Let a 
be a positive number. Then 

f OO dt foo dt feat) - = J(t)-. 
o tot 

This is verified trivially by the change of variables formula of freshman 
calculus. Use will be made of this in the exercises. For example, re­
placing t by nt where n is a positive integer, we obtain 

for Re(s) > O. 

Summing over n yields what is called the Riemann zeta function of the 
complex variable s. See Chapter XV, §4. 

The Mellin integral for the gamma function converges only for 
Re(z) > O. We illustrate right away a technique which allows us to give its 
analytic continuation to the whole plane, in the simplest context. We write 
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the integral in the form 

Now we observe that the integral from 1 to 00 defines an entire function 
of z, say 

because the convergence problem for t near 0 has disappeared. For the 
other integral 

we write down the power series expansion for e-I at t = O. We leave to 
the reader the justification that we can interchange the finite integral and 
the series for Re(z) > O. We perform the integration, which is completely 
elementary, and we then find 

<Xl (_1)/1 

P(z) == Jo n! (z + n)' 

This series converges uniformly for z in any compact subset of the plane 
not containing 0 or a negative integer. Then 

r(z) ::: P(z) + H(z) 

gives the Mittag-LetHer decomposition of the gamma function in terms 
of its principal parts, and gives one form for its meromorphic continua­
tion to C. 

Another technique can also be applied. We integrate the Euler integral 
r12 by parts, with u = e-t , dv = tz- 1 dt, to get: 

In particular, the formula 

f(z + 1) = zf(z) 

follows directly from the definition with the Euler integral. Inductively we 
obtain 

r(z + n + 1) = z(z + 1) ... (z + n)f(z) 
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which can also be written 

1 Joo r(z) = e-tlz+n dl. 
z(z+ l) .. ·(z+n) 0 

Note that the integral in this last expression is holomorphic in z for 
Re(z) > -n - 1, so this expression gives a meromorphic continuation for 
the Euler integral arbitrarily far to the left as n - 00. Putting successively 
z = 1, z = 2, ... , z = n we can also compute the "esidues at the negative 
integers and 0 directly from these integral expressions. 

After these remarks, we proceed to the proof that the Euler integral is 
equal to the Weierstrass product for r(z). Integrating by parts, the reader 
will prove easily that for x real> 0, 

In( l)nX_l nXn! 
1 - - I dt = ( 1) ( ) = I/gn(z) o n x x+ ... x+n 

for every integer n ~ 1. (But first change variables, let tin = u, dt = n du.) 
We let the reader prove that 

for 0 ~ I ~ n.· 

This is done by using the usual technique that if f(O) = g(O) and 
/'(t) ~ g'(t) for IE [O,nj, then Jet) ~ g(/), and also the inequality 
(1 + tlnr ~ et. Since Iooo t2e-ttx- 1 dl converges, it follows that we can 
take the limit on the left of (*), and obtain for x real> 0: 

lim rn (1 _!.) n tx-1 dl = foo e-ttx- 1 dl. 
n--+oo Jo n Jo 

Using r 7 concludes the proof that the Euler integral gives the same value 
as the Weierstrass product, and therefore we have identified the definition 
of the gamma function by means of the Mellin transform in the right half 
plane with the definition by means of the Weierstrass product. Thus the 
Weierstrass product gives the analytic continuation of the Mellin transform 
to a meromorphic function in the whole plane. 

The Stirling Formula 

This formula gives an asymptotic development for the gamma function, 
and the best statement is the one giving an exact error term, as follows. 
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r13. ( 1) roo PI (t) 
log nz) = z - 2: log z - z + ! log(2n} - J 0 z + t dt, 

where PI (t) = t - [tJ -! is the sawtooth function, [tJ denoting the 
largest integer ~ t. One takes the principal value for the log, deleting the 
negative real axis where the gamma function has its poles. The useful­
ness of the error term involving the integral of PI (t) is that it tends to 0 
uniformly in every sector of complex numbers z = re i9 such that 

-n + lJ ~ () ~ n - lJ, 0< lJ < n. 

Figure 1 

When z = n is a positive integer, it is at the level of calculus to prove 
that 

where IAI ~ 1. Since n! = nn + I}, one sees that the asymptotic relation 

is a special case of the relation, valid for all Izl-+ 00: 

r14. 

uniformly in the sector mentioned above. The twiddle sign '" means 
that the quotient of the left-hand side by the right-hand side approaches 
1, for Izl -+ 00. 
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Proof of Stirling's Formula 

We shall need a simple formula. 

Euler Summation Formula. Let f be any C I function of a real vari­
able. Then 

Jo f(k)::::: J: f(t) dt + t(f(n) + f(O) + J: PI (t)f'(t) dt. 

Proof The sawtooth function looks like Fig. 2. Note that 

P{(t) :: 1 

for t not an integer. 

Figure 2 

Integrating by parts with u ::::: P1(t) and dv = f'(t) dt yields 

f-l PI (t)f'(t) dt = P1(t)f(t)i:_l - f-l f(t) dt 

:: tU(k) + f(k - 1) - fk f(t) dt. Jk-I 
We take the sum from k = 1 to k = n. Adding the integral 

J: f(t) dt and t(f(n) + f(O) 

n 

then yields the sum L f(k) on the right side and proves the formula. 
k=O 

Before going further and applying the formula to the gamma function, 
we evaluate some constants. The first constant will not be used in the 
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Stirling formula, but it will be used in §3, and it gives a simple example 
for the formula, so we derive it now. 

Lemma 2.1. 
1 roo Pl (t) 
"2 + J 0 (1 + t)2 dt = y. 

Proof. We apply Euler's formula to the function f(x) = 1/(1 + x). 
Then the formula gives 

1 1 1 (1 ) rn 1 
1 + "2 + ... + n + 1 = log(n + 1) +"2 n + 1 + 1 + J 0 Pl (t) (1 + t)2 dt. 

Since PI is bounded, the integral on the right converges absolutely. 
Hence after subtracting log(n + 1) from both sides, the lemma drops out 
by the definition of y. 

Let 
for 0 ~ t ~ 1, 

and extend P2(t) by periodicity to all of R (period 1). Then P2(n) = 0 for 
all integers n, and P2 is bounded. Furthermore, P;(t) = PI(t). 

Lemma 2.2. For z not on the negative real axis, we have 

roo Pl (t) dt = roo P2(t) dt. 
Jo z + t Jo (z + t)2 

The integral is analytic in z in the open set U obtained by deleting the 
negative real axis from the plane, and one can differentiate under the 
integral sign on the right in the usual way. 

Proof. We write 

Integrating by parts on each interval [n, n + 1] gives the identity of the 
lemma. The integral involving P2 is obviously absolutely convergent, and 
the differentiation lemma applies. 

Lemma 2.3. 
lim roo .P1(t) dt = O. 
y-oo Jo 'y + t 
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Proof. The limit is clear from Lemma 2.2. 

We now apply the Euler formula to the functions 

f(t) = log(z + t), and f(t) = log(1 + t) 

and assume until further notice that z is real > O. Then we have no 
difficulty dealing with the log and its properties from freshman calculus. 
Subtracting the expressions in Euler's formula for these two functions, 
and recalling that 

f log x dx = x log x - x, 

we obtain 

z(z + 1)"'(z + n) 
log 1) = z log(z + n) + n log(z + n) - z log z 

n!(n + 
- (z + n) + z + t(Iog(z + n) + log z) 

- (n + 1) log(n + 1) + (n + 1) 

- 1 - t log(n + 1) 

+ the terms involving the integrals of PI (t). 

None of this is so bad. We write 

z log(z + n) = z log n (1 + ~) = z log n + z log (1 + ~). 

The term z log n is just log nZ, and we move it to the other side. 
On the other hand, we note that n + 1 occurs in the denominator on 

the left, and we move -log(n + 1) from the left-hand side to the right­
hand side, changing signs. We also make as many cancellations as we 
can on the right-hand side. We end up with 

among other expressions. But from the Taylor expansion for large n 
(and fixed z) we know that 

and 
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Therefore it is easy to take the limit as n tends to infinity, and we find 
by r 7, 

( 1) foo PI(t) foo PI(t) log r(z) = z - -2 log z - z + 1 + -- dt - -- dt. 
01+t oz+t 

All this is true for positive real z. By Lemma 2.2 the integral on the 
right is analytic in z for z in the open set U equal to the plane from 
which the negative real axis has been deleted. Since the other expressions 

log r(z), z log z, log z, z 

are also analytic in this open set (which is simply connected) it follows 
that formula (*) is valid for all z in this open set. 

There remains to evaluate the constant. 

Lemma 2.4. 

fOO PI (t) 1 
1+ --dt = -2 log 2n. 

o 1 + t 

Proof. From 

-n 
r(z)r( -z) = -----:-.-

z·sm nz 

we get 

2n 
y(e"Y - e "Y)· 

1 + fOO PI (t) dt = Re {log r(iy) _ (iY _ ~) log(iy) + iy + foo .PI (t) dt} 
o 1 + t 2 0 zy + t 

= !~n:, {IOg!r(iY)! +! log y + n;} [by Lemma 2.3] 

= lim log 
2nye"Y 

Y~OO 

=! log 2n. 

This proves Stirling's formula. 



428 THE GAMMA AND ZETA FUNCTIONS [XV, §2] 

Observe that differentiating under the integral sign involving P2 yields 
a good error term for r'jr(z), namely 

r 15. , 1 100 P2 (t) r jr(z) = log z - -2 + 2 ( )3 dt. z 0 z + t 

Remark. To integrate by parts more than once, it is more useful to 
take P2(t) = t(t2 - t + i) = tB2(t), where B2 is the second Bernoulli poly­
nomial, and so forth. 

XV, §2. EXERCISES 

1. Prove that: 
(a) r'/r(1) = -yo 
(b) r'/r(t) = -y - 2 log 2. 
(c) r'/r(2) = -y + 1. 

2. Give the details for the proofs of formulas rio and r 11. 

3. Prove that IX> e-' log t dt = -yo 

4. Show that 

i l (1 1) foo dt -,---- dt+ -,-=0. 
o e-1 t le-1 

5. Let al, ... , ar be distinct complex numbers, and let ml, ... , mr be integers. 
Suppose that 

r 

h(z) = IT r(z + ai)m, 
i=1 

is an entire function without zeros and poles. 
(a) Prove that there are constants A, B such that h(z) = ABz. 
(b) Assuming (a), prove that mi = 0 for all i. 

6. (a) Give an exact value for r(1j2 - n) when n is a positive integer, 
and thus show that r(lj2 - n) -+ 0 rapidly when n -+ 00. Thus the 
behavior at half the odd negative integers is quite opposite to the polar 
behavior at the negative integers themselves. 

(b) Show that r(lj2 - n + it) -+ 0 uniformly for real t, as n -+ 00, n equal to 
a positive integer. 

7. Mellin Inversion Formula. Show that for x> 0 we have 
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where s = a + it, and the integral is taken on a vertical line with fixed real part 
ao > 0, and -00 < t < 00. [Hint: What is the residue of x-sr(s) at s = -n?] 

8. Define the alternate Laplace transfonn L - by 

Cf(w) = r f(t)e wt dt. 

(a) Let f(t) = e-zt for t ~ O. Show that 

for Re(w) < Re(z). 

(b) Let f(t) = (s-Iezt for (~O. Show that 

for Re(w) < Re(z). 

Here (z - w)S is defined by taking -n/2 < arg(z - w) < n/2. 

9. Consider the gamma function in a vertical strip Xl ~ Re(z) ~ X2. Let a be a 
complex number. Show that the function 

Z H r(z + a)/r(z) = h(z) 

has polynomial growth in the strip (as distinguished from exponential growth). 
In other words, there exists k > 0 such that 

for Izl -> 00, z in the strip. 

Let the Paley-Wiener space consist of those entire functions f for which 
there exists a positive number C having the following property. Given an 
integer N > 0, we have 

Clxl 

If(x + iy)1 ~ (1 + lyJ)N' 

where the implied constant in ~ depends on f and N. We may say that f is 
at most of exponential growth with respect to x, and is rapidly decreasing, 
uniformly in every vertical strip of finite width. 

10. If f is COO (infinitely differentiable) on the open interval ]0,00[, and has 
compact support, then its Mellin transform Mf defined by 

fOO dt 
Mf(z) = f(t)t Z -

o t 

is in the Paley-Wiener space. [Hint: Integrate by parts.] 

11. Let F be in the Paley-Wiener space. For any real X, define the function 

i dz 
tMxF(t) = F(z)t Z -;-. 

Re z=x 1 
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The integral is supposed to be taken on the vertical line z = x + iy, with 
fixed x, and -00 < y < 00. Show that tMxF is independent of x, so can be 
written tMF. [Hint: Use Cauchy's theorem.] Prove that tMxF has compact 
support on ]0, 00[. 

Remark. If you want to see these exercises worked out, cf. my book SL2 (R), 
Chapter V, §3. The two maps M and tM are inverse to each other, but one needs 
the Fourier inversion formula to prove this. 

12. Let a, b be real numbers > O. Define the K-Bessel function 

Kl. 

Prove that K, is an entire function of s. Prove that 

K 2. K.(a, b) = (b/a)'K,(ab), 

where for c > 0 we define 

K 3. fOO dt 
K,(c) = e-c(t+l/t)t'_. 

° t 

Prove that 

K 4. K,(c) = K_,(c). 

K 5. 

[Hint: Differentiate the integral for JxK1/2(X) under the integral sign.] Let 
Xo > 0 and ao ~ a ~ a1. Show that there exists a number C = C(xo, ao, ad 
such that if x ~ xo, then 

K 6. 

Prove that 

K 7. du = 1t fOO 1 r(s - 1/2) 

-00 (u2 + I)' In r(s) 

for Re(s) > 1/2. Also prove that 

K 8. 

for Re(s) > 1/2. 
[To see this worked out, cf. [La 73], Chapter 20.] 
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XV, §3. THE LERCH FORMULA 

We shall study zeta functions per se in the next section, but here we 
want to give a continuation of the technique used to derive Sterling's 
formula to obtain an important formula due to Lerch, concerning the 
gamma function. The next section does not depend on this one, and may 
be read independently. 

Let u > O. We introduce the Hurwitz zeta function 

00 1 
,(s, u) = L ( + r 

ft=O n u 

The series converges absolutely and defines an analytic function for 
Re(s) > 1. In particular, setting u = 1 we obtain the Riemann zeta 
function 

00 1 
'(s) = ,(s, 1) = L s. 

ft=l n 

Theorem 3.1. For Re(s) > - 1 we have an analytic continuation of 
,(s, u) given by 

u1-. u-· foo Pr(t) 
,(s, u) = --1 + -2 - s ( r+1 dt. 

s- 0 t+u 

Proof. First, for Re(s) > 1, we apply Euler's summation formula to the 
function 

1 
f(t) = (-)s· t+u 

We write down this summation formula with a finite number of terms 
L f(k), with 1 ~ k ~ n, and then we let n tend to infinity. The integrals 
in the Euler formula converge uniformly, and the formula of Theorem 3.1 
drops out, except that we still have Re(s) > 1. However, now that we 
have the formula in this range for s, we note that the oscillating integral 
on the right, involving P1 as in Lemma 2.2, is uniformly convergent for 
Re(s) > -1, and therefore gives the analytic continuation of ,(s, u) in this 
larger domain. Furthermore, by Lemma 1.1 we may differentiate under 
the integral sign, so we get a way of finding the derivative in this large 
domain. 

For each fixed value of u, it is now easy to find the first few terms of 
the power series expansion of ,(s, u) at the origin. We put 

foe 
D(u) = r(u) 

and we let 0(S2) denote an analytic function divisible by S2 near s = o. 
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Theorem 3.2. 

,(s, u) = t - u - (log D(u))s + O(S2). 

Proof. We use the geometric series for 1/(s - 1) = -1/(1 - s) and use 
u-S = 1 - slog u + O(S2). The integral on the right of the formula in 
Theorem 3.1 is holomorphic at s = 0, and its value at s = ° is obtained 
by substituting s = 0. Thus we find 

,(s, u) = -u(1 - slog u)(1 + s) + - S _1 -dt + O(S2). 
1 - slog u foo P (t) 

u 0 t + u 

The formula stated in Theorem 3.2 is now a consequence of Sterling's 
formula r 13. 

We denote by C(s, u) the derivative with respect to s. 

Corollary 3.3. 

and 
1 

'(s) = --1 + y + O(s - 1). 
s-

Proof. For the first expression, put u = 1 in Theorem 3.2. For the 
second expression, write s = s - 1 + 1 in front of the integral of Theorem 
3.1. Then the constant term y drops out by using Lemma 2.1. This 
concludes the proof. 

Corollary 3.4 (Lerch Formula). 

log D(u) = - C(O, u) 

or completely in terms of the gamma function, 

log r(u) = C(O, u) - "(0). 

Proof Immediate from the power series expansion of Theorem 3.2, 
and the value of nO) in Corollary 3.3. 

Remark. We could have replaced u > ° throughout by a complex 
z with Re(z) > 0. The formulas converge in this case. Furthermore, 
log r(z) is analytic for z in the plane from which the half line (-00,0] is 
deleted, and so from Theorem 3.3 we see that the Lerch formula holds if 
u is replaced by z on this open set. Defining the regularized product 

fo 
D(z) = r(z)' 
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we obtain the Lerch formula for the complex variable z, namely: 

j log D(z) = -('(0, z). 

This is the most classical and most elementary special case of a general 
formalism concerning regularized products and determinants, which arose 
in many contexts, including physics. The paper by Voros [Vo 87] gives 
a treatment, including several examples from classical partial differential 
equations. See especially Voros' Section 4, on zeta functions and func­
tional determinants. For further results, see [JoL 93]. 

[Vo 87] A. VOROS, Spectral functions, special functions and the Selberg zeta 
function, Commun. Math. Phys. 110 (1987) pp. 439-465 

[JoL 93] 1. JORGENSON AND S. LANG, Basic analysis of regularized series and 
products, Lecture Notes in Mathematics 1564, Springer-Verlag, 1993 

XV, §3. EXERCISE 

1. For each real number x, we let {x} be the unique number such that x - {x} is 
an integer and 0 < {x} ~ 1. Let N be a positive integer. Prove the addition 
formula (distribution relation) 

N-l 

N- S L ((s, {x +j/N}) = ((s, {Nx}). 
j=O 

From this formula and Theorem 3.2, deduce another proof for the multiplica­
tion formula of the gamma function. 

XV, §4. ZETA FUNCTIONS 

In this section, we are concerned more with the zeta function, its analytic 
continuation to the whole plane, and the functional equation. We deal to 
a large extent with the Hurwitz zeta function introduced in the preceding 
section, namely for u > 0, 

00 1 
((s, u) = L ( + Y' 

n=O n u 
analytic for Re(s) > 1. 

In particular, setting u = 1 we obtain the Riemann zeta function 

1 
,(s) = ,(s, 1) = L -.. 

n=1 n 



434 THE GAMMA AND ZETA FUNCTIONS [Xv, §4] 

We shall now express the Riemann and Hurwitz zeta functions as Mellin 
transforms. We have 

for Re(s) > 0 

fOO dt 
= e-(n+u)t(n + u)StS _ 

o t 

after making the multiplicative change of varia'oles t 1-+ (n + u)t, which 
leaves the integral invariant. Therefore dividing both sides by (n + u)S 
and summing, we get for Re(s) > 1: 

But 

Therefore, letting 

we find 

e-(n+u)t=~ 
1 _to 
-e 

fOO dt 
r(s)((s, u) = Gu(t)t S _, 

o t 

so the zeta function times the gamma function is the Mellin transform of 
Gu • 

We let 

Then 

We introduced these functions to get an analytic continuation of the zeta 
function to a meromorphic function on all of C by means of the Hankel 
integral 

f dz 
Hu(s) = F,,(z)ZS -, 

c z 

where the integral is taken over the contour C as shown on Fig. 3, in 
which K, is a small circle of radius E around the origin. 
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.. 0 ------€ • K. ... 
Figure 3 
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As usual, z· = e· IOgz, and the log is taken as its principal value on the 
complex plane from which the negative real axis is deleted. Symbolically 
we may write 

but the integrand in the first and last integral may not be the same, 
corresponding to the two values of z' which differ by a constant. 

The exponential decay of the integrand and Lemma 1.1 show at once 
that Hu is an entire function of s. We shall see that it gives the analytic 
continuation for ,(s, u), and therefore also for the Riemann zeta function 
by putting u = 1. 

Theorem 4.1. 

Hu(s) = _(ei'" - e-i"')r(s)C(s, u) = -2i sin(ns)r(sK(s, u). 

Proof. We change the variable, putting z = -w. Then writing G = Gu , 

F = F,., we find 

. If dw Hu(s) = e-"'" F( _w)eSlogW_ 
'" w 

+ f F(_w)eSIOg(-W) dw 
-K, w 

f'" dw + ei"S F( _w)esIOg(W)_. 
f w 

Therefore taking the limit as E -+ 0 (see the lemma below), we find 

. f'" ~. f'" ~ Hu(s) = e-'''S G(t)tS - - e'''S G(t)t"-
o tot 

. . f'" dt = _(e'''S - e-'''S) G(t)t S -

o t 

which proves the theorem, except for proving the lemma. 
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Lemma 4.2. If Re(s) > 1, then 

f G(w)e·IOg(-W) dw - 0 
-K, W 

as E -0. 

Proof The length of K. and Idw/wl have a product which is bounded. 
But putting r = Izl and (1 = Re(s), we have 

and 
G(z) ~ l/r for r-O. 

This proves the lemma. 

Remark. From Theorem 4.1, the fact that Hu is an entire function, 
and the fact that the zeros of sin ns at the negative integers and 0 cancel 
the poles of r(s) at these integers, we see that '(s) is holomorphic at these 
integers. We shall determine where (s) has a pole shortly. Before doing 
this, we get the values of ( at the negative integers. 

Theorem 4.3. We have 

1 
(s, u) = --2 .r(1 - s)Hu(s). 

1tl 

In particular, if n is a positive integer, then 

1 
(I - n, u) = --2 . r(n)Hil - n) 

1tl 

and 
(I - n, u) 

r(n) = - residue of F,,(z)z-n at z = o. 

In particular, letting Bn denote the Bernoulli numbers, we find 

1 
(I-n)=--B n n 

except for (0) = Bl = -t. 

Proof Observe that when s = 1 - n in the Hankel integral, then the 
integrand is a meromorphic function, and so the integrals from -00 to 
-E and from -E to -00 cancel, leaving only the integral over K •. We 
can then apply Cauchy's formula to get the stated value. The assertion 
about the value of the zeta function at negative integers then comes 
immediately from the definition of the Bernoulli numbers in terms of the 
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coefficients of a power series, namely 

t 00 tn 

el - 1 = ~ Bnnl n-O . 

437 

Next we shall obtain an expression for the Hankel function which will 
lead to the functional equation. 

Theorem 4.4. For Re(s) < 0 we have 

= _ (2n)' f 2i Sin(2n~n, + ns/2). 
n=l n 

Proof. Let m be an integer ~ 2, and let Dm be the path indicated on 
Fig. 4, consisting of the square and the portion of C inside the square, 
with the given orientation. 

(m + !)2ni 

2nin 

.. 
~ "'~ (m + !)2n 

Figure 4 

Thus the square crosses the axes at half integral multiples of 2ni. Let 

Rn = residue of Fy(z)z·-l at 2nin, n =1= 0, -m ~ n ~ m. 

Then 

f dz m 
F(z)z' - = - 2ni L Rn· 

D Z n=-m 
m n#O 
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For n ~ 1 we have 

R = ~e2ltiUn(2nn)SeiltS/2 n • , 
1 

R_n = ~e-2ltiUn(2nn)S-le-iltS/2. 
-I 

[XV, §4] 

Note that F(z)/z is bounded on the outside square. Hence if Re(s) < 0, 
the Hankel integral over the outside square tends to 0 as m --+ 00. Hence 

f dz. f dz Hu(s) = F(z)zS - = hm F(z)zS -
c z m-+oo Dm Z 

and the. theorem follows. 

We apply Theorem 4.4 to the Riemann zeta function, taking u = 1. 
Then for Re(s) < 0, we obtain 

00 eilts/2 _ e- ilts/2 
Hl(s) = -(2n)S L 1 S 

n=1 n 

and therefore using Theorem 4.2: 

Theorem 4.5. 

((s) = (2n)sr(1 - s) sin(ns/2) ((I - s). 
n 

Observe that the formula of Theorem 4.5 was derived at first when 
Re(s) < 0 so that the series L l/n 1- s converges absolutely. However, we 
know from Theorem 4.1 that ((s) is a meromorphic function of s, so that 
quite independently of the series representation in any region, the relation 
of Theorem 4.5 holds unrestrictedly for all s by analytic continuation. 
We may reformulate the functional equation relating ((s) and ((I - s) in 
another more symmetric form as follows. 

Theorem 4.6. Let ((s) = s(s - l)n-s/2r(s/2)((s). Then ( is an entire 
function satisfying the functional equation 

The zeta function itself is meromorphic, and holomorphic except for a 
simple pole at s = 1. 

Proof The term s(s - 1) remains unchanged under the transformation 
Sf-d - s. That the other factor n-s/2r(s/2)((s) remains unchanged fol-
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lows at once from Theorem 4.5, using the formulas 

n 
r(S)r(1 - S) = -.-

sm ns 
and 

We leave the actual easy computation to the reader. As to the fact that 
~(s) is an entire function, and that s = 1 is the only pole of ((s), we argue 
as follows. From Theorem 4.1, from the fact that HI is entire, and that 
the zeros of sin(ns)r(s) occur only at the positive integers, we see that 
C(s) can have poles only at the positive integers. But the series L Ilns 

shows that ((s) is holomorphic for Re(s) > 1, so the only possible pole is 
at s = 1. From Theorem 4.5, we see that s = 1 is actually a pole of order 
1, coming from the pole of r(1 - s), since the other expressions on the 
right of the formula in Theorem 4.5 are analytic at s = 1. This concludes 
the proof of Theorem 4.6. 

XV, §4. EXERCISES 

1. (a) Show that ((s) has zeros of order 1 at the even negative integers. 
(b) Show that the only other zeros are such that 0 ~ Re(s) ~ 1. 
(c) Prove that the zeros of (b) actually have Re(s) = 1/2. [You can ask the 

professor teaching the course for a hint on that one.] 

2. Define F(z) = ~(t + iz). Prove that F(z) = F( - z). 

3. Let C be the contour as shown on Fig. 3. Thus the path consists of] -00, -E], 

the circle which we denote by K., and the path from -10 to -00. On the 
plane from which the negative real axis has been deleted, we take the principal 
value for the log, and for complex s, 

The integrals will involve zS, and the two values for ZS in the first and third 
integral will differ by a constant. 
(a) Prove that the integral 

defines an entire function of s. 
(b) Prove that for Re(l - s) > 0 we have 

(c) Show that 
1 1 r 

res) = 2ni Jc eZz-s dz. 

The contour integral gives another analytic continuation for l/r(s) to the 
whole plane. 



CHAPTER XVI 

The Prime Number Theorem 

At the turn of the century, Hadamard and de la Vallee Poussin indepen­
dently gave a proof of the prime number theorem, exploiting the theory 
of entire functions which had been developed by Hadamard. Here we 
shall give D.l. Newman's proof, which is much shorter. I have also 
benefited from Korevaar's exposition. See: 

D.J. NEWMAN, Simple analytic proof of the prime number theorem, Amer. 
Math. Monthly 87 (1980) pp. 693-696 

J. KOREVAAR, On Newman's quick way to the prime number theorem, Math. 
Intell. 4, No.3 (1982) pp. 108-115 

See also [BaN 97]. Newman's proof illustrates again several techniques of 
complex analysis: contour integration, absolutely convergent products in a 
context different from Weierstrass products, and various aspects of entire 
functions in a classical context. Thus this chapter gives interesting more 
advanced reading material, and displays the versatility of applications of 
complex analysis. 

In Chapter XV we touched already on the zeta function, and gave a 
method to prove the functional equation and the analytic continuation to 
the whole plane by means of the Hankel integrals. Here we shall develop 
whatever we need of analysis from scratch, but we assume the unique 
factorization of integers into primes. 

We recall the notation: if J, 9 are two functions of a variable x, 
defined for all x sufficiently large x, and 9 is positive, we write 

J = O(g) 

to mean that there exists a constant C > 0 such that IJ(x)1 ~ Cg(x) for 

440 
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all x sufficiently large. Thus a function f = 0(1) means that f is 
bounded for x ~ xo. 

XVI, §1. BASIC ANAL VTIC PROPERTIES OF 
THE ZETA FUNCTION 

Let s be a complex variable. For Re(s) > 1 the series 

00 1 
Ls 
n=l n 

converges absolutely, and uniformly for Re(s) ~ 1 + lJ, with any lJ > O. 
One sees this by estimating 

-<-
1

1 I 1 
n' = n1+a 

and by using the integral test on the real series L I/n1+'!, which has 
positive terms. 

As you should know, a prime number is an integer ~ 2 which is 
divisible only by itself and 1. Thus the prime numbers start with the 
sequence 2, 3, 5, 7, 11, 13, 17, 19, .... 

Theorem 1.1. The product 

converges absolutely for Re(s) > 1, and uniformly for Re(s) ~ 1 + lJ with 
(j > 0, and we have 

( 1 )-1 
((s) = I} 1 - p' 

Proof. The convergence of the product is an immediate consequence 
of the definition given in Chapter XIII, §l and the same estimate which 
gave the convergence of the series for the zeta function above. In the 
same region Re(s) ~ 1 + (j, we can use the geometric series estimate to 
conclude that 

( 1 _ ~)-1 = 1 + ~ + _1 + _1 + ... = E (s), say. 
p' p' p2. p3. P 

Using a basic fact from elementary number theory that every positive 
integer has unique factorization into primes, up to the order of the 
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factors, we conclude that in the product of the terms Ep(s) for all primes 
p, the expression lin' will occur exactly once, thus giving the series for 
the zeta function in the region Re(s) > 1. This concludes (Euler's) proof. 

The product 

( 1 )-1 I} 1 - p' 

is called the Euler product. The representation of the zeta function as 
such a product shows that '(s):F 0 for Re(s) > 1. We shall refine this 
statement to the line Re(s) = 1 in Theorem 1.3. 

In Exercise 5 of Chapter XV, §2, we gave one method to show how 
the zeta function extends to a meromorphic function on the whole plane. 
We do not use this exercise but reprove ad hoc what we need for the 
application to the prime number theorem in the next section. 

Theorem 1.2. The function 
1 

'(s)-­
s-1 

extends to a holomorphic function on the region Re(s) > O. 

Proof For Re(s) > 1, we have 

1 00 1 foo 1 
'(s)--= L -.- .dx 

s - 1 n:1 n 1 x 

00 fn+1 (1 1) =L --- dx 
n:1 n n' x' . 

We estimate each term in the sum by using the relations 

f(b) - f(a) = r f'(t) dt and so If(b) - f(a)1 ~ max 1f'(t)llb - al· 
a;:;; t;:;; b 

Therefore each term is estimated as follows: 

Ifn
+

1 (~-~) dxl ~ max 11. - ~I ~ maxi :+11 
II n x n;:;;",;:;;n+1 n x x 

<_ls_l_ 
= nRe(.)+1· 

Thus the sum of the terms converges absolutely and uniformly for 
Re(s) >~. This concludes the proof of the theorem. 
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We note that the zeta function has a certain symmetry about the 
x-axis, namely 

((s) = ((s). 

This is immediate from the Euler product and the series expansion of 
Theorem 1.2. It follows that if So is a complex number where , has a 
zero of order m (which may be a pole, in which case m is negative), then 
the complex conjugate So is a complex number where , has a zero of the 
same order m. 

We now define 

(J)(X) = L log p 
p:;;x 

and cD(s) = " log p 7 ps 
for Re(s) > 1. 

The sum defining cD(s) converges uniformly and absolutely for 

Re(s) ~ 1 + b, 

by the same argument as for the sum defining the zeta function. We 
merely use the fact that given E > 0, 

Theorem 1.3. The function cD is meromorphic for Re(s) > !. Further­
more, for Re(s) ~ 1, we have ((s) # ° and 

has no poles for Re(s) ~ 1. 

1 
<I>(s) -~­

s - 1 

Proof. For Re(s) > 1, the Euler product shows that ((s)"# 0. By 
Chapter XIII, Lemma 1.2, we get 

Using the geometric series we get the expansion 

1 1 1 1( 1 1 ) 
pS _ 1 = pS 1 _ lips = pS 1 + pS + p2s + ... 

1 1 =-+-+ ... pS p2s 
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so 

-C'!C(s) = ~(s) + L hp(s) where 
p 

for some constant C. But the series L (log n)/n2s converges absolutely 
and uniformly for Re(s) ~ i + lJ, with lJ > 0, so Theorem 1.2 and (*) 
imply that ~ is meromorphic for Re(s) > i, and has a pole at s = 1 and 
at the zeros of C, but no other poles in this region. 

There remains only to prove that ( has no zero on the line Re(s) = 1. 
We follow Titchmarsh, Theory of the Riemann zeta function, III, 3.3 and 
3.4. Put s = a + it. Then 

so 

IC(s)1 = exp '" ~ cos(mt log p) . 
L....; L....; m'Pma 

p m=1 

It follows that 

= exp L f 3 + 4 cos(mt lo~) -:- cos(2mt log p) . 
p m=1 pm 

From the positivity 

(2) 3 + 4 cos () + cos 2() = 2(1 + cos ()2 ~ 0, 

it follows that 

(3) for a> 1. 

Fix t i= O. Suppose ((I + it) = O. Then for a> 1, a -+ 1, 

and ((a+2it) = 0(1), 

but ((a+it) = O(a-l). Hence the left side of (3) is O(a-l), con­
tradiction. This proves Theorem 1.3. 

It will be convenient to have an integral expression for w. 

Proposition 1.4. For Re(s) > 1 we have 

fao qJ(X) 
~(s) = S .+1 dx. 

1 X 



[XVI, §1] BASIC ANALYTIC PROPERTIES OF THE ZETA FUNCTION 445 

Proof To prove this, compute the integral on the right between suc­
cessive prime numbers, where cp is constant. Then sum by parts. We 
leave the details as an exercise. 

XVI, §1. EXERCISES 

1. Let f, g be two functions defined on the integers > 0 and ~ n + 1. Assume 
that f(n + 1) = O. Let G(k) = g(1) + ... + g(k). Prove the formula for summa­
tion by parts: 

• • L f(k)g(k) = L (f(k) - f(k + 1))G(k). 
k=l k=l 

2. Prove the integral expression for ~ in Proposition 1.4. 

3. Let {a.} be a sequence of complex numbers such that La. converges. Let {b.} 
be a sequence of real numbers which is increasing, i.e. b. ~ b.+1 for all n, and 
b. -+ 00 as n -+ 00. Prove that 

Does this conclusion still hold if we only assume that the partial sums of L a. 
are bounded? 

4. Let {a.} be a sequence of complex numbers. The series 

f~ 
.=1 n 

1S called a Dirichlet series. Let (Jo be a real number. Prove that if the 
Dirichlet series converges for some value of s with Re(s) = (Jo, then it con­
verges for all s with Re(s) > (Jo, uniformly on every compact subset of this 
region. 

5. Let {a.} be a sequence of complex numbers. Assume that there exists a 
number C and (J1 > 0 such that 

for all n. 

Prove that L a./n· converges for Re(s) > (J1' [Use summation by parts.] 

6. Prove the following theorem. 

Let {a.} be a sequence of complex numbers, and let An denote the partial sum 

A. = a1 + ... + an' 

Let 0 ~ (J1 < 1, and assume that there is a complex number p such that for all n 
we have 
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or in other words, A. = np + O(n"l). Then the function f defined by the 
Dirichlet series 

f(s) = L ~ for Re(s) > 1 
nS 

has an analytic continuation to the region Re(s) > tTl' where it is analytic except 
for a simple pole with residue p at s = 1. 

[Hint: Consider f(s) - pC(s), use Theorem 1.2, and apply Exercise 5.] 

XVI, §2. THE MAIN LEMMA AND ITS APPLICATION 

We shall now deal with the more number theoretic applications of the 
analytic properties. We shall state one more fundamental analytic theo­
rem, and show how it implies the prime number theorem. 

Theorem 2.1 (Chebyshev). cp(x) = O(x). 

Proof. Let n be a positive integer. Then 

22/1 = (1 + 1)211 = L (2~) ~ (2n) ~ n p = eq>(2/1)-q>(/I). 

j ] n /I < p:i! 2/1 

Hence we get the inequality 

cp(2n) - cp(n) ~ 2n log 2. 

But if x increases by 1, then cp(x) increases by at most log(x + 1), 
which is O(log x). Hence there is a constant C > log 2 such that for all 
x ~ xo(C) we have 

cp(x) - cp(x/2) ~ Cx. 

We apply this inequality in succession to x, x/2, x/22, ... ,x/2r and sum. 
This yields 

cp(x) ~ 2Cx + 0(1), 

which proves the theorem. 

We shall now state the main lemma, which constitutes the delicate 
part of the proof. Let! be a function defined on the real numbers ~ 0, 
and assume for simplicity that ! is bounded, and piecewise continuous. 
What we prove will hold under much less restrictive conditions: instead 
of piecewise continuous, it would suffice to assume that the integral 

r I !(t) I dt 
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exists for every pair of numbers a, b ~ O. We shall associate to f the 
Laplace transform g defined by 

g(z) = IXl f(t)e- zt dt for Re(z) > O. 

We can then apply the differentiation lemma of Chapter XV, §1, whose 
proof applies to a function f satisfying our conditions (piecewise continu­
ous and bounded). We conclude that g is analytic for Re(z) > O. (Do 
Exercise 1.) 

Lemma 2.2 (Main Lemma). Let f be bounded, piecewise continuous on 
the reals ~ O. Let g(z) be defined by the above integral for Re(z) > O. 
If g extends to an analytic function for Re(z) ~ 0, then 

It) f(t) dt exists and is equal to g(O). 

We postpone the proof of the main lemma to the next section, and now 
give its application. Observe that the function qJ is piecewise continuous. 
In fact, it is locally constant: there is no change in qJ between prime 
numbers. 

The application of the main lemma is to prove: 

Lemma 2.3. The integral 

foo qJ(X) 2- X dx 
1 X 

converges. 

Proof. Let 
qJ(e t ) _ et 

fi0=qJ~~~-1= . 
et 

Then f is certainly piecewise continuous, and is bounded by Theorem 
2.1. Making the substitution x = et in the desired integral, dx = et dt, we 
see that 

foo qJ(X) 2- X dx = fOO f(t) dt. 
1 x 0 

Therefore it suffices to prove that the integral on the right converges. By 
the main lemma, it suffices to prove that the Laplace transform of f is 
analytic for Re(z) ~ 0, so we have to compute this Laplace transform. 
We claim that in this case, 

g(z) = fIl(z + 1) _ ~. 
z+l z 
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Once we have proved this formula, we can then apply Theorem 1.3 to 
conclude that 9 is analytic for Re(z) ~ 0, thus concluding the proof of 
Lemma 2.3. 

Now to compute g(z), we use the integral formula of Proposition 1.4. 
By this formula, we obtain 

<I>(s) __ 1_ = {<Xl q>(x) - x dx. 
s s - 1 1 x·+1 

Therefore 

This gives us the Laplace transform of f, and conciudes the proof of 
Lemma 2.3. 

Let fl and f2 be functions defined for all x ~ xo, for some Xo. We 
say that fl is asymptotic to f2' and write 

if and only if 
X'" <Xl 

Theorem 2.4. We have q>(x) '" x. 

Proof. The assertion of the theorem is logically equivalent to the 
combination of the following two assertions: 

Given A > 1, the set of x such that q>(x) ~ AX is bounded; 

Given 0 < A < 1, the set of x such that q>(x) ~ AX is bounded. 

Let us prove the first. Suppose the first assertion is false. Then there is 
some A > 1 such that for arbitrarily large x we have q>(x)/x ~ A. Since q> 
is monotone increasing, we get for such x: 

f AX q>(t) - t fAX AX - t _ fA A - t 
2 dt;?: --2 -dt - -2-dt > O. 

x t -x t It 

The number on the far right is independent of x. Since there are arbi­
trarily large x satisfying the above inequality, it follows that the integral 
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of Lemma 2.3 does not converge, a contradiction. So the first assertion 
is proved. The second assertion is proved in the same way and is left to 
the reader. 

Let n(x) be the number of primes ~ x. 

Theorem 2.5 (Prime Number Theorem). We have 

Proof. We have 

and given E > 0, 

X 
n(x) ~-. 

log x 

cp(x) = L log p ~ L log x = n(x) log x; 
p~x p~x 

lP(x)~ L logp~ L (l-E)logx 

= (1 - E) log x[n(x) + O(XI-f)]. 

Using Theorem 2.4 that cp(x) ~ x concludes the proof of the prime num­
ber theorem. 

XVI, §2. EXERCISE 

1. Prove the lemma allowing you to differentiate under the integral sign in as 
great a generality as you can, but including at least the case used in the case 
of the Laplace transforms used before Lemma 2.2. 

XVI, §3. PROOF OF THE MAIN LEMMA 

We recall the main lemma. 

Let f be bounded, piecewise continuous on the reals ~ 0. Let 

g(z) = IIJ f(t)e- zt dt for Re(z) > 0. 

If 9 extends to an analytic function for Re(z) ~ 0, then 

L1J f(t) dt exists and is equal to g(O). 
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Proof. For T> 0 define 

gT(Z) = IT !(t)e-zt dt. 

Then gT is an entire function, as follows at once by differentiating under 
the integral sign. We have to show that 

lim gT(O) = g(O). 
T~oo 

Let E> > 0 and let C be the path consisting of the line segment Re(z) = - E> 

and the arc of circle Izl = Rand Re(z) ~ -E>, as shown on the figure. 

R 

Re(z) = - /) 

-R 

By our assumption that g extends to an analytic function for Re(z) ~ 0, 
we can take E> small enough so that g is analytic on the region bounded 
by C, and on its boundary. Then 

where HT(z) abbreviates the expression under the integral sign. Let B be 
a bound for !, that is I !(t) I ~ B for all t ~ O. 

Let C+ be the semicircle Izl = Rand Re(z) ~ O. Then 

(1) 
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Proof First note that for Re(z) > 0 we have 

Ig(z) - gT(z)1 = If: !(t)e- zt dtl ~ B f: le-Z/I dt 

B = __ e-Re(z)T. 
Re(z) , 

and for Izl = R, 

le
Tz (1 +~) ~I = eRe(z)TI~ + -=-1 ~ = eRe(z)T 2I Re(z)l. 

R2 z z R R R2 

451 

Taking the product of the last two estimates and multiplying by the 
length of the semicircle gives a bound for the integral over the semicircle, 
and proves the claim. 

Let C- be the part of the path C with Re(z) < o. We wish to estimate 

1 r TZ( Z2) dz 
2ni Jc- (g(z) - gT(z»)e 1 + R2 z· 

Now we estimate separately the expression under the integral with g and 
gT· 

We have 

(2) 1
1 i T ( Z2 ) dz I B -. gT(z)e z 1 + ~ - ~ -. 

2m c- R z R 

Proof Let S- be the semicircle with Izl = Rand Re(z) < o. Since gT 
is entire, we can replace C- by S- in the integral without changing the 
value of the integral, because the integrand has no pole to the left of the 
y-axis. Now we estimate the expression under the integral sign on S-. 
We have 

Be-Re(z)T 

:::; . 
- -Re(z) 

For the other factor we use the same estimate as previously. We take 
the product of the two estimates, and multiply by the length of the 
semicircle to give the desired bound in (2). 
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Third, we claim that 

(3) J ( Z2) dz 
c- g(z)eTz 1 + R2 -; - 0 as T-oo. 

Proof We can write the expression under the integral sign as 

( Z2) 1 g(z)e Tz 1 + - - = h(z)e TZ 
R2 z where h(z) is independent of T. 

Given any compact subset K of the region defined by Re(z) < 0, we note 
that 

eTz --+ 0 rapidly uniformly for z E K, as T --+ 00. 

The word "rapidly" means that the expression divided by any power TN 
also tends to 0 uniformly for z in K, as T --+ 00. From this our claim (3) 
follows easily. (Put the details as an exercise.) 

We may now prove the main lemma. We have 

fOO J(t) dt = lim gT(O) if this limit exists. 
o T"'oo 

But given E, pick R so large that 2B/R < E. Then by (3), pick T so large 
that 

Then by (1), (2), and (3) we get Ig(O) - gT(O) I < 3E. This proves the main 
lemma, and also concludes the proof of the prime number theorem. 



Appendix 

The purpose of this appendix is to collect miscellaneous topics which are 
relevant to the theory of complex analysis, but which were not formally 
treated in the text for various reasons. 

We first start by working out systematically some topics which were 
assigned as exercises. I think it is better for students to have attempted 
to solve some non-routine problems. If they have done so unsuccessfully, 
then they are much more ready to appreciate how the problems are 
worked out, and they will remember the method of proof better for 
having tried and possibly failed. The first four sections are basically of 
this type, and are related to linear algebra. 

The last two sections deal with the extension of Cauchy's formula to 
COO functions, and presents a topic usually omitted from the course 
entirely, but I think it provides a nice mixture of real and complex 
analysis which I want to make available for independent reading. 

APP., §1. SUMMATION BY PARTS AND 
NON-ABSOLUTE CONVERGENCE 

Although non-absolute convergence is more delicate and peripheral to 
this course, we shall nevertheless give a brief discussion of one of its most 
important aspects. We first state a formula. 

Lemma 1.1 (Summation by Parts). Let {ar.}, {b,.} (k = 0,1, ... ) be two 
sequences of complex numbers. Let the partial sums for {br.} be 

n 
B=b+···+b=~b nOn L. ". 

1<=0 

453 
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Then 
n n-l 
L akbk = anBn - L Bk(ak+1 - ak)· 

k=O k=O 

This is similar to integration by parts: J u dv = uv - J v duo We leave the 
proof to the reader; it is very easy. We apply summation by parts in the 
following case. 

Proposition 1.2. Let {ad (k = 0, 1, ... ) be a monotone decreasing se­
quence of real numbers whose limit is O. 
(a) Let {bk} be a sequence of numbers such that the partial sums Bn 

are bounded. Then 

converges. 
(b) Let {ad be a monotone decreasing sequence of real functions on a 

set, converging uniformly to O. Let {f,J be a sequence of complex 
functions on the set, and let 

n 

Fn(z) = L fk(z) 
k=O 

be the partial sums of the series L fk. Assume that the partial 
sums are uniformly bounded, i.e. there exists M > 0 such that for 
all n we have IFn(z) I ~ M for all z. Then the series L adk con­
verges uniformly. 

Proof Let 

be the partial sum of the series L akbk. We have to estimate ISn - Sml for 
m, n large. Let I Bn I ~ M for all n. Then 

for all m, n. 

By Lemma 1.1, for n > m, 

n n 

Sn - Sm = L akbk = an(Bn - Bm) - L (Bk - Bm)(ak+l - ak) 
k=m+l k=m+l 

n-l 
= an(Bn - Bm) + L (Bk - Bm)(ak - ak+l)· 

k=m+l 
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By convention, the sum on the right side is 0 if n = m + 1. Then we get 

n-I 

ISn - Sml ~ an2M + L 2M(ak - ak+d (because ak - ak+l ~ 0) 
k;m+1 

Given e, we can select no such that am < el2M for m ~ no because of the 
assumption on the sequence {ak }. Then the right side is < E, thus con­
cluding the proof for the series of numbers. 

For part (b), concerning the series of functions, we merely replace bk 

by fk(z) for each Z E S. Then the above estimate gives the uniform esti­
mate for the partial sums ISn(z) - Sm(z)l, thus concluding the proof of the 
theorem. 

The next proposition is a variation. 

Proposition 1.3. Let {ak} be a sequence of non-negative real numbers, 
monotone decreasing (not necessarily to 0). Let {bk} be a sequence of 
complex numbers such that L bk converges. Then L akbk converges. 

Proof. This proposition is a corollary of the preceding one, as follows. 
We let a = lim ak, and a~ = ak - a. Then {a~} is a sequence which de­
creases monotonically to O. But 

Thus if L bk converges, we can apply Proposition 1.2 to conclude the 
proof. 

From the same estimate applied uniformly, we obtain: 

Proposition 1.4. Let {ak} be a monotone decreasing sequence of 
bounded non-negative real functions on some set. Let {fk} be a sequence 
of complex functions on the set such that L fk converges uniformly. 
Then L adk converges uniformly. 

As an example of summation by parts, we work out one of the 
exercises in the text, namely Abel's theorem. 

Theorem 1.5. Let {an} be a sequence of complex numbers such that 
L an converges. Assume that the power series L anzn has radius of 
convergence at least 1. Let f(x) = L anxn for 0 ~ x < 1. Then 

lim f(x) = Lan' 
x"""'! 
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00 n 

Proof Let A = L ak, An = L ak. Consider the partial sums 
k=1 k=1 

" sIlex) = L akxk. 
k=1 

We first prove that the sequence of partial sums {sIlex)} converges uni­
formly for 0 ~ x ~ 1. For m < n we have 

" (1) Sn(X) - Sm(X) = L Xkak = xn(A" - Am+1) 
k=m+l 

II-I 

+ L (Ak - Am+1)(Xk - X k+1). 
k=m+l 

There exists N such that for k, m ~ N we have IAk - Am+ll ~ E. Hence 
for 0 ~ x ~ 1, 

(2) 
,,-I 

ISII(X) - sm(x)1 ~ E + E L (Xl - Xk+l) 
k=m+l 

= E + E(Xm+l - X") 

~ 2E. 

This proves the uniformity of the convergence of {SII(X)}. 
Now given E, pick N as above. Choose (j (depending on N) such that 

if Ix - 11 < (j, then 

(3) 

By (1), (2), (3), we find that 

for all n ~ N and Ix - 11 < (j. 

For a given x, pick n so large (depending on x!) so that the first term is 
also < E, to conclude the proof. 

We conclude this section with a theorem on Dirichlet series. 
We shall consider series 

where {an} is a sequence of complex numbers, and s is a complex 
variable. We write s = (T + it with (T, t real. 
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Theorem 1.6. If the Dirichlet series L: an/ns converges for some s = so, 
then it converges for any s with Re(s) > 0"0 = Re(so), uniformly on any 
compact subset of this region. 

Proof Write nS = nson(s-so) , and sum the following series by parts: 

If Pn(SO) = L:~=1 am/mso , then the tail ends of this Dirichlet series are 
given for n > m by 

~ ak _1 __ Pn(SO) ~ P s [_1_ _ 1 ] _ Pm (SO) 
L...J kso ks-so - nS-SO + L...J k( 0) ks-so (k + I)S So (m + lr so· 

k=m+1 k=m+1 

We have 

1 1 Jk+1 1 
--- - s-s -- dx kS-so (k+ l)S So - ( 0) k xs-so+1 ' 

which we estimate easily in absolute value. If 0 > 0 and Re(s) ~ 0"0 + 0, 
then we conclude that our tail end is small uniformly if Is - sol is bounded. 
This proves the theorem. 

Assuming that the Dirichlet series converges for some s, if 0"0 is the 
smallest real number such that the series converges for Re(s) > 0"0, then we 
call 0"0 the abscissa of convergence, and we see that the series converges in 
the half plane to the right of the line 0" = 0"0, but does not converge for 
any s with 0" < 0"0. 

If the Dirichlet series converges for Sl = al + itl, then we must have 

because the n-th term of the series an/nS1 tends to O. It follows in par­
ticular that the Dirichlet series converges absolutely and uniformly on 
compacts for 

Re(s) ~ 0"1 + 1 +0, 

if 0> O. This is immediately seen by comparison with the series L: 1/n1+J. 

APP., §2. DIFFERENCE EQUATIONS 

Let ul , ••• ,Ud be given complex numbers. We want to determine all 
solutions (ao, a l , ... ) of the equation 

for all n ~ d. 
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Such solutions are therefore infinite vectors 

(ao, ... ,ad- l , ad' ... ,all , ... ), 

and they form a vector space, this being immediately verified directly 
from the definitions. Observe that a given d-tuple (ao,··· ,ad-l) deter­
mines uniquely the infinite vector which is a solution of (*) and projects 
on this d-tuple. Let S be the space of solutions and let Sd be the d­
dimensional space of the first d coordinates. Then the projection 

is injective, and it is obviously surjective, so S is a vector space of 
dimension d. We want to find a basis for S, or even better, given a 
d-tuple (ao, ... ,ad-d we want to express the corresponding solution in 
terms of this d-tuple and ul , ••• ,Ud. 

Let 

We call P(X) the characteristic polynomial of the equations (*). Let (X be 
a root of P(X). Then it is immediately verified that putting all = (X" for 
n ~ d gives a solution of (*). Thus we have found a solution for each 
root of the characteristic polynomial. Note that if (X = 0, then by conven­
tion 00 = 1 and 0" = 0 for n ~ 1, so the solution with n ~ 0 is 

(1,0,0, ... ). 

Note that (X = 0 implies Ud = o. 
Also we note that the solution all = (X" for n ~ d has the beginning 

segment 

which determines all uniquely for n ~ d by the difference equations (*). In 
particular, for this solution we have all = (X" for all n ~ O. 

One knows from elementary algebra that P has at most d distinct 
roots. 

Theorem 2.1. Suppose that P(X) has d distinct roots (Xl' ••. ,(Xd. Then: 
all solutions of (*) are of the form 

with arbitrary numbers bl , ... ,bd. 

Proof It will suffice to prove that the solutions «Xi), ... '«Xd) are 
linearly independent, because then they form a basis for the space S of 
solutions. 
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Suppose there is a relation of linear dependence, that is 

for all n ~ o. 

Looking at the first d equations (with n = 0, ... ,d - 1) we see that the 
determinant of the coefficients is a Vandermonde determinant, which is 

v = TI (IXj - IX;) =F 0 
i<j 

by the hypothesis that the roots of the characteristic polynomial are 
distinct. Hence bi = 0 for all i, thus proving the theorem. 

From Theorem 2.1 one can solve explicitly for b1 , ... ,bd when 
ao, ... ,ad - 1 are given. Indeed, we have the system of linear equations 

ao = b1 + ... + bd , 

a1 = b1 IXl + ... + bdIXd' 

Let A be the column vector of the left-hand side, and let A 1, ... ,Ad be 
the column vectors of the coefficient matrix on the right-hand side 

(j:, 
1 

IX2 

d-! 
IX! IX2 

Then 

D(A 1, ••• ,Ad) = TI (IXj - IXi ) = v. 
i<j 

By Cramer's rule, we obtain 

where the column vector A occurs in the i-th place. 
As an application of Theorem 2.1, consider the power series 

00 

F(T) = L an Tn. 
n=O 

Theorem 2.2. Assume that IX!, ••• ,IXd are distinct. Then F(T) is a 
rational function. 
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Proof We have 

00 00 

F(T) = b1 L: (OC 1 T)" + ... + bd L: (OCd T)d 
n=O n=O 

This gives the partial fraction decomposition of F(T), showing also that 
F(T) is a rational function. 

We shall now indicate another approach, which we carry out when 
d = 2. In this case, the characteristic polynomial is 

Observe that one then has the factorization 

1 - U1 T - Uz T Z = (1 - OC 1 T)(l - OC z T), 

which comes by putting X = liT. The rational function for F(T) can 
then be written down explicitly, as the following proof will show. We 
have 

00 

F(T) = ao + a1 T + L an T" 
n=Z 

00 

= ao + a1 T + L: (U1 an-1 + uzan_z)Tn 
n=Z 

00 00 

= ao + a1 T + U1 T L: an- 1 T n- 1 + Uz T Z L: an-z T n- Z 
n=Z n=Z 

= ao + a1 T + U1 T(F(T) - ao) + U2 T Z F(T) 

= ao + (a 1 - aou1)T + U1 TF(T) + uzTZF(T), 

from which we get 

and so F(T) is the rational function 

(1) F(T) = ao + (a 1 - aoudT = ao + (a 1 - aoudT 
(1 - U1 T - Uz TZ) (1 - OC 1 T)(1 - OC z T)" 

One can then write down the partial fraction decomposition if OC1 =F OCz , 
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namely 

(2) 

ANALYTIC DIFFERENTIAL EQUATIONS 

1 b c 
---+---
1 - ill T 1 - il2 T 

We solve for band c from the equations: 

b + c = 1, 

Then 

(3) and 

461 

We can invert the power series 1 - ill T and 1 - il2 T by the geometric 
series: 

1 00 

---= L: il~Tn 
1 - ill T n=O 

and 
1 00 

--- = L: il~ Tn. 
1 - il2 T n=O 

Then it is clear from (1), (2), (3) that there exist numbers bl , b2 explicitly 
given in terms of ul , u2 , ill' il2 such that 

Observe that we can also determine bl , b2 in a simple way by using 
these equations for n = 0 and n = 1, in which case we get: 

Solving by the high school method yields: 

and 

When d = 2, the Vandermonde determinant collapes to one simple factor. 

APP., §3. ANALYTIC DIFFERENTIAL EQUATIONS 

In this appendix we work out Exercises 6 and 7 of Chapter II, §6. 

Theorem 3.1. Let p be an integer ~ 2. Let gl' ... ,gp-l be power series 
with complex coefficients. Let ao, ... ,ap- l be given complex numbers. 
Then there exists a unique power series f(T) = L: an Tn such that 
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where D is the derivative. IJ g1' ... ,gp-1 converge in a neighborhood oj 
the origin, then so does f. 

Proof. The idea is that the coefficient a" of J for n?; p can be 
determined inductively from the previous coefficients ao, ... ,a,,-1' thus 
giving the formal power series solution. Then one has to estimate to 
show the convergence. We carry this out in detail. We let ap ' ap+1, ... , 
be unknown coefficients. Then observe that 

C() 

DPJ(T) = L n(n - 1) ... (n - p + 1)a" T"-P, 
"=p 

and therefore putting m = n - p, we get 

C() 

(1) DPJ(T) = L (m + p)(m + p - 1) ... (m + 1)am+p Tm. 
m=O 

Similarly for every positive integer s with 1 ~ s ~ p - 1 we have 

C() 

DSJ(T) = L (k + s)(k + s - 1) ... (k + 1)ak+sTk. 
k=O 

It will be useful to use the notation [k, s] = (k + s)(k + s - 1) ... (k + 1). 
Next we write down the power series for each g., say 

Then 

(2) gsDSJ(T) = L cs,m Tm where Cs,m = L [k, s]ak+sb.,j' 
k+j=m 

Hence once we are given ao, ... ,ap- 1 we can solve inductively for am in 
terms of ao, ... ,am-1 and the coefficients of g1' ... ,gp-1 by the formula 

(3) _ cI,m + ... + cp - 1 ,m _ P~I " [k, s] b 
am+p - [] - L.." L.." -[ ]ak +S s,j' m, P s=1 k+j=m m, p 

which determines am+p uniquely in terms of ao, ... ,am+p- I , b.,I' ... ,bs,m' 
Hence we have proved that there is a unique power series satisfying the 
given differential equation. 

Assuming that the power series g1, ... ,gp-1 converge, we must now 
prove that J(T) converges. We select a positive number K sufficiently 
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large ~ 2 and a positive number B such that 

laol, ... , lap - 11 ~ K and Ibs,jl ~ KBj for all s = 1, ... ,p - 1 and all j. 

We shall prove by induction that for m ~ 0 we have 

(4) 

The standard m-th root test for convergence then shows that f(T) 
converges. 

We note that the expressions (2) for cs,m and hence (3) for am+p have 
positive coefficients as polynomials in ao, a1 , ... and the coefficients b.,j 
of the power series gs. Hence to make our estimates, we may avoid 
writing down absolute values by replacing b.,j by KBj, and we may 
replace ao, ... ,ap -1 by K. Then all the values am+p (m ~ 0) are positive, 
and we want to show that they satisfy the desired bound (4). 

Observe first that for 0 ~ k ~ m and 1 ~ s ~ p - 1 we always have 

[k,s] ~ 1. 
Em, p]-

Hence the fraction [k, s]/[m, p] will be replaced by 1 in the following 
estimates. 

Now first we estimate am+p with m = O. Then k + j = 0, so k = j = 0, 
and 

as desired. Suppose by induction that we have proved (4) for all integers 
~ 0 and < n. Then, 

p-1 2 k 1 k . 
an+p ~ L L ak+.bj ~ (p - 1) L (p - 1)"K K - B BJ 

.=1 k+ j=n k+ j=n 

n 

~ (p - 1)"+1 L Kk+1 Bn 

k=O 

~ (p _1)n+1Kn+2Bn, 

which is the desired estimate. We have used the elementary inequality 

n K n+1 - 1 L Kk = ~ K n+1, 
k=O K - 1 -

which is trivial. 



464 APPENDIX [ApP., §3] 

Theorem 3.2. Let g(T) be a power series. Then there is a unique power 
series f(T) such that f(T) = a l T + ... satisfying the differential equation 

f'(T) = g(f(T»). 

If g is convergent, so is f. 

Proof. Let g(T) = L: bk Tk and write f(T) with unknown coefficients 

00 

f(T) = L: am Tm. 
m=l 

Then f'(T) = L: mam T m- l = L: (n + l)an+l Tn. The given differential 
equation has the form 

00 

L: (n + l)an+l Tn = bo + bd(T) + bd(T)2 + .... 
n=O 

Equating the coefficient of Tn on both sides, we see that a l = bo, and 

where p" is a polynomial with positive integer coefficients. In particular, 
starting with a l = bo, we may then solve inductively for an+l in terms of 
al , ... ,an for n;?; 1. This proves the existence and uniqueness of the 
power series f(T). 

Assume next that g(T) converges. We must prove that f(T) converges. 
Let Bk be positive numbers such that Ibkl ~ Bk, and such that the power 
series G(T) = L: Bk Tk converges. Let F(T) be the solution of the differen­
tial equation 

F'(T) = G(F(T»), 

and let F(T) = L: Am T m, with Al > ° and lall ~ Al . Then 

with the same polynomial Pn. Hence I an+ll ~ An+l' and if F(T) converges 
so does f( T). 

Since g(T) converges, there exist positive numbers K, B such that 

for all k = 0, 1, .... 

We let Bk = KBk. Then 

G(T) = K f BkTk = K 
k=O 1 - BT' 
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and so it suffices to prove that the solution F(T) of the differential 
equation 

F'T _ K 
( ) - 1 - BF(T) 

converges. This equation is equivalent with 

F'(T) = K + BF(T)F'(T), 

which we can integrate to give 

F(T)2 
F(T) = KT + B-2-. 

By the quadratic formula, we find 

1 - (1 - 2KBT)1/2 
F(T) = B = KT + .... 

We then use the binomial expansion which we know converges, as 
worked out in the examples of Chapter II, §2 and §3. This proves 
Theorem 3.2. 

APP., §4. FIXED POINTS OF A FRACTIONAL 
LINEAR TRANSFORMATION 

Let M be a 2 x 2 non-singular complex matrix 

ad - be i= O. 

Let P(t) be its characteristic polynomial, so P(t) = det(tI - M) and 

P(t) = (t - A)(t - A') 

where A, A' are the eigenvalues. We assume that A i= A' and c i= O. Then 
M is diagonalizable, but we want an explicit way of doing this. Let W, 
W' E C2 be eigenvectors belonging to the two eigenvalues. We can write 
W, W' in the form 

and 

Indeed, if an eigenvector had the form W = t(w, 0), w i= 0, we could 



466 APPENDIX [ApP., §4] 

assume w = 1. Then directly from the relation MW = AW we find c = 0 
which we have ruled out. 

Let 

S = (w, W') = (7 ~'). 

. )(A. 0) fi From the relatIOn M(W, W') = (AW, A'W') = (W, w' 0 A' we nd 

-1 (A 0) S MS = 0 A' . 

Thus S is a matrix which conjugates M to a diagonal matrix. 
Let z E C. For z # -d/c we define 

M(z) = az + b. 
cz + d 

If z = -d/c then the above expression is not defined, but we put M(z) = 
00. If c = 0 we let M(oo) = 00. If c # 0, we let M(oo) = a/c. 

One verifies directly that if A, B are non-singular 2 x 2 matrices, then 

(AB)(z) = A(B(z) and J(z) = z (I = identity matrix). 

By a fixed point of M we mean a complex number z such that M(z) = z. 

Theorem 4.1. Assuming A # A' and c # 0, there are exactly two fixed 
points, namely wand w'. 

Proof Directly from the definition, one verifies that M(w) = wand 
M(w') = w', so wand w' are fixed points. Conversely, the condition that 
z is a fixed point is expressible as a quadratic equation in z, which has at 
most two solutions by the quadratic formula. This proves Theorem 4.1. 

Theorem 4.2. Assume IAI < IA'I and c # O. Let z E C and z # w. Then 

lim Mk(z) = w'. 
k-+oo 

Proof Let cx = A/A'. Then Icxl < 1. We have 

so 

Hence lim cxkz = 0 for all complex numbers z. 
k-+oo 
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Next observe that since z 0:/- w, it follows that S-l(Z) is a complex 
number by direct computation (i.e. S-l(Z) 0:/- (0). We then apply the for­
mula we have just derived to S-l(Z) instead of z, and we find 

Taking the limit yields 

lim Mk(Z) = S(O) = Wi 
k-oco 

thus proving the theorem. 

APP., §5. CAUCHY'S FORMULA FOR Coo FUNCTIONS 

Let D be an open disc in the complex numbers, and let 15 be the closed 
disc, so the boundary of 15 is a circle. Cauchy's formula gives us the 
value as an integral over the circle C: 

f(zo) = ~ f f(z) dz 
2m c z - Zo 

if f is holomorphic on 15, that is on some open set containing the closed 
disc. But what happens if f is not holomorphic but merely smooth, say 
its real and imaginary parts are infinitely differentiable in the real sense? 
There is also a formula, which unfortunately is not usually taught in 
basic courses, although it gives a beautiful application of several notions 
which arise in both real and complex analysis, and advanced calculus. 
We shall prove this theorem here. We shall also mention an application, 
which occurs in the theory of partial differential equations. 

Let us write z = x + iy. We introduce two new derivatives. Let 

f(z) = f1 (x, y) + if2 (x, y), 

where f1 = Re f and f2 = 1m f are the real and imaginary parts of f 
respectively. We say that f is COCO if f1' f2 are infinitely differentiable in 
the naive sense of functions of two real variables x and y. In other 
words, all partial derivatives of all orders exist and are continuous. We 
write f E COCO(D) to mean that f is COCO on some open set containing D. 

F or such f we define 

of _ 1 (Of .of) --- --l-
oz 2 ox oy 

and of = ~ (Of + iOf). 
oz 2 ox oy 
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Symbolically, we put 

o 1(0 .0) -=- --1-
oz 2 ox oy 

and 

The Cauchy-Riemann equations can be formulated neatly by saying that 
f is holomorphic if and only if 

See Chapter VIII, § 1. 

of =0 az . 

We shall need the Stokes-Green formula for a simple type of region. 
In advanced calculus, one integrates expressions 

L Pdx + Qdy, 

where P, Q are Coo functions, and C is some curve. The Stokes-Green 
theorem relates such integrals over a boundary to a double integral 

f r (oQ - oP) dx dy 
JB oX oy 

taken over a region B which is bounded by the curve C. The precise . 
statement is this. 

Stokes-Green Formula. Let B be a region of the plane, bounded by a 
finite number of curves, oriented so that the region lies to the left of 
each curve. Let y be the boundary, so oriented. Let P, Q have continu­
ous first partial derivatives on B and its boundary. Then 

It is useful to express the Stokes-Green formula in terms of the 
derivatives %z and %z. Writing 

dz = dx + i dy and dz = dx - i dy, 

we can solve for dx and dy in terms of dz and dz, to give 

dx = t(dz + dz) and 
1 

dy = 2i (dz - dz). 
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Then 
P dx + Q dy = g dz + h dz, 

where g, h are suitable functions. Let us write symbolically 

dz /\ dz = -2i dx dy. 

Then by substitution, we find the following version of the Stokes-Green 
Formula: 

{ g dz + h dz = f L (~~ -~~) dz /\ dz. 

Remark. Directly from the definition of %z and %z one verifies that 
the usual expression for df is given by 

of of _ of of 
- dz + -dz = -dx + -dy. 
oz oz ax oy 

Consider the special case where B = B(a) is the region obtained from 
the disc D by deleting a small disc of radius a centered at a point zo, as 
shown on the figure. 

Figure 1 

Then the boundary consists of two circles C and Ca-, oriented as shown 
so that the region lies to the left of each curve. We have written Ca- to 
indicate the circle with clockwise orientation, so that the region B(a) lies 
to the left of Ca-. As before, C is the circle around D, oriented counter­
clockwise. Then the boundary of B(a) can be written 
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We shall deal with integrals 

If cp(z) dz /\ dz, 
D Z - Zo 

where cp(z) is a smooth function, and where Zo is some point in the 
interior of the disc. Such an integral is an improper integral, and is 
supposed to be interpreted as a limit 

1· If ( )dz /\ dz 1m cp z , 
a-+O B(a) Z - Zo 

where B(a) is the complement of a disc of radius a centered at Zo' The 
limit exists, as one sees by using polar coordinates. Letting z = Zo + re i6 

with polar coordinates around the fixed point Zo, we have 

dx d y = r dr de 

and z - Zo = re i6, so r cancels and we see that the limit exists, since the 
integral becomes simply 

-2'JJ{O(Z) dr dB 
I '()' e' 

The region B(a) is precisely of the type where we apply the Stokes­
Green formula. 

Cauchy's Theorem for Coo Functions. Let j E Coo(D) and let Zo be a 
point in the interior D. Let C be the circle around D. Then 

j(zo) = _1 r j(z) dz + _1 If oj dz /\ dz. 
2ni J c z - Zo 2ni D oz z - Zo 

Proof. Let a be a small positive number, and let B(a) be the region 
obtained by deleting from D a disc of radius a centered at Zo. Then 
oj/o'£ is Coo on B(a) and we can apply the Stokes-Green formula to 

j(z) dz = g(z) dz 
z - Zo 

over this region. Note that this expression has no term with dz. 
Furthermore 

and 
og oj 1 
oz - oz z - Zo 
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because 1/(z - zo) is hoi om orphic in this region. Then by Stokes-Green 
we find 

f /(z)dz+ f /(Z)dz=-ff o~dzl\dz. 
JCa z - Zo Jc z - Zo B(a) oz Z - Zo 

The limit of the integral on the right-hand side as a approaches 0 is 
the double integral (with a minus sign) which occurs in Cauchy's formula. 
We now determine the limit of the curve integral over Ca- on the left­
hand side. We parametrize Ca (counterclockwise orientation) by 

° ~ e ~ 2n. 

Then dz = aie ifJ de, so 

f /(z) dz = -f /(z) dz = _f21< /(Zo + aeifJ)i de. 
Ca z - Zo ca Z - Zo 0 

Since / is continuous at zo, we can write 

where h(a, e) is a function such that 

lim h(a, e) = 0 
a"" 0 

uniformly in e. Therefore 

i /(z) dz f21< 
lim -- = - 2ni/(zo) - lim h(a, e)i de 
a"" 0 Ca z - Zo a"" 0 0 

= - 2ni/(zo)· 

Cauchy's formula now follows at once. 

Remark 1. Suppose that / is holomorphic on D. Then 

0/ 
-=0 
oz ' 

and so the double integral disappears from the general formula to give 
the Cauchy formula as we encountered it previously. 

Remark 2. Consider the special case when the function / is 0 on the 
boundary of the disc. Then the integral over the circle C is equal to 0, 
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and we obtain the formula 

f(zo) = ~ If o~ dz /\ dz. 
2m D oz z - Zo 

This allows us to recover the values of the function from its derivative 
of/oz. Conversely, one has the following result. 

Theorem. Let g e Coo (D) be a COO function on the closed disc. Then the 
function 

1 If g(z) -f(w) = -. --dz /\ dz 
2m D z - W 

is defined and Coo on D, and satisfies 

of 
ow = g(w) for weD. 

The proof is essentially a corollary of Cauchy's theorem if one has the 
appropriate technique for differentiating under the integral sign. How­
ever, we have now reached the boundary of this course, and we omit the 
proof. 

APP., §6. CAUCHY'S THEOREM FOR LOCALLY 
INTEGRABLE VECTOR FIELDS 

The main part of Chapter IV is not really a theorem about complex 
functions, but consists of a purely topological theorem as in Chapter IV, 
§3, and an application to locally integrable vector fields on an open set of 
the plane R2. We now indicate briefly this more general context in a 
precise way. 

Let U be a connected open subset of R2, and let F = (ii, h) be a 
continuous real valued vector field on U. If F is of class C1, i.e. its 
coordinate functions f}, f2 have continuous partial derivatives, and if 

D2ii = Dlh, 

then it is proved in standard courses that F has a potential g on every disc 
D contained in U, that is a function g such that grad g = F. Cf. for 
instance my Undergraduate Analysis, Springer-Verlag (1983), Chapter XV, 
Theorem 3.3. 

Now in general, for a continuous vector field F, we define F to be 
locally integrable on U if for each point P of U there is a disc Dp 
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contained in U such that F has a potential on Dp. We let F denote such a 
vector field for the rest of this section. 

Let 1'1 : [ai, a2] -+ U be a continuous curve, whose image is contained 
in a disc D c U such that F has a potential on D. Let Pj = Yj(aj), so PI is 
the beginning point and P2 the end point of the curve. We define 

J F = g(P2) - g(PJ). 
Yl 

Since a potential is uniquely determined up to an additive constant (on 
a. connected open set, and D in particular), it follows that the value 
g(P2) - g(PJ) is independent of the choice of potential g for F on the disc. 
If the curve 1'1 happens to be Cl , then the above value coincides with the 
value of the integral computed according to the usual chain rule. 

Suppose that 1': [a, b] -+ U is an arbitrary continuous curve. We can 
then define the integral 

just as we defined the integral of a holomorphic function. We can find a 
partition of [a, b], and a sequence of discs Do, ... , Dn connected by the 
curve along the partition such that each D j c U and such that F has 
a potential gj on D j • (One uses the uniform continuity of F and the 
compactness of the image of I' to satisfy these conditions.) The integral is 
defined to be 

Exactly the same arguments as those of the text in Chapter III, §4 show 
that this integral is independent of the choices made (partition, discs, 
potentials) subject to the above conditions. 

We can define two continuous curves 1', 11 from P to Q in U to be close 
together (with respect to F) if there is a sequence of discs as above such 
that 

and 

The proofs of Theorems 5.1 and 5.2 of Chapter III are then valid in the 
present context. In particular, if two curves are close together with respect 
to F, then the integrals of F along these curves are equal. 

Furthermore, the homotopy form of Cauchy's theorem is also valid in 
the present context, replacing the holomorphic function f by the locally 
integrable vector field F. In particular: 
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Theorem 6.1. Let U be simply connected (for instance a disc or a 
rectangle), and let F be a locally integrable vector field on U. Then F 
has a potential on U. 

Proof This comes directly from the homotopy form of. Cauchy's 
theorem. The potential is defined by the integral 

g(X) = JX F, 
Po 

taken from a fixed point Po in U to a variable point X. The integral may 
be taken along any continu( curve in U, because the integral is 
independent of the path between Po and X. Thus the analogue of Chapter 
III, Theorem 6.1 is valid. 

In particular, in the definition of an integral of F, one need not specify 
that F have a potential on each D j. It suffices that the discs Dj be 
contained in U. 

We may now apply the considerations of Chapter IV, concerning the 
winding number and homology. Instead of dC/C, we use the vector field 

( -y x) 
G(x, y) = 2 2 '2 2· 

X +y x +y 

By the chain rule, using r2 = x2 + y2, X = r cos 0, y = r sin 0, one sees 
that 

-y X 
2 2 dx + 2 2 dy = de. x +y x +y 

For (x, y) in a disc not containing the origin, G has a potential, which is 
just e, plus a constant of integration. 

Let U be a connected open set in R2. For each P E R2, P = (xo, Yo), 
we may consider the translation of G to P, that is the vector field 

Gp(x, y) = Gp(X) = G(X - P) = G(x - Xo, Y - yo). 

Then Gp is locally integrable on every open set not containing P. 
Let y: [a, bJ -+ U be a closed curve in U. For every P not on y, the 

integral 

is defined, and from the definition of the integral with discs connected 
along a partition, we see that the value of this integral is equal to 2nk, for 
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some integer k. We define the winding number W(y, P) to be 

W(y, P) = ;11: t Gp . 

We are now in the same position we were for the complex integral, 
allowing us to define a curve y homologous to 0 in U if W(y, P) = 0 for all 
points P in R2, P ¢ U. 

The same arguments of Chapter IV, §3, replacing f by F, yield: 

Theorem 6.2. Let U be a connected open set in R2, and let y be a closed 
chain in U. Then y is homologous to a rectangular chain. If y is 
homologous to 0 in U, and F is a locally integrable vector field on U, 
then 

tF=O. 
Proof Theorem 3.2 of Chapter IV applies verbatim to the present 

situation, and we know from Theorem 6.1 that the integral of F around a 
rectangle is 0, so the theorem is proved. 

We also have the analogue of Theorem 2.4 of Chapter IV. 

Theorem 6.3. Let U be an open set and y a closed chain in U such that 
y is homologous to 0 in U. Let PI, . .. , P n be a finite number of distinct 
points of U. Let Yk (k = 1, ... ,n) be the boundary of a closed disc 15k 
contained in U centered at Pk and oriented counterclockwise. We assume 
that 15k does not intersect 15} if k #- j. Let 

Let U* be the set obtained by deleting PI, ... , Pn from U. Then y is 
homologous to L mkYk on U*. 

Furthermore, if F is a locally integrable vector field on U*, then 

From the above theorem, we also obtain: 

Theorem 6.4. Let U be simply connected, and let PI, ... ,Pn be distinct 
points of U. Let U* be the open set obtained from U by deleting these 
points. Let F be a locally integrable vector field on U*. Let 
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where Yk is a small circle around Pk, not containing Pj if j #:- k. Then the 
vector field 

has a potential on U. 

Proof One verifies directly that 

if k =j, 

if k #:- j. 

Let y be a closed curve in U*. Then immediately from the definition of Yk 
and Theorem 6.3, it follows that if we put 

then" is homologous to 0 in U*. Therefore by Theorem 6.3, the integral 
of F over " is O. By the definitions, this implies that 

Thus the integral of F - E akGpk over any closed curve in U* is 0, so by 
a standard result from the calculus in 2 variables, we conclude that 

has a potential on U·, thus proving the theorem. 

For the "standard result", cf. for instance my Undergraduate Analysis, 
Springer-Verlag, Chapter XV, Theorem 4.2. 

A more complete exposition of the material in the present appendix is 
given in Undergraduate Analysis, Springer-Verlag, Second Edition (1997). 
Chapter XVI. 

Theorem 6.4 is the third example that we have encountered of the same 
type as Theorem 2.4 of Chapter IV, and Theorem 3.9 of Chapter VIII. 

Sketch of proof of Theorem 3.9, Chapter VIII. We are given h harmonic 
on the punctured open set U·. On each disc Win U·, h is the real part of 
an analytic function /w, uniquely determined up to an additive constant. 
We want to know the obstruction for h to be the real part of an analytic 
function on U·, and more precisely we want to show that there exist 
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constants ak and an analytic function J on U' such that 

h(z) - L ak loglz - zkl = Re J(z). 

We consider the functions Jw as above. For each W, the derivative Jtv is 
uniquely determined, and the collection of such functions {J!v} defines an 
analytic function J' on U·. Let Yk be a small circle around Zk, and let 

ak = -21 .J J'(() dC· 
m Yk 

Let Zo be a point in U' and let Yz be a piecewise C 1 path in U* from Zo to 
a point z in U*. Let 

g(z) = J'(z) - "ak_1_ 7: z -Zk 
and J(z) = J g(() dC· 

Yz 

Show that this last integral is independent of the path Yz, and gives the 
desired function. Use Theorem 2.4 of Chapter IV.] 

§7. MORE ON CAUCHY-RIEMANN 

We give here two more statements about the Cauchy-Riemann equations, 
which are the heart of some exercises of Chapter VIII. 

Theorem 7.1. Let J be a complex harmonic Junction on a connected open 
set U. Let S be the set of points Z E U such that af I at = O. Suppose 
that S has a non-empty interior V. Then V = U. 

Proof From p. 92 Theorem 1.6, we know that an open subset of 
U which is closed in U is equal to U. Thus it suffices to show that V is 
closed in U. Let Zo be a point in av n U. Let h = oJlot = u + iv, with u, 
v real. Since partials commute, h is harmonic. Let Do be a disc centered 
at zo, and Do c U. By Theorem 3.1 or 5.4 of Chapter V~~I, there exists 
an analytic function hI on Do with Re( hJ) = u. Since Zo E a V, if Zo ¢: V it 
follows that Do n V is open, and u = 0 on Do n V. Hence hI is pure 
imaginary constant on Do n V, and therefore hI is pure imaginary 
constant on Do, so u = 0 on Do. Replacing J by if, we conclude that 
v = 0 on Do also. Hence J is analytic on Do, so Do c Sand Zo E V, qed. 

Of course, in the above statement, one could have assumed oJloz = 0 
instead of oJlot = O. Recall the formula oJloz = allot, which shows that 
in the above situation, f, 1 playa symmetric role. 
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The next result has to do with the normal derivative, and extends VIII, 
§2, Exercise 5. Let f, U be open sets in R2. Let: 

f: U --+ V have coordinate functions satisfying Cauchy-Riemann equa­
tions, i.e. 

rp: V --+ R a C1 real valued function on V; 
y: [a, b] --+ U a C1 curve, so we get a sequence of maps 

y f tp 
[a, b] --+ U --+ V --+ R. 

For each function, we have its derivative at a point as a real linear map. 
The (non-unitized) normal of y is 

Ny = vertical vector ( y~,), evaluated at each t E [a, b]. 
-Yl 

For any point Q E V, calculus tells us that for any vector Z E R2 we have 

(grad rp)(Q). Z = rp'(Q)Z. 

The normal derivative of rp along the curve f 0 y is by definition 

(1) 

Using the chain rule, we also have 

Theorem 7.2. Assume that It, h satisfy the Cauchy-Riemann equations. 
Then 

f'(y)Ny = Nfoy, 

Proof. On the one hand, writing vectors vertically, we have 

N _ ( (h 0 y)' ) _ ( olh(y)yi + o2h(y)y~ ) 
foy- -(ltoy)' - -OIIt(y)y;-o2It(y)y~ . 

On the other hand, using the matrix representing f' and writing y' verti­
cally, we get 

Using the Cauchy-Riemann equations concludes the proof. 
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