Serge Lang

Cyclotomic Fields
| and I

Combined Second Edition

Springer-Verlag



Graduate Texts in Mathematics ].21

Editorial Board
J.H. Ewing
F.W. Gehring
P.R. Halmos



Graduate Texts in Mathematics

TAKEUT/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
OxTOBY. Measure and Category. 2nd ed.
ScHAEFFER. Topological Vector Spaces.
HILTON/STAMMBACH. A Course in Homological Algebra.
Mac LANE. Categories for the Working Mathematician.
HUGHES/PIPER. Projective Planes.
SERRE. A Course in Arithmetic.
TAKEUTVZARING. Axiomatic Set Theory.
9 HuUMPHREYS. Introduction to Lie Algebras and Representation Theory.
10 CoHEeN. A Course in Simple Homotopy Theory.
11 Conway. Functions of One Complex Variable. 2nd ed.
12 BEaLs. Advanced Mathematical Analysis.
13 ANDERSON/FULLER. Rings and Categories of Modules.
14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
16 WINTER. The Structure of Fields.
17 ROSENBLATT. Random Processes. 2nd ed.
18 HaLMos. Measure Theory.
19 HaLmos. A Hilbert Space Problem Book. 2nd ed., revised.
20 HuseMOLLER. Fibre Bundles. 2nd ed.
21 HUMPHREYS. Linear Algebraic Groups.
22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
23 GRrEeuUB. Linear Algebra. 4th ed.
24 HoLMES. Geometric Functional Analysis and its Applications.
25 HEWITT/STROMBERG. Real and Abstract Analysis.
26 MANES. Algebraic Theories.
27 KELLEY. General Topology.
28 ZARISKI/SAMUEL. Commutative Algebra. Vol. 1.
29 ZARiSKI/SAMUEL. Commutative Algebra. Vol. IL.
30 JacoBsoN. Lectures in Abstract Algebra I: Basic Concepts.
31 JACOBSON. Lectures in Abstract Algebra II: Linear Algebra.
32 JacoBsoN. Lectures in Abstract Algebra III: Theory of Fields and Galois Theory.
33 HirscH. Differential Topology.
34 SpiTzER. Principles of Random Walk. 2nd ed.
35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
37 MonNK. Mathematical Logic.
38 GRAUERT/FRITZSCHE. Several Complex Variables.
39 ARVESON. An Invitation to C*-Algebras.
40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
41 AposTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42 SERRE. Linear Representations of Finite Groups.
43 GILLMAN/JERISON. Rings of Continuous Functions.
44 KeNDIG. Elementary Algebraic Geometry.
45 LokVE. Probability Theory I. 4th ed.
46 LOEVE. Probability Theory II. 4th ed.
47 Moise. Geometric Topology in Dimensions 2 and 3.

(o e R I S R

3



Serge Lang

Cyclotomic Fields I and II

Combined Second Edition

With an Appendix by Karl Rubin

Springer Science+Business Media, LLC



Serge Lang

Department of Mathematics
Yale University

New Haven, CT 06520

US.A.

Editorial Board

J.H. Ewing F.W. Gehring P.R. Halmos

Department of Department of Department of
Mathematics Mathematics Mathematics

Indiana University University of Michigan Santa Clara University

Bloomington, IN 47405 Ann Arbor, MI 48109 Santa Clara, CA 95053

USA. USA. USA.

Mathematical Subject Classifications (1980): 12A35, 12B30, 12C20, 14G20

Library of Congress Cataloging-in-Publication Data
Lang, Serge, 1927-
Cyclotomic fields I and II (Combined Second Edition)/Serge Lang
. cm. -- (Graduate texts in mathematics; 121)
Bibliography: p.
Includes index.
ISBN 0-387-96671-4

1. Fields, Algebraic. 2. Cyclotomy. I. Title. II. Series
QA247.L33 1990
512".3--dc19 87-35616

This book is a combined edition of the books previously published as Cyclotomic Fields and
Cyclotomic Fields 11, by Springer Science+Business Media, LLC, in 1978 and 1980, respectively.
It contains an additional appendix by Karl Rubin.

© 1990 by Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1990
Softcover reprint of the hardcover 2nd edition 1990

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information stora-
ge and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

987654321

ISBN 978-1-4612-6972-4 ISBN 978-1-4612-0987-4 (eBook)
DOI 10.1007/978-1-4612-0987-4



Notation

Introduction

CHAPTER 1

Character Sums

1. Character Sums over Finite Fields

2. Stickelberger’s Theorem

3. Relations in the Ideal Classes

4. Jacobi Sums as Hecke Characters

5.  Gauss Sums over Extension Fields

6. Application to the Fermat Curve
CHAPTER 2

Stickelberger Ideals and Bernoulli Distributions
1. The Index of the First Stickelberger Ideal
2. Bernoulli Numbers

3. Integral Stickelberger Ideals

4. General Comments on Indices

5. The Index for £ Even

6. The Index for &£ Odd

7. Twistings and Stickelberger I1deals

8. Stickelberger Elements as Distributions
9. Universal Distributions

10. The Davenport-Hasse Distribution

Appendix. Distributions

Contents

xi

Xiit

14
16
20
22

26

27
32
43
48
49
50
51
53
57
61
65



Contents

CHAPTER 3
Complex Analytic Class Number Formulas

S

Gauss Sums on Z/mZ
Primitive L-series
Decomposition of L-series
The (+ 1)-eigenspaces
Cyclotomic Units

The Dedekind Determinant
Bounds for Class Numbers

CHAPTER 4
The p-adic L-function

1.

Measures and Power Series

2. Operations on Measures and Power Series

3. The Mellin Transform and p-adic L-function
Appendix. The p-adic Logarithm

4. The p-adic Regulator

5. The Formal Leopoldt Transform

6. The p-adic Leopoldt Transform

CHAPTER 5

Iwasawa Theory and Ideal Class Groups

1. The Iwasawa Algebra

2. Weierstrass Preparation Theorem

3. Modules over Z,[[X]]

4. Z,-extensions and Ideal Class Groups

5. The Maximal p-abelian p-ramified Extension

6. The Galois Group as Module over the Iwasawa Algebra
CHAPTER 6

Kummer Theory over Cyclotomic Z,-extensions

1. The Cyclotomic Z,-extension

2. The Maximal p-abelian p-ramified Extension of the Cyclotomic
Z,-extension

3. Cyclotomic Units as a Universal Distribution

4. The Iwasawa—Leopoldt Theorem and the Kummer—Vandiver
Conjecture

CHAPTER 7

Iwasawa Theory of Local Units

LA W=

The Kummer-Takagi Exponents
Projective Limit of the Unit Groups
A Basis for U(y) over A

The Coates—Wiles Homomorphism
The Closure of the Cyclotomic Units

69

69
72
75
81
84
89
91

94

95
101
105
111
112
115
117

123

124
129
131
137
143
145

148
148

152
157

160

166

166
175
179
182
186



CHAPTER 8
Lubin-Tate Theory

Nk wN=

Lubin-Tate Groups

Formal p-adic Multiplication

Changing the Prime

The Reciprocity Law

The Kummer Pairing

The Logarithm

Application of the Logarithm to the Local Symbol

CHAPTER 9
Explicit Reciprocity Laws

1. Statement of the Reciprocity Laws

2. The Logarithmic Derivative

3. A Local Pairing with the Logarithmic Derivative

4. The Main Lemma for Highly Divisible x and o« = x,
5. The Main Theorem for the Symbol <{x, x>

6. The Main Theorem for Divisible x and & = unit

7. End of the Proof of the Main Theorems
CHAPTER 10

Measures and Iwasawa Power Series

I.

Iwasawa Invariants for Measures

2. Application to the Bernoulli Distributions

3. Class Numbers as Products of Bernoulli Numbers
Appendix by L. Washington: Probabilities

4. Divisibility by / Prime to p: Washington’s Theorem

CHAPTER 11

The Ferrero—Washington Theorems

1. Basic Lemma and Applications

2. Equidistribution and Normal Families
3. An Approximation Lemma

4. Proof of the Basic Lemma
CHAPTER 12

Measures in the Composite Case

1.
2.

3.

Measures and Power Series in the Composite Case
The Associated Analytic Function on the Formal
Multiplicative Group

Computation of L,(1, y) in the Composite Case

Contents

190

190
196
200
203
204
211
217

220

221
224
229
232
236
239
242

244

245
251
258
261
265

269

269
272
276
2717

280
280

286
291

vil



Contents

CHAPTER 13
Divisibility of Ideal Class Numbers

S AL~

Iwasawa Invariants in Z,-extensions

CM Fields, Real Subfields, and Rank Inequalities

The [-primary Part in an Extension of Degree Prime to /

A Relation between Certain Invariants in a Cyclic Extension
Examples of Iwasawa

A Lemma of Kummer

CHAPTER 14
p-adic Preliminaries

1.

The p-adic Gamma Function

2. The Artin—Hasse Power Series

3. Analytic Representation of Roots of Unity
Appendix: Barsky’s Existence Proof for the p-adic Gamma Function

CHAPTER 15

The Gamma Function and Gauss Sums

1. The Basic Spaces

2. The Frobenius Endomorphism

3. The Dwork Trace Formula and Gauss Sums

4. Eigenvalues of the Frobenius Endomorphism and the p-adic
Gamma Function

5. p-adic Banach Spaces

CHAPTER 16
Gauss Sums and the Artin—Schreier Curve

1. Power Series with Growth Conditions
2. The Artin—Schreier Equation

3. Washnitzer—-Monsky Cohomology

4. The Frobenius Endomorphism
CHAPTER 17

Gauss Sums as Distributions

RN =

viil

The Universal Distribution

The Gauss Sums as Universal Distributions
The L-function at s = 0

The p-adic Partial Zeta Function

295

295
299
304
306
310
312

314

314
319
323
325

329

330
336
341

343
348

360

360
369
374
378

381

381
385
389
391



Contents

APPENDIX BY KARL RUBIN

The Main Conjecture 397

Introduction 397
1. Setting and Notation 397
2. Properties of Kolyvagin’s “Euler System” 399
3. An Application of the Chebotarev Theorem 401
4. Example: The Ideal Class Group of Q(n,)* 403
5. The Main Conjecture 405
6. Tools from Iwasawa Theory 406
7. Proof of Theorem 5.1 411
8. Other Formulations and Consequences of the Main Conjecture 415
Bibliography 421

Index 431

X



Notation

Z(N) = integers mod N = Z/NZ.

If A is an abelian group, we usually denoted by A, the elements xe 4
such that Nx = 0. Thus for a prime p, we denote by A4, the elements of order
p. However, we also use p in this position for indexing purposes, so we rely
to some extent on the context to make the intent clear. In his book, Shimura
uses A[p] for the kernel of p, and more generally, if 4 is a module
over a ring, uses A[a] for the kernel of an ideal a in A. The brackets are
used also in other contexts, like operators, as in Lubin-Tate theory. There is
a dearth of symbols and positions, so some duplication is hard to avoid.

We let A(N) = A/NA. We let AP be the subgroup of A consisting of all
elements annihilated by a power of p.
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Introduction

Kummer’s work on cyclotomic fields paved the way for the development of
algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert,
Takagi, Artin and others. However, the success of this general theory has
tended to obscure special facts proved by Kummer about cyclotomic fields
which lie deeper than the general theory. For a long period in the 20th century
this aspect of Kummer’s work seems to have been largely forgotten, except
for a few papers, among which are those by Pollaczek [Po], Artin—Hasse
[A—H] and Vandiver [Va}.

In the mid 1950’s, the theory of cyclotomic fieids was taken up again by
Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues
for number fields of the constant field extensions of algebraic geometry, and
wrote a great sequence of papers investigating towers of cyclotomic fields,
and more generally, Galois extensions of number fields whose Galois group
is isomorphic to the additive group of p-adic integers. Leopoldt concentrated
on a fixed cyclotomic field, and established various p-adic analogues of the
classical complex analytic class number formulas. In particular, this led him
to introduce, with Kubota, p-adic analogues of the complex L-functions
attached to cyclotomic extensions of the rationals. Finally, in the late 1960’s,
Iwasawa [Iw 11] made the fundamental discovery that there was a close
connection between his work on towers of cyclotomic fields and these p-adic
L-functions of Leopoldt—Kubota.

The classical results of Kummer, Stickelberger, and the Iwasawa—Leopoldt
theories have been complemented by, and received new significance from the
following directions:

1. The analogues for abelian extensions of imaginary quadratic fields in
the context of complex multiplication by Novikov, Robert, and Coates—
Wiles. Especially the latter, leading to a major result in the direction of the
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Introduction

Birch—Swinnerton-Dyer conjecture, new insight into the explicit reciprocity
laws, and a refinement of the Kummer—Takagi theory of units to all levels.

2. The development by Coates, Coates—Sinnott and Lichtenbaum of an
analogous theory in the context of K-theory.

3. The development by Kubert—Lang of an analogous theory for the units
and cuspidal divisor class group of the modular function field.

4. The introduction of modular forms by Ribet in proving the converse of
Herbrand’s theorem. The connection between cyclotomic theory and modular
forms reached a culmination in the work of Mazur—Wiles, who proved the
“main conjecture”. This is one of the greatest achievements of the modern
period of mathematics.

5. The connection between values of zeta functions at negative integers
and the constant terms of modular forms starting with Klingen and Siegel,
and highly developed to congruence properties of these constant terms by
Serre, for instance, leading to the existence of the p-adic L-function for
arbitrary totally real fields.

6. The construction of p-adic zeta functions in various contexts of elliptic
curves and modular forms by Katz, Manin, Mazur, Vishik.

7. The connection with rings of endomorphisms of abelian varieties or
curves, involving complex multiplication (Shimura—Taniyama) and/or the
Fermat curve (Davenport—Hasse—Weil and more recently Gross—Robhrlich).

My two volumes on Cyclotomic Fields provided a systematic introduction
to the basic theory. No such introduction existed when they first came out.
Since then, Washington’s book has appeared, covering some of the material
but emphasizing different things. As my books went out of print, Springer-
Verlag and I decided to continue making them available in a single volume
for the convenience of readers. No changes have been made except for some
corrections, for which [ am indebted to Larry Washington, Neal Koblitz, and
others. Thus the book is kept essentially purely cyclotomic, and as elementary
as possible, although in a couple of places we use class field theory. No
connection is made with modular forms. This would require an entire book
by itself. However, in a major development, a purely cyclotomic proof of the
“main conjecture”, the Mazur—Wiles theorem, has been found, and I am very
much indebted to Karl Rubin for having given me an appendix containing
a self-contained proof, based on work of Thaine, Kolyvagin and Rubin himself.
For details of the history, see Rubin’s own introduction to his appendix.

My survey article [L 5] provides another type of introduction to
cyclotomic theory. First, at the beginning in §2 it gives a quick and
efficient summary of main results, stripped of their proofs which neces-
sarily add bulk. Second, this article is also useful to get a perspective on
cyclotomic fields in connection with other topics, for instance having to
do with modular curves and elliptic curves. In that survey, I emphasize
questions about class groups and unit groups in a broader context than
cyclotomic fields. Specifically, in Theorem 4.2 of [L 5] I state how Mazur—
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Introduction

Wiles construct certain class fields (abelian unramified extensions) of
cyclotomic fields by means of torsion points on the Jacobians of modular
curves. The existence of class fields of certain degrees is predicted ab-
stractly by the pure cyclotomic theory, but the explicit description of the
irrationalities generating such class fields provides an additional basic
structure. In that sense, the purely cyclotomic proof of the “main con-
jecture”, and even the “main conjecture” itself, do not supersede and are
not substitutes for the Mazur—Wiles theory.

The first seven chapters of the present book, together with Chapters
10, 11, 12 and 13 and Rubin’s appendix develop systematically the basic
structure of units and ideal class groups in cyclotomic fields, or possibly
Galois extensions whose Galois group is isomorphic to the group of
p-adic integers. We look at the ideal class group in fields such as Q(p,n)
where p,. is the group of p"th roots of unity. We decompose these
groups, as well as their projective limits, into eigenspaces for characters of
(Z/pZ)*, and we attempt to describe as precisely as possible the structure
of these eigenspaces. For instance, let h, denote the class number of Q(p,).
There is already a natural decomposition h, = h;h,, where h, is the
order of the (+ 1)-eigenspace, and h, is the order of the (— 1)-eigenspace
for complex conjugation, and similarly for p" instead of p. Part of the
problem is to determine as accurately as possible the p-divisibility of 4,
and h,, and also asymptotically for p” instead of p when n — co.

A number of chapters are logically independent of each other. For instance,
readers might want to read Chapter 10 on measures and Iwasawa power series
immediately after Chapter 4, since the ideas of Chapter 10 are continuations
of those of Chapter 4. This leads naturally into the Ferrero—Washington
theorems, proving Iwasawa’s conjecture that the p-primary part of the ideal
class group in the cyclotomic Z ,-extension of a cyclotomic field grows linearly
rather than exponentially. This is first done for the minus part (the minus
referring, as usual, to the eigenspace for complex conjugation), and then it
follows for the plus part because of results bounding the plus part in
terms of the minus part. Kummer had already proved such results. An-
other proof for the Ferrero—Washington theorem was subsequently given
by Sinnott [Sin 2].

The first seven chapters suffice for the proof of the “main conjecture”
in Rubin’s appendix, which does not use the Ferrero—Washington theorem.
However, using that theorem in addition gives a clearer picture of the
projective limit of the ideal class groups as module over the projective
limit of the group rings Z,[G,], where G, is the Galois group of Q(p,.)
over Q(u,), and therefore also as module over Z,. This module plays a
role analogous to the Jacobian in the theory of curves. The Ferrero—
Washington theorem states that up to a finite torsion group, this module
is free of finite rank over Z,. The “main conjecture” gives some descrip-
tion of the characteristic polynomial of a generator for the Galois group
playing an analogous role to the Frobenius endomorphism in the theory
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Introduction

of curves. Questions then arise whether these characteristic polynomials
behave in ways similar to those in the theory of curves over finite fields.
These questions pertain both to the nature of these polynomials, e.g.
their coefficients and their roots (Riemann type hypotheses); and also
concerning the behavior of these polynomials for varying p. Cf. [L 5],
p. 274.

After dealing mostly with ideal class groups and units, we turn to a
more systematic study of Gauss sums. We do what amounts to “Dwork
theory”, to derive the Gross—Koblitz formula expressing Gauss sums in
terms of the p-adic gamma function. This lifts Stickelberger’s theorem
p-adically. Half of the proof relies on a course of Katz, who had first
obtained Gauss sums as limits of certain factorials, and thought of using
Washnitzer—Monsky cohomology to prove the Gross—Koblitz formula.

Finally, we apply these latter results to the Ferrero—Greenberg theorem,
showing that L;(0, y) # 0 under the appropriate conditions. We take this
opportunity to introduce a technique of Washington, who defined the p-adic
analogues of the Hurwitz partial zeta functions, in a way making it possible
to parallel the treatment from the complex case to the p-adic case, but in a
much more efficient way.

Some basic conjectures remain open, notably the Kummer-—Vandiver
conjecture that h; is prime to p. The history of that conjecture is inter-
esting. Kummer made it in no uncertain terms in a letter to Kronecker
dated 28 December 1849. Kummer first tells Kronecker off for not under-
standing properly what he had previously written about cyclotomic fields
and Fermat’s equation, by stating “so liegt hierin ein grosser Irrthum
deinerseits ...”; and then he goes on (Collected Works, Vol. 1, p. 84):.

Deine auf dieser falschen Ansicht berithenden Folgerungen fallen somit von
selbst weg. Ich gedenke vielmehr den Beweis des Fermatschen Satzes auf
folgendes zu grunden:

1. Auf den noch zu beweisenden Satz, dass es fir die Ausnahmszahlen / stets
Einheiten giebt, welche ganzen Zahlen congruent sind fiir den Modul 4,
ohne darum Ate Potenzen anderer Einheiten zu sein, oder was dasselbe ist,
dass hier niemals D/4 durch 4 theilbar wird.

In our notation: A =p and D/4 = h;. Kummer wrote D/4 as a quo-
tient of regulators, expressing the index of the cyclotomic units in the
group of all units. This index happens to coincide with h; (cf. Theorem
5.1 of Chapter 3). Thus Kummer rather expected to prove the conjecture.
According to Barry Mazur, who reviewed Kummer’s complete works
when they were published by Springer-Verlag, Kummer never mentioned
the conjecture in a published paper, but he mentioned it once more in
another letter to Kronecker on 24 April 1853 (loc cit p. 93):

Hierein hingt auch zusammen, dass eines meiner Haupresultate auf welches
ich seit einem Vierteljahre gebaut hatte, dass der zweite Faktor der Klassen-

XVi



Introduction

zahl D/4 niemals durch A theilbar ist, falsch ist oder wenigstens unbewiesen ...
Ich werde also vorlaufig hauptsachlich meinen Fleiss nur auf die Weiter-
fithrung der Theorie der complexen Zahlen wenden, und dann sehen ob etwas
daraus entsteht, was auch uber jene Aufgabe Licht verbreitet.

So the situation was less clear than Kummer thought at first. Much later,
Vandiver made the same conjecture, and wrote [Va 1]:

... However, about twenty-five years ago I conjectured that this number was never
divisible by /[referring to 4™ ]. Later on, when I discovered how closely the question
was related to Fermat’s Last Theorem, I began to have my doubts, recalling how
often conjectures concerning the theorem turned out to be incorrect. When I visited
Furtwingler in Vienna in 1928, he mentioned that he had conjectured the same
thing before I had brought up any such topic with him. As he had probably more
experience with algebraic numbers than any mathematician of his generation, I felt
a little more confident ... .

On the other hand, many years ago, Feit was unable to understand a step
in Vandiver’s “proof” that p|h* implies the first case of Fermat’s Last
Theorem, and stimulated by this, Twasawa found a precise gap which is such
that there is no proof.

The Iwasawa—Leopoldt conjecture that the p-primary part of C~ is cyclic
over the group ring, and is therefore isomorphic to the group ring modulo
the Stickelberger ideal, also remains open. For prime level, Leopoldt and
Iwasawa have shown that this is a consequence of the Kummer—Vandiver
conjecture. Cf. Chapter 1V, §4.

Much of the cyclotomic theory extends to totally real number fields, as
theorems or conjecturally. We do not touch on this aspect of the question.
Cf. Coates’ survey paper [Co 3], and especially Shintani [Sh].

Coates, Ribet, and Rohrlich had read the original manuscript and had
made a large number of suggestions for improvement. I thank them again,
as well as Koblitz and Washington, for their suggestions and corrections.

New Haven, 1989 SERGE LANG
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Character Sums

Character sums occur all over the place in many different roles. In this
chapter they will be used at once to represent certain principal ideals, thus
giving rise to annihilators in a group ring for ideal classes in cyclotomic fields.

They also occur as endomorphisms of abelian varieties, especially Jacob-
ians, but we essentially do not consider this, except very briefly in §6. They
occur in the computation of the cuspidal divisor class group on modular
curves in [KL 6]. The interplay between the algebraic geometry and the
theory of cyclotomic fields is one of the more fruitful activities at the moment
in number theory.

§1. Character Sums Over Finite Fields
We shall use the following notation.
F = F, = finite field with g elements, g = p™.
Z(N) = Z/NZ.
¢ = primitive pth root of unity in characteristic 0. Over the complex
numbers, g = e2™/?,
Tr = trace from F to F,.

uy = group of Nth roots of unity.
A: F— u, the character of F given by

AMx) = T,

x: F* — p,_, denotes a character of the multiplicative group.
We extend y to F by defining x(0) = O.

The field Q(uy) has an automorphism o _; such that

o_1:{—{"L



1. Character Sums

If o € Q(uy) then the conjugate & denotes o _,a. Over the complex numbers,
this is the complex conjugate.
The Galois group of Q(uy) over Q is isomorphic to Z(N)*, under the map

cH>o0,
where
0. {—>(C.

Let £, g be functions on F with values in a fixed algebraically closed field of
characteristic 0. We define

S(f,8) = > f(x)g).

Xx€F

We define the Fourier transform 7/ by
T() = > fM—xy) = > f(x)e=T0,
xeF

Then Tf is again a function on F, identified with its character group by 4,
and T is a linear map.

Theorem 1.1. Let f~ be the function such that f~(x) = f(—x). Then
T?f = qf~, that is

T°*f(2) = qf(-2).
Proof. We have

T%(2) = > > f()M—yx)A(—2zy)
= flx = 2) > M—yx).

If x # 0 then y+> A(yx) is a non-trivial character, and the sum of the
character over F is 0. Hence this last expression is

=qf(—2)
as desired.

We define the convolution f * g between functions by the formula
(f* () = 2 f(x)g(y — x).
X

A change of variables shows that

fxg=g*f



§1. Character Sums Over Finite Fields

Theorem 1.2. For functions f, g on F we have
T(f*g) = (Tf(Tg)
T(fg) = }] Tf = Tg.
Proof. For the first formula we have
T(f*g)2) = Z (f*8)NU(—2zy) = ; Z fx)g(y — DAU(—zy).
We change the order of summation, let t = y — x, y = x + ¢, and find
= 2, fIA(=2) 3 g(OM(=21)
= (Tf)Tg)2),
thereby proving the first formula.

The second formula follows from the first because T is an isomorphism
on the space of functions on F, so that we can write f = Tf; and g = Tg,
for some functions f;, g,. We then combine the first formula with Theorem
1.1 to get the second.

We shall be concerned with the Gauss sums (Lagrange resolvant)

SG M) = S() = . 1w

u

where the sum is taken over u € F*. We could also take the sum over x in F
since we defined x(0) = 0. Since 4 is fixed, we usually omit the reference to A
in the notation. The Gauss sums have the following properties.

GS 0. Let y, be the trivial character 1 on F*. Then

SO = —-1.

This is obvious from our conventions. It illustrates right at the beginning the
pervasive fact, significant many times later, that the natural object to con-
sider is — S(y) rather than S(y) itself. We shall also write

S = S(1, 2,

but the convention remains in force that even for the trivial character, its
value at 0 is 0.

GS 1. For any character y # 1, we have Ty = y(—1)S()x .



1. Character Sums

Proof. We have

TA(y) = 2, XU —yx).

x

If y = 0 then Tx(y) = 0 (summing the multiplicative character over the
multiplicative group). If y # 0, we make a change of variables x = —ty~?,
and we find precisely the desired value

x(—=DSx(y~H).
GS 2. We have S(3) = x(— 1)S(x) and for y # 1, SG)SG) = x(~1)g, so

S(X)YX) =gq, fory# 1.

Proof. Note that T2y = T(x(—DS()x?) = S(x)S(x~Yx. But we also
know that T%y = gy ~. This proves GS 2, as the other statements are obvious.

Over the complex numbers, we obtain the absolute value

ISCOl = g™

We define the Jacobi sum

JO, 22) = —z 1121 — X).

Observe the minus sign, a most useful convention. We have
J1,1) =—-(g - 2).
GS 3. If y132 # 1 then

IOt x2) = _____526(1;;9;2);2)

In particular, J(1, x2) = J(x1, 1) = 1. If yixo = 1 but not both y., X
are trivial, then

J(15 x2) = xa2(—1).

Proof. We compute from the definitions:
NeANCARS Z ; 1®x(NAX + )
= Z Z 0@y — MAY)

=2 2 00tau = 04 + 2 n()a(=2).



§1. Character Sums Over Finite Fields

If x1x2 # 1, the last sum on the right is equal to 0. In the other sum, we inter-
change the order of summation, replace x by ux, and find

Z X1X2)A(u) z X (a1 — x),

thus proving the first assertion of GS 3. If y; %, = 1, then the last sum on the
right is equal to y,(—1)(¢ — 1), and the second assertion follows from
GS 2.

Next we give formulas showing how the Gauss sums transform under
Galois automorphisms.

GS 4. SG7) = S(-
Proof. Raising to the pth power is an automorphism of F, and therefore
Tr(x?) = Tr(x).

Thus S(x?) is obtained from S(y) by permuting the elements of F under
x > xP. The property is then obvious.

Let m be a positive integer dividing ¢ — 1, and suppose that y has order m,
meaning that

= 1.
Then the values of y are in Q(u,,) and

S0 = S ) € Qlutm, 1)

For any integer ¢ prime to m we have an automorphism o, ; of Q(u., yp)
such that

0.1:{—>{° and o, is identity on u,.
For any integer v prime to p, we have an automorphism o, , such that
01,,:e—>¢" and g, is identity on py,.

We can select v in a given residue class mod p such that v is also prime to m.
In the sequel we usually assume tacitly that v has been so chosen, in particular
in the next property.

GS 5. 0..5(0) = S and 6,,S() = iMSK)

Proof. The first is obvious from the definitions, and the second comes by
making a change of variable in the Gauss sum,

X v 1ix.



1. Character Sums

Observe that

01, A(x) = " TT® = gTr = J(yx),

The second property then drops out.

The diagram of fields is as follows.

Q(m, 1p)

e

From the action of the Galois group, we can see that the Gauss sum
(Lagrange resolvant) satisfies a Kummer equation.

Q(um) Qu,)

Theorem 1.3. Assume that x has order m.

@) SG™ lies in Q(pr).
(ii) Let b be an integer prime to m, and let 6, = 6, ;. Then S(x)°~ % lies in

Q(utm)-

Proof. In each case we operate on the given expression by an automorphism
o,,, with an integer v prime to pm. Using GS 5, it is then obvious that the
given expression is fixed under such an automorphism, and hence lies in

Q(um)-

§2. Stickelberger’s Theorem

In the first section, we determined the absolute value of the Gauss sum.
Here, we determine the prime factorization. We shall first express a character
in terms of a canonical character determined by a prime.

Let p be a prime ideal in Q(u,_;), lying above the prime number p. The
residue class field of p is identified with F = F,. We keep the same notation
as in §1. The equation X?-! — 1 = 0 has distinct roots mod p, and hence
reduction mod p induces an isomorphism

ﬂq—l_z")F* = F*

Phrased another way, this means that there exists a unique character @ of
F* such that

o) mod p = u.

This character will be called the Teichmuller character. This last equation
will also be written in the more usual form

o) = u (mod p).



§2. Stickelberger’s Theorem

The Teichmuller character generates the character group of F*, so any
character y is an integral power of .
We let

n=c¢— I

Let B be a prime ideal lying above p in Q(u,_1, #t,). We use the symbol
A ~ Bto mean that A/Bis a unit, or the unit ideal, depending whether 4, B
are algebraic numbers or (fractional) ideals. We then have

P~ g

because elementary algebraic number theory shows that p is totally ramified
in Q(e), and b is totally ramified in Q(u,—1, Hp).

Let k be an integer, and assume first that 0 < k < g — 1. Write the
p-adic expansion

k = k() + klp ++ kn_lpﬂ-—l

with 0 < k; < p — 1. We define

stk) = ko + ki + -+ kn_1.

For an arbitrary integer k, we define s(k) to be periodic modg — 1, and
defined by the above sum in the range first assumed. For convenience, we also
define

YK) = kol kgt - kna!

to be the product of the k;! in the first range, and then also define y(k) by
(g — 1)-periodicity for arbitrary integers k. If the dependence on ¢ is
desired, one could write

sqk) and (k).
Theorem 2.1. For any integer k, we have the congruence

S(w"‘, sTr) _ _—1

@ = TP

In particular,
ordg S(w~ %) = s(k).

Remark. Once more, we see how much more natural the negative of the
Gauss sum turns out to be, for we have

—S(w%, & 1
——% = ;(k—)(mod B)

with 1 instead of —1 on the right-hand side.
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Proof of Theorem 2.1. If k = 0 then the relation of Theorem 2.1 is clear
because both sides of the congruence to be proved are equal to —1. We
assume 1 < k < g — 1, and prove the theorem by induction. Suppose first
that k = 1. Then

S(w*) = Z ()~ 1eTTw

— z w(u)—1(1 + m)Trw
= > @ (1 + (Tru)n + O(n?))
(interpreting Tr « as an integer in the given residue class mod p). But

o) Tr(w) = u=*(u + u? +-- -+ u”" ") mod B
=1l +urt oy

Each u — 4*~1 is a non-trivial character of F*. Hence
Z o) Tr(u) =q — 1 = —1 (mod B)

and therefore

S(coT‘l) = —1 (mod PB)

thus proving the theorem for k = 1.
Assume now the result proved for k — 1, and write
0 F =@ lp=%-D
for 1 < k < g — 1. We distinguish two cases.
Case 1. p|k, so we can write k = pk’ with 1 < kK’ < g — 1. Then trivially
s(k) = s(k') and y(k) = (k)

because k has the same coefficients k; as k', shifted only by one index. Let
G, = 0p,1, SO 0, leaves ¢ fixed. Since

o,8(@™*) = S(w™**) = S(w™"),
we find that applying o, to the inductive congruence

S@-*¥) _ -1
5% = m (mOd SB)

yields a proof for the present case, because o, is in the decomposition group
of P, whence o,B = P.

8



§2. Stickelberger’s Theorem

Case 2. pt k. Then 1 < k,. Furthermore,
sk)=stk — D +1 and yk — 1) = (ko — DV ky!- kol
Then

S S o %) _ Sw!) Se- %) -1
TR T = - %D J(w T, @ %-D)

—1 -1

= _l'y(k Y RN (mod *B).

To conclude the proof, it will suffices to get the right congruence for J. We
use GS 3 from §l, to get:

—J(w_l, w-*-Dy = Z u~1(1 — u)~%-D+a-1(mod B),

and the sum is at first taken for u #£ 0, 1, but with the additional positive
exponent g — 1 which does not change anything, we may then suppose that
the sum is taken for # # 0 in F. Hence we get further

=2, 2.0 e
If j # 1 then > /=1 = 0, so we get the further congruence

—J@ o % D) = (-1)g — k(g —) = —ko (mod %),
thereby proving the theorem.

Having obtained the order of the Gauss sum at one prime above p, we also
want the full factorization. Suppose that m is an integer > 1 and that p { m.
Let p be a prime ideal above p in Q(u,) and let

Np =g =p"
Let k be an integer such that

Z f 1 has order m in Q/Z.

Let <t> denote the smallest real number >0 in the residue class mod Z of a
real number . Let

G = Gal(Q(un)/Q).

Define the Stickelberger element in the rational group ring

ok, = > ( q'f,—cl>a e Q[G]




1. Character Sums

Let B be the prime ideal in Q(u,, p,) lying above p. Let w as before be the
Teichmuller character on F. We let 6, = o, ;.

Theorem 2.2. We have the fuctorization
S(w=*) ~ P10 o 0D
Proof. We have
ord, i1 S(w™*) = ordg 6.S(w¥)
= ordg S(w~*°)
= s(kc)

by Theorem 2.1. On the other hand, the isotropy group of p in the Galois
group G consists of the powers

{op} for i=0,...,n— 1.

Hence in the ideal p°® the prime o 1p occurs with multiplicity

n—1 ka >
Z) <q -1

Hence to prove Theorem 2.2 it will suffice to prove:

Lemma 1. For any integer k we have

sk) = (p — 1)2 <q——"_”"1>-

Proof. We may assume that 1 < k < ¢ — 1 since both sides are (g — 1)-
periodic in &, and the relation is obvious for k = 0. Since p" = 1 (mod g — 1)
we find:

k=ky +kip + 4k qp?
pk = kn—l + koP +- kn—zl’n-l (mOdq - 1)
Pk=kns+kn1p+- -+ kngp* ' (modg — 1)

Hence

_ right-hand side of ith equation
q — l qg—1
Summing yields

sy d +p 4+ pr Yy 1
<q = 1> 7 =1 —s(k)p—-_ Tk

thereby proving the lemma.

10



§2. Stickelberger’s Theorem

In Theorem 2.2 we note that the Gauss sum is not necessarily an element
of Q(u,), and the equivalence of ideals is true only in the appropriate ex-
tension field. Similarly, the Stickelberger element has rational coefficients.
By the same procedure, we can both obtain an element in Q(u,,) and a corre-
sponding element in the integral group ring, as follows.

For any integers a, b € Z and any real number t, we have
bit> —<bt>eZ and <at) + <bt)> — {{a + b)t)> e Z.
The proof is obvious. Let us define R = Z[G], and
I = ideal of R generated by all elements o, — b with b prime to m.
Then the above remark shows that
16 = R = Z[G].

Although we won’t need it, we may prove the converse for general insight.
The matter is analyzed further in Chapter 2, §3.

Lemma 2. We have I8 = RO N R.

Proof. Note that m € I because
m=—(61.m — (1 + m)).

Suppose that an element of R lies in R, that is

Z z(b)o,# € R
with z(b) € Z. Then

> z(b)<”;—"> €Z forallc

whence
> z(b)b = 0 (mod m),

and 2 z(b)b is in I. But then
> 2(b)o, = > z(b)(o, — b) + . z(b)b
is in I, thus proving the lemma.

It will be convenient to formulate the results in terms of the powers of one
character, depending on the integer m. Thus we let

_ —(Np—-1
Ay = @i NPVIm

11
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where wy is the Teichmuller character. We define the Stickelberger element

of level m by
om) = > <£>a;1.
ceZ(m)* m

As a special case of Theorem 2.2, we then obtain the factorization
FAC 1. S(xp) ~ pom,

Therefore, if b is an integer prime to m, and ¢, = 6, ,, then
FAC 2. S(xp)? =% ~ plme-oy

In FAC 2 the algebraic number on the left lies in Q(u,,), and the group ring
element 6(m)(b — o,) lies in Z[G], namely

o= 3 (5D~ (Ep

Thus we have the ideal factorization of the (b — o,)-power of the Gauss
sum in terms of powers of conjugates of the prime p in Q(u,,).

We return later to the application of this factorization to the study of the
ideal classes in the cyclotomic field, but it is worth while here to mention the
simplest consequence. In every ideal class there exists an ideal prime to m.
Since the ideal

PRULOEES

is principal for every prime p t m, we find:

Theorem 2.3. Let € be the ideal class group of Q(u,,). Then for all b prime
to m,

(b — 6,)0(m)
annihilates .

For each integer r let

We are now allowing r to have common factors with m. Let:

A4 = module generated over Z by all elements 6, with r € Z, called the
Stickelberger module,

& = M N R, called the Stickelberger ideal.
Observe that .# is also an R-module.

12



§2. Stickelberger’s Theorem

Theorem 2.4. The Stickelberger ideal annihilates the ideal class group of
Qlun).

Proof. Let
o= Z z(r)8,(m)e R

r

be an element of the Stickelberger ideal, with z(r) € Z, and the sum taken with
only a finite number of coefficients # 0. Then

z z(r)r = 0 mod m.

T

By Theorem 2.2 we have the factorization

[TsGwye ~ v,

and it is immediately verified that the left-hand side lies in Q(u,) by using
GS 5 of the preceding section. This proves the theorem.

Next we look at the Jacobi sums. If 4 is an integer, then d operates in a
natural way on R/Z by multiplication. We denote this operation by [d].
Thus on representatives, we let

[dKt) = (dt), teR.
It is convenient to let
Alay, a;] = [a;] + [a;] — [a, + ag].

Recall the Jacobi sum for y,x, # 1:

Tt 1) = ).

Let a;, a, be integers, @, + a; # 0 mod m. Then from FAC 1 we get:
FAC 3. J(rp® xp2) ~ pAlag.az16om

where

st eatin = 3 () + () = (o))

and Adl[a,, a;)0(m) € Z[G] lies in the integral group ring. We know that the
Jacobi sum lies in Q(u,,), so again we have an ideal factorization of an element

of Q(pn)-
13
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It will be convenient to introduce an abbreviation. Let
a = (a;, ay)
denote a pair of integers. We let
dlay, a;)0(m) = 6(m)[a;, a;] = O(m)[al.

In several applications, e.g., in the next section, the level m is fixed, and
consequently we omit m from the notation, and write simply

0(m)[a] = O]al.
If d is an integer prime to m then trivially
040[a] = 0[da].

The next two sections are logically independent and can be read in any order.
They pursue two different topics begun in §2.

§3. Relations in the Ideal Classes

Let G = Gal(Q(u,)/Q), so that elements of G can be written in the form o,
with ¢ € Z(m)*. We recall the Stickelberger element

o =3 (e

from formulas FAC 1 and FAC 2. Let

I = ideal of Z[G] generated by all elements b — o, with integers b prime
to m.

Let p be prime number prime to the Euler function ¢(m). For instance, if
m = p itself, the prime p does not divide p — 1. The character group on G
takes its values in ¢(m)th roots of unity. We let ¢ = p™ be a power of p such
that ¢(m) divides ¢ — 1. We let o, be the ring of p-adic integers in the un-
ramified extension of Z, of degree n, so that o,/po, = o,(p) is the finite field
with p" = g elements. Then o, contains the ¢(m)th roots of unity. If m = p
then we take g = p and o, = Z,.

Let % be the ideal class group of Q(u,,), and €® its p-primary component.
We have an isomorphism

Zp ® EP ~ P,

The elementary divisors of € over Z, are the same as the elementary
divisors of

0, ® €® over o,.

14
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If 4 is an o,-ideal, on which G operates, we let A(y) be the y-eigenspace.
We let

I, = o,-ideal generated by all elements b — x(b) with integers b prime to m.

By abuse of notation, we write often x(b) instead of x(s,). The important
special case we shall consider is when m = p, in which case it is easy to
determine /,. We assume p > 3.

Lemma 1. (i) If y = w is the Teichmuller character, then I, = (p).
(ii) If x is non-trivial and not equal to the Teichmuller character, then

I, = (1.

Proof. For (i), we can take an integer b of the form
b={+ pu

where u is a p-adic unit, and { = w(b)isa (p — 1)th root of unity. This makes
(i) clear, and (ii) is obvious, from the definitions.

In the next sections we shall deal with Bernoulli numbers systematically.
For the moment, we need only a special case, so we define ad hoc the first
Bernoulli polynomial

B(X)=X—-3}

and the first Bernoulli number B, = —1, its constant term. For any function

f on Z(m) we define
bim 3 m(CED)

nem 2 (G -

If x is non-trivial, then > y(¢) = 0, and hence in this case,

2= IG5 10

Then in the present terminology, Theorem 2.3 can be reformulated as
follows.

In particular,

Theorem 3.1. For non-trivial y, the ideal B, ;I, annihilates €¥(y).

15
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Corollary 1. Assume that m = p is prime >3. If y is not equal to the
Teichmuller character and is non-trivial, then

Ord Bl-fIZ = Ord Blvi'

Proof. Immediate from the lemma and the theorem.

Corollary 2. If x is equal to the Teichmuller character then B, ;I, = (1),
and €P(y) = 0.

Proof. Mod Z,, we have the congruence

p—1 r—-1 p — I
Biot=>> cofe)t==> 1=5—— (modZ,).
c=1 c=1

p

"S-
S

Hence B, ; has a pole of order 1 at p. Lemma 1(i) concludes the proof.

Corollary 3 (Herbrand’s theorem). Assume again that m = p. Let y = o',
with2 < k < p — 2. If€(y) # 0, then p|B,, where B, is the kth Bernoulli
number.

Proof. In the next chapter Theorem 2.5, we shall prove the congruence
By (mod p)

for k in the given range, and any positive integer n. By Corollary 1, we know
that B, ; annihilates ¥*(y), and

1
By ; = By -1 = i B, (mod p).

If p does not divide By, it follows that B, ; is a p-unit, whence €”(x) = 0, thus
proving Herbrand’s theorem.

The converse of Herbrand’s theorem has been proved by Ribet [Ri].
For analogues on the modular curves, see the [KL] series, especially [KL 6].

The reader interested in pursuing the ideas of this section may skip the
rest of this chapter, read the first section of Chapter 2, and then go to
Chapter 5.

§4. Jacobi Sums as Hecke Characters

Let { throughout this section be a fixed primitive mth root of unity. We con-
sider the additive group

Z(m)® = Z(m) x Z(m),
of order m?2. Its elements will be denoted by

a = (ala (12), b = (b15 b2)'

16
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The dot product is the usual one, a-b = a;b; + ayb,. For any function f on
Z(m)® we have its Fourier transform £, and the inversion formulas:

* fla) = gf(b)c"-a

") f6) = =S flay e,

whose verifications are simple exercises.
For any prime ideal p in Q(u,) not dividing m, and a € Z(m)® we define

J(a, p) = J(p®, xp®2).

We extend the definition to fractional ideals of Q(u,,) prime to m by multi-
plicativity, thus defining J(a, a) for all a prime to m. We have:

J 0. J,p) = —(Np — 2).
We get J(0, a) by multiplicativity. We also need the congruence
J1. J(0, a)Na = 1 mod m?2.

By multiplicativity it suffices to prove it for prime ideals. In that case it is
immediate, since m divides Np — 1, and by J 0,

—(Np — 2)Np =1 — (1 — Np)>
If a,, or a,, or a; + a, = 0 mod m, then we shall say that a is special.
Otherwise we say that a is non-special. The absolute value of the Gauss sum
determined in GS 2 immediately implies a corresponding result for the Jacobi
sum, namely:

J2. J(a, a)J(a, a) = Na if g is non-special.

If a is special, a # 0, note that J(a, a) = 1 or —1. In all cases, we have
J3. J(a, p) = — > wpP(@pp=(l — u) = > Jb, p);e
u b

where the Fourier coefficient —J(b, p) is the number of solutions u of the
equations
xo() =" and  xp(l — ) = (P

17
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By multiplicativity, it follows that the Fourier coefficients J(b, a) are integers
for arbitrary a, that is

J(b, a) e Z.

For the rest of this section, it will be convenient to assume that all number
fields are contained in the complex numbers.

We have seen that 0[a] is in the integral group ring Z[G]. For any non-zero
element o € Q(u,), we let

w(a, o) = J(a, (a))o 0 if a is non-special,
w(a, o) = J(a, (2)) if a is special, a # 0
w(0, a) = 1.

As usual, () is the principal (fractional) ideal generated by a.
If d is an integer prime to m, then trivially from GS 5,

o4J(a, a) = J(da,a) and o.w(a, a) = w(da, a).

Theorem 4.1. The algebraic number w(a, &) is a root of unity.

Proof. As («) ranges over all principal fractional ideals, the numbers
w(a, o) form a group. It will therefore suffice to prove that these numbers
have absolute value 1, for then their conjugates also have absolute value 1,
and these numbers form a finite group. In case a is special the theorem is
true by definition. Otherwise we can use J 2, so that

J(a, (0))J(a, (x)) = No.

On the other hand, the product of «f® and its conjugate is equal to Nua
under the hypothesis that a; + a, # 0 mod m. Indeed, we have

0la] + 0[—a] = > (<%C> N <%26> ~ <(a1 -:naz)c>)o_c_1
By - (- (e

If ¢ is a real number and not an integer, then

() + <=ty =1,
and

o;!
ceZ(m)*

18
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operates multiplicatively like the absolute norm. The desired relation for the
product of a* and its conjugate follows at once. The theorem follows by
using J 2, the analogous relation for the Jacobi sums.

The next theorem was proved originally by Eisenstein for prime level, and
by Weil [We 2] in the general case, which we follow.

Theorem 4.2. If o is an algebraic integer in Q(u,), and o = 1 (mod m?)
then for all a we have w(a,a) = 1, so for a non-special,

J(a, () = «%,

Proof. We fix a and view J, w as functions of @, omitting « from the nota-
tion. In the Fourier inversion relation, we know that the Fourier coefficients
J(b) are integers. But & = 1 (mod m?) implies that

w(a) = J(a) (mod m?).

This is obvious from the definition if a # 0, and follows at once from J 1
if @ = 0. Hence w(b) is an algebraic integer for all 5. Furthermore, for d
prime to m,

0 (b) = -3 . oaw(a) 4=

= ’_n!_z Z w(da) ~de
= w(b).

It follows that w(b) € Z for all b. Now by the Plancherel formula,
. 1
2 18O = 25 2 W@

Since we know that |w(a)|® = 1, and w(d) is an integer for all b, it follows that
Ww(b) # 0 for a single value of b, and is O for all other values of 4. In particular,
for this special b,

w(a) = W),
But w(0) = 1, so w(b) = 1. Putting a = (1, 0) and a = (0, 1) we get:
w(l,0) =J(1,0) =1 and w(l,0) = {*
w(©0,1) =J©0,1) =1 and w(0,1) = (.
It follows that
w(a) = 1
for all a, thus proving the theorem.
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§5. Gauss Sums Over Extension Fields

We prove in this section a theorem of Davenport-Hasse [D-H].

Theorem 5.1. Let F = F, be the finite field with q elements, and let E be a
finite extension. Let

Tgr and Ngp
be the trace and norm from E to F. Let

Xg = X°Ngp and Ag = Ao Typ.
Then
= Se(xs, Ap) = (—S(x, )FFL

Proof. Let m = [E : F]. For any polynomial
S(X)=X"+c X"+ -4 ¢

with coefficients in F, define

Y(f) = Aex(co)-
Then
¥ : Monic polynomials of degree > 1 over F— F

is 2 homomorphism, i.e., satisfies

Y(f2) = v (e)-

We write n(f) = deg f. From unique factorization we have the formula

1
L+ 200x = L —ymm

where the product is taken over all monic irreducible polynomials over F.
Suppose f'is of degree 1, say f(X) = X + c¢. Then we see that

> VDX = Sy, HX.
nH=1
On the other hand, if » = 2 we have

> WHX" =0.

nH=n

Indeed,
2, W) =4g""22 Med) D x(co)s

aH=n
and the sum over ¢; in F on the right is 0, as desired.
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Therefore we find

1

Mutatis mutandis, using the variable X™ instead of X, we get

) 1 + Se(xe, A)X™ = I:I I_W

where the product is taken over all monic irreducible polynomials Q over E,
and

Y(Q) = x&(co( @) Ax(c1(Q)).

We shall write the product over Q as

I[T=11IT

@ P~ QIP
Each irreducible polynomial P splits in E into a product
P=20, -0,
Let n = n(P) = deg P. Then
deg O = njfr.

If o is any root of P, then [F(x): F] = n and the field F(a) is independent of
the chosen root. We have the following lattice of fields.

E F(a)
F' = En Fo)
F

All the polynomials Q; are conjugate over F, and their coefficients generate
the field F' = E N F(x), of degree r over F. We have

r = (m, n).
These facts are all obvious from elementary field theory. Since

NE/F = NF’IF ° NE/F‘, TEIF = Tpypo Tgiws

and
Npipco(Q) = co(P), Tp5c1(Q) = cy(P),
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we get

Ve(Q) = (x(co(P))A(cy(P)))E:F1
= Y(P)".

With a view towards (2), we conclude that
3) I—I[ (1 — Y(Q)X™@) = (1 — Y(P)mir Xmniryr
QP
= LT a—y@xxwy

L’ml':

= ;‘[ (1 — Y(PYEX).

For this last step, we observe that the map
&>gn

gives a surjection of u, - ., and the inverse image of any element of
Umr 18 @ coset of p, since r = (m, n). This makes the last step obvious.
Substituting (3) in (2), we now find

1
glnjl I;I(l — Y(PYEX)®)

[T @+ s@ »Ex)
gm=1

1+ (—D"*18(, AHmXx™.

1 + Se(te, AD)X™ =

I

This proves the theorem.

§6. Application to the Fermat Curve

Although we do not return in this book to the applications of Gauss sums to
algebraic geometry, we cannot resist giving the application of Davenport—
Hasse [D-H], Hua-Vandiver [Hu-V], and Weil [We 1], [We 2], [We 3] to
the computation of the zeta function of a Fermat curve.

We keep things to their simplest case, the method applies much more
generally. We consider the Fermat curve V' = V(d) defined by

xt+y'+ 20 =0,

with d > 2, defined over a finite field F with g elements. Again for simplicity,
we suppose that d divides ¢ — 1, and therefore dth roots of unity are con-

tained in F.
We let w: F* — pu,_, be the Teichmuller character, and

x = character such that y(u) = w(u)@v/e,
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§6. Application to the Fermat Curve

If a is an integer mod d, we let x*(u) have the usual value if ¥ # 0, and for
u = 0 we let:

O =1 ifa=0,
x0) =0 ifa#0.

For u in F, we let:

Ny(u) = number of solutions x € F such that x¢ = u.

Then
1 ifu=0
Nyu) =<0 ifu # 0, uis not dth power in F
d ifu # 0, uis dth power in F.
Therefore

N = 3 0.

a mod

Theorem 6.1. Let N be the number of points of V(d) (in affine space) in the
field F. Then

N=g%—(q— 1) (= DI 1)

The sum is taken over integers a, b satisfying 0 < a <dand0 < b < d,
and a + b # 0 (mod d).

Proof. We have

N=2> > xyr@rrmw)

a,b,c L(u,v,w)=0

where the sum over u, v, w is taken over triples of elements of Flying on the
line

ut+ov+w=0.

The sum over a, b, c is taken over elements in Z mod 4.

The term for which @ = b = ¢ = 0 yields a contribution of ¢2, that is the
number of points on the line in F.

Next, suppose that in the remaining sum, one of a, b, ¢ is 0 but not all are
0in Z/dZ. Say a = 0 but b # 0. Then we may write the sum

= D rf@rw > r),

u+v+w=0 certain u,w allveF
and the sum on the far right is 0. This shows that all the terms in the sum
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1. Character Sums

with one, but not all, of a, b, ¢ equal to O give a contribution 0. Hence we get

N=¢g>+ > > XwWrerm)
O<a,b,c<d u+v+w=0
where the sum over a, b, ¢ is taken over positive integers satisfying the in-
dicated inequality.
If w = 0 then y°(w) = 0. We may therefore assume that in the inner sum,
we have w # 0. We then put

u=uw and v = v'w.

The inner sum then has the form

Z Xa+b+c(w) ,

2@ @).

w#0 w4 =—-1

Ifa + b + ¢ # 0 mod d, then the sum on the left is 0. Otherwise itisg — 1,
which we assume from now on. Since 0 < a, b, ¢ < d, there is no such triple
(a, b, c) with a + b = 0 mod d, because any accompanying ¢ would have to
equal d. Hence the sum over a, b, c is for a + b # 0 mod 4, and then c is
uniquely determined. Changing back the variables v/, v’ to u” = —u', v" =
— v’ and taking into account the value of the Jacobi sum yields the expression
as stated in the theorem.

Let N be the number of points of V(d) in projective space in the field F.
Then

N=1+(g— DN

Therefore we obtain:
Corollary. N=1+gqg- Z Clap
where a,, = x**°(—1)J(x*, x°), and (a, b) are as in Theorem 6.1.

Let N, be the number of points of ¥(d) in projective space over the field
F, of degree v over F. The theorem applied to F, instead of F yields an
analogous expression, the character y being replaced by y, such that for
uek,,

X (u) = w(u)(q" -id — w(u)“’v —1I@-DNe-d w(ul +q+-+q¥T 1)(q —-1id
W .

This last expression is nothing but y composed with the norm map, in other
words, it is precisely the character lifted to the extension as in the preceding
section. The additive character is also lifted in a similar fashion. Therefore
by Theorem 5.1 we find

No=1+¢q =2 a,.
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§6. Application to the Fermat Curve

Note that the power of y(—1) also behaves in the same way as J when lifted
to F,. Indeed, if ¢ is odd then

l+g+---+¢"1=vmod?2,

and if g is even, then 1 = —1 in F.
The zeta function Z(V, T') is defined by the conditions

Z'|Z(T) =-> N,T7°-* and Z(0) = 1.
It is then immediate that

[1TA = a,,7)
ZV(d), T) = ————"" <.
VD =0T - gD
This is best seen by taking the logarithmic derivative of the last expression
on the right-hand side. The operator

fe=rif

is a homomorphism, so we take the operator for each linear term. Inverting
a geometric series we see that the logarithmic derivative of the last expression
on the right-hand side has precisely the power series

> NI

Since it has the value 1 at 7 = 0, it is the unique function having the desired
properties.

If finally one starts with the Fermat curve defined over the field of dth
roots of unity, and one reduces mod primes p not dividing d, one can take
the product of the zeta functions for the reduced curve over the correspond-
ing finite field. Then as Weil remarked, since the Jacobi sums are Hecke
characters, it follows that the Hasse zeta function

{V(d), s) = l:[ Z(V(d), Np~)

is equal to a Hecke L-series (up to the obvious factors of the zeta function of

Q(ug) at s and s — 1).
The computation of solutions in finite fields works in essentially the same
way for diagonal equations

alxld1 +---+ arxrdr = O’
as in Hua-Vandiver [Hu-V] and Weil [We 1, 2, 3]. The additional connection

with the Hasse zeta function for the curve over number fields was made by
Weil.
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Stickelberger Ideals and
Bernoulli Distributions

The study of ideal classes or units in cyclotomic fields, or number fields
(Iwasawa, Leopoldt), of divisor classes on modular curves (e.g., as in [KL]),
of higher K-groups (Coates—Sinnott [Co 1], [Co 2], [C-S]) has led to purely
algebraic theorems concerned with group rings and certain ideals, formed
with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals
happen to annihilate these groups, but in many cases it is still conjectural
that the groups in question are isomorphic to the factor group of the group
ring by such ideals.

However, it is possible to study these ideals, the structure of their factor
group, and the orders of the factor groups in the group ring, without any
allusion to the applications to ideal classes, divisors, or units. This chapter
gives the foundations for such study, applicable to many contexts.

The first section gives Iwasawa’s computation of the index of the Stickel-
berger ideal for k = 1, directly applicable to the ideal class group in cyclo-
tomic fields. Next we deal with the basic theory of Bernoulli numbers and
polynomials, and especially integrality theorems of Mazur and Coates—
Sinnott. The sections concerning Stickelberger ideals for k > 2 are taken
from Kubert-Lang [KL 8]. The last sections on distribution relations are
from [KL 5] and Kubert [Ku].

For a discussion of conjectures in the case of totally real number fields, cf.
Coates [Co 3], [Co 4], and the very general conjectures in Coates-Lichten-
baum [C-L].

The present chapter is organized so that a reader interested especially in
the structure of the ideal class group in the cyclotomic tower (the basic sub-
stantial example of the theory) can read the first section, and then can go
immediately to Chapter 3, followed by Chapter 5 without impairing the
logical understanding of the material. I followed this pattern when I taught
the course in 1977.
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§1. The Index of the First Stickelberger Ideal

On the other hand, a reader especially eager to get into p-adic L-functions
can concentrate on this chapter and then read Chapter 4 as a continuation
omitting Chapter 3. Only the section on the p-adic regulator in Chapter 4 is
related to Chapter 3. Chapter 2 may then be interpreted as giving the basic
congruence properties of Bernoulli distributions, and Chapter 4 gives
essentially more (p-adically) global measure theoretic properties.

A third alternative is to see Chapters 3 and 4 as forming a pair, describing
side by side the complex and p-adic class number and regulator formulas
originally conceived by Leopoldt.

§1. The Index of the First Stickelberger Ideal

Let G =~ Z(m)* be the Galois group of Q(u,), and assume that m is the
conductor of that field, so that m > 1, m is odd, or m is divisible by 4. We
let

M = % order of G = 1¢(m).
We let
R=1Z[G], & =31-0-1), e*=31+0_)).

For any G-module, we let 4~ be the (— 1)-eigenspace for o _,. Then multipli-
cation by &~ is the projection operator on this eigenspace (provided 2 is
invertible), and ¢~ is the associated idempotent in the group algebra.

Lemma 1. We have R~ = 2¢"R = (1 — o_,)R and
(e"R:R™) =2M

Proof. The inclusion (1 — 6_;)R © R~ is clear. Conversely, let P be a set
of representatives in Z(m)* for Z(m)*/ + 1. Let

o= ZZ(c)crc‘1 ER~

with coefficients z(c) € Z. Thus ¢_,a = —a. Then z(—c) = —z(c). If we let

B =72 zc)ost,

ceP

then a = (I — o_,)B, thereby proving the lemma, because ¢~ R is a free
abelian group of rank M.

We recall the primitive Stickelberger element

ERC)
cez(my» \M
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2. Stickelberger Ideals and Bernoulli Distributions

We have written 0’ instead of 0 because we are now setting more permanent
notation, and there is a more canonical element which has priority, namely

c 1\ _ c -
0= z (<E> —_ i)ac 1= ZB1(<n—1>)0’c 1
It is immediately verified that
™ e 0 =06, andso 0 =10".

We are interested in RO N R. The next lemma does away with a possible
alternative definition of this ideal.

Lemma 2. RONR = (RO'NR)".
Proof. Let T = RO’ N R. Clearly
T-<e RO=RO and T~ < R,

so the inclusion = is obvious. Conversely, let « € RO N R. It will suffice to
prove that o € RO’ (because o € R and « = ™). Write

2= 2b)o,0 = Zzz(b)(<f7—f> _ %)agl.

From the hypothesis that « has integral coefficients, we conclude that

S 2(6) (ilnf - %) = 0 (mod Z)

b

for all ¢ prime to m, so that

1 1

~ Z 2(b)b = 5 Z z(b) (mod Z).
We contend that

2 z(b)b = 0(mod m) and > z(b) = 0 (mod 2).

This is obvious if m is odd. Suppose m even, so m is divisible by 4. Write
m = 4m,. Each b is odd, and

> z(b)b = 0 (mod 2my)
so 2. z(b) is even. Then
> 2(b)b = %’ > 2(b) (mod mZ),
thus proving also the first congruence. Only the second will be used.
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§1. The Index of the First Stickelberger Ideal

Now let s(G) = 5 ¢ be the sum of the elements of G in the group ring,
and note that

e*0’ = 3s5(G) and (1 + 0.1)8" = s(G).
Then
o= > z(b)oe™0 = > z(B)on(l — &*)0'
= > z2(b)od’ — > z(b)oye* 0’
= > 2(b)o.0" — > z(b}ks(G).

Substituting s(G) = (1 + ¢_;)0’ on the right and using > z(b) even shows
that o lies in R6’, and concludes the proof.

It is of interest to determine the index arising from Lemma 2. This is done
in the next lemma. We let as usual:

w = number of roots of unity in Q(y,,).

Lemma 3. (RO:RONR) =w.

Proof. We define a homomorphism
1
T:RO—>—Z|Z
w

by mapping an element of the group algebra on its first coefficient mod Z.
In other words, if

o= z a(o)o,,

we let Tx = a(1). Note that

T®) = & - %(mod z),

1
m

and therefore that 7 is surjective. It now suffices to prove that its kernel is
RO N R. But we have

o2 = bafl (mod R),
whence for odd b prime to m, and a € R, we get
T(o,26) = bT(20) (mod Z).
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2. Stickelberger Ideals and Bernoulli Distributions

If o0 is in the kernel of T, it follows that «f also lies in R, thereby proving the
lemma.

We now assume that m = p" is a prime power. Then
& =RONR
is called the Stickelberger ideal. We want to determine the index

(R~ : %).

5= 2 m((3))

for any character y on Z(m)*. Let y’ be the primitive character associated with
%, and let m’ be its conductor. Then it is easy to verify that if we replace m by
m’ and y by x’ in the right-hand side, we obtain the same value, so B, , is
independent of whether we view y as primitive character, or simply a charac-
ter on Z(m)*. (The above fact is a special case of the distribution relation,
discussed in the next section.)

Next, we shall use the fact that

Define

X0 = B,z #0

for odd characters y. For primitive y the non-vanishing of B, , comes from
its relation with the L-series, and will be briefly recalled in Chapter 3. Cf.
also [L 3], Chapter 14, Corollary of Theorem 2.2,

Lemma 4. (RO : Rmf) = m™.
Proof. This is obvious if one can show that R is a free abelian group of

rank M. When m is a prime power, this results from the fact that for odd x
we have

2(6) = B, 5 # 0.

We shall analyze (R~ : &%) by the sequence of groups and subgroups
shown in the following diagram.

2M

eR—~=— R — ¥

m][]-B,,|U Ul w

Xodd

Rm0 = RO
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§1. The Index of the First Stickelberger Ideal

We have shown the inclusion relations, and we have also indicated the in-
dices. All of them have been proved, except the one on the left-hand side.
This will be the item in the final lemma, and we then find:

Theorem 1.1 (Iwasawa). Assume that m is a prime power. Then

R :N=w]] - %Bl_,.

x odd

Remark. Even though some inclusions go opposite to each other in the
diagram, to compute indices one still has multiplicativity, with opposite
inclusions occurring with opposite exponents. Cf. §4 if you don’t find this
obvious.

Lemma 5. (e"R:e"Rmf) = +m™ [ | B,,.

xodd

Proof. First observe that the sign is whatever is needed to make the right-
hand side positive. Multiplication by ¢~m#@ is an endomorphism of QR™,
which is a semisimple algebra, decomposing into a product of 1-dimensional
algebras corresponding to the odd characters. Consequently we find

detem@) = [ | x(m0) = m™ [ | By,
xodd

xodd

On the other hand, ¢~m6f maps ¢~ R into itself, and by standard elementary
linear algebra, the index is given by the absolute value of the determinant.
This proves the lemma, and the theorem.

Remark. In Chapter 3 we shall prove that the index computed in Theorem
1.1 is the order of the (— I)-eigenspace of the ideal class group in the cyclo-
tomic field, denoted by 4. The analytic class number formula will show that
the product of — B, , yields the positive sign.

The theorem and its proof are due to Iwasawa [Iw 7]. It was generalized
to composite levels m by Sinnott [Si]. In the composite case, one cannot deal
any more with a single element 6, but one has to deal with the module
generated by Stickelberger elements of all intermediate levels

2aE)e

for all divisors d of m. A similar situation had already arisen in the analogous
situation in dimension one higher, concerning the Stickelberger elements
formed with B, rather than B,, in the Kubert-Lang series [KL 2], [KL 3],
[KL 5].
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2. Stickelberger Ideals and Bernoulli Distributions

§2. Bernoulli Numbers

We recall first some general notions concerning distributions, defined by
Mazur following the work of Iwasawa.

Let {X,} be a sequence of finite sets, and suppose given a sequence of
surjective maps

Tpe1s Xn+1 g Xm
so that we can consider the projective limit
X—> > X1 > X,—> - — X,

For convenience, we took our family of sets indexed by the positive
integers. In applications, it often occurs that the sets are ordered by the
positive integers ordered by divisibility. For instance, the family of sets
Z/NZ arises in the sequel. We shall also consider the projective family

{Z[p"Z},

with a fixed prime number p,andn = 0, 1, 2, . . .. In each case, the connecting
homomorphism

ry: Z/NZ — Z/MZ
for M|N is reduction mod M, denoted by r,,.

This type of projective family will also arise in isomorphic form as
follows. We have an isomorphism

% Z/Z - ZNZ

given by multiplication with N. We then have a commutative diagram

1
~ Z/Z—~Z|NZ

N,MJ lm

W Z/Z > ZIML

where the left vertical arrow is multiplication with N/M, and the right arrow
is reduction mod M. Thus the system

{were)

is also a projective system, ordered by divisibility.
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§2. Bernoulli Numbers

Let us now return to the general projective system {X,,}. For each n suppose
given a function ¢, of X, into an abelian group V. We say that the family
{@,} is compatible if for each n and x € X, we have

X)) = D @nna(P).
Tp-1¥=X
The sum is taken over all the elements of X, ., lying above x. In what follows,
we often omit the subscripts, and write 7y = x, for instance.

Let K be a ring of operators on V. Let f be a function on X,, for some
integer m, with values in K. If n > m, then we view fas defined on X, through
the natural projection on X,. We conclude at once from the compatibility
relation that

> [X)eux) = D [(en().

xeX, xeXy
Let X be the projective limit
X = lim X,
<

with the limit topology, so that X is a compact space. For each n we have a
surjective map

r,: X— X,

For each x € X, the inverse image r, '(x) is an open set in X, and the totality
of such open sets for all n, x is a basis for the topology of X.

A function f on X is called locally constant if and only if there exists iz such
that f factors through X,. Such functions are also called step functions, and
their group is denoted by St(X, K). For each such function, we can define its
integral

[rao =3 0.0,
x€Xyp
independent of the choice of n such that f factors through X,. We then call
the family {¢,}, or the functional dp, a distribution on X. It is an additive map

do: SH{X, K)—V.

Examples of such maps will be given later with Bernoulli numbers.

Let K be a complete field with respect to a non-Archimedean valuation,
and suppose that V is a non-Archimedean Banach space over X, i.e., Vis a
complete vector space, with a norm

| |: V—R*
satisfying
v + w| < max{|v], |w|} v,weV

levly = |c|lvly ceK veV.
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2. Stickelberger Ideals and Bernoulli Distributions

If ¢ is bounded, i.e., |@,(x)| is bounded for all n, x € X,, then we say that ¢
is bounded, or quasi-integral for the valuation. For any fe St(X, K) we have

|[ 40| < 111101,

where | f| is the sup norm of £, and | ¢| is the sup norm of the values |@.(x)|.
Indeed, if f factors through X, then

fral-

by the non-Archimedean property, so our assertion is clear.
In particular, if fe C(X) is a continuous function on X, then we can
approximate f uniformly by a sequence {f,} of step functions, and since

ILf = full = 0, we get

> f®)eax)

xXeXp

< max | f(x)] [¢n()]

Ifa = full =0

for m, n — co. Hence the integrals

| £udo

converge, and define the integral

| rdo

for such a continuous function, provided that ¢ is bounded. This will be the
case in important examples, and bounded distributions are also called
measures.

All this is preliminary to defining the distributions which are of importance
to us, namely the Bernoulli distributions. If x € Z(N) then x/N can be viewed
as an element of Q/Z. For any ¢ € R/Z we let {t) be the smallest real number
>0 in the residue class of t mod Z. What we want is for each positive integer
k a polynomial P, with rational coefficients, leading coefficient 1, such that

the functions
x> N"‘lPk(<-])—\c,—>)

form a distribution on the projective system {Z/NZ}. Such polynomials will
be given by the Bernoulli polynomials. Let the Bernoulli numbers B, be
defined by the power series

tk
e —1 1

x

B1 Fit) = = > B,
k=0
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§2. Bernoulli Numbers

Then for instance

&
Il
-
o

-
[
|
v
&
[V
Il
O\

Observe that
F(—t) — F@t) = t,
so that F is almost even, and in particular, we have
B, =0 ifkisodd, £k # 1.
We define the Bernoulli polynomials B, (X) by the expansion

tetx © tk
B 2. F(, X) = = E B.(X)+-
@, X) ¢é—1 & i )k!

Then it is clear that the Bernoulli numbers are the constant terms of the
Bernoulli polynomials, that is

Bk = Bk(O).
We find:

B(X)=1  By(X)=X—14  ByX)=X>— X+ 1

The desired distribution relation is implied by the next formula.

N-1
B3. B(X) = N*~* > Bk(X+ ").
a=0 N

Proof. On one hand, we have

N-1 teX+axr 1 N z—:l NiellX +a)NINe
Nt =N Nt _
& et —1" N e 1

= X + a\ (Nt)*
NZB( N ) k!
L X +a\] t*

- 2[5 om0 |

On the other hand, summing the geometric series > e* directly from a = 0
to a = N — 1 and using the definition of the Bernoulli polynomials shows
that the coefficient of ¢*/k! is precisely B,(X), thereby proving the desired
identity.
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2. Stickelberger Ideals and Bernoulli Distributions
Relation B 3 can also be written in the form

B 4. NE-1 > Bk(<y + ziv>) = Bi(KNy))

t mod N

for y € R/Z. This can be interpreted as follows.

{ar 7}

x> M¥ 1B (Kx)) forxe Al—{[ Z|Z

On the projective system

the association

defines a distribution.

Proof. If ye (1/MN)Z/Z is one element such that Ny = x, then all
elements in the inverse image of x by the mapping (N-id)~! consist of

y+ {-, with 7 mod N.

Multiplying B 4 by M*~* yields precisely the distribution relation.

Since the system {(1/M)Z/Z} is isomorphic to the system {Z/MZ}, we can
also express the distribution relation on the latter. It is convenient to norm-
alize this distribution further and to give it a special symbol. For x € Z/NZ

we define
1 '/ x
EM(x) = N1 2 Bk(<—r,>)-

Then the family {E{} forms a distribution on {Z|NZ}.

Remark. Historically, this distribution arose in the context of the partial
zeta functions. Indeed, if x € (Z/NZ)*, define

In(x,8) = 3 n7e.

nex
n>0

The Dirichlet series converges only for Re(s) > 1, but it is classical and
elementary that it can be analytically continued to the whole complex plane,
and Hurwitz has shown that

tu(x, 1 — k) = —E®(x) fork > 1.
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§2. Bernoulli Numbers

Furthermore the partial zeta functions themselves satisfy the distribution
relation. For a further discussion, cf. Example 4 at the end of the chapter. For
distributions associated with zeta functions in connection with Cartan groups,

see [KL 10].
For the applications, we shall use one more formula concerning the

Bernoulli polynomials, namely
B 5. B.(X) = X* — JkX*~' + lower terms.

This is obvious by the direct multiplication of the series
t tk t¥
m=ZBkF and e’X:ZXkH-

For what we have in mind, we don’t care about the lower terms, which have
rational coefficients.

Let N be a positive integer, and let f be a function on Z/NZ. We form the
polynomial

te(a + X

F( 0 = 3 f@ G

We define the generalized Bernoulli polynomials (relative to the function f)
by

B 6. Ft,X)= > By, (X) 1y
k=0 ¢

In particular, the constant term of B, ,(X) is the generalized Bernoulli number
By,r = By (0).

For instance, f may be a Dirichlet character y on Z(N)*, extended to Z/NZ
by the value O on integers not prime to N. Then B, , is the generalized Ber-
noulli number of Leopoldt. Directly from the definition, we then find the
expression

B17. B,, = N¥-1 :Z: f(a)Bk(<%>) .

In terms of the distribution relation, this can be written

1
=B, = dE,.
k K.f z, f k
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2. Stickelberger Ideals and Bernoulli Distributions

The distribution {E{™} is rational valued. We shall be interested in its
p-adic integrality properties for a prime p. For this purpose, we describe a
process which integralizes this distribution. For historical comments, see
below, after Theorem 2.1.

Let ¢ be a rational number. For N prime to ¢ (i.e., prime to the numerator
and denominator of ¢) we define

EQ)x) = EQ(x) — c*E{™(c ™ x),
for x € Z(N). Multiplication by ¢ or ¢! is well defined on Z(N) so our

expression makes sense. If N is a power of a prime p, then we could also take
¢ to be a p-adic unit. We can write symbolically

Eeo= E, — c*Eyoc™1.

This distribution satisfies the following properties.

-1 _
E L E(x) = <%> - c<—ch> +i5— L

Proof. We have

EQ(x) = Bl(< N>) - CBI(<‘C:JT;E>)
A

whence the assertion is clear.

E 2. EN)(x) = x*"1EMA(x) mod —+~ Z[c, 1/c],

N
kD(k)

where D(k) is a least common multiple of the denominators of the coeffi-
cients of the polynomial B,(X).

Proof. We work with a representative integer x such that
0<x<N-1
We write
¢c“x =b+ yN

with an integer b satisfying 0 < b < N — 1 and y € Z[1/c]. Then

clx _ + +z
N N Y
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§2. Bernoulli Numbers

with some integer z. Since B, (X) = X* — 3kX*~! 4 Jower terms, we find
the following congruences mod N/(D(k))Z][c, 1/c]:

v m((H)) - em )
=) 367
s (RS TR z)“]

o o

N

Y b Y . ce~1
= kx (N c<N>+ 2)

and Property E 2 follows by using E 1.

k

2

k k-1 __ x_k_ k-1 — klf k~1
—ix [ kx*~lcz — ¢ 2b

The values of E) are in

kD(k) Zlc, 1/c].

They will be called N-integral if they are p-integral for every prime dividing
N.

Theorem 2.1. (i) The values of E{) are N-integral.
(ii) We have the congruence for every prime p dividing N:

EQ)(x) = x*1EMNA(x) mod NZ,.

(iii) If c is an integer prime to 2k N and to the denominators of the Bernoulli
polynomial B,(X), then the values of EX} lie in Z.

Proof. For large integer v the values N*/k D(k) are N-integral. Let M = N".
The distribution relation yields

EN(x) = Z E()

where the sum is taken over those y mod M which reduce to x mod N. The
expression for E{™ is obviously N-integral except possibly for the term
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2. Stickelberger Ideals and Bernoulli Distributions

(c — 1)/2. But if N is even then ¢ is odd, so (¢ — 1)/2 is N-integral, and if N
is odd, then (¢ — 1)/2 is N-integral. If we apply E 2 to each term EM)(y)
then we see that the first two assertions are proved.

For case (iii), we take M = (NkD(k))" for large v. The argument then
proceeds as before, because the only denominators occurring in

(GY) o 1))

contain only primes dividing Nk D(k).

=

For k = 1 the integralizing process already appears in the Stickelberger
theorem, and was used extensively by Iwasawa. For k > 1, Coates—Sinnott
obtained integral elements in group rings by this process [C-S 2], Theorem
1.3 and [C-S 3], Theorem 1. Mazur formulated this integralizing process
in terms of measure theory and the distribution relation, which allows the
jacking up argument used to prove Theorem 2.1.

For the rest of this section, we let N = p" with some fixed prime number p,
so the distributions are defined on the projective limit of Z(p™), which is
none other than the p-adic integers Z,. We view the values of the distributions
to be in C,, the completion of the algebraic closure of the p-adic numbers.
We may express Theorem 2.1(ii) in the limit as follows.

Theorem 2.2. Let ¢ be a p-adic unit. Then
Ek,c(x) = xk_lEl,c(x)-

We shall now express Bernoulli numbers in terms of the integralized
distributions.

Theorem 2.3. Let ce Z} and let k be an integer > 1 such that c* # 1.
Then

Bkz

1 1
]-C T—:-*E;c f xk-1 dEl_c(x).
Zy

Proof. By definition,

lBk = dEk =
Zy

k dEk,c + J‘ Ck dEk(C_lx).

zy Zzp

On the last integral to the right, we make the change of variable

X = CX,
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§2. Bernoulli Numbers

which gives

dEi(x) = dE(c™1x).
Z, Z»

The formula we want drops out by using Theorem 2.2.

Corollary 1 (Kummer Congruence). Let « be a residue class mod p — 1 and
a # 0. Then for even positive integers k = a mod p — 1, the values (1/k)B;
are all congruent mod p, and are p-integral.

Proof. Select ¢ to be a primitive root mod p so that
¥ # 1 mod p.

Then 1 — c¢*is a unit at p. The values 1 — ¢* and x*~! mod p are independent
of the choice of k in the residue class mod p — 1, and the corollary then
follows from the expression of (1/k)B, as the integral of the theorem.

Corollary 2 (Von Staudt Congruence). Let k = O mod p — 1, and k even.
Then

B, = —;7 mod Z,.
Proof. Suppose p odd for simplicity. Let ¢ =1 + p. An easy induction
shows that
c* = 1 + pk mod p*kZ,.
Hence

1

=g = 0+ 00,

and so

B, = —1; X1 dE, (),

z5

because the integral over pZ, is = 0 mod p. An approximating sum mod p
for the integral over Z¥ is

220G - LT )

Since ¢ = 1 + p we have
<C‘1x S
D p
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2. Stickelberger Ideals and Bernoulli Distributions

The desired congruence follows from the fact that
p—-1
Z x* = —1 mod p.
x=1

We leave p = 2 as an exercise. We merely wanted to show how classical
congruences can be handled systematically from integration theory.

Let f be any function on Z/NZ. We defined

b S ron(( )

In terms of the distribution notation, this can be written

1
=B, = dE,.
k k.S z, f k

We shall apply this when fis a character of finite order on Z¥, so that f is
an ordinary Dirichlet character on Z(p™)* for some positive integer n. As
usual, for such a character, we define its value to be 0 on elements of Z(p")
which are not prime to p. Then by definition, for any character ¥ of finite
order on Z} we have the formula for the Bernoulli-Leopoldt numbers

i
1B, = fz;p dE,

Note: When y = 1 we do not have (1/n)B, , = (1/n)B, because ¥ is 0 on
PZ, by definition.

Theorem 2.4. Let  be a character of finite order on Z}. Then

1 1
e G

Proof. We write dE, = dE, . + ¢ dE,°c™?, or in other words
*Boy = [ VB + [ WC0er dEe )
Integrals are taken over Z¥. We let x > cx in the second integral. Then

Y(c) comes out as a factor. Using Theorem 2.2 concludes the proof.

Theorem 2.5. Let 2 < k < p — 2. Let w: Z(p)* — Z} be the Teichmuller
character such that

w(a) = a (mod p).
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§3. Integral Stickelberger Ideals

For any integer n > 1 we have

lB n-nE-l-

n n,0 kBk (mOdP)

Proof. Let ¥ = w*~™ Choose ¢ to be a primitive root mod p, so that
¢* # 1 mod p. By Theorem 2.3 we get

1 1
PBe=1— L;x"‘l dE, ((x) (mod p).

By Theorem 2.4 we have the congruence mod p:

1 R 1
n By = g B = L g [1 —YoF T T c"] 4Ex.4%)

.
»

because 1 — Y(c)c™ and 1 — ¢* are p-units. Since the expression in brackets
under the integral sign is = 0 (mod p), the theorem follows.

The next sections, §3 through §7, taken from Kubert—-Lang [KL 8}, deal further
with the integrality properties of Stickelberger ideals.

§3. Integral Stickelberger Ideals

Let k be an integer >2. Let N = p" be a prime power with p > 3 until §6.
We let:

G = Z(N)* if k is odd

G = Z(N)*/+1 if kis even.

R = R; = Z[G] and R, = Z,[G].

deg: R — Z is the augmentation homomorphism, such that

deg( Z m,a) = z m,.

aeq

This augmentation homomorphism extends to the complex group algebra
by linearity.

R, = ideal of R consisting of those elements whose degree is = 0 mod m.
If Iis an ideal of R, we let I, = I N© R,,.
card G = [G]|.

s(G) = Z o.

el
For any £ € R we have

£s(G) = (deg O)s(G).

If J is an ideal of R, we write d = degJ to mean that d is the smallest
integer >0 which generates the Z-ideal of elements deg & with £ in J.
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2. Stickelberger Ideals and Bernoulli Distributions

Let B,(X) be the kth Bernoulli polynomial. We let
1 a
— nNE-1 2 e -1
0wy = 8 3 28§ D)o

o) = v 31 (85 ) - B0

k-1

, N
= 0, — x B,s(G),

where B, = B,(0) is the kth Bernoulli number. We have:

deg # 0 and deg6’ # 0, for k even.
In fact, these degrees can be computed easily. We need only that they are
#0 for k even, but the computation is as follows. Suppose k is odd. We use
the distribution relation. Summing over all primitive elements, i.e., elements

of p" yields the value of the distribution summed over all elements of level
p" L. Continuing in this fashion reduces the computation to level 1. But

1 a 1 1
-1 S 2B 2S) = 2 ByO) = ; B..
F ae;mk k<<p>) K «0) k™

The degree of § arises from the same sum but with the term @ = 0 omitted.
Hence

deg 6 = _1:—7?]:_1 B,
and
deg 0’ = deg 0 — Nz_l B|G|
or
degd’ = (125 - 2 907

These formulas would also be valid for k even, except for our convention to
take G = Z(N)*/ £ 1. This requires dividing the formulas by 2 to get deg 6
and similarly for 8". The non-vanishing for k even comes from the functional
equation of the zeta function.

Next we give the ideals used in integralizing the distribution.
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§3. Integral Stickelberger Ideals

J*(N) = ideal of elements > m(b)s, such that
> m(b)b* = 0 (mod N)

I19(N) = ideal of elements o, — ¢* with integers ¢ prime to N.

Since k£ and N remain fixed, we often write 6 and 6" instead of 8,(N) and
0,(N). Similarly, we write J® and I®), or J and I. It is obvious that

J > Juo

We shall determine the extent to which J # Iin Lemma 4.
We have:

deg I®(N) = p*, where ¢ is the maximum integer such that k = 0 mod ¢(p*).

This is obvious, because deg I*)(N) is generated by the integers 1 — c¢* with
¢ prime to p.

Theorem 3.1. (i) We have
RO, N R = PG,

In fact, if an element & € R is such that £0' € R, then & € I,
(ii) On the other hand, letting I = Z,I®, we have

R0, N R, = I{0,.
If an element & € R, is such that €0 € R, then & € I,
Proof. First we prove that for any prime >2, we have
16’ < R, and I.0 < R,.

A similar property is due to Mazur and Coates-Sinnott, as mentioned before.
Indeed, we have

0510, — 0 = D EfNa)o;t

aeG

where

B = N*~17 [B(<%>) - CB(<‘N£>)]

The p-integrality then follows from Theorem 2.1(i). For other primes we
need a lemma.
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2. Stickelberger Ideals and Bernoulli Distributions

Lemma 1. The polynomial (1/k)(B,(X) — B,(0)) maps Z into Z and maps
Z, into Z, for every prime l.

Proof. A standard property of Bernoulli polynomials states that
FBLX + 1) — B(X)) = X+71,

Hence for any integer m we see recursively that the first assertion of the
lemma is true. The second, concerning /-adic integers, follows by continuity.
The lemma is also valid for p = 2.

We may define Ej . by using B(X) — B,.(0) instead of B,(X) in the
definition of E, .. The lemma shows that I8’ < R.
For convenience we let
Bi(X) = By(X) — By(0).
Lemma 2. (i) Let & € R and suppose that £0’ € Z,[G] = R,. Then é€J.

(i1) Let & € R, and suppose that E0 € R,. Then E€J, = Z,J.
Proof. Write & = 3 z(b)o, with integral coefficients z(b). Then

=Tz

and therefore

k-1
N Z Eb: z(b)Bic(<%>) is p-integral.

But an elementary formula for Bernoulli polynomials, obtained directly
from the definition, gives for an integer b,

Nk-1 b k. NE-1 [k b \k-i
Temly) - 2% ()alw)

Comparing the leading term modulo all the lower order terms, and taking
into account that B, = —1 is p-integral (here we use p # 2), and the Kummer
theorem that B; is p-integral for i < p — 1, we find

K
sz(]e)b =0 mod]% Z,.

Multiplying both sides by kN proves the lemma.
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§3. Integral Stickelberger Ideals

Lemma 3. Let p* be the smallest power of p such that p°0, is p-integral.
Then

s =n + ord, k.

We have I'® N Z = (p®).

Proof. The argument uses the same expression for the Bernoulli polynomial
as in the previous lemma. We see that

k-1 (k k—i
p° Ek— (i)B’(ILV) is p-integral.

The leading term is p/kN. The Bernoulli numbers B; are p-integral for
i <p—1by Kummer, and for i > p — 1 the power N*~! in front in-
tegralizes (1/N)*~*. It follows that

)2 .
N is p-integral,

whence s has the stated value. Since we have already seen that 10’ < R, it
follows that the p-contribution of I N Z is exactly p°. It is clear that IN Z
is equal to (p®), because we can always select

c=1modN and ¢ =0mod!/

for any prime / # p to see that I N Z contains elements prime to /. This
proves the lemma.

Lemma 4. We have J = I + ZN, and (J: I) = p*~" = perdk,

Proof. 1t is clear that N € J. Conversely, write an element of J in the form

Z m(c)(o, — ¢*) + Zm(c)c".

The first term is in J, and the second term is an integral multiple of N. This
proves the lemma.

We may now conclude the proof of the theorem. We prove (i). Suppose
£ € R and &0’ € R. By Lemma 2, ¢ € J. By Lemma 4, we know that

&€ =zNmod I forsomezeZ.

We know that /0" < R. Hence zNO’ € R. By Lemma 3, it follows that p*
divides zN, so & € I, and the theorem (i) is proved. The part (ii) is proved the
same way.
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2. Stickelberger Ideals and Bernoulli Distributions

§4. General Comments on Indices

Let V be a finite dimensional vector space over the rationals, and let 4, B
be lattices in V, that is free Z-modules of the same rank as the dimension
of V. Let C be a lattice containing both of them. We define the index

(C:B)

(A:B) = ———(C:A)'

It is an easy exercise to prove that this index is independent of the choice of
C, and satisfies the usual multiplicativity property

(4:D)D:B)=(A:B).
Furthermore, if E is a lattice contained in both 4 and B then

. _(A4:E)
(A.B)—(ETES'

We leave the proofs to the reader.

Suppose that A4 is not only a lattice, but is an algebra over Z. Let 6 be an
element of Q4 = V and let m be a positive integer such that mf € 4. Assume
that 6 is invertible in QA. Then

(A : A6) = +detq, 0,

where the determinant is taken for the linear transformation of QA equal to
multiplication by . This is easily seen, because

(4:A0) = (A : AmO)(Amb : A6)
and

(AmB : A0) = (A0 : Amb)~*.

Since m#f lies in A, the index (4 : Am0) is given by the absolute value of the
determinant of m6, which is m" det 6, where r is the rank of A. This power
m" then cancels the other index.

Note that the determinant can be computed in the extension of scalars by
the complex numbers. In particular, if 4 is a semisimple algebra, and is
commutative, then

det0 =] ] x(0
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§5. The Index for £ Even

where y ranges over all the characters of the algebra, counted with their
multiplicities. In the applications, the algebra is essentially a group ring, so
the multiplicities are 1, and the characters come from characters of the group.

This will be applied to the case when 6 = 6%. We recall the definition of
generalized Bernoulli numbers according to Leopoldt:

v grom( )

Thus

x(©) = 7 B,

X

X

Note that the Bernoulli number is defined with respect to G, so that for k even,
we are summing over Z(N)*/+ 1. This convention is the most useful for
present applications in §5 and §6. (We revert to the other convention in §7.)
For even k, it gives half the other values.

The classical theorem about the non-vanishing of B, , when k and y have
the same parity gives the desired invertibility of the Stickelberger element 8,
in the corresponding part of the group algebra over Q.

§5. The Index for k£ Even

We let s = n + ord, k, and ¢ is defined as in §3, to be the maximum integer
such that Xk = 0 mod ¢(p*). We regard R, N RO (for k even) as the Stickel-
berger ideal. We shall prove:

Theorem 5.1.

(Ro: Ry N RO) = Nprak—t] ] +

x#1

Bk’x-

X =

First observe that since deg 8 and deg 08’ # 0 we have
Ry N R6 = Ry N RA'.
By Theorem 2.1, we conclude that
RO'N R =10, and hence RO N R, = I,0'.
But R, + 168’ = R, where
d = deg I8’ = (deg I'(deg 8').
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2. Stickelberger Ideals and Bernoulli Distributions

In §3 we had noted deg I = p'. The factor deg 6’ will cancel ultimately. In
any case, we have:

(Ro : Ro N Rg) = (Ro . Ro ) Rgl)
= (Ro . 109')
= (Ry: 10")

_(R:16")
" (R:Ry

= L(R: ROYRO : 10)

= T TxoR: D).

The product is taken over all characters y of G. We separate this product
into a factor with the trivial character, giving deg 0’, canceling that same
factor in d, and the product over the non-trivial characters. For y non-trivial,
we have y(6) = x(6).

In the final step we also wrote (RO’ : 16') = (R : I). This is because 6’ is
invertible in the group algebra over Q. Hence the map & — £’ induces an
isomorphism on R.

We are therefore reduced to proving a final lemma.

Lemma. (R: 1) = p* where s = n + ord, k.

Proof. We have (R: 1) = (R:J)J:I). Any element £ in R can be written
in the form

£ =2 meo, = m(c)o. — *) + > m(c)ck.

From this it is clear that (R:J) = N, and the index (J : I) is obvious, thus
concluding the proof.

Remark. Of course we have not determined the sign occurring in the
product of the Bernoulli numbers. It is the sign which makes the product
come out positive, and which one determines easily from the functional
equation of the zeta function and the factorization in L-series. This is irrel-
evant for our purposes here.

§6. The Index for k£ Odd
Assume k is odd. Note that 8 = §’. Let
e =31-0_y)

be the idempotent which projects on the (— 1)-eigenspace. It is immediate
from the definition that 6 is odd, that is,

e 0 = 6.
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§7. Twistings and Stickelberger Ideals

The Stickelberger ideal in this case is RO N R = 10, and is odd. We shall
prove:

Theorem 6.1.
(R=:RONK) = Np= [ ] + o B,

xodd
The rest of the section is devoted to the proof.

Lemma 1. We have R~ = 2e"Rand (e"R: R™) = 2972,
Proof. This is the same as Lemma 1 of §1.
We then proceed as in the even case. First we write

_(e"R:&"10)

(R™:10) = W-R—_)

and then
(e"R:¢710) = (¢R:e RO)(e RO :cI0)
=[] u®E R:e D)

xodd
because 0 is invertible in ¢~ Q[G]. Furthermore,
" R:eD=(ER:R )R :26e°DNQReI:e71I)
=(R":2"1])

because (2¢~1:e"I) = 2-%™12 since ¢~ I is free of rank ¢(N)/2. Finally,

Lemma 2. (R~ : 2e71) = p* where s = n + ord, k.

Proof. The group 2¢~1 is generated by elements of the form

(6. — 6_;) — c¥(oy, — o_,).

An element £ € R~ lies in Z(o; — o_,) mod I. Hence the same argument as

in the past case gives the desired index.

§7. Twistings and Stickelberger Ideals

The Stickelberger elements 8, should really be indexed by the groups to
which they correspond. We now want to compare factor groups of the group
ring by various Stickelberger ideals, twisted in various ways. Consequently,
it is not useful any more to have G different in the even or odd case. For this
section, we let N = p” still, and we allow p = 2. We let

Gn = Z(p")*.
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2. Stickelberger Ideals and Bernoulli Distributions

We define
Or,(p") = 05N — )0(p™) € Z(pMIG,].
This makes sense since we know from §I that 8, .(p") is p-integral.

Let ¥ be a Z(p™)[G,]-module. We define its twist to be the tensor product
with the roots of unity,

Vi) =VQ u.
Then o in G operates diagonally,
cv®y)=0v®Ro0y, and o,(v X Yy) = alor R y).

We let y be a basis for uy over Z(N). Note that the element @ on the right
makes sense as an element of Z(N) since ¥V ® uy is a module over Z(N).
From the definitions we then get the formula

TW 1. O, (v ® P) = 0k_1, 0 @9,

resulting from Theorem 2.1(iii),
E, (a) = a*"'E; (a) mod N.

The distribution relation allows us in E 2 to replace N by high powers of N
at a higher level, and then return to level N to get this congruence.

In particular, if 8, _; . annihilates V, then 0, . annihilates V(1). The argu-
ment simply extracts in a general context the argument given by Coates—
Sinnott [C-S 2] in connection with the ideal class groups in cyclotomic fields,
see their Theorem 2.1.

Take V to be Z(p")[G,] itself, so that V(1) is generated by a single
element o; ® y. The map

$>8(0, ®7y)
gives an isomorphism

Z(pMIGa] = Z(pMNGr] @ ppr

Let Z(p™) = ideal of Z(p™)[G,] generated by the elements 6, (p™). Then
the isomorphism induces a bijection

F(P™) = S 1(P") @ e,

Hence we get an isomorphism

TW 2. A FP™) Z> Ay ® ppr) S 1(P™) @ pipn,

where A, = Z(p™)|[G,] is the group ring.
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§8. Stickelberger Elements as Distributions

We may then pass to the projective limit. The limit of A, is the Iwasawa
algebra. We let &, be the ideal generated by the elements 0, . (projective limit
of 0,..(p™). We obtain an isomorphism with the twist,

A|S = AD)[ S5 (D).

This isomorphism permutes the eigenspaces for the action of u,_,, and this
can be interpreted in terms of congruence relations between Bernoulli-
Leopoldt numbers (with characters) in the obvious manner.

We now make remarks concerning twistings, ideal classes, and modular
curves. We assume that the reader is acquainted with the latter. Suppose
N = p is prime # 2, 3. The Iwasawa—Leopoldt conjecture predicts an iso-
morphism

C™ x (R7/5)P,

where C ~ is the p-primary part of the (— 1)-eigenspace of the ideal class group
in Q(u,). On the other hand, Kubert-Lang [KL 7] establish an isomorphism

FX1(p) & R/,

where €°(X,(p)) is the cuspidal divisor class group on the modular curve
X,(p), generated by the cusps lying above the rational cusp on X,(p).
Consequently, we expect a commutative diagram:

R*(p)/S2p) Z> R™(P) ® o/ £1(P) D Uy

| l

EX(PNP) —5— C () ® 1ty

It remains a problem to give a direct isomorphism at the bottom, from some
sort of geometric construction. This may in fact lead to a proof of the
Iwasawa-Leopoldt conjecture.

§8. Stickelberger Elements as Distributions

In this section we follow Kubert-Lang [KL 5] to describe a “Stickelberger
distribution” associated with a distribution on Q/Z, and to give its basic
properties.

Let & be a function on Q/Z (with values in some abelian group, but for
the rest of this section, we shall take values in some algebraically closed field
F of characteristic 0). We say that 4 is an ordinary distribution if it satisfies the
relation

h(r) = > h(t)
Dt=r
for every element r € Q/Z, and positive integer D. The sum is taken over
those elements ¢ such that D¢ = r. In the application we have in mind, A

53



2. Stickelberger Ideals and Bernoulli Distributions

will be obtained from the first Bernoulli polynomial, and generalizations on
(Q/Z)® lead to the higher Bernoulli polynomials. See [KL 5] for k > 1.

We let G(N) ~ Z(N)*, writing the isomorphism as a > ¢,. We let 4 be an
ordinary distribution as above. We define

hy(x) = h(< %>) for x € Z(N).

For any function f on G(N) we define (as usual)
Su(fs hw) = 2, f(@hx(a),

with the sum taken over a € Z(N)*. If we define f on Z(N) to be 0 outside
G(N) then we see that

Sulfs ) = | f dh.

By abuse of notation, we often write a € G(N) instead of a € Z(N)*.
Let Zy = (1/N)Z/Z and let r € Z. We define

gn(r) = I—C%ﬁﬂ GZ h(ra)o;t.

€G(N)

If the values of / are in the field F, then the values of gy are in the group
algebra F[G(N)]. It is clear that if M is a denominator for r, i.e., r € Z, and
M divides N, then the image of gy(r) under the canonical homomorphism
G(N) — G(M) is equal to gu(r). Thus we may define

g(r) = lim gy(r)

in the injective limit of the group algebras (as vector spaces over F), ordered
by divisibility, with the injections from one level to a higher one given by
sending one group element to the sum of all the group elements lying above
it under the canonical homomorphism.

Theorem 8.1. The function g: Q/Z — lim F[G(N)] is an ordinary distri-
bution.

Proof. Immediate from the definitions.
We define g to be the Stickelberger distribution associated with 4.

Let A, be the vector space generated by the values g(r) with reZy
(essentially the same as the vector space generated by the values gx(r)). We
observe that g(0) is a constant multiple of the augmentation element, that is

h(0)
0) = =7 a.
0= G L4
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§8. Stickelberger Elements as Distributions

Let y be a character of G(&) and let m = m(y) be its conductor. We define
SO 1) = Salms )
where y,, is the character on G(m) determined by y. We let
Gn(N) = set of characters y such that S(i, &) # 0.

Theorem 8.2. The dimension of Ay is equal to the cardinality of G,(N).

Proof. The space generated by the elements gy(r) with re Zy is clearly a
G(N)-module since

o,gn(r) = gn(rb), for b e G(N).

We let the idempotent associated with y be the usual

1 _
e = gy 2 K0

If M is the conductor of y, then

gx (%)ex = S, h) I?(—IAT)—l e,.

as one sees at once from the fact that ra depends only on the residue class of
amod M, for ae G(N). Hence Ay has a non-trivial y-component if S(7, )
# 0. This shows that the dimension of Ay it at least that which we asserted.

On the other hand, let r € Z,, and suppose r has exact period M. Let x be
any character of G(). Then

gn(r)e, = IG(;N)I > hrajae,

€EG(N)

- m S ohen) S ga@e,

eEG(M) redpya=">

If the conductor of y does not divide M, then y is non-trivial on the kernel
of the reduction map

redy: G(N) — G(M),

and the sum on the right is 0. If the conductor of y divides M, then j(a) =
%(b) on the right, so

|GV -

Heb) 16y H0

(5 p———
8% = 1G] ety

- (;4) : S hrb)ibe,.

eG(M)
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2. Stickelberger Ideals and Bernoulli Distributions

Since we can write r = a/M with some a prime to M, a change of variables
in the sums shows that up to a non-zero constant factor, gy(r)e, is equal to

SM(ZM; hM)el'

We now have to analyze this sum. The next lemma will show that this sum
is equal to some factor times S, (¥, Am).

Lemma. Let y be a character of G(N) with conductor m.

(1) If every prime dividing N also divides m then

SN(XN9 hN) = Sm(Xm’ hm)

(ii) Let p be a prime dividing N but not dividing m. Write N = p"M with
pt M. Then

Snv(tws hy) = (1 — xm(2DSu(trs Bimr)-

Proof. The first statement is immediate from the distribution relation. Let
us prove (ii). We have

> d@h@= > b > h(%).

aeZ(N)* beZ(M)* a=bM)
aeZ(N)*

By the distribution relation, we know that

b X a a
i) - 2,40 - 2 )+ 2 ()
M xezz;N) N ae;N)‘ N ae;\f)‘ N
*= b(M) a=b) a=b(M)
The elements a in Z(N) which are not primitive but are = b mod M are in

bijection with the elements ¢ € Z(N/p) satisfying the conditions

a=pc and c¢ = p lamod M,
under the map

cH>pc

which sends Z(N/p) into pZ/NZ < Z/NZ. Therefore the sum over primitive
elements lying above a given b can be expressed as a difference

308 () -3

(where the sum is taken over ¢ € Z(N/p), ¢ = p~*a mod M)

SORCY
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§9. Universal Distributions

(by the distribution relation). Plugging this into the first relation, and making
a change of variables b > pb, we find

Svt hw) = Sultss bu) =, x(b)h(%)

beZ(M)*
= (1 = xu(P)Su(xae> hing)-

This concludes the proof of the lemma.

In applying the lemma to the theorem, we note that the y-component is
at most one-dimensional, and has exactly dimension 1 under the stated
condition S(x, #) # 0. This concludes the proof of the theorem.

A distribution can be decomposed as a direct sum of an odd and an even
distribution, provided that its image is contained in some module on which
multiplication by 2 is invertible.

In the next section, we shall prove that the rank of the values on Z is
at most |Z%|, where ZF is the set of primitive elements in Z,.

If we take for 4 the distribution arising from the Bernoulli polynomial

Ar) = B,(Kr)) ifr#0,h0)=0

then the non-vanishing of B, , for odd characters y shows that 4 has the
maximal attainable rank for an odd distribution. Consequently, we find:

Thoerem 8.3. The Stickelberger distribution g associated with h(r) as
above is the universal odd ordinary distribution into modules on which
multiplication by 2 is invertible.

So far, Theorem 8.3 has been proved only for distributions with values in
a field of characteristic zero. However, the next section will give a result of
Kubert showing that the universal distribution is generated on Z, by free
generators whose cardinality is |[Z%|. This will take care of the additional
integrality possibilities allowed in the statement of Theorem 8.3.

Later in the book, we shall see that the cyclotomic units in the cyclotomic
field form an even distribution, which has maximal rank by the class number-
regulator formula, cf. Chapter 3, §3, and Chapter 6, §3.

The direct sum then yields a distribution of maximal attainable rank.
This is one method to show that the universal distribution in Theorem 9.1(ii)
has rank |Z}%|.

§9. Universal Distributions

In this section we give a theorem of Kubert [Ku 1], [Ku 2], constructing a free
basis for the universal distribution on (1/N)Z/Z. In [Ku 2] Kubert gives a
complete treatment of the ordinary universal distribution on Q*/Z* for arbi-
trary k, as a GL,(Az)-module, where A, is the ring of integral finite adeles.
Here we limit ourselves to kK = 1, and give only the abelian group structure.
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2. Stickelberger Ideals and Bernoulli Distributions

For simplicity of notation we let

|

Zy = -JIVZ/Z, and ey = Wmod Z.

We let

g: Q/Z — some abelian group

be an ordinary distribution, in other words we suppose that for r e Q/Z,
and a positive integer D we have

> glt) = g(r).

Dt=r

It is clear that such distributions form a category, and we wish to construct
the universal distribution.

We let Z¥ be the set of primitive elements in Zy, i.e., elements having
period exactly N in Zy.

The prime power case

Let N = p" be a prime power and write N = M D, a factorization with
M > 1. Let re Z3i. If Dt = r then it is immediate that t € Z¥ (N = prime
power is used here). The distribution relation shows that g(r) is an integral
linear combination of the images of the primitive elements g(¢). Hence 0 and
these primitive elements generate the universal distribution, at level V.

We have

> gt) =g0) and > g) = g(0).

teZy teZnip

Hence we get one relation among primitive elements,

z g(t) = 0.
tezZy
Let
T = Z¥ — {ey} and T3 = {0}.
Let

Ty = TH U TE

Theorem 9.1. (i) The elements g(Ty) generate the abelian group generated
by g(Zy).

(ii) If g is the universal distribution then the elements g(t) with t € Ty are
free generators.

(iii) The cardinality of Ty is equal to that of Z.

Proof. The first statement is obvious from the preceding remarks. The
cardinality of Ty is clearly equal to that of Z}. For (ii), we may consider the
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§9. Universal Distributions

free abelian group generated by the elements of Z¥ and {0}, modulo the
single linear relation
> () =0.

teZn

We can then define g on Z}; to be the canonical homomorphism in the factor
group, and for r € Z} with M ¢ N and M |N we can define

g(r) = > g(t), with D= N/M.

Dt=r

It is then clear that g defines a mapping on Z, satisfying the distribution
relation.

The proof of (ii) is in some sense natural, but in many ways it is better
to exhibit mappings which are distributions and which have the appropriate
rank to get the lower bound for the rank of the universal distribution. Cf.
the end of §8, where we exhibit natural distributions in the theory of cyclo-
tomic fields which have such rank.

The composite case

To state the theorem concerning the universal distribution in the com-
posite case, we shall write elements of Zy according to their partial fraction
decomposition. Let

N=TT1nrm

i=1

Then
Y2z -@plzz
N Nl

and
a a

where q; is well defined mod p}+, while a is well defined mod N. We let:

Ty = set of elements a/N as above, such that either a; is prime to p; and
a # 1,oraq = 0.

It is then clear that Ty has cardinality ¢(N).

Theorem 9.2. The preceding theorem holds with this definition of Ty, for com-
posite N.
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2. Stickelberger Ideals and Bernoulli Distributions

Proof. The proof will be a simplification of Kubert’s proof by Katz. Let
Ay be the abelian group generated by g(Zy). A distribution having the lower
bound ¢(N) for its rank has been exhibited in §8. Since T}, has this cardinality,
it will suffice to prove that g(7) generates A,. We first show that the elements
g(a/N) with a such that g, is prime to p, or a; = 0, generate 4. We do this by
induction.

Let

by

n,
Dit

be an arbitrary element of Zy. Write b; = pia; where a, is 0 or prime to p.
If a, = 0 then we are through by induction, so we can assume that a, is prime
to p,and 1< r < n,. Then:

piay bi) ( 7(a1 1))
—+ — ) = - 4+ =
g(le ,Zzp?f B\ T & o

a
= g2+ L+ —)
jmzodp' (pl‘l p =5 pi

by the distribution relation. Since r < n, it follows that

s ’
4 )4

Py Pl
where a4} is prime to p.

Inductively, we may now repeat the same argument with respect to p,,
Das - - .. 1t merely suffices to observe the following. In the first step of the
argument, when we factored out pi, thus changing b; to ¢, if b; is prime to p
then ¢; is prime to p. Thus performing the same argument inductively on the
other primes does not destroy the desired property for those primes which
have already been taken care of. This concludes the first part of the proof.

Secondly, we show that we can recover those elements a/N for which a;
may be equal to 1 from the prescribed set 7. Let

1
o n
N’ = N/ph, ye—Z/Z.

From the distribution relation, we find:

> g(l + y) = g(ply)

n
1
§ mod pi1 P1

k
g(IF + J’) = g(ph~ty).

k mod pT1~1
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§10. The Davenport-Hasse Distribution

Subtracting yields

Z g(;}’; + y\) = O mod Ay,
1t /

jmod p}y
d,p=1

where Ay is the group generated by g(Zy.). This yields

=) (% +)
—gl— + = — + mod A,-.
g(pql y azl glom + v 5

(aj,py)=1

Observe that the same quantity y occurs on both sides of this relation. We
may now repeat the procedure inductively on the partial fraction decomposi-
tion of y. If we write

4
se Pl

=)y =

and say a, = 1, we get a similar congruence

a, a; aqy
— _n+ = (—n+‘T+ )modA,,,
g(p11 yl) agl gl tom T N
(ag,p2)=1

where N” = N /pZe. In this way we reduce the proof to the case when N con-
tains fewer prime factors, and then can apply induction with respect to the
number of prime factors to conclude the proof.

§10. The Davenport—Hasse Distribution

In this section we give a relation of Davenport-Hasse [D-H]. Let F, be the
field with ¢ = p" elements, and let ¢ = 1 mod m. We follow the notation of
Chapter 1, §1. We let p be a prime in Q(u,_,) lying above p, and let P be a
prime in Q(u,_ 1, y,) lying above p. We write as usual

« = Bmod* P

to mean that o~ = 1 mod mg, where mq is the maximal ideal in the local
ring at B. We use similar notation mod* p or mod* p. We let x, y be characters
on F}¥, and put

() = =S D
Theorem 10.1. (Davenport-Hasse) We have
[ TG = «ymCw, m)

where C(y, m) = Yy(m™™) ]__I ().

xm=1
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2. Stickelberger Ideals and Bernoulli Distributions

Proof. Let u,(y) be the quotient of the left-hand side by the right-hand side,
that is

T Te(ey)
A T )

We have to show u,(}) = 1. First note that u,(}) lies in Q(y,_,). This is
immediate by looking at the action of o, ,, cf. GS5 of Chapter 1, §1. From
the fact that [S(y)| = v/gif ¢ # 1 and |S(Y)| = 1ify = 1, we conclude that
|un(¥)| = 1. Similarly, all conjugates of u,(i) have absolute value 1. Since
SW)S@W) = +g, we know that only primes dividing p occur in the factoriza-
tion of S(y). We shall prove that

¢)) Un(Y) = 1 mod P.

This will imply that u,() is a unit, and therefore a root of unity. If p # 2,
this congruence (1) implies that u,(y) = 1. If p = 2, we shall give the argu-
ment at the end of the proof.

To prove the congruence, we simplify the expression in Stickelberger’s
theorem. For any integer k we had defined s(k) = s,(k) and y(k) = y,(k) in
Chapter 1, §2. We let r(k) = r,(k) be the unique integer such that

O0<rtk)<gq—1 and k=r(k)modg — 1.
Lemma 1. Let 0 < k < g — 1. Then

k —s(k)

k! = (—p) »-1 y(k) mod* p.
Proof. By induction. Suppose first that p { k. Then k, > 1, and

sty =stk - 1)+ 1, yk) = y(k — Dk,.

The assertion is then obvious from the inductive step for k — 1. Next sup-
pose p|k, so k = pk’. Since

ord,,k!=[’1-j]+---+[ k ]

and similarly for k', we see that

ord, k! — ord, k'! = k'
In k! = (k'p)!, the factors not divisible by p give a contribution of
(p — D!'=-1 mod p,

taken k' times. The product of the factors divisible by p yields k’! pt, where
t = ord, k’!. The lemma is then immediate.
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§10. The Davenport—Hasse Distribution

Asin Chapter 1, we let ¢ = e?"/?, Weletm = ¢ — 1. Then from
e—1+1)P—-1=0
we see at'once that

7?1l = —p mod* =n.

From Stickelberger’s theorem and Lemma 1, we conclude that
Vs )
)] (o™ %) = Py mod* P.

This reduces the proof of the congruence relation (1) to the proof of such a
congruence for the expressions on the right-hand side of (2), corresponding
to the way u, () is made up from expression (e %) for appropriate values
of k. We shall prove two relations for the residue function, namely:

3 2 ) =rm) + 3 )
“) [T rex+»t=rem)tm o [T rex)!

In these relations, sums and products are taken over elements x mod ¢ — 1
such that mx = 0 mod ¢ — 1. The theorem is immediate from these relations,
taking into account

m'™ = o(my ™ mod P,

applied to y such that yy = o™,

We prove the two relations (3) and (4). To begin with, we note that the
left-hand side and right-hand side of each relation is unchanged when we
change y in a residue class mod (g — 1)/m. Consequently we may assume that

0<y<

qg—1
m

We choose the obvious representatives

withv=0,1,...,m — 1.

x=vq_1
m

Then
r(x) = x, r(x +y)=x+y, r(my) = my.
This makes (3) obvious, and (4) takes the form:

-1
H(J’ :;n;j'm )! =1—I(v‘—1-;—l)!mod*p.

(5) mmy
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2. Stickelberger Ideals and Bernoulli Distributions

The products are taken forv = 0, 1,..., m — 1 and y is taken as above, with
0 <y < (g — 1)/m. Let F(y) be the left-hand side of (5). Then the right-
hand side of (5) is equal to F(0), and consequently, it suffices to prove that

F(y)

——=>— = | mod* p,
F -1 p

with 1 < y < (¢ — 1)/m, or equivalently

[+ )

[Tomy —v) = 1mod™p,

mm

or also

"Imy +v(g—1

= *
proT— = 1 mod* p.

v=0

For this it will suffice to prove that each factor in the product is = 1 mod p.
But the power of p entering in my — v is at most p"~!. Dividing numerator
and denominator of each factor by my — v shows that

my — v+ vq

— *
my — v = | mod* p.

This proves the theorem except when p = 2, when we know only that (i) =
+ 1. In this case we argue further as in [D-H].
Let / be a prime dividingg — 1. Let

Y=y

be the decomposition of i into a product of a character of /-power order, and
a character of order prime to /. Then

Ym =Yyt

is the corresponding decomposition for ™. Let /* be the highest power of /
dividing ¢ — 1, and let {;» be a primitive /“th root of unity. Let

A={»— L
Since ¥, = 1 mod 4, it follows that = y,» mod A. Therefore
(W)= Wr)mod A and 1(¥;) = 1 mod A.
In particular,

u(¥) = u,(Y,) mod A and wu,(y¥,) = 1 mod A.
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Appendix. Distributions

Since u,(y) = +1, it follows that u,(y) = 1, thereby proving the theorem.

Remark. In [Ya], Yamamoto shows that the Gauss sums form the univer-
sal odd distribution modulo 2-torsion.

Appendix

In this chapter we have looked at the distributions which are especially
relevant to the cyclotomic theory discussed in the rest of the book. It is
worthwhile to give here a number of examples of distributions occurring
throughout mathematics, involving various classical objects. We make a list
of a general nature, including those we have already met.

(1) The Bernoulli distribution, which is essentially given by a polynomial.

(2) The Fourier-Bernoulli distribution, giving rise to the Bernoulli distri-
bution, as follows. For real & we have the Fourier expansion

k 2nind

B,((6)) = —ﬁ s

n#0 n

Thus we may even define B, on R/Z, and through this Fourier series, the
function given at level N by

0 —> N*~1B,({6>)
satisfies the distribution relation.

(3) The holomorphic Bernoulli distribution. Let

o) = 3 5

and restrict z to the unit circle, z = 2%, Then {N*~1f,} defines a distribution.
The real part for k even and imaginary part for & odd are mere homomorphic
images of this one, and give rise to the Bernoulli distribution of (2).

(4) The partial zeta functions. Let

ki 1
{s,u) = 2 L

be the Hurwitz zeta function, for 0 < u < 1. For each real number ¢, let {t}
be the unique number congruent to ¢ mod Z, and such that

0<{t<l.
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2. Stickelberger Ideals and Bernoulli Distributions

Then for a € Z(M), the function

ool i)

satisfies the distribution relation, namely

e 3 ) e )

The sum on the left is taken for b in Z(N) reducing to @ mod M.

(5) The gamma distribution. Define
G(z) = —=1I1(z
(2) = \/ (2).

We view G as defined on Q/Z with the origin deleted, but then with values in
the factor group

G: Q/Z — {0} —~ C*/Qg

of the multiplicative group of complex numbers, modulo the multiplicative
group of all algebraic numbers. The classical identity

1 J _ 1 }-Nz
]-El \/Z—np(z + N) = X/EF(NZ)N
shows that G defines a distribution.

Rohrlich has conjectured that G is then the universal odd distribution,
with values in groups where multiplication by 2 is invertible. This is a con-
jecture in the theory of transcendental numbers. It also leads to the question
(in algebraic independence) whether the distribution relations, the oddness
relations and the functional equations generate an ideal of definition over the
algebraic numbers for all algebraic relations among the values of the gamma
function (1/4/2n)I, with rational arguments.

(6) The cyclotomic units, which we have discussed.

(7) The modular units, which may be defined by their g-expansions,
namely

g(a) = —q¥Ba@vemiaxe~ V(] — g, )I—I (1 — g¢.)(1 — q%q.)

where a = (a;, a,) € Q*/Z2 and a # (0, 0), where

Z = T + ag,
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Appendix. Distributions

and where the value g(a) is to be taken in the multiplicative group of the
modular function field modulo roots of unity, cf. [KL 3], following the work
or Ramachandra and Robert. The association

a—g(a)

is the universal even ordinary distribution on Q?Z2? — {0}. The ordinary
Bernoulli distribution (with k¥ = 2) then appears as a homomorphic image of
this one.

In the last three examples, the distribution is not defined at 0. In such cases,
it is useful terminology to refer to the distribution as punctured.

Roughly speaking, I expect that in any classical situation where a distribu-
tion arises naturally, it is universal (odd, even, punctured, as the case may be),
always subject to taking values in groups where 2 is invertible.

(8) The Lobatchevski distribution. I am indebted to Milnor for the

following brief comments which might inspire the reader. Define the
Lobatchevski function

/]
20) = — f log|2 sin 7| dr.
]
This is essentially the same as the integral
]
—J log|e®™ — 1| dt.
4]

Since the function z > |€2™ — 1] satisfies the distribution relation, one sees
at once that A(0) satisfies the distribution relation in the sense that on
{(1/N)Z/Z} the family {NA(6)} is a distribution, which is odd.

Let H be hyperbolic 3-space. This is the set of points

(x1, x5, ) R x R x R*

so (x;, X,) is an ordinary point in the plane, and y > 0. We endow H with
the metric

dx? + dxi + dy?
»? '

Select four distinct points in the plane, and let T be the tetrahedron in H
whose vertices are at these points. Then it can be shown that opposite dihedral
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2. Stickelberger Ideals and Bernoulli Distributions

angles are equal. (The dihedral angles are the angles between the faces of the
tetrahedron.) Let «, f, y be the dihedral angles. Then

o+ pf+y=m,

and the volume of the tetrahedron is precisely given in terms of the Lobatchev-
ski function by

Hf ‘%‘Q = Vol T = i(w) + A(B) + A().

The search for relations among such volumes had led Milnor to consider the
Lobatchevski function and its relations, now known as distribution relations,
and to show that it had the maximum rank (its values being viewed as con-
tained in a vector space over the rationals). Of course, Kubert’s construction
in fact gives free generators over Z.

Finally, let o = Z[{], where { is a primitive cube root of unity. Then

PSL,(v) < PSLy(C) = Aut H,
where Aut H is the group of automorphisms for the Riemannian structure,
orientation preserving. The tetrahedron is essentially a fundamental domain

for PSL,(0). This point of view leads into the problem of determining all
relations for volumes of fundamental domains in the higher dimensional case.
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Complex Analytic Class Number Formulas

The complex analytic class number formulas date back to the 19th century.
They relate class numbers of cyclotomic fields and units. They arise by
factoring the zeta function of a cyclotomic field in L-series, and looking at the
factorization of the residue.

§1. Gauss Sums on Z/mZ

We have to redo the properties developed in Chapter 1, for the ring with
divisors of zero Z(m) = Z/mZ. The only additional feature arises from the
presence of non-zero elements which are not units. We let m = [] p™® be
the prime power product. We then have product decompositions

Z(m) = 1__[ Z(p™) and Zm)* = I_I Z(pP)*,

From the product, for any character y on Z(m)* and any character 4 on
Z(m) we have a decomposition

x=]1%x and A=]14,.
P 4

If x € Z(m) and x is not prime to m, we define y(x) = 0. We let { be a
primitive mth root of unity (chosen to be e2™/™ over the complex numbers),
and

Ax) = ¢~
Observe that Z(m) is self dual under the pairing
(x, y) >
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3. Complex Analytic Class Number Formulas

Let d|m. We have a natural surjective homomorphism
Z(m) — Z(d)
and also a surjective homomorphism
Z(m)* — Z(d)*.

If there does not exist d|m and d # m such that y factors through Z(d)*, then
we call y primitive. Again to determine the smallest d such that a given
character factors through Z(d)*, we may look at prime powers.

Suppose m = p™ is a prime power, and y is a character on Z(p"). Let p”
be the smallest power of p such that y is trivial on

1 + p"Z(p™.
For convenience, let us abbreviate
A = Z(p"),

so 1 + p"A is a group for any positive integer v. The following criterion is
immediate.

x is primitive if and only if r = n.

The power p" = p™® is called the conductor of .
In the composite case, we let the conductor be defined by the product

c(y) = cond(y) = H pre.

rim

It is then clear that c(y) is the smallest d such that y factors through Z(d)*.
We define

SG) = S, D) = 2 x(D)AX),

and the sum could be taken only over those x € Z(m)*. It is then obvious that
we have a decomposition

S(X’ A) = n Sp(Xm ;Lp)

where the sum S, is taken over Z(p™®)*.
If d is an integer prime to m, then, as with Gauss sums over finite fields,
we have

SQx, Aod) = JD)S(x, 4),
by making the change of variables x > d~1x.
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§1. Gauss Sums on Z/mZ

On the other hand, if 4 is not prime to m, we have one new significant
feature.

Theorem 1.1. If y is primitive and d is not prime to m, then
S(x, Aed) = 0.

Proof. Using the prime power decomposition, we may assume without loss
of generality that m = p" is a prime power. Abbreviate

A = Z(p").

Also without loss of generality, we may assume d = p” for some integer
r > 1, and r < n. Form a coset decomposition

A* = u(l + p*~74).
Then
S 2ep) =2 2D )l + x)Apu)

i xep"~TA

= > 1w)A(p'w) 2 x(1 + x).
i x
Since y is assumed primitive, it is non-trivial on 1 + p"~"A4, and the sum on
the right is 0, thus proving the theorem.

From here on we have the same formalism as for Gauss sums over finite
fields. For any function f on Z(m) we define its Fourier transform

T ) = 2 fOOM—xp).

xeZ(m)

Theorem 1.2, (i) We have T*f = mf~.
(ii) If y is primitive, then

Ty = (- DS(x
(iii) Again if y is primitive, then
SGSQ) = m.

Proof. Part (i) is proved as for the finite field case. For (ii), if y is not
prime to m, then Ty(y) = 0 by Theorem 1.1. If y is prime to m then we can
make the usual change of variables to get the right answer. Part (iii) is then
proved as in the finite field case.
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3. Complex Analytic Class Number Formulas

§2. Primitive L-series

Let x be a character mod m. We consider the Dirichlet L-series for Re(s) > 1:

Ln= M- 5 4o 3L

n aez(m)*
Let { again be a primitive mth root of unity. Then we have

1 fa-ms {0 if n=amodm
M o 7im 1 ifn# amodm.

Indeed, if a # n (mod m), then the character x> {“®~™* js non-trivial on
Z(m). Consequently we can write the L-series in the form

1 < 1

L= 2 1@, 2 Lo
acZ(m) n=1 x

whence also

C—nx'

ns

o0 = 3 SGudon) 3

xeZ(m)
Theorem 2.1. Assume that x is a primitive character mod m. Then

C-—nb
—-

n

I _ 0

L) =5 S@ 2 10 2

beZ(m)* n=1

Proof. If x is not prime to m then the Gauss sum is 0 by Theorem 1.1.

If b is prime to m, we can make the change of variables which yields the
desired expression.

So far we have worked with Re(s) > 1. We now want to have the value
of the L-series at s = 1. It is not difficult to prove that the L-series has an
analytic continuation for Re(s) > 0. Of course, it is also known (and a little
more involved) how to prove the analytic continuation to the whole complex
plane. For our purposes, to get the value at 1, we can work ad hoc, let s be
real >1, and take the limit as s approaches 1. Then we don’t need anything
else here.

We recall a lemma about series.

Lemma. Let {a,} be a decreasing sequence of positive numbers, whose limit
is 0 as n — 0. Let {b,} be a sequence of complex numbers, and assume that
there is a number C > 0 such that for all n,

> be
k=1

<C,
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§2. Primitive L-series

i.e., the partial sums of the series {b,} are bounded. Then the series 3, ab,
converges, and in fact

n

z aby

k=1

< Ca,.

The proof is immediate using summation by parts.

We apply the lemma to the series with b, = {~" and a, = 1/r® with s
real >0. The partial sums of the b, are clearly bounded (they are periodic).
Let

Z()=C—b¢ 1.

For |z| < 1 we have
XD, N
—log(l —2) = z.
=1 N

As z — z,, —log(l — z) approaches —log(l — z,). On the other hand, let
z=1rz, withO<r<l.

Then the series > z"/n converges to > zg/n as z tends to z, along the ray
(that is, r tends to 1). This is again obvious by estimating the tail end of the
series using the lemma. Consequently, we find:

Theorem 2.2. If x is a primitive character, then

L) = -2 S ) logt — {70,

beZ(m)*

The picture of the roots of unity looks like in the figure.

If
1 — Cb - Il _ Cblew’
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3. Complex Analytic Class Number Formulas

then the picture shows that
1 —(°=|1— (e ™.
The branch of the logarithm is determined so that

T
<9<§-

T
2
Observe that we do not change the sum
2, 1) log( — )
if we replace b with —b. We shall distinguish two cases.
We say that y is even if y(—1) = 1, and that y is odd if y(—1) = —1.
We assume m > 2, and m = m(y) is the conductor of y.

Case 1. y is even.

In this case, adding the sum with b and —b yields
22 7®) log(l — {77 = > ¥(®)log(l — ) + log(1 — {7

With y even, we obtain the formula

L0 =-22 5 b)logt - 0.

beZ(m)*

Case 2. y is odd.

In this case, we let
{=¢e™m and b=1,...,m — 1.
Then

log(1 — (%) = log|l — {7°| + z(g — %b)

log(1 — ¢) = log|1 — ¢’| — ,(g _ T:n_”)

Thus with y odd, we obtain the formula

2.0 = 05 (2 - 3) - B2,
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§3. Decomposition of L-series

Remark. Let m be an integer >1 and let y be a non-trivial character on
Z(m)*. Then either the conductor of y is odd, or it is even, in which case it is
divisible by 4. Hence for a primitive character, we cannot have m = 2.

This is in line with a field theoretic property. Consider the field

K= Q(ﬂm)-

Let m be the smallest positive integer for which we can write K in this fashion.
Then either m is odd or m is divisible by 4. If m is odd, then the group of
roots of unity ug in K consists of + y,,. If m is even, then ux = p,.

§3. Decomposition of L-series

For the applications we have in mind, we have to deal with two types of
fields: The cyclotomic field Q(y,,) for some integer m > 2, and its maximal
real subfield, over which it is of degree 2. We shall use a language which
applies to the more general situation of an arbitrary abelian extension of the
rationals (known to be contained in a cyclotomic field), but the reader may
limit his attention to the two cases mentioned above. Certain proofs can be
given ad hoc in these cases, while it is easiest to use general class field theory
to deal with the general situation. 1 hope that the extent to which I recall
certain proofs here will make the material readable to any reader not
acquainted with class field theory.

Let K therefore be an abelian extension of Q, and let K* be its real
subfield. We let m be the smallest positive integer such that K < Q(u,,) (we
call m the conductor of K). We assume K # Q, and as said above, you may
assume K = Q(u,) or K = Q(y,,)*. We have a surjective homomorphism

Z(my* — Gal(K/Q) = Gkq

Any character y of Gk,q gives rise to a character on Z(m)*, also denoted by %.
We let m(y) be its conductor. We may view y as factored through Z(m(y))*,
in which case we speak of y as the corresponding primitive character. If we
need to make a distinction between y as character on Z(m)* or the corre-
sponding primitive character on Z(m(x))*, then we denote this primitive
character by yx,. The context should always make clear which is meant.

Let

6o =TT(1- g)

be the zeta function associated with K. It is a fact that there is a decom-
position

tx(s) = [ 1 Ls, ),
X
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3. Complex Analytic Class Number Formulas

where the product is taken over all the primitive characters induced by
the characters of Gy,q. We reproduce the proof in the case K = Q(u,,). In the
last section we dealt with the L-series in its additive form. Here we use the
multiplicative form

=TI - 2)"

where the product is taken over all primes p not dividing m(y). All these series
and products converge absolutely for Re(s) > 1, and what is to be proved
amounts to formal identities, localized at each prime p. Specifically, the
decomposition is equivalent to proving for each prime number p:

H(I_A’Ip“)=n(l—%)))'

plp X

It is therefore convenient to let ¢ = p~°. As usual, let

(P) = (p1---9) Np=p
be the decomposition of p in prime ideals in K. Then
efr = [K: Q]
The identity to be shown is then equivalent to
1T —-t)y= I;I (I = x()).
Suppose first that ptm. Then e = 1. The prime p generates a cyclic subgroup

of order fin Z(m)*,
Z(my* = {p} = {1}.

The value of a character y viewed as character on Z(m)* or as primitive
character are the same on p. There are f distinct characters on the cyclic
group {p}, corresponding to the fth roots of unity, each such character
assigning one of these roots of unity to p. Each one of these characters then
extends in r possible ways to Z(m)*. Since trivially we have the factorization

1-¢v=]]@a-2¢,

=1

we have proved our identity in the case p{m. The argument is, by the way,
entirely similar if K # Q(u,).
Suppose secondly that p|m. Write m = p*m’ with (p, m’) = 1. If p|m(y)
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§3. Decomposition of L-series

then by definition y(p) = 0. If ptm(y) then y factors through Z(m’')*. We are
therefore reduced to proving the identity

A—-y=[10-xp®

where the product is taken over those y whose conductor m(y) is not divisible
by p, and hence such that y factors through Z(m')*. The arguments are then
identical with the preceding arguments, replacing m by m’. This concludes
the proof. (Cf. [L 1}, Chapter XII, §1.)

As usual, we let r, r; be the number of real and complex conjugate
embeddings of XK.

If Kisrealthen r, = [K:Q], ro, = 0.
If K is not real, then r, = 0 and r, = $[K: Q].

We let
= [K: Q] = Ng.
We assume known the analytic continuation of the zeta function and

L-series at 1 (cf. [L 1], Chapter VII, [L 3], Chapter XIV). By comparing
residues, we have the class number formula:

CNF. 22QnyhR _ 1T 11, ).

A2
d x#1

As usual:

w = wg = number of roots of unity in K.
h = hg = class number of K.
R = Ry = regulator of K.

d = dy = absolute value of the discriminant.
If K is real, so r, = 0, then w = 2 and the formula reads:

hR
el U 3L(1, ).

Leopoldt’s p-adic analogue will be given in the next chapter. If K is not real,
then we let 4+, R* denote the class number and regulator of its real subfield
and N* is the degree of the real subfield,

N* = N2 = r,.
We shall also need another fact whose proof is somewhat more delicate.
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3. Complex Analytic Class Number Formulas

Theorem 3.1. We have product expressions:

0 [ ImGo =
¥#1
) di’? if K is real
(i) l:[l SG) = {ierl/Z if K is not real.

Proof. It is possible to give essentially algebraic proofs for these facts
(although the sign of the Gauss sums is always a little delicate, involving
something about the complex numbers). The best way to see the theorem,
however, is probably as in Hasse [Ha 1], using the functional equations of the
zeta function and L-series. Indeed, under the change s — 1 — s, the functions

ds2(n =321 (s/2))Vk(s) if K is real
ds/2(n—s/2r(s/2))~/2( ~s/2r(1 er s)) {x(s) if K imaginary
are invariant. On the other hand, under the transformation
st>1—s and y+—jp,
the following functions (for non-trivial y)

m(x)*3(n 2L (s/2))L(s, x) if y is even
m(x)sm( —sfzr( ! .; s))L(s, ¥) if x is odd

take on the factor

Va(=Dm(p)
S

Dividing the functional equation of the zeta function by the functional
equation of the L-series, one sees that under s +—1 — s,

(@)812 takes on the factor }%S(x—lgmm

The theorem then follows at once.

If we combine the residue formula, Theorem 3.1, and the expressions for
the values L(1, y) for primitive characters y found in the last section, we then
get the following factorizations for the product AR in the two cases.

K real.
W1pR=T] > —x®log|l — Lol

x#1 bmod m(x)
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§3. Decomposition of L-series

Warning: In this case, N = N*, h = A*, R = R* and characters are even.

K imaginary.
2NI2 hR
= =11 > —x®logll - Gpl- [ —Bue
xleieln b mod m(y) z0dd

In the real case, we observe that all characters are even. Also the number of
roots of unity in K when X is real is equal to 2. Otherwise, the formulas are
just obtained by plugging in.

It will be convenient to reformulate them slightly, to make the connection
between imaginary K and the maximal real subfield clearer. We let:

E = E; = group of units in K
E* = Eyx+ = group of units in K+
Ux = group of roots of unity in K

Cx = group of ideal classes in XK.

Lemma. We have the index

2(NI2) - 1R+
. +y - - -,
(E . “KE ) R
Proof. This is obvious by computing the regulator of the units in K+ with
respect to K, where local factors of 2 occur in each row of the determinant
expressing the regulator, whereas a local factor of 1 occurs in the corre-
sponding determinant giving the regulator of the units in K*.

Following Hasse, we give a symbol for the index in the lemma, calling it
the unit index:

Qx = Q = (E: uE™).

Reading the class number formula in the real case applied to K+, we find:

Theorem 3.2. For imaginary K,

h=htQw2¥2]] —B,,.

zodad
In the next section, we shall analyze more closely the decomposition
h=nhth",
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3. Complex Analytic Class Number Formulas

where 4~ is defined as A/h*, and we shall see that 2~ is an integer. In any
case, we have the class number formula:

CNF-. h==0w][] —3B.,

x odd

In the next section, we shall prove that Q =1 if K= Q(u,,) and m is a
prime power. In addition, A~ will be interpreted as the order of the (—1)-
eigenspace of the ideal class group. From Theorem 1.1 of Chapter 2, we find:

Theorem 3.3. If m is a prime power, K = Q(u,), G = Gal(K/Q), and & is
the Stickelberger ideal, then

h™ = (Z[G]": &).

Let p be a prime number. If 4 is an abelian group, we denote by A® its
p-primary part. As Iwasawa observed [Iw 7], knowing the index immediately
shows that:

The group Cz® is generated by one element over Z[G] if and only if there
is a Z[G]-isomorphism

Ci® & ZIG) /9.

Indeed, we know that the Stickelberger ideal annihilates the ideal classes,
so the isomorphism is obvious if there exists one generating element by
Theorem 1.1 of Chapter 2.

Let m = p itself. Iwasawa [Iw 7] and Leopoldt [Le 5], [Le 10] have shown
that if the Kummer—Vandiver conjecture h* prime to p is true, then the
cyclicity follows for the p-primary part of C™. (See Chapter 6, §4.) Prov-
ing the Kummer-Vandiver conjecture, or the Iwasawa—Leopoldt conjec-
ture that C¢? is cyclic over the group ring is therefore one of the major
problems of algebraic number theory today.

In the Iwasawa-Leopoldt conjecture it is necessary in general to restrict
the conjecture to the p-primary component. For example, let F be an imaginary
quadratic field Q(v/—p), and suppose p is such that F is contained in the
cyclotomic field Q(u,) = K. Then K over F is totally ramified above p, and
the Hilbert class field of F lifts to an unramified extension of K of the same
degree, so the ideal class group Cj is a factor group of the ideal class group
Cx, and Cr = Cr~. Itis known that there exist such fields, e.g., Q(v/ —3299),
for which C contains a group of type (3, 3), see Scholz—Taussky [S-T].
Furthermore, 3 does not divide p — 1, with p = 3299. Consequently all the
non-trivial eigenspaces for characters of Z(p)* of the local ring group Z;[G]
are cyclic over Zs. This shows that there cannot be an isomorphism

Cx™ = Z[G]" [,
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§4. The (+1)-eigenspaces

and thus in general, the Iwasawa-Leopoldt conjecture has to be restricted to
the p-primary component.
For h* we also get a formula, and it is convenient to introduce the group

G = Z(m)*/ £ 1,
and for each even character y the group
Gy = Z(m())*/ £ 1.

Then there are exactly N/2 even characters and (N/2) — | non-trivial even
characters. Therefore we obtain the other class number formula:

1
CNF*. h* = R+ z —x(B) log|1 — (G-

x#1 ber

The product over y # 1 is taken over the non-trivial characters of G,, or
equivalently the non-trivial even characters of Z(m)*. This product will be
interpreted as a determinant of certain units in §5, and it will follow that A+
is equal to the index of a certain subgroup of the units in the group of all
units.

§4. The (+ 1)-eigenspaces

In this section we analyze in greater detail the factors #* and A~ of the
class number, and the corresponding unit index. We assume that m is odd
or m = 0 mod 4.

Theorem 4.1. Let K = Q(u,,). Then Qy = 1 if m is a prime power, and 2
if m is not a prime power.

Proof. Let E = Ej be the unit group in K. For each unit u in E, the
quotient #/u is a unit, of absolute value 1, and for any automorphism ¢ of
K over Q, we have

o(@iju) = oujou

because ¢ commutes with complex conjugation (abelian Galois group).
Hence all conjugates of @1/u have absolute value 1. Hence iiju is a root of
unity. Let

Q:E—pu=pg
be the homomorphism ¢(u) = @#/u. Then
K2 < @(E) < p,
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3. Complex Analytic Class Number Formulas

because if # is a root of unity, then ¢(u) = u~2 so the image of ¢ contains
the squares. Hence the index of ¢(F) in pis 1 or 2 because p is cyclic. Further-
more, we see at once:

Qx = 2 if and only if ¢ is surjective, i.e., p(E) = p.

Assume that m is composite. Let { be a generator of p if m is even, and a
generator of the odd part of u if m is odd. Then 1 — { is a unit (elementary
fact, and easy exercise), and @(1 — {) = —{~1, so ¢(E) = pu, in other words
@ is surjective. On the other hand, @(E*u) = uZ, so the index is 2 in this case.

Suppose next that m is a prime power, m = p™. We contend that ¢(E) # pu.
It will follow that ¢(E) = p2, and since the kernel of ¢ is E* the theorem also
follows in this case. Suppose @(F) = p. Let { be a primitive mth root of
unity, and let u be a unit such that

ifu = -1
Let
1 - C.

u

o =

Then o/d = 1 so o = & and « is real. But 1 — { is a prime element above p
in K and so « is also a prime element, which cannot lie in the real subfield.
This proves the theorem.

Theorem 4.2. Let K = Q(u,). The natural map
Cx+ = Ck

of ideal classes in K+ into the ideal class group of K is injective.

Proof. Let a be an ideal of K* and suppose a = (a) with o in K. Then
&/a is a unit, and in fact a root of unity as one sees by an argument similar
to that in Theorem 4.1. Suppose that m is composite. By Theorem 4.1, we
know that Q, = 2 and ¢ is surjective, so there exists a unit u such that

ulii = aja.

Then au is real, and generates the same ideal as «, thus proving the theorem
in this case.

Suppose that m = p" is a prime power. Let { be a primitive mth root of
unity, and let A = 1 — {, so 1 is a prime element above p in K. We can write
& = oz with some root of unity, and 4/A = —{ is a generator of u. Hence

z = (AfA)F

for some positive integer k. Then al* is real. Since the ideal generated by «
comes from K*, and since p is totally ramified in X, it follows that k is even.
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§4. The (% 1)-eigenspaces

Hence z is a square in g, and therefore in the image of ¢, say z = u/u for
some unit ». Then au is real, and generates the same ideal as «, thus proving
that a is principal, and also proving the theorem.

Theorems 4.1 and 4.2 are classical, see for instance Hasse [Ha 1], Chapter 3,
for more general results. The elegant proofs given here are due to Iwasawa.

Theorem 4.3. Let K be an imaginary abelian extension of Q. Then the norm
map

NK/K+: CK — CK+

on the ideal class group is surjective.

Proof. We have to use class field theory, which gives the more general
statement:

Lemma. Let K be an abelian extension of a number field F. Let H be the
Hilbert class field of F (maximal abelian unramified extension of F). If
KN H = F then the norm map Ng.: Cx — Cg is surjective.

Proof. For any ideal class ¢ in K, the properties of the Artin symbol show
that

(c, KHIK) restricted to H = (Ngzc, H/F).
We have natural isomorphisms of Galois groups:
KH
\ > H

KNnH-=F

Gal(KH/K) ~ Gal(H/F) K

Hence the group (Ny,»Cg, H/F) is the whole Galois group Gal(H/F), whence
Ng,»Cx = Cp since the Artin symbol gives an isomorphism of the ideal class
group with the Galois group. This proves the lemma.

The theorem follows at once, because K over K* is ramified at the
archimedean primes, and hence cannot intersect the Hilbert class field of F
except in F.

Let t denote complex conjugation. Let

Cx = (—1)-eigenspace of Cy
= {¢ € Cg such that ¢*** = 1}.
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3. Complex Analytic Class Number Formulas

Theorem 4.4. Let K = Q(u,). Then the sequence

1—>C§—>CK—5(2->CK+—>1

is exact.

Proof. We consider the norm map followed by the injection,

CK norm CK* inj CK
The kernel of this composite map is Cg by definition, so the theorem is
obvious by what had already been proved.

Corollary. The quotient hfh* is an integer, which is the order of the group
Cx.

Remark. The integer 4~ is called the first factor, and /47 is called the second
factor of the class number, in older literature. This is poor terminology since
the ordering seems arbitrary, and for several years this has been replaced by
the plus and minus terminology.

§5. Cyclotomic Units

Let m again be the conductor of the cyclotomic field Q(u,), so either m is
odd >1 or m is divisible by 4. Let { be a primitive mth root of unity. For b
prime to m we let

Then g, is a unit called a cyclotomic unit. It is easy to see that g, is equal to a
real unit times a root of unity. Indeed, without loss of generality we may
assume that b is odd, since {® depends only on the residue class of b mod m.
Then

b—1

(g, for v=—5—

is real (i.e., fixed under o_,), as one sees immediately from the definitions.
We let g7 be this real unit, uniquely determined up to sign, and call it the
real cyclotomic unit.

We let & be the group of units in Q(u,,) generated by the roots of unity
and the cyclotomic units. We let £+ be the group of units in Q(u,,)* generated
by +1 and the real cyclotomic units. Then

E|€ ~ E*|6*.
Observe that g, and g_, differ by a root of unity.
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§5. Cyclotomic Units

As before, let N = [Q(u,) : Q] and let

N

r=—2——1.

Then r is the rank of E, and also the rank of E*. If ¢,, .. ., ¢, is a basis for
E* (mod roots of unity), then the regulator R* is the absolute value of the
determinant

R(E) = R* = tdet log|o,e|
a.f

where j = 1,...,rand ae Z(m)*/+ 1 and a # + 1 (mod m). It is convenient
to let

G =Z(m)*/£1

so we may view a€ G, a # | in G.
On the other hand, we may form the cyclotomic regulator

R(€) = Ry = + det log|o,gs|
a,b#1

again with a, b € G, and of course it does not matter if we write g, or g,
since the absolute value of a root of unity is 1.

For composite levels m the cyclotomic units are not necessarily inde-
pendent, and so we now turn to prime power level,

m = p*.

We shall prove in this case that the cyclotomic units are independent.
Interpreting the regulator as the volume of a fundamental domain for the
lattice generated by the log vectors of units in R", we see that

(E: &) = (E* : %) = Ryyo/R*.

Remark. For composite m, as with the index of the Stickelberger ideal,
it is necessary to consider the group generated by cyclotomic units of all
intermediate levels to get a group of units of the right rank.

Theorem 5.1. Let K = Q(u,) and h = hy. Assume m = p" is a prime power.
Then

h* = (E* : 6+) = (E: &).
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3. Complex Analytic Class Number Formulas

Proof. Let G be any finite abelian group. Then we have the Frobenius
determinant formula for any function f on G:

[12 x@f@™) = det [fab™?) - f(@)].

x#1 aeG

The proof will be recalled later for the convenience of the reader. It is already
clear that up to minor changes, this formula yields the theorem, taking into
account the expression for 2+ obtained at the end of §3. We now make these
changes explicit.

Lemma 1. We have for G = Z(m)*/ +1:

t det loglouge| =] ] > x(b)logll — ¢

x#1 beG

=12 x®)loglg,.

X#1 beG

Proof. The first expression comes from the Frobenius determinant formula
(Theorem 6.2), and the second comes from the fact that for non-trivial ,

2, 1(b) log|1 — ] = 0.
Lemma 2. Let G, = Z(m(x))*/ = 1. For prime power m = p", we have

2, 1®) log|l — Loyl = > x(b) log|1l — ¢,

beGy beG

Proof. Let m(x) = p*. We write residue classes in Z(p™* in the form
y=>b+pc, with0O < ¢ < p*~3,

and b ranges over a fixed set of representatives for residue classes of Z(p®)*.
Instead of the sums over G, and G respectively, it is easier now to work with
sums over Z(p*)* and Z(p™")* respectively, and then divide by 2. The desired
relation is then immediate from the identity

[T @x=ar)=xm— ym

im=1
because we get
> xlogll = Gl = > x(b)log|l — L),
y mod p* bmod p3

This proves the lemma.

Theorem 5.1 is then immediate from the lemmas, and the class number
formula for 4* obtained from the L-series.
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§5. Cyclotomic Units

It is generally believed that the coincidence of group orders in Theorem 5.1
does not correspond to an isomorphism of the groups involved. Iwasawa has
a counterexample at least that C* is not isomorphic to E/& as Galois module.
Mazur has pointed out that the analogous statement for the case of elliptic
curves with complex multiplication is definitely false.

We conclude this section by mentioning the most classical case of the
quadratic subfield. For our purposes we are interested in the case of the real
quadratic subfield. Thus for the end of this section, we let

m = p with p prime # 2, 3

and such that K = Q(u,,) contains a real subfield F = Q(v/ D) with D > 0,
so D = p, and D is the discriminant. Let ¢ > 1 be a fundamental unit of F,
and Ay the class number. From

Le(s) = La($)L(s, X)

where y has order 2, we get

2hploge

VD L1, x)

- =52 > 1@ ogl -

=1

It is a simple matter of the theory of quadratic fields that the conductor m(y)
is exactly D (assumed > 0). The explicit value S(y) can be determined in any
number of ways (via functional equation, via Dirichlet’s method as in my
Algebraic Number Theory, Chapter IV, §3, etc.), and we have S(y) = V' D.
Thus we find:

Theorem 5.2. For a real quadratic field F = Q(V'D) as above,
2hploge = — > i(a)logll — (9.

amod D

We have the tower of fields:

Z(D)*/ +1

C———Xx—Xx
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Let & be the group of cyclotomic units in KX* and let &; be + its norm group
into F, so

6p = + Ng+56.

Then &% (mod + 1) is infinite cyclic.

Theorem 5.3. hy = (Ep: &5).
Proof. Let
a=]]@-¢) and = [] -2¢9,
x(a)=1 x(a)y=~-1

where { is a fixed primitive Dth root of unity. Note that the character y is
even, so a and —a occur simultaneously in each product. Therefore the norm
from K* to F of any real cyclotomic unit

is a unit in F, and the group generated by these norms (mod # 1) is infinite
cyclic, generated by a unit n > 0 such that

+n? = o'/a.
From Theorem 5.2 we conclude that
hg log ¢ = logn.

Thus = ", and since n (mod + 1) generates the norms of cyclotomic units
in K*, this proves the index relation of Theorem 5.3.

This index relation is analogous to that of Theorem 5.1 for the full cyclo-
tomic field. Since K* is totally ramified over F (at the prime p) it follows from
class field theory that

hg divides Ag.
(Proof: Let H; be the Hilbert class field of F. Then H. N K* = F, so
[HeK* : K*] = [Hg : F] = hp.

Since HxK*/K™* is unramified, it follows by class field theory that A divides
hi))

For tables of some A, see Borevich—Shafarevich, Number Theory, Aca-
demic Press, p. 424. It has been observed for a long time that 4, has very small
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values, and grows very slowly. It is unknown if there are infinitely many real
quadratic fields of class number 1.

§6. The Dedekind Determinant

Let G be a finite abelian group and G = {y} its character group. We have the
Dedekind determinant relation:

Theorem 6.1. Let f be any (complex valued) function on G. Then

[12 xafa) = det fla=b).

X€EG aeG

Proof. Let F be the space of functions on G. It is a finite dimensional vector
space whose dimension is the order of G. It has two natural bases. First, the
characters {y}, and second the functions {3,}, b € G, where

o(x)=1 if x=5b
S(x) =0 if x#£b.

For each a € G let T,f be the function such that T, f(x) = f(ax). Then
(Tox)(B) = x(ab) = x(@)x(),
so that
Tox = x(a)x-

So y is an eigenvector of T,. Let

T=> fla)T..

aeG

Then T is a linear map on F, and for each character y, we have

Ty = [Z x@f(@)|x

aeG

Therefore y is an eigenvector of T, and consequently the determinant of T is
equal to the product over all y occurring on the left-hand side of the equality
in Theorem 6.1.

On the other hand, we look at the effect of T on the other basis. We have

Tob4(x) = by(ax),
so that T,6, is the characteristic function of a~1b, and
Taab = 5a'1b-
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3. Complex Analytic Class Number Formulas

Consequently

16, = Z fla=1)d,-1,

aeq

= > f(a~b)s,.

aEeG

From this we find an expression for the determinant of 7" which is precisely
the right-hand side in Theorem 4.1. This proves our theorem.

Theorem 6.2. The determinant in Theorem 4.1 splits into

det flab~1) = [2 f(a)] det. [f(ab=1) — f(a)].

aeG

Therefore

[12 x@f@™ = et [flab™") — f@)].

x2#1 aeCG

Proof. Let a, = 1, ..., a, be the elements of G. In the determinant

f@ar®) flaaz?)- - flaaz?)
det f(aa;?) = : : s
fawar?) flanaz?)- - -flawa:?)

add the last » — 1 rows to the first. Then all elements of the new first row are
equal to > f(a™!) = 3 f(a). Factoring this out yields

1 1 -1

[Zf( )] (a2al D) f(azaz_l) f(azan.)

aeq

f(anaf B f(anaz 1) flaas?)

Recall that a, is chosen to be 1. Subtract the first column from each one of the
other columns. You get the first statement.

On the other hand, the function f can be selected so that the elements
{f(a@)}, a € G, are algebraically independent over Q, and therefore the factori-
zation given in this first statement for the determinant is applicable in the
polynomial ring generated over Z by the variables f(a). Combining the first
statement with Theorem 6.1 yields the second relation where the product is
taken only over y # 1.

Serre has pointed out to me that the determinant relation is due to Dede-
kind, February 1896, who communicated it to Frobenius in March. Cf.
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§7. Bounds for Class Numbers

T. Hawkins, “New light on Frobenius...”, Archive for History of Exact
Sciences 12 (1974), p. 223.

§7. Bounds for Class Numbers

In this book we have not emphasized questions having to do with the size
of the class number. We shall here make some brief remarks concerning
various possibilities to obtain bounds. We let A, = class number of Q(u,),
and p is prime >3.

To begin we derive the expression of the class number A, as a determinant
following Carlitz-Olson [Ca—O]. We start with the expression

hy =2p [ | —1B.,

x odd

=[]+ 3 x5 )

because the characters are non-trivial, and the term with 4 drops out. We try
to rewrite this as a Dedekind determinant over the group

G = Z(p)*/ £ 1.

ORCOM

p p

Let w be the Teichmuller character such that w(a) = @ mod p. We write odd
characters as products

We have

X = oy

where y is even. Then we find

1 a —a
; pl‘wl 3 2, V@o@| >
and this makes sense because the function

- ohG- )

on Z(p)* is actually well defined mod + 1, so is defined on G. This expression
is now in the form where we can apply the Dedekind determinant, thus getting

b = smaoa((2 ) - (52 )]
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3. Complex Analytic Class Number Formulas

The size of the determinant is

p—1
2

Let { be a primitive (p — 1)-root of unity. Representatives for elements of G
are given by the powers (! with 1 < i < (p — 1)/2. The determinant may then
be taken over indices

ij= 1,...,1’—-;—1 witha = (', b = ¢/,
and w(ab) = {**/. In the expansion of the determinant, every term contains a
factor arising from these {**/, whose product is obviously 1. Consequently
the determinant is the same as the determinant obtained by omitting these
{**7 from each term.
Let R(a) be the smallest positive integer in the residue class of a mod p.
Then R(a) is an integer < p — 1, and

o

We use the notation R({**?) and R(—{'*’) to denote similarly the smallest
positive integers in the residue class of {**/ and —{**/ respectively. Then we
have proved the following theorem.

Theorem 7.1. + D, = 2p)®*~¥2h;
where
D, = det[R({*") — R(—{*)).

Observe that each entry in the determinant D, is an integer of absolute
value < p — 1.

The absolute value of the determinant is the volume of the fundamental
domain of its row vectors, say. This volume is bounded by the product of the
Euclidean lengths of these vectors (Hadamard inequality). Carlitz [Ca]
observed that this gives the bound

hp— < 2—(3P—7)l4(p — 1)(p+3)/4.

As Carlitz-Olson relate it, the history of the determinant in Theorem 7.1
is amusing. The determinant

det R@b™), a,b=1,..., 251

was known classically as the Maillet determinant, conjectured to be #0 by
Maillet. Malo computed it for p < 13, and found it equal to the appropriate
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§7. Bounds for Class Numbers

power of p. He conjectured that it was always so equal, but Carlitz-Olson
computed a bit further, and found extra factors. They derived that the
Maillet determinant is equal to the determinant of Theorem 7.1 (up to the
obvious power of 2), and then also to the class number times that power of
p by using the expression of the class number as a product of generalized
Bernoulli numbers (not called that at the time). Thus Malo had missed out
the class number factor.

Metsinkyld [Me] gives growth estimates for 4~. Masley—Montgomery
[M—M] also prove the inequalities

(zn)—P/2p(D—25)/4 < hp— < (2n)—Pl2p(P+31)/4’

for primes p > 200. Thus the Carlitz bound is reasonably sharp. For applica-
tions of this see Ribet [Ri].

For primes p, it has been proved by Uchida [Uch] that 4, = 1 if and only
if p < 19. More generally, Masley and Montgomery [M-M] subsequently
proved that h, = 1 for precisely 29 distinct values of m (always assumed
#2 mod 4), the largest of which is m = 84. Masley [Mas 2] shows that i, = 2
if and only if m = 39, 56. For Euclidean cyclotomic fields, see also [Mas 1].
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The p-adic L-function

In this chapter we return to p-adic integration theory, and give Mazur’s
formulation of the p-adic L-function as Mellin transform. It turns out to be
more convenient as a basic definition, than Iwasawa’s previous formulation
in terms of power series. The connection is made via Example 2 of §1. We
derive further analytic properties, which allow us to make explicit its value
at s = 1, thereby obtaining Leopoldt’s formula in the p-adic case, analogous
to that of the complex case. We also give Leopoldt’s version of the p-adic
class number formula and regulator.

The basic arguments are due to Leopoldt [Le 11]). However, we shall
follow in §1 and §2 a course of Katz, which developed systematically opera-
tions on measures and their corresponding formulation on power series in the
Iwasawa algebra. In this manner, constructions which appear slightly tricky
in Leopoldt’s paper here become completely natural, and even forced from
these measure theoretic operations.

The Leopoldt transform then appears as an extension of an integral
transform to a somewhat wider class of power series than those with p-adic
integral coefficients. No use will be made of this, since only integral valued
measures occur in the analysis of the p-adic L-function, but we include
Leopoldt’s results for completeness, for convenience of reference if the need
ever arises for them.

The p-adic L-function in the case of elliptic curves is discussed in Robert
[Ro], and especially Coates-Wiles [C-W 2], [C-W 3]. See also Lichtenbaum
[Li 3], and Katz [Ka] for general comments concerning its connection with
formal groups. For the case of totally real fields, Shintani’s evaluation of the
zeta function [Sh] presumably allows a development of the L-function similar
to that of the cyclotomic case.

This chapter is used only in Chapter 7, and it can therefore be omitted
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§1. Measures and Power Series

without loss of the logical connections. On the other hand, if one leaves out
the section on the p-adic regulator, then the chapter appears as a natural
continuation of Chapter 2, and is essentially measure theoretic, independent
of Chapter 3.

Throughout, we need the fact that if o is the ring of integers in a p-adic
field, then there is a natural isomorphism

lim o[ X]/((1 + X)™ — 1) = o[X]].
<

The limit is the projective limit, and is called the Iwasawa algebra. This is a
basic fact of algebra. In the next chapter, we need further facts about this
algebra and modules over it. For the convenience of the reader, all these
facts and their proofs will be placed in the next chapter.

§1. Measures and Power Series

Let C, be the completion of the algebraic closure of Q,, and let o = o,
be the ring of p-integers in C,. By a measure u we shall mean an o-valued
distribution on Z,. This means that for each integer » > 0 we have a function

Hn: Z(p™) —> D

such that the family {u,} is a distribution on the projective system Z(p").

Let Cont(Z,, o) or C(Z,, o) be the space of continuous functions on Z,
into o, with sup norm. As usual, there is a bijection between measures and
bounded functionals

A: Cont(Z,, 0) — 0.
[A Z,-linear map 4 is called bounded if there exists C > 0 such that
[A(p)| < C|o]| for all ¢ € Cont(Z,, o).

The inf of such C is called the norm of 4, and denoted by ||4]|. The bounded
functionals form a p-adic space.] Indeed, it is clear that any measure u gives
rise to a functional

du: @ l-—>f @ du.

On the other hand, suppose 4 is a bounded functional. If x € Z(p™), let ¢,
be the characteristic function of the set of elements y € Z, such that

y = xmod p".
Define
Hn(X) = M)
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4. The p-adic L-function

It is then clear that {u,} defines a measure. Since any continuous function
on Z, can be uniformly approximated by step functions, it follows easily
that the correspondence

u>du

is a bijection from o-valued measures on Z, to bounded functionals.
Furthermore, define the norm

Il = sup o),

taken for x € Z(p™) and all n. Then the map u+> du is easily verified to be
norm preserving.
The Iwasawa algebra is obtained as the projective limit

Ao = lim o[ X]/((1 + X)™ — 1) = o[[X]],
and
o[ X]((1 + X)" — 1) = o[TY(T™" — 1)
where T = 1 + X. Let y, = Tmod (T ~ 1), so y&" = 1. Let as usual

(If;) _rr— 1)---151-"— k+1)

The function u, on Z(p") can be viewed as an element of the group algebra
o[y,], namely

-1 =1 LAkt N
> W= > ) O (k)X"
r=0 r=0 k=0

3 (5wl

k=0 r=0

where the right-hand side is read mod (1 + X)* — 1. Thus

pt—1 p"—1

Z ﬂn("))’ﬁ = Z cn.ka = Pﬂ(X),
r=0 k=0
where the coefficients ¢, are given by
=1 r
Cae = . un(r)( k)-
r=0
The canonical homomorphism Z(p"*?!) — Z(p™) maps

P,,+1(X)l—>P,,(X),
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§1. Measures and Power Series

and we let

P(X) = lim P,(X)

be the projective limit of these elements in the Iwasawa algebra. We call
P(X) the power series associated to u, and also denote it by (Pu)}(X) or
Pu(X). Thus

P: o-valued measures on Z, — o[[X]]

is an o-linear map. Conversely, any power series f < of[X]] defines a com-
patible system of elements in the group algebras ofy,], so the map P is
bijective. We write

f=Pu or p=y

to mean that f is the power series associated to u as above. We call P the
Iwasawa isomorphism.,
For any xe Z, let

Cux) = x(x — 1)- ksx —k+1) (z)

Since Ci(r) is an integer for any positive integer r, and since Z* is dense in
Z,, it follows that

Co:Z,—>Z,

is a polynomial map of Z, into itself, and in particular is continuous.
For fixed n, define

r—1D---(r—k+1)

CPe) =~ k!

where 0 < r < p* — 1, and r = xmod p”. Then C{® is a step function,
defined at level n, and

lim C{® = C, uniformly.

n— o

Since the coefficients ¢, ; in the polynomial P,(X) are given by the sum of
products of u, and the binomial coefficient, we obtain:

Theorem 1.1. Let f(X) = > ¢, X* € o[[X]]. Then

Cp = fz (IJ:) du(x).

P
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4. The p-adic L-function

Theorem 1.2. The power series Py is the unique power series f such that for
z in the maximal ideal of v, we have

(I + 2)* du(x) = f(2).

Zp

Proof. We have

L,, A + 2)* du(x) = fz, é:o (z) 2 du ().

We can interchange the sum and integral, apply Theorem 1.1, and we see
that Py has the desired property. Uniqueness is obvious since any power series
is determined by its values.

Example 1. Let u be the Dirac measure at a point s € Z,, that is

o dp = ¢(s).

Zzy

Then the associated power series f'is

X 20 (;) X* =1+ X

Il

Example 2. Let v be a measure on Z, whose support lies in the open
closed subset 1 + pZ,. Let y be a topological generator of 1 + pZ,, for
instance y = 1 + p. There is an isomorphism

Z,—>1+pZ,
such that
X = p*.

By pull back, there exists a unique measure u = g, on Z, such that
f wavw) = | 9% du).
1+pZ, Zp
By Theorem 1.2, writing y* = 1 + z, we get

f v = 17 = D).
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§1. Measures and Power Series

The power series f is not easily determined in terms of v. Iwasawa expressed
his results on p-adic L-functions in terms of the power series f. Mazur gave
the formulation in terms of the integral, see §3 below.

Theorem 1.3. (Mabhler) A function ¢ from Z, into v is continuous if and only
if there exist elements a, € o such that |a,| — 0 and

o= 5e)

The sequence {a,} is uniquely determined by ¢.

Proof. Given a sequence {a,} as above, it is clear that the function

ox) = > an(z)

is continuous. For uniqueness, let

4o(x) = o(x + 1) — o(x).

Then ¢(0) = a4, and furthermore

40 =G0 o= Zan)

and
Ak(D(O) = Q.

This proves uniqueness.

We now prove existence. In the applications, the measures will take values
in the ring of p-adic integers in a finite extension of Q,. An argument using
tensor products reduces the general case to this case, and we omit it since we
have no use for it. The case of a finite extension is then reduced to the case
when the measure is Z,-valued by taking a basis for the ring of values over
Z, and projecting on the coordinates. We now handle this case.

Let B be the Banach space of sequences (a,) with a, € Z,, and |a,| — O,
under the sup norm. We have a Z,-linear map

B2 by @ Sal)

We have to show it is surjective. By completeness of C(Z,, Z,) it suffices to
prove that a given fe C(Z,, Z,) is congruent to the image of an element
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4. The p-adic L-function

of B mod p" for each n, and by a simple recursion, it suffices to do this mod p.
In other words, it suffices to prove that the map

{(a,), a, € F,, almost all a, = 0} - C(Z,, F,)

given by the same formula as above, is surjective. But
cZ,F,) = U Maps(Z(p"), F,)
N

because F, is discrete and finite.

Lemma. Let 0 < k < p". Then the function

x> (l)z) mod p

of Z, into ¥, is periodic of period p*.
Proof. We have to show

k

(1 4+ T+ = (1 + T)*(1 + T)*" = (I + T)*(1 + T*") mod p,

i

(z) mod p ifk < pV.

we prove the lemma by comparing the coefficients of T*.
Now we are reduced to showing that
{(@,), a, €F,, a, = 0if n > p"} — Maps(Z(p"), F,)

is bijective. Since both spaces have F,-dimension p", the surjectivity follows
from injectivity, which is proved the same way we proved that the function
¢(x) has uniquely determined coefficients a,. This proves Mahler’s theorem.

Corollary. If f(X) = > ¢, X" and

P(x) = Za,.(i)’

then

f @ dﬂf = z AnCp,

U o du,

N

< (supla.DIfI < If1-

100



§2. Operations on Measures and Power Series

We define the norms:

I/ = sup |e|

lul = sup |1a(x)] as before.

Theorem 1.4. We have | f| = | il

Cn = J (:) dpy(x),

we get trivially || f|| < |g/]. Conversely, given a level p”, let x, € Z(p™) and
let @ be the locally constant function such that

Proof. Since

o(x)) =1, and o(x) =0 if x # xo, x € Z(p").
Then

J(odm = pa(xo),

and on the other hand, from the corollary of Theorem 1.3, we get

H(pdﬂf

< |71,

so |lus]l < |f] as desired.

§2. Operations on Measures and Power Series

We shall give a list of integration formulas, or better, a list of operations on
measures and their corresponding operations on power series.

Meas 0. du, = f(0).

Zp

Proof. Special case of Theorem 1.2 with z = 0.
For the next property, we let
Yalx) = (1 + 2)
if ze m = maximal ideal of v. Also (with formal groups in mind) we write
X{+]z=X+z+zX=(1+2)(1,+ X) - 1.
Meas 1. Vo, = pg, where g(X) = f(X[+]2).
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4. The p-adic L-function

Proof. For w e m we have

) = f Vs diy

= I+ wy(1 + 2)* duy(x)

Zy

=| (1 4+ w4+ z 4+ wz)*duix).

Zp
The property is then clear from the definitions.

In particular, let { be a p™th root of unity, and let z = { — 1. Then

‘/’z(x) ="

and we find:
Meas 2. Yeoilly = U
where g(X) = f({(1 + X) — 1) = AX[+]( - D).

As before, putting T = 1 + X, and f(X) = f; (T) if fis a rational func-
tion, we can write the power series g(X) in Meas 2 in the form

g(X) = fo,(£T).

Moreover, let ¢ be a step function, constant on cosets mod p™. Write the
Fourier expansion

o(x) = 2> QO

fr=1
#© =I% S e,
XEZ(P™)
We find:
Meas 3. QU = UUg
where g(X) = >  ¢OfCA + X) — ).

=1

If f(X) = f5,(T) is a rational function, then

gD = 2 ¢Ofe (D).

Pr=1
Let U, = U be the operator
U0 = fX) — 3 S0+ X0 =
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§2. Operations on Measures and Power Series

We call U the unitization operator because of the next property.
Meas 4. If ¢ = characteristic function of L}, then

PUs = Huy-

Proof. We compute trivially the Fourier expansion of ¢:

lp-l ~ _l/p 1fC7él
WO =5 2,87 = p—;l i =1

Then Meas 3 gives
gX) = 2 Ol + X) - 1) = Uf(X),

P=1

as was to be shown.

Remark. Let 4 be the formal multiplicative group (cf. Chapter 8). In the
notation of such groups, we can write the unitization operator in the form

Uf(X) = f(X) - 11» > fX[+]2)

Meas 5. Let y be a character on L}, of finite order with conductor N =
power of p. Let { be a primitive Nth root of unity, and let

SO = 2, @

acZ(N)*
Then
Xy = Ug
where
20 =28 5 gancer+ 1 - .
acZ(N)*

If f is a rational function, then

g6.T) = 2LOS g(a)f, (€-oT).

Proof. 1t suffices to apply Meas 3 and to compute the Fourier transform
of x. This is trivial, and we have

Z x(y)m_{o if x=0modp
veTN (@S, ) ifx=a# 0modp.
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4. The p-adic L-function

Meas 6. xpg(x) = ppg(x)

where D = (1 + X)Dgx. In particular

[ #du@ = | duory = DO
zy zp
Proof. Note that
PR G ) il QN 760 Rl
20 z 20 z

Hence for any step function ¢ we get
. Ax) — 1
[ %009 i) = tim [ L= o3) d

= tim [ 9(x) du () (by Meas 1)

where

gAX) = Xtz +sz) /) _ (1 + X)f'(X) mod z

by Taylor’s formula. The desired result follows by taking the limit as z— 0
and using the non-trivial part of Theorem 1.4, that is:

ltto, = wosll < lg= — Df|| < |2]-

Remark. We shall deal throughout with three variables. Let T be the
variable on the ‘“multiplicative group.” We put

T = é%, X=T-1, T=1+ X.

Then Z is the corresponding variable on the additive group. For any power
series f(X) (with coefficients in a field of characteristic 0) there is a corre-
sponding power series denoted by f*(Z) or f;,(Z) such that

S(X) = fle® = 1) = f6,(Z) = fo,(T)-

This last equality makes sense only when f'is a rational function.
The differential operator D then can be expressed in terms of the three
variables,

(1 + X)Dx = Dz = TDT.

The expression in terms of T applies only to rational functions of T (rational
functions of X). The first two expressions in terms of X and Z apply to
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§3. The Mellin Transform and p-adic L-function

arbitrary power series, and for any positive integer k, the expression D*f
makes sense whether we view f as power series in X or Z. Furthermore,

D*f(0) = D%f5.(0).
If fis a rational function, this is also equal to (T Dr)f; (1).
Meas 7. Let g = Ug so p, is a measure on Z¥. Then

a~‘ufa) = pun(@
where h is any power series such that Dh = g.

Proof. Since a~ua) is a measure on Z¥, there exists a power series f
such that fe o[[X]],

a~'pfa) = p(@ and Uf =7
Then
Bo(X) = xpy(x)
whence by Meas 6,
g = Df = DUf.

We let & = Uf to conclude the proof.

§3. The Mellin Transform and p-adic L-function
Let @ be the Teichmuller character. If p is odd, then

.7
0 L5 —> py_y

is the character such that w(a) = a mod p. If p = 2, then we define w(a) = +1
such that

w(a) = amod 4.
Then we can write uniquely an element a € Z} as
a = w(a)a),
where (@) = 1 mod p if p is odd, and <a) = 1 mod 4if p = 2.

Let u be a measure. We define its Gamma transform as a function on Z,
by the integral

Foits) = | @ duta),

and we define its Mellin transform, also as function on Z,, by

M,u(s) = f (aa~* du(a).
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4. The p-adic L-function

It is clear that I',u and M,u are continuous in 5. (For analyticity, see below.)
Since the integral is taken on Z}, M,u depends only on the restriction of
uto Z%, soif u = py, then

M,u; = Mypiys.

If u = p,, we write sometimes M, f instead of M,u,, and similarly for the
Gamma transform.

Note that a~* du(a) for a e Z} is also the functional associated with a
measure, so that the Mellin transform is actually a special case of the Gamma
transform (of another measure).

Theorem 3.1. Let g € o[[X]] be such that Ug = g, and let h be a power
series such that Dh = g. Then Uh € o[[X]] and

r,Uh = M,pu,.

Proof. This is an immediate application of Meas 7, after integrating the
function {a}*.

We now consider the analyticity properties.

Lemma. Let p be a measure on Z}. Then there exists a power scries
h € ZP[[S ]]’

h(s) = D bus™
n=0
such that b, — 0 as n —> oo, with the property that for all s € Z,,

h(s) = . {a)’ du.

Proof. The integral can be written as a sum of integrals over cosets of
1 + pZ, (or 1 + 4Z, if p = 2). Changing the measure appropriately with
respect to each coset, we are reduced to proving (say for odd p) that for any
measure u, the integral

j (ay* dy
1+0Zp

has the desired analyticity property. We note that
°° s
[ @a=] > ()a-1rda
1+pZy 1+pZy,n=0 \N

=f zio:s(s—l)-( n+ 0.
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§3. The Mellin Transform and p-adic L-function

Buta — 1 = Omod p, and so (¢ — 1)*/n! is p-integral for all n. Furthermore,
(a — 1)*/n! tends to O p-adically as n— co. Hence we can interchange the
sum and integral to yield

[ <@rdu= > Psren
1+4pZy n=0
where P, is a polynomial of degree n with integral coefficients, and

= .[1 +9Zp (‘1;4 )

is p-integral, and ¢, — 0. It is then clear that > P,(s)c, can be written as a
power series A(s) whose coefficients b, tend to 0 as desired.

We had the measure E, , in Chapter 2, with ce Z}. Let s be a p-adic
variable in Z,. For any ¢ such that y(c)<c)>* is not identically 1 we define the
p-adic L-function L, by

Ll =50 = r_—i(i‘)‘@'y M, ((E1,)(s)
= ﬁm f {ay'x(@)a~' dE; (a).

By the lemma, the integral is analytic as a function of s. The factor in front
is analytic except when

x(eXed* = 1.

If x is non-trivial, we can select ¢ such that y(¢) # 1, and then the factor in
front is also analytic at s = 0.

Theorem 3.2. The value of L,(1 — s, y) is independent of the choice of c,
and for any positive integer k,

1
LP(I - k9 X) = _E Bk,xm_"‘
In particular, if k = Omod p — 1, and p is odd, then

1
L — k0 =~ Bux:

Proof. Since the set of sufficiently large integers £k = 0 mod p — 1 is dense
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4. The p-adic L-function

in Z,, we see that the first assertion follows from the explicit values given at
integers of the form 1 — k as described. For these, we have:

MGE, ) = || @ @ dE, (@
-] (@) 4@ dEs ()
= (1 = y0-%)cH) ]% Bio-* by Theorem 2.4 of Chapter 2
= (1 = XY ] Begu™.

This proves the theorem.
Theorem 3.3. Let g = Ug and let h be the power series such that

Dh =g and HhQ0O) = 0.
Then

M,1,(0) = — ; 2=

Proof. By Meas 7 we have

Myt ©) = [ a=* du(a) = | duent@) = UK.

The formula is then clear from the definition of U.

To compute L,(1, ) we have to work out the power series associated to
E, . and then apply the formalism of the preceding section systematically
to get the answer, with s = 0 in L,(1 — s, x), using Theorem 3.3.

Proposition 3.4. Let c € Z}. The power series associated with the measure
Ey s

1 c
fre=T1 7T -1

withT =1+ X.

Proof. It is immediate to verify that as power series in X the expression
on the right-hand side is holomorphic at X = 0, and that its coefficients are
p-integral because ¢ is a p-unit. Let

AT = ;o—g_T clogT

1 T°-1
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§3. The Mellin Transform and p-adic L-function

Putting T = €% we find

AT = 142) = 72 — 2

Zk
> - BT

I

On the other hand, let f; . be the power series associated with E, ., and write

* 2y = S e 2
£ = fEd2) = 2 ees Ty

Since

| werdE. = 1B - o,
. © "k

'

it follows from Meas 6 that
iy = DEIFR0) = 1 Bl — €9,

s0
ZfidZ) = 2,0 - ‘/’k)ka_;c =f*2) = Tg 1 ch% 1

It follows that

1 c
He=F—177o-1

as desired.

Proposition 3.5. Let x be a non-trivial character on Z¥ with conductor N.
The power series associated with yE, . is

gl,c = Gz(T) - CX(C)GI(TC)

where

G =28 5 @)

acZ(N)*

Proof. Immediate from Meas 5.

We shall now assume that ¢ is an integer > 1 prime to p.
Written in full, the power series for g, . is

ge = 3205 30