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Preface

This is the third version of a book on differential manifolds. The first
version appeared in 1962, and was written at the very beginning of
a period of great expansion of the subject. At the time, I found no
satisfactory book for the foundations of the subject, for multiple reasons.
I expanded the book in 1971, and I expand it still further today.
Specifically, I have added three chapters on Riemannian and pseudo
Riemannian geometry, that is, covariant derivatives, curvature, and some
applications up to the Hopf-Rinow and Hadamard—Cartan theorems, as
well as some calculus of variations and applications to volume forms. I
have rewritten the sections on sprays, and I have given more examples of
the use of Stokes’ theorem. I have also given many more references to
the literature, all of this to broaden the perspective of the book, which I
hope can be used among things for a general course leading into many
directions. The present book still meets the old needs, but fulfills new
ones.

At the most basic level, the book gives an introduction to the basic
concepts which are used in differential topology, differential geometry,
and differential equations. In differential topology, one studies for instance
homotopy classes of maps and the possibility of finding suitable
differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
One may also use differentiable structures on topological manifolds to
determine the topological structure of the manifold (for example, a la
Smale [Sm 67]). In differential geometry, one puts an additional struc-
ture on the differentiable manifold (a vector field, a spray, a 2-form, a
Riemannian metric, ad lib.) and studies properties connected especially
with these objects. Formally, one may say that one studies properties
invariant under the group of differentiable automorphisms which preserve
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the additional structure. In differential equations, one studies vector fields
and their integral curves, singular points, stable and unstable manifolds,
etc. A certain number of concepts are essential for all three, and are so
basic and elementary that it is worthwhile to collect them together so
that more advanced expositions can be given without having to start
from the very beginnings.

It is possible to lay down at no extra cost the foundations (and much
more beyond) for manifolds modeled on Banach or Hilbert spaces rather
than finite dimensional spaces. In fact, it turns out that the exposition
gains considerably from the systematic elimination of the indiscriminate
use of local coordinates x,, ...,x, and dx,, ..., dx,. These are replaced
by what they stand for, namely isomorphisms of open subsets of the
manifold on open subsets of Banach spaces (local charts), and a local
analysis of the situation which is more powerful and equally easy to use
formally. In most cases, the finite dimensional proof extends at once
to an invariant infinite dimensional proof. Furthermore, in studying
differential forms, one needs to know only the definition of multilinear
continuous maps. An abuse of multilinear algebra in standard treatises
arises from an unnecessary double dualization and an abusive use of the
tensor product.

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when inte-
grating differential forms, because the dx,; A --- A dx, corresponds to the
dx,---dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that
the neophyte will thus be helped in getting acquainted with the literature.
I also hope to convince the expert that nothing is lost, and much is
gained, by expressing one’s geometric thoughts without hiding them
under an irrelevant formalism.

It is profitable to deal with infinite dimensional manifolds, modeled on
a Banach space in general, a self-dual Banach space for pseudo Rieman-
nian geometry, and a Hilbert space for Riemannian geometry. In the
standard pseudo Riemannian and Riemannian theory, readers will note
that the differential theory works in these infinite dimensional cases, with
the Hopf-Rinow theorem as the single exception, but not the Cartan—
Hadamard theorem and its corollaries. Only when one comes to dealing
with volumes and integration does finite dimensionality play a major
role. Even if via the physicists with their Feynman integration one even-
tually develops a coherent analogous theory in the infinite dimensional
case, there will still be something special about the finite dimensional
case.

One major function of finding proofs valid in the infinite dimensional
case is to provide proofs which are especially natural and simple in the
finite dimensional case. Even for those who want to deal only with finite
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dimensional manifolds, I urge them to consider the proofs given in this
book. In many cases, proofs based on coordinate free local representa-
tions in charts are clearer than proofs which are replete with the claws of
a rather unpleasant prying insect such as I, Indeed, the bilinear map
associated with a spray (which is the quadratic map corresponding to a
symmetric connection) satisfies quite a nice local formalism in charts. I
think the local representation of the curvature tensor as in Proposition
1.2 of Chapter IX shows the efficiency of this formalism and its superior-
ity over local coordinates. Readers may also find it instructive to com-
pare the proof of Proposition 2.6 of Chapter IX concerning the rate of
growth of Jacobi fields with more classical ones involving coordinates as
in [He 78], pp. 71-73.

Of course, there are also direct applications of the infinite dimensional
case. Some of them are to the calculus of variations and to physics, for
instance as in Abraham—-Marsden [AbM 78]. It may also happen that
one does not need formally the infinite dimensional setting, but that it is
useful to keep in mind to motivate the methods and approach taken in
various directions. For instance, by the device of using curves, one can
reduce what is a priori an infinite dimensional question to ordinary
calculus in finite dimensional space, as in the standard variation formulas
given in Chapter IX, §4.

Similarly, the proper domain for the geodesic part of Morse theory is
the loop space (or the space of certain paths), viewed as an infinite
dimensional manifold, but a substantial part of the theory can be de-
veloped without formally introducing this manifold. The reduction to the
finite dimensional case is of course a very interesting aspect of the situa-
tion, from which one can deduce deep results concerning the finite di-
mensional manifold itself, but it stops short of a complete analysis of the
loop space. (Cf. Boot [Bo 60], Milnor [Mi 63]) This was already
mentioned in the first version of the book, and since then, the papers of
Palais [Pa 63] and Smale [Sm 64] appeared, carrying out the program.
They determined the appropriate condition in the infinite dimensional
case under which this theory works.

In addition, given two finite dimensional manifolds X, Y it is fruitful
to give the set of differentiable maps from X to Y an infinite dimensional
manifold structure, as was started by Eells [Ee 58], [Ee 59], [Ee 61], and
[Ee 66]. By so doing, one transcends the purely formal translation of
finite dimensional results getting essentially new ones, which would in
turn affect the finite dimensional case.

Foundations for the geometry of manifolds of mappings are given in
Abraham’s notes of Smale’s lectures [Ab 60] and Palais’s monograph
[Pa 68].

For more recent applications to critical point theory and submanifold
geometry, see [PaT 88].

One especially interesting case of Banach manifolds occurs in the
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theory of Teichmuller spaces, which, as shown by Bers, can be embedded
as submanifolds of a complex Banach space. Cf. [Ga 87], [Vi 73].

In the direction of differential equations, the extension of the stable
and unstable manifold theorem to the Banach case, already mentioned as
a possibility in the earlier version of this book, was proved quite ele-
gantly by Irwin [Ir 70], following the idea of Pugh and Robbin for
dealing with local flows using the implicit mapping theorem in Banach
spaces. I have included the Pugh—Robbin proof, but refer to Irwin’s
paper for the stable manifold theorem which belongs at the very begin-
ning of the theory of ordinary differential equations. The Pugh—Robbin
proof can also be adjusted to hold for vector fields of class H? (Sobolev
spaces), of importance in partial differential equations, as shown by Ebin
and Marsden [EbM 70].

It is a standard remark that the C*-functions on an open subset of a
euclidean space do not form a Banach space. They form a Fréchet space
(denumerably many norms instead of one). On the other hand, the im-
plicit function theorem and the local existence theorem for differential
equations are not true in the more general case. In order to recover
similar results, a much more sophisticated theory is needed, which is only
beginning to be developed. (Cf. Nash’s paper on Riemannian metrics
[Na 56], and subsequent contributions of Schwartz [Sc 60] and Moser
[Mo 61]) In particular, some additional structure must be added
(smoothing operators). Cf. also my Bourbaki seminar talk on the sub-
ject [La 61]. This goes beyond the scope of this book, and presents an
active topic for research.

I have emphasized differential aspects of differential manifolds rather
than topological ones. I am especially interested in laying down basic
material which may lead to various types of applications which have
arisen since the sixties, vastly expanding the perspective on differential geom-
etry and analysis. For instance, I expect the marvelous book [BGV 92]
to be only the first of many to present the accumulated vision from
the seventies and eighties, after the work of Atiyah, Bismut, Bott, Gilkey,
McKean, Patodi, Singer, and many others.

New Haven, 1994 SERGE LANG

Added Comments, 1995. Immediately after the present book appeared
in 1995, two other books also appeared which I wish to recommend very
highly. One of them is the second edition of Gilkey’s book Invariance
Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (CRC
Press, 1995). The other is the second edition of Klingenberg’s Riemannian
Geometry (Walter de Gruyter, 1995), which includes a nice chapter on the
infinite dimensional Hilbert manifold of H'-mappings, and several sub-
stantial applications to topology and closed geodesics on various com-
pact manifolds.
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. As mentioned in the foreword, Chapter VIII of Dieudonné’s
book or my book on real analysis [La 93] give a self-contained and
complete treatment for Banach spaces. We summarize certain facts con-
cerning their properties as topological vector spaces, and then we sum-
marize differential calculus. The reader can actually skip this chapter and
start immediately with Chapter II if the reader is accustomed to thinking
about the derivative of a map as a linear transformation. (In the finite
dimensional case, when bases have been selected, the entries in the matrix
of this transformation are the partial derivatives of the map.) We have
repeated the proofs for the more important theorems, for the ease of the
reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, topological vector spaces and continu-
ous linear maps, open subsets of Banach spaces and differentiable maps,
differentiable manifolds and differentiable maps, vector bundles and vec-
tor bundle maps, topological spaces and continuous maps, sets and just
plain maps. In an arbitrary category, maps are called morphisms, and in
fact the category of differentiable manifolds is of such importance in this
book that from Chapter II on, we use the word morphism synonymously
with differentiable map (or p-times differentiable map, to be precise). All
other morphisms in other categories will be qualified by a prefix to
indicate the category to which they belong.
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I, §1. CATEGORIES

A category is a collection of objects {X, Y, ...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) - Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X’, Y') are disjoint unless X =
X' and Y = Y', in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X,Y) are called morphisms, and we write
frequently f: X —» Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

A functor A: A - W’ from a category A into a category WA’ is a map
which associates with each object X in 2 an object A(X) in U’, and with
each morphism f: X - Y a morphism A(f): A(X)— A(Y) in A’ such that,
whenever f and g are morphisms in 2 which can be composed, then
A(fg) = A(f)A(g) and A(idy) = id,y, for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) = A(X) and A(fg) = A(9)A(f)).

In a similar way, one defines functors of many variables, which may
be covariant in some variables and contravariant in others. We shall meet
such functors when we discuss multilinear maps, differential forms, etc.

The functors of the same variance from one category U to another W’
form themselves the objects of a category Fun(, A’). Its morphisms
will sometimes be called natural transformations instead of functor mor-
phisms. They are defined as follows. If 4, u are two functors from U to
A’ (say covariant), then a natural transformation t: 1 —» p consists of a
collection of morphisms

tx: AX) — u(X)

as X ranges over 2, which makes the following diagram commutative for
any morphism f: X —» Y in A:

AX) — u(X)

l(f)l lu(f)
2¥) — w()



1, §2] TOPOLOGICAL VECTOR SPACES 3

In any category 2, we say that a morphism f: X — Y is an isomor-
phism if there exists a morphism g: Y — X such that fg and gf are the
identities. For instance, an isomorphism in the category of topological
spaces is called a topological isomorphism, or a homeomorphism. In
general, we describe the category to which an isomorphism belongs by
means of a suitable prefix. In the category of sets, a set-isomorphism is
also called a bijection.

If f:X—>Y is a morphism, then a section of f is defined to be a
morphism g: Y - X such that fog =idy.

I, §2. TOPOLOGICAL VECTOR SPACES

The proofs of all statements in this section, including the Hahn—-Banach
theorem and the closed graph theorem, can be found in [La 93].

A topological vector space E (over the reals R) is a vector space with a
topology such that the operations of addition and scalar multiplication
are continuous. It will be convenient to assume also, as part of the
definition, that the space is Hausdorff, and locally convex. By this we
mean that every neighborhood of 0 contains an open neighborhood U of
0 such that, if x, y are in U and 0 £ ¢ < 1, then tx + (1 — t)y also lies in
U.

The topological vector spaces form a category, denoted by TVS, if we
let the morphisms be the continuous linear maps (by linear we mean
throughout R-linear). The set of continuous linear maps of one topologi-
cal vector space E into F is denoted by L(E,F). The continuous r-
multilinear maps

V:Ex - xE->F

of E into F will be denoted by L'(E,F). Those which are symmetric
(resp. alternating) will be denoted by L{E,F) or L. (E,F) (resp.
LI(E, F)). The isomorphisms in the category TVS are called toplinear
isomorphisms, and we write Lis(E, F) and Laut(E) for the toplinear iso-
morphisms of E onto F and the toplinear automorphisms of E.

We find it convenient to denote by L(E), L"(E), LY(E), and L}(E) the
continuous linear maps of E into R (resp. the continuous, r-multilinear,
symmetric, alternating maps of E into R). Following classical terminol-
ogy, it is also convenient to call such maps into R forms (of the corre-
sponding type). If E,, ...,E, and F are topological vector spaces, then
we denote by L(E,,...,E,;F) the continuous multilinear maps of the
product E, x -+ x E, into F. We let:

End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).



4 DIFFERENTIAL CALCULUS [T, §2]

The most important type of topological vector space for us is the
Banachable space (a TVS which is complete, and whose topology can be
defined by a norm). We should say Banach space when we want to put
the norm into the structure. There are of course many norms which can
be used to make a Banachable space into a Banach space, but in prac-
tice, one allows the abuse of language which consists in saying Banach
space for Banachable space (unless it is absolutely necessary to keep the
distinction). '

For this book, we assume from now on that all our topological vector
spaces are Banach spaces. We shall occasionally make some comments to
indicate where it might be possible to generalize certain results to more
general spaces. We denote our Banach spaces by E, F, ....

The next two propositions give two aspects of what is known as the
closed graph theorem..

Proposition 2.1. Every continuous bijective linear map of E onto F is a
toplinear isomorphism.

Proposition 2.2. If E is a Banach space, and F,, F, are two closed
subspaces which are complementary (ie. E=F, + F, and F; nF, =0),
then the map of ¥, x F, onto E given by the sum is a toplinear
isomorphism.

We shall frequently encounter a situation as in Proposition 2.2, and if
F is a closed subspace of E such that there exists a closed complement
F, such that E is toplinearly isomorphic to the product of F and F;
under the natural mapping, then we shall say that F splits in E.

Next, we state a weak form of the Hahn—Banach theorem.

Proposition 2.3. Let E be a Banach space and x # 0 an element of E.
Then there exists a continuous linear map A of E into R such that
Alx) # 0.

One constructs 4 by Zorn’s lemma, supposing that A4 is defined on
some subspace, and having a bounded norm. One then extends 4 to the
subspace generated by one additional element, without increasing the
norm.

In particular, every finite dimensional subspace of E splits if E is
complete. More trivially, we observe that a finite codimensional closed
subspace also splits.

We now come to the problem of putting a topology on L(E, F). Let
E, F be Banach spaces, and let

A:E-F
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be a continuous linear map (also called a bounded linear map). We can
then define the norm of 4 to be the greatest lower bound of all numbers
K such that

|Ax| = K|x|

for all x e E. This norm makes L(E, F) into a Banach space.

In a similar way, we define the topology of L(E,,...,E,; F), which is a
Banach space if we define the norm of a multilinear continuous map

A:E; x---xE —-F
by the greatest lower bound of all numbers K such that

|A(x1a ---9xr)| é lell |xr|’
We have:

Proposition 24. If E,, ... ,E,, F are Banach spaces, then the canonical
map

L(E,, L(E,,...,L(E,,F),...))> L'(E,,....E; F)

rs
from the repeated continuous linear maps to the continuous multilinear
maps is a toplinear isomorphism, which is norm-preserving, i.e. a Banach-
isomorphism.

The preceding propositions could be generalized to a wider class of
topological vector spaces. The following one exhibits a property peculiar
to Banach spaces.

Proposition 2.5. Let E, F be two Banach spaces. Then the set of
toplinear isomorphisms Lis(E, F) is open in L(E, F).

The proof is in fact quite simple. If Lis(E, F) is not empty, one is
immediately reduced to proving that Laut(E) is open in L(E,E). We
then remark that if u € L(E, E), and |u| < 1, then the series

1+u+u?+--

converges. Given any toplinear automorphism w of E, we can find an
open neighborhood by translating the open unit ball multiplicatively
from 1 to w.

Again in Banach spaces, we have:

Proposition 2.6. If E, F, G are Banach spaces, then the bilinear maps

L(E, F) x L(F, G) - L(E, G),
L(E F) x E>F,
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obtained by composition of mappings are continuous, and similarly for
multilinear maps.

Remark. The preceding proposition is false for more general spaces
than Banach spaces, say Fréchet spaces. In that case, one might hope
that the following may be true. Let U be open in a Fréchet space and
let

f:U—L(EF),

9:U - L(F, G),

be continuous. Let y be the composition of maps. Then y(f, g) is contin-
uous. The same type of question arises later, with differentiable maps
instead, and it is of course essential to know the answer to deal with the
composition of differentiable maps.

I, §3. DERIVATIVES AND COMPOSITION OF MAPS

A real valued function of a real variable, defined on some neighborhood
of 0 is said to be o(t) if
lim o(t)/t = 0.

t—0

Let E, F be two topological vector spaces, and ¢ a mapping of a
neighborhood of 0 in E into F. We say that ¢ is tangent to O if, given a
neighborhood W of 0 in F, there exists a neighborhood V of 0 in E such
that

otV) < o(t)W

for some function o(t). If both E, F are normed, then this amounts to
the usual condition

lo()| = |x[¥(x)

with lim y/(x) =0 as |x| - 0.

Let E, F be two topological vector spaces and U open in E. Let
f:U—>F be a continuous map. We shall say that f is differentiable at a
point x, € U if there exists a continuous linear map 4 of E into F such
that, if we let

S(xo +y) = f(x0) + 4y + 0(y)

for small y, then ¢ is tangent to 0. It then follows trivially that 4 is
uniquely determined, and we say that it is the derivative of f at x,. We
denote the derivative by Df(x,) or f'(x,). It is an element of L(E, F). If
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f is differentiable at every point of U, then f’ is a map
fU—>L(E,F).
It is easy to verify the chain rule.

Proposition 3.1. If f:U — V is differentiable at x,, if g:V—->W is
differentiable at f(x,), then g o f is differentiable at x,, and

(g ° 1Y (x0) = g'(f(x0)) o f'(xo).
Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the differential
calculus. All topological vector spaces are assumed to be Banach spaces
(i.e. Banachable). Then L(E, F) is also a Banach space, if E and F are
Banach spaces.

Let U be open in E and let f: U — F be differentiable at each point of
U. If f' is continuous, then we say that f is of class C'. We define
maps of class C? (p = 1) inductively. The p-th derivative D?f is defined as
D(DP7'f) and is itself a map of U into

L(E, L(E, ...,L(E, F)---))

which can be identified with LP(E, F) by Proposition 2.4. A map f is
said to be of class C? if its kth derivative D*f exists for 1 £ k < p, and is
continuous.

Remark. Let f be of class C?, on an open set U containing the origin.
Suppose that f is locally homogeneous of degree p near 0, that is

S(tx) = t°f(x)

for all t and x sufficiently small. Then for all sufficiently small x we
have

1
f(x) =~ DPf(O)xP),
p!
where xP = (x, x, ...,X), p times.
This is easily seen by differentiating p times the two expressions for

f(tx), and then setting t = 0. The differentiation is a trivial application of
the chain rule.
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Proposition 3.2. Let U, V be open in Banach spaces. If f: U -V and
g: V> F are of class CP, then so is g o f.

From Proposition 3.2, we can view open subsets of Banach spaces as
the objects of a category, whose morphisms are the continuous maps of
class C?. These will be called CP-morphisms. We say that f is of class C*
if it is of class C? for all integers p = 1. From now on, p is an integer
> 0 or oo (C° maps being the continuous maps). In practice, we omit
the prefix C? if the p remains fixed. Thus by morphism, throughout the
rest of this book, we mean CP-morphism with p < co. We shall use the
word morphism also for CP-morphisms of manifolds (to be defined in the
next chapter), but morphisms in any other category will always be prefixed
so as to indicate the category to which they belong (for instance bundle
morphism, continuous linear morphism, etc.).

Proposition 33. Let U be open in the Banach space E, and let
f:U—>F be a CP-morphism. Then D?f (viewed as an element of
LP(E, F)) is symmetric.

Proposition 3.4. Let U be open in E, and let f: U —>F, (i=1,...,n) be
continuous maps into spaces F,. Let f=(f;,...,f,) be the map of U
into the product of the F,. Then f is of class C? if and only if each f;
is of class CP, and in that case

D?f = (D*f,,...,DPf,).
Let U, V be open in spaces E,, E, and let
f:UxV->F

be a continuous map into a Banach space. We can introduce the notion
of partial derivative in the usual manner. If (x,y) is in U x V and we
keep y fixed, then as a function of the first variable, we have the deriva-
tive as defined previously. This derivative will be denoted by D, f(x, y).
Thus

D, f:Ux V- L(E,,F)

is a map of U x V into L(E,,F). We call it the partial deriative with
respect to the first variable. Similarly, we have D, f, and we could take n
factors instead of 2. The total derivative and the partials are then related
as follows.

Proposition 3.5. Let U,, ...,U, be open in the spaces E,, ...,E, and let
f:U; x - x U,>F be a continuous map. Then f is of class C? if and
only if each partial derivative D;f: U, x ---U, - L(E;, F) exists and is
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of class CP™'. If that is the case, then for x = (x,,...,x,) and

v=(vy,...,0,)€E; X xXE

n’

we have

Df(x)- vy, ...,0,) = Y. Dif(x)"v;.

The next four propositions are concerned with continuous linear and
multilinear maps.

Proposition 3.6. Let E, F be Banach spaces and f:E — F a continuous
linear map. Then for each x € E we have

[ =1

Proposition 3.7. Let E, F, G be Banach spaces, and U open in E. Let
f:U—>F be of class C? and g:F — G continuous and linear. Then
go fis of class C? and

D*(go f)=goD*f.
Proposition 3.8. If E,, ... ,E, and F are Banach spaces and
fE; x xE —>F

a continuous multilinear map, then f is ofclass C®, and its (r + 1)-st
derivative is 0. If r = 2, then Df is computed according to the usual rule
for derivative of a product (first times the derivative of the second plus
derivative of the first times the second).

Proposition 3.9. Let E, F be Banach spaces which are toplinearly iso-
morphic. If u:E—F is a toplinear isomorphism, we denote its inverse
by u™t. Then the map

u—u?

from Lis(E, F) to Lis(F, E) is a C®-isomorphism. Its derivative at a
point ug is the linear map of L(E, F) into L(F, E) given by the formula

v uglougt.

Finally, we come to some statements which are of use in the theory of
vector bundles.

Proposition 3.10. Let U be open in the Banach space E and let F, G be
Banach spaces.
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(i) If f: U—> L(E,F) is a CP-morphism, then the map of U x E into F
given by
(x, ) f(x)v
is a morphism.

@) If f:U - L(E,F) and g: U — L(F, G) are morphisms, then so is
y(f, g) (y being the composition).

@) If f:U—->R and g: U - L(E, F) are morphisms, so is fg (the value
of fg at x is f(x)g(x), ordinary multiplication by scalars).

@iv) If f, g: U » L(E, F) are morphisms, so is f + g.

This proposition concludes our summary of results assumed without
proof.

I, §4. INTEGRATION AND TAYLOR’S FORMULA

Let E be a Banach space. Let I denote a real, closed interval, say
a<t=<b A step mapping
f:I-E

is a mapping such that there exists a finite number of disjoint sub-
intervals I, ...,I, covering I such that on each interval I;, the mapping
has constant value, say v;. We do not require the intervals I; to be
closed. They may be open, closed, or half-closed.

Given a sequence of mappings f, from I into E, we say that it
converges uniformly if, given a neighborhood W of 0 into E, there exists
an integer n, such that, for all n, m > n, and all te I, the difference
Ju(t) — f,(t) lies in W. The sequence f, then converges to a mapping f of
I into E.

A ruled mapping is a uniform limit of step mappings. We leave to the
reader the proof that every continuous mapping is ruled.

If f is a step mapping as above, we define its integral

b
jf f f@) dt =} u(L)v;,

where u(l;) is the length of the interval I; (its measure in the standard
Lebesgue measure). This integral is mdependent of the choice of intervals
I; on which f is constant.

If f is ruled and f =Ilim f, (lim being the uniform limit), then the

sequence
b
I
a

converges in E to an element of E independent of the particular sequence
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£, used to approach f uniformly. We denote this limit by

f f=f f) dt

and call it the integral of f. The integral is linear in f, and satisfies the
b

usual rules concerning changes of intervals. (If b < a then we define f

to be minus the integral from b to a.)
As an immediate consequence of the definition, we get:

Proposition 4.1. Let ::E—R be a continuous linear map and let
f:1—>E be ruled. Then Af = Ao f is ruled, and

A r f@t) dt = r M(t) dt.

Proof. If f, is a sequence of step functions converging uniformly to f,
then Af, is ruled and converges uniformly to Af. Our formula follows at
once.

Taylor’s Formula. Let E, F be Banach spaces. Let U be open in E.
Let x, y be two points of U such that the segment x + ty lies in U for
0t=<1 Let

f:U->F

be a CP-morphism, and denote by yP the “vector” (y,...,y) p times.
Then the function DPf(x + ty)- y'P is continuous in t, and we have

f(x+y)=f(x)+D_ff'92+... g‘i(lf(_Ly"”
' p—1)!

-y P P
+ L T DPf(x + ty)y™® dt.

Proof. By the Hahn-Banach theorem, it suffices to show that both
sides give the same thing when we apply a functional A (continuous
linear map into R). This follows at once from Proposition 3.7 and 4.1,
together with the known result when F = R. In this case, the proof pro-
ceeds by induction on p, and integration by parts, starting from

1
fx+y) - fx) = J Df(x + ty)y dt.

0

The next two corollaries are known as the mean value theorem.
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Corollary 4.2. Let E, F be two Banach spaces, U open in E, and x, z
two distinct points of U such that the segment x +t(z — x) (0<t<1)
liesin U. Let f: U — F be continuous and of class C'. Then

1f(2) = f(X¥)] < |z — x| sup | f"(£)l,
the sup being taken over £ in the segment.

Proof. This comes from the usual estimations of the integral. Indeed,
for any continuous map g: I - F we have the estimate

b
J g(t) dt

if K is a bound for g on I, and a < b. This estimate is obvious for step
functions, and therefore follows at once for continuous functions.

<K(b-a

Another version of the mean value theorem is frequently used.

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let x, be a
point on the segment between x and z. Then

/() = f(x) = f'(x0)(z — )| < |z — x| sup|f'(&) — f'(xo)l,
the sup taken over all £ on the segment.
Proof. We apply Corollary 4.2 to the map
g(x) = f(x) — f'(xo)x.
Finally, let us make some comments on the estimate of the remainder

term in Taylor’s formula. We have assumed that DPf is continuous.
Therefore, DPf(x + ty) can be written

D?f(x + ty) = D*f(x) + ¥(y, 1),
where Y depends on y, ¢ (and x of course), and for fixed x, we have
lim |y(y, 1) = 0
as |y| » 0. Thus we obtain:

Corollary 44. Let E, F be two Banach spaces, U open in E, and x a
point of U. Let f:U—F be of class C?, p 2 1. Then for all y such
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that the segment x + ty lies in U (0 <t < 1), we have

DIy .. DG o0
T P!

fx+y)=f(x)+

with an error term 0(y) satisfying

lim 6(y)/|yl” = 0.

y—0

I, §5. THE INVERSE MAPPING THEOREM

The inverse function theorem and the existence theorem for differential
equations (of Chapter IV) are based on the next result.

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a
complete metric space, with distance function d, and let f: M - M be a
mapping of M into itself. Assume that there is a constant K, 0 < K < 1,
such that, for any two points x, y in M, we have

d(f(x), f(v) < K d(x, ).

Then f has a unique fixed point (a point such that f(x) = x). Given any
point x, in M, the fixed point is equal to the limit of f"(x,) (iteration of
f repeated n times) as n tends to infinity.

Proof. This is a trivial exercise in the convergence of the geometric
series, which we leave to the reader.

Theorem 5.2. Let E, F be Banach spaces, U an open subset of E, and
let f:U—>F a CP-morphism with p=1. Assume that for some point
Xo € U, the derivative f'(x,): E—> F is a toplinear isomorphism. Then f
is a local CP-isomorphism at x.

(By a local CP-isomorphism at x,, we mean that there exists an open
neighborhood V of x, such that the restriction of f to V establishes a
CP-isomorphism between V and an open subset of E.)

Proof. Since a toplinear isomorphism is a C®-isomorphism, we may
assume without loss of generality that E=F and f’(x,) is the identity
(simply by considering f’(x,)! o f instead of f). After translations, we
may also assume that x, = 0 and f(x,) = 0.

We let g(x) = x — f(x). Then g'(x,) = 0 and by continuity there exists
r > 0 such that, if |x| < 2r, we have

lg'(0) < 3.
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From the mean value theorem, we see that |g(x)| < %|x| and hence g
maps the closed ball of radius r, B,(0) into B,,(0).

We contend: Given y el—i,,z(O), there exists a unique element x e B,(0)
such that f(x) = y. We prove this by considering the map

9,(x) =y + x — f(x).

If [yl £7/2 and |x| <, then |g,(x)| < r and hence g, may be viewed as a
mapping of the complete metric space B,(0) into itself. The bound of %
on the derivative together with the mean value theorem shows that g, is
a contracting map, i.e. that

Igy(xl) - gy(XZ)I =g(x;) — g(xz)| < %|x1 — X,

for x,, x, € B,(0). By the contraction lemma, it follows that g, has a
unique fixed point. But the fixed point of g, is precisely the solution of
the equation f(x) = y. This proves our contention.

We obtain a local inverse ¢ = f~!. This inverse is continuous, be-
cause

X1 = X2 = | f0xr) = f(x2)] + 190x1) — g(x,)]

Ixy = Xa| = 2[f(x;) — f(x2)I.

and hence

Furthermore ¢ is differentiable in B,,(0). Indeed, let y, = f(x,) and
V2 = f(x;) with y,, y, € B,;(0) and x,, x, € B,(0). Then

lo(y1) = @(r2) = f'(x2) 7 ¥y = y2)l = Ixy — x5 — f(x2) 7 (f(x1) = f(x2))I-
We operate on the expression inside the norm sign with the identity
id = f'(x2) 7 f"(x2).

Estimating and using the continuity of f’, we see that for some constant
A, the preceding expression is bounded by

Al (x2) (%1 — x3) = f(x1) + f(x2)].

From the differentiability of f, we conclude that this expression is
o(x; — x,) which is also o(y; — y,) in view of the continuity of ¢ proved
above. This proves that ¢ is differentiable and also that its derivative is
what it should be, namely

o'y =f"(e()",

for ye B,,(0). Since the mappings ¢, f’, “inverse” are continuous, it
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follows that ¢’ is continuous and thus that ¢ is of class C!. Since taking
inverses is C* and f’ is C?7, it follows inductively that ¢ is C?, as was
to be shown.

Note that this last argument also proves:

Proposition 5.3. If f: U - V is a homeomorphism and is of class C?
with p = 1, and if f is a C'-isomorphism, then f is a CP-isomorphism.

In some applications it is necessary to know that if the derivative of a
map is close to the identity, then the image of a ball contains a ball of
only slightly smaller radius. The precise statement follows. In this book,
it will be used only in the proof of the change of variables formula, and
therefore may be omitted until the reader needs it.

Lemma 54. Let U be open in E, and let f: U—E be of class ct.
Assume that f(0)=0, f'(0)=1. Let r >0 and assume that B,(0) = U.
Let 0 < s < 1, and assume that

1f'@ =)l =s

for all x, ze B(0). If yeE and |y| (1 — s)r, then there exists a
unique x € B,(0) such that f(x) = y.

Proof. The map g, given by g,(x) = x — f(x) + y is defined for |x| <r
and |y| £ (1 — s)r, and maps B,(0) into itself because, from the estimate

|f(x) = x| = | f(x) = f(0) — f'(0)x] = |x| sup|f’(z) — f(O)] = sr,

we obtain
lgy(X)| < sr+(1 —s)r=r.

Furthermore, g, is a shrinking map because, from the mean value theo-
rem, we get

Igy(xl) - gy(xZ)l =|x; —x; — (f(x1) - f(xz))|

=|x; — X2 = f'(0)(x; — x3) + (xy, x,)|

= [0(xy, x,)l,
where

16(x1, X2)I £ |x1 — x| sup|f'(2) — f'(O)] = s[x; — X2l

Hence g, has a unique fixed point x € B,(0) which is such that f(x) = y.
This proves the lemma.
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We shall now prove some useful corollaries, which will be used in
dealing with immersions and submersions later. We assume that mor-
phism means CP-morphism with p = 1.

Corollary 55. Let U be an open subset of E, and f:U—>F, xF, a
morphism of U into a product of Banach spaces. Let x, € U, suppose
that f(x,) = (0,0) and that f'(x,) induces a toplinear isomorphism of E
and F; = F; x 0. Then there exists a local isomorphism g of F, x F,
at (0, 0) such that

gof:U-F, xF,

maps an open subset U, of U into F; x 0 and induces a local isomor-
phism of U, at x, on an open neighborhood of 0 in F;.

Proof. We may assume without loss of generality that F, = E (iden-
tify by means of f'(x,)) and x, = 0. We define

o:UxF,->F, xF,
by the formula
QD(X, yZ) = f(x) + (07 y2)

for xe U and y, € F,. Then ¢(x, 0) = f(x), and
#'(0,0) = f'(0) + (0, id,).

Since f’(0) is assumed to be a toplinear isomorphism onto F; x 0, it
follows that ¢’(0, 0) is also a toplinear isomorphism. Hence by the theo-
rem, it has a local inverse, say g, which obviously satisfies our require-
ments.

Corollary 5.6. Let E, F be Banach spaces, U open in E, and f: U - F
a CP-morphism with p=1. Let x,€ U. Suppose that f(x,)=0 and
f'(xo) gives a toplinear isomorphism of E on a closed subspace of F
which splits. Then there exists a local isomorphism g:F - F; x F, at 0
and an open subset U; of U containing x, such that the composite map
g o f induces an isomorphism of U, onto an open subset of F;.

Considering the splitting assumption, this is a reformulation of Corol-
lary 5.5.

It is convenient to define the notion of splitting for injections. If E, F
are topological vector spaces, and A: E— F is a continuous linear map,
which is injective, then we shall say that A splits if there exists a toplinear
isomorphism o: F — F; x F, such that o o 4 induces a toplinear isomor-
phism of E onto F; = F; x 0. In our corollary, we could have rephrased
our assumption by saying that f’(x,) is a splitting injection.
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For the next corollary, dual to the preceding one, we introduce the
notion of a local projection. Given a product of two open sets of Banach
spaces V; x ¥, and a morphism f: V¥, x V, » F, we say that f is a pro-
jection (on the first factor) if f can be factored

VixV, =V —>F

into an ordinary projection and an isomorphism of ¥; onto an open
subset of F. We say that f is a local projection at (a,, a,) if there exists
an open neighborhood U, x U, of (a,, a,) such that the restriction of f
to this neighborhood is a projection.

Corollary 5.7. Let U be an open subset of a product of Banach spaces
E, x E, and (a,, a,) a point of U. Let f: U —F be a morphism into a
Banach space, say f(a,, a,) =0, and assume that the partial derivative

D,f(a,,a,)-E, > F

is a toplinear isomorphism. Then there exists a local isomorphism h of a
product V; x V, onto an open neighborhood of (a,, a,) contained in U
such that the composite map

f

h
VV x V— U—F
is a projection (on the second factor).
Proof. We may assume (a,, a,) = (0,0) and E, = F. We define

¢o:E; xE,>E, xE,
by
(P(xl s x2) = (xla f(xla xz))

locally at (a,, a,). Then ¢’ is represented by the matrix

Cm 0)

D.f D.f

and is therefore a toplinear isomorphism at (a,, a,). By the theorem, it
has a local inverse & which clearly satisfies our requirements.

Corollary 58. Let U be an open subset of a Banach space E and
f:U—>F a morphism into a Banach space F. Let x,€ U and assume
that f'(x,) is surjective, and that its kernel splits. Then there exists an
open subset U’ of U containing x, and an isomorphism

WV x V,>U



18 DIFFERENTIAL CALCULUS [1, §5]

such that the composite map f o h is a projection
V, x -V, > F.

Proof. Again this is essentially a reformulation of the corollary, taking
into account the splitting assumption.

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets
in Banach spaces E, F respectively, and let

[fUx V-G
be a CP? mapping. Let (a,b) e U x V, and assume that
D,f(a, b F—>G
is a toplinear isomorphism. Let f(a, b) = 0. Then there exists a continu-

ous map g: Uy = V defined on an open neighborhood U, of a such that
g(a) = b and such that

f(x,9(x)) =0

for all xe U,. If U, is taken to be a sufficiently small ball, then g is
uniquely determined, and is also of class CP.

Proof. Let A= D,f(a,b). Replacing f by A of we may assume
without loss of generality that D, f(a, b) is the identity. Consider the map

o:UxV-ExF
given by
o(x, y) = (x, f(x, y)).

Then the derivative of ¢ at (a, b) is immediately computed to be repre-
sented by the matrix

Do(a, b) = <01 fa,b) D,f(a, b)) B (le(a, b) idr)

whence ¢ is locally invertible at (a, b) since the inverse of D¢(a, b) exists

and is the matrix
idg (0]
—D, f(a,b) idg)
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We denote the local inverse of ¢ by . We can write
Y(x, 2) = (x, h(x, 2))
where h is some mapping of class C?. We define
g(x) = h(x, 0).
Then certainly g is of class C? and

(X, S, g(x))) = (p(X, g(x)) = (p(x’ h(x, O)) = (P(l//(x, 0)) = (x, 0).

This proves the existence of a C? map g satisfying our requirements.

Now for the uniqueness, suppose that g, is a continuous map defined
near a such that g,(a) =b and f(x, go(x)) = c for all x near a. Then
go(x) is near b for such x, and hence

(p(x’ go(x)) = (x, 0).

Since ¢ is invertible near (a, b) it follows that there is a unique point
(x, y) near (a, b) such that ¢(x,y) =(x,0). Let U, be a small ball on
which g is defined. If g, is also defined on U,, then the above argument
shows that g and g, coincide on some smaller neighborhood of a. Let
xe U, and let v=x —a. Consider the set of those numbers t with
0 <t £ 1 such that g(a + tv) = gola + tv). This set is not empty. Let s
be its least upper bound. By continuity, we have g(a + sv) = go(a + sv).
If s <1, we can apply the existence and that part of the uniqueness just
proved to show that g and g, are in fact equal in a neighborhood of
a + sv. Hence s = 1, and our uniqueness statement is proved, as well as
the theorem.

Note. The particular value f(a,b) =0 in the preceding theorem is
irrelevant. If f(a,b) =c for some c¢ # 0, then the above proof goes
through replacing 0 by ¢ everywhere.



CHAPTER I

Manifolds

Starting with open subsets of Banach spaces, one can glue them together
with CP-isomorphisms. The result is called a manifold. We begin by
giving the formal definition. We then make manifolds into a category,
and discuss special types of morphisms. We define the tangent space at
each point, and apply the criteria following the inverse function theorem
to get a local splitting of a manifold when the tangent space splits at a
point.

We shall wait until the next chapter to give a manifold structure to
the union of all the tangent spaces.

il, §1. ATLASES, CHARTS, MORPHISMS

Let X be a set. An atlas of class C? (p=0) on X is a collection of
pairs (U;, ;) (i ranging in some indexing set), satisfying the following
conditions:

AT 1. Each U; is a subset of X and the U, cover X.

AT 2. Each ¢; is a bijection of U; onto an open subset ¢;U; of some
Banach space E; and for any i, j, ¢(U;n Uj) is open in E;.

AT 3. The map
@0 (U, 0 Uy) = 9(U; 0 1))

is a CP-isomorphism for each pair of indices i, j.

It is a trivial exercise in point set topology to prove that one can give
X a topology in a unique way such that each U, is open, and the ¢;
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are topological isomorphisms. We see no reason to assume that X is
Hausdorff. If we wanted X to be Hausdorff, we would have to place a
separation condition on the covering. This plays no role in the formal
development in Chapters II and IIL. It is to be understood, however,
that any construction which we perform (like products, tangent bundles,
etc.) would yield Hausdorff spaces if we start with Hausdorff spaces.

Each pair (U;, ¢;) will be called a chart of the atlas. If a point x of X
lies in Uj;, then we say that (U;, ¢;) is a chart at x.

In condition AT 2, we did not require that the vector spaces be the
same for all indices i, or even that they be toplinearly isomorphic. If
they are all equal to the same space E, then we say that the atlas is an
E-atlas. If two charts (U;, ¢;) and (U}, ¢;) are such that U; and U; have a
non-empty intersection, and if p = 1, then taking the derivative of ¢;¢;
we see that E; and E; are toplinearly isomorphic. Furthermore, the set of
points x € X for which there exists a chart (U;, ¢,) at x such that E; is
toplinearly isomorphic to a given space E is both open and closed.
Consequently, on each connected component of X, we could assume that
we have an E-atlas for some fixed E.

Suppose that we are given an open subset U of X and a topological
isomorphism ¢: U —» U’ onto an open subset of some Banach space E.
We shall say that (U, @) is compatible with the atlas {(U,, ¢;)} if each
map @,¢"' (defined on a suitable intersection as in AT 3) is a C*-
isomorphism. Two atlases are said to be compatible if each chart of one
is compatible with the other atlas. One verifies immediately that the
relation of compatibility between atlases is an equivalence relation. An
equivalence class of atlases of class C? on X is said to define a structure
of CP-manifold on X. If all the vector spaces E; in some atlas are
toplinearly isomorphic, then we can always find an equivalent atlas for
which they are all equal, say to the vector space E. We then say that X
is an E-manifold or that X is modeled on E.

If E=R" for some fixed n, then we say that the manifold is n-
dimensional. In this case, a chart

o:U—->R"

is given by n coordinate functions ¢,, ...,p,. If P denotes a point of U,
these functions are often written

x1(P), ...,x,(P),

or simply x,, ...,x,. They are called local coordinates on the manifold.

If the integer p (which may also be oo) is fixed throughout a discus-
sion, we also say that X is a manifold.

The collection of CP-manifolds will be denoted by Man?. If we
look only at those modeled on spaces in a category U then we write
Man?(A). Those modeled on a fixed E will be denoted by Man?(E). We
shall make these into categories by defining morphisms below.



22 MANIFOLDS [1I, §1]

Let X be a manifold, and U an open subset of X. Then it is possible,
in the obvious way, to induce a manifold structure on U, by taking as
charts the intersections

(Ui NU, ¢|(U;n U))

If X is a topological space, covered by open subsets V¥, and if we are
given on each V¥, a manifold structure such that for each pair j, j' the
induced structure on ¥,n ¥, coincides, then it is clear that we can give to
X a unique manifold structure inducing the given ones on each V.

Example. Let X be the real line, and for each open interval U;, let ¢;
be the function ¢;(t) =t>. Then the @;p;" are all equal to the identity,
and thus we have defined a C*-manifold structure on R!

If X, Y are two manifolds, then one can give the product X x Y a
manifold structure in the obvious way. If {(U,¢,)} and {(V,y;)} are
atlases for X, Y respectively, then

{(U; x Vi, ¢; x ‘pj)}

is an atlas for the product, and the product of compatible atlases gives
rise to compatible atlases, so that we do get a well-defined product
structure.

Let X, Y be two manifolds. Let f: X > Y be a map. We shall say
that f is a CP-morphism if, given x € X, there exists a chart (U, ¢) at x
and a chart (¥, y) at f(x) such that f(U) = V¥, and the map

Yofoo ioU-yV

is a CP-morphism in the sense of Chapter I, §3. One sees then immedi-
ately that this same condition holds for any choice of charts (U, ¢) at x
and (V, ) at f(x) such that f(U) = V.

It is clear that the composite of two CP-morphisms is itself a CP-
morphism (because it is true for open subsets of vector spaces). The
CP-manifolds and CP-morphisms form a category. The notion of iso-
morphism is therefore defined, and we observe that in our example of
the real line, the map ¢+ gives an isomorphism between the funny
differentiable structure and the usual one.

If f:X—Y is a morphism, and (U, ¢) is a chart at a point x e X,
while (V, ) is a chart at f(x), then we shall also denote by

fruioU—yV

the map yfop!.
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It is also convenient to have a local terminology. Let U be an open
set (of a manifold or a Banach space) containing a point x,. By a local
isomorphism at x, we mean an isomorphism

f:Ul"‘)V

from some open set U, containing x, (and contained in U) to an open
set V' (in some manifold or some Banach space). Thus a local isomor-
phism is essentially a change of chart, locally near a given point.

Manifolds of maps. Even starting with a finite dimensional manifold,
the set of maps satisfying various smoothness conditions forms an infinite
dimensional manifold. This story started with Eells [Ee 58], [Ee 59],
[Ee 61]. Palais and Smale used such manifolds of maps in their Morse
theory [Pa 63], [Ab 62], [Sm 64]. For a brief discussion of subsequent
developments, see [Mar 74], p. 67, referring to [Eb 70], [Ee 66],
[El 67], [Kr 72], [Le 67], [Om 70], and [Pa 68]. Two kinds of maps
have played a role: the C? maps of course, with various values of p, but
also maps satisfying Sobolev conditions, and usually denoted by H*. The
latter form Hilbert manifolds (definition to be given later).

Il, §2. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS

Let X be a topological space, and Y a subset of X. We say that Y is
locally closed in X if every point y € Y has an open neighborhood U in
X such that YN U is closed in U. One verifies easily that a locally
closed subset is the intersection of an open set and a closed set. For
instance, any open subset of X is locally closed, and any open interval is
locally closed in the plane.

Let X be a manifold (of class C? with p > 0). Let Y be a subset of X
and assume that for each point y € Y there exists a chart (¥, y) at y such
that y gives an isomorphism of V with a product V; x ¥, where V] is
open in some space E; and ¥, is open in some space E,, and such that

Yy(Y V)=V xa,

for some point a, € ¥, (which we could take to be 0). Then it is clear
that Y is locally closed in X. Furthermore, the map iy induces a
bijection

Vi YnV-oV,.

The collection of pairs (Y NV, ;) obtained in the above manner constitutes
an atlas for Y, of class CP. The verification of this assertion, whose
formal details we leave to the reader, depends on the following obvious
fact.
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Lemma 2.1. Let U,, U,, V;, V, be open subsets of Banach spaces, and
g: Uy x U, >V, x V, a CP-morphism. Let a, e U, and b, eV, and as-
sume that g maps U, X a, into V; x b,. Then the induced map

9.:: U - N
is also a morphism.

Indeed, it is obtained as a composite map
Ui»U xU -V x V-1,

the first map being an inclusion and the third a projection.

We have therefore defined a CP-structure on Y which will be called a
submanifold of X. This structure satisfies a universal mapping property,
which characterizes it, namely:

Given any map f:Z — X from a manifold Z into X such that f(Z) is
contained in Y. Let fy: Z— Y be the induced map. Then f is a mor-
phism if and only if fy is a morphism.

The proof of this assertion depends on Lemma 2.1, and is trivial.

Finally, we note that the inclusion of Y into X is a morphism.
If Y is also a closed subspace of X, then we say that it is a closed
submanifold.

Suppose that X is finite dimensional of dimension n, and that Y is a
submanifold of dimension r. Then from the definition we see that the
local product structure in a neighborhood of a point of Y can be ex-
pressed in terms of local coordinates as follows. Each point P of Y has
an open neighborhood U in X with local coordinates (x,,...,x,) such
that the points of Y in U are precisely those whose last n — r coordinates
are 0, that is, those points having coordinates of type

(X1seees%,y 0, ...,0).

Let f: Z —» X be a morphism, and let ze Z. We shall say that f is an
immersion at z if there exists an open neighborhood Z; of z in Z such
that the restriction of f to Z; induces an isomorphism of Z, onto a
submanifold of X. We say that f is an immersion if it is an immersion at
every point.

Note that there exist injective immersions which are not isomorphisms
onto submanifolds, as given by the following example:
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(The arrow means that the line approaches itself without touching) An
immersion which does give an isomorphism onto a submanifold is called
an embedding, and it is called a closed embedding if this submanifold is
closed.

A morphism f: X — Y will be called a submersion at a point x € X if
there exists a chart (U, ¢) at x and a chart (V,y) at f(x) such that ¢
gives an isomorphism of U on a products U, x U, (U; and U, open in
some Banach spaces), and such that the map

Yfp™ = o Uy x Uy >V

is a projection. One sees then that the image of a submersion is an open
subset (a submersion is in fact an open mapping). We say that f is a
submersion if it is a submersion at every point.

For manifolds modelled on Banach spaces, we have the usual criterion
for immersions and submersions in terms of the derivative.

Proposition 2.2. Let X, Y be manifolds of class C? (p = 1) modeled on
Banach spaces. Let f: X - Y be a CP-morphism. Let x € X. Then:

(i) f is an immersion at x if and only if there exists a chart (U, @) at
x and (V, ) at f(x) such that fy y(@x) is injective and splits.

(ii) f is a submersion at x if and only if there exists a chart (U, @) at
x and (V,¥) at f(x) such that fy y(@x) is surjective and its kernel
splits.

Proof. This is an immediate consequence of Corollaries 5.4 and 5.6 of
the inverse mapping theorem.

The conditions expressed in (i) and (ii)) depend only on the derivative,
and if they hold for one choice of charts (U, ¢) and (V, y) respectively,
then they hold for every choice of such charts. It is therefore convenient
to introduce a terminology in order to deal with such properties.

Let X be a manifold of class C? (p = 1). Let x be a point of X. We
consider triples (U, ¢, v) where (U, ¢) is a chart at x and v is an element
of the vector space in which U lies. We say that two such triples
(U, @, v) and (V, , w) are equivalent if the derivative of Yo~ at px maps
v on w. The formula reads:

Wo ™) (px)v=w
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(obviously an equivalence relation by the chain rule). An equivalence
class of such triples is called a tangent vector of X at x. The set of such
tangent vectors is called the tangent space of X at x and is denoted by
T.(X). Each chart (U, ¢) determines a bijection of T,(X) on a Banach
space, namely the equivalence class of (U, ¢, v) corresponds to the vector
v. By means of such a bijection it is possible to transport to T,(X) the
structure of topological vector space given by the chart, and it is immedi-
ate that this structure is independent of the chart selected.

If U, V are open in Banach spaces, then to every morphism of class
CP? (p= 1) we can associate its derivative Df(x). If now f: X > Y is a
morphism of one manifold into another, and x a point of X, then by
means of charts we can interpret the derivative of f on each chart at x
as a mapping

df(x) = T.f: T > T,

Indeed, this map T,f is the unique linear map having the following
property. If (U, @) is a chart at x and (V, ¢) is a chart at f(x) such that
f(U)= V and ¥ is a tangent vector at x represented by v in the chart
(U, @), then

T.f(®)

is the tangent vector at f(x) represented by Dfy, y(x)v. The representation
of T.f on the spaces of charts can be given in the form of a diagram

LX) — E

(9] 1 lf;i,u(X)

7}(x)( Y) — F

The map T,f is obviously continuous and linear for the structure of
topological vector space which we have placed on T,(X) and Ty, (Y).
As a matter of notation, we shall sometimes write f, . instead of T, f.
The operation T satisfies an obvious functorial property, namely, if
f: X >Y and g: Y » Z are morphisms, then

T.(g o f) = Tpn(9) o T(S),
T.(id) = id.

We may reformulate Proposition 2.2:

Proposition 2.3. Let X, Y be manifolds of class C? (p = 1) modelled on
Banach spaces. Let f: X —» Y be a CP-morphism. Let x € X. Then:

(1) f is an immersion at x if and only if the map T.f is injective and
splits.

(i) f is a submersion at x if and only if the map T.f is surjective and
its kernel splits.
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Note. If X, Y are finite dimensional, then the condition that T, f splits
is superfluous. Every subspace of a finite dimensional vector space splits.

Example. Let E be a (real) Hilbert space, and let {x,y)> € R be its
inner product. Then the square of the norm f(x) = {x, x> is obviously
of class C*. The derivative f’(x) is given by the formula

S Xy =2{x,y>

and for any given x # 0, it follows that the derivative f’(x) is surjective.
Furthermore, its kernel is the orthogonal complement of the subspace
generated by x, and hence splits. Consequently the unit sphere in Hilbert
space is a submanifold.

If W is a submanifold of a manifold Y of class C? (p = 1), then the
inclusion
iitW-Y
induces a map
T,i: T,(W) > T,(Y)

which is in fact an injection. From the definition of a submanifold, one
sees immediately that the image of T,i splits. It will be convenient to
identify T,,(W) in T,(Y) if no confusion can result.

A morphism f: X — Y will be said to be transversal over the submani-
fold W of Y if the following condition is satisfied.

Let x € X be such that f(x)e W. Let (V,y) be a chart at f(x) such
that y: V- V] x V, is an isomorphism on a product, with

V() =00 and YWnAV)=V x0.

Then there exists an open neighborhood U of x such that the composite

map
v-Lv v x Ny,

is a submersion.
In particular, if f is transversal over W, then f (W) is a submanifold
of X, because the inverse image of O by our local composite map

proyof

is equal to the inverse image of W V by .
As with immersions and submersions, we have a characterization of
transversal maps in terms of tangent spaces.

Proposition 2.4. Let X, Y be manifolds of class C? (p = 1) modeled on
Banach spaces. Let f: X - Y be a CP-morphism, and W a submanifold
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of Y. The map f is transversal over W if and only if for each x e X
such that f(x) lies in W, the composite map

T,
L)L T,07) - T () T (W)
with w = f(x) is surjective and its kernel splits.

Proof. If f is transversal over W, then for each point x € X such that
f(x) lies in W, we choose charts as in the definition, and reduce the
question to one of maps of open subsets of Banach spaces. In that case,
the conclusion concerning the tangent spaces follows at once from the
assumed direct product decompositions. Conversely, assume our condi-
tion on the tangent map. The question being local, we can assume that
Y=V, x ¥, is a product of open sets in Banach spaces such that W =
V; x 0, and we can also assume that X = U is open in some Banach
space, x =0. Then we let g: U >V, be the map mo f where n is the
projection, and note that our assumption means that g’(0) is surjective
and its kernel splits. Furthermore, g~*(0) = f "!(W). We can then use
Corollary 5.7 of the inverse mapping theorem to conclude the proof.

Remark. In the statement of our proposition, we observe that the
surjectivity of the composite map is equivalent to the fact that T,(Y) is
equal to the sum of the image of T, f and T, (W), that is

T(Y) = Im(T.f) + Im(T.3),

where i: W — Y is the inclusion. In the finite dimensional case, the other
condition is therefore redundant.

If E is a Banach space, then the diagonal A in E x E is a closed
subspace and splits: Either factor E x 0 or 0 x E is a closed complement.
Consequently, the diagonal is a closed submanifold of E x E. If X is
any manifold of class C?, p =1, then the diagonal is therefore also a
submanifold. (It is closed of course if and only if X is Hausdorff.)

Let f: X > Z and ¢g: Y - Z be two CP-morphisms, p = 1. We say that
they are transversal if the morphism

fxg:XxY->ZxZ

is transversal over the diagonal. We remark right away that the sur-
jectivity of the map in Proposition 2.4 can be expressed in two ways.
Given two points xe X and yeY such that f(x)=g(y)=2z the
condition

Im(T.f) + Im(Tg) = T.(2)
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is equivalent to the condition

(x y)(fx g ) + T(‘z z)(A) (2 z)(Z X Z)‘

Thus in the finite dimensional case, we could take it as definition of
transversality.

We use transversality as a sufficient condition under which the fiber
product of two morphisms exists. We recall that in any category, the
fiber product of two morphisms f: X - Z and ¢g: Y - Z over Z consists
of an object P and two morphisms

gi:P-X and g,»P-Y

such that fog, =gog,, and satisfying the universal mapping property:
Given an object S and two morphisms u;: S — X and u,: S —» Y such that
fu, = gu,, there exists a unique morphism u: S - P making the following

diagram commutative:
X ‘/ \

Y

\/

The triple (P, g,, g,) is uniquely determined, up to a unique isomorphism
(in the obvious sense), and P is also denoted by X x, Y.

One can view the fiber product unsymmetrically. Given two mor-
phisms f, g as in the following diagram:

Y
l"
X — Z
f
assume that their fiber product exists, so that we can fill in the diagram:
Xx, Y — Y

1 |

X — Z
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We say that g, is the pull back of g by f, and also write it as f*(g).
Similarly, we write X x, Y as f*(Y).

In our category of manifolds, we shall deal only with cases when the
fiber product can be taken to be the set-theoretic fiber product on which
a manifold structure has been defined. (The set-theoretic fiber product is
the set of pairs of points projecting on the same point.) This determines
the fiber product uniquely, and not only up to a unique isomorphism.

Proposition 2.5. Let f: X - Z and g: Y > Z be two CP-morphisms with
p = 1. If they are transversal, then

(f x 97 (Ag),

together with the natural morphisms into X and Y (obtained from the
projections), is a fiber product of f and g over Z.

Proof. Obvious.

To construct a fiber product, it suffices to do it locally. Indeed, let
f:X > Z and g: Y > Z be two morphisms. Let {V;} be an open covering
of Z, and let

fof7'W) -V, and  gigT'(W) oW

be the restrictions of f and g to the respective inverse images of ¥,. Let
P=(f x g)"'(A;). Then P consists of the points (x, y) with x € X and
y € Y such that f(x) = g(y). We view P as a subspace of X x Y (i.e. with
the topology induced by that of X x Y). Similarly, we construct P, with
f: and g;. Then P, is open in P. The projections on the first and second
factors give natural maps of P. into f (V) and g !(¥), and of P into X
and Y.

Proposition 2.6. Assume that each P. admits a manifold structure (com-
patible with its topology) such that these maps are morphisms, making P,
into a fiber product of f; and g;. Then P, with its natural projections, is
a fiber product of f and g.

To prove the above assertion, we observe that the P, form a covering
of P. Furthermore, the manifold structure on P,n P, induced by that of
P, or P, must be the same, because it is the unique fiber product struc-
ture over ¥,nV, for the maps f; and g; (defined on f~'(¥,n¥) and
g ' (¥, V) respectively). Thus we can give P a manifold structure, in
such a way that the two projections into X and Y are morphisms, and
make P into a fiber product of f and g.
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We shall apply the preceding discussion to vector bundles in the
next chapter, and the following local criterion will be useful.

Proposition 2.7. Let f: X - Z be a morphism, and g: Z x W— Z be the
projection on the first factor. Then f, g have a fiber product, namely
the product X x W together with the morphisms of the following
diagram:

id
xxw Y 2w

prxl lprl

X — Z

f
Il, §3. PARTITIONS OF UNITY

Let X be a manifold of class C?. A function on X will be a morphism of
X into R, of class C?, unless otherwise specified. The C? functions form
a ring &?(X). The support of a function f is the closure of the set of
points x such that f(x) # 0.

Let X be a topological space. A covering of X is locally finite if every
point has a neighborhood which intersects only finitely many elements of
the covering. A refinement of a covering of X is a second covering, each
element of which is contained in an element of the first covering. A
topological space is paracompact if it is Hausdorff, and every open cover-
ing has a locally finite open refinement.

Proposition 3.1. If X is a paracompact space, and if {U;} is an open
covering, then there exists a locally finite open covering {V;} such that
V. < U; for each i.

Proof. Let {V;} be a locally finite open refinement of {U;}. For each k
there is an index i(k) such that ¥, < Uy,. We let W, be the union of
those ¥, such that i(k) =i. Then the W, form a locally finite open
covering, because any neighborhood of a point which meets infinitely
many W, must also meet infinitely many V;.

Proposition 3.2. If X is paracompact, then X is normal. If, further-
more, {U;} is a locally finite open covering of X, then there exists a
locally finite open covering {V;} such that V, < U;.

Proof. We refer the reader to Bourbaki [Bou 68].

Observe that Proposition 3.1 shows that the insistence that the index-
ing set of a refinement be a given one can easily be achieved.
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A partition of unity (of class C?) on a manifold X consists of an open
covering {U;} of X and a family of functions

Vi X-R
satisfying the following conditions:

PU 1. For all x € X we have y;(x) = 0.
PU 2. The support of Y, is contained in U;.
PU 3. The covering is locally finite.

PU 4. For each point x € X we have

Y ilx) =1

(The sum is taken over all i, but is in fact finite for any given point x in
view of PU 3)

We sometimes say that {(U;, {;)} is a partition of unity.

A manifold X will be said to admit partitions of unity if it is para-
compact, and if, given a locally finite open covering {U;}, there exists a
partition of unity {y;} such that the support of y; is contained in U;.

If {U;} is a covering of X, then we say that a covering {V;} is subordi-
nated to {U;} if each V; is contained in some U;.

It is desirable to give sufficient conditions on a manifold in order to
insure the existence of partitions of unity. There is no difficulty with the
topological aspects of this problem. It is known that a metric space is
paracompact (cf. Bourbaki [Bou 68], [Ke 55]), and on a paracompact
space, one knows how to construct continuous partitions of unity (loc.
cit.). However, in the case of infinite dimensional manifolds, certain diffi-
culties arise to construct differentiable ones, and it is known that a
Banach space itself may not admit partitions of unity (say of class C®).
The construction of differentiable partitions of unity depends on the
construction of a differentiable norm. Readers will find examples, theo-
rems, and counterexamples in [BoF 65], [BoF 66], and [Re 64]. In the
finite dimensional case, the existence will follow from the next theorem.

If E is a Banach space, we denote by B,(a) the open ball of radius r
and center a, and by B,(a) the closed ball of radius  and center a. If
a =0, then we write B, and B, respectively. Two open balls (of finite
radius) are obviously C®-isomorphic. If X is a manifold and (V, ¢) is a
chart at a point x € X, then we say that (V, ¢) (or simply V) is a ball of
radius r if @V is a ball of radius r in the Banach space.

Theorem 3.3. Let X be a manifold which is locally compact, Hausdorff,
and whose topology has a countable base. Given an open covering of X,
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then there exists an atlas {(V, @)} such that the covering {V,} is locally
finite and subordinated to the given covering, such that @V, is the open
ball Bs, and such that the open sets W, = ¢, *(B,) cover X.

Proof. Let U,, U,, ... be a basis for the open sets of X such that
each U, is compact. We construct inductively a sequence A4,, A4,, ... of
compact sets whose union is X, such that 4; is contained in the interior
of A;.,. Welet A, = U,. Suppose we have constructed 4;. We let j be
the smallest integer such that A; is contained in U, u---uU;. We let
A; 4, be the closed and compact set

U,u-uUuUy,.

For each point x € X we can find an arbitrarily small chart (V,, ¢,) at
x such that ¢, V. is the ball of radius 3 (so that each V, is contained in
some element of U). We let W, = ¢;'(B;) be the ball of radius 1 in this
chart. We can cover the set

A;vq — Int(4))

(intuitively the closed annulus) by a finite number of these balls of radius
1, say W, ...,W,, such that, at the same time, each one of V, ...,V is
contained in the open set Int(A4;,,) — A;_; (intuitively, the open annulus
of the next bigger size). We let B, denote the collection V;, ...,V, and let
B be composed of the union of the B;,. Then B is locally finite, and we
are done.

Corollary 3.4. Let X be a manifold which is locally compact Hausdorff,
and whose topology has a countable base. Then X admits partitions of
unity.

Proof. Let {(V, @)} be as in the theorem, and W, = ¢, '(B;). We can

find a function y, of class C? such that 0 <y, <1, such that ,(x) =1
for xe W, and ¥, (x) =0 for x ¢ V,. (The proof is recalled below.) We

now let
‘// = Z ‘/’k

(@ sum which is finite at each point), and we let y =y, /y. Then
{(V, %)} is the desired partition of unity.

We now recall the argument giving the function y,. First, given two
real numbers r, s with 0 < r < s, the function defined by

—1
P <(t A6 — t))
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in the open interval r <t <s and O outside the interval determines a
bell-shaped C®-function from R into R. Its integral from minus infinity
to t, divided by the area under the bell yields a function which lies
strictly between 0 and 1 in the interval r <t <s, is equal to 0 for t <r
and is equal to 1 for t = 5. (The function is even monotone increasing.)

We can therefore find a real valued function of a real variable, say
n(t), such that n(t) =1 for |t| < 1 and 5(t) =0 for |t| = 1 + é with small
5, and such that 0 <y < 1. If E is a Hilbert space, then 7(|x|?) = ¥(x)
gives us a function which is equal to 1 on the ball of radius 1 and 0
outside the ball of radius 1 + 6. This function can then be transported to
the manifold by any given chart whose image is the ball of radius 3.

In a similar way, one would construct a function which is > 0 on a
given ball and = 0 outside this ball.

Partitions of unity constitute the only known means of gluing together
local mappings (into objects having an addition, namely vector bundles,
discussed in the next chapter). It is therefore important, in both the
Banach and Hilbert cases, to determine conditions under which they
exist. In the Banach case, there is the added difficulty that the argument
just given to get a local function which is 1 on B; and 0 outside B, fails
if one cannot find a differentiable function of the norm, or of an equiva-
lent norm used to define the Banachable structure.

Even though it is not known whether Theorem 3.3 extends to Hilbert
manifolds, it is still possible to construct partitions of unity in that case.
As Eells pointed out to me, Dieudonné’s method of proof showing that
separable metric space is paracompact can be applied for that purpose
‘(this is Lemma 3.5 below), and I am indebted to him for the following
exposition.

We need some lemmas. We use the notation ‘4 for the complement of
a set A.

Let M be a metric space with distance function d. We can then speak
of open and closed balls. For instance B,(x) denotes the closed ball of
radius a with center x. It consists of all points y with d(y,x)<a. An
open subset V of M will be said to be scalloped if there exist open balls
U, U, ...,U, in M such that

V=UnU,n-nU,.
A covering {V;} of a subset W of M is said to be locally finite (with
respect to W) if every point x € W has a neighborhood which meets only
a finite number of elements of the covering.

Lemma 3.5. Let M be a metric space and {U;} (i = 1,2,...) a countable
covering of a subset W by open balls. Then there exists a locally finite
open covering {V.} (i=1,2,...) of W such that V,< U; for all i, and
such that V, is scalloped for all i.
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Proof. We define V, inductively as follows. Each U; is a ball, say
B, (x;). Let V; = U,. Having defined V,_,, let

1 1
ri=ay L Fiy,i = Gi—1 -7

and let
V,=Un Cﬁr“(xl) NN cﬁri,“(xi—l)’

it being understood that a ball of negative radius is empty. Then each V;
is scalloped, and is contained in U;. We contend that the ¥, cover W.
Indeed, let x be an element of W. Let j be the smallest index such that
x e U;. Then x €V, for otherwise, x would be in the complement of V;
which is equal to the union of ‘U; and the balls

Brlj(x1) Ut Er,-_l,,-(qu)-

Hence x would lie in some U; with i < j, contradiction.

There remains to be shown that our covering {V;} is locally finite. Let
x e W. Then x lies in some U,. Let s be such a small number > 0
that the ball By(x) is contained in U,. Let t =s/2. For all i sufficiently
large, the ball B,(x) is contained in Ea"_l,i(x,,) = l_i,m_(x,,) and therefore this
ball does not meet ¥,. We have found a neighborhood of x which meets
only a finite number of members of our covering, which is consequently
locally finite (with respect to W).

Lemma 3.6. Let U be an open ball in Hilbert space E and let

V=UnU - nT,

m

be a scalloped open subset. Then there exists a C*-function w: E—>R
such that w(x) > 0 if x e V and w(x) = 0 otherwise.

Proof. For each U, let ¢;: E —> R be a function such that

0Zpx)<1 if xeU,,

px)=1 if xeU,.

Let ¢(x) be a function such that ¢(x) >0 on U and ¢(x) =0 outside U.
Let

w(x) = o) [1(1 — ¢:(x)).

Then w(x) satisfies our requirements.
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Theorem 3.7. Let A,, A, be non-void, closed, disjoint subsets of a
separable Hilbert space E. Then there exists a C*-function y: E >R
such that Yy(x) =0 if xe A, and Yy(x)=1if xe A,, and 0 S yY(x) =1
for all x.

Proof. By Lindelof’s theorem, we can find a countable collection of
open balls {U;} (i=1,2,...) covering A, and such that each U; is con-
tained in the complement of A;. Let W be the union of the U;. We find
a locally finite refinement {¥;} as in Lemma 3.5. Using Lemma 3.6, we
find a function w; which is > 0 on ¥; and 0 outside V. Let w =) w;
(the sum is finite at each point of W). Then w(x)>0 if xe 4,, and
ox)=0if xe A4,.

Let U be the open neighborhood of 4, on which w is > 0. Then 4,
and ‘U are disjoint closed sets, and we can apply the above construction
to obtain a function ¢: E—> R which is > 0 on ‘U and = 0 on 4,. We
let y = w/(6 + w). Then Y satisfies our requirements.

Corollary 3.8. Let X be a paracompact manifold of class C?, modeled
on a separable Hilbert space E. Then X admits partitions of unity (of
class CP).

Proof. Tt is trivially verified that an open ball of finite radius in E
is C®-isomorphic to E. (We reproduce the formula in Chapter VIL)
Given any point x € X, and a neighborhood N of x, we can therefore
always find a chart (G, y) at x such that yG =E, and G = N. Hence,
given an open covering of X, we can find an atlas {(G,, y,)} subordinated
to the given covering, such that y,G, = E. By paracompactness, we can
find a refinement {U;} of the covering {G,} which is locally finite. Each
U, is contained in some G,; and we let ¢; be the restriction of y,; to U;.
We now find open refinements {¥;} and then {W,} such that

WICV;C‘ZCUU

the bar denoting closure in X. Each ¥; being closed in X, it follows from
our construction that ¢,V is closed in E, and so is ¢;. Using the
theorem, and transporting functions on E to functions on X by means of

the ¢;, we can find for each i a CP-function {;: X > R with is 1 on W,

and 0 on X — Vj. We let Y =) y; and 6, = y;/y. Then the collection
{6} is the desired partition of unity.

I, §4. MANIFOLDS WITH BOUNDARY

Let E be a Banach space, and A: E — R a continuous linear map into R.
(This will also be called a functional on E.) We denote by E? the kernel
of 4, and by Ef (resp. E;) the set of points x € E such that A(x) =0
(resp. A(x) £ 0). We call E? a hyperplane and E; or E; a half plane.
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If u is another functional and Ef =E, then there exists a number
¢ >0 such that 2= cu. This is easily proved. Indeed, we see at once
that the kernels of A and u must be equal. Suppose 4 #0. Let x, be
such that A(xy) > 0. Then u(xy) > 0 also. The functional

A = (Axo)/plxo))

vanishes on the kernel of A (or u) and also on x,. Therefore it is the 0
functional, and ¢ = A(xq)/p(xo)-

Let E, F be Banach spaces, and let E and F;” be two half planes in
E and F respectively. Let U, V be two open subsets of these half planes
respectively. We shall say that a mapping

frU->V

is a morphism of class CP? if the following condition is satisfied. Given a
point x € U, there exists an open neighborhood U, of x in E, an open
neighborhood V; of f(x) in F, and a morphism f;: U; = V; (in the sense
of Chapter I) such that the restriction of f; to U, nU is equal to f. (We
assume that all morphisms are of class C? with p = 1)

If our half planes are full planes (i.e. equal to the vector spaces them-
selves), then our present definition is the same as the one used previously.

If we take as objects the open subsets of half planes in Banach spaces,
and as morphisms the CP-morphisms, then we obtain a category. The
notion of isomorphism is therefore defined, and the definition of manifold
by means of atlases and charts can be used as before. The manifolds of
§1 should have been called manifolds without boundary, reserving the
name of manifold for our new globalized objects. However, in most of
this book, we shall deal exclusively with manifolds without boundary
for simplicity. The following remarks will give readers the means of
extending any result they wish (provided it is true) for the case of mani-
folds without boundaries to the case manifolds with.

First, concerning the notion of derivative, we have:

Proposition 4.1. Let f: U —>F and g: U > F be two morphisms of class

C? (p = 1) defined on an open subset U of E. Assume that f and g have
the same restriction to U nE} for some half plane E}, and let

xe UNE].
Then f'(x) = g'(x).
Proof. After considering the difference of f and g, we may assume

without loss of generality that the restriction of f to UNE} is 0. It is
then obvious that f’'(x) = 0.
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Proposition 4.2. Let U be open in E. Let u be a non-zero functional on
F and let f: U —F, be a morphism of class C? with p=1. If x is a
point of U such that f(x) lies in K then f'(x) maps E into F.

Proof. Without loss of generality, we may assume that x =0 and
f(x)=0. Let W be a given neighborhood of 0 in F. Suppose that we
can find a small element v € E such that uf'(0)v # 0. We can write (for
small t):

J(t) = tf' Qv + o(t)w,

with some element w, € W. By assumption, f(tv) lies in F,". Applying u
we get
tuf(0)v + o(t)u(w,) 2 0.

Dividing by ¢, this yields

W0 2 “uw)

Replacing ¢t by —t, we get a similar inequality on the other side. Letting
t tend to O shows that uf'(0)v = 0, a contradiction.

Let U be open in some half plane Ej. We define the boundary of U
(written 0U) to be the intersection of U with E?, and the interior of U
(written Int(U)) to be the complement of dU in U. Then Int(U) is open
in E.

It follows at once from our definition of differentiability that a half
plane is C*-isomorphic with a product

E; ~E! x R*

where R* is the set of real numbers = 0, whenever 1 # 0. The boundary
of E] in that case is EJ x 0.

Proposition 4.3. Let A be a functional on E and p a functional on F.
Let U be open in E} and V open in F,\ and assume U NE}, VN F are
not empty. Let f: U — V be an isomorphism of class C? (p = 1). Then
A#0 if and only if u#0. If 1 #0, then f induces a CP-isomorphism
of Int(U) on Int(V) and of oU on dV.

Proof. By the functoriality of the derivative, we know that f'(x) is a
toplinear isomorphism for each x € U. Our first assertion follows from
the preceding proposition. We also see that no interior point of U maps
on a boundary point of V and conversely. Thus f induces a bijection of
dU on 0V and a bijection of Int(U) on Int(V). Since these interiors are
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open in their respective spaces, our definition of derivative shows that f
induces an isomorphism between them. As for the boundary, it is a
submanifold of the full space, and locally, our definition of derivative,
together with the product structure, shows that the restriction of f to 0U
must be an isomorphism on JV.

This last proposition shows that the boundary is a differentiable in-
variant, and thus that we can speak of the boundary of a manifold.

We give just two words of warning concerning manifolds with bound-
ary. First, products do not exist in their category. Indeed, to get
products, we are forced to define manifolds with corners, which would
take us too far afield.

Second, in defining immersions or submanifolds, there is a difference in
kind when we consider a manifold embedded in a manifold without
boundary, or a manifold embedded in another manifold with boundary.
Think of a closed interval embedded in an ordinary half plane. Two
cases arise. The case where the interval lies inside the interior of the half
plane is essentially distinct from the case where the interval has one end
point touching the hyperplane forming the boundary of the half plane.
(For instance, given two embeddings of the first type, there exists an
automorphism of the half plane carrying one into the other, but there
cannot exist an automorphism of the half plane carrying an embedding
of the first type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Proposi-
tion 2.2 shows at once how to get the tangent space functorially.



CHAPTER 1lI

Vector Bundles

The collection of tangent spaces can be glued together to give a manifold
with a natural projection, thus giving rise to the tangent bundle. The
general glueing procedure can be used to construct more general objects
known as vector bundles, which give powerful invariants of a given
manifold. (For an interesting theorem see Mazur [Maz 61].) In this
chapter, we develop purely formally certain functorial constructions hav-
ing to do with vector bundles. In the chapters on differential forms and
Riemannian metrics, we shall discuss in greater detail the constructions
associated with multilinear alternating forms, and symmetric positive
definite forms.

Partitions of unity are an essential tool when considering vector bun-
dles. They can be used to combine together a random collection of
morphisms into vector bundles, and we shall give a few examples show-
ing how this can be done (concerning exact sequences of bundles).

lll, §1. DEFINITION, PULL BACKS

Let X be a manifold (of class C? with p>0) and let : E—> X be a
morphism. Let E be a Banach space.
Let {U;} be an open covering of X, and for each i, suppose that we
are given a mapping
1.1 U) > U, x E

satisfying the following conditions:
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VB 1. The map t; is a C? isomorphism commuting with the projection
on U, that is, such that the following diagram is commutative:

7 Y(U) —— U, x E

A4

In particular, we obtain an isomorphism on each fiber (written
i(x) or 1)
T T (x) > E

VB 2. For each pair of open sets U;, U; the map
x0T E>E
is a toplinear isomorphism.

VB 3. If U, and U; are two members of the covering, then the map of
U;n U; into L(E, E) (actually Laut(E)) given by

-1
X (71 )s
is a morphism.

Then we shall say that {(U,, t;)} is a trivializing covering for = (or for
E by abuse of language), and that {r;} are its trivalizing maps. If x € U,,
we say that 7; (or U;) trivializes at x. Two trivializing coverings for n are
said to be VB-equivalent if taken together they also satisfy conditions
VB 2, VB 3. An equivalence class of such trivializing coverings is said to
determine a structure of vector bundle on © (or on E by abuse of lan-
guage). We say that E is the total space of the bundle, and that X is its
base space. If we wish to be very functorial, we shall write E, and X, for
these spaces respectively. The fiber #7*(x) is also denoted by E, or ..
We also say that the vector bundle has fiber E, or is modeled on E. Note
that from VB 2, the fiber n~!(x) above each point x € X can be given a
structure of Banachable space, simply by transporting the Banach space
structure of E to n7!(x) via 7;,. Condition VB 2 insures that using
two different trivializing maps 7, or t;, will give the same structure of
Banachable space (with equivalent norms, of course not the same norms).

Conversely, we could replace VB 2 by a similar condition as
follows.
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VB 2'. On each fiber n~'(x) we are given a structure of Banachable
space, and for x € U;, the trivializing map

T H(x)=E, > E
is a toplinear isomorphism.

Then it follows that 7;, o 1;,': E— E is a toplinear isomorphism for each
pair of open sets U;, U; and x € U;n U;.
In the finite dimensional case, condition VB 3 is implied by VB 2.

Proposition 1.1. Let E, F be finite dimensional vector spaces. Let U be
open in some Banach space. Let

ffUxE-F
be a morphism such that for each x € U, the map
fiE->F

given by f,.(v) = f(x, v) is a linear map. Then the map of U into L(E, F)
given by x> f. is a morphism.

Proof. We can write F =R, x -+ x R, (n copies of R). Using the fact
that L(E, F) = L(E,R;) x --- x L(E, R,), it will suffice to prove our asser-
tion when F = R. Similarly, we can assume that E = R also. But in that
case, the function f(x,v) can be written g(x)v for some map g: U —» R.
Since f is a morphism, it follows that as a function of each argument x,
v it is also a morphism. Putting v = 1 shows that g is a morphism and
concludes the proof.

Returning to the general definition of a vector bundle, we call the

maps
-1
ix

Ty =1T

jix Jjx °T

the transition maps associated with the covering. They satisfy what we
call the cocycle condition

Tkjx © Tjix = Tkix-

In particular, 7;, = id and 7;;, = t5}.
As with manifolds, we can recover a vector bundle from a trivializing

covering.
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Proposition 1.2. Let X be a manifold, and n: E— X a mapping from
some set E into X. Let {U;} be an open covering of X, and for each i
suppose that we are given a Banach space E and a bijection (commuting
with the projection on Uj),

T 7'C_1(U,-) hd Ui X E,

such that for each pair i, j and x e U;n U, the map (tjtil), is a
toplinear isomorphism, and condition VB 3 is satisfied as well as the
cocycle condition. Then there exists a unique structure of manifold on E
such that m is a morphism, such that t; is an isomorphism making © into
a vector bundle, and {(U;, t;)} into a trivialising covering.

Proof. By Proposition 3.10 of Chapter I and our condition VB 3, we
conclude that the map

1,75 (U;nU) x E-»(U;nTU) x E

is a morphism, and in fact an isomorphism since it has an inverse. From
the definition of atlases, we conclude that E has a unique manifold
structure such that the t; are isomorphisms. Since m is obtained locally
as a composite of morphisms (namely t; and the projections of U; x E on
the first factor), it becomes a morphism. On each fiber n7!(x), we can
transport the topological vector space structure of any E such that x lies
in U;, by means of t;,. The result is independent of the choice of U; since
(tjti'), is a toplinear isomorphism. Our proposition is proved.

Remark. It is relatively rare that a vector bundle is trivial, ie. VB-
isomorphic to a product X x E. By definition, it is always trivial locally.
In the finite dimensional case, say when E has dimension n, a trivializa-
tion is equivalent to the existence of sections &, ...,&, such that for each
x, the vectors &,(x), ...,&,(x) form a basis of E,. Such a choice of
sections is called a frame of the bundle, and is used especially with the
tangent bundle, to be defined below. In this book where we give proofs
valid in the infinite dimensional case, frames will therefore not occur until
we get to strictly finite dimensional phenomenon.

The local representation of a vector bundle and
the vector component of a morphism

For arbitrary vector bundles (and especially the tangent bundle to
be defined below), we have a local representation of the bundle as a
product in a chart. For many purposes, and especially the case of a
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morphism
f:Y>E

of a manifold into the vector bundle, it is more convenient to use U to
denote an open subset of a Banach space, and to let ¢: U > X be an
isomorphism of U with an open subset of X over which E has a triviali-
zation 1: n}(eU) —» U x E. Suppose V is an open subset of Y such that
f(V) = n71(¢U). We then have the commutative diagram:

v L, 7 (oU) —— U x E

L]

oU — U

The composite 7o f is a morphism of V into U x E, which has two
components

to f = (fu1, fu2)

such that f;,;: V- U and fy,: V— E. We call f;, the vector component of
f in the vector bundle chart U x E over U. Sometimes to simplify the
notation, we omit the subscript, and merely agree that f; = f;,, denotes
this vector component; or to simplify the notation further, we may sim-
ply state that f itself denotes this vector component if a discussion takes
place entirely in a chart. In this case, we say that f = f;, represents the
morphism in the vector bundle chart, or in the chart.

Vector bundle morphisms and pull backs
We now make the set of vector bundles into a category.
Let n: E—> X and n': E' > X’ be two vector bundles. A VB-morphism
n — 1’ consists of a pair of morphisms
fo: XX and fiE->F

satisfying the following conditions.

VB Mor 1. The diagram
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is commutative, and the induced map for each x € X
fx: Ex - E’f (x)
is a continuous linear map.
VB Mor 2. For each xq € X there exist trivializing maps

' (U)-»U x E
and
7 Y (U)-> U x E

at x, and f(x,) respectively, such that f,(U) is contained in
U’, and such that the map of U into L(E, E’) given by

-1
XHT}o(x) Ofx °1T

is a morphism.

As a matter of notation, we shall also use f to denote the VB-
morphism, and thus write f: 7 — 7’. In most applications, f; is the iden-
tity. By Proposition 1.1, we observe that VB Mor 2 is redundant in the
finite dimensional case.

The next proposition is the analogue of Proposition 1.2 for VB-
morphisms.

Proposition 1.3. Let n, ' be two vector bundles over manifolds X, X'
respectively. Let fy: X - X' be a morphism, and suppose that we are
given for each x € X a continuous linear map

fx: iy = n/fo(x)

such that, for each x,, condition VB Mor 2 is satisfied. Then the map
f from n to 7' defined by f, on each fiber is a VB-morphism.

Proof. One must first check that f is a morphism. This can be done
under the assumption that n, n’ are trivial, say equal to U x E and
U x E' (following the notation of VB Mor 2), with trivialising maps
equal to the identity. Our map f is then given by

(X, U)H (fox’ fxv)'

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism,
and hence that (fy, f) is a VB-morphism.
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It is clear how to compose two VB-morphisms set theoretically. In
fact, the composite of two VB-morphisms is a VB-morphism. There is
no problem verifying condition VB Mor 1, and for VB Mor 2, we look at
the situation locally. We encounter a commutative diagram of the fol-
lowing type:

/

T U) —— 77HU) > 27U

UXE — UXxE — U’ xE

and use Proposition 3.10 of Chapter I, to show that go f is a VB-
morphism.

We therefore have a category, denoted by VB or VB?, if we need to
specify explicitly the order of differentiability.

The vector bundles over X from a subcategory VB(X) = VB?(X) (tak-
ing those VB-morphisms for which the map f, is the identity). If A is a
category of Banach spaces (for instance finite dimensional spaces), then
we denote by VB(X, UA) those vector bundles over X whose fibers lie in
A

A morphism from one vector bundle into another can be given locally.
More precisely, suppose that U is an open subset of X and nm: E— X a
vector bundle over X. Let E;, = n~}(U) and

7tU = 7t|EU

be the restriction of = to E;. Then =, is a vector bundle over U. Let
{U;} be an open covering of the manifold X and let =, ' be two vector
bundles over X. Suppose, given a VB-morphism

fi Ty, = Ty,

for each i, such that f; and f; agree over U;n U; for each pair of indices i,
j. Then there exists a unique VB-morphism f: 7 — n’ which agrees with
f; on each U;. The proof is trivial, but the remark will be used frequently
in the sequel.

Using the discussion at the end of Chapter II, §2 and Proposition 2.7
of that chapter, we get immediately:

Proposition 14. Let n: E— Y be a vector bundle, and f: X > Y a
morphism. Then

@) fHE) > X



[111, §1] DEFINITION, PULL BACKS 47

is a vector bundle, and the pair (f, n*(f)) is a VB-morphism

™(f)

SXE) —> E
S*(m) 17t
X —Y

f

In Proposition 1.4, we could take f to be the inclusion of a submani-
fold. In that case, the pull-back is merely the restriction. As with open
sets, we can then use the usual notation:

Ey = n71(X) and ny = |Ey.

Thus ny = f*(n) in that case.
If X happens to be a point y of Y, then we have the constant map

. E, >y

which will sometimes be identified with E,.

If we identify each fiber (f*E), with Eg, itself (a harmless identifica-
tion since an element of the fiber at x is simply a pair (x, e) with e in
E;.,), then we can describe the pull-back f* of a vector bundle n: E— Y
as follows. It is a vector bundle f*rn: f*E — X satisfying the following
properties:

PB 1. For each x € X, we have (f*E), = E,.

PB 2. We have a commutative diagram

fYE) — E
f*(fr)l J
X —Y

f

the top horizontal map being the identity on each fiber.

PB 3. If E is trivial, equal to Y X E, then f*E = X x E and f*=n is the
projection.

PB 4. If V is an open subset of Y and U = f~*(V), then

J*(Ey) = (f*E)y,
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and we have a commutative diagram:

J*Ey—E,

lll, §2. THE TANGENT BUNDLE

Let X be a manifold of class C? with p = 1. We shall define a functor T
from the category of such manifolds into the category of vector bundles
of class CP71,

For each manifold X we let T(X) be the disjoint union of the tangent
spaces T.(X). We have a natural projection

n T(X)— X

mapping T,(X) on x. We must make this into a vector bundle. If (U, ¢)
is a chart of X such that @U is open in the Banach space E, then from
the definition of the tangent vectors as equivalence classes of triples
(U, @, v) we get immediately a bijection

1p:n }({U)=TU)-> U x E
which commutes with the projection on U, that is such that

7 I(U) — U x E

\/

U
is commutative. Furthermore, if (U;, ¢;) and (U;, ¢;) are two charts, and
if we denote by ¢; the map ¢;¢;" (defined on ¢(U;nUj)), then we
obtain a transition mapping

T = (rjfi_l)z oi(U;n l]j) x E— ‘Pj(Uim U,) x E

by the formula
Tji(X, v) = (‘pjix9 D(Pji(x) “v)

for xe U;n U; and v e E. Since the derivative Dg; = ¢}; is of class crt
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and is an isomorphism at x, we see immediately that all the conditions of
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby
making T(X) into a vector bundle of class C?™.

We see that the above construction can also be expressed as follows.
If the manifold X is glued together from open sets {U;} in Banach
spaces by means of transition mappings {¢;}, then we can glue together
products U; x E by means of transition mappings (¢, D¢;) where the
derivative Dg;; can be viewed as a function of two variables (x, v). Thus
locally, for open subsets U of Banach spaces, the tangent bundle can be
identified with the product U x E. The reader will note that our defini-
tion coincides with the oldest definition employed by geometers, our
tangent vectors being vectors which transform according to a certain rule
(namely the derivative).

If f: X > X' is a CP-morphism, we can define

Tf: T(X) » T(X')

to be simply T.f on each fiber T,(X). In order to verify that Tf is a
VB-morphism (of class CP7!), it suffices to look at the situation locally,
i.e. we may assume that X and X’ are open in vector spaces E, E', and
that T.f = f'(x) is simply the derivative. Then the map Tf is given by

Tf(x, v) = (f(x), f'(x)0)

for xe X and ve E. Since [’ is of class C?™! by definition, we can apply
Proposition 3.10 of Chapter I to conclude that Tf is also of class CP7'.
The functoriality property is trivially satisfied, and we have therefore
defined the functor T as promised.

It will sometimes be notationally convenient to write f, instead of Tf
for the induced map, which is also called the tangent map. The bundle
T(X) is called the tangent bundle of X.

Remark. The above definition of the tangent bundle fits with
Steenrod’s point of view [Ste 51]. I don’t understand why many differen-
tial geometers have systematically rejected this point of view, when they
take the definition of a tangent vector as a differential operator.

lll, §3. EXACT SEQUENCES OF BUNDLES
Let X be a manifold. Let n: E'—> X and =n: E—> X be two vector bun-
dles over X. Let f:n' > be a VB-morphism. We shall say that the

sequence

O-n—nm
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is exact if there exists a covering of X by open sets and for each open set
U in this covering there exist trivializations

T:Ey;->UXxFE and 1. E; > U X E

such that E can be written as a product E = E’ x F, making the follow-
ing diagram commutative:
f

E, — 1 E,

UxE — UXxE xF

(The bottom map is the natural one: Identity on U and the injection of
E on E x 0.

Let ©,: E; > X be another vector bundle, and let g: 7, > be a VB-
morphism such that g(E,;) is contained in f(E’). Since f establishes a
bijection between E’ and its image f(E’) in E, it follows that there exists
a unique map g,: E; - E’ such that g = fog,. We contend that g, is a
VB-morphism. Indeed, to prove this we can work locally, and in view of
the definition, over an open set U as above, we can write

glz—_'c'_loprorog

where pr is the projection of U x E' x F on U x E'. All the maps on
the right-hand side of our equality are VB-morphisms; this proves our
contention.

Let n: E— X be a vector bundle. A subset S of E will be called a
subbundle if there exists an exact sequence 0 — 7' — =, also written

0-E -5 E

such that f(E')=S. This gives S the structure of a vector bundle, and
the previous remarks show that it is unique. In fact, given another exact
sequence

0—E,—2>E

such that g(E;)=S, the natural map f~!g from E, to E is a
VB-isomorphism.

Let us denote by E/E’ the union of all factor spaces E,/E,. If we are
dealing with an exact sequence as above, then we can give E/E’ the
structure of a vector bundle. We proceed as follows. Let {U;} be our
covering, with trivialising maps 7; and 7;. We can define for each i a
bijection

ni: Ey,/Ey,» U; x F
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obtained in a natural way from the above commutative diagram. (With-
out loss of generality, we can assume that the vector spaces E’, F are
constant for all i) We have to prove that these bijections satisfy the
conditions of Proposition 1.2.

Without loss of generality, we may assume that f is an inclusion
(of the total space E’ into E). For each pair i, j and xe U;,nU;, the
toplinear automorphism (t;7; '), is represented by a matrix

(h“(x) h12(x)>

hy1(x)  hpy(x)

operating on the right on a vector (v, w)e E' x F. The map (zjt{ "), on
F is induced by this matrix. Since E' = E' x 0 has to be carried into
itself by the matrix, we have h;,(x) = 0. Furthermore, since (t;7; '), has
an inverse, equal to (r;7;'),, it follows that h,,(x) is a toplinear auto-
morphism of F, and represents (tj7/~"),. Therefore condition VB 3 is

satisfied, and E/E’ is a vector bundle.
The canonical map

Ey— Ey/Ey

is a morphism since it can be expressed in terms of 7, the projection, and
7”71, Consequently, we obtain a VB-morphism

grnon’

in the canonical way (on the total spaces, it is the quotient mapping of E
on E/E’). We shall call n” the factor bundle.

Our map g satisfies the usual universal mapping property of a
cokernel. Indeed, suppose that

V:E->G

is a VB-morphism such that o f =0 (i.e. ¥, o f, =0 on each fiber E).
We can then define set theoretically a canonical map

v, E/E' > G,

and we must prove that it is a VB-morphism. This can be done locally.

Using the above notation, we may assume that E=U x E' x F and

that g is the projection. In that case, ¥, is simply the canonical injection

of U x Fin U x E' x F followed by ¥, and is therefore a VB-morphism.
We shall therefore call g the cokernel of f.
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Dually, let g: m — n” be a given VB-morphism. We shall say that the
sequence

A N

is exact if g is surjective, and if there exists a covering of X by open sets,
and for each open set U in this covering there exist spaces E, F and
trivializations

T.E;, - UXxE xF and . Ej; > F

making the following diagram commutative:

E, —Y S E,

1 iy

UXxE xF — UxF

(The bottom map is the natural one: Identity on U and the projection of
E xF onF)

In the same way as before, one sees that the “kernel” of g, that is, the
union of the kernels E) of each g,, can be given a structure of vector
bundle. This union E’ will be called the kernel of g, and satisfies the
usual universal mapping property.

Proposition 3.1. Let X be a manifold and let
finon

be a VB-morphism of vector bundles over X. Assume that, for each
x € X, the continuous linear map

S Ex > E,
is injective and splits. Then the sequence

0-n 7, T
is exact.

Proof. We can assume that X is connected and that the fibers of E’
and E are constant, say equal to the Banach spaces E’ and E. Let ae X.
Corresponding to the splitting of f, we know that we have a product
decomposition E =E’' x F and that there exists an open set U of X
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containing a, together with trivialising maps
.1 Y (U)-» U x E and .7 W (U)-»Ux E

such that the composite map

—1
EX N g B xF

a

maps E' on E' x 0.
For any point x in U, we have a map

(' ), E >E xF,
which can be represented by a pair of continuous linear maps
(hl 1(x), h21(x)).
We define

h(x)E x F>E x F

<h“(x) 0
hy;(x) id ’

by the matrix

53

operating on the right on a vector (v, w) € E' x F. Then h(x) restricted to

E’ x 0 has the same action as (tft'1),.

The map x — h(x) is a morphism of U into L(E, E) and since it is
continuous, it follows that for U small enough around our fixed point q,
it maps U into the group of toplinear automorphisms of E. This proves

our proposition.
Dually to Proposition 3.1, we have:
Proposition 3.2. Let X be a manifold and let

gnon’

be a VB-morphism of vector bundles over X. Assume that for each

x € X, the continuous linear map
9x Ex— EX
is surjective and has a kernel that splits. Then the sequence

g
n— 7" >0
is exact.
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Proof. 1t is dual to the preceding one and we leave it to the reader.
In general, a sequence of VB-morphisms
0o —sn—2s1" 50

is said to be exact if both ends are exact, and if the image of f is equal
to the kernel of g.

There is an important example of exact sequence. Let f: X —» Y be an
immersion. By the universal mapping property of pull backs, we have a
canonical VB-morphism

T*f: T(X) > f*T(Y)

of T(X) into the pull back over X of the tangent bundle of Y. Further-
more, from the manner in which the pull back is obtained locally by
taking products, and the definition of an immersion, one sees that the
sequence

T*
0 T(X)—2 f*T(Y)
is exact. The factor bundle

S*T(Y)/Tm(T*f)

is called the mormal bundle of f. It is denoted by N(f), and its total
space by N(X) if we wish to distinguish between the two. We sometimes
identify T(X) with its image under T*f and write

N(f) = f*T(Y)/T(X).
Dually, let f: X —> Y be a submersion. Then we have an exact sequence
T*
T(X) 2L f*7(¥) > 0

whose kernel could be called the subbundle of f, or the bundle along the
fiber.

There is an interesting case where we can describe the kernel more
precisely. Let

n.E-X

be a vector bundle. Then we can form the pull back of E over itself, that
is, 7*E, and we contend that we have an exact sequence

0> 7n*E > T(E) > n*T(X) - 0.
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To define the map on the left, we look at the subbundle of = more
closely. For each x € X we have an inclusion

E.—>E,

X

whence a natural injection
T(E,) - T(E).

The local product structure of a bundle shows that the union of the
T(E,) as x ranges over X gives the subbundle set theoretically. On the
other hand, the total space of n*E consists of pairs of vectors (v, w) lying
over the same base point x, that is, the fiber at x of n*E is simply
E, x E,. Since T(E,) has a natural identification with E, x E., we get
for each x a bijection

(n*E), — T(E,)
which defines our map from n*E to T(E). Considering the map locally
in terms of the local product structure shows at once that it gives a
VB-isomorphism between n*E and the subbundle of =, as desired.
lll, §4. OPERATIONS ON VECTOR BUNDLES
We consider subcategories of Banach spaces 2, B, € and let
AUAXB->E
be a functor in, say, two variables, which is, say, contravariant in the first
and covariant in the second. (Everything we shall do extends in the
obvious manner to functors of several variables, letting 2, B stand for
n-tuples.)
Example. We took a functor in two variables for definiteness, and to
illustrate both variances. However, we could consider a functor in one or
more than two variables. For instance, let us consider the functor

E— L(E,R) = L(E) = E,

which we call the dual. It is a contravariant functor in one variable. On
the other hand, the functor

E— L/(E, F)

of continuous multilinear maps of E x --- x E into a Banach space F is



56 VECTOR BUNDLES (111, §4]

contravariant in E and covariant in F. The functor E— L.(E, R) gives
rise later to what we call differential forms. We shall treat such forms
systematically in Chapter V, §3.

If f:E'>E and g: F > F are two continuous linear maps, with f a
morphism of A and g a morphism of B, then by definition, we have a
map

L(E,E) x L(F, F') - L(A(E, F), A(E, F")),

assigning A(f, g) to (f, g9).
We shall say that 1 is of class C? if the following condition is satisfied.
Give a manifold U, and two morphisms

¢:U - L(E, E) and Y:U - L(F, F),
then the composite
U - L(E,E) x L(F, F') > L(A(E, F), A(E, F))
is also a morphism. (One could also say that A is differentiable.)

Theorem 4.1. Let A be a functor as above, of class C?, p=0. Then for

each manifold X, there exists a functor Ay, on vector bundles (of class
CP)
Ax: VB(X, ¥) x VB(X, B) - VB(X, €)

satisfying the following properties. For any bundles o, B in VB(X, )
and VB(X, B) respectively, and VB-morphisms

fid —>a and g:p-p

in the respective categories, and for each x € X, we have:
OP 1. Ax(a, B), = Alay, Be)-

OP 2' lx(f’ g)x = l(fan gx)

OP 3. If « is the trivial bundle X x E and B the trivial bundle X x F,
then Ax(a, P) is the trivial bundle X x A(E, F).

OP 4. If h: Y - X is a CP-morphism, then
Ay(h*a, h*B) = h*Ax(a, P).

Proof. We may assume that X is connected, so that all the fibers
are toplinearly isomorphic to a fixed space. For each open subset U
of X we let the total space Ay(E,, E;) of Ay(, f) be the union of the
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sets

{x} x Ay, Be)
(identified harmlessly throughout with A(a,, B,)), as x ranges over U. We
can find a covering {U;} of X with trivializing maps {r;} for «, and {o;}

for B,
T a_l(Ui) e lJl X E9

a: B (U) - U; x F.
We have a bijection
j'(‘!'-i_la ai): A’Ui(Eaa Eﬂ) - Ui X A(Ea F)
obtained by taking on each fiber the map
)'(Ti_.-xl’ O-ix): i(“xﬂ Bx) - '{(E’ F)
We must verify that VB 3 is satisfied. This means looking at the map
X — j‘(rj;lﬁ ajx) ° )“(Ti_x15 Jix)_l‘
The expression on the right is equal to
j'(Al'-l'x‘r_i:‘:l’ o}xai;l )
Since A is a functor of class C?, we see that we get a map
U;n U; - L(A(E, F), A(E, F))
which is a CP-morphism. Furthermore, since A is a functor, the transition
mappings are in fact toplinear isomorphisms, and VB2, VB 3 are proved.
The proof of the analogous statement for Ay(f, g), to the effect that it
is a VB-morphism, proceeds in an analogous way, again using the hy-
pothesis that 4 is of class C?. Condition OP 3 is obviously satisfied, and
OP 4 follows by localizing. This proves our theorem.
The next theorem gives us the uniqueness of the operation Ay.
Theorem 4.2. If p is another functor of class C* with the same variance

as A, and if we have a natural transformation of functors t: A — u, then
for each X, the mapping

tx: Ay = pys
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defined on each fiber by the map

10y Bi): Aotys Br) = 1oy, Br)s
is a natural transformation of functors (in the VB-category).

Proof. For simplicity of notation, assume that A and p are both
functors of one variable, and both covariant. For each open set U = U,
of a trivializing covering for f§, we have a commutative diagram:

id
Uxi® LBy uE

Ay(0) Hul(o)

Ay(B) —————— nu(h)
U
The vertical maps are trivializing VB-isomorphisms, and the top horizon-
tal map is a VB-morphism. Hence ¢y is a VB-morphism, and our asser-
tion is proved.

In particular, for A=y and t=id we get the uniqueness of our
functor Ay.

(In the proof of Theorem 4.2, we do not use again explicitly the hypo-
theses that A, u are differentiable.)

In practice, we omit the subscript X on A, and write 4 for the functor
on vector bundles.

Examples. Let n: E— X be a vector bundle. We take 1 to be the
dual, that is E—EY = L(E,R). Then A(E) is denoted by EY, and is
called the dual bundle. The fiber at each point x € X is the dual space
EY. The dual bundle of the tangent bundle is called the cotangent bundle
TVX.

Similarly, instead of taking L(E), we could take L}(E) to be the bundle
of alternating multilinear forms on E. The fiber at each point is the
space L.(E,) consisting of all r-multilinear alternating continuous func-
tions on E,. When E=TX is the tangent bundle, the sections of
LI(TX) are called differential forms of degree r. Thus a 1-form is a
section of EV. Differential forms will be treated later in detail.

Recall that End(E) = L(E, E). In the theory of curvature, we shall deal
with both functors

E—L*E)=L%E,R) and E3- L*(E, End(E)) = L*(E, L(E, E)).

In fact, if R € L*(E, L(E, E)), then for each pair of elements v, we E and
z € E, we see that R(v, w) € L(E, E) and R(v, w)z € E, so we get a 3-linear
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map
(v, w, ) R(v, w)z.

We shall apply both functors to the tangent bundle in Chapter IX.

For another type of operation, we have the direct sum (also called the
Whitney sum) of two bundles o, f over X. It is denoted by a @ B, and
the fiber at a point x is

@® B = ax @ B

Of course, the finite direct sum of vector spaces can be identified with
their finite direct products, but we write the above operation as a direct
sum in order not to confuse it with the following direct product.

Let «: E,—» X and B:E;— Y be two vector bundles in VB(X) and
VB(Y) respectively. Then the map

ax frE, xEg»X xY

is a vector bundle, and it is this operation which we call the direct
product of o and S.

Let X be a manifold, and A a functor of class C? with p = 1. The
tensor bundle of type A over X is defined to be Ax(T(X)), also denoted by
AT(X) or T,(X). The sections of this bundle are called tensor fields of
type 4, and the set of such sections is denoted by I';(X). Suppose that
we have a trivialization of T(X), say

T(X)=X x E.

Then T,(X) = X x A(E). A section of T;(X) in this representation is com-
pletely described by the projection on the second factor, which is a
morphism

f: X - AE).

We shall call it the local representation of the tensor field (in the given
trivialization). If & is the tensor field having f as its local representation,
then

£(x) = (x, f(x)).

Let f: X —» Y be a morphism of class C? (p = 1). Let w be a tensor
field of type L" over Y, which could also be called a multilinear tensor
field. For each ye Y, w(y) (also written w,) is a continuous multilinear
function on T,(Y):

w,: T, x - x T,»R.

y
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For each x € X, we can define a continuous multilinear map
*w): T, x - x T,>R
by the composition of maps (T, f)" and wy,:
T, x " X T,> Ty X X T}(x)_’R-

We contend that the map x> f¥(w) is a tensor field over X, of the same
type as w. To prove this, we may work with local representation. Thus
we can.assume that we work with a morphism

f:U->V
of one open set in a Banach space into another, and that
w: V- L'(F)

is a morphism, V being open in F. If U is open in E, then f*(w) (now
denoting a local representation) becomes a mapping of U into L'(E),
given by the formula

o) = L'(f'(x)): o(f()).

Since L': L(E, F) —» L(L'(F), L'(E)) is of class C®, it follows that f*(w) is
a morphism of the same class as w. This proves what we want.

Of course, the same argument is valid for the other functors L} and L]
(symmetric and alternating continuous multilinear maps). Special cases
will be considered in later chapters. If 1 denotes any one of our three
functors, then we see that we have obtained a mapping (which is in fact
linear)

f* T(Y) - T(X)

which is clearly functorial in f. We use the notation f* instead of the
more correct (but clumsy) notation f, or I;(f). No confusion will arise
from this.

i, §5. SPLITTING OF VECTOR BUNDLES

The next proposition expresses the fact that the VB-morphisms of one
bundle into another (over a fixed morphism) form a module over the
ring of functions.
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Proposition 5.1. Let X, Y be manifolds and f,: X - Y a morphism. Let
o, B be vector bundles over X, Y respectively, and let f, g: o — f be two
VB-morphisms over f,. Then the map f + g defined by the formula

(f+9=rfi+ 9«

is also a VB-morphism. Furthermore, if Y:Y - R is a function on Y,
then the map yf defined by

W) = ¥ (fo())fs
is also a VB-morphism.

Proof. Both assertions are immediate consequences of Proposition
3.10 of Chapter L.

We shall consider mostly the situation where X =Y and f, is the
identity, and will use it, together with partitions of unity, to glue VB-
morphisms together.

Let a, B be vector bundles over X and let {(U;, y;)} be a partition of
unity on X. Suppose given for each U; a VB-morphism

S alU; > BIU;.

Each one of the maps ;f; (defined as in Proposition 5.1) is a VB-
morphism. Furthermore, we can extend y;f; to a VB-morphism of « into
B simply by putting

Wif)=0
for all x ¢ U;. If we now define

fra—p

fx0) = 3 i) fix0)

by the formula

for all pairs (x,v) with vea,, then the sum is actually finite, at each
point x, and again by Proposition 5.1, we see that f is a VB-morphism.
We observe that if each f; is the identity, then f =) y,f; is also the
identity.

Proposition 5.2. Let X be a manifold admitting partitions of unity. Let

0—- o> f be an exact sequence of vector bundles over X. Then there
exists a surjective VB-morphism g:  — a whose kernel splits at each
point, such that g o f =id.
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Proof. By the definition of exact sequence, there exists a partition of
unity {(U;, ¥;)} on X such that for each i, we can split the sequence over
U;. In other words, there exists for each i a VB-morphism

g:: BIU; > a|U;

which is surjective, whose kernel splits, and such that g; o f; = id;. We let
g =Y ¥;g;. Then g is a VB-morphism of # into « by what we have just

seen, and
gof= z Vig:f; = id.

It is trivial that g is surjective because g o f =id. The kernel of g, splits
at each point x because it has a closed complement, namely f.a,. This
concludes the proof.

If y is the kernel of 8, then we have f ~ o @ y.

A vector bundle © over X will be said to be of finite type if there
exists a finite trivialization for = (i.e. a trivialization {(U;, 7;)} such that i
ranges over a finite set).

If k is an integer = 1 and E a topological vector space, then we
denote by E* the direct product of E with itself k times.

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let
n be a vector bundle of finite type in VB(X, E), where E is a Banach
space. Then there exists an integer k >0 and a vector bundle a in
VB(X, E¥) such that n ® « is trivializable.

Proof. We shall prove that there exists an exact sequence
(Ve I» B

with E; =X x E*. Our theorem will follow from the preceding
proposition.

Let {(U;,t;)} be a finite trivialization of = with i=1, ...,k. Let
{(U;, ¥,)} be a partition of unity. We define

f:E,—» X x E*
as follows. If x € X and v is in the fiber of E, at x, then
fx(v) = (X, lljl(x)‘tl(v)’ e ’wk(x)rk(v))'

The expression on the right makes sense, because in case x does not lie

in U; then y;(x) =0 and we do not have to worry about the expression
7;(v). If x lies in U;, then 1,(v) means 7,,(v).
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Given any point x, there exists some index i such that y;(x) > 0 and
hence f is injective. Furthermore, for this x and this index i, f, maps E,
onto a closed subspace of E¥, which admits a closed complement, namely

Ex--x0x:-xE

with 0 in the i-th place. This proves our proposition.



CHAPTER IV

Vector Fields and Differential
Equations

In this chapter, we collect a number of results all of which make use of
the notion of differential equation and solutions of differential equations.

Let X be a manifold. A vector field on X assigns to each point x of
X a tangent vector, differentiably. (For the precise definition, see §2.)
Given x, in X, it is then possible to construct a unique curve af(t)
starting at x, (i.e. such that «(0) = x,) whose derivative at each point is
the given vector. It is not always possible to make the curve depend on
time ¢ from —oo to +o0, although it is possible if X is compact.

The structure of these curves presents a fruitful domain of investiga-
tion, from a number of points of view. For instance, one may ask for
topological properties of the curves, that is those which are invariant
under topological automorphisms of the manifold. (Is the curve a closed
curve, is it a spiral, is it dense, etc.?) More generally, following standard
procedures, one may ask for properties which are invariant under any
given interesting group of automorphisms of X (discrete groups, Lie
groups, algebraic groups, Riemannian automorphisms, ad lib.).

We do not go into these theories, each of which proceeds according to
its own flavor. We give merely the elementary facts and definitions
associated with vector fields, and some simple applications of the exis-
tence theorem for their curves.

Throughout this chapter, we assume all manifolds to be Hausdorff, of
class C? with p =2 from §2 on, and p = 3 from §3 on. This latter condi-
tion insures that the tangent bundle is of class C?™! with p —1 =1 (or 2).

We shall deal with mappings of several variables, say f(t, x, y), the first
of which will be a real variable. We identify D, f(t, x, y) with

limf(t+h,x’y)—f(t7x9y)

h—-0 h ’
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IV, §1. EXISTENCE THEOREM FOR
DIFFERENTIAL EQUATIONS

Let E be a Banach space and U an open subset of E. In this section we
consider vector fields locally. The notion will be globalized later, and
thus for the moment, we define (the local representation of) a time-
dependent vector field on U to be a CP-morphism (p = 0)

f:JxU->E,

where J is an open interval containing 0 in R. We think of f as
assigning to each point x in U a vector f{(¢, x) in E, depending on time t.

Let x, be a point of U. An integral curve for f with initial condition
Xo is a mapping of class C" (r = 1)

a:JO—)U

of an open subinterval of J containing 0, into U, such that «(0) = x, and
such that

(1) = f(t, a(t)).

Remark. Let a: J, —» U be a continuous map satisfying the condition

a(t) = xo + J‘tf(u, a(u)) du.

Then « is differentiable, and its derivative is f(¢, a(f)). Hence o is of class
C'. Furthermore, we can argue recursively, and conclude that if f is of
class CP?, then so is a. Conversely, if o is an integral curve for f with
initial condition x,, then it obviously satisfies our integral relation.

Let
f:JxU->E

be as above, and let x, be a point of U. By a local flow for f at x, we
mean a mapping

w:Jy x Uy—=U

where J, is an open subinterval of J containing 0, and U, is an open
subset of U containing x,, such that for each x in U, the map

() = a(t, x)

is an integral curve for f with initial condition x (i.e. such that «(0, x) =
X).
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As a matter of notation, when we have a mapping with two argu-
ments, say ¢(t, x), then we denote the separate mappings in each argu-
ment when the other is kept fixed by ¢.(t) and ¢,(x). The choice of
letters will always prevent ambiguity.

We shall say that f satisfies a Lipschitz condition on U uniformly with
respect to J if there exists a number K > 0 such that

Lf(t, x) — f&, )| = K|x — yl

for all x, yin U and t in J. We call K a Lipschitz constant. If f is of
class C!, it follows at once from the mean value theorem that f is
Lipschitz on some open neighborhood J, x U, of a given point (0, x,) of
U, and that it is bounded on some such neighborhood.

We shall now prove that under a Lipschitz condition, local flows exist
and are unique locally. In fact, we prove more, giving a uniformity
property for such flows. If b is real > 0, then we denote by J, the open
interval —b <t < b.

Proposition 1.1. Let J be an open interval of R containing 0, and U
open in the Banach space E. Let x, be a point of U, and a >0, a <1
a real number such that the closed ball Bs,(x,) lies in U. Assume that
we have a continuous map

f:JxU->E
which is bounded by a constant L > 1 on J x U, and satisfies a Lipschitz
condition on U uniformly with respect to J, with constant K 2 1. If
b < a/LK, then for each x in B,(x,) there exists a unique flow
o: Jy X B,(xy) = U.

If fis of class C? (p = 1), then so is each integral curve a,.

Proof. Let I, be the closed interval —b <t < b, and let x be a fixed
point in B,(x,). Let M be the set of continuous maps

o: I > By,(xo)
of the closed interval into the closed ball of center x, and radius 2a, such

that «(0) = x. Then M is a complete metric space if we define as usual
the distance between maps a, f§ to be

sup [a(t) — B(®)].

tely
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We shall now define a mapping
SSM-M

of M into itself. For each a in M, we let S be defined by

(Sa)(t) = x + I'f(u, a(u)) du.
0

Then Sa is certainly continuous, we have Sx(0) = x, and the distance of
any point on So from x is bounded by the norm of the integral, which is
bounded by

b sup|f(u, y)| < bL < a.

Thus Sa lies in M.
We contend that our map S is a shrinking map. Indeed,

|Soc — SB| < b sup| f(u, a(w)) — f(u, Bw))|
é bK‘a - BL
thereby proving our contention.
By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique

fixed point o, and by definition, «(t) satisfies the desired integral relation.
Our remark above concludes the proof.

Corollary 1.2. The local flow o in Proposition 1.1 is continuous. Fur-
thermore, the map x — o, of B,(x,) into the space of curves is continu-
ous, and in fact satisfies a Lipschitz condition.

Proof. The second statement obviously implies the first. So fix x in

B,(x,) and take y close to x in B,(x,). We let S, be the shrinking map of
the theorem, corresponding to the initial condition x. Then

”ax - Syax” = ”Sxax - Syax“ é |X - Y|-
Let C=bK so 0 < C < 1. Then

”ax - S;ax” é “ax - Sy(xx” + ”Syax - Syzax” +o ”S;—Iax - S;ax”
SA+C+-+C" Y x—yl
Since the limit of S}, is equal to o, as n goes to infinity, the continuity

of the map x > o, follows at once. In fact, the map satisfies a Lipschitz
condition as stated.
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It is easy to formulate a uniqueness theorem for integral curves over
their whole domain of definition.

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let
f:U — E be a vector field of class C?, p=1. Let

a:Jy > U and o0 J, > U

be two integral curves for f with the same initial condition x,. Then o,
and a, are equal on J, N J,.

Proof. Let Q be the set of numbers b such that a,(t) = a,(¢) for
0t<h.

Then Q contains some number b > 0 by the local uniqueness theorem. If
Q is not bounded from above, the equality of «,(f) and «,() for all t >0
follows at once. If Q is bounded from above, let b be its least upper
bound. We must show that b is the right end point of J; nJ,. Suppose
that this is not the case. Define curves f, and f, near 0 by

Bi@)=oy(b+1) and  B,(1) = ay(b +1).

Then B, and B, are integral curves of f with the initial conditions a,(b)
and a,(b) respectively. The values f,(¢) and f,(t) are equal for small
negative t because b is the least upper bound of Q. By continuity it
follows that o,(b) = a,(b), and finally we see from the local uniqueness
theorem that

B1(6) = B2()

for all ¢t in some neighborhood of 0, whence «,; and «, are equal in a
neighborhood of b, contradicting the fact that b is a least upper bound of
Q. We can argue the same way towards the left end points, and thus
prove our statement.

For each x € U, let J(x) be the union of all open intervals containing 0
on which integral curves for f are defined, with initial condition equal to
x. The uniqueness statement allows us to define the integral curve uniquely
on all of J(x).

Remark. The choice of 0 as the initial time value is made for conve-
nience. From the uniqueness statement one obtains at once (making a
time translation) the analogous statement for an integral curve defined on
any open interval; in other words, if J,, J, do not necessarily contain 0,
and t, is a point in J; nJ, such that a;(ty) = a,(t,), and also we have
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the differential equations
() = fle, (1))  and  o5(0) = floa(0)),
then o, and «, are equal on J, N J,.
In practice, one meets vector fields which may be time dependent, and

also depend on parameters. We discuss these to show that their study
reduces to the study of the standard case.

Time-dependent vector fields
Let J be an open interval, U open in a Banach space E, and
f:JxU->E

a C? map, which we view as depending on time t € J. Thus for each ¢,
the map x — f(t, x) is a vector field on U. Define

fiJxU->RxE
by
fit, x) = (L, ft, %)),

and view f as a time-independent vector field on J x U. Let & be its
flow, so that

@(t s x) = f(a, s x),  &0,s, x)=(s, x).
We note that & has its values in J x U and thus can be expressed in
terms of two components. In fact, it follows at once that we can write &
in the form
at, s, x) = (t + s, &, (t, s, x)).
Then &, satisfies the differential equation
Dy &,(t, s, x) = f(t + s, &, (t, 5, X))

as we see from the definition of f. Let

ﬂ(ta x) = &Z(t’ 0’ X).

Then B is a flow for f, that is f§ satisfies the differential equation

D, B(t, x) = f(t, e, x)), PO, x) = x.
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Given x € U, any value of ¢ such that « is defined at (¢, x) is also such
that @ is defined at (z, 0, x) because o, and B, are integral curves of the
same vector field, with the same initial condition, hence are equal. Thus
the study of time-dependent vector fields is reduced to the study of
time-independent ones.

Dependence on parameters
Let V be open in some space F and let
g:J xVxU->E

be a map which we view as a time-dependent vector field on U, also
depending on parameters in V. We define

G:JxVxU->FxE
by
G(t, z,y) = (0, g(t, z, )

for teJ, zeV, and ye U. This is now a time-dependent vector field on
V x U. A local flow for G depends on three variables, say f(t, z, y), with
initial condition f(0, z, y) = (z, y). The map f has two components, and it
is immediately clear that we can write

B(t, z, y) = (z, a(t, z, )

for some map o depending on three variables. Consequently o satisfies
the differential equation

Dya(t, z, y) = g(t, z, at, z, ¥)), (0,2, ¥) =y,

which gives the flow of our original vector field g depending on the
parameters ze V. This procedure reduces the study of differential
equations depending on parameters to those which are independent of
parameters.

We shall now investigate the behavior of the flow with respect to its
second argument, i.e. with respect to the points of U. We shall give two
methods for this. The first depends on approximation estimates, and the
second on the implicit mapping theorem in function spaces.

Let J, be an open subinterval of J containing 0, and let

¢:Jo > U
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be of class C!. We shall say that ¢ is an e-approximate solution of f on
Jo if
lo'(t) = f(t, p(0) | < ¢

for all ¢ in J,.

Proposition 1.4. Let ¢, and @, be two &,- and &,-approximate solutions
of f on J, respectively, and let ¢ = &, + ¢,. Assume that f is Lipschitz
with constant K on U uniformly in J,, or that D,f exists and is
bounded by K on J x U. Let t, be a point of J,. Then for any t in
Jo, we have

- € _
[@1(t) — @2()] < |y (to) — (Pz(to)|eK" fol EeKlt tol,

Proof. By assumption, we have

03 (8) = f(t, @1 ()] S &4,
l95(8) — f(t, 92 ()] < &,

From this we get

|91(8) — 93(0) + (¢, 2(0) — f(t, 9, (9)] S &
Say t = t, to avoid putting bars around t — t,. Let

Y (0 = o (t) — (0,
o) = (5, ¢,(0) — f(t, @2(0))I-

Then, after integrating from t, to ¢, and using triangle inequalities we

obtain
t

[ (e) — (to)l < &t — to) + f o(u) du
ga(t—t0)+Kft Y (u) du
<K ft [Y(u) + ¢/K] du,

and finally the recurrence relation

Y1) = ¥lto) + K J (¥ () + &/K] du.
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On any closed subinterval of J;, our map ¢ is bounded. If we add /K
to both sides of this last relation, then we see that our proposition will
follow from the next lemma.

Lemma 1.5. Let g be a positive real valued function on an interval,
bounded by a number L. Let t, be in the interval, say t, <t, and
assume that there are numbers A, K = 0 such that

gO) <A+ K Jt g(u) du.

to

Then for all integers n = 1 we have

o5 af 14 KETt) L KT 01 ] LK

1! (n—1) n!

Proof. The statement is an assumption for n=1. We proceed by
induction. We integrate from t, to ¢, multiply by K, and use the recur-
rence relation. The statement with n + 1 then drops out of the statement
with n.

Corollary 1.6. Let f:J x U — E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let x, be a point of U.
Then there exists an open subinterval J, of J containing 0, and an open
subset of U containing x, such that f has a unique flow

o:Jy x Uy > U.

We can select J, and U, such that a is continuous and satisfies a
Lipschitz condition on J, x U,.

Proof. Given x, y in U, we let ¢,(t) = a(t, x) and @,(t) = a(t, y), using
Proposition 1.6 to get J, and U,. Then ¢, =¢, =0. For s, t in J, we
obtain

|a(t5 X) - d(S, y)l é la(ts X) - (Z(t, Y)| + ld(t, y) - oz(s, y)l

<|x—yleX + [t —s|L,

if we take J, of small length, and L is a bound for f. Indeed, the term
containing |x — y| comes from Proposition 1.4, and the term containing
|t —s| comes from the definition of the integral curve by means of an
integral and the bound L for f. This proves our corollary.

Corollary 1.7. Let J be an open interval of R containing 0 and let U be
open in E. Let f:J x U—E be a continuous map, which is Lipschitz
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on U uniformly for every compact subinterval of J. Let tyeJ and let
®1, @, be two morphisms of class C' such that ¢,(t,) = @,(t,) and
satisfying the relation

@'t = f(t, 0(1)
for all t in J. Then ¢,(t) = @,(t).
Proof. We can take ¢ = 0 in the proposition.

The above corollary gives us another proof for the uniqueness of
integral curves. Given f:J x U > E as in this corollary, we can define
an integral curve o for f on a maximal open subinterval of J having a
given value af(t,) for a fixed t, in J. Let J be the open interval (a, b) and
let (aq, bo) be the interval on which o is defined. We want to know when
by = b (or a, = a), that is when the integral curve of f can be continued
to the entire interval over which f itself is defined.

There are essentially two reasons why it is possible that the integral
curve cannot be extended to the whole domain of definition J, or cannot
be extended to infinity in case f is independent of time. One possibility
is that the integral curve tends to get out of the open set U, as on the
following picture:

This means that as t approaches b,, say, the curve a(t) approaches a
point which does not lie in U. Such an example can actually be con-
structed artificially. If we are in a situation when a curve can be ex-
tended to infinity, just remove a point from the open set lying on the
curve. Then the integral curve on the resulting open set cannot be
continued to infinity. The second possibility is that the vector field is
unbouned. The next corollary shows that these possibilities are the only
ones. In other words, if an integral curve does not tend to get out of the
open set, and if the vector field is bounded, then the curve can be
continued as far as the original data will allow a priori.

Corollary 1.8. Let J be the open interval (a, b) and let U be open in E.
Let f:J x U—E be a continuous map, which is Lipschitz on U, uni-
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formly for every compact subset of J. Let o be an integral curve of f,
defined on a maximal open subinterval (a,, by) of J. Assume:

(i) There exists ¢ > 0 such that a((by — &, b)) is contained in U.
(ii) There exists a number B >0 such that |f(t, a(t))| < B for all t in
(bo — & bo).

Then by = b.

Proof. From the integral expression for o, namely

a(t) = afte) + f f(u, a(w)) du,

we see that for ¢, t, in (b, — ¢, by) wWe have
la(ty) — a(ty)| < Blty — t,].
From this it follows that the limit

lim a(t)

t—bg

exists, and is equal to an element x, of U (by hypothesis (i)). Assume
that by # b. By the local existence theorem, there exists an integral curve
B of f defined on an open interval containing b, such that B(b,) = x,
and f'(t) = f(z, B(z)). Then B’ =« on an open interval to the left of b,
and hence «, f§ differ by a constant on this interval. Since their limit as
t - b, are equal, this constant is 0. Thus we have extended the domain
of definition of o to a larger interval, as was to be shown.

The next proposition describes the solutions of linear differential equa-
tions depending on parameters.

Proposition 1.9. Let J be an open interval of R containing 0, and let V
be an open set in a Banach space. Let E be a Banach space. Let

g:J x V- L(E,E)
be a continuous map. Then there exists a unique map
A:J x V> L(E, E)
which, for each x € V, is a solution of the differential equation
D A, x) = g(t, x)A(t, x), A0, x) = id.

This map A is continuous.
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Remark. In the present case of a linear differential equation, it is not
necessary to shrink the domain of definition of its flow. Note that the
differential equation is on the space of continuous linear maps. The
corresponding linear equation on E itself will come out as a corollary.

Proof of Proposition 1.9. Let us first fix x € V. Consider the differ-
ential equation

Dl ’l(ts x) = g(ts X)/l(t, x)a

with initial condition A(0, x) =id. This is a differential equation on L(E, E),
where f(t, z) = g.(t)z for z € L(E, E), and we write g,(t) instead of g(t, x).
Let the notation be as in Corollary 1.8. Then hypothesis (i) is automati-
cally satisfied since the open set U is all of L(E, E). On every compact
subinterval of J, g, is bounded, being continuous. Omitting the index x
for simplicity, we have

t

At)=id + J g(u)A(u) du,

0

whence for t = 0, say,

A <1+ Bj' 4| dus.
0

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also
satisfied. Hence the integral curve is defined on all of J.

We shall now prove the continuity of 1. Let (to, xo)€J x V. Let I be
a compact interval contained in J, and containing t, and 0. As a func-
tion of t, A(t, x,) is continuous (even differentiable). Let C >0 be such
that |A(t, xo)| £ C for all tel. Let V; be an open neighborhood of x, in
V such that g is bounded by a constant K >0 on I x V;.

For (t, x) e I x V, we have

|A(t, x) = Alto, Xo)l = [A(E, X) — A(t, Xo)| + |A(t, x0) — Alto, Xo)l-

The second term on the right is small when ¢ is close to t,. We investi-
gate the first term on the right, and shall estimate it by viewing A(t, x)
and A(t, x,) as approximate solutions of the differential equation satisfied
by A(t, x). We find
[Dy AL, xo) — g(t, X)A(L, Xo)]
= D1 Alt, xo) — g(t, X)A(t, Xo) + g(t, X0)A(L, Xo) — g(t, Xo) AL, Xo)|
< |g(t, xo) — g(t, )42, xo0)| = |g(t, x0) — g(t, x)| C.
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By the usual proof of uniform continuity applied to the compact set
I x {x,}, given ¢ > 0, there exists an open neighborhood ¥, of x, con-
tained in V;, such that for all (¢, x) e I x V,, we have

|g(t’ X) - g(t, xo)| < B/C

This implies that A(t, x,) is an e-approximate solution of the differential
equation satisfied by A(t, x). We apply Proposition 1.4 to the two curves

@o(t) = Alt,xo)  and  @.(t) = A(t, x)

for each xe V,. We use the fact that A(0, x) = (0, xo) =id. We then
find
|A(t, x) — A(t, Xo)| < €Ky

for some constant K, > 0, thereby proving the continuity of 4 at (¢,, x;).

Corollary 1.10. Let the notation be as in Proposition 1.9. For each
x €V and z € E the curve

B, x, z) = At, x)z

with initial condition B(0,x,z) =z is a solution of the differential
equation
Dlﬁ(t’ X, Z) = g(t: x)ﬁ(t’ X, Z).

Furthermore, B is continuous in its three variables.
Proof. Obvious.

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval
in R containing 0 and U open in the Banach space E. Let

f:JxU—->E

be a CP-morphism with p =1, and let x,€ U. There exists a unique
local flow for f at x,. We can select an open subinterval J, of J
containing 0 and an open subset U, of U containing x, such that the
unique local flow

a:Jyx Uyg-»U

is of class CP?, and such that D,o satisfies the differential equation

D, D,a(t, x) = D, f(t, a(t, x)) Da(t, x)

on J, x U, with initial condition D,a(0, x) = id.
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Proof. Let
g:J x U— L(E, E)

be given by g(t, x) = D, f(¢t, a(t, x)). Select J, and U, such that a is
bounded and Lipschitz on J; x U, (by Corollary 1.6), and such that g is
continuous and bounded on J, x U,. Let J, be an open subinterval of
J, containing 0 such that its closure J, is contained in J, .
Let A(t, x) be the solution of the differential equation on L(E, E) given
by
D, A, x) = ¢g(¢, x)Alt, x), A0, x) = id,

as in Proposition 1.9. We contend that D,a exists and is equal to 4 on
Jo X U,. This will prove that D,a is continuous, on J, x Uj.
Fix x e U,. Let

o(t, h) = a(t, x + h) — a(t, x).
Then
D, 0(t, h) = D,a(t, x + h) — D,a(t, x)
= f(t, a(t, x + h)) — f(¢, a(t, x)).

By the mean value theorem, we obtain

|D,0(t, h) — g(t, x)0(t, h)|
= (¢, a(t, x + h)) = f(t, a(t, x)) — Do f(t, a(t, x))O(t, b)|
< |h|sup|D, f(t, y) — D, f(t, a(t, x))I,
where y ranges over the segment between a(t, x) and a(t, x + h). By the
compactness of J, it follows that our last expression is bounded by

|h|y(h) where y(h) tends to O with h, uniformly for t in J,. Hence we
obtain

6°(2, h) — g(t, x)0(t, )| < |h|Y(h),

for all ¢ in J,. This shows that (¢, h) is an |h|y(h) approximate solution
for the differential equation satisfied by A(t, x)h, namely

D, A(t, x)h — g(t, x)A(t, x)h = 0,
with the initial condition A(0, x)h = h. We note that (¢, h) has the same

initial condition, 6(0, h) = h. Taking t, = O in Proposition 1.4, we obtain
the estimate

6@z, h) — A(t, x)h] = C, |h|y(h)
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for all ¢t in J,. This proves that D,a is equal to A on J, x U,, and is
therefore continuous on J, x U,.

We have now proved that D;a and D,a exist and are continuous on
Jo x Uy, and hence that « is of class C! on J, x U,.

Furthermore, D,a satisfies the differential equation given in the state-
ment of our theorem on J, x U,. Thus our theorem is proved when

p=1

A flow which satisfies the properties stated in the theorem will be
called locally of class C?*.

Consider now again the linear equation of Proposition 1.9. We re-
formulate it to eliminate formally the parameters, namely we define a
vector field

G:JxV xLEE)->F x L(E,E)
to be the map such that
G(t, x, ) = (0, g(t, x)w)

for w € L(E, E). The flow for this vector field is then given by the map A
such that

A(t, x, ®) = (x, At, x)o).

If g is of class C! we can now conclude that the flow A is locally of class
C?, and hence putting o = id, that 4 is locally of class C*.

We apply this to the case when g(t, x) = D, f(t, a(t, x)), and to the
solution D,o of the differential equation

DI(DZa)(t’ X) = g(t’ x)DZa(ta X)

locally at each point (0,x), xe U. Let p=2 be an integer and assume
our theorem proved up to p — 1, so that we can assume o locally of class
CP™! and f of class CP. Then g is locally of class C?~!, whence D, is
locally C*~*. From the expression

Dya(t, x) = f(t, a(t, x))
we conclude that D,a is C?~!, whence « is locally C”.

If fis C®, and if we knew that a is of class C? for every integer p on
its domain of definition, then we could conclude that a is C®; in other
words, there is no shrinkage in the inductive application of the local
theorem. We shall do this at the end of the section.
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We shall now give another proof for the local smoothness of the flow,
which depends on a simple application of the implicit mapping theorem
in Banach spaces, and was found independently by Pugh and Robbin
[Ro 68]. One advantage of this proof is that it extends to HP” vector
fields, as noted by Ebin and Marsden [EbM 70].

Let U be open in E and let f: U > E be a C” map. Let b > 0 and let
I, be the closed interval of radius b centered at 0. Let

F =C°U,,E)

be the Banach space of continuous maps of I, into E. We let V be the
subset of F consisting of all continuous curves

o1, - U

mapping I, into our open set U. Then it is clear that V is open in F
because for each curve o the image o(I,) is compact, hence at a finite
distance from the complement of U, so that any curve close to it is also
contained in U.
We define a map
T:U x V->F
by

T(x,o)=x+ffoa—o.

0

Here we omit the dummy variable of integration, and x stands for the
constant curve with value x. If we evaluate the curve T(x, o) at t, then
by definition we have

T(x, 0)(t) = x + th(a(u)) du — a(t).
0

Lemma 1.12. The map T is of class CP?, and its second partial deriva-
tive is given by the formula

DZT(x,a)=J Dfoo —1
0
where I is the identity. In terms of t, this reads
t
D, T(x, o)h(t) = J‘ Df(a(u))h(u) du — h(?).
0

Proof. 1t is clear that the first partial derivative D, T exists and is
continuous, in fact C*®, being linear in x up to a translation. To deter-
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mine the second partial, we apply the definition of the derivative. The
derivative of the map o +— ¢ is of course the identity. We have to get
the derivative with respect to o of the integral expression. We have for
small h

Hff°(0+h)—jf°6~f (Dfoa)hH
0 0 0

§J‘0|fo(0'+h)—foa’—(Df00')h].

We estimate the expression inside the integral at each point u, with u
between 0 and the upper variable of integration. From the mean value
theorem, we get

| /(o) + h(w) — f(o(u)) — Df(c(w))h(u)| < ||kl sup|Df(z,) — Df (e ()|

where the sup is taken over all points z, on the segment between o(u)
and o(u) + h(u). Since Df is continuous, and using the fact that the
image of the curve o(l,) is compact, we conclude (as in the case of
uniform continuity) that as ||h| — 0, the expression

sup|Df(z,) — Df(o(w))|

also goes to 0. (Put the ¢ and ¢ in yourself.) By definition, this gives us
the derivative of the integral expression in 6. The derivative of the final
term is obviously the identity, so this proves that D,T is given by the
formula which we wrote down.

This derivative does not depend on x. It is continuous in . Namely,
we have

D,T(x,t) — D, T(x, 0) = j [Df ot — Df o a].
0

If o is fixed and 7 is close to o, then Df o7 — Df o ¢ is small, as one
proves easily from the compactness of o(I,), as in the proof of uniform
continuity. Thus D, T is continuous. By Proposition 3.5 of Chapter I,
we now conclude that T is of class C!.

The derivative of D, T with respect to ¢ can again be computed as
before if Df is itself of class C!, and thus by induction, if f is of class C?
we conclude that D, T is of class C?™* so that by the same reference, we
conclude that T itself is of class CP. This proves our lemma.

We observe that a solution of the equation

T(x,0)=0



[1V, §1] EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS 81

is precisely an integral curve for the vector field, with initial condition
equal to x. Thus we are in a situation where we want to apply the
implicit mapping theorem.

Lemma 1.13. Let x,€ U. Let a > 0 be such that Df is bounded, say by
a number C, > 0, on the ball B,(x,) (we can always find such a since Df
is continuous at x,). Let b < 1/C,. Then D,T(x, o) is invertible for all
(x, 6) in By(xq) x V.

Proof. We have an estimate

= bC, k.

Jt Df (o(u))h(u) du
0

This means that
|D,T(x,0)+ 1| <1,

and hence that D,T(x, o) is invertible, as a continuous linear map, thus
proving Lemma 1.13.

We are ready to reprove the local smoothness theorem by the present
means, when p is an integer, namely:

Theorem 1.14. Let p be a positive integer, and let f: U - E be a C?
vector field. Let x,€ U. Then there exist numbers a, b > 0 such that
the local flow

o: Jy X By(xo) > U
is of class CP.

Proof. We take a so small and then b so small that the local flow
exists and is uniquely determined by Proposition 1.1. We then take b
smaller and a smaller so as to satisfy the hypotheses of Lemma 1.13. We
can then apply the implicit mapping theorem to conclude that the map
x +— a, is of class C?. Of course, we have to consider the flow a and still
must show that « itself is of class C?. It will suffice to prove that D;a
and D,a are of class C?™!, by Proposition 3.5 of Chapter I. We first
consider the case p = 1.

We could derive the continuity of « from Corollary 1.2 but we can
also get it as an immediate consequence of the continuity of the map
x +— a,. Indeed, fixing (s, y) we have

|0((t, X) - (Z(S, y)l é |(Z(t, )C) - O((t, y)l + |(Z(t, y) - (Z(S, y)l

é ”ax - ay” + |ay(t) - ay(s)l'

Since «, is continuous (being differentiable), we get the continuity of o
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Since

D;a(t, x) = f(a(t, X)),
we conclude that D,a is a composite of continuous maps, whence

continuous.
Let ¢ be the derivative of the map x > a,, so that

@: B,(xo) = L(E, C°(I,, E)) = L(E, F)
is of class CP™1. Then
Oy — U = QX)W + [W[Y(W),
where y(w) » 0 as w — 0. Evaluating at ¢, we find
alt, x + w) — alt, x) = (p(x)w) (¥) + [wly(w)(®),

and from this we see that

Dya(t, x)w = (@(x)w)(1).
Then

|D;a(t, x)w — Das, y)wl
< (W) = (e(MIW) @] + lle()IW) (@) — (9(MW)(S).

The first term on the right is bounded by

lp(x) — oM)W
so that
|D,a(t, x) — Dya(t, y)| < [o(x) — @(y)l.

We shall prove below that

l(e(y)W)(®) — ((»W)(s)]

is uniformly small with respect to w when s is close to t. This proves the
continuity of D,a, and concludes the proof that « is of class C!.

The following proof that [(@(y)w)(t) — (¢(¥)w)(s)| is uniformly small
was shown to be by Professor Yamanaka. We have

(1) alt, x) = x + J‘, f(o(u, x)) du.
0
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Replacing x with x + Aw (w € E, A # 0), we obtain

) alt, x + Aw) = x + Aw + J'f(a(u, x + Aw)) du
0
Therefore
(3) alt, x + M:) —oltx) _ + Lt/ll[f(a(u, x + iw)) — f(a(u, x))] du.

On the other hand, we have already seen in the proof of Theorem 1.14
that

@ alt, x + Aw) — alt, x) = Ae)w) () + |A||w] Y (Aw)(2).
Substituting (4) in (3), we obtain:

()W) (®) + Ulwhp(,lw () =w+ j S [, x + 2w)) — fla(u, x))] du

t 1
=w+f J G(u, 4, v) dv du,
0Jo
where

G(u, 4, v) = Df(x(u, x) + ve1 (1)) (P(X)w) (@) + &5(4))
with
A
&1(A) = He)w)@) + [ wly(Aw) ),  &(d) = %t//(lW)(u)-
Letting A — 0, we have

©) ()W) (®) =w + J , Df (a(u, x)) (@ (x)w) (u) du.

By (5) we have

J Df (a(u, %)) (@ (x)w) () du

S bCyle(X)|-|wl|t — 5],

I(@()w)(®) — (p(¥)w)($)] =

from which we immediately obtain the desired uniformity.

Returning to our main concern, the flow, we have

alt, x) = x + th(a(u, x)) du
0
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We can differentiate under the integral sign with respect to the parameter
x and thus obtain

Dya(t,x) =1 + J' Df((u, x))D,o(u, x) du,
0

where I is a constant linear map (the identity). Differentiating with
respect to t yields the linear differential equation satisfied by D,a, namely

D, D,a(t, x) = Df(a(t, x))D,aft, x)

and this differential equation depends on time and parameters. We have
seen earlier how such equations can be reduced to the ordinary case. We
now conclude that locally, by induction, D,« is of class C*~* since Df is
of class CP~1. Since

Dla(ts X) = f(a(t’ X)),

we conclude by induction that D,a is CP™'. Hence « is of class C? by
Proposition 3.5 of Chapter I. Note that each time we use induction, the
domain of the flow may shrink. We have proved Theorem 1.14, when p
is an integer.

We now give the arguments needed to globalize the smoothness. We
may limit ourselves to the time-independent case. We have seen that the
time-dependent case reduces to the other.

Let U be open in a Banach space E, and let f: U > E be a C? vector
field. We let J(x) be the domain of the integral curve with initial condi-
tion equal to w.

Let D(f) be the set of all points (¢, x) in R x U such that ¢ lies in
J(x). Then we have a map

D(f)-U

defined on all of D(f), letting a(t, x) = a,(t) be the integral curve on J(x)
having x as initial condition. We call this the flow determined by f, and
we call D(f) its domain of definition.

Lemma 1.15. Let f: U » E be a C® vector field on the open set U of
E, and let o be its flow. Abbreviate a(t,x) by tx, if (t,x) is in the
domain of definition of the flow. Let x € U. If t, lies in J(x), then

J(tox) = J(x) — to
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(translation of J(x) by —t,), and we have for all t in J(x) — t,:
t(tox) = (t + to)x.
Proof. The two curves defined by
t ot alty,x)) and > alt + to, X)

are integral curves of the same vector field, with the same initial condi-
tion tox at t = 0. Hence they have the same domain of definition J(t,x).
Hence t, lies in J(t,x) if and only if ¢, + ¢, lies in J(x). This proves the
first assertion. The second assertion comes from the uniqueness of the
integral curve having given initial condition, whence the theorem follows.

Theorem 1.16 (Global Smoothness of the Flow). If f is of class C?
(with p < ), then its flow is of class C? on its domain of definition.

Proof. First let p be an integer > 1. We know that the flow is locally
of class C? at each point (0, x), by the local theorem. Let x, e U and let
J(xo) be the maximal interval of definition of the integral curve having
Xo as initial condition. Let D(f) be the domain of definition of the flow,
and let o be the flow. Let Q be the set of numbers b > 0 such that for
each ¢ with 0 <t < b there exists an open interval J containing ¢ and an
open set V containing x, such that J x V is contained in D(f) and such
that « is of class C? on J x V. Then Q is not empty by the local
theorem. If Q is not bounded from above, then we are done looking
toward the right end point of J(x,). If Q is bounded from above, we let
b be its least upper bound. We must prove that b is the right end point
of J(x,). Suppose that this is not the case. Then a(b, x,) is defined. Let
x; = a(b, Xo). By the local theorem, we have a unique local flow at x,,
which we denote by f:

ﬁ: Ja X Ba(xl)—)U’ ﬁ(o’ x)=xs
defined for some open interval J, = (—a, a) and open ball B,(x,) of ra-

dius a centered at x;. Let § be so small that whenever b — 6 <t < b we
have

a(t, Xo) € Bya(xy).
We can find such 6 because

lim a(t, x,) = x,
t—=b

by continuity. Select a point ¢, such that b — § < t, < b. By the hypoth-
esis on b, we can select an open interval J; containing ¢, and an open set
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U, containing x, so that
a:Jy x Up = B,p(xy)

maps J; x U; into B,,(x;). We can do this because a is continuous at
(t;, Xxo), being in fact C? at this point. If |t —t,| <a and xe U,, we
define

(p(ta X) = ﬁ(t - t19 a(tl s X))
Then

(p(t19 X) = B(Oa a(th X)) = a(tl s X)
and
Dl(p(t’ x) = Dlﬁ(t — 1y, a(tl’ X))

= f(ﬁ(t — 1, a(tl s X)))
= flo(t, x)).

Hence both ¢, and «, are integral curves for f with the same value at ¢, .
They coincide on any interval on which they are defined by the unique-
ness theorem. If we take 6 very small compared to a, say é < a/4, we see
that ¢ is an extension of a to an open set containing (¢,, o), and also
containing (b, x,). Furthermore, ¢ is of class C?, thus contradicting the
fact that b is strictly smaller than the end point of J(x,). Similarly, one
proves the analogous statement on the other side, and we therefore see
that D(f) is open in R x U and that « is of class C? on D(f), as was to
be shown.

The idea of the above proof is very simple geometrically. We go as
far to the right as possible in such a way that the given flow « is of class
C? locally at (t,x,). At the point a(b, x,) we then use the flow g to
extend differentiably the flow o in case b is not the right-hand point of
J(xo). The flow p at a(b, x,) has a fixed local domain of definition, and
we simply take ¢ close enough to b so that f§ gives an extension of «, as
described in the above proof.

Of course, if f is of class C*, then we have shown that « is of class C?
for each positive integer p, and therefore the flow is also of class C*.

In the next section, we shall see how these arguments globalize even
more to manifolds.

IV, §2. VECTOR FIELDS, CURVES, AND FLOWS

Let X be a manifold of class C? with p>2. We recall that X is
assumed to be Hausdorff. Let n: T(X) — X be its tangent bundle. Then
T(X) is of class C?7!, p = 1.
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By a (time-independent) vector field on X we mean a cross section of
the tangent bundle, i.e. a morphism (of class C? 1)

& X - T(X)

such that &(x) lies in the tangent space T,(X) for each x € X, or in other
words, such that n¢ = id.

If T(X) is trivial, and say X is an E-manifold, so that we have a
VB-isomorphism of T(X) with X x E, then the morphism ¢ is completely
determined by its projection on the second factor, and we are essentially
in the situaiton of the preceding paragraph, except for the fact that our
vector field is independent of time. In such a product representation, the
projection of ¢ on the second factor will be called the local representation
of & Tt is a C?~'-morphism

f:X->E

and £(x) = (x, f(x)). We shall also say that ¢ is represented by f locally if
we work over an open subset U of X over which the tangent bundle
admits a trivialisation. We then frequently use ¢ itself to denote this
local representation.

Let J be an open interval of R. The tangent bundle of J is then
J x R and we have a canonical section z such that i(t) =1 for all te J.
We sometimes write 7, instead of 1(z).

By a curve in X we mean a morphism (always of class = 1 unless
otherwise specified)

a:J > X

from an open interval in R into X. If g: X — Y is a morphism, then go a
is a curve in Y. From a given curve a, we get an induced map on the
tangent bundles:

J xR =2, T(X)

L

J — X

o

and a, o1 will be denoted by o' or by du/dt if we take its value at a
point ¢t in J. Thus & is a curve in T(X), of class C* ™! if « is of class C”.
Unless otherwise specified, it is always understood in the sequel that we
start with enough differentiability to begin with so that we never end up
with maps of class < 1. Thus to be able to take derivatives freely we
have to take X and « of class C? with p = 2.
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If g: X - Y is a morphism, then

(g oa)(t) = g,o(p)

This follows at once from the functoriality of the tangent bundle and the
definitions.

Suppose that J contains 0, and let us consider curves defined on J
and such that «(0) is equal to a fixed point x,. We could say that two
such curves a,, o, are tangent at 0 if o} (0) = &}(0). The reader will verify
immediately that there is a natural bijection between tangency classes of
curves with «(0) = x, and the tangent space T, (X) of X at x,. The
tangent space could therefore have been defined alternatively by taking
equivalence classes of curves through the point.

Let ¢ be a vector field on X and x, a point of X. An integral curve
for the vector field ¢ with initial condition x,, or starting at x,, is a curve
(of class CP71)

aJ->X

mapping an open interval J of R containing 0 into X, such that a(0) = x,
and such that

o' (8) = &(a(t))

for all teJ. Using a local representation of the vector field, we know
from the preceding section that integral curves exist locally. The next
theorem gives us their global existence and uniqueness.

Theorem 2.1. Let o,:J, > X and a,:J, > X be two integral curves of
the vector field & on X, with the same initial condition x,. Then ay and
o, are equal on J; N J,.

Proof. Let J* be the set of points ¢ such that «,(t) = a,(t). Then J*
certainly contains a neighborhood of 0 by the local uniqueness theorem.
Furthermore, since X is Hausdorff, we see that J* is closed. We must
show that it is open. Let t* be in J* and define §,, 8, near O by

B1(t) = oy (¢* + 1),

Ba(t) = o, (t* + 1)
Then B, and B, are integral curves of ¢ with initial condition a,(¢*) and
a,(t*) respectively, so by the local uniqueness theorem, f; and B, agree

in a neighborhood of 0 and thus «,, a, agree in a neighborhood of t*,
thereby proving our theorem.

It follows from Theorem 2.1 that the union of the domains of all
integral curves of ¢ with a given initial condition x, is an open interval
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which we denote by J(x,). Its end points are denoted by t*(x,) and
t”(x) respectively. (We do not exclude +o00 and —c0.)

Let D(£) be the subset of R x X consisting of all points (¢, x) such
that

t(x) <t <tt(x).
A (global) flow for £ is a ﬁapping
a: D) - X,
such that for each x € X, the map a,: J(x) - X given by
o (t) = alt, x)

defined on the open interval J(x) is a morphism and is an integral curve
for ¢ with initial condition x. When we select a chart at a point x, of X,
then one sees at once that this definition of flow coincides with the
definition we gave locally in the previous section, for the local representa-
tion of our vector field.

Given a point x € X and a number ¢, we say that tx is defined if (¢, x)
is in the domain of a, and we denote af(t, x) by tx in that case.

Theorem 2.2. Let & be a vector field on X, and o its flows. Let x be a
point of X. If t, lies in J(x), then

J(tox) = J(x) — to
(translation of J(x) by —t,), and we have for all t in J(x) — t,:
t(tox) = (t + to)x.

Proof. Our first assertion follows immediately from the maximality
assumption concerning the domains of the integral curves. The second is
equivalent to saying that the two curves given by the left-hand side and
right-hand side of the last equality are equal. They are both integral
curves for the vector field, with initial condition t,x and must therefore
be equal.

In particular, if ¢,, t, are two numbers such that ¢, x is defined and
t,(t,; x) is also defined, then so is (t; + t,)x and they are equal.

Theorem 2.3. Let & be a vector field on X, and x a point of X.
Assume that t*(x) < c0. Given a compact set A = X, there exists ¢ >0
such that for all t > t*(x) —¢, the point tx does not lie in A, and
similarly for t™.
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Proof. Suppose such ¢ does not exist. Then we can find a sequence ¢,
of real numbers approaching t*(x) from below, such that t,x lies in A.
Since A is compact, taking a subsequence if necessary, we may assume
that t,x converges to a point in 4. By the local existence theorem, there
exists a neighborhood U of this point y and a number é > 0 such that
t*(z) > 6 for all ze U. Taking n large, we have

tf(x)<dé+t,
and t,x is in U. Then by Theorem 2.2,

trx) =ttt x) +t,> 5 +t,>tT(x)
contradiction.

Corollary 24. If X is compact, and & is a vector field on X, then
D) =R x X.

It is also useful to give one other criterion when D(£) = R x X, even
when X is not compact. Such a criterion must involve some structure
stronger than the differentiable structure (essentially a metric of some
sort), because we can always dig holes in a compact manifold by taking
away a point.

Proposition 2.5. Let E be a Banach space, and X an E-manifold. Let &
be a vector field on X. Assume that there exist numbers a >0 and
K > 0 such that every point x of X admits a chart (U, @) at x such that
the local representation f of the vector field on this chart is bounded by
K, and so is its derivative f'. Assume also that U contains a ball of
radius a around @x. Then D(¢) =R x X.

Proof. This folows at once from the global continuation theorem, and
the uniformity of Proposition 1.1.

We shall prove finally that D(¢) is open and that o is a morphism.

Theorem 2.6. Let ¢ be a vector field of class CP~! on the CP-manifold
X 2=p= ). Then D) is open in R x X, and the flow o for £ is a
C?Y-morphism.

Proof. Let first p be an integer = 2. Let x, € X. Let J* be the set of
points in J(x,) for which there exists a number b >0 and an open
neighborhood U of x, such that (t — b,t + b) U is contained in D(&),
and such that the restriction of the flow o to this product is a CP!-
morphism. Then J* is open in J(x,), and certainly contains 0 by the
local theorem. We must therefore show that J* is closed in J(x,).
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Let s be in its closure. By the local theorem, we can select a neigh-
borhood V of sx, = a(s, x,) so that we have a unique local flow

B:l,xV-oX

for some number a > 0, with initial condition B(0, x) = x for all x eV,
and such that this local flow g is C? 1.

The integral curve with initial condition x, is certainly continuous on
J(xy). Thus tx, approaches sx, as t approaches s. Let ¥, be a given
small neighborhood of sx, contained in V. By the definition of J*, we
can find an element ¢, in J* very close to s, and a small number b
(compared to a) and a small neighborhood U of x, such that « maps the
product

(ty —bt; +b)x U

into ¥;, and is C?! on this product. For teJ,+t, and xe U, we
define

(,D(t, x) = B(t — 1, “(tl’ X))

Then o(t,, x) = B(0, a(t,, x)) = a(t,, x), and

Dyo(t, x) Dy Bt — ty, alty, x))
= é(ﬁ(t — 1y, a(tla x))
= f((P(L x))

Hence both ¢, a, are integral curves for £, with the same value at ¢,.
They coincide on any interval on which they are defined, so that ¢, is a
continuation of a, to a bigger interval containing s. Since a is C*™! on
the product (¢; — b, t; + b) x U, we conclude that ¢ is also C?~! on
(J, + t;) x U. From this we see that D(&) is open in R x X, and that a
is of class C?™! on its full domain D(¢). If p = oo, then we can now
conclude that o is of class C” for each positive integer r on D(¢), and
hence is C®, as desired.

Corollary 2.7. For each teR, the set of xe€ X such that (t,x) is
contained in the domain D(£) is open in X.

Corollary 2.8. The functions t*(x) and t(x) are upper and lower semi-
continuous respectively.

Theorem 2.9. Let & be a vector field on X and o its flow. Let D,(¢) be
the set of points x of X such that (t, x) lies in D(&). Then D,(&) is open
for each t e R, and a, is an isomorphism of D,(¢) onto an open subset of
X. In fact, 0,(D,) = D_, and ;! = a_,.

Proof. Immediate from the preceding theorem.
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Corollary 2.10. If x, is a point of X and t is in J(x,), then there exists
an open neighborhood U of x, such that t lies in J(x) for all x € U, and
the map

X — tX

is an isomorphism of U onto an open neighborhood of tx,.

Critical points

Let ¢ be a vector field. A critical point of ¢ is a point x, such that
&(xo) = 0. Critical points play a significant role in the study of vector
fields, notably in the Morse theory. We don’t go into this here, but just
make a few remarks to show at the basic level how they affect the
behavior of integral curves.

Proposition 2.11. If « is an integal curve of a C' vector field, &, and «
passes through a critical point, then a is constant, that is a(t) = x, for
all t.

Proof. The constant curve through x, is an integral curve for the
vector field, and the uniqueness theorem shows that it is the only one.

Some smoothness of the vector field in addition to continuity must be
assumed for the uniqueness. For instance, the following picture illustrates
a situation where the integral curves are not unique. They consist in
translations of the curve y = x3 in the plane. The vector field is continu-
ous but not locally Lipschitz.
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Proposition 2.12. Let ¢ be a vector field and o an integral curve for &.
Assume that all t = 0 are in the domain of «, and that

lim af(t) = x,
t—0

exists. Then x, is a critical point for &, that is £(x;) = 0.

Proof. Selecting t large, we may assume that we are dealing with the
local representation f of the vector field near x,. Then for ¢’ >t large,
we have

a(t') — alt) = j f(o(w)) du.

Write f(a(u)) = f(x,) + g(u), where lim g(u) = 0. Then
Lfx)lE — t] < Jalt’) — a(®)] + |t — t|sup|g(u)],

where the sup is taken for u large, and hence for small values of g(u).
Dividing by |t' — t| shows that f(x,) is arbitrarily small, hence equal to
0, as was to be shown.

Proposition 2.13. Suppose on the other hand that x, is not a critical
point of the vector field £. Then there exists a chart at x, such that the
local representation of the vector field on this chart is constant.

Proof. In an arbitrary chart the vector field has a representation as a
morphism
& U—-E

near x,. Let a be its flow. We wish to “straighten out” the integral
curves of the vector field according to the next figure.

F a(r(z), Px)
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In other words, let v = £(x,). We want to find a local isomorphism ¢ at
X, such that

@' (x)v = &(p(x)).

We inspire ourselves from the picture. Without loss of generality, we
may assume that x, =0. Let A be a functional such that A(v) #0. We
decompose E as a direct sum

E=F®Ry,

where F is the kernel of 4. Let P be the projection on F. We can write
any x near 0 in the form

x = Px + 7(x)v,
where

A
(x) = %

We then bend the picture on the left to give the picture on the right
using the flow a of £ namely we define

o(x) = a(t(x), Px).

This means that starting at Px, instead of going linearly in the direction
of v for a time 7(x), we follow the flow (integral curve) for this amount of
time. We find that

A

(p,(x) = Dla(r(x), Px) /1(1])

+ D,a(t(x), Px)P.

Hence ¢'(0) =id, so by the inverse mapping theorem, ¢ is a local iso-
morphism at 0. Furthermore, since Pv = 0 by definition, we have

@' (x)v = Dya(z(x), Px) = &(o(x)),

thus proving Proposition 2.13.

IV, §3. SPRAYS

Second-order vector fields and differential equations

Let X be a manifold of class C? with p = 3. Then its tangent bundle
T(X) is of class CP7!, and the tangent bundle of the tangent bundle
T(T(X)) is of class C?~2, with p —2 > 1.



[1V, §3] SPRAYS 95

Let a: J » X be a curve of class C? (q < p). A lifting of o into T(X) is
a curve f:J — T(X) such that nff = a. We shall always deal with ¢ =2
so that a lift will be assumed of class ¢ — 1 = 1. Such lifts always exist,
for instance the curve « discussed in the previous section, called the
canonical lifting of a.

A second-order vector field over X is a vector field F on the tangent
bundle T(X) (of class CP™*) such that, if n: TX — X denotes the canoni-
cal projection of T(X) on X, then

n,oF =id, thatis n F(v)=v for all v in T(X).
Observe that the succession of symbols makes sense, because
n,: TT(X) - T(X)
maps the double tangent bundle into T'(X) itself.

A vector field F on TX is a second-order vector field on X if and only
if it satisfies the following condition: Each integral curve B of F is
equal to the canonical lifting of nf, in other words

(mp) = B.

Here, nf is the canonical projection of f on X, and if we put the
argument t, then our formula reads

(=) (1) = B(®)

for all ¢ in the domain of . The proof is immediate from the definitions,
because

() =ny B =myoFof

We then use the fact that given a vector ve TX, there is an integral
curve f = B, with ,(0) = v (initial condition v).

Let «: J - X be a curve in X, defined on an interval J. We define a
to be a geodesic with respect to F if the curve

oa:J->TX
is an integral curve of F. Since ma’ = o, that is o lies above a in TX, we
can express the geodesic condition equivalently by stating that a satisfies
the relation

o = F(a').

This relation for curves o in X is called the second-order differential
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equation for the curve «, determined by F. Observe that by definition, if
B is an integral curve of F in TX, then nf is a geodesic for the second
order vector field F.

Next we shall give the representation of the second order vector field
and of the integral curves in a chart.

Representation in charts

Let U be open in the Banach space E, so that T(U)=U x E, and
T(T(U)) = (U x E) x (E x E). Then n: U x E— U is simply the projec-
tion, and we have a commutative diagram:

(UxE)x(ExE) — UxE

| |

UxE — U

7[

The map =, on each fiber E x E is constant, and is simply the projection
of E x E on the first factor E, that is

(%, v, u, w) = (X, u).
Any vector field on U x E has a local representation
f:UxE->EXE

which has therefore two components, f = (f, f>), each f; mapping U x E
into E. The next statement describes second order vector fields locally in
the chart.

Let U be open in the Banach space E, and let T(U)=U x E be the
tangent bundle. A CP~2-morphism

f:UXxE-EXE

is the local representation of a second order vector field on U if and
only if
f(xa v) = (Ua fz(x’ U))

The above statement is merely making explicit the relation n, F = id,
in the chart. If we write f = (f}, f,), then we see that

fi(x,v) = 0.



[TV, §3] SPRAYS 97

We express the above relations in terms of integral curves as follows.
Let B = B(t) be an integral curve for the vector field F on TX. In the
chart, the curve has two components

B(®) = (x(t), v(t) e U x E.

By definition, if f is the local representation of F, we must have

d
dEI:‘ = (E}C, %) = f(x,v) = (U’ falx, U))

Consequently, our differential equation can be rewritten in the following
manner:
dx

E = U(t),

d*x _dv 5 dx
a a1\ @)
which is of course familiar.

Sprays

We shall be interested in special kinds of second-order differential equa-
tions. Before we discuss these, we make a few technical remarks.

Let s be a real number, and n: E - X be a vector bundle. If v is in E,
so in E, for some x in X, then sv is again in E, since E, is a vector
space. We write s; for the mapping of E into itself given by this scalar
multiplication. This mapping is in fact a VB-morphism, and even a
VB-isomorphism if s # 0. Then

T(sg) = (sp)s: T(E) > T(E)

is the usual induced map on the tangent bundle of E.
Now let E=TX be the tangent bundle itself. Then our map s;x
satisfies the property

(sTX)* °Strx = StTx © (STX)*’

which follows from the linearity of s;x on each fiber, and can also be
seen directly from the representation on charts given below.

We define a spray to be a second-order vector field which satisfies the
homogeneous quadratic condition:

SPR 1. For all se R and v e T(X), we have

F(sv) = (S7x)4SF(v).
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It is immediate from the conditions defining sprays (second-order vec-
tor field satisfying SPR 1) that sprays form a convex set! Hence if we
can exhibit sprays over open subsets of Banach spaces, then we can glue
them together by means of partitions of unity, and we obtain at once the
following global existence theorem.

Theorem 3.1. Let X be a manifold of class C? (p = 3). If X admits
partitions of unity, then there exists a spray over X.

Representations in a chart
Let U be open in E, so that TU = U x E. Then
TTU = (U x E) x (E x E),

and the representations of sry and (spy), in the chart are given by the
maps

sru: (%, v) — (x, sv) and (S7v)y: (% v, u, W) > (x, 50, u, sw).

Thus
Srru © (STu)s: (X5 U, Uy W) > (X, S0, SU, S*W).

We may now give the local condition for a second-order vector field F
to be a spray.

Proposition 3.2. In a chart U x E for TX, let f:U x E—>E x E rep-
resent F, with f = (f;, f5). Then f represents a spray if and only if, for
all s e R we have

fz(X, SU) = szfz(x, U).

Proof. The proof follows at once from the definitions and the formula
giving the chart representation of s(Stx),-

Thus we see that the condition SPR 1 (in addition to being a second-
order vector field), simply means that f, is homogeneous of degree 2 in
the variable v. By the remark in Chapter I, §3, it follows that f, is a
quadratic map in its second variable, and specifically, this quadratic map
is given by

fa(x, v) = 3D3 f(x, 0) (v, v).

Thus the spray is induced by a symmetric bilinear map given at each
point x in a chart by

B(x) = ;D3 f5(x, 0).
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Conversely, suppose given a morphism
U- Lszym(E’ E) given by X B(x)

from U into the space of symmetric bilinear maps E x E - E. Thus for
each v, we E the value of B(x) at (v, w) is denoted by B(x;v,w) or
B(x)(v, w). Define

f2(x, v) = B(x; v, v).
Then f, is quadratic in its second variable, and the map f defined by

f(x, v) = (v, B(x; v, v)) = (v, f>(x, v))

represents a spray over U. We call B the symmetric bilinear map asso-
ciated with the spray.

We recall the trivial fact from linear algebra that the bilinear map B is
determined purely algebraically from the quadratic map, by the formula

B, w) =3[ L0+ w) — £,0) — L(W)].

We have suppressed the x from the notation to focus on the relevant
second variable v. Thus the quadratic map and the symmetric bilinear
map determine each other uniquely.

The above discussion has been local, over an open set U in a Banach
space. In Proposition 3.4 and the subsequent discussion of connections,
we show how to globalize the bilinear map B intrinsically on the mani-
fold.

Examples. As a trivial special case, we can always take f,(x, v) = (v, 0)
to represent the second component of a spray in the chart.

In the chapter on Riemannian metrics, we shall see how to construct a
spray in a natural fashion, depending on the metric.

In the chapter on covariant derivatives we show how a spray gives
rise to such derivatives.

Next, let us give the transformation rule for a spray under a change of
charts, i.e. an isomorphism

h:U - V.
On TU, the map Th is represented by a morphism (its vector compo-

nent)
H:UxE->ExE givenby  H(x,v) = (h(x), k' (x)v).
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We then have one further lift to the double tangent bundle TTU, and we
may represent the diagram of maps symbolically as follows:

(UxE)x ExE) 25, v E) x E xE)

l/‘fu,z l/‘v,z
H=(hh")
_

UxE V xE
J o
U _ V

Then the derivative H'(x, v) is given by the Jacobian matrix operating on
column vectors (u, w) with u, w € E, namely

, (KX O , wY_(H0 0\ (u
e v)_(h”(x)v h’(x)> o M v)<w>_<h”(x)u h’(x)><W>'

Thus the top map on elements in the diagram is given by
(H, H'): (x, v, u, w) > (h(x), h'(x)v, b’ (x)u, h"(x)(u, v) + h'(x)w).

For the application, we put u = v because f,(x, v) = v, and w = fy ,(x, v),
where f; and f, denote the representations of the spray over U and V
respectively. It follows that f;;, and f, are related by the formula

Sr(h(x), ' (x)v) = (R (x)v, h"(x)(v, v) + B'(X)fy, 2(x, V).
Therefore we obtain:

Proposition 3.3. Change of variable formula for the quadratic part of a
spray:
Jr.2(h(x), B (x)v) = h"(x)(0, v) + h'(x)fy,2(x, ),

By (h(x); W' (x)v, h'(x)w) = h"(x)(v, w) + B’ (x)By(x; v, ).
Proposition 3.3 admits a converse:

Proposition 3.4. Suppose we are given a covering of the manifold X by
open sets corresponding to charts U, V, ..., and for each U we are
given a morphism

By:U - L2, (E E)
which transforms according to the formula of Proposition 3.3 under an
isomorphism h: U — V. Then there exists a unique spray whose asso-
ciated bilinear map in the chart U is given by By.

Proof. We leave the verification to the reader.
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Remarks. Note that By(x;v, w) does not transform like a tensor of
type L2 (E,E), ie. a section of the bundle L2, (TX, TX). There are
several ways of defining the bilinear map B intrinsically. One of them is
via second order bundles, or bundles of second order jets, and to extend
the terminology we have established previously to such bundles, and even
higher order jet bundles involving higher derivatives, as in [Po 62].
Another way will be done below, via connections. For our immediate
purposes, it suffices to have the above discussion on second-order differ-
ential equations together with Proposition 3.3 and 3.4. I used sprays (as
recommended by Palais) in the earliest version of this book [La 62].
In [Lo 69] the bilinear map By is expressed in terms of second order
jets. For applications to symmetric spaces, see [He 78] (expanded ver-
sion of the similar book from 1962), and [Lo 69]. See also [Pa 57] for
early Lie group applications. The basics of differential topology and
geometry were being established in the early sixties. Cf. the bibliograph-
ical notes from [Lo 69] at the end of his first chapter.

Connections

We now show how to define the bilinear map B intrinsically and directly.
Matters will be clearer if we start with an arbitrary vector bundle

p:E—->X

over a manifold X. As it happens we also need the notion of a fiber
bundle when the fibers are not necessarily vector spaces, so don’t have a
linear structure. Let f: Y —» X be a morphism. We say that f (or Y over
X) is a fiber bundle if f is surjective, and if each point x of X has an
open neighborhood U, and there is some manifold Z and an isomor-
phism h: f71(U) - U x Z such that the following diagram is commuta-
tive:

fwy —"  Luxz

A

U

Thus locally, f: Y — X looks like the projection from a product space.
The reason why we need a fiber bundle is that the tangent bundle

ng: TE>E

is a vector bundle over E, but the composite f = po nz: TE — X is only
a fiber bundle over X, a fact which is obvious by picking trivializations
in charts. Indeed, if U is a chart in X, and if U x F—> U is a vector
bundle chart for E, with fiber F, and Y = TE, then we have a natural
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isomorphism of fiber bundles over U':

[ U) ————— (U xF)x(ExF
Tg Pri2

UxF
Pry

S

U

Note that U being a chart in X implies that U x E— U is a vector
bundle chart for the tangent bundle TU over U.

The tangent bundle TE has two natural maps making it a vector
bundle:

ng: TE — E is a vector bundle over E;

T(p): TE - TX is a vector bundle over TX.

Therefore we have a natural morphism of fiber bundle (not vector bun-
dle) over X:

(ng, T(p): TE-E®TX  given by W i (ngW, T(p)W)
for We TE. If We T,E with e€ E,, then n;W e E, and T(p)W € T, X.
After these preliminaries, we define a conmection to be a morphism of
fiber bundles over X, from the direct sum E@® TX into TE:
HE®TX->TE

such that
(nE, T(P)) o H =idggrx,

and such that H is bilinear, in other words H,: E.® T,X — TE is bilinear.
Consider a chart U as in the above diagram, so

TU=UxE and T(U x F)=(U x F) x (E x F).
Then our map H has a coordinate representation
H(x, e, v) = (x, e, H(x, e, v), Hy(x,e,v))  for eeF and veE.

The fact that (ng, T(p)) o H = idggry implies at once that H,(x, e, v) = v.
The bilinearity condition implies that for fixed x, the map

(e, v) > Hy(x, e, v)
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is bilinear as a map F x E — E. We shall therefore denote this map by
B(x), and we write in the chart

H(x, e,v) = (x, e, v, B(x)(e,v)) oralso (x,e, v, B(x,e,0v))

Now take the special case when E = TX. We say that the connection
is symmetric if the bilinear map B is symmetric. Suppose this is the case,
then we may define the corresponding quadratic map TX — TTX by

fa(x, v) = B(x, v, v).
Globally, this amounts to defining a morphism
F:TX->TTX such that F = H o diagonal

where the diagonal is taken in TX @ TX, in each fiber. Thus
F()=H(v,v) for ve T.X.

Then F is a vector field on TX, and the condition (., n,)o H =id on
TX @ TX implies that F is a second-order vector field on X, in other
words, F defines a spray. It is obvious that all sprays can be obtained in
this fashion. Thus we have shown how to describe geometrically the
bilinear map associated with a spray.

Going back to the general case of a vector bundle E unrelated to TX,
we note that the image of a connection H is a vector subbundle over E.
Let V denote the kernel of the map T(p): TE -» TX. We leave it to the
reader to verify in charts that V is a vector subbundle of TE over E, and
that the image of H is a complementary subbundle. One calls V the
vertical subbundle, canonically defined, and one calls H the horizontal
subbundle determined by the connection.

IV, §4. THE FLOW OF A SPRAY AND
THE EXPONENTIAL MAP

The condition we have taken to define a spray is equivalent to other
conditions concerning the integral curves of the second-order vector field
F. We shall list these conditions systematically. We shall use the follow-
ing relation. If a:J—» X is a curve, and «, is the curve defined by
o, () = a(st), then

oy (1) = so'(st),

this being the chain rule for differentiation.
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If v is a vector in TX, let B, be the unique integral curve of F with
initial condition v (i.e. such that $,(0) = v). In the next three conditions,
the sentence should begin with “for each v in TX”.

SPR 2. A number t is in the domain of B, if and only if st is in the
domain of B, and then

Bu(t) = sP,(st).

SPR 3. If s, t are numbers, st is in the domain of B, if and only if s is
in the domain of B,,, and then

B.(8) = mB,(st).

SPR 4. A number t is in the domain of B, if and only if 1 is in the
domain of B,,, and then

nBy() = P, (1).
We shall now prove the equivalence between all four conditions.

Assume SPR 1, and let s be fixed. For all ¢ such that st is in the
domain of §,, the curve B,(st) is defined and we have

%(Sﬁv(st)) = 5,5P,(st) = 5, SF(B,(st)) = F(sp,(s1)).

Hence the curve sf,(st) is an integral curve for F, with initial condition
5B,(0) = sv. By uniqueness we must have

sB.(st) = B, ().
This proves SPR 2.
Assume SPR 2. Since f, is an integral curve of F for each v, with
initial condition v, we have by definition

Bso(0) = F(sv).
Using our assumption, we also have

d
ﬁ;v(t) = E(sﬂv(‘gt)) = S*Sﬁ;(st).

Put t = 0. Then SPR 1 follows because B, and B, are integral curves of
F with initial conditions sv and v respectively.
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It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3.
To prove SPR 2, we have

d
Baut) = (@By) (1) = - mBy(st) = s(mp,)(st) = s (st),

which proves SPR 2.

Assume SPR 4. Then st is in the domain of f, if and only if 1 is in
the domain of f,,, and s is in the domain of f,, if and only if 1 is in the
domain of B,,. This proves the first assertion of SPR 3, and again by
SPR 4, assuming these relations, we get SPR 3.

It is similarly clear that SPR 3 implies SPR 4.

Next we consider further properties of the integral curves of a spray.
Let F be a spray on X. As above, we let f§, be the integral curve with
initial condition v. Let ® be the set of vectors v in T(X) such that g, is
defined at least on the interval [0, 1]. We know from Corollary 2.7 that
D is an open set in T(X), and by Theorem 2.6 the map

v p,(1)
is a morphism of D into T(X). We now define the exponential map

exp: D> X
to be
exp(v) = nf,(1).

Then exp is a C?~2-morphism. We also call D the domain of the expo-
nential map (associated with F).

If x e X and 0, denotes the zero vector in T, then from SPR 1, taking
s =0, we see that F(0,) = 0. Hence

exp(0,) = x.

Thus our exponential map coincides with # on the zero cross section,
and so induces an isomorphism of the cross section onto X. It will be
convenient to denote the zero cross section of a vector bundle E over X
by (z(X) or simply (X if the reference to E is clear. Here, E is the
tangent bundle.

We denote by exp, the restriction of exp to the tangent space T,.
Thus

exp,: I, » X.
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Theorem 4.1. Let X be a manifold and F a spray on X. Then
exp.: .- X

induces a local isomorphism at 0., and in fact (exp,), is the identity
at 0,.

Proof. We prove the second assertion first because the main assertion
follows from it by the inverse mapping theorem. Furthermore, since T, is
a vector space, it suffices to determine the derivative of exp, on rays, in
other words, to determine the derivative with respect to t of a curve
exp,(tv). This is done by using SPR 3, and we find

d
Enﬂw = Bw-

Evaluating this at t = 0 and taking into account that B, has w as initial
condition for any w gives us

(exp,)4(05) = id.

This concludes the proof of Theorem 4.1.

Helgason gave a general formula for the differential of the exponential
map on analytic manifolds [He 61], reproduced in [He 78], Chapter I,
Theorem 6.5. We shall study the differential of the exponential map in
connection with Jacobi fields, in Chapter IX, §2.

Next we describe all geodesics.

Proposition 4.2. The images of straight segments through the origin in
T., under the exponential map exp,, are geodesics. In other words, if
ve T, and we let

(v, 1) = a,(t) = exp,(tv),

then a, is a geodesic. Conversely, let a: J - X be a C? geodesic defined
on an interval J containing 0, and such that «(0) = x. Let o'(0) = v.
Then a(t) = exp,(tv).

Proof. The first statement by definition means that o, is an integral
curve of the spray F. Indeed, by the SPR conditions, we know that

(v, ) = a, (1) = n,,(1) = 7B, (1),

and (nf,) = B, is indeed an integral curve of the spray. Thus our asser-
tion that the curves t +— exp(tv) are geodesics is obvious from the defini-
tion of the exponential map and the SPR conditions.
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Conversely, given a geodesic a:J — X, by definition o satisfies the
differential equation

a’(t) = F(«(t)).

The two curves t — a(t) and t+— exp,(tv) satisfy the same differential
equation and have the same initial conditions, so the two curves are
equal. This proves the second statement and concludes the proof of the
proposition.

Remark. From the theorem, we note that a C! curve in X is a
geodesic if and only if, after a linear reparametrization of its interval of
definition, it is simply ¢ — exp,(tv) for some x and some v.

We call the map (v, t) — a(v, t) the geodesic flow on X. It is defined
on an open subset of TX x R, with a(v,0)=x if ve T,X. Note that
since n(sB,(t)) = nB,(t) for s € R, we obtain from SPR 2 the property

a(sv, t) = a(v, st)

for the geodesic flow. Precisely, t is in the domain of a, if and only if st
is in the domain of a,, and in that case the formula holds. As a slightly
more precise version of Theorem 4.1 in this light, we obtain:

Corollary 4.3. Let F be a spray on X, and let x,€ X. There exists
an open neighborhood U of x,, and an open neighborhood V of
0., in TX satisfying the following condition. For every xe U and
ve VN T.X, there exists a unique geodesic

,:(—=2,2)> X
such that
2,(0) = x and o, (0) = v.

Observe that in a chart, we may pick V as a product
V=UxV0cUxE

where V,(0) is a neighborhood of 0 in E. Then the geodesic flow is
defined on U x V,(0) x J, where J = (—2,2). We picked (—2, 2) for con-
creteness. What we really want is that O and 1 lie in the interval. Any
bounded interval J containing 0 and 1 could have been selected in the
statement of the corollary. Then of course, U and V (or V;(0)) depend
on J.
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IV, §5. EXISTENCE OF TUBULAR NEIGHBORHOODS

Let X be a submanifold of a manifold Y. A tubular neighborhood of X in
Y consists of a vector bundle n: E - X over X, an open neighborhood Z
of the zero section {;X in E, and an isomorphism

fiZ->U

of Z onto an open set in Y containing X, which commutes with {:

1\

J

We shall call f the tubular map and Z or its image f(Z) the corre-
sponding tube (in E or Y respectively). The bottom map j is simply the
inclusion. We could obviously assume that it is an embedding and define
tubular neighborhoods for embeddings in the same way. We shall say
that our tubular neighborhood is total if Z = E. In this section, we
investigate conditions under which such neighborhoods exist. We shall
consider the uniqueness problem in the next section.

Theorem 5.1. Let Y be of class C? (p = 3) and admit partitions of
unity. Let X be a closed submanifold. Then there exists a tubular
neighborhood of X in Y, of class CP2.

Proof. Consider the exact sequence of tangent bundles:
0- T(X)-> T(Y)| X > N(X)—-0.
We know that this sequence splits, and thus there exists some splitting
T(Y)|X = T(X) ® N(X)

where N(X) may be identified with a subbundle of T(Y)|X. Following
Palais, we construct a spray ¢ on T(Y) using Theorem 3.1 and obtain the
corresponding exponential map. We shall use its restriction to N(X),
denoted by exp|N. Thus

exp|N: DN N(X)- Y.

We contend that this map is a local isomorphism. To prove this, we
may work locally. Corresponding to the submanifold, we have a product
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decomposition U = U, x U,, with X = U; x 0. If U is open in E, then
we may take U,, U, open in F,, F, respectively. Then the injection of
N(X) in T(Y)|X may be represented locally by an exact sequence

0-U, x F,—2>U, x F, x F,,
and the inclusion of T(Y)|X in T(Y) is simply the inclusion
U xF, xF,->U x U, xF, xF,.

We work at the point (x,,0) in U, x F,. We must compute the deriva-
tive of the composite map

U xF, 25U, x Uy x F, x F, =5 ¥

at (x;,0). We can do this by the formula for the partial derivatives.
Since the exponential map coincides with the projection on the zero cross
section, its “horizontal” partial derivative is the identity. By Theorem 4.1
we know that its “vertical” derivative is also the identity. Let

Y =(exp)o @

(where @ is simply ¢ followed by the inclusion). Then for any vector
(wy, w,) in F; x F, we get

Dyr(xy,0):(wy, wy) = (wy, 0) + o, (W5),

where ¢, is the linear map given by ¢ on the fiber over x,. By
hypothesis, we know that F; x F, is the direct sum of F; x 0 and of the
image of ¢, . This proves that Dy(x,, 0) is a toplinear isomorphism, and
in fact proves that the exponential map restricted to a normal bundle is a
local isomorphism on the zero cross section.

We have thus shown that there exists a vector bundle E — X, an open
neighborhood Z of the zero section in E, and a mapping f: Z — Y which,
for each x in (g, is a local isomorphism at x. We must show that Z can
be shrunk so that f restricts to an isomorphism. To do this we follow
Godement ([God 58], p. 150). We can find a locally finite open covering
of X by open sets U; in Y such that, for each i we have inverse isomor-
phisms

firZ;- U, and 9;: U~ Z,

between U, and open sets Z; in Z, such that each Z; contains a point x
of X, such that f;, g; are the identity on X (viewed as a subset of both Z
and Y) and such that f; is the restriction of f to Z;. We now find a
locally finite covering {¥;} of X by open sets of Y such that ¥, < U;, and
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let V={J V. We let W be the subset of elements y e V such that, if y
lies in an intersection ¥, N I—/j, then g;(y) = g;(y). Then W certainly con-
tains X. We contend that W contains an open subset containing X.

Let x e X. There exists an open neighborhood G, of x in Y which
meets only a finite number of ¥, say V, , ...,V . Taking G, small enough,
we can assume that x lies in each one of these, and that G, is contained
in each one of the sets U, ...,U, . Since x lies in each ¥, ...,V , it is
contained in U, , ...,U; and our maps g;, ...,g; take the same value at
x, namely x itself. Using the fact that f; , ...,f; are restrictions of f, we
see at once that our finite number of maps g; , ...,g; must agree on G, if
we take G, small enough.

Let G be the union of the G,. Then G is open, and we can define a
map

g:G-g(G)c Z

by taking g equal to g; on GnV,. Then ¢g(G) is open in Z, and the
restriction of f to g(G) is an inverse for g. This proves that f, g are
inverse isomorphisms on G and ¢(G), and concludes the proof of the
theorem.

A vector bundle E - X will be said to be compressible if, given an
open neighborhood Z of the zero section, there exists an isomorphism

o:E—>Z,

of E with an open subset Z, of Z containing the zero section, which
commutes with the projection on X:

(4

E<‘);—~+/z1

It is clear that if a bundle is compressible, and if we have a tubular
neighborhood defined on Z, then we can get a total tubular neighbor-
hood defined on E. We shall see in the chapter on Riemannian metrics
that certain types of vector bundles are compressible (Hilbert bundles,
assuming that the base manifold admits partitions of unity).

IV, §6. UNIQUENESS OF TUBULAR NEIGHBORHOODS

Let X, Y be two manifolds, and F:R x X - Y a morphism. We shall
say that F is an isotopy (of embeddings) if it satisfies the following
conditions. First, for each t € R, the map F, given by F,(x) = F(t, x) is an
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embedding. Second, there exist numbers t, < t; such that F, = F,  for all
t<to,and F, =F, for all t >¢,. We then say that the interval [z, t;] is
a proper domain for the isotopy, and the constant embeddings on the left
and right will also be denoted by F__, and F,, respectively. We say that
two embeddings f: X - Y and g: X - Y are isotopic if there exists an
isotopy F, as above such that f=F, and g = F, (notation as above).
We write f ~ g for f isotopic to g.

Using translations of intervals, and multiplication by scalars, we can
always transform an isotopy to a new one whose proper domain is
contained in the interval (0, 1). Furthermore, the relation of isotopy
between embeddings is an equivalence relation. It is obviously symmet-
ric and reflexive, and for transitivity, suppose f ~ g and g ~ h. We can
choose the ranges of these isotopies so that the first one ends and stays
constant at g before the second starts moving. Thus it is clear how to
compose isotopies in this case.

If s, <s; are two numbers, and o:R—R is a function (morphism)
such that a(s) = t, for s < s, and o(s) = t, for s = 5,, and ¢ is monotone
increasing, then from a given isotopy F, we obtain another one, G, = F,,.
Such a function ¢ can be used to smooth out a piece of isotopy given
only on a closed interval.

Remark. We shall frequently use the following trivial fact: If f;: X - Y
is an isotopy, and if g: X; > X and h: Y > Y are two embeddings, then
the composite map

hfg: X, - Y
is also an isotopy.

Let Y be a manifold and X a submanifold. Let n: E —» X be a vector
bundle, and Z an open neighborhood of the zero section. An isotopy
fi:Z—>Y of open embeddings such that each f, is a tubular neighbor-
hood of X will be called an isotopy of tubular neighborhoods. In what
follows, the domain will usually be all of E.

Proposition 6.1. Let X be a manifold. Let n: E— X and n,: E; - X be
two vector bundles over X. Let

fiE—E,

be a tubular neighborhood of X in E, (identifying X with its zero
section in E|). Then there exists an isotopy

fii E>E;

with proper domain [0, 1] such that f, = f and f, is a VB-isomorphism.
(If f, mn, m, are of class CP then f, can be chosen of class C*™')
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Proof. We define F by the formula

F(e) = t7'f(te)

for t #0 and ee E. Then F, is an embedding since it is composed of
embeddings (the scalar multiplications by ¢, t™' are in fact VB-isomor-
phism).

We must investigate what happens at t = 0.

Given e € E, we find an open neighborhood U, of me over which E,
admits a trivialization U; x E;. We then find a still smaller open neigh-
borhood U of e and an open ball B around O in the typical fiber E of
E such that E admits a trivialization U x E over U, and such that the
representation f of f on U x B (contained in U x E) maps U x B into
U, x E,. This is possible by continuity. On U x B we can represent f
by two morphisms,

fx, 0) = ((x, v), Y (x, v))

and ¢(x, 0) = x while Y¥/(x, 0) = 0. Observe that for all ¢ sufficiently small,
te is contained in U x B (in the local representation).
We can represent F, locally on U x B as the mapping

Ft(x’ U) = ((P(X, tv): t_lllj(x, tl))).

The map ¢ is then a morphism in the three variables x, v, and ¢ even at
t =0. The second component of F, can be written

1

tTW(x, tv) =t7! f D,y (x, stv)- (tv) ds

o
and thus ¢! cancels ¢ to yield simply
1
J D,y (x, stv)- v ds.
o

This is a morphism in ¢, even at ¢t = 0. Furthermore, for t = 0, we obtain
FO(xs U) = (xa DZl/,(xa 0)17)

Since f was originally assumed to be an embedding, it follows that
D,y (x,0) is a toplinear isomorphism, and therefore F, is a VB-isomor-
phism. To get our isotopy in standard form, we can use a function
o:R—R such that 6(t)=0 for t <0 and o(t)=1 for t =1, and o is
monotone increasing. This proves our proposition.
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Theorem 6.2. Let X be a submanifold of Y. Let
nE-X and . Ei > X

be two vector bundles, and assume that E is compressible. Let f:E—Y
and g: E, - Y be two tubular neighborhoods of X in Y. Then there
exists a C?-isotopy

fE->Y

of tubular neighborhoods with proper domain [0, 1] and a VB-isomor-
phism A: E — E, such that f| = f and f, = gA.

Proof. We observe that f(E) and g(E,) are open neighborhoods of X
in Y. Let U= f"Y(f(E)ng(E,)) and let ¢: E - U be a compression. Let
¥ be the composite map

® flU

E—U-—7Y

¥ = (f|U)o ¢. Then y is a tubular neighborhood, and y(E) is contained
in g(E,). Therefore g~'y: E - E, is a tubular neighborhood of the same
type considered in the previous proposition. There exists an isotopy of
tubular neighborhoods of X:

G:E—-E,

such that G, = g™y and G, is a VB-isomorphism. Considering the isotopy
gG,, we find an isotopy of tubular neighborhoods

Yo E->Y

such that Y, =y and Y, = gw where w: E — E; is a VB-isomorphism.
We have thus shown that  and gw are isotopic (by an isotopy of
tubular neighborhoods). Similarly, we see that y and fu are isotopic for
some VB-isomorphism

u. E—-E.

Consequently, adjusting the proper domains of our isotopies suitably, we
get an isotopy of tubular neighborhoods going from gw to fu, say F,.
Then F,u~! will give us the desired isotopy from gwpu™ to f, and we can
put A = wu~! to conclude the proof.

(By the way, the uniqueness proof did not use the existence theorem
for differential equations.)



CHAPTER V

Operations on Vector Fields
and Differential Forms

If E— X is a vector bundle, then it is of considerable interest to investi-
gate the special operation derived from the functor “multilinear alternat-
ing forms.” Applying it to the tangent bundle, we call the sections of our
new bundle differential forms. One can define formally certain relations
between functions, vector fields, and differential forms which lie at the
foundations of differential and Riemannian geometry. We shall give the
basic system surrounding such forms. In order to have at least one
application, we discuss the fundamental 2-form, and in the next chapter
connect it with Riemannian metrics in order to construct canonically the
spray associated with such a metric.

We assume throughout that our manifolds are Hausdorff, and suffi-
ciently differentiable so that all of our statements make sense.

V, §1. VECTOR FIELDS, DIFFERENTIAL
OPERATORS, BRACKETS

Let X be a manifold of class C? and ¢ a function defined on an open set
U, that is a morphism
¢o:U—>R.

Let & be a vector field of class C?~1. Recall that
T.¢: T.(U)» T.(R) = R

is a continuous linear map. With it, we shall define a new function to be
denoted by &p or &(p). (There will be no confusion with this notation
and composition of mappings.)
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Proposition 1.1. There exists a unique function Ep on U of class CP™!
such that

(o) (x) = (T.o)¢(x).

If U is open in the Banach space E and ¢ denotes the local representa-
tion of the vector field on U, then

(EP)(x) = ¢'(x)E(x).

Proof. The first formula certainly defines a mapping of U into R. The
local formula defines a C? !-morphism on U. It follows at once from
the definitions that the first formula expresses invariantly in terms of the
tangent bundle the same mapping as the second. Thus it allows us to
define £p as a morphism globally, as desired.

Let &P denote the ring of functions (of class C?). Then our operation
@ — Eo gives rise to a linear map

0 FP(U) > F*1(U),  defined by 69 = Eo.

A mapping
0:R->S

from a ring R into an R-algebra S is called a derivation if it satisfies the
usual formalism: Linearity, and é(ab) = ad(b) + 6(a)b.

Proposition 1.2. Let X be a manifold and U open in X. Let & be a
vector field over X. If 6, =0, then {(x) =0 for all xe U. Each d, is a
derivation of &*(U) into &P ~1(V).

Proof. Suppose &(x) # 0 for some x. We work with the local repre-
sentations, and take ¢ to be a continuous linear map of E into R such
that ¢(&(x)) # 0, by Hahn—Banach. Then ¢'(y) = ¢ for all y € U, and we
see that ¢'(x)é(x) # 0, thus proving the first assertion. The second is
obvious from the local formula.

From Proposition 1.2 we deduce that if two vector fields induce the
same differential operator on the functions, then they are equal.

Given two vector fields & n on X, we shall now define a new vector
field [¢&, n], called their bracket product.

Proposition 1.3. Let &, n be two vector fields of class C?™! on X. Then

there exists a unique vector field [&, n] of class C?~2 such that for each
open set U and function ¢ on U we have

[ 1o = E(n(e)) — n(E(9)).
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If U is open in E and &, n are the local representations of the vector
fields, then [&, n] is given by the local formula

(& nlo(x) = @' () (1 () E(x) — & (x)n(x)).

Thus the local representation of [&, n] is given by

[ n1(x) = n'(x)¢(x) — &' (x)n(x).

Proof. By Proposition 1.2, any vector field having the desired effect
on functions is uniquely determined. We check that the local formula
gives us this effect locally. Differentiating formally, we have (using the
law for the derivative of a product):

me) & — (Eo)n = (en)E — (9'E)n
=oNE+ o"né — @'&'n — @"En.

The terms involving ¢” must be understood correctly. For instance, the
first such term at a point x is simply

@"(9)(n(x), £(x))

remembering that ¢”(x) is a bilinear map, and can thus be evaluated at
the two vectors 7(x) and £(x). However, we know that ¢”(x) is symmet-
ric. Hence the two terms involving the second derivative of ¢ cancel, and
give us our formula.

Corollary 1.4. The bracket [&, 1] is bilinear in both arguments, we have
[& n] = —[n, &1, and Jacobi’s identity

LS In, €11+ [, [, E1T + [ €, m1] = 0.

If ¢ is a function, then

L& on] = (Co)n + o[&, 1],
L& n] = o[& n] — (ne)L.

Proof. The first two assertions are obvious. The third comes from the
definition of the bracket. We apply the vector field on the left of the
equality to a function ¢. All the terms cancel out (the reader will write
it out as well or better than the author). The last two formulas are
immediate.
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We make some comments concerning the functoriality of vector fields.
Let
f: X->Y

be an isomorphism. Let ¢ be a vector field over X. Then we obtain an
induced vector field f, ¢ over Y, defined by the formula

(/) (f(0) = TAEX)).

It is the vector field making the following diagram commutative:

T
x 2, 1y

1o

X — Y
f
We shall also write f* for (f™'), when applied to a vector field. Thus
we have the formulas

fif=Tfolof™ and f¥=Tfolof.

If f is not an isomorphism, then one cannot in general define the
direct or inverse image of a vector field as done above. However, let ¢
be a vector field over X, and let n be a vector field over Y. If for each
x € X we have

Tf(E() = n(f(x)),

then we shall say that f maps & into #, or that ¢ and # are f-related. If
this is the case, then we may denote by f, ¢ the map from f(X) into TY
defined by the above formula.

Let &, £, be vector fields over X, and let n,, n, be vector fields over
Y. If & is f-related to n; for i =1, 2 then as maps on f(X) we have

Julé1, &1 =[1, ;).

We may write suggestively the formula in the form

f*[éls 52] = [f*épf*gzl
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Of course, this is meaningless in general, since f,¢; may not be a vector
field on Y. When f is an isomorphism, then it is a correct formulation of
the other formula. In any case, it suggests the correct formula.

To prove the formula, we work with the local representations, when
X=Uisopenin E, and Y =V is open in F. Then &;, ; are maps of U,
V into the spaces E, F respectively. For x € X we have

(f4L&1, £2D)() = £ (&)1 (x) = E1(x)E2(x)).

On the other hand, by assumption, we have

1(f(x) = f'(x)&(x),
so that
[11, 121(f(0) = n2(fC)n1 (f()) = my (fG))n2(f(x)
= 13 (f0))f ()€1 (x) — 13 (f(x))f " (x)E2(x)
= (12 fY (¥)&,(0) — (1 o f((x)¢2(x)))
=f"(x) &2(x) £1(x) + [ (x)£5(x) €4 (x)
— "(x) £1(x) &5(x) — [ (x)E1(x) €5 (x).

Since f”(x) is symmetric, two terms cancel, and the remaining two terms
give the same value as (f,[£;, £,])(x), as was to be shown.

The bracket between vector fields gives an infinitesimal criterion for
commutativity in various contexts. We give here one theorem of a gen-
eral nature as an example of this phenomenon.

Theorem 1.5. Let &, n be vector fields on X, and assume that [, n] =
0. Let a and B be the flows for & and n respectively. Then for real
values t, s we have

a0 B = Psoa,.

Or in other words, for any x € X we have

a(t, (s, x)) = B(s, a(t, x)),

in the sense that if for some value of t a value of s is in the domain of
one of these expressions, then it is in the domain of the other and the
two expressions are equal.

Proof. For a fixed value of t, the two curves in s given by the
right- and left-hand side of the last formula have the same initial condi-
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tion, namely a,(x). The curve on the right
s = B(s, a(t, x))

is by definition the integral curve of . The curve on the left
s > alt, B(s, x))

is the image under o, of the integral curve for # having initial condition
x. Since x is fixed, let us denote f(s, x) simply by B(s). What we must
show is that the two curves on the right and on the left satisfy the same
differential equation.

B(s, alt, 7))

B(s)

a(t, z)

x

In the above figure, we see that the flow a, shoves the curve on the left
to the curve on the right. We must compute the tangent vectors to the
curve on the right. We have

£ (4 (Bs)) = Do, B
= Daalt, BO)(A(9).

Now fix s, and denote this last expression by F(t). We must show that if
G() = nla(z, B())),
F(t) = G(¢).

then

We have trivially F(0) = G(0), in other words the curves F and G have
the same initial condition. On the other hand,

F'(t) = &(at, B(s)))Dx(t, B(s))n(B(s))

G'(t) = n'(at, B(s))&(at, B(s))
= &'(alt, B (a(t, B(5)))  (because [£, 1] =0).

and
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Hence we see that our two curves F and G satisfy the same differential
equation, whence they are equal. This proves our theorem.

Vector fields &, 5 such that [& 7] =0 are said to commute. One can
generalize the process of straightening out vector fields to a finite number
of commuting vector fields, using the same method of proof, using Theo-
rem 1.5. As another application, one can prove that if the Lie algebra of
a connected Lie group is commutative, then the group is commutative.
Cf. the section on Lie groups.

V, §2. LIE DERIVATIVE

Let A be a differentiable functor on Banach spaces. For convenience,
take A to be covariant and in one variable. What we shall say in the rest
of this section would hold in the same way (with slightly more involved
notation) if A had several variables and were covariant in some and
contravariant in others.

Given a manifold X, we can take A(T(X)). It is a vector bundle over
X, which we denote by T,(X) as in Chapter III. Its sections I',(X) are
the tensor fields of type A.

Let £ be a vector field on X, and U open in X. It is then possible to
associate with ¢ a map

& I,(U)->T,(U)

(with a loss of two derivatives). This is done as follows.

Given a point x of U and a local flow a for ¢ at x, we have for each ¢
sufficiently small a local isomorphism o, in a neighborhood of our point
x. Recall that locally, ;! = a_,. If 5 is a tensor field of type 4, then the
composite mapping 7 o a, has its range in T,(X). Finally, we can take the
tangent map T(x_,) = (a_,), to return to T;(X) in the fiber above x. We
thus obtain a composite map

F(t, x) = (@-1)y o 11 0 4,(x) = (1) (x),

which is a morphism, locally at x. We take its derivative with respect to
t and evaluate it at 0. After looking at the situation locally in a trivial-
ization of T(X) and T;(X) at x, one sees that the map one obtains gives
a section of T,(U), that is a tensor field of type 4 over U. This is our
map %;. To summarize,

d
%’7 = a =0 (a—r)* ofnoa.
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This map %; is called the Lie derivative. We shall determine the Lie
derivative on functions and on vector fields in terms of notions already
discussed.

First let ¢ be a function. Then by the general definition, the Lie
derivative of this function with respect to the vector field ¢ with flow « is
defined to be

1
ZLep(x) = }gr.g ;[(p(a(t, x)) — @(x)],

or in other words,

d
L = E(a.’“qo)

t=0

Our assertion is then that

Zip = Co.

To prove this, let

F(t) = o(alt, x)).

F'(t) = ¢'(a(t, X)) D, (2, x)
= (P,(“(ta x))f(oz(t, x))7

Then

because o is a flow for & Using the initial condition at t =0, we find
that

F(0) = ¢'(x)¢(x),
which is precisely the value of @ at x, thus proving our assertion.

If &, n are vector fields, then

Zen = [, n].

As before, let o be a flow for £&. The Lie derivative is given by

d
Len = E(a,*n)

t=0
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Letting ¢ and n denote the local representations of the vector fields, we
note that the local representation of (x*n)(x) is given by

(o¥n)(x) = F(2) = Dyo(—t, x)n(a(t, x)).

We must therefore compute F’(t), and then F’(0). Using the chain rule,
the formula for the derivative of a product, and the differential equation
satisfied by D,a, we obtain

F'(t) = — Dy Dyo(—t, x)n(a(t, x)) + Dyo(—t, x)n’(x(t, x))D; u(t, x)
= —&(a(—t, x))Dya(—t, x)n(a(t, x)) + Dy —t, x)n' (a(t, x)).

Putting ¢t = 0 proves our formula, taking into account the initial conditions

(0, x) = x and D,a(0, x) = id.

V, §3. EXTERIOR DERIVATIVE

Let X be a manifold. The functor L (r-multilinear continuous alter-
nating forms) extends to arbitrary vector bundles, and in particular, to
the tangent bundle of X. A differential form of degree r, or simply an
r-form on X, is a section of L[(T(X)), that is a tensor field of type L]. If
X is of class CP, forms will be assumed to be of a suitable class C* with
1 <s<p-—1. The set of differential forms of degree r will be denoted
by /"(X) (< for alternating). It is not only a vector space over R but a
module over the ring of functions on X (of the appropriate order of
differentiability). If w is an r-form, then w(x) is an element of L}(T,(X)),
and is thus an r-multilinear alternating form of T,(X) into R. We some-
times denote w(x) by w,.

Suppose U is open in the Banach space E. Then L (T(U)) is equal to
U x LI(E) and a differential form is entirely described by the projection
on the second factor, which we call its local representation, following our
general system (Chapter IIL, §4). Such a local representation is therefore
a morphism

w: U - L (E).

Let w be in LY(E) and vy, ...,v, elements of E. We denote the value
(v, ...,v,) also by

{w, vy X+ X V).

Similarly, let &,, ...,&, be vector fields on an open set U, and let w be
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an r-form on X. We denote by

o, &y x " x &)

the mapping from U into R whose value at a point x in U is

<CD(X), él(x) Xt X é,-(X)>

Looking at the situation locally on an open set U such that T(U) is
trivial, we see at once that this mapping is a morphism (i.e. a function on
U) of the same degree of differentiability as w and the ¢&;.

Proposition 3.1. Let x, be a point of X and w an r-form on X. If

o, &y x 0 x £, 5 (%)

is equal to O for all vector fields &,, ...,¢, at x, (ie. defined on some
neighborhood of x,), then w(x,) = 0.

Proof. Considering things locally in terms of their local representa-
tions, we see that if w(x,) is not 0, then it does not vanish at some
r-tuple of vectors (v,,...,0,). We can take vector fields at x, which take
on these values at x, and from this our assertion is obvious.

It is convenient to agree that a differential form of degree 0 is a
function. In the next proposition, we describe the exterior derivative of
an r-form, and it is convenient to describe this situation separately in the
case of functions.

Therefore let f: X - R be a function. For each x e X, the tangent
map

Lf: T.(X) - T;»(R) =R

is a continuous linear map, and looking at local representations shows at
once that the collection of such maps defines a 1-form which will be
denoted by df. Furthermore, from the definition of the operation of
vector fields on functions, it is clear that df is the unique 1-form such
that for every vector field £ we have

df, &> =¢.
To extend the definition of d to forms of higher degree, we recall that
if
w: U - L(E)

is the local representation of an r-form over an open set U of E, then for
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each x in U,
o'(x). E— L(E)

is a continuous linear map. Applied to a vector v in E, it therefore gives
rise to an r-form on E.

Proposition 3.2. Let w be an r-form of class C*~' on X. Then there
exists a unique (r + 1)-form dw on X of class C?~2 such that, for any
open set U of X and vector fields &, ...,&, on U we have

<d(1), 60 X X ér>

= Z‘b(_l)iéi«o’ Eo X *t0 X éi X x D

+ Y (=), [, ET x & x o x & x o x & X &)
i<j
If furthermore U is open in E and w, &, ..., are the local represen-

tations of the form and the vector fields respectively, then at a point x
the value of the expression above is equal to

.; (— @' (x)&i(x), Eolx) x -+ x 5;/(}) X e X 6(x)).

Proof. As before, we observe that the local formula defines a differ-
ential form. If we can prove that it gives the same thing as the first
formula, which is expressed invariantly, then we can globalize it, and we
are done. Let us denote by S; and S, the two sums occurring in the
invariant expression, and let L be the local expression. We must show
that S; + S, = L. We consider S;, and apply the definition of £; oper-
ating on a function locally, as in Proposition 1.1, at a point x. We
obtain

S1= 3 (—1¢o, & x x &x s x EYEIEL)

The derivative is perhaps best computed by going back to the definition.
Applying this definition directly, and discarding second order terms, we
find that S, is equal to

5 (= DO ME, G x - x EX) X x &(9)
F3 T (1 @), &) x - X EEE) X x E) X x §())

+T T (o), Eox) X x EX) x - x EEE) X+ X (X))

i j<i
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Of these three sums, the first one is the local formula L. As for the
other two, permuting j and i in the first, and moving the term &j(x)&;(x)
to the first position, we see that they combine to give (symbolically)

=Y V(=)o (GE = &) x Eo x - x G x e x g x e x &)
i i<j
(evaluated at x). Using Proposition 1.3, we see that this combination is
equal to —S,. This proves that S; + S, = L, as desired.

We call do the exterior derivative of w. Leaving out the order of
differentiability for simplicity, we see that d is an R-linear map

d: '(X) > A" (X).

We now look into the multiplicative properties of d with respect to the
wedge product.

Let w, Y be continuous multilinear alternating forms of degree r and s
respectively on the Banach space E. In multilinear algebra, one defines
their wedge product as an (r + s)-continuous multilinear alternating form,
by the formula

1
(CO A lp)(vl LR ’Ur+s) = TS‘ Z 8(0’)60(1701 EIRR ’Uar)'/,(va(r*-l)’ cee ’va(r+s))

the sum being taken over all permutations ¢ of (1,...,r + s). This defini-
tion extends at once to differential forms on a manifold, if we view it as
giving the value for w A ¥ at a point x. The v; are then elements of the
tangent space T, and considering the local representations shows at once
that the wedge product so defined gives a morphism of the manifold X
into L.**(T(X)), and is therefore a differential form.

Remark. The coefficient 1/r!s! is not universally taken to define the
wedge product. Some people, e.g. [He 78] and [KoN 63], take 1/(r + s)!,
which causes constants to appear later. I have taken the same factor as
[AbM 78] and [GHL 87/93]. I recommend that the reader check out
the case with r=s=1 so r+s=2 to see how a factor  comes in.
With either convention, the wedge product between forms is associative,
so with some care, one can carry out a consistent theory with either
convention. I leave the proof of associativity to the reader. It follows by
induction that if w,, ...,,, are forms of degrees r,, ...,r, respectively,
and t=r; + - +r,, then

(wy A Awp)vy,-..,0,)

1
=ﬁzwl(val" “es Uo’rl)wZ(Ua(r1+l)’ cees ”a(r1+r2))' e wm(va(r—rm+1)! cesUgy)
1 m* g

where the sum is taken over all permutations of (1,...,r).
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If we regard functions on X as differential forms of degree 0, then the
ordinary product of a function by a differential form can be viewed as
the wedge product. Thus if f is a function and w a differential form,
then

fo=fnAo.

(The form on the left has the value f(x)w(x) at x.)
The next proposition gives us more formulas concerning differential
forms.

Proposition 3.3. Let w, Y be differential forms on X. Then
EXD 1. d(w A ¥) =do A Y + (= 1)@ A dy.
EXD 2. ddw = 0 (with enough differentiability, say p = 4).

Proof. This is a simple formal exercise in the use of the local formula
for the local representation of the exterior derivative. We leave it to the
reader.

When the manifold is finite dimensional, then one can give a local
representation for differential forms and the exterior derivative in terms
of local coordinates, which are especially useful in integration which fits
the notation better. We shall therefore carry out this local formulation in
full. It dates back to Cartan [Ca 28]. There is in addition a theoretical
point which needs clarifying. We shall use at first the wedge A in two
senses. One sense is defined as above, giving rise to Proposition 3.3.
Another sense will come from Theorem A. We shall comment on their
relation after Theorem B.

We recall first two simple results from linear (or rather multilinear)
algebra. We use the notation E” = E x E x --- x E, r times.

Theorem A. Let E be a finite dimensional vector space over the reals of
dimension n. For each positive integer r with 1 <r < n there exists a
vector space /\" E and a multilinear alternating map

E” - N E

denoted by (uy,...,u,) > u; A *** A u,, having the following property:
If {vy,...,v,} is a basis of E, then the elements

{Uilf\"'/\vir}, i1<i2<"'<ir,
form a basis of /\' E.

We recall that alternating means that u; A - A u, =0 if u; =u; for
some i #j. We call /\"E the r-th alternating product (or exterior prod-
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uct) on E. If r = 0, we define A\° E = R. Elements of /\" E which can be
written in the form u; A --- A u, are called decomposable. Such elements
generate /\" E. If r > dim E, we define /\" E = {0}.

Theorem B. For each pair of positive integers (r,s), there exists a
unique product (bilinear map)

/\rE X /\SE_}/\"'FSE
such that if uy, ...,u,, wy, ..., w, € E then

Ui A AU)X WL A AW UL A AU AW AT A W
1 r 1 s 1 r 1 s

This product is associative.

The proofs for these two statements can be found, for instance, in my
Linear Algebra.

Let EV be the dual space, EY = L(E,R). If E=R" and 4, ...,4, are
the coordinate functions, then each /; is an element of the dual space,
and in fact {4,,...,4,} is a basis of this dual space. Let E = R" There
is an isomorphism

N EY =5 LI(E, R)

given in the following manner. If g, ...,9,€ EY and v,, ...,v, € E, then
the value

det(gi(vj))

is multilinear alternating both as a function of (g4, ...,9,) and (vy,...,0,).
Thus it induces a pairing

NEYxE >R
and a map
/N EY - Li(E, R).

This map is the isomorphism mentioned above. Using bases, it is easy to
verify that it is an isomorphism (at the level of elementary algebra).

Thus in the finite dimensional case, we may identify L}(E, R) with the
alternating product /\"EY, and consequently we may view the local rep-
resentation of a differential form of degree r to be a map

w:U->NEY
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from U into the rth alternating product of EV. We say that the form is
of class C? if the map is of class C?. (We view /\"EY as a normed
vector space, using any norm. It does not matter which, since all norms
on a finite dimensional vector space are equivalent.) The wedge product
as we gave it, valid in the infinite dimensional case, is compatible with
the wedge product and the isomorphism of A E with LJ(E, R) given
above. If we had taken a different convention for the wedge product of
alternating forms, then a constant would have appeared in front of the
above determinant to establish the above identification (e.g. the constant
1 in the 2 x 2 case).

Since {,...,4,} is a basis of EY, we can express each differential
form in terms of its coordinate functions with respect to the basis

(A, Ao A A (i, < <),
namely for each x € U we have

o)=Y fi i A, A A A,
®

where f; = f;,...; is a function on U. Each such function has the same
order of differentiability as w. We call the preceding expression the
standard form of w. We say that a form is decomposable if it can be
written as just one term f(x)4; A - A A, . Every differential form is a
sum of decomposable ones.

We agree to the convention that functions are differential forms of
degree 0.

As before, the differential forms on U of given degree r form a vector
space, denoted by «/"(U).

Let E = R". Let f be a function on U. For each x € U the derivative

f'x):R">R
is a linear map, and thus an element of the dual space. Thus
f"U->EY
represents a differential form of degree 1, which is usually denoted by df.
If f is of class C?, then df is class CP 1.
Let A; be the i-th coordi