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Preface

Elliptic functions parametrize elliptic curves, and the intermingling of the
analytic and algebraic-arithmetic theory has been at the center of mathematics
since the early part of the nineteenth century.

Some new techniques and outlooks have recently appeared on these old
subjects, continuing in the tradition of Kronecker, Weber, Fricke, Hasse,
Deuring. Shimura’s book Introduction to the arithmetic theory of automorphic
Junctions is a splendid modern reference, which I found very helpful myself to
learn some aspects of elliptic curves. It emphasizes the direction of the Hasse-
Weil zeta function, Hecke operators, and the generalizations due to him to the
higher dimensional case (abelian varieties, curves of higher genus coming from
an arithmetic group operating on the upper half plane, bounded symmetric
domains with a discrete arithmetic group whose quotient is algebraic). I refer
the interested reader to his book and the bibliography therein.

I have placed a somewhat different emphasis in the present exposition. First,
I assume less of the reader, and start the theory of elliptic functions from
scratch. I do not discuss Hecke operators, but include several topics not covered
by Shimura, notably the Deuring theory of /-adic and p-adic representations;
the application to Thara’s work; a discussion of elliptic curves with non-integral
invariant, and the Tate parametrization, with the applications to Serre’s work
on the Galois group of the division points over number fields, and to the isogeny
theorem; and finally the Kronecker limit formula and the discussion of values
of special modular functions constructed as quotients of theta functions, which
are better than values of the Weierstrass function because they are units when
properly normalized, and behave in a specially good way with respect to the
action of the Galois group.

Thus the present book has a very different flavor from Shimura’s. It was
unavoidable that there should be some non-empty overlapping, and I have
chosen to redo the complex multiplication theory, following Deuring’s algebraic
method, and reproducing some of Shimura’s contributions in this line (with some
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simplifications, e.g. to his reciprocity law at fixed points, and with another proof
for the theorem concerning the automorphisms of the modular function field).

I do not emphasize elliptic curves in characteristic p, except as they arise by
reduction from characteristic 0. Thus I have omitted most of the theory proper
to characteristic p, especially the finer theory of supersingular invariants. The
reader should be warned, however, that this theory is important for the deeper
analysis of the arithmetic theory of elliptic curves. The two appendices should
help the reader get into the literature.

I thank Shimura for his patience in explaining to me some facts about his
research; Eli Donkar for his notes of a course which provided the basis for the
present book; Swinnerton-Dyer and Walter Hill for their careful reading of the
manuscript.

New Haven, Connecticut SERGE LANG

Note for the Second Edition

I thank Springer-Verlag for keeping the book in print. It is unchanged
except for the corrections of some misprints, and two items:

1. John Coates pointed out to me a mistake in Chapter 21, dealing with the
L-functions for an order. Hence I have eliminated the reference to orders at that
point, and deal only with the absolute class group.

2. Thave renormalized the functions in Chapter 19, following Kubert-Lang.
Thus I use the Klein forms and Siegel functions as in that reference. Actually, the
final formulation of Kronecker’s Second Limit Formula comes out neater under
this renormalization.

S. L.
November 1986
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Part One
General Theory



In this part we study elliptic curves, which can be defined by the Weierstrass
equation y? = 4x3 — g,x — g3. We shall see that their complex points form
a commutative group, which is complex analytically isomorphic to a complex
torus C/L, where L is a lattice in C. We study these curves in general, especially
those which are “‘generic”. We consider their homomorphisms, isomorphisms,
and their points of finite order in general. We also relate such curves with
modular functions, and show how to parametrize isomorphism classes of curves
by points in the upper half plane modulo SL,(Z). We constantly interrelate the
transcendental parametrizations with the algebraic properties involved. Our
policy is to tell the reader what is true in arbitrary characteristic (due to Hasse),
and give the short proofs mostly only in characteristic 0, using the transcendental
parametrization.



1 Elliptic Functions

§1. THE LIOUVILLE THEOREMS

By a lattice in the complex plane C we shall mean a subgroup which is free
of dimension 2 over Z, and which generates C over the reals. If w,, w, is a basis
of a lattice L over Z, then we also write L = [w,, w,]. Such a lattice looks like
this:

@,

Fig. 1-1

Unless otherwise specified, we also assume that Im(w,/w,) > 0, i.e. that w,/w,
lies in the upper half plane $ = {x + iy, y > 0}. An elliptic function f (with
respect to L) is a meromorphic function on C which is L-periodic, i.e.

f+ )=/
5



6 ELLIPTIC FUNCTIONS [1, §1]

for all ze C and w € L. Note that f'is periodic if and only if
fiz+w) =12 =1(z+ ).

An elliptic function which is entire (i.e. without poles) must be constant,
because it can be viewed as a continuous function on C/L, which is compact
(homeomorphic to a torus), whence the function is bounded, and therefore
constant.

If L = [w,, w,] as above, and « € C, we call the set consisting of all points

o+ 1wy + t,w,, 01=<1
a fundamental parallelogram for the lattice (with respect to the given basis).
We could also take the values 0 < ¢; < 1 to define a fundamental parallelogram,
the advantage then being that in this case we get unique representatives for
elements of C/L in C.

Theorem 1. Let P be a fundamental parallelogram for L, and assume that

the elliptic function f has no poles on its boundary OP. Then the sum of the

residues of fin P is 0.

Proof.  We have
2ni Y Res f = f(2)dz =0,
apP

this last equality being valid because of the periodicity, so the integrals on
opposite sides cancel each other.
a+w;+wg

atwy

atwg

o Fig. 1-2

An elliptic function can be viewed as a meromorphic function on the torus
C/L, and the above theorem can be interpreted as saying that the sum of the
residues on the torus is equal to 0. Hence:

Corollary. Anelliptic function has at least two poles (counting multiplicities)
on the torus.

Theorem 2. Let P be a fundamental parallelogram, and assume that the
elliptic function f has no zero or pole on its boundary. Let {a;} be the singular
points (zeros and poles) of f inside P, and let f have order m; at a;. Then

Zmi = 0.



[1, §2] THE WEIERSTRASS FUNCTION 7

Proof. Observe that f elliptic implies that ' and f'/f are elliptic. We then
obtain

0= J f'1f(z)dz = 2n /=1 Y, Residues = 2n,/—1 ), m,,
opP
thus proving our assertion.

Again, we can formulate Theorem 2 by saying that the sum of the orders of
the singular points of f on the torus is equal to 0.

Theorem 3. Hypotheses being as in Theorem 2, we have
Y mya; = 0 (mod L).
Proof. This time, we take the integral

/'@, —
LP z 70 dz = 2n/=1) ma,

because

On the other hand we compute the integral over the boundary of the parellelo-
gram by taking it for two opposite sides at a time. One pair of such integrals

is equal to
J\a-f-wl Zfl(z) dz B J‘a+w1+w2 Zf/(z) dz
a f(Z) atwr f(Z) '

We change variables in the second integral, letting ¥ = z — w,. Both integrals
are then taken from « to « + w;, and after a cancellation, we get the value

atwy f/(u) _ .
— W, J\a m du = 27'[\/—1 ka)z,

for some integer k. The integral over the opposite pair of sides is done in the
same way, and our theorem is proved.

§2. THE WEIERSTRASS FUNCTION

We now prove the existence of elliptic functions by writing some analytic
expression, namely the Weierstrass function

1 1 1
XO(Z)=?+ Z[(———"a)‘g],

wel’ | \Z — w)Z



8 ELLIPTIC FUNCTIONS (1, §2]

where the sum is taken over the set of all non-zero periods, denoted by L'.
We have to show that this series converges uniformly on compact sets not
including the lattice points. For bounded z, staying away from the lattice points,
the expression in the brackets has the order of magnitude of 1/|w|3. Hence it
suffices to prove:

1
Lemma. If i > 2, then ), —, converges.
wel’ |CO[ i

Proof. The partial sum for |w] £ N can be decomposed into a sum for w

in the annulus at n, i.e. n — 1 £ |w] £ n, and then a sum for 1 £ n £ N.

In each annulus the number of lattice points has the order of magnitude n.
Hence

1 n

Pl <X

1
" =1

n).

)

lo] SN |(D

which converges for 4 > 2.

The series expression for g shows that it is meromorphic, with a double
pole at each lattice point, and no other pole. It is also clear that g is even, i.e.
#(2) = p(-2)

(summing over the lattice points is the same as summing over their negatives).
We get ' by differentiating term by term,

1
9'(2)= -2 EL = o)
the sum being taken for all w € L. Note that g’ is clearly periodic, and is odd, i.e.
p'(-2) = —p'(2).
From its periodicity, we conclude that there is a constant C such that
Pz + w,) = p) + C.
Let z = —w,/2 (not a pole of p). We get

o(3)-o(-%)+c

and since @ is even, it follows that C = 0. Hence g is itself periodic, something
which we could not see immediately from its series expansion.

It is clear that the set of all elliptic functions (with respect to a given lattice
L) forms a field, whose constant field is the complex numbers.

Theorem 4. The field of elliptic functions (with respect to L) is generated
by o and g .



[1, §2] THE WEIERSTRASS FUNCTION 9

Proof. 1f fis elliptic, we can write f as a sum of an even and an odd elliptic
function as usual, namely

R (ORGP Ot (G0}

If £ is odd, then the product fp' is even, so it will suffice to prove that C(g) is
the field of even elliptic functions, i.e. if fis even, then fis a rational function of .

Suppose that f is even and has a zero of order m at some point u. Then clearly
falso has a zero of the same order at —u because

S®w) = (=1} fO(~uw).
Similarly for poles.

If u= —u(mod L), then the above assertion holds in the strong sense,
namely f has a zero (or pole) of even order at u.
Proof. First note that u = —u (mod L) is equivalent to
2u = 0 (mod L).
On the torus, there are exactly four points with this property, represented by
0 W, W; W5 + @,
2727 2

in a period parallelogram. If fis even, then /" is odd, i.e.

f'w) = =f'(—u).
Since u = —u (mod L) and /"’ is periodic, it follows that f'(#) = 0, so that f has
a zero of order at least 2 at u. If u # 0 (mod L), then the above argument shows
that the function

9(2) = p2) — pW)
has a zero of order at least 2 (hence exactly 2 by Theorem 2 and the fact that p
has only one pole of order 2 on the torus). Then f /g is even, elliptic, holomorphic
at u. If £ (u)/g(u) # O then ord,f = 2. If f(w)/g(u) = O then f /g again has a zero
of order at least 2 at # and we can repeat the argument. If ¥ = 0 (mod L) we
use g = 1/p and argue similarly, thus proving that f has a zero of even order
at w.

Now letu; (i = 1, .. ., r) be a family of points containing one representative
from each class (v, —u) (mod L) where f has a zero or pole, other than the class
of L itself. Let

m; = ord,, f if 2u; # 0(mod L),
m; = %tord,, f if 2u; = 0(mod L).

Our previous remarks show that for aeC, a # 0 (mod L), the function
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@(z) — g(a) has a zero of order 2 at a if and only if 2a = 0 (mod L), and has
distinct zeros of order 1 at ¢ and —a otherwise. Hence for all z # 0 (mod L)
the function

[I1 [9(2) — p(u)]™

has the same order at z as f. This is also true at the origin because of Theorem 2
applied to f and the above product. The quotient of the above product by f is
then an elliptic function without zero or pole, hence a constant, thereby proving
Theorem 4.

Next, we obtain the power series development of g and @’ at the origin,
from which we shall get the algebraic relation holding between these two func-
tions. We do this by brute force.

1 1 2 2 1
p@) =3+ ZL[E(IJF(%JFCB) +) —?]

1 i z\" 1
b 1 — —
22 - w;" mz—;l (m * )(w) wZ
1 0
= ;5 + mgl C2
where
m+1
fm = w;O wm+2
Note that ¢,, = 0 if m is odd.
Using the notation
1
Sm(L) = Sy = m
m§0 w
we get the expansion
1 o 2n
p@) = 3+ X @0+ Dsyue o)z,
n=1

from which we write down the first few terms explicitly:

1
9(z) = — + 35,27 + Ssez* + - -
z

and differentiating term by term,
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-2
0'(z) = — + 654z + 2055z + + - - .
z

Theorem5. Letg, = g,(L) = 60s, and g5 = g5(L) = 140s¢. Then
P2 =40 — 9.0 — gs.
Proof. We expand out the function
9(2) = p'(2)* = 49(2)* + 9:0(2) + g5

at the origin, paying attention only to the polar term and the constant term.
This is easily done, and one sees that there is enough cancellation so that these
terms are 0, in other words, ¢(z) is an elliptic function without poles, and with
a zero at the origin. Hence ¢ is identically zero, thereby proving our theorem.

The preceding theorem shows that the points (¢(z), '(2)) lie on the curve
defined by the equation

y:=4x> — g,x — gs.

The cubic polynomial on the right-hand side has a discriminant given by

A = g3 — 2743

We shall see in a moment that this discriminant does not vanish.
Let
W; .
e = 50(?>, i=1,2,3,

where L = [w,, w,] and w; = w,; + w,. Then the function

h(z) = p(z) — ¢;
has a zero at w,;/2, which is of even order so that p'(w;/2) = 0fori = 1,2, 3,

by previous remarks. Comparing zeros and poles, we conclude that

P'22) = Hp(2) — e)(p2) — e)(p(2) — es).

Thus e,, e,, e5 are the roots of 4x> — g,x — g;. Furthermore, g takes on the
value e; with multiplicity 2 and has only one pole of order 2 mod L, so that
e; # e; for i # j. This means that the three roots of the cubic polynomial are
distinct, and therefore

A =g3 — 21g3 # 0.
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§3. THE ADDITION THEOREM

Given complex numbers g,, g, such that g3 — 2793 # 0, one can ask
whether there exists a lattice for which these are the invariants associated to the
lattice as in the preceding section. The answer is yes, and we shall prove this in
chapter 3. For the moment, we consider the case when g,, g5 are given as in the
preceding section, i.e. g, = 60s, and g3 = 140s.

We have seen that the map

z (1, 9(2), 9'(2))
parametrizes points on the cubic curve 4 defined by the equation

y?=4x? — gox — gs.
This is an affine equation, and we put in the coordinate 1 to indicate that we
also view the points as embedded in projective space. Then the mapping is
actually defined on the torus C/L, and the lattice points, i.e. O on the torus, are
precisely the points going to infinity on the curve. Let A¢ denote the complex
points on the curve. We in fact get a bijection

C/L — {0} » Ac — {0}
This is easily seen: For any complex number «, ¢(z) — « has at most two zeros,
and at least one zero, so that already under g we cover each complex number a.
It is then verified at once that using ' separates the points of C/L lying above x,
thus giving us the bijection. If you know the terminology of algebraic geometry,
then you know that the curve defined by the above equation is non-singular,
and that our mapping is actually a complex analytic isomorphism between
C/L and Ac.

Furthermore, C/L has a natural group structure, and we now want to see
what it looks like when transported to A. We shall see that it is algebraic. In
other words, if

Py = (x1, y1), P, = (x3, y2)s Py = (x3, ;)
and
Py =P, + P,
then we shall express x;, y3 as rational functions of (x,, y;) and (x5, y,). We
shall see that P is obtained by taking the line through P,, P,, intersecting it
with the curve, and reflecting the point of intersection through the x-axis, as
shown on Fig. 3.

Select u,, u, € C and ¢ L, and assume u; # u, (mod L). Let a, b be complex

numbers such that

§'(uy) = ap(u,) + b

$'(uy) = ap(u,) + b,
in other words y = ax + bis the line through (¢ (uy), '(vy)) and (p(u), ' (u,)).
Then

©'(z) — (ap(2) + b)
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has a pole of order 3 at 0, whence it has three zeros, counting multiplicities,
and two of these are at u, and u,. If, say, u, had multiplicity 2, then by Theorem
3 we would have

2u; + u, = 0(mod L).

Pl
N

P3=P;+Py

Fig. 1-3

If we fix u,, this can hold for only one value of u,. Let us assume that we do
not deal with this value. Then both u,, u, have multiplicity 1, and the third
zero lies at

us; = —(u, + u,) (mod L)

again by Theorem 3. So we also get

9'(u3) = ap(us) + b.
The equation
4x3 — g,x — g — (ax + b2 =0

has three roots, counting multiplicities. They are @(u,), $(u,), #(u3), and the
left-hand side factors as

Hx — pu))x — p))(x — Pus)).

Comparing the coefficient of x? yields
2

o) + puy) + pus) = %—.

But from our original equations for a and b, we have

a(p(u,) — ps)) = 9'u) — 9'(uy).
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Therefore from

PWs) = (= + uy)) = pu, + uy)
we get

p'(uy) — so’(uz))z

1
Py + ux) = —p(uy) — puy) + ‘( Pu,) — p(u,)

4
t
or in algebraic terms,
‘ 1y, — v, \°
= —=X; — X, + o — .
s ! 2 4<x1 — X,
Fixing u,, the above formula is true for all but a finite number of u, # u; (mod L).
whence for all u, # u, (mod L) by analytic continuation.
For u, = u, (mod L) we take the limit as u; — u, and get

so”(u)>2
P'w)

p(20) = ~2000 +

These give us the desired algebraic addition formulas. Note that the formulas
involve only g,, g3 as coefficients in the rational functions.

This is as far as we shall push the study of the g-function in general, except
for a Fourier expansion formula in Chapter 4. For further information, the
reader is referred to Fricke [B2]. For instance one can get formulas for gp(nz),
one can get a continued fraction expansion (done by Frobenius), etc. Classics
like Fricke still contain much information which has not yet reappeared in more
modern books, nor been made much use of, although history shows that every-
thing that has been discovered along those lines ultimately returns to the center
of the stage at some point.

§4. ISOMORPHISM CLASSES OF ELLIPTIC CURVES

Theorem 6. Let L, M be two lattices in C and let

A CIL - C/IM
be a complex analytic homomorphism. Then there exists a complex number o
such that the following diagram is commutative.

C —> C

-y

C/L—> C/M
A
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The top map is multiplication by «, and the vertical maps are the canonical
homomorphisms.

Proof. Locally near 0, A can be expressed by a power series,
Nz) = ag + a,z + az* + -+ -,

and since a complex number near O represents uniquely its class mod L, it
follows from the formula

Mz + 2') = Az) + Az') (mod M)
that the congruence can actually be replaced by an equality. Hence we must have
AMz) = a,z,
for z near 0. But z/n for arbitrary z and large » is near 0, and from this one
concludes that for any z we must have

AMz) = a,z (mod M).
This proves our theorem.

We see that 4 is represented by a multiplication «, and that
ol = M.

Conversely, given a complex number « and lattices L, M such that «L < M,
multiplication by « induces a complex analytic homomorphism of C/L into C/M.

Two complex toruses C/L and C/M are isomorphic if and only if there
exists a complex number o such that aL. = M. We shall say that two lattices
L, M are linearly equivalent if this condition is satisfied. In the next chapter,
we shall find an analytic invariant for equivalence classes of lattices.

By an elliptic curve, or abelian curve 4, one means a complete non-singular
curve of genus 1, and a special point O taken as origin. The Riemann-Roch
theorem defines a group law on the group of divisor classes of 4. Actually, if
P, P’ are points on A, then there exists a unique point P” such that

(P) + (P') ~ (P") + (0),

where ~ means linear equivalence, i.e. the left-hand side minus the right-hand
side is the divisor of a rational function on the curve. The group law on 4 is
then P + P’ = P”. In characteristic # 2 or 3, using the Riemann-Roch theorem,
one finds that the curve can be defined by a Weierstrass equation

¥ =4x® — g,x — g,
with g,, g5 in the ground field over which the curve is defined. Conversely, any
homogeneous non-singular cubic equation has genus 1 and defines an abelian
curve in the projective plane, once the origin has been selected. These facts
depend on elementary considerations of curves. A curve defined by equations in
projective space is said to be defined over a field & if the coefficients of these
equations lie in k. For the Weierstrass equation, this means g,, g; € k.
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For our purposes, if the reader is willing to exclude certain special cases, it
will always suffice to visualize an elliptic curve as a curve defined by the above
equation, with the addition law given by the rational formulas obtained from the
addition theorem of the g function. The origin is then the point at infinity.
If A4 is defined over k, we denote by A4, the set of points (x, y) on the curve with
x, y € k, together with infinity, and call it the group of k-rational peints on the
curve. It is a group because the addition is rational, with coefficients in £.

If A, B are elliptic curves, one calls a homomorphism of 4 into B a group
homomorphism whose graph is algebraic in the product space. If i: 4 — B is
such a homomorphism, and the curves are defined over the complex numbers,
then A induces a complex analytic homomorphism also denoted by A,

At Ac = Bg,
viewing the groups of complex points on 4 and B as complex analytic groups.
Suppose that the curves are obtained from lattices L and M in C respectively,
i.e. we have maps
¢:C/IL — A¢ and y:C/M - B¢

which are analytic isomorphisms. As we saw above, our homomorphism 1 is
then induced by a multiplication by a complex number.

Conversely, it can be shown that any complex analytic homomorphism
y: C/L — C/M induces an algebraic one, i.e. there exists an algebraic homo-
morphism A which makes the following diagram commutative.

C/L ——> C/M

‘| ¥

Ac —> Bc
2

We shall make a table of the effect of an isomorphism on the coefficients
of the equations for elliptic curves, and their coordinates.

Let us agree that if 4 is an elliptic curve parametrized by the Weierstrass
functions, for the rest of this section,

¢A: C/L i d AC
is the map such that
p4(2) = (1, p(2), p'(2)).
The g function depends on L, and we shall denote it by
p(z, L).
Similarly for g’(z, L). These satisfy the homogeneity property
@(cz, cL) = ¢ 2p(z, L) and @'(cz,cl) = ¢ 3p'(z, L)

foranyce C, c # 0.
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Suppose that we are given two elliptic curves with parametrizations
@4:C/L — A¢ and ¢g: C/M — B,
and suppose that
M = cL,
so that the curves are isomorphic, with an isomorphism
A:A—> B

induced by the multiplication by ¢. Then the coefficients g,, g5 of these curves
satisfy the transformation

ga2(cL) = c*g,(L)

ga(cL) = ¢ °g5(L).
We let x, and x5 denote the x-coordinate in the Weierstrass equation satisfied
by the curves, respectively. Thus in general,

x(¢(2)) = p(2),
and similarly

Wo(2)) = p'(2).

If Pis a point on A4, then the homogeneity properties of the Weierstrass functions
can then be expressed purely algebraically by the formulas

xg(MP)) = c?x,(P)  and  y(A(P)) = c’y4(P).

These same formulas are valid in all characteristic # 2 or 3, and one can
give purely algebraic proofs. In other words:

Suppose that A, B are elliptic curves in arbitrary characteristic # 2, 3 and in
Weierstrass form, defined by the equations

y:=4x* — g,x — g3
and

yi=4x* — gix — g}
respectively. Let A: A — B be an isomorphism, defined over a field k. Then
there exists ¢ € k such that

g2 = %92, g5 =c’9s
and if the points (x, y) and (x', y") correspond under A then
x'=c*x and y = 3.
One can then define purely algebraically the invariant
g3
93 — 2793°
and using the above quoted result (proved in characteristic O by transcendental

Jy=
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means) we see at once that A4 is isomorphic to Bif and only if J, = Jg (in charac-
teristic ¢ 2 or 3). We shall later study the analytic properties of this function J.
The above discussion also shows:

If A, B are elliptic curves over a field k of characteristic # 2, 3, and if they
become isomorphic over an extension of k, then they become isomorphic over
an extension of k, of degree < 6.

Proof. We put the elliptic curves in Weierstrass form as above. Then for
some element ¢ in the extension of k, we see that ¢* = g3/g, (if g, # 0) and
c® = g4/g; (if g} # 0). Thus the isomorphism is defined over an extension of
degree 6, and even an extension of degree 2 if g5 g3 # 0.

Example. There are a couple of examples with the special values of ¢ taken as
i and —p, where p = €2™/3, which are important. Suppose that A4 is given in
Weierstrass form. Then multiplication by i on C induces the following changes:

(x, y) = (=x, iy), g2 92 g3t —gs.
Muitiplication by — p induces the following changes:

x, )= (px, =y) G2 P92 g3 g
In particular, if g; = 0, then we see that the curve admits i as an automorphism
and if g, = 0, we seen that it admits —p as an automorphism.

In arbitrary characteristic, Deuring gave a complete description for the
cases which can arise [4], and he also gives normal forms replacing the Weier-
strass form [8]. A short “‘formulaire” in this direction was made available
recently by Tate. It has been useful to many people, and is reproduced as an
appendix. I thank Tate for letting me print it here for the first time.

Given a value for j, we can always find an equation for an elliptic curve with
invariant j defined by a Weierstrass equation

y:E=4x —cx — ¢
with
c? c
T3 —27¢t T ¢ =21

which we can solve for ¢, namely

21J
‘Titv
provided that J s 0, 1. The two cases corresponding toJ = 0, 1 are then special,
and are associated with the values i, p in the upper half plane. From the algebraic
point of view, the above equation “‘parametrizes’ universally all elliptic curves
(in characteristic # 2, 3) with J-invariant 5 0, 1, i.e. such curves can be obtained
by specializing the generic equation.
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For the two special values, one can select a number of models, e.g.
y? = 4x3 — 3x, for J =1,
y? =4x3 — 1, for J=0.

By a suitable normalization, one can define a function on an elliptic curve
closely related to the x-function, but which is invariant under isomorphisms.
Namely, if g,g; # 0, we define the first Weber function

9293
=T
The above relations immediately show that /1, is invariant under isomorphisms
of A. When g, or g5 # 0 we take:

hi

2
922

h% = N if g;=0,
) .
h3 = szi if g,=0.

We shall see later that the Weber functions play an important role in analyzing
the fields generated by points of finite order on the curve.

Occasionally it is useful to normalize the Weber functions so that certain
power series expansions have integral coefficients. In this case, one takes for the
first Weber function the expression

9293
—2735 220,
A X
The reader should keep in mind that except for the elegance of language, in
what follows, this normalization will not be used, and wherever he sees such
a normalization, he can forget about the factor —273%. The important thing

will be that except for that factor, the power series involved have integral co-
efficients, and this will be enough.

§5. ENDOMORPHISMS AND AUTOMORPHISMS

If L = M, we get all endomorphisms (complex analytic) of C/L by those
complex « such that aL < L. Those endomorphisms induced by ordinary
integers are called trivial. In general, suppose that L = [w,, w,] and «L < L.
Then there exist integers a, b, ¢, d such that

aw; = aw, + bw,,

W, = cw; + dw,.
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Therefore a is a root of the polynomial equation

X —a ~b
—c x-—d*O’

whence we see that o is quadratic irrational over Q, and is in fact integral over Z.
Dividing aw, by w,, we see that
o = ct + d,
where 1 = w,/w,. Since w;, w, span a lattice, their ratio cannot be real. If
o is not an integer, then ¢ # 0, and consequently
Q) = Q(a).
Furthermore, o is not real, i.e. « is imaginary quadratic.

The ring R of elements a € Q(z) such that «aL < L is a subring of the quad-
ratic field £ = Q(z), and is in fact a subring of the ring of all algebraic integers
o, in k. The units in R represent the automorphisms of C/L. It is well known and
very easy to prove that in imaginary quadratic field, the only units of R are
roots of unity, and a quadratic field contains roots of unity other than +1 if
and only if

k=QW-1) or k=QG-3.

If R contains i = \/—_1, then R = Z{[i] is the ring of all algebraic integers in k,
which must be Q(i). If R contains a cube root of unity p, then R = Z[p] is the
ring of all algebraic integers in k, which must be Q(\/———?a). The units in this ring
are the 6-th roots of unity, generated by —p.

We may view the Weber function as giving a mapping of 4 onto the pro-
jective line, and we shall now see that it represents the quotient of the elliptic
curve by its group of automorphisms.

Theorem 7. If an elliptic curve A (over the complex numbers) has only +1

. as its automorphisms, let the Weber function be given for a curve isomorphic
to A, in Weierstrass form, by the formula

h(x,y) = gzg3x-
If A admits i as an automorphism, let the Weber function be
2
g2 2
h(x,y) = ==
(x, y) = 5%
and if A admits p as an automorphism, let the Weber function be
g3 3
h(x, y) = ==x°.
(x,7) = 2x

Let P, Q be two points on A. We have h(P) = h(Q) if and only if there exists
an automorphism ¢ of A such that ¢(P) = Q.
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Proof. We may assume that 4 is in Weierstrass form. In the first case,
the only non-trivial automorphism of 4 is such that
(I) (X, y)H(x’ _y))
and it is then clear that /4 has the desired property. If on the other hand A4
admits / as an automorphism, then multiplication by i in C/L corresponds to the
mapping on points given by
(2) (x,y)H(~x, ly)a
and it is then clear that x2(P) = x?(Q) if and only if P, Q differ by some auto-
morphism of 4. Finally, if 4 admits p as an automorphism, then multiplication
by-p in C/L corresponds to the mapping on points given by
(3) (X, J’)*“’(Px’ _y)’

and it is again clear that x3(P) = x3(Q) if and only if P, Q differ by some auto-
morphism of A4, as was to be shown.



2 Homomorphisms

§1. POINTS OF FINITE ORDER

Let A be an elliptic curve defined over a field k. For each positive integer N
we denote by Ay the kernel of the map

t— Nt, te A,

ie. it is the subgroup of points of order N. If A is defined over the complex
numbers, then it is immediately clear from the representation A¢ ~ C/L that

Ay ~ Z/NZ x Z/NZ.

. . o . .1
The inverse image of these points in C occur as the points of the lattice —L,

N
and their inverse image in C/L is therefore the subgroup
1
NL/L « C/L.
Let
@:C - Ac

be an analytic representation of Ac as C/L, and let L = [w,, w,]. If we let

o) e n=ef%),

then {7, t,} form a basis for 4y over Z/NZ, i.e. Ay is the direct sum of the
cyclic groups of order N generated by ¢, and ¢,, respectively.

If the elliptic curve is defined over a field of characteristic zero, say k, then
we can embed & in C and apply the preceding result.

In general, suppose that A is defined over an arbitrary field k. Let 6 = §,
be the identity mapping of 4. Then NJ is an endomorphism of A. Hasse has
shown algebraically that if N is not divisible by the characteristic, then N§ is
separable and its kernel has exactly N? points, in fact again we have

Ay ~ Z/NZ ® Z/NZ.
23
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If p is the characteristic, and p/N, then the map may be inseparable, but is still
of degree N2, cf. [17]. This will be discussed later.

Let 4 be an elliptic curve defined over a field k and let K be an extension of k.
Let ¢ be an isomorphism of K, not necessarily identity on k. One defines A¢
to be the curve obtained by applying ¢ to the coefficients of the equation defining
A. For instance, if 4 is defined by

yi=4x> — gx — gs,
then A7 is defined by
y? =4x> — gix — g5.
If P, Q are points of 4 in K, then we have the formula
(P+ Q)Y =P + Q°.

The sum on the left refers to addition on A4, and the sum on the right refers to
addition on A°. This is obvious because the algebraic addition formula is given
by rational functions in the coordinates, with coefficients in k. Of course, if
P = (x, ), then P* = (x°, y°) is obtained by applying ¢ to the coordinates.

In particular, suppose that P is a point of finite order, so that NP = O.
Since O is rational over &, we see that for any isomorphism ¢ of K over k we
have NP’ = O also, whence P? is also a point of order N. Since the number of
points of order N is finite, it follows in particular that the points of 4, are
algebraic over k (i.e. their coordinates are algebraic over k).

If P = (x, y), we let k(P) = k(x, y) be the extension of k obtained by ad-
joining the coordinates of P. Similarly, we let

k(Ay)
be the compositum of all fields k(P) for P e Ay. Of course, we view all points
of finite order as having coordinates in a fixed algebraic closure of &, which we
denote by “k or k,.

The above remarks show that the Galois group Gal(k,/k) operates as a
permutation group of 4. Consequently k(Ay) is a normal extension of k, and
is Galois if N is not divisible by the characteristic of k. We call k(4y) the field of
N-division points of 4 over k.

Furthermore, if ¢ is an automorphism of k(4y) over k, and if we let {r, t,}
be a basis of Ay over Z/NZ, then o can be represented by a matrix

a b
¢ d
ot,\ _fat, + bt;\ _ fa b\t
O'tz - Ctl -+ dtz - c d t2 ’
Thus we get an injective homomorphism
Gal(k(4y)/k) — GL,(Z/NZ).

such that
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It is a basic problem of elliptic curves to determine which subgroup of GL,
is obtained, for fields k, which are interesting from an arithmetic point of view:
Number fields, p-adic fields, and the generic case, which will be treated later.

§2. ISOGENIES

We shall now relate points of finite order and homomorphisms of elliptic
curves. Let 4, B be elliptic curves and let

AiA— B

be a homomorphism (algebraic). If 1 s 0, then the kernel of 4 is finite. The
algebraic argument is that both A4, B are algebraic curves, so of dimension 1,
and hence 1 must be generically surjective, so of finite degree. Over the complex
numbers, we have a simple analytic argument. Indeed, if 4c =~ C/L and
Bc ~ C/M, then / is represented analytically by multiplication with a complex
number « such that ol = M, so that L < «~'M. The kernel of the homo-
morphism
C/L->C/M

induced by 4 is precisely «a~'M/L, which is finite, because both a~'M and L
are of rank 2 over Z.

We let Hom(4, B) be the group of homomorphisms of A4 into B. Let
4 e Hom(4, B) and 4 # 0. Then n/. # 0 for any integer n # 0. This is obvious
in characteristic O from the analytic representation, and is provable algebraically
in any characteristic. If [" is the graph of 4, then for any point Q € B we have

N
ATHQ) = ;1 (P) = proj, (I' - (4 x Q)),

the sum being a formal sum, and the inverse image being taken counting multi-
plicities which can be defined algebraically. However, don’t worry about these
for the most part because in characteristic 0, or if N is not divisible by the
characteristic, then the multiplicities are 1, and the P; are simply all the points
in the set theoretic inverse image of Q by /. Over the complex numbers, they are
represented by a—'M/L in the notation of the above paragraph. We call N the
degree of A, denoted by v(4) or deg /.

If v(1) = N, then there always exists a homomorphism
u:B—- A
such that p o 2 = ul = Né.

The analytic proof is obvious. Viewing 4 as a homomorphism of C/L into
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C/M, let L'/L be its kernel. Then L'/L has order N and L' < -]{—]L. Therefore we

have a canonical homomorphism
1
C/M - C / —L
M=Cly
such that the composite homomorphism
C/L 5 M > C/—I—L
N
has kernel %L/L, which represents Ay in C/L. Now we have an isomorphism
C /]%JL XL
given by multiplication with N, and the composite
C/M - C/JNL LYel}
is the desired homomorphism p.

Note that ud = NJ,, but that we also have iy = Ndjy, because
(Au — No)o A = 0,
and J is surjective.
Since Hom(4, B) has characteristic 0, we can form the tensor product
Q ® Hom(4, B) = Hom(4, B)q,

i.e. introduce integral denominators formally. Then any non-zero element of
Hom(4, B)g has an inverse in Hom(B, A)q. In fact, if 1€ Hom(4, B) is of
degree N, then

= N/":

where p is the element of Hom(B, A) such that ud = N&.

We let End(4) = Hom(4, 4).

Proposition 1. If End(4) or End(B) ~ Z, then either Hom(A4, B) = 0

or Hom(4, B) ~ Z.

Proof. Say End(4) ~ Z and suppose that there exists some homomorphism
A:A - B, A # 0. Let Ax = NS. The map

o> O

gives a homomorphism of Hom(4, B) into End(A4), and this homomorphism
must be injective, for if ux = 0, then No = Auo = 0, whence « = 0. This
proves our proposition.
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Two elliptic curves 4, B are called isogenous if there exists a homomorphism
from A4 onto B, and such a homomorphism is called an isogeny.

Proposition 2. If A, B are isogenous and End(A4) ~ Z, then End(B) ~ Z.
Assuming that this is the case, if there exists an isomorphism A: A — B, then
there is only one other isomorphism from A onto B, that is —A.

Proof. The argument is similar to that of Proposition 1, and is clear.

Let g be a finite subgroup of A. Then there exists a homomorphism
Ai:A—> B
whose kernel is precisely g, and in characteristic > 0 we can take A to be

separable, so that A satisfies the universal mapping property for homo-
morphisms of A whose kernel contains g.

Again, over the complex numbers, this is obvious using the analytic representa-
tion. We sometimes write B = A/g.

Proposition 3. Assume that End(4) ~ Z and let g, g’ be finite subgroups

of A, of the same order. Then A|g ~ Alg' if and only if g = g'.

Proof. Let A: A/g — A/g’ be an isomorphism, and let

a: A — Alg and a'tA— Alg’
be the canonical maps. Then
deg(Aoa) = dega = ordg = ordg’ = dega’.
Thus Ax and o’ have the same degree. Since Hom(4, 4/g’) =~ Z, it follows that
A= + o,

whence «, o’ have the same kernel, i.e. ¢ = g’. The converse is of course obvious.

Let 2: 4 — B be an isogeny defined over a field K. Let ¢ be an isomorphism
of K. The graph of 1 is an algebraic variety, actually an elliptic curve isomorphic
to 4, and we can apply o to it. If P € Ak is a K-rational point of A, then we have
the formula

MP) = A°(P9).
Furthermore, the association 4 + A% is an isomorphism
Hom(A4, B) - Hom(4°, B°).
These are elementary algebraic facts which we take for granted. Furthermore,
suppose that A is defined over a field k and that g is a finite subgroup of 4 such
that the cycle
> (P)

Peg
is rational over k. Then we also take for granted that A/g is defined over k and
that the canonical homomorphism

ArA — Alg
is defined over k.
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§3. THE INVOLUTION

Leta: A — A be an endomorphism of 4. We denote by o’ the endomorphism
such that
ao’ = a'a = v(a)d,
where v(a) is the degree of «. It is clear that if «, f € End(4) then
(@f) = po’.
Hasse proved algebraically in general that (« + ) = «' + f', so that
oo
is an anti-automorphism of End(A4). The proof in the complex case is easy as
usual. Indeed, suppose that A. ~ C/L as before. Then we may view « as a
complex multiplication, such that «L < L, and the degree of « satisfies
v() = (L : al),

i.e. it is the index of L in L. Furthermore, this index is the determinant det(),
viewing « as an endomorphism of L, as free module of rank 2 over Z. If o is
non-trivial, we have already seen in Chapter 1, §5, that Q(x) is imaginary
quadratic, and the multiplication by « in L is the regular representation of the
quadratic field. Hence

o = v(a)o?

is the complex conjugate of «, and v(«) is the norm of «.



3 The Modular Function

§1. THE MODULAR GROUP

By SL, we mean the group of 2 x 2 matrices with determinant 1. We write
SL,(R) for those elements of SL, having coefficients in a ring R. In practice,
the ring R will be Z, Q, R. We call SL,(Z) the modular group.

If L is a lattice in C, then we can always select a basis, L = [w,, w,] such
that w,/w, = 7is anelement of the upper half plane, i.e. has imaginary part > 0.
Two bases of L can be carried into each other by an integral matrix with de-
terminant + 1, but if we normalize the bases further to satisfy the above con-
dition, then the matrix will have determinant I, in other words, it will be in
SL,(Z). Conversely, transforming a basis as above by an element of SL,(Z)
will again yield such a basis. This is based on a simple computation, as follows.
If

is in GL,(R), i.e. is a real non-singular matrix, and Im(z) > 0, then
az +b (ad — bc)Im (2)
cz+d lcz + d|?

Im

We denote by $ the upper half plane, i.e. the set of complex numbers z with
Im z > 0. If o is a matrix as above, in GL3 (R), (i.e. « has positive determinant),
then we see that the element
_az+b

*(z) cz +d

also lies in ©, and one verifies by brute force that the association
(a,2) = a(z) = az

defines an operation of GL3(R) on §, i.e. is associative, and the unit matrix

operates as the identity. In fact, all diagonal matrices al (a € R) operate trivially,
29
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especially 4 1. Hence we have an operation of SL,(R)/+1 on §. For « € SL,(R),

we have the often used relation
Imz
I = e
ma(2) = e

If fis a meromorphic function on §, then the function f o « such that

(fou)z) = f(az)
is also meromorphic.

We let I' = SL,(Z), so that " is a discrete subgroup of SL,(R). By a
fundamental domain D for I' in § we shall mean a subset of $ such that every
orbit of I" has one element in D, and two elements of D are in the same orbit
if and only if they lie on the boundary of D.

Theorem 1. Let D consist of all z€ H such that
—1<Rez=<i and |z}

Then D is a fundamental domain for U in $. Let

11 0 -1
T=<0 1) and S=(1 0).
Then S, T generate T'.
Proof. We illustrate D on Fig. 1.

IV

i
i
i
|
|
i
i
2

Fig. 3-1

On Fig. 1 we have indicated i and also the points where the vertical lines meet
the circle of radius 1. The left-hand point is
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p = i3 = -1 +\/‘"3,
2
i.e. the cube root of unity.

Let T be the subgroup of T generated by S and 7. Note that —1 = S? lies
in I'". Given z € §, iterating T on z shows that the orbit of z under powers of T’
contains an element whose real part lies in the interval [—3, 3]. The formula
giving the transformation of the imaginary part under I shows that the imaginary
parts in an orbit of I' are bounded from above, and tend to 0 as max(|c|, [4])
goes to infinity. In the orbit Iz we can therefore select an element w whose
imaginary part is maximal. If [w] < 1 then Sw e I’z and has greater imaginary
part, so that |w| = 1.

Next we prove that if z, z’ € D are in the same orbit of T, then they arise
from the obvious situation: Either they lie on the vertical sides and are translates
by 1 or — 1 of each other, or they lie on the base arc and are transforms of each
other by S. We shall also prove that they are in the same orbit of I"".

Fig. 3-2

If «(z) = z’, the arguments will also determine «, which in particular will be seen
to liein I'". Say Im z’ = Im z, and z’ = a(z) where

L b
“\e d/°
Multiplying « by — 1 if necessary, we may assume that ¢ = 0. From the formula

for imaginary parts, we see that
ez +d| £ 1.

Since Im z = +/3/2, we must have lc\/§/2| Z<lsoc=0orl.

If ¢ = 0, then
_ (1 b — Tb
0(_< 1>__1,

and az € D implies that b = +1, so we are in the obvious situation.
Ifc=1,thend =0o0ord= +1.1f d = 0, then

a -1 1
oc=<1 0>=TS, and a(z)—a——z.
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In this case |z| = 1, whence Sz also lies in D on the arc, and so z must be at the
end points, i.e. z = p or z = Sp. It is then clear that a = +1. If d = +1, then
|z + d| £ 1, and again obviously we have z = p or z = Sp. Say z = p. If

d =1, then
w=(" a—1
—\1 1 ’

and ap) = pora(p) = p + 1. Say a(p) = p + 1. Then
' 1
wp)=TSp=a— ——=p+ 1.
(p) p P el

But —1/(p + 1) = p, so that a = 1, and « = —TST, so we are in one of the
“obvious’’ cases. The other possible cases are treated similarly.

We have therefore shown that every orbit of the group generated by S, T
has a representative in D, and also that if z, z’ lie in D and z’ = az witha eI,
then in fact « € I'", and the situation is an “obvious” one.

To show that S, T generate T, let « € T, and take an element z in the interior
of D. There exists o’ € I"” such that a’az € D. By the above, and since z is not
on the boundary of D, it follows that «'az = z. Again since z is not on the
boundary, it follows thata’a = =+ 17, whencealiesinI”, and our theorem is proved.

Remark, We also have that S? = (ST)® = I, and that {S}, {ST} are the
isotropy groups of i and p, respectively. For all points which are not in an orbit

of i or p, the isotropy groupis + I. This follows at once from the arguments used
to prove the theorem.

§2. AUTOMORPHIC FUNCTIONS OF DEGREE 2«

Let $ be the upper half plane again, let B > 0, and let H; be the set of
complex numbers z with Im z > B. The map

Z e2niz =q,

defines a holomorphic map from $j to the punctured disc of radius e—3"5,
i.e. the disc from which the origin is deleted. Furthermore, if $5/T denotes the
quotient space of $ modulo translations by integers (essentially a cylinder),
then g induces an analytic isomorphism between $ /7 and this punctured disc
(trivial verification, since for z = x + iy, we have

e2m’z — e2ﬂix e-2ny.)

Consequently a meromorphic function f on $5 which has period 1, i.e. is in-
variant under 7, induces a meromorphic function f* on the punctured disc.
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A necessary and sufficient condition that f* be also meromorphic at 0 is that
there exist some positive integer N such that f*(¢g)¢" is bounded near 0. If this
is the case, then f * has a power series expansion

0

f*q) = _ZN nq".
We shall say that f is meromorphic (resp. holomorphic) at infinity if f* is mero-

morphic (resp. holomorphic) at 0. By abuse of notation in this case, we also
write

f=1Y cq
=N

and call this the g-expansion of f at infinity. The coefficients ¢, are called the

Fourier coefficients of 1. If c_, # 0, we call — N the order of f at infinity, and

denote it by v f. For any ze $ we let the order of f at z be denoted by v_f.
Let M be the field of meromorphic functions on § and let

we(? b
“\e d
be in I' = SL,(Z). For fe M and an integer k = 0, define

(Tf )2) = f((2))ez + d)2~.

It is easily seen that this defines an operation of SL,(Z) on 9. We say that f
is automorphic of weight 2k, or of degree 2k, if T\(«)f = f for all « e I, and if
fis also meromorphic at infinity. Note that translation by 1 leaves f invariant,
so our definition makes sense. The condition T, (x)f = f also reads

f(@(2) = (cz + D)*f (2).

Remark. The literature is split on the convention whether to say of weight k
or 2k. The terminology of weight & is appropriate if one realizes that the con-
dition can be interpreted to mean that the action of « leaves the differential form
f(2)(dz)* invariant.

Theorem 2. Let [ be automorphic of weight 2k, f # 0. Then

V(1) + 20 4 )+ % wl) =K.

P#ip

The sum is taken over all points P of the upper half plane mod I', not in the
orbit of p or i.

Proof. We integrate f'/f along the contour of Fig. 3(a), but modified by
taking small arcs around the possible poles on the boundary, as on Fig. 3(b).
For simplicity we phrase the proof under the assumption that f has no pole or
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zero on the edges other than at i or p, which are the most subtle possibilities.
We have

1 [, 1 ~ _
Eff/fdz = %fdlogf—— Y Residues
= P; ve(f).

We shall now compute the integral over the top, sides, arcs around the corners,
arc around i, and the main arcs on the bottom circle.

—
L] \ B>A<D’
B/C CID

(a) (b)

Fig. 3-3

Under the g-change of variables, the top segment between £ and A trans-
forms into the circle centered around the origin, clockwise. The integral over
the top therefore gives

_voo(f)'

The integral over the left vertical side downward, plus the integral over the
right vertical side upward yields 0 by the periodicity of f.

The integral around p over the small arc is equal to

1 (¥
— J dlog f.
27” B
We make the translation of p to 0, and thus suppose we consider a function also
denoted by f near the origin, with power series expansion

f@=c2"(1 + ).
Then

f'z) _m

— + holomorphic terms.

f@ oz
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As the radius of the small circle tends to 0, the integral of the holomorphic
terms tend to 0. Integrating over an arc tending to /3 in the clockwise direction,
and taking the limit as the radius tends to 0 yields the value —m/6. We get a
similar contribution on the small circle around - p, whence the contributions
from these two small circles yield

—3vo(f)

The same argument for the small arc around i shows that we get a con-
tribution of

— i)

There remains to compute the integrals over the main arcs

C D
J‘ + f ‘
B’ c’

The map S transforms the arc B'C to the arc DC’. By definition,
f(Sz) = 22 (2),

and
df(52) = f’(Sz)i2 = z2f'(2) + 2kz* 71 f(2).
dz z
Since
f" fo (TS
c fw) c f(S2) ’
and

1 f'(Sz) _ f'(2) N 2k

2 fS2) f 2’
we see that the integral over the second arc has one term which cancels the
integral over the first arc, plus another term which is

1 (€ 2k
- —dz
2ni | p z

and approaches 2k/12 = k/6.
Putting all these contributions together proves our theorem.

Examples. They are constructed by using the following remark.

There is a bijection between functions of lattices, homogeneous of degree
—2k, i.e. satisfying

G(AL) = 2~**G(L), AeC, 4 #0,
and functions g on 9 satisfying the condition
9(@(2)) = (cz + d)**¢(2).
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The bijection is obtained as follows. Given a function G homogeneous of
degree — 2k, we let

o) = 60 = 6().

where by G(z, 1) we mean the function G evaluated at the lattice [z, 1]. It then
follows at once that
9(«(2)) = (cz + d)**g(2).
Conversely, given a function g satisfying this condition, define

z

G(z, 1) = G(l) = ¢(2),
and for any lattice L = [w,, w,] define
G(L) = w3 *g(w,]w,).

Then again it follows at once that G(AL) = A-**G(L).
The fact that G is a function of lattices can be written in our vertical

notation as
o{2)-{42)
@, @
for any a € SL,(Z).
It is convenient to use the same symbol for the function of two variables
and one variable, so that we shall also write

9(z) = g(z, 1) = g(f) .

An automorphic function of weight 2k is called an automorphic form (of
weight 2k) if it is holomorphic on $ and at infinity. The special examples we
now give will be of this type. In the next section, we construct an automorphic
function of weight 0, holomorphic on $ but not at infinity.

Consider the functions

1
Sy (L) = 8,5, = ——
2k 2k m;o ka
Then the function

1
Gf2) = Y e
* ommy£(0,0) (M2 + n)*
is obviously holomorphic on §, and substituting z = oo formally gives
1
Gyo0) = ¥ 5 = 2£(2K).
nz0 Ml

We shall actually get the g-expansion for G, later, and see that G, is holomorphic
at infinity, with the above value. Hence G, is an automorphic form of weight 2k,
and non-vanishing at infinity.
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Let M, be the set of automorphic forms of weight 2k. Then M, is a vector
space over C. It is clear that
MM, = My,
The direct sum

[ M,
k=0

can therefore be viewed as a graded algebra, whose structure is given by the
next theorem.

Theorem 3. The functions g, = 60s, and g5 = 140s¢ are algebraically
independent, and

kI—‘Io M, = C[gz, 93]-

Proof. Note that g,, g; generate a subalgebra of our graded algebra. To
analyse M, we shall apply the formula of Theorem 2, and observe that for
feM,, f+# 0, all the orders on the left-hand side are =0. We now proceed
systematically.

k = 0. The right-hand side is 0, so all the terms on the left are 0. If fe M,
and fis not identically 0, then f has no zero on § or at infinity. The constants
are contained in M,. Let ¢ = f(c0). Then g = f — ¢ vanishes at infinity, hence
is identically 0, so My, = C. '

k = 1. The right-hand side is 1/6. The left-hand side shows that this is
possible if and only if f = 0,s0 M, = 0.

k = 2. We prove that M, = (g,) is the 1-dimensional vector space gener-
ated by g,. Let fe M,, f # 0. The right-hand side of the basic formula is 1/3.
The only time this is compatible with the left-hand side is when all the terms on
the left are 0 except for 1v,(f), and we must have v,(f) = 1, while f has no other
zero. In particular, we have also proved:

g- has a zero only at p, and it is of order 1.

For some constant ¢, f — c¢g, has zero at infinity, and lies in M, hence is identi-
cally zero, and f = ¢g,, thus proving what we wanted.

k = 3. We prove that M3 = (g;). The right-hand side of the basic formula
is 1/2, for fin M, f # 0. The only way this is possible is that v,(f) = 1, and fhas
no other zero. In particular,

g3 has a zero only at i, and it is of order 1.
The same argument as before shows that f = ¢g; for some constant c.
k = 4. We prove that M, = (g3). The right-hand side of the formula for

feM,, f+ 0is 2/3, and hence v,(f) = 2, and f has no other zero. It follows
that f = cg? as before.
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k = 5. We prove that Ms = (g,g3). In this case, the same arguments as
before show that fe M, f # 0 has a zero of order 1 at i and p, and no other
zero, and also that f = cg.g;.

k = 6. We recall that A = g3 — 27g% is nowhere zero on $, and A lies
in M. The right-hand side of the formula for k = 6 is equal to 1, and shows that
v,(A) = 1,1i.e. A has a zero of order 1 at infinity.

Now G¢ € Mg and Gg(0) # 0. If fe My, then there exists a constant ¢ such
that f — ¢Gg¢ vanishes at infinity. Then

S — ¢Gg
A

EMO =C,

and we see that f = bA + ¢G for some constant b. Inductively, the same tech-
nique shows that for k¥ = 6,

Mk = AMk——6 @ (Gk)'

We can prove by induction that any fe M, is a polynomial in g, and g,.
This has already been shownfork < 5. Ifk = 6, wewritek = 2rork = 2r + 1,
and we can subtract cg} or cg4~lg; from f, with a suitable constant ¢, to get a
function vanishing at infinity, so that

J—cgh or f—cg5 g,
A A
lies in M,_¢, and our proof is complete, by induction.

There remains to prove that g, and g5 are algebraically independent, to be
sure we get the formal polynomial ring. First it is clear from the homogeneity
property that a non-trivial linear relation among elements of distinct M,’s
cannot exist, i.e. if fi,...,f, are of distinct weights, then they are linearly
independent over the complex numbers. If we had an algebraic relation among
g2, g3, then we could assume that the monomials in it have the same weight.
In such a relation, if a pure power of g, occurs, then the relation is of the form

g5 + g93P(g:,93) =0

where P is some polynomial. Evaluating this at i shows that it is impossible
because g;(i) = 0 and g,({) # 0. Similarly, no pure power of g; can occur.
Hence g, divides each monomial, and cancelling g, yields a relation of lower
degree, so the proof is finished by induction.

The exposition in this section follows Serre [B10].
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§3. THE MODULAR FUNCTION
We define the modular function

J=g3A and = 1728g3/A.

The reason for the 1728 is that certain power series expansions later will have
integral coefficients. Note that 1728 = 233, .

From the properties of ¢, g5 proved in the preceding section, we see that
j is an automorphic function of weight 0, and since it is holomorphic, non-zero
on §, we see that j has a pole of order 1 at infinity. We shall prove later that the
residue is 1, in the g-expansion.

Theorem 4. The map j: T\H — C is a bijection.

Proof. We apply the basic relation of Theorem 2 with k = 0, so the right-
hand side is 0, to the function j — ¢ for c € C. Then j — ¢ has a simple pole at
infinity, and

v+ 3+ Vv =1
The terms on the left are all = 0. This is possible if and only if the order of

J — cat some unique z in I'\§ is #0. The multiplicity is 1 if z is not in the orbit
of p, i and otherwise, it is 2 at i and 3 at p. In any case, our theorem is proved.

We can view j as a function of lattices according to our general scheme
transforming functions of two variables into functions of one variable by
homogeneity. But since j is of weight 0, we see that for a lattice L = [w;, w,]
we can write

JL) = j(®)
ifw,, w, are selected such that w,/w, = tliesin H. If L = AM for some complex

A # 0then j(L) = j(M). Conversely, the fact that j gives a bijection of I'\$) with
C can be stated in the homogeneous form, namely that the converse holds, i.e.:

Corollary 1. Let L, M be two lattices in C. Then j(M) = j(L) if and only if
M, L are equivalent.

By Theorem 6 of Chapter 1, {4 we also see that the condition of the corollary
is equivalent with the property that C/L is isomorphic to C/M. Thus j gives us
the desired analytic expression parametrizing isomorphism classes of elliptic
curves (complex toruses).

Corollary 2. Let c,, c3 be complex numbers such that

3 —27¢3 # 0.
Then there exists a lattice L such that
¢ = g (L) and c3 = g3(L).
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Proof. By the theorem, there exists T € § such that

c3

3 — 27¢3°
Let M = [r,1]. If ¢, = 0, then j(r) = 0 and 7 = p. Let we C* be such that
w=bg5(L) = ¢35 # 0. Let L = wM. Then
gx(L) = w g (M) = wig,(p) = ¢; = 0,
and g5(L) = ¢, so we are done.

If ¢, # 0, choose w e C* such that w—*g,(M) = ¢, and let L = wM again.
Then g,(L) = c,. Hence

¢ _ B B g3(L)
G- ga 1O =M =0 = e

j(x) = 1728

3
3 — 27g3(L)
This shows that
g3(L) = ¢},  whence g5(L) = tcs.
If necessary, replace w by iw. This does not change g, and changes g; by —1.
Then L is a lattice whose g, g; have the desired values, thus concluding the
proof of the corollary.
The above result shows that an arbitrary elliptic curve

y? =4x3 — ¢,x — ¢;

with non-vanishing discriminant can always be parametrized by elliptic functions,
i.e. we can select a lattice L such that

¢ = g,(L) and ¢z = g3(L).
The associated Weierstrass g and g’ parametrize the curve.

If 4 is an elliptic curve, we denote by j, the value j(L), for any lattice L
such that A¢ is isomorphic to C/L. This value is independent of the choice of
L, and is called the j-invariant of the curve. Note that it is defined rationally
in terms of the coeflicients of the equation defining 4. We can reformulate
Corollary 1 as follows.

Corollary 3. Two elliptic curves A and B are isomorphic if and only if
Ja=1Js

Remark. Let t be such that j(r) is transcendental over Q. Then an elliptic
curve with invariant j(t) necessarily has a trivial ring of endomorphisms. Indeed,
we know from Chapter 1, §5 that if the curve has non-trivial endomorphisms,
then t is imaginary quadratic, and there are only denumerably such t, while
there are non-denumerably many transcendental complex numbers over Q.
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If A, is an elliptic curve with transcendental invariant j,, and A4, is defined over
a field K, finitely generated over Q, and similarly 4, has invariant j, trans-
cendental over Q, and is defined over K,, we let a: Q(j;) - Q(j,) be an iso-
morphism sending j; on j, and extend ¢ to K;. Then A{ has invariant j{ = j,,
and A1 is therefore isomorphic to 4,. Extending K, to a bigger field if necessary,
we may assume that all endomorphisms of A; are defined over K,. Then
End(4]) = End(4,)?, and thus 4, and 4, have isomorphic rings of endo-
morphisms. This proves our remark.



4 Fourier Expansions

§1. EXPANSION FOR G,

In this section we derive the promised expansions at infinity for the G,,
whence for A and ;.
We start with the product expansion for the sine,

i z z
in 7z = 1-2)1+Z%).
sin nz = nz "Bl ( n)( + n)

Taking the logarithmic derivative yields

M ncosnz:}_i_i[l N I:I.

sintz z  Zlz—-n z+n

But
iw + e—iw iw __ e—xw
CoOSsWw = ——— and sinw =
2 2
whence
1 _. .
cosmz = 5 e (e*™ + 1),
sin 7z = A g (2™ — 1).
2i
We let
q — qt — eZnir.

COSs 1T q+1

2 n = 7i

sin nt q—l= qg—1 V=0

43
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Differentiating the expressions in (1) and (2) repeatedly yields

i (27”)1( k—1 v

3) (~F -1 ¥

e =)

Consequently from the definition

Gy(1r) =

1
e (mr + n)*

we get, summing separately for m = 0 and m # 0,

Gy(1) = 20(2k) + 2 Z Z :

m= ln—*:r‘(n”‘- + n)ZI\

(27‘(!)2k 2k—1
= 20(2k) + 2 —— 7",
mzl \Zl @k —nr !
We let
a(n) = Y d~
din

Proposition 1. We have

(27“)21( o0 .
C)) Gy(7) = 20(2k) + % — 1)1 2 Z O2k-1(R)G7
The most interesting special cases give us:
%) g, = 60G, = (27:)4 (1 + 240X)
(6) g; = 140G, = (21t)6 3(1 — 504Y)
where

X = Zl o,(n)g"  and Y = Z as(n)g".

n=1

We have also used the standard values

n* n®
4 - .
=5 and  UO =5
We then get
1
@) A = (2m)'? 55—33[(1 + 240X)* — (1 — 504Y)*].

We contend that all the coefficients in the g-expansion of the expression in
brackets are = 0 mod 293% = 1728. This is a simple matter. We see at once that

[+] = 322%(5X + 7Y)mod 2533,
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We have to show that 5X + 7Y = 0 mod 4 and mod 3. For this it suffices that
Y d* =Y d°mod 4 and mod 3.

din din

But for all d, we already have d3 = d°®, so our contention holds.

Therefore the g-expansion for A has the form
®) a=Coi(1+ ¥ dr),
n=1

where the coefficients d, are integers. From this we now see that the expansion
for j has integer coefficients, namely

oo

3
. gz 1
9 = 12392 - "
) J n q+Zanq

n=0

with a, € Z. The first two coefficients are

1
j= -+ 744 + 196884g + - - .
q

§2. EXPANSION FOR THE WEIERSTRASS FUNCTION
If L. = [z, 1] we write
9z, L) = p(z;1, 1) = p(z;7).
From (1) and (2) in the preceding section, we have

[e9) 1 o0

(10) Yy —— = (2ni)* ¥ nq}, = (ni)*

9y
n=~oc(w+n)2 n=1 (1-_‘

q.)°

where g,, = ¢?"", From the definition of the gp-function, we find

g;)(z;f)=l2+2[ ! - ! J

ol (z = mt + n)* (mt+ n)?

=5+ X X+ XY

z m=0n#0 m#0 neZ

@ 1 1 1
(1) + m; l;,:‘/':zli(z + mt + n)? * (—z+mr+ n)z] B 2,2:2 (mt + ")2]

= (2ni)?
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Recall that {(2) = =?/6. Also use the fact that

qmt+z = q't"qz
For Im 7 > 0 we have |¢:| < 1. In the range

1
lq.] < lg.l < —
lq.|

we therefore find a first g-expansion for the @-function, namely:

Proposition 2,

1 1 q, o ® _
—_5 Z,T) = —— 4+ = 4+ n ;rm : + z n
P TR puen DML B CEE B

-2 2‘1 Zx ng™.

Except for the 1/12, all the coefficients are integers.
On the other hand, we can use the second formula on the right of (10).
Applying these to formula (11), we see that one of the sums has the form

< qvq, q7/q.
12 .
(12) Py [(1 ey - qr/q,)ZJ

We multiply the second term by g; 2™ and ¢2 in the numerator and denominator.
We also make a similar easy transformation for the other double sum in (11),
and we come up with a second expression for the g-expansion of the p-function,
namely:

Proposition 3.

1 1 qrq, R (74
() ==+ Y s — 2 .
(2mi)? 12 ,Ez (1 - q7q.) El 1 - q;

Differentiating yields
r qvq.(1 + q7q.)
. 2;1) = ey
@® @0 = L T0 grey

Using the splitting as in (12) or looking at these again directly, one sees that
these second formulas are valid for all z e C once 7 is fixed.

The formulas for g, and g; found in the preceding section can be put in a
similar form, say abbreviating ¢ = g¢..
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Proposition 4.

1 3_n
Wgz(r) [1+2402 il J

(1 —q"

o0

n’ q

From the expansions for g,, g; and the Weierstrass function, we get trivially
the expansion for the Weber function.

Proposition 5. Let
Jo(z, 1) =

Let g = g.and w = q, = €*™2, Then

5735 g2(1)g5(7)

AGT) #(z;1,1).

12w 2 mn¢ . n -n
fo = P(q)[l + T—wy + 12"1”12;1 ng™w" + w" — 2):,
where

P(q) =g+ c:q® + -

is a power series with integer coefficients starting with q.

Let L = [2nit, 2ni]. Then from our knowledge how @, ¢, g,, g3 transform
under isomorphisms in Chapter 1, {4 we see that the above expressions in fact
give

gZ(L)s gS(L)’ S/’)(Z’ L) and 59,(2, L)
g9:=4g:(L) and  g; = gs(L),
then the elliptic curve

Thus if we let

Yy =4x7 — gox — g;
is parametrized by the functions having the second expansions. Furthermore,
since the map

z (1, 9(2), 9'(2))
is a homomorphism of C into the elliptic curve (actually surjective), and since
the formulas for (@(z,7) depend only on ¢, it follows that the formulas of
Proposition 3 give us a homomorphism from the multiplicative group of complex
numbers onto the complex points of the elliptic curve. For the algebraic implica-
tions of this fact, see the Tate parametrization in Chapter 15.
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§3. BERNOULLI NUMBERS

This section will not be used in the sequel and is included only for the con-
venience of the reader in reading some other literature, e.g. concerning

elliptic functions and L-series. In particular, the von Staudt theorem is Sre-
quently used in such contexts.

We define the Bernoulli numbers B, by the power series expansion
z > B

From the relation

we get a recursion formula for the Bernoulli numbers, namely

B, B, IS B,y 1 if n=1
nlo!  (n — D! 1n—1! 0 if n>1.
We get B, = 1,
2B, + By, =0, whence B, = —1/2,

3B2 + SBI + Bo = 0, Whence B2 = 1/6,
and so forth.

From the identity .
z z z(ez + 1) z e¥/? 4 772

e —1 2 2\e—1) 277 Z g2
we see that the above function is even, and hence has only even terms in its

power series expansion. This implies that, except for B,, the odd Bernoulli
numbers are equal to 0. The first few Bernoulli numbers are then:

| 1 1
B, = —— B, = — By = ——
4 30 D) 8 30
5 691 7
B = — DR e B [~
107 66 12 20730 476
We have
z &% 4 %2 > By

2607 iR T X @m!

n=0
Replace z by 2niz. We then see that

© (27{)2"
nzcotnz = -1y z2"
,,;0 (=D @n)r 2"
Comparing with our previous expansion for n cot nz, we see that

n— ln2n

(@) = (-1 1 2" g,
(2n)!
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Von Staudt’s theorem. We have

B,, ¥ -——11-) (mod Z).

(p—1)|2n

Proof. Let D = d/dz. Then

B =Dpf—=
" e — 1)1,

_ D"(—log(l -1 - e’)))

Iit

1 - z=0.
Using the power series for the log, and differentiating term by term, we find that
n+1 n+1
B,=Y It — eyt = ) iAk
k=1 k :=0 =1k

where
4, = D1 — )|

z=0"

We assert: If k # 4 and is not a prime, then k|A,.
Proof. Letk =ab,2 <a = \/E. Write
(1 - ez)k——l — (1 - ez)a(l _ ez)b(l - ez)ab—a-—b—l'
We must have ab —a—b—120. Indeed, y =k —x — k/x — 1 has a

maximum at k. The minimum is at x = 2, with value (k — 6)/2, which is = 0 if
k = 6. Taking the derivative of

(1 — e)%(1 — &)P(1 — €,
we see that there will be a non-zero contribution when we substitute z = 0
only for those terms for which we differentiate at least once the factors (1 — e*)*
and (1 — e?)?®, in other words, such terms will be divisible by ab = k. This
proves our assertion.

To compute B, (mod Z) we are reduced to considering A, for those values
of k not already eliminated.
First, if k = 4, then we find the value directly by expanding out

(1 — €93 =1 —3e” + 3e?* — &7,
and differentiating. We get
A, = ~-3+32"-3=0 (mod4)

if n = 1 or if n is even, which are the cases we want. Again in this case, we get
no contribution to B, (mod Z).
Finally, suppose that k = p is a prime < n + 1. Write

n=(p—Dg+r O0sr<p-1



50 FOURIER EXPANSIONS [4, §3]

Then
p—1 — p—1 —
h (—D"(” l. 1)1‘" -z (—D*‘(” i 1)(#"1)4 r

i=0

|

Y (—1)*(", >i’ if r>0
i=0 t

P~ Yp-

Zl('—l)"(p_l)—1 if r=0.

i=0 l

If r = 0, we get the contribution —1 (mod Z). If r > 0, then our value for 4,
is the same as

LN
I

whence

Dl — )P~ 1}2

=0

which yields 0. This proves von Staudt’s theorem.



5 The Modular Equation

We are interested in studying the j-invariants of isogenous elliptic curves,
which, as we shall see, amounts to studying j o « where « is a rational matrix.
For this we need some algebraic lemmas concerning integral matrices with
positive determinant.

§1. INTEGRAL MATRICES WITH POSITIVE DETERMINANT

Let M, (Q), M} (Z) denote the sets of 2 x 2 matrices with components in
Q and Z respectively and positive determinant. We also write M3 (Q) = GL3 (Q).

If
w9 b
“\c d

is in M (Z), we shall say that « is primitive if (a, b, ¢, d) = 1, i.e. a, b, ¢, d are
relatively prime. The set of integral matrices with determinant » is denoted by
A,, and the subset of those which are primitive is denoted by Ay. It is immediately
clear that multiplication on the left or right by elements of I = SL,(Z) maps
A} into itself.

Since joa = joya for all ye ', we are led to study the cosets I'a for
a e A¥,

Theorem 1. The group T operates left transitively on the right I'-cosets,
and also right transitively on the left T-cosets of A}.

Proof. Let a be a primitive integral matrix as above. Let L = [z, 1] be a
lattice. Then

M = [at + b, ct + d]
51
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is a sublattice, and by the elementary divisor theorem, there exists a basis
{w,, w,} of L and a basis {w}, w}} of M such that

W] = e;m,

w’z = €,W;,

and e,|e,. Since (a, b, ¢, d) = 1, it follows that ¢, = 1. This means that there
exist elements y,y" € I such that

, (1 0

and we see that A¥ = T'all. This also proves that I operates transitively on the
cosets as desired.

We now want to obtain a simple set of representatives for the left cosets of
T in A¥. Given o € A} as above, we can always find y € " such that

(a4 by
”“‘(o dl)’

For instance, select relatively prime integers z, w such that za + we = 0, and
then x, y € Z such that xw — zy = 1. Then

_[* Y
=)
works.

Suppose now that « is triangular, i.e.

az(g j;).
(o 1)@ &)= 6" %)

we see that a left coset contains a representative with 0 < b < d. Finally one
verifies that the elements

a b

0 d)’

with 0 < a, 0 £ b < d, and ad = n form distinct left coset representatives of
A}, i.e. that no two of them lie in the same coset. ‘

We let y(n) be the number of left cosets of A¥. If n = p is a prime number,
then we see that Y(p) = p + 1, the coset representatives being the matrices

p 0 1 i . < i
<0 ]> and (0 p> with 0 Zi<p.

Since
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In general, we have

1
= 14+-].
Yy(n) =n H' < + p)

Although we won’t use this fact, we give the simple proof.

53

We have to count the number of matrices in normalized form as above.

For given d, a = n/d is determined. Let e = (a, d). There are then

2 o)
e

possible values for b, so

i = ¥ L o)

din e

where e = (d, n/d).

The function ¢ is multiplicative (in the sense of elementary number theory),

i.e.ifn = n,n, with n,, n, relatively prime, then

Y(nny) = Y(n(ny).

Indeed, d = d\d,, e = e,e,, and hence

d,d,
Y(nny) = 3

dijny *1%2
dainz

p(e)p(ey) = Y(n (n,).

This reduces our study of  to the case when n = p" is a prime power.
Ford = 1, e = 1, we get a contribution of 1 in the sum for y(p"). For d = p"

and e = 1, we get a contribution of p". Hence

r—lpv 1
ypH=1+p + Y »e(l - —)
v=1 e P

I

[N

r—

1+p+ Y @-p"Y

1
=p+p7 = p’<1 + —),

p

thereby proving that the value y(n) is given by the desired formula.
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§2. THE MODULAR EQUATION

By a I'modular function, or simply a modular function for this section, we
mean an automorphic function on $ of weight 0, in other words a function
meromorphic on $, invariant under I', and having a g-expansion at infinity.

Theorem 2. Let f be a I'-modular function which is holomorphic on , and
with a g-expansion
f=Yeq"

Then f is a polynomial in j with coefficients in the module over Z generated by
the Fourier coefficients c,.

Proof. Write

c_
f= "T;“l + terms of higher degree,
q

so that f — c_pj™ is holomorphic on $ and has a g-expansion starting with at
most a polar term of order M — 1. Repeating the procedure, we can subtract
a polynomial in j whose coefficients lie in the module generated by all ¢, over
Z, 50 as to get a modular function holomorphic on $, vanishing at infinity, and
therefore identically zero, thus proving our assertion.

Let « e MF(Q). Let m be a positive integer such that me is an integral
matrix. By homogeneity, we have

joma=joa.

Thus the study of j o « for rational matrices « is reduced to the study of j o «

for integral «. Also, for any integral « we can factor out the greatest common

divisor of its components, and therefore we can always consider primitive a.
Let

{ai} G=1..., ll/(n))
be representatives of the right cosets of A} for I'. Then the functions j o «; are
permuted transitively by the operation of I", where as usual, I' operates on a
function f by
f=foy.
Let

yn)
D(X) = H; (X —jouy,

where X is a variable. The coefficients of ®,(X) are the elementary symmetric
functions of the f o «;, and are therefore holomorphic on §, invariant under T,
and are meromorphic at infinity. To see this last property, one replaces t by

at + b
d
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in the g.-expansion of j, and one sees that the resulting expansion is a power
series in ¢¢/¢, whence each function f o «; grows at most like a power of g at
infinity.

Furthermore, the coefficients of g!/¢ in the expansion of j o «; lie in Z[{,],
where {; = e2"/4, In fact, if

o1
J=H+P(q)’
q

where P is a power series with integer coefficients, and if
a=(? b
—\0 d)°

(1) jO a = a/dcb + P(qaldCd)

then

By Theorem 2 we conclude that the coefficients of ®,(X) are polynomials in
J, whose coefficients are in Z[(,]. Furthermore, we may view all these functions
as embedded in the power series field

Qg )).

If k is any field and X a variable, and if ¢ is an automorphism of &, then ¢
extends to an automorphism of the power series field k((X)) by

Y, X" Y X
Let r € (Z/NZ)*. The automorphism o, on Q({,) such that
0, G

extends to the power series field Q({,)((¢''")), and we see from (1) that this
automorphism permutes the functions j o «;. Consequently the coefficients of
®,(X) are invariant under all such automorphisms a,, r € (Z/NZ)*. Hence their
g-expansions lie in Z((g)).

By Theorem 2 we now conclude that the coefficients of ®,(X) are in Z[j],
i.e. are polynomials in j with integer coefficients. Thus we may view ®,(X) as
a polynomial in the two independent variables X and j, and we write it as

Q,(X) = D,(X,)) € Z[X, ]

We call this the modular polynomial of order #.

Theorem 3.

i) The polynomial ® (X, j) is irreducible over C(j), and has degree Y(n).

i) We have ®,(X,j) = ®,(j, X).

ity If n is not a square, then ®,(j, ) is a polynomial in j of degree > 1 and

with leading coefficient 1.

Proof. The first assertion comes from the fact that I permutes the functions
joua;(i =1,...,¥(n)transitively, and acts as a group of automorphisms on the
field C(j,] O Ayy o .,j O O!w(n)).
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Next, we prove the symmetry of (ii). One of the matrices a; can be taken as

1 0
0 n/°
Hence j o —’1; is a root of @, (X, j), i.e.
©,(j(z/n), j(z)) = 0, for all z.
Hence
(Dn(j(r)aj(nt.)) = 0’ for all T,
or in other words,
®,(j,jon) =0.

So j o nis a root of ®,(j, X), but it is also a root of (X, ), corresponding to

the matrix
n O
0 1/

Since @,(X, j) is irreducible, we conclude that
D,(X, j) divides ®,(j, X),
i.e.
D,(j, X) = (X, ))®,(X, ))
for some polynomial g(t, j) € Z[t, j], by the Gauss lemma. It follows that

@,(j, X) = g(X, Ng(j, X)®,(j, X),
whence

9(X, g, X) =1,
and g(X, ) is constant, = +1. If g(X, j) = —1, then
D,(j,)) = =D, ),
and hence j must be a root of ®,(X). But ®,(X) is irreducible over Q(j), so this
is impossible, and g(X, j) = 1. This proves (ii).
To prove (iii), assume that » is not a square, so that if

— b
“\0 4/’
o is primitive and ad = n, then a # d. We have the g-expansion
1
G
Since a # d, there is no cancellation in the polar term, and the leading co-

efficient of this g-expansion is a root of unity. But ®,(j, j) € Z[j]. Taking the
product of the j — j o «;, we see that the g-expansion for ®@,(j, j) starts with

o 1+
j—joa=~+--
q

Cm

q

m



[5,§2] THE MODULAR EQUATION 57

with ¢,, = +1, because ¢, has to be an integer and also a root of unity. Hence
Q,(j,J) = cnf” + -
is a polynomial in j with leading coefficient ¢,, = +1, as was to be shown.
Corollary. For any o€ M$(Q), the function j o « is integral over Zfj].

Proof. We may assume that o is integral, has determinant », and then
j o ais aroot of ®,(X) which has leading coefficient 1, and lies in Z[j, X].

Theoremd. Ift e is imaginary quadratic, then j(t) is an algebraic integer.

Proof. Let K = Q(z), and let o = [z, 1] be the ring of algebraic integers in
K. We can always find an element 4 € o such that the norm of 1 is square free.
If K = Q(i), we take A = 1 + i, and if K = Q( —m) with m > 1 square free,
we take A = / —m. Then
lz=az+ b
A=cz+d

with integers g, b, ¢, d and the norm of A (over Q) is the determinant ad — bc.

Then
_fa b)
*=\¢ d

is primitive, and z = az. Hence j(2) is a root of the polynomial ®,(X, X) which
lies in Z[X] and has leading coefficient 1 according to Theorem 3, whence j(z)
is an algebraic integer. We have Q(z) = Q(7), and 7 = uz + v with rational
u, v, i.e. T = Bz with some primitive f € M (Z). Since j o f is integral over Z[j]
by Theorem 3, it follows that j(fz) = j(t) is integral over Z[j(z)], and therefore
Jj(r) is also an algebraic integer, as was to be shown.

It will be proved in the complex multiplication that j(t) generates an abelian
extension of Q(7). .

The proofs which we have given here are very classical, going back to
Kronecker and Weber. So far, these proofs for integrality are the simplest ones,
through the g-expansions. Algebraically, one could give proofs which are fairly
complicated. This is one reason why in the higher dimensional theory, integrality
statements like the above are completely lacking.

For a finer analysis of the factorization of the polynomial ®,(X, X), we
refer the reader to the appendix of Chapter 10.

We shall now see how the above techniques also give the Kronecker
congruence relation

D,(X,j) = (X — j)X? —j) (modp),

for any prime number p. Stronger results will be derived later by other techniques
and the reader can skip the present arguments.
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For a prime p, representatives for the primitive matrices of determinant

p are given by
1 i .
oc,-—<o p), i=0,.. .,p—1

and

For a modular function f, we shall write f*(g) for its g-expansion, and similarly
for a g'/N-expansion. Such an expansion is a power series in g/N. If it has
coefficients in a ring Z[{,] where {, is a primitive p-th root of unity, we shall

write congruences
f*g) =g%(g) (modl —1Y)
to mean that all the coefficients of £ *(g) — g*(q) in the ¢g*/¥-expansion lie in the
ideal generated by 1 — { in Z[{].
Making the given substitutions in the g-expansion for j o o;, we find at
once that

(Joa,)*(q) =j*@)" (modp)

(joa)*(g) =j*@'? (mod1 — ).
Observe that 1 — { is a prime element at the prime dividing p in Z[{,]. Therefore
we conclude that

Q,(X, j*(q) = (X — j@)"NX? — j*(g)) (mod1 — ),
in the sense that the power series in ¢ which are the coeflicients of the poly-
nomials in 7 on both sides of this congruence satisfy the desired congruence. Let
(X, /) — (X = j)X" =) = L (DX
where ¥, (j) € Z[j]. Then ,(j*(g)) has coefficients divisibly by 1 — {, hence by
p because these coefficients are ordinary integers. This proves the desired con-
gruence relation.

and

§3. RELATIONS WITH ISOGENIES

Let A, B be elliptic curves over the complex numbers. If 4c & C/L and
M < L is a sublattice such that B &~ C/M, then we have an isogeny 4: B - 4
and a commutative diagram
C/M ——> C/L

|

B —> Ac
)
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where the top homomorphism is the canonical one. Its kernel is the finite group
L/M.LetL = [t, 1]. Then
M = [at + b, cT + d]

w=( b
“\c d
in M (Z). Hence

jp =jl) =j(M) and  j, =j(x) = j(L)
In particular, we see that j(«t) is a root of the polynomial
,(X, j(1) € Z[j(v), X].

Evaluating functions at t in fact shows that for any special value of 7 € §, the
roots of @,(X, j(1)) are precisely the values

jla), i=1,...,¢Mmn.

A sublattice M of L is called primitive if when we express a Z-basis of M in
terms of Z-basis of L, by a matrix o in M,(Z), then « is primitive. It is immedi-
ately verified that M is primitive in L if and only if the factor group L/M is
cyclic (using the elementary divisor theorem). Thus the primitive sublattices of
L correspond to the isogenies with a cyclic kernel, whose order is precisely
the determinant of «, or equivalently the index (L : M).

For any given value of 7 € §, we see that the roots of

®,(X, j(1)

are exactly the j-invariants of all the elliptic curves B which admit a cyclic
isogeny

with some matrix

AiB—o A
of degree n. In other words:

Theorem 5. Let A, B be elliptic curves over the complex. There exists an
isogeny A: B — A with cyclic kernel of degree n if and only jg is a root of
the equation

d,(X,j) =0.

The theorem is true in characteristic 0 simply by embedding any field of
characteristic 0 in the complex numbers. Igusa [22] has shown how it is valid
in characteristic p, for p*n. In a later paper, he analyses the situation when n
is a power of p [24].



6 Higher Levels

§1. CONGRUENCE SUBGROUPS

Let I' = SL,(Z) again. We define I'y (or I'(NV)) for each positive integer N
to be the subgroup of I" consisting of those matrices satisfying the condition

a b\ _
(C d) =1 (modN),
in other words
a=d=1 (modN) and c=b=0 (modXN).

We call T'y, the congruence subgroup of level N. By SL,(Z/NZ) we shall mean the
group of matrices with components in the ring Z/NZ having determinant 1 in
Z/NZ. Reducing SL,(Z) mod N maps SL,(Z) into SL,(Z/NZ), and the kernel by
definition is I'y. Actually one has an exact sequence

0 — 'y = SLy(Z) » SL,(Z/NZ) - 0,

and the surjectivity on the right is proved as follows.

Let
_fa b
*=\e 4
be an integral matrix representing an element of SL,(Z/NZ), so that
ad — bc = 1 (mod N).

By elementary divisor theory, there exist elements y, y’ € SL,(Z) such that yay’
is diagonal, and if we can find § € SL,(Z) such that

B =yay" (modN),

then y=1By~! solves our problem. Without loss of generality we may therefore
assume that « is diagonal, say

a=(g g).

61
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It will suffice to find integers x, y such that
<a + xN yN)
N d
has determinant 1. Let ad = 1 + rN. Our problem amounts to solving
r+dx — yN =0,
which we can do since (d, N) = 1. This proves the surjectivity.

By a simple counting argument, one sees that the order of SL,(Z/NZ) is

1
N3 1——-—).
H( p’

This general fact will not be used in this book.

By GL,(Z/NZ), we shall mean the group of matrices with components in
Z/NZ whose determinant is a unit in Z/NZ. Thus SL,(Z/NZ) is a subgroup of
GL,(Z/NZ). In fact, let Gy be the group of matrices

1 0
0 d
with d € (Z/NZ)*. Thus Gy = (Z/NZ)*. Then
GL,(Z/NZ) = Gy - SLy(Z/NZ) = SL,(Z/NZ) - Gy.
Indeed, any matrix in GL,(Z/NZ) can be multiplied, say on the left, by a suitable
element of Gy, so that the product has determinant 1 in Z/NZ. The product
decomposition is clearly unique. Furthermore, we have an exact sequence

det

0 - SL,(Z/NZ) - GL,(Z/NZ) — (Z/NZ)* — 0.

§2. THE FIELD OF MODULAR FUNCTIONS OVER C

Let f'be a function on the upper half plane $, meromorphic and invariant by
I'y, i.e. such that ‘
oo =1, 1eH,7ely.
Letg = e?"*and g'/¥ = €2*%/N. The map
T gt/N
defines a holomorphi¢ map from $; (the set of T € $ with Imt > B) onto a
punctured disc, and is defined on $ modulo the translation by N. Since the

matrix
1 N
0 1
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lies in I'y and acts as translation by N on $, it follows that f induces a mero-
morphic function f* on this punctured disc. If there exists a positive power g™
such that | f*(q)g™| is bounded near 0, then in fact /'* is also meromorphic on
the disc and has a power series expansion in the parameter ¢'/V, with at most
a finite number of negative terms. If for every y € SL,(Z) the function (f o y)*
also has such a power series expansion in ¢!/, then fis called modular of level
Non$.

We denote by Fy (¢ the field of modular functions of level N. The group I
operates as a group of automorphisms of Fy ¢ by f— fov. Indeed, let yeT,
and « € I'y. Since I'y is normal in T, it follows that ya = o'y for some o' € T'y.
If fe Fy ¢ then

Syar) = f(ay1) = f(y1),
so that f o y is invariant under I'y. Clearly, f © y is meromorphic on $. The last
condition about g-expansions is immediate from the definition, s6 we see that
fovis modular of level N, and I operates by composition.

By definition, £, ¢ is the field of automorphic functions of weight 0, defined
in Chapter 3. We let F¢ be the union of all fields Fy ¢, and call F the modular
function field over the complex numbers.

Theorem 1. F; . = C(j).

Proof. Let fe F, ¢. For some polynomial P(j) the function fP(j) is holo-
morphic on $. (For instance, if f has a pole at z,, then f(j — j(z,))™ has no pole
at z, for high m, and the number of possible poles in a fundamental domain is
bounded since f is meromorphic at infinity.) Suppose that f has no pole on 9,
and has a pole of order » at infinity. Using the fact that j has a pole of order 1
at infinity, we see that there exists a constant ¢ such that f — ¢j" has a pole of
order <n — 1 at infinity. Consequently by induction, we can find a polynomial
in j such that f — Pol(j) has no pole on $ and no pole at infinity. Then f — Pol(j)
lies in the space of automorphic functions of weight 0, i.e. the constants, and
this concludes the proof that fe C(j).

We shall now find generators for Fy ¢. Let

s 92(0)93(0)

A7)
so that we C and 7 € 9. This is called the first Weber function. Having fixed the
integer N > 1, for r, s € Z and not both divisible by ¥, let

fr,s(T) = fO(rT]:— s; T) .

fows 1) = =273 pw;t, 1)

The point of the factors involving ¢,, g3, A in front of @ is to make the resulting
function homogeneous of degree 0 in the vector (t, 1). Because of this homo-
geneity, we sometimes also write
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ro, + sw
fr,s("-') = f0<l—N‘“2; @y, a)2>

ift = w,/w,. Fora fixed 7, the above functions give the normalized x-coordinates

of the points of period N on the corresponding elliptic curve. If (v, s, N) = 1,

the function f, ; is said to be primitive of level N. In view of the periodicity

property of the g-function, it follows that £, ; depends only on the residue classes

of r, s mod N. Thus it is appropriate to use a notation exhibiting this property. If
a=(a,a,)eQ? but a¢Z?

we shall write

Jfu©) = f(a;7) = folart + ay;1).
Then each function f, is holomorphic on §, and f, depends only on the residue
class of a (mod Z2). We call the functions f, the Fricke functions.
It is also sometimes useful to use vertical notation, and write

7 = fi{a(})i).

If « € SL,(Z), this notation makes the following relation obvious:

Jaal®) = fo(or).

If we look at the g-expansions of Chapter 4, Proposition 5, then we see that
the Fricke functions have a ¢!/~ expansion with only a finite number of negative
terms. Furthermore the powers of 2ni cancel in the definition of f,, and all the
coefficients of ¢!’V lie in the field of N-th roots of unity over Q, because for

rt+ s
N

we have

qdw = Q:/NCIs/N,

and g,y = {§ where {y = €**/V is a primitive N-th root of unity. For the
moment we disregard this special nature of the coefficients since we first do the
theory over C.

In any case, we have proved that the Fricke functions are modular functions
of level N, because if & = 1 (mod N), then ax = a (mod N) and hence f,, = f,
and f,(x1) = f(1).

The relation f,(xt) = f,,(t) also shows that the modular group operates as

a group of permutations of the functions f,. Furthermore, if @ = has

ros
N'N
exact denominator N (i.e. (r, s, N) = 1), then ax also has exact denominator N,
and thus SL,(Z) permutes the primitive Fricke functions of level N among

themselves.
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Of course, I' = SL,(Z) operates as a group of analytic automorphisms of
9, and hence operates on Fy ¢ by composition,

ffoa
Since I'y operates trivially, we may view the finite group I'/T"y as operating on
Fy ¢, the kernel containing + 1.

We are essentially in a situation of Galois theory, with a group I'/Ty
operating on the field Fy ¢, with fixed field Fy .

Theorem 2. We have

FN,C = Fl,C(fr,s)all rs — C(]a fr,s)all r,s*

Furthermore, the Galois group of Fy,c over Fyc is precisely
/2Ty = SL,(Z/NZ)/ £ 1.

Proof. Let E be the subfield of Fy ¢ generated over C(j) by all f, ;. Since
I" permutes the f, ; it follows that I'/I"y acts as a finite group of automorphisms
of E. Note that +1 acts trivially, because the g-function is an even function.
We shall now prove that any element y € I’ which acts trivially on E must lie
in +I'y. We consider the effect of y on the two functions f; , and f, ;. Since
@) = p(v) if and only if ¥ = v (mod L), we see that if y leaves f, o, and f(o.1)
fixed, then

Ja,07 = Sfix1,0y and Jo,07 = fo,+1)

From this one sees at once that

yE(i(—)l f1> (mod N).

Since y € SL,(Z), it follows thaty = +1 (mod N). Hence we have an injection
/£y — Gal(E/C())),
and the fixed field is C(j). Since we have a fortiori an injection of I'/+Iy in

Gal(Fy,¢/C(j)), it follows that Fy ¢ = E and that the Galois group is that stated
in the theorem.

§3. THE FIELD OF MODULAR FUNCTIONS OVER Q

Let f be a modular function (of level 1). We shall say that f is defined over
a field & if f € k(j).
Fix an integer N > 1 as before. Form the polynomial

H (X - j;.s),
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the product being taken over all (r, s) mod N (we could also take the product
over those (r, ) such that (r, s, N) = 1). We obtain a polynomial in X, whose
coefficients are invariant under I', because I" permutes the f, ;. Hence these
coefficients are modular functions of level 1, holomorphic on $. Furthermore,

their Fourier coefficients are in the field Q({,).
By Theorem 2 of Chapter 5, it follows that these coefficients are poly-

nomials in j with coefficients in Q({y), and hence the functions f, ; are algebraic
over Q(j).
Let Qy = Q(¢y), and let
FN = Q(J9 fr,s)all r,s*
We shall call Fy the modular function field of level N over Q, and omit the

reference to Q in a discussion when the context makes it clear.
From the function theory of the preceding section, we already know that

its Galois group contains
SL(ZINZ)/ +1 = T'/£Ty.
Theorem 3. The Galois group of Fy/Q(j) is precisely
GL(Z/NZ)[+1.

The algebraic closure of Q in Fy is Qy = Q((y). If x € GL,(Z|NZ), then the
automorphism induced by a on Qy is given by the determinant, i.e. if o(a)
is the automorphism given by o on Fy, then

o@f = L
The Galois group of Fy over Qx(j) is SLy(Z/NZ)] + 1.
Proof. We shall prove Gal(Gy/F,) contains the group

Gy = {((1) 2), de(Z/NZ)‘}.

We consider the g-expansion given for the Weber function in Chapter 4. At
T+ S
N
it will be of the form of a power series in g, with integer coefficients, times the
power series

1+ _w_ + 12 i nqmn(an/NCs + q-nr/NC—s -2)
(1 - qr/NCS)Z mn=1 ‘
with ¢ = g.. This power series is therefore contained in the power series field
Qn((g'™)).

If k is any field and X a variable, then any automorphism ¢ of k extends to the
power series field £((X)) by the mapping

Y e, X" Y cr X", c,ek.
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If de (Z/NZ)* we let o, be the automorphism of Q,((¢'/Y)) obtained in the above
manner, from the automorphism of Qy such that {y + (4. Then g,, g3, j are
fixed since their g-expansions are in Q((g)). On the other hand, we see from the
g-expansions of the Weber function that

04t fr D) fra(T)

In other words o, defines an element of Gal(Fy/Q(j)), and o, is represented by

the matrix
1 0
0 d/°

Hence Gy is contained in Gal(Fy/Q(j)). It follows now at once that
Gal(Fy/Q())) = GLA(Z/NZ)/ +1.

Furthermore, from the way we defined 6,, and the decomposition of an element

in GL,(Z/NZ) as a product from an element in G and an element in SL,(Z/NZ),

we see that the effect of an element in GL,(Z/NZ) on the roots of unity is given by

the determinant of the matrix.
Finally, let k be the algebraic closure of Q in Fy, so that k = C n Fy. Then

Gal(Fy/k(j)) ~ Gal(Fv,c/C(j)) ~ SL,(Z/NZ)/+1.
Hence
[k(j): Q()] = [k : Q] = order of (Z/NZ)* = [Q({y): Q]

Since Fy = Qx((g'/Y)) it follows that k < Qy, and we get equality by the fact
that k and Q, have the same dimension over Q. This settles the Galois group

of Fy/Q(j).
Fy / Fe

l C(j)
k(j) — }

We shall now give the formulation of Theorems 2 and 3 in terms of points
of finite order on a “‘generic’ elliptic curve.
Let 7 € $ be such that j(z) is transcendental over Q. Then the map
f=f1@
gives an isomorphism of F (which is an algebraic extension of Q(j)) on a field
which we denote by Fy(7). Let 4° be an elliptic curve defined over Q(j(r)) whose
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j-invariant is j(t), say in Weierstrass form with coordinates (x, y). Let 4 be the
first Weber function, so that

h(x, y) = —2735 gzi%c,

and let ¢: C/L — AL be the analytic parametrization given by the Weierstrass
functions, Let P, = ¢(w,/N) and P, = ¢(w,/N). Then
h(Py) = fi1,0x(7) and h(P2) = fio,1(D)
In general, '
fo.s(t) = h(rPy + sP,).
Therefore the field Fy(7) is none other than the field

Q(j(x), h(43))
of x-coordinates of division points of order N on 4" Its Galois group is a sub-
group of GL,(Z/NZ)/+ 1, as we saw in Chapter 2.
Corollary 1. Let j be transcendental over Q. Let A be an elliptic curve
with invariant j, defined over Q(j). Let
Ky = Q(J7 AR)-
i) The Galois group of Ky over Q(j) is isomorphic to the full group GL,(Z/NZ)
in its representation on Ay =~ (Z/NZ)>.
i) The algebraic closure of Q in Ky is Q({y).
iii) The Galois group of Ky over Q({y, j) is SL,(Z/NZ).
Proof. Let G = Gal(K,/Q(j)). By the result for Fy we see that
G- {+1} = GL,(Z/NZ).

_ (0 -1
y - 1 0 B
so thaty € SL,(Z/NZ) and y*> = —1. Theny or —y liesin G, and hence —1 € G,
whence G = GL,(Z/NZ). This proves the first assertion, and the argument also
proves the following lemma.
Lemma. Let G be a subgroup of GL,(Z/NZ) [resp. SL,(Z/NZ)] which maps

onto GL,(Z/NZ)/+1 [resp. onto SL,(Z/NZ)/+1] under the canonical
homomorphism. Then G = GL,(Z/NZ) [resp. G = SL,(Z/NZ)].

Let

If @ € GL,(Z/NZ), we denote by g, the corresponding automorphism of Ky
over Q(j), relative to a fixed basis of 4y over Z/NZ. Let k be the algebraic
closure of Q in K. We know from Theorem 3 that k contains {y, and that

G¢CN — C?}" a
Let G, be the Galois group of K over k(j). If 0. € Gy, then o, leaves the N-th
roots of unity fixed, and hence det « = 1. Hence G, = SL,(Z/NZ), and G, is
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naturally isomorphic with the Galois group of C(j, 4y) over C(j) (assuming that
j is transcendental over C, i.e. making the constant field extension to C from k).
Using Theorem 2 of the preceding section we conclude that
G, - {1} = SLy(Z/NZ).
By the lemma, it follows that G, = SL,(Z/NZ). Hence the order of the Galois
group of k(j) over Q(j) is exactly the order of (Z/NZ)*, by the exact sequence at
the end of §1. This implies that
[k : Q] = order of (Z/NZ)*,

and since k contains the N-th roots of unity, we conclude that & = Q({y),
thereby proving both (ii) and (iii), and concluding the proof of the corollary.

Let k be an algebraically closed field of characteristic 0 and let j, be trans-
cendental over k. Let us assume that the cardinality of k is at most that of C.
We can then embed & into C, and even in such a way that C has infinite degree
of transcendence over k. Let A be an elliptic curve defined over k(j,), with
invariant j,. Taking a suitable isomorphism of k(j,) over k, we may assume that
Jo is transcendental over C. Select 7 € $ such that j(z) is transcendental over k.
Let Fy , = kFy be the compositum of the modular function field over Q with
k. The map f+ f(r) induces an isomorphism of Fy , with a subfield Fy ,(t) of
C. There is also an isomorphism of k(j,) with k(j(r)), sending j, on j(z), and
transforming A on an elliptic curve A° defined over £(j(r)), having invariant j(t).
Thus we have isomorphisms

k(jo, An) & k(j(0), A),
and
k(jos h(AN)) = k(j(7), h(AR)) = Fy .
Having assumed that j, is transcendental over C, it follows that C is linearly
disjoint from the algebraic closure of k(j,) over k. Making the constant field
extension from k to C, we see that

C(jo, h(Ay)) = Fy,c.
Corollary 2. Let k be an algebraically closed field of characteristic 0 and
let j be transcendental over k. Let A be an elliptic curve with invariant j,
defined over k(j). The Galois group of k(j, Ay) over k(j) is isomorphic to
SL,(Z/NZ) in its representation on Ay ~ (Z/NZ)>.

Proof. There exists a subfield k, of & which is finitely generated over the
rationals, such that 4 is defined over ko(j), and such that k, is algebraically
closed in ko(j, Ay), i.€. ko is the constant field of k(j, Ay). We may then replace
k by the algebraic closure of k,, and therefore we may assume that k has finite
transcendence degree over Q. We may then also assume that k is contained in
the complex numbers, and we may identify j with j(z) for some value t such that
J(z) is transcendental over k. Letting ¢: C/L — A¢ be an analytic parametriza-
tion, we let P, = ¢(w,/N) and P, = ¢(w,/N) as usual. Let G be the Galois
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groups of C(j, Ay) over C(j). We can represent an element ¢ € G by a matrix
o € GL,(Z/NZ) with respect to the basis {P,, P,}. We may identify the subfield
C(j, h(Ay)) with Fy ¢, and ¢ induces an automorphism of Fy  over C(j), also
induced by an element f§ € SL,(Z/NZ). We shall prove first that o = +f3. Let

P, =rP + sP,, r,se Z/NZ.
For any P, ; we have
h(P(r,s)ﬂ) = Gh(Pr,s) = h(JPr,s) = h(P(r,s)a)'

w1 b
“\e d)°
For each (r, s) we therefore have (r, s)x = =+ (r, s)f. Taking (r, s) to be (1, 0)
and (0, 1), respectively, shows that § = t+a or

/3=i("‘c’ ‘Z).
a -b

Say f = (_c d) . Take (r, s) = (1, 1). We see that

Let

(@+c¢b+d)y=(—a+c, —b+d) (modN),

whence 2a = 0 (mod N) and 2b = 0 (mod N). If N = 2, then I = —1 (mod 2)
and GL,(Z/NZ) = SL,(Z/NZ), so we may assume N > 2. If N is odd, then
a = b = 0(mod N), which is impossible. If Niseven, thena = b = 0(mod N/2),
which is also impossible. Hence f = +a, and we have proved that

G < SL,(Z/NZ).
The lemma shows that G = SL,(Z/NZ), and proves our corollary.

Remark. Some sort of argument is needed to prove Corollary 2, beyond
Corollary 1. Indeed, let 4, B be two elliptic curves defined over C(j), where j is
transcendental over C, and suppose that they are isomorphic, but not over
C(j) (i.e. over some finite extension of C(})). The fields C(j, #(A4y)) and C(j, A(By))
are then equal, but as far as I know, it is not known if the fields C(j, 4y) and
C(J, By) are distinct if N > 2. The problem lies with the extra quadratic extension,
and the answer may depend on the parity of N. In any case, this shows that to
prove Corollary 2, we cannot use the model of Corollary 1, defined over Q(j),
without some additional considerations.

The main part of the argument was to show that Galois group of C(j, Ay)
over C(j) is contained in SL,(Z/NZ). One can use a quite different approach,
based on a canonical skew-symmetric non-degenerate pairing

AN x AN = Hy,
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where py is the group of N-th roots of unity, due to Weil on abelian varieties,
Cf. my book on abelian varieties, and Shimura’s book [B12}, where Shimura
actually selects this approach to the question. Hence it seemed worthwhile to
describe the other way in the present book. An analytic description of this
pairing will be given in Chapter 18. The pairing is compatible with the action of
the Galois group, i.e.

(aP,0Q) = <P, Q).
From this it is immediate that if a is the matrix representing ¢ in its action on
Ay relative to a basis of Ay over Z/NZ, then
& = e
Consequently, over the complex numbers, we see right away that the image of
the Galois group in GL,(Z/NZ) is in fact contained in SL,(Z/NZ).

The proofs in this section are classical. Weber [B16], §63, knew the structure
of the Galois group of the division points of order N, both over the complex
numbers and over the rationals, especially that the roots of unity came up as
the new constants. Fricke [B2], Vol. Two, 1.4, gave precisely the same arguments
we have chosen here, through the automorphism on roots of unity acting on the
coefficients of the g-expansion.

Shimura in [38] gave new birth to these questions, and to the study of the
modular function field, using these arguments. It was of considerable help for
the present-day generations to have Shimura’s paper available, rather than plow
through Weber or Fricke, whom we had to learn to read all over again.

The analogous results in characteristic p were given by Igusa [22], [25], who
even works integrally over Z[j]. He gives different arguments, based on ramifica-
tion theory, and finds the unipotent elements in the Galois group over the com-
plex numbers to see that it is all of SL,(Z/NZ). We shall recover this ramification
theory later, when we discuss the Tate parametrization.

One of the reasons why it is still hard to read Weber is that he uses extensively
the Jacobi elliptic functions, rather than the Weierstrass function more or less
exclusively, as we have done.

Actually, there is some point in using the same functions Weber uses, or
similar ones, constructed out of theta functions, because their values are special
algebraic numbers, which are units when suitably normalized, and in this sense
Weber knew perfectly well what he was doing (cf. [B16], {157). We shall consider
this type of question in the last part of the book, since it is much more subtle
than the general question of generating class fields any old way by values of
modular functions of some level.

In this book we are exclusively concerned with congruence subgroups of

= SL,(Z), i.e. subgroups which contain some I'y. It is known that there are
infinitely many subgroups of finite index which are not congruence subgroups.
One can factor the upper half plane $ by these to obtain coverings of the
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projective line, ramified at 0, 1, and co. The pullback of any one of these to a
model of some modular curve of suitable level yields an unramified covering
of such a curve, and conversely, any unramified covering of a modular curve
of any level belongs to a subgroup of finite index of I'. Very little is known about
the curves obtained from non-congruence subgroups. A very deep conjecture
was made by Thara [B6], who considers their reduction mod p, and conjectures
roughly that “supersingular” values of j cannot split completely in these coverings,
unless they arise from congruence subgroups. The beginnings of computational
data have been provided by Atkin and Swinnerton-Dyer for ‘“non-congruence”
coverings (AMS Proceedings of Symposia on Pure Mathematics, XIX, (1971)

pp. 1-26).

§4. SUBFIELDS OF THE MODULAR FUNCTION FIELD

By the modular function field F we mean the union of all the fields Fy.
Similarly, F¢ is the union of all fields Fy c. We shall deal mainly with F.

We denote by M3 (Z) the set of 2 x 2 matrices with components in Z,
and positive determinant. Similarly for M} (Q) = GL; (Q).

Theorem 4. If a € M;(Z) and det o = N, then j o o is a modular function
of level N. For any o € M3 (Z), the map

fr=foa
is an automorphism of F (or F¢) leaving the constants fixed.
Proof. LetyeTIy, and writey = I + Nf. Then
Yy = aya~! = I + Nafo~!
has integral components and determinant 1, so lies in SL,(Z). Since
joaoy=joyoca=jou,

it follows that j o « is invariant under I'y. The other conditions for j © « to be
modular are immediately verified, so the first assertion is proved. The second

assertion is proved similarly. Observe that if @ € M,(Q) and m is integer such
that ma € M,(Z), then for any function on the upper half plane, we have

foa=fo(m)
(the m cancels in the fractional transformation). Thus the inverse automorphism
of '
f—foua

is

frfouat,
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Although Fricke [B2], Vol. Two, 1.4 also gives some discussion of subfields
of the modular function fields, his discussion is not so clear (to me), and I
follow Shimura [38], [B12].

In selecting 7 such that j(z) is transcendental, we could always pick t trans-
cendental itself (for trivial cardinality reasons, the set of algebraic values of
j on $ is denumerable). In particular, an elliptic curve A® with transcendental
j(z) always has a trivial ring of endomorphisms, i.e. End(4%) ~ Z.

The first case we consider is that of j(Nt), which is the invariant of an elliptic

curve with lattice
1
Nt, 1]l ~jt,—|.
e 1]~y |

Lett = w,;/w, and let L = [w,, w,] be the lattice of A*. Put as before

P, = <p<%> and P, = ¢<%>,

where ¢: C/L — A% is an analytic representation of A*. Then

AN~ AT[(P)),
as one sees at once from the nature of its associated lattice. From Proposition 3
of Chapter 2, §2, we know that A/g, ~ A/g, if and only g, = g, (Whenever

g1, 8, are finite subgroups of the same order, and A4 has a trivial ring of endo-
morphisms). Consequently we conclude that a matrix

(¢ 3)
c d
leaves j(N7) fixed if and only if it maps (P,) into itself. But
(a b><P1> _ (aPl + bPz)
¢ d/\P, cPy +dP,) "
Hence this happens if and only if ¢ = 0 (mod N). From this we conclude:

Theorem 5. The Galois group of Fy over Q(j,j o N) is the group

{(g z) eGLz(Z/NZ)} / + 1.

Corollary 1. The fixed field of Fy under the group Gy consisting of all
matrices

(é 2), de (Z/NZ)*
is the field
QU,Jj o N, f1,0)-
Proof. The elements of the Galois group in Theorem 5 which leave f, ,
fixed are represented by those matrices

G 2
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such that
a b
(1,0)(0 d>—(ir1,0)-

This immediately implies the corollary.

Covrollary 2. The field of Corollary 1 is a maximal subfield of Fy consisting
of functions whose Fourier coefficients in the q'/N-expansion are rational.

Proof. Clear.

Theorem 6. The Galois group of Fy over the field Q(j,j O ®)arias With
o e MF(Z) and det oo = N, is the diagonal group

{(g 2)} mod + 1, ¢ e (Z/NZ)*,

Proof. A diagonal matrix el has the effect P — eP on a point of finite order P,
and hence maps every subgroup of Ay into itself. Consequently, since j(at) is
the invariant of some factor curve 4/g where g = Ay, it follows that j o o is
fixed under such a diagonal matrix. Conversely, if an automorphism represented

by
(m )
m n
leaves j o a fixed for all o, then it leaves j o « fixed for the special a corresponding
to the factor curves A/(P,), A/(P,) and A/(P, + P,). The matrix

k
m n
must map each one of the vectors (1, 0), (0, 1), (1, 1) into a scalar multiple of

itself, and from this one sees at once that the m.trix must be diagonal, thus
proving the theorem.

One usually denotes by T'o(N) the group of elements ye I’ = SL,(Z)
consisting of matrices
_fa b
r=(23)
with ¢ = 0 (mod N).
Theorem 7. The fixed field of Fy by U'o(N) is the field Q(j,j c N, ().

Proof. This is immediate from Theorem 5, the fact that elements of SL,(Z)
leave the constants fixed, and that the group of Theorem 5 is the product

[o(N)Gy,
where G, consists of the matrices

10
(0 d), de (ZINZ)*.



7 Automorphisms of the
Modular Function Field

§1. RATIONAL ADELES OF GL,
If N, M are positive integers, and N|M, then we have a canonical homo-
morphism
GL,(Z/MZ) - GL,(Z/NZ),
and we can take the projective limit. By the Chinese remainder theorem, if
N = []p: is the prime factorization, then

GLy(ZINZ) ~ [] GLA(Z/p}'Z),

and so taking the projective limit can be done “‘componentwise’ with respect
to the primes. The projective limit of the rings Z/p"Z as r — oo is simply the
ring of p-adic integers Z,,. Let Z} be the group of p-adic units (invertible elements
in Z,). Then we see that
lim GLy(Z/NZ) = [] GL,(Z,),
“~ p
where GL,(Z,) is the group of matrices with components in Z,, having their
determinants in Z}. We abbreviate

GL,(Z,) = U,
and let

U=]1U,=TIGLAZ)).
p 4

We let the finite adelic group of GL, be
GLy(Ap) =[] GLy(Q)),
14

where the prime on the product means restricted product: For almost all p the
75
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p-component of an element of GL,(A/) lies in GL,(Z,). We let GL3 (Q) denote
the group of rational 2 x 2 matrices with positive determinant.
Of course we can also form the usual ideles

Ag =R x I'Q5
p

with p-adic component in Q%, and almost all components in Z}. Using the prime
factorization of an integer, one sees at once that

A = Q"R x [[Z),
p

where A denotes the subgroup of ideles with positive component in R. We
shall next prove the analogous result for GL, and SL,.

Theorem 1. We have
GLZ(Af) = GL;(Q)U
SLZ(Af) = SL,(Q) H SLz(Zp)-
p

Proof. We shall first prove the second equality.
For any field k it is easy to see that SL,(k) is generated by the elements

X(b)=<(1) I;) and <i (1)>=Y(c)

with b, ¢ € k. Indeed, multiplying an arbitrary element of SL,(k) by matrices of
the above type on the right and on the left corresponds to elementary row and
column operations (e.g. adding a scalar multiple of a row to the other, etc.).
Thus the given matrix can always be brought into a form

6 )

by such multiplications. Letting W(a) = X(a) Y(—a~')X(a) we get
a O
waw-n = (5 ).

thereby proving our assertion about SL,(k).
Now given o € SL,(A;), let p be a prime where «,, is not p-integral. Write
o as a product

o« =Z(b,) " Z(by,)

where Z(b,) is either X(b;) or Y(b;), and b, € Q,. For each i, select a rational
number r; with only powers of p in the denominator, and approximating b;
very closely at p. Let x, = Z(r,) - - - Z(r,,). Then x, € SL(Q), and x, tais very
close to the unit matrix in SL,(Q,), whence lies in SL,(Z,). Furthermore, x, is
/-integral for any prime £ # p. We can now repeat the procedure successively
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for the finite number of primes where « is not integral, and thus obtain an element
x € SL,(Q) such that

xa €[] SLL(Z,),
p
as desired.
To handle GL, we multiply an element « € GL,(A) by an element f of the
form
10

so that o € SL,(A ). Approximating the ideles = (.. ., 5, .. .) at a finite number
of p by a positive rational number, we can find a rational matrix

10 ,
y—<0 }")’ IEQ+

such that you € SL,(A;)U. This reduces our problem to the preceding one, and
proves our theorem.

We view Q2 = Q x Q as a space of row vectors, and let 2 X 2 matrices
operate on the right, so that GL,(Q) operates on QZ. Similarly, GL,(Q,) operates
on the right of Q2.

We have a natural isomorphism

Q¥z* ~ 1] @}z
P
which corresponds to the primary decomposition of the torsion group (Q/Z)>.
An element u, € GL,(Z,), operates on Q2%/Z2 and hence if
u= (e,
then u operates on Q?/Z2, according to the above prime decomposition.

§2. OPERATION OF THE RATIONAL ADELES ON THE
MODULAR FUNCTION FIELD

Let A® = A be an elliptic curve with invariant j(1), T € $, and assume that
A is defined over Q(j(1)). We let
L =z 1]
We have an analytic representation
¢ = ¢.:C/L, — Ag.
For a = (a,, a,) € Q? we get an element of QL, by taking the dot product

T
a(1> = a,T + a,,
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whence an isomorphism
Q*Z? - QL/L..
The group QL,/L, is the torsion subgroup of C/L. and its image under ¢,
consists of the points of finite order on 4. We shall also denote by ¢ the homo-
morphism of Q?/Z? — A obtained by the composition of mappings
Q*Z? - QL/L, — A.
We see that our analytic representation gives us a coordinate system for the
points of finite order on A. If a € Q? and @ denotes the class of a in Q?/Z2, we
also write
@(a) = ¢(a).
Thus we also view ¢ as giving a homomorphism
¢:Q* > QL/L, — A.
Let us assume that End(4) ~ Z. Then any other analytic parametrization
l//: C/Lr - AC
must be such that y = + ¢, because ¥ © ¢! is an automorphism of 4. Let us
assume that 4 is in Weierstrass form, and let 4 be the Weber function such that

h(x, y) = =273° gJA—ge'x,

so that £ is an isomorphism invariant. Then we have
h. o @ la) = f,(0), aeQ?
where f, is the Fricke function.

Theorem 2. Let F be the modular function field, and let f,(ae Q*/Z?, a # 0)
be the Fricke functions. For each u e U there is an automorphism o(u) of F
over Q(j) such that

fz(u) = fam
and the map
u— o(u)
is a homomorphism of U onto Gal(F/Q(})) whose kernel is +1.
Proof. This is but a reformulation of the results of the preceding chapter,
taking into account the projective limit
U = lim GL,(Z/NZ).
«—

Theorem 3. Let 1€ be such that j(t) is transcendental over Q, and let
A be an elliptic curve such that j, = j(t), and defined over Q(j(t)). Let
@: C/L, = A¢ be an analytic parametrization of A. Let U be as in §1. Then
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for each u € U there is an automorphism a(u) of the field of all division points
on A such that

ey = glau),
and the map u > o(u) is an isomorphism of U onto the Galois group of the
field of all division points over Q(j(7)).

Proof. This is a reformulation of Theorem 2, and Theorem 3 of the preced-
ing chapter, taking into account the projective limits.
In particular we get the formula

h@ @)™ = hp(au)).

There is another type of automorphism. For any « € GL3 (Q) we let o(x) be
the automorphism such that for any f'€ F we have
f°® = foua
In other words,
7)) = f(a).
This yields a homomorphism of GL3(Q) into Aut(F), whose kernel is the

subgroup of matrices
a 0 ae Q*
0 a/’ )

Remark 1. Note that U n GL3 (Q) = SL,(Z). If « € SL,(Z), then the definition
of o(a) viewing « as an element of U or as an element of GL3 (Q) is the same.
Indeed, we have the obvious relation
Jalat) = foolT)
for the Fricke functions, and for any « € SL,(Z), viewed as an element of U, the
corresponding automorphism leaves j fixed because j(at) = j(t).

Remark 2. Suppose u € U and in addition u, € SL,(Z,) for all primes p. Let
J be a modular function of level N. Then there exists an element a € SL,(Z) such
that if n(p) is the order of N at p, then

a=u, (modp»)
for all p|N. We then see that
S0 = 7 = fou,
first for the Fricke functions f,, where a has exact denominator &, and then for
any f e Fy since the functions f, generate Fy.

If 6,0’ are two automorphisms of F, then to have associativity in the
exponential notation, we make their composite act so that

fe =0
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There is another important consistency relation.

Theorem 4. (Shimura) Let o, € GL; (Q) and let u, v € U be such that
ou = vf. Then a(a)a(u) = a(v)e(f).

Proof. For the proof, we have to look into the meaning of this relation,
and on its interpretation in terms of isogenies.

Let ye M,(Z) be a 2 x 2 integral matrix. Then y operates on Q?/Z? and
its kernel is represented by those elements a € Q? such that

aye Z?,
i.e. its kernel is
Z2y-1Z2.
The next lemma is a basic formal tool for the study of isogenies of elliptic
curves and their points of finite order.

Lemma. Let o € GLF(Q). Let A® and A*® be elliptic curves with invariants
J(t) and j(a(7)) respectively, and let

@:C[L,—> A,  and  y: C[Ly, — AXY

be corresponding analytic representations of these curves. Assume that
o~1 € M,(Z) has integral coefficients. Let

w=( b
T \c d)’
and let u = ct + d. Then there exists a unique isogeny
A= Ag A > 420

such that the following diagram is commutative.

@
//___\

Q*Z* — QL /L, —> A"

a1 pt Ax

(22/Z2 —> QLa(t)/Laz(r) —_—> Aa(t)
v

¥
The middle arrow is multiplication by u=1.

Proof. We have
T o(1)
(1) (7).

() (5)

whence
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Since a~' e M,(Z) by assumption, we see that multiplication by p~! maps
C/L, into C/L,,,. There exists a unique isogeny 1, which makes the following
diagram commutative.

7]
C/L, ——> AL
p-t Ax

ClLugey —> AZ°
14

wHanan(}) = @ an(]) = @ e (*P),

and therefore the square on the left is commutative. This proves the lemma.

Then

Since 4*® has invariant j(x(r)), we can always select 4*® defined over
Q(j(x(r))). A way of doing this is to take the elliptic curve with transcendental

invariant j to be defined by

y=4x —gx — g,
such that g/(g — 27) = j/123. If we select 4*® defined over Q(j(«(t))), then any
automorphism of F(t) over F,(7), for instance o(u), can be applied to 4*®.

Theorem 5. (Shimura) Let u,ve U and let o, f € GLF (Q) be such that
au = vf. Assume that j(z) is transcendental over Q, and that A* (resp. A*9) is
defined over Q(j(r)) [resp. over Q(j(x(v)))]. Then o(u)A*® has invariant
J(B()). Select AP = a(u)A*®. Let 2,, 1y be the isogenies which make the
diagram in the lemma commutative. Then

W =+
Proof. We first prove that independently of how we choose 4%, the two
isogenies
A and A
have the same kernel.
The kernel of 4, is ¢(Z2«/Z?). Hence

Ker 2™ = (Ker 4,)°™ = @(Z*a/Z*)"™
= @(Z*au/Z?) (see below)
= ¢(Z*vp/Z?)
= ¢(Z2B/Z?)
= Ker /;.
This proves the first assertion, except that we must explain the notation
Z2oulZ?.
We recall that
Q2 = 11 Q}/Z;,
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and an element u, € GL,(Z,) acts on the p-component Q2%/Z?. What we mean
by Z2xu/Z? is the direct sum
Z’au|Z* = || Ziau ,|Z],
4

and since au, = v,f, we have Z2ou, = ZZvf, = Z}f. From these remarks,
the notation makes sense, and the equalities in the above proof are valid.

The two isogenies AZ™ and /,; having the same kernel shows that their
images are isomorphic, and hence have the same j-invariant, so that the first
assertion of our theorem is valid. We may then choose 4™ = ¢(u)4*®. Both
/3@ and g then map A on the same image, and have the same kernel, so they
differ by an automorphism of the image. Since we selected 7 such that j(z) is
transcendental, we know that the only possible automorphisms are +1. This

proves Theorem 5. .
We can now return to Theorem 4, and verify the relation of Theorem 4

for the functions jand f,.
First, we have

JEY W = o)y
and
J@rOT = jey® = j(B)).

The two expressions on the right are equal by Theorem 5, so our relation is
proved for the j function.
Next, we consider a € Q? and b = ax~!. Then:

@Lb) W7 = (b)Y

= (Pa(r)(athl)a(u)
(i@ (a)))™
= 25" (a)y™
= =+, © @ (au)
= t oy (aup™")
= + @ (ax”'v)
=+ @p(bv).

Taking the A-coordinate yields
Soa@ ™ = fo(B(x))

which means that
fg(a)o(u) = fg(v)a(ﬂ)’

and proves our theorem.
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§3. THE SHIMURA EXACT SEQUENCE

For an arbitrary finite adele x € GL,(A[) we write
X = au or x = v,
with u, ve U and a, B € GLF (Q). Then Theorem 4 shows that we can define the
automorphism o(x) on F by
a(x) = a(0)o(u) = a(v)o(p).
This is well defined by Theorem 4, and a trivial computation shows that the
association
X a(x)

gives a homomorphism of GL,(A,) into Aut(F). It is easily proved that the
kernel is precisely the group of diagonal matrices

a 0 %
<0 a>, ae Q%

simply by using the results of the preceding chapter. We leave this as an exercise.
Theorem6. (Shimura) The Sequence
0 - Q* » GL,(Ap) = Aut(F) - 0

is exact, in other words, every automorphism of F is of the form au (i.e.
a()a(u)) for some a € GLT (Q)andue U.

Proof. The proof which we shall give for the surjectivity now differs from
Shimura’s arguments, and is based on a different principle.

Let ¢ be an automorphism of F. If aj = j, then ¢ € 6(U) and we are done.
We shall reduce our proof to this case.

First we may assume that ¢ leaves the roots of unity fixed, because we can
compose ¢ with some o(u) to achieve this. It then suffices to prove that we can
compose ¢ with some o(a) so as to fix j. Since ¢ is now assumed to leave the roots
of unity fixed, it may be extended to an automorphism of the modular function
field F¢ over C, leaving the constants fixed.

Let 4 be an elliptic curve having invariant j, defined over C(j), say by the
standard Weierstrass equation. We identify the modular function field of level
N over C with C(j, h(Ay)). The field

FE&, = €, h(4®))
is the subfield of F, obtained from the points of p-power order on 4. It is a
p-extension of C(j, 4,), and oF{) is the corresponding p-tower over C(j°, A3).

Let E = C(j, j°, 4,, A5). Then

E(h(A®))  and  E(h(4°?))
are p-towers over E. We shall now prove that there exists a finite extension K of
E such that
K(h(AP)) = K(h(4"")).
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The Galois group of F¢ over E contains an open subgroup of the form
W =[]wW, x “]l SL,(Z,),

€S

where S is a finite set of primes, and W, is such a small open neighborhood of
1 in SL,(Z,) for all £ € S, that W, is an /-group without torsion. We select .S so
large as to contain 2, 3 and p. Let K be the fixed field of W. Let H, be the Galois
group of K(h(A4°(P) over K. Then we have a surjective homomorphism

y:W—H,
of Galois theory, corresponding to the inclusion of fields
K = K(h(A"™)) < Fe.

Each factor W, for €S, /£ # p, maps onto 1 under this homomorphism,
because an /-group can only map trivially into a p-group. If 7 ¢ S, then the
subgroup of SL,(Z,) projecting on 1 in SL,(Z//Z) is an /-group, and the same
reasoning applies, to see that this subgroup maps onto 1 under . Finally, any
homomorphic image

SL,(Z/tZ) - H,

must be trivial, because +1 maps into 1 (since H, has no torsion), and
SL,(Z/¢Z)/ +1 is simple for / = 5.

Therefore H, is in fact a homomorphic image of W, and in terms of field
extensions, this means that

K(h(A"™)) < K(h(A®)).

Replacing K be a finite extension if necessary and using a symmetry argument,
we conclude that in fact these two fields are the same. (Alternatively, one could
also use the fact that since the Lie algebra of SL,(Z,) is simple, the above ex-
tension is finite, and hence of degree 1 since W, is assumed without torsion.)

It now follows from a theorem to be proved by entirely different methods
later (Chapter 16, §5, Theorem 7, and §1, Corollary of Theorem 1), that 4 and
A° must be isogeneous. Consequently there exists an integral matrix o such
that j° = j o «. Thus finally o(x)~'¢ is an automorphism of F leaving j fixed,
as was to be shown. '

Groups of automorphisms of infinite modular function fields were con-
sidered by Shafarevi¢ and Piateckii-Shapiro [31] and [32]. The latter considers
the field of all functions j © «, with rational matrices «. The section of the paper
dealing with the automorphisms is not entirely clear. For instance, what we
gave here as Theorem 5, due to Shimura, seems to be completely overlooked by
Piateckii-Shapiro. On the other hand, the rest of the paper deals with the re-
duction mod p of the modular function field, and has results related to the
Shimura reciprocity law, proved in Chapter 11.



Part Two

Complex Multiplication
Elliptic Curves with
Singular Invariants



In this part we study special curves whose rings of endomorphisms are
strictly bigger than Z. This involves both elliptic curves whose j-invariant j(z)
is such that z is an imaginary quadratic number over Q, giving rise to the theory
of complex multiplication, and elliptic curves over finite fields. We shall also
relate this special theory with the generic theory of the preceding part, and show
how the various mappings of an arithmetic nature which we obtain are related
at all three levels: generic, number fields, and finite fields, specializing from one
level to the next.

The term complex multiplication arises because the algebras of endomorph-
isms of elliptic curves which are bigger than Z must be complex, i.e. cannot have
real embeddings. Over the complex numbers, complex multiplication arises
from the endomorphisms induced by multiplication in C with a complex number
o sending the given lattice into itself.

The main development of the theory will be carried out by the Deuring
reduction method. However, it is illuminating to see some of the results derived
by the older analytic method of Kronecker, Weber and Hasse, so we have done
this on a selective basis. For instance, you may find it useful to look right away
at the analytic derivation of the congruence relation reproduced in Chapter 12,
§3, and also the factorization results of Chapter 12, §2 which are self-contained,
before, or simultaneously with, the algebraic arguments using reduction mod p.



8 Results from Algebraic
Number Theory

In this chapter we assume that the reader is acquainted with the ordinary
ideal theory in number fields. Cf. for instance [B7]. The first two sections should
be read as technical background for Chapter 10, §2. On the other hand, although
we strive for some completeness, once the reader sees the first results that the
proper o-lattices form a multiplicative group, he can wait to read the other
results until he needs them, as they are slightly technical. They are all classical,
known to Dedekind, except possibly for the fact that a proper o-lattice is locally
principal, which seems to have been first pointed out by Ihara [26]. The localiza-
tion technique will be used heavily for the idelic formulation of the complex
multiplication, as in Shimura [B12].

§1. LATTICES IN QUADRATIC FIELDS
Proper o-ideals

Let k be a number field, i.e. a finite extension of the rationals. We denote
by o, the ring of algebraic integers of k. By an order o in Xk we mean a subring
of o, whose dimension over Z is equal to the degree [k : Q]. By a lattice in k we
mean an additive subgroup of k& which is free of dimension [k : Q] over Z. If
L is a lattice in k, we define the order of L to be the set of elements A € k such
that AL <= L. By one of the definitions of algebraic integers, it follows that the
order of L is contained in o,, and it is easily verified that it is in fact an order,
i.e. has rank [k : Q] over Z.

For the rest of this section, we assume that 1 is quadratic over Q and we let

89
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k = Q). We let J.+— A’ be the non-trivial automorphism of k. Let 1 satisfy the
quadratic equation

At* + Bt +C=0

with integers 4, B, C which are relatively prime and 4 > 0. Let the discriminant
be

D = B? — 44C,
$o that
—B+ /D
24
We clearly have
) B =D (mod?2).

Theorem 1. Notation as above, let
oo|12+yD]|_[, B+VD
- 3 2 - ’ 2 .
Then o is the order of the lattice [z, 1].

Proof. The congruence (1) shows that the equality on the right is true. By
a straightforward multiplication, one sees that 1 - L < L, and that

Eiz—‘-/i)r= —CeZ <L,
B /B
——%—ﬂ)=Ar+BeL.

Hence l:l, 5—3%3/-9] is contained in the order of [z, 1]. To prove the converse,

we prove another basic result first.

Theorem 2. Let L' = [t', 1] where 1’ is the conjugate of T, and let o be as in
Theorem 1. Then
1
LL = —p.
2
Proof. We have

LL = [tt,7,7',1] = [

B —D —-B+.D —-B—-.D 1]

44% ° 24 ’ 24 ’
1 B+ /D
=— C, B, 4,
qonats?]
1
=—0’
A

as was to be shown.
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In particular, we see that L is invertible (with respect to o), in other words
L' = AL'.
To finish the proof of Theorem 1, suppose that AL <= L. Then
ALY « LL-! = o,
so Ao < o, and since o contains 1, we get A € o, thus proving that
o= {Alek, AL c L}.

Given an order o in k, we shall say that a lattice L belongs to o, or is a
proper o-lattice, if
o= {Aek, AL c L}.

By an o-ideal we mean an ordinary ideal a = o, which is a lattice.

Covrollary. Let v be an order in the quadratic field k. Every proper
o-lattice in k is o-invertible, and conversely any lattice which is o-invertible is
a proper o-lattice. The set of proper o-lattices is a multiplicative group.

If q, ¢ are proper o-ideals, we define c‘a to mean that there exists an o-ideal
b such that bec = a. Multiplying by ¢! shows that b is necessarily a proper
o-ideal. Furthermore, as usual, one sees that this condition is equivalent with the
condition a — ¢. An irreducible proper o-ideal p is a proper o-ideal # o which
cannot be factored p = ab, with proper o-ideals a, b such thata # pand b # p.
[We shall see later as a result of Theorem 4, that an irreducible proper o-ideal p
prime to the conductor, is a prime ideal.]

The conductor and ideals prime to the conductor

Theorem 3. Let o be an order in k, and let o, = [z, 1]. There exists a
unique positive integer ¢ such that

o =[cz,1] = Z + co,.

Proof. Note that o is a sublattice of o,, whence of finite index. Let ¢ > 0
be the unique positive integer such that

on Zz = Zcz.
We contend this ¢ does it. Indeed, let €0, A = m + nz. Then
nz=A.A—meon Zz,
whence c[n, and A € Z + Zcz. This proves the theorem.
The number ¢ in Theorem 3 is called the conductor of o.

Let o be an order and a an o-ideal. Let ¢ be the conductor of . We shall say
that a is prime to c if either a + ¢o = o or a + ¢o, = 0. The two conditions are
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actually equivalent, for suppose a + ¢o = o. If a + co, # o, then a + co,
is contained in a maximal ideal p which also contains a + c¢o, impossible.
Conversely, suppose a + ¢o, = 0. If a + co # o then a + c¢o is contained in
a maximal ideal p, and since o, is integral over o, there is a maximal ideal of o,
lying above p. This contradicts a + cp, = o.

We let I,{(c) be the set of o,-ideals prime to ¢, and we let [(c) be the set of
o-ideals prime to c.

Theorem 4. There is a multiplicative bijection between the monoid of ideals
of v, prime to ¢ and the monoid of v-ideals prime to c, given by the two inverse
mappings
ar»ano, ae l(c)
a > aog, aelc).
An ideal of o prime to c is a proper v-ideal.
Proof. 1) Let a be an o-ideal and a + c¢o, = 0. We shall prove that
a = ao, N o. The inclusion < is clear. Conversely,
ao, N o = (a0, N o)o = (ao, N o)a + coy)
< a4+ ance
< a+ a0 < a.
This proves our first assertion.
ii) Let a be an p,-ideal such that a + c¢o, = o,. Then we prove that
(a N o)o, = a. We have:
o=o0,Nno=(a+co)ND
< (a N D) + ¢co, < 0.
Hence a m o is prime to c. Now
a = ao = a((a N o) + ¢o,) < o {a N o)+ ca.
But ac < an o, so a = (a no)o,. The converse inclusion is obvious, thus
proving (ii).
iii) We prove that an o-ideal a prime to ¢ is proper. Suppose A€k and
Aa < a. Then
o = Ma + co) = Ja + Aco, < a + co, = 0.
Since 1 € o, we get A € o.
iv) In (i) and (ii) we got the desired bijection. It preserves multiplication,
for let a,, b, be o-ideals prime to ¢, where
a,=ano and b, =bno,
with o,-ideals a, b prime to ¢. Then a,b, is prime to ¢, and
ab, = (a,b,0,) N o = (ab) no.
This proves our theorem.
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Remark. The above arguments work for any number field, with an order o,
defining the conductor ¢ to be the largest ideal of o which is also an o,-ideal.

Theorem 5. Let L be a proper v-lattice and m a positive integer. Then there
exists an element /. € k such that JL < o and
/L + mo = o.

In other words, in the equivalence class of L, there exists a lattice which is
prime to m, and is integral.

Proof. Suppose that we start with a lattice of the form L = [z, 1], such that
7 satisfies the equation

At? + Bt + C = 0,
with integers 4, B, C relatively prime, and 4 > 0. Then

L= l[A, it_\/_D] - [Aii_@]

A 2 2

Without loss of generality, we may assume that L is the o-ideal

a = [A,-MJ .

2

Then aa’ = Ao. Finally, we could also change t by an element of SL,(Z),
i.e. prove our assertion for the lattice L, = [r,, 1] where

at, + b
ety +d’

The equation for such 7, is
0 = A(at, + b)? + B(at, + b)(ct, + d) + Clct, + d)?
= A;1i + Bty + Cy,

where 4, = Aa®? + Bac + Cc?. It will therefore suffice to prove that we can
select a, c relatively prime such that 4, is prime to m. We take a, ¢ to be products
of primes p dividing m as follows. pr,f/A, select @ prime to p and p divides c. If
p|A but p}C, take ¢ prime to p but p divides a. If p|4 and p|C, then necessarily
p*B. Take both a, ¢ prime to p. This yields the desired integers a and ¢, and
proves our theorem.
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The proper o-ideal classes
Let I, be the multiplicative monoid of proper o-ideals, and P, the submonoid
of principal o-ideals (automatically proper). We let
G, = L/P,,
and call G, the group of proper o-ideal classes. Let 7,(c) be the monoid of proper

o-ideals prime to the conductor ¢, and let P (c) be the submonoid of principal
o-ideals prime to ¢. Then by Theorem 5, we have an isomorphism

G, = I,(c)/Py(c).

We shall express G, as a factor group of a generalized ideal class group of o,.
We let

Py(0)
be the monoid of o,-ideals a which are principal, of the form
a = 0.,
where
o =a (modco,)
for someae Z, (a,c) = 1.
Lemmal, Letae Py(c) be as above. Then
ano=oa

Proof. Since ae o we get oa < a n o. Conversely, if xeo, and xae€ o,

let us write
X=m+ nz and o =a+ chbz
with integers m, n, a, b such that (a, ¢) = 1. Then
xoo = ma + nza (mod c¢o,).

Hence na is divisible by ¢, so that cjn. Hence x € o, proving our Lemma.

Theorem6. Consider the homomorphism

I(c) = I(c)
such that a — a N o. The inverse image of P (c) is Pz(c).
Proof. The lemma shows that Pz(c) is contained in the inverse image.

Conversely, suppose that a n o = oz with & = a (mod co,) and ae Z. Then
a = 0, 50 a € Py(c).

It follows from Theorem 6 that we have an isomorphism

G, ® I(c)/ Py(c).

Note that P(c) contains the ideals which are principal and generated by an
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element =1 (mod ¢), the monoid of such ideals being denoted by P,(c). So we
have a tower

Ii(c) > Pg(c) > Py(o).
From this we can easily determine the order of the group G,.

Theorem?7. The order of the group G, is equal to

c k\1
hy = h— — (4%
: <o::o*)£lc<1 (,,)1,)’

where h is the class number of k, ¢ is the conductor of o, of and v* are the
groups of units in o, and o, respectively, and <§> is the usual symbol, equal
to 1 if p splits completely in k, — 1 if p remains prime, and O if p ramifies in k.

Proof. We shall give the same argument as in Fueter and Weber, §98. The
theorem is very classical. We know from general algebraic number theory that
the order of the generalized ideal class group 1,(c)/P,(c) is given by

_ ho(co,)
T (F: U’

where ¢ is the Euler function, and U, consists of those units in o, which are
congruent to 1 mod co,. See for instance my Algebraic Number Theory, Chapter
VI, §1, Theorem 1. It follows that

= h,
* (Py0): Py(0)’
Suppose first for simplicity that + 1 are the only units of o,. We have a map
(ZeZ)* — Py(c)/Py(o),

given by a — class of ao, modulo P,(c), whose kernel is + 1, of order 2 if ¢ > 2.
Suppose that p is a prime number and p™ divides c exactly. The p-contribution

to (Z/cZ)* is p"'<l - ;) Suppose that p splits completely in k. Then po, = pp’

and o,/p, 0,/p’ have order p. Hence the p-contribution to ¢(co,) is the

p

Dividing these p-contributions gives the proper factor in the product. On the
other hand, if —1 = 1 (mod ¢), then of = o*, and ¢ = 1 or 2. The unit con-
tribution is then precisely the right one. If —1 = 1, then it is also clear that the
unit contribution is the correct one. If p remains prime in o, then the p-con-
tribution to ¢(co,) is the order of the multiplicative group of o,/p™o, which

1 2
order of o,/(pp)" = pz’"(l - —) .
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is p“‘(l - ;15> Dividing by the p-contribution to (Z/cZ)* yields precisely

1
pm(l + _) ’
p

which is the desired factor. If po, = p?, then the same type of argument again
shows that we get the right contribution to our factor. Finally, when o, contains
i or p, one argues the same way, which we safely leave to the reader.

Remark. We worked above with ideals of o, i.e. contained in o. Of course,
one can also work with the group of proper o-lattices, with respect to the usual
equivalence, L ~ M if and only if there exists 2e k such that AL = M. If
o € k is such that & = 1 (mod* ¢), meaning that

ordy(ax — 1) = ord, ¢
for all primes p of o, such that p]c, then we can write « = f/y, where
B,y =1 (mod*co,), f,yeon,.

{If d is a positive rational denominator for a, prime to ¢, we can select d,
having the same divisibility as d for p,}’c, and d, = 1 (mod ¢) by the Chinese
remainder theorem. Then d,x € o, and d,a = 1 (mod co,).] If a, b are proper
o-ideals such that aa = b, then fla = yb.

Corollary. There is only a finite number of imaginary quadratic T€ 9
inequivalent under the modular group, such that j(t) lies in a given number
field K.

Proof. One knows that the class number of a quadratic imaginary field &
goes to infinity with the discriminant, in fact

log /(D) ~ log |D|*

by a theorem of Siegel. Therefore j(o,) has degree tending to infinity as | D| — co.
For any order o of o,, we see from Theorem 7 that the class number of o also
tends to infinity with the conductor, and j(o) has degree equal to this class
number over k (proved later, complex multiplication). This proves our corollary.

Note that Theorem 7 gives very explicitly the rate at which the degree of
J(o) goes to infinity as a function of the conductor, once the absolute class
number is known. The Riemann Hypothesis would give an explicit and very
good inequality for the absolute class number in terms of the discriminant, but
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