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Preface 

Elliptic functions parametrize elliptic curves, and the intermingling of the 
analytic and algebraic-arithmetic theory has been at the center of mathematics 
since the early part of the nineteenth century. 

Some new techniques and outlooks have recently appeared on these old 
subjects, continuing in the tradition of Kronecker, Weber, Fricke, Hasse, 
Deuring. Shimura's book Introduction to the arithmetic theory of automorphic 
functions is a splendid modern reference, which I found very helpful myself to 
learn some aspects of elliptic curves. It emphasizes the direction of the Hasse­
Weil zeta function, Hecke operators, and the generalizations due to him to the 
higher dimensional case (abelian varieties, curves of higher genus coming from 
an arithmetic group operating on the upper half plane, bounded symmetric 
domains with a discrete arithmetic group whose quotient is algebraic). I refer 
the interested reader to his book and the bibliography therein. 

I have placed a somewhat different emphasis in the present exposition. First, 
I assume less of the reader, and start the theory of elliptic functions from 
scratch. I do not discuss Hecke operators, but include several topics not covered 
by Shimura, notably the Deuring theory of t -adic and p-adic representations; 
the application to Ihara's work; a discussion of elliptic curves with non-integral 
invariant, and the Tate parametrization, with the applications to Serre's work 
on the Galois group of the division points over number fields, and to the isogeny 
theorem; and finally the Kronecker limit formula and the discussion of values 
of special modular functions constructed as quotients of theta functions, which 
are better than values of the Weierstrass function because they are units when 
properly normalized, and behave in a specially good way with respect to the 
action of the Galois group. 

Thus the present book has a very different flavor from Shimura's. It was 
unavoidable that there should be some non-empty overlapping, and I have 
chosen to redo the complex multiplication theory, following Deuring's algebraic 
method, and reproducing some ofShimura's contributions in this line (with some 
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VI PREFACE 

simplifications, e.g. to his reciprocity law at fixed points, and with another proof 
for the theorem concerning the automorphisms of the modular function field). 

I do not emphasize elliptic curves in characteristic p, except as they arise by 
reduction from characteristic O. Thus I have omitted most of the theory proper 
to characteristic p, especially the finer theory of supersingular invariants. The 
reader should be warned, however, that this theory is important for the deeper 
analysis of the arithmetic theory of elliptic curves. The two appendices should 
help the reader get into the literature. 

I thank Shimura for his patience in explaining to me some facts about his 
research; Eli Donkar for his notes of a course which provided the basis for the 
present book; Swinnerton-Dyer and Walter Hill for their careful reading of the 
manuscript. 

New Haven, Connecticut SERGE LANG 

Note for the Second Edition 

I thank Springer-Verlag for keeping the book in print. It is unchanged 
except for the corrections of some misprints, and two items: 

1. John Coates pointed out to me a mistake in Chapter 21, dealing with the 
L-functions for an order. Hence I have eliminated the reference to orders at that 
point, and deal only with the absolute class group. 

2. I have renormalized the functions in Chapter 19, following Kubert-Lang. 
Thus I use the Klein forms and Siegel functions as in that reference. Actually, the 
final formulation of Kronecker's Second Limit Formula comes out neater under 
this renormalization. 

S. L. 
November 1986 
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Part One 

General Theory 



In this part we study elliptic curves, which can be defined by the Weierstrass 
equation y2 = 4x 3 - g2X - g3' We shall see that their complex points form 
a commutative group, which is complex analytically isomorphic to a complex 
torus CjL, where L is a lattice in C. We study these curves in general, especially 
those which are "generic". We consider their homomorphisms, isomorphisms, 
and their points of finite order in general. We also relate such curves with 
modular functions, and show how to parametrize isomorphism classes of curves 
by points in the upper half plane modulo SL 2 (Z). We constantly interrelate the 
transcendental parametrizations with the algebraic properties involved. Our 
policy is to tell the reader what is true in arbitrary characteristic (due to Hasse), 
and give the short proofs mostly only in characteristic 0, using the transcendental 
parametrization. 



1 Elliptic Functions 

§1. THE LIOUVILLE THEOREMS 

By a lattice in the complex plane C we shall mean a subgroup which is free 
of dimension 2 over Z, and which generates C over the reals. If w!> Wz is a basis 
of a lattice Lover Z, then we also write L = [Wt, wzl. Such a lattice looks like 
this: 

Fig. 1-1 

Unless otherwise specified, we also assume that Im(wdwz) > 0, i.e. that wdwz 
lies in the upper half plane ~ = {x + iy, y > O}. An elliptic function f (with 
respect to L) is a meromorphic function on C which is L-periodic, i.e. 

fez + w) = fez) 

5 



6 ELLIPTIC FUNCTIONS [1, §l] 

for all z E e and W E L. Note thatfis periodic if and only if 

fez + WI) = fez) = fez + (2)' 

An elliptic function which is entire (i.e. without poles) must be constant, 
because it can be viewed as a continuous function on elL, which is compact 
(homeomorphic to a torus), whence the function is bounded, and therefore 
constant. 

If L = [WI' W2] as above, and rx E e, we call the set consisting of all points 

rx + t I W I + t 2w 2 , 0 ~ ti ~ 1 
a fundamental parallelogram for the lattice (with respect to the given basis). 
We could also take the values 0 ~ ti < 1 to define a fundamental parallelogram, 
the advantage then being that in this case we get unique representatives for 
elements of CfL in C. 

Theorem 1. Let P be a fundamental parallelogram for L, and assume that 
the elliptic function f has no poles on its boundary GP. Then the sum of the 
residues off in P is O. 

Proof' We have 

2ni L Res f = f fez) dz = 0, 
ap 

this last equality being valid because of the periodicity, so the integrals on 
opposite sides cancel each other. 

a Fig. 1·2 

An elliptic function can be viewed as a merom orphic function on the torus 
CfL, and the above theorem can be interpreted as saying that the sum of the 
residues on the torus is equal to O. Hence: 

Cor 0 II a r y. An elliptic function has at least two poles (counting multiplicities) 
on the torus. 

Theorem 2. Let P be a fundamental parallelogram, and assume that the 
elliptic function f has no zero or pole on its boundary. Let {a;} be the singular 
points (zeros and poles) off inside P, and let f have order mi at ai' Then 

Lmi =0. 



[1, §2] THE WEIERSTRASS FUNCTION 7 

Proof Observe that/elliptic implies that!, and!'f/are elliptic. We then 
obtain 

o ~ r l' !f(z) dz = 27tJ-=1 L Residues = 2nJ-=1 L mi' 
Jap 

thus proving our assertion. 

Again, we can formulate Theorem 2 by saying that the sum of the orders of 
the singular points of/ on the torus is equal to O. 

Theorem 3. Hypotheses being as in Theorem 2, we have 

L miai == 0 (mod L). 

Proof This time, we take the integral 

r f'(z) -
JoP Z fez) dz = 2nJ -1 L miai> 

because 
f'(z) 

resa, z fez) = miai' 

On the other hand we compute the integral over the boundary of the parellelo­
gram by taking it for two opposite sides at a time. One pair of such integrals 
is equal to 

f
"+Wl f'(z) f"+Wl +W2 f'(z) 

Z f( ) dz - z f( ) dz. 
" Z "+W2 Z 

We change variables in the second integral, letting u = z - CO2' Both integrals 
are then taken from IX to IX + COl, and after a cancellation, we get the value 

f"+ W1 f'(U) -
- CO2" feu) du = 2nJ -1 kC02' 

for some integer k. The integral over the opposite pair of sides is done in the 
same way, and our theorem is proved. 

§2. THE WEIERSTRASS FUNCTION 

We now prove the existence of elliptic functions by writing some analytic 
expression, namely the Weierstrass function 

,f.J(z) = \ + L [( 1 )2 - ~J, 
z weL' Z - CO CO 
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where the sum is taken over the set of all non-zero periods, denoted by L'. 
We have to show that this series converges uniformly on compact sets not 
including the lattice points. For bounded z, staying away from the lattice points, 
the expression in the brackets has the order of magnitude of l/lwl 3 • Hence it 
suffices to prove: 

1 
Lemma. If A. > 2, then L I-I)' converges. 

OJeL' W 

Proof The partial sum for Iwi ;a; N can be decomposed into a sum for w 
in the annulus at n, i.e. n - 1 ;a; Iwl ;a; n, and then a sum for 1 ;a; n ;a; N. 
In each annulus the number of lattice points has the order of magnitude n. 
Hence 

1 oon 00 1 
L Iwl). ~ L n)' ~ L n).-l 

IOJI~N 1 1 

which converges for A. > 2. 

The series expression for f.J shows that it is meromorphic, with a double 
pole at each lattice point, and no other pole. It is also clear that f.J is even, i.e. 

f.J(z) = f.J( - z) 

(summing over the lattice points is the same as summing over their negatives). 
We get f.J' by differentiating term by term, 

a.J'(z) = -2 L ( 1 )3' 
weLZ-W 

the sum being taken for all w E L. Note that f.J' is clearly periodic, and is odd, i.e. 

f.J'( - z) = - f.J'(z). 

From its periodicity, we conclude that there is a constant C such that 

f.J(z + WI) = f.J(z) + C. 

Let Z = -W1/2 (not a pole of f.J). We get 

and since f.J is even, it follows that C = O. Hence f.J is itself periodic, something 
which we could not see immediately from its series expansion. 

It is clear that the set of all elliptic functions (with respect to a given lattice 
L) forms a field, whose constant field is the complex numbers. 

Theorem 4. The field of elliptic functions (with respect to L) is generated 
by f.J and f.J • 
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Proof Iff is elliptic, we can write f as a sum of an even and an odd elliptic 
function as usual, namely 

f( ) - fez) + f( -z) fez) - f( -z) 
z - 2 + 2 . 

Iff is odd, then the product 1&0 I is even, so it will suffice to prove that C(f.J) is 
the field of even elliptic functions, i.e. iffis even, thenfis a rational function of f.J. 

Suppose that f is even and has a zero of order m at some point u. Then clearly 
f also has a zero of the same order at - u because 

j<kl(u) = (_l)kj<kl( -u). 

Similarly for poles. 
If u == -u (mod L), then the above assertion holds in the strong sense, 
namely f has a zero (or pole) of even order at u. 

Proof First note that u == - u (mod L) is equivalent to 

2u == 0 (mod L). 

On the torus, there are exactly four points with this property, represented by 

o 001 002 001 + 002 

, 2' 2' 2 

in a period parallelogram. Iffis even, thenf' is odd, i.e. 

f'(u) = -1'( -u). 

Since u == - u (mod L) andf' is periodic, it follows thatf'(u) = 0, so thatfhas 
a zero of order at least 2 at u. If u ¢ 0 (mod L), then the above argument shows 
that the function 

g(z) = f.J(z) - f.J(u) 

has a zero of order at least 2 (hence exactly 2 by Theorem 2 and the fact that &0 
has only one pole of order 2 on the torus). Thenf /g is even, elliptic, holomorphic 
at u. Iff(u)/g(u) # 0 then orduf = 2. Iff(u)/g(u) = 0 thenflg again has a zero 
of order at least 2 at u and we can repeat the argument. If u == 0 (mod L) we 
use g = 1/f.J and argue similarly, thus proving thatfhas a zero of even order 
at u. 

Now let Ui (i = 1, ... , r) be a family of points containing one representative 
from each class (u, -u) (mod L) wherefhas a zero or pole, other than the class 
of L itself. Let 

mi = ord",f 

mi = 1- ord .. , f 
if 2Ui ¢ 0 (mod L), 

if 2Ui == 0 (mod L). 

Our previous remarks show that for a E C, a ¢ 0 (mod L), the function 
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so(z) - so(a) has a zero of order 2 at a if and only if 2a == 0 (mod L), and has 
distinct zeros of order 1 at a and - a otherwise. Hence for all z =1= 0 (mod L) 
the function 

r n [SO(z) - SO(uJr 
i= 1 

has the same order at z as f This is also true at the origin because of Theorem 2 
applied to f and the above product. The quotient of the above product by f is 
then an elliptic function without zero or pole, hence a constant, thereby proving 
Theorem 4. 

Next, we obtain the power series development of SO and go' at the origin, 
from which we shall get the algebraic relation holding between these two func­
tions. We do this by brute force. 

SO(z) = 2 + L 2 1 + - + - +. . . - 2 1 [ 1 ( z (z)2 )2 1 ] 
Z WEL' Q) Q) Q) Q) 

= 2 + L L (m + 1) -- 2 
1 00 (z)m 1 
z wEL'm=l Q) Q) 

where 

Note that em = 0 if m is odd. 
Using the notation 

we get the expansion 

1 00 

SO(z) = 2 + L (2n + 1)S2n+zCL)z2n, 
Z n=l 

from which we write down the first few terms explicitly: 

and differentiating term by term, 



[1, §2] THE WEIERSTRASS FUNCTION 

Theorem 5. Let 92 = 92(L) = 60s4 and 93 = 93(L) = 140s6 • Then 

p'2 = 4p 3 - 9zP - 93' 

Proof We expand out the function 

cp(z) = p'(z)z - 4&,J(Z)3 + 92&{}(Z) + 93 

11 

at the origin, paying attention only to the polar term and the constant term. 
This is easily done, and one sees that there is enough cancellation so that these 
terms are 0, in other words, cp(z) is an elIiptic function without poles, and with 
a zero at the origin. Hence (p is identicalIy zero, thereby proving our theorem. 

The preceding theorem shows that the points (p(z), p'(z» lie on the curve 
defined by the equation 

y2 = 4x3 - 9z X - 93' 

The cubic polynomial on the right-hand side has a discriminant given by 

Ll = 9} - 279~. 

We shall see in a moment that this discriminant does not vanish. 
Let 

i = 1,2,3, 

where L = [WI' Wz] and W3 = WI + Wz. Then the function 

h(z) = p(z) - ei 

has a zero at wJ2, which is of even order so that &{}'(wJ2) = 0 for i = 1,2, 3, 
by previous remarks. Comparing zeros and poles, we conclude that 

Thus e l , ez, e3 are the roots of 4x3 - 9zX - 93' Furthermore, p takes on the 
value ei with multiplicity 2 and has only one pole of order 2 mod L, so that 
e i #- ej for i #- j. This means that the three roots of the cubic polynomial are 
distinct, and therefore 

Ll = 9} - 279~ #- O. 
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§3. THE ADDITION THEOREM 

Given complex numbers g2, g3 such that gq - 27g~ #- 0, one can ask 
whether there exists a lattice for which these are the invariants associated to the 
lattice as in the preceding section. The answer is yes, and we shall prove this in 
chapter 3. For the moment, we consider the case when g2, g3 are given as in the 
preceding section, i.e. g2 = 60s4 and g3 = 140s6· 

We have seen that the map 

Z I--> (I, 6;J(Z), &;J'(z» 

parametrizes points on the cubic curve A defined by the equation 

y2 = 4X3 - g2 X - g3' 

This is an affine equation, and we put in the coordinate 1 to indicate that we 
also view the points as embedded in projective space. Then the mapping is 
actually defined on the torus CjL, and the lattice points, i.e. 0 on the torus, are 
precisely the points going to infinity on the curve. Let A c denote the complex 
points on the curve. We in fact get a bijection 

CjL - {OJ -> Ac - {oo}. 

This is easily seen: For any complex number'Y.,gu(z) - 'Y. has at most two zeros, 
and at least one zero, so that already under g.J we cover each complex number 'Y.. 
It is then verified at once that using g;)' separates the points ofCjL lying above 'Y., 
thus giving us the bijection. If you know the terminology of algebraic geometry, 
then you know that the curve defined by the above equation is non-singular, 
and that our mapping is actually a complex analytic isomorphism between 
CjL and Ac. 

Furthermore, CjL has a natural group structure, and we now want to see 
what it looks like when transported to A. We shall see that it is algebraic. In 
other words, if 

PI = (XI' YI), P2 = (X2, Y2), P3 = (X3' Y3) 
and 

P 3 = PI + P2, 

then we shall express X3, Y3 as rational functions of (Xl' YI) and (X2' Yz). We 
shall see that P3 is obtained by taking the line through PI, P2, intersecting it 
with the curve, and reflecting the point of intersection through the x-axis, as 
shown on Fig. 3. 

Select Ut. Uz E C and rf: L, and assume UI ;:fo Uz (mod L). Let a, b be complex 
numbers such that 

gu'(U I) = ag;J(u I ) + b 

gu'(uz) = ag;J(uz) + b, 

in other wordsy = ax + b is the line through (f;J(Uj),gu'(u l ») and (gu(uz)' gu'(U2))' 
Then 

gu'(z) - (agu(z) + b) 
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has a pole of order 3 at 0, whence it has three zeros, counting multiplicities, 
and two of these are at UI and U2' If, say, U I had multiplicity 2, then by Theorem 
3 we would have 

2u I + U2 == ° (mod L). 

Fig. 1-3 

If we fix U 1, this can hold for only one value of U 2 . Let us assume that we do 
not deal with this value. Then both U I , U2 have multiplicity 1, and the third 
zero lies at 

U3 == -CUI + u2 ) (mod L) 

again by Theorem 3. So we also get 

&;.>'(U3) = ag;.>(u3) + b. 
The equation 

4x3 - g2X - g3 - (ax + b)2 = ° 
has three roots, counting multiplicities. They are 8;.>(UI ), g;'>(U2), P(U3), and the 
left-hand side factors as 

4(x - g;'>(UI»(X - gJ(u2»(x - 8;J(U3»' 

Comparing the coefficient of x 2 yields 
a2 

P(Ul) + g;.>(u 2) + P(U3) = 4' 

But from our original equations for a and b, we have 

a(g;.>(u 1 ) - gO(U2» = &;.>'(Ul) - p'(u2)· 
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Therefore from 

we get 

1 ______________________________ ___ 

or in algebraic terms~3 ~ -Xl _ X2 + ~(YI _ Yz)2 

4 Xl - X 2 

[1, §4] 

Fixing U 1, the above formula is true for all but a finite number ofu2 i= U 1 (mod L). 
whence for all Uz i= Ul (mod L) by analytic continuation. 

For U1 == U2 (mod L) we take the limit as Ul -> Uz and get 

go(2u) = -2go(u) + - --1(cfJ "(U»)2 
4 go'(u) 

These give us the desired algebraic addition formulas. Note that the formulas 
involve only g2, g3 as coefficients in the rational functions. 

This is as far as we shall push the study of the &J-function in general, except 
for a Fourier expansion formula in Chapter 4. For further information, the 
reader is referred to Fricke [B2]. For instance one can get formulas for go(nz), 
one can get a continued fraction expansion (done by Frobenius), etc. Classics 
like Fricke still contain much information which has not yet reappeared in more 
modern books, nor been made much use of, although history shows that every­
thing that has been discovered along those lines ultimately returns to the center 
of the stage at some point. 

§4. ISOMORPHISM CLASSES OF ELLIPTIC CURVES 

Theorem 6. Let L, M be two lattices in C and let 

.Ie: CjL -> CjM 

be a complex analytic homomorphism. Then there exists a complex number a 
such that the following diagram is commutative. 

" C ----+ C 

1 1 
Cj L ----+ Cf M 

;. 
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The top map is multiplication by rx, and the vertical maps are the canonical 
homomorphisms. 

Proof Locally near 0, ), can be expressed by a power series, 

}(z) = aD + a1z + a2z2 + ... , 
and since a complex number near 0 represents uniquely its class mod L, it 
follows from the formula 

).(z + Zl) == i(z) + A(Z') (mod M) 

that the congruence can actually be replaced by an equality. Hence we must have 

}.(z) = a1z, 

for z near O. But z/n for arbitrary z and large n is near 0, and from this one 
concludes that for any z we must have 

),(z) == a1z (mod M). 
This proves our theorem. 

We see that A is represented by a multiplication rx, and that 

rxLe M. 

Conversely, given a complex number rx and lattices L, M such that rxL e M, 
multiplication by rx induces a complex analytic homomorphism of C/L into C/ M. 

Two complex toruses C/L and C/ M are isomorphic if and only if there 
exists a complex number rx such that rxL = M. We shall say that two lattices 
L, M are linearly equivalent if this condition is satisfied. In the next chapter, 
we shall find an analytic invariant for equivalence classes of lattices. 

By an elliptic curve, or abelian curve A, one means a complete non-singular 
curve of genus 1, and a special point 0 taken as origin. The Riemann-Roch 
theorem defines a group law on the group of divisor classes of A. Actually, if 
P, P' are points on A, then there exists a unique point P" such that 

(P) + (P') ~ (P") + (0), 

where ~ means linear equivalence, i.e. the left-hand side minus the right-hand 
side is the divisor of a rational function on the curve. The group law on A is 
then P + P' = plf. In characteristic i= 2 or 3, using the Riemann-Roch theorem, 
one finds that the curve can be defined by a Weierstrass equation 

y2 = 4x3 - g2 X - g3, 

with g2, g3 in the ground field over which the curve is defined. Conversely, any 
homogeneous non-singular cubic equation has genus 1 and defines an abelian 
curve in the projective plane, once the origin has been selected. These facts 
depend on elementary considerations of curves. A curve defined by equations in 
projective space is said to be defined over a field k if the coefficients of these 
equations lie in k. For the Weierstrass equation, this means g2, g3 E k. 
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For our purposes, if the reader is willing to exclude certain special cases, it 
will always suffice to visualize an elliptic curve as a curve defined by the above 
equation, with the addition law given by the rational formulas obtained from the 
addition theorem of the p function. The origin is then the point at infinity. 
If A is defined over k, we denote by Ak the set of points (x, y) on the curve with 
x, y E k, together with infinity, and call it the group of k-rational points on the 
curve. It is a group because the addition is rational, with coefficients in k. 

If A, B are elliptic curves, one calls a homomorphism of A into B a group 
homomorphism whose graph is algebraic in the product space. If A: A -+ B is 
such a homomorphism, and the curves are defined over the complex numbers, 
then A induces a complex analytic homomorphism also denoted by A, 

A: Ae -+ Be, 

viewing the groups of complex points on A and B as complex analytic groups. 
Suppose that the curve~ are obtained from lattices Land M in e respectively, 
i.e. we have maps 

<{J: elL -+ Ae and I/!: C/M -+ Be 

which are analytic isomorphisms. As we saw above, our homomorphism A is 
then induced by a multiplication by a complex number. 

Conversely, it can be shown that any complex analytic homomorphism 
y: C/L -+ C/ M induces an algebraic one, i.e. there exists an algebraic homo­
morphism A which makes the following diagram commutative. 

y 

C/L~C/M 

~ 1 1 ~ 
Ac ~ Be 

We shall make a table of the effect of an isomorphism on the coefficients 
of the equations for elliptic curves, and their coordinates. 

Let us agree that if A is an elliptic curve parametrized by the Weierstrass 
functions, for the rest of this section, 

<{JA: C/L -+ Ac 
is the map such that 

«JA(Z) = (1, p(z), p'(z». 

The p function depends on L, and we shall denote it by 

p(z, L). 

Similarly for p'(z, L). These satisfy the homogeneity property 

p(cz, cL) = c-2 p(z, L) and p'(cz, cL) = c-3 p'(z, L) 

for any c E e, c #- O. 
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Suppose that we are given two elliptic curves with parametrizations 

CPA: CjL --+ Ae and CPB: elM --+ Be, 

and suppose that 
M= cL, 

so that the curves are isomorphic, with an isomorphism 

.Ie:A-+B 

17 

induced by the multiplication by c. Then the coefficients g2, g3 of these curves 
satisfy the transformation 

g2(cL) = C-4g2(L) 

g3(cL) = C-6g3(L). 

We let X A and X B denote the x-coordinate in the Weierstrass equation satisfied 
by the curves, respectively. Thus in general, 

x(cp(z)) = p(z), 

and similarly 
y(cp(z)) = p'(z). 

If P is a point on A, then the homogeneity properties of the Weierstrass functions 
can then be expressed purely algebraically by the formulas 

XB(.Ie(P)) = C- 2XA(P) and YB()'(P)) = C- 3YA(P), 

These same formulas are valid in all characteristic # 2 or 3, and one can 
give purely algebraic proofs. In other words: 

Suppose that A, B are elliptic curves in arbitrary characteristic # 2, 3 and in 
Weierstrass/orm, defined by the equations 

y2 = 4X 3 - g2x - g3 

and 

y2 = 4x 3 - g;x _ g; 

respectively. Let .Ie: A --+ B be an isomorphism, defined over a field k. Then 
there exists c E k such that 

and if the points (x, y) and (x', y') correspond under .Ie then 

x' = c2x and 

One can then define purely algebraically the invariant 

g~ 
J A = 3 27 2' g2 - g3 

and using the above quoted result (proved in characteristic 0 by transcendental 
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means) we see at once that A is isomorphic to B if and only if JA = J B (in charac­
teristic =1= 2 or 3). We shall later study the analytic properties of this function J. 

The above discussion also shows: 

If A, B are elliptic curves over a field k of characteristic =1= 2, 3, and if they 
become isomorphic over an extension of k, then they become isomorphic over 
an extension of k, of degree;;; 6. 

Proof We put the elliptic curves in Weierstrass form as above. Then for 
some element c in the extension of k, we see that c4 = g2/g2 (if g2 =1= 0) and 
c6 = g3/g3 (if g3 =1= 0). Thus the isomorphism is defined over an extension of 
degree 6, and even an extension of degree 2 if gZg3 =1= 0. 

Example. There are a couple of examples with the special values of c taken as 
i and - p, where p = e21[i j 3, which are important. Suppose that A is given in 
Weierstrass form. Then multiplication by i on C induces the following changes: 

(x, y) 1-+ (-x, iy), g2 1-+ g2, g31-+ -g3. 

Multiplication by - p induces the following changes: 

(x, y) 1-+ (px, - y), 

In particular, if g3 = 0, then we see that the curve admits i as an automorphism 
and if g2 = 0, we seen that it admits - p as an automorphism. 

In arbitrary characteristic, Deuring gave a complete description for the 
cases which can arise [4], and he also gives normal forms replacing the Weier­
strass form [8]. A short "formulaire" in this direction was made available 
recently by Tate. It has been useful to many people, and is reproduced as an 
appendix. I thank Tate for letting me print it here for the first time. 

Given a value for j, we can always find an equation for an elliptic curve with 
invariantj defined by a Weierstrass equation 

y2 = 4x3 - CX - C 

with 
c3 C 

J = -
c3 - 27c2 - C - 27 ' 

which we can solve for c, namely 

27J 
c= 

J - l' 

provided that J =1= 0, 1. The two cases corresponding to J = 0, 1 are then special, 
and are associated with the values i, p in the upper half plane. From the algebraic 
point of view, the above equation "parametrizes" universally all elliptic curves 
(in characteristic =1= 2, 3) with J-invariant =1= 0, 1, i.e. such curves can be obtained 
by specializing the generic equation. 
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For the two special values, one can select a number of models, e.g. 

yZ = 4x3 - 3x, 

yZ = 4x3 - I, 

for J = I, 

for J = 0. 
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By a suitable normalization, one can define a function on an elliptic curve 
closely related to the x-function, but which is invariant under isomorphisms. 
Namely, if gzg3 #- 0, we define the first Weber function 

h i _ gZg3 
A - TXA· 

The above relations immediately show that hA is invariant under isomorphisms 
of A. Whengz or g3 #- ° we take: 

Z 
hZ _ gz z if g3 = 0, A - -XA 

A 

h3 _ g3 3 
A - -XA 

A 
if gz = 0. 

We shall see later that the Weber functions play an important role in analyzing 
the fields generated by points of finite order on the curve. 

Occasionally it is useful to normalize the Weber functions so that certain 
power series expansions have integral coefficients. In this case, one takes for the 
first Weber function the expression 

_2735 gzg3x A . 

The reader should keep in mind that except for the elegance of language, in 
what follows, this normalization will not be used, and wherever he sees such 
a normalization, he can forget about the factor - 27 35 • The important thing 
will be that except for that factor, the power series involved have integral co­
efficients, and this wiIl be enough. 

§5. ENDOMORPHISMS AND AUTOMORPHISMS 

If L = M, we get all endomorphisms (complex analytic) of CjL by those 
complex a such that aL c L. Those endomorphisms induced by ordinary 
integers are called trivial. In general, suppose that L = [Wlo w z] and aL c L. 
Then there exist integers a, b, c, d such that 

aWl = aWl + bW2, 

aW2 = CW I + dW2· 
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Therefore a is a root of the polynomial equation 

Ix - a -b 1=0, 
-c x - d 

whence we see that a is quadratic irrational over Q, and is in fact integral over Z. 
Dividing aW2 by W2, we see that 

a=cr+d, 

where r = WdW2' Since Wi> W 2 span a lattice, their ratio cannot be real. If 
a is not an integer, then c "# 0, and consequently 

Q(r) = Q(a). 

Furthermore, a is not real, i.e. a is imaginary quadratic. 
The ring R of elements a E Q(r) such that aL c: L is a subring of the quad­

ratic field k = Q(r), and is in fact a subring of the ring of all algebraic integers 
Ok in k. The units in R represent the automorphisms of CjL. It is well known and 
very easy to prove that in imaginary quadratic field, the only units of Rare 
roots of unity, and a quadratic field contains roots of unity other than ± 1 if 
and only if 

j­
k = Q(" -1) or k = Q(.J-3). 

If R contains i = .J~, then R = Z[i] is the ring of all algebraic integers in k, 
which must be Q(i). If R contains a cube root of unity p, then R = Z[p] is the 
ring of all algebraic integers in k, which must be Q(.J - 3). The units in this ring 
are the 6-th roots of unity, generated by - p. 

We may view the Weber function as giving a mapping of A onto the pro­
jective line, and we shall now see that it represents the quotient of the elliptic 
curve by its group of automorphisms. 

Theorem 7. If an elliptic curve A (over the complex numbers) has only ± 1 
. as its automorphisms, let the Weber function be given for a curve isomorphic 
to A, in Weierstrass form, by the formula 

g2g3 
h(x,y) = ~x. 

If A admits i as an automorphism, let the Weber function be 
g2 

hex, y) = ;X2 
and if A admits p as an automorphism, let the Weber function be 

g3 3 
hex, y) = L1 x . 

Let P, Q be two points on A. We have h(P) = h(Q) if and only if there exists 
an automorphism e of A such that e(P) = Q. 
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Proof We may assume that A is in Weierstrass form. In the first case, 
the only non-trivial automorphism of A is such that 

(1) (x, y) i--4' (x, - y), 

and it is then clear that h has the desired property. If on the other hand A 
admits i as an automorphism, then multiplication by i in CjL corresponds to the 
mapping on points given by 

(2) (x, y) i--4' (-x, iy), 

and it is then clear that x 2(P) = x 2(Q) if and only if P, Q differ by some auto­
morphism of A. Finally, if A admits p as an automorphism, then multiplication 
by-p in CjL corresponds to the mapping on points given by 

(3) (x, y) i--4' (px, - y), 

and it is again clear that x 3(P) = x 3( Q) if and only if P, Q differ by some auto­
morphism of A, as was to be shown. 



2 Homomorphisms 

§1. POINTS OF FINITE ORDER 

Let A be an elliptic curve defined over a field k. For each positive integer N 
we denote by AN the kernel of the map 

tH Nt, tEA, 

i.e. it is the subgroup of points of order N. If A is defined over the complex 
numbers, then it is immediately clear from the representation Ac ~ CjL that 

AN ~ ZjNZ x Z/NZ. 

The inverse image of these points in C occur as the points of the lattice ~L, 
and their inverse image in CjL is therefore the subgroup 

1 
NLjL c CjL. 

Let 
<p: C ~ Ac 

be an analytic representation of Ac as CjL, and let L = [Wb W2]' If we let 

tl=<P(~) and t2=<P(~)' 
then {tl, t2 } form a basis for AN over Z/NZ, i.e. AN is the direct sum of the 
cyclic groups of order N generated by 11 and t2 , respectively. 

If the elliptic curve is defined over a field of characteristic zero, say k, then 
we can embed k in C and apply the preceding result. 

In general, suppose that A is defined over an arbitrary field k. Let b = b A 

be the identity mapping of A. Then N{) is an endomorphism of A. Hasse has 
shown algebraically that if N is not divisible by the characteristic, then N{) is 
separable and its kernel has exactly N 2 points, in fact again we have 

AN ~ Z/NZ ® ZjNZ. 

23 
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If p is the characteristic, and p/ N, then the map may be inseparable, but is still 
of degree N 2 , cf. [17]. This will be discussed later. 

Let A be an elliptic curve defined over a field k and let K be an extension of k. 
Let (f be an isomorphism of K, not necessarily identity on k. One defines A" 
to be the curve obtained by applying (f to the coefficients of the equation defining 
A. For instance, if A is defined by 

y2 = 4x3 - 92X - 93, 
then A" is defined by 

y2 = 4x3 - 9ix - 9;. 
If P, Q are points of A in K, then we have the formula 

(P + Q)" = P" + Q". 

The sum on the left refers to addition on A, and the sum on the right refers to 
addition on A". This is obvious because the algebraic addition formula is given 
by rational functions in the coordinates, with coefficients in k. Of course, if 
P = (x, y), then P" = (x", y") is obtained by applying (f to the coordinates. 

In particular, suppose that P is a point of finite order, so that NP = o. 
Since 0 is rational over k, we see that for any isomorphism (f of Kover k we 
have NP" = 0 also, whence P" is also a point of order N. Since the number of 
points of order N is finite, it follows in particular that the points of AN are 
algebraic over k (i.e. their coordinates are algebraic over k). 

If P = (x, y), we let k(P) = k(x, y) be the extension of k obtained by ad­
joining the coordinates of P. Similarly, we let 

k(AN) 

be the compositum of all fields k(P) for P E AN. Of course, we view all points 
of finite order as having coordinates in a fixed algebraic closure of k, which we 
denote by ak or ka. 

The above remarks show that the Galois group Gal(ka/k) operates as a 
permutation group of AN. Consequently k(AN) is a normal extension of k, and 
is Galois if N is not divisible by the characteristic of k. We call k(AN) the field of 
N-divisioD points of A over k. 

Furthermore, if (f is an automorphism of k(AN) over k, and if we let {fl' f 2 } 

be a basis of AN over Z/NZ, then (f can be represented by a matrix 

such that 

(:~:) = (~:: : ~~:) = (~ ~)G:} 
Thus we get an injective homomorphism 

Gal(k(AN)/k) --+ GL2(Z/NZ). 
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It is a basic problem of elliptic curves to determine which subgroup of GL2 

is obtained, for fields k, which are interesting from an arithmetic point of view: 
Number fields, p-adic fields, and the generic case, which will be treated later. 

§2. ISO GENIES 

We shall now relate points of finite order and homomorphisms of elIiptic 
curves. Let A, B be elliptic curves and let 

A: A -+ B 

be a homomorphism (algebraic). If A :F 0, then the kernel of }. is finite. The 
algebraic argument is that both A, B are algebraic curves, so of dimension 1, 
and hence A must be generically surjective, so of finite degree. Over the complex 
numbers, we have a simple analytic argument. Indeed, if Ae ~ CfL and 
Be ~ CI M, then }. is represented analytically by multiplication with a complex 
number a such that aL c M, so that Lea-I M. The kernel of the homo­
morphism 

CfL -+ CfM 

induced by A is precisely a-I MIL, which is finite, because both a- 1M and L 
are of rank 2 over Z. 

We let Hom(A, B) be the group of homomorphisms of A into B. Let 
A E Hom(A, B) and }. :F O. Then nA :F 0 for any integer n :F O. This is obvious 
in characteristic 0 from the analytic representation, and is provable algebraically 
in any characteristic. If r is the graph of A, then for any point Q E B we have 

N 

A -1(Q) = L (Pi) = projA (r . (A x Q», 
i=l 

the sum being a formal sum, and the inverse image being taken counting multi­
plicities which can be defined algebraically. However, don't worry about these 
for the most part because in characteristic 0, or if N is not divisible by the 
characteristic, then the multiplicities are I, and the Pi are simply all the points 
in the set theoretic inverse image of Q by A. Over the complex numbers, they are 
represented by 0(-1 MIL in the notation of the above paragraph. We call N the 
degree of A, denoted by v(}.) or deg A. 

Ifv().) = N, then there always exists a homomorphism 

fl:B-+A 

such that fl 0 }. = fl}. = NJ. 

The analytic proof is obvious. Viewing }. as a homomorphism of CfL into 
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CfM, let L'jL be its kernel. Then L'jL has order Nand L' c ~L. Therefore we 

have a canonical homomorphism 

CfM ---> CjlL 
N 

such that the composite homomorphism 

CfL ~ CfM ---> C j ~L 
has kernel ~LjL, which represents AN in CfL. Now we have an isomorphism 

cj ~L !!. CfL 

given by multiplication with N, and the composite 

CfM ---> C j ~L !!. CfL 

is the desired homomorphism J1. 

Note that J1A = Nb A, but that we also have }.J1 = Nb B, because 

(AJ1 - Nb) 0 A = 0, 
and }, is surjective. 

Since Hom(A, B) has characteristic 0, we can form the tensor product 

Q ® Hom(A, B) = Hom(A, B)Q, 

i.e. introduce integral denominators formally. Then any non-zero element of 
Hom(A, B)Q has an inverse in Hom(B, A)Q. In fact, if A E Hom(A, B) is of 
degree N, then 

where J1 is the element of Hom(B, A) such that J1A = Nb. 
We let End(A) = Hom(A, A). 

Proposition 1. If End(A) or End(B) :::::: Z, then either Hom(A, B) = ° 
or Hom(A, B) :::::: Z. 

Proof Say End(A) :::::: Z and suppose that there exists some homomorphism 
A: A ---> B, A i'- 0. Let }.J1 = Nb. The map 

rxf--->J1orx 

gives a homomorphism of Hom(A, B) into End(A), and this homomorphism 
must be injective, for if J1rx = 0, then Nrx = AJ1rx = 0, whence rx = 0. This 
proves our proposition. 
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Two elliptic curves A, B are called isogenous if there exists a homomorphism 
from A onto B, and such a homomorphism is called an isogeny. 

Proposition 2. If A, Bare isogenous and End(A) ~ Z, then End(B) ~ Z. 
Assuming that this is the case, if there exists an isomorphism A: A --+ B, then 
there is only one other isomorphism from A onto B, that is - A. 

Proof The argument is similar to that of Proposition 1, and is clear. 

Let 9 be ajinite subgroup of A. Then there exists a homomorphism 

),: A --+ B 

whose kernel is precisely g, and in characteristic> 0 we can take A to be 
separable, so that ), satisjies the universal mapping property for homo­
morphisms of A whose kernel contains g. 

Again, over the complex numbers, this is obvious using the analytic representa­
tion. We sometimes write B = A/g. 

Proposition 3. Assume that End(A) ~ Z and let g, g' bejinite subgroups 
of A, of the same order. Then A/g ~ A/g' if and only if 9 = g'. 

Proof Let A: A/g --+ A/g' be an isomorphism, and let 

cc A --+ A/g and a': A --+ A/g' 

be the canonical maps. Then 

deg(A 0 oc) = deg a = ord 9 = ord g' = deg a'. 

Thus Aa and a' have the same degree. Since Hom(A, A/g') ~ Z, it follows that 

Xoc = ± a', 

whence ex, a' have the same kernel, i.e. 9 = g'. The converse is of course obvious. 

Let).: A --+ B be an isogeny defined over a field K. Let (J be an isomorphism 
of K. The graph of ), is an algebraic variety, actually an elliptic curve isomorphic 
to A, and we can apply (J to it. If PEAK is a K-rational point of A, then we have 
the formula 

),(P)" = A" (P"). 
Furthermore, the association ), I--> )," is an isomorphism 

Hom(A, B) --+ Hom(A", B"). 

These are elementary algebraic facts which we take for granted. Furthermore, 
suppose that A is defined over a field k and that 9 is a finite subgroup of A such 
that the cycle 

L (P) 
PEg 

is rational over k. Then we also take for granted that A/g is defined over k and 
that the canonical homomorphism 

).: A --+ A/g 
is defined over k. 
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§3. THE INVOLUTION 

Let a: A -+ A be an endomorphism of A. We denote by a' the endomorphism 
such that 

aa' = a' a = v(a)<5, 

where v(a) is the degree of a. It is clear that if a, 13 E End(A) then 

(ap), = p'a'. 

Hasse proved algebraically in general that (a + 13)' = a' + 13', so that 

is an anti-automorphism of End(A). The proof in the complex case is easy as 
usual. Indeed, suppose that Ac ~ CjL as before. Then we may view a as a 
complex multiplication, such that aL c: L, and the degree of a satisfies 

v(a) = (L : aL), 

i.e. it is the index of ai in L. Furthermore, this index is the determinant det(a), 
viewing a as an endomorphism of L, as free module of rank 2 over Z. If a is 
non-trivial, we have already seen in Chapter 1, §5, that Q(a) is imaginary 
quadratic, and the multiplication by a in L is the regular representation of the 
quadratic field. Hence 

a' = v(a)a- 1 

is the complex conjugate of a, and v(a) is the norm of a. 



3 The Modular Function 

§1. THE MODULAR GROUP 

By SLz we mean the group of 2 x 2 matrices with determinant 1. We write 
SL2(R) for those elements of SL 2 having coefficients in a ring R. In practice, 
the ring R will be Z, Q, R. We call SLz(Z) the modular group. 

If L is a lattice in C, then we can always select a basis, L = [WI> wz] such 
that wdwz = r is an element of the upper half plane, i.e. has imaginary part> 0. 
Two bases of L can be carried into each other by an integral matrix with de­
terminant ± 1, but if we normalize the bases further to satisfy the above con­
dition, then the matrix will have determinant 1, in other words, it will be in 
SLiZ). Conversely, transforming a basis as above by an element of SL2(Z) 
will again yield such a basis. This is based on a simple computation, as follows. 
If 

a = (; ~) 
is in GL2(R), i.e. is a real non-singular matrix, and Im(z) > 0, then 

az + b (ad - be) 1m (z) 
Im---- = 

ez + d lez + dl z 

We denote by f) the upper half plane, i.e. the set of complex numbers z with 
1m z > 0. If IX is a matrix as above, in GLi(R), (i.e. IX has positive determinant), 
then we see that the element 

a(z) = az + b 
ez + d 

also lies in f), and one verifies by brute force that the association 

(a, z) f--> a(z) = az 

defines an operation of GLi(R) on f), i.e. is associative, and the unit matrix 
operates as the identity. In fact, all diagonal matrices aI (a E R) operate trivially, 

29 
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especially ± I. Hence we have an operation of SL2(R)/ ± I on~. For 0( E SL2(R), 
we have the often used relation 

1m z 
1m O(z) = Icz + dl2 . 

If / is a meromorphic function on ~, then the function / C 0( such that 

(f 0 O()(z) = / (O(z) 

is also merom orphic. 
We let r = SL2(Z), so that r is a discrete subgroup of SLiR). By a 

fundamental domain D for r in ~ we shall mean a subset of ~ such that every 
orbit of r has one element in D, and two elements of D are in the same orbit 
if and only if they lie on the boundary of D. 

Theorem 1. Let D consist 0/ all Z E ~ such that 

-t ~ Re Z ~ t and Izi ~ 1. 

Then Dis a/undamental domain/or r in S. Let 

T = (b D and S = G -1) o . 
Then S, T generate r. 
Proof. We illustrate D on Fig. 1. 

-1 -! ! 

Fig, 3-1 

On Fig. 1 we have indicated i and also the points where the vertical lines meet 
the circle of radius 1. The left-hand point is 
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21[i/3 -1 + J~ 
p=e = 2 ' 

i.e. the cube root of unity. 
Let f' be the subgroup of f generated by Sand T. Note that -1 = S2 lies 

in f'. Given z E ~, iterating Ton z shows that the orbit of z under powers of T 
contains an element whose real part lies in the interval [-1, 1]' The formula 
giving the transformation of the imaginary part under f shows that the imaginary 
parts in an orbit of f are bounded from above, and tend to 0 as max(lcl, Idl) 
goes to infinity. In the orbit f'z we can therefore select an element w whose 
imaginary part is maximal. If Iwl < 1 then Sw E f'z and has greater imaginary 
part, so that Iwl ~ 1. 

Next we prove that if z, z' E D are in the same orbit of f, then they arise 
from the obvious situation: Either they lie on the vertical sides and are translates 
by 1 or - 1 of each other, or they lie on the base arc and are transforms of each 
other by S. We shall also prove that they are in the same orbit of f'. 

w 
Fig. 3-2 

If ex(z) = z', the arguments will also determine ex, which in particular will be seen 
to lie in f'. Say 1m z' ~ 1m z, and z' = ex(z) where 

ex = (~ !). 
Multiplying ex by -1 if necessary, we may assume that c ~ O. From the formula 
for imaginary parts, we see that 

Icz + dl ~ 1. 

Since 1m z ~ J3/2, we must have IcJ3/21 ~ 1 so c = 0 or 1. 
If c = 0, then 

( 1 b) b ex= 0 1 =T, 

and exz ED implies that b = ± 1, so we are in the obvious situation. 
If c = 1, then d = 0 or d = ± 1. If d = 0, then 

-1) 1 o = ras, and ex(z) = a - ; . 
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In this case Izl = 1, whence Sz also lies in D on the are, and so z must be at the 
end points, i.e. z = p or z = Sp. It is then clear that a = ± 1. If d = ± 1, then 
Iz + dl ~ 1, and again obviously we have z = p or z = Sp. Say z = p. If 
d = 1, then 

a = (7 a ~ 1) , 
and a(p) = p or a(p) = p + 1. Saya(p) = p + 1. Then 

. 1 
a(p) = rasp = a - -- = p + 1. 

p + 1 

But -l/(p + 1) = p, so that a = 1, and a = -TST, so we are in one of the 
"obvious" cases. The other possible cases are treated similarly. 

We have therefore shown that every orbit of the group generated by S, T 
has a representative in D, and also that if z, z' lie in D and z' = az with a E r, 
then in fact a E r', and the situation is an "obvious" one. 

To show that S, T generate r, let a E r, and take an element z in the interior 
of D. There exists a' E r' such that a'az ED. By the above, and since z is not 
on the boundary of D, it follows that a'az = z. Again since z is not on the 
boundary, it follows that a' a = ± I, whence a lies in r', and our theorem is proved. 

Remark. We also have that S2 = (ST)3 = I, and that {S}, {ST} are the 
isotropy groups of i and p, respectively. For all points which are not in an orbit 
of i or p, the isotropy group is ± I. This follows at once from the arguments used 
to prove the theorem. 

§2. AUTOMORPHIC FUNCTIONS OF DEGREE 2k 

Let i) be the upper half plane again, let B > 0, and let i) B be the set of 
complex numbers z with 1m z > B. The map 

Z J--+ e 27tiz = qz 

defines a holomorphic map from i)It to the punctured disc of radius e-27tB, 

i.e. the disc from which the origin is deleted. Furthermore, if i)BIT denotes the 
quotient space of i) B modulo translations by integers (essentially a cylinder), 
then q induces an analytic isomorphism between i)BIT and this punctured disc 
(trivial verification, since for z = x + iy, we have 

e 27tiz = e27tixe-2ltY.) 

Consequently a meromorphic function f on i)B which has period 1, i.e. is in­
variant under T, induces a meromorphic function f* on the punctured disc. 
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A necessary and sufficient condition that f* be also meromorphic at ° is that 
there exist some positive integer N such thatf*(q)qN is bounded near 0. If this 
is the case, thenf* has a power series expansion 

CD 

f*(q) = L cnq"· 
-N 

We shall say thatfis meromorphic (resp. holomorphic) at infinity iff* is mero­
morphic (resp. holomorphic) at 0. By abuse of notation in this case, we also 
write 

and call this the q-expansion of f at infinity. The coefficients Cn are called the 
Fourier coefficients of f If eN =I- 0, we call - N the order of f at infinity, and 
denote it by voof For any z E f> we let the order of fat z be denoted by vJ 

Let 91l be the field of merom orphic functions on f> and let 

be in r = SLiZ). For fE Wl and an integer k ~ 0, define 

(Tk(o:)f)(z) = f(o:(z))(cz + d)-Zk. 

It is easily seen that this defines an operation of SL2(Z) on 911. We say that f 
is automorphic of weight 2k, or of degree 2k, if Tk(o:)f = f for all 0: E r, and if 
f is also meromorphic at infinity. Note that translation by 1 leaves f invariant, 
so our definition makes sense. The condition Tk(o:)f = f also reads 

f(o:(z)) = (cz + d)2kf(z). 

Remark. The literature is split on the convention whether to say of weight k 
or 2k. The terminology of weight k is appropriate if one realizes that the con­
dition can be interpreted to mean that the action of 0: leaves the differential form 
f(z)(dzl invariant. 

Theorem 2. Letfbe automorphic of weight 2k,f =I- 0. Then 

The sum is taken over all points P of the upper half plane mod r, not in the 
orbit of p or i. 

Proof We integrate I'lf along the contour of Fig. 3(a), but modified by 
taking small arcs around the possible poles on the boundary, as on Fig. 3(b). 
For simplicity we phrase the proof under the assumption that f has no pole or 
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zero on the edges other than at i or p, which are the most subtle possibilities. 
We have 

1 f 1 f . -2 . I'lf dz = -. d log J = L ResIdues 
7rl 27rl 

= L vp(f). 
P*i.p 

We shall now compute the integral over the top, sides, arcs around the corners, 
arc around i, and the main arcs on the bottom circle. 

A ,---+----,E 

(a) (b) 

Fig. 3-3 

Under the q-change of variables, the top segment between E and A trans­
forms into the circle centered around the origin, clockwise. The integral over 
the top therefore gives 

-voc(f)· 

The integral over the left vertical side downward, plus the integral over the 
right vertical side upward yields ° by the periodicity off 

The integral around p over the small arc is equal to 

1 fB' 
2 . d log f. 

7rl B 

We make the translation of p to 0, and thus suppose we consider a function also 
denoted by / near the origin, with power series expansion 

fez) = czm(l + ... ). 
Then 

I'(z) m .' 
J(z) = ~- + holomorphlc terms. 
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As the radius of the small circle tends to 0, the integral of the holomorphic 
terms tend to 0. Integrating over an arc tending to 71/3 in the clockwise direction, 
and taking the limit as the radius tends to ° yields the value -m/6. We get a 
similar contribution on the small circle around - p, whence the contributions 
from these two small circles yield 

-!Vp(j). 

The same argument for the small arc around i shows that we get a con­
tribution of 

-!vlf)· 
There remains to compute the integrals over the main arcs 

The map S transforms the arc B'C to the arc DC'. By definition, 

f(Sz) = z2kf(z), 
and 

Since 

-- dw = --dz fD 1'(w) fB'1'(SZ) 
C' few) c f(Sz) , 

and 

1 1'(Sz) 1'(z) 2k 
~ f(Sz) = fez) + -; , 

we see that the integral over the second arc has one term which cancels the 
integral over the first arc, plus another term which is 

1 fC 2k 
~ -dz 
271i B' z 

and approaches 2k/12 = k/6. 
Putting all these contributions together proves our theorem. 

Examples. They are constructed by using the following remark. 

There is a bijection between functions of lattices, homogeneous of degree 
- 2k, i.e. sati:,fying 

G(}.L) = )._2kG(L), 

andfunctions g on S satisfying the condition 

g(et:(z» = (cz + d)2kg(z). 

). E C,). ::ft 0, 
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The bijection is obtained as follows. Given a function G homogeneous of 
degree - 2k, we let 

g(z) = G(z, 1) = G(~) , 
where by G(z, 1) we mean the function G evaluated at the lattice [z, 1]. It then 
follows at once that 

g(ex(z» = (cz + d) 2 kg(Z). 

Conversely, given a function 9 satisfying this condition, define 

G(z, 1) = GG) = g(z), 

and for any lattice L = [WI> w2] define 

G(L) = w;Zkg(wdw2)' 

Then again it follows at once that G(g) = ).-zkG(L). 
The fact that G is a function of lattices can be written in our vertical 

notation as 

for any ex E SL2(Z). 
It is convenient to use the same symbol for the function of two variables 

and one variable, so that we shall also write 

g(z) = g(z, 1) = gG) . 

An automorphic function of weight 2k is called an automorphic form (of 
weight 2k) if it is holomorphic on fl and at infinity. The special examples we 
now give will be of this type. In the next section, we construct an automorphic 
function of weight 0, holomorphic on fl but not at infinity. 

Consider the functions 

Then the function 

1 
sZk(L) = SZk = L 2k' 

","'0 W 

1 
GkCz) = L 2k 

(m,n)"'(O,O) (mz + n) 

is obviously holomorphic on fl, and substituting z = 00 formally gives 
1 

Gk(oo) = L 2k = 2'(2k). 
n"'O 11 

We shall actually get the q-expansion for Gk later, and see that Gk is holomorphic 
at infinity, with the above value. Hence Gk is an automorphic form of weight 2k, 
and non-vanishing at infinity. 
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Let Mk be the set of automorphic forms of weight 2k. Then Mk is a vector 
space over C. It is clear that 

The direct sum 

can therefore be viewed as a graded algebra, whose structure is given by the 
next theorem. 

Theorem 3. The functions gz = 60s4 and g3 = 140s6 are algebraically 
independent, and 

00 

LI Mk = C[gz, g3]. 
k=O 

Proof Note that gz, g3 generate a subalgebra of our graded algebra. To 
analyse Mk we shall apply the formula of Theorem 2, and observe that for 
/E M k , / # 0, all the orders on the left-hand side are ~O. We now proceed 
systematically. 

k = O. The right-hand side is 0, so all the terms on the left are 0. If/EM 0 

and / is not identically 0, then / has no zero on .5 or at infinity. The constants 
are contained in Mo. Let c = /( (0). Then g = / - c vanishes at infinity, hence 
is identically 0, so Mo = C. 

k = 1. The right-hand side is 1/6. The left-hand side shows that this is 
possible ifand only if/ = 0, so Ml = 0. 

k = 2. We prove that M z = (gz) is the I-dimensional vector space gener­
ated by gz. Let / E M z, / # 0. The right-hand side of the basic formula is 1/3. 
The only time this is compatible with the left-hand side is when all the terms on 
the left are ° except for tVp(f), and we must have vp(f) = 1, while/has no other 
zero. In particular, we have also proved: 

gz has a zero only at p, and it is 0/ order 1. 

For some constant c,/ - cgl has zero at infinity, and lies in M 1 , hence is identi­
cally zero, and/ = cgz, thus proving what we wanted. 

k = 3. We prove that M3 = (g3)' The right-hand side of the basic formula 
is 1/2, for/in M3J # 0. The only way this is possible is that v//) = 1, and/has 
no other zero. In particular, 

g3 has a zero only at i, and it is 0/ order 1. 

The same argument as before shows that/ = cg3 for some constant c. 

k = 4. We prove that M4 = (gD. The right-hand side of the formula for 
/ E M 4, / # ° is 2/3, and hence vp(f) = 2, and / has no other zero. It follows 
that / = cg~ as before. 
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k = 5. We prove that M 5 = (9293). In this case, the same arguments as 
before show that IE M 5, I of. 0 has a zero of order 1 at i and p, and no other 
zero, and also thatl = C9393. 

k ~ 6. We recall that A = 9~ - 2795 is nowhere zero on ~, and A lies 
in M 6 • The right-hand side of the formula for k = 6 is equal to 1, and shows that 
v",(A) = 1, i.e. A has a zero of order 1 at infinity. 

Now G6 E M6 and G6 (oo) of. O. If IE M 6, then there exists a constant c such 
that I - cG6 vanishes at infinity. Then 

f- cG6 
A EMo = C, 

and we see thatl = bA + cG6 for some constant b. Inductively, the same tech­
nique shows that for k ~ 6, 

We can prove by induction that any IE Mk is a polynomial in 92 and 93. 
This has already been shown for k ~ 5. If k ~ 6, we write k = 2r or k = 2r + 1, 
and we can subtract c9'i or C9z- l 93 from f, with a suitable constant c, to get a 
function vanishing at infinity, so that 

f- cg~ 

A 
or 

lies in M k - 6 , and our proof is complete, by induction. 
There remains to prove that 92 and 93 are algebraically independent, to be 

sure we get the formal polynomial ring. First it is clear from the homogeneity 
property that a non-trivial linear relation among elements of distinct Mk'S 

cannot exist, i.e. if 11, .. . ,fm are of distinct weights, then they are linearly 
independent over the complex numbers. If we had an algebraic relation among 
92,93, then we could assume that the monomials in it have the same weight. 
In such a relation, if a pure power of 92 occurs, then the relation is of the form 

g'2 + g3P(gZ' g3) = 0 

where P is some polynomial. Evaluating this at i shows that it is impossible 
because 93(i) = 0 and 92(i) of. o. Similarly, no pure power of 93 can occur. 
Hence 92 divides each monomial, and cancelling 92 yields a relation of lower 
degree, so the proof is finished by induction. 

The exposition in this section follows Serre [BlO]. 
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§3. THE MODULAR FUNCTION) 

We define the modular function 

and j = 1728g~!f1. 

39 

The reason for the 1728 is that certain power series expansions later will have 
integral coefficients. Note that 1728 = 26 33 . 

From the properties of g2' g3 proved in the preceding section, we see that 
) is an automorphic function of weight 0, and since it is holomorphic, non-zero 
on ~, we see that) has a pole of order 1 at infinity. We shall prove later that the 
residue is 1, in the q-expansion. 

Theorem 4. The map j: q~ -> C is a bijection. 

Proof We apply the basic relation of Theorem 2 with k = 0, so the right­
hand side is 0, to the function) - c for c E C. Then) - c has a simple pole at 
infinity, and 

The terms on the left are all ~ 0. This is possible if and only if the order of 
) - c at some unique z in q~ is =/: 0. The multiplicity is 1 if z is not in the orbit 
of p, i and otherwise, it is 2 at i and 3 at p. In any case, our theorem is proved. 

We can view) as a function of lattices according to our general scheme 
transforming functions of two variables into functions of one variable by 
homogeneity. But since) is of weight 0, we see that for a lattice L = [WIo W2] 
we can write 

)(L) = )(T) 

if WI, W 2 are selected such that wdwz = T lies in~. If L = ;,Mfor some complex 
A =/:0 thenj(L) = j(M). Conversely, the fact thatj gives a bijection of q~ with 
C can be stated in the homogeneous form, namely that the converse holds, i.e.: 

Corollary 1. Let L, M be two lattices in C. Thenj(M) = j(L) if and only if 
M, L are equivalent. 

By Theorem 6 of Chapter 1, §4 we also see that the condition of the corollary 
is equivalent with the property that Cj L is isomorphic to Cj M. Thus j gives us 
the desired analytic expression parametrizing isomorphism classes of elliptic 
curves (complex toruses). 

Corollary 2. Let C2, C3 be complex numbers such that 

d - 27c~ =/: 0. 

Then there exists a lattice L such that 

and 
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Proof By the theorem, there exists T E i) such that 

c3 

j( T) = 1728 3 2 2' 
C2 - 27c3 

[3, §3) 

Let M = [T, I]. If C2 = 0, then jeT) = ° and T = p. Let WE C* be such that 
W- 6g 3(L) = C3 i= 0. Let L = wM. Then 

gz(L) = W- 4g2(M) = W-4g2(P) = C2 = 0, 

and g3(L) = C3, so we are done. 
If C2 i= 0, choose WE C* such that w-4giM) = C2 and let L = wM again. 

Then g2(L) = C2' Hence 

d g~(L) 
d - 27d = J(T) = J(M) = J(L) = g~(L) - 27g;(L) 

d 

This shows that 
g~(L) = d, 

If necessary, replace w by iw. This does not change g2 and changes g3 by -I. 
Then L is a lattice whose gz, g3 have the desired values, thus concluding the 
proof of the corollary. 

The above result shows that an arbitrary elliptic curve 

y2 = 4x3 - c2 x - C3 

with non-vanishing discriminant can always be parametrized by elliptic functions, 
i.e. we can select a lattice L such that 

and 

The associated Weierstrass p and ~O' parametrize the curve. 
If A is an elliptic curve, we denote by jA the value j(L), for any lattice L 

such that Ac is isomorphic to CjL. This value is independent of the choice of 
L, and is called the j-invariant of the curve. Note that it is defined rationally 
in terms of the coefficients of the equation defining A. We can reformulate 
Corollary I as follows. 

Corollary 3. Two elliptic curves A and B are isomorphic if and only if 
jA = jB' 

Remark. Let T be such that jeT) is transcendental over Q. Then an elliptic 
curve with invariantj(T) necessarily has a trivial ring of endomorphisms. Indeed, 
we know from Chapter I, §5 that if the curve has non-trivial endomorphisms, 
then T is imaginary quadratic, and there are only denumerably such T, while 
there are non-denumerably many transcendental complex numbers over Q. 
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If Al is an elliptic curve with transcendental invariantjl, and Al is defined over 
a field KI finitely generated over Q, and similarly A2 has invariant j2 trans­
cendental over Q, and is defined over K 2 , we let 0": QUI) -+ QUz) be an iso­
morphism sendingjl onj2 and extend 0" to K I • Then Ar has invariantjr = jz, 
and Ar is therefore isomorphic to A z. Extending KI to a bigger field if necessary, 
we may assume that all endomorphisms of A I are defined over K I • Then 
End(AD = End(AI)<1, and thus A2 and Al have isomorphic rings of endo­
morphisms. This proves our remark. 



4 Fourier Expansions 

§l. EXPANSION FOR Gk 

In this section we derive the promised expansions at infinity for the Gk , 

whence for Ll and j. 
We start with the product expansion for the sine, 

sin nz = nz fI (1 - ~)(1 + ~) . 
n= 1 n n 

Taking the logarithmic derivative yields 

(1) 

But 

whence 

We let 

n cos nz = ! + 00 [_1_ + -l-J 
sin nz z n~l Z - n z + n . 

cosw = ----
2 

and 
eiw _ e- iw 

sinw = ----
2 

1 . 2' 
cos nz = :2 e- lnZ (e nIZ + 1), 

1 . 2' 
sin nz = 2i e- mz (e nIZ - 1). 

I q = qt = e2nit• 

Then for, in the upper half plane f) we get 

(2) 
cos n, q + 1 2ni 00 

n -- = ni -- = ni + -- = ni - 2ni L qV. 
sin n, q - 1 q - 1 v = 0 

43 
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Differentiating the expressions in (I) and (2) repeatedly yields 

(3) 
00 1 00 

(_l)k-l(k - I)! L ~-:-k = - L (2ni)kl-lqV. 
n=-oo(r-n) v=1 

Consequently from the definition 
1 

GkCr) = L' ---~---ik 
m,n (mr + n) 

we get, summing separately for m = 0 and In =I 0, 

We let 

y if) co 1 
Gk(r) = 2~(2k) + 2 L L ~--~-2/" 

m=1 n=-Y) (m! + n) 
ro (f) (2ni)2kv2k-l 

= 2(2k) + 2 L L q;/v, 
m=lv=l (2k-1)! 

(Jk(n) = L elk. 
din 

Proposition 1. We have 

(4) 
y (2nifk 00 

GkCr) = 2i,(2k) + 2(2k _ I)! n~1 (J2k-l(n)q~. 

The most interesting special cases give us: 

(5) 
1 

g2 = 60G 2 = (2n)4 22 3(1 + 240X) 

(6) 
1 

g3 = 140G3 = (2n)6 2 333(1 - 504Y) 

where 
00 00 

X = L (J3(n)qn and Y = L (Js(n)qn. 
n=1 n= 1 

We have also used the standard values 

We then get 

(7) 

n4 
(4) =-

90 
and 

1 
t.. = (2n)12 26 33 [(1 + 240X)3 - (1 - 504Y)2J. 

[4, §l] 

We contend that all the coefficients in the q-expansion of the expression in 
brackets are == 0 mod 26 33 = 1728. This is a simple matter. We see at once that 

[, •• J == 32 24(5X + 7 Y) mod 26 33 • 
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We have to show that 5X + 7 Y == 0 mod 4 and mod 3. For this it suffices that 

L d3 == L d S mod 4 and mod 3. 
din di" 

But for all d, we already have d 3 == d S, so our contention holds. 

Therefore the q-expansion for ~ has the form 

(8) ~ = (21!)12q(1 + n~1 dnqn ) , 

where the coefficients dll are integers. From this we now see that the expansion 
for j has integer coefficients, namely 

(9) 
g3 1 00 

j = 123 ~ = - + L anqn 
~ q n=O 

with all E Z. The first two coefficients are 

1 
j = - + 744 + 196884q + .... 

q 

§2. EXPANSION FOR THE WEIERSTRASS FUNCTION 

If L, = [r, 1] we write 

&;)(z,L,) = &;)(z;r, 1) =p(z;r). 

From (I) and (2) in the preceding section, we have 

(10) 

where qw = e2niw , From the definition of the g:)-function, we find 

8,)(z;r) = + -1 [1 1 ] ~ (z - mr + 11)2 (mr + 11? 

(11) + L L 2+ 2 -2L 2 
W[ [1 1 ] 1 ] 

m=l nEZ (z + mr + 11) (-z + mr + 11) nEZ(mr + 11) 
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Recall that ,(2) = rr 2 /6. Also use the fact that 

For 1m r > 0 we have Iqri < I. In the range 

we therefore find a first q-expansion for the &a-function, namely: 

Proposition 2. 

1 1 qz 00 00 

M(Z' r) + + ~ ~ nqmt n(qzn + qz- n) 
(2rri)20v , = 12 (1 _ qz)2 i.J i.J 

m= 1 n= 1 

00 00 

-2 L L nq~n. 
m=ln=l 

Except for the 1/12, all the coefficients are integers. 
On the other hand, we can use the second formula on the right of (10). 

Applying these to formula (11), we see that one of the sums has the form 

(12) ~ [ q~qz + q~/qz ] 
m= 1 (1 - q~qz)2 (1 - q~/qz)2 . 

We multiply the second term by q;2m and q; in the numerator and denominator. 
We also make a similar easy transformation for the other double sum in (11), 
and we come up with a second expression for the q-expansion of the &a-function, 
namely: 

Proposition 3. 

Differentiating yields 

1 '(.) _ ~ q~qi1 + q~qz) 
(2 ')3&a z,r - i.J (1 m)3 

1r1 meZ - qt qz 

Using the splitting as in (12) or looking at these again directly, one sees that 
these second formulas are valid for all Z E C once r is fixed. 

The formulas for g2 and g3 found in the preceding section can be put in a 
similar form, say abbreviating q = qt. 
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Proposition 4. 

1 1 [ if) n3qn ] 

(2ni)4gzCr) = 12 1 + 240 n~l (1 _ qn) 

1 1 [ if) n5qn ] 
(2ni)6 g3(r) = 63 -1 + 504 n~l (1 _ qn) . 

From the expansions for g2' g3 and the Weierstrass function, we get trivially 
the expansion for the Weber function. 

Proposition 5. Let 
f 7 5 gz(r)g3(r) 
;o(z, r) = -2 3 ~WSJ(z; r, 1). 

Let q = qr and w = qz = eZniz . Then 

fa = P(q{l 

where 

12w ifJ ] + 2 + 12 L nqmn(wn + w- n - 2) 
(1 - w) m,n~ 1 

P(q) = q + Czq2 + ... 
is a power series with integer coefficients starting with q. 

Let L = [2nir, 2ni]. Then from our knowledge how g;), fiJ', g2, g3 transform 
under isomorphisms in Chapter 1, §4 we see that the above expressions in fact 
give 

and g;)'(z, L). 
Thus if we let 

and 

then the elliptic curve 
y2 = 4x3 - g2x - g3 

is parametrized by the functions having the second expansions. Furthermore, 
since the map 

Z f-+ (1, &;)(z), &;)'(z)) 

is a homomorphism of C into the elliptic curve (actually surjective), and since 
the formulas for 8;)(Z, r) depend only on qZ' it follows that the formulas of 
Proposition 3 give us a homomorphism from the multiplicative group of complex 
numbers onto the complex points of the elliptic curve. For the algebraic implica­
tions of this fact, see the Tate parametrization in Chapter 15. 
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§3. BERNOULLI NUMBERS 

This section will not be used in the sequel and is included only for the con­
venience of the reader in reading some other literature, e.g. concerning 
elliptic functions and L-series. In particular, the von Staudt theorem is fre­
quently used in such contexts. 

We define the Bernoulli numbers Bn by the power series expansion 

_z_ = i Bnzn 
eZ - 1 "=0 n! . 

From the relation 
00 z" 00 B 

z = L -, L-'; z" 
m=l m. "=0 n. 

we get a recursion formula for the Bernoulli numbers, namely 

Bo B1 Bn - 1 {I if 
n!O!+(,!-I)!1!+"'+l!(n-l)!= 0 if 

We get Bo = I, 

n = 1 

n>1. 

2Bl + Bo = 0, 
3B2 + 3Bl + Bo = 0, 

whence Bl = -1/2, 
whence B2 = 1/6, 

and so forth. 
From the identity 

_z_ + ~ = ~(eZ + 1) = ~ ez / 2 + e- z / 2 

eZ - 1 2 2 eZ - 1 2 ez/ 2 - e z/2' 

we see that the above function is even, and hence has only even terms in its 
power series expansion. This implies that, except for Bl> the odd Bernoulli 
numbers are equal to O. The first few Bernoulli numbers are then: 

1 1 1 
B4 = - 30 B6 = 42 Bs = - 30 

5 691 7 
BlO = 66 Bll = - 20730 B14 = 6 . 

We have 
z ez/ 2 + e- z /2 00 B2n 2n 

:2 e"/2 - e z/2 = "~o (2n)! z 

Replace z by 2niz. We then see that 
00 (2n)2n 

nz cot nz = L (-1)" -2 )1 B2nZ 2". 
n=O ( 11 • 

Comparing with our previous expansion for n cot nz, we see that 
2n - 1n2n 

,(211) = (_1)n-1 (2n)! B2n• 
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Von Staudt's theorem. We have 

B2n == L 
(p-1)i2n 

Proof Let D = d/dz. Then 

1 
(mod Z). 

p 

Bn = Dn(e% ~ 1)1.=0 

= Dn( -log(1 - (1% - e%») I . 
1 - e %=0 

49 

Using the power series for the log, and differentiating term by term, we find that 

"+1 1 I "+1 1 
Bn = L -D"(1 - e%t- 1 = L -:Ak 

k=1 k %=0 k=1 k 
where 

We assert: lfk =f. 4 and is not a prime, then klAk• 

Proof Let k = ab, 2 ~ a ~ /k. Write 

(1 - e%)k-1 = (1 - e%t(1 - e%t(1 - e%tb- a - b- 1. 

We must have ab - a - b - I ~ o. Indeed, y = k - x - k/x - 1 has a 
maximum at k. The minimum is at x = 2, with value (k - 6)/2, which is 6 0 if 
k ~ 6. Taking the derivative of 

(1 - e%)"(1 - e%)b(1 _ eZ)C, 

we see that there will be a non-zero contribution when we substitute z = 0 
only for those terms for which we differentiate at least once the factors (1 - e Z)" 

and (I - ez)b, in other words, such terms will be divisible by ab = k. This 
proves our assertion. 

To compute Bn (mod Z) we are reduced to considering Ak for those values 
of k not already eliminated. 

First, if k = 4, then we find the value directly by expanding out 

(1 - e z)3 = I - 3e z + 3e2 % - e3z, 

and differentiating. We get 

Ak = -3 + 3·2n - 3" == 0 (mod 4) 

if n = I or if n is even, which are the cases we want. Again in this case, we get 
no contribution to B" (mod Z). 

Finally, suppose that k = p is a prime ~ n + I. Write 

n = (p - I)q + r, O~r<p-l. 
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Then 

whence 

{

P_l (_ 1) 
.LC-IY P . i' 

A, = :~ Hl(P ~ 1) _ 1 
if r > 0 

if r = 0. 

If r = 0, we get the contribution -1 (mod Z). If r > 0, then our value for Ap 
is the same as 

Dr(l - ezy-t=o, 

which yields 0. This proves von Staudt's theorem. 



5 The Modular Equation 

We are interested in studying the j-invariants of isogenous elliptic curves, 
which, as we shall see, amounts to studying j 0 0( where 0( is a rational matrix. 
For this we need some algebraic lemmas concerning integral matrices with 
positive determinant. 

§1. INTEGRAL MATRICES WITH POSITIVE DETERMINANT 

Let M{(Q), M{(Z) denote the sets of 2 x 2 matrices with components in 
Q and Z respectively and positive determinant. We also write M{ (Q) = GLt (Q). 
If 

is in M{(Z), we shall say that 0( is primitive if (a, b, e, d) = 1, i.e. a, b, e, dare 
relatively prime. The set of integral matrices with determinant n is denoted by 
An> and the subset of those which are primitive is denoted by A:. It is immediately 
clear that multiplication on the left or right by elements of r = SLiZ) maps 
A: into itself. 

Since j 00( = j 0 ')10( for all ')I E r, we are led to study the co sets rO( for 
0( E A:. 

Theorem 1. The group r operates left transitively on the right r-eosets, 
and also right transitively on the left r -eosets of A:. 
Proof Let 0( be a primitive integral matrix as above. Let L = [r, 1] be a 

lattice. Then 

M = [aT + b, eT + d] 

51 
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is a sublattice, and by the elementary divisor theorem, there exists a basis 
{w!> W2} of L and a basis {WI' w:z} of M such that 

W~ = elw i 

w~ = e2w Z, 

and e1lez. Since (a, b, c, d) = I, it follows that e1 
exist elements 'I, 'I' E r such that 

, ('I 0) yay = On' 

1. This means that there 

and we see that L1: = rar. This also proves that r operates transitively on the 
eosets as desired. 

We now want to obtain a simple set of representatives for the left co sets of 
r in L1:. Given a E L1: as above, we can always find 'I E r such that 

For instance, select relatively prime integers z, w such that za + we = 0, and 
then x, Y E Z such that xw - zy = 1. Then 

'I = (: :,) 

works. 
Suppose now that a is triangular, i.e. 

Since 

we see that a left coset contains a representative with ° ~ b < d. Finally one 
verifies that the elements 

with ° < a, ° ~ b < d, and ad = n form distinct left coset representatives of 
L1:, i.e. that no two of them lie in the same coset. 

We let ljJ(n) be the number of left cosets of L1:. If n = p is a prime number, 
then we see that ljJ(p) = p + 1, the coset representatives being the matrices 

and with ° ~ i < p. 
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In general, we have 

I/I(n) = 11 n (1 + ~) . 
pIn P 

Although we won't use this fact, we give the simple proof. 
We have to count the number of matrices in normalized form as above. 

For given d, a = n/d is determined. Let e = (a, d). There are then 

possible values for b, so 

where e = (d, n/d). 

d 
- q>(e) 
e 

d 
I/I(n) = L - q>(e) 

dIn e 

The function 1/1 is multiplicative (in the sense of elementary number theory), 
i.e. ifn = n1n2 with nl> n2 relatively prime, then 

This reduces our study of 1/1 to the case when n = p' is a prime power. 
For d = I, e = I, we get a contribution of 1 in the sum for I/I(p'). For d = pr 
and e = 1, we get a contribution of p'. Hence 

I/I(pr) = 1 + p' + L -e 1 - -
,-1 p' ( 1) 
.=1 e P 
,-1 

= 1 + p' + L (p' - p.-l) .= 1 

= pr + p'-l = P'(1 + ~), 
thereby proving that the value I/I(n) is given by the desired formula. 
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§2. THE MODULAR EQUATION 

By a r-modular function, or simply a modular function for this section, we 
mean an automorphic function on ~ of weight 0, in other words a function 
meromorphic on ~, invariant under r, and having a q-expansion at infinity. 

Theorem 2. Let f be a r-modular function which is holomorphic on ~, and 
with a q-expansion 

f= ~:Cnqn. 

Then f is a polynomial in j with coefficients in the module over Z generated by 
the Fourier coefficients cn. 

Proof Write 

f = c -:: + terms of higher degree, 
q 

so that f - CMjM is holomorphic on ~ and has a q-expansion starting with at 
most a polar term of order M - 1. Repeating the procedure, we can subtract 
a polynomial in j whose coefficients lie in the module generated by all Cn over 
Z, so as to get a modular function holomorphic on ~, vanishing at infinity, and 
therefore identically zero, thus proving our assertion. 

Let I'J. E M:J(Q). Let m be a positive integer such that ml'J. is an integral 
matrix. By homogeneity, we have 

jo ml'J. =j 0 I'J.. 

Thus the study of j 0 I'J. for rational matrices I'J. is reduced to the study of j 0 I'J. 

for integral I'J.. Also, for any integral I'J. we can factor out the greatest common 
divisor of its components, and therefore we can always consider primitive I'J.. 

Let 

{I'J.J (i = 1, ... , tfJ(n» 

be representatives of the right cosets of ,1: for r. Then the functions j 0 l'J. i are 
permuted transitively by the operation of r, where as usual, r operates on a 
functionfby 

fHfoy. 

Let 
"'(n) 

<l>n(X) = n (X - j 0 l'J.i), 
i; 1 

where X is a variable. The coefficients of <I>.(X) are the elementary symmetric 
functions of the f 0 lXi' and are therefore holomorphic on ~, invariant under r, 
and are meromorphic at infinity. To see this last property, one replaces! by 

at + b 

d 
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in the qr-expansion of j, and one sees that the resulting expansion is a power 
series in qlld, whence each function f 0 rJ.i grows at most like a power of qat 
infinity. 

Furthermore, the coefficients of ql/d in the expansion of j 0 rJ.i lie in Z[(d], 
where (d = e2ni/ d• In fact, if 

1 
j = - + P(q), 

q 

where P is a power series with integer coefficients, and if 

rJ. = (~ ~), 
then 

(1) . _ 1 aid b 
} 0 IX - a/dyb + P(q (d)· 

q "d 

By Theorem 2 we conclude that the coefficients of<Dn(X) are polynomials in 
j, whose coefficients are in Z[CJ Furthermore, we may view all these functions 
as embedded in the power series field 

Q«(n)«ql/n». 

If k is any field and X a variable, and if (J is an automorphism of k, then (J 

extends to an automorphism of the power series field k«X» by 

L cmxm M L c~xm. 
Let r E (Z/NZ)*. The automorphism (Jr on Q«(n) such that 

extends to the power series field Q«(n)« q1I n», and we see from (1) that this 
automorphism permutes the functions j 0 rJ.i. Consequently the coefficients of 
<Dn(X) are invariant under all such automorphisms (J" r E (Z/NZ)*. Hence their 
q-expansions lie in Z«q». 

By Theorem 2 we now conclude that the coefficients of <Dn(X) are in ZU], 
i.e. are polynomials in j with integer coefficients. Thus we may view <Dn(X) as 
a polynomial in the two independent variables X and j, and we write it as 

<Dn(X) = <Dn(X,j) E Z[X,j]. 

We call this the modular polynomial of order n. 

Theorem 3. 
i) The polynomial <DnCX,j) is irreducible over C(j), and has degree !fJ(n). 
ii) We have <Dn(X,j) = <D.(j, X). 

iii) If n is not a square, then <Dn(j,j) is a polynomial in j of degree> 1 and 
with leading coefficient 1. 

Proof The first assertion comes from the fact that r permutes the functions 
j 0 (Xi (i = 1, ... , !fJ(n» transitively, and acts as a group of automorphisms on the 
field C(j, j 0 (X I, ... , j 0 (XoJ;(n). 
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Next, we prove the symmetry of (ii). One of the matrices (Xi can be taken as 

(~ ~). 
Hencej o! is a root of<I>n(X,j), i.e. 

n 
<I>iKr/n),j(t» = 0, 

Hence 
<I>n{j(r),j(m» = 0, 

or in other words, 
<I>n(j,j on) = 0. 

for allt. 

for allt, 

So jon is a root of <I>n(j, X), but it is also a root of <I>nCX,j), corresponding to 
the matrix 

(~ ~). 
Since <I>n(X,j) is irreducible, we conclude that 

<I>n(X,j) divides <I>ij, X), 
i.e. 

<I>nCj, X) = g(X,j)<I>n(X,j) 

for some polynomial g(t,j) E Z[t,j], by the Gauss lemma. It follows that 

<I>nCj, X) = g(X,j)g(j, X)<I>n(j, X), 
whence 

g(X, j)g(j, X) = 1, 

and g(X,j) is constant, = ± 1. If g(X,j) = -1, then 

<I>n(j,j) = -<I>n(j,j), 

and hence j must be a root of <I>n(X). But <I>n(X) is irreducible over Q(j), so this 
is impossible, andg(X,j) = 1. This proves (ii). 

To prove (iii), assume that n is not a square, so that if 

(X is primitive and ad = n, then a :f= d. We have the q-expansion 

" 1 1 
J-J0(X=-+···----···. 

q ':qa/d 

Since a :f= d, there is no cancellation in the polar term, and the leading co­
efficient of this q-expansion is a root of unity. But <I>ij,j) E ZUJ. Taking the 
product of the j - j ° (Xi> we see that the q-expansion for <I>n(j,j) starts with 
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with Cm = ± I, because Cm has to be an integer and also a root of unity. Hence 

r.f>.(j,j) = cmr + ... 
is a polynomial in j with leading coefficient Cm = ± I, as was to be shown. 

Corollary. For any r:x E Mt(Q), the function j 0 IY. is integral over Zfj]. 

Proof We may assume that IY. is integral, has determinant n, and then 
j 0 r:x is a root of r.f>n(X) which has leading coefficient I, and lies in Z[j, X]. 

Theorem 4. 1fT: E f> is imaginary quadratic, thenj(T:) is an algebraic integer. 

Proof Let K = Q(T:), and let 0 = [z, I] be the ring of algebraic integers in 
K. We can always find an element }. E 0 such that the norm of }. is square free. 
If K = Q(i), we take A = I + i, and if K = Q(J -m) with m > I square free, 
we take}. = J - m. Then 

Az=az+b 

A = cz + d 

with integers a, b, c, d and the norm of A (over Q) is the determinant ad - bc. 
Then 

is primitive, and z = IY.Z. Hence j(z) is a root of the polynomial r.f>.(X, X) which 
lies in Z[X] and has leading coefficient I according to Theorem 3, whence j(z) 
is an algebraic integer. We have Q(z) = Q(T:), and T: = UZ + v with rational 
u, v, i.e. T: = f3z with some primitive f3 E Mt (Z). Since j 0 f3 is integral over Z[j] 
by Theorem 3, it follows thatj(f3z) = jeT:) is integral over Zfj(z)], and therefore 
jeT:) is also an algebraic integer, as was to be shown. 

It will be proved in the complex multiplication thatj(T:) generates an abelian 
extension of Q(T:). 

The proofs which we have given here are very classical, going back to 
Kronecker and Weber. So far, these proofs for integrality are the simplest ones, 
through the q-expansions. Algebraically, one could give proofs which are fairly 
complicated. This is one reason why in the higher dimensional theory, integrality 
statements like the above are completely lacking. 

For a finer analysis of the factorization of the polynomial <I>m(X, X), we 
refer the reader to the appendix of Chapter 10. 

We shall now see how the above techniques also give the Kronecker 
congruence relation 

r.f>p(X,j) == (X - jP)(XP - j) (modp), 

for any prime number p. Stronger results will be derived later by other techniques 
and the reader can skip the present arguments. 
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For a prime p, representatives for the primitive matrices of determinant 
p are given by 

a i = (6 ~) , i = 0, ... , p - 1 

lnd 

- (p 
ap - ° ~) . 

For a modular function!, we shall writef*(q) for its q-expansion, and similarly 
for a ql/N-expansion. Such an expansion is a power series in ql/N. If it has 
coefficients in a ring Z[(p] where (p is a primitive p-th root of unity, we shall 
write congruences 

f*(q) == g*(q) (mod 1 - 0 
to mean that all the coefficients of f*(q) - g*(q) in the ql/N-expansion lie in the 
ideal generated by I - ( in Z[(]. 

Making the given substitutions in the q-expansion for j 0 ai' we find at 
once that 

(j 0 ap)*(q) == j*(q)P (modp) 
and 

(j 0 aJ*(q) == j*(q)l/p (mod I - O. 
Observe that 1 - ( is a prime element at the prime dividingp in Z[(p]. Therefore 
we conclude that 

cJ>iX,j*(q» == (X - j*(q)P)(XP - j*(q» (mod 1 - 0, 
in the sense that the power series in q which are the coefficients of the poly­
nomials in t on both sides of this congruence satisfy the desired congruence. Let 

cJ>p(X,j) - (X - jP)(XP - j) = L t/Jv(J)XV 

where t/Jv(j) E Z[j]. Then t/JJj*(q» has coefficients divisibly by 1 - (, hence by 
p because these coefficients are ordinary integers. This proves the desired con­
gruence relation. 

§3. RELATIONS WITH ISO GENIES 

Let A, B be elliptic curves over the complex numbers. If Ae ~ elL and 
MeL is a sublattice such that Be ~ CjM, then we have an isogeny ).: B -+ A 
and a commutative diagram 

CjM~CjL 

1 1 
Be ~ Ae 

.l. 
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where the top homomorphism is the canonical one. Its kernel is the finite group 
LIM. LetL = [r, 1]. Then 

M = [ar + b, cr + d] 
with some matrix 

in M{(Z). Hence 

jB = j(Y.!) = j(M) and jA = j(r) = j(L). 

In particular, we see thatj(ctr) is a root of the polynomial 

<pn(X,j(r» E Z[j(r), X]. 

Evaluating functions at r in fact shows that for any special value of r E ~, the 
roots of <Pn(X,j(r» are precisely the values 

j(rxir), i = 1, ... , lj;(n). 

A sublattice M of L is called primitive if when we express a Z-basis of M in 
terms of Z-basis of L, by a matrix rx in M 2 (Z), then rx is primitive. It is immedi­
ately verified that M is primitive in L if and only if the factor group LIM is 
cyclic (using the elementary divisor theorem). Thus the primitive sublattices of 
L correspond to the isogenies with a cyclic kernel, whose order is precisely 
the determinant of rx, or equivalently the index (L : M). 

For any given value of r E ~, we see that the roots of 

<pn(X,j(r» 

are exactly the j-invariants of all the elliptic curves B which admit a cyclic 
isogeny 

of degree n. In other words: 

Theorem 5. Let A, B be elliptic curves over the complex. There exists an 
isogeny },: B -+- A with cyclic kernel of degree n 11 and only j B is a root of 
the equation 

<P,,(X,jA) = O. 

The theorem is true in characteristic 0 simply by embedding any field of 
characteristic 0 in the complex numbers. Igusa [22] has shown how it is valid 
in characteristic p, for p{n. In a later paper, he analyses the situation when n 
is a power of p [24]. 



6 Higher Levels 

§1. CONGRUENCE SUBGROUPS 

Let r = SL2(Z) again. We define r N (or r(N» for each positive integer N 
to be the subgroup of r consisting of those matrices satisfying the condition 

(~ ~) == 1 (mod N), 

in other words 

a == d == 1 (mod N) and e == b == ° (mod N). 

We call r N the congruence subgroup of level N. By SL2(Zj NZ) we shall mean the 
group of matrices with components in the ring ZjNZ having determinant 1 in 
ZjNZ. Reducing SL2(Z) mod N maps SL2(Z) into SL2 (ZjNZ), and the kernel by 
definition is r N' Actually one has an exact sequence 

0-+ r N -+ SLz(Z) -+ SL2(ZjNZ) -+ 0, 

and the surjectivity on the right is proved as follows. 
Let 

be an integral matrix representing an element of SL2(ZjNZ), so that 

ad - be == 1 (modN). 

By elementary divisor theory, there exist elements y, y' E SL2(Z) such that yexy' 
is diagonal, and if we can find fJ E SL2(Z) such that 

fJ == yexy' (mod N), 

then y-I fJy'-l solves our problem. Without loss of generality we may therefore 
assume that C( is diagonal, say 

ex = (~ ~). 
61 
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It will suffice to find integers x, y such that 

(a +NXN y:) 

has determinant 1. Let ad = 1 + rN. Our problem amounts to solving 

r + dx - yN = 0, 

which we can do since (d, N) = 1. This proves the surjectivity. 

[6, §2] 

By a simple counting argument, one sees that the order of SL2(Z/ NZ) is 

N3 n(1 - -;). 
piN P 

This general fact will not be used in this book. 
By GLiZ/ NZ), we shall mean the group of matrices with components in 

Z/NZ whose determinant is a unit in Z/NZ. Thus SL2 (Z/NZ) is a subgroup of 
GL2(Z/ NZ). In fact, let GN be the group of matrices 

(~ ~) 
with dE (Z/NZ)*. Thus GN ::;:0 (Z/NZ)*. Then 

GLiZ/NZ) = GN • SL2(Z/NZ) = SL2(Z/NZ) . GN • 

Indeed, any matrix in GLiZ/NZ) can be multiplied, say on the left, by a suitable 
element of GN , so that the product has determinant 1 in Z/NZ. The product 
decomposition is clearly unique. Furthermore, we have an exact sequence 

del ° ~ SLiZ/NZ) ~ GL2(Z/NZ) ~ (Z/NZ)* ~ 0. 

§2. THE FIELD OF MODULAR FUNCTIONS OVER C 

Let/be a function on the upper half plane i), meromorphic and invariant by 
r N, i.e. such that 

f(yr) = fer), rEi), y ErN' 

Let q = e 21tit and ql/N = e21tir/N. The map 
r f-> ql/N 

defines a holomorphic map from i)B (the set of rEi) with 1m r > B) onto a 
punctured disc, and is defined on i) modulo the translation by N. Since the 
matrix 

(~ ~) 
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lies in rN and acts as translation by N on ~, it follows that f induces a mero­
morphic function f * on this punctured disc. If there exists a positive power qM 
such that If*(q)qMI is bounded near 0, then in fact f* is also meromorphic on 
the disc and has a power series expansion in the parameter ql/N, with at most 
a finite number of negative terms. If for every y E SL 2(Z) the function (f 0 y)* 
also has such a power series expansion in ql/N, then f is called modular of level 
Non~. 

We denote by FN •e the field of modular functions of level N. The group r 
operates as a group of automorphisms of FN •e by ff-> f 0 y. Indeed, let y E r, 
and rx ErN' Since rN is normal in r, it follows that yrx = rx'y for some rx' ErN' 
Iff E FN •e then 

f(yrxr) = f(rx'}'r) = f(yr), 

so thatfo y is invariant under r N. Clearly,fo y is meromorphic on~. The last 
condition about q-expansions is immediate from the definition, s6 we see that 
fey is modular of level N, and r operates by composition. 

By definition, F I •e is the field of automorphic functions of weight 0, defined 
in Chapter 3. We let Fe be the union of all fields FN •e, and call Fe the modular 
function field over the complex numbers. 

Theorem 1. F I •e = C(j). 

Proof Let fE F I •e. For some polynomial P(j) the function fP(j) is holo­
morphic on ~. (For instance, if fhas a pole at zo, thenf(J - j(zo))m has no pole 
at Zo for high m, and the number of possible poles in a fundamental domain is 
bounded sincefis meromorphic at infinity.) Suppose thatfhas no pole on~, 
and has a pole of order n at infinity. Using the fact thatj has a pole of order 1 
at infinity, we see that there exists a constant c such that f - cj" has a pole of 
order ;5.n - I at infinity. Consequently by induction, we can find a polynomial 
inj such thatf - PolU) has no pole on ~ and no pole at infinity. Thenf - Pol(j) 
lies in the space of automorphic functions of weight 0, i.e. the constants, and 
this concludes the proofthatfE C(j). 

We shall now find generators for FN •e . Let 

I' ( • ) = _2 735 gz(r)g3(r) h(' 1) 
J 0 W, r ~( r ) ~v W, r, 

so that WE C and r E ~. This is called the first Weber function. Having fixed the 
integer N > I, for Y, S E Z and not both divisible by N, let 

fr,s(r) = foCr: S;r). 
The point of the factors involving g2' g3, ~ in front of fJ is to make the resulting 
function homogeneous of degree ° in the vector (r, 1). Because of this homo­
geneity, we sometimes also write 
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Ir.sCr) = 10('WI ; SW2; WI' W2) 

ifr = WdW2' For a fixed r, the above functions give the normalized x-coordinates 
of the points of period N on the corresponding elliptic curve. If (r, s, N) = I, 
the function Ir.s is said to be primitive of level N. In view of the periodicity 
property of the fJ-function, it follows that!,..s depends only on the residue classes 
of r, s mod N. Thus it is appropriate to use a notation exhibiting this property. If 

a = (ai, az) E QZ but art ZZ, 

we shall write 

Ia(r) = f(a; r) = fo(alr + az; r). 

Then each function fa is holomorphic on fl, and fa depends only on the residue 
class of a (mod Z2). We call the functionsfa the Fricke functions. 

It is also sometimes useful to use vertical notation, and write 

If a E SL2 (Z), this notation makes the following relation obvious: 

If we look at the q-expansions of Chapter 4, Proposition 5, then we see that 
the Fricke functions have a q;/N expansion with only a finite number of negative 
terms. Furthermore the powers of 2rri cancel in the definition of fo, and all the 
coefficients of q;/N lie in the field of N-th roots of unity over Q, because for 

rr + s 
w = -- we have 

N 

qw = q~/Nqs/N' 

and qs/N = (~ where (N = e2ni/ N is a primitive N-th root of unity. For the 
moment we disregard this special nature of the coefficients since we first do the 
theory over C. 

In any case, we have proved that the Fricke functions are modular functions 
of level N, because if rx == I (mod N), then arx == a (mod N) and hence Ia~ = fa 
andla(ar) = fa(r). 

The relation Ia(ar) = lair) also shows that the modular group operates as 

a group of permutations of the functions fa· Furthermore, if a = (N' R) has 

exact denominator N (i.e. (r, s, N) = 1), then arx also has exact denominator N, 
and thus SL2(Z) permutes the primitive Fricke functions of level N among 
themselves. 
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Of course, r = SL2 (Z) operates as a group of analytic automorphisms of 
i), and hence operates on FN,c by composition, 

ff--'>fO (I.. 

Since r N operates trivially, we may view the finite group rjr N as operating on 
FN,c, the kernel containing ± 1. 

We are essentially in a situation of Galois theory, with a group r;r N 

operating on the field FN,c, with fixed field FN,c' 

Theorem 2. We have 

F N,C = F I ,dlr,.)all r,S = C(j, Ir,.)all r,s' 

Furthermore, the Galois group of FN,c over FI,c is precisely 

r; ± r N = SLz(Zj NZ)j ± 1. 

Proof Let E be the subfield of FN,c generated over C(j) by all fr,s' Since 
r permutes the fr,s it follows that r;r N acts as a finite group of automorphisms 
of E. Note that ± 1 acts trivially, because the &J-function is an even function. 
We shall now prove that any element y E r which acts trivially on E must lie 
in ± r N' We consider the effect of y on the two functions fl.o and fO,l' Since 
p(u) = p(v) if and only if u == v (mod L), we see that ify leavesJ(l,O) andJ(o,l) 
fixed, then 

1(1,0) 0 Y = I(± 1,0) 

From this one sees at once that 

and 1(0,1) 0 Y = I(O,±I)' 

y==(~l :1) (modN). 

Since y E SLz(Z), it follows that y == ± 1 (mod N). Hence we have an injection 

r; ± r N -+ Gal(EjC(j», 

and the fixed field is C(j). Since we have a fortiori an injection of r; ± r N in 
Gal(FN,cjC(j», it follows that FN,c = E and that the Galois group is that stated 
in the theorem. 

§3. THE FIELD OF MODULAR FUNCTIONS OVER Q 

Letfbe a modular function (of level I). We shall say thatfis defined over 
a field k iff E k(j). 

Fix an integer N > 1 as before. Form the polynomial 

n (X - fr.s), 
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the product being taken over all (r, s) mod N (we could also take the product 
over those (r, s) such that (r, s, N) = 1). We obtain a polynomial in X, whose 
coefficients are invariant under r, because r permutes the 1.,$' Hence these 
coefficients are modular functions of levell, holomorphic on f,. Furthermore, 
their Fourier coefficients are in the field Q(CN)' 

By Theorem 2 of Chapter 5, it follows that these coefficients are poly­
nomials inj with coefficients in Q(CN), and hence the functions I." are algebraic 
over Q(j). 

Let QN = Q(CN), and let 

FN = Q(j, fr,.)alI r,s' 

We shall call FN the modular function field of level N over Q, and omit the 
reference to Q in a discussion when the context makes it clear. 

From the function theory of the preceding section, we already know that 
its Galois group contains 

SL2(Z/NZ)/±"l = r/±r N' 

Theorem 3. The Galois group of FN/Q(j) is precisely 

GL2(Z/ NZ)/ ± 1. 

The algebraic closure of Q in FN is QN = Q(CN)' If rx E GL2 (Z/ NZ), then the 
automorphism induced by rx on QN is given by the determinant, i.e. if u(rx) 
is the automorphism given by rx on FN , then 

u(oc)C = Cdel ". 

The Galois group of FN over QN(j) is SL2(Z/NZ)/± 1. 

Proof We shall prove Gal(GN/Fl) contains the group 

GN = {(~ ~), d E(Z/Nzr}. 

We consider the q-expansion given for the Weber function in Chapter 4. At 

rt + s 
N 

it will be of the form of a power series in qt with integer coefficients, times the 
power series 

12 r/NCs 00 

1 + q + 12 '" nqmn(qnr/NYS + q-nr/Nc s - 2) 
(1 - qr/NCS)2 m,;:' 1 ':0 , 

with q = qt. This power series is therefore contained in the power series field 

QN«ql/N». 

If k is any field and X a variable, then any automorphism u of k extends to the 
power series field k«X» by the mapping 
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If dE (Z/ NZ)* we let (Jd be the automorphism of QN«ql/N» obtained in the above 
manner, from the automorphism of QN such that 'N!--+ ,~. Then g2, g3,j are 
fixed since their q-expansions are in Q«q». On the other hand, we see from the 
q-expansions of the Weber function that 

(J d: f,i r) !--+ f"saC r). 
In other words (Jd defines an element of Gal(FN/Q(j», and (Jd is represented by 
the matrix 

(~ ~). 
Hence GN is contained in Gal(FNIQ(j». It follows now at once that 

Gal(F,'1/Q(j» = GL2(Z/ NZ)/ ± 1. 

Furthermore, from the way we defined (Jd' and the decomposition of an element 
in GL2(Z/NZ) as a product from an element in GN and an element in SL2(Z/NZ), 
we see that the effect of an element in GL2(Z/ NZ) on the roots of unity is given by 
the determinant of the matrix. 

Finally, let k be the algebraic closure of Q in FN , so that k = C n FN • Then 

Gal(FNlk(j) ;:;:; Gal(FN,clC(j» ;:;:; SL2(Z/NZ)/± 1. 
Hence 

[k(j): Q(j)] = [k: Q] = order of (Z/NZ)* = [Q('N): Q]. 

Since FN C QN«ql/N» it follows that k c QN' and we get equality by the fact 
that k and QN have the same dimension over Q. This settles the Galois group 
of FN/Q(j). 

________ FN,c 

FN I 
I ________ C(j) 

k(j) I 
I __________ c 
k 

We shall now give the formulation of Theorems 2 and 3 in terms of points 
of finite order on a "generic" elliptic curve. 

Let rEf, be such thatj(r) is transcendental over Q. Then the map 

f!--+ fer) 

gives an isomorphism of FN (which is an algebraic extension of Q(j» on a field 
which we denote by FN(r). Let At be an elliptic curve defined over Q(j(r» whose 
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j-invariant is j(r), say in Weierstrass form with coordinates (x, y). Let h be the 
first Weber function, so that 

h( ) - _2735 gZg3 x, Y - /l. x, 

and let q>: e/L -+ Ac be the analytic parametrization given by the Weierstrass 
functions. Let P1 = q>(w1/N) and Pz = q>(wz/N). Then 

h(P1) = f(1.olr) and h(P2) = f(o.1)(-c). 
In general, 

f. .• (-c) = h(rP1 + sP2)· 

Therefore the field FN(-c) is none other than the field 

Q(j(-c), h(AN» 

of x-coordinates of division points of order Non A<. Its Galois group is a sub­
group of GLz(Z/ NZ)/ ± 1, as we saw in Chapter 2. 

Let 

Corollary 1. Let j be transcendental over Q. Let A be an elliptic curve 
with invariant j, defined over Q(j). Let 

KN = QU, AN)· 
i) The Galois group of KN over Q(j) is isomorphic to the full group GLz(Z/ NZ) 

in its representation on AN :::::; (Z/NZ)2. 
ii) The algebraic closure ofQ in KN is Q«(N). 

iii) The Galois group of KN over Q«(N,j) is SL2(Z/NZ). 

Proof Let G = Gal(KN/Q(j». By the result for FN we see that 

G· {±1} = GL2(Z/NZ). 

y=G -~), 
so that y E SL2(Z/ NZ) and y2 = - 1. Then y or -y lies in G, and hence - 1 E G, 
whence G = GL2(Z/ NZ). This proves the first assertion, and the argument also 
proves the following lemma. 

Lemma. Let G be a subgroup ofGL2(Z/NZ) [resp. SL2(Z/NZ)] which maps 
onto GLz(Z/ NZ)/ ± 1 [resp. onto SLz(Z/ NZ)/ ± 1] under the canonical 
homomorphism. Then G = GLz(Z/NZ) [resp. G = SLiZ/NZ)]. 

If ot: E GL2(Z/NZ), we denote by (1" the corresponding automorphism of KN 
over Q(j), relative to a fixed basis of AN over ZjNZ. Let k be the algebraic 
closure of Q in KN. We know from Theorem 3 that k contains (N' and that 

(1(1.(N = (~et«. 

Let G1 be the Galois group of KN over k(j). If (1" E G1> then (1" leaves the N-th 
roots of unity fixed, and hence det ot: = 1. Hence G1 c SL2(Z/NZ), and G1 is 
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naturally isomorphic with the Galois group of C(J, AN) over C(j) (assuming that 
j is transcendental over C, i.e. making the constant field extension to C from k). 
Using Theorem 2 of the preceding section we conclude that 

GI · {±I} = SL2(Z/NZ). 

By the lemma, it follows that GI = SL 2(Z/NZ). Hence the order of the Galois 
group of k(j) over Q(j) is exactly the order of (Z/ NZ)*, by the exact sequence at 
the end of § I. This implies that 

[k: Q] = order of (Z/ NZ)*, 

and since k contains the N-th roots of unity, we conclude that k = Q«(N)' 
thereby proving both (ii) and (iii), and concluding the proof of the corollary. 

Let k be an algebraically closed field of characteristic 0 and let jo be trans­
cendental over k. Let us assume that the cardinality of k is at most that of C. 
We can then embed k into C, and even in such a way that C has infinite degree 
of transcendence over k. Let A be an elliptic curve defined over k(Jo), with 
invariantjo. Taking a suitable isomorphism of k(Jo) over k, we may assume that 
jo is transcendental over C. Select rEt) such thatj(r) is transcendental over k. 
Let F",k = kFN be the compositum of the modular function field over Q with 
k. The map fl---+ fer) induces an isomorphism of FN,k with a subfield FN,k(r) of 
C. There is also an isomorphism of k(Jo) with k(j(r», sending jo on j(r), and 
transforming A on an elliptic curve At defined over k(j(r», having invariantj(r). 
Thus we have isomorphisms 

k(jo, AN) ~ k(j(r), A~), 
and 

k(jo, h(AN» ~ k(j(r), h(A~» ~ FN,k' 

Having assumed that io is transcendental over C, it follows that C is linearly 
disjoint from the algebraic closure of k(Jo) over k. Making the constant field 
extension from k to C, we see that 

C(Jo, h(AN» ~ FN.C • 

Corollary 2. Let k be an algebraically closed field of characteristic 0 and 
let j be transcendental over k. Let A be an elliptic curve with invariant i, 
defined over k(j). The Galois group of k(j, AN) over kU) is isomorphic to 
SLzCZ/ NZ) in its representation on A N ~ (Z/ NZ)2. 

Proof There exists a subfield ko of k which is finitely generated over the 
rationals, such that A is defined over ko(j), and such that ko is algebraically 
closed in ko(J, AN)' i.e. ko is the constant field of ko(J, AN)' We may then replace 
k by the algebraic closure of ko, and therefore we may assume that k has finite 
transcendence degree over Q. We may then also assume that k is contained in 
the complex numbers, and we may identify i withj(r) for some value r such that 
i(r) is transcendental over k. Letting cp: CjL -+ Ac be an analytic parametriza­
tion, we let PI = cp( w 1/ N) and P 2 = cp( W2/ N) as usual. Let G be the Galois 
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groups of C(j, AN) over C(j). We can represent an element a E G by a matrix 
a E GLzCZjNZ) with respect to the basis {PI' P2 }. We may identify the subfield 
C(j, h(AN)) with FN.C' and a induces an automorphism of FN.C over C(j), also 
induced by an element f3 E SL 2(ZjNZ). We shall prove first that r:t. = ±f3. Let 

Pr•s = rPl + sP2 , r, S E ZjNZ. 
For any Pr•s we have 

h(P(r.s)p) = ah(Pr) = h(aP"s) = h(P(r,s),,)' 

Let 

For each (r, s) we therefore have (r, s)a = ±(r, s)f3. Taking (r, s) to be (1,0) 
and (0, 1), respectively, shows that f3 = ± IX or 

_ (-a -b) 
f3-± cd' 

( -a 
Say f3 = c -!) . Take (r, s) = (1, 1). We see that 

(a + c,b + d) == (-a + c, -b + d) (modN), 

whence 2a == 0 (mod N) and 2b == 0 (mod N). If N = 2, then 1 == - 1 (mod 2) 
and GL2(Zj NZ) = SL 2(Z/ NZ), so we may assume N > 2. If N is odd, then 
a == b == 0 (mod N), which is impossible. If N is even, then a == b == 0 (mod Nj2), 
which is also impossible. Hence f3 = ± IX, and we have proved that 

G c: SLAZ/ NZ). 

The lemma shows that G = SL2(Z/NZ), and proves our corollary. 

Remark. Some sort of argument is needed to prove Corollary 2, beyond 
Corollary 1. Indeed, let A, B be two elliptic curves defined over C(j), where j is 
transcendental over C, and suppose that they are isomorphic, but not over 
C(j) (i.e. over some finite extension of C(j». The fields C(j, h(AN» and CU, h(BN» 
are then equal, but as far as I know, it is not known if the fields C(j, AN) and 
C( j, B N) are distinct if N > 2. The problem lies with the extra quadratic extension, 
and the answer may depend on the parity of N. In any case, this shows that to 
prove Corollary 2, we cannot use the model of Corollary 1, defined over QU), 
without some additional considerations. 

The main part of the argument was to show that Galois group of C(j, AN) 
over C(j) is contained in SLAZ/ NZ). One can use a quite different approach, 
based on a canonical skew-symmetric non-degenerate pairing 

AN x AN ..... liN' 



[6, §3] THE FIELD OF MODULAR FUNCTIONS OVER Q 71 

where /IN is the group of N-th roots of unity, due to Wei I on abelian varieties. 
Cf. my book on abelian varieties, and Shimura's book [BI2], where Shimura 
actually selects this approach to the question. Hence it seemed worthwhile to 
describe the other way in the present book. An analytic description of this 
pairing will be given in Chapter 18. The pairing is compatible with the action of 
the Galois group, i.e. 

<(JP, aQ) = <P, Q)". 

From this it is immediate that if r:t. is the matrix representing a in its action on 
AN relative to a basis of AN over Z/NZ, then 

('!v = (~etll. 

Consequently, over the complex numbers, we see right away that the image of 
the Galois group in GL2(Z/NZ) is in fact contained in SL 2(Z/NZ). 

The proofs in this section are classical. Weber [B 16], §63, knew the structure 
of the Galois group of the division points of order N, both over the complex 
numbers and over the rationals, especially that the roots of unity came up as 
the new constants. Fricke [B2], Vol. Two, lA, gave precisely the same arguments 
we have chosen here, through the automorphism on roots of unity acting on the 
coefficients of the q-expansion. 

Shimura in [38] gave new birth to these questions, and to the study of the 
modular function field, using these arguments. It was of considerable help for 
the present-day generations to have Shimura's paper available, rather than plow 
through Weber or Fricke, whom we had to learn to read all over again. 

The analogous results in characteristic p were given by Igusa [22], [25], who 
even works integrally over Z[j]. He gives different arguments, based on ramifica­
tion theory, and finds the unipotent elements in the Galois group over the com­
plex numbers to see that it is all of SL 2 (Z/NZ). We shall recover this ramification 
theory later, when we discuss the Tate parametrization. 

One of the reasons why it is still hard to read Weber is that he uses extensively 
the Jacobi elliptic functions, rather than the Weierstrass function more or less 
exclusively, as we have done. 

Actually, there is some point in using the same functions Weber uses, or 
similar ones, constructed out of theta functions, because their values are special 
algebraic numbers, which are units when suitably normalized, and in this sense 
Weber knew perfectly well what he was doing (cf. [BI6], §I57). We shall consider 
this type of question in the last part of the book, since it is much more subtle 
than the general question of generating class fields any old way by values of 
modular functions of some level. 

In this book we are exclusively concerned with congruence subgroups of 
r = SL 2(Z), i.e. subgroups which contain some r N. It is known that there are 
infinitely many subgroups of finite index which are not congruence subgroups. 
One can factor the upper half plane 5 by these to obtain coverings of the 
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projective line, ramified at 0, 1, and 00. The pullback of anyone of these to a 
model of some modular curve of suitable level yields an unramified covering 
of such a curve, and conversely, any unramified covering of a modular curve 
of any level belongs to a subgroup of finite index of r. Very little is known about 
the curves obtained from non-congruence subgroups. A very deep conjecture 
was made by Ihara [B6], who considers their reduction mod p, and conjectures 
roughly that "supersingular" values of j cannot split completely in these coverings, 
unless they arise from congruence subgroups. The beginnings of computational 
data have been provided by Atkin and Swinnerton-Dyer for "non-congruence" 
coverings (AMS Proceedings of Symposia on Pure Mathematics, XIX, (1971) 
pp. 1-26). 

§4. SUBFIELDS OF THE MODULAR FUNCTION FIELD 

By the modular function field F we mean the union of all the fields FN • 

Similarly, Fe is the union of all fields FN,e' We shall deal mainly with F. 
We denote by M{(Z) the set of 2 x 2 matrices with components in Z, 

and positive determinant. Similarly for M{(Q) = GLt(Q). 

Theorem 4. If a. E M{(Z) and det a. = N, then j 0 a. is a modular function 
of level N. For any a. E M{(Z), the map 

fl-+foa. 

is an automorphism of F (or Fd leaving the constants fixed. 

Proof Let y ErN' and write y = I + NP. Then 

y' = a.ya.-1 = I + Na.Pa.- 1 

has integral components and determinant 1, so lies in SL2(Z). Since 

j 0 a..o y = joy' 0 a. = j 0 a, 

it follows that j 0 a is invariant under r N' The other conditions for j 0 a. to be 
modular are immediately verified, so the first assertion is proved. The second 
assertion is proved similarly. Observe that if a E M 2(Q) and m is integer such 
that moe E M 2(Z), then for any function on the upper half plane, we have 

f 0 a = f 0 (ma) 

(the m cancels in the fractional transformation). Thus the inverse automorphism 
of 

is 
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Although Fricke [B2], Vol. Two, 1.4 also gives some discussion of subfie1ds 
of the modular function fields, his discussion is not so clear (to me), and I 
follow Shimura [38], [BI2]. 

In selecting r such that j( r) is transcendental, we could always pick r trans­
cendental itself (for trivial cardinality reasons, the set of algebraic values of 
jon i) is denumerable). In particular, an elliptic curve At with transcendental 
j(r) always has a trivial ring of endomorphisms, i.e. End(At) ~ Z. 

The first case we consider is that of j(Nr), which is the invariant of an elliptic 
curve with lattice 

[Nr, 1] '" [r, ~J. 
Let r = wt/w2 and let L = [WI' W2] be the lattice of At. Put as before 

and 

where 0/: C/L -+ At is an analytic representation of At. Then 

ANt ~ A t/(P2)' 

as one sees at once from the nature of its associated lattice. From Proposition 3 
of Chapter 2, §2, we know that A/91 ~ A/9z if and only 91 = 92 (whenever 
91, 9z are finite subgroups of the same order, and A has a trivial ring of endo­
morphisms). Consequently we conclude that a matrix 

(~ ~) 
leaves j(Nr) fixed if and only if it maps (P 2) into itself. But 

(~ ~)(;~) = (~;: : ~;:) . 

Hence this happens if and only if c == 0 (mod N). From this we conclude: 

Theorem 5. The Galois group of FN over Q(j,j 0 N) is the group 

{(~ ~) E GL2(Z/NZ)}! ± 1. 

Corollary 1. The fixed field of FN under the group GN consisting of all 
matrices 

dE (Z/NZ)* 

is the field 
Q(j,j 0 N,fl,o). 

Proof The elements of the Galois group in Theorem 5 which leave fl,o 
fixed are represented by those matrices 

(~ ~) 
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such that 

(l,0)(~ ~) = (±1,0). 

This immediately implies the corollary. 

Corollary 2. Thefield of Corollary I is a maximal subfield of FN consisting 
of functions whose Fourier coefficients in the ql/N-expansion are rational. 

Proof Clear. 

Theorem 6. The Galois group of FN over the jield Q(j,j 0 a)all a, with 
a E Mt (Z) and det \J. = N, is the diagonal group 

{(~ ~)} mod ± 1, eE(Z/NZ)*. 

Proof A diagonal matrix eI has the effect P ~ eP on a point of finite order P, 
and hence maps every subgroup of AN into itself. Consequently, since j(rxr) is 
the invariant of some factor curve A/g where 9 c AN, it follows that j 0 IX is 
fixed under such a diagonal matrix. Conversely, if an automorphism represented 
by 

leavesj 0 rx fixed for all rx, then it leavesj () rx fixed for the special rx corresponding 
to the factor curves A/(P1 ), A/(P2 ) and A/(P1 + P 2 ). The matrix 

(~ ~) 
must map each one of the vectors (1, 0), (0, 1), (1, 1) into a scalar multiple of 
itself, and from this one sees at once that the mtrix must be diagonal, thus 
proving the theorem. 

One usually denotes by r o(N) the group of elements r E r = SL2(Z) 
consisting of matrices 

with c == ° (mod N). 
r = (~ ~) 

Theorem 7. The jixedjield of FN by ro(N) is thejield QU,j c N, (v). 

Proof This is immediate from Theorem 5, the fact that elements of SL 2(Z) 
leave the constants fixed, and that the group of Theorem 5 is the product 

ro(N)GN , 

where GN consists of the matrices 

(~ ~), dE (Z/NZ)*. 



7 Automorphisms of the 
Modular Function Field 

§1. RATIONAL ADELES OF GL 2 

If N, M are positive integers, and NIM, then we have a canonical homo­
morphism 

GLz(Zj MZ) -+ GLz(Zj NZ), 

and we can take the projective limit. By the Chinese remainder theorem, if 
N = npt is the prime factorization, then 

GL 2(ZjNZ) ::::0 n GLz{Zjp~;Z), 
i 

and so taking the projective limit can be done "component wise" with respect 
to the primes. The projective limit of the rings Zjprz as r -+ CI) is simply the 
ring of p-adic integers Zp. Let Z; be the group of p-adic units (invertible elements 
in Zp). Then we see that 

lim GL2(ZjNZ) = n GL2(Zp), 
j; p 

where GLz(Zp) is the group of matrices with components in ZP' having their 
determinants in Z;. We abbreviate 

GL 2 (Zp) = Up 
and let 

U = n Up = n GL 2(Zp)' 
p p 

We let the finite adelic group of GL2 be 

GL2 (AJ) = n' GLz{Qp), 
p 

where the prime on the product means restricted product: For almost all p the 

75 
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p-component of an element of GL2(Af ) lies in GL2(Zp). We let GLt(Q) denote 
the group of rational 2 x 2 matrices with positive determinant. 

Of course we can also form the usual ideles 

AQ = R* x 0' Q;, 
p 

with p-adic component in Q!, and almost all components in Z;. Using the prime 
factorization of an integer, one sees at once that 

AQ = Q+(R+ X 0 Z;), 
p 

where Ai5 denotes the subgroup of ideles with positive component in R. We 
shall next prove the analogous result for GL2 and SL2 • 

Theorem 1. We have 

GLiAf ) = GLi(Q)U 

SL2(Af ) = SLiQ) 0 SLiZ p ). 
p 

Proof We shall first prove the second equality. 
For any field k it is easy to see that SL2(k) is generated by the elements 

X(b) = (~ n and G ~) = Y(c) 

with b, C E k. Indeed, multiplying an arbitrary element of SL2(k) by matrices of 
the above type on the right and on the left corresponds to elementary row and 
column operations (e.g. adding a scalar multiple of a row to the other, etc.). 
Thus the given matrix can always be brought into a form 

by such multiplications. Letting W(a) = X(a) Y( -a-1)X(a) we get 

W(a)W(-I) = (~ a~1)' 
thereby proving our assertion about SL2(/(). 

Now given 0( E SLiAf), let p be a prime where O(p is not p-integral. Write 
0( as a product 

0( = Z(b1) ••• Z(bm) 

where Z(b i) is either X(b i) or Y(b i), and bi E Qp. For each i, select a rational 
number ri with only powers of p in the denominator, and approximating bi 

very closely at p. Let x p = Z(r 1) ... Z(r m). Then x p E SLiQ), and x; 10( is very 
close to the unit matrix in SL2(Qp), whence lies in SL2(Zp). Furthermore, xp is 
t-integral for any prime t =1= p. We can now repeat the procedure successively 
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for the finite number of primes where IX is not integral, and thus obtain an element 
x E SLz(Q) such that 

as desired. 
To handle GLz we multiply an element IX E GLz(A f) by an element fJ of the 

form 

so that fJlX E SLz(Af ). Approximating the idele s = ( ... , sp ... ) at a finite number 
of p by a positive rational number, we can find a rational matrix 

y = G ~), I'E Q+ 

such that yet E SLiAf)U. This reduces our problem to the preceding one, and 
proves our theorem. 

We view Q2 = Q x Q as a space of row vectors, and let 2 x 2 matrices 
operate on the right, so that GLz(Q) operates on QZ. Similarly, GL2 (Qp) operates 
on the right of Q~. 

We have a natural isomorphism 

QZ/Z2 ~ I1 Q;/Z;, 
p 

which corresponds to the primary decomposition of the torsion group (Q/Z)z. 
An element up E GLz(Zp), operates on Q~jZ~ and hence if 

U = (up) E U, 

then U operates on Q2jZ2, according to the above prime decomposition. 

§2. OPERATION OF THE RATIONAL ADELES ON THE 
MODULAR FUNCTION FIELD 

Let At = A be an elliptic curve with invariantj(r), r E tl, and assume that 
A is defined over Q(j(r». We let 

L t = [r, 1]. 

We have an analytic representation 

<f> = <f>t: C/Lt -+ Ac· 
For a = (a l , az) E QZ we get an element of QL t by taking the dot product 

aG) = aIr + az, 
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whence an isomorphism 

Q2/Z2 -> QLt/Lt. 

The group QLt/Lt is the torsion subgroup of CjLt' and its image under CPt 
consists of the points of finite order on A. We shall also denote by cP the homo­
morphism of Q2 /Z2 -> A obtained by the composition of mappings 

Q2/Z2 -> QLt/Lt -> A. 

We see that our analytic representation gives us a coordinate system for the 
points of finite order on A. If a E Q2 and a denotes the class of a in Q2 /Z2, we 
also write 

cp(a) = (p(a). 

Thus we also view cp as giving a homomorphism 

cp: Q2 -> QLt/Lt -> A. 

Let us assume that End(A) ~ Z. Then any other analytic parametrization 

If;:CjLt->Ac 

must be such that If; = ± cp, because If; 0 cp-1 is an automorphism of A. Let us 
assume that A is in Weierstrass form, and let h be the Weber function such that 

h( ) = _27 35 gzg3 x, y Ll x, 

so that h is an isomorphism invariant. Then we have 

ht 0 cpt(a) = Ia(r), 

where fa is the Fricke function. 

Theorem 2. Let F be the modular functionfield, and let fa (aE Q2/Z2, a#- 0) 
be the Fricke functions. For each u E U there is an automorphism O"(u) of F 
over Q(j) such that 

and the map 

U H O"(u) 

is a homomorphism of U onto Gal(F/Q(j» whose kernel is ± 1. 

Proof This is but a reformulation of the results of the preceding chapter, 
taking into account the projective limit 

U = lim GL2(Z/NZ). 
~ 

Theorem 3. Let rEi) be such that j(r) is transcendental over Q, and let 
A be an elliptic curve such that jA = j(r), and defined over Q(j(r». Let 
cp: CjLt -> Ac be an analytic parametrization of A. Let U be as in § 1. Then 
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for each u E U there is an automorphism (J(u) of the field of all division points 
on A such that 

<p( a t(U) = <p( au), 

and the map u f-> (J(u) is an isomorphism of U onto the Galois group of the 
field of all division points over Q(j(T». 

Proof This is a reformulation of Theorem 2, and Theorem 3 of the preced­
ing chapter, taking into account the projective limits. 

In particular we get the formula 

There is another type of automorphism. For any rx E GLi(Q) we let (J(rx) be 
the automorphism such that for any f E F we have 

1'*) = fo rx. 

In other words, 

This yields a homomorphism of GLi(Q) into Aut(F), whose kernel is the 
subgroup of matrices 

aE Q*. 

Remark 1. Note that Un GLi(Q) = SL2(Z). If rx E SLiZ), then the definition 
of (J(rx) viewing rx as an element of U or as an element of GL! (Q) is the same. 

Indeed, we have the obvious relation 

Ia(XT) = laa(T) 

for the Fricke functions, and for any rx E SL2(Z), viewed as an element of U, the 
corresponding automorphism leavesj fixed becausej(rxT) = jeT). 

Remark 2. Suppose u E U and in addition up E SL2(Zp) for all primes p. Let 
fbe a modular function of level N. Then there exists an element rx E SL2(Z) such 
that if n(p) is the order of Nat p, then 

r:t. == up (mod pn(p» 

for all piN. We then see that 

1"(U) = 1'*) = f 0 rx, 

first for the Fricke functions la, where a has exact denominator N, and then for 
any f E FN since the functionsfa generate FN. 

If (J, (J' are two automorphisms of F, then to have associativity in the 
exponential notation, we make their composite act so that 

1"", = (f"t'· 
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There is another important consistency relation. 

Theorem 4. (Shimura) Let a, f3 E GLt(Q) and let u, v E U be such that 
au = vf3. Then a(a)a(u) = a(v)a(f3). 

Proof For the proof, we have to look into the meaning of this relation, 
and on its interpretation in terms of isogenies. 

Let Y E MiZ) be a 2 x 2 integral matrix. Then y operates on Q2/Z2 and 
its kernel is represented by those elements a E Q2 such that 

ay E Z2, 

i.e. its kernel is 
Z2y-l/Z2. 

The next lemma is a basic formal tool for the study of isogenies of elliptic 
curves and their points of finite order. 

Lemma. Let a E GLt(Q). Let At and Aa(r) be elliptic curves with invariants 
jeT) andj(a(T» respectively, and let 

and 

be corresponding analytic representations of these curves. Assume that 
a-I E MiZ) has integral coefficients. Let 

and let p. = CT + d. Then there exists a unique isogeny 

A = Aa: At --+ Aa(t) 

such that the following diagram is commutative. 

<P 

Q2/Z2~ At 

«-11 1~-1 ll « 

Q2jZ2 ~ QLa(t)/La(r) ~ Aa(t) 
~ 

'" The middle arrow is multiplication by p.-I. 

Proof We have 

(T) = (a(T») 
alp. 1 ' 

whence 

-l(T) __ l(a(T») 
p. 1 ~ a l' 
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Since a- 1 E M 2 (Z) by assumption, we see that multiplication by W 1 maps 
CfLr into CfL«(t}. There exists a unique isogeny },« which makes the following 
diagram commutative. 

<P 

CfL r ~ A~ 

p-'l 1 A« 

CfL~(t) ~ A~(t) 

'" Then 

1l- 1(a 1, a2)G) = (a 1 , aZ)Il- 1G) = (a l , az)a-1(air»), 

and therefore the square on the left is commutative. This proves the lemma. 

Since A~(t) has invariant j(a(r», we can always select A~(t) defined over 
Q(j(a(r»). A way of doing this is to take the elliptic curve with transcendental 
invariantj to be defined by 

yZ = 4x3 - gx - g, 

such that g/(g - 27) = j/123 • If we select A~Ct) defined over Q(j(a(r»), then any 
automorphism of F(r) over F1(r), for instance a(u), can be applied to A~(tJ. 

Theorem 5. (Shimura) Let u, v E U and let a, f3 E GLi(Q) be such that 
au = vf3. Assume that j(r) is transcendental over Q, and that At (resp. A~Cr» is 
defined over QU(r» [resp. over Q(j(a(r»)]. Then a(u)A~Ct) has invariant 
j(f3(r». Select AP(t) = a(u)A~(r). Let }'«' Ap be the isogenies which make the 
diagram in the lemma commutative. Then 

A~Cu) = ± Ap. 

Proof We first prove that independently of how we choose AP(r), the two 
isogenies 

and 
have the same kernel. 

The kernel of A~ is cp(Z2a/Z2). Hence 
Ker A~(u) = (Ker A«)"cu) = cp(ZZajZ2)'1(u) 

= cp(Z2au/Z2 ) (see below) 
= cp(Z2vf3/Z2 ) 

= cp(Z2 f3/Z 2 ) 

= Ker J.p. 

This proves the first assertion, except that we must explain the notation 
Z2aujZ2. 

We recall that 
QZ/Z2 = II Q;/Z;, 

p 
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and an element up E GL2 (Zp) acts on the p-component Q~jZ~. What we mean 
by Z 2 r:LujZ2 is the direct sum 

Z 2r:LujZ2 = 11 Z~r:LupIZ~, 
p 

and since exup = vp[3, we have Z~exup = Z~v[3p = Z~[3. From these remarks, 
the notation makes sense, and the equalities in the above proof are valid. 

The two isogenies ).~(u) and I'll having the same kernel shows that their 
images are isomorphic, and hence have the same j-invariant, so that the first 
assertion of our theorem is valid. We may then choose AP(r) = a(u)A,(r). Both 
;.~(u) and ).p then map Ar on the same image, and have the same kernel, so they 
differ by an automorphism of the image. Since we selected r such that j(r) is 
transcendental, we know that the only possible automorphisms are ± 1. This 
proves Theorem 5. 

We can now return to Theorem 4, and verify the relation of Theorem 4 
for the functionsj andla. 

First, we have 

and 

j(r)"'(V)"'(P) = )(r)".(/I) = j([3(r)). 

The two expressions on the right are equal by Theorem 5, so our relation is 
proved for the j function. 

Next, we consider a E Q2 and b = aex- 1. Then: 

({Jib)",(·)rr(ll) = ((J.(r)(b)",(u) 

Taking the h-coordinate yields 

= ({) (aex-I)".(u) 
" .(r) 

= u..«({Jr(a))"(u) 

= ),~(U)«({Jr(a)"'(Il) 

±Ap 0 ({Jiau) 

±({J{J(r)(aup-l) 

±({JII(riaex-1 v) 

± ({J{J(ri bv). 

fb(r:L(r»)"'(Il) = fbv([3(r) 

which means that 

and proves our theorem. 
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§3. THE SHIMURA EXACT SEQUENCE 

For an arbitrary finite adele x E GLz(Af ) we write 

x = rxu or x = vfJ, 

with u, v E U and rx, fJ E GLt (Q). Then Theorem 4 shows that we can define the 
automorphism (J(x) on F by 

(J(x) = (J(a)(J(u) = (J(v)(J(fJ). 

This is well defined by Theorem 4, and a trivial computation shows that the 
association 

X 1--+ (J(x) 

gives a homomorphism of GLiAf) into Aut(F). It is easily proved that the 
kernel is precisely the group of diagonal matrices 

( a 0) a E Q*, o a ' 

simply by using the results of the preceding chapter. We leave this as an exercise. 

Theorem 6. (Shimura) The Sequence 

0-> Q* -> GLzCAf ) -> Aut(F) -> 0 

is exact, in other words, every automorphism of F is of the form au (i.e. 
(J(rx)(J(u»for some rx E GLi(Q) and u E U. 

Proof The proof which we shall give for the surjectivity now differs from 
Shimura's arguments, and is based on a different principle. 

Let (J be an automorphism of F. If (Jj = j, then (J E (J( U) and we are done. 
We shall reduce our proof to this case. 

First we may assume that (J leaves the roots of unity fixed, because we can 
compose (J with some (J(u) to achieve this. It then suffices to prove that we can 
compose (J with some (J(rx) so as to fixj. Since (J is now assumed to leave the roots 
of unity fixed, it may be extended to an automorphism of the modular function 
field Fe over C, leaving the constants fixed. 

Let A be an elliptic curve having invariant j, defined over eej), say by the 
standard Weierstrass equation. We identify the modular function field of level 
N over C with eej, h(AN»' The field 

Fg:~ = eej, h(A(p») 

is the subfield of Fe obtained from the points of p-power order on A. It is a 
p-extension ofC(j, Ap), and (JFb~~ is the correspondingp-tower over ee/', A~). 

Let E = C(j,j", A p , A~). Then 
E(h(A(p») and E(h(A"(p)) 

are p-towers over E. We shall now prove that there exists a finite extension K of 
E such that 

K(h(A(p)) = K(h(A"(p)). 
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The Galois group of Fc over E contains an open subgroup of the form 

W = n We x n SL 2(Ze), 
(ES t¢S 

where S is a finite set of primes, and We is such a small open neighborhood of 
I in SL 2(Zt) for all t E S, that We is an t-group without torsion. We select S so 
large as to contain 2, 3 and p. Let K be the fixed field of W. Let Hp be the Galois 
group of K(h(Au(pl) over K. Then we have a surjective homomorphism 

1/1: W---->Hp 

of Galois theory, corresponding to the inclusion of fields 

K c K(h(AU(p)) c F c' 

Each factor We for t E S, t =1= p, maps onto I under this homomorphism, 
because an t -group can only map trivially into a p-group. If t ¢ S, then the 
subgroup of SL2(Zt) projecting on I in SL 2(Z/tZ) is an t-group, and the same 
reasoning applies, to see that this subgroup maps onto I under 1/1. Finally, any 
homomorphic image 

SL2(Z/tZ) ----> Hp 

must be trivial, because ± 1 maps into 1 (since Hp has no torsion), and 
SL2(Z/tZ)/ ± 1 is simple for t ~ 5. 

Therefore Hp is in fact a homomorphic image of Wp, and in terms of field 
extensions, this means that 

K(h(AU(p))) c K(h(A(p)). 

Replacing K be a finite extension if necessary and using a symmetry argument, 
we conclude that in fact these two fields are the same. (Alternatively, one could 
also use the fact that since the Lie algebra of SL 2(Zp) is simple, the above ex­
tension is finite, and hence of degree I since Wp is assumed without torsion.) 

It now follows from a theorem to be proved by entirely different methods 
later (Chapter 16, §5, Theorem 7, and §\, Corollary of Theorem 1), that A and 
AU must be isogeneous. Consequently there exists an integral matrix a such 
that j" = j 0 a. Thus finally a(a)-la is an automorphism of F leaving j fixed, 
as was to be shown. 

Groups of automorphisms of infinite modular function fields were con­
sidered by Shafarevic and Piateckii-Shapiro [31] and [32]. The latter considers 
the field of all functions j 0 a, with rational matrices a. The section of the paper 
dealing with the automorphisms is not entirely clear. For instance, what we 
gave here as Theorem 5, due to Shimura, seems to be completely overlooked by 
Piateckii-Shapiro. On the other hand, the rest of the paper deals with the re­
duction mod p of the modular function field, and has results related to the 
Shimura reciprocity law, proved in Chapter 11. 



Part Two 

Complex Multiplication 
Elliptic Curves with 
Singular Invariants 



In this part we study special curves whose rings of endomorphisms are 
strictly bigger than Z. This involves both elliptic curves whose j-invariant j(z) 
is such that z is an imaginary quadratic number over Q, giving rise to the theory 
of complex multiplication, and elliptic curves over finite fields. We shall also 
relate this special theory with the generic theory of the preceding part, and show 
how the various mappings of an arithmetic nature which we obtain are related 
at all three levels: generic, number fields, and finite fields, specializing from one 
level to the next. 

The term complex multiplication arises because the algebras of endomorph­
isms of elliptic curves which are bigger than Z must be complex, i.e. cannot have 
real embeddings. Over the complex numbers, complex multiplication arises 
from the endomorph isms induced by multiplication in C with a complex number 
IX sending the given lattice into itself. 

The main development of the theory will be carried out by the Deuring 
reduction method. However, it is illuminating to see some of the results derived 
by the older analytic method of Kronecker, Weber and Hasse, so we have done 
this on a selective basis. For instance, you may find it useful to look right away 
at the analytic derivation of the congruence relation reproduced in Chapter 12, 
§3, and also the factorization results of Chapter 12, §2 which are self-contained, 
before, or simultaneously with, the algebraic arguments using reduction mod p. 



8 Results from Algebraic 
Number Theory 

In this chapter we assume that the reader is acquainted with the ordinary 
ideal theory in number fields. Cf. for instance [B7]. The first two sections should 
be read as technical background for Chapter 10, §2. On the other hand, although 
we strive for some completeness, once the reader sees the first results that the 
proper o-lattices form a multiplicative group, he can wait to read the other 
results until he needs them, as they are slightly technical. They are all classical, 
known to Dedekind, except possibly for the fact that a proper o-lattice is locally 
principal, which seems to have been first pointed out by Ihara [26]. The localiza­
tion technique will be used heavily for the idelic formulation of the complex 
multiplication, as in Shimura [BI2]. 

§1. LATTICES IN QUADRATIC FIELDS 

Proper o-ideals 

Let k be a number field, i.e. a finite extension of the rationals. We denote 
by Ok the ring of algebraic integers of k. By an order ° in k we mean a subring 
of Ok whose dimension over Z is equal to the degree [k : Q]. By a lattice in k we 
mean an additive subgroup of k which is free of dimension [k : Q] over Z. If 
L is a lattice in k, we define the order of L to be the set of elements ), E k such 
that ).L c L. By one of the definitions of algebraic integers, it follows that the 
order of L is contained in Ok' and it is easily verified that it is in fact an order, 
i.e. has rank [k : Q] over Z. 

For the rest of this section, we assume that r is quadratic over Q and we let 

89 



90 RESULTS FROM ALGEBRAIC NUMBER THEORY [8, §1] 

k = Q(r). We let ).1--+ J. ' be the non-trivial automorphism of k. Let r satisfy the 
quadratic equation 

At2 + Bt + C = 0 

with integers A, B, C which are relatively prime and A > O. Let the discriminant 
be 

so that 

We clearly have 
(1) 

D = B2 - 4AC, 

-B +.JD 
t= . 

2A 

B == D (mod 2). 

Theorem 1. Notation as above, let 

_ [1 D + .JPl = [1 B + .JD] 
0- , 2 -J ' 2 . 

Then 0 is the order of the lattice [t, 1]. 

Proof The congruence (l) shows that the equality on the right is true. By 
a straightforward multiplication, one sees that 1 . L c L, and that 

B + .JD 
--'----r = -C E Z c L, 

2 

B +.J]j 
2 = At + BEL. 

Hence [1, B +2.JD] is contained in the order of [t, 1]. To prove the converse, 

we prove another basic result first. 

Theorem 2. Let L' = [t /, 1] where r' is the conjugate oft, and let 0 be as in 
Theorem 1. Then 

Proof We have 

I I I B - D -B + yD [ 
2 I-

LI.:=[tt,t,r,l]= 4A2' 2A 
-B-.JD ] 

2A ,1 

= ~[c B A B + .JD] 
A ' " 2 

as was to be shown. 
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In particular, we see that L is invertible (with respect to 0), in other words 

L-1 = AL'. 

To finish the proof of Theorem 1, suppose that AL c L. Then 

ALL-l c LL-1 = 0, 

so).o c 0, and since 0 contains 1, we get A EO, thus proving that 

o = {A E k, ).L c L}. 

Given an order 0 in k, we shall say that a lattice L belongs to 0, or is a 
proper o-Iattice, if 

0= {}.Ek, AL c L}. 

By an o-ideal we mean an ordinary ideal a c 0, which is a lattice. 

Corollary. Let 0 he an order in the quadratic field k. Every proper 
o-Iattice in k is o-invertible, and conversely any lattice which is o-invertible is 
a proper o-Iattice. The set of proper o-lattices is a multiplicative group. 

If a, c are proper o-ideals, we define cia to mean that there exists an o-ideal 
b such that bc = a. Multiplying by c-1 shows that b is necessarily a proper 
o-ideal. Furthermore, as usual, one sees that this condition is equivalent with the 
condition a c c. An irreducible proper o-ideal p is a proper o-ideal i= 0 which 
cannot be factored p = ab, with proper o-ideals a, b such that a i= p and b i= p. 
[We shall see later as a result of Theorem 4, that an irreducible proper o-ideal p 
prime to the conductor, is a prime ideal.] 

The conductor and ideals prime to the conductor 

Theorem 3. Let 0 be an order in k, and let Ok = [z, I]. There exists a 
unique positive integer c such that 

o = [cz, 1] = Z + COk• 

Proof Note that 0 is a sublattice of Ok' whence of finite index. Let c > 0 
be the unique positive integer such that 

o (l Zz = Zcz. 

We contend this c does it. Indeed, let ). E 0, ;, = m + nz. Then 

nz = A - m E 0 (l Zz, 

whence cln, and ), E Z + Zcz. This proves the theorem. 

The number c in Theorem 3 is called the conductor of o. 
Let 0 be an order and a an o-ideal. Let c be the conductor of o. We shall say 

that a is prime to c if either a + co = 0 or a + COk = o. The two conditions are 
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actually equivalent, for suppose a + co = o. If a + COk i' 0, then a + COk 

is contained in a maximal ideal p which also contains a + co, impossible. 
Conversely, suppose a + COk = o. If a + co i' 0 then a + co is contained in 
a maximal ideal p, and since Ok is integral over 0, there is a maximal ideal of Ok 

lying above p. This contradicts a + COk = o. 
We let Ik(c) be the set of ok-ideals prime to c, and we let Io(c) be the set of 

o-ideals prime to c. 

Theorem 4. There is a multiplicative bijection between the monoid of ideals 
of Ok prime to C and the monoid of o-ideals prime to c, given by the two inverse 
mappings 

An ideal ofo prime to C is a proper o-ideal. 

Proof. i) Let a be an o-ideal and a + COk = 0. We shall prove that 
a = aOk n o. The inclusion c is clear. Conversely, 

aOk n 0 = (aok n 0)0 = (aok n o)(a + COk) 

c a + aokc 

c a + ao c a. 
This proves our first assertion. 

ii) Let 0 be an ok-ideal such that a + COk = Ok' Then we prove that 
(0 n O)Ok = a. We have: 

o = Ok n 0 = (a + COk) n 0 

c (a n 0) + COk c O. 
Hence a n 0 is prime to c. Now 

o = ao = a«o n 0) + COk) c 0k(a n 0) + ca. 

But ac con 0, so a c (a n O)Ok' The converse inclusion is obvious, thus 
proving (ii). 

iii) We prove that an o-ideal a prime to C is proper. Suppose A E k and 
Aa c o. Then 

}.O = i.(a + cok ) = ).0 + ).cok c a + COk = o. 

Since 1 E 0, we get A E O. 
iv) In (i) and (ii) we got the desired bijection. It preserves multiplication, 

for let ao• bo be o-ideals prime to c, where 

0 0 = a n ° and bo = b n 0, 

with ok-ideals a, b prime to c. Then aobo is prime to c, and 

oobo = (aobook) n 0 = (ob) n o. 

This proves our theorem. 
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Remark. The above arguments work for any number field, with an order 0, 

defining the conductor c to be the largest ideal of 0 which is also an ok-ideal. 

Theorem 5. Let L be a proper o-lattice and m a positive integer. Then there 
exists an element ), E k such that ).L c 0 and 

).L + mo = o. 

In other words, in the equivalence class of L, there exists a lattice which is 
prime to m, and is integral. 

Proof Suppose that we start with a lattice of the form L = [r, I], such that 
r satisfies the equation 

Ar2 + Br + C = 0, 

with integers A, B, C relatively prime, and A > O. Then 

1[ -B+../D] [ -B+../D] L = A A, 2 '" A, 2 . 

Without loss of generality, we may assume that L is the o-ideal 

- [A -B + ../DJ a - , 2 . 

Then aa' = Ao. Finally, we could also change r by an element of SLiZ), 
i.e. prove our assertion for the lattice L j = [rl> 1] where 

art + b 
r = . 

crl + d 

The equation for such r j is 

= Alrr + Blr l + CI> 

where A 1 = Aa2 + Bac + Cc2 • It will therefore suffice to prove that we can 
select a, c relatively prime such that A j is prime to m. We take a, c to be products 
of primes p dividing m as follows. If P{ A, select a prime to p andp divides c. If 
piA but P{C, take c prime to p but p divides a. If piA and piC, then necessarily 
P{ B. Take both a, c prime to p. This yields the desired integers a and c, and 
proves our theorem. 
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The proper o-ideal classes 

Let 10 be the multiplicative monoid of proper a-ideals, and Po the submonoid 
of principal a-ideals (automatically proper). We let 

Go = Io/Po, 

and call Go the group of proper o-ideal classes. Let Io(e) be the monoid of proper 
a-ideals prime to the conductor e, and let Po(e) be the submonoid of principal 
a-ideals prime to e. Then by Theorem 5, we have an isomorphism 

Go ~ Io(e)/Po(e). 

We shall express Go as a factor group of a generalized ideal class group of ak' 
We let 

Pz(e) 

be the monoid of ok-ideals a which are principal, of the form 

where 

for some a E Z, (a, e) = 1. 

Le mma 1. Let a E Pz(e) be as above. Then 

a (') 0 = 00(. 

Proof Since oc E 0 we get ooc c a (') o. Conversely, if x E Ok and xoc E 0, 

let us write 
x = m + nz and OC = a + ebz 

with integers m, n, a, b such that (a, e) = 1. Then 

xo( == ma + nza (mod eOk)' 
Hence na is divisible bye, so that eJn. Hence x E 0, proving our Lemma. 

Theorem 6. Consider the homomorphism 

Ik(e) -+ I.(e) 

sueh that a 1-+ a (') o. The inverse image of Po(e) is Pz(e). 

Proof The lemma shows that Pz(e) is contained in the inverse image. 
Conversely, suppose that a (') a = 00( with oc == a (mod eak) and a E Z. Then 
a = 0kO( so a E Pz(e). 

It follows from Theorem 6 that we have an isomorphism 

I Go ~ Ik(e)/PZ(e). I 

Note that Pz(e) contains the ideals which are principal and generated by an 
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element == 1 (mod c), the monoid of such ideals being denoted by PI (c). So we 
have a tower 

Ik(c) :::J Pz(c) :::J PI(C). 

From this we can easily determine the order of the group Go. 

Theorem 7. The order of the group Go is equal to 

h = h~c 0(1 - (~)!) 
o (ot : 0*) pic P P , 

where h is the class number of k, c is the conductor of 0, 0: and 0* are the 

groups of units in Ok and 0, respectively, and (~) is the usual symbol, equal 

to 1 if P splits completely in k, - 1 if p remains prime, and 0 if p ramifies in k. 

Proof We shall give the same argument as in Fueter and Weber, §98. The 
theorem is very classical. We know from general algebraic number theory that 
the order of the generalized ideal class group Ik(c)/PI(c) is given by 

h = Iup(cok ) 

c (ot:UJ' 

where <p is the Euler function, and Uc consists of those units in Ok which are 
congruent to 1 mod COk. See for instance my Algebraic Number Theory, Chapter 
VI, §l, Theorem 1. It follows that 

h = he 
o (Pz(c): PI(e)) 

Suppose first for simplicity that ± 1 are the only units of Ok. We have a map 

(Z/eZ)* ~ PZ(c)/PI(c), 

given by a H class of aOk modulo PI (c), whose kernel is ± 1, of order 2 if c > 2. 
Suppose that p is a prime number and pm divides c exactly. The p-contribution 

to (Z/cZ)* is pm( 1 - ~). Suppose that p splits completely in k. Then POk = PP' 

and odp, Ok/P' have order p. Hence the p-contribution to <p(cok ) is the 

order of od(ppT = p2m( 1 - ~ y. 
Dividing these p-contributions gives the proper factor in the product. On the 
other hand, if - 1 == 1 (mod c), then ot = 0*, and c = 1 or 2. The unit con­
tribution is then precisely the right one. If - I =1= 1, then it is also clear that the 
unit contribution is the correct one. If p remains prime in Ok, then the p-con­
tribution to <p(cok) is the order of the multiplicative group of 0k/pmok which 
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is p2m( I - ;2). Dividing by the p-contribution to (ZlcZ)* yields precisely 

pm(l + D, 
which is the desired factor. If POk = p2, then the same type of argument again 
shows that we get the right contribution to our factor. Finally, when Ok contains 
i or p, one argues the same way, which we safely leave to the reader. 

Remark. We worked above with ideals of 0, i.e. contained in o. Of course, 
one can also work with the group of proper o-lattices, with respect to the usual 
equivalence, L '" M if and only if there exists ). E k such that ),L = M. If 
IX E k is such that IX == I (mod* c), meaning that 

ordp(x - I) ~ ordp c 

for all primes p of Ok such that pic, then we can write IX = Ply, where 

P, y == I (mod* cOk), P, y E Ok. 

[If d is a posItIve rational denominator for x, prime to c, we can select d1 

having the same divisibility as d for pte, and d1 == 1 (mod c) by the Chinese 
remainder theorem. Then dIIX E Ok and djx == 1 (mod COk).] If 0, b are proper 
o-ideals such that !XU = b, then po = yb. 

Corollary. There is only a finite number of imaginary quadratic r E ~ 

inequivalent under the modular group, such that j(r) lies in a given number 
field K. 

Proof One knows that the class number of a quadratic imaginary field k 
goes to infinity with the discriminant, in fact 

log h(D) '" log IDlt 
by a theorem of Siegel. Thereforej(ok) has degree tending to infinity as I DI-4 00. 

For any order 0 of Ok' we see from Theorem 7 that the class number of 0 also 
tends to infinity with the conductor, and j(o) has degree equal to this class 
number over k (proved later, complex multiplication). This proves our corollary. 

Note that Theorem 7 gives very explicitly the rate at which the degree of 
j(o) goes to infinity as a function of the conductor, once the absolute class 
number is known. The Riemann Hypothesis would give an explicit and very 
good inequality for the absolute class number in terms of the discriminant, but 
at the moment, one has to go through various contorsions to prove Siegel's 
theorem because of the lack of a proof for RH. See for instance [B7], Chapter 13, 
§4, and Chapter 16, and [BI5]. 
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Localization 

Finally we consider localization at a prime number p. Let Sp be the set of 
positive integers not divisible by p. We define the localization of a lattice L at 
p to be 

L(p) = S;IL. 

For the rest of this section, in order to simplify the notation, we shaIl write Lp 
instead of L(p). When we consider completions in the next section, we shall use 
Lp to denote the completion of L(p). 

If L, M are lattices, then we have trivially 

S;I(L II M) = S;IL II S;IM. 

The inclusion c is clear. Conversely, if an element can be written as x/m = yin 
with x E L, Y E M, and mn not divisible by p, then my = nx lies in L II M, and 
our element is equal to nx/mn, as desired. 

As usual, LM consists of all sums 

LXiYi 
with Xi ELand Yi E M. It is an additive subgroup of k, finitely generated over Z, 
whence it is a lattice. We have 

(LM)p = LpMp. 

Theorem 8. Let L, M be lattices in k. If Lp c Mp for all primes p, then 
LcM. 

Proof Let x E L. Then we can write x = Yp/np with Yp E M and an integer 
np prime to p, so that npx E M. The family of np's is relatively prime, so there 
exists mp E Z such that 

It follows that 

as was to be shown. 

The theorem shows that to prove that two lattices are equal, it suffices to 
do so locally for each p. A similar argument as in the theorem shows that 

L = () Lp. 
p 

We note that if p does not divide the conductor c of 0, then 

op = (Ok)p, 

and in particular, if L is a proper o-lattice, then by ordinary ideal theory we 
find that Lp is locally principal, i.e. there exists an element IX E k such that 

Lp = OpIX. 

For quadratic fields, this property remains true even if pic, as was pointed out 
by Ihara [25]. 
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Theorem 9. Let L be a lattice in k belonging to the order o. Then there 
exists Ct E k such that Lp = OpCt, i.e. L is locally principal. 

Proof Let Ok = [z, 1] again. We may assume that pic. Since LpL; 1 = 0p' 
there exists y E L; 1 and x E L such that yx = m + nez, with integers m, nand 
(m, p) = 1. Dividing by m, we conclude that 

1 E yLp + czop' 

Multiplying by cz, which lies in 0 so that czLp c Lp' we. get 

cz E yLp + C2Z 20 p, 

and substituting back, using induction, we get 

1 E yLp + (czYl.1 p c yLp + p'op 

for all positive integers v. Hence op c yLp + p'op for all v. Since the index 
(op: yLp) is a power of p, we have op c yLp, and op = yLp. This proves our 
theorem. 

The next lemma is sometimes useful to find a local generator for a proper 
o-ideal. 

Lemma 2. Let a E Ik(c), and for a prime p suppose that ap = 0k,pCt, with 
rx E a. Let x, y E Ok,p be such that 

XCt + yc = 1. 

Then 

ap n op = opxrx. 

Proof Note that 1, yc E 0p' so xrx E 0p' whence the inclusion::;) follows. 
The converse inclusion is proved by a jacking up argument similar to that of 
Theorem 9. 

§2. COMPLETIONS 

Let k be a number field, and let L be a lattice in k. For a prime number p 
we let Zp be the ring of p-adic integers, and 

Lp = Zp ® L, also written ZpL. 

We let L(p) = S; 1 L be the localization of L at p as defined in the previous 
section. Then Lp can be viewed as the completion of L(p), and there is a natural 
injection 

which we treat as an inclusion. 
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Let Qp be the p-adic numbers. We define 

kp = Qp ® k, also written Qpk. 

Bya Zp-Iattice in kp we mean a Zp-submodule of kp of dimension [k: Q] over 
Zp. Note that 

so that the powers of p appearing in the denominators of elements of a Zp-Iattice 
are bounded. Consequently, if Mp is a Zp-Iattice there exists a power p' of p 
such that 

p'Mp C 0k.p = Zp ® Ok' 

On the other hand, there exists a power p' such that 

P'Ok.p C M p, 

because 0k.p and Mp have the same dimension over Zp. 
By a Z(p)-lattice in k we mean a Z(p) submodule of k of dimension [k : Q] 

over Z(p). If Mp is a Zp-Iattice in kp, then 

Mp (') k 

is a Z(p)-lattice in k. The intersection is taken by viewing k as embedded naturally 
in k p. The assertion is easily seen, because Mp (') k is a module over Z(p), it 
contains p'ok.(p) for some integer s, and it is contained in P'Ok.(P) so that it has 
the correct dimension, over Z(p). 

Theorem 10. i} Givenforeach pa Z(p)-lattice M(p) in k such that M(p) = Ok.(p) 
for almost all p, there exists a unique lattice L in k such that L(p) = M(p) for 
al/p. 

ii) Given a Zp-lattice Mp in kp such that Mp = 0k.p for almost all p, 
there exists a unique lattice Lin k such that Lp = Mp for all p. 

Proof We let L = n M(p) to prove (i). It is immediately verified that L 
is a lattice, and that L(p) = M(p) for all p. The second part follows from the first 
by the remarks we have made, relating Z(p)-lattices and Zp-lattices. 

Let L be a lattice in k. For each p we have a natural isomorphism 

k/L(p) ::::i kp/Lp, 

because L(p) = Lp (') k. Since n L(p) = L, we get a canonical isomorphism 
p 

k/L ::::i II k/L(p) ::::i II kp/Lp-
p p 

Indeed, any x E k lies in 0k.(p) for almost all p, so we have a map of k into the 
direct sum of the kp/Lp- The above isomorphism essentially gives the p-primary 
decomposition of the torsion group k/L. 

Recall that the ideles Jk of k can be defined as the restricted product 

k* x n' k* R p 
p 
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where kR = R ® k, and the * indicates the group of invertible elements. If 

S = ( ... , sp' ... ) 

is an idele with sp E k~, then for any Zp-lattice Lp we can take the product 

spLp, 
and it is again a Zp-lattice. 

If L is a lattice in k, then spLp = 0k.p for almost all p, and consequently 
there exists a unique lattice M such that 

Mp = spLp. 

This lattice M is denoted by sL. Observe that S is an idele, and that there is no 
multiplication defined directly between sand L. The notation sL is merely 
symbolic. 

Multiplication by sp induces an isomorphism also denoted sp' 

sp: kp/Lp -+ kp/spLp, 

given by xp H spxp- From the decomposition 

k/L ~ Il kp/Lp, 
p 

we can define an isomorphism 

s: k/L -+ k/sL 

by letting s operate componentwise, i.e. sp operates by multiplication on each 
component kp/Lp. 

If L = a is a fractional ideal of the ring of algebraic integers Ok' then we 
can work with the prime components in k. If we denote by a" the closure of 
a in the local field kl" and if s is an idele with p-component s", then spa" is defined, 
and 

so that 

k/sa ~ Il kl'/s"a". 

" 
Let c be an ideal of Ok (and so contained in Ok)' Then cIa ::l a, and 

ela/a 
is a finite subgroup of k/a. Furthermore, k/a is the union of such finite subgroups 
taken for c tending to infinity (ideals being ordered by divisibility). Let PI, ... , Pm 
be the prime ideals dividing c or entering in the factorization of a. By localizing 
Ok at these primes, we obtain a Dedekind ring 0' having only a finite number of 
prime ideals, and hence a principal ring. Then co' = (c) for some element c and 
ao' = (a). We have an isomorphism 

ela/a ~ (cla)/(a) 
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where (x) is the ideal generated by x in 0'. Let x E 0' be such that xao' = ao'. 
Let u E c1a/a. Then xu is defined in the natural way by multiplication by x, 
and we have xu = u for all u E c1a/a if and only if 

x == 1 (mod* c). 

This follows at once from the definitions. The congruence mod* means ordinary 
congruence in the local ring for each prime power component of c. 

§3. THE DECOMPOSITION GROUP AND 
FROBENIUS AUTOMORPHISM 

In this section we summarize pertinent facts about the decomposition group 
of a prime ideal in a Galois extension. The results are basic, but we emphasize 
that although they are sometimes stated only for Dedekind rings, e.g. in number 
fields, they are valid more generally, and this is important when we consider an 
elliptic curve over the ring Z[j]. 

Throughout this section, ring means ring without divisor of zero and 
commutative. 

Proposition 1. Let R be a ring, integrally closed in its quotient field K. 
Let L be a finite Galois extension of K with group G. Let p be a maximal 
ideal of R, and let \.l..i, ,0 be prime ideals of the integral closure of R in L lying 
above p. Then there exists (J E G such that a\.l..i = ,0. 

Proof Suppose that \.l..i i= a,Q for any a E G. There exists an element XES 

such that 

x == 0 (mod \.l..i) 

x == 1 (mod a,Q), all (J E G 

(use the Chinese remainder theorem). The norm 

N~(x) = n (JX 
(JEG 

lies in B (\ K = R (because R is integrally closed), and lies in \.l..i (\ R = p. 
But x 1: a,Q for all a E G, so that ax 1:,0 for all a E G. This contradicts the fact 
that the norm of x lies in p = ,0 (\ R. 

Corollary. Let R be a ring, integrally closed in its quotient field K. Let 
E be a finite separable extension of K, and S the integral closure of R in E. 
Let p be a maximal ideal of R. Then there exists only ajinite number ofprime 
ideals of S lying above p. 
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Proof Let L be the smallest Galois extension of K containing E. If .01 ,.02 

are two distinct prime ideals of S lying above p, and ~l> ~2 are two prime ideals 
of the integral closure of R in L lying above .0 1 and .02 respectively, then 
~1 f:. ~2' This argument reduces our assertion to the case that E is Galois 
over K, and it then becomes an immediate consequence of the proposition. 

Let R be integrally closed in its quotient field K, and let S be its integral 
closure in a finite Galois extension L, with group G. Then (JS = S for every 
(J E G. Let p be a maximal ideal of R, and ~ a maximal ideal of S lying 
above p. We denote by G~ the subgroup of G consisting of those automorphisms 
such that (J~ = ~. Then G~ operates in a natural way on the residue class field 
S/~, and leaves Rip fixed. To each (J E G~ we can associate an automorphism 
if of SI'l\ over Rip, and the map given by 

(JHif 

induces a homomorphism of G~ into the group of automorphisms of S/~ 
over Rip. 

The group G~ will be called the decomposition group of~. Its fixed field 
will be denoted by L d, and will be called the decomposition field of'l\. Let Sd 
be the integral closure of R in L d, and let .0 = ~ n Sd. By Proposition 1, we 
know that 'l\ is the only prime of S lying above .0. 

Let G = U (JjG~ be a coset decomposition of G~ in G. Then the prime 
ideals (Jj~ are precisely the distinct primes of S lying above p. Indeed, for two 
elements (J, T E G we have (J'l\ = T'l3 if and only if r-1(J'l3 = 'l3, i.e. r-l(J lies in 
G~. Thus T, (J lie in the same coset mod G~. 

It is then immediately clear that the decomposition group of a prime 
(J~ is (JG~(J-l • 

Proposition 2. The jield Ld is the smallest subjield E of L containing K 
such that'l3 is the only prime of S lying above 'l3 n E (which is prime in S n E). 

Proof Let E be as above, and let H be the Galois group of Lover E. Let 
q = 'l3 n E. By Proposition I, all primes of S lying above q are conjugate by 
elements of H. Since there is only one prime, namely 'l3, it means that H leaves 
~ invariant. Hence H c G~ and E ::J Ld. We have already observed that Ld has 
the required property. 

Proposition 3. Notation being as above, we have Rip = Sdl,o (under the 
canonical injection Rip --+ sdl,o)· 

Proof If (J is an element of G, not in G~, then (J'l3 f:. 'l3 and (J-l'l3 f:. 'l3. Let 
.0 .. = (J-l'l3 n Sd. 

Then,o .. f:. .0. Let x be an element of Sd. There exists an element y of Sd such that 

y == x (mod,o) 

y == (mod,o.,.) 
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for each (J in G, but not in G'lJ. Hence in particular, 

y == x (mod 'P) 
y == 1 (mod (J-l'P) 

for each (J not in G'lJ. This second congruence yields 

(JY == I (mod 'P) 
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for all (J ¢ G'lJ. The norm of y from Ld to K is a product of y and other factors 
(JY with (J ¢ G'lJ. Thus we obtain 

Nf(d(y) == x (mod 'P). 

But the norm lies in K, and even in R, since it is a product of elements integral 
over R. This last congruence holds mod .0, since both x and the norm lie in Sd. 
This is precisely the meaning of the assertion in our proposition. 

If x is an element of S, we shall denote by x its image under the homo­
morphism S --* S/'lJ. Then a is the automorphism of S/'P satisfying the relation 

ax = (JX. 

If f(X) is a polynomial with coefficients in S, we denote by 1 (X) its natural 
image under the above homomorphism. Thus, if 

f(X) = bnxn + ... + bo, 

then 

1 (X) = bnxn + ... + bo· 

Proposition 4. Let R be integrally closed in its quotient field K, and let 
S be its integral closure in a finite Galois exten:don L of K, with group G. 
Let p be a maximal ideal of R, and 'P a maximal ideal of S lying above p. 
Then S/'P is a normal extension of Rip, and the map (J 1-+ a induces a homo­
morphism of G'lJ onto the Galois group of S/~ over Rip. 

Proof Let S = S/'P and R = Rip. Any element of S can be written as 
x for some XES. Let x generate a separable subextension of S over R, and let 
fbe the irreducible polynomial for x over K. The coefficients offlie in R because 
x is integral over R, and all the roots off are integral over R. Thus 

m 

f(X) = n (X - xJ 
i; 1 

splits into linear factors in S. Since 

leX) = n (X - x;) 

and all the Xi lie in S, it follows thatlsplits into linear factors in S. We observe 
that f (x) = 0 implies 1 (x) = O. Hence S is normal over R, and 

[R(x) : R] ~ [K(x): K] ~ [L: K]. 
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This implies that the maximal separable subextension of R in S is of finite 
degree over R (using the primitive element theorem of elementary field theory). 
This degree is in fact bounded by [L : K]. 

There remains to prove that the map (1 f-> a gives a surjective homomorphism 
of G'll onto the Galois group of S over R. To do this, we shall give an argument 
which reduces our problem to the case when 'l.\ is the only prime ideal of S lying 
above p. Indeed, by Proposition 3, the residue class fields of the ground ring 
and the ring Sd in the decQmposition field are the same. This means that to prove 
our surjectivity, we may take Ld as ground field. This is the desired reduction, 
and we can assume K = L d, G = G'll. 

This being the case, take a generator of the maximal separable subextension 
of S over R, and let it be x, for some element x in S. Let f be the irreducible 
polynomial of x over K. Any automorphism of S is determined by its effect on 
X, and maps x on some root of j. Suppose that x = Xl. Given any root Xi of J, 
there exists an element (1 of G = G'll such that (1X = Xi. Hence ax = Xi. Hence 
the automorphism of S over R induced by elements of G operate transitively 
on the roots of f. Hence they give us all automorphisms of the residue class 
field, as was to be shown. 

Corollary 1. Let R be a ring integrally closed in its quotient field K. Let 
L be a finite Galois extension of K, and S the integral closure of R in L. Let 
p be a maximal ideal of R. Let cp: R -> Rip be the canonical homomorphism, 
and let 1/11,1/12 be two homomorphisms of S extending cp in a given algebraic 
closure of Rip. Then there exists an aut(/morphism (1 of Lover K such that 

1/11 = 1/12 0 (1. 
Proof The kernels of 1/11,1/12 are prime ideals of S which are conjugate by 

Proposition I. Hence there exists an element T of the Galois group G such that 
1/110 1/12 0 T have the same kernel. Without loss of generality, we may therefore 
assume that 1/11' 1/12 have the same kernel 'l.\. Hence there exists an automorphism 
w of I/Il(S) onto 1/12(S) such that W 01/11 = 1/12. There exists an element (1 of 
G'll such that W 0 1/11 = 1/11 0 (1, by the preceding proposition. This proves what 
we wanted. 

Remark. In all the above propositions, we could assume p prime instead of 
maximal. In that case, one has to localize at p to be able to apply our proofs. 
In the application to number fields, this is unnecessary, since every prime is 
maximal. 

In the above discussions, the kernel of the map 
G\p -> G'll 

is called the inertia group T\p of'l.\. It consists of those automorphisms of G'll 
which induce the trivial automorphism on the residue class field. Its fixed field 
is called the inertia field, and is denoted by Lt. 
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If the inertia group of \.P is trivial, i.e. I, then we say that \.P is unramified 
over p. If every prime \.P over p is unramified, then we say that p is unramified 
in L. 

Let again p be a maximal ideal of R, and let L be a finite Galois extension of 
K, of degree N, with S the integral closure of R in L. We shaH say that p splits 
completely in L if there exist exactly N different primes of L lying above p. 
Then p splits completely in L if and only if G'U = 1 because G permutes the 
primes \'pjp transitively. 

When LjK is abelian, then we have the foHowing characterization of the 
fixed field of the decomposition group. 

Corollary 2. Let LjK be abelian with group G. Let p be a prime of K, let 
\.p be a prime of L lying above p, and let G'U be its decomposition group. Let 
E be thefixedfield ofG'U. Then E is the maximal subfield of L containing k in 
which p splits completely. 

Proof Let 
r 

G = U O'iG'U 
i= 1 

be a coset decomposition. Let q = \.p n E. Since a Galois group permutes the 
primes lying above a given prime transitively, we know that \.p is the only prime 
of L lying above q. For each i, the prime O'i\.P is the only prime lying above 
O'iq, and since 0'1 \.P, ... , O'r\.P are distinct, it foHows that the primes 0'1 q, ... , O',q 
are distinct. Since G is abelian, the primes O'iq are primes of E, and [E: KJ = r, 
so that p splits completely in E. Conversely, let Fbe an intermediate field between 
K and L in which p splits completely, and let H be the Galois group of LjF. 
If 0' E G'U and \.P n F = \.PF, then O'leaves \.PF fixed. However, the decomposition 
group of \.PF over p must be trivial since p splits completely in F. Hence the 
restriction of 0' to F is the identity, and therefore G'U c H. This proves that 
FeE, and concludes the proof of our coroHary. 

Let LjK be an arbitrary Galois extension again. 
Assume now that the residue class field Rjp is finite, with q elements. We 

also write q = Np. It is a power of the prime number p lying in p. By the theory 
of finite fields, there exists a unique automorphism of Sj\.P over Rjp which 
generates the Galois group of the residue class field extension, and has the effect 

In terms of congruences, we can write this automorphism (j as 

XES. 

By what we have just seen, there exists a coset O'T'U of T~ in G'll which induces 
if on the residue class field extension. Any element of this coset wiH be caHed 
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a Frobenius automorphism of'lJ, and will be denoted by ('lJ, L/K). If the inertia 
group T'I,l is trivial, then ('lJ, L/ K) is uniquely determined as an element of the 
decomposition group G'I,l. 

If.Q is another prime lying above p, and I] EGis such that 1]'lJ = .0, then 
the decomposition group of.Q is given by 

Go = Gq'l,l = I]G'I,l'l-l. 

Similarly for the inertia group, and for a Frobenius automorphism, 

(1]'lJ, L/K) = 'l('lJ, L/K)'l-l. 

This is immediately verified from the definitions. Furthermore, if T'I,l is trivial, 
we see that ('lJ, L/ K) = 1 if and only if p splits completely, meaning that G'I,l = l. 

If L/K is abelian, and if the inertia group T'I,l is trivial for one of the 'lJlp 
(and hence for all 'lJlp), it follows that to each p in K we are able to associate 
a uniquely determined element of G, lying in G'l1 (the same for all 'lJlp), which 
we denote by 

(T = (p,L/K), 

and call the Artin automorphism of pin G. It is characterized by the congruence 

(TX == xNp (mod 'lJ), XES. 

By using Zorn's lemma, one can easily extend the above results to infinite 
Galois algebraic extensions L/K. Propositions 1 through 4 are valid in this case, 
and we therefore also get a Frobenius automorphism ('lJ, L/K), well-defined 
modulo the inertia group T'I,l. 

Consider the finite Galois case, not necessarily abelian, and let 

(T'I,l = ('lJ, L/K) 

be the Frobenius automorphism of'lJ. We assume that 'lJ is unramified, so (T'I,l 
is well defined as an element of G'I,l. Suppose that S is given by generators over R, 

S = R[x j , ••• , xn]. 

Let r be an element of the Galois group G such that 

rXj == xfp (mod 'lJ) 

for all i = I, ... , n. Suppose also that 'lJ does not divide the discriminant of 
any Xi' i.e. does not divide the non-zero differences 

Then r = (T'l1 because 
'tX i == (T'l1X i (mod'lJ) 

whence rXj = (T'l1Xj for all i, whence r = (T'l1 because the Xi generate Lover K. 
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§4. SUMMARY OF CLASS FIELD THEORY 

The treatment of class field theory given in my Algebraic Number Theory is 
classical, and is the most suitable for the applications to this book. We summarize 
briefly the main theorems. 

Let k be a number field which we assume for simplicity has no real con­
jugate, and let K be an abelian extension, say finite to begin with. If p is a prime 
of k, and is unramified in K, then we can associate with p the Frobenius auto­
morphism 

ITp = (p, K/k) 

in Gal(K/k). Let e be an ideal of Ok' sufficiently highly divisible by all the primes 
of k which ramify in K, and let Ik(e) be the group of fractional ideals prime to e. 
We can extend the map p 1--+ (p, K/k) to Ik(e) by multiplicativity, and then get 
a homomorphism called the Artin map, 

Ik(e) --> Gal(K/k) 

which can be proved to be surjective. 
Let PI(e) be the subgroup of Ik(e) consisting of those principal ideals (:x), 

where 
:x == I (mod* c). 

This means that a == I (mod 111~(P», where 1111' is the maximal ideal of the local 
ring 01' at p, for pic, and rep) is the order of cat p. Let m(e) denote the group 
generated by the norms of all prime ideals of K, relatively prime to e. Then the 
kernel of the Artin map is precisely 

PI (e )m( c), 

and this is Artin's reciprocity law. 
This can also be formulated in terms of ideles. An idele s is an element of 

the restricted product or k~ 
of the multiplicative groups of the completions kv, at all absolute values of k, 
extending the ordinary absolute value on Q, or the p-adic absolute value on Q, 
such that Iplp = I/p. The non-archimedean absolute values of k correspond 
then to the prime ideals of Ok. The restriction in the product means that we take 
elements 

s = ( ... , Sp, ... ) 

such that Sp is a p-unit for almost all (all but a finite number of) primes p. 
We define the Artin symbol for ideles (s, K/k) as follows. We select a E k such 
that the idele as having p-component asp, is such that asp is very close to 1 at 
all p ramified in K. (Close to I is determined by the same type of congruence 
that defines PI (c).) We then define the ideal 

(as) = 0 pm(p) 

p 
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where m(l') is the order of C(SI' at l'. The symbol (s, K/k) is defined to be 

(s, K/k) = «C(s), K/k). 

[8, §4] 

This symbol is well defined, and gives a homomorphism of the idele group Jk 

onto Gal(K/k), whose kernel is generated by k*, embedded on the diagonal 
in the ideles, and the group of norms of ideles from K, i.e. the kernel is 

k*NKlkA;. 

The norm is defined in a natural way, which is irrelevant for us here. 
If K' ::) K::) k are abelian extensions, then the restriction of (s, K'/k) to K 

is exactly (s, K/k). This consistency allows us to define (s, k) in the Galois group 
of kab over k, i.e. the Galois group of the maximal abelian extension of k. 

Given a prime l', we can consider the values of the Artin map at ideles 

( ... , 1, 1, sl', 1, 1, ... ) 

with component 1 except at l'. These values lie in the decomposition group of 
a prime ~ lying above l', and give an injective homomorphism of k~ onto a 
dense subgroup of this decomposition group. The mapping is surjective for 
every finite abelian extension. This local fact will not be needed, except for one 
application, and the reader may disregard it until he needs it. 

Over the rational numbers, it is easy to describe what's going on in element­
ary terms. Consider a cyclotomic extension Qn = Q«(n) where (n is a primitive 
n-th root of unity. The ideals of Z are all principal. We get the Artin map 
as follows. If a E Z and a > 0, and a is prime to n, then «a), Qn/Q) is that 
automorphism (J such that 

(~ = (~. 

In particular, for a prime p{n we have 

(~ = (~. 

We see that the decomposition law of p in Qn takes place according to an 
arithmetic progression. The congruence relations defining the generalized ideal 
class groups extend this notion to arbitrary number fields. 

Finally we recall the characterization of Galois extensions by the nature 
of the primes which split completely in them. Let M be a set of primes. One 
defines the limit 

L_l 
lim I'EM Nl's 

s-+ 1 + 1 
log-­

s - 1 

to be the Dirichlet density of M (if it exists). It is provable (e.g. from class field 
theory, cf. my Algebraic Number Theory, Chapter VIII, §4) that an ideal class 
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of I(c)/PJ(c) always has such a density, and that this density is equal to l/he 
(where he is the order of I(c)/Pj(c)). Let S, Tbe sets of primes in k. Let us write 
S -< T if there exists a set Z of primes of Dirichlet density 0, contained in S, 
such that S - Z c T. Thus S is contained in T except for a set of primes of 
density 0. 

Let K/k be a Galois extension and let SKlk be the set of primes of k which 
split completely in K. If L ::::J K is another Galois extension of k, then trivially, 
SL/k c SKlk. If 

SKlk -< SLlk' 

then L = K. Indeed, SL/k has density l/[L : k], and hence 

[L: k] ~ [K: k], 

so L = K. One can then prove (see e.g. [B7], Theorem 9, Chapter 8, §4): 

Let K/k be a Galois extension, and E ajinite extension ofk. Then SKlk -< SElk 

if and only if E c K. 

One can then characterize the ray class field belonging to an ideal c (or as one 
says, with conductor c) as the abelian extension K of k such that SK/k consists 
precisely of those primes lying in the unit class of I( c)/ P J ( c), i.e. those primes 
which are principal, generated by an element CJ. == 1 (mod c). 

For some purposes (i.e. for our construction of abelian extensions in Chapter 
10, §l) this characterization suffices. Later, when we analyze the nature of the 
Artin automorphism in terms of its effect on the values of certain analytic 
functions, such a characterization is of course insufficient, and one must know 
some of the other statements of class field theory as well to understand fully 
what's going on. 



9 Reduction of Elliptic Curves 

§l. NON-DEGENERATE REDUCTION, GENERAL CASE 

The properties of reduction in this chapter, except for §3, are due to Deuring, 
who used them to give his algebraic proofs for complex multiplication. We 
shall not give any proofs. These can be given ad hoc, as Deuring did, for the 
elliptic curves, or one can develop a general reduction theory, as in Shimura [39]. 
No matter what, it is a pain to lay these foundations, but the results can be 
stated simply. Although classically one reduces over a discrete valuation ring, 
it is useful to deal with an arbitrary local ring. 

Let 0 be a local ring (always without divisors of zero), with maximal ideal 
111. An elliptic curve A defined by an irreducible non-singular equation 

in projective space, with coefficients in 0, is said to have non-degenerate reduction 
mod m if when we reduce f mod 111 we obtain again an absolutely irreducible 
equation, defining again a curve without singularities, denoted by A. 

If the curve is defined by a Weierstrass equation 

y2 = 4x3 - gzx - g3, 

with gz, g3 EO, and the characteristic of 0/111 is not 2 or 3, then non-degenerate 
reduction means that the discriminant ~ is a unit in o. For our purposes, the 
reader can always restrict himself to this case. 

If K is a field containing 0 and 

denotes a place of K extending the canonical homomorphism 0 -4 o/m, then this 
place induces a homomorphism 

AK -4 Ag 

of the K-rational points of A into the K rational points of A, by applying the 

111 
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bar to the coordinates of points. If the curve is given in Weierstrass form as 
above, the map on points is given by 

(x, y) H (x, ji), 

If x or y = 00, then the point with coordinates (x, y) lies in the kernel of our 
homomorphism. Suppose that the points of period N on A are rational over K. 
Let p be the characteristic of o/m. If N is a positive integer prime to p, then the 
map 

AN ~ AN 

is an isomorphism. Essentially this is due to the fact that we can obtain the 
points of AN as an inverse image 

(Nb)-l(O) =pr1 [rN6.(A x 0)] 

and that reduction mod m commutes with the operations of algebraic geometry, 
especially inverse images. This shows that the points of AN map onto the points 
of AN, and since these two abelian groups have the same number of elements, 
we must get an isomorphism between them. 

§2. REDUCTION OF HOMOMORPHISMS 

Let A, B be elliptic curves with non-degenerate reductions A and B over 
a local ring 0 as before. We know that Hom(A, B) is finitely generated. In fact, 
in characteristic 0, it has at most rank 2 over Z, and this will be the main case 
of interest to us. If A: A -+ B is a homomorphism, then ). is defined over an 
algebraic extension L of the quotient field K of o. However, it can be shown 
that for any place extending the canonical homomorphism 0 ~ o/m to L, A 
has a non-degenerate reduction A:: A ~ B, and that the association 

}. H A: 
is an injective homomorphism 

Hom(A, B) ~ Hom(A, B). 

Warning. This last map is not necessarily a surjection. Two significant cases 
arise: when A, B have transcendental j-invariant, but reduce to special elliptic 
curves over the complex numbers, having invariantj(r) with imaginary quadratic 
r; and when A, B are already special, but reduce to elliptic curves in characteristic 
p, and then pick up new endomorphisms besides those arising from complex 
multiplications. We shall study both cases. The first is the theory of complex 
multiplication proper. The second has its genesis in the Deuring theory as in 
Chapter 13. 
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We can give a heuristic motivation for the fact that the reduction of a 
homomorphism is also a homomorphism. Let r be the graph of A. Then 
rcA x Band pr1r = A. If reduction is to preserve the operations of algebraic 
geometry, we must have pr1r = A. Also f has to be connected (being a de­
formation of r), whence f is also the graph of a mapping from A into B. 

Considering the intersection 

r· (A x Q) 

with a general point Q of B, and the fact that the degree of this cycle (i.e. the 
number of points in it, counting multiplicities) is the degree of A, we see that 
reduction being compatible with intersection implies that A and A have the same 
degree. 

Suppose that the characteristic of the residue class field is not 2 or 3, and 
that j E 0 but j t=. ° or 1728 mod m. We can find an elliptic curve defined by 
the equation 

y2 = 4x3 - ex - c, 

having the given invariant j, and non-degenerate reduction mod m, by solving 
linearly 

27j 
c=---

j - 1728' 

and we see that this gives a "universal" parametrization for such curves. For 
the other two cases, we can always take 

y2 = 4x3 _ x and y2 = 4x3 - 1. 
Let A be an elliptic curve in characteristic 0, defined over the local ring 0, 

and with non-degenerate reduction. Let 9 be a finite subgroup of A. Then A/g 
has many models. Its invariant is integral over Z[jA), and therefore integral over 
0, because jA E o. We can therefore find a model B for A/g defined over an 
integral extension S of 0, and having non-degenerate reduction at every maximal 
ideal of S lying above m, by writing down the usual simple equations as in 
Chapter I, §4 (and assuming for our purposes that the characteristic of o/m is 
=;6 2, 3, although one can also give normalized equations valid in these cases.) 

§3. COVERINGS OF LEVEL N 

Theorem 1. Let A be an elliptic curve defined over an integrally closed 
local ring 0, with non-degenerate reduction modulo the maximal ideal m. 
Let p be the characteristic of o/m, and let N be prime to p. Let K be the 
quotient field of o. L'et G = Gal(K(AN)/K). Let IDl be a maximal ideal of the 
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integral closure S of 0 in K(A N), and let the bar, w t-+ iV, denote reduction 
mod lJJl,jor WE S. Then: 

i) The ideal m is unramified in K(AN)' 
ii) For any u E G'lJI and P E AN we have 

uP = (jP. 

iii) If u E G and uP = P for all P E AN, then u = 1. 

Proof The formula of (ii) holds by the definition of the effect (j on the 
~esidue class field extension. Since the map P t-+ P is an injection on AN, we 
conclude from the hypotheses of (iii) that uP = P, whence u = 1 because the 
coordinates of points in AN generate K(AN)' Note: In (iii), we do not assume 
that u is necessarily in G'lJI. This is useful in applications. The fact that m is 
unramified in K(AN) follows from (iii). 

In applications, we are sometimes given elements u I, U 2 E G such that 

ulP = U2 P 

for all P E AN' Considering U"21Ul shows that U 1 = U2' 

Corollary. Let A have invariant j EO, and such that j =f. 0, 123, and the 
characteristic ofojm is =f. 2,3. Let h be theftrst Weber function, i.e. g2g3Xjfl. 
If u EGis such that 

uh(P) = h(P) 

for all P E AN, then u is the identity on K(h(AN»' 

Proof We have uh(P) = h(Q) for some point Q E AN' By hypothesis, we get 

h(P) = h(Q), i.e. li(P) = lie Q), 

where li is the Weber function of the reduced curve A. This means that Q = ±F 
(because the x-coordinates of Q and P are the same), whence Q = ±P. Hence 
h(Q) = h(P), so that 

uh(P) = h(P). 

This being true for all P E AN, we conclude that u = 1 on K(h(AN»' 

Next we deal with the two exceptional cases, and we shall take values in 
characteristic zero. 

We shall see later that Jt and )J - 1 are modular functions of level 6, 
essentially from the product expansion for fl, which shows that flt and flt are 
holomorphic on the upper half plane. This means in terms of points of finite 
order that the field FN is ramified of order 3 over J = 0, and ramified of order 2 
over J = 1 if 61N. See Chapter 18, §5. From this, we shall prove it is true for all 
N, and we shall determine the decomposition group. 
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No other ramification than the above can occur (for finite values of j), 
because we can define an elliptic curve by the equation 

. y2 = 4X 3 - 3VJx - .J J - 1, 

which has obviously non-degenerate reduction over J 1--+ 1 and J 1--+ O. Theorem 1 
shows that the extension by the coordinates of the points of order N over 
Q(W,.JJ - 1) is then unramified, except at infinity. 

The ramification at infinity will become clear in Chapter 15, using a different 
parametrization for the points of the elliptic curve. 

As before, we call 
3 

g2 2 and g3 3 aX aX 
the second and third Weber functions respectively, defined for an elliptic curve 
in Weierstrass form by the above formulas. We let FN be the field of modular 
functions of level N, identified with the field Q(j, h(AN», where A is an elliptic 
curve with invariantj, and h is the first Weber function. 

Theorem 1. ThefieldFN(forN> 1) is ramified over Q(j)atj = 123 , with 
ramification index 2. Let h be the second Weber function. Let rol be a maximal 
ideal of the integral closure of Q[j] in FN lying above the ideal (j - 123), and 
let the bar denote reduction mod rol. Let T'JR be the inertia group. An element 
u E Gal(FN/Q(j» is such that 

uh(P) = h(P) 

for all PEA N, if and only if u lies in T 'JR. 

Proof Take N sufficiently large first (with respect to divisibility) to insure 
that FN is ramified at j = 123 • We can represent u by a matrix operating on AN' 
If uh(P) = h(P) for all P E AN, then we must have in the analytic representation 

for all integers r, s not both 0 (mod N), and a, b, c, d are the components of the 
matrix representing u. Putting r, s equal to 0, 1 respectively, one sees that this 
can be so if and only if the matrix represents mUltiplication by ± 1, ±i. In the 
case of i, the matrix is 

(~ -~). 
Since ± 1 operates trivially on FN , we see that only ± i yields a possible non­
trivial automorphism of FN• We know that there is a non-trivial inertia group 
T'JR, whence its generator is necessarily represented by such a matrix. Now for 
any nlN, the same matrix operating on An represents the restriction of u to Fn> 
and operates non-trivially, so that we must also have ramification of order 2 in 
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Fn. Given n, we can always find N divisible by n so that we can argue as above. 
This proves our theorem. 

Theorem 3, The field FN (for N> 1) is ramified over Q(j) at j = ° with 
ramification index 3. Let h be the third Weber function. Let 9Jl be a maximal 
ideal of the integral closure of Q[j] in FN lying above the ideal (j), and let 
the bar denote reduction mod 9Jl. Let T'JJI be the inertia group of 9Jl. An 
element (J E Gal(FN/Q(j) is such that 

(Jh(P) = h(P) 

for all P E AN if and only if (J lies in T IDl • 

Proof The proof is completely analogous, except that this time (J is 
represented by the matrix corresponding to multiplication by p or p2, where 
p = e21ti/3, e.g. 

-1) ° . 
We stated Theorem 2 and Theorem 3 in terms of points of finite order. 

We can also state them in terms of modular functions. 

Theorem 2', Let FN be the field of modular functions of level N> 1. Let 
z be equivalent to i under the modular group in 5. Let 

, g~(,) 2( (') ) fa~ ,) = L\( ,) ,\'J a 1 ;" 1 

be the second Fricke functions, with a E (Q2/Z2)N, a #- 0. If (J E Gal(FN/Fl) 
is such that 

((J/a)(z) = /a(z) 

for all a E (Q2/Z2)N, a #- 0, then 

((Jf)(z) = fez) 

for all functions f E FN which are defined at z. The group of such (J is cyclic 
of order 2, and consists of those elements represented by matrices y E SL2(Z) 
such that yz = z. 

Theorem 3', Let FN be as above, and let z be equivalent to p under the 
modular group in 5. Let 

faCt) = ~g;p3(aG}', 1) 
be the third Fricke functions with a E (Q2/Z2)N, a #- 0. If (J E Gal(FN/Fl) is 
such that 

((J/a)(z) = fa(z) 

for all a E (Q2/Z2)N' a #- 0, then 

((Jf)(z) = fez) 
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for all functions f E FN which are defined at z. The group of such (J is cyclic 
of order 3, and consists of those elements represented by matrices Y E SLz(Z) 
such that yz = z. 

§4. REDUCTION OF DIFFERENTIAL FORMS 

Let V be a curve (always projective non-singular) over a field ko. One can 
define differential forms in the function field ko(V) as the dual space of the 
derivations of ko(V) which are trivial on ko. Suppose that ko(V) = ko(x, y) 
where x is transcendental over k and y is separable algebraic over ko(x). Then 
the differential forms are a I-dimensional space over ko(V) and dx is a ko(V)­
basis for this space, where dx has the effect Dx on the derivation D. Any differ­
ential form of k o( V) is of type zdx for some z E k o( V). 

One can define in the usual manner the zeros and poles of a differential 
form, expanding in a power series with a local parameter at a given point. 

If A is an elliptic curve in Weierstrass form 

yz = 4x3 - gzx - g3, 

then dx/y is a differential form of the first kind, in other words, it has no pole. 
Over the complex numbers, under the Weierstrass parametrization 

U H (1, g.)(u), ~o'(u», 

the differential form dx/y corresponds to the differential form du on CjL, 
as one sees immediately from x = g;)(u) and y = gJ'(u). 

Back to a general curve over a field ko. Let 

f: V -> W 

be a rational map of V onto another curve, and suppO$e that f is not constant. 
Then ko( W) is contained in k o( V), and a differential form on W pulls back to a 
differential form on V. If 

w = zdx 

with z, x E ko(W), then we may view z, x as functions on V (i.e. as z 0 f, x f) 
and we then get a differential form 

w 0 f = f*w = (z 0 f) d(x 0 f) 

which we also write as z dx by abuse of notation. If the map f is separable, 
i.e. ko(V) is a separable extension of ko(W), and z dx 1= 0, then f*w 1= O. On 
the other hand, if z dx 1= 0 but f is not separable, i.e. k o( V) over k o( W) has 
inseparable degree> 1, thenf*w = O. 
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A typical example of an inseparable extension is obtained as follows. 
Suppose that ko has characteristic p, and let koeV) = koex, y) where y is separable 
over koex). Then koex) is purely inseparable over koex P), of degree p. Further­
more, since y is separable over koex), we have koex, y) = koex, yP), and yP is 
separable over koexp). From the diagram 

koex) 

~ koex, y) = koex, yP) 

________ koex p, yP) 

koexp) 

we conclude that [koex p, yP) : koex P)] = [koex, y) : koex)], and that 

[koex, y) : koex p, yP)] = p. 

The subfield koex p, yP) is the function field of a curve denoted by V(p) and we 
have a purely inseparable rational map 

Trp: V-t V(P), 

called the Frobenius map. Similarly, if q = p' is a power of p, we get a rational 
map Trq of degree q, purely inseparable, sending 

ex, y) 1-+ exq, yq). 

Suppose that ko is perfect, so that kg = ko. Then raising to the q-th power 
gives an isomorphism of koex, y) onto koexq, yq). It follows that there is precisely 
one subfield of koex, y) over which koex, y) is purely inseparable of degree q, 
and that is koexq, yq). 

If V = A is an elliptic curve, the map 77:q is a homomorphism of elliptic 
curves. 

Let 
A: A -t B 

be an isogeny, defined over a field ko' It can be shown that the space of differ­
ential forms on A (or on B) defined over ko, and of the first kind (i.e., without 
pole), is I-dimensional over ko. Consequently if W B is a non-zero differential 
form of the first kind on B, we conclude that 

A*WB = CWA, 

where C E ko. Furthermore A is separable if and only if C # O. 
Actually we want the dependence of c on A, so let us write 

A*WB = C)'WA' 

Then ),1-+ C). is a homomorphism of the subgroup of HomeA, B) consisting of 
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those homomorphisms defined over ko, into the constant field. Observe that 
C = CA is independent of the choice of differential form W B * 0, because any 
other form of the first kind on B is a constant multiple of W B. A similar remark 
applies to W A- Thus ), I-> c). is a well-defined representation. 

Let <p: CjL -+ Ac be an analytic representation. Let a be a complex number 
such that aL c L, and ).: A -+ A an endomorphism of A making the following 
diagram commutative. 

C -+ Ac 
at tA 
C -+ Ac 

Then for any differential form of the first kind W on A we have 

W 0 A = aw. 

Thus the number a is the number C;. mentioned above. 
Suppose that End(A}Q is isomorphic to an imaginary quadratic field k 

(a subfield of the complex numbers). We can therefore define an isomorphism 

0: k -+ End(A}Q 

such that 

w 0 (j(a) = aw 

for all differential forms of the first kind w, and all a E k. If this condition is 
satisfied, we call the pair (A, 8) a normalized pair. We have some easy functorial 
properties. 

DIFF 1. If(A, 8) and (A', 8') are normalized pairs, and 

).: A -+ A' 

is a homomorphism, then 

A 0 O(a) = e'(a) 0 ). 

for all a E k. 

This is obvious, because w 0 A 0 O(a) = aw 0 A and W 0 O/(a) 0 ). = aw 0 I"~ 

by the definitions of normalization. 

DIFF 2. If (A, 0) is normalized and if (J is an isomorphism of the field over 
which A and all elements ofEnd(A) are defined, then (A<7, e<7) is also 
normalized. 

The proof is immediate. 

DIFF 3. Let (A, 8) be normalized. If A is defined over ko c C, then every 
element ofEnd(A) is defined over kok. 
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Proof We can find a differential form of the first kind defined over k o. 
Let (1 be an automorphism of Cover k ok. Then oJ" = w, whence 

W 0 e(cx)" = w" 0 e(cx)" = (w 0 e(cx))" = (aw)" = cxw = w 0 e(cx). 

Hence e(cx) = e(cx)" for all (1, whence e(cx) is defined over kok. 

To be able to reduce differential forms when we are given a non-degenerate 
reduction of A mod m, we must give A an integral structure over the local 
ring o. One can lay foundations working with rings instead of fields for differential 
forms, i.e. within the framework of schemes, or one can select generators (x, y) 
for the function field of A, as for instance in the Weierstrass form when the 
characteristic of olm is i' 2 or 3, and then work ad hoc, as Deuring did, using 
such simple equations. It is then "clear" that the differential form w = dxly 
reduces properly, to the differential form w = dilY. For any element CEO 

we have 

cw = cwo 
If A, B have non-degenerate reduction over 0, with quotient field K, and 

}.: A ~ B 

is a homomorphism defined over K (whence over 0), and if w is a differential 
form on B such that w i' 0, w 0 A = CW, with CEO, then 

w 0 A = w 0 ;: = cwo 
In particular, 

wo}.=o 

if and only if ;: is not separable. This is the case when, for instance, ;: is the 
Frobenius endomorphism TCq for some q = pro 

If an elliptic curve A is defined over K, and if we have a family of discrete 
valuations of K such that an element of K has only a finite number of zeros 
and poles in this family, then given a non-zero differential form on A, for all 
but a finite number of the discrete valuation rings in the family, the reduction 
of A is non-degenerate, and the differential form reducesto a non-zero differential 
form on A. In all the sequel, we shall use reduction mostly in this case, omitting 
a finite set of bad primes. The family of all valuation rings in a number field 
K gives an example of such a family. 

We already mentioned that it may have more endomorphisms than A. 
It is important in certain cases to know when an endomorphism of it is the 
reduction of an element in End(A). If (A, e) is normalized, then we define 

8: k ~ End(it) 

by 
8(cx) = e(cx). 
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DIFF 4. Assume that End(A)Q is an imaginary quadratic field. If an element 
of End(A)Q commutes with all elements of End(A), i.e. with all 
the reduced endomorphisms of A, then it lies in End(A)Q. 

To prove this, one has to know that End(A)Q is either a quadratic field, 
or a division algebra of dimension 4 over Q. This will be proved later, with 
t-adic representations, assuming only that v(Nb) = N 2 • If one knows this result, 
we see that End(A)Q already provides a quadratic subfield of End(A)Q' whence 
DIFF 4 follows. 



10 Complex Multiplication 

§1. GENERA nON OF CLASS FIELDS, DEURING'S APPROACH 

We first consider values of the j-function at quadratic imaginary numbers. 
We shall see that these values generate abelian extensions of quadratic fields. 

Let k be an imaginary quadratic field and Ok its ring of algebraic integers. 
We view j as the isomorphism invariant of elliptic curves. We don't need analysis, 
and if Ac ~ ClL where L = [Zl> zz], Z = zdzz E k n S, then we write 

jA = j(L) = j(z) = j()L), all A E k*. 

Theorem 1. Let a be an ideal of Ok' Thenj(a) generates an abelian extension 
of k, and in fact generates the maximal unramified abelian extension of k. 
If a i (i = 1, ... , h) are representative ideals for the ideal classes in k, then 
the numbers j(a;) are all conjugate over k, and for all but a finite number of 
primes p of k such that (p) = pp' in k, p -:f. p' and Np = p, we have the 
Kronecker congruence relation, 

j(p- 1a) == j(aF (mod~) 

for any prime ~ in k(j(a)) over p. Therefore, if (Tp is the Artin automorphism 
ofp in k(j(a)), then 

j(p- 1a) = (Tpj(a). 

Proof Let K be the smallest Galois extension of k contammg all the 
numbers j(a;). For each j(a i ) select an elliptic curve defined by a Weierstrass 
equation over K and having invariantj(aJ For any a among the ai, the corres­
ponding elliptic curve is analytically isomorphic to CIa and we suppose given an 
analytic representation 

CIa -+ Ac· 

Select a prime p -:f. 2,3, such that (p) = pp' in k, p -:f. p', Np = p, such that all 
the above elliptic curves have non-degenerate reduction at a prime ~ lying 
above p in K, and such that p is relatively prime to the discriminants of the 
numbers j(a i), all i. If B is the elliptic curve chosen above whose invariant is 

123 
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j(p-Ia), then there exists an isogeny ),: A ~ B such that the following diagram 
is commutative, 

Cja --+ Ae 

1 lA 
Cjp-Ia ~ Be 

and the left vertical map is the canonical map arising from the inclusion a c p-Ia. 
Let 0 be an ideal prime to p and such that po = (iX) is principal. Then our diagram 
becomes 

C --- Cja ---Ae 

1 can 1 A 

Cjp-Ia-»-Bc 

J. ]1' 1 can 

C --- Cja --+ Ae 

with some isogeny fl: B ~ A which makes the diagram commutative. On the 
left we have multiplication by IX. We compute degrees: 

V(A) = (p-Ia: a) = (Ok: p) = Np = p 

V(fl) = (a: oa) = No prime to p. 

We contend that A (reduction mod 1l3) is purely inseparable. Let w be a differ­
ential form of the first kind on B, say w = dx/y. Then 

w 0 fl 0 ). = iXW, 
whence 

W 0 ji 0 A = aw = 0, 

because iX E p. Hence ji 0 A is not separable. But the degree of ji (which is the 
degree of fl) is prime to p, and hence ), is not separable. Since ), has degree p, 
it follows that Ie is purely inseparable. 

It follows that 13 is isomorphic to A(P). But the invariant of A(p) is j~ (by 
first principles, applying the isomorphism "raising to the p-th power"). Hence 

j(p-Ia) = j(a)p. 

This means precisely the congruence relation of Kronecker. The Frobenius 
automorphism (J\jJ has the same effect on j(a), and hence we must have the final 
equality 

j(p-Ia) = O"\jJj(a), 

having chosen p prime to the discriminant of the numbers j(a). 
We now see that the numbers j(a;) are all conjugate, because there is a 
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prime of k of degree lover Q in every ideal class of k. Furthermore, a prime 
p as above splits completely in K if and only if p is principal, because j takes 
on the same value on two lattices if and only if they are linearly equivalent. 
Hence by class field theory, we conclude that K is the maximal unramified 
abelian extension of k. This proves Theorem 1. 

The next thing to do is to prove a theorem analogous to that of Theorem 1 
for points of finite order on an elliptic curve A having invariantjA = j(a), where 
a is an ideal of Ok' Recall that two analytic representations Cja ...... Ac differ by 
an automorphism of A. The points of finite order in Cja are obviously the 
points kla. Those of order N are denoted as usual by (kla)N' 

We have the commutative diagram as in Theorem 1, 

Cja~Ac 

can 1 1 A 

Cjp-1a ...... Ac 
where the map on the left is the canonical one and ). is an isogeny such that 
A is purely inseparable of degree p. We also have, by the definition of cr, that 

AU = np(A) = A(p). 

Indeed, if A is defined by 

then A" is defined by 

and reducing mod ~ yields the equation for A", namely 

y2 = 4x 3 - g~x _ g~. 

Hence there exists an automorphism e of A(p) such that 

A = eon. 

We contend that e is the reduction of some element in Aut(A"). Since 
End(A") :::::; Ok is integrally closed, it will suffice to prove that e lies in End(A")Q' 
and for that it will suffice to prove by DIFF 4 that e commutes with all the endo­
morphism of A(P) obtained by reducing the endomorphism of A". We may 
assume that (A, 0) is normalized, so that (A", 0") is also normalized. Then by 
DIFF 1 and DIFF 2, we get for any l' E k, 

whence 

and 
(1) 

A 0 0(1') = 0(1')" 0 ),' 

eon 0 0(1') = 0(1')" 0 eon. 
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But from the definition of the Frobenius mapping, we have 

8(1')" = 8(1')<P), 
whence 

(2) eon 0 8(1') = e 0 8(1')" 0 n. 

Comparing the right-hand sides of (1) and (2) proves what we want. 
We can then change }, by e- 1 in order to achieve the more precise relation 

A = n, 

at the cost of changing the bottom arrow, giving the analytic representation of 
Ac, by an automorphism of A". We have therefore proved the following result. 

Lemma 1. Let A be an elliptic curve with jA = j(a), where a is an ideal of 
Ok in k. Let 

<p: C/a ~ Ac 

be an analytic representation. Assume that A is defined over kUA)' Then for 
all but afinite number of primes p of degree 1 in k, if a = ap is the Frobenius 
automorphism ofp in kUA), we can find an analytic representation 

l/I: C/p -1a -+ A~ 

and an isogeny A such that the following diagram commutes, 

q> 

C/a~Ac 
can! !;. 

C/p-la -+ A~ 

'" and such that if the bar denotes reduction with respect to some prime ~ 
extending p in kUA), then A = np-

Theorem 2. Let A be an elliptic curve whose ring of endomorphisms is the 
ring of algebraic integers Ok in an imaginary quadratic field k, and A is defined 
over kUA)' Let h be the Weber function on A, giving the quotient of A by its 
group of automorphisms. Then kUA, h(AN» is the ray class field of k with 
conductor N. 

Proof Let K be the smallest Galois extension of k containing jA = j(a) 
and all coordinates h(AN)' We take a prime p of k of degree 1 as before, omitting 
only a finite number of them, e.g. those which ramify in K, all piN and pia, 
and all p where we might have bad reduction of A and its conjugates. We can 
now take the elliptic curve B = A" to have invariant j'A where a = all! is the 
Frobenius automorphism of some prime ~ in Klying above p. The bar reduction 
will again be with respect to ~. 

If t E AN, then 

At = Al = n(t) = at, 
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by the definition of the Frobenius automorphism applied to the coordinates of 
t. Since reduction induces an injection on AN, we conclude that A = (J on AN' 
Therefore the commutative diagram of Lemma 1 now reads 

(3) 

<p 

(kja)N ---+ AN 

can 1 1 u~ 
(kjp -Ia}" ~ AN 

t/J 

We shall prove that p splits completely in K if and only if p = (:x) with some 
ex E Ok such that ex == 1 (mod* Nok). 

Suppose first that p = (ex) with :x E k. Then p splits completely in kUA) and 
hence AU = A. Following the left vertical arrow in Lemma 1 by multiplication 
with ex, we get a commutative diagram with an analytic representation 1jJ' of 

<p 

(kja)N ---+ AN 

can 1 1 u~=u 
(4) (k/p-Ia)N ~ AN 

a 1 t/J lid 
(kja)N ---+ AN 

t/J' 

If:x == 1 (mod* Nok ), then the composite vertical map on the left is the identity. 
Furthermore, 1jJ' differs from cp by an automorphism of A. It follows that (J~ acts 
as the identity on the Weber coordinates h(t) for all t E AN, and hence (J~ = 1 
on K = k(h h(AN»' 

Conversely, suppose that p splits completely in K, and in particular splits 
completely in kUA)' Then by class field theory, p = (ex) is principal, and A" = A 
in Lemma 1. We obtain the same two-storied diagram (4) above, using multiplica­
tion by ex. For the Weber function h we have hu = h because h can be defined 
over kUA)' For any element u E (kja)N we get: 

h(cp(u» = h(cp(u»U = h"(cp(u)U) 
= h(cp(uy) 
= h(IjJ'(exu» 
= h(cp(exu». 

(by the commutative diagram) 

Observe that kja is an ok-module, and by localizing one sees that (kja)N is 
principal, generated by an element Uo, say. Our final equality above implies 
that there exists a root of unity, such that 
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(the h-coordinates of the two points r.p(uo) and r.p(auo) being equal, the two 
points differ by an automorphism of A). We change the generator a of p by 
the inverse of this root of unity. We then get 

auo = uo, 

and hence au = u for all u E (k/a)N because any u can be written as AUo for some 
A E Ok' and aA commutes. It follows that IY. == I (mod Nok). 

By class field theory, we now conclude that K is the ray class field of k with 
conductor N. (Cf. Theorem 9 of Chapter VIII, §4 in my Algebraic Number 
Theory.) This proves Theorem 2. 

Corollary. Let FN be the field 01 modular lunctions 01 level N, and let k 
be an imaginary quadratic field. Let kFN be the composite field. Let a be an 
ok-ideal, a = [zJ> Z2] and z = ZdZ2 E f). Then the field kFN(z) generated over 
k by all values I (z), with IE FN , and I defined at z, is the ray class field over 
k with conductor N. 

Proof Let 9Jl be the kernel of the place/~ I(z) for/E kFN • Let 

G = Gal(kFN/k(j)), 

and let G'J)! be the decomposition group. From general decomposition group 
theory we know that the induced group G'J)! is the Galois group of the residue 
class field extension. We also know by Theorem 2 that the residue class field 
contains the above mentioned ray class field. Let (J E G'J)! be such that ii is the 
identity on this ray class field. In particular, ii is the identity on all elements 
liz) and j(z),w here la are the Fricke functions (a E (Q2/Z2)N, a i= 0). By 
Theorems 2' and 3' of Chapter 9, §3 we conclude that q lies in the inertia group, 
whence ii is the identity on the residue class field. This means that the residue 
class field is precisely the stated ray class field, and concludes the proof. 

As is well known, Kronecker started the whole business of complex multi­
plication, and Weber gave a first systematization of the results known at the 
time. They were considerably incomplete, for instance the so-called Kronecker 
congruence relation of Theorem I was known only in a weaker form, namely 

<I>P(X) == (XP - j)(X - jP) (mod p) 

actually proved by Weber (Acta Mathematica 6, 1885, p. 390). Hasse proved 
it in the form we stated it [19], and also obtained all the abelian extensions of 
k from values of the Weber function. Weber himself needed some quadratic 
extensions in addition. Fricke [B2] and Fueter [B5] gave treatments before that 
which are still of some interest, for the special cases which they discuss, and for 
the analytic methods. 

The Institute Seminar [BI7] is also a convenient reference for a quick 
introduction to some basic results, using the analytic approach, and some useful 
chapters on computational aspects. 
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Deuring [Bl] simplified considerably some of Hasse's proofs in his mono­
graph, which is an exceedingly good reference for the analytic development of 
the complex multiplication. For the convenience of the reader we shall reproduce 
the analytic proof of the congruence relation in Chapter 12, §3. It will not 
require any knowledge beyond Chapter 12, §2 which is self-contained. Hence 
the reader can read these sections as an alternative approach to part of the results 
of complex multiplication. 

Deuring's major contribution, however, was to have found the algebraic 
development which we have followed, using reduction mod p, cf. all his papers 
in the bibliography. This was extended to abelian varieties by Shimura and 
Taniyama [BI3], see also Shimura's book [BI2]. 

§2. IDELIC FORMULATION FOR ARBITRARY LATTICES 

In the first section we derived the basic theorem of complex multiplication 
using ordinary ideals of Ok. For a number of technical reasons, and also in order 
to tie up the situation over the quadratic field k with the generic situation, it is 
necessary to have a formulation describing the values of j(L) for arbitrary 
lattices L, and also to know the relation with class field theory through the 
ideles. For this, we shall give a theorem as in Shimura [BI2], who did it for a 
finite number of points, but whose final formulation is due to A. Robert. We 
now assume that the reader knows Chapter 8, §l and §2, especially how the 
ideles operate on klo where 0 is an arbitrary lattice in k. If s is an idele, (s, k) 
is the Artin symbol on the maximal abelian extension kobo 

Theorem 3. Let qJ: C/o ....... Ae be an analytic representation of the elliptic 
curve A, where 0 is a lattice in k. Let s be an idele of k and let (J be an automor­
phism of the complex numbers whose restriction to kob is (s, k). Then there exists 
an analytic representation 

1/1: Cis-Io ....... A~ 

such that the following diagram is commutative. 
cp 

klo --+Ae 

s- 11 1 a 

kjs-lu ....... A~ 

'" Proof Our first task is to reduce the theorem to the case when 0 is an ideal 
of Ok. Let b be an ideal of Ok contained in o. Let ~: C/b ....... Be be an analytic 
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representation of an elliptic curve with lattice b, and let A: B -4 A be the isogeny 
which makes the top of the following diagram commutative. 
The back side is trivially commutative. Putting AO' on the lower right makes the 
right side commutative. Assuming our problem solved for b we can find ~' 

making the front square commutative. We define'" such that the bottom is 

Fig. 10-1 

commutative. This can be done by checking that the kernels of the two bottom 
maps are the same. It then follows that'" makes the back face commutative, 
and this solves our problem for o. 

Observe that the above reduction shows that if we can solve our problem 
for one elliptic curve A ~ C/o, then we can solve it for any other elliptic curve 
A' isomorphic to A. Of course, a simpler direct argument can also be given 
in this case. 

We now assume that 0 is an ideal of Ok' A positive integer m will be said to 
be freezing for A if any automorphism of A which leaves Am fixed (pointwise) 
must be the identity. Since A has only a finite number of automorphisms, 
there always exists such an integer. Let N be a positive integer such that miN. 
We shall prove that there exists",: C/S-IO -4 A'C such that the desired diagram 
commutes on (k/O)N' i.e. such that the following diagram commutes. 

tp 

(k/O)N ~AN 

.-11 10' 
(k/S-10)N -4 A~ 

'" Since we could prove the theorem for any A in an isomorphism class, we can 
select A defined over k(jA) and we can then proceed as in Theorem 1 and the 
first part of Theorem 2. We select K Galois over k containing k(j(o)), containing 
the ray class field with conductor N and such that k(AN) C K. Actually, using 
Theorem 2 shows that this last condition implies the one preceding it. There 
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exists a prime p which splits completely in k, that is (p) = pp', p "# p', such 
that p is unramified in K, and for some IPlp in K, the finite number of elliptic 
curves under consideration have good reduction mod IP. We also take p prime 
to N and to tl. Finally we require that (J = (Jv on K. 

By the Kronecker congruence relation we have j(p-ltl) = j(aY, and the 
first part of the proof of Theorem 2 shows that we have a commutative diagram 
(3) which is almost the one we want, except that we have to relate p-1a and 
s-la. 

Let C = ( ... , 1, 1, Cp , 1, 1, ... ) be an idele with component 1 except at p, 
and with component Cp at p having order 1 at p, so that we have 

(s, k) = (c, k) = (p, k) 

on the maximal abelian subfield of Kover k, which we denote by (Kjk)ab. 
Then we have 

C = sf3b, 

with some element 13 E k and some idele b == 1 (mod* N), i.e. b has unit com­
ponent outside N and its components at primes dividing N satisfy the desired 
congruence. Since S-l tl = f3p -l tl we get a commutative diagram 

if' 

Cja -- Ac 

can 1 1 A 

Cjp-1tl--+ AC 

p 1 ~ 1 id 

Cj S - 1 tl --+ AC 
~1 

with some analytic representation t/J 1, and the lower left vertical map being 
multiplication by 13. 

As we saw in the proof of Theorem 2, we can choose the map;' so that 
.A: = 1r and hence on the points of order N, }, has the same effect as (J. So we get 
a commutative diagram 

if' 

(k/tl)N -- AN 

pl lu 
(k/S-1tl)N --+ AN 

~1 

and there remains but to prove that multiplication by 13 on the points of period 
N on the left is the same as multiplication by S-l, i.e. that if U E (kjtl)N, then 
f3u = S-lU. This has to be checked locally for each prime q of k (since we work 
with an ideal tl of Ok' we can use q-components.) If q "# p then cq = 1 and 
Sq 1 = f3 qbq. Since bq == 1 (mod Noq), we see that bquq = uq, and what we want 
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is true at q. If q = p, then p% N, and uq = O. This proves Theorem 3, for (kja)N 
instead of kla. 

However, if we have found two analytic representations 

and 

which make the diagram commutative on (kla)m, they must be equal because 
m is freezing for A. This means that the solution of our problem at the m level 
is the same solution as that on the N level, for any N divisible by m. This 
concludes the proof of Theorem 3. 

§3. GENERATION OF CLASS FIELDS BY SINGULAR VALUES OF 
MODULAR FUNCTIONS 

We shall give direct applications of Theorem 3. The results are classical, 
and the exposition follows Shimura [BI2]. 

Theorem 4. For any lattice a in k the number j(a) lies in kab, and/or any 
idele s we have 

j(s-la) = j(a)lS,k). 

Proof Take first s = 1 and let 0' be any automorphism of C which is the 
identity on k ab. Then Theorem 3 shows that 

j(a) = j(a)", 

whence j(a) lies in kab' The formula of our theorem then expresses the fact that 
if A ~ C/a, then A" ~ C/s-Ia, which is also contained in the statement of 
Theorem 3. 

Remark. For any proper o-lattice a and any isomorphism 0' of Q(j(a» over Q, 
O'j(a) = j(b) for some proper o-lattice b. 

Proof Let A ~ C/a. Then End(A) ~ 0, and consequently End(A") ~ 0 
also. If b is a lattice such that C/b ~ (A!1)c, then it follows that 0 is the set of 
complex numbers a such that ab c b. Hence b is also a proper o-lattice. We 
also have 

This proves our remark. 

For the next result, we introduce a notation. Let b be a proper o-ideal 
prime to the conductor of o. Let bk = bOk be the extension of b to Ok' We denote 
by 

(b, k) 
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the Artin automorphism (b k , Kjk) in the maximal abelian extension K of k 
in which all primes dividing bare unramified. This is well defined because of the 
consistency of the Artin automorphism when restricted to subfields. In par­
ticular, (b, k) is defined on the ray class field whose conductor is the conductor 
of o. 

Theorem 5. Let 0 be an order in k, and let {aJ (i = 1, ... , ho) be re­
presentatives for the distinct proper o-lattice classes. Then the numbers j(a;) 
are all conjugate over k, and over Q. The Galois group of k(j(a)) for any 
proper o-lattice a is isomorphic to the group of proper o-lattice classes, under 
the map 

such that 

(Jbj(a) = j(b-Ia). 

Furthermore (Jb is the restriction of (b, k) to k(j(o)), so that we have the 
formula 

j(aYb,k) = j(b -l a). 

Proof We know from Theorem 4 of Chapter 8, §1 that any proper o-lattice 
b is locally principal, say bp = spop. Let s be the idele whose p-component is 
sp. Then b-1a = s-Ia, and Corollary 1 implies all our assertions, except the last 
one. To prove it, let s be an idele such that sp = 1 for all primes dividing the 
conductor of 0, and such that 

spop = bp 

for all other primes. Since bp = (bok)p at all primes dividing b (because such 
primes do not divide the conductor), it follows that 

so = band SOk = bok • 

Our formula is now a special case of Theorem 4. The fact that the values of j 
on proper o-lattice classes are conjugate over Q was already mentioned in the 
remark preceding our theorem. 

Remark 1. Let L' denote the complex conjugate of a lattice L in k, and w' the 
complex conjugate of a complex number w. From the original series forg 2 
and g3 we see that for any lattice Lin k we have 

g2(L') = giL)' and g3(L') = g3(L)" 

whence 

j(L') = j(L)'. 

Since 0 = 0' for any order 0, we conclude that j(o) is real. We have seen that 
all the conjugates ofj(o) over Q are the same as the conjugates ofj(o) over k. 
Hence we also find that Q(j(o)) is the real sub field of k(j(o)). 
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Remark 2. Let K = k(j(o)) where 0 is an order in k. Let p be the complex 
conjugation automorphism of C. Then for any proper o-lattice a we have 

j(a)' = j(a'). 

Since aa' = AO for some complex number A, we conclude that 

I j(a)' = j(a-1). I 
We now conclude that the field K is Galois over Q, and we shall prove that for 
any automorphism 0' E Gal(KjQ) we have the formula 

To see this, we have for any proper o-ideal b, and any proper o-ideal a such 
that 0' = 0'0' 

pO'p-lj(b) = pO'j(b- 1) = pj(a-1b- 1) = j(ab) = O'a-1j(b). 

This proves what we wanted. 

Since p is not the identity on k, it follows that the Galois group of k(j(o)) 
over Q is a group extension of Gal(k(j(o)jk) by a group of order 2, and that the 
structure of the Galois group over Q is completely determined by the Galois 
group over k and the formula giving the commutation rule between 0' and the 
complex conjugation. 

Theorem6. Let 0 c: 0' be two ordersofk. Then 

k(j(o)) ::) k(j(o')). 

Proof We have to show that an automorphism 0' of kab leavingj(o) fixed 
also leavesj(o') fixed. Write 0' = (s, k) for some idele s. Then so = exo for some 
ex E k. Changing s by ex-I we may assume without loss of generality that 0' = (s, k) 
with so = o. But then for any prime number p, we have 00' = 0', opo~ = o~ and 
spo~ = o~, whence so' = 0'. The commutative diagram of Theorem 3 shows 
that (s, k) leaves j(o') fixed, as desired. 

As in Shimura, we can now give a criterion in terms of ideles for the Galois 
group leaving a point of order N fixed. 

Theorem 7. Let A be an elliptic curve such that ({J: Cfa -+ Ac is an analytic 
representation for some lattice a in k. Let h be the Weber function associated 
with A. Let s be an idele of k. Then (s, k) is the identity on k(j(a)), h«({J(u)) 
for some point u E kja if and only if s E k* Va,u, where Va,u is the subgroup of 
ideles b such that 

ba = a and bu = u. 

Proof First consider the case where we deal only with k(j(a)). Let Va be 
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the subgroup of ideles b such that ba = a. If s is an idele such that sa = a, 
then s-la = a and 

j(a) = j(s-la) = j(a)er, (J = (s, k), 

whence the image of k*Va in Gal(kab/k) leaves k(j(a») fixed. Conversely, if 
(s, k) = (J leavesj(a) = jA fixed, then 

jA" = j(ay = j(a) = jA' 

and Aer ;:::-; A. Hence s-la and a differ by multiplication with an element from 
k, i.e. s-la = aa for some a E k. Hence S E k* Va, thus proving our assertion in 
the present case. 

By Theorem 2, if h is the Weber function, then h( c.p(u)) generates an abelian 
extension of ko. Suppose first that sa = a and su = u. Let (J = (s, k). Then 

cp(u)" = tf;(S-IU) = tf;(u) = ecp(u) 

for some automorphism e of A, because cp and tf; differ by an automorphism of 
A. Since her = h we conclude that 

(J(h(cp(u)) = h(cp(u). 

Conversely, suppose that (JjA = jA and (Jh(cp(u» = h(cp(u». From (JjA = jA we 
conclude that s-la = aa with some a E k*. Replace s by as. This reduces our 
assertion to the case when sa = a because (s, k) = (sa, k) = (J. Now 

(JCP(u) = tf;(S-IU) = ecp(s-lu) 

for some automorphism e of A. Take h to get 

h(cp(u» = (Jh(cp(u) = h(cp(s-Iu». 

It follows that S-IU and u differ by an automorphism of C/a, i.e. there exists 
a root of unity ( such that s-Iu = (u, whence s(u = u. Hence s( lies in Va•u and 
s E k* Va,u, thereby proving our theorem. 

Corollary. Let c be an ideal of Ok' The ray classjield with conductor cover 
k is obtained as 

k(j(a), h(cp(c1a/a») 

for any ideal a of Ok' 

Proof The proof is obvious using Theorem 3 and the remarks at the end 
of Chapter 8, §2. Note that as a module over Ok' c.-1a/a is principal, and hence 
the above class field can be obtained by the image of one point in cIa/a, 
together withj(a), adjoined to k. 
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§4. THE FROBENIUS ENDOMORPHISM 

For an elliptic curve with complex multiplication, Deuring proved a sugges­
tion of Wei I that the Frobenius endomorphism should be a Heeke character [13]. 
As Weil pointed out, this shows that the Hasse zeta function of the curve is a 
Heeke L-series, an interpretation which we shall indicate afterwards. 

The reader interested at this stage principally in the generation of class 
fields by values of modular functions can omit this section and proceed directly 
to the Shimura reciprocity law, as a direct continuation of the preceding sections. 

Throughout this section, we let A be an elliptic curve defined over a number 
field K, and we assume that A has complex multiplication. Let k be an imagin­
ary quadratic field in C, and let 

(J: k -. End(A)Q 

be a normalized isomorphism of k with the algebra of endomorphisms of A. 

We recall that normalized means that for any differential form w of the first 
kind of A, we have 

w 0 (J(p) = pw, P E k. 

Such a differential form can always be selected to be defined over K. 

Remark. We have k c K if and only if every element of End(A) is defined over 
K. 

Proof Let (J be an automorphism of the algebraic closure Ka over K. 
Then having chosen w to be defined over K, we have 

w 0 O(p)" = p"w. 

Therefore (J(p)" = O(p) if and only if fl" = fl. From this our remark follows at 
once. 

Recall that a Hecke character (or quasi character) is a continuous homo­
morphism 

x:Ai-.C* 
from the ideles of K into the multiplicative group of complex numbers, which 
is trivial on K*, i.e. such that X(K*) = 1. [We do not require that the character 
has absolute value 1.] Such a character is said to be unramified at a prime p if 
it is trivial on the local p-units (embedded at the p-component of the ideles, 
having all other components equal to 1). If this is the case, we define X(P) = Xes), 
where s is an idele having component 1 except at p, and having p-component 
equal to an element of order 1 at p, thus 

X(p) = xC· .. , 1, Sp, 1, ... ), ord"sp = 1. 
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We consider first the case when k c K. Let p be a prime of K where A 
has non-degenerate reduction A = A(p). Let 0 be the order in k such that 
0(0) = End(A). Assume that p is prime to the conductor of o. Let Po = pliO 
and pk = P 11 k. Letf = f(p/pk) be the degree of the residue class field extension. 
Then 

Ntp = pl· 
The field K contains kUA). By complex multiplication, and the elementary 
formalism of the Frobenius automorphism, it follows that the Artin symbol of 
p{ on kUA) is the identity. Therefore p{ is principal, and there is an element 
J.I. E 0 such that 

Deuring's theorem asserts that we can select the generator J.I. = J.I.(p) in such a 
way that the endomorphism O(J.I.) reduces to the Frobenius endomorphism of A, 
and that the values J.I.(p) are the values of a Hecke character. For the proof of 
Deuring's theorem, we shall use the following idelized version as in Shimura, 
who also gives a generalization to abelian varieties [BI2], 7.8. 

As usual, we denote by Ator the set of torsion points of A. We let K(p) be 
the residue class field of K at p. 

Theorem 8. Assume that k c K. Let s be an idele of K. Let 

cp: C/o -+ Ac 
be an analytic parametrization of A. Then K(Ator) is abelian over K, and there 
is a unique element J.I.(s) E k, making the following diagram commutative. 

<P 

klo~Ator 

p(.)N!:(S-l) 1 1 ( .. K) 

klo~Ator 
<P 

Proof Let (j be an automorphism of K(Ator) over K, inducing (s, K) on the 
maximal abelian subfield of K(Ator). The restriction of (j to kerb is equal to 
(Nf(s), k). Let 

t = NNs). 

According to the idelized formulation of complex multiplication, Theorem 3 
of Chapter 10, §2, there is an analytic parametrization 

"': Cft-to -+ Ac 
making the following diagram commutative, with A" = A. 

<P 

klo~Ator 

1-
11 1" 
kit-to -+ Ator 

'" 
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Again, since A<r-= A, it follows that (-10 = ao for some a E k. The map if; is 
determined up to an automorphism of A. Changing if; by a unit in End(A) 
corresponds to changing a by a root of unity in k, and we may thus get the 
diagram with cp at the bottom, and p(s)Nf(s-l) on the left with some pes) in k, 
which is uniquely determined since cp and (J are isomorphisms. Suppose that the 
restriction of (J to the maximal abelian subfield of K(A tor) is the identity. Then 
we could have taken s = 1 and pes) = 1. Since (J is determined by its effect on 
A(or, it follows that (J = id, and therefore K(AtOl) is abelian over K. This proves 
Theorem 8. 

We continue to assume that k c K. We note that the association 

S H pes) 

in Theorem 8 is obviously a homomorphism, and we define a function XA,K 
on A~, by 

XA,K(S) = p(s)N~(S-l)oo, 

where (:I) is the archimedean component of an idele t E A~. As with X, we say 
that p is unramified at p if J1 is trivial on the local p-units, and in this case, we 
define p(p) as we defined X(p). 

Theorem 9. Assume k c K. Thefunction X = XA,K is continuous and trivial 
on K*. In other words, it is a Hecke character of the idele classes of K. If P 
is a prime of K where A has non-degenerate reduction, then X and J1 are un­
ramified at p, and X(p) = pep). Ifwe denote reduction mod p by a bar, then 

O(p(p» 

is the Frobenius endomorphism of A, over the residue class field K(p), 

Proof It is clear that X is a homomorphism. If s E K*, then (s, K) = 1, 
and we can take pes) = NkK(S), so that xes) = 1. Hence X is trivial on K*. If 
sp = 1 for all (non-archimedean) primes p, then we can take pes) = 1, and 

xes) = N~(S-l)<XJ' 

so that X is continuous on the archimedean part of the ideles. On the other hand, 
suppose that sp is very close to 1 at all p dividing 0 in Theorem 8. Then Nf(s-l) 
is also close to 1, and 

Since we must also have 
p(S)Nf(s-l)O = 0, 

it follows that pes) is a root of unity in k. If in addition we select s such that 
(s, k) is the identity on the points of A of order N for large N, and such that s, 
whence NNs-1), is close to 1 at primes dividing N, then multiplication by 
NNs-l) on (kjO)N is the identity. Consequently J1(s) must also be equal to 1. 
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This proves that the kernel of X contains an open subgroup of the finite part 
of the ideles of K, and therefore that X is continuous, whence a Hecke character. 

Let p be a prime of K at which A has non-degenerate reduction. By 
Theorem 1 of Chapter 9, §3 we know that p is unramified in K(AN) for p{' N. Let 
s be an idele all of whose components are equal to 1, except for the p-component, 
where ordpsp = 1. Note that N:(S-l)w = I, and hence Xes) = pes). Then 8(p(s» 
is an endomorphism of A, and we shall prove that its reduction mod p is the 
Frobenius endomorphism of A, which we denote by 

np=n:A-+A. 
Let t be a prime number not divisible by p. Since the t-component of sis 1, we 
conclude that multiplication by p(S)Nf(s-l) on the group of t-primary elements 
ktlOt is the same as multiplication by pes). Since 8 is normalized, it follows that 
the following diagram is commutative. 

<P 

C -----+ Ac 

fI(S) 1 10(fI(S» 

C -----+ Ac 
<P 

Let A(t) be the group of t-primary points on A, i.e. the image of ktlat under <po 

Then the commutative diagram of Theorem 8 shows that for any point P E A(t) 

and (J = (s, K) we have 
8(,LI(S)) P = pa = n(P). 

Therefore 8(,LI(s» = n, because these two endomorphisms have the same 
value on A(t). 

If up is a unit in kp and s~ = upsp' then from the above, we conclude that 
8(p(s'» and 8(p(s» have the same reduction, namely n, and therefore that 
8(p(up) = id. Since reduction mod p is injective on End(A), it follows that 
,LI(up ) = 1, and hence that XA is unramified at p. This proves our theorem. 

Remark. Deuring also proved that when A does not have good reduction at p, 
then the character ramifies. Today, one can use a result of Serre-Tate [27] to 
deduce this property at once from the t-adic representations discussed later in 
Chapter 13. Indeed, the Serre-Tate result asserts that if t is a prime number not 
divisible by p, and if p is unramified in the extension K(A({) generated over K 
by the points of t-power order on A, then A has a model over K with non­
degenerate reduction at p. Let (kla)(t) be the group of t-power torsion points 
in kla. By definitions, and the lemma applied to an idele sp having components 
equal to 1 except at p, we have a commutative diagram 

(kjaytl-----+ A(t) 

fI(Sp) 1 1 (sp.K), 

(kjaytl-----+ A(t) 
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We see that the right-hand side depends only on the order of sp at p if and only 
if .u(sp) depends only on the order of sp at p, i.e. if and only if the Hecke character 
is unramified at p. The Serre-Tate criterion shows that this occurs if and only if 
A has non-degenerate reduction at p. 

Next we consider the case when k is not contained in the field of definition 
of A, again as in Deuring [13], (iv). 

Theorem 10. Let A be defined over a number field Ko not containing k. 
Let K = Kok. Let Po' be a prime of Ko where A has non-degenerate reduction. 
Then Po is unramified in K. Let 

p: (1---+ (' 

be the automorphism of Kover Ko, and let p, p' be the primes of K above Po. 
Let pep) = IA.R(P), and similarly for p'. Then 

.uCp)' = ,u(p'). 

Let 7[0 = 7[po be the Frobenius endomorphism of the reduction /t(po) over 
K(po). Let qo = Npo· 

Case 1. Po remains prime in K, so p = p'. Then 7[0 is not rational. We 
hare 

7[6 = 7[p and 7[0 = ±.J-qo. 
Case 2. Po splits completely ill K, so P #- p'. Then 7[0 = 7[p' Furthermore, 

._--_ ... _-- ---
no = O(fl(P)) alld n~ = O(.u(p')). 

Proof By the remark at the beginning of this section, we know that there 
exists an endomorphism ex of A defined over K but not over Ko, so that exP #- 'X. 

Suppose that Po ramifies in K. The effect of p on the residue class field is trivial, 
and consequently reducing mod p yields 

pC!. = Ct., 

contradicting the injectivity of the reduction map on End(A). This proves that 
Vo is unramified in K. 

We shall prove that 
llCp), = Il(p'). 

Let t be a prime number relatively prime to Po. Let A(t) be the torsion points of 
A whose order is a power of t. Similarly for (kla)(!). Both p and p' are unramified 
in K(A({J). From the definitions and the lemma, we have a commutative diagram 

<P 

(k/llyr)~ A(r) 

I'(P) 1 1 (p.R) 

(k/llyt)~ A(t) 

<P 

and a similar one for p'. This means that O(Jl(p)) = (p, K) on K(A(t)). Since 
p' = pp, we get similarly that 

OC.u(p')) = (pp, K) = pep, K)p-l 
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on K(A(t». Abbreviate O(p(p» by),. Extend p to K(A(t). From the formula 

(/.(XW = I.P(XP), 

we conclude that I'p = pep, K)p-l on K(A(t». This proves that 

O(p(p'» = O(p(p»', 

141 

because these two endomorphisms have the same effect on A(t). It follows that 
Il(p') = pep)', from the definition of a normalized map 0, i.e. 

W 0 O(p) = pW. 

Consider the case that P = p'. Then pep) is an element of k fixed under 
conjugation, whence is rational. It follows that np is a rational (and therefore 
integral) multiple of the identity on A, and hence 7rp = ±qob. This yields 
n5 = ±qo. We contend that no cannot be a trivial endomorphism. Otherwise, 
it commutes with all endomorph isms of A. But if a is an endomorphism of A 
such that aP =1= a, then fiP =1= fi and fi is not defined over K(po). Consequently 
fi does not commute with no, whence no is non-trivial. On the other hand, 
nono = qo, and since the map ~ ~ t is the automorphism of Q(no), it follows 
that no =1= ± J qo. Hence 

no = ±J -qo, 
thereby proving the assertions in case 1. 

Now suppose that Po splits completely in K. Then the residue class field 
extension has degree 1, and therefore no = np' Hence no is the reduction of 
O(p(p» mod p, by Theorem 9. Furthermore 

O(p(p»O(p(p»' = v(O(p(p»)b. 

Taking the bar (reduction mod p), and taking into account that 

v(O(Jl(p») = v(no) = qo, 

it follows that O(Jl(p»' reduces mod p to no. This proves our theorem. 

Remark. As with Theorem 9, we can apply the Serre-Tate result to prove 
Deuring's criterion: 

If Po is unrarnified in K, and A has non-degenerate reduction at one prime 
p of K extending Po, then in fact A has non-degenerate reduction at Po. 

Deuring had a rather hard time proving this in [13], (iv), and even comments 
that this is the "wesentliche Schwierigkeit" of his paper, as distinct from the 
rather formal arguments reproduced above for Theorem 10. 

Theorems 9 and 10 were proved by Deuring to describe the zeta function 
of the elliptic curve as a Hecke L-function. We carry out the formalism. 

Let F be a finite field with q elements and let A be an elliptic curve defined 
over F. Let N be the number of rational points of A in F. Let 

n: A -+ A 
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be the Frobenius endomorphism n = nq• Then 

N = v(n - <5) = (n - <5)(n' - <5) 

= q + 1 - Tr(n), 

where Tr(n) = n + n' is the trace. Let 8: Q(n) -+ C be an embedding into the 
complex numbers such that 8(fl) = n. Then following Hasse, we define the 
zeta function 

Z(A, F, X) = (1 - flX)(1 - fl' X) . 
(1 - X)(1 - qX) 

Note that fl, fl' occur symmetrically, so that the numerator of the zeta function 
is often written 

H(if, F, X) = (1 - nX)(1 - n' X). 

Taking the logarithmic derivative, one sees by a trivial computation that 

d - ~ d-l 
d- log Z(A, F, X) = i.J NdX , 
X d=1 

where Nd is the number of points of A in Fd (extension of F of degree d). Putting 
X = q-', it is then easily seen that the zeta function is equal to the usual ex-
pression _ (1 )-1 

Z(A, F, q -') = n 1 - Np' = L Na -', 

where the Euler product is taken over all primes p of A, rational over F, and the 
sum is taken over all positive divisors (cycles) a on A, rational over F. As 
already mentioned in Chapter 2, Hasse had determined the roots of the zeta 
function in this case as the eigenvalues of the Frobenius mapping. [This was 
generalized by Wei! to arbitrary curves and abelian varieties, as is well known.] 

Let again A be an elliptic curve defined over the number field K or Ko as 
in the previous considerations. We define its zeta function, again following 
Hasse, by the prod uct 

(A, K, s) = n Z(A(p), K(p), Np-'), 
p 

taken over all p where A has non-degenerate reduction. Then according to the 
above definitions, Theorem 9 implies that 

while Theorem 10 implies that 

I (A, K o, s) = (K(S)(K(S - I)L(s, XA,K)-l. 
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The function (K is the Dedekind zeta function associated with the number field 
K, and L(s, X) is the Hecke L-function 

n (1 - X(p)Np-S)-1 
p 

associated with a Hecke character of the idele classes of K. 
Sometimes one wants to deal with a Hecke character of absolute value l. 

Then one can define 
ljJA,K(P) = XA,K(p)Np- t , 

and then L(s, X) is replaced by L(s - t, ljJ). 

APPENDIX. A RELATION OF KRONECKER 

The contents of this appendix will not be used anywhere else in the book and 
may be omitted. They are due to Kronecker. Cf. Weber, §115, 116. 

We shall prove another property of the modular polynomial <l>m(X, X), 
for an arbitrary positive integer m. Let Z E ~ be imaginary quadratic. We are 
interested in the multiplicity ofj(z) as a root of<l>",(X, X). This multiplicity may 
of course be O. Write z = ZdZ2 where ZI, Z2 lie in an imaginary quadratic field 
k, let a = [ZI' Z2] and let 0 be the order belonging to a (or equivalently to 
L z = [z, I]). An element p E 0 is called primitive if it does not lie in no for any 
positive integer n =1= 1. If Jt E 0, then 

with an integral matrix Ct. = Ct.!'- and we see that p is 'primitive if and only if 
(a, b, c, d) = I. Two elements of 0 will be said to be o-equivalent if their quotient 
is a unit in o. 

Theorem 11. Let z E ~ be imaginary quadratic and let 0 be the order of 
L z = [z, I]. Then the multiplicity of z as a root of<l>meX, X) is equal to the 
number of primitive o-equivalence classes of elements p E 0 such that Np = m. 

Proof Let {Ct.;} (i = I, ... , ljJ(m)) be representatives for the left co sets of 
L'l! with respect to r. It is clear thatj(z) is a root of<l>meX, X) if and only if 

j(z) = j(Ct.iZ) 

for some Ct. i, and this is the case if and only if there exists,), E r such that }'Ct.iz = z. 
Without loss of generality, we may assume that if Ct.iZ and Z lie in the same orbit 
of SLzCZ), then they are equal (multiply a representative Ct. i by a suitable element 
of SL2(Z). 
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Using the notation before the theorem, we see that the association 

J1 f-> CXIl 

induces a bijection of the primitive o-equivalence classes of elements J1 EO such 
that NJ1 = m, and those representatives CXj such that ajz = z. We are therefore 
reduced to proving that the number r of such representatives is precisely the 
multiplicity ofj(z) in <l>m(X, X), i.e. that<l>m(X, X) is exactly divisible by (X - j(z»'. 
It will suffice to prove that 

I· <l>m{j(r),j(r» -/. 0 
1m. . r""" ,00 

, .... z ()(r) - )(z» 

and therefore it will suffice to prove the following lemma. 

Lemma. Let a E A! be such that az = z. Then 

I· j(r) - j(ar) -/. 0 
1m . ...,...,00. 

, .... z )(r) - )(z) 

Proof We use the Taylor expansions: 

00 P\z) 
j(r) - j(z) = L -(r - z)" 

n=1 n! 
and 

00 /")(r) 
j(ar) - j(r) = L -Car - T)" 

n= In! 

00 /")(z) + P+ 1)(Z)(T - z) + ... 
= L , (aT - T )". 

"=1 n. 

Since rxr - T = 0 has two distinct solutions (namely z and its complex con­
jugate) it follows at once that the above two expressions have the same order 
of zero at r = z, whence the lemma is proved. 

Let Go be the group of proper o-ideal classes for an order 0 in an imaginary 
quadratic field k. Let 

Ho(X) = n (X - j(6,»). 
6.EG O 

We know that all the numbers j(6,) (6, E Go) are conjugate over Q. Hence 
Ho(X) has integral coefficients, and is irreducible over Q. Let rem, 0) be the 
number of primitive o-equivalence classes of elements J1 E 0 such that NJ1 = m. 
Then Theorem 8 shows that for a suitable constant Cm , we have 

<I>m(X, X) = Cm n Ho(xy(m,o). 
o 

Counting up the degrees will yield the relation we are looking for. We make 
some more remarks concerning the degree of <l>m(X, X) since the discussion in 
Chapter 5, §2 was kept brief for the limited purposes we had in mind then. 
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We have 
ofJ(m) 

CbmU,j) = n U - j 0 IXJ 
i= 1 

Suppose that IX is in triangular form, 

with ad = m, a, d > 0, and 0 ~ b ~ d - 1. Also, IX is primitive. The lowest 
term of the q-expansion of j - j 0 IX is then: 

i) _e-27tibld q-ald if a > d, 

ii) q-l if a < d, 

iii) (1 - e27tibld) q-l if a = d. 

This third possibility occurs if and only if m is a square and had been disregarded 
before, but we must take it into account now. Note that in this last case, the 
coefficient of q-l is #- 0 since IX is primitive, so that b #- O. The lowest term of the 
q-expansion of Cbm(j,j) is therefore Cq-N, where C is some non-zero constant, 
and 

~ad ~'d I_ 
N = 1..J -d - qJ(e) + 1..J 1- qJ(e) + qJ(y m), 

a>d e a<d e 

As usual, we use the notation e = (a, m/a), and by convention, qJ(.jm) = 0 
if m is not a square, otherwise has the usual value of the Euler function. This 
yields: 

Theorem 12. The degree ofCbm(X, X) is equal to 

N = 2 L ~ qJ(e) + qJ(.jm), 
aim e 

a>v'm 

and we have the Kronecker relation 

L rem, o)ho = deg Cbm(X, X), 
o 

taking the sum over all orders 0, where ho is the number of elements in Go. 

From the elementary discussion about orders, we know that an order 0 

is ofthe form 

= [D + .j75 1J 
o 2" 

where D is the discriminant of 0, and D == 0 or 1 (mod 4). We shall also write 
r(m, 0) = rem, D) if D = D(o). We ask what is the largest possible value of 



146 COMPLEX MULTIPLICATION [10, AJ>P.] 

IDI (for given m) such that rem, D) > 0. The answer is given by the following 
theorem. 

Theorem 13. Let m > 1. The largest values of IDI with rem, D) > ° are 
those for which D is equal to -4m and -,4m + 1. The corresponding values 
ofr(m, D) are 

rem, -4m) = 1, and a representative primitive solution of Nfl = m is J2D; 

rem, -4m + 1) = 2, and representative primitive solutions of Nfl = mare 

. I+JD I-JD 
gIVen by 2 and 2 . 

Proof Write a primitive solution of Nfl = m in the form 

x +yJ15 
fl = 2 ' with x, y E Z, 

Then 4m = x 2 - Dy2. If y = 0, then x = ± 2, because fl is primitive. Hence 
m = 1, which is impossible. Hence Iyl > 0. Therefore 

IDI ~ 4m. 

Since D == ° or 1 (mod 4), the highest possible values for I DI correspond to 
D = -4m and D = -4m + 1. We now determine the multiplicities in these 
two cases. 

Case 1. D = -4m. From the relation 4m = x 2 + 4my2 we conclude that 

d h l' JD . 
x = ° an y = ± 1. T erelore fl = 2 ' I.e. 

D D+/15 
fl = -'2 + 2 . 

This is an element of 0, and is primitive since D +2 In has coefficient 1. Thus 

we have found one solution, and its multiplicity is 1. 

Case 2. D = -4m + 1. Then 4m = x 2 + 4my2 - y2. Since fl is primi­
tive, y # ±2, and also y # 0, so y = ± 1. Hence x = ± 1. Then 

_ ±1 ± J15 _ ±1 =+= D + D + J/5 
fl- 2 - 2 - 2 

lies in 0 and is primitive, because D == I (mod 4), D is odd, and 

±1 =+= D 
2 
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is an integer, while the other term has coefficient 1. This shows that 

rem, -4m + 1) = 2, 

with the two inequivalent primitive solutions 

for NJl = m. 

1 + JJj 
2 

and 
1 - JJj 

2 
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11 Shimura's Reciprocity Law 

§l. RELATION BETWEEN GENERIC AND SPECIAL EXTENSIONS 

Let F be the modular function field, studied in Chapter 6. We saw that F 
can be identified with the field of x-coordinates (or h-coordinates, h = Weber 
function) of division points of an elliptic curve A defined over Q(J), having 
invariant j. Let k be an imaginary quadratic field, and let Z E k n ~. Then the 
fundamental theorem of complex multiplication tells us that the field F(z) 
consisting of all valuesf(z),JE F, is kab' Let 0 be the local ring in k(J) of the 
place fl---> fez); withf E k(j). Let S be the integral closure of 0 in F. Then every 
functionfE S is defined at z, and we let ml be the kernel of the homomorphism 
fl--->fCz),fE S. We are now in a situation similar to that of the decomposition 
group, except that automorphisms of F do not necessarily leave Q(J) fixed. 
We want to determine in some fashion the decomposition group of this situation, 
which we shall see is isomorphic to Gal(kab/k), i.e. to the Galois group of the 
residue class field, so that our situation is essentially unramified, except in the 
two cases when z is equivalent to i or p under the modular group. 

If ~ E k*, then there is a rational matrix qCO E GLi CQ) such that 

So we have an embedding 

qz = q: k* -> GLiCQ) 

satisfying the above property. We note that z is a fixed point of q(k*). By con­
tinuity, we can extend q to an embedding 

qz.P = qp: k; -> GL 2CQp), 

whence to an embedding of the ideles, again denoted by q = qz (depending on z), 

q: A: -> GL 2(A), 
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although we shall use the homomorphism 

q: At ~ GLiAf ) 

which drops the complex component, and otherwise is the same as above on the 
p-components. The image of At lies in the adelized GL2 because for all p, 

Qp ® k = k p = Qpz E8 Qp, 
and for almost all p, 

0k.p = Zpz E8 Zp. 
Theorem 1. (Shimura) Let s be an idele of k, and let (s-\ k) be the Artin 
symbol on kobo Let Z E k and Z E fl. Let G = G(qz<s» be the automorphism of 
F of Chapter 7, §3. Then for every function f E F defined at z, we have 

f(zys-l,k) = j"(z). 

Proof We shall first prove that the above relation holds for the Fricke 
functions.fa as in Chapter 7, and for j itself. After that, we shall give a formal 
decomposition group argument to show that the same relation holds for allf 

Write 
q(s) = wx 

where 

a E GLi(Q) and 
p 

as in Theorem 1 of Chapter 7, §l. Let a E Q2, a ¢ Z2. We recall the notation 

aG) = atz + az· 

Locally, we have 

spaG) = aspG) = aqp(sp)G) 

= auaG) 

= aUJi( aiz») 
with some fl E k (actually Ji = cz + d). 

As usual, we write L z = [z, I]. What is sLz ? We contend that 

sLz = JiL.(z)· 

It suffices to verify this locally at each p. We have 

This proves our contention. 
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We now have the usual diagram of complex multiplication, 

Note that 
j(Z)(S-',k) = j(a(z), 

so that we can select 
A~(z) = (AZ)". 

We contend that multiplication by u on the far left makes the diagram 
commutative. This is trivially verified using our previous computation. 

Therefore, if <(Jz: CfLz ~ Ac is our usual parametrization of A z, we obtain, 
for some automorphism e, 

«Jz(aYs-1,k) = eO «Ja(z)(au), 

if q(s) = ua. Taking the Weber function, rewriting this in terms of the notation 
fa wherefa is the Fricke function, and recalling that q(s) = WY., we have 

fa(zYS-',k) = f:(z) = fau(a(z)) 

j(ZP-1,k) = j(a(z)) = j"(z). 

Thus we have proved our theorem for the special functions fa, j. Observe that 
we can take the Weber functions of anyone of the three types, and these rela­
tions still hold. 

Next we prove that the relation of the theorem holds true for all elements 
of F. Let S be the integral closure of the ring R = k[j] in F. Since j 0 (:J. is integral 
over k[j], it follows that (J maps S on a ring which is integral over k[j c C(l, 
whence (J induces an automorphism of S. We let m be the maximal ideal in 
k[j], and 931 the maximal ideal in S, which are the kernels of the homomorphism 

fl-+ J = f(z). 

If p is an automorphism of S which maps 931 onto 9Jl, i.e. p lies in the iso­
tropy group of 931, then p induces an automorphism of the residue class field, 
denoted by 

p: S~ S. 

We identify S as the set of all elementsJ,fE S. 
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We shall prove that there exists an element p E Aut(F) such that: 

i) p maps Wl onto Wl. 

ii) p = (J' on k(j). 

iii) P = (S-l, k). 

[ll,§l] 

Let (J'a. be the automorphism of F such that (J'a.f = f 0 rx. Then (J'a. induces an 
automorphism of S (same argument as for (J'). The formula 

j(az) = j(Zys-',k) 

shows that (J'a.tn c Wl, because (J'a. leaves the constants fixed. Consequently 
tn c (J'; lWl. By the ordinary Galois theory as in Chapter 8, §3 there exists an 
element, E Gal(Fjk(j)) such that ,Wl = (J'; lWl, whence we obtain 

(J'a.'Wl = 9)1, 

and (J'a.' = (J' on k(j). This already achieves the first two of our desired conditions. 
Let G = Gal(Fjk(j)). The residue class field Rjm = R is precisely k(j(z)). By 
the surjectivity of Proposition 4, Chapter 8, §3 we know that there exists an 
automorphism .Ie E Gm such that A has any prescribed effect on the residue class 
field, in our case such that 

I (J'a.' = (S-l, k). 

We let p = },(J'a." Then p satisfies all three of our requirements. 
The automorphism p-l(J' satisfies the condition 

(p-l(J'/a)(Z) = fa(z) 

for all a "# 0, a E Q2 jZ2, and leaves Q(j) fixed. By Theorems 2' and 3' of Chapter 
9, §3 we conclude that p-l(J' lies in the inertia group. Since the relations we want, 
i.e. 

pf = pS-I,k) 

are true for p and allfE S, they are also true for (J', and this proves our theorem. 

In his proof of the reciprocity law, as given in [B12], Shimura gave the 
arguments showing that the relation holds for j and the functions fa. To extend 
this to all elements of F, he then went through a fairly elaborate discussion, 
even using the parametrizations of the models of the function fields FN over Q 
from the upper half-plane. The difficulty concerning such a step had arisen 
before, in every treatment of complex multiplication. We have avoided the 
difficulty by a more direct usage of the formalism of decomposition groups, 
which follows the usual formalism of Galois extensions. 

It is worthwhile also to describe the inertia group in the full group of auto­
morphisms. 

Theorem 2. Let z E S be imaginary quadratic, and let k = Q(z). Let 9)1 
be the kernel of the place fl--+ fez) = J in the modular function field F. Let 
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G be the group of automorphisms of F over k, and let G!l)l be the isotropy 
group ofWl.. Then the map 

(J H ii, (J E G!l)l, 

is a homomorphism of G!l)l onto Gal(kab/k), whose kernel consists of those 
elements (J~, with rx E GL!(Q) satisfying rxz = z. 

Proof By Theorem 6 of Chapter 7, §3 (the Shimura exact sequence), we 
can write an element a E G!l)l in the form 

a = (J( urx), 

with u E n GL2(Zp) and Ct. E GL!(Q). Then (Jj = j 0 Ct.. Suppose that ii = id. 
Then 

j(rxz) = j(z), 

whence Ct.Z = yz for some Y E SL2(Z). For any Fricke function la, we have 
f:(z) = Ia(z), whence 

fauCrxz) = fa(z). 
But fauCrxz) = lau(Yz) = /aUY(z). By Theorem 1, 2', 3' of Chapter 9, §3, we con­
clude that uy = Yl for some Yl E SL2(Z) such that Y1Z = z. Hence a = a(YIy-1Ct.). 
and Yly-1rx leaves z fixed. Conversely, if P E GLi(Q) and pz = z, it is clear that 
a(p) lies in the kernel of a H ii. The surjectivity of our homomorphism on 
Gal(kab/k) comes from Theorem 1, thereby proving our theorem. 

Corollary. Let At be the group of ideles of k. Then G!l)l is the image of At 
under the embedding qz. 

Proof Theorem 1 shows that the image of qz is contained in G!l)l. Further­
more, if (J E G!l)l, then 

ii = a(qz(s)) 

for some idele s, whence (J and (J(qzCs)) differ by an element of the kernel in 
Theorem 2, which we know is of type (J~. If 

rx = (; ~), 
we let f.1 = cz + d, and identify f.1 with the idele having f.1. on each component. 
Then a(qz(f.1.)) = Ct., and our assertion follows. 

§2. APPLICATION TO QUOTIENTS OF MODULAR FORMS 

We shall proceed as in Shimura [BI2]. Iff is an automorphic function of 
a certain weight 2t as defined in Chapter 3, §2 we shall writefhomogeneously, i.e. 

fer) = fG), 
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so that as a function of two variables, f is homogeneous of degree - 2(, i.e. 

Aside from the meromorphic conditions, the functional equation of an auto­
morphic function with respect to r = SLiZ) then reads in homogeneous 
notation 

Theorem 3. Let /; g be automorphic functions of the same weight, with 
rational Fourier coefficients, and let rx E Mi(Z), det rx = N. Let 

her) = f(rxG)). 

gG) 
Then h is a modular function of level N. Furthermore: 

i) h isfixed under the group :x-I r:x n r. 

ii) Letting U = n GL2 (Zp) as before, h is fixed under 
:x-I U:x n U. 

Proof Let y ErN' i.e. y E rand y = I + Nf3 for some integral matrix 13. 
Then 

rxyrx-- 1 = I + N:xf3rx- 1 

is integral and has determinant 1. Hence 

f(rx(~)) f(rxyrx-lrx(~)) 
her) = gG) gG) = h(yr), 

which proves that h is modular of level N. Substituting an element rx-1yrx which 
also lies in r into h leaves h invariant, as one sees at once, 

The proof of the other assertion is slightly longer. We first make a reduction 
by diagonalizing:x. There exist y, 6 E SL 2(Z) such that 

13 -- (rom Or) rx = yf36, 

with r E Q and m equal to a positive integer. Then 
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It suffices to prove that hp is fixed under c5(a- 1 Va n V)c5- 1, i.e. under 13-1 Vf3 n V, 
because c5a-1 = f3-1y-1, and y-1 Vy = V. Thus it suffices to prove our assertion 
for 

he,) = f(f3,) = f(nn) 
gee) g(,) , 

which we have to show is invariant under 13-1 Vf3 n V, where 

Let u E Vand suppose f3-1 uf3 also lies in U. Write up as a matrix 

up = (~; ~:) E GL2(Zp)' 

Then 

13-1 up f3 = ( ap bp/m). 
mcp dp 

This lies in Vp if and only if bp = mb~ for some p-adic unit b~. Consequently, 
we have proved: 

Lemma. If 

then a- 1 Va n V consists of all elements v E V such that 

Reading mod m, our proof of Theorem 3 reduces to the following special 
case. 

(1) 

Theorem 4. Let/, g be automorphic functions of the same weight with respect 
to r = SL2 (Z), and with rational Fourier coefficients. Let m be a positive 
integer. Then the function 

he,) = fern,) 
gee) 

has level m, and is fixed under the group of all automorphisms of F represented 
by the matrices 
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Proof Since h has rational Fourier coefficients, it is fixed under the auto­
morphisms of F represented by matrices of the form 

G ~), de (ZjmZ)*. 

Multiplying a matrix of type (I) by such a diagonal matrix, we are reduced to 
the case when the element of (1) lies in SL2(ZjmZ). Such an element has a 
representative in SL2(Z) lying precisely in the group 

O(-lrO( n r = ro(m) 

as described in Lemma 1. This concludes the proof, in view of the first assertion 
in Theorem 3. 

Corollary 1. Thefunctionf(mt)jg(t) lies in QU,j 0 m). 

Proof The fixed field of the group of automorphisms of Fm in Theorem 4 
is equal to QU, j 0 m), according to Theorem 5 of Chapter 6, §4, so our corollary 
is clear. 

Corollary 2. Let 11 be the usual discriminant function, and let 

l1(mt) 
<Pm(t) = l1(t) . 

Then QU,j 0 m) = QU, <Pm). 

Proof Takef = g = (2n)-1211 in the theorem. Then we see that the function 
<Pm lies in QU,j 0 m), referring back to Theorem 5 of Chapter 6, §4. Looking 
at the conjugates of this function under the modular group, and the coefficients 
of the q-expansion at infinity, one sees that all t/I(m) conjugates are distinct, 
and hence that we have an equality of fields as stated. 

The arithmetic result corresponding to the function theoretic result of 
Corollary 2 will be proved in Chapter 21, §I, Theorem 3. 

The next theor~m is Excercise 6.37 of Shimura's book [B12]. In his book 
Shimura proves the result only for ideals of the ring of all algebraic integers. 
It is needed explicitly in general for certain applications. 

Theorem 5. (Shimura). Let J, g be automorphic functions of the same 
weight with respect to r, and with rational Fourier coefficients. Lt:t 0( e Mt(Z), 
det 0( = N. Let 

Let k be an imaginary quadratic field. Let s be an idele of k such that s p = I 
for all piN. Let L = [Zi' Z2] be a lattice in k with Z = ZdZ2 e i). There exists 
'1 e GLt(Q) such that: 
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i) 11(::) is a basis for s-IL. 

ii) rxl1X-1 E GL2 (Zp) for all piN. 

Assume that f 0 rx and g are defined at z. For any 11 satisfying (i) and (ii), 
we have 

h(Z)<,·k) = h(l1z), 

Proof We first prove the existence of 11 satisfying the desired conditions. 
It is trivial to find some 11 satisfying (i). We need only prove that there exists 
i' E r such that replacing 11 by I'll satisfies (ii), i.e. 

Y.}'I1X-1 E GL 2 (Zp) 

for all pIN. We have 

Hence 
q/s;; 1) = upl1, 

with some upEGL2(Zp) = Up. Hence up = 11- 1 for pIN, and q(S-l) = UI1. Note 
that multiplication on the right by the element up E GLiZp) yields an 
automorphism of Z;. and hence we have an isomorphism 

Z2jZ2 rx ;:::: II Z;jZ;rxu p. 

There exists a sublattice M of Z2 such that Mp = Z~rxup for all p, and then 

Z2jZ2 x ;:::: Z2jM. 

By elementary divisor theory, there exists Y E r such that Z2 X}' = M, or in other 
words 

for all p. Hence 
rxyu;; Irx-I E Up 

for all p. In particular, for pIN, we know that u; I = 11, whence the existence of 
the desired y follows. 

To give the effect of (s, k), we use q(S-I) = UI1 and apply Theorem 1. By 
Theorem I, we find 

h(zYS. k ) = hC1(z) = hC1 (ul(I1 Z), 

and it suffices to prove that hC1 (u) = h. By Theorem 3(ii), we need only show that 
u EX-I Urx n U, i.e. y'ux- I E U. We check this at each prime. If pIN, then this 
amounts to the second hypothesis on 11. If pf N, then x itself lies in Up, so this 
is clear. This completes the proof of Theorem 5. 

Let 0 be an order in k. If b is a proper o-ideal prime to the conductor of 0, 

we recall the notation of Chapter 10, §3, where (b, k) = (Ok' k), Ok = bok , and 
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(b k , k) is the Artin automorphism on any abelian extension of k in which all the 
prime factors of bk are unramified (in particular k(j(o»). 

Theorem 6. Let f, g be automorphic functions of the same weight with 
respect to r, and with rational Fourier coefficients. Assume that they are 
holomorphic on fl, and g does not vanish on fl. Let 0 be an order of k, and let 
a, b be proper a-ideals, with b prime to the conductor of a. For any proper 
a-ideal e, define 

f(ae) 
ha(c) =g(c) . 

Then ha(o) lies in k(j(o», and 

haC a Yb,k) = ha(b - I). 

Proof Let a = [z, 1] and let a be an integral matrix such that 

is a basis of a. Let det a = N. Assume first that b is also prime to N. Let s be 
an idele such that sp = 1 for all pIN, and such that spop = bp for all p. Let h be 
as in Theorem 5. We find: 

and 

We shall now prove that w,{ n is a basis for b-1a, and we check this for 

each prime p. If pIN, then bp = op and 

Z 2 (z) Z2 - 1 (z) b - 1 pal] 1 = pal]CI. CI. 1 = ap = p ap 

using the definition of a. On the other hand, if P{ N, then:xp = ap and Z;a = Z;, 
so that 

Z;al]( n = Z;I]G) = b; 1 = b; lap. 

This gives us the desired basis for b-1a. 
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By Theorem 5 we conclude that 

h (O)(s,k) = h (b-I) = f(ab- I
) 

o 0 g(b 1) . 

Let K = k(j(o), 110(0)). Let S be a finite set of primes containing all primes 
dividing N, all primes dividing the conductor of 0, and all primes which may 
ramify in K. Assume that b is also prime to S. We apply the above relation to 
b, and select s such that sp = I for all pES. Then 

h (O)(s,k) = h (O)(b,k) = f(ab- I
) 

o 0 g(b -1) . 

Suppose that (s, k) leaves j(o) fixed. The Kronecker congruence relation tells 
us that 

j(oys,k) = j(o)fb,k) = j(b- I ). 

Consequently b = ;.0 is principal, and the above formula shows that 110(0) is 
also kept fixed by (s, k). It follows that 110(0) lies in k(j(o)). 

If we start with a proper o-ideal b which is prime to the conductor of 0 

(and hence contains only prime factors in k which are unramified in k(j(o)), 
then there exists .Ie E k such that ;.b is an o-ideal prime to S, by Theorem 5 of 
Chapter 8, §I. On k(j(o)) the two symbols (b, k) and (),b, k) have the same 
effect. This reduces our theorem to the case already treated, and concludes 
the proof. 

Corollary. The values ~(ao)/~(o) lie in k(j(o)), and we have 

(~( ao ))(b,k) _ ~(ab - 1) 
~(o ) - ~(b - 1) . 

Proof Takef = 9 = (2n)-12~ in Theorem 6. 



12 The Function A(at)/A(t) 

§1. BEHAVIOR UNDER THE ARTIN AUTOMORPHISM 

In this section we give an example for the Shimura theorem concerning 
the quotient of automorphic functions. Throughout this section we let k be an 
imaginary quadratic field and we let 

Ok = [z, 1], Z E f,. 

We consider the special case when 11. = (; ~} so that rx(z) = mz, and 

o = [mz, 1] 

is the order with conductor m. If b is a proper o-ideal prime to m, we recall the 
notation of Chapter 10, §3, where (b, k) = (b k , k), bk = bok , and (bb k) is the 
Artin automorphism. 

Theorem 1. The value ~(O)/~(Ok) lie in k(j(o)), and for any proper o-ideal 
b prime to the conductor m of 0, we have 

( ~(a))(b.k) = ~(b-la) 

~(ak) ~(b Iak) 

for any proper o-ideal a prime to m. 

Proof We shall first prove the special formula 

( ~(O))(b'k) _ ~(b-I) 

~(Ok) - ~(bkl)' 

It will be a special case of Theorem 5, takingf = 9 = (2n)-12~. Note that the 
power of 2n cancels in the quotient, so that the condition on rational Fourier 
coefficients is satisfied. We let I] be as in the theorem, such that 
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is a basis of bk 1, and X'1X--1 E GL 2 (Zp) for all plm. Theorem 5 of Chapter 11 
gives us 

which is what we want, provided we check that 

is a basis of b~l. We do this at each prime p. If p{m, then IX is locally invertible 
at p, and the matter is clear. If plm, we write 

(1) 

By hypothesis, X'1IX~l is p-integral and its determinant is a p-unit. Hence locally 
at p, the local lattice whose basis is given by (1) is precisely 0p' which is also 
b; 1 since b is assumed prime to m. 

From the special formula, we get the general one of the theorem, simply 
by applying the special case to (ba~l, k) instead of (b, k), and using the special 
result twice. 

Finally, to see that the desired values lie in the ring class field k(j(o», let 
() be any automorphism of the ray class field k m over k which leaves j (0) fixed. 
Select an ok-ideal bk prime to m such that () = (bb km/k). Since the restriction 
of () to the ring class field k(j(mz» is the identity, it follows from Theorem 5 of 
Chapter 10, §3 that the proper o-ideal b = bk n 0 must be principal. The 
formula giving the effect of (b, k) and the homogeneity property of ~ now show 
that (b k , k) is also the identity on MO)/~(Ok)' which is therefore contained in 
k(J(o». This proves all of Theorem I. 

Corollary. The nwnbersj(o),j(Ok), ~(O)/~(Ok) are real, and 

Proof The reality assertion is clear, because from the original series, say 
for gz and g3, and any lattice Lin k, with complex conjugate L', we have 

gzCL') = g2(L), and g3(L') = g3(L)" 

whence ~(L') = ~(L)' and j(L') = j(L)'. Since 0' = 0, the reality assertion 
follows, and so does the corollary, because Q(J(o» is the maximal real subfield 
of k(j)o». 
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It will be proved in Chapter 21, § I, Theorem 3, that the numbers j( Ok), 
L\(O)jL\(Ok) actually generate k(j(o» over k. 

§2. PRIME FACTORIZATION OF ITS VALUES 

We want to describe the prime factorization of the values 

L\( exz) 

L\(z) 

for imaginary quadratic z, and ex E M{(Z). This was done completely by Hasse, 
but we shall work out here only the most important special case, and refer to 
Deuring [BI], §22, p. 43 for the general tables. We begin with some integral 
properties similar to those for the j function. Let ex have determinant n, also 
denoted by lexl. Define 

For any y E SL 2(Z) we have CPya = CPa, so the value of cP depends only on the 
left coset of Ct., which we may assume primitive. We may then also assume that 
Ct. is in triangular form 

(2) 

as in Chapter 5, §l. Then 

( ) = I 11 2 d - 12 L\( Ct.! ) 
CPa! ex L\(!) . 

Theorem 2. The/unction CPa is integral over ZU]. 

Proof Let Ct. 1, ... , Ct.ojJ(n) be representatives of the left co sets of primitive 
matrices in M 2(Z) having determinant n, with respect to the modular group, 
and take these representatives in triangular form as above. We use the same 
method as in Chapter 5, §2. The q-expansion for L\ is of the form 

L\ = (2rr)12q(l + A(q» 

where A(q) is a power series with integer coefficients, and does not vanish on ~. 
Each cpa, is holomorphic on ~, and has a ql;n-expansion at infinity. Each CPa in 
fact has level n, as one sees by the same argument that we used for j (Theorem 4, 
Chapter 6, §4). The symmetric functions of the cpa, are therefore modular func­
tions of level I, and being holomorphic on ~, they lie in C[j]. 



164 THE FUNCTION A(ar)jA(r) [12, §2] 

To get them in Z[j] we use the q-expansion. For a in triangular form as in 
(1), we see that under the transformation 

q f--t qald(~ 

the q-expansion for A transforms in such a way that 

(3) ( ) _ 12d-12 A(ar) _ al2vb 1 + A(qa/dm 
<Po r - n A(r) - ~d 1 + A(q) . 

The Fourier coefficients of this expression lie in Z[(d]' An automorphism (is 

sending (4 on G (with (s, n) = I) extends to the power series field in qlln, and 
permutes the expansions of the ljJ(n) functions <po; (i = I, ... , ljJ(n». Hence 
the elementary symmetric functions of <POl' ... , <pO.p(nJ are invariant under these 
automorphisms, and therefore have coefficients in Z. Together with the fact 
that each <Po is holomorphic on i>, this proves our theorem. 

Actually if one analyses the proofs of Theorem 2, one finds that they are 
valid in the more general context of a quotient of automorphic functions having 
the same weight, under the following conditions. 

Theorem 3. Let f, g be automorphic functions of the same weight -m with 
respect to SL2 (Z). Assume that: 

i) both f, g have Fourier coefficients in Z. 

ii) bothf, g are holomorphic on i> and g is not zero anywhere on i>. 
iii) the function g has a q-expansion of the form 

g = qV(l + qB(q» 

where v is some integer, and B(q) is a power series in q with integer coefficients. 
Then the function 

is integral over Z[j]. 

Theorem 4. For imaginary quadratic z, the values <Pa(z) are algebraic 
integers, which divide la1 12 • 

Proof Since the values j(z) are algebraic integers, and since <p,(z) is integral 
over Z[j(z)], we conclude that <p,(z) is also an algebraic integer. To get the 
divisibility, we let a' be the integral matrix such that 

a' a = 10:1/2 = ('~I I~I)' 
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We cancel a numerator and denominator, and use '1.'1.' = Irtllz with the homo­
geneity of ~, of degree - 12, to get 

1:x112Ia'1121:x1-12 ~(~) = laj12. 

~G) 
Knowing that (,OaCz) is an algebraic integer proves our theorem. 

We use the following notation. If ~ is an algebraic integer, and a is some 
ok-ideal, we write 

~ ~ a 

to mean that ~OK = aOK in some large number field K. Similarly, if ~ 1, ~2 

are algebraic numbers, we write 

to mean that ~t!~z is a unit. We then say that ~1' ~2 are associated. 
Let 0 be an order in k and let a, b be proper o-ideals. Let b = [ZI' zz] and let 

:x E Mi(Z) be such that 

is a basis of abo We denote by Na the index (0: a), and it is clear (say from 
elementary divisors) that Na = 1'1.1. Thus we use the notation 

12 ~Cab) 
(,OaCb) = (,O~(z) = Na ~(b). 

Theorem 5. Let p be a prime number which splits completely in k, and does 
not divide the conductor of o. Let po = pp' be its factorization in 0, p i= p'. 
Thenfor any proper o-ideal a, 

~(pa) 
(,0 (a) = p12 __ ~ p'!2. 

p ~(a) 

Proof Let b be a proper o-ideal prime to p such that bp is principal, say 
bp = ).0. Then 

12 ~(bpa) 12 ~(pa) 12 12 ~().a) 
Nb --- p ---- = Nb p --

~(pa) ~(a) ~(a) 

= Nb12 p12 ,1.-12. 
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By Theorem 3, the first factor on the left divides Nb 12, which is prime to P. 
and the second factor divides p12. On the other hand, in the prime factorization 
of ).0, we know that p appears with multiplicity I, and p' does not appear since 
b is prime to p. Hence in the prime factorization of the right-hand side, p'l2 
is the precise contribution of p'. This proves our theorem. 

Corollary. For any proper o-ideal b the number 

is a unit. 

Proof Let 

Nb 12 ~(b)~ 
IA(oW 

(b) = Nb 6 IACb)1 
e IACo)I' 

For any I. E k, I, =I 0 we see that cUb) = c(b), i.e. c(b) depends only on the class 
of the ideal b. We can always find some ). such that ),b is equal to a prime p of 
degree 1, i.e. 

(p) = pp' 

with p =I p', and p is a prime number not dividing the conductor. (We are using 
here the existence of primes in generalized arithmetic progressions from class 
field theory. The theorem for Ok' combined with Theorem 5 of Chapter 8, §l 
gives us what we want.) Replacing b by such a prime ideal p, and taking the 
product of the expression in Theorem 5 with its conjugate yields the corollary. 

We prove one other statement which is occasionally useful in applications. 

Theorem 6. Let p be a prime number, let z be imaginary quadratic, and let 
IXi E MiCZ) (i = 0, ... , p) be representatives for the left coset.~ of matrices 
with determinant p, with respect to SL2(Z). Then 

p+l n <Pai = (_l)P-Ip12. 
i=1 

Proof We know that I/J(p) = p + I, and that representative matrices can 
be selected as 

i = 0, .. . ,p - 1 

Hence we get the q-expansions for the <pai from the q-expansions as given in (3). 
The leading term of <pai for i = 0, ... , p - 1 is 
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The leading term of ({lap is pI2qP-l. From this it follows that the product has a 
q-expansion beginning with the constant 

, ! + 2+ ... + P p 12 = ( _ 1)r 1 p 1 2. 

Since this product is a modular function having no pole at infinity, it is constant, 
thereby proving our theorem. 

Corollary. Let 0 be a proper o-ideal, and let p be a prime number, prime 
to the conductor, and splitting completely in k, so that po = pp', p # p'. 
Let 0 = [z 1, Z2] and let P, P' be matrices of determinant p such that 

and 

are bases of po and p'o respectively. If r:t E Mi(Z) has determinant p and r:t 

does not lie in the orbit of P or P' under SL2(Z), then ({la(z) is a unit, where 
Z = zl/z2' 

Proof The contributions to the product in Theorem 6 coming from the 
two terms ({lp(o) and ({lp'(o) arising from Theorem 5 will already contribute pl2 

to the factorization of the product. Since there can be no other prime factor 
contribution by Theorem 6, we conclude that all other terms in the product 
must be units, because they are all algebraic integers by Theorem 3, 

To find the values of ({la(z) in general, one can use an inductive procedure. 
For suppose r:t = {Jy, with {J, y E Mi(Z), Then for any lattice L = [ZI' Z2] with 
Z = zdzz E 5 we have 

in other words 

Given a lattice L and a sublattice M we can find a chain of lattices 

L = Lo ;::J LI ;::J L2 ;::J ••• ;::J Lr = M 

such that (Li: L iT1 ) = Pi is a prime number. Now, if (L: M) = p, then M has 
a basis 

with a matrix P such that IFI = p, So in principle, the values of ({l, are reduced to 
computing values ({lp where P has prime determinant. 
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§3. ANALYTIC PROOF FOR THE CONGRUENCE RELATION OF j 

For the convenience of the reader, we shall reproduce here the classical proof 
of Hasse [I9], [B 1] for the congruence relation of the j-function. 

Theorem 7. Let 0 be an order in k and let p be a prime not dividing the 
conductor of 0, such that po = pp', p "# p'. Let a be a proper ideal of o. 
Let K be a finite Galois extension of k containing all the numbers j(c), where 
c ranges over the proper ideals of o. Then 

j(aF == j(p'a) (mod POK). 

Proof. Without loss of generality we can extend K to a bigger finite Galois 
extension of k to contain other algebraic numbers which will occur in the proof, 
e.g. values cpiz) where <X is a primitive integral matrix with determinant p. 
We select the same representatives as before for the left co sets of such matrices 
with respect to SL 2 (Z), namely 

<Xi = (~~) for i = 0, .. . ,p - 1 

<Xp = (~ n. 
If f is a function on the upper half-plane, we write f *(q) for its powers series in 
q (or ql/P = e2nir/p). We agree that 

f*(q) == ° (mod p) 

means that all coefficients of the power series lie in p. We also write a congruence 
mod p, or 1 - (, where' is a primitive p-th root of unity, to mean that the 
coefficients lie in the ideal generated by these elements. 

We consider the polynomial in two variables 
P ~ 

F(X, Y) = L (X - j 0 <x;)(Y - CPa)' .. (Y - CPa)' .. (Y - CPa) 
i=O 

the factor Y - cpa; being omitted from the product on the right. The above 
polynomial has coefficients which are functions on ~, modular of level p. 

The permutation induced by j 0 <Xi t--> j 0 <XiY for Y E r is the same as cpa; t--> CPm. 
Hence F(X, Y) has coefficients which are invariant under r. Furthermore, if 
(d,p) = 1, the automorphism ad on roots of unity such that ad' = ,d has the 
effect 

and 

for i = 0, ... , p - 1 (mod p), while leaving j 0 <Xp and cpap fixed. Therefore the 
coefficients of F(X, Y) are modular functions invariant under r, and with rational 
Fourier coefficients. We may therefore write 

F(X, Y) = F(X, Y,j) E Z[X, Y,j] 

as a polynomial in X, Y,j with integer coefficients. 
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Observe that if 
f*(q) = A(q) E Z«q» 

is a power series in q with coefficients in Z, then for i = 0, ... , p - 1 we have 

(fo riJ*(q) = A(ql/P(i) 

(mod 1 - O. 
On the other hand 

(f 0 rip)*(q) = A(qP) == A(q)P (mod p). 

Here ( is a primitive p-th root of unity, and the congruences mean that all 
coefficients are divisible by I - ( in the ring of algebraic integers in K, taken 
sufficiently large to contain the p-th roots of unity. Applying this to the first p 
terms, and to the functions j and (2n:)-12~, we conclude that these first p terms 
are all congruent to each other mod I - (. 

The last term involves (X - j*(q)P) as a factor. If we substitute jP for X, 
then this factor becomes == 0 (mod p). Therefore 

F(j*(q)P, Y,j*(q» == 0 (mod I - 0, 
i.e. this expression lies in (I - OZ[(]«ql/P»[Y]. Since the Fourier coefficients 
are integers, we conclude that 

F(j*(q)P, Y,j*(q» == 0 (mod p). 
Therefore 

F(jP, Y, j) E'pZ[ Y,}]. 

Let a = [z[) Z2], with Z = ZI/Z2 E~. Since (a: pa) and (a: p'a) have indexp, 
we can find two of the matrices ri i , say P and r, such that 

and 

are bases of pa and p'a respectively. Substitute j(a) for j and qJp'(z) for Y. 
We find that 

F(j(a)p, qJp.(z),j(a» == 0 (mod p). 

On the other hand, in the original sum defining F(X, Y), all the terms become 
equal to 0 except one, and we find 

(j(ay - j(p'a» n (qJp,(z) - qJo,(z» == 0 (mod p). 
(li =1= p' 

From the preceding section, we know that qJp'(z) ~ p12. We also know that 
qJOi(Z) is a unit for rii i= P or r. This proves our theorem. 

In his paper, Hasse gave a further slightly elaborate argument to show 
that k(j(o» is abelian over k and that the Frobenius automorphism gives, for 
almost all p, the effect 

a"j(a) = j(p'a). 
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Deuring [Bl] observed that this now follows trivially. Indeed, disregard the 
finite number of primes dividing all differences j(a v) - j( a'l) and the differences 
of their conjugates, if av represent the different proper o-ideal classes. By general 
properties of the Frobenius automorphism (cf. the end of Chapter 8, §3) we 
see that the precise equality 

(J'1lj(a) = j(p'a) 

does hold for any 'l3 dividing p in K. Since multiplication of proper o-ideal 
classes is abelian, it follows that the map 

'l3 ~ (J'1l 

is a homomorphism from the free abelian group generated by almost all primes 
into the Galois group of the smallest Galois extension of k containing j(a). 
Using now theorems concerning the existence of primes with given Frobenius 
element, one concludes that this extension is abelian, and that the proper 
o-ideal class group is isomorphic to the Galois group under the map induced 
both by the Frobenius element on almost all primes, and also by the property 

(J[Jjj(fX) = j($-lfX) 

for proper o-ideal classes fX and $. 



13 The l-adic and p-adic 
Representations of Deuring 

It was first proved by Hasse that even in characteristic p > 0, if N is an 
integer prime to p, then the points of order N on an elliptic curve A form a 
cyclic group of type Zj NZ x Zj NZ. On the other hand, Hasse also discovered 
that there may not be points of period p, and if there are some, then the group 
of points of order pr is then cyclic. Essentially one sees this from the representa­
tion of the endomorphism 

Nl5: a I-> Na, 

whose degree is N 2 • If we represent this endomorphism on the local tangent 
space at the origin, or equivalently on the differential forms, we see that it 
must be separable if (N, p) = I, and must be inseparable if p divides N. Thus in 
characteristic p > 0, there cannot exist two points of period p linearly independ­
ent over ZjpZ. Therefore either 

or Ap ;:::; ZjpZ. 

The first case is called supersingular. The second case is called singular or generic 
according as the j-invariant is transcendental over the prime field or not. Hasse 
also discovered that over finite fields the algebra of endomorphisms must be 
either an imaginary quadratic field, or a division algebra of rank 4 over Q, 
depending on the two cases. 

Using t-adic and p-adic representations, Deuring [4] gave a more com­
prehensive theory, and especially determined what happens to the ring of 
endomorphism of an elliptic curve under reduction mod p. We shall closely 
follow Deuring's paper, except that as usual we use the projective limit of the 
groups Apr, forming the Tate vectors and Tate module Tp(A), which gives 
a natural representation of the endomorphisms over the p-adic integers. Except 
as specified above, the results of this chapter are due to Deuring. 

171 
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§1. THE t-ADIC SPACES 

Let, therefore, A be an elliptic curve defined over a field of characteristic 
p. Points of A are taken in a fixed algebraic closure. For any prime number t, 
define the t-adic module Tt(A) to be the set of infinite vectors 

(aI, a2 , ••• ) 

with ai E A{i (that is fiai = 0) and tai+ 1 = ai . Addition is defined componentwise 
so TAA) is a group. It is clear that T(A) is a module over the f-adic integers Ze. 
To define the multiplication of a vector by an t-adic number, we define it com­
ponentwise. On the i-th component, we approximate the t-adic number by an 
integer mod ti, and multiply the i-th component by this integer. It is immediately 
verified that this multiplication is well defined, and gives an operation of Zt 
on T{CA). 

Theorem 1. 1ft -:f. p, then T(CA) is a free Zrmodule of dimension 2. On 
the other hand, TpCA) = 0, or is afree module of dimension lover Zp, accord­
ing as we are in the supersingular or singular case. 

Proof Take first t -:f. p. Let Xl> X 2 be elements of Tt(A) whose first com­
ponents au, a2 • 1 are linearly independent over the field Z/fZ. Then these 
vectors x I, X 2 are linearly independent over Z(, for if we had a relation of 
linear dependence over Z(, we could assume that not all coefficients are divisible 
by t, and hence the projection of this relation on the first component would 
contradict the hypothesis made on x I> x 2' 

I contend that XI, X2 form a basis of TICA) over Zt. We are going to prove 
this by an inductive argument. Suppose that we can write every element w of 
TiA) as a linear combination 

(1) mod I'"TtCA) 

with integers Zj E Z. Let w = (b l , ... , bl" bn +1, ... ). By definition, we have for 
the first n + 1 components, 

Zl(a l .1,···, a 1 •n+1) + z2(a2.1 , •• • , a2.n+l) 
= (b l , ••• , bn , bn+ l ) + (0, ... ,0, cn+l ) 

for some point Cn-tl of order t. By the very choice of the vectors Xi> there exist 
integers dl> d2 such that 

en+! = dJnal.n+l + d2[na2 .n+!· 

If we replace ZI> Z2 by ZI + dll'", Z2 + d2 f n, we see that we have extended the 
congruence (I) from n to n + 1. That gives us what we wanted. 

If t = p, then one verifies at once that Api is cyclic of order pi in the 
singular case, and that Tp(A) is free over Zp in this case (easier than for t -:f. p 
in this instance). If there is no points of order p, then TiA) = 0. 
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From now on, we use t to denote a prime number other than p. 

Let I,: A -> B be a homomorphism of elliptic curves, Then A induces a 
homomorphism also denoted by J., 

I,: T{(A) -> T;(B), 

and similarly for Tp. Its effect on a vector (a [, a2 , •.• ) is given by 

),(a[, a2, ... ) = Val> l.a2, ... ). 

Theorem 2. If I'j, ... , }'r are endomorphism.s· of A which are linearly 
independent over Z, then as endomorphism.s· of Tt(A), they are linearly 
independent over Z{. 

Proof Say cJj + ... + c/r = 0 with C i E Z(. It will suffice to prove that 
all Ci are divisible by ( (then cancel the ( and start over again to get an impossi­
bility unless all Ci = 0). Write 

Ci = m i + (d i , 

with di E Z( and 111 i E Z. It suffices to prove that {1m i for all i. The endomorphism 

J. = m[;,[ + ... + m/r = -(d).j + ... + d/ r) 

lies in End(A). Acting on A, we see that I. kills At. Hence I. factors through tb, 
i.e. A = t'Y. for some 'Y. E End(A). But ;'1>' .. , I.r generate a space Q}j + .. , + QAr 
over Q, and 

(Qi. j + ... + Ql.r ) n End(A) 

is a lattice of rank I' in this subspace. Without loss of generality, it suffices to 
prove that a basis of this lattice is linearly independent over Z(, i.e. we can 
assume that )'[' ... , ;'r themselves form a basis of this lattice. But then it follows 
that 'Y.lies in ZJ. j + ... + Z;,,, whence tlmi for all i, as desired. 

The above theorem shows that our representation of End(A) on TtCA) 

corresponds to tensoring with Z{, i.e. we get an injection 

Z[ ®z End(A) -> Endz/Tt(A». 

We denote by A(() the set of points of A whose order is a power of t. 
Let V{(A) be the set of vectors 

(ao, at, a2, ... ) 

with ao E A(t) any point of order a power of t, and satisfying 

{ai+! = a i• 

It is clear that 
VI ;;::: Q{ ®ZrT{. 

In fact for any point x in V( we can find a power t' such that t'x has its first 
component equal to O. Identifying the vectors 

(0, at, a2 , ... ) 
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such that {a 1 = ° in Vt with elements of Tt , we get an exact sequence 

° ~ Tt(A) ~ V{(A) ~ A(t) ~ 0, 

the mapping on the right being projection on the first component. 

[13, §2] 

Of course we have a similar sequence with Tp and Vp; however, when Tp = 0, 
we do not get a faithful representation of End(A). We do if Tp i' 0, because an 
isogeny has finite kernel. 

For an arbitrary { we get a faithful representation 

Q ®z End(A) = End(A)Q ~ EndQt(Vt). 

Since dimQ/Vr) = 2 it follows that dim Qt EndQt(Vt ) = 4. Hence: 

Theorem 3. In any characteristic, dimQ End(A)Q ~ 4 and 

dimz End(A) ~ 4. 

This gives a proof for a result mentioned previously. 

We already know that every element of End(A) is invertible in End(A)Q, as 
discussed in Chapter 2, §2. Hence End(A)Q is a division algebra of dimension 
~ 4 over Q. The only possibilities are that it has dimension I, 2 in which case 
it is commutative, or dimension 4. In that case, it cannot be commutative, 
because we have an injection 

Qr ® End(A)Q ~ Mz(Qr> 

in the representation on Vt . 

§2. REPRESENTATIONS IN CHARACTERISTIC p 

We first give a proof in arbitrary characteristic for the following fact, using 
only the involutive property of a 1---* a'. 

Let CI. E End(A) be a non-trivial endomorphism. Theil Q(CI.) is quadratic 
imaginary. 

Proof Since Q(CI.) is a commutative subfield of a division algebra of dimen­
sion 4 over Q, it follows that [Q(a) : QJ = 2, so a is quadratic. The mapping 

on Q(a) (where ).' is the endomorphism such that )).' = \'U)6 as discussed in 
Chapter 2) defines an automorphism of Q(CI.), and is not the identity, for other-
wise 
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for all ), E Z[ex] which is patently false. Hence ). 1--* 1.' is the non-trivial auto­
morphism of Q(ex). Furthermore Q(ex) must be imaginary (in any embedding 
in C) because 

NQ(a)/Q(A) = U ' = v(A) > ° 
for all ), E Z[ex], Ie =F 0. 

Theorem 4. Let A be defined over the finite field with q elements, and let 
7rq be its Frobenius endomorphism. If 7rq E Z, then Tp = 0. So if Tp =1= 0, 
then 7rq is a non-trivial endomorphism. 

Proof Let q = pro We know that 7rq has degree q. If 7rq = ni5, then 

q = v(7rq) = n\ 

whence n = pm for some integer m. But 7rq is purely inseparable, and therefore 
p mi5 has kernel 0, whence Tp = 0. 

T heore m 5. Let A be an elliptic curve over afinite field F of characteristic p, 
and assume Tp(A) =1= 0. Then: 

i) End(A)Q = k is a quadratic imaginary field, and End(A) = 0 is an order 
in k. 

ii) The prime p does not divide the conductor c of o. 

iii) The prime p splits completely in k. 

Proof Theorem 4 shows that there exists a non-trivial endomorphism of 
A, namely 7rq• The representation of End(A)Q on Vp (or of End(A) on Tp) is 
faithful, and therefore gives rise to an embedding of End(A) in Zp, which shows 
that End(A) = 0 is commutative. It follows that End(A) has dimension 2 over Z, 
whence End(A)Q = k is a quadratic field. Since k admits an embedding in Qp, 
it follows that p splits completely in k. There remains only to prove that p does 
not divide the conductor c of o. We know that 0 = Z + COk. There is an integer 
m such that 

7rq = m + crx 

for some ex E Ok. We get 

and 7r~ = m + crx ' 

- ,- 2( d ) qo = 7rq7rq = m mo COk • 

Viewing Ok as embedded in Zp, from the representation on TiA), we conclude 
that p divides m, whence from the representation on Tp(A) it follows that 7rq kills 
the points of order p on A. This is a contradiction, since 7rq is purely inseparable, 
and our theorem is proved. 

Corollary. Let q = pd be the number of elements ofF. Let 7r = 7rq be the 
Frobenius endomorphism. If pO = pp' is the factorization of pin 0 = End(A), 
then 

7r0 = pd or 

and any other generator of 7r0 is ± lr. 
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Proof Since nn' = qE>, in the unique factorization in 0 (with primes not 
dividing the conductor), only divisors of p can occur as divisors of nand n'. 
Since p does not divide n (because n is purely inseparable, and pE> has a non­
trivial kernel), it follows that there is a positive integer m such that, after 
permuting p and p' if necessary, we get 

and 

Therefore nn'o = pdO, and m = d. Since the curve is not supersingular, the 
only automorphisms are ±E> (according to the tabulation of Appendix 1), 
and n is uniquely determined up to ± 1. This proves our corollary. 

Next we consider the supersingular case. We observe that if Tp(A) = 0 and 
B is isogenous to A then Tp(B) = 0 also (obvious). 

Theorem 6. Let A be defined over afield of characteristic p. IfTP(A) = 0, 
thenjA = j~2. 

Proof. If Tp = 0, then pE> must be purely inseparable of degree p2. Hence 
there is an isomorphism 

A: A -+ np2(A), 

whence j A = j~2. We are using the fact in characteristic p that j A is the invariant 
of isomorphism classes of elliptic curves. 

In particular, we see that j A E F p2 must lie in the field with p2 elements if 
TP(A) = 0, and there is only a finite number of isomorphism classes of elliptic 
curves A in characteristic p such that Tp(A) = O. 

Corollary. Assume that A is supersingular, with invariant j, and that A 
is defined over F P(j) = F. Then for p i' 2, 3 we have: 

n; = -pE> 

np2 = ±pE> 

if j E Fp 

if j ¢ Fr 

Proof Suppose first that F = F p' i.e. that j E F p' Let n = n p' Since pE> and 
n 2 have the same degree p2, it follows that they differ by an automorphism of A. 
Since p i' 2, 3 and the curve is supersingular, it follows from Appendix 1 
that the only automorphisms of A are ± E>, whence n2 = - pE>, and the first 
formula is proved. 

Secondly, suppose that j is of degree 2, so F = Fp(j) = Fp2, and q = p2. 
Then rrq and pE> have the same degree p2, so that they differ by an automorphism 
of A. Again by Appendix 1, it follows that in the supersingular case the only 
possible automorphisms are ± E>, whence rr = ±pE>. The second formula is then 
obvious. 
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Remark. In characteristic 2 or 3 there are slight variations on the formulas of 
the corollary. Take for instance characteristic 2. The curve A defined by 

y2 + y = x 3 + x 

over F 2 has 5 rational points (counting the point at infinity). If N is the number 
of rational points, then 

N = v(n - <5) = (n - <5)(n' - <5) 

= q + 1 - (n + n'). 

In the present case, 
5 = 2 + 1 - (n + n') 

whence Tr(n) = -2. Thus n = -1 ± i and n2 = ±2i. In general, when we 
have 

n 2 = pe, 

with some unit e, one must take a power of this expression to get rid of the 
non-rational unit. 

Theorem 7. If TP(A) = 0, then End(A)Q is a division algebra of dimension 
4 over Q. 

Proof First we prove that there exist non-trivial endomorphisms. Let 
t 1,12, ... be a sequence of distinct primes unequal to p, and let aI, a2, ... be 
a sequence of points such that aj has order t i • Let (aj) be the cyclic group 
generated by aj. Each factor curve A/(aj) has no point of order p. By Theorem 6 
we must have an isomorphism 

A/(aj) ~ A/(aj) 

for some i #- j. Consider the composite homomorphisms 

A -+ A/(aj) ~ A/(aj) -+ A, 

where the first is the canonical homomorphism A.i of degree t l , and the last is 
a homomorphism of degree t j , say A.j. We then obtain an endomorphism of A 
of degree t/j , which cannot be of type n<5 for n E Z because its degree is not a 
square. Hence we have obtained non-trivial endomorphisms of A. 

Next we prove that End(A)Q cannot be a quadratic field. Suppose it is a 
quadratic field k. Let PI, Pz, ... be a sequence of primes #- p which remain 
prime in k, and let ai be a point of order Pi on A. We consider the factor curves 

A/(al), A/(al, a2), A/(al> az, a3), ... 

none of which has a point of period p. Hence by Theorem 6 we have an iso­
morphism 

A/(al> ... , ar) ~ A/(al> ... , ar> ar+1' ••• , as) 

for some pair of integers r < s. Let B = A/(al, ... , ar ), and let hl> ... , bs be 
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the images in B of ar+ l , ••• , ar+s under the canonical map. We have an endo­
morphism of B, 

).; B ~ BI(b l , ••• , bs);:::: B 
of degree PI ... p,. Let 

).Ok = ql ... qm 

be the prime factorization in Ok' Then 

v().) = n.' = Nql ... Nqm = PI ... p,. 

Hence the prime ideals qj must be the prime ideals of Ok dividing PI, ... , Ps 
and must occur to the first power. Since Pi remains prime in k for all i, it follows 
that Nqj is the square of a rational prime, a contradiction which proves the 
theorem. 

Theorem 8. Let TP(A) = 0, and let D be the division algebra End(A)Q. 
Then D splits at all primes t i= p. 

Proof If t i= p, then D is represented as a ring of endomorphisms of 
Vt(A), in a way which we know is the tensor product with Q(, and VAA) has 
dimension 2 over Qt. Hence locally at t, we must have Qt ® D ;:::: M 2(Qt). 

For the reader who knows the Hasse theorem on simple algebra, we now 
see that D ramifies at p and also at infinity (i.e. becomes the ordinary quaternion 
algebra over R) because the sum of its invariants is equal to 0, and D cannot 
split everywhere, otherwise D is a matrix algebra globally, which is not the case. 

Theorem 9. IfTp(A) = 0, then End(A) is a maximal order in End(A)Q. 

Proof We shall omit this proof, which the reader can look up in Deuring 
[4], and which depends on a counting argument, considering left ideals. The 
result will not be used in this book. 

For the further properties of supersingular invariants, we refer the reader 
to Deuring's basic paper [4], and more recently to Manin's fairly comprehensive 
survey [30]. Observe that in characteristic p, if the group of automorphisms 
of an elliptic curve has order> 2, then j = ° or 123 (as you can verify from the 
tables in the Appendix). If the curve is supers in gular in addition, then we neces­
sarily have j = 0. Connections with the Hasse invariant are discussed in an 
appendix. 

§3. REPRESENTATIONS AND ISO GENIES 

We continue to suppose that t i= P where p is the characteristic of the field 
over which A is defined. 
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We want to see how the modules Tt correspond under isogenies. In many 
ways these modules play the same role as a lattice Lin C. Let 

A: A -> B 

be an isogeny. Tensoring Hom(A, B) with Q to get Hom(A, B)Q, we can find 
an inverse A- 1 in HomCB, A)Q. 

First we have a simple lemma, giving us a criterion of t-integrality for an 
element a E End(A)Q in terms of its representation on Tt(A). 

Lemma 1. Let St be the multiplicative monoid of positive integers prime 
to t, let 0 = End(A), and let o(t) = Sj lobe the localization of 0 at t. Let 
a E End(A)Q. Then aT, c Tt if and only if a E 0(1). In other words, o(t) is 
the set of a E End(A)Q such that aT{ c Tt . 

Proof If a E 0(1), it is clear that aT! c T{. Conversely, suppose that 
aTt c Tt . There exists A E 0 such that mt'a = A for some integer m prime to t. 
Then 

mt'aTt c t'T{, 

whence },Te c t'Tt , and I, = t'{3 for some {3 E O. It follows that 

mt'a = t'{3, 

and therefore m(1. = {3. This proves that a E Sj 10 , a is t-integral, as desired. 

Lemma 2. Let A: A -> B be an isogeny, and let M t be the set of vectors 
(ao, a1, ... ) in Vt(A) such that ao E Ker ) .. Then AMt = Tt(B). 

This is clear from the definition ofT{, and therefore gives us some description 
of the inverse image of TtCB) under )., in VtCA). 

Theorem 10. Let A: A -> B be an isogeny, and let a E End(A)Q. Let Me be 
the inverse image of Te(B) in VtCA) under} .. We have ).a).-l E End(B) if and 
only if aM{ c M r, for all t. 
Proof Assume first that p{v(},). Suppose that l.a},-l E End(B). Then for all 

t, we get 

aM! = 1.-1},aJc-1).Me c J.-1TtCB) c Me. 

Conversely, assume that aM! c M t for all t. Then 

).(1.).-lT{(B) = }.aM! c ).Mt c TtCB). 

By Lemma 1, we conclude that J.aA- 1 is t-integral for each t. There remains to 
prove that l:x}.-l is also p-integral. Suppose that 

).(1./.-1 = p-r{3 

for some {3 E End(B). Let n = v(}.). Then 

n{3 = pr).:xn/.- 1 = pry, 



180 THE (-ADIC AND P-ADIC REPRESENT A nONS OF DEURING [13, §3] 

for some y E End(B). So 

But 

for all (In, and by Lemma we conclude that y = ny' for some y' E End(B). 
Therefore 

).:x).~1 = y' E End(B), 

thus proving our theorem in the present case p{v(),). 

Next we have a result which will be used to deal with the remaining case, 
but is of interest in itself, so we state it separately as a theorem. 

Theorem 11. Let ).: A -> B be an isogeny and v(/.) = pro The map 

a 1---+ ).a).~l 

is an isomorphism between End(A) and End(8). 

Proof We may decompose ). into a composition of isogenies each of 
whose degrees is p, and it will therefore suffice to prove the theorem under the 
assumption that v().) = p, which we now make. It will suffice to prove that if 
a E End(A), then h).~l E End(8), for then we get an inverse mapping using I:, 
and the fact that 

),' Aa}.~l ;:~l = p:xp~l = a. 

Let a E End(A). Suppose that }. is separable. Let }X = pD. Then ;: is purely 
inseparable, and ;.~l = p~l A'. Suppose that 

with some p E End(8). Then 

) '~1 I R ,aA = p p, 

,h~. ~ 1 = 1 AaA' = ~ a p p p, 

whence i.a;: = p. But ).' is purely inseparable, ). is separable, hence Ker p 
contains the point of period p. Hence p = py with some y E End(B), so 

hi.~l = Y E End(B), 

proving our theorem in this case. 

If ). is purely inseparable, then J. = err with some isomorphism e, and then 

).~1 = rr~le~l, 
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so that 

For any point x E rr(A) we have 

rrrxrr-1(x) = rr(cx(x(l/P)) = rx(P)(x), 

where rx(P) is the image of rx under the automorphism C f-+ c P of the universal 
domain. Hence we find 

rrrxrr- 1 = rx(p) E End(nA), 

whence en:xn- J e 1 E End(B), thereby proving Theorem II. 

Returning to the proof of Theorem 10, we decompose an arbitrary isogeny 
into a product of an isogeny whose degree is prime to p, and an isogeny whose 
degree is p' for some r. The theorem follows at once. 

§4. REDUCTION OF THE RING OF ENDOMORPHISMS 

We now investigate the relationship between elliptic curves in characteristic 
o and curves in characteristic p, and consider especially how the ring of endo­
morphisms reduces. 

First we look at the t-adic spaces. Suppose that A is an elliptic curve defined 
over a number field. Let "l3 be a place of the algebraic numbers aQ (algebraic 
closure of Q in C) with values in an algebraic closure of the finite field with 
p elements, denoted by aFp • On each number field finite over Q, the place, 
denoted by 

X f-+ X = x("l3) 

induces a discrete valuation ring. Suppose that A has non-degenerate reduction 
mod "l3. Again we use t for a prime number unequal to p. Then we know that 
we have an isomorphism 

A(t) ~ A(f), 

where A(f) denotes the group of points of A whose order is a power of t, in the 
given algebraic closure "Q. Consequently we have an isomorphism 

Tt(A) ~ TtCA). 

If we want to specify the "l3 in the notation, we also write 

A = AC"l3). 
On the other hand, we only have a homomorphism 

Tp(A) -> Tp(A). 
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If TP(if) # 0, then the kernel of this homomorphism is a I-dimensional module 
over Zp. . 

We observe that a result like that of Theorem IO allows us to test for 
integrality both upstairs and downstairs, i.e. on A and if. 

Theorem 12. Let A be an elliptic curve over a number field, with End(A) ~ 0, 

where 0 is an order in an imaginary quadratic field k. Let ~ be a place of aQ 

over a prime number p, where A has non-degenerate reduction if. The curve if 
is supersingular if and only if p has only one prime of k above it (p ramifies 
or remains prime in k). Suppose that p splits completely in k. Let c be the 

conductor ofo, and write c = p' co, where p,f'co. Then: 

i) End(if) = Z + COOk is the order in k with conductor co. 

ii) /fp,f'c, then the map). ~ A is an isomorphism ofEnd(A) onto End(if). 

Proof Suppose that p splits completely in k, say POk = pp', P # p', and 
~ n Ok = p. To prove that if has a point of period p, it suffices to do it for any 
elliptic curve isogenous to if. By changing A with an isogeny over some number 
field, we may assume without loss of generality that we have a normalized 
embedding 

0: k ~ End(A)Q 

such that O(Ok) = End(A). Let m be a positive integer such that pm and p'm are 
principal, say 

and 

Then J1.J1.' = pm. Note that J1.' ¢ p, and since 0 is a normalized embedding, it 
follows that O(J1.') is separable because the reduction of J1.' w (for a differential 
form of first kind w) mod ~ is not 0. Since O(J1.') has degree a power of p, so 
does its reduction mod ~, and hence if has a non-trivial point of order p, thus 
proving that if is not supersingular. 

On the other hand, if p does not spilt completely in k, we know from 
Theorem 9 of Chapter 10, §4 that there is some element J1. E Ok such that O(J1.) 
reduces to a Frobenius endomorphism. Since POk = pm, with only one prime p, 
and since J1.J1.' is equal to a power of p, it follows that J1.' differs from J1. by a unit 
in Ok' and that O(J1.)O(J1.') = qb, where q is a power of p. This implies that qb is 
purely inseparable, whence if is supersingular. 

Let us assume now that p splits completely in k, and that quite generally 
End(A) ~ 0, where 0 is an order in k with conductor c = p' co, and p,f'co. We 
want to determine End(if). 

We know from general reduction theory that the reduction map 

End(A) ~ End(if) 

is an injection. So End(if) contains at least End(A). Theorem 5 of §2 
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puts some limitation on how much more there is in End(A), for we know that 
End(A)Q is an imaginary quadratic field. Hence at least we get an isomorphism 

End(A)Q ~ End(A)Q 
induced by reduction. 

Now suppose that p does not divide the conductor of 0 = End(A). We have 
an isomorphism 

TtCA) ~ Tt(A) 

for every prime t # p, and we use Lemma I of §3, which tells us that End(A) 
and End(A) have the same localizations at t. On the other hand, 0k,(P) = o(p) 

if p does not divide the conductor, and therefore o(p) is integrally closed, hence 
must coincide with the localization at p of End(A). This proves that 

End(A) ~ End(A) 

because they have the same localizations at all primes. 
If p divides the conductor, the argument is similar. We see that End(A) and 

End(A) have the same localizations at t # p. Theorem 5 of §2 tells us that p 
does not divide the conductor of End(A). This proves our theorem. 

Let / be the set of all invariants jA of elliptic curves A over the complex 
numbers with non-trivial endomorph isms. If j E /, we let k j be the quadratic 
imaginary field isomorphic to the endomorphism algebra corresponding to the 
given invariant. We know that / is contained in the integral closure of Z in 
the field of algebraic numbers, and we denote this integral closure by az. 

For each prime number p we let / p be the set of j E / such that p splits 
completely in kj' and p does not divide the conductor of the ring OJ of endo­
morphisms of an elliptic curve A with invariant j. We shall sometimes use 
Ihara's notation, and write 

G)=l 
if P splits completely in the field k and does not divide the conductor of the 
order 0 in k. 

Let '13 be a place of aQ, lying above p. We get a map 

/p -t aFp 
denoted by the usual bar, 

jH-], 

into the set of singular (and not supersingular) invariants in characteristic p, 
according to Theorem 12. One of Deuring's major results is: 

Theorem 13. The map /p -t aFp is a bijection of /p with the set of singular 
invariants in characteristic p. 
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Proof We first prove that the map is injective. 
Suppose that IA = JA = J B = iiJ. We know by Theorem 12 that k j is 

preserved under the reduction map, whence A and B have the same field k. 
Hence there exists an isogeny ).: A -+ B, giving rise to a reduced isogeny 

A: A -+ B. 

Also there exists an isomorphism s: B -+ A. By Theorem 12 again, we know 
that End(A) = End(A). Hence there exists '1. E End(A) such that 

iX = 8 A. 
Let C be the image of the map;. x '1.: A x A -+ B x A. Then C is the image of 
A x iX. The projection of C on each factor induces an isomorphism of C on its 
projection, i.e. has degree I. By general reduction theory, this must also be true 
for C, and therefore C is the graph of an isomorphism between A and B. It 
follows thatiA = i B' thereby proving the injectivity. 

The surjectivity will be proved in the next section by a method different 
from that which we have been using, also as in Deuring's paper [4]. In fact, 
somewhat more is proved, since one shows that given an elliptic curve in 
characteristic p, and some endomorphism, then they can both be lifted to 
characteristic O. Given a singular elliptic curve A in characteristic p, we then 
select an endomorphism iX such that End(A) = [iX, 1] and lift back, to an endo­
morphism Ct. of an elliptic curve A. It follows that the reduction of End(A) is 
precisely equal to End(A) (it is contained in End(A) and cannot be bigger). 

§5. THE DEURING LIFTING THEOREM 

Theorem 14. Let Ao be an elliptic curve in characteristic p, with an endo­
morphism c(o which is not trivial. Then there exists an elliptic curve A defined 
over a number field, an endomorphism '1. of A, and a non-degenerate reduct ion 
of A at a place 'l5 lying above p, such that Ao is isomorphic to A, and '1.0 

corresponds to iX under the isomorphism. 

Proof We shall give the proof only in cases which imply the surjectivity 
of Theorem 13. It is a little simpler than the proof of the general theorem, on 
which we shall make technical comments at the end. 

First we can assume that v('1.o) is prime to p, by considering c(o + n15 with 
suitable n, namely such that 

v(Ct.o + n(5) = Ct.oCt.~ + n(Ct.o + Ct.~) + n 2 

is prime to p, which we can obviously do. Indeed, if we can lift Ct.o + n15, we can 
lift Ct.o, since the trivial endomorphisms lift in a trivial way. 
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We can also assume that 1X0 is cyclic, for otherwise, factor out any multiple 
of the identity. Let n = v(lXo). Let A(j) be an elliptic curve with transcendental 
invariantj over Q. Let Zit ... , Zop(n) be the cyclic subgroups of A(j), of order n. 
Let 

A.;: A(j) -+ A(j;) 

be a homomorphism with kernel Z;. i = I, ... , tfJ(n). Let R be the integral 
closure of 

Z[j,jl' .. . ,jop(n)] 

in a suitable finite extension of Q(j). 
Let} E QFp be the invariant of Ao. There exists a homomorphism 

ZU] -+ QFp 

whose kernel contains p and sendingj on}. We can extend this homomorphism 
to R, say R -+ R, because all the j; are integral over Z[j]. We can select models 
for the A(j;) so that they have non-degene·rate reduction at the local ring of the 
homomorphism 

R -+ R. 

Without loss of generality, we can select Ao = AU) = A since they have the 
same invariantj. For one of the indices i, say i = 1, the kernel ZI of Al will be 
the kernel of 1X0. Therefore 

A ~ AIZ 1 ~ A(h). 

Let 9.11 be the kernel of the homomorphism R -+ R. We have the inclusions 

R ::::> 9)1 ::::> (p,j - jl). 

Let qR be a minimal prime containing (j - j!). Then qR is of dimension 
(geometrically speaking, qR defines a component of the hypersurface j = .it). 
Then qR n Z = {O}, for if q E qR is a rational prime, then qR contains q and 
j - j!, whence would be of dimension 2, which is impossible. 

Let q be an extension of qR to a prime ideal in the integral closure Q R of R 
in the algebraic closure of Q(j). We reduce mod q. Then j - j! goes to 0, and 
AU!) reduces to an elliptic curve A(jl)q, while A reduces to Aq, and we have an 
isomorphism 

We have an isogeny 

A.q: Aq -+ A(jl)q, 

whose kernel is Z!q, and therefore Aq admits an endomorphism IX whose kernel 
is Zlq. Reducing further mod 9)1, we conclude that A has the endomorphism 
ex whose kernel is Z It which is the same kernel as 1X0. 

If A = Ao has no automorphisms other than ± 1, we have now completed 
the proof, because two endomorphisms with the same kernel differ by ± 1. 
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This suffices for our purposes of lifting singular, i.e. not supersingular, 
invariants. Indeed, in characteristic> 0, if an elliptic curve admits automorphisms 
other than ± 1, then one sees from Appendix 1 that either the characteristic 
is # 2, 3 and the curve is not supersingular, and is definable by an ordinary 
equation, 

or 

whence the ring of endomorphisms obviously lifts; or the characteristic is 2 or 
3, in which case the curve is necessarily supersingular, and actually j = O! 

So, for our purposes, we are done. 
Observe the compatibility of the present situation with the general system 

of Theorem 12, say. If A is an elliptic curve over a number field with ring of 
endomorphisms Z[i], then its reduction mod 2 or 3 must be supersingular, 
because 2 ramifies in Q(i) and 3 remains prime in Q(i). Similarly, if A admits 
Z[p] as endomorphisms, then its reduction mod 2 or 3 must be supersingular, 
because 3 ramifies in Q(p) and 2 remains prime in Q(p). 
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One can reduce the modular function field mod p and obtain an infinite 
extension of Fp(J), with j transcendental over Fp. Igusa determined the Galois 
group [22], pointing out that it has the same SL 2 part as in characteristic zero, 
and that the part acting on the roots of unity is just that generated by the 
Frobenius element, i.e. those matrices having determinant a power of p. Ihara 
had the idea of lifting back singular values j of j in the algebraic closure aF p by 
the Deuring lifting, and to represent the Frobenius automorphism in the de­
composition group of the modular function field in characteristic p by an 
element of the isotropy group of the point Z E t) such that j(z) = j, with a 
suitable place of the algebraic numbers, denoted also by a bar. This led him 
to deep conjectures concerning non-abelian extensions of the rational field 
F p(J), for which we refer to his original treatise [86]. 

However, as pointed out in [28], one can use some of lhara's ideas in the 
context of extensions of Z[j] in characteristic 0, also allowing for the possibility 
of studying extensions of number fields generated by coordinates of point of 
finite order on elliptic curves without complex multiplication. The ideas used by 
lhara for his proofs could be extended to this context, and we shall follow 
here the exposition of [28]. 

§1. DEURING REPRESENTATIVES 

As in Ihara, we start with Deuring's canonical bijection, 

fp -> f p, 

from singular invariants in number fields to singular invariants in aFp , with 
respect to a fixed place 'P of aQ into aF p' We take aQ as the algebraic closure 
ofQ in C. 

187 
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The elements of ,I p are values j(z), such that the order 0 of [z, I] has con­
ductor not divisible by p, and p splits completely in the imaginary quadratic 
field k = Q(z). We shall abbreviate these two conditions by (ojp) = 1. 

The association 

j(z) 1-+ j(z) 

gives a bijection between ,I p and the set of singular invariants in QFp , by Theorem 
13 of the preceding chapter. A point z E f) such that j(z) =} will be called a 
Deuring representative of} in f). 

We consider such a point z, let the order 0 be as above. We let 

p = ~ n 0, 

so that po = pp'. Note that p is determined by our original place~. 

Theorem 1. Havingjixed the place ~ ofQQ, let z be a Deuring representa­
tive for} E QFp, let 0 be the order of[z, IJ, and let p = ~ n o. Then the period 
D of p in the proper ideal class group of 0 is equal to the degree of} over F po 

Furthermore, letting a = [z, IJ, the elements 

j(a), j(pa), ... , j(pD-1a) 

form a complete set of conjugates of} over Fp. 

Proof The Kronecker congruence relation 

j(p-1a) = j(ay, 

together with the fact that the elements listed above are distinct (no repetition 
because of the injectivity in Deuring's reduction mapping on ,I p), implies that 
these elements form a complete set of conjugates over Fp , and also that D is 
the degree of 

} = j(a) 
over F p. This proves the theorem. 

We denote by MP = M~(Z) the set of 2 x 2 rational integral matrices 
whose determinant is equal to a power of p. Then MP operates on f). We let 
M~ be the isotropy set of z, i.e. the subset of matrices Ct E MP such that a(z) = z. 

Theorem 2. Let z be in the upper half plane, let 0 be the order of [z, 11, 
and assume (ojp) = 1. Then there exist two elements Ct, a' of M~ such that M~ 
is a disjoint union of two direct products 

Mf = {a} x pN x T u {a'} x pN x T, 

where {Ct}, {Ct'} are the positive powers of a, a' respectively, pN consists of all 
powers of p with natural numbers, and T is isomorphic to the group of units 
in the order 0 of[z, 1]. 
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Proof Let the notation be as in Theorem I. Let pD = {lO. Then there exists 
a unique matrix rx in MP such that 

and :x(z) = z, i.e. z is a fixed point of rx. Let L z = [z, 1], and let A z be, as in 
complex multiplication, an elliptic curve whose j-invariant is j(z), and having 
non-degenerate reduction mod~. We identify k = Q(z) as End(A Z)Q in the 
normalized way. Let 

({Jz: Q2 -.. QLz!Lz -.. A Z 

be our usual coordinatization, as in Chapter 7, §2. By the lemma of Chapter 7, 
§2, if 

so that {I = cz + d, then there exists an isogeny t.: Aa(z) -.. A Z such that the 
following diagram is commutative. 

Q2 -.. QLa(z) -.. Aa(z) 

at t p 
Q2 -.. QLz -.. AZ 

In other words, 

),O({Ja(z)(a) = ((Jz(arx). 

In the present case, rx(z) = z. Reducing mod ~, we obtain 

A ({Jz(a) = ((Jz(a:x). 

Furthermore, since Ii E p, it follows that)' is purely inseparable. Hence I differs 
from the Frobenius map 1tpD by an a.utomorphism e of A =, and consequently 
we get the relation 

q,/arx) = e ({Jz(a)p D
• 

The matrix rx has infinite period modulo pN x T (T = torsion) because {I does 
not lie in po (not divisible by the conjugate p'). 

Let {J E M~. Dividing out a positive power of p, we may assume that {J is 
primitive. Then 

with some P lEO, because z is a fixed point of {J. But {II ¢ po. Hence if p' is the 
conjugate of p, then 

or 
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for some positive integer m. Since D is the period of p in the proper ideal class 
group of 0, we must have Dim. Hence 

j11 = j1m/D, or j11 = j1'm/D" 

where' is a unit of o. Hence f3 = (J,m/Dy, where y has finite period, and corresponds 
to a unit of 0, or f3 = (J,'m/Dy, where (J,' relates to j1' as (J, relates to fl. This proves 
Theorem 2. 

Observe that the distinction between (J, and (J,' was due to the determination 
of p as ~ n o. We call (J, a p-generator of M~. It is well-defined modulo T, and 
is characterized as being that matrix such that if D is the period of p in the proper 
ideal class group of 0, and pD = flO, then 

§2. THE GENERIC SITUA nON 

Let j be the modular function. Let Fl = Q(j) and FN the field of modular 
functions of level N. As usual we let F be the union of all FN . We let Rl = Z[j], 
and let R be the integral closure of Rl in F. 

Theorem 3. Let z E 5 be imaginary quadratic, and let k = Q(z). Let ~ be 
a place of kab' denoted by a bar, and lying above p. Let 0 be the order of[z, 1] 
and assume (0/ p) = 1. For fER, let J = f (z ), and let 9J1 be the kernel of the 
bar mapping in R. Let p = ~ n o. Let (J, be a p-generator of M~. Then a 
Frobenius automorphism (9J1, F/ F j ) restricted to those subfields FN with p{ N 
is given by the automorphism 

fa I-> fa. 

on the Fricke functions fa with a E (Q2/Z2)N, P{ N. 
Proof Let pD = flO as before, and let s be the idele 

s = ( .. " j1, j1, 1, j1, j1" .. ) 

having p-component equal to 1, and all other components equal to fl. For any 
prime t =!= p, the embedding qt(s) in GL2(Zt) is simply the matrix (J, itself. By 
Shimura's reciprocity law in Chapter 11, we know that for any function f E F 
defined at z, we have 

f(Z)<.-l,k) = f"(z), 

where a = a(q(s)). Note that ('J, = Ut. So the right-hand side of the above relation 
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gives us the desired effect on functions. As for the left-hand side, (S-I, k) is the 
same automorphism as (r, k) where r is the idele 

r = ( ... ,1, I,ll, I, I, ... ) 

with f.1 in the p-component and 1 everywhere else. Now one knows by local class 
field theory (cf. Algebraic Number Theory, Chapter XI, §4) that (r, k) lies in the 
decomposition group of ~\ and has precisely the effect N~, kab/k), modulo the 
inertia group of~~. Consequently we find that 

r(z) = f(zt, 

because p has order D at p. This proves our theorem. 

Remark 1. On the subfield of F which is the union of all FN with P{ N, it is clear 
that the inertia group of 9)1 n FN is precisely T as in Theorem 2. 

Remark 2. From the argument in Theorem 3, we also get some description of 
the Frobenius automorphism in the p-part of F. Indeed, it is the matrix qisp), 
where sp = (f.1, J) with II at P and 1 at p'. 

§3. SPECIAL SITUATIONS 

Let F again be the modular function field, and let R 1 , R be as in §2. Let j 
be a singular value in aFp and let 111 be the kernel of the homomorphism 

RI = ZU] ..... FA]] 

in R I' Let 9)1 be a maximal ideal of R lying above 111. If q is a prime of dimension 
1 in 111, and n is a prime in 9)1 lying above q, then we can reduce mod n. Let 
G = Gal(F/ Fl)' Those elements of G'JJI which leave n invariant then induce a 
Frobenius automorphism of R/n over R1/q. In this way we can recover lhara's 
theorem in characteristic p, if we select q to be the ideal generated by p, and 
make use of Igusa's irreducibility theorem, which says that the modular function 
field reduces mod p in a non-degenerate way [23]. 

We can, however, take a prime q which yields extensions of a number field. 
We start with a value z E f, such thatj(z) is algebraic, and that an elliptic curve 
with invariant }(z) does not have complex mUltiplication. Let us give ourselves 
again a place ~~ of aQ, and assume thatj(z) is ~-integral. Let ~z = 'l\ n Q(j(z»). 
Suppose thatj(z) is not supersingular, and let 

.J = }(z). 
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Let F(z) be the field of all valuesf(z) withf E F,f defined at z. The Galois group 
of F(z) over Q(j(z)) is a factor group of the decomposition group of the place 

ft-> fez). 

Let 9Jl z be the maximal ideal in R which is the kernel of the map 

ft-> fez). 

We can find a Deuring representative z' for j, and we let 9Jl z' be the kernel of 
the map 

ft-> fez') 

in R. Both Wlz and Wlz' lie above 11l, and the Frobenius automorphisms 

(WlZ' F/Fd and (Wlz" F/Ft ) 

are conjugate to each other (as are the ideals Wl z and IDlzJ We can then apply 
Theorem 3 to z' to get a description of the Frobenius automorphism in F(z). 

Thus We obtain a correspondence from certain non-abelian extensions of 
Q(j(z)) to abelian extensions ofQ(z',j(z')). In some sense, the study of the non­
abelian Frobenius automorphism can be thrown back to the study of an abelian 
one, which, however, varies with p. Thus it becomes a major problem to deter­
mine the distribution laws of this variation with p, having fixed z. This concerns 
both the distribution of z~ and of the values j(z~). For instance, one may start 
with a given integer jo E Z, such that an elliptic curve with invariantjo does not 
have complex mUltiplication. One then asks for the distribution of values j(z;) 
with Deuring representatives z; such that 

j(z~) == jo (mod p), 

and jo (mod p) is not supersingular. One can conjecture that the set of p for 
which jo (mod p) has a given quadratic imaginary field k as algebra of endo­
morphisms must have density 0, but is infinite. Hale Trotter and I have made 
extensive computations about this problem, and a more precise discussion will 
appear, with the data, in a forthcoming joint paper [Frobenius Distributions in 
GL2-extensions, Springer Lecture Notes 504, 1976]. For supersingular reduc­
tion, Serre has proved that the density is 0, cf. [35J, 3.4 and 4.3. 

One can also recall a problem which I had encountered many years ago, 
for abelian class field theory over finitely generated rings over Z, namely describe 
an appropriate equivalence among the maximal ideals to determine which ones 
have the same Artin symbol in an abelian extension. It turns out here that we 
are studying a non-abelian situation of Kronecker dimension 2, i.e. a situation 
where both p and j vary, not only with fixed j, variable p as in ordinary complex 
multiplication, or fixed p, variable j, as in Ihara's work. In this way, complex 
multiplication seems to have a much wider range of applicability than thought 
of previously, since it affects the most general non-abelian situation. 



Part Three 
Elliptic Curves with 

Non-Integral Invariants 



The preceding part studied elliptic curves with singular invariants, having 
complex mUltiplication from an imaginary quadratic field. We now study a 
case, which is both special and generic, of elliptic curves with invariant which 
is not integral at a given place, and find that there is a very convenient way to 
parametrize them, as shown by Tate, over a field with a non-archimedean 
valuation. Actually, as pointed out in [28], one also can work over complete 
local rings such that if j is the invariant of the curve, then 1 Ii lies in the maximal 
ideal, and this allows us to treat the generic case as well, since we can always 
send a transcendendentalj to infinity. 

For the higher dimensional theory, the reader is referred to: 
H . MORIKAWA, "On theta functions and abelian varieties over valuation 
fields of rank one," I and lI, Nagoya Math. Jour. 20 (1962), pp. 1-27 and 
231-250. 
D. MUMFORD, "An analytic construction of degenerating curves over 
complete local rings," Compositio M atll. 24, Fasc. 2, (J 972), pp. 129-174. 



15 The Tate Parametrization 

§l. ELLIPTIC CURVES WITH NON-INTEGRAL INVARIANTS 

In this section, we have essentially copied an unpublished manuscript of 
Tate. For an exposition of Tate's results which is more complete we refer to 
Roquette [B9]. We have done essentially what is needed to prove the isogeny 
theorem afterwards. 

Consider the formal series in variables q, w given by 

1[ 00 /1 3qn ] 
g2 = 12 1 + 240 n~l 1 _ qn 

g 3 = 3 -1 + 504 L --n 
1 [ 00 /15 qn ] 

6 n~ll-q 

1 
j = ~ + 744 + ... 

q 

1 qrnw 00 • nqn 
x(w) = - + L----mz - 2 L --n 

12 rnEZ (l - q w) n= 1 1 - q 

qln w(1 + qlnW) 
y(W) = L (1 _ In )3 

inEZ q W 

The denominators involving the primes 2, 3 are a slight blemish on these series, 
and so we make a transformation which gets rid of them. 

First we get rid of the 4 in 4x3 by letting y f-+ yj2. Next we get rid of the 1/12 
by letting x f-+ x - Ij12. Finally we make a translation on y, to give us new 
variables X, Y whose relations to the original x, yare 

X = x - A, y = i + Kx - i;)' 
Then the Weierstrass equation is transformed into the Tate equation 

y2 _ XY = X 3 - h2 X - h3 

197 
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where 

00 q" 
112 = 5 L " 

"= I 1 - q 

':', 5n 3 + 7n5 qn 
113 = L ~-----;; 

"=1 12 1 - q 

(IX) X(W) = L q"W - 2 f ~ 
nEZ (1 - q"W)2 n= I 1 _ qn 

(q nW)2 00 nq" 
Yew) = L n 3 - L --n' 

"EZ (1 - q 11') "= I 1 - q 
(1 Y) 

By expanding the square of the geometric series, one sees that the last term can 
be rewritten in the form 

00 nqn 

"~I 1 _ qn 

CI) q" 
L (----,,-)2· n= I 1 - q 

The reader will find both expressions in the literature. 
We shall see that the series (IX) and (I Y) parametrize the elliptic curve A 

defined by the Tate equation over any field k complete under a non-archimedean 
absolute value, in any characteristic, under the following conditions. 

Let q be an element of k such that 0 < Iql < I. Consider the series X(w) 
in (I X) where 11' is a variable in k*. Using the identity 

11' 1 11'-1 

(1 - 11')2 11' + 11'-1 - 2 (1 _ 11'-1)2' 

we can rewrite the series in the form 

which shows, by comparison with the geometric series Lq", that the convergence 
is absolute for all 11' E k* and is uniform for 11' in an annulus 

o < /'1 ~ 111'1 ~ 1'2' 

We get the functional equations 

(3X) X(qw) = X(w) = X(w- I ), 

trivially from (1 X) and (2X) respectively. In the restricted range 

Iql < 111'1 < Iql-I 
we have Iq"wl < 1 and Iqnw-II < 1 for all positive integers n, and hence we can 
expand the fractions under the summation signs in (2X) to obtain 
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(4X) 

1 00 nqn n -n 
= -I + L --new + w ...:.. 2) 

w + w - 2 n= 1 1 - q 

for Iql < Iwl < Iql-I. 
Similar to (2X) we have the analogous expression for the other coordinate, 

namely for all WE k* we have 

(2Y) Yew) = -. --- + ~ - - . w2 00 [ q2nw2 q"w-I qn ] 
(1 - W)3 n":l -<1 - qnW)3 (1 - qnW-? (1 _ q")2 

Trivial rearrangements of the defining series show that Y satisfies the functional 
equation 

(3 Y) Y(qw) = Yew) and Y(W-I) + Yew) = - X(w). 

The series giving h2 and h3 converge, because the coefficients are integers, 
so of absolute value ~ 1. 

As usual, we let 

A = 113 + h~ + 72h)13 - 432h5 + 64h~ 
= q - 24q2 + 252q3 + .. " 

the polynomial in h2' h3 being simply obtained from the formal relation 

g~ - 27g~ = (4h2 + AY - 27(4h3 -~h2 - 2~6Y' 
We have A#-O because A == q (mod q2) (non-archimedean absolute value!). 
Therefore we have the absolute invariant 

1 + 240q + 2160q2 + .. . 
q - 24q2 + 252q3 + .. . 

j = ! (1 + 744q + 196884q2 + ... ) 
q 

as expected. The Tate equation defines an elliptic curve, called the Tate 
curve. 

Theorem 1. Let qZ be the infinite cyclic group generated by q in k*. Let 
A be the Tate curve. Let 

<pew) = (X(w), Yew»~ if w rt qZ 

<pew) = 0 if w EqZ, 

where 0 is the origin (point at infinity) on A. The map <p is a homomorphism of 
k* into Ak with kernel qZ. 
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Proof We prove first that qJ maps k* into A. Since 0 E Ak, this amounts to 
proving that the points qJ(w) for W f. qZ satisfy the equation of the curve. Because 
the functions X(w) and Y(w) have multiplicative period q, it is enough to 
consider values of W such that Iql < Iwi ~ 1 and W '# 1. In this range we can 
use formula (2X) which expressed X as a power series in q with coefficients which 
are rational functions of w, and similarly for Y. Our first task will be completed 
if we can show that the Tate equation is a formal identity when we interpret X, 
Y, h2' h3 as formal power series in q with coefficients which are rational functions 
of an indeterminate w. In fact, the coefficients of the formal power series in 
question are expressed as elements of the ring 

Z[w, w-l, (1 - W)-l]. 

The canonical homomorphism Z ~ k extends to a homomorphism of this ring 
into k(w). Hence the formal identity we are trying to establish is a "universal" 
one, and will hold in any characteristic provided it holds in characteristic O. 

From the classical theory over the complex numbers we know that the 
point qJ(w) satisfies the Tate equation if we substitute any pair of complex 
numbers w '# 1, q '# 0 such that 

Iql < Iwl < Iql-l. 

Fixing first w such that Iwl < 1 and lettingq vary, we conclude that the resulting 
power series in q with complex coefficients are equal coefficient-wise. Then 
letting w vary, we conclude that the coefficients are formalIy equal as rational 
functions of an indeterminate, as was to be shown. 

Next we prove that our map is a homomorphism. Given WI, W2 E k*, let 
W3 = WI W2' We must prove 
(5) qJ(W I W2) = qJ(w I ) + qJ(w2). 

Let Pi = qJ(w j ), i = 1,2,3. In view of the periodicity 

qJ(qw) = qJ(w), 

we can restrict our considerations to values of WI and W2 in the range 

iql < Iwd ~ I and 1 ~ IW21 < Iqr 1 • 

Then 
Iql < IW31 < Iql-l, 

so that alI three Wi are within the domain of convergence of the power series 
expressions for X and Y considered before. 

Since qJ(l) = 0 by definition, (5) holds trivialIy if WI = 1 or W2 = 1. The 
algebraic addition formula derived for the ~o-function yields an addition formula 
for points on the Tate curve. 

Let Pi = (Xj , Yi), i = 1,2,3. If PI' P2 are on the curve, then PI + P2 = 0 
if and only if 

(6) Xl = X 2 and YI + Y2 = -XI' 

From this we see that (5) holds if WI W2 = 1. 
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In general, suppose that all three points Pi are different from O. If Xl # Xl 
then the addition formula for the p-function yields at once an addition formula 
for points on the Tate curve, which reads 

(7) (Xl - Xl)l X3 = (YI - Yz)2 + (YI - Yl)(XI - X2) -
(Xl - X2)l(XI + X2) 

(8) (Xl - Xz) Y3 = - (Xl - Xl )( YI . + X3) + (YI - Y2)(XI - X3)' 

Now we can argue just as in the proof that cp(w) lies on the curve. Relations (7) 
and (8) hold in the classical case. Hence they are identities in the ring of formal 
power series in q with coefficients .in 

Z[WI' W~l, wz, W;I, (1 - Wl)-l, (1 - W2)-I, (1 - WIW2)-I], 

and (5) is therefore a functional identity in any complete field k. The remaining 
case Xl = Xz can be taken care of also by an explicit formula or by a con­
tinuity argument. 

IfwEqZ then X(w) and Yew) lie in k, so cp(w)+O. Hence the kernel of <p is 
qZ. Tate has also shown that <p maps k* onto Ak. For this and a description of 
the function field in terms of the functional equation, we refer to the exposition 
of Roquette [B8]. 

Theorem 2. Let A(q) be the Tate curve corresponding to a choice of q E k 
with Iql < 1. For any positive integer N, the curves A(q) and A(qN) are iso­
genous. 

Proof Let ct>N(T,j) = 0 be the modular equation of order N. Write j(q) for 
the q-expansion of j. Then from the complex theory we know that we have a 
formal power series relation 

ct>N(j(qN),j(q» = O. 

Hence this relation is valid for q E k* and Iql < I. This proves the theorem in 
characteristic 0 by Theorem 5 of Chapter 5, §3. Actually the theorem is valid 
in general, and we again refer to Roquette's exposition for this. 

It was convenient to give the above proof here, but of course it is also natural 
to see the theorem from the general theory. The groupqZ plays the role ofa lattice, 
and in this analogy, any sublattice gives rise to an isogeny in a natural way. 

Suppose given an element j E k* such that Ijl > 1. Then the formal q­
expansion for the modular function can be inverted, to give 

q =} + f(}) , 
where fis a power series with coefficients in Z. Hence we can define q in k* and 
get a Tate curve having the given invariant, chosen to be non-integral. 
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§2. ELLIPTIC CURVES OVER A COMPLETE LOCAL RING 

Throughout this section, let R be a complete local ring, Noetherian, without 
divisors of zero, and integrally closed, with maximal ideal m, and quotient 
field K. 
Let j E K be such that j-I E 111. Then we can get an element q Em such that 

q = ~ + Ie) 
where f is the power series at the end of the last section. Conversely, given q E m 
the seriesj(q) converges in R. 

We can always find a discrete valuation on K which induces the topology 
on R such that the powers of m form a fundamental system of neighborhoods 
of O. For instance if R is regular, for any element a E R we define 

ord a 

to be the largest exponent r such that a Em', and extend the order function to 
the quotient field so as to make it a homomorphism. In general, we use the 
Cohen structure theorem, which states that a ring R as above is always a finite 
module over a subring Ro, satisfying the same conditions, and in addition 
regular. We can then put a discrete valuation on the quotient field of Ro as 
above, and extend it to the quotient field of R. It serves our purposes. Such a 
valuation will be called admissible. 

Alternatively, one could also use the procedure known by geometers as 
blowing up the point corresponding to m in spec(R), and one way of doing it 
is to take generators m = (a], ... , am). For at least one of the a;, say a], the ideal 

is not the unit ideal in R[a2 /a] , ... , am/a]]. Let S be the integral closure of 
R[a2 /a], ... , as/a]] in K, and let p be a minimal prime ideal containing the ideal 
Sa,. Then ai -> 0 under the canonical homomorphism S -> Sip. The local ring 
Sv is a discrete valuation ring whose maximal ideal induces 1lt in R. 

Geometrically, the above construction amounts to the following. We have 
a morphism spec(S) -> spec(R), and we intersect S with the hypersurface 
a, = O. Then all components of this intersection have dimension dim spec(S) - 1, 
and since S is integrally closed, these components are non-singular divisors on 
spec(S). One of them lies above the point in spec(R), thus giving rise to the 
discrete valuation. Cf. Zariski, A simple analytical proof of a fundamental 
property of birational transformations, Proc. Nat. Acad. Sci. USA (1949), 
pp.62-66. 

For a formal reference to the commutative algebra used above, you can 
always look up Grothendieck's EGA, Chapter IV, 7.8.3 and 7.8.6. The point 
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is that starting with a certain type of ring called excellent, and including Z, 
a field, or a complete Noetherian local ring, then the rings obtained by taking 
completions, localizing, taking finitely generated extension rings, or taking 
integral closure, will have all desirable properties. For instance, we used the fact 
that the integral closure of R[b J , ••• , bml is finite over this ring (b i = aja J ). We 
shall continue to assume such basic results from commutative algebra. For 
another reference, the reader can look up Matsumura's Commutative Algebra, 
Benjamin, Reading, Mass. 1970, Chapter XIII. 

Let A be an elliptic curve defined over K, with invariantj = j(q). Let Dq = qZ. 
We denote by D~!N the subgroup of K* consisting of all elements whose N-th 
power lies in Dq • This subgroup is generated by the N-th roots of unity, and any 
N-th root of q, say ql/N. The factor group 

D~/N/Dq 

is isomorphic to a direct product of cyclic groups of order N, generated respec­
tively by a primitive (" and ql/N mod qZ, if the characteristic of K does not divide 
N. 

Theorem 3. Let A have invariant j(q) as above, and q lie in the maximal 
ideal m of R. Let RN be the integral closure of R in KN = K«(N' ql/N). Then 
the Tate mapping defined by the same formulas, as in Theorem 1 converges in 
RN and induces a homomorphism of D~!N into AN' If N is prime to the charac­
teristic of K, it induces a Galois isomorphism of D~!N/ Dq onto AN, and 

K(AN) = K«(N' ql/N). 

Proof Let w = (qs/N where ( is an N-th root of unity, and s is an integer. 
The series giving X(w) and Yew) in the preceding section are seen to converge 
in R", and even in R[(N, ql!N], to yield elements in K«('1, ql/N). Formulas (2X) 
and (2 Y) exhibit the desired convergence. Note that a finite number of terms 
are rational functions in q, w, but that all but a finite number of terms lie in the 
maximal ideal of RN, and tend to 0. We then see that the mapping is a homo­
morphism of D~/N either by repeating the arguments of Theorem 1, or by re­
ducing the present situation to the preceding one by means of a discrete valuation 
vas constructed above. We get an injective homomorphism of DV'" / Dq into AN' 
If N is not divisible by the characteristic of K, the homomorphism must be 
surjective since AN has order N 2 • 

Let G be the Galois group of K(AN) over K. Then G operates in a manner 
compatible with the Tate parametrization, i.e. that for a E G we have 

X(aw) = X(w)'" and Y(aw) = Y(w)" 

if w E D~JN. This is clear by continuity. It is then clear that 

K(AN) = K«(N, ql/N), 

thereby proving our theorem. 
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Example. Let A be an elliptic curve with transcendental invariant j over Q. 
We consider the ring Z[ljj], and its completion at the maximal ideal generated by 
(p, I/j). Let R be this completion, so that actually 

R = RI = ZA[I/j]] = Zp[[q]]. 

l.et KI be its quotient field and let KN = KI (AN). Then 

KN = KI«(N, qIIN). 

The Galois group of this extension is easily determined. Over KI «(N) it IS 

a Kummer extension, whose Galois group is generated by the map 

ql/N f-> (NqIIN. 

Let cp = (X, Y) be the Tate mapping, and let PI = CP«(N), Pz = cp(qI/N). Then 
the above element in the Galois group is represented by the matrix 

G D· 
On the other hand, suppose for simplicity that P{ N. Then ('I generates an 
unramified extension of Zp[[ql/N]], whose Galois group is generated by the 
Frobenius automorphism such that 

represented on the points of period N by the matrix 

(~ ~). 
The full Galois group Gal(KN/KI) is the subgroup of GL2(Z/NZ) generated by 
the above two elements (when P{ N). When pIN, then the root of unity ramifies, 
but the group is again easily determined, since KN over the quotient field of 
ZA[ql IN]] has the same Galois group as Qp«(';) over Qp. 

Observe that taking the union of all fields KN yields a field which we denote 
by K. The group of all matrices 

is contained in the inertia group of a maximal ideal 9Jllying above (p, q) in R I • 

If we restrict this group to the subfield obtained as the union of all KN such that 
p{ N, then it is the inertia group of this subfield, since the N-th roots of unity 
for P{ N generate an unramified extension. 

19usa was the first to recognize the presence of such unipotent elements in 
the Galois group in the case of bad reduction [25]. 
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Throughout this chapter we let K denote afield of characteristic 0. 

§1. THE GALOIS p-ADIC REPRESENTATIONS 

We return to p-adic representations. Let A be an elliptic curve defined over 
K. We take points of A in a fixed algebraic closure Ka. We have the p-adic spaces 

TiA) and Vp(A) 

over Zp and Qp respectively. We recall that Tp(A) consists of all vectors 

(a l • a2 • ... ), 

such that piai = 0, pai+ I = ai; and ViA) consists of all vectors 

(ao, a lo a2, ... ) 

aiEA 

such that ao is an arbitrary point of order a power of p, and pai+1 = a i . We 
know that TiA) (resp. ViA» is free of dimension 2 over Zp (resp. Qp). 

The Galois group Gal(Ka/ K), also denoted by G K, operates continuously on 
both Tp(A) and Vp(A) in the obvious way. If (T E GK, then 

(T(a l • a2' ... ) = «(Tal. (Ta2 • ..• ). 

Thus we get a representation 
p: GK -+ GL2(Zp) 

if a basis of TiA) over Zp has been selected, and without such a selection, into 
Autzp(Tp(A». 

For simplicity, we shall write Tp , Vp , omitting the A if the reference to A is 
fixed throughout a discussion. We call the above representations the p-adic 
(Galois) representations associated with A over K. 

If i.: A -+ B is an isogeny defined over K, then I. induces a GK-isomorphism 

vp.): ViA) -+ Vp(B), 
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but of course only an injection of Tp(A) into Tp(B). Indeed, if A is defined over 
K and (J E GK , then for any point a of A in the algebraic closure of K, we have 

;.(a)" = )."(a") = ).(a"). 

It is then clear that the induced map on Vp(A) commutes with the action of the 
Galois group. For simplicity, we also write Vp(/.) = I.. 

It is a major problem to prove the converse over fields which are of arith­
metic interest, and the first progress in this direction was made by Serre [B 11], 
whose results and methods we reproduce in this chapter. 

Remark 1. We observe that all the results will be such that they allow us to 
pass to open subgroups of the Galois group over the field K. Thus whenever 
we want to prove an isogeny theorem, it suffices to do it over a finite extension 
of K, which we select at our convenience. We can also do it over a finitely 
generated extension, because the Galois group of a Galois extension does not 
change when we lift this extension over a purely transcendental extension of K. 

Remark 2. The Galois representation of GK on Vp factors through the Galois 
group leaving K(A(P» fixed, where A(P) is the group of points on A having 
p-power order. Hence we are really concerned with the representation of the 
Galois group of K(A(Pl) over K. In particular, if A, A' are two elliptic curves 
defined over K, and Vp(A), Vp(A') are Grisomorphic, then K(A(P» = K(A'(P». 

There is a converse to the preceding remark in certain cases. 

Theorem 1. Let A, A' be elliptic curves defined over K, and assume that 
K(A(P» = K(A'(P». Let G be the Galois group of K(A(P» over K, and assume 

that the representations ofG on TiA) and Tp(A') map G onto open subgroups 
of SLz(Zp)' Then Vp(A) and Vp(A') are G£-isomorphicfor some finite extension 
EofK. 

The theorem follows from the next lemma. 

Lemma 1. Let G be an open subgroup of SLz(Zp) and let 

PI: G -> SLz(Zp) and pz: G -> SLz(Zp) 

be continuous injective representations. Then there exists g E GLz(Qp) such 
that g~lp2g = Pion an open subgroup ofG. 

Proof Without loss of generality we may assume that PI is the identity 
and pz = p. Thus P induces a local isomorphism of SLz(Zp) into itself. We look 

at its effect on the Lie algebra. Let X = (~ ~), Y = C ~), and H = (~ - n. 
Then [X, H] = 2X, [Y, H] = - 2 Y and [X, Y] = H. Since P maps H on a 
semisimple element, after a conjugation by an element of GLz(Qp) if necessary 
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we may assume that p sends H into a scalar multiple of H. Looking at the above 
brackets shows that this scalar is ± I, and another conjugation reduces us to the 
case when p leaves H fixed. Again looking at the effect of p on the brackets 
we conclude that p sends X into aX and Y into bY, and then that b = a~l. 

Conjugation by (~ ~~1) then returns aX to X and bY to Y. Hence the effect 

of p on the Lie algebra is inner. It follows that it is locally given by a conjuga­
tion on the group. 

Corollary. Let A, A' be elliptic curves over K, and assume that K(A(P») 
and K(A'(P») have an intersection which is of infinite degree over K. Assume 
that the representations of Gal(K(A(P»)/K) on Tp(A) and Gal(K(A'(P»)/K) on 
Tp(A') map the Galois groups onto open subgroups of SL2 (Zp)' Then there 
is afinite extension E of K such that 

E(A(P») = E(A'(p»), 

and Theorem 1 applies. 

Proof Since the Lie algebra of SL2 (Zp) is simple, there exists an open 
subgroup W of Gal(K(A(P»)/K) having the following properties: 

i) W has no finite subgroup other than I. 

ii) Any closed normal non-trivial subgroup of W is also open, and hence 
of finite index. 

Let Kl be the fixed field of W. We consider the inclusion of fields: 

Kl c K1(A(p») n K 1(A'(p») c K1(A(P»). 

The intermediate field is of infinite degree over K 1 , and is the fixed field of a 
closed normal subgroup of W. By the above two properties, it must be equal 
to K1(A(P»). Arguing the same way with respect to A', i.e. selecting an open 
subgroup W' in a similar way, we can find a finite extension K2 of K such that 

KiA(p») = Kz{A'(P»). 

This proves our corollary, with E = K2 • 

The assumptions of the corollary concerning A and K are always satisfied 
in the following cases. 

i) K is obtained from a number field by adjoining all roots of unity, and 
then making a finite extension. A has no complex multiplication. This is a 
theorem of Serre, whose proof will be reproduced in the next chapter, in 
case the invariant of A is not integral over Z. 

ii) K is finitely generated over an algebraically closed field of characteristic 
0, and A has transcendental invariant over this field. This is dear from 
Chapter 6. 
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§2. RESULTS OF KUMMER THEORY 

In this section we assume that K has characteristic O. We let fln be the group 
of pn_th roots of unity in an algebraic closure Ka. We thus use the p-Iogarithmic 
notation, and similarly let An denote what we would otherwise write as Apn, 
the group of points of order pn on an elliptic curve A. 

We let G = GK = Gal(Ka/K) through the section. 
We suppose that K is the quotient field of a ring R, complete, local Noetherian, 
integrally closed, and we assume that the prime p lies in the maximal ideal In. 

Let q, q' be elements of m and let A = A(q) and A' = A(q') be the elliptic 
curves as in the Tate parametrization, defined over K. Let Dq = qZ. We know 
that there is an isomorphism 

D~/pnlDq ;::::, An' 

Actually, the elliptic curve will be irrelevant for this section, and one could 
phrase all the statements completely in terms of the Kummer extensions 
K(D:IP"), letting the above;::::, be an equality. 

As in Kummer theory, if Z E D:IP" then zp" lies in D q, and there is an 
integer c such that 

The association z H class of c mod pnZ defines a homomorphism of An onto 
Zjp"Z, and hence gives rise to the exact sequence 

(I) 

of G-modules, the Galois group acting trivially on Zjpnz. Taking the limit, 
we obtain an exact sequence 

(2) 

where G operates trivially on Zp. Tensoring with Qp yield the exact sequence of 
G-modules, 

(3) o ~ Vp(fl) ~ Vp(A) ~ Qp ~ O. 

Lemma 1. The above sequence does not split. 

To prove Lemma 1, we introduce an invariant x which belongs to the group 

lim Hl(G, fln). 
~ 

Let d be the coboundary homomorphism 

d: HO(G, Z/pnz) ~ Hl(G, fln) 

with respect to the exact sequence (1), and let Xn = del). We define x to be the 
element of lim HI(G, fln) defined by the family {XII}' n ~ 1. 

~ 
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Lemma 2. i) The isomorphism 

J: K*/K*P" --+ HI(G, f1n) 

of Kummer theory transforms the class of q mod K*P" into xn. 

ii) The element x is of infinite order. 

209 

Proof Recall that J is induced by the coboundary map relative to the 
exact sequence 

1 --+ f1n --+ K:P" --+ K: --+ 1. 

The first assertion of Lemma 2 is immediate from the definitions, because the 
isomorphism of Kummer theory transforms an element a E K* into the class 
of the cocycle atr/a, (J E G. 

To prove the second assertion, let v be a discrete valuation on K which is 
admissible, i.e. induces the given topology on R. Then the valuation defines a 
homomorphism 

fn: K*/K*P" --+ Z/pnZ, 

and hence a homomorphism 

f: lim K*/K*P" --+ Zp. 
~ 

If we identify x with the corresponding element of lim K*/K*P", as in (i), then 
we have ~ 

f(x) = v(q), 

and hence x is of infinite order, proving Lemma 2. 

We can now prove Lemma I. Suppose the sequence (3) splits. There is a 
G-subspace Wof ViA) which is mapped isomorphicaliy onto Qp. Let 

WT = W (] Tp(A). 

The image of W T in Zp is pNZp for some N ~ O. But then it follows immediately 
that pN x = 0, contradicting the fact that x has infinite order. 

Lemma 3. Let Roo be the integral closure of R in 

Koo = K(f1(Pl, ql/p"') = K(A(p»). 

Let 9Jl be the maximal ideal of R<X) lying above m. Let I be the inertia group 
of9Jl in Gal(Koo/K). Then I is offinite index in Gal(K",,/K). 

Proof Let v be an admissible discrete valuation on K. We denote an exten­
sion of this valuation to K<X) by the same letter. Let Iv be the inertia group for this 
extended valuation. It will suffice to prove that Iv is of finite index in Gal(Koo/K), 
because I:::> Iv' Without loss of generality, we may therefore assume that R 
is a discrete valuation ring. Let Kv be the completion of K at v, and let L be the 
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completion of the maximal unramified extension of Kv' Then L again has a 
discrete valuation v. It will suffice to prove that Gal(L(ACP»/L), identified in the 
usual manner with a subgroup of Gal(K(AlP»/K), is of finite index. The picture 
of Galois theory is as follows. 

It is known from elementary algebraic number theory that if' is a primitive 
p'-th root of unity, then 1 - , has order l/!fJ(p') = I/(p - l)pn~l at the p-adic 
valuation giving p order I. Since v is a discrete valuation, it follows that there is 
a constant c such that for all n, 

[L(Pn) : L] ~ cp', 

and in fact the ramification index of L(p.) over L satisfies a similar inequality. 
The operation of the Galois group on Tp(A) is represented, relative to a basis 
by matrices 

with components In Zp- There exists some positive integer r such that the 
equation 

x P' - q = 0 

has no root in L(pCP». For otherwise, we obtain 

L(!~(P» = L(p(P\ qljp~) = L(A(p», 

and the Galois group of L(A(P» over L is abelian, which means that the above 
matrices must be diagonal, whence the representation is reducible, contradicting 
Lemma 1, applied to the field L, with its discrete valuation ring. By an elementary 
irreducibility criterion, or even Kummer Theory, this implies that the degree of 

L(p(P>, q 1 jp") 

over L(fl(P» satisfies an inequality of the same kind as above, i.e. it is at least 
equal to cpo for some constant c. Hence there is a constant c such that for all n, 

[L(A.) : L] ~ Cp2'. 
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Since the Galois groups of K(An) over K and L(An) over L have an order of 
magnitude at most equal to c'p2n for some constant c', it follows that 

Gal(L(A<P»/L) 

is of finite index in Gal(K(A<P»/K). Since L is maximal unramified, it follows 
that L(A<P» is totally ramified over L, thereby proving our lemma. 

§3. THE LOCAL ISOGENY THEOREMS 

Serre [35] discovered that over a p-adic field, an elliptic curve whose j­
invariant is not integral satisfies the isogeny theorem: If A, B are such elliptic 
curves, and their p-adic representations on Vp are Galois isomorphic, then the 
curves are isogenous. It turns out that his proof, with minor modifications, 
is valid over a more general type of local ring [28a]. Thus we shall prove: 

Theorem 2. Let R be a Noetherian complete local ring, integrally closed, 
without divisors of 0, and of characteristic O. Let K be its quotient field. 
Assume that the maximal ideal m of R contains the prime number p, and that 
R/m is finite. Let A, A' be elliptic curves defined over K, with invariants j, j' 
such that I/j and I/j' are contained in m. Suppose that Vp(A) and ViA') are 
GK-isomorphic. Then A and A' are isogenous. 

Proof It will suffice to prove that there exist integers i, i' such that qi = qi', 
by Theorem 2 of the preceding chapter. Let 

qJ: ViA) ~ Vp(A') 

be a GK-isomorphism. By Lemma I we know that Vip) is the only I-dimensional 
subspace of Vp(A) (resp. ViA'» which is stable by GK. Hence qJ maps Vip) 
into itself. Moreover, after multiplying qJ by some p-adic integer, we may 
suppose that qJ maps TiA) into TiA'). We then have a commutative diagram: 

o ~ Tp(p) -t TiA) -t Zp -t 0 
(4) r! "'! s! 

o ~ Tip) ~ TiA') ~ Zp -t 0 

where the vertical arrows on the ends are multiplication by p-adic integers rand 
s respectively. Let x, x' be the elements of lim Hl(G, Pn) associated to A and A' 
above, then the commutativity of (4) shows that 

rx = sx'. 

Using again our discrete valuation v, we get a homomorphism 

lim Hl(G, Pn) = lim K*/K*pn -t Zp, - -
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and we have seen that the image of x is v(q) and the image of x' is v(q'). Hence 

rv(q) = sv(q'). 

It will now suffice to prove that 

0( = qV(q')/q,v(q) 

is a root of unity. 
We look at the image of 0( in lim K*/K*pn. This image is 

v(q')x - v(q)x', 

and multiplying by s, we find 0 by using the above relations. Hence the image 
of 0( in lim K* / K*pn is O. 

~ 

We are thus reduced to proving that the kernel of the canonical map 

K* -+ lim K* / K*pn 

is finite. If an element 0: lies in the kernel, then 0( must be a pn-th power in K for 
all n. If 0: does -not lie in R, then 1/0: does not generate the unit ideal in R[1/o:], 
for otherwise 0: would be integral over R, whence in R, a contradiction. A 
minimal prime over the ideal (1/0() in the integral closure of R[l/a] would give 
rise to a discrete valuation where a has a pole, and hence could not be a pn-power 
for large n. So 0: lies in R. Similarly, 0( cannot lie in m, otherwise 1/0: does not 
lie in R. Hence a is a unit in R. Since the residue class field is finite, and R is 
complete, there is a finite subgroup k* in R representing the non-zero elements 
of R/m, and the group of units U of R is isomorphic to a product 

U ~ k* X U1 , 

where U1 consists of the units congruent to 1 mod m. If w E m, then (1 + w)pn 
lies in 1 + mO. From this it is clear that a must lie in k*. This concludes the proof 
of Theorem 2. 

Remark 1. Having proved that two integral powers of q and q' are equal, it is 
then also true that the curves are isogenous over K. This follows from the 
general Tate theory viewing qZ and q'Z as "lattices". 

Remark 2. In higher dimensions, one can define the analogue of the "multi­
plicative" parametrization given here for certain abelian varieties. However, 
Ribet has given an example where the corresponding local isogeny theorem is 
false in dimension 2, over an ordinary p-adic field. There remains the problem 
of determining if it is true for "generic" abelian varieties. 

Theorem 3. Let R be a complete Noetherian local ring, without divisors of 
zero, integrally closed, with maximal ideal m, and quotient field K of character­
istic O. Assume that R/m is finite. Let A be an elliptic curve defined over K, 
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with invariant j E R, and let A' be defined over K, with invariant / such that 
11/ E 111. Then the representations of GK on Vp(A) and Vp(A') for any prime 
p are not isomorphic. 

Proof Passing to a finite extension of K and the integral closure of R in 
this extension if necessary, we may assume that A has non-degenerate reduction 
mod 11t. Furthermore, A' becomes isomorphic over a finite extension of K to 
the curve having the Tate parametrization in terms of q', and hence again 
without loss of generality, we may assume that A' is the Tate curve. We now 
distinguish two cases. 

The reduction A of A mod 111 has a point of order p in the algebraic closure 
of the residue class field R = Rim. Then K(A(Pl) contains an infinite unramified 
part, corresponding to the infinite residue class field extension 

R(A(Pl). 

On the other hand, by Lemma 3, we know that K(A'(Pl) is almost totally ramified, 
in the sense of that lemma. Hence A and A' cannot be isogenous. (If p i= charac­
teristic of RI11t, then all of K(A( Pl) is unramified, and the argument works even 
more strongly.) 

The reduction A of A mod m is supersingular, i.e. has no point of order p, 
so that A(Pl = 0. In that case, we use an admissible discrete valuation v. The 
representation of G K on Vp(A') is triangular, and has in particular an invariant 
subspace of dimension I, corresponding to Vil1). On the other hand, Serre has 
proved that the representation of GK on Vp(A) is irreducible, [36], p. 128, Prop. 8. 
[For the convenience of the reader, we shall reproduce the proof in §4.] Hence 
these representations cannot be isomorphic, and the curves are not isogenous, 
as was to be proved. 

Remark. The assumption that the residue class field is finite can be weakened 
to finitely generated over the prime field, since it is known that for such field k, 
the extension k(A(Pl) of k has an infinite separable part if A is not supersingular. 
However, we shall not use this in the sequel. 

§4. SUPERSINGULAR REDUCTION 

We now deal with the irreducibility property mentioned above. For the rest 
of this section, we let A be an elliptic curve defined over a field K of characteristic 
0, with a discrete valuation. We let OK be the ring of integers of the valuation, 
11tK its maximal ideal. To prove that ViA) is GK-irreducible, it suffices to do so 
with respect to any closed subgroup of GK • Thus we may assume without loss 
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of generality that K is complete. We let ° be the ring of integers in the algebraic 
closure of K, and we let In be the maximal ideal of 0. We assume that o/m has 
characteristic p. 

Suppose that A has non-degenerate reduction mod mK • We want to find 
an appropriate parametrization of the points of A(P) which will exhibit their 
ramification properties. This is done by studying the formal law defined by A 
over OK' (Cf. Serre's Lie Algebras and Lie Groups, Chapter 4 and Appendix 1, §3.) 
Assume for simplicity that the characteristic of the residue class field is =I: 2, 3 
and that A is in Weierstrass form, 

y 2 = x 3 + bx + c, b, c E OK' 

with non-degenerate reduction. The origin is represented by the point at infinity. 
Let (Xl' YI) be a point in AK which is in the kernel of the reduction map. Then 
X), YI cannot lie in OK' 

It is clear by comparing poles that 

with some positive integer m, units uI , VI, where 11: is an element of order 1 at 
the discrete valuation of K. Let 

X 
t =-

y 
and 

1 
s = -. 

y 

The correspondence (x, y) H (t, s) changes the Weierstrass model into the curve 
defined by 

The kernel of the reduction map is then represented by points in the (s, t) plane, 
with coordinates in m, and the origin of AK has coordinates (0,0) in the (s, t) 
plane. Observe that t is a local uniformizing parameter at the origin of A. 
[The only use we have made of the assumption that the characteristic of o/m is 
=I: 2,3 is to give this explicit parameter. Except for this, all the arguments which 
follow hold quite generally. The p-adic analytic study of the points on an elliptic 
curve was originated by E. Lutz, "Sur l'equation y2 = x 3 - Ax - B sur les 
corps p-adiques," J. reine angew. Math. 177 (1937), p. 204.] 

Let z be the point with affine coordinates (x, y) on A, and write t = t(z). 
It is easily shown by an explicit computation that multiplication by p on A is 
represented by a power series with coefficients in OK' In other words, 

t(pz) = f(t) = pt + a2t2 + a3 t3 + .. " 

with a) = p, and an E OK for all n. [In general, the formal group law is defined 
by a power series in two variables, 

t(z + z') = F(t(z), t(z'», 

andfis obtained by iterating F, p times, setting z = z'.] See Appendix 1, §3. 
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Assume that the absolute value on K defined by the discrete valuation is 
normalized in such a way that Ipi = lip. Let in general 

l(t) = alt + azt2 + ... 
be a power series with coefficients in OK' Let h be a positive integer such that 
la;l < I for I ~ i ~ h - I, and suppose that a,lz is a unit u. Then the Weierstrass 
preparation theorem tells us that we can factor I as 

I(t) = g(t)!/J(t), 

where get) is a polynomial of degree h, and !/J(t) is a unit in the power series ring 
0K[[t]], i.e. a power series starting with a unit. In particular, a zero of I in In is 
a root of g. For the proof, see A. Frohlich, Formal Groups, Lecture Notes 74, 
Springer-Verlag, 1968, Chapter I, §3, Theorem 3. 

We apply this to the power series obtained from t(pz) on our elliptic curve. 

t(pz) = l(t) = pt + azt2 + ... + ah_lth-I + ut h + ... , 
where u is a unit, and lail < 1, 1 ~ i ~ h - 1. We see that a point Q E AKa lies 
in the kernel of the reduction map if and only if t(Q) = 0, and this occurs if 
and only if t(Q) E 11t. 

Assume now that A has supersingular reduction, i.e. that jf(P) consists 
only of the origin. Then all points of A( P) lie in the kernel of the reduction, and 
in particular, there are pZ elements in Ap, so that h ~ pl. Indeed, if pQ = 0, 
then t(Q) is a zero off, because teO) = O. 

Theorem 4. Assume that A has supersingular reduction, i.e. that jf(P) = O. 
Let W = (WI' Wz, ... ) E TiA), so that PWn+l = wm and suppose WI "# O. 
There exists a number C > 0 such that the ramification index 01 K(wn) over 
K is ~ Cp2n. 

Proof Let tn = t(wn). Then Itnl < 1, and we have ~he relation 

tn = ptn+l + a2t~+1 + ... + ah-lt~~~ + ut~+l + .... 
First let us prove that 

We cannot have Iln+ll ~ Itnl, because the right-hand side would then have an 
absolute value < Itnl. Furthermore, the absolute value of the right-hand side 
is at most 

max{lplltn+lI,ltn+lI Z}, 

and its absolute value must be the same as Itnl. This shows that 

Itn+ll ~ pltnl or Itn+ll ~ Itnlt. 
From this we conclude that Itnl -> 1 as n -> 00. 

If I tnl is sufficiently close to "1, then the term ut~+I on the right-hand side has 
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absolute value strictly greater than any other term, because lad < 1 for 
I ;;;; i ;;;; h - 1. We must therefore have 

Itnl = lut~+ 11 = Itn+ tlh. 
Thus from a certain no on, the ramification index at the n-th step increases at 
least by a factor of h ~ p2. This proves our theorem. 

The 0 re m 5. Let A be an elliptic curve defined over a field K of characteristic 
0, complete with respect to a discrete valuation, and with non-degenerate 
reduction .4, which we assume supersingular. Then Vp(A) is GK-irreducible. 

Proof Let w = (WI' W2, .•• ) E Tp(A) and suppose that WI :f. 0. It suffices 
to prove that there exists a E GK such that aw does not lie in the I-dimensional 
module over Zp generated by w, because then wand aw form a basis of ViA) 
over Qp, whence Vp(A) is GK-irreducible. We use Theorem 4, and need only that 

[K(wn} : K] ~ Cp2n. 

Suppose that aw is a p-adic multiple of w for all a E GK. Take n large. Then for 
all a E GK , the point aWn is an integral multiple of wn, and there are at most pn 
such multiples. This contradicts the degree inequality above, and proves that 
Vp(A) is irreducible, as desired. 

§5. THE GLOBAL ISOGENY THEOREMS 

We shall now see that the isogeny theorem holds globally, over a number 
field, for an elliptic curve having non-integral invariant; and over a function 
field for an elliptic curve having transcendental invariant, both when the function 
field has a constant field which is a number field, and when it is over the complex 
numbers. The first case, over number fields, is due to Serre. 

Theorem 6. Let A, A' be elliptic curves over a number field K, with invariants 
j,j'. Assume that j is not p-integral for some prime p of K, dividing p. Assume 
that Vp(A) and Vp(A') are GK-isomorphic. Then the curves are isogenous. 

Proof We have seen in §3 that j' is necessarily not p-integral. The Galois 
representations being isomorphic on GK , they are isomorphic on any closed 
subgroup, in particular the subgroup which is the Galois group over the p-adic 
field Kv. This reduces our problem to the local case, and concludes the proof by 
Theorem 2. 

At the time this book is written, the isogeny theorem in general over number 
fields is not known. 
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Next we deal with the generic case. Deligne [2] proved it over the complex 
numbers by using Hodge structures. I showed [28a] that the Serre arguments for 
p-adic fields hold also in this case by working over Z[1/)] as follows. 

Theorem 7. Let A, A' be elliptic curves over a field K, finitely generated 
over the rationals. Assume that they have transcendental i-invariants. Let p 
be a prime number, and assume that VP(A) and Vp(A') are GK-isomorphic. 
Then the curves are isogenous. 

Proof It is trivial that),j' must be algebraically dependent. Hence K can 
be selected to be a finite extension of Q(J, 1'), of transcendence degree lover Q. 

Next we prove that l' is integral over Z[j] and vice versa. Suppose this is 
not the case. There exists a homomorphism of Z[)] which extends to Z[j, 1/)'] 
sending 1/)' to O. Let R be the integral closure of Z[j, 1/)'] in K. Extend the 
homomorphism to R. By composing our homomorphism with another one if 
necessary, we may assume that our homomorphism takes on its values in a finite 
field. Let m be the kernel in R. The completion Rm has no divisors of 0 by EGA, 
Chapter IV, 7.8.3 and 7.8.6. The Galois representations being isomorphic on 
GK , they are isomorphic with respect to any closed subgroup, in particular the. 
subgroup arising from the extension Km(A(P» = Km(A'(P», where Km is the 
quotient field of Rm. This is a contradiction in view of Theorem 3. Hence l' 
is integral over Z[j]. 

(For the reference to commutative algebra, the reader can also look up 
Matsumura's book on the subject, W. A. Benjamin, Reading, Mass., 1970, 
Chapter XIII.) 

Consider the ring Z[I/), 1/)']. We contend that the ideal generated by 
p, 1/), 1/1' is not the unit ideal. Let 0 be the local ring in Q(j) of the homo­
morphism of Z[I/j] which sends p and 1/) to O. Any place of Q(j) over this 
homomorphism must send 1/)' to O. Otherwise, suppose 1/1' goes to a finite 
element c #- O. Then)' goes to l/c, and) goes to infinity, which we have already 
seen is impossible. Similarly, 1/1' cannot go to infinity. This proves our contention. 

Let R be the integral <.:Iosure of Z[l/), 1/)'] in K and let m be a maximal ideal 
of R containing p, I/), 1/)'. We now argue as in the first part of the proof, with 
Rm, reducing our problem to the local case, and cite Theorem 2 to conclude 
the proof. 

Theorem 8. Let K be a finitely generated field over an algebraically closed 
field k of characteristic O. Let A, A' be elliptic curves defined over K, with 
invariants),1' which are transcendental over k. Assume that Vp(A) and ViA') 
are GK-isomorphic. Then the elliptic curves are isogenous. 

Proof As in Theorem 7, the invariants),)' must be algebraically dependent 
over k, and we can assume K finite over k(j,1'). Without loss of generality, we 
can assume that A is defined by a Weierstrass equation 
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y2 = 4x3 - gx - g, 
and that A' is defined by 

y2 = 4x3 - g'x - g', 

after replacing K with a finite extension if necessary. Then keg) = kU) and 
kU') = keg'). There exists a function field Ko with constant field ko, such that ko 
is contained in k, is finitely generated over Q, Ko is a finite extension of koU, j'), 
and K is obtained from Ko by extending the constants from ko to k. The picture 
is as follows. 

~f 
Ko k(j, j') 

I~I 
ko(~,j'~ k 

ko 

The only new constants introduced over Q by the points A( p) are the p-power 
roots of unity (Chapter 6, §3). Let k I be the constant field of Ko(A( P», i.e. the 
algebraic closure of ko in Ko(A( PI). Let Kl = k I Ko be the corresponding con­
stant field extension. We must then have 

K 1(A(p» = K 1(A'(p». 

Indeed, if we make the constant field extension to k, the two fields 

Kj(A(P» and K 1(A'(p» 

become equal. Let 
E = K 1(A(p» n Kj(A'(P». 

If E is a proper subfield of K1(A(PI), then there is an element #-1 of the Galois 
group of K1(A(PI) over E which extends to an element of the Galois group of 
Kl (A( PI, A'( PI) over Kl (A'( PI), thus acting trivially on A'( PI, contradicting the 
hypothesis that the Galois representations over K on V/A) and Vp(A') are 
isomorphic. 

We now conclude that 

Ko(A(p» = Ko(A'(p». 

Let G be the Galois group of the extension Ko(A(PI) over Ko. We have two 
representations 

and p': G -> Aut T/A') 

onto open subgroups of these automorphism groups, each one of which is 
isomorphic to GL2 CZ p) after a choice of basis over Zp. Let S be the Galois 
group of Kl CA( Pl) over K j . Then the image of S under both p and p' is an open 
subgroup of the special linear subgroup of Aut T/A) and Aut T/A'), respec-
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tively, that is this image is open in SL2 (Zp) under both representations. The 
center of S maps onto open subgroups of the diagonal groups, formed with 
units in Zp. An open subgroup W of the center, not containing - 1, is then such 
that W n S = 1, whence S x W is open in G. 

The representations of Won ViA) and ViA') give rise to two characters 
ifi, ifi' of W into the group of p-adic units, such that if a E W, then the matrix 
representation of a on TiA) is a diagonal matrix 

( ifi(a) 0) 
o ifi(a) , 

and similarly for a' . The effect of a on a p-power root of unity ( has been 
shown to be 

a(e) = (detl'(a). 

This implies that ifi(a2) = ifi'(a2 ) for all a E W. Since (W: W2) is finite, passing 
to an open subgroup of W is necessary, we may assume without loss of generality 
that ifi = ifi' on W. 

By hypothesis, we know that there is a Qp-isomorphism 

h: ViA) -> Vp(A') 

which is also an S-isomorphism. Since Wacts on ViA) and ViA') as the same 
group of p-adic multiplications, it follows that h is also a W-isomorphism, in 
other words, h is a G-isomorphism for the group G = S x W. The fixed field 
of G is a finite extension of Ko, finitely generated over the rationals, and we are 
therefore reduced to the situation of Theorem 7, thus concluding the proof of 
Theorem 8. 

The argument given at the end also shows: 

Theorem 9. Let A, A' be elliptic curves defined over a field K. Assume 
that the representations 

p: GK -> Aut Vp(A) and pi: GK -> Aut ViA') 

map GK onto open subgroups of Aut ViA) and Aut Vp(A') respectively. 
Let L = K(f.i(Pl) be the field obtained by adjoining all p-power roots of unity 
to K. If the restrictions of p and pi to GL are isomorphic, then p and pi are 
isomorphic on an open subgroup ofGK. 

A result of Serre states that the hypotheses of Theorem 9 are satisfied in the 
case of number fields, for elliptic curves without complex multiplication. 

In each one of the cases of Theorems 7 and 8, the curves are actually 
isogenous over the given field K. This comes from an easy additional argument, 
as in Serre, namely: 

Theorem 10. Let A, A' be elliptic curves defined over afield K of character­
istic O. Assume that ViA) and ViA') are GK-isomorphic, and that the images 
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of Gal(K./K) in Endz/Vp(A» and Endzp(Vp(A'» contain an open subgroup 
of SL2 (Zp)' Let J.: A -> A' be an isogeny. Then ;. is defined over K. 

Proof First). must be defined over a finite extension of K (otherwise A 
would have infinitely many distinct conjugates, corresponding to distinct images 
of a smallest field of definition under isomorphisms in a sufficiently large 
algebraically closed field). Say). is defined over a Galois extension L of K. 
Let GL and GK be the Galois groups of K. over Land K respectively, and let 
G = Gal(L/K). It suffices to prove that I." = ). for all (j E G, and since 

A"(a") = A(a)"" 

for any point a of A rational over the algebraic closure of K, it suffices to prove 
that the endomorphism 

Vi).): ViA) -> Vp(A') 

commutes with all (j E G. As noted already in §l, we know that Vp.) lies in 
HomGL(V, V'){writing V = ViA) and similarly for V'). It will suffice to prove 
that 

HomGL(V, V') = HomGK(V, V'). 

We know that V and V' are GK-isomorphic. Hence it will suffice to prove that 

EndGJV) = EndGK(V). 

Having assumed that the image of GK, and hence GL , in End(V) contains an 
open subgroup of SL2 (Zp), it follows that the only Gcendomorphisms of V 
must be scalar multiples of the identity, i.e. are the endomorphisms a/ with 
a E Qp. These are also GK-endomorphisms, and our assertion is proved. 

In the generic case, we know from function theory that the image of the 
Galois group GK (when K is finitely generated over Q) in End( V) contains an 
open subgroup of SL2 (Zp)' In the next chapter, this will be proved over number 
fields for curves with invariant which is not p-integral, so that our remark 
applies to this case too. As mentioned before, the proof when j is integral over 
Z (and A has no complex multiplication) is harder and won't be given in this 
book. 



17 Division Points over 
Number Fields 

We know from Chapter 2, §l that over any field K, the Galois group of the 
field obtained by adjoining to K all coordinates of points of finite order on an 
elliptic curve A defined over K is representable as a closed subgroup of the 
product 

taken over primes t. In this chapter, we reproduce Serre's fundamental work 
that over a number field this Galois group is always open in the product, in the 
case that the elliptic curve has a non-integral invariant at some prime p. Serre 
also proved the theorem in general, when the curve does not have complex 
multiplication, but the proof involves different, and in many respects deeper, 
techniques. The special case to be given here is sufficiently important, and fits 
in well enough with the preceding chapters to be included, since the proof is 
quite short. 

§1. A THEOREM OF SHAFAREVIC 

Let K be a number field. Let 0 be the ring of algebraic integers OK' and let 
S be a finite set of primes of K. We let Os be the ring of S-integers, i.e. elements 
of K which are integral for all p ¢ S. The group of units of Os is denoted by o!. 

Let A be an elliptic curve defined over K. We shall say that A has good 
reduction at a prime p of K (or at one of the discrete valuations v of K) if A is 
isomorphic over K to an elliptic curve defined by an equation having non­
degenerate reduction at the local ring op (resp. ov)' If p does not divide 2 or 3, 

221 
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we know that this equation can then be chosen to be a Weierstrass equation 
whose discriminant is a unit in the local ring. 

Theorem 1. (Shafarevil:) There is only a finite number of K-isomorphism 
classes of elliptic curves over K having good reduction at all primes of K 
outside S. 

Proof Shafarevic deduced his theorem from a theorem of Siegel on integral 
points on curves of genus 1. The particular exposition given here is due to Tate­
it is also the one in Serre's book [B11]. Suppose that A is defined by the equation 

y2 = 4x3 - g2 X - g3, 

with g2' g3 E K, and has good reduction outside S. Without loss of generality 
we can assume that S contains all primes dividing 2 and 3. For each v rt S there 
exists an elliptic curve isomorphic to A over K, defined by an equation 

y2 = 4x 3 - g2,vx - g3,v 

with gz,v and g3.v E 0v, and discriminant ~v E o~, so that there exists Cv E k such 
that 

We may also enlarge S so that Os is principal, because making S bigger only 
strengthens the theorem. For almost all v rt S we can take Cv = I, i.e. wherever 
~ is a unit. Write 

where Uv is a unit in 0v' Let 

c = n p~v. 
v 

Then let 
, -4 

g2 = C gz and 

so that~' = C-12~. It follows that the curve A' defined by 

yz = 4x 3 - g'zx - g~ 

is K-isomorphic to A, and has non-degenerate reduction at all v outside S. We 
can still change A' by changing the coefficients with a factor b E o~ so that 
~' 1--+ b12~' = ~". Therefore A is K-isomorphic to an elliptic curve A" with 
coefficients in Os and discriminant defined in OUO~12. Thus we can insure that~" 
lies among a finite set of representatives F of this factor group of S-units. 

But according to the theorem of Siegel (extended by Mahler and Lang, 
cf. my Diophantine Geometry) for rEF, the equation 

U3 - 27V2 = r 

has only a finite number of solutions in Os. This proves Shafarevic's theorem. 
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Remark. The theorem of Shafarevic extends as follows. Let R be a finitely 
generated ring over Z, without divisors of zero, and integrally closed. A minimal 
prime of R is called a prime divisor. It gives rise to a discrete valuation of the 
quotient field K. We can form as usual the group of divisor classes, which is 
known to be finitely generated (cf. DG again). Thus by localizing, e.g. consider­
ing R[l/x] for some x E R, we can kill the finite number of generators of this 
group, and end up with a factorial ring. One calls X = spec(R) an absolute affine 
model of K. Theorem 1 extends to the following statement. 

Let S be a finite set of prime divisors of an absolute affine model of a field K, 
finitely generated over Q. The set of isomorphism classes of elliptic curves 
over K, with good reduction at all prime divisors of the model not in S, is 
finite. 

The proof is the same as the above, because we only used the unique factor­
ization in R, the finite generation of the group of units (also known, cf. DG), 
and the finiteness of the number of points in R, of a curve U 3 - 27 V 2 = r, an 
extension of Siegel's theorem which is also known (loc. cit.). 

The importance of Theorem 1 for what follows lies in the fact that we can 
combine it with a known result: 

If A is an elliptic curve over a field K with nondegenerate reduction at a 
discrete valuation ring 0 of K, and if B is an elliptic curve over K isogenous 
to A over K, then B has good reduction at o. 

This theorem was proved by Koizumi-Shimura [27], and Serre-Tate [37] for 
abelian varieties. I don't know a convenient (perhaps computational) proof for 
elliptic curves, although it is quite plausible. For instance, it is obvious that B 
has good reduction at the valuation ring in a finite extension, which could easily 
be taken of degree 4 or 6. 

We shall now give an alternate proof for the Shafarevic theorem. 

Lemma 1. Let K be a number field, let S be afinite set of primes in K, and 
let d be a positive integer. There is only a finite number of extensions of K of 
degree ~ d, unramified outside S. 

Proof By taking a sufficiently large set of prime numbers, including all 
those divisible by primes in S, and those which ramify in K, we see that any 
extension of K satisfying the hypotheses as stated in the lemma will give rise to 
an extension of the rationals satisfying similar hypotheses. Thus we may assume 
that K = Q. It will therefore suffice to prove that the Galois extensions of Q 
of bounded degree, unramified outside a finite set of primes S, are finite in 
number. For each prime PES, let Ep be the smallest Galois extension of Qp 
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containing all the extensions of Qp of degree:;;;; d. (There is only a finite number 
of these, see for instance [87], II, §5, Proposition 14.) Let E be a Galois extension 
of Q whose completions at all primes dividing those of S contain Ep. If F is a 
Galois extension of Q of degree:;;;; d, unramified outside S, then the completion 
Fp for any prime p dividing PES has degree:;;;; dover Qp, and hence is contained 
in Ep. This implies that FE over E is unramified (in fact splits completely) at 
any prime lying above a prime pin S. If F over Q is also assumed to be unramified 
outside S, then it follows that FE over E is everywhere unramified. The different 
of E over Q is fixed, and is equal to the different of FE over Q ([B7], III, § 1, 
Proposition 5). Its norm down to Q from FE is the discriminant of FE over Q, 
and is therefore bounded. But a classical elementary theorem of Minkowski says 
that there is only a finite number of extensions of Q with bounded degree and 
bounded discriminant ([B7], V, §4, Theorem 5). This proves our lemma. 

Lemma 2. Let K be a number field andjo E K. Let S be afinite set of primes 
of K. There exists only a finite number of K-isomorphism classes of elliptic 
curves over K with good reduction outside S, having invariant jo. 

Proof Let A, B be such curves. There is an isomorphism 

ccA->B 

defined over an extension of K of degree:;;;; 6. We contend that 0: is defined over 
an extension which is unramified outside S. To prove this, we may replace K 
by its completion Kp for p if; S. Let 0'10:, ... , O'nO: be the distinct conjugates of 
Cf. over Kp, where 0'1, ... , O'n are automorphisms of the algebraic closure of Kp 
over Kp. Then 

are distinct, and are equal to 0'10:, •.. , O'n'y. respectively, where O'v is the auto­
morphism on the residue class field extension determined by O'v. Hence the 
embeddings 0'1, •.• , O'n are distinct. This implies that the smallest field of 
definition for· 0: containing Kp is unramified over Kp. 

Using Lemma 1, we conclude that there is a finite extension E of K, which 
we may assume Galois, such that any two elliptic curves A, B over K, with good 
reduction outside S, having the same invariant jo, become isomorphic over E. 
If 0:: A -> B is an isomorphism over E, then 

0' E Gal(Ej K) 

is a function of Gal(EjK) into Aut(A), and the set of such functions is finite. 
If we fix A, and consider elliptic curves B 1 , B2 having the same associated 
function as above, say by isomorphisms 

o::A->BI and f3:A->B2' 

then B J , B2 are isomorphic over K. Indeed, let }, = f30:-1. From 0:- 10:<1 = f3- 1 f3<1 
we see that l<1 = )., so}. is an isomorphism defined over K. This proves our lemma. 
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To prove the theorem of Shafarevic from the lemmas, let N be an integer 
so that the genus of the modular function field F N is ~ 1. Let RN be the integral 
closure of Z[j] in FN • Enlarge the set S to contain all prime divisors of N. Let 
A be an elliptic curve defined over K with good reduction outside S. Then the 
extension K(AN) of K is unramified outside S, and has degree bounded by N 4 • 

Hence there is a finite extension E of K, which we may assume Galois, such that 
for all elliptic curves A over K, with invariant jo, E 0K.s, and good reduction 
outside S, we have 

K(AN) C E. 

Let 0E.S be the integral closure of 0K,S in E. Then any specialization j 1--+ jo in 
0K.s extends to a point of spec(RN) in 0E,S' By the Siegel-Mahler-Lang result, 
we conclude that there is only a finite number of possible values of such jo in 
0K.s' The proof of Shafarevic's theorem is finished by using Lemma 2, 

The advantage of the above proof over the previous one is that it exhibits 
better the connection of the theorem with the moduli scheme, which in our case 
is spec(RN)' A similar proof could be given for higher dimensional abelian 
varieties if one knew the finiteness of integral points on the higher dimensional 
moduli schemes. 

§2. THE IRREDUCIBILITY THEOREM 

Theorem 2. Let A be an elliptic curve without complex multiplication, 
defined over a number field K. Let G = Gal(Kal K). Then: 

i) For almost all primes p, Ap is G-irreducible. 

ii) For all primes p, Vp(A) is G-irreducible. 

Proof Suppose that Ap is not irreducible for infinitely many p, and let Wp 
be an irreducible subspace, necessarily of dimension I, over F p' Then Wp is 
cyclic of order p, and AI Wp is an elliptic curve which can be defined over K, 
and is isogenous to A over K. If W, W' are cyclic subgroups of A of different 
prime orders, then AI Wand AI W' cannot be isomorphic, otherwise we get a 
non-trivial endomorphism of A from the following diagram, 

A 

~/ ~A 
AIW ~AIW' 

~ 
A 
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where V.' = vU), and the endomorphism is ),' 0 ;:::, 0 lX. This contradicts the 
hypothesis that A has no complex mUltiplication. Theorem 1 (the theorem of 
Shafarevic), together with the remarks at the end of §I, now show that there can 
only be a finite number of Wp -as above, in other words, only a finite number of 
primes p such that Ap is reducible. 

The proof of (ii) is similar, except that we work vertically. Suppose that 
Vp(A) is not irreducible. Then there is a G-irreducible I-dimensional subspace 
over Qp, and therefore after multiplying a generator for this subspace with a 
suitable p-adic integer, we get a G-invariant I-dimensional Zp-subspace Z of 
TiA). Let Zn be the projection of Z in Apn. Then the order of Zn goes to infinity 
with n, and each Zn is cyclic, invariant under G. We form A/Zn = Bn as before, 
defined over K, and with good reduction by the assumed result mentioned above. 
The curves Bn cannot be isomorphic, for if Bm ;:::, Bn, say Zm c Zn' then we have 
a sequence of isogenies 

~ can 
A/Zn -+ A/Zm -+ A/Zn, 

whose composite has cyclic kernel, whence is a complex multiplication, contrary 
to hypothesis. This proves Theorem 2, again in view of the theorem ofShafarevic. 

§3. THE HORIZONTAL GALOIS GROUP 

Let A be an elliptic curve defined over a number field K. For each prime 
t, let A(t) be the group of points of order a power of t on A, in a fixed algebraic 
closure. (When we consider A with invariantjA which is not p-integral for some 
prime p of K, it is convenient to take this algebraic closure to be in an algebraic 
closure of the completion Kv ') Let Ator denote the group of torsion points of A, 
and K(A tor) be the field generated over K by all the coordinates of the torsion 
points of A. 

Let G = Gal(K(Ator)/K) be the Galois group of the torsion points of A. 
By the representation on the product 

n TtCA), 

taken over all primes t, we get an embedding 

p: G -+ n GL2(Zt) 
( 

of G as a closed subgroup of the product of the linear groups GL2 (Zt). At each 
t, we get a similar embedding 

Pt: Gt -+ GL2(Zt), 

where Gt = Gal(K(A(t)/K). We shall often identify G and Gt with their images 
under this representation. 
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Serre has proved: 

Theorem 3. Let A be an elliptic curve over a number field K, without complex 
multiplication. Then the Galois group of K(A tor ) over K is open in the product, 
taken over all primes t, 

We shall prove Serre's theorem here only when A has an invariant j = jA 
which is not integral at some prime p of K. The proof in general uses quite 
different techniques. 

In this section, we prove one portion of the theorem, namely: 

Step 1. The Galois group of K(A t ) over K is GL2(ZjtZ) for almost all t. 

We note that the local extension Kp(At) has a local group which acts on At, 
which we know is Galois-isomorphic to 

Dl/tjD 
q q' 

under the Tate parametrization, as in Chapter 15, §2. Here, Dq is the cyclic 
group generated by q, and q = neu has order e > 0 at p, and can be expressed 
as the above product with some unit u in Kv' For all t not dividing e, the field 

KpC(to ql/t) 

admits an automorphism (J over Kp which leaves (t fixed and such that 

(Jql/t = (tql/t. 

Thus in a suitable basis of A, the matrix of (J is 

(~ ~). 
On the other hand, At is a vector space of dimension 2 over Fr, and is 

irreducible for almost all t by Theorem 2. Since (J leaves a I-dimensional sub­
space of At fixed (corresponding to (I), there exists some r E Gal(K(At)jK) which 
moves that subspace to another. Then (J' = rar- 1 leaves the other subspace 
fixed. If we select for basis eigenvectors of (J and (J' respectively, then (J and (J' 

have matrices of the form 

and 

with b, c 1= O. These matrices generate SL 2(ZjtZ), thus proving that 

Gal(K(At)j K) 

at least contains SL2 (ZjtZ). 
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We also know that the roots of unity lie in K(A(), and hence for almost all t, 
we get a subgroup (ZjfZ)* as a factor group of the Galois group. This implies 
that Gal(K(A{)jK) must be the whole group 

GL 2 (ZjfZ), 
as desired. 

Step 2. For all t, the Galois group oj K(A(I» over K contains an open sub­
group oJGL2(ZJ. 

Proof We first consider the matter locally over K". As r goes to infinity, 
qlW generates an extension of arbitrarily high degree over the field generated 
by all [V-th roots of unity over KI' (notation as in Chapter 16, and justification 
by Lemma 1 of Chapter 16, §2 concerning the non-split exact sequence 

o -+ Vp(/l) -+ V/A) -+ Qp -+ 0 

locally, for t = p.) For t #- p, the extension by ['-th roots of unity is unramified, 
and so our assertion is even more trivial. 

Hence there is an automorphism a of the algebraic closure of KI' leaving KI' 
and all t' -th roots of unity fixed, such that the matrix of a has the form 

with some a#-O in Zt. By the irreducibility Theorem 2 (ii), there exists globally 
an element, in Gal(K(A({)jK) which moves the I-dimensional subspace of Vp 
left invariant by a, and ,ac l leaves another subspace invariant. In a suitable 
basis, we conclude that there exist automorphisms in the global Galois group 
Gal(K(A(t»jK) represented by the matrices 

and G ~). 
Hence the closure of the subgroup generated by these matrices contains the 
analytic subgroups 

and 

as well as their product. It is therefore locally a 3-dimensional analytic subgroup 
of SL2(Zt), whence is open in SL 2(Zt). (Again for the elementary theory of 
Lie subgroups, cf. Serre's Notes, Lie Algebras and Lie Groups.) 

To get an open subgroup of GL2 (Zr), we merely consider the exact sequence 
det 

o -+ SL2(Zt) -+ GL2(Zt) -+ Z~ -+ 0, 

and observe that since the field of all f'-th roots of unity (for all r) over the 
rationals has a Galois group isomorphic to Z,,!, the translation of this field to a 
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number field has a Galois group open in Zj. From this it follows at once that 
Gal(K(A(t)jK) is open in GL2(Z{), 

Step 3. Given a positive integer N, let A(N) be the group of points of order 
divisible by prime powers only for primes dividing N. Then the Galois group 
of K(A(N» over K contains an open subgroup of 

n GL2 (Zr)· 
tiN 

Proof Again, we do the SL2 part first. For each tiN, a suitably small open 
subgroup Wt of SL2 (Zt) is a pro-t-group (it is a subgroup of those elements 
= 1 (mod t». The field K(A(N» is the composite of the fields K(A(t) for tiN, 
and passing to a finite extension E of K (corresponding to an open subgroup of 
the Galois group) we know that E(A(N» is the composite of the fields E(A(t» for 
tiN. Taking E sufficiently large, we see that E(A(t» is a union of Galois extensions 
over E, finite, of degree a power of t. Hence for different t, these extensions are 
linearly disjoint, thus proving our assertion. 

Again, using the roots of unity takes care of the GL2 part. 

§4. THE VERTICAL GALOIS GROUP 

Now let us prove that for almost all t, we get all of SL2(Zt) in the Galois 
group. The proof is based on the following lemma. 

Lemma. Let H be a closed subgroup of GLzCZt) whose projection mod t 
contains SL2(ZjtZ). Then H contains SL2 (Zt) if t ~ 5. 

Proof Let s E SL 2 (Zt). We must show that s E H. There exists Xl E H such 
that 

Xl = s (mod t), 
so 

X~IS = 1 (modt). 

Without loss of generality, we may thus assume that s = 1 (mod t), and write 

s = 1 + tu, 
with 

Then 
det s = 1 + tea + d) (mod t2), 

and therefore a + d = tr(u) = 0 (mod t). 
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We can write U as a sum 

u==ul+"'+ulI (mod!), 

where Ui E M 2(Zt) and UT = 0, tr(uJ = 0 for all i. For instance, 

and the last matrix in the sum can be written as a scalar times 

Then we have 
(l + [Ul) ... (1 + tUn) == s (mod (2). 

Let Sj = I + !Ui' Then det Sj = 1 + [ tr(u j) + t2 det(u j) = 1. We see that our 
S is a product of the Si, and we are reduced to studying each Si separately. 

Suppose therefore that 
S = 1 + tu, 

with u2 = 0, tr(u) = O. We want to show that there exists X 2 E H such that 

X2 == S (mod ( 2). 

By hypothesis, there exists y E H such that y == 1 + U (mod I), so 

y = I + u + tv, 
Then H contains yt, and 

t-l (t) l = 1 + t(u + tv) + V~2 V (u + tvr + (u + tvt 

== 1 + tu (mod ( 2 ). 

The binomial coefficients (:) contain t for v = 2, ... , t - I, and the terms in 

the sum contain either u2 = 0, or t for t ~ 5, so these terms contain t 2 • 

The last term (u + tv)t contains (u + tV)3 because t ~ 5, and 

(u + tV)2 = 0 + t(uv + vu) + t 2v2, 
so 

(u + tV)4 containst2 • 

This proves that H contains y == S (mod ( 2 ). 

We can now proceed inductively, writing S = I + t/lu, and take 

y = 1 + r-1u. 
This proves the lemma. 

We can combine the lemma with the result of the preceding section, and 
find: 



[17, §5] END OF THE PROOF 231 

Step 4. Let A(t) be the group of points of t-power order on A, defined over 
a number field K, and with a non-integral invariant at some prime p. Then 
Gal(K(A(t»)/K) contains SL 2(Zt)for almost all t. 

Let G = Gal(K(Ator)/K). Then we have a closed embedding of G in the 
product of all GL2(Zr). For each t we have the determinant GL2 (Zt) -+ Z:, 
which extends to the product over all t componentwise, and induces a homo­
morphism of G onto a subgroup of n Z:, denoted by Z, with kernel W. Note 
that Z is open in the product because all the roots of unity lie in K(A tor). Thus 
we have a pair of exact sequences 

0-+ W -+ G -+ Z -+0 

! ! ! 
o -+ n SLzCZt) -+ n GLzCZt) -+ n Z: -+ O. 

( t t 

Furthermore we know from our above results that there is a finite set F of 
primes such that the projection of G on 

n GL2 (Zt) 
(eF 

is an open subgroup of this product by Step 3. Also, the projection of G on the 
t-th factor contains SL2 (Zt) for almost all t. 

In the next section we conclude the proof, using only group theory. 

§5. END OF THE PROOF 

The end of the proof depends on a formal juggling with groups and factor 
groups, and prime factorizations, and we don't use elliptic curves any more, 
just group theory. Again we let 

G = Gal(K(Ator)/K). 

Step 5. The group G contains 

rp = ( ... , 1, 1, SL2 (Zp), 1, 1, ... ) 
for almost all p. 

Proof A group X is called profinite if it is a projective limit of finite groups. 
Galois groups of infinite Galois extensions are of this type. If X is profinite and 
S is a finite simple group, we shall say that S occurs in X if there exist subgroups 
Xl c X 2 C X such that Xl is normal in X 2 and Xd Xl ~ S. 

Using elementary isomorphism theorems, one sees that if X is a closed 
normal subgroup of the profinite group Y, then S occurs in X or S occurs in Y/ X. 

Let Sp = SL 2(Z/pZ)/ ± 1 for a prime p. It is well known that Sp is simple 
for p ~ 5. 
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We use the exact sequences of the last section. We know that Sp occurs in 
G for almost all p, by projecting on the p-factors. We want to conclude that G 
contains the factor 

rp = C ... , 1, 1, SL 2(Zp), I, 1, ... ) 

for almost all p. We show first that Sp occurs in G n r p' Let 

Up = ( ... ,1,1, GL2(Zp), I, 1, ... ). 
We have an injection 

Gj(G n Up) ~ (n Ut)jUp' 
I 

But Sp does not occur in any GL2(Zt), for I =I p and p > 5. Hence Sp does not 
occur in GjCG n Up), so Sp occurs in G n Up, whence it occurs in G n r p' 
which is closed in r p , and projects into PSLiZjpZ) = SL 2CZ/pZ)j± 1. Let Hp 
be its image. We contend that Hp = PSLAZjpZ). Ifnot, Hp is a proper subgroup, 
so Sp occurs in the kernel of the projection, i.e. in 

{u E SL 2(Zp), u == 1 (modp)}. 

This is impossible because this group is solvable, while Sp is simple. 
We have therefore shown that G n rp projects onto SL 2(ZjpZ), whence 

G n rp = SL2(Zp) for p large by the lemma of §4, combined with our preceding 
results. This finishes Step 5. 

We now conclude that G contains finite products 

( ... ,1, J, SL2(Ztl)' SLz(Zt,), ... , SL2(Ztm ), 1, 1, ... ) 

for Ii sufficiently large. Since G is closed in n GLz(Zt), it follows that there is a 
finite set S of primes such that G contains 

n SL 2(ZI). 
t¢S 

Step 6. The group G contains an open subgroup oln SL 2(Zt). 

Proof Let S be as above. Let Gs be the projection of G into 

n GL2(Zt), 

and Gs the projection into the complementary product 

n GL2(Zt). 

Let 
Hs = G n n GLiZt) 

teS 

t¢S 

and H~ = G n n GL2(Zt), 
(fS 

so that Hs c Gs and H!; c G/,. We have canonical isomorphisms 

Gs/Hs ~ Gj(Hs x H~) ~ G~/H~. 

Step 5 shows that H!; contains n SLz(Zt), so that GSiH/, is abelian. Hence 
ItS 
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Gsl Hs is abelian, and Hs contains the closure of the commutator group of Gs. 
But the Lie algebra of SL2 is equal to its own derived Lie algebra. Hence the 
closure of the commutator subgroup of an open subgroup of SL2(Zt) contains 
an open subgroup of SL2(Zt). This implies that Hs contains an open subgroup 
Wof 

rES 

Combined with Step 5, this yields Step 6. 

FinaJ Step. We now consider the determinant map 

G --* n Zi, 
t 

induced from the product of the determinant maps 

n GL2(Zt) --* n Zi· 
t t 

Since K(A tor) contains all roots of unity, it follows that the determinant map 
sends G onto an open subgroup of n Z1, necessarily of finite index. By Step 6, 

t 

we know that the kernel contains an open subgroup of n SL2 (Zt), also of finite 
t 

index. From the commutative exact sequences at the end of §4, it follows that 
G is of finite index in 

n GL2(Zt), 
t 

and must therefore be open because G is closed in this product. This concludes 
the proof. 



Part Four 
Theta Functions and 

Kronecker Limit Formulas 



This last part enters into the multiplicative theory of the elliptic functions, 
and its connection with L-series. Chapters J 8 and 19 are immediate continuations 
of Chapters 1 and 4, and could have been treated much earlier, with the obvious 
exception of the arithmetic application of Shimura's reciprocity law to the 
special values of the Siegel function. We deal first with the analytic construction 
of modular functions by "multiplicative" means, and then study the special 
values at imaginary quadratic numbers. 

The reader can read the first Kronecker limit formula independently of 
the other chapters, and immediately in connection with Chapter 18. He can then 
read the chapter on the fundamental theta function in connection with the second 
Kronecker limit formula. The treatment of these limit formulas follows Siegel's 
exposition [815]. A complete account, including relations to L-series, and real 
quadratic fields, is also given in Meyer's book [88]. 



18 Product Expansions 

§l. THE SIGMA AND ZETA FUNCTIONS 

Both in number theory and analysis one factorizes elements into prime 
powers. In analysis, this means that a function gets factored into an infinite 
product corresponding to its zeros and poles. Taking the values at special points, 
such an analytic expression reflects itself into special properties of the values, 
for which it becomes possible to determine the prime factorization in number 
fields. 

In this chapter, we are concerned with the analytic expressions. 
Our first task is to give a universal gadget allowing us to factorize an elliptic 

function, with a numerator and denominator which are entire functions, and 
are as periodic as possible. 

One defines a theta function (on C) with respect to a lattice L, to be an entire 
function 0 satisfying the condition 

O(z + u) = O(z)e2ni[l(Z,u)+c(u)], Z E C, U E L, 

where I is C-linear in z, R-linear in u, and c(u) is some function depending only 
on u. We shall construct a theta function. 

We write down the Weierstrass sigma function, which has zeros of order 1 
at all lattice points, by the Weierstrass product 

O'(z) = z n (1 - ~)eZ!ro+t(Z!ro)2. 
WEL' W 

Here L' means the lattice from which 0 is deleted, i.e. we are taking the product 
over the non-zero periods. We note that 0' also depends on L, and so we write 
O'(z, L), which is homogeneous of degree 1, namely 

O'(),z, ).L) = },O'(z, L) 

239 
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Taking the logarithmic derivative formally yields the Weierstrass zeta 
function 

(1'(z) 1 [1 1 ZJ nz, L) = ,(z) = -( ) = - + L -- + - + 2 . 
(1 Z Z weL' Z - OJ OJ OJ 

It is clear that the sum on the right converges absolutely and uniformly for z in 
a compact set not containing any lattice point, and hence integrating and ex­
ponentiating shows that the infinite product for (1(z) also converges absolutely 
and uniformly in such a region. Differentiating ,(z) term by term shows that 

CCz) = - SO(z) = - 12 - L [ 1 2 - ~J . 
Z weL' (Z - OJ) OJ 

Also from the product and sum expressions, we see at once that both (1 and 
, are oddfunctions, i.e. 

(1( -z) = -(1(z) and 

The series defining ,(z, L) shows that it is homogenous of degree -I, that is 

1 
(..1.z, ..1.L) = -.; (z, L). 

A 

Differentiating the function (z + OJ) - (z) for any OJ E L yields 0 because 
the so-function is periodic. Hence there is a constant 1'/( OJ) (sometimes written 
I'/w) such that 

(z + OJ) = (z) + I'/(OJ). 

It is clear that I'/(OJ) is Z-linear in OJ. If L = [OJ 1 , OJ2], then one uses the notation 

I'/(OJ 1) = 1'/1 and I'/(OJ2) = 1'/2' 

As with" the form 1'/( OJ) satisfies the homogeneity relation 

1 
1'/(..1.OJ) = ~ I1(OJ), 

as one verifies directly from the similar relation for (. Observe that the lattice 
should strictly be in the notation, so that in full, the above relations should read 

(z + OJ, L) = (z, L) + I'/(OJ, L) 

1 
1'/(..1.OJ, ..1.L) = } I1(OJ, L). 

Remark. For those who like to connect with other ideas, the map 

(z, t) J--+ (1, SO(z), SO'(z), t - SO(z)) 
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sends C2 onto a 2-dimensional group variety, which projects on the elliptic 
curve parametrized by the 8;) and p' -functions. We observe that the above map 
is genuinely periodic, with periods (Wb 111) and (W2, 112)' The group variety is 
that associated with integrals of the second kind on the elliptic curve, and is a 
group extension of the elliptic curve by an additive group. 

Theorem I. The function a is a thetafunction, and in fact 

where 

Proof We have 

Hence 

a(z + w) = lj;(w)e~(w)(z+w!2) 
a(z) 

Ij;(w) = 1 if w/2 E L 

Ij;(w) = -1 if w/2¢L. 

d a(z + w) 
-log ) = I1(W). 
dz a(z 

a(z + w) 
log ) = I1(W)Z + c(w), 

a(z 
whence exponentiating yields 

a(z + w) = a(z)e~(w)z+C(w), 

which shows that a is a theta function. We write the quotient as in the statement 
of the theorem, thereby defining Ij;(w), and it is then easy to determine Ij;(w) as 
follows. 

Suppose that w/2 is not a period. Set z = -w/2 in the above relation. We 
see at once that Ij;(w) = -1 because a is odd. On the other hand, consider 

a(z + 2w) 

a(z) 

a(z + 2w) a(z + w) 

a(z + w) a(z) 

Using the functional equation twice and comparing the two sides, we see that 
1j;(2w) = Ij;(W)2. In particular, if w/2 E L, then 

Ij;(w) = Ij;(W/2)2. 

Dividing by 2 until we get some element of the lattice which is not equal to 
twice a period, we conclude at once that Ij;(w) = (_1)2n = 1. 

The numbers 111 and 112 are called basic quasi periods of (. 

Legendre Relation. We have 

112Wl - 111Wz = 2ni. 

Proof We integrate around a fundamental parallelogram P, just as we did 
for the p-function: 
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a 

The integral is equal to 

r (z) dz = 2ni L residues of ( 
JoP 

= 2ni 

[18,§1] 

Fig. 18·1 

because ( has residue 1 at 0 and no other pole in a fundamental parallelogram 
containing O. On the other hand, using the quasi periodicity, the integrals over 
opposite sides combine to give 

as desired. 

Next, we show how the sigma function can be used to factorize elliptic 
functions. We know that the sum of the zeros and poles of an elliptic function 
must be congruent to zero modulo the lattice. Selecting suitable representatives 
of these zeros and poles, we can always make the sum equal to O. 

For any a E C we have 

O"(z + a + w) = ljJ(w)e~(w)(z+WI2) e~(w)a. 
O"(z + a) 

Observe how the term lJ(w)a occurs linearly in the exponent. It follows that if 
{aJ, {bJ (i = 1, ... , n) are families of complex numbers such that 

then the function 

La i = Lb i , 

n O"(z - ai) 

n O"(z - bi) 
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is periodic with respect to our lattice, and is therefore an elliptic function. 
Conversely, any elliptic function can be so factored into a numerator and 
denominator involving the sigma function. We write down explicitly the special 
case with the 8O-function. 

Theorem 2. For any a E C not in L, we have 

a(z + a)a(z - a) 
~J(z) - 8O(a) = - a2(z)a2(a) . 

Proof The function 8O(z) - 8O(a) has zeros at a and -a, and has a double 
pole at O. Hence 

( ) ( ) a(z + a)a(z - a) 
80 z - 80 a = C a2(z) 

for some constant C. Multiply by Z2 and let z ...... O. Then a2(z)/z2 tends to 1 and 
Z28O(Z) tends to 1. Hence we get the value C = -1/a2(a), thus proving our 
theorem. 

APPENDIX. THE SKEW SYMMETRIC PAIRING 

As an application of the sigma function, we shall carry out the details of 
the skew-symmetric pairing between points of order N on an elliptic curve 
mentioned in Chapter 6, §3. 

Recall that a divisor (or a O-cycle) on the elliptic curve (torus) A is an element 
of the free abelian group generated by the points, and can therefore be written 
in the form 

a = L miCa), 

with integer coefficients mi' We take ai to be a point in C representing a point on 
Ac = C/L. We say that a has degree 0 if L m i = O. We write a '" 0 if a is the 
divisor of a function, and we say then that a is linearly equivalent to O. We let 

Sea) = L miai (mod L) 

be the point on the torus obtained by summing the a i in C (as distinguished from 
the formal sum giving the divisor). Then the representation of a function as 
a product of sigma factors shows that a '" 0 if and only if Sea) = O. 

Let 9 be a non-zero function on A such that none of the components (a i) of 
a are zeros or poles of g. Then we define 
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If f, 9 are non-zero rational functions on A, then we have the reciprocity law 

I f«g» = g«(f» I 

provided of course that the expressions are defined, i.e. the divisors of f and 9 
have no point in common. This fact holds on arbitrary curves (Weil, 1940), and 
a suitably formulated generalization holds on arbitrary varieties (Lang, 1958). 
In the case of elliptic curves, the relation is obvious if we make use of the sigma 
function. Indeed, if 

and 

where ai' bj are complex numbers corresponding to points on the torus, such 
that L mia i = L njbj = 0, then 

fez) = c n O'(z - air, 
i 

with some constant c. Consequently 

f«g» = n O'(b j - air"} = g«(f», 
i.j 

because 0' is an even function and L m i = O. 
Now let a, b be divisors such that Na and Nb ~ O. Say 

Na = (f) and Nb = (g). 

Assume that a and b have no point in common. We define 

feb) <a, b) = g(a) . 

Theorem. The symbol <a, b) depends only on the linear equivalence classes 
of a and b. It induces a skew-symmetric non-degenerate pairing 

AN x AN -+ JiN' 

where JiN is the group of N-th roots of unity. 

Proof If b' ~ b and a, b' have no point in common, it is immediately 
verified from the reciprocity law that < a, b) = <a, b'). Thus our pairing depends 
only on the linear equivalence classes of a and b respectively. In particular, if 
a, b are points of order N on A, we may let a = (a) - (0) and b = (b) - (0), 
and define 

<a, b) = <a, b) = <a', b'), 

where a' ~ a, b' ~ b, and a', b' have no point in common. (We can always find 
such a', b' by making appropriate translations.) 

It is also an immediate consequence of the reciprocity law that the pairing 
is skew-symmetric, and takes its value in the N-th roots of unity. We shall 
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obtain an analytic expression for this root of unity, which will automatically 
show that the pairing is non-degenerate. 

The symbol <a, b) is independent of the linear equivalence classes of a and 
b respectively. We let a, b be complex numbers representing the points Sea) and 
S(b) respectively, so that 

Na = W and Nb = W' 

are periods. To compute < a, b) we may then take a and b to be the divisors 

a = (u + a) - (u) and b = (v + b) - (v), 

where u, v are sufficiently general. Again letting 

Na = (I) and Nb = (g), 

we see that the factorization of/ and g in terms of the sigma functions is given by: 

fez) = a(z N-= /u + a)t 
a(z - u) a(z - u - w) 

g(z) = _~~_ - (v + b)t . 
a(z - V)N-l a(z - v - w') 

Ifwe now make the appropriate substitutions for/(a)/g(b), and use the functional 
equation for the sigma function, together with the fact that the sigma function 
is odd, we find the value 

f(a) e~(w)w'/N 

g(b) e~(w')w/N 

Let us select w = W l and w' = w 2 , and use the Legendre relation. We find 

for the special divisors aI, a 2 such that S(al) is represented by the complex 
number wdN and S(a2 ) is represented by the complex number W2/N. Expressing 
wand w' as linear combinations of WI, W2 with integer coefficients, we see at 
once that our pairing <a, b) is non-degenerate, This proves everything we 
wanted. 

Remark. The symbol <a, b) can also be given in terms of Kummer theory. 
Cf. my book Abelian Varieties for the general statement in higher dimensions. 
We leave it as an exercise to the reader to give the proofs in terms of sigma 
function on elliptic curves. Shimura [B 12] treats the pairing directly from the 
Kummer point of view. 
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§2. A NORMALIZATION AND THE q-PRODUCT 
FOR THE a-FUNCTION 

[18, §2] 

We normalize our lattice to be L t = [I', I], so that the corresponding sigma 
function is a(z; 't'). We wish to mUltiply 0' by a trivial theta function, of the form 

i.e. let 

qJ(Z) = e"Z2+bza(z), 

such that qJ has period 1: (we shall see afterwards how qJ behaves under translation 
by 1). This is a trivial problem in solving for a and b. We let 

a = -111(1) and b = ire. 

Computing qJ(z + 1:)/qJ(z), and using the functional equation for 0', yields the 
first part of the next theorem. 

Theorem3. Let 

qJ(z; 1:,1) = qJ(z) = e-t~z' qt a(z; 1:), 

where 11 = 11(1)( = l1zfor the lattice [1:, 1]), and qz = e21tiz • Then 

qJ(Z + 1) = qJ(z) and qJ(z + 1:) = - l. qJ(z). 
q" 

Proof The first relation was achieved by construction. The second part of 
the theorem comes by expanding 

qJ(z + 1:) = e"(z+t)'+b(z+t) "'(1:) e,,(t)(z+t/ 2) a(z) 

= qJ(z) times an obvious exponential factor. 

Write down the exponential factor explicitly, and use the Legendre relation, 
which reads 

11(1)1: - 11(1:) . 1 = 2rei. 

You get at once 

qJ(Z + 1:) = qJ(z)( -1) e- 21tiz• 

This proves the second part, as described. 

One also wants the formulation of Theorem 3 in its homogeneous form as 
follows. 

Theorem 3'. Let L = [WI' W2] and 

Then 

m(z· W w) = e - t",CA,,(zlco,)' qt a(z, L) 
"t' , 1, 2 z/co, , • 
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and 

1 
qJ(z + WI; WI' W2) = - -- qJ(z; WI' w 2)· 

qzjro 2 

Remark. In the relation between qJ and a, observe that a is homogeneous of 
degree 1, and that the exponential factors in front are homogeneous of degree 0 
(that is the products I12W2 and zlw2)' In particular, qJ is homogeneous of degree 
1, that is: 

We want product expansions for a(z) and qJ(z), which are entire, with zeros 
of order I at the lattice points of [r, 1]. Let qt = e2nit and qz = e2niz • 

Theorem 4. Let qJ(z) be as in Theorem 3. Then 

qJ(z; r) = (2ni)-I(qz - 1) fI (1 - q~qz)(l - q~/qz) 
n=1 (1 - q~)2 

and 

( . ) _ (2 ')-1 -t~z2( -t _ --t) n°O (1 - q~qz)(l - q~/qz) 
a z, r - nl e qz qz n 2 

n=1 (1 - qt) 

(Again we put 11 = 11(1) = 112 with respect to the lattice [r, I].) 

Proof Let g(z) be the expression on the right-hand side, which we want 
to be equal to qJ(z). It is clear that 9 has period 1, just like qJ, that is 

g(z + 1) = g(z). 

Let us compute g(z + r). Substituting z + r for z in the terms of the product, 
we essentially get all these terms back, except that the product of terms involving 
q~qz starts with n = 2, and the product of terms involvingq~/qz starts with n = O. 
Taking these into account, together with the transformation of qz - 1 into 
qzqt - 1 arising from the term in front of the product, we find that 9 satisfies 
the same functional equation as qJ, namely 

1 
g(z + r) = - - g(z). 

qz 

Therefore qJIg has a period lattice [T, 1]. On the other hand, our product ex­
pansion for 9 shows that 9 has exactly the same zeros, of order I, as a (and 
hence qJ). Therefore qJlg is constant. Letting z -+ 0 immediately shows that the 
constant is 1, thus proving our theorem. 

Again for the record, we give the homogeneous form of Theorem 4. 
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Theorem 4'. Let L = [WI' W2], and let cp(z: WI' W2) be as in Theorem 3'. 
Then 

Remark. In all our q-expansions, we emphasize that the power of 2rri occurs 
with precisely minus the homogeneity degree of the function involved. Thus we 
have (2rri)-1 in the q-product for (1, while we have for instance (2rrOZ in the 
q-expansion for p, in Chapter 4, and say (2ni)4 in the q-expansion for 92' 

§3. q-EXP ANSIONS AGAIN 

This section may be omitted. For the most part we recover q-expansions 
already obtained in Chapter 4, by using the q-product for (1, and then getting 
the corresponding q-expansions for "'720 gJ by differentiation. In particular, 
the product expression for ~ in the next section is independent of the present 
section. 

Taking the logarithmic derivative of the product for (1 term by term, which 
we can do by absolute convergence, we obtain: 

(1) Y( ) +' qz + 1 + 2 . ~ [q~/qz q~qz ] \, z = '12Z TCI --- rrl '-' - n 
qz - 1 n~ 1 1 - qr/qz 1 - qrqz 

where '12 = '12(-r, 1). On the other hand, going back to the additive expression 
for ( obtained from the logarithmic derivative of the Weierstrass product 
for (1, we get the power series expansion of ( at the origin, 

(2) 

where 

1 3 5 
(Z) = - - S4Z - S6Z -'" 

Z 

1 
Sm = L m' 

WEL' W 

Furthermore, we have trivially 

qz + 1 en;, + e- niz 

qz - 1 eniz - e- niz 
cos rrz 

-i-.--, 
SIll rrz 

~ = L - {a}. 
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whose power series expansion at the origin is immediate from Taylor's formula, 
and yields 

.qz + 1 [ 1 nz (nz)3 2(nz)5 ] 
1t/---=n----------,,· . 

qz - 1 nz 3 45 45 ·21 

To get a power series in z for the sum in (1), let q = qt and w = qz for simplicity. 
Then for Iql < Iwl < Iql-I we have 

f [ qn/~ _ qnwn ] = f ~ [(qn)m _ (qnw)m] , 
n= I 1 - q /w 1 - q w n= I m= 1 W 

which by interchanging the two sums is equal to 

~ qm (-m m) 1..--mw -w. 
m= 1 1 - q 

Substituting back w = e2niz , we obtain another power series in z for (. Com­
paring the coefficient of z yields the q-expansion 

(2) 1h(r, 1) = -- -1 + 24 L -t-n . 
(2ni)2[ OCJ nqn] 

12 n= 1 1 - qt 

Similarly, comparing the coefficients of Z3 and Z5 would yield the same expansions 
for g2 and g3 that we found in Chapter 4. 

Differentiating (1) with respect to z also gives us another derivation of the 
q-expansion for &o(z; r) found in Chapter 4. Observe that one needs here the 
intermediate step giving us 'h in (2). There is no need to write these expansions 
again, as they have been tabulated previously. 

§4. THE q-PRODUCT FOR ~ 

We shall obtain the product expansion for ~ = ~(r, I). 

Theorem 5. 

00 

~ = (2ni)12 qt n (1 - q~)24. 
n=l 

By definition, the discriminant of our cubic polynomial is given in terms of 
the roots by 

where 
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We shall actually find q-products for the differences e i - ek' and even their 
square roots. 

We continue to work with our normalized lattice [T, 1]. Then by Theorem 2, 

We use the functional equation of the sigma function in Theorem 1 on each one 
of the numerators of the expressions on the right hand side. For instance, 

aC ; 1) = a(' ; 1 _ 1) = - e -~(1)1< a(' ; 1), 
and similarly for the other cases. We also use the fact that a is an odd function. 
Then our expressions for the differences of the ek become: 

Remark 1. Each expression on the right is a perfect square, which shows that 

the square roots .j ek - ei are holomorphic on f,. 
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Remark 2. Using the q-product expression for (1 found in Theorem 4 and 
substituting the special values for z yields the corresponding q-product expres­
sions for the differences of the ek • We can tabulate these, although we won't 
need them in what follows. Let q = qr and let as in Fricke, 

Then: 

Eft 

Ef3 

Ett 

00 

Po = n (I - q") 
.. =1 

00 

P2 = n (1 + q") 
11=1 

00 

PI = n (1 - q"-t) 
,,=1 

00 

P 3 = n (l + q"-t) 
,,=1 

Since POP1P2 P3 = Po trivially, we see that· 

P1P2P3 = 1. 

It then follows that the product expansion for !:J. is the desired one. However, 
we shall do it directly again below. 

Remark 3. Having given the differences of the ek in terms of the go-function, 
we see that these differences are modular forms of appropriate weight. The 
classical literature went overboard on this. To read Weber, just to find the 
q-product expansion of ~, one has to plow through all the formalism of these 
differences and the names given to the numerators and denominators occurring 
on the right in E21, E23, E31 (they are theta functions with various indices). 
Of course, these modular forms of low level are very useful in other applications, 
and provide computational data which should not be· disregarded, but should 
be tabulated in its proper place. 

Let us now multiply together all the expressions Eik. We get cancellations, 
giving us 

We use the q-product for (1 found in Theorem 4. To figure out ~, we must 
therefore keep track of the exponential term, a rational function in q, and three 
types of infinite products. 

The exponential term is dealt with by using the Legendre relation 

'l(I)r - 'l{r) = 2rri, 



252 PRODUCT EXPANSIONS [18, §5] 

which will cause all the transcendental terms in the exponent to cancel. It 
comes out neatly, and we won't clutter up the page with it. 

For the product, let 
00 

P(z) = n (1 - q~qz)(1 - q~/qz). 
n= 1 

We have to study the product 

00 

= n (1 + qn)(1 - q2n+1)(1 + qn)(1 _ q2n-1). 
n=1 

00 

Let Po = n (1 - qn). Then we get the efficient relation 
n=1 

so that (miracle) 

2 P5 
PPo =--, 

1 - q 

1 
P=1-q!! 

This contribution from the infinite product therefore reduces to a contribution 
of a rational function of q, which we can combine with the other rational 
functions of q arising from the expression for the q-function in Theorem 4. 
We are therefore left only with the product 

00 n (1 - qn)24. 
n=1 

You can work out the rational function in q which must appear in front, and 
you will find that all the terms cancel out except the desired q = q •. The power 
of 2rri must be 12, and is 12 (corresponding to the homogeneity degree of A). 
This gives us our desired q-product for A. 

§5. THE ETA FUNCTION OF DEDEKIND 

We now use the symbol 11 for a new function, and not for the quasi periods of (. 

We define the Dedekind eta function by 
00 

I1(r) = q;/24 n (1 - q~), 
n=1 

where q = q. = e27Ci •• It is holomorphic on the upper half plane ~. 
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Theorem 6. The etafunction satisfies 

l/(r + 1) = e21ti/241](r) 

1]( - n = ) - ir 1]( r), 

where the square root is the obviously normalized one for rEi), taking positive 
values on the positive real axis. 

Proof The first relation is trivial from the q-product. As for the second, 
we know that A, viewed as a function of two variables, i.e. 

is homogeneous of degree - 12, so that 

Taking the 24-th root shows that 

11]( -I/r)1 = l)rll1](r)l. 

Note that )~ is holomorphic on i). Hence the function 

1](-1/r) 

.. ..,Ir 1](r) 

is holomorphic on i) and has absolute value 1. By the maximum modulus 
principle, it must be constant. Putting r = i shows that 

1 = C)7, 

whence C = 1/)7 = ) - i. This proves our theorem. 

We can now recover a fact used in our analysis of ramification in the modular 
function field. We have the definition of J, 

J = g~/A. 

We want to see that its cube root exists as a modular function of level 3. Since 
g2 is homogeneous of degree - 4 as a function of two variables, we find that 

g2( -1/r) = r4g ir). 

On the other hand, from Theorem 6 we get 

1]8( -I/r) = r 41]8(r). 

Furthermore, 

1]8( r + 1) = e21ti / 3 1]8( r) and 
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Hence we obtain the transformation rule for J't under the modular group. 

Theorem 7. Let J't = 92/1]8. Then 

Jt( r + 1) = e2nij3 J+( r) and J+( -1/r) = Jt( r). 

Similarly, 

Theorem 8. Letf = .jJ - 1 = 2793!IJ12. Then 

fer + 1) = -fer) and f( -I/r) = fer). 

Corollary. The functions Jt and .jJ - 1 are modular functions of level 3 
and 2 respectively. 

Proof Let r = SLz(Z) as usual, and let 9 = J't, f = .jJ - 1. We have a 
representation of r on the space generated by f, 9 over C, which is abelian, 
with characters of order 3 and 2 respectively. However, letting S, T be the 
mappings 

S(r) = -1/r and T(,) = r + 1, 

we know that S, T generate the modular group, and so do S, ST which have 
order 2, 3 respectively. The abelianized modular group can therefore have order 
at most 6, and has order 6 since we just found the appropriate representation 
for it. Let r 3 and r 2 be the congruence subgroups of level 3 and 2 respectively. 
Then r / ± r 3 has order 12 and r;r 2 has order 6. Also, r; ± r 3 has a normal 
subgroup whose factor group is cyclic of order 3, and r;r 2 has a normal sub­
group whose factor group has order 2. In this way we obtain another representa­
tion of r into a cyclic group of order 6, whose kernel must be the same as that 
of the previous one, because the abelianized modular group has order at most 
6. This proves that r 3 and r 2 leavef and 9 fixed, as was to be shown. 

§6. MODULAR FUNCTIONS OF LEVEL 2 

This section will not be used anywhere else, and is included as an example, 
for the sake of completeness, and because it fits with the computations involving 

el' e2, e3' 
We consider the congruence subgroup 1(2) consisting of all elements r:I. of 

SL2(Z) satisfying the condition 

r:I. == I (mod 2). 

Such r:I. can be written in the form 
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with a, d odd and b, c even. Using arguments similar to those involved in 
determining a fundamental domain for the modular group, one sees that the 
elements 

and 

generate r(2), and that a fundamental domain for r(2) consists of the shaded 
region in the next figure. The mapping S2 carries the semicircle on the left onto 
the semicircle on the right. 

Fig. 18-2 

Let G6 = G = r/r(2) be the factor group, which is of order 6. It is re­
presented by the matrices: 

Define the function 

The homogeneity properties of the quasi periods of the Weierstrass zeta function, 
and of the a-function, show that the above ratio is homogeneous of degree 0, 
and that our notation as a function of't' is legitimate. Indeed, in the relations 
Eik' the exponential factor is homogeneous of degree 0, and each factor involving 
0' is homogeneous of degree 2, so that we get homogeneity of degree ° when 
taking the quotient. 

It is now verified by direct computation that the six transformations of G6 

transform the function A into the following six functions. 
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eZ - e3 I e3 - e j A- I e j - ez 
}o = ---

e j - e3 1 -A e2 - e j A e3 - ez 

1 e j - e3 }o e3 - ez ez - e j 
- I -A= 
A ez - e3 A- I e j - ez e3 - e j 

This yields a faithful representation of G6 on those six functions, and the fixed 
field consists of rational functions in j, with rational coefficients. The function 
}, generates the modular function field of level 2, which we denoted by F z. We 
shall expressJ(r) as a rational function of A(r), namely we shall prove: 

I (AZ-A+I)3 
j(r) = 28 'Z(" I)Z 

I Ii. Ii.-

(Recall that j(r) = 123J(r) is the normalization whose q-expansion starts with 
l/q.) 

To derive the above rational expression as in Ford's Automorphic Functions, 
consider the rational function 

Q = (A + l)C ~ A + 1 )C ~ 1 + 1)( ~ + 1)( A ~ 1 + 1)(1 - A + 1) 

(A + 1?(A - 2)Z(2A - I)Z 
,,1.2(,,1. _ I)Z 

In terms of e l , ez, e3, it becomes 

(e z + e j - 2e3)Z(ez + e3 - 2e j )2(e l + e3 - 2e2)Z 

(e l - ez)2(e2 - e3)Z(e l - e3)Z 
Q= 

But 

and 

The numerator of Q is then equal to 

(- 3e3)Z( - 3e j )Z( - 3ez)Z = .~~ g~. 
The denominator is equal to 

l6(g~ - 27gD, 

which is~, up to the factor 1/16. Therefore 

Q = 27(1 - J). 

Since we had the original expression of Q as a rational function of },' it is then 
trivial to get the rational expression of j in terms of A, and it is the stated one. 

The function }, is used by Deuring [8]. It is also taken by Igusa as one of 
the fundamental parameters in his theory of abstract elliptic functions [25]. 
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It is advantageous because it can be used instead of j to parametrize elliptic 
curves in a non-degenerate way, by means of the equation 

y2 = x(x - I)(x - Ie), A =I 0, 1, 00. 

The point A = ° lies above j = 00, and is ramified of order 2. One can see 
directly (and thus confirm the general fact) that Q(A) is ramified over Q(J) = Q(j) 
of order 3 over j = ° and of order 2 over j = 123 , i.e. J = 1. A direct computation 
shows that the j-invariant of the above curve is precisely j, for A =I 0, 1. As 
Igusa points out, the same parametrization is valid for all characteristics =I 2. 

One can look at the function X from another point of view, namely as the 
analogue of a "Minkowski" unit in the function field. It can be generalized as 
follows. For an integer N > 1, let 

AN(T) = ty(wz/N) - ty(w3/N) . 
ty(wt/N) - ty(w3 /N) 

The expression on the right is homogeneous of degree 0, and hence gives rise 
to a function of T E ~, modular of level N. The function AN obviously has no 
zero or pole on ~. It would be interesting to determine the part of the unit 
group it generates in the integral closure of ZU] in the modular function field 
of level N, and to investigate its special values at imaginary quadratic points, 
to see if they generate the ray class fields. 

[Added in the Second Edition: The study of the unit group of such functions 
was carried out in Kubert-Lang. See the series of papers in Math. Annalen, and 
"Modular Units", Springer-Verlag, 1981.J 



19 The Siegel Functions and 
Klein Forms 

§1. THE KLEIN FORMS 

This chapter is entirely rewritten for the second edition, and follows 
Kubert-Lang (Units in the Modular Function Field I, Math. Ann. 218 (1975), 
pp. 67-96; see also "Modular Units", Springer-Verlag, 1981). 

In line with the terminology which has become standard, we speak of 
modular forms instead of automorphic forms. We let: 

1(1) = SLz(Z), 
1(N) = subgroup of elements 

such that (X == 1 mod N. By 1 we mean the unit 2 x 2 matrix, so this congruence 
condition is equivalent with 

a == d == 1 mod Nand c == b == ° mod N. 

Let k be an integer. By a form of degree k (weight - k) we mean a function 

h(Wl) = heW) 
W 2 

where 

of two complex variables, with Im(wdw2) > 0, satisfying the homogeneity 
property 

MFI. AEC*. 

Let r be a subgroup of SLzCZ), of finite index. We say that a form h as above is 
modular on r, or with respect to r, if it satisfies the additional properties: 

MF2. for all (t E r. 

259 
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MF 3. For r in the upper half' plane, i.e. 1m r > 0, the function h( r, 1) is 
meromorphic at infinity, meaning that it has a convergent Laurent series 
expansion for some N: 

,X: 

her, 1) = I anqn/N for some no E Z, 
l1=no 

where q = eZrrir . A similar expansion should holdfor thefunction h 0 0: with any 
0: E SLz(Z). 

Given a modular form h, the composite functions h 0 0: with 0: E SLz(Z) are called 
the conjugates of h. We often write her) instead of her, I). 

A form of weight 0 is called a modular function. 
If a form is modular on r(N), then we also say that the form has level N. 

We shall use the dot product notation 

where W = (0)1) 
O)z 

We also write 

Let l1(z, L) be the Weierstrass eta function as in Chapter 18, § 1. Define the Klein 
forms 

fez, L) = e-~(z,L)z/Z O"(z, L). 

We also write 

fez, L) = faCW). 

Then the Klein forms satisfy the following properties. First, they are homo­
geneous of degree 1: 

KO. f(AZ, ),L) = Af(z, L) and 

This is obvious from the homogeneity property of the sigma function and the 
Weierstrass zeta function. The next property is also clear. 

K 1. If 0: = (: :) is in SLiZ), then 

fa(O:W) = faa(W). 

We recall the standard transformation property of the sigma function with 
respect to the periods. Let 0) = b10)1 + bzO)z with integers b l , bz. Then 

O"(z + 0), L) = (_I)b 1b2 +b 1 +b 2 e~«u.L)(z+wiZ) O"(z, L). 
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Then we find: 

K2. 

where B(a, h) has absolute value 1, and is given explicitly hy 

B(a, h) = (_1)b 1b2 +b 1 +b2 e-Z7ti(bla2-b2all!Z. 

This follows easily from the Legendre relation 

112W I - I11W2 = 2ni. 

We leave the computation to the reader. 
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So far, we needed no further assumption on ai' a2 • Assume now that they 
are rational numbers, with denominators dividing an integer N > 1, say 

and aZ = siN. 

Let 

be in r(N), and write 

ar + cs = r + -- r +-- s N ( a - 1 C) 
N N ' 

Then we find from K 2: 

K3. 

where BaCa) is a (2N)th root of unity, given precisely by 

( a- I C )(b d - I ) 

( ) _ C ) - -(-1) -N'+N s + 1 N'+N-- s +! 27ti(br 2 +(d-ajrs-cs2j2N2 
Ba a - B a - e. 

From this transformation law, we get: 

Theorem I. Let a E (1IN)Z2 hut a ¢ Z2. Then BaCa)2N = 1. Hence fa is a 
modular form on r(2N2), and f;N is on r(N). If N is odd, then f~ is on r(N). 

The proof is immediate, by considering the cases when r, s are both even, or 
one of them is odd, or both are odd, and using ad - bc = 1, so that for instance, 
not both c, d are even. 
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§2. THE SIEGEL FUNCTIONS 

We now take WI = rand W z = 1, so that 

z = air + a z. 

Using the q-expansion for the sigma function, we can easily derive the q-product 
for the Klein forms. We let the Siegel functions be defined by 

gaCr) = fa(r)A(r)l/lZ, 

where A(r)1/1Z is the square of the Dedekind eta function, namely the natural 
q-product for the 12-th root of A, which is 

11 = 1 

where ql/12 = e21tir/12. We shall use the notation 

and 

Then from the q-product for the sigma function we obtain the q-product for the 
Siegel functions: 

Cf:) 

S 1. gaCr) = _q~1/2)B2(a!l e21tia2(a,-1)/2(1 - qz) n (1 - q~qz)(l - q~/qz)' 

n=1 

where Bz{X) = X 2 - X + i is the second Bernoulli polynomial. 

Remarks. If we change a by an integral vector in Z2, then K 2 shows that ga 
changes by a root of unity. We can always make such a change so that a 
representative in the class mod Z2 has coordinates a = (ai' a2) such that 

and o ~ a z < 1. 

These are the standard representatives <a 1> and <az>' 
The next theorem is immediate from the formalism of the Klein forms. 

Theorem 2. Assume that a has denominator dividing N. Then the Siegel 
junctions ga are modular junctions, and g~2N is on r(N). Furthermore, ga has 
no zeros or poles on the upper hall plane. 

Remark. Because the Dedekind function 1](r) is not a function of lattices, but 
depends on the choice of a basis, we could not define the Siegel functions in 
terms of a lattice. However, if we take the 12-th powers, then we may define for 
any complex number z, the functions 
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These give rise to modular forms when 

1 
ZE- L 

N 

for some positive integer N. 

and Z ¢3L, 
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Also from the formalism of the Klein forms and the fact that the Siegel 
functions have weight 0, we find: 

S 2. !f ex is in SLiZ), then 

As in the study of the Fricke functions, and the automorphisms of the 
modular function field, let (J d (for d prime to N) be the automorphism of the 
modular function field F N induced by the action 

(Nt-> (~ 

on the roots of unity, and leaving the local uniformizing parameter q;/N fixed. 
Suppose aI' a2 have denominator N. Let 

.faCT) = ga(T)12N. 

Then 

S3. 

This is immediate from the q-expansion for the Siegel functions. 
Recall also that we had defined automorphisms of the modular function 

field, namely (J(O:) for O:E GLi(Q) and (J(u) for 

UE U = n GLiZp). 
p 

The automorphism (J(u) was defined relative to the coordinatization ob­
tained by the Fricke functions. Their effect on the Siegel functions is, however, 
easily determined. 

S 4. !f 0: E GLi(Q), then f~(a)(T) = h(O:T). 

This is merely the definition of how (J(ex) operates on modular functions. 

S 5. Let U E U and write 

U == G ~)o: (mod N) 

with some positive integer d satisfying d == det gp (mod N) for all piN, and 
ex E SLiZ). Then on F N we have 

(J(u) = (Jd(J(a), 
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and for any rational ai' a2 with denominator N, we have 

f~;~~,(r) = fa"da2(ar). 

[19, §3] 

Proof, The first assertion is merely a repetition of the fact that we have a 
homomorphism of U into the group of automorphisms of F N, and of the matrix 
representation of the automorphism (J d on the Fricke functions as described in 
Chapter 6, §3. The second assertion follows by definition, and S 3. 

§3. SPECIAL VALUES OF THE SIEGEL FUNCTIONS 

Let f -# (1) be an ideal of the imaginary quadratic field k. We let CI(f) denote 
the generalized ideal class group of conductor f. Let N be the smallest positive 
integer in f, and let (ai, a2 ) be rational numbers with denominator N. If 
L = [WI' w 2 ] is a lattice and r = wdw2 , we write 

j~"a,(r) = f(aiw i + a2 w 2 , L). 

This is the same notation already used for the Klein forms. Here 

fa = g;21'i, 

Note that in what follows, we use only certain properties of the Siegel functions, 
which can easily be axiomatized, cf. "Fricke Families" in Kubert-Lang, We let 

K(f) = ray class field of conductor f over k, 

Let C be a ray class in CI(f). We define the Siegel-Ramachandra invariant 

where e is any ideal in C (and in particular, e is prime to f). This value is 
independent of the choice of c Indeed, if C I is another such ideal, there exists 
a E k* such that ci = ae and a == 1 mod* f Since C1 co (by definition of an 
ideal), it follows that a E e - 1, It is then immediate that 

a-1Efc-1, 

whence f(l, fe-I) = f(a, fe-I), thus proving our assertion, since 
feAt, AL) = f(t, L) because f is of weight O. 

Theorem 3. Let {fa} be the Siegel functions of level N, where N is the 
smallest positive integer in f Then 

f(C) E K(f), and f(C),,(C') = f(CC'). 

Proof. We shall use Shimura's reciprocity law, cf. [Sh], and Chapter 11, §1, 
Theorem 1. 
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Let e E C and let a E C' be such that Na, Ne are relatively prime to Nf. Then 
by definition, 

f(C) = f(1, fe-I) and f(CC') = f(l, fe-la-I). 

Let fe- 1 = [Zl,Z2J with z = zdzz in the upper half plane as usual. Let 
a E Mat; (Z) be an integral matrix with positive determinant such that 

Then det a = Na. Let s be an idele of K such that: 

if plNf, 

8pOp = ap if p~Nf. 

Then we also have s; lOp = a; 1. Furthermore (8, k) = (T(C') on the ray class field 
K(f) because for all p {Nf, ordp 81' = ord p a. Write 

Then a = (ai' az) is primitive of order N mod Z2. By the Shimura Reciprocity 
Law, we get 

f( C)(s.k) = f~(z) 

Since for all primes p, 

qz, pes; I )GJ and 

are bases of (fe-Ia -1 )p, it follows that there exists up E GLz(Zp) such that 

qz.iS;I) = upa- 1, 

We let u = (up) E n GLz(Zp), so that 

Then 
qz(S-I) = ua, 

= fau( a - 1 (z)) 

= faaCct-l(z)) 

[because for p I NT, we have 1 = upa- \ so up = ct and au = aaJ 

= f(l, fe-la-I) 

= f(CC'), 
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This shows that f(CYs,k) = f(CC), and hence that f(C)(S,K) depends only on 
O'(C), Hence fCC) lies in K(f), and we know that Cs, k) = O'(C) on K(f), This 
concludes the proof of the theorem, 

In Ramachandra's paper, there is a twist which is explained by the next 
theorem, 

Theorem 4. Let {fa} be the Siegel functions of level N as above, Let c be an 
ideal in a ray class C mod f, Let b be the different of K/Q, and let 

Then 

f«tr Z2)ZI - (tr ZI)Z2' a) = fCC), 

where C is the complex conjugate of C, 

Proof, We need a lemma, 

Lemma. Let a = [ZI,Z2J be a Factional ideal with Im(zt!z2) > 0, Let 
D = D(oK) be the discriminant, Then 

(tr Z2)ZI - (tr ZI)Z2 = JDNa, 

Proof, If we replace (ZI' Z2) by (AZ 1, AZz) with A E K*, then both sides change 
by n = NA. Hence it suffices to prove the lemma for a = [z, 1J, i.e. Z2 = 1, and 

Z = x + yJD, Y > 0. The left-hand side of our formula is equal to 

2z - 2x = 2yJD. 

Hence we have only to show that 2y = Na. But 

DCa) = Na2D(o) = Na2 ·D, 

and 

Since y > 0, our lemma is proved. 

For the theorem, observe that b = oJD. Then we just substitute the 
expression of the lemma in the left-hand side of the formula to be proved, and we 
find the value 

as was to be shown. 



20 The Kronecker Limit 
Formulas 

§l. THE POISSON SUMMATION FORMULA 

Let J be a function on R. We shall say that J tends to 0 rapidly at infinity 
if for each positive integer m the function 

x f--+ IxlmJ(x) 

is bounded. We define the Schwartz space S to be the set of functions on R 
which are infinitely differentiable and which tend to 0 rapidly at infinity, as well 
as their derivatives of all orders. 

Example. The function e-x2 is in the Schwartz space. Any eX! function with 
compact support is in the Schwartz space. 

We define the Fourier transform of a functionJin S by the integral 

J(y) = f:oo f(x) e-21tixy dx. 

Differentiating under the integral sign shows that J is eX! and tends rapidly 
to zero at infinity (it is in fact in the Schwartz space but we won't need this). 

Poisson Summation Formula. Let J be in the Schwartz space. Then 

L fen) = L J(n). 
nEZ nEZ 

Proof Let 
g(x) = L f(x + k). 

kEZ 

The convergence is obviously absolute and uniform on compact sets, and we 
see that 9 is periodic with period I, and eX!. Its Fourier coefficients are defined by 

267 
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em = f~ g(x) e-2~imx dx. 

Integrating by parts, one sees that !eml ~ c/lml2 for some constant C (essentially 
the sup norm of the first two derivatives of g). Hence the Fourier series converges 
to g. We have 

L: em = g(O) = L: f(111). 
meZ meZ 

On the other hand, interchanging a sum and an integral, we get 

em = fl g(x) e-27rimx dx = L: fl f(x + n) e-2nimx dx 
o n 0 

= L: fl f(x + n) e- 2nim(x+n) dx 
n 0 

= f: >0 f(x) e- 2nimx dx = J(rn). 

This proves the formula. 

§2. EXAMPLES 

The function hex) = e-nx2 is self dual, i.e. h = h. One merely has to differ­
entiate under the integral sign and integrate by parts to see that 

h'(Y) = - 2rryfi(y). 
It follows that 

fi(y) = C e- ny2 

for some construct C. Using the standard integral fiCO) shows that C = 1. 
Letfbe in the Schwartz space, and let g(x) = f(x + e) for some constant c. 

Then 
g(y) = ehicy ley). 

This just comes from changing variables in the integral defining g. 
Similarly, let g(x) = f (bx) where b > O. Then 

~ L(Y) g(y) = ,/ b . 

Again this comes from a trivial change of variables in the integral. 
If we let 

OCt) = L: e- nn21 

ne:Z 
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with t > 0, then we obtain the relation B(t-I) = tIBet), or 

known as the functional equation of the theta function. 
From it we shall obtain the functional equation of the zeta function defined 

for Re(s) > 1 by the series 

Recall that 

1 
(s) = L s· 

n 

foo dt 
res) = 0 e -I tS t ' 

and also recall the invariance of the integral with respect to multiplicative 
translations, that is 

f CO dt foo dt 
feat) - = f(t)-

o tot 

if a > ° and/is absolutely integrable. Select a = rrn. Then let 

F(s) = rr- s/ 2r - (s) = L e- 1t1l2t t s/ 2 -. (S) foo Of) dt 
2 0 11=1 t 

Under the integral on the right we have essentially the theta function, except 
for its term with n = 0. 

Let 
00 

cp(t) = L e -nn", 
n=1 

so that 2<p(t) = B(t) - I. Then we obtain 

F(s) = /s/2 cp(t)-foo dt 

o t 

= ts/ 2 cp(t) - + t- s/ 2 cp(1/t)-. f OO dt foo dt 

1 tit 

The functional equation of the theta function immediately implies that 

rr- s / 2r - (s) = ~- - - + cp(t)[t 2 + t 2 ] -. (s) 1 1 fOCi -" '-=-'- dt 
2 s- 1 sit 
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The right-hand integral is absolutely convergent for all s, and this whole ex­
pression is invariant under s H 1 - s, so we obtain the analytic continuation 
and functional equation of the zeta function, following Riemann's original proof. 

The argument is typical of all proofs of functional equations, and of ex­
pressions for functions of zeta type, especially those which we shall give for the 
Kronecker limit formula in a moment. 

§3. THE FUNCTION K.(x) 

Let a, b be real numbers> o. Define 

KI. K.(a, b) = foo e-(a21+ b211 ) tS c!.! . 
o t 

This is like an integral for the gamma function, but is much better, because first, 
it is more symmetric, involving both t and l/t, and second, it converges absolutely 
for all complex s, because the presence of l/t cures the blow up which occurs 
for the gamma integral near O. 

Let us use the invariance of the integral under multiplicative translations, 
b 

and let t H -to We find that 
a 

K2. Ks(a, b) = (~y K.(ab) 

where for c > 0 we define 

K3. Ks(c) = foo e-c(t+ III) t S ~ • 

o t 

In general, this integral cannot be changed any further, and we note that 

K4. 

proved by letting t H t- 1 and using the invariance of the integral on R+ by this 
transformation. 

However, for s = t, the integral collapses to 

K5. 
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whence 

K6. 

The proof of K5 is easy, and runs as follows. Let 

g(x) = K1-(x) = fro e-x(t+ lit) tt dt . 
2 0 t 

Let t ~ t/x. Then 

1 fOCJ ( + 21) ,dt 
g(x) = -Jx ° e- txt t' -t . 

Let hex) = -Jx g(x). We can differentiate hex) under the integral sign to get 

h'(x) = -2x e-(t+x2It) t-t -. fro dt 

2 t 

Let t ~ t- 1 , use the invariance of the integral under this transformation, and 
then let t ~ t/x. We then find that 

h'(x) = - 2h(x), 
whence 

hex) = Ce- 2x 

for some constant C. We can let x = 0 in the integral for hex) (but not in the 
integral for g(x)!) to evaluate C, which comes out as ret) = -In. This proves K5. 

It is also useful to have an estimate for Ks(x), namely: 

K7. Let Xo > 0 and (jo ;::;; (j ;::;; (jl' There is a number C(xo, (jo, (jl) = C 
such that if x ~ xo, then 

K,,(x) ;::;; C e- 2x • 

Proof First note that t + l/t ~ 2, if t > O. Split up the integral as 

fro = fIls + f8 + fOCi. 
o 0 1/8 8 

The middle integral obviously gives an estimate of the type Ce-2x• To estimate 
the first integral, note that if t ;::;; 1/8, then 

1 1 
-:2~4+-. 
t - 2t 

Hence 

f
l /8 dt fIlS dt e- x (t+l/t-2) t" -::::; e- 2x e- xo(t+1/2t) t"-
° t - ° t 

which is of the desired type. The integral to infinity is estimated in the same way, 
to conclude the proof. 
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The preceding formulas provide the basic formalism of the K-function. 
We suggest to the reader that he skip the following properties until he needs to 
use them, or to give alternate proofs for identities which he knows already. 

K8. IOO 1 d j- r(s - t) 
_ 00 (u 2 + 1)s u = ...; n - r(s) for Re(s) > t. 

Proof. Consider 

I oo 1 Ioo Ioo 1 dt 
r(s) (2 1)" du = e- t (2 1)' tS 

- duo 
-00 u + -00 0 u + t 

Let t H (u 2 + I)t and use the invariance of the integral with respect to dr/t, 
relative to multiplicative translations. The formula K8 drops out. 

The above formula allows us to find the first term of the expansion of the 
right-hand side at s = 1, which will be needed. There are of course alternate 
proofs for this (using the functional equation of the gamma function), but it 
does no harm to get it in the spirit of the present section. Putting s = 1 in the 
integral ofK8 yields the value 7t because 1/(u2 + I) integrates to the arctangent. 
To get the coefficient of s - 1 in the expansion, we differentiate under the 
integral sign with respect to s, and we must evaluate the integral 

I oo log (u 2 + 1) d 
2 u. 

-00 U + 1 

To do this, I use a trick shown to me by Seeley. Let 

Ioo log (U 2X 2 + 1) 
g(x) = 2 1 du 

o u + 
so that g(O) = O. Differentiating under the integral sign and using a trivial 
partial fraction decomposition yields 

g'(x) = 1 : x' 

H<;:nce g(l) = 7t log 2. This gives us 

x> O. 

r(s - t) -rw = .jn(l - (s - 1) log 4 + ... ). 

Finally in questions related to the second Kronecker limit formula it is 
sometimes useful to know the next identity. 

K9. for Re(s) > t. 
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Proof Again as in K8, write down the integral for res), interchange the 
order of integration, let t H (u 2 + l)t and use the fact that e-x2/2 is self-dual for 
the Fourier transform normalized as 

f:oo !(x)e-iXYdx. 

Then let t H xt. The desired formula drops out. 

§4. THE KRONECKER FIRST LIMIT FORMULA 

Let r = x + iy be in the upper half plane, y > 0. We are interested in the 
function E(r, s) defined by the series 

I yS 
E(r, s) = L 1 + 12s ' Re(s) > 1, 

m,n mr n 

the sum being taken for all integers (m, n) #- (0, 0). 
We want to get its constant term in the expansion at s = 1. We shall derive 

an analytic expression for E(r, s) which will exhibit a simple pole at s = 1 with 
residue n, and will show that otherwise it is hoi om orphic in the complex plane. 
From this expression, we shall be able to read off the first two terms. 

Kronecker first limit formula. Let qt = e2tti" and let 
00 

l1(r) = q;/24 n (1 - q~). 
n; 1 

Let y be the Euler constant. Then 

E(r, s) = _n_ + 2n(y - log 2 - log (Jy II1(r)l)2) + O(s - 1). 
s - 1 

Proof Let r = x + iy, so that 
Imr + nl2 = (n + mx)2 + m2y2. 

As in the functional equational equation for the zeta function, we start with 

n-sr(s) = foo e- ttat tS dt . 
as 0 t 

Therefore summing E( r, s) first for m = ° and then m #- 0, we find: 

(4.1) n-Sres)y-SE(r, s) 

= 2n- Sns)(2s) + 2 L L e-ttlmt+nI2t tS_. 00 foo dt 
m; 1 0 n t 

= 2n-sr(s)(2s) + 2 L L e- tt (n+xm)2t e-1ty2m2t t S - • 
00 fOO dt 

m;l 0 n t 
= I + II. 
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We now apply the Poisson summation formula on the sum over all n E Z under 
the integral, yielding 

L e-n(n+_~m)2t = 4 L e2nixmn e- nn2 /t. 

n -y t n 

The square root of t in the denominators will combine with t S to give (S-1. 

We now split the sum over n into two parts, with n = ° and n i= 0. When n = 0, 
we essentially get a zeta expression, so that the corresponding term in the right­
hand side of (4.1) is 

(4.2) 00 foo dt IIn=o = 2 L e- nY'm 2t tS--l:_ 

m= lot 

= 2n-(s--l:) y-2(S-t) r(S - tK(2s - 1). 

Next we deal with the term IIn;< 0, which is 

(4.3) 

00 

= 2 L L e2nixmn KS_-l:(~nym, ~nint). 
m= 1 n;<O 

Therefore the expression in (4.3) is an entire function of s, as one sees by an 
easy estimate for K, but what concerns us is that this expression is holomorphic 
at s = 1. Using (4.1), (4.2), and (4.3) now gives the analytic continuation of 
E(r, s), and it would be easy to get the functional equation, having a form 
similar to that of the zeta function. We concentrate our attention at s = 1, in 
which case 

(4.4) 
00 _ 1 

at s = 1 is equal to 2 L L e2nlxmn - e - 2ymJnJ 
m=l n;<O my 

Recall that 

Looking at q,;,n + q-;mn (arising from positive and negative values of n), and using 
formula K6, we find that 

(4.5) IIn;<o at s = 1 IS 
00 1 

= 4 L -- Re L 
m=lmy n=1 

4 OC! 

- - L log II - q~t 
y n= 1 

4 ( ny) - y log 1'1(r)1 + 12 

4 11; 

- - log 1'1(r)1 - - . 
y 3 
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Putting all our terms together, we obtain 

(4.6) n-sr(s)y-SE(r, s) = 2n- sr(s)(2s) + 2n-(s-!) y-2(S-!)r(s - t)(2s - 1) 

4 n 
- -log 1'1(r)1 - - + O(s - 1). 

Y 3 

Since (2) = rr2/6, we see that the term arising from (2s) will cancel -rr/3. 
Divide by rr-Sr(s), setting s = 1. From simple identities with the gamma 
function, or from K8, one knows that 

while 

r(s - t) -
--- = .Jrr(1 - (s -1)10g4 + ... ) 

res) 

1 
(2s - 1) = + y + O(s - 1). 

2(s - 1) 

MUltiplying by yS we still have to expand 

ySy-2(s-!) = yl-S = 1 _ (s - 1) log y + O(s _ 1)2. 

Putting all this together shows that 

rr 
E(r, s) = -- - n log y + 2n(y - log 2) - 4rr log 111(r)1 + O(s - 1), 

s - 1 

which is another way of writing Kronecker's formula. 

Remark. The formula can be generalized to arbitrary number fields, the case 
treated above corresponding to the rational numbers. One uses the sum over 
pairs of integers of that field. For each real absolute value, one takes a copy 
of the upper half plane. It was unknown until very recently what to do for the 
complex absolute values, but as shown in Asai [1] one merely has to take the 
quaternion upper half plane in this case. The quaternion upper half plane can 
be represented as the set of matrices 

-u) 
z' 

where z is a complex number, z' its conjugate, and u > O. You then end up with 
a mUltiple integral of K-functions, which does not collapse to an exponential 
function, and yields a function analogous to 10gl'1(r)l. Asai discusses precisely 
several aspects of the analogy. However, the connection with abelian functions 
and moduli remains to be worked out. 
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§5. THE KRONECKER SECOND LIMIT FORMULA 

Let u, u be real numbers which are not both integers. We define 
S 

E () '\' e2ni (mu+nv) y 
u.v r, S = f... 2 

(m,n)*(O,O) Inn + nl S 

for r = x + iy in the upper half plane. The series converges for Re(s) > 1. 

Second limit formula. The junction Eu.v(r, s) can be continued to an entire 
junction oj s, and one has 

Eu.vCr, 1) = -2n log Ig-v.uCr)l, 

where gu,v is the Siegel junction, 
,y~\ 

gu,vCr) = _q(1/2 )B,(u) e2"iv(u-l)/2 n (1 - qnqz)(l - qnjqz), 
n=1 

and B2(U) = u2 - U + i. 
Proof. We follow Siegel [B14]. We shall not need any property of gu,v other 

than its definition as the above product. We carry out the proof first for the 
values 

and O<v<1. 

The extension to the general case will be done afterwards. 
As in the first formula, we split off the sum taken for m = 0, so that, 

abbreviating E~,v(r, s) by E(r, s), we get 

e2"inV . . 1 
y-SE(r, s) = L ----ys + L eZnllnll L eZn,"v 2s' 

n*O Inl m*O n Imr + nl 

At s = I, the first sum is a standard Fourier series, 

L e
2ni

:
V 

= 2n2(u2 _ u + !) . 
n*O Inl 6 

The second term is dealt with by using the Gamma integral, and is equal to 

- L e2nimll L eZninv e-ntlmt+nI2 tS - • nS foo dt 

res) m*O 0 n t 

We write r = x + iy, so that Imr + nl 2 = (n + mx)2 + m2y2. The second 
term is equal to 

- L e 2nim(u-vx) L e- nt(n+mx-iv/r)2 e-n(ty2m2+v2/t) t S - • nS fCC dt 

reS)m*O 0 n t 

We apply the Poisson summation formula to the inner sum over n. This sum 
is then equal to 
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Therefore the second term is equal to an expression which involves a Ks-t 
integral, which is seen to be entire in s. At s = 1, the second term is equal to 

The inner integral is of the form KjJa, b) = In e- 2ab , and therefore our second 
a 

term is equal to 

n L e 2rrim(lI-vx) L e2ninmx _1_ e-2nyln-vllml. 

m*0 n Imly 

The sums converge exponentially, and can be reversed, so that we sum over n 
first, and then over m # 0. This is the only point where we use v # 0. For v = ° 
one has to take the term with n = ° into account separately, and then interchange 
the summations. The arguments are similar. We obtain for v # 0, 

(*) E(r, 1) = 2n2(v2 - v + ~)y + n L L ~ e2ni[m(u-vx)+nmx+iyln-vllmll. 

6 n m*0 Iml 

For Irl < 1 we have 

00 rm 
-log(l-r)= L-. 

m=l In 

We evaluate the double sum over nand m # ° by distinguishing cases, dealing 
first with n = 0, and then with the four cases corresponding to n # 0, m # 0. 

Take first n = 0. Then we have the double sum 
co -00 

L = L + L 
m*0 m=l m=-l 

which therefore yields 

f ~ e2nim[(u-vx)+iyv] + f ~ e 2ni[-(u-vx)+iyv]m 

m=lm m=lln 

= -log (l - eZrri(u-vr)(1 _ e- 2ni(U-Vt». 

Let z = u - vr. The term corresponding to n = ° can be rewritten 

_log(1_e-21tiZ)(t_e21tiZ)= 210gI1-q;11 

-210g 11 - qzl + 2·2nvy. 

So far, we have obtained 

1 
E(r, 1) = 2n2B2( -v)y - 2n log 11 - qzl + n L L - (term as in (*». 

n*0 m*0 Iml 
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Next, we consider the four sums separately, arising from the cases 

n > 0, n < 0, m > 0, m < 0. 

[20, §5] 

Consider first the case with n > ° and m > 0. Summing over m yields 

f e2ni[u-vx+nx+iy(n-v)]m = L ~ e2ni(u-vt+nt)m = -log (1 - q~qz)' 
m=l m=lm 

One of the other cases will contribute the complex conjugate of the above 
expression, and the two other cases will contribute the factors of type (1 - q~/qz) 

and their complex conjugates. This accounts for the big double product in the 
q-product, and concludes the proof. 

We still have to make the appropriate remarks when u, v do not lie between ° and 1. In that case, we note that the series defining Eu,vCr, s) is obviously 
periodic in u and v. On the other hand, from the definition of gu.V< r) as a product, 
we see that the right-hand side of the formula is obviously periodic in u. A short 
computation again using the product definition shows that it is also periodic in 
v. This takes care of the general case, 



21 The First Limit Formula 
and L-series 

§l. RELATION WITH L-SERIES 

Let k be an imaginary quadratic field, with discriminant -dk < 0 so that dk 

is the absolute value of the discriminant. Let 0 be the ring of integers in k, and let 
(i be an ideal class. We define the zeta function 

1 
(s, (i) = ~ Nas 

taking the sum over all ideals a in the class. We can define Na to be the unique 
positive integer which generates aa', where a' is the conjugate ideal to a. (Refer 
back to Chapter 8, §1, to see that this makes sense.) Fix some ideal b in the 
inverse class (i - 1. Then ab = (eo) is principal, and the association 

a 1-+ eo 

gives a bijection between the ideals in (i and equivalence classes of elements of 
b. (Two elements of k are called o-equivalent if their quotient is a unit in 0.) In 
what we do later, b will only enter homogeneously of degree 0, so we assume 
right away for convenience that b = [t', 1]. Any ideal is always equivalent to an 
ideal of this type. Then we can rewrite the zeta function in the form 

Nbs 1 
(s, (i) = - L N):s' 

W ~eb .. 

where w is the number of roots of unity in 0 (the only units in an imaginary 
quadratic field are roots of unity). This also can be written as 

Nbs 1 
(s, (i) = -~' 1 + 12., 

W m.n mr n 

where the sum is taken over all pairs of integers (m, n) =F 0, 0). 

279 
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Note that NaNb = N,o, so that the b really appears only as the usual 
convenient means of making ideals principal. 

The discriminant of b is given by 

D(b) = = (-r' - -r)2 = _(2y)2 1
1 -r 12 
1 -r' 

if -r = x + iy and y > O. On the other hand we have 

D(b) = Nbz D(o), 

where D(o) is the discriminant of o. Hence we have a third expression for the 
zeta function, namely 

(1) 
1 ( 2)S, yS 

(s, 6,) = - ;-j ~ I + 12s 
W v d m,n rnr n 

where we see appearing the Eisenstein series for which we know the Kronecker 
limit formula. Here d is the absolute value of the discriminant of o. 

It will be slightly more convenient to deal with A than with 1'/, and we note 
that the absolute value signs in the Kronecker limit formula anyhow eliminate 
the ambiguity of the possible roots of unity. As in Chapter 12, define 

g(b) = (2n)-12Nb6IA(b)1 = (2n)-1ZN([r, 1])6IA(r)l. 

This function is an invariant of the equivalence class of b, because considering 
).b instead of b, we see that 1).1 12 comes out of the norm sign, and 1).1-12 comes 
out of the IAI. SO we can write 

g(b) = g($), 

where $ is the ideal class of b. 
We use the beginning of the exponential series 

( 
2 )S-1 2 Jd =l+(s-I)log Jd+"" 

and we find the expression for (s, 6,) which we wanted, suitably normalized, 
namely 

(2) (s, 6,) = ~ ~C ~ 1 + 2y -logd + ~IOgg(6,-l») + O(s -1). 

Let X be a character of the ideal class group G. We define the L-series 

( X(p»)-l 
L(s, X) = ~ X(6,)(s, 6,) = n 1 - Nps 
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with the product taken over all prime ideals. Let 1 be the trivial character. If 
X #- 1, then taking the sum of X( <l) over all <l yields O. Hence the terms 
independent of the class (i.e. the polar term involving the residue, and the 
universal constants) will disappear after taking the sum, leaving us with 

Theorem 1. Let X be a non-trivial character of the proper ideal class group G 
of 0 in k. Then 

n 
L(I, X) = - ,G ~ X(<l) log g(<l-l). 

3wy d a 

On the other hand, if h is the order of G, then 

2nh 1 
L(s, 1) = '(s) = ,G-l + .... 

wyd S -

Let K = k(j(o» be the Hilbert class field. Then we have a formal relation 

n (1 - _1 ) = n (1 _ X(l' ») 
~Ip N~s all X Nl's' 

whose proof we reproduce for the convenience of the reader. Let 

u = Nl's. 

Then N~ = (Nl')1 and so our relation amounts to 

(1 - uly = n (1 - X(l')u), 
x 

if l'OK = ~l ••• ~r. The cyclic group generated by l' in G has order f by 
definition of the Frobenius automorphism. Let l/I 1, ••• , l/I I be the distinct 
characters of this cyclic group. If 'I is a primitive f-th root of unity, then we 
can make these characters correspond to 

l/I,(l') = G· 
Let Xl' ... , Xr be the characters of G/{l'}, i.e. the characters of G which are trivial 
on l'. Then the products xlLl/I, constitute all of the character group of G. Hence 

1-1 n (1 - X(p)u) = n (1 - 'Jut = (1 - uly, 
x ,=0 

thus proving our relation. In terms of L-series, it yields: 

Theorem 2. We have a relation 

'K(S) = 'is) n Lk(s, X)· 
x,ol 
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Both sides have a simple pole at s = 1. The residues must therefore be equal. 
One knows from elementary analytic number theory that the residues are given 
by the expressions 

and 

where 2r2 = [K: QJ = 2h because [K: kJ = h. Thus r2 = h. As usual, WK is the 
number of roots of unity in K. From Theorem 2, we therefore obtain the 
corresponding relation for the residues. 

Theorem 3. Let 0 be the ring of integers in k, and K = k(j(o». Then 

PK = Pk n ( -nfJ L X(G.) log g(G.-l»). 
X*l 3wy'd Ii 

We observe that since the residue of the zeta function is not 0, it follows that 
for any non-trivial character X of G, the sum 

is also :f. O. 
In the next section, we shall do some elementary algebra involving the 

Frobenius determinant to transform some more the final product in Theorem 3. 
The above results are essentially due to Fueter [14], who gets the class 

number relation implicit in the above, when we substitute the values for the 
residues of the zeta function. Our exposition follows Siegel [BI4], and [BI5], 
§27.3. 

§2. THE FROBENIUS DETERMINANT 

Let G be a finite abelian group and G = {X} its character group. We have 
the Frobenius determinant relation: 

Theorem 5. Letfbe any (complex valued)function on G. Then 

n L x(a)f(a- I ) = det f(a-1b). 
xeG aeG a.b 
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Proof Let F be the space of functions on G. It is a finite dimensional vector 
space whose dimension is the order of G. It has two natural bases. First, the 
characters {X}, and second the functions {Ob}, bEG, where 

ObeX) = I 

ObeX) = 0 

if x = b 

if x"# b. 

For each a E G let Ta/be the function such that Taf(x) = f(ax). Then 

(TaX)(b) = x(ab) = x(a)x(b), 

so that 

So X is an eigenvector of Ta. Let 

T = L f(a-I)Ta· 
aeG 

Then T is a linear map on F, and for each character X, we have 

TX = [L x(a)f(a-l)]x. 
aeG 

Therefore X is an eigenvector of T, and consequently the determinant of T is 
equal to the product over all X occurring on the left-hand side of the equality 
in Theorem 5. 

On the other hand, we look at the effect of T on the other basis. We have 

so that Taob is the characteristic function of a-Ib, and 

TaOb = Oa-lb' 

Consequently 

TOb = L f(a-l)oa-lb 
aeG 

= L f(a-1b)oa' 
aeG 

From this we find an expression for the determinant of T which is precisely 
the right-hand side in Theorem 5. This proves our theorem. 

Theorem 6. The determinant of Theorem 5 splits into 

det f(ab- l ) = [L f(a)] det [f(ab- l ) - f(a)]. 
a,b aeG a,b* 1 

Therefore 

n L x(a)f(a- l ) = det [f(ab- l ) - f(a)]. 
X*l aeG a,b*l 
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Proof Let a1 = 1, ... , an be the elements of G. In the determinant 

/(a1al1) /(a1a'2 1) ... /(a 1a;;1) 

/(anal 1) /(ana'2 1) ... /(ana;;1) 

[21, §2] 

add the last n - I rows ·to the first. Then all elements of the new first row are 
equal to 1:/(a~1) = 1: 1 (a). Factoring this out yields 

1 1 1 

[1: /(a)] 
aeG 

/(ana11) /(ana'2 1) ... /(ana;; 1) 

Recall that a 1 is chosen to be I. Subtract the first column from each one of the 
other columns. You get the first statement of the theorem. 

On the other hand, the function 1 can be selected so that the elements 
{f(a)}, a E G, are algebraically independent over Q, and therefore the factoriza­
tion given in this first statement for the determinant is applicable in the poly­
nomial ring generated over Z by the variables I(a). Combining the first statement 
with Theorem 5 yields the second relation where the product is taken only 
over X #- 1. 

$3. APPLICATION TO THE L-SERIES 

We apply the determinant of §2 to the case when G is the group of ideal 
classes in k, and 

1«(1) = 10gg«(1) 

where 

g«(1) = (27t)-12NQ61~(Q)1 

is our previous invariant of the class (1, defined with any ideal Q in the class. 
Then 
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with 

g«i$-l) = Nb-6 IA(ab-1)1 . 

g«i) IA(a)1 

Recall the Corollary of Theorem 5, Chapter 12, §2 which asserts that the above 
number is a unit. The product occurring in Theorem 3 can then be interpreted 
as a regulator of a system of units. [For the computation of the index of the 
group of inch units in all units, see Kubert-Lang's "Modular Units", Chapter 9, 
§2.] 



22 The Second Limit Formula 
and L-series 

§1. GAUSS SUMS 

Let k be a number field and 0 = Ok the ring of algebraic integers. Let f be 
an ideal of o. (Unless otherwise specified, ideal means contained in 0.) We 
shall consider Gauss sums formed with characters (the generalization to number 
fields is due to Heeke). 

Let X be a character of the multiplicative group (olf)*. We extend X to a 
function on o/f by setting X(o:) = 0 if 0: not prime to f. 

Let 9 be an ideal dividing f. We have a natural homomorphism 

o/f -> o/g 

sending (o/f)* into (o/g)*. If I/J is a character of (o/g)*, then we can define a 
character X on (o/f)* by composing I/J with the natural homomorphism above, and 
then set X(o:) = 0 if 0: is not prime to f. A character X of (o/f)* which cannot 
be obtained by composition with a character I/J as above, for some proper divisor 
9 of f, is called proper, and f is called its conductor. A function on 0 defined as 
above by a character on (olf)* is called a character modulo f. 

A character X modulo f is proper if and only if it satisfies the following con­
dition: For each proper divisor 9 of f there exists a pair of integers A, f1 E 0 

prime to f such that I. == f1 (mod g) and X(A) t= X(f1). 

This is immediate from the definition. 

Let f be an ideal of o. Let b = bk/ Q be the different. Recall that if 0 = Ok 

is the ring of algebraic integers, then 0.L is the set of elements A E k such that 

Tr()~o) c Z, 
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and b- 1 = oJ. by definition. The above condition on the trace is equivalent 
with the condition 

e2"iTr(AO) = 1, 

which is the reason for the orthogonality sign. 

Let y be a fixed element of k such that yfb is an ideal prime to f. Thus yb has 
exact denominator f. 

If A E f, then Tr(AY) E Z and hence 

e2"iTr p.y) = 1. 

This proves the second assertion in the next identity. 

Gl. Let A E o. We have 

L e2"iTr(Azy) = {O ~f A ~ 0 (mod f) 
z mod f Nf If A = 0 (mod f). 

Proof SupposethatA ¢ o (mod f). Themapz ~ z - 1 permutes the residue 
classes mod f, and by the remark before Gl, we see that the value of the sum is 
unchanged when we make this permutation. Therefore our sum is equal to 

e - 2"iTr(AY) L e2 "iTr(AZY). 

= mod f 

But Tr(AY) is not an integer, otherwise AY E oJ. = b-1, which contradicts the 
way we chose y, and the assumption on )0. Therefore the sum must be 0, thereby 
proving our property Gl. 

For any character X modulo f, we define the Gauss sum 

TrCx, ex) = L X(x) e2"iTr(xa y). 

xmodf 

The y as subscript to T indicates that the sum depends on y and also on f. If 
x == y (mod f), then Tr(xexy) == Tr(yexy) (mod Z), and hence each term in the 
sum is well defined. The sum depends on the choice ofy. However, in the applica­
tions, it will appear together with a factor which takes away this dependence. 
Namely, the character X will arise from a ray class character, and one then 
verifies that 

X(ybf) 

Ty(X,1) 

is independent of the choice of y, as a direct consequence of the next property. 

G2. Let X be a character modulo f· If), is prime to f, then 

Ty(X, exA) = X(A)Ty(X, ex). 
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Proof The map x f-> XA permutes the residue classes olf, and hence our 
assertion is obvious. (Note that X = X-I.) 

G3. Let X bea proper character modulo f. Jf:1. E 0 is not prime to f, then Ty(X, rx) = O. 
If:1. is prime to f, then 

ITix, rx)1 = ~Nf. 
Proof Suppose that ef. is not prime to f, and write 

(rx)=cg, f=fl9 
where 9 is the greatest common divisor of (rx) and f. Since X is proper, there exist 
elements A, J1 E 0 prime to f, with A == J1 (mod f I) such that X(A) i= X(J1). Then 

Tix, rx),) = i(A)T,(X, rx) and T/X, rxJ1) = X(J1)Ty(X, rx). 

But since rx), == rxJl (mod f), we have Tr(xrx):y) == Tr(xrxJ1Y) (mod Z), whence 
T;CX, rx).) = Ty(X, (J.Jl). This is a contradiction, which proves the first assertion. 

As for the second, for an arbitrary Z EO representing a residue class mod f, 
we have 

T(X z)' T(X z) '\' X(x)X-(Y') e2niTr«x-y)ZY), 
y' Y' = 1.... 

x"v mod f 
prime to f 

and the left side is 0 if z is not prime to f. We sum over z in o/f. Then from the 
left-hand side, we get the value 

<p(f)/Ty(X, IW = <p(f)/T/X, rx)iZ 
where <p(f) is the Euler function, i.e. the order of (o!f)*. On the right-hand side, 
we consider the sum over z as the inner sum. If x == y (mod f), then each 
exponential has the value I, and hence the sum over z, taken for x == y (mod f), 
gives a contribution of 

<p(f)Nf, 

since Nf is the order of o/f. On the other hand, for the sum taken over x ¥ y 
(mod n, we apply Gl to see that we get O. This proves G3. 

§2. AN EXPRESSION FOR THE L-SERIES 

Again let k be an imaginary quadratic field with Ok = 0 and let f be an ideal 
of 0, f i= o. Let G f = 1(f)IP1(f) be the ray class group, where I(f) denotes 
the monoid of ideals prime to f, and PI (f) denotes the subset consisting of those 
principal ideals (:1.) such that rx == 1 (mod f). Let X be a character of G f. 

We define 
x(a) 

Li(s, X) = L -N S • 

(n,f)=l a 
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Let {a} be the elements of the ordinary ideal class group liP = G. For each 
ordinary ideal class a, let ba be an ideal in a-I, prime to f. Then for each 
a E a prime to f, the ideal aba = (~Q) is principal, and the association 

a H (~Q) 

is a bijection between elements of a prime to f, and non-zero principal subideals 
ofba prime to f. We can write 

1 Nba 

Na N~a 

Let ba(f) be the set of non-zero elements of ba prime to f. Then 

1 s _ X(~) 
(1) Lls, X) = -L NbaX(ba) L -Ys 

W a ~Eb (f) N .. a 
where w is the number of roots of unity in o. We follow Siegel [BI4] in finding 
an appropriate transformation of this expression. The map which to each element 
of 0 associates its principal ideal induces an injection 

(olf)* --> 1(f)IP1(f), 

and a character of Gf therefore induces a character of (olf)*. The value X(~) 
in the above expression for the L-series can be therefore viewed either as the 
value of X on the principal ideal (0, or the value of X on the residue class of ~ in 
(o/f)* . 

Lemma 1. Let X be a proper character ofG f• Then 

LI(s, X) = 1 L X(bR)Nb~ L e2niTr(~y) ~s 
wfTy(X, 1) R ~EbR N~ 

where the sum over R is taken over all ray classes R E Gf ; bR is a fixed ideal 
in R prime to f; wf is the number of root of unity in 0 which are == 1 (mod 0; 
the ~ E b R are of course #- 0; and y is chosen as in § 1, such that yfb is integral 
prime to f. 
Proof Using G2 and G3 of the preceding section, we know that 

T ( ~) = {X(~)T/X, I) if (~, 0 = 1 
Y X, 0 if (~, f) #- 1. 

Therefore from (I) we find 
1 ~ _ s ~ 1 Tix,~) 

LI(s, X) = - i... X(ba)Nba i... N;;s T(- 1) 
W a ~Eba .. y X, 

1 L X(ba)Nba L L x(z)e~~:r(Z~Y) 
wT/X, 1) a ~Eba ZE(OIf)' 

1 e2niTr(z~y) 

TC 1) L L X(ba)X(z)Nba L 
w y X, a tE(Ojf)' ~Eba N~ s 
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We now observe that the products baz represent all the elements R of 

I(f)/P1(f) = Gf 

exactly w/w f times. One sees this by considering the sequence of subgroups 

I(f)/P1(f) ;:) P(f)/P1(f) ;:) Z/Zl(f) 
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where Z is the group of roots of unity in 0, and Z 1 (f) the subgroup of those 
which are == 1 (mod f). 

We multiply our expression for the L-series by Nz s and divide by Nz s, 

to form N(z~)s. The elements z~ then range over the ideal zba , as z ranges over 
(o/f)* and ~ ranges over ba, always considering non-zero elements, of course. 
It is now clear that the expression which we obtain for the L-series is equal to 
that stated in the lemma. 

Remark. We made the assumption that k is imaginary quadratic for simplicity. 
The same arguments prove an analogous expression for the case of an arbitrary 
number field, and similarly, there is an analogous expression to that of Theorem I. 
These can then be used to deal with quadratic real fields, as in the work of 
Hecke (cf. Siegel [BI4]), or to some extent)n general number fields, e.g. [33]. 

(2) 

Let R be a ray class in G f• Let b be an ideal prime to f in the class. We define. 

Ef(R,s)=N(bb-1f-1)S L 
).ebb -'f-' 

e2ltiTr().) _I_ 
NA' ' 

(where, in such a sum, it is understood that ), :F 0). The notation is justified, 
i.e. the sum on the right does not depend on the choice of ideal b prime to f in 
R. Indeed, if a is another such ideal, there exist /l, v E 0 prime to f such that 
fl == v (mod f) and /lb = va. The same argument as in the lemma of Chapter 19, 
§3 shows that the traces in the exponent corresponding to elements in bb-1f-1 

or ab-1f-1 are congruent mod Z. The multiplicativity of the norm shows that 
the other terms are also independent of the choice of b. 

Theoreml. Let x be a proper characterofG f• Then 

X(ybf) _ 
Lf(s, X) = TC 1) L X(R)E,(R, s). 

wf y X, ReG, 

Proof In Lemma 1 we make the change of variables i. = ~y. Then ~ ranges 
over b as ), ranges over yb = qbb-1f- 1 if q = ybf. Note that X(q) = X(ybf) 
makes sense since q is prime to f. Substituting in Lemma 1, we note that R ....... Rq 
permutes the ray classes, and Theorem I drops out at once. 

Let b be an ideal prime to f in the ray class R. Let 

bb-1f- 1 = [Zl' Z2], 
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and let 
r R = ZdZ2 = X + iy, y> 0. 

The elements A E bb-1f-1 can be written mZ1 + nZ2 with (m, n) # (0,0). As 
usual, we have the discriminants 

D(bb-1f- l ) = I:~ :~12 = -Nz~(2y)2 
and also 

D(bb-1f-1) = N(bb-1f-l)2 D(o). 

Taking absolute values yields 
N(bb-1f-l)dt 

NZ2 = 2y . 

Since NA = NZ21mrR + n12, we obtain from the definition of Chapter 20, §5: 

(3) 

2S s - L e2ni(mu+nv) y 
dZ/ 2 (m,n)*(O,O) ImrR + nl 2s 

where u = Tr(zl) and v = Tr(z2)' 
Using the second Kronecker limit formula now gives us the value at s = 1 in 

terms of the Siegel-Ramachandra invariant. 

Theorem 2. Let k be an imaginary quadratic field and f an ideal # Ok' 

Let R be a ray class modulo f. Let N be the smallest positive integer contained 
in f. Then 

-2n 
Ef(R, 1) = -t- log Igf(R)I, 

dk 6N 

where b is any ideal in R prime to f; and gf(R) is the Siegel-Ramachandra 
invariant. In particular, if X is a proper character of Gf, then 

It does not seem to be known if the invariant gf(R) generates the ray class 
field modulo f. The difficulty lies in the fact that the above theorem applies to 
a proper character X, whereas one needs an analogous statement for a non­
trivial character. Precisely, one has the following formal result, due to 
Ramachandra. 

Theorem 3. For each ruy class R modulo f, suppose given an element 'P(R) 
in the ray class modulo f, satisfying the conditions: 
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i) 'P(R)<1(S) = 'P(RS), for all S E Gf, and where (J(S) is the Artin auto­
morphism. 

ii) For any non-trivial character X ofG f , we have 

L X(R) log I'P(R)I :f O. 
REGf 

Then 'P(R) generates the ray class field modulo f. 
Proof It suffices to prove that for any R, 'P(R) is distinct from all its con­

jugates. By (i), it suffices to prove this for R = Ro, the unit class. Suppose that 
we have some S :f Ro such that 

'P(RoS) = 'P(Ro)· 

Then 'P(RS) = 'P(R) for all R. Let X be a character of Gf which is non-trivial on 
S, and therefore on the subgroup <S) = {Si} generated by S. Let {R j } be 
representatives of the co sets of Gf/<S). Then 

L X(R) log I'P(R)I = L L X(RjSi) log 1'P(RjSi)1 
REGf j i 

= L L X(R )X(Si) log I'P(R j)1 
j i 

because L X(Si) = 0, a contradiction which proves our theorem. 
i 

By taking an appropriate product of invariants gf/g with 9 I f, Ramachandra 
constructs such invariants 'P(R), satisfying the hypothesis of the theorem. 

Ramachandra also determines the prime factorization of gf(R), showing that 
if f is a prime power, say a power of p, then 

gf(R) ~ pm 

for some integer m, and if f is not a prime power, then g,(R) is a unit. For this, 
he needs arguments similar to those used in the analogous result for the Delta 
function, together with the finer results of Hasse (reproduced in Deuring [BIl) 
concerning the prime powers occurring in such values. We shall omit this, 
merely pointing out the analogies of these cases, and not forgetting the analogy 
with the simplest case of roots of unity, where we know that if' is a primitive 
N-th root of unity, then 1 - , is a unit if N is not a prime p0wer, and otherwise 
has the obvious order at p. 

Hecke also worked out the value of the L-series at s = 1 for real quadratic 
fields (cf. [B8], [BI4]). In this case, there is no transcendental term like the log 
of a transcendental function, but a rational number which it is interesting to 
determine explicitly. Similar results should hold for number fields. For precise 
conjectures, cf. Stark's talk at the International Congress in Nice, 1970. The 
present chapter may be viewed as giving the reader an introduction to these 
questions, through the first non-trivial case beyond the cyclotomic case. 



Appendices 

Elliptic Curves in 
Characteristic p 



The two appendices constitute essentially a fifth part of the book, con­
centrating on results proper to characteristic p. The first appendix gives the 
basic formulas describing elliptic curves, in general, by algebraic means. The 
normal forms are due to Deuring [8]. A convenient, complete, systematic 
tabulation of them and the automorphisms was given by Tate, whose (un­
published) paper is reproduced here. See also [41]. 

The second appendix relates the trace of the Frobenius endomorphism 
with the p-th coefficient in the expansion of a differential of first kind. The three 
basic techniques involved (the arguments on "formal groups" in §1, the Cartier 
operation, and the Hasse invariant) are logically independent of each other, and 
the reader can read them in any order he wishes. 

We assume that the reader is acquainted with the basic theory of function 
fields in one variable, e.g. the Riemann-Roch theorem, used on fields of genus 1. 



Appendix 1 
by J. Tate 

Algebraic Formulas in 
Arbitrary Characteristic 

§1. GENERALIZED WEIERSTRASS FORM 

Let K be a field. An elliptic curve over K is a connected algebraic curve A 
smooth and proper over K, of genus 1. An abelian variety of dimension lover 
K is the same thing as an elliptic curve A over K furnished with a K-rational 
point, O. Given such an A, there exist functions x and y on A defined over K 
such that x (resp. y) has a double (resp. triple) pole at 0 and no other poles. 
Moreover, if w #- 0 is a given differential of first kind on A and w = dt + ... 
is its expansion in terms of a uniformizing parameter at 0, one can arrange (by 
multiplying x and y by constants) that x = t- Z + ... and y = - t- 3 + .. '. 
Then in the projective imbedding defined by 3(0) the equation for A is of the 
form 

(1.1) y2 + GtXY + G3Y = x 3 + GzXz + G4X + G6 

with Gi E K. Homogeneity: y is of weight 3, x of weight 2, and the Gi of weight i, 
meaning that if we replace w by uw, then x is replaced by u-2x, y by u-3y, etc. 

Ifwe are given an equation of the form (1.1), we define associated quantities 
bz , b4 , b6 , bs, C4, C6, 11, andj by the following formulas: 

(1.2) 

(1.3) 

(1.5) (if 11 is invertible). 

299 
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These quantities are related by the identities 

(l.6) and 1728,1. = d - c~. 

If the characteristic is i= 2 or 3 and we put 

atx + a 3 b 2 
(1.7) 17 = Y + 2 ' and ~ = x + 12 ' 

then equation (Ll) becomes 

(1.8) 2 3 b2 2 b4 b6 3 c4 . c6 
17 = x + -x + -x + - = ~ - -~ --

4 2 4 48 864 

The relation to the classical Weierstrass theory is given by 

~ = fJ(u) C4 = 12g2 A = g~ - 27g~ 

217 = gJ'(u) C6 = 216g3 j = 1728J, 
(l.9) 

d~ 
and w = - = du (see below). 

217 
Some of the first facts to be proved are summarized by the following 

theorems: 

Theorem 1. The plane cubic curve (1.1) is smooth (and hence defines an 
abelian variety A of dimension one over K with the point 0 at irifinity as origin) 
if and only if A i= 0, in which case the differential of first kind w we started 
with is given by 

dx dx 
(UO) w = = - = 

2y + atx + a 3 Fy 
where 

(1.11 ) 

is the equation of the curve. 

Theorem 2. Let A and A' be two abelian varieties of dimension one over 
K, given by equations of the form (1.1), and let j and j' be their "invariants". 
Then A and A' are isomorphic over some extension field of K if and only if 
j = j', in which case they are isomorphic over a separable extension of degree 
dividing 24, and indeed of degree 2, ifj i= ° or 1728. 

Theorem 3. For each j E K, there exists an abelian variety A of dimension 
one over K with invariant j. Indeed if j i= 0 or 1728, such as A is given by 
the equation 

(1.12) 

for which 

2 3 36 1 
y + xy = x - j _ 1728x - j _ 1728 ' 

J c -c ----
4 - 6 - j _ 1728 and 

/ 
A = (j _ 1728? . 
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The 0 rem 4. The group of automorphisms of an abelian variety of dimension 
one is finite, 0/ order dividing 24, and if j ::F 0 or 1728, it is of order 2, 
generated by x f-+ x and y f-+ - Y - a1x - a3 (i.e., by P f-+ - P). 

These theorems, and indeed more precise versions of them than we have 
bothered to state, can be proved by straightforward computations, once one 
analyzes the most general allowable coordinate change in (1.1). This is done as 
follows. Suppose A and A' are abelian varieties of dimension one over K, 
given by equations y2 + alxy + ... and y'2 + a1xly' + ... , and suppose 
f: A I ~ A is an isomorphism defined over K. Then there are elements U E K* 
and r, s, t E K such that 

(1.13) x of= U 2X ' + r 

The coefficients aj are related to the aj as follows: 

ua~ = al + 2s 

u2a; = a2 - sal + 3r - S2 

(1.14) u3a; = a3 + ra l + 2t = Fir, t) 

(J) 0 f = u-1(J)'. 

u4a~ = a4 - sa3 + 2ra2 - (t + rs)al + 3,.2 - 2st = -FxCr,t) - sFir,t) 

u6a~ = a6 + ra4 + r2a2 + 1'3 - ta3 - t2 - rtal = -F(r, t). 

For the bi we have 

u2b; = b2 + 121' 

u4b~ = b4 + rb2 + 61'2 
(1.15) 

u6b~ = b6 + 2rb4 + r2b2 + 41'3 

uSb~ = bs + 3rb6 + 3r2b4 + ,.3b2 + 31'4. 

For the ci and 6. one then finds 

(1.16) u 126.' = 6.. 

Hencej' = j is irideed invariant;j(A) depends only on the isomorphism class of 
A, not on the particular choice of an equation (l.l) defining A'. 

§2. CANONICAL FORMS 

Let p be the characteristic of our ground field K. The easy case is p ::F 2,3: 
Then we can always choose coordinates so that A is given by the equation 

dx 
(2.1) y2 = x 3 + a4x + a6' with (J) = 2y , 
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and 

(2.2) ~ = -16(4a1 + 27ag). 

Since any curve of the form (1.1) is smooth at the infinite point 0, such a curve 
is smooth everywhere if and only if the polynomials F, Fx , and Fy have no 
common zero. In the case of an equation of the form (2.1) with p =1= 2, this 
condition amounts to the non-existence of a common root of the polynomials 
G(X) = x 3 + a4x + a6' and G'(X) = 3x2 + a4, and since ~ = 16· discr. G(X), 
the condition in this case is just ~ =1= 0, as claimed in Theorem 1. 

Let A and A' be given by equations of the form (2.1) with the same invariant 
j = j'. The isomorphisms/; A' ~ A are given simply by 

(2.3) 

where u is such that u4a~ = a4 and u6a~ = a6. 
Suppose j =1= 0, 1728 (i.e. a4 =1= 0, a6 =1= 0). Then A and A' are isomorphic 

if and only if a4a6/a4a6 is a square; the smallest field over which A and A' 
become isomorphic is the field obtained by adjoining the square root of that 
quantity to K. The automorphisms of A are given by u = ± 1. 

Suppose j = 1728 (i.e., a6 = 0). Then A and A' are isomorphic over K 
if and only if a4/a4 E (K*)4. The automorphisms of A are given by u4 = 1. 
A typical curve of this type is given by y2 = x 3 - x. 

Supposej = 0 (i.e., a4 = 0). Then A ~ A' over Kifand only if a6/a(,E(K*)6, 
the automorphisms are given by u6 = 1, and a typical curve is y2 = x 3 - ]. 

Now suppose p = 3. In this case (and more generally if p =1= 2) we can always 
write A in the form 

(2.4) y2 = x 3 + a2x2 + a4x + a6 = G(x), 

dx 
W= 

y 

Using the fact that p = 3, we find 

(2.5) b4 = -a4, 

C6 = -ai, 

say, 

Here again ~ is the discriminant of G(X), up to an invertible factor, so ~ =1= 0 
is the condition for smoothness. 

Suppose A and A' of form (2.4) withj = j'. 

Suppose j =1= 0 (i.e., a2 =1= 0). Then we can make the term in x disappear, 
getting the reduced form 

(2.6) 
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An isomorphism/: A' ~ A is given by 

(2.7) x 0/= U2X', 

where u2a2 = a2' Hence A' ~ A if and only if a2 /a2 E (K*)2, and the auto­
morphisms of A correspond to u = ± 1. 

Suppose j = 0 (i.e., a2 = 0). Reduced form: 

(2.8) 

Isomorphisms: 

(2.9) 

with 

x 0/= U 2X ' + r, 

~ = -a~, 
dy 

W=-. 
a4 

Hence A and A' are isomorphic if and only if (a4/a4) E (K*)4 and (a4/a4)+a6 - a6 
is of the form r2 + ra4. This is always so over a separable extension of degree 
dividing 12. The automorphisms of A are given by the pairs (u, r) such that: 

(2.10) 
and u = ±l, 

or r3 + a4r + 2a6 = ° and u = ± i, 
where i 2 = -1. Over the separable closure of K, they form a group of order 12, 
the twisted product of C4 (cyclic group of order 4) and C3 with C 3 the normal 
subgroup acted on by elements of C4 in the unique non-trivial way-conjugation 
of C3 by a generator of C4 is the map carrying elements of C3 into their inverses. 

A typical curve of this type is y2 = x 3 - x, the automorphisms being given 
by u4 = 1, r3 - r = ° (i.e., r E F 3 ) in this case. 

Last case,p = 2. Here we have ua1 = a1 (see 1.14) and C4 = b~ = at (see (1.2) 
and (1.3». Hence we have j = o<=;> a1 = 0, and separate cases accordingly. 

Suppose a1 ¥- 0 (i.e., j ¥- 0). Then choosing suitably r, s, and t, we can achieve 
a1 = 1, a3 = 0, a4 = 0. Hence A is given by an equation of the form 

(2.11) with 

and 

dx 
W=-, 

x 

1 
j =-. 

a6 

Fx = y + x 2 , and Fy = x have their only common zero at x = y = 0, and this 
is on the curve if and only if a6 = ~ = 0. Hence ~ ¥- ° is condition for smooth­
ness. 

Isomorphisms: 
x 0/= x', y 0/= y' + sx' 
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with 

(2.12) 

Two curves A and A' with the same j are isomorphic if and only if az - a2 
is of the form S2 - s, which is true over a separable extension of K of degree ~ 2. 
The group of automorphisms of A has two elements, corresponding to s = 0, 1. 
A typical curve is y2 + xy = x 3 + (1 fj). 

Suppose al = 0 (i.e., j = 0). Choosing r suitably we can arrange that az = 0, 
so A is given by 

dx 
(2.13) with 0) =-, 

a3 

and 
j = O. 

Since Fx = x2 + a4 and Fy = a3, the curve is smooth if and only if a3 ¥: 0, 
i.e., L1 ¥: O. Two curves A and A' with the same j are isomorphic if and only if 
the following equations are soluble in u, s, and t: 

u3a~ = a3 

(2.14) u4a~ = a4 + sa3 + S4 

u6a~ = a6 + s2a4 + ta3 + S6 + t 2. 

This is always so over a separable extension of K of degree ~ 24. A typical 
curve of this type is 

(2.l5) y2 _ Y = x 3. 

Its group of automorphisms (over the separable closure of K) is of order 24, 
the elements corresponding to triples (u, s, t) such that 

and 

It is isomorphic to the twisted direct product of a cyclic group of order 3 with 
a quaternion group. The quaternion group is the normal subgroup, and is acted 
on by the group of order 3 in the obvious way. 

§3. EXPANSIONS NEAR 0; THE FORMAL GROUP. 

Let A be defined by a Weierstrass equation (1.1). Let 

(3.1) Z= 
x 

W= 
y' 

1 
y' 

so 
Z 

x = -, y = 
W 

1 

W 
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The equation for A in the affine (z, w)-plane is 

(3.2) w = Z3 + ajzw + a2 z2 w + a3w2 + a4zw2 + a6w3. 

The point 0 is given by (z, w) = (0, 0), and z is a local parameter at O. From 
(3.2) we get the formal expansion 

(3.3) w = Z3 + a l z4 + (ai + a2)z5 + (ai + 2a la2 + a3)z6+ 

(at + 3aia 2 + 3a la3 + a~ + a4)z7 + ... 
= z3(1 + Alz + A2z2 + ... ), 

where An is a polynomial of weight n in the ai with positive integral coefficients. 
From (3.3) and (3.1) we get 

(3.4) 
x = Z-2 - alz- 1 - a2 - a3z - (a4 + a ja3)z2 + .. " 
y = - z-lx = - Z-3 + a j z- 2 + .. " 

as the formal expansion of x and y. Clearly, the coefficients of these expansions 
have coefficients in Z[a l , a2, a3, a4, a6]' The same is true for the expansion of the 
invariant differential OJ: 

(3.5) OJ = H(z)dz 

where H(z) is given by 

H(z) = 1 + alz + (ai + a2)z2 + (ai + 2ala2 + 2a3)Z3 

because 

OJ dxJdz - 2z- 3 + .. . 
dz 2y + alx + a3 _ 2z 3 + .. . 

dyJdz 

has coefficients in Z[t, aj, ... , a6], but also in Z[!, aj, ... , a6 ]. 

- 3z- 4 + .. , 
_ 3z 4 + '" 

FinaIIy,ifP3 = PI + P2 andPi = (Zi' w;),thenwecanexpressz3 = F(z1> z2) 

as a formal power series in Zl and Z2' with coefficients in Z[a l , ... , a6]' The 
expansion begins 

(3.6) F(zl' Z2) = ZI + Z2 - a 1z 1z2 - a2(zi z2 + ZI Zn 
- 2a3(ziz2 + zlzD + (a la2 - 3a3)ziz~ + .... 

This is the "formal group on one parameter" associated with A. 
For each integer n ~ I we have, formally, 

(3.7) z(nP) = ifJiz(P» , 

where the series ifJn are defined inductively by 

(3.8) ifJn+1(z) = F(z, ifJn(z». 
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For example, we have 

(3.9) t/l2(Z) = 2z - al z2 - 2a2z3 + (a l a2 - 7a3)Z4 + ... 
and 

(3.10) t/l3(Z) = 3z - 3a[z2 + (a l - 8a2)Z3 + 3(4ala2 - 13a3)z4 + .. '. 
In characteristic p > 0, the series t/I p is of the form 

t/liz) = clzPh + C2 Z 2ph + C3Z3ph + ... 
with C l # 0, where h is an integer equal to I or 2, because the isogeny 

pb: A ~ A 

is of degree p2, and is not separable. This means that ZOpb lies in the inseparable 
subfield of degree p or p2 of the function field of A, whence our assertion follows. 

EXERCISE 

Let p = char (K) be arbitrary, let j E K with j # ° or 1728, and let A j denote 
the abelian variety of dimension lover K given by the equation (1.12), i.e., 

36 1 
Y2 + xy - x 3 - X - --,--=-0-

j - 1728 j - 1728 

Show that for each separable quadratic extension L of K there exists an abelian 
variety A j.L of dimension one over K such that A j.L is isomorphic to A j 
over L, but not over K, and A j.L is uniquely determined up to isomorphism 
by j and L. Show also that (denoting by A(K) the group of points on A 
rational over K) we have 

A j.L(K) = {P E A j(L)loP = - P}, 

where (J is the non-trivial automorphism of L/K, (and where 

-P = (x, -y - alx - a3) if P = (x,y». 



Appendix 2 
The Trace of Frobenius and 
the Differential of First Kind 

§1. THE TRACE OF FROBENIUS 

Theorem 1. Let A be an elliptic curve defined over the prime field Fp of 
characteristic p, let t be a local parameter at the origin in the function field 
F/A). Let w be a differential offtrst kind in Fp(A), with expansion 

00 dt 
w = L cJv-

v=1 t 

normalized such that C1 = 1. Let re = rep be the Frobenius endomorphism of 
A. Then 

wore' = cpw, and to(pb) == cptP (mod t 2P). 

Proof We lift an equation for the elliptic curve to the integers. Thus it is 
useful to write A for the curve in characteristic p, and A for its lifting. We do 
this in a naive way, by lifting the coefficients in a Weierstrass equation if p ¥= 2, 3, 
or in a normalized equation otherwise. We let l be the parameter at the origin 0, 
and let t be a parameter at the origin 0 of A, reducing to t. Then 

00 dl 
W = L cvi v --=- , 

v= 1 t 

and the differential form w on A has the expansion 

00 dt 
w = L cvtV - = h(t)dt 

v= 1 t 

with C1 == 1 (modp). 

307 
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On the one hand, we have 

w 0 (pJ) = pw = ph(t)dt. 

Let 0 = ZIP) be the local ring of Z at p. There are power series U(t), V(t) E o[[t)] 
such that 

to (pJ) = U(tP) + pV(t). 

So on the other hand, we find 

(1) ph(t) = h( UW) + p V(t»( U'(tP)pt P- 1 + p V'(t». 

Let re + re' = fp. Since 

i 0 re' = fpi + 
and since rere' = pb, we see that 

(2) 

and 

with gp == fp (modp). 

We divide (1) by p. We then read it mod p, as well as mod t P, and look at the 
coefficient of t p- 1 • The term h(U(tP) + Vet»~ is then congruent to 1. The constant 
term of U'(tP) is gp' and V'(t) has no term of degree p - l. Comparing co­
efficients of tp- 1 , we find the desired congruence 

cp == fp (modp). 

This proves our theorem. 

The above proof is due to Tate, and generalizes to formal groups. The 
reader will find another proof using the Weierstrass normal form in Manin [30]. 

All further sections of this appendix take place in characteristic p. Whereas 
in the first section, we considered a reduced elliptic curve over the prime field, 
we now work quite generally with any elliptic curve in characteristic p. 

§2. DUALITY 

Let K be the function field of an elliptic curve in characteristic p, over an 
algebraically closed constant field k o. Let {P} range over the points of A in 
ko (or in other words, the places of Kover k o). We let Kp denote the completion 
at P. An adele ~ of K is an element of the cartesian product IlKp , such that the 
component ~p is P-integral for almost all P. The group of adeles is denoted by A. 
There is a pairing between differential forms of K and adeles, given by 

(w, ~) H <w, 0 = L resp(~pw). 
p 
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Theorem 2. Let w be a differential ofthejirst kind in K. Let Q be an arbitrary 
point of A, let t be a local parameter at Q, and let w have the expansion 

OCJ dt 
w = L cvtV -, 

v= 1 t 

normalized so that C 1 = I. Then for any adele ~, we have 

<w, ~p> = c~<w, Op. 
Proof We assume that the reader is acquainted with Weil's proof of the 

Riemann-Roch theorem (given in the books on algebraic functions by Artin, 
Chevalley, or Lang). We let A(O) be the group of integral adeles (i.e. adeles ~ 
such that ~p is P-integral for all P). Weil's proof of the Riemann-Roch theorem 
shows among other things that 

[A : A(O) + K] = 1, 

where the brackets mean dimension of the factor space A/(A(O) + K) over the 
constant field ko. Therefore the adele 

'1 = ( ... ,0, lit, 0, ... ) 

having 0 at all components except Q, where '1Q = lit, generates this factor 
space. Since w is of the first kind, both sides of the formula in the theorem are 
equal to 0 when ~ lies in A(O) + K. Furthermore, both sides are p-power linear 
with respect to constants. Hence it suffices to prove the formula when ~ = '1. 
But in this case, the formula is obvious. 

§3. THE TATE TRACE 

This section is preliminary to the next section on the Cartier operator, and 
gives lemmas on purely inseparable extensions of degree p. Let K be a field of 
characteristic p, and let x be algebraic, purely inseparable over K, so that xP is 
an element of K, but x ¢ K. An element of K(x) can be written uniquely in the 
form 

y = Yo + }'!x + ... + Yp_lXP- 1 , 

We define a substitute for the trace by letting 

Sx(Y) = Yp-l, 

and derive properties of Sx as in Tate [42]. 
We note first that for 0 ~ i ~ P - 1, we have 

Yi = Sx(yxP-l-i), 

YiEK. 
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whence 
p-l 

y= L Sx(yxP- 1- i). 
i=O 

Furthermore, Sx is K-linear, and hence linear with respect to p-th powers in 
K(x). 

Iff(X) is a polynomial in a variable X over K, we let as usualf'(X) be its 
formal derivative. Then the map 

f(x) ~ f'(x) 

is immediately verified to be well defined, because if f(x) = 0, then f(X) is 
divisible by XP - a, with a = x p• Hence f'(x) = O. It follows at once that this 
map is a derivation of K(x), and is the unique derivation trivial on K, mapping 
x onto I. We denote this derivation by Dx. If an element y E K(x) is expressed 
as above, then 

Dx(Y) = YI + 2Yzx + ... + (p - 1)yp_ 1x P- z. 

A power X.i (0 ~ i ~ P - 2) can be "integrated", and we see that an element 
Y E K(x) can be written in the form y = Dxz for some Z E K(x) if and only if 
Yp-l = O. We have the following properties, the first of which is immediate. 

SI. SxDx = O. 

S2. Sx(yP-l DxY) = (DxY)P, or equivalently, Sx(DxY/Y) = (DxY/y)p. 

Proof. Let R be the set of elements yin K(x) for which S2 is true. We observe 
that R is the kernel of the additive map 

y ~ Sx(DxY/Y) - (DxY/y)p· 

The non-zero elements of R form a mUltiplicative group. Furthermore, if y E R, 
then y + J E R, because (y + I)P-l DxY - yP-1 DxY consists of terms which can 
be integrated, so that 

SxC(y + 1)P-l DxY) = Sx(YP DxY), 

and DxY = Dx(Y + J). Finally, if y, Z E Rand Z = 0, then 

y + Z = Z(Z-1 + J) E R. 

Therefore R is a field containing K and x, thereby proving our assertion. 

S3. Let K(x) = K(w). Then Sw(z) = Sx(Z(DxW)l-P) for all Z E K, or in other 
words, 

Sx(zDxw) = Sw(z)(Dxw)P. 

Proof. Both sides of the formula are K-linear with respect to the variable z. 
Hence it suffices to prove the formula when z = Wi, and 0 ~ i ~ P - I, or 
equivalently, it suffices to prove 

(Dxw)PSw(w i) = SxCwiDxw). 
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If i < p - I, then wiDxw = D(Witl/(i + I)) (i.e. wiDxw can be integrated), 
and both sides are equal to O. If i = P - I, then the left-hand side is equal to 
(Dxw)P, which is equal to the right-hand side by S2. This proves our property. 

In the next section, we interpret S3 more naturally in terms of differential 
forms. 

§4. THE CARTIER OPERATOR 

Let k 0 be a perfect field of characteristic p > 0 and let k o(t) be a purely 
transcendental extension in one variable f. Then k O(t)IIP = k oCt liP). Similarly, 
as we have already seen in Chapter IX, §4, if K is a function field in one variable 
over k, then K has a unique purely inseparable extension of degree p, namely 
K1IP. Looking at this in another way, we see that KP is the unique subfield of K 
over which K is purely inseparable of degree p. If x is an element of K such 
that x 1= KP, then K = KP(x). 

Let x E K. We denote by dx the functional on derivations D of K, trivial on 
ko, given by the pairing 

(dx, D) f-> Dx. 

A differential form w = ydx is therefore the functional whose value at D is 
yDx, also denoted by <w, D). If K is a function field of one variable over the 
perfect constant field ko, and if x 1= KP, then there exists a unique derivation 
D = Dx of K, trivial on ko, such that Dx = I. An arbitrary differential form of 
K can then be written as ydx for some y E K, or in other words 

w = (yg + yfx + ... + y~_lxP-I)dx. 
We define the Cartier operator C on differential forms by letting 

Cw = Yp_1 dx. 

In terms of the Tate trace, this is merely 

YiEK. 

Formula S3 shows that this value Cw is independent of the representation of 
the differential form, i.e. we get the same value if we write the form as ::dH' 
for some w 1= KP. 

The Cartier operator is obviously additive, and it is linear with respect to 
the prime field. The following properties will be immediate from what we already 
know, and the definitions. Let Z E K be arbitrary. 



312 

Cl. 

C2. 

C3. 

C4. 

C5. 
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C(zPw ) = zCw. 

C(dz) = 0. 

C(d:) = :z. 
C(Z P-l dz) = dz. 

C(Z·-1 dz) = 0, if (n,p) = 1, 

The first property is obvious since Sx is KP·linear. If z E KP, then dz = 0, and 
if z ¢ KP, then we apply the definition of the Cartier operator to the forms dz or 
ZP-l dz directly, substituting z for x in the definition, in order to obtain C2 and 
C4. Property C3 then follows from C4 and Ct, while C5 follows from the fact 
that Z·-1 dz = d(z"/n), and C2. 

It is useful to decompose a differential form w = ydx as a sum 

dx I 
w = df + gP-x I 

with some elements f, g E K. The existence of such a decomposition is obvious 
since terms yfx i with ° ~ i ~ P - 2 can be integrated. The uniqueness is 
equally clear. When w is so written, then 

I rfol - n~ 
~ 

C6. If w is regular at a place of Kover ko, then Cw is also regular at this 
place. 

Proof We can take for x a local parameter at the given place. In the ex­
pression w = ydx, all the coefficients yf must then also be regular at x, for 
otherwise, yfx i has a pole of order mp - i for some integer m i ~ 0, and there 
cannot be any cancellation of such poles among yg + ' .. + y~_lXP-l. 

We observe that if we make a constant field extension of our function field, 
then the definition of the Cartier operator remains the same, and we may assume 
without loss of generality that the constant field k ° is algebraically closed. 

C7. Let P be a place of Kover k o. Then 

resp Cw = (resp w)1IP, 

Proof We select x to be a local parameter at the place. We then write 

dx 
w = df + gPxP--

x 
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so that Cw = gdx. Expanding £ in powers of x, say 

g = c_mx-m + ... + Co + c1x + , 
we see that res p w = C~l' Taking the p-th root yields precisely resp Cwo 

In terms of the duality between differential forms and adeles, C7 can be 
expressed by the formula 

taking Cl into account. 

Theorem 3. Let K be the function field of a curve of genus 1 (an elliptic 
curve) over an algebraically closed constant field ko of characteristic p. Let 
w be a differential of the first kind in K. Let x be a local parameter in K for 
some place of K, and expand 

if) dx 
w = L cnxn -, 

n= 1 ;x: 
with Cn E k o. Then C1 :f. 0, and if we normalize w so that C1 = 1, then 
Cw = CpW. 

Proof By C6 we know that Cw = cw for some constant c. On the other 
hand, the Cartier operator is clearly continuous for the topology induced on 
K by the discrete valuation arising from the place, and consequently by C4 and 
C5 we find 

_ n dx 
Cw = L cnpx -. 

x 
This yields cC I = cpo We cannot have c[ = 0, for otherwise the differential of 
first kind would have a zero at the place, whence would have a zero at every 
place since it is invariant under translations. This proves our theorem. 

The same argument also gives the relations 

CliP = cpclI • 

Atkin and Swinnerton-Dyer had found such congruence relations, and con­
jectured higher ones. Serre observed that applying the Cartier operator 
could be used for a proof. For the higher ones, cf. Cartier's talk at the Inter­
national Congress of Mathematicians, 1970, Tome 2, pp. 29 I -299. 

Theorem 4. Let K be a function field in one variable over an algebraically 
closed constant field of characteristic p, and let w be a non-zero differential 
form in K. Then: 

i) We have Cw = ° if and only if there exists z E K such that w = dz. 
ii) We have Cw = w if and only if there exists z E K such that w = dz/z. 

Proof The above two statements amount to the converses of properties 
C2 and C3. As to the first, if Cw = 0, then from the decomposition 

w = df + gP dx/x, 
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we conclude that 9 = 0, whence w = df The second is somewhat harder to 
prove, and amounts to showing that there is some z E K such that for any 
derivation D of K over the constants, we have <w, D) = Dz/z. If w = ydx, 
it suffices to prove this relation for D = Dx , and our problem amounts to show­
ing that the element yDx of K is a logarithmic derivative. To show this about 
an element w E K, it suffices to prove that there exists an element z E K such that 

(w + D)z = 0, 

because in that case, wz + Dz = ° and 

Dz 
W= -­

z 

If W E K, we denote by L(w) the linear map equal to mUltiplication by w. 

Lemma. Let K be a field of characteristic p, let D be a derivation of K, 
and w E K. Then 

(L(w) + DY = L(wY + DP + L(DP-I W). 

Before proving the lemma, we show how it implies the second part of Theorem 4. 
We set w = yDx with our previous notation, and D = Dx. Then D~ = 0. 
From the decomposition w = df + gPdx/x, we see at once from the definitions 
that 

<Cw, D)P = -DP-l<W, D). 

From the hypothesis Cw = w, it follows that aP = -DP-la, whence 

(L(w) + DY = 0. 

This proves what we wanted. 

There remains for us to prove the lemma. Let u, v be elements of a ring (not 
necessarily commutative), of characteristic p. We let L = L(u) and R = R(u) 
be left and right multiplication by u respectively. Then Land R commute, and 

p-l 

(L - Ry-l = L i!w- i , 

i=O 

as one sees by using the geometric series formally on (L - RY/(L - R), say. 
If t is a new variable, we have 

p-l 

(tu + v)P = tPu P + vP + L ci(u, v)ti , 
i=1 

with appropriate coefficients ci(u, v). 
Replacing t by t + h, expanding out, and looking at the coefficient of Iz 

(i.e. differentiating with respect to t), we obtain 
p-l P- 1 

L (tu + vYu(tu + vy-l-i = L ic;(u, V)t i - 1 • 

i=O i= 1 
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Writing Ad u for the operator such that 

(Ad u)(v) = uu - uu = (L - R)(v), 
we now see that 

p-I 

(Ad(tu + V»P-I(U) = L ;ci(u, V)t i - I 
i= 1 

In the ring of endomorph isms of K (as additive group), substitute u = L(w) and 
u = D. From the formula 

[L(w) + D, L(z)] = L(Dz), 
we see that 

(Ad(tL(w) + D»P-I(L(w» = L(DP-1 W), 

and in particular that this expression is independent of t. This implies that 

c/L(w), D) = 0, for i > 1. 

Finally, putting t = 1, we obtain for u = L(w), u = D, 

(u + u)p = uP + uP + cl(u, v), 

and we have just seen that e1(u, v) = L(DP-1 W). This proves the lemma, and 
thus also concludes the proof of the theorem. 

In this section, we essentially followed Cartier's paper "Sur la rationalite 
des diviseurs en geometrie algebrique," Bulletin Soc. Math. France (1958), 
pp. 177-251. 

Let A be an eIliptic curve defined over the prime field Fp. If A and its 
Frobenius endomorphism are obtained by reduction mod p as in §l, then we 
now see that cp = i p ' and hence the residue class of j~ can be determined from 
the local expansion of w at any point. If one wishes to avoid reduction mod p, 
one can use the discussion of Hasse invariants in the next section instead. In 
any case, we see that for A defined over Fp , we have 

Cw = w 0 7[' 

The Cartier operator is the transpose of Frobenius. 
In particular, we have Cw = 0 if and only if 7[' is purely inseparable, which 

means that the curve is supersingular, i.e. has no point of order p. 
On the other hand, suppose that the curve is not supersingular. Then cp is 

the reduction of an ordinary integer v mod p, with 1 ~ v ~ p - 1. Write v = b I-p 

for some constant b. Then the basic formalism of the Cartier operator shows that 

C(bw) = bw. 
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In other words, we can normalize the differential of first kind so that it is fixed 
by the Cartier operator. We now see that the two cases of Theorem 4 correspond 
to the singular and supersingular cases respectively, i.e. the differential of first 
kind (suitably normalized) is logarithmic or exact according as the elliptic curve 
is singular or supersingular. 

5. THE HASSE INVARIANT 

In this section, we follow Hasse [18] and Hasse- Witt [20]. 

Let ko be an algebraically closed field of c/zaracteristicp, and let K be the 
function field of an elliptic curve A over k o. In other words, K is a function field in 
one variable, of genus 1. We fix a point Q of A in ko (i.e. a place of Kover k o), 
and we let t be a local parameter of Q in K. If a is a divisor of K, we let 2'(a) be 
the k o-vector space of functions z E K such that (z) ~ - a. In particular, 2'(pQ) 
is the vector space of functions having at most a pole of order p at Q. 

By the Riemann-Roch theorem, for any positive integer m, the space 
2'(mQ) has dimension m. Again by the Riemann-Roch theorem, for each 
m ~ 2, there exists a function in 2'(mQ) having a pole of order exactly m at Q, 
and consequently there exists a function Xm whose expansion at Q (as a power 
series in t) is like 

x". ==.~ (mod~). 
tm t 

In particular, there exists a function y E 2'(pQ) such that 

1 a 
Y=tp-t+'" 

at Q, with some constant a. Since the difference of two such functions has at 
most a pole of order I at Q and no other pole, it must be constant, and we see 
that y is uniquely determined modulo constants. We call such a function y 
a Hasse function of K (or on A). The constant a is uniquely determined by the 
choice of parameter t. 

The 0 re m 5. Let w be a differential of first kind on K, with expansion at Q 
given by 

00 dt 
w = L cvtV -, 

v= 1 t 

normalized such that c 1 = 1. Let - a be the residue of the Hasse function y 
as above, with respect to the parameter t. Then a = cpo 
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Proof The only possible residue of yw is at Q, and is equal to cp - a. It is 
also equal to 0, whence our theorem follows. 

The constant cp is called the Hasse invariant at Q with respect to t. If we 
change the parameter t by a constant factor b, then cp changes to cpb l - P• 

The Hasse invariant arising in the above fashion is related directly to the 
existence of points of order p on A. If such a point exists, then the isogeny p!5 
breaks up into a separable part of degree p, and a purely inseparable part of 
degree p. The separable part is unramified, and hence A has an unramified cover­
ing of degree p (i.e. K has an unramified extension of degree p). Conversely, 
if such an unramified extension of K exists, then it has genus 1 (say by the 
Hurwitz genus formula). Let A: B -> A be the corresponding covering of elliptic 
curves, normalized so that A(O) = O. Then ). is a homomorphism with kernel 
of order p. Indeed, if PI' P 2 are points of B, then the divisor 

(P 1) + (Pz) - (PI + P 2 ) - (0) 

is the divisor of a function on B, whence its image 

(AP1) + (AP2 ) - (A(P1 + P 2» - (0) 

is the divisor of a function on A (the norm, as is clear from elementary valuation 
theory). Hence by the Riemann-Roch theorem on A, we get 

),(P1 + P 2 ) = API + AP2 , 

and A is a homomorphism. 
[Actually, the fact just proved follows from very general properties of 

abelian varieties due to Weil, that any rational map of one abelian variety into 
another is a homomorphism followed by a translation.] 

It is clear that the kernel of our homomorphism A has order p. 
The Hasse function will give us a natural way of constructing unramified 

extensions when the Hasse invariant is #- 0. 
For each place P of K we again let Kp be the completion of K (isomorphic 

to the power series field over ko, in a local parameter at P). By additive Kummer 
theory in characteristic p (Artin-Schreier theory) a cyclic extension of K of 
degree p is obtained by adjoining the roots of a polynomial XP - X - z, with 
z E K. We let 

gJX = XP - X, 

and write g:J -1 Z for any root. An extension of K is unramified at P if and only 
if it splits completely at P (because we took ko algebraically closed), and hence 
it is unramified at P if and only if z E ~{)Kp. Let 

U = n (6{)Kp n K). 
p 

Then U :::> g:JK, and the unramified extensions of K are precisely those obtained 
by adjoining gJ-th roots of elements of U to K. (In fact, Uj gJK is dual to the 
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Galois group of the maximal unramified extension of K of exponent p, but we 
won't need this.) 

Theorem 6. The additive group Sf(pQ) n ~;)KQ is contained in U, and the 
inclusion induces an isomorphism 

(Sf(pQ) n fJKQ)lko ::::; UhJK. 

Proof. If an element z of K is integral at P, then a root I/. of XP - X - z = f( X) 
is unramified at P becausej'(I/.) = -1 is a unit. This proves the desired inclusion 
relation. If z E Sf(pQ) n ~aK, then there exists x E K such that z = x P - x. 
Hence x is P-integral for all P i= Q. If x has a pole at Q, then this pole has at 
most order 1, and hence x is constant, whence z is constant. This proves that 
the homomorphism of Sf(pQ) n KQ into UI AuK has kernel equal to the constant 
field ko. Finally, given an element z E U, we wish to prove that there exists an 
element WE Sf(pQ) such that z == w (mod gaK). First take P i= Q. Since 
Z E pKp , if z is not integral at P, then z has a pole of order pm at P for some 
positive integer m, say 

a 
z = - + ... uP'" , 

where u is a local parameter at P. By the Riemann-Roch theorem, there exists 
x E Sf(mP + nQ) for some large n such that 

a llp 
X=- + .... 

um 

Then Z - px has a pole of smaller order than z at P. After repeating the above 
procedure, we may assume without loss of generality that z has a pole only at Q. 
Since z E pKQ, it follows that z has an expansion of the form 

b 
z =-+ ... 

t pm 

at Q, with some positive integer m, and a constant b. If m = 1, we are done. 
If m > 1, there exists an element x E Sf(mQ) such that 

blip 
X= - + .... 

tm 

Hence z - tJX has a lower order pole at Q than z. Again inductively, we can 
finally achieve that z E Sf(pQ). This proves our theorem. 

Theorem 7. The following conditions are equivalent: 

i) The space Sf(pQ) n soKQ is equal to the constantjield. 
ii) There exists no cyclic unramified extension of K of degree p. 

iii) The Hasse invariant at Q is equal to O. 
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Proof By Theorem 6, the cyclic unramified extensions of K are obtained by 
ao-th roots of elements of !f(pQ) n ~:JKQ' Hence i) implies ii). If the Hasse 
invariant a is not 0, let b be a constant such that b 1- P = a, and let z = bPy. 
where y is the Hasse function, 

1 a 
y=---+ .... 

tP t 

Then Z E !f(pQ), and also z E ~.)KQ' because 

8:Jko[[t]] = ko[[t]], 

i.e. every equation XP - X - v = ° with a power series v E ko[[t]] has a root 
in ko[[t]]. A S·J-th root of z generates an unramified extension of degree p, by 
Theorem 6, thus proving that ii) implies iii). Finally, assume iii). If !f(pQ) n S·)KQ 

contains a non-constant z, then z can be written x P - x with some x E aoKQ' 
Expanding x as a power series in t, we see that z has an expansion 

bP b z = - - _. + ... 
tP t 

with some constant b #- 0. Dividing by bP yields the Hasse function, and shows 
that the Hasse invariant is not 0, thus proving our theorem. 

The above arguments also prove: 

Theorem 8. Assume that the Hasse invariant is not 0. Then modulo constants, 
there exists a unique non-zero function 

z E !f(pQ) n fpKQ • 

This function has the expansion 

bP b 
Z=---+'" 

tP t 

for some constant b, and the cyclic unramified extension of K of degree p is 
equal to K(SO-l z). 

Over the prime field, we may now summarize the results obtained, identifying 
possible definitions of the element Cpo 

Theorem 9. Let A be an elliptic curve defined over the prime field Fp. Let 
w be a differential of the first kind in the function field FiA). Let Q be a 
rational point of A in F P' and t a local parameter at Q in F iA). Let 

00 dt 
w = L cvtV -, 

v= I t 

normalized so that C1 = 1. Let 7r: = 7r:p be the Frobenius endomorphism of A 
over Fp' and let C be the Cartier operator. Then: 

Cw = w 0 7r:' = cpw. 
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ffy E 2?(pQ) has the expansion 

1 a 
y = tp - t + "', 

then a = cpo The curve A is supersingular if and only if cp = O. We also have 
the expansion 

to(pb) == cp t P (modt 2P). 

The information in Theorem 9 puts together Theorem 1 of §1, Theorem 3 
of §2, and Theorem 5 of §5, which relate the varIous possible definitions of the 
Hasse invariant. 
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