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Foreword

The present book aims to give a fairly comprehensive account of the
fundamentals of differential manifolds and differential geometry. The size
of the book influenced where to stop, and there would be enough material
for a second volume (this is not a threat).

At the most basic level, the book gives an introduction to the basic
concepts which are used in differential topology, differential geometry, and
differential equations. In differential topology, one studies for instance
homotopy classes of maps and the possibility of finding suitable differen-
tiable maps in them (immersions, embeddings, isomorphisms, etc.). One
may also use differentiable structures on topological manifolds to deter-
mine the topological structure of the manifold (for example, a la Smale
[Sm 67]). In differential geometry, one puts an additional structure on the
differentiable manifold (a vector field, a spray, a 2-form, a Riemannian
metric, ad lib.) and studies properties connected especially with these
objects. Formally, one may say that one studies properties invariant under
the group of differentiable automorphisms which preserve the additional
structure. In differential equations, one studies vector fields and their in-
tegral curves, singular points, stable and unstable manifolds, etc. A certain
number of concepts are essential for all three, and are so basic and elementary
that it is worthwhile to collect them together so that more advanced expositions
can be given without having to start from the very beginnings.

Those interested in a brief introduction could run through Chapters II,
III, IV, V, VII, and most of Part III on volume forms, Stokes’ theorem,
and integration. They may also assume all manifolds finite dimensional.

Charts and local coordinates. A chart on a manifold is classically a
representation of an open set of the manifold in some euclidean space.
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vi FOREWORD

Using a chart does not necessarily imply using coordinates. Charts will be
used systematically. It will be observed equally systematically that finite
dimensionality is hereby not used.

It is possible to lay down at no extra cost the foundations (and much
more beyond) for manifolds modeled on Banach or Hilbert spaces rather
than finite dimensional spaces. In fact, it turns out that the exposition
gains considerably from the systematic elimination of the indiscriminate
use of local coordinates xi,...,x, and dxi,...,dx,. These are replaced by
what they stand for, namely isomorphisms of open subsets of the manifold
on open subsets of Banach spaces (local charts), and a local analysis of the
situation which is more powerful and equally easy to use formally. In most
cases, the finite dimensional proof extends at once to an invariant infinite
dimensional proof. Furthermore, in studying differential forms, one needs to
know only the definition of multilinear continuous maps. An abuse of mul-
tilinear algebra in standard treatises arises from an unnecessary double du-
alization and an abusive use of the tensor product.

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when integrating
differential forms, because the dx; A --- A dx,. corresponds to the
dxy ---dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. 1
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

I am aware of a widespread apprehensive reaction the moment some
geometers or students see the words “Banach space” or “Hilbert mani-
fold”. As a possible palliative, I suggest reading the material assuming
from the start that Banach space means finite dimensional space over the
reals, and Hilbert manifold or Riemannian manifold means a finite di-
mensional manifold with a metric, with the local constant model being
ordinary euclidean space. These assumptions will not make any proof
shorter.

One major function of finding proofs valid in the infinite dimensional
case is to provide proofs which are especially natural and simple in the
finite dimensional case. Even for those who want to deal only with finite
dimensional manifolds, I urge them to consider the proofs given in this
book. In many cases, proofs based on coordinate free local representations
in charts are clearer than proofs which are replete with the claws of a
rather unpleasant prying insect such as I'j’k, Indeed, the bilinear map
associated with a spray (which is the quadratic map corresponding to a
symmetric connection) satisfies quite a nice local formalism in charts. I
think the local representation of the curvature tensor as in Proposition 1.2
of Chapter IX shows the efficiency of this formalism and its superiority over
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local coordinates. Readers may also find it instructive to compare the proof
of Proposition 2.6 of Chapter IX concerning the rate of growth of Jacobi
fields with more classical ones involving coordinates as in [He 78], pp. 71-73.

Applications in Infinite Dimension

It is profitable to deal with infinite dimensional manifolds, modeled on a
Banach space in general, a self-dual Banach space for pseudo Riemannian
geometry, and a Hilbert space for Riemannian geometry. In the standard
pseudo Riemannian and Riemannian theory, readers will note that the
differential theory works in these infinite dimensional cases, with the Hopf—
Rinow theorem as the single exception, but not the Cartan—Hadamard
theorem and its corollaries. Only when one comes to dealing with volumes and
integration does finite dimensionality play a major role. Even if via the
physicists with their Feynman integration one eventually develops a coherent
analogous theory in the infinite dimensional case, there will still be something
special about the finite dimensional case.

The failure of Hopf—Rinow in the infinite dimensional case is due to a
phenomenon of positive curvature. The validity of Cartan-Hadamard in the
case of negative curvature is a very significant fact, and it is only recently
being realized as providing a setting for major applications. It is a general
phenomenon that spaces parametrizing certain structures are actually infinite
dimensional Cartan-Hadamard spaces, in many contexts, e.g. Teichmuller
spaces, spaces of Riemannian metrics, spaces of Kéhler metrics, spaces of
connections, spaces associated with certain partial differential equa-
tions, ad lib. Cf. for instance the application to the KdV equation in
[ScTZ 96], and the comments at the end of Chapter XI, §3 concerning
other applications.

Actually, the use of infinite dimensional manifolds in connection with
Teichmuller spaces dates back some time, because as shown by Bers, these
spaces can be embedded as submanifolds of a complex Banach space. Cf.
[Ga 87], [Vi 73]. Viewing these as Cartan—Hadamard manifolds comes
from newer insights.

For further comments on some recent aspects of the use of infinite
dimension, including references to Klingenberg’s book [K1 83/95], see the
introduction to Chapter XIII.

Of course, there are other older applications of the infinite dimensional
case. Some of them are to the calculus of variations and to physics, for
instance as in Abraham—Marsden [AbM 78]. It may also happen that one does
not need formally the infinite dimensional setting, but that it is useful to keep in
mind to motivate the methods and approach taken in various directions. For
instance, by the device of using curves, one can reduce what is a priori an
infinite dimensional question to ordinary calculus in finite dimensional space,
as in the standard variation formulas given in Chapter XI, §1.
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Similarly, the proper domain for the geodesic part of Morse theory is
the loop space (or the space of certain paths), viewed as an infinite di-
mensional manifold, but a substantial part of the theory can be developed
without formally introducing this manifold. The reduction to the finite
dimensional case is of course a very interesting aspect of the situation,
from which one can deduce deep results concerning the finite dimensional
manifold itself, but it stops short of a complete analysis of the loop space.
(Cf. Boot [Bo 60}, Milnor [Mi 63].) See also the papers of Palais [Pa 63]
and Smale [Sm 64].

In addition, given two finite dimensional manifolds X, Y it is fruitful to
give the set of differentiable maps from X to Y an infinite dimensional
manifold structure, as was started by Eells [Ee 58], [Ee 59], [Ee 61],
[EeS 64], and [Ee 66]. By so doing, one transcends the purely formal
translation of finite dimensional results getting essentially new ones, which
would in turn affect the finite dimensional case. For other connections
with differential geometry, see [El 67].

Foundations for the geometry of manifolds of mappings are given in
Abraham’s notes of Smale’s lectures [Ab 60] and Palais’s monograph
[Pa 68].

For more recent applications to critical point theory and submanifold
geometry, see [PaT §8].

In the direction of differential equations, the extension of the stable and
unstable manifold theorem to the Banach case, already mentioned as a
possibility in earlier versions of Differential Manifolds, was proved quite
elegantly by Irwin [Ir 70], following the idea of Pugh and Robbin for dealing
with local flows using the implicit mapping theorem in Banach spaces. I have
included the Pugh—-Robbin proof, but refer to Irwin’s paper for the stable
manifold theorem which belongs at the very beginning of the theory of
ordinary differential equations. The Pugh—Robbin proof can also be adjusted
to hold for vector fields of class H? (Sobolev spaces), of importance in partial
differential equations, as shown by Ebin and Marsden [EbM 70].

It is a standard remark that the C*-functions on an open subset of a
euclidean space do not form a Banach space. They form a Fréchet space
(denumerably many norms instead of one). On the other hand, the implicit
function theorem and the local existence theorem for differential equations are
not true in the more general case. In order to recover similar results, a much
more sophisticated theory is needed, which is only beginning to be developed.
(Cf. Nash’s paper on Riemannian metrics [Na 56], and subsequent con-
tributions of Schwartz [Sc 60} and Moser [Mo 61].) In particular, some ad-
ditional structure must be added (smoothing operators). Cf. also my Bourbaki
seminar talk on the subject[La 61]. This goes beyond the scope of this book, and
presents an active topic for research.

On the other hand, for some applications, one may complete the C*-
space under a suitable Hilbert space norm, deal with the resulting Hilbert
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manifold, and then use an appropriate regularity theorem to show that
solutions of the equation under study actually are C*.

I have emphasized differential aspects of differential manifolds rather
than topological ones. I am especially interested in laying down basic
material which may lead to various types of applications which have arisen since
the sixties, vastly expanding the perspective on differential geometry and
analysis. For instance, I expect the books [BGV 92] and [Gi 95] to be only
the first of many to present the accumulated vision from the seventies and
eighties, after the work of Atiyah, Bismut, Bott, Gilkey, McKean, Patodi,
Singer, and many others.

Negative Curvature

Most texts emphasize positive curvature at the expense of negative cur-
vature. I have tried to redress this imbalance. In algebraic geometry, it is
well recognized that negative curvature amounts more or less to “‘general
type”. For instance, curves of genus 0 are special, curves of genus 1 are
semispecial, and curves of genus = 2 are of general type. Thus I have
devoted an entire chapter to the fundamental example of a space of
negative curvature. Actually, I prefer to work with the Riemann tensor. I
use “‘curvature” simply as a code word which is easily recognizable by people in
the field. Furthermore, include a complete account of the equivalence between
seminegative curvature, the metric increasing property of the exponential map,
and the Bruhat-Tits semiparallelogram law. Third, I emphasize the Cartan—
Hadamard further by giving a version for the normal bundle of a totally
geodesic submanifold. I am indebted to Wu for valuable mathematical and
historical comments on this topic.

There are several current directions whereby spaces of negative cur-
vature are the fundamental building blocks of some theories. They are
quotients of Cartan-Hadamard spaces. I myself got interested in dif-
ferential geometry because of the joint work with Jorgenson, which
naturally led us to such spaces for the construction and theory of certain
zeta functions. Quite generally, we were led to consider spaces which admit
a stratification such that each stratum is a quotient of a Cartan-Hadamard
space (especially a symmetric space) by a discrete group. That such
stratifications exist very widely is a fact not generally taken into account.
For instance, it is a theorem of Griffiths that given an algebraic variety
over the complex numbers, there exists a proper Zariski closed subset
whose complement is a quotient of a complex bounded domain, so in this
way, every algebraic variety admits a stratification as above, even with
constant negative curvature. Thurston’s approach to 3-manifolds could be
viewed from our perspective also. The general problem then arises how
zeta functions, spectral invariants, homotopy and homology invariants, ad
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lib. behave with respect to stratifications, whether additively or otherwise.
In the Jorgenson-Lang program, we associate a zeta function to each
stratum, and the zeta functions of lower strata are the principal fudge
factors in the functional equation of the zeta function associated to the
main stratum. The spectral expansion of the heat kernel amounts to a
theta relation, and we get the zeta function by taking the Gauss transform
of the theta relation.

From a quite different perspective, certain natural “moduli” spaces for
structures on finite dimensional manifolds have a very strong tendency
to be Cartan-Hadamard spaces, for instance the space of Riemannian
metrics, spaces of Kahler metrics, spaces of connections, etc. which deserve
to be incorporated in a general theory.

In any case, I find the exclusive historical emphasis at the foundational
level on positive curvature, spheres, projective spaces, grassmanians, at the
expense of quotients of Cartan—-Hadamard spaces, to be misleading as to
the way manifolds are built up. Time will tell, but I don’t think we’ll have
to wait very long before a radical change of view point becomes prevalent.

New Haven, 1998 SERGE LANG
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. As mentioned in the foreword, Chapter VIII of Dieudonné’s
book or my books on analysis [La 83], [La 93] give a self-contained and
complete treatment for Banach spaces. We summarize certain facts
concerning their properties as topological vector spaces, and then we
summarize differential calculus. The reader can actually skip this chapter
and start immediately with Chapter II if the reader is accustomed to
thinking about the derivative of a map as a linear transformation. (In the
finite dimensional case, when bases have been selected, the entries in the
matrix of this transformation are the partial derivatives of the map.) We
have repeated the proofs for the more important theorems, for the ease of
the reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, topological vector spaces and con-
tinuous linear maps, open subsets of Banach spaces and differentiable
maps, differentiable manifolds and differentiable maps, vector bundles and
vector bundle maps, topological spaces and continuous maps, sets and just
plain maps. In an arbitrary category, maps are called morphisms, and in
fact the category of differentiable manifolds is of such importance in this
book that from Chapter II on, we use the word morphism synonymously
with differentiable map (or p-times differentiable map, to be precise). All
other morphisms in other categories will be qualified by a prefix to in-
dicate the category to which they belong.



4 DIFFERENTIAL CALCULUS [1, §1)

I, §1. CATEGORIES

A category is a collection of objects {X, Y,...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) — Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X', Y') are disjoint unless
X=X and Y =Y, in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X, Y) are called morphisms, and we write fre-
quently f: X — Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

A functor A: A — A’ from a category A into a category A’ is a map
which associates with each object X in A an object A(X) in A’, and with
each morphism f: X — Y a morphism A(f): A(X) — A(Y) in A’ such
that, whenever f and g are morphisms in 2 which can be composed, then
M fg) = A(f)A(g) and A(idy) = id;x) for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) — A(X) and A(fg) = A(g)A(f)).

In a similar way, one defines functors of many variables, which may be
covariant in some variables and contravariant in others. We shall meet
such functors when we discuss multilinear maps, differential forms, etc.

The functors of the same variance from one category 2 to another A’
form themselves the objects of a category Fun(?, 2U’). Its morphisms will
sometimes be called natural transformations instead of functor morphisms.
They are defined as follows. If A, u are two functors from 2 to U’ (say
covariant), then a natural transformation t: 4 — u consists of a collection

of morphisms
P tx: AX) — u(X)

as X ranges over 2, which makes the following diagram commutative for
any morphism f: X — Y in U:

AX) — w(X)
AlS )l lu(f )
HY) — w(®)
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In any category A, we say that a morphism f: X — Y is an iso-
morphism if there exists a morphism g: Y — X such that fg and gf are
the identities. For instance, an isomorphism in the category of topological
spaces is called a topological isomorphism, or a homeomorphism. In
general, we describe the category to which an isomorphism belongs by
means of a suitable prefix. In the category of sets, a set-isomorphism is
also called a bijection.

If f: X — Y is a morphism, then a section of f is defined to be a
morphism ¢g: ¥ — X such that fog=idy.

I, §2. TOPOLOGICAL VECTOR SPACES

The proofs of all statements in this section, including the Hahn-Banach
theorem and the closed graph theorem, can be found in [La 93].

A topological vector space E (over the reals R) is a vector space with a
topology such that the operations of addition and scalar multiplication are
continuous. It will be convenient to assume also, as part of the definition,
that the space is Hausdorff, and locally convex. By this we mean that
every neighborhood of 0 contains an open neighborhood U of 0 such that,
if x, yare in U and 0 < ¢ = 1, then tx+ (1 —¢)y also lies in U.

The topological vector spaces form a category, denoted by TVS, if we
let the morphisms be the continuous linear maps (by linear we mean
throughout R-linear). The set of continuous linear maps of one topo-
logical vector space E into F is denoted by L(E, F). The continuous
r-multilinear maps

Vy: Ex---xE—F

of E into F will be denoted by L"(E, F). Those which are symmetric (resp.
alternating) will be denoted by L[(E, F) or L] (E, F) (resp. L;(E, F)).
The isomorphisms in the category TVS are called toplinear isomorphisms,
and we write Lis(E, F) and Laut(E) for the toplinear isomorphisms of E
onto F and the toplinear automorphisms of E.

We find it convenient to denote by L(E), L"(E), L/(E), and L/(E) the
continuous linear maps of E into R (resp. the continuous, r-multilinear,
symmetric, alternating maps of E into R). Following classical termi-
nology, it is also convenient to call such maps into R forms (of the
corresponding type). If Ei,...,E, and F are topological vector spaces,
then we denote by L(Ey,...,E,;F) the continuous multilinear maps of the
product E; x --- x E, into F. We let:

End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).

The most important type of topological vector space for us is the
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Banachable space (a TVS which is complete, and whose topology can be
defined by a norm). We should say Banach space when we want to put
the norm into the structure. There are of course many norms which can
be used to make a Banachable space into a Banach space, but in prac-
tice, one allows the abuse of language which consists in saying Banach
space for Banachable space (unless it is absolutely necessary to keep the
distinction). Continuous linear maps of Banach spaces are called operators.

For this book, we assume from now on that all our topological vector
spaces are Banach spaces. We shall occasionally make some comments to
indicate where it might be possible to generalize certain results to more
general spaces. We denote our Banach spaces by E, F,....

The next two propositions give two aspects of what is known as the
closed graph theorem.

Proposition 2.1. Every continuous bijective linear map of E onto F is a
toplinear isomorphism.

Proposition 2.2. If E is a Banach space, and Fi, Fy are two closed
subspaces which are complementary (i.e. E=F +F; and Fi nF, =0),
then the map of ¥, xF, onto E given by the sum is a toplinear
isomorphism.

We shall frequently encounter a situation as in Proposition 2.2, and if F
is a closed subspace of E such that there exists a closed complement F,
such that E is toplinearly isomorphic to the product of F and F; under the
natural mapping, then we shall say that F splits in E.

Next, we state a weak form of the Hahn-Banach theorem.

Proposition 2.3. Let E be a Banach space and x # 0 an element of E.
Then there exists a continuous linear map A of E into R such that

A(x) #0.

One constructs 4 by Zorn’s lemma, supposing that 1 is defined on some
subspace, and having a bounded norm. One then extends A to the
subspace generated by one additional element, without increasing the
norm.

In particular, every finite dimensional subspace of E splits if E is
complete. More trivially, we observe that a finite codimensional closed
subspace also splits.

We now come to the problem of putting a topology on L(E, F). Let E,
F be Banach spaces, and let

A: E—F

be a continuous linear map (also called a bounded lincar map). We can
then define the norm of 4 to be the greatest lower bound of all numbers K
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such that
x| < K]x]

for all x e E. This norm makes L(E, F) into a Banach space.
In a similar way, we define the topology of L(E,...,E,;F), which is a
Banach space if we define the norm of a multilinear continuous map

A: Ey x---xE, - F

by the greatest lower bound of all numbers K such that

[A(x1, .., x)] < K|xp] -+ %]
We have:
Proposition 2.4. If E;,... E, F are Banach spaces, then the canonical
map

L(Ey, L(Ey, ..., L(E,, F),...)) — L’(E,,...,E,;F)

from the repeated continuous linear maps to the continuous multilinear
maps is a toplinear isomorphism, which is norm-preserving, i.e. a Banach-
isomorphism.

The preceding propositions could be generalized to a wider class of
topological vector spaces. The following one exhibits a property peculiar
to Banach spaces.

Proposition 2.5. Let E, F be two Banach spaces. Then the set of
toplinear isomorphisms Lis(E, F) is open in L(E, F).

The proof is in fact quite simple. If Lis(E, F) is not empty, one is
immediately reduced to proving that Laut(E) is open in L(E, E). We then
remark that if ue L(E, E), and |u| < 1, then the series

lvutu®+--

converges. Given any toplinear automorphism w of E, we can find an
open neighborhood by translating the open unit ball multiplicatively from
I to w.

Again in Banach spaces, we have:

Proposition 2.6. If E, F, G are Banach spaces, then the bilinear maps

L(E, F) x L(F, G) — L(E, G),
L(E,F) xE — F,
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obtained by composition of mappings are continuous, and similarly for
multilinear maps.

Remark. The preceding proposition is false for more general spaces
than Banach spaces, say Fréchet spaces. In that case, one might hope that
the following may be true. Let U be open in a Fréchet space and let

f: U— LE,F),
g: U— L(F, G),

be continuous. Let y be the composition of maps. Then y(f, g) is
continuous. The same type of question arises later, with differentiable
maps instead, and it is of course essential to know the answer to deal with
the composition of differentiable maps.

I, §3. DERIVATIVES AND COMPOSITION OF MAPS

A real valued function of a real variable, defined on some neighborhood of
0 is said to be o(z) if
lim o(¢)/t = 0.

t—0

Let E, F be two topological vector spaces, and ¢ a mapping of a
neighborhood of 0 in E into F. We say that ¢ is tangent to O if, given a
neighborhood W of 0 in F, there exists a neighborhood ¥ of 0 in E such
that

p(tV) co(t) W

for some function o(f). If both E, F are normed, then this amounts to the
usual condition

lp()| = [x|W(x)

with lim y(x) =0 as |x| — 0.

Let E, F be two topological vector spaces and U open in E. Let
f: U — F be a continuous map. We shall say that f is differentiable at a
point xp € U if there exists a continuous linear map A of E into F such

that, if we let .
S(xo+y)=f(x0) + 4y +9(y)

for small y, then ¢ is tangent to 0. It then follows trivially that 1 is
uniquely determined, and we say that it is the derivative of f at x;. We
denote the derivative by D f(xg) or f'(xg). It is an element of L(E, F). If
f is differentiable at every point of U, then f’ is a map

f': U— L(E, F).
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It is easy to verify the chain rule.

Proposition 3.1. If f: U — V is differentiable at xo, if g: V — W is
differentiable at f(xy), then go f is differentiable at xy, and

(g0 f)(x0) = g'(f(x0)) o f'(x0)-
Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the differential
calculus. All topological vector spaces are assumed to be Banach spaces
(i.e. Banachable). Then L(E, F) is also a Banach space, if E and F are
Banach spaces.

Let U be open in E and let f: U — F be differentiable at each point of
U. If f' is continuous, then we say that f is of class C!. We define maps
of class C? (p = 1) inductively. The p-th derivative D?f is defined as
D(DP71f) and is itself a map of U into

L(E, L(E,...,L(E, F)--))

which can be identified with L?(E, F) by Proposition 2.4. A map f is said
to be of class C? if its kth derivative D¥f exists for 1 < k < p, and is
continuous.

Remark. Let [ be of class CP, on an open set U containing the origin.
Suppose that f is locally homogeneous of degree p near 0, that is

fltx) =7 (x)

for all t and x sufficiently small. Then for all sufficiently small x we
have

1
flx) = ?D”f(())x(‘”),
where x'P) = (x, x,...,X), p times.
This is easily seen by differentiating p times the two expressions for
f(tx), and then setting t = 0. The differentiation is a trivial application of

the chain rule.

Proposition 3.2. Let U, V be open in Banach spaces. If f: U — V and
g: V—F are of class CP, then so is go f.

From Proposition 3.2, we can view open subsets of Banach spaces as
the objects of a category, whose morphisms are the continuous maps of
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class C?. These will be called C?-morphisms. We say that f is of class
C* if it is of class C” for all integers p = 1. From now on, p is an
integer >0 or oo (C° maps being the continuous maps). In practice, we
omit the prefix C? if the p remains fixed. Thus by morphism, throughout
the rest of this book, we mean C”-morphism with p £ oo. We shall use
the word morphism also for C?-morphisms of manifolds (to be defined in
the next chapter), but morphisms in any other category will always be
prefixed so as to indicate the category to which they belong (for instance
bundle morphism, continuous linear morphism, etc.).

Proposition 3.3. Let U be open in the Banach space E, and let
f: U—F be a CP-morphism. Then DPf (viewed as an element of
LP(E, F)) is symmetric.

Proposition 3.4. Let U be open in E, and let f;: U — F; (i=1,...,n) be
continuous maps into spaces ¥;. Let f = (f1,...,f,) be the map of U
into the product of the ¥;. Then f is of class C? if and only if each f; is
of class C?, and in that case

Df = (Dfi,...,D"fy).

Let U, V be open in spaces E;, E; and let
fiUxV —F

be a continuous map into a Banach space. We can introduce the notion of
partial derivative in the usual manner. If (x, y) is in U x V and we keep
y fixed, then as a function of the first variable, we have the derivative as
defined previously. This derivative will be denoted by D;f(x, y). Thus

D1f: U x V—)L(El, F)

is a map of U x V into L(E{, F). We call it the partial derivative with
respect to the first variable. Similarly, we have D, f, and we could take n
factors instead of 2. The total derivative and the partials are then related
as follows.

Proposition 3.5. Let Uy,..., U, be open in the spaces Ey, ..., E, and let
f: Uy x---x U, — F be a continuous map. Then f is of class C? if and
only if each partial derivative D;f: Uy x --- U, — L(E;, F) exists and is
of class CP~'. If that is the case, then for x = (xi,...,x,) and

v=_(v1,...,00) €El x -+ X Ep,
we have

Df(xX)- (v1,. .o vn) = Y Dif (x) - vi.
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The next four propositions are concerned with continuous linear and
multilinear maps.

Proposition 3.6. Let E, F be Banach spaces and f: E — F a continuous
linear map. Then for each x € E we have

() =f.

Proposition 3.7. Let E, ¥, G be Banach spaces, and U open in E. Let
f: U—F be of class CP and g: F — G continuous and linear. Then
go f is of class CP and

DP(go f) =go D'f.
Proposition 3.8. If E,,... E, and F are Banach spaces and
f: Egx---xE,—F

a continuous multilinear map, then f is of class C*, and its (r+ 1)-st
derivative is 0. If r = 2, then Df is computed according to the usual rule
for derivative of a product ( first times the derivative of the second plus
derivative of the first times the second).

Proposition 3.9. Let E, F be Banach spaces which are toplinearly iso-
morphic. If u: E — F is a toplinear isomorphism, we denote its inverse
by u™'. Then the map

-1

u—u
from Lis(E, F) to Lis(F, E) is a C®-isomorphism. Its derivative at a
point ugy is the linear map of L(E, F) into L(F, E) given by the formula

vHualvugl.

Finally, we come to some statements which are of use in the theory of
vector bundles.

Proposition 3.10. Let U be open in the Banach space E and let F, G be
Banach spaces.

(1) If f: U~ L(E, F) is a C?-morphism, then the map of U x E into
F given by
(x, 0) = f(x)o
is a morphism.

(i) If f: U— L(E,F) and g: U — L(F, G) are morphisms, then so
is y(f, g) (y being the composition).
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(i) If f+ U—-R and g: U — L(E, F) are morphisms, so is fy (the
value of fg at x is f(x)g(x), ordinary multiplication by scalars).
(v} If f, g: U— L(E, F) are morphisms, so is [+ g.

This proposition concludes our summary of results assumed without
proof.

I, §4. INTEGRATION AND TAYLOR’S FORMULA

Let E be a Banach space. Let I denote a real, closed interval, say
a =t =<b A step mapping
f:I—-E

is a mapping such that there exists a finite number of disjoint sub-intervals
L,...,I, covering I such that on each interval [I;, the mapping has
constant value, say v;. We do not require the intervals I; to be closed.
They may be open, closed, or half-closed.

Given a sequence of mappings f, from [ into E, we say that it converges
uniformly if, given a neighborhood W of 0 into E, there exists an integer
ny such that, for all n, m > ny and all ¢ € I, the difference £,(t) — f,.(¢) lies
in W. The sequence f, then converges to a mapping f of / into E.

A ruled mapping is a uniform limit of step mappings. We leave to the
reader the proof that every continuous mapping is ruled.

If fis a step mapping as above, we define its integral

ff:Efmmzzywm

a

where u(I) is the length of the interval /; (its measure in the standard
Lebesgue measure). This integral is independent of the choice of intervals
I; on which f is constant.

If fis ruled and f =Ilimf, (lim being the uniform limit), then the

sequence
b

Jﬁ
a

converges in E to an element of E independent of the particular sequence
Jf» used to approach f uniformly. We denote this limit by

rf=rfmm

a a

and call it the integral of 7. The integral is linear in f, and satisfies the
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b
usual rules concerning changes of intervals. (If b < a then we define J to

a

be minus the integral from b to a.)
As an immediate consequence of the definition, we get:

Proposition 4.1. Let A: E— R be a continuous linear map and let
f: I —E be ruled. Then Af = Ao f is ruled, and

b b
AJ f@) dt:] Af(t) dt.

Proof. If f, is a sequence of step functions converging uniformly to f,
then Af, is ruled and converges uniformly to Af. Our formula follows at
once.

Taylor’s Formula. Let E, F be Banach spaces. Let U be open in E. Let
x, y be two points of U such that the segment x +ty lies in U for
0 t=1. Let

f: U—F

be a CP-morphism, and denote by y®) the “vector” (y,...,y) p times.
Then the function DPf(x +ty)- y®) is continuous in t, and we have

= ?-1)
f(x+y)=f(x)+Dfl(;‘)y+...+D”(p_f(_Xi,)v!_

1 _ ap-1
+ L —((IT_L)TS!—DPf(x +ty)y®) dt.

Proof. By the Hahn-Banach theorem, it suffices to show that both
sides give the same thing when we apply a functional A (continuous linear
map into R). This follows at once from Proposition 3.7 and 4.1, together
with the known result when F = R. In this case, the proof proceeds by
induction on p, and integration by parts, starting from

1
fl+3) =109 = [ Drtx+ 1)y
The next two corollaries are known as the mean value theorem.
Corollary 4.2. Let E, F be two Banach spaces, U open in E, and x, z two

distinct points of U such that the segment x + t(z —x) (0 £ t £ 1) lies in
U. Let f: U—TF be continuous and of class C'. Then

If(z) = f(x)| £ |z = x| sup|f' (&),

the sup being taken over & in the segment.
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Proof. This comes from the usual estimations of the integral. Indeed,
for any continuous map g: I — F we have the estimate

Jb g(t)dt| < K(b—a)

a

if K is a bound for g on I, and a £ b. This estimate is obvious for step
functions, and therefore follows at once for continuous functions.

Another version of the mean value theorem is frequently used.

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let x¢ be a
point on the segment between x and z. Then

1f(2) = f(x) = f/(x0)(z = )| < |z = x| sup|f(&) — f'(x0)l,
the sup taken over all & on the segment.
Proof We apply Corollary 4.2 to the map
g(x) = f(x) = f'(x0)x.

Finally, let us make some comments on the estimate of the remainder
term in Taylor’s formula. We have assumed that D?f is continuous. There-
fore, DPf(x+ ty) can be written

DPf(x+ty) = DPf(x) +¥(y, 1),
where y depends on y, ¢ (and x of course), and for fixed x, we have
lim [y (3, £)] = 0
as |y — 0. Thus we obtain:
Corollary 4.4. Let E, F be two Banach spaces, U open in E, and x a

point of U. Let f: U —F be of class C?, p = 1. Then for all y such
that the segment x +ty lies in U (0 <t £ 1), we have

« ®)
foct ) = £+ 2L DTEIE )

with an error term 0(y) satisfying

lim 6(y)/IyI” = 0.
y—0
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I, §5. THE INVERSE MAPPING THEOREM

The inverse function theorem and the existence theorem for differential
equations (of Chapter IV) are based on the next result.

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a
complete metric space, with distance function d, and let f: M — M be a
mapping of M into itself. Assume that there is a constant K, 0 < K < 1,
such that, for any two points x, y in M, we have

d(f(x), f(y) = Kd(x, y).

Then f has a unique fixed point (a point such that f(x) = x). Given any
point xo in M, the fixed point is equal to the limit of f"(xo) (iteration of
[ repeated n times) as n tends to infinity.

Proof. This is a trivial exercise in the convergence of the geometric
series, which we leave to the reader.

Theorem 5.2. Let E, F be Banach spaces, U an open subset of E, and let
f: U—F a CP-morphism with p = 1. Assume that for some point
xo € U, the derivative f'(xy): E — F is a toplinear isomorphism. Then f
is a local CP-isomorphism at x.

(By a local C?-isomorphism at x;, we mean that there exists an open
neighborhood V of x¢ such that the restriction of f to V establishes a
CP-isomorphism between V' and an open subset of E.)

Proof. Since a toplinear isomorphism is a C*®-isomorphism, we may
assume without loss of generality that E=F and f’(xp) is the identity
(simply by considering f ’(xo)_1 o f instead of f). After translations, we
may also assume that xo =0 and f(x;) =0.

We let g(x) = x — f(x). Then g’(xp) =0 and by continuity there exists
r >0 such that, if |x| < 2r, we have

1
lg'(x)] < 3-

From the mean value theorem, we see that |g(x)| < 11x| and hence g
maps the closed ball of radius r, B,(0) into B,/(0). ~

We contend: Given y € B,/;(0), there exists a unique element x € B,(0)
such that f(x) = y. We prove this by considering the map

gy(x) =y +x— f(x).

If |y| £ r/2 and |x| < r, then |g,(x)| < r and hence g, may be viewed as
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a mapping of the complete metric space B,(0) into itself. The bound of !
on the derivative together with the mean value theorem shows that g, is a
contracting map, i.e. that

l9y(x1) = gy(x2)| = 19(x1) — g(x2)| £ 3131 = x2]

for x;, x; € B,(0). By the contraction lemma, it follows that g, has a
unique fixed point. But the fixed point of g, is precisely the solution of the
equation f(x) = y. This proves our contention.

We obtain a local inverse ¢ = f~'. This inverse is continuous, because

1 = x| 2 f(x1) —f ()| + lg(x1) — g(x2)]

X1 = x2| £ 2|f(x1) = f(x2)].

and hence

Furthermore ¢ is differentiable in B,/;(0). Indeed, let y, = f(x;) and
y2 = f(x2) with y,, ¥, € B,/5(0) and xi, x; € B,(0). Then

lp(y1) — 0(32) = £'(x2) " (1 — wa)l = |31 = x2 = £ (x2) " (f (1) = f(x2)].

We operate on the expression inside the norm sign with the identity

id = f'(x2)" f'(x2).

Estimating and using the continuity of f’, we see that for some constant
A, the preceding expression is bounded by

ALf (x2)(x1 = x2) = f (x1) + f (x2) .

From the differentiability of f, we conclude that this expression is
o(x1 — x2) which is also o(y, — »,) in view of the continuity of ¢ proved
above. This proves that ¢ is differentiable and also that its derivative is
what it should be, namely

-1

o' = f(e(») ",

for y e B,/;(0). Since the mappings ¢, f’, “inverse” are continuous, it
follows that ¢’ is continuous and thus that ¢ is of class C!. Since taking
inverses is C* and f’ is C?~!, it follows inductively that ¢ is C?, as was
to be shown.

Note that this last argument also proves:

Proposition 5.3. If f: U — V is a homeomorphism and is of class CP
with p = 1, and if f is a C'-isomorphism, then f is a CP-isomorphism.
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In some applications it is necessary to know that if the derivative of a
map is close to the identity, then the image of a ball contains a ball of
only slightly smaller radius. The precise statement follows. In this book,
it will be used only in the proof of the change of variables formula, and
therefore may be omitted until the reader needs it.

Lemma 5.4. Let U be open in E, and let f: U — E be of_ class C'.
Assume that f(0) =0, f'(0) =1. Let r > 0 and assume that B,(0) < U.
Let 0 < s < 1, and assume that

/') = ') = s

for all x, ze B,(0). If yeE and |y| < (1 —s)r, then there exists a
unique x € B,(0) such that f(x) = y.

Proof. The map g, given by g,(x) = x — f(x) + y is defined for |x| < r
and |y| £ (1 — s)r, and maps B,(0) into itself because, from the estimate

£ (x) = x| =1£(x) = f(0) = f'(0)x] < |x| sup|f'(2) = f(O)] < s,

we obtain
lgy(x)] £ sr+ (1 —s)r=r.

Furthermore, g, is a shrinking map because, from the mean value theorem,
we get

lgy(x1) — gy(x2)| = |x1 — x2 = (f(x1) — f(x2))]
= |x1 —x2 = f'(0)(x1 — x2) +d(x1, x2)|

= [0(x1, x2)|,
where
10(x1, x2)| £ |x1 — x2| sup|f'(z) — f'(0)] £ s|x1 — x2].

Hence g, has a unique fixed point x € B,(0) which is such that f(x) = y.
This proves the lemma.

We shall now prove some useful corollaries, which will be used in
dealing with immersions and submersions later. We assume that morphism
means CP-morphism with p = 1.

Corollary 5.5. Let U be an open subset of E, and f: U —>F, xF, a
morphism of U into a product of Banach spaces. Let xy € U, suppose
that f(xo) = (0, 0) and that f’(x,) induces a toplinear isomorphism of E
and Fi = F; x 0. Then there exists a local isomorphism g of F; x F at
(0, 0) such that

gof: U—-F xF,
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maps an open subset Uy of U into Fy x 0 and induces a local iso-
morphism of Uy at xy on an open neighborhood of 0 in Fy.

Proof. We may assume without loss of generality that F; =E
(identify by means of f'(x9)) and xo = 0. We define

p: UxF, > F; xF
by the formula
(D(X, y2) = f(X) + (07 yZ)

for xe U and y, € F,. Then ¢(x, 0) = f(x), and
9'(0, 0) = f'(0) + (0, id2).

Since f7(0) is assumed to be a toplinear isomorphism onto F; x 0, it
follows that ¢'(0, 0) is also a toplinear isomorphism. Hence by the
theorem, it has a local inverse, say g, which obviously satisfies our
requirements.

Corollary 5.6. Let E, F be Banach spaces, U open in E, and f: U — F
a CP-morphism with p =2 1. Let xo € U. Suppose that f(x9) =0 and
f'(xq0) gives a toplinear isomorphism of E on a closed subspace of F
which splits. Then there exists a local isomorphism g: F — F| xF, at 0
and an open subset U, of U containing xo such that the composite map
go f induces an isomorphism of U, onto an open subset of F,.

Considering the splitting assumption, this is a reformulation of
Corollary 5.5.

It is convenient to define the notion of splitting for injections. If E, F
are topological vector spaces, and A: E — F is a continuous linear map,
which is injective, then we shall say that 4 splits if there exists a toplinear
isomorphism «: F — F; x F, such that oo induces a toplinear iso-
morphism of E onto F; = F; x 0. In our corollary, we could have re-
phrased our assumption by saying that f’'(x) is a splitting injection.

For the next corollary, dual to the preceding one, we introduce the
notion of a local projection. Given a product of two open sets of Banach
spaces V7 x V> and a morphism f: V; x ¥V, — F, we say that fis a
projection (on the first factor) if f can be factored

V1><V2——>V1—>F

into an ordinary projection and an isomorphism of ¥; onto an open subset
of F. We say that fis a local projection at (a;, ay) if there exists an open
neighborhood U; x U, of (aj, a@;) such that the restriction of f to this
neighborhood is a projection.
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Corollary 5.7. Let U be an open subset of a product of Banach spaces

E; x E; and (ay, a;) a point of U. Let f: U — F be a morphism into a

Banach space, say f(ai, az) =0, and assume that the partial derivative
Dy f(a, a3): E; > F

is a toplinear isomorphism. Then there exists a local isomorphism h of a
product Vi x V, onto an open neighborhood of (a), az) contained in U
such that the composite map

V] X V2 i) U —f> F
is a projection (on the second factor).
Proof. We may assume (aj, a2) = (0, 0) and E; = F. We define

Q: EIXE2—>E1XE2

o(x1, x2) = (x1, f(x1, x2))

locally at (a;, @;). Then ¢’ is represented by the matrix

an
ha

( id, 0 )

Dif D»f

d is therefore a toplinear isomorphism at (a;, a;). By the theorem, it
s a local inverse 4 which clearly satisfies our requirements.

Corollary 5.8. Let U be an open subset of a Banach space E and
[+ U — F a morphism into a Banach space F. Let xo € U and assume
that f'(xo) is surjective, and that its kernel splits. Then there exists an
open subset U’ of U containing xy and an isomorphism

h: V) x V2 — U’
such that the composite map f oh is a projection

VixV,— Vi —F.

Proof. Again this is essentially a reformulation of the corollary, taking

into account the splitting assumption.

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets in
Banach spaces E, F respectively, and let

f: UxV -G
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be a C? mapping. Let (a, b) e U x V, and assume that
Dyf(a,b): F> G
is a toplinear isomorphism. Let f(a, b) =0. Then there exists a

continuous map g: Uy — V defined on an open neighborhood Uy of a
such that g(a) = b and such that

f(x,9(x)) =0

for all xe Uy. If Uy is taken to be a sufficiently small ball, then g is
uniquely determined, and is also of class CP.

Proof. Let A= D,f(a,b). Replacing f by i~ 1o f we may assume
without loss of generality that D, f(a, b) is the identity. Consider the map

p: UxV —-ExF
given by
o(x, ¥) = (x, f(x, »))-

Then the derivative of ¢ at (a, ) is immediately computed to be
represented by the matrix

idg 0 idg [0
Dola, b) = (Dxf(a, b) D:f(a, b)) = (blﬂa, b) idF)

whence ¢ is locally invertible at (a, ») since the inverse of Dg(a, b) exists

and is the matrix
idg (0]
-Dif(a,b) idg/

We denote the local inverse of ¢ by Y. We can write
¥(x, 2) = (x, h(x, z))
where 4 is some mapping of class CP. We define
g(x) = h(x, 0).
Then certainly g is of class C? and
(x, f(x, 9(x))) = o(x, 9(x)) = o(x, h(x, 0)) = p(¥(x, 0)) = (x, 0).

This proves the existence of a C? map ¢ satisfying our requirements.
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Now for the uniqueness, suppose that go is a continuous map defined
near a such that go(a) =b and f(x, go(x)) = ¢ for all x near a. Then
go(x) is near b for such x, and hence

p(x, go(x)) = (x, 0).

Since ¢ is invertible near (a, b) it follows that there is a unique point
(x, y) near (a, b) such that ¢(x, y) = (x, 0). Let Uy be a small ball on
which g is defined. If g is also defined on Uy, then the above argument
shows that g and g¢ coincide on some smaller neighborhood of a. Let
xe Uy and let v =x —a. Consider the set of those numbers ¢ with
0 £ ¢ = 1 such that g(a+ tv) = go(a + tv). This set is not empty. Let s
be its least upper bound. By continuity, we have g(a + sv) = go(a + sv). If
s <1, we can apply the existence and that part of the uniqueness just
proved to show that g and ¢go are in fact equal in a neighborhood of
a+ sv. Hence s =1, and our uniqueness statement is proved, as well as
the theorem.

Note. The particular value f(a, b) =0 in the preceding theorem is
irrelevant. If f(a, b) = ¢ for some ¢ # 0, then the above proof goes
through replacing 0 by ¢ everywhere.



CHAPTER I

Manifolds

Starting with open subsets of Banach spaces, one can glue them together
with CP-isomorphisms. The result is called a manifold. We begin by
giving the formal definition. We then make manifolds into a category, and
discuss special types of morphisms. We define the tangent space at each
point, and apply the criteria following the inverse function theorem to get
a local splitting of a manifold when the tangent space splits at a point.

We shall wait until the next chapter to give a manifold structure to the
union of all the tangent spaces.

Il, §1. ATLASES, CHARTS, MORPHISMS

Let X be a set. An atlas of class C? (p =0) on X is a collection of
pairs (U;, ¢;) (i ranging in some indexing set), satisfying the following
conditions:

AT 1. Each U; is a subset of X and the U; cover X.

AT 2. Each ¢; is a bijection of U; onto an open subset o,U; of some
Banach space E; and for any i, j, ¢, (U;nU;) is open in E;.

AT 3. The map
por' 0(Uin U)) — ¢;(Uin U))
is a CP-isomorphism for each pair of indices i, j.

It is a trivial exercise in point set topology to prove that one can give X
a topology in a unique way such that each U; is open, and the ¢, are

22
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topological isomorphisms. We see no reason to assume that X is
Hausdorff. If we wanted X to be Hausdorff, we would have to place a
separation condition on the covering. This plays no role in the formal
development in Chapters II and III. It is to be understood, however, that
any construction which we perform (like products, tangent bundles, etc.)
would yield Hausdorff spaces if we start with Hausdorff spaces.

Each pair (U;, ¢;) will be called a chart of the atlas. If a point x of X
lies in Uj;, then we say that (Uj, ¢;) is a chart at x.

In condition AT 2, we did not require that the vector spaces be the
same for all indices i, or even that they be toplinearly isomorphic. If they
are all equal to the same space E, then we say that the atlas is an E-atlas.
If two charts (Ui, ¢;) and (U}, ¢;) are such that U; and Uj; have a non-
empty intersection, and if p = 1, then taking the derivative of (pjgo, we see
that E; and E; are toplinearly 1somorph1c Furthermore, the set of points
xe X for which there exists a chart (U;, ¢,) at x such that E; is toplinearly
isomorphic to a given space E is both open and closed. Consequently, on
each connected component of X, we could assume that we have an E-atlas
for some fixed E.

Suppose that we are given an open subset U of X and a topological
isomorphism ¢: U — U’ onto an open subset of some Banach space E. We
shall say that (U, ¢) is compatible with the atlas {(U;, ¢;)} if each map
9,0~ (defined on a suitable intersection as in AT 3) is a C?-isomorphism.
Two atlases are said to be compatible if each chart of one is compatible
with the other atlas. One verifies immediately that the relation of
compatibility between atlases is an equivalence relation. An equivalence
class of atlases of class C” on X is said to define a structure of C?-
manifold on X. If all the vector spaces E; in some atlas are toplinearly
isomorphic, then we can always find an equivalent atlas for which they are
all equal, say to the vector space E. We then say that X is an E-manifold
or that X is modeled on E.

If E=R" for some fixed n, then we say that the manifold is n-
dimensional. In this case, a chart

p: U—-R"

is given by n coordinate functions ¢;,...,¢,. If P denotes a point of U,
these functions are often written

x1(P), ..., x,(P),

or simply xji,...,x,. They are called local coordinates on the manifold.
If the integer p (which may also be o0) is fixed throughout a discussion,
we also say that X is a manifold.
The collection of C?-manifolds will be denoted by Man”?. If we look
only at those modeled on spaces in a category U then we write Man? ().
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Those modeled on a fixed E will be denoted by Man?(E). We shall make
these into categories by defining morphisms below.

Let X be a manifold, and U an open subset of X. Then it is possible, in
the obvious way, to induce a manifold structure on U, by taking as charts
the intersections

(U,'('\ U, ¢,|(Ulﬁ U))

If X is a topological space, covered by open subsets F;, and if we are
given on each ¥; a manifold structure such that for each pair j, j' the
induced structure on ¥; n Vs coincides, then it is clear that we can give to
X a unique manifold structure inducing the given ones on each V.

Example. Let X be the real line, and for each open interval U,, let ¢; be
the function ¢,() = ¢>. Then the g;p; ' are all equal to the identity, and
thus we have defined a C*-manifold structure on R!

If X, Y are two manifolds, then one can give the product X x ¥ a
manifold structure in the obvious way. If {(U;, ¢;)} and {(V}, ¥,)} are
atlases for X, Y respectively, then

{(U; x Vi, 9; X wj)}

is an atlas for the product, and the product of compatible atlases gives rise
to compatible atlases, so that we do get a well-defined product structure.

Let X, Y be two manifolds. Let f: X — Y be a map. We shall say
that f is a C?-morphism if, given x € X, there exists a chart (U, ¢) at x
and a chart (V, ) at f(x) such that f(U) = ¥, and the map

Yofop 't pU—yV

is a CP-morphism in the sense of Chapter I, §3. One sees then imme-
diately that this same condition holds for any choice of charts (U, ¢) at x
and (V, ) at f(x) such that f(U) < V.

It is clear that the composite of two CP-morphisms is itself a C?-
morphism (because it is true for open subsets of vector spaces). The
CP-manifolds and C?-morphisms form a category. The notion of iso-
morphism is therefore defined, and we observe that in our example of the
real line, the map ¢+ > gives an isomorphism between the funny differ-
entiable structure and the usual one.

If f: X - Y is a morphism, and (U, ¢) is a chart at a point x € X,
while (V, ) is a chart at f(x), then we shall also denote by

fV,Ui oU —yV
the map ¥ fo~l.
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It is also convenient to have a local terminology. Let U be an open
set (of a manifold or a Banach space) containing a point xp. By a local
isomorphism at xy we mean an isomorphism

f: U1—>V

from some open set U; containing x, (and contained in U) to an open set
V (in some manifold or some Banach space). Thus a local isomorphism is
essentially a change of chart, locally near a given point.

Manifolds of maps. Even starting with a finite dimensional manifold,
the set of maps satisfying various smoothness conditions forms an infinite
dimensional manifold. This story started with Eells [Ee 58], [Ee 59],
[Ee 61]. Palais and Smale used such manifolds of maps in their Morse
theory [Pa 63], [Ab 62], [Sm 64]. For a brief discussion of subsequent
developments, see [Mar 74], p. 67, referring to [Eb 70], [Ee 66], [El 67],
[Kr 72], [Le 67], [Om 70], and [Pa 68]. Two kinds of maps have played a
role: the C? maps of course, with various values of p, but also maps
satisfying Sobolev conditions, and usually denoted by H*. The latter form
Hilbert manifolds (definition to be given later).

Il, §2. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS

Let X be a topological space, and Y a subset of X. We say that Y is
locally closed in X if every point y € Y has an open neighborhood U in X
such that Y n U is closed in U. One verifies easily that a locally closed
subset is the intersection of an open set and a closed set. For instance, any
open subset of X is locally closed, and any open interval is locally closed
in the plane.

Let X be a manifold (of class C? with p = 0). Let Y be a subset of X
and assume that for each point y € Y there exists a chart (V, ) at y such
that  gives an isomorphism of V with a product Vi x V, where ¥V is
open in some space E; and V5 is open in some space E;, and such that

l//(Yﬁ V)= V1 X dap

for some point a; € V> (which we could take to be 0). Then it is clear that
Y is locally closed in X. Furthermore, the map y induces a bijection

Ui YnV - V.
The collection of pairs (Y 0V, yr,) obtained in the above manner constitutes

an atlas for Y, of class CP. The verification of this assertion, whose formal
details we leave to the reader, depends on the following obvious fact.
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Lemma 2.1. Let Uy, Uy, Vi, V) be open subsets of Banach spaces, and
g: Uyx Uy — Vi x Vy, a CP-morphism. Let aye U, and by € V> and
assume that g maps Uy x ay into V| x by. Then the induced map

gi: Uy — 1

is also a morphism.

Indeed, it is obtained as a composite map
U1——)U1XU2——>V1XV2-—+V1,

the first map being an inclusion and the third a projection.

We have therefore defined a C?-structure on Y which will be called a
submanifold of X. This structure satisfies a universal mapping property,
which characterizes it, namely:

Given any map f: Z — X from a manifold Z into X such that f(Z) is
contained in Y. Let fy:Z — Y be the induced map. Then f is a
morphism if and only if fy is a morphism.

The proof of this assertion depends on Lemma 2.1, and is trivial.

Finally, we note that the inclusion of Y into X is a morphism.
If Y is also a closed subspace of X, then we say that it is a closed
submanifold.

Suppose that X is finite dimensional of dimension n, and that Y is a
submanifold of dimension r. Then from the definition we see that the local
product structure in a neighborhood of a point of Y can be expressed in
terms of local coordinates as follows. Each point P of Y has an open
neighborhood U in X with local coordinates (xi,...,x,) such that the
points of Y in U are precisely those whose last n — r coordinates are 0,
that is, those points having coordinates of type

(X1,..., %, 0,...,0).

Let f: Z — X be a morphism, and let z € Z. We shall say that f is an
immersion at z if there exists an open neighborhood Z; of z in Z such that
the restriction of f to Z; induces an isomorphism of Z; onto a sub-
manifold of X. We say that f is an immersion if it is an immersion at
every point.

Note that there exist injective immersions which are not isomorphisms
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onto submanifolds, as given by the following example:

(The arrow means that the line approaches itself without touching.) An
immersion which does give an isomorphism onto a submanifold is called
an embedding, and it is called a closed embedding if this submanifold is
closed.

A morphism f: X — Y will be called a submersion at a point x € X if
there exists a chart (U, ¢) at x and a chart (V, ) at f(x) such that ¢
gives an isomorphism of U on a products Uy x U, (U; and U, open in
some Banach spaces), and such that the map

Yfo™! =fyry: Ui xUp =V

is a projection. One sees then that the image of a submersion is an open
subset (a submersion is in fact an open mapping). We say that f is a
submersion if it is a submersion at every point.

For manifolds modelled on Banach spaces, we have the usual criterion
for immersions and submersions in terms of the derivative.

Proposition 2.2. Let X, Y be manifolds of class CP (p = 1) modeled on
Banach spaces. Let f: X — Y be a CP-morphism. Let xe€ X. Then:

(i) f is an immersion at x if and only if there exists a chart (U, ¢) at x
and (V, ) at f(x) such that fy (px) is injective and splits.

(i) f is a submersion at x if and only if there exists a chart (U, @) at x
and (V,y) at f(x) such that fy ,(px) is surjective and its kernel
splits.

Proof. This is an immediate consequence of Corollaries 5.4 and 5.6 of
the inverse mapping theorem.

The conditions expressed in (i) and (ii) depend only on the derivative,
and if they hold for one choice of charts (U, ¢) and (V, ) respectively,
then they hold for every choice of such charts. It is therefore convenient
to introduce a terminology in order to deal with such properties.

Let X be a manifold of class C? (p = 1). Let x be a point of X. We
consider triples (U, ¢, v) where (U, ¢) is a chart at x and v is an element
of the vector space in which @U lies. We say that two such triples
(U, ¢, v) and (V, W, w) are equivalent if the derivative of yp~! at px maps
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v on w. The formula reads:

(™) (px)o = w

(obviously an equivalence relation by the chain rule). An equivalence class
of such triples is called a tangent vector of X at x. The set of such tangent
vectors is called the tangent space of X at x and is denoted by T,(X).
Each chart (U, ¢) determines a bijection of 7,(X) on a Banach space,
namely the equivalence class of (U, ¢, v) corresponds to the vector v. By
means of such a bijection it is possible to transport to 7,(X) the structure
of topological vector space given by the chart, and it is immediate that this
structure is independent of the chart selected.

If U, V are open in Banach spaces, then to every morphism of class
C? (p 2 1) we can associate its derivative Df(x). If now /: X - Y is a
morphism of one manifold into another, and x a point of X, then by
means of charts we can interpret the derivative of f on each chart at x as a
mapping

df(x) = Txfi TX(X) b d Tf(x)(Y).

Indeed, this map 7. f is the unique linear map having the following
property. If (U, ) is a chart at x and (V, ) is a chart at f(x) such that
f(U)< V and ¢ is a tangent vector at x represented by v in the chart
(U, ¢), then

T.f(v)

is the tangent vector at f(x) represented by Dfy y(x)v. The representation
of T.f on the spaces of charts can be given in the form of a diagram

T(X) — E

Lf J lfv’,u(x)

T}(x)(Y) — F

The map T.f is obviously continuous and linear for the structure of
topological vector space which we have placed on T (X) and Ty (Y).
As a matter of notation, we shall sometimes write f, , instead of Txf.
The operation T satisfies an obvious functorial property, namely, if
f: X > Y and g: Y — Z are morphisms, then

Ti(go f) = Tyx(g) o T(f),
T (id) = id.

We may reformulate Proposition 2.2:
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Proposition 2.3. Let X, Y be manifolds of class C? (p = 1) modelled on
Banach spaces. Let f: X — Y be a CP-morphism. Let x€ X. Then:

(i) f is an immersion at x if and only if the map Ty f is injective and
splits.

(i1) f is a submersion at x if and only if the map T.f is surjective and
its kernel splits.

Note. If X, Y are finite dimensional, then the condition that T f splits
is superfluous. Every subspace of a finite dimensional vector space splits.

Example. Let E be a (real) Hilbert space, and let <{x, y> € R be its
inner product. Then the square of the norm f(x) = {(x, x) is obviously of
class C®. The derivative f’(x) is given by the formula

1 (x)y=2x,p>

and for any given x # 0, it follows that the derivative f'(x) is surjective.
Furthermore, its kernel is the orthogonal complement of the subspace
generated by x, and hence splits. Consequently the unit sphere in Hilbert
space i1s a submanifold.

If W is a submanifold of a manifold Y of class C? (p = 1), then the
inclusion
it W-oY

induces a map
Tyi: Tw(W)— T,(Y)

which is in fact an injection. From the definition of a submanifold, one
sees immediately that the image of T,i splits. It will be convenient to
identify T,,(W) in T, (Y) if no confusion can result.

A morphism f: X — Y will be said to be transversal over the sub-
manifold W of Y if the following condition is satisfied.

Let x € X be such that f(x) e W. Let (V, ) be a chart at f(x) such
that y: V' — V| x V, is an isomorphism on a product, with

Y(f(x))=(0,0) and Y(WAV)=V; x0.

Then there exists an open neighborhood U of x such that the composite
map

vLv Lk B

is a submersion.
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In particular, if f is transversal over W, then f _I(W) is a submanifold
of X, because the inverse image of 0 by our local composite map

proyo f

is equal to the inverse image of WV by .
As with immersions and submersions, we have a characterization of
transversal maps in terms of tangent spaces.

Proposition 2.4. Let X, Y be manifolds of class CP (p = 1) modeled on
Banach spaces. Let f: X — Y be a CP-morphism, and W a submanifold
of Y. The map f is transversal over W if and only if for each x € X such
that f(x) lies in W, the composite map

To(X) ™ T(Y) = Tu(Y)/Tu(W)
with w= f(x) is surjective and its kernel splits.

Proof If f is transversal over W, then for each point x € X such that
f(x) lies in W, we choose charts as in the definition, and reduce the
question to one of maps of open subsets of Banach spaces. In that case,
the conclusion concerning the tangent spaces follows at once from the
assumed direct product decompositions. Conversely, assume our condition
on the tangent map. The question being local, we can assume that Y =
V1 x V, is a product of open sets in Banach spaces such that W = I} x 0,
and we can also assume that X = U is open in some Banach space, x = 0.
Then we let g: U — V, be the map mo f where z is the projection, and
note that our assumption means that g’(0) is surjective and its kernel
splits. Furthermore, ¢g~'(0) = f~'(W). We can then use Corollary 5.7 of
the inverse mapping theorem to conclude the proof.

Remark. In the statement of our proposition, we observe that the
surjectivity of the composite map is equivalent to the fact that 7,,(Y) is
equal to the sum of the image of 7T.f and T,(W), that is

T,(Y) = Im(T f) + Im(7i),

where i: W — Y is the inclusion. In the finite dimensional case, the other
condition is therefore redundant.

If E is a Banach space, then the diagonal A in ExE is a closed
subspace and splits: Either factor E x 0 or 0 x E is a closed complement.
Consequently, the diagonal is a closed submanifold of E x E. If X is any
manifold of class C?, p > 1, then the diagonal is therefore also a sub-
manifold. (It is closed of course if and only if X is Hausdorff.)
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Let f: X — Z and g: Y — Z be two CP-morphisms, p = 1. We say
that they are transversal if the morphism

fxg: XxY—>ZxZ

is transversal over the diagonal. We remark right away that the sur-
jectivity of the map in Proposition 2.4 can be expressed in two ways.
Given two points x € X and y e Y such that f(x) =g(y) =z, the con-
dition

m(7T.f) + Im(Tyg) = T.(Z)

is equivalent to the condition

Im(T(x,y)(f X g)) + T(z,z)(A) = T(z,z)(Z X Z)

Thus in the finite dimensional case, we could take it as definition of
transversality.

We use transversality as a sufficient condition under which the fiber
product of two morphisms exists. We recall that in any category, the fiber
product of two morphisms f: X — Z and g: Y — Z over Z consists of
an object P and two morphisms

gi: P— X and g P—>Y
such that f og; =gog,, and satisfying the universal mapping property:
Given an object S and two morphisms #;: S — X and u;: S — Y such

that fu; = gup, there exists a unique morphism u: S — P making the
following diagram commutative:

Z\

e N Y
The triple (P, g1, g2) is uniquely determined, up to a unique isomorphism
(in the obvious sense), and P is also denoted by X xz Y.
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One can view the fiber product unsymmetrically. Given two morphisms
f, g as in the following diagram:
Y
P

X — 7
f

assume that their fiber product exists, so that we can fill in the diagram:

Xx, Y —> Y

| |

X — Z

We say that g; is the pull back of g by f, and also write it as f"(g).
Stmilarly, we write X xz ¥ as f*(Y).

In our category of manifolds, we shall deal only with cases when the
fiber product can be taken to be the set-theoretic fiber product on which a
manifold structure has been defined. (The set-theoretic fiber product is the
set of pairs of points projecting on the same point.) This determines the
fiber product uniquely, and not only up to a unique isomorphism.

Proposition 2.5. Let f/: X — Z and g: Y — Z be two CP-morphisms
with p =2 1. If they are transversal, then

(f x9)"(Az),

together with the natural morphisms into X and Y (obtained from the
projections), is a fiber product of f and g over Z.

Proof. Obvious.

To construct a fiber product, it suffices to do it locally. Indeed, let
f: X—Z and g: Y — Z be two morphisms. Let {V;} be an open
covering of Z, and let

fio SV = Vi and g V) - W,

be the restrictions of f and g to the respective inverse images of V;. Let
P=(fxg)"'(Az). Then P consists of the points (x, y) with x e X and
yve Y such that f(x) =g¢g(y). We view P as a subspace of X x Y (i.e.
with the topology induced by that of X x Y). Similarly, we construct P;
with f; and g;. Then P; is open in P. The projections on the first and
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second factors give natural maps of P; into f~'(¥;) and g~ '(¥;) and of P
into X and Y.

Proposition 2.6. Assume that each P; admits a manifold structure
(compatible with its topology) such that these maps are morphisms,
making P; into a fiber product of f; and g;. Then P, with its natural
projections, is a fiber product of f and g.

To prove the above assertion, we observe that the P; form a covering of
P. Furthermore, the manifold structure on P; n P; induced by that of P;
or P; must be the same, because it is the unique fiber product structure
over V;nV;, for the maps f; and g; (defined on 'vin V;) and
g '(VinV}) respectively). Thus we can give P a manifold structure, in
such a way that the two projections into X and Y are morphisms, and
make P into a fiber product of f and g.

We shall apply the preceding discussion to vector bundles in the next
chapter, and the following local criterion will be useful.

Proposition 2.7. Let f° X — Z be a morphism, and g: Z x W — Z be
the projection on the first factor. Then f, g have a fiber product, namely
the product X x W together with the morphisms of the following
diagram:

id
xxw 9 72w

pry l vlprl
Z

X ——

Il, §3. PARTITIONS OF UNITY

Let X be a manifold of class C?. A function on X will be a morphism of
X into R, of class C?, unless otherwise specified. The C? functions form a
ring denoted by §’(X) or Fu”(X). The support of a function f is the
closure of the set of points x such that f(x) # 0.

Let X be a topological space. A covering of X is locally finite if every
point has a neighborhood which intersects only finitely many elements of
the covering. A refinement of a covering of X is a second covering, each
element of which is contained in an element of the first covering. A
topological space is paracompact if it is Hausdorff, and every open
covering has a locally finite open refinement.
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Proposition 3.1. If X is a paracompact space, and if {U;} is an open
covering, then there exists a locally finite open covering {V;} such that
Vi< U; for each i.

Proof. Let {V} be a locally finite open refinement of {U;}. For each k
there is an index i(k) such that Vi = Uy. We let W; be the union of
those Vi such that i(k) =i. Then the W; form a locally finite open
covering, because any neighborhood of a point which meets infinitely
many W; must also meet infinitely many V.

Proposition 3.2. If X is paracompact, then X is normal. If, furthermore,
{Ui} is a locally finite open covering of X, then there exists a locally
finite open covering {V;} such that V; < U,.

Proof. We refer the reader to Bourbaki [Bou 68].

Observe that Proposition 3.1 shows that the insistence that the indexing
set of a refinement be a given one can easily be achieved.

A partition of unity (of class C?) on a manifold X consists of an open
covering {U;} of X and a family of functions

v, X - R
satisfying the following conditions:

PU 1. For all xe X we have y,;(x) 2 0.
PU 2. The support of ; is contained in U,.
PU 3. The covering is locally finite.

PU 4. For each point x € X we have

> ¥i(x) =1

(The sum is taken over all i, but is in fact finite for any given point x in
view of PU 3.)

We sometimes say that {(U;,,)} is a partition of unity.

A manifold X will be said to admit partitions of unity if it is para-
compact, and if, given a locally finite open covering {U;}, there exists a
partition of unity {y,} such that the support of ¥, is contained in U;.

If {U;} is a covering of X, then we say that a covering {Vj} is
subordinated to {U;} if each V; is contained in some U..

It is desirable to give sufficient conditions on a manifold in order to
insure the existence of partitions of unity. There is no difficulty with the
topological aspects of this problem. It is known that a metric space is
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paracompact (cf. Bourbaki [Bou 68], [Ke 55]), and on a paracompact
space, one knows how to construct continuous partitions of unity (loc.
cit.). However, in the case of infinite dimensional manifolds, certain
difficulties arise to construct differentiable ones, and it is known that a
Banach space itself may not admit partitions of unity (say of class C*®).
The construction of differentiable partitions of unity depends on the
construction of a differentiable norm. Readers will find examples, theo-
rems, and counterexamples in [BoF 65], [BoF 66], and [Re 64]. In the
finite dimensional case, the existence will follow from the next theorem.

If E is a Banach space, we denote by B,(a) the open ball of radius r
and center a, and by B,(a) the closed ball of radius r and center a. If
a=0, then we write B, and B, respectively. Two open balls (of finite
radius) are obviously C*-isomorphic. If X is a manifold and (V, ¢) is a
chart at a point x € X, then we say that (V, ¢) (or simply V) is a ball of
radius r if gV is a ball of radius r in the Banach space.

Theorem 3.3. Let X be a manifold which is locally compact, Hausdorff,
and whose topology has a countable base. Given an open covering of X,
then there exists an atlas {(Vy, ¢,)} such that the covering {V;} is
locally finite and subordinated to the given covering, such that ¢, Vi is the
open ball By, and such that the open sets Wy = ¢;'(B)) cover X.

Proof. Let Uy, U,,... be a basis for the open sets of X such that each
U, is compact. We construct inductively a sequence A, 45, ... of compact
sets whose union is X, such that A4; is contained in the interior of A4;,;.
We let 4, = U;. Suppose we have constructed 4;, We let j be the
smallest integer such that A4; is contained in Uy U --- U U;. We let 4,4 be
the closed and compact set

(71&)-" UUjUU,’+|.

For each point x € X we can find an arbitrarily small chart (Vy, ¢,) at
x such that ¢ V. is the ball of radius 3 (so that each V, is contained in
some element of U). We let W, = ¢_!(B;) be the ball of radius 1 in this
chart. We can cover the set

Ai — Int(A,-)

(intuitively the closed annulus) by a finite number of these balls of radius
1, say Wi,..., W,, such that, at the same time, each one of Vi,...,V, is
contained in the open set Int(4;,,) — A4;_; (intuitively, the open annulus of
the next bigger size). We let B; denote the collection V7,..., ¥, and let B
be composed of the union of the B;. Then B is locally finite, and we are
done.
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Corollary 3.4. Let X be a manifold which is locally compact Hausdorff,
and whose topology has a countable base. Then X admits partitions of
unity.

Proof. Let {(Vi, )} be as in the theorem, and Wy = ¢, !(B;). We can
find a function ¥, of class C? such that 0 <y, <1, such that ¥, (x) =1
for x € Wy and y,(x) = 0 for x ¢ V. (The proof is recalled below.) We

now let
V=3 U

(a sum which is finite at each point), and we let y, =y, /¢. Then
{(Vk,yx)} is the desired partition of unity.

We now recall the argument giving the function . First, given two
real numbers r, s with 0 < r < s, the function defined by

s(7=6=0)

in the open interval r < ¢ < 5 and 0 outside the interval determines a beli-
shaped C*-function from R into R. Its integral from minus infinity to ¢,
divided by the area under the bell yields a function which lies strictly
between 0 and 1 in the interval r < ¢ <, is equal to 0 for ¢t <r and is
equal to 1 for t = s. (The function is even monotone increasing.)

We can therefore find a real valued function of a real variable, say #(1),
such that #(¢r) =1 for |¢| < | and #(¢) = 0 for |¢f| = | 4+ J with small 6, and
such that 0 < # < 1. If F is a Hilbert space, then 5(|x|*) = y/(x) gives us a
function which is equal to 1 on the ball of radius 1 and 0 outside the ball
of radius 1 +4. This function can then be transported to the manifold by
any given chart whose image is the ball of radius 3. For convenience, we
state separately what we have just proved.

Lemma 3.5. Let E be a Hilbert space. There exists a C* real function
¥ on E such that Y(x)=1 for |x| £ 1, Y(x) >0 for |x| <1+, and
Y(x) =0 for |x| = 1+48. Alternatively, there exists a C* function h
such that

h(x)>0 for |x|<1 and h(x)=0 for |x|=1.

In other words, one would construct a function which is >0 on a given
ball and = 0 outside this ball.

Partitions of unity constitute the only known means of gluing together
local mappings (into objects having an addition, namely vector bundles,
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discussed in the next chapter). It is therefore important, in both the
Banach and Hilbert cases, to determine conditions under which they exist.
In the Banach case, there is the added difficulty that the argument just
given to get a local function which is 1 on B; and 0 outside B, fails if one
cannot find a differentiable function of the norm, or of an equivalent norm
used to define the Banachable structure.

Even though it is not known whether Theorem 3.3 extends to Hilbert
manifolds, it is still possible to construct partitions of unity in that case.
As Eells originally pointed out to me, Dieudonné’s method of proof
showing that a separable metric space is paracompact can be used.
However, in 2001 I learned a much shorter proof from Emmanuel
Breuillard, running as follows.

Lemma 3.6. Let E be a separable Hilbert space and A < E a closed non-
empty subset. Then there exists a real C* function y on E such that
Y(x) =0 for xe A and y(x) >0 for x ¢ A.

Proof. Let h be as in Lemma 3.5. Since E is separable, there exists a
sequence {x,} in the complement A, and dense in this complement. Then

A=) By,
n

where B, = B(x,,r,) is the ball of radius r, with r, = d(x,,4). For each
positive integer p, the p-th derivative DPh: E — LP(E,R) is continuous
with compact support. Let

DPh
Jo—.C e

< o0.
psn ()

Unl) = g b7 = x) and y =Y,

Then for all integers p =0 and n = p we have |[Dy,||, < 1/2". Hence
the series Y D?yr,, converges uniformly on E, and so ¢ is well-defined and
of class C®. Finally we note that y(x) =0 for xe 4 and (x) > 0 for
x ¢ A. This concludes the proof of the lemma.

Now we obtain the theorem we were striving for.

Theorem 3.7. Let Ay,A; be non-void, closed, disjoint subsets of a
separable Hilbert space E. Then there exists a C®-function y: E — R
such that Y(x) =0 if xe Ay and Y(x) =1 if x€ Az, and 0 < Y(x) =1
for all x.
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Proof. In the previous lemma, we use functions ¥, and ¥, corre-
sponding to the closed sets 4; and A4,, and we let

o
V=

to conclude the proof.

Corollary 3.8. Let X be a paracompact manifold of class C?, modeled on
a separable Hilbert space E. Then X admits partitions of unity (of class
CP).

Proof. 1t is trivially verified that an open ball of finite radius in E is
C*-isomorphic to E. (We reproduce the formula in Chapter VII.) Given
any point x € X, and a neighborhood N of x, we can therefore always find
a chart (G, y) at x such that yG = E, and G = N. Hence, given an open
covering of X, we can find an atlas {(G,, y,)} subordinated to the given
covering, such that y,G, = E. By paracompactness, we can find a re-
finement {U;} of the covering {G,} which is locally finite. Each U; is
contained in some G,(; and we let ¢; be the restriction of y,, to Ui We
now find open refinements {¥;} and then {W;} such that

WicVic Vi cU,

the bar denoting closure in X. Each V; being closed in X, it follows from
our construction that ¢,¥; is closed in E, and so is ¢,#;. Using the
theorem, and transporting functions on E to functions on X by means of
the ¢, we can find for each i a C”-function ¥;: X — R with is 1 on W,
and 0 on X — V;. We let y =5 ¢; and 6, = y;/. Then the collection
{6;} is the desired partition of unity.

Il, §4. MANIFOLDS WITH BOUNDARY

Let E be a Banach space, and 1: E — R a continuous linear map into R.
(This will also be called a functional on E.) We denote by E] the kernel of
4, and by EJ (resp. E]) the set of points x € E such that A(x) = 0 (resp.
A(x) £0). We call Eg a hyperplane and E or E] a half plane.

If  is another functional and ET = E;, then there exists a number ¢ > 0
such that 4 = cu. This is easily proved. Indeed, we see at once that the
kernels of 4 and x4 must be equal. Suppose 4 # 0. Let x; be such that
A(xo) > 0. Then u(xo) > 0 also. The functional

i~ (Alxo) /u(x0))
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vanishes on the kernel of A (or u) and also on xy. Therefore it is the 0
functional, and ¢ = A(xp)/u(xo).

Let E, F be Banach spaces, and let E] and F; be two half planes in E
and F respectively. Let U, V be two open subsets of these half planes
respectively. We shall say that a mapping

frU—-V

is a morphism of class C? if the following condition is satisfied. Given a
point x € U, there exists an open neighborhood U; of x in E, an open
neighborhood Vj of f(x) in F, and a morphism f;: U; — V) (in the sense
of Chapter I) such that the restriction of f; to U; n U is equal to f. (We
assume that all morphisms are of class C? with p = 1.)

If our half planes are full planes (i.e. equal to the vector spaces
themselves), then our present definition is the same as the one used
previously.

If we take as objects the open subsets of half planes in Banach spaces,
and as morphisms the C?-morphisms, then we obtain a category. The
notion of isomorphism is therefore defined, and the definition of manifold
by means of atlases and charts can be used as before. The manifolds of §1
should have been called manifolds without boundary, reserving the name of
manifold for our new globalized objects. However, in most of this book,
we shall deal exclusively with manifolds without boundary for simplicity.
The following remarks will give readers the means of extending any result
they wish (provided it is true) for the case of manifolds without boundaries
to the case manifolds with.

First, concerning the notion of derivative, we have:

Proposition 4.1. Let f: U —-F and g: U — F be two morphisms of
class C? (p = 1) defined on an open subset U of E. Assume that f and g
have the same restriction to U NE] for some half plane Ef, and let

xe UnE].

Then f'(x) = g'(x).

Proof. After considering the difference of f and g, we may assume
without loss of generality that the restriction of fto U nE] is 0. It is then
obvious that f’(x) = 0.

Proposition 4.2. Let U be open in E. Let u be a non-zero functional on
F and let f: U — F; be a morphism of class CP with p=1. If x is a
point of U such that f(x) lies in Fg then f'(x) maps E into Fg.
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Proof. Without loss of generality, we may assume that x =0 and
f(x) =0. Let W be a given neighborhood of 0 in F. Suppose that we can
find a small element v € E such that xf'(0)v # 0. We can write (for small
:

f(t) =tf'(0)v + o(t)w,

with some element w, € W. By assumption, f(tv) lies in F: Applying u
we get

tuf'(0)o + o(t)u(w,) 2 0.

Dividing by ¢, this yields

wf' (0 = ﬁt{)u(wz)

Replacing ¢t by —, we get a similar inequality on the other side. Letting ¢
tend to 0 shows that xf'(0)v =0, a contradiction.

Let U be open in some half plane E]. We define the boundary of U
(written ¢U) to be the intersection of U with EE, and the interior of U
(written Int(U)) to be the complement of 8U in U. Then Int(U) is open
in E.

It follows at once from our definition of differentiability that a half
plane is C*-isomorphic with a product

E; ~E] xR"

where R* is the set of real numbers =0, whenever A # 0. The boundary
of Ef in that case is EJ x 0.

Proposition 4.3. Let A be a functional on E and u a functional on F. Let
U be open in Ef and V open in ¥, and assume U n E), Vn Fg are not
empty. Let f: U — V be an isomorphism of class CP (p 2 1). Then
A#0ifand only if u#0. If A #0, then f induces a CP-isomorphism of
Int(U) on Int(V) and of dU on 3V.

Proof. By the functoriality of the derivative, we know that f'(x) is a
toplinear isomorphism for each x € U. Our first assertion follows from the
preceding proposition. We also see that no interior point of U maps on a
boundary point of ¥ and conversely. Thus f induces a bijection of dU on
0V and a bijection of Int(U) on Int(¥). Since these interiors are open in
their respective spaces, our definition of derivative shows that f induces an
isomorphism between them. As for the boundary, it is a submanifold of
the full space, and locally, our definition of derivative, together with the
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product structure, shows that the restriction of f to dU must be an
isomorphism on JV.

This last proposition shows that the boundary is a differentiable in-
variant, and thus that we can speak of the boundary of a manifold.

We give just two words of warning concerning manifolds with
boundary. First, products do not exist in their category. Indeed, to get
products, we are forced to define manifolds with corners, which would take
us too far afield.

Second, in defining immersions or submanifolds, there is a difference
in kind when we consider a manifold embedded in a manifold without
boundary, or a manifold embedded in another manifold with boundary.
Think of a closed interval embedded in an ordinary half plane. Two cases
arise. The case where the interval lies inside the interior of the half plane
is essentially distinct from the case where the interval has one end point
touching the hyperplane forming the boundary of the half plane. (For
instance, given two embeddings of the first type, there exists an auto-
morphism of the half plane carrying one into the other, but there cannot
exist an automorphism of the half plane carrying an embedding of the first
type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro-
position 2.2 shows at once how to get the tangent space functorially.
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exist an automorphism of the half plane carrying an embedding of the first
type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro-
position 2.2 shows at once how to get the tangent space functorially.



CHAPTER Il

Vector Bundles

The collection of tangent spaces can be glued together to give a manifold
with a natural projection, thus giving rise to the tangent bundle. The
general glueing procedure can be used to construct more general objects
known as vector bundles, which give powerful invariants of a given
manifold. (For an interesting theorem see Mazur [Maz 61].) In this
chapter, we develop purely formally certain functorial constructions having
to do with vector bundles. In the chapters on differential forms and
Riemannian metrics, we shall discuss in greater details the constructions
associated with multilinear alternating forms, and symmetric positive
definite forms.

Partitions of unity are an essential tool when considering vector
bundles. They can be used to combine together a random collection of
morphisms into vector bundles, and we shall give a few examples showing
how this can be done (concerning exact sequences of bundles).

ill, §1. DEFINITION, PULL BACKS

Let X be a manifold (of class C?” with p=0) and let n: £E— X be a
morphism. Let E be a Banach space.

Let {U;} be an open covering of X, and for each i, suppose that we are
given a mapping

T;: Tlil(Ui) —_ Ui x E

satisfying the following conditions:

43
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VB 1. The map t; is a CP isomorphism commuting with the projection
on U, that is, such that the following diagram is commutative:

T Y(U) —— U xE
U

In particular, we obtain an isomorphism on each fiber (written
7i(x) or Tix)
Tie: T H(x) — {x} xE

VB 2. For each pair of open sets U, U; the map
Tjx © ‘Ci;l : E—-E
is a toplinear isomorphism.

VB 3. If U; and U; are two members of the covering, then the map of
U nU; into L(E,E) (actually Laut(E)) given by

-1
x— (e,
is a morphism.

Then we shall say that {(U;, 7;)} is a trivializing covering for = (or for E
by abuse of language), and that {z;} are its trivalizing maps. If x € U;, we
say that 7; (or U;) trivializes at x. Two trivializing coverings for = are
said to be VB-equivalent if taken together they also satisfy conditions VB 2,
VB 3. An equivalence class of such trivializing coverings is said to determine
a structure of vector bundle on 7 (or on E by abuse of language). We say
that E is the total space of the bundle, and that X is its base space. If we
wish to be very functorial, we shall write E, and X, for these spaces
respectively. The fiber 7~ !'(x) is also denoted by E, or m,. We also say
that the vector bundle has fiber E, or is modeled on E. Note that from
VB 2, the fiber z7!(x) above each point x € X can be given a structure of
Banachable space, simply by transporting the Banach space structure of E
to n7'(x) via 1,. Condition VB 2 insures that using two different
trivializing maps 7. or 1, will give the same structure of Banachable space
(with equivalent norms, of course not the same norms).

Conversely, we could replace VB 2 by a similar condition as follows.

VB 2'. On each fiber n~'(x) we are given a structure of Banachable
space, and for x € U, the trivializing map

Ti: 7 (x) = E, = E

is a toplinear isomorphism.
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Then it follows that 7, 0 7;!: E— E is a toplinear isomorphism for each
pair of open sets U;, U; and xe U;n U;.
In the finite dimensional case, condition VB 3 is implied by VB 2.

Proposition 1.1. Let E, F be finite dimensional vector spaces. Let U be
open in some Banach space. Let

f: UxE—-F
be a morphism such that for each x e U, the map
fx: E-F

given by f.(v) = f(x,v) is a linear map. Then the map of U into
L(E, F) given by x— f, is a morphism.

Proof. We can write F =R x --- x R, (n copies of R). Using the fact
that L(E,F)=L(E,R;) x--- x L(E, R,), it will suffice to prove our
assertion when F = R. Similarly, we can assume that E = R also. But in
that case, the function f(x,v) can be written g(x)v for some map
g: U — R. Since f is a morphism, it follows that as a function of each
argument X, v it is also a morphism. Putting v =1 shows that g is a
morphism and concludes the proof.

Returning to the general definition of a vector bundle, we call the maps

Tix = T O Ty,
the transition maps associated with the covering. They satisfy what we call
the cocycle condition

Tkjx © Tjix = Tkix-
In particular, 7; = id and 7 = r,;;
As with manifolds, we can recover a vector bundle from a trivializing
covering.

Proposition 1.2. Let X be a manifold, and n: E — X a mapping from
some set E into X. Let {U;} be an open covering of X, and for each i

suppose that we are given a Banach space E and a bijection (commuting
with the projection on U;),

Ti: ﬂAl(Ui) — U,‘ X E,

such that for each pair i, j and xe U;n U, the map (y7;'), is a



46 VECTOR BUNDLES [III, §1]

toplinear isomorphism, and condition VB 3 is satisfied as well as the
cocycle condition. Then there exists a unique structure of manifold on E
such that 7 is a morphism, such that t; is an isomorphism making 7 into a
vector bundle, and {(U;,t;)} into a trivialising covering.

Proof. By Proposition 3.10 of Chapter I and our condition VB 3, we
conclude that the map

1 (UinU) xE — (U;nU;) xE
is a morphism, and in fact an isomorphism since it has an inverse. From
the definition of atlases, we conclude that £ has a unique manifold
structure such that the 7, are isomorphisms. Since 7 is obtained locally
as a composite of morphisms (namely z; and the projections of U; x E on
the first factor), it becomes a morphism. On each fiber 7~!(x), we can
transport the topological vector space structure of any E such that x lies in
U;, by means of 7,,. The result is independent of the choice of U; since
(zjz7!), is a toplinear isomorphism. Our proposition is proved.

Remark. It is relatively rare that a vector bundle is trivial, i.e. VB-
isomorphic to a product X x E. By definition, it is always trivial locally.
In the finite dimensional case, say when E has dimension n, a trivialization
is equivalent to the existence of sections ¢y, ..., &, such that for each x, the
vectors &;(x),...,&,(x) form a basis of Ex. Such a choice of sections is
called a frame of the bundle, and is used especially with the tangent
bundle, to be defined below. In this book where we give proofs valid in
the infinite dimensional case, frames will therefore not occur until we get
to strictly finite dimensional phenomenon.

The local representation of a vector bundle and
the vector component of a morphism

For arbitrary vector bundles (and especially the tangent bundle to be
defined below), we have a local representation of the bundle as a product
in a chart. For many purposes, and especially the case of a morphism

f: Y—FE

of a manifold into the vector bundle, it is more convenient to use U to
denote an open subset of a Banach space, and to let ¢: U — X be an
isomorphism of U with an open subset of X over which E has a
trivialization 7: 7~!(pU) — U x E called a VB-chart. Suppose V is an
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open subset of Y such that f(V) c n~!(pU). We then have the com-
mutative diagram:

v L rieU) — U xE

.

oU — U

The composite 7o f is a morphism of V into U x E, which has two
components

to f = (fu1, fv2)

such that f;;: V' —> U and fy,: V — E. We call f;, the vector com-
ponent of / in the vector bundle chart U x E over U. Sometimes to
simplify the notation, we omit the subscript, and merely agree that f;; =
fu» denotes this vector component; or to simplify the notation further, we
may simply state that f itself denotes this vector component if a discussion
takes place entirely in a chart. In this case, we say that f = f;, represents
the morphism in the vector bundle chart, or in the chart.

Vector bundle morphisms and pull backs
We now make the set of vector bundles into a category.
Let =: E— X and n’: E' > X' be two vector bundles. A VB-
morphism 7 — 7’ consists of a pair of morphisms
for X = X' and f: E—E’

satisfying the following conditions.

VB Mor 1. The diagram

X — X
Jo

is commutative, and the induced map for each x € X
fet Ex— Epy

is a continuous linear map.
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VB Mor 2. For each xy € X there exist trivializing maps

7 7 (U) - UxE
and
' 7Y (U') - U xE'

at xo and f(xo) respectively, such that f,(U) is contained in
U’, and such that the map of U into L(E, E') given by

’ -1
X Ty O fiot
is a morphism.

As a matter of notation, we shall also use f to denote the VB-
morphism, and thus write f: 7 — z’. In most applications, f, is tke
identity. By Proposition 1.1, we observe that VB Mor 2 is redundant in
the finite dimensional case.

The next proposition is the analogue of Proposition 1.2 for VB-
morphisms.

Proposition 1.3. Let n, n’ be two vector bundles over manifolds X, X'
respectively. Let fy: X — X' be a morphism, and suppose that we are
given for each x € X a continuous linear map

Set e — 75;0()()

such that, for each xy, condition VB Mor 2 is satisfied. Then the map f
from m to 7’ defined by f, on each fiber is a VB-morphism.

Proof. One must first check that f is a morphism. This can be done
under the assumption that n, =’ are trivial, say equal to U x E and
U’ x E’ (following the notation of VB Mor 2), with trivialising maps equal
to the identity. Our map f is then given by

(x, ) = (fox, Siv).

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism,
and hence that (f,, f) is a VB-morphism.

It is clear how to compose two VB-morphisms set theoretically. In fact,
the composite of two VB-morphisms is a VB-morphism. There is no
problem verifying condition VB Mor 1, and for VB Mor 2, we look at the
situation locally. We encounter a commutative diagram of the following
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type:

ﬂ_l(U) —f> n/—l(U/) __g_) nl/—l(Un)

| k k

UXE — U XxE —> U"xE"

and use Proposition 3.10 of Chapter I, to show that go f is a VB-
morphism.

We therefore have a category, denoted by VB or VB? if we need to
specify explicitly the order of differentiability.

The vector bundles over X from a subcategory VB(X) = VB?(X)
(taking those VB-morphisms for which the map £, is the identity). If U is
a category of Banach spaces (for instance finite dimensional spaces), then
we denote by VB(X, A) those vector bundles over X whose fibers lie in 2.

A morphism from one vector bundle into another can be given locally.
More precisely, suppose that U is an open subset of X and n: £ — X a
vector bundle over X. Let Ey =n~!(U) and

ny =n|Ey

be the restriction of = to Ey. Then =ny is a vector bundle over U. Let
{U;} be an open covering of the manifold X and let #, ' be two vector
bundles over X. Suppose, given a VB-morphism

fir my, =y,

for each i, such that f; and f; agree over U; n U; for each pair of indices 7,
Jj- Then there exists a unique VB-morphism f: 7 — 7’ which agrees with
f: on each U;. The proof is trivial, but the remark will be used frequently
in the sequel.

Using the discussion at the end of Chapter II, §2 and Proposition 2.7 of
that chapter, we get immediately:

Proposition 1.4. Let n: E — Y be a vector bundle, and f: X — Y a
morphism. Then

S fHE) = X

is a vector bundle called the pull-back, and the pair (f, n*(f)) is a VB-
morphism

S *(n)l lﬂ
X —Y

f
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In Proposition 1.4, we could take f to be the inclusion of a sub-
manifold. In that case, the pull-back is merely the restriction. As with
open sets, we can then use the usual notation:

Ey = 1(X) and ny =7n|Ex.

Thus 7y = f*(x) in that case.
If X happens to be a point y of Y, then we have the constant map

ny: Ey, —y

which will sometimes be identified with E,.

If we identify each fiber (f*E), with Ey, itself (a harmless identi-
fication since an element of the fiber at x is simply a pair (x, ¢} with e in
Ef(y)), then we can describe the pull-back f* of a vector bundle 7: E — Y
as follows. It is a vector bundle f™7n: f*E — X satisfying the following
properties:

PB 1. For each xe X, we have (f"E), = Ef(.

PB 2. We have a commutative diagram

fYE) — E
f*(?r)J ln
X —Y

f

the top horizontal map being the identity on each fiber.

PB 3. If E is trivial, equal to Y X E, then {*E =X xE and f*n is the
projection.

PB 4. If V is an open subset of Y and U = f~'(V), then

[ (Ev) = (["E)y,

and we have a commutative diagram:
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lll, §2. THE TANGENT BUNDLE

Let X be a manifold of class C? with p = 1. We shall define a functor T
from the category of such manifolds into the category of vector bundles of
class CP~1.

For each manifold X we let T(X) be the disjoint union of the tangent
spaces T,(X). We have a natural projection

n T(X)— X

mapping Tx(X) on x. We must make this into a vector bundle. If (U, @)
is a chart of X such that U is open in the Banach space E, then from the
definition of the tangent vectors as equivalence classes of triples (U, ¢, v)
we get immediately a bijection

tp: o (U)=T(U) - UxE
which commutes with the projection on U, that is such that

7 (U) —% U x E

\/

U

is commutative. Furthermore, if (U;, ¢;) and (Uj, ¢;) are two charts, and
if we denote by ¢; the map ¢;p;' (defined on ¢,(U; n U})), then we obtain
a transition mapping

Tji = (Tj‘L’i—l)i (pi(Uiﬂ l/j) x E — (pj<(J, M U}) x E

by the formula
Ti(x, v) = ((Pjix7 D(/’ji(x) " v)

for xe Uin U; and v e E. Since the derivative Dy; = (p]fi is of class CP~!
and is an isomorphism at x, we see immediately that all the conditions of
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby
making T(X) into a vector bundle of class C?~!.

We see that the above construction can also be expressed as follows. If
the manifold X is glued together from open sets { U;} in Banach spaces by
means of transition mappings {¢;}, then we can glue together products
Ui x E by means of transition mappings (¢;, Dg;) where the derivative
Dg,; can be viewed as a function of two variables (x, v). Thus locally, for
open subsets U of Banach spaces, the tangent bundle can be identified
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with the product U x E. The reader will note that our definition coincides
with the oldest definition employed by geometers, our tangent vectors
being vectors which transform according to a certain rule (namely the
derivative).

If f: X - X’ is a C?-morphism, we can define

Tf: T(X) — T(X')

to be simply 7 f on each fiber T,(X). In order to verify that 7f is a VB-
morphism (of class C”~1), it suffices to look at the situation locally, i.e. we
may assume that X and X’ are open in vector spaces E, E’, and that
T.f = f'(x) is simply the derivative. Then the map Tf is given by

Tf(x, v) = (f(x), f'(x)v)

for xe X and ve E. Since f’ is of class C?~! by definition, we can apply
Proposition 3.10 of Chapter I to conclude that Tf is also of class C?7~.
The functoriality property is trivially satisfied, and we have therefore
defined the functor T as promised.

It will sometimes be notationally convenient to write f, instead of Tf
for the induced map, which is also called the tangent map. The bundle
T(X) is called the tangent bundle of X.

Remark. The above definition of the tangent bundle fits with Steenrod’s
point of view [Ste 51]. I don’t understand why many differential geometers
have systematically rejected this point of view, when they take the defini-
tion of a tangent vector as a differential operator.

lll, §3. EXACT SEQUENCES OF BUNDLES
Let X be a manifold. Let n’: E/ - X and n: E — X be two vector

bundles over X. Let f: =’ — n be a VB-morphism. We shall say that the
sequence

0—>n'—{+n

is exact if there exists a covering of X by open sets and for each open set
U in this covering there exist trivializations

v E;, > UXE and 70 Ey —» UXE

such that E can be written as a product E = E’ x F, making the following
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diagram commutative:

f

E, —— E,

UxE ——> UxE xF

(The bottom map is the natural one: Identity on U and the injection of E’
on E' x0.)

Let n;: E7 — X be another vector bundle, and let g: 7y — 7 be a VB-
morphism such that g(E;) is contained in f(E’). Since f establishes a
bijection between E’ and its image f(E’) in E, it follows that there exists
a unique map g;: E; — E' such that g = f og;. We contend that g; is a
VB-morphism. Indeed, to prove this we can work locally, and in view of
the definition, over an open set U as above, we can write

gi=7loprozog

where pr is the projection of U x E' xF on U x E’. All the maps on
the right-hand side of our equality are VB-morphisms; this proves our
contention.

Let n: E — X be a vector bundle. A subset S of E will be called a
subbundle if there exists an exact sequence 0 — n’ — =, also written

0-ELE,

such that f(E’) =S. This gives S the structure of a vector bundle, and
the previous remarks show that it is unique. In fact, given another exact
sequence

0-E >E

such that g(Ej) = S, the natural map f !g from E; to E' is a VB-
isomorphism.

Let us denote by E/E’ the union of all factor spaces E,/E,. If we are
dealing with an exact sequence as above, then we can give E/E’ the
structure of a vector bundle. We proceed as follows. Let {U;} be our
covering, with trivialising maps ¢/ and 7;, We can define for each i a
bijection

n/': Ey/Ey — U xF

obtained in a natural way from the above commutative diagram. (With-
out loss of generality, we can assume that the vector spaces E’, F are
constant for all i.) We have to prove that these bijections satisfy the
conditions of Proposition 1.2.
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Without loss of generality, we may assume that f is an inclusion (of the
total space E’ into E). For each pair i, j and x € U; n Uj, the toplinear
automorphism (z;7;!), is represented by a matrix

<h11(x) hlz(X)>
ha(x)  hx(x)

X

operating on the right on a vector (v, w) e E' x F. The map (z/ /1) on

F is induced by this matrix. Since E' = E' x 0 has to be carried into
itself by the matrix, we have hj(x) = 0. Furthermore, since (z;7;'), has
an inverse, equal to (r,-rj‘l)x, it follows that h;(x) is a toplinear auto-
morphism of F, and represents (z/z/~'),. Therefore condition VB 3 is
satisfied, and E/E’ is a vector bundle.

The canonical map

EU — EU/E;]
is a morphism since it can be expressed in terms of 7, the projection, and
7”~1_ Consequently, we obtain a VB-morphism
g: n—n"

in the canonical way (on the total spaces, it is the quotient mapping of E
on E/E’). We shall call n” the factor bundle.

Our map g satisfies the usual universal mapping property of a cokernel.
Indeed, suppose that

v: E—>G

is a VB-morphism such that iy o f =0 (i.e. ¥, 0 f, = 0 on each fiber E)).
We can then define set theoretically a canonical map

V,: E/E' — G,

and we must prove that it is a VB-morphism. This can be done locally.
Using the above notation, we may assume that E = U x E’ X F and that g
is the projection. In that case, W, is simply the canonical injection of
UxFin UxE xF followed by y, and is therefore a VB-morphism.
We shall therefore call g the cokernel of f.
Dually, let g: 7 — #n” be a given VB-morphism. We shall say that the
sequence

g
noa"—0

is exact if g is surjective, and if there exists a covering of X by open sets,
and for each open set U in this covering there exist spaces E', F and
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trivializations
7: Ey = UxE' xF and " E, - F

making the following diagram commutative:

E, —X— E

| k

UxE xF — UxF

(The bottom map is the natural one: Identity on U and the projection of
E'xF on F)

In the same way as before, one sees that the “kernel” of g, that is, the
union of the kernels E. of each g., can be given a structure of vector
bundle. This union E’ will be called the kernel of g, and satisfies the usual
universal mapping property.

Proposition 3.1. Let X be a manifold and let
fian -

be a VB-morphism of vector bundles over X. Assume that, for each
x € X, the continuous linear map

fe E; — FE,

is injective and splits. Then the sequence

00— EA 7
is exact.

Proof. We can assume that X is connected and that the fibers of E’
and E are constant, say equal to the Banach spaces E' and E. Let ae X.
Corresponding to the splitting of f, we know that we have a product
decomposition E=E’ x F and that there exists an open set U of X
containing a, together with trivializing maps

.t (U)-»UxE and 7': 27" (U)— UxE'
such that the composite map

'—1
E“SE E, " B xF

maps E' on E’ x 0.
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For any point x in U, we have a map
(tft'™ Y, EE > E xF,
which can be represented by a pair of continuous linear maps

(h11(x), ha1(x)).
We define
h(x): EExF—E xF

<h11(x) 0 )
h21(x) id '
operating on the right on a vector (v, w) e E' x F. Then A(x) restricted to
E’ x 0 has the same action as (zf7'"!) .

The map x +— A(x) is a morphism of U into L(E, E) and since it is
continuous, it follows that for U small enough around our fixed point a, it

maps U into the group of toplinear automorphisms of E. This proves our
proposition.

by the matrix

Dually to Proposition 3.1, we have:
Proposition 3.2. Let X be a manifold and let
g n—n"

be a VB-morphism of vector bundles over X. Assume that for each
x € X, the continuous linear map

gx: Ex — E]
is surjective and has a kernel that splits. Then the sequence

g
n—on"—0
Is exact.

Proof. 1t is dual to the preceding one and we leave it to the reader.
In general, a sequence of VB-morphisms
0-nLzd 2" S0

is said to be exact if both ends are exact, and if the image of f is equal to
the kernel of g.
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There is an important example of exact sequence. Let f: X — Y be an
immersion. By the universal mapping property of pull backs, we have a
canonical VB-morphism

Tf: T(X)— f*'T(Y)

of T(X) into the pull back over X of the tangent bundle of Y. Fur-
thermore, from the manner in which the pull back is obtained locally by
taking products, and the definition of an immersion, one sees that the
sequence

0-7x) L r(Y)
is exact. The factor bundle

STT(Y)/Im(T7f)

is called the normal bundle of f. It is denoted by N(f), and its total
space by Ny(X) if we wish to distinguish between the two. We sometimes
identify 7(X) with its image under 77/ and write

N(f)=/"T(Y)/T(X).

Dually, let /: X - Y be a submersion. Then we have an exact
sequence

X)L 1Y) > 0

whose kernel could be called the subbundle of f, or the bundle along the
fiber.
There is an interesting case where we can describe the kernel more
precisely. Let
n. E—-X

be a vector bundle. Then we can form the pull back of E over itself, that
is, n*FE, and we contend that we have an exact sequence

0—-rn"E—>T(E)—-na"T(X)—0.

To define the map on the left, we look at the subbundle of = more closely.
For each x € X we have an inclusion

E.— E,
whence a natural injection

T(E.) — T(E).



58 VECTOR BUNDLES [II1, §4]

The local product structure of a bundle shows that the union of the T'(E,)
as x ranges over X gives the subbundle set theoretically. On the other
hand, the total space of n*E consists of pairs of vectors (v, w) lying over
the same base point x, that is, the fiber at x of n*E is simply Eyx x Ex.
Since T(E,) has a natural identification with E, x E,, we get for each x a
bijection

(n*E), — T(E,)

which defines our map from n*E to T(E). Considering the map locally in
terms of the local product structure shows at once that it gives a VB-
isomorphism between n*E and the subbundle of =, as desired.

lll, §4. OPERATIONS ON VECTOR BUNDLES

We consider subcategories of Banach spaces 2, B, € and let
A: AXxB - C

be a functor in, say, two variables, which is, say, contravariant in the first
and covariant in the second. (Everything we shall do extends in the
obvious manner to functors of several variables, letting 2, B stand for
n-tuples.)

Example. We took a functor in two variables for definiteness, and to
illustrate both variances. However, we could consider a functor in one or
more than two variables. For instance, let us consider the functor

E— L(E,R) = L(E) = EY,

which we call the dual. It is a contravariant functor in one variable. On
the other hand, the functor

E— L(E, F)

of continuous multilinear maps of E x --- x E into a Banach space F is
contravariant in E and covariant in F. The functor E — LI(E, R) gives
rise later to what we call differential forms. We shall treat such forms
systematically in Chapter V, §3.

If f: E' - E and g: F — F’ are two continuous linear maps, with f a
morphism of U and g a morphism of B, then by definition, we have a
map

L(E', E) x L(F, F') — L(A(E, F), A(E', F")),

assigning A(f, g) to (f, g).
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We shall say that 4 is of class C? if the following condition is satisfied.
Give a manifold U, and two morphisms

¢: U— L(E',E) and v: U— L(F, F),
then the composite
U— L(E',E) x L(F, F') — L(A(E, F), A(E', F"))
is also a morphism. (One could also say that 1 is differentiable.)

Theorem 4.1. Let A be a functor as above, of class CP, p 2 0. Then for
each manifold X, there exists a functor Ly, on vector bundles (of class
CP)

Ax: VB(X, A) x VB(X, B) — VB(X, €)

satisfying the following properties. For any bundles o, f in VB(X, )
and VB(X, B) respectively, and VB-morphisms

fia —-a and g B P
in the respective categories, and for each x € X, we have:

OP 1. ix(a, B), = Aoy, By).

OP 2. ix(f, g9), = A(fy, gx)-

OP 3. If o is the trivial bundle X x E and B the trivial bundle X x F,
then Ax(a, B) is the trivial bundle X x A(E, F).

OP 4. If h: Y — X is a CP-morphism, then
Ay(h*o, h*B) = h*Ax(, B).

Proof. We may assume that X is connected, so that all the fibers are
toplinearly isomorphic to a fixed space. For each open subset U of X we
let the total space Ay(E,, Eg) of Ay(a, f) be the union of the sets

{x} x A(ox, By)

(identified harmlessly throughout with A(a, f,)), as x ranges over U. We
can find a covering {U;} of X with trivializing maps {;} for «, and {o;}
for B,

7 o Y (U;) - U; ¥ E,
oi: B~N(U)) - U; x F.
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We have a bijection

Mz, 61): Au(Ex, Ep) — U; x A(E, F)

1

obtained by taking on each fiber the map
Al(rl;l, oix): Aoy, B.) — A(E, F).
We must verify that VB 3 is satisfied. This means looking at the map

X — /l(rj;l, i) 0 AT, o).

The expression on the right is equal to
/l(r,-xrj;l, o'jxal;l).
Since 1 is a functor of class C”, we see that we get a map
Uin Uy — L(AE, F), A(E, F))

which is a C”-morphism. Furthermore, since A is a functor, the transition
mappings are in fact toplinear isomorphism, and VB 2, VB 3 are proved.

The proof of the analogous statement for Ax(f, g), to the effect that
it is a VB-morphism, proceeds in an analogous way, again using the
hypothesis that 4 is of class C?. Condition OP 3 is obviously satisfied,
and OP 4 follows by localizing. This proves our theorem.

The next theorem gives us the uniqueness of the operation Ay.

Theorem 4.2. If u is another functor of class CP with the same variance
as A, and if we have a natural transformation of functors t: 7. — u, then
for each X, the mapping

ty: Ay — py,

defined on each fiber by the map
I(O(x, ﬂx): A(OCX’ ﬂx) - :u(ax’ ﬂx)’
is a natural transformation of functors (in the VB-category).

Proof. For simplicity of notation, assume that A and g are both
functors of one variable, and both covariant. For each open set U = U; of
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a trivializing covering for f, we have a commutative diagram:

id x (E
UxiE) L uxum

(o) ylo)

Ay(f) —————— wy(h)

The vertical maps are trivializing VB-isomorphism, and the top horizontal
map is a VB-morphism. Hence ty is a VB-morphism, and our assertion is
proved.

In particular, for 2 = x4 and ¢ = id we get the uniqueness of our functor
Ax.

(In the proof of Theorem 4.2, we do not use again explicitly the
hypotheses that A, u are differentiable.)

In practice, we omit the subscript X on 4, and write A for the functor
on vector bundles.

Examples. Let n: £ — X be a vector bundle. We take 1 to be the
dual, that is E+~— EY = L(E, R). Then A(E) is denoted by EV, and is
called the dual bundle. The fiber at each point x € X is the dual space E.
The dual bundle of the tangent bundle is called the cotangent bundle 7VX.

Similarly, instead of taking L(E), we could take L’(E) to be the bundle
of alternating multilinear forms on E. The fiber at each point is the space
L/(E,) consisting of all r-multilinear alternating continuous functions on
E.. When E=TX is the tangent bundle, the sections of L.(TX) are
called differential forms of degree r. Thus a l-form is a section of EY.
Differential forms will be treated later in detail.

Recall that End(E) = L(E, E). In the theory of curvature, we shall deal
with both functors

E— L*(E)=L*E,R) and E’~ L*(E, End(E)) = L*(E, L(E, E)).

In fact, if Re L? (E, L(E, E)), then for each pair of elements v, w € E and
z € E, we see that R(v, w) € L(E, E) and R(v, w)z € E, so we get a 3-linear
map

(v, w, z) — R(v, w)z.
We shall apply both functors to the tangent bundle in Chapter IX.

For another type of operation, we have the direct sum (also called the
Whitney sum) of two bundles «, § over X. It is denoted by « @ 8, and the
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fiber at a point x is

(“@ﬁ)x = o, @ B,

Of course, the finite direct sum of vector spaces can be identified with their
finite direct products, but we write the above operation as a direct sum in
order not to confuse it with the following direct product.

Let a: E, — X and f: Eg — Y be two vector bundles in VB(X) and
VB(Y) respectively. Then the map

axf: EgxEg—-XxY

is a vector bundle, and it is this operation which we call the direct product
of o and f.

Let X be a manifold, and 4 a functor of class C? with p = 1. The
tensor bundle of type A over X is defined to be 4 X(T(X )), also denoted by
AT(X) or T;(X). The sections of this bundle are called tensor fields of
type 4, and the set of such sections is denoted by I';(X). Suppose that we
have a trivialization of T(X), say

T(X)=XxE.

Then T;(X)=X x A(E). A section of T;(X) in this representation is
completely described by the projection on the second factor, which is a
morphism

f: X — AE).

We shall call it the local representation of the tensor field (in the given
trivialization). If & is the tensor field having f as its local representation,
then

&(x) = (x, f(x)-

Let f: X — Y be a morphism of class C? (p = 1). Let w be a tensor
field of type L" over Y, which could also be called a multilinear tensor
field. For each ye Y, w(y) (also written w,) is a continuous multilinear
function on 7,(Y):

wy: Ty x---xT,— R
For each x € X, we can define a continuous multilinear map
filw): Tyx---xTy—R

by the composition of maps (T.f)" and @y :

TXX'“XTx—>T/<x)X--~XTf(x)——>R.
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We contend that the map x — f;(w) is a tensor field over X, of the same
type as w. To prove this, we may work with local representation. Thus
we can assume that we work with a morphism

frU—=Vv
of one open set in a Banach space into another, and that
w: V— L'(F)

is a morphism, ¥ being open in F. If U is open in E, then f*(w) (now
denoting a local representation) becomes a mapping of U into L'(E),
given by the formula

[@) =L (f'(x)) o(f(x)).

Since L": L(E,F) — L(L"(F), L"(E)) is of class C*, it follows that
f*(w) is a morphism of the same class as w. This proves what we want.

Of course, the same argument is valid for the other functors L] and L]
(symmetric and alternating continuous multilinear maps). Special cases
will be considered in later chapters. If 4 denotes any one of our three
functors, then we see that we have obtained a mapping (which is in fact
linear)

ST (YY) — TuX)

which is clearly functorial in f. We use the notation f™ instead of the
more correct (but clumsy) notation f; or I',(f). No confusion will arise
from this.

lll, §5. SPLITTING OF VECTOR BUNDLES

The next proposition expresses the fact that the VB-morphisms of one
bundle into another (over a fixed morhism) form a module over the ring of
functions.

Proposition 5.1. Let X, Y be manifolds and f,: X — Y a morphism.
Let a, B be vector bundles over X, Y respectively, and let f, g: o — f§ be
two VB-morphisms over f,. Then the map f + g defined by the formula

(f"‘g)x:fx+9x

is also a VB-morphism. Furthermore, if Y: Y — R is a function on Y,
then the map if defined by

Wf), =¥ (fo(x) £

is also a VB-morphism.
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Proof. Both assertions are immediate consequences of Proposition 3.10
of Chapter 1.

We shall consider mostly the situation where X =Y and f, is the
identity, and will use it, together with partitions of unity, to glue VB-
morphisms together.

Let «, f be vector bundles over X and let {(U;, ¥,)} be a partition of
unity on X. Suppose given for each U; a VB-morphism

f;i OC|U,' -—)ﬂlU,

Each one of the maps y,f; (defined as in Proposition 5.1) is a VB-
morphism. Furthermore, we can extend y, f; to a VB-morphism of « into

f simply by putting
(l//lf;)’( =0
for all x ¢ U;. If we now define

fia—p
fx(v) = Z'ﬁi(x)fix(v)

by the formula

for all pairs (x, v) with v € oy, then the sum is actually finite, at each ponit
x, and again by Proposition 5.1, we see that f is a VB-morphism. We
observe that if each f; is the identity, then f = >, f; is also the identity.

Proposition 5.2. Let X be a manifold admitting partitions of unity. Let

00—« ER B be an exact sequence of vector bundles over X. Then there
exists a surjective VB-morphism g: f — o whose kernel splits at each
point, such that go f =id.

Proof. By the definition of exact sequence, there exists a partition of
unity {(U;, ¥;)} on X such that for each 7, we can split the sequence over
U;. In other words, there exists for each i/ a VB-morphism

gi: BlU; — «|U;

which is surjective, whose kernel splits, and such that g; o f; = id;. We let
g =>_,g9;. Then g is a VB-morphism of # into « by what we have just

seen, and
gof=> gf =id

It is trivial that g is surjective because g o f = id. The kernel of g, splits
at each point x because it has a closed complement, namely f.o.. This
concludes the proof.



[III, §5] SPLITTING OF VECTOR BUNDLES 65

If y is the kernel of f, then we have f~a @ y.

A vector bundle 7 over X will be said to be of finite type if there exists
a finite trivialization for 7 (i.e. a trivialization {(U;, 7;)} such that i ranges
over a finite set).

If k is an integer = 1 and E a topological vector space, then we denote
by E* the direct product of E with itself k times.

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let
7 be a vector bundle of finite type in VB(X, E), where E is a Banach
space. Then there exists an integer k >0 and a vector bundle o in
VB(X, E*) such that n ® o is trivializable.

Proof. We shall prove that there exists an exact sequence

0—>n—f—>ﬁ

with Epg =X x E*. Our theorem will follow from the preceding
proposition.

Let {U;, t;)} be a finite trivialization of = with i=1,...,k. Let
{(U;, ¥;)} be a partition of unity. We define

f: Ex— X xE*

as follows. If xe X and v i1s in the fiber of E, at x, then

[) = (x, Y1 (D)), - Y (X) e (v))

The expression on the right makes sense, because in case x does not lie in
U; then y;(x) =0 and we do not have to worry about the expression
7;(v). If x lies in U;, then t;(v) means 7, (v).

Given any point x, there exists some index i such that y,(x) > 0 and
hence f is injective. Furthermore, for this x and this index i, f, maps E,
onto a closed subspace of E*, which admits a closed complement, namely

Ex---x0x---xE

with O in the i-th place. This proves our proposition.



CHAPTER IV

Vector Fields and Differential
Equations

In this chapter, we collect a number of results all of which make use of the
notion of differential equation and solutions of differential equations.

Let X be a manifold. A vector field on X assigns to each point x of X a
tangent vector, differentiably. (For the precise definition, see §2.) Given X
in X, it is then possible to construct a unique curve «(¢) starting at xg
(i.e. such that «(0) :xg) whose derivative at each point is the given
vector. It is not always possible to make the curve depend on time ¢ from
—oo to +o0, although it is possible if X is compact.

The structure of these curves presents a fruitful domain of investiga-
tion, from a number of points of view. For instance, one may ask for
topological properties of the curves, that is those which are invariant under
topological automorphisms of the manifold. (Is the curve a closed curve,
is it a spiral, is it dense, etc.?) More generally, following standard pro-
cedures, one may ask for properties which are invariant under any given
interesting group of automorphisms of X (discrete groups, Lie groups,
algebraic groups, Riemannian automorphisms, ad lib.).

We do not go into these theories, each of which proceeds according
to its own flavor. We give merely the elementary facts and definitions
associated with vector fields, and some simple applications of the existence
theorem for their curves.

Throughout this chapter, we assume all manifolds to be Hausdorff, of
class CP with p = 2 from §2 on, and p = 3 from §3 on. This latter condition
insures that the tangent bundle is of class CP~' with p—12=1 (or 2).

We shall deal with mappings of several variables, say f(t, x, y), the first
of which will be a real variable. We identify D\ f(t, x, y) with

f(l+h, X, y)_f(t7 X, y)

Hm A '
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IV, §1. EXISTENCE THEOREM FOR
DIFFERENTIAL EQUATIONS

Let E be a Banach space and U an open subset of E. In this section we
consider vector fields locally. The notion will be globalized later, and thus
for the moment, we define (the local representation of) a time-dependent
vector field on U to be a CP-morphism (p = 0)

f:JxU—-E,

where J is an open interval containing 0 in R. We think of f as assigning
to each point x in U a vector f(f, x) in E, depending on time ¢.

Let xo be a point of U. An integral curve for f/ with initial condition x,
is a mapping of class C" (r = 1)

o J()—>U

of an open subinterval of J containing 0, into U, such that «(0) = x( and
such that

o (1) = f(t, a(2)).

Remark. Let o: Jo — U be a continuous map satisfying the condition

a(t) = xo + Lf(u, a(u)) du.

Then o is differentiable, and its derivative is f (7, a(z)). Hence « is of class
C!. Furthermore, we can argue recursively, and conclude that if f is of
class C?, then so is a. Conversely, if o is an integral curve for f with initial
condition xp, then it obviously satisfies out integral relation.

Let
f:JXU—>E

be as above, and let xy be a point of U. By a local flow for f at x, we
mean a mapping

oa: Jox Uy — U

where Jy is an open subinterval of J containing 0, and U, is an open
subset of U containing xg, such that for each x in U, the map

oy (2) = aft, x)

is an integral curve for f with initial condition x (i.e. such that «(0, x) =
X).
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As a matter of notation, when we have a mapping with two arguments,
say ¢(t, x), then we denote the separate mappings in each argument when
the other is kept fixed by ¢,(¢) and ¢,(x). The choice of letters will always
prevent ambiguity.

We shall say that f satisfies a Lipschitz condition on U uniformly with
respect to J if there exists a number K > 0 such that

|f(t7 x)_f(t’ y)| §K|x—y|

for all x, y in U and ¢ in J. We call K a Lipschitz constant. If fis of class
C!, it follows at once from the mean value theorem that fis Lipschitz on
some open neighborhood Jy x Uy of a given point (0, xo) of U, and that it
is bounded on some such neighborhood.

We shall now prove that under a Lipschitz condition, local flows exist
and are unique locally. In fact, we prove more, giving a uniformity
property for such flows. If b is real > 0, then we denote by J, the open
interval —b <t < b.

Proposition 1.1. Let J be an open interval of R containing 0, and U open
in the Banach space E. Let xo be a point of U, and a >0, a < 1 a real
number such that the closed ball By,(xo) lies in U. Assume that we have
a continuous map

f:JxU—E

which is bounded by a constant L 2 1 on J x U, and satisfies a Lipschitz
condition on U uniformly with respect to J, with constant K 2 1. If
b < a/LK, then for each x in B,(xg) there exists a unique flow

a: Jp X By(xg) — U.

If fis of class CP (p = 1), then so is each integral curve o.

Proof. Let I, be the closed interval —b <t < b, and let x be a fixed
point in B,(xg). Let M be the set of continuous maps

o I}, ad 1_32[,(x0)
of the closed interval into the closed ball of center xy and radius 2a, such

that «(0) = x. Then M is a complete metric space if we define as usual the
distance between maps o, f to be

sup [a(7) — B(2)].

tel,
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We shall now define a mapping
S M—-M

of M into itself. For each « in M, we let So be defined by

t

(Sa)(t) = x +J S (u, a(u)) du.

0

Then Sz is certainly continuous, we have Sx(0) = x, and the distance of
any point on S from x is bounded by the norm of the integral, which is
bounded by

b sup|f(u, y)| = bL < a.

Thus S lies in M.
We contend that our map S is a shrinking map. Indeed,

IS(X - Sﬁl é b Sup|f(u, oc(u)) - f(u7 ﬁ(u))l
é bKv|(x - ﬂ|7
thereby proving our contention.
By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique

fixed point «, and by definition, «(¢) satisfies the desired integral relation.
Our remark above concludes the proof.

Corollary 1.2. The local flow o in Proposition 1.1 is continuous.
Furthermore, the map xw— oy of Bu(xo) into the space of curves is
continuous, and in fact satisfies a Lipschitz condition.

Proof. The second statement obviously implies the first. So fix x in

B.(x) and take y close to x in B,(xg). We let S, be the shrinking map of
the theorem, corresponding to the initial condition x. Then

lloe = Syoell = [1Sxoe — Sy < |x — .
Let C=bK so 0 < C < 1. Then
llotx — Syl < flotx — Syouxl| + [[Syox = Sotl| + -+ + (|87 otx — ST
SA+C+ -+ C"Hx—y
Since the limit of SPax is equal to oy as n goes to infinity, the continuity

of the map x — a, follows at once. In fact, the map satisfies a Lipschitz
condition as stated.
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It is easy to formulate a uniqueness theorem for integral curves over
their whole domain of definition.

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let
f: U— E be a vector field of class C?, p=1. Let

oy J1—>U and A J2—>U

be two integral curves for [ with the same initial condition xy. Then o
and oy are equal on J) N J.

Proof. Let Q be the set of numbers b such that o(z) = a,(¢) for
0r<b.

Then Q contains some number & > 0 by the local uniqueness theorem. If
Q is not bounded from above, the equality of o;(z) and ay(z) for all £ >0
follows at once. If Q is bounded from above, let 4 be its least upper
bound. We must show that b is the right end point of J; nJ,. Suppose
that this is not the case. Define curves f;, and f, near 0 by

Bi(t)=o(b+1) and Br(t) = aa(b + 1).

Then f, and f, are integral curves of f with the initial conditions o ()
and oy(b) respectively. The values f§,(r) and f,(¢) are equal for small
negative ¢ because b is the least upper bound of Q. By continuity it
follows that aj(b) = a3(b), and finally we see from the local uniqueness
theorem that

B (1) = B, (1)

for all 7 in some neighborhood of 0, whence «; and «; are equal in a
neighborhood of b, contradicting the fact that & is a least upper bound of
Q. We can argue the same way towards the left end points, and thus
prove our statement.

For each x e U, let J(x) be the union of all open intervals containing
0 on which integral curves for f are defined, with initial condition equal
to x. The uniqueness statement allows us to define the integral curve
uniquely on all of J(x).

Remark. The choice of 0 as the initial time value is made for con-
venience. From the uniqueness statement one obtains at once (making a
time translation) the analogous statement for an integral curve defined on
any open interval; in other words, if J;, J» do not necessarily contain 0,
and o is a point in J; nJ; such that o;(2) = o2(%y), and also we have the
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differential equations
aj (1) = f(a(t)) and ay(1) = f(2(1)),
then o) and o are equal on Jy nJ,.
In practice, one meets vector fields which may be time dependent, and

also depend on parameters. We discuss these to show that their study
reduces to the study of the standard case.

Time-dependent vector fields
Let J be an open interval, U open in a Banach space E, and
f:JxU—-E

a C? map, which we view as depending on time ¢z € J. Thus for each ¢, the
map x+— f(t, x) is a vector field on U. Define

f: JxU—->RXxE
by

[, x)=(1, f(1,x),

and view f as a time-independent vector field on J x U. Let & be its flow,
so that

&'(t, 5, x) = f(a(t, s, x)), @0, s, x) = (s, x).
We note that & has its values in J x U and thus can be expressed in terms

of two components. In fact, it follows at once that we can write & in the
form

a(t, s, x) = (145, &(1, 5, X)).
Then &, satisfies the differential equation
Diaay(t, s, x) = f(t+ 5, a2, 5, x))
as we see from the definition of f. Let
B(t, x) = a&(t, 0, x).

Then f is a flow for f, that is f satisfies the differential equation

Dlﬁ(tv X) = f(t7 ﬂ(t’ X)), ﬂ(ov X) =X
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Given x € U, any value of 7 such that « is defined at (z, x) is also such that
 is defined at (z, 0, x) because a, and S, are integral curves of the same
vector field, with the same initial condition, hence are equal. Thus the
study of time-dependent vector fields is reduced to the study of time-
independent ones.

Dependence on parameters
Let V' be open in some space F and let
g: I xVxU—E

be a map which we view as a time-dependent vector field on U, also
depending on parameters in V. We define

G: JxVxU-—-FxE
by
G(t,z, ) = (0, g(¢, z, »))

for teJ,zeV, and ye U. This is now a time-dependent vector field on
V' x U. A local flow for G depends on three variables, say (7, z, y), with
initial condition (0, z, y) = (z, ¥). The map f has two components, and
it is immediately clear that we can write

Bt z, y) = (z, oc(t, z, V))

for some map o depending on three variables. Consequently o satisfies the
differential equation

Dia(t, z, ¥) = g(t, z, o{t, z, ), (0,2, ¥) =y,

which gives the flow of our original vector field ¢ depending on the
parameters ze V. This procedure reduces the study of differential
equations depending on parameters to those which are independent of
parameters.

We shall now investigate the behavior of the flow with respect to its
second argument, i.e. with respect to the points of U. We shall give two
methods for this. The first depends on approximation estimates, and the
second on the implicit mapping theorem in function spaces.

Let Jy be an open subinterval of J containing 0, and let

(/72 J()’*U
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be of class C'. We shall say that ¢ is an c-approximate solution of f on J,
if
l0'(1) = f(t, p(0)| S €

for all ¢ in J,.

Proposition 1.4. Let ¢, and ¢, be two €1- and ey-approximate solutions
of f on Jy respectively, and let € = €] + €. Assume that [ is Lipschitz
with constant K on U uniformly in Jy, or that D, f exists and is bounded
by Kon Jx U. Let ty be a point of Jy. Then for any t in Jy, we have

_ € _
101(1) = 02(0)] = 101(10) = g(t0)[ 01 + < oKl
Proof. By assumption, we have

lo1(t) = (1, 02(0))| €1,
lo5(1) = £ (1, 92(0)] < e2.

From this we get

lo1 (1) — 05() + £ (¢, 02(0) — f(1, 91 (1)) S e.

Say ¢t =ty to avoid putting bars around 7 — fy. Let

Y (1) = lpy (1) — g2 (D),
w(t) = |f(t, (/’1(t)) - f(’a ‘Pz(t))l‘

Then, after integrating from #y to ¢, and using triangle inequalities we

obtain
t

lwo—wWNgdr4w+jwwwm

fo

<e(t—ty) + KJI W (u) du

K| W+ /K da
and finally the recurrence relation
wu>§wmo+xj[¢wy+qth

lo

On any closed subinterval of Jy, our map  is bounded. If we add ¢/K to
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both sides of this last relation, then we see that our proposition will follow
from the next lemma.

Lemma 1.5. Let g be a positive real valued function on an interval,
bounded by a number L. Let ty be in the interval, say ty £ t, and assume
that there are numbers A, K 2 0 such that

t

gty <A+ KJ g(u) du.

T

Then for all integers n = 1 we have

K(i—t) K" 1 — )"

LK"(t — t)"
1! N (n—1)" '

g(n) <A1+
n!

Proof. The statement is an assumption for n = 1. We proceed by
induction. We integrate from 7y to ¢, multiply by K, and use the re-
currence relation. The statement with n+ 1 then drops out of the
statement with n.

Corollary 1.6. Let f: J x U — E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let xy be a point of U. Then
there exists an open subinterval Jy of J containing 0, and an open subset
of U containing xy such that f has a unique flow

o J()XU()—>U.

We can select Jy and Uy such that o is continuous and satisfies a
Lipschitz condition on Jy x Up.

Proof. Given x, y in Uy we let ¢,(¢) = a(z, x) and ¢,(¢) = «(¢, ¥), using
Proposition 1.6 to get Jy and Up. Then ¢; =e; =0. For s, ¢ in Jy we
obtain

|O‘(tv x) - O‘(Sv y)' = |OC(I, x) - O((l, y)j + JO((Z, J/') - “(S? )')|

< |x— pleX + e —s|L,
if we take Jy of small length, and L is a bound for f. Indeed, the term
containing |x — y| comes from Proposition 1.4, and the term containing
|t —s| comes from the definition of the integral curve by means of an
integral and the bound L for f. This proves our corollary.

Corollary 1.7. Let J be an open interval of R containing 0 and let U be
open in E. Let f: Jx U — E be a continuous map, which is Lipschitz
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on U uniformly for every compact subinterval of J. Let ty € J and let ¢,
@, be two morphisms of class C' such that ¢,(to) = ¢,(t0) and satisfying
the relation

¢'(t) = (1, o(1))
for all t in J. Then ¢,(t) = p,(1).
Proof. We can take ¢ =0 in the proposition.

The above corollary gives us another proof for the uniqueness of
integral curves. Given f: J x U — E as in this corollary, we can define
an integral curve o for / on a maximal open subinterval of J having a
given value a(ty) for a fixed 7y in J. Let J be the open interval (a, b) and
let (ag, bg) be the interval on which « is defined. We want to know when
by = b (or ayp = a), that is when the integral curve of f can be continued to
the entire interval over which f itself is defined.

There are essentially two reasons why it is possible that the integral
curve cannot be extended to the whole domain of definition J, or cannot
be extended to infinity in case f is independent of time. One possibility is
that the integral curve tends to get out of the open set U, as on the
following picture:

This means that as ¢ approaches by, say, the curve a(¢) approaches a point
which does not lie in U. Such an example can actually be constructed
artificially. If we are in a situation when a curve can be extended to
infinity, just remove a point from the open set lying on the curve. Then the
integral curve on the resulting open set cannot be continued to infinity.
The second possibility is that the vector field is unbounded. The next
corollary shows that these possibilities are the only ones. In other words,
if an integral curve does not tend to get out of the open set, and if the
vector field is bounded, then the curve can be continued as far as the
original data will allow a priori.

Corollary 1.8. Let J be the open interval (a, b) and let U be open in E.
Let f: Jx U —E be a continuous map, which is Lipschitz on U,
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uniformly for every compact subset of J. Let o be an integral curve of f,
defined on a maximal open subinterval (ay, by) of J. Assume:

(i) There exists € >0 such that a((by — €, by)) is contained in U.
(ii) There exists a number B >0 such that | f(t, a(1))| < B for all t in
(bo — €, bo).

Then by = b.

Proof. From the integral expression for o, namely
t
(1) = (i) + | 1 (u. a(w) di
fo
we see that for t;, £, in (by — ¢, by) we have
la(t1) — a(22)| < Blty — 1.
From this it follows that the limit

li t
lim (1)

exists, and is equal to an element xo of U (by hypothesis (i)). Assume that
by # b. By the local existence theorem, there exists an integral curve f of
f defined on an open interval containing by such that f(hy) = xo and
B'(t) = f(t, B(t)). Then ' =a’ on an open interval to the left of by, and
hence «, § differ by a constant on this interval. Since their limit as ¢ — by
are equal, this constant is 0. Thus we have extended the domain of
definition of « to a larger interval, as was to be shown.

The next proposition describes the solutions of linear differential
equations depending on parameters.

Proposition 1.9. Let J be an open interval of R containing 0, and let V
be an open set in a Banach space. Let E be a Banach space. Let

g: JxV — L(E, E)
be a continuous map. Then there exists a unique map
i JxV — L(E,E)
which, for each x eV, is a solution of the differential equation
DiA(t, x) = g(t, x)A(z, x), A0, x) =1id.

This map A is continuous.
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Remark. In the present case of a linear differential equation, it is not
necessary to shrink the domain of definition of its flow. Note that the
differential equation is on the space of continuous linear maps. The
corresponding linear equation on E itself will come out as a corollary.

Proof of Proposition 1.9. Let us first fix x € V. Consider the differential
equation
Dll(tv X) = g(l’ X)’I(L .X),

with initial condition A(0, x) =id. This is a differential equation on
L(E, E), where f(t, z) = g«(t)z for z € L(E, E), and we write g,(¢) instead
of ¢g(t, x). Let the notation be as in Corollary 1.8. Then hypothesis (i) is
automatically satisfied since the open set U is all of L(E, E). On every
compact subinterval of J, g, is bounded, being continuous. Omitting the
index x for simplicity, we have

t

A1) =id + L g(u)A(u) du,

whence for ¢ = 0, say
t
A0 =1 +BJ |A(u)] du.
0

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also
satisfied. Hence the integral curve is defined on all of J.

We shall now prove the continuity of A. Let (), xo) € J x V. Let I be
a compact interval contained in J, and containing 7, and 0. As a function
of ¢, A(¢, xo) 1s continuous (even differentiable). Let C > 0 be such that
|A(t, x0)] = C for all tel. Let V| be an open neighborhood of xp in V
such that g is bounded by a constant K >0 on I x V).

For (7, x) eI x V; we have

|A(t, x) — Ao, x0)| < |A(2, x) — A2, x0)| + |A(2, x0) — Ato, X0)|-

The second term on the right is small when ¢ is close to #,. We investigate
the first term on the right, and shall estimate it by viewing A(z, x) and
A(t, xo) as approximate solutions of the differential equation satisfied by
At, x). We find
|Dli(ta X()) - g(tv X)J.(t, XO)I
= IDll(tv xO) - g(ts X)i(l, X()) + g(t’ xO)’q'(ta XO) - g([, XO)A(zv X())I
< lg(t, x0) — g(1, x)| 14(1, x0)| £ 1g(1, x0) — (2, x)|C.
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By the usual proof of uniform continuity applied to the compact set
I x {xp}, given € > 0, there exists an open neighborhood ¥ of x; con-
tained in Vi, such that for all (¢, x) e I x ¥, we have

|g(tﬂ X) - g(tr X())| < 6/C

This implies that A(z, xo) is an e-approximate solution of the differential
equation satisfied by A(z, x). We apply Proposition 1.4 to the two curves

po(1) = A(t, x0)  and @ (1) = A(t, x)

for each x e Vy. We use the fact that A(0, x) = A(0, xp) = id. We then

find
|A(f, x) — A2, x0)| < €K

for some constant K; > 0, thereby proving the continuity of 4 at (¢, xo).

Corollary 1.10. Let the notation be as in Proposition 1.9. For each
xeV and ze E the curve

B, x, z) = At x)z

with initial condition B0, x,z) =z is a solution of the differential
equation
Dif(t, x, z) = g(1, X)B(1, x, 2).

Furthermore, f is continuous in its three variables.
Proof. Obvious.

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval in
R containing 0 and U open in the Banach space E. Let

f:JxU—-E

be a CP-morphism with p 21, and let xo € U. There exists a unique
local flow for f at xo. We can select an open subinterval Jy of J
containing 0 and an open subset Uy of U containing xy such that the
unique local flow

a: Jox Uy — U

is of class C?, and such that Dyu satisfies the differential equation

D]DQOC(I‘, X) = sz([, O((l‘, x))Dzoc(t, X)

on Jo x Uy with initial condition Dyx(0, x) = id.
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Proof. Let
g: Jx U— L(E, E)

be given by g(1, x) = Do f (¢, a(t, x)). Select J, and U, such that a is
bounded and Lipschitz on J; x Uy (by Corollary 1.6), and such that g is
continuous and bounded on J; x Uy. Let Jy be an open subinterval of J;
containing 0 such that its closure Jy is contained in J.
Let A(¢, x) be the solution of the differential equation on L(E, E) given
by
DyA(t, x) = g(t, x)A(L, x), A(0, x) = 1d,

as in Proposition 1.9. We contend that D,a exists and is equal to 4 on
Jo x Uy. This will prove that D,a is continuous, on Jy x Up.
Fix xe Uy. Let

0(t, h) = a(t, x + h) — a(t, x).

Then
D]g(l', h) = D](X(I, x+h) - D]OC(I, x)

= f(t, a(t, x+h)) = f(¢, alt, x)).
By the mean value theorem, we obtain

|D10(t, h) — g(1, x)6(t, h)|
= |/ (t, a(t, x+ h)) = f(1, a(t, x)) = D2f (1, a(t, x))6(z, h)]
< |kl sup D2 f (£, ¥) = Daf (1, (2, ¥))],
where y ranges over the segment between a(z, x) and «(¢, x + /). By the

compactness of Jy it follows that our last expression is bounded by |A|y/(h)
where (h) tends to 0 with A, uniformly for 7 in Jy. Hence we obtain

16" (2, h) — g(t, X)0(t, h)| < |Aly(h),

for all 7 in Jo. This shows that 6(¢, h) is an ||y (h) approximate solution
for the differential equation satisfied by A(z, x)h, namely

DyA(t, x)h — g(t, x)A(t, x)h = 0,

with the initial condition A(0, x)# = h. We note that 6(¢, ) has the same
initial condition, #(0, h) = h. Taking ty = 0 in Proposition 1.4, we obtain
the estimate

|0(z, h) — A(t, )h| = Cilhly(h)
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for all ¢ in Jo. This proves that Dy« is equal to A on Jy x Up, and is
therefore continuous on Jy x Up.

We have now proved that Djx and D, exist and are continuous on
Jo x Uy, and hence that o is of class C! on Jy x Up.

Furthermore, D,x satisfies the differential equation given in the
statement of our theorem on Jy x Uy. Thus our theorem is proved when

p=1

A flow which satisfies the properties stated in the theorem will be called
locally of class C7.

Consider now again the linear equation of Proposition 1.9. We re-
formulate it to eliminate formally the parameters, namely we define a
vector field

G: JxVxLEE)— Fx L(E, E)

to be the map such that
G(t, x, w) = (0, g(1, x)w)

for w e L(E, E). The flow for this vector field is theri given by the map 4
such that
Aty x, 0) = (x, M1, x)w).

If g is of class C! we can now conclude that the flow 4 is locally of class
C!, and hence putting o = id, that 4 is locally of class C'.

We apply this to the case when g(z, x) = sz(t, a(t, x)), and to the
solution D,a of the differential equation

Dy (D) (¢, x) = g(t, x)Daa(t, x)

locally at each point (0, x), xe U. Let p =2 be an integer and assume
out theorem proved up to p — 1, so that we can assume a locally of class
C?7! and f of class C?. Then g is locally of class CP~!, whence Do is
locally C?~!. From the expression

Dya(t, x) = f(t, alt, x))
we conclude that Do is C?~!, whence « is locally C”.

If fis C*, and if we knew that « is of class C? for every integer p on its
domain of definition, then we could conclude that « is C*; in other words,
there is no shrinkage in the inductive application of the local theorem. We
shall do this at the end of the section.
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We shall now give another proof for the local smoothness of the flow,
which depends on a simple application of the implicit mapping theorem
in Banach spaces, and was found independently by Pugh and Robbin
[Ro 68]. One advantage of this proof is that it extends to H? vector fields,
as noted by Ebin and Marsden [EbM 70].

Let U be open in E and let f: U — E be a C” map. Let 5 > 0 and let
I, be the closed interval of radius b centered at 0. Let

F= C0(1b7 E)

be the Banach space of continuous maps of 7, into E. We let V' be the
subset of F consisting of all continuous curves

o. I, - U

mapping I, into our open set U. Then it is clear that ¥ is open in F
because for each curve ¢ the image o(Jp) is compact, hence at a finite
distance from the complement of U, so that any curve close to it is also
contained in U.
We define a map
T: UxV —F
by

T(x, a)-——x—i—J foo—o.
0

Here we omit the dummy variable of integration, and x stands for the
constant curve with value x. If we evaluate the curve T'(x, o) at ¢, then by
definition we have

t

T(x,0)(t)=x+ J fo(w)) du— o(z).

0

Lemma 1.12. The map T is of class CP, and its second partial derivative
is given by the formula

D, T(x,0) = LDfoa—I

where I is the identity. In terms of t, this reads

D2 T(x, o)h(t) = L Df (o(u))h(u) du — h(2).
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Proof. Tt is clear that the first partial derivative DT exists and is
continuous, in fact C*, being linear in x up to a translation. To determine
the second partial, we apply the definition of the derivative. The deri-
vative of the map o — o is of course the identity. We have to get the
derivative with respect to ¢ of the integral expression. We have for small 4

We estimate the expression inside the integral at each point u, with u
between 0 and the upper variable of integration. From the mean value
theorem, we get

| £ (a(u) + h(u)) — f (o)) — Df (a(u))h(u)| < ||hl} sup |Df (z.) — Df (a(w))]

Jofo(a~|—h)—Lfoa—L(Dfoa)hH

< L|fo(a+h)—foa—(Dfoa)h|.

where the sup is taken over all points z, on the segment between o(u) and
o(u) + h(u). Since Df is continuous, and using the fact that the image of
the curve o(ly) is compact, we conclude (as in the case of uniform
continuity) that as ||A]] — 0, the expression

sup | Df (z.) — Df (a(u))|

also goes to 0. (Put the € and J in yourself.) By definition, this gives us the
derivative of the integral expression in ¢. The derivative of the final term
is obviously the identity, so this proves that D,T is given by the formula
which we wrote down.

This derivative does not depend on x. It is continuous in ¢. Namely,
we have

DT (x, t) — DT (x, o) :J [Df ot — Df oq].
0

If ¢ is fixed and 7 is close to o, then Df ot — Df oo is small, as one
proves easily from the compactness of ¢(f;), as in the proof of uniform
continuity. Thus D, T is continuous. By Proposition 3.5 of Chapter I, we
now conclude that T is of class C!.

The derivative of D>T with respect to ¢ can again be computed as
before if Df is itself of class C!, and thus by induction, if fis of class C?
we conclude that D,T is of class C7~! so that by the same reference, we
conclude that T itself is of class C?. This proves our lemma.

We observe that a solution of the equation

T(x,c)=0
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is precisely an integral curve for the vector field, with initial condition
equal to x. Thus we are in a situation where we want to apply the implicit
mapping theorem.

Lemma 1.13. Let xo € U. Let a > 0 be such that Df is bounded, say by
a number C) > 0, on the ball B,(xy) (we can always find such a since Df
is continuous at xo). Let b < 1/Cy. Then DT (x, o) is invertible for all
(x, o) in Ba(xp) x V.

Proof. We have an estimate

Jo Df (o(u))h(u) du| < bCy||h]|.

This means that
|D,T(x,0)+ 1] <1,

and hence that D,T(x, o) is invertible, as a continuous linear map, thus
proving Lemma 1.13.

We are ready to reprove the local smoothness theorem by the present
means, when p is an integer, namely:

Theorem 1.14. Let p be a positive integer, and let f: U — E be a C?
vector field. Let xo € U. Then there exist numbers a, b > 0 such that the
local flow

o Jb X Ba(x()) — U
is of class CP?.

Proof. We take a so small and then 4 so small that the local flow exists
and is uniquely determined by Proposition 1.1. We then take b smaller
and a smaller so as to satisfy the hypotheses of Lemma 1.13. We can then
apply the implicit mapping theorem to conclude that the map x — o, is of
class C?. Of course, we have to consider the flow « and still must show
that o itself is of class C?. It will suffice to prove that Dy« and D,a are of
class C?~!, by Proposition 3.5 of Chapter I. We first consider the case
p=1

We could derive the continuity of a from Corollary 1.2 but we can also
get it as an immediate consequence of the continuity of the map x +— o,.
Indeed, fixing (s, y) we have

|z, x) = as, P)[ = Jo(t, x) = a(t, Y)| + la(t, y) = als, p)l
= o = oyl + oy (2) — oy ()]

Since a, is continuous (being differentiable), we get the continuity of a.
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Since
Dya(t, x) = f(a(z, x)),
we conclude that Djx is a composite of continuous maps, whence

continuous.
Let ¢ be the derivative of the map x — «,, so that

¢: Bu(xo) — L(E, C°(l,, E)) = L(E, F)
is of class C?~!. Then
Oxpw — e = @(X)W + Wi (w),
where y(w) — 0 as w — 0. Evaluating at ¢, we find
aft, x +w) — a(t, x) = (p(x)w)(r) + [wli (w)(1),

and from this we see that

Dra(t, x)w = (p(x)w)(1).
Then

|Dya(t, x)w — Daa(s, y)w|
< [(p(x)w)(1) = (eWw) ()] + [ (2(1)w) (1) = (#(»)w)(5)]-
The first term on the right is bounded by

lo(x) — o(¥)] [w]
so that

|D20(1, x) — Daa(t, y)| < |9(x) — 0(3)].

We shall prove below that

[(o(»)w) (1) = (0(»)w)(s)|

is uniformly small with respect to w when s is close to ¢. This proves the
continuity of D,a, and concludes the proof that o is of class C!.

The following proof that |(p(»)w)(¢) — (¢(»)w)(s)| is uniformly small
was shown to me by Professor Yamanaka. We have

t

(1) at, x) = x+J S (a(u, x)) du.

0



[IV, §1] EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS 85

Replacing x with x+ Aw (we E, 1 #0), we obtain
t

(2) a(t, x + Aw) = x + Aw + J S (a(u, x + iw)) du.
0

Therefore

() M g [ 2t 4 ) = S ot )]

On the other hand, we have already seen in the proof of Theorem 1.14
that

(4) a(t, x4+ Aw) — a(t, x) = A(p(x)w) (1) + |[A| [w|y (Aw)(2).
Substituting (4) in (3), we obtain:
(p(t)w) (1) + %lwhﬂ(iw)(t) =w+ L% [f (a(u, x + iw)) — f(a(u, x))] du

‘gl
:w+J J G(u, A, v) dv du,
0Jo

where
G(u, A, v) = Df (a(u, x) + ver (4)) ((p(x)w) (1) + €2(4))
with

e1(4) = Ap(x)w) () + 4] wip (Aw) (u), (1) = |7/”11’(/1W)(u)-

Letting A — 0, we have

(5) (p(x)w) () = w+ J; Df (a(u, x)) (p(x)w)(u) du.

By (5) we have

(o) (1) = (o) 5)] = | | D (st ) (o)) ) e
< bCilp(x)| - Iw| - |t — 5],
from which we immediately obtain the desired uniformity.

Returning to our main concern, the flow, we have

a(t, x) = x + Jof(a(u, x)) du.
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We can differentiate under the integral sign with respect to the parameter
x and thus obtain

Dya(t, x) =1+ Jth(ot(u, x)) Dya(u, x) du,
0

where 7 is a constant linear map (the identity). Differentiating with respect
to ¢ yields the linear differential equation satisfied by D,a, namely

D\ Dyo(t, x) = Df (a(t, x))Daa(t, x)

and this differential equation depends on time and parameters. We have
seen earlier how such equations can be reduced to the ordinary case. We
now conclude that locally, by induction, D;a is of class C”~! since Df is
of class C?~!. Since

Dya(t, x) = f(a(z, x)),

we conclude by induction that Dja is C?~!'. Hence a is of class C? by
Proposition 3.5 of Chapter I. Note that each time we use induction, the
domain of the flow may shrink. We have proved Theorem 1.14, when p is
an integer.

We now give the arguments needed to globalize the smoothness. We
may limit ourselves to the time-independent case. We have seen that the
time-dependent case reduces to the other.

Let U be open in a Banach space E, and let f: U — E be a C? vector
field. We let J(x)} be the domain of the integral curve with initial
condition equal to w.

Let D(f) be the set of all points (¢, x) in R x U such that ¢ lies in
J(x). Then we have a map

o D(f)—-U

defined on all of D(f), letting «(?, x) = a,(¢) be the integral curve on J(x)
having x as initial condition. We call this the flow determined by f, and
we call D(f) its domain of definition.

Lemma 1.15. Let f: U — E be a C? vector field on the open set U of
E, and let o be its flow. Abbreviate a(t, x) by tx, if (t, x) is in the
domain of definition of the flow. Let xe U. If ty lies in J(x), then

J(lox) = J(X) -ty
(translation of J(x) by —to), and we have for all t in J(x) — ty:

t(tox) = (t+ to)x.



[IV, §1] EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS 87

Proof. The two curves defined by
t— a1, a(1g, X)) and t— a(t+ tg, X)

are integral curves of the same vector field, with the same initial condition
tox at t=0. Hence they have the same domain of definition J(fpx).
Hence #; lies in J(fpx) if and only if #; + o lies in J(x). This proves the
first assertion. The second assertion comes from the uniqueness of the
integral curve having given initial condition, whence the theorem follows.

Theorem 1.16 (Global Smoothness of the Flow). If f is of class C? (with
p < o0), then its flow is of class CP on its domain of definition.

Proof. First let p be an integer = 1. We know that the flow is locally
of class CP at each point (0, x), by the local theorem. Let xo € U and let
J(x0) be the maximal interval of definition of the integral curve having xgp
as initial condition. Let D(f) be the domain of definition of the flow, and
let o be the flow. Let Q be the set of numbers » > 0 such that for each ¢
with 0 £ ¢ < b there exists an open interval J containing ¢ and an open set
V containing xo such that J x V is contained in D(f") and such that « is of
class C? on J x V. Then Q is not empty by the local theorem. If Q is not
bounded from above, then we are done looking toward the right end point
of J(x¢). If Q is bounded from above, we let b be its least upper bound.
We must prove that b is the right end point of J(xp). Suppose that this
is not the case. Then a(b, x¢) is defined. Let x; = a(b, xo). By the local
theorem, we have a unique local flow at x;, which we denote by £:

B Jy x B (x1) = U, B0, x) = x,

defined for some open interval J, = (—a, a) and open ball B,(x;) of radius
a centered at x;. Let 0 be so small that whenever b —Jd < t < b we have

(t, x0) € Bya(x1).
We can find such J because
lgr}]) a(t, xp) = x)
by continuity. Select a point ¢ such that b—9J <t <b. By the

hypothesis on b, we can select an open interval J, containing f; and an
open set U; containing xo so that

a: Sy x Uy — Ba/z(xl)

maps J; x Uy into B,,(x;). We can do this because « is continuous at
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(t1, x0), being in fact C” at this point. If |t — 1| < @ and x € U;, we define

(1, x) = Bt — 1, a(ty, x)).
Then

o(t1, x) = B(0, ary, x)) = (11, x)
and

D1¢(Z7 X) = D],B(t — 1, OC([], X))
= f(ﬂ(t -1, d([], X)))
= f(¢(t> X))

Hence both ¢, and «, are integral curves for f with the same value at f;.
They coincide on any interval on which they are defined by the uniqueness
theorem. If we take J very small compared to a, say & < a/4, we see that
¢ is an extension of « to an open set containing (¢, %), and also
containing (b, x¢). Furthermore, ¢ is of class C?, thus contradicting the
fact that b is strictly smaller than the end point of J(xp). Similarly, one
proves the analogous statement on the other side, and we therefore see
that D(f) is open in R x U and that « is of class C? on D(f), as was to
be shown.

The idea of the above proof is very simple geometrically. We go as far
to the right as possible in such a way that the given flow o is of class C?
locally at (¢, xp). At the point a(b, xo) we then use the flow § to extend
differentiably the flow « in case b is not the right-hand point of J(x;). The
flow f at «(b, xo) has a fixed local domain of definition, and we simply
take ¢ close enough to » so that f§ gives an extension of «, as described in
the above proof.

Of course, if fis of class C*, then we have shown that « is of class C”
for each positive integer p, and therefore the flow is also of class C™.

In the next section, we shall see how these arguments globalize even
more to manifolds.

IV, §2. VECTOR FIELDS, CURVES, AND FLOWS

Let X be a manifold of class C? with p = 2. We recall that X is assumed
to be Hausdorff. Let n: T(X) — X be its tangent bundle. Then T(X) is
of class C?71, p—12>1.

By a (time-independent) vector field on X we mean a cross section of
the tangent bundle, i.e. a morphism (of class C?~1)

& X - T(X)
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such that &(x) lies in the tangent space T, (X) for each x € X, or in other
words, such that n& = id.

If T(X) is trivial, and say X is an E-manifold, so that we have a VB-
isomorphism of 7(X) with X x E, then the morphism ¢ is completely
determined by its projection on the second factor, and we are essentially in
the situaiton of the preceding paragraph, except for the fact that our
vector field is independent of time. In such a product representation, the
projection of & on the second factor will be called the local representation
of & It is a CP~!-morphism

f: X—>E

and &(x) = (x, f(x)). We shall also say that ¢ is represented by f'locally if
we work over an open subset U of X over which the tangent bundle
admits a trivialisation. We then frequently use ¢ itself to denote this local
representation.

Let J be an open interval of R. The tangent bundle of J is then J x R
and we have a canonical section : such that () =1 for all teJ. We
sometimes write i instead of i(¢).

By a curve in X we mean a morphism (always of class = 1 unless
otherwise specified)

o J— X

from an open interval in R into X. If g: X — Y is a morphism, then g o «
is a curve in Y. From a given curve a, we get an induced map on the
tangent bundles:

J xR —25 T(X)

A

J — X

a

and a, o1 will be denoted by a’ or by do/dt if we take its value at a point
¢t in J. Thus o is a curve in T(X), of class CP~! if a is of class C”.
Unless otherwise specified, it is always understood in the sequel that we
start with enough differentiability to begin with so that we never end up
with maps of class < 1. Thus to be able to take derivatives freely we have
to take X and « of class C? with p = 2.

If g: X — Y is a morphism, then

(goa)'(1) = g.o'(2).

This follows at once from the functoriality of the tangent bundle and the
definitions.
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Suppose that J contains 0, and let us consider curves defined on J and
such that «(0) is equal to a fixed point x;. We could say that two such
curves ay, o are tangent at 0 if of(0) = «5(0). The reader will verify
immediately that there is a natural bijection between tangency classes of
curves with a(0) = xp and the tangent space T, (X) of X at xo. The
tangent space could therefore have been defined alternatively by taking
equivalence classes of curves through the point.

Let & be a vector field on X and xy a point of X. An integral curve for
the vector field ¢ with initial condition xg, or starting at xp, is a curve (of
class C71)

a: J— X

mapping an open interval J of R containing 0 into X, such that «(0) = x
and such that

(1) = E(a(0))

for all teJ. Using a local representation of the vector field, we know
from the preceding section that integral curves exist locally. The next
theorem gives us their global existence and uniqueness.

Theorem 2.1. Let «y: J) — X and ay: J» — X be two integral curves of
the vector field & on X, with the same initial condition xo. Then oy and
oy are equal on Jy N J;.

Proof. Let J* be the set of points 7 such that «;(#) = (7). Then J*
certainly contains a neighborhood of 0 by the local uniqueness theorem.
Furthermore, since X is Hausdorff, we see that J* is closed. We must
show that it is open. Let ¢* be in J* and define f,, f, near 0 by

Then f, and B, are integral curves of ¢ with initial condition o;(¢*) and
ap(t*) respectively, so by the local uniqueness theorem, f, and f, agree in
a neighborhood of 0 and thus =x;, a, agree in a neighborhood of #*,
thereby proving our theorem.

It follows from Theorem 2.1 that the union of the domains of all
integral curves of ¢ with a given initial condition xy is an open interval
which we denote by J(xp). Its end points are denoted by "(xy) and
t~(xo) respectively. (We do not exclude +o0 and —o0.)

Let D(&) be the subset of R x X consisting of all points (¢, x) such that

(x) <t <t(x).
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A (global) flow for ¢ is a mapping
a: D) — X,

such that for each x € X, the map a«,: J(x) — X given by
oy (1) = a(t, x)

defined on the open interval J(x) is a morphism and is an integral curve
for ¢ with initial condition x. When we select a chart at a point xy of X,
then one sees at once that this definition of flow coincides with the
definition we gave locally in the previous section, for the local repre-
sentation of our vector field.

Given a point x € X and a number 7, we say that tx is defined if (z, x) is
in the domain of x, and we denote «(f, x) by 7x in that case.

Theorem 2.2. Let & be a vector field on X, and o its flows. Let x be a
point of X. If ty lies in J(x), then

J(tox) =J(x) — 1o
(translation of J(x) by —ty), and we have for all t in J(x)—ty:
t(tox) = (t + to)x.

Proof. Our first assertion follows immediately from the maximality
assumption concerning the domains of the integral curves. The second is
equivalent to saying that the two curves given by the left-hand side and
right-hand side of the last equality are equal. They are both integral
curves for the vector field, with initial condition #yx and must therefore be
equal.

In particular, if 7;, ¢, are two numbers such that f7;x is defined and
(11 x) is also defined, then so is (#; + f2)x and they are equal.

Theorem 2.3. Let & be a vector field on X, and x a point of X. Assume
that t7(x) < 0. Given a compact set A = X, there exists € > 0 such that
Sfor all t > t7(x) — €, the point tx does not lie in A, and similarly for t~.

Proof. Suppose such e does not exist. Then we can find a sequence ¢,
of real numbers approaching r*(x) from below, such that r,x lies in 4.
Since A is compact, taking a subsequence if necessary, we may assume
that 7,x converges to a point in 4. By the local existence theorem, there
exists a neighborhood U of this point y and a number ¢ > 0 such that
tt(z) > for all ze U. Taking n large, we have

tH(x) <d+ty
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and t,x is in U. Then by Theorem 2.2,
(X)) =t7(tuX) + 1, >+ 1, > 7(x)
contradiction.
Corollary 2.4, If X is compact, and & is a vector field on X, then
P& =RxX.

It is also useful to give one other criterion when D(£) = R x X, even
when X is not compact. Such a criterion must involve some structure
stronger than the differentiable structure (essentially a metric of some sort),
because we can always dig holes in a compact manifold by taking away a
point.

Proposition 2.5. Let E be a Banach space, and X an E-manifold. Let &
be a vector field on X. Assume that there exist numbers a > 0 and K > 0
such that every point x of X admits a chart (U, ¢) at x such that the
local representation f of the vector field on this chart is bounded by K,
and so is its derivative f'. Assume also that pU contains a ball of radius
a around ¢px. Then D(&) =R x X.

Proof. This follows at once from the global continuation theorem, and
the uniformity of Proposition 1.1.

We shall prove finally that D(&) is open and that o is a morphism.

Theorem 2.6. Let & be a vector field of class CP~' on the CP-manifold
X 2L pZ o). Then D(&) is open in R x X, and the flow o for & is a
CP~-morphism.

Proof. Let first p be an integer = 2. Let xo € X. Let J* be the set of
points in J(xg) for which there exists a number 5 >0 and an open
neighborhood U of xj such that (¢ — b, t + b) U is contained in D(¢), and
such that the restriction of the flow « to this product is a C?~!-morphism.
Then J* is open in J(xp), and certainly contains 0 by the local theorem.
We must therefore show that J* is closed in J{xo).

Let s be in its closure. By the local theorem, we can select a
neighborhood V of sxg = a(s, xo) so that we have a unique local flow

p: Iy, xV —-X

for some number a > 0, with initial condition f(0, x) = x for all xe V,
and such that this local flow g is C?~1.
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The integral curve with initial condition x( is certainly continuous on
J(xp). Thus rxo approaches sxo as ¢ approaches s. Let V; be a given
small neighborhood of sxy contained in V. By the definition of J*, we can
find an element #; in J* very close to s, and a small number b (compared
to a) and a small neighborhood U of x( such that o« maps the product

(h—b,t1 +b)x U
into V7, and is C”~! on this product. For reJ, + t; and x € U, we define

o(t, x) = B(r — 11, a(1y, x)).
Then ¢(#1, x) = B(0, «(r1, x)) = a(f, x), and

D](p(t, X)D],B(l — 1, O((ll, x))
= é(ﬂ(t -1, OC([], X))
= f((ﬂ(t, x))

Hence both ¢,, a, are integral curves for &, with the same value at ¢.
They coincide on any interval on which they are defined, so that ¢, is
a continuation of «, to a bigger interval containing s. Since « is C?~! on
the product (f; — b, t; +b) x U, we conclude that ¢ is also CP~! on
(Jo+ t1) x U. From this we see that D(&) is open in R x X, and that o is
of class CP~! on its full domain D(&). If p = co, then we can now
conclude that « is of class C” for each positive integer r on D(¢), and
hence is C*, as desired.

Corollary 2.7. For each teR, the set of xe X such that (t, x) is
contained in the domain D(&) is open in X.

Corollary 2.8. The functions t*(x) and t (x) are upper and lower
semicontinuous respectively.

Theorem 2.9. Let & be a vector field on X and « its flow. Let D,(&) be
the set of points x of X such that (¢, x) lies in D(&). Then D,(&) is open
for each t € R, and o, is an isomorphism of D,(&) onto an open subset of
X. In fact, 0,(D;) =D, and o7 = a_,.

Proof. Immediate from the preceding theorem.

Corollary 2.10. If x¢ is a point of X and t is in J(xp), then there exists
an open neighborhood U of xo such that t lies in J(x) for all x e U, and
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the map
X = IX

is an isomorphism of U onto an open neighborhood of txy.

Critical points

Let & be a vector field. A critical point of ¢ is a point xo such that
&(xo) = 0. Critical points play a significant role in the study of vector
fields, notably in the Morse theory. We don’t go into this here, but just
make a few remarks to show at the basic level how they affect the
behavior of integral curves.

Proposition 2.11. If « is an integral curve of a C! vector field, &, and «
passes through a critical point, then o is constant, that is o(t) = xq for
all t.

Proof. The constant curve through xp is an integral curve for the vector
field, and the uniqueness theorem shows that it is the only one.

Some smoothness of the vector field in addition to continuity must be
assumed for the uniqueness. For instance, the following picture illustrates
a situation where the integral curves are not unique. They consist in
translations of the curve y = x* in the plane. The vector field is con-
tinuous but not locally Lipschitz.

Proposition 2.12. Let & be a vector field and a an integral curve for &.
Assume that all t 20 are in the domain of o, and that

lim a(f) = x)
1—0

exists. Then xi is a critical point for &, that is &(x;) =0.
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Proof. Selecting ¢ large, we may assume that we are dealing with the
local representation f of the vector field near x;. Then for ¢’ > ¢ large, we

have
"

a(t') —a(t) = J S (a(u)) du.

1

Write f(a(u)) = f(x1) + g(u), where limg(u) = 0. Then
|fGellE" =] £ la(t') = a(t)] + [¢" — | suplg(u)],

where the sup is taken for u large, and hence for small values of g(u).
Dividing by |/ — ¢| shows that f(x)) is arbitrarily small, hence equal to 0,
as was to be shown.

Proposition 2.13. Suppose on the other hand that x, is not a critical
point of the vector field £. Then there exists a chart at xo such that the
local representation of the vector field on this chart is constant.

Proof. In an arbitrary chart the vector field has a representation as a
morphism
& U—E

near xp. Let o be its flow. We wish to “straighten out” the integral curves
of the vector field according to the next figure.

a(r(z), Pr)

In other words, let v = &(xp). We want to find a local isomorphism ¢ at
xo such that

¢'(x)v = &(p(x)).
We inspire ourselves from the picture. Without loss of generality, we may

assume that xo =0. Let A be a functional such that A(v) #0. We de-
compose E as a direct sum

E=F@®Ry,
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where F is the kernel of A. Let P be the projection on F. We can write
any x near 0 in the form

x = Px+1(x)v,

where

We then bend the picture on the left to give the picture on the right using
the flow « of &, namely we define

o(x) = a(t(x), Px).

This means that starting at Px, instead of going linearly in the direction of
v for a time t(x), we follow the flow (integral curve) for this amount of
time. We find that

¢'(x) = Dyo(z(x), Px) % + Dya(t(x), Px) P.

Hence ¢’(0) =id, so by the inverse mapping theorem, ¢ is a local iso-
morphism at 0. Furthermore, since Pv =0 by definition, we have

o' (x)v = Dya(t(x), Px) = &(p(x)),

thus proving Proposition 2.13.

IV, §3. SPRAYS

Second-order vector fields and differential equations

Let X be a manifold of class C? with p = 3. Then its tangent bundle
T(X) is of class C?~!, and the tangent bundle of the tangent bundle
T(T(x)) is of class CP72, with p—221.

Let a: J — X be a curve of class C? (¢ £ p). A lifting of « into T(X)
is a curve f: J — T(X) such that nff =« We shall always deal with
g = 2 so that a lift will be assumed of class ¢4 — 1 = 1. Such lifts always
exist, for instance the curve o’ discussed in the previous section, called the
canonical lifting of o.

A second-order vector field over X is a vector field F on the tangent
bundle T(X) (of class C?~!) such that, if 7: TX — X denotes the canoni-
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cal projection of 7(X) on X, then
n.oF=id., thatis 7n.F(v) =v forallvin T(X).
Observe that the succession of symbols makes sense, because
n: TT(X) - T(X)
maps the double tangent bundle into 7(X) itself.

A vector field F on TX is a second-order vector field on X if and only if it
satisfies the following condition: Each integral curve 8 of F is equal to the
canonical lifting of nf, in other words

(nB)' = p.

Here, nf8 is the canonical projection of f on X, and if we put the
argument ¢, then our formula reads

(mB) (1) = B(1)

for all z in the domain of . The proof is immediate from the definitions,
because

(nB) =np =n.0oFof

We then use the fact that given a vector v € TX, there is an integral curve
p = p, with $,(0) = v (initial condition v).

Let o: J — X be a curve in X, defined on an interval J. We define « to
be a geodesic with respect to F if the curve

o J—>TX

is an integral curve of F. Since na’ = «, that is «’ lies above a in TX, we
can express the geodesic condition equivalently by stating that « satisfies
the relation

o = F(a').

This relation for curves a« in X is called the second-order differential
equation for the curve «, determined by F. Observe that by definition, if
is an integral curve of F in TX, then nf is a geodesic for the second order
vector field F.

Next we shall give the representation of the second order vector field
and of the integral curves in a chart.
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Representation in charts

Let U be open in the Banach space E, so that T(U)= U x E, and
T(T(U)) = (UxE)x (ExE). Then n: U xE — U is simply the pro-
jection, and we have a commutative diagram:

(UXE)x(ExE) —25 UxE

| |

UxE — U

4

The map 7. on each fiber E x E is constant, and is simply the projection
of E x E on the first factor E. that is

(X, vou, w) = (x, u).
Any vector field on U x E has a local representation
f: UXxE—ExE
which has therefore two components, /' = (f}, f5), each f; mapping U x E
into E. The next statement describes second order vector fields locally in

the chart.

Let U be open in the Banach space E, and let T(U) = U x E be the
tangent bundle. A CP~2-morphism

f: UXE—ExE

is the local representation of a second order vector field on U if and

only if
fx v) = (v falx,0).

The above statement is merely making explicit the relation . F = id, in
the chart. If we write f = (f], f,), then we see that

filx,v) =v.
We express the above relations in terms of integral curves as follows.

Let = (1) be an integral curve for the vector field F on TX. In the
chart, the curve has two components

p(1) = (x(1), v(r)) € U x E.



[IV, §3] SPRAYS 99

By definition, if f is the local representation of F, we must have

dp _ <€£ @) = f(x.0) = (e filx 0)).

dr — \dt’ dr

Consequently, our differential equation can be rewritten in the following
manner:
dx

0
d>x  dv dx
1 =—=folx.—],
M der dr 1 <\ dt)

which is of course familiar.

e(0).

Sprays

We shall be interested in special kinds of second-order differential
equations. Before we discuss these, we make a few technical remarks.

Let s be a real number, and 7: E — X be a vector bundle. If vis in E,
so in E, for some x in X, then sv is again in E, since E, is a vector
space. We write sg for the mapping of E into itself given by this scalar
multiplication. This maping is in fact a VB-morphism, and even a VB-
isomorphism 1f s # 0. Then

T(se) = (s).: T(E) — T(E)

is the usual induced map on the tangent bundle of E.
Now let £ =TX be the tangent bundle itself. Then our map sry
satisfies the property

(stx), osTTx = STTX © (STYX),0

which follows from the linearity of sy on each fiber, and can also be seen
directly from the representation on charts given below.

We define a spray to be a second-order vector field which satisfies the
homogeneous quadratic condition:

SPR 1. For all seR and ve T(X), we have
F(sv) = (stx) * sF(v).

It is immediate from the conditions defining sprays (second-order vector
field satisfying SPR 1) that sprays form a convex set! Hence if we can
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exhibit sprays over open subsets of Banach spaces, then we can glue them
together by means of partitions of unity, and we obtain at once the
following global existence theorem.

Theorem 3.1. Let X be a manifold of class C? (p 2 3). If X admits
partitions of unity, then there exists a spray over X.

Representations in a chart
Let U be open in E, so that 7U = U x E. Then
TTU = (U xE) x (E x E),

and the representations of sy and (s7y), in the chart are given by the
maps

stue (x, v) — (x, sv) and (stu),: (x, v, u, w)— (x, sv, u, sw).

Thus
srre o (stu) (%, o, u, w) — (X, su, su, s2w).

We may now give the local condition for a second-order vector field F
to be a spray.

Proposition 3.2. In a chart U XE for TX, let [: UxE—EXE
represent F, with [ = (f|, f>). Then f represents a spray if and only if,
for all se€ R we have

folx. s0) = 52 fa(x. ).

Proof. The proof follows at once from the definitions and the formula
giving the chart representation of s(sry),.

Thus we see that the condition SPR 1 (in addition to being a second-
order vector fleld), simply means that f; is homogeneous of degree 2 in the

variable v. By the remark in Chapter I, §3, it follows that f; is a quadratic
map in its second variable, and specifically, this quadratic map is given by

falxsv) = 3 D3 fo(x. 0)(v. v).

Thus the spray is induced by a symmetric bilinear map given at each point
x in a chart by

(2) B(x) = 3D3 f5(x. 0).
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Conversely, suppose given a morphism

U— Ly, (E.E) givenby  x+— B(x)
from U into the space of symmetric bilinear maps E x E — E. Thus for
each v, we E the value of B(x) at (v, w) is denoted by B(x; v, w) or
B(x)(v, w). Define f5(x, v) = B(x; v,v). Then f, is quadratic in its
second variable, and the map f defined by

f(x,v) = (v, B(x: v, v)) = (v, fr(x, v))

represents a spray over U. We call B the symmetric bilinear map asso-
ciated with the spray. From the local representations in (1) and (2), we
conclude that a curve o is a geodesic if and only if « satisfies the differential
equation

(3) 2" (1) = By (o (1), « (1)) for all ¢.

We recall the trivial fact from linear algebra that the bilinear map B 1s
determined purely algebraically from the quadratic map, by the formula

B(v, w) = %[fz(v +w) = fo(v) = fL(w)].

We have suppressed the x from the notation to focus on the relevant
second variable v. Thus the quadratic map and the symmetric bilinear
map determine each other uniquely.

The above discussion has been local, over an open set U in a Banach
space. In Proposition 3.4 and the subsequent discussion of connections, we
show how to globalize the bilinear map B intrinsically on the manifold.

Examples. As a trivial special case, we can always take f5(x, v) = (v, 0)
to represent the second component of a spray in the chart.

In the chapter on Riemannian metrics, we shall see how to construct a
spray in a natural fashion, depending on the metric.

In the chapter on covariant derivatives we show how a spray gives rise
to such derivatives.

Next, let us give the transformation rule for a spray under a change of
charts, 1.e. an isomorphism #: U — V. On TU, the map Th is represented
by a morphism (its vector component)

H: UxE—-EXxE given by H(x, v) = (h(x), h'(x)v).

We then have one further lift to the double tangent bundle 7 TU, and we
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may represent the diagram of maps symbolically as follows:

(UxE)x (ExE) —2H (v« E) x (E x E)
J fv,z l/‘fv,z
UxE H=th) V x E
U _f v

Then the derivative H'(x, v) is given by the Jacobian matrix operating on
column vectors ‘(u, w) with u, w € E, namely

ooy M) 0 poofuY _f M(x) 0 u
e o= (h”(x)v /z/(x)) o Mk )<></<> /())()

Thus the top map on elements in the diagram is given by
(H, H'): (x, v, u, w) — (h(x), h'(x)v, h'(x)u, h"(x)(u. v) + h'(x)w).
For the application, we put u = v because f)(x, v) = v, and w = f; ,(x, v),

where f;; and f}. denote the representations of the spray over U and V
respectively. It follows that f,, and f, are related by the formula

Fr (h(x), B (x)e) = (B (x)e, B (x)(e, ) + 1 (x) fu 5 (x, v).
Therefore we obtain:

Proposition 3.3. Change of variable formula for the quadratic part of a
spray:

Fra (), H(X)) = B (), 8) + B () f (v, 0),
By (h(x): h'(x)v, b (x)w) = h"(x)(v, w) + I (x) By (xs vow).

f

Proposition 3.3 admits a converse:

Proposition 3.4. Suppose we are given a covering of the manifold X by
open sets corresponding to charts U, V..., and for each U we are given
a morphism R

By: U— L2 (E. E)
which transforms according to the formula of Proposition 3.3 under an
isomorphism h: U — V. Then there exists a unique spray whose asso-
ciated bilinear map in the chart U is given by By.
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Proof. We leave the verification to the reader.

Remarks. Note that By (x: v, w) does not transform like a tensor of
type Lfym(E, E), i.e. a section of the bundle Lfym(TX, TX). There are
several ways of defining the bilinear map B intrinsically. One of them is
via second order bundles, or bundles of second order jets, and to extend
the terminology we have established previously to such bundles, and even
higher order jet bundles involving higher derivatives, as in |[Po 62].
Another way will be done below, via connections. For our immediate
purposes, it suffices to have the above discussion on second-order differ-
ential equations together with Proposition 3.3 and 3.4. Sprays were in-
troduced by Ambrose, Palais, and Singer [APS 60], and I used them (as
recommended by Palais) in the earliest version [La 62]. In [Lo 69] the
bilinear map By is expressed in terms of second order jets. The basics
of differential topology and geometry were being established in the early
sixties. Cf. the bibliographical notes from [Lo 69] at the end of his first
chapter.

Connections

We now show how to define the bilinear map B intrinsically and directly.
Matters will be clearer if we start with an arbitrary vector bundle

p: E—X

over a manifold X. As it happens we also need the notion of a fiber
bundle when the fibers are not necessarily vector spaces, so don’t have a
linear structure. Let f: Y — X be a morphism. We say that f (or Y over
X) is a fiber bundle if f 1s surjective, and if each point x of X has an open
neighborhood U, and there is some manifold Z and an isomorphism
h: f~Y(U) — U x Z such that the following diagram is commutative:

Wy — s uxz

>

U

Thus locally, f: Y — X looks like the projection from a product space.
The reason why we need a fiber bundle is that the tangent bundle

ng: TE — E

is a vector bundle over E, but the composite f = pong: TE — X is only
a fiber bundle over X, a fact which is obvious by picking trivializations in
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charts. Indeed, if U is a chart in X, and if U x F — U is a vector bundle
chart for E, with fiber F, and Y = TE, then we have a natural iso-
morphism of fiber bundles over U:

iUy ———— (U xF)x(E xF)
g Pryi2

UxF

N
pry
U
Note that U being a chart in X implies that U x E — U is a vector bundle
chart for the tangent bundle TU over U.

The tangent bundle TF has two natural maps making it a vector
bundle:

ng: TE — E is a vector bundle over E;

T(p): TE — TX is a vector bundle over TX.

Therefore we have a natural morphism of fiber bundle (not vector bundle)
over X:

(ne, T(p)): TE—>E®TX  given by W (ngW, T(p)W)

for WeTE. If WeT,E withec E,, then g W € E, and T(p)W e T, X.
After these preliminaries, we define a connection to be a morphism of
fiber bundles over X, from the direct sum E @ TX into TE:

H: F®TX - TFE
such that
(ng, T(p)) o H = idpg1x,

and such that H 1is bilinear, in other words H,: E,® T:X — TFE is

bilinear.
Consider a chart U as in the above diagram, so

TU =UXxE and T(U xF) = (U xF) x(E xF).
Then our map H has a coordinate representation
H(x, e, v) = (x, e, Hi(x, e, v), Ha(x, e, 1)) foreeFand veE.

The fact that (ng, T(p)) o H = idggry implies at once that H(x, e, v) = v.
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The bilinearity condition implies that for fixed x, the map
(e, v) — Hi(x, e, v)

is bilinear as a map F x E — E. We shall therefore denote this map by
B(x), and we write in the chart

H(x, e, v) = (x, e, v, B(x)(e, v)) or also (x, e, v, B(x, e, v)).

Now take the special case when £ = TX. We say that the connection
is symmetric if the bilinear map B is symmetric. Suppose this is the case.
We may define the corresponding quadratic map 7X — TTX by letting
f>(x, v) = B(x, v, v). Globally, this amounts to defining a morphism

F: TX - TTX such that F = H o diagonal
where the diagonal is taken in 7X @ TX, in each fiber. Thus
F(v) = H(v, v) forve T, X.

Then F is a vector field on TX, and the condition (7., 7.)o H =id on
TX @ TX implies that F is a second-order vector field on X, in other
words, F defines a spray. It is obvious that all sprays can be obtained in
this fashion. Thus we have shown how to describe geometrically the
bilinear map associated with a spray.

Going back to the general case of a vector bundle E unrelated to 7X,
we note that the image of a connection H is a vector subbundle over E.
Let V denote the kernel of the map T(p): TE — TX. We leave it to the
reader to verify in charts that V is a vector subbundle of TE over E, and
that the image of H is a complementary subbundle. One calls V' the
vertical subbundle, canonically defined, and one calls H the horizontal
subbundle determined by the connection. See Chapter X, §4. Also note
that Eliasson [E1 67] introduced connections in Banach manifolds, with a
view to applications to manifolds of mappings. Cf. Kobayashi [Ko 57],
Dombrowski [Do 68], and Besse [Be 78] for more basic material on
connections.

IV, §4. THE FLOW OF A SPRAY AND
THE EXPONENTIAL MAP

The condition we have taken to define a spray is equivalent to other
conditions concerning the integral curves of the second-order vector field
F. We shall list these conditions systematically. We shall use the fol-
lowing relation. If a: J — X is a curve, and «; is the curve defined by
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ar(¢) = a(st), then
2} () = o' (s1),

this being the chain rule for differentiation.

If v is a vector in TX, let f, be the unique integral curve of F with
initial condition v (i.e. such that §,(0) = v). In the next three conditions,
the sentence should begin with “for each v in TX”.

SPR 2. A number t is in the domain of B, if and only if st is in the
domain of B, and then

Bou(0) = 5P, (s1).

SPR 3. If's, t are numbers, st is in the domain of f, if and only if s is in
the domain of B,,, and then

nﬁtu(s) = nﬂv(St)'

SPR 4. A number t is in the domain of B, if and only if 1 is in the
domain of B,,, and then

(1) = 7B, (1).

We shall now prove the equivalence between all four conditions.
Assume SPR 1, and let s be fixed. For all ¢ such that st is in the
domain of f,, the curve f,(st) is defined and we have

%(S,BU(SZ)) = 5.5, (st) = 5.5F (B,(st)) = F(sB,(s1)).

Hence the curve sf,(st) is an integral curve for F, with initial condition
sf,(0) = sv. By uniqueness we must have

sP,(st) = B, (1).
This proves SPR 2.

Assume SPR 2. Since f, is an integral curve of F for each v, with
initial condition v, we have by definition

BL(0) = F(so).

Using our assumption, we also have

Bi0) = 5 (38, (50)) = s.sPi(s0).
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Put 1 =0. Then SPR 1 follows because i, and f, are integral curves of F
with initial conditions sv and v respectively.

It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3.
To prove SPR 2, we have

Bolt) = (1B (1) = 5 B (s1) = s(nB,) (51) = P, (s0),

which proves SPR 2.

Assume SPR 4. Then st is in the domain of g, if and only if 1 is in the
domain of S, and s is in the domain of f, if and only if 1 is in the
domain of f,,. This proves the first assertion of SPR 3, and again by
SPR 4, assuming these relations, we get SPR 3.

It is similarly clear that SPR 3 implies SPR 4.

Next we consider further properties of the integral curves of a spray.
Let F be a spray on X. As above, we let f, be the integral curve with
initial condition v. Let D be the set of vectors v in T(X) such that f, is
defined at least on the interval [0, 1]. We know from Corollary 2.7 that D
is an open set in T(X), and by Theorem 2.6 the map

v B,(1)
i1s a morphism of D into 7(X). We now define the exponential map

exp: D—- X
to be

exp (v) = 7f,(1).

Then exp is a CP~2-morphism. We also call D the domain of the ex-
ponential map (associated with F).

If x e X and 0, denotes the zero vector in T, then from SPR 1, taking
s =0, we see that F(0,) =0. Hence

exp (0y) = x.

Thus our exponential map coincides with 7 on the zero cross section, and
so induces an isomorphism of the cross section onto X. It will be
convenient to denote the zero cross section of a vector bundle E over X by
{g(X) or simply (X if the reference to E is clear. Here, E is the tangent
bundle.

We denote by exp, the restriction of exp to the tangent space 7. Thus

exp,: Ty — X.
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Theorem 4.1. Let X be a manifold and F a spray on X. Then
exp,: Tx— X

induces a local isomorphism at Oy, and in fact (exp,), is the identity at
0.

Proof- We prove the second assertion first because the main assertion
follows from it by the inverse mapping theorem. Furthermore, since T is
a vector space, it suffices to determine the derivative of exp, on rays, in
other words, to determine the derivative with respect to ¢ of a curve
exp,(tv). This is done by using SPR 3, and we find

d

Enﬂlv = ﬂtv'

Evaluating this at t = 0 and taking into account that f, has w as initial
condition for any w gives us

(exp,),(0x) = id.
This concludes the proof of Theorem 4.1.

Helgason gave a general formula for the differential of the exponential
map on analytic manifolds [He 61], reproduced in [He 78], Chapter I,
Theorem 6.5. We shall study the differential of the exponential map in
connection with Jacobi fields, in Chapter IX, §2.

Next we describe all geodesics.

Proposition 4.2. The images of straight segments through the origin in
T., under the exponential map exp,, are geodesics. In other words, if
ve T, and we let

0((1), [) = al’(t) = epr([U),

then o, is a geodesic. Conversely, let a: J — X be a C? geodesic defined
on an interval J containing 0, and such that o(0) =x. Let «'(0) =v.
Then a(t) = exp,(tv).

Proof. The first statement by definition means that «, is an integral
curve of the spray F. Indeed, by the SPR conditions, we know that

O((U, t) = aU(Z) = nﬂtu(l) = nﬂv(l)’

and (nf,)’ = f, is indeed an integral curve of the spray. Thus our as-
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sertion that the curves ¢+ exp(t) are geodesics is obvious from the
definition of the exponential map and the SPR conditions.

Conversely, given a geodesic a: J — X, by definition «’ satisfies the
differential equation

(1) = F(a'(1)).

The two curves ¢+ a(f) and ¢+~ exp,(tv) satisfy the same differential
equation and have the same initial conditions, so the two curves are
equal. This proves the second statement and concludes the proof of the
proposition.

Remark. From the theorem, we note that a C! curve in X is a geodesic
if and only if] after a linear reparametrization of its interval of definition,
it is simply ¢+ exp,(tv) for some x and some v.

We call the map (v, £) — a(v, ) the geodesic flow on X. It is defined on
an open subset of TX x R, with «(v, 0) = x if ve T, X. Note that since
n(sp,(t)) = np,(t) for seR, we obtain from SPR 2 the property

a(sv, t) = a(v, st)

for the geodesic flow. Precisely, ¢ is in the domain of ay, if and only if st is
in the domain of «,, and in that case the formula holds. As a slightly
more precise version of Theorem 4.1 in this light, we obtain:

Corollary 4.3. Let F be a spray on X, and let xo € X. There exists an
open neighborhood U of xo, and an open neighborhood V of 0y, in TX
satisfying the following condition. For every xe U and ve VN TX,
there exists a unique geodesic

o (=2,2) > X
such that
2,(0) =x  and o/ (0) = v.

Observe that in a chart, we may pick ¥ as a product
V=UxV0)cUxE

where 75(0) is a neighborhood of 0 in E. Then the geodesic flow is
defined on U x V,(0) x J, where J = (-2,2). We picked (-2, 2) for
concreteness. What we really want is that 0 and 1 lie in the interval. Any
bounded interval J containing 0 and 1 could have been selected in the
statement of the corollary. Then of course, U and V (or Vz(O)) depend
on J.
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IV, §5. EXISTENCE OF TUBULAR NEIGHBORHOODS
Let X be a submanifold of a manifold Y. A tubular neighborhood of X in
Y consists of a vector bundle z: £ — X over X, an open neighborhood Z
of the zero section (X in E, and an isomorphism

[ Z—-U

of Z onto an open set in Y containing X, which commutes with {:

N

Ea

Y

We shall call f the tubular map and Z or its image f(Z) the corresponding
tube (in E or Y respectively). The bottom map j is simply the inclusion.
We could obviously assume that it is an embedding and define tubular
neighborhoods for embeddings in the same way. We shall say that our
tubular neighborhood is tetal if Z = FE. In this section, we investigate
conditions under which such neighborhoods exist. We shall consider the
uniqueness problem in the next section.

Theorem 5.1. Let Y be of class C? (p = 3) and admit partitions of unity.
Let X be a closed submanifold. Then there exists a tubular neighborhood
of X in Y, of class CP=2.
Proof. Consider the exact sequence of tangent bundles:
We know that this sequence splits, and thus there exists some splitting
T(Y)|X = T(X) @ N(X)
where N(X) may be identified with a subbundle of 7(Y)|X. Following
Palais, we construct a spray & on T(Y) using Theorem 3.1 and obtain
the corresponding exponential map. We shall use its restriction to N(X),
denoted by exp|N. Thus
exp/N: DN N(X)— Y.

We contend that this map is a local isomorphism. To prove this, we may
work [ocally. Corresponding to the submanifold, we have a product
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decomposition U = U} x U,, with X = U; x 0. If U is open in E, then we
may take U;, U, open in Fi, F;, respectively. Then the injection of N(X)
in T(Y)|X may be represented locally by an exact sequence

0— U] XFzﬂ U]XF] ><F2,
and the inclusion of T(Y)|X in T(Y) is simply the inclusion
U] XF1 XF2—> U] X UzXF] XFz.

We work at the point (x1, 0) in U; x F,. We must compute the derivative
of the composite map

UIXin U1><U2><F1XF21p>Y

at (x1, 0). We can do this by the formula for the partial derivatives. Since
the exponential map coincides with the projection on the zero cross
section, its ‘“‘horizontal” partial derivative is the identity. By Theorem 4.1
we know that its “‘vertical” derivative is also the identity. Let

Y = (exp)o @

(where ¢ is simply ¢ followed by the inclusion). Then for any vector
(W], W2) in F; x F, we get

Dl//(xh 0) : (Wh WZ) = (W17 0) + (Dxl(w2)a

where ¢, is the linear map given by ¢ on the fiber over x;. By hypothesis,
we know that F; x F; is the direct sum of F; x 0 and of the image of Py, -
This proves that Dy(x;, 0) is a toplinear isomorphism, and in fact proves
that the exponential map restricted to a normal bundle is a local iso-
morphism on the zero cross section.

We have thus shown that there exists a vector bundle £ — X, an open
neighborhood Z of the zero section in E, and a mapping f: Z—> Y
which, for each x in (g, is a local isomorphism at x. We must show that
Z can be shrunk so that f restricts to an isomorphism. To do this we
follow Godement ([God 58], p. 150). We can find a locally finite open
covering of X by open sets U; in Y such that, for each i we have inverse
isomorphisms

fit Zi— U  and g+ U — Z,

between U; and open sets Z; in Z, such that each Z; contains a point x of
X, such that f;, g; are the identity on X (viewed as a subset of both Z and
Y) and such that f; is the restriction of f to Z;, We now find a locally
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finite covering {V;} of X by open sets of Y such that V; = U;, and let
V =(JV. Welet W be the subset of elements y € V' such that, if y lies in
an intersection V; NV}, then g;(y) = g;(y). Then W certainly contains X.
We contend that W contains an open subset containing X.

Let x e X. There exists an open neighborhood G, of x in Y which

meets only a finite number of Vi, say V;,,...,V,. Taking Gy small enough,
we can assume that x lies in each one of these, and that G, is contained in
each one of the sets U;,...,U;. Since x lies in each V;,...,V;, it is
contained in Uy, ..., U; and our maps g¢;,,...,d; take the same value at x,
namely x itself. Using the fact that f; ..., f; are restrictions of f; we see
at once that our finite number of maps g;,...,g; must agree on G, if we

take G, small enough.
Let G be the union of the G,. Then G is open, and we can define a map

g9: G—yg(G)=Z

by taking g equal to g; on G V;. Then g(G) is open in Z, and the
restriction of fto g(G) is an inverse for g. This proves that £, g are inverse
isomorphisms on G and g(G), and concludes the proof of the theorem.

A vector bundle £ — X will be said to be compressible if, given an
open neighborhood Z of the zero section, there exists an isomorphism

p: E— Z

of E with an open subset Z; of Z containing the zero section, which
commutes with the projection on X:

N

It is clear that if a bundle is compressible, and if we have a tubular
neighborhood defined on Z, then we can get a total tubular neighborhood
defined on E. We shall see in the chapter on Riemannian metrics that
certain types of vector bundles are compressible (Hilbert bundles, assuming
that the base manifold admits partitions of unity).

E Z,

IV, §6. UNIQUENESS OF TUBULAR NEIGHBORHOODS

Let X, Y be two manifolds, and F: R x X — Y a morphism. We shall
say that F is an isotopy (of embeddings) if it satisfies the following
conditions. First, for each r € R, the map F, given by F,(x) = F(¢, x) is an
embedding. Second, there exist numbers 7y < #; such that F, = F,, for all
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t<tyand F,, = F, for all t = 7;. We then say that the interval [fy, #1] is a
proper domain for the isotopy, and the constant embeddings on the left
and right will also be denoted by F_,, and F,, respectively. We say that
two embeddings f: X — Y and g: X — Y are isotopic if there exists an
isotopy F, as above such that f = F,, and g = F;, (notation as above). We
write f ~ g for f isotopic to g¢.

Using translations of intervals, and multiplication by scalars, we can
always transform an isotopy to a new one whose proper domain is
contained in the interval (0,1). Furthermore, the relation of isotopy
between embeddings is an equivalence relation. It is obviously symmetric
and reflexive, and for transitivity, suppose f ~¢ and g ~ h. We can
choose the ranges of these isotopies so that the first one ends and stays
constant at g before the second starts moving. Thus it is clear how to
compose isotopies in this case.

If so < 57 are two numbers, and ¢: R — R is a function (morphism)
such that o(s) = 1y for s < 50 and o(s) = 1; for s = 51, and ¢ is monotone
increasing, then from a given isotopy F; we obtain another one,
G, = F,(,). Such a function ¢ can be used to smooth out a piece of isotopy
given only on a closed interval.

Remark. We shall frequently use the following trivial fact: If
fi: X — Y is an isotopy, and if g: X — X and A: Y — Y| are two
embeddings, then the composite map

hf,g: Xl — Y]
is also an isotopy.

Let Y be a manifold and X a submanifold. Let n: £ — X be a vector
bundle, and Z an open neighborhood of the zero section. An isotopy
J;1 Z — Y of open embeddings such that each f, is a tubular neigh-
borhood of X will be called an isotopy of tubular neighborhoods. In what
follows, the domain will usually be all of E.

Proposition 6.1. Let X be a manifold. Let n: E— X and my: Ey — X
be two vector bundles over X. Let

f: E— F

be a tubular neighborhood of X in E (identifying X with its zero section
in Ey). Then there exists an isotopy

ﬁ: E—>E1

with proper domain [0, 1] such that f| = f and f; is a VB-isomorphism.
(If f, =, m1 are of class C? then f, can be chosen of class CP~1)
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Proof. We define F by the formula

Fie) = t_lf(te)

for t#0 and ec E. Then F, is an embedding since it is composed
of embeddings (the scalar multiplications by ¢, ¢! are in fact VB-
isomorphism).

We must investigate what happens at ¢ = 0.

Given ee E, we find an open neighborhood U; of me over which
E; admits a trivialization U; x E;. We then find a still smaller open
neighborhood U of me and an open ball B around 0 in the typical fiber E
of E such that E admits a trivialization U x E over U, and such that the
representation f of f on U x B (contained in U x E) maps U x B into
U, x E;. This is possible by continuity. On U x B we can represent / by
two morphisms,

fx, 0) = (o(x, v), ¥(x, v)

and ¢(x, 0) = x while ¥(x, 0) = 0. Observe that for all ¢ sufficiently small,
te is contained in U x B (in the local representation).
We can represent F, locally on U x B as the mapping

Fi(x, v) = (p(x, 1), (x, 1)).

The map ¢ is then a morphism in the three variables x, v, and ¢ even at
t = 0. The second component of F, can be written

W (x, ) =17 [I Dayy(x, stv) - (t) ds
0

and thus ¢~! cancels ¢ to yield simply

1
J Dayy(x, stw) - v ds.
0

This is a morphism in ¢, even at ¢ = 0. Furthermore, for t = 0, we obtain

Fo(x, v) = (x, Dyy(x, O)v).

Since f was originally assumed to be an embedding, it follows that
Dyj(x,0) is a toplinear isomorphism, and therefore Fy is a VB-
isomorphism. To get our isotopy in standard form, we can use a function
g: R — R such that ¢(z) =0 for <0 and a(f) =1 for t 21, and o is
monotone increasing. This proves our proposition.
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Theorem 6.2. Let X be a submanifold of Y. Let
n. E—- X and 7!1:E1—>X

be two vector bundles, and assume that E is compressible. Let
f: E—Y and g: E\ —> Y be two tubular neighborhoods of X in Y.
Then there exists a CP~'-isotopy

fir E—=Y

of tubular neighborhoods with proper domain [0, 1] and a VB-isomorphism
A E — Ey such that f| = f and f, = gA.

Proof. We observe that f(E) and g(E;) are open neighborhoods of X
in Y. Let U :f"(f(E) ng(Ey)) and let p: E— U be a compression.
Let  be the composite map

¥ = (f|U) op. Then y is a tubular neighborhood, and (E) is contained
in g(E;). Therefore g~'yy: E — E| is a tubular neighborhood of the same
type considered in the previous proposition. There exists an isotopy of
tubular neighborhoods of X:

G E— E

such that G; =g~ 'Y and Gy is a VB-isomorphism. Considering the
isotopy ¢gG,;, we find an isotopy of tubular neighborhoods

v, E—-Y

such that ¥, =y and Y, = g where w: E — E; is a VB-isomorphism.
We have thus shown that y and gw are isotopic (by an isotopy of tubular
neighborhoods). Similarly, we see that  and fu are isotopic for some
VB-isomorphism

u E—FE.

Consequently, adjusting the proper domains of our isotopies suitably, we
get an isotopy of tubular neighborhoods going from gw to fu, say F,.
Then F,u~! will give us the desired isotopy from gwu~™! to f, and we can
put A = wu~! to conclude the proof.

(By the way, the uniqueness proof did not use the existence theorem for
differential equations.)



CHAPTER V

Operations on Vector Fields
and Differential Forms

If E— X is a vector bundle, then it is of considerable interest to
investigate the special operation derived from the functor ‘“multilinear
alternating forms.” Applying it to the tangent bundle, we call the sections
of our new bundle differential forms. One can define formally certain
relations between functions, vector fields, and differential forms which lie
at the foundations of differential and Riemannian geometry. We shall give
the basic system surrounding such forms. In order to have at least one
application, we discuss the fundamental 2-form, and in the next chapter
connect it with Riemannian metrics in order to construct canonically the
spray associated with such a metric.

We assume throughout that our manifolds are Hausdorff, and suffi-
ciently differentiable so that all of our statements make sense.

V, §1. VECTOR FIELDS, DIFFERENTIAL OPERATORS,
BRACKETS

Let X be a manifold of class C? and ¢ a function defined on an open set

U, that is a morphism
p:. U—R.

Let & be a vector field of class CP~!1. Recall that
T.p: To(U) > T,(R) =R

is a continuous linear map. With it, we shall define a new function to be
denoted by &¢ or &-¢, or &(p). (There will be no confusion with this
notation and composition of mappings.)

116
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Proposition 1.1. There exists a unique function g on U of class CP~1

such that
(Cp)(x) = (Txp)<(x).

If U is open in the Banach space E and & denotes the local representation
of the vector field on U, then

(&p)(x) = ¢'(x)¢(x).

Proof. The first formula certainly defines a mapping of U into R. The
local formula defines a C?~!-morphism on U. It follows at once from
the definitions that the first formula expresses invariantly in terms of the
tangent bundle the same mapping as the second. Thus it allows us to
define &p as a morphism globally, as desired.

Let Fu? denote the ring of functions (of class C?). Then our operation
@ — Ep gives rise to a linear map

d:: FuP(U) — Fu? Y (U), defined by 0:p = &p.

A mapping 5 RS

from a ring R into an R-algebra S is called a derivation if it satisfies the
usual formalism: Linearity, and d(ab) = ad(b) + d(a)b.

Proposition 1.2. Let X be a manifold and U open in X. Let & be a
vector field over X. If 0: = 0, then &(x) =0 for all xe U. Each 0; is a
derivation of Fu?(U) into FuP~(U).

Proof. Suppose &(x) #0 for some x. We work with the local rep-
resentations, and take ¢ to be a continuous linear map of E into R such
that ¢((x)) # 0, by Hahn-Banach. Then ¢'(y) = ¢ for all y e U, and we
see that ¢'(x)¢(x) # 0, thus proving the first assertion. The second is
obvious from the local formula.

From Proposition 1.2 we deduce that if two vector fields induce the
same differential operator on the functions, then they are equal.

Given two vector fields &, # on X, we shall now define a new vector
field [&, ], called their bracket product.

Proposition 1.3. Let &, 5 be two vector fields of class CP~' on X. Then
there exists a unique vector field [, ] of class CP™% such that for each
open set U and function ¢ on U we have

(&, nlo = E(n(p) —n(&(0).
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If U is open in E and & n are the local representations of the vector
fields, then [£, n] is given by the local formula

&, nlo(x) = ¢'(x) (' (x)&(x) = &' (x)n(x)).

Thus the local representation of [&, | is given by

[, 7l(x) = n'(x)¢(x) = &' (x)n(x).

Proof. By Proposition 1.2, any vector field having the desired effect on
functions is uniquely determined. We check that the local formula gives us
this effect locally. Differentiating formally, we have (using the law for the
derivative of a product):

(n9)'E = (Ep)'n = (¢'n) ¢ — (9"
— (ﬂ’ﬂ/f + (ﬂ”rlé _ wlél’7 _ (ﬂ”f’?-

The terms involving ¢” must be understood correctly. For instance, the
first such term at a point x is simply ¢”(x)(n(x),&(x)) remembering that
9" (x) is a bilinear map, and can thus be evaluated at the two vectors #(x)
and &(x). However, we know that ¢”(x) is symmetric. Hence the two
terms involving the second derivative of ¢ cancel, and give us our formula.

Corollary 1.4. The bracket &, | is bilinear in both arguments, we have
(&, 1l = —[n, &], and Jacobi's identity

&, I, 0] = (1€ a), { + [, 16, )

In other words, for each & the map n v (&, 5] is a derivation with respect
to the Lie product (n,{) — [y, ¢].
If ¢ is a function, then

&, on) = Con+olE nl,  and (9 0] = ¢[E, 1] — (np)<.

Proof. The first two assertions are obvious. The third comes from the
definition of the bracket. We apply the vector field on the left of the
equality to a function ¢. All the terms cancel out (the reader will write
it out as well or better than the author). The last two formulas are
immediate.

We make some comments concerning the functoriality of vector fields.
Let
f: X—>Y

be an isomorphism. Let ¢ be a vector field over X. Then we obtain an
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induced vector field f,¢ over Y, defined by the formula

(£.O(f(x) = Tf(¢(x)).
It is the vector field making the following diagram commutative:

x 2, Ty

G

X — Y
S

We shall also write f* for ('), when applied to a vector field. Thus we
have the formulas

fl=Tfokof! and frfE=Tf oo f.

If f'is not an isomorphism, then one cannot in general define the direct
or inverse image of a vector field as done above. However, let £ be a
vector field over X, and let # be a vector field over Y. If for each xe X
we have

Tf(E(x)) = n(f(x)),

then we shall say that f maps & into #, or that £ and # are f-related. If this
is the case, then we may denote by f,& the map from f(X) into 7Y
defined by the above formula.

Let &, & be vector fields over X, and let n,, n, be vector fields over Y. If
& is f-related to n; for i =1, 2 then as maps on f(X) we have

L&, &l = [m, ml-

We may write suggestively the formula in the form

Lilén &) = (£ f.8)

Of course, this is meaningless in general, since f,£, may not be a vector
field on Y. When fis an isomorphism, then it is a correct formulation of
the other formula. In any case, it suggests the correct formula.

To prove the formula, we work with the local representations, when
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X=Uisopenin E, and Y = V is open in F. Then &;, »; are maps of U,
V into the spaces E, F respectively. For x e X we have

(fl&r, &LD)(x) = £/ () (&)1 (x) = &1(x)E2(x)).

On the other hand, by assumption, we have

ﬂi(f(x)) = f/(x)fi(x),

so that

(1, ma) (£ (%)) = m(f(x) =m(f()m(f(x))

' (06(x) = n1 (f(0)) £ (x)&x(x)

= (n0 /) (¥)&1(x) = (11 0 f) (x)&a(x)

= f"(%) - &(x%) - &1(x) + f1(0)E(x)&E (%)
—f1(x) - &1(x) - &%) = £ ()& (x)Ea(x).

Since f"(x) is symmetric, two terms cancel, and the remaining two terms
give the same value as (f,[¢q, &])(x), as was to be shown.

The bracket between vector fields gives an infinitesimal criterion for
commutativity in various contexts. We give here one theorem of a general
nature as an example of this phenomenon.

Theorem 1.5. Let &, n be vector fields on X, and assume that [£, n] = 0.
Let « and B be the flows for & and n respectively. Then for real values t,
s we have

a0f,=pfoa.

Or in other words, for any x € X we have

a(t, B(s, x)) = B(s, a(1, x)),

in the sense that if for some value of t a value of s is in the domain of one
of these expressions, then it is in the domain of the other and the two
expressions are equal.

Proof. For a fixed value of ¢, the two curves in s given by the right-
and left-hand side of the last formula have the same initial condition,
namely a,(x). The curve on the right

$ ,B(S, a(t, x))
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is by definition the integral curve of . The curve on the left

s — a(t, B(s, x))

is the image under «; of the integral curve for # having initial condition x.
Since x is fixed, let us denote f(s, x) simply by f(s). What we must show
is that the two curves on the right and on the left satisfy the same
differential equation.

B(s, at, x))

B(s)

a(t, x)

x

In the above figure, we see that the flow «, shoves the curve on the left to
the curve on the right. We must compute the tangent vectors to the curve
on the right. We have

< () = Daalt, B)Bs)
= Daa(t, B(s))n(B(s)).

Now fix s, and denote this last expression by F(z). We must show that if

G(r) = n(a(t, B(s))),

then

We have trivially F(0) = G(0), in other words the curves F and G have the
same initial condition. On the other hand,

F/(1) = &' (a(t, B(5))) Daa(t, B(s))n(B(s)
and
G'(1) = n'(a(t, B(5)))&(a(t, B(5)))
= &(alt, Bs))n(at, B(s))  (because [¢, 7] = 0).

Hence we see that our two curves F and G satisfy the same differential
equation, whence they are equal. This proves our theorem.
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Vector fields £, # such that [£, #] =0 are said to commute. One can
generalize the process of straightening out vector fields to a finite number
of commuting vector fields, using the same method of proof, using
Theorem 1.5. As another application, one can prove that if the Lie
algebra of a connected Lie group is commutative, then the group is
commutative. Cf. the section on Lie groups.

V, §2. LIE DERIVATIVE

Let A4 be a differentiable functor on Banach spaces. For convenience, take
A to be covariant and in one variable. What we shall say in the rest of this
section would hold in the same way (with slightly more involved notation)
if A had several variables and were covariant in some and contravariant in
others.

Given a manifold X, we can take A(7(X)). It is a vector bundle over
X, which we denote by T;(X) as in Chapter III. Its sections I';(X) are the
tensor fields of type A.

Let & be a vector field on X, and U open in X. It is then possible to
associate with £ a map

P T,(U) - T,(U)

(with a loss of two derivatives). This is done as follows.

Given a point x of U and a local flow « for ¢ at x, we have for each ¢
sufficiently small a local isomorphism ¢, in a neighborhood of our point
x. Recall that locally, o, ! = a_,. If 5 is a tensor field of type 4, then the
composite mapping # o o, has its range in 7,;(X). Finally, we can take the
tangent map T(a_,) = (a_,), to return to T;(X) in the fiber above x. We
thus obtain a composite map

F(1, x) = (ar), o o a:(x) = (2,1)(x),

which is a morphism, locally at x. We take its derivative with respect to ¢
and evaluate it at 0. After looking at the situation locally in a triviali-
zation of T(X) and T,(X) at x, one sees that the map one obtains gives a
section of T(U), that is a tensor field of type A over U. This is our map
Z:. To summarize,

d
Son=g| (donom

This map # is called the Lie derivative. We shall determine the Lie
derivative on functions and on vector fields in terms of notions already
discussed.



[V, §2] LIE DERIVATIVE 123

First let ¢ be a function. Then by the general definition, the Lie
derivative of this function with respect to the vector field ¢ with flow o is
defined to be

Lep(x) = Tim < [p(a(t, %)) ~ p(x)],

or in other words,

d .
$§¢—E(at¢) o

Our assertion is then that

fé{ﬁ = f(p.

To prove this, let

y

(1) = (p(oz(t, x))
Then

F'(1) (a(t, x)) Dya(t, x)

(e, ))& ((r, X)),

wl
(p/

because « is a flow for £. Using the initial condition at ¢t = 0, we find that
F'(0) = ¢'(x)¢(x),
which is precisely the value of &p at x, thus proving our assertion.

If &, n are vector fields, then

Len =&, n).

As before, let o be a flow for £. The Lie derivative is given by

d. .
35}7—3;(0([7]) o

Letting £ and # denote the local representations of the vector fields, we
note that the local representation of («;#)(x) is given by

(a/1)(x) = F(t) = Daa(—1t, x)n(a(t, X)).
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We must therefore compute F’(¢), and then F’(0). Using the chain rule,
the formula for the derivative of a product, and the differential equation
satisfled by Do, we obtain

F'(t) = —=D1Dya(—t, x)n(a(t, x)) + Daa(—t, x)n’ («(2, x)) Dya(t, x)
= =& (a(—1, x)) Daa(—1, x)n(a(t, x)) + Dra(—1,x)n’" (a(z, x)).

Putting ¢ = 0 proves our formula, taking into account the initial conditions

a(0, x) = x and Dya(0, x) = id.

V, §3. EXTERIOR DERIVATIVE

Let X be a manifold. The functor L] (r-multilinear continuous alternating
forms) extends to arbitrary vector bundles, and in particular, to the
tangent bundle of X. A differential form of degree r, or simply an r-form
on X, is a section of LZ(T(X)), that is a tensor field of type L. If X is
of class C?, forms will be assumed to be of a suitable class C* with
1 £ 5 < p—1. The set of differential forms of degree r will be denoted by
o"(X) (o for alternating). It is not only a vector space over R but a
module over the ring of functions on X (of the appropriate order of
differentiability). If w is an r-form, then w(x) is an element of L (Tx(X)),
and is thus an r-multilinear alternating form of 7.(X) into R. We
sometimes denote w(x) by wy.

Suppose U is open in the Banach space E. Then L;(T(U )) is equal to
U x L!(E) and a differential form is entirely described by the projection
on the second factor, which we call its local representation, following our
general system (Chapter III, §4). Such a local representation is therefore a
morphism

w: U— L(E).
Let w be in L/(E) and vy,...,v, elements of E. We denote the value
w(v1,...,v,) also by
(@, v] X - X v;).
Similarly, let &,,...,¢&, be vector fields on an open set U, and let w be an
r-form on X. We denote by

(@, & x - x &)

the mapping from U into R whose value at a point x in U is

<CO(X), él(x) X=X fr(x»
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Looking at the situation locally on an open set U such that T(U) is trivial,
we see at once that this mapping is a morphism (i.e. a function on U) of
the same degree of differentiability as w and the ¢&;.

Proposition 3.1. Let xy be a point of X and w an r-form on X. If

(@, & x -+ X &) (%)

is equal to 0O for all vector fields &,,...,& at xy (i.e. defined on some
neighborhood of xy), then w(xy) = 0.

Proof. Considering things locally in terms of their local representations,
we see that if w(xp) is not 0, then it does not vanish at some r-tuple of
vectors (vy,...,v,). We can take vector fields at x, which take on these
values at xo and from this our assertion is obvious.

It is convenient to agree that a differential form of degree 0 is a
function. In the next proposition, we describe the exterior derivative of an
r-form, and it is convenient to describe this situation separately in the case
of functions.

Therefore let f: X — R be a function. For each x e X, the tangent
map

Txf'. TX(X) — Tf(x)(R) =R

is a continuous linear map, and looking at local representations shows
at once that the collection of such maps defines a 1-form which will be
denoted by df. Furthermore, from the definition of the operation of vector
fields on functions, it is clear that df is the unique 1-form such that for
every vector field ¢ we have

(df, &)=<
To extend the definition of d to forms of higher degree, we recall that if
w: U— L(E)
is the local representation of an r-form over an open set U of E, then for
each x in U,

w'(x): E— L/(E)

is a continuous linear map. Applied to a vector v in E, it therefore gives
rise to an r-form on E.

Proposition 3.2. Let w be an r-form of class CP~! on X. Then there
exists a unique (r + 1)-form dw on X of class CP~? such that, for any
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open set U of X and vector fields &,..., &, on U we have

(dow, & x -+ x &)
—Z( D)€, &y x - x & x - x &)

+Y (D)o, (& Gl x o x - x & x G x e x &),

i<j

If furthermore U is open in E and w, &,...,&, are the local repre-
sentations of the form and the vector fields respectively, then at a point x
the value of the expression above is equal to

Z( 1) (@' (x)E(x), Eo(x) X -+ X E(X) X -+ x & (x)).

Proof. As before, we observe that the local formula defines a differ-
ential form. If we can prove that it gives the same thing as the first
formulas, which is expressed invariantly, then we can globalize it, and we
are done. Let us denote by S| and S, the two sums occurring in the
invariant expression, and let L be the local expression. We must show that
S1+ 82 = L. We consider S], and apply the definition of &; operating on
a function locally, as in Proposition 1.1, at a point x. We obtain

S1= Y01, Gox o x éx o x V()
=0

The derivative is perhaps best computed by going back to the definition.
Applying this definition directly, and discarding second order terms, we
find that S; is equal to

S (=1 @' (& (), &ox) x - x E(x) x -+ x &)
+7 Y (D (), Eol)x X RIEx) - x E(x) x- - x & (x)
37 S (0(x), Eolx) x -+ x E(X) X - x ER)E(x) X o x E (X))

ij<i

Of these there sums, the first one is the local formula L. As for the
other two, permuting j and i in the first, and moving the term éjf(x)f,-(x) to
the first position, we see that they combine to give (symbolically)

NN D)o, (EE -G x &g x o x G x e x )X &)

i<y
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(evaluated at x). Using Proposition 1.3, we see that this combination is
equal to —S,. This proves that S; + .S, = L, as desired.

We call dw the exterior derivative of w. Leaving out the order of
differentiability for simplicity, we see that d is an R-linear map

d: A"(X) — N (X).

We now look into the multiplicative properties of d with respect to the
wedge product.

Let w, ¥ be continuous multilinear alternating forms of degree r and s
respectively on the Banach space E. In multilinear algebra, one defines
their wedge product as an (r + s)-continuous multilinear alternating form,
by the formula

1
(CO A l!’)(vh B Ur+S) = WZ 6(0’)(0(00], R var)l//(va(r+l)7 B Ua’(r+s))

the sum being taken over all permutations o of (1,...,r+s). This
definition extends at once to differential forms on a manifold, if we view it
as giving the value for w A Y at a point x. The v; are then elements of the
tangent space T, and considering the local representations shows at once
that the wedge product so defined gives a morphism of the manifold X
into L;*(T(X)), and is therefore a differential form.

Remark. The coefficient 1/r!s! is not universally taken to define the
wedge product. Some people, e.g. [He 78] and [KoN 63], take 1/(r +s)!,
which causes constants to appear later. I have taken the same factor as
[AbM 78] and [GHL 87/93]. I recommend that the reader check out the
case with r=s=1 so r+s=2 to see how a factor % comes in. With
either convention, the wedge product between forms is associative, so
with some care, one can carry out a consistent theory with either conven-
tion. I leave the proof of associativity to the reader. It follows by induc-
tion that if wi,...,w, are forms of degrees ri,...,r, respectively, and

F=r|+ -+ ry, then

rile !

1
(w1 A - A om)(vry-. . 0p) :—————Ze(a)Q,,,
o
where
Qo’ = w1 (Uala <oy Uory )w2(va'(r1+l)» ceey va(r1+r2)) v wm(va(rfr,,,+l)a ey var)y

and where the sum is taken over all permutations of (1,...,r).
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If we regard functions on X as differential forms of degree 0, then the
ordinary product of a function by a differential form can be viewed as the
wedge product. Thus if f is a function and w a differential form, then

fo=f Ao

(The form on the left has the value f(x)w(x) at x.)
The next proposition gives us more formulas concerning differential
forms.

Proposition 3.3. Let w, ¥ be differential forms on X. Then

EXD 1. d(w A ¥) =do Ay + (—1)%EDp A dy.
EXD 2. ddw = 0 (with enough differentiability, say p = 4).

Proof. This is a simple formal exercise in the use of the local formula
for the local representation of the exterior derivative. We leave it to the
reader.

When the manifold is finite dimensional, then one can give a local
representation for differential forms and the exterior derivative in terms of
local coordinates, which are especially useful in integration which fits the
notation better. We shall therefore carry out this local formulation in full.
It dates back to Cartan [Ca 28]. There is in addition a theoretical point
which needs clarifying. We shall use at first the wedge /\ in two senses.
One sense is defined as above, giving rise to Proposition 3.3. Another
sense will come from Theorem A. We shall comment on their relation
after Theorem B.

We recall first two simple results from linear (or rather multilinear)
algebra. We use the notation E”) =E xE x --- x E, r times.

Theorem A. Let E be a finite dimensional vector space over the reals of
dimension n. For each positive integer r with 1 < r < n there exists a
vector space /\rE and a multilinear alternating map

E” - A'E
denoted by (uy,...,u,) — u1 A --- A Uy, having the following property:
If {v1,...,vn} is a basis of E, then the elements
{viy A - Al i <y < oo <y
form a basis of /\'E.
We recall that alternating means that uy A --- A u, =0 if 4; =u; for

some i # j. We call /\ E the r-th alternating product (or exterior product)
on E. If r =0, we define /\ E = R. Elements of /\ E which can be
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written in the form u; A --- A u, are called decomposable. Such elements
generate \"E. If r > dim E, we define /\"E = {0}.

Theorem B. For each pair of positive integers (r, s), there exists a unique
product (bilinear map)

NEx N'E— AE
such that if uy,...,u,, wi,...,ws;€E then
(A AU) X (WA - AW UTA o Aty AWLA --0 A Wy
This product is associative.

The proofs for these two statements can be found, for instance, in my
Linear Algebra.

Let EY be the dual space, EY¥ = L(E, R). If E=R" and 4,,...,4, are
the coordinate functions, then each 4; is an element of the dual space, and
in fact {A1,...,4,} is a basis of this dual space. Let E = R". There is an
isomorphism

NEY S LIE,R)

given in the following manner. If g;,...,9, € EY and vy,...,v, € E, then
the value

det(g:(vy))

is multilinear alternating both as a function of (g1,...,9,) and (vy,...,v,).
Thus it induces a pairing

NEY xE —R
and a map
N EY — LI(E, R).

This map is the isomorphism mentioned above. Using bases, it is easy to
verify that it is an isomorphism (at the level of elementary algebra).
Thus in the finite dimensional case, we may identify L.(E, R) with the
alternating product /\'EV, and consequently we may view the local
representation of a differential form of degree r to be a map

w: U— /\rEv

from U into the rth alternating product of EY. We say that the form is of
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class C? if the map is of class C?. (We view /\"E" as a normed vector
space, using any norm. It does not matter which, since all norms on a
finite dimensional vector space are equivalent.) The wedge product as we
gave it, valid in the infinite dimensional case, is compatible with the wedge
product and the isomorphism of /\rE with L/(E, R) given above. If we
had taken a different convention for the wedge product of alternating
forms, then a constant would have appeared in front of the above
determinant to establish the above identification (e.g. the constant % in the
2 x 2 case).

Since {4,...,4,} is a basis of EY, we can express each differential
form in terms of its coordinate functions with respect to the basis

{dg A - A4} (i< < ip),

namely for each x € U we have

O(x) = D fioi (D A - A i
0

where fi) = f;.,; is a function on U. Each such function has the same
order of differentiability as w. We call the preceding expression the
standard form of w. We say that a form is decomposable if it can be
written as just one term f(x)A4; A -+ A 4;,. Every differential form is a
sum of decomposable ones.

We agree to the convention that functions are differential forms of
degree 0.

As before, the differential forms on U of given degree r form a vector
space, denoted by «"(U).

Let E=R". Let f be a function on U. For each x € U the derivative

f'(x): R" =R
is a linear map, and thus an element of the dual space. Thus
f': U—>EY
represents a differential form of degree 1, which is usually denoted by df.
If fis of class CP?, then df is class CP7!.
Let A; be the i-th coordinate function. Then we know that
d/li(x) = i:(X) = }.,‘

for each xe U because A'(x) =14 for any continuous linear map A.
Whenever {xi,...,x,} are used systematically for the coordinates of a
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point in R” it is customary in the literature to use the notation
dAi(x) = dx;.

This is slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

w:Zf(,-) dxi A -+ Adx,
(#)
instead of the correct

o(x) =D fiy(Xdi A - A di
)

In terms of coordinates, the map df (or f’) is given by

df (x) = f'(x) = D1f(x)A1 + -+ + D f(X) n,

where D;f(x) = df/0x; is the i-th partial derivative. This is simply a

restatement of the fact that if A= (hy,... h,) is a vector, then
of of
! = e— e
f(x)h_alh1+ +anh,,.

Thus in old notation, we have

0 0
df(x):a—xl dxl"‘“""% dxp.

We shall develop the theory of the alternating product and the exterior
derivative directly without assuming Propositions 3.2 or 3.3 in the finite
dimensional case.

Let w and  be forms of degrees r and s respectively, on the open set
U. For each x € U we can then take the alternating product w(x) A (x)
and we define the alternating product w A Y by

(@ A 9)(x) = 0(x) A Y(x).

(It is an exercise to verify that this product corresponds to the product
defined previously before Proposition 3.3 under the isomorphism between
L!(E, R) and the r-th alternating product in the finite dimensional case.)
If fis a differential form of degree 0, that is a function, then we have
again

fro=fo,
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where (fw)(x) = f(x)w(x). By definition, we then have

oA fY=fony.

We shall now define the exterior derivative dw for any differential form
w. We have already done it for functions. We shall do it in general first
in terms of coordinates, and then show that there is a characterization
independent of these coordinates. If

w = _f(,) diil A A d/li,a
(0
we define
do =Y "dfy ndiyn - Adly.
@

Example. Suppose n =2 and w is a l-form, given in terms of the two
coordinates (x, y) by

o(x, y) = f(x, y) dx +g(x, y) dy.
Then

do(x, y) =df (x, y) A dx+dg(x, y) A dy

(o of g g
_<axdx+aydy)/\dx+<5dx+aydy A dy

_ dg

—5 dy/\dx—l—ax dx A dy
_ (9 9

_<6y 6x>dy/\dx

because the terms involving dx A dx and dy A dy are equal to 0.
Proposition 3.4. The map d is linear, and satisfies
dwAy)=do A+ (=1) o A dy

if r=deg w. The map d is uniquely determined by these properties, and
by the fact that for a function f, we have df = f'.

Proof. The linearity of d is obvious. Hence it suffices to prove the
formula for decomposable forms. We note that for any function f we have

d(fw)=df n o+ f do.

Indeed, if w is a function g, then from the derivative of a product we get
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d(fg)=fdg+gdf. If
w=gdiin - ANdii,

where g is a function, then

d(fo)=d(fgdiyn - AdA;)=d(fg) AdIly~ - AdA;
=(fdg+gdf) ndiy A -+ ANdA,
=fdo+df Ao,

as desired. Now suppose that

w=fdlyn - AdA; and Y=gdi A - Adi
:fd)’ :glj}7

with i} < --- <, and jj < --- < j; as usual. If some i, = j,, then from the
definitions we see that the expressions on both sides of the equality in the
theorem are equal to 0. Hence we may assume that the sets of indices
ii,...,i and ji,...,j; have no element in common. Then d(® A ¥) = 0 by
definition, and

dlw AY)=d(fgd AY) =d(fg) A d A Y
=(gdf +fdg) n>AY
=doAy+fdgndny
=do A Y+ (=1)fd Adg AV
=do Ay +(-1)o A dy,

thus proving the desired formula, in the present case. (We used the fact
that dg A @ = (—1)"@ A dg whose proof is left to the reader.) The
formula in the general case follows because any differential form can be
expressed as a sum of forms of the type just considered, and one can then
use the bilinearity of the product. Finally, d is uniquely determined by the
formula, and its effect on functions, because any differential form is a sum
of forms of type f di; A --- A dA; and the formula gives an expression of
d in terms of its effect on forms of lower degree. By induction, if the value
of d on functions is known, its value can then be determined on forms of
degree =1. This proves our assertion.

Proposition 3.5. Let w be a form of class C?>. Then ddw = 0.



134 OPERATIONS ON VECTOR FIELDS [v, §3]

Proof. If fis a function, then

and

ddf (x) =

dx;, A dx;
. 7
= o Ox10x;

Using the fact that the partials commute, and the fact that for any two
positive integers r, s we have dx, A dx; = —dx; A dx,, we see that the
preceding double sum is equal to 0. A similar argument shows that the
theorem is true for 1-forms, of type g(x) dx; where g is a function, and
thus for all 1-forms by linearity. We proceed by induction. It suffices to
prove the formula in general for decomposable forms. Let w be decom-
posable of degree r, and write

w=nArY,

where deg v = 1. Using the formula for the derivative of an alternating
product twice, and the fact that ddyy = 0 and ddny = 0 by induction, we see
at once that ddw = 0, as was to be shown.

We conclude this section by giving some properties of the pull-back
of forms. As we saw at the end of Chapter III, 4, if f/: X - Y is a
morphism and if w is a differential form on Y, then we get a differential
form f*{w) on X, which is given at a point x € X by the formula

(o), = opx o (Txf)',

if @ is of degree r. This holds for r 2 1. The corresponding local
representation formula reads

(fro(x), &i(x) x -+ x &(0) = (@(f (%)), [ (&) x -+ x f1(x)&(x))

if &;,...,¢&, are vector fields.

In the case of a O-form, that is a function, its pull-back is simply the
composite function. In other words, if ¢ is a function on Y, viewed as a
form of degree 0, then

f(p)=9of.

It is clear that the pull-back is linear, and satisfies the following properties.



[V, §3] EXTERIOR DERIVATIVE 135

Property 1. If w, Y are two differential forms on Y, then

SHony)=fY(w) A f7 W)
Property 2. If w is a differential form on Y, then
df* (@) = f*(do).

Property 3. If f: X — Y and g: Y — Z are two morphisms, and w is
a differential form on Z, then

(g (@) = (g0 f) ().
Finally, in the case of forms of degree 0:
Property 4. If f: X — Y is a morphism, and g is a function on Y, then
d(go f) = f"(dg)

and at a point x € X, the value of this 1-form is given by

TrygoTxf = (dg), o Txf.
The verifications are all easy, and even trivial, except possibly for
Property 2. We shall give the proof of Property 2 in the finite dimensional

case and leave the general case to the reader.
For a form of degree 1, say

o(y) = g(y) dy1,

with y, = f(x), we find

(f*dw)(x) = (g'(f(x)) o f'(x)) A dfi(x).

Using the fact that ddf, = 0, together with Proposition 3.4 we get

(df"w)(x) = (d(g 1)) (x) A dfi(x),

which is equal to the preceding expression. Any 1-form can be expressed
as a linear combination of form g; dy;, so that our assertion is proved for
forms of degree 1.

The general formula can now be proved by induction. Using the
linearity of f*, we may assume that w is expressed as w = { A y where ,
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n have lower degree. We apply Proposition 3.3 and Property 1 to

frdo = fr(dy ~n)+ (=1)f7( A dn)

and we see at once that this is equal to df*w, because by induction,
frdy=df*y and f* dy=df*n. This proves Property 2.

Example 1. Let y,...,», be the coordinates on V, and let x4 be the
Jjth coordinate function, j=1,...,m, so that y; = ,uj(yl, .oy V) Let

[ U—-V
be the map with coordinate functions

y; = fi(x) = o f(x).
If
o(y) =g(y)dyy A -+ A dy,

is a differential form on V, then

ffo=(gof)dfn - Adf.

Indeed, we have for xe U :

(fro)(x) = g(f()) (w0 S () A o A (w0 f1(%))
and
fix) = (o N)'(x) = g0 f'(x) = dfi(x).
Example 2. Let f: [a, 5] —» R? be a map from an interval into the

plane, and let x, y be the coordinates of the plane. Let ¢ be the coordinate
in [a, b]. A differential form in the plane can be written in the form

w(x, y) =g(x, y) dx + h(x, y) dy,
where g, & are functions. Then by definition,

fro(r) = g(x(2), y(1) % di+ h(x(1), ¥(1)) % d,

if we write f(f) = (x(1), y(t)). Let G = (g, h) be the vector field whose
components are g and A. Then we can write

o) = G(f(1) - f'(1) dt,
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which is essentially the expression which is integrated when defining the
integral of a vector field along a curve.

Example 3. Let U, VV be both open sets in n-space, and let f: U — V
be a C? map. If

w(y)=g(y)dyi A -+ A dyn,

where y. = fi(x) is the j-th coordinate of y, then
= Ji

dy; = Dy fi(x) dxi +--- + D, fi(x) dx,

0x; 0xy,

and consequently, expanding out the alternating product according to the
usual multilinear and alternating rules, we find that

fro(x) = g(f(x)Ar(x) dxi A -+ A dXy,

where A, is the determinant of the Jacobian matrix of f.

V, §4. THE POINCARE LEMMA

If w is a differential form on a manifold and is such that dw = 0, then it is
customary to say that w is closed. If there exists a form i such that
w = dy, then one says that w is exact. We shall now prove that locally,
every closed form is exact.
Theorem 4.1 (Poincaré Lemma). Let U be an open ball in E and let o
be a differential form of degree = 1 on U such that dw = 0. Then there
exists a differential form \y on U such that djy = w.

Proof. We shall construct a linear map k from the r-forms to the
(r — 1)-forms (r = 1) such that

dk + kd = id.
From this relation, it will follow that whenever dw = 0, then
dkw = w,

thereby proving our proposition. We may assume that the center of the
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ball is the origin. If w is an r-form, then we define kw by the formula
1

((kw),, v1 X -+ X v_q) = J " Ho(tx), x X vp X -+ X v,_1) dt.
0

We can assume that we deal with local representations and that v; € E.
We have

((dkw) ., v1 X -+ X vy)

=) (=D (kw) (x)vr, b1 X -+ X B X - X vy)
i1
gl
= Z(—l)'“J " Neo(tx), v; X vp X - X B X - X v,) dt
0
gl
+ Z(—l)’HJ ' (1x)v;, X X vy X -+ X D X -+ X v,) dl.
0

On the other hand, we also have
(kdw)(x), v X - X v,)

1
:J fldw(x), x X vy X - X v,) dt
0

1
:J (o' (1x)x, v1 X -+ X v,) dt
0

ol
+ Z(—l)'J o' (1X)vs, X X vp X -+ X 8 X -+ X v,) dl.
0
We observe that the second terms in the expressions for kdw and dkw

occur with opposite signs and cancel when we take the sum. As to the
first terms, if we shift v; to the i-th place in the expression for dkw, then

we get an extra coefficient of (=1)"!. Thus

1

dkow + kdw = J rt" Nw(tx), vp X - x v,) dt
0

1
+J o' (tx)x, ) X -+ X v,) dbt.
0
This last integral is simply the integral of the derivative with respect to
t of
(t"o(tx), vy X -+ X v,
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Evaluating this expression between ¢t =0 and ¢ =1 yields

{w(x), v1 X -+ X v,)

which proves the theorem.

We observe that we could have taken our open set U to be star-shaped
instead of an open ball. For more information on the relationship between
closed and exact forms, see Chapter XIII, §l.

V, §5. CONTRACTIONS AND LIE DERIVATIVE

Let & be a vector field and let w be an r-form on a manifold X, r > 1.
Then we can define an (r — 1)-form Cs by the formula

(C{Q))(X)(Uz, B Ur) = a)(f(x), U200y Ur)a

for vy,...,v, € Ty. Using local representations shows at once that C:w has
the appropriate order of differentiability (the minimum of @ and &). We
call C:w the contraction of w by &, and also denote C: by

wol.

If fis a function, we define C:f = 0. Leaving out the order of differ-
entiability, we see that contraction gives an R-linear map

Ce: A7(X) — & HX).
This operation of contraction satisfies the following properties.

CON 1. C;0C: =0.

CON 2. The association (&, ) — Cew = w o is bilinear. It is in fact
bilinear with respect to functions, that is if ¢ is a function, then

Cpe =9C: and  Ce(pw) = 9Cew.
CON 3. If w, Y are differential forms and r = deg w, then
Ce(w A ) = (Cer) A+ (—1)'w A Ceyp.
These three properties follow at once from the definitions.
Example. Let X = R”, and let

o(x)=dxy A - Adx,.
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If £ is a vector field on R”, then we have the local representation
(w0 &)(x) = Z( D E@) dxy A o AdxiA o A dxg

We also have immediately from the definition of the exterior derivative,

dwol) = del/\-u/\dxn,
i=1 0x;
letting & = (&,...,¢&,) in terms of its components ¢&;.

We can define the Lie derivative of an r-form as we did before for
vector flelds. Namely, we shall evaluate the following limit:

(Fe0)(x) = lim < [(/0)(x) ~ ()],

or in other words,

d. .
Lrw = 7 (o) w) .

where « is the flow of the vector field £, and we call .#: the Lie derivative
again, applied to the differential form w. We may rewrite this definition in
terms of the value on vector fields &,...,¢, as follows:

d
(gfa))(élr' : vér) = E(O)Odt, aly X - X (xt*ér>

=0

Proposition 5.1. Let & be a vector field and w a differential form of
degree ¥ 2 1. The Lie derivative ¥ is a derivation, in the sense that

Ze((&,....8) = (Zew)(&, ... é)+§j €1y Loy E)

where of course L:&; = ¢, &)
If & &, w denote the local representations of the vector fields and
the form respectively, then the Lie derivative ¥:w has the local



[V, §5] CONTRACTIONS AND LIE DERIVATIVE 141

representation

(Zew)(x), &1(x) x -+ x &(x))
= <w/(x)é(x)a él(x) XX ér(x»

+ Zr(a)(x), EL(x) X oo x EN(X)E(x) x -+ X E(x)).
i=1

Proof. The proof is routine using the definitions. The first assertion
is obvious by the definition of the pull back of a form. For the local
expression we actually derive more, namely we derive a local expression

d . . .
for afw and Ea,* w which are characterized by their values at (&,...,¢&,).
So we let

(1 F(1) = ((af w)(x), &i1(x) x -+ x &(x))
= (w(alt, x)), Daa(t, x)&(x) X - -+ x Daa(t, x)&(x)).

Then the Lie derivative (£:w)(x) is precisely F'(0), but we obtain also

. d
the local representation for Ea’* w:

(2) F'(r)= <%cx,*w(x), Ei(x) x - x f,(x)> =
(3) (a)'(oc(t, x))Dloz(t, x), Dya(t, x)&1(x) X -+ x Daa(t, x)&,(x))

r

+Z(w(a(t, x))s D20(([, x)él(x) X X D1D2<X(l, x)éi(x) X X D2a(ta x)é,(x))
i=1

by the rule for the derivative of a product. Putting r = 0 and using the
differential equation satisfied by D.a(z, x), we get precisely the local
expression as stated in the proposition. Remember the initial condition
Dya(0, x) =id.

From Proposition 5.1, we conclude that the Lie derivative gives an
R-linear map

Le: AT(X) — LX),

We may use expressions (1) and (3) in the above proof to derive a formula
which holds even more generally for time-dependent vector fields.
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Proposition 5.2. Let &, be a time-dependent vector field, o its flow, and
let w be a differential form. Then

d * * d * *

CEo) =a (Lw) o G (w) = o (%)

for a time-independent vector field.

Proof. Proposition 5.1 gives us a local expression for (L w)(y), re-

placing x by y because we shall now put y = «(¢, x). On the other hand,
from (1) in the proof of Proposition 5.1, we obtain

o/ (Ze,0)(x) = ((Le,w)(y), Daa(t, x)E1(x) X -+ x Daa(t, x)&(x)).

Substituting the local expression for (Z;w)(y), we get expression (3) from
the proof of Proposition 5.1, thereby proving Proposition 5.2.

Proposition 5.3. As a map on differential forms, the Lie derivative
satisfies the following properties.

LIE 1. £:=doCs+ Ceod, so ¥r= Csod on functions.

LIE 2. (0 AY) = Lo Ay +o A L.

LIE 3. % commutes with d and C;.

LIE 4. 3[5’”] = gé o f,, — ff” o gg.

LIE 5. Cg = L:0Cy— Cyo 2.

LIE 6. %r:w0 = fLew+df A C:o for all forms w and functions f.
Proof. Let &;,...,¢& be vector fields, and @w an r-form. Using the

definition of the contraction and the local formula of Proposition 5.1, we
find that C: dw is given locally by

(Ce dw(x), & (x) x -+ x & (x))
= (o' (x)&(x), &i(x) x - x & (x))

r

+ (=10 (X&), E00) X E1(x) x -+ x E(X) X -+ (%))

i=1
On the other hand, dC:w is given by
<dCéCU(X), él (X) X X ér(x)>

r

= > (=D)H(Cew) (&), &) x -+ x Eilx) x -+ x & ().

i=1



[V, §6] VECTOR FIELDS AND |-FORMS UNDER SELF DUALITY 143

To compute (C:w)'(x) is easy, going back to the definition of the
derivative. At vectors vy,...,v,1, the form C:w(x) has the value

(w(x), &(x) X vy X -+ X V7).

Differentiating this last expression with respect to x and evaluating at a
vector i we get

(@' (x)h, E(x) x 01 X -+ X v,_1) + {w(x), E'(xX)h x v] X -+ X v,1).
Hence (dC:m(x), &;(x) x --- x &.(x)) is equal to

—

S ) (), ) X &) % - x () X - x &)

i=1

+ z:(—l)m(a)()c)7 E'(X)E(X) X E(x) X -+ x E(x) X -+ x E(x)).
i=1

Shifting &'(x)&;(x) to the i-th place in the second sum contributes a sign of

(——1)"_l which gives 1 when multiplied by (—I)M. Adding the two local
representations for dCew» and C: dw, we find precisely the expression of
Proposition 5.1, thus proving LIE 1.

As for LIE 2, it consists in using the derivation rule for d and C;
in Proposition 3.3, EXD 1, and CON 3. The corresponding rule for
Z: follows at once. (Terms will cancel just the right way.) The other
properties are then clear.

V, §6. VECTOR FIELDS AND 1-FORMS
UNDER SELF DUALITY

Let E be a Banach space and let
(v, w) = (v, w)

be a continuous bilinear function of E x E — R. We call such a function
a bilinear form. This form induced a linear map

ii ESEY
which to each v € E associates the functional A, such that
Ao(w) = (v, w).

We have a similar map on the other side. If both these mappings are
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toplinear isomorphisms of E and E¥ then we say that the bilinear form is
non-singular. If such a non-singular form exists, then we say that E is self-
dual. For instance, a Hilbert space is self-dual.

If E is finite dimensional, it suffices for a bilinear form to be non-
singular that its kernels on the right and on the left be 0. (The kernels are
the kernels of the associated maps A as above.) However, in the infinite
dimensional case, this condition on the kernels is not sufficient any more.

Let E be a self dual Banach space with respect to the non-singular form
(v, w) — (v, w), and let

Q: ExE—R

be a continuous bilinear map. There exists a unique operator 4 such that
Qv, w) = (Ao, w)
for all v, we E. (An operator is a continuous linear map by definition.)
Remarks. Suppose that the form (v, w) — (v, w) is symmetric, i.e.

(v, w) = (w, v)
for all v, w e E. Then Q is symmetric (resp. alternating) if and only if 4 is
symmetric (resp. skew-symmetric). Recall that 4 symmetric (with respect
to (,)) means that

(Av, w) = (v, Aw) forall v, wekE.

That A is skew-symmetric means that {4y, w) = —(4w, w) for all v, w e E.
For any operator A: E — E there is another operator ‘4 (the transpose of
A with respect to the non-singular form (, )) such that for all v, we E we

have
(Av, w) = (v, 'Aw).

Thus A4 is symmetric (resp. skew-symmetric) if and only if ‘A = 4 (resp.
"4 =—A).

The above remarks apply to any continuous bilinear form Q. For
invertibility, we have the criterion:

The form Q is non-singular if and only if the operator A representing the
form with respect to (,) is invertible.

The easy verification is left to the reader. Of course, in the finite di-
mensional case, invertibility or non-singularity can be checked by verifying
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that the matrix representing the linear map with respect to bases has non-
zero determinant. Similarly, the form is also represented by a matrix with
respect to a choice of bases, and its being non-singular is equivalent to the
matrix representing the form being invertible.

We recall that the set of invertible operators in Laut(E) is an open
subset. Alternatively, the set of non-singular bilinear forms on E is an
open subset of L*(E).

We may now globalize these notions to a vector bundle (and eventually
especially to the tangent bundle) as follows.

Let X be a manifold, and n: E — X a vector bundle over X with fibers
which are toplinearly isomorphic to E, or as we shall also say, modeled on
E. Let Q be a tensor field of type L? on E, that is to say, a section of the
bundle L*(E) (or L?(n)), or as we shall also say, a bilinear tensor field on
E. Then for each x € X, we have a continuous bilinear form Q, on E,.

If Q, is non-singular for each x € X then we say that Q is non-singular.
If = is trivial, and we have a trivalisation X x E, then the local repre-
sentation of Q can be described by a morphism of X into the Banach
space of operators. If Q is non-singular, then the image of this morphism
is contained in the open set of invertible operators. (If Q is a 2-form, this
image is contained in the submanifold of skew-symmetric operators.) For
example, in a chart U, we can represent Q over U by a morphism

A: U— L(EE) such that Qy(v, w) = (Ao, w)

for all v, we E. Here we wrote A, instead of A(x) to simplify the
typography.

A non-singular Q as above can be used to establish a linear
isomorphism

['(E) —»TL'(E),  also denoted by I'L(E)or TEY,

between the R-vector spaces of sections I'(E) of E and the 1-forms on E in
the following manner. Let & be a section of E. For each x € X we define
a continuous linear map

(Qod),: Ex—R
by the formula
(Q0 &), (W) = Qu(é(x), w).

Looking at local trivialisations of 7, we see at once that Qo ¢ is a 1-form
on E.

Conversely, let w be a given l-form on E. For each xe X, w, is
therefore a 1-form on E, and since Q is non-singular, there exists a unique
element &(x) of E, such that

Q. (&(x), w) = wx(w)
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for all w e E,. In this fashion, we obtain a mapping ¢ of X into E and we
contend that £ is a morphism (and therefore a section).

To prove our contention we can look at the local representations. We
use Q and o to denote these. They are represented over a suitable open
set U by two morphisms

A: U — Aut(E) and n: U—E
such that

Q(v, w) = (Ao, w) and wx(w) = (n(x), w).

From this we see that
&(x) = 47 'n(x),

from which it is clear that ¢ is a morphism. We may summarize our
discussion as follows.

Proposition 6.1. Let X be a manifold and n: E — X a vector bundle
over X modeled on E. Let Q be a non-singular bilinear tensor field on E.
Then Q induces an isomorphism of Fu(X)-modules

e —-TEY.
A section & corresponds to a 1-form w if and only if Qoé = w.

In many applications, one takes the differential form to be df for some
function f. The vector field corresponding to df is then called the gradient
of f with respect to Q.

Remark. There is no universally accepted notation to denote the
correspondence between a 1-form and a vector field under Q as above.
Some authors use sharps and flats, which have two disadvantages. First,
they do not provide a symbols for the mapping, and second they do not
contain the Q in the notation. I would propose the check sign \/Q to
denote either isomorphism

\q: TL(E) - TE denoted on elements by w—\qo=0"=¢,
and also

\/q: TE -TL(E)  denoted on elements by &+ \/oé=¢Y = w;.
If Q is fixed throughout a discussion and need not be referred to, then it

is useful to write ¥ or 1Y in some formulas. We have \/Q o \/Q = id.
Instead of the sharp and flat superscript, I prefer the single ¥ sign.
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Many important applications of the above duality occur when Q is a
non-singular symmetric bilinear tensor field on the tangent bundle TX.
Such a tensor field is then usually denoted by g. If &, # are vector fields,
we may then define their scalar product to be the function

(& my=49( n).

On the other hand, by the duality of Proposition 6.1, if ie. w, 4 are
1-forms, i.e. sections of the dual bundle TV X, then ¥ and 1" are vector
fields, and we define the scalar product of the 1-forms to be

(@, L)y = (0", 47),.

This duality is especially important for Riemannian metrics, as in Chapter
X.

The rest of this section will not be used in the book.

In Proposition 6.1, we dealt with a quite general non-singular bilinear
tensor field on E. We now specialize to the case when E = TX is the
tangent bundle of X, and Q is a 2-form, ie. Q is alternating. A pair
(X, Q) consisting of a manifold and a non-singular closed 2-form is called
a symplectic manifold. (Recall that closed means dQ = 0.)

We denote by &, # vector fields over X, and by f, 4 functions on X,
so that df, dh are 1-forms. We let &; be the vector field on X which
corresponds to df under the 2-form €, according to Proposition 6.1.
Vector fields on X which are of type ¢, are called Hamiltonian (with
respect to the 2-form). More generally, we denote by &, the vector field
corresponding to a l-form w. By definition we have the formula

Q1. Qolé,=w s0 in particular Qoly =df.

In Chapter VII, §6 we shall consider a particularly important example,
when the base manifold is the cotangent bundle; the function is the kinetic

energy L
K(v) =5 (v, v)g

with respect to the scalar product g of a Riemannian or pseudo Rie-
mannian metric, and the 2-form Q arises canonically from the pseudo
Riemannian metric.

In general, by LIE 1 of Proposition 5.3 formula 1, and the fact that
dQ =0, we find for any l-form « that:

Q2. Z: Q= do.

The next proposition reinterprets this formula in terms of the flow when
do = 0.
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Proposition 6.2. Let w be such that dow = 0. Let o be the flow of &,.
Then oQ = Q for all t (in the domain of the flow).

Proof. By Proposition 5.2,

d
Ea,*Q =0/ L Q=0 byQ2.

Hence o;Q is constant, equal to «jQ = Q, as was to be shown.

A special case of Proposition 6.2 in Hamiltonian mechanics is when
w = dh for some function h. Next by LIE 5, we obtain for any vector
fields &, #:

Ze(Qon) = (LeQ)on+ Qo [L, 7).

In particular, since ddf =0, we get
Q3. Ley(Qola) = Qo Sy, San)-
One defines the Poisson bracket between two functions f, 4 to be
{f h} =2y - h
Then the preceding formula may be rewritten in the form
Q4. [Sar, Ean) = Cagr,my-

It follows immediately from the definitions and the antisymmetry of the
ordinary bracket between vector fields that the Poisson bracket is also
antisymmetric, namely

{f’ h}:_{h’ f}

In particular, we find that

Syr - f=0.

In the case of the cotangent bundle with a symplectic 2-form as in the next
section, physicists think of f as an energy function, and interpret this
formula as a law of conservation of energy. The formula expresses the
property that f is constant on the integral curves of the vector field 4.
This property follows at once from the definition of the Lie derivative of a
function. Furthermore:

Proposition 6.3. If &y -h=0 then &y - [ =0.

This is immediate from the antisymmetry of the Poisson bracket. It
is interpreted as conservation of momentum in the physical theory of
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Hamiltonian mechanics, when one deals with the canonical 2-form on the
cotangent bundle, to be defined in the next section.

V, §7. THE CANONICAL 2-FORM

Consider the functor E — L(E) (continuous linear forms). If £ — X is a
vector bundle, then L(E) will be called the dual bundle, and will be
denoted by EY. For each x € X, the fiber of the dual bundle is simply
L(E,).

If E = T(X) is the tangent bundle, then its dual is denoted by T (X)
and is called the cotangent bundle. Its elements are called cotangent
vectors. The fiber of TV (X) over a point x of X is denoted by 7)Y (X).
For each x € X we have a pairing

T xTx—R
given by
(4, u) = A(u)

for Ae TY and ue Ty (it is the value of the linear form A at u).

We shall now describe how to construct a canonical 1-form on the
cotangent bundle 7V (X). For each 1€ TV (X) we must define a 1-form
on T;(T(X)).

Let n: TV(X) — X be the canonical projection. Then the induced
tangent map

Tn=m: T(TV(X)) - T(X)

can be applied to an element z of T,(T" (X)) and one sees at once that
mz lies in T(X) if A lies in T.Y (X). Thus we can take the pairing

(4, mz) = 0,(2)
to define a map (which is obviously continuous linear):

0,: T,1(Tv (X)) — R.

Proposition 7.1. This map defines a 1-form on TV (X). Let X = U be
open in E and

TY(U)y=UxEY, T(TY(U))=(UxE")x (ExEY).
If (x,A\)eUxEY and (u, w) e Ex EY, then the local representation

O(x,2) is given by
(Oix, 1), (u,@)) = Au).
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Proof. We observe that the projection n: U x EY — U is linear, and
hence that its derivative at each point is constant, equal to the projection
on the first factor. Our formula is then an immediate consequence of the
definition. The local formula shows that 4 is in fact a 1-form locally, and
therefore globally since it has an invariant description.

Our 1-form is called the canonical 1-form on the cotangent bundle. We
define the canonical 2-form Q on the cotangent bundle 7TV X to be

Q= -db.

The next proposition gives a local description of Q.

Proposition 7.2. Let U be open in E, and let Q be the local
representation of the canonical 2-form on TYU =UXxEY. Let
(x, )e UxEY. Let (u,w) and (uz, w;) be elements of ExXE".
Then

(Qx, )5 (1, ©1) X (U2, 02)) = (1, ®2) — (2, 1)

= 602(141) — a)l(uz).

Proof. We observe that 0 is linear, and thus that 6’ is constant. We
then apply the local formula for the exterior derivative, given in Pro-
position 3.2. Our assertion becomes obvious.

The canonical 2-form plays a fundamental role in Lagrangian and
Hamiltonian mechanics, cf. [AbM 78], Chapter 3, §3. I have taken the
sign of the canonical 2-form both so that its value is a 2 x 2 determinant,
and so that it fits with, for instance, [LoS 68] and [AbM 78]. We observe
that Q is closed, that is dQ = 0, because Q = —df. Thus (TVX, Q) is a
symplectic manifold, to which the properties listed at the end of the last
section apply.

In particular, let ¢ be a vector field on X. Then to & is associated a
function called the momentum function

fer TYX - R suchthat  fr(d) = A:(&(x))

for Ace TYX. Then df; is a l-form on TVX. Classical Hamiltonian
mechanics then applies Propositions 6.2 and 6.3 to this situation. We refer
the interested reader to [LoS 68] and [AbM 78] for further information on
this topic. For an important theorem of Marsden—Weinstein [MaW 74]
and applications to vector bundles, see [Ko 87].
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V, §8. DARBOUX’'S THEOREM

If E = R” then the usual scalar product establishes the self-duality of R".
This self-duality arises from other forms, and in this section we are
especially interested in the self-duality arising from alternating forms. If E
is finite dimensional and w is an element of L2(E), that is an alternating
2-form, which is non-singular, then one sees easily that the dimension of E
is even.

Example. An example of such a form on R? is the following. Let
U=(V1,.-.,Un, Ufy...,00),
W= (Wi, ..o, Wn, Wi, W),
be elements of R%", with components v;, vi, w;, wl. Letting
n
o(v, w) = Z(viw; —vlw;)

i=1

defines a non-singular 2-form w on R?". It is an exercise of linear algebra
to prove that any non-singular 2-form on R?”" is linearly isomorphic to this
particular one in the following sense. If

fiE—F

is a linear isomorphism between two finite dimensional spaces, then it
induces an isomorphism

£ LX(F) — LX(E).

We call forms w on E and  on F linearly isomorphic if there exists a
linear isomorphism f such that /™y = w. Thus up to a linear isomor-
phism, there is only one non-singular 2-form on R?>". (For a proof, cf. for
instance my book Algebra.)

We are interested in the same question on a manifold locally. Let U be
open in the Banach space E and let xo e U. A 2-form

w: U — L:(E)

is said to be non-singular if each form w(x) is non-singular. If ¢ is a vector
field on U, then wo¢ is a 1-form, whose value at (x, w) is given

(@0 ) (x)(w) = w(x)(<(x), w).

As a special case of Proposition 6.1, we have:
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Let @ be a non-singular 2-form on an open set U in E. The association
o wol

is a linear isomorphism between the space of vector fields on U and the
space of 1-forms on U.

Let 5
w: U— L;{U)

be a 2-form on an open set U in E. If there exists a local isomorphism f at
a point xg € U, say
f: Ul i Vla

and a 2-form ¥ on V7 such that f*¥ = w (or more accurately, w restricted
to U}), then we say that w is locally isomorphic to ¥ at xy. Observe that
in the case of an isomorphism we can take a direct image of forms, and
we shall also write

fo=y
instead of w = f*y. In other words, f, = (f!)*.

Example. On R?" we have the constant form of the previous example.
In terms of local coordinates (xi,...,Xn, y;,...,,), this form has the
local expression

w(x, y) = Z dx; A dy;.
i=1

This 2-form will be called the standard 2-form on R?".

The Darboux theorem states that any non-singular closed 2-form in R**
is locally isomorphic to the standard form, that is that in a suitable chart
at a point, it has the standard expression of the above example. A
technique to show that certain forms are isomorphic was used by Moser
[Mo 65], who pointed out that his arguments also prove the classical
Darboux theorem. Moser’s theorem will be given in Chapter XVIII, §2.

Alan Weinstein observed that Moser’s proof applies to the infinite
dimensional case, whose statement is as follows.

Theorem 8.1 (Darboux Theorem). Let E be a self-dual Banach space.
Let
w: U— Lg(E)

be a non-singular closed 2-form on an open set of E, and let xo € U. Then
w is locally isomorphic at xy to the constant form w(xy).
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Proof. Let wp = w(xp), and let
w; = wy + tH{w — wy), 0<sr<l.
We wish to find a time-dependent vector field &, locally at 0 such that if «
denotes its flow, then

o) w; = wo.

Then the local isomorphism «; satisfies the requirements of the theorem.
By the Poincaré lemma, there exists a 1-form @ locally at 0 such that

w—wy=do,

and without loss of generality, we may assume that 6(xo) =0. We
contend that the time-dependent vector field ¢&,, such that

wtoél = _07

has the desired property. Let « be its flow. If we shrink the domain of the
vector field near x, sufficiently, and use the fact that 8(xp) = 0, then we
can use the local existence theorem (Proposition 1.1 of Chapter IV) to see
that the flow can be integrated at least to =1 for all points x in this
small domain. We shall now verify that

d *
7 (ofwr) = 0.

This will prove that «w, is constant. Since we have ojwo = wy because
(0, x) =x and D,0(0, x) = id,
it will conclude the proof of the theorem.
We compute locally. We use the local formula of Proposition 5.2, and
formula LIE 1, which reduces to

gérwt = d(a)t ° él)a

because dw, = 0. We find
d * * d *
E(at w!) =% (Ewl) + (gfrwt)

d
=uo (Ewt +d(w; 0 ét))
= o, (w — wo — db)
=0.

This proves Darboux’s theorem.
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Remark 1. For the analogous uniqueness statement in the case of a
non-singular symmetric form, see the Morse—Palais lemma of Chapter VII,
§5. Compare also with Theorem 2.2 of Chapter XVIII.

Remark 2. The proof of the Poincaré lemma can also be cast in the
above style. For instance, let ¢,(x) = fx be a retraction of a star shaped
open set around 0. Let &, be the vector field whose flow is ¢,, and let @ be
a closed form. Then

d * * cp * 3y =
Eqﬁ, w=¢ L:0w=¢ dCew = dp;C:w.

Since gy =0 and ¢, is the identity, we see that
1 d 1

o= ¢fco—¢ga)=J E¢,*wdt=dj ¢, C:,w dt

0

0

is exact, thus concluding a proof of Poincaré’s theorem.



CHAPTER VI

The Theorem of Frobenius

Having acquired the language of vector fields, we return to differential
equations and give a generalization of the local existence theorem known
as the Frobenius theorem, whose proof will be reduced to the standard
case discussed in Chapter IV. We state the theorem in §1. Readers should
note that one needs only to know the definition of the bracket of two vector
fields in order to understand the proof. It is convenient to insert also a
formulation in terms of differential forms, for which the reader needs to
know the local definition of the exterior derivative. However, the con-
dition involving differential forms is proved to be equivalent to the vector
field condition at the very beginning, and does not reappear explicitly
afterwards.

We shall follow essentially the proof given by Dieudonné in his
Foundations of Modern Analysis, allowing for the fact that we use freely
the geometric language of vector bundles, which is easier to grasp.

It is convenient to recall in §2 the statements concerning the existence
theorems for differential equations depending on parameters. The proof of
the Frobenius theorem proper is given in §3. An important application to
Lie groups is given in §5, after formulating the theorem globally.

The present chapter will not be used in the rest of this book.

Vi, §1. STATEMENT OF THE THEOREM

Let X be a manifold of class C? (p =22). A subbundle E of its tan-
gent bundle will also be called a tangent subbundle over X. We con-
tend that the following two conditions concerning such a subbundle are
equivalent.

155
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FR 1. For each point z € X and vector fields &, n at z (i.e. defined on an
open neighborhood of z) which lie in E (i.e. such that the image of
each point of X under &, n lies in E), the bracket £, n] also lies in
E.

FR 2. For each point z € X and differential form o of degree 1 at z
which vanishes on E, the form dw vanishes on & X 5 whenever &, 5
are two vector fields at z which lie in E.

The equivalence is essentially a triviality. Indeed, assume FR 1. Let w
vanish to E. Then

(dw, & xn) = —(w, [& 1)) — n{w, &) + o, n).

By assumption the right-hand side is 0 when evaluated at z. Conversely,
assume FR 2. Let &, 7 be two vector fields at z lying in E. If [£, #](z) is
not in E, then we see immediately from a local product representation and
the Hahn-Banach theorem that there exists a differential form w of degree
1 defined on a neighborhood of z which is 0 on E. and non-zero on
[¢, #](z), thereby contradicting the above formula.

We shall now give a third condition equivalent to the above two, and
actually, we shall not refer to FR 2 any more. We remark merely that
in the finite dimensional case, it is easy to prove that when a differential
form w satisfies condition FR 2, then dw can be expressed locally in a
neighborhood of each point as a finite sum

dco:Zy,-/\w,-

where 7, and w; are of degree 1 and each w; vanishes on E. We leave this
as an exercise to the reader.

Let E be a tangent subbundle over X. We shall say that E is integrable
at a point x¢ if there exists a submanifold Y of X containing x, such that
the tangent map of the inclusion

j: Y —-X

induces a VB-isomorphism of T'Y with the subbundle E restricted to Y.
Equivalently, we could say that for each point y € Y, the tangent map

T,j: ,Y - T, X
induces a toplinear isomorphism of 7,Y on E,. Note that our condition

defining integrability is local at x;. We say that E is integrable if it is
integrable at every point.
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Using the functoriality of vector fields, and their relations under tangent
maps and the bracket product, we see at once that if E is integrable, then
it satisfies FR 1. Indeed, locally vector fields having their values in E are
related to vector fields over Y under the inclusion mapping.

Frobenius’ theorem asserts the converse.

Theorem 1.1. Let X be a manifold of class C? (p = 2) and let E be a
tangent subbundle over X. Then E is integrable if and only if E satisfies
condition FR 1.

The proof of Frobenius’ theorem will be carried out by analyzing the
situation locally and reducing it to the standard theorem for ordinary
differential equations. Thus we now analyze the condition FR 1 in terms
of its local representation.

Suppose that we work locally, over a product U x V' of open subsets
of Banach spaces E and F. Then the tangent bundle 7(U x V) can be
written in a natural way as a direct sum. Indeed, for each point (x, y) in
U x V we have

Ty (U x V) = T (U) x Ty(V).

One sees at once that the collection of fibers Ty (U) x 0 (contained in
T.(U) x T,(V)) forms a subbundle which will be denoted by T;(U x V)
and will be called the first factor of the tangent bundle. One could define
T»(U x V) similarly, and

TU X V)=Ti(Ux V)@ T2(U x V).

A subbundle E of T(X) is integrable at a point z € X if and only if
there exists an open neighborhood W of z and an isomorphism

po: UxV—>W
of a product onto W such that the composition of maps

inc.

Ty (U x V) 2 T(U x v) 2% (W)

induces a VB-isomorphism of T1(U x V) onto E|W (over ¢). Denoting
by ¢, the map of U into W given by ¢ (x) = ¢(x, ), we can also express
the integrability condition by saying that Ty, should induce a toplinear
isomorphism of E onto E, ) for all (x, y) in U x V. We note that in
terms of our local product structure, T.p, is nothing but the partial
derivative Dyg(x, y).

Given a subbundle of T(X), and a point in the base space X, we know
from the definition of a subbundle in terms of a local product decom-
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position that we can find a product decomposition of an open neigh-
borhood of this point, say U x V, such that the point has coordinates
(x0, ¥o) and such that the subbundle can be written in the form of an
exact sequence

05 UxVXE s UxVXExF

with the map
S (xo0, yo): E-ExF

equal to the canonical embedding of E on E x 0. For a point (x, y) in
U x V the map f(x, y) has two components f;(x, y) and f,(x, y) into E
and F respectively. Taking a suitable VB-automorphism of U x V x E if
necessary, we may assume without loss of generality that fi(x, y) is the
identity. We now write f(x, y) = f3(x, ¥). Then

f: UxV —L(E,F)

is a morphism (of class C”~!) which describes our subbundle completely.
We shall interpret condition FR 1 in terms of the present situation. If

EUxV —-ExF
is the local representation of a vector field over U x V, we let £; and ¢, be

its projections on E and F respectively. Then & lies in the image of f if
and only if

éZ(xa y) = f(xv y)él(xv y)

for all (x, y) in U x ¥V, or in other words, if and only if £ is of the form

&(x, ) = (&i(x, »), f(x, )E0(x, 1))
for some morphism (of class C?~!)
&: UxV —E

We shall also write the above condition symbolically, namely

(1) E= (&, &)

If &, » are the local representations of vector fields over U x ¥V, then the
reader will verify at once from the local definition of the bracket
(Proposition 1.3 of Chapter V) that [&, #] lies in the image of /" if and only
if

Df (x, y) - &(x, ) -m(x, ¥) = Df (x,3) - n(x, ¥) - &i(x, y)
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or symbolically,
(2) Df-&-m=Df -n-<.

We have now expressed all the hypotheses of Theorem 1.1 in terms of
local data, and the heart of the proof will consist in proving the following
result.

Theorem 1.2. Let U, V be open subsets of Banach spaces E, F
respectively. Let

f: UxV —LE,F)
be a C'-morphism (r =2 1). Assume that if

élv m: UxV —E
are two morphisms, and if we let

E=(&, [ &) and n=(n, f-m)

then relation (2) above is satisfied. Let (xo, yo) be a point of U x V.
Then there exists open neighborhoods Uy, Vi of xo, y, respectively,
contained in U, V, and a unique morphism a: Uy x Vo — V such that

Dia(x, y) = f(x, a(x, ))
and a(xo, y) =y for all (x,y) in Uy x Vy.
We shall prove Theorem 1.2 in §3. We now indicate how Theorem 1.1

follows from it. We denote by o, the map «,(x) = a(x, y), viewed as a
map of Up into V. Then our differential equation can be written

Day(x) = f(x, ay(x)).
We let
o: UyxVog—-UXxV

be the map ¢(x, y) = (x, a,(x)). It is obvious that Dg(xo, yy) is a
toplinear isomorphism, so that ¢ is a local isomorphism at (xo, y,).
Furthermore, for (u, v) e E x F we have

Dio(x, ) - (u, v) = (u, Day(x) - u) = (u, f(x, ay(x)) - u)

which shows that our subbundle is integrable.
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VI, §2. DIFFERENTIAL EQUATIONS DEPENDING
ON A PARAMETER

Proposition 2.1. Let U, V be open sets in Banach spaces E, F
respectively. Let J be an open interval of R containing 0, and let

g JxUxV —>F

be a morphism of class C" (r 2 1). Let (xo, y) be a point in U x V.
Then there exists open balls Jy, Uy, Vy centered at 0, xo, y, and
contained J, U, V respectively, and a unigue morphism of class C’

ﬁ: J0><U()><V0—>V

such that B0, x, y) = y and

Dlﬁ(ta X y) = g(l, X, ﬁ(rv X, y))
Sfor all (t, x, y)eJy x Uy x Vy.

Proof. This follows from the existence and uniqueness of local flows, by
considering the ordinary vector field on U x V

G: JxUxV—-ExF
given by G(t, x, y) = (O, g(t, x, ¥)). If B(t, x, ) is the local flow for G,
then we let (¢, x, y) be the projection on the second factor of B(¢, x, y).
The reader will verify at once that § satisfies the desired conditions. The
uniqueness is clear.
Let us keep the initial condition y fixed, and write

ﬂ(tv x) ::B(tv X, y)'

From Chapter IV, §1, we obtain also the differential equation satisfied by
f in its second variable:

Proposition 2.2. Let notation be as in Proposition 2.1, and with y fixed,
let B(1, x) = (¢, x, ). Then D,f(t, x) satisfies the differential equation

D1DyB(t, x) - v=Dag(t, x, B(t, x)) - v+ Ds3g(t, x, Bz, x)) - D21, x) - v,

for every vekE.
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Proof. Here again, we consider the vector field as in the proof of
Proposition 2.1, and apply the formula for the differential equation
satisfied by D,f as in Chapter IV, §1.

Vi, §3. PROOF OF THE THEOREM

In the application of Proposition 2.1 to the proof of Theorem 1.2, we take
our morphism g to be

g(t’ Z, y) :f(X()—I-tZ, y)Z

with z in a small ball Ey around the origin in E, and y in V. It is
convenient to make a translation, and without loss of generality we can
assume that xo =0 and y, =0. From Proposition 2.1 we then obtain

ﬂ: J()XE()X V0—>V
with initial condition f(0, z, y) = y for all z € Ey, satisfying the differential

equation
Dlﬂ(t7 z, y) = f(tZ, ﬁ(t7 Z, y)) tZ.

Making a change of variables of type ¢t =as and z =a 'x for a small
positive number a, we see at once that we may assume that Jy contains 1,
provided we take E, sufficiently small. As we shall keep y fixed from now
on, we omit it from the notation, and write (¢, z) instead of f(¢, z, y).
Then our differential equation is

(3) D\p(1, z) = f(1z, B(t, z)) - =.

We observe that if we knew the existence of « in the statement of
Theorem 1.2, then letting #(z, z) = a(xo + £z) would yield a solution of our
differential equation. Thus the uniqueness of a follows. To prove its
existence, we start with f and contend that the map

a(x) = B(1, x)

has the required properties for small |x|. To prove our contention it will
suffice to prove that

(4) DZﬂ([? Z) = tf(tZ, ﬂ(t? Z))
because if that relation holds, then
Da(x) = DZﬂ(lv X) = f(xv ﬂ(11 x)) = f(x7 oc(x))

which is precisely what we want.
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From Proposition 2.2, we obtain for any vector v e E,

D\Dyf(t, z)-v=tD, f(tz, p(t,z)) v~z
+D2f(tZ, Bz, z)) -Daf(t, z) vz + f(tz, Bt, 2)) 0.

We now let k(1) = Dyf(t, z) - v — tf(z, B(t, z)) - v. Then one sees at once
that k(0) =0 and we contend that

(5) Dk(t) = D> f (tz, B(t, z)) - k(1) - z.

We use the main hypothesis of our theorem, namely relation (2), in which
we take &; and #; to be the fields v and z respectively. We compute Df
using the formula for the partial derivatives, and apply it to this special
case. Then (5) follows immediately. It is a linear differential equation
satisfied by k(¢), and by Corollary 1.7 of Chapter IV, we know that the
solution 0 is the unique solution. Thus k(f) =0 and relation (4) is
proved. The theorem also.

Vi, §4. THE GLOBAL FORMULATION

Let X be a manifold. Let F be a tangent subbundle. By an integral
manifold for F, we shall mean an injective immersion

f:Y—-X
such that at every point y e Y, the tangent map
I,f: VY — Ty X

induces a toplinear isomorphism of 7,Y on the subspace Fy(,) of T,y X.
Thus 77 induces locally an isomorphism of the tangent bundle of Y with
the bundle F over f(Y).

Observe that the image f(Y) itself may not be a submanifold of X. For
instance, if F has dimension 1 (i.e. the fibers of F have dimension 1), an
integral manifold for F is nothing but an integral curve from the theory of
differential equations, and this curve may wind around X in such a way
that its image is dense. A special case of this occurs if we consider the
torus as the quotient of the plane by the subgroup generated by the two
unit vectors. A straight line with irrational slope in the plane gets mapped
on a dense integral curve on the torus.

If Y is a submanifold of X, then of course the inclusion j: ¥ — X is an
injective immersion, and in this case, the condition that it be an integral
manifold for F simply means that T(Y) = F|Y (F restricted to Y).
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We now have the local uniqueness of integral manifolds, corresponding
to the local uniqueness of integral curves.

Theorem 4.1. Let Y, Z be integral submanifolds of X for the subbundle F
of TX, passing through a point xo. Then there exists an open neigh-
borhood U of x¢ in X, such that

YnU=ZnU.

Proof. Let U be an open neighborhood of xy in X such that we have a
chart
U—-VxW
with
xo— (¥o, Wo),

and Y corresponds to all points (y, wp), y€ V. In other words, Y
corresponds to a factor in the product in the chart. If Vis open in F; and
W open in F,, with F; x F, = E, then the subbundle F is represented by
the projection

Vx WxF,

|

VxW

Shrinking Z, we may assume that Z < U. Let hi: Z — V x W be the
restriction of the chart to Z, and let & = (A, hy) be represented by its two
components. By assumption, 4'(x) maps E into F; for every x € Z. Hence
hy is constant, so that A(Z) is contained in the factor V' x {wg}. It follows
at once that h(Z) = V7 x {wy} for some open V) in V, and we can shrink
U to a product V7, x Wy (where W) is a small open set in W containing
wyp) to conclude the proof.

We wish to get a maximal connected integral manifold for an integrable
subbundle F of TX passing through a given point, just as we obtained a
maximal integral curve. For this, it is just as easy to deal with the
nonconnected case, following Chevalley’s treatment in his book on Lie
Groups. (Note the historical curiosity that vector bundles were invented
about a year after Chevalley published his book, so that the language
of vector bundles, or the tangent bundle, is absent from Chevalley’s
presentation. In fact, Chevalley used a terminology which now appears
terribly confusing for the notion of a tangent subbundle, and it will not be
repeated here!)

We give a new manifold structure to X, depending on the integrable
tangent subbundle F, and the manifold thus obtained will be denoted by
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Xr. This manifold has the same set of points as X. Let x € X. We know
from the local uniqueness theorem that a submanifold Y of X which is at
the same time an integral manifold for F is locally uniquely determined. A
chart for this submanifold locally at x is taken to be a chart for Xg. It is
immediately verified that the collection of such charts is an atlas, which
defines our manifold Xz. (We lose one order of differentiability.) The
identity mapping
ji Xr— X

is then obviously an injective immersion, satisfying the following universal
properties.

Theorem 4.2. Let F be an integrable tangent subbundle over X. If
f:Y—-X

is a morphism such that Tf: TY — TX maps TY into F, then the

induced map
fri Y — Xr

(same values as [ but viewed as a map into the new manifold Xr) is also a
morphism. Furthermore, if [ is an injective immersion, then fp induces an
isomorphism of Y onto an open subset of Xr.

Proof. Using the local product structure as in the proof of the local
uniqueness Theorem 4.1, we see at once that fr is a morphism. In other
words, locally, f maps a neighborhood of each point of Y into a sub-
manifold of X which is tangent to F. If in addition f is an injective
immersion, then from the definition of the charts on Xr, we see that fr
maps Y bijectively onto an open subset of Xz, and is a local isomorphism
at each point. Hence fr induces an isomorphism of Y with an open
subset of Xr, as was to be shown.

Corollary 4.3. Let Xrp(xo) be the connected component of Xg containing
a point xo. If [ Y — X is an integral manifold for F passing through
Xo, and Y is connected, then there exists a unique morphism

h: Y — Xg(xp)
making the following diagram commutative:
Y " Xe(xo)
f J
X

and h induces an isomorphism of Y onto an open subset of Xr(xo).
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Proof. Clear from the preceding discussion.

Note the general functorial behavior of the integral manifold. If
g: X - X'

is an isomorphism, and F is an integrable tangent subbundle over X, then
F’' = (Tg)(F) = g.F is an integrable bundle over X’. Then the following

diagram is commutative:

g ’
Xy — Xp

I

X — X
g

The map gr is, of course, the map having the same values as g, but viewed
as a map on the manifold Xr.

VI, §5. LIE GROUPS AND SUBGROUPS

It is not our purpose here to delve extensively into Lie groups, but to lay
the groundwork for their theory. For more results, we refer the reader
to texts on Lie groups, differential geometry, and also to the paper by
W. Graeub [Gr 61]. Although seemingly written to apply only to the
finite dimensional case, this paper holds essentially in its entirety for the
Banach case (and Hilbert case when dealing with Riemannian metrics),
and is written on foundations corresponding to those of the present book.

By a group manifold, or a Lie group G, we mean a manifold with a
group structure, that is a law of composition and inverse,

. GxG—- G and G— G

which are morphisms. Thus each x € G gives rise to a left translation

™ G— G
such that t*(y) = xy.

When dealing with groups, we shall have to distinguish between iso-
morphisms in the category of manifolds, and isomorphisms in the category
of group manifolds, which are also group homomorphisms. Thus we shall
use prefixes, and speak of group manifold isomorphism, or manifold iso-
morphism as the case may be. We abbreviate these by GM-isomorphism
or M-isomorphism. We see that left translation is an M-isomorphism, but
not a GM-isomorphism.
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Let e denote the origin (unit element) of G. If ve T.G is a tangent
vector at the origin, then we can translate it, and we obtain a map

(x, v)—1]v=¢,(x)
which is easily verified to be a VB-isomorphism
GxT,G— TG

from the product bundle to the tangent bundle of G. This is done at once
using charts. Recall that 7,G can be viewed as a Banachable space, using
any local trivialization of G at ¢ to get a toplinear isomorphism of 7,G
with the standard Banachable space on which G is modeled. Thus we see
that the tangent bundle of a Lie group is trivializable.

A vector field & over G is called left invariant if 77¢ = ¢ for all xe G.
Note that the map

described above is a left invariant vector field, and that the association
v—=&,

obviously establishes a linear isomorphism between 7,G and the vector
space of left invariant vector fields on G. The space of such vector fields
will be denoted by g or [(G), and will be called the Lie algebra of G,
because of the following results.

Proposition 5.1. Let £, n be left invariant vector fields on G. Then [&, 7]
is also left invariant.

Proof. This follows from the general functorial formula
(&l = [ i) = (S nl.

Under the linear isomorphism of 7,G with [(G), we can view [(G) as a
Banachable space. By a Lie subalgebra of I(G) we shall mean a closed
subspace L) which splits, and having the property that if & #e€l, then
[€,7) €} also.

Note. In the finite dimensional case, every subspace is closed and splits,
so that only this last condition about the bracket product need be
mentioned explicitly.

Let G, H be Lie groups. A map

f: H—-G
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will be called a homomorphism if it is a group homomorphism and a
morphism in the category of manifolds. Such a homomorphism induces a
continuous linear map

T.f=f.: T.H— TG,
and it is clear that it also induces a corresponding linear map
I(H) - 1(06),

also denoted by f,. Namely, if ve T,H and &, is the left invariant vector
field on H induced by v, then

f*éu = éf,u

The general functorial property of related vector fields applies to this case,
and shows that the induced map

f.: (H) = 1(G)
is also a Lie algebra homomorphism, namely for &, # € [(H) we have

S &l =118, fanl.

Now suppose that the homomorphism f: H — G is also an immersion
at the origin of H. Then by translation, one sees that it is an immersion at
every point. If in addition it is an injective immersion, then we shall say
that f'is a Lie subgroup of G. We see that in this case, f induces a splitting
injection

f.: I(H) — 1(G).

The image of I(H) in I(G) is a Lie subalgebra of I(G).
In general, let h be a Lie subalgebra of [(G) and let F, be the corre-
sponding subspace of T,.G. For each x e G, let

F. =1]F,.

Then F, is a split subspace of T,G, and using local charts, it is clear that
the collection F = {F,} is a subbundle of TG, which is left invariant.
Furthermore, if

f: H—-G

is a homomorphism which is an injective immersion, and if b is the image
of [(H), then we also see that f is an integral manifold for the subbundle
F. We shall now see that the converse holds, using Frobenius’ theorem.
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Theorem 5.2. Let G be a Lie group, l) a Lie subalgebra of 1(G), and
let F be the corresponding left invariant subbundle of TG. Then F is
integrable.

Proof. 1 owe the proof to Alan Weinstein. It is based on the following
lemma.

Lemma 5.3. Let X be a manifold, let &, n be vector fields at a point xy,
and let F be a subbundle of TX. If &(xo) =0 and & is contained in F,
then [&, n](xo) € F.

Proof. We can deal with the local representations, such that X = U is
open in E, and F corresponds to a factor, that is

TXZUXF]XFZ and F:UXFl.

We may also assume without loss of generality that xy =0. Then
£(0) =0, and &: U — F; may be viewed as a map into F;. We may write

with a morphism 4: U — L(E, F;). Indeed,

1
)= [ ¢edrx

0

1
and A(x) = pr; oJ ¢&'(tx) dt, where pr; is the projection on F;. Then
0

7' (x)E(x) = &' (x)n(x)
7' (x)A(x)x — A'(x) - x - n(x) — A(x) - 7(x),

£, #](0) = A(0)n(0).

€, n)(x) =

|

whence

Since 4(0) maps E into F;, we have proved our lemma.

Back to the proof of the proposition. Let & # be vector fields at a
point xp in G, both contained in the invariant subbundle F. There exist
invariant vector fields &, and #, and x( such that

&(xo) = &o(x0)  and  n(x0) = np(xo0)-
Let

& =E¢-4¢ and n=n-—"Hy.
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Then &, #; vanish at xo and lie in F. We get:

(€ n)= Z <, ’7]]-

iJ
The proposition now follows at once from the lemma.

Theorem 5.4. Let G be a Lie group, let by be a Lie subalgebra of 1(G),
and let F be its associated invariant subbundle. Let

j: H—- G

be the maximal connected integral manifold of F passing through e. Then
H is a subgroup of G, and j: H — G is a Lie subgroup of G. The
association between §) and j: H — G establishes a bijection between Lie
subalgebras of 1(G) and Lie subgroups of G.

Proof. Let x e H. The M-isomorphism 7* induces a VB-isomorphism
of F onto itself, in other words, F is invariant under 7}. Furthermore,
since H passes through e, and xe lies in H, it follows that j: H — G is
also the maximal connected integral manifold of F passing through x.
Hence x maps H onto itself. From this we conclude that if y € H, then
xy € H, and there exists some y e H such that xy = e, whence x ' € H.
Hence H is a subgroup. The other assertions are then clear.

If H is a Lie subgroup of G, belonging to the Lie algebra ), and F is
the associated integrable left invariant tangent subbundle, then the integral
manifold for F passing through a given point x is simply the translation
xH, as one sees from first functorial principles.

When } is 1-dimensional, then it is easy to see that the Lie subgroup is
in fact a homomorphic image of an integral curve

a: R— G

which is a homomorphism, and such that o’(0) = v is any vector in T.G
which is the value at e of a non-zero element of ). Changing this vector
merely reparametrizes the curve. The integral curve may coincide with the
subgroup, or it comes back on itself, and then the subgroup is essentially
a circle. Thus the integral curve need not be equal to the subgroup.
However, locally near ¢z = 0, they do coincide. Such an integral curve is
called a one-parameter subgroup of G.

Using Theorem 1.5 of Chapter V, it is then easy to see that if the Lie
algebra of a connected Lie group G is commutative, then G itself is
commutative. One first proves this for elements in a neighborhood of the
origin, using l-parameter subgroups, and then one gets the statement
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globally by expressing G as a union of products
vuU---U,

where U is a symmetric connected open neighborhood of the unit element.
All of these statements are easy to prove, and belong to the first chapter
of a book on Lie groups. Our purpose here is merely to lay the general
foundations essentially belonging to general manifold theory.

Warning. The group of differential automorphisms of a finite dimen-
sional manifold is “infinite dimensional” but usually not a Lie group,
because multiplication is usually continuous only in each variable sepa-
rately. For an analysis of this, also in the context of H? (Sobolev) spaces,
cf. Ebin and Marsden [EbM 70].
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CHAPTER VI

Metrics

In our discussion of vector bundles, we put no greater structure on the
fibers than that of topological vector space (of the same category as those
used to build up manifolds). One can strengthen the notion so as to
include the metric structure, and we are thus led to consider Hilbert
bundles, whose fibers are Hilbert spaces.

Aside from the definitions, and basic properties, we deal with two
special topics. On the one hand, we complete our uniqueness theorem
on tubular neighborhoods by showing that when a Riemannian metric is
given, a tubular neighborhood can be straightened out to a metric one.
Secondly, we show how a Riemannian metric gives rise in a natural way
to a spray, and thus how one recovers geodesics. The fundamental 2-form
is used to identify the vector fields and 1-forms on the tangent bundle,
identified with the cotangent bundle by the Riemannian metric.

We assume throughout that our manifolds are Hausdorff and are
sufficiently differentiable so that all our statements make sense. (For
instance, when dealing with sprays, we take p = 3.)

Of necessity, we shall use the standard spectral theorem for (bounded)
symmetric operators. A self-contained treatment will be given in the
appendix.

Vil, §1. DEFINITION AND FUNCTORIALITY

For Riemannian geometry, we shall deal with a Hilbertable vector space,
that is a topological vector space which is complete, and whose topology
can be defined by the norm associated with a bilinear form, which is

173
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symmetric and positive definite. All facts needed in the sequel concerning
Hilbert spaces can be found in the Appendix.

It turns out that some basic properties have only to do with a weaker
property of the space E on which a manifold is modeled, namely that the
Banach space E is self dual, via a symmetric non-singular bilinear form.
Thus we only assume this property until more is needed. We recall that
such a form is a continuous bilinear map

(v, w) — (v, w) of ExE—R

such that (v, w) = (w, v) for all v, w € E, and the corresponding map of E
into the dual space L(E) is a topological isomorphism.

Examples. Of course, the standard positive definite scalar product on
Euclidean space provides the easiest (in some sense) example of a self dual
vector space. But the physicists are interested in R* with the scalar
product such that the square of a vector (x, y, z, t) is x* + > + 22 — 2.
This scalar product is non-singular. For one among many nice appli-
cations of the indefinite case, cf. for instance [He 84] and [Gu 91], dealing
with Huygens’ principle.

We consider Lszym(E), the vector space of continuous bilinear forms

A ExE—R

which are symmetric. If x is fixed in E, then the continuous linear form
Ax(y) = A(x, ») is represented by an element of E which we denote by Ax,
where A is a continuous linear map of E into itself. The symmetry of 2
implies that A is symmetric, that is we have

Mx, y) = (4x, y) = (x, 4y)

for all x, ye E. Conversely, given a symmetric continuous linear map
A: E — E we can define a continuous bilinear form on E by this formula.
Thus Lszym(E) is in bijection with the set of such operators, and is itself a
Banach space, the norm being the usual operator norm. Suppose E is a
Hilbert space, and in particular, E is self dual.

The subset of Lfym(E) consisting of those forms corresponding to
symmetric positive definite operators (by definition such that 4 = el for
some € > 0) will be called the Riemannian &f E and be denoted by Ri(E).
Forms 4 in Ri(E) are called positive definite. The associated operator A4
of such a form is invertible, because its spectrum does not contain 0 and
the continuous function 1/t is invertible on the spectrum.

In general, suppose only that E is self dual. The space Lsym(E) contains

as an open subset the set of non-singular symmetric bilinear forms, which

2



[VIL, §1] DEFINITION AND FUNCTORIALITY 175

we denote by Met(E), and which we call the set of metrics or pseudo
Riemannian metrics. In view of the operations on vector bundles (Chapter
III, §4) we can apply the functor Lfym to any bundle whose fibers are self
dual. Thus if z: E — X is such a bundle, then we can form L2, (7). A
section of L2 (n) will be called by definition a symmetric bilinear form
on n. A (pseudo Riemannian) metric on n (or on E) is defined to be a
symmetric bilinear form on 7, whose image lies in the open set of metrics
at each point. We let Met(n) be the set of metrics on 7 , which we also
call the set of metrics on E, and may denote by Met(E).

If E is a Hilbert space and the image of the section of Lszym(n) lies in
the Riemannian space Ri(ny) at each point x, in order words, if on the
fiber at each point the non-singular symmetric bilinear form is actually
positive definite, then we call the metric Riemannian. Let us denote a
metric by g, so that g(x) € Met(E,) for each x € X, and lies in Ri(E,) if
the metric is Riemannian. Then g(x) is a non-singular symmetric bilinear
form in general, and in the Riemannian case, it is positive definite in
addition.

A pair (X, g) consisting of a manifold X and a (pseudo Riemannian)
metric g will be called a pseudo Riemannian manifold. It will be called a
Riemannian manifold if the manifold is modeled on a Hilbert space, and
the metric is Riemannian.

Observe that the sections of Lszym(n) form a vector space (abstract) but
that the Riemannian metrics do not. They form a convex cone. Indeed, if
a, b >0 and g,, ¢g» are two Riemannian metrics, then ag; + bg, is also a
Riemannian metric.

Suppose we are given a VB-trivialization of = over an open subset U of
X, say

. m Y (U) - U xE.

We can transport a given pseudo Riemannian metric g (or rather its
restriction to 7~ (U )) to U x E. In the local representation, this means
that for each xe U we can identify g(x) with a symmetric invertible
operator A, giving rise to the metric. The operator A, is positive definite
in the Riemannian case. Furthermore, the map

x+— Ay

from U into the Banach space L(E, E) is a morphism.

As a matter of notation, we sometimes write g, instead of g(x). Thus
if v, w are two vectors in FE,, then g,(v, w) is a number, and is more
convenient to write than g(x)(v, w). We shall also write (v, w), if the
metric ¢ is fixed once for all.

Proposition 1.1. Let X be a manifold admitting partitions of unity. Let
n: E — X be a vector bundle whose fibers are Hilbertable vector spaces.
Then n admits a Riemannian metric.
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Proof. Find a partition of unity {U;, ¢;} such that z|U; is trivial, that is
such that we have a trivialization

7 n_l(U,-) — U; xE

(working over a connected component of X, so that we may assume the
fibers toplinearly isomorphic to a fixed Hilbert space E). We can then find
a Riemannian metric on U; x E in a trivial way. By transport of structure,
there exists a Riemannian metric g; on n|U; and we let

9=> 0.9
Then g is a Riemannian metric on x.

Let us investigate the functorial behavior of metrics.
Consider a VB-morphism

Jo

with vector bundles £’ and E over X and Y respectively, whose fibers are
self dual spaces. Let g be a symmetric bilinear form on =, so that for each
y€ Y we have a continuous, bilinear, symmetric map

g(y): Ey, x E, - R.
Then the composite map
E.xE.—E,xE,—R

with y = f(x) is a symmetric bilinear form on E, and one verifies
immediately that it gives rise to such a form, on the vector bundle 7',
which will be denoted by f"(g). Then f induces a map

L2 () =f" Lin(n) — L (x).

Furthermore, if f is injective and splits for each x € X, and g is a metric
(resp. g is a Riemannian metric in the Hilbert case), then obviously so is
f*(9), and we can view f* as mapping Met(rx) into Met(rn’) (resp. Ri(n)
into Ri(z'} in the Riemannian case).

Let X be a manifold modeled on a Hilbertable space and let T(X) be
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its tangent bundle. By abuse of language, we call a metric on 7(X) also a
metric on X and write Met(X) instead of Met(7T(X)). Similarly, we write
Ri(X) instead of Ri(7T(X)).

Let f: X — Y be an immersion. Then for each x € X, then linear map

Txf: TX(X) - Tf(x)(Y)
is injective, and splits, and thus we obtain a contravariant map
/7 Ri(Y) — Ri(X),

each Riemannian metric on Y inducing a Riemannian metric on X.

A similar result applies in the pseudo Riemannian case. If (Y, g) is
Riemannian, and f is merely of class C! but not necessarily an immersion,
then the pull back f*(g) is not necessarily positive definite, but is merely
what we call semipositive. In general, if (X, 4) is pseudo Riemannian and
h(v, v) 2 0 for all ve T\ X, all x, then (X, &) is called semi Riemannian.
Thus the pull back of a semi Riemannian metric is semi Riemannian.

For a major result concerning Riemannian embeddings of manifolds in
Euclidean space, see Nash [Na 56], followed by Moser [Mo 61], as well as
the exposition I gave in [La 61]. Even though dealing a priori with finite
dimensional manifolds, the imbedding problem is essentially concerned
with the infinite dimensional manifold of Riemannian metrics. The
problem partly amounts to obtaining an inverse mapping theorem in a
context more complicated than that of Banach spaces, namely Frechet
spaces, when all C? norms intervene, for p = 1,2,.... Newton approxi-
mation is used instead of the shrinking lemma to solve the local iso-
morphism problem in this case.

The next five sections will be devoted to considerations which apply
specifically to the Riemannian case, where positivity plays a central role.

Vil, §2. THE HILBERT GROUP

Let E be a Hilbert space. The group of toplinear automorphisms Laut(E)
contains the group Hilb(E) of Hilbert automorphisms, that is those
toplinear automorphisms which preserve the inner product:

(Av, Aw) = (v, w)

for all v, we E. We note that 4 is Hilbertian if and only if 4*4 =1.

As usual, we say that a linear continuous map 4: E — E is symmetric
if A* = A4 and that it is skew-symmetric if 4* = —4. We have a direct
sum decomposition of the Banach space L(E, E) in terms of the two
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closed subspaces of symmetric and skew-symmetric operators:
A=3{A+4")+1(4-a7).

We denote by Sym(E) and Sk(E) the Banach spaces of symmetric and
skew-symmetric maps respectively. The word operator will always mean
continuous linear map of E into itself.

Proposition 2.1. For all operators A, the series
AZ
exp(A4) :I+A+—2—'+--~
converges. If A commutes with B, then
exp(A4 + B) = exp(4) exp(B).

For all operators sufficiently close to the identity I, the series

2
log(A)z(Al_I)—i—(A;]) T

converges, and if A commutes with B, then
log(AB) = log(A4) + log(B).
Proof. Standard.

We leave it as an exercise to the reader to show that the exponential
function gives a C*-morphism of L(E, E) into itself. Similarly, a function
admitting a development in power series say around 0 can be applied to
the set of operators whose bound is smaller than the radius of convergence
of the series, and gives a C*-morphism.

Proposition 2.2. If A is symmetric (resp. skew-symmetric), then exp(4) is
symmetric positive definite (resp. Hilbertian). If A is toplinear auto-
morphism sufficiently close to I and is positive definite symmetric (resp.
Hilbertian), then log(A) is symmetric (resp. skew-symmetric).

Proof. The proofs are straightforward. As an example, let us carry out
the proof of the last statement. Suppose A is Hilbertian and sufficiently
close to I. Then A*A =1 and A* = A~!. Then

(4"~ 1)
_._l._+...

=log(47").

log(4)" =
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If A is close to I, so is A~!, so that these statements make sense. We now
conclude by noting that log(4~!) = —log(4). All the other proofs are
carried out in a similar fashion, taking a star operator in series term by
term, under conditions which insure convergence.

The exponential and logarithm functions give inverse C* mappings
between neighborhoods of 0 in L(E, E) and neighborhoods of I in
Laut(E). Furthermore, the direct sum decomposition of L(E, E) into
symmetric and skew-symmetric subspaces is reflected locally in a neigh-
borhood of I by a C* direct product decomposition into positive definite
and Hilbertian automorphisms. This direct product decomposition can
be translated multiplicatively to any toplinear automorphism, because if
A e Laut(E) and B is close to 4, then

B=AA"'B=A(I - (I - A7'B))
and (I — A7'B) is small. This proves:

Proposition 2.3. The Hilbert group of automorphisms of E is a closed
submanifold of Laut(E).

In addition to this local result, we get a global one also:

Proposition 2.4. The exponential map gives a C*-isomorphism from the
space Sym(E) of symmetric endomorphisms of E and the space Pos(E) of
symmetric positive definite automorphisms of E.

Proof. We must construct its inverse, and for this we use the spectral
theorem. Given A, symmetric positive definite, the analytic function log ¢
is defined on the spectrum of A4, and thus log 4 is symmetric. One verifies
immediately that it is the inverse of the exponential function (which can be
viewed in the same way). We can expand log ¢ around a large positive
number ¢, in a power series uniformly and absolutely convergent in an
interval 0 < e £t < 2¢ — ¢, to achieve our purposes.

Proposition 2.5. The manifold of toplinear automorphisms of the Hilbert
space E is C®-isomorphic to the product of the Hilbert automorphisms
and the positive definite symmetric automorphisms, under the mapping

Hilb(E) x Pos(E) — Laut(E)
given by
(H, P) — HP.

Proof. Our map is induced by a continuous bilinear map of

L(E, E) x L(E, E)
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into L(E, E) and so is C*. We must construct an inverse, or in other
words express any given toplinear automorphism 4 in a unique way as a
product A = HP where H is Hilbertian, P is symmetric positive definite,
and both H, P depend C* on A. This is done as follows. First we note
that 4*A4 is symmetric positive definite (because (A*Av, v) = (Ao, Av),
and furthermore, 4*A4 is a toplinear automorphism, so that 0 cannot be in
its spectrum, and hence 4*A4 = el > O since the spectrum is closed). We
let

P= (A*A)I/Z
and let H = AP~'. Then H is Hilbertian, because
H'H= (P Y'4*4P' =1

Both P and H depend differentiably on A since all constructions involved
are differentiable.

There remains to be shown that the expression as a product is unique.
If A = H P, where H,, P; are Hilbertian and symmetric positive definite
respectively, then

H™'H, = PP{!,

and we get Hy = PPy! for some Hilbertian automorphism H,. By defini-
tion,
I=H;H, = (PP;!)*PP[!

and from the fact that P* = P and P; = Py, we find
P? =P

Taking the log, we find 2 log P = 2 log P;. We now divide by 2 and take
the exponential, thus giving P = P; and finally H = H;. This proves our
proposition.

Vil, §3. REDUCTION TO THE HILBERT GROUP

We define a new category of bundles, namely the Hilbert bundles over
X, denoted by HB(X). As before, we would denote by HB(X, E) or
HB(X, A) those Hilbert bundles whose fiber is a Hilbert space E or lies in
a category 2.

Let n: £ — X be a vector bundle over X, and assume that it has a
trivialization {(Uj;, 7;)} with trivializing maps

‘L',“I T[‘l(Ui) - U,' x E
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where E is a Hilbert space, such that each toplinear automorphism (z;7; '),
is a Hilbert automorphism. Equivalently, we could also say that 7; is
a Hilbert isomorphism. Such a trivialization will be called a Hilbert
trivialization. Two such trivializations are called Hilbert-compatible if their
union is again a Hilbert trivialization. An equivalence class of such
compatible trivializations constitutes what we call a Hilbert bundle over
X. Any such Hilbert bundle determines a unique vector bundle, simply by
taking the VB-equivalence class determined by the trivialization.

Given a Hilbert trivialization {(U;, t;)} of a vector bundle = over X, we
can define on each fiber n, a Hilbert space structure. Indeed, for each x
we select an open set U; in which x lies, and then transport to 7, the
scalar product in E by means of 7;,. By assumption, this is independent of
the choice of U; in which x lies. Thus in a Hilbert bundle, we can assume
that the fibers are Hilbert spaces, not only Hilbertable.

It is perfectly possible that several distinct Hilbert bundles determine the
same vector bundle.

Any Hilbert bundle determining a given vector bundle = will be said to
be a reduction of = to the Hilbert group.

We can make Hilbert bundles into a category, if we take for the HB-
morphisms the VB-morphisms which are injective and split at each point,
and which preserve the metric, again at each point.

Each reduction of a vector bundle to the Hilbert group determines a
Riemannian metric on the bundle. Indeed, defining for each z e X and
v, we m, the scalar product

gx(v7 W) = (Tixv> TixW>
with any Hilbert-trivializing map t;, such that x € U;, we get a morphism
X = gx

of X into the sections of L (n) which are positive definite. We also have
the converse.

Theorem 3.1. Let m be a vector bundle over a manifold X, and assume
that the fibers of m are all toplinearly isomorphic to a Hilbert space E.
Then the above map, from reductions of © to the Hilbert group, into the
Riemannian metrics, is a bijection.

Proof. Suppose that we are given an ordinary VB-trivialization
{(Ui, 1)} of . We must construct an HB-trivialization. For each i, let g;
be the Riemannian metric on U; x E transported from z~!(U;) by means
of 7;. Then for each x € U;, we have a positive definite symmetric operator
A;, such that

gix(v, w) = (4ixv, W)



182 METRICS [VII, §3]

for all v, weE. Let B; be the square root of A;,. We define the
trivialization ¢; by the formula

Oix = Bixtix

and contend that {(U;, 6;)} is a Hilbert trivialization. Indeed, from the
definition of g, it suffices to verify that the VB-isomorphism

Bii U,'XE—> U,'XE

given by B;, on each fiber, carries ¢g; on the usual metric. But we have, for
v,wekE:

<Bixvz Bixw> = (A, w>

since B;; is symmetric, and equal to the square root of A;.. This proves
what we want.

At this point, it is convenient to make an additional comment on
normal bundles.

Let «, f be two Hilbert bundles over the manifold X, and let f: o« — §
be an HB-morphism. Assume that

0—alp

is exact. Then by using the Riemannian metric, there is a natural way of
constructing a splitting for this sequence (c¢f. Chapter III, §5).

Using Theorem 1.2 of the Appendix, we see at once that if F is a
(closed) subspace of a Hilbert space, then E is the direct sum

E=F@F*

of F and its orthogonal complement, consisting of all vectors perpendicular
to F.

In our exact sequence, we may view f as an injection. For each x we
let ol be the orthogonal complement of oy in f,. Then we shall find an
exact sequence of VB-morphisms

/)’i»ot—>0

whose kernel is ot (set theoretically). In this manner, the collection of

orthogonal complements «} can be given the structure of a Hilbert bundle.

For each x we can write f, = ocx@ozi and we define A, to be the
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projection in this direct sum decomposition. This gives us a mapping
h: B — a, and it will suffice to prove that /4 is a VB-morphism. In order
to do this, we may work locally. In that case, after taking suitable VB-
automorphisms over a small open set U of X, we can assume that we deal
with the following situation.

Our vector bundle f is equal to U x E and « is equal to U x F for
some subspace F of E, so that we can writt E=F x F*. Our HB-
morphism is then represented for each x by an injection f,: F — E:

UxF-L UxE

By the definition of exact sequences, we can find two VB-isomorphisms 7
and o such that the following diagram is commutative:

UxF—f>UxE

UxF — UXE

and such that the bottom map is simply given by the ordinary inclusion of
F in E. We can transport the Riemannian structure of the bundles on top
to the bundles on the bottom by means of ¢! and 77! respectively. We
are therefore reduced to the situation where f is given by the simple
inclusion, and the Riemannian metric on U x E is given by a family A4, of
symmetric positive definite operators on E (x € U). At each point x, we
have (v, w) = (Av, w). We observe that the map

A: UXxE - UXE

given by A, on each fiber is a VB-automorphism of U x E. Let pry be the
projection of U x E on U x F. It is a VB-morphism. Then the composite

h=prgoA
gives us a VB-morphism of U x E on U x F, and the sequence

UxEL UxF=0

i1s exact. Finally, we note that the kernel of A consists precisely of the
orthogonal complement of U x F in each fiber. This proves what we
wanted.
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VIl, §4. HILBERTIAN TUBULAR NEIGHBORHOODS

Let E be a Hilbert space. Then the open ball of radius 1 is isomorphic to
E itself under the mapping

v
(1—JoH*

the inverse mapping being

If @ > 0, then any ball of radius a is isomorphic to the unit ball under
multiplication by the scalar a (or a™!).

Let X be a manifold, and ¢: X — R a function (morphism) such that
o(x) >0 for all xe X. Let n: E — X be a Hilbert bundle over X. We
denote by E(o) the subset of E consisting of those vectors v such that, if v
lies in E,, then

[v], < a(x).

Then E(o) is an open neighborhood of the zero section.

Proposition 4.1. Let X be a manifold and n: E — X a Hilbert bundle.
Let 0: X — R be a morphism such that o(x) >0 for all x. Then the
mapping

o(nw)w

N A
(1+ w]h)
gives an isomorphism of E onto E(o).

Proof. Obvious. The inverse mapping is constructed in the obvious
way.

Corollary 4.2. Let X be a manifold admitting partitions of unity, and let
n: E— X be a Hilbert bundle over X. Then E is compressible.

Proof. Let Z be an open neighborhood of the zero section. For each
x € X, there exists an open neighborhood ¥V, and a number a, > 0 such
that the vectors in 7~!(¥,) which are of length < a, lie in Z. We can find
a partition of unity {(U;, ¢;)} on X such that each U; is contained in some
Vi) We let ¢ be the function

Z Ax(i\P;-
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Then E(o) is contained in Z, and our assertion follows from the
proposition.

Proposition 4.3. Let X be a manifold. Let n: E— X and m: Ey — X
be two Hilbert bundles over X. Let

A E— E;
be a VB-isomorphism. Then there exists an isotopy of VB-isomorphisms
Ao E— E)
with proper domain [0, 1] such that Ay = A and Ay is an HB-isomorphism.
Proof. We find reductions of E and E; to the Hilbert group, with

Hilbert trivializations {(U;, 1;)} for E and {(U,, p,)} for E;. We can then
factor p;At;! as in Proposition 2.5, applied to each fiber map:

UXE — U xE —> U, xE

n_l(Ui) - ”(U.'Al) R nII(Ui)
I g

and obtain a factorization of A into A= Ayip where Ay is a HB-
isomorphism and Ap is a positive definite symmetric VB-automorphism.
The latter form a convex set, and our isotopy is simply

d=Ago (th+(1+1)Ap).
(Smooth out the end points if you wish.)
Theorem 4.4. Let X be a submanifold of Y. Let n: E— X and
m: Ey — X be two Hilbert bundles. Assume that E is compressible. Let

f: E—>Y and g: Ey — Y be two tubular neighborhoods of X in Y.
Then there exists an isotopy

fir E—>Y

of tubular neighborhoods with proper domain [0, 1] and there exists an
HB-isomorphism p: E — E| such that fi = f and fy = gu.

Proof. From Theorem 6.2 of Chapter IV, we know already that there
exists a VB-isomorphism A such that f =~ gA. Using the preceding
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proposition, we know that A~y where g is a HB-isomorphism. Thus
g4 = gu and by transitivity, f = u, as was to be shown.

Remark. In view of Proposition 4.1, we could of course replace the
condition that E be compressible by the more useful condition (in practice)
that X admit partitions of unity.

Vil, §5. THE MORSE-PALAIS LEMMA

Let U be an open set in some (real) Hilbert space E, and let f be a C7*2
function on U, with p = 1. We say that x; is a critical point for f if
Df(xp) =0. We wish to investigate the behavior of f at a critical point.
After translations, we can assume that xp = 0 and that f(xy) =0. We
observe that the second derivative D? £(0) is a continuous bilinear form on
E. Let A= D?£(0), and for each x € E let A, be the functional such that
v A(x, y). If the map x — A, is a toplinear isomorphism of E with its
dual space EY, then we say that A is non-singular, and we say that the
critical point is non-degenerate.

We recall that a local C?-isomorphism ¢ at 0 i1s a CP-invertible map
defined on an open set containing 0.

Theorem 5.1. Let f be a CP*? function defined on an open neighborhood
of 0 in the Hilbert space E, with p =2 1. Assume that f(0) =0, and that
0 is a non-degenerate critical point of f. Then there exists a local C?-
isomorphism at 0, say @, and an invertible symmetric operator A such
that

J(x) = (dp(x), p(x)).
Proof. We may assume that U is a ball around 0. We have

1

£(x) = f(x) ~ £(0) = J Df (1) db,

0

and applying the same formula to Df instead of f, we get

f(x) = JIJI D?f (stx)tx - x ds dt = g(x)(x, x)
where "

1.1
g(x) = .[0 Jo D?f(stx)t ds dt.

Then g is a C? map into the Banach space of continuous bilinear maps on
E, and even the space of symmetric such maps. We know that this
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Banach space is toplinearly isomorphic to the space of symmetric opera-
tors on E, and thus we can write

f(x) = (A(x)x, x)

where 4: U — Sym(E) is a C? map of U into the space of symmetric
operators on E. A straightforward computation shows that

D*f(0)(v, w) = (A(0)v, w).

Since we assumed that D?f(0) is non-singular, this means that A4(0) is

invertible, and hence A(x) is invertible for all x sufficiently near 0.
Theorem 5.1 is then a consequence of the following result, which

expresses locally the uniqueness of a non-singular symmetric form.

Theorem 5.2. Let A: U — Sym(E) be a C? map of U into the open set
of invertible symmetric operators on E. Then there exists a CP iso-
morphism of an open subset U containing 0, of the form

p(x) = C(x)x, witha CP map C: U, — Laut(E)
such that
(4(x)x, x) = (4(0)p(x), ¢(x)) = (4(0)C(x)x, C(x)x).
Proof. We seek a map C such that
C(x)"4(0)C(x) = A(x).
If we let B(x) = A(0) 'A(x), then B(x) is close to the identity  for small
x. The square root function has a power series expansion near 1, which is

a uniform limit of polynomials, and is C* on a neighborhood of I, and
we can therefore take the square root of B(x), so that we let

C(x) = B(x)"2.

We contend that this C(x) does what we want. Indeed, since both A4(0)
and A(x) (or A(x)"') are self-adjoint, we find that

B(x)" = A(x)A(0)”",

whence
B(x)"A(0) = A(0)B(x).

But C(x) is a power series in / — B(x), and C(x)* is the same power series
in I — B(x)". The preceding relation holds if we replace B(x) by any
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power of B(x) (by induction), hence it holds if we replace B(x) by any
polynomial in 7 — B(x), and hence finally, it holds if we replace B(x) by
C(x), and thus

C(x)* A(0)C(x) = A(0)C(x)C(x) = A(0)B(x) = A(x).

which is the desired relation.

All that remains to be shown is that ¢ i1s a local C”-isomorphism at 0.
But one verifies that in fact, Dg(0) = C(0), so that what we need follows
from the inverse mapping theorem. This concludes the proof of Theorems
5.1 and 5.2.

Corollary 5.3. Let f be a CP*? function near 0 on the Hilbert space E,
such that 0 is a non-degenerate critical point. Then there exists a local
CP-isomorphism \y at 0, and an orthogonal decomposition E = F + F*,
such that if we write y(x) =y +z with yeF and z e F*, then

f('p(x)) = <_V, y> - <Zz Z)'

Proof. On a space where A is positive definite, we can always make the
toplinear isomorphism x —A4!/2x to get the quadratic form to become the
given hermitian product {,), and similarly on a space where A4 is negative
definite. In general, we use the spectral theorem to decompose E into a
direct orthogonal sum such that the restriction of 4 to the factors is
positive definite and negative definite respectively.

Note. The Morse-Palais lemma was proved originally by Morse in the
finite dimensional case, using the Gram-Schmidt orthogonalization pro-
cess. The elegant generalization and its proof in the Hilbert space case is
due to Palais [Pa 69]. It shows (in the language of coordinate systems)
that a function near a critical point can be expressed as a quadratic form
after a suitable change of coordinate system (satisfying requirements
of differentiability). It comes up naturally in the calculus of variations.
For instance, one considers a space of paths (of various smoothness)
o: [a,b] > E where E is a Hilbert space. One then defines a length
function (see next section) or the energy function

b
1) = | (o), o)
a
and one investigates the critical points of this function, especially its
minimum values. These turn out to be the solutions of the variational
problem, by definition of what one means by a variational problem. Even

if E is finite dimensional, so a Euclidean space, the space of paths is
infinite dimensional. Cf. [Mi 63} and [Pa 63].
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VIl, §6. THE RIEMANNIAN DISTANCE

Let (X, g) be a Riemannian manifold. For each C' curve

y: [a, b)) > X
we define its length

b

b
L) =L0) = [ G0, = [ 0,

a

The norm is the one associated with the positive definite scalar product,
i.e. the Hilbert space norm at each point. We can extend the length to
piecewise C! paths by taking the sum over the C' curves constituting the
path. We assume that X is connected, which is equivalent to the property
that any two points can be joined by a piecewise C' path. (If X is
connected, then the set of points which can be joined to a given point
xo by a piecewise C! path is immediately verified to be open and closed,
so equal to X. The converse, that pathwise connectedness implies con-
nectedness, is even more obvious.)

We define the g-distance on X for any two points x, y € X by:
disty(x, y) =greatest lower bound of L(y) for paths y in X joining x and y.

When g is fixed throughout, we may omit g from the notation and write
simply dist(x, y). It is clear that dist, is a semidistance, namely it is
symmetric in (x, y) and satisfies the triangle inequality. To prove that it is
a distance, we have to show that if x # y then disty(x, y) > 0. In a chart,
there is a neighborhood U of x which contains a closed ball B(x, r) with
r > 0, and such that y lies outside this closed ball. Then any path between
x and y has to cross the sphere S(x, r). Here we are using the Hilbert
space norm in the chart. We can also take r so small that the norm in the
chart is given by

<U? w)g(x) = <U, A(X)W>,

for v, w e E, and x — A(x) is a morphism from U into the set of invertible
symmetric positive definite operators, such that there exist a number
C; > 0 for which

Ax) = 1 for all x € B(x, r).

We then claim that there exists a constant C > 0 depending only on r,
such that for any piecewise C! path y between x and a point on the sphere
S(x, r) we have

L(y) =z Cr.
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This will prove that dist,(x, y) = Cr > 0, and will conclude the proof that
dist, is a distance.

By breaking up the path into a sum of C! curves, we may assume
without loss of generality that our path is such a curve. Furthermore, we
may take the interval [a, b] on which y is defined to be such that y(b)
is the first point such that y(¢) lies on S(x, r), and otherwise y(¢) € B(x, r)
for tela, b]. Let p(b) =ru, where u is a unit vector. Write E as an
orthogonal direct sum

E=Ru LF,
where F is a closed subspace. Then y(r) =s(f)u = w(?) with |s(r)| <7,

s{a) =0, s(b) =r and w(t) e F. Then

b ’ b ’ ’ 1/2
LG) = [ Iy, de= | G/, 4(w)y )" dr
b

2 ¢/ [ o, )P ar

a

b
> CII/ZJ |s'(1)] dt by Pythagoras

a
> Cll/?‘r
as was to be shown.

In addition, the above local argument also proves:
Proposition 6.1. The distance dist, defines the given topology on X.
Equivalently, a sequence {x,} in X converges to a point x in the given

topology if and only if disty(x,, x) converges to 0.

We conclude this section with some remarks on reparametrization. Let
y: la, b] — X

be a piecewise C! path in X. To reparametrize y, we may do so on each
subinterval where y is actually C', so assume y is C!. Let

: [¢, d] — la, b]

be a C' map such that ¢(c) =a and ¢(d) =b. Then yog is C!, and is
called a reparametrization of y. The chain rule shows that

L(yo¢) = L(y).



[VII, §6] THE RIEMANNIAN DISTANCE 191

Define the function s: [a, b)) — R by

s(0) :J Oll, d,  so s(b) = L=L(y).

Then s is monotone and s(a) = 0, while s(b) = L(y). Suppose that there is
only a finite number of values ¢ € [, b] such that y'(f) = 0. We may then
break up [a, b] into subintervals where y’(¢) # 0 except at the end points of
the subintervals. Consider each subinterval separately, and say

a<a <by<b

with y/(¢) # 0 for ¢ € (a1, b1). Let s(a;) be the length of the curve over the
interval [a, a;]. Define

t
S(t):s(al)+J 1Y), di - for a <t<by.
a) :

Then s is strictly increasing, and therefore the inverse function 7 = ¢(s) is
defined over the interval. Thus we can reparametrize the curve by the
variable s over the interval q; £t £ by, with the variable s satisfying

s{a)) £ 5 < s(by).
Thus the whole path y on [a, b] is reparametrized by another path
yog: [0, L] - X
via a piecewise map f: [0, L] — [a, b], such that
[(rop) (), =1 and  Li(yoy)=s.

We now define a path y: [a, b)) — X to be parametrized by arc length if
Hy’(t)”g =1 for all t€ [a, b]. We see that starting with any path y, with
the condition that there is only a finite number of points where y'(¢) =0
for convenience, there is a reparametrization of the path by arc length.

Let f: Y — X be a CP map with p = 1. We shall deal with several
notions of isomorphisms in different categories, so in the C?” category,
we may call f a differential morphism. Suppose (X, g) and (Y, h) are
Riemannian manifolds. We say that f is an isometry, or a differential
metric isomorphism if f is a differential isomorphism and f*(g) = h. If f
1S an isometry, then it is immediate that f preserves distances, i.e. that

disty (f(»1), f(»2)) = disty(y1, y2)  forall y;, €Y.
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Note that there is another circumstance of interest with somewhat weaker
conditions when f: Y — X is an immersion, so induces an injection
Tf(y): T,Y — Ty, X for every ye Y, and we can speak of f being a
metric immersion if f*(g) = h. It may even happen that f is a local
differential isomorphism at each point of y, as for instance if f is covering
map. In such a case, / may be a local isometry, but not a global one,
whereby f may not preserve distances on all of Y, possibly because two
points y; # y» may have the same image f(y1) = f(y2).

VIl, §7. THE CANONICAL SPRAY

We now come back to the pseudo Riemannian case.

Let X be a pseudo Riemannian manifold, modeled on the self dual
space E. The scalar product {, ) in E identifies E with its dual EY. The
metric on X gives a toplinear isomorphism of each tangent space 7,(X)
with TY (X). If we work locally with X = U open in E and we make the
identification

T(U)=UxE and T (U)y=UxEY =T(U)

then the metric gives a VB-isomorphism

h: T(U) — T(U)
by means of a morphism

g: U— L(E,E)
such that A(x, ) = (x,g(x)v). (In the finite dimensional case, with respect
to an orthonormal basis, g(x) is represented by a symmetric matrix
(g5(x)), so the notation here fits what’s in other books with their g;.) The
scalar product of the metric at each point x is then given by the formula

(v, w), = (v, g{x)w) = {g(x)v, w) for v, weE.

For each x e U we note that g’(x) maps E into L(E, E). For xe U and
u, ve E we write

(g'(x)u)(v) = g'(x)u-v = g'(x)(u, v).

From the symmetry of g, differentiating the symmetry relation of the
scalar product, we find that for all u, v, weE,

(9" (x)u-w, vy = {g'(x)u- v, w).
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So we can interchange the last two arguments in the scalar product
without changing the value.
Observe that locally, the tangent linear map

T(h): T(T(U)) — T(T(U))
1s then given by

T(h): (x, v, w1, ua) — (x, g(x)v, ur, g'(X)ur - v+ g(X)u2).

If we pull back the canonical 2-form described in Proposition 7.2 of
Chapter V from TV (U)~ T(U) to T(U) by means of 4 then its de-
scription locally can be written on U x E in the following manner.

(1) Q) (1, u2) x (w1, wa)) = (u1, g(x)wa) — (u2, g(x)w1)
—{g' (X)uy - v, w) + {g'(X)w1 - v, 1y).

From the simple formula giving our canonical 2-form on the cotangent
bundle in Chapter V, we see at once that it is nonsingular on 7'(U). Since
h is a VB-isomorphism, it follows that the pull-back of this 2-form to the
tangent bundle is also non-singular.

We shall now apply the results of the preceding section. To do so,
we construct a l-form on T(X). Indeed, we have a function (kinetic
energy!)

K: T(X)—>R

given by K(v)=1(v,v), if v is in T\. Then dK is a l-form. By
Proposition 6.1 of Chapter V, it corresponds to a vector field on 7(X),
and we contend:

Theorem 7.1. The vector field F on T(X) corresponding to —dK under
the canonical 2-form is a spray over X, called the canonical spray.

Proof. We work locally. We take U open in E and have the double
tangent bundle

(U x E) x (E x E)

|

U x E

|

U.
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Our function K can be written

K(X, l)) = %<U, U)x = %(U’ g(x)v>7
and dK at a point (x, v) is simply the ordinary derivative
DK(x,v): ExE — R.

The derivative DK is completely described by the two partial derivatives,
and we have

DK(x, v) - (wi, wa) = D1K(x, v) - w; + D2K(x, v) - wy.
From the definition of derivative, we find

DiK(x, v)-wi =1{v, g’(x)w; - v)

Dy K (x, v) - wy = (wa, g(x)v) = (v, g(x)w)).

We use the notation of Proposition 3.2 of Chapter IV. We can represent
the vector field F corresponding to dK under the canonical 2-form Q by
a morphism f: U x E — E x E, which we write in terms of its two
components:

S(x, 0) = (fl(xs U)’f2(xv U)) = (uy, u).

Then by definition:

(2) <Q<x’v), (ﬁ(x, v), f2(x, b)) x (wr, wz)> = (DK (x, v), (w1, w2))
= D1K(x, v) - w1 + (v, g(x)wa).

Comparing expressions (1) to (2), we find that as functions of w; they have
only one term on the right side depending on w,. From the equality of the
two expressions, we conclude that

(fi(x, ), g(x)wa) = (v, g(x)w2)

for all wy, and hence that f(x, v) = v, whence our vector field F is a
second order vector field on X.

Again we compare expression (1) and (2), using the fact just proved
that u; = f1(x, v) = v. Setting the right sides of the two expressions equal
to each other, and using u; = fo(u, v), we obtain:
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Proposition 7.2. In the chart U, let f=(fi,f/2): UXE—>EXxE
represent F. Then f>(x, v) is the unique vector such that for all w; € E
we have:

(f2(x, 0), g(x)wi) = 3(g"(X)w1 - v, v) = (g'(x) v v, wr).

From this one sees that f; is homogeneous of degree 2 in the second
variable v, in other words that it represents a spray. This concludes the
proof of Theorem 7.1.

Remark. Having represented fy 2(x, v) in the chart, we could also
represent he associated bilinear map By. We shall give the formula for
By in the context of Theorem 4.2 of Chapter VIII.



CHAPTER VI

Covariant Derivatives and
Geodesics

Throughout this chapter, by a manifold, we shall mean a C* manifold,
for simplicity of language. Vector fields, forms and other objects will also
be assumed to be C™ unless otherwise specified. We let X be a manifold.
We denote the R-vector space of vector fields by T'T(X). Observe that

I'T(X) is also a module over the ring of functions § = F*(X) = Fu(X).
We let

n. TX - X

be the natural map of the tangent bundle onto X.

Viil, §1. BASIC PROPERTIES

By a covariant derivative D we mean an R-bilinear map
D: TT(X)xI'T(X) - TT(X),
denoted by (&, #) — D¢#, satisfying the two conditions:

COVD 1. (a) In the first variable &, Den is Fu-linear.
(b) For a function ¢, define D:p = &p = L:¢ to be the Lie
derivative of the function. Then in the second variable 7,

D;7 is a derivation. Thus (a) and (b) can be written in the
form:

Dy =9Den - and  De(on) = (Deg)n + ¢Den.
COVD 2. Denp— D¢ = [€, ).
196
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Remark. This second condition can be eliminated to give rise to a more
general notion, following the ideas of a connection as described at the end
of Chapter IV, §3. However, we concentrate here on what we need for
some basic results, rather than develop systematically the general theory of
connections.

Having defined D: on functions and vector fields, we may extend the
definition to all differential forms, or even to multilinear tensor fields. Let
w be in TL"(T(X)), ie. w is a multilinear tensor field on X, not nec-
essarily alternating. We define Dsw by giving its value on vector fields
M1y---,1,, namely

r
(De)(ny,---,1m,) = Le(@nys---,m,)) = D @y, Deryy 1)
j=1

The definition of D; is such that D, satisfies the derivation property with
respect to the r+ 1 variables w, #y,...,7,, that is

De(w(ny,--1n,)) = (Dew)(ny, - -om,) + > @y, -, Denyy o 11,).
J=1

Recall that D = % on functions, as on the left side of this equation.
Looking in a local chart shows that D:w is again a muitilinear tensor
field. It is immediate from the definition that if w is alternating, then so is
D:w. In particular, D, is a derivation with respect to contractions and it is
also a derivation with respect to the wedge product, that is:

COVD 3. Ds(wony) = (Dsw)on +wo Deny.

COVD 4. On the algebra of alternating forms, the covariant derivative
D; is a derivation, in the sense that for two forms w and y,
we have

Ds(w A y) =Dew Ay + @ A Dey.

The proof comes directly from the definition of the wedge product in
Chapter V, §3. In the finite dimensional case, when a form is a sum of
decomposable forms, i.e. wedge products of forms of degree 0 and 1, it
follows that the above definition is the unique extension of D: to the
algebra of differential forms. Furthermore, similarly to the formula of
Proposition 5.1 of Chapter V, for the Lie derivative of a form, one has:
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COVD 5. (Zew)(m, .-, n,)

(DCCO nlv"'anr +Z ’71a- -7D7I;£""7’7r)’

which is an alternatxve to

g«f(w(ﬂlv"'vnr)) = (wa)(ﬂlr"anr)

+Z }717“' C’?l""7’7")‘

COVD 6. (dw)(&, &1,-- ., &)

_Z DC, é]v"'»éi—héOa éi+17"'7ér)'

Proof. One uses the formulas given in propositions of Chapter V,
Proposition 3.2, for dw, and Proposition 5.1 for the Lie derivative. One
replaces brackets [f, y| by Dgy — D,f. The desired formulas drop out.
Note that only COVD 2 has been used in the proof.

Next we give a finite dimensional formula. Recall that a frame of
vector fields &;,...,¢&, is such that for each x, {&(x),...,&,(x)} is a basis
of T.X.

Proposition 1.1. Ler {&y,...,&,} be a frame of vector fields. Let
{A1, ..., A} be the dual frame of 1-forms (so A;(&;) = &;). For any form

we L (X) we have
n
= Z Ai A Déiw
i=1

Proof. Let d'w =734 A Dzw. Then d’ defines an anti-derivation of
the alternating algebra of forms, that is if y € &/%(x) for any ¢, then

donry)=do) A+ (-1)o Andy.

Furthermore, d’ =d on functions (as is immediately verified), and we
verify that d' =d on «#'(X) as follows:

(d'w)(& n) =Y (4 A Dgw)(& n)
=Y " [4(&)(Dg, 1) = i) (Dew, &)
=Y [(Die@, n) — (Dimw; &)]
= (Dew,n) — (Dyw, &)
= (dw)(&, n) by COVD 6,
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which concludes the proof for 1-forms. Since 1-forms generate the algebra
of forms in the finite dimensional case, the proposition is proved in
general.

The above finite dimensional formula won’t be used until we meet
strictly finite dimensional results, in connection with volume forms
and integration. We included it here for completeness of the general
formalism. We now return to the general case which may be infinite
dimensional.

We can extend the covariant derivative to 7X-valued forms i.e. sections
of the bundle L"(TX, TX). If w is such a section, we define D:w by its
values on vector fields #,,...,7n, to be

r

(Déw)(”h"'vnr) = Df(w(”h"w’?r» - Z w(”lv""DC”jw'w”r)’
=

so D satisfies the derivation property with respect to the r + 1 variables o,
Ms---,1,. We note that w(n,,...,n,) e [TX is a vector field, so we know
how to apply the covariant derivative D;(w(y,,...,7,)) instead of
ZLe(w(ny,...,n,)) for ordinary R-valued forms, in which case w(y,,...,7,)
i1s a function on X. When w is TX-valued, we have on the other hand

g&(w(’hw--,’?r)) = [é» w(”lv"‘v”r)]‘

A local formula will be given in Proposition 2.2.

Viil, §2. SPRAYS AND COVARIANT DERIVATIVES

Let F be a spray over a manifold X. In a chart U, we index geometric
objects by U to indicate their representatives in the chart. Thus the
representative &y of a vector field over U is a morphism

¢y U—E.

Similarly, we have the symmetric bilinear map associated with the spray,
and its representative

By(x) = %Dgfu,z(% 0),

where f; , is the second component of the representative for the spray, as
described in Chapter IV, §3.

Theorem 2.1. Given a spray F over X, there exists a unique covariant
derivative D such that in a chart U, the derivative is given by the local
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Sformula
(D) y(x) = ny(x)Eu(x) — Bu(x; Eu(x), ny(x)).

Or, suppressing the index U for simplicity, and thus using &, n to denote
the local representatives of the vector fields in the chart, we have

(Den)(x) = n'(x)&(x) = B(x; &(x),7(x))
or simply
Den=n"-&— B n).

Proof. Let us define Dsy over U by the formula of the theorem. It is
immediately verified that D:y is a vector field over U, and that the
association (&, #) — Dy is a covariant derivative over U: It is Fu(U)-
linear in the variable &, it is a derivation in the variable # with respect to
multiplication by functions, and we have

Den — Dy =&, n).

This last property follows from the representation of the bracket in a chart
given by Proposition 1.3 of Chapter V. Thus a spray gives rise to a
covariant derivative in a chart, in a natural fashion.

We now claim that when the spray is given globally, there exists a
unique covariant derivative on the manifold X which has the above
representation in a chart. For this we must verify how the local rep-
resentation changes under a change of chart. Let

h: U—=V

be a C*®-isomorphism, i.e. a change of chart. Then we claim that the
natural image of Dg,#n; under the change of chart is D¢, 7, so that we
may define D:n for any two vector fields on the manifold via the local
representations.

In other words, we have to verify that

(De,ny ) (h(x)) = 1’ (x)(Deyny) ().
But we have
’7V(h(x)) = h'(x)ny(x),

whence by the rule for the derivative of a product, we obtain

(ny 0 h)' (x) = B'(x)ny (x) + ' (x)np(x).

Hence putting v = &y(x), w=ny(x), we get by using the change of
variable formula for a spray in a chart, Proposition 3.3 of Chapter IV,
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together with the fact that A”(x) is a symmetric bilinear map:

(De,ny) (h(x)) = 1y (h()) A (x)Eu (x) = By (h(x); B (x)v, h'(x)w)
= (ny o h)' (x)u(x) = K"(x)(v, w) — B (x) By (x; v, w)
= H'(x)(w, v) + h'(X)ny (x)Eu(x)
= H'(x)(v, w) = h'(x)Bu(x; v, )
= ' (x)(ny(x)Eu(x) = Bu(x; v, w))

(appreciate the cancellation!)
= h'(x)(Den) y(x),

which proves the change of variable formula, and therefore concludes the
proof of Theorem 2.1.

The covariant derivative defined in Theorem 2.1 will be called the
covariant derivative determined by the spray, or associated with the spray.
As mentioned previously, one could give a similar definition of a covariant
derivative associated to any connection (even without the symmetry
condition on the bilinear map).

There is of course an analogous local representation for differential
forms as follows.

Proposition 2.2. Let welL(TX,R) or TL(TX,TX). Let ¢,
Nys...,1, be vector fields over X. If w e TL"(TX, R), then in a chart
U we have the formula

(Déw)U(nlU""a}?rU)

r

= w;](éU)(ﬂlUr"v']rU) +Z wU(’llU?"'vBU(éUv ”jU)""aan)‘
j=1

If 0eTL(TX, TX), then

(Dew) y(my, - - - Myy) = same expression — Bu(fua oy(my,--- 777rU))'

Proof. This comes directly from the definitions in §1. Observe that in
applying the definitions, the sum

Z wU(’?]U7~"7’7{U'ér";”rU)
j=1

occurs twice, once with a + sign and once with a — sign, so cancels in the
end.
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For the limited purposes of this book, we will not need the proposition.
It has an analogue for lifts of curves, which we shall discuss briefly at the
end of §3.

Converse, from covariant derivatives to sprays

We now wish to discuss the converse of Theorem 2.1, and for this purpose,
we have to make general remarks on localization. Let E be a Banach
space. We say that E admits cut off functions if given two positive real
numbers 0 < r < s, there exists a C*-function (simply called function) ¢
such that ¢ = 1 on the ball B,(0) and ¢ =0 on the complement of B;(0).
Given any point xy € E, we may then find similarly a function which is 1
in the ball B,(xp) and 0 outside B;(xg). If X is a manifold modeled on
E, then one can then find such cut off functions equal to 1 in a given
neighborhood of a point, and 0 outside a slightly larger neighborhood.
Manifolds modelled on a Hilbert space, and especially finite dimensional
manifolds, admit cut off functions.

Assume that X admits cut off functions. Let E be a vector bundle over
X, and let & be a section of E. Let xo € X. Let ¢ a cut off function near
xp. Then ¢& is a section of E, having the same values as ¢ in a
neighborhood of xp. Suppose that £ = T7X and that D is a covariant
derivative. Then

(Den)(x) = (Dyen)(x)

for all x in a sufficiently small neighborhood of xj, because D is Fu-linear
in the first variable. Since ¢ is constant near X, it follows that

(Z:0)(x)=0 for x near x,

and it therefore follows also that

(Deen)) (x) = (Den)(x)

for all x sufficiently close to xp.

Now given an open neighborhood U of xy corresponding to a chart,
we pick out off functions ¢, ¥ near xq such that the supports of ¢, ¥ are
contained in Up, and ¢, ¥ =1 on an open neighborhood U of x whose
closure is contained in Uy. Then U also corresponds to a chart, and we
may compute

(Den)(x) = (Dpe(ym))(x)  for xeU.

Thus the determination of the values of a covariant derivative can be
carried out locally in a chart. We still need a criterion when the value of
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the covariant derivative at a given point depends only on the value of ¢ at
the given point.

Lemma 2.3. Let E, F be vector bundles over X, with E finite dimensional
and X admitting cut off functions. Let

H: TE—-TF

be a linear map which is Fu(X)-linear, that is H(p&) = pH(E) for
@ € Fu. Given a point x € X, the value H(&)(x) depends only on the value
¢(x).

Proof. 1t suffices to prove that if &(xo) =0 then H(&)(xo) =0. There
exists a cut off function ¢ near xy, by assumption, so we may give the
proof locally. By assumption, there exists a finite number of sections
el,...,e, of E which form a basis for the sections locally, so there exist
functions ¢,,...,p, such that

E=ge+ -+ e
locally. Then
H() =pH(er) +- -+ 9.Hler).

The condition &(xp) = 0 is equivalent with the conditions ¢;(x) = 0 for all
i. Hence H(&)(xp) =0, thus proving the lemma.

Observe that when we obtain a covariant derivative from a spray, the
value of the covariant derivative at a point x depends only on the value of
the vector field £(x) (a derivative of » however enters). This was clear
from the local formula in Theorem 2.1, because for instance By(x; u, w) is
defined for arbitrary vectors u, w which can then be taken to be the values
Eu(x) and 5y (x) respectively.

Conversely, we are now interested in reversing the procedure. Speci-
fically, let D be a covariant derivative. We assume the existence of cut off
functions throughout. In a chart over an open set U in E, define

(BU) BU(x; év ’7) - W,(x)f(x) - (DfU”U)(x)

It is immediately verified from the two properties of a covariant derivative
that By(x) is symmetric in &y, 7, by COVD 2, and then By (x) is Fu(U)-
bilinear in &y, 5. Given vectors u, w € E one wants to define

By(x)(u, w) = By(x; &(x), n(x))

for any vector fields &, # such that &(x) = u and #(x) = w. At this point,
we need to know that the value on the right of (By) is independent of the
vector fields &, # chosen so that £(x) = v and #(x) = w. By Lemma 2.3 we
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can certainly achieve this in the finite dimensional case, and in that case
we obtain:

Theorem 2.4. Assume X finite dimensional. Then the association of a
covariant derivative to a spray establishes a bijection between sprays over
X and covariant derivatives.

In practice, Theorem 2.4 is not that useful (and it will NOT be used
in this book) because one either starts from a spray to get a covariant
derivative, or if one starts from some natural covariant derivative, and one
needs the spray, the situation provides the tools to show that a spray can
indeed be defined in a natural manner to give the covariant derivative. We
shall see an example of this in §4, when we discuss the Riemannian
covariant derivative. Furthermore, the finite dimensional device used in
Lemma 2.3 has had historically the unfortunate effect of obscuring the
natural bilinear map B, thus obscuring a fundamental structure in ex-
positions of differential geometry. Quite generally, connections on any
vector bundle give rise to covariant derivatives. These are applicable to
many contexts of topology and analysis, see for example [BGV 92],
Chapter I, and also for instance [MokSY 93] for an entirely different
direction.

Vill, §3. DERIVATIVE ALONG A CURVE
AND PARALLELISM

Instead of using vector fields &, # we may carry out a similar construction
of a differentiation dealing only with curves, as follows. (For arbitrary
maps instead of curves, see Eliasson [El 67].) We continue to denote by F
a spray over X. Let n: TX — X be the tangent bundle, and let

o: J— X

be a C! curve. By a lift y of « to 7X we mean a C! curve y: J — TX
such that 7y = «. We then also say that y lies above «. We denote the set
of lifts of o by Lift(a). It is clear that Lift(a) is a vector space over R, and
a module over the ring of functions on J. We wish to define D,y in a way
analogous to the way we defined D:# for vector fields &, #. This is done
by the next theorem. As in §2, we let By denote the bilinear map asso-
ciated to the spray in a chart U.

Theorem 3.1. There exists a unique linear map

D, : Lift(o) — Lift(a)
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which in a chart U has the expression

(D) (1) = vy (£) = Bu (1) ; @y (1), 70 (0)).

The map D, satisfies the derivation property for a C' function ¢ on J:
(Do (99)) (1) = 0" ()(Dary) (1) + 9(2)(Dary) (1)

Remark. In the present context, the local representation y, of a curve
in TU = U x E is taken to be the map on the second component, i.e.

yy: J — E.

Thus yy(?) is the ordinary derivative, with values y,(f) e E. Note that in
the case of the representation ay: J — U, we have ay(f) € E also. Thus
ag (1), yy(t) and yy, (1) are “vectors.”

Proof of Theorem 3.1. The proof is entirely analogous to the proof for
Theorem 2.1, using the local representation of the bilinear map By asso-
ciated with a spray in charts. We have to verify that the formula of
Theorem 3.1 transforms in the proper way under a change of charts, i.e.
under an isomorphism A: U — V. Note that the local representation y,
of the curve by definition is given by

yy(t) = h,(aU(t))yU(t)’

Therefore by the rule for the derivative of a product, we find:

Yy (0) = B (ap (1) (2 (1), yu (1) + A (o (1), y(1)).

Hence using the transformation rule from By to By, Proposition 3.3 of
Chapter 1V, we get

(Dary) () = (1) = By (a(t) 5 2y (1), 7y (1))
=" (v (0) (o, (0), yu(0) +h' (20 (1)) 7y (1)
=" (2 () (2 (8), 7u(2))
= 1 (aw (D) Bu (a(1), agy(1), yu(1))
= h'(ay(t))(Dwy)y(f) (because the 4" term cancels!),
which proves the desired transformation formula for (Dyy), in charts.
Thus we have proved the existence of D,y as asserted. Its being a

derivation is immediate from the local representation in charts. This
concludes the proof of Theorem 3.1.
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Corollary 3.2. Let n be a vector field and suppose y(t) = n(a(t)), teJ.
Let & be a vector field on X such that o/ (ty) = &(a(to)) for some 1y € J.

Then
(Dyy)(t0) = (Den) (x(to))-

Proof. Immediate from the chain rule and the local representation of
Theorem 3.1.

Let : J — X be a C>-morphism. We say that a lift y: J — TX of « is
a-parallel if D,y = 0. In the chart U, this is equivalent to the condition
that

v (6) = Bu(au(t); ay(t), yu (),

which defines a first-order linear differential equation for y,. From
Chapter IV, §3, (3), we conclude:

A curve o is a geodesic for the spray if and only if Dyo' =0, that is, if
and only if & is a-parallel.

Theorem 3.3. Let o: J — X be a C? curve in X. Let tyeJ. Given
v e Ty X, there exists a unique lift y,: J — TX which is a-paralled and
such that y,(ty) = v. Let Par(a) denote the set of a-parallel lifts of a. The
map vy, is a linear isomorphism of Ty, X with Par(«).

Proof. The existence and uniqueness simply comes from the existence
and uniqueness of solutions of differential equations. Note that from the
linearity of the equation, the integral curve y is defined on the whole
interval of definition J by Proposition 1.9 of Chapter IV.

Of course, the notion of parallelism is with respect to the given spray,
which has been left out of the notation. We express the linearity of
Theorem 3.3 another way in the next theorem.

Theorem 3.4. Fix toeJ. For t€J define the map
Pl =P Tam)X — Ta(,)X by P’(v) = y([, U),

19,2

where t y(t, v) is the unique curve in TX which is o-parallel and
y(t9, v) = v. Then P' is a linear isomorphism.

Prooft We must verify that
P'(sv) = sP'(v) and P'(v+w) = P'(v) + P'(w) forseR and v,we T, X.

But these properties follow at once from the linearity of the differential
equation satisfied by y, and the uniqueness theorem for its solutions with
given initial conditions.

The map P, is called parallel translation along a.
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Multilinear tensor fields

Instead of dealing with vector fields, we may deal with 7X-valued
multilinear tensor fields, or R-valued multilinear tensor fields at essentially
no extra cost. Let E denote either TX or R. We extend D, to a linear
map

Dy Lift(x, L'(TX, E)) — Lift(a, L'(TX, E))

as follows. Let w: J — L"(TX, E) be a lift of «: J — X. Let 5,,...,7,
be lifts of « in TX (sometimes called vector fields along the curve o). We
define D, by its values on (1,...,7,) to be

(Da)y, - s1,) = Do (@1, 1,)) = S0l o, Dy, 1,).
=1

Thus D, satisfies the Leibniz rule for the derivative of a multifold product
with the r + 1 variables w, #,,...,7,. Note that if 5,...,n, are a-parallel,
s0 Dyn; =0, then the formula simplifies to

(Da)(ny,- -, 1,) = Dar (@, -, 1,)).

We shall obtain a local formula as usual. Given an index j, we define a
linear operator Cj g, of I'L"(TX, E) into itself by

(Q,B,dw)(”la"'777r) :w(”h"'7B(a;al7’7j)v"'7’7r)'

Proposition 3.5 (Local Expression). Let w = wy, n; = n;y etc. represent
the respective objects in a chart U, omitting the subscript U to simplify
the notation. Then

(Dalw)(”l"'w”r) = w/(nla"'vnr) - B(OC, alv w(”]?"'a”r))éEyTX

+Zw(771,4.‘,B(oc; o, nj),...,;yr)
=

or also

r
! !
Dyw =w — B(o; o', w)dg. 1x + g G Ba,
J=1

where 55’7‘)(:] l'fE:TX and 0 le:R

This comes from the definition at the end of §1, and the fact that the
ordinary derivative

(wU(”1U7 s 1’7rU)),
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in the chart is obtained by the Leibniz rule (suppressing the index U)
(0)(771, T ”7’))’ = wl(ﬂlﬂ e 7’7r) + Zw(nla e 7’7;v te )77r)'

Corollary 3.6. Let E=TX or R as above. Let Q: X — L'(TX, E) be
a section (so a tensor field), and let w(t) = Q(«(r)), teJ. Let tyeJ.
Let & be a vector field such that o' (ty) = &(a(ty)). Then

(Dwo)(1o) = (DeQ)((t0)).

Proof. Immediate from the chain rule and the local representation
formula.

A lift y: J - L"(TX, E) is called «a-parallel if D,y =0. The local
expression in a chart U shows that the condition D,y =0 is locally
equivalent to the condition

y' = Ba; o', 7)) =Y G pay.
=1

Of course, we have suppressed the subscript U from the notation. Thus
the condition of being a-parallel defines locally an ordinary linear differ-
ential equation, and we obtain from the standard existence and uniqueness
theorems:

Theorem 3.7. Let tyeJ and wo € TL (T, X, Eyyy). There exists a
unique curve y: J — L'(TX, E) which is a-parallel and such that y(4,) =
@q. Denote this curve by y, . The map

CU[) = ya)o

establishes a linear isomorphism between the Banach space
L' (Tyu)X, Eyy,)) and the space of lifts Lift(fx, L'(TX, E))

We have now reached a point where we have the parallelism analogous
to the simplest case of the tangent bundle as in Theorem 3.4.

Theorem 3.8. Let the notation be as in Theorem 3.7. For t € J define the
map
P:o,u = P;: Lr(Ta(to)X» Ea(to)) - Lr(sz(t)Xa Ea(t))
by
P (o) = y(1, w),
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