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Foreword

This book is meant as a text for a first year graduate course in analysis.
Any standard course in undergraduate analysis will constitute sufficient
preparation for its understanding, for instance, my Undergraduate Anal-
ysis. 1 assume that the reader is acquainted with notions of uniform con-
vergence and the like.

In this third edition, I have reorganized the book by covering inte-
gration before functional analysis. Such a rearrangement fits the way
courses are taught in all the places I know of I have added a number of
examples and exercises, as well as some material about integration on the
real line (e.g. on Dirac sequence approximation and on Fourier analysis),
and some material on functional analysis (e.g. the theory of the Gelfand
transform in Chapter XVI). These upgrade previous exercises to sections
in the text.

In a sense, the subject matter covers the same topics as elementary
calculus, viz. linear algebra, differentiation and integration. This time,
however, these subjects are treated in a manner suitable for the training
of professionals, i.e. people who will use the tools in further investiga-
tions, be it in mathematics, or physics, or what have you.

In the first part, we begin with point set topology, essential for all
analysis, and we cover the most important results.

I am selective here, since this part is regarded as a tool, especially
Chapters I and II. Many results are easy, and are less essential than
those in the text. They have been given in exercises, which are designed
to acquire facility in routine techniques and to give flexibility for those
who want to cover some of them at greater length. The point set topol-
ogy simply deals with the basic notions of continuity, open and closed
sets, connectedness, compactness, and continuous functions. The chapter
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concerning continuous functions on compact sets properly emphasizes
results which already mix analysis and uniform convergence with the
language of point set topology.

In the second part, Chapters IV and V, we describe briefly the two
basic linear spaces of analysis, namely Banach spaces and Hilbert spaces.

The next part deals extensively with integration.

We begin with the development of the integral. The fashion has been
to emphasize positivity and ordering properties (increasing and decreas-
ing sequences). I find this excessive. The treatment given here attempts
to give a proper balance between L!-convergence and positivity. For
more detailed comments, see the introduction to Part Three and Chapter
VL

The chapters on applications of integration and distributions provide
concrete examples and choices for leading the course in other directions,
at the taste of the lecturer. The general theory of integration in mea-
sured spaces (with respect to a given positive measure) alternates with
chapters giving specific results of integration on euclidean spaces or the
real line. Neither is slighted at the expense of the other. In this third
edition, I have added some material on functions of bounded variation,
and T have emphasized convolutions and the approximation by Dirac
sequences or families even more than in the previous editions, for in-
stance, in Chapter VIII, §2.

For want of a better place, the calculus (with values in a Banach
space) now occurs as a separate part after dealing with integration, and
before the functional analysis.

The differential calculus is done because at best, most people will only
be acquainted with it only in euclidean space, and incompletely at that.
More importantly, the calculus in Banach spaces has acquired consider-
able importance in the last two decades, because of many applications
like Morse theory, the calculus of variations, and the Nash—~Moser im-
plicit mapping theorem, which lies even further in this direction since one
has to deal with more general spaces than Banach spaces. These results
pertain to the geometry of function spaces. Cf. the exercises of Chapter
XIV for simpler applications.

The next part deals with functional analysis. The purpose here is
twofold. We place the linear algebra in an infinite dimensional setting
where continuity assumptions are made on the linear maps, and we show
how one can “linearize” a problem by taking derivatives, again in a
setting where the theory can be applied to function spaces. This part
includes several major spectral theorems of analysis, showing how we can
extend to the infinite dimensional case certain results of finite dimen-
sional linear algebra. The compact and Fredholm operators have appli-
cations to integral operators and partial differential elliptic operators (e.g.
in papers of Atiyah—Singer and Atiyah—Bott).

Chapters XIX and XXIX, on unbounded hermitian operators, combine
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both the linear algebra and integration theory in the study of such
operators. One may view the treatment of spectral measures as providing
an example of general integration theory on locally compact spaces,
whereby a measure is obtained from a functional on the space of contin-
uous functions with compact support.

I find it appropriate to introduce students to differentiable manifolds
during this first year graduate analysis course, not only because these
objects are of interest to differential geometers or differential topologists,
but because global analysis on manifolds has come into its own, both in
its integral and differential aspects. It is therefore desirable to integrate
manifolds in analysis courses, and I have done this in the last part, which
may also be viewed as providing a good application of integration theory.

A number of examples are given in the text but many interesting
examples are also given in the exercises (for instance, explicit formulas for
approximations whose existence one knows abstractly by the Weierstrass—
Stone theorem; integral operators of various kinds; etc). The exercises
should be viewed as an integral part of the book. Note that Chapters
XIX and XX, giving the spectral measure, can be viewed as providing
an example for many notions which have been discussed previously:
operators in Hilbert space, measures, and convolutions. At the same
time, these results lead directly into the real analysis of the working
mathematician.

As usual, T have avoided as far as possible building long chains of
logical interdependence, and have made chapters as logically independent
as possible, so that courses which run rapidly through certain chapters,
omitting some material, can cover later chapters without being logically
inconvenienced.

The present book can be used for a two-semester course, omitting
some material. I hope I have given a suitable overview of the basic tools
of analysis. There might be some reason to include other topics, such as
the basic theorems concerning elliptic operators. I have omitted this
topic and some others, partly because the appendices to my SL,(R)
constitutes a sub-book which contains these topics, and partly because
there is no time to cover them in the basic one year course addressed to
graduate students.

The present book can also be used as a reference for basic analysis,
since it offers the reader the opportunity to select various topics without
reading the entire book. The subject matter is organized so that it makes
the topics available to as wide an audience as possible.

There are many very good books in intermediate analysis, and inter-
esting research papers, which can be read immediately after the present
course. A partial list is given in the Bibliography. In fact, the determina-
tion of the material included in this Real and Functional Analysis has
been greatly motivated by the existence of these papers and books, and
by the need to provide the necessary background for them.
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Finally, I thank all those people who have made valuable comments
and corrections, especially Keith Conrad, Martin Mohlenkamp, Takesi
Yamanaka, and Stephen Chiappari, who reviewed the book for Springer-
Verlag.

New Haven 1993/1996 SERGE LANG
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PART ONE

General Topology



CHAPTER |

Sets

I, §1. SOME BASIC TERMINOLOGY

We assume that the reader understands the meaning of the word “set”,
and in this chapter, summarize briefly the basic properties of sets and
operations between sets. We denote the empty set by ¢F. A subset S’ of
S is said to be proper if S’ # S. We write S’ S or S = §' to denote the
fact that S’ is a subset of S.

Let S, T be sets. A mapping or map f: T — S is an association which
to each element x € T associates an element of S, denoted by f(x), and
called the value of f at x, or the image of x under f. If T’ is a subset of
T, we denote by f(T') the subset of S consisting of all elements f(x) for
x € T". The association of f(x) to x is denoted by the special arrow

x> f(x).

We usually reserve the word function for a mapping whose values are in
the real or complex numbers. The characteristic function of a subset S’ of
S is the function y such that y(x) =1 if xe S and y(x)=0if x¢S. We
often write yg for this function.

Let X, Y be sets. A map f: X — Y is said to be injective if for all x,
x' € X with x # x’ we have f(x) # f(x’). We say that f is surjective if
f(X) =Y, ie. if the image of f is all of Y. We say that f is bijective if it
is both injective and surjective. As usual, one should index a map f by
its set of arrival and set of departure to have absolutely correct notation,
but this is too clumsy, and the context is supposed to make it clear what
these sets are. For instance, let R denote the real numbers, and R’ the
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real numbers = 0. The map
fR:R->R
given by x— x? is not surjective, but the map
fR:R->R

given by the same formula is surjective.
If f: X > Y is a map and S a subset of X, we denote by

f18

the restriction of f to S, namely the map f viewed as a map defined only
on S. For instance, if f: R — R’ is the map x> x2%, then f is not injec-
tive, but f|R’ is injective. We often let fg = fxs be the function equal to
f on S and 0 outside S.

A composite of injective maps is injective, and a composite of surjec-
tive maps is surjective. Hence a composite of bijective maps is bijective.

We denote by Q, Z the sets of rational numbers and integers respec-
tively. We denote by Z* the set of positive integers (integers > 0), and
similarly by R* the set of positive reals. We denote by N the set of
natural numbers (integers = 0), and by C the complex numbers. A map-
ping into R or C will be called a function.

Let S and I be sets. By a family of elements of S, indexed by I, one
means simply a map f:I— S. However, when we speak of a family, we
write f(i) as f;, and also use the notation {f;};., to denote the family.

Example 1. Let S be the set consisting of the single element 3. Let
I ={1,...,n} be the set of integers from 1 to n. A family of elements of
S, indexed by I, can then be written {a;};—, _, with each a; = 3. Note
that a family is different from a subset. The same element of S may
receive distinct indices.

A family of elements of a set S indexed by positive integers, or non-
negative integers, is also called a sequence.

Example 2. A sequence of real numbers is written frequently in the
form

{x17x2""} or {xn}nél

and stands for the map f:Z* — R such that f(i) = x;. As before, note
that a sequence can have all its elements equal to each other, that is

(1,1,1,...}

is a sequence of integers, with x; = 1 for each ie Z*.
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We define a family of sets indexed by a set I in the same manner, that
is, a family of sets indexed by I is an assignment
i—S;
which to each i e I associates a set S;. The sets S; may or may not have
elements in common, and it is conceivable that they may all be equal.
As before, we write the family {S;},;.,.
We can define the intersection and union of families of sets, just as for

the intersection and union of a finite number of sets. Thus, if {S;};,.; is a
family of sets, we define the intersection of this family to be the set

(s

iel
consisting of all elements x which lie in all S;. We define the union

Us:
iel
to be the set consisting of all x such that x lies in some ;.

If S, S’ are sets, we define S x S’ to be the set of all pairs (x, y) with
xe S and ye §'. We can define finite products in a similar way. If S;,
S,, ... is a sequence of sets, we define the product

I1s;

i=1

to be the set of all sequences (x,, Xx,,...) with x; € S;. Similarly, if I is an
indexing set, and {S;};.; a family of sets, we define the product

[15;

iel

to be the set of all families {x;};.; with x; € §;.
Let X, Y, Z be sets. We have the formula

XuY)yxZ=(Xx2Z)u(Y x 2).

To prove this, let (w,z)e (X UY)x Z with we XU Y and zeZ. Then
weX orweY. Saywe X. Then (w,z)e X x Z. Thus

XuY)xZc(X x2Z)u(Y x Z).

Conversely, X x Z is contained in (X U Y) x Z and so is Y x Z. Hence
their union is contained in (X U Y) x Z, thereby proving our assertion.
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We say that two sets X, Y are disjoint if their intersection is empty.
We say that a union X U Y is disjoint if X and Y are disjoint. Note that
if X, Y are disjoint, then (X x Z) and (Y x Z) are disjoint.

We can take products with arbitrary families. For instance, if {X;};c,
is a family of sets, then

<U X,->XZ=U(X,-><Z).

iel iel

If the family {X;};., is disjoint (that is X;nX; is empty if i #j for i,
j eI, then the sets X; x Z are also disjoint.
We have similar formulas for intersections. For instance,

XnY)XxZ=(X xZ)n(Y x 2).

We leave the proof to the reader.

Let X be a set and Y a subset. The complement of Y in X, denoted
by %xY, or X — Y, is the set of all elements x € X such that x¢ Y. If Y,
Z are subsets of X, then we have the following formulas:

E(YLZ)=%xY NbxZ,
C(YNZ)=6xYUbZ.

These are essentially reformulations of definitions. For instance, suppose
xeX and x¢(YuZ). Then x¢Y and x¢Z. Hence xe by YN GxZ.
Conversely, if xe .Y n%xZ, then x lies neither in Y nor in Z, and
hence x € €x(Y U Z). This proves the first formula. We leave the second
to the reader. Exercise: Formulate these formulas for the complement of
the union of a family of sets, and the complement of the intersection of a
family of sets.

Let A, B be sets and f: A — B a mapping. If Y is a subset of B, we
define f~1(Y) to be the set of all x € A such that f(x) e Y. It may be that
f7Y(Y) is empty, of course. We call f~(Y) the inverse image of Y (under
f). If f is injective, and Y consists of one element y, then f~'({y}) is
either empty or has precisely one element.

The following statements are easily proved:

If f: A— B is a map, and Y, Z are subsets of B, then

[FYuz)=f(Muf@),
[ nZ)=f (V) fHD)

More generally, if {Y;};., is a family of subsets of B, then

f (U Y) =/,

iel iel
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and similarly for the intersection. Furthermore, if we denote by Y — Z
the set of all elements ye Y and y ¢ Z, then

Y =2)= YY) - [(2).
In particular,
[ &Z) =%,/ (2).

Thus the operation f~! commutes with all set theoretic operations.

I, §2. DENUMERABLE SETS

Let n be a positive integer. Let J, be the set consisting of all integers k,
1<k=<n If Sis a set, we say that S has n clements if there is a
bijection between S and J,. Such a bijection associates with each integer
k as above an element of S, say k+>aq,. Thus we may use J, to “count”
S. Part of what we assume about the basic facts concerning positive
integers is that if § has n elements, then the integer n is uniquely deter-
mined by S.

One also agrees to say that a set has 0 elements if the set is empty.

We shall say that a set S is denumerable if there exists a bijection of
S with the set of positive integers Z*. Such a bijection is then said to
enumerate the set S. It is a mapping

n—a,

which to each positive integer n associates an element of S, the mapping
being injective and surjective.

If D is a denumerable set, and f: S — D is a bijection of some set S
with D, then S is also denumerable. Indeed, there is a bijection g: D —» Z*,
and hence g o f is a bijection of § with Z*.

Let T be a set. A sequence of elements of T is simply a mapping of
Z" into T. If the map is given by the association n— x,, we also write
the sequence as {x,},»;, or also {x;,x,,...}. For simplicity, we also
write {x,} for the sequence. Thus we think of the sequence as prescrib-
ing a first, second, ..., n-th element of T. We use the same braces for
sequences as for sets, but the context will always make our meaning
clear.

Examples. The even positive integers may be viewed as a sequence
{x,} if we put x,=2n for n=1, 2, .... The odd positive integers may
also be viewed as a sequence {y,} if we put y,=2n—1forn=1,2,....
In each case, the sequence gives an enumeration of the given set.

We also use the word sequence for mappings of the natural numbers
into a set, thus allowing our sequences to start from 0O instead of 1. If we
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need to specify whether a sequence starts with the O-th term or the first
term, we write

{xn}n 20 or {xn}ngl

according to the desired case. Unless otherwise specified, however, we
always assume that a sequence will start with the first term. Note
that from a sequence {x,},>, we can define a new sequence by letting
Vo= X,_y for n= 1. Then y, = x4, y, = X, .... Thus there is no essen-
tial difference between the two kinds of sequences.

Given a sequence {x,}, we call x, the n-th term of the sequence. A
sequence may very well be such that all its terms are equal. For in-
stance, if we let x, = 1 for all n = 1, we obtain the sequence {1, 1,1,...}.
Thus there is a difference between a sequence of elements in a set T, and
a subset of T. In the example just given, the set of all terms of the
sequence consists of one element, namely the single number 1.

Let {x;, x,,...} be a sequence in a set S. By a subsequence we shall
mean a sequence {x, ,X,,...} such that n; <n, <---. For instance, if
{x,} is the sequence of positive integers, x, =n, the sequence of even
positive integers {x,,} is a subsequence. ,

An enumeration of a set S is of course a sequence in S.

A set is finite if the set is empty, or if the set has n elements for some
positive integer n. If a set is not finite, it is called infinite.

Occasionally, a map of J, into a set T will be called a finite sequence
in T. A finite sequence is written as usual,

{X1s- X} or (Xi=1,...,n-

When we need to specify the distinction between finite sequences and
maps of Z* into T, we call the latter infinite sequences. Unless otherwise
specified, we shall use the word “sequence” to mean infinite sequence.

Proposition 2.1. Let D be an infinite subset of Z*. Then D is de-
numerable, and in fact there is a unique enumeration of D, namely
{ky,ky,...} such that

ki<ky,< <k, <kp <-.

Proof. We let k; be the smallest element of D. Suppose inductively
that we have defined k; <--- <k, in such a way that any element k in D
which is not equal to k,, ...,k, is > k,. We define k,,, to be the
smallest element of D which is > k,. Then the map n—k, is the desired
enumeration of D.

Corollary 2.2. Let S be a denumerable set and D an infinite subset of S.
Then D is denumerable.
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Proof. Given an enumeration of S, the subset D corresponds to a
subset of Z* in this enumeration. Using Proposition 2.1 we conclude
that we can enumerate D.

Proposition 2.3. Every infinite set contains a denumerable subset.

Proof. Let S be a infinite set. For every non-empty subset T of S, we
select a definite element ar in T. We then proceed by induction. We let
x; be the chosen element ag. Suppose that we have chosen x,, ...,x,
having the property that for each k=2, ...,n the element x, is the
selected element in the subset which is the complement of {x,,...,x;—}.
We let x,,; be the selected element in the complement of the set
{x{,...,x,}. By induction, we thus obtain an association n— x, for all
positive integers n, and since x, # x, for all k <n it follows that our
association is injective, i.e. gives an enumeration of a subset of S.

Proposition 2.4. Let D be a denumerable set, and f: D — S a surjective
mapping. Then S is denumerable or finite.

Proof. For each y € S, there exists an element x, € D such that f(x,) =
y because f is surjective. The association y+ x, is an injective mapping
of S into D, because if y, ze § and x, = x,, then

y=flx) = flx;) =z

Let g(y) = x,. The image of g is a subset of D and is denumerable.
Since g is a bijection between S and its image, it follows that S is
denumerable or finite.

Proposition 2.5. Let D be a denumerable set. Then D x D (the set of
all pairs (x, y) with x, y € D) is denumerable.

Proof. There is a bijection between D x D and Z* x Z*, so it will
suffice to prove that Z* x Z* is denumerable. Consider the mapping of
7" x Z* - 7" given by

(m, nyr—2"3™
In view of Proposition 2.1, it will suffice to prove that this mapping is
injective. Suppose 2"3™ = 2"3° for positive integers n, m, r, s. Say r <n.
Dividing both sides by 2', we obtain
2k3m — 3s

with k =n —r = 1. Then the left-hand side is even, but the right-hand
side is odd, so the assumption r < n is impossible. Similarly, we cannot
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have n <r. Hence r = n. Then we obtain 3" =3% If m>s, then 3" ° =1
which is impossible. Similarly, we cannot have s > m, whence m =s.
Hence our map is injective, as was to be proved.

Proposition 2.6. Let {D,,D,,...} be a sequence of denumerable sets.
Let S be the union of all sets D, (i=1,2,...). Then S is denumerable.

Proof. For each i=1, 2, ... we enumerate the elements of D;, as
indicated in the following notation:

Dy:{X11, X1, X135 .-}

Dy:{X51, X332, X33, .-}

D;: {xiu Xizs Xi35 }

The map f: Z* x Z* — D given by
fG.j)= Xij

is then a surjective map of Z* x Z* onto S. By Proposition 2.4, it
follows that S is denumerable.

Corollary 2.7. Let F be a non-empty finite set and D a denumerable set.
Then F x D is denumerable. If S,, S,, ... are a sequence of sets,
each of which is finite or denumerable, then the union S; LS, U is
denumerable or finite.

Proof. There is an injection of F into Z* and a bijection of D with
Z*. Hence there is an injection of F x D into Z* x Z* and we can
apply Corollary 2.2 and Proposition 2.6 to prove the first statement.
One could also define a surjective map of Z* x Z* onto F x D. As for
the second statement, each finite set is contained in some denumerable
set, so that the second statement follows from Propositions 2.1 and 2.6.

For convenience, we shall say that a set is countable if it is either finite
or denumerable.

I, §3. ZORN’S LEMMA

In order to deal efficiently with infinitely many sets simultaneously, one
needs a special property. To state it, we need some more terminology.
Let S be a set. An ordering (also called partial ordering) of (or on) S
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is a relation, written x < y, among some pairs of elements of S, having
the following properties.

ORD 1. We have x < x.
ORD 2. If x<yand y<zthen x <z
ORD 3. If x<yand y £ x then x = y.

We sometimes write y = x for x £ y. Note that we don’t require that the
relation x < y or y < x hold for every pair of elements (x, y) of S. Some
pairs may not be comparable. If the ordering satisfies this additional
property, then we say that it is a total ordering.

Example 1. Let G be a group. Let S be the set of subgroups. If H,
H' are subgroups of G, we define

H<H

if H is a subgroup of H'. One verifies immediately that this relation
defines an ordering on S. Given two subgroups, H, H' of G, we do not
necessarily have H < H or H' £ H.

Example 2. Let R be a ring, and let S be the set of left ideals of R.
We define an ordering in S in a way similar to the above, namely if L, L’
are left ideals of R, we define

L=sr
if L< L.

Example 3. Let X be a set, and S the set of subsets of X. If Y, Z are
subsets of X, we define Y<Z if Y is a subset of Z. This defines an
ordering on S.

In all these examples, the relation of ordering is said to be that of
inclusion.

In an ordered set, if x < y and x # y we then write x < y.

Let A be an ordered set, and B a subset. Then we can define an
ordering on B by defining x <y for x, ye B to hold if and only if x < y
in A. We shall say that it is the ordering on B induced by the ordering
on A, or is the restriction to B of the partial ordering of A.

Let S be an ordered set. By a least element of S (or a smallest
element) one means an element a € S such that a < x for all xe S. Simi-
larly, by a greatest element one means an element b such that x < b for
all xe S.

By a maximal element m of S one means an element such that if xe S
and x 2 m, then x =m. Note that a maximal element need not be a
greatest element. There may be many maximal elements in S, whereas if
a greatest element exists, then it is unique (proof?).
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Let S be an ordered set. We shall say that S is totally ordered if given
x, y€ S we have necessarily x £y or y < x.

Example 4. The integers Z are totally ordered by the usual ordering.
So are the real numbers.

Let S be an ordered set, and T a subset. An upper bound of T (in S)
is an element b e S such that x < b for all xe T. A least upper bound of
T in S is an upper bound b such that if ¢ is another upper bound, then
b <c. We shall say that S is inductively ordered if every non-empty
totally ordered subset has an upper bound.

We shall say that S is strictly inductively ordered if every non-empty
totally ordered subset has a least upper bound.

In Examples 1, 2, 3, in each case, the set is strictly inductively ordered.
To prove this, let us take Example 1. Let T be a non-empty totally
ordered subset of the set of subgroups of G. This means that if H, H' € T,
then H =« H' or H = H. Let U be the union of all sets in 7. Then:

(1) U is a subgroup. Proof: If x, ye U, there exist subgroups H,
H €T such that xe H and ye H'. If, say, H < H’, then both
x, ye H and hence xye H'. Hence xye U. Also, x™' e H, so
x~1 e U. Hence U is a subgroup. ‘

(2) U is an upper bound for each element of T. Proof: Every He T
is contained in U, so HL U forall He T.

(3) U is a least upper bound for T. Proof : Any subgroup of G which
contains all the subgroups H € T must then contain their union
U.

The proof that the sets in Examples 2, 3 are strictly inductively
ordered is entirely similar.

We can now state the property mentioned at the beginning of the
section.

Zornw’s Lemma. Let S be a non-empty inductively ordered set. Then
there exists a maximal element in S.

Zorn’s lemma could be just taken as an axiom of set theory. How-
ever, it is not psychologically completely satisfactory as an axiom, be-
cause its statement is too involved, and one does not visualize easily the
existence of the maximal element asserted in that statement. We show
how one can prove Zorn’s lemma from other properties of sets which
everyone would immediately grant as acceptable psychologically.

From now on to the end of the proof of Theorem 3.1, we let A be a
non-empty partially ordered and strictly inductively ordered set. We re-
call that strictly inductively ordered means that every non-empty totally
ordered subset has a least upper bound. We assume given a map
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f: A — A such that for all xe A we have x £ f(x). We could call such
a map an increasing map.

Let ae A. Let B be a subset of A. We shall say that B is admissible
if:

(1) B contains a.

(2) We have f(B) < B.

(3) Whenever T is a totally ordered subset of B, the least upper

bound of T in A lies in B.

Then B is also strictly inductively ordered, by the induced ordering of A.
We shall prove:

Theorem 3.1 (Bourbaki). Let A be a non-empty partially ordered and
strictly inductively ordered set. Let f: A — A be an increasing mapping.
Then there exists an element xy € A such that f(xy) = x,.

Proof. Suppose that A were totally ordered. By assumption, it would
have a least upper bound b € 4, and then

b< f(b)=b,

so that in this case, our theorem is clear. The whole problem is to
reduce the theorem to that case. In other words, what we need to find is
a totally ordered admissible subset of 4.

If we throw out of A all elements x € A such that x is not = a, then
what remains is obviously an admissible subset. Thus without loss of
generality, we may assume that 4 has a least element a, that is ¢ < x for
all xe A.

Let M be the intersection of all admissible subsets of A. Note that
A itself is an admissible subset, and that all admissible subsets of A4
contain a, so that M is not empty. Furthermore, M is itself an admissi-
ble subset of A. To see this, let xe M. Then x is in every admissible
subset, so f(x) is also in every admissible subset, and hence f(x)e M.
Hence f(M) = M. If T is a totally ordered non-empty subset of M, and
b is the least upper bound of T in A, then b lies in every admissible
subset of 4, and hence lies in M. It follows that M is the smallest
admissible subset of A, and that any admissible subset of A contained in
M is equal to M.

We shall prove that M is totally ordered, and thereby prove Theorem
3.1

[First we make some remarks which don’t belong to the proof, but
will help in the understanding of the subsequent lemmas. Since a € M, we
see that f(a)e M, f o f(a) e M, and in general f"(a) e M. Furthermore,

asf@=sfia)s.
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If we had an equality somewhere, we would be finished, so we may
assume that the inequalities hold. Let D, be the totally ordered set
{f™@},z0- Then D, looks like this:

a<f@<fia<-<ffa<-.

Let a, be the least upper bound of D,. Then we can form

a, < flay) < fa,) <

in the same way to obtain D,, and we can continue this process, to
obtain
D,,D,,....

It is clear that D,, D,, ... are contained in M. If we had a precise way
of expressing the fact that we can establish a never-ending string of such
denumerable sets, then we would obtain what we want. The point is that
we are now trying to prove Zorn’s lemma, which is the natural tool for
guaranteeing the existence of such a string. However, given such a string,
we observe that its elements have two properties: If ¢ is an element of
such a string and x < ¢, then f(x) £ ¢. Furthermore, there is no element
between ¢ and f(c), that is if x is an element of the string, then x < ¢ or
f(c) £ x. We shall now prove two lemmas which show that elements of
M have these properties.]

Let ce M. We shall say that ¢ is an extreme point of M if whenever
x e M and x < ¢, then f(x) £ ¢. For each extreme point c € M we let

M, = set of x € M such that x < ¢ or f(c) < x.
Note that M, is not empty because a is in it.
Lemma 3.2. We have M, = M for every extreme point c of M.

Proof. Tt will suffice to prove that M, is an admissible subset. Let
xeM,. If x<c then f(x) £c so f(x)e M,. If x =c then f(x) = f(c) is
again in M,.. If f(c) £ x, then f(c) £ x < f(x), so once more f(x)e M,.
Thus we have proved that f(M,) = M..

Let T be a totally ordered subset of M, and let b be the least upper
bound of T in A. Since M is admissible, we have be M. If all ele-
ments xe T are < ¢, then b<c and be M,. If some x e T is such that
flc) £ x, then

flosx<b,

and so b is in M. This proves our lemma.

Lemma 3.3. Every element of M is an extreme point.
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Proof. Let E be the set of extreme points of M. Then E is not empty
because a € E. It will suffice to prove that E is an admissible subset. We
first prove that f maps E into itself. Let ce E. Let xe M and suppose
x < f(c). We must prove that

f(x) = f(0).

By Lemma 3.2, M = M,, and hence we have x < ¢, or x =, or f(c) £ x.
This last possibility cannot occur because x < f(c). If x < c then

Jx) s ¢ = flo).

If x = ¢ then f(x) = f(c), and hence f(E) < E.

Next let T be a totally ordered subset of E. Let b the least upper
bound of T in 4. We must prove that be E. Let xe M and x <b.
We must show that f(x) <b. If for all ce E we have f(c) < x, then
¢ Z flc) £ x for all ce E, whence x is an upper bound for E, whence
b £ cand b e E. Otherwise, since M, = M for all c € E, we must therefore
have x < ¢ for some ce E. If x < ¢, then f(x) < ¢ < b, and if x = ¢, then

fx)=flc)e E

by what has already been proved, and so f(x) <b. This proves that
b € E, that E is admissible, and thus proves Lemma 3.3.

We now see trivially that M is totally ordered. For let x, ye M.
Then x is an extreme point of M by Lemma 3.3, and ye M, so y < x or

x £ f(x) £y,

thereby proving that M is totally ordered. As remarked previously, this
concludes the proof of Theorem 3.1.

We shall obtain Zorn’s lemma essentially as a corollary of Theorem
3.1. We first obtain Zorn’s lemma in a slightly weaker form.

Corollary 34. Let A be a non-empty strictly inductively ordered set.
Then A has a maximal element.

Proof. Suppose that A does not have a maximal element. Then for
each x € A there exists an element y, € 4 such that x <y,. Let f:4— A
be the map such that f(x) =y, for all xe A. Then A, f satisfy the hypoth-
eses of Theorem 3.1 and applying Theorem 3.1 yields a contradiction.

The only difference between Corollary 3.4 and Zorn’s lemma is that in
Corollary 3.4, we assume that a non-empty totally ordered subset has a
least upper bound, rather than an upper bound. It is, however, a simple
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matter to reduce Zorn’s lemma to the seemingly weaker form of Corol-
lary 3.4. We do this in the second corollary.

Corollary 3.5 (Zorn’s Lemma). Let S be a non-empty inductively
ordered set. Then S has a maximal element.

Proof. Let A be the set of non-empty totally ordered subsets of S.
Then A is not empty since any subset of S with one element belongs to
A If X, Ye A, we define X <Y to mean X = Y. Then A is partially
ordered, and is in fact strictly inductively ordered. For let T = {X;};., be
a totally ordered subset of 4. Let

Z=UXi'

iel

Then Z is totally ordered. To see this, let x, ye Z. Then x e X; and
y € X; for some i, jeI. Since T is totally ordered, say X; = X;. Then x,
y€ X; and since X; is totally ordered, x <y or y < x. Thus Z is totally
ordered, and is obviously a least upper bound for T in A. By Corollary
3.4, we conclude that 4 has a maximal element X,. This means that X,
is a maximal totally ordered subset of S (non-empty). Let m be an upper
bound for X, in S. Then m is the desired maximal element of S. For if
x €S and m < x, then X, u {x} is totally ordered, whence equal to X, by
the maximality of X,. Thus x € X, and x < m. Hence x = m, as was to
be shown.
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Topological Spaces

This chapter develops the standard properties of topological spaces. Most
of these properties do not go beyond the level of a convenient language.
In the text proper, we have given precisely those results which are used
very frequently in all analysis. In the exercises, we give additional results,
of which some just give routine practice and others give more special
results. To incorporate all this material in the text proper would be
extremely oppressive and would obscure the principal lines of thought
inherent in the basic aspects of the subject. The reader can always be
referred to Bourbaki [Bo] or Kelley [Ke] for encyclopaedic treatments.

I, §1. OPEN AND CLOSED SETS

Let X be a sct. By a topology on X we mean a collection J of subsets
called the open sets of the topology, satisfying the following conditions:
TOP 1. The empty set and X itself are open.
TOP 2. A finite intersection of open sets is open.
TOP 3. An arbitrary union of open sets is open.
Example 1. Let X be any set. If we define an open set to be the

empty set or X itself, we have a topology on X, which is definitely not
interesting.

Example 2, Let X be a set, and define every subset to be open. In
particular, each element of X constitutes an open set. Again we have a
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topology, which is called the discrete topology on X. A space with the
discrete topology is called a discrete space. It does not look as if this
topology were any more interesting than that of Example 1, but in fact it
does occur in practice.

Example 3. Let X = R be the set of real numbers. Define a subset U
of R to be open if for each point x in U there exists an open interval J
containing x and contained in U. The three axioms of a topology are
easily verified. This topology is called the ordinary topology.

Example 4. Generalization of Example 3, and used very frequently in
analysis. We recall that a normed vector space (over the real numbers) is
a vector space E together with a function on E denoted by x> |x| (real
valued) such that:

NVS 1. We have |x| 2 0 and = 0 if and only if x = 0.
NVS 2. If ceR and x € E, then |cx| = |c||x|.
NVS 3. If x, ye E, then |x + y| < |x| + |y].

Similarly, one defines the notion of normed vector space over the
complex numbers. The axioms are the same, except that we then take
the number ¢ to be complex in NVS 2.

By an open ball B in E centered at a point v, and of radius r > 0, we
mean the set of all x € E such that |[x — v] <r. We denote such a ball by
B,(v). We define a set U to be open in E if for each point r € U there
exists an open ball B centered at x and contained in U. Again it is easy
to verify that this defines a topology, also called the ordinary topology of
the normed vector space. It is but an exercise to verify that an open ball
is indeed an open set of this topology.

Let {x,} be a sequence in a normed vector space E. This sequence is
said to be Cauchy if given ¢ (always assumed > 0) there exists N such
that for all m, n = N we have

[ X — X, < &

This sequence is said to converge to an element x if given ¢, there exists
N such that for all n > N we have

|x — x,| <e.

Examples of Normed Vector Spaces

The sup norm. Let S be a set. A map f:S— F of S into a normed
vector space F is said to be bounded if there exists a number C > 0 such
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that | f(x)| £ C for all xe S. If f is bounded, define

I/ lls = ILAIF = sup |/,

sup meaning least upper bound. It can be easily shown that the set of
bounded maps B(S, F) of S into F is a vector space, and that || | is a
norm on this space, called the sup norm.

The L'-Norm. Let E be the space of continuous functions on [0, 1].
For f € E define

1
(A =L LS ()] dx.

Then || |, is a norm on E, called the L'-norm. This norm will be a
major object of study when we do integration later, in a general context.

Much of this book is devoted to studying the convergence of se-
quences for one or the other of the above two norms. For instance,
consider the sup norm. A sequence of maps {f,} is said to be uniformly
Cauchy on S if given ¢ there exists N such that for all m, n > N we have

Ifo = fmlls <e.

It is said to be uniformly convergent to a map f if given ¢ there exists N
such that for all n = N we have

fe = fls <e.

In the second example, we would use the expressions L!-Cauchy and
L'-convergent instead of uniformly Cauchy and uniformly convergent, if
we replace the sup norm by the L'-norm in these definitions.

Up to a point, one can generalize the notion of subset of a normed
vector space as follows. Let X be a set. A distance function (also called
a metric) on X is a map (x, y)—d(x, y) from X x X into R satisfying the
following conditionis:

DIS 1. We have d(x,y) =20 for all x, ye X, and = 0 if and only if
X =y

DIS 2. For all x, y, we have d(x, y) = d(y, x).
DIS 3. For all x, y, z, we have

d(x,z) £d(x, y) + d(y, 2).

A set with a metric is called a metric space. We can then define open
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balls just as we did in the case of normed vector spaces, and also define
a topology in a metric space just as we did for a normed vector space.
Every open set is then a union of open balls. This topology is said to be
determined by the metric.

In a normed vector space, we can define the distance between elements
x, y to be d(x, y) = |x — y|. It is immediately verified that this is a metric
on the space. Conversely, the reader will see in Exercise 5 how a metric
space can be embedded naturally in a normed vector space, in a manner
preserving the metric, so that the “generality” of metric spaces is illusory.
For convenience, we also make here the following definition: If A, B are
subsets of a normed vector space, we define their distance to be

d(A,B)=inf|x —y|, xe€A,yeB.

Basic theorems concerning subsets of normed vector spaces hold just as
well for metric spaces. However, almost all metric spaces which arise
naturally (and certainly all of those in this course) occur in a normed
vector space with a natural linear structure. There is enough of a change
of notation from |x — y| to d(x, y) to warrant carrying out proofs with
the norm notation rather than the other.

Let J and J' be topologies on a set X. One verifies at once that
they are equal if and only if the following condition is satisfied: For each
xe€ X and each set U open in 4 containing x, there exists a set U’
open in ' such that xe U’ = U, and conversely, given U’ open in 7'
containing x, there exists U open in J such that xe U c U".

Example. The reader will verify easily that two norms | |; and | |, on
a vector space E give rise to the same topology if and only if they satisfy
the following condition: There exist C;, C, > 0 such that for all x € E we
have
Cilxly S Ixlp = Cylxly.

If this is the case, the norms are called equivalent.
Just to fix terminology, we define the closed ball centered at v and of
radius r = 0 to be the set of all x € E such that

[x —v[Zr

We define the sphere centered at v, of radius r, to be the set of points x
such that
|x —v|=r.

Warning. In some books, what we call a ball is called a sphere. This
is not good terminology, and the terminology used here is now essen-
tially universally adopted.
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Examples of normed vector spaces are given in the exercises. The
standard properties of subsets of normed vector spaces having to do with
limits are also valid in metric spaces (cf. Exercise 5). We can define balls
and spheres in metric spaces just as in normed vector spaces. We can
also define the notion of Cauchy sequence in a metric space X as usual
(again cf. Exercise 5), and X is said to be complete if every Cauchy
sequence converges, i.e. has a limit in X.

Example 5. Let G be a group. We define a subset U of G to be open
if for each element x € U there exists a subgroup H of G, of finite index,
such that xH is contained in U. It is a simple exercise in algebra to
show that this defines a topology, which is called the profinite topology.

Example 6. Let R be a commutative ring (which according to stan-
dard conventions has a unit element). We define a subset U of R to be
open if for each x € U there exists an ideal J in R such that x + J is
contained in U. It is a simple exercise in algebra to show that this
defines a topology, which is called the ideal topology.

Note. The topologies of Examples 5 and 6 will not occur in any
significant way in this course, and may thus be disregarded by anyone
uninterested in this type of algebra.

A set together with a topology is called a topological space. In this
chapter we develop a large number of basic trivialities about topological
spaces, and except for the numbered theorems, it is recommended that
readers work out the proofs for all other assertions by themselves, even
though we have given most of them.

The duality between intersections and unions with respect to taking
the complement of a subset allows us to define a topology by means of
the complements of open sets, called closed sets. In any topological
space, the closed sets satisfy the following conditions:

CL 1. The empty set and the whole space are closed.
CL 2. The finite union of closed sets is closed.

CL 3. The arbitrary intersection of closed sets is closed.

The first condition is clear, and the other two come from the fact that
the complement of the union of subsets is equal to the intersection of
their complements, and that the complement of the intersection of subsets
is equal to the union of their complements.

Conversely, given a collection % of subsets of a set X (not yet a
topological space), we say that it defines a topology on X by means of
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closed sets if its elements satisfy the three conditions CL 1, 2, 3. We can
then define an open set to be the complement of a set in .

Example 7. Let X =R". Let f(x,,...,x,) be a polynomial in n vari-
ables. A point a =(a,,...,a,) in R" is called a zero of f if f(a) =0. We
define a subset S of R" to be closed if there exists a family {f;};.; of
polynomials in n variables (with real coefficients) such that S consists
precisely of the common zeros of all f; in the family (in other words, all
points a € R* such that fi(a) =0 for all i). The reader may assume here
the result that, for any such closed set S, there exists a finite number of
polynomials f, ....f, such that S is already the set of zeros of the set
{fi,....f;}. Tt is easy to prove that we have defined a topology by means
of closed sets, and this topology is called the Zariski topology on R It
is a topology which is adjusted to the study of algebraic sets, that is sets
which are zeros of polynomials. It will not reappear in this course, and
again a disinterested reader may omit it. It does become important in
subsequent courses, however. In 2-space, a closed set consists of a finite
number of points and algebraic curves. In 3-space, a closed set consists
of a finite number of points, algebraic curves, and algebraic surfaces.

Let X be a topological space, and S a subset. A point x € X is said to
be adherent to S if given an open set U containing x, there is some point
of S lying in U. In particular, every element of S is adherent to S. A
point of X is called a boundary point of S if every open set containing
this point also contains a point of S and a point not in S. Thus an
adherent point of S which does not lie in S is a boundary point of S. An
interior point of S is a point of § which does not lie in the boundary of
S. The set Int(S) of interior points of S is open.

A subset S of X is closed if and only if it contains all its boundary
points. This follows at once from the definitions.

By the closure of a subset S of X we mean the union of S and all its
boundary points. The closure of S, denoted by S, is therefore the set of
adherent points of S. It is also immediately verified that S is closed, and
is equal to the intersection of all closed sets containing S. In particular,
we have

S=35.

As an exercise, the reader should prove that for subsets S, T of X we
have:

SuT=SuUT and SATcSAT

Equality does not necessarily hold in the formula on the right.
(Example?)
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A subset S of a space X is said to be demse (in X) is S = X. For
instance, the rationals are dense in the reals.

Let X be a topological space and S a subset. We define a topology
on S by prescribing a subset V of S to be open in S if there exists an
open set U in X such that V=UnS. The conditions for a topology
on § are immediately verified, and this topology is called the induced
topology. With this topology, S is called a subspace.

Note. A subset of S which is open in § may not be open in X. For
instance, the real line is open in itself, but definitely not open in RZ
Similarly for closed sets. On the other hand, if U is an open subset of X,
then a subset of U is open in U in the induced topology if and only if it
is open in X. Similarly, if S is a closed subset of X, a subset of § is
closed in S if and only if it is closed in X.

If P is a certain property of certain topological spaces (e.g. connected,
or compact as we shall define later), then we say that a subset has
property P if it has this property as a subspace.

A topology on a set is often defined by means of a base for the open
sets. By a base for the open sets we mean a collection % of open sets
such that any open set U is a union (possibly infinite) of elements of 4.
There is an easy criterion for a collection of subsets to be a base for a
topology. Let X be a set and & a collection of subsets satisfying:

B 1. Every element of X lies in some set in A.

B2 If B, B are in # and x € BN B’ then there exists some B" in %
such that xe B" and B" < BN B'.

If # satisfies these two conditions, then there exists a unique topology
whose open sets are the unions of sets in 4. Indeed, such a topology is
uniquely determined, and it exists because we can define a set to be open
if it is a union of sets in #. The axioms for open sets are trivially
verified.

Example. The open balls in a normed vector space form a base for
the ordinary topology of that space.

Example. Let X be a set and let %, ¥~ be topologies on X, that is
collections of open sets satisfying the axioms for a topology. We say that
¥ is a refinement of %, or that % is coarser than ¥”, if every set open in
9 is also open in ¥". Thus % has fewer open sets than ¥~ (“fewer” in the
weak sense since % may be equal to 7).

Let Y be a topological space and let & be a family of mappings
f: XY of X into Y. Let # be the family of all subsets of X consisting
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of the sets f*(W), where W is open in Y and [ ranges over &. Then
we leave to the reader the verification of the following facts:

1. & is a base for a topology on X, i.e. satisfies conditions B 1, B 2.

2. This topology is the coarsest topology (the one with the fewest
open sets) such that every map f € & is continuous.

We call this topology the weak topology on X determined by #.

For an application of the weak topology, see Chapter IV, §1 and also
the appendix of Chapter IV.

There is a generalization of the weak topology as follows. Instead of
considering one space Y, we consider a family of spaces {Y}, for i
ranging in some index set. We let & be a family of mappings f;: X — Y.
We let # be the family of all subsets of X consisting of finite intersec-
tions of sets f;"'(U;)) where U, is open in Y. Then again it is easily
verified that 4 is a base for a topology, called the weak topology deter-
mined by the family #. The product topology defined below will provide
an example of this more general case, when the family % is the family of
projections on the factors of a product.

A topological space is said to be separable if it has a countable base.
(By countable we mean finite or denumerable.) Exercises on separable
spaces designed to acquaint the reader with them, and essentially all
trivial, are given at the end of the chapter. It is easy to see that the real
numbers have a countable base. Indeed, we can take for basis elements
the open intervals of rational radius, centered at rational points. Simi-
larly, R” has a countable base.

Note. In most cases, the property defining separability is equivalent
with the property that there exists a countable dense subset (cf. Exercise
15), and this second property is sometimes used to define separability.
We find our definition to be more useful but the reader is warned on the
discrepancy with some other texts.

An open set containing a point x is called an open neighberhood of
this point. By a neighborhood of x we mean any set containing an open
set containing x. In a normed vector space, one speaks of an e-neighbor-
hood of a point x as being a ball of radius ¢ centered at x.

Let X, Y be topological spaces. A map f: X — Y is said to be contin-
wous if the inverse image of an open set (in Y) is open in X. In other
words, if V is open in Y then f~*(V) is open in X. Equivalently, we see
that a map f is continuous if and only if the inverse image of a closed
set is closed.
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Proposition 1.1. Let E, F be normed vector spaces and let f: E > F be
a map. This map is continuous if and only if the usual (g, o) definition is
satisfied at every point of E.

We prove one of the two implications. Assume that f is continuous
and let xe E. Given ¢, let V be the open ball of radius ¢ centered at
f(x). The open set U = f~(V) contains an open ball B of radius &
centered at x for some 6. In particular, if ye E and |x — y| < J, then
S eV and |f(y) — f(x)| < e This proves the (g, &) property. The con-
verse is equally clear and is left to the reader.

Actually, this (g, 8) property can be formulated analogously in arbi-
trary topological spaces, as follows: The map f: X —» Y is said to be
continuous at a point x € X if given a neighborhood V of f(x) there exists
a neighborhood U of x such that f(U)< V. It is then verified at once
that f is continuous if and only if it is continuous at every point.

Proposition 1.2. Let X be a metric space (or a subset of a normed
vector space) and let f: X — E be a map into a normed vector space.
Then f is continuous if and only if the following condition is satisfied.
Let {x,} be a sequence in X converging to a point x. Then {f(x,)}
converges to f(x).

The proof will be left as an exercise to the reader.
A composite of continuous maps is continuous.

Indeed, if f: X > Y and g: Y — Z are continuous maps and V is open
in Z, then

(go IV =g (M)

is seen to be open.

As usual, we observe that a continuous image of an open set is not
necessarily open.

A continuous map f: X — Y which admits a continuous inverse map
g: Y — X is called a homeomorphism, or topological isomorphism. It is
clear that a composite of homeomorphisms is also a homeomorphism.
As usual, we observe that a continuous bijective map need not be a
homeomorphism. In fact, later in this course, we meet many examples
of . vector spaces with two different norms on them such that the identity
map is continuous but not bicontinuous.

Let {X;};.; be a family of topological spaces and let

X=HX'

iel
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be their product. We define a topology on X, called the product topol-
ogy, by characterizing a subset U of X to be open if for each x € U there
exists a finite number of indices i,, ...,i, and open sets U; , ...,U; in the
spaces X; , ...,X; respectively such that

iy

xeU x-xU x [] X;cU.

i

The product for i # i, is taken for all indices i unequal to iy, ...,i,. In
other words, we can say that the product topology is the one having as a
base all sets of the form

U, x - x U, x [] Xi.

it

Such sets have arbitrary open sets at a finite number of components, and
the full space at all other components.

The product topology is the unique topology with the fewest open sets
in X which makes each projection map

7(,-2 X b Xi
continuous. Indeed, for each open set U; in Xj, the set

7' (U) = U x [] X,
it
must be open if x; is continuous, and our previous assertion follows. In
other words, it is the weak topology determined by the family of all
projections on the factors.

More generally, given a set and a family of mappings of this set into
topological spaces, one can define a unique topology on the set making
all these mappings continuous, and having the fewest open sets doing
this, namely the weak topology. If S is a set, and

{.f; S— Yi}iel

is a family of maps into topological spaces Y, then the map

f:S—»l—[Y;

iel
such that f(x) = {fi(x)} is continuous for this topology.

Example 8. We can give R" the product topology, which is called the
ordinary topology. We define the sup norm on R” by

x| = max]|x;|
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if x =(x{,...,x,) is given in terms of its coordinates. Then the topology
determined by this norm is clearly the same as the product topology.

Remark. A map f: X — Y which maps open sets onto open sets is
said to be open. A map which maps closed sets onto closed sets is said
to be closed. A continuous map need not be either. For instance, the
graph of the tangent is closed in the plane, but the projection map on
the x-axis maps it on an open interval:

Figure 2.1

The map which folds the plane over the real axis maps the open plane
on the closed half plane. If f: X — Y is continuous and bijective, then a
necessary and sufficient condition that f be a homeomorphism is that f
be open. This is simply a rephrasing of the continuity of the inverse

mapping f .

Il, §2. CONNECTED SETS

A topological space X is said to be connected if it is not possible to
express X as a union of two disjoint non-empty open sets. Of course, we
can formulate the definition in terms of closed sets instead of open sets.

The reader’s intuition of connectedness probably comes from the pos-
sibility of connecting two points of a set by a path. We shall discuss the
relation between this notion and the general notion later, after developing
first some basic properties of connected sets.

Proposition 2.1. Let f: X —» Y be a continuous map. If X is connected
then the image of X is connected.
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Proof. Without loss of generality we may assume that Y is the image
of f. Suppose that Y is not connected, so that we can write Y =U0UV
where U, V are open, non-empty, and disjoint. Then

X=f1Oufm),
which is impossible. This proves our assertion.

Proposition 2.2. A topological space X is connected if and only if every
continuous map of X into a discrete space having at least two elements
is constant.

Proof. Assume that X is connected, and that f is a continuous map of
X into a discrete space with at least two elements. If f is not constant,
we can write the image of f as a union of two disjoint non-empty sets,
open by definition, and this contradicts our previous result. Conversely,
suppose that we can write X = Uu V as a disjoint union of non-empty
open sets. Let p, g be two distinct objects and let the set {p, q} have the
discrete topology. If we define

f:X-{p.q}

to be the map such that

fO)={p} and f(V)={q},
then f is continuous and not constant, as was to be shown.

Observe that our proof shows that instead of taking a discrete space
having at least two points, we can take a space with exactly two points
in characterizing a connected set, as we have just done.

Proposition 2.3. Let X be a topological space and let {S;};.; be a
family of subspaces which are connected. If they have a point in com-
mon then their union is connected.

Proof. Let a lie in the intersection of all S;. If we can write
where U, V are open in this union, then S;n U and S;n V are open in §;
for each i and hence S;= U or S, = V. If for some i we have §;c U,

then a e U and consequently we must have S; = U for all i, thus proving
our assertion.
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As a consequence of the preceding statement, we define the connected
component of a point a in X to be the union of all connected subspaces
of X containing a. This component is actually not empty, because the
set consisting of a alone is connected.

Proposition 24. Let X be a topological space and S a connected subset.
Then the closure of S is connected. In fact, if Sc T < S, then T is
connected.

Proof. Left to the reader.

Corollary 2.5. The connected component of a point is closed.

Proof. Clear.

As promised, we now discuss the relation between the naive notion of
connectedness and the general notion. Let X be a topological space. We
say that X is arcwise connected if given two points x, y in X there exists
a piecewise continuous path from x to y. By a piecewise continuous path,
we mean a sequence of continuous maps {a,, ..., }, where each

a;: [a;, b1 - X
is a continuous map defined on a closed interval [a;, b;] such that
(b)) = 0;41(@i41)-
We say that this path goes from x to y if
a(a)=x and  «/(b)=y.
Of course, if such a path exists, then it is easy to define just one continu-
ous map

o:[a, b] > X

from some interval [a, b] into X such that a(a) = x and a(b) =y. One
can even take the interval [a, b] to be [0, 1].

Propesition 2.6. Any interval of real numbers is connected.

Proof. We give the proof for a closed interval J = [a, b] and leave the
other cases (open, half-open, infinite intervals) as exercises. Suppose that
we can write J = A U B where A, B are closed, disjoint, and non-empty.
Say that ae 4. Let ¢ be the greatest lower bound of B. Then ¢ lies in
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the closure of B and since B is closed, ce B, so ¢ #a. For any xeJ
with a < x < ¢, we must have xe 4 since ¢ is a lower bound for B.
Since A is closed, and since c lies in the closure of the interval a < x <c,
it follows that c lies in A4, a contradiction which proves our assertion.

Proposition 2.7. If a topological space is arcwise connected, then it is
connected.

Proof. Let X be arcwise connected and suppose that we can write X
as a disjoint union of non-empty open sets U, V. Let xe U and ye V.
There exists a continuous map a:J — X from a closed interval into
X starting at x and ending at y. Then « }(U) and o™ '(V) express J
as a disjoint union of non-empty disjoint sets which are open in J, a
contradiction.

The converse of the preceding result is false. For instance the subset of
the plane consisting of the y-axis and the graph of the curve y = sin(1/x)
is connected but not arcwise connected. In practice, however, most ordi-
nary sets which are connected are also arcwise connected, and the sort of
pathology which arises from sin(1/x) is just that: pathology. In Exercise
12, you will prove that an open subset of a normed vector space is
connected if and only if it is arcwise connected.

Theorem 2.8. Let {X;};.; be a family of connected topological spaces.
Then the product
X=X
iel

is connected.

Proof. Let f: X — {p,q} be a continuous map of X into a discrete
space consisting of two points. We must show that f is constant. Let
ae X and say that f(a)=p. Then f~!(p) contains an open neighbor-
hood of a of the form

Let b be any other point of X and write a, b in terms of their
coordinates:

a=(a;,.»Gi5--),
b=(b,....h; ,...)
Let
z= (ai,s sl s (bi)i#il,...,i,,)

so that the coordinates of z are the same as those of a for iy, ...,i, and
the same as those of b for the other indices. Then ze U and f(z) = p.
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Consider the composite of maps
X, 5 X% {pq},
where g is the injective mapping such that

g(xil) = (xila Qiys o058 (bi)i#il ..... i,,)-

Then ¢ is continuous, so is fog, and since the continuous image of a
connected set is connected, it follows that fog is constant on X;. In
particular, f o g(a;,) = f(z) = p, and also

f(bil, Aiys ooty (bi)i;eil ..... i,,) =P

We now perform the same trick, replacing a;, by b, ..., and a; by b, .
We then see that f(b) = p, thus proving that f is constant, which proves
the theorem.

Corollary 2.9. Euclidean n-space R" is connected, and so is the product
of any number of intervals.

Il, §3. COMPACT SPACES

Let X be a set and {S,},.4 a family of subsets. We say that this family
is a covering of X if its union is equal to X. If X is a topological space,
and {U,},., is a covering, we say it is an open covering if each U, is
open. If {S,},., is a covering of X, we define a subcovering to be a
covering {Sg};.p where B is a subset of A. In particular, a finite sub-
covering of {S,} is a covering {S,,,...,S, }.

Let X be a topological space. We shall say that X is compact if any
open covering of X has a finite subcovering. As usual, we can express a
dual condition relative to closed sets. Let {F,},., be a family of subsets
of X. We say that this family has the finite intersection property if any
finite intersection

E n---NnE

ap Xn

is not empty.

Proposition 3.1. A topological space X is compact if and only if, for
any family {F,},. . of closed sets having the finite intersection property,
the intersection

N

aeAd
is not empty.
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Proof. Assume that X is compact and let {F,} be a family of closed
sets having the finite intersection property. Suppose that the intersection
of this family is empty. Then the complements ¥F, form an open cover-
ing of X, and there is a finite subcovering by open sets {¢F, ,...,6F, }.
Taking the complement, we conclude that the intersection

E, NaXe E, .
is empty, which is a contradiction, thus proving the finite intersection
property. The converse is equally clear.

Proposition 3.2. A continuous image of a compact set is compact.

Proof. Let X be compact, and let f: X -» Y be a continuous map,
which is surjective. Let {¥,} be an open covering of Y. Then {f*(V,)} is
an open covering of X, and there is a finite subcovering

{0 f 7R}
It follows that {V, ,...,V, } is a covering of Y, as was to be shown.
Proposition 3.3. A closed subspace of a compact space is compact.

Proof. Let X be a compact space and S a closed subspace. Let {U,}
be a covering of S by open sets in X. Let U be the complement of S in
X. Then {U,} together with U form an open covering of X, having a
finite subcovering

{Uys .U, U}

Since U is disjoint from §, it follows that already U,,, ...,U, cover S,
thus proving our assertion.

The converse of the preceding assertion is almost true but not quite.
A topological space X is said to be Hausdorff if given points x, ye X
and x # y there exist disjoint open sets U, V such that xe U and ye V.
If X is Hausdorff, then each point of X is obviously closed.

Proposition 3.4. A compact subspace of a Hausdorff space is closed.

Proof. Let S be a compact subset of the Hausdorff space X. We
prove that its complement is open. Let x be in the complement. For
each ye S there exist disjoint open sets U, ¥, such that xe U, and
y€V,. The family {V,} .5 covers S and there is a finite subcovering
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Then the intersection U, n---n U, is open, contains x, and is contained
in the complement of S, thus proving what we want.

A topological space X is said to be normal if it is Hausdorff, and if
given two disjoint closed sets 4, B in X there exist disjoint open sets U,
V such that A < U and B < V.

Proposition 3.5. A compact Hausdorff space is normal. In fact, if A, B
are compact subsets of a Hausdorff space, and are disjoint, there exist
disjoint open sets U, V such that A < U and Bc V.

Proof. The proof is similar to the previous one, and involves merely
one further application of the same principle. Using the same trick as in
this previous proof, we know that for each x € A there exist disjoint open
sets U, W, such that xe U, and B < W,. (One would take the finite
union of the open sets ¥V, , ...,), to obtain W, in the analogous situa-
tion.) The family of open sets {U,},., covers A4, and there exists a finite
subcovering

{Us,,...,Us, }-

The open sets U, u---L U, and W, n---n W, solve our problem.

In the case of Hausdorff spaces, or normal spaces, we say also that
points (or closed sets) can be separated by open sets. The properties of
being Hausdorff or normal are thus called separation properties.

It is clear that a subspace of a Hausdorff space is Hausdorff. The
analogous statement for normal spaces is not necessarily true (cf. Kelley
[Ke], Exercise F, p. 132).

The general notion of a compact space is, in many practical cases,
equivalent with another notion with which the reader is probably already
familiar. We call a space X sequentially compact if it has the Weierstrass—
Bolzano property, namely every sequence {x,} in X has a point of accu-
mulation (a point ¢ such that given an open neighborhood U of ¢, there
exist infinitely many » such that x, e U). As usual, an equivalent condi-
tion is that an infinite subset of X has a point of accumulation. It is an
exercise to prove:

Proposition 3.6. If a topological space has a countable base, then it is
compact if and only if it is sequentially compact.
(Cf. Exercise 19.)

The preceding criterion will not be used in this book.

Proposition 3.7. Compactness implies sequential compactness.
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Proof. Let X be compact. It will suffice to prove that an infinite
subset of X has a point of accumulation. Suppose that this is not the
case, and let S be an infinite subset. Given x € X, there exists an open
set U, containing x but containing only a finite number of the elements
of S. The family {U,},.x covers X. Let {U.,...,U, } be a finite sub-
covering. We conclude that there is only a finite number of elements of S
lying in the finite union

U

U o U

Xn'
This is a contradiction, which proves our assertion.

The converse is true under important and rather general conditions, as
shown in the next theorem.

Theorem 3.8. Let S be a subset of a metric space, or of a normed
vector space.

(i) S is compact if and only if S is sequentially compact.
(i) S is compact if and only if S is complete, and given r > 0 there
exists a finite number of open balls of radius r which cover S.

Proof. We have already proved that compactness implies sequential
compactness. Conversely, assume that S is sequentially compact. Then
certainly S is complete, and we shall prove that the other condition
stated in (ii) is satisfied. Suppose it is not. Let r > 0. Let x; € § and let
B, be the open ball of radius r centered at x,. Then B; does not contain
S, and there is some x, €S, x, ¢ B,. Proceeding inductively, suppose
that we have found open balls B,, ...,B, of radius r, and points x,,
...,x, with x; e B; such that x,,, does not lie in B; u---UB,. We can
then find x,.; which does not lie in B, u---UB,, and we let B,,, be the
open ball of radius r centered at x,,,. Let v be a point of accumulation
of the sequence {x,}. By definition, there exist positive integers m, k with
k > m such that

|x, —v| <7/2
and
[x,, — v| <1/2.

Then |x, — x,,| < r and this contradicts the property of our sequence {x,}
because x, lies in the ball B,. This proves that S satisfies the condition
of (ii).

Now assume this condition. Let {U;};., be an open covering of S, and
suppose that there is no finite subcovering. We construct a sequence
{x,} in S inductively as follows. We know that S is covered by a finite
number of closed balls of radius 1. Hence there exists at least one closed
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ball C, of radius % such that C; n S is not covered by a finite number of
U,. We let x; be a point of C; nS. Suppose that we have obtained a
sequence of closed balls

C,>o(,

such that C, has radius 1/2", with a point x,€ C,nS, and such that
C,n S is not covered by a finite number of U;. Since S itself can be
covered by a finite number of closed balls of radius 1/(2"*!), it follows
that C,n S can also be so covered, and hence there exists a closed ball
C,., of radius 1/(2"*') and such that C,,; nS cannot be covered by a
finite number of U;. We let x,,, be a point of C,,; nS. This constructs
our sequence as desired. We see that {x,} is a Cauchy sequence in §,
which coverges to a point x in S. But x lies in some U; which contains

C, for all sufficiently large n, a contradiction which proves our theorem.

A subset S of a metric space, or a normed vector space, which can be
covered by a finite number of open balls of given radius r > 0 is said to
be totally bounded. We can phrase (ii) by saying that S is compact if and
only if it is complete and totally bounded. A subset of a topological
space is said to be relatively compact if its closure is compact. From (ii)
we get a convenient criterion for relative compactness.

Corollary 39. Let S be a subset of a complete normed vector space.
Assume that given r > 0 there exists a finite covering of S by balls of
radius r. Then S is relatively compact.

Proof. The closure § of S has the same property, because if S is
covered by a finite number of balls of radius r/2, then the closure of S is
covered by a finite number of balls of radius r (centered at the same
points). Also S is complete. Hence we conclude that the closure of § is
compact.

As an application of Theorem 3.8, we recall that a closed (bounded)
interval in R has the Weierstrass—Bolzano property. Hence it is compact,
and therefore so is any closed bounded subset of R (being a closed subset
of a compact set). The converse is also true, since a compact set is
closed, and must be bounded, otherwise one can find an infinite sequence
tending to infinity, and not having a point of accumulation.

One can also prove the compactness of a closed interval directly from
the least upper bound axiom, as follows. Let a < b, and let {U;};.; be an
open covering of [a, b]. Let S be the set of all x € [a, b] such that [a, x]
admits a finite subcovering. Then S is not empty (because a € S) and is
bounded from above by b. Let ¢ be its least upper bound. Then ce U,
for some index iy. If a <c, select a number ¢ with a <t < ¢ such that
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the interval [z, c] is contained in U, . If a=c, let t = a. Then [aq, t] can
be covered by a finite number of sets U, say U, , ...,U; . If ¢ # b, then
U,, U, ....U,, cover an interval [a, c'] with ¢’ > ¢, a contradiction, proving

that ¢ = b and that [a, b] is compact.

One can generalize to arbitrary compact sets some standard theorems
on closed intervals, e.g.:

Proposition 3.10. Let A be a compact set, and f: A~ R a continuous
function on A. Then f has a maximum (a point ce A such that

f(©) = f(x) for all x € A).

Proof. The image f(A) is compact, so closed and bounded. The least
upper bound of f(A) lies in f(A), thus proving our assertion.

If A is a subset of a normed vector space, and if f:A—>F is a
continuous map into some normed vector space F, then we say that f is
uniformly continuous on A if given ¢ there exists 6 such that whenever
x, ye A and |x — y| <4, then |f(x) — f(y)| <& We recall the theorem
from elementary analysis that:

Proposition 3.11. Let A be a compact subset of a normed vector space.
If f: A— F is a continuous map into a normed vector space, then f is
uniformly continuous. In fact, if A is contained in a subset S of a
normed vector space, if f is defined on S and continuous on A, then
given & there exists 0 such that if xe A and y€ S and |x — y| < d, then

f(x) = f)l <e.

We recall the proof briefly. Given ¢, for each x € 4 we let r(x) > 0 be
such that if |y — x| < r(x), then |f(y) — f(x)| <& We can cover A by
open balls B; of radius

6; = r(x)/2,

centered at x; (i=1,...,n). We let 6 = min §;. If x € A, then for some i
we have |x — x;| <r(x;)/2. If |y — x| < 8, then |y — x;| < r(x;) so that

Lf) = fE £ 1) — el + 1f (%) = f ()

< 2e,
as was to be shown.

The preceding definition of uniform continuity, and the result just
proved, are of course valid for metric spaces, with the usual notation
d(x, y) replacing |x — y|. The property which we proved, and which is
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slightly stronger than uniform continuity on A, will be called relative
uniform continuity (relative to S, that is).

The only non-trivial theorem of this section is the theorem that a
product of compact spaces is compact. In situations when one can use
sequences, and one takes a finite product of spaces, however, the proof is
immediate. For instance, let E, F be normed vector spaces, and let S, T
be compact subsets of E, F, respectively. Let {z,} be a sequence in
S x T, and write z, = (x,,y,) with x,€¢E and y,€ F. We can find a
subsequence {x,} converging to a point a in S. We can then find a
subsequence {yn;k} converging to a point b in F. Then the sequence
{ank} converges to (a, b) so that S x T is sequentially compact.

The idea for this proof is to project on the coordinates, and from
coordinatewise convergence, get the convergence in the product space.
However, if we do it for an infinite product, the above proof seems to fail
because we may exhaust all the indices before being through with the
proof. One can still formulate the basic idea so that it essentially carries
over to the most general case. Part of the difficulty in doing this is that
the points of accumulation in the various coordinate spaces are not
uniquely determined. Thus one must find a set theoretic device which
chooses simultaneously a point of accumulation in all coordinate spaces.
The proof below is due to Bourbaki.

Theorem 3.12 (Tychonoff’s Theorem). Let {X,},., be a family of com-
pact spaces. Then the product

X =] X,
aeAd
is compact.

Proof. Let # = {E};.; be a family of closed subsets of the product,
having the finite intersection property. The family of subsets of X (not
necessarily closed) containing our given family # and having the finite
intersection property is ordered by ascending inclusion. One verifies im-
mediately by taking the usual union that it is inductively ordered. It is
therefore contained in a maximal family & * having the finite intersection
property. Let

T, X - X,
be the projection on the a-th factor. For each a, the family of closed sets
{m(F)}, FeF¥,

has the finite intersection property, and consequently there exists an
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element x, in each set n,(F) for all Fe #* Let x =(x,). We contend
that x belongs to all sets F € #*. This will prove our theorem.

To prove our contention, we observe that the intersection of a finite
number of sets in F* also lies in #* because of the maximality of &#*.
Let U be an open set of X containing x, of the form

U=U, xxU, x [] X,

aFEa;

with each U, open in X, . Then U, contains x, for all i, and therefore
U,, contains a point of =, (F) for all F e #*. Hence

. (U,,) = U, x I x.

aFa;

contains a point of F for each F e #*. Because of the maximality of &#*
with respect to the finite intersection property, it follows that

.t (Uy,)
belongs to #*, and hence the finite intersection of these sets for
i=1,...,n

also belongs to &#*. But this finite intersection is nothing else but our
set U, and hence U intersects each F in & *, so a fortiori each F e %.
Hence x lies in the closure of each F € &#, whence x € F for all Fe &, as
was to be shown.

Corollary 3.13. A subset of R" is compact if and only if it is closed and
bounded.

Proof. Let S be a subset of R” and assume first that S is closed and
bounded. Then § is contained in the product of a finite number of
closed intervals, and is therefore a closed subset of a compact space. It is
thus compact. Conversely, if it is compact, it is closed, and it must be
bounded; otherwise, one can find a sequence of elements in S going out
to infinity, and not having a point of accumulation.

Corollary 3.14. All norms on R" are equivalent.
Proof. Let | | be the sup norm, and | | any other norm. It will
suffice to prove that these two norms are equivalent. If e, ...,e, are the

usual unit vectors of R", then for x = x;e, + --- + x,e, we get

x| = Ixqlles] + - + |x,llea] = Clix|
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with C = n-max |e;]. This proves one of the desired inequalities, and also
shows that the other norm is continuous, because

[Ix] = Iyl| £ lx — y| £ Cllx — yll.

Let S; be the unit sphere centered at the origin for the sup norm. Then
S, is closed and bounded, so compact, and the other norm has a mini-
mum on §;, say at v. Thus for any x € R" we get

2z |vl, and hence  [v][lx| < |x].

[l

This yields the other inequality, and proves our corollary.

Using coordinates, we see that Corollary 3.14 also applies to a finite
dimensional vector space. A closed subset of a complete metric space is
complete, and a complete subset of a metric space is closed. We con-
clude that a finite dimensional subspace of a normed vector space is
complete, and therefore closed.

A space X is said to be locally compact if every point has a compact
neighborhood. For instance, R" is locally compact, and so is any finite
dimensional vector space. It is clear that a normed vector space is locally
compact if and only if the closed unit ball is compact. (If the space is
locally compact, then some closed ball of radius r >0 is compact, and
hence the unit ball is compact by multiplication with a positive number.)

Corollary 3.15 (F. Riesz). A normed vector space is locally compact if
and only if it is finite dimensional.

Proof. Let E be a locally compact normed vector space, and let B be
the closed ball of radius 1 centered at 0. We can find a finite number of
points x,, ...,X, € B such that B is covered by the open balls of radius §
centered at these points. We contend that x,, ...,x, generate E. Let F be
the subspace generated by x,, ...,x,. Then F is finite dimensional, hence
closed in E as a trivial consequence of Corollary 3.14. Suppose that x€ E
and x¢ F. Let

d(x, F) = inf |x — y|.

yeF

Drawing a closed ball around x intersecting F, and using the fact that
the intersection of F and this ball is compact, we conclude that there is
some z € F such that d(x, F) = |x — z|, and we have x — z # 0 since F is
closed in E. Then there is some x; such that

X —2Zz

1
2

Xi

Ix —z|
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and consequently that

|x — 2|

|[x —z—|x —z|x] <

However, z + |x — z| x; lies in F, and by definition of z such that
d(x, F) = |x — 2|

we conclude that the left-hand side is = |x — z|. This is a contradiction
which proves our corollary.

Let X be a locally compact Hausdorff space. One can construct a
compact space by adjoining to X a point “at infinity” as follows. Let p
be some point not in X and let X’ be the union of X and {p}. We
define a base of open sets in X’ by throwing into this base all subsets of
X which are open in X, and the complements in X’ of compact sets in
X. That this defines a base is clear, and one also verifies at once that X’
is then compact. It is called the one point compactification of X.

It is easy to see that the one point compactification of R is homeo-
morphic to a circle. The one point compactification of the plane R? is
homeomorphic to the sphere. In general, the one point compactification
of R" is homeomorphic to the n-sphere (i.e. the set of all x € R**! such
that |x| = 1, where | | is the euclidean norm).

I, §4. SEPARATION BY CONTINUOUS FUNCTIONS

We are concerned throughout this section with a normal space X and
the manner by which one can separate two disjoint closed sets by means
of a continuous function.

Lemma 4.1. Let X be a normal space. If A is closed in X and A< U
is contained in an open set U, then there exists an open set U, such that

AcU cU cU.

Proof. Let B be the complement of U. By the definition of normality,
there exist disjoint open sets U, V; such that A c U, and B< V. It is
clear that U, satisfies our requirements.

Theorem 4.2 (Urysohn’s Lemma). Let X be a normal space and let A,
B be disjoint closed subsets. Then there exists a continuous function f
on X with values in the interval [0, 1] such that f(4) = 0 and f(B) = 1.
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Proof. In a metric space, which is the most important in practice, one
can give a trivial proof. Cf. Exercise 7. We now give the proof in
general. Let U; be the complement of B so that A = U,. We find U,
such that

AcUy,c (71/2 c U;.
We then find U, and U, such that
Ac Up < U1/4 < U1/2 < Uuz c Uy = 63/4 cU;.

Inductively, for eich integer k with 0 < k < 2", we find U such that if
r <s, then U, c U, = U;. We then define the function f by

fx)=1 if xeB,
f(x) = inf of all r such that xe U, if x ¢ B.

It is then essentially clear that f is continuous. We carry out the details.
It will suffice to prove that for numbers a, b such that 0 <a =<1 and
0 < b < 1 the inverse images of the half-open intervals

70, a) and [T, 1]

are open. In fact, we have

ffog=y G

r<a

because f(x) < a if and only if x lies in some U, with r < a. Similarly, we
have f(x) > b if and only if x ¢ U, for some r > b, so that

f7e 1= €0,
r>b
This proves our theorem.

Since a compact Hausdorff space is normal. Urysohn’s lemma applies
in this case. One needs it frequently in the locally compact case in the
following form.

Corollary 4.3. Let X be a locally compact Hausdorff space, and K a
compact subset. There exists a continuous function g on X which is 1
on K and which is equal to 0 outside a compact set.
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Proof. Each x e K has an open neighborhood ¥, with compact clo-
sure. A finite number of such neighborhoods V, , ...,V covers K. Let

V=V u-ul,

X1 Xn®

Then the closure of V is compact. There exists a continuous function
g=0onV (compact Hausdorfl, hence normal) which is 1 on K and 0
outside ¥, i.e. 0 on V n4V. We define g to be 0 on the complement of v
in X. Then g is continuous at every point in the complement of ¥, and
as function on X is also continuous on V. This proves our corollary.

Theorem 4.4 (Tietze Extension Theorem). Let A be a closed subset of a
normal space X and let f be a continuous (real valued) function on A.
Then there exists a continuous function f* on X whose restriction to A
is equal to f. If f has values in [0, 1], then we can choose f* to have
values in [0, 1] also.

Proof. Assume first that f has values in [0, 1]. If A, B are disjoint
closed subsets of X, we denote by g, 5 a function with values in [0, 1]
such that g(4) = 0 and g(B) = 1. Such a function exists by Theorem 4.2.

We shall now define functions f, on 4 and g, on X.
We let f, = f and define sets 4,, B, by the conditions:

Ao = {x € A such that f(x

)
B, = {x € A such that f(x)

We let go = 39,4, 5, and define f; = f, — go. Inductively, suppose that we
have defined f,; we have

= {x € 4 such that f,(x) < ()3},
= {x e 4 such that f,(x) = (3)(3)"}.

We then define
In = (%) (%)"QA,,,B,,

and let f,., = f, — g, (Here of course, we understand by g, its restric-
tion to 4.) Then in particular:

forn=f—(go+ "+ gn)-
We have

(%) 0

IIA
8

HA
W=

Gr and O0=f, <"
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The first inequality is clear. The second is proved by induction. It is
clear for n = 0. Let n> 0. One distinguishes the three cases in which for
a given xe A we have xeA,, or x¢ A, but x¢ B,, or xeB,. The
desired inequality of f, is then obvious in each case, using the inductive
hypothesis.

From our inequalities (), we then conclude that the series

Go+ i+t gyt

converges pointwise, and furthermore converges to f on A. The uniform
bounds imply ‘at once that the limit function is continuous, thus proving
Theorem 4.4, when f has values in [0, 1].

Remark 1. The restriction to the interval [0, 1] is of course unneces-
sary, and the theorem extends at once to any other closed bounded
interval, for instance by mapping such an interval linearly on [0, 1].

Now suppose that f is unbounded. Using the arctangent map we
reduce the theorem to the case when f takes values in the open interval
(—1,1) and we must then know that the extension can be so chosen that
its values also lie in the open interval (—1,1). Let B be the closed
set where the extension f* (which we have constructed with values in
[—1, 1]) takes on the values 1 or —1. Then A4 and B are disjoint, so
that by Urysohn’s lemma there exists a continuous function # on X with
values in [0, 1] such that his 1 on A and 0 on B. Then hf* has values
in the open interval (—1,1), as desired. This concludes the proof of
Theorem 4.4.

Remark 2. The theorem also holds in the complex case dealing sepa-
rately with the real and imaginary parts. The extra condition on the
restriction of the values can then be formulated analogously by requiring
that

L= 11

Indeed, suppose that we have extended f to a bounded continuous com-
plex valued function g. Let b = | f|. Let h be the function such that
h(zy=z if |z| £b, and h(z) = bz/|z| if |z >b. Then h is continuous,
Al £ b, and h o g fulfills our requirement.

Il, §5. EXERCISES

1. (a) Let X, Y be compact metric spaces. Prove that a mapping f: X - Y is
continuous if and only if its graph is closed in X x Y.

(b) Let Y be a complete metric space, and let X be a metric space. Let A be

a subset of X. Let f: A > Y be a mapping that is uniformly continuous.
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Let 4 be the closure of 4 in X. Show that there exists a unique extension
of f to a continuous map f: 4 — Y, and that f is uniformly continuous.
You may assume that X, Y are subsets of a Banach space if you wish,
in order to write the distance function in terms of the absolute value sign.

Seminorms. Let E be a vector space. A function ¢: E—R is called a
seminorm if it satisfies the same conditions as a norm except that we allow
o(x) = 0 without necessarily having x =0. In other words, ¢ satisfies the
following conditions:

SN 1. We have o(x) 2 0 for all x € E.
SN 2. If xe€ E and a is a number, then o(ax) = |a|a(x).
SN 3. We have o(x + y) < o(x) + a(y) for all x, y e E.

We also denote a seminorm by the symbols | |.

(a) If | | is a seminorm on E, show that the set E, of elements x € E with
|x] = 0 is a subspace.

(b) Define open balls with respect to a seminorm as with a norm. Show that
the topology whose base is the family of open balls is Hausdorff if and
only if the seminorm is a norm.

(c) Let {0,} be a sequence of seminorms on E such that the values g,(x) are
bounded. Let {a,} be a sequence of positive numbers such that ) a,
converges. Show that Y 4,0, is a seminorm.

(d) Let {0;};.; be a family of seminorms on a vector space E. Let x, € E and
let i, ...,i, be a finite number of indices. Let r > 0. We call the set of
all x € E such that

g, (x —xp)<r, k=1,...,n,
a basic open set. Show that the family of basic open sets is a base
for a topology on E, which is said to be determined by the family of
seminorms.

. (@) Let /' be the set of all sequences « = {a,} of numbers (say, real) such that

Y |a,| converges. Define

lof =3 la,l.

Show that this is a norm on I, and that I! is complete under this norm.

(b) Let B={b,} be a fixed sequence in I'. Show that the set of all ael"
such that |a,| < |b,| is compact. Show that the unit sphere in ! is not
compact.

. Let o be a real number, 0 < o < 1. A real valued function f on [0, 1] is said

to satisfy a Holder condition of order o if there is a constant C such that for
all x, y we have

1) = SIS Clx =y
For such a function, define

1/6x) — fI

171 = sup 1091 + sup =2

xX#y
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(a) Show that the set of functions satisfying such a Hélder condition is a
vector space, and that || ||, is a norm on this space.
(b) Show that the set of functions f with ||f||, <1 is a compact subset of

C([0, 13).

5. Metric spaces. (a) Let X be a metric space with distance function d. Define
d’'(x, y) = min{1, d(x, y)}. Show that d’ is a distance function, and that the
notion of convergence and limit with respect to d' is the same as with
respect to d.

(b) As in normed vector spaces, one can define Cauchy sequences, ie. se-
quences {x,} such that given ¢, there exists N such that for all m, n= N
we have d(x,, x,,) < & A metric space is called complete if every Cauchy
sequence converges. Show that if a metric space X as in part (a) is
complete with respect to d, then it is complete with respect to d'.

(c) For each x € X define the function f, on X by

fy)=dx, y).

Let || || be the sup norm. Show that

dix,y) = fs = £l

Let a be a fixed element of X and let g, = f, — f,. Show that the map
x+—g, is a distance-preserving embedding of X into the normed vector
space of bounded functions on X. (If the metric is bounded, you can use
f. instead of g,). Thus one need not fuss too much with abstract metric
spaces. Besides, almost all metric spaces which occur naturally are in fact
given as subsets of normed vector spaces.

A topological space is said to be metrizable if there exists a metric
such that the open balls form a basis for the topology. Such a metric is
said to be compatible with the topology.

6. Let A be a subset of a metric space X. For each x € X, let
d(x, A) = inf d(x, y)
for all ye A. Show that the map
x—>d(x, A)

is a continuous function on X, and that d(x, 4) = 0 if and only if x lies in the
closure of A. We call d(x, A) the distance from x to A.

7. (a) Show that a metrizable space is normal. [Hint: Let A, B be disjoint
closed subsets. Let U be the set of x such that d(x, A) < d(x, B) and let V
be the set of x such that d(x, B) < d(x, A).]
(b) If A, B are disjoint closed subsets of a metric space, show that the
function

xt—=d(x, A)/(d(x, 4) + d(x, B))

can be used to prove Urysohn’s lemma.
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Let X be a topological space and E a normed vector space. Let M(X, E) be

the set of all maps of X into E and C(X, E) the space of all continuous maps

of X into E. Let B(X, E) be the space of all bounded maps, and BC(X, E)

the space of bounded continuous maps.

(a) Show that BC(X, E) is closed in B(X, E).

(b) Suppose that E is complete, i.e. a Banach space. Show that B(X, E) is
complete, with the sup norm.

(¢) If X is compact, show that C(X, E) = BC(X, E).

. Uniform convergence on compact sets. Let X be a Hausdorff space. Let

M(X, E) be the space of maps of X into a Banach space E. A sequence {f,}
in this space is said to be uniformly Cauchy on compact subsets if given a
compact set K and ¢ > 0, there exists N such that for m, n = N, we have

/o — fullk <,

where || || is the sup norm on K. In other words, the sequence restricted to
K is uniformly Cauchy. The sequence is said to be uniformly convergent on
compact sets if there is some map f having the following property. Given a
compact set K and ¢, there exists N such that for n = N, we have

Ifo — flx <e

In other words, the sequence restricted to K is uniformly convergent. We
shall now make M(X, E) into a metric space for which the above convergence
is the same as convergence with respect to this metric, in certain cases.

A sequence {K;} of compact subsets of X said to be exhaustive if their
union is equal to X, and if every compact subset of X is contained in some
K;. We assume that there exists such a sequence {K;}.

(a) Define

d(f) = il 2 min(L, |f)-

If f is unbounded on K, then we set ||f|x = c0 and min(l, ||f|g) = 1.
Show that d(f) satisfies two of the properties of a norm, namely:

d(f)=0 ifand only if f=0;
d(f+ g) = d(f) + d(g).

(b) Define d(f, g) by d(f — g). Show that d(f, g) is a metric on M(X, E).
(c) Show that

270nf(L, I fllg) £d(f)  and  d(f) S IIfllg, + 27"

(d) Show that a sequence {f,} converges uniformly on compact sets if and
only if it converges in the above metric.

() Let K be a compact set and ¢ > 0. Given f, let V(f, K, &) be the set of
all maps g such that ||f — g|lx <& Show that V(f, K, ¢) is open in the
topology defined by the metric. Show that the family of all such open
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sets for all choices of f, K, ¢ is base for the topology. This proves that
the topology does not depend on the choice of exhaustive sequence {K;}.
(f) If E is complete, i.e. a Banach space, show that M(X, E) is complete in
the metric defined above.
(g) If X is locally compact, show that the space of continuous maps C(X, E)
is closed in M(X, E) for the metric.

10. Let U be the open unit disc in the plane. Show that there is an exhaustive
sequence of compact subsets of U.

11. Let U be a connected open set in the plane (or in Euclidean space R*). Show
that there is an exhaustive sequence of compact subsets of U.

12. Let U be an open subset of a normed vector space. Show that U is con-
nected if and only if U is arcwise connected.

13. The diagonal A in a product X x X is the set of all points (x, x).
(a) Show that a space X is Hausdorff if and only if the diagonal is closed in
X x X.
(b) Show that a product of Hausdorff spaces is Hausdorff.

14. If A is a subspace of a space X, we define the boundary of A (denoted by 2A)
to be the set of all x such that any open neighborhood U of x contains a
point of A and a point not in 4. In other words, 04 = A N (%A).

(a) Show that d(4 v B) = 04 L dB.

(b) Show that (A~ B) < 04U éB.

(c) Let X, Y be topological spaces, and let 4 be a subset of X, B a subset of
Y. Show that

d(A x B)= (84 x B)u (4 x 0B).

(d) Let A be a subset of a complete normed vector space E. Let xe 4 and
let y be in the complement of 4. Show that there exists a point on the
line segment between x and y which lies on the boundary of A. (The line
segment consists of all points x + t(y — x) with 0 <t < 1)

Separable Spaces

15. A topological space having a countable base for its open sets is called separa-
ble. Show that a separable space has a countable dense subset.

16. (a) If X is a metric space and has a countable dense subset, then X is
separable.
(b) A compact metric space is separable.

17. (a) Every open covering of a separable space has a countable subcovering.
(b) A disjoint collection of open sets in a separable space is countable.
(c) A base for the open sets of a separable space contains a countable base.

18. A denumerable product of separable (resp. metric) spaces is separable (resp.
metric).
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19.

20.

21.

TOPOLOGICAL SPACES [11, §5]

Let X be separable. Show that the following conditions are equivalent:

(a) X is compact.

(b) Every sequence {x,} in X has at least one point of accumulation, that is
X is sequentially compact.

(c) Every decreasing sequence {A4,} of non-empty closed sets has a nonempty
intersection.

Prove that a normal separable space X is metrizable (Urysohn metrization
theorem). [Hint: Let {U,} be a countable base for the topology. Let (U,,, U,,)
be an enumeration of all pairs of elements in this base such that U, = U,..
For each i let f; be a continuous function satisfying 0 < f; < 1 and such that
f;is 0 on (—f,,i and 1 on the complement of U, . Let

@ 1
d(x,y)=__zli

|fix) = £i(»)I]

Show that d is a metric and that the identity mapping is continuous with
respect to the given topology on X and the topology obtained from the
metric. You will use the fact that given x € X and some open set U, in the
base containing x, there exists another set U, in the base such that

xeU,cU,cU,.

Regular spaces. A topological space X is called regular if it is Hausdorff, and
if given a point x and a closed set A not containing x, there exist disjoint
open sets U, V such that xe U and 4 c V.
(a) A subspace of a regular space is regular.
(b) Let X be a topological space. If every point has a closed neighborhood
which is regular, then X is regular.
(c) Every locally compact Hausdorff space is regular.
(d) If X is separable regular, show that every point x has a sequence of open
neighborhoods such that:
B) U U,
(i) {x} = Uy

The following exercises are of somewhat less general interest than the preced-

ing ones (but some are more amusing).

22.

Proper maps. Let X, Y be topological spaces and f: X —» Y a map. We say
that f is closed if f maps closed sets into closed sets. We say that f is proper
if f is continuous and if for every topological space Z the map

[xL=f3XXZ>YXxZ

given by f,(x, z) = (f(x), z) is closed.

(a) Show that a proper map is closed.

(b) For each i =1, ...,n let f: X; > Y, be a continuous map. Assume that X;
is not empty for each i. Let f:[[X;—][]¥ be the product map. Show
that f is proper if and only if all f; are proper.

(c) If f: X - Y is proper and A is closed in X, show that f|A4 is proper.
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23.

24,

25.

26.

27.

28.

Let /- X —» X' and g: X’ - X" be continuous maps. Prove:
(a) If f and g are proper, so is g o f.

(b) If g o f is proper and f is surjective, then g is proper.
(c) If g o f is proper and g is injective, then f is proper.
(d) If g o f is proper and X'is Hausdorff, then f is proper.

Let X be a topological space, {p} a set consisting of one element p. The map
f: X > {p} is proper if and only if X is compact. [Hint: Assume that f is
proper. To show that X is compact, let {S,} be a family of non-empty closed
sets having the finite intersection property. Let Y = X u {p}, where p is dis-
joint from X. Define a base for a topology of Y by letting a set be in this
base if it is of type S, u {p}, or if it is an arbitrary subset of X. Show this is
a base. The projection n: X x Y — Y is a closed map. Let D be the subset of
X x Y consisting of all pairs (x,x) with xe X. Then n(D) is closed and
therefore contains p. Hence there exists x € X such that (x, p)e D, whence
give an open U in X containing x, and any S,, the set U x (S, {p}) inter-
sects D, whence U intersects S,, and x lies in ﬂ S,-]

Let f: X —» Y be a continuous map. Show that the following properties are
equivalent:

(a) f is proper.

(b) f is closed and for each y e Y the set f(y) is compact.

Let f: X > Y be proper. If B is a compact subset of Y, then f'(B} is
compact.

(The marriage problem so baptized by Hermann Weyl) Let B be a set of boys,
and assume that each boy b knows a finite set of girls G,. The problem is to
marry each boy to a girl of his acquaintance, injectively. A necessary condi-
tion is that each set of n boys know collectively at least n girls. Prove that
this condition is sufficient. [Hint: First assume that B is finite, and use
induction. Let n > 1. If for all 1 £ k < n each set of k boys knows > k girls,
marry off one boy and refer the others to the induction hypothesis. If for
some k with 1 < k < n there exists a subset of k boys knowing exactly k girls,
marry them by induction. The remaining n — k boys satisfy the induction
hypothesis with respect to the remaining girls (obvious!) and thus the case of
finite B is settled. For the infinite case, which is really the relevant problem
here, take the Cartesian product ]_[Gb over all be B, each G, being finite,
discrete, and use Tychonoff’s theorem. For this elegant proof, cf. Halmos
and Vaughn, Amer. J. Math. January 1950, pp. 214-215.]

The Cantor set. Let K be the subset of [0, 1] consisting of all numbers
having a trecimal expansion

Q

P18
|
S\‘ B

1l
—-

n

where a, =0 or a,=2. This set is called the Cantor set. Show that K is
compact. Show that the complement of K consists of a denumerable union
of intervals, and that the sum of the lengths of these intervals is 1. Show that
the connected component of each point in K is the point itself. (One says
that K is totally disconnected.)
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29.

30.

31

32.

TOPOLOGICAL SPACES [11, §5]

[It can be shown that a compact metric space is always a continuous
image of a Cantor set, and also that a totally disconnected compact metric
space is homeomorphic to a Cantor set. Cf. books on general topology.
The Cantor set has measure 0, is not countable, and is a rich source for
counterexamples.]

Peano curve. Let K be the Cantor set of the preceding exercise. Let S =
[0, 1] x [0, 1] be the unit square. Let f: K — S be the map which to each
element Y a,/3" of the Cantor set assigns the pair of numbers

b2n+1 bZn
(2l 5 %).

where b,, = a,/2. Show that f is well defined. Show that f is surjective and
continuous. One can then extend f to a continuous map of the interval onto
the square. This is called a Peano curve. Note that the interval has dimen-
sion 1 whereas its image under the continuous map f has dimension 2. This
caused quite a sensation at the end of the nineteenth century when it was
discovered by Peano.

The semi parallelogram law (Bruhat-Tits). Let X be a complete metric space.
We say that X satisfies the semi parallelogram law, or is seminegative, if
given two points x,, x, € X there is a point z such that for all x € X we have

d(xy, X,)% + 4d(x, 2)* < 2d(x, x,)? + 2d(x, x,)*

Prove that under this law, d(z, x,) = d(x,, x,)/2, and z is uniquely deter-
mined. We call z the midpoint of x, x,.

(Serre, after Bruhat-Tits) Let X be a seminegative complete metric space. Let
S be a bounded subset of X. Show that there exists a unique closed ball
B,(x,) of minimal radius containing S. [Use the semiparallelogram law both
for uniqueness and existence. For existence, show that if {l_i,n(x,,)} is a se-
quence of closed balls containing S with limr, =r (the inf of all radii of
closed balls containing S), then {x,} is Cauchy.] The center of that closed
ball is called the circumcenter of S.

(Bruhat-Tits fixed point theorem) Let X be a complete seminegative metric
space. Let G be a group of isometries of X, ie. bijective maps f: X - X
which preserve distance. Denote the action of G by (g, x) — g.x. Suppose G
has a bounded orbit (i.e. there is a point x such that the set S of all elements
g.x, g€ G, is bounded). Then G has a fixed point (the circumcenter) of the
orbit.

For the above exercises, cf. Bruhat-Tits, Groupes Réductifs sur un Corps
Local 1, Pub. IHES 41 (1972) pp. 5-251; and K. Brown, Buildings, Springer
Verlag, 1989, Chapter VI, Theorem 2 of §5.



CHAPTER i

Continuous Functions
on Compact Sets

i, §1. THE STONE-WEIERSTRASS THEOREM

Let E be a normed vector space (over the real or the complex numbers).
We can define the notion of Cauchy sequence in E as we did for real
sequences, and also the notion of convergent sequence (having a limit). If
every Cauchy sequence converges, then E is said to be complete, and is
also called a Banach space. A closed subspace of a Banach space is
complete, hence it is also a Banach space.

Examples. Let S be a non-empty set, and let F be a normed vector
space. We denote by B(S, F) the space of bounded maps from S into F.
It is a normed vector space under the sup norm, and if F is a Banach
space, then B(S, F) is complete, and thus is also a Banach space. The
proof that B(S, F) is complete if F is complete should be carried out as
an exercise. (The reader should have had a similar proof as part of a
course in advanced calculus but, at any rate, has had it for functions
which are real valued. The proof applies as well to Banach spaces.) If S
is a subset of a normed vector space (or a metric space) we denote by
C(S, F) the space of continuous maps of S into F, and by BC(S, F)
the subspace of bounded continuous maps. Then BC(S, F) is closed in
B(S, F), this being nothing else but a special case of the assertion that
a uniform limit of continuous maps is continuous. Again, the reader
should have seen a proof in the case of functions, and that same proof (a
3e-proof) applies to the case of maps into Banach spaces. (Do Exercise 0
if you have never done it before, or look up Undergraduate Analysis.)

Let X be a set. By an algebra A of functions on X (say, real valued)
we mean a subset of the ring of all functions having the properties that if
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f, ge A, then f + g and fg are in A, and if c € R, then ¢f € A. Most of
the algebras we deal with also contain the constant functions (identified
with R itself). We make a similar definition of an algebra over C.

For example, a polynomials in one variable form an algebra, and so
do polynomials in several variables. If ¢ is a function on some set S,
then the set of all functions which can be written in the form

agt+ao+-+a,0"

with a;€ R form an algebra, said to be generated by ¢. Similarly, we
have the notion of an algebra generated by a finite number of functions
@15 -..,0,, or by a family of functions. It is the algebra of polynomials
in ¢, ...,0,. If X is a topological space, the set of all continuous
functions is an algebra, denoted by C(X). If we wish to specify the range
of values (real or complex), we write C(X, C) or C(X, R). Recall that a
function is a mapping with values in R or C.

Let S be a compact set. Let A be an algebra of continuous functions
on S. Every function in A4 is bounded because S is compact, and conse-
quently we have the sup norm on 4, namely for f € 4,

1A= sup LfG)l-

Thus A is contained in the normed vector space of all bounded functions
on S. We are interested in determining the closure of 4. Since C(S) is
closed, the closure of 4 will be contained in C(S). We shall find condi-
tions under which it is equal to C(S). In other words, we shall find
conditions under which every continuous function on S can be uniformly
approximated by elements of A.

We shall say that A separates points of S if given points x, y €S,
and x # y, there exists a function f € A such that f(x) # f(y). The ordi-
nary algebra of polynomial functions obviously separates points, since the
function f(x) = x already does so.

Theorem 1.1 (Stone—Weierstrass Theorem). Let S be a compact set,
and let A be an algebra of real valued continuous functions on S.
Assume that A separates points and contains the constant functions.
Then the uniform closure of A is equal to the algebra of all real
continuous functions on S.

We shall first prove the theorem under an extra assumption. We shall
get rid of the extra assumption afterwards.

Lemma 1.2. In addition to the hypotheses of the theorem, assume also
that if f, g€ A then max(f, g) € A, and min(f, g) € A. Then the conclu-
sion of the theorem holds.
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Proof. We give the proof in three steps. First, we prove that given x,,
x, €S and x; # x,, and given real numbers o, f, there exists h € A such
that h(x,) = « and h(x,) = . By hypothesis, there exists ¢ € A such that

o(x;) # @(x;). Let

@(x) — o(x,)

Moy =+ (B =) oty

Then h satisfies our requirements.

Next we are given a continuous function f on S and also given & We
wish to find a function g € A such that

S —e<g(y)<fy) +e

for all yeS. This will prove what we want. We shall satisfy these
inequalities one after the other. For each pair of points x, ye S there
exists a function h, , € A such that

hey(x)=f(x)  and ke (y) = f(y)

If x =y, this is trivial. If x # y, this is what we proved in the first step.
We now fix x for the moment. For each y € S there exists an open ball
U, centered at y such that for all z e U, we have

hey(2) < f(2) + &

This is simply the continuity of f —h, , at y. The open sets U, cover §,
and since S is compact, there exists a finite number of points y,, ...,y,
such that U, , ...,U, already cover S. Let

h, = min(h h. ).

XoY12 02X n

Then h, lies in A according to the additional hypothesis of the lemma
(and induction). Furthermore, we have for all ze S:

hi(2) < f(2) + ¢,
and h(x) = f(x), that is (h, — f)(x) = 0.

Now for each x € § we find an open ball V, centered at x such that,
by continuity, for all z € V, we have (h, — f)(z) > —¢, or in other words,

(@) — & < h(2).

By compactness, we can find a finite number of points x,, ...,x, such
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that V, , ...,V cover S. Finally, let
g = max(h, ,...,h, ).
Then ¢ lies in A4, and we have for all ze S
fD)—e<g(@) < f(2) +5¢

thereby proving the lemma.

The theorem is an easy consequence of the lemma, and will follow if
we can prove that whenever f, g € A then max(f, g) and min(f, g) lie in
the closure of 4. To prove this, we note first that we can write

max(f,g)=f-;g+1f;g|,
min(f,g)=f—;g—lf;g'.

Consequently it will suffice to prove that if f € A then |f| € A.
Since f is bounded, there exists a number ¢ > 0 such that

—c=fx)=c

for all x € S. The absolute value function can be uniformly approximated
by ordinary polynomials on the interval [ —c, ¢] by Exercises 6, 7, or 8,
which are very simple ad hoc proof. Given ¢, let P be a polynomial such
that

|[P@) —ltl] <e

for —¢c <t <c. Then

[P(f(x)) = 1fG)l| <&
and hence | f| can be approximated by P o f. Explicitly, if

P(t)=a,t" + - + ay,
then

Pof=af"+ +a,
ie.

P(f(x)) = a,f(x)" + -+~ + ao.
This concludes the proof of the Stone—Weierstrass theorem.
Corollary 1.3. Let S be a compact set in R¥. Any real continuous

function on S can be uniformly approximated by polynomial functions in
k variables.
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Proof. The set of polynomials contains the constants, and obviously
separates points of R* since the coordinate functions x,, ...,x, already do
this. So the theorem applies.

There is a complex version of the Weierstrass—Stone theorem. Let A4
be an algebra of complex valued functions on the set S. If fe A, we
have its complex conjugate / defined by

f () =f).

For instance, if f(x) = e™* then f(x) =e ™. If A is an algebra over C of
complex valued functions, we say that A is self conjugate if whenever
f € A the conjugate function f is also in A.

Theorem 1.4 (Complex S—W Theorem). Let S be a compact set and
A an algebra (over C) of complex valued continuous functions on S.
Assume that A separates points, contains the constants, and is self con-
jugate. Then the uniform closure of A is equal to the algebra of all
complex valued continuous functions on 8.

Proof. Let Ay be the set of all functions in 4 which are real valued.
We contend that Ay is an algebra over R which satisfies the hypotheses
of the preceding theorem. It is obviously an algebra over R. If x; # x,
are points of S, there exists fe 4 such that f(x,)=0 and f(x,)=1.
(The proof of the first step of Lemma 1.2 shows this) Let g=f + f.
Then g(x,) =0 and g(x,) =2, and g is real valued, so Ay separates
points. It obviously contains the real constants, and so the real S—-W
theorem applies to it. Given a complex continuous function ¢ on S, we
write @ = u + iv, where u, v are real valued. Then u, v are continuous,
and u, v can be approximated uniformly by elements of Ag, say f, g€ Ag
such that Ju— f|l <e¢ and |v—g|l <e Then f +ig approximates
u + iv = ¢, thereby concluding the proof.

Remark. The Stone—Weierstrass theorem has a useful application to
locally compact spaces. For such corollaries, we refer the reader to
Chapter IX, §6, and Chapter XVI, §3. For explicit approximations in
concrete cases, see the Exercises and also Chapter VIII, §l1.

lll, §2. IDEALS OF CONTINUOUS FUNCTIONS

The second theorem of this chapter deals with ideals of continuous func-
tions. Let S be a topological space, and R a ring of continuous functions
(real valued) on S. An ideal J of R is a subset of R satisfying the
following properties: The zero function O is in J. If f, ge J, then f+ g
and —f are in J, and if h e R, then hf € J. The reader should really have
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met the definition of an ideal in an algebra course, but we don’t assume
this here, although some motivation from algebra is useful.

Let f be continuous on S. A zero of f is a point x €S such that
f(x) =0. The set of zeros of f is a closed set denoted by Z,. Let J be
an ideal. Then the set

Z(J)= m ny

feJ

equal to the intersection of the sets of zeros of all f e J, is closed, and is
called the set of zeros of J. If J, J' are two ideals, and J = J', then
Z(J)> Z(J'). We ask to what extent the set of zeros of an ideal deter-
mines this ideal, and answer this question in an important case.

Theorem 2.1. Let X be a compact space, and let R be the ring of
continuous functions on X, with the sup norm. Let J be a closed ideal
(i.e. an ideal, closed under the sup norm). If fe€ R is such that f(x)=0
for all zeros x of J (i.e. if f vanishes on the set of zeros of J), then f
lies in J.

Proof. Given ¢, let U be the subset of X consisting of all x e X such
that |f(x)] <& Then U is open, and the complement S of U is closed,
and hence compact. Note that U contains Z,. For each ye S, we can
find a function g, in J such that g (x) # 0 in some open neighborhood
¥, of y (by continuity). There is some finite covering {V,,....V, } of S
corresponding to functions g, , ...,g, . Let

g=g5,+ "+,

Then g is in J, is continuous, is nowhere 0 on S, and = 0. Since g has a
minimum on S, there is a number a > 0 such that g(x) = a for all xeS.
The function
ng
1+ ng

lies in J, because 1 + ng is nowhere 0 on X, its inverse is continuous
on X, so in R, and hence (1 + ng)"'ngeJ. For n large, the function
ng/(1 + ng) tends uniformly to 1 on S, and hence the function

ng
fl + ng

lies in J, and approximates f within ¢ on S. Since 0 < ng/(1 + ng) <1 it
follows that on U we have the estimate

0= |fng/(1 + ng)| <,
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and so fng/(1 + ng) lies within 2¢ of f. Thus we have shown that f lies
in the closure of J. Since J is assumed closed, we conclude that f lies in
J, thereby proving our theorem.

Remark 1. Situations analogous to that of Theorem 2.1 arise fre-
quently in mathematics. For instance, let R be the ring of polynomials in
n variables over the complex numbers, R = C[t,,...,t,]. Let J be an
ideal of R, and define zeros of J to be n-tuples of complex numbers
x such that f(x) =0 for all feJ. It is shown in algebraic geometry
courses that if f is a polynomial in R which vanishes on Z(J), then
f™e J for some positive integer m. This is called Hilbert’s Nullstellensatz.

Remark 2. Theorem 2.1 is but an example of a type of theorem which
describes the topology of a space and describes properties of a space in
terms of the ring of continuous functions on that space. (Cf. also Exercise
5.) This is one way in which one can algebraicize the study of certain
topological spaces.

i, §3. ASCOLI’S THEOREM

In the examples of Chapter XVIII, §4, we shall deal with compact subsets
of function spaces, and we need a criterion for compactness, which is
provided by Ascoli’s theorem. It is also used in other places in analysis,
for instance in a proof of the Riemann mapping theorem in complex
analysis. Therefore, we give a proof here in the general discussion of
compact spaces.

Let X be a subset of a metric space, and let F be a Banach space. Let
® be a subset of the space of continuous maps C(X, F). We shall say
that @ is (or its elements are) equicontinuous at a point x, € X if given ¢,
there exists § such that whenever x € X and d(x, x,) < §, then

|f(x) = f(xo)l <&

for all fe®. We say that ® is equicontinuous on X if it is equicon-
tinuous at every point of X.

Theorem 3.1 (Ascoli’s Theorem). Let X be a compact subset of a
metric space, and let F be a Banach space. Let ® be a subset of the
space of continuous maps C(X, F) with sup norm. Then @ is relatively
compact in C(X, F) if and only if the following two conditions are
satisfied :

ASC 1. @ is equicontinuous.

ASC 2. For each x € X, the set ®(x) consisting of all values f(x) for
f € @ is relatively compact.
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Proof. Assume that @ satisfies the two conditions. We shall prove
that @ is relatively compact. For this it is sufficient to show that ® can
be covered by a finite number of balls of prescribed radius (Corollary 3.9
of Chapter II). Let r > 0. By equicontinuity, for each x € X we select an
open neighborhood V(x) such that if y e V(x), then |f(y) — f(x)| <r for
all f € ®. Then a finite number V(x,), ...,V (x,) cover X. Each set

D(x,), ..., D(x,)
is relatively compact, and hence so is their union
Y =®(x;)) U ud(x,).

Let B(a,), ...,B(a,) be open balls of radius r centered at points a,, ...,a,
which cover Y. Then f(x;), ...,f(x,) lie in these balls. In fact, for each
i=1,...,n we have

f(x;) € B(a,;)

where a: {1,...,n} > {1,...,m} is some mapping. For each such map ¢
let @, be the set of f € ® such that for all i, we have

If(xi) - aail <r.

Then the finite number of @, cover ®. It suffices now to prove that each
®, has diameter < 4r. But if f, ge ®, and x € X, then x lies in some
V(x;), and then:

|f(x) = g £ 1f(x) = fx)] + 1f(x:) — agil + 1ag — g(x)I + 1g(x:) — g(x)]

< d4r.

This proves our implication, and the part of Ascoli’s theorem which
is used in the applications. The converse is trivial and left to the reader.

Ascoli’s theorem is used mostly when F is the real or complex num-
bers, and in that case, we reformulate it as a corollary.

Corollary 3.2. Let X be a compact subset of a metric space, and let ®
be a subset of the space of continuous functions on X with sup norm.
Then @ is relatively compact if and only if ® is equicontinuous and
bounded (for the sup norm, of course).

Proof. For each x e X, our hypothesis that ®(x) is bounded implies
that ®(x) is relatively compact, since a closed bounded subset of a finite
dimensional space is compact. So we can apply the theorem.
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Remark. Since ® has a metric defined by the sup norm, as a rela-
tively compact set it has the property that any sequence has a convergent
subsequence, converging in its closure. Sometimes one deals with a lo-
cally compact set X which is a denumerable union of compact sets. In
that case, one obtains the following version of Ascoli’s theorem.

Corollary 3.3. Let X be a metric space whose topology has a countable
base {U;} such that the closure U, of each U is compact. Let {f,} be a
sequence of continuous maps of X into a Banach space. Assume that
{f.} is equicontinuous (as a family of maps), and is such that for each
x € X, the closure of the set {f,(x)} (n=1,2,...) is compact. Then
there exists a subsequence which converges pointwise to a continuous
function f, and such that the convergence is uniform on every compact
subset.

Proof. We can find a sequence {V;} of open sets such that V, = V4,
such that V, is compact, and such that the union of the V; is X. For
each i, by the previous version of Ascoli’s theorem, there exists a sub-
sequence which converges uniformly on V. The diagonal sequence with
respect to all i converges uniformly on every compact set. This proves
the corollary.

Remark. In light of Urysohn’s metrization lemma, the hypotheses on
X in the corollary could be given as X separable locally compact.

Ill, §4. EXERCISES

0. Let S be a subset of a normed vector space (or a metric space), and let {f,}
be a sequence of continuous maps of S into a Banach space F. Assume that
{f.} is a Cauchy sequence (for the sup norm). Show that {f,} converges to a
continuous function f (for the sup norm). Show that BC(S, F) is closed in
B(S, F).

1. Let X be a compact set and let R be the ring of continuous (real valued)
functions on X. Let J, J' be closed ideals of R. Show that J < J' if and only
if Z(J) > Z(J).

2. Let S be a closed subset of X. Let J be the set of all fe R such that f
vanishes on S. Show that J is a closed ideal. Assume that X is Hausdorff.
Establish a ring-isomorphism between the factor ring R/J and the ring of
continuous functions on S. (We assume that you have had the notion of a
factor ring in an algebra course.)

3. Let X be a compact space and let J be an ideal of C(X). If the set of zeros
of J is empty, show that J = C(X). (This result is valid in both the real and
the complex case.)
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10.

CONTINUOUS FUNCTIONS ON COMPACT SETS [111, §4]

. Let X be a compact Hausdorff space. Show that a maximal ideal of C(X)

has only one zero, and is closed. (Recall that an ideal M is said to be
maximal if M # C(X), and if there is no ideal J such that M < J < C(X)
other than M and C(X) itself) Thus if M is maximal, then there exists pe X
such that M consists of all continuous functions f vanishing at p.

. Let X be a normal space, and let R be the ring of continuous functions on

X. Show that the topology on X is the one having the least amount of open
sets making every function in R continuous.

. Give a Taylor formula type proof that the absolute value can be approxi-

mated uniformly by polynomials. First, reduce it to the interval [—1,1] by
multiplying the variable by ¢ or ¢! as the case may be. Then write |t| =
2. Select § small, 0 <d < 1. If we can approximate (:* + 6)"/%, then we
can approximate \/F Now to get (t2 + )2 either use the Taylor series
approximation for the square root function, or if you don’t like the binomial
expansion, first approximate

log(t? + 8)'/* = 4 log(t* + 6)
by a polynomial P. Then take a sufficiently large number of terms from the

Taylor formula for the exponential function, say a polynomial Q, and use
Q o P to solve your problems.

. Give another proof for the preceding fact, by using the sequence of poly-

nomials {P,}, starting with Py(t) = 0 and letting
Py () = P(t) + 3(t — R(0)?).

Show that {P,} tends to \ﬂ uniformly on [0, 1], showing by induction that

2/t
0= —-Pit)s ———,
_\/E "(t)_2+n\ﬂ

whence 0 < \ﬁ — P(t) < 2/n.

. Look at Example 1 of Chapter VIII, §3 to see another explicit way of

proving Weierstrass’ approximation theorem for a continuous function on a
finite closed interval. Do Exercise 1 of that chapter.

. Let X be a compact set in a normed vector space, and let {f,} be a sequence

of continuous functions converging pointwise to a continuous function f, and
such that {f,} is a monotone increasing sequence. Show that the convergence
is uniform (Dini’s theorem; cf. Chapter IX, §1).

Let X be a compact metric space (whence separable). Show that the Banach
space C(X, R) or C(X, C) of continuous functions on X is separable.

[Hint: Let {x,} be a countable dense set in X and let g, be the function on
X given by

gn(x) = d(x, x,),
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1.

12.

13.

14.

15.

16.

where d is the distance function. Use the Stone-Weierstrass theorem applied
to the algebra generated by all functions g, to conclude that C(X,R) is
separable.] Note: Since a compact Hausdorff space is normal, and since a
normal separable space is metrizable, one can adjust the statement of the
theorem proved in the exercise as follows:

Let X be a compact Hausdorff separable space. Then C(X, R) is separable.

Let X, Y be compact Hausdorff spaces. If f, g are continuous functions on
X and Y respectively, we denote by f ® g the function such that

(f ® g)(x, y) = f(X)g(y).

Show that every continuous function on X x Y can be uniformly approxi-
mated by sums Y ", f; ® g; where f; is continuous on X and g; is continuous
on Y.

Let X be compact Hausdorfl. By an algebra automorphism of C(X) we mean
a map a: C(X) — C(X) such that ¢ leaves the constants fixed, and satisfies

of +g)=0(f)+0(9, o(fg)=a(f)a(g)

Show that an algebra automorphism is norm preserving, i.e. |laf | = | f|.

Let X be a compact Hausdorff space and let A be a subalgebra of C(X, R).
Show that there exists a continuous map ¢: X - Y of X onto a compact
space Y such that every element of 4 can be written in the form g o ¢, where
g is a continuous function on Y.

Let X, Y be compact Hausdorff spaces. Show that X is homeomorphic to Y
if and only if C(X, C) is algebra-isomorphic to C(Y, C).

Let X be a compact Hausdorff space. Let .# be the set of all maximal ideals
in C(X,C). Define a closed set in .# to consist of all maximal ideals con-
taining a given ideal. Show that this defines a topology on .#. For each
x e X, let M, be the ideal of functions in C(X, C) which vanish at x. Show
that the map

x—>M,

is a homeomorphism between X and .#.

For a e R let f,(x) = e**e™’. Prove that any function ¢ which is C* and has
compact support on R can be uniformly approximated by elements of the
space generated by the functions f, over C. [Hint: If  is a function van-
ishing outside a compact set, and N is a large integer, let ¥y be the extension
of y on [—N, N] to R by periodicity. Use the partial sums of a Fourier
series to approximate such an extension of g(x)e™’, and then multiply by
e "] Remark. Instead of e ™ you could use any function h(x) > 0 which is
C®, and tends to O at infinity. This would not be the case in Exercises 19
and 20 below.

The next four exercises form a connected set.
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17.

18.

19.

20.

21.

22.

23.

CONTINUOUS FUNCTIONS ON COMPACT SETS [111, §4]

Let X be compact Hausdorff and let p be a point of X. Let A be a
subalgebra of C(X, R) consisting of functions g such that g(p) = 0. Assume
that there is no point g # p such that g(g) =0 for all ge 4, and that 4
separates the points of X — {p}. The the uniform closure of 4 is equal to the
ideal of all functions vanishing at p.

Let X be locally compact Hausdorff, but not compact. Let C,(X,R) be the
algebra of continuous functions f on X such that f vanishes at infinity
(meaning, given ¢ there exists a compact K such that |f(x)| < & if x ¢ K). Let
A be a subalgebra of C,(X,R) which separates points of X. Assume that
there is no common zero to all functions in A. Show that A4 is dense in
C.(X,R).

Let f be a real valued continuous function on R, (reals = 0). Assume that f
vanishes at infinity. Show that f can be uniformly approximated by functions
of the form e *p(x), where p is a polynomial. [Hint: First show that you can
approximate e 2* by e *q(x) for some polynomial g(x), by using Taylor’s
formula with remainder. If p is a polynomial, approximate e ™ p(x) by e *g(x)
for some polynomial g.]

Let f be a continuous function on R, vanishing at infinity. Show that f can
be uniformly approximated by functions of the form e~*’p(x), where p is a
polynomial.

Remark. By changing variables, one can use e ™ and e * with a fixed
¢ > 0 instead of e™* and e~ in Exercises 19 and 20.

Let X be a metric space and E a normed vector space. Let BC(X, E) be the
space of bounded continuous maps of X into E. Let ® be a bounded subset
of BC(X, E). For xe X, let ev,: ® — E be the map such that ev.(¢) = @(x).
Show that ev, is a continuous bounded map. Show that @ is equicontinuous
at a point ae X if and only if the map x—ev, of X into BC(®, E) is
continuous at a.

Let X be a compact subset of a normed vector space, and E a normed vector
space. Show that any equicontinuous subset ® of C(X, E) is uniformly equi-
continuous. [This means: Given ¢, there exists 6 such that |[x — y| < im-

plies | f(x) — f(y)| < ¢ for all fe®.]

Let X be a subset of a normed vector space and ® an equicontinuous subset
of BC(X,R). Let Y be the set of points x € X such that ®(x) is bounded.
Prove that Y is open and closed in X. If X is compact and connected, and if
for some point ae X the set ®(a) is bounded, show that @ is relatively
compact in C(X, R).



PART TWO

Banach and Hilbert Spaces

The two chapters of this part are absolutely basic for everything else that
follows, and introduce the most useful of all the spaces encountered in
analysis, namely Banach and Hilbert spaces. The reader who wishes to
study integration theory as soon as possible may continue these chapters
with Chapter VI, which will make essential use of the basic properties of
these spaces, especially the completion of a normed vector space and the
linear extension theorem. Indeed, the integral of the absolute value of a
function defines a seminorm on a suitable space of functions, whose com-
pletion will be the main object of study of the chapters on integration.

On the other hand, readers may look directly at the functional anal-
ysis, as a continuation of the linear theory of Banach and Hilbert spaces.
At some point, of course, these come together when we study the spectral
theorems and the existence of spectral measures.

As in the algebraic theory of vector spaces, we shall consider continu-
ous linear maps L: E — F of a normed vector space into another. The
kernel and image of L are defined as in the algebraic theory, namely the
kernel is the set of elements x € E such that L(x)=0. The image is
simply L(E). Both Ker L and Im L are subspaces, of E and F respec-
tively. However, now that we have the norm, we note that the kernel is
a closed subspace (being the inverse image of the closed set {0}). Warn-
ing: the image if not necessarily closed. For conditions under which the
image is closed, see Chapter XV.

For the integration theory, we do not need such considerations of
subspace and factor space. However, we shall consider the dual space in
the context of integration, showing that various spaces of functions are
dual to each other. Thus we deal at somewhat greater length with the
dual space in this chapter. An application of the duality theory in the
context of Banach algebras will be given in Chapter XVI



CHAPTER IV

Banach Spaces

IV, §1. DEFINITIONS, THE DUAL SPACE, AND
THE HAHN-BANACH THEOREM

Let E be a Banach space, i.e. a complete normed vector space. One can
deal with series ) x, in Banach spaces just as with series of numbers, or
of functions, and the most frequent test for convergence (in fact absolute
convergence) is the standard one:

Let {a,} be a sequence of numbers = O such that ) a, converges. If
|x,| < a, for all n, then Y x, converges.

The proof is standard and trivial.

Let E, F be normed vector spaces. We denote by L(E, F) the space
of continuous linear maps of E into F. It is easily verified that a linear
map i:E— F is continuous if and only if there exists C >0 such that
|A(x)| £ C|x| for all x € E. Indeed, if the C exists, continuity is obvious
(even uniform continuity). Conversely, if 2 is continuous at 0, then there
exists & such that if |x| <0, then |A(x)] < 1. Hence for any non-zero

'.:Cl

whence we can take C = 2/0.
Such a number C is called a bound for 4, and A is also said to be
bounded. Let S, be the unit sphere in E (centered at the origin), that is

<1,
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the set of all x € E such that |[x| = 1. Then a bound for 1 is immediately
seen to be the same thing as a bound for the values of 4 on §;. The
least upper bound of all values |A(x)|, for x € S, is called the norm of 4,
and the map

A 4]

is a norm on L(E, F). It is immediately seen that || is the greatest lower
bound of all numbers C > 0 such that

[A(x)] £ Clx, all xeE.

Let E, F, G be normed vector spaces, let u € L(E, F), and let v € L(F, G).
Then vou is in L(E, G) and we have

lvoul < [oflul.

Proof. A composite of continuous maps is continuous, and a compos-
ite of linear maps is linear, so our first assertion is clear. As to the
second, we have

v o u()l = [v(u(x)| < ol |u(x)| < |v]|ul|x],
so the desired inequality follows by definition.
If F is complete, then L(E, F) is complete.

This is but an exercise. If {4,} is a Cauchy sequence of elements in
L(E, F), then for each xe€ E one verifies that {,(x)} is a Cauchy se-
quence in F, and hence converges to an element which we define to be
A(x). One then verifies that A is linear, and that if C =1lim|J,|, then C
is a bound for 4, so that A is continuous. Finally one verifies that {4,}
converges to A in L(E, F). (Fill in the details as Exercise 1, or look them
up in Undergraduate Analysis.)

We give some terminology concerning the space L(E, F) which is used
constantly in this book, and in analysis.

A continuous (bounded) linear map of a Banach space into itself is
called an endomorphism, or an operator.

In the case of two spaces E, F, an element u e L(E, F) is said to be
invertible if there exists v e L(F, E) such that

uov=Ig and vou=Ig

(where I is the identity mapping). In mathematics, the word isomorphism
refers to invertibility in various contexts, for instance a map having a
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continuous inverse, a linear inverse, a differentiable inverse, etc. ad lib.
Thus in each case, one should add an adjective to the word isomorphism
to make precise the kind of invertibility which is meant. In our present
case, we shall call invertible elements of L(E, F) toplinear isomorphisms,
the adjective toplinear referring to the topology and the linearity. The
set of toplinear isomorphisms of E onto F is denoted by Lis(E, F). If
E = F, then we call toplinear isomorphisms of E with itself toplinear
automorphisms of E; the set of such automorphisms is denoted by
Laut(E). (For euphony, the reader may prefer the adjective topolinear
instead of toplinear.)

A toplinear isomorphism u between Banach spaces E, F which also
preserves the norm (that is |u(x)| = |x] for all x € E) will be called a
Banach isomorphism, or an isometry.

We shall also be dealing with bilinear maps. Let E, F, G be normed
vector spaces. A map

0:ExXF->G

is said to be bilinear if for each x € E the map y+— ¢(x, y) is linear, and if
for each y e F the map x+ ¢(x, y) is linear. Such bilinear maps form a
vector space. It is easily verified (in a manner similar to the case of
linear maps) that ¢ is continuous if and only if there exists C such that

lo(x, Y| = Clx||yl

for all xe E, ye F. The greatest lower bound of such C then defines a
norm on the space of continuous bilinear maps, denoted by L(E, F; G),
and this space is a Banach space if G is complete. (Cf. Exercise 3.)

In the differential calculus, and other applications, we need an
isomorphism between L(E,L(F,G)) and L(E, F;G) as follows. Let
i€ L(E, L(F, G)) and define ¢, by

@1(%, y) = A(x)(y).

Then ¢, is obviously bilinear, and we have

l@a(x, V)| = |2 y| < [4]]x] |yl
so that

l@al S 141

On the other hand, given ¢ € L(E, F; G), we can define 4, by

Ao(x)(¥) = o(x, y).
Then

14,())I = lol1x]1y]
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so that by definition,

[A,(X)] = [ol]x].
Hence

14| = ol
Thus we get a Banach isomorphism
L(E, L(F, G)) < L(E, F; G).
As one example of a bilinear map, we have
L(E,F)x E-»F

such that (4, x)+> A(x). This bilinear map has norm 1.
Similarly, we can treat multilinear maps. If E,, ...,E,, F are normed
vector spaces, a multilinear map

¢:Ey x-xE, >F

is a map which is linear in each variable. Such a map is continuous if
and only if there exists C such that for all x; € E; we have

](p('xla e 7xn)| g Clxll lle e Ixnl'
We have a norm-preserving isomorphism
L(E,, L(E,, ...,L(E,, F)...)) > L(E,, ...,E,; F)

from the space of repeated continuous linear maps to the space of con-
tinuous multilinear maps exactly as in the bilinear case. If F is complete,
then all these spaces are also complete.

We now consider a specially important space of linear maps.

The normed vector space L(E, R) [or L(E, C) in the complex case] is
called the dual space of E, and is denoted by E'. Elements of E' are
called functionals on E. Functionals can be used as substitutes for coor-
dinates. Indeed, suppose that E = R¥, and let A; be the i-th coordinate
function, that is

j.i(xl, PN ,x") = xi.

Then it is easily verified that {4,,...,4,} is a basis for the dual space of
R*. Furthermore, the values of 4,, ...,4, on an element x € R* character-
ize this element. Although we do not have such convenient bases in the
infinite dimensional case, we still have such a characterization of elements
of E in terms of the values of functionals. This is based on the following
theorem.
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Theorem 1.1. Let E be a real normed vector space, and let F be a
subspace. Let A: F >R be a functional, bounded by a number C > Q.
Then there exists an extension of A to a functional of E, having the
same bound.

Proof. Changing the norm on E (multiplying it by a number) we see
that it suffices to prove our theorem when C = 1. We first prove that if
ve E and v ¢ F, then we can extend A to F + Ro, and preserve the bound
1. Every element of F + Rv has a unique expression as x + tv with xe F
and t e R. Let ae R. The map A* on F + Ro such that

A¥(x + tv) = Ax) + ta

is certainly linear. We must show that we can select a such that A* is
bounded by 1. Dividing both sides by t (if ¢ # 0), we see that it suffices
to find a number a such that

[A(») +al =y + vl
for all y € F, or equivalently that for all y e F,
My)+asly+vl and —A(y)—a=|y+ul
This determines inequalities for a, namely
—Ay) —ly+vl2as Ay + 1y + ),

and it suffices to show that the set of real a satisfying such inequalities is
not empty. But for all y, ze F we have

|A(y) = 2@ = Ay — 2)| = |y — 2|
so that
—AM2) —lz+v[ = -4+ [y + ol

From this we conclude that there is a non-empty interval of values of a
which satisfy our requirements.

We now use Zorn’s lemma. We consider the set of pairs (G, A*) where
G is a subspace of E containing F, and A* is a functional on G having
the same bound as 1, and extending . We order such pairs

(Gls j'1) é (Gz, j'2)

if G, is a subspace of G, and A, is an extension of 4;,. This is an
ordering, and our set of pairs is inductively ordered. The proof of this is
the usual proof: Given a totally ordered set of pairs as above, say
{(G;, 4;)}, we let G be the union of all G;. We can define a functional A*
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on G extending all 4;: Any xe G is in some G;, and we define A*(x) =
Ai(x). This is independent of the choice of i such that x € G;, and the pair
(G, A*) is an upper bound for our family. By Zorn’s lemma, let (G, A*) be
a maximal element. Then G = E, for otherwise, there is some veE,
v¢ G, and we can use the first part of the proof to get a bigger pair.
This proves our theorem.

Corollary 1.2. Let E be a normed vector space, and ve E, v #0. Then
there exists a functional A on E such that A(v) # 0.

Proof. Let F be the one-dimensional space generated by v. We define
A on F taking any non-zero value on v, and extend A to E using
Theorem 1.1.

Theorem 1.1, or its Corollary, is referred to as the Hahn—Banach
theorem. We have formulated it over the reals, but it is also valid for
complex Banach spaces, and the complex case is easily reduced to the
real case. Indeed, given a complex functional A on a complex subspace
F, let ¢ be its real part. Let ¢’ be a real extension of ¢ to E, and define

A'(v) = @'(v) — ip'(iv) forveE.

You can verify as Exercise 2 that A’ is a desired complex extension of A.

The dual space E’ is a special case of the space of linear maps L(E, F)
when F is the space of scalars. As such, we have seen that it is a Banach
space with its natural norm. Furthermore, we can form the double dual
E” in a similar fashion, and E” is also a Banach space. Note that each
element x € E gives rise to a functional f, € E”, given by

f E' > scalars R or C such that [(D) = A(x),
continuous for the topology defined by the norm on E'.

Proposition 1.3. The map x+ f, is an injective linear map of E into E”,
which is norm preserving, i.e. |x| = | f,|.

Proof. Suppose x, ye E and x #y. Then x — y # 0. By the Hahn-
Banach theorem, there exists A € E’ such that A(x — y) # 0, so A(x) # A(y).
This proves that f, # f,, whence the map x+ f, is injective. The inequality

[A(x)] = [4]]x]
shows that |f | <|x|. We leave to the reader the opposite inequality

|x| < |f,l, which concludes the proof that we have an isometric em-
bedding of E in E".
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In Chapter II, §1 we defined the weak topology on a space, deter-
mined by a set of mappings into a topological space. We now apply this
notion to the dual space. We let & be the family of functions on E’
given by

F = {f;c}er

as above. The weak topology on E’' determined by this family % is
called simply the weak topology on E’. The next theorem gives one of its
most important properties.

Theorem 1.4 (Alaoglu’s Theorem). Let E be a Banach space, and let E
be the unit ball in the dual space E'. Then E| is compact for the weak
topology.

Proof. For each x € E, let K, be the closed disc of radius 1 in C. Let

K= ] K,

xeE
Ixj<1

be the Cartesian product of all closed discs of radius 1, taken over all
x € E satisfying |x| £ 1. We give K the product topology, so that by
Tychonoff’s theorem, K is compact. We map Ej into K by the map

fiEy—>K suchthat A [] Ax)= [] f(D

Ix[=1 x[£1

Immediately from the definition, one sees that the map f is injective, and
thus gives an embedding of E} into the product space. Furthermore, also
from the definition of the weak topology defined in Chapter II, §1, we
observe that the weak topology determined by the family & is the same
as the weak topology determined by the family &, of functionals f, with
x € E; (the closed unit ball in E), because any x€ E, x # 0 is a scalar
multiple of a unit vector. More precisely, we also have an imbedding

fiE < [ C, givenby  A- [] Ax),

xeE xeE

and the following diagram is commutative:

E’ (el HCX

xeE



72 BANACH SPACES [TV, §2]

The product topology induced on [] K, is the same as the topology
induced by viewing this product as a subspace of [] C,. Therefore, it
follows that the weak topology on E is the topology induced by viewing
E'| as a subspace of K via the embedding f, or also as a subspace of
[1Cs(x€E), via the embedding of E' in [[C,. To show that E; is
compact, it suffices therefore to show that f(E)) is closed in K.

To do this, we first prove that E' is closed in []C, (x € E). Let
[]y(x) (x € E) be an element of the product which lies in the closure of
f(E"). Given elements x, ye E, we have to show that x—1y(x) is a
bounded functional. By definition of the weak topology, given there
exists A € E’ such that

[A(x) — y(x)| < ¢,
[A(y) —y(Y)l <,
[A(x +y) —y(x + y)| <e.

But A(x + y) = A(x) + A(y), whence |y(x + y) — y(x) — y(¥)| < 3¢, so

P(x + ) = y(x) + y(»)

Similarly, one sees that y(cx) = cy(x) for ¢ € C, whence y is linear. Also
similarly, one sees that y is bounded. Furthermore, if []y(x) lies in
the closure of E, then the above 1 can be chosen such that |1] <1,
that is |A(x)] £ |x|. Then by a similar epsilson argument, one sees that
l[y(x)| < |x|, which proves that f(E}) is closed, whence compact, thus
concluding the proof of Theorem 1.4.

Remark. In the case of Hilbert space, to be defined in the next
chapter, the Banach space E is self dual, and so in this case, one may
state that the unit ball in Hilbert space is compact in the weak topology.

IV, §2. BANACH ALGEBRAS

An algebra (say over R) is a vector space A, together with a mapping
A X A— A (called a multiplication) which is bilinear. This means that
for all u, v, we A and c € R we have

u(v + w) = uv + uw, (u + )w = uw + ow,
c(uv) = (cu)v = u(cv).

If in addition we have uv = vu, we say that the algebra is commutative.
If u(vw) = (uv)w, we say that the algebra is associative. If there exists an
element e € A such that eu = ue = u, we say that the algebra has a unit
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element ¢, which is then uniquely determined, because if e’ is another unit
element, then

A normed algebra is an associative algebra whose vector space is
normed, and whose norm satisfies the condition |uv| £ |u||v]. A normed
algebra which is complete is called a Banach algebra.

For convenience when there is a unit element, we shall also assume
that |e] = 1. See Exercise 5 which shows that this condition can always
be achieved by a simple redefinition of the norm.

Example 1. Let 4 be the vector space of bounded functions on a set,
multiplication being ordinary multiplication of functions. Then A4 is a
Banach algebra. So is the set of bounded continuous functions.

Example 2. Let 4 =R® and let the product be the cross product.
Then A is neither commutative nor associative, but otherwise satisfies
the other axioms of a normed algebra. Since non-associative algebras
occur so rarely in what we do, we have taken associativity into the
definition of a normed algebra, so that the present example is not that of
a normed algebra in our sense.

Example 3. Let E be a normed vector space. Then L(E, E) is an
algebra, if we define the multiplication to be composition of mappings.
In other words, if u, v € L(E, E), then the product u o v is again a contin-
uous linear map of E into itself, and we have associativity and bilinearity,
which follow at once from the definition of the sum of two linear maps.
Furthermore, L(E, E) has a unit element I which is the identity mapping.
We often write uv instead of uov. Elements of L(E, E) are also called
endomorphisms of E, or operators on E, and we abbreviate L(E, E) by
End(E). If E is complete, i.e. a Banach space, then from remarks made in
§1, we conclude that End(E) is a Banach algebra. Of course, End(E) is
not necessarily commutative. It is the most important algebra studied in
this book. If E is finite dimensional, this algebra is essentially the alge-
bra of n x n matrices, where n = dim E.

Example 4. Let E be the vector space of continuous functions on R,
periodic of period 2n, with the sup norm. Then E is a Banach space. If
f, g € E, we define a product called the convolution product by

1 k4
fxg(x)= 7 f_ f)g(x — t) dt.

It follows easily from elementary integrations that E is then a commuta-
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tive, associative Banach algebra. Note that E does not have a unit
element. In this direction, see Chapter III, §1.

We observe that an algebra with a unit element contains a replica of
the scalars, under the map

cHce,

which is injective, and preserves addition and multiplication. In the case
of L(E, E), an element cI (I = Identity) is simply “multiplication by c.”

Let A be an associative algebra with unit element e. An element u of
A is said to be invertible if there exists v e A4 such that uv = vu = e. The
element v is uniquely determined by u, because if uw = wu =e, then
multiplying on the left by v shows that w = vuw = v. We call this ele-
ment the inverse of u and denote it by u~'. An invertible element is also
called a unit. If u, v are invertible, then so is uv, because

(wo) ! = vt

Theorem 2.1. Let A be a Banach algebra with unit element e. Then the
set of invertible elements is open in A. If ve A and |v| <1, then e + v

is invertible.

Proof. Let |v| < 1. Then the series e + v + v*> + -+ converges (abso-
lutely) and since

(e—v)e+v+-+0v")=e—v"",
it follows that e — v is invertible, and that its inverse is the limit of
e+v+ - +0v" as n—oo. That we have —v instead of v makes no

difference, since |—v| = |v|. Suppose now that u is invertible, and let

lw—u| < 1/ju"l.

Then

wul—e|l=|w—wu < |w—ullut <l
Hence wu™! is invertible, whence w is invertible, thus proving our
theorem.

We observe that the map u+—u~! is continuous (as a map defined on

the set of invertible elements). The usual proof is valid.

Corollary 2.2. Let E, F be Banach spaces. Then the set of toplinear
isomorphisms of E onto F is open in L(E, F).
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Proof. Suppose that this set is not empty, and let u: E—~F be a
toplinear isomorphism. Then for v € L(E, F) we have

lw™o — I =u™ v - w)| < [u|v - ul.

If v is close to u, then u~'v is close to I, and is invertible by Theorem
2.1, so there exists w, such that

wou o = I,
Similarly, there exists a toplinear automorphism w, of F such that
vu"tw, = I,
Thus v has a right inverse and a left inverse, say v,, v,, such that
v, v =Ig and v, = Ip.

Considering v,vv, and using associativity shows that v; = v,, whence v is
invertible.

IV, §3. THE LINEAR EXTENSION THEOREM

Theorem 3.1. Let E be a normed vector space, F a subspace, and G a
complete normed vector space. Let

AMFoG

be a continuous linear map, with norm C. Then the closure F of F in E
is a subspace of E. There exists a unique extension of i to a continu-
ous linear map A: F — G, and 4 has the same norm as A.

Proof. Elements in F are limits of sequences in F. Thus if

x = lim x, and y=1lmy,,
then
x + y =lim(x, + y,)
and for c e R,
cx = lim(cx,).

Hence F is a subspace of E.
The uniqueness of 4 is clear from continuity. We show its existence.
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Let x € F, and let x = lim x, with x, e F. Then
[40x) = AQm)| = 1403, = Xp)| £ Clxy = Xpo|-

Hence {ix,} is a Cauchy sequence in G, and since G is assumed to be
complete, {ix,} has a limit in G which we denote by Ax. This value is
independent of the sequence x,— x, for if x =lim x, with x, € F, then
lim Ax, = lim Ax,. If

yeF and y=1lmy,
with y, € F, then for c e R,

x + y=lim(x, + y,) and cx = lim(cx,).
Hence

A(x + y) = lim A(x, + y,) = lim(ix, + 4y,) = lim Ax, + lim iy,
=Ax + Iy.

Similarly, A(cx) = cA(x). Hence 1 is linear, and since for x € F we have
x = lim x, it follows that Ix = Ax if x € F. Thus 1 is an extension of 1.
Finally, we have
|Ax| = lim|Ax,]

because the norm is a continuous function. Since

[Ax,| £ Clx,l,
it follows that
lim|ix,| £ C|lim x,| = C|x|,

because limits preserve inequalities. This proves that a bound for A is
also a bound for 4 and hence that |A| =|A]. This also concludes the
proof of Theorem 3.1.

We shall see examples of Theorem 3.1 very frequently in the sequel,
notably in the existence proof for the completion of a normed vector
space, in integration, Chapter VI, §3 and Chapter XIII, §1; and in the
spectral theorem of Chapter XVIIL

IV, §4. COMPLETION OF A NORMED VECTOR SPACE

Let E be a normed vector space. We wish to associate with E a
complete normed vector space in a manner analogous to that which
associates the real numbers to the rational numbers. We shall follow
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the method of Cauchy sequences. For another method, cf. Exercise 25.
We define a completion of E to be a pair (E, ¢) consisting of a Banach
space E and a continuous linear map

¢:E—-E

which is injective, such that ¢(E) is dense in E, and such that ¢ preserves
the norm, i.e. |px| = |x| for all x € E. We shall now prove that such a pair
is essentially uniquely determined. In fact, if (F,\) is another completion,
then there exists a unique invertible element A€ L(E, F) such that the
Jfollowing diagram is commutative, in other words Y = 1. o @.

E—25F
w\ / I3
E
The proof is in fact very easy. The map

Yoo li@(E)y>yY(E)yc F

is continuous and linear (it even preserves the norm) and consequently,
by the linear extension theorem, it has a unique continuous linear exten-
sion of E into F, which we denote by 1. Similarly, the continuous linear
map

oy Y(E)—> @(E)< E

has a continuous linear extension of F into E, which we denote by pu.
Then po A: E — E gives the identity when restricted to ¢(E), and hence is
equal to the identity on E itself by continuity (or by the uniqueness part
of the linear extension theorem). Similarly, Ao u: F — F is the identity.
This proves the uniqueness of the completion.

We observe that our toplinear isomorphism A preserves norms, that is

| 2x| = |x]
for all x € E. This again follows by continuity.
We shall now give two proofs of the existence of a completion. So let
E be a normed vector space and let E' be its dual. As we saw in
Proposition 1.3, we have a natural norm-preserving injection E — E".
But E” is complete because E” = L(E', F) with complete F (F = scalars).
So the completion of E is simply the closure E in E”. (Do Exercise 15.)
Next we give another proof, based on the same construction as the
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real numbers from the rational numbers. This construction will be used
in the integration theory. See the examples after the construction.

The Cauchy sequences of elements of E form a vector space, which we
denote by S, As usual, we have the notion of null sequences, that is
sequences {x,} in E such that given ¢, there exists N such that for all
n> N we have |x,| <& The null sequences form a subspace. We define
two Cauchy sequences ¢ = {x,} and # = {y,} to be equivalent if there
exists a null sequence o = {a,} such that { =5+ o (in other words
X, =y, + a, for all n). This is an equivalence relation, and we denote
the equivalence class of & by & Then the equivalence classes of Cauchy
sequences form a vector space in a natural way, and we have (for c € R):

E+n=E&+7 and c&=cL

We denote the vector space of equivalence classes of Cauchy sequences
by E. (It is nothing but the factor space of Cauchy sequences modulo
the subspace of null sequences.)

If ¢ = {x,} is a Cauchy sequence and n = {y,} is equivalent to &, then

lim |x,| = lim |y,|.

Then we define
|E] = lim |x,].

n—w

It is verified at once that this is a norm of E, which is thus a normed
vector space.
We let

p:E-E

be the map such that ¢(x) is the class of the Cauchy sequence {x, X, ...}.
Then it is clear that_(p is linear, and preserves norms. Furthermore, one
sees at once that if ¢ is the class of a Cauchy sequence &, and x = {x,},
then

& = lim ¢(x,).

n—w

Hence ¢(E) is dense in E.

All that remains to prove is that E is complete. To do this, let {£,}
be a Cauchy sequence in E. For each n there exists an element x, € E
such that

lgn - (pxnl < 1/"9

because @(E) is dense in E. The sequence {x,} is then Cauchy (in E).
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Indeed, we have

Ixn - xml = |(pxn - (pxml

:<: I(pxn - Enl + |En - Eml + |Em - (me|,

which gives a 3e-proof of the fact that {x,} is a Cauchy sequence. Let
& = {x,}. Then {£,} converges to ¢, because given &,

|En - E' é IEn - (pxn| + |(pxn - EI <2

for n sufficiently large. This proves that E is complete, and concludes the
proof for the existence of a completion of E.

Example 1. In integration theory, covered later in this book, one
starts with the vector space of continuous functions, say on [0, 1], with
the L-norm

I1fly = L |f(®)] dt.

One can also take the vector space of continuous functions on R, van-
ishing outside some bounded interval, and define the L'-norm similarly.
Then this space is not complete, and its completion is called L*. It then
becomes a problem to identify elements of L' with certain functions, and
this is what we shall do.

Example 1 points to the need of a slight generalization of our normed
vector spaces. Indeed, even in elementary integration theory, one deals
with step functions, or piecewise continuous functions, which are such
that if ||f|]; = 0, then f may not be the zero function. For instance, if f
is 0 except at a finite number of points, then we do have |f||; =0. In
view of this, one defines a seminorm on a vector space E to be a function
satisfying all properties of a norm, except that we require

x| 2 0

for all xe E, but we allow |x| =0 without having necessarily x = 0.
Then it is clear that the set of all x € E such that |x| =0 is a subspace
E,. The terminology of open and closed sets applies in the present
context, and the topology defined by a seminorm is simply not Haus-
dorff. In fact, the closure of 0 is obviously the space E, itself.

In defining the completion, we can just as well define the comple-
tion of a space with a seminorm. We form Cauchy sequences and null
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sequences, and we still get a map
j:E—>E,

the only difference being that j has a kernel, which the reader will verify
to be precisely E,. In fact, we have a norm on the factor space E/E, if
we define the norm of a coset |x + E,| to be |x| (independent of the coset
representative x since we have

[x + y| = |x|

for all ye E;). Thus we can say that if E has a seminorm, the comple-
tion E is simply the completion of E/E, as discussed in this section.

A vector space E with a seminorm | | can be called a seminormed
space. We can define Cauchy sequences using the same definition as in
the normed case. We shall say that E is complete if every Cauchy
sequence in E converges—in other words, if given a Cauchy sequence
{x,} in E, there exists x € E such that given ¢, there exists N such that
for all n > N we have

|x, — x| <e.

Of course, the element x to which our sequence {x,} converges is not
uniquely determined, only up to an element of E,. However, examples of
this situation arise in practice, in integration theory. One must then
distinguish between a complete seminormed space, and the completion of
E/E, mentioned above. '

Example 2. Let E be the vector space of C* functions (say, real
valued) on R, vanishing outside a compact set (i.e. infinitely differentiable
functions f such that f(t) = 0 if ¢ is outside some bounded interval). We
define the H%-norm on E by

1f o = £ fH12,

where

oty = fw 102 dt

We define the HP-norm by

P

If e = Y 1D*fllZo,

k=0

where D is the derivative. The completion of E under the HP-norm is
called an H” space. This kind of space is used very frequently in analysis.
For p = 0, the norm is also called the L>-norm.
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Example 3. On the interval [0, 1], we let C? be the space of functions
having p continuous derivatives. For f e C? we define

Ifllcs = sup ID*f1.
k<p

Then this is a norm. It is an exercise to show that C? is already
complete under this norm.

IV, §5. SPACES WITH OPERATORS

Except for enumerating basic properties, it is rather rare in analysis that
one meets merely a normed vector space, or a Banach space, just by
itself. It is usually accompanied by a set of operators, and thus we make
here some general comments on this situation.

Let E be a normed vector space. Elements of L(E, E) are also called
operators on E. Let S be a set of operators on E. By an S-invariant
subspace F we mean a subspace such that for every AeS we have
AF c F, ie. if xeF and A€ S, then Axe F. It is clear that if F is an
S-invariant subspace, then its closure is also S-invariant because if x, € F
and x, — x, then Ax, — Ax, so Ax lies in the closure of F.

An operator B is said to commute with S if AB = BA for all AeS. If
B commutes with S, then both the kernel of B and its image are S-invariant
subspaces.

Proof. If x € E and Bx = 0, then ABx = BAx =0 for all A €S, so the
kernel of B is S-invariant. Similarly, also from the relation ABx = BAX,
we see that the image of B is S-invariant.

If A is an operator on E, and ¢, ...,c, are numbers, we may form the
operator

p(A) = ¢, A" + -+ + ¢ol,
where
pt) =cut" + -+ co

is the polynomial having the numbers as coefficients. If p, ¢ are polyno-
mials and pq denotes the ordinary product of polynomials, then we have

(p+ @) =p(4)+q(4) and  (pg)(4) = p(4)q(A).
Indeed, if q(t) = b,,t™ + --- + by, then

p(0)q(t) = . di ¥,
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where
de= Y ¢b,.

r+s=k

p(A)q(A) =Y. d, A*

But

since associativity, commutativity, and distributivity hold in multiplying
powers of 4. The statement concerning the sum p + q is even more
trivial to see. Also, if ¢ is a number, then

(cp)(A) = cp(A).

All these rules are useful when considering the evaluation of polynomials
on operators. In algebraic terminology, they express the fact that the
map

p+—p(4)

is a ring-homomorphism from the ring of polynomials into the ring of
operators.

If F is an A-invariant subspace, then it is clear that F is also p(4)-
invariant for all polynomials p. Thus if F is in fact a subspace of E
which is invariant for an operator A, then it is also invariant for the set
of all polynomials in A, called also the ring of operators generated by A.
The same holds for any set of operators S, letting the ring of operators
generated by S be the set of all operators expressed as finite sums

i1 ... (gl
Y Cipi AT Ay

where A,, ...,A, are elements of S, and the coefficients are numbers.
Indeed, if F is A- and B-invariant, then it is also (4 + B)-invariant and
AB-invariant.

If an operator B commutes with all elements of S, then it is clear that
B also commutes with all elements in the ring of operators generated
by S, because if B commutes with A, and A4,, then B commutes with
A, + A, and also with A,;A4,. Furthermore, if F is a closed subspace
and is S-invariant, then it is also S-invariant, where § is the closure of
S. Indeed, if {B,} is a sequence of operators in S converging to some
operator B, and if x € F, then the sequence {B,x} is Cauchy, and hence
converges to Bx which lies in F.

In Chapters XVII and XVIII we study a pair (E, A) consisting of a
space E and an operator A, and analyze this pair, describing its structure
completely in important cases. The idea is to apply in the present con-
text an all-pervasive point of view in mathematics, which is to decompose
an object into a direct sum of simpler objects. In the present context, let
us make some general definitions.
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Let E be a Banach space, and F, G closed subspaces. We know that
the product F x G consisting of all pairs (y,z) with ye F and ze G is
also a Banach space, say under the sup norm. If the map

FxG-E
given by
(r2)—=y+z

is a toplinear isomorphism, then we say that E is the direct sum of the
subspaces F and G. Observe that our requirements involve both an
algebraic and a topological condition. It follows from our conditions
that

E=F+G and FnG={0}.

It will be proved later that, in fact, these two conditions are sufficient; in
other words, if they are satisfied, then the map

(y2—y+z

not only has an algebraic inverse, but this inverse is continuous (corol-
lary of the open mapping theorem). When E is a direct sum of F and G,
we write

E=F®G.

If A is an operator on E, then we are interested in expressing E as a
direct sum of A-invariant subspaces. Subsequent chapters give examples
of this situation.

APPENDIX: CONVEX SETS

APP., §1. THE KREIN-MILMAN THEOREM

Although we shall not use the theorem of this section later in the book
(except for some exercises), it is worthwhile giving it since it is used
at the beginning of more advanced and specialized courses, in a wide
variety of contexts. The exposition follows that of Artin (cf. Collected
Works).

Throughout this section, we let E be a vector space over the reals (not
normed). We let E* be a vector space of linear maps of E into R (not
necessarily the space of all such linear maps), and assume that E* separates
E, that is given x€ E, x #0 there exists A€ E* such that A(x) #0. We
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give E the topology having the smallest amount of open sets making all
) e E* continuous. A base for this topology is therefore given by the
following sets: We take x€ E, and 4., ...,4,€ E¥, and ¢ > 0. We let B
be the set of all y € E such that
[2(y) — Ax)| <.
The set of all such B is a base for the E*-topology.
A subset S of E is said to be convex if given x, y € S, the line segment

(1 —0x +1ty, 0st<1,

joining x to y is contained in S.

We observe that an arbitrary intersection of convex sets is convex.

Lemma 1.1. Let x,, ...,x,€S. Any convex set containing X, ...,X,
also contains all linear combinations

Lixy + -+ 1Xx,

with0<t, <1 for all i, and t, + - +t, = 1. Conversely, the set of all
such linear combinations is convex.

Proof. 1f t, # 1, then the above linear combination is equal to

t t,_
( —t,,)(1 —lt x4 +-'-+1"_1t x,,_1>+t,,x,,.

"The first assertion follows at once by induction. The converse is also an
immediate consequence of the definitions.

The following properties of convex sets also follow at once from the
definitions.

Let A: E—> F be a linear map. If S is convex in E, then A(S) is convex
in F. If T is convex in F, then A7*(T) is convex in E. In other words,
the image and inverse image of a convex set under a linear map are
convex.

Let A€ E* A #0, and let H, be the kernel of 4 (i.e. the set of all xe E
such that A(x) =0). Then H, is a closed subspace, and if v e E is such
that A(v) # 0, then

E = Hy, + Ru.
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If 4,, 4, are non-zero functionals with the same kernel H, then there
exists ce R, ¢ # 0 such that A, =c4,. Indeed, one sees at once that
¢ = A1(0)/A2(v)-

Let 1 # O be an element of E*, and let c € R. By the hyperplane H, we
mean the set of all x € E such that A(x) = c¢. In other words, H, = 47(c).
If H, is the kernel of A, then H, conmsists of all elements y + y, with
y € Hy and y, any fixed element of E such that A(y,) = c.

The set of x € E such that A(x) = ¢ will be called a closed half space
determined by the hyperplane, and so will the set of all x such that
A(x) £c. Similarly, we have the open half spaces, determined by the
inequalities A(x) > ¢ and A(x) < ¢ respectively.

If S is a closed subset of E and x, a point, we say that a hyperplane
H separates S and x, if S is contained in one of the closed half spaces
determined by H, and x, is not contained in this half space.

Theorem 1.2. Let S be a closed convex set in E, and let x, ¢ S. Then
there exists a separating hyperplane for S and x,, such that S is con-
tained in a closed half space determined by H.

Proof. We begin by proving our statement in the finite dimensional
case.

Let T be a closed convex subset of R”, and let P be a point of R”
such that P¢ T. The function f(X)=|X — P| (euclidean norm) has a
minimum on T, say at Qe T. Let N=Q — P. Since P¢ T, we have
N # 0. We contend that the hyperplane passing through Q, perpendicu-
lar to N, will satisfy our requirements. The equation of this hyperplane
is X-N=Q-N. Let Q' be any point of T, and Q' # Q. For every t with
0 <t £ 1, we have

Q—-PI=10+tQ —Q)—P|=[@Q—P)+1Q — Q)

Squaring gives

Q@—-PP=(Q—PP+2tQ—-P)(Q - Q+13Q — Q>
Canceling and dividing by t, we obtain

0<2(Q~-P)(@ -0 +tQ -0~
Letting ¢ tend to 0 yields
Q-NzQ-N=2P-N+ N-N.

This proves that T is contained in the closed half space defined by

X-Nz=c,
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where ¢ = P-N + N- N, thus proving our contention, and the fact that
our hyperplane separates T and P.

We return to the general case of the space E. There exists a neighbor-
hood of x, which does not intersect S. In other words, there exists ¢ and
Ars ...,A, € E* such that all y € E satisfying

|4:(y) — Ai(x0)l < & i=1,...,n
do not lie in S. Consider the linear map

¢:E->R"
given by
X (Al(x)a s ’An(x))'

The image of S is a convex set ¢(S) in R", which does not intersect the
neighborhood of ¢(x,) determined by the inequality

1Q — @(xo)ll <&  (sup norm).

Its closure does not contain ¢(x,). By our result in the finite dimen-
sional case, there exists a non-zero vector

N =(cy5-..-,¢,) €R"

such that ¢(S) lies in the closed half spaces determined by N and a
suitable constant c. We let

A=cidy + -+ ¢k,

Then A e E* and S is contained in a closed half space A = ¢, which does
not contain x,, thus proving Theorem 1.2.

Remark. All that we need in the sequel is that, the assumptions being
as in the theorem, there exists a functional A € E* such that A(x,) is not
contained in A(S).

We define an extreme point of a convex set S to be a point xe §
having the following property: Whenever y,, y, are points of S such
that we can write

x=1ty; + (1 =0y,

with 0 <t < 1, then y;, = y,.

Theorem 1.3. Let S be a non-empty, convex, compact subset of E. Then
there exists an extreme point of S.
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Proof. Let & be the family of non-empty, convex, compact subsets of
E contained in S, and having the following additional property:

If Ke # and x€ K, and if y,, y, € S are such that
x=1ty, + (1 =9y,
with0 <t <1, then y,, y, e K.

Then the set S itself is in &#. We can order elements of &% by
descending inclusion, and if {K;};.; is a totally ordered subfamily, then
the intersection

() K

iel

is not empty, and clearly is again in &%. Hence by Zorn’s lemma, there
exists a minimal element S, in &. We contend that S, consists of one
point. (This will prove our theorem.) Since elements of E* separate
points, it will suffice to prove that for each A e E*, the set A(S,) consists
of one point. But A(Sy) is convex and compact, whence a closed bounded
interval. Let ¢ be a right end point of this interval Then the set
27Yc)n S, is non-empty, convex, compact. We contend that it lies in Z.
Let x be an element in A7 (c) " S, and suppose that we can write

x=ty, +(1 -1y,

with y,, y, € S and 0 <t < 1. Since S, € &, we get y,, y, €S,. Applying
4, we find that

Mx) = ¢ = tA(y1) + (1 — )A(y,).
Since ¢ is an end point of the interval A(S,), it follows that

Ay =My =c.

Hence y,, y, also lie in A7Y(c), and this shows that 17'(c)n S, is in Z.
Since we took S, minimal, we conclude that S, is contained in 47%(c),
thereby proving our theorem.

Corollary 1.4. Let S be as in Theorem 1.3, and let 4 € E*. Let ¢ be an
end point of the interval A(S). Then A~'(c)nS contains an extreme
point of S.

Proof. The intersection of the hyperplane 47!(c) with S is non-empty,
convex, compact, and thus has an extreme point x, with respect to
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A" Yc)n S. However, if y,, y, €S and
x=1ty; + (1 =1y,

with 0 <t < 1, then A(x)=c¢ =ti(y,) + (1 — t)A(y,), and hence A(y,) =
AMy,)=c, so that y,, y,ei Y (c)nS. From this we conclude that
¥y, = y,, and hence that x is also an extreme point of S itself.

Theorem 1.5 (Krein—Milman Theorem). Let K be a convex, compact
subset of E. Let S be the set of extreme points of K. Then K is the
smallest closed convex set containing all elements of S (i.e. the intersec-
tion of all closed convex sets containing S).

Proof. Let S’ be the intersection of all closed convex sets containing S.
Then S’ < K, and since K is compact, it follows that S’ is compact.
Suppose that there exists x, € K but x, ¢ S~ By Theorem 1.2, there exists
A € E* such that A(x,) is not contained in the interval A(S’), say

AMS') < Axo).

Let ¢ be the right end point of the interval A(K). By Corollary 1.4, the
set A71(c) n K contains an extreme point of K, contradicting the fact that
A(S) < ¢, and proving our theorem.

APP., §2. MAZUR’S THEOREM

In the applications of Theorem 1.2, one starts frequently with a convex
set in a Banach space, closed in the norm topology (ie. the topology
defined by the norm). In Theorem 1.2, we needed a convex set closed for
the weak topology defined by a family of functionals. An example of
such a family is simply the totality of all functionals, continuous for the
norm topology. Of course, if a set S is compact for the norm topology,
it is also compact for the weak topology. One can then raise the ques-
tion whether a closed convex set for the norm topology is also closed for
the weak topology. The answer is yes:

Theorem 2.1 (Mazur’s Theorem). Let E be a Banach space and let A
be a convex subset, closed for the norm topology. Then A is also closed
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