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Foreword

Starting with Bargmann’s paper on the infinite dimensional representations of
SL,(R), the theory of representations of semisimple Lie groups has evolved to
a rather extensive production. Some of the main contributors have been:
Gelfand—-Naimark and Harish-Chandra, who considered the Lorentz group in
the late forties; Gelfand-Naimark, who dealt with the classical complex
groups, while Harish-Chandra worked out the general real case, especially
through the derived representation of the Lie algebra, establishing the
Plancherel formula (Gelfand-Graev also contributed to the real case); Car-
tan, Gelfand-Naimark, Godement, Harish-Chandra, who developed the
theory of spherical functions (Godement gave several Bourbaki seminar
reports giving proofs for a number of spectral results not accessible other-
wise); Selberg, who took the group modulo a discrete subgroup and obtained
the trace formula; Gelfand, Fomin, Pjateckii-Shapiro, and Harish-Chandra,
who established connections with automorphic forms; Jacquet-Langlands,
who pushed through the connection with L-series and Hecke theory. This
history is so involved and so extensive that I am incompetent to give a really
good account, and I refer the reader to bibliographies in the books by
Warner, Gelfand-Graev-Pjateckii-Shapiro, and Helgason for further infor-
mation. A few more historical comments will be made in the appropriate
places in the book.

It is not easy to get into representation theory, especially for someone
interested in number theory, for a number of reasons. First, the general
theorems on higher dimensional groups require massive doses of Lie theory.
Second, one needs a good background in standard and not so standard
analysis on a fairly broad scale. Third, the experts have been writing for each
other for so long that the literature is somewhat labyrinthine.

I got interested because of the obvious connections with number theory,
principally through Langlands’ conjecture relating representation theory to
elliptic curves [La 2]. This is a global conjecture, in the adelic theory. I
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Vi FOREWORD

realized soon enough that it was best to acquire a good understanding of the
real theory before getting everything on the adeles. 1 think most people who
have worked in representations have looked at SL,(R) first, and I know this is
the case for both Harish and Langlands.

Therefore, as I learned the theory myself it seemed a good idea to write
up SL,(R). The topics are as follows:

. We first show how a representation decomposes over the maximal
compact subgroup K consisting of all matrices

( cos@® sind )

—sinf  cosf)

and see that an irreducible representation decomposes in such a way that
each character of K (indexed by an integer) occurs at most once.

2. We describe the Iwasawa decomposition G = ANK, from which most
of the structure and theorems on G follow. In particular, we obtain represen-
tations of G induced by characters of 4.

3. We discuss in detail the case when the trivial representation of K
occurs. This is the theory of spherical functions. We need only Haar measure
for this, thereby making it much more accessible than in other presentations
using Lie theory, structure theory, and differential equations.

4. We describe a continuous series of representations, the induced ones,
some of which are unitary.

5. We discuss the derived representation on the Lie algebra, getting into
the infinitesimal theory, and proving the uniqueness of any possible unitariza-
tion. We also characterize the cases when a unitarization is possible, thereby
obtaining the classification of Bargmann. Although not needed for the
Plancherel formula, it is satisfying to know that any unitary irreducible
representation is infinitesimally isomorphic to a subrepresentation of an
induced one from a quasicharacter of the diagonal group. The derived
representation of the Lie algebra on the algebraic space of K-finite vectors
plays a crucial role, essentially algebraicizing the situation.

6. The various representations are related by the Plancherel inversion
formula by Harish-Chandra’s method of integrating over conjugacy classes.

7. We give a method of Harish-Chandra to unitarize the “discrete
series,” i.e. those representations admitting a highest and lowest weight vector
in the space of K-finite vectors.

8. We discuss the structure of the algebra of differential operators, with
special cases of Harish-Chandra’s results on SL,(R) giving the center of the
universal enveloping algebra and the commutator of K. At this point, we have
enough information on differential equations to get the one fact about
spherical functions which we could not prove before, namely that there are no
other examples besides those exhibited in Chapter IV,
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The above topics in a sense conclude a first part of the book. The second
part deals with the case when we take the group modulo a discrete subgroup.
The classical case is SL,(Z). This leads to inversion formulas and spectral
decomposition theorems on LY\ G), which constitute the remaining chap-
ters.

I had originally intended to include the Selberg trace formula over the
reals, but in the case of non-compact quotient this addition would have been
sizable, and the book was already getting big. I therefore decided to omit it,
hoping to return to the matter at a later date.

A good portion of the first part of the book depends only on playing with
Haar measure and the Iwasawa decomposition, without infinitesimal con-
siderations. Even when we use these, we are able to carry out the Plancherel
formula and the discussion of the various representations without caring
whether we have “all” irreducible unitary representations, or “all” spherical
functions (although we prove incidentally that we do). A separate chapter
deals with those theorems directly involving partial differential equations via
the Casimir operator, and analytical considerations using the regularity
theorem for elliptic differential equations. The organization of the book is
therefore designed for maximal flexibility and minimal a priori knowledge.
The methods used and the notation are carefully chosen to suggest the
approach which works in the higher dimensional case.

Since I address this book to those who, like me before I wrote it, don’t
know anything, I have made considerable efforts to keep it self-contained. 1
reproduce the proofs of a lot of facts from advanced calculus, and also
several appendices on various parts of analysis (spectral theorem for bounded
and unbounded hermitian operators, elliptic differential equations, etc.) for
the convenience of the reader. These and my Real Analysis form a sufficient
background.

The Faddeev paper on the spectral decomposition of the Laplace opera-
tor on the upper half-plane is an exceedingly good introduction to analysis,
placing the latter in a nice geometric framework. Any good senior under-
graduate or first year graduate student should be able to read most of it, and
I have reproduced it (with the addition of many details left out to more expert
readers by Faddeev) as Chapter XIV. Faddeev’s method comes from pertur-
bation theory and scattering theory, and as such is interesting for its own
sake, as well as to analysts who may know the analytic part and may want to
see how it applies in the group theoretic context. Kubota’s recent book on
Eisenstein series (which appeared while the present book was in production)
uses a different method (Selberg-Langlands), and assumes most of the details
of functional analysis as known. Therefore, neither Kubota’s book nor mine
makes the other unnecessary.

It would have been incoherent to expand the present book to a global
context with adeles. I hope nevertheless that the reader will be well prepared
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to move in that direction after having gotten acquainted with SL,(R). The
book by Gelfand-Graev-Pjateckii-Shapiro is quite useful in that respect.

I have profited from discussions with many people during the last two
years, some of them at the Williamstown conference on representation theory
in 1972. Among them I wish to thank specifically Godement, Harish-
Chandra, Helgason, Labesse, Lachaud, Langlands, C. Moore, Sally, Wilfried
Schmid, Stein. Peter Lax and Ralph Phillips were of great help in teaching me
some PDE. I also thank those who went through the class at Yale and made
helpful contributions during the time this book was evolving. I am especially
grateful to R. Bruggeman for his careful reading of the manuscript. I also
want to thank Joe Repka for helping me with the proofreading.

New Haven, Connecticut Serge Lang
September 1974
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Notation

To denote the fact that a function is bounded, we write f = O(1). If f, g are
two functions on a space X and g > 0, we write f = O(g) if there exists a
constant C such that |f(x)] < Cg(x) for all x€X. If X = R is the real line,
say, the above relation may hold for x sufficiently large, say x > x;, and then
we express this by writing x — co. Instead of f = O(g), we also use the
Vinogradov notation,

f<g.

On a topological space X, C(X) is the space of continuous functions. If X
is a C* manifold (nothing worse than open subsets of euclidean space, or
something like SL,(R), with obvious coordinates, will occur), we let C*(X)
be the space of C* functions. We put a lower index ¢ to indicate compact
support. Hence C.(X) and C*(X) are the spaces of continuous and C*
functions with compact support, respectively.

By the way, SL,(R) is the group of 2 X2 real matrices with determinant 1.

An isomorphism is a morphism (in a category) having an inverse in this
category. An automorphism is an isomorphism of an object with itself. For
instance, a continuous linear automorphism of a normed vector space H is a
continuous linear map A: H —> H for which there exists a continuous linear
map B: H —> H such that 4B = BA = 1. A C® isomorphism is a C*®
mapping having a C* inverse.

If H is a Banach space, we let En(H) denote the Banach space of
continuous linear maps of H into itself. If H is a Hilbert space, we let Aut(H)
be the group of unitary automorphisms of H. We let GL(H) be the group of
continuous linear automorphisms of H with itself.

If G’ is a subgroup of a group G we let
G'\G

xiil
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be the space of right cosets of G'. If I' operates on a set §, we let
I\$

be the space of I'-orbits. Certain right wingers put their discrete subgroup I’
on the right. Gelfand-Graev-Pjateckii-Shapiro and Langlands put it on the
left. I agree with the latter, and hope to turn the right wingers into left
wingers.

For the convenience of the reader we also include a summary of objects
used frequently throughout the book, with a very brief indication of their
respective definitions at the end of the book for quick reference.



I General Results

§1. THE REPRESENTATION ON C.(G)

Let G be a locally compact group, always assumed Hausdorff. Let H be a
Banach space (which in most of our applications will be a Hilbert space). A
representation of G in H is a homomorphism

7: G —> GL(H)

of G into the group of continuous linear automorphisms of H, such that for
each vector v € H the map of G into H given by

x > a(x)o

is continuous. One may say that the homomorphism is strongly continuous,
the strong topology being the norm topology on the Banach space. [We recall
here that the weak topology on H is that topology having the smallest family
of open sets for which all functiohals on H are continuous.]

A representation is called bounded if there exists a number C > 0 such
that |7 (x)| € C for all x€G. If H is a Hilbert space and = (x) is unitary for
all x € G, i.e. preserves the norm, then the representation # is called unitary,
and is obviously bounded by 1.

For a representation, it suffices to verify the continuity condition above
on a dense subset of vectors; in other words:

Let w: G —> GL(H) be a homomorphism and assume that for a dense set
of vE H the map x > w(x)v is continuous. Assume that the image of some
neighborhood of the unit element e in G under n is bounded in GL(H). Then
T is a representation.

This is trivially proved by three epsilons. Indeed, it suffices to verify the
continuity at the unit element. Let v € H and select v, close to v such that
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x > w(x)v, is continuous. We then use the triangle inequality
l7(x)o = o] < |w(x)o — 7(x)o)| + |7(x)v, = 0] + [0, — 0]

to prove our assertion.

A representation w. G —> GL(H) is locally bounded, i.e. given a compact
subset K of G, the set w(K) is bounded in GL(H).

Proof. Let K be a compact subset of G. For each v & H the set #(K)v is
compact, whence bounded. By the uniform boundedness theorem (Real
Analysis, VIII, §3) it follows that (X)) is bounded in GL(H).

For the convenience of the reader, we recall briefly the uniform bounded-
ness theorem.

Let {T;},c; be a family of bounded operators in a Banach space E, and
assume that for each vE E the set {T,v},., is bounded. Then the family
(T}, is bounded, as a subset of End(E).

Proof. Let C, be the set of elements v € E such that
|Tv] € n, alliel.

Then C, is closed, and E is the union of the sets C,. It follows by Baire’s
theorem that some C, contains an open ball. Translating this open ball to the
origin yields an open ball B such that the union of the sets T,(B), i€, is
bounded, whence the family {7;},., is bounded, as desired.

We let C.(G) denote the space of continuous functions on G with
compact support. It is an algebra under convolution, i.e. the product is
defined by

@ * Y(x) =f(}¢(xy“‘)¢(y) dy,

where dy is a Haar measure on G. We shall assume throughout that G is
unimodular, meaning that left Haar measure is equal to right Haar measure.
For any function f on G we denote by f~ the function f~ (x) = f(x~!). Then

ff(.x) dx -~ff(x~1) dx =ff“" (x) dx.

Remark. When G is not unimodular, then by uniqueness of Haar meas-
ure, there is a modular function A: G — R* which is a continuous
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homomorphism into the positive reals, such that

f f(xa) dx = A(a)f f(x) dx.
G G

One then has

fo(x")A(x) dx =fo(x) dx

by an obvious argument. It follows that A(x) dx is right Haar measure. The
typical non-unimodular group which will concern us, but not until Chapter
I11, is the group of triangular matrices

(52) = (5.2

For this chapter, you can forget about the non-unimodular case.

The modular function occurs in a slightly more general context than
above. Let 7: G —> G be either an automorphism (group and topological) of
G, or an anti-automorphism, meaning

()7 =yx".

We write either x” or "x for the effect of r on an element x€ G. By the
invariance of Haar measure, there exists a positive number A(r) such that

fG f(x™) dx = A(r) fc f(x) dx,

because the expression on the left is a non-trivial invariant positive functional
on C.(G). We have the obvious composition rule

A(r6) = A(7) A(0).

In many applications, we have 7> = Id, and therefore A(r) = 1, ie. 7 is
unimodular. This occurs in the context of matrices, when for instance 7 is the
transpose.

The basic example of a unimodular group is the group of matrices
G = GL,(R).
The change of variables formula shows that Haar measure on G is equal to

d*x
|det x|"
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where d *x is Lebesgue measure on the additive space of n X n matrices. The
above measure on GL,(R) is therefore both right and left Haar measure.
Since

GL; (R) = SL,(R) X R*,

where GL; (R) is the group of 2 X 2 matrices with positive determinant, and
R™ is the group of positive reals, it follows that left Haar measure on SL,(R)
is also right invariant, i.e. SL,(R) is unimodular. A better proof is to observe
that left and right Haar measures differ by a continuous homomorphism of
the group into the positive reals, and that SL,(R) has no such non-trivial
homomorphism. (By looking at conjugacy classes of elements and using
various decompositions of SL,(R) given later in the book, you should be able
to work this out as an exercise.) Later we shall give explicit descriptions of the
Haar measure on SL,(R) in terms of various choices of coordinates, and
hence we do not stop here for a more thorough discussion.

We return to an arbitrary locally compact group G. Let 7 be a representa-
tion of G in H, and let 9 &€ C.(G). We define what will be an algebra
homomorphism

7': C.(G) — End(H)
by letting

7! (@) =Lq>(x)7r(x)v dx.

The integral is defined because x > @(x)7(x)v is a continuous map with
compact support from G into H. [If one develops ordinary integration theory
in a natural way over the real or complex numbers, one sees that positivity is
not needed, only linearity and completeness in the space of values of the
functions to be integrated. Cf. my Real Analysis, for instance. Thus the
integral is the ordinary integral, with values in H.]

Let a€G and define in this section 7,9(x) = p(a~'x). Then the left
invariance of Haar measure immediately yields

(1) z(a)r'(p) = n'(7,9).

Furthermore one also sees that 7' is a homomorphism for the convolution
product, i.e.

2 7'(p x §) = 7' (@)7'(¥).
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Indeed,
(g +¥) = fG (¢ * ¥)(x)7(x) dx

= [ [ o™ W»)(x) dya.

Reversing the order of integration and letting x > xy, this is

= fG fG (W (y)m(x)m(y) dxdy

= 7'(g)7'(¥).

In the above proof, for simplicity, we omitted placing a vector v to the right
of #!(p * ¢), and to the right of every expression inside the integral signs. The
integrals are meant in this sense.

Since ¢ has compact support and 7 is locally bounded, it follows that
7'(@) is a bounded operator, i.e. 7'(¢)EEnd(H).

If # is a bounded representation, then instead of using functions
@€ C.(G), we could have taken functions f& £Y(G) and formulas (1), (2)
remain valid. In other words, 7! extends to £!(G), and furthermore we have
the inequality

() [7 (N < CllSfls-

Thus #! is a continuous linear homomorphism (representation) of £!(G) into
End(H), as Banach algebras.

If H is a Hilbert space, and w is unitary, then we also have the formula
(4) 7' (¢*) = 7'()*,

where @* is the function such that @*(x) = @(x~!). This follows at once
from the definition of the symbols involved.

One can recover the values w(a) for a€ G by knowing the values 7'(¢)
for p € C,(G), as follows. By a Dirac sequence on G we mean a sequence of
functions {¢,}, real valued, in C,(G), satisfying the following properties:

DIR 1. We have ¢, > 0 for all n.
DIR 2. For all n, we have f Q. (x)dx = 1.
G

DIR 3. Given a neighborhood V of e in G, the support of @, is contained in
V for all n sufficiently large.
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The third condition shows that for large n, the area under g, is concentrated
near the origin. A Dirac sequence looks like Fig. 1.

)

It is obvious that Dirac sequences exist. If G has a C* structure, like SL,(R),
one can even take the functions ¢, to be C*®. It is frequently convenient to
use a slightly weaker condition than DIR 3, namely

Figure 1

DIR 3. Given a neighborhcod V of e in G, and its complement Z, and ¢, we
have

fzqan(x) dx < €

for all n sufficiently large.

In other words, instead of assuming that the supports of the functions ¢,
shrink to e, we merely assume the corresponding L' condition. It is slightly
more intuitive to work with the stronger condition which suffices for almost
all applications. When the need arises for the condition DIR 3', we shall
assume that the reader can verify for himself the needed convergence state-
ments valid with the same proof as for the other case.

As will be mentioned later when we discuss analytic vectors, the condi-
tion DIR 3’ becomes essential if we want the function ¢, to be analytic
functions (they cannot have compact support).

At the beginning of this book, and for several chapters, we are principally
interested in the measure theoretic aspects, or the C* aspects, of representa-
tions. Consequently we don’t need any more about Dirac sequences than
their definitions. It may nevertheless be helpful to realize explicitly that some
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convolutions arising in the classical literature are taken with Dirac sequences.
We have the following examples on R.

i) Let @ be a C ™ function on R which is positive, has compact support,
and is such that

fw e(t)dr = 1.

Then the sequence g, (f) = ne(nt) is a Dirac sequence.

i) Let p(f) = =~ /%", Let g, be defined by the same formula as in (j).
Then {¢,} is a Dirac sequence.

iii) Let

1 €

Then {¢,} is a Dirac family for ¢ — 0 (in an obvious sense, to get the
Dirac sequence take € = 1/n).

In cases (i) and (iii) the factor involving = is there to insure that the
integral is equal to 1. The verification that the above are Dirac sequences is at
the level of freshman calculus. Note that the examples (i1) and (iii) do not
have compact support. Example (ii) is the one which is useful in the discus-
sion of analytic vectors. For a use of Example (iii), see Appendix 2, §3. The
Fejer and Poisson kernels in the theory of Fourier series also provide
examples of Dirac sequences. The explicit formulas are irrelevant for the
basic properties, and we now return to the general properties of Dirac
sequences, even reproducing some basic approximation results from Real
Analysis.

Let {@,} be a Dirac sequence. Then for each v € H, the sequence {7'(p,)v}
COnverges (o v.

Proof. We have
[ @m(x)ods = v = [ [@,(x)7(x) = g,(x)]o dx
G G

= J, @7 () = o] dx,

where S, is the support of ¢,. From the continuity condition on a representa-
tion, it is clear that this last integral tends to 0 as n —> oo.

Leta€G. If {¢,} is a Dirac sequence, then {r,¢,} is a Dirac sequence at
a (in the obvious sense). It is clear from (1) that

7! (r,9,)0 —> 7(a)v
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as n —> oo. The value 7 (a)v is therefore obtained as a limit of values 7!(p)v
for suitable functions ¢ € C,(G).

Let W be a subspace of H. (By subspace we shall always mean closed
subspace unless otherwise specified, in which case we say an algebraic
subspace.) By a dense subspace we mean a dense algebraic subspace. We say
that W is G-invariant if #(x)W C W for all x€G. We make a similar
definition for C,(G)-invariant.

Quite generally, let S be a family of operators on H. We say that W is
S-invariant if AW C W for every 4 € S. Let W, be a dense algebraic subspace
of W. If W, is S-invariant, then it is clear that W is also S-invariant.

From the limiting property obtained above, we conclude:

A subspace W of H is G-invariant if and only if W is C,(G)-invariant.

Let @ be a dense subspace of LY(G) and assume that w is bounded. A
subspace W of H is G-invariant if and only if W is aiso & -invariant.

For the convenience of the reader, we also recall convergence properties
of Dirac convolutions in £!(G).

Let f€ RY(G) and let Z be a compact set on which f is continuous. Let {¢,}
be a Dirac sequence. Then @, + f converges to f uniformly on Z.

Proof We have
@, * f(x) =f @, (0 "N () dy =f . (W (» %) &y
) = [ @,(Nf(x) .
Hence

@, f(x) = (x) = [ [y %) = S (») .

There exists a neighborhood U of e in G such that if y € U, then for all x€ Z,
we have

If(y~'x) = f(x)| < e

For n large, the support of ¢, is contained in U, whence our integral is
concentrated in U, and is obviously estimated by e. This proves our assertion.

The support of ¢, « f is contained in (supp @,)(supp f), because in the
integral for the convolution, we can limit the integral to xy ~!'Esupp ¢ and
v €supp f. Hence:
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If f is continuous with compact support, then {¢, » f} converges uniformly
to f on the compact set (supp @,)(supp f) and is O outside this set. Hence
{®, » f} is L'-convergent to f.

Since C,(G) is L'-dense in £'(G), we obtain also:
Let f € £Y(G). Then {q, * f} is L'-convergent to .

Proof. First find ¢ € C.(G) such that |jo — f||, < €. Then

lpn s f = flli <@ xS~ @u 2 @lli + @, » @ — @l + llo = flI,.

Since || g * A||, < || gll,l|4|l, for two functions g, h€ L(G), and since ||¢,]|,
= 1 by DIR 2, our statement is proved by three epsilons.

The same argument applies to L? instead of L!, 1 < p < 0. For our
purposes, the most we would want it for is L2

§2. A CRITERION FOR COMPLETE REDUCIBILITY
Let
7:G—> GL(H) and ': G— GL(H’)

be representations. A morphism of # into #’ is a continuous linear map
A: H —> H'’ such that for every x € G the following diagram is commutative.

A
H — H
w(x)\L \L-n’(x)
e

(In the literature, a morphism is sometimes called an intertwining operator.)
We say that 4 is an embedding if 4 is a topological linear isomorphism of H
onto a subspace of H’. We say that 4 is an isomorphism if there is a
morphism B of #’ into « such that AB and BA are the identities of H' and H
respectively. An isomorphism is also called an equivalence. When H, H’ are
Hilbert spaces, and #, #' are unitary, then we may deal exclusively with
unitary maps, i.e. require that 4 be unitary. The context will always make it
clear whether this additional restriction is intended. We say that 7 occurs in 7’
if there exists an embedding of 7 in #’.

A representation p: G —> GL(E) is called irreducible if £ has no in-
variant subspace other than {0} and E itself. Let S be a set of operators on E.
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We say that £ is S-irreducible if £ has no S-invariant subspace other than
{0} and E itself.

Let H be a Hilbert space. If there exist irreducible subspaces E,, . . . ,E,,
of H which are all G-isomorphic (under =) to (p, E), and such that A can be
expressed as a direct sum

H=E ®E® --®E,®F,

and F contains no subspace #(G)-isomorphic to the E, then we say that E
occurs with multiplicity m in H. It is easy to see that if this is the case, then in
any expression of H as a direct sum,

H=E ®E,®---®E ®F,

where the E/ are 7(G)-isomorphic to the E;, and (p, £) does not occur in F’,
then r = m. For the needed technique to reduce the proof to standard
algebraic arguments of semi-simplicity, see Real Analysis, Chapter V1I, Exer-
cise 19. We call m the multiplicity of p in = (or of E in H).

Let H be a Hilbert space and # a representation of G in H. We say that
H is completely reducible for =, or that # is completely reducible, if H is the
orthogonal direct sum of irreducible subspaces. We write such a direct sum as

H=®H,
i€1
where {i} ranges over a set of indices /, the H, are subspaces invariant under
G, mutually orthogonal, and H is the closure of the algebraic space generated
by the H,. This closure is indicated by the roof over the direct sum sign,
which signifies algebraic direct sum. We also say that the family {H;} is an
orthogonal decomposition of H.

Let A: H —> H be an operator (continuous linear map). We recall that 4
is called compact if 4 maps bounded sets into relatively compact sets (sets
whose closure is compact). Alternatively, we could say that if {v,} is a
bounded sequence, then {Av,} has a convergent subsequence. A vector vE H
is called an eigenvector for A if Av = Av for some complex number A. Given
AEC, the set of elements vE H such that Ao = Ao, together with 0, is a
subspace H,, called the A-eigenspace of 4.

Spectral theorem for compact operators. Let A be a compact hermitian
operator on the Hilbert space E. Then the family of eigenspaces { E,}, where
A ranges over all eigenvalues (including 0), is an orthogonal decomposition
of E.

Proof. Let F be the closure of the subspace generated by all E,. Let H
be the orthogonal complement of F. Then H is A-invariant, and 4 induces a
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compact hermitian operator on H, which has no eigenvalue. We must show
that # = {0}. This will follow from the next lemma.

Lemma. Let A be a compact hermitian operator on the Hilbert space
H +# {0}. Let ¢ = |A|. Then ¢ or —c is an eigenvalue for A.

Proof. There exists a sequence {x,} in H such that |x,| = 1 and
[KAx,, x,0] —> |4].

Selecting a subsequence if necessary, we may assume that
{Ax,, x,) —> «

for some number «, and a = *|4|. Then

0 < |Ax, — ax,|? = (4x, — ax,, Ax, ~ ax,)

= |Ax,|* — 2alAx,, x,> + o*|x,|?
< a? = 2aldx,, x,y + o>

The right-hand side approaches 0 as # tends to infinity. Since A4 is compact,
after selecting a subsequence, we may assume that {4x,} converges to some
vector y, and then {ax,} must converge to y also. If a = 0, then |4]| = 0 and
A = 0, so we are done. If a # 0, then {x,} itself must converge to some
vector x, and then Ax = ax so that « is the desired eigenvalue for 4, thus
proving our lemma, and the theorem.

We observe that each E, has a Hilbert basis consisting of eigenvectors,
namely any Hilbert basis of E, because all non-zero elements of E, are
eigenvectors. Hence E itself has a Hilbert basis consisting of eigenvectors.
Thus we recover precisely the analog of the theorem in the finite dimensional
case. Furthermore, we have some additional information, which follows
trivially:

Each E, is finite dimensional if A 5 0, otherwise a denumerable subset
from a Hilbert basis would provide a sequence contradicting the compactness
of A. For a similar reason, given r > 0, there is only a finite number of
eigenvalues N such that |\| > r. Thus 0 is a limit of the sequence of eigen-
values if £ is infinite dimensional. If H is a Hilbert space and 4 a compact
operator on H, we may therefore write

H= @HA=G%HM,

where the eigenvalues A, are so ordered that |A,,,| < |A], and lim A, = 0.
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A subalgebra @ of operators on H is said to be =-closed if whenever
A€ @, then A*€ Q.

Theorem 1. Let & be a »-closed subalgebra of compact operators on a
Hilbert space H. Then H is completely reducible for @, and each irreducible
subspace occurs with finite multiplicity.

Proof. Let {E;} be a maximal orthogonal family of @-irreducible sub-
spaces, and let F be the orthogonal complement of the subspace generated by
the E,. Since & is s-closed, it follows that F is @-invariant, and therefore we
are reduced to proving, under the hypotheses of the theorem, that there exists
an @-irreducible subspace. We do this as follows.

If A€ @, then

A+ A* A — A*
= + 1

4 2 2i 7

so there exists an element A = A* = O in &. If M is an invariant subspace
# {0}, then the restriction of 4 to M satisfies the hypotheses of the theorem.
Let A # 0 be an eigenvalue for 4. Among all invariant subspaces M # {0},
select one such that the eigenspace

M, = {vEM, Av = Ao}
has minimal dimension. Let €M, v # 0. Then @v c M, and &v is in-
variant. We contend that @v is irreducible. Suppose that E # {0} is an
invariant subspace of @v. We can write
v =0, + vg
where vz is the E-component of v, and vy € v is perpendicular to E. Note
that
Av = Av = Avg + Avg = Avg + Avg.
So v, and vy are A-eigenvectors for A. If vg or v = 0, say vz = 0, then vE E,

whence @v = E. This must necessarily happen, for otherwise, vz # 0 and
vp # 0 imply that E, C M, and E, # M,, so dim E, < dim M,, contradic-

tion. Hence @u is irreducible, and our theorem is proved.

Remark. To find the irreducible subspace, we needed only one compact
hermitian operator in the algebra.

§3. L? KERNELS AND OPERATORS

A certain type of kernels and operators will recur sufficiently often so
that it is worthwhile to mention them independently here, rather than in an
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appendix, or when we use them for the first time. They give examples of
compact operators.

Theorem 2. Let (X, 9N, dx) and (Y, 9, dy) be measured spaces, and
assume that L*(X), L¥(Y) have countable orthogonal bases. Let
q € PXdx®@dy). Then the operator f —> Qf such that

Qf(x) = fyq(x,y)f(y) dy

is a bounded operator from L¥Y) into L¥(X), and is compact. We have

121 < liqll2-

Proof. Let f& €%(Y). For almost all x our assumption implies that the
function g, such that g,(y) = g(x, y) is also in £*(Y). Hence the product
fq. € £'(Y). We get by Schwarz

|07 < 1113 gl

and integrating,

10113 = [I10Fx)P dx < 1113 [[la(x, »)P dy dx
< gl 1153

This proves that |Q| < ||g]l,, so that Q is a bounded operator.
Let {¢;}, {¢;} be orthonormal bases for L*(X) and L*(Y) respectively.
Let

Oy(x, y)= (Pi(x)‘l’j()’)-

Then {6} is an orthonormal basis for L*(X X Y). To see this, it is first clear
that the 0 are of norm 1, and mutually orthogonal. Let g€ £3(X X Y) be
perpendlcular to all §;. Then

[0 ax f y(»)8x) & =0

for all i, j. Hence
x > [ 4 (»)e(xy) &

is 0 except for x in a null set S in X. If x& S, then for almost all y, we have
g(x,y) = 0. Hence g(x,y) =0 for almost all (x,y)EX X Y by Fubini’s
theorem.

Let

g=2 4,6



14 GENERAL RESULTS [1, §3]

be the expression of ¢ as a series in LY X X Y), with constants a;. Let

4= 2 a0,

i, j<n

be a finite truncation of the series. It is immediately verified that the
corresponding operator @, has finite dimensional image. In fact, if § is a
function on X X Y such that 8(x, y) = (x)¥(»), then the image of the
corresponding operator has dimension 1.

We have already proved the inequality

lQn - QI < “qn - q“Z’

and the expression on the right tends to 0 as » —> o0. Hence the operators
Q,, which are compact, tend in operator norm to Q, which is therefore also
compact. This proves Theorem 2.

We now make some comments of a formal nature on the trace of
operators represented by kernels as above. Observe that ¢,®§; is an
orthonormal basis for L%(X X X). Take Y = X, and write the Fourier
expansion for ¢ in terms of ¢, @,

9(x9) =2 ;9 ®F,.

Formally, we then expect the trace of Q to be given by

r(0) = (0w 0> = = 3 [[ ¢, 0 ()5 (»)en(») v dx.

n n i J

By the orthogonality among the functions ¢;, ¢, we see that this last
expression reduces to

t’]'-(Q) = 2 crm'
On the other hand

fq(x, x)dx = 2 cijf @i (x)g,(x) dx = ; Con-

Hence we find, formally,

r(Q) =2 ¢ = fx g(x, x) dx.




[1, §4] PLANCHEREL MEASURES 15

What we need to make sense of these computations are sufficient condi-
tions to make all the series converge, and the sum

2409, )

independent of the choice of the orthonormal basis. We shall return to this
when we discuss the Plancherel formula. Until then, we take the integral

fx q(x, x) dx

as the definition of the trace, whenever an operator can be defined by a
continuous kernel g.

§4. PLANCHEREL MEASURES

Let X, Y be measured spaces, with measures dx and du(y) respectively.
Let ¢ = ¢(x,y) be a function on the product. Then ¢ gives rise to an
operator ® from functions on X to functions on Y by the formula

of(y) = fX f(X)(x, ) dx,

and a transpose operator,

‘Dg(x) = fy o (x, »)g(») du(»).

(On occasion, we use the reverse convention, interchanging ® and ‘®.) We
also write ®* for ‘®, i.e.

2*5(x) = [ 9(x2)2(y) du(y).

Then ®* is the adjoint for the scalar products defined by

S hd = [ FFG) dx onX,

(8180 = [ 8i(x)8:(x) du(y) onY;
in other words, we have

(®f, &), = {f, D*g.
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This is immediately seen by the formal computation

@f,g3, = [ [ f(x)9(x )80 dxdu(y)

= [ 1) [ 902V 8(0) du(y) dx
= {f, ®*g>.

The above formalism applies to various situations in which the integrals
converge (absolutely); for instance, if ¢ &€ £3(X X Y) and fe& £X(X); or if
pEC.(X X Y)and f€ C.(X). In any given situation it is incumbent on us to
make the domain of the operator clear.

We have

®* = &~ if and only if  is unitary.

This follows at once. In some applications, we prove that @ is unitary, and
then we conclude that @~ ! is given by the starred kernel merely by applying
the above formalism to functions g which obviously make the integrals
converge, e.g. continuous with compact support on locally compact spaces.

In the applications of the above formalism, we always specify the
function spaces on which the integrals converge. In representation theory, we
start with X = G (SLy(R) for this book), and dx is Haar measure.

We shall be given measured spaces (X, dx) and (Y, dy) in a “natural”
way. We then want to find a positive function P on Y such that

o* =0

for the measure du(y) = P(y) dy. In other words, interpret the transpose to
be with respect to du(y) by

‘Dg(x) = [ 9(x.2)g(MP(») &.

Then we want ®*® = Id, on a suitable space of functions on X. If this
happens, we call P(y) dy the Plancherel measure for ¢, and the formula
O*® = Id is called the Plancherel inversion formula.

Actually, in the Plancherel formula on a non-commutative group (as on
SL,(R) later) the situation is slightly more complicated, even though formally
quite similar, because the map ¢ is operator valued, and in the inversion, we
have to insert a trace. Cf. the end of the chapter on the Plancherel Formula.

Let G be the unitary equivalence classes of irreducible unitary represen-
tations of G. It is usually possible to parametrize G, or an appropriate subset
of G, by means of an analytic space Y (set of zeros of analytic equations),
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with a “natural” measure dy (for instance if Y is a piece of Euclidean space,
dy is Lebesgue measure). For SL,(R) we shall see that this space Y consists of
two vertical lines and isolated points, looking like Fig. 2. The space G is
actually bigger. Lebesgue measure is then our dy on the line, while the points
have discrete measure.

E 3

Figure 2

Before dealing with the formula in full generality, we shall deal with a
somewhat simpler situation of a Plancherel measure only for a special class of
functions, bi-invariant under an appropriate compact subgroup of G. This
leads us to considering the representations of compact groups first, in the next
chapter.



II Compact Groups

§1. DECOMPOSITION OVER K FOR SL,(R)

In this section we essentially work out a special case of representation
theory over compact groups, but in the context of SL,(R), providing a good
introduction for what follows. We bring out immediately the important role
of a maximal compact subgroup, the circle group K, i.e. the group of matrices

r(8) = ( cos@ siné )

- sinf cos@

A character of K is by definition a continuous homomorphism of K into the
unit circle, and the characters are indexed by the integers,

X, (r(8)) = e™.

We let G = GL,’(R) (matrices with positive determinant) or SL,(R). For
each y€ G and f€ C(G) we let

f(8,0°) = f(r(8)yr(8).

Let S, ,, be the subspace of C,.(G) consisting of those functions f satisfying
the condition

f(r(0)yr(87) = e~ "f(y)e=™"
for all y € G and all real 6, 8'.

Lemma 1. The algebraic sum 2 m is L'-dense in C.(G). In fact,
given ¢ and f € C.(G), there exzszs a functxon BEXS, m such that the
support of g is contained in K(supp f)K, and such that || f — g||, < €.

19
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Proof. Let

Som) = 7 [T 1 @)yr(8))e e dg ap

be the (n, m) Fourier coefficient of f”. Then f, , has support contained in
K(supp f)K. The Cesaro-Fejer kernels in one variable

{ 1 Mil 2 n0]

— e‘

M N=0 |n|< N

form a Dirac sequence. The product of the kernel in § and the kernel in 8’
form a Dirac sequence in two variables, say {Cy (8,6}, M =1,2,... .
From the definitions, we see that (f” * C,, )0, 0) (convolution taken on the
product of the circle with itself) is the sum of terms c, . f, ,(y) with
appropriate constant coefficients ¢, ,, arising from the sum in the Cesaro

kernel. We check that the argument giving the convergence of the convolu-
tion toward

£(0,0) = f(»)

is uniform in y. We have to estimate the difference

ff[fy(o, 8YCoy(— 8, —87) — £(0,0)C,,(— 8, —6")] d6 d".
Given ¢, there exists a neighborhood U of (0, 0) such that

f@UCM<e and fCM=1

where CU is the complement of U. Therefore the integral of the difference
above is estimated by integrals over U and CU, i.e. by

sup | (6,8) = £ (0,0 + 2l fllw [ Cur
XL eu
Since f has compact support, we have

|f(r(8)yr(87)) — f(»)] < €

if U is sufficiently small, uniformly in all y, for (8, 8")€ U. This proves what
we wanted.

For one of the formulas of the next lemma, we recall that for any
function ¢ on G, we defined

*(x) = o(x71).



(1L, §1] DECOMPOSITION OVER K FOR SL,(R) 21

Lemma 2. We have:

D) S, n*S,=0ifm#L
ii) S*, =S, .
iii) S, % S, g C Sn -

Proof. Consider the convolution integral

f+g(x) =_fo(xy“)g(y) dy.

Since G is unimodular, an integral with respect to y over G is invariant under
the transformation y > y ~!. Now let y > r(#)y. From this invariance and
the invariance under right and left translations, it follows that the above value
f » g(x) remains the same when multiplied by factors e™ and e~*. This is
possible only when it is equal to 0, so (i) is proved. The other two assertions
are proved in an analogous way, left to the reader.

The above lemma shows that S, , is an algebra under convolution. The
arguments are quite formal. We now come to a more specialized property.

Lemma 3. The algebra S, , is commutative.

As we are concerned here with the arbitrary §, ,, and not just S, o, we give
the proof in a general context. The reader will find it profitable to look at the
simpler case of bi-invariant functions given at the beginning of Chapter 1V,
due to Gelfand. The generalization we give here is due to Silberger, Proc.
AMS 1969, p. 437. (The result was designed to work p-adically.)

Let ¢ be an automorphism of a unimodular group G, or an anti-
automorphism. By the uniqueness of Haar measure, there exists a positive
number A(o) such that for all f€ C.(G) we have

fG f(x°) dx = A(o) fG f(x) dx.

We must have A(o?) = A(0) A(0), and therefore if o = 1, it follows that
A(o) = 1. Thus the Haar integral is invariant under the transformation
x > x° We also write °x instead of x°.

Theorem 1. Let G be a a unimodular locally compact group. Let K be a
compact subgroup. Assume:

1) That there exists an anti-automorphism v of G, of order 2, such that
k™= k™! for all k€ K.
i) If S is the set of elements s € G such that s™ = s, then G = SK.
iii) There exists an automorphism o of order 2 such that k° = k™! for all
keK, and if s€ S, then
s° = ksk;!
Jor some k,€K.
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Let p: K > C! be a character of K, and let S o, p D€ the set of functions
S € C(G) such that

Sk xky) = P(kx)f(x)P(kz)

Jor all x€ G and k,, k,EK. Then S, , is commutative.

Proof. Define f*(x) = f(x"). Then
(f*8)* = g*+f~.
On the other hand, define f'(x) = f(x?). Then
(f+g) =f»g.
We prove the former (the latter is easier). We have

(g+/)*(x) = (8+N)(x") = [g(xv V() &

and
(f*+g*)(x) =jf*(xy“)g*(y) dy =ff(y"’X’)g(y’) dy.

Letting successively y > y7, y > x"y, and y > y ! proves the formula.
Also, for f€ S, , we have f* = f'. Indeed, it suffices to prove that f(x°)
= f(x7). But write x = sk. Then

f(x7) = f(k~'s™) = p(k) ™ 'f(s)
f(x°) = f(k~'s%) = p(k) ™ 'flkysk ) = p(k~")f(s),

thus proving our assertion. It now follows that
frg=g+f
as desired.

Example. For G = GL,(R) or SL,(R), we let K be the circle group as
before. We let

xT=1x (transpose of x)
x% = yxy where y= .
0 -1

The conditions of Theorem 1 are verified, in view of the standard polar
decomposition of a matrix, which we recall. If x € GL,(R), we let y = x'x, so
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y is symmetric positive definite. There is a basis for R” consisting of eigen-
vectors such that

Yo = A\v, A > 0.
Let s* = y, so that s has eigenvalues +A, on v, and choose s so that
sign det 5 = sign det x.
Let k = s~ 'x. Then x = sk, and det k = 1. Also

1 1

kk ='x's"ls7lx =y "Ix =% " Ix"Ix = 1.
Hence £ is real unitary and we are done.
Let us return to G = SL,(R) or GL,’(R). Let
7: G — GL(H)

be a representation of G into a Banach space H. For each integer n let H, be
the set of elements v € H such that

7(r(8))v = ™.
Then H, is a subspace (obviously closed).
Lemma 4. Assume that H is a Hilbert space and = is unitary on K. If

m = n, then H, is perpendicular to H,,.

Proof. For v€ H, and we H,, we have #(r(8))* = n(r(—#9)), so
(a(r(8))v, w) = e"<o, w)
= (v, 7(r(—0))w) = ™o, w).
The assertion follows.
Lemma 5. We have:

) «'(S,,.)HCH,,
ii) 7'(S, )H, = (0} if m # q.

Proof. If m # g, then we use the invariance of

JIOm (e &, vEH,

under translations y +> yr(8). If f€ S, ,, we find that the above value of the
integral is equal to itself multiplied by e~ whence must be equal to 0.
Statement (i) is equally clear, namely let ¢ = m and let vEH, f€ S, m- Then
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for k = r(8),

n(k)m'(f)o = (k) fG F()m(y)o dy

[1)m(ky)o dy
G

[ (v &y
G

= e"r!( f)v.
This proves our lemma.
If w lies in a finite direct sum of spaces Hq, we let w, denote its

component in H,. Lemma 5 shows that 7'(f) for f€XS, ,, maps H into such
a direct sum.

Lemma 6. Assume that « is irreducible. Then the space H, is irreducible for
S, o and if H, # {0}, then wl(Sq, JH, # {0}.

Proof. Let W be a proper subspace of H,, invariant for w‘(Sq, J-fwew
and f is a finite sum of functions f, ,, €S, ,,, then by Lemma 5,

(7' (N)w), = 7'(f, JwEW.

The algebra @ = XS, ,, is L'-dense in C,(G) by Lemma 1, and the
algebraic space of elements 7'(f)w with f € @ has its g-component contained
in W. This is impossible because of the possibility of Dirac sequence
approximations (cf. I, §1).

Theorem 2. Let = be an irreducible representation of G on a Banach space
H. Let H, be the subspace of vectors v such that

7(r(8))v = e™p.

If dim H,, is finite, then dim H, = 0 or 1. This is always the case if = is
unitary irreducible.

Proof. We know that H, is irreducible for -n‘(S,,’ ) and finite dimensional
linear algebra shows that dim H, = 0 or 1, since S, , is commutative. On the
other hand, if 7 is unitary, and f€S, ,, then 7'(f)* = #'(f*), where
f*(x) = f(x~ Y. It is immediately verified that f*€S, | (cf. Lemma 2, ii).
Hence, 7'(S,, ,) is *-closed, and Schur’s lemma implies that dim H, = O or 1,
cf. Appendix 1.

Theorem 3. Let 7 be an irreducible representation of G on a Banach space
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H. Then the sum 3 H, is dense in H. If H is a Hilbert space and w is
unitary on K, this sum is an orthogonal decomposition of H.

Proof. Let E be the (closed) subspace generated by the H,. By Lemma 5
and the fact that the sum ¥ S, , is dense in C.(G), we conclude that E is
C.(G)-invariant, whence is G-invariant. Since = is irreducible, it follows that
E = H. If = is unitary on K, we know from Lemma 4 that the H, are
mutually orthogonal. This proves our theorem.

Theorems 2 and 3 give us an indication of what will happen to the
representations of SL,(R). Up to a point, they will be classified by the
presence or absence of appropriate H,. In the theory of spherical functions,
we study the case when H, occurs. This is equivalent to the existence of a
fixed vector under K, i.e. a vector v€E H, v # 0 such that #(K)v = v. In the
alternative case, we are led to the discrete series.

In this section we dealt with the K-decomposition of the representation
by means of the abstract nonsense of Haar measure and convolution. In
Chapter VI we return to this decomposition from the point of view of the
derived representation on the Lie algebra, and get much more precise infor-
mation on the way the group operates, via the exponential map. This later
chapter is mostly logically independent of the material on spherical functions,
and the reader can easily read most of it immediately following the present
discussion, to see how differentiability can be used.

Let 7 be a representation of G in a Banach space H, and suppose that H
is a direct sum

H= DH,
where H, is the n-th eigenspace of K as defined above. Then the algebraic sum

2 H,

is an algebraic subspace of H, dense in H. It has an algebraic characteriza-
tion. Let us say that an element v € H is K-finite if #(K)v generates a finite
dimensional vector space.

The algebraic space 3, H, is the space of K-finite vectors.

Proof. 1t is clear that every element of D> H, is K-finite. Conversely,
suppose that an element v &€ H is K-finite. A finite dimensional representation
of K in a space W decomposes into a direct sum of spaces W,, and W, C H,,.
It is therefore clear that v is contained in D, H,.

The algebraic sum D, H, will be denoted by H(K). Theorem 2 shows the
importance of knowing that the dimensions of the components H, are finite.
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Because of this, we define a representation 7 to be admissible if dim H, is
finite for all n. Theorem 2 with this terminology then implies that every
irreducible unitary representation is admissible. We say that the representa-
tion is strictly admissible if the dimensions dim H, are bounded.

§2. COMPACT GROUPS IN GENERAL

In the case of SL,(R), the circle group discussed in §1 is commutative,
and consequently one does not need the general theory of compact groups
(which, however, follows closely the pattern given in the commutative case).
However, the non-commutative aspects illustrate other principles which will
arise in a much more complicated fashion for the non-compact SL,(R), e.g.
the formalism of the trace. Hence it is worthwhile to go through the theory of
compact groups as an introduction to the other.

Let K be a compact group with Haar measure equal to 1, and let

7 K —> GL(H)

be a representation in a Hilbert space H. By a remark at the beginning of
Chapter I, §1, we know that = is bounded.

We shall now see that we can find an equivalent norm on H such that #
is unitary with respect to this norm. For v € H define

o2 = fK |m(k)of? dk.

Then |o|2 < C?*o}? if C is a bound for #. Hence |v|, < C|ov|. On the other
hand, for k€K,

-1
o] = |=(k) m(k)o| < Clm(k)ol,
whence
|7 (k)o| = C o and lv], > C Yol
This proves that | |, is equivalent to | |, and it is clear that = is unitary with
respect to the norm | |,. This proves what we wanted.

On L*(K) (with respect to Haar measure), we have an operation of right
translation 7, defined by

T(y)f(x) = f(xp).

Then T is unitary because

SIS dx = [ 17(x)P dx,
K K
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since a compact group is unimodular (2 homomorphism of a compact group
into the positive reals must be trivial). We also call T the regular representa-
tion (on the right).

Let g € C.(G). Then
T'(@)f(x) =fo(xy)q>(y)dy

=f fO»e(x"Yy) dy
K

=fx@~ (x)

where ¢~ (x) = @(x~"). We see that T'(¢) arises from a kernel

(x,y) > o(x7Y),

which is continuous on K X K. By the Weierstrass—Stone theorem, any
continuous function on K X K can be uniformly approximated by finite
sums

2 @ () (»)

and the operator arising from the kernel ¢,®4,, i.e. the function
(x, ) > @, (x)(y)

for each i, has a one-dimensional image. Consequently, 7'(p) can be
approximated in norm by operators with finite dimensional image, whence
T(@) is compact. By I, §2, Th. 1 we get:

Theorem 1. Under the regular representation, LY K) is the orthogonal direct
sum of irreducible subspaces, i.e. the regular representation is completely
reducible.

Theorem 2. Let w: K > Aut(H) be a unitary irreducible representation of
a compact group K. Then H is finite dimensional.

Proof. Let u be a unit vector in H and let P be the orthogonal projection
on the one-dimensional space (u). Let O: H — H be the continuous linear
map defined by

Ov =f 7(x) ' Pr(x)v dx.
K

Then Q commutes with all operators #(y), y € K (immediate by the right and



28 COMPACT GROUPS [, §2]

left invariance of Haar measure); and Q = Q*, since

{Qv, w) =fK<7r(x) N 1Pvr(x)v, w dx

= L<U, w(x) B lP?T()C)W> dx = <U7 QW>

By App. 1, Th. 4 we conclude that Q = AJ for some scalar A, and A # 0
because the integrand defining (Qu, u) is > 0, and > 0 for x near e. Let {4}
be an orthonormal basis for H. Then

> j (a(x) ™ Pr(x)u, nA.
i=]
For each x, {#(x)u} is an orthonormal basis. Hence

> Py m(w) < S (Pr(x)u, w(x)u)

i=1 i=1
o0
<3 Py u))
i=1
where u] = 7 (x)u,. But Po = (v, uDu. So
CPuj, wly = [<uf, wyf.
It follows that

3 <Prou, mu> < 3 G wof = 1.

Integrating over K proves our theorem.

Remark Let 7(x) = (7,(x)) be a matrix representation of a group in a
finite dimensional space. Let {e,,...,e,} be a basis and let A, be the
projection on the i-th coordinate. Then the coefficient function =, ;(x) 18
A;(m(x)e;). The corresponding multiplication of matrices looks like

0 Ty,
T T Tin .
1 = Ty
T 7T -
nn 0 a
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In general, if # is a representation of a group G in a Banach space H, if
v &€ H and A is a functional on H, then we call

x > Mr(x)v) = 7, \(x)

a coefficient function. If H is a Hilbert space, we can of course represent A by
an element w of H, so that the coefficient functions are given as

x B> ({a(x)o, wy = m, (x).

If dim H is finite, {¢,} is a basis of H, and {A;} is the dual basis, then the
trace of the representation is given by

Xe(x) = tr 7(x) = SA((x)e).

We used the trace in the proof of Theorem 2. In the case of infinite
dimensional representations, the convergence of the series defining the trace
becomes a problem, which will be discussed later in connection with specific
representations.

Let 7, o be representations of the compact group K on Banach spaces H,
and H,. Let a€ K, and let A be a functional on H,. Then for w & H,, the map

1)) L:iv > f?\(a(ax)v)-rr(x“)w dx
K
of H, into H, is a K-homomorphism.

Proof. By definition,
Lo(y)v =f A(o(a)o(x)a(y)v)m(x~Hw dx.
K
Let x > xy~!. The expression on the right transforms into w(y)Lv, as
desired.
Schur’s lemma (Appendix 1) then yields:

Theorem 3. If w, 0 are inequivalent irreducible representations of K, then for
all veEH,, we H,, ac€ K we have

(2) j;()\(o(ax)v)'n(x_l)w dx =0,

i.e. 7'(0y,) = O; the coefficients of one representation operate trivially on
the other. If p is a functional on H,, then

3) fK)\(o(ax)v)y(vr(x")w) dx = 0.
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Note. We obtain (3) from (2) by applying the functional p. Integration
commutes with continuous linear maps on the space of values.

It is convenient to deal with the symmetric scalar product arising from
the integrals, so we let

[fg]= fo(X)g(x“) dx.

Theorem 3 shows that the coefficient functions of two inequivalent represen-
tations are orthogonal with respect to this scalar product. This is why
Theorem 3 is called an orthogonality relation.

Corollary. Under the hypotheses of Theorem 3, we have
7'(x, ) =0

where we recall that x; (x) = x,(x ™).

Proof.

7' (x, w =fK2 A(o(x Ne)m(x)wdx = 0.

Let x be the character of a finite dimensional representation o, and let d
or d,, or d(o) be the dimension of 6. For any = let P7 or P, be defined by

PI=dn'(x")= dfox(x"')fr(x) dx = dex(x)w(x“) dx.
If 7, o are unitary, then P is self-adjoint, because in this case,
X" =X
Note that P7 commutes with all #(y), y €G, 1e.

Pin(y) = w(»)P].
The proof is immediate:

Pr(y) = fK x(x)m(x™Yy) dx
- fK x(yx)m(x~1) dx (by x > yx)

=_fo(yxy”‘)W(y)vr(X"') dx (byx > xy~")

7(y) Py
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From Schur’s lemma, we conclude that if 7 is irreducible, then
Pl = c,I

for some complex number c,, which we shall compute.
If o is not equivalent to =, then ¢, = 0 and P = 0 by Theorem 3.
Lemma. Let A # 0 be a functional on the finite dimensional space H. Let
Py, (W) = Aw)o.
Then
tr @, , = A(v).

Proof. If v = 0, the assertion is clear. Let v # 0, v = v,, and extend v to
a basis {v,,v,, ...,0,} of H. Then

‘I’A,o(ux) = Moy)v,
‘Pk,e(vj) = }\(vj)vl forj > 1.
The matrix of ¢, , is non-zero only in the first row, and the expression for the

trace is clearly the desired one.

The trace being a continuous linear functional (on operators), we find
that

4) tervr(x”l)qok o7(x) dx = tr @, , = A(v).

Theorem 4. Let m be an irreducible representation of K on H. Let v, wE H
and let A be a functional on H. Then

1
d(m)

fk(-rr(x")w)w(x)v dx = A(v)w.
K

Proof. For v fixed, consider the map L: H —> H such that L(w) is the
expression on the left-hand side of the formula to be proved. Then

L(w) = [ 7)oy, o[=(x )] dx.

The trace of L is the trace of ¢, ,, namely A(v). Furthermore, L is a
K-homomorphism, so L = ¢/ for some number ¢ by Schur’s lemma. Hence

AMv) =tdimw = 1 d(m),
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$0
A(v)

L(w) = ) w.

This proves our theorem.

Corollary 1. For any a< K and any functional p on H, we have

—1 \ _ 1
fK)\(w(a)vr(x Yyw)r(x)v dx = m?x(ﬂ(d)v)w

and
1

JNa @76 wnlr(x)e) dx = 2o

A(m(a)v)u(w).

(11, §2]

Proof. Replace v by w(a)v in the theorem, let x —> xa ™!, and apply the

functional p to the relation of the theorem.

Assume now that « is unitary and that {¢,} is an orthonormal basis of H.

Let
)\’-(U) = <U, ei>7 '”ij(x) = <7T(x)e'~, ej>‘
Then Theorem 4 and its corollary show that

1
[’”ijs ) = ———<e, ei><ejr €

d(x)

=0 unless i=1 and j=k.

So the scalar product is 0 unless 7., = =,. But in the unitary case, we have

'”ji(x) = '”ij(x_l) s

and
[7,, 7] =way.(x—1)¢,k,(x) dx =L;ﬁ(—x)wk,(x) dx.

Hence we get orthogonality for coefficient functions of the same representa-

tion:

Corollary 2. Assume thal = is unitary and let m; be the coefficient functions
relative to an orthonormal basis of H. Then for the hermitian product

8> = fK f(x)g(x) dx,

7, is orthogonal to m, unless i = k and j = I.
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Theorem 5. Let w be an irreducible representation of K. Then
A ) = 1.
d(m)
Proof. We have:
7' (x~ o =f x(x "D (x)v dx
K

=j;(2 A(m(x~He)m(x)v dx
= 2 fK}\,.('rr(x”')e,.)vr(x)v dx

as was to be shown.

We may therefore summarize one orthogonality relation in the precise
form

"Tl(dax;) = [ 0 if wxo
I

if @~0c

whenever 7, ¢ are irreducible.

Theorem 6. Every irreducible representation of K occurs in the regular
representation on L*(K).

Proof. By complete reducibility, we know that
LK) = D m,H,.

Let o be an irreducible representation and v its character. If o does not occur,
then for all 7 occurring in LK) we get

7'(y7) = 0.

Hence if T is the regular representation (by right translation), we see that
T'(y~ ) annihilates every H_, and hence that

T'(y~)=0
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on L*(K). But then for all f € L¥K),
0=T'(y" (%) = [¥~ MNTOI(x) &
=f¢(y"‘)f(xy) dy
= (f+ V().

This is impossible, for instance because of Dirac sequence approximations,
and proves our theorem.

Theorem 7. Let m, o be irreducible representations of K. Then:

B { 0 if  oxm,
Xo * X = _
d='x, if o~

Proof. To avoid subscripts, let x and ¢ be the characters of inequivalent
irreducible representations of K, say on spaces H and H’ respectively. Let
{€;} be a basis of H and {A;} the dual basis, and similarly {¢/} and {A/} for
H’'. Then

X+ (@) = [ x(@)p(x") dx
=3 [Ar(@r(e)) (x'(x ")) de
ij 'K

= 0.
On the other hand,
x x(a) =3 [ M((aym(x"Ne)(n(x)e) dx

= 25 SME@ep (@)
d( j 2 Eh(ﬂ(a)e

()x()

This proves our theorem.

Corollary. The function d,x, is an idempotent in C,(K) (equal to C(K)),
Jor any irreducible representation w of K.
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Let T be right translation as before, giving rise to the regular unitary
representation

T: K — Aut L¥(K)
by

T(y)f(x) = f(xp).
If x is the character of a finite dimensional representation, let

P,=Tdx" )
Then

T'(dx" Y(y) = a’xfx(X“)f(xy) dx
= d, [ x(yx~")f(x) dx.

Thus we see that

(PNW) = dx=N)).

In this way we see that the projection operator P, amounts to a convolution
by x in the L?-algebra on G.



II1 Induced Representations

§1. INTEGRATION ON COSET SPACES

We shall study SL,(R) by decomposing it as a product of certain closed
subgroups (not normal). Here we recall the general foundations for integra-
tion on coset spaces.

Let K be a closed subgroup of the locally compact group G, both
assumed unimodular. Then G operates as a group of topological auto-
morphisms of the coset space G/ K, by

(x,yK) > xyK.

A measure g on G/K is said to be G-invariant if p(4) = pu(xA4) for every
Borel set 4 in G/K and every x € G. For the correspondence between
measures and integrals, we refer to Real Analysis, X111, §4.

If f€ C.(G), we denote by fX the function

f(x) = [ f(xk) dk.
K
Then fX€ C.(G/K) (right invariance of Haar measure). We refer to Real
Analysis, X111, §4, Theorem 3, for the proof that

ffX
maps C.(G) onto C.(G/K).

Theorem I. Let K be a closed subgroup of G, both assumed unimodular.
There exists a unique invariant measure p;,x on G/K such that for any
fE€ C.(G) we have

fG/KfK dpgk =fo dyg,

where i is Haar measure on G.

37
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Proof. The uniqueness is obvious. Given ¢ € C,(G/ K), let f€ C.(G) such
that f¥ = ¢. The invariant integral on G/ K can be defined by means of the
formula in the theorem, provided we show that if f¥ = 0, then

j;;f(x) dx = 0.

Let pr: G — G/K be the canonical map. Let y € C.(G/K) be such that
¢ = 1 on pr(supp f). Let g &€ C.(G) be such that g¥ = y. Then assuming that
f¥ =0, we get

0= fG L g(x)f(xk) dkdx = fK fG g(x)f(xk) dx dk
= [_(x)8¥(x) dx
=j;;f(x) dx.

This proves our theorem.

Note. Although not needed, we point out that a similar proof shows that
an invariant measure exists when G, K are not necessarily unimodular,
provided that A;|K = A, where A is the “modular” function relating left and
right Haar measures.

Let P, K be closed subgroups of G such that G = PK, and such that the
map

(p, k) > pk

gives a topological isomorphism (not group isomorphism) from P X K onto
G. Assume that G, K are unimodular.

Then a Haar integral on G is given by
> k) dp dk.
) fK fp f(pk) dp

Indeed, there exists a left invariant measure on G/K, and G/K is P-iso-
morphic to P itself as a transformation space, under left translation. Hence
this measure is a Haar measure on P. Symbolically,

(1 dx = dpdk.
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The order pk when taking the value f(pk) is essential, but by Fubini’s
theorem, we can also write

fG f(x) dx = fP fK f(pk) dk dp,

i.e. reverse the order of integration.

In the applications, P can be expressed as a further product,
P = AN,

where A, N are closed unimodular subgroups, and A normalizes N (see the
example below), i.e. ana~'€ N for a€ 4 and n€ N. In other words, the map
of A X N —> P given by

(a,n) > an

is a topological isomorphism. A group G admitting such a decomposition
G = ANK is called an Iwasawa group, with an Iwasawa decomposition. Let da,
dn, dk denote the Haar measures on 4, N, K respectively. Then symbolically
we have

(2) dp = dadn

i.e. for Haar measure on P suitably normalized by a constant factor, we have

fpf(p) dp =Lj;vf(an) dnda =fNLf(an) dadn.

Proof. The measure da dn is clearly left invariant under 4. Let n,EN.
We get

LLf(nlan) dnda =LLf(aa~lnlan) dnda.

But a " 'n,a €N, so we can cancel it in the inner integral by left invariance of
Haar measure on N. This proves our assertion.

Combining (1) and (2), we see that given a decomposition

G = ANK, x = ank = a_n_k

x "x"x?

into unimodular, closed subgroups such that A normalizes N, we have

3) dx = dadndk.
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Under the assumption that 4 normalizes N, given a € 4, the map
n +> ana™!

is an automorphism of N, and hence there exists a continuous homo-
morphism

a:4A —> R
such that

f flana™ Yy dn = a(a)-lf f(n) dn.
N N
Replacing f by its right a-translate, this formula is equivalent to
4) f f(an) dn = a(a)_lf f(na) dn.
N N

Combining (4) with (3) yields

(5) dx = a(a)” ' dndadk.

We can also compute the modular function on P = AN, and we contend
that

(6) A(p) = A(an) = o(a).

Indeed, the integral
f> an) dadn
’ fNL fan)

is obviously invariant on the right by N. Let a, € 4. Then
ff f(ana,) dadn =ff f(aa,a; 'na,) dadn
= a(al)ff f(an) dadn.

This proves our contention.

Example. Let G = GL," (R) (2 X 2 matrices with positive determinant).

A is the diagonal group of matrices (a‘ 0 ) with a,, a, > 0.
a3

N is the unipotent group of matrices ( L5 )
01
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P is the triangular group of matrices (a, b

). In the case of SL,(R),
0 a

a, = a;'. We have the commutation rule

(a1 0)(1 b)=(1 a,a{'b)(a1 0)
0 a/lo 1 o 1 0 a

Making the change of variables ¢ = a,b/a, and dt = (a,/a,) db, we get the

value for a(a), namely
a = —,
0 a 4
so that on SL,(R),

(5 )=

One usually does not resist the temptation to indulge the incorrect notation

a(a) = a>.

a 0

If we want to be correct, we should let, for instance, 4, =( ) and then

0 a
write

a(h,) = a*.

The upper half-plane representation. Let © be the upper half plane, ie.
the set of complex numbers

z=x+ iy, y >0
Then G = GL; (R) operates on $. Namely, let

C

o= (“ b )eGL;(R).
d
We define

=az+b
cz+d’

oz
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A brute force computation shows that ¢(o’(z)) = (60')(z). Observe that the

( )
0 a

operate trivially. Furthermore, a trivial computation shows that

Im (z){(ad — bc)
lez + d)?

Imo(z) =

Thus the condition ad — bc > 0 guarantees that if zE€, then oz€ 9 also.
The operation of GL," (R) factors through SL,(R) in view of the trivial action
of scalar multiples of the identity.

Let K be the isotropy group of i, in other words the group of matrices
such that

ai+b=i
ci+d ’

in SL,(R). This amounts to the conditions
at + b* =1, ct+ d? =1, ad — bc = 1.
In other words, K is the group of matrices

r(0)=( cos 8 sin(z?).

—sind cosé

The mapping o > oi from SL,(R) into © therefore induces a bijection
NA — $.

(1 x)(a 0)|—)x+iy
0 1 0 a!

with y = a?. Observe here that the convenient order in the decomposition of
Pis

In fact we see that

P = NA,

because @ — oo as y —> oo in the upper half plane. Let d*a be additive
Lebesgue measure on the line. Then

dy = 2ad*a
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and hence
d + -
x;iy _ 2dx a4d a _ 2a(a) \dx d*a,
y a
where
d*a = d*a

is the Haar measure on the positive multiplicative group.
If we let a represent the variable in 4 in SLy(R), then with our formulas
(5), (6), (7), we find in terms of the (x, y)-coordinates that

3 d
®) 2a(a)” " dndaon G/K is Xfy on $.
y

Moral of the story: The decomposition ank with measure da dn dk is most
useful for formal Haar measure computations on G. The decomposition nak
with measure a(a) ™ 'dndadk is most useful when we want to deal also with
the homogeneous space G/ K and its representation as the upper half plane.

§2. INDUCED REPRESENTATIONS

Let K be a closed subgroup of G, both assumed unimodular. Assume also
that G = PK with a closed subgroup P, and that the map (p, k) > pk of
P X K —> G is a topological isomorphism.

Then we may form the homogeneous space P\ G on the /eft, and
P\G~K,

as spaces on which X operates on the right.
Let ¢ be a representation of P on a Hilbert space V. Let H(o) be the
space of mappings

G-V
whose restriction to K is in L%(K), and satisfying the condition

F() = Ap) 2o (p)(»),

where A = A, is the modular function on P. Define

Hﬂ&=LM@P#

to be the L%norm on K. The representation 7 of G on H(o) given by right
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translation, t.e.
7(y)f(x) = f(xp),

is called the induced representation of ¢ to G. The point of the extra factor
A(p)"/? in the definition of the induced representation is to make the next
statement true.

Theorem 2. If o is bounded, then the induced representation 7 is bounded. If
o is unitary, then the induced representation w is unitary.

Proof. Fix y. Write ky = p,k’, so that

f(ky) = f(pik’) = A(pp)'*a (PI(K).
Then

[150) dk = [ A(pIo (P (K dk.
K K
If o is bounded, then the right-hand side is bounded by a constant times
J LGP dk,
and equality holds if o is unitary. We shall now verify that for y € C,(X),
(1) [w0)A(pi) dic = [ (k) dk.
K K
Let fe C,(G). Since G is unimodular, we get
[ [ spky aidp = [ f(x) dx = [ f(xy) dx
Pk G G
= [ [ $(pky) dkcdp
Pk
= [ [ fppik’) dp di
K/p
= [ [ Kok A(pi) dp ak
&/p
= [ [ f(pk’) A(p}) dicdp.
Pk

We reverse the order of integration and get what we want, by taking

f=9®y, with peC.(P),yEC(K)
and

f;p(p) dp = 1.
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We also observe that we proved the boundedness of # from that of g, if we
only assume that ¢ is bounded.

Let us assume for simplicity that o is one-dimensional, ie. is a
homomorphism into the multiplicative group of complex numbers. Then so is
o' or !, where & is the complex conjugate. We write

To avoid complex conjugations, define the symmetric product on LK) by

[/, gl = fK f(k)g (k) dk.

Theorem 3. The spaces H(o) and H(o ") are dual to each other under this
symmetric product. For y € G, f € H(o), g€ H(s™ "), we have

[7(»)f, gl = [, 7(y el
Proof. This is an easy computation:

[ 7()f(k)g (k) dk = [ f(ky)g (k) dk
K K

= L A o (pI K ) (k) dk

= [ Mo (PSK s (pik'y ™) dik

= J Apo(p)f K)o () g (k'y ™) ak
= [ JU)g (") dk
K

as was to be shown.

By taking the hermitian product with the complex conjugate, one has to
replace o ~! by o*. Then H(o*) is antidual to H(o).

§3. ASSOCIATED SPHERICAL FUNCTIONS

Let G = PK as before, and P = AN where A normalizes N. We assume
that K is compact and has measure 1. As before

A(p) = A(an) = a(a).
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We let
p(a) = a(a)"”.
Let s be a complex number, and define
p,(x) = p,(ank) = p(a)"™".
Then

p(k) = 1 = p,(n).
The function

g P—>C*
given by
u(an) = p(a)’

is obviously a character (continuous homomorphism into C*). We do not
require that its absolute value be 1. If it is, then we say that y is a unitary
character.

Example. In the case of SL,(R),

A5 0)--

We denote by H(s) the space of the representation =, induced by p,. It is the
space of functions on G such that

i) flany) = p(ay ™ f(»);
ii) the restriction of f to K is in L}(K).

Then H(s) is a Hilbert space under the L*(K)-norm.
We contend that p, is a unit vector in the induced represention .

Proof. First we show that p, transforms properly under P. We have

= p,(nan,a™'aa))
= p(a)p,(»)
= p(a)p(a)'p,(¥)

= A(na)‘/zus(a)Ps()’),
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so p, transforms as it should. Furthermore

leallze = [ le, (k)P dk = 1,
K

and therefore p, is a unit vector in the induced representation, which we
denote by #. We also have

7(k)p, = oy,
so p, is called a fixed vector by 7(K), or by K for short.

Even though we are now in an infinite dimensional representation, we
may form the coefficient function

(m(x)pp o) = fK 7(x)p, (k) p, (k) dk
= f o, (kx) dk.
K

This turns out to be an important function associated with the character p,
and will be studied in detail in the chapter on spherical functions. We shall
use the notation

@ (x) = fK p(kx)'™*" dk.

The character y, is unitary if and only if s is pure imaginary. In that case,
we shall see later how the translates of ¢, generate an irreducible unitary
representation. We call ¢, the spherical function associated with p .

The family {,} is often called the principal series of representations of
SL,(R). Conventions differ, and sometimes the use of the term “principal
series” is restricted to the unitary case when s is pure imaginary. We shall
always specify which range of s we intend when using this terminology.
Besides, as we shall see, the induced representations decompose into irreduc-
ible components according to parity, and here again, one may use the term
“principal series” only for those irreducible components. Cf. Chapter VII, §3.

§4. THE KERNEL DEFINING THE INDUCED REPRESENTATION

Let s&€C. Let H(s) be as before, and =, be the representation of G on
H (5) by right translation, so that for f &€ H(s) we have

7,(x)f(») = f(yx).
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Let ¢ € C.(G). We derive an expression for 7!() on f as follows:

m (W (y) = fG Y()m(x)f (») dx
= [ $()f(rx) dx
G

=f f f‘P(ky_lny_‘ay"'ank)f(ank) dadndk
4 N JK

=f f f‘P(ky_l”y_lay_la"k)P(a)Hlf(k) dadn dk
4 N K

= [ a,(k, y)f(k) dk
K

where

(1 q,(k, ) =L anp(ky‘ lny“’ay“‘ank)p(a)Ml dadn
and

2 qy(k, k) =fA j;/¢(k'_lank)p(a)s+l dadn.

Of course, 7} (Y)f is determined by its values on K, and we have

(3) = (k)= fK gk, K)fk) dk.

Thus we see that #!(y) is represented by the kernel g,(k, y). At the moment,
we do not want to go into questions of convergence of a trace defined in
terms of coefficient functions, and we prefer to rush as neatly and as fast as
possible into the theory of spherical functions. Therefore, on an ad hoc basis,
we define the trace of the operator 7)(y) to be

(@) ! (¥) = [ ay(k, k) dk
where
(5) q,(k, k) =L va.p(k—‘ank)p(a)s+I dadn.

[We shall discuss the relation of this and the usual trace when we deal with
Plancherel’s formula later.]
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Assume that ¢ is invariant under inner automorphism by K. This means
that

Y(kxk ") = ¢(x)

for all k€ K and x € G. The space of such functions is denoted by C,.(G, K).
Then the formula for g, simplifies even more, namely

If Y€ C.(G, K) and K has measure 1, then
©) a(k k)= [ [ wlan)p(a)" dadn

is constant, independent of k.

Let us continue to assume that K has measure 1. In Chapter V we shall
study in detail the Harish transform on C,.(G, K) defined by the integral

Hy(a) = p(a)f Y(an) dn, where p(( a 0 )) = q.
N 0 a°!
With this definition, we get
Theorem 4. For Y& C.(G, K) and s €C we have

e/ (¥) = [ Hy(a)p(a)’ da.

In the sequel, the integral as above with s as a parameter will be called a
Melkin transform M, and thus we could abbreviate still further the formula for
the trace by

tr 7 () = MHy(s).

If Y is bi-invariant under K, i.e. Y(kxk’) = (x) for k, k' € K and x € G, then
this last integral is equal to

[ wp(x)"*" ax.
G

The whole situation of bi-invariant functions will be discussed systematically
in the next chapter.



IV  Spherical Functions

In this chapter and the next we study the algebra of functions on G which
are invariant on the left and on the right by K, and relate the characters of
this algebra to representation theory. This amounts to studying those repre-
sentations which contain a K-fixed vector. We cover §3, §4 of the last chapter
of Helgason’s book [He 2]. We work with the abstract nonsense of Haar
measure and convolution, without differential operators. This point of view
was emphasized by Godement [Go 6]; see also Tamagawa [Tam], which we
follow in part. To prove that all spherical functions are those which we
exhibit explicitly, we need the differential equations, and the proof is post-
poned to Chapter X, §3.

For the p-adic theory, see McDonald [McD].

Throughout this chapter we let G be a unimodular group and K a compact
subgroup with measure 1, i.e.
[ k=1
K

§1. BI-INVARIANCE
A function f on G is said to be K-bi-invariant (bi-invariant for short) if
flkyxky) = f(x)

for all k, k,€K and x €. Bi-invariance is denoted by a double bar, so
C.(G// K) denotes the bi-invariant continuous functions with compact sup-
port. For any function f on G we let

fK(x) = fK f(xk) dk,

51
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and we define Xf similarly, averaging over K on the left. Then fX is right
K-invariant and %f is left K-invariant by the invariance of Haar measure. If f
happens to be already right K-invariant, then fX = f, so that f > fX is a
projection operator on right K-invariant functions. A similar statement holds
for left invariance. Thus £fX is bi-invariant.

If f is right invariant, and ¢ is any function, then

J Sx)(x) dx = [ f(x)9*(x) dx
G G

because

J o) dx = [ [ f(x)o(x) dxdk
(by x > xk) = fK fG F(x)p(xk) dx dk
(by Fubini) = fG F(x)pX(x) dx.

A similar statement holds on the left. In particular, if f is bi-invariant, then
[ S)9(x) dx = [ f(xY9*(x) ax.
G G

These relationships hold whenever the integrals are absolutely conver-
gent, e.g. if f is continuous and ¢ has compact support, or if fis in £! and ¢ is
bounded. In practice, such convergence will always be clearly satisfied. The
theory to be developed is not delicate from this point of view.

Let w: G — GL(H) be a representatjon of G on a Hilbert space H. We
denote by HX the subspace of elements v € H which are fixed under X i.e.
such that

7(k)o = v, allkeK.
Let Py: H —> H be the map

Pyv =wa(k)u dk.

Then Py is the orthogonal projection on HX. Let vE H* and ¢ € C,(G).
Then

7 (p)o = 7'(e%)o.
Conversely, if g€ C.(G//K) and vE H, then
n (e HX,
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If v, wE HX and w(K)* = w(K) (e.g. if w is unitary on K), then
(r'(@)o, wy = (' (RpF)o, w).

These statements are trivially verified from the definitions, and will be used
freely without reference.

Next we come to the basic commutativity first discovered by Gelfand.

Theorem 1. Let G be locally compact unimodular, and let K be a compact
subgroup. Let v be an anti-automorphism of G of order 2 such that given
X € G there exist k,, k, € K satisfying

= k,xk,.
Then the algebra C.(G // K) is commutative.
Proof. Haar measure is invariant under x > x” because
1 = A(7?) = A(7) A(7),
so A(1) = 1. Also f(x) = f(x") for any f € C.(G // K). Then for

[, 8€CAG//K)
we obtain

f+8(x) = [ S0 8 &

= [ fr~x7)g(y) (take )
=ff(y“)g(x’y’) dy (y > yx)
= g * f(x).

For this last step, let y —> y ~! and replace x" by k,xk,, using the invariance
of Haar measure. This proves Theorem 1.

Example. The hypotheses of Theorem 1 are of course satisfied for G
= SL,R) and K the circle group. We take 7 to be the transpose. The
decomposition of a matrix x = sk into a product of a symmetric matrix and
an element k € K immediately shows that ‘x = 'ks = k,xk, because %k = k™'

§2. IRREDUCIBILITY

One of the applications of Theorem 1 will be to irreducible representa-
tions, especially unitary ones. Instead of assuming that a representation
7: G —> GL(H) is unitary, it sometimes suffices to assume that it is star
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closed, 1.e. #(G) = 7(G)*; or star closed on K, ie. 7(K) = w(K)*. Further-
more, it is clear that the closure of #(G)HX is G-invariant, and hence if a
representation is irreducible, then H is equal to this closure.

Theorem 2. Let w: G —> GL(H) be a representation which is star closed
on G and K. Assume HX # 0 and H is equal to the closure of w(G)HX.
Then H* is C,(G//K)-irreducible if and only if H is C.(G) (and soG)
irreducible.

Proof. =: Let W be a closed G-stable subspace # 0 of H, so that W= is
also G-stable (because of star closure). Let P = P be the orthogonal projec-
tion on HX. We consider two cases. First, suppose that PW = 0. From

H=wow-+ and PH = PWOPW™,

we get PW* = HX so HXc W+, whence W+ = H, W =0, and we are
done. On the other hand, if PW = WX % HX and # 0, then WX is

C.(G // K)-invariant,
because if € C.(G//K) and weE W, then
7 (pwE W,

and also 7!(@)w is fixed under K. So we are also done in this case, thereby
proving the implication in one direction.

«: Conversely, assume that H is irreducible. Let W 7 0 be a subspace of
HX, invariant under C,(G //K), and W # H¥. Then there exists v'€ H* such
that v # 0, v L W. We show that

7 (C.(G))v L W,

whence it follows that the closure of #'(C.(G))v is a proper subspace. Let
w& W and ¢ € C.(G). Then

(' (@), w) =ij;<fG {p(x)m(x)v, w) dxdk,dk,.

Let x > xk,;. The term w(xk,) splits into w(x)w(k,), and 7w (k) disappears
because v is in HX. Let x > k,x. Then #(k,x) = m(k,)m(x), and we move
m(k,) over to w, with a star, where it disappears because w € HX. This shows
that the above expression is

= [ FoX(x)m(x)v, w) dx
G

= (r'(*p®)v, w) = 0,
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because the orthogonal complement of W in H* is invariant under #'(), for
f€C.(G//K). This contradicts the irreducibility of H.

Theorem 3. Let w: G —> GL(H) be a unitary irreducible representation. If
C.(G//K) is commutative, then dim H* < 1.

Proof. Suppose dim HX # 0. By Theorem 2 we know that H* is irreduc-
ible for C,(G // K) which is a commutative star closed algebra of operators.
Schur’s lemma shows that dim H* = 1, as desired.

Naturally, Theorems 2 and 3 apply to G = SL,(R) and K equal to the
circle group. Specializing to this case would not have simplified any proof we
have given.

§3. THE SPHERICAL PROPERTY

We continue to assume G unimodular and K compact. We say that a
function f on G is K-spherical, or spherical for short, if it satisfies the
following properties.

SPH 1. [ s bi-invariant and continuous.

SPH 2. fis an eigenfunction of C.(G//K) on the right, i.e.
Frd=MSf
Jor y € C.(G // K) and some complex number \(f, ).
SPH 3. f(e) = 1, where e is the unit element of G.

The third condition is a normalization. A function satisfying the first two
properties, and such that f(e) # 0, can be divided by f(e) to yield a function
satisfying all three properties.

Note that the eigenvalue A(f, ¥) is

AL A) = (f = ¥)(e),

which we see from conditions SPH 2 and SPH 3, evaluating ate.
The next theorem gives a fundamental example of spherical functions.

Theorem 4. Assume that G = PK, where P is a closed subgroup, and
P X K —>» PK = G is a topological isomorphism. Let

p: P —> C*

be a character (continuous homomorphism), which we extend to a function
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on G by setting p(pk) = p(p). Then p is a right eigenvector of C.(G// K),
ie.

p * Y(x) = Ap, ¥)p(x),
and the function f such that
fx) = | olkx) dk
is K-spherical with eigenvalues Np, §) = p + y(€) = A(f, ¥).
Proof. Write x = pk,. Then for ¢ € C,(G // K) we get
prv(x) = [ ol N0) &

= fG p(pyy)(y~") ay.

Writing y = pk we have p(p,y) = p(p,p) = p(p)p(P) = p(p)p(»), so our
last expression is

= p(pl)fc p(W(y™ " dy
= Mp, ¢)p(x).

This proves that p is an eigenvector, and also gives us the explicit expression
for the eigenvalue Ap, ¥). For f, we now have

fed(x) = fG FOo~W(») dy
= [ [ otk =) (y) ddi
KYG
= | Mo, w)plkx) dk
K

= Ao, ¥)f(x),

so that f is also an eigenvector, with the same eigenvalue as p. Clearly
f(e) =1, and f is bi-invariant since p is invariant on the right, while the
integral takes care of left invariance. This proves Theorem 4.

Example. The abstract nonsense of Theorem 4 has a concrete form in the
case we keep in mind for this book, namely G = SL,(R). The group P is the
group of triangular matrices

( )
p
0 a 1
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p(h) =p{| ¢ (3 = a.
0 a!

Let s be a complex number. Then the function

with ¢ > 0 and

p'(p)=a’

is a continuous homomorphism of P into C*, and in this way we obtain the
spherical functions

x l-—-)fp(kx)sdk.
K

The notation for these will be used systematically in the next chapter. For the
moment, we continue with more theorems which are valid under the general
setup with G, K.

Theorem 5. Let f be a continuous function on G, not identically 0. Then f is
spherical if and only if for all x, y € G we have

fK f(xky) di = f(x)f(y)-

Proof. Assume that f is spherical. For each x let
F(») = [ f(xky) dk.
K
Let p€ C.(G //K). Then

F.+o(y) =]; F(yz")o(z) dz
=f ff(xkyz")(p(z) dk dz.
G 'k

Interchange the integrals, let z > zy, then let z > zk. We see that the last
expression is

= [ [ f(xz™"op(zky) dz ik
KYG
= (f*g)(x)

where

@,(2) =j;(q>(zky) dk.
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Since @, is bi-invariant, we finally obtain
F, » o(y) = M/, g)f(x),
where A(f, ¢)) is the eigenvalue. Let x = e. Then

F (y) = f(»),
so F, = f. We get

(f = @)(») = M S, @)f(e) = M/, 9)),
so that

Foxo(y) = (f+ o)()f(x).

On the other hand, let {¢,} be a Dirac sequence, and apply what we just
obtained to ¢ = ¢,. We know that

F. oxg, —> F, and fxq, = f
Since F,, f are both bi-invariant, we can replace ¢, by *pX. Hence
J SOy dke = E(3) = FO(0)

This proves half of our theorem.
Conversely, assume that f satisfies the stated functional equation. Let x,

be such that f(x,) # 0. Then

F(x)f(y) = fK F(xokke, ) dic = f(xo)f (ky»),

so f(y) = fk,y) for all k€K, and f is left invariant. A similar argument
shows that f is right invariant, so f is bi-invariant. Then

f(xo) = [ f(xok) dk = f(xp)f(e),
K
so that f(e) = 1. Finally, let 9 € C,(G // K). By definition,
fro() = [ S e(r) d.
G

Integrate over K on the outside, let y —> yk ™!, change the order of integra-
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tion, to get this expression

= [ [ 1y~ o(y) dkdy
G YK

= [ SN &

= (f » p(e)f(x).

Therefore f is an eigenvector of C,.(G // K), thereby proving the second half of
our theorem.

Theorem 6. Let f € C(G //K). Then f is spherical if and only if the map
L:g > f o(x)f(x) dx
G
is an algebra homomorphism of C.(G // K) into C.
Proof. By definition,
Ligs¥) = [ [ oo™ WO)f(x) dydx.
GG
Interchange dy dx to dxdy, let x > xy, get the right-hand side

= [ [ otu(nito) xp.

Integrate with respect to K on the outside, let x > xk, move the integral
with respect to K inside, getting

(1) L(g*¢) = fG fG () (») fK f(xky) dk dx dy.
On the other hand,
) L(9)L(y) = fG fG eIV (NF(X)f(y) dxdy,

so the implication => in Theorem 6 is clear.
Conversely, assume that L is an algebra homomorphism, i.e.

Lo *xy) = L(9)L(¥)

for all @, y € C,(G //K). Then the functional equation for f follows at once
from the equality between (1) and (2), as was to be shown.
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Note. If we assume f bounded in Theorem 6, then

L:g > j;qa(x)f(x) dx

extends to an algebra homomorphism of L'(G //K) into C.

Theorem 7. Any continuous algebra homomorphism of L\(G //K) into C is
of the form

@ > (f * @)(e)

for some bounded spherical function f.

Proof. By measure theory, given a character L # 0 of the algebra
LY(G J/ K), there exists a bounded measurable function f such that

L(g) = [G P(x)f(x) dx, allpe L'(G //K).

Replace g(x) by ¢(k,xk,), integrate with respect to K, let x —> k; 'xk; .
This shows that we can replace f by

foKf(kl)‘kz) dk dk,

i.e. we may assume that f is bi-invariant. From (1) and (2) we get

fK f(xky) dk = f(x)f(»)

for almost all (x, )€ G X G. To show that f can be replaced by a continuous
function, let ¢ € C,(G) be such that

fG V() () & # 0,

and assume without loss of generality that this last integral is equal to 1 (after
multiplying ¥ by a constant if necessary). Then

[ oGf) dx [ 9O = [ [ 900 [ Sxky) dicdy dx
which, after using Fubini and lettingy —> k" andy > x 7Y is
= [ [ [ o(w(k™x"Y)f(y) dy dkax
¢’k 7JG

= [ [ [ o)1) diayax.
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We can replace f by
g() = [ [ WkTH0) kb,

which is continuous. This proves our theorem.

Remark. If G is a Lie group, with a C*™ structure, then the above
function is C* in x if one takes y € C*(G).

§4. CONNECTION WITH UNITARY REPRESENTATIONS

Let w: G — Aut(H) be a unitary representation of G in a Hilbert space
H. Let u€ H¥ be a unit vector. We shall consider the coordinate function

f(x) = 7, (x) = {w(x)u, u).

Clearly, f is bi-invariant and f(e) = 1.

A vector vE€ H is said to generate H topologically (under =) if H is the
closure of the algebraic subspace generated by the translates #(x)v for all
xed.

Theorem 8. Let w: G —> Aut(H) be a unitary representation and assume
that there exists a unit vector u€ H* which generates H topologically under
a. Then

dim HX = 1 & the function f(x) = {(w(x)u, u) is spherical.

Proof. We have seen that f(e) = | and f is bi-invariant. Assume that
H* = Cu has dimension 1. For any ¢ € C,(G // K), 7'(¢)u is fixed by K, so
7' (@)u = Ag)u for some A(@)EC, and

¢ > AMo)

is a homomorphism. But

Fr97(e) = [ f(x)p(x) dx
=f {p(x)ar(x)u, u)y dx
G

= (m'(@)u, u).
So ¢ > fx ¢ (e) is a homomorphism of C.(G//K) into C, whence f is
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spherical, by Theorem 6. Note that for this side of the implication, we did not
need that u is a topological generator of H.
Conversely, assume that f is spherical. Let

Po=| w(k)vdk
J 70
be the projection on HX. For any b€ G, we have

(Pr(xX)u, w(B)uy = (n (b~ ) Pr(x)u, u)
=f f(b™kx) dk
K

= f(b~")f(x) (Theorem 5)
= {f(x)u, m(b)u.

Since the vectors #(b)u, bE G, generate a dense subspace of H, it follows
that

Pr(x)u = f(x)u.

Hence PH = Cu and dim H* = 1. This proves our theorem.

§5. POSITIVE DEFINITE FUNCTIONS

A function on G is called positive definite if and only if it is continuous,
# 0, and for all x,...,x,€EG and «y, . . . ,a,EC we have

_— l JE—
Z f(x,-xj )aiaj > 0.
iJ
This last condition can also be written

E f(x,-” ]xj)ai"aj > 0,
ij
replacing x; by x;” '

Example. Let 7: G —> Aut(H) be a unitary representation on a Hilbert
space H, and let u be a unit vector. Then

fx) = {m(xX)u, wp
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is positive definite, because

% Ca(xx oy @ u, u) = <Z 7(x)ou, ; 'n'(xj)aju>

> 0.

We shall see that the example is essentially the only one.
First we enumerate three simple properties,

(1) f(e)isreal > 0
@) f(x7Y) = f(x)
€ |£(x)] < f(e)

To prove the first, take n = 1, x = ¢, and a, = 1. For the second, take
X, = e, X, = X, 0 = a, = 1. Write

f(x) = r(x) + it(x).

We know that
fle)ay @ +f(x " Ney @ +f(x)ay @ +fle)a, @; > 0.

We see that f(x™') + f(x) is real, so #(x"') = —¢(x). Take a, =i and
a, = 1. Then

r(x™ Y + r(x)a; = r(x™ i — r(x)i

is supposed to be real, so 7(x ') = r(x). This proves the second property. For
the third, let

o=~flx)] and a =f(x)
We get

S = 2| f(x)F + fe) f(x)P > 0,
whence
|f()P < fle)l f(x)P.

If f(x) = 0, we are done because f(e) > 0; and if f(x) # 0, we cancel | f(x)]*
to get our result.
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Given a positive definite function ¢, we shall now construct a unitary
representation as in the example. Let ¥ be the vector space generated by
right translates of ¢, i.e. for a € G, by functions #(a)p such that

7(a)p(x) = ¢(xa).
Then 7(ab) = w(a)n(b). If f, gEV,, then
f(x) =2 ap(xa) and  g(x) =2 Bo(xb)
with a;, B, EC. Define
8> =2 aBo(b ')
=> “iFj m
=3 agla™)
=2 BE.

Given an expression for g as linear combination of translates of ¢, these
equalities show that {f, g) is independent of the expression of f as a linear
combination of translates of ¢. Similarly on the other side (f and g in-
terchanged), so our symbol {, g> is well defined, and clearly gives a positive
hermitian product on V_, not necessarily definite.

Let V° be the null space of the hermitian product, and let H, be the
completxon of V / V0 so that H, is a Hilbert space. Then the translatlon
operators of G in V_, which are umtary, give unitary operators on V/ V°,
and therefore extend to unitary operators of H,. We therefore obtam an
algebraic homomorphism

7, = m G —> Aut(H).
We shall now verify that the continuity condition for a representation is
satisfied. We had already pointed out at the beginning of the book that it
suffices to verify this condition on a dense subset, and thus it suffices to
verify it on elements fE V.
Write f(x) = > a;p(xq,), so that for y €G,

7(y)f(x) = 2 o,p(xya,).
Then

W (W) — fIP =La (W) — f, =(W)f =
=2 > —aWL > = {fim(p)f)
=22 a%e(q7'a) — DaTo(a Y 'a) - 3 o, T p(a,” ya).
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This last expression tends to 0 as y —> e. Hence

y = a(y)f

is continuous, as a map from G into H, in a neighborhood of e. Hence the
map is continuous everywhere, and # is a unitary representation.

Taking for our unit vector u the function g itself, we see that

@(x) = (n(x)e, @)

In this way we see that every positive definite function arises as in the
example. More formally, consider triples (w, H, u) consisting of a unitary
representation w: G —> Aut(H), and a unit vector u. An isomorphism from
(7w, H, u) to (#’, H', «’) is a unitary isomorphism from H to H’, commuting
with the action of G, and sending u to «’.

Theorem 9. The association
@ > (7, H, ¢)

is a bijection from the set of positive definite functions on G to the
isomorphism classes of triples (w, H, u) consisting of a unitary representation

7: G —> Aut(H)
and a unit vector u which generates H topologically under .

Corollary. Let K be a compact subgroup of G such that C.(G//K) is
commutative. In the bijection of Theorem 9, the positive definite spherical
Sfunctions correspond to the irreducible unitary representations having a
K-fixed vector u.

Proof. This is an immediate consequence of Theorem 8, §4 and the
irreducibility theorem of §2.

The preceding result of course applies to SL,(R). It would not have been
simpler to give the proof in the concrete case rather than in abstract
nonsense.



V' The Spherical Transform

In this chapter we study the spectral decomposition of the algebra
C>(G //K), consisting of those C* functions with compact support, bi-
invariant under K. We shall also determine the bounded spherical functions.
We let G = SL,(R) throughout.

§1. INTEGRAL FORMULAS

Harish-Chandra put in evidence the important role played by the two
subgroups 4 and K in G, and the manner in which 4\ G and K\ G give rise
to the Plancherel inversion. In this chapter, we deal only with A\ G, and
postpone the relations between G, 4\ G, and K \ G to the later chapter on the
Plancherel formula.

Functions on 4\ G/K amount to functions on N and so we begin by
integral formulas relating integration on A\ G and N. The first formula
requires the computation of a “Jacobian”, and cannot be handled by abstract
nonsense. Its proof will therefore be given by using the explicit matrix
representation of G = SL,(R).

For any f€ C.(G) and a€ A such that a(a) # 1, we have

~lp-t -1 n) dn
(1 [ Sana™tn Y dn = e [ S() .

Proof. Matrix multiplication shows that

SIS P ) PR P

Let ¢t = (a® — 1)n, change variables. The formula drops out.

67
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(Cf. Helgason [He 2], Chapter X, Proposition 1.13, for the proof in the
general case of Lie groups. The matrix computation requires a more elaborate
analogue in the Lie algebra.)

The next formula luckily depends only on I 1 and a general Iwasawa
decomposition G = ANK, dx = dadndk. Even though we should use the
notation x for a “coset” variable in, say, 4 \ G, we shall sometimes use x for
simplicity of notation. We do write dx, however, for the Haar measure in
A\ G, such that dx = dadx.

Let f€C,(G) and a€ A be such that a(a) # 1. Then the function
x > f(x " 'ax) has compact support on A\ G, and we have

—1 . 1 -1
I2 L\Gf(x ax) dx —mla(a"‘) — llfx-];vf(kank ) dndk

1/2

a(a)

T a(@7 - ala)”

I fK fN f(kank =) dn dk

Proof. Let p(x) = f(x " 'ax). It is clear that ¢ has compact support on
A\ G. By general theorems on homogeneous spaces, if g€ C.(G) is such that
Ag = @, we get, using dx = dadndk,

L\Gq)(x) dx =j;g(x) dx =f~ j;(qJ(nk) dndk
=f~ fo(k“n"ank) dndk

=f ff(k—laa_ln_lank) dndk
Nk
=mﬂLf(k"ank)dndk (by11).

This proves the formula.

We use the notation

D(a) = a(a)”*~ a(a) " "*=p(a) - p(a) " ".
Then

|D(a)] = |D(a™h)|
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and

a(a)l/z B a(a)l/z

la(a)'? — a(a) " * |ID(a)]

Depending on situations, it is often convenient to change the coefficient of
the integral in I 2 according to these identities.

§2. THE HARISH TRANSFORM

Let C.(G,K) denote the space of functions with compact support which
are invariant under conjugation by K, i.e. satisfy

Sk~ 'xk) = f(x)
for all k€ K and x&G.
For f € C.(G, K) we define the Harish transform

Hf(a) = p(a) fN f(an) dn = |D(a)| f,, J O lax)

The first integral expression is valid for all a € 4, the second only for a such
that p(a) # 1. Later we shall define a Harish transform for the other Cartan
subgroup K, and hence the above transform will be written Hf to denote its
dependence on A. For this chapter, we shall deal almost exclusively with the
integral expression over N rather than that over A\ G for the Harish trans-
form. It shows that if f&€ C°(G, K), then Hf € C*(4).

W =
1 0

be called the Weyl element, and let the group of order 2 which it generates
(mod *1) be called the Weyl group. Then w operates on 4 by conjugation,
and we have

or in matrix form

S P FY i W

Note that w? = — 1. A set of representatives for 4 modulo the Weyl group is
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the set A ™, consisting of a € 4 with p(a) > 1, i.e. of matrices

(“ 0 ) with a > 1.
0 a!

The Weyl group also operates on functions in the obvious way.

Theorem I. Hf is invariant under the Weyl group, i.e.

Hf(a) = Hf(a™").

Proof. By continuity it suffices to prove the assertion when D{a) # 0,
and so |D(a)| = |D(a™")|. Note that

X > wxw ™!
is an inner automorphism of G, of order 2, sending a > a~'. This map
preserves the measure on 4\ G, and hence, using the second integral expres-

sion for the Harish transform, the invariance of Hf under the Weyl group is
clear.

The Harish transform is therefore a linear map

H: C,(G,K) — C.(4)".

where the upper index w means the space of functions invariant under w.

Theorem 2. If f, g€ C.(G //K), then
H(/f + g) = Hf » Hg,
i.e. on C.(G // K), the Harish transform is an algebra homomorphism.

Proof. We have
H(f « g)(a) = p(a) fN (f » g)(an) dn

= p(a)fN fo(any)g(y“‘)dydn (byy — ")

=p(a)fN fcf(ay)g(y“’n) dy dn.
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Letting y = bmk, we obtain
H(/*g)(a) = p(a) [ [ [ flabm)g(m™'b="n) dbdman
= p(a) fN fA fN f(ab~'m)g(m~"bn) db dndm

= o(a)p(6) ~* [ [ [ f(ab~'m)g(m™nb) db dn dm
= p(a)p(b) " [ [ [ f(ab~'m)g(nb)db dndm

= p(a)ffff(ab“m)g(bn) db dndm.
But

Hf » Hg(a) =LHf(ab“)Hg(b) db

= f f f p(ab~")f(ab~'m)p(b)g(bn) dmdn db,
which is the same as the last expression obtained above, thus proving our
theorem.
The main theorem about the Harish transform is:
Theorem 3.
H: C2(G//K) = C2(4)
is an isomorphism.

The proof will give an explicit inversion for the Harish transform, due to
Godement [Go 6]; see also Harish [H-C 6].

We use P to denote the set of positive definite symmetric 2 X 2 matrices.
Any element p € P can be diagonalized, and there exists an orthonormal basis
of R? consisting of eigenvectors for p. Consequently we have

p =k lak
for some k€K and a€ 4.
On the other hand, any x € G can be written as a product

x = pk,
with some p € P and k, € K. Hence
xx = ki 'p%, = ki 'k la*kk,.
If f1s a bi-invariant function, then

f(x) = f(p) = f(a) = f(a™")
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because w € K and waw ™! = o~ . Thus f depends only on a(a), and we note

that the eigenvalues of ‘xx are a(a) and a(a~"'). We have

tr(xx) a(a) + a(a™")
2 2 :
Now we switch notation in order to deal with coordinates. We write.

(o)

If x is diagonal, then x is of the form

and a(h,) = a’. The mapping

24 =2 _a(a) + a(a”)

a
ab—> 5 3

is a bijection
[1, 0) = [1, o0) .
If f; is a bi-invariant function on G, then f; depends only on the value
tr(‘xx), and therefore we use the new variable
r(xx) g2+ b2+ 2+ d?
T2 T 2 '

If x is in diagonal form as above, then

The function f; corresponds to a function of a real variable > 1,

2 2, 2 2
fc(x)=fc(a b)___f(a +b-42-c +d)=f(v).
¢c d

In terms of these coordinates, we can write the Harish transform as

Hf,;(h) = a(h)'/? fN fis(hn) dn

= a(h)l/zfj:ofc( g afll ) du.

a
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Therefore we have the ordinary real integral expression
® a’+a?
) = a [ S54 + dand) an
- o0

which, after a change of variables, yields

o 24 42
m (o) = Won) = [ {4 )

Lemma. If
o
F(v) =f f(o +1u?) du, v > 1,
— &0
then
f(v) = — —2~1-7—r~ ® F'(v +iw?) dw,
and conversely.

Proof. (Freshman calculus). Differentiating under the integral sign yields

F'(v) = f:’; Fo +3u?) du,

SO

fw F'(o +%w2)dw=fw fw f'(v+u2-;w2)dudw
- —00 Y — o0
=f02ﬂj(;wf’(v+%2)rdrd0

=2w/(;°°f’(v+x)dx

= —2af(v),
as was to be shown. (The converse is equally clear.)

Observe that the lemma also proves Theorem 3 by giving the inversion
formula for the Harish transform explicitly in terms of the matrix
coordinates.
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In the literature one sometimes finds another change of variables which
corresponds to parametrizing an element of 4 by the exponential map from
the Lie algebra. In our case, put

H -1
e + e
a=¢e’? SO v = ———— = cosh ¢.

Recall that

el — e !

3 and  cosh?f — sinh®¢ = 1.

sinh ¢t =

We have an expression for the Harish transform in terms of ¢, namely

@ HGk = o= a0 = [ f(EE )

and

®'(¢) = F’(v)sinh ¢.
Therefore

3) — 2af(1g) = f_°° F/(1 +3w?) dw.

t

Let w = e/?2 — ¢7'/2 change variables. We find the

Inversion formula. If f€ C>(G//K) and ®(1) is the expression for the
Harish transform as in (2), then

& dr
—2ch(lc)=f YO —m

— o0

This a special case of the Plancherel inversion formula to be proved later
for functions which are not necessarily bi-invariant.

§3. THE MELLIN TRANSFORM

Let A4 be as before, the group of diagonal matrices with determinant 1
and positive diagonal elements. On 4 we have the Mellin transform, defined
for ge C.(4) by

Mg(s) =L g(a)p(a)x da, seC.
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This is obviously an entire function of s. If g€ C,(4)", ie. g(a) = g(a™),
then letting @ > @~ in the integral shows that

Mg(s) = Mg(—s).

Functions on the complex numbers which are even will be said to be invariant
under the Weyl group, i.e. we denote by

Hol(C)”

the space of entire functions h(s) satisfying #(s) = h(—s). Then the Mellin
transform gives us a linear map

M: C,(4)" — Hol(C)".

The group 4 amounts to the multiplicative group, and we can write the
Mellin transform of functions on R* = (0, ) by

Mi) = [ fla)ar %, fEC.RY)

where a is a multiplicative variable. We wish to characterize its image. We
define the Paley-Wiener space PW(C) to consist of those entire functions f
for which there exists a positive number C such that given an integer N > 0
we have

(o + it) «—E2

(141"
where the implied constant in <« depends on f and N (could be taken of the
form CV). In words, we may say that f has at most exponential growth with
respect to o, and is rapidly decreasing, uniformly in every strip of finite width.
If fis C* in addition to having compact support, then its Mellin
transform lies in the Paley—Wiener space. To see this, we integrate by parts:

f:o f(a)a*' da = f(a) %s— |:—— % j{;wf’(a)a‘ da.

Since f has compact support on the open interval (0, o), the first term on the
right is 0. Continuing to integrate by parts, we pick up successive derivatives
of f, which all have compact support, and we get successive products

1
ss+D(s+2)---(s+n)

in the denominator, which show that the Mellin transform goes to 0 rapidly in
a strip of fixed width. The exponential growth in ¢ is clear.
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If fis C*™, differentiating under the integral sign shows that the n-th
derivative is given by

(M) (s) = [~ f(@)a*(log o)} L.,

o
and therefore that all the derivatives of the Mellin transform also lie in the
Paley—Wiener space.
We want to invert the Mellin transform, and we prove:

Theorem 4. The Mellin transform

M: C2(4)" — PW(C)”
is an isomorphism.

Proof. Actually, we prove that it is an isomorphism omitting the action of
w. Fix any real number g, and for F € PW(C) define

‘M, F(a) = f F(s)a’ 4} :

Res=g¢

Then ‘M, F(a) is independent of o. Indeed, let 6, < 0, and integrate around a
rectangle as shown in the diagram of Fig. 1.

(51 G2

Figure 1

The integral over the rectangle R of the function below is 0:

f F(s)a*® £= 0.
R

i
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If s = o, + it, then ds = i dr (explaining our dividing by i). On the other
hand, we have the estimate

] e®loga 72

==
T" loga

lf |F(o + iT)|a’ do
top

and similarly for the bottom, showing that the integrals over the top and
bottom tend to 0 as T —> oo. This proves that

‘M, F(a)
is independent of o.

The function ‘M, F has compact support on R*. To see this, let a > 0.
For o large, we have

|, Flo+ina 2| < [7 G55

<« (aC)’.

Take a < 1/C and let 6 — oo. We see that ‘M F(a) = 0. If a is large, we
integrate over Re s = — o and use a similar estimate to see that ‘M_F(a) = 0
also. This proves our assertion that ‘M F has compact support.

There remains to prove the inversion formula. Define

‘M~ F(a) = f F(s)a— &
Res=gqa !

We shall prove that

‘M~ Mf=2nf

for f€ C.(R*), and siinilarly on the other side. In fact, up to a change of
variables, this is merely the Fourier inversion formula. Indeed, write a = €”,
so that

Mf(s) =f_°o f(e*)e ™ dx = I?,,(——t),
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where

F (x) = f(e¥)e* .
Then

‘M~ F(a) =f F(s}a™* %

Res=o¢

fw F(o+ it)a ° "dt

- o0

a"’fw F(o + it)a™" dt.

-~ o0

We see that this is again the inverse Fourier transform, and our inversion
follows by the Fourier inversion.

§4. THE SPHERICAL TRANSFORM

Let, as before,

@,(x) = fK p(kx)'™" dk = (x, 5),

where K is the circle group and x the variable in G = SL,(R). For
feC(G//K),
define the spherical transform by means of the kernel ¢(x, 5), namely

S/(s) = [ f(x)e.(x) dx.
G
Theorem 5. On C>(G // K) we have a a commutative diagram

CGK) = R4

N /™

PW(C)”

i.e. S = MH, and all the arrows are isomorphisms.
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Proof.
Sf(s) = jG S(x)g,(x) dx

=j;( Lf(x)p(kx)s ! dxdk

= fA fN fK fan)p(ka)' * " dadndk

= MH/(s).

This proves our theorem, because we have already shown that M and H are
isomorphisms.

Corvollary 1. ¢, = @_ .

Proof. For every f&€ C2(G // K) we get Sf(s) = Sf(—s), so the integrals
of ¢, and ¢ _, against f give the same value. Hence ¢, = ¢

Corollary 2. o, is bounded by 1 for —1 < Res < 1.

Proof. We shall give two proofs, each one illustrating a useful technique.
The first is that of Helgason-Johnson [He, Jo], who proved the result in
general. Let f € £1(G) be bi-invariant. Then

J 1l dx = [ |f(kan)lp(a)’ dkdadn = [ p(a)(H]])(a) da

is finite. If —1 < 0 = Re s < 1, then

[ 19.(0)f(0) dx < [, (0)If(x)] dx = (MHIf])(0)
= /. (HI/D(@)(o(@)" + p(a) ") da
<2  e(a)H|f)(a) da < oo.

Thus the integral of ¢, against any function in £'(G) is finite, and therefore g,
is bounded.

The second proof is due to Eli Stein. Fix a, and view ¢_(a) as a function
of s. For 0 = — 1 we get the bound of 1 trivially. By Corollary 1, we conclude
that the bound of 1 also applies at ¢ = 1. The growth is obviously at most
exponential in the strip. By the Phragmen-Lindeldf theorem, we conclude
that ¢, is bounded in the strip, as was to be shown.
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It will be proved in the next section that the values of s in the above strip
are the only ones for which the spherical function ¢, is bounded.

For the convenience of the reader, we reproduce the proof of the
Phragem-Lindel6f theorem.

Phragmen—Lindelof Theorem. Let f be holomorphic in a strip o, < ¢ < 0,
and bounded by 1 in absolute value on the sides of the strip. Assume that
there is a number a > 1 such that f(s) = O(e"") in the strip. Then f is
bounded by 1 in the whole strip.

Proof. For all sufficiently large |7| we have

|f(o + it)] < el

if we take A > a. Select an integer m = 2 (mod 4) such that m > A. If
= re®, then

m

s™ = r™(cos m + i-sin mf),

and mé is close to . Consider the function
g.(s) = g(s) = f(s)e*",

with € > 0.

Figure 2

Then for s in the strip we get

[g(s)| < e}t}*esr"‘cos mb..
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Consequently for large T the function g(s) is bounded by 1 on the horizontal
segment ¢ = T, 0, < 0 < 0,. [tis also clear that | g(s)| is bounded by 1 on the
sides of the rectangle, as shown in Fig. 2. Hence

|f(s)] < emermoosme

inside the rectangle. This is true for every € > 0, and hence

1f(s)] < 1
inside the rectangle, thus proving the theorem.

We end this section by making explicit the inversion formula for the
spherical transform, which we know exists by Theorem 5. We want to see that
the kernel ¢(x, s) gives us the inversion for s on the line ¢ = 0, so viewing
@(x, 5) as o(x, it).

We write our spherical transform as

Sf(s) = fG F(xX)e(x, 5) dx.
Theorem 6. Let f€ C> (G //K). Then
A1) = f_ * Sf(ir)r tanh(ar) g’—;.

Proof. We keep our old notation, letting

ha=(a 0)’ v=a2+a_2 a = e'/?
0 a!
and
Hf(h,) = F(v).
By Mellin inversion we find

al+a?\_ N g dr [ NV SR O R -
F(—-—z—-—) —f Sf(it)a P —f-w sf(in) ———

e 2 27
Hence

= ¢]

F(cosh 1) =f . Sf(it) cos(tr) —%
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and
sin{¢r) dr

s D 2.

F’(cosh 1) =f

o0

Sf(ir)
e e}
From the definition of the Harish transform, we get

27f(1) =f°° Fi(1 + yu?) du

*® t
= f F’(cosh 1) cosh = dr
o 2

_ (% N, dr (® sintr t
—f_w Sf(ir)r o f-m sinhtCOSh 3 dr.

The integral on the right is equal to

oo .
sin 7
—————— dt = 7 tanh #7.
f_w el/2 — o= t/2

This proves the inversion formula for f(1), i.e. Theorem 6.

Theorem 7. Let

s 75
P(s)ds = - tanh( 7

) 3

If g is in the Paley—Wiener space and is even, then

$7g(x) = [ g()elx )P(s)ds.

Res=0
In other words, ®* = ®! for the Plancherel measure du(s) = P(s)ds.

Proof. From the inversion formula for f(1), we shall get the general
inversion for f(x) by a reduction, using the formalism of spherical functions.
For any f€ C°(G // K), let f, be defined by

f(y) = fK f(xky) dk.

Then f, is in C®(G//K) and f (1) = f(x). Applying the special case of
inversion in Theorem 6 to f, we see that the general inversion formula
follows from the next lemma.

Lemma. Sf.(5) = Sf()e(x, $).



v, §5] EXPLICIT FORMULAS AND ASYMPTOTIC EXPANSIONS 83

Proof. We have
Sf(s) = j; Loy, s) &y = fK fG f(xky)o(y, s) dy

= J S0 5) &
= [ 1oy, 5) d = [ f(No(x kv, ) &
G G

for any k€ K. Averaging over K, and using the functional equation, we
obtain

Sf(s) = fG e~ 5)o(r, s) dv = Sf(s)e(x, 3),

as was to be shown.

§5. EXPLICIT FORMULAS AND ASYMPTOTIC EXPANSIONS
Write an element x€ G = SLy(R) as

x=(a b)=(e 0)(1 u)( cos § sin())
¢ d 0 e 'J\0 1 —~sinf cosé

Then a(x) = e Multiplying out the matrices yields

_sinf and d=cos0.
e e
Hence
2 2=
c d 2+ d*
Now if

0 a! —~sin® cosé

ha___(a 0) and r(0)=( cos 8 sin()),

we get the explicit formula

1
25in20 + atcost

(1) a(r(B)h,) = -
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Therefore, if we put « = a(a) = a®, we find the advanced calculus

integral expression for the spherical function,

(7 1
(2) (ps(a __z;f G2 dé

, (asin?f + a~! cos? 8)

By symmetry, we can evaluate the integral from —# /2 to #/2, and multiply
by 2. Change variables; let

u = tan 8, # = arctan u, df = —~—d_u—5 .
1+ u
Then for a = a(a) we have
[-] s—1
1 a*(1 + u?)
(3 @y 1(@) == ——————du
B T ) (1+a%

Remark. In general, as in Harish’s papers, the variable ¥ comes from

h‘(u)=(l 0)
u 1

and (3) is an integral expression for ¢, taken as an integral over N.

Changing variables again, with v = au, we find

@ Paumr(a) = Lot f Ure/e) 4

(1+ 0®)

In absolute value, the integral is bounded by

(14 v¥/a?)
g d.
w (1 + v%)
Let us now suppose that ¢ > 1. This last real integral is decreasing as a
increases, a > 1. For « = 1, the integral has the value

* |
dv.
,/;w]+vz ©
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Hence we can apply the dominated convergence theorem, to get

o (1 + v?/a? ! o
lim A+ o) e (* — L
a0 J_ (14 0?) ~w (14 v?)

We recall the advanced calculus identity

SRS
©®) j:w (1 + v?) 4 I'(s)

This identity is proved by considering the product

F(s)f e v“f.wf 1+Dst’—dtldv.
a+oy (1 + 0%

Let ¢t > (1 + v?)¢ and use the invariance of the integral with respect to dt /¢
relative to multiplicative translations. The desired expression drops out.

Our expression for the limit is # 0. Consequently, we obtain the asymp-
totic expansion for ¢ > 1 and a(a) or p(a) —> oo:

r(3)
©) (@) ~——p(ay ' —2—
6 " Y

From it, we see:

Theorem 8. If Re(s) does not lie in the interval [— 1, 11, then the spherical
Sfunction @, is not bounded.

The proof we have given is that in Helgason-Johnson [He, Jo], for
arbitrary semisimple Lie groups, but collapsing to advanced calculus in the
case of SL,(R).

In the theory of second order linear differential equations, when finding
an eigenfunction expansion for the solutions, certain asymptotic estimates
play an important role, realized by Bargmann explicitly in his original paper
[Ba]. Although we shall not discuss this aspect of the question here, for the
convenience of the reader, we give in Theorem 9 the first two terms for the
asymptotic expansion of the spherical functions (4), carried out in general by
Harish-Chandra [H-C 7], Lemma 37, actually a central result. I am indebted
to Eli Stein for the elementary exposition in the rest of this section.
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Let ¢(s) be the analytic continuation of the function

oo
1
l mdv, Res > 0.

Formula (5) expresses this integral in terms of the gamma function.

Theorem 9. We have the asymptotic behavior for € —> 0:

f I dv = c(it) + c(—it)e" + O(e'/?).
0

Loya: Lo ;
(1 + vz)z(l+u)(l + 6202)2(1 it}

Proof. We need some lemmas.

Lemma 1. There exists a function ¢, of t alone such that for N —> o we
have

N
it
f dv =-& +¢,+ O(NH.
0

(1 + uz)%uw) it

Proof. Write
N a N
b=kl

where a > 0 is a fixed constant. We have first

N N
(1 + 02)§(l+it)

For the first integral on the right we write

=10

and by the mean value theorem,

B 1 I
- = O(N ).
j; [ (1 + p2)i+io  o!*" d = 0N

1 1
1 : I+t
(1 + 02)2(l+11) )

N
dv +f —— dv.
T
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On the other hand,

N —it — it
——IA dv=———N_ +4_
; OI-HI it it

This proves the lemma, with

‘ 1 * 1 1 —it
G = s ) - - dv+a, .
0 (1 + 02)5(14-:'1) (1 + DZ)E(“‘"’) plti it
a

Lemma 2. The value c, is equal to c(it).

Proof. We consider

a @0
1l do + 1l _ l1+
o (1 + 0220 o+ ) 0

which is clearly analytic in a neighborhood of s = iz, in fact for Res > —1,
s # 0. When Res > 0 we can continue the integrals and obtain the
appropriate value for c,.

a""S
dv + R
s

We now prove Theorem 9. Split the integral of Theorem 9 into two

integrals,
szﬁgm+fjﬂzl+n.

Inl,0 < v < e '/2 50 that ¢%? < € < 1. Thus

1+ ezvz)%(lﬁt) =1 + O(e%?).
Hence

- 172

I= 1 ! 1 dv
0 (1+ 02)5(14"'!)(1 + E202)5(1—n)

~1/2 -1/2

¢ 1 2 ) 02
—T dv + Ole a2 dv
o (1 + 02)5(1+n) o (1 + 02)

it/2

P elt +C’ + 0((1/2)

i

for e — 0, by Lemma 1.
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Next,

[c.e}
= 1 1 . do
iz (1 + 02)5(!+n)(1 + €202)2(1—,':)

el/2
= i . l i . dv’
o (l + 02)5(1+u)(62 + vz)i(l—u)
making the change of variables v > 1/v. Next let v > v/e. This yields

—-1/2

o 1
Il =¢ - ;
A (1 + €2u2)5(1+il)(1 + u2)“2‘(l—it)

du

. —it/2
= e"[ S +ec_, + O(VY

by the previous arguments. Hence

I+ =c + €ec_, + 0(c"/?),
as was to be shown.



VI The Derived Representation
on the Lie Algebra

In this chapter for the first time we begin to deal with the C* or (real)
analytic structure of G, rather than with just measure theory. We shall see
how a representation of G gives rise to an algebraic representation of the Lie
algebra on a dense subspace, for an arbitrary Lie group G. In the case of
SL,(R), this representation has an especially simple form, as shown in §2.

§1. THE DERIVED REPRESENTATION

Let G be a Lie group. For our purposes, you can assume that G = SL,(R)
or GL;}(R), or GL,} (R). The important thing is that G can be coordinatized in
a C* manner. Recall that for SL,(R) we have our coordinates (x,y, 8)
arising from the upper half plane representation. For GL; (R), we would have
the four coordinates (u, x, y, #) where u is a diagonal scalar factor. Of course,
for GL,(R) we can also use the four coordinates of the 2 X 2 matrix.

If G is a closed subgroup of GL,(R), one can define its Lie algebra as the
set of matrices X such that

’:f all 1€R

exp (1X) = i
n=0

lies in G. The Lie algebra is denoted by g. For G = SL,(R), it is an exercise to
verify that g consists of all real 2 X 2 matrices whose trace is 0. (Use the
Jordan normal form, for instance.) Thus for SL,(R), a basis of the Lie algebra
over R is given by the three matrices

I F O P

89
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If X lies in the Lie algebra, then the map
t > exp(1X)

is called a one-parameter subgroup of G. It can be proved in general that
exp: g —> G

is a local real analytic isomorphism in a neighborhood of 0 (not a group
isomorphism, of course). It is trivially verified for SL,(R). If X, Y €g and X,
Y commute, then we do have

exp(X + Y) = exp(X) exp(Y).

In particular, the parametrization of the one-parameter subgroup above is a
group homomorphism.

A function is C* on G if and only if it is C* in terms of coordinates. The
notion is clear for SL,(R) and we won’t bother the reader with general
definitions of manifolds and Lie groups at this point. Let him use his
imagination or look it up elsewhere. For Banach valued maps, and differen-
tiability, cf. Real Analysis. There is essentially no difference with real
functions.

Let G be a Lie group and let H be a Banach space. Let

fiG—>H

be a C* mapping. For each X in the Lie algebra g, and y € G, we define the
Lie derivative

d
Exf(y) = f(y exp(iX))| .
t=0
Then £, fis also C*, and so we get a linear map
£y: C*(G,H) — C®(G,H).

It is clear that £, is left G-invariant, i.e. commutes with left translations. If
H = C is the scalar field, then £, is easily verified to be a derivation, that is

Cx(fe) =fLxg + (Exf)g.
For fixed y € G let

F(X) = f(y exp(X)).
Then F, is C* on g, and by definition,

F,(1X) = F,(0)

Exf()’) ==}i_r)r(1) /
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For any C* map F on a neighborhood of 0 in g, we have, by Taylor’s
formula,
F(X) = F(0) + F'(0)X + O(|X]),
where
F'(0):g > H

is the derivative of F at 0 (linear map). Therefore
Lxf(y) = F(0)X,
and £, is linear in X, that is, for X, ¥ €g and ¢ €R, we have
Cxey = Ex + £, and Loy = cLy.

We extend this formula by linearity to complex coefficients. We let g consist
of linear combinations of elements of g with complex numbers, so that
elements of g are matrices of the form

X + iY, X, Yeq.
If « = a + ib with a, b real, then we define
Lax = Loy + iL4y,

and thus obtain an extension of the Lie derivatives to elements of g, which is
a complex Lie algebra.

When dealing with C* functions and integral representations, we must
frequently take a limit or ‘differentiate under an integral sign, and for the
convenience of the reader we reproduce the lemmas allowing us to do this.

Lemma 1. Let X be a measured space with positive measure p. Let U be an
open subset of R". Let f: X X U —> E be a mapping into a Banach space.
Assume:

i) For each y € U the map x > f(x, y) is in Y, E).
i) For each x€ X and y,€ U, we have

Jim f(x,y) = f(x, yo).

iii) There exists a function f, € £'( ) such that for all y € U,

|f(xe, 0 < LA
Then the function
y > [ f(x.y) du(x)
b'e

is continuous.
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Proof. It suffices to prove that for any sequence { y,} converging to y,

f S(x, »,) du(x) converges to f S(x, y) du(x).
X X

Let f.(x) = f(x, y,). Then {f,} converges pointwise to the function

x > f(x, ),

and by (iii), we can apply the dominated convergence theorem to conclude
the proof.

Lemma 2. Let X be a measured space with positive measure p. Let U be an
open subset of R". Let f: X X U —> E be a mapping into a Banach space.
Assume:

i) For eachy € U the map x +> f(x,y) is in £'(u, E).
ii) For each y € U, each partial D;f(x, y) (taken with respect to the j-th
y-variable) is in Ly, E).
iii) There exists a function f, € £\( ) such that for all y € U,

|Df(x, )] < |fi(x)]-
Let

o(y) = fX F(x, ) du(x).

Then I)j@ exists and we have

D®(») = [ Df(x,y) du(x).

X
Proof. We have
O(y + he) — @
()’ e;l) (Y)=L_}7[f(x,y+hej)~f(x’y)] d].l.(X)

Using the mean value theorem and (iii), together with the dominated conver-
gence theorem, we conclude that the right-hand side has a limit, equal to

J, PIx, ) du).

[As in the previous proof, we have to use the device of taking a sequence {4, }
to apply the dominated convergence theorem in its standard form.]

Aside from hypothesis insuring that all the symbols make sense, the
essential hypothesis in Lemma 2, allowing us to differentiate under the
integral sign, is that the partial derivative with respect to y is uniformly
dominated by a function in £, independently of x.
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Example. Let f € £'(R") and let g € C°(R"). We see that f*¢ is C*, and
for any monomial D? = D{'- - - DP of partial differential operators, we
have

DP(fsq) = f+ Dy,
Indeed, by definition,

fro(y) =f f(=x)o(x + y) dx.
RII
It is clear that Lemma 2 applies, and we can differentiate ¢ under the integral
sign repeatedly to get the above formula.

Lemma 3. Let G be a Lie group and f € £Y(G,H) where H is a Banach
space. Let o€ CX(G,C) and let X €gc. Then fxp is C*, and

Ex(fro) = f+Ly0.
Proof. Exactly the same as above for R". By definition,

ﬁwU)=LKX”WQHdL

In the neighborhood of a point y we can choose local coordinates identifying
this neighborhood with an open set in Euclidean space. The uniform domina-
tion of Lemma 2 is valid.

Let G be a Lie group and #: G — GL(H) a representation in a Banach
space. We define the algebraic subspace H,* to consist of all those vectors
v € H such that the map

x > a(x)

is C*. We call H* the space of C* vectors. It is stable under the action of G,
ie. if a€G and vE H®, then

m(a)p€ H>,

and it is also stable under the action of smooth functions with compact
support. More is even true:

If p€ C®(G) and vE H, then 7' (p)ve H>.
Proof. By definition,
'(@)o = [ o(»)7(»)v &

7(x)z'(p)ov =f e(¥)m(xy)v dy

= [ o(x"W)7(»)0 d.
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We can differentiate under the integral sign by Lemma 2, with respect to x.
This is essentially a special case of Lemma 3.

Recall that if {6,} is a Dirac sequence, then for v € H, 7'(4,)v converges
to v. Consequently, since we can take a Dirac sequence to consist of C*
functions with compact support, we conclude:

H > is dense in H.

In other words, there is an ampie supply of C* vectors, even of the form
7'(¢)v, where p € C2(G).
We now come to the derived representation. If v € H.°, we define

dr(X)o = %w(exp(tX)v) Y

We shall prove that the right-hand side lies also in H,*, and furthermore we
get the formula

DER 1. If f(x) = w(x)v, then for a€ G, v € H® we have
dn(X)o = (Exf)e)  m(a)dn(X)v = (Lxf)a)

Since fis C* by assumption, we see that the formula implies that dw (X )v
is also C . As for the truth of the formula, we have by definition

(Rx/)@) =L f(a exp(ex))| .
=0

Applying the continuous operator #(a) to the limit

7(exp(tX))v — v
m
1—0 1

3

we see that we get our formula.

We see that dr(X): H* —> H® is a linear map, depending linearly on
X. We call it the derived representation of = on the Lie algebra.

DER 2. For X, Y €g and f(x) = w(x)v, vE H°, we have
dn(X)dn(Y)v = £, £, f(e).
Proof. We have
m(x)dn(¥)o = £y f(x)
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by DER 1; also, putting a = e, we know that
dr(X)w = (L4 f,)(e)
if we H® and f,(x) = #(x)w. We apply this to w = dn(Y)v to get DER 2.

Let X, Y €q. There exists a unique element [X,Y]Eg such that for all
fE€C*®(G,H) we have

B[X,Y]f= Bx Byf" EY Bxf-

The bracket is defined by using multiplication of matrices, namely
[X,Y] = XY - YX.
We shall prove this below. From DER 2 we then get for du,
DER 3. dn([X,Y]) = [dn(X), dn(Y)],

where the bracket on the right is dn(X)dn(Y) — da(Y)dn(X).

The proof for the commutation formula of the Lie derivative will use two
lemmas. Note that if g is an invertible matrix, then

g~ '(exp X)g = exp(g™ 'Xg).
This is trivial, because g 7 'X"g = (g~ 'Xg)".

Lemma 4. Let s be a real number, and put g, = exp(sY). Let

(X)) = fexp X).
Then

d (o~ :
Zolg7'Xg)| = @(X)XY = YX).
s =0

Proof. We have
g 'Xg, = (I = sY + O(sH))X(I + sY + O(s?)

=X + s(XY - YX) + O(s%.
Hence

o(g 'Xg,) = ¢(X) + ¢ (X)s(XY — YX) + O(s?).

The assertion of the lemma follows at once.
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Lemma 5. Let y = exp(uY), where u is a fixed real number. Let

J(u’s’t) = f(y exp(tg; ]ng))'
Then
D,D,J(u,0,0) = @ (O)XY — YX).

Proof. The expression on the left is equal to

4

41 _
p D,J(u, 0, t) @ [e(eX)(XY — YX)] -

The lemma follows from the rule for the derivative of a product.

Note that in Lemma 4, we could consider ¢, (X) = f(y exp X). We wrote
the y explicitly in Lemma 5 in order to have the numbering of the variables fit
the application we have in mind.

Next, let g, = exp(sY), as before, and let

F(u, s, 1) = f(exp(uY) exp(1g,” 'Xg,)).
Then

flexp(1X) exp(uY)) = f(exp(uY) exp(ig, 'Xg,)) = F(u, u, 1),
so that

Ry £y f(e) = D3D,F(0,0,0) + D,D,F(0, 0, 0).

Furthermore,
flexp(uY) exp(¢X)) = F(u, 0, 1),
so that
£y £y f(e) = DD ,F(0, 0, 0).
Therefore

Ly Lyfle) — £y Ly f(e) = D3D,F(0, 0, 0).
By Lemma 5, we find
DyD,F(u, 0,0) = (py’(O)(XY - YX).
We obtain

D,D,F(0,0,0) = ¢'(ONXY — YX)
= Cyy- rxf(e)-

This proves the desired relation of commutation between the Lie derivatives.



VI, §1] THE DERIVED REPRESENTATION 97

We also want to know how the derived representation behaves when
composed with 7!(gp) for o € C2(G). We introduce the right Lie derivative

R f(x) = L fexp(t))|

which commutes with right translations.
In what follows, we let ¢ € C*(G). For the next property DER 4, we
need not assume v € H,°, merely that vE H.

DER 4. dr(X)m'(p) = 7' (R_, @) on H.
Proof. We have:
7(exp(X ) (g)o = 7(exp(iX)) [ @(x)7(x)o dx
f o(x)m(exp(tX)x)v dx
= f p(exp(— X )x)m(x)v dx

by letting x > exp(— tX)x. We consider this expression for small values of ¢
near 0, and we differentiate under the integral sign, valid because ¢ has
compact support. Let

pexp(—tX)x) = F(1, x).

Then D, F(t, x) has compact support. Applying d/dt to our expression yields
%(p(exp(— tX)x)m(x)v dx.
At ¢ = 0 this yields precisely 7'(%} _ y @)v, thus proving the formula DER 4.

DER 5. 7 (@)dr(X) = 7' (E_x o)

Proof. Entirely similar to the preceding proof, moving d/dr inside and
out of an integral and using the definitions. We don’t bother to write it out.

Partly because of the minus signs occurring in DER 4 and DER §, and

partly for other suggestive reasons, it is sometimes useful to introduce the
notation

(X*p)(») = g; p(exp(— tX)y)Il_0 = —Ryp(»),

(p=X)(y) = %w(y t%xp(—tX))Ir_x0 = —yp(y).
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It is easily verified that
(P*rX)*y = px(X+y)
for @, y € C*(G). Then we have
7 (p*X) = x'(¢) dn(X) and 7 (X *¢@) = dn(X)n'(p).

By an abuse of notation, one sometimes writes 7w(X) and #(¢) instead of
dr(X) and 7'(p) (a notation which confused me a lot when I learned the
subject, but which does become convenient), in which case one sees 7 as a
multiplicative homomorphism for the convolution operation on the algebra
generated by elements of the Lie algebra and functions in C°(G), acting as
operators. In other words, we have in this notation

m(p*X)=m(e)n(X) and 7(X+g)=7(X)r(p).

We are now finished with the formalism of C* vectors, and say a few
additional words about analyticity. Let H be a Banach space. If f: G —> H is
a mapping, we say that f is analytic (i.e. real analytic) if it has a power series
expansion in the neighborhood of every point, in terms of local coordinates.

Taplor’s formula. Let f: G — H be analytic. Let y€G. For all X
sufficiently small in g (with respect to any norm on the finite dimensional
R-space q), and all t with 0 < t < 1, we have the Taylor series expansion

Sy exp(iX)) = B, (N

n=0

Proof. By definition,
xSy exp(uX)) = (v explu + 0X)|
=L j(y exp(ux)).
du
By induction, let F = £% f and assume

F(y exp(ux)) = (4} f(y exp(u).
Then
Ry F(» exp(uX)) = <L F(y exp uX)

n+1

= (;‘i—) f(y exp uX).
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In other words, we have proved the formula
n d’
*) e f(v exp uX) = S 1(» exp uX).

Let (x,, . . . ,x,) be the coordinates of X with respect to a fixed basis of g over
R. Since f is analytic, we have for small | X|,

f(yexp X)= P(x,,...,x,)
where P is a convergent power series in a neighborhood of 0. Hence
f(y exp uX) = i a,.;lyu", a,ER,
n=0
for 0 €< u < 1. Hence, evaluating (*) at u = 0, we get
LXf(») = a,
Putting u = ¢ proves our Taylor formula.

Let #: G — GL(H) be a representation in a Banach space. An element
v € H is called analytic if the map x > #(x)v is analytic.

Covollary. If v is analytic, then

7 (exp(X))v = 2 ;l-!-dvr(X)"v.

ne=0

Proof. Immediate from Taylor’s formula.

It is clear that the analytic vectors in H form an algebraic subspace,
denoted by H2".

Theorem 1. Let G be a connected Lie group and let
7: G —> GL(H)

be a representation on a Banach space. Let V be an algebraic subspace of H
consisting of analytic vectors, and invariant under dn(g). Then the closure of
V is invariant under G.

Proof. Let vE V. For X €g and |X| small, we apply the corollary to the
analytic map f(x) = #(x)v, and get

m(exp(X))o = Z %dw(X)"vE V.
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But exp of a small neighborhood of 0 in g is a neighborhood of e in G. Hence
the closure of V' is invariant under a neighborhood of e in G. The products of
such a neighborhood with itself generate G, so our theorem is proved.

Theorem 1 provides an important criterion for irreducibility. As we shall
see later, the algebraic space of K-finite vectors in a certain representation, or
appropriate algebraic subspaces, will provide examples of the space V in
Theorem 1.

In concretely given situations, as we shall see below, one has direct means
to prove that certain vectors are analytic. This arises from the fact that certain
representations are in function spaces on G, and that these function spaces
contain plenty of analytic functions on G. One has then to prove that such
functions are analytic vectors, when viewed as elements of the function
spaces.

The existence of a dense subspace of analytic vectors for completely
arbitrary Lie groups was proved by Nelson [Ne].

On the other hand, a general proof for SL,(R), following the original
ideas of Harish-Chandra for general semisimple Lie groups, falls easily within
our range of ideas. One can construct a Dirac sequence consisting of analytic
functions, using the weak definition of Dirac sequences, where DIR 3 is
replaced by the analogous L' condition. Indeed, analytically, G is merely a
product 4 X N X K, where A4 is isomorphic to R*, N is isomorphic to R,
and X is the circle group. Fourier series provide analytic Dirac sequences on
K. Starting with the function

"y

() =——e

1
\Z
one forms the sequence of functions

9, (1) = no(nt)

whose integral is still 1, which are positive, and which are easily proved to
satisfy the third Dirac sequence condition. Taking #'(¢,)v for an arbitrary
vector v is easily shown to yield an analytic vector. There is therefore no great
difficulty in handling analytic vectors in the cases of interest to us, just like
C ® vectors. An even better way will be to see later that in all cases of interest
to us, K-finite vectors are amalytic. See X, §2, Th. 7.

§2. THE DERIVED REPRESENTATION DECOMPOSED OVER K

We return to the considerations of Chapter 11, §1, where we obtained a
decomposition of an arbitrary representation of G = SL,(R) over its circle
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group K. We shall relate it to the derived representation. As usual, we let

r(0) = ( cos@ siné )

—sinf cosé

For the convenience of the reader, we recall that f€S, , if and only if
f€ C,(G) and satisfies

f(r(8)yr(89) = e~ "™f(y)e™"

for all ye G and all real 8, #’. We note that the space of C* functions in
S, m» denoted by S, is dense in S, ,. This is essentially obvious: Any
continuous function with compact support can be uniformly approximated by
a C* function whose support is very close, and then the arguments given to
prove Lemma 1, Chapter II, §1, amounting to Fourier series convergence,
yield C*® functions. From now on, when we quote Lemma 1 from Chapter 11,
we allow ourselves to do it with §,,, replacing §,, ..

We use the same notation as in Chapter II, §1, for the K-decomposition.
Let #: G — GL(H) be a representation in a Banach space. Then H, is the
subspace of H consisting of those vectors v such that

7(r(8))o = ey,

i.e. it is the n-th eigenspace of K in H.
The denseness of S;°, in S, , shows that if rn‘(Sq, JH, # 0, then

n'(8=,)H, # 0.

=)

so that the one-parameter subgroup of G generated by W is precisely K.

As before, we let

Lemma I. Let w: G —> GL(H ) be a representation. Let X €g. Let vEH>?
be an eigenvector for dn(X) with eigenvalue X, i.e. assume that

dn(X)v = Av.
Then

7(exp(tX))d = eMv
Sor all real t.

Proof. Let f(t) =n(exp(1X))d. Then f is differentiable by assumption,and
St + k) = f(1)  w(exp(t + h)X)v — m(exp(1X))o
h - h

— n(exp(iX)) 7 (exp th)v - v .
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Taking the limit as & —> 0 yields w(exp :X) dw(X)v = w(exp tX)Av. Hence
f'(1) = M(1). Considering f(1)/ €™ yields f(t) = e*v, as desired.

The lemma will be applied when X = W, t = §, exp 8W = r(8).

Theorem 2. Let m: G —> GL(H) be an irreducible admissible representation
of G = SL,(R) in a Banach space. Let n be an integer such that H, # {0}.
Then H, has dimension 1, any element of H, is a C* vector, and H, is the
eigenspace of dm(W) with eigenvalue in.

Proof. We know from 1I, §1, Th. 2 that H, has dimension 1. Since
7 (S2°)H, # 0, if {v,} is a basis of H, over C, then

7'(8.7, )b, = Cv,.

Thus v, is a C* vector. From the definition of H, it is clear that its character
on K is the n-th character, and that it is an eigenspace for dw(W) with
eigenvalue in. The lemma shows that any such eigenvector must lie in H,, and
our theorem is proved.

Remark. As mentioned before, the analyticity of elements in X, will be
proved in X, §2, Th. 6.

We shall now investigate the action of other basis elements of the Lie
algebra on the spaces H,. It is convenient to deal with complex elements. We

let
E_=( 1 —i), E+=E—_=(1 i)
- - io—1

Then by matrix multiplication, we get
[ET,E™ = —4iW, [W,E* = 2E", [W,E™ = —2iF".

Bracketing with some X in the Lie algebra yields a linear endomorphism
called ad(X) of the Lie algebra, and we see that E*, E ™ are eigenvectors of
ad(W). [Note that ad(X) is the regular representation of X in its own algebra.
For some unknown horrible reason, it is called the adjoimt representation,
which is very confusing because there is no adjoint operator in the sense of
scalar products anywhere in sight. It would have been better to call it reg(X),
but it’s too late to change.]

Occasionally we shall also write £, and E_ instead of E* and E 7,
especially when these symbols occur in the context of powers.

Theorem 3. Let w: G —> GL(H) be an irreducible representation of G in a
Banach space. Let m be an integer. Then the sum

> A,

n=m (mod 2)
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is stable under dw(q). Furthermore, we have
dn(E*):H,—> H,,,,
dn(E"):H,— H,_,.
Proof. Let ve H,. Then DER 3 shows

dr(W)Ydn(E ™ )o = de[W,E o + dn(E™) do(W)o
2Qidn(E*)o + indn(E ™)

i

= i(n + 2) dw(E™*)o.

Hence dm(E™*) is an eigenvector for dm(W) with eigenvalue i(n + 2).
Theorem 2, or the lemma, shows that dn(E *)v lies in H,,,. The argument
for E ™ is the same, replacing + by —, thereby proving our theorem.

The above arguments, due to Bargmann [Ba), determine the action of the
Lie algebra on irreducible representations of SL,(R).
Suppose that H, = 0 for some integer m. We form the sums

HY= 3 H, ad H, =3 H,

g>m g<m

over all integers ¢ = m (mod 2). Then H, and H,_ are stable algebraic
subspaces for the operation of the Lie algebra, dr(g¢). If we know that the
vectors in H, are analytic vectors, then we can apply Theorem 1 to conclude
that if H,}, say, is # 0, then its closure is invariant under #(G), whence the
irreducibility of = implies that this closure is exactly H.

Bargmann [Ba] following up the above arguments, also showed the
uniqueness of the irreducible unitary representations behaving like the above
with respect to the Lie algebra, extending to infinity in each direction, so that
there are no others besides the ones which we shall exhibit. We shall prove
these uniqueness statements below, and in the next section.

From the action of the Lie algebra, we see that there are four possible
classes of irreducible infinite dimensional representations of G, according to
the behavior with respect to dw(g) extending to infinity in at least one
direction:

Case 1. There exists an integer m such that H is the closure of the space

~
> H,
g> m

g=m (mod 2)

and H +# 0.
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Case 2. There exists an integer m such that H is the closure of the space

> H,
gam
g=m (mod 2)

and H,, + 0.

Case 3. The space H, is not 0 and H is the closure of the sum

> H,

g even

Case 4. H is the closure of the sum

> H,

g odd

In Case 1, we call m the lowest weight, and call a non-zero element of H,,
a lowest weight vector. In Case 2, we call m the highest weight, and call a
non-zero element of H,, a highest weight vector. In Case 3, we note that H,
consists of the elements of H which are invariant under X. It is therefore no
surprise that the theory of Case 3 will be a continuation of the theory of
spherical functions. In the other three cases, bi-invariant functions operate
trivially on H, i.e. the trivial representation of K does not occur in these three
cases.

Visually, the direct sum of the non-zero spaces H, in the four cases looks
like this:

H ®H, OH, ©® -,

... @®H,_,®H, ,®H,,
. OH_OH_ ,OHSOH,DH,® - - -,
- ®H_,®H_®H ®H,DHD - - -

There are also finite dimensional representations (occurring in a natural way
between H _,, and H,,!). We shall deal with these later in connection with the
Plancherel formula.

The fact that the K-components of an irreducible subspace of a represen-
tation must have a given parity makes it useful to decompose functions in the
group algebra in a similar fashion. For any function f on G we let

) + J(=x) _ ) = f(=x)
S

ffTx)=—">5—— and f7(x)
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Thus f* is even and f~ is odd. (The context will always make it clear whether
f7 is the odd function defined above, or f~ (x) = f(x™").)
Let 7 be a representation of G on a Banach space H. We call the space

~

H*= @ H

n even n

the space of even elements in H, and we call the space

H = ® H,
n odd
the space of odd elements in H.

Lemma 2. If Yy € CX(G) is odd (resp. even), then w'(y) maps H into H™
(resp. H*) and annihilates H™* (resp. H ™).

Proof. This is immediate from the definitions of '(y).
Writing a function ¢ = ¢+ + ¢, we can then study the effect of 7(y) on
each one of the spaces H* and H ~ separately.

We end this section by considering the uniqueness of the derived repre-
sentation in certain cases.
Let # be a representation of G on a Banach space H. Let

H(K)=2 H,

be the algebraic space of K-finite vectors, where H, is the n-th eigenspace of
K. We called the representation = admissible if the dimensions of the spaces
H, are finite. If this is the case, then an argument similar to that used to
prove Theorem 2, §2, shows that the elements of H, are C* vectors. We leave
this as an exercise to the reader. [It is also true that they are analytic vectors.]
The proof will be given for the case dim H, = | in Chapter X, §2.

Let yE G and X €g. We define

Ad(y)X = yXy ™!,

so that Ad(y) is a linear endomorphism of g. We call y > Ad(y) the adjoint
representation of G. Recall that

exp(yXy~') = y exp(X )y 7"
If y € G, then we get trivially #(y)dn(X) = dn(Ad(Y)X)7(y).
The space H(K) is stable under dmn(g).
Proof. Let k€ K, vE H(K) and X €g. Then
(k) de(X ) = dn(Ad(K)X)n(k)v.
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Hence, #(K) dn(X)v is contained in the image under dw(g) of the finite
dimensional space generated by #(K)v, and is therefore finite dimensional, as
contended.

Let 7, m, be admissible representations on Banach spaces H,, H,. We
shall say that they are infinitesimally isomorphic if there exists a linear
isomorphism

L: H(K) — H,(K)
which commutes with the derived representation, i.e. such that

Lodn(X)=dm(X)eL on H/(K).

We also say in this case that L is a g-isomorphism on H,(K), or is an
infinitesimal isomorphism.
Let §® =X 8§, as before. We say that 7, is §*-isomorphic to =, if

n, m

there exists a linear isomorphism L such that for p& S,
Leom(p)=mfg)eL on H(K).

If L is an S ®-isomorphism, then it is a g-isomorphism.
/4 p

Proof. Let vE H|(K). There exists p€S* and we& H(K) such that
v = 7,(p)w. For X €g we get:

Ly (X)o = Lay(X)my(@)w = Ly (X *@)w
= m)(X *¢)Lw

7y (X )7y @) Lw

7 (X )L (@)w

7,(X ) Lo,

as was to be shown.

Observe that since a g-isomorphism on H(K) commutes with dn (W), it
necessarily commutes with the action of K i.e. preserves the eigenspace direct
sum decomposition of the K-finite vectors.

Theorem 4. Let 7, 7' be irreducible admissible representations of G on
Banach spaces H, H'. Assume that there exists a postive integer m such that
7, 7' have a lowest weight vector of weight m, say u,,, u,, respectively. If H,
H' are infinite dimensional or if they have the same finite dimension, then
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there exists an infinitesimal isomorphism

L: H(K) — H'(K)
such that Lu,, = u,,.

Proof. For simplicity write Xv instead of d#(X)v, and similarly for Xv’,
v'eEH'. Let
E; Up = Upy 2 E; u;n = r/n+2r'
By irreducibility, u,,,,, and u,, ., are # 0 and are basis elements of H,, _,,,
H, ,,, respectively for the same values of r. We define L such that
L(um+2r) = urln+2r'

Then L commutes with W and E _. There remains to prove that L commutes
with E _. This is obvious inductively, using the commutation rule

E,E_=E_E, —4iW,

and starting the induction with the assumption that E_u, =0, E_u,, = 0.
Thus our theorem is proved.

Theorem 4 has an analogue for irreducible representations having high-
est weight vectors of weight — m, where m is still a positive integer, and the
proof is the same, mutatis mutandis. If m > 2, such infinite dimensional
representations are called discrete series representations, because they are
infinitesimally isomorphic with irreducible subspaces of L% G) on which G
acts by translation. We shall prove this later, by exhibiting an appropriate
subspace of L*(G) having a lowest weight vector. As for the finite dimen-
sional case, we get:

Corollary. For each positive integer d there exists one, and up to
isomorphism only one, irreducible representation of SL,(R) of dimension d.

Proof. Existence will be proved at the end of §5. Infinitesimal uniqueness
is a special case of the theorem, so let

L:H—H’

be an infinitesimal isomorphism. In the finite dimensional case, we automati-
cally have Taylor’s formula

a{exp X)v = 2 ;I—I-fd'rr(X)"v,

whence L is necessarily also an isomorphism with respect to the group action,
as desired.
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§3. UNITARIZATION OF A REPRESENTATION

Let 7 be a representation of G on a Banach space E. We say that 7 is
unitarizable if = is infinitesimally isomorphic to a unitary representation on a
Hilbert space H. An infinitesimal isomorphism

L: E(K) — H(K)

induces a Hilbert space scalar product on the algebraic space E(K). If E(K),
denotes the n-th eigenspace of E(K) (equal to the n-th eigenspace of E), then
any such Hilbert space product must make distinct eigenspaces orthogonal to
each other. In particular, if dim E(KX), = dim E, = 1, then the scalar product
on E, is determined by the value (u, u) for any basis vector u in E,. If u is a
unit vector for one scalar product, say

<u’ u>l = 1’

and if (v, w), is another scalar product, such that {u, u), = ¢? with ¢ > 0,
then ¢ ~'u is a unit vector for the second scalar product. If {#,} is a family of
unit vectors for the spaces E, such that dim E, = 1, in the first scalar
product, then {c, 'w,} is a family of unit vectors for these spaces E, in the
second scalar product. We therefore see that a unitarization of » determines
such a family of positive numbers {c,)}.

Infinitesimally, there is a simple necessary condition for a representation
to be unitary.

Lemma 1. If 7 is a unitary representation of G, and X €q, then dn(X) is
skew symmetric on H®.

Proof. Obvious from the definition of the derived representation.

The next lemmas lead to a theorem giving us the uniqueness of a unitary
representation infinitesimally isomorphic to a given representation.

Lemma 2. If 7 is irreducible admissible on the Banach space H, and if & is
the algebra of operators on H(K) generated over C by the elements of
dn(g), then given any non-zero element u€ H, for some m, we have
H(K) = Qu. In other words, the algebra @ operates transitively on H(K).

Proof. This is obvious from Theorem 3, §2, and Theorem 1, §1.

Lemma 3. Let V = Z H, be a vector space over C, expressed as a direct
sum of subspaces H,. Let @ be an algebra of linear endomorphisms of V
generated by elements X,, ... ,X, Let m be an integer such that H_, has
dimension 1, generated by an element u, and assume Qu = V (i.e. @ acts
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transitively). Any two positive definite scalar products on V which preserve
the orthogonality of the spaces H, and for which X,, ..., X, are skew
hermitian differ by a positive scalar multiple of each other.

Proof. After multiplying one scalar product by a constant, we may
assume that the two scalar products are equal on H,,. What we have to show
is that a scalar product satisfying the conditions of the theorem is determined
by its values on H,,. It suffices to consider the scalar product of elements v, w
for which there exist Z, Z’€ @ such that Zu = v and Z'u = w, and

Z=2Z,--Z

r

and Z' =2z - Z

£

with elements Z,, Z/ which are equal to some of X, ... ,X,. Then

(o, wy = (= 1)<y, ZZ'u), where Z = zZ---Z,.

By orthogonality, the scalar product in this last expression depends only on
the projection of ZZ'u on H,,. Therefore, if we know the value of the scalar
product on H,, it is determined on all of ¥V, as was to be shown.

Lemma 4. Let m be an irreducible admissible representation of G on a
Banach space H. Any two positive definite hermitian products on H(K) for
which the elements of dw(g) are skew symmetric are positive scalar multiples
of each other.

Proof. We take the algebra € to be the one generated by dn(X), X €g,
and apply Lemmas 2, 3.

Theorem 5. Let w,, m, be irreducible unitary representations of G, and let
L: H(K) — H)K) be an infinitesimal isomorphism. Then there exists
¢ > 0 such that cL is unitary, and its unitary extension H, —> H, is a
unitary isomorphism between w, and m,.

Proof. The first statement is immediate from Lemma 4. After multiplying
L by a positive number, let us assume that L is unitary. For X sufficiently
small, we have Taylor’s formula,

{m(exp X)v, w) = 2 %(dw(X)nv, w.

Putting # = =, the formula shows that for all x close to e,
{La(x)o, Lw), = {my(x)Lv, Lw),.

Hence L commutes with the group action near e, and therefore with the
group action itself, since G is connected. This proves Theorem 4.
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Remark. The essential ingredient of the above arguments is that in the
K-decomposttion of H(K), one of the irreducible representations of K occurs
with multiplicity 1. A K-invariant positive definite hermitian product on this
component is the generalization of our present situation, and similar argu-
ments in the higher dimensional case yield an analogous theorem.

Let 7 be a representation of G in a Hilbert space H. We do not assume «
unitary. If o€ H is a non-zero vector, then we consider the coefficient
function

Jo(x) = Cm(x)u, w),
where u is a unit vector in the direction of v. If H, has dimension 1, then we

can define the n-th coefficient function to be f, for any vector v # 0 in H,.

Theorem 6. If two representations of G which are unitary on K are
infinitesimally isomorphic, and the n-th eigenspace for the representations
has dimension 1, then the n-th coefficient functions of the two representations
are equal.

Proof. Let H(K) be the space of K-finite vectors for the first representa-
tion, let # be a unit vector in A, and let

f(x) = {n(X)u, u).

Then the function f is analytic on G (see below), and for all small X €g we
have

w{exp X )u = 2 %dw(X)qu
whence, putting x = exp X,
1
f(x) = 2 E(dw(X)qu, ud.

Each term {dn(X )%, u) is determined by knowing the derived representation
algebraically. Hence f is uniquely determined locally in a neighborhood of the
origin. By analyticity, f is determined on all of G.

Remark 1. We used the analyticity result already mentioned, and to be
proved in Chapter X, §2.

Remark 2. We shall use Theorem 6 later to see that the trace, properly
defined, is independent of the infinitesimal isomorphism class of representa-
tions. Indeed, as a distribution, the trace will be taken as a sum of coefficient

functions
2 (X)u,, u,>

and Theorem 6 will apply.
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Coefficient functions can sometimes be used to embed a representation
infinitesimally into L% G), as follows. Let = be a representation of G in a
Banach space H and let A be a non-zero functional on H. Let vE H. We let

Fro(x) = £,(x) = Mz (x)v).

We shall keep A fixed, and hence index f only by o.
In preparation for the next result, we tabulate some more formalism. Let
@€ C.(G), and as usual, let ¢ " (x) = @(x ). Then

(1) fw(rp)v=fo*q)_

Let X €g. Let fE L}(G) and g € C>(G). Then
(2) Cx(f+*@) =f+Lxo
3) (X*g) = Exlo)
(4) Feom@w = Ex(faier)-

All these formulas are immediate from the definitions.

Lemma 5. Let w be the representation by right translation on L*(G), i.e.
7(x)f(y) = f(yx). Let f€ LXG) and ¢p€E C>2(G). Then f*p is a C*
vector in LZ(G), and

dn(X)(f*@) = Lx(f* o).

Proof. It suffices to prove that the map x —> #(x)f is C*® near the origin
in G. Let

mxf(¥) = f(y exp(1X)).
We first prove the formula, and we have to show that

mx(f*9) — (f*9)
!

approaches a limit in L*(G), given by £, (f* ). Thus we have to investigate
the limit of

ff(y exp(1X)x " No(x) = flyx " Ne(x) p
G X

{
as a function of y, in L% G). Change variables, letting

x > xy exp(1X).
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The above expression is equal to

f SNl exp(iX)) — fxNe(w)
G

t
Let Y (1) = @(xy exp(tX)). By the mean value theorem,
Y(1) = ¥(0) = ¢ (1)t = L p(yx exp(1oX))t

by the mean value theorem, for some ¢, between ¢t and 0. Hence our
expression is equal to

fG J(xTY e p(xy exp(66X)) dx,

which is a function of y. We have to show that this function of y approaches
feex(y) = [ frx)Exo(x) dx = [ f(x~)Eyp(xy) dx
G G

in L*G), and this amounts to showing that the integral
( 2
L |76 Ex 00 exp(toX)) = Exo()] x| &

approaches 0 as 1, approaches 0. We bring the absolute value under the
integral sign and use the Schwarz inequality. We can then take the limit
under the integral sign to prove the formula. Induction and (2) show that f is
a C* vector, as was to be proved.

Theorem 7. Let 7w be an irreducible admissible representation of G in a
Banach space E. Let \EE’, A % 0, and let

f,(x) = M= (x)v), vEE(K),

be the corresponding coordinate function. Let G operate by right translation
on LXG). If f, is in L¥(G) for some u % 0 in E(K), then f, is in LX(G) for
all ve E(K), and the map

v > f,
is a g-embedding of E(K) into LXG). In particular, 7 is unitarized by this
embedding.

Proof. By irreducibility, 2 #(S,°,) acts transitively on E(K). By formula
(1), we conclude that f, € L*(G) for all v€ E(K). Lemma 5 and formulas (2),
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(3), (4) immediately show that the map v +> f, commutes with the derived
action of the Lie algebra, and by irreducibility, v > f, is injective, i.e. is an
embedding, thereby proving our theorem.

§4. THE LIE DERIVATIVES ON G

In this section, we compute the Lie derivatives explicitly for functions on
G. As we know, SL,(R) operates on the upper half plane. It is more
convenient here to deal with the operation of GL,' (R), in which of course the
scalar diagonal elements operate trivially, because we can use the two
coordinates of the upper half plane (x, y) for GL, (R).

Thus we deal with G = GL,'(R) and write an element of G as

=(0)

Weletz=x + ivED,y > 0, s0 that gi = z = x + iy. Under this operation,
we have

(y x)l——)x+iy,
0 1

and an element g has the unique decomposition
g____(u 0)(y x)( cos 8 sinﬂ)___(a b).
0 u/\O0 1 —sinf cosé ¢ d
with u, y > 0. With this notation we have, from matrix multiplication,

0 g o _ d— ic
M ue d— ic and e ld—ic|’

@) X +ip= ;‘l—eia(a + ib).

Any function ® on G can be written in terms of our coordinates
(u, x, y, 8), namely

d(g) = CD(u()(; ’l‘)r(a)) = F(u, x, , 0).

Since we want to look at SL,(R), we assume for simplicity that @ is
independent of u, whence we omit the « and write simply F(x, y, 8).
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Let X €¢. Put
g.(¢) = g exp(1X).
Then
B(g.(1) = F(x(1), yu(2), 8.(2))
and
d _9F dx. AF - AF db.
a2 3‘(’))I,-0‘ ox di |_, oy dt |, 90 dr |,

We shall compute the explicit formulas for the Lie derivatives associated with
the elements of the Lie algebra given by

(2oh ()
b el )

Note that

3) V=2X-W, E-=H-iV, E*=HG+il.
= D sin20 S 4+ in2g O

(€)) £y =y cos 20 i +y sin 28 ay+sm 9 3%

Proof. We have
exp(tX) = ( Lo ),
0 1

SO

g.(t)=(a at+b),

¢ o +d

ai +at + b

g.(0)i = e z.(t) = x.(2) + iy.(1),

ad — bc — yez,-g
(ci + dY’
ct+d—ic
5.
((ct + a’)2 + cz)l/

z.(0) =

i8.(1) = log
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Hence
x4(0) = y cos 26,

y+(0) = y sin 26,

9:(0) = sin? § = 1= €08 28

2
This proves our formula.
Trivially, we have
=9
(5) BW - Y
Since V = 2X — W, we find
6) £ =2ycos20-§-+2ysin20i—c0520 —Q-.
v ox dy 08
Since
I 4
exp(tH) = | ¢ 0 ,
0 e
we find
(1) = (ae' be’)
ce' de'
from which we get g.(¢)i = z.(¢),
. i+ be”! :
g(1)i = %24‘172—_' = x.(8) + ipu(2).
We also have
. de " — ice'
i8.(t) = log .
(d% % + Cze21)1/2
From this we obtain the Lie derivative
) £ = —2y sin 20- + 2y cos 20-2- + sin 20-2 .
H ax dy a0
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Since E~ = H — iV, we obtain

- -2 9 L8} -2 O
Lp- = —2iye (ax+zay)+ze 0
(8)
= —hie-20 0 . . 290
2iye az+1e 3

Observe the 9 /9Z which pops out, and is the Cauchy—Riemann operator. A
function f(z) is analytic if and only if 3f/ 0z = 0. This concludes our tabula-
tion of the Lie derivatives on G.

§5. IRREDUCIBLE COMPONENTS OF THE
INDUCED REPRESENTATIONS

Let s be a complex number. Let H(s) be the space of functions on
G = SL,(R) whose restriction to K lies in L¥K), and satisfying the
condition

s+1

flank) = p(a) ~ f(k)

in the Iwasawa decomposition G = ANK. Let w be the representation of G
on H(s) by right translation.

From the decomposition of a matrix g in the form

g=u(y x)r(O), u,y >0,
0 1
it follows that

f(g) = y“*P72f(r(0)).

Let ¢, be the function in H(s) such that

9. (r(8)) = ™.
Then

%(u()’ X )r(ﬂ)) = y‘”””e’””,
0 1

and by the formulas for the Lie derivatives which we found in the preceding
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section, we obtain the corresponding Lie derivatives of these functions ¢,, as
follows:

Cwo, = ing,,
(N Ce-9, =0+ 1-ng,_,

Leps@, = (s + 1+ n)g,,,

We now prove the two necessary lemmas identifying the effect of a Lie
derivative £, with dw(X), and an analytic function with an analytic vector.

Lemma 1. Let w be the representation by right translation of G on H(s).
Let X €q, let f& H(s), and assume that f is C* on G. Then f is a C*
vector as element of LXK), and

dn(X)f = Cxf.
Proof. Let
7xf(8) = f(g exp(tX)).

We have to verify that

'”:Xft_f__) Exf

in L% K), i.e. that

f(k exp(1X)) — f(k)
!

2
= Exf(k)| dk

J

approaches 0 as t —> 0. Let Y(¢) = f(k exp(¢X)). By the mean value theorem,
there exists 0 < ¢, < ¢ (sayz > 0) such that

¥(1) — ¥(0)

= (1) = L f(k exp(1oX)).

The values £, f(k exp(f,X)) are bounded ror k€K and small ¢, By the
dominated convergence theorem, we can take the limit under the integral sign

to prove the desired formula.

Lemma 2. Let f be an analytic function on G. Let w(x)f be the right
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translation,

() (y) = f(yx).
Then the map

x > a(x)f|K

is an analytic map of G into LXK).

Proof. Let xo€ G. If we have proved that x > 7 (x)f| K is analytic in a
neighborhood of the origin e on G, then

x > a(xg x)f = w(xg Dr(x)f|K

is seen to be analytic because 7(x, ') is a continuous linear map. Therefore, it
suffices to prove our lemma in a neighborhood of the origin on G. Let
(x4, ... ,x,,) be local coordinates for x near the origin such that

xfe)=---=x,(e) =0

By the compactness of K, we can find intervals

0=0,<8,<- - <8 =27

’

such that on each interval [6, §,, ) we have a power series expansion

fr(@)x) =3 3 ¢ (0= 0) %] xip
) »
Let
YB(0) =3 coy (8 — 8,
I

and let v, be the function of # equal to ¢} on the j-th interval [8,, §,, ).
Then

f(r(8)x) =2 dey(@)x] - - - xm,
»
in other words,

m(x)f =2 x{' Xy
»
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The absolute convergence of the series implies the L*(K)-convergence, so we
get the desired analytic expansion for 7{x)f as a power series with coefficients
in LY K).

Irreducible subspaces

We now see that our functions @, are analytic vectors, as elements of
H(s), and the values for the Lie derivatives with respect to W, E ", E™* on ¢,
give us the values for dr, at these elements, namely:

dn (W),

]

ing,,
2 dn(E ), = (s + 1 - n)g,_,,

dWJ(E+)(pn = (S +1+ n)q>n+2‘

Using Theorem 1, §1, we can therefore easily determine the irreducible
subspaces of H(s), identified by restriction with L%(K).

Case 1. s is not an integer.

Let H’ be an irreducible subspace of H(s). Then H’' decomposes as an
orthogonal direct sum of irreducible subspaces over K, which are one dimen-
sional. In particular, H' contains ¢, for some n, and therefore, in view of the
values

s+1—n or s+1+n
which cannot be 0, we conclude that H’ contains either all ¢, with » even, or
all ¢, with n odd, and that

~

D (g). D (s

n even n odd
are irreducible subspaces.

Case 2.5 = 0.
In this case, we have three irreducible subspaces, as follows.

~

S ) B B ()

n even n odd
n»l ng —1

Case 3.5 = m — 1 where m is an integer > 2.

In this case we observe that the function ¢,, is annihilated by dn (E 7), is
an eigenvector for dm (W), and is sent on a scalar multiple of ¢, ., by
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dn (E *). Consequently the space

(m)
H - n@m (q)n)
n=m
is irreducible. [We write n = m for n = m (mod 2).] On the other hand, for
an analogous reason we see that the space

(—m)
H D (e
n=-—m

is irreducible, because d7 (E ")g_, = 0.
There is also an irreducible piece arising from parity, namely

,,?m (%n)-

The factor space
Vim—1)=H(m—1)/|H™ + HC™ + ? (@)
ngEm

is finite dimensional, of dimension m — 1. It has a basis represented by the
elements

{(P_,,,,+2, Dty o« - ’q)m—l}

in H(m — 1). The action of the Lie algebra shows that this factor space is
irreducible. It has both a highest and lowest weight vector.

The above infinite dimensional irreducible pieces of the representations
in case 3 have a lowest weight vector of weight m, or a highest weight vector
of weight —m. We shall prove later that for m > 2, there exists a unitary
representation whose derived representation is algebraically isomorphic to
these.

Recall that in case 2 with s =0 we found two irreducible unitary
representations with highest weight vector of weight —1 and lowest weight
vector of weight 1, respectively.

A unitary representation is usually said to be in the discrete series if it
occurs in the regular representation of L*(G), with the operation of left
translation. We shall see that the unitary representations corresponding to
those of Case 3 with m > 2 are in the discrete series. Those of Case 2 are not,
but in many respects behave like discrete series representations. They could
be called “mock discrete” representations.

Case 4. s = —m + 1 where m is an integer > 2.

This case is analogous to Case 3, and in fact is dual to it. Indeed, we
know from the general theory of induced representations that for any com-
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plex number s, the space H(s) is dual to H(— s), letting H(s) be the space of
the representation induced from the character p, as in Chapter III, §2,
Theorem 3. It is clear from the action of the Lie algebra that we find an
irreducible finite dimensional subspace V(—m + 1) rather than a finite
dimensional factor space, and this subspace is spanned by the eigenvectors
for K with the same indices as for ¥(m — 1). Furthermore, the factor space

H(=m+1)/V(-m+ 1)

contains two irreducible subspaces, one with a highest weight vector of weight
— m, and another with lowest weight vector of weight m. If we let {¢,} be
the orthonormal basis of H(m — 1) as before, and if we let {¢”,} be the
corresponding orthonormal basis of H(—m + 1), then these bases are dual
bases to each other, in the duality of III, §2, Th. 3. In particular, the finite
dimensional spaces

Vim— 1) and V(i-m+1)

are dual to each other. For further use of this situation, cf. Chapter VII, §4,
especially Lemma 2, which describes V' (—m + 1) more explicitly.

Let H™ and H'™ be the spaces with lowest weight vector of weight m in
H(m — 1) and H(—m + 1)/ V(—m + 1) respectively. We can compute ex-
plicitly an infinitesimal isomorphism

L: H™(K)—H"™(K).

Let ¢,, ¢, be the standard basis elements of H, and H,, where

n>m and n = m (mod 2).

We want an isomorphism L such that Leg, = b,q,, with some constant b,.
The known effect of E* on ¢,, ¢, shows that we have the recursion relation

—-m+2+n

bn+2=b m+ n

n

Thus the choice of b,, determines b, uniquely for all n as above.

§6. CLASSIFICATION OF ALL UNITARY
IRREDUCIBLE REPRESENTATIONS

Although it is irrelevant for the particular topics considered in the present
book, it becomes necessary sometimes to know what all the unitary irreduc-
ible representations of G are. For instance, other such representations than
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those occurring in the Plancherel formula on G will occur in the representa-
tion on LT\ G) for various discrete subgroups T, and none of them can be
dismissed a priori. We shall therefore give Bargmann’s classification, which is
now immediate since we have all the needed tools at hand.

Let 7 be an irreducible admissible representation of G on a space H, with
derived representation dw on H(K). We have

H(K) =2 H,

where n ranges over a subset of integers of a given parity (i.e. in a congruence
class mod 2).
Let us assume first that there is no highest or lowest weight vector.
Suppose first, to fix ideas, that H, occurs. Let v, be a basis element of H,,
We then select a basis for H, (n even) such that

Uy = E+Dn’

where we abbreviate do (£ )v, by E, v,. This is immediately done by
induction to the right and left of v,. Let ¢, be the number such that

E_v, = cv,_,

We ask for necessary conditions that there exist a positive definite scalar
product on H(K) compatible with this representation of g, in particular such
that dn(X), X €gq, is skew hermitian. We can obviously choose the length of
v, arbitrarily, say a; > 0, i.e.

(n (vg Uy = ¢

From
(EL,E_—~E_E, ),= —4iWy, = 4no,,

we get the condition
(2) Cp = Cpe2 = 4n.

From the skew hermitian condition

<E+ Ups vn+2> = <Un’ - E— Un+2>
we get the condition

(3) a3+2 = __n+2a3'

This shows that ¢, is necessarily real and negative. Furthermore, from (2) we
see that a choice of ¢, completely determines ¢, for all n. From (3) we then
see that a, is completely determined for all n by such a choice of ¢, The
possible unitarization therefore depends uniguely on the choice of a negative
number ¢,
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A similar discussion can be carried out for the case when the parity is
odd, with a basis vector v, for H,. Conditions (2) and (3) remain unchanged,
and the possible unitarizations correspond uniquely to a choice of a negative
number c,.

Consider the induced representation 7, on H(s), with a complex number
s. Since

dr(E )p, = (s+ 1+ n)p,,, and dr(E_)p,=(s+1-np,_,
we see that the condition for ¢, to be negative amounts to
(s + D{(s - 1) <O.

This amounts to s being pure imaginary, or s real and —1 < s < 1. We
already know that when s is pure imaginary, we obtain a unitary irreducible
representation. The case when —1 < s < 1 can be unitarized by completing
H(K) according to the scalar product obtained from the necessary conditions
above. The irreducible representations arising from this interval are called
those of the complementary series.

In the case of odd parity, we note that the condition for ¢, to be negative
amounts to s = ¢, < 0. Therefore in this case, we cannot have a real value
for s, only the pure imaginary values.

Finally, consider the possibility of a unitarization in case there is, say, a
highest weight vector of weight m. We contend that m is necessarily < 0.
Indeed, if £, v,, = 0, then the relation analogous to (2) in this case is

C,, = 4m,

and ¢,, must be negative. Similarly, we see that in the case of lowest weight
vector of weight m, we must have m > 0.
We can therefore summarize Bargmann’s classification as follows.

Theorem 8. The irreducible unitary representations of SL,(R) must be
infinitesimally isomorphic to the following components of w, in H(s), for the
Sfollowing values of s:

1) The discrete series, with s=m — 1 or s= —m+ 1, and m is an
integer > 2.

i) The mock discrete series, with s = 0, consisting of the component with
highest weight vector — 1 and lowest weight vector + 1.

ity The principal series with s = ir, 1 # 0, both parities; and for s = 0,
the component of even parity.

iv) The complementary series with —1 < s < 1, s % 0, components which
are not in the mock discrete series at s = 0, and which have even
parity.
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_ Theorem 8 justifies our cross mentioned in Chapter I, §4. The full space
G is parametrized by the picture in Fig. 1, where the vertical line is a double
line (one copy for each parity), while the dots at the integers, together with
the horizontal segment, occur merely once. These dots index lowest or highest
weight vectors.

-4 -3 -2 -] 1 2 3 4

Figure 1

We also see that the irreducible unitary representations occur in induced
representations. Theorem 5 of §3 gives us the uniqueness.

§7. SEPARATION BY THE TRACE

For compact groups, we know that the character of the representation,
i.e. its trace, determines the representation. We are interested in a similar
statement for Hilbert space unitary irreducible representations. Roughly
speaking, we cannot hope to separate one representation in a continuous
family from all the others. We can only hope to separate a representation
occurring discretely. We now show how to do this for the representations
described in §5.

We denote by H ™ for every integer m # 0, a representation space for a
representation =,, having highest weight vector of weight m if m is negative,
and lowest weight vector of weight m if m is positive. Then H (™ is the highest
(resp. lowest) space in the orthogonal decomposition over K. As in Chapter V,
we let H be the Harish transform.

Theorem 9. Given m as above, there exists Y € C(G) such that:

i)y 7'(Y|H = identity on H™.
i) 7'(y) annihilates H™ if n # m and annihilates H? if g #+ m.
iy Hy = 0.
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Proof. Say m > 1. For any f€ S, we have

' (Y)H™  =H™ or 0
' (fYH? =0 if  n#m

We visualize the weighted series as follows, dealing first with those lying
between 1 and m:

1 1 2 3 ... m
Figure 2

and separate these as follows. The image of ='(f) for f€S, , is at most

one-dimensional and hence it makes sense to speak of the trace of this
operator. Consider the functionals §,, . . . ,8,, on

2 S
n=1
given by
8,(f) = tr ' (f)

for j = 1,...,m. They are obviously linearly independent, so the map

f =0 - .0,()

sends

2 SE, —>Cm

n=]
Consequently there exists a function f€ 2, §,%, such that
n==l
tr7,(f) =1,
ral(f)=0 if 1<n<m

Also, automatically because of the transformation properties of elements of
S,. . and the orthogonality relations, we have

7l (=0 if n< -1 or n>m.
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We have therefore succeeded in separating the representation #,, from all
other 7, (n # 0, n # m) having highest and lowest weights.

There remains to prove that we can adjust our constructed function f to
make the Harish transform equal to 0. Our function f lies in C.°(G, K), i.e. is
invariant under conjugation by elements of K. There exists a function
f1E€CZ(G //K) such that

Hf = HY,,

by the fundamental theorem on spherical transforms, i.e. the surjectivity of
the Harish transform (V, §2, Th. 3). We have

Wr:(fl) =0

because f, is bi-invariant, and hence 7)(f,) annihilates any eigenspace of K
with non-trivial eigenvalues, i.e. 7)(f,) kills all H? if n % 0, for all g. We let
Y = f— f,. Then HY = 0 and

7, (§) = 7, (f).
This proves our theorem.

Theorem 9 is due to Duflo-Labesse {Du, La]. I owe the above proof to
Harish-Chandra.

Theorem 4 of Chapter III, §4 combined with Theorem 9 above give us a
separation of various representations by the trace, but Theorem 9 is even
stronger, since it even gives a separation at the operator level.



VII Traces

In this chapter we deal systematically with the trace in infinite dimen-
sional representations, especially those we have explicitly constructed. We
prove that in the induced representations, the trace expressed as the integral
of a kernel over the diagonal can be identified with the usual sum of diagonal
matrix coefficients. We then compute the trace in various representations.

The integral formulas provide a technical interlude, designed to give a
tabulation of various measures involving several decompositions of G, some
of which are adapted to the study of conjugacy classes. Except for a set of
measure 0 (the conjugacy classes of elements of N), we have the conjugacy
classes of elements of 4 and K, and the traces can be expressed as integrals
over such classes. This systematic approach, due to Harish-Chandra, is
pursued afterwards to get the Plancherel formula, and gave rise to the name I
have chosen for the Harish transform.

The Plancherel formula will be seen to involve the traces of the discrete
series in pairs. Harish-Chandra’s theorem giving the trace in each component
will be omitted; cf. the comments of Theorem 5, §4. This is one aspect of
Harish’s proof and of Harish’s work in more general cases which should be
emphasized: The determination of the trace goes beyond the Plancherel
formula, and there are higher dimensional instances when the representations
have not yet been determined, even though the Plancherel formula is avail-
able.

§1. OPERATORS OF TRACE CLASS

Let 4 be an operator on a Hilbert space H (all operators here are
assumed bounded). We call 4 Hilbert—-Schmidt if for some orthonormal basis
{u;} of H we have

> |Au* < oo.

127
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The same then holds for any other orthonormal basis {v;}. Indeed, note that
for any vector w we have

Wl = 23 [Kw, o)l

so that

S Auf =3 [Cu, 0P =3 [y A*opf = 3 4%,

L H J
An operator 4 is said to be of trace class if it is the product of two
Hilbert-Schmidt operators, say 4 = B*C where B, C are Hilbert-Schmidt.
This being the case, we define the trace of 4 to be

tr(4) = 2 CAuy upy = 2 (Cu;, Bu;).

The first sum shows that it is independent of the choice of C, B. The second
sum gives us the absolute convergence of the series, in view of the Schwartz
inequality applied twice.

Let us now take K to be the circle group, and let {¢,} be the usual
orthonormal basis, ¢,(f) = ¢™. Let ¢ be a C*® function on K X K. Write
the Fourier series expansion

=2 CnPm®F,

Then the Fourier coefficients ¢, tend to 0 very rapidly, as one sees at once
upon integrating by parts. In fact, for every positive integer d we have an
estimate of type
1
d b
(1 + |m| + |n])

|l

where the constant implied in the estimate symbol < depends on d. Thus the
Fourier series of g converges rapidly to the values of ¢, and the computations
of 1, §3, are valid. In addition, we also have

Theorem 1. Let g be a C* function on K X K. Then the integral operator
Q defined by q is of trace class.

Proof. We have to express Q as a product of two Hilbert-Schmidt
operators. Let d be a large positive integer. Let P, , be the integral operator
defined by the kernel ¢, ®,, so that

P, .o =0 if j*n,

n

Pm,n(pn = (Pm'
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Let P, be the projection on the one-dimensional space (¢)). Let

m, n

B=3 c,,0+nP,, and C= 2 _l_-f—-l_ﬁP’
i J
J

The series for B and C converge rapidly, defining Hilbert-Schmidt operators.
It is clear that BC = @, as desired.

Let G = SL,(R) and let = be a representation of G in a Hilbert space H.
For each integer n we let H, be the subspace of H on which K acts by the
n-th character, so that

H= ©OH,

We say that 7 is strictly admissible if the dimensions of the spaces H, are
bounded independently of n. By II, §1, Th. 2, we know that an irreducible
unitary representation of G is strictly admissible (the dimension of H, is 0 or
1 for all n).

Theorem 2. Let w be a strictly admissible representation of G on a Hilbert
space H. If f € C2(G), then w'(f) is of trace class.

Proof. The idea is similar to the idea used in the proof of Theorem 1.
Write G = ANK and let B = AN. Then by definition,

n'(f) = fG f(x)m(x) dx = fB fo<bk)w(b)w(k) dk db

2n
= f 7(b) f f(bkg)m (ky) db db.
B 0
[We don’t care here that K has measure 2#.] But 7(ky) has an expansion
w(kg) =D, e™P,
where P, is the projection on the space H,, and consequently
27 .
7(f) = [ () [ 2 e Hf(bky) 9 P, db
B 0 n

= L 7(0)Z 1,(6)P, b,

where

2w .
f,(b) = fo F(bky)e? ™ df.
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Integrating by parts shows that given an integer 4 > 0 we have

1
1+ n2’

FAGIES

and f, has compact support. Let

1
1+ n¥°

Q,,-—-f 7(b)f,(b) db, sothat |Q,|<
B

(Remember that = is locally bounded, I, §1.) Then
Wl(f) = g QnPn'

Let
Al = 2 (I + nZd)QnPn’

1
A2=2 1+ nz"P"'

n

Then the series defining 4,, 4, converge rapidly, thus defining Hilbert-
Schmidt operators. Furthermore, 7'(f) = 4,4,, thereby proving our theorem.

Let 7 be a strictly admissible representation of G on a Hilbert space H.
Then the association

Y > tr7l(y)

is a functional on C°(G), and it is easy to verify that it is a distribution (for
the definition, cf. the end of Appendix 4). For the convenience of the reader,
we prove this fact when 7 is unitary, although we won’t use it. If € C2(G)
we write for simplicity Wy instead of £,, v, where W is the usual generator of
the Lie algebra of K. It suffices to prove that for all ¥ with support in a
compact set £, we have

ltr 7'(¥)] < Coll(1 = Wy lg.
Let u, be a unit vector in H,. We let
fn(x) = <7T(x)un’ un>

be the corresponding coefficient function, and we shall give an estimate for
each term

J v (x) ax
G



[VIL, §1] OPERATORS OF TRACE CLASS 131

which will imply what we want. We have by a trivial integration by parts:

[0 = wf () dx = [ 41 = WIS, (x) dx
G G
= (1+ n%) [ ¥()f,(x) dx.
G

Consequently
1 2
|, #0500 x| < s 10 = WML (0 a

Since | f,(x)| < 1 (having assumed 7 unitary), the desired estimate follows at
once.

In this chapter, it turns out that the trace functional can be “represented”
by a function T,(x), namely

trr'(y) = fG $(x)T,(x) dx.

Since the same Haar measure occurs on the left-hand side and right-hand side
of the above equation, we see that the function is independent of the choice
of Haar measure. If it exists, it is a priori only defined almost everywhere.
However, we shall see that this function is continuous on an open set, and
can be chosen to be 0 outside this open set, so even this ambiguity will be
removed. No other type of “distribution” will occur in this chapter.

Suppose that H is finite dimensional. The sum expressing the trace

') = 3 [ WK (x)u, ) dx

is finite, and can be taken under the integral sign. Therefore 7, (x) is the
genuine ordinary trace of elementary algebra.

For simplicity, we shall often write w(y) instead of ='({).

For the rest of this section, we assume that the representations are strictly
admissible.

Invariance under conjugation

Let 7 be a representation of G on a Hilbert space H. Let y € C>(G). Let
YEG and let Y’ be the function such that

¥ (x) = ¥(y ).
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Then
tr 7 () = tra (Y”).

Proof. We have trivially 7(y”) = #(y)r ()7 (y '), and
tr(XAX 1) = tr(4)
(cf. the appendix to this chapter).

Assume that K has measure 1. Define

Yelx) = fK (k™ 'xk) dk.

Then tr n(y) = tr w(Yy).
Proof. Consider the integral

() = 2 fG fK (k™ xk)m (x)u,, u;) dk dx.

Interchange the order of integration, and move the integral with respect to K
on the outside. The transformation

x > kxk™!

has modular function equal to 1, and our trace is equal to

fZ f\P(XXW(k)W(x)vr(k“)u,., u) dxdk.
K i G

Our assertion follows from the fact that tr 7(y) = tr #(%).

In view of the above, when computing the trace of operators 7'(y), we
shall usually assume that ¢ € C®(G, K), i.e. that ¢ is invariant under conjuga-
tion by elements of K, in addition to being C* with compact support.

Harish-Chandra proved for the general case of irreducible unitary repre-
sentations of semisimple Lie groups that the trace is a distribution. This
amounts to proving a condition of strict admissibility, i.e. giving bounds for
the dimensions of K-irreducible subspaces in the K-finite vectors. (Precisely,
dim H,/(dim p)? is bounded for p€ 1%.) He also proved that the trace can be
represented by a locally L!-function. On SL,(R), we shall follow Harish by
splitting the integral over various conjugacy classes of elements of G. We call
an element of G regular if it has distinct eigenvalues, and we denote by G’ the
set of regular elements. If S is a subset of G, we denote by S’ the set of
regular elements in S. We denote by S¢ the set of elements conjugate to
elements of S, i.e. the set of elements g~ 'xg with g€ G, x€ S.
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Lemma 1. Let G = ANK. Then
G = *+ACUK'C.
The complement of G’ in G has measure 0.

Proof. If an element g € SL,(R) has a single eigenvalue of multiplicity 2,
then by the Jordan normal form it is conjugate to an element in * N. Since
AN normalizes N, the image of N under conjugation by G has dimension 2,
and therefore has measure 0. If an element g has distinct eigenvalues in R,
then the Jordan normal form shows that it is conjugate to an element of = 4"
If the eigenvalues are complex conjugate and not real, then standard two-
dimensional linear algebra shows that the element is conjugate to an element
in K', as asserted.

The above determination of the regular elements implies that

fo(x) dx =f“,6f(x) dx +fK,Gf(x) dx.

This is the decomposition which we shall use to compute traces, and formulas
in §2 will describe various forms for these integrals, depending on representa-
tives for the conjugacy classes.

Infinitesimal invariance

Recall that two norms are equivalent if each is less than or equal to a
positive scalar multiple of the other. Two positive definite scalar products are
called equivalent if their norms are equivalent.

Lemma 2. Let w, be a representation of G on a Hilbert space H |, and let H,
be the same space as H, but with an equivalent scalar product. Let m, be the
same map as ., but viewed as a representation on H,. Then

tr oy (¢) = tr my(y).

Proof. Let T: H, — H, be the identity map, which is bicontinuous.
Then

my(x) = Tmy(x)T 7,

and the equality between the traces follows by the general theory of traces (cf.
the appendix to this chapter, last theorem).
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In particular, suppose that # = =, is not unitary on K. By averaging the
scalar product over K we can get a scalar product and a Hilbert space H,
such that =, is unitary on K. The traces will be the same in both representa-
tions.

Lemma 2 is a special case of the next theorem.

Theorem 3. Let w,, m, be representations of G on Hilbert spaces. Assume
that the K-eigenspaces in each have dimension O or 1, and that =, m, are
infinitesimally isomorphic. Then for every € C2(G) we have

tr () = tr my(¥).

Proof. By the preceding remarks, we may assume that =, 7, are unitary
on K. We can then apply VI, §3, Th. 5, where we proved that the coefficient
functions are equal. A fortiori, their sums are equal, to

S [ SO, ) dx,

where 7 is either 7, or 7,, and the scalar product is that corresponding to =,
or 7, respectively.

Theorem 3 implies that we can compute the trace of a unitayy representa-
tion in any convenient model, not necessarily unitary, which is infinitesimally
isomorphic to the given one. In particular, this is useful when dealing with
unitary representations having a model coming from an induced representa-
tion, when the trace is given as a simple integral of a kernel on the diagonal.

§2. INTEGRAL FORMULAS

Preliminaries

In this section we tabulate various change of variable formulas, and for
the convenience of the reader, we recall some elementary facts about mani-
folds and integration. We assume that the reader is acquainted with the basic
information of Real Analysis, Chapters XVI, XVII, and the parts of Chapter
XVIII giving the general theorems concerning integration on manifolds and
the measures arising from differential forms.

In the present section, our manifolds will be either SL,(R) or products of
one-dimensional groups, like N, 4, K (so the reals, or the multiplicative group
of reals > 0, or the circle group). The tangent space at the origin will be
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taken as the standard domain of charts by means of the exponential map. If
G is a Lie group like the above, and g its Lie algebra, then for each g€ G we
have a chart in a neighborhood of g given by

exp: U— G, X > gexp(X)

for X in a small neighborhood of 0 in g. If G’ is another Lie group with Lie

algebra ¢’, and if F: G’ —> G is a C* mapping (not group homomorphism

necessarily), then we have at each point g€ G’ a corresponding differential
dF(g): ¢ —> g

which is the tangent linear map of F at g’. Let {X,,...,X,} be a basis of g
and {X{,...,X ) a basis of g". In the applications, 4 = 3, and G, G’ have the
same dimension, so we assume this here. The wedge products

XN NX, and XN - ANXG
form a basis of the one-dimensional spaces /\dg and /\dg' respectively. If
Y, ..., Y;€g then
YN AY,=w(Y,.... Y )X,A- - AX,
where w(Y,, ...,Y,) is a real number, and

(Y., Y) > (Y, ...,Y,)

is a differential form. We have a similar situation with Y/, X/ replacing Y}, X;
respectively, giving rise to a form «’. These forms of course depend on our
choice of bases {X,}, { X/} respectively.

Assume, as will be the case, that F is a local C® isomorphism at each
point (i.e. is locally differentiably invertible at each point) of an open set of

G’. Then
NaF(g): N — N

is an isomorphism, and is therefore given as multiplication by a real number,
depending on g’, say c(g’). Thus

dF(g)X|A - - - NdF(g)X, = c(g)X, A+ - - AX,.
By definition, the inverse image of w by F is given by
(F*w)(g) = c(g)w'(g).

The number ¢(g’) is the “Jacobian” of the transformation F, and if u, ' are
the positive measures associated with the differential forms w, ' respectively,
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then locally at each point,
(Fro)(g) = c(g)w'(g)

In terms of integrals, this means that in an open set V' where Fis a C*
isomorphism,

Joopy F(8) ditg) = [ FF(&Dle(8)] d(g).

If Fis a covering of degree m from an open set ¥’ in G’ onto an open set
V in G, then the right-hand side of the above relation has to be divided by m
in order to make the relation valid in this case,

The rest of this section is devoted to computing the stretching factor
(Jacobian) in four special cases. The effect of dF(g’) can be computed by
taking Lie derivatives. Let X' €g’. We want to determine dF(g')X"’. It is that
vector X having the following property. Let ¢ € C*(G). Then

(Ex@)(F(g) = Exlp e F)(g).

The computations of Jacobians

Throughout the rest of this section, we select as a basis of the Lie algebra
g of SL,(R) = G the clements

H=(1 0)’ X+=(0 1), X_=(0 0)_
0 -1 0 0 1 0

Then HAX * AX ~ is a basis of /\3g, and there is a unique differential form
w on G, invariant under translations, such that

WH, X*, X)) =1

This differential form gives rise to a positive measure g, and we shall
compare other measures with this standard one, thus getting a comparison
between the other measures among themselves.

The one-parameter subgroup having H as tangent vector is 4, and if we

write its elements as
d 0
a=h = ( € ),
0 e'

then the measure da on A4 is that corresponding to Lebesgue measure dr.
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Similarly, the one-parameter subgroup having X * as tangent vector is N, and
if we write its elements as
n = nu = 3
0 1

then the measure dn on N is that corresponding to Lebesgue measure du. The
situation is similar for the group N whose elements are

_ (1 0)
7, = ,
u 1

with measure dn corresponding to du.
If g€ G and Z g we write

78 =g 'Zg = Ad(g™")Z.

The map g —> Ad(g) is a representation of G on g, called, unfortunately, the
adjoint representation. Observe that

g 'exp(Z)g = exp(g ™~ 'Zg).
Hence,

exp(Z)g = g exp(Z®) = g exp(Ad(g™")Z).

This shows how to move a group element across an exponential.

As usual, we let
Wz( 0 1).
-1 0

We view W as a distinguished basis for the Lie algebra of K, and the circle is
parametrized by exp(8W). The corresponding measure on the circle is 49.

In the following products A X N X K or K X A X K, the measures on
A, N, K are da = dt, dn = du, dk = df respectively.

INT 1. Let F: A X N X K—> G be F(a,n k) = ank. Then for
PE C2(G),

fG o(g) du(g) = f,, fN fK ¢(ank) da dn dk.

Proof. Let ¢ be a C* function on G. We view
{(H,X*, w}
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as a basis for the tangent space at the origin of the group 4 X N X K, and
we compute dF(a,n, k) applied to H, X *, W respectively by using the Lie
derivative. We first look at

d
—(—i—t— I=0(p(a exp(tH)nk).
Then

o(a exp(tH )nk) = ¢(ank exp(tH™)).
This means that

dF(a,n,k)H = Ad(k™") Ad(n"")H.
Similarly,
dF(a,n, k)X * = Ad(k ™ HX*,

dF(a,nk)W=W=X%* ~-X",

But Ad(n"YH = H + 2uX ™ by a direct matrix computation if

(4 1)

H +— H+2ux"*
Ad(k) dF(a,nk): { X+ > X*
Wi Xt -X".

Hence,

The map & — N’ Ad(k) yields a representation of K into the multiplicative
group, and is therefore trivial. Therefore

N’ dF(a,n,k): HAX* AW > — HAX* AX .

This means that locally the pull back of the measure u  is precisely dadr dk.
Since F is bijective, our first formula is proved .

Next we consider the measure relative to what is called a Cartan decom-
position. Let 4+ consist of all those matrices

( )
a =
0 a !

with a > 1. We consider the map
KXAXK—G

given by (k,,a,k,) > k,ak,. This map is surjective, because the polar
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decomposition of a matrix x allows us to write uniquely
x = sk

where s is symmetric positive and k € K. Furthermore, if the eigenvalues of s
are distinct, then s is conjugate under K to an element of A. Conjugating with
w if necessary transforms such an element of 4 into an element of 4 *.
Finally, if a # 1, then an expression s = k; 'ak, for a positive symmetric
matrix s, with a€A4™* and k, €K, determines k, up to *+ 1. Hence a decom-
position

x = k,ak,

with a€ 4™, k,, k,EK is uniquely determined up to a factor of *1 on k,,
and a corresponding factor =1 on k,.
We call the mapping

F:KXA* XK =G, (k,a, k) > kak,,

the Cartan decompesition. The above remarks show that F is of degree 2 over
its image, which in fact is precisely the complement of K in G. Indeed, if
a€ A", then KaK cannot intersect K (because AN K = = 1), and on the
other hand we have seen that every x € G can be written as x = k,ak, for
some k,, k,€ K, a€ A. In particular, the image of K X 4* XK in G is open
and its complement has measure 0.

INT 2. Let F: K X A* XK —> G be the Cartan decomposition. For any
Sunction ¢ € C.(G) we have

fgtp(x) du(x) =ffo+ -[Ktp(k,akz)w dk,da dk,.

Letting @ = h, and k, = r(8,), k, = r(8,) we can also write the above relation
as

fG @(x) du(x) = fo 2" fo ® fo " o((8,)h,r(8,)) sinh 2¢ b, dt b,

The integral over ¢ is taken from 0 to oo because this is the interval for ¢
parametrizing 4 *. Recall that
a(a) = e*.

To compute the differential of F we use W = W,, H, W = W, as basis
elements for the Lie algebras of K = K|, 4, K = K, respectively, thus
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determining the desired measure on K X 4 X K. We have to see what the
image of W\AHAW, is under dF(k, a,k,). We take as before a function
¢ € C°(G) and compute

o(k, exp(tW,)ak,), @(k,a exp(tH )k,), @(k,ak, exp(tW,))

by moving the exponential term to the right, using the commutation rule with
the group element next to it. We then find

W, > Adla W =a"X"* —a’x~
Ad(k,) dF(ky,a,k)): < H +> H
Wyt W=X*-X".

Taking the wedge product of the three elements on the right yields
(a2 - aHHAX * AX .
This means that locally the pull back F*(dp ) is given by

(a(a) — a(a™"))dk, dadk,.

Since F is a covering of degree 2, we must divide by 2 in order to get the
integral over the whole product K X 4 XK.

The next two formulas deal with integrals over conjugacy classes. We let
G’ denote the set of elements in G with distinct eigenvalues, and similarly for
A’ and K'. We call such elements the regular elements.

We first deal with 4’. The set A’ consisting of all elements g ~'ag with
a€ A’ and g€ G is open in G. In fact, suppose g€ G is such that g~ 'ag also
lies in 4. Then g~ 'ag and a have the same eigenvalues, whence

g lag=a or glag=a"l.

In the first case, g centralizes a, and we leave it to the reader to prove that
gE MA, where M = { +1}. In the second case, gw € M4 because conjugation
by w sends a to a~'. We interpret this in terms of the mapping

F: A" X A\NG —> G’
given by

(a,8) F> g lag.
The above remarks show that this mapping is of degree 4: the four elements

(a, £1), (a” !, £w)
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have the same image a in G’ under F. The decomposition
G = ANK

gives us representatives NK for A\ G, and so we shall consider F as the
mapping given in terms of these representatives for the next integral formula.

INT 3. Let F: A’ X N X K —> G’ be the mapping
(a,n,k) > k™ 'n"lank.
Let D(a) = a(a)'/? — a(a)™'/2. Then for any function ¢ with

support in A'C we have

fatp(g) dp”(g)=-}ij;j;vfKtp(k"n“ank)|D(a)|2dadndk.

Proof. The factor 1/4 is due to the fact that F has degree 4. There
remains to prove that locally, the pull back of the measure dp,, picks up the
factor | D(a)|®. We consider first the expression

(k" 'n~a exp(tH)nk).

Pulling exp(¢H) across nk picks up Ad(k~") Ad(n~') on H. As before, we
multiply all the way through by Ad(k~'). We compute Ad(n~")H explicitly
with 2 X 2 matrices to find

Ad(k) dF(a,n,k)H = Ad(n " WH = H + 2ux*
if

Next we consider
(k™" exp(—tX *)n"'an exp(eX * k)
= @(k~'n"'an exp(— 1 Ad(n"") Ad(a"") Ad(n)X *) exp(tX * )k).

To differentiate this with respect to ¢ and evaluate at 7 = 0 we replace the
second occurrence of ¢ with a new variable, say v. Then we use the chain rule,
summing the two partial derivatives with respect to 1 and v respectively, and
substituting ¢ = v = 0. For the derivative with respect to ¢, we note that

Ad(n)X* = X"
(elements of N commute with each other!), and

Adla X * =a %X *.
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As before, the final occurrence of £ on the right can be disregarded provided
we multiply our differential by Ad(k). We then obtain

Ad(k) dF(a,n,k)X* = (1 —a )X *.

Finally, we consider
o(exp(— tW)k ™ 'n"'ank exp(tW))
= @(k~'n"'an exp(— 1 Ad(n~")Ad(a™") Ad(n) W) exp(tW)k),

and again use the chain rule, replacing the second occurrence of ¢ by the new
variable v. We find

Ad(k) dF(a,n, k)W = —Ad(n"la " n)W + W.

Ultimately, we shall wedge the three image vectors of H, X *, W. We observe
that the image of X * is a scalar multiple of X *. Therefore we can read the
image of H mod X *, and we can read the image of W mod H, X *. We
compute explicitly the matrix n 'a 'n = g, and then compute the X~
component of gWg~!. We find:

Ad(k) dF(a,n, k)W = (a* — )X " (mod H, X *).
Wedging the three image vectors of H, X *, W with each other yields

(1—aH@® - DHAXYAX .
But

(1-a )@ ~1)=(a—a")'=|D(a)p

This proves our formula.

Let 4_ be the coset of 4 consisting of all elements —a with a € 4, and
let m = — 1. Then INT 3 has a counterpart for the conjugacy set of elements
inA._.

INT 3. Let F: A" XN X K — G’ be the mapping
(a, n, k) > k™ 'n"lank.

For any function ¢ with support in A’° we have
=1 -1 -1 2
L’G(P(g) dp(g) 4f,4 fN j;(tp(k n~'mank)|D(a)|* dadndk.

This is obvious from INT 3.
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The final formula deals with K\ G. In the higher dimensional theory, the
analogue of K in the present context is a Cartan subgroup, denoted by B.
Here it happens that B = K, but we sometimes write B instead of K.

The Cartan decomposition KA * K gives us unique representatives for the
set (K\G) = K\KA" K, namely

(K\G)Y ~A*K/M
where, as before, M = { = 1}. We now consider the mapping

F:K'XA* XK—> G’
given by

(K, a, k) —> k™ 'a" 'k ak,

where K’ consists of those elements of X which are # *1, ie. the set of
regular elements in K. The essentially unique Cartan decomposition shows
that if k'€ K’ and g € G is such that

g k'gEK,

then g € K. It follows at once that the above map F is of degree 2 (correspond-
ing to the factor =1 on the K-component on the right).
If k = k; = r(8), we put

D(ky) = D(8) = e® — ™ = 2i sin 8.

This is the difference of the eigenvalues of k.

In computing the change of variables formula in the present case, it will
be useful to use a complex basis for the Lie algebra which consists of
eigenvectors for K. We recall the matrices

V___(o 1)’ E+=(x i)’ E_=(1 —i)’
1 0 io— —i -1

so that { H, V'} form a basis for the symmetric matrices, and
E*=H+ iV and E-=H—iV.
Furthermore, { W} is a basis for the skew-symmetric matrices,
[W,E*]=2E* and [W,E"]= —2iE".

The following lemma will show that E* and E ~ are also eigenvectors for
Ad(k), k€ K. The lemma is valid on Lie groups; we just look at matrices.
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Let Z, Y €Mat, (C) be n X n complex matrices, and let g€ GL,(C). By
definition,

ad(Z)Y =[Z,Y] and Ad(g)Y =gYg .

Thus ad(Z) is a linear endomorphism of the vector space of matrices. We can
form exp ad(Z) by the usual power series,

ad(Z2)
21

expad(Z) = I + ad(Z) + + .-

Furthermore, exp Z € GL,(C), and thus Ad(exp Z) is defined.
Lemma. We have Ad(exp Z) = exp(ad Z).
Proof. Let
f(1) = Ad(exp(tZ)) and  g(1) = exp(ad(rZ)).

Then f, g are homomorphisms of R into GL(Mat,(C)) having the same value
at 0, namely

f(0) = g(0) = 1.

We shall see that their derivative at 0 is ad(Z), whence it will follow that
f(r) = g(¢) for all ¢ as desired. We have

Ad(exp(1Z))Y = (I + tZ + O())Y(I — tZ + O(#?))
=Y +tZ Y]+ 0.
This proves that f’(0) = ad Z. Furthermore,
(exp(ad 1Z))Y = I + t(ad Z)Y + O(#).

from which we see at once that g’(0) = ad Z also, and the lemma follows.

As an application of the lemma, suppose that Y is an eigenvector of
ad(Z), say

ad(Z)Y = AY.
Then we see that

Ad(exp Z)Y = €Y,

and therefore Y is also an eigenvector for Ad(exp Z).
This will be used when ¥ = E* or E~ and Z = §W. We have

ks = exp(6W).
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Consequently we obtain the formulas

Ad()E* = e*®E*  and  Ad(k,) ~= e ¥E .
8 (]

INT 4. Let F: K' X A* XK —> G’ be the map
(K, a, k) F> k™ 'a K ak.
Then for any function @ with support in K'¢ we have

[ _o(8) dus)
K'C

_ -1
2@ = )

=J [, [ ot ak)D(k)P

27 0 27 821 _ e-—2l
=f f f o (kg 'n~ lkli'hrko)|D(0')|2“—§——~ a8’ dr db.
] 0 0

Proof. The proof will follow the same pattern as before. We look at the
effect of the differential of Fon W' = W, H, and W.

For W’ we consider gp(k ~'a ™'k’ exp(tW")ak) and have to move exp(tW”)
through a and k. This implies that

Ad(a) Ad(k) dF(k',a, k)W’ = W.
We can prove that
Ad(a) Ad(k) dF(k’,a,k)H = (1 — Ad(k'""))H,
Ad(a) Ad(k) dF(K',a, k)W = (1 — Ad(k'"")) Ad(a) W,

by using the same technique as previously, moving an expression exp(— tH)
or exp(— tW) through group elements. As in INT 3, there are two occurrences
of such exponential terms, and we have to use the chain rule in two variables,
replacing one occurrence of ¢ by a new variable v. The above values for the
differential then follow immediately.

We must compute their wedge product. Since W occurs as the first vector
on the right, we use the symmetric elements H, V or E*, E~ for a
complementary basis of the Lie algebra g. Thus by matrix multiplication,

Ad(a)W = ( o )
~a~? 0
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and we write this as

2 -2 2 -2
Ad(Q)W =a*X* —a X~ =2 2" v+4 2“ w.

For purposes of taking our final wedge product, the W-component in this last
expression can be omitted, and the wedge product of the images of W', H, W
under Ad(a) Ad(k) dF(k’,a,k) is

WAL — Ad(k'" ) HA( - Ad(k’“‘))g—z—_—z——q—_—i V.

Weuse H=E* —iV = E~ +iV, or in other words

+ - + -
=L’LL and V=E_'_E__

H 2 2i

Using the fact that E* and E ~ are eigenvectors for Ad(k’), we see that our
wedge product is equal to (writing &' = exp(8W))

1a*—a? 2i8 —2i8 - +
5———5————(1—e Y1 — e " YWANE~ ANE™.
Writing W = X* — X~ and using
E*t=H+ iV, E-=H - iV, V=X*+X",
we find
WAE AEY = —4iHANXTAX ~.
Furthermore,

(1= e)(1 - e72) = |D(9)P,
Up to a factor of absolute value 1, this gives us precisely the factor

afa) — a(a™
2pep D=2

as the stretching factor in our Jacobian computation, which has been com-
puted for

Ad(a) Ad(k) dF(k',a, k).

On /\3g the representation g > N’ Ad(g) is a bne-dimensional representa-
tion of G, and we also know that A’ Ad(k) operates trivially. Since
G = SLyR) has no non-trivial continuous homomorphism into the multi-
plicative group of real numbers, it follows that the triple wedge product of
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Ad(a) Ad(k) is equal to the identity on /\3g. Hence, the stretching factor
which we have found is also the one associated with

dF(k’,a, k).
This proves our last formula INT 4.

Remark 1. We normalized dk in the product decompositions so that it is
the measure df on the circle parametrized by . This means that in the
formulas above, K has measure 2%. One can divide all the integral expressions
above by 2« a posteriori to get relations between integrals. However, in those
cases when K occurs twice, for instance in the Cartan decomposition of INT
2, and the conjugacy class integration of INT 4, this factor of 1/2# on the
right will apply only to one of the integrals over K, and consequently the
other integral is left without a factor of 2#. In view of this lack of symmetry, I
preferred to state the above formulas with df throughout, and divide by 2«
only in specific cases later when such a normalization is warranted in a
natural fashion.

Remark 2. One can prove other integral formulas in a systematic way
following the above patterns. For instance, we may use the unique decompo-
sition G = KAN and use AN or NA to represent the cosets of X'\ G for the
conjugation map considered in INT 4,

K'X KNG — G’
such that

(k',g) > g k'g.
Since it should now be obvious to the reader how to derive this formula
trivially when he needs it, and since we won’t need it, we shall omit it.

§3. THE TRACE IN THE INDUCED REPRESENTATION

We let s be a complex number, and recall that H(s) is the Hilbert space
of functions f on G whose restriction to K is in L*X), and such that

s+1

flank) = p(a)" " f(k).

Then G operates by right translation, and we saw in Chapter III, §4 that for
Y€ C2(G, K) we have, for the corresponding representation ,

m, ($f (k') = fK a,(k,k")f(k) dk
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where

qy(k, k') =L L¢(k”’ank)p(a)”l dadn.

We assume that the measure is dx = dadndk, and that K has measure 1, so
that

_d

dka - 277 .

Then as we had seen,
tr o (y) = q,(k, k) dk.
s( ) J;( \p( )

We define the Harish transform as before,

H*Y(a) = |D(a)| f,, o Vxlan) di = ola) fN Y(an) dn.

Let p = p, be the character
p(a) = p(a) = p(a).
Let 7, denote the representation of G in H(s). Then we obtain

(1) 7, (9) = [ HY(a)u(a) da.

By V, §2, Th. 1, the Harish transform is invariant under a > a~'. Con-
sequently we also have

a) + p(a™!
@) r, (¢) = f mp(a)i‘i—z——-i‘-‘(———) da.
4
We recall that G’ denotes the set of regular elements (distinct eigenvalues).
Theorem 4. The trace tr m, is a distribution, which can be represented by the
Junction T,, defined by:
p(a) + pla™h)
|D(a))
T,(x) =0 if xgA’C,

Tp(a) =3 if a€eA’,

and T,(x "'ax) = T (a) for all xEG, a€A'. In other words,

trm (y) = fG Y(x) T, (x) dx.
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Proaf. According to the integral formula INT 3, we have

1 -1 .
,/:41(; Y(x) dx = ZL L\G\]/(x ax)|D(a)|? da dx.

- [, H4(a)|D(a)) da.

There is a function f equal to 0 outside of 4’%, invariant under conjuga-
tion by elements of G, and such that

_p(a) +p(a™h)
@) =150

Such a function exists because

x laxed ifand onlyif x = 1 or £w (mod 4),
and waw™! = a~!. The integral expression for H4) over the conjugacy
classes shows that

HA(fp) = fHA().
Replacing ¢ by f shows that

[ 40 dx =5 [ HY(@)[p(a) + p(a™h] da.
A A

Comparing with (2) yields our theorem.

The reason for the factor 2 in the trace of the induced representation lies
in the fact that we have not separated H* and H ~. When we do this, the
factor disappears in the following manner.

Let u be a continuous homomorphism of 4 into C*. Let € be a character
of the group M = {+1}. Then the pair (y, €) defines a character of MA by
letting

za > e(2)pa), zEM,ac€A.

We can form an induced representation from.the subgroup MAN, and the
functions in the induced representation space H( g, €) or H(s, €) are precisely
those functions which are even or odd according as € is trivial or non-trivial.
The two possible representations are denoted by 7, , and @, _. Similarly, the
traces are denoted by 7, , or 7, and 7, _ or 7,”.

Corollary. Let 7, be the representation on H(p, €). Then the trace tr m, is
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a distribution, which can be represented by the function T, , defined by:

_oom@+pa) /
T#‘((Za) = E(Z)W f zeM,a€A,

T, (x) =0 it x¢ x4,

and T, is invariant under conjugation by elements of G.

Proof. For definiteness, consider the case when ¢ is the non-trivial
character. Let f(x) be as in Theorem 4. Then

wny)= [ HDTHCD

o 2

2f(x) dx
= [ 4 dx ~ [ p(=x)(x) dx
A A°

= [ a0 YIS ) .

This proves our assertion in the present case. The other case is proved the
same way.

§4. THE TRACE IN THE DISCRETE SERIES

Let m be an integer > 2 and let s = m — 1. We have seen in Chapter VI,
§5, that H(m — 1) decomposes into certain irreducible subspaces, and we are
interested in the spaces

A

A

H™= @D H, H-™= D H,
nsm n< —m
n=m n=

V(im— 1) = H(m — 1, €) mod [H" + H"™], where ¢(—1)=(-1)".

It was clear from the derived representation that H ™, HC™, V(m — 1) are
irreducible, and V(m — 1) is finite dimensional. They look like Fig. 1.

Figure 1
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We shall compute the trace in the direct sum

H(m) + H(“m)

by using the trace in H(m — 1) found in the preceding section, and subtract-
ing the trace in the finite dimensional space V(m — 1).

We let
4
h,=(e 0), 2= =1
0 e

Lemma 1. Let n be an integer 2 1, let m = n + 1, and let

e(—=1) =(-1"

The trace of the representation in H(n,¢) is a distribution represented by the
Junction invariant under conjugation such that

nt + —n
T(zh) = () o=

l »

T(x)=0 if x is not conjugate to some * A,.

Proof. This is a special case of the trace found in the last section for an
arbitrary induced representation.

Lemma 2. For each pair of integers p, q > O such thatp + g = n — 1, let
. q be the function of
x =
c d

such that f, (x) = c?d?. Then f, ,€ H(—n, €). The functions f, g Jorm a
basis of a finite dimensional irreducible space of dimension n = m — 1,

Viiny = V(—n)= V(—m+ 1).

Let o’ be the representation of G in V'(n). Then

e—nl

, e —
trp'(zh) = e(2) == -

Proof. The functions f, . obviously lie in H(—n), they are linearly
independent, and matrix multiplication shows that the space they generate is
stable under right translation by G. Each function is an eigenvector of p(h,),
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and in fact

p(h)f, o= e®~7F, .

Hence the trace is trivially computed to be that stated in the lemma.

We know from VI, §2, Th. 4, that two finite dimensional irreducible
representations of the same dimension are infinitesimally isomorphic, or even
isomorphic by the corollary of that theorem, although for traces to be equal,
an infinitesimal isomorphism suffices. The representation of Lemma 2 or
V{m — 1) can therefore be used as a model in a given dimension.

Lemma 3. Let V be the finite dimensional irreducible representation of
dimension n = m — 1, and let p be the representation in V. Then

inf —in@
e — e
trp(ky)=5—"2
et& _ e-lﬂ

Proof. We know that V is generated by the K-eigenvectors having
eigenvalues

ei(~m+2)0 ei(—m+4)9 ei(MmZ)ﬂ
, y ooy .

We find the trace on elements of K by summing these eigenvalues, ie.
summing part of a geometric series, which obviously gives the stated result.

Lemma 4. Let n be an integer > 1 and let m = n + 1. Let

(-1 =(-1"

Then the trace of the representation on HY™ + HC™ is a distribution
represented by the function:

2¢ I
T(th) = ¢(z) ]el — e—rl >
__(einﬂ _ e—in())

T(ky) = el — o=

T(x)=0 if x is not conjugate to some * A, or k.

Proof. This is obvious from Lemmas 1, 2, 3, subtracting the values found
in Lemmas 2, 3 from the values found in Lemma I.

We have obtained the trace in the sum H + H("™. We must now
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separate these two irreducible pieces. The final theorem is:

Theorem 5. Let n be an integer # O and let m = |n| + 1. Let z = *1, and

e(—1)=(—1)". Let o, be the representation in H"*V if n >0 and

HC "D jf n < 0. Then the trace tr o, is a distribution represented by the
Sfunction S, invariant under conjugation such that

— (sign n)e™®

Sulky) = ———7—

— ’
eﬂ_e g

= lnel

S, (zh) = e(z)|-e-,-‘>_--—

e

k]
and zero otherwise.

Proof. The proof is a little elaborate and is due to Harish—~Chandra. The
main difficulty is to eliminate the possibility that there is a contribution from
the singular set (the complement of G’ in G) which may cancel in the sum of
the discrete series with positive and negative weight. I shall omit it. (Perhaps I
shall include it in a second volume dealing with other matters involving
differential equations and distributions on SL,(R)). It is an easy exercise to
see that on the regular set, i.e. on functions with compact support in G’, the
trace is given by the expected function. This is a simple consequence of the
integral formulas, and the expressions for the Harish transforms on 4 and X
found in the next chapter, §2. For the applications to Plancherel’s formula
this is not important because only the sum of the two discrete series occurs.
However, for further investigations on SL,(R), it is an important fact.

Also note that the integral formulas show that the function representing
the trace is locally L.

§5. RELATION BETWEEN THE HARISH TRANSFORMS ON 4 AND K
For ¢y € C*(G, K) we had defined the Harish transform on 4 by

(1) HY(a) = |D(@)| [ w(xax) d,
ANG
where dx is the measure on A\ G such that dx = dadx, and dx is normalized
as
dx = dadndk,  dky =22
27

Thus by definition, for any function f,

L\GLf(aic)dadx =fo(x) dx.
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In view of INT 3, §2, we have
) f ¥ dx =5 [ HY(2)|D(a)| da.
Analogously, we define the Harish transform on K’ = K — {*1} by
3) HY(k) = D) [ p(x™Yex) d,
K\G

where dx is now the measure on K\ G such that

L\o f flkx) dk dx -—f f(x) dx,
and
D(ky) = e? — ™%,

Then by INT 2, we find that K\ G is represented uniquely by A* K/ + 1, and
therefore that

_ -1
@ HSY(K) = D(K) f Waka) LD =D 4,
By INT 4 we then obtain
) [ W) dx = [ 0 (k) D&y) .

{In INT 4, dividing both sides by 27 still leaves one integration over K where
K has measure 27.]

For each integer n # 0 let S, be the function invariant under conjugation
by G, given by

— (sign n)e™
S(kﬂ)_ eﬂ—e___ia s
- |ne}
S (zh) = E(Z)W ,

and zero otherwise. As before, z = *+1 and ¢(z) = z"*!. We view S, again as
a functional, so that for any function f,

S,(f) mfG J(x)8,(x) dx.
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Theorem 6. We have the relation

5,(4) = = (sign m) [ T Ky (k)™ df

* %j:” [HA(h) + (- I)HHH"\{/(—vh,)]e“lmt dr.

Proof. We compute S,(y) by integrating over K'® and + 4’C respectively.
Let us start with K’®. We have

inf(x)

. €
[ wt-sien n) s
K'G

if x is conjugate to kp,). We now use INT 4 applied to the function under the
integral sign, and obtain from (4),

. ZW .
- sign nf HAY (ky)e™ db,
0

which is the first term on the right of our relation.
For the second term, if x is conjugate to * &,,,, we have

e—lnt(x)l

fo’G 1[/():)6()6) |et(x) — e—z(x)l dx

e |me{x}|

= [ [40) + (=1 N(=9)] dx

W
= %fw [HA¢(h,) + (- l)n+lHA¢(mhr)]e—lm| dt

whence the theorem follows at once from the invariance of the Harish

transform on 4 under g > a1,

APPENDIX. GENERAL FACTS ABOUT TRACES

Polar decomposition

Let H be a Hilbert space with countable Hilbert basis and let 4 be an
operator on H. [All operators in this appendix are assumed bounded.] Then
A*A is symmetric positive and has a unique symmetric positive square root,
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denoted by P, = (4*A4)"/2. We can define a linear map U = U, on Im P, by
the formula
U(A*A)llzv = Ay, forvEH.

To show this is well defined, it suffices to prove that if (4*4)"/% = 0, then
Av = 0. But under the stated assumption, we have

0=|(4 *A)l/zv|2 = (A*Av, v) = (Av, Av),
so what we want is true. It is then immediate that

U: Im P, — Im 4

is a unitary map, which can therefore be extended by continuity to the
closure of Im P,. We define U to be 0 on the orthogonal complement of
Im P, (such an operator is often called a partial isometry). Then we have the
obvious formulas

U*U=1 on ImP, and UU*=1 on ImA.

The decomposition
A= UP
into a partial isometry U (relative to Im P) and a positive operator P is
unique. Indeed, if A = WQ, then A* = QW* and
PP = A*4A = QW*WQ = Q?

whence P = O because the symmetric positive square root of a positive
operator is uniquely determined (spectral theorem!). The above decomposi-
tion is called the polar decomposition of 4. The polar decomposition of 4* is
easily obtained in terms of that for 4, namely

A* = U,P,., Uye = U*, P,.=UP,U*
To see this, note that UPU* is positive, and
(UPU*)’= UPU*UPU* = UP* = AA*.

This gives us P,., and the expression for U,. follows at once.

Hilbert—Schmidt operators

An operator A is called Hilbert—Schmidt if for some orthonormal basis
{u,} we have
> Ay < .
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The same then holds for any other orthonormal basis {v;}. Indeed, note that
for any vector w we have [w> = Z [(w, v, >, so that

z IA“i|2 = 2 |<Aw,, Uj>[2 = 2 I<u A*D>|2 2 |A*”]2
i Lj Y

For Hilbert-Schmidt operators 4 and B, we define their scalar product
(4, By =2 (Au, Bu)

with some orthonormal basis {}. This sum is convergent (i.e. absolutely
convergent), as we see by the Schwarz inequality (applied twice!),

2 |<Auw;, Bu;)| ‘<\2 | Aw|| Bu|.

Therefore B*4 is Hilbert-Schmidt, and the scalar product is independent of
the choice of {u,}. The corresponding norm is denoted by

Ny(4) = |||,
and we have
413 =2 |Auf?

The Hilbert-Schmidt operators form a normed vector space under this
L*-norm, denoted sometimes by L%(H). For the following further properties,
A, B are assumed to be Hilbert-Schmidt, and X denotes an arbitrary
operator.

HS 1 4%, = {41l
HS 2. XA and AX are Hilbert—Schmidt, and
XAl < [X|4ll,, 14Xl < [X])4]l,

HS 3. 4 Hilbert-Schmidt operator is compact.

Before going any further, we prove the above. Note that HS 1 follows from
the identity already proved, where we can interchange 4 and 4*.

Property HS 2 is due to the obvious inequality |XA4u,| < |X||4u;], and the
fact that (4X)* = X*A4*. To prove the compactness of HS 3, there exists N
such that

> lAuf < e
i>N
Let P, be the projection on the space spanned by u, . . . ,uy. Then the above
inequality can be written
o0 [
> 4~ APy = 3 |[Au* < e.
i=N+1 N+1
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For any operator T we have |T| < 3 |Tw/|*> This proves that A can be
approximated uniformly by operators with finite dimensional image, and
hence that 4 is compact.

The polar form of the function 4 > |43 is given by
HS 4. 4 + Bll; — l4]7 = IIBl; = 2 Re(4, B).
This is immediate from
(A + B)u, (A + Blu) = {Au,, Au;) + 2 Re{Au;, Bu;y + {Bu;, Bu).
Since [[41l, = [|4*] we get
HS s. Re> (Au, Bu) = Re D, {(A*u, B*u,)
HS 6. {A*, B*) = (4, B).

HS 7. (XA,B) =<{A,X*B) and {AX, B) = (A, BX*).
HS 5 and HS 6 are clear from HS 4. For HS 7, we have

(AX, B> = {X*A*, B*y = {A*, XB*) = (A, BX*).

The other part of HS 7 is obtained by starring each term in this last identity.

Trace class operators

An operator A will be said to be of trace class if it is the product of two
Hilbert-Schmidt operators. We have to choose where to write stars, and in
expressing A as such a product, we write 4 = B*C where B, C are Hilbert-
Schmidt, in order to avoid stars elsewhere. This being the case, we can define
the trace of 4,

tr(4) = D {(Au, u;y = 2, {Cu, Bu = {C, B).

The first sum over i shows that the trace is independent of the choice of B, C.
We have trivially

TR 1. jtr(A4)] < I BlI2[ Cll2-
TR 2. If A is of trace class, so are AX and XA, and we have
tr(AX) = tr(XA4).
Indeed, AX and XA are of trace class by HS 2. Furthermore,
tr(B*CX) = {CX, B) = (C, BX*) = tr(BX*)*C

tr(AX)

tr{(XB*C) = tr(XA4).
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We return to the polar decomposition
A=U,P, = UP,

where U is a partial isometry and P is symmetric positive. We call P the
absolute value of 4, sometimes written P = Abs(A). Since P = U*A4, we see
that

TR 3. A is of trace class if and only if P, is of trace class, and

tr(P,) = tr(Pys).
This last identity is due to

tr(P,) = tr(U*A) = tr(AU*) = tr(UA*) = tr(P,.).

It is not true in general, according to our definition, that A4 is of trace
class if and only if the sum

2 [<Au;, )|
converges. On the other hand, we do have:

TR 4. Let P be a symmetric positive operator. Then P is of trace class if
and only if >, (Pu, u;y converges.

The proof is clear, using P'/2. In particular, 4 is of trace class if and only if
its absolute value is of trace class.

If 4 is an operator of trace class, we define
Ni(4) = ||4]l, = tr P, = || P}/
TR 5. The operators of trace class form a vector space, the function
A > ||A||, is a norm, satisfying ||A|l, = ||4*]|,.

Proof. Write P, = U*(A + B) where U is a partial isometry. Assume
that both 4, B are of trace class. The sum 4 + B is of trace class if and only
if

2 Py gty 4y < co.
However, this sum is equal to
> (U*Au, uy + >, (U*Bu, u)> = tr(U*A4) + tr(U*B)
< |4l + [1Bll;

This proves both that operators of trace class form a vector space, and that
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Il I, is a norm (the scalar homogeneity property is obvious). Furthermore,
A, = 1A*|l, is merely TR 3.

TR 6. If A is of trace class, then so are XA, AX, and we have
N XAl < |X|14]l, and  [[AX|} < |X||4]],-

Proof. 1t suffices to consider XA, since AX = (X*A*)*. There is a partial
isometry ¥ such that Py, = V*XA, and letting 4 = UP,, we have

Py, = V*XA = V*XUP, = YP,, with Y = V*XU.
Then | Y| < |X|. Furthermore,
1XAN, =2 (YPuy, uy = (P72 PYY*)
<Pl NPL2Y* ],
< P23 1Y

< |4l 1XT
as desired.

TR 7. If A is of trace class, then |tr A} < ||A4]],.
Proof. Write 4 = UP,. Then
ltr 4] =| 2 (P4, PLPUR))|

= |(P4/%, Py2UY)|
< [P, N1 PA2U*,
<P/} =t P,

Theorem 7. Let {T,} be a sequence of operators on H, converging weakly
to an operaior T. In other words, for each v, w&E H, {T,v, w) —> {(Tv, w).
Let A be of trace class. Then

tr(TA) = Jim tr(7,4),
and similarly on the other side.

Proof. Assume first that 4 = P is positive symmeitric. Since 4 is compact
{because 4 is Hilbert-Schmidt and HS 3), there is an orthonormal basis of H
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consisting of eigenvectors, say {u;}, with Ay, = c;u;. For fixed v, w € H the set
{{T,v, w)} is bounded. Viewing v as fixed and w variable, we see from the
uniform boundedness theorem that the set {7,u} is bounded. Again the
uniform boundedness theorem shows that the norms |7,| are bounded, say by
a number N. Then by the absolute convergence

2 lel <
i
we get

Jim (T, 4) = lim 2 (T,Au, )y = lim 2 e T, u;, u)
= 2 lim e T,u;, )

= tr(TA),

which proves the assertion in the present case. In general, write the polar
decomposition 4 = UP where U is a partial isometry and P is symmetric
positive. Then T4 = (TU)P, and T,U converges weakly to TU, so the first
part of the proof applies to give the general case also.

Corollary. Let A be an operator of trace class in a Hilbert space H,. Let
T: H, — H, be a topological linear isomorphism between H, and another
Hilbert space H,. Then

tr TAT ' = tr 4.

Proof. The assertion is true for finite dimensional spaces. Let P, be the
projection on the space generated by u,, . . . ,u, (assuming that {u,, u,, ...}
is an orthonormal basis). Then

trd4 =limtr PL,AP, and tr TAT ' =limtu TP, AP, T .

The corollary follows from the finite dimensional case.

The corollary shows that the trace is independent of the choice of positive
definite scalar product in an equivalence class, i.e. defining equivalent norms.

Remark. Define L% H) to be the Banach space of compact operators. It
can be shown fairly easily that the pairing

(A, K) +> tr(AK)  of LY (H)X LYH)—>C

induces a norm preserving isomorphism of L!'(H) onto the dual space of
L°(H). We won’t need this in the present book, and leave it as an exercise.



VIII The Plancherel Formula

We shall put together the facts we have learned about traces in order to
prove the Plancherel formula, giving an expansion of a function in terms of
its characters. The proof is due to Harish-Chandra [H-C 6]. It consists in
expanding out the Fourier series of the Harish transform HXy(8), using the
relation between the trace of the discrete series and the Harish transform on
A given in Theorem 6 of the preceding chapter, and then performing a
Fourier transform on some of the terms to get the final formula. It turns out
that HXy(k,) is not continuous, the discontinuity occurring at those elements
of k which also lie in A4, ie. at 1. The first calculus lemma serves to
determine the jumps, and also shows that the derivative (H*y)'(k,) is con-
tinuous at those points, and that the Fourier series converges for the
derivative at those points. This gives us the value (1), in terms of a series
involving traces in the discrete and principal series.

Pukanszky [Pu] gives the Plancherel formula for the universal covering
group of SL,(R). For the p-adic case, cf. Gelfand er al. [Ge, Gr] and
Sally—Shalika [Sa, Sh 2]. For connections with special classical functions, see
Vilenkin [Vi].

Bargmann [Ba] gave various completeness relations, without ever stating
exactly the Plancherel formula. He realized the connection with certain
asymptotic expansions (cf. Chapter V, §5). It seems that the function ¢(s)
which appears in such asymptotic expansions also determines the Plancherel
measure, and that this phenomenon, relating an asymptotic expansion with
eigenfunction expansion, has long been known, more or less explicitly, in
connection with second order linear differential equations. An exposition of
the Plancherel formula for SL,(R) following the general pattern of eigenfunc-
tion expansions for a second order operator, along Bargmann’s lines, is given
in Vilenkin [Vi}], pp. 336-337, but not carried out in detail. Vilenkin merely
refers to the 2-volumes books of Titchmarsh and Levitan, without being more
specific than saying: “Employing the usual techniques of expansion in eigen-

163
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functions of selfadjoint operators, we get the following result.” (The
Plancherel Formula). Each inexperienced reader has to work out the details
for himself.

The original Harish proof for the Plancherel formula takes an entirely
different approach, but more recent papers of his have returned to the
asymptotic expansion point of view. The estimates required on arbitrary
groups are of considerable difficulty. Cf. his papers [H-C 7}, pp. 576 and 582;
[H-C 3), p. 71. See also Knapp-Stein [Kn, St] for other connections.

The last chapter of the present book treats the spectral decomposition of
I'\ G by a method starting from the asymptotic expansion, and then making a
perturbation to get the precise spectral decomposition relation.

§1. A CALCULUS LEMMA
Lemma. Let F € C*(R?. Let

£2(8) =j:° F(Be', 0"} e’ — e~ ") dt1.

Then: -
D lim 6g(0) = fo F(u, 0) du;

0
i) lim 0g(8) = - f_ F(u, 0) du;

i) Jim 2‘%(0;;(0))= —2F(0, 0).

iv)  There exist a, b > 0 such that for 0 < 8 < 1,

4 (85(0)) + 2F(0,0)| < alo] + b9 1og 6],

Proof. First we note that trivially
8)) 0wa(9e’, fe e 'dt —0 as #—0.
0
To get (i), we consider the other integral

fw OF(Be’, e ")e' dr
0
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with § > 0. Change variables, let u = fe’, du = fe’dt. Then

e '=0/u,
and the integral transforms to

j:o F(u, 0%/u) du.

As & — 0, the integral approaches the desired limit of (i). The limit of (ii) is
done in a similar way. To prove (iii), we have

4 (03(0)) = 8(0) + 0g'(8)

=f°° F(be', fe~")e" di ~f°° F(0e', 8e~")e ™" di
0 0
+0f°° [D,F(8e’, e~ ")e' + D,F(fe’, B ")e ')(e' — e ") dr.
0

The second integral goes to — F(0, 0) as # goes to 0. Any integral having a
factor of 8 in front and no factor ¢’ inside tends to 0 as 8 tends to 0. So we
have to consider the integrals of terms which are not of these two types. We
have

gt. [e'F(Be', Be=")] = e'F(fe’, Be™") + 6e* D F(be', ™)
— @D, F(8e’, Be™").
Plugging this exact expression into the integral immediately shows that the
remaining integrals give the appropriate contribution — F(0, 0) after making
the proper cancellations. To estimate the derivative as stated in (iv), let T be

such that D,F(x,y) = 0if |x| > Tor|y| > T.1f |@e’| < T, thene’ < T/|6|,
ie.

t <log T/|8|.

Hence we get an estimate of type
lf D,F(6e’, 8e™") di| < ||D,F|||log T/|8]|,
0

and similarly for the integral of D,F. From this, (iv) is obvious.
The estimate of (iv) is intended to be used to prove the convergence of a
certain Fourier series.
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Remark. In taking the various limits of the lemma, we can replace 4 by
sin 8 since these two functions are equal up to order 3, which does not affect
our limits.

§2. THE HARISH TRANSFORMS DISCONTINUITIES
Write an element x of G = SLy(R) as

x = ank = h,n,k,,

where we use the parametrizations

-h = e’ 0 {1 u _ cos @ sin @
a=h = N n=n,= , ky = . .
0 ! 01 —sin@ cos @

We let the measure on G be

dx = dadndk = drdu &
27

so that K has measure 1. We let
D, (8) =e® — e % =2isinb,

and define as before the Harish transform on K, for 8 # 0, # and
feC>(G,K) by
2u

K K ® -1 (e e™™)
() H¥(k;) = H5(8) = Dy(9) f S ) 522
[}

Up to a constant factor, this is precisely
Dy(k) [ f(g™'ke) dg.
K\G

We want to put the expression for the Harish transform on K into a form
which fits our calculus lemma. For this we write our element a ~'ka as an
exponential,

h”kyh, = b exp(9W )h, = exp(h, '9Wh,),
and note that

(e—' 0)( 0 9)(e' o)=( 0 ae—zf)
0 e\ -8 0/\0 e°f — e 0
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Change variables, replacing 2¢ by ¢. The limits of integration do not change,
and we get

2) HY(0) = 4 Dx(8) [ F(be', 0 ™")(e' = ™) dh,

F(u,v)-—-f(exp( 0 D))
-u 0

F(0,0) = f(1), =1,

where

We obviously have

On the other hand, we had the Harish transform on 4, namely

H*(a) = |D(a)| f,, a0 i = p(@) fN f(an) dn.

We needed values only on 4. However, we may view this transform to take
values also on — 4. Thus fora€ 4,

H*f(~a) = p(a) fN f(~an) dn.

Theorem 1. Let f € C(G,K). Then

0+

HKf] = H*f(0+) — H¥f(0-) = %H"f(l),

o
7+

HY | = WY(re) - WY (r ) = S HY(- 1)

7 —

Proof. By the calculus lemma and wn,w™! = 7i_, we find

HY(0+) = éf f(l u)du
o 0 1
) 0
H'ff(0~)=—§f f(:) 1)d

and
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Hence

HXf(0+) — HEF(O-) = %fw f( L “)du

f(n) dn

o

i
2
= Ly
5 HA(1).
The second assertion is proved by replacing f with the function f(— x), noting

that
f(=x) = f(xk,).

The points § = 0 and § = = are the points of discontinuity of the Harish
transform on X, and the preceding theorem gives the jumps in terms of the

Harish transform on 4.
We know from the calculus lemma that the derivative of the Harish

transform (HXf)'(8) is continuous at 0.
Theorem 2. For f € C°(G), we have (H fy(0) = - if(1).
Proof. Immediate from (iii) of the calculus lemma.
Theorem 3. The Fourier series of (HXf)' converges to the function at 0.

Proof. From (iv) of the calculus lemma, we know that
(HXf)'(8) = constant + O(|6 log|8|]).

The Dirichlet kernel from which the Fourier series is obtained by convolution
is equal to (up to a constant factor)

1 sin(n + 3)8
27n sin(6/2)

The convergence of the Fourier series is a local phenomenon near the point,
and depends on the integral

1 ) sin{n + )8
- — df
n f; 9 log|f] sin(8/2)
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tending to 0 as ¢ —> 0. But this integral is estimated by

U log|8)| d0|<< ¢ |log €],

so our theorem follows.

§3. SOME LEMMAS

In this section, we gather some easy lemmas so as not to interrupt the
course of the argument of the Plancherel formula. The first one amounts to
summing a geometric series.

Lemma I. We have the two identities:

S sin(|n|8)e P = 2sin @ cosh ¢

nodd cosh 2t — cos 28 °
. “nlt — sin 26
ngcn sin(|n|6)e cosh 27 — cos 28 °

The sums are taken over odd and even integers respectively; both positive
and negative integers are included.

Proof. Consider n positive, odd, n = 2d + 1.We have

)
et(2d+l)ﬂe—(2d+l)l= e:@—t 2 e2d(t0—~t)
0 d=0

Mg

d

|
e~ -0 _ -1 :

We multiply numerator and denominator by the complex conjugate of the
denominator to get

e!*i® _ pmt+id)  e'(cosf + isinh)— e '(cosd — isinb)
2[cosh 2t — cos 28] 2[cosh 2t — cos 28]

Taking the imaginary part of the numerator yields e’sin 8 + e ~'sin 8, which
is precisely 2 cosh ¢ sin 8, and proves our first identity.
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For the second, summing over positive even integers yields

282(1'0—- 1)

o0
2id6, —2d1 .
1+2 3 % L+ s

d=1

e-(iﬂ—t) + e(i&—t)

= e—-(iﬂ—t) _ e(i0-—l) )

Again we multiply by the complex conjugate of the denominator, to get

e¥ + e — e7% — ¢ _ sinh 27 + isin 24
2[cosh 21 — cos 28] cosh 2¢ — cos 20 °

This proves the second identity, by considering the imaginary part.
Next we have to compute a couple of Fourier transforms.

Lemma 2. For 0 < 8 < & and A > 0 we have

. N sinh (2~ A
lim £ dt = ==
e J_ . cosh 2t — cos 28 sin 24 . TA

sinh —-

2

Proof. We integrate around the rectangle as shown.

- +ic c+ic

-C 0 c

Figure 1

The integral

o J
cosh 2z — cos 28 i

is equal to 2#i times the sum of the residues. We have

cosh2z =cos 28 « z = (nm = 9)i, nel.
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Also,

d ( e + 712

p 5 — €O8 20) = 2 sinh 2z.

We evaluate this at the points z, = (nw *+ )i to find *2i sin 26. Hence the
residue of the function under the integral sign at z, is

o~ Mrm8)
2isin(£28)

The limit of the integral is therefore equal to

27 ~Am+8) _ —)\(mr—!?)}
2i sin 20 { 2 e 2 e

n>»0 n>l

o oM RO
sin2f | | — e M ’

Multiplying numerator and denominator by ¢*/? proves the lemma.

Of course, in taking the limit, we pick ¢ not equal to a value which would
cause a pole of the function to fall on the boundary of the rectangle.

Lemma 3. For 0 < 8 < 7 and \ > 0 we have

w
. = —8JA
im (€ e™ cosh ¢ __m COSh( 2 )
c—o J__ cosh 21 — cos 26 2sin @ 7A
cosh T

Proof. We integrate

e™ cosh z ds
cosh 2z — cos 28

over the same contour as before. The residue at z, = (nm £ 8)i is

—Ananr+8)

e-—)\(n'rr—tO) Cosh(n'ﬂ + g)l - (_ l)n cOS Be
2i sin(+£28) 2i sin(+28)

Hence our Fourier transform is equal to 2#i times the sum of the residues,
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namely

27i % A +8) _ = Mam—8)
_I\n,—Anm+8) __ —1\n, —A(nw —
| 5 e S -y

n=0 n=1
. e«)\o e)\ﬂeui\vr
= +
2sinf | 1+e™ 1 4e M

T
. cosh( 5~ 0))\
2sin @ aA ’
cosh 7

as was to be proved.

The above lemmas will be applied to a Plancherel inversion situation
under the following conditions. Let ¢ € C*(R), and let g be one of the two
functions whose Fourier transform is computed in Lemma 2 or 3, so that in
particular, g is real. Let g, be the function equal to 0 outside the interval
[—¢, c], and equal to g on this interval. Then the Fourier transform of g, is
actually computed in the above lemmas, and is equal to a partial sum of the
residues, plus a term which tends to 0 as ¢ tends to oo. Since ¢ has compact

support, we obtain
-] 0 . 0
f 9g = f Pz = f 8.
— o0 — o0 — o0

As ¢ — o0, we see from Lemmas 2 and 3 that €, tends to a bounded

continuous function of A. If g denotes the function on the right-hand side of
the formulas in Lemmas 2 and 3, we obtain the Plancherel formula

[_‘1 o8 = f_“; .

§4. THE PLANCHEREL FORMULA
We put everything together. We recall that by definition

f(x) + f(=x) f(x) = f(=x)
2 2 '

fHx) = ST =

Put s = i\ with A real. The representation 7, on H(iA) is the representation of
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the principal series, and we have seen that for A # 0 it splits into two
irreducible components according to parity. By formula (1) of VII, §3, the
trace in these components is given by the two expressions (Fourier trans-
forms!)

(1) Ty (f) = f_°°w HA* (h)e™ di,
(2) T, (f) = f_"; HA = (h)e™ dt.

For 0 < # < # we have the Fourier expansion for f € C*(G):

. m d
HY(0) = 3 e [ Hf(g)e 5

_ ; 27 ; d(P
HY(=0) =3 e [~ HY(g)e"™ 5 .
Subtract to find the average
J¥f(8) = +[H'f(6) — HFf(-8)].

Theorem 4. Let S, be the function defined in VI, §5, Th. 6. Let
FE€CX(G,K). For 0 < 8 < o we have

2L 15(0) =~ T _S,(f) sinlnlo

n#0
cosh( kit —a)x sinh( s -a);x
1 (= 2 o 2
1 [T T o N % f T (f) —2—— dA
0 cosh 5 0 sinh 5

Proof. When subtracting the Fourier series above, the constant terms
cancel, and we find

(3) %f’iJ"f(o) =—3 sinnd f " 0K (@)e™ do.
0

nw0

Substituting the value found in the last theorem of the preceding chapter, VII,
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§5, Th. 6, we find that

4) 3§1Kf(9)=— S 5,(f) sinjn|8
n#0
+n§0 j;w %[HAf(h,) + (_1)"+’HAf(“‘ht)]'Sin|n]0e“""| dr.

We split the second sum into terms with n odd and » even respectively. This
yields an expression for the second sum, namely

R edr+ 2 sin # cosh ¢ ® A sin 26
j;) HY™ (k) cosh 2¢ — cos26 at +fo HY™ (k) cosh 2¢ — cos 26

in view of the computation of Lemma 1, §3. By Plancherel’s formula as
discussed in the preceding section, and the fact that H*f has compact support,
this becomes

cosh( z- 0)7\ 1 smh( - a)x

cosh A a Efo i sinh 7A »

2 2

I AENE)

Note that the two functions for which we take the Fourier transform are even
functions of ¢, and hence that the Fourier transforms taken as integrals from
— o0 to o0 can be replaced by twice integrals from 0 to co. We have therefore
obtained the expansion stated in the theorem.

Plancherel Formula. Let f € C(G). Then

27f(1) = % |n|S,(f)

n#0

)\ I A
+3 f T,*(f)A tanh 72 g + = f T (A coth = an.

Proof. We differentiate the expression of Theorem 4 and put § = 0. The
Plancherel formula drops out.

Remark. We know that the traces 7, come from unitary representations.
It also turns out that the traces S, come from unitary representations, as we
shall prove in the next chapter. Hence in Plancherel formula, only unitary
representations appear. This was irrelevant in the preceding considerations,
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but we shall use this below in the formalism which can be derived from the
above stated formula.

Let G be the set of isomorphism classes of unitary representations. We let
i be the measure on G defined as follows:

For a point of the discrete series of weight m, we let the measure bhe
discrete, and we give this point measure |n|/2w, where n=m — 1 or
m + 1 according as m > 0 or m < 0.

On the subset of G in the principal series parametrized by s = iA, A > 0,
with even parity, we take the measure
A

tanh —i— dA.

>

1
ap(A) = 5

On the subset of G in the principal series parametrized by s = iA, A > 0,
with odd parity, we take the measure

=LA A
du(A) = 50 5 coth 5 dA.

We let the complement of the above sets have measure 0. R
We call p the Plancherel measure. We shall write du(7) with 7€ G,

viewing G itself as the measured space, instead of using parameters n and A.
On the product G X G we have an operator-valued mapping

@(m, x) = 7(x).
The corresponding map on functions f € C°(G) is
f(m) = [ f)m(x) dx = 7'(f).

On the other hand, let {A4(x)} be a family of operators, with 4 () operating
on H_. Define (formally) the adjoint ®* by

d*4(x) = fG tr A(7)m(x)* du(m).

We shall see in a moment that the inversion formula
®*® = id on CX2(G)

follows from the above Plancherel formula, which can be written in the form

PL 1. (1) = fG tr 7'(f) du(m),
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and is valid for f€ C*(G) or f € C°(G, K). Indeed, if f€ C°(G), let
fe(x) = [ Sl xk) k.
K

Then both sides of PL 1 remain unchanged if f is replaced by fi. Let r(x)f be
the right translate of f by x, so that

r(x)f(y) = f(yx).
Replacing f by r(x)f in PL 1, and noting that
7 (r(x)f) = 7' (fHm(x7"),

we obtain the inversion formula at an arbitrary point, namely

PL 2. f(x) = fG tr 7 f)m (x)* du(m).

Furthermore, let @, ¥ € C°(G) and ¢*(x) = ¢(x~'}. Apply PL 1 to

f=o*y*
Then:

7'(f) = 7 (@)7' (¥)%,
(@*¥*)(1) = (g, ¥Dg = fG ¢(x) $(x) dx,

tr 7' (@y*) = tra'(@)m'(Y)* = <m'(e), 7' (¥)) = (&, ¥
Therefore we find the L?-version of Plancherel inversion, namely:

PL 3. For @, ¢ € C2(G), we have

(@, ¥yg = fé tr 7' (@) ()* du(m) = (§, ¥).

Thus the Plancherel formula PL 1 implies the other versions by means of
simple formal arguments.

Observe that in the above formulas, we frequently take the trace of a
product of operators. Let {1} be an orthonormal basis of H. If 4, B are
operators, let A; = (Au;, u;). Then

tr AB =2 A,B,
iJ
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as in the finite dimensional case. Indeed, in H we have the convergent sum
By, = 2 B,jt{i,

J

80
(ABu, u) =, C(AByu;, u;y

i

and
tr AB = 3 BA,.
iJj

In practice, one sometimes needs such expansions, when {4} is a basis of the
K-finite vectors, in order to estimate certain traces.



IX Discrete Series

In this chapter we give various unitary realizations of the discrete series,
i.e. those irreducible representations which admit a lowest weight vector of
weight > 2 and highest weight vector of weight < —2. It turns out that in
each case, one is the complex conjugate of the other, so essentially we need
only look at those with a lowest weight vector. We shall see that they admit
an infinitesimal embedding in L?*(G), with the action of left translation, and
also that they can be represented as operations on certain function spaces in
the upper half plane.

The uniqueness theorem of Chapter VI, §3, leaves no ambiguity concern-
ing such unitarizations, yielding a natural unitary isomorphism between them.

§1. DISCRETE SERIES IN LY G)

The unitarization of a discrete series in L*(G) in this section is due to
Harish-Chandra.

Let
T=_1___( ! —i), T-1=“1_(1 i)_
V2 \ - 1 v2 i 1

x = (“ b)ec= SL,(R),
d

c

If

we change the coordinates by considering the matrix coefficients of TxT ™!,
namely we put

w0
2\ =i 1/ \e df V2 i 1 B

179

R T
\:-,/
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(We put bars this way to minimize the number of bars in this section.) Then
(2) a=43(a+d—ic+ ib) and B=3(c+b—ia+id).

Note that a, 8 are function on the group, namely a(x), B(x). They are easily
computed for elements of A4 and K, namely:

I I -t
3) a(( ¢ 0 )) = e_tz_e____ = cosh ¢,
0 e

4) B((‘;’ ?’)) = -i%—"l = —isinh .
(4

Furthermore, these transform in a simple way by the operation of K on the
right and left. We note that conjugation by T as above on elements of K
yields

T, T~ = T( cosf sind )T“ _ (e”’ O. )
—sinf cosé 0 e

Thus we see that

(5) a(kyx) = ea(x), a(xky) = a(x)e®,
(6) Blkex) = e ®B(x),  Blxky) = B(x)e”.

From the K4 *K decomposition of G (Cartan decomposition), we now see
that the values of « and B8 are determined by the above tabulation, and
especially the absolute values are cosh ¢ and sinh ¢ respectively if x is
conjugate to 4,. Note that |a(x)| > 1, all x€G.

Lemma 1. Let m be an integer > 2. Then the function a =™ is in L*G).

Proof. By the integral formula INT 2, we know that
f |a) =™ dx = fw (cosh 1) " sinh 21 dt,
G 0

up to a constant factor. Since sinh 27 = (e’ + ¢~ ")(e' — e~ ')/2, the integral
is of the form
-2m+2

—2m+1 = u
Ju M= w2

which converges for m > 2, as desired.
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Let 7 be the representation by lefi translation on L*G), so that
T(¥)f(x) = f(» " x).

Abbreviate 7(y)f by f,. Then

™ o = a(y e+ B(y™"B,
(8) B, = B(y~Na+a(y "B
Theorem 1. Let @, . = a" " "B forr =0, 1,2,... . Then the functions

sy are eigenvectors of K with eigenvalue "™+ The closed subspace

of L*G) which they generate is invariant under left translation by G, it is

irreducible, and has lowest weight vector equal to a™ ™.

Proof. The eigenvalue property is immediate from (5) and (6), i.e. essen-
tially directly from the definition of « and B. Observe that 8/a is a function
of absolute value < 1, and that for any given y, |B(y)/a(y)] < 1. The
function 7(y ~")g,, ., ,, lies in the vector space generated by the functions

1 1 ( B )
am - m+r a °
1+ B B
a(y) «

Let A = B(»)B/a(y)a, so that ]| < |B(y)/a(y)| < 1. We can expand
a”™(1 + A)~™ " into a power series which converges in L? by Lemma 1.
This proves that the closed subspace generated by the prescribed functions is
invariant under translation, and proves our theorem.

§2. REPRESENTATION IN THE UPPER HALF PLANE

We shall here describe another model for the unitary representation of a
discrete series, by a function space on the upper half plane.

Let m be an integer > 2. We recall that on the upper half plane $ we
have a measure

dx dy
du(x,y) = e
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invariant under the action of G. We let

dx dy
dw,, =y" —5— .
Y
Let

H= L}ZIOI(@’ :""m)

[IX, §2]

be the space of holomorphic functions on & which are in £? with respect to
the measure p,. The scalar product is the usual hermitian product given by

the integral over . We need a lemma to insure that H is complete.

Lemma 1. If a sequence of holomorphic functions {f,} is L2 convergent in
an open set in the complex plane, then it is uniformly convergent to a
holomorphic function on any compact set. In fact, locally, we have domina-

tion of norms:
<< <<l il

Proof. We work in the neighborhood of a point, which we may assume to
be the origin without loss of generality. Our estimates will depend on some
disc of fixed radius 8 around any point, and again it suffices to bound | f(0)]
in terms of the L' and L? norm of f in a §-disc around 0. Cauchy’s formula

gives
1 F($) 1
JO =5 [ =5 & =5 f
whence
27 4
1< 5 | D)
0
Since
3 )
015 = [ 17O e
we obtain

oy < [

= 5= e

1
< ‘2; ”f”Z, loc”]“2, loc

by Schwarz. The desired estimate drops out.

5 2 |f(re”)|
L
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Let

67! = (“ b )ec = SL,(R).
¢ d

On H define
(ma(0))(2) = f(o™'2)(cz + d) .

It is verified by brute force that #,, is a group homomorphism of G into the
linear automorphisms of H.

Theorem 2. m, is a unitary representation.

Proof. We first verify the unitary property. Let w = ¢~ 'z. Recall that

Imo~'z= ———)i——-—i .
lez + d|
We have
w0 oo 3 om.m Axdy
Im(@fI = [ V(™ 2Plez + d|7mym ==
= [ OP(mw)” du(w)
= I113»
as desired.

To prove the continuity condition for a representation, it suffices to do it
for a dense subset of elements of the Hilbert space. Our representation occurs
in a subspace of LX®,p,), and it suffices to prove continuity for the
operation in this bigger space. We may therefore take a vector f which lies in
C.(9), and we have to verify that as ¢ —> 1, we have

= (a)f = fll, = 0.

This is immediate from the dominated convergence theorem.

Lemma 2. Let n be an integer > 0 and let

Y,(z) = (%) (z+0) "
Then y,€ H.
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Proof. As |z] —> oo, {,(z) — 0, and we have

z—-t_ <
z+ i

for all z in the upper half plane. Let 8 > 0. The proof consists in proving that
the Lz-integrals above § and below 8 both converge. As to the first, we have
the estimate:

I A

«© 1

<[ 1m0
8 — (x2+y2)

8
S——

m

b 1 Y
((x/y)Z + 1)’” y2m+2

< J @+ Dire yron MY

which converges. As to the second,

§ powo 1 dxdy 8 o0 1 5
kL. z+ it )R I rr B

< dxdy

S

8
| :
8

8
< m—2 ,
_[) yrTrdy
which is bounded if m > 1. This proves our lemma.

Theorem 3. The representation w, on H = L2 (9, w,,) is irreducible. Let
H, ., be the one-dimensional subspace generated by the function y,. Then

H,, ., is an eigenspace of K, with character m + 2n, and

H = Hm+2n

n>»0
is an orthogonal decomposition, with lowest weight vector ,, of weight m.
The proof of Theorem 3 is best carried out by changing the model for the

representation under the analytic isomorphism between the upper half plane
and the unit disc. We shall do this in the next section.
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Theorem 3 gives us another example of a representation with arbitrary
lowest weight vector > 2. To get similar representations on the other side, i.e.
with highest weight vectors of weight < —2, we merely let SL,(R) operate on
the antiholomorphic functions in the lower half plane.

§3. REPRESENTATION ON THE DISC

It is often easier to work on the disc where the functions v, have an easier
expression. Let
z—i

w = - .
z 4+ i

The map z > w is an analytic isomorphism between the upper half plane
and the disc D of radius 1, centered at the origin. The inverse mapping is

w o+ 1
i .
w—1

If fis a function on £, we let

m

Tmf(w)=f(-'w+l)( -2i )

‘w—-] w—1

Then
T,: 5(H) — %(D)

is a linear map from the functions on $ to the functions on D. On the disc, let
w = u + iv, and let

o = = (1= W)

du dv
(1 - [wp)’
= Z‘-‘;,,- (1 - rz)mazr dr df.

Lemma I. The map
Tm: lelol('ﬁﬁ ""m) -> Llfol(Di Vm)
is an isometry.
Proof. We have dwA\dWw = —2 du/\dv and dzA\dZ = —2i dxN\dy. We get

4 dudp - dx dy
(1=|wp)? 2
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The isometry amounts to

PPt i oo o s

- [ [ s@pn =

which is clear.

We now see the advantage of having gone over to the unit disc, namely
Totbn(w) = w".

Thus our functions go over to the powers of the variable in the unit disc, and
they are trivially verified to be orthogonal.

Theorem 4. The functions {1, w, w%, ...} form a complete orthogonal basis
Jor LE(D, v,,).

Proof. Let f€ L (D, v,). Then f has a power series expansion

f(W) = § anwn‘

n=0

It suffices to prove that the series converges in L%(»,). Let 0 < r’ < 1, and let
D, be the disc of radius r'. Then

fo P dry = 3 @ o (w)

4 2 " omgy _ ayme2
=g ngl la,| 27rj; (1= ) Trdr

because

27 .
[ eme=i dg = 0
0

if # # g. Take the limit as ' —> 1. We get

. 1 m—
1fla = [ 1P dog = 252 S la,P [ (= A" dr

=c2 la,lIw"l3,,,
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for some constant ¢. Hence £ a,w” is L%(», )-convergent for m > 1. We are
done.

The group action on the disc is transformed from the upper half plane as
follows. SL,(R) goes to the group of matrices

a-‘=(‘i 3) with aa — BB = 1.
B @
Denote by #,, the transformed representation. Then
- aw + 3} mm
wule) = | FEL N 42
Bw + @

Let H = L} (D, v,). Then the one-dimensional subspace generated by
w" is our old H,,, ,,. Indeed,

i6 )
%m(( e 0 ))(W") = ei&(m+2n)wn
0 e~19

according to the formula describing #,,. Therefore l}m +20 18 an eigenspace of
K, with character m + 2n. The constant function 1 has character m.
In order to finish the proof of Theorem 2, we have to check:

Lemma 2. The elements 1, w, w?, . .. in H are analytic vectors.

Proof. The proof is entirely similar to the proof of the analogous state-
ment for the continuous series, VI, §5, Lemma 2, and will be left to the
reader.

We can then apply the general irreducibility discussion of Chapter VI, §2
to finish the proof of Theorem 2.

§4. THE LIFTING OF WEIGHT m

This section shows how to establish an isomorphism between the repre-
sentation in §1 and that in §2 and §3 by relating functions on & with
functions on G through a formal lifting process.

Let © be the upper half plane and let m be a fixed integer. To each
function ¢ on $ we associate a function ® on G = GL," (R) by letting

(I)(u(g )]c )r(ﬂ)) = @(x + iy)y™/ %",
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gz(u 0)(y x)( cos 8 sin0)=(a b)

0 «/\0 1 —sind coséd ¢ d

is our usual unique decomposition of an element of GL, (R), with u, y > 0.
Our function ® is independent of v and so gives rise to a function on SL,(R),
but we like to work with the coordinates (x,y) which have the convenient

interpretation in the upper half plane.
The associated function ¢ satisfies the conditions:

where

F 1. ® is independent of u.
F 2. O(gr(d)) = ®(g)e™.

Let %, (G) be the space of functions on G satisfying these two conditions,
and let F(9) be the space of all functions on §. We have the lifting map

I (D) = F,(G)

which to each ¢ associates ®. This map is bijective, because it has an inverse,
which to each function & satisfying the two conditions %,1 and ¥,2
associates the function ¢ on H such that

o(x + i) = ‘D((y * ))y""”-
0 1

o-*=(" ‘B)ESLZ(R)
Yy 6

To each element

we associate an operator m,,(g) on the function space % ($) by letting 7,,(0)¢
be the function such that
Ta(0)(2) = @(o~'2)(yz + 8) .

Then ¢ > 7,,(0) is an algebraic representation. Let L, be left translation by
o, so that (L, ®)(g) = ®(c~'g), for any function ® on G. Then the following
diagram commutes.

Im
F(®) — F,.(G6)

(0] ] L

T —> F,(G)
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Proof. Matrix multiplication shows that

0 g . 4= ic
(H ue d — ic and e R
) X+ iy = _l‘;e'"(ai + b).
Let

o—*g=u'(y’ x')r(o')=( ' " )
0 1 vya+ 8¢ yb + 8d
az + B
vz + 8

’

= x' + iy,

Then (1) and (2) applied to 6~ 'g show that

0’ =86 — arg (yz + 8).
We now get

®(og) = (o~ 'gi)y™/?e™”

= (p(z')y'”/2|yz + Sl—meimoe—-imarg(yz+8)

p(a'2)(yz + 8) y™/2ei
7,,(6)p(2)y ™/ *e™

=J, ' 7,,(0)J,.2(g).

This proves the commutativity.

§5. THE HOLOMORPHIC PROPERTY

In the correspondence between functions on § and functions on G, it is
clear that C* functions correspond to each other under the lifting of weight
m. We now want to see what is the condition on & corresponding to
analyticity of ¢. As before, we let g be the Lie algebra of SL,(R), and we
recall our Lie derivative associated with an element X € g,

2y ®(g) = 4 (g exp (1X))
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We had computed the Lie derivative in terms of the coordinates (x,y,8) in
Chapter VI, §4, and especially we had found the formula for €.-, which we
now apply to the function

(I)(g) = F(H, X, Y, 0) = (P(X + ly)ym/Zeimﬂ’
independent of u. We find

o

®3) - F(x, 3, 0) = —2iym/?+ietem/n=iw ZF
Z

Consequently, we get

Theorem 5. The function ¢ is holomorphic if and only if
Lr-® = 0.



X Partial Differential Operators

So far we have avoided to a large extent the more refined behavior of
functions with respect to Lie derivatives. For the theory of spherical func-
tions, we dealt with eigenvectors of convolution operators. The time has come
to relate some invariants we have found in the representation theory with
some of the invariant differential operators on G. Bargmann [Ba] saw how
coefficient functions are eigenfunctions of such operators. Harish-Chandra
got a complete insight into the situation by determining the center of the
algebra of invariant differential operators, the centralizer of K in this algebra.
Gelfand characterized spherical functions as eigenfunctions of this centra-
lizer. In this chapter, we give Harish-Chandra’s result that there are no other
spherical functions, besides those described in Chapter IV, on SL,(R) where
the proofs are short and easy.

§1. THE UNIVERSAL ENVELOPING ALGEBRA
Let g be the Lie algebra of SL,(R). It has a basis,

x+=(° 1), x_=(° 0), H=(1 o)’
0 0 10 0 -1

and its complexification g has another basis
E+=(1 i)’ E_=( 1 —i)’ W=( 0 1)'
i -1 —i -1 -1 0

191
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We recall the eigenrelations
[HX,]=2X,, [HX_]=-2X_, [X,.X_]=H,
[W,E,]=2E,, [W,E_]= —2iE_, [E,E_|= —4iW.

To each X €g associate a “variable” L,, and form the universal associa-
tive algebra over C generated by these variables. We introduce the ideal
generated by all elements

LXLY - LYLX - ny— YX»

where XY — YX =[X,Y] is given by matrix multiplication. The factor
algebra by this ideal is called the universal enveloping algebra of g, and is
denoted by U (g).

It is clear that the use of the extra symbol L is clumsy notation. On the
other hand, we have a natural homomorphism of @ (g) into any associative
algebra generated by elements indexed by g, and satisfying the above rela-
tion. In particular, if £, denotes the left invariant differential operator
previously defined on C*(G), then we have a unique homomorphism of
QL (g) into the algebra generated by these operators such that

Ly > £,.

Similarly, let 7 be a representation into a Banach space H, and let, as before,
H® be the space of C*® vectors. Let End H,® be the algebra of en-
domorphisms. We have a unique homomorphism

A(g) — End H>

such that L, > dn(X).

It turns out that the first homomorphism L, —> £, is in fact an
isomorphism. We shall prove this, and also use a notation which is somewhat
less clumsy. For X €g. we denote by X the operator £, . Then Xf = £, f.

Theorem I. The map from Q. (g) into the algebra of differential operators on
C>(G) is injective. If we identify QL(g) with its image, then U (g) has a
basis consisting of the elements

X7 X7 X3, P, q, r integers > 0,

if {Xy, Xy, X3} is a basis of g over R or g¢ over C.

Proof. Without loss of generality it suffices to prove the assertion for one
particular basis, say £,, E_, W. In any associative algebra 4, given x € 4,
the mapping

y =[xyl =xp = yx
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is a derivation, i.e. satisfies D(yz) = yDz + Dy-z. Furthermore,
4
D(xlxz. . .xr)=2 xl. . .DxA. .. X,

j r
J=1

The defining relations in 9. (g) show that the monomials as indicated
generate A (g) linearly. It suffices to prove that any differential operator
written in the form

2> G ELWIEL

which is the operator 0 must have all coefficients c,,,
an operator as a polynomial

SE W)+ f(E,,W)E_+ - + f(E,,W)E".

equal to 0. Write such

In Chapter VI, §5, take s = n — 1, and apply the operator to ¢,, with n > 1.
Then E_ kills ¢,, and the rules (1) show that f(E,, W) is identically 0 as a
polynomial in E,, W. Proceeding inductively using ¢,,;, ®,44 .. shows
that the other polynomials f(E,, W) are identically 0, as desired.

In view of Theorem 1, we identify 9L (g) with the algebra of differential
operators whenever necessary.

Theorem 2. The centralizer of W in QU (g) is the set of all linear combina-
tions of monomials

Ef WOE”?, p,qg>0

Proof. The rule for the derivative of a product shows that
) [W,E L WIE” | = 2i(p — r)ELWIE".

This shows that all the above monomials commute with W. Conversely,
suppose that a linear combination

> ¢ ELWIE"

par
commutes with W. Take the bracket with W. We obtain

2 Glp — 1)2UELWIE" = 0.
Using the linear independence of the monomials occurring in these linear
relations, we conclude that ¢,,, = 0 for p # r, thereby proving our theorem.

The centralizer of W in A = 9L (g) is denoted by Z (W). The center of
N is denoted by T(AU) or Z(g). It is clear that Z(W)>D Z(g). Since W
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generates the Lie algebra of K, we also denote £ (W) by Z (¥).
We now proceed to determine the center of QU (g) = Q. There exists a
unique linear map

h: Z(W) — C[W]
such that
h(EA, WIE? ) = W1 if  p=0,
=0 if  p>0.
The image A(Y) of an element ¥ under 4 is characterized by the congruence

Y = h(Y) mod WE_.

Lemma 1. The map h is a multiplicative homomorphism on Z(W).

Proof. Let Y, = h(Y,) mod UE_ and let ¥, = h(Y,) mod WE_. Then
Y,Y, = h(Y,)h(¥,) mod WE_ W + UE_.

Using the commutation rule between E_ and W, and the fact that E_ is an
eigenvector for ad( W), our assertion is clear.

Lemma 2. The map h is injective on Z (9L ).
Proof. Suppose

Y= ; c,E, WIE" + gr ¢, BN WIE?,
some coefficient ¢, # 0 and r > 1. We show that ¥ cannot commute with
E_. Consider the irreducible representation with lowest weight vector m > 1,
as in Chapter VI, §5, so that we can use the formulas for the derived
representation dr(X), selecting s = m — 1. We look at the effect of mono-
mials on ¢,,,,,. For p > r the monomial E4 W?E” annihilates ¢, , and
E_ g, ,,, Therefore the effect of the terms involving only the r-th power of

E_ and E_ is the same as the effect of ¥, and is
Y2 = M) Z ¢ (im)ig,,. 5, Mr)€C A(r) # 0

Applying E _ yields a non-zero vector for an appropriate value of m. On the
other hand, YE_gq, ., =0. Hence ¥ and E_ do not commute. Con-
sequently, if Y€ Z (), and A(Y) = 0, then ¥ = 0, as desired.

We exhibit explicitly an element of the center of 9, namely the Casimir
operator

w=H'+2X,X_+X_X,)
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It is verified by a trivial direct computation that & commutes with H, X, X _
and therefore lies in the center. One can normalize « by a constant multiple,
often to be taken equal to —1/4 in order to make the operator “positive”, but
here we are not interested in this, so we minimize denominators. Let

(1)

Then Casimir also has the expressions (obtained by direct computation)

) w=H>+ V- W:=2iW- W2+ E_E_,

w=—1—(W-iy+E,E._.

In particular,
(3) — h(e+ 1) = (W= i)

Theorem 3. The center of AU(g) is the polynomial algebra in one variable
Clw]. Its image under h is C(W ~ i)*].

Proof. Since h is injective on Z (9L ) and since we have already seen that
(W — i)? already occurs in the image of the center under A, it will suffice to
prove that only polynomials in even powers of (W — i) can occur. This
amounts to proving that if ¥ is in the center of 9 and

Y=3 c(W-i)'+ 3 c, ELWIE”,
pai

then only even powers of g occur in the first sum with p = 0. We look at the
action of the universal enveloping algebra arising from the induced represen-
tations 7 = % where s = —m + 1, m is an integer > 2. Then the finite
dimensional space V' (—m + 1) generated by the K-eigenvectors

Vot Pomatr o3 Py

is stable under the action of the Lie algebra. Since dn(¥Y) commutes with
dw(g), and since V(—m + 1) is irreducible for dn(g), it follows that dn(Y) is a
scalar multiple of the identity. Looking at the effect of ¥ on ¢_,, ,,. which is
annihilated by E_, we see that

YP_ i =P(~m+ Do_, .5 where P(T) =) ci'T9.

On the other hand, using the hypothesis that ¥ commutes with E_, and
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noting that £_q,, is a scalar multiple of ¢,,_,, and is % 0, we find
E_Yp,=YE ¢,=P(—-m—-1E_¢, = E_P(—m+ l)p,.

Since E_ is injective on H(—m + 1), [the m-th eigenspace of H(—m + 1)},
it follows that Y¢, = P(—m + l)g,,. In other words, P(—m + 1) is also an
eigenvalue of da(¥) on H(—m + 1},,.

Now instead of taking s = —m + 1, take s = m — 1 and let = be =, _,.
Then dw(E_) annihilates H(m — 1),, the space of lowest weight in
H(m —1). Note that Wo,, = img,,. Consequently

Yo, =3 ¢,i?(m—1)q, = P(m— g,
It follows that P(—m + 1) = P(m — 1) for infinitely many m, whence P is

an even polynomial, thereby proving our theorem.

Theorem 4. The centralizer of ¥ (i.e. of W) in A is the commutative
polynomial algebra Clw, W).

Proof. The expression of w in terms of W, E,, E_ shows that the above
commutative algebra contains E, E_, whence (E, E_) for every integer
p > 0.We then prove by induction that it contains all monomials E4 W7 E”?
using the commutation rules

[W,E,]=2E, [W,E_]= -2iE.

By Theorem 2, we see that Clw, W] = Z(f), as desired.

The adjoint representation of G on g extends in a natural way to an
action on U (g). If

and X; = £, with X;Egq, then

X& = X§- .. X8 where Xf =g 'Xg.

n

We also write
X8 = Ady(g)X.

Lemma 3. For X €q we have
Adg (exp X) = exp(ad X),

where (ad XX Y) = XY — YX.
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Proof. Entirely similar to the proof of the lemma in Chapter VII, §2. We
leave it to the reader.

Theorem 5. Let Y € U (g) and assume that Y commutes with some X with
X €q. Then Y commutes with translation on the right and left by exp X (as
an operator on C (G, H), where H is a Banach space). If Y is in the center
of U(g), then Y commutes with all right and left transiations.

Proof. By definition, Y is a left invariant differential operator, and we
have only to prove that Y is also right invariant. Let g = exp X. Then

f(x exp(1Y)g) = f(xg exp(1g~'Yg)),
and therefore, if R, is right translation by g, we get
YR f = R, Y?.
By the lemma, we know that Y¢ = Adg (g)Y = Y. This proves our theorem.

Remark. The theorem for Banach valued mappings is also a consequence
of the theorem for complex valued mappings, by composing the relation to be
proved with enough functionals, using the Hahn-Banach theorem.

Let # be a representation of G in a Banach space H. Let v be a C*
vector and let f, be the map

fo(x) = w(x)o,

so that by definition, f, is a C* map of G into H.

If ¥ is in 9 (g), then we can denote correctly by dn(Y) its natural image
in the space of endomorphisms of H,° (the space of C*® vectors). However,
we shall from now on often abbreviate our notation, and write

Yo = dn(Y)v.
If X €g, then from the definitions we obtain at once the formula
(4) Exfo = fmiow

By induction and linerarity, this formula extends to arbitrary elements of
QU (g), and in abbreviated notation, it reads

(%) Y, = fyo all Y € U(g).

In particular, if v is an eigenvector of ¥, then f, is an eigenvector of ¥ also.

Theorem 6. Let w be a representation of G on a Banach space H. If
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Y& U(a) and X €q, and if Y commutes with X, then dn(Y) commutes with
m(exp X) on H*.

Proof. The theorem is proved just like Theorem 5. We leave it to the
reader.

§2. ANALYTIC VECTORS

Let us use the coordinates (x, y, #) on G as in Chapter VI, §4, where we
expressed a group element as

g___(u O)(y x)( cos § sinl))

0 u/\0 1 —sinf cosé

Then from the computations of that chapter, we find an expression for the
Casimir operator in terms of these coordinates, namely

32 32 32
— 2 . e — e
(N w = 4y ( " + y2) 4y 3% 90 -

In particular, on functions which are independent of # on the right, i.e.
functions on G/K (the upper half plane), the Casimir operator, up to a
constant factor, is the operator

2 2
y2 —9—2— + '—a‘z .
ox dy
We saw in Theorem 5 that it commutes with right translations on G, and
hence that it is an invariant differential operator on the upper half plane. It

will be studied in detail in the last chapter of this book.
Furthermore, suppose that f is a C* function on G satisfying

f(gky) = emof( g)-

Then 9f/06 = inf. From formula (1), giving the coordinate expression for
Casimir, we see that o has the same effect on f as the differential operator

92 32 .9
L] AN UL R —
4y ( x? + ayl) 4yin ol

which is an elliptic operator (cf. Appendix 4).
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Theorem 7. Let w be a representation of G in a Banach space H. Assume
that for some integer n, the space H, has dimension 1, and let {v} be a basis
of H,. Then v is an analytic vector.

Proof. Let f (g) = w(g)v. Then
o (gkg) = e™,(2).

It follows that f, is an eigenvector of W with eigenvalue in. Since w commutes
with 7 (k) for all k€K, it follows that wv € H,, and since H, is assumed one
dimensional, v is an eigenvector of w, namely

@Y = Cv

for some complex c¢. Thus (@ — ¢)o = 0, and therefore by (5) of §1,
(0 — ¢)f, = 0.

Therefore f, is the solution of an elliptic differential equation. For any
functional A on H, the function Ao f is a solution of the same elliptic
equation, and is therefore analytic, by the regularity theorem (Appendix 4
and the analytic reference). Since weak analyticity implies strong analyticity
(Appendix 5), we conclude that f, is analytic, as was to be shown.

§3. EIGENFUNCTIONS OF Z(f)

We first consider spherical functions as in Chapter IV. We recall that a
spherical function is defined to be a continuous function on G, which is
bi-invariant under K; is an eigenfunction of convolution with elements of
C>(G//K) on the right; and is normalized to take the value 1 at the unit
element of G. By the convolution property, a spherical function is obviously
Cc=.

Theorem 8. Let f be a C* function on G, bi-invariant under K and taking

the value 1 at e. Then f is a spherical function if and only if there exists
A€ C such that wf = M.

Proof. Assume first that f is a spherical function. Let ¢ € C°(G // K). By
definition,

fro(x) =fo(xy“)q>(y) dy =fo(y")q>(yX) dy.

Since « is composed of left invariant differential operators, it is clear that

o(fr) = f*(wp).
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On the other hand, since « is also right invariant, we get

w(f*@) = (&f) *o.

(The differentiations under the integral sign are obviously legitimate since ¢
has compact support.) Let {y,} be a Dirac sequence in C*(G) and let
¢, = XX be its average on the left and right by K. Then

wf*(pn =f*w(p" = Anf,
where

A, = (frop)(e) = (@f *@,)(e).

Since wf* g, converges pointwise to «f, it follows that {A,} converges to
wf(e), and we see that of = Af, where

A = wf(e),

thus proving half of our theorem.

The converse will follow from a characterization of eigenfunctions of the
Casimir operator, which we now discuss. The treatment of the bi-invariant
case will follow from results on functions which are conjugate invariant under
K, so we look at conjugation by K.

We recall that an eigenfunction of the Casimir operator which is right
invariant under K (i.e. a function on G/K) is necessarily analytic, by the
regularity theorem for elliptic equations (cf. §2)).

We had defined the adjoint representation of G on U (g). If

X=X X

n

and X, = £, with X, €, then

X®=Xf---X5  where Xf=g 'Xg.

i

The association ¥ > Y2 is an algebra automorphism of U (g) for every
gE€G.

In particular, taking g = k€ K, we can average an element Y &€ U (g)
over K; that is, let

yX =fK Y* dk.

Then it is trivially verified that ¥YX € Z (), i.e. Y* commutes with W.
For any function f we let f* be the function such that

fH(x) = flkxk 1)
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We also let x% = g~ !xg. Let X €g. We have
f¥(x exp (X)) = fkx exp (1X)k ")
= flkxk ™" exp (tkXk™")).

From this and induction we obtain the formula

(1) Yi(x ) = ¥f(x)

for all Y € U (g). In particular, if f € C*(G, K), then
(2) Y¥f(e) = ¥f(e).
Theorem 9. Let A\: L (t) — C be a character, i.e. an algebra

homomorphism. Let f be an analytic function on G such that f is invariant
under conjugation by K, i.e.

flkxk™") = f(x), x€G, kEK,
and such that
Yf = NY)f
for all ¥ € L (¥). Then for all small X €g, we have
A((x™*
flexp X) = 2 —(—m—,—lf(e)-
m>0 :

Proof. This is an immediate consequence of Taylor’s formula

X"f(e)

m!

2

flexp X) = 2
and formula (2) above, together with the assumption that f is an eigenvector
for Z (f) with eigencharacter A.

Theorem 9 gives us the value of f near the origin in G, and hence
determines f on all of G by analyticity. In particular:

Theorem 10. (i) If two functions on G are conjugate invariant under K and
are eigenfunctions of Z(Y) with the same character, normalized to have the
value 1 at the origin, then they are equal.

(if) If two functions on G are bi-invariant under K, are eigenfunctions of the
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Casimir operator with the same eigenvalue, and are normalized to have the
value | at the origin, then they are equal.

Proof. The first part has already been proved. The second follows from
the next remarks.
Let f€ C*®(G //K) be a smooth bi-invariant function. Then

Wf=0.

If at the same time f is an eigenfunction of «, then by Theorem 4, for every
Ye Z (1) = Clw, W] there exists a complex number A(Y) such that

Yf = MY,

and the map
Y > A(Y)

is an algebra homomorphism of Z(f) into C, ie. a character of Z(¥).
Furthermore, since A(W) = 0, such a character is determined by its value on
the Casimir operator, i.e. by AMw).

The analyticity of the functions as eigenfunctions of the Casimir operator
can either be assumed, or be observed to follow from the regularity theorem
for elliptic equations.

We also know enough to conclude the proof of Theorem 8. Indeed, our
explicit construction of spherical functions

L(x) = jK o(kx)* dk

provides us with bi-invariant functions which are eigenfunctions of Casimir
with arbitrary eigenvalues s(s — 1) = A, taking the value 1 at the origin. In
addition to finishing the proof of Theorem 8, we also have finished Harish-
Chandra’s proof of his classification of spherical functions:

Theorem 11. The only spherical functions are the ones which we have
already exhibited, i.e. the functions f, above, s €C.

Remark. One can take another approach to the classification of spherical
functions as follows. We start with the second order linear differential
equation for a bi-invariant function f,

wf = s(s — 1)f.

Since f is bi-invariant, we can view f as a function of the A-variable only in
the Cartan decomposition G = K4 *K. The above differential equation is a
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second order linear differential equation, and it has two linearly independent
solutions. Given an eigenvalue A and a spherical function f such that «f = Af,
we can find s such that A = s(s — 1). Thus the special spherical function f, is
a solution of the same differential equation as f. [Solutions of this equation
are classical functions.] In Chapter XIV, §2, Theorem 1, we shall exhibit
another solution in terms of another variable, but which is seen to have a
logarithmic singularity in terms of the variable y in the upper half-plane
representation (actually in terms of the variable u as described there). Since f
must be a linear combination of f, and the function exhibited in Chapter X1V,
§2, and since f does not have a singularity, it follows that f is a constant
multiple of f,, as desired.



XI The Weil Representation

There is a whole aspect of SL,(R) into which we shall not go, namely the
various models which can be found in an infinitesimal equivalence class of
representations, and the possibility of finding canonical models, e.g. the
Whittaker model in such a class. We refer the reader to Jacquet-Langlands
{Ja, La], Knapp~Stein {Kn, St], and Stein [St 2] for more information in this
direction, and a discussion of intertwining operators among various models.
Helgason [He 3] gives a particularly interesting model of representations in
eigenspaces of the Laplacian. 1 include here just the special model of the Weil
representation because of its particular interest in number theoretic applica-
tions, and the possibility of constructing automorphic forms with it, as in
Shalika-Tanaka {Sh, Ta]. Besides, since Weil’s Acta paper [We] is written in
an extremely general context, it may be useful to have a naive treatment of
the special case as an introduction. Finally, the way the Weil representation is
constructed provides an excuse for giving generators and relations for SL,,
and for mentioning the Bruhat decomposition. I did not want to get very
much involved in the matters discussed here, and so the chapter is somewhat
arbitrary.

§1. SOME CONVOLUTIONS
For bER, b # 0, consider the function on R”* defined by
hb(X) - e—*m'bxz’
where x? = x-x is the dot product. This function has absolute value 1, and

hence its Fourier transform does not exist in a “naive” sense. However, by a
suitable limiting procedure, we shall be able to operate with it just as with

205
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functions in the Schwartz space in the ordinary theory of convolutions and
Fourier transforms. (Cf. Real Analysis, Chapter XIV. We assume that the
reader is acquainted with this elementary reference and will use the concepts
and theorems there without further reference.) Observe that A, is an even
function,

hy(—x) = hy(x).

We shall show that defining
1

hl ho= —
" )"

h_y

is “natural”. Furthermore, we shall prove that if f is in the Schwartz space,
then the function A, * f defined by the usual formula

by f(x) = [ ho(x = 0)f0) &

is in the Schwartz space, so is A,f, and the following formalism is satisfied, the
Fourier transform of f being defined in the usual manner,

FG) = [ f)e ™ a.

h2. (hy*f) = hyf.
h3. (hyf)" = hy* .
h4. hyf = hy((hf) o M_,)

where, for bER, b # 0 we defined M,(x) = bx (multiplication by b), and
feo M, (x) = f(bx). In particular,
hS. h_y(hy2f) = (hyf) o M_,.

In other words, our definition h 1 is such that all the usual properties of the
Fourier transform and convolution are satisfied by the function A,.

We now proceed to prove this. To avoid a subscript, we fix b and let

(p(X) = e—-rn'bxz‘
For a€R, a > 0 we define

o2 2
—mibx*, —mwax
e .

@ (x) = e

Thus we multiply ¢ by one of the standard functions in the Schwartz space. It
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is then clear that ¢, is in the Schwartz space, and we can take its Fourier
transform,

~ —- . 2 - .
Ga(y) = [ emmer eIy gy

Let g(x) = e~™". Then g is self dual, § = g. For a complex let

mxxz.

gu(x) = e~
If @ is real > 0, then

—ax*/a

. 1
X)) = e
£.(x) —7

By analytic continuation, this same relation holds for a complex with positive
real part, i.e. @ = a + ib, a > 0. Therefore

1 e-m¢’/(a+ib)
) -

@u(x) = m

It is then natural to look at the limit as a —> 0. The limit cannot be taken
under the integral sign, but it can be taken in this last expression, and yields
our definition for ¢ = h,.

Let f€S8. Then f=p& S.
Proof. We have

(fro.) = &,

We shall prove below that the limit as @ —> 0 can be taken under the integral
sign, and we obtain

(f*o) = f.

It is clear that the ordinary product f ¢ is in S, and taking Fourier transforms
shows that f* g is the Fourier transform of a function in the Schwartz space.
Consequently it lies in the Schwartz space, as desired.

We also have the analogous relation

. (fo) =f*9,
replacing f by f and ¢ by ¢.

We must now justify the limit under the integral sign

‘IJLI'% f (f*‘pa)(x)ewlm'xy dx =f (f*(p)(x)e—Z'm'xy dx.
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For this we need to find a function in £' which dominates f*¢, in absolute
value independently of a, and it suffices to prove that the function

x B> x?(fre,)(x)
is bounded for all p. Let M” be multiplication by the monomial, that is
MPf(x) = x{1- -+ 5f(x).
By the theory of Fourier transforms, loc. cit., we have
M2 (fr9) = M7((F4))

- (e )
We may replace f by f~. Also we have (¢,)” = (¢, ) and ¢, = ¢,. Hence it
suffices to prove that

(p7(f2.)y

is bounded. But D?( f(i)a) is a sum of terms,
2 ch'D ?fDr(i)a

and D"f = f, is in the Schwartz space. Also,

R I =27 \ s —ux?iati
qu)a('x) = - ( ! )xre 7x /(a+lb).
(a + ib)y”? \a+ib

We have the estimate
|D(x)x’e ™™/ @+ < | DIf(x)|| x|

< | (%)l

where f, is in S. Hence each function
fye = (D )(D%.)
is bounded by a function g in § independent of a, and
or O < [ 1y r(2)e ™2
< el

This justifies taking the desired limit under the integral sign.
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The formal properties stated at the beginning of the section which have
not already been proved are then immediate.

§2. GENERATORS AND RELATIONS FOR SL,

Let F be a field. We shall give generators and relations for SL,(F). If we
put forb€Fand a€F, a + O:

u(b)=(1 b), s(a)=(a o), w=( 0 1),
0 1 0 a°! -1 0

(* s(a) = wu(a Ywu(a)wu(a™").

then

SL 1. u is an additive homomorphism.

SL 2. s is a multiplicative homomorphism.

SL3. w?=s(-1).

SL 4. s(a)u(b)s(a™') = u(ba?.

Suppose that G is an arbitrary group with generators u(d) (b€ F) and w,
such that if we define s(a) for a # 0 by (*), then conditions SL 1 through

SL 4 are satisfied. Then SL 3 and SL 4 show that s(—1) is in the center, and
w* = 1. Furthermore,

SL 5. ws(a) = s(a"Yw.

Indeed,
wls(a) = u(a " Hwu(a)wu(a™"),
whence
ws(a)w s(a) = ws(a)u(a™Vs(a Du(—a)w™!
= | [using (4) with b = a~1],
as desired.

Let G be the free group with generators u(b), w and relations SL 1
through SL 4, defining s(a) as in (*). Then we have a natural homomorphism
from G onto SL,(F).

Theorem 1. The natural homomorphism of the above free group onto SL,(F)
is an isomorphism.

Proof. Any group with generators u(b) (bE F), w, and s(a) defined by
(*), satisfying our stated relations, whether it is the free group or not, consists
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of all elements of the form
u(b)s(a) or  u(b)s(a)wu(c).

Indeed, let N be the subgroup of all elements #(b) and let 4 be the subgroup
of all elements s(a). Then SL 4 shows that NA = AN. Let G’ be the subset
G’ = NAU NAwN. Multiplying NA on the right by w or N maps N4 into G'.
Multiplying NAwN by N on the right does the same thing. From the identity

wulchw = u(—c Hw s(Ju(—c™ 1)
(immediate from the definition of s(c)), and SL §, we conclude that
NAwNw C NAwN.

Hence G’ = G. To show that SL,(F) is the free group, it now suffices to
prove the next lemma.

Lemma. Every element of SL,(F) has a unique decomposition of the form
u(a)s(b) or u{a)s(b)wu(c),
i.e. SL(F) can be decomposed uniquely into the products

NAUNAwWN.

Proof. Let F? be the vector space of row vectors, and let SL,(F) operate
as matrices on the right of F2. Let e, be the unit vector

e, = (0, 1).

Then we see at once that N is the isotropy group of e,, i.e. is the set of
matrices g € SL,(F) such that e,g = e,. Hence N \ SL,(F) is in bijection with
its orbit of e,. The image of an element s(a) is

eZS(a) = (05 a—l),

and consists of those vectors whose first component is 0. The element a is
uniquely determined. If we multiply this by w on the right, we get (—a~', 0).
Multiplying further by u(c) on the right yields

(—a™ ', —ca™").

This yields a vector with non-zero first coordinate, determining a uniquely,
and then ¢ is uniquely determined by the second coordinate. This proves that
the decomposition is unique, and proves the lemma, as well as Theorem 1.

The decomposition of the lemma is called the Bruhat decomposition.
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Remark. Over an arbitrary field, there is no question of having positive or
negative elements in the field, and so 4 was taken to be the full image of the
multiplicative group of F under the homomorphism s. Over the reals, of
course, we have the slightly finer distinction arising from the parity.

§3. THE WEIL REPRESENTATION

Theorem 2. Let S = S(R?) be the Schwartz space of R%. There exists a
unique algebraic representation r of SL,(R) on S (so we impose no continu-
ity condition) satisfying the following properties:

(1) r(w)f = = if;
(2) r(u(b))f = hf  where h,(x) = e " bER

This representation also satisfies

®3) r(s(a))f(x) = af(ax), a+#0.
It is unitary for the ordinary hermitian product on S.

Proof. We have to check that the above operations defined in terms of
a, b, w satisfy the relations of §2. Note that

rwi = =

The easiest way to proceed is to verify first that if we define r(s(a)) by
formula (3), then the relation amounting to (*),

r(wr(u(d))r(wyr(u(6™") = r(u(=b=))r(w=")r(s(b))

holds. This consists in using the properties h 1 through h 4 of §1, and is a
routine matter, albeit a little tedious. The rest of the theorem is then clear,
since with the above definition of r(s(a)), we see immediately, for instance,
that a > r(s(a)) is a homomorphism.

We now identify R? with the complex numbers C. Let C' be the group of
complex numbers of absolute value 1. Let x be a character of C!, and let

S(C, X)

be the subspace of S(C) consisting of those functions f satisfying

flaz) = X(a)_’f(z), aeClzeC.
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Lemma 1. S(C, X) is stable under the representation r.

Proof. Let o’ denote the complex conjugate of a. Then
hy(az) = hy(z)

if aa’ = 1, and so r(u(b))f lies in S(C, X) if f does. Also,

flax) = [ f(p)e T g,

Let y > ay. The measure on R? = C is unchanged since |a] = 1. Hence
flax) = [ flap)e™m T = gy

—1n
=X(a) f(x),
thus proving the stability of §(C, X) under the representation.

We want to extend the representation r to GL; (R), and first make some
remarks on abstract algebra.
Let G be a group and let 4, B be subgroups such that G = AB. Let
p: 4 — G, and y: B —> G, be homomorphisms into another group. Assume
that whenever an element g € G can be written
g=ab=ba
with a, a’€ A4 and b, b’ € B, then

o(a)y(b) = ¢ (&)e(a),

and also the restrictions of ¢, ¥ to 4 N B are equal. Then we can extend @, ¥
uniquely to a homomorphism # of G into G,, by defining

h(ab) = ¢(a)y(b).

The verification is trivial and left to the reader.
Suppose in addition that B is normal in G and AN B = {1}.Then the
relation ab = b’a’ implies

aba=''= b'a'a”l,

whence @’ = a and ab = b’a. Thus for the existence of the extension h above,
it suffices to verify that if &’ = aba ™!, then

p(a)p(b)p(a)™"' = y(b).

We apply this to our representation r. Let w be a character of C* (not
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necessarily of absolute value 1) restricting to x on C!, For @ > 0 let

v(a) = ( a 0 )
0 1
Define

(4) roo(@)f(2) = |alw(a)f(az)

for any complex number a such that aa’ = a. This is well defined, i.e.
independent of the choice of a. We contend that r_ is a homomorphism of
GL; (R) into the group of algebraic automorphisms of S(C, w). In view of the
remarks on algebra which we just made, it suffices to prove that for
x € SL,(R),

S hond(s S )AL oM 3

If this relation is proved for x, x’ € SL,(R), it follows for xx’. Hence it suffices
to prove the relation for

(1 b) B _( 0 1)
X = and X =ws= .
0 1 -1 0

It is then immediate from the definitions, using the expressions
(a 0)( 0 1)(a"’ 0)=(a 0)( 0 1)
o 1/\ -1 o/\ o 1 0 a'J\ =1 of
(a 0)(1 b)(a"" 0)=(1 ab)
0 1/\0 1 0 1 0 1

We also observe that r_ is unitary, i.e. each operator r (x) for x € GL;' (R)
is unitary, with respect to the ordinary hermitian product on S(C).

Theorem 3. Let L¥(C, w) be the completion of S(C, w) with respect to the
L%-norm. Then LX(C, ) is irreducible for r,,

Proof. The algebraic subspace S(C, w) is dense in L*(C, w). Map the
space S(C, w) into a function space on C by the mapping T such that

() Tf(z) = |zlw(2)f(2).

Note that
Tf(ez) = Tf(z)
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for any complex number € of absolute value 1. Thus 7f has the advantage of
being a function of the distance from the origin, and can therefore be viewed
as a function on R*.

Furthermore, let

T T T_
@ (4] 1’
i.e.

ro(x)f = T(r(x)(T~Y)).

Then on a function f such that f(ez) = f(z) for all € with |¢] = 1, we have the
operation of rI described by

(6) r:((‘ b))f(2)=e“’""’”'f(Z),
0 1

) (( °))f<z)=f(az)
0 1

for any complex « such that aa’ = a > 0.
We view Tf as a function 7f* on R* by defining

(8) (T)* (1) = Tf(:'/?) = Tf(2)

for any complex z such that zz* = . Then one verifies at once

Lemma 2. The association
f = (ThH

is a unitary isomorphism with respect to the hermitian product taken with
Lebesgue measure on C and ndt/t on R*.

Proof. Immediate, and left to the reader.

We have now shifted the study of r, to the study of the representation rT

on the space TS(C, w), which is dense in L%([R™), with respect to the measure
dr/t, i.e. multiplicative Haar measure.

Let B *(R) be the group of matrices
(“ b), a>0, bER.
o 1

We denote the restriction of rT to B *(R) by #. It is an algebraic representa-
tion of B *(R), which extends to a unitary representation on L*R*), given
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by

9) w(( Lo ))f(t) = e~ mbif(p),
0 1
a 0

(10) w(( ))f(t) = f(at).
0 1

In order to prove Theorem 3, it suffices therefore to prove

Theorem 4. The representation w on B*(R) defined by (9) and (10) on
LY R*) is irreducible.

The proof comes from a couple of abstract nonsense lemmas in L?
theory.

Lemma 3. Let (X, ) be a o-finite measure space. Let
A: LY(X, p) = LYX, p)

be a continuous linear map which commutes with multiplication by all
functions in £°(X, p). Then A = M, for some g€ L2(X, p), where M, is
multiplication by g, that is, Mf = gf.

Proof. Let o€ £%(X, ) be an essentially positive function. For instance,
decompose

X=UX,

as a disjoint union of sets of finite measure, and let ¢ on X, be the constant
function

1
nhu(x,)/?

For any f € £°n £? we have 4(¢f) = g4 (f) = fA(p). Hence
Agp
Af = — f.
f (p f

Let g = Ap/@. It suffices to prove that g is bounded. If g is not bounded,
given N there exists a set £ with measure

0< w(E) < w0

such that | g(x)| > N for all x € E. Let x be the characteristic function of E.
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Let

g
f==x
gl 7*
whenever g # 0, and 0 whenever g = 0. Then
A( ixE) B e = gxe > NXe.
gl &l

The L2-norm of this last function is Nu(E)!/2. But

2 @2
Z—L(lgl) dp,Q F"(E)

This contradicts the boundedness of 4, and proves our lemma.

“.g'.x
|8l 4

Lemma 4. Let R* be taken with its Haar measure dt/t. Let

A: LXRY) = LYR™Y)

{XI, §3]

be a bounded linear map, which commutes with multiplication by all
functions €™ for all bER. Then A commutes with M,, for all @€ E*(R™).

Hence A = M, for some g€ E°(R™) by Lemma 3.

Proof. We first prove the assertion of the theorem when ¢ € C°(R™). Let
N be a large integer, and let ,, be the extension of ¢ to R* by periodicity

over the interval (0, N}, so that the graph of {,, looks like this.

0 v N v 2N vy

Figure 1

Let E be an interval not containing 0 and contained in (0, N]. Let xz be its

characteristic function. Then
Aoxe) = AQWnxe) = ¥nvd (xg)-
Keeping E fixed and letting N —> oo we get

A(pxe) = e4(xg)-
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This is true for all choices of intervals E in R* not containing 0. Linear
combinations of characteristic functions of such intervals are dense in L?. By
continuity, it follows that

A(ef) = 9A(f)

for all fe 2

We now extend the validity of this relation to all bounded measurable
functions. Let p & £*. There exists a sequence {¢,} in C°(R") such that
¢, —> ¢ almost everywhere, and such that the functions ¢, are uniformly
bounded. (For instance, approximate ¢ first over a finite interval [1/N, N},
and let N = o0.) If f€ £, then ¢, f —> ¢f in L? by the dominated conver-
gence theorem. Hence

0, Af = A(e,f) —> A(ef)
and also
P, Af —> QAf.
This proves our lemma.

To prove the desired irreducibility of Theorem 4, we consider the projec-
tion A on an invariant subspace. Write foa for the function such that
(fea)x) = f(ax). Then by Lemma 3, for given a > 0,

A(foa)=g(foa) = (Af)ca

or in other words,

A(f e a)(r) = g(0)f(ar) = g(ar)f(ar).
This implies that g(¢) = g(ar) for almost all ¢. By Fubini’s theorem (in both
directions), the function g(ar) — g(¢) is 0 for almost all (a, 7). Hence g is
essentially constant, and this implies that 4 is the identity, as was to be
shown.



XII Representation on °L*(T'\G)

The algebraic and arithmetic properties of SL, begin to be felt when we

consider the representation on I'\ G for some discrete subgroup I'. In this
chapter, after a general discussion of the nature of the factor space I'\ G or

IF'\G/K =T\$, which is essentially classical, we prove that on a certain
subspace °L%T\ G) of L¥T'\ G) the representation is completely reducible
when T = SL,(Z). The method works just as well for any “arithmetic”
subgroup, i.e. a subgroup of finite index in SLy(Z). It uses the Poisson
summation formula, in addition to some estimates. It has the advantage of
being very rapid and of using a minimum of analysis.

On the other hand, the method fails for more general discrete subgroups,
and a discussion of that situation is given in Chapter XIV, where the general
case is treated by a method of Faddeev.

The main result of this chapter, the complete reducibility of °L¥T\ G), is
due to Gelfand-Graev-Pjateckii-Shapiro [Ge, Gr], where an adelic version is
given. I shall follow essentially without change Godements’s article {Go 5].
Godement treats a more general case, but in line with our general policy, we
feel that it is easier to read a proof first for SL(Z) = T, and then observe that
the proof holds in greater generality.

§1. CUSPS ON THE GROUP

Let I' be a discrete subgroup of SL,(R). A one-parameter subgroup N of
G = SL,(R) is called unipotent if N is the subgroup consisting of all elements

exp tX

for some nilpotent 2 X 2 real matrix X, and all t€R. We say that N is
cuspidal for I' if N/NNT is compact, or equivalently, N contains a non-
identity element of T

219
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The typical example of a unipotent subgroup is the usual N, consisting of

all matrices
(' b) bER.
0 1

Straightforward matrix multiplication shows that the normalizer of N, in
GL,(R) consists of all triangular matrices

(“ b), ad # 0.
0 d

We let Norm(N) denote the normalizer of N in SL,(R).

Theorem 1. All the one-parameter unipotent subgroups of SL,(R) are con-
Jjugate. Let N, N' be two unipotent subgroups. We have N = N’ if and only
if Norm(~N) = Norm(N').

Proof. Given X nilpotent, there exists a matrix M € GL,(R) such that

MXM”=(0 l)
0 0

by the Jordan normal form theorem. We can change M by

b

if necessary, so that without loss of generality we may assume that M lies in
GL3(R). Adjustment by a positive scalar even allows us to assume that M lies
in SL,(R), so that

MLM”=(O il)
0o 0

Then the group of elements exp(tMXM ~!) with tER is conjugate to
{exp (¢X)} in SL,(R). This shows that all unipotent one-parameter subgroups
of SL,(R) are conjugate in SL,(R).

Let B be the Borel subgroups of triangular matrices in SL,(R), namely B
consists of all matrices
0 a!

The set of one-parameter unipotent subgroups is the orbit of N, under
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conjugation by SL,(R), and is therefore in bijection with the coset space

SL,(R)/B.

Nx=(1 O)NO( 1 0)
X 1 —X 1

X 1

The group N, consists of all matrices

(1) ( I — ux u ), “ER.

x2u 1+ ux

For each x€R let

Since any 2 X 2 matrix can be written in the form

()= (2 o)l 2)

with x = ¢/a, provided a # 0, we see that the groups N (x €R) form a set
of representatives for those cosets of SL,(R)/B containing a matrix as above
with @ # 0. It is then immediately seen that there is only one other coset
represented by the element

-1 0

giving rise to the unipotent subgroup

{2 2

Thus {x, oo} parametrizes the one-parameter unipotent subgroups of SL,(R),
bijectively.

Theorem 2. A subgroup N, is cuspidal for SL(Z) if and only if x is rational,
or oo.

Proof. This is immediately seen from the explicit description of matrices
in N, given in (1) above. If the intersection of N, and SL,(Z) contains an
element other than 1, then « = n is an integer and 1 — ux is also an integer,
so x is rational. The converse is also clear.
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Let T be a subgroup of SL,(Z), of finite index. Then N is cuspidal for T if

and only if it is cuspidal for SL,(Z).

Proof. If the intersection of N with SL,(Z) contains an element other
than 1, then a power of this element lies in I'. Furthermore N does not
contain any elements of finite order, so N is cuspidal for I'. The converse is
clear.

Two unipotent subgroups N, N’ are called I'-conjugate if there exists an
element yE€T such that yNy~! = N’. Consider the set of all unipotent
subgroups which are cuspidal for I'. Then I" operates on this set by conjuga-
tion, and a I'-conjugacy class (orbit under T') is called a cusp of T

Example. For I' C SL,(Z), the cusps are in bijection with the double cosets
IP\SL,(Q)/B(Q),

where B(Q) is the group of rational triangular matrices in SL,(Q). This is
immediate from the parametrization by means of x, co with x rational. When
I' = SL,(Z), then there is only one cusp. Otherwise, the number of cusps is
bounded by the index

(SLy(Z) : T).

Theorem 3. Let T be a discrete subgroup of SL,(R) such that the quotient
'\ SL,(R) is compact. Then there is no cuspidal group for T'.

Proof. We have to show that T’ contains no unipotent matrix other than
1. We first prove that the conjugacy class of any element y under SL,(R) is
closed in SL,(R). Indeed, let W be a compact set such that

SL,(R) = WT.
Consider the map of SL,(R) into itself given by
g > gyg ™"
Its image consists of the conjugation by elements of W of the set

S = {oyo_], OET}.

This set § is contained in I', and is closed, discrete. If there is a sequence of
elements g, € W and o, €T such that

8,0,Y0, 'g, convergesto h

for some element h € SL,(R), then after selecting a subsequence if necessary,
we may assume that g, converges to an element g € W. Then

o,y0, ' —> g7 'hg,
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and hence a,yo, ' is constant for all n sufficiently large (but we are not saying
that o, itself is constant!), because § is discrete. Therefore

g,0v0 " 'g, ! —> goyo g7
This proves that the conjugacy class is closed. The proof is concluded by
observing that any unipotent element # 1 in SL,(R) has a non-closed
conjugacy class. Indeed, the element is conjugate to

(l u), u # 0.
0 1

Conjugating this by a diagonal matrix, we see that

5200 o )= )

as a —> 0, and the conjugacy class of our unipotent element is not closed.
This proves Theorem 3.

The word cusp comes from the geometric situation arising on the upper
half plane. Let G = SL,(R) and £ = G/K as usual. Let T be a discrete
subgroup of G. Then '\ § is an interesting object. Let us call a fundamental
domain F for I in H a subset of § which contains a representative for each
orbit of T in § (operating by multiplication of the left), and such that if two
points z, z’ lie in the same orbit, then they lie on the boundary of F. If
I' = SLy(Z), then it is an easy matter to prove that a fundamental domain is
given by the illustration in Fig. 1. Cf., for instance, Serre’s Cours d’Arith-
métique, or practically any book on elliptic functions, e.g. mine.

[
&

Figure 1
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The single cusp with respect to I is determined by the standard unipotent
group N, We could consider the space consisting of '\ and the cusp,
topologizing this space by defining a system of neighborhoods of the cusp to
consist of all elements of I'\$ having a representative in the set F, consisting
of all x + iy such that

-4< x <} and y 2 a.

(Cf. Shimura [Sh], Chapter 1.) The element

W =
-1 0
transforms the fundamental domain into the figure shown in Fig. 2(a), i.e. it
reflects the fundamental domain across the arc of circle. This shape now

looks like a cusp (the sides coming down to the real axis have a common
vertical tangent at 0). This is the origin of the name cusp.

{2} (b Figure 2

In general, Siegel [Si] has shown that if T is a discrete subgroup of SL,(R)
such that T\§ has finite volume, then we can always find a fundamental
domain F of the following form. It consists of a finite number of pieces

FOU U Fa

a=1
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where:

i) Fgis compact with piecewise analytic boundary.
il) There exists x5 > 0 such that F is contained in the strip

- Xg € X € Xg

iti) There is a number a (large) and elements g, (a=1,...,n) in
SL,(R) such that F, = g F,.

Cf. Gelfand-Graev-Pjateckii-Shapiro [Ge, Gr], Chapter 1. In this book, we
wish to emphasize representation theoretic topics and analysis rather than
Riemann surfaces, and so we do not include the proof of this result. For other
facts concerning fundamental domains and Riemann surfaces, cf. Petersson
[Pe 1]. We shall return to these ideas when we discuss the Faddeev paper in
Chapter XIV.

We shall now discuss growth conditions and how they correspond under
the lifting map ¢ —> .
We consider a special case. Let I'y be the group of matrices

(o)

with n €Z. It is the intersection of SL,(Z) with our standard unipotent group
Ng. Suppose that a function f on the upper half plane is invariant under T,
This means that

fz + 1) = f(2), z€P.
Suppose also that f is holomorphic on . The map

7} anwiz =g,

is a complex analytic map which factors through I'y. For a fixed value of y, it
maps the segment

—‘%<x<%a y=y0
on the circle

e~ 2myy e2m’x .
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Figure 3

As y —> co the radius of the circle shrinks. Thus z > g, for Im(z) > Bis a
complex analytic isomorphism of I'y\ § onto the punctured disc

0<|q| < e B

Let f be a holomorphic function on §, invariant under I';,. Then under the
analytic isomorphism z > g, the function becomes a function f*(g), defined
in a neighborhood of 0 in the g-plane, excluding 0. If f* has a pole at 0, we
say that f is meromorphic at infinity. If f* is holomorphic at 0, we say that fis
holomorphic at infinity. In the case of a pole, we have a power series
expansion

H2) = f*(q) = a,q".

When f* is holomorphic at 0, this power series starts with a constant term or
higher. If there is a pole, then the first term

-r __ 27y, 2mix
aq = q.e (4

with a, # 0 grows exponentially like e>™ as y — oo. The condition that
there be no pole is therefore that f is bounded at infinity, i.e. as y ~—> oo.
Consider now one of our lifted functions ® defined by

CIJ(u()(; T )r(())) = p(x + iy)y™me¥m,

The above discussion shows that if ¢ is holomorphic on © and invariant
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under Iy, then

@ is holomorphic at infinity if and only if
|®(g)] « Ve Jor Vg > 0.

In other words, ®(g) has at most polynomial growth at infinity.

A similar discussion applies to a subgroup of I'; of finite index, nec-
essarily consisting of matrices of the form

(1 dn), —
0 1

where d is some fixed positive number. Instead of a strip of width 1 we have
to use a strip of width d. Otherwise, the discussion is entirely similar.

A similar discussion also applies in the neighborhood of an arbitrary
cusp, by taking an inner automorphism with an element of SL,(R).

§2. CUSP FORMS

Let T be a discrete subgroup of G = SL,(R) and assume for simplicity
that I’ has only a finite number of cusps, i.e. that there is only a finite number
of I'-conjugacy classes of unipotent subgroups N of G whose intersection with
T is not trivial. We let m be a positive integer.

We denote by @(I'\ G, m) the space of C* functions on G satisfying the
conditions for all g€ G and y&T:

AUT 1. f(gr(8)) = e™f(g).
AUT 2. flyvg) = f(g).
AUT 3. p-f =0.

AUT 4. At every cusp, the function has at most polynomial growth.

The third condition is the condition corresponding to analyticity on the upper
half plane, and shows that f is at any rate real analytic on G, cf. Chapter IX,
§4. The fourth condition says that our function is analytic at infinity.
Conditions AUT 1 and AUT 2 can be interpreted in terms of the lifting
procedure of Chapter IX, §4 as saying that if f = @ is lifted from the function
@, then

o(vz) = @(z)(cz + d)™
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—1 (a b)
Y = .
¢ d

Often in the classical literature, the action of y is written on the right, to
avoid having to take an inverse. Thus if

Y= ,
c d

Pl [Vln(2) = @(yz)(cz + d) "

We then have the right-hand rule

for all yeT, with

then we write

[vY1m= [Y]nl Y ]

The subspace of @ (I"\ G, m) consisting of those f satisfying the additional
condition

rN\Nf(ng) dn =0

for every cuspidal subgroup N of G is called the space of analytic cusp forms,
and is denoted by @I\ G, m). We have abbreviated N N by T,.

We also consider LT\ G), and let °L¥I'\ G) be the closure in LT\ G)
of the space spanned by all bounded continuous functions f such that for all
£2E G, we have

. dn=290
CUSP 1 I‘N\Nf(ng) n

for all cuspidal N. Let
7: G — Aut LT\ G)
be the unitary representation by right translation, i.e.
7(s)f(g) = f(gs).

We observe that °L%T"\ G) is stable under =, because

Joo o T)ng) dn = [ fCngs) dn = 0.

NAN

Also note that if the cuspidal condition (1) is satisfied for one cuspidal
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subgroup N, then it is satisfied for yNy ! if yET. Indeed,

y(TNN)y ' =Tn(yNy™"),
so if we let
M = yNy~,
we obtain

er\Mf(mg) dm =er\Nf(YnY”‘g) dn
= rN\Nf(rw“g) dn

=0
by assumption.

We now assume for the rest of the section that
T = SL,(Z),

in order to deal with the g-expansion without a more elaborate language
(throwing back the situation at an arbitrary cusp to the standard one by an
inner automorphism). Thus Ty is the group of matrices

(l n)’ neld.
0 1

We let @& @ (T'\ G, m) correspond to the function ¢ on §. In view of AUT 3,
we know that ¢ is holomorphic on £, and the growth condition AUT 4 tells
us that ¢ is holomorphic at infinity, i.e. has a g-expansion

o
o*(q) = 2 a,q"
n=0

2

2miz

where g = €>™ = ¢ ?™e?™*_ This is essentially a Fourier series. We have

1 )
e *™aq, =f (x + iy)e 2> dx
0

and therefore
1
aq =f o(x + iy} dx.
0
Using the definition of the m-th lifting

@(()(’) ’]‘ )rw)) = p(x + iy),
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we find

a0=f e"”‘”y""/z(b(u(y x)r(ﬂ))dx
A 0 1
1
ol 1l el
, o 1/\lo 1
1
wf oy Tk
L \lo 1

where C(g) is a number depending on g. Therefore we find a condition
equivalent to the cusp condition (1) in terms of a,; namely:

CUSP 2. Let € @(T\G, m), and let ay be the 0-th coefficient in the
g-expansion of the associated function @ on . We have a, = 0 if
and only if

for all ge 6.

Of course, the integral in CUSP 2 can be rewritten as

fFN\N ®(ng) dn = 0.

Theorem 4. We have @%T'\ G, m) c °L*T'\ G).

Proof. Let @ be the function on § corresponding to a lifted function @ in
@%T\ G, m). Since a, = 0, we see that the power series in g starts with a term

ale—217ye21rix
and hence that
lp(x + )| < ™2,

that is, @ decreases exponentially for y —> 0. The order of growth of ® is at
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most like
y"e(x + i),

and consequently @ is bounded. Since I'\ G has finite measure (modulo K the
measure is that of a fundamental domain with respect to

dxdy

y2

on the upper half plane), it follows that & is in £2, as was to be shown.

We end by giving a classical estimate of Fourier coefficients of cusp
forms due to Hecke.

Theorem 5. Let f be a holomorphic function on 9, satisfying
Alvl= 1, all yET.

Assume that its O-th coefficient in the g-expansion is 0, i.e.

o0
@) = 2 aq”.
n=1
Then: (i) |f(2)| <y~™2 for y —> .
(i) |a,| = O(n™?.
Proof. The function h(z) = |f(z)|y™/? is invariant under T, as is seen at
once from the definitions of the operation [y],, YET. Also, h(z) — 0 as

y — oo. Hence £ is bounded on the fundamental domain. This proves the
first assertion. Next, we have

1 dq
a, = Yari ff*(Q) q,,.,_l

where the integral is taken over a small circle around 0 in the g-plane. Note
that dg/q = 2wi dx. Hence

1
gl < [ 1f(x + )le*™ dx
0

< e21myy -mf2
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for all values of y > 0, using the first part of the proof. Let y = 1/n. The
second inequality concerning a, drops out.

§3. A CRITERION FOR COMPACT OPERATORS

This section contains some abstract nonsense lemmas designed for appli-
cation in the next section. We give a criterion for an operator to be compact.

Theorem 6. Let X be a locally compact space with a finite positive measure
u. Let H be a closed subspace of LY X, u) = LX), and let T be a linear
map of H into the vector space of bounded continuous functions on X.
Assume that there exists C > 0 such that

1T < Cllfll2 all fe H,

where || || is the sup norm. Then
T: H— L¥(X)
is a compact operator, which can be represented by a kernel in L*(X X X).

Proof. We know that an operator which can be represented by a kernel in
L? is compact, cf. Chapter I, §3. To get hold of the kernel, we use the
hypothesis that for each x € X, the map

f > Tf(x), fEH,

is continuous linear on H. Hence there exists a function g, € H such that for
all fe H, we have

(TH(x) = <f 0 = [£(0) a.0) &.

Since T7 is a continuous function on X, this also shows that

x > q,

as a map from X into H C L*(X) is weakly continuous, and therefore weakly
measurable. Also, its image is bounded in L*(X). Our theorem will therefore
result from the next lemma.

Lemma 1. Let X, Y be finite measured spaces such that the o-algebra of
measurable sets in Y is generated by a countable subalgebra. Given a
weakly measurable map

g: X — LXY)
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whose image is L*bounded, there exists Q € %X X Y) such that for
almost all x € X we have

7.(») = Q(x,»)

for all y ¢ S, where S, is a set of measure 0 in Y, depending on x.

Proof. In the next lemma, we shall prove that the map

x > g0 0> = [ 1a.)P &

is measurable. It is bounded, whence in £'. For any step function g on
X X Y with respect to rectangles (i.e. products of measurable sets in X and Y
respectively) we have

IESSrEe] dydx|2< 181 [ [ 14.(»)ay dx.

The proof is the same as the usual proof for the Schwarz inequality, expand-
ing 0 < (u4 + vB)? with u = A-B and v = —|4|*. Hence the map

g [ [ 802 00) dax

is L2-continuous. Hence there exists Q € £*(dx ® dy) such that for all
characteristic functions ¢, ¢ of measurable sets in X, ¥ respectively, we have

[ 2@ [ 400 & ax = [ o(x) [ ¥(2)Q(x.y) dydx.

For each { there exists a null set Z, in X such that if x& Z,, then

[v0a0) & = [ ¥(»)Q(x ) &.

Using countably many y's, we get this relation for all x outside a set Z of
measure 0 in X. Hence for x & Z, we get

4:(») = Q(x,y),

for all y ¢ S,, where S, is a set of measure 0 in Y. This proves our lemma.
There remains the little point about measurability.

Lemma 2. Let H be a Hilbert space with countable base, and let X be a
measured space. If f, g: X —> H are weakly measurable maps, then the map
x > {f(x), g(x)), i.e. the map {{, g>, is measurable.
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Proof. Let {u;} be a Hilbert basis of H, and let
) = 2 fi(x)m,
g(x) =2 &0

be the Fourier expansions of f and g. Then by hypothesis, each f, g is
measurable, and

f(x), g(x)> = 2, fi(x) gi(x)

is a limit of measurable functions, whence measurable, as desired.

§4. COMPLETE REDUCIBILITY OF °L% T\ G)

We consider I' = SL,(Z) and let = be the right translation representation
of G = SL,(R) on °LXT\ G), so that

7(V)f(x) = f(xp).
If p€ C2(G), then

7 (p)f(x) = fG (D (x)e(y) &
= [ F) () d.
G

For simplicity we write #(gp) instead of #'(¢). The main result of this section
is

Theorem 7. If 9 € C°(G), then there exists a number C,, such that for all
fEOLXT\ G) we have
lw (@Il < Coll flls

where || || is the sup norm.

In view of Theorem 6 in the last section, we obtain
Corollary. The operator =() is compact.

Using I, §2, Th. 1 we get:

Theorem 8. The representation w by right translation on °L* T\ G) is
completely reducible, and each irreducible component occurs only a finite
number of times in it.
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As usual, G = NAK and Ty = ' N. We proceed with the proof of
Theorem 7. We have

n(p)f(x) = fG FO)p(x~Y) dy

=er\6 > o(x"np)f(ny) &

n€Ty

Jo (%, ¥)f(y) dy

“Jry\G

T y) =, q>(x"((1) m)y).

meZ 1

where

Letting @, , (m) abbreviate each term in this sum, we find

Jo(x,2) = 2 @, (m) = X &, ,(m)
meiZ meZ
by the Poisson summation formula. Thus the effect of #(¢) is given by the
kernel J, which we shall estimate.
We write the NAK decomposition in the form

i N o
0 ¢ 0 1

with ¢, v, > 0, so that in the upper half plane G/K, we have

xi=uy, + iv,.
We also write x = n.a k..
We fix a number ¢ > 0 and let the Siegel set F, consist of all x € G such
that u, lies in a compact set &, in N, and o, > ¢. Choosing ¢ sufficiently

small, we have
G=TF

-
The picture of F, in G/K is shown in Fig. 4(a). To estimate = (p)f(x), we may
assume without loss of generality that x € F,, because f is invariant on the left
by I'. Note that the integral

Jee

can be viewed as an integral over the “fundamental domain” for Iy, which is
the inverse image in G of the region drawn in Fig. 4(b). We have to estimate
Jo(x,y)forx€F,.
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Figure 4

As a matter of convenient notation, we denote by { a compact set, and
index & to denote in what space, e.g. {; is a compact set in G, etc., fixed in
advance. All constants will depend on such compact sets.

We first observe that

(N if xEF, then x€Qya.KCal.

Indeed, matrix multiplication gives the commutation

I ulfo, O} _Jfo Ol ) _|o, o
0 1/\0 1 o 1/\0 1 0 1

so that o4’ = u and ' = o] 'u. Since v, > ¢, it follows that Qya, Ca, 2y
and our assertion is obvious.
Let w, = x "'a_. Then we also obtain

) w, = x"lax €8Q;.

Furthermore, letting w, , = 4"y, we contend that if (x ~'ny) # 0 for some
n € I'y, then we may assume that

(3 w,, = a, y€Ellg.
To see this, write

S TV PRI | -1
x"my = x"a-a; nn,a, a; ak,.

The left-hand side lies in a compact set, and we have seen that x ~'a, lies in a
compact set. The two elements

a 'mna, and a7 'ak
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lie in N and AK respectively, and have to lie in compact sets. Hence
a,€a,,, and y € Na, {1, K. Since y can be changed on the left by an element
of I'y, our assertion follows at once.

Lemma 1. For each positive integer d there exists a constant C(@,d, F,)
such that

|95, M) < C(9,d,F,) 0, ]\ 7%

Proof. By definition,

a - l u — DariAu
& ,N) =] o|x '( )y)e N gy
g fk 0 1

=f @ x“ax-a;‘( 1 u )ax-ax_‘y)e‘z””"‘ du
R 1

=f 1) wx-a;’( 1 u )ax-wx‘y)e'z”i’\" du.
R 0 1

Carrying out the matrix multiplication, we change variables, let

w= v, aw = v " du.
We obtain
@x,y(l) - Uxf (P(wx( | U )wx,y)e—Zwi)\c,u du
R 0 1
= Dxé)w, x,y(va)S
where

i
(pw,x,y(u) = "p(wx( 0 l; )wx,y)’ W,y wx,yEQG.

This last function is a C*® function of u, depending on parameters in a
compact set. Integrating by parts 4 times yields the desired estimate

|0, ,, M < Clo, d, F )N,

whence the lemma follows by replacing A with o A.

We apply this to estimate the sum for Jo(x, y), using the cusp condition

= f t .
j;N\Nf(ny) dn =0 foralmostall yeG
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We had seen that
m(@)f(x) = [

Tw\

o 2 B, (mf() @
melZ

The term with m = 0 is equal to

LN\GLﬂx_'"J’)f()’) dn dy =j;v\Gfr’\Nchp(x'lnn’y)f(n’y) dndn’ dy.

Invariance of integration under translation shows that the term @(x ~'nn'y)
can be replaced by ¢(x ~'ny), and our last expression is equal to

fN\G [qu;(x"ny) d"'fr,v\zvf(n,y) dnl] dy =0

by the cusp condition.
For m = 0 we use the estimate of Lemma 1, to find

T vi”d—l—- 17)
() () <<”§0 fr AT pplon e
y€alg

<ol f WO

r€alle
< 0! 9u(a,26) 2| fll

by Schwarz, thereby proving our theorem.



XIII The Continuous Part
of LT\ G)

We now look at the orthogonal complement of °L%T\ G) and prove a
spectral decomposition theorem following Godement’s paper [Go 2}, using
the Poisson summation formula. The method works for arithmetic subgroups
T, and has the advantage of being rapid and easy. It fails for more general
discrete subgroups, and the question is reconsidered by other methods in the
next and last chapter. The spectral decomposition is achieved by the Ei-
senstein transform, which maps the orthogonal complement of °L*(T"\ G) and
the constant functions on the L? space of a positive real line—with our
normalization, the upper half of the imaginary line Re s = 1.

For simplicity, throughout this chapter, we let

T = SLy(Z).

In the Iwasawa decomposition, the group I'y = I'm N is then the group of

0 1

with m &Z. The factor space I'\G has finite measure. It is useful to keep in
mind that except for the K-component on the right, I'\ G is like I'\ §, where
$ is the upper half plane, § = G/K.

§1. AN ORTHOGONALITY RELATION

The theta transform

Let G = NAK be the Iwasawa decomposition of G = SL,(R). In Chapter
X1, §2, we have already studied the coset space N \ G. We let G operate on R?

239
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on the right. The isotropy group of the unit vector e, = (0, 1) is precisely ¥,
and thus N \ G is in bijection with R? — {0}, i.e. R? from which the origin has
been deleted. We shall denote by S(N \ G) (Schwartz space of N\ G) the
space of functions on N\ G which are restrictions of functions in the
Schwartz space of R%. We can therefore identify S(N \ G) with S(R?). (For
the Schwartz space, cf. Real Analysis.)

We let the theta transform (theta series)

T: functions on N \ G — functions on '\ G
be defined by
To(x) = 2 o(yx).

Ty\T

The transform is defined only on the space of functions for which this series
converges, absolutely. We look into this convergence. If

_(a b)
v=\. 4}
ey = (0, )y = (¢, d).

If y €T, then ad —bc =1 and therefore (¢, d) is a primitive vector of integers,
that is ¢, d are relatively prime. Conversely, any relatively prime pair of
integers (c, d) can be completed to a 2 X 2 matrix in SL,(Z). We see that
the coset space I'y\I' is in bijection with primitive pairs

then

(c,d) = (m, my,) = meZ

If ¢ is a function on N \ G, we denote by ¢[ | the corresponding function
on R% Then

Te(y) = 2 olvp)= 2 olm]

Ty\T m prim
= 2 ol(cdyl)
(c,d)=1

For ¢ in the Schwartz space, and therefore rapidly decreasing at infinity, we
see that the series converges.

Let @ have compact support on N\ G. Then for each y, the sum

Te(y) = 2 o(vw)
T\l

has only a finite number of non-zero terms.
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Proof. Let @ be the compact support of ¢. If ¢(yy) # 0, then yy Q.
There exists y' €T, such that y'yy €Q2,8, where &, is compact in N. Hence
Y'Yy E€Qy80 ~!, which proves our assertion.

It is clear that if o€ C.(N \ G), then the function T¢ is continuous, on
'\G.
If p€ C(N\G), then T has compact support.

Proof. Let  c G be compact such that N \ NQ contains the support of ¢.
If (yy) # 0, then yy € NQ. There exists y' €T such that y'yy €0, Q, where
{2, is a compact set in N. Hence y €T'Qg, where Q is compact in G, as was
to be shown.

From the above, we may view the theta transform as a mapping
T: C(N\G)—>C.(T\G).

Since I' contains — 1, we note that the sum over primitive elements in Z2
is symmetric with respect to the origin. Expressing a function ¢ as a sum of
an even and an odd function on R?— {0}, we see that if @ is odd, then Tp=0.
Consequently, without loss of generality, in what follows when considering
the theta transform, we may assume that g is even, namely

P(x) = @(—x).

Adjoint of the theta transform
We shall also consider the mapping
T°: functions on I'\ G — functions on N \ G
given by
TH(y) = f f(ny) dn.

Ty\N

Thus 70 is defined by the integral with which we defined cusp forms. In any
given situation, we shall always specify the function space to which we apply
T°. The space LAT\ G) will be a frequent candidate, and °L%T"\ G) consists
of those functions f such that 7% = 0.

The mappings T and T are adjoint to each other. In other words, under
conditions of absolute convergence,

(1) <T(p’f>1‘\c = <‘P’ T9f>N\Gs

where the scalar product is that given by the usual hermitian integral.
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Remark. The above adjointness relation relates any pair of closed sub-
groups I', N of a group G. We do not need that I is discrete, for instance. It is
essentially an abstract nonsense relation on a locally compact group with two
closed subgroups. We carry out first the formal computation, winding and
unwinding an integral. We use the Haar measure of a subgroup and factor
group, with respect to the sequence of groups:

N.
InN = I‘N/ g
~~

We have:
(Tg.orye = [ To() ) &

T\G

=f f o(w)f(y) dydy
T\G/Ty\T

= rN\qu(y)f(y) dy

=f f @(ny) f(ny) dndy
N\GYTy\N

=[ e[  Fw) dndy
N\G Y

= (g, T0f>1v\c-

Theorem 1.
i) The above adjointness relation holds if f€ LYT\G) and

g€ C.(N\G).

ii) The function Ty is orthogonal to °L*(T'\ G).

iiiy If f€ LXT\ G) and f is orthogonal to Ty for all p € C.(N \ G), then
FELYT\G).

iv) Let § be the Fourier transform of ¢, viewed as a function on R%. We
have @[0] = O if and only if T is orthogonal to the constant 1 on
I'\G.

Proof. All of these statements are immediate from the adjointness rela-
tion. The Fourier transform of a function on R? is normalized to be, in the
present case,

#le] = [ oléle " ds.
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The invariant measure on N \ G under right translation by G is the same as
Lebesgue measure on R?, and therefore

$[0] = fN BRIOL

The condition ¢[0] = 0 is equivalent with
0= (g, 1>N\G = (9, T01>N\G = (T, Dr\¢

i.e. T is orthogonal to 1 on '\ G.

§2. THE EISENSTEIN SERIES

For any function ¢ on N\ G, and any s for which the following integral
converges, we define the zeta transform

29,29 =L P@)p(a) da = foww(ha y)a~* %‘1 :

We use previous notation, i.e.

0 a

and

If p€S(N\G) and 6 = Res > 0, then the integral defining the zeta
transform Z(gp, y, 25) converges absolutely.

Proof. Replacing ¢ by its right translate by y, and viewing ¢ as a function
on R, our integral becomes

fowf[(),a_’]a_z‘ %9_ .

Let a > a~! and use the invariance of Haar measure under this transforma-
tion. The convergence is immediate.

Before going on to other convergence properties, we point out that the
above zeta transform satisfies the conditions of an induced function, as in the
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theory of induced representations, namely

Z((P, ny, 23)= Z(‘Pa)’,zs), nEN,

Z(p, ay, 25) = Z(g, y, 2s)p(a)zs, acA.

Any function f on G which satisfies the conditions

fw)y=f(y) and  flay) = f(»)p(a)”

will be said to be of type 2s. This decomposition into types will be important
in the arguments of Theorem 3, §7.

We now turn to analyticity properties of zeta transforms under various
conditions.

Lemma 1. If o€ C(N\G), then Z(g, y, 25) is entire in 5.
This is essentially obvious since nothing horrible occurs either near 0 or
near oo. We had already encountered this situation in Chapter V, §3.

Lemma 2. For 9 € S(N\G), the Eisenstein series

E(p,p,5) = 2 Z(e, », 25)=TZ(p, y, 25)
P\
converges absolutely for Re s > 1.

Proof. Replacing @ by its y-translate on the right, it suffices to prove the
convergence with y =e, i.e. deal with the sum

> Z(g, v, 25).
TWAT
But if

then
-2 da

=]
(e 1. 25)= [ gleshyyla ™%
0

=fw<p[c/a, d/a]a‘z‘iq
o a

o0
=f ol ac, ad]az‘ﬂ.
A a
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Let m=(c,d) range over primitive pairs (or even all pairs) of integers. We
decompose the sum over such m by partitioning those which lie in an annulus
of radius » and width 1, say with respect to the Euclidean norm. Pick C such
that if £€R? and [¢| > C, then @[¢] < 1/£%°%<. For m€Z? and m in the
annulus of radius »n, width 1, our integral is estimated by the sum

C/n )
f +[ .
0 C/n
The first integral has the bound

1

n20

C/n
f |p[am]|a?~! da <« a*°
0

C/n
<
0

Figure 1

The second integral has the bound

00 a2o—l

l2a+e da < n20 :

" |plam]|a®~" d
aml|la®®™ ' da <
fcyn(p C/n |lam

The number of lattice points in our annulus is < n. Hence the sum over such
lattice points is < 1/n°. Summing over n proves the desired convergence.

§3. ANALYTIC CONTINUATION AND FUNCTIONAL EQUATION

Let € S(N\G) = S(R?. Viewing ¢ as a function on R?, we have its
usual Fourier transform ¢, defined by

$(2) = [ plde e
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where d¢ is Lebesgue measure. Then §=¢ ~, where ¢ ~[z] = @[ — z]. (For the
Fourier transform, and other elementary matters pertaining to it, cf. Real
Analysis.)
Fory e G we let
p=yl

The change of variables formula shows that the Fourier transform of the
function

¢ > gléay]
is the function

¢ plta Va2

The Poisson formula then yields

(M 2 olmy)= 3 ¢[ma~la?,

meZ? meZ?

which will be used in the proof of the next theorem.

Observe that if p € C.(N \ G), then ¢[0] = 0. However, it does not follow
that ¢f0] = O also. In some applications of the next theorem, we shall take
@€ C,(N\G), but need the next theorem also to be applied to ¢.

Theorem 2. Let o € S(N \ G) be an even function, and assume that

9[0] = $[0] = 0.
Define

E*(q)’ y’ S) = g(zs)E((ps )’, s)-
Then E* is an entire function of s, and
E*(g,y,5) = E*®, 5,1 — s).
Proof. By definition
o
25 d
(93,25 = [ w(hy)a™™
0

Let
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Then

and

From

ANALYTIC CONTINUATION AND FUNCTIONAL EQUATION

® 25 da
Z(p.v.25) = [ ol(ac, ad)yla® £
0

[+o]
=f plmay)a L
0 a

E(p,y,5) = Z fw(p[may]az’ %‘-’—.

m prim 0

(@)= 5.

multiplying {(2s) with E(g, y, s) yields

(@E@ ) =S 3 [Tolmayla/n* @
0

where this last step is obtained by letting a > a~

n=1 m prim

=73 olmala® £
0 a

meZ?

_ oo 2 @ 1 25 _4{1__
J Zolmayla® L+ [(3 glmay)a® <

m

«© d ' - —in1.25-2 d
~[7S sl L4 ('3 jlmaplarr L

m m

=)

=f1 S glmayla L+ [ flmaplar> F,

i m

247

in the second integral.

Each one of these last integrals is entire in s, and the sum of the two integrals
is invariant under

(%)’, S) > ((i)’);» 1 - S)’

using the fact that éo = @~ and ¢~ = ¢ because ¢ is assumed to be an even
function. This proves our theorem.

Define

¢(r) = pley] = ¢le,yw]
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<[]

Note that wyw ™! = p. Furthermore, m > mw permutes Z*. Hence

where as usual

2 ¢lmapl= 23 plmwpwlaw] = X ¢[myal.

mez? mez? mez?

This yields

Corollary.
oronary E*(‘P’)’: S) = E*((pay’ 1 - S)'

The advantage of the formulation in the corollary is that y is unchanged in
both sides.

§4. MELLIN AND ZETA TRANSFORMS

Let f be a function in the Schwartz space of R. In Chapter V we had
already considered the Mellin transform

Mp2s) = [ @ 4

for functions with compact support not containing 0, whence Mf is entire. In
the present case, the above integral converges absolutely for Res > 0.
Furthermore the integral

[ Haya

converges for all complex s, and defines an entire function of s. The possible
poles are due to the behaviour of f near 0.

Lemma 1. If f € S(R) and f(0) = 0 then Mf(2s) is a meromorphic function
of s with at most simple poles at

P P

Ao

k]

Proof. Assuming f(0) = 0 implies that f(a) = af,(a) where f; is C*.
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Integrating by parts the integral

a

[ Haa® % = [sa)a>~" da

gives

fl(a)a2s+3
2s + 1

- 1 : ’ 25+ 1
TP j;f,(a)a da.

We continue to integrate by parts to get the lemma.

0

The above lemma applies to a function f formed with some
9ECP(N\G) = C2(R? - {0}),

and some y € G, letting

f(a) = ¢[(0, a)y].

In this case,

Mf(2s) = Z(g, y, 25)

is entire. However, when we pass to the Fourier transform, the function ¢
does not necessarily have support away from 0, while the lemma still applies
to the function

Z(“i)’ Y 25) = Mf(zs)’ where f(a) = @[(Oa a)yw]

under the assumption that ¢[0] = 0.
Consider a function g defined in a strip

g, < 0 =Res <o,

We say that g is rapidly decreasing on every vertical line, uniformly in the strip,
if for every positive integer d, there exists a constant C such that

. C
+ < [
860 + in) < =55

for all 6 + ir in the strip. (We write 24 to have an even exponent, killing the
parity of 7.) If a finite number of poles exist in the strip. and the above
estimate holds outside a neighborhood of the poles, then we extend the
terminology accordingly.
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Lemma 2. Let f€S(R) and assume f(0) = 0. Then Mf(2s) is rapidly
decreasing on every vertical line uniformly in each strip

0y € 0 < 0.

outside a neighborhood of the poles.

Proof. Suppose first Res > 0. For any integer n > 0 we have, after
integrating by parts,

(2s + DQ2s + 2) - - - (25 + )Mf(2s) = Mf™(2s + n),

where f( is the n-th derivative of f. This expression is bounded. Dividing by
the n-fold product shows that Mf is rapidly decreasing. Furthermore, the
estimate is also valid for all s outside a neighborhood of the poles, by analytic
continuation. The result holds for all s because for s in a strip, we can always
select n sufficiently large so that s + »n is large positive.

We had also seen in Chapter V that a change of variables makes the
Mellin transform into a Fourier transform. We have:

Lemma 3. Let 6 = Res > 1. If the functions f, g on R* (with respect to
Haar measure daja) are such that f(a)a®~? and g(a)a % are in
LN LAR™), then

j;wf(a)mﬂ_2 glag =fowf(a)az"2g(a)a“23 %

1

i

fR MfQ25 — 2) Mg(—2s) ds.

(On the vertical line, ds = i dr and so i~ ds is real)
Proof. Put a® = e?, so that @ = ¢%/% Then

da

— db.
a

B | e

Lets = o + ir. Let

fi(B) = f(e*%)e®™D  and  g,(b) = g(e*?)e ™.

Then f,, g, € £'n £%R) and the ordinary Plancherel formula applies, namely
S8 =i s
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with a normalization of the Fourier transform for this proof such that

1
\Pr

filr) = |7 ibre= a,

and similarly for g,. This means in terms of the Mellin transform that

f‘.(7>=é-Mf(zs—z> md g0 = =

Mg(—2s).
Hence the integral expressing the scalar product is equal to

LT hmE@ dr= L [ maps - ) Me(25) ds

2 - : ' i Res=o

as desired.

Warning. When applying the Mellin transform as a zeta transform, watch
out for signs. If 8 is a function on N\ G and f(a) = 8(h, y), then

Mf(2s) ‘-=f()000(h,z y)a* c_iag = Z(8,y, — 2s).

§5. SOME GROUP THEORETIC LEMMAS

Double cosets

As before, '), = 't N. Write a double coset decomposition,

r=Ur,yr,.

If Ty Ty % =Ty, then the elements {ym}, n €T . form a system of single
coset representatives for T v, y. that is we have the single coset decomposi-
lion

Pyvly = U Cyvim.

nely
Proof. 1f n % v €T, then
Fyym # Tyym's
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for otherwise, there exists n, €I’y such that y,yn = y;n’, so that

Y 'my = n '€y,

whence y,€ = T'y.
[t is also immediately verified that the double cosets

Fyyly and ~I'yyTy

are distinct for any y €T, so the double cosets occur in pairs.

Bruhat decomposition

We recall briefly the Bruhat decomposition, which was discussed in detail
in Chapter XI, §2.
The group G has a unique decomposition

G = xNA U = NAwN,

()

This is obtained by looking at the coset space N \ G c R% noting that N is the
isotropy group of e, = (0, 1). We write an element y € NAwN uniquely as

where

— ' v
y =nhwn

so that A, is the Bruhat representative of y in 4.
Observe that if

S i

y o= ( ) with ¢ = c(y).

then

C *
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Consequently

_hy=(1/c(y) 0 )
0 c(y)

§6. AN EXPRESSION FOR T°Tp

Let o € C.(N\ G) and assume that @ is an even function, that is

p(x) = @(—x).
We denote by (v) non-trivial pairs of double cosets
(v) = =T yI'y # £T,.

We let h, be the Bruhat representative of v.

We consider the expression

T°To(y) =f > o(yny) dn.
Ty\N Tu\T

253

In the previous section we had determined representatives of Iy, \T in terms
of double coset representatives. In the above sum, the term corresponding to

+ the trivial coset yields

2. \WP() dn = 20(9)
Therefore we find

5T°T¢(y) =q(y) + wa(vny)dn
(v)

=g(y) + 2 fm(h wn. ny ) dn
(v)

=¢p(y) + 2 ftp(h wny ) dn
(y)

=q(y) + qu(nh 'ny ) dn

(v)

=g(y) + 2[ ( ( c*z)(c*

(v) 1

) )
Vv du.
] / ¢
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This yields, after a change of variables,

(1 3 T'To(3) = 9(0) + X c(n) [ glwnh ) dn.
£2/

The sum 3 c(y)~? is related to the zeta function as follows. Define

@) F(s) = > —r
189/ c(v)

Letting ¢ be the Euler function, we have the identity

(3) Fiy = i

I

m _$@2s—1)

==} 125 - §(23>

To see this, note that each pair (c, d) of relatively prime integers,
c>0,0<d<e,

represents exactly one of a pair of double cosets, as is clear from the formulas

oo (c )
S P S

This shows that F(s) = X ¢(m)/ m*.

On the other hand, let i be the Moebius function and let f be the function
of the positive integers such that f{m) = m. Then under “convolution”
product,

and

p*flm) = ; wld)f(m/d) = ¢(m).

that is, p* f = ¢. Since

$2s =1 =2

our second expression for F(s) in terms of the zeta function follows, because

Sf(n)
n;s = 2 2s

m m
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the product of Dirichlet series arises from the convolution of their
coefficients.

Remark. The Moebius function, the Euler function, and the function f
are multiplicative. Convolution product relations among them are therefore
verified by checking them on prime powers, in which case the verification is
easy. Furthermore, u and the constant function 1 are inverse to each other, so

that
1 p(m)
¢(25) - 2 m ’

From these remarks, the reader can prove for himself the relation needed
above, namely f = ¢ * 1.

§7. ANALYTIC CONTINUATION OF THE
ZETA TRANSFORM OF T°Top

We are interested in the function Z(T%Tg, y, 2s). For this, we begin by
some remarks concerning Z(T%, y, 2s) for a more general function 6.
We view T° as a map

T°: C.(T\G) — BC(N\G),

where BC means bounded continuous.
Lemma 1. If § € C.(T'\G), then T%(h, y) = O for large a.
Proof. By definition,

0 =
T%(h, y) fr W 6(nh, y) dn.

N

As a — oo, nh, tends to infinity (i.e. lies outside a given compact set). Hence
the expression under the integral sign is 0 for large a, as desired.

Lemma 2. The integral

Z(TOB,y, 2 — 25) =f T%(hay)azs--z iaa_
0

converges absolutely for Re s > 1.
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Proof. Using Lemma 1 to cut off at infinity, our integral is estimated by

_, B
B 20—2 da a2o 2
¢ d T 22

o a g — 0

which exists, as desired.

Theorem 3. Let o= C®(N\G) be even, and assume that ¢[0]=¢[0]=0.
Then for Re s> 1,

§(2 - 25)

W Z((i),y, 2 — 2S).

%Z(TOTqJ,y, 2-2s)=Z(g,y,2 — 25) +

The right-hand side is a meromorphic function in the whole plane, giving the
analytic continuation of the left-hand side. It is holomorphic for Re s > 1.

The proof of the above theorem will result from a number of computa-
tions, and transformations, giving rise to relations (1), (2), and (3) below. We
shall use the following notation.

Let Re s > 1, let h, be the Bruhat representative of vy in A. If a is a positive
real number, let h, be the corresponding element

hﬁ((‘; ?1), a = a(h)
a

in A. No ambiguity can arise, since a and v lie in different kinds of sets.

We apply the Z-operator to the relation found in the preceding section,
and we find by Lemma 2, for &€ C.(N\G)

1Z(T T, y, 2 — 25)

—]_ 1] 25—2
5 fAT To(hy)a(h)* ™ dh

Z(py 229+ 2 e(n)

f<p(wnh; Yy)a(h)> " dndh.
(v) N-A

Let A > h h in the second term, so that a(h,) = c(y)~". Then we see that
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the second term in this sum is equal to

> c(y)“"z’foAq;(wnhy)a(h)z“2 dn dh

(v)
= F(s)f fcp(whny)a(h)zs dndh
Yy
= F(s)f fqp(h-‘wny)a(h)z‘ dhdn
N4
= F(s)j;qu>(hwny)a(h)“2‘ dhadhn.

Therefore we obtain for Re(s)> 1, and o € C,(N\G):

(1) %Z(ToTw’y’z_zs)zZ(q),y,2—2s)+F(s)fZ((p.wny,2s)dn.
N

Furthermore, Z(T°Ty, y, 2 — 2s) and Z(¢, y, 2 — 2s) are of type 2 — 2s,
so that the last term on the right of (1) is also of that type, so far for
Re(s) > 1. We shall obtain the analytic continuation of this last term by
approaching it from another track, and are aiming for formula (2) below.

We had for Res > 1

E(p,y,8) = TZ(9,y,25) = 2 Z(p, W, 2s).

'y\T
Then
T°TZ (g, y, 25) = f > Z(¢, yny, 2s) dn,
Ty \N Ty \T

and, as above, we decompose the sum over double cosets separately for the
trivial double coset and the non-trivial ones. We find:
1

7 T°TZ (g, y, 25)

Z(p,y,2s) + 2 fNZ((p, yny, 2s) dn
v

Z(p.y, 25) + D, fNZ(QJ. h,wn! ny, 2s)dn
80

= Z(9,y, 25s) + 2 LZ((p, h,wny, 2s) dn.
(v}
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Pulling out c(y)™ % yields

(2) % T°TZ(9,»,25) = Z(9,», 25) + F(s)f Z(q, wny, 2s) dn.
N

We shall now prove the relation completing the proof of Theorem 3,
namely, for Re s > 1,

§(2-12s) _ .
(3) F(s)fNZ(<p, wny, 25) dn = ——?(—2;)—— Z(¢,y,2 — 2s).

Proof. We prove this by a study of the various types, combined with
whatever we know about analytic continuation.
Let us multiply relation (2) by {(25), and let

L(p,y,2s) = $$(2)T°TZ (9, y, 25).

By §3 giving the analytic continuation of the Eisenstein series, we see that
L(g, y, 25) is entire, and invariant under the transformation

((P, S) H(d)’ I - S)

by the Corollary of Theorem 2.
The expression

L{g,y,25) — $(25)Z(q, y, 25)

is equal to the last term in (2), multiplied by {(2s). It is meromorphic, and by
(1) it is of type 2 — 2s for all complex s by analytic continuation. Therefore,
making the transformation (g, s) > (¢, | — s), we see that

L(§,y,2 —25) — §(2 - 25)Z(p,y, 2 — 25)

has type 2s. Directly from the definition, we know that Z(¢. y, 2 — 2s) has
type 2 — 2s, and is meromorphic by the theory of Mellin transforms, §4. We
have

L(g,y.2—-25)— (2 —-29)Z(p,y,2 — 2s)
= L(p,y,25) — ${Q2 — 25)Z(¢,y, 2 — 25)
or in other words, the left-hand side of (2) multiplied by {(2s) is

L{p.y, 2s) = §(2 — 25)Z(¢p, y. 2 — 2s) + an expression of type 2s.
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Since such a decomposition into a sum of terms of type 2s and 2 — 25 is
uniquely determined, we conclude that the terms of type 2 — 2s are equal,
and this amounts precisely to relation (3), thus concluding the proof of
Theorem 3 also.

Theorem 4. Let o € C°(N \ G) and assume $[0] = 0. Then
Z(T T, y, 2 — 2s)
is meromorphic, and holomorphic for Re s > 4. This function and
Z(9,y,2 — 2s)

are rapidly decreasing on every vertical line for Re s > 1, uniformly in each
finite strip.

Proof. The Riemann zeta function {(2s) has no zero for Re 25 > 1, or in
other words, for Re s > 1. The denominator {(2s) in Theorem 3 therefore
introduces no singularity in our stated region. The rapid decrease on vertical
lines is a consequence of Lemma 2, §4.

In the applications of Theorem 4 and Theorem 3, we consider an integral
taken over a vertical line with o > 1 at first. Using the analytic continuation,
holomorphicity up to the line 0 = 4, and the rapid decrease of the expressions
under the integral sign, we shall be able to shift the line of integration to the
line 6 =4. For Res=0=1 we have 1 — s = 3§, and the formula of
Theorem 3 reads

1 §Q2s) _ .
4) ) Z(T°Tg, y,2s) = Z(g, y, 25) + E—(ZE—)— Z(9, y, 25).

§8. THE SPECTRAL DECOMPOSITION

Let f be a function of type 2s on G. Then f is determined by its values on
K in the decomposition G = NAK. Functions like

Z(9.y.2s)

can therefore be viewed as functions on K, and as such will be denoted by
omitting the variable, i.e. by writing Z(gp, 2s). Thus the value of Z(g, 2s) at
k€K is Z(¢. k., 25). The L% norm on K is denoted by

1A% = fK |fUOPR dk.
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We use a similar notation for the L?-norm on any other group or coset space,
indicated as an index, and similarly for the scalar product.

We had seen in §1, Theorem 1, that the theta transform sends C°(N \ G)
into a space orthogonal to the cusp forms, and the additional condition
¢[0] = 0 yielded the additional property that T is orthogonal to the constant
functions. We shall now obtain a completeness relation showing that nothing
else is lost.

Theorem 5. Ler @, ¢ € C¥(N\ G) be even functions such that

$[0] = ¥ [0] = 0.
Then
I
(To, TWir\g = 3, fR - L (Z(T°Tg, 25). Z(T°T. 25)) ds

Proof. The formal computation preceding Theorem 1, §1, converges in
the present case to yield

(T, T¥drig = {TTo, Yopg = fN \GT"Tw(y)W dy

=ffT°Tqa(ak)¢(ak) p(a)”? dadk.
K A

By the Plancherel formula, expressed as Lemma 3, §4, this yields

(1) (To Tdr = — fo>lz(T°Tq;, k,2 — 25) Z(9. k. 25) dsdk

i

where the integral over ¢ > | means the integral on the vertical line o + ir,
with some 6 > 1. By Theorem 4 of the last section, we can now move the line
of integration from ¢ > 1 to 6 = } because the function under the integral
sign is antiholomorphic and rapidly decreasing in the strip between o = }
and o > 1.

On the other hand, for Re s > 1,

EW. 5) = TZ(y, 25).

Using the formal adjointness relation in a situation where it clearly converges,
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we find
(To, E(Y, §)>r\a = (To, TZ(Y, 2§)>r\a

= (T Ty, Z(Y, 2§)>N\G

= ff T°To(ak) Z (Y, ak, 25) p(a) " da dk.
K74
Since Z(y, y, 25) is of type 25, this last expression is
2) =f Z(T Ty, k, 2 — 25) Z(y, k, 25) dk.
K

This is true so far for Res > 1, but is also true for Re s = 1 by analytic
continuation. We multiply this relation by {(25). For Res =4} we have
1 — s = §. Therefore, recalling that we defined

E*(¢,5) = SQ29)E(Y, 9),

we obtain for Re s =},

() (To E*(b Shre = [ Z(TTy, k, 29)5(25) Z(¥. k. 25) k.

The invariance of F* under the map (y, s) > (J/, 5) (on the line Re s =1
implies that this last expression is invariant under this transformation also.
Hence it is equal to

(4) f Z(TTo, k, 25)$(25) Z(4, k. 25) dk.
K

and consequently, dividing (3) and (4) by {(25), we find

N\ o : §(2S) ——— :
fKZ(TOqu, k, 25) Z (4, k, 25) dk —fKZ(TOTqa, k, 2s) 3“(75)2(4" k. 2s) dk.

Finally, in the integral (1) for the scalar product (7o, TY)r\g we can
interchange the integration dk ds because of the fast decreasing integrand.
Hence

(T, Tédrg = lj [ Z(T°To. k. 25) Z(4. k. 25) dkds.
1K

M Sy}
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But

J, s ds =[5 b,

f.— and ﬁ+
2 b3
i

indicate the integrals over the half vertical lines 0 = 1 + /7, with

where the symbols

T <0, and >0

respectively. Consequently

I + -
(Te, T¥)r,, = Ef sz(T"qu, k,25)Z (¢, k, 2s) dkds

+ lf+f Z(T T, k, 25) Z (4. k. 25) dkds
771. % K 9 b A 3 Al

and by Theorem 3 (cf. also the end of the last section) this is

+ (2 .
;r‘—lf sz(TOqu, k,25)| Z(y. k. zs)+EE—2-gz(¢, k, 25) | dk ds

1 + —
ﬁf f Z(T T, k, 25) Z(T°TY, k, 2s) dk ds
2 K

1
27

ﬁ+<z(T°T¢, 2s), Z(T°Ty. 25)) ds.

This proves our theorem.
Remark. We could have given the arguments so as to integrate on the
lower part of the line 6 =} just as well.
The theorem shows that 70 is unitary on the image of 7. namely
Corollary. We have (Te. TY)r\¢ = {T T, T°TY), \G*

Proof. The argument is formal and left to the reader.



X1V Spectral Decompositon
of the Laplace Operator

on I'\9

This chapter reproduces, with a number of details added, a paper of
Faddeev [Fa 1].

Eigenfunctions of the Laplace operator on the upper half plane, auto-
morphic with respect to a discrete subgroup of SL,(R), were introduced by
Maass [Ma 1], {Ma 2] as an analogue of the classical automorphic forms.
They were then discussed in two papers of Roelcke [Roe}, and, very recently,
Elstrodt [El]. They found important applications in Selberg’s paper [Se 2]
devoted to the trace formula. Connections with the theory of infinite dimen-
sional representations were developed by Gelfand and Pjateckii-Shapiro
[Ge, P-S], [Ge, Gr] and Gelfand-Fomin [Ge, Fo].

Let I' be a discrete subgroup of SL,(R) such that I'\$ has finite volume.
A fundamental domain F consists of a compact part Fy, and “cuspidal” parts,
obtained by transforming the upper part of a strip by a finite number of
elements of SL,(R). The Laplace operator L can be extended to a self-adjoint
operator 4 in the Hilbert space LXT'\ ). We want to describe the spectral
decomposition of A, i.e. describe the eigenspaces, and find a kernel %(z, s)
with z € F and s in an appropriate space, called an Eisenstein function, such
that the corresponding operator, the Eisenstein transform, sends 4 on a
simple “multiplication” operator, as it turns out, multiplication by the func-
tion 4 + %, where ¢ is a real variable. The Eisenstein functions satisfy a
certain functional equation, which is intimately tied up with this spectral
theory. The spectral decomposition is the subject of Kubota’s book [Ku].

The most classical subgroups are SL,(Z) and its congruence subgroups.
Roelcke investigated the general case, and observed that the spectral decom-
position theorem could be proved if it were known that the corresponding
Eisenstein functions had the same type of analytic continuation as those
associated with SL,(Z). Selberg stated the appropriate theorem [Se ], without
proof.

263
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Godement gave essentially classical proofs, relying on the Poisson sum-
mation formula for the arithmetic case, still not covering the general case.
Langlands [La 1] gave very general proofs in the context of semisimple Lie
groups, in an unpublished but fairly widely distributed manuscript. The
method of Selberg and Langlands does not use the Poisson summation
formula, but is more in the framework of operator theory. A summarized
account occurs in [La 1]. The operator M(A) of Langlands is essentially the
operator ¢(s) of Harish-Chandra [H-C 1].

Faddeev reconsiders the question from a quite different point of view,
that of perturbation theory originated by Friedrichs [Fr] and developed by
Povzner [Po]. We sketch Faddeev’s method. The source of the functional
equation and analytic continuation lies in the resolvant equation

R(s) — R(s") = (s(1 — s) = s'(1 — s))R(s")R(s)

for the resolvant of the Laplace operator. The parameter s is the same as that
in the usual theory of Dirichlet series, and the corresponding eigenvalues are

A, = s(1 — ).

With the above normalization, the critical line is on Re s = §.
We select a large number x > 0, and analyze the resolvant equation for
s’ = k, as a function of s. Putting R = R(x), we have the equation

R(s) — R = w(s)RR(s).
We then select an appropriate Green’s function g,(y, y’) for the differential
equation
, s(1 —s)
Vi(y) = — *—;{‘—d/()’),

satisfying a certain boundary condition for y > a. Let Q(s) be the corre-
sponding cuspidal operator. Instead of studying R(s) directly, we make the
transformation

R(s) = Q(s) + (1 + wQ(s)B(s)(I + wQ(s)),

which can be shown to be solvable for an operator B(s), which turns out to
be analytic in s for 0 < Re s < 2, except for a discrete set of poles. The
resolvant equation for R(s) has a corresponding equation for B(s). One can
then construct an operator

W(s) = w(s)(I + w(s)Q(5))B(s)

which one uses to perturb the identity.
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The Green’s function g, is the form

, ] B(y, s)y' s if <y,
4,(2,2) = 355 fi ”, L {
y' 7Ry, s) i oy >y,

where

8(y,s) =y* + c(s)y'",

o 2~1__ 5§ T K
c(s)=a s+k—1"

These basic functions satisfy the Eisenstein formalism

6(y,s) =8(y,1-s)c(s),

c(s)e(l—s) =1L
If we define

n(z,s) = [1+ W(s)]0(z.5),

then the Eisenstein functions %, satisfy an analogous formalism, where the
functional equation and analytic continuation come from the resolvant equa-
tion for B(s) and the analyticity properties of W (s).

The general scheme of the above arguments is quite similar to that used
by Faddeev himself in a previous paper [Fa 2], in other connections.

The analytic continuation of the families of operators is done simul-
taneously with the continuation of their kernels. It is important to distinguish
those regions where the kernel of the resolvant has an analytic continuation,
where it does not represent the resolvant. Essentially nothing is known about
these in general. For the special case of SL,(Z), one sees that the possible
poles of the analytic continuation of the kernel of the resolvant on the left on
the line Re s = 1 coincide with the zeros of Riemann’s zeta function {(2s).
Thus the line Re s = } becomes another critical line (much more critical), as
had already been observed by Selberg [Se 1].

If I were to teach someone analysis I would tell him to read the Faddeev
paper in complete detail. Many techniques of analysis are brought to bear in
a coherent and fascinating general context, albeit in a concrete no nonsense
situation. As I already said in the foreword, all auxiliary results from general
analysis are reproduced in appendices, to simplify the reader’s task.

The arguments are carried through first in the case of SL,(Z), when there
is only one cusp to deal with. A final section points out those places where a
linguistic change has to be made to deal with the general case. Essentially it
does not go beyond inserting » indices here and there. The function ¢(s) then
becomes a matrix (operator) whose size is n X n, where n is the number of
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cusps for the discrete subgroup I'. It is closely related to the scattering
operator in physics, as is shown in a forthcoming paper by Faddeev and
Povzner.

Faddeev’s method has been used by Lachaud to carry out the spectral
decomposition theorem for so-called groups of rank 1. Hopefully the method
also extends to groups of higher rank.

In the exposition, I have added a lot of details left out by Faddeev.
Perhaps the necessary expansion of pages makes it a little more difficult to
follow through the main trend of thought. The reader is therefore encouraged
to look at the original paper.

§1. GEOMETRY AND DIFFERENTIAL OPERATORS ON »

Geometry
The group G = SL,(R) acts on the upper half plane © in the usual way,
az + b . a b
zZ > = = f = .
b wo=(0 )

The function

|z — z’|2

ulz, ) = =42

’

of pairs of points z = x + iy and z’ = x’ + iy’ is obviously invariant under
G, le foryEG,

u(yz, yz') = u(z, 2').

In what follows we deal exclusively with the function u(z, z') (except for
one incidental use of the invariant area), and the reader could skip the
following discussion of the Poincaré metric. However, it 1s well to get
acquainted with the Poincaré geometry for intuitive purposes.

In the upper half plane, the Poincaré metric is defined by

2_dx2+dy2=dzd5_

S —3
»? »?

Since d(yz) = (cz + d)”%dz and Im(yz) = Im(z)/|cz + d|% it follows that
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the metric is invariant under G, and gives rise to a distance function p(z, z),
equal to the length of the shortest curve joining z and z". If

z(y =x(1) + iy(1), a<i1<b,
is a curve in §, then by definition, its length is

b
f Vo ot

(1)

Given z, 2’ €9, there exists y € G such that yz = i and yz’ = iy, for some real
number y, > 1. Then

p(z, Z') = p(i’ iyo)'

We give a brief argument that the vertical line segment between i/ and iy, is
actually the shortest curve. Let x(¢) + iy (¢) be a curve joining / and iy,. Then

its length is
by, b,
4 11
(@) ()

If the curve has minimal length, then equality must hold everywhere, for
otherwise the curve iy(¢), which joints i and iy, would have shorter length.
Hence the x-component of the curve must be 0, and the argument is
concluded.

The distance between a point it (r > 1) and i is now trivially computed.

We have
!
d
p(i, it) =j 2 _ log ¢.
o y

So the distance is given by

s = log ¢ and t = e’

Furthermore,

. s
u = sinh? =
2
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because
.12 5 _ coshs — 1
sinh > —
IRYEEAY: |
) 2
(c— 1)
ST T

In the representation on the unit disc, the metric is given by
4(dx* + dy?)

ds® =
(1= 7y

where r* = x? + y? Hence in this case,

" d
s(ry=2 p2=logl+
o 1-p b=

Therefore r = (e® — 1)/(e’ + 1), so that

~

‘i

= s
r = tanh 5 -

We shall also prove that the area A(r) of a disc of radius r for the
Poincaré distance is given by

A(r) = 47u.

" 4p dp df 2
A(r) = LR e A
(1 - p?’ L-r

tanh?(s /2
T _n*(sz/_) = 4 sinh?(s/2) = 47u.
1 — tanh*(s/2)

Going back to the representation on the upper half plane, let Dg(z) be
the set of points z’ such that u(z, z') < R, in other words, the disc of radius R

Indeed,
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and center z for the “distance” u(z, z’). Then D, is defined by the equation
for an ordinary Euclidean disc,

x2+ (y — b)2< a?,

where b =2R + 1 and a®> = 2R(Q2R + 2). As R becomes large, this disc
comes closer and closer to the real line, and can be drawn as in Fig. 1.

Figure 1

Differential operators

Let g be the Lie algebra of G = SL,(R), i.e. the set of real matrices with
trace 0. For X €g we have differential operator L, on C*(9) given by

d
Lyf(2) = £ f(exp X)2)] -0
The operators corresponding to
0 1 0 1 0
Xl 3 N X2 = O N X3 =
6 o0 1 0 0 -1

are denoted by L,, L,, L,. In terms of the coordinates z = (x, y) they are
represented by the following combinations of partial derivatives:

-9
L‘"ax

= (v — 2y 9 _ 9.
L, (,V X)ax 2xy oy

=a2x O 9.
Ly=12x 8x+2y PR
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These relations are easily proved. We indicate how the proof goes, say for
X, and L,. Let

f(e) = f(( f ?)) = f(g(1))

where
x + iy
)= ——
&(1) Hx + i)+ 1
Then

g(0) = (y* = x?) — 2ixy.
If g(1) = u(¢) + iv(s), then
du

d
S{0) = a—i m

af a_v
0 dv ot

3

t=0

(=
and the desired formula drops out.

We shall be concerned with the Laplacian,

2 2
L=_yz(a_+a_

1
ax2 ay2 ) == L% - 5 (L2L3 + LBLZ)'

The minus sign is used in order to make L “positive definite” rather than
“negative definite” in the following context. Let g, ¢ be in C($), and let
them be real functions. In the scalar product integral

dx dy
<Lq>’4«>=ffL¢'¢ 5
Y
»

one can integrate by parts, and transfer one partial from ¢ to ¢, with a
change of sign which cancels the minus sign in front. Thus

2
, dp\* (9 ‘
§L<P‘(P>—ff[(-é;)+(a—y)}dxdy>0 if @ #0.
»

The measure dx dy/y? is invariant under SL,(R), and will be denoted by
dz all the way through this chapter.
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The operator L is G-invariant. This means that if

a b
o= ( ) € SL,(R)
c d
and 7, is the translation

7, f(z) = f(02),

then

T,0L = Lor,.

This can be checked by a direct computation using brute force, and the
repeated application of the chain rule from freshman calculus, having to take
the partials of

a(x + iy)+ b
c(x+iy)+d

with respect to x and y. On the other hand, we already know it from X, §1,
Th. 4, that is, from general considerations concerning the structure of the
algebra of differential operators on SL,(R).

The Laplacian will be applied to functions of the u-distance, and hence it
has an expression as an ordinary differential operator in terms of u only,
namely:

Let @ be a C* function on the positive reals, and let z, be a point of §. Let
f(2) = @(u(z, zy)). Then

Lf = lp,
where

lp(u) = = (u® + w)e”(u) — (1 + 2u)g’(w).

Proof. We have:

¥ Y
- y‘-’-[ FYcid a2 ] = =y [ul + W] + ¢lu, +u,l},

and we have to show that
yz(uf -+ uyz) = y? 4 u,

y¥u, + uyy) =1+ 2u.
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But
I 2 !’ 2
u(z.2') = (x - Xy + ()
’ 4yy’ '
and we compute
! ’ 2
_x—x Pyt (x-x)
X 2yyl ’ v 4})6/" 9
I y2+ (x = x)
U = R U e
XX zyy/ yy 2y3’y,

What we want drops out.

§2. A SOLUTION OF lgp = s(1 — s)¢

At the end of the last section, we computed the Laplace operator on
functions depending only on the distance. We now exhibit a solution of the
homogeneous differential equation for this operator. It is given by the
classical integral

70 = ¢l s) = 0 [0 = 0T 0+ 0 a

absolutely convergent for complex s = g + ir, 0 > 0, and v > 0.

Theorem 1. In the above region, @ is analytic in s, C® in u, and:

D lp=s(-s)e

1) @y, s)= — % logu + O(1) for fixed 5, u —> 0;
N _ ‘
) g(u) = " + O for fixed s, u — 0;
vy @ u)= 0 °% for fixed o, u — 0.

Proof. Property (iv) is clear. To prove that ¢ satisfies the desired differen-
tial equation, we may differentiate under the integral sign, and it turns out
that applying /, to this integrand turns it into an exact differential, with zero
boundary value. More precisely, a trivial direct computation shows that if

2
M, = (u* + u)( ?ldﬂ) + (1 + 2u)21% +s(1 — s),
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then

A U B ) IR | ) N ) I B

Since the boundary values of the function on the right at 0 and | are 0, it
follows that

(1 —s(1 = s))p=0.

Remark. In general, let £, be a differential operator with respect to a
variable ¥ in a manifold, and let w(?, ¥) be a function of ¥ and a differential
form with respect to a variable 7 in a manifold with boundary 7. We call
w(t, u) a resolving form for £ if there exists a form %(7, u) such that
7(t, u) = 0 for ¢ on the boundary, and such that

L w(t, u) = dn(t, u),
where d, is ordinary exterior differentiation. Stokes theorem shows that

fT (1, u)

is a solution of £¢ = 0. This technique of resolving forms will again be used
in connection with the Whittaker equation later in this chapter. It would be
interesting to study it quantitatively for appropriate differential operators on
higher dimensional manifolds.

Next, we prove that
! 5~ -3
f [t(1 = 0] I(t +u) dt= —logu+ O()
)

for u —> 0. It is clear that the integral from 1 to 1 is bounded as a function
of u for u near 0. Hence let

1/2 51
s—1 ¢
1=f (-1 —— dr
o (r + u)

d s—1
A(r, u) =f -’-———; dr.
o (1 +u)

and
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Changing variables, ¢ = ur yields

r/u
A(r,u)=j(; (1+%) %=A(—:;)

where
A(x)=f(1+l) _c!j_=(logx+0(l) if 1< x
0 T T o(1) if x <1
We have
1/2 dA(t, u)
s—1 5
1 _L (t—1) —a dt

= (1 - %)J_IA(—;- ,u) "LI/Zdit(l - YA, u) ar.
A(«;—,u)=A(-;)= —log u + O(1).

1/2 u 1/2
[
0 0 u

If 0 < 1 < u,then A(t, u) = A(1/u) is bounded, and hence the integral from
0 to u is O(1). For the other integral, we use the other estimate for
A, u) = A(t/u) to get

We write

1/2 d s—1
—f —a—’;(l-t) [log t — log u + O(1)] dt

= log ufl/Z%(l — o Var + o)
= (logw)[(1 - 4)"" = (1= w)"'] + 0Q)).

The terms (log u)(1 — 4)*~! cancel, to leave
= —(log u)(1 — )’ '+ 0(1)
= —logu + O(1),

as desired. (I owe this proof to Lax.)



[X1V, §3] RESOLVANT OF THE LAPLACE OPERATOR ON § FOR 0> 1 275

The asymptotic estimate for @;(x) as u —> 0 is proved in an analogous
manner, after differentiating under the integral sign.

§3. THE RESOLVANT OF THE LAPLACE OPERATOR ON 9
FOR ¢ > 1

Let BC*(9) be the space of bounded C* functions on .
Theorem 2. Let f € BC ¥(9). For Re(s) > 1, let

Ry(s)f(z) = f@ o, (ulz, 2)f(2') dz'

where dz is the G-invariant measure dx dy /y*. Then Rg(s)f is also bounded,
C*®, and we have

(L = s(1 = s)I)Ry(s)f = f.

In other words, we have found a right inverse for L — s(1 — s)/, where |
is the identity. It is given by a kernel

re(z, 2'; s) = @(u(z, 2'); s),
which we also write 74(s) = @,°u if we want to omit (z, z').

The proof will be carried out in three steps.

First, we show that Rg(s)f is bounded.

Second, we prove the special case of the theorem when f has compact
support, by potential theory.

Third, we prove the general case by applying the fundamental theorem on
elliptic operators, whose proof is recalled in an appendix for the convenience
of the reader.

Lemma 1. If f € BC*™(9), then Ry(s)f is bounded, if ¢ > 1.
Proof. Let

h(z) = ULz, 2’ z2’) dz'.
Then
h(z)| < P luiz, z’ dZ/,
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and the integral on the right is independent of z. Indeed, if YE G,

f oy (u(yz, 2))| dz’ = f@ oy (u(z, y™'2))] dz’
= [ lo.(u(z, )| =
g

because 4z’ is G-invariant. We may therefore assume that z = i. Let D be a
small disc around i, and write

o=y

For small u, ¢ .(u) ~ log u which is locally integrable, so the integral over D
exists. On the other hand, on § — D, we have:

f lo(u(z, 2))| dz’ <<f I dz'.
$-D )

o (1+u)

So it suffices to prove the next estimate.

Lemma 2. The integral

[ —
o (1 +u(z,2))

Proof. We may assume z = i. The integral is then equal to

© o y°_2
5 dydx.
'/‘_w‘/(; [x2+(y__1)2] iy dx

-] 8 0
L=k L
0 0o Js
The matter is routine, and we actually have already carried out the estimate
in full in Chapter IX, §2.

converges for o > 1.

We write

Potential theory

For the convenience of the reader we recall some elementary potential
theory in the plane. Let f, g be two functions on R2. Let U be a region with
piecewise smooth boundary. For any vector field F on U, we have the
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Stokes—Green theorem in dimension 2,

ffdidexdy=f F-nds.
U v

Let F = g(grad f) = (gf,, &},) or f(grad g) = (/g,. fg,)- Let

32 32
A=divgrad = — + — .
dx? dy
We get the formula
of g
[Jas-rspacar=[ (sL-r%)a
U 17

Let z, be a point in the plane, and take for U = U(e) the outside of the circle
S(e) centered at z,, with radius €. Assume that f has compact support. Then we
have Green’s formula

[Jssr-rspacs--[ (s -ig)a

Ule)

Example. Let z, be fixed, and let

g(z) = 5~ loglz — z|.
In polar coordinates,
of of
n  or

if f= f(r,8), where r = |z — z,|. We have ds = df if we parametrize the
circle by (e cos 8/¢, e sin 8/¢€), 0 < 8 < 2me. Also, Ag = 0. The right-hand
side of Green’s formula gives

2me 2me
g af _ 1 1
fs(e, (f n 8 an)ds ‘L fle. 0) 52 db L 35 (loge) -

As € —> 0, the first term goes to (0, 0) and the second term goes to 0. Hence
[ [earaxas = 1zo)
U

A similar argument will be given in the upper half plane.
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Lemma 3. Let 0 > 1 and f€ C7(9). Let

h(2) = [ @z, 2D() dz

)

then his C*. Let M, = L — s(1 — s5)I. Then M.h = f, and

Mh = L @, (u(z, )M f)(2) dz’ = f© re(2, 25 )(M.f)") dz"

Proof. We omit the subscript s which is fixed. For z varying in a small
open set, let

z > y(z)EG

be a C* map such that y(z)i = z (so z > y(2) is a C ™ section). Abbreviate
o(u(z, 2'), s) = k(z, z’). Then

h(z) = [k(v(2)i, 2)f(2") dz’
- fk(,-, v(2) ') a2
= [k, ) (x(2)7) dz.

Since f has compact support, we can differentiate under the integral sign, and
we see that his C™.

Lemma. Lh(z) = f k(z, )L f(z') d2'.
Proof. We have
h(exp(1X;)z) = fk(exp(t)(j)z, Z)f(z) dz'.
We can move exp(tX;) over to z” after taking its inverse because
k(vz, yz') = k(z, z), allyeg,
Using the invariance of dz’ under G, we find

h(exp(1X,)z) = fk(z, 2')f(exp(eX;)z') dz'.

We can differentiate under the integral sign since f has compact support, and
our lemma follows at once.
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Ia particular, we find the intermediate formula

M.h(z) = [k(z, 2) (M, )(z) dz .

We apply it to the relation of potential theory:

[ [urs - sty az = [ [(g a7 - s ag) axay
U U

“fo e 7 50) &

We let U = U(e) be the outside of a small Euclidean disc of radius ¢ centered
at z, so that daU(e) = S(¢) is a circle. Omit the subscript s from M for
simplicity. We get

ffk(z, ZYMf(2")dz' — fsz,k(z, z')f(z')dz’=—[g(()(k 3{1: —f= g’; )ds

U(e) U(e)

But M,.k(z, z") = 0 away from the diagonal, so the term involving M, k(z, z')
vanishes. Since k(z, z’) behaves like log u(z, z’) for z’ near z, it follows that
the integral of

df
an

over the circle tends to 0 as ¢ —> 0. Finally, we know from §2, Th. 1, that
¢'(u) = —1/4nu + O(1), and

9k(z, z’)
—5 =g

It follows at once that the integral of 3k /9n tends to 1 as ¢ —> 0. This proves
Theorem 2 when f has compact support.

Finally, we deal with the general case when f does not necessarily have
compact support, but f € BC*(9). We know from Lemma 1 that Ry(s)f = h
is bounded. Furthermore, M = M, is an elliptic operator on §. Let
Y € C (D) and assume ¢ real. Then

Chy MYY = f f k(z, 2'YMy(z) dz dz’,

and we can apply Fubini. By the special case proved for functions with
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compact support, we obtain

fk(z, 2YMY(z) dz = y(2').

Hence
Chy My = (f, ).
By the regularity theorem for elliptic operators, this implies that 4 is C* and
Mh = {.

This proves Theorem 2.

§4. SYMMETRY OF THE LAPLACE OPERATOR ON I'\®

The symmetry of the Laplace operator on £ was already mentioned
briefly in §1. We now want to see that the Laplace operator is also symmetric
on I'\$. We shall need a cutoff function for technical purposes, i.e. a
function {,(Y), for large positive numbers ¥ whose graph is that in Fig. 2.

]

Figure 2

In other words:

L) =1ify <Y, §{(y)=0ify > 2Y.
2.400< /Y

Such a function is easily constructed. Let /(¢) have the graph shown in Fig. 3.

N

1 2

Figure 3
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Then ¢’ and y” are bounded. It is clear that the function
Sy() =41/ Y)
satisfies our requirements.

We let T = SL,(Z). A fundamental domain F for I' is given by the
illustrated region in Fig. 4.

Figure 4

We omit the proof that this is a fundamental domain, easily accessible in
various references. We can identify T'\ § to F.
As before, we let

2 2 2 2
L= —y? Kl +8_ and A=a—+—a~«~.
ax? oy? d

We recall that L is invariant under G = SL,(R). Hence if f€ C*(T'\9),
i.e. fis a C™ function on § which is invariant under I', then Lfis also C*® on
9, and is invariant under T.

Lemma 1. If f, Lf are in BC®(T'\®) and real, then the integral

[£f]1= ff(( ) (a—f))dxdy

over a fundamental domain F is finite, and we have

L =111
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Proof. Let Y be a large positive number, and § = {, a cutoff function as
above, between Y and 2Y. Our first goal is to prove formula (*) below. Let

3 3
w(x,y) = a_{cff dy — —j—" ftdx = —f-ffds

By Stokes—-Green we have

- [ fans d"dy - [ [@raxa

e ne

[ o[ o

e g

'U[( LANES ]gdxdy [[15 5 o

because I'\ § has no boundary. [If you want, work entirely on F, and use the
periodicity of df/0n, together with the fact that pieces of the boundary
correspond to each other with reversed orientation under I'.] We also used
9¢/9x = 0. But

AN S %
Ed(fz_a;dx)—_[f + f 8y2

Ndy.
ay ay dxNdy

However, 3§/ dy = 0 whenever dx # 0 since Y is large. Hence

. e B _ IV (Y

o [fun == [1(%) + (5
F F

1 p2Y
[ )55 () dx dy.
oYY

$(y) dxNay

As Y —> oo, the second term on the right is O(1/Y) and therefore

ff [ ) ny(y) dxdy = ff(Lf)ffy —2 + 0(1/7).
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As Y — oo the left-hand side increases and remains bounded because the

right-hand side tends to
dx dy
[[uns =2
F y

This proves the lemma.

Theorem 3. Let f, g€ BC®(T'\Q) be real functions such that Lf and Lg are
also in BC®(I'\®). Then L is symmetric, i.e.

(Lf,g> = <{L&.f)

Proof. Let a be a large positive number, and F, a cutoff fundamental
domain as shown in Fig. 5. We may assume that f, g are real. Let

1 = (Lf, g> — {Lg, -

Figure 5

Then by Stokes, we have a truncated integral

L=[[tens - onaxay -f (s - 1 )
£,

But on the pieces which are paired under T, the integrals cancel. Hence only
the top piece of the boundary integral does not vanish, namely

3 af _ .a—g
| 9y oy
- 2

dx.

y=a
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Using the boundedness of f, g, whence that of f2 g2

inequality, we get
H 2 2
af dg
2 = -2
I1”|<<f_,(6y)+(ay) dx.

Integrate with respect to @ between large numbers 4 and B. You find

and the Schwarz

B B i 2 2
of g
ll]alzda<<£ L (_87) +(a—y) dxdy

We know by Lemma 1 that this integral is bounded independently of 4 and
B. On the other hand,

10=Lf(gAf—ng>dxdy

approaches a limit as a — oo because both Lf, Lg are bounded and F has
finite measure under dxdy/y% This limit must be 0, for otherwise there is
some ¢ > 0 such that for all large @ we have

[LI*> ¢ >0,
whence

B
f |LPPda > c(B - A)
A

is not bounded, contradicting our previous estimate. This proves Theorem 3.

§5. THE LAPLACE OPERATOR ON I'\ ©

Let D, be the space of functions f&€ BC*(I'\$) such that Lf is also
bounded C*. Denote the Hilbert space LYT'\®) by H. This convention
remains in force throughout the chapter. Then D, is a dense subspace of H.
We view L as an operator on this dense subspace, and we know that L is
symmetric by Theorem 3. We shall see that L can be extended to a self
adjoint operator (cf. Appendix 2) by constructing its resolvant, averaging over
[ the resolvant of L on & itself. For this we need an estimate.
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Lemma 1. If o > 1, then the series

)

yerl [1 + u(z, 'YZ,)]

is convergent uniformly for z, z' in compact domains.

Proof. Let My be the number of elements y €T such that u(z, yz') < R
We contend that M, < R. Indeed, let D be a disc of fixed small radius
around z’, such that D N yD is empty if yz' 5= z’. Let Dy be the set of points
z” such that u(z, z”) < R. We know that D has area < R (cf. §1). If
yz'€ Dy, then yD C D, for R large. Hence the number of translates
yD C D, with yz’ # z’ is essentially bounded by

Area D,y

< K.
Area D <R

The number of elements y €T such that yz’ = z’ is uniformly bounded (in the
case of SL,(Z), bounded by 6, and is actually 2 for all points except those
equivalent to i and e*"/3 under SL(Z), as is easy to prove). So our contention
is proved.

Now we split our sum into partial sums over those y such that yz’ lies in
the annulus

Let m = [log, R]. Then our sum is dominated by

R R/2 R/2™
ve T i A S— s
R (R/2) (R/2™)
1 +2°4 2%+ - +27™ 2"
< R Re = o(l).

The estimates are obviously uniform for z, z’ in compact sets. This proves the
lemma.

Foro > 1 let

ez =3 B ez

We occasionally write r,(z. z’) instead of r(z, z': 5). We have multiplied the
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sum by 1 to take the trivial action of *1 into account. If z&T'z’, then we
conclude from Lemma 1 that the series converges absolutely for ¢ > 1. For

JE€ BC >\ {) we have
Jorteoz oty ar = 4 ffgrqo(u(z, V) )(2') de'

By Lemma 1 we can interchange the integral and the sum, to get the above
exp

= fg, olu(z, 2'); s)f(z') dz’

= Rg(s)f (2).
Thus we obtain the old resolvant on & itself, and using Theorem 2, we have
proved
Theorem 4. Let 6 > 1. The kernel r(z, z’; s) defines an operator
R(s) BC*(T\9) — BC™(I'\$)
satisfying
(L —s(1 = s)I)R(s)f = .
From Theorem 4, we see that
D, D R(s)BC*(T\9),
i.e. the domain of L contains the image of R(s), and also that
(L -s(1-ys)D,
is dense in 9. By abstract nonsense concerning unbounded operators (Ap-
pendix 2) we get

Theorem 5. The operator L with domain D, has a closure, denoted by A,
with domain D,. The operator (A, D) is self adjoint.

Using appropriate estimates, we shall prove in §7:
Theorem 6. For ¢ > 3/2, R(s) is a bounded operator on H = LT\ $).

This will involve decomposing the kernel r(z, z’; 5) into various com-
ponents. Thus R(s) is what is usually called the resolvant of 4.

It follows from Theorem 5 that

R(s)HcC D,
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i.e. the image of R(s) is contained in the domain of 4. Indeed, let f, — fin
H, and f,€ BC®(T\ ). Let A = s(1 — s). From

LR(s)f, = AR(s)f, + f»

it follows that LR(s)f, — AR(s)f + f. Hence, R(s)f is in the domain of 4,
and the relation

(4 = s(1 = s)R(s)f = f

holds for all f € H, Re(s) > 3/2.

§6. GREEN’S FUNCTIONS AND THE WHITTAKER EQUATION

This section recalls some advanced calculus and is an interlude preparing
the ground for the decomposition of the resolvant R(s). We deal with special
cases of second order linear differential equations, sufficient for the applica-
tions we have in mind.

Let (a, b) be an open interval, which may be (0, o). Let

2

M, = —(%) +p(y)

where p is a C* function on (q, b). By a Green’s function for the differential
operator M, we mean a function g(y, y’) on (a, b) X (a, b) such that

b
Myfa g ) () &' = f(y)

for all f&€ C>(a, b). In other words, the Green’s operator inverts M on the
right. For this section, we assume in addition that the Green’s function
satisfies

GF 0. The function g is continuous. It is C*™ in each variable except on
the diagonal.

We shall see in a moment that it is essential that the partial derivatives not be
continuous on the diagonal. In fact, suppose that g also satisfies the following
additional condition.

GF 1. Ify +# y’, then M,g(y,y") = 0.
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In other words, g satisfies the homogeneous differential equation away from
the diagonal.

Let g be a function satisfying GF 0 and GF 1. Then g is a Green’s function
Jor the operator M if and only if g also satisfies the jump condition

GF 2. Dyg(y,y+)— Dg(y,y—)=1

As usual,

Dig(y,y+)= yl,igly D g(y,y),
y' >y

and similarly for y— instead of y+, we take the limit with y’ < y.
To prove the above assertion, write

[=1+1

Take d/dy and use the continuity of g. We obtain

gy, )f(y) + fayD;g(y,y’)f(y') dy’

— gy ) (»y) +fbe,g(y,y’)f(y’) ay’.

So the term g(y, y)f(») cancels. Taking (d/dy)? yields
Dig(ny = () + [ Dy, y)() &'
b
= Dig(y,y +)f(») +j; Dig(y, y)(»') .
Taking —(d/dy)* + p(y) yields
b
Myf gy )M (y) &
b
=[D,g(y,y+) — Dlg(y,y~)]f(y)+f M,g(y, y')f(»') dy'.

By GF 1 the second term on the right vanishes. Hence GF 2 is equivalent to g
being a Green’s function, as was to be shown.
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Let J, K be two linearly independent solutions of the homogeneous

equation, i.e.
J"+pJ=0

K" + pK = 0.

There exists a unique Green’s function of the form

g(y.y,)z{A(y')J(y) ity <y
B(y)K(y) if ¥y >y,

and the functions A(y'), B(y’) necessarily have the values computed below.

To prove this, we note that for g(y,y’) as given, condition GF 1 is
satisfied by definition. The continuity and GF 2 amount to the linear

equations
A(y)(y) — B(y)K(y) =0,

—A()'(y) + B(»)K'(y) = L

Let W = JK’ — J'K (called the Wronskian). Note that W’ = 0 (immediate
from the differential equation), and therefore W is constant, s 0 because

J. K are linearly independent. Hence

A=K/W and B=J/W.

Therefore we get the Green’s function necessarily to be

K(y)W(»y)
g(y,y) = w
J(y )uf(y) ity >y,

if y' <y,

The next two examples are those used in the applications.

Example 1. On (0, o) let
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The associated homogeneous equation is

l —
v =-L" 00,
y

For s # { we take the two linearly independent solutions
3

y'=*  and  y°.

Their Wronskian is 2s — 1, and therefore a Green’s function is given by

{(pyy'ss) = yyIT oy <y,
Py 25 =1 | y'=y* iy >y

This notation will remain in force throughout the rest of the chapter.

Example 2. (Whittaker’s equation) Let s€C, Re(s) > 0. Let ¢ be a real

number > 1. Let
2
1_
M = — N C2_f_(____“fl .
y dy y2

The homogeneous equation for M, is

l —
y(y) = (C2 - s—('“;rsl )\I/(y),

and for large y can be viewed as a perturbation of the simpler equation
Y” = c%), having as independent solutions e® and e~ . We shall get the
existence of corresponding perturbations as solutions of the Whittaker equa-
tion, having analogous asymptotic properties.

We shall prove that there exist two solutions

J=J . and K=K .
having the following asymptotic behavior, uniformly under the stated condi-
tions.
For y — o0, ¢ > 1, s in a compact set, Re(s) > 0, except for J'(y) where
Re(s) > 1.
J(y)~e™? J(y)~ —ce”?,
K(y)~e?, K'(y) ~ ce?.
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For y —> 0, given ¢, uniformly for s in a compact set.

I'(2s — 1)
I'(s)

K, (»)~ % Qo)

Jo (y) ~ (2cy))—’, for Re(s)>4.

for Re(s) > 0.

where
1
B(s) =f0 [r(1 ~ t)]s_l dr.

From the asymptotic behavior for y — o0, we conclude that the
Wronskian of J, K is asymptotic to 2¢, and hence equal to 2¢, since it is
constant. Therefore there exists a Green’s function given by the formulas

K(yY(yy ..

T Ty
& (y.y)=

JYYK(yy ..

e if y' >y

This is the unique Green’s function satisfying GF ¢ and GF 1, and having the
form A(y)(p) if y' <y and B(y)K(y) if y’ > y. By the uniform estimates
stated above, this function satisfies

e"d}"‘)’,l

!gs.c(y’y’)l < Cl

where C, is a constant, uniform for s in a compact set, Re(s) > 0, and
0<ax<yy <oo. '

Proofs. There remains to give the proof of the existence of J, _ and K|
having the desired properties. This is done by recalling some classical results.
Let

W(y) = i,—(l;y‘e'y”fow e ?[1(1 + 0] ' ar.
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which, after a change of variables, is also expressible as

-1

1 2 r Y
W = v/2 s ‘(l + —) dr.
(») ) ¢ L e 5

Then W, satisfies the Whittaker equation

1 -
Vi) = ( - —(yz—) )w).

Indeed, if we apply the Whittaker differential operator
4\ _(1_s0=9)
dy 4 p?

yie e v[t(1 + t)]:_l,

to

we turn it into the exact expression (with respect to ¢)

- "% {y"'e‘y/ze"y[t(l + t)]s}.

which has boundary values equal to 0 at 0 and oo. Differentiating under the
integral sign shows that W, satisfies the Whittaker equation.
Let

Jo. () = W, Qcy)

_ 1 -y * -1 s( ! ) dt
= e+ ) 4.
I(s) fo ¢ 20y ‘

It is clear by the dominated convergence theorem that the integral on the
right tends to the Gamma integral

[>e]
[T di
o 14

uniformly for ¢ > | and s in a compact set, Re(s) > 0. Hence

<y

Js.t(y) ~e
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uniformly under these conditions. Differentiating under the integral sign gives

Jo (y) = s c(Y) +“r—(~)“ “y-[oe"t“(s - l)(l + 5_2; )H( 2;;2 ) if’» .

Again we get the desired uniform asymptotic behavior of J (y) fory —> oo.
On the other hand, we also have

sld?

J, () = e"”(ch)‘_sf e~ (2ey + 1)

1
I'(s) ]

Fix ¢. As y —> 0, we see that the integral on the right approaches I'(2s — 1)
uniformly for s in a compact set. Hence for fixed ¢, we get

(25 - 1) I-s
s (V) ~ Ty Qo) .

This concludes our analysis of the first solution.
The second solution is handled by similar means as follows. Let

1
V(y) = 'IT—))/S -—y/2f e'[t(1 = 0] ar.

The same technique as before with the resolving form shows that V| is a
solution of the Whittaker equation, namely applying the Whittaker operator
to

1
y““e_”/zf e[t(1 - t)]s_l dt
0

turns it into the exact form

- 57 {y>le?e[1(1 - t)]s}.

which has boundary values equal to 0.
For y — 0 we have immediately

V(y) ~ f‘z ; where B(s) =fl [r(1 - 1)]3_l
0

Let

I
K. (y) = V.Qoy) = F—)(ZC)’)e ”fo e [1(1 — O] d.
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Then K . has the desired behavior for y —> 0. Make the change of variables
t => 1 — ¢ and then u = 2¢y1, du = 2¢y dr. We find

2¢p s—1
1 eV u o u
s, c(y) F( ) l e [u(l "‘"“2Cy )} du.

This last integral converges to I'(s) uniformly in the desired region for
y —> oc. Hence

K, (y)~e?

for y — oo, uniformly as stated. On the other hand, differentiating V,(2¢y)
with respect to y yields

K (») = 5 K, .(y) — K, (»)

!
I‘( ) (2cy)e“‘y./(; 2 [r(1 — t)]sa]2ct dt.

Again let ¢t > | — ¢, and then u = 2¢yr. The third term on the right

becomes
2¢y s
ie" e“"(l —~ —u—)u"‘du‘
I'(s) A 2¢y

which is uniformly asymptotic to 2ce®. Since —cK, .(y) ~ —ce®, we obtain

KJI, c(y) ~ ce¥
uniformly, as desired.

§7. DECOMPOSITION OF THE RESOLVANT ON T\ foro > 3/2

In this section, we study the resolvant for ¢ > 3/2 or even o > 3. The
sum over all y €T will be split into two sums. Let 'y be the group of matrices

(il n)
0 + 1

razis) =3 3 eluz v 9) +

Y&y

with nE€Z. We write

> olu(z.vz'): s)
Y¢Th,

N§—-
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[The } is to cancel the trivial effect of *1.] The first sum will be called the
cuspidal part of the resolvant, and the second sum will be called the non-
cuspidal part. We study first the cuspidal. We shall see that we can also
decompose it into a sum of several kernels exhibiting various boundedness
conditions. In particular, we shall introduce other function spaces besides
LY T\ ©) on which the effect of these kernels will be more transparent than
on the Hilbert space itself.

We break up the fundamental domain into two pieces. Let a be a large
positive number. Let F; be the part of the fundamental domain with y < a
and let F, be the part withy > a, as illustrated in Fig. 6.

{2} poon o

Figure 6

This means that a function f on F has two components,

f=Uot)

fo
f= s
S
to allow for the operation of a matrix on the left. If, for instance, f;, f, are
viewed as elements of certain function spaces, then any operator @ will be

which are also written vertically,
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written as a 2 X 2 matrix of operators

(90 Qo \[fo
o (Qlo Q“)(f.)'

The spaces we consider are the following. First, naturally,
H = LYT\®) = L (F,) ® L¥F)).

(The Hilbert scalar product is taken with the measure dz = dxdy /y?)
Second, for any real number p, we have the space

B(F) = B (Fp) ® B,(F,)

where @, (Fy) is simply the space of continuous functions on Fy, with the sup
norm, and GK?)“(F,) is the space of continuous functions f on F, having the
property that

Lf(x + )| < yk,
with the p-norm,

_ | f(2)]
Hflln—zsgg P

Thus H is a Hilbert space, while % o(F) is a Banach space. Observe that
B, CH,

i.e. any bounded function is in C%T'\$) because I'\$ has finite measure.
This is especially true of B_, C B,

Let k(z, z') be a function defined on the product F; X F;. We usually use
the notation k(z, z') to denote this property, when the variables z, z’ range
over zEF; and "€ F,. A kernel will be said to be of type 0]3,‘ if it is
continuous, and if

lk(z, 2) < ()

If, for instance, k = kg, then the variable z (hence y) ranges over a compact
set, and consequently the inequality has bearing only for the second variable,
so that in this case it is equivalent to

lkor(z, 2') <y~
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We say that an operator is of type L.‘BF if it has a kernel of this type. Such
operators have obvious continuity properties applied to spaces %,. For
instance

Lemma 0. Let k(z,2') be a kernel of ype “B_ u- Then the associated
operator K is defined on B, u—e and maps it continuously into o _ ,‘.

The proof is trivial, by freshman integration applied to the integral, say
on F:

o0 _ dy,
f () “ytree = < ym,
g y

We shall also need to know that certain operators between ) . Spaces are
compact. For this, we need some additional remarks along the lines of
Ascoli’s theorem, whose statement we recall for the convenience of the
reader.

Ascoli’s theorem. Let X be a compact space and ® a family of continuous
Sfunctions on X. Then ® is relatively compact (compact closure) in the space
of continuous functions on X, with sup norm, if and only if ® is equicon-
tinuous and bounded.

(For the proof, cf. Real Analysis.) By equicontinuous, one means that given
Xo€ X and e there exists 8 such that if |x — xg| < 8 then |f(x) — f(xp)] < ¢
for all fed.

We shall combine Ascoli’s theorem with the following statement to get
compactness.

Let v < p. A set E of equicontinuous functions on F,, bounded in 9 ,, is
relatively compact in %, .

Proof. It suffices to prove that E is totally bounded in ‘:P)“, i.e. can be

covered by a finite number of balls of given radius » > 0. By assumption,
there exists C > 0 such that for any f€ E,

f(W < &y thatis  |f(»)ly~" < C.
Pick Y so large that if y > Y, then | f(y)|ly ™" < € for all f€ E, Write

f=0U%f")
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where f~ is the restriction of f to the domain y <Y, and f* is its restriction
to the domain y > Y. We have an inclusion

C’J‘))IJ(ITI) C (:Bv(FY‘) X %v(F;-)

Figure 7

The function f™ lies in a ball of radius € in % ,(F,"). On the other hand, the
family of functions { f~ }, for f€ E, is equicontinuous and bounded on F; .
Hence it is relatively compact in ?l‘aM(F,,‘) by the ordinary Ascoli theorem,
since Fy is compact. This proves our assertion.

In the applications, we obtain a set of equicontinuous functions by means
of a kernel k(y, y’), say on F, X F, applied to the unit ball in $3,. Let K be
the associated operator. Let f be a function in the unit ball in ¢3,. Then at a
point z, we have

© &
le(Z) - Kf(ZO)I <<L |k(y’y’) —_ k(yo,y/)lytv }:v,'{ ,

and we see that the uniform ¢, -bound rids us of the function f in the
estimate, transferring any needed estimates to the kernel. Thus we shall
obtain equicontinuity with any kernel for which we can take the limit under
the integral sign, as y —> y,. In practice, the needed estimates will be obvious
if k is a kernel of type B, for some g, but we shall need to expand somewhat
more work for other types of kernel which arise in the cuspidal part.
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The cuspidal part

We look at the sum

%z, z'; 5)

2 3 ey 9)

v€ly

S pulz, 2+ m); 9)

&, |z =z + nf
=2(p——-—*—-——————, s 5.

=% dyy

Then r° is periodic in x, and is an even function of x — x’. Hence it has a
Fourier expansion of the form

o0
(1) 7%z, 2'55) = my(y,y'; s) +2 D m(y,y’; s)cos 2ak(x — x')
k=1

where the Fourier coefficients for k > 0 are given by

}
2) m.(y,y'; ) =f . %z, 2’5 s)cos 2mk(x — x') dx.
-3

It is clear that m, (y, y'; 5) is symmetric in (y, y"), and the complex conjugate
is given by

m(y,y'; s) = m(y,y'; 3).

Also, the integral expression shows that m, is continuous, even on the
diagonal.

We shall determine explicitly m,, and show that it is equal to the kernel ¢
of Example 1 in our discussion of Green’s functions. We shall also see that m,
for kK > 1 is the Green’s function of Example 2. Finally we shall give
estimates which describe continuity properties for these kernels on various
spaces.

The kernel r%z, z’; 5) gives rise to an operator R%s) defined on
BC *(T,\©). and the same argument that showed

(L= s(1 =s))R()f = f
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for f€ BC>(I'\®) also proves the formula

(L =5(1=9)DR) =f

for f&€ BC®(T'4\®). The fundamental domain for I')\® is the strip § as
shown on Fig. 8.

Figure 8

Lemma 1. For k > 0 the function m,(y, y’; s)is a Green’s function for the
differential operator

I = —(i”—)z+ (k) ~ iy}f)

on (0, o0). Furthermore, m, is continuous, and satisfies the homogeneous
differential equation away from the diagonal. Hence m, satisfies GF 0,
GF 1, GF 2.

Proof. Abbreviate
M =L — s(l — s}l

5

Let f, g€ C2(T,\®) be test functions. The inversion formula for R%s) and
the symmetry of M_ show that

f f rz, 271 $)f(z2" )M g(z) dz” dz =f f(z")g(z") dz".
§ Y8 N
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Inverting the order of integration shows that
L r%z, z”; s)M. g(z) dz = g(z").

Fix z' and take for g a function of the form
g(z) = cos 2ok (x — x"Yh(y),
where A€ CX(R™ ). Then

M.g(z) = ~y2[ —(2'7rk)2 cos 2wk (x — x"Yh(y) + cos 2wk (x — x’)h”(y)]

—s(1 = s)cos 2ak(x — x)h(y).
Since dz = dxdy/y? and

H o
dx d)
fdz=f f xzy,
s -3 Yo Y

integrating first with respect to x, and noting that g(z') = h(y’), we obtain

(*) j; m (v, y Y h(y) dy = h(y").

First, if we fix y’ ana pick test functions % such that the support of 4 does
not contain y’, then (*) reads

fo m (3, 7) i h(y) d = 0.

By the regularity theorem for elliptic operators, we conclude that m,(y, y’) is
C*® away from the diagonal, and satisfies the homogeneous differential
equation f, ,m(y,y’) = 0.

Second, integrating (*) against any test function ¢ € C°(R") yields

fwfwmk(%y’)?kh(y)\b(y') dy dy’ =f h(y )W (y) dy.
0 1] 0

Changing the order of integration, the left-hand side is equal to

fow ["k.yfow m (v, Yy W(y) dy']h(y)dy.
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It follows that

fk.yfo m (Y, yW(y') dy’ = ¢(y).

Hence m, is a Green’s function as desired.

Lemma 2. For Re(s) > 1 we have

: , 1
mo(y,y's ) =ty 8) = 50— 1" |

{ yeyiTe iy <y

y"' Ty if y > yp.
Furthermore for k >0, m(y,y’; s) = g, o (¥, y), where g . is the
Green’s function of §6, Example 2.

Proof. We have

§
my(y,y's s) =f %z, 2’5 s) dx.
-1
Fix y’. Let y > y’. Since m, satisfies the homogeneous differential equation
away from the diagonal, we must have

mo(y,y'1s) =a(y W'+ b(y )"

Asy — o0, r%z, z’; 5) —> 0 because @(u) ~ u~° for u —> oo. Hence b(y’)
= (. Now let y < y’. Then

mo(y,y's sy =c(y' W' = + d(y)y"

Asy —> 0, u(z, z’) —> oo, so again @(u(z, z'); s) — 0. Hence ¢(y’) = 0. It
follows that
, a(y '™ if y <y,
mO(y’y 1 S) = .
d(y)y* if y' >y
By the general theory of Green’s functions, we conclude that my = . Exactly
the same arguments show that m, = g _, .. Note that we needed to know the
asymptotic behavior of the solutions of the homogeneous equation both for
y —> o0 and y ~—> 0, in order to have the unique determination of m, as a
specific Green’s function.
From the general estimates of the Green’s function g, . we obtain
uniform estimates for m, (y, y": s) (k > 1), stated below.
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We let fore > 1,

o0
m(z,z';s) =2 2 m(y,y’; s)cos 2mk(x — x').
k=1

Lemma 3. For 0 > 1, we have an estimate

e~ 2mkly =yl

Im (y,y"; s)| < C 3

where C is a constant, uniform for s in a compact set, and

0<a<yy <ow.

Therefore m(z, z'; s) lies in C%(F, X F,), and the corresponding operator

EX(F,) — £X(F)
is compact.

We denote by M(s) the operator whose only non-zero component is
M, ,(s), given by the kernel m(z, z’; 5) above. Thus

my(z,2'; s) = m(z,2'; 5)
Mg, = My = My = 0.

We have obtained the decomposition

(3 1%z, 2’5 8) = t(y,y'5 5) + m(z,2'; 3).

The next lemmas are concerned with further continuity properties of the
operators associated with these kernels on various spaces.

In considering operators arising from the cuspidal part, we agree that
they have only a 11-component. This holds in particular for T(s) and M(s).
Thus the kernel matrix #;(s) for T(s) has components #,(z, Z’1s)=0ifi#*j
and if i = j = 0, while

1z, 25 8) = 1(y, 5 5).
Similarly for M(s).
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Lemma 4. Assume o > J andlet | — 6 < p < o. Then for y > a,
ow
: w Y
f [ty y Dy = <yt
g y

Thus the associated operator
T(s): QBP(FI) —> %“(F,)
is a bounded operator.

Proof. Write the integral on the left as

[eo] y o0
f = f -+ f .
. . a a y
It is estimated by

B4 [ee]
f ey [Tyt gy

a y

which is < y* by freshman integration, as was to be proved.

Lemma 5. The operator T(s) having kernel 1(y, y’; s) is bounded on L*(F))
Jor o > 1.
Proof. Select p as in Lemma 4. Without loss of generality, we may take a

function f in £*([a, o)) and see what T(s) does to f. Apply the Schwarz
inequality to the functions

ey y w2 and i,y TH R A
We get
[+ o] o0
’ ’ d‘y, I ’r— ’ dy’
| TA(»)P <f LCE R S f [t )y H AP ST

a

We use Lemma 4, multiply the first integral on the right by y * and the
second integral by y#, and obtain the estimate

% M ’ r— N2 dy,
< | oy )y 1O IR
a

Now integrate to get
o0 oo}
N . 4
HTf|!§<<f fy“ll(y,y)bf “IONP 7

< ||flI} (again by Lemma 4).

This concludes the proof.
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Lemma 6. Let ¢ > 1. We have for any real number u.:
® I
f e~y dy < €y oyt
a C

where C, is a constant independent of ¢ and y.

Proof. Integrate by parts, and split the integral from a to y and y to o0.
For instance, the integral from a to y yields

thp ==y y ,
yree” [+ L[ eyt gy
a

The first term is < % y*. For the second term, split it again, over the intervals

a < y' <2pand2p < y’ < y. The first of these behaves like e /¢, and
the second is smaller than the original integral divided by 2. Transferring this
second integral to the left-hand side concludes the proof.

Lemma 7. For ¢ > 1, the operator M(s) whose kernel is m(z, z'; s) maps
L?(F,) continuously into % _ (F)).

Proof. The assertion reduces to the following estimates, for a function
fEL¥(a, ).

- ® = 2mkly -y '
e n Y

2 f — O =3

k=1 Jg y

< W[ [ & 1"
< g, z 2 [ j‘: e ~4mkly =yl ;y? ] (by Schwarz)

= 12 1
<« —_— (by Lemma 6)
,gl ko k'
<fllh+
2 y .

This proves the lemma.

Lemma 8 For o > 1 and any real number p, the operator M(s) whose
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kernel is m(z, z'; s) gives a bounded linear map
M(S): ("B,u(Fl) —> ("BM—Z(Fl)a

and the induced linear map of % _, into & _, is compact.

Proof. Again we may consider a function f€ %, ([a, 0)), and for the
first assertion, we estimate the sum

o0 o0
2 f m(y, s sy dy,
k=1 Jg

using
e~ 2kly =
8| K
lmy (y, 5" 5)| P

The fact that M(s) maps %, into %, , continuously then results from
Lemma 6. For the compactness statement, we follow the pattern already
mentioned at the beginning of the section, and prove:

The image under M(s) of the unit ball in B, (v < 1) is equicontinuous on
F,.

Proof. A function in the unit ball in %, is bounded. Fix z, € F;. We get
the estimates:

MY = MO < [ s 5) = mle s 9y .
a k=1

We can take the limit under the integral sign to get the equicontinuity.
Observe that the effect of the kernel is to make the function f disappear from
under the integral sign.

The non-cuspidal part

We had our original kernel r(z, z’; s) for o > 1 as the average of the
kernel ry(z, z'; s) over T. We let n(z, z’; s) be the kernel whose components
are given as follows:

gy = Too» oy = Fops My = o

7 l ’
mi(2i9) = 3 3 olulz ) ),
v&€lo
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so that we may write

N(s) = Roo(s)  Rg(s)
Rio(s)  Ny(s) .

The corresponding operators are denoted by capital letters.

Lemma 9. For ¢ > 3/2 each kernel ny(z,z'; s) lies in EXF, X F), and
N(s) is therefore a compact operator on L*(F). In fact, for (i, j) # (0, 0),
for ¢ > 1, and sufficiently small ¢, ry(z, 2'; s) is of type B,,,_,, that is:

lroai(z, 2’5 s)| < y2+eme,
Irio(z, 2’5 s)| € y2ree,
’ Nnete—a
Iny(z, 275 8)| < (') e
Finally

roolz,2°; 8) = — zl; log |z — 2’| + continuous function of (z, z').

Proof. Tt is clear that the estimates imply that the kernels are in 2. For
the estimates, we need another lemma.

Lemma 10. Let yo > 0. For 6 > 1, uniformly in —4 < x <% and y,y’
> yo we have

1 Nnite—a
S

y&Ty [l + u(z’ YZ’)]

Proof. Write y&TI', as

Then

dyy'u(z, z') = czz' + dz — az’ — b?
= (cxx' + dx — ax’ —~ b)2+ y¥Hex' + d)2

+yex — a)2+ ey - 2yy.
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Let zy = x + iy, and z5 = x" + iy, as illustrated in Fig. 9. Then 4y,y,
u(zg. v2g) is equal to an expression similar to the above, with y,, y, replacing
». y’ respectively. Note that the first term in the expression involves only x, x’
and is common to both. We also have obvious inequalities like

yHex' + d)2> yi(ex' + d)z.

[ Y

~
-
Ny

[

Figure 9

Therefore we obtain the inequality
dyy'u(z, v2') = dyoyou(ze 120) 2 ¥y = cW3yd — 2" + oy,
whence
’ ’ ’ 7 2
dyy'[1 + u(z, ¥2')] > dyoyoll + u(zo, v20)] + (')
Divide by (»y’)? to get (with the obvious abbreviation)
4 1 +,u > 4 )’oJ’o2
Yy (»")
Raise the left-hand side to the o power, and the right-hand side to the 1 + ¢

power. Up to a constant factor depending on y,, the inequality is preserved,
and we end up with

I I !
5 < € Wo—2—-2e °
[1+ u(z. yz')] [T+ u(z, yz(,)]|+ ('Y 272

Our proof is concluded by Lemma 1. §5.

[T+ u)
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The estimates of Lemma 9 are obtained by combining Lemma 10 with
estimates like

2 lp(u(z, yz'); s)| < pt=°

v€Tl,

for z in a compact domain, arising from the sum

i y

N
n=1 y12+ n2)

o

This type of sum, or the analogous integral, had already been considered
when we studied the discrete series.

Lemma I1. For o > 3, N(s) maps B, into B_,_; for some § > 0, and

N(s): B, — B_,

is compact. Also N(s) maps H into B_, continuously.

Proof. This comes from freshman integration applied to operators of type
B, 4¢-q- For instance if fis in % (F)), then we evaluate the integral

oo dy;
Neite—a , e—a
f )Y Ty = e
g y

The compactness of N(s) when viewed as a map from %, into B _, is
due to the same phenomenon as that already encountered. Applying the
operator to the unit ball yields an equicontinuous set of functions. One sees
that N(s) maps H into % _, by a straightforward use of the Schwarz
inequality.

§8. THE EQUATION — y"(y) = - ¥(») ON [a, )

(1-s)
2
We need still another operator in order to analyze the above differential
equation on the half line, with boundary at a, which we select to be a fixed
positive number, say a > 1. We let k > 3. Let

2s—1 S T K

o) =a® T
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and let
B(y.5) =y* + c(shy'™"

Then 8(y, s) is a solution of the above differential equation, satisfying the
boundary condition #(a) = ax ~'8'(a). We also verify directly and trivially
from the definitions, that 8(y, s) satisfies the basic formalism

c(s)e(l = 5) =1,

H(y, S) = H(y’ 1 - S)C(S),

which we call the Eisenstein formalism.

Using the two linearly independent solutions y' ™ and #(y. s) in connec-
tion with the general discussion of Green’s functions in §6, and noting that
the Wronskian of these functions is 2s — 1, we get the Green’s function

iy s) = —1 Oy, sy'™ iy <y,
o s = 1|y, s) 0y <y

It is clear that g(y, y’; s) is symmetric in y, y’ and satisfies the symmetry

g(y,y": s) = q(y,y"; 5).

We let Q(s) be the operator whose only component is the “diagonal”
component, with kernel

gy(z, 2" s) = q(y, s s)

so that for suitable functions f on F we have
Q)= | qly.y:s)f(2)dz.
F]

Note that Q(s)f(z) is independent of x.
We shall specify below on what spaces Q(s) acts, and with what continu-
ity properties.

Lemma 1.

i)y For o > %, Q(s) is a bounded operator on H.
ity For 0 < o <2, Q(s) maps B _,(F)) into %,_,(F,) continuously, and

Q(s): D _|(F)) = B(F)

is a compact linear map.
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Proof. Except for the compactness assertion of (ii), the continuity asser-
tions of (i) and (ii) are verified by the same elementary integrals as for the
corresponding assertions concerning 7'(s) in Lemmas 4 and 5, §7. It is also
clear from these integrals that Q(s) maps % _, into ¥,_,. The compactness
of the operator from B _, into B, then follows from the next assertion.

The image by Q(s) of the unit ball in B _, is equicontinuous.
Proof. Let f& % _,. We have
106 = QYOI < [ la(r5's 9) = 2o y's DI s
i

This is estimated by replacing | f(z')| by 1/y’, and the expression under the
integral sign is then

& yrayr—-3 <

M+e ?

integrable on [a, o). Our assertion follows at once.

Relations for ¢(s)
Let k,(y,y") and k,(y, y’) be two kernels. We define their convolution

”

dy
¥ »2

o0
ky*ky(y,y") =f ky(y, y" k(¥ ¥")

and in any specific applications we have to check the absolute convergence of
the integral, over a specified range. The convolution corresponds to the
composition of the associated operators, K,K, when applied on the left
(otherwise, it gets reversed on the right), valid on any spaces where the
integrals converge absolutely.

We shall list certain properties of the convolutions of the kernels ¢(s) and
t(s). We let k > 3 as always, and

w(s) = s(1 — 5) — k(1 — «).

We also abbreviate T(x) by T.

”

4 ’ o " " ’ dy
qL gy, y's8) =1y, y' k) = w(S)f oy, »"; &)g(y”, ¥ s) Iz
a

is valid for ¢ > 1 — «.
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We could also write this

qs - tx = w(s)tx*qs’
or as an operator relation

QL 0(@s) = T = w(s)TO(s).

The kernel relation q 1 is verified by direct integration, and the definitions of
q(s), t(x). For instance, say y’ < y. We write the integral as

=) Y ¥ )
o=l
a a ¥ y
We substitute the definitions of 7(y, y”; k) and g(y”, y'; s) and evaluate the

integrals. The relation falls out.

Let 7 = T(x). Relation Q 1 is equivalent with
Q2. ( — w(s)T)YT + (5)Q(s)) = 1, o>1—xk,

as one sees by distributivity. Furthermore, since the left-hand side kernel
g(s)— r(x) is symmetric, and ¢(s), {(x) are also symmetric, it follows that we
have commutativity in the convolution of kernels

q3' tx*qszqs*tx’ 0>1_K’

so that the invertibility relation of Q 2 also holds, as a kernel relation, on the
other side, on whatever spaces the composition is defined. We then have
commutativity of operators,

Q3. T(x)Q(s) = O(s)T(x), o>1—x.

Lemma 2. The operator relations Q 1, Q 2, Q 3 hold

i) Foro>%onH;
i) For0<o<2on %h_,

Proof. The integrals involving the operator Q(s) and T converge abso-
lutely in the appropriate domains by Lemmas 0, 4, 5 of §7.

For the next section, we shall also use the relation

, y 1 ,
q4. gy gy =9 = 5y 8(y, )8(y", 1 = 5)

valid without restriction, and trivial from the definitions.
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The next relations will not be used until §11, and are inserted here only to
have a complete tabulation of the relations involving q(s) together.

as. q(y.y;s)—q(y,yss)

”

” &
= [wls) = ‘*’(S')]f 9(r, "5 9"y’ 5 —yiz—

for 0,06’ > 1.
Observe that
w(s) — w(s) = s(1 —s5) = (1 = &).

The relation is again verified by direct computations. It is here essential to
restrict the domain to e, ¢’ > 4, since otherwise for 5" = 1 — s, say, we get
w(s) = w(s) and the whole right-hand side would vanish. On the other hand,
observe that relation Q 4 gave us the difference between Q(s) and @(1 — s)
in terms of the functions #(y, s). Note that ¢ 5 has the operator formulation

Qs. Q(s) = Q(5") = [w(s) — w(sH]Q(5)Q(s").

Finally we have

’

o1
y? o e(s) = wls)

q6. j;q(y,y’; $)8(y', s) 8(y, s")

Jor ¢’ < a.

This is also verified by direct computations from the definitions, and has
the operator formulation

1

e 0= S o)

8(y, ).

In other words, 8, is an eigenvector for Q(s), with the stated restriction
o' < o.

Lemma 3. Let M = M (k) for k > 3. The composite operators
MQ(s) and Q(s)M
are defined on b _, and B, respectively, and
MQ(s) = O, Q(s)M = 0.
Proof. The operator M(x) has a kernel expressed as a Fourier series

involving cos 27k{x — x’), which is therefore orthogonal to the kernel of the
operator Q(s), which is independent of x.
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This concludes our list of relations for Q(s). On an adjoining table, we
have summarized some of the continuity properties for our various kernels,
and some relations.

T(s), o> 1, only a 1l-component

i) Bounded on H.
ii) Bounded on %, for I —o<u<o.

M(s), o >1, only a 1l-component

i) Kernel m(z,z’;5) in LY F,X F,) so compact on H.

i) Maps %, —%,_, continuously, compact for B_,-B_,.
iii) Maps H into 5 _, continuously.

N(s) of type 2+¢€—o

i) Kernel n(z,z";s) in £%(F X F), for 6>3/2, compact on H.
iy For 6>3, maps ®h,— % _,_, for some §, and
N(s): %, —> B _, is compact.
iil) Maps H into % _, continuously for o> 3.

V= M(x) + N(x),k >3, only a |l-component

i) Compact on H, maps H into A _, continuously.
ii) Maps %, —> % _,, compact for B _,—> B _,.

Q(s), only a 1l-component
i) For >4, bounded on H.
ii) For 0<o<2, maps *f _, into *,_, continuously,
compact for 3 _,—> 9.

T=T(x), M=M(k), N=N(k)
R=R(x)=T+V

§9. EIGENFUNCTIONS OF THE LAPLACIAN IN LYT\®) = H

Recall that A is the closure of the Laplacian, with domain D, in the
Hilbert space H = L'\ {). We are interested in the eigenvectors of 4, i.e.
the elements y € D, ¢ # 0, such that Ay = AJ. Let k > 3 as before. Observe
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that if Yy € H, ¢ % 0 and R(x)y = ay for some complex number & # 0, then
Y€ D, and

Aay = (1 — k(1 — x)aly,

so ¢ is a corresponding eigenvector of A4 itself. We shall analyze the eigen-
vectors of R(x) in H, and see that they correspond to eigenvectors of a
certain compact operator in B _,.

Let 0 < 6 < 2. Let as before w(s) = s(1 — 5) — k(1 — k) be abbreviated
by w, and let

K(s) =V + o(s)VQ(s) = V(I + wQ(s)).

From the sequence of operators

2(s) v
B, —>B,_, D,

and the knowledge that V is compact, we see that

K@) B_,— B_,

is a compact operator. It will be used for the analytic continuation of the
resolvant to the strip 0 < o < 2. However, for the moment we are interested
in the discrete spectrum, and hence we look only at the region to the right of
the line o = §.

Let 4 < o < 2. Let B _,(w(s), K(s)) be the w(s) ™ '-eigenspace of K(s) in
% _,, i.e. the space of functions f& B _, such that

w(s)K(s)f = /.

Similarly, let H(w(s), R) = H(w(s), R(k)) be the w(s) ™ '-eigenspace of R in H,
i.e. the space of functions € H such that

W(S)R(kW = .
Theorem 7. For § < 6 < 2 and s # 4, the maps
I + w(s)Q(s) and I — w(s)T(x)
give inverse isomorphisms

D _ (w(s), K(5)) > H(w(s). R(x)).
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The proof of Theorem 7 involves formal steps, with relations among our
various operators, and also involves estimates which we prove as separate
lemmas. We begin with the formal steps. We abbreviate Q(s) by Q.

Assume first that f& % _, and wK(s)f = f. i.e. that

V(I + wQ)f = f.
We have R = T + V. Then

WR(I + Q) = (T + VI + wQ)f
= (oT + ’TQ + I)f
= (I + wQ)f,

thereby proving half of the theorem.
Conversely, assume that wRy = . Then VY€ B _,, and

Ty + wVy =,

so that
(I — wTW = oWYED _,.
Then
WK (s)(I — «TW = oV (I + @Q(s))(I — 0Tl
= wly
= (I — wTW.

This proves the converse, and concludes the formal proof of Theorem 7.

The subsequent lemmas make it valid. Observe that for the first part we
need to know that if f&€ B _,, then Q(s)f lies in H. This will be proved in
Lemmas | and 2, when Re s = 4. It is obvious if ¢ > 1. In the second part of
the proof, we used

I+ Q) —T)=1
when applied to ¥. Theorem 8 below justifies this.

Lemma I. Let s =14 +it but s+ 4. Let f€%B _| be an eigenvector for
K(s),

w(s)K(s)f = f.
Then f is orthogonal on F| to 8(y, s), i.e.

»/'} 0(y,s)f(z) dz = 0.
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Proof. Let = (I + wQ(s))f. Then by assumption and the definition of
K(s), f= wVy. The function ¢(2)f(z) is in E'(F), because fERB _, and

¢ € B,. Multiply f(z) by ¢(z) and integrate. We get
| ¥@1) d = ols) [ FI () dz
F F
= “ 2 ') dz' dz,
o.:(s)j;r Lxlz(z)u(z 2 k)W(2') dz' dz

where the kernel v(z, z'; «) of V is real and symmetric. It follows at once that
the imaginary part of the right-hand side vanishes. Hence

J =iy a =0,

But Yf = [f + w(5)QG)f1f and ¥f = [f + w(s)Q(s)f]f. Since ¢ = }. we have

§=1— 5, and w(s) = (3) is real. Hence

° =f— f [a(r. 5" s) = a(rys 1= (2 () dzdz’
Fy F,

= f f 8(y, 5) 00y, ) f(2) J(z) dzdz’ (by q 4)
F, JF,

2

0(y, s)f(z) dz

n
as was to be shown.
Lemma 2. Let 0<o<2and s+ 3. If fE B _, then

QW) = 3™ [ By ) de + o),

Ifs#%and o > 1, and

w()K(s)f = f.

then Q(s)f is bounded, and in particular lies in H.
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Proof. We use the definition of the kernel ¢(y, y’; s) and

dy’
) dx.

(25 - DO(s)(z) = f f a0 s+ ) 2

We write

I

The integrals with respect to y’ then amount to
Y ’ 0 ’
-8 7 ’ @) 1= 5 -5 ’ dy
o [ a0 v [ e &
a Y

The tail end corresponding to the first integral is estimated by

o0 ’
-a g l—0 1 ‘b/
y! (e +clspy' )= =,
¥y yo

which is bounded. Hence the first integral gives the main contribution in the
lemma. The second integral is trivially seen to be bounded also. This proves
the first assertion of the lemma. As to the second, if ¢ > }, then it is clear that
QO(s)f is bounded from the integrals. If 6 = § but s % 1, then we use Lemma
I to conclude that the integral expression vanishes under the eigenvalue
assumption

w(s)K(s)f = f.

This concludes the proof.

Theorem 8. (Maass) Let Res =4 and s # }. If y€ H = LYT\D) and
Ay = s(1 — sW,

then  is analytic and satisfies the estimate

W(x + iy)| < e ™.
In particular, f = (I ~ ()T E D _,. If Y€, for some p > 0 and
Ly = s(1 — sy
then there are constants bg, cq such that

Y(x + iy) = byy® + cop' 7 + O(e ™).
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Proof. For any test function g€ C*(I'\ ) we have
<(A - S(l - S))‘I” g> =0= <4” (A - S(l - S))g>.

Hence by the regularity theorem for elliptic operators, we conclude that ¢ is
analytic and

(4 —s(1 =)= Ly — s(1 = sh.

Then ¢ has a convergent Fourier series expansion

V(x + ) = agy) + D, a,(y)e™
n#0
where

a,(») =f_: Y(x + iy)e™2mn* g,

We then see, as for the Fourier series of the resolvant, that

a;(y) = (472"2 - ;_(_1;;2 )an(y),

i.e. that a,(y) is a solution of the Whittaker equation. Hence there exist
constants b,, ¢, such that

a,(y) = b,W (4n|n|y) + ¢,V (4n|n|y),

where W, is the exponentially decreasing solution of the Whittaker equation,
and V| is the exponentlally increasing solution. If y € L? or B, it follows
that a ( y)is in L({a, o), dy / y%), or is at most polynomially mcreasmg, and
hence that the exponentially increasing term must vanish, i.e. ¢, = 0. Fix y,
such that for y > y, we have

(W, (»)] > 4e™/2

Since the Fourier series converges at every point, its coefficients are bounded.
In particular, there exists C; > 0 such that for all n % 0 we have

la, (¥l = |6, W, (4m|n|y,)| < Cy,
whence

Ibnl & e¥iniyy
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iy > 2y weget
W(x + iy) — ag(y)| < S e2minbyi = 2mlnly

&L e <w27ry’
so we have shown that

Y(x + i) = ag(y) + O(e™*™),
Now ag(y) is a solution of the equation

] —
i(-—z_S)“ ag(y)-

))

ag(y) = —

Therefore there exist constants by, ¢, such that

ao(y) = byy* + Co)’l_j-
For Re(s) = 4 the only way this is possible if y € L? is with by = ¢, = 0, and
Theorem 8 is proved.

Note. Arguments like the ones above are typical of those used by Maass
[Ma 1].

From the analytic definition of Q(s), which maps ¢% _, into %,_,, and
the fact V is compact, we obtain also the following properties of the family of
operators K(s).

Theorem 9. The map s > K(s) is an analytic family of operators from the
strip 0 < o <2 into the space of compact operators on B _,, except
possibly at s = % where a pole may occur due to the factor 2s — 1 in the
denominator of the definition of Q(s). In any case s > (2s — DK(s) is
analytic in the whole strip. The set of points s in the strip where

I — w(s)K(s)

is not invertible is discrete, and s —> [I — w(s)K(s)]” ! has, at most, poles
at these points.

Proof. The analyticity of s > K(s) is clear. A thorough discussion of
analyticity of kernels and operators is given in Appendix 5 and in the end of
the next section. The fact that

s >[I - wK(s)]”

is meromorphic follows from a general nonsense fact about families of
compact operators, whose proof is recalled in Appendix 3.
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In view of Theorem 8, a point s in the strip where /—wK(s) is not
invertible, or s= 1, will be called a singular point. The set of singular points is
discrete. Theorem 7 shows that the singular points on the line 6 = { (other
than s = }) and those on the segment } < s < | correspond to eigenvalues
of the Laplacian.

§10. THE RESOLVANT EQUATIONS FORO0 < g < 2
We continue to use k > 3 and
R = R(k), V= V(k), T = T(x).
We have the decomposition

R=T+ V.
Also

w=w(s)=s(l —5) — (1 — x).

We wish to find an “analytic” expression for the kernel of the resolvant
which will be valid throughout the strip 0 < ¢ < 2 and will represent the
resolvant for o > }. The basic resolvant equation is

4)) R(s) — R = w(s)RR(s).

We begin by a uniqueness lemma.

Lemma I. Let 4 < 6 <2 but s #+ 4. Assume also that s is non-singular.
Then there exists at most one bounded operator X on H = L¥T\$9) such
that

X — R = w(s)RX.
Proof. Let X, X’ be two solutions for the above equation. Then
X - X' =w(s)R(X - X').

If X — X’ % O, then any vector ¢ = (X — XYh % 0, with he H, is a solu-
tion of the equation

¥ = w(s)Ry,

which by definition means that s is singular, contradiction.
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We observe that the kernel r(z, z’; s) represents the resolvant for 6 > 4
and s not on the segment 1 < o < 1. Even though we shall find an expres-
sion for the kernel valid in the strip, it will nor represent the resolvant for
other values of s.

We now transform the resolvant equation algebraically, and now perform
some formal computations. Ultimately, we want to express R(s) for s non-
singular in the strip in the form

(2 R(s) = Q(s) + (I + wQ(s)B(s)(] + wQ(s))

for some operator B(s). Let us see formally the necessary and sufficient
conditions that B(s) must satisfy for this to hold. Using formally

(I - oT) = (I + w0(s)) "
and T+ Q(s)T= Q(s), we have:
3) X-R=wRX e X - R=0TX +wVX

(4) e (I — wT)X = R + wbX

() S X =(I+wQ()R + ol + wQ(s)) VX

(6) @ X = 0(s) + (I + 0Q(s)V + (I + wQ(s)) VX,
Assuming that X = Q(s) + (I + wQ(s))B(s)}(I + wQ(s)), this is

(7) & B(s) = V + oV (I + wQ(s))B(s)

(8) & B(s) = V + wK(s)B(s)

¥ & [I - wK(s)]B(s) = V.

Our intent is to reduce the study of the resolvent to the study of compact
operators. As we now see, the assumption achieves it.

Lemma 2. For s non-singular in the strip, the operator
I— wK(s): D_, — B_,
is invertible, and there exists a unique bounded operator

B(s): H_, — D _,
such that

[1 — wK(5)]B(s) = V.

Furthermore, B(s) is compact.
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Proof. We know that K(s) is compact, and hence that wK(s) is compact.
Hence / — wK(s) is Fredholm. The assumption that s is non-singular implies
that the kernel of 7 — wK(s) is 0. It follows that J — wK(s) is invertible. [We
are using here the fact that the index of a Fredholm operator is constant on
connected components, and that for compact operator K, the segment
I— 1K, 0< 1<, joins I — K to the identity in the space of Fredholm
operators. Cf. Real Analysis.] Since V is a compact operator on B _,, it
follows that B(s) is compact.

The operator V is defined by a kernel v which is not continuous because
of a logarithm appearing on the diagonal. For this reason it is convenient to
make one more transformation on B(s), namely to let
(10) B\(s) = B(s) = V.

The equation
[ — wK(s5)]B(s) =V

is then equivalent with

(1) [7- ""K(S)]Bl(s) = By(s)
where
(12) By(s) = oV (I + wQ(s))V.

We may now proceed backward, and define a kernel corresponding to the
above equation. For each non-singular s in the strip, we define the operator
B(s) by the kernel

(13) by, = wo*v + wvrg*v

where v = v(x), and ¢, are the kernels for V and Q(s) respectively. The
definition applies *“componentwise” for the ij-components of the kernel,
corresponding to the product F; X F; of the basic parts of our fundamental
domain.

Lemma 3. Let 0 < o < 2 and assume s non-singular.
1) Each component of the kernels v+v and v+ q +v is of type B _,, and
hence each component of the kernel b, _ is of this type.
i) The family of functions b, , . such that

bO‘z.:(z,) = b()(z' Z'; S)

is equicontinuous for z € F, (any i).
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Proof. Let us look first at ¢ * v, and more specifically at its component
acting on Fy X F,. This component has a kernel of the form

0= 43 glute 0

yel

Up to a constant factor, this kernel can be written in the form

log |z — 2’| + continuous function of (z, '),

for z, z2€ F,,. In the composition ry*r,, the worst possibility comes from
convoluting the logs, in which case we must see that the function of (z, z)
given by

f log|z — z"| log |z" — 2’| dz”

Fo
is continuous. Let g(z, z’) = log |z — 2’| and let

log|lz—2z if |z—2|>¢

-]

log e if |z-2]<e

Then g, is continuous, and g, *g, is clearly continuous. It suffices to prove
that g, * g, tends to g *g uniformly. We have

f [g(z.2")g(z". 2') — g (2. 2")g (2", 2')]) dz”

[ 8228672 — a8 )
L -z €
+ﬁ ) '!< [g((z. Z”)g(z”, z/) — g((z‘ zn)gz(zn- zi)] alz//
" -2 <e
< e?f llog |z” — z| log |2 — 2'|| dz”
Fo

< €2ﬁ log?|z — z"| dz” (by Schwarz)
0

< €2,

which proves the continuity of rgg* o,
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The operator V is of the form V = M + N, where the components
g My 1y, Of N are of type 93 _, and M, is represented by a kernel

m(z, z'; k) = 2 m(y,y'; k) cos 2mk(x — x')
k>l

with
Im (v, y's k)| < % o= 2mkly =y

The other components My, My,, M, are equal to 0. The kernels giving NN,
MN, and NM are easily verified to be of the desired type. We carry out the
details for the last convolution.

Lemma 4. If m(z, z’; k) is a kernel as above, then mxm is of type ©_,.
Proof. We have the orthogonality

%
f cos 2mk(x — x") cos 27w f(x — x"ydx”" =0

1
2

unless & = (. Hence
mam(y ) < 2 Imerm(ro)
k»1

and

”

k2 a2

*®© —2mkly ~y"|, ~2nk|y"~y'|
e e @

lmy *m(p, y')] <<f
y

a

We split the integral as before, for, say, y’ < y:

=Ll 1

We find the estimate for the integral to be

4nky’ 4k
& _]_ e " imk+y) 5_2_ + e a,.
K2 '

Pz a?
If y < 2y, then the term involving the constant a goes to 0 exponentially in
y + y" and is therefore better than the desired type The first term behaves
like 1/y? ie. like 1/yy’ as we want. If y > 2y’ then e 2" wins over
everything else.
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We leave to the reader that v +g, * ¢ is of type 5 _,. Recall only that

MQ(s) = Q(s)M = 0

because of the orthogonality of cosines and the constant function, and the
fact that by definition, @(s) only has a 11-component, depending only on y.

This takes care of the first part of Lemma 3.

As to the second part, I see no way but to check in each of the
convolutions of the different components of the kernels that one can take a
limit under the integral signs to show the equicontinuity. This is just more of
the same boring routine techniques as above, and is left to the reader, just this
once, as in Faddeev [Fa 1], p. 377, line 7.

Lemma 5. Let 0 < o < 2 and assume s non-singular. The operator B (s)
defined by
~1
B,(s) =[I — wK(s)] Bys)

can be defined by a kernel b(z, z'; s) which is of type ) _,.
Proof. We know from Lemma 4 that the kernel by(z, z'; s) for By(s) is of
type Y _,. Write
bo(z,2"; 8) = by, [(2).
viewing by .., as a function of z, in ¢3 _,. Then

|
b, , (2K —= —
I O.Z‘S( )! ¥y
and

107 =K ()] bo el 1< boee

<<—1~,.
y

-1

If we define
bi(z. 2 s) = ((I = wK(s)) by .., )(2).

then the inequality we have just obtained means that

1
b(z,2: s)| K — .
bi(z. 2" ) <

because for any function f€ P _, we have

A=y = sup | f(z)y].
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so that if || f||_, < 1/y’, then |f(z)] < 1/yy’. This gives the desired asymp-
totic estimate. Continuity of b, is proved by decomposing

b\(zy, 23) — by(zy 23) = by(2), 2}) — b\(2y, 2}) + b\(2y, 2}) — bi(2,, 23).

We fix (z,, z}) and let (z,, z3) approach (z,, z}). The first difference on the
right approaches O because b, , is continuous. The second difference
approaches 0 because a similar continuity property holds for b, instead of b,
according to the second part of Lemma 3, and this property is preserved by
applying a bounded operator to the function space % _,. This proves Lemma
5.

We are now finished with the continuity properties of the various kernels
by and b,. We turn to the dependence on s. We have the analytic dependence
of B(s) on s.

Theorem 10. For each non-singular s in the strip let B(s) be defined by

B(s) = [I - w(s)K(s)]"'V.

i) The map s > B(s) is a meromorphic map from the strip into the
Banach space of bounded operators on % _,. The poles occur only at
the singular points.

1) There is a decomposition

B(s) = M + N2(s)

where N3(s) is an operator defined by a kernel of type % _,, and
M = M(k) with x > 3.
i) For o > 1, s not real, as operators on H, we have

R(s) = Q(s) + (I + wQ(5))B(s)(I + wQ(s)).

Proof. The first assertion is immediate from Theorem 9 in the preceding
section. The second follows from the lemmas, taking into account the
equation

B(s)=B\(s)+ V=B/(s)+ M+ N.
The third is clear from the sequence of equivalences (3) through (9), and the

uniqueness of the resolvant satisfying the resolvant equation by Lemma 1.
This proves our theorem.

We end this section by giving the form which the resolvant equation takes
for B(s).



328 DECOMPOSITION OF THE LAPLACE OPERATOR ON '\ [XIV, §11]

Theorem 11.
1) For 0 <o <1 and s, 1 — s non-singular, we have, as operators on

N
W,

B(s) - B(1 — 5) = w(s)’B()[Q(s) = Q(1 — 5)]B(1 - 5).
i) For o, 6 >4 we have, as operators on H,
B— B =(w—w)B(I+wQ)I+«wQ)B,
where B = B(s), B’ = B(s'), w = w(s), w = w(s"), erc.

Proof. We start with B = (] — wK) 'V. Let 0 < 6,0' < 2.On % _, we
get

B-B =[(I-wK) ' —(1-wK) ']V

= (I — wK) NwKk — oK) - oK) 'V.
Since K = V(I + wQ) and K’ = V(I + «'Q’) we obtain

*) B— B = B(w—w + «’Q — w?Q)B.

Putting s' = 1 — s, in which case w(s) = (1l — 5) we get our first assertion.
On the other hand, the last assertion (*), valid on B _, for 0 < 6 < 2 and
0 < o’ < 2 can now be read in the restricted domain ¢, ¢’ > 1, in which case
the operators appearing in it are bounded operators on H, and (*) is valid on
H. Using the formula

Q-0 =(o—)0Q
valid on H, we see that (ii) is equivalent to (*) on H. This proves our theorem.
In the sequel we make use only of the first resolvant relation in the strip.
This relation can be viewed as a “functional equation” for B(s), from which

the functional equation of the Eisenstein functions (to be defined in §12) will
follow immediately.

§11. THE KERNEL OF THE RESOLVANT FOR 0 < 6 < 2

In this section, we shall see that even though the resolvant of the Laplace
operator itself does not analytically cross the line ¢ = }, we can nevertheless
make an analytic continuation of the kernel as a function of s into the entire
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strip 0 < o < 2, by giving an analytic continuation of the kernel 5(z, z’; s5). 1
am indebted to R. Bruggeman for the exposition of this section.

Theorem 12. Let U be an open set in C. Let p, vER. For each s in U,
assume given a continuous operator

R(s): B, — B,,

and assume that this operator is represented by a kernel r(z, z'; s), which
for each z is measurable on F X U. For each compact set K in U assume
that there is a bounded operator Ry: B, —> B, represented by a kernel ry
satisfying

|r(z, 2'; s)| < rg(z, 2')
for almost all (z,2') and all s€ K. Then r(z,z'; s) is analytic in s for
almost all (z, z') if and only if s —> R(s) is analytic.

Proof. We use Theorem 1 of Appendix 5 in connection with a statement
similar to Theorem 2 of that appendix. Namely, we first prove

Lemma 1. Let the hypotheses be as in Theorem 12. Then r(z,2z'; s) is
analytic in s for almost all (z, z) if and only if for all fE€ % pandall z€F
the function
s > R(s)f(2)
is analytic.
=>: Let C be a circle enclosing a disc in U. Let fE€®, and zE F. The
function

z' > re(z, )| f(2)]
is integrable and majorizes z' > r(z, 2’; 5)f(z") for all s&C. Hence

s > R(s)f(z) is continuous by the dominated convergence theorem. Now
(z', ) B> r(z, z’; 5) is measurable and bounded by the integrable function.

(2, 8) B> re(z, ) ()]s

so that (2’, 5) > r(z, z’; s) is integrable and

f R{s)f(2)ds =f f r(z,z'; s)f(z)) dz' ds
c c JF
=ff r(z, z': s)ds f(2') dz’
FJc
=0

This proves that s > R(s)f(z) is analytic.
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<: If s > R(s)f(z) is analytic for each f, z, it is clear that we can again
interchange an order of integration to find

f f r(z,2'; s)ds f(2')dz' =0
FJc
for all 2€ F and f€ %, . Then for almost all (z, z') we get
f r(z,2'; s)ds = Q.
C

By the lemma of Appendix 5, §1, we conclude that #(z, z’; s) is analytic in s.

We verify next that the hypotheses of Theorem 1, Appendix 5, are
verified, with an appropriate set of functionals.
Since r is bounded by r, for any compact K, we get

sup [R(s)] < |Rl.

We let A be the set of functionals A, , on the Banach space
E = Hom(%,, 8,),
where f lies in the unit ball in $,, zE F, and

A
AL(4) = ’;(f)

for any continuous linear map 4: %, — %,. Then A, is the composite of
two maps,

g(z)

yl'

A > Af and g >

which are continuous linear, of norms < 1, and norm determining. This
shows that we can apply Theorem 1, Appendix 5, and concludes the proof of
Theorem 12.

Corollary. If we add 1o the assumptions of Theorem 12 that for each z and s
the function

2> r(z, 2 5)
is continuous, and z' V> ri(z, 2') is locally bounded, then:

s > r(z, z’; s) is analytic for all (z, z') & s > R(s) is analytic.
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Proof. Only the implication < involves additional information, and
amounts to proving that if

f f r{z,2'; s)f(2') dz’ds = 0
cYr
for all z€ F and fE D, then
f r(z,2;s)ds =0
c

for all z, z'. Fix z and let g(2’) be the function of z’ given by this last integral.
For any real f € C.(F), and therefore f€ B w We get

<& f =fF fc r(z,z'; s)f(z)) dsdz’ = 0.

Hence g is equal to 0 almost everywhere. The assumptions of the theorem
show that g is continuous, whence g = 0. This proves the corollary.

Let Q@ be a compact subset of the strip 0 < ¢ < 2. We can define a
dominating kernel for 0 < 6, < 6 < 06, < 2 by

(yor+ 'yt ity <y,

yl—ol(yroz_'_ Czyrl—a,) lf y/ <y,

qo(z, 2) = C:{

with appropriate constants ¢,, ¢,, so that for all s€8Q, we have

lg(z, 2’1 5)| < gg(z, 2').
We let

Qg By = B,

be the bounded operator having only a 1l-component represented by the
above kernel. As with Q(s), we see that Qg maps B, continuously into B
if 0 < p < 0, <2, and we write

Pep?
. R
Qg By —> B,_,.

The next two lemmas give estimates needed to apply Theorem 12.

Lemma 2. Let Q) be a compact neighborhood in the strip of a point s,. Let m
be the order of the pole of the operator

[7 - w(s)K(s)] "



332 DECOMPOSITION OF THE LAPLACE OPERATOR ON '\ [X1V, §11]

on B_,. Then there exists C >0 such that for all sE€Q we have

s = soI™ |by(z, 2% )| < C(w) ™,

where, as before, b\(z, z’; s) is the kernel of B,(s).
Proof. The proof given for Lemma 5 in the preceding section works
uniformly for s in the compact set €.

We give a symbol to the kernel which extends the kernel of the resolvant
to the strip. We let

ps = ¢, + (1 + wq)xb+(1 + wq,)

so that p(z,2) = p(z, z’; 5), and p(z, z’; 5) represents the resolvant for
1 < 0 <2, s not real, by Theorem 10, iii. Except possibly on the diagonal
and on the boundaries of the regions F;, used to decompose the fundamental
domain, the two kernels p(z, z'; s) and r(z, z; s) are continuous in (z, z') and
coincide for 1 < ¢ < 2.

Lemma 3. Let § be a compact neighborhood in the strip of a point sy, and
assume S is contained in 0 < o, < 0 < 0,. Let m be as in Lemma 2. There
exist constants c¢; such that for any s €Q we have

s = sol™ lo(z, 2"; 9)|

’ ] , N
< 199(2, 2) + o5(py")  + c5|lm(z, 2)| + co(y") .

Proof. This follows by estimating the integrals entering into the convolu-
tions defining p(z, z'1 s).

We are now in a position to apply Theorem 12. Knowing that certain
families of operators are meromorphic, and knowing an appropriate local
boundedness condition on the corresponding kernels, we conclude that the
kernels themselves are meromorphic, namely:

Theorem 13. For z + z' and z, 2’ not on the boundaries between the regions
F. of the fundamental domain F, the functions

s = p(z,2; 5) and s> b(z, 7'} 5)

are meromorphic in the strip 0 < o < 2, with poles only at the singular
points.
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The orders of the poles and the principal parts will be determined by
relating the situation to the self-adjointness of the operator which p(z, z’; s)
represents for o > 4, and we shall obtain:

Theorem 14. Let s, be a singular point with 6y > % and s, # §. Let
Yy, . ...y, be a complete orthonormal system of eigenfunctions of the
self-adjoint operator A in H, chosen to be real. Let \ = s(1 — s) and
Ay = so(1 — s¢). Let

fi= (1 — w(s) T

Then f,€ B_, also. Furthermore, identifying r and p,

r(z,z’; s) = X 1 x 2 U2, (2) +r¥(z, 2’5 5),

i=1

b(z,z'; 5) = 2301__ 7 2 f(2)f(2) + b*(z,2'; 5)

i=1

where r* (z,2'; s) and b* (z, 2’; s) are holomorphic in s near s,

Proof. The difficulty, such as it is, which prevents us from dealing
exclusively with the operators is that on the line ¢ =4 we also have a
continuous spectrum for A4, so that the resolvant of A, as an operator, does
not have a power series expansion in the neighborhood of a singular point on
that line, even though we prove that the analytic continuation of the kernel
does. This implies that we have to go through other spaces, e.g. % . spaces
once again, and at the same time have to use properties of the resolvant to the

right of 6 = 1, in particular the property

1

R <
IR(s)a d(A,, spectrum of 4)

where “d” means the distance, and A, = s(1 — s). The spectrum of A4 lies on
the real line, and corresponds to values of s such that

l<s <l or Res=1.

We put an index H on R(s) to emphasize that we view it as operator in .
Note that

s(1 = s) = 5ol = 59) = A, — A, = w(s) — w(sp)
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grows like the first power of A, — A . The above property is merely a
formulation in terms of the variable s of the immediate estimate in terms of A
given by

-1 1
I(A*)\]) '<m

Cf. Appendix 2, §1, Theorem 2.
We now come to the proof proper. Let g > 0. For p < ¢ < 2 we have an
operator

R(s): By — %,_”
defined by the usual formula
R(s) = Q(s) + (I + w(s)Q(s))B(s)(1 + w(5)Q(5)),

and the association s > R(s) is meromorphic. We pick a specific value of p
which allows us to work with 6 > 4, say p = .

Lemma 4. Let s, be a singular point # % and 64 > 4. Let
R(S): GJ?)O —> %3/4

be the operator defined by the kernel r(z,z’; s), for s near sy Then
s > R(s) has a pole of order at most 1 at s,

Proof. Let {s,} be a sequence of non-singular points with Res, > 4,
converging to s,, and such that Re(}‘\:0 - }\s”) == (. Thus the imaginary parts of
the A, tend to O with the same order as s, tends to s,. Let

R_, =lim (s - so)mR(s),
$—5p

where m is the order of the pole. We have to show that R_,, =0 if m > L.
Let f€ B, It suffices to prove R_, f = 0. Suppose R_,, f # 0. Let

8 = (}\s,, - Aso) R(sn)f
Then g, — R_,,fin %, ,. Therefore
|R~mf(z)y—3/4l > g >O

for some constant ¢, and all y in some open set. By the definition of the norm
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in %, ,, we also obtain

| [2.(2) = R_.f(2)]y 4| < ¢,

uniformly for y in some open set, for all » sufficiently large, whence for n
large we get the inequality

lg.(2)y =34 > ¢, > 0,

and so for some constant ¢, and all y in some open set,
|8.(2)] > ¢3 > 0.

Since B, H and Res, > 4 it follows that R(s,)f € H and so g,€ H. The
inequality we just obtained shows that there is a constant ¢, > 0 such that for
all sufficiently large » we have

Il g1l > ca
But
lgall < 145, = Aol "|R(sa) | 1 fl2,

which contradicts the resolvant inequality in the Hilbert space H, and proves
our lemma.

From Lemma 4 we shall now see that r(z, z’; s) has a pole of order at
most 1 at 5o, We know from Lemma 2 that it has a pole of order at most m.
Say it has a pole of order / > 2. For any small contour C around s,
corresponding to a circle around Ay, and f € %, we have by Lemma 4

f f (A — }\S)I_lr(z, Z'y s)f(z') dz’ ds = 0.
C YF

The estimate of Lemma 3 (the absolute value [\, — A| is now fixed) shows
that we can interchange the order of integration, and hence get

f Mo —A) 'r(z, 25 5)ds =0
c

for almost all (z, z’), whence for all (z, z’) subject to the conditions of
Theorem 13. This proves that / = 1.
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We must now determine the principal part of the kernel, and the
argument will follow a similar pattern, first dealing with the operator family,
and then passing to the kernel.

We multiply the equation

R(s) = Q(s) = (I + wQ(5))B(s)(1 + wQ(s))
on the right and on the left by / — w7, and get
B(s) = (I — wT)(R(s) — Q(s)}{I — «T),

thus seeing that s > B(s) has a pole of first order at s, viewing B(s) as
operator from %, to ®,,. It follows from Theorem 12 that the kernel
b(z, z'; s) representing this operator has a pole of first order at s;. But that
same kernel actually defines an operator

By —> B_,
which therefore also has a pole of order 1, by that same theorem.
Lemma 5. Let D _,(s,) be the w(sy) ™ '-eigenspace of K(so) in B _,. Let

B_| = San}o(w(sO) — w(s)B(s)),

viewing B(s) as operator from B, to B _,. Then
. n] 5
B_: By, —> D_ (o)

maps B, into the above eigenspace.
Proof. We have
[ — w(s)K(s)]B(s) = V.
Multiply both sides by w(sy) — w(s) and let s —> s5,. The limit makes sense

and proves our lemma.

Lemma 6. Define
R_, = slingo(w(so) — w(s))R(s): By —> U~B3/4

as an operator relation among the spaces indicated. Then R _, maps B, into
the eigenspace H(sy) with eigenvalue ?\SO for A, and induces the identity
mapping on this eigenspace.

Proof. We multiply the relation

R(s) = Q(s) + (1 + w(s)Q()B(s)(I + w(5)Q(s))



X1V, §11] THE KERNEL OF THE RESOLVANT FOR 0<0<2 337

by w(so) — w(s) on both sides and let s —> s,. On the left we obtain the limit
R _,. On the right we find

(I + w(s6)Q(50))B _ (1 + w(s0) Q(50))-

By the previous lemma and the fundamental theorem on eigenvectors,
Theorem 7, §9, we see that R_, maps By into H(sy). Furthermore, if
Y € H(sg), and therefore ¢ € B, by Theorem 8, §9, we know that for ¢ > 1 we
have

(w(sg) — w(s)R(s) = ¢

This is also a relation in ®;,,. Let s —> s, and take the limit in %, ,,. We get
R _ ¢ = i, thereby proving the lemma.

Lemma 7. The operator R _, maps %, N H(sp)* into 0.
Proof. Let g€ By N H(sg)™. Let Y € H(sg). For 6 > § we have

o = M)R(s)g, 4> = g (Ao = A)R(EW) = 0.

The left-hand side is an integral

Lm—mmmmﬁﬁa

and we view R(s)g as an element of %, ,. We take the limit as s —> 5, and
o > 4. We then get

(R_,8 ¥y =0.

Since by Lemma 6 we also know that R _, g € H(s,), it therefore follows that
R_,g = 0, as desired.

Let {¢,,....¥,} be a complete orthonormal basis of H(sy), we may
assume each v, is a real function. The kernel

r(e ) = SUE@UE)

is the kernel of the projection of H on H(sy), and of By on H(sy), because we
have an orthogonal decomposition

Bo = H(sg) ®[Bo N H(sp) ]
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The kernel
f l 1
I'(Z,Z; S) - }\0—_—}\:)‘_](2,2)

is the kernel of the operator

R{s) —

1 R .
R_: SHhg —> By
)\0 - )\s /

The family of these operators is holomorphic in s at s,. We then find that for
a contour C around s,

. _ | , =
fc[r(z,z,s) ———)\OW}\Sr_,(z,z) ds = 0,

using again the estimates of Lemma 3 and the corresponding fact for the
operator family, taking a scalar product with an arbitrary function f €& B,
This proves the part of Theorem 13 concerning r(z, z'; s).

The part of Theorem 13 concerning b{z, z’; s) is obtained by convolving
the kernel r(z. z’; s) with | — w(s)¢. This concludes the proof.

§12. THE EISENSTEIN OPERATOR AND EISENSTEIN FUNCTIONS

We let #(z, s) be the function on F whose component on Fy is 0, while its
component on F| is

0,(z,5) = 08(y.s) =y° + c(shp' ™",
where
—1 S — K

= 2
)= T

This function lies in 4 ,, where p = max(s, | — 0). We let W(s) be the
operator
W(s) = w[I + wQ(s)]B(s)

where as before, w = w(s) = s(1 — 5) — k(1 — k). This operator is defined
for non-singular s in the strip 0 < ¢ < 2 and maps

Wy o —> W,
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We let
I+ Wi(s)

be the Eisenstein operator, which we can apply to the functions 8(z, s)
= §.(z) for 0 < ¢ < 2, thereby getting the Eisenstein functions

n(z, 5) = (I + W(s))0(z,5) = 0(z, s) + W(s)8(z, s).

Theorem 14. For fixed z the functions n(z, s) are analytic in s in the strip
0 < o < 2, except for singular points for which either 6 < tor + < s € L.
In a neighborhood of the line ¢ =14, except possibly at s =%, these
functions are analytic.

Proof. If ¢ # 1, our assertion is clear from the analyticity property of the
kernels and functions involved. Let us look at the line 0 = 4. Let s, be such
that o, = § but sy # 4. From the analytic expression for the kernel b(z, z’; 5)
(§11, Th. 13) and the definition of the eigenfunctions

¥ = (I + wQ(s))fs

we see that

SR PLC R W f F(2)8(2, ) dz’ + my(z, )
F

25— 1 s — 5 P
where n,(z, s) is analytic in a neighborhood of s, By Lemma 1 of §9 the
integral on the right is equal to 0, for values of s of the form } +ir, and ¢
near ;. Since the integral is analytic in s, it vanishes, thereby proving our
theorem.
We shall continue to use the convolution notation for kernels, but now

taken on F. In other words, suppose that k,(z, z') and ky(z, z’) are kernels
with variables z, 2’ € F. Then by definition for what follows,

kixky(z,2") =f ki(z, z"Yky (2", 2') dz”.
F
A similar notation applies when convolving a kernel with a function, namely

kief(2) = [ k(2 2)f(2) d2

Feki(2) = [ f2)k(2' ) de'
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Let b, be the kernel for the operator B(s), and define

w(s)’
2s — 1

e(s) = c(s) + 0.+b 0

where the convolution product written out reads
6. xb *6, =f f 8(z, s)b(z, z’; 5)8(z, 5) dzdz’.
FJF

We then get an asymptotic description of the Eisenstein functions.

Theorem 15. For fixed s non-singular, with 0 < ¢ < 2, and y —> 0, we
have

n(z,8) = y* + e(s)y! ™ + 0(1).

Proof. By definition,
1, = [1 + (I + wQ(s)) B(s)]6,
=0, + wb,*8, + g, *b, +0,.

We know that B(s) = M + N%(s), and we recall that M contains cosine
terms in its series expansion, while 8, is independent of x. Consequently

MO, =0 and B(s), = NB(s)8,

by the orthogonality of cosine and the constant functions. Since N(s) is of
type B_,, and 4, is of type max (o, 1 — o) < 2, we conclude that N 2(s5)8, is
of type %_,, and in particular is bounded. This accounts for the second term
B(s)d, in our sum. For the third term, we use again that B(s)d, = N2(s)8, is
in %3_,. By Lemma 2 of §9, we conclude that

0(s)B(s5)8, = ;y'_‘f f 8(z, $)b(z, z'; $)8(z. 5) dzdz’ + O(1).
T 25— 1 e ),
This proves our theorem.

Theorem 16. Let s be non-singular. If 0 < ¢ < 1, there is one and only one
solution to the equation

w(s)R(k)m = 7
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having the asymptotic behavior for fixed s and y —>
7(z) = y* +e(shy' ™ + O(1).

If 6 > 1, there is one and only one solution of the same equation having the
asymptotic behavior

n(z) = y* + O(1).

Proof. The existence will be proved later, and we deal here only with the
uniqueness. Take first the statement relating to the interval 0 < o < 1. If
7,, 1, are two solutions of the given eigenvector equation for R(x), then their
difference ¢ is bounded, so in LA\ $) = H, and is also a solution of the
equation. By definition, this means that s is singular, unless ¢ = 0, thus
proving the uniqueness. The same argument works in the other case for
o> 1.

Corollary. We have, for ¢ > 1,

n(z,s)= 3  Im(yz).

YET\T

Proof. The series on the right converges absolutely for o > 1. The Lap-
lace operator commutes with the action of SL,(R) on H, and hence the series
on the right defines a function 5(z) such that

Ln(z) = s(1 — s)m.
The term with y = 1 yields y* in the sum. All other terms, of the form

$

b
T id‘b, if y=(a d), ¢ #0,
(44 C

are bounded. The convergence of the series shows that the sum over the
other y yields a bounded function. We can therefore apply the uniqueness
theorem, to conclude the proof.

Our function n(z, s) = (I + W(s))8(z, s) which is defined in the strip
0 < 06 <2 will now be shown to satisfy the eigenvector equation of the
uniqueness thorem, thus showing that it coincides with the series expression
for ¢ > 1. This equation will be the first of several formal properties of the
Eisenstein functions, which follow directly from the corresponding formal
properties of the Eisenstein operators, and are essentially resolvant relations.
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Lemma. For x > 3 and 0 < 6 < 2 we have
w(s)T(x)8, = 8,.

Proof. Freshman integration, and the integrals do converge.

From the lemma, we shall be able to replace w7 by the identity when
applying it to the functions §,.
We have the operator relation

(H wR(I + W) =0wT + W,

where as usual, R = R(x), T = T(x), and W = W(s). This follows at once
from the definition

W = (I + wQ)B,
using R = T + V and

B=V+ oV + «Q)B.
Indeed, we get

WR(I + W) =00l + ol +wQ)B =0T+ W.

Therefore by the lemma,
wR(I + W)8, = (I + W),
which gives us the first relation

ES 1. W(S)R(x)M, = ;.

In words, the Eisenstein function is an eigenvalue of the resolvant of the
Laplacian.

ES 2. n(yz, s) = n(z, s) for yerl.

Proof. By ES 1,

()R (x)n(z, 5)

w(s)fp r(yz, z'; k)n(z’, 5) dz’

n(vz, 5)

n(z, s)

because r(yz,z’; k) = r{z,z'; k).

ES 3. In(z, s) = s(1 — )7z, s).
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Proof. 1t suffices to prove this weakly because we can then apply the
regularity theorem for elliptic operators. As before, let M, = L — s(1 — ).
For fe C2(T\$) we get

w(s)an(z,s)Msf(z)dz=fFfFr(z, 2 k)2 s)Mf(z)dzdz’
_—-an(z’, s)dz’j‘;ro(z, 25 k)M f(z)dz.

Use M, = M, —w(s), Lemma 1, §3, and Theorem 2, §3. Our last expression is
=fn(z’,s)MKfr&s(z,z’;x)f(z) dzdz'
F o)
—w(s ’s ,2's dz dz’
o(s) [ [n(,5)r(z,2'50)1(2) dz
= [n(z.)f(z) dz'~ [n(z,9)f(2) dzdz’
F F

= (.

This proves the desired property.

ES 4. n(z,s) = n(z, %)

This is clear from the fact that all functions and kernels we have
considered satisfy the analogous property.

We shall now see how the various resolvant equations from the previous
section can be interpreted as relations concerning the Eisenstein functions.
Resolvant equations will be interpreted either as operator relations or as
kernel relations.

First we consider the resolvant relations for R(s). We know that in the
domain o, ¢° > } we have

R—- R = (0 — «)RR’,

where we abbreviate R = R(s), R’ = R(5"), o’ = «(s), and below, B = B(s),
B’ = B(s'), etc. We recall two formulas for the g-kernel which will be used
constantly in what follows

Qs. Q- Q = (o~ OO’ for 6,06 >1.

1 /
q4. 4% = qis = 5, —7 001,
where 0, = 0 (z) and {_; = 8,_(2’). The two variables (z, z’) correspond to
the variables in g,(z, z’) and q,_,(z, 2').
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ESS. For0< o < 1ands, 1 — s non-singular, we have

P22 5) = 1z, 25 1= 5) = sz (2, 1 = 5).

Proof. Using the relation

R=0Q0+ (I+ wQ)B(I+ wQ),
We get

R—-—R =00 +(I+ wQ)B(I+ «0)Q’
+Q(I + o Q)B' (I + Q)
+ (I + wQ)B(I + wQ)({ + &' Q@)B'(I + &' Q).

Observe that a word made up with B’s and Q’s in which the B’s and Q’s
alternate makes sense for 0 < ¢ < 2, as operators B _,— B, while if we take
a product QQ’, say, then it makes sense only for o, o’ >} as operator H—9.
Using Q 5, we can express the above relation with a term not containing

(w ~ &) as a factor, and a term Z having (w — ') as a factor, and only
alternating products as mentioned. Thus

R-R =0Q-0Q +(I+wQ)wB(Q - Q)B (I +wQ)
+ (0 — &)Z.

In the expression on the right, we can then substitute s = 1 — s, in which
case

w(s) — w(l — 5) =0,

and the term with factor (w — w’) vanishes. As for the other terms, we read
them as a kernel relation, and use Q 4, valid for all 5. By the symmetry of
q(z, z’; s) and b(z, z’; s5) our desired formula drops out. Note that convolu-
tion of kernels on the right corresponds to composition of operators in the
opposite direction.

The further relations concerning the Eisenstein functions will be
analogous to relations satisfied by #(z, s). We recall that

8(z,s) = y* + c(shp'™*
where

25—1 5§ T K

o) =a™ T
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We verify trivially that

c(s)e(l —s) =1,

8(z,s) = 0(z, 1 — s)c(s).

We shall prove analogous formulas for 1(z, s) and ¢(s), namely for

0<o <l
ES 6. e(s)e(l — s) = L.
ES 7. n(z, 8) = n(z, 1 — s)e(s).

Proofs. Let b, as before be the kernel for the operator B(s) and
abbreviate

w(s)’
p(s) = 25 — 1 os*bs*g.f

for s in the strip 0 < ¢ < 2. We shall prove that
p(s)e(1 = s) = p(1 = s)e(s) = —p(s)o(l — s),

from which ES 6 follows at once, because ¢(s) = c(s) + p(s).
The proof for the above relation is an immediate consequence of the

resolvant relation for B(s), expressed in terms of the kernel, Theorem 11 of
§10, namely

2
bA‘ - bl—s - (O(S) bs*(qs - ql—-s)*bl—s

w(s)’
2s — 1

(bs * a:)(bl -5 * 01 —s)’

with the obvious notation that (b,_,+6,_,) is a function of 2/, if (z, z') are
the variables of the kernel b,(z, z’). Convolve the above relation with 8, on the
left and 6, _, on the right. Use

8, =08,_,c(s) and c(l —s5)= c(s)—I
to get
2s — 1
w(s)’

The desired relation between p(s) and p(1 — s) drops out from the definitions.

Bs*b:*osc(l - S) - C(s)ol-—s*bl—s*el—s = p(s)p(] - S)
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The proof for ES 7 can be given following the same pattern using the
resolvant equation for b,. On the other hand, at this point it drops out of the
uniqueness theorem. Indeed, we have for 0 < ¢ < I, by Theorem 15,

n(z) =y +e(s)y'° + O(1)
Mm_s(z) =¢(1 = shy* + y' = + O(1).

Multiply this second equation by ¢(s), use ES 6 and the uniqueness theorem
to get ES 7.

§13. THE CONTINUOUS PART OF THE SPECTRUM

% dt, where dt is Lebesgue measure.
We shall prove that the orthogonal complement of the eigenspace of 4 in
H = L¥T\$) is unitarily isomorphic to H, by specifically exhibiting a
kernel achieving the isomorphism. This kernel is none other than the Ei-
senstein function 5(z, 4 + i) on the product space

T'\$ X [0, ).

Let Hy, = L*0, c0), with measure

We define the operator 4, on H, by multiplication with § + /% i.e.

A(0) = (3 + )0

for those functions £ such that the product is in £2. Then 4, is self-adjoint.
We let the Eisenstein transform E be defined on the space of bounded

functions on T\ by
Ef0) = [ n( 4+ i) e
Theorem 17. ]

i) Under the Eisenstein transform, the eigenspace of A in H goes to 0.
il The Eisenstein transform can be extended to a unitary isomorphism
between the orthogonal complement of this eigenspace and H,,.
i) Under the Eisenstein transform, A is carried to A, that is

ER(x) = Ry(x)E, EA = AyE,
where R(x) is the resolvant of A in H with x > 3, and

Ro(s) = (Ao — s(1 = s)Ip) ™.
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Proof. Let f€ C(I'\9). Let [a, b] be an interval on (0, c0) such that the
interval 3 +it, a < t < b, does not contain any singular point. Then

=% J‘a”fpj;n(z,—;—+it)n(z’,—;——it)f(z)mdzdz'dt
= %;Lbﬁtdtﬁ_’;[r(z,z'; % +it)~r(z,z';-;——-it)]f(z)]—(?7 dzdz’

by E S, and 25 — 1 = 2it for s = 4 +it. We have
A=s(l—-s)=1+¢* and d\=2tdL

It is now convenient to express the above kernels of the resolvant in terms
of the more usual A because we are going to use the spectral theorem for
unbounded operators. We write

r(z, 2’y s) = p(z,2'; A).

As t ranges over the interval a € ¢ < b, the variable A ranges over the
interval

T+a* < A<} +b2

Values of o + it with ¢ >4 correspond to values of A with negative im-
aginary part, while values of ¢ — it with 6 > } correspond to values of A with
positive imaginary part. Consequently our last expression is equal to

%f [ S a8 ) = plen ' A TR e

where

p(z,2; A=) = lir%p (z,z/; A—ie) and p(z,2;A+) = lin(l)p(z,z’; A+ie).
€—> €~

We may also write this expression as the limit for e—0 of

! J:bd)\ﬁﬁ[p(z,z’;)\+ie)—p(z,z’;)\uie)]f(z)f(z') dzdz'.

2mi
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For o=*it with >4, the kernel r(z,z';s) represents the resolvant. Con-
sequently this last expression may be rewritten

L. (™ _ ‘
37 Im | 7 (R + i) — RO\ — e, fdA,

a

which by functional analysis (Appendix 2) is equal to

[ 00
N nu’f,j 3

where y,  is the spectral measure of 4.

We divide the half line s = § +i1, + > 0, into segments not containing
singular points, sum the integrals over these segments, as the end points
approach the singular points. We know by Appendix 2 that if P is the
projection on the eigenspace of A4, then the limit is equal to

(= PY.f).

Thus we see that Ef is in H,, that eigenvectors of A are transformed to 0 by
the Eisenstein transform, and that if f is orthogonal to the eigenvectors of 4,
then

IA13 = ILEF I3

This proves (i) and (ii) of our theorem.

Formula ES 1, which says that the Eisenstein functions are eigenvectors
of R(x) with eigenvalue w(s)~! is now merely a reformulation of (iii), or to be
precise, it says that

EACAWE

where the symbol C has the usual meaning in the theory of unbounded
operators, i.e. the domain of EA s contained in the domain of AyE and AyE
restricts to £4 on this domain.

It now follows that for any bounded measureable function 4 on the real
line, we have

Eh(A) = h(A,)E.

{(We are assuming that the reader is familiar with the spectral theory of
unbounded operators as in Appendix 2.)

There remains only to be proved that the image under E of the space of
bounded functions on I'\ § is dense in H,. It will follow that the extension of
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E to H is an isometry between (/ — P)H and all of H,. This denseness comes
from the fact that we have considerable freedom in choosing both f and A.

Pick some value of 7,>0. We know that

7(z,5) = y* + e(s)y' ™ + O(1).

Let f be a function which is equal to the complex conjugate of n(z, § +it)
for z near some large value of iy, and then drops to 0 rapidly. Then

Ef(1) = fF n(z, )f(z) dz

does not vanish at 1, in fact has a positive value at 7;. Now select /4 so that
h(} +¢%) is equal to 1/ Ef(t) for t near ¢, and is equal to 0 otherwise. Then

h(Ag)Ef = Ef(A)f

is the characteristic function of a small interval around ¢, This proves that
the image of F is dense, and concludes the proof of our theorem.

§14. SEVERAL CUSPS

We have acted throughout this chapter as if I’ = SL,(Z). This was not
essential, and the time has come to make the appropriate comments indicat-
ing which additional features show up in the general case of an arbitrary
discrete subgroup I such that I'\ § has finite volume. We assume — 1 €T, We
let G = SL,(R).

As already mentioned in Chapter XII, there is a fundamental domain F
having the following properties

i) F lies in the strip — x4 < x < x, for some x,,.

i) There is a positive number @ such that F is the union

of pieces, where F is compact with piecewise smooth boundary, and F, is the
image of the upper strip F, defined by the inequalities

and a <y,

I
< < -
*s3

Y-

under the mapping z > g,z for some g, € SL,(R) = G.
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Each function f on F then has n + | components instead of 2 com-
ponents, fo, fy, ..., f, defined by

fo(z2) = f(2) for zEF,
fo(2) = f(g,z) for zEF,

Similarly, a kernel k(z, z’) on F X F has components k,z(z, z') defined by

koolz, 2') = k(z, 2) for z,z/€F,
koo(2,2') = k{z,g,2’) for z€F, and : €F,,
etc.

We let, fora=1,....,n,

ru = ga_lrga’ Aa = rgm Aaﬂ = gﬂ‘lrga for a == ,8

The subset of elements y €T, for which

a b
‘Y =
0 d
is denoted by T',. It is our old group T',,.

Essentially the first time that A entered in the computations was in
proving the symmetry of the Laplace operator on '\ §, that is Lemma | of
§4. It is typical of what follows that there is no change to be made in the
general case other than replacing f2 by faz in the right-hand side of (*), and
summing over a. Thus each cusp contributes one term on the upper part of
the strip.

The proof of the convergence of the series

z I
ser [1+ u(z, v2)]
in Lemma 1, §5, made no use of properties of I'" other than it operates

discretely.
Slightly more serious is a fact needed for Lemma 9, §7, giving the

estimate
| N2t E—
z —— < () e
y&l, [1 + u(‘z’ Yz )]

One needs to know that in any subset of elements

()
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in T, A,, or A, with ¢ % 0 then |c| is bounded from below. Faddeev refers
to Petersson [Pe 2}, and so do 1.

All the dealings with cuspidal questions carried out for a single F, apply
verbatim to the general case, since the elements g, carry the standard upper
strip to the corresponding part of the fundamental domain. We merely
specify that certain kernels have only “diagonal” components, that is their
components are 0 except for

tolz,258) = t(y,y"; 5)

my(z,2';5)=m(z,2'; s)

Gz, 2" 8) = q(y,y"; ).

Until we come to §12, nothing more need to be said and no changes need be
made except for replacing F, by F,.

In §12 we have to insert a few more indices. Foreach 8 = 1, ... ,n we let
85(z, s) be the piecewise smooth function on F whose components are given
by

0%(z,5) = 8,80(y,5), By(z,5) =0.

Here §,4 is the usual Kronecker symbol. For each # we obtain an Eisenstein
function

18(z, 5) = 88(z, 5) + W(5)0%(z, 5),

where W(s) is already defined in terms of its components. Theorem 14
applies to each Eisenstein function n#. In the proof, one merely replaces 3
and 6 by n# and 8”. Each 4# is a vertical vector, and we get an (n + 1) X n
matrix n:

n

oM
. - V=1,
‘1 -n
7, e 7,
formed by the component functions 5f, a =0,...,n; B=1,...,n

The function ¢(s) now becomes the scattering matrix whose components
are

w?(s)

cﬂﬂ(s) = c(s)SaB + "j";‘*“""_‘"T 05"‘*ns*0f.

[We could write b, instead of n, because in the expression

B(s) = M + N2(s),
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the operator M annihilates the Bf, ie.
B(s)8F = N%(5)8F.]

Theorem 15 giving the asymptotic behavior of m(z, s) is unchanged,
except that m is now the Eisenstein matrix as above. The term y* is to be
interpreted as y°I, where [ is the unit matrix.

In the corollary of Theorem 16, giving the series expression for the
Eisenstein functions, one has to write

n#(gez,5) = D Im(yz).

vET\Tg

The formal properties ES 1 through ES 4 hold without change, for each
component vertical vector n#. The resolvant relation ES 5 requires a summa-
tion,

ESS. r(z.2:s)—r(z,2;1—s)= -2—3—‘: D Bt 1- ).
g=1

The Eisenstein properties ES 6 and ES 7 remain valid as stated, but with the
matricial interpretation. In other words, ¢(s) is the inverse matrix of ¢(1 — s).
In ES 7, the matrix ¢(s) has been placed appropriately on the right of the
matrix 9z, 1 — s).

In the spectral decomposition of the continuous spectrum, we have to
introduce the components by letting H, be the Hilbert space of vector
functions

§0) = (§0), .. .. &)

such that each £, is in £%(0, c0), and where the scalar product is given by

_ 1 & o -
&5 = 5= ‘z‘ﬁ £ (VT 4

The operator A, is still multiplication by the function } +? on each

component. The Eisenstein transform Ef is defined componentwise,
£ = [ nh(z. y+ing(z) de
F

and Theorem 17 holds without further change.
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Appendix 1

Bounded Hermitian Operators
and Schur’s Lemma

§1. CONTINUOUS FUNCTIONS OF OPERATORS

We assume known only the most elementary facts about Hilbert space,
and we reprove the next auxiliary result about a Hilbert space H.

Lemma. Let A be an operator, and ¢ a number such that
[KAx, x| < c|x]?
for all x& H. Then for all x, y we have

[<Ax, yo| + Kx, dy)| < 2¢lx||y].

Proof. By the polarization identity,
2KAx, yy + Ay, x| < clx + yP + c|x =y = 2¢(|x]* + |yP).

Hence
[Kdx, p> + (Ay, )| < c(|x]? + |yP).

Figure 1

355
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We multiply y by e and thus get on the left-hand side
le#(Ax, y> + €Ay, x)|.

The right-hand side remains unchanged, and for suitable 8, the left-hand side
becomes

[KAx, | + [<Ay, x)|-

(In other words, we are lining up two complex numbers by rotating one by 8
and the other by —#8.) Next we replace x by tx and y by y /¢ for ¢ real and
t > 0. Then the left-hand side remains unchanged, while the right-hand side
becomes

1
g(0) = P + 5 |yP

The point at which g'(f) = 0 is the unique minimum, and at this point ¢; we
find that

g(t) = |x| [y].
This proves our lemma.

Theorem 1. Let A be a hermitian operator. Then |A| is the greatest lower
bound of all values ¢ such that

[{Ax, x| < c|x}?

Sor all x, or equivalently, the sup of all values |{Ax, x)| taken for x on the
unit sphere in H.

Proof. When A is hermitian we obtain

[<Ax, y>| < clx| |y]

for all x, y € H, so that we get |[4| < ¢ in the lemma. On the other hand,
¢ = |A4| is certainly a possible value for ¢ by the Schwarz inequality. This
proves our theorem.

Theorem 1 allows us to define an ordering in the space of hermitian
operators. If A is hermitian, we define 4 > O and say that 4 is positive if
{Ax, x> > O for all x& H. If A, B are hermitian we define 4 > Bif 4 — B
> O. This is indeed an ordering, the usual rules hold: If 4, > B, and 4, > B,,
then

A + A, > B, + B,

If ¢ is a real number > 0 and A > O, then c4 > O. So far, however, we say
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nothing about a product of positive hermitian operators 4B, even if AB
= BA. We shall deal with this question later.
Let ¢ be a bound for 4. Then |{4x, x)| < c|x|* and consequently

— ¢l € 4 < cl.

For simplicity, if « is real, we sometimes write a < A instead of af < A, and
similarly we write 4 < S instead of 4 < BI. If we let
a = inf {4x, x> and B = sup {Ax, x),
fxl=1 jx]=1
then we have
a< A< B,
and from Theorem 1,

4] = max(lal, | B]).

Let p be a polynomial with real coefficients, and let 4 be a hermitian
operator. Write

p(t)y=a,t" + - - - + a,
We define
p(A) = a,A" + - - - + ayl.

We let R[A4] be the algebra generated over R by 4, that is the algebra of all
operators p(A), where p(1) ER[r]. We wish to investigate the closure of R[A]
in the (real) Banach space of all operators. We shall show how to represent
this closure as a ring of continuous functions on some compact subset of the
reals. First, we observe that the hermitian operators form a closed subspace of

End(H), and that R[A] is a closed subspace of the space of hermitian
operators.

We shall prove that if p is a real polynomial which takes on positive
values on the interval [a, 8], then p(A4) is a positive operator. For this we
need a purely algebraic lemma.

Lemma 1. Let p be a real polynomial such that p(t) > 0 for all 1 E[a, B}
Then we can express p in the form

P() =200+ (- Q) + T (B - 0]

where Q,, Q,, Q, are real polynomials, and ¢ > 0.

Proof. We first factor p into linear and irreducible quadratic factors over
the real numbers. If p has a root y such that a < y < 8, then the multiplicity
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of y is even (otherwise p changes sign near y, which is impossible), and then
(¢t — v) occurs in an even power. If a root y is < a we have a linear factor
t — vy which we write

(—y=(- )+ (-7

and note that @ — vy is a real square. If y is a root > B, then we write the
linear factor as

y—1=(-B)+(B-1)

and note that vy — B is a real square. In a factorization of p we can take the
factors to be of type (r — y)**™ if y is root such that a« < y < 8, and
otherwise to be of type r — y or y — ¢ according as y < a or y > 8. The
quadratic factors are of type (1 — a)’> + b% The constant ¢ (which can be
taken as a constant factor) 1s then > O since p is positive on the interval,
Multiplying out all these factors, and noting that a sum of squares times a
sum of squares is a sum of squares, we conclude that p has an expression as
stated in the lemma, except that there still appear terms of type

(1 = a)(B— 1))

where @ is a real polynomial. However, such terms can be reduced to terms
of the other types, by using the identity

2 2
u—ww-o=“_““ﬁ“2if_”w—°.

This proves our lemma.

Now to study R[A4], we observe that the map

p > p(A)

is a ring-homomorphism of R[7] onto the ring R[A4]. Furthermore, if B, C are
hermitian operators such the BC = CB and B > O, then trivially, BC? is
positive because

(BC%*:, x> = (CBCx, x> = (BCx, Cx)> > 0.

The sum of two positive hermitian operators is positive. Hence from the
expression of p in the lemma, we obtain:

Lemma 2. If p is positive on [a, B, then p(A) is a positive operator. If p, q
are polynomials such that p < q on [a, B], then p(A) < q(A). Finally,

[p(A)] < | pll.

the sup norm being taken on [a, B].
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Proof. The first assertion comes from the remarks preceding our lemma.
The second follows at once by considering g — p. Finally, if we let

q(t) = |lpll = p(1),

then ¢ > 0 on [a, B} and hence g(4) > O, whence the last assertion follows
from Theorem 1.

We conclude that the map
p > p(4)

is a continuous linear map from the space of polynomial functions on [a, £]
into R[A4]. By the linear extension theorem, we can extend this map to the
Banach space of continuous functions on [a, 8] by continuity, and thus we
can define f(4) for any continuous function f on [a, 8], by the Stone-
Weierstrass theorem. If {p,} is a sequence of polynomials converging
uniformly to f on {[a, 8], then by definition,

f(A) = lim p,(A4).
Furthermore, again by continuity, we have

|fCD] < 1A

the sup norm being taken on [a, B]. If p, —> fand g, —> g, then p, g, — f2.
Hence we obtain (fg)(4) = f(A)g(A4) for any continuous functions f, g. In
other words, our map is also a ring homomorphism.

Theorem 2. If A > O, then there exists B € R[A] such that B* = A. The
product of two commuting positive hermitian operators is again positive.

Proof. The continuous function ¢'/> maps on a square root of A4 in

R[A4]. and itis clear that any element of R[ 4] commutes with 4. If 4, C

commute and we write 4 = B2 with B in R[A4], then B and C also commute
because C commutes with p(4) for all real polynomials p, and hence C

commutes with all elements of R[4]. But as we have seen, if C > O, then
B2C > 0. This proves our theorem.

The kernel of our map f > f(4) is a closed ideal in the ring of
continuous functions on [«, 8]. We forget for a moment the usual definition
of the spectrum, and here define the spectrum o(A4) to be the closed set of
zeros of this ideal.

If fis any continuous function on o(A4), we extend f to a continuous
function on [a, 8] having the same sup norm, say f,, and define

f(4) =f|(A)-
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If g is another extension of f to {&, 8], then g — f, vanishes on 6(4), and
hence g(A4) = f,(4). Hence f(A) is well defined, independently of the par-
ticular extension of f to [a, §]. We denote by || ||, the sup norm with respect
to a(A), thus

Iflle = sup |f(D)].

t€o0(A)

We then obtain a ring homomorphism from the ring of continuous functions

on o(A) into R[A4], and we have
| fCAD] < 11 fll4-

We now state the spectral theorem.
Theorem 3. The map f > f(A) is a Banach-isomorphism from the algebra

of continuous functions on o(A) onto the Banach algebra R[A]. A con-
tinuous function fis > 0 on a(A) if and only if f(A) > O.

Proof. We had derived the norm inequality previously from the positivity
statement. We do this again in the opposite direction. Thus we assume first
that f(4) > O and prove that fis > 0 on the spectrum of 4. Assume that this
is not the case. Then f is negative at some point ¢ of the spectrum. Let g be a
continuous function whose graph is that in Fig. 2.

..‘

Figure 2

Thus g is > 0, and has a positive peak at ¢. Then fg is < 0 and fg is negative
at the point ¢ of the spectrum. Hence —fg > 0, and hence —f(A)g(4) = O.
But f(4) > O and g(A4) > O, so that by Theorem 2 we also have

f(4)g(4) > 0.

This implies that f(4)g(A) = O, which is impossible since fg does not vanish
on the spectrum. We conclude that f > 0 on o(4), and in view of our
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previous result this proves the positivity statement of the theorem.
Now for the norm, let b = | f(A4)|. Then bl + f(4) > O, whence

b+t f(t)y>0

on the spectrum. This proves that

1/lla < 1F(4)];

and hence a sequence {f,(A4)} converges if and only if the sequence of
continuous functions { f,} converges uniformly on the spectrum. This con-
cludes the proof of the spectral theorem.

There remains to identify the spectrum as we have defined it in this
section, and the general spectrum.
Corollary. If A is hermitian, then the spectrum o(A) is equal to the set of

complex numbers z such that A — zI is not invertible.

Proof. Let z be complex and such that 4 — zI is not invertible. Then z is
real, for otherwise, let

g(t) = (¢t = z)(t - 2).
Then g(¢) # 0 on 6(A4), and hence k(f) = 1/g(¢) is its inverse. Then

h(A)(A — 1)

would be an inverse for 4 — zI, a contradiction. This proves that z is real.
Let £ be real and not in the spectrum o(A4). Then ¢t — ¢ is invertible on
a(A), and hence sois 4 — £I.
Suppose that £ is in the spectrum o(4). Let g be the continuous function
whose graph is that in Fig. 3.

g(t)

Figure 3
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That is,
1/]t—¢  if[t—¢§>1/N

g(1)= .
N if [t—§|<1/N

If A—¢&I is invertible, let B be an inverse,
B(A—¢l)=(A—-¢NHB = 1.
Since |[(t — £)g(1)| < 1 we get |[(4 — &l)g(A4)| < 1, whence
[g(4)| = |B(4 — &l)g(4)| < |B|.

But g(7) has a large sup on the spectrum if we take N large, and hence | g(4)|
is equally large, a contradiction. Theorem 3 is proved.

The main idea to use the positivity to get the spectral theorem is due to F.
Riesz. However, most treatments go from the positivity statement to an
integral representation of 4 which we discuss in Appendix 2. Von Neumann
always emphasized that it is much more efficient to prove at once the
statement of Theorem 3, which suffices for many applications, and can be
obtained quite simply from the positivity statement. In fact, the arguments
used to derive Theorem 3 from the positivity statement are taken from a
seminar of Von Neumann around 1950. The next theorem and its corollary
are known as Schur’s lemma.

Theorem 4. Let S be a set of operators on the Hilbert space H, leaving no
closed subspace invariant except {0} and H itself. Let A be a hermitian
operator such that AB = BA for all BES. Then A = ¢l for some real
number c.

Proof. It will suffice to prove that there is only one element in the
spectrum of 4. Suppose that there are two, ¢, # c¢,. There exist continuous
functions f, g on the spectrum such that neither is 0 on the spectrum, but fg is
0 on the spectrum. For instance, we can take for f, g the functions whose
graphs are indicated in Fig. 4.

Figure 4
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We have f(4)B = Bf(A) for all B € S (because B commutes with real
polynomials in 4, hence with their limits). Hence f(4)H is invariant under S
because

Bf(A)H = f(A)BH C f(A)H.
Let F be the closure of f(A)H. Then F # {0} because f(4) = O. Further-

more, F = H because g(4)f(4)H = {0} and hence g(4)F = {0}. Since F is
invariant under S, we have a contradiction, thus proving our theorem.

Corollary. Let S be a set of operators of the Hilbert space H, leaving no
closed subspace invariant except {0} and H itself. Let A be an operator such
that AA* = A*A, AT = TA, and A*T = TA* for all TES. Then A = cI
for some complex number c.

Proof. Write A = B + iC where B, C are hermitian and commute (e.g.
B=(A+ A*)/2 and C = (4 — A*)/2i). Apply the theorem to each one of
B and C to prove the corollary.

§2. PROJECTION FUNCTIONS OF OPERATORS

We need to extend the notion f(4) to functions f which are not con-
tinuous, to include at least characteristic functions of intervals. We follow
Riesz-Nagy more or less.

Lemma 1. Let o be real, and let {A,} be a sequence of Hermitian operators
such that A, > ol for all n, and such that A, > A, ,. Given vE H, the
sequence {A,v} converges to an element of H. If we denote this element by
Av, then v +> Av is a bounded hermitian operator.

Proof. From the inequality
(4,0, v) > alv, v)
we conclude that (4,v, v) converges, for each v € H. Since
(Ayo,w) =1{A,(v +w), 0 +w) = 1{4,(v —w), v —w),
it follows that {(4,v, w) converges for each pair of elements v, w&€ H. Define

A(w) = nangg {A,v, w).
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Then A, is antilinear, and |{4,v, w)| < C|v|jw| for some C and all v, wE H.
Hence there exists an operator 4 such that

{Av, w) = nl.i-g.lo (A0, w).
Since (A4,v, w) = (v, A,w), it follows that A is hermitian.

Lemma 2. Let f be a function on the spectrum of A, bounded from below,
and which can be expressed as a pointwise convergent limit of a decreasing
sequence of continuous functions, say {h,}. Then

hlim h,(A4)

is independent of the sequence {h,}.

Proof. Say g,(t) decreases also to f(#). Given k, for large n we have

max (g, hy) < by + &,

so for all ¢+ we have g,(¢) < h(f) + ¢ and hence

8,(A4) < h(A4) + €.
This shows that

limg,(A4) < h(A4) + e,
and therefore that

lim g,(A4) < lim A, (4) + .

This is true for all e. Letting ¢ —> 0 and using symmetry, we have proved our
lemma.

From Lemma 2, we see that the association
f > f(4)

can be extended to the linear space generated by functions which can be
obtained as limits from above of decreasing sequences ‘of continuous func-
tions, and are bounded from below. The map is additive, order preserving,
and clearly multiplicative, i.e.

(fe)(4) = f(4) g(4)

for £, g in this vector space.
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The most important functions to which we apply this extension are
characteristic functions like the function y,(r) whose graph is drawn in Fig. 5.
It is a limit of the functions A,(¢) drawn in Fig. 6.

Y1)

Figure 5

ARG

c+

o @

1
n

Figure 6

Lemma 3. Let y,(A) = P.. If al < A < BI, then:

i) P.=0ifc<a,and P.=1Tifc> B.

i) Ifc<c,then P, < P,

Proof. Clear from Lemma 2.

Observe that we also have P? = P, i.e. that P, is a projection. We call
{ P} the spectral family associated with 4.

We keep the same notation, and we shall make use of the two functions
f., g. whose graph is drawn in Fig. 7. Thus f.(¢) + g.(¢) = |t — ¢|. We have

(1 = (1 = ¥.(1) = £.1).

Hence
(1) (4 —c)(I - P)=f(A4)
(2) A —cl = f(4) — g.(4)

() (A4 = c)P, = —g(A)P, = —g.(A4).
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£8) &A1)

Figure 7

Theorem 5. Let P, be the spectral family associated with A. If b < ¢, then
we have

bI < A < cl,onIm(P, — P,).

Proof. From (1) above, we have 4 — bl = f,(A4) on the orthogonal
complement of P,, whence the inequality b/ < A follows on this complement
since f, > 0. From (3) above, we have

A~ cl=-g(A4)
on the image of P,, and since —g.is < 0, we get A < ¢/ on this image. This
proves our theorem.
Theorem 6. The family {P,} is strongly continuous from the righi.

Proof. Let v€ H. Our assertion means that P,, .o —> P,v as ¢ — 0. It
suffices to prove that

(P

[

40, U =2 {P.v, v)
because

<(Pc+c - Pc)v’ U> = I(Pc+( - PC)UIZ.

But (P,v, v) is close to (h{A)v, v) where A is as shown in Fig. 8.

Wm
{
l

c cte c+tdte

Figure 8
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Let h; be the translation of & to the right by 8. Then

() < k(1) < hy(2)
Yo (1) < ey (1) < By(0).

Since h; — h uniformly as § — 0, we conclude that hy(4) tends to h(A).
Then
P. < h(A) < h(4) + €,

P.<P

ve S h(A) + €.

Applying this to (v, v), we get
(P.v,v) < (h(A)v, v) < (h(A)v, v) + (v, v)
(P, 0y € (P, 0,0) < (h(A)v, v) + (v, v),

and since (h(4)v, v) is e-close to {P.v, v), we get our theorem.

Theorem 7 (Lorch). From the left,

lim (P, ~ P._) = Q.

is the projection on the c-eigenspace of A.
Proof. Using Theorem 5, we have
(C - E)(I:,C - PC'—() < A(PC - PL‘““() < C(PL‘ - PC"‘()

whence
(4 —cI)(P.— P._)| < e

But for each v, lin(l)(Pc — P,_ v exists, say = w. It follows that Aw = cw, i.e.
€—»

Q. maps H into the c-eigenspace.
Conversely, if @ is a continuous function, then for any 4-invariant closed
subspace F, we have

o(A|F) = @(A)|F.

We want to show that Q, is the identity on the c-eigenspace, and without loss
of generality we may therefore assume that H = H, is this eigenspace. Then
P, = 0 because f, = 0 on the spectrum of 4. If & < ¢, then

£,(4) = A — bl = (c — b)I

is invertible, and hence P, = O. This proves our theorem.



Appendix 2
Unbounded Operators

§1. SELF-ADJOINT OPERATORS
Let H be a Hilbert space and 4 a linear map,
A: D, —> H
defined on a dense subspace. Consider the set of vectors v € H such that there
exists w &€ H such that
{u, w) = {Au, v) alueD,,

or in other words, (u, w) — (Au, v) = 0. The set of such v is the projection
on the first factor of the intersection of the kernels of

(v, w) > (u, w) — (Au, v), u€D,.

It is a vector space. To each v in this vector space there is exactly one w, if it
exists, having the above property, because

u > (Au, vy

is a functional on a dense subspace. Hence we can define an operator 4* by
the formula
A*v = w,

on the space D,. of such vectors v. We call the pair (4%, D ,.) the adjoint of
A.

Let J: H X H —» H X H be the operator such that J(x, y) = (~y, x).
Then J2 = — I. We note that the graph G,. of A4* is given by the formula

n
G =(JG,) ,

369
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where L denotes orthogonal complement, and hence the graph of 4* is
closed.
We say that A4 is clesed if its graph G, is closed.

If A is closed, then D . is dense in H.
Proof. Let h€ D s, so

(h, 0)€(G,) = (JG,) "= JG,

because we assumed that A is closed. We conclude that (0, h) € G, and hence
h = 0, proving our assertion.

If A is closed, then A** = A,

Proof. Gy = (JG)" = (UG = G,.

If D, and D,. are dense, then G 4.. = closure of G,.

Proof. Gyee = (JG)' = (JUIGY ) =TG,.

If A is defined on D, and B is defined on Dy, if D, C Dy, and if the
restriction of B to D, is 4, then one usually says that 4 is contained in B, and
one writes 4 C B. The above assertion shows that 4 C A**,

We say that 4 is symmetric if (4u, v) = {u, Av) for all u, vE D,. We say
that A4 is self adjoint, 4 = A*, if in addition D, = D,..

If A is symmetric, then AC A*.
This is clear. Recall that we assumed D, dense in H.
If A, B are self-adjoint and A C B, then A = B.

This is also clear, because in general B* C A*, so in the self-adjoint case,
BcCA, whence 4 = B.

Let A be symmetric, defined on D, dense as above. Let A&€C not be real.
Then 4 — Al is injective on D, because from

Au = Au and {Au, uy = {u, Au
we conclude

A, ud = Qu, u) = {uy ) = Au, u),

so u = (. Hence we can define an operator

U= U, y=(A+X)A+A)""
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on the image (4 +A)D,. We contend that U is unitary. This amounts to
verifying that for u, v€ D, we have

(Au + Au, Av + Ao) = (Au + Au, Av + Av),

which is obvious.

Lemma 1. If A is symmetric, closed, and A€ C is not real, then (A + AM)D,
is closed.

Proof. Let {u,} be a sequence in D, such that {(4 + Al)u,} is Cauchy.
Since U is unitary, it follows that

{(A + }—\I)u,,}

is also Cauchy, hence {(A — X)u,} is Cauchy, and {u,} is Cauchy, say
converging to u. But

{2Au,, + A+ X)u,,}

is Cauchy, whence also {Au,} is Cauchy. Since the graph of 4 is assumed
closed, we conclude that {(u,, 4u,)} converges to an element (u, Au) in the
graph, and the sequence

{(4 + NM)u,)}
converges to (4 + Al)u. This proves that (4 + AI)D, is closed.

Theorem 1. Let A be symmetric, closed with dense domain. Let A€ C be not
real, and such that (A + AI)D, and (A + M )D, are dense (whence equal
to H by the lemma). Then A is self-adjoint.

Proof. Let v € D .. It suffices to show that v € D,. We have by definition
{Au, v) = (u, A*v), alueD,.

Since (4 + AI)D, = H, there exists u; € D, such that

A*o + Ao = Au; + Au,.
Then
(Au, ©) = (u, Au; + Au; — Av), allu€e D,
whence

(A + XD, vy = (A + XDu, u,), allueD,.

This proves that v = u,, as was to be shown.
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Remark. In the literature, you will find that the dimension of the cokernel
of (A + AIND, is called a defect index. We are concerned here with a
situation when the defect indices are 0.

Corollary. Let A be symmetric with dense domain. Let NEC be not real,
and such that (A + M )D, and (A + AI)D are dense. Then the closure of
G, is the graph of an operator which is self-adjoint.

Proof. Since 4 is symmetric, the domain of A* is also dense, and we have
shown above that G .. is the closure of G, so 4 has a closure. It is immediate
that this closure is also symmetric, and the theorem applies.

An operator 4 defined on D, is called essentially self-adjoint if the
closure of its graph is the graph of a self-adjoint operator. The corollary gives
a sufficient condition for an operator to be essentially self-adjoint.

Theorem 2. Let A be a self-adjoint operator. Let z €C and z not real. Then
A — zI has kernel 0. There is a unique bounded operator

R(z)=(4 - zI)""H—> D,

which establishes a bijection between H and D,, and is the inverse of
A — zI. We have

R(z)* = R(3).

If Im z, Im w 5 0, then we have the resolvant equation
(z — w)R(2)R(w) = R(z) — R(w) = (z — w)R(W)R(2),
so in particular, R(z), R(w) commute. We have |R(2)| < 1/|Im z|.

Proof. Let z = x + iy. If u is in the domain of 4, then
(4 = zD)uf? = |(4 = xDul* + y*|u? > y*ul®

because A4 is symmetric, so the cross terms disappear. This proves that the
kernel of 4 — zI 1s 0, and that the inverse of 4 — z[ is continuous, when
viewed as defined on the image of 4 — zI. If v is orthogonal to this image, i.e.

{Au — zu,v) =0

for all u€ D, then (Au, v) = {u, Zv), and by the definition of being self-
adjoint, it follows that v lies in the domain of 4 and that Av = Zv. Since the
kernel of 4 — ZI is 0, we conclude that v = 0. Hence the image of 4 — z[ is
dense, so that by Theorem 2 this image is all of H and R(z) is everywhere
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defined, equal to the inverse of 4 — z/. We then have
[(4 = wl) = (4 — zI)]R(W) = (z — w)R(w).

Moultiplying this on the left by R(z) yields the resolvant formula of the
theorem, whose proof is concluded.
We write
R()=(4-il)"'=C+iB
where B, C are bounded hermitian. From the resolvant equation between

R(i) and R(-i) we conclude that B, C commute. We may call B the
imaginary part of (4 — il)™!, symbolically

B=1Im(4—-i"".
Lemma 2. With the above notation, we have C = AB and BAC AB. The

kernel of B is 0,and O < B < I.
Proof. We have from R(i)* = R(—1i) that

(A —il)""'= (4 + i) "'=2iB.
We multiply this on the left with 4, noting that

AA-iD"=i(4 -+ 1
and

AA+ D "= —i(4 +iD7 '+ I

We then obtain C = AB. For B4 we multiply the first relation on the right by
A, so that we use

(A-i4-il)y=1,

and similarly for 4 + il. The relation BA C AB follows. The kernel of B is 0,
for any vector in the kernel is also in the kernel of C = AB, whence in the
kernel of (4 — iI)™!, and therefore equal to 0. We leave the relation B > O
to the reader. That B < I follows from |R(i)| < 1, a special case of the last
inequality in Theorem 2.

We now give an example of a self-adjoint operator. It will be shown after
that any self-adjoint operator is of this nature.
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Theorem 3. Let { H,} be a sequence of Hilbert spaces. Let A, be a bounded
self-adjoint operator on H,. Let H be the orthogonal direct sum of the H,
50 that H consists of all series 3 u, with 2 |u,|* < . There exists a unique
self-adjoint operator A on H such that each H, is contained in the domain
D, and such that the restriction of A to H, is A,. Its domain is the vector
space of series u = X u, such that

2 A < oo,
and Au = 2 A,u,.

Proof. The uniqueness is clear from the property that if 4, B are
self-adjoint and 4 C B, then 4 = B. It suffices now to prove that if we let D,
be the domain described above, and define Au by T A,u,, then A is self-
adjoint. It is clear that A4 is symmetric. Let v € D .. Then

{u, A*v) = {Au, v), allue D,.
Say u = X u,. Then

2 Uy, A*0) = 3 {Au,, v).
If ue H,, then
iy, A*¥v) = (Au,, v)

<un’ (A*u)n> = <Auna ‘Dn>,
whence (4*v), = A4,v,. Then
2 4,07 = 2 [(4%0), [ = |4*0f},

whence vE€ D, so D,.C D, and A is therefore self-adjoint. This proves the
theorem.

In the situation of Theorem 3, we use the notation
A=Da,

We deal with the converse of Theorem 3. Let 4 be an arbitrary self-
adjoint operator on the Hilbert space H, and let

(A—-il)'=C+iB
as above.

We are in a position to decompose our Hilbert space by means of B. Let
8. be the function whose graph is given in Fig. 1., and which gives rise to a
projection operator.
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1 — ! 1

lif ——<t<—
+
8,(t) = n+l n

0 otherwise

=
e |
-

T -t

Figure 1

Let { P} be the spectral family for B, and let
Qn = 0n(B) = P]/n - Pl/(n+i)'
Then @, is a projection operator, and we let

H,=QH=1ImgQ,.
Then

H= ©®H,

is an orthogonal direct sum. In fact, let § and 5 be the functions whose graphs
are on Fig. 2 (a) and (b) respectively.

40 n(t)

(a) (b)

Figure 2

Then 1 — 8 =  and n(8) = 0 because the spectral family for B is con-
tinuous at 0, in view of Lemma 2 (kernel B = 0) and Lorch’s Theorem 7.
Let 5,(¢) be the function whose graph is on Fig. 3. Then

Bs,(B) = 6,(B) = Q,.
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N

o = { Utif = <t<_

0 otherwise

A

1
n+1 n

Figure 3

Theorem 4. Let A be a self-adjoint operator and let B = Im (4 — il)™ .
Let Q, = 8,(B) be the projection operator defined by the function 8, above.
Then A is defined on Im Q,, and

Q,ACAQ, = s5,(B)C.

Let H, = Q,H. Then H is the orthogonal direct sum of the spaces H,, the
restriction of A to H, is a bounded operator A,, and

A=Dua,

Proof. Since 1s,(¢) = 0,(1), we get Bs,(B)= 6,(B)= @, Then by
Lemma 2,

AQ, = ABs,(B) = Cs,(B) = 5,(B)C.

In particular, 4Q, is everywhere defined. On the other hand,
0,4 = s,(B)BA C 5,(B)AB C s,(B)C.
This proves that 0,4 C AQ,. It means that given v€ D, if
v=2 v,

is the decomposition of v according to the spaces H,, and if

Av =2 W,
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then
Q,4Av = w, = AQ,v = Av,.

So Av = ¥ Av,, and the theorem is proved.

§2. THE SPECTRAL MEASURE

We begin with a bounded self-adjoint operator 4 on H. For each v€EH
we obtain a functional on C_(R) by letting

A(9) = {@(4)v, v),

and this functional is obviously positive. Hence there exists a unique positive
measure g, on R such that

(p(4)o, 0> = [ o dp,
R
By polarization, for v, w € H we get a complex measure p, ,, such that

(p(A)o, w) = fk @ dp,

It is clear that g, , is C-linear in o, antilinear in w. Furthermore by Theorem
3 of §1, we have

(p(4)v, w) < |9l 0] W],

so that in particular y (R) < |o|* and is finite.
Let BM(R) be the Banach space of (Borel) bounded measurable func-
tions on R. For each f € BM(R) the association

o) > [ fa,.

is linear in v and antilinear in w. Furthermore

[ f b, ol < 11l [0 W]

as one sees by using a sequence {¢,} in C_(R) approaching f pointwise almost
everywhere with respect to the measure |p, |, and such that |g,| < || fl|..
Thus our association is continuous, and there exists a unique bounded
operator, which we denote by f(4), such that

Slayo, wy = [ fd, .
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The following properties are then satisfied for f, g€ BM(R).

SPEC 1. (fgX4) = f(A)g(4)

SPEC 2. f(A* = f(4)

SPEC 3. If f, is the function f,(t) = 1, then f(4d) = I

SPEC 4. If the functions f(1) and g(1) = tf(t) are bounded measurable,
then g(A) = Af(A).

SPECS. We have |f(A)| < ||fllo- Furthermore, if {f,} is a bounded
sequence in BM(R) converging pointwise to f, then {f,(4)}
converges strongly to f(A).

The above properties are either obvious from what precedes, or follow by
applying the dominated convergence theorem, and taking limits. For instance,
to prove SPEC 1, we use two sequences of functions in C,(R) approaching f
and g respectively.

We shall use the structure theorem of the preceding section to extend the
above results to an unbounded self-adjoint operator 4, such that

A=@4, and H=ODH,

where A, is bounded self-adjoint on H,. Let f€ BM(R) and v€ H. Since
1 f(4,)0,] < || fllolv,l, there is a unique bounded operator f(A4) such that

f(Ayo =2 f(4,)0,

To each H, and v, € H, we can associate the measure p{” as above. We let p,
be the unique positive measure such that

[1a0 =3 [ rao= S <06, 0.

K (Ao, 0] < 1| fllolOals

Since

we do get a positive measure, and the formalism of the five SPEC properties
extends at once to the case of an unbounded operator 4, in other words:

Theorem 5. Let A be a self-adjoint operator. There exists a unique associa-
tion f > f(A) from BM(R) into the bounded operators on H satisfying
SPEC 1 through SPEC 5.

Proof. The existence is essentially obvious from the above. Note that for
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SPEC 4, in view of
|[Af(A)v,| < |l gllolvnls

it follows that 3\ f(4)v, lies in D, and hence SPEC 4 is valid. The
uniqueness will follow from the considerations of the next section.

§3. THE RESOLVANT FORMULA

Suppose given an association f > f(A4) satisfying the five spectral prop-
erties of the preceding section. For each v, w € H there is a unique measure
M, such that

Sy, wy = S,
Let z be complex and not real. The function f(¢) such that

i
t—2z

f(1) =

is bounded measurable, and #f(¢) is bounded. Also (¢ — z)f(¢) = 1. Hence
(A4 — zI)f(4) = L

This means that the resolvant has the integral expression

A =z "o, w =f

= o (0):

We write , instead of p, .. Note that p, is a positive measure.

Theorem 6. Let A be a self-adjoint operator on H and let vEH. Let
R(z) = (A — zI)"" for z not real. For any ¢ € C,(R) we have

lim 5L fk RO+ i) = RO=ie)]o, oDy (A) X = fk $N) du, ().

If X, < A, are real numbers which have p, -measure 0, then

Az )\2
. 1 , , -
!gr‘l) 57 N dRA+ie) — K(A—i€)]v, v) dA = j;‘ dp,(A).

The proof is based on the following lemma.
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Lemma. Let p be a positive regular measure on R such that u(R) is finite.
Then for y € C.(R) we have

lim 1 f f et L TOL f YN dA.

Furthermore, if A, < A, are real and such that the set {\,, A} has p-
measure O, then

A,y A;
lim L f f — ¢ m@ar={ ).
07 Ay o (t - ) + ¢ Ay

Proof. First observe that the family of functions

€
?) = — L a
is a Dirac family on R for ¢ — 0. (The functions don’t have compact
support, and so we are dealing with the case when condition DIR 3’ is
satisfied, rather than DIR 3.) The left-hand side integrals in our lemma can be
written

f_: f_ : @.(t = NA(QA) du(s) AN

where & is either ¢ or the characteristic function of the interval [A,, A,]. We
apply Fubini’s theorem to see that this expression is equal to

| gento auto

-0

Note that ¢, +h is bounded, and converges pointwise to 4 if A =y, and
pointwise to A except at the end points A, A, in the other case. Since we
picked our interval so that the end points have y-measure 0, we can apply the
dominated convergence theorem to conclude the proof.

The lemma obviously proves Theorem 6, because

1 1 2i

t—A—de t—A+ie (1A 4+ &

Furthermore, Theorem 6 provides the desired uniqueness left hanging at the
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end of the last section, because it gives the value of the measure entirely in
terms of the resolvant and Lebesgue measure, as on the left-hand side of the
first formula on elements of C,.(R).

It is possible to develop the spectral theory by starting with a direct proof
of Theorem 6, showing that the limit on the left-hand side exists. One then
defines the spectral measure as that associated with the corresponding func-
tional, and one proves the other properties from there. Cf. Akniezer-Glazman,
Theory of Linear Operators in Hilbert Space, Translated from the Russian,
New York, Frederick Ungar, 1963, pp. 8 and 31, and also a forthcoming book
of Hormander, who gives a very elegant way of constructing the spectral
measure directly from the resolvant formula.



Appendix 3

Meromorphic Families
of Operators

§1. COMPACT OPERATORS

Let E be a Banach space, and let K(E) be the Banach space of compact
operators on E. We recall that T is compact means that 7 maps bounded sets
on relatively compact sets. We have already recalled in Chapter Il some
properties of compact operators in Hilbert space. Let 7" be compact. If 7 has
infinitely many eigenvalues # 0, then they form a sequence {A;} such that

Al < A

and lim A, = 0. Let Aj 0 be such that 7 — A,/ is not invertible. Then A, is
an eigenvalue. Furthermore, for a sufficiently large integer n, there is a direct
sum decomposition

E = Ker(T — AJ) ® W,

where W is closed, Ker(T — AyZ)" is finite dimensional, 7 — A,/ maps W into
itself, and its restriction to W is invertible (we say that T — Ayl is invertible
on W). This is the basic fact about compact operators, and the reader will
find a proof in most books on analysis, e.g. my Real Analysis. It then follows
that T — AJ is invertible on E (and also on W) for A close to Ay, A 5 Ay We
call Ker(T — AyI)" the A,-Jordan space of 7 in E. We shall now describe a
natural way of constructing the projection of E on that space.

Theorem 1. Let T be a compact operator on E. Let Ay # 0. Let W be the
complement of the Ay-Jordan space of T as above. Let

=1 !
P—Mfc(u 7)™ dA

where C is a sufficiently small circle with center Ay. Then P is the identity on

383
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the Ay-Jordan space of T, and PW = 0. Thus P is the projection of E on this
Jordan space, killing the complement W.

Proof. We first show that if (T — Ay/)' = 0, then Po = v. We have

2m c A ?\0
Then

Pv-—u=2}m [ =17) = A=) Jodr

1 1 o
2w ) | AN+ 2-T) (=N

1 L

L+

We expand the expression in brackets by geometric series, which breaks off
after n — 1 terms by assumption. The terms 1 — 1 cancel. We are left with a
series in 1 /(A — Ag), with lowest term 1/(A — Ag)% and so there is no residue.
The integral is therefore equal to 0. This proves our first assertion.

Looking at the restriction of T to W, which is invertible, it suffices to
prove:

If A = T — Ayl is invertible, then P = O.

1
f}\— A = fCA~A0+A”M

1 ]
= = dA
fCA A=A~ + 1

We may now expand the expression inside the integral by the geometric
series, and the integral of the series is 0 because the function is holomorphic
in A. This proves our theorem.

But we have
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A family of operators z > A(2) is said to be meromorphic at a point z; if
there is a power series expansion

A@2) = T Az~ z)

np —m

with operator coefficients 4,. In general, if
f:U—E

is a mapping of an open set in C into a Banach space F, we say that f is
meromorphic at a point z; if in a neighborhood of z; f has a power series
expansion
fz) = 2 a,(z — zo)”
na —m

with coefficients a, € E.

The next theorem is due to Stanley Steinberg, Archs. ration. Mech.
Analysis 31 (1968), pp. 372-379.

Theorem 2. Let E be a Banach space, U a connected open set in C, and
T:U —> K(E) a holomorphic map. If there exists one point z,& U such
that I— T(z,) is invertible, then

2> (I - T(2)"
is meromorphic.

Proof. The set of z where (I~ T(z))™' is meromorphic is open. We shall
prove that the complement is also open, whence empty because of our
assumption for z = z,.

Let z, € U. There exists a small circle C around 1 such that 1 is the only
possible eigenvalue of T'(z,) inside the circle, by the discreteness of the
spectrum of compact operators. Then A/ — T(z,) is invertible for A on the
circle. The image

(, z,) > N = T(z,)

is compact in the open set of invertible operators, and hence Al — T(z) is
invertible for all z close to z,. Let

P(z) = 2—‘;’7](:@1 - T(2))"" dA,

Then z +> P(z) is holomorphic for z near z,, and we know from Theorem 1
that P(z)?> = P(z) (it is a projection on a Jordan space).

We observe that P(z,) is the projection on the space E,, the Jordan space
with eigenvalue 1. Write

E=E ®W.
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Then I — T(z,) is invertible on W. We note that P(z) commutes with 7(z).
Let

0(z) =1 - P(2)
so that Q(z,) is the projection on W. Let

S(z) = P(z)P(z) + Q(2,)2(2).

Then S(z,) = I, so S(z) is invertible for z near z,. Let

A(2) = S()(I - T(2))S(2)”"
for z near z,. Since obviously
§(2)P(z) = P(2,)8(2),

we see that P(z,) commutes with A(z), and so does Q(z,). Hence 4(z) “splits”
into two operators, on E; and on W respectively, say

A(z);= AQ2)|E, and  A(z)y = A(2)|W,
so that

A(z) = A(2), ® 4(2),,.

Since I — T(z,) is invertible on W, it follows that for z near z;,, 4(2),, is
invertible on W because A(z) is close to

A(z) = 1 - T(z).

We let A(z),' be the inverse of 4(z),, on W, and be 0 on E,. If det A(2), is
identically zero for z near z;, then /7 — T(z) is not meromorphic. If det 4(z),
is not identically zero for z near z,, then 4(z), is meromorphic. Thus we see
from the connectedness of U and the invertibility of I — T(z,) that I — T'(2)
is meromorphic.

We also get additional information, because we now know that det 4(z),
is not identically 0. Let A(z); ' be the inverse of 4(z), on E, and be 0 on W,
for those points z near z, where the inverse exists. Since 4(z), operates on the
finite dimensional space E,, the map

z > A(z)]

is meromorphic in the trivial one-variable sense, and its poles are the zeros of
the determinant det 4(z),. Then

1= T(2)] "= S(2)4(2); 'S(2)™" + S(2)4(2)y'S(z)™".
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Locally, after applying a holomorphic family of inner automorphisms, we see that
situation of Theorem 2 is reduced to that of a direct sum involving an operator in
a fixed finite dimensional space, and a holomorphic family of invertible operators
on a complementary subspace.

§2. BOUNDED OPERATORS

Theorem 3. Let S be a closed set, contained in an open set U of C. Let C be
a simple closed curve in U whose interior contains S. Let

A > R(A), AEU - S,

be a holomorphic family of operators in a Banach space E, satisfying the
relation

R(A) — R\) =N — NRMRMA).
For any function f holomorphic on U, define

R(f) = —zl;;fcf(A)R(A) dA.

Then f > R(f) is a homomorphism, i.e. aside from the linearity, satisfies
R(fg) = R(HHR(g).

Proof. Let C' be a closed curve surrounding C as in Fig. 1. Then

ROR(D = T [ [ 0gWIRMR() arax

(-n')
f f 70e) X ZEA g o

(2m)

Figure 1
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This decomposes R(f)R(g) into a difference of two integrals. We have

1 gy o,
20 ) WX N =R

so the first integral is equal to R(fg) by definition. On the other hand,

f\)
f m dA = 0,
C

so the second integral is equal to 0, thus proving our assertion.

In particular, letting f = g = 1, we see that the integral

=
= 27ri.fc RQ\) dA

satisfies P2 = P, and is therefore a projection on a subspace, corresponding
to the “spectrum” S.



Appendix 4
Elliptic PDE

§1. SOBOLEV SPACES

We shall work on the torus, although some of the preliminary remarks
would be valid on euclidean space as well. Thus we let T¢ = R?/Z7. We let
L? = LYT%). Any function f € L? gives rise to a functional on C*(T) by

9 > [ f(x)e(x) dx.
T
This functional is called the distribution associated with f, and is denoted by

{f>. Elements of C*(T) are called test functions. If D, =3/0x, then we
define D,{f) to be the functional

@ > “ff(X)thp(X) dx.
T
The reason for the minus sign is to fit the formula for integration by parts in
case f is C'. The functional D,{ f) is then the same as (D, f). We let as usual
D? = DPi. .. Db
for any d-tuple (p,, ... ,p,) of integers > 0. We let
lpl=py+ - +p,

and call |p| the order of the differential operator D?. Any finite linear
combination

2a,D?

with coefficients a, € C*(T) is called a differential operator.
We use the scalar product

fg)= fT f(x)g(x) dx.

389
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Any differential operator then has an adjoint D* with respect to this scalar
product, in the obvious way. If @, ¢ &€ C*°(T), then

(D%, 4> = (~1)"<g, D).
One may define a Hilbert space norm on C*(T) by

el = 3 (Do, D).
{pl<s

It is actually more convenient to work with an equivalent norm arising from
the Fourier series as follows.
Let o € C*(T). Then ¢ has a Fourier series,

9(x) = cem

where the sum is over n€Z" Integrating by parts when evaluating the
Fourier coefficients, one sees that given any positive number &, the
coefficients satisfy an inequality

{c,| < Lk , n—> co,
||

and hence that the Fourier series converges absolutely to the function. If s is
a positive integer, then we have trivially from the definitions

S 0+ el <ol < 3 1+ ) e,
nezd nezd

for ¢ ranging over C*(T).
On Z? we have a measure u, for s€Z such that

#(n) = (1 + n?)

Then
C*(T) c LXZ% p,)

for all s€Z, and C*(T) is dense in this Hilbert space, which we denote by
H_. Thus H, by definition is the space of functions on Z¢, written in the form
of sequences {c,}, or “formal Fourier series”

1) =S et =3 fet

such that the sum

S (1 +n%) e,
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converges. This sum is then by definition || f||2. The scalar product in H, is
given by

g =2 L5+ Y

where f, and g, are the n-th “Fourier coefficient” of f and g respectively in

the above representation. The two norms || ||, and ||| |||, are equivalent on
C *(T). By definition, H, is complete. Note that
H, = LXT).

The trigonometric polynomials, i.e. finite sums

inx
c,€

|n|< N

form a dense subspace of H,. They are the sequences such that all but a finite
number of terms are equal to 0.
Clearly, if s < ¢, then

Iy <itll, and  HDH,.

5

Intermediate inequality. Let r < s < t. Given ¢, there exists C(e) such that
for f € H, we have

11l < €l fll, + Cle)LSfI,-

Proof. For any positive number a, we have

a* < ea’ + C(e)a’
because

C(e)

as—-r °

1 €< ea™° +

We apply this inequality to @ = (1 + n?) in the definition of the norm, and
we therefore find

IAI5 < el fIF + CONAI

Adding the cross term to the right-hand side and taking the square root yields
the desired inequality.

We have a mapping of H_| into the antidual space H* under the scalar
product

Ge=3Lm=3 L0+ ) g+ n)”
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{Convergence by Schwarz inequality.) Also by the Schwarz inequality we get
IS ol < WAl gl fEH_,, g€H,

Hence we may define (f) as the antifunctional on H, given by

g = {f 8-

Its norm is < ||f]|_,, and we shall see in a moment that its norm is exactly
equal to [|f] _,.
We define an operator D;? which will correspond to

0
g T & T nhe

on the C* functions, and then A = 3 D2, so that for f = 3 f,e™ we have
by definition

(Af)n= - nzj;l'

For any real s we define the operator (1 — A)° by

[(1 = &)f], = (1 + n?)F,
Then
(=2 2 =3 10+ ) 4P+ n?)
= || fIi%,

This shows that if f& H__, then (1 — A)™*f lies in H,. Furthermore,

—0

=87 =3 AP +nd) = AR,

Taking g = (1 — A)™*f shows that the norm of the functional (f) is exactly
Il fll -, Thus we have a norm-preserving embedding

H_, — H}
under the scalar product

(/, 8) =</, &

If > |f,| converges, then the Fourier series for f converges uniformly to a
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continuous function which can be identified with f, and such that

Il < Z 14

where || || is the sup norm.

Sobolev inequality. Assume s > d/2. If f€ H,, then || f|| is finite and there
is a constant C such that for all f€ H_,

W< CliAll,
Proof. We have

2 5 - §
P <(Z 1) <Za+m 1P Z 1+
by the Schwarz inequality, applied to the two functions of n,

LI+ 0 and (14 n)77?

over Z9 with measure 1 at each point. The assumption s >d/2 guarantees
that the sum over m above converges. This proves the Sobolev inequality.

Under the assumption s>d/2 we see that the Fourier series of f con-
verges uniformly, to a continuous function which may be identified with f.
Thus f is continuous.

Let D,f be the formal Fourier series obtained by taking the partial
derivative of the Fourier series for f formally. We have trivially

I1DSlls=1 < CliSs-

Consequently, if s — 1 > d/2 then D,f is continuous, and f is obtained by
integrating the Fourier series for D,f. Consequently f is of class C'. Proceed-
ing inductively, we find:

Sobolev regularity. Let k be a positive integer. If s > k + d/2 and fEH,,
then f is C* and

ID?AIL < 11 A1l lpl < k.

As a consequence we see that

A HT) = c=(T).

s=1
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The union of all the spaces H__ for s > 0 is called the space of distributions
on the Torus. In the basic regularity theorem for elliptic operators, we prove
that a certain distribution lies in all H, for all 5, and hence is C .

We conclude this section by remarks which won’t be used in the sequel,
but which may be illuminating concerning the spaces H,. Let f&€ L% Then f
gives rise to a functional on C* functions by

¢ > [ f(x)e(x) dx.
T
The functional

g > (=17 [r F(x)D?o(x) dx

is the distribution derivative D”( f). We want to see directly without Fourier
series that H, for a positive integer s is the completion of the C*® functions
under the s-norm whose square is

> (D*p, Dp).
|pl<s

For this purpose we now view H, as the space of functions in L? whose
distribution derivatives up to order s are represented by functions in L2 This
amounts to seeing that certain sequences of C* functions converge in the
s-norm, and is done in the next two remarks.

Remark 1. Let {¢,} be a sequence of C* functions such that D*g, —> g, in
L? for all |p| < s, and such that ¢, —> f in L% Then

D?(f) = (g,).
Proof.
(&> 9y = lim {(D?p,, @)
= lim {g,, D"*p)
= (f, D"*p).

This proves our assertion.

Remark 2. Given f € L? assume that D?{f> = {g) for some g€ L2 If
{a,} is a Dirac sequence of C* functions, then
D?(a,+g) —> g
in L2
Proof. We shall prove that D?{a,*f)> = {a,*g>. From the elementary
theory of Dirac sequences, we know that a, *g converges to g in L2 This
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proves our remark, provided that we now prove that for a € C* we have

D? axf) = arg).
Let D = D?, We have:

Carf, D*¢) = [ [ a(x = y)f(y)D*¢(x) dy dx

(y P>y + x) = [ [ «(=»)f(y + x)D*¢(x) dy dx
(x > x =) = [ [ «(=»)f(x)D*o(x — y) dxdy
= [ [ a(=-»)g(x)e(x = y) dxdy
= axg, ),

as was to be shown.

The point of Remark 2 is that the differential operator can be moved
inside the convolution sign when interpreted as a distribution derivative.
Naturally, we have

D?(axg) = (Dfa)*g

(essentially by differentiating under the integral sign, cf. Real Analysis, XIV,
§4, Th. 7), so that a » g is a smooth function because a is smooth, even though
g is not.

§2. ORDINARY ESTIMATES

Let a € C*(T). We shall make estimates with a constant C, depending
only on a, and we use the notation O, for these.
If ¢, y € C*(T), then

(DPg, ¥y = (—1)"Yg, D),

$0
(D%, ) = (p, DY),
i.e. D% is self-adjoint, and

A, ¥ = (@, AY).

Also we have

(L= AV, ¥ = <o, (1 — AYY),

whether s is negative or not.
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We observe that the scalar product given formally by

(P> =2 ¥y

coincides with the scalar product given by the usual integral, when o,  are
C® functions. Hence the adjointness just stated for (1 — AY holds no matter
how we interpret this scalar product. It is, of course, trivial in terms of the
formal definition of the product. By the Schwarz inequality, and the integral
form of the scalar product, we also find

|(D%aD?p, D[ < || D%|| | D¥ollo | DV¥llo

< | D% il 11l

We now come to various inequalities related to permuting taking derivatives
and multiplying by functions, and transposing functions in a scalar product.
They are easy but a little tedious.

Let D be a differential operator,

D=3 a,D’
If the sum is over p with |p| < k, we say D has order < k. Then

(1 (D(ag), ¥ = {aDy, ¥ + {Ep, ¥

where E is a differential operator of order < ord D — 1, and the coefficients
of E depend only on the derivatives of a.
Fors 2 0,

EL <1 - 4)(ap) ¥ = {a(l — &), yp + O (lloll,-.ll¥l,)

Proof. In (1) we let D = (1 — AY’. Then D has order 2s, and E has order
2s — 1. Say |p| =25 — 1 and B is C® so that BD? occurs in E. Write
p=¢q+p— qwith |g| = s — 1. Then

(BD?p, ¥) = (D%, BY)
= (D%, D"~ (By)>.

Now DP~9(By) = 3 v, DP9 7, where the sum is taken for |r| < p — g,
and the coefficients y, are derivatives of 8. Hence

(BD%, ¥ = Og(lloll;-,lI¥l,)-
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The case |p| = 2s — 1 is the worst that can occur, and E 1 is proved.

E2. {ag, ¥); = {@, ), + O (lllls-1lI¥l)

Proof. Consider first s > 0. We have by definition

Cag, ¥, = (1 = A (ag), ¥

and the desired inequality results from E 1. To deal with the negative case, let
s > 0 and let
u=(1-48)""¢p, ov=(-048) v

Then
(o, ¥y, = Cagp, (1 = B) 9
= (a(l — A)u, v
= {(1 = &) (au), o) + O, (lull,-illv],)
by E 1. Then

(1 = A) (au), o) = au, (1 — A)'v)
=1 - 8) ‘o @)
=@, &)_,.

As for the error term, we have
lally—y = <, (1= &) 'u)
=(1-8) "o, (1-8)""9
=<1 =89, 0> = lloll_,_;.
Also ||v|l, = ||¥]|-,, whence E 2 follows.

E 3. llagll, < llallliell, + Ou(lell;-1)

Proof. First for s > 0. If | p| < s, then
D?(ag) =D b, D% D? "%

and by the triangle inequality,
| D?(ap)llo < sup | D% D™ %||,.
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If |p| = 5 and ¢ = 0, we get one term estimated by | «f|||¢|l,. If |p| = s and
g # 0, we get terms of order ||p||,_, times a constant depending on a. This
takes care of the positive case.

In the negative case, let ¢, ¢ € C*(T) and put

u=(1- A)‘s(p, v=(1-4) Y
Then

ag, ¥>_, = Cap, (1 = 8) ¥) = <a(l = &)y, v)
= {(1 = 8) (aw), ) + O, ([lull,-llvll,)
= Caut, 035 + Op(llull,_,llvll,)-

By the Schwarz inequality in the positive case,

[<aw, 0, < [aulllloll, < [lelllul; + O (lull,-)lvll,
But

Null, = ll@ll -5 Neulls—y = lloll—s—1s lolls = Il -,
Hence

[Kag, ¥ _| < [llalllloll-; + Clloll-o— JI¥l -,

and therefore

lag|l -, < llallliell - + Cllell -1
as desired.

E 4. Let D be a differential operator of order < k. Then

I1Doll; < Cpllllssx

where Cp, is a constant depending only on D. Furthermore,

| DPoll, < ol
Proof. Write ¢ = > ¢,e”*. Then
DPp = 2 q)ni!pln‘”ei""‘,

so the estimate for DPp comes out at once. The estimate for aD? = D is then
immediate, whence the result for an arbitrary D.

From E 4 we see that D can be extended by continuity to a continuous
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linear map, again denoted by D,
D:H,— H,_,,

for all integers s, positive or negative. Actually from E 3 and E 4 we have a
more precise inequality, involving the leading coefficients of D, as dis-
tinguished from the others. If

D= 3 a,D?,
lpl<k

we call those coefficients a, with |p| = k a leading coefficient. The next

inequality E § is immediate from E 3 and E 4.
ES. I1Dell, < Co(D)lI@lls4x + CUDIIPI 5410

where Cy(D) is a sup bound for the leading coefficients of D, and
C (D) depends on all coefficients.

E 6. For any differential operator D of order < k,
<D(a(p)! \b>s = <C(D(p, ‘P>s + 0D,a(”¢”:+k—l”¢”s)'

Proof. If D is a function, the estimate is clear. It suffices to prove it for
D = D7, in which case we note that

D?(ap) — aD?p = | |21 ¢, D% D (ap),
ql>

and |p — ¢q| € s + k — 1. By Schwarz,
KD % D~ (ag), $),| < || D% D?~(ag)| VI,
< Cpallo@llspr—1ll¥lls by E4

< Cp, oll®llssa-ll¥lls by E 3.
This proves E 6.

E 7. If D, D’ are differential operators of order < k, then
(D(ag), D"y, = (D, D'(&)),

+ OD,D',a(”(P”s+k|W||s+k—1 + ||‘P||s+k—1||¢||k)-

Proof. This is clear by successive applications of E 2 through E 6.
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§3. ELLIPTIC ESTIMATES

Let
D= 3 aD*f
lpl<k

be a differential operator, with o, € C*(U), where U is an open set in R? or
T¢. We call

> a,D”?
lpl=k

its leading term, and k its order. For each point x we let

op(x, &) = op . (§) = 2 o (0¢

pl=k
= 2 ap(x)gfl o o e gdpd
|p|=k
be the homogeneous polynomial in variables §,, . . . ,§, formed by substituting

§; for D, and a,(x) for a, in the leading term of D. If o ,(§) # 0 for all
£ERY £ (0, ... ,0), then we call D elliptic, and we call o, its symbol.

Example. The operator

2 2
8, 8%
ax? oy?
is elliptic. Its symbol is §2 + £7.
Example. The operator
a ,. 9
dx H oy

is elliptic, and its symbol is &, + i§,.

02 . 22

2

P + Pd—
y( x? ayz)

is elliptic of order 2 on the upper half plane.
Let L be an elliptic operator of order k. Then it is clear that for each x
there exists a number C, > 0 such that

Example. The operator

IGD(X’ g)l > Cx‘ak’ g #: 0
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Here, |¢| is the Euclidean norm on R?. In this section, we prove essentially a
converse of the inequality E 4 for elliptic operators.

Basic Estimate. Let L be an elliptic operator of order k on T. Let sy be any
integer. Then for any ¢ € C *(T) we have

ollern < liLolls + lloll,,

The proof will proceed in three steps, and before giving it, we note that the
extraneous integer s, is usually selected to be large negative. Furthermore, we
shall see eventually that on a subspace of finite codimension, one can
eliminate the term |||, completely from the estimate. In any case, this term
makes the theorem non-trivial only if s, < s + k — 1, which we assume from
now on. Also, we note that the constant implied in the inequality < depends
on L.

The crucial case of the basic estimate is when L has constant coefficients.
We take care of this in the first lemma.

Lemma 1. Ler L have constant coefficients, and be homogeneous of order k.
Then

93+ < LI} + ol
Proof. We have

ILel2 = 3 |9, lo, (PQ + n?)’
> e () (1 + n?)

o2, =3 gl (1 + n?)°
Hence

Lol + llol2, > 2 le2 (1 + n3)™ = [lo|2,,.

This proves Lemma 1.

Lemuma 2. Given an elliptic operator L of order k on T, there exists 8§ =8(L)
such that if @ has support in a ball of radius < 8, then

113+ x KNLPIS + HPllssi— a1l s -

Proof. Let L =3 a,D?. By uniform continuity, we can pick 8 so small
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that the oscillation of each a, in a ball of radius 8 is less than e. Let x, be the

center of the ball in which ¢ has its support. Let

Ly= 2 a,(x)D*

|pl=k

be the homogeneous elliptic operator with constant coefficients obtained by
evaluating the coefficients of the leading term of L at x, Then

(%) — &, (xg)l <,
for x in the ball Bg(x,). Now by the previous result,
19I5k < I Lowlls + N9l

Note that |||2) < [|@ll;+4—ill®lls+4 We have to compare || Lg||? and || Lyp][2.
Their difference is

<(L0 - L)% L0<P>s + {Lg, (LO - L)(P>,

We estimate the first term, say, by Schwarz. Let a, = a,(x,). The absolute
value of the p-th term is estimated by

(e, ~a,) D%, Lyp), < |, — a,) Dl || Lowll,
(by ES5) <[elollssr + Cill@llssr-1] 1 Lol

< eCL)PIis i + CHLNPl st k= tlPl st i-

By picking & and then € so that eC,(L) < 1/2, we get

1
3 19l5ex < CllLolls + Csllllss k- 1lPl i

Our result follows by dividing throughout by ||¢||,,,, and using the inter-
mediate inequality of §1, with the three numbers

s<st+k-1<s+k

We get a small factor times ||¢||,,, on the right-hand side, which can be
transposed to the left-hand side, leaving only the s, term, as desired.



[A4, §3] ELLIPTIC ESTIMATES 403

Our final step is to use a partition of unity. Let {a;} be a finite family of
C* functions on T such that

Sa=1,

and such that each g, has support in a ball of radius § = §(L) as in Lemma 2.
(The usual construction of a partition of unity shows that the square roots
can be taken, and yield C* functions.) For any ¢ € C *(T), the product o,
has such support also. We use <« to refer to constants depending on the
partition of unity and L. (The partition of unity depends itself on L only.)
Then

19134k = <P PDsuic = 2 &P, @Dy
(bYyE2) =3 <09 0@)ss + Ol il Plls4r-1)
< D I L(e@)II3
+ D la@llsr il @lyan-1 + 1Plrall@leno
byET <2 <L(of), LoD, + I|9lly4 1Pl su i1

< CAL)IILp|? + CL)@ll g kPl i 1-

Observe that || Lo|l, < Cy(L)||9ll,+s- Divide both sides of the inequality by
l®ll 4+ & Select € such that

eCo(L) < 4.
Use the inequality

9l 4k-1 < €ll@llsri + C(OlPll,,

Subtract 1| ¢||,,, from both sides. We get the basic inequality.

Remark. The basic inequality extends by continuity to elements of H, .
Indeed, if h€ H,,, and {¢,} is a sequence in C*(T) such that ¢, — Ak in

H,, ,-norm, then

”‘Pn”s+k < ”L‘pn”s + ”‘I’n"so
implies that {¢,} is H,, ,-convergent also, and we get

1Al esr SULAN, + Al
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or shifting indices,

Il < NLA s —ic + IS,
for fEH..

§4. COMPACTNESS AND REGULARITY ON THE TORUS

In this section, we eliminate the s, term from the basic inequality, at the
cost of going to a subspace of finite codimension.

Lemuma 1. Let r < 5. Then the unit ball in H_ is relatively compact in H,,
i.e. is totally bounded in H..

Proof. Let
1= 5 g

be in the unit ball of H,, so that

3 ILPO + n¥ < 1.
Pick N such that (1 + N% ¢ < €. Write
f= 2 f;'ein'x_'_ 2 fneirrx.

Inl< N |a|>N

Then the second sum is e-close to 0 in H,_;-norm, i.e.

> !fn|2(1+n2)’<|2 ILPQ + n?) —

[ni> N >N (1+ N}

The first sum belongs to a bounded set of the finite dimensional space of
functions whose only non-zero coordinates are among those with |n| < N.
Such a set can be covered by a finite number of e-balls for the H, _ -metric.
This proves total boundedness, i.e. it proves Lemma 1. It also proves the
slightly stronger version stated in the next theorem.

Theorem 1. Let r < s. Let H(N) consist of all those elements f € H, such
that f, = 0 if |n| < N. Given ¢, there exists N such that for all f € H,(N)
we have '

£l < el A1,

The inclusion of H, in H,_ is a compact operator.
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Note that H (N) is closed and of finite codimension in H,. Also, it is
generated by smooth functions.

Remark. Theorem 1| was proved by the usual ad hoc manipulations with
the formal Fourier series. It is illuminating to realize that it holds in
somewhat greater generality in the following context.

Let H, E be Hilbert spaces and
A:H— FE

a compact linear map. Let {¢;} (i = 1,2,...) be an orthonormal basis in
H. Let H(N) be the closed subspace generated by the e, withi > N. Given €
there exists N such that for all h& H(N) we have

1 4hlle < €llh]l g

Indeed, if this is not the case, we can find a unit vector h,& H(n) with
n —> oo, such that ||4h,||; > €. But i, —> 0 weakly, so Ah, — O strongly, a
contradiction.

We have used here the fact that an operator A: H —> E is compact if and
only if A maps weakly convergent sequences into strongly convergent
sequences. Furthermore, if A is compact and v, —> O weakly in H, then
Av, —> O strongly in E.

We recall the easy proof. Assume that 4 is compact. Let {v,} be weakly
convergent, say to v. Considering {v, — v} we may assume without loss of
generality that v, — 0 weakly. For each we H, {v,, w) —> 0. If {4v,} is not
convergent, then some subsequence {Av, } does not converge, contradicting
compactness. Furthermore, {4v,} converges to 0, for if Av, —> w # 0, there
exists a functional A on E such that A(w) 5 0. Then A4 1s a functional on H,
and by assumption, A(4v,) — 0, contradiction. Conversely, assume that 4
maps weakly convergent sequences into strongly convergent sequences. Let
{v,} be a sequence such that |v,| < 1. Since the unit ball is weakly compact
in Hilbert space, there is a weakly convergent subsequence {v, } and {4v, }
converges. So 4 is a compact operator.

After this slightly general aside, we return to our special situation.

Theorem 2. Let L be an elliptic operator on T, of order k. Given s there
exists N such that L induces a topological linear isomorphism from H (N)
to its image in H,_,, i.e. we have

Al < LAY -k allhe H (N).

Furthermore, the space of f& H,_, such that {f, Lo> =0 for all
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o€ C®(T) is finite dimensional, so the closure of the image LC*(T) in

H__, has finite codimension.

Proof. By Theorem 1 and the basic inequality, given € there is some N
such that for h € H,(N) we have

NAll, < CillLhll,_x + GliAll,,
< Cil|LhAl ;- i + Coellhls.

Pick € such that Cye < % We get the first inequality of our theorem. Since

trivially || Lhll,_, < ||All,, we get the first assertion also. In particular, the
kernel of L in H, is finite dimensional. To show that the image under L of the
test functions has finite codimensional closure, let A€ H__,, and suppose
that

Chy Lp) = 0, all pe C*(T).

We have (L*h,¢@)> =0, so L*h =0, and again A has to be in a finite
dimensional space, so that last assertion follows and the theorem is proved.

Theorem 3. Let h€ H, for some t, and let L be an elliptic operator on T, of
order k. If L{h) = (g) as functionals on C*®(T), and gE H,, then
he H, . In particular, if g€ C*(T), then h€ C*(T).

Proof. For sufficiently large N, we have

WAl - <UL -5 allfeH_,(N).

By Theorem 2, for ¢ € H_ (N) we have
o L*@) = (2, @)
< llgls el -,
<llglls NL*@ll —s—s-

Hence (/) is continuous on L* C*(T). The closure of L*C*(T) in H_,_, is
finite codimensional by Theorem 2. The space generated by L*C*(T) and a
finite number of C* functions is therefore dense in H_,_,. Hence (k) is
continuous on a dense subspace of H_,_,, and is therefore induced by an
element of the dual space, which is none other than H_,,. Hence h€ H,,, as
was to be shown.
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Remark. The above proof of the regularity theorem is essentially due to

PETER LAX, “On Cauchy’'s problem for hyperbolic equations and the
differentiability of solutions of elliptic equations,” Comm. Pure App. Math. 8
(1955), pp. 615-633.

However, Lax works with a slightly different definition of ellipticity
(nowadays forgotten), and indicates only various parts of the proof. Niren-
berg gave an exceedingly good self-contained exposition in

L. NIRENBERG, “On elliptic partial differential equations,” CIME Con-
ference, Il principio di minimo e sue applicazioni alle equazioni
funzionali, Rome, (1959), pp. 1-58.

However, instead of the short argument used in Theorem 3, Nirenberg uses
“difference quotients” which I did not like. The finite dimensionality of the
kernel and cokernel of the elliptic operator is also not brought out in the Lax
and Nirenberg papers. Nirenberg's exposition has been copied several times
since, e.g. by Bers and John in their PDE book, by Friedman in his PDE
book, and Warner in his book on differential manifolds. On the whole, 1
thought it would still be worthwhile to give a complete proof here.

§5. REGULARITY IN EUCLIDEAN SPACE

Let U be an open set in Euclidean space R?. We now consider differential
operators on U. If fis locally L2 on U, it gives rise to the usual functional {f)
on test functions, i.e. on C2(U). We shall see that the regularity theorem on
T easily implies the regularity theorem on U.

Theorem 4. Let f be locally L? on an open set U in R%. Let g€ C*(U), and
let L be an elliptic operator of order k on U with C® coefficients. Assume
that L{f> = {g>. Then f€ C*>(U).

Proof. Let x,€ U. Let
L=3 aD? and Ly=73 a(x)D"
It suffices to prove that f is C* in a neighborhood of x,. Let a € C°(U) be

equal to 1 in a ball of small radius r around x;,, and equal to 0 outside a ball
of radius 2r. Let

M=ol + (1 — a)L,

Then M is elliptic, has constant coefficients outside a small ball. Let «, be a
C* function which is equal to 1 near x;,, but decreases to 0 outside a ball of



408 ELLIPTIC PDE [A4, §5]

radius r/2. Then for g € C°(U) we have (the integrals are taken on all of R?
but the integrands have compact support):

(Ma [y, @) = [ a fM*o
=f a, fL*(ap) +[ o, FLI((1 = a))
=f a, fL*(ap)
=ffL*(a,a(p) +ffD*<P,

where D* is a differential operator of order < k, whose coefficients have
support contained in supp(a). Hence we get the further equality

= a8, @) + {f, D*p).

The relation
[ oMo = a8, 9> + <f, D*o)

holds for periodic ¢ since each side depends only on the value of ¢ in
supp(a). Let 8 € C™(T) be equal to 1 on supp(a), and 0 outside a small ball.
Then

CBf, D*@)y = {f, D*)

for all periodic ¢. We can extend all of our “cut-off” objects by periodicity to
functions on T. In other words, we can find

g, EC>(T), (BN, ELXT),

an elliptic operator M, on T, (a, f), € LXT), D, of order < k — 1 on T equal
to g, Bf, M, f, D respectively in a small neighborhood of x;, such that

M {(af),) = {a,8)> + D Bf).y = <h)

for some element he H_, (T). Hence (a, f), € H, by the regularity theorem
onT.
We now repeat, and find that

M.« f),y =<h) withsome hE€EH, 1= Hy_,.

Hence («, f), € H,. Continuing in this way, we see that («, f), € H, in other
words, (a, f), gives rise to the same functional as a C* function on T, and is
equal to such a function almost everywhere. Furthermore, (&, f), is equal to f
locally at x,. Hence we have proved what we wanted, that fis C* locally at
Xg
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If in the regularity theorem we make the assumption that g is real
analytic, then it is true that f is also real analytic. The proof, by Morrey and
Nirenberg, is reproduced elegantly and briefly in

Bers et al, PDE, Proceedings of the summer seminar, Boulder, Colorado,
lecture by Bers and Schechter, Interscience (New York, 1964), pp. 207-
210.

So the proof is only three pages long, and consists of a series of estimates to
show that the C* function obtained has a convergent power series. The proof
actually uses parts of the C ™ theory, and the basic estimate.

We stated the regularity in Theorem 4 for a locally L? function f.
Actually the proof is equally applicable for any distribution. We recall that a
distribution 7" on the open set U is a linear map

T:C2(U)y—C

having the following property. Given a compact set K in U, there exists a
finite number of differential operators D,, ... ,D,, such that if o€ C>(U)
and supp ¢ is contained in K, then

|Ty| < max||Dol,

where || || is the sup norm. The definition of a distribution on the torus T is
the same, mutas mutandis, except that we don’t have to mention the compact
set K, and we take ¢ € C*(Y), i.e. we take ¢ to be periodic. It is then clear
that the distributions on T are exactly the elements of the spaces H, for all s.
The regularity theorem on RY then states:

Theorem 5. Let T be a distribution on U. Let g& C®(U), and let L be an
elliptic operator of order k on U with C*® coefficients. Assume that LT = g.
Then T = T, for some he C*®(U).

Proof. The same as that of Theorem 4. Instead of writing the integral of a
function times f, i.e. instead say of writing

f alfM#(p’
we write

T(a,M*p).
There is no other change.



Appendix 5
Weak and Strong Analyticity

§1. COMPLEX THEOREM

Theorem 1. Let E be a Banach space over the complex numbers, and let A
be a subset of the dual space E' which is norm determining, i.e. for v € E we
have

A
lvl-—'supl—lii—l, AEAA%O

Let U be open in C and let f: U —> E be a mapping such that:
i) For each AE A, the function s +—> Ao f(s) is analytic.
ii) For each compact set K C U, we have

sup |f(s)] < oo.
[1=F.4
Then f is analytic.

Proof. (Cf. A. E. Taylor, Functional Analysis, p. 206.) We use the fact that
we are in the complex case, and prove that the Newton quotients form a
Cauchy family for & —» 0. In other words, we prove that f is differentiable. It
suffices to prove that

fGs + k) = f(s)  fls + k) — f(s) &AMk — K
h k r?

where M is a bound for f in a disc of radius r around s, and |A|, [k| < r/2.
Since A is norm determining, it suffices to prove our inequality with Aof
replacing f, and hence we may assume that f is complex valued, with values
bounded by M, and we may also assume that f is analytic. In that case,
Cauchy’s formula or integral forms of the mean value theorem show that the
desired inequality holds. The constant 4 is of course irrelevant. Any fixed

411



412 WEAK AND STRONG ANALYTICITY [AS, §1]

number would do as well. The proof follows from the identity

fls + k)= f(s)  fls + k) = f(s)
h k
._.Lf

27 - (

where C is a circle around s, of radius r.

1)~ ) .
z~s—h)(z—s—k}z—35)

In some applications, e.g. those in Chapter X1V, §11, one wants to prove
analyticity of the kernel starting from the analyticity of the operator, in their
dependence on s. For that one does not know a priori that the kernels are
continuous in s, and one needs an additional lemma.

Lemma. Let D be the open disc centered at 0 in C, and say of radius 1. Let
fe Ll (D), and assume that for (Lebesgue) almost all pairs (a, r) with
acC,r>0and|a|l + r < 1, we have

ds = 0,
C(a) f 0

where C.(a) is the circle of center a and radius r. Then there exists a
holemorphic function which is equal to | almost everywhere on D.

Proof. (I owe this proof to Dale Peterson.) For n > 2 define

f,,:(l~;11—)D—)C

n? .
f,(w) = --fff(w+x+ iy) dxdy.
™
ip
Permuting integrals by Fubini shows that

ds=0
C,(a)f"

for almost all (a, r) with |a| + r < 1 — % , r > 0. Since f€ £} (D), one can
take a limit under an integral sign to show that f, is continuous on (1 — —:; yD.

By the usual criterion it follows that £, is holomorphic on (1 — % )D.On § D



[AS, §1] COMPLEX THEOREM 413

we have the estimate

ff \f = ol dx dy = ff

<ff —7—7-[ ff |f(w)—f(w+x+zy)|dw]dxdy
*D i D

f [f(w) = flw + x + iy)] dx ajzldw

<sup [ [ 1f(w) = f(w + x + iy)| dw,

ip

where the sup is taken for all x + iy €4 D. By the dominated convergence
theorem, as n —> oo the expression on the right tends to 0, thereby proving
that {f,} is L'-Cauchy on }D. By Lemma 1 of Chapter VII we know that
{ f,} converges uniformly on compact sets, whence converges uniformly to a
holomorphic function, which is equal to f almost everywhere on 4 D. We have
therefore proved our assertion locally in the neighborhood of a point, which
suffices for our lemma, after making translations.

The lemma is used in contexts where one wants to deduce the analyticity
of a kernel defining the operators, as in Theorem 12, Chapter XIV, §11.

Observe that the set A is not assumed to be a linear subspace of the dual
space (actually a not too serious matter), but more importantly is not closed.
In this respect, the complex theorem differs from the real theorem given in
the next section, and these theorems find different applications in different
contexts where neither seems to cover the other.

Even though the next theorem is not used in the book, it is illuminating to
include it, and I owe it to J. Gamlen. The proof of Theorem 12 in Chapter
XIV, §11 is modeled on it.

Let Z be a locally compact space with a positive measure p. We write dz
instead of du(z). Let U be an open set in C, and let

s > R, = R(s), se U,

be a family of bounded operators in L%(Z, x). We assume that each operator
R, can be defined by a kernel

r(z, z’; s)
where

r:ZxXZxU—¢C
is (Borel) measurable, i.e.

R f(z) = fz r(z, 25 )f(2) d’
for f € LHZ).
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Theorem 2. Assume that:

1) For (p @ p)-almost all z, 2’ the function

s > r(z, 2’5 5)
is analytic.
ii) For any compact subset K C U there exists a kernel
My(z, 2’y > sup {r(z, 2'; s)|
sek
which when convolved with a function in L¥(Z) yields a function in
L¥2).

Then s > R, is weakly analytic, in the sense that for each f, g € £X(Z),
the function

s > (RS, &
is analytic.

Proof. By the dominated convergence theorem applied to the function

r(z,2'; 5)f(2') 8(2) ,
dominated by

M (z, 2')| f(2)]| ()]

which lies in £'(Z X Z), we conclude that s —> (R.f, g) is continuous. It
suffices now to show that for an arbitrary circle C surrounding a disc in U,
we have

(1) / dsffr(z, 2 )f(2)) 2(2) d2’ dz = 0.
© zz
The integrand is majorized by
Mc(z, )| ()l g (2)l-
The assumption that M, maps L*Z) into itself implies that
[ [Mete N s a2 e
zz

exists. By Fubini’s theorem, the expression under the integral sign is in
£Y(Z X Z), and therefore the triple integral (1) can be taken in any order.
Using hypothesis (i), we conclude that the integral is 0, as was to be shown.
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Corollary. Assumptions being as in Theorem 2, the operator valued map
s > R, is analytic.

Proof. This is a special case of Theorem 1.

In the complex case, complex differentiability implies the existence of a
power series expansion. The proof for Banach valued mappings is the same as
for complex valued functions. In the real case, analyticity must be defined in
terms of the power series.

The fact that we dealt with a complex variable in Theorem 2 was
essential. I owe to Gamlen also the following counterexample in the real case.
We take H = (%(Z). Let

ei(m+n):

r(m, n; s) = — form,n+0
For f, g€ (Z) we have
i(m+n)s JRS—
R8> = D, 55 f(me).
m?n
mn#0
Take
f=(...,0,1,0,...)
g(n) =1/n.
Then

eim
RO =D, 45
nyt0 h
is not analytic.

§2. REAL THEOREM

On the other hand, we have the following theorem of Browder, valid in
the real analytic case (“Analyticity and partial differential equations,” Am. J.
Math. 84 (1962), pp. 666-710).

Theorem 3. Let U be an open set in R and let
f:U—>E

be a mapping into a real or complex Banach space E. Let H,, H, be real or
complex Banach spaces, and let

EXH XH,—>RorC, (u,0,w) > {u,v,w)
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be a continuous trilinear map which induces an isometric embedding of E
into the Banach space of bilinear forms Bil(H,, H,), i.. such that if u€ E,
then |u| = sup |Cu, v, w)| for (v, w)EH, X H,, |v|, |w| < 1. Assume that
Jor each (v, wyE H, X H, the function

x > (f(x), 0, w)
is analytic. Then f is analytic.

Proof. The theorem is local, and so we may assume that U is a disc
around the origin, with coordinates x = (x,, ... ,x,). We recall the trivial fact
that a power series

2 axf - - x§422 a,x?
P p

with coefficients a, in a Banach space converges absolutely in a neighborhood

of 0 if and only if there exists C > 0 and r > 0 such that for all p we have
la,| < Crl7,
If this is the case, then the power series defines a C* function, say g(x), and

D7g(0)
a, = o

where pl=p/!. - - p,L.
Let B be the unit ball in H, X H, (with the sup norm), and for (v, w)E€ B
let A, ,, be the functional

A, W) = {u, v, w).
By assumption, each function Acf is analytic for A€ B, and therefore has a
power series expansion, such that the derivatives satisfy
1D (Aef)(O)] < COIr() .

The constant C(A) and the “radius” r(A) depend on A, and we first show that
they can be selected independently of A. For each positive integers m, n let
B, , be the subset of A€ B such that for all p we have

|DP(Af)(0)] < mnl?p!,

We contend that this subset is closed. It suffices to prove that for any x
mapping

A > DP(Aef)(x)
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is continuous (let x = 0). We do this by induction on |p|. It is clear for
|p| = 0. Assume it for | p|, and let |g| = | p| + 1. Let e be a unit vector in the
direction of the new partial derivative. Then

DP(Aef)(x + he) — DP(Af)(x)
- :

D(Aef)(x) = lim

We let h range over a sequence {4,} tending to 0. Each map

DP(Af)(x + he) — D*(A=f)(x)

A > A

is a continuous linear map by induction hypothesis. By the uniform bound-
edness theorem, the limit taken over the A, for n — cc is also continuous
linear, thereby proving our contention.

We see that B is the union of the closed sets B, ,, and consequently some
B, ,, contains an open ball in the product space by Baire’s theorem. (Cf. Real
Analysis.) If this open ball is centered at a point (v, v,), the differences of
vectors (w,, w,) near (v,, vy) will lie in B, and will contain a small ball around
(0, 0). This implies that we can pick our constants C(A), 7(A) independently of
A, w for (v, w) in a small ball in H; X H,.

Let b,: H; X H, —> R or C be the bilinear map

D*(A,,,,°f)(0)
p! )

The uniform estimate above implies that b, is continuous, i.e.

b,: (v, w) >

b,EBil(H, X H,),
and there are constants C, r such that for all p,

|b,| < Crl7,
Therefore the series

2 bx?
?

converges in a neighborhood of 0 in R?. Evaluating at enough
(v, w)EH, X H,

shows that

f(x) = ; b, x?
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for all x close to 0 in R?. Hence f is analytic as a map into Bil(H, X H,). In
particular, fis C*, and

D*f(0)
b, = IR
Since E is a closed subspace of Bil(H, X H,), it follows that b, &€ E. This
proves our theorem.

Remarks. The theorem is used in several contexts. First, when E
= End(H) is the Banach space of endomorphisms of a Hilbert space H, and
when the trilinear map is the natural one,

(4, v, w) > (Ao, w)

for A€End(H), and v, wE H.

Second, in the representation theory when one wants to prove that certain
vectors are analytic, one usually does this in cases where they satisfy an
elliptic differential equation, say weakly. In that case one can apply first the
regularity theorem in the analytic case, to the functions obtained by composig
a given map with functionals, and then one can apply Theorem 3 to conclude
that the original map x > #(x)v in the Hilbert space is analytic.
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Symbols Frequently Used

p. 2
p. 2
p. 4
p. 5
p. 19
p- 19
p. 23
p. 41
p. 46
p. 46
p. 46
p. 47
p. 49
p. 51

P = [ @0y WO
G
f(x)=f(x"") or f(—x) (specified in each context)
(@)o = [ g()m(x)o dx
G

¢*(x) = p(x7")
S,. .. Functions f such that f(r(8)yr(6")) = e~ "*(y)e "

r(0) = ( cosd sinf )

—sinf cosé

H_: Subspace of H consisting of those v such that #(r(8))v = ey,

a(a 0 )=a2
0 a!

p(a) = a(a)'/?, p(x) =pla) if x=ank.

u(an) = p(ay’

H(s) = space of functions whose restriction to K is in L? and

satisfying f(any) = p(a)y’* f(y).

7, is the representation on H(s), 7 ,(x)f(y) = f(yx).

@, (x) =fp(kx)”’ dx in the context of spherical functions. In the
K

context of Fourier series, ¢, (8) = €.

C.(G, K) = continuous functions with compact support invariant
under conjugation by elements of K.

C.(G//K) = continuous functions with compact support and bi-
invariant under K.
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p- 68 D(a)=p(a)— pla)”'

p. 69 W=( 0 1),
-1 0

p. 69 Harish transform

Hf(a) = p(a?/‘f(an)dn = D(a) f(x " lax)dx
N

A\G

p. 70 A" = {a€A,p(a) > 1}
p. 74 Mellin transform

Mg(s) = f,, g(a)p(a)’ da

p. 78 Spherical transform
S/(s) = MH/(5) = [ f(x)g,(x)dx

p. 89 exp(X) = 'g) %
p. 90 Ryf(0) = G A exp(x))|
p. 94 dn(X)o = ditw(exp(zX)u)

=0

p. 102 E+orE+—(1 i); E'orE_=( ! _’)
P~ - =1

—4iW, [W,E,|=2E, [W.E_]= —2iE._

™

*
o
!

p. 102 ad(X)Y = [X, Y]

~

p. 105 H*= @D H and H = @ H

n even nodd "



. 105

. 132

. 132
. 149

. 120,
150

. 192

. 193
. 228

. 243

. 244
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Ad(y)X = yXy~!

Yee(x) = f W (k™ 'xk)dk
K

G’ = set of regular elements, i.e. having distinct eigenvalues.

H(p, €) or H(s, ¢), those functions in H(s) which have character ¢,
where € is a character of { > 1}.

H™ =@ H, and H"™= @D H
npm

m
n=m n=m

QU (g) = algebra of differential operators generated by the Lie de-
rivatives.

% denotes the centralizer of whatever comes after it.
SLHT\ G) consists of those functions f such that

f f(ng)dn = 0
Th\N

for all g, and every cuspidal subgroup N with respect to I

Z(9.y,25) = f o(ay)p(a) ™™ da

E(p,y,5) = 2 Z(p,w,25) = TZ(p,y, 2s)
Ty\T
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Absolute value of operator, 159
Adjoint of operator, 369

Adjoint representation, 102, 105, 137
Admissible, 26, 105

Analytic map, 98

Analytic vector, 99, 198

Analyticity, 411

Asymptotic expansion, 83

Basic estimate, 401
Bi-invariant, 51

Bounded operator, 355
Bounded representation, 1
Bruhat decomposition, 210, 252

C * vector, 93

Cartan decomposition, 139
Casimir operator, 194
Centralizers, 193

Character, 19, 46

Closed operator, 370
Coefficient functions, 29, 47
Compact groups, 26

Compact operator, 10, 232, 383
Complementary series, 123
Completely reducible, 10
Complete reducibility, 234
Contained (operators), 370
Coset spaces, 37

Cusp, 222

Cusp form, 228

Cuspidal, 219

Cuspidal part of resolvent, 295, 299

Dense subspace, 8
Derived representation, 94

Dirac sequence, 5
Discrete series, 107, 120, 179
Distributions, 394, 409

Eigenfunctions of Casimir, 199
Eigenfunctions of Laplacian, 314
Eisenstein, formalism, 310
functions, 33.
operator, 339
series, 244
transform, 346
Elliptic operators, 389
Embedding, 9
Equivalence, 9
Essentially self-adjoint, 372

Fixed vector, 25
Fundamental domain, 223

g-isomorphism, 106
Generate topologically, 61
Generators and relations, 209
Green’s functions, 287

Harish transform on A4, 49, 69, 148, 153
Harish transform on K, 154, 166
Highest weight vector, 104
Hilbert-Schmidt operator, 127

H(s), 46

Induced representation, 44
Infinitesimal isomorphism, 106
Integral formulas, 67, 134
Intertwining operators, 9
Invariant measure, 37
Invariant subspace, 8
Irreducible, 9
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Isomorphism, 9 Schur’s lemma, 362
Iwasawa decomposition, 39 Self-adjoint, 370
Siegel set, 235

Jordan space, 383 Spectral family, 365
K-bi-invariant, 51 Spectral measure, 378
K-finite, 25 Spectral theorem

, for bounded operator, 360
L*-kernel, 12 for compact operator, 10
Laplacian, 270 for unbounded operator, 378
L}e alggbra, 89 Spherical function, 47, 55, 199
Lie derivative, 90 Spherical transform, 78
Lifting of weight m, 187 Star closed, 12, 54
Lowest weight vector, 104 Strictly admissible, 26, 129
Mellin transform, 49, 74, 248 Strongly continuous, 1

Symmetric operator, 370

Meromorphic family of operators, 38 Symmetry of Laplace operator, 280

Mock discrete series, 120

ﬁ"ﬁ’h}?‘?" 9 0 Theta transform, 240
ultiplicity, 1 Topological generator, 61
Oceur, 9 Trace, 14, 124, 128

Trace class, 128, 158
Trace in discrete series, 150
Trace in induced representation, 49, 147

One parameter subgroup, 90
Orthogonal decomposition, 10

Paley-Wiener space, 75 Type of function, 244
Partial isometry, 156 Type of operator, 297
Plancherel formula, 16, 82, 173
Polar decomposition, 155 Unimodular, 2
Polynomial growth, 227 Unipotent, 219
Positive definite function, 62 Unitarization, 108
Principal series, 47 Unitary, 1
Projections, 363 Unitary character, 46
. . Universal enveloping algebra, 192

gapldly decreasing, 249 Upper half-plane, 41

egular element, 132
Regular map, 27 Weak analyticity, 411, 415
Regularity theorem, 404, 407 Weak topology, 1
Representation, 1 Weil representation, 211
Resolvent formula, 379 Weyl element, 69
Resolvent of Laplace operator, 275 Weyl group, 69
Resolving form, 273 Whittaker equation, 290
Sy, 19 Zeta transform, 243
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