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Preface 

Harmonic functions-the solutions of Laplace's equation-playa 
crucial role in many areas of mathematics, physics, and engineering. 
But learning about them is not always easy. At times the authors have 
agreed with Lord Kelvin and Peter Tait, who wrote ([18], Preface) 

There can be but one opinion as to the beauty and utility of this 
analysis of Laplace; but the manner in which it has been hitherto 
presented has seemed repulsive to the ablest mathematicians, and 
difficult to ordinary mathematical students. 

The quotation has been included mostly for the sake of amusement, 
but it does convey a sense of the difficulties the uninitiated sometimes 
encounter. 

The main purpose of our text, then, is to make learning about har­
monic functions easier. We start at the beginning of the subject, assum­
ing only that our readers have a good foundation in real and complex 
analysis along with a knowledge of some basic results from functional 
analysis. The first fifteen chapters of [15], for example, provide suffi­
cient preparation. 

In several cases we simplify standard proofs. For example, we re­
place the usual tedious calculations showing that the Kelvin transform 
of a harmonic function is harmonic with some straightforward obser­
vations that we believe are more revealing. Another example is our 
proof of Bacher's Theorem, which is more elementary than the classi­
cal proofs. 

We also present material not usually covered in standard treatments 
of harmonic functions (such as [9], [11], and [19]). The section on the 
Schwarz Lemma and the chapter on Bergman spaces are examples. For 

ix 



x Preface 

completeness, we include some topics in analysis that frequently slip 
through the cracks in a beginning graduate student's curriculum, such 
as real-analytic functions. 

We rarely attempt to trace the history of the ideas presented in this 
book. Thus the absence of a reference does not imply originality on 
our part. 

For this second edition we have made several major changes. The 
key improvement is a new and considerably simplified treatment of 
spherical harmonics (Chapter 5). The book now includes a formula for 
the Laplacian of the Kelvin transform (Proposition 4.6). Another ad­
dition is the proof that the Dirichlet problem for the half-space with 
continuous boundary data is solvable (Theorem 7.11), with no growth 
conditions required for the boundary function. Yet another signifi­
cant change is the inclusion of generalized versions of Liouville's and 
Bacher's Theorems (Theorems 9.10 and 9.11), which are shown to be 
equivalent. We have also added many exercises and made numerous 
small improvements. 

In addition to writing the text, the authors have developed a soft­
ware package to manipulate many of the expressions that arise in har­
monic function theory. Our software package, which uses many results 
from this book, can perform symbolic calculations that would take a 
prohibitive amount of time ifdone without a computer. For example, 
the Poisson integral of any polynOmial can be computed exactly. Ap­
pendix B explains how readers can obtain our software package free of 
charge. 

The roots of this book lie in a graduate course 'at Michigan State 
University taught by one of the authors and attended by the other au­
thors along with a number of graduate students. The topic of harmonic 
functions was presented with the intention of moving on to different 
material after introducing the basic concepts. We did not move on to 
different material. Instead, we began to ask natural questions about 
harmonic functions. Lively and illuminating discussions ensued. A 
freewheeling approach to the course developed; answers to questions 
someone had raised in class or in the hallway were worked out and then 
presented in class (or in the hallway). Discovering mathematics in this 
way was a thoroughly enjoyable experience. We will consider this book 
a success if some of that enjoyment shines through in these pages. 



Our book has been improved by our students and by readers of the 
first edition. We take this opportunity to thank them for catching errors 
and making useful suggestions. 

Among the many mathematicians who have influenced our outlook 
on harmonic function theory, we give special thanks to Dan Luecking 
for helping us to better understand Bergman spaces, to Patrick Ahern 
who suggested the idea for the proof of Theorem 7.11, and to Elias 
Stein and Guido Weiss for their book [16], which contributed greatly to 
our knowledge of spherical harmonics. 

We are grateful to Carrie Heeter for using her expertise to make old 
photographs look good. 

At our publisher Springe~ we thank the mathematics editors Thomas 
von Foerster (first edition) and Ina Lindemann (second edition) for their 
support and encouragement, as well as Fred Bartlett for his valuable 
assistance with electronic production. 
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CHAPTER 1 

13asic 'Proyerties of 
J-{armonic Junctions 

'Definitions ana 'ExanyJ{es 

Harmonic functions, for us, live on open subsets of real Euclidean 
spaces. Throughout this book, n will denote a fixed positive integer 
greater than 1 and 0 will denote an open, nonempty subset of R n. A 
twice continuously differentiable, complex-valued function u defined 
on 0 is harmonic on 0 if 

~u=O, 

where ~ = Dl2 + ... + Dn 2 and D / denotes the second partial derivative 
with respect to the ph coordinate variable. The operator ~ is called the 
Laplacian, and the equation ~u = 0 is called Laplace's equation. We 
say that a function u defined on a (not necessarily open) set E c Rn is 
harmonic on E if u can be extended to a function harmonic on an open 
set containing E. 

We let x = (Xl, ... ,xn ) denote a typical point in Rn and let Ixi = 
(Xl 2 + ... + Xn 2 )l/2 denote the Euclidean norm of x. 

The simplest nonconstant harmonic functions are the coordinate 
functions; for example, u(x) = Xl. A slightly more complex example 
is the function on R 3 defined by 

As we will see later, the function 
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u(x) = Ixl 2- n 

is vital to harmonic function theory when n > 2; the reader should 
verify that this function is harmonic on Rn , {O}. 

We can obtain additional examples of harmonic functions by dif­
ferentiation, noting that for smooth functions the Laplacian commutes 
with any partial derivative. In particular, differentiating the last exam­
ple with respect to Xl shows that xllxl-n is harmonic on Rn , {O} when 
n > 2. (We will soon prove that every harmonic function is infinitely 
differentiable; thus every partial derivative of a harmonic function is 
harmonic.) 

The functionxllxl-n is harmonic onRn , {O} even when n = 2. This 
can be verified directly or by noting that Xlix 1-2 is a partial derivative 
of log lxi, a harmonic function on R2 , {O}. The function log Ixl plays 
the same role when n = 2 that Ixl 2-n plays when n > 2. Notice that 
limx-oo log Ixl = 00, but lirnx- oo Ixl 2- n = 0; note also that log Ixl is nei­
ther bounded above nor below, but Ixl 2- n is always positive. These 
facts hint at the contrast between harmonic function theory in the 
plane and in higher dimensions. Another key difference arises from 
the close connection between holomorphic and harmonic functions in 
the plane-a real-valued function on 0 C R2 is harmonic if and only 
if it is locally the real part of a holomorphic function. No comparable 
result exists in higher dimensions. 

Invariance Proyerties 

Throughout this book, all functions are assumed to be complex 
valued unless stated otherwise. For k a positive integer, let Ck (0) 
denote the set of k times continuously differentiable functions on 0; 
Coo (0) is the set of functions that belong to Ck (0) for every k. For 
E eRn, we let C(E) denote the set of continuous functions on E. 

Because the Laplacian is linear on C2(0), sums and scalar multiples 
of harmonic functions are harmonic. 

For Y ERn and u a function on 0, the y-translate of u is the func­
tion on 0 + y whose value at x is u(x - y). Clearly, translations of 
harmonic functions are harmonic. 

For a positive number r and u a function on 0, the r-dilate of u, 
denoted Ur, is the function 
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(Ur)(x) = u(rx) 

defined for x in (l/r)O = {(l/r)w : w EO}. If U E C2 (O), then a 
simple computation shows that ~(ur) = r2(~ulr on (l/r)O. Hence 
dilates of harmonic functions are harmonic. 

Note the formal similarity between the Laplacian ~ = D12 + ... + Dn 2 

and the function Ixl2 = X1 2 + ... + xn z, whose level sets are spheres 
centered at the origin. The connection between harmonic functions and 
spheres is central to harmonic function theory. The mean-value prop­
erty, which we discuss in the next section, best illustrates this connec­
tion. Another connection involves linear transformations on Rn that 
preserve the unit sphere; such transformations are called orthogonal. 
A linear map T: Rn - Rn is orthogonal if and only if ITxl = Ixl for all 
x ERn. Simple linear algebra shows that T is orthogonal if and only 
if the column vectors of the matrix of T (with respect to the standard 
basis of Rn) form an orthonormal set. 

We now show that the Laplacian commutes with orthogonal trans­
formations; more precisely, if T is orthogonal and U E CZ (0), then 

~(U 0 T) = (~u) 0 T 

on T-1 (0). To prove this, let [t jk] denote the matrix of T relative to 
the standard basis of Rn. Then 

n 
Dm(u 0 T) = L tjm(Dju) 0 T, 

j=l 

where Dm denotes the partial derivative with respect to the m th coordi­
nate variable. Differentiating once more and summing over m yields 

n n 
~(u 0 T) = L L tkmtjm(DkDjU) 0 T 

m=l j,k=l 

n n 

= I (I tkmtjm) (DkDju) 0 T 
j,k=l m=l 

n 
= I (DjDju) 0 T 

j=l 

= (~u) 0 T, 
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as desired. The function U 0 T is called a rotation of u. The preced­
ing calculation shows that rotations of harmonic functions are har­
monic. 

The .Jvlean-'ValUe 'Proyerty 
Many basic properties of harmonic functions follow from Green's 

identity (which we will need mainly in the special case when 0 is a 
ball): 

1.1 r (u~v - v~u) dV = f (uDnv - vDnu) ds. 
In an 

Here 0 is a bounded open subset of Rn with smooth boundary, and 
u and v are C2-functions on a neighborhood of 0, the closure of O. 
The measure V = Vn is Lebesgue volume measure on Rn, and 5 de­
notes surface-area measure on ao (see Appendix A for a discussion of 
integration over balls and spheres). The symbol Dn denotes differen­
tiation with respect to the outward unit normal n. Thus for '(; E a~, 

(DnU)('(;) = (V'U)(,(;) . n('(;), where V'u = (Di U, ... , Dnu) denotes the 
gradient of u and . denotes the usual Euclidean inner product. 

Green's identity (1.1) follows easily from the familiar divergence the­
orem of advanced calculus: 

1.2 r divwdV = f W· nds. 
In an 

Here w = (Wi, ... , W n ) is a smooth vector field (a en-valued function 
whose components are continuously differentiable) on a neighborhood 
of 0, and divw, the divergence ofw, is defined to beDi Wi + ... +Dnwn. 
To obtain Green's identity from the divergence theorem, simply let 
w = uV'v - vV'u and compute. 

The following useful form of Green's identity occurs when u is har­
monic and v == 1: 

1.3 f Dnuds = O. 
an 

Green's identity is the key to the proof of the mean-value property. 
Before stating the mean-value property, we introduce some notation: 
B(a, r) = {x E Rn : Ix - al < r} is the open ball centered at a of 
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radius r; its closure is the closed ball B(a, r); the unit ball B(O, 1) is 
denoted by B and its closure by B. When the dimension is important we 
write Bn in place of B. The unit sphere, the boundary of B, is denoted 
by S; normalized surface-area measure on S is denoted by u (so that 
u(S) = 1). The measure u is the unique Borel probability measure on 
S that is rotation invariant (meaning u (T(E)) = u (E) for every Borel 
set E c S and every orthogonal transformation T). 

1.4 Mean-Value Property: If u is harmonic on B(a, r), then u equals 
the average of u over aB(a, r). More precisely, 

u(a) = Is u(a + rS") du(S"). 

PROOF: First assume that n > 2. Without loss of generality we may 
assume that B(a, r) = B. Fix E E (0,1). Apply Green's identity (1.1) 
with n = {x ERn: E < Ixl < 1} and v(x) = Ixl 2- n to obtain 

° = (2 - n) f u ds - (2 - n)E1- n f u ds 
S ES 

-f Dnu ds - E2- n f Dnu ds. 
S ES 

By 1.3, the last two terms are 0, thus 

f uds = E1- n f uds, 
S ES 

which is the same as 

Letting E - ° and using the continuity of u at 0, we obtain the desired 
result. 

The proof when n = 2 is the same, except that Ixl 2- n should be 
replaced by log Ixl. • 

Harmonic functions also have a mean-value property with respect to 
volume measure. The polar coordinates formula for integration on Rn 

is indispensable here. The formula states that for a Borel measurable, 
integrable function f on R n, 
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(see [15], Chapter 8, Exercise 6). The constant nV(B) arises from the 
normalization of u (choosing f to be the characteristic function of B 
shows that nV(B) is the correct constant). 

1.6 Mean-Value Property, Volume Version: If u is harmonic on 
B(a, r), then u(a) equals the average of u over B(a, r). More precisely, 

u(a)=V(B/ »)f udV. a, r B(a,r) 

PROOF: We can assume that B(a, r) = B. Apply the polar coordi­
nates formula (1.5) with f equal to u times the characteristic function 
of B, and then use the spherical mean-value property (Theorem 1.4) .• 

We \\-ill see later (1.24 and 1.25) that the mean-value property char­
acterizes harmonic functions. 

We conclude this section with an application of the mean value prop­
erty. We have seen that a real-valued harmonic function may have an 
isolated (nonremovable) singularity; for example, Ix 12- n has an isolated 
Singularity at 0 if n > 2. However, a real-valued harmonic function u 
cannot have isolated zeros. 

1.7 Corollary: The zeros of a real-valued harmonic function are 
never isolated. 

PROOF: Suppose u is harmonic and real valued on 0, a E 0, and 
u(a) = O. Let r > 0 be such that B(a, r) cO. Because the average of u 
over oB(a, r) equals 0, either u is identically 0 on oB(a, r) or u takes 
on both positive and negative values on oB(a, r). In the later case, the 
connectedness of oB(a, r) implies that u has a zero on oB(a, r). 

Thus u has a zero on the boundary of every sufficiently small ball 
centered at a, proving that a is not an isolated zero of u. • 

The hypothesis that u is real valued is needed in the preceding corol­
lary. This is no surprise when n = 2, because nonconstant holomorphic 
functions have isolated zeros. When n ~ 2, the harmonic function 
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n 
(1 - n)x/ + L Xk 2 + iXl 

k=2 

is an example; it vanishes only at the origin. 

'Tfie .1vtaximum Princ"!p{e 

7 

An important consequence of the mean-value property is the fol­
lowing maximum principle for harmonic functions. 

1.8 Maximum Principle: Suppose 0 is connected, u is real valued 
and harmonic on 0, and u has a maximum or a minimum in o. Then 
u is constant. 

PROOF: Suppose u attains a maximum at a E o. Choose r > 0 such 
that B(a, r) c o. If u were less than u(a) at some point of B(a, r), 
then the continuity of u would show that the average of u over B(a, r) 
is less than u(a), contradicting 1.6. Therefore u is constant on B(a, r), 
proving that the set where u attains its maximum is open in O. Because 
this set is also closed in 0 (again by the continuity of u), it must be all 
of 0 (by connectivity). Thus u is constant on 0, as desired. 

If u attains a minimum in 0, we can apply this argument to -u .• 

The following corollary, whose proof immediately follows fro~ the 
preceding theorem, is frequently useful. (Note that the connectivity of 
o is not needed here.) 

1.9 Corollary: Suppose 0 is bounded and u is a continuous real­
valued function on 0 that is harmonic on o. Then u attains its maximum 
and minimum values over 0 on 00. 

The corollary above implies that on a bounded domain a harmonic 
function is determined by its boundary values. More precisely, for 
bounded 0, if u and v are continuous functions on 0 that are har­
monic on 0, and if u = v on aD, then u = v on o. Unfortunately this 
can fail on an unbounded domain. For example, the harmonic func­
tions u(x) = 0 and v(x) = Xn agree on the boundary of the half-space 
{xERn:xn>O}. 
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The next version of the maximum principle can be applied even 
when 0 is unbounded or when u is not continuous on o. 

1.10 Corollary: Let u be a real-valued, harmonic (unction on 0, and 
suppose 

limsupu(ad :5 M 
k-oo 

for every sequence (ak) in 0 converging either to a point in aD or to 00. 

Then u :5 M on o. 

REMARK: To say that (ak) converges to 00 means that lakl - 00. The 
corollary is valid if "lim sup" is replaced by "lim inf" and the inequalities 
are reversed. 

PROOF OF COROLLARY 1.10: Let M' = sup{u(x) : xED}, and 
choose a sequence (bk) in 0 such that u(h) - M'. 

If (h) has a subsequence converging to some point bED, then 
u(b) = M', which implies u is constant on the component of 0 con­
taining b (by the maximum principle). Hence in this case there is a 
sequence (ak) in 0 converging to a boundary point of 0 or to 00 on 
which u = M', and so M' :5 M. 

If no subsequence of (h) converges to a point in 0, then (bk) has a 
subsequence (ak) converging eith~r to a boundary point of 0 or to 00. 

Thus in in this case we also have M' :5 M. • 

Theorem 1.8 and Corollaries 1.9 and 1.10 apply only to real-valued 
functions. The next corollary is a version of the maximum principle for 
complex-valued functions. 

1.11 Corollary: Let 0 be connected, and let u be harmonic on o. If 
lui has a maximum in 0, then u is constant. 

PROOF: Suppose lui attains a maximum value of M at some point 
a E o. Choose A E C such that IAI = 1 and Au(a) = M. Then the real­
valued harmonic function Re AU attains its maximum value M at a; thus 
by Theorem 1.8, ReAu == M on O. Because IAul = lui :5 M, we have 
1m AU == 0 on O. Thus A u, and hence u, is constant on o. • 

Corollary 1.11 is the analogue of Theorem 1.8 for complex-valued 
harmonic functions; the corresponding analogues of Corollaries 1.9 
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and 1.10 are also valid. All these analogues, however, hold only for 
the maximum or lim sup of lui. No minimum principle holds for lui 
(consider u(x) = Xl on B). 

We will be able to prove a local version of the maximum principle 
after we prove that harmonic functions are real analytic (see 1.29). 

The Poissan Xernef for the 'Baff 

The mean-value property shows that if u is harmonic on B, then 

u(O) = Is u(~) d(T(~). 

We now show that for every X E B, u(x) is a weighted average of u 

over S. More precisely, we will show there exists a function P on B x S 
such that 

u(x) = Is u(~)P(x,~) d(T(~) 

for every X E B and every u harmonic on B. 
To discover what P might be, we start with the special case n = 2. 

Suppose u is a real-valued harmonic function on the closed unit disk 
in R 2• Then u = Re f for some function f holomorphic on a neigh­
borhood of the closed disk (see Exercise 11 of this chapter). Because 
u = (J + ]) / 2, the Taylor series expansion of f implies that u has the 
form 

00 

u(r~) = L ajrlJl~j, 
j=-oo 

where ° :0:; r :0:; 1 and I ~ I = 1. In this formula, take r = 1, multiply both 
sides by ~-k, then integrate over the unit circle to obtain 

Now let x be a point in the open unit disk, and write x r1] with 
r E [0,1) and 11]1 = 1. Then 
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1.12 u(x) = u(rT]) 

= f (J u("(;)"(;-j do-('(J)rlJiT]j 
j=-oo S 

Breaking the last sum into two geometric series, we see that 

f 1- r2 
u(x) = s u("(;) /rT] _ "(;/2 do-("(;). 

Thus, letting P (x,"(;) = (1 - / X 12) / / x - "(; /2, we obtain the desired for­
mula for n = 2: 

u(x) = Is u("(;)P(x,"(;) do-("(;). 

Unfortunately, nothing as simple as this works in higher dimen­
sions. To find P(x, "(;) when n > 2, we start with a result we call the 
symmetry lemma, which will be useful in other contexts as well. 

1.13 Symmetry Lemma: For all nonzero x and y in Rn, 

I/~I -Iy/xl = 1 1:/ -/xlyl· 

PROOF: Square both sides and expand using the inner product. _ 

To find P for n > 2, we try the same approach used in proving the 
mean-:value property. Suppose that u is harmonic on B. When proving 
that u(O) is the average of u over 5, we applied Green's identity with 
v(y) = lyIZ-n; this function is harmonic on B \ {O}, has a singularity 
at 0, and is constant on 5. Now fix a nonzero point x E B. To show 
that u(x) is a weighted average of u over 5, it is natural this time to 
try v(y) = /y - x/z-n. This function is harmonic on B \ {x}, has a 
singularity at x, but unfortunately is not constant on 5. However, the 
symmetry lemma (1.13) shows that for y E 5, 

I X Iz-n 
Iy - xl 2- n = Ix/ 2- n y - /x/2 . 
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The symmetry lemma: the two bold segments have the same length. 

Notice that the right side of this equation is harmonic (as a function 
of y) on B. Thus the difference of the left and right sides has all the 
properties we seek. 

So set v(y) = L(y) - X(y), where 

L(y) = \y - x\2-n, I 
X 1 2- n 

X(y) = \x\2-n y - \X\2 ' 

and choose E small enough so that B(x, E) c B. Now apply Green's 
identity (1.1) much as in the proof of the mean-value property (1.4), 
with n = B \ B(x, E). We obtain 

0= Is uDnv ds - (2 - n)s(S)u(x) 

-f uDnXds + f XDnuds 
aB(X,E) aB(X,E) 

(the mean-value property was used here). Because uDnX and XDnu 
are bounded on B, the last two terms approach 0 as E - O. Hence 

u(x) = -2 1 f uDnv du. -n s 

Setting P(x, () = (2 - n)-l(Dnv)«(), we have the desired formula: 

1.14 u(x) = Is u«()P(x, () du«(). 
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A computation of Dnv, which we recommend to the reader (the sym­
metry lemma may be useful here), yields 

1.15 
l-lxl2 

P(x, () = Ix _ (In' 

The function P derived above is called the Poisson kernel for the 
ball; it plays a key role in the next section. 

The 'DiricfiCet 'ProbCem far the 'Barr 
We now come to a famous problem in harmonic function theory: 

given a continuous function 1 on S, does there exist a continuous func­
tion u on B, with u harmonic on B, such that u = 1 on S? If so, how 
do we find u? This is the Dirichlet problem for the ball. Recall that by 
the maximum principle, if a solution exists, then it is unique. 

We take our cue from the last section. If 1 happens to be the re­
striction to S of a function u harmonic on B, then 

u(x) = Is 1«()P(x, () dO'«() 

for all x E B. We solve the Dirichlet problem for B by changing our 
perspective. Starting with a continuous function 1 on S, we use the 
formula above to define an extension of 1 into B that we hope will have 
the desired properties. 

The reader who wishes may regard the material in the last section 
as motivational. We now start anew, using 1.15 as the definition of 
P(x,O· 

For arbitrary 1 E C(S), we define the Poisson integral of I, denoted 
P [J], to be the function on B given by 

1.16 P[J](x) = Isl«()P(X, () dO'«(). 

The next theorem shows that the Poisson integral solves the Dirich­
let problem for B. 
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Johann Peter Gustav Lejeune Dirichlet (1805-1859), whose attempt to 
prove the stability of the solar system led to an investigation of 

harmonic functions. 

1.17 Solution of the Dirichlet problem for the ball: Suppose f is 
continuous on S. Define u on 13 by 

{
P[f](X) if x E B 

u(x) = 
j(x) if XES. 

Then u is continuous on 13 and harmonic on B. 

The proof of 1.17 depends on harmonicity and approximate-identity 
properties of the Poisson kernel given in the following two proposi­
tions. 

1.18 Proposition: Let 7,; E S. Then P(·, 7,;) is harmonic on Rn \ {7,;}. 

We let the reader prove this proposition. One way to do so is to 
write P(x, 7,;) = (1 - Ixlz) Ix -7,;I-n and then compute the Laplacian of 
P ( ., 7,;) using the product rule 

1.19 .0.(uv) = U.0.V + 2V'u . V'v + V.0.U, 

which is valid for all real-valued twice continuously differentiable func­
tions u and v. 



14 CHAPTER 1. Basic Properties of Harmonic Functions 

1.20 Proposition: The Poisson kernel has the following properties: 

(a) P(x, () > 0 for all x E B and all ( E S; 

(b) Is P(x, () du«() = 1 for all x E B; 

(c) for every 11 E S and every 8 > 0, 

f P(x, () du«() - 0 as x - 11· 
1~-'11>8 

PROOF: Properties (a) and (c) follow immediately from the formula 
for the Poisson kernel (1.15). 

Taking u to be identically 1 in 1.14 gives (b). To prove (b) with­
out using the motivational material in the last section, note that for 
x E B \ {O}' we have 

Is P(x, () du«() = Is P(I(lx, 121) du«() 

= Is P(lxl(, I~I) du«(), 

where the last equality follows from the symmetry lemma (1.13). Propo­
sition 1.18 tells us that P(lxl(, 1;1)' as a function of (, is harmonic on 
B. Thus by the mean-value property we have 

as desired. Clearly (b) also holds for x = 0, completing the proof. _ 

PROOF OF THEOREM 1.17: The Laplacian of u can be computed by 
differentiating under the integral sign in 1.16; Proposition 1.18 then 
shows that u is harmonic on B. 

To prove that u is continuous on B, fix 11 E S and E > o. Choose 
8> 0 such that Ij«() - j(I1)1 < E whenever I( -111 < 8 (and (E S). 

For x E B, (a) and (b) of Proposition 1.20 imply that 
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lu(x) -u(rJ)1 = IL(f(~) -f(rJ»)P(x,~)d(}"(~)1 

::5 f If(~) - f(rJ) I P(x,~) d(}"(~) 
1(-111~0 

+ r If(~) - f(rJ) I P(x,~) d(}"(~) J1(-111>0 

::5 E + 211fll00 f P(x,~) d(}"(~), 
1(-111>8 

where IIflloo denotes the supremum of If I on S. The last term above is 
less than E for x sufficiently close to rJ (by Proposition 1.20(c», proving 
that u is continuous at rJ. • 

We now prove a result stronger than that expressed in 1.14. 

1.21 Theorem: If u is a continuous (unction on B that is harmonic 

on B, then u = P[uls] on B. 

PROOF: By 1.17, u - P[uls] is harmonic onB and extends continu­
ously to be 0 on S. The maximum principle (Corollary 1.9) now implies 
that u - P[uls] is 0 on B. • 

Because translations and dilations preserve harmonic functions, our 
results can be transferred easily to any ball B(a, r). Specifically, given 
a continuous function f on oB(a, r), there exists a unique continuous 
function u on B(a, r), with u harmonic on B(a, r), such that u = f on 
oB(a, r). In this case we say that u solves the Dirichlet problem for 
B(a, r) with boundary data f. 

We now show that every harmonic function is infinitely differen­
tiable. In dealing with differentiation in several variables the following 
notation is useful: a multi-index lX is an n-tuple of nonnegative inte­
gers (lXI, ... , lXn); the partial differentiation operator D cx is defined to 
be DI CXI ••• Dn CXn (D} denotes the identity operator). For each ~ E S, 
the function P(·, ~) is infinitely differentiable on B; we denote its lXth 

partial derivative by Dcx P ( ., ~) (here ~ is held fixed). 
If u is continuous on B and harmonic on B, then 

u(x) = L u(~)P(x,~) d(}"(~) 
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for every x E B. Differentiating under the integral, we easily see that 
U E COO (B); the formula 

1.22 

holds for every x E B and every multi-index lX. 

The preceding argument applies to any ball after a translation and 
dilation. As a consequence, every harmonic function is infinitely dif­
ferentiable. 

The following theorem should remind the reader of the behavior of 
a uniformly convergent sequence of holomorpbic functions. 

1.23 Theorem: Suppose (um ) is a sequence of harmonic {unctions 
on 0 such that Um converges uniformly to a (unction U on each compact 
subset of o. Then U is harmonic on O. Moreover, for every multi­
index lX, DlXum converges uniformly to DlXu on each compact subset 
of o. 

PROOF: Given B(a, r) c 0, we need only show that u is harmonic on 
B(a, r) and that for every multi-index lX, DlXum converges uniformly 
to D<Xu on each compact subset of B(a, r). Without loss of generality, 
we assume B(a, r) == B. 

We then know that 

um(x) == Is um«()P(x, () du«() 

for every x E B and every m. Taking the limit of both sides, we obtain 

U(x) == Is u«()P(x, () du«() 

for every x E B. Thus u is harmonic on B. 
Let lX be a multi-index and let x E B. Then 

D<Xum(x) == Is um«()DlXP(x, () du«() 

- Is u«()D<XP(x, () du«() == DlXu(x). 

If K is a compact subset of B, then DlX P is uniformly bounded on K x S, 
and so the convergence of DlXum to D<Xu is uniform on K, as desired. _ 
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Canverse of tlie Jvlean-'ValUe Proyerty 
We have seen that every harmonic function has the mean-value prop­

erty. In this section, we use the solvability of the Dirichlet problem for 
the ball to prove that harmonic functions are the only continuous func­
tions having the mean-value property. In fact, the following theorem 
shows that a continuous function satisfying a weak form of the mean­
value property must be harmonic. 

1.24 Theorem: Suppose u is a continuous function on O. If for each 
x E 0 there is a sequence of positive numbers rj - 0 such that 

u(x) = Is u(x + r/(;) dcr(7;) 

for all j, then u is harmonic on O. 

PROOF: Without loss of generality, we can assume that u is real 
valued. Suppose that B(a, R) c O. Let v solve the Dirichlet problem 
for B(a, R) with boundary data u on oB(a, R). We will complete the 
proof by showing that v = u on B(a, R). 

Suppose that v - u is positive at some point of B(a, R). Let E be 
the subset of B(a, R) where v - u attains its maximum. Because E is 
compact, E contains a point x farthest from a. Clearly x E B(a,R), so 
there exists a ball B(x, r) c B(a, R) such that u(x) equals the average 
of u over oB(x, r). 

Because v is harmOniC, we have 

(v - u)(x) = Is (v - u)(x + r7;) dcr(7;). 

But (v - u)(x + rO ~ (v - u)(x) for all 7; E S, with strict inequality 
on a nonempty open subset of S (because of how x was chosen), con­
tradicting the equation above. Thus v - u ~ 0 on B(a,R). Similarly, 
v - u :2: 0 on B(a,R). _ 

The proof above can be modified to show that if u is continuous 
on 0 and satisfies a local mean-value property with respect to volume 
measure, then u is harmonic on 0; see Exercise 22 of this chapter. 

The hypothesis of continuity is needed in Theorem 1.24. To see this, 
let 0 = R n and define u by 
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{
I if Xn > 0 

u(x) = 0 if Xn = 0 

-1 if Xn < O. 

Then u(x) equals the average of u over every sphere centered at x if 
Xn = 0, and u(x) equals the average of u over all sufficiently small 
spheres centered at x if Xn -/= O. But u is not even continuous, much 
less harmOnic, on R n. 

In the following theorem we replace the continuity assumption with 
the weaker condition of local integrability (a function is locally inte­
grable on 0 if it is Lebesgue integrable on every compact subset of 0). 
However, we now require that the averaging property (with respect to 
volume measure) hold for every radius. 

1.25 Theorem: If u is a locally integrable (unction on 0 such that 

u(a) = udV 1 J 
V(B(a,r») B(a,r) 

whenever B(a, r) cO, then u is harmonic on O. 

PROOF: By Exercise 22 of this chapter, we need only show that u is 
continuous on O. Fix a E 0 and let (a j) be a sequence in 0 converg­
ing to a. Let K be a compact subset of 0 with a in the interior of K. 
Then there exists an r > 0 such that B(aj, r) c K for all sufficiently 
large j .. Because u is integrable on K, the dominated convergence the­
orem shows that 

u(aj) = 1 J udV 
V(B(a, r») B(aj,r) 

= V(B(~, r») fK UXB(aj,r) dV 

- V(B(~, r») fK UXB(a,r) dV = u(a) 

(as usual, XE denotes the function that is 1 on E and 0 off E). Thus u 
is continuous on 0, as desired. • 
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We saw in the section before last that harmonic functions are in­
finitely differentiable. A much stronger property will be established in 
this section-harmonic functions are real analytic. Roughly speaking, 
a function is real analytic if it is locally expressible as a power series in 
the coordinate variables Xl, XZ, ... , Xn of Rn. 

To make this more precise, we need to discuss what is meant by a 
series of complex numbers of the form I Ca, where the summation is 
over all multi-indices a. (The full range of multi-indices will always be 
intended in a series unless indicated otherwise.) The problem is that 
there is no natural ordering of the set of all multi-indices when n > 1. 
However, suppose we know that I Ca is absolutely convergent, i.e., that 

sup I leal < 00, 

aEF 

where the supremum is taken over all finite subsets F of multi-indices. 
All orderings a(l), a(Z}, ... of multi-indices then yield the same value 
for I.J=l CaUl; hence we may unambiguously write I Ca for this value. 
We will only be concerned with such absolutely convergent series. 

The following notation will be convenient when dealing with multi­
ple power series: for X E Rn and a = (al, az, ... , an) a multi-index, 
define 

A function f on n is real analytic on n if for every a E n there exist 
complex numbers Ca such that 

for all X in a neighborhood of a, the series converging absolutely in 
this neighborhood. 
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Some basic properties of such series are contained in the next propo­
sition. Here it will be convenient to center the power series at a = 0, 
and to define 

for y ERn; R(y) is the n-dimensional open rectangle centered at 0 
with "corner y". To avoid trivialities we will assume that each compo­
nent of y is nonzero. 

1.26 Theorem: Suppose {clXylX} is a bounded set. Then: 

(a) For every multi-index f3, the series 

converges absolutely on R (y) and uniformly on compact subsets 
of R(y). 

(b) The function j defined by j(x) = LCIXX IX for x E R(y) is in­
finitely differentiable on R (y). Moreover, 

Dfij(x) = I Dfi(clXxlX ) 
IX 

for all x E R(y) and for every multi-index f3. Furthermore, 
CIX = DCX f (0) / ex! for every multi-index ex. 

REMARKS: 1. To say the preceding series converges uniformly on 
a set means that every ordering of the series converges uniformly on 
this set in the usual sense. 

2. The theorem shows that every derivative of a real-analytic func­
tion is real analytic, and that if L alXx cx = L blXx lX for all x in a neigh­
borhood of 0, then a lX = blX for all ex. 

PROOF OF THEOREM 1.26: We first observe that on the rectangle 
R ( (1, I, ... , 1) ), we have 

IDf3(XIX) = Dfi[(1- xIl-1(1- X2)-1 ... (1 - Xn)-l] 
IX 

for every multi-index f3, as the reader should verify (start with f3 = 0). 
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Now assume that Icayal :5 M for every lx. If K is a compact subset 
of R(y), then K c R(ty) for some t E (0,1). Thus for every x E K and 
every multi-index lX, 

By the preceding paragraph, 2: t 1 al = (1 - t) -n < 00, establishing the 
absolute and uniform convergence of 2: cC(xa on K. Similar reasoning, 
with a little more bookkeeping, applies to 2: D{3 (caxC(). This completes 
the proof of (a). 

Letting f (x) = 2: caxa for x E R (y), the uniform convergence on 
compact subsets of R(y) of the series 2:D{3(cax a ) for every (3 shows 
that f E COO(R(y)), and that D{3f(x) = 2:D{3(cax a ) in R(y) for ev­
ery {3. The formula for the Taylor coefficients Ca follows from this by 
computing the derivatives of f at O. • 

A word of caution: Theorem 1.26 does not assert that rectangles 
are the natural domains of convergence of multiple power series. For 
example, in two dimensions the domain of convergence of 2:)=1 (X1X2)J 

is {(X1,X2) E R2: IX1X21 < I}. 
The next theorem shows that real-analytic functions enjoy certain 

properties not shared by all C''''-functions. 

1.27 Theorem: Suppose 0 is connected, f is real analytic in 0, and 
f = 0 on a nonempty open subset of O. Then f == 0 in O. 

PROOF: Let w denote the interior of {x EO: f(x) = O}. Then w is 
an open subset of O. If a E 0 is a limit point of w, then all derivatives 
of f vanish at a by continuity, implying that the power series of f at a 
is identically zero; hence a E w. Thus w is closed in O. Because w is 
nonempty by hypothesis, we must have w = 0 by connectivity, giving 
f == 0 in O. • 

1.28 Theorem: If u is harmonic on 0, then u is real analytic in O. 

PROOF: It suffices to show that if u is harmonic on B, then u has a 
power series expansion converging to u in a neighborhood of O. 

The main idea here is the same as in one complex variable-we use 
the Poisson integral representation of u and expand the Poisson kernel 
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in a power series. Unfortunately the details are not as simple as in the 
case of the Cauchy integral formula. 

Suppose that Ixl < ,f2 - 1 and S E S. Then 0 < Ix - slz < 2, and 
thus 

00 

P(x, s) = (1-lxl z)(lx - sIZ)-n/Z = (l-Ixlz) L cm(lxl z - 2x· s)m, 
m=O 

where 2.::=0 cm(t - 1)m is the Taylor series of t-n /Z on the interval 
(0,2), expanded about the midpoint 1. After expanding the terms 
(Ixl z - 2x . s)m and rearranging (permissible, since we have all of the 
absolute convergence one could ask for), the Poisson kernel takes the 
form 

P(x,s) = LxC<qc«s). 
C< 

for x E (,f2 -l)B and S E S, where each qc< is a polynomial. This latter 
series converges uniformly on S for each x E (,f2 - 1) B. 

Thus if u is harmonic on 11, 

u(x) = Is u(s)P(x, s) da-(s) 

= L(J uqc<da-)xC< 
C< s 

for all x E (,f2 - 1 )B. This is the desired expansion of u near O. • 

Unfortunately, the multiple power series at 0 of a function har­
monic on B need not converge in all of B. For example, the function 
u (z) = 1/ (1 - z) is holomorphic (hence harmonic) on the open unit 
disk of the complex plane. Writing z = x + i Y = (x, y) E RZ, we have 

co 00 m 

u(z) = L (x + iy)m = L L (7)x j (iy)m-j 

m=O m=Oj=O 

for z E Bz. As a multiple power series, the last sum above converges 
absolutely if and only if Ixl + Iyl < 1, and hence does not converge in 
all of Bz. The reader should perhaps take a moment to meditate on the 
difference between the "real-analytic" and "holomorphic" power series 
ofu. 
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As mentioned earlier, the real analyticity of harmonic functions al­
lows us to prove a local maximum principle. 

1.29 local Maximum Principle: Suppose 0 is connected, u is real 
valued and harmonic on 0, and u has a local maximum in O. Then u 
is constant. 

PROOF: If u has a local maximum at a E 0, then there exists a 
ball B(a, r) c 0 such that u ~ u(a) in B(a, r). By Theorem 1.8, u is 
constant on B(a, r). Because u is real analytic on 0, u == u(a) in 0 by 
Theorem 1.27. • 

Knowing that harmonic functions locally have power series expan­
sions enables us to express them locally as sums of homogeneous har­
monic polynomials. This has many interesting consequences, as we will 
see later. In the remainder of this section we develop a few basic re­
sults, starting with a brief discussion of homogeneous polynomials. 

A polynomial is by definition a finite linear combination of mono­
mials xc.x. A polynomial p of the form 

p(x) = L cc.xxc.x 
ic.xi;m 

is said to be homogeneous of degree m; here we allow m to be any 
nonnegative integer. Equivalently, a polynomial p is homogeneous of 
degree m if 

for all t E R and all x ERn. This last formulation shows that a homo­
geneous polynomial is determined by its restriction to 5: if p and q are 
homogeneous of degree m and p = q on 5, then p = q on R n. (This 
is not true of polynomials in general; for example, 1 - \X\2 == 0 on 5.) 
Note also that if p is a homogeneous polynomial of degree m, then so 
is poT for every linear map T from R n to R n. 

It is often useful to express functions as infinite sums of homo­
geneous polynomials. Here is a simple uniqueness result for such 
sums. 
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1.30 Proposition: Let r > o. If Pm and qm are homogeneous poly­
nomials of degree m, m = 0, I, ... , and if 

00 00 

2.: Pm(x) = 2.: qm(x) 
m=O m=O 

for all x E r B (both series converging pointwise in r B), then Pm = qm 
for every m. 

PROOF: Fix ( E S. Since the two series above converge and are equal 
at each point in rB, we have 

00 00 

m=O m=O 

for all t E (-r, r). By the uniqueness of coefficients of power series in 
one variable, Pm«() = qm«() for every m. This is true for every (E 5, 
and thus Pm = qm on S for all m. By the preceding remarks, Pm = qm 
on R n for every m. _ 

Suppose now that u is harmoniC near O. Letting 

() '" DIXu(O) IX 
Pm X = L... I X, 

IIXI=m lX. 

we see from Theorem 1.28 that 

00 

u(X) = 2.: Pm(x) 
m=O 

for x near O. Because each Pm is homogeneous of degree m, the latter 
series is called the homogeneous expansion of u at o. Remarkably, the 
harmonicity of u implies that each Pm is harmonic. To see this, observe 
that 6u = I6pm = 0 near 0, and that each 6pm is homogeneous of 
degree m - 2 for m :::: 2 (and is 0 for m < 2). From 1.30 we conclude 
6Pm =0 for every m. We have thus represented u near 0 as an infinite 
sum of homogeneous harmonic polynomials. 

Translating this local result from 0 to any other point in the domain 
of u, we have the following theorem. 
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1.31 Theorem: Suppose u is harmonic on 0 and a E O. Then there 
exist harmonic homogeneous polynomials Pm of degree m such that 

1.32 
00 

u(x) = I Pm(X - a) 
m=O 

for all x near a, the series converging absolutely and uniformly near a. 

Homogeneous expansions are better behaved than multiple power 
series. As we will see later (5.34), if u is harmonic on 0 and R(a, r) cO, 
then the homogeneous expansion 1.32 is valid for all x E R(a, r). 
This is reminiscent of the standard power series result for holomor­
phic functions of one complex variable. Indeed, if u is holomorphic on 
o C R2 = C, then by the uniqueness of homogeneous expansions, 1.32 
is precisely the holomorphic power series of u on R(a, r). 

Origin of th£ 'Term "J-{armonic" 

The word "harmonic" is commonly used to describe a quality of 
sound. Harmonic functions derive their name from a roundabout con­
nection they have with one source of sound-a vibrating string. 

Physicists label the movement of a point on a vibrating string "har­
monic motion". Such motion may be described using sine and cosine 
functions, and in this context the sine and cosine functions are some­
times called harmonics. In classical Fourier analysis, functions on the 
unit circle are expanded in terms of sines and cosines. Analogous ex­
pansions exist on the sphere in Rn , n > 2, in terms of homogeneous 
harmonic polynomials (see Chapter 5). Because these polynomials play 
the same role on the sphere that the harmonics sine and cosine play on 
the circle, they are called spherical harmonics. The term "spherical har­
monic" was apparently first used in this context by William Thomson 
(Lord Kelvin) and Peter Tait (see [18], AppendLx B). By the early 1900s, 
the word "harmonic" was applied not only to homogeneous polynomi­
als with zero Laplacian, but to any solution of Laplace's equation. 
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'Exercises 
1. Show that if u and v are real-valued harmonic functions, then 

uv is harmonic if and only if V'u . V'v == O. 

2. Suppose n is connected and u is a real-valued harmonic function 
on n such that u 2 is harmonic. Prove that u is constant. Is this 
still true without the hypothesis that u is real valued? 

3. Show that ~(Ixlt) = t(t + n - 2)lxl t- 2. 

4. Laplacian in polar coordinates: Suppose u is a twice continuously 
differentiable function of two real variables. Define a function U 
by U(r, e) = u(r cos e, r sin e). Show that 

1 a (au) 1 a2u 
~u = r ar r ar + r2 ae2 . 

5. Laplacian in spherical coordinates: Suppose u is a twice continu­
ously differentiable function of three real variables. Define U by 
U(p, e, cp) = u(p sin cp cos e, p sin cp sin e, p cos cp). Show that 

~u = ~~( zau) + 1 a (Sin au) + 1 azu. 
p2 ap p ap p2 sincpacp CPacp p2 sin2cpae2 

6. Suppose 9 is a real-valued function in c2 (Rn) and f E C2(R). 
Prove that 

~(j 0 g) (x) = fIt (g(x») 1 V' g(x) 12 + f' (g(x) )~g(x). 

7. Show that if u is a positive function in C2 (0) and t is a constant, 
then 

8. Show that if u, v are functions in C2 (0) with u positive, then 

~(UV) = vuv-l~U + uV(logu)~v + v(v - 1)uv - 21V'uI 2 

+ u V (logu)21V'vI2 + 2uv - 10 + vlogu)V'u, V'v. 
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9. Suppose A is an m-by-n matrix of real numbers. Think of each 
x E Rn as a column vector, so that Ax is then a column vector 
in Rm. Show that 

where IAI~ is the sum of the squares of the entries of A and At 
denotes the transpose of A. 

10. Let u be harmonic on R2. Show that if f is holomorphic or con­
jugate holomorphic on C, then u 0 f is harmonic. 

11. Suppose u is real valued and harmonic on B2. For (x, Y) E Bz, 
define 

V(x, y) = f: (DI u)(x, t) dt - f: (Dzu) (t, 0) dt. 

Show that u + iv is holomorphic on Bz. 

12. Suppose u is a harmonic function on O. Prove that the function 
x ..... x . V'u(x) is harmonic on O. (For a converse to this exercise, 
see Exercise 23 in Chapter 5.) 

13. Let T: Rn - Rn be a linear transformation such that u 0 T is 
harmonic on R n whenever u is harmonic on R n. Prove that T is 
a scalar multiple of an orthogonal transformation. 

14. Suppose 0 is a bounded open subset of Rn with smooth bound­
ary and u is a smooth function on 0 such that Ll(Llu) = 0 on 0 
and u = Dnu = 0 on 00. Prove that u = o. 

15. Suppose that 0 is connected and that u is real valued and har­
monic on D. Show that if u is nonconstant on 0, then u(O) is 
open in R. (Thus u is an open mapping from 0 to R.) 

16. Suppose 0 is bounded and 00 is connected. Show that if u is 
a real-valued continuous function on n that is harmonic on 0, 
then u(O) c u(aO). Is this true for complex-valued u? 

17. A function is called radial if its value at x depends only on 1 x I. 
Prove that a radial harmonic function on B is constant. 
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18. Give another proof that Is P(x, () da«() = 1 for every x E B by 
showing that the function x - Is P (x, () da «() is harmonic and 
radial on B. 

19. Show that P[f 0 T] = P[J] 0 T for every f E C(5) and every 
orthogonal transformation T. 

20.. Find the Poisson kernel for the ball B(a, R). 

21. Use the mean-value property and its converse to give another 
proof that the uniform limit of a sequence of harmonic functions 
is harmonic. 

22. Suppose u is a continuous function on n, and that for each x E n 
there is a sequence of positive numbers rj - 0 such that 

u(x) = udV 1 f 
V(B(x, rj)) B(x,Yj) 

for each j. Prove that u is harmonic on n. 

23. One-Radius Theorem: Suppose u is continuous on B and that for 
every x E B, there exists a positive number r(x) ~ 1 - Ixl such 
that 

u(x) = Is u(x + r(x)() da«(). 

Prove that u is harmonic on B. 

24. Show that the one-radius theorem fails if the assumption "u is 
continuous on B" is relaxed to "u is continuous on B". (Hint sug­
gested by Walter Rudin: When n = 2, set u(x) = am + bm log Ixl 
on the annulus {1- 2- m ~ Ixl ~ 1- 2- m - 1 }, where the con­
stants am, bm are chosen inductively. Proceed analogously when 
n> 2.) 

25. Hopf Lemma: Suppose that u is real valued, nonconstant, and 
harmonic on 13. Show that if u attains its maximum value on 13 
at ( E 5, then there is a positive constant e such that 

u«() - u(r() ~ e(l - r) 

for aU'r E (0,1). Conclude that (Dnu)«() > O. 
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26. Show that the previous exercise can fail if instead of having a 
maximum at S, the restriction uis has only a strict local maxi­
mum at s. (Hint: Take n = 2 and u(x, y) = x 2 - y2 - 3x.) 

27. Prove that a harmonic function on B whose normal derivative 
vanishes identically on S is constant. 

28. Show that the previous result holds if the ball is replaced by a 
bounded smooth domain in R n that has an internally tangent ball 
at each boundary point. 

29. Show that a polynomial p is homogeneous of degree m if and 
only if x . 'Vp = mp. 

30. Prove that if p is a harmonic polynomial on R n that is homoge­
neous of degree m, then p / IxI 2m+n - 2 is harmonic on Rn \ {OJ. 

31. Suppose that I c(Xx(X converges in R (y). Prove that I c(Xx(X is 
real analytic in R (y). 

32. A function u: n - Rm is called real analytic if each component 
of u is real analytic. Prove that the composition of real-analytic 
functions is real analytic. Deduce, as a corollary, that sums, prod­
ucts, and quotients of real-analytic functions are real analytic. 

33. Let m be a positive integer. Characterize all real-analytic func­
tions u on Rn such that u(tx) = tmu(x) for all x ERn and all 
t E R. 

34. Show that the power series expansion of a function harmonic on 
Rn converges everywhere on Rn. 



CHAPTER 2 

'Baumfecf J{armonic 
Junctions 

Liouvi[fe's 'Theorem 

Uouville's Theorem in complex analysis states that a bounded holo­
morphic function on C is constant. A similar result holds for harmonic 
functions on R n. The simple proof given below is taken from Edward 
Nelson's paper [13], which is one of the rare mathematics papers not 
containing a single mathematical symbol. 

2.1 Liouville's Theorem: A bounded harmonic function on Rn is 
constant. 

PROOF: Suppose u is a harmonic function on Rn , bounded by M. 
Let x ERn and let r > O. By the volume version of the mean-value 
property (Theorem 1.6), 

IU(X)-U(O)I=V(B(~ ))If Udv-f udvl , r B(x,r) B(O,r) 

V(1)r) 
:5M v (B(O,r))' 

where 1)r denotes the symmetric difference of B(x, r) and B(O, r), so 
that 1)r = [B(x, r) u B(O, r)] \ [B(x, r) n B(O, r)]. The last expression 
above tends to 0 as r - 00. Thus u(x) = u(O), and so U is constant. _ 

Uouville's Theorem leads to an easy proof of a uniqueness theorem 
for bounded harmonic functions on open half-spaces. The upper half-

31 
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space H = Hn is the open subset of R n defined by 

H = {x ERn: Xn > a}. 

In this setting we often identify Rn with Rn-l xR, writing a typical point 
Z ERn as z = (x,y), where x E Rn-l and y E R. We also identify oH 
with Rn - 1. 

A harmonic function on a compact set is determined by its restric­
tion to the boundary (this follows from the maximum principle). How­
ever, a harmonic function on a closed half-space is not determined by 
restriction to the boundary. For example, the harmonic function U onH 
defined by u (x, y) = y agrees on the boundary of the half-space with 
the harmonic function O. The next result shows that this behavior can­
not occur if we consider only harmonic functions that are bounded. 

2.2 Corollary: Suppose u is a continuous bounded function on H that 
is harmonic on H. If u = 0 on oH, then u == 0 on H. 

PROOF: For x E Rn-l and y < 0, define u(x,y) = -u(x, -y), 
thereby extending u to a bounded continuous function defined on all 
of R n. Clearly u satisfies the local mean-value property speCified in 
Theorem 1.24, so u is harmonic on Rn. Liouville's Theorem (2.1) now 
shows that u is constant on R n. • 

In Chapter 7 we will study harmonic functions on half-spaces in 
detail. 

Isofated Singufarities 

Everyone knows that an isolated singularity of a bounded holomor­
phic function is removable. We now show that the same is true for 
bounded harmonic functions. 

We call a point a E Q an isolated Singularity of any function u de­
fined on Q \ {a}. When u is harmonic on Q \ {a}, the isolated singularity 
a is said to be removable if u has a harmonic extension to Q. 

2.3 Theorem: An isolated singularity of a bounded harmonic func-
tion is removable. 
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PROOF: It suffices to show that if u is bounded and harmonic on 
13\ {O}, then u has a harmonic extension to B. Without loss of generality, 
we can assume that u is real valued. The only candidate for a harmonic 
extension of u to B is the Poisson integral P[ u Is]. 

Assume first that n > 2. For E > 0, define the harmonic function V E 

on B \ {OJ by 

VE(X) = u(x) - P[uls](x) + E(lxI 2- n - 1). 

Observe that as Ixl - 1, we have vE(x) - 0 (by 1.17), while the bound­
edness of u shows that vE(x) - 00 as x - O. By Corollary 1.10 (with 
"lim sup" replaced by "lim inf") , V E ~ 0 in B \ {OJ. Letting E - 0, we 
conclude that u - P[uls] ~ 0 on B \ {OJ. Replacing u by -u, we also 
have u - P[uls] ::s: 0, giving u = P[ uls] on B \ {OJ. Thus P[uls] is the 
desired harmonic extension of u to B. 

The proof when n = 2 is the same, except that (Ix 12- n - 1) should 
be replaced by log 1/ I x I. • 

Cauchy's 'Estimates 

If f is holomorphic and bounded by M on a disk B(a, r) c C, then 

If(m)(a)1 ::s: m!M 
rm 

for every nonnegative integer m; these are Cauchy's Estimates from 
complex analysis. The next theorem gives the comparable results for 
harmonic functions defined on balls in R n. 

2.4 Cauchy's Estimates: Let IX be a multi-index. Then there is a 
positive constant ex such that 

for all functions u harmonic and bounded by M on B(a, r). 

PROOF: We can assume that a = O. If u is harmonic and bounded 
by Man 13, then by 1.22 we have 
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IDlXu(O) 1 = I Is u(l;)Dap(O, l;) dcr(l;) I 

~ M Is lDap(O, l;)1 dcr(l;) 

= Ca}'I, 

where Ccx = Is IDap(O, l;) 1 dcr(l;). 
If u is harmonic and bounded by M on B(O, r), then applying the 

result in the previous paragraph to the r-dilate Ur shows that 

Replacing r by r - E and letting E decrease to 0, we obtain the same 
conclusion if u is harmonic on the open ball B(O, r) and bounded by 
M there. _ 

Augustin-Louis Cauchy (1789-1857), whose collected works consisting 
of 789 mathematics papers fill 27 volumes, made major contributions 

to the study of harmonic (unctions. 

The following corollary shows that the derivatives of a bounded har­
monic function on n cannot grow too fast near 00. We let d(a, E) 
denote the distance from a point a to a set E. 
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2.S Corollary: Let u be a bounded harmonic function on 0, and let 
IX be a multi-index. Then there is a constant C such that 

for all a E O. 

PROOF: For each a E 0, apply Cauchy's Estimates (Theorem 2.4) 
with r = d(a, (0). • 

Normal J'ami{ies 
In complex analysis the term normal family refers to a collection 

of holomorphic functions with the property that every sequence in the 
collection contains a subsequence converging uniformly on compact 
subsets of the domain. The most useful result in this area (and the 
key tool in most proofs of the Riemann Mapping Theorem) states that 
a collection of holomorphic functions that is uniformly bounded on 
each compact subset of the domain is a normal family. We now prove 
the analogous result for harmonic functions. 

2.6 Theorem: If (um ) is a sequence of harmonic functions on 0 that 
is uniformly bounded on each compact subset of 0, then some subse­
quence of (Um ) converges uniformly on each compact subset of O. 

PROOF: The key to the proof is the following observation: there 
exists a constant C < 00 such that for all U harmOnic and bounded by 
M on any ball B(a, 2r), 

CM 
Iu(x) -u(a)l::; (sup lV'ul)lx-al::; -Ix-al 

B(a,r) r 

for all x E B(a, r). The first inequality is standard from advanced cal­
culus; the second inequality follows from Cauchy's Estimates (2.4). 

Now suppose K c 0 is compact, and letr = d(K, (0) /3. Because 
the set Kzr = {x ERn: d(x, K) ::; 2r} is a compact subset of 0, the 
sequence (urn) is uniformly bounded by some M < 00 on Kzr . Let 
a, x E K and assume I x - a I < r. Then x E B (a, r) and I U m I ::; M on 
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B(a,2r) c K2r for all m, and so we conclude from the first paragraph 
that 

for all m. It follows that the sequence (urn) is equicontinuous on K. 
To finish, choose compact sets 

Kl C K2 C ... cO 

whose interiors cover O. Because (urn) is equicontinuous on Kl, the 
Arzela-Ascoli Theorem ([15], Theorem 11.28) implies (urn) contains a 
subsequence that converges uniformly on Kl. Applying Arzela-Ascoli 
again, there is a subsequence of this subsequence converging uniformly 
on Kz, and so on. If we list these subsequences one after another in 
rows, then the subsequence obtained by traveling down the diagonal 
converges uniformly on each Kj, and hence on each compact subset 
ofO. • 

Note that by Theorem 1.23, the convergent subsequence obtained 
above converges to a harmonic function; furthermore, every partial 
derivative of this subsequence converges uniformly on each compact 
subset of O. 

Theorem 2.6 is often useful in Sil0wing that certain extrema exist. 
For example, if a E 0, then there exists a harmonic function v on 0 
such that Ivl < 1 on 0 and 

lV'v(a)1 = sup{lV'u(a)I :uisharmoniconOand lui < 10nO} . 

.1v1.aximum Principfes 
Corollary 1.10 is the maximum principle in its most general form. 

It states that if u is a real-valued harmonic function on 0 and u s; M 
at the "boundary" of 0, then u s; M on O. The catch is that we need to 
consider 00 as a boundary point. (Again, the function u (x, y) = y on 
H shows why this is necessary.) Often it is possible to ignore the pOint 
at infinity when u is bounded; the next result shows that this is always 
possible in two dimensions. 
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2.7 Theorem: Suppose 0 c R 2 and 0 =1= R 2. If u is a real-valued, 
bounded harmonic (unction on 0 satisfying 

2.8 limsupu(ak) ::;!vI 
k-co 

for every sequence (ak) in 0 converging to a point in a~, then u ::; !vI 
onO. 

PROOF: Because 0 =1= R 2, ao is not empty. Let E > 0, and choose 
a sequence in 0 converging to a point in ao. By hypothesis, u is less 
than !vI + E on the tail end of this sequence. It follows that there is a 
closed ball 13(a, r) cOon which u <!vI + E. 

Define 0' = 0 \ 13(a, r), and set 

I z-a I v(z) = log -r-

for z E 0'. Then v is positive and harmonic on 0', and v (z) - 00 as 
z - 00 within 0' . 

For t > 0, we now define the harmonic function Wt on 0' by 

Wt = U - !vI - E - tv. 

By 2.8 and the preceding remarks, limsuPk_co Wdak) < 0 for every se­
quence (ak) in 0' converging to a point in a~', while the boundedness 
of u on 0' shows that Wdak) - -00 for every sequence (ak) converg­
ing to 00 within 0'. By Corollary 1.10, Wt -< 0 on 0'. 

We now let t - 0 to obtain u ::; !vI + E on 0'. Because u < !vI + E 

on 13(a, r), we have u ::; !vI + E on all of O. Finally, since E is arbitrary, 
u ::; !vI on 0, as desired. _ 

The higher-dimensional analogue of Theorem 2.7 fails. For an ex­
ample, let 0 = {x ERn: Ixl > I} and set u(x) = 1 - IxI 2- n . If n > 2, 
then u is a bounded harmonic function on 0 that vanishes on ao but 
is not identically 0 on o. (In fact, u is never zero on 0.) 

The proof of Theorem 2.7 carries over to higher dimensions except 
for one key point. Specifically, when n = 2, there exists a positive 
harmonic function v on Rn \ 13 such that v(z) - 00 as z - 00. When 
n> 2, there exists no such v; in fact, every positive harmonic function 
on Rn \ 13 has a finite limit at 00 when n > 2 (Theorem 4.10). 
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The following maximum principle is nevertheless valid in all dimen­
sions. Recall that Hn denotes the upper half-space of Rn. 

2.9 Theorem: Suppose n C Hn. If u is a real-valued, bounded 
harmonic function on n satisfying 

limsupu(ak) ::;; M 
k-co 

for every sequence (ak) in n converging to a point in an, then u ::;; M 
onn. 

PROOF: For (x, y) E n, define 

n-l 

v(x,Y) = I log(xk 2 + (y + 1)2). 
k=l 

Then v is positive and harmonic on n, and v(z) - 00 as z - 00 within 
Hn. Having obtained v, we can use the ideas in the proof of Theorem 2.7 
to finish the proof. The details are even easier here and we leave them 
to the reader. _ 

Limits .Afong 1\ays 
We now apply some of the preceding results to study the boundary 

behavior of harmonic functions defined in the upper half-plane Hz. We 
will need the notion of a nontangentiallimit, which for later purposes 
we define for functions on half-spaces of arbitrary dimension. 

Given a E Rn - 1 and lX > 0, set 

[C((a) = {(x,y) E Hn: Ix - al < lXy}. 

Geometrically, [C((a) is a cone with vertex a and axis of symmetry par­
allel to the y-axis. 

We have [C((a) C [Jj(a) if lX < /3, and Hn is the union of the sets 
[C((a) as lX ranges over (0,00). 

A function u defined on Hn is said to have a nontangentiallimit,L at 
a E Rn-l if for every lX > 0, u(z) - L as z - a within Cx(a). The term 
"nontangential" is used because no curve in [C((a) that approaches a 
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R 

a 

The cone ra(a). 

can be tangent to aHn . Exercise 17 of this chapter shows that a bounded 
harmonic function on Hn can have a nontangentiallimit at a point of 
aHn even though the ordinary limit does not exist at that point. 

The following theorem for bounded harmonic functions on H2 as­
serts that a non tangential limit can be deduced from a limit along a 
certain one-dimensional set. 

2.10 Theorem: Suppose that u is bounded and harmonic on H2. If 
o < e1 < e2 < IT and 

then u has nontangentiallimit L at O. 

PROOF: We may assume L = O. 
If the theorem is false, then for some ()( > 0, u(z) fails to have 

limit 0 as z - 0 within ra(O). This means that there exists an E > 0 and 
a sequence (Zj) tending to 0 within ra(O) such that 

2.11 

for all j. 
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Define K = [-lX, lX] x {l}, and write Zj = rjwj, where Wj E K and 
rj > O. Because Z j ~ 0, we have Yj ~ O. 

Setting Uj(z) = u(rjz), note that (Uj) is a uniformly bounded se­
quence of harmonic functions on Hz. By Theorem 2.6, there exists a 
subsequence of (u j) that converges uniformly on compact subsets of 
Hz to a bounded harmonic function v on Hz; for simplicity we denote 
this subsequence by (u j) as well. 

Examining the limit function v, we see that 

v(re iB1 ) = ~ uj(re i1h ) = ~im u(rjre iB1 ) = 0 
J-OO J-CO 

for all r > O. Similarly, v(re iB2 ) = 0 for all r > O. The reader may now 
be tempted to apply Theorem 2.7 to the region between the two rays; 
unfortunately we do not know that v(z) ~ 0 as Z ~ 0 between the given 
rays. We avoid this problem by observing that the function Z ..... v(e Z ) 

is bounded and harmonic on the strip 12 ~ {z = x + iy : 91 < Y < 92}, 
and that v(e Z ) extends continuously to 12 with v(e Z ) = 0 on on. By 
Theorem 2.7, v(eZ ) == 0 on 12, and thus v == 0 on H2. 

The sequence (u j) therefore converges to 0 uniformly on compact 
subsets of H2. In particular, Uj ~ 0 uniformly on K. It follows that 
Uj(Wj) = u(Zj) ~ 0 as j - 00, contradicting 2.11. • 

Does a limit along one ray suffice to give a nontangentiallimitin 
Theorem 2.10? To see that the answer is no, consider the bounded 
harmonic function U on Hz defined by u(re iB ) = 9 for 9 E (0, IT). This 
~unction has a limit along each ray in H2 emanating from the origin, but 
different rays yield different limits. (One ray will suffice for a bounded 
holomorphic function; see Exercise 22 of this chapter.) 

13ound£a :}{armonic Junctions an tlie 13a{{ 

In the last chapter we defined the Poisson integral P[f] assuming 
that f is continuous on S. We can easily enlarge the class of functions 
f for which P[f] is defined. For example, if f is a bounded (Borel) 
measurable function on 5, then 

P[f](X) = Lf(()P(X.()dO"(() 
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defines a bounded harmonic function on B; we leave the verification to 
the reader. 

Allowing bounded measurable boundary data gives us many more 
examples of bounded harmonic functions on B than could otherwise 
be obtained. For example, in Chapter 6 we \-\-ill see that the extremal 
function in the Schwarz Lemma for harmonic functions is the Poisson 
integral of a bounded discontinuous function on S. In that chapter we 
will also prove a fundamental result (Theorem 6.13): given a bounded 
harmonic function u on B, there exists a bounded measurable f on S 
such that u = P[f] on B. 
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'Exercises 
1. Give an example of a bounded harmonic function on B that is not 

uniformly continuous on B. 

2. (a) Suppose u is a harmonic function on B \ {OJ such that 

Ixl n - 2u(x) - 0 as x - O. 

Prove that u has a removable singularity at o. 
(b) Suppose u is a harmonic function on B2 \ {OJ such that 

u(x)/log Ixl - 0 as x - O. 

Prove that u has a removable singularity at O. 

3. Suppose that u is harmonic on Rn and that u(x, 0) = 0 for all 
x ERn-I. Prove that u(x, -y) = -u(x,y) for all (x,y) ERn. 

4. Under what circumstances can a function harmonic on R n vanish 
on the union of two hyperplanes? 

5. Use Cauchy's Estimates (Theorem 2.4) to give another proof of 
Liouville's Theorem (Theorem 2.1). 

6. Let K be a compact subset of 0 and let a be a multi-index. Show 
that there is a constant C = C(Q, K, a) such that 

ID(Xu(a)1 ::0::; Csup{lu(x)l: x E O} 

for every function u harmoniC on 0 and every a E K. 

7. Suppose u is harmonic on Rn and lu(x) I ::0::; A(l + IxI P ) for all 
x ERn, where A is a constant and p ~ o. Prove that u is a 
polynomial of degree at most p. 

8. Prove if (urn) is a pointwise convergent sequence of harmonic 
functions on 0 that is uniformly bounded on each compact sub­
set of 0, then (um ) converges uniformly on each compact subset 
ofO. 

9. Show that if u is the pointwise limit of a sequence of harmonic 
functions on 0, then u is harmonic on a dense open subset of O. 
(Hint: Baire's Theorem.) 
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10. Let u be a bounded harmonic function on B. Prove that 

sup(l -lxl)lV'u(x)1 < 00. 

XEB 

11. The set of harmonic functions u on B satisfying the inequality 
in Exercise lOis called the harmonic Bloch space. Prove the har­
monic Bloch space is a Banach space under the norm defined by 

Ilull = sup(l -lxl)lV'u(x)1 + lu(O)I. 
XEB 

12. Give an example of an unbounded harmonic function in the har­
monic Bloch space. 

13. Prove that if u is in the harmonic Bloch space and ex is a multi­
index with I exl > 0, then 

sup(l-lxl)i a ilDa u(x)1 < 00. 

XEB 

14. For a E B, let Ba denote the ball centered a with radius l-~ai. 
Prove that if u is harmonic on B, then u is in the harmonic Bloch 
space if and only if 

sup V(lB ) f lu - u(a) I dV < 00. 
aEB a Ba 

15. Let 11 denote the set of harmonic functions u on B such that 
u(O) = 0 and 

sup(l- Ixl)lV'u(x)1 ::::; 1. 
XEB 

Prove that there exists a function v E 11 such that 

f Iv(S" /2) I du(S") = sup f lu(S" /2) I du(S"). 
s UE'll S 

16. Suppose 0 C Hn and that u is a continuous bounded function 
on 0 that is harmonic on o. Prove that if u = 0 on a~, then 
u == 0 on O. 
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17. Let 1 (z) = e- i / z. Show that 1 is a bounded holomorphic function 
on Hz, that 1 has a nontangentiallimit at the origin, but that 1 
does not have a limit along some curve in Hz terminating at the 
origin. 

18. Suppose ° < lh < lh < IT and L1,Lz E C. Show that there is a 
bounded harmonic function u on Hz such that u(reitik) - Lk as 
r - ° for k = 1, 2. 

19. Suppose u is a bounded harmonic function on Hz with limits at ° 
along two distinct rays. Specifically, suppose 

for k = 1,2, where ° < 01 < Oz < IT. Show that limr-o u(re iti ) 
exists for every 0 E (0, rr), and evaluate this limit as a function 
of O. 

20. Define l(z) = eilogz, where logz denotes the principal-valued 
logarithm. Show that 1 is a bounded holomorphic function on 
Hz whose real and imaginary parts fail to have a limit along every 
ray in Hz emanating from the origin. 

21. Let 00 E (0, IT). Prove that there exists a bounded harmonic 
function u on Hz such that limr-o u(reiti ) exists if and only if 
o = 00. (Hint: Do this first for eo = IT/2 by letting u(z) = 
Reeilogz and considering u(x,y) - u(-x,y).) 

22. Let 1 be a bounded holomorphic function on Hz, and suppose 
limr _ol(re iti ) exists for some 0 E (0, IT). Prove that 1 has a 
non tangential limit at 0. 

23. Let u be a bounded harmonic function on H3 that has the same 
limit along two distinct rays in H3 emanating from 0. Need u 
have a non tangential limit at 07 

24. Prove that when n > 2 there does not exist a harmonic function 
von Rn \ 13 such that v(z) - 00 as z - 00. 

25. Let K denote a compact line segment contained in B3. Show that 
every bounded harmonic function on B3 \ K extends to be har­
monic onB3. 



CHAPTER 3 

'Positive J-{armonic :functions 

This chapter focuses on the special properties of positive harmonic 
functions. We will describe the positive harmonic functions defined 
on all of Rn (Liouville's Theorem), show that positive harmonic func­
tions cannot oscillate wildly (Harnack's Inequality), and characterize 
the behavior of positive harmonic functions near isolated singularities 
(Bacher's Theorem). 

Liouvi[(e's 'Theorem 

In Chapter 2 we proved that a bounded harmonic function on R n is 
constant. We now improve that result. In Chapter 9 we ""ill improve 
even the result below (see 9.10). 

3.1 Liouville's Theorem for Positive Harmonic Functions: A posi-
tive harmonic function on R n is constant. 

PROOF: The proof is a bit more delicate than that given for bounded 
harmonic functions. Let u be a positive harmonic function defined 
on Rn. Fix x ERn. Let r > lxi, and let 'Dr denote the symmetric 
difference of the balls B(x, r) and B(O, r). The volume version of the 
mean-value property (1.6) shows that 

U(X)-U(O)=V(B(~ »)[f Udv-f udV]. , r B(x,r) B(O,r) 

45 
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Because the integrals of u over B(x, r) n B(O, r) cancel (see 3.2), we 
have 

lu(x) -u(o)1 ~ V(B(~,r») Ivy udV 

< udV 1 f 
- V(B(O, r») B(O,r+lxl)\B(O,r-lxl) 

= udV- udV 1 [f f ] 
V(B(O, r») B(O,r+lxl) B(O,r-lxl) 

= u(O) (r + Ixl)n - (r - Ixl)n. 
rn 

Note that the positivity of u was used in the first inequality. 
Now letting r - 00, we see that u(x) = u(O), proving that u is 

constant. -

-r r+lxl 

3.2 The symmetric difference 'Dr (shaded) of B(x, r) and B(O, r). 

Liouville's Theorem for positive harmonic functions leads to an easy 
proof that a positive harmonic function on R2 \ {O} is constant. 

3.3 Corollary: A positive harmoniC (unction on R2 \ {O} is constant. 

PROOF: If u is positive and harmonic on R 2 \ {O}, then the function 
z 0-+ u(eZ ) is positive and harmonic on R2 (= C) and hence (by 3.1) is 
constant. This proves that u is constant. _ 
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The higher-dimensional analogue of Corollary 3.3 fails; for example, 
the function \x\2-n is positive and harmonic on Rn \ {O} when n > 2. 
We will classify the positive harmonic functions on Rn \ {O} for n > 2 
after the proof of Bacher's Theorem; see Corollary 3.14. 

J{arnacks Inequality ancf 
J{arnacks Princiyfe 

Positive harmonic functions cannot oscillate too much on a com­
pact set Ken if n is connected; the precise statement is Harnack's 
Inequality (3.6). We first consider the important special case where n 
is the open unit ball. 

3.4 Harnack's Inequality for the Ball: If u is positive and harmonic 
on B, then 

1 - \x\ 1 + \x\ 
(1 + \xj)n-l u(O) ~ u(x) ~ (1- \x\)n-l u(O) 

for all x E B. 

PROOF: If u is positive and harmonic on the closed unit ball Ii, 
then 

for all x E B. If u is positive and harmonic on B, apply the estimate 
above to the dilates U r and take the limit as r - 1. This gives us 
the second inequality of the theorem. The first inequality is proved 
similarly. -
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Define oc(t) = (1- t) / (1 + t)n-I and /3(t) = (1 + t) / (1- t)n-I. After a 
translation and a dilation, 3.4 tells us that if u is positive and harmonic 
on B(a, R), and Ix - al ~ r < R, then 

3.5 oc(r/R)u(a) ~ u(x) ~ /3(r/R)u(a). 

3.6 Harnack's Inequality: Suppose that 0 is connected and that K 
is a compact subset of O. Then there is a constant C E (1, 00) such that 

for all points x and y in K and all positive harmonic functions u on O. 

PROOF: We will prove that there is a constant C E (1, 00) such that 
u(y)/u(x) ~ C for all x,y E K and all positive harmonic functions u 
on O. Because x and y play symmetric roles, the other inequality will 
also hold. 

For (x,Y) EO x 0, define 

s(x,y) = sup{u(y)/u(x) : u is positive and harmonic on O}. 

We first show that 5 < 00 on 0 x O. 
Fix x E 0, and define 

E = {y EO: 5 (x, y) < oo}. 

Because x E E, E is not empty. If y E E, we may choose r > 0 such 
that B(y, 2r) c O. By 3.5, u ~ /3(1/2)u(y) on B(y, r) for all positive 
harmonic functions u on O. We then have B(y, r) c E, proving that E 
is open. If Z E 0 is a limit point of E, there exists an r > 0 and ayE E 
such that Z E B(y, r) c B(y, 2r) cO. By 3.5, u(z) ~ /3(1/2)u(y) for 
all positive harmonic functions u on O. We then have Z E E, proving 
that E is closed. The connectivity of 0 therefore shows that E = O. 

We now know that 5 is finite at every point of 0 x O. Let K c 0 be 
compact, and let (a, b) E K x K. Then by 3.5, 

u(y) < /3(1/2)u(b) < /3(1/2) s(a,b) 
u(x) - oc(1/2)u(a) - oc(1/2) 
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for all (x, y) in a neighborhood of (a, b), and for all positive harmonic 
functions U on O. Because K x K is covered by finitely many such 
neighborhoods,s is bounded above on K x K, as desired. _ 

Note that the constant C in 3.6 may depend upon 0 and K, but that 
C is independent of x, y, and u. 

An intuitive way to remember Harnack's Inequality is shown in 3.7. 
Here we have covered K with a finite chain of overlapping balls (possi­
ble, since 0 is connected); to compare the values of a positive harmonic 
function at any two points in K, we can think of a finite chain of inequal­
ities of the kind expressed in 3.5. 

n 

3.7 K covered by overlapping balls. 

Harnack's Inequality leads to an important convergence theorem for 
harmonic functions known as Harnack's Principle. Consider a mono­
tone sequence of continuous functions on o. The pointwise limit of 
such a sequence need not behave well-it could be infinite at some 
points and finite at other pOints. Even if it is finite everywhere, there 
is no reason to expect that our sequence converges uniformly on every 
compact subset of o. Harnack's Principle shows that none of this bad 
behavior can occur for a monotone sequence of harmonic functions. 

3.8 Harnack's Principle: Suppose 0 is connected and (um ) is a point­
wise increasing sequence of harmonic (unctions on o. Then either (um ) 

converges uniformly on compact subsets of 0 to a (unction harmonic 
on 0 or um(x) - 00 for every x EO. 
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PROOF: Replacing U m by U m - Ul + I, we can assume that each U m 
is positive on n. Set u(x) = limm - oo um(x) for each x E n. 

First suppose U is finite everywhere on n. Let K be a compact subset 
of n. Fix x E K. Harnack's Inequality (3.6) shows there is a constant 
C E (1,00) such that 

for all Y E K, whenever m > k. This implies (um ) is uniformly Cauchy 
on K, and thus Um - U uniformly on K, as desired. Theorem 1.23 
shows that the limit function U is harmonic on n. 

Now suppose U (x) = 00 for some x E n. Let YEn. Then Harnack's 
Inequality (3.6), applied to the compact set K = {x, Y}, shows that there 
is a constant C E (1,00) such that um(x) :5 Cum(y) for every m. 
Because um(x) - 00, we also have um(Y) - 00, and so u(y) = 00. This 
implies that U is identically 00 on n. • 

Iso Cate a SinguCarities 
In this section we prove Bocher's Theorem, which characterizes the 

behavior of positive harmonic functions in the neighborhood of an iso­
lated singularity. Recall that when n = 2, the function 10g(1/lxi) is 
positive and harmonic on B \ {O}, while when n > 2, the function Ix 12- n 

is positive and harmonic on B \ {OJ. Roughly speaking, Bocher's Theo­
rem says that near an isolated singularity, a positive harmonic function 
must behave like one of these functions. 

3.9 Bocher's Theorem: If U is positive and harmonic on B \ {O}, then 
there is a (unction v harmonic on B and a constant b ~ 0 such that 

{
V(X)+blOg(l/lxi) ifn=2 

u(x) = 
v(x) + blxl 2- n if n > 2 

for all x E B \ {O}. 

The next three lemmas 'Will be used in the proof of Bocher's The­
orem (our proof of Bocher's Theorem is taken from [3], which also 
contains references to several other proofs of this result). The first 
lemma describes the spherical averages of a function harmonic on a 
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punctured ball. Given a continuous function u defined on B \ {O}, we 
define A [ u] (x) to be the average of u over the sphere of radius I x I: 

A[u](x) = Is u(lxls) da-(s) 

for x E B \ {O}. 

3.10 Lemma: Suppose u is harmonic on B \ {O}. Then there exist 
constants a, bEe such that 

{
a+. blog(l/Ixl) ifn=2 

A[u](x)= a+blxI2-n ifn>2 

for all x E B \ {OJ. In particular, A[u] is harmonic on B \ {OJ. 

PROOF: Let ds denote surface-area measure (unnormalized). Define 
jon(O,l)by 

j(r) = Is u(rs) ds(s); 

so A[u](x) is a constant multiple of j(lxl). Because u is continuously 
differentiable on B \ {O}, we can compute f' by differentiating under 
the integral sign, obtaining 

f' (r) = f s· (V'u) (rs) ds(s) = r-n fT' (V'u) (T) dS(T). 
5 rS 

Suppose 0 < rO < rl < 1 and 0 = {x E Rn : ro < Ixl < rd. The 
divergence theorem, applied to V'u, shows that 

f n· V'uds = f LludV; 
an n 

here n denotes the outward unit normal on n. Because u is harmOnic 
on 0, the right side of this equation is O. Note also that 00 = roS u rlS 
and that n = -T Iro on roS and n = T /rl on r1S. Thus the last equation 
above implies that 

~ J T' (V'U)(T) dS(T) = ~ fT' (V'U)(T) dS(T), 
ro roS rl rlS 

which means f' (r) is a constant multiple of r 1- n (for 0 < r < 1). This 
proves j (r) is of the desired form. _ 
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An immediate consequence of the lemma above is that every radial 
harmonic function on B \ {O} is of the form given by the conclusion 
of 3.10 (a function is radial if its value at x depends only on Ixl). Proof: 
if u is radial, then u = A[ u). (For another proof, see Exercise 13 of this 
chapter.) 

The next lemma is a version of Harnack's Inequality that allows x 
and y to range over a noncompact set provided Ixl = Iyl. 

3.11 Lemma: There exists a constant c > 0 such that for every positive 
harmonic function u on B \ {O} I 

cu(y) < u(x) 

whenever 0 < Ixl = Iyl :::; 1/2. 

PROOF: Harnack's Inequality (3.6), with n = B \ {O} and K = (1/2)5, 
shows there is a constant c > 0 such that for all positive harmonic u 
on B \ {O}, we have cu(y) < u(x) whenever Ixl = Iyl = 1/2. Applying 
this result to the dilates u r , 0 < r < 1, gives the desired conclusion. -

The following result characterizes the positive harmonic functions 
on B \ {O} that are identically zero on S. This is really the heart of our 
proof of Bacher's Theorem. 

3.12 Lemma: Suppose u is positive and harmonic on B \ {O} and 
u(x) - 0 as Ixl - 1. Then there exists a constant b > 0 such that 

u x = {blOg(1/I X I) ifn=2 
() blxl 2- n if n > 2 

for all x E B \ {O}. 

PROOF: By Lemma 3.10, we need only show that u = A [u] on B \ {O}. 
Suppose we could show that u ~ A [ u] on B \ {O}. Then if there were a 
point x E B \ {a} such that u(x) > A[u](x), we would have 

A[u](x) > A[A[u]](x) = A[u](x), 

a contradiction. Thus we need only prove that u ~ A[u] on B \ {O}' 
which we now do. 
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Let c be the constant of Lemma 3.11. By Lemma 3.10, u - cA[u] is 
harmonic on B \ {OJ. By Lemma 3.11, u(x) - cA[u](x) > 0 whenever 
0< Ixl 5 1/2, and clearly u(x) - cA[u](x) - 0 as Ixl - 1 by our 
hypothesis on u. The minimum principle for harmonic functions (l.1O) 
thus shows that u - cA[u] > 0 on B \ {OJ. 

We wish to iterate this result. For this purpose, define 

g(t) = c + t(l - c) 

for t E [0,1]. Suppose we know that 

3.13 w = u - tA[u] > 0 

on B \ {OJ for some t E [0,1]. Since w(x) - 0 as Ixl - 1, the preceding 
argument may be applied to w, yielding 

w - cA[w] = u - g(t)A[u] > 0 

on B \ {O}. This process may be continued. Letting g(m) denote the m th 

iterate of g, we see that 3.13 implies 

u - g(m) (t)A[u] > 0 

on B \ {OJ for m = 1,2, .... But g(m) (t) - 1 as m - 00 for every 
t E [0,1], so that 3.13 holding for some t E [0,1] implies u - A[u] ~ 0 
onB\ {OJ. Since 3.13 obviously holds when t = 0, we have u-A[u] ~ 0 
on B \ {OJ; as desired. _ 

Now we are ready to prove Bacher's Theorem (3.9). 

PROOF OF BOCHER'S THEOREM: We first assume that n > 2 and that 
u is positive and harmonic on 13 \ {OJ. Define a harmonic function w 
on B \ {OJ by 

w(x) = u(x) - P[uls ](x) + Ixl 2- n - 1. 

As Ixl - 1, we have w(x) - 0 (by l.17), and as Ixl - 0, we have 
w(x) - 00 (because u is positive and P[uls] is bounded on B \ {O}). 
By the minimum principle (l.10), we conclude that w is positive on 
B \ {OJ. 
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Lemma 3.12, applied to w, shows that u(x) = v(x) + blxl 2- n on 
B \ {OJ for some v harmonic on B and some constant b. Now letting 
x - 0, we see that the positivity of u implies that b ~ 0; we have thus 
proved Bocher's Theorem in the case where u is positive and harmonic 
on Ii \ {OJ. 

For the general positive harmonic u on B \ {O}, we may apply the 
result above to the dilate u(x/2), so that 

u(x/2) = v(x) + blxl 2- n 

on B \ {OJ for some v harmonic on B and some constant b ~ O. This 
implies that 

on (1/2)B \ {O}' which shows that u(x) - b2 2- n lxI 2- n extends harmon­
ically to O/2)B, and hence to B. Thus the proof of Bocher's Theorem 
is complete in the case where n > 2. The proof of the n = 2 case is the 
same, except that 10gO/lxl) should be replaced by IxI 2- n . • 

In Chapter 9, in the section B6cher's Theorem Revisted, we will see 
another approach to this result. 

We conclude this section by characterizing the positive harmonic 
functions on Rn \ {OJ for n > 2. (Recall that by 3.3, a positive harmonic 
function on R 2 \ {O} is constant.) 

3.14 Corollary: Suppose n > 2. If u is positive and harmonic on 
Rn \ {O}, then there exist constants a, b ~ 0 such that 

u(x) = a + b/xI 2- n 

for all x ERn \ {OJ. 

PROOF: Suppose u is positive and harmonic on Rn \ {OJ. Then on 
B \ {OJ we may write 

u(x) = v(x) + blxl 2- n 

as in Bocher's Theorem (3.9). The function v extends harmonically to 
all of Rn by setting v(x) = u(x) - blxl 2 - n for x E Rn \ B. Because 
liminfx - oo v(x) ~ 0, the minimum principle (1.10) implies that v is 
nonnegative on Rn. By 3.1, v is constant, completing the proof. _ 
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Positive J{armonic Junctions an the 13a[[ 

At the end of Chapter 2 we briefly discussed how it is possible to 
define P[f] when f is not continuous, and indicated that it was neces­
sary to do so in order to characterize the bounded harmonic functions 
on B. A similar idea works for positive harmonic functions on B-given 
a positive finite Borel measure 11 on 5, we can define 

for x E B. The function so defined is positive and harmonic on B, 
as the reader can check by differentiating under the integral sign or 
by using the converse to the mean-value property. In Chapter 6 we 
will show (see 6.15) that every positive harmonic function on B is the 
Poisson integral of a measure as above. Many important consequences 
follow from this characterization, among them the result (see 6.44) 
that every positive harmonic function on B has boundary values almost 
everywhere on 5, in a sense to be made precise in Chapter 6. 
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Txercises 
1. Use 3.5 to give another proof of liouville's Theorem for positive 

harmonic functions (3.1). 

2. Can equality hold in either of the inequalities in Harnack's In­
equality for the ball (3.4)7 

3. Show that for every multi-index oc there exists a constant Ca such 
that 

a Cau(O) 
ID u(x) I $ (1 _ Ixl)lal+n-l 

for every x E B and every positive harmonic u on B. Use this to 
give another proof of liouville's Theorem for positive harmonic 
functions. 

4. Let 0 be an open square in R 2• Prove that there exists a positive 
harmonic function u on 0 such that u(z)d(z, (0) is unbounded 
onO. 

5. Define 5 on 0 x 0 by 

s(x,Y) = sup{u(Y)/u(x) : u is positive and harmonic on a}. 

Prove that 5 is continuous on 0 x O. 

6. Suppose u is positive and harmonic on the upper half-space H. 
Prove that if z E H and u is bounded on the ray {r z : r > O}, 
then u is bounded in the cone ra(O) for every oc > 0. 

7. Suppose u is positive and harmonic on the upper half-space H, 
z E H, and u(rz) - L as r - 0, where L E [0,00]. -Show that 
if L = 00, then u has nontangentiallimit 00 at 0. Prove a similar 
result for the case L = 0. Show that u need not have a nontan­
gentiallimit at ° if L E (0, 00 ). 

8. Prove the analogue of Theorem 2.10 for positive harmonic func­
tions on H2 with a common limit along two distinct rays. 

9. Suppose u is positive and harmonic on H. Show that u has non­
tangential limit L at ° if and only if limr_o u(rz) = L for every 
ZEH. 
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10. Show that if pOintwise divergence to 00 occurs in Harnack's Prin­
ciple (3.8), then the divergence is "uniform" on compact subsets 
ofO. 

11. Prove that a pOintwise convergent sequence of positive harmonic 
functions on 0 converges uniformly on compact subsets of o. 

12. Suppose 0 is connected and (urn) is a sequence of positive har­
monic functions on o. Show that at least one of the follOwing 
statements is true: 

(a) (urn) contains a subsequence diverging to 00 pointwise on 0; 

(b) (urn) contains a subsequence converging uniformly on com­
pact subsets of o. 

13. Suppose that U is a radial function in C2 (B \ {O}). Let 9 be the 
function on (0,1) defined by g(lxl) = u(x). Compute LlU in 
terms of 9 and its derivatives. Use this to prove that a radial 
harmonic function on B \ {O} must be of the form given by the 
conclusion of 3.10. 

14. Prove that the constant b and the function v in the conclusion 
of Bacher's Theorem (3.9) are unique. 

15. Suppose n > 2. Assume a E 0 and u is harmonic on 0 \ {a}. 
Show that if u is positive on some punctured ball centered at a, 
then there exists a nonnegative constant b and a harmonic func­
tion v on 0 such that u(x) = blx - al 2- n + v(x) on 0 \ {a}. 

16. (a) Suppose n > 2. Let u be harmonic on B \ {OJ. Show that if 

liminfu(x) Ixl n - 3 > -00, 
x-a 

then there exists a function v harmonic on B and a constant 
b such that u(x) = blxl 2- n + v(x) on B. 

(b) Formulate and prove a similar result for n = 2. 

17. Let A = {aI, a2, ... } denote a discrete subset ofRn. Characterize 
the positive harmonic functions on R n \ A. 
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TI1e XeEvin 'Transform 

The Kelvin transform performs a role in harmoniC function the­
ory analogous to that played by the transformation j(z) >-+ j(1/z) 
in holomorphic function theory. For example, it transforms a function 
harmonic inside the unit sphere into a function harmonic outside the 
sphere. In this chapter, we introduce the Kelvin transform and use it 
to solve the Dirichlet problem for the exterior of the unit sphere and to 
obtain a reflection principle for harmonic functions. Later, we will use 
the Kelvin transform in the study of isolated singularities of harmonic 
functions. 

Inversion in tlie l1nit Syliere 
When studying harmonic functions on unbounded open sets, we will 

often find it convenient to append the point 00 to Rn. We topologize 
Rn u {oo} in the natural way: a set w c Rn u {oo} is open if it is an 
open subset of R n in the ordinary sense or if w = {oo} u (R n \ E), 
where E is a compact subset of R n. The resulting topological space 
is compact and is called the one-point compacti{ication of Rn. Via the 
usual stereographic projection, R n u {oo} is homeomorphic to the unit 
sphere in Rn+l. 

The map x >--+ x*, where 

{
XIIXI2 ifx!O,oo 

x* = ° if x = 00 

00 ifx=O 

59 



60 CHAPTER 4. The Kelvin Transform 

is called the inversion of R n u {oo} relative to the unit sphere. Note 
that if x rt {a, oo}, then x* lies on the ray from the origin determined 
by x, with Ix*1 = l/lxl. The reader should verify that the inversion 
map is continuous, is its own inverse, is the identity on 5, and takes a 
neighborhood of 00 onto a neighborhood of 0. 

For any set E c Rn u {oo}, we define E* = {x*: x E E}. 
The inversion map preserves the family of spheres and hyperplanes 

in R n (if we adopt the convention that the point 00 belongs to every 
hyperplane). To see this, observe that a set E eRn is a nondegenerate 
sphere or hyperplane if and only if 

4.1 E = {x E Rn : alxl2 + b . x + e = A}, 

where bERn and a,e are real numbers satisfying Ibl 2 - 4ae > 0. We 
easily see that if E has the form 4.1, then E* has the same form (with 
the roles of a and e reversed); inversion therefore preserves the family 
of spheres and hyperplanes, as claimed. 

Recall that a C1-map '¥: n - Rn is said to be conformal if it pre­
serves angles between intersecting curves; this happens if and only if 
the Jacobian '¥' (x) is a scalar multiple of an orthogonal transformation 
for each x E n. 

4.2 Proposition: The inversion x ..... x* is conformal on Rn \ {a}. 

PROOF: Set '¥(x) = x* = x/lxI2. Fix Y ERn \ {a}. Choose an or­
thogonal transformation T of R n such that Ty = (I y 1,0, ... , 0). Clearly 

'¥ = T- 1 o,¥ 0 T, 

so that '¥' (y) = T- 1 0 '¥' (T(y)) 0 T. 

Thus to complete the proof we need only show that '¥' (T (y) ), which 
equals ,¥'(lyl,O, ... ,O), is a scalar mUltiple of an orthogonal transfor­
mation. However, a simple calculation, which we leave to the reader, 
shows that the matrix of '¥' (Iy 1,0, ... ,0) is diagonal, with -1/ Iy 12 in 
the first position and 1/1 Y 12 in the other diagonal positions. Hence the 
proof of the proposition is complete. _ 
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Motivation and Vifinition 
Suppose E is a compact subset of Rn. If u is harmonic on Rn \ E, we 

naturally regard 00 as an isolated singularity of u. When should we say 
that u has a removable singularity at oo? There is an obvious answer 
when n = 2, because here the inversion x ..... x* pres~rves harmonic 
functions: if 0 c R 2 \ {O} and u is harmonic on 0, then the function 
x ..... u(x*) is harmonic on 0*. (Note that on R2 = C, inversion is the 
map z ..... 1/ z.) When n = 2, then, we say that u is harmonic at 00 

provided the function x ..... u(x*) has a removable singularity at o. 
Unfortunately, the inversion map does not preserve harmonic func­

tions when n > 2 (consider, for example, u(x) = IxI 2- n). Nevertheless, 
there is a transformation involving the inversion that does preserve har­
monic functions for all n ~ 2; it is called the Kelvin transformation in 
honor of Lord Kelvin who discovered it in the 1840s [17]. 

We can guess what this transformation is by applying the symme­
try lemma to the Poisson kernel. Fixing ( E S, recall that P ( . , () is 
harmonic on Rn \ {Q (1.18). By the symmetry lemma (1.13), we have 

Ix - (I = I lxi-IX - Ixl( I 

for all x ERn \ {O}. Applying this to P(x, () = (l-lxI2)/lx - (In, we 
easily compute that 

4.3 P(x, () = -lxI 2- n p(x*,l,;) 

for all x ERn \ {O, (}. The significant fact here is that the right side 
of 4.3 is a harmonic function of x on Rn \ {O, (}. Except for the minus 
sign, the definition of the Kelvin transformation is staring us in the 
face. 

Thus, given a function u defined on a set E eRn \ {O}, we define 
the function K [ u] on E * by 

K[u](x) = IxI2- nu(x*); 

the function K[u] is called the Kelvin transform of u. Note that when 
n = 2, K[u](x) = u(x*). 

We easily see that K[K[ u]] = u for all functions u as above; in other 
words, the Kelvin transform is its own inverse. 
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The transform K is also linear-if u, v are functions on E and b, C 

are constants, then K[bu + cv] = bK[u] + cK[v] on E*. 
The Kelvin transform preserves uniform convergence on compact 

sets. Specifically, suppose E is a compact subset of Rn \ to} and (um ) 

is a sequence of functions on E. Then (um ) converges uniformly on E 
if and only if (K[ um]) converges uniformly on E*. 

Tfie XeEvin Transform 'Preserves 
J{armonic Junctions 

In this section we will see that the Kelvin transform of every har­
monic function is harmonic. We begin with a simple computation. 

4.4 Lemma: If p is a polynomial on Rn homogeneous of degree m, 
then 

PROOF: Let t E R. Use the product rule for Laplacians (1.19) along 
with Exercise 3 in Chapter 1 to get 

If P is homogeneous of degree m, then x . 'Vp = mp (see Exercise 29 
in Chapter 1), so the equation above reduces to 

Taking t = 2 - n - 2m now gives the conclusion of the lemma. _ 

If P is homogeneous of degree m, then clearly K[p] = IxI 2- n - 2m p. 

This observation is used twice in the proof of the next proposition, 
which shows that the Kelvin transform comes close to commuting with 
the Laplacian. 

4.6 Proposition: If u is a C2 function on an open subset of Rn \ to}, 
then 

~(K[u]) = K[lxI4~U]. 
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PROOF: First suppose that p is a polynomial on R n homogeneous of 
degree m. Then 

~(K[p]) = ~(lxI2-n-2mp) 

= IxI2-n-2m~p 

= K[lxI4~p], 

where the second equality follows from Lemma 4.4 and the third equal­
ity holds because Ixl4~p is homogeneous of degree m + 2. 

The paragraph above shows that the proposition holds for poly­
nomials (by linearity). Because polynomials are locally dense in the 
C2-norm, the result holds for arbitrary C2 functions u, as desired. _ 

We come now to the the crucial property of the Kelvin transform. 

4.7 Theorem: If Q c Rn \ {O}, then U is harmonic on Q if and only 
if K[u] is harmonic on Q*. 

PROOF: From the previous proposition, we see that ~(K[u]) == 0 if 
and only if ~u == O. _ 

J-{armonicity at Infinity 

Because the Kelvin transform preserves harmonicity, we make the 
following definition: if E c Rn is compact and u is harmonic on R n \ E, 

then u is harmonic at 00 provided K[u] has a removable singularity at 
the origin. Notice that in the n = 2 case this definition is consistent 
with our previous discussion. 

If u is harmonic at 00, then K[u] has a finite limit L at 0; in other 
words 

From this we see that if u is harmonic at 00, thenlirnx _ oo u(x) = 0 when 
n > 2, while limx _ oo u(x) = L when n = 2. This observation leads to 
characterizations of harmonicity at 00. We begin with the n > 2 case. 
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4.8 Theorem: Assume n > 2. Suppose u is harmonic on Rn \ E, 
where E eRn is compact. Then u is harmonic at 00 if and only if 
limx _ oo u(x) = O. 

PROOF: We have just noted above that if u is harmonic at 00, then 
limx - oo u(x) = O. 

To prove the other direction, suppose that lirnx - oo u(x) = O. Then 
Ixl n - 2K[u](x) - 0 as x - O. By Exercise 2(a) of Chapter 2, K[u] has 
a removable singularity at 0, which means u is harmonic at 00. • 

Now we turn to the characterization of harmonicity at 00 in the n = 2 
case. 

4.9 Theorem: Suppose u is harmonic on R2 \ E, where E c R2 is 
compact. Then the following are equivalent: 

(a) u is harmonic at 00; 

(b) limx _ oo u(x) = L for some complex number L; 

(c) u(x)/log Ixl - 0 as x - 00; 

(d) u is bounded on a deleted neighborhood of 00. 

PROOF: We have already seen that (a) implies (b). 

That (b) implies (c) is trivial. 
Suppose now that (c) holds. ThenK[u](x)/loglxl- Oasx - O. By 

Exercise 2(b) of Chapter 2, K[ u] has a removable singularity at O. Thus 
u is harmonic at 00, which implies (d). 

Finally, suppose that (d) holds, so that u is bounded on a deleted 
neighborhood'of 00. Then K[u](x) = u(x*) is bounded on a deleted 
neighborhood of O. Thus by Theorem 2.3, (a) holds, completing the 
~~ . 

Boundedness near 00 is thus equivalent to harmonicity at 00 when 
n = 2, but not when n > 2. We now take up the question of bounded­
ness near 00 in higher dimensions. 
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4.10 Theorem: Suppose n > 2 and u is harmonic and real valued on 
Rn \ E, where E is compact. Then the following are equivalent: 

(a) u is bounded in a deleted neighborhood of 00; 

(b) u is bounded above or below in a deleted neighborhood of 00; 

(c) u - c is harmonic at 00 for some constant c; 

(d) u has a finite limit at 00. 

PROOF: The implications (a) ~ (b) and (d) ~ (a) are trivial. If (c) holds 
then u has limit c at 00 by Theorem 4.8; hence (c) ~ (d). We complete 
the proof by showing (b) ~ (c). 

Without loss of generality, we assume that u is positive in a deleted 
neighborhood of 00. Thus the Kelvin transform K[u] is positive in a 
deleted neighborhood of O. By Bacher's Theorem (3.9) there is a con­
stant c such that K[u](x) - clxl 2- n extends harmonically across O. 
Applying the Kelvin transform shows that u - c is harmonic at 00. • 

Conditions (a), (c), and (d) of Theorem 4.10 are equivalent without 
the hypothesis that u is real valued. 

Note that Theorem 4.10 provides a new proof of Liouville's Theorem 
for positive harmonic functions (3.1). Specifically, if n > 2 and u is 
positive and harmonic on R n, then by Theorem 4.10 u must have finite 
limit c at 00. By the maximum/minimum principle, u == c. This new 
proof of Liouville's Theorem amounts to the observation that-via the 
Kelvin transform-Bacher's Theorem implies Liouville's Theorem, at 
least for n >.2. 

The implication also holds when n = 2. If u is positive and harmonic 
on R 2 , then by Bacher's Theorem (3.9) there is a constant b ~ 0 such 
that v (x) = K [u](x) - b log III x I has harmonic extension across O. 
Thus v is an entire harmonic function. If b > 0, then we would have 
limx - oo v(x) = 00, which contradicts the minimum principle. Thus 
b = 0 and limx _ oo v(x) = u(O), from which it follows that v == u(O). 

Hence u == u (0), as desired. 
In Chapter 9, we will see that Liouville's Theorem implies Bacher's 

Theorem when n > 2, and we will present generalized versions of these 
theorems. 
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The Exterior 'Diricfifet Probfem 

In Chapter I, we solved the Dirichlet problem for the interior of 
the unit sphere S-given any f E C(S), there is a unique function U 

harmonic on B and continuous on Ii such that uis = f. To solve the 
corresponding problem for the exterior of the unit sphere, we define 
the exterior Poisson kernel, denoted Pe, by setting 

Ixl2 - 1 
Pe(x, () = Ix _ (In 

for Ixl > 1 and ( E S. Given f E C(S), we define the exterior Poisson 
integral Pe [f] by 

for Ixl > 1. 

4.11 Theorem: Suppose f E C(S). Then there is a unique {unction u 
harmonic on B* and continuous on Ii* such that uis = f. Moreover, 
u = Pe[f] on B* \ {oo}. 

REMARK: For n > 2, we are not asserting that there exists a unique 
continuous u on B*, with u harmonic on {x E Rn : Ixl > I}, such 
that uls = f. For example, the functions 1 - Ixl 2- n and 0, which agree 
on S, are both harmonic on Rn \ {OJ. The uniqueness assertion in the 
theorem above comes from the requirement that u be harmonic at 00 

(recall that 00 E B*). 

PROOF OF THEOREM 4.11: Let v E C(Ii) denote the solution of the 
Dirichlet problem for B \Vith boundary data f on S, so that v Is = f and 

v(x) = Lf«()P(x, () da«() 

for x E B. The function u = K[v] is then harmonic on B* (if we set 
u(oo) = lirnx - oo K[v](x», u is continuous on Ii*, and uis = f. 

We have 
u(x) = Lf«()lxI2-np(x*, () da«() 

for Ixl > 1. By 4.3, this gives u = Pe[f] on B* \ {oo}, as desired. 
The uniqueness of u follows from the maximum prinCiple. _ 
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Symmetry and the 
Schwarz Reffection Princiyfe 

Given a hyperplane E, we say that a pair of points are symmetric 
about E if E is the perpendicular bisector of the line segment joining 
these points. For each x ERn, there exists a unique XE ERn such that 
x and XE are symmetric about E; we call XE the reflection of x in E. 
Clearly (XE) E = x for every x ERn. 

We say 0 is symmetriC about the hyperplane E if OE = 0, where 
OE = {XE : x EO}. 

E 

o is symmetric about E. 

If T is a translation, dilation, or rotation, then T preserves symmetry 
about hyperplanes; in other words, if T is any of these maps and E is 
a hyperplane, then T(x) and T(XE) are symmetric about T(E) for all 
.x ERn. 

Given a hyperplane E = {x ERn: b . x = c}, where b is a nonzero 
vector in Rn and c is a real number, we set E+ = {x ERn: b . x > c}; 
geometrically, P is an open half-space with ap = E. 
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We now come to the Schwarz reflection principle for hyperplanes; 
the reader who has done Exercise 3 in Chapter 2 can probably guess 
the proof. 

4.12 Theorem: Suppose 0 is symmetric about a hyperplane E. If u is 
continuous on 0 n E+ , u is harmonic on 0 n E+, and u = 0 on 0 n E, 
then u extends harmonically to O. 

PROOF: We may assume that E = {(x,y) ERn: y = O} and that 
E+ = {(x,y) ERn: y > OJ. The function 

v(x, y) = { u (X, y) if (X, y) E 0 and y ~ 0 

-u(x, -y) if (x,Y) EO and y < 0 

is continuous on 0 and satisfies the mean-value property. Hence, by 
Theorem 1.24, v is a harmonic extension of u to all of O. • 

We now extend the notions of symmetry and reflection to spheres. 
If E = S, the unit sphere, then inversion is the natural choice for the 
reflection map x - XE. SO here we set XE = x*. More generally, if 
E = aB(a, r), we define 

4.13 

and we say that x and XE are symmetric about E. Note that the center 
of E and the point at infinity are symmetric about E. We say that 0 is 
symmetric about the sphere E if OE = 0, where OE = {XE : x EO}; 
see 4.14. 

We remark in passing that symmetry about a hyperplane can be 
viewed as a limiting case of symmetry about a sphere; see Exercise 10 
of this chapter. (We adopt the convention that OOE = 00 when E is a 
hyperplane.) 

Translations, dilations, and rotations obviously preserve symmetry 
about spheres. The inversion map also preserves symmetry-about 
spheres as well as hyperplanes-although this is far from obvious. Let 
us look at a special case we need below. Suppose E is the sphere with 
center (0, ... ,0,1) and radius 1. Then E contains the origin, so that E* 
is a hyperplane; in fact, 

E* = {(x,y) ERn: y = 1/2} u {oo}, 
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• 

E 

4.14 Q is symmetric about E. 

as the reader can easily check. Assume for the moment that n = 2; 
here we identify R 2 with C, so that inversion is the map z ..... 1/ z. Given 
Z E C \ {O}, we need to show that z* and (ZE)* are symmetric about E*. 
A moment's reflection shows that to do this we need only verify that 
the conjugate of z* - i/2 equals (ZE) * - i/2; this bit of algebra we leave 
to the reader. To go from R2 to Rn with n > 2, observe that inversion 
preserves every linear subspace of R n. Given Z ERn \ {O}, then, we look 
at the two-dimensional plane determined by 0, z, and ZE. Because the 
center of E is on the line determined by Z and ZE, this plane contains the 
(0, y)-axis. We can thus view this plane as C, with (0, ... ,0,1) playing 
the role of i. The proof for R 2 therefore shows that z* and (ZE) * ar.e 
symmetric about E* in Rn. 

We can now prove the Schwarz reflection principle for regions sym­
metric about spheres. 

4.15 Theorem: Suppose Q is a region symmetric about aRea, r). If u 
is continuous on Q n R(a, r), u is harmonic on Q n R(a, r), and u = ° 
on Q n aRea, r), then u extends harmonically to Q. 

PROOF: We may assume a = (0, ... ,0,1) and r = 1; we are then 
dealing with the sphere E discussed above. Because Q is symmetric 
about E, Q* is symmetric about the hyperplane E*, as we just showed. 
Our hypotheses on u now show that the Schwarz reflection principle 
for hyperplanes (4.12) can be applied to the Kelvin transform of u. 
Accordingly, K[u] extends to a function v harmonic on 0*. Because 
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the Kelvin transform is its own inverse, K[v] extends u harmonically 
to n. • 

Let us explicitly identify the harmonic reflection of u across a sphere 
in the concrete case of S, the unit sphere. 

4.16 Theorem: Suppose n is connected and symmetric about S. If u 
is continuous on n n B, u is harmonic on n n B, and u = ° on n n S, 
then the function v defined on n by 

v(x) = _ { 
u(x) if x E n n B 
-K[u](x) if x E n n (Rn \ B) 

is the unique harmonic extension of u to n. 

PROOF: Set a = (0, ... ,0,1) and define w(x) = v(x-a); the domain 
of the function w is then n + a, which is symmetric about the sphere 
E of the previous proof. We will be done' if we can show that K[w] has 
the appropriate reflection property about the hyperplane E*. What we 
need to show, then, is that 

K[w]((x + a)*) = -K[w]((x* + a)*) 

for all x E n. This amounts to showing that 

Ix + al n - 2v(x) = -Ix* + al n - 2v(x*) 

for all x En. By Exercise 1 of this chapter, Ix*+al/lx+al = lxi-I. We 
therefore need only show that v = - K[ v] on n. But this last identity 
follows easily from the definition of v. • 
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Txercis es 
1. show that if ( E S and x ERn \ to}, then 

I * 7'1 = Ix + (I 
x +." Ixl' 

2. Show that at x ERn \ {O}, the determinant of the Jacobian of the 
inversion map equals -1/ I X 12n. 

3. Let 1 be a function of one complex variable that is holomorphic 
on the complement of some disk. We say that 1 is holomorphic 
at 00 provided l(l/z) has a removable singularity at O. Show 
that the following are equivalent: 

(a) 1 is holomorphic at 00; 

(b) 1 is bounded on a deleted neighborhood of 00; 

(c) lirnz_ooj(z)/z=O. 

4. Assume w eRn u {oo} is open. Show that u is harmonic on w if 
and only if K [u] is harmonic on w * . 

5. (a) Show that if n > 2, then the only harmonic function on 
Rn u {oo} is identically zero. 

(b) Prove that all harmonic functions on R 2 U {oo} are constant. 

6. Suppose that u is harmonic and positive on R2 \ E, where E is 
compact. Characterize the behavior of u near 00. 

7. Prove that the solution to the exterior Dirichlet problem in The­
orem 4.11 is unique. 

8. Suppose that 1 is continuous on aB(a, r) and that u solves the 
Dirichlet problem for B(a, r) with boundary data I. What is the 
solution (expressed in terms of u) of the Dirichlet problem for 
(Rn u {oo}) \ B(a, r) with boundary data I? 

9. Let E denote the hyperplane {x ERn: b . x = e}, where b is a 
nonzero vector in Rn and e is a real number. For x ERn, show 
that the reflection XE is given by the formula 

2(x . b) - e)b 
XE = x - Ibl 2 
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10. Let E denote the hyperplane Rn - 1 x {OJ. Fix a point z = (O,y) 

in the upper half-space. Show that the reflections of z about 
spheres ofradius R centered at (O,R) converge to ZE = (0, -y) 

asR - co. 

11. Suppose E is a sphere of radius r centered at a, with 0 rt E. 
Show that the radius of E* is r / I r2 - lal 2 1 and the center of E* 
is a/(laI 2 - r2). 

12. Show that the inversion map preserves symmetry about spheres 
and hyperplanes. In other words, if E is a sphere or hyperplane, 
then x* and (XE)* are symmetric about E* for all x. 

13. Let E be a compact subset of S with nonempty interior relative 
to S. Prove that there exists a nonconstant bounded harmonic 
function on Rn \ E. 
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3farmanic 'Pofynomiafs 

Recall the Dirichlet problem for the ball in Rn: given IE C(S), find 
U E C(B) such that U is harmonic on Band uls = I. We know from 
Chapter 1 that 

f 1 - Ixl2 
u(x) = P[f](x) = sI(() Ix _ (In dues) 

for x E B. To prove that P[f] is harmonic on B, we computed its Lapla­
cian by differentiating under the integral sign in the equation above and 
noting that for each fixed ( E S, the Poisson kernel (1 - I X 12) / I x - (I n 

is harmonic as a function of x. 
Suppose now that I is a polynomial on Rn restricted to S. For fixed 

( E S, the Poisson kernel (1 - I X 12 ) / I x - ( I n is not a polynomial in x, 
so nothing in the formula above suggests that P[f] should be a poly­
nomial. Thus our first result in this chapter should be somewhat of 
a surprise: P[f] is indeed a polynomial, and its degree is at most the 
degree of f. 

Further indications of the importance of harmonic polynomials will 
come when we prove that every polynomial on R n can be written as 
the sum of a harmonic polynomial and a polynomial multiple of Ix12. 
This result ""ill then be used to decompose the Hilbert space L 2 (S) into 
a direct sum of spaces of harmonic polynomials. As we will see, this 
decomposition is the higher-dimensional analogue of the Fourier series 
decomposition of a function on the unit circle in R 2• 

Our theory will lead to a fast algorithm for computing the Poisson 
integral of any polynomial. The algorithm involves differentiation, but 
not integration! 

73 
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Next, we will use the Kelvin transform to find an explicit basis for 
the space of harmonic polynomials that are homogeneous of degree m. 
The chapter concludes with a study of zonal harmonics, which are used 
to decompose the Poisson kernel and to show that the homogeneous 
expansion of a harmonic function has nice convergence properties. 

Po{ynomia{ 'Decomyositions 

We begin with a crucial theorem showing that the Poisson integral of 
a polynomial is a polynomial of a special form. The proof uses, without 
comment, the result that the Poisson integral gives the unique solution 
to the Dirichlet problem. 

Note that the theorem below implies that if p is a polynomial, then 
the degree of P[p Is] is less than or equal to the degree of p. This 
inequality can be strict; for example, if p (x) = I X 12, then P [p Is] == 1. 

5.1 Theorem: If p is a polynomial on R n of degree m, then 

P[plsl = (1 - Ixl2)q + P 

for some polynomial q of degree at most m - 2. 

PROOF: Let p be a polynomial on R n of degree m. If m = 0 or m = 1, 
then p is harmonic and hence P[p Is] = p, so the desired result follows 
by taking q = O. Thus we can assume that m ~ 2. 

For any choice of q, the function (1- Ixl2)q + p equals p on S. Thus 
to solve the Dirichlet problem for B with boundary data pis, we need 
only find q such that (1 - Ixlz)q + p is harmonic. In other words, to 
prove the theorem we need only show that there exists a polynomial q 
of degree at most m - 2 such that 

5.2 

To do this, let W denote the vector space of all polynomials on Rn of 
degree at most m - 2, and define a linear map T: W - W by 
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If T(q) = 0, then (1 - Ixl2)q is a harmonic function; this harmonic 
function equals 0 on 5, and hence by the maximum principle equals 0 
on B; this forces q to be O. Thus T is injective. 

We now use the magic of linear algebra (an injective linear map from 
a finite-dimensional vector space to itself is also surjective) to conclude 
that T is surjective. Hence there exists a polynomial q of degree at most 
m - 2 such that 5.2 holds, and we are done. _ 

The following corollary will be a key tool in our proof of the direct­
sum decomposition of the polynomials (Proposition 5.5). Here "poly­
nomial" means a polynomial on Rn , and "nonzero" means not identi­
cally O. 

5.3 Corollary: No nonzero polynomial multiple of IxI2 is harmonic. 

PROOF: Suppose p is a nonzero polynomial on Rn of degree m 
and IxI2p is harmonic. Because pis = (lxl~p)ls, the Poisson integral 
P[pls] must equal the harmonic polynomiallxl 2p, which has degree 
m + 2. This contradicts the previous theorem, which implies that the 
degree of P[p Is] is at most m. _ 

Every polynomial p on Rn with degree m can be uniquely written 
in the form p = I}:o Pj, where each Pj is a homogeneous polynomial 
on R n of degree j. We call p j the homogeneous part of p of degree j. 
Note that 6.p = I}:o 6.Pj, and thus p is harmonic if and only if each 
p j is harmonic (because a polynomial is identically 0 if and only if each 
homogeneous part of it is identically 0). 

In the next section we will be working in L 2 (5). Two distinct poly­
nomials of the same degree can have equal restrictions to 5, but two 
homogeneous polynomials of the same degree that agree on 5 must 
agree everywhere. Thus we will find it convenient to restrict atten­
tion to homogeneous polynomials. Let us denote by Pm(Rn ) the com­
plex vector space of all homogeneous polynomials on R n of degree m. 
Let Jim (RIt) denote the subspace of Pm (Rn ) consisting of all homoge­
neous harmonic polynomials on Rn of degree m. For example, 

is an element of Jis (R 3 ), as the reader can verify; we have used (x, y, z) 
in place of (Xl, XZ, X3) to denote a typical point in R 3 . 
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In the following proposition. we write Pm(Rn ) as the algebraic di­
rect sum of the two subspaces J{m(Rn ) and IxI 2Pm _2(Rn ). meaning 
that every element of Pm(Rn ) can be uniquely written as the sum of 
an element of J{m(Rn) and an element of IxI 2Pm _2(Rn ). In the next 
section we will see that this is an orthogonal decomposition when we 
restrict all functions to S and use the usual inner product that comes 
from surface-area measure. 

5.5 Proposition: If m ~ 2, then 

PROOF: Let P E Pm(Rn). Then 

P = P[pisl + Ixl2q - q 

for some polynomial q of degree at most m - 2 (by Theorem 5.1). Take 
the homogeneous part of degree m of both sides of the equation above, 
getting 

5.6 

where Pm is the homogeneous part of degree m of the harmonic func­
tion P[pisl (and hence Pm E J{m(Rn » and qm-2 is the homogeneous 
part of degree m - 2 o~ q (and hence qm-2 E Pm _2(Rn ». Thus every 
element of Pm (Rn ) can be written as the sum of an element of J{m (Rn) 

and an element of IxI 2Pm _2(Rn ). 

To show that this decomposition is unique. suppose that 

The left side of the equation above is harmonic. and the right side is a 
polynomial multiple of Ix12. Thus Corollary 5.3 implies that Pm = Pm 
and qm-2 = Qm-2. as desired. _ 
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The map P ...... Pm, where P E Pm(Rn ) and Pm E J{m(Rn) are as 
in 5.6, is called the canonical projection of Pm(Rn) onto J{m (Rn). Later 
we \-\-ill find a formula for this projection (see Theorem 5.18). 

We now come to the main result of this section. As usual, [t] denotes 
the largest integer less than or equal to t. Thus in the theorem below, 
the last index m - 2k equals 0 or 1, depending upon whether m is even 
or odd. 

5.7 Theorem: Everyp E Pm(Rn ) can be uniquely written in the form 

where k = [~] and each Pj E J{j(Rn). 

PROOF: The desired result obviously holds when m = 0 or m = 1, 
because Pm(Rn ) == J{m(Rn ) in those cases. Thus we can assume that 
m?: 2. 

Suppose that P E Pm(Rn ). By the previous proposition, P can be 
uniquely written in the form 

where Pm E J{m(Rn) and q E P m_2(Rn). By induction, we can as­
sume that the theorem holds when m is replaced by m - 2. Taking 
the unique decomposition for q given by the theorem and plugging it 
into the equation above gives the desired decomposition of p. This 
decomposition is unique because Pm is uniquely determined and the 
decomposition of q is also uniquely determined. _ 

If P E Pm(Rn) and Pm! Pm-2,·.·, Pm-2k are as in the theorem above, 
then the solution to the Dirichlet problem for B with boundary data pis 
is 

Pm + Pm-2 + ... + Pm-2k· 

To see this, observe that the function above is harmonic and that it 
agrees \-\-ith P on S. Later in this chapter we will develop an algorithm 
for computing Pm, Pm-2,.·., Pm-2k (and thus P[pls]) from p. 

We finish this section by computing dimJ{m(Rn ), the dimension 
(over C) of the vector space J{m(Rn ). Because J{o(Rn ) is the space of 
constant functions, dim J{o (R n) = 1. Because J{dR n) is the space of 
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linear functions on R n, we have dim J-f1 (R n) = n. The next proposition 
takes care of higher values of m. 

5.8 Proposition: If m ~ 2, then 

dimJ-fm(Rn ) = (n + m -1) _ (n + m - 3). 
n-1 n-1 

PROOF: We begin by finding dimPm(Rn). Because the monomials 
{XIX: lal = m} formabasisofPm(Rn),dimPm(Rn) equals the number 
of distinct multi-indices a = (al,.oo,an ) with lal = m. Adding 1 to 
each aj, we see that dimPm(Rn) equals the number of multi-indices 
a = (al,oo.,an ), with each aj > 0, such that lal = n + m. Now 
consider removing n -1 integers from the interval (0, n + m) c R. This 
partitions (0, n + m) into n disjoint open intervals. Letting aI, ... , an 
denote the lengths of these intervals, taken in order, we have 

n 

I aj = n + m. 
j=l 

Each choice of n - 1 integers from (0, n + m) thus generates a multi­
index a with I a I = n + m, and each multi-index of degree n + m arises 
from one and only one such choice. The number of such choices is, of 
course, (n~~~l). Thus 

From Proposition 5.5 we have 

Combining the last two equations gives the desired result. 

Syfierica{ J-{armonic 'Decomyosition 
ofL2(5) 

• 

In Proposition 5.5, we showed that the space of homogeneous poly­
nomials of degree m decomposes as the direct sum of the space of 
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harmonic homogeneous polynomials of degree m and Ixl2 times the 
homogeneous polynomials of degree m - 2. Now we turn to ideas re­
volving around orthogonal direct sums, which means that we need to 
introduce an inner product. 

Because a homogeneous function on Rn is determined by its restric­
tion to S, we follow the natural impulse to work in L 2 (S, dO"), which we 
denote Simply by L 2 (S). In other words, L 2 (S) denotes the usual Hilbert 
space of Borel-measurable square-integrable functions on S with inner 
product defined by 

Our main result in this section will be a natural orthogonal decompo­
sition of L 2 (S). 

Homogeneous polynOmials on Rn of different degrees, when re­
stricted to S, are not necessarily orthogonal in L 2 (S). For example, 
X1 2 and X1 4 are not orthogonal in this space because their product is 
positive everywhere on S. However, the next proposition shows that 
if the homogeneous polynomial of higher degree is harmoniC, then we 
indeed have orthogonality (because Jim (R n) is closed under complex 
conjugation). 

5.9 Proposition: If p, q are polynomials on Rn and q is harmonic 
and homogeneous with degree higher than the degree of p, then 

Is pqdO" = O. 

PROOF: The desired conclusion involves only the values of p and 
q on S. Hence by linearity and Theorem 5.7, it suffices to prove the 
proposition when p is replaced by a homogeneous harmonic polyno­
mial. Thus we can assume that p E JidRn) and that q E Jim(Rn ), 
where k < m. 

Green's identity (1.1) implies that 

5.10 Is (pDnq - qDnP) dO" = O. 

But for (E S, 

d d (k ) (DnP)«() = drP(r()lr=l = dr r p«() Ir=l = kp«(). 
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Similarly, Dnq = mq on S. Thus 5.10 implies that 

(m - k) Is pqdu = O. 

Because k < m, the last integral vanishes, as desired. • 
Obviously IxI2Pm_2(Rn ) restricted to S is the same as Pm_2(Rn) 

restricted to S. Thus the last proposition shows that if we restrict all 
functions to S, then the decomposition given in Proposition 5.5 is an or­
thogonal decomposition with respect to the inner product on L 2 (S). 

The restriction of Jim (Rn) to S is sufficiently important to receive 
its own name and notation. A spherical harmonic of degree m is the 
restriction to S of an element of Jim (R n). The collection of all spherical 
harmonics of degree m will be denoted by Jim(S); thus 

The map p - p Is provides an identification of the complex vector 
space Jim (Rn) with the complex vector space Jim(S). We use the no­
tation Jim (S) when we want to emphasize that we are considering the 
functions to be defined only on S. 

For example, take n = 3 and consider the function 

5.11 q(x,Y,Z) = 15x - 70x 3 + 63xs 

defined for (x,Y,z) E S. Is q an element of Jis(S)? Although q ap­
pears to be neither harmonic nor homogeneous of degree 5, note that 
on S we have 

The right side of the equation above is a homogeneous-polynomial 
on R3 of degree 5, and as the reader can check, it is harmonic. Thus q, 
as defined by 5.11, is indeed an element of Jis (S). (To save a bit of 
work, note that the right side of the equation above equals the polyno­
mial p E Jis(R3) defined by 5.4, so q = pis. Examples 5.4 and 5.11 
were generated using the software described in Appendix B.) 

Restating some previous results in terms of spherical harmonics, we 
see that Proposition 5.9 implies that JidS) is orthogonal to Jim (S) in 
L 2 (S) whenever k 1= m. Theorem 5.7 implies that if p is a polynomial 
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on R n of degree m, then p Is can be written as a sum of spherical har­
monics of degree at most m. In our next theorem, we will use these 
results to decompose L Z (5) into an infinite direct sum of spaces of 
spherical harmonics. 

We will need a bit of Hilbert space theory. Recall that if H is a 
complex Hilbert space, then we write H = E9:=o Hm when the following 
three conditions are satisfied: 

(a) Hm is a closed subspace of H for every m. 

(b) Hk is orthogonal to Hm if k f= m. 

(c) For every x E H, there exist Xm E Hm such that 

x = Xo + Xl + ... , 

the sum converging in the norm of H. 

When (a), (b), and (c) hold, the Hilbert space H is said .to be the direct 
sum of the spaces Hm. If this is the case, then the expansion in (c) is 
unique. Also, if (a) and (b) hold, then (c) holds if and only if the complex 
linear span of U:=o Hm is dense in H. 

We can now easily prove the main result of this section. 

PROOF: Condition (a) above holds because each J-{m (5) is finite di­
mensional and hence is closed in L 2 (5). 

We have already noted that condition (b) above follows from Propo­
sition 5.9. 

To verify condition (c), we need only show that the linear span of 
U:=o J-{m(5) is dense in L 2(5). As we have already noted, Theorem 5.7 
implies that if p is a polynomial on R n, then pis can be written as a 
finite sum of elements of U:=o J-{m (5). By the Stone-Weierstrass The­
orem (see [14], Theorem 7.33), the set of restrictions pis, as p ranges 
over all polynomials on Rn, is dense in C(5) with respect to the supre­
mum norm. Because C(5) is dense in L 2 (5) and the L 2-norm is less 
than or equal to the L "'-norm on 5, this implies that the linear span of 
U:=o J-{m (5) is dense in L 2 (5), as desired. -

The theorem above reduces to a familiar result when n = 2. To 
see this, suppose p E J-{ m (R 2 ) is real valued. Then p is the real part 
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of an entire holomorphic function f whose imaginary part vanishes 
at the origin. The Cauchy-Riemann equations imply that all (complex) 
derivatives of f except the m th derivative vanish at the origin. Thus 
f = czm for some complex constant c, and so 

p = czm + czm . 

This implies that J{m (R 2) is the complex linear span of {Zm, Zm }. Thus 
J{m (5), as a space of functions of the variable e iO , is the complex linear 
span of {eim8,rim8} (or of {cosme,sinme}). Hence for f E L 2 (5), 

the decomposition promised by the theorem above takes the form 

00 

f= L a e im8 m , 
m=-oo 

where the sum converges in L 2 (5). In other words, when n = 2 the 
decomposition given by the theorem above is just the standard Fourier 
series expansion of a function on the circle. 

When n > 2, we can think of the theorem above as providing an 
expansion for functions f E L 2 (5) analogous to the Fourier series ex­
pansion, with spherical harmonics playing the roles of the exponential 
functions eim8 (or of the trigonometric functions cos me, sin me). 

Inner Product of ~lierica[ J{armanics 

Suppose p = Loc bocx oc and q = Loc cocxoc are harmonic polynomials 
on Rn. In this section we focus on the question of computing the inner 
product of p and q in L 2 (5). We denote this inner product by (p, q), 

although technically (p Is, q Is) would be more correct. 
Each of p, q can be written as a sum of homogeneous harmonic poly­

nomials, and we can expand the inner product (p, q) accordingly. By 
Proposition 5.9, the inner product of terms coming from the homoge­
neous parts of different degrees equals O. In other words we could, if 
desired, assume that p and q are homogeneous harmonic polynomials 
of the same degree. Even then it appears that the best we could do 
would be to write 
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The integral over S of the monomial xO(+B was explicitly calculated by 
Hermann Weyl in Section 3 of [20]; using that result would complete a 
formula for (p, q). We will take a different approach. 

We have no right to expect the double-sum formula above to reduce 
to a single-sum formula of the form 

(p, q) = 2:: bO(cO(wO(, 
0( 

because distinct mononials of the same degree are not necessarily or­
thogonal in L2(S). For example, x/ and X2 2 are not orthogonal in 
this space because their product is positive everywhere on S. However, 
a single-sum formula as above is the main result of this section; see 
Theorem 5.14. 

The single-sum formula that we will prove makes it appear that the 
monomials form an orthonormal set in L 2 (S), which, as noted above, 
is not true. But we are dealing here only with harmonic polynomials, 
and no monomial of degree above 1 is harmonic. In some mysterious 
fashion being harmonic forces enough cancellation in the double sum 
to collapse it into a single sum. 

The follOwing lemma will be a key tool in our proof of the single-sum 
formula. 

5.13 Lemma: If m > 0 and p,q E J-{m(Rn ), then 

f pqdu = ( ~ 2) f "Vp. "Vqdu. 
5 m n+ m- 5 

PROOF: Fix m > 0 and p, q E J-{m(Rn). Using the homogeneity 
of pq, we see, just as in the proof of Proposition 5.9, that pq equals 
(l/2m) times the normal derivative of pq on S. Thus 

Is pq du = 2m~V(B) Is "V(pq) . n ds 

= 2m~V(B) IB t:.(pq) dV, 

where the n V (B) term appears in the first equality because of the switch 
from normalized surface-area measure du to surface-area measure ds 
(see A.2 in Appendix A) and the second equality comes from the diver­
gence theorem (l.2). Convert the last integral to polar coordinates (l.5), 
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apply the product rule for the Laplacian (1.19), and use the homogene­
ity of 'V p and 'V q to get 

f pqdu == ~ e r n +2m- 3 f 'Vp. 'Vqdudr 
s m Jo s 

== ( ~ 2)f'V p ·'Vq dU, m n+ m- s 

as desired. • 
Now we can prove the surprising single-sum formula for the inner 

product of two harmonic polynomials. 

5.14 Theorem: If p == IC( bC(xC( and q 
polynomials on Rn , then 

(p,q) == IbC(cC(wC(, 
C( 

where 
(X! 

IC( cC(xC( are harmonic 

WC(== . 
n(n + 2) ... (n + 21(X1 - 2) 

PROOF: Every harmonic polynomial can be written as a finite sum of 
homogeneous harmonic polynomials. We already know (from Proposi­
tion 5.9) that homogeneous harmonic polynomials of different degrees 
are orthogonal in L 2 (5). Thus it suffices to prove the theorem under 
the assumption that p,q E J{m(Rn) for some nonnegative integer m. 
Because J{ m (R n) is closed under complex conjugation, we can also 
assume, with no loss of generality, that each CC( E R. 

If m == 0, then p, q are constant and the desired result obviously 
holds (where the empty product in the denominator of the formula 
defining WC( is interpreted, as usual, to equal 1). 

So fix m > 0 and assume, by induction, that the theorem holds for 
smaller values of m. Let ej == (0, ... ,0, 1,0, ... ,0), where the 1 appears 
in the ph slot. Now 'V P . 'V q is a sum of terms, each of which is a prod­
uct of harmonic polynomials. Thus using our induction hypothesis we 
have 
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-~"b ,2 (lX-ej)! 
- ~ ~ aCa lX] --~-------

j=i" a n(n + 2) ... (n + 2m - 4) 

n , 
= 2.: bC(cC( 2.: lXj lX. 

a j=l n(n+2) ... (n+2m-4) 

lX!m 
= 2.: bC(ca . 

a n(n+2) ... (n+2m-4) 

The equation above, when combined with Lemma 5.l3, gives the de­
sired formula. _ 

Syfierica{ .J{armanics 'Via 'Differentiation 

Compute a few partial derivatives of the function IxI 2- n . You will 
find the answer is always of the same form-a polynomial divided by a 
power of Ixl. For example, 

Notice here that the polynomial in the numerator is harmonic. This 
is no accident-differentiating Ixl 2- n exactly k times will always leave 
us with a homogeneous harmonic polynomial of degree k divided by 
Ixl n - 2+2k , as we will see in Lemma 5.15. We will actually see much more 
than this, when we show (Theorem 5.1S) that this procedure gives a for­
mula for the canonical projection of Pm(Rn ) onto J{m(Rn). This sec­
tion concludes with the development of a fast algorithm for finding the 
Poission integral of a polynomial via differentiation (Theorem 5.21). 

The Kelvin transform \Vill play a key role here. To see why, ob­
serve that the Kelvin transform applied to the example in the paragraph 
above leaves us with the harmonic polynomial in the numerator. This 
indicates how we will obtain homogeneous harmonic polynomials-we 
first differentiate IxI 2- n , and then we apply the Kelvin transform. 

For p = L.a cC(xa a polynomial on Rn , we define p(D) to be the 
differential operator L.a caDa. 
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PROOF: First we will show that K[p(D)lxI 2- n ] E Tm(Rn). By lin­
earity, we need only prove this in the special case when p is a monono­
mial. To get started, note that the desired result obviously holds when 
m = O. Now we will use induction, assuming that the result holds for 
some fixed m, and then showing that it also holds for m + l. 

Let lX be a multi-index with IlXl = m. By our induction hypothesis, 
there exists U E Jfm(Rn ) such that 

Take the Kelvin transform of both sides of the equation above, getting 

Fix an index j, and differentiate both sides of the equation above with 
respect to x j, getting 

5.16 

= IxI 2- n - 2(m+l)v, 

where v E Tm+l (Rn ). Now take the Kelvin transform of both sides of 
the equation above, getting 

Thus K[DjDC<lxI 2- n ] E Tm+dRn). Because DjDC< represents differ­
entiation with respect to an arbitrary multi-index of order m + 1, this 
completes the induction argument. 

All that remains is to prove that K[p(D)lxI 2- n ] is harmonic. But 
Ixl 2- n is harmonic and every partial derivative of any harmonic func­
tion is harmonic, so p(D)lxI 2- n is harmonic. The proof is completed 
by recalling that the Kelvin transform of every harmonic function is 
harmonic (Theorem 4.7). • 
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Suppose P E 'Pm (Rn ). Proposition 5.5 gives a unique decomposition 

where Pm E J{m(R n ) and q E 'Pm _2(Rn). The previous lemma states 
that K[p(D)lxI 2- n ] E J{m(Rn ). So p determines two harmonic poly­
nomials, Pm and K [p (D) I X 12- n ], leading to an investigation of the re­
lationship between them. As we will see (Theorem 5.18), one of these 
harmonic polynomials is a constant multiple of the other, with the con­
stant depending only on m and n. The key to proving this is the follow­
ing lemma, which we can guess by looking at the proof of Lemma 5.15. 
Specifically, note that in 5.16, u gets multiplied by Xj, jpst as Dcx is 
multiplied by Dj. An extra factor of 2 - n - m also appears. Thus 5.16 
suggests the follOwing lemma, where Cm is the constant defined by 

m-l 

Cm = n(2-n-2k). 
k=Q 

Although Cm depends upon n as well as m, we are assuming that n > 2 
is fixed. For n = 2, the definition of Cm and the analogue of the follow­
ing lemma are given in Exercise 14 of this chapter. 

5.17 lemma: If n > 2 and p E 'Pm(Rn ), then 

for some q E 'Pm -2 (R n). 

PROOF: The proof is a modification of the proof of the previous 
lemma. By linearity, we need only consider the case when p is a mono­
mial. The desired result obviously holds when m = O. Now we will use 
induction, assuming that the result holds for some fixed m, and then 
showing that it also holds for m + l. 

Let lX be a multi-index with IlXl = m. By our induction hypothesis, 
there exists q E 'Pm _2(Rn) such that 

Follow the proof of Lemma 5.15, setting U = cm(X CX -lxI 2q), taking the 
Kelvin transform of both sides of the equation above, and then applying 
Dj to both sides, getting (see 5.16) 
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where v E Pm_dRn). Now take the Kelvin transform of both sides of 
the equation above, getting 

Because XjXOl represents an arbitrary monomial of order m + 1, this 
completes the induction argument and the proof. _ 

In the next theorem we will combine the last two lemmas. Recall 
that the canonical projection of Pm (R n) onto :H m (R n) comes from the 
decomposition given by Proposition 5.5. By the orthogonal projection 
onto :Hm (S), we mean the usual orthogonal projection of the Hilbert 
space L 2 (S) onto the closed subspace:Hm (S). In part (b) of the.next the­
orem, to be formally correct we should have written (p(D) IxI2-n) Is /cm 
instead of p(D)lxI 2- n /cm. 

5.18 Theorem: Suppose n > 2 and p E Pm (R n). Then: 

(a) The canonical projection of ponto:Hm (Rn) is K[p (D) Ix 12- n ] / Cm. 

(b) The orthogonal projection of pis onto :Hm(S) is p(D)!x!2-n/cm . 

PROOF: By Lemma 5.17, we can write 

5.19 

for some q E Pm _2(Rn ). Lemma 5.15 shows that the first term on the 
right side of this equation is in :Hm(Rn). Thus this equation is the 
unique decomposition of p promised by Proposition 5.5, and further­
more K[p(D) !x!2-n ]/cm is the canonical projection of ponto:Hm (Rn), 

which proves (a). 
To prove (b), restrict both sides of 5.19 to S, getting 

pis = p(D)lx!2-n/cm +qls. 
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By Proposition 5.9, qls is orthogonal to J-{m(S), Thus taking the or­
thogonal projection onto J-{m (S) of both sides of the equation above 
gives (b). • 

See Exercise 14 of this chapter for the analogue of the preceding 
theorem for n = 2. 

As an immediate corollary of the theorem above, we get the follow­
ing unusual identity for homogeneous harmonic polynomials. 

5.20 Corollary: If n > 2 and P E J-{m(Rn ), then 

Recall from Theorem 5.7 that for P E Pm(Rn ), there is a unique 
decomposition of the form 

where k = [T] and each P j E J-{j (R n). Recall also that the solution to 
the Dirichlet problem for B with boundary data P Is equals 

Pm + Pm-Z + ... + Pm-Zk· 

Part (a) of the previous theorem gives a fast algorithm for computing 
Pm, Pm-Z,.·., Pm-Zk and thus for computing the Poisson integral of 
any polynomial. Specifically, Pm can be computed from the formula 
Pm = K[p(D)lxJZ-n]/cm . Use this to then solve for q E Pm_z(Rn ) in 
the decomposition P = Pm + IxlZq. To find Pm-Z, repeat this procedure 
with q in place of P and m - 2 in place of m. Continue in this fashion, 
finding Pm, Pm-2,···, Pm-2k· 

The algorithm for computing the Poisson integral of a polynomial 
described in the paragraph above relies on differentiation rather than 
integration. We have found it typically to be several orders of magni­
tude faster than algorithms involving integration. The next theorem 
gives another algorithm, also using only differentiation, for the exact 
computation of Poisson integrals of polynomials. We have found it to 
be even faster than the algorithm described in the paragraph above, 
typically by a factor of about 2. 
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The algorithm described by the next theorem is used by the software 
discussed in Appendix B. This software shows, for example, that if 
n = 5 then the Poisson integral of Xl 5 Xz equals 

5 10X1 3XzlxI Z 15x IXzlxI 4 10Xl 3XZ 10XIXzlxI 2 5XIXZ 
XIXZ- 13 + 143 + 13 - 39 +n-' 
Note that in the solution above, the homogeneous part P6 of highest or­
der (the first three terms above) consists of the original function Xl 5 Xz 
plus a polynomial multiple of 1 X IZ. This is expected, as we know that 
P6 = Xl 5XZ - IxlZq for some q E P4(R5 ). 

Finally, we need one bit of notation. Define !:J.0p = p, and then for i 
a positive integer inductively define !:J.i p = !:J.(!:J.i-I p ). 

In the theorem below, we could have obtained a formula for Ci,j in 
closed form. However, in the inductive formulas given here are more 
efficient for computation. These formulas come from [4], which in turn 
partially based its derivation on ideas from [6]. 

5.21 Theorem: Suppose p E Pm(Rn) has the decompOSition 

where k = Ufo] and each Pm-Zj E J{m_Zj(Rn ). Then 

k 
Pm-Zj = L ci,jlxIZ(i-j)!:J.i p 

i=j 

for) = 0, ... , k, where co,o = 1 and 

Cj-l,j-l (2m + n - 2)) c··= ----~~~--------~------
j,j 2)(2m + n + 2 - 4))(2m + n - 4)) 

for ) = 1, ... , k and 

Ci-l,j 
Ci,j = 2(j - i)(2m + n - 2 - 2) - 2i) 

for i = ) + 1, ... , k. 

PROOF: As a special case of 4.5, we have 
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for q E J-{m-2i(Rn ). Repeated application of this equation shows that 
for every nonnegative integer j, the operator I x 12j f).j equals a constant 
times the identity operator on Ixl2i J-{m-2i (Rn). Denoting this constant 
by bi,j, note that bi,j = ° if and only if j > i. Furthermore, the reader 
should verify that 

5.22 
j 

bj,j = 2j j! n (2m + n - 2j - 2i). 
i=l 

For j = 0, ... , k, apply the operator Ixl2j f).j to both sides of the 
equation p = If=o IxI 2i pm_2i, getting the lower-triangular system 

5.23 
k 

Ixl 2j f).jp = I bi,jIXI 2i pm_2i. 
i=j 

Let (Ci,j) denote the matrix inverse of the (k + 1)-by-(k + 1) matrix 
(bi,); thus (ci,j) is also a lower-triangular matrix. View the system 
5.23 as a matrix equation whose right side consists of the row matrix 
of unknowns Ixl 2i pm_2i times the matrix (bi,j). Now mUltiply (on the 
right) both sides of this matrix equation by the matrix (Ci,j) to solve for 
Ixl zi pm_2i, then divide by Ixlzi and interchange i and j to obtain 

5.24 
k 

Pm-2j = I Ci,jlxIZli-j)f).i p , 
i=j 

for j = 0, . , . , k, as desired. 
The only remaining task is to prove the inductive formulas for C j,j 

and Ci,j' The diagonal entries of the inverse of a lower-triangular matrix 
are easy to compute. Specifically, we have C j,j = 1/ b j,j' The claimed 
inductive formula for Cj,j now follows from 5.22. 

To prove the inductive formula for Ci,j, fix j and use 4.5 to take the 
Laplacian of both sides of 5.24, then multiply by Ixl2j , getting 

k ° = I ci,j(lxlzif).i+lp + 2Ci - j)(2m + n - 2 - 2j - 2i)lxI Zi - 2f).i p ) 
i=j 

k 

= I (Ci_l,j+2(i-j)(2m+n-2-2j-2i)Ci,j)lxlzi-Zf).ip, 
i=j+l 
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where the second equality is obtained from the first by breaking the 
sum into two parts, replacing i by i-I in the first part, and recombin­
ing the two sums (after the change of summation, the first summation 
should go to k + 1, but the (k + I)-term equals 0; similarly, the second 
sum should start at j, but the j-term equals 0). 

The equality above must hold for all P EPm(Rn ) (the Ci,j are inde­
pendent of pl. This can happen only if 

Ci-l,j + 2(i - j)(2m + n - 2 - 2j - 2i)ci,j = 0, 

which gives our desired inductive formula. • 

Theorem 5.18 implies that {K[D£XlxI 2- n] : ial = m} spans J-fm(Rn) 
and that {D£XlxI 2- n : lal = m} spans J-fm(S). In the next theorem, we 
find an explicit subset of each of these spanning sets that is a basis. 

5.25 Theorem: If n > 2 then the set 

is a vector space basis of J-fm (R n), and the set 

is a vector space basis of J-fm(S). 

PROOF: Let 'B = {K[D£XlxI 2- n] : lal = m and al :5 I}. We will 
first show that 'B spans J-fm(Rn ). For this we need only show that 
K[D£xlxI2-n] is in the span of 'B for every multi-index a of degree m 
(by Theorem 5.18). So suppose a is a multi-index of degree m. If al is ° or 1, then K[D£xlxI 2- n] is in 'B by definition. Now we use induction 
on al. Suppose that al > 1 and that K[D i3 lxI 2- n] is in the span of 
'B for all multi-indices f3 of degree m whose first components are less 
than al. Because ~lxI2-n == 0, we have 



n 
= -K[DIlXI-ZDzlX2 ... DnlXn(2: D/lxIZ-n)] 

j=z 

n 
= - 2: K[DI ()(1-ZDzlX2 •• • DnlXn(D/lxl z- n)]. 

j=Z 
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By our induction hypothesis, each of the summands in the last line is 
in the span of 'B, and therefore K[DlXlxIZ-n] is in the span of 'B. We 
conclude that 'B spans J{m(Rn ). 

To complete the proof that 'B is a basis of J{m(Rn ), we show that 
the cardinality of 'B is at most the dimension of J{m(Rn). We have 
'B = {K[DlXlxIZ-n]}, where lX ranges over multi-indices of length m 
that are not of the form (/31 + 2, /3z, ... , /3n) with 1/31 = m - 2. Therefore 
the cardinality of 'B is at most #{lX : IlXl = m} - #{/3 : 1/31 = m - 2}, 
where # denotes cardinality. But from Proposition 5.5, we know that 
this difference equals the dimension of J{m(Rn ). 

Having shown that 'B is a basis of J{m(Rn), we can restrict to S, 
obtaining the second assertion of this theorem. _ 

The software described in Appendix B uses Theorem 5.25 to con­
struct bases of J{m(Rn ) and J{m(S). For example, this software pro­
duces the following vector space basis of J{4(R3): 

{31x1 4 - 30lxl zxl + 35xz4, 

31xlzxZX3 - 7XZ 3X3, 

Ixl4 - 51xl zxzz - 51xl zxl + 35xzzX3z, 

31xlzxZX3 - 7XZ X33, 

31xI 4 - 30lxlzX3z + 35x34, 

31xlzXlX2 - 7XIXZ3, 

IxI2XIX3 - 7XIXZZX3, 

IxlzXlXZ - 7XIX2X3z, 

31xl zXlX3 - 7XIX33}. 
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Although the previous theorem is valid only when n > 2, the n = 2 
case is easy-earlier in the chapter we saw that {z m, zm} is a basis of 
Jfm(R2) and {eimtl,e-imtl} is a basis of Jfm (5). 

zonal.1farmonics 
We continue to view Jfm (5) as an inner product space with the 

L 2 (5)-inner product. Fix a point 11 E 5, and consider the linear map 
1\.: Jfm (5) - C defined by 

1\.(p) = P(I1). 

Because Jfm (5) is a finite-dimensional inner-product space, there ex­
ists a unique function Zm(·,I1) E Jfm(5) such that 

for all P E Jfm (5). The spherical harmonic Zm ( ., I'J) is called the zonal 
harmonic of degree m with pole I'J. The terminology comes from geo­
metric properties of Zm that will be explained shortly. 

We easily compute Zm when n = 2. Clearly Zo == 1. For m > 0, 
Jfm (5) is the two-dimensional space spanned by {eimtl,e-imtl}, as we 
saw earlier. Thus if we fix eicp E 5, there are constants 0<, /3 E C such 
that Zm(eW,e iCP ) = o<e imtl + /3e- imtl . The reproducing property of the 
zonal harmonic then gives 

. . . 121T . Ll . {] • II -. il de 
ye tmcp + 8e- tmcp = (ye tmu + 8e-tmU)(ae-tmu + /3e tmU ) _ 

o 2rr 

= ya -t- 873 

for every y, 8 E C. Thus 0< = e- imcp and /3 = eimcp . We conclude that 

Later (5.38) we will find an explicit formula for zonal harmonics in 
higher dimensions. 

We now return to the case of arbitrary n ~ 2. The next proposition 
gives some basic properties of zonal harmonics. The proof of (c) below 
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uses orthogonal transformations, which play an important role in our 
study of zonal harmonics. We let D(n) denote the group of orthogo­
nal transformations on Rn. Observe that J-{m(Rn) is D(n)-invariant, 
meaning that if p E J-{m(Rn ) and T E D(n), then poT E J-{m(Rn ). It 
follows that J-{m(S) is D(n)-invariant as well. 

5.27 Proposition: Suppose (, T] E Sand m ~ 0. Then: 

(a) Zm is real valued. 

(b) Zm«(, T]) = Zm(T], (). 

(c) Zm ((, T(T])) = Zm (T-1 «(), T]) for all T E D(n). 

(d) Zm(T], T]) = dimJ-{m(Rn). 

(e) IZm«(, T]) I ~ dimJ-{m(Rn). 

PROOF: To prove (a), suppose p E J-{m (S) is real valued. Then 

0== Imp(T]) 

= 1m Is p«()Zm«(, T]) du«() 

= - Is p«() ImZm«(, T]) du«(). 

Defining p by p«() = ImZm«(,T]) yields 

Is (1m Zm «(, T]))2 du«() = 0, 

which implies 1m Zm == 0, proving (a). 
To prove (b), consider any orthonormal basis el, ... , ehm of J-{m(S), 

where hm = dimJ-{m(S) = dimJ-{m(Rn) (see Proposition 5.8 for an 
explicit formula for hm). By standard Hilbert space theory, 

Thus 

5.28 

hm hm 

Zm(', ry) = L. (Zm(', T]), ej)ej = L. ej(T])ej. 
j=1 j=l 

h m 

Zm«(, T]) = L. ej(T])ej«(). 
j=1 
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Because Zm is real valued, the equation above is unchanged after com­
plex conjugation, which implies (b). 

To prove (c), let T E O(n). For every p E J-{m(S) we have 

p(T(1J») = (p 0 T)(1J) 

= Isp(T(S"»)ZmU;,1J)dU(S") 

= Is p(S")Zm(T-1(S"), 1J) du(S"), 

the last equality following from the rotation invarianee of u. By the 
uniqueness of the zonal harmonic, the equation above gives (c). 

To prove (d), note that taking S" = T(T7) in (c) gives 

Thus the function 1J .... Zm(1J,1J) is constant on S. To evaluate this 
constant, take S" = 1J in 5.28, obtaining 

h m 

Zm(1J,1J) = L lej(1J)1 2• 
j=l 

Now integrate both sides of the equation above over S, getting 

which gives (d). 
To prove (e), note that 

where 11112 denotes the norm in L2(S). Now 

IZm(S",1J)1 = I(Zm(',S"),Zm(',T7»1 

completing the proof. 

::; II Zm("S")1I2I1 Zm(',1J)1I2 

= dimJ-{m(Rn), 

• 
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Exercise 19 of this chapter deals with the question of when the in­
equality in part (e) of the proposition above is an equality. 

Our previous decomposition L 2 (5) = EB:=o.J{m (5) has an elegant 
restatement in terms of zonal harmonies, as shown in the next theorem. 
Note that this is just the Fourier series decomposition when n = 2. 

5.29 Theorem: 5uppose j E L2(5). Let Pm(I']) = (j,Zm(', 1'])) for 

m ~ 0 and I'] E 5 . Then Pm E .J{m(5) and 

00 

j= L Pm 
m=O 

PROOF: By Theorem 5.12, we can write j = 2::=0 qm for some choice 
of qm E .J{m (5), where the infinite sum converges in L 2 (5). The proof 
is completed by noticing that 

00 

Pm(I']) = (j, Zm(', 1'])) = (L qb Zm(', 1'])) = (qm, Zm(', 1'])) = qm(I']), 
k=O 

where the third equality comes from the orthogonality of spherical har­
monics of different degrees (Proposition 5.9). • 

The Poisson Xerne[ 'Revisited 

Every element of .J{m (5) has a unique extension to an element of 
.J{m(Rn); given P E .J{m(5), we will let P denote this extension as well. 
In particular, the notation Zm ( " () will now often refer to the extension 
of this zonal harmonic to an element of .J{m(Rn ). 

Suppose x ERn. If x f= 0 and P E .J{m(Rn ), then 

5.30 p(x) = Ixlmp(x/lxl) 

= Ix 1m Is p«()Zm(x/lxl, () du«() 

= Is p«()Zm(x, () du«(). 
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We easily check that the first and last terms above also agree when 
x = O. Note that Zm(x, .) is a spherical harmonic of degree m for each 
fixed x ERn. 

Our next result uses the equation above to expresses the Poisson 
integral of a polynomial in terms of zonal harmonics. 

5.31 Proposition: Let p be a polynomial on R n of degree m. Then 

for every x E B. 

PROOF: By Theorem 5.1, P[pls] is a polynomial of degree at most m 
and hence can be written in the form 

5.32 
m 

P[pls] = I Pk, 
k=O 

where each Pk E J{k(Rn ). For each x E B and each k we have 

Pk(X) = Is PkCt;;)Zk(X, () du«() 

= f f Pj«()Zk(X, () du«() 
s j=O 

= Is p«()Zdx, () du«(), 

where the first equality comes from 5.30, the second equality comes 
from the orthogonality of spherical harmonics of different degrees (see 
Proposition 5.9), and the third equality holds because P and its Poisson 
integral 2:';0 P j agree on S. Combining the last equation with 5.32 
gives the desired result. _ 

The proposition above leads us to the zonal harmonic expansion of 
the Poisson kernel. 
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5.33 Theorem: For every n ~ 2, 

00 

P(x,~) = L Zm(x,~) 
m=O 

for all x E B, ~ E S. The series converges absolutely and uniformly on 
K x 5 for every compact set K c B. 

PROOF: For a fixed n, Proposition 5.27(e) and Exercise 10 of this 
chapter show that there exists a constant C such that 

for all x ERn, ~ E S. The series I:=o Zm (x,~) therefore has the 
desired convergence properties. 

Fix x E B. From Propositions 5.31 and 5.9 we see that 

f f(~)P(x,~) d(J'(~) = f f(~) f Zm(x,~) d(J'(~) 
S S m=O 

whenever f is the restriction of a polynomial to S. Because such func­
tions are dense inL2(S), this implies that P(x,~) = I:=o Zm(X,~) for 
almost every ~ E S. But all the functions involved are continuous, so 
we actually have equality everywhere, as desired. _ 

When n = 2, we can express the theorem above in a familiar form. 
Recall that we used complex analysis (see 1.12) to show that the Poisson 
kernel for B2 takes the form 

00 00 

P{reifJ,e icp ) = :L rlmleim(tI-cp) = 1 + :L rm2cosm(e - cp) 
m=-oo m=l 

for all r E [0,1) and all e, cp E [0,2IT]. By 5.26, this is exactly the 
expansion in the theorem above. 

The preceding theorem enables us to prove that the homogeneous 
expansion of an arbitrary harmonic function has the stronger conver­
gence property discussed after Theorem 1.31. 



100 CHAPTER 5. Harmonic Polynomials 

5.34 Corollary: If u is a harmonic function on B(a, r), then there exist 
Pm E J-{m (Rn) such that 

00 

u(x) = L Pm(x - a) 
m;O 

for all x E B(a, r), the series converging absolutely and uniformly on 
compact subsets of B(a, r). 

PROOF: We first assume that u is harmonic on B. For any x E B, 
Theorem 5.33 gives 

u(X) = f u(,()P(x, '() dO"('() = i: f u('()Zm(X, '() dO"(,(). 
s m;O S 

Letting Pm(x) = Is u('()Zm(X, '() dO"('() for x ERn, observe that 
Pm E J-{m (Rn). As in the proof of Theorem 5.33, 

IPm(x) I $ Cmn - 2 lxl m Is lui dO" 

for all x ERn, and thus the series I Pm converges absolutely and 
Uniformly to u on compact subsets of B. 

After a translation and dilation, the preceding argument shows that 
if u is harmOnic on B(a, r), then u has an expansion of the desired 
form in each B(a, 5), ° < 5 < r. By the uniqueness of homogeneous 
expansions, all of these expansions are the same, and thus u has the 
desired expansion on B(a, r). _ 

Jt §eometric Characterization 
of Zonae J-farmonics 

In this section we give a Simple geometric characterization of zonal 
harmonics. Recall the definition of a "parallel" from cartography: if we 
identify the surface of the earth with 5 c R3 so that the north pole is at 
(0, 0, 1), then a parallel is simply the intersection of 5 with any plane 
perpendicular to the z-axis. The notion of a parallel is easily extended 
to all dimensions. Specifically, given 17 E 5, we define a parallel orthog­
onal to 17 to be the intersection of 5 with any hyperplane perpendicular 
to 17. 
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Parallels orthogonal to TJ. 

We claim that the zonal harmonic Zm ( " TJ) is constant on each par­
allel orthogonal to TJ. To prove this, observe that a function f on 5 
is constant on parallels orthogonal to TJ if and only if f 0 T-l = f for 
every T E D(n) with T(TJ) = TJ. Thus Proposition 5.27(c) proves our 
claim. 

Our goal is this section is to show that scalar multiples of Zm ( . , 11) 
are the only members of J-{m (5) that are constant on parallels orthog­
onal to TJ (Theorem 5.37). This geometric property explains how zonal 
harmonies came to be named-the term "zonal" refers to the "zones" 
between parallels orthogonal to the "pole" TJ. 

We ",ill use two lemmas to prove our characterization of zonal har­
monics. The first lemma describes the power series expansion of a 
real-analytic radial function. 

5.35 Lemma: If f is real analytic and radial on Rn , then there exist 
constants Cm E C such that 

for all x near O. 

00 

f(x) = L. cm lxI 2m 

m=O 
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PROOF: Assume first that f E 'Pm (R n) and that f is not identically O. 
Because f is radial, it has a constant value C f= 0 on S, which implies 
that f(x) = clxl m for all x ERn. Clearly m is even (otherwise f would 
not be a polynomial). Thus f has the desired form in this case. 

Now suppose that f is real analytic and radial, and that I Pm is 
the homogeneous expansion of f near O. Let TEO (n). Because f is 
radial, f = JoT, which gives I Pm = I Pm 0 T near O. Since Pm is a 
homogeneous polynomial of degree m, the same is true of Pm 0 T, so 
that Pm = Pm 0 T for every m by the uniqueness of the homogeneous 
expansion of f. This is true for every T E O(n), and therefore each 
Pm is radiaL The result in the previous paragraph now completes the 
proof. _ 

The next lemma is the final tool we need for our characterization of 
zonal harmonics. Recall that we can identify Rn with Rn-l x R, writing 
a typical point Z ERn as z = (x,y). 

5.36 Lemma: Suppose that u is harmonic on Rn and that u(',y) is 
radial on Rn-l for each y E R. Suppose further that u(O, y) = 0 for all 
y E R. Then u == o. 

PROOF: Recall that the power series of a function harmonic on Rn 
converges everywhere on Rn (see Exercise 34 in Chapter 1). Because u 
is real analytic on Rn and each u(', y) is radial on Rn- 1, Lemma 5.35 
implies that the expansion of u takes the form 

00 

u(x,y) = I cm(Y)lxI 2m , 
m=O 

where each Cm is a real-analytic function of y. Because u is harmonic, 
we obtain 

o = ~u(x,y) 
00 00 

m=O m=l 

00 

= I [cm"(y) + IXm+lCm+dy)]lxI 2m , 
m=O 
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where lXm = 2m(2m + n - 3). Looking at the last series, we see that 
each term in brackets vanishes. Because Co (y) = u (0, y) = 0, we easily 
verify by induction that each Cm is identically zero. Thus u == 0, as 
desired. _ 

Let N denote the north pole (0, ... ,0,1). We can now characterize 
the zonal harmonics geometrically. 

5.37 Theorem: Let I] E 5. A spherical harmonic of degree m is con­
stant on parallels orthogonal to I] if and only if it is a constant multiple 
of Zm(·,I]). 

PROOF: We have already seen that Zm(" 1]) is constant on parallels 
orthogonal to 1]. 

For the converse, we may assume m ;:::: 1. For convenience we first 
treat the case I] = N. So suppose p E J{m (R n) is constant on parallels 
orthogonal to N. For T E O(n - 1), we then have 

p(Tx, y) = p(x, y) 

for all (x, y) E 5, and hence for all (x, y) ERn. Because this holds for 
all T E O(n - 1), we conclude that p(.,y) is radial on Rn-l for each 
y E R. In particular, Zm (., y), N), regarded as an element of J{m (Rn), 

is radial on Rn - 1 for each y E R. 

Now choose c such that peN) = cZm(N,N), and define 

u = p - cZm ( ·,N). 

Then u is harmonic on Rn, u(·,y) is radial on Rn-l for each y E R, 
and u(O, y) = u(yN) = ymu(N) = 0 for every y E R. By Lemma 5.36, 
u == O. Thus p is a constant multiple of Zm ( ., N), as desired. 

For the general I] E 5, choose T E O(n) such that T(N) = 1]. If 
P E J{m(5) is constant on parallels orthogonal to 1], then poT is 
constant on parallels orthogonal to N. Hence poT is a constant multiple 
of Zm ( ., N), which implies that p is a constant mUltiple of Zm ( ., N) 0 T- 1 , 

which, by Proposition S.27(c), equals Zm (',1]). _ 
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An Txy{icit :rormufa 
for Zonal J-farmonics 

The expansion of the Poisson kernel given by Theorem 5.33 allows 
us to find an explicit formula for the zonal harmonics. 

S.38 Theorem: Let x ERn and let ( E S. Then Zm (x, () equals 

[m/2] 
( 2 -2) " (_1)k n (n+2) ... (n+2m-2k-4)( .7')m-2k l 12k 
n+ m k::O 2kk! (m _ 2k)! x '::0 x 

for each m > O. 

PROOF: The function (1 - z) -n/2 is holomorphic on the unit disk in 
the complex plane, and so it has a power series expansion 

5.39 
00 

(1 - z)-n/2 = L CkZ k 

k=O 

for Izl < 1. We easily compute that 

5.40 
(I)(I+1)"'(I+k-l) 

Ck = k! . 

Fix ( E S. For Ixl small, 5.39 and the binomial formula imply 
that 

00 

= (1 - Ix12) L ck(2x . ( - Ixl2)k 
k=O 

00 k 

= (1-lxI2) L Ck L(-1)je)2k- j (x. ()k-jlxlZ"j. 
k=O j=O 

By Theorem 5.33, Zm (', () is equal to the sum of the terms of degree m 
in the power series representation of P(·, (). Thus the formula above 
implies that 

5.41 
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where qm and qm-2 are the sums of terms of degree m and m - 2, 
respectively, in the double series above. It is easy to see that 

qm(X) == L Cd_l)m-k(m~k)22k-m(x. ()2k-mlxI2m-2k. 

m/2sksm 

Replacing the index k by m - k in this sum shows that 

[m/2j 

qm(x) == L Cm_k(-I)k(m;k)2m- 2k (x. ()m-2klxI2k. 

k=O 

Using 5.40, the last equation becomes 

[m/2j 

( ) == '" (-I)k n(n + 2) ... (n + 2m - 2k - 2) ( . "l")m-2kl 12k 
qm X k'70 2kk! (m _ 2k)! X." X. 

By replacing m by m - 2, we obtain a formulafor qm-2. In that formula, 
replace the index k by k -1, and then combine terms in 5.41 to complete 
the proof. _ 

Note that for x E 5, the expansion in the theorem above shows 
that Zm(x, () is a function of x . (. We could have predicted this by 
recalling from the last section that on 5, the zonal harmonic Zm ( ., () 

is constant on parallels orthogonal to (. 
The formula for zonal harmonics given by the theorem above may 

be combined with Proposition 5.31 and the formula for the integral 
over 5 of any monomomial ([20], Section 3) to calculate explicitly the 
Poisson integral of any polynomial. However, this procedure is typi­
cally several orders of magnitude slower than the algorithm given by 
Theorem 5.21. 
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Txercises 

1. Suppose p is a polynomial on Rn such that pis == O. Prove that 
there exists a polynomial q such that p = (1 - IxI2)q. 

2. Suppose p is a homogeneous polynomial on R nand u = P[p Is]. 
Prove-that u is a homogeneous polynomial with the same degree 
as p if and only if p is harmonic. 

3. Suppose p is a polynomial on Rn and u = P[p Is]. Prove that the 
degree of u is less than the degree of p if and only if the homo­
genenous part of p of highest degree is a polynomial multiple 
of Ix12. 

4. Suppose that I is a homogeneous polynomial on R n of even (re­
spectively, odd) degree. Prove that P[f] is a polynomial consist­
ing only of terms of even (respectively, odd) degree. 

5. Suppose E is an open ellipsoid in Rn. 

(a) Prove that if p is a polynomial on Rn of degree at most m, 
then there exists a harmonic polynomial q on R n of degree 
at most m such that qlaE = plaE. 

(b) Use part (a) and the Stone-Weierstrass Theorem to show that 
if I E C(E), then there exists u E C(E) such that ulaE = I 
and u is harmonic on E. 

6. Let I be a polynomial on R n. Prove that Pe [f Is], the exterior 
Poisson integral of lis (see Chapter 4), extends to a function 
that is harmonic on Rn \ {O}. 

7. Generalized Dirichlet Problem: Show that if I and 9 are polyno­
mials on Rn , then there is a unique polynomial p with pis = lis 
and /j.p = g. (The software described in Appendix B can find p 
explicitly.) 

8. From Pascal's triangle we know (N~l) = (~) + C,f~J Use this 
and Proposition 5.8 to show that 

dim3{m(Rn ) = (n:~;2) + (n:~;3) 

for m ~ 1. 
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9. Prove that dimJ{m(Rn ) < dimJ{m+l(Rn ) when n > 2. 

10. Prove that for a fixed n, 

2 
(n - 2)! 

as m - 00. 

11. Prove that 

12. Suppose p, q E J{m(Rn ). Prove that 

p(D)[q] = n(n + 2) ... (n + 2m - 2) Is pqda. 

(Note that the left side of the equation above, which appears to 
be a function, is actually a constant because p and q are both 
homogeneous polynomials of degree m.) 

13. Where in the proof of Lemma 5.17 was the hypothesis n > 2 
used? 

14. For n = 2, let Cm 
p E Tm(R2). 

(a) Prove that 

(_2)m-l (m - 1)!. Suppose m > 0 and 

K[p(D) log Ixl] = cm(p - IxlZq) 

for some q E Tm_z(R2). 

(b) Prove that the orthogonal projection of ponto J{m(R2) is 
K[p(D) log Ixl]/cm. 

15. Given a polynomial 1 on Rn , how would you go about determin­
ing whether or not lis is a spherical harmonic? 

16. Prove that if p E J{m(Rn ), then 

for 1 ~ j ~ n. 
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17. Prove that if p E J{m(Rn ), where n > 2 and m > 0, then 

18. Let f E C(5). The Neumann problem for B with boundary data 
f is to find a function harmonic on B whose outward normal 
derivative on 5 equals f and whose value at the origin is O. 

(a) Show that the Neumann problem with boundary data f has 
at most one solution. 

(b) Show if the Neumann problem with boundary data f has a 
solution, then Is f du = o. 

(c) Show that if p is a polynomial on Rn, then the Neumann 
problem with boundary data pis has a solution if and only 
if Is p du = O. Describe how you would calculate a solution 
to the Neumann problem with boundary data pis from the 
solution to the Dirichlet problem with boundary data pis, 
and vice versa. 

19. (a) For n = 2, find a necessary and sufficient condition for 
equality in Proposition 5.27(e). 

(b) Prove that if n > 2 and m > 0, then the inequality in Propo­
sition 5.27(e) is an equality if and only if 1;;" = 17 or 1;;" = -17. 

20. Define PM(X, 1;;") = L.~=o Zm(x, 1;;"). Show that for fixed 1;;" E 5, 

infPM(x, 1;;") - -00 as M - 00, 
XEB 

even though for each fixed x E B, PM(X,1;;") - P(x,1;;") > 0 as 
M - 00 (by Theorem 5.33). 

21. Fix x E B. For f = P(x, .), what is the expansion given by The­
orem 5.29? Show how this could be used to give an alternative 
proof of Theorem 5.33. 

22. Give an example of a real-analytic function on B whose homoge­
neous expansion (about 0) does not converge in all of B. (Com­
pare this with Corollary 5.34.) 
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23. Suppose U E C1 (B) is such that the function x ..... x . V'u(x) is 
harmonic on B. Prove that u is harmonic on B. 

24. Suppose u is harmonic on R n and u is constant on parallels or­
thogonal to 11 E S. Show that there exist Co, C1, ... E C such that 

00 

u(x) = 2: cm Zm (X,11) 
m=O 

for all x ERn. 

25. Suppose that u is harmonic on E, u is constant on parallels or­
thogonal to 11 E S, and u(r11) = 0 for infinitely many r E [-1,1]. 
Prove that u == 0 on B. 

26. Show that u need not vanish identically in Exercise 25 if "har­
monic on E" is replaced by "continuous on E and harmonic on B". 
(Suggestion: Set qm(x) = Zm(x, 11)/(dimJ{m(Rn» and consider 
a sum of the form Lk=l(-I)kckqmk(X), where the coefficients 
Ck are positive and summable and the integers mk are widely 
spaced.) 

27. Show that there exists a nonconstant harmonic function u on R2 
that is constant on parallels orthogonal to eiil as well as on par­
allels orthogonal to eicp if and only if () - cp is a rational mUltiple 
of TT. 

28. Suppose n > 2 and t;;, 1] E S. Under what conditions can a func­
tion on S be constant on parallels orthogonal to t;; as well as on 
parallels orthogonal to 11? 

29. Fix a positive integer m. By Theorem 5.38, there is a polynomial 
q of one variable such that Zm(1], t;;) = q(11 . t;;) for all 11, t;; E S. 
Prove that if n is even, then each coefficient of q is an integer. 



CHAPTER 6 

J-{armanic J-{arcfy Syaces 

'Poissan IntegralS of Measures 
In Chapter 1 we defined the Poisson integral of a function f E C(S) 

to be the function P [f] on B given by 

6.1 P[f](x) = Lf(l,;)P(X, l,;) du(l,;). 

We now extend this definition: for p a complex Borel measure on S, the 
Poisson integral of p, denoted P[p], is the function on B defined by 

6.2 P[p](X) = L P(x, l,;) dp(l,;). 

Differentiating under the integral sign in 6.2, we see that P [p] is har­
monic on B. 

The set of complex Borel measures on S will be denoted by M(S). 

The total variation norm of p E M(S) will be denoted by Ilpll. Recall 
that M(S) is a Banach space under the total variation norm. By the 
Riesz Representation Theorem, if we identify p E M(S) with the linear 
functional All on C(S) given by 

then M(S) is isometrically isomorphic to the dual space of C(S). (A 
good source for these results is [15].) 

11 1 
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We ""ill also deal with the Banach spaces LP(5), 1 .:5 p .:5 00. When 
p E [1, 00 ), LP (5) consists of the Borel measurable functions I on 5 
for which 

L 00 (5) consists of the Borel measurable functions I on 5 for which 
1111100 < 00, where 1111100 denotes the essential supremum norm on 5 
with respect to u. The number q E [1, 00] is said to be conjugate to p 
if lip + Ijq = 1. If 1 .:5 P < 00 and q is conjugate to p, then Lq(5) 
is the dual space of LP(5). Here we identify 9 E Lq(5) with the linear 
functional 1\9 on LP (5) defined by 

Note that because u is a finite measure on 5, LP (5) eLl (5) for all 
p E [1,00]. Recall also that C(5) is dense in LP (5) for 1 .:5 P < 00. 

It is natural to identify each I E L 1 (S) with the measure Ji1 E M(S) 
defined on Borel sets E c S by 

6.3 

Shorthand for 6.3 is the expression dJi1 = I du. The map I ..... Ji1 is a 
linear isometry of L 1 (5) into M(5). We will often identify functions in 
L 1 (5) as measures in this manner without further comment. 

For I EL I (S), we will write P [f] in place of P [Ji 1]. Here one could 
also try to define P[f] as in 6.1. Fortunately the two definitions agree, 
because if <p is a bounded Borel measurable function on 5 (in particular, 
if <p = P (x, . », then Is <p dJi 1 = Is <pI du. Our notation is thus consis­
tent with that defined previously for continuous functions on 5. 

Throughout thi,s chapter, when given a function u on B, the notation 
U r will refer to the function on 5 defined by u r (() = u(r(); here, of 
course, 0 .:5 r < 1. 

We know that if I E C(5), then P[f] has a continuous extension 
to B. What can be said of the more general Poisson integrals defined 
above? We begin to answer this question in the next two theorems. 
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6.4 Theorem: The following growth estimates apply to Poisson inte-
grals: 

(a) If J1 E M(S) and U = P[J1], then Ilurlll 5 11J111 for all r E [0,1). 

(b) If 1 5 P 5 00, f E LP(S), and U = P[f], then Ilurll p 5 IIfllp for 
all r E [0,1). 

PROOF: The identity 

6.5 P(rry, Z;) = P(rZ;, ry), 

valid for allry, Z; E 5 and all r E [0,1), will be used to prove both (a) 
and (b). 

To prove (a), let J1 E M (S) and set U = P[J1]. For ry E 5 and r E [0,1), 

where I J11 denotes the total variation measure associated with J1. Fu­
bini's theorem and 6.5 then give 

Ilurlll = Is lu(rry)1 du(ry) 

5 Is IsP(rry,z;)dlJ1I(Z;)du(ry) 

= Is IsP(rZ;,ry')du(ry)dlJ1I(Z;) 

= 1IJ111. 

For (b), assume firstthat 1 5 P < 00. Let f E LP (5) and set u = P[f]. 
Then 

By Jensen's inequality, 

Integrate this last expression over 5 and use an argument similar to 
that given for (a) to get Ilurll p 5 Ilfll p, as desired. 
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The case IE LOO(S) is the easiest. With u = P[J], we have 

lu(rlJ) I ~ Is 11(1;) I P(rlJ, 1;) d(J(1;) 

~ 1111100 Is P(rlJ, 1;) d(J(1;) 

= 1111100. • 
Our first consequence of the last theorem is that II U r II p is an in­

creasing function of r for each harmonic function u. A necessary and 
sufficient condition for the inequality in the corollary below to be an 
equality is given in Exercise 4 of this chapter. 

6.6 Corollary: If u is harmonic on Band 0 ~ r ~ s < 1, then 

for all p E [1,00]. 

PROOF: Suppose u is harmonic on Band 0 ~ r ~ s < l. The idea 
of the proof is to think of U r as a dilate of the Poisson integral of us; 
then the result follows from the previous theorem. More specifically, 

where the equality follows from Theorem l.21 and the inequality fol­
lows from Theorem 6.4(b). • 

If IE C(S) and u = P[J], we know that U r - fin C(S) as r - l. 
This fact and Theorem 6.4 enable us to prove the following result on 
LP -convergence. 

6.7 Theorem: Suppose 1 ~ P < 00. If f E LP(S) and u = P[J], then 

Ilur - flip - 0 as r - l. 

PROOF: Let p E [1, (0), let IE LP(S), and set u = prJ]. Fix E > 0, 
and choose 9 E C(S) with III - gllp < E. Setting v = P[g], we have 
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Now (u r - v r ) = (P[j - g])r, hence Ilur - vrll p < E by Theorem 6.4. 
Note also that Ilvr - gllp :::; Ilvr - glloo. Thus 

lIur - flip < Ilvr - glloo + 2E. 

Because g E C(5), we have Ilvr - glloo - ° as r - 1. It follows that 
lim sUPr_l Ilur - flip:::; 2E. Since E is arbitrary, Ilur - flip - 0, as 
desrred. _ 

Theorem 6.7 fails when p = 00. In fact, for f E L 00 (5) and U = P [j], 
we have Ilu r - flloo - ° as r - 1 if and only if f E C(5), as the reader 
should verify. 

In the case J1 E M (5) and U = P [J1 ], one might ask if the L 1_ functions 
U r always converge to J1 in M(5). Here as well the answer is negative. 
Because Ll (5) is a closed subspace of M(5), U r - J1 in M(S) precis-ely 
when J1 is absolutely continuous with respect to 0". 

We will see in the next section that there is a weak sense in which 
convergence at the boundary occurs in the cases discussed in the two 
paragraphs above. 

Weak* Convergence 
A useful concept in analysis is the notion of weak" convergence. 

Suppose X is a normed linear space and X* is the dual space of X. If 
Al,A2, ... E X*, then the sequence (Ak) is said to converge weak* to 
A E X* provided limk-oo Ak (x) = A(x) for every x E X. In other 
words, Ak - A weak;' precisely when the sequence (Ak) converges 
pointvvise on X to A. We will also deal with one-parameter families 
{Ar : r E [0,1)} c X*; here we say that Ar - A weak* if Ar (x) - A(x) 
as r - 1 for each fixed x EX. 

A simple observation we need later is that if Ak - A weak*, then 

6.8 IIAII :::; liminf IIAkll. 
k-oo 

Here IIAII is the usual operator norm on the dual space X* defined by 
IIAII = sup{lA(x)I : x E X, Ilxll :::; I}. 

Convergence in norm implies weak" convergence, but the converse 
is false. A simple example is furnished by .{!2, the space of square 
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summable sequences. Because.ez is a Hilbert space, (.ez) * = .ez. Let 
ek denote the element of .e2 that has 1 in the kth slot and O's elsewhere. 
Then for each a = (alt a2, ... ) E .e2, (a, ek) = ak for every k. Thus 
ek - 0 weak* in.ez as k - 00, while Ilekll = 1 in the .ez-norm for every k. 
This example also shows that inequality may occur in 6.8. 

Our next result is the replacement for Theorem 6.7 in the cases 
mentioned at the end of the last section. 

6.9 Theorem: Poisson integrals have the following weak* conver-
gence properties: 

(a) If J.l E M(5) and U = P[J.l]' then Ur - J.l weak* in M(5) as r - 1. 

(b) If f E L 00 (5) and U = P[f], then Ur - f weak* in L 00 (5) as 
r-1. 

PROOF: Recall that C(5)* = M(5). Suppose J1 E M(5), U = P[J.l], 
and 9 E C(5). To prove (a), we need to show that 

6.10 Is9UrdU - Is9dJ.l 

as r - 1. 
Working with the left-hand side of 6.10, we have 

IsgUr du = Isg«(} Is P(r(, 1]) dJ.l(IJ) du«() 

= Is Isg«()p(r1], () du«(} dJ.l(IJ) 

= Is p[g](rIJ) dJ.l(IJ), 

where we have used 6.5 again. Because 9 E C(5), P(g](rIJ) - g(1]) 
uniformly on 5 as r - 1. This proves 6.10 and completes the proof 
of (a). 

The proof of (b) is similar. We first recall that L 1 (5) * = L 00 (5). With 
f E LOO (5) and U = P[fJ. we thus need to show that 

6.11 Is gUr duo - Is gf du 
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as r - I, for each gEL 1 (S). Using the same manipulations as 
above, we see that the left side of 6.11 equals fs(P[g])rf duo By The­
orem6.7, (P[g])r-ginL1(S) asr - 1. Becausef E LOO(S),we 
have (P[g])r f - gf in Ll (S). This proves 6.11, completing the proof 
of (b). • 

In Chapter 2 we told the reader that every bounded harmonic func­
tion on B is the Poisson integral of a bounded measurable function 
on S. In Chapter 3, we claimed that each positive harmonic function 
on B is the Poisson integral of some positive measure on S. We will 
prove these results in the next section. The key to these proofs is the 
following fundamental theorem on weak* convergence. 

6.12 Theorem: If X is a separable normed linear space, then ev­
ery norm-bounded sequence in X* contains a weak* convergent sub­
sequence. 

PROOF: Assume (Am) is a norm-bounded sequence in X*. Then 
(Am) is both pointwise bounded and equicontinuous on X (equiconti­
nuity follows from the linearity of the functionals Am). By the Arzela­
Ascoli Theorem for separable metric spaces (Theorem 11.28 in [15]), 
(Am) contains a subsequence (Amk ) converging uniformly on compact 
subsets of X. In particular, (Amk ) converges pointwise on X, which 
implies that (Amk ) converges weak* to some element of X*. • 

In the next section we will apply the preceding theorem to the sep­
arable Banach spaces C(S) and LQ(S),l :5 q < 00. 

'T'fie Syaces hP (B) 

The estimates obtained in Theorem 6.4 suggest the definition of 
some new function spaces. For 1 :5 P :5 00, we define hP (B) to be the 
class of functions u harmonic on B for which 

IlullhP = sup Ilurll p < 00. 
0:5r<1 

Thus h P (B) consists of the harmonic functions on B whose LP -norms 
on spheres centered at the origin are uniformly bounded. Because 
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II Ur II P is an increasing function of r for each harmonic function U 

(Corollary 6.6), we have 

IlullhP = lim Ilurll p 
1'-1 

for each U E hP(B). Note that hOO(B) is the collection of bounded 
harmonic functions on B, and that 

IlullhOO = sup Iu(x) I. 
XEB 

We refer to the spaces hP (B) as "harmonic Hardy spaces". The usual 
"Hardy spaces", denoted by HP (B2), consist of the functions in h P (B2) 
that are holomorphic on B2; they are named in honor of the mathemati­
cian G. H. Hardy, who first studied them. 

It is straightforward to verify that h P (B) is a normed linear space 
under the norm II IlhP. A consequence of Theorem 6.13 below is that 
h P (B) is a Banach space. 

Here are some observations that can be elegantly stated in terms of 
the h P -spaces: 

(a) The map J1 - P[J1] is a linear isometry ofM(S) into h1(B). 

(b) For 1 < P :5 00, the map f - P[f] is a linear isometry of LP (S) 
into hP(B). 

Let us verify these claims. First, the maps in question are clearly 
linear. Second, in the case of (a), we have 

by Theorem 6.4. On the other hand, 6.8 and Theorem 6.9 show that 

11J111 :5liminf II (P[J1]}rIl1 = IIP[J1] Ilhl. 
r-1 

This proves (a). The proof of (b) when p = 00 is similar. The proof of 
(b) when 1 < P < 00 is even easier, following from Theorem 6.7. 

We now prove the remarkable result that the maps in (a) and (b) 
above are onto. 
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6.13 Theorem: The Poisson integral induces the following surjective 

isometries: 

(a) The map J.l - P [J.l] is a linear isometry of M (5) onto h I (B). 

(b) For 1 < P :5 00, the map f - P[J] is a linear isometry of LP(S) 

onto hP(B). 

PROOF: All that remains to be verified in (a) is that the range of the 
map J1 - P[J1] is all of hl(B). To prove this, suppose U E h1(B). By 
definition, this means that the family {ur : r E [0, I)} is norm-bounded 
in L 1 (S), and hence in M(S) = C(5)*. Theorem 6.12 thus implies there 
exists a sequence rj - 1 such that the sequence Urj converges weak* 
to some J1 E M(S). The proof of (a) will be completed by showing that 
U = P[J1]. 

Fix x E B. Because the functions Y - u(rjY) are harmonic on B, 
we have 

6.14 

for each j. Now let j - 00. Simply by continuity, the left side of 6.14 
converges to u(x). On the other hand, because P(x, .) E C(S), the 
right side of 6.14 converges to P[J.l](x). Therefore u(x) = P[J1](x), 
and thus u = P[J.l] on B, as desired. 

The proof of (b) is similar. Fix p E (1, 00], let U E h P (B), and let q be 
the number conjugate to p. Then the family {u y : r E [0, I)} is norm­
bounded in LP (S) = Lq (S)*. By Theorem 6.12, there exists a sequence 
rJ - 1 such that U Yj converges weak* to some f E LP (S). The argument 
given in the paragraph above may now be used, essentially verbatim, 
to show that U = prJ]; the difference is that here we need to observe 
that P (x, .) E L q (S). We leave it to the reader to fill in the rest of the 
proof. • 

The theorem above contains the assertion made in Chapter 2 that if 
u is bounded and harmonic on B, then u = P[J] for some f E L 00 (S). 

We next take up the claim made in Chapter 3. 

6.15 Corollary: If u is positive and harmonic on B, then there is a 
unique positive measure J1 E M(S) such that u = P[J.l]. 
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PROOF: Suppose u is positive and harmonic on B. Then 

Is IUrl dO" = Is U r dO" = u(O) 

for every r E [0,1), the last equality following from the mean-value 
property. Thus u E hI (B), which by Theorem 6.13 means that there is 
a unique p E M(S) such that u = P[pJ. Being the weak* limit of the 
positive measures U r (Theorem 6.9(a)), p is itself positive. _ 

Our next proposition gives a growth estimate for functions in h P (B). 

For a slight improvement of this proposition, see Exercise 11 of this 
chapter. 

6.16 Proposition: Suppose 1::; p < 00. If U E hP(B), then 

( 1+lxl )llP 
lu(x)l::; (1 _ Ixl)n-I IlullhP 

for all x E B. 

PROOF: Suppose u E h P (B) and x E B. First consider the case 
where 1 < P < 00. By Theorem 6.13, there exists f E LP (S) such that 
u = P[f]; furthermore IlullhP = IIfllp. Let q be the number conjugate 
to p. Now 

lu(x)1 = I Isf(1,;)P(X, 1,;) dO" (1,;) I 

6.17 ::; (is P(x, 1,;)q dO" (1,;) ) IlqllullhP. 

Notice that 

6.18 

f P(x, 1,;)q dO" (1,;) ::; supP(x, 1,;)q-1 f P(x, 1,;) dO" (1,;) 
s (eS S 

( 1+lxl )q-I 
= (1 - Ixi)n-I 

Combining 6.17 and 6.18 gives the desired result. 
The p = 1 case is similar and is left to the reader. -
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We conclude this section with a result that will be useful in the next 
chapter. 

6.19 Theorem: Let ( E S. Suppose that u is positive and harmonic 
on B, and that u extends continuously to 13 \ n] with u = 0 on S \ {(}. 
Then there exists a positive constant c such that 

u=cP(·,(). 

PROOF: We have u = P[J.1] for some positive J.1 E M(S) by The­
orem 6.15, and we have U r - J.1 weak* in M(S) as r - 1 by Theo­
rem 6.9. The hypotheses on u imply that the functions U r converge 
to 0 uniformly on compact subsets of S \ {(} as r - 1. Therefore 
Is <p dJ.1 = ° for any continuous <p on S that is zero near (. This im­
plies that J.1(S \ {(}) = 0, and thus that J.1 is a point mass at (. The 
conclusion of the theorem is immediate from this last statement. _ 

The J-{i{hert Syace h2(B) 

The map f - P [f] is a linear isometry of L 2 (S) onto h 2 (B) (by Theo­
rem 6.13). Because L 2 (S) is a Hilbert space, we can use this isometry to 
transfer a Hilbert space structure to h 2 (B). Specifically, we can define 

(P[f],P[g]) = (f,g) = fsfBdcr 

for f, gEL 2 (S), where we use ( , ) to denote the inner product on 
both h 2 (B) and L 2 (S), allOwing the context to make clear which is in­
tended. 

Given u, v E h 2 (B), it would be nice to have an intrinsic formula for 
(u,v) that does not involve finding f,g E L 2 (S) such that u = P[f] 
and v = P[g]. Fortunately, Theorem 6.7 leads to such a formula. We 
have U r - f and Vr - g in L2(S), and thus (U r , v r ) - (f,g). Hence 

(U, v) = lim f u(r()v(r() dcr«(). 
r-l S 

For f E L2 (S) and x E B, we have 

6.20 P[f](x) = (f,P(x, .). 
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To translate this to an intrinsic formula on h 2 (B), we need to find the 
Poisson integral of P(x, .). In other words, we need to extend P(x, .), 

which is currently defined on S, to a harmonic function on B. To do 
this, note that 

for,( E S. We extend the domain of P by defining 

6.21 

for all x, y ERn x R n for which the denominator above is not O. Note 
thatthis agrees with our previous definition when YES. 

Our extended Poisson kernel P has the pleasant properties that 
P(x,y) = P(y,x) and P(x,Y) = P(lxly,x/lxl). The last equation 
shows that for x fixed, P (x, .) is a harmonic function (because it is 
a dilate of a harmonic function). In particular, for x E B, the func­
tion P(x, .) is harmonic on B and hence is the function in h 2 (B) that 
corresponds to the unextended Poisson kernel P(x,·) E L 2 (S). The 
extended Poisson kernel will playa major role when we study Bergman 
spaces in Chapter 8. 

Translating 6.20 to h 2 (B), we have the intrinsic formula 

6.22 u(x) = (u,P(x, .) 

for all x E Band u E h 2 (B). The usefulness of this viewpoint is demon­
strated by the next proposition, which gives a sharp growth estimate 
for functions in h 2 (B), slightly better than the p = 2 case of Proposi­
tion 6.16. 

6.23 Proposition: If u E h 2 (B), then 

lu(x)1 ~ 

for all x E B. 

PROOF: Suppose u E h2 (B) and x E B. From the Cauchy-Schwarz 
inequality and 6.22, we have 
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Now 
IIP(x, ·)11~2 == (P(X, ·),P(X, .)} == P(X,X), 

where the last equality comes from 6.22. Use 6.21 to compute P(x, x) 
and complete the proof. _ 

'The Schwarz Lemma 
The Schwarz Lemma in complex analysis states that if h is holo­

morphic on B2 with Ihl < 1 and h(O) == 0, then Ih(z) 1 :; Izl for all 
z E B2; furthermore, if equality holds at any nonzero z E B2, then 
h(z) == .\z for all z E B2, where.\ is a complex number of modulus one. 
In this section we take up the Schwarz Lemma for functions harmonic 
onBn . 

Hermann Amandus Schwarz (1843-1921), whose reflection principle 
we used in Chapter 4 and whose lemma we now extend to harmonic 

{unctions, is also noted for his discovery of a procedure for solving the 
Dirichlet problem. 

Let S+ denote the northern hemisphere {( E S : (n > O} and let 
S- denote the southern hemisphere {( E S : (n < O}. We define a 
harmonic function U == Un on B by setting 
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U == P[Xs+ - Xs- J. 

In other words, U is the Poisson integral of the function that equals 1 
on S+ and -Ion S-. Note that U is harmonic on B, with lUI < 1 and 
U(O) == O. 

The following theorem shows that U and its rotations are the ex­
tremal functions for the Schwarz Lemma for harmonic functions. Re­
call that N == (0, ... ,0,1) denotes the north pole of S. 

6.24 Harmonic Schwarz Lemma: Suppose that u is harmonic on B, 
lui < 1 on B, and u(O) == 0. Then 

lu(x)1 ~ U(lxIN) 

for every x E B. Equality holds for some nonzero x E B if and only if 
u == A (U 0 T), where A is a complex constant of modulus 1 and T is an 
orthogonal transformation. 

PROOF: Fix x E B. After a rotation, we can assume that x lies on the 
radius from ° to N, so that x == IxIN. 

First we consider the case where u is real valued. By Theorem 6.13, 
there is a real-valued function I E L 00 (S) such that u == P[f] and 
1111100 ~ l. 

We claim that u(x) ~ U(x). This inequality is equivalent to the 
inequality 

L- (1 + 1«('»)P(x, (,) du ~ L+ (1 - 1«('»P(x, (,) du. 

Because x == IxIN, we have P(x, (,) == (l-lxI2)/(1 + Ixl2 - 2Ixl(,n)n/2, 
so the inequality above is equivalent to 

6.25 f 1 + 1«(,) 
s- (l + Ixl2 - 2Ixl(,n)n/2 du«(,) 

< f 1 - 1«(,) du«(,) 
- s+ (1 + Ixl2 - 2Ixl(,n)n/2 . 

The condition u(O) = ° implies that fs- I du = - fs+ I du. Thus, since 
(,n is negative on S- and positive on S+, we have 
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f 1 + f«() f 1 + f«() 
s- (1 + Ixlz - 2Ixl(n)n/Z da-«()::; s- (1 + IxIZ)n/Z da-«() 

f 1-f«() 
= s+ (1 + IxIZ)n/2 da-«() 

f 1 - f«() 
::; s~ (1 + Ixl2 - 2Ixl(n)n/2 da-«(). 

Thus 6.25 holds, completing the proof that u(x) ::; U(x). Note that if 
x of. 0, then the last two inequalities are equalities if and only if f = 1 
almost everywhere on S+ and f = -1 almost everywhere on S-. In 
other words, we have u(x) = U(x) if and only if u = U. 

Now remove the restriction that u be real valued. Choose /3 E C 
such that 1/31 = 1 and/3u(x) = lu(x)l. Apply the result just proved to 
the real part of /3u, getting lu(x) I ::; U(x), with equality if and only if 
/3u = u. • 

Note that while the extremal functions for the Schwarz Lemma for 
holomorphic functions are the entire functions Z - AZ (with IAI = 1), 
the extremal functions for the Harmonic Schwarz Lemma are discontin­
uous at the boundary of B. Later in this section we will give a concrete 
formula for U when n = 2; Exercise 24 of this chapter gives formulas 
for U ( I x I N) when n = 3, 4. The software package described in Ap­
pendix B can compute U(lxIN) for higher values of n. 

The Schwarz Lemma for holomorphic functions has a second part 
that we did not mention earlier. SpeCifically, if h is holomorphic on B2 
and I h I < 1 on Bz. then I h' (0) I ::; 1; equality holds if and only if 
h(z) = AZ for some constant A of modulus one. (Almost all complex 
analysis texts add the hypothesis that h(O) = 0, which is not needed 
for this part of the Schwarz Lemma.) The next theorem gives the cor­
responding result for harmonic functions. Here the gradient takes the 
place of the holomorphic derivative. 

6.26 Theorem: Suppose u is a real-valued harmonic function on Bn 
and lui < 1 on Bn. Then 

Equality holds if and only if u = U 0 T for some orthogonal transforma­
tion T. 
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PROOF: We begin by investigating the size of the partial derivative 
Dnu(O). By Theorem 6.13, there is a real-valued function f E LOO(S) 

such that u = P[f] and Ilflloo ~ 1. Differentiating under the integral 
sign in the Poisson integral formula, we have 

Dnu(O) = Isf(()DnP(O, () dO'(() 

= n Isf(()(ndO'(() 

~ n Is I(nl dO'((). 

Equality holds here if and only if f = 1 almost everywhere on S+ and 
f = -1 almost everywhere on S-, which is equivalent to saying that 
u equals U. The last integral can be easily evaluated using A.6 from 
Appendix A: 

n Is I(nl dO'(() = V(~n) Ln-l (1- IxI2)-1/2(1 - IxI2)1/2 dVn- 1 (x) 

2V(Bn-l) 
V(Bn) . 

Thus Dnu(O) ~ 2V(Bn_d/V(Bn),withequalityifandonlyifu = U. 

Applying this result to rotations of u, we see that every directional 
derivative of u at 0 is bounded above by 2V(Bn-d /V(Bn ); the length 
of V'u(O) is therefore bounded by the same constant, with equality if 
and only if u is a rotation of U. • 

The bound given above on I (V'u) (0) I could not be improved if we 
added the hypothesis that u(O) = 0, because the extremal function 
already satisfies that condition. 

When n = 2, the preceding theorem shows that I (V'u)(O) I ~ 4/rr. 
Note that the optimal constant 4/rr is larger than I, which is the optimal 
constant for the Schwarz Lemma for holomorphic functions. 

Theorem 6.26 fails for complex-valued harmonic functions (Exer­
cise 23 of this chapter). The gradient, which points in the direction of 
maximal increase for a real-valued function, seems to have no natural 
geometric interpretation for complex-valued functions. 
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We now derive an explicit formula for the extremal function U when 
n = 2. Here the arctangent of a real number is always taken to lie in 
the interval (-IT/2,IT/2). 

1 

U2 (x,y) 
o 

1 

-1 

The graph of the harmonic function U2 along with the boundary of its 
domain. On the upper-half of unit circle in the xy-plane, this function 

equals 1; on the lower half of the circle it equals -1. 

6.27 Proposition: Let z = (x, y) be a point in B2. Then 

2 2y 
U2 (x, y) = - arctan 2 ? 

IT 1 - x - y-

and 
4 

Uz(lzIN) = - arctan Izl. 
IT 

PROOF: Think of z = x + iy as a complex variable. The conformal 
map z >- (1 + z) / (1 - z) takes B2 onto the right half-plane. The function 
z >- log [ (1 + z) / (1 - z) ], where log denotes the principal branch of the 
logarithm, is therefore holomorphic on B2. Multiplying the imaginary 
part of this function by 2/ IT, we see that the function u defined by 

2 2y 
u(x, y) = - arctan 1 2 2 

IT -x -y 

is harmonic on B2. 
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Because u is bounded on B2, Theorem 6.13 implies that u = P[f] on 
B2 for some f E L"" (S). Theorem 6.9 shows that Ur - f weak* in L"" (S) 
as r - 1. But note that u. extends to be continuous on B2 u S+ u S-, 
with u = Ion S+ and u = -Ion S-; thus U r - uls weak* in L""(S) as 
r - 1 (by the dominated convergence theorem). Hence f = uls almost 
everywhere on S. Thus u = U2, completing the proof of the first part 
of the proposition. 

The second assertion in the proposition now follows from standard 
double-angle identities from trigonometry. _ 

'I'11e :Fatou 'I'l1eorem 
Recall the cones ra(a) defined in the section Limits Along Rays of 

Chapter 2. We will use these cones to define nontangential approach 
regions in the ball. For a > ° and ( E S, we first translate and rotate 
ra(O) to obtain a new cone with vertex ( and axis of symmetry con­
taining the origin. This new cone crashes through the sphere on the 
side opposite of (, making it unsuitable for a nontangential approach 
region in B. To fLx this, consider the largest ball B(O, r(a)) contained in 
the new cone (we do not need to know the exact value of rea)). Taking 
the convex hull of B (0, r (a)) and the point (, and then removing the 
point (, we obtain the open set Qa«() pictured here. 

The region Qa«() has the properties we seek for a nontangential 
approach region in B with vertex (. Specifi(:ally, Qa«() stays away 
from the sphere except near (, and near (it equals the translated and 
rotated version of ra(O) with which we started. 

We have Qa«() c QJj«() if a < {3, and B is the union of the sets 
Qa«() as a ranges over (0,00). 

Note that 

for every orthogonal transformation T on R n. This allows us to transfer 
statements about the geometry of, say, Qa(N) to any Qa«(L 

A function u on B is said to have nontangential limit L at ( E S if 
for each a > 0, we have u(x) - L as x - (within Qa«(). 

In this section we prove that ifu E h I (B), then u has anontangential 
limit at almost every ( E S. (In this chapter, the term "almost every­
where" will mean "almost everywhere with respect to 0"".) Theorems 
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The nontangential approach region Oa«(). 

asserting the almost everywhere existence of limits within approach 
regions are commonly referred to as "Fatou Theorems". The first such 
result was proved by Fatou [8], who in 1906 showed that bounded har­
monic functions in the open unit disk have nontangentiallimits almost 
everywhere on the unit circle. 

We approach the Fatou theorem for h 1 (B) via several operators 
known as "maximal functions". Given a function u on B and (X > 0, 
the nontangential maximal function of u, denoted by Na[u], is the 
function on 5 defined by 

Na[u](() = sup lu(x)l. 
XEO,,(() 

The radial maximal function of u, denoted by R[u], is the function on 
5 defined by 

R[u](() = sup lu(r() I. 
O:5y<l 

Clearly R[u] «() s Na[u](() for every ( E 5 and every LX> 0. The 
follOwing theorem shows that, up to a constant multiple, the reverse 
inequality holds for positive harmonic functions on B. 
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6.28 Theorem: For every ex > 0, there exists a constant Cx < 00 such 
that 

for all "( E S and all positive harmonic {unctions u on B. 

PROOF: Let "( E S. The theorem then follows immediately from the 
existence of a constant Cx such that 

6.29 

for all x E Ocx("() and all 11 E S. To prove 6.29, apply the law of cosines 
to the triangle with vertices 0, x, and "( in 6.30 to see that there is a 
constant Acx such that 

Ix - "(I < Acx(l - Ixl) 

for all x E Ocx("(). 

6.30 Ix - "(I is comparable to (1 - Ixl) for x E Ocx("(). 

Thus 
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jlxll,;'-TJj:o;jlxll,;'-xj +Ix-TJI 

:o;1l,;'-xl+lx-TJI 

:0; (Acx + l)lx - TJI 

1 31 

for all x E Qcx(l,;') and all TJ E S. This shows that 6.29 holds with 

• 
We turn now to a key operator in analysis, the Hardy-Littlewood 

maximal function. For l,;' E Sand 8 > 0, define 

K(l,;', 8) = {TJ E S: ITJ - l,;'1 < 8}. 

Thus K(l,;', 8) is the open "spherical cap" on S with center l,;' and radius 8. 
(Note that K(l,;',8) = S when 8 > 2.) The Hardy-Littlewood maximal 
(unction of /1 E M(S), denoted by .1,,1[/1], is the function on S defined 
by 

Suppose /1 E M(S) is positive and 8 > ° is fixed. Let (l,;') be a 
sequence in S such that l,;'j - l,;'. Because the characteristic functions 
of K(l,;'j, 8) converge to 1 pointwise on K(l,;', 8) as j - 00, Fatou's Lemma 
shows that 

In other words, the function l,;' ..- /1 (K(l,;', 8)) is lower-semicontinuous 
on S. From the definition of .'M[/1], we conclude that .'M[/1] is the 
supremum of lower-semicontinuous functions on S, and thus ,J.<t[/1] 
is lower-semicontinuous. In particular, .'M[/1]: S - [0,00] is Borel mea­
surable. 

In the next theorem we begin to see the connection between the 
Hardy-Littlewood maximal function and the Fatou Theorem. 

6.31 Theorem: If /1 E M(S) and u = P[/1], then 

X[u](l,;') :0; .'M[/1](l,;') 

for all l,;' E S. 
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PROOF: Observe that if f is a continuous, positive, and increasing 
function on [ -1, 1], then given E > 0, there exists a step function 

m 

cp = COX[-l,ll + L CjX(tj,ll 
j=l 

such that f 5 cp 5 f + E on [-1,1]; here -1 < tl < ... < tm < 1 and 
CO"",Cm E [0,00). 

We may assume 11 is positive and that ~ = N. Fix r E [0,1). Then 
P(rN, '1) = f('1n), where 

1- r2 
f(t) = (1 - 2rt + r2)n/2 

for t E [ -1, 1]. Let E > 0. Because f has the properties specified in the 
first paragraph, there exists a step function cp as above with 

P(rN, '1) 5 CP('1n) 5 P(rN, '1) + E 

for all '1 E S. Now for any t E R, the function on S defined by 
'1 - X (t.ll (T1n) is the characteristic function of an open cap centered 
at N. We conclude that there are caps KO, .•. , Km , centered at N, and 
nonnegative numbers Co, ... , Cm, such that 

6.32 

for all '1 E S. 

m 

P(rN, '1) 5 L CjX Kj \'1) 5 P(rN, '1) + E 

j=o 

Integrating the first inequality in 6.32 over S with respect to 11, we 
get 

m 
u(rN) 5 L Cjll(Kj) 

j=o 

m 
= L CjO"(Kj)(Il(Kj)/O"(Kj)) 

j=O 

m 

5 .1vt[Il](N)(L CjO"(Kj)) 
j=O 

5 .1vt[Il] (N)(1 + E). 
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The last inequality follows by integrating the second inequality in 6.32 
over S with respect to (I. Because E is arbitrary. we conclude that 
u(rN) ~ :M[J.1](N). and thus R.[u](N) ~ :M[J.1] (N). as desired. _ 

Theorem 6.37 below estimates the (I-measure of the set where :M[J.1] 
is large. The "covering lemma" that we prove next will be a crucial ingre­
dient in its proof. We abuse notation slightly and adopt the convention 
that if K = K(S'. D). then 3K denotes the cap K(S'. 3D). 

6.33 Covering lemma: Given caps Kj = K(S'j.Dj),j = 1, ...• m. there 
exists a subset J c {I •...• m} such that: 

(a) The collection {Kj : j E J} is pairwise disjoint; 
m 

(b) U Kj C U 3Kj. 
j=I jEJ 

PROOF: We describe an inductive procedure for selecting the desired 
sub collection. Start by choosing a cap Kj[ having the largest radius 
among the caps KI •...• Km. If all caps intersect Kjp we stop. Otherwise. 
remove the caps intersecting Kit. and from those remaining, select one 
of largest radius and denote it by K h. If all the remaining caps intersect 
Kh. we stop; otherwise we continue as above. This process gives us a 
finite subcollection {K j : j E J}. where J = {j 1. j2, ... }. 

The subcollection {Kj : j E J} clearly satisfies (a). 
Given K E {KI •...• Km}, let K' denote the first cap in the sequence 

Kjp Kh •... such that K n K' is nonempty. The way in which the caps in 
{Kj : j E J} were chosen shows that the radius of K' is at least as large 
as that of K. By the triangle inequality. K C 3K'. proving (b). _ 

In proving the next theorem we will need the fact that there exist 
constants a > O. A < 00. depending only on the dimension n. such that 

6.34 

for all S' E S and all DE (0.2]. Intuitively. K(S'. D) looks like an (n -1)­
dimensional ball of radius D for small D > O. indicating that 6.34 is 
correct. One may verify 6.34 rigorously by using formula A.3 in Ap­
pendLx A. 

From 6.34 we see that 
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6.35 

for all caps K C S. 
To motivate our next result, note that if I EL I (S) and t > 0, then 

taWII > t}) ~ f III dO' ~ 111111, 
{lJI>t} 

giving 

6.36 a({III > t}) ~ "~"l. 

Here we have used the abbreviated notation {III> t} to denote the 
set {( E S : /I(()I > t}. The next theorem states that for J1 E M(S), 
the Hardy-Uttlewood maximal function .1rl[J1] is almost in L 1 (S), in the 
sense that it satisfies an inequality resembling 6.36. 

6.37 Theorem: For every J1 E M (S) and every t E (0,00) 1 

0'( {.1.1[J1] > t}) ~ CI~", 

where C = 3n - l (A/a). 

PROOF: Suppose t E (0,00). Let E C {.1.1[J1] > t} be compact. Then 
for each ( E E, there is a cap K centered at (with 1J1I(K)/a(K) > t. 
Being compact, E is covered by finitely many such caps. From these 
we may choose a subcollection with the properties specified in 6.33. 
Thus there are pairwise disjoint caps Kl, ... , KN such that 3Kl, .. . ,3KN 
cover E, and such that 1J11 (Kj) /a(Kj) > t for j = 1, .. :, N. By 6.35 and 
the definition of C, we therefore have 

N N N I I (K) CII 1/ 
a(E) ~ L a(3Kj) ~ C L a(Kj) ~ C L J1 j ~ _J1_; 

. . . t t 
)=1 )=1 )=1 

the pairwise disjointness of the caps Kl, ... , KN was used in the last 
inequality. Taking the supremum over all compact E C {.1.1[J1] > t} 
now gives the conclusion of the theorem. _ 

Let us write .1.1[f] in place of .1.1[J1] when dJ1 = I dO' for IE L 1 (S). 
The conclusion of Theorem 6.37 for I ELI (S) is then 
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6.38 a( {.M[f] > t}) ~ Cllfl11 . 
t 

135 

We now prove the Fatou theorem for Poisson integrals of functions 
inL1(S). 

6.39 Theorem: If f E L1(S), then P[f] has nontangentiallimit fCr;) 
at almost every ( E S. 

PROOF: For f EL I (S) and ex > 0, define the function Lex [f] on S by 

Lex[f](() = lim sup IP[f](x) - f(()I. 
x-~ 

XEnc«~) 

We first show that Lex[f] = ° almost everywhere on S. 
Note that 

6.40 

and that Lex [f1 + fz] ~ Lex [f1] + Lex [fz] (both statements holding almost 
everywhere on S). Note also that Lex[f] == ° for every f E C(S). 

Now fix f E L 1 (S) and ex > 0. Also fixing t E (0,00), our main goal 
is to show that a( {[ex[f] > 2t}) = 0. 

Given E > 0, we may choose 9 E C(S) such that Ilf - 9111 < E. We 
then have 

Lex[f] ~ Lex[f - g] + Lex[g] 

= Lex[f - g] 

~ Nex[P[lf - gl]] + If - 91 

~ CexR[P[lf - gl]] + If - gl 

~ Cex.M[lf - gl] + If - 91. 

this holding at almost every point of S. In this string of inequalities we 
have used 6.40,6.28, and 6.31 in succession. 

We thus have 

6.41 {Lex[f] > 2t} c {Cex.M[lf - gl] > 0 U {If - 91 > 0. 
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By 6.38 and 6.36, the O"-measure of the right side of 6.41 is less than 
or equal to 

CCalif - gill IIf - gill 
t + t . 

Recalling that IIf - gill < E and that E is arbitrary, we have shown that 
the set {La [J] > 2t} is contained in sets of arbitrarily small O"-measure, 
and therefore 0"( {La[f] > 2t}) = O. 

Because this is true for every t E (0,00), we have proved La[J] = 0 
almost everywhere on S. 

To finish, let f E L1(S), and define Em = {Lm[J] = O} for m = 
1,2, .... We have shown that Em is a set of full measure on S for each 
m, and thus n Em is a set of full measure. At each 7; E n Em, P[f] has 
non tangential limit f(7;), which is what we set out to prove. _ 

Recall that J1 E M(S) is said to be singular with respect to 0", writ­
ten J1 .1 0", if there exists a Borel set E c S such that O"(E) = 0 and 
1J11 (E) '= 11J111. Recall also that each J1 E M(S) has a unique decomposi­
tion dJ1 = f dO" + dJ1s, where f EL I (S) and J1s .1 0"; this is called the 
Lebesgue decomposition of J1 with respect to 0". The following result is 
the second half of the Fatou Theorem for h I (B). 

6.42 Theorem: If J1 .1 0", then P[J1] has non tangential limit 0 almost 
everywhere on S. 

PROOF: Much of the proof is similar to that of Theorem 6.39, and so 
we will be brief about certain details. 

It suffices to prove the theorem for positive measures, so suppose 
J1 E M(S) is positive and J1 .1 0". For ex > 0, define 

L a[J1](7;) = lim sup P[J1](x) 
x-z; 

XEn,,(Z;) 

for 7; E S. Fixing t E (0,00), the proof will be completed by showing 
that O"({La [J1] > 2t}) = O. 

Let E > 0'. Because J1 .1 0", the regularity of J1 implies the exis­
tence of a compact set K c S such that O"(K) = 0 and J1(S \ K) < E. 

Writing J1 = J11 + J12, with dJ11 = XK dJ1 and dJ12 = XS\K dJ1, observe 
that La[J1Il = 0 on S \ K (see Exercise 2 of this chapter) and that 
11J1211 = J1(S \ K) < E. 
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6.43 {Loc[Ji] > 2t} c {Loc[Jid > t} u {L oc [Ji2] > t} 

c K u {Coc .M[Ji2] > t}. 

(The inequality Loc [Ji2] ~ Coc .M[Ji2] is obtained as in the proof of Theo­
rem 6.39.) Recalling that a (K) = 0, we see by Theorem 6.37 that the left 
side of 6.43 is contained in a set of a-measure at most (CCoc iiJi2iJ)/t, 
which is less than (CCocc)/t. Since c is arbitrary, we conclude that 
0'( {Loc[Ji] > 2t}) = 0, as desired. _ 

Theorems 6.39 and 6.42 immediately give the following result. 

6.44 Corollary: Suppose 11 E M(S) and dll = fda + dllsis the 
Lebesgue decomposition of Ji with respect to a. Then P[Il] has non­
tangential limit f(s) at almost every S E S. 

If U E h1(B), then u = P[Ji] for some Ji E M(S) by Theorem 6.13. 
Corollary 6.44 thus implies that u has non tangential limits almost ev­
erywhere on S. Because hP(B) ch1(B) for all p E [1,00], the same 
result holds for all U E h P (B). 
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'Exercises 
1. Show that if J E L1(S) and 1;;" E S is a point of continuity of J, 

then P[f] extends continuously to B u {1;;"}. 

2. Suppose V c S is open, J.1 E M(S), and 1J.11 (V) = o. Show that if 
"( E V. then P[J.1](x) - 0 as x - "( unrestrictedly in B. 

3. Suppose that J.1 E M(S) and 1;;" E S. Show that 

as r - 1. 

4. Suppose that u is harmonic function on B and 0 :::; r < 5 < 1. 

(a) Prove that IIuylh = IIusill if and only if there is a constant 
c such that CUlsB is positive. 

(b) Suppose 1 < P :::; 00. Prove that IIuyil p = II Us lip if and only 
u is constant. 

5. (a) Give an example of a normed linear space and a weak* con-
vergent sequence in its dual space that is not norm-bounded. 

(b) Prove that in the dual space of a Banach space, every weak* 
convergent sequence is norm-bounded. (Hint: Use the uni­
form boundedness principle.) 

6. It is easy to see that if J.1j - J.1 in M(S), then P[J.1j] - P[J.1] uni­
formly on compact subsets of B. Prove that the conclusion is still 
valid if we assume only that J.1j - J.1 weak* in M(S). 

7. Suppose that (J.1j) is a norm-bounded sequence in M(S) such 
that (P[J.1j]) converges pointwise on B. Prove that (J.1j) is weak* 
convergent in M(S). 

8. Prove directly (that is, without the help of Theorem 6.13) that 
hP(B) is a Banach space for every p E [1,00]. 

9. Prove that a real-valued function on B belongs to h 1 (B) if and 
only if it is the difference of two positive harmonic functions 
onB. 
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10. Let"( E S. Show that P(·,"() E hP(B) for p = 1 but not for any 
p>1. 

11. Suppose 1 < P < 00 and U E h P (B). Prove that 

(1 - Ixl)(n-l)/pu(x) - 0 

as Ixl - 1. 

12. A family of functions J" eL l (S) is said to be uniformly integrable 
if for every E > 0, there exists a 0 > 0 such that h If I du < E 

whenever f E J" and u(E) < O. Show that a harmoniC function 
U on B is the Poisson integral of a function in L 1 (S) if and only 
if the family {u y : r E [0, I)} is uniformly integrable. 

13. Prove that there exists u E hl(B) such that u(B n B("(,E)) = R 
for all "( E S, E > O. (Hint: Let u = P [J1], where J1 is a judiciously 
chosen sum of point masses.) 

14. Suppose that p E [1,00) and u is harmonic on B. Show that 
u E h P (B) if and only if there exists a harmonic function v on B 
such that lul P ~ v on B. 

15. Suppose n > 2. Show that if u is positive and harmonic on 
{x ERn: Ixl > I}, then there exists a unique positive measure 
J1 E M(S) and a unique nonnegative constant c such that 

for Ixl > 1. (Here Pe is the external Poisson kernel defined in 
Chapter 4.) State and prove an analogous result for the case 
n = 2. 

16. Let n denote B3 minus the X3-axis. Show that every bounded 
harmonic function on n extends to be harmonic on B3. 

17. Suppose"( E Sand f is positive and continuous on S \ {"(}. 
Need there exist a positive harmonic function u on B that extends 
continuously to B \ {"(} with u = f on S \ {"(p 

18. Suppose E c Sand u (E) = O. Prove that there exists a positive 
harmonic function u on B such that u has nontangentiallimit 00 

at every point of E. 
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19. Let J denote the family of all positive harmonic functions u 
on B such that u(O) = 1. Compute inf{u(N/2) : u E J} and 
sup{u(N/2) : u E J}. Do there exist functions in J that attain 
either of these extreme values at N / 2? If so, are they unique? 

20. Find all extreme points of J, where J is the family defined in the 
previous exercise. (A function in J is called an extreme point of 
J if it cannot be written as the average of two distinct functions 
in;:') 

21. Show that 

f 1 - Ixl 21yl2 
S P(x, ()P(y, () dO'(() = (1 _ 2x. Y + IxI2IyI2)n/2 

for all x,y E B. 

22. Prove that if u E h 2 (B), u(O) = 0, and Ilulih2 ::5 1, then 

lu(x)1 ::5 
1 + Ixl 2 

(1 - IxI2)n-l - 1 

for all x E B. 

23. Show that the bound on I(V'u)(O)1 given by Theorem 6.26 can 
fail if the requirement that u be real valued is dropped. 

24. Show that 

and 

u (lxIN) = ~ (1 + Ix12)2 arctan Ixl - Ixl (1 - Ix12) . 
4 IT Ix12(1 + Ix1 2) 

(Hint: Evaluate the Poisson integrals that define U3(lxIN) and 
U4(lxIN), using an appropriate result from Appendix A. Be pre­
pared for some hard calculus.) 

25. Suppose u is harmonic on Band I:=o Pm is the homogeneous 
expansion of u about O. Prove that 
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26. Schwarz Lemma for h 2 -functions: Prove that if u is harmonic 
on Band Ilullh2 :s: 1, then l'Vu(O)1 :s: ;n. Find all functions for 
which this inequality is an equality. 

27. For a smooth function u on B, we define the radial derivative DR u 
by setting DRU(X) = x . 'Vu(x) for x E B. Show that there exist 
positive constants c and C, depending only on the dimension n, 
such that 

for all u harmonic on B. (Hint: Use the homogeneous expansion 
of u, Exercise 29 in Chapter 1, and polar coordinates.) 

28. (a) Find a measure J.l E M(S) with .:M[J.l] rt L 1(S). 

(b) Can the measure J.l in part (a) be chosen to be absolutely 
continuous with respect to a? 

29. Let J.l E M(S). Show that if 

lim J.l(K("(, 8») = L E C 
8-0 a(K("(, 8») , 

then limr - I P[J.l](r"() = L. (Suggestion: Without loss of general­
ity, "( = N. For 17 near N, approximate P.(rN, 17) as in the proof of 
Theorem 6.31.) 

30. Let f E L 1 (S). A point "( E S is called a Lebesgue point of f if 

lim ( (~8») f If - f("()1 da = O. 
8-0 a K, K((,8) 

Show that almost every "( E S is a Lebesgue point of f. (Hint: 

Imitate the proof of Theorem 6.39.) 

31. For u a function on B, let u*("() denote the nontangentiallimit 
of u at "( E S, provided this limit exists. Show that if 1 < P :s: 00 

and u E h P (B), then u = P [u *], while this need not hold if 
u E hI (B). 
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32. Let j(z) = e(l+z)/(l-z) for z E Bz. Show that the holomorphic 
function j has a nontangential limit with absolute value 1 at 
almost every point of S, even though j is unbounded on B2. Ex­

plain why this does not contradict h P -theory. 



CHAPTER 7 

J-{armanic Junctions 
an J-{aif-Syaces 

In this chapter we study harmonic functions defined on the upper 
half-space H. Harmonic function theory on H has a distinctly differ­
ent flavor from that on B. One advantage of Hover B is the dilation­
invariance of H. We have already put this to good use in the section 
Limits Along Rays in Chapter 2. Some disadvantages that we will need 
to work around: oH is not compact, and Lebesgue measure on oH is 
not finite. 

Recall that we identify Rn with Rn-l x R, writing a typical point 
Z E Rn as z = (x, y), where x E Rn-l and y E R. The upper half­
space H = Hn is the set 

H = {(x,y) ERn: y > O}. 

We identify R n- 1 with Rn-l x {O}; with this convention we then have 
oH = Rn-l. 

For u a function on H and y > 0, we let u y denote the function 
on Rn - 1 defined by 

Uy(X) = u(x,y). 

The functions u y play the same role on the upper half-space that the 
dilations play on the ball. 

143 
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The Poisson Xerne{ 
for the l1yyer J-(aff-Syace 

We seek a function PH on H x R n-I analogous to the Poisson kernel 
for the ball. Thus, for each fixed t E R n-I , we would like PH ( . , t) to be a 
positive harmonic function on H having the appropriate approximate­
identity properties (see 1.20). 

Fix t = 0 temporarily; we will concentrate first on finding PH ( . , 0). 
Taking our cue from Theorem 6.19, we look for a positive harmonic 
function on H that extends continuously to H \ {OJ with boundary val­
ues 0 on Rn - 1 \ {OJ. One such function is u(x, Y) = y, but obviously 
this is not what we want-u doesn't "blow up" at 0 as we know PH(', 0) 

should. On the other hand, u does blow up at 00. Applying the Kelvin 
transform, we can move the singularity of u from 00 to 0 and arrive at 
the desired function. 

Thus, with u(x, y) = y, let us define 

v = K[u] 

on H, where K is the Kelvin transform introduced in Chapter 4. A 
simple computation shows that 

y 
v(x,Y) = (lxl 2 + y2)n/2 

for all (x, y) E H. Because the inversion map preserves the upper 
half-space and the Kelvin transform preserves harmonic functions, we 
know without any computation that v is a positive harmonic function 
onH. 

The function v has the property that vy(x) = y-(n-l)vdx/y) for 
all (x, y) E H. Therefore the change of variables x - y x' shows that 
fRn-1 vy(x)dx is the same for all y > O. (Here dx denotes Lebesgue 
measure on Rn-l.) Because fRn-1 VI (x) dx < 00 (verify using polar 
coordinates-see 1.5), there exists a positive constant en such that 

for all y > O. We will show that en = 2/(nV(Bn )) at the end of this 
section. 
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The function Cn 11 has all the properties we sought for PH ( ., 0). To 
obtain PH(·, t), we simply translate Cnll by t. Thus we now make our 
official definition: for Z = (x, y) E Hand t E R n-l, set 

y 
PH(Z, t) = Cn (Ix _ tl2 + y2)n/2· 

The function PH is called the Poisson kernel for the upper half-space. 
Note that PH can be written as 

y 
PH(Z, t) = Cn Iz _ tin 

In this form, PH reminds us of the Poisson kernel for the ball. (If 

(x, y) E H, then y is the distance from (x, y) to oH; analogously, the 
numerator of the Poisson kernel for B is roughly the distance to oB.) 

The work above shows that PH(·, t) is positive and harmonic on H 
for each t E Rn-l. We have also seen that 

f PH(z,t)dt=1 
Rn - 1 

7.1 

for each Z E H. The next result gives the remaining approximate­
identity property that we need to solve the Dirichlet problem for H. 

7.2 Proposition: For every a E R n-l and every {) > 0, 

f PH(Z, t) dt - 0 
It-al>8 

as Z - a. 

We leave the proof of Proposition 7.2 to the reader; it follows without 
difficulty from the definition of PH. 

Let us now evaluate the normalizing constant Cn. We accomplish 
this with a slightly underhanded trick: 

--- -- dxd 1 2 100 1 f Y 
Cn - IT 0 1 + y2 Rn - 1 (lxl 2 + y2)n/Z y 

2 f y 
= IT H (1 + y2)(Ix12 + y2)n/Z dxdy 

= 2nV(B) f roo (n? drdu«() 
IT s+ Jo 1 + (r(n)~ 

= nV(B)/2, 
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where the third equality is obtained by switching to polar coordinates 
(see 1.5) and S+ denotes the upper half-sphere. 

rfie 'Dirichlet 'Prof)fem 
for tfie 1.1yyer J-[aff-Syace 

For 11 a complex Borel measure on Rn - 1 , the Poisson integral of 11, 
denoted by PH (J.l], is the function on H defined by 

We can verify that PH [11] is harmonic on H by differentiating under the 
integral sign, or by noting that PH [11] satisfies the volume version of 
the mean-value property on H. 

We let M (R n-l) denote the set of complex Borel measures on R n-l. 

With the total variation norm II II, the Banach space M (R n-l) is the dual 
space of Co(Rn - 1 ), the space of continuous functions I on Rn - l that 
vanish at 00 (equipped with the supremum norm). 

For 1 ::s; P < 00, LP (R n-l) denotes the space of Borel measurable 
functions I on R n-l for which 

r lip 
1IIIIp = (JRn - 1 II(x) IP dX) < 00; 

L 00 (R n-l) consists of the Borel measurable functions I on R n-l for 
which 1111100 < 00, where 1111100 denotes the essential supremum norm 
on Rn - l with respect to Lebesgue measure. 

Recall that on S, if P > q then LP(S) c Lq(S). On Rn-l, if p of q 
then neither of the spaces LP (Rn-l ), L q (R n-l) contains the other. The 
reader should keep this in mind as we develop Poisson-integral theory 
in this new setting. 

The Poisson integral of I E LP (R n-l ), for any p E [1, 00 ], is the 
function PH [f] on H defined by 

PH[f](Z) = fRn - 1 1(t)PH(Z, t) dt. 

Because PH (z, .) belongs to L q (Rn - l ) for every q E [1,00], the inte­
gral above is well-defined for every Z E H (by Holder's inequality). An 
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argument like the one given for PH[J,l] shows that PH[f] is harmonic 
onH. 

We now prove a result that the reader has surely already guessed. 

7.3 Solution of the Dirichlet Problem for H: Suppose f is continu-
ous and bounded on R n-l. Define u on H by 

{ 
PH [f](z) if z E H 

u(z) = 
f(z) if z ERn-I. 

Then u is continuous on H and harmonic on H. Moreover, 

lui :0; IIfll", 

onH. 

PROOF: The estimate lui :0; IIfll", on H is immediate from 7.1. We 
already know that u is harmonic on H. 

The proof that u is continuous on H is like that of Theorem 1.17. 
Specifically, let a E Rn-l and () > O. Then 

lu(z)-f(a)1 = IfRn_1(f(t)-f(a»)PH(Z,t)dtl 

:o;f If(t)-f(a)IPH(z,t)dt 
It-a15D 

+ 211flloo f PH(Z, t) dt 
It-al>D 

for all Z E H. If () is small, the integral over {I t - a I :0; ()} will be small 
by the continuity of f at a and 7.1. The integral over {It - al > ()} 
approaches 0 as Z - a by Proposition 7.2. _ 

In the special case where f is uniformly continuous on Rn-l, we can 
make a stronger assertion: 

7.4 Theorem: If f is bounded and uniformly continuous on Rn-l 

and u = PH[f], then u y - f uniformly on Rn - 1 as y - O. 

PROOF: The uniform continuity of f on Rn - 1 shows that the esti-
mates in the proof of Theorem 7.3 can be made uniformly in a. _ 
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See Exercise 4 of this chapter for a converse to Theorem 7.4. 
The next result follows immediately from Corollary 2.2 and Theo­

rem 7.3; we state it as a theorem because of its importance. 

7.5 Theorem: Suppose u is a continuous bounded function on H that 
is harmonic on H. Then u is the Poisson integral of its boundary values. 
More preCisely, 

onH. 

We now take up the more general Poisson integrals defined earlier. 
Certain statements and proofs closely parallel those in the last chapter; 
we will be brief about details in these cases. 

7.6 Theorem: The following growth estimates apply to Poisson inte-
grals: 

(a) If P E M(Rn - 1) and u = PH[P], then Iluylll :5 IIpII for all y > O. 

(b) Suppose 1 :5 P :5 00. If f E LP (Rn-l) and u = PH[f], then 
Iluy lip :5 IIfllp for all y > 0. 

PROOF: The identity 

7.7 

valid for all x, t E Rn - 1 and y > 0, is the replacement for 6.5 in this 
context. The rest of the proof is the same as that of Theorem 6.4. • 

The next result is the upper half-space analogue of Theorem 6.7. 
Here the noncompactness of aH = Rn - 1 forces us to do a little extra 
work. 

7.8 Theorem: Suppose that 1 :5 P < 00. If f E LP (Rn-l) and 
u = PH[f], then IIuy - flip - ° as y - O. 

PROOF: We first prove the theorem for f E Cc(Rn-l), the set of con­
tinuous functions on R n-l with compact support. Because Cc (R n-l ) 

is dense in LP (Rn-l) for 1 :5 P < 00, the approximation argument 
used in proving Theorem 6.7 (together with Theorem 7.6) will finish 
the proof. 
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Let f E Cc(Rn- 1), and set u = PH[f). Choose a ball B(O,R) that 
contains the support of f. Because f is uniformly continuous on Rn - 1 , 

Theorem 7.4 implies that u y - f uniformly on Rn-l as y - O. Thus 
to show that Iluy - flip - 0, we need only show that 

7.9 J luy(x) IP dx - 0 
Ixl>2R 

as y - O. 
For Ixl > 2R, we have 

luy(x) IP ~ J If(t) IP (I t CI2nY 2)n/2 dt 
Itl<R X - + Y 

Cy 
< ---"--
- (Ixl-R)n' 

where C = cnllfll~Vn-l(B(O,R») and the first inequality follows from 
Jensen's inequality. It is now easy to verify 7.9 by integrating in polar 
coordinates (1.5). • 

As in the last chapter, weak* convergence replaces norm conver­
gence for Poisson integrals of measures and L OO-functions. 

7.10 Theorem: Poisson integrals have the following weak* conver­

gence properties: 

(a) If J..l E M(Rn-l) and u = PH[J..l), then u y - J..l weak* in M(Rn- 1) 

as y - o. 
(b) Iff E L 00 (Rn-l) and u = PH[f), then u y - f weak* in L 00 (Rn- 1) 

as y - O. 

PROOF: The Banach spaces M (R n-l ) and L 00 (R n-l ) are, respectively, 
the dual spaces of Co(Rn-l) and L 1 (Rn-l). Note that if 9 E Co(Rn-l), 

then 9 is uniformly continuous on R n-l, and therefore (PH [g]) y - 9 
uniformly on R n-l as y - 0 (by Theorem 7.4). The proof of Theo­
rem 6.9 can thus be used here, essentially verbatim. Again, the identity 
7.7 replaces 6.5. • 

If f is continuous and bounded on R n-l, then there is a function on 
the closed half-space H that is harmonic on H and agrees with f on the 
boundary Rn-l; see 7.3. What happens if we drop the assumption that 
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f is bounded? Without any growth estimate on f, we cannot expect 
to find a solution to the Dirichlet problem with boundary data f by 
integrating f against some kernel as in 7.3. Nevertheless, the following 
theorem asserts that a solution exists with just the assumption that 
f is continuous. We are not asserting any sort of uniqueness for the 
solution, because a multiple of y can be added to any solution to obtain 
another solution. 

7.11 Theorem: Suppose f E C(Rn-l). Then there exists U E C(H) 
such that U is harmonic on Hand UIRn-l = f. 

PROOF: We will construct a sequence of functions uo, Ul, ... in C(H) 
such that for each k the following hold: 

(a) Uk is harmonic on H; 

(b) Uk(X,O) = f(x) for all x E Rn-l ~ith Ixi ::; k; 

(c) 
1 -

I(Uk+l - uk)(x,y)1 < 2k for all (x,y) E H with l(x,y)1 ::; k/2. 

This ~ill prove the theorem, because (c) implies that the sequence 
(Uk) converges uniformly on each compact subset of H to a function 
U E C(H); from (a) and Theorem 1.23 we have that U is harmonic on H; 
from (b) we have that UIRn-l = f. 

We construct the sequence (Uk) inductively, starting by taking Uo 
to be the constant function whose value is f(O). Now fix k and suppose 
that we have Uk E C(H) satisfying (a) and (b) above. To construct Uk+l, 

let W E C(H) be such that w is harmonic on H and w(x, 0) = f(x) 

for all x E Rn - 1 with Ixi ::; k + 1 (to see that such a w exists, extend 
fl(k+l)Bn-l to a bounded continuous function on Rn-l and then use 7.3). 
Now 

(w - ud(x,O) = 0 

for all x E Rn - 1 with Ixi ::; k. Thus by the Schwarz reflection principle 
(4.12), (w - uk)lkBnH extends to a harmonic function v on kB. The 
proof of 4.12 shows that 

7.12 vex, y) = -vex, -y) 

for all (x,y) E kB. 
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The expansion of v into an infinite sum of homogeneous harmonic 
polynomials converges uniformly to v on (k/2)B (see 5.34). Taking an 
appropriate partial sum, we conclude that there is a harmonic polyno­
mial p such that 

1 
I(v - p)(x,y)1 < 2k 

for all (x, y) E (k/2)B. Note that p(x, 0) = 0 for all x ERn-I, because 
7.12 implies that the power series expansion uf v contains only odd 
powers of y. 

Now let Uk+l = W - plfT' Then Uk+l E C(H) and Uk+l is harmonic 
onH. Furthermore, Uk+l (x, 0) = j(x) for all x E Rn - 1 with Ixl s k+ 1. 
Finally, if (x,Y) E H with l(x,y)1 ::s; k/2, then 

I(Uk+l - uk)(x,y)1 = I(w - p - uk)(x,y)1 

= I(,v - p)(x,y)1 

1 
< 2k 

and thus Uk+l has all the desired properties. 

Tlie J{armanic J{arcfy Syaces hP (H) 

• 

For p E [1,00], we define the harmonic Hardy space h P (H) to be the 
normed vector space of functions U harmonic on H for which 

IlullhP = sup Iluy lip < 00. 
y>O 

Note that h 00 (H) is simply the collection of bounded harmonic func­
tions on H, and that 

Ilullh'" = sup Iu(z) I. 
ZEH 

We leave it to the reader to verify that h P (H) is a normed linear space 
under the norm II II hp. 

As the reader should suspect by considering what happens in the 
ball, if U E hP (H) then the norms II u y II P increase as y ~ 0 to II U II hP. 
To prove this, we need to do some extra work because of the noncom­
pactness of aH = Rn-l. We begin with the following result. 
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7.13 Theorem: Let p E [1, 00 ). Then there exists a constant C, de­
pending only on p and n, such that 

CllullhP 
lu(x, y) I ::; y(n-l)/p 

for all u E h P (H) and all (x, y) E H. In particular, every u E h P (H) 
is bounded on H + (0, y) for each y > o. 

PROOF: Let (xo, Yo) E H, and let w denote the open ball in Rn with 
center (xo, Yo) and radius yo/2. The volume version of the mean-value 
property, together with Jensen's inequality, shows that 

7.14 

Setting n = {(x,y) E H: yo/2 < y < 3Yo/2}, we have 

L lul P dVn ::; In lul P dVn 

f3YO / 2 r = lu(x,y)IP dxdy 
yo/2 JRn - 1 

This estimate and 7.14 give the conclusion of the theorem after taking 
pth roots. _ 

Theorems 7.5 and 7.13 show that if p E [1,00] and u E he (H), then 
for each y > 0 we have 

7.15 

for all Z E H. 
The next corollary is not entirely analogous to Corollary 6.6 because 

the conclusion that Iluy lip increases as y decreases is not true for an 
arbitrary harmonic function on H. For example, if u(x,y) = y - I, 
then Ilulllp = 0 while Iluy lip = 00 for all y =1= 1. Thus we have the 
hypothesis in the next corollary that u E h P (H). 
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7.16 Corollary: Suppose 1 :-:; p :-:; 00 and U E h P (H). Then 

whenever 0 < Yl :-:; Y2. Furthermore, 

IlullhP = lim Iluyll p . 
y-O 
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PROOF: The idea is the same as in the proof of Corollary 6.6. Specif­
ically, if 0 < Yl :-:; Y2 then 

where the equality follows from 7.15 and the inequality follows from 
Theorem 7.6(b}. 

The formula for II u II hP now immediately follows from the definition 
of IlullhP and the first part of the corollary. _ 

The next theorem is the analogue for the half-space of Theorem 6.13 
for the ball. The results we have proved so far in this chapter allow the 
proof from the ball to carry over directly to the half-space, as the reader 
should verify. 

7.17 Theorem: The Poisson integral induces the following surjective 
isometries: 

(a) The map J1 ..... PH [J1] is a linear isometry of M (R n-l) onto h I (H). 

(b) For 1 < P :-:; 00, the map f ..... PH [f) is a linear isometry of 
LP (R n-l) onto h P (H) . 

.Tram the 'Ba{{ to the l1yyer 3fa[f-Syace, 
and 'Back 

Recall the inversion map x ..... x* defined in Chapter 4. This map 
takes spheres containing 0 onto hyperplanes, and takes the interiors 
of such spheres onto open half-spaces. Composing the inversion map 
with appropriate translations and dilations will give us a one-to-one 
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map of B onto H. There are many such maps; the one we choose below 
has the advantage of being its own inverse under composition. 

Let N = (0, 1) and S = (0, -1) (here 0 denotes the origin in R n-l); we 
can think of Nand S as the north and south poles of the unit sphere S. 
Now define <P: Rn \ {S} - R n \ {S} by 

<P(z) = 2(z - S)* + S. 

It is easy to see that <P is a one-to-one map of Rn \ {S} onto itself. We 
can regard <P as a homeorrforphism of R n u {oo} onto itself by defining 
<P(S) = 00 and <P(oo) = S. The reader may find it helpful to keep the 
following diagram in mind as we proceed. 

00 

N 

o 

S 

<P maps B onto Hand H onto B. 

The next result summarizes the basic properties of <P. 

7.18 Proposition: The map <P has the following properties: 

(a) <P(<P(z)) = z for all z ERn U {oo}; 

(b) <P is a conformal, one-to-one map of Rn \ {S} onto Rn \ {S}; 

(c) <P maps B onto Hand H onto B; 

(d) <I> maps S \ {S} onto Rn - 1 and Rn - 1 onto S \ {S}. 
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PROOF: The proof of (a) is a simple computation_ 
In (b), only conformality needs to be checked_ Recalling that the 

inversion map is conformal (Proposition 4.2), we see that <I> is the com­
position of conformal maps, and hence is itself conformal. 

We prove (c) and (d) together. Noting that <I> (S) = 00, we know that 
<I> maps S \ {S} onto some hyperplane. Because the inversion map pre­
serves the (0, y)-axis, the same is true <1>. The conformality of <I> thus 
shows that <I>(S \ {S}) is a hyperplane perpendicular to the (0, y)-axis. 
Since <I>(N) = 0, we must have <I>(S \ {S}) = Rn-l. It follows that <I> (B) 

is either the upper or lower half-space. Because <1>(0) = N, we have 
<I>(B) = H, as desired. _ 

We now introduce a modified Kelvin transform X that will take har­
monic functions on B to harmonic functions on H and vice-versa. Given 
any function u defined on a set E eRn \ {S}, we define the function 
X[u] on <I> (E) by 

Note that when n = 2, X[u](z) = u(<I>(z)). 

The factor 2(n-2l/2 is included so that X will be its own inverse. 
That is, we claim 

X[X[u]] = u 

for all u as above, a computation we leave to the reader. 
The transform X is linear-if u, v are functions on E and b, care 

constants, then 

X[bu + cv] = bX[u] + cX[v] 

on <1>(£). 

Finally, X preserves harmonicity. The real work for the proof of 
this was done when we proved Theorem 4.7. 

7.19 Proposition: If ncR n \ {S}, then u is harmonic on n if and 
only if X[u] is harmonic on <1>(0). 

PROOF: Because X is its own inverse, it suffices to prove only one 
direction of the theorem. So suppose that u is harmonic on n. Define 
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a harmonic function v on ~(O - S) by v(z) = u(2z + S). By Theo­
rem 4.7, the Kelvin transform K[ v] is harmonic on 2 (Q - S) *, and thus 
K[v] (z - S) is harmonic on 2(0 - S)* + S = <P(Q). But, as is easily 
checked, K[v](z - S) = 2(Z-n)/Z X[u](z), so that X[u] is harmonic on 
<P(Q), as desired. _ 

Positive J-farmonic Junctions on tfie 
l1yyer J-fa(f-Syace 

Because the modified Kelvin transform X takes positive functions to 
positive functions, Proposition 7.19 shows that X preserves the class 
of positive harmonic functions. Thus u is positive and harmonic on H 
if and only if X[ u] is positive and harmonic on B. This will allow us to 
transfer our knowledge about positive harmonic functions on the ball 
to the upper half-space. For example, we can now prove an analogue 
of Theorem 6.19 for the upper half-space. 

7.20 Theorem: Let tERn-I. Suppose that u is positive and harmonic 
on H, and that u extends continuously to H \ {t} with boundary values 0 
on RIt-l \ {t}. Suppose further that 

7.21 
u(O,Y) _ 0 

y 
asy - 00. 

Then u = CPH(', t) for some positive constant c. 

PROOF: The function X[u] is positive and harmonic on B. Thus 
by 6.19, 

X[u] = P[J.l] 

for some positive J.l E M(S), where as usual P denotes the Poisson 
kernel for the ball. Our hypothesis on u implies that X[u] extends 
continuously to B \ {S,<P(t)}. with boundary values 0 on S \ {S,<P(t)}. 

The argument used in proving Theorem 6.19 then shows that J.l is the 
sum of point masses at Sand <P(t). 

An easy computation gives 

X[u](rS) = 2(n-z)/Z(1 _ r)z-nu(O, 1 + r) 
1-r 
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for every r E [0,1). Now from 7.21 we see that (l-r)n-l X[u](rS) - ° 
as r - 1, and this implies J1 ({S}) = ° (see Exercise 3 in Chapter 6). 

Thus J1 is a point mass at <I>(t), and therefore X[u] is a constant 
times P ( . , <I> (t) ). Because PH ( ., t) also satisfies the hypotheses of The­
orem 7.20, X[PH (., t)] is a constant times P{·, <I>(t)) as well. Thus 

X[u] = CX[PH(·,t)] 

for some positive constant c. Applying X to both sides of the last 
equation, we see that the linearity of X gives the conclusion of the 
theorem. _ 

We can think of the next result as the "t = 00" case of Theorem 7.20. 

7.22 Theorem: Suppose that u is positive and harmonic on H and that 
u extends continuously to H with boundary values ° on R n-l. Then there 
exists a positive constant c such that u (x, y) .= c y for all (x, y) E H. 

PROOF: The function X[u] is positive and harmonic on B, extends 
continuously to B \ {S}, and has boundary values ° on S \ {S}. By The­
orem 6.19, X[u] is a constant times P(·, S). Because the same is true 
of X[v], where v(x,y) = y onH, X[u] is a constant times X[v]. As 
in the proof of the last theorem, this gives us the desired conclusion. _ 

The modified Kelvin transform X allows us to derive the relation 
between P and PH, the Poisson kernels for Band H, with a minimum 
of computation. 

7.23 Theorem: 

for all Z E Hand tERn-I. 

PROOF: Fix t E R n-l, and let u (z) denote the right side of the equa­
tion above that we want to prove. Then u is positive and harmonic on 
H, and it is easy to check that u extends continuously to H \ {t} with 
boundary values 0 on Rn - 1 \ {t}. We also see that u(O,Y)/y - 0 (with 
plenty of room to spare) as Y - 00. Thus by Theorem 7.20, u is a con­
stant multiple of PH(·, t). Evaluating at z = N now gives the desired 
result. -
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We turn now to the problem of characterizing the positive harmonic 
functions on H. We know that if J..I is a finite positive Borel measure on 
Rn-l, then PH[J..I] is a positive harmonic function on H. Unlike the case 
for the ball, however, not all positive harmonic functions on H arise in 
this manner. In the first place, PH[J..I] defines a positive harmonic func­
tion on H for some positive measures J..I that are not finite-Lebesgue 
measure on R n-l, for example. Secondly, the positive harmonic func­
tion y is not the Poisson integral of anything that lives on R n-l. 

Let us note that if J..I is any positive Borel measure on R n-l, then 

7.24 

is well-defined as a number in [0,00] for every Z E H. We claim that 
7.24 defines a positive harmonic function on H precisely when 

7.25 

To see this, note that if Z E H is fixed, then PH(Z, t), as a function 
of t, is bounded above and below by positive constant multiples of 
(1 + ItI2)-n/2. Thus if 7.24 is finite for some Z E H, then it is finite 
for all Z E H, and this happens exactly when 7.25 occurs. In this case 
PH[J..I] is harmonic on H, as can be verified by checking the volume 
version of the mean-value property. 

We now state the main result of this section. 

7.26 Theorem: If u is positive and harmonic on H, then there exists 
a positive Borel measure J..I on Rn-l and a nonnegative constant c such 
that 

U(X,y) = PH[J..I](X,y) + cy 

for all (x, y) E H. 

The main idea in the proof of this result is the observation that if 
U is positive and harmonic on H, then X[u] is positive and harmonic 
on B, and hence is the Poisson integral of a positive measure on S. The 
restriction of this measure to S \ IS} gives rise to the measure J..I, and 
the mass of this measure at S gives rise to the term cy. 

Before coming to the proof of Theorem 7.26 proper, we need to 
understand how measures on S pull back, via the map <1>, to measures 
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on Rn-l. For any positive v E M(S), we can define a positive measure 
v 0 <I> E M(Rn - 1 ) by setting (v 0 <I>)(E) = v (<I> (E) ) for every Borel set 
E c Rn-l. We then have the following "change of variables formula", 
valid for every positive Borel measurable function f on S \ {S}: 

7.27 f fdv=f (jo<l»d(Vo<l». 
S\ IS} Rn - 1 

The last equation is easy to verify when f is a simple function on S \ {S}; 
the full result follows from this by the monotone convergence theo­
rem. 

PROOF OF THEOREM 7.26: If u is positive and harmonic on H, then 
X[u] is positive and harmonic on B, and thus X[u] = P[A] for some 
positive measure A E M(S). Define v E M(S) by dv = XS\{S} dA. We 
then have 

X[u] = P[v] + A( {S} )P(·, S). 

By the linearity of X, 

u = X[P[v]] + A({S})X[P(·,S)]. 

From Theorem 7.22 it is easy to see that X[P(·, S)] is a constant multi­
ple of y on H. The proof will be completed by showing that X [p [v]] = 

PH [Ji] for some positive Borel measure Ji on R n-l. 

Because v( {S}) = 0, 

P[v](z) = f P(z, t;;') dv(t;;') 
S\ IS} 

for all z E B. Thus by 7.27, 

X[P[v]] (z) = f 2(n-2)/2Iz - SI 2- n p(<I>(Z), t;;') dv(t;;') 
S\{S} 

= f 2(n-2)/2Iz - SI 2- n p(<I>(Z),<I>(t)) d(v 0 <I>)(t) JRn - 1 

for every z E H. In the last integral we may multiply and divide by 
!Jl(t), where !Jl(t) = 2(n-2)/2cn (l + ItI2)-n/2. With dJi = (l/!Jl) d(v 0 <1», 

we then have X [p [v]] = PH [Ji], as desired. _ 
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Nontangentia{ Limits 
We now look briefly at the Fatou Theorem for the Poisson integrals 

discussed in this chapter. Rather than tediously verifying that the maxi­
mal function arguments of the last chapter carry through to the present 
setting, we use the modified Kelvin transform X to transfer the Fatou 
Theorem from B to H. 

The notion of a nontangentiallimit for a function on H was defined 
in Chapter 2; the analogous definition for a function on B was given 
in Chapter 6. We leave it to the reader to verify the following asser­
tion, which follows from the conformality of the map <I>: a function u 
on H has a non tangential limit at t E Rn - 1 if and only if X[ u] has a 
nontangentiallimit (within B) at <I>(t). 

Another observation that we leave to the reader is that the map <I> 

preserves sets of measure zero. More preCisely, a Borel set E c Rn-l 

bas Lebesgue measure 0 if and only if <I> (E) has u-measure 0 on S; this 
follows easily from the smoothness of <I>. 

In this chapter, the term "almost everywhere" will refer to Lebesgue 
measure on R n-l. Putting the last two observations together, we see 
that a function u on H has non tangential limits almost everywhere 
on Rn - 1 if and only if X[u] has nontangentiallimits u-almost every­
where on S. 

The next result is the Fatou theorem for Poisson integrals of func­
tions in LP (Rn - 1). 

7.28 Theorem: Let p E [1,00]. If f E LP(Rn - 1 ), then PH[j] has 

nontangentiallimit f(x) at almost every x ERn-I. 

PROOF: Because every real-valued function in LP (R n-l) is the dif­
ference of two positive functions in LP (R n-l ), we may assume that 
f ~ O. The function u = PH[j] is then positive and harmonic on H, 
and thus X[u] is positive and harmonic on B. By 6.15 and 6.44, X[u] 
has nontangentiallimits u-almost everywhere on S. As observed ear­
lier, this implies that u has a nontangentiallimit g(x) for almost every 
x ERn-I. 

We need to verify that f = 9 almost everywhere. For p < 00, The­
orem 7.8 asserts that lIuy - flip - 0 as y - 0; thus some subse­
quence (un) converges to f pointwise almost everywhere on R n-l, and 
hence f = g. For p = 00, Theorem 7.10(b) shows that u y - f weak* 
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in L 00 (Rn- I ) as y - O. But we also have u y - 9 weak* in L 00 (Rn-I) by 
the dominated convergence theorem, and so we conclude f = g. • 

The theorem above shows, by Theorem 7.17, that if u E h P (H) and 
p E (1, 00 ], then u has non tangential limits almost everywhere on R n-I. 

The next theorem gives us the same result for hI (H) as a corollary. 

7.29 Theorem: Suppose J1 E M(Rn-l) is Singular with respect to 
Lebesgue measure. Then PH[J1] has nontangentiallimit 0 almost ev­
erywhere on Rn-I. 

PROOF: We may assume that J1 is positive. By analogy with 7.27, we 
define J1 0<1> E M(S) by setting (J1 0<1>)(£) = J1 (<1>(£ \ {S})) for every Borel 
set £ c S. We then have 

where dv = (1/l/J) dJ1 and l/J is as in the proof of 7.26. Because J.1 is 
singular with respect to Lebesgue measure on R n-I, J1 0 <I> is singular 
with respect to CT. By 6.42, P[J1 0 <1>] has nontangentiallimit 0 almost 
everywhere on S. The equation above tells us that PH[V] has nontan­
gentiallimit 0 almost everywhere on Rn-I. From this we easily deduce 
that PH [p] has nontangentiallimit 0 almost everywhere on R n-I. • 

'Tfie Loca{ :Jatau 'Tfiearem 

The Fatou Theorems obtained so far in this book apply to Poisson 
integrals of functions or measures. In this section we prove a different 
kind of Fatou theorem-one that applies to arbitrary harmonic func­
tions on H satisfying a certain local boundedness condition. 

We will need to consider truncations of the cones Cx(a) defined in 
Chapter 2. Thus, for any h > 0, we define 

r~(a) = {(x,y) E H: Ix - al < IXy and y < h}. 

A function u on H is said to be nontangentially bounded at a E R n-l 

if u is bounded on some r~(a). Note that if u is continuous on H, then 
u is nontangentially bounded at a if and only if u is bounded on r&(a) 
for some IX > o. We can now state the main result of this section. 
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R 

h 

a 

The truncated cone [~(a). 

7.30 Local Fatou Theorem: Suppose that u is harmonic on Hand 
E c Rn - 1 is the set of points at which u is non tangentially bounded. 
Then u has a nontangentiallimit at almost every point of E. 

A remarkable feature of this theorem should be emphasized. For 
each a E E, we are only assuming that u is bounded in some [~(a); in 
particular, IX can depend on a. Nevertheless, the theorem asserts the 
existence of a set of full measure FeE such that u has a limit in [oc(a) 

for every a E F and every IX > O. 
The following lemma will be important in proving the Local Fatou 

Theorem. Figure 7.32 may be helpful in picturing the geometry of the 
region n mentioned in the next three lemmas. 

7.31 Lemma: Suppose E c Rn-l is Borel measurable, IX > 0, and 

n = U [~(a). 
aEE 

Then there exists a positive harmonic function v on H such that v ~ 1 
on (aO) n H and such that v has nontangentiallimit 0 almost every­
where on E. 
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PROOF: Define a positive harmonic function w on H by 

where XfC denotes the characteristic function of EC , the complement 
of E in Rn - 1 . By Theorem 7.28, w has nontangentiallimit 0 almost 
everywhere on E. 

R 

E E E E 

7.32 n = U r~(a). 
aEE 

We wish to show that w is bounded away from 0 qn (on) n H. Be­
cause w (x, 1) ;::: I, we have w ;::: 1 on the "top" of an. Next, observe that 
(x, y) belongs to [a(a) if and only if a E R(x, lXy) (where R(x, lXy) de­
notes the ball in Rn - 1 with center x and radius lXy). So if (x,y) Eon 
and 0 < y < I, then (x, y) rt [a(a) for all a E E (otherwise (x, y) Em, 

giving R(x, lXy) c £C. Therefore 
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Denoting the last expression by Ca (a constant less than 1 that depends 
only on DC and n), we see that if v = W / Ca , then v satisfies the conclu­
sion of the lemma. _ 

The crux of the proof of 7.30 is the following weaker version of the 
Local Fatou Theorem. 

7.33 Lemma: Let E c R n-l be Borel measurable, let DC> 0, and let 

0= U r~(a). 
aEE 

Suppose U is harmonic on H and bounded on O. Then for almost every 
a E E, the limit of u(z) exists as z - a within ra(a). 

PROOF: Because every Borel set can be written as a countable union 
of bounded Borel sets, we may assume E is bounded. We may also 
assume thatu is real valued. 

Because u is continuous on Hand E is bounded, we may assume 
that I u I 5 1 on the open set 

0' = U r~(a). 
aEE 

Choose a sequence (Yk) in the interval (0,1) such that Yk - 0, and 
set Ek = [0 - (O,Yk)] n Rn-l. Each Ek is an open subset of R n- 1 that 
contains E. (At this point we suggest the reader start drawing some 
pictures.) 

For x ERn-I, define 

Because (X,Yk) E 0 if and only if x E Eko we have 11kl 5 1 on Rn - 1 

for every k. The sequence Uk), being norm-bounded in L 00 (Rn - 1 )", has 
a subsequence, which we still denote by Uk), that converges weak* to 
some 1 E L 00 (Rn-l). 

Now each !k is continuous on Ek (because Ek is open), and thus 
PH [fd extends continuously to H u Ek (see Exercise 17(a) of this chap­
ter). The function Uk given by 
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is thus harmonic on H and extends continuously to H u Ek, with Uk = 0 
on Ek. In particular, Uk is continuous on 0 with Uk = 0 on E. Further­
more, because 0 + (O,Yk) cO', we have IUkl ~ 2 on O. 

Now let v denote the function of Lemma 7.31 with respect to O. 
Then liminfz_on (2v - Uk) (z) ~ O. By the minimum principle (1.10), 
2v - Uk ~ 0 on O. Letting k - 00, we then see that 2v - (PH[f] -u) ~ 0 
on O. Because this argument applies as well to 2v + Uk. we conclude 
that IPH[f] - ul :$; 2v on O. 

By Theorem 7.28, PH[f] has nontangentiallimits almost everywhere 
on Rn-l, while Lemma 7.31 asserts v has nontangentiallimits 0 almost 
everywhere on E. From this and the last inequality, the desired limits 
for U follow. • 

Recall that if E c Rn - 1 is Borel measurable, then a point a E E is 
said to be a point of density of E provided 

lim Vn - 1 (B(a, r) n E) = 1 
r-O Vn-r(B(a,r)) . 

By the Lebesgue Differentiation Theorem ([15], Theorem 7.7), almost 
every point of E is a point of density of E. 

Points of density of E are where we can expect the cones defining 0 
in Lemma 7.33 to "pile up"; this will allow us to pass from 7.33 to the 
stronger assertion in 7.30. 

7.34 Lemma: Suppose E c Rn - 1 is Borel measurable, lX > 0, and 

0= U r~(a). 
aEE 

Suppose U is continuous on H and bounded on O. If a is a point of 

density of E, then u is bounded in rJ (a) for every /3 > O. 

PROOF: Let a be a point of density of E, and let /3 > O. It suffices to 
show that r$(a) cO for some h > O. 

Choose 8 > 0 such that 

7.35 Vn-dB(a,r) n E) > 1- _lX_ ( )
n-l 

Vn-r(B(a,r)) lX+/3 

whenever r < 8; we may assume 8/ (lX + /3) < 1. Set h = 8/ (lX + /3), 
and let (x, Y) E r$(a). Then B(x, lXY) c B(a, (lX + /3)y). This implies 
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B(x, ocy) nE is nonempty; otherwise we violate 7.35 (take r = (oc+ /3)y). 
Choosing any b E B(x, ocy) n E, we have (x. y) E r&(b), and thus 
r3(a) en, as desired. _ 

PROOF OF THEOREM 7.30: We are assuming u is harmonic on Hand 
E is the set of pOints in Rn-l at which u is nontangentially bounded. 
For k = 1,2, ... , set Ek = {a E Rn-l : lui :s k on rLk(a)}. Then each 
Ek is a closed subset of Rn-l, and E = U Ek (incidentally proving that 
the set E is Borel measurable). Applying Lemma 7.34 to each Eb and 
recalling that the points of density of Ek form a set of full measure in Eb 
we see that there is a set of full measure FeE such that u is bounded 
on r& (a) for every a E F and every oc > O. For each positive integer k, 
we can write F as F = UFj, where Fj = {a E F : lui :s jon flea)}. 
Lemma 7.33, applied to Fj, now shows that u has nontangentiallimits 
almost everywhere on E, as desired. _ 
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Txercises 
1. Assume n = 2. For each t E R, find a holomorphic function gt 

on H such that PH(·, t) = Regt. 

2. In Chapter 1, we calculated P(x, () as a normal derivative on oB 
of an appropriate modification of Ix - (1 2- n (n > 2). Using an 
appropriate modification of Iz- tl 2- n , find a function whose nor­
mal derivative on oH is PH(Z, t). 

3. Let /.1 E M(Rn-l) and let u = PH[/.1]. Prove that 

f J.1(OBn-l) 
uy(x) dx - J.1(Bn-d + 2 

Bn-l 

as y - o. 

4. Let P E [1, 00 ] and assume u E hP (H). Show that if the functions 
u y converge uniformly on Rn - 1 as y - 0, then u extends to a 
bounded Uniformly continuous function on H. 

5. For ( E 5, show that 

6. For (x, y) ERn \ {S}, show that 

2 4y 
I-I<I>(x,y)1 = Ixl2 + (y + 1)2· 

7. Show that if n = 2, then 

<I>(Z) = 1_ - i~ 
Z-t 

for every Z E C \ {-i}. 

8. Suppose ( E 5 and f E C(5 \ {(}). Prove that there exists 
u E c(H \ {(}) such that u is harmonic on Band ulsW;-} = f. 
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9. Prove that 

for every positive Borel measurable function f on S. (Hint: Be­
cause <1>: S\ {S} - R n-l is smooth, there exists a smooth function 
w on Rn-l such that d(o-o<l» = wdt. To find w, apply 7.27 with 
v = 0-.) 

10. Using the result of the last exercise, show that 

for every positive Borel measurable function f on Rn-l. 

11. (a) Let J1 be a positive Borel measure on Rn - 1 that satisfies 7.25, 
and set u = PH[J1]. Show that limy _ oo u(O,Y)/Y = O. 

(b) Let u be a positive harmonic function on H. Show that 
liminfy_ou(O,y)/y > O. 

12. Show that if u is positive and harmonic on H, then the decompo­
sition u(x, y) = PH [J1](x, y) + cy of Theorem 7.26 holds for a 
unique positive Borel measure J1 on Rn - 1 and a unique nonneg­
ative constant c. 

13. Let J1 be a positive Borel measure on Rn - 1 that satisfies 7.25, and 
set u = PH[J1]. Prove that 

~~ fRn-1 q;(t)Uy(t) dt = Ln-l q;(t) dJ1(t) 

for every continuous function q; on Rn - 1 with compact support. 

14. Prove that X[hP(H)] c hl(B) for every p E [1,00]. (Hint: Exer­
cise 9 in Chapter 6 may be helpful here.) 

15. Let p E [1,00] and let f E LP (Rn - 1). Show that X[f] ELI (S). 

16. Let p E [1,00] and let f E LP(Rn - 1). Show that 

for every Z E H. 
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17. Assume that f is measurable on R n-1 and that 

(a) Show that if f is continuous at a, then PH[f] - f(a) as 
z - a within H. 

(b) Show that PH [f] tends nontangentially to f almost every­
where on R n -1. (Hint: Let 9 denote f times the character­
istic function of some large ball. Apply Theorem 7.28 to 
PH[g]; apply part (a) to PH[f - g].) 

18. Let Ji be a positive Borel measure on Rn-l that satisfies 7.25. 
Show that if Ji is singular with respect to Lebesgue measure, then 
PH[Ji] has nontangentiallimit 0 at almost every point of Rn-l. 



CHAPTER 8 

J-{arnwnic 'Bergman Syaces 

Throughout this chapter, p denotes a number satisfying 1 :::; P < 00. 

The Bergman space bP (0.) is the set of harmonic functions u on 0. such 
that 

f lip 
\\U\\bP = ( (1 \u\P dV) < 00. 

We often view bP(o.) as a subspace of LP(o.,dV). The spaces bP(o.) 

are named in honor of Stefan Bergman, who studied analogous spaces 
of holomorphic functions. 

Stefan Bergman (1895-1977), whose book [5J popularized the study of 
spaces of holomorphic {unctions belonging to LP with respect to 

volume measure. 

171 
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1{eyroducing XerneCs 

For fixed x E 0, the map u ~ u(x) is a linear functional on bP (.0); 

we refer to this map as point evaluation at x. The following proposition 
shows that point evaluation is continuous on bP (0). 

8.1 Proposition: Suppose x E n. Then 

1 
lu(x) I .:5 V(R)l/Pd(x, aO)n/p IIullbP 

for every u E b P (0). 

PROOF: Let r be a positive number with r < d(x, aO), and apply 
the volume version of the mean-value property to u on R(x, r). After 
taking absolute values, Jensen's inequality gives 

The desired inequality is now obtained by taking pth roots and letting 
r - d(x,aO). • 

The next result shows that point evaluation of every partial deriva­
tive is also continuous of bP (0). 

8.2 Corollary: For every multi-index ex there exists a constant Co< 
such that 

for all x E Q and every u E b P (0). 

PROOF: Apply 8.1 and Cauchy's Estimates (2.4) to u on the ball of 
radius d(x, aO) /2 centered at x. • 

The next proposition implies that b P (0) is a Banach space. 
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8.3 Proposition: The Bergman space bP (0) is a closed subspace of 
LP(O,dV). 

PROOF: Suppose U j - U in LP (D., dV), where (u j) is a sequence 
in bP (0) and U E LP (D., dV). We must show that, after appropriate 
modification on a set of measure zero, U is harmonic on D.. 

Let KeD. be compact. By Proposition 8.1, there is a constant C < 00 

such that 

for all x E K and all j, k. Because (Uj) is a Cauchy sequence in bP(O), 

the inequality above implies that (u j) is a Cauchy sequence in C (K). 

Hence (u j) converges uniformly on K. 

Thus (u j) converges uniformly on compact subsets of 0. to a func­
tion v that is harmonic on 0. (Theorem 1.23). 

Because U j - U in LP (D., dV), some subsequence of (u j) converges 
to U pointwise almost everywhere on D.. It follows that U = v almost 
everywhere on D., and thus U E bP (0), as desired. _ 

Taking p = 2, we see that the last proposition shows that b2 (0) is 
a Hilbert space with inner product 

(U, v) = fa UV dV. 

For each x E D., the map u ...... u(x) is a bounded linear functional on 
the Hilbert space b 2 (0) (by Proposition 8.1). Thus there exists a unique 
function Rn (x, .) E b2 (0) such that 

U(x) = fa u(y)Rn(x,y) dV(y) 

for every U E b2 (D.). The function Rn, which can be viewed as a func­
tion on 0. x D., is called the reproducing kernel of D.. 

The basic properties of Rn given below are analogous to properties 
of the zonal harmonics we studied in Chapter 5 (even the proofs are 
the same). 
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8.4 Proposition: The reproducing kernel of D has the following 
properties: 

(a) Rn is real valued. 

(b) If (u m ) is an orthonormal basis of b 2 (0), then 

00 

Rn(x,y) = I um(x)um(y) 
m=l 

for all x,y E D. 

(c) Rn(x,y) = Rn(y,x) for all x,y E D. 

(d) IIRn(x,')llb2 =.JRn(x,x) for all X ED. 

PROOF: To prove (a), suppose that U E b 2 (0) is real valued and 
XED. Then 

0= Imu(x) 

= 1m In u(y)Rn(x,y) dV(y) 

= - In u(y) ImRn(x, y) dV(y). 

Take U = ImRn(x,'), obtaining 

which implies ImRn == O. We conclude that each Rn is real valued, as 
desired. 

To prove (b), let (u m ) be any orthonormal basis of b2 (0). (Recall 
that L 2 (0, dV), and hence b2 (0), is separable.) By standard Hilbert 
space theory, 

00 

Rn(x,') = I (Rn(x, '),Um)U m 
m=l 

00 

= I Um(X)U m 
m=l 
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for each x E 0, where the infinite sums converge in norm in b2 (O). 

Since point evaluation is a continuous linear functional on b2 (0), the 
equation above shows that the conclusion of (b) holds. 

To prove (c), note that (b) shows that Ro(x,y) = Ro(y,x), while 
(a) shows that Ro (x, y) = Ro (x, y) for all x, YEO. Putting these two 
equations together gives (c). 

To prove (d), let x E O. Then 

IIRo(x, ·)11~2 = (Ro(x, ·),Ro(x, .)) 

= Ro(x,x), 

where the second equality follows from the reproducing property of 
Ro(x, .). Taking square roots gives (d). _ 

Because b2 (0) is a closed subspace of the Hilbert space L 2 (0, dV), 
there is a unique orthogonal projection of L2 (0, dV) onto b2 (0). This 
self-adjOint projection is called the Bergman projection on 0; we denote 
it by Qo. The next proposition establishes the connection between the 
Bergman projection and the reproducing kernel. 

8.5 Proposition: If x E 0, then 

Qo[u](x) = In u(y)Ro(x,Y) dV(y) 

for all u E L 2 (0, dV). 

PROOF: Let x E 0 and u E L 2 (0, dV). Then 

Qo[u](x) = (Qo[u],Ro(x, .)) 

= (u,Ro(x, .)) 

= fa u(y)Ro(x,y) dV(y), 

where the first equality above follows from the reproducing property of 
Ro (x, . ), the second equality holds because Qo is a self-adjoint projec­
tion onto a subspace containing Ro (x, . ), and the third equality follows 
from the definition of the inner product and Proposition 8.4(a). _ 

In the next section, we will find a formula for computing QB[P] 
when P is a polynomial; see 8.14 and 8.15. 
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The 'Reproducing Xerne{ of tfie 'Ba{{ 
In this section we will find an explicit formula for the reproducing 

kernel of the unit ball. We begin by looking at the space Jfm (Rn), which 
consists of the harmonic polynomials on Rn that are homogeneous of 
degree m. Recall that the zonal harmonics introduced in Chapter 5 are 
reproducing kernels for Jfm(Rn). Thus if p E Jfm(Rn ), then 

8.6 p(x) = Is p«()Zm(x, () da«() 

for each x E Rn (by 5.30). By using polar coordinates, we will obtain 
an analogue of 8.6 involving integration over B instead of S. 

First we extend the zonal harmonic Zm to a function on Rn x Rn. 
We do this by making Zm homogeneous in the second variable as well 
as in the first; in other words, we set 

8.7 

(If either x or Y is 0, we define Zm (x, Y) to be ° when m > 0; when 
m = 0, we define Zo to be identically 1.) With this extended definition, 
Zm(x,·) E Jfm(Rn) for each x ERn; also, Zm(x,Y) = Zm(Y,x) for 
all X,Y ERn. 

We now derive the analogue of 8.6 for integration over B. For every 
p E Jfm(Rn), we have 

Is p(y)Zm(x, Y) dV(y) 

= nV(B) f: r n- 1 Is p(r.()Zm(x, r() da«() dr 

= nV(B) f: r n+2m- 1 Is p«()Zm(x, () da«() dr 

= nV(B)p(x) f: r n+2m- 1 dr 

= nV(B) (x) 
n+2m P 

for each x ERn. In other words, p(x) equals the inner product of p 
with (n + 2m)Zm (x, .) / (nV(B)) for every p E Jfm (Rn). 
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Now, JIk(Rn ) is orthogonal to JIm (Rn) in b 2 (B) if k f= m, as can be 
verified using Proposition 5.9 and polar coordinates (1.5). Thus if p is a 
harmonic polynomial of degree M, then p(x) equals the inner product 
of p with I~=o(n + 2m)Zm(x, ·)/(nV(B)). Taking M = 00 in the last 
sum gives us a good candidate for the reproducing kernel of the ball; 
Theorem 8.9 will show that this is the right guess. The following lemma 
will be useful in proving this theorem. 

8.8 Lemma: The set of harmonic polynomials is dense in b 2 (B). 

PROOF: First note that if U E L 2 (E, dV), then U r - U in L 2 (B, dV) 

as r - 1. (For U E C(B), use uniform continuity; the general result 
follows because C(B) is dense in L2 (B,dV).) Thus any U E b2 (B) can 
be approximated in b 2 (B) by functions harmonic on B. But by 5.34, 
every function harmonic on B can be approximated Uniformly on B, 
and hence in L 2 (B, dV), by harmonic polynomials. _ 

Now we can express the reproducing kernel of the ball as an infinite 
linear combination of zonal harmonics. We will use the theorem below 
to derive an explicit formula for RB. 

8.9 

8.10 

Theorem: If X,Y E B then 

1 00 

RB(x,Y) = nV(B) I (n + 2m)Zm(x,y). 
m=O 

The series converges absolutely and uniformly on K x B for every com­
pact K c B. 

PROOF: For x, Y E B \ {O} we have 

IZm(x,y)1 = IxlmlylmIZm(x/lxl,y/lyl)1 

:S IxlmlylmdimJIm(Rn ), 

where the inequality comes from Proposition 5.27(e). Now Exercise 10 
in Chapter 5 shows that the infinite series in 8.10 has the convergence 
properties claimed in the theorem. Thus if F(x,y) denotes the right 
side of 8.10, then F(x, .) is a bounded harmonic function on B for each 
x E B. In particular, F(x,') E b 2 (B) for each x E B. 
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Now fix x E B. The discussion before the statement of Lemma 8.8 
shows that p (x) == (p, F (x, . )} whenever p is a harmonic polynomial. 
Because point evaluation is continuous on b 2 (B) and harmonic polyno­
mials are dense in b 2 (B), we have u(x) == (u, F(x, .)} for all U E b 2 (B). 

Hence F is the reproducing kernel of the ball. • 
Our next goal is to evaluate explicitly the infinite sum in 8.10. Be­

fore doing so, note that a natural guess about how to find a formula 
for the reproducing kernel would be to find an orthonormal basis of 
b 2 (B) and then try to evaluate the infinite sum in Proposition 8.4(b). 
This approach is feasible when n == 2 (see Exercise 14 of this chapter). 
However, there appears to be no canonical choice for an orthonormal 
basis of b 2 (B) when n > 2. 

Recall (see 6.21) that the extended Poisson kernel is defined by 

8.11 P(x,Y) == (1- 2x. Y + IxI2IyI2)n/2 

for all x, y ERn x R n for which the denominator above is not 0. Fol­
lowing 6.21, we noted some properties of the extended Poisson kernel: 
P(x,Y) == P(y,x) = P(lxly,xllxl), and for x fi."Xed, P(x,·) is a har­
monic function. 

The key connection between the extended Poisson kernel and RB is 
the.formula for the Poisson kernel given by Theorem 5.33, which states 
that 

00 

P(x, () = I Zm(X, () 
m=O 

for x E Band (E S. For x,y E B, this implies that 

00 00 

I Zm(X,y) = I Zm(lylx,y/lyl) 
m=O 

= P(lylx,y/lyl) 

= P(x, y). 

Returning to 8.10, observe that 
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00 00 d 
L 2mZm(x,y) = L dtt2mZm(X,y)lt=1 

m=O m=O 

Thus 8.10 implies the beautiful equation 

8.12 

d nP(x,y) + aEP(tx, ty) It=l 
RB(x, y) = nV(B) 

This simple representation gives us a formula in closed form for the 
reproducing kernel RB. 

8.13 Theorem: Let x,y E B. Then 

RB(x ) = (n - 4)lx141y14 + (8x· y - 2n - 4)lx1 2 1y12 + n 
,Y nV(B)(l- 2x. Y + IxI2IYI2)1+n/2 

PROOF: Compute using 8.12 and 8.11. • 
The next result gives a formula for the Bergman projection on the 

unit ball. It should be compared to Theorem 5.1 and Proposition 5.31. 

8.14 Theorem: Let-p be a polynomial on R n of degree m. Then QB [p] 
is a polynomial of degree at most m. Moreover, 

1 m f 
QB[P](X) = nV(B) k~O (n + 2k) B p(y)Zdx,y) dV(y) 

for every x E B. 

PROOF: Fix x E B. For each r E (0,1), the function Pr is a polyno­
mial of degree m. Thus by Proposition 5.9 we have 
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Is p(r()Zdx, () du(() = 0 

for all k > m. Hence 

f P(y)Zk(X,y) dV(y) 1 

B ( ) = r r n+k- 1 f p(r()Zdx, () du(() dr 
nV B Jo s 

=0 

for all k > m. Combining this result with 8.10 and Proposition 8.5 gives 
the desired equation. _ 

Recall that Pm(Rn) denotes the space of polynomials on Rn that 
are homogeneous of degree m. The following corollary shows how 
to compute the Bergman projection of a polynomial from its Poisson 
integral. 

8.15 Corollary: Suppose p E Pm(Rn) and that 'I.~o Pk is the solution 
to the Dirichlet problem for the ball with boundary data pis, where each 
Pk E JfdRn). Then 

m n + 2k 
QB[P] = 2: n + k + m Pk· 

k~O 

PROOF: For 0 ::5 k ::5 m and x E B, we have 

f p(y)Zdx,y) dV(y) 1 

B nV(B) = fa r n- 1 Is p(r()Zk(x, r() du(() dr 

= J: rn+k+m-l Is P(()Zk(X, () du(() dr 

Pk(X) 
n + k + m' 

where the last equality comes from Proposition 5.31. Combining the 
last equality with Theorem 8.14 now gives the desired result. _ 

If P is a polynomial on R n, then the software described in Ap­
pendix B computes the Bergman projection QB [p] by first computing 
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the Poisson integral P[p] (using Theorem 5.21) and then uses the corol­
lary above to compute QB [p]. For example, if n = 6 and p (x) = X1 4 xz, 
then this software computes that 

Let us make an observation in passing. We have seQIl that if p is 
a polynomial on R n, then the Poisson integral P [p] and the Bergman 
projection QB[P] are both polynomials. Each can be thought of as the 
solution to a certain minimization problem. Specifically, P[p] mini­
mizes 

while QB[P] minimizes 

where both minimums are taken over all functions u harmonic on E. 
Curiously, if p is a homogeneous polynomial, then the two harmonic 
approximations P[p] and QB[P] agree only if p is harmonic (see Exer­
cise 19 in this chapter). 

'Examyfes in bP (B) 

Because the Poisson integral is a linear isometry of LP (5) onto h P (B) 
(p > 1) and of M(5) onto h1(B) (Theorem 6.13), we easily see that 
h P (B) f= h q (B) whenever p f= q. We now prove the analogous result 
for the Bergman spaces of B. 

8.16 Proposition: If 1 ::::; p < q < 00, then bq (B) is a proper subset 
of bP(B). 

PROOF: Suppose 1 ::::; P < q < 00. Because B has finite volume mea­
sure, clearly bq (B) c bP (B). To prove that this inclusion is proper, 
consider the identity map from bq(B) into bP(B). This map is linear, 
one-to-one, and bounded (by Holder's inequality). If this map were 
onto, then the inverse mapping would be continuous by the open map­
ping theorem, and so there would exist a constant C < 00 such that 
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8.17 

for all U E bP(B). 

We will show that 8.17 fails. For m = 1,2, ... , choose a homoge­
neous harmonic polynomial U m of degree m, with U m :/= O. Integrating 
in polar coordinates (1.5), we find that 

a similar result holding for II U m II bq. Because U -norms on S with re­
spect to u increase as r increases (Holder's inequality), we have 

As m - 00, the expression on the right of the last inequality tends 
to 00. Therefore 8.17 fails, proving that the identity map from b q (B) 

into bP(B) is not onto. Thus bq(B) is properly contained in bP(B), as 
de~red. _ 

We turn now to some other properties of the Bergman spaces on 
the ball. First note that hP(B) c bP(B) for all p E [1,00), as an easy 
integration in polar coordinates (1.5) shows. (In fact, h P (B) c b q (B) 

for all q < pn/(n - 1); see Exercise 21 of this chapter.) However, each 
of the spaces bP(B) contains functions not belonging to any hq(B), as 
we show below. In fact, we will construct a function in every b P (B) 

that at every point of the unit sphere fails to have a radial limit; such a 
function cannot belong to any h q (B) by Corollary 6.44. We begin with 
a lemma that will be useful in this construction .. 

8.18 lemma: Let im('(,) = eim(l for' E Sand m = 1,2, .... Then 

P[fm] - 0 uniformly on compact subsets of Bas m - 00. 

PROOF: Let B E C(S). Using the slice integration formula (A.5 in 
Appendix A), we see that fs imB du equals a constant (depending only 
on n) times 
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where 5n -l denotes the unit sphere in Rn-l and dO"n-l denotes nor­
malized surface-area measure on 5n - 1. The Riemann-Lebesgue Lemma 
then shows that Is imB dO" ~ ° as m ~ 00. In particular, taking 
B = P(x, .) for x E B, we see that P[im] ~ ° pointwise on B. 

Because liml == 1 on 5, we have IP[jm] I ~ 1 on B for each m. 
Thus by Theorem 2.6, every subsequence of (P[jm]) contains a sub­
sequence converging uniformly on compact subsets of B. Because we 
already know that P[jm] ~ ° pOintwise on B, we must have P[jm] ~ ° 
uniformly on compact subsets of B. • 

The harmonic functions of Lemma 8.18 extend continuously to H 
with boundary values of modulus one everywhere on 5, yet converge 
uniformly to zero on compact subsets of B. In this they resemble the 
harmonic functions zm in the unit disk of the complex plane. 

8.19 Theorem: Let ex: [0, 1) ~ [1, 00) be an increasing function with 
ex(r) ~ 00 as r ~ 1. Then there exists a harmonic (unction u on B such 
that 

(a) lu(r() I < ex(r) for all r E [0,1) and all ( E 5; 

(b) at every point of 5, u fails to have a finite radial limit. 

PROOF: Choose an increasing sequence of numbers Sm E [0, 1) such 
that ex(sm) > m+ 1. From the sequence (P[im]) of Lemma 8.18, choose 
a subsequence (vm) "'ith IVm I < 2-m on 5mB. Suppose r E [sm,sm+d. 
Because each Vm is bounded by 1 on B, we have 

00 m 00 

L IVk(r()1 = L IVk(r()1 + L IVk(r()1 
k=l k=l k=m+l 

< m + 2-(m+l) + 2-(m+z) + ... 

< m+ 1 

Thus 2.: Ivm(r()1 < ex(r) for all r E (0,1) and all (E 5; furthermore, 
2.: I Vm I converges uniformly on compact subsets of B. 

From the sequence (vm ) we inductively extract a subsequence (um ) 
in the follm'ling manner. Set Ul = VI. Because Ul is continuous on H, 
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we may choose rl E [0,1) such that !udrl;) - ul(l;)! < 1/4 for all 
r E [rl, 1] and all l; E S. Suppose we have chosen UI, U2, ... , U m from 
VI, V2, ... and that we have radii 0 < rl < ... < rm < 1 such that 

m 
8.20 L !uk(rl;) - uk(sl;)! < 1/4 for all r,s E [rm, 1], l; E S. 

k=1 

We then select Um+l such that !Um+l! < 2-(m+l) on rmB. Now choose 
rm+1 E (rm, 1) so that 8.20 holds with m + 1 in place of m. The radius 
rm+1 can be chosen since each Uk is continuous on B. 

Having obtained the subsequence (um ) from (vm ) (as well as the 
accompanying sequence (rm ) ofradii), we define 

00 

U = L Um· 
m=l 

From the first paragraph of the proof we know that !u(rl;)! < a(r) for 
all r E [0,1), and that L U m converges uniformly on compact subsets 
of B, which implies that U is harmonic on B. 

We now show that at each point of S, U fails to have a radial limit. 
(Here is where we use the fact that !um! == 1 on 5 for every m.) We 
have 

!u(rm+Il;) - u(rml;)! ~ IUm+drm+lS) - um+drms)! 

- 2: !uk(rm+Il;) -uk(rml;)! 
b'm+l 

00 

- !um+drml;)! - 1/4 - 2 L 2-k 
m+2 

00 

~ 1 - 1/4 - 2-(m+1) - 1/4 - 2 L 2-k 
m+2 

00 

Thus for each l; E S, the sequence (u (r m l;)) fails to have a finite limit 
as m - 00, which implies that U fails to have a finite radial limit at S .• 
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8.21 Corollary: There is a function u belonging to np<oo b P (B) such 
that at every point of S, u fails to have a radial limit. 

PROOF: Let ex (r) = 1 + log 1 ~ r' and let u be the corresponding func­
tion guaranteed by Theorem 8.19. Integrating in polar coordinates (1.5), 
we easily check that u belongs to b P (B) for every p EO [1, (0). • 

The 'Reproducing Xerne{ 
of the 1.1yyer J-fa(fSyace 

The goal of this section is to find an explicit formula for the re­
producing kernel of the upper half-space. A well-motivated, although 
computationally tedious, method of deriving this formula is given in 
Exercise 24 of this chapter. We will present a slicker method relying on 
the magic of integration by parts. 

As we did for B, we will derive the reproducing kernel of H in terms 
of the Poisson kernel.' Recall that for Z EO H and t EO Rn - I , the Poisson 
kernel for H is the function 

For W EO R n, define W = (WI, ... , Wn-l, -Wn ); note that W is the usual 
complex conjugate of won R2 = C. We now extend the domain of PH 

by defining 

8.22 

for Z -f= w. Note that PH(Z,W) = PH(W,Z) and PH(Z + (O,r),w) 

PH (z, W + (0, r)) for r EO R whenever these expressions make sense. 
Thus 

PH(Z,W) = PH(W,Z) 

= PH(W + (O,zn),z - (O,zn)) 

for all z, W EO H. Thus PH(Z,') is harmonic on {w EO Rn: Wn > -zn} 

for each Z EO H (being the translate of a harmonic function). 
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Before proving the main result of this section, Theorem 8.24, we 
prove an analogue of Lemma 8.8 for H. 

8.23 Lemma: The set of functions that are harmonic and square inte­
grable on a half-space larger than H is dense in b2 (H). 

PROOF: Let U E b 2 (H). For 8> 0, the function z ..... u(z + (0,8)) 
belongs to b 2 ({z ERn: Zn > -8}). But the functions u(z + (0,8)) 
converge to u(z) in L2 (H, dV) as 8 - 0. (This follows by uniform 
continuity if u is continuous and has compact support in H; the set of 
such functions is dense in L 2 (H, dV).) • 

Now we can give an explicit formula for the reproducing kernel of 
the upper half-space. 

8.24 Theorem: For all z, W E H, 

PROOF: The second equality follows, with some simple calculus, 
from 8.22. Note that this equality implies aPH(Z, w) lawn belongs to 
b 2 (H) for each fixed Z E H (see Exercise 1 in Appendix A). The re­
mainder of the proof will be devoted to showing that the first equality 
holds. 

Fix Z E H. Suppose 8 > ° and u E b2 ({w ~ Rn : Wn > -8}). 
Then 

8.2S f U(W)-a a PH(Z, w) dV(w) 
H Wn 

= f roo U(X'Y)-aa PH(Z, (X,y)) dydx. Rn - 1 Jo y 

Now, U is bounded and harmonic on H by 8.1. Thus, after integrating 
by parts in the inner integral, the right side of 8.25 becomes 

- r u(x, O)PH(Z, x) dx JRn - 1 

_ r roo [-a a U(X,y)] PH(Z, (x,y)) dxdy, JRn - 1 Jo y 



The Reproducing Kernel of the Upper Half-Space 187 

which equals 

8.26 -u(z) - roo r [-a a U(X,y)] PH(Z, (x,y)) dx dy. Jo JRn-I Y 

Notice that we reversed the order of integration to arrive at 8.26. This 
is permissible if the integrand in 8.26 is integrable over H. To verify 
this, note that by Corollary 8.2 there exists a constant C < DC such that 

a C 
l ay u(X,Y)15 (y+<5)1+n/2· 

Note also that 

8.27 PH(Z, (X,y)) = PH(Z + (O,Y), (X,O)), 

which implies fRn-1 PH (z, (x, y)) dx = 1 for each y > o. The reader 
can now easily verify that the integrand in 8.26 is integrable over H. 

For each y > 0, the term in brackets in 8.26 is the restriction to 
R n-l of the function w ~ Dn u (w + (0, y)), which is bounded and 
harmonic on H. Thus by 8.27, the integral over Rn - 1 in 8.26 equals 
(Dnu) (z + (0, 2y)). Therefore 8.26 equals 

-u(Z) - f: (DnU)(Z + (0, 2y)) dy = -u(z)/2, 

where the last equality holds because u(z + (O,2y)) - 0 as y - 00 

(by 8.1). 
Let F(w) = -2aPH(Z, w) lawn. We have shown that u(z) = (u, F) 

whenever u is harmonic and square integrable on a half-space larger 
than H. The set of such functions u is dense in b 2 (H) (Lemma 8.23), 
and thus the proof is complete. _ 
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Exercises 
1. Prove that bP(Rn) = {OJ. 

2. Suppose that U E bP(O). Prove that d(x,aO)n/Plu(x)1 - 0 as 
x - a~. 

3. Prove that if u E bP({x E Rn : Ixl > I}), then u is harmonic 
at 00. 

4. Suppose u E bP(H) and y > O. Prove that u(x,y) - 0 as 
Ixl - 00 in Rn-l. 

5. Prove that if u is a harmonic function on R n such that 

r lu(x) I (1 + Ixl)'\ dV(x) < 00 

JR" 
for some ,\ E R, then u is a polynomial. 

6. (a) Assume that n > 2 and p ~ n/(n - 2). Prove that if u is in 
b P (B \ {a}), then u has a removable singularity at O. 

(b) Show that the constant n/ (n - 2) in part (a) is sharp. 

(c) Show that there exists a function in np<oo b P (B2 \ {a}) that 
fails to have a removable singularity at O. 

7. Prove that bP(Rn \ {a}) = {a}. 

8. Prove that 

9. 

10. 

(x-a y-a) 
Rro+a(x,Y) = y-nRo -y-'-y-

for all y > 0, a ERn. 

I 
Prove that IIRo(x, ')IIb 2 .:5 y'V(B)d(x,aO)n 

Suppose 01 c 02 C ... is an increasing sequence of open sub­
sets of Rn and 0 = Uk=1 Ok. Prove that 

Ro(x,y) = lim Rok(x,y) 
k-oo 

for all x,y EO. 
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11. Suppose al, ... , am are points in n. Let A be the m-by-m matrix 
whose entry in row j, column k, equals Ro.(aj, ak). Prove that A 
is positive semidefinite. 

12. Show that the harmonic Bloch space is properly contained in 
bP(B) for every p < 00. (See Exercise 11, Chapter 2, for the defi­
nition of the harmonic Bloch space.) 

l3. Show that 
u(x) = Is U(y)RB(X,y) dV(y) 

for all U E bP(B) and for all p E [1,00). 

14. Assume n = 2, and set uk(re iB ) = rlkleike, k = 0, ±1, .... Find 
constants Ck so that {ckUk} is an orthonormal basis of b2 (B), and 
then use Proposition 8.4(b) to find a formula for the reproducing 
of kernel of B2. 

15. (a) Prove there are positive constants CI, C2 such that 

for all x E B. 

(b) Find an estimate analogous to (a) for IIRH(Z, .) Ilb2. 

16. Show that RB(X, ·)/IIRB(X, ·)llb2 converges to 0 weak* in b 2 (B) 

as Ixi - 1. 

17. Show that 
2 1 2 IIxII2 

QB[XI ] = -- +XI - --. 
n+2 n 

18. Prove that if P E Tm(Rn) and QB[P] = 0, then P = O. 

19. Prove that if P E Tm(Rn) and P[p] = QB[P], then P is harmonic. 

20. Fix (E S. Show that P(·,() E bP(B) for P < n/(n -1). Also 
show that P(·'() $ bn/(n-I)(B). 

21. Show that hP(B) c bq(B) for q < pn/(n - 1). 

22. Prove that every infinite-dimensional closed subspace of b 2 (B) 

contains a function not in h 2 (B). 
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23. Show that functions in b P (B) belong to appropriate Hardy spaces 
of balls internally tangent to B. More precisely, suppose that 
1 :os; q < (n - l)p/(2n) and U E bP(B). Prove that if a E B \ to}, 
then the function x - u(a + (1 - lal)x) is in hq(B). 

24. Derive the formula for the reproducing kernel RH (Theorem 8.24) 
by writing H = Uk=l B(kN, k) and then using Exercise 10 of this 
chapter and 8.13. 

25. Show that every positive harmonic function on B is in b1 (B). Are 
there any positive harmonic functions on H that are in b1 (H)? 

26. Suppose {) > 0 and U E bP ({z E Rn : Zn > -{)}). Show that 
DlXu E bP (H) for every multi-index lX. 



CHAPTER 9 

The 'Decamyositian Theorem 

If K c 0 is compact and u is harmonic on 0 \ K, then u might be 
badly behaved near both aK and ao; see, for example, Theorem 11.18. 
In this· chapter we will see that u is the sum of two harmonic functions, 
one extending harmonically across aK, the other extending harmoni­
cally across ao. More precisely, u has a decomposition of the form 

u=v+w 

on 0 \ K, where v is harmonic on 0 and w is harmonic on R n \ K. 
Furthermore, there is a canonical choice for w that makes this decom­
position unique. 

This result, which we call the decomposition theorem, has many ap­
plications. In this chapter we will use it to prove a generalization of 
Bocher's Theorem, to show that bounded harmonic functions extend 
harmonically across smooth sets of dimension n - 2, and to prove the 
logarithmic conjugation theorem. In Chapter 10, we will use the decom­
position theorem to obtain a "Laurent" series expansion for harmonic 
functions on annular domains in R n. 

'The :runc{amenta{ Sofution 
Of the LayCacian 

We have already seen how important the functions Ixl 2- n (n > 2) 
and log I x I (n = 2) are to harmonic function theory. Another illustra-
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tion of their importance is that they give rise to integral operators that 
invert the Laplacian; we will need these operators in the proof of the 
decomposition theorem. 

The support of a function 9 on Rn , denoted suppg, is the closure 
of the set {x E Rn : g(x) =1= O}. We let c~ = C~(Rn) denote the set 
of functions in ck(Rn) that have compact support. We will frequently 
use the abbre\-iation dy for the usual volume measure dV(y). 

We now show how 9 can be reconstructed from 6:.g if 9 Eel. 

9.1 Theorem (n > 2): If 9 E cl, then 

for every x ERn. 

9.2 Theorem (n = 2): If 9 E cl, then 

g(x) = -21 r (6:.g)(y) log Ix - yl dy IT JR2 

for every x E R2. 

PROOF: We present the proof for n > 2, leaving the minor modi­
fications needed for n = 2 to the reader (Exercise 1 of this chapter). 
Note first that the function Ixl 2- n is locally integrable on Rn (use polar 
coordinates 1.5). 

Fix x ERn. Choose r large enough so that B(O, r) contains both x 
and suppg. For small f > 0, set OE = B(O, r) \ B(x, f). Because 9 is 
supported in B(O, r), 

r (6:.g)(y)lx - yl2-n dy = lim r (6:.g)(y)Ix _ yI2- n dy. JR" E-O JnE 

Now apply Green's identity (1.1) 

r (u6:.g - g6:.u) dV = f (uDng - gDnu) ds, 
In an 

with u(y) = Ix - yl2-n and n = OE' Since 9 = 0 near aB(O, r), only 
the surface integral over aB(x, f) comes into play. Recalling that the 
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unnormalized surface area of Sis nV(B) (see A.2 in Appendix A), we 
calculate that 

lim f (~g)(y) Ix - yl2-n dy = (2 - n)nV(B)g(x), 
E-O OE 

which gives the desired conclusion. 

For x E Rn \ {o}, set 

{
[(2-n)nV(B)]-1 IX I2-n ifn>2 

F(x) = 
(2Tr)- 1 Iog Ixl if n = 2. 

• 

The function F is called the fundamental solution of the Laplacian; it 
serves as the kernel of an integral operator that inverts the Laplacian 
on c1. To see this, define 

9.3 (Tg)(x) = f g(y)F(x - y) dy = f g(x - y)F(y) dy 
Rn Rn 

for 9 E Ce . Now suppose 9 E c1- Then T(~g) = 9 by 9.1 or 9.2. On 
the other hand, differentiation under the integral sign on the right side 
of 9.3 shows that ~(Tg) = T(~g); applying 9.1 or 9.2 again, we see 
that ~(T g) = g. Thus T 0 ~ = ~ 0 T = I, the identity operator, on the 
space c1; in other words, T = ~ -ion c1-

We can now solve the inhomogeneous equation 

9.4 ~u =g 

for any 9 E c1; we simply take u = T g. Equation 9.4 is often referred 
to as Poisson's equation. 

1Jecomyosition Of J{armonic Junctions 

The reader is already familiar with a result from complex analy­
sis that can be interpreted as a decomposition theorem. SpeCifically, 
suppose 0< r < R < 00, K = :8(0, r), and n = B(O, R). Assume f is 
holomorphic on the annulus n \ K, and let L~", akzk be the Laurent ex­
pansion of Jon n \ K. Setting g(z) = La akzk and h(z) = L=~ akzk, 
we see that f = 9 + h on n \ K, that 9 extends to be holomorphic on n, 
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and that h extends to be holomorphic on (C u {oo}) \ K. The Laurent 
series expansion therefore gives us a decomposition for holomorphic 
functions (in the special case of annular regions in C). The decom­
position theorem (9.6 and 9.7) is the analogous result for harmonic 
functions. 

We will need a large supply of smooth functions in the proof of 
the decomposition theorem; the follo\-\'ing lemma provides what we 
want. 

9.5 Lemma: Suppose Ken is compact. Then there exists a function 
cp E C;'(Rn) such that cp == Ion K, suppcp c 0, and 0 ~ cp ~ Ion Rn. 

PROOF: Define a COO-function f on R by setting 

{
rIlt ift>O 

f(t) = 
o if t ~ 0. 

and define a function tJI E C;'(Rn ) by setting tJI(y) = cf(l - 2IyI2). 
where the constant c is chosen so that fRn tJI(y) dy = 1. Note that 
supptJI c B. 

For r > 0. let tJlr(y) = r-ntJI(y /r). Observe that supp tJlr c rB and 
that fRn tJlr(y) dy = 1. Now set r = d(K, aQ}!3 and define 

w = {x En: d(x. K) < r}. 

Finally. put 

cp(x) = L tJlrCX: - y) dy 

for x ERn. Differentiation under the integral sign above shows that 
cp E Coo. Clearly 0 ~ cp ~ 1 on Rn. Because tJlr(x - y) is supported in 
B(x. r). we have cp(x) = 1 whenever x E K and cp(x) = 0 whenever 
d(x, K) > 2r. _ 

We now prove the decomposition theorem; the n > 2 case differs 
from the n = 2 case, so we state the two results separately. 
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9.6 Decomposition Theorem (n > 2): Let K be a compact subset 
of O. If U is harmonic on 0 \ K, then u has a unique decomposition of 
the form 

U=V+I,y, 

where v is harmonic on 0 and w is a harmonic function on Rn \ K 
satisfying limx _ oo w(x) = o. 

9.7 Decomposi.tion Theorem (n = 2): Let K be a compact subset 
of O. If U is harmonic on 0 \ K, then u has a unique decomposition of 
the form 

U=V+I,y, 

where v is harmonic on 0 and w is a harmonic function on R2 \ K 
satisfying limx_ 00 w (x) - b log I x I = 0 for some constant b. 

PROOF: We present the proof for n > 2 (Theorem 9.6), leaving the 
changes needed for n = 2 to the reader (Exercise 3 of this chapter). 

As a notation convenience, for E any subset of Rn and r > 0, let 
Er = {x ERn: d(x,E) < r}. 

Suppose first that 0 is a bounded open subset of Rn. Choose r 
small enough so that Kr and (amy are disjoint. By Lemma 9.5, there 
is a function CPy E C;(Rn ) supported in 0 \ K such that CPr == 1 on 
0\ (Ky u (amr); Figure 9.8 may be helpful. 

~or x E 0 \ (Ky u (aOh), apply Theorem 9.1 to the function ucpr, 
which can be thought of as a function in C; (R n), to obtain 

U(x) = (uCPrHx) 

= (2 _ n~nV(B) Ln 6(uCPr )(y) Ix - yl2-n dy 

= (2 _ n~nV(B) famr 6(ucpy)(y) Ix - yl2-n dy 

+ (2 _ n~nV(B) Lr 6(ucpr )(y) Ix - yl2-n dy 

= vr(x) + wy(x), 

where vy(x) is [(2 - n)nV(B)]-l times the integral over (amy and 
wy(x) is [(2 - n)nV(B)]-l times the integral over Ky. Differentiation 
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an 

9.8 CPr == 1 on the shaded region. 

under the integral sign shows that Vr is harmonic on.o \ (a.o)r and that 
Wr is harmonic on Rn \ Kr . We also see that wr(x) - 0 as x - 00. 

Suppose now that s < Y. Then, as in the previous paragraph, we 
obtain the decomposition u = Vs + Ws on.o \ (Ks u aDs). We claim that 
Vr = Vs on.o \ (amr and Wr = Ws on (Rn u fool) \ Kr . To see this, 
note that if xED \ (Kr u (amr), then vr(x) + wr(x) = vs(x) + ws(x) 

(because both sides equal u(x». Thus, Wr - Ws is a harmonic function 
on Rn \ Kr that extends to be harmonic on Rn (wr - Ws agrees with 
Vs -Vr near Kr). Because both Wr and Ws tend to 0 at infinity, Liouville's 
The.orem (2.1) implies that Wr - Ws == O. Thus Wr = Ws and Vr = Vs on 
.0 \ (Kr u (amr), as claimed. 

For xED, we may thus set v(x) = vr(x) for all Y small enough so 
that XED \ (amr. Similarly, for x ERn \ K, we set w(x) = wr(x} for 
small Y. We have arrived at the desired decomposition u = v + w. 

Now suppose that .0 is unbounded and u is harmonic on .0 \ K. 
Choose R large enough so that K c B(O,R) and let w = .0 n B(O,R). 
Observe that K is a compact subset of the bounded open set wand that 
u is harmonic on w \ K. Applying the result just proved for bounded 
open sets, we have 

u(x) = v(x) + w(x) 

for x E w \ K, where v is harmonic on wand W is a harmonic function 
on Rn \ K satisfying limx - oo w(x) = O. Notice that the difference u - W 

is harmonic on .0 \ K and extends harmonically across K because it 



Becher's Theorem Revisited 197 

agrees with 11 near K. Set v = u - w; the sum v + w is then the desired 
decomposition of u. 

Finally, the proof of the uniqueness of the decomposition is similar 
to the proof given above that W y = Ws and V y = Vs onO\ (Kyu (omy) .• 

Note that the function w of Theorem 9.6 is harmonic at 00, by The­
orem 4.8. Note also that if u is real valued, then the functions v and 
w appearing in the decompositon of u (Theorem 9.6 or Theorem 9.7) 
will also be real valued. This can be proved either by looking at the 
proofs of Theorem 9.6 and Theorem 9.7 or by taking the real parts of 
both sides of the decomposition u = v + wand using the uniqueness 
of the decomposition. 

13ocher's Theorem 'Revisitea 
The remainder of this chapter consists of applications of the decom­

position theorem. We begin by using it to obtain Bacher's Theorem (3.9) 

as a consequence of Liouville's Theorem in the n > 2 setting. 

9.9 Bocher's Theorem (n > 2): Let a E O. If u is harmonic on 
0\ {a} and positive near a, then there is a harmonic function v on n 
and a constant b ~ 0 such that 

u(x) = v(x) + blx - al 2- n 

for all x E n \ {a}. 

PROOF: Without loss of generality we can assume that u is real val­
ued and a = O. By the decomposition theorem (9.6), we can write 
u = v + w; where v is harmonic on 0, w is harmonic on R n \ {O}, 
and limx - oo w(x) = O. We ""ill complete the proof by showing that 
w(x) = blxl 2- n for some constant b ~ O. 

Because u is positive near 0 and v is bounded near 0, W = U - v 
is bounded below near O. Let E > 0 and set h(x) = w(x) + Ejxj2-n. 

Then limx_o h(x) = 00 and limx- oo h(x) = 0, so the minimum principle 
(1.10) implies that h ~ 0 on R n \ {O}. Letting E - 0, we conclude that 
w ~ 0 on R n \ {O}. 

Because w tends to zero at 00, the Kelvin transform K[wl has a 
removable singularity at 0 (see Exercise 2(a) in Chapter 2). Thus K[ w 1 
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extends to be nonnegative and harmonic on all of Rn. By Liouville's 
Theorem for positive harmonic functions (3.1), K[w] = b for some 
constant b ~ 0. Therefore w(x) = blxI 2- n , completing the proof. _ 

The preceding argument does not yield a proof of Bacher's Theorem 
when n = 2. (One difficulty is that the function w provided by the 
decomposition theorem no longer vanishes at 00.) We can, however, 
still use the decomposition theorem to prove Bacher's Theorem in the 
n = 2 case. We will actually obtain a generalized version of Mcher's 
Theorem. Our proof relies on the follo\;\fug improvement of Liouville's 
Theorem for positive harmonic functions (3.1). 

9.10 Generalized Liouville Theorem: Suppose that u is a real-valued 
harmonic function on R nand 

Then u is constant on R n. 

1· . fU(x) ° 
lll1111 -1-1 ~ . x-co X 

PROOF: Fix x ERn, let E > ° be arbitrary, and choose r > Ixl such 
that u(y)/lyl ~ -E whenever Iyl > r -Ixl. By the volume version of 
the mean-value property, 

U(X)-U(O)=V(B(~ ))[f Udv-f udV]. ,r B(x,r) B(O,Y) 

Let 'Dr denote the symmetric difference of the ballsB(x, r) and B(O, r) 
(see Figure 3.2) and let Ay denote the annulus B(O, r+ Ix!) \B(O, r-Ixl). 
Then 

lu(x) - u(O) I :s V(B(~, r)) f1)r lui dV . 

:s V(B(~, r)) Lr lui dV. 

For every y in the annulus Ay over which the last integral is taken, we 
have 

lu(y)1 :s 2Elyl + u(y) :s 4Er + u(y), 

where the first inequality is trivial when u(y) ~ ° and follows from our 
choice of r when u (y) < O. Combining the last two sets of inequalities, 
we have 
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lu(x) -u(O)1 ~ V(B(~,r)) [4ErV(Ar ) + Lr udV] 

(4 (0)) (r + Ixl)n - (r -Ixl)n 
= Er + u . rn 

Take the limit as r - co, getting 

lu(x) - u(O) I ~ 8Enlxl. 

Now take the limit as E - 0, getting u(x) = u(O), as desired. _ 

Note that u satisfies the hypothesis of the Generalized liouville The­
orem if and only if 

liminf Ixln-1K[u](x) ~ 0, 
x-o 

which explains the hypothesis of the following result. 

9.11 Generalized Bocher Theorem: Let a E O. Suppose that u is a 
real-valued harmonic function on 0 \ {a} and 

lirninf Ix - aln-1u(x) ~ O. 
x-a 

Then there is a harmonic function v on 0 and a constant b E R such 
that 

{
V(X)+blOglx-al ifn=2 

u(x) = 
v(x) + blx - al 2- n if n > 2 

for all x E 0 \ {a}. 

PROOF: We will assume that n = 2, leaving the easier n > 2 case as 
an exercise for the reader. 

Without loss of generality, we may assume that a = O. Because u is 
harmonic on 0 \ {O}, it has a decomposition 

u = v + 'W, 

where v is harmonic on 0 and w is a harmonic function on R 2 \ {O} sat­
isfying lirnx-o(w(x) - b log Ixl) = 0 for some constant bE R. Because 
v is continuous at 0, our hypothesis on u implies that 
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liminf Ixlw(x) ~ o. 
x-o 

Now set h(x) = w(x) - b log Ixl for x E R2 \ {O}, and observe that the 
Kelvin transform X[h] has a removable singularity at O. Moreover, 

liminf X[h](x) = liminf w(xllxI 2 ) - blog II/xl 
x-oo Ixl x-co Ixl 

= liminf Ixlw(x) 
x-a 

~ O. 

Thus, by the the Generalized Liouville Theorem (9.10), X[h] must be 
constant; in fact, it must be zero because its value at 0 is O. Hence 
h = 0, which implies that w(x) = blog Ixl. Thus u has the desired 
form. • 

The preceding proof shows how the Generalized Bacher Theorem 
follows from the Generalized Liouville Theorem. It is even easier to 
show that the Generalized Liouville Theorem follows from the General­
ized Bacher Theorem (Exercise 8 of this chapter); hence, these results 
are equivalent. The authors first learned of these generalizations of 
BOcher's and Liouville's Theorems in [1] and [10]. 

'Remova6Ce Sets far 'Boundea 
.Jfarmonic .Junctions 

Let hCO(D.) denote the collection of bounded harmonic functions 
on D.. We say that a compact set KeD. is hco-removable for D. if every 
bounded harmonic function on D. \ K extends to be harmonic on D.. 
The following theorem shows that if K is hco-removable for some D. 
containing K, then K is hco-removable for every D. containing K. Note 
that by Liouville's Theorem, K is hoo-removable for Rn if and only if 
every bounded harmonic function on Rn \ K is constant. 

9.12 Theorem: Let K be a compact subset of D.. Then K is h 00_ 

removable for D. if and only if K is h 00 -removable for R n. 
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PROOF: If K is hoo-removable for D, then clearly K is hoo-removable 
for Rn. 

To prove the converse, we use the decomposition theorem. The 
n > 2 case is easy. Suppose that K is h 00 -removable for R n and that u 
is bounded and harmoniC on D \ K. Let u = v + w be the decomposition 
given by (9.6). Because n > 2, w(x) - 0 as x - 00. The boundedness 
near K of w = u - v thus shows that w is bounded and harmonic 
on R n \ K. By hypothesis, w extends to be harmonic on R n, and thus 
w == 0 by Liouville's Theorem. Hence u = v, and thus u extends to be 
harmOnic on D, as desired. 

The n = 2 case is more difficult (a rare occurrence); this is because 
w need not have limit 0 at 00. We will show that if there is a bounded 
harmonic function on D \ K that does not extend to be harmonic on D, 
then there is a nonconstant bounded harmonic function on R2 \ K. 

We may assume that each connected component of K is a point, 
in other words, that K is totally disconnected. Otherwise some com­
ponent of K consists of more than one point. The Riemann Mapping 
Theorem then implies the existence of a holomorphic map of the Rie­
mann sphere minus that component onto B2, giving us a nonconstant 
bounded harmonic function on R2 \ K, as desired. 

Let u be a bounded harmonic function on D \ K that does not extend 
to be harmonic on D. Then there exist distinct points x and y in K such 
that u does not extend harmonically to any neighborhood of x nor to 
any neighborhood of y. (If only one such point in K existed, then we 
would have found a nonremovable isolated singularity of a bounded 
harmonic function, contradicting Theorem 2.3.) 

Having obtained x and y, observe that the total disconnectivity of 
K shows that there exist disjoint open sets Dx and Dy (open in R2), 
with x E Dx and y E Dy , such that K c Dx U Dy . 

Now u is harmonic on (OnDx ) \ (Ox nK), so by Theorem 9.7 we have 
the decomposition u = Vx + wx , where Vx is harmonic on D n Dx and 
Wx is harmonic on R2 \ (Ox n K), with limz - oo wx(z) - bx log lzl = 0 
for some constant bx . We also have a similar decomposition of u on 
(D n Dy) \ (Dy n K). Note that Wx is not constant, othenvise u would 
extend harmonically to a neighborhood of x. Note also that if bx were 0, 
then Wx would be a nonconstant bounded harmonic function on R 2 \ K, 
and we would be done; we may thus assume that bx is nonzero. 

Setting h = Wy - (by / bx ) wx , we claim h is the desired nonconstant 
bounded harmonic function on R2 \ K. To see this, note that both Wx 
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and Wy are bounded near K, and limz _", h(z) == 0; this proves h is 
bounded and harmonic on R 2 \ K. If h were constant, then Wy would 
extend harmonically to a neighborhood of y, which would mean that u 
would extend harmOnically to a neighborhood of y, a contradiction. _ 

As an aside, note that the analogue of Theorem 9.12 for positive 
harmonic functions fails when n == 2: the compact set {OJ is removable 
for positive harmonic functions on R2 \ {OJ (see 3.3), but {OJ is not 
removable for positive harmonic functions on B2 \ {O}. 

Recall that if K c 0 is a single point, then K is h"'-removable for 0 
(Theorem 2.3). Our next theorem improves that result, stating (roughly) 
that if the dimension of K is less than or equal to n - 2, then K is h"'­
removable. 

9.13 Theorem: If 1 ::s k ::s n - 2 and '1': Bk - 0 is a Cl-map, then 
'I' (B d is h co -removable for o. 

PROOF: By Theorem 9.12, we need only show that if u is bounded 
and harmonic on Rn \ 'I'(Bk), then u is constant. Without loss of gener­
ality, we assume u is real valued. By Theorem 4.10, there is a constant 
L such that u has limit L at 00. Let E > ° and set 

for x ERn \ 'I'(Bk). Note that v is harmonic on R n \ 'I'(Bd and that v 
has limit L at 00. Suppose we know that 

The boundedness of u then shows vex) - 00 as x - 'I'(Bk). By the 
minimum principle, v ~ L on Rn \ 'I'(Bk). Letting E - 0, we conclude 
that u ~ L on Rn \ 'I'(Bk). A similar argument then gives u ::s L on 
R n \ 'I'(Bk), so that u is constant, as desired. In other words, to complete 
the proof, we need only show that 9.14 holds. 

To prove 9.14, first suppose that x E 'I'(Bk). Then x == 'I'(z) for 
some Z E Bk. Because 'I' has a continuous derivative, there is a constant 
C E (0,00) such that 1'I'(z) - 'I'(y) 1 ::s Clz-yl for every y E Bk. Thus 
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= 00, 

where the last equality comes from E;xercise 10 of this chapter. The 
assertion in 9.14 now follows from Fatou's Lemma. _ 

Note that HI is the interval [-1,1]. Thus, any smooth compact arc 
in 0 is hoo-removable for 0 provided n > 2. Exercise 13 in Chapter 4 
and Exercise 12 of this chapter show that compact sets of dimension 
n - 1 are not h 00 -removable. 

The Logarithmic Conjugation Theorem 

In this section, 0 ""ill denote a connected open subset of R2. We 
say that 0 is finitely connected if R 2 \ 0 has finitely many bounded 
components. Recall that 0 is simply connected if R 2 \ 0 has no bounded 
components. 

If u is the real part of a holomorphic function f on 0, then the 
imaginary part of f is called a harmonic conjugate of u. When 0 is 
simply connected, a real-valued harmonic function on 0 always has a 
harmonic conjugate ([7], Chapter VIII, The.orem 2.2). 

The following theorem has been called the logarithmic conjuga­
tion theorem because it shows that a real-valued harmonic function on 
a finitely connected domain has a harmonic conjugate pro'Vided that 
some logarithmic terms are subtracted. 

9.15 Logarithmic Conjugation Theorem: Let 0 be a finitely con-
nected domain. Let KI, ... ,Km be the bounded components of R 2 \ 0, 
and let aj E Kj for j = 1, ... , m. If u is real valued and harmonic on 0, 
then there exist f holomorphic on 0 and b I , .. . , bm E R such that 

u(z) = Ref(z) + bllog Iz - all + ... + bmlog Iz - ami 

for all z E O. 
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PROOF: We prove the theorem by induction on m, the number of 
bounded components in the complement of O. To get started, recall 
that if m = 0 then 0 is simply connected and u = Re f for some 
function f holomorphic on O. 

Suppose now that m > 0, and that the theorem is true with m - 1 in 
place of m. With 0 as in the statement of the theorem, set Of = 0 U K m, 

so that Of is a finitely connected domain whose complement has m - 1 
bounded components. Because u is harmonic on Of \ Km , 9.7 gives 
the decomposition u = v + w, where v is harmonic on Of and w is 
harmonic on R2 \ Km, with limz _ oo w(z) - b log Izl = 0 for some con­
stant b. 

Because v satisfies the induction hypothesis, we will be done if we 
can show that 

9.16 w(z) = Reg(z) + blog Iz - amI 

for some function 9 holomorphic on R2 \ Km. 
To verify 9.16, set 

h(z) = w(z) - b log Iz - amI 

for z E R2 \ Km. We easily calculate that h(z) - 0 as z - 00; thus h 
extends to be harmonic on (C u {oo}) \ Km. Now, (C u {oo}) \ Km can be 
viewed as a simply connected region on the Riemann sphere. On such a 
region every real-valued harmonic function has a harmonic conjugate. 
This gives 9.16, and thus completes the proof of the theorem. _ 

As an application of the logarithmic conjugation theorem, we now 
give a series development for functions harmonic on annuli. 

9.1 7 Theorem: If u is real valued and harmonic on the annulus 
A = {z E R2 : ro < Izl < rd, then u has a series development of the 
form 

00 

9.18 u(re iB ) = blogr + L (Ckrk + c_kr-k)eikB. 
k=-oo 

The series converges absolutely for each re iB E A and uniformly on 
compact subsets of A. 
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PROOF: Use the logarithmic conjugation theorem (9.15) with n = A, 
Kl = {z E R2 : Izl ~ ro}, and al = 0, to get 

u(z) = b log Izl + Rej(z) 

for some holomorphic function j on A. On A, j has a Laurent series 
expansion 

00 

j(z) = 2: CkZ k 

k=-oo 

that converges absolutely and uniformly on compact subsets of A. 
Now, 

u(z) = b log Izl + j(z) ; lfZ); 

the series representation 9.18 for u is obtained by setting z = re i8 and 
replacing j with its Laurent series. _ 

The series representation 9.18 gives another proof that the averages 
of u over circles of radius r satisfy the n = 2 part of 3.10. 

In Chapter 10 we consider the problem of obtaining an analogous 
series representation for functions harmonic on annular domains in R n. 

There, as one might expect, the decomposition theorem (9.6, 9.7) will 
play an important role. 

Additional applications of the logarithmic conjugation theorem may 
be found in [2]. 
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Txercises 

1. Prove Theorem 9.2. 

2. Suppose n > 2. Given 9 E Cz (R n), show that there exists a 
unique U E c2(Rn) such that ~U = 9 and u(x) - 0 as x - 00. 

What happens when n = 2? 

3. Prove the decomposition theorem in the n = 2 case (9.7). 

4. For n c R2, define the operator a on C1(0) by 

- 1(a a) a=2"ax+ i ay· 

Show that if IE c1 (0), then I is holomorphic on n if and only 
ifaI = O. 

5. Show that if 9 E C~ (R2), then 

g(w) = ..!. r (ag)(z) dV2(Z) 
IT JR2 w - Z 

for all W E C. (Hint: Imitate the proof of 9.1, using Green's 
Theorem instead of Green's identity.) 

6. Let nee, let Ken be compact, and let I be holomorphic on 
0. \K. Using the previous exercise and an argument similar to the 
proof of the decomposition theorem, prove that I has a unique 
decomposition of the form I = 9 + h, where 9 is holomorphic 
on nand h is holomorphic on C \ K, with lirnz _ oo h(z) = O. 

7. Prove the Generalized Bacher Theorem (9.11) when n > 2. 

8. Show that the Generalized Liouville Theorem (9.10) is a conse­
quence of the Generalized Bacher Theorem (9.11). 

9. If u is a real-valued harmonic function on R n such that u (x) / I x I 
is bounded below for x near 00, must u be constant? 

10. Let x E En and let C E R. Prove that 

f ix - ylC dV(y) = 00 

B" 

if and only if C 5 -no 
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11. Does the conclusion of Theorem 9.l3 remain true if we merely 
assume that 'l' is continuous on Ih? 

12. Suppose E is a compact subset ofRn- l eRn with positive (n-l)­

dimensional Lebesgue measure. Show that 

u(y) = L Ix - yl2-n dVn-l (x) 

defines a function on Rn that is continuous, bounded, and non­
constant. Show that this function is harmonic on R n \ E. 

l3. Suppose 'l': Bk - Bn is a Cl-map, where 1 ::; k ::; n - 2. Show that 
if 'l'(Bk) is closed in Bn , then every bounded harmonic function 
on Bn \ 'l'(Bk) extends to a bounded harmonic function on Bn. 

(Note that Exercise 16 in Chapter 6 is a special case of this exer­
cise.) 

14. Every polynomial p(x, y) on R2 extends to a polynomial p(z, w) 

on C2 by replacing x and y with the complex numbers z and 
w in the expansion of p. Show that if p is a harmonic poly­
nomial on R 2 with real coefficients, then the imaginary part of 
2p(z/2, -iz/2) is a harmoniC conjugate of p. 

15. Let 0 c R 2 be finitely connected, and let K 1, K2, ... ,Km be the 
bounded components of R 2 \ O. Let a j, aj E Kj. Suppose that 
u is real valued and harmonic on o. Prove that if f, 9 are holo­
morphic functions on 0 and b j, ~j E R satisfy 

u(z) = Ref(z) + bllog Iz - all + ... + bmlog Iz - ami 

= Reg(z) + b~ log Iz - a~ 1+ ... + b~ loglz - a~l, 

then bj = bj. How are f and 9 related? 

16. Using the logarithmic conjugation theorem (9.15), give another 
proof of the n = 2 case of the Generalized Bacher Theorem (9.11). 

17. Use the series representation 9.18 to show that the Dirichlet 
problem for an annulus in R 2 is solvable. More precisely, show 
that if A is an annulus in R2 and f is continuous on oA, then 
there is a function u harmonic on A and continuous on A such 
that uloA = f. 
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An annular region is a set of the form {x E Rn : ro < Ixl < rd; 
here ro E [0,00) and rl E (0,00]. Thus an annular region is the re­
gion between two concentric spheres, or is a punctured ball, or is the 
complement of a closed ball, or is R n \ {O}. 

Laurent Series 

If u is harmonic on B, then 5.34 gives the expansion 

00 

u(x) = L Pm(x), 
m=O 

where Pm is a homogeneous harmonic polynomial of degree m and the 
series converges absolutely and uniformly on compact subsets of B. 
This expansion is reminiscent of the power series expansion for holo­
morphic functions. We now take up the analogous Laurent series de­
velopment for harmonic functions on annular regions. 

10.1 Laurent Series (n > 2): Suppose u is harmonic on an annular 
region A. Then there exist unique homogeneous harmonic polynomials 
Pm and qm of degree m such that 

~ ~ qm(x) 
u(x) = L Pm(x) + L IxI2m+n-2 

m=O m=O 

on A. The convergence is absolute and uniform on compact subsets of A. 

209 
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PROOF: Suppose A has inner radius ro E [0,00) and outer radius 
rl E (0,00]. By the decomposition theorem (9.6) we have u = v + w, 
where v is harmonic on rl Band w is harmonic on (R n u {oo} ) \ roB. Be­
cause v is harmonic on the ball rIB, there are homogeneous harmonic 
polynomials Pm such that 

00 

10.2 v(x) = L Pm (x) 
m=O 

on riB. The Kelvin transform of K[w] is harmonic on the ball (l/ro)B, 
and so there are homogeneous harmonic polynomials qm such that 

00 

K[w](x) = L qm(x) 
m=O 

on (l/ro)B. Applying the Kelvin transform to both sides of this equa­
tion, we have 

10.3 
~ qm(x) 

w(x) = L IxI 2m+n - 2 
m=O 

on Rn \ roB. Combining the series expansions 10.2 and 10.3, we obtain 
the desired expansion for u on A. The series 10.2 and 10.3 converge 
absolutely and uniformly on compact subsets of A, and hence so does 
the Laurent series expansion of u. Uniqueness of the expansion follows 

. from the urtiqueness of the decomposition u = v + w and of the series 
expansions 10.2 and 10.3. • 

The preceding proof does not quite work when n = 2 because the 
decomposition theorem takes a different form in that case (see 9.6, 
9.7). Exercise 1 of this chapter develops the Laurent series expansion 
for harmonic functions when n = 2. 

Isolatea Singularities 

Suppose n > 2, a E n, and u is harmonic on n \ {a}. By Theo­
rem 10.1, there are homogeneous harmonic polynomials Pm and qm 
such that 
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~ ~ qm(x - a) 
u(x) = m~oPm(x-a) + m~o Ix-aI2m+n-2 

for x in a deleted neighborhood of a. We call the function 

10.4 
~ qm(x - a) 

L. Ix - aI 2m+n - 2 
m=O 

the principal part of u at a and classify the singularity at a accord­
ingly. Specifically, U has a removable singularity at a if each term in 
the principal part is zero; u has a pole at a if the principal part is a 
finite sum of nonzero terms; u has an essential singularity at a if the 
principal part has infinitely many nonzero terms. 

If u has a pole at a, with principal part given by 10.4, and M is the 
largest integer such that qM :/= 0, then we say that the pole has order 
M + n - 2. For example, if ex is a multi-index, then Da l x l2-n has a pole 
of order lexl + n - 2 at O. Theorem 10.5(b) below shows why the order 
of a pole has been defined in this manner. We call a pole of order n - 2 
a fundamental pole (because the principal part is then a multiple of the 
fundamental solution defined in Chapter 9). 

10.5 Theorem (n > 2): If u is harmonic with an isolated singularity 
at a, then u has 

(a) a removable singularity at a if and only if 

lim Ix - al n - 2 Iu(x)1 = 0; 
x-a 

(b) a pole at a of order M + n - 2 if and only if 

o < lim sup Ix - aiM +n-2Iu(x) I < 00; 

x-a 

(c) an essential singularity at a if and only if 

lim sup Ix - aINlu(x)1 = 00 
x-a 

for every positive integer N. 

PROOF: The proof of (a) follows from Exercise 2(a) in Chapter 2. 
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For the remainder of the proof, we assume that u has principal part 
at a given by w(x) = I:=o qm(x - a)/Ix - aI 2m +n - 2. 

To prove (b), first suppose that u has a pole at a of order M + n - 2. 
Then the homogeneity of each qm implies that 

lim sup Ix - aI M+ n - 2 Iu(x)1 = sup IqMI. 
x-a s 

The right side of this equation is positive and finite, and hence so is the 
left side, proving one direction of (b). 

Conversely, suppose 0< limsuPx_a Ix - aIM+n - 2 Iu(x)1 < 00. Then 
there is a constant C < 00 such that I w(a + r1;;") I ~ C /rM +n - 2 for small 
r > ° and 1;;" E S. Let j be an integer with j > M. Then 

= Is Iw(a + r1;;") 12 dcr(1;;") 

C2 
< -;:-:--:--::-----:­
- r2M+2n-4 

for small r > 0; here we have used the orthogonality of spherical har­
monics of different degree (Proposition 5.9). Letting r - 0, we get 
Is I qj 12 dcr = 0, so that qj == 0. Thus u has a pole at a of order at most 
M + n - 2. Because limsuPx_a Ix - aI M+n - 2 Iu(x) I is positive, the order 
of the pole is at least M + n - 2, completing the proof of (b). 

To prove (c), first suppose that limsuPx_a Ix - alNlu(x)1 = 00 for 
every positive integer N. By (a) and (b), u can have neither a remov­
able singularity nor a pole at a, and thus u has an essential singularity 
at a. 

To prove the other direction of (c), suppose there is a positive integer 
N such that limsuPx_a Ix - alNlu(x)1 < 00. By the argument used in 
proving (b), this implies that qj == ° for all sufficiently large j. Thus u 
does not have an essential singularity at a, completing the proof of (c) .• 

The analogue of the theorem above for n = 2, along with the appro­
priate definitions, is given in Exercise 2 of this chapter. 

Recall that Picard's Theorem states if f is a holomorphic function 
with essential singularity at a, then f assumes all complex values, with 
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one possible exception, infinitely often on every deleted neighborhood 
of a. Picard's Theorem has the following analogue for real-valued har­
monic functions. 

10.6 Theorem: Let u be a real-valued harmonic function with either 
an essential singularity or a pole of order greater than n - 2 at a ERn. 
Then u assumes every real value infinitely often near a. 

PROOF: By Bocher's Theorem (3.9), u cannot be bounded above or 
below on any deleted neighborhood of a. Thus, for every small r > 0, 
the connected set u(B(a, r) \ {a}) must be all of R. This implies that 
u assumes every real value infinitely often near a. • 

There is no analogue of Theorem 10.6 for complex-valued harmonic 
functions. 

The 'REsidue Theorem 
Suppose u E C2 (0). Then u is harmonic on n if and only if 

J Dnuds = ° 
aB(a,r) 

for every closed ball B(a, r) c n; as usual, Dn denotes the derivative 
with respect to the outward normal n and ds denotes (unnormalized) 
surface-area measure. Proof: apply Green's identity (1.1) with 'V == 1 
to small closed balls contained in n. We can think of this result as an 
analogue of Morera's Theorem for holomorphic functions. 

Integrating the normal derivative over the boundary also yields a 
"residue theorem" of sorts. Suppose n > 2 and the harmonic function 
u has an isolated singularity at a, with Laurent series expansion at a 
given by 

2:00 2:00 qm (x - a) 
u(x)= Pm(x-a)+ 1 12 2' X - a m+n-

m=O m=O 

We call the constant qo the residue of u at a, and write Res( u, a) = qo. 
The following proposition and theorem justify this terminology. 
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] 0.7 Proposition (n > 2): If U is harmonic on B(a, r) \ {a}, then 

Res(u, a) = (2 ~ V(B) J Dnu ds. 
- n n aB(a,r) 

PROOF: Without loss of generality, assume a = O. Suppose 

~ ~ qm(x) 
u(x) = L. Pm(x) + L. IxI2m+n-2 

m=O m=O 

is the Laurent expansion of U about O. The first sum is harmonic 
on B(O, r); hence, the integral of its normal derivative over aB(O, r) 
is zero. The integral of the normal derivative of the second sum equals 

qor l - 1l (2 - n) J ds + f. (2 - n - m)r1- n - 2m J qm ds. 
aB(O,r) m=l aB(O,r) 

The value of the first integral is qonV(B)(2 - n); all other integrals 
vanish by the mean-value property. _ 

] 0.8 Residue Theorem (n > 2): Suppose n is a bounded open set 
with smooth boundary. Let al, ... , ak be distinct points in n. If U is 
harmonic on n \ {al, ... , ak}, then 

k J Dnuds = (2 - n)nV(B) 2: Res(u,aj). 
an j=1 

PROOF: Choose r > 0 so that B(al, r), ... , B(ak, r) are pairwise dis­
joint and all contained in n. Set w = n \ (UJ= IB (a j, r»). Then 

J Dnuds = 0 
aw 

by Green's identity (1.3). Hence 

k J Dnuds = - L J Dnuds 
an j=l aB(aj,r) 

k 

= (2 - n)nV(B) 2: Res(u,aj) 
j=l 

(note that n points toward aj on aB(aj, r». -
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See Exercise 8 of this chapter for statement of the residue theorem 
when n = 2. 

'The 'Poisson XerneC for :A.nnufar 'Regions 
Let A be a bounded annular region. If f is a continuous function 

on oA, does f have a continuous extension to A that is harmonic on A? 
In this section we will see that this question, called the Dirichlet prob­
lem for A, has an affirmative answer if the inner radius of A is positive. 
In fact, we will find a Poisson-integral type formula for the solution. (In 
the next chapter, we show that the Dirichlet problem is solvable on a 
much wider class of domains, although in the more general context we 
will not have an explicit integral formula for the solution.) 

Fix ro E (0,1). Throughout this section, we assume that A is the 
annular region {x E Rn : ro < Ixl < l}. This is no loss of generality 
because dilations preserve harmonic functions. 

To discover the formula for solving the Dirichlet problem for A, 
we begin with a special case. Suppose 9 E J-fm (S) for some m ~ O. 
Consider the problem of finding a continuous function u on A that is 
harmonic on A, with u = 9 on S and u = 0 on roS. We first extend 
9 to a harmonic homogeneous polynomial of degree m (which we also 
denote by g). The Kelvin transform of 9 is then harmonic on Rn \ {OJ; 
the homogeneity of 9 shows that K[g](x) = g(x)/lxI 2m+n- 2. Thus 
the function u defined by 

1- (ro/lxl)2m+n-2 
u(x) = 1 _ ro 2m+n- 2 g(x) 

solves the Dirichlet problem in this special case. 
Let us define 

10.9 
1 - (ro/lxl)2m+n-2 

bm(x) = 1 2m+n-2 ' - ro 

so that u(x) = bm (x)g(x), where u is the function displayed above. 
Recall that integration against the zonal harmonic Zm (x, () reproduces 
the values of functions in J-fm(Rn) (5.30). Thus we can rewrite our 
formula for the solution u as follows: 
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Going one step further, if 8 = I~=o8m, where 8m E J-fm(S), then 
adding the solutions obtained for each 8m in the previous paragraph 
solves the Dirichlet problem for A with boundary data 8 on Sand 0 
on roS. Explicitly, 

M 

u(x) = f 8«()( I bm(X)Zm(X,(»)du«(). 
S m=O 

Notethat for each ( E S, the function x ..... bm (x)Zm (x, () is harmonic 
on A (because it equals a constant times Zm (x, () plus a constant times 
K[Zm(', ()](x». 

Any polynomial restricted to S is the sum of spherical harmonics 
(from Theorem 5.7). Furthermore, the set of polynomials is dense in 
C(S) by the Stone-Weierstrass Theorem (see [14], Theorem 7.33). Sup­
pose, then, that 8 is an arbitrary continuous function on S. To find a 
continuous function u on A that is harmonic on A, with u = 8 on S 
and u = 0 on roS, the results above suggest that we try 

where 

00 

10.10 PA(X, () = I bm(x)Zm(X, (). 
m=O 

Note that 0 < bm (x) < 1 for x E A. Thus the last series converges 
absolutely and uniformly on K x S for every compact K c A, as in 
the proof of Theorem 5.33. In particular, for each ( E S, the function 
P A ( " () is harmonic on A. 

We handle the Dirichlet problem for A with boundary data h on roS 
and 0 on S in a similar manner. Thus a process like the one above 
suggests that the solution u is given by the formula 

where 

10.11 
00 

PA(X, ro() = I Cm(X)Zm(X, () 
m=O 
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and 

10.12 
1 I 12m+n - 2 

Cm(X) == Ixl-m(ro/lxl)m+n-2 - x . 
1 - r02m+n-2 

Note that Icm(x)Zm(x, S')I < (ro/lxl)m+n-2IZm(x/lxl, S')I for x E A, 
so the infinite sum in 10.11 converges absolutely and uniformly on 
K x S for every compact K c A, as in the proof of Theorem 5.33. In 
particular, for each S' E S, the function PA(', roS') is harmonic on A. 

Having approached the Dirichlet problem for A "one sphere at a 
time", we easily guess what to do for an arbitrary f E C(aA}-we sim­
ply add the two candidate solutions obtained above. 

We now make the formal definitions. For n > 2, PAis the function on 
A x aA defined by 10.9-10.12. (For n == 2 and m == 0, the terms bo(x) 
and co(x} must be replaced by appropriate modifications of log Ixl; 
Exercise 10 of this chapter asks the reader to make the necessary ad­
justments.} For f E C(aA), the Poisson integral of f, denoted PAU]' 
is the function on A defined by 

We have already done most of the work needed to show that PAU1 
solves the Dirichlet problem for f. 

10.13 Theorem (n > 2): Suppose f is continuous on oA. Define u 
onA by 

{ 
PAU](X) if x E A 

u(x) == 
f(x) if x E oA. 

Then u is continuous on A'and harmonic on A. 

PROOF: The function P A [f] is the sum of two harmonic functions, 
and hence is harmonic. 

To complete the proof, we need only show that u is continuous on A. 
The discussion above shows that u is continuous on A in the case where 
fls and f(ro'} Is are both finite sums of spherical harmonics. By The­
orem 5.7 and the Stone-Weierstrass Theorem (see [14], Theorem 7.33), 
such functions are dense in C(oA). For the general f E C(oA), we ap­
proximate f uniformly on oA with functions fl,f2, ... from this dense 
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subspace; the corresponding solutions Ul, Uz, ... then converge uni­
formly to U on A by the maximum principle, proving that U is contin-
uous on A. • 

The hypothesis that ro be greater than 0 is needed to solve the 
Dirichlet problem for the annular region A. For example, there is no 
function U harmonic on the punctured ball B \ {O}, with U continuous 
on Ii, satisfying U = 1 on Sand U (0) = 0: if there were such a function, 
then it would be bounded and harmonic on B \ {O}, hence would extend 
harmonically to B (by 2.3), contradicting the minimum principle. 

The results in this section are used by the software described in 
Appendix B to solve the Dirichlet problem for annular regions. For 
example, the software computes that the harmonic function on the an­
nuhrr region {x E R3 : 2:5: Ixl :5: 3} that equals X1 2 when Ixl = 2 and 
equals XIX2X3 when Ixl = 3 is 

8 2592 8 321xl 2 32x12 7776x12 
3 21llxl 3 + IXT + 633 - 2il + 21llxl 5 

2187xIXZX3 279936xIXZX3 
+ 2059 - 20591xl 7 • 
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'Exercises 
1. Suppose u is harmonic on an annular region A in R 2• Show that 

there exist Pm,qm E Jfm(R2) such that 

,~ 1 I I ~ qm(x) U\x) = ~ Pm(x) + qo og x + L. Ixl 2m 
m=O m=l 

on A. Show also that the series converges absolutely and uni­
formly on compact subsets of A. 

2. Suppose u is a harmonic function with an isolated singularity at 
a E R 2. The principal part of u at a is defined to be 

~ qm(x-a) 
qologlx-al+ L. Ix-aI 2m ' 

m=l 

where u has been expanded about a as in Exercise 1. We say that 
u has a fundamental pole at a if the principal part is a nonzero 
multiple of log Ixl. We say that u has a pole at a of order M if 
there is a largest positive integer M such that qM f= O. We say 
that u has an essential singularity at a if the principal part has 
infinitely many nonzero terms. Prove that u has 

(a) a removable singularity at a if and only if 

lim u(x) = 0; 
x-a log Ix - al 

(b) a fundamental pole at a if and only if 

O l ' I u(x) 1 < 1m < 00; 
x-a log Ix - al 

(c) a pole at a of order M if and only if 

o < lim sup Ix - aIMlu(x) I < 00; 
x-a 

(d) an essential singularity at a if and only if 

lim sup Ix - aINlu(x)1 = 00 
x-a 

for every positive integer N. 



220 CHAPTER 10. Annular Regions 

3. Give an example of a harmonic function of n variables, n > 2, 
that has an essential singularity at O. 

4. Let u be a real-valued harmonic function with an isolated singu­
larity at a ERn. Show that u has a fundamental pole at a if and 
only if 

lim lu(x)1 = 00. 
x-a 

5. Suppose n > 2 and u is a harmonic function with an isolated 
singularity at a. Prove that 

lim Ix - al n - 2u(x) 
x-a 

exists (as a complex number) if and only if u has either a remov­
able singularity or a fundamental pole at a. 

6. Singularities at 00; Suppose u is harmonic on a deleted neigh­
borhood of 00. The singularity of u at 00 is classified using the 
Laurent expansion of the Kelvin transform K[u] at 0; for exam­
ple, if the Laurent expansion of K [u] at 0 has vanishing principal 
part, then we say u has a removable singularity at 00. 

(a) Show that u has an essential singularity at 00 if and only if 

. lu(x)1 hmsup --- = 00 
x-co Ix 1M 

for every positive integer M. 

(b) Find growth estimates that characterize the other types of 
singularities at 00. 

7. (a) Identify those functions that are harmonic on Rn , n > 2, 
with fundamental pole at 00. 

(b) Identify those functions that are harmonic on R 2 with fun­
damental pole at 00. 



Exercises 221 

8. Suppose n 2 and the harmonic function u has an isolated 
singularity at a E R 2, with Laurent series expansion 

~ ~ qm(x-a) 
u(x) = L Pm(x-a)+qologlx-al+ L I 12 ' 

m=O m=l 
x-a m 

We say that the constant qo is the residue of u at a and write 
Res( u, a) = qo. Prove that if u is harmonic on B(a, r) \ {a}, then 

Res(u, a) = -21 f Dnu ds. 
1T oB(a,r) 

Also prove an analogue of the residue theorem (10.8) for the case 
n = 2. 

9. Show how formulas 10.11 and 10.12 are derived. 

10. Find the correct replacements for 10.9 and 10.12 when n = 2 and 
m = 0, and use this to solve the Dirichlet problem for annular 
regions in the plane. 

11. Let 0 < ro < 1 and let A = {x ERn :ro < Ixl < I}. Let p, qbe 
polynomials on R n, and let I be the function on oA that equals P 
on roS and equals q on S. Prove that PA[f] extends to a function 
that is harmonic on Rn \ {OJ. 

12. Generqlized Annular Dirichlet Problem: Suppose that A is the 
annulus {x ERn: ro < Ixl < rd, where 0 < ro < rl < 00. Prove 
that if I, g, h are polynomials on Rn , then there is a function 
u E C(A) such that u ~ Ion roS, u = g on rlS, and 6u = h 
on A. Show that if n > 2, then u is a finite sum of functions of 
the form p(x)/lxlm, where p is a polynomial on Rn and m is a 
nonnegative integer. (The software described in Appendix Bean 
find u explicitly.) 
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The 'DiricfUet 'ProbfeJn amf 
13aundary 13efiavior 

In this chapter we construct harmonic functions on 0 that behave 
in a prescribed manner near 00. Here we are interested in general do­
mains 0 eRn; the techniques we developed for the special domains 
B and H will not be available. Most of this chapter will concern the 
Dirichlet problem. In the last section, however, we will study a differ­
ent kind of boundary behavior problem-the construction of harmonic 
functions on 0 that cannot be extended harmonically across any part 
of 00. 

The 1Jiricfifet Probfem 

If f is a continuous function on 00, does f have a continuous ex­
tension to 0 that is harmonic on O? This is the Dirichlet problem,for 0 
with boundary data f. If the answer is affirmative for all continuous f 
on 00, we say that the Dirichlet problem for 0 is solvable. Recall that 
the Dirichlet problem is solvable for B (Theorem 1.17) and for the re­
gion between two concentric spheres (Theorem 10.13), but not for the 
punctured ball B \ {O} (see the remark following the proof of 10.13). 
The Dirichlet problem is sometimes referred to as "the first boundary 
value problem of potential theory". The search for its solution led to 
the development of much of harmonic function theory. 

We ""ill obtain a necessary and sufficient condition for the Dirichlet 
problem to be solvable for bounded O. Although the condition is not 

223 
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entirely satisfactory, it leads in many cases to easily verified geometric 
criteria that imply the Dirichlet problem is solvable. We will see, for 
example, that the Dirichlet problem is solvable for bounded 0 whenever 
o is convex or whenever 00 is "smooth". 

Note that when 0 is bounded, the maximum principle (1.9) implies 
that if a solution to the Dirichlet problem exists, then it is unique. 

su6fiarmonic Junctions 
We follow the so-called Perron approach in solving the Dirichlet 

problem. This ingenious method constructs a solution as the supre­
mum of a family of subharmonic functions. In this book, we call a 
real-valued function u subharmonic on 0 provided u is continuous on 
o and u satisfies the submean-value property on O. The latter require­
ment is that for each a E 0, there exists a closed ball B(a, R) c 0 such 
that 

11.1 

whenever 0 < r :5 R. Note that we are not requiring 11.1 to hold for all 
r < d(a, (0). (But see Exercise 5 of this chapter.) 

Obviously every real-valued harmonic function on 0 is subharmonic 
on O. A finite sum of subharmonic functions is subharmonic, as is any 
positive scalar multiple of a subharmonic function. In Exercise 8 of 
this chapter we ask the reader to prove that a real-valued U E C2 (0) 
is subharmonic on 0 if and only if 6u ~ 0 on O. Thus u(x) = Ixl2 
is a sub harmonic function on Rn that is not harmonic. This example 
shows that sub harmonic functions do not satisfy the minimum princi­
ple. They do, however, satisfy the maximum principle. 

11.2 Theorem: Suppose 0 is connected and u is subharmonic on O. 
If u has a maximum in 0, then u is constant. 

PROOF: Suppose u attains a maximum at a E O. Choose a closed 
ball B(a,R) c 0 as in 11.1. We have u :5 u(a) on B(a,R). If u were 
less than u(a) at any point of B(a,R), then the continuity of u would 
show that 11.1 fails for some r < R. Thus u = u(a) on B(a, R). The set 
where u attains its maximum is therefore an open subset of O. Because 
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this set is also closed in 0, it must be all of 0 by the connectivity of 0, 
proving that u is constant on O. • 

The following theorem indicates another sense in which subhar­
monic functions are "sub"-harmonic. 

11.3 Theorem: Let 0 be bounded. Suppose u and v are continuous 
on 0, u is subharmonic on 0, and v is harmonic on O. If u ~ v on 00, 
then u ~ v on O. 

PROOF: Suppose u - v ~ 0 on 00. Because u - v is subharmonic 
on 0, the maximum principle (11.2) shows that u - v ~ 0 through­
out O. • 

The proof of the next result follows easily from the definition of 
subharmonic functions, and we leave it to the reader. 

11.4 Proposition: If uland U2 are subharmonic functions on 0, then 
ma-x{ul, U2} is subharmonic on O. 

Although Proposition 11.4 is easy, it indicates why subharmonic 
functions are useful-they can be "bent" in ways that harmonic func­
tions simply would not tolerate. The next theorem is a more sophisti­
cated bending result. 

11.5 Theorem: Suppos.e that u is subharmonic on 0 and B(a, R) cO. 
Let w be the function that on 0 \ B(a, R) equals UIO\B(a,R) and that on 
B(a,R) equals the solution to the Dirichlet problem for B(a,R) with 
boundary data UlaB(a,R). Then w is subharmonic on 0 and u ~ w. 

PROOF: The inequality u ~ w on 0 follows from Theorem 11.3. The 
continuity of won 0 is clear. 

To verify that w satisfies the submean-value property on 0, let 
b E o. If b E B(a, R), then the harmonicity of w near b implies that 
w(b) = Is w(b + r() du«() for all sufficiently small r. If b ([ B(a,R), 
then u(b) = w(b). The subharmonicity of u, coupled with the inequal­
ity u ~ w on 0, then implies that w(b) ~ Is w(b + r() du«() for all 
sufficiently small r. Thus w is subharmonic on O. • 

We call the function w defined in Theorem 11.5 the Poisson modifi­
cation of u for B(a,R). 
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I'M Perron Construction 

In this and the next section, 0 will denote a bounded open subset 
of R nand f will denote a continuous real-valued function on 00. (Note 
that the Dirichlet problem is no less general if one assumes the bound­
ary data to be real.) We define Sf to be the family of real-valued, con­
tinuous functions U on 0 that are subharmonic on 0 and satisfy u :::; f 
on 00. The collection Sf is often called the Perron family for f. Note 
that Sf is never empty-it contains the constant function u(x) = m, 
where m is the minimum value of f on 00. (We are already using the 
boundedness of 0.) 

The two bending processes mentioned in the last section preserve 
the family Sf. Specifically, if Ul, U2 belong to Sf, then so does the 
function max{ul,u2}; if U E Sf and R(a,R) c 0, then the Poisson 
modification of U for B(a,R) belongs to Sf. 

Perron's candidate solution for the Dirichlet problem with boundary 
data f is the function defined on 0 by 

P[f](x) = sup{u(x) : U E Sf}. 

We call P[f] the Perron function for f. Note that m :::; P[f] :::; M on 0, 
wherem and M are the minimum and maximum values of f on 00. 
Note also that P[f] :::; f on ao. 

To motivate the definition of P[f], suppose that v solves the Dirich­
let problem for 0 with boundary data f. Then v E Sf, so that v :::; P[f] 
on O. On the other hand, Theorem 11.3 shows that every function in Sf 
is bounded above on 0 by v, so that P[f] :::; v on O. In other words, if 
there is a solution, it must be P[f]. 

Remarkably, even though P[f] may not be a solution, it is always 
harmonic. 

11.6 Theorem: P[f] is harmonic on O. 

PROOF: Let R(a, R) c o. It suffices to show that P[f] is harmonic 
on B(a,R). 

Choose a sequence (Uk) in Sf such that uda) - P[f](a). Replac­
ing Uk by the Poisson modification of max{ul, ... , ud for B(a,R), we 
obtain a sequence in Sf that increases on 0 and whose terms are har­
monic on B(a,R). Denoting this new sequence by (Uk) as well, we still 
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have ukCa) - P[f](a) < 00. By Harnack's Principle (3.8), (ud con­
verges uniformly on compact subsets of B(a, R) to a function u har­
monic on B(a,R). The proof will be completed by showing P[f] = u 
onB(a,R). 

We clearly have u :::; P[f] on B(a,R). To prove the reverse in­
equality, let v E Sf; we need to show that v :::; u on B (a, R). Let 
Vk denote the Poisson modification of max {Uk. v} for B (a, R). Because 
u(a) = P[f](a) and Vk E Sf, we have vk(a) :::; u(a) for all k. Further­
more, Vk is harmonic on B(a,R) and max{uk,v} :::; Vk on B(a,R) by 
subharmonicity. Thus for positive r < R, 

u(a) ~ vk(a) 

= Is vkCa + r() dCT«() 

~ Is[max{uk, v}](a + r() dCT«(). 

Letting k - 00, we see that the mean-value property of u on B (a, R) 
gives 

Is u(a + r() dCT«() ~ Is[max{u, v}](a + r() dCT(O· 

It follows that v :::; u on B(a,R), proving that P[fl:::; u on B(a, R), as 
desked. _ 

13arrier Junctions and (jeametric Criteria 
for SoEva6iaty 

Let ( E 00. We call a continuous real-valued function u on 0 a bar­
rier function for 0 at ( provided that u is subharmonic on 0, u < 0 on 
0\ {(}, and u«() = O. When such a u exists, we say that 0 has a barrier 
at (. (After Theorems 11.11 and 11.16, the reader may concede that 
the term "barrier" is apt. Poincare introduced barrier functions into the 
study of the Dkichlet problem; Lebesgue coined the term "barrier" and 
generalized the notion.) 
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11.7 Theorem: If 0 has a barrier at z.; E 00, then P[J](x) - j(z.;) 
as x - z.; within 0. 

PROOF: Suppose u is a barrier function for 0 at z.; E 00. Let E > O. 
By the continuity of jon 00, we may choose a ball B(z.;, r) such that 
j(z.;) - E < j < j(z.;) + Eon 00 nB(z.;, r). Because u is negative and con­
tinuous on the compact set 0 \ B(z.;, r), there exists a positive constant 
C such that 

11.8 j(z.;) - E + Cu < j < j(z.;) + E - Cu 

on 00 \ B(z.;, r). The nonpositivity of u then shows that ll.B is valid 
everywhere on 00. 

We claim that 

11.9 j(z.;) - E + Cu ~ P[j] ~ j(z.;) + E - Cu 

on 0. The first inequality in 11.9 holds because j(z.;) - E + Cu E Sf. 
For the other inequality, let v E Sf. Then v ~ j on 00, and therefore 
v + Cu < j(z.;) + E on 00 by I1.B. Theorem 11.3 then shows that 
v + Cu < j(z.;) + Eon 0, from which the inequality on the right of 11.9 
follows. 

Because u (z.;) = 0 and E is arbitrary, the continuity of u and 11.9 give 
us the desired convergence of P[J] (x) to j(z.;) as x - z.; within 0. • 

11.10 Theorem: The Dirichlet problem for bounded 0 is solvable if 
and only if 0 has a barrier at each z.; E 00. 

PROOF: Suppose that the Dirichlet problem for 0 is solvable and 
z.; E 00. The functionj defined on 00 by j(x) = -lx-z.;1 is continuous 
on 00; the solution to the Dirichlet problem for 0 with boundary data 
j is then a barrier function for 0 at z.;. 

Conversely, suppose that each point of 00 has a barrier function. 
Theorems 11.6 and 11.7 then show that P[J] solves the Dirichlet prob­
lem with boundary data j whenever j is continuous and real valued 
on 00. • 

Theorem 11.10 reduces the Dirichlet problem to a local boundary 
behavior question that we call the barrier problem. Have we made 
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progress, or have we merely traded one boundary behavior problem 
for another? We will see that the barrier problem can be solved in 
many cases of interest. For example, the next result will enable us to 
prove that the Dirichlet problem is solvable for any bounded convex 
domain. 

11.11 External Ball Condition: If ~ E 00 belongs to a closed ball 
contained in the complement of 0, then 0 has a barrier at ~. 

PROOF: Suppose B (a, r) is a closed ball in the complement of 0 such 
that aB(a, r) II 00 = {~}. Define u on Rn \ {a} by 

{ logr -log Ix - al if n = 2 
u(x) = 

Ix - al 2- n - r 2- n if n > 2. 

Then u is a barrier for 0 at ~. 

The external ball condition. 

• 

Consider now the case where 0 is bounded and convex. Each ~ E 00 
then belongs to a closed half-space contained in the complement of 
0, which implies that the external ball condition is satisfied at each 
~ E 00. By 11.11, 0 has a barrier at every point in its boundary. The 
following corollary is thus a consequence of Theorem 11.10. 



230 CHAPTER 11. The Dirichlet Problem and Boundary Behavior 

11.12 Corollary: If 0 is bounded and convex, then the Dirichlet prob­
lem for 0 is solvable. 

Theorem 11.11 also enables us to prove that the Dirichlet problem is 
solvable for bounded 0 when ao is sufficiently smooth. To make this 
more precise, let us say that 0 has Ck-boundary if for every ( E ao 
there exists a neighborhood w of ( and a real-valued cP E Ck(w) sat­
isfying the following conditions: 

(a) 0 n w = {x E w : cp(x) < O}; 

(b) ao n w = {x E W : cp(x) = O}; 

(c) V'cp«() =1= 0 for every 1;;' E 00 n w. 

Here k is any positive integer. The function cp is called a local defining 
function for O. 

Assume now that 0 has C2-boundary. For Simplicity, suppose that 
o E 00 and that the tangent space of 00 at 0 is Rn - 1 x {O}. Then 
near 0, ao is the graph of a C2-function 1jJ, where IjJ is defined near 
o E Rn - 1 and V'IjJ(O) = 0; this follows easily from the impliCit function 
theorem. Because V'IjJ(O) = 0, we have IIjJ(x) I = O(lxl 2 ) as x - 0 (by 
Taylor's Theorem). This implies (we leave the details to the reader) that 
o satisfies the external ball condition at O. The preceding argument, 
after a translation and rotation, applies to any boundary point of O. 
From Theorems 11.10 and 11.11 we thus obtain the following result. 

11.1 3 Corollary: If 0 is bounded and has C2 -boundary, then the 
Dirichlet problem for 0 is solvable. 

A domain \'Vith C1-boundary need not satisfy the external ball condi­
tion (Exercise 16(a) of this chapter). We now take up a condition on 00 
that covers the C1-case as well as many "nonsmooth" cases. The proto­
type for this more-general 0 is the domain B \ f ex (0), where rex (0) is the 
cone defined in Chapter 2; see the follOwing diagram, where B \ f ex (0) 

and one of its dilates are pictured. 
We will need the following maximum prinCiple for B \ f ex (0). 

11.14 Lemma: Let 0 = B \ f ex(O). Suppose u is real valued and 
continuous on 0 \ {O}, u is bounded and harmonic on 0, and u ~ M on 
00 \ {O}. Then u ~ M on O. 
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PROOF: If n > 2, apply the maximum principle (Corollary 1.10) to 
the function u(x) -!vI - Elxl 2- n on 0 and let E - 0. When n = 2, the 
same argument applies with log 1/ Ixl in place of IxI 2- n . • 

B \ f (X (0) and one of its dilates. 

With 0 as in Lemma 11.14, note that rO = (rB) nO for every 
r E (0,1). This fact will be crucial in proving the next result. 

11.15 lemma: Let 0 = B \ f (X(O). On a~, set j(x) = lxi, and on 0, 
set u = T[f]. Then -u is a barrier for 0 at O. 

PROOF: The function u is harmonic on 0, with 0 .$ u .$ 1 on O. The 
external ball condition holds at each point of ao \ {O}, so u is contin­
uous and positive on 0 \ {OJ. The proof will be completed by showing 
that limsupx_o u(x) = O. 

Fix r E (0,1). By the maximum principle, there exists a constant 
c < 1 such that u .$ c on a(rO) \ {OJ. Now define 

v(x) = u(x) - max{r, c}u(x/r) 

for x E rO. It is easy to check that v .$ 0 on a,rO) \ {OJ. Applying 
Lemma 11.14, we obtain v .$ 0 on rO. Thus 
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limsupu(x) ::5 max{r,c} limsupu(x j r) 
x-a x-a 

= ma'{{r, c} limsupu(x). 
x-a 

Because max{r, c} < 1, this implies that limsupx_o u(x) = 0, which 
completes the proof. _ 

The next result shows that the Dirichlet problem is solvable for ev­
ery bounded domain satisfying the "external cone condition" at each 
of its boundary points. By a cone we shall mean any set of the form 
a + T([~(O»), where a ERn, T is a rotation, and [~(O) is the truncation 
of [a(O) defined in Chapter 7. We refer to a as the vertex of such a 
cone. 

11.16 External Cone Condition: If 0 is bounded and Z; E ao is the 
vertex of a cone contained in the complement of 0, then 0 has a barrier 
at Z;. 

PROOF: Subharmonic functions are preserved by translations, dila­
tions, and rotations, so without loss of generality we may assume that 
Z; = 0 and that 0 nBc B \ r a(O) for some ex > O. Consider now the 
function -u obtained in Lemma 11.15. This function is identically -1 

on S \ r a (0). Thus if we extend this function by defining it to equal -1 
on Rn \ B, the result is a barrier for 0 at O. _ 

An 0 satisfying the external cone condition. 
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Nonextemfa6iuty 1{esults 

We now turn from the Dirichlet problem to another kind of bound­
ary behavior question. Recall that if 0 c R2 = e, then there exists 
a function holomorphic on 0 that does not extend holomorphically to 
any larger set. This is usually proved by first showing that each discrete 
subset of 0 is the zero set of some function holomorphic on O. Because 
a discrete subset of 0 that clusters at each point of ao can always be 
chosen, some holomorphic function on 0 is nonextendable. 

Remarkably, there exist domains in em, m > 1, for which every 
holomorphic function extends across the boundary. For example, every 
holomorphic function on e2 \ {O} extends to be entire on e2; see [12], 
pages 5-6, for details. 

What about harmonic functions of more than two real variables? 
The next result shows that given any 0 eRn, n > 2, a nonextendable 
positive harmonic function on 0 can always be produced. 

11.1 7 Theorem: Suppose n > 2 and 0 eRn. Then there exists a 
positive harmonic function u on 0 such that 

for every ( EO a~. 

limsupu(x) = 00 

x-I;;" 

PROOF: Assume first that 0 is connected. Let {(l, (2, ... } be a count­
able dense subset of a~. Fixing a EO 0, we may choose positive con­
stants em such that 

for m = 1,2, .... For x EO 0, define 

00 

u(x) = L cmlx - (mI 2- n. 
m=l 

Each term in this series is positive and harmoniC on 0, and the series 
converges at a EO O. By Harnack's Principle, u is harmOnic on 0, and 
we easily verify that u satisfies the conclusion of the theorem. 

If 0 is not connected, we apply the preceding to each connected 
component of 0 to produce the desired function. _ 
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If ncR 2, it may not be possible to construct a positive harmonic 
function on n that is unbounded near every point of an. Recall, for 
example, that every positive harmonic function on R 2 \ {O} is constant 
(Corollary 3.3). Our next result, however, is valid for all n ~ 2. 

11.18 Theorem: Let n c Rn. Then there exists a real-valued harmonic 
function u on n such that 

liminfu(x) = -00, 
x-( 

limsupu(x) = 00 

x-( 

for every ( E an. 

PROOF: In the proof we will assume that n > 2; we leave the n = 2 
case as an exercise. 

Let I denote the set of isolated points of an. We assume that an \ I 
is nonempty; the proof that follows will easily adapt to the case an = I. 
Select disjoint countable dense subsets D_ and D+ of an \ I, and write 

Now choose pairwise disjOint compact sets E1 , E2, .. ' such that for 
each m, 

(b) (m is a limit point of Em. 

For (m E I we insist that Em be a closed ball of positive radius centered 
at Sm. For (m E D_ u D+ we will not be as fussy; for example, we can 
take Em to be the union of {(m} with a sequence in n converging to (m. 
The pairwise disjointness of {Em} is easy to arrange by induction. 

Set v(x) = IxI 2- n , w(x) = xllxl-n , and for m = 1,2, ... , define 

{ 
-v(x - Sm) 

um(x) = v(x - (m) 

w(x - Sm) 

Note that U m is harmonic on Rn \ {Sm}. 

if Sm E D_ 

if Sm E D+ 

if (m E I. 

Choose compact sets Kl, K2, ... c n such that 
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and n = uKm. We may then choose positive constants Cm such that 

on Km u El U ... u Em-I. (Let Eo be the empty set.) 
Finally, define 

00 

Because this series converges uniformly on compact subsets of n, U is 
harmonic on n. 

To check the boundary behavior of u, we first consider the case 
where ( E an \ 1. Let E > o. Then B((, E) contains some (m E D_. 
On the corresponding Em, the series L.Hm CjUj converges uniformly 
to a function continuous on Em. Because cmum(x) - -00 as x - (m 
within Em, the infimum of U over B(?;:, E) n n is -00. Similarly, the 
supremum of U over B((, E) n n is 00, giving us the desired conclu­
sion. 

Now suppose that?;: E l. If E > 0, thenB(?;:, E) contains some (m E 1. 
The series L.Hm C jU j then converges uniformly to a continuous func­
tion on the closed ball Em. Because CmUm in this case maps any punc­
tured ball B((m, r) \ {(m} onto R, we are done. _ 

Note that if n is locally connected near an (for example, if n is 
convex or has C1-boundary), then the function U of Theorem 11.18 
satisfies u(B((, E) n n) = R for every ( E an and every E > o. (Also 
see Exercise 22 of this chapter.) 
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Exercises 

1. Suppose that 0 is a simply connected domain in the plane whose 
boundary is a Jordan curve. Explain how to use a suitable ver­
sion of the Riemann mapping theorem to show that the Dirichlet 
problem for 0 is solvable. 

2. Show that every translation, dilation, and rotation of a subhar­
monic function is subharmonic. 

3. Suppose that u is subharmonic on 0 and that qJ is increasing and 
convex on an open interval containing u(O). Prove that qJ 0 u is 
subharmonic on O. 

4. Let u be a real-valued continuous function on O. Show that u 
is subharmonic on 0 if and only if for every compact K c 0 the 
following holds: if u s v on oK, where v is continuous on K and 
harmonic on the interior of K, then us v on K. 

5. Suppose that u is subharmonic on 0 and a E O. Show that the 
function r - Is u(a + r() dcr(() is increaSing. Conclude that 
the submean-value inequality 11.1 is valid for all r < d(a, (0). 

6. Show that if a sequence of functions subharmonic on 0 con­
verges uniformly on compact subsets of 0, then the limit func­
tion is subharmonic on O. 

7. Show that lul P is sub harmonic on 0 whenever u is harmonic 
on 0 and 1 s P < 00. (This and Exercise 5 imply that Ilu y lip is 
an increasing function of r, giving an alternative proof of Corol­
lary 6.6.) 

8. Suppose u E C2 (0) is real valued. Use Taylor's Theorem to show 
that u is subharmonic on 0 if and only if Llu ~ 0 on O. (Hint: 
To show Llu ~ 0 implies u is subharmonic, first assume Llu > O. 
Then consider the functions u(x) + ElxI 2.) 

9. Show that Ixl P is subharmonic on Rn \ {O} for every p > 2 - n. 
Also show that Ixl P is subharmonic on Rn for every p > O. 
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10. (a) Show that a subharmonic function on R2 that is bounded 
above must be constant. 

(b) Suppose n > 2. Find a nonconstant subharmonic function 
on R n that is bounded above. 

11. Assume that f is holomorphic on 0. c R2 = C and that u is 
subharmonic on f(o.). Prove that u 0 f is subharmonic on 0.. 

12. Give an easier proof of Theorem 11.16 for the case n = 2. 

13. With n = 3, let 0. denote the open unit ball with the x3-axis 
removed. Show that the Dirichlet problem for 0. is not solvable. 

14. Show that when n = 2, the Dirichlet problem is solvable for 
bounded open sets satisfying an "external segment condition". 
(Hint: An appropriate conformal map of B2 \ {O} onto the plane 
minus a line segment may be useful.) 

15. Show that the Dirichlet problem is solvable for B3 \ (H2 x {O}). 

16. (a) Give an example of a bounded 0. with CI-boundary such that 
the external ball condition fails for some ( E 00.. 

(b) Show that a domain with CI-boundary satisfies the external 
cone condition at each of its boundary points. 

17. Suppose 0. is bounded. Show that the Dirichlet problem for 0. is 
solvable if and only if 1'[ -f] = -1'[f] on 0" for every real-valued 
continuous f on 00.. 

18. Suppose 0. is bounded and a E 0.. Show that there exists a 
unique positive Borel measure J.1a on 00., with J.1a(oo.) = 1, such 
that 

1'[f] (a) = f f dJ.1a 
an 

for every real-valued continuous f on 00.. (The measure J.1a is 
called harmonic measure for 0. at a.) 

19. Prove Theorem 11.18 in the case n = 2. 

20. Show that if 0. c R 2 is bounded, then there exists a positive 
harmonic function u on 0. such that limsupx_( u(x) = 00 for 
every ( E 00.. 
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21. Suppose 0 C C and {(I, (2, ... } is a countable dense subset 
of ao. Construct a holomorphic function on 0 of the form 

00 L em 
z-7' m=I ':,m 

that does not extend across any part of a~. (This should be easier 
than the proof of Theorem 11.18.) 

22. Given an arbitrary 0 eRn, does there always exist a real-valued 
harmonic u on 0 such that u(B((, E) nO) = R for every ( E ao 
and every E > 07 
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Yofume, Suiface Jtrea, ancr 
Integration an Syfieres 

'VoLUme of tfie 'Ba{{ and Suiface Area of 
the Syfiere 

In this section we compute the volume of the unit ball and surface 
area of the unit sphere in R n. Recall that B = Bn denotes the unit 
ball in Rn and that V = Vn denotes volume measure in Rn. We begin 
by evaluating the constant V(B), which appears in several formulas 
throughout the book. 

A.l Proposition: The volume of the unit ball in Rn equals 

rr n / 2 

(nj2)! 

2 (n+ 1) /2 rr (n-1) /2 

1·3·5 .. ·n 

if n is even, 

if n is odd. 

PROOF: Assume n > 2, denote a typical point in Rn by (x, y), where 
x E RZ and y E Rn-2, and express the volume Vn(Bn) as an iterated 
integral: 

239 
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The inner integral on the last line equals the (n - 2) -dimensional volume 
of a ball in Rn-2 with radius (1 - IxI2)1/2. Thus 

Switching to the usual polar coordinates in R 2, we get 

Vn(Bn) = Vn-2(Bn-z) fIT f\I - r 2)(n-Z)/2r dr de 
-IT Jo 

2rr = -Vn-2(Bn-2). 
n 

The last formula can be easily used to prove the desired formula for 
Vn (Bn) by induction in steps of 2, starting with the well-known results 
V2(Bz) = rr and V3(B3) = 4rr/3. • 

Readers familiar with the gamma function should be able to rewrite 
the formula given by A.I as a single expression that holds whether n 
is even or odd (see Exercise 7 of this appendix). 

Turning now to surface-area measure, we let Sn denote the unit 
sphere in R n.* Unnormalized surface-area measure on Sn will be de­
noted by Sn and normalized surface-area measure on Sn will be de­
noted by Un. Some of the arguments we give in the remainder of this 
appendix will be more intuitive than rigorous; the reader should have 
no trouble filling in the missing details. We presume some familiarity 
with surface-area measure. 

Let us now find the relationship between Vn (Bn) and Sn (Sn). We do 
this with an old trick from calculus. For h ~ 0 we have 

((1 + h)n - I)Vn(Bn) = Vn((1 + h)Bn) - Vn(Bn) 

~ sn(Sn)h. 

Dividing by h and letting h - 0, we obtain nVn(Bn) 
record this result in the following proposition. 

A.2 Proposition: The unnormalized surface area of the unit sphere 
in R n equals nVn(Bn) . 

• A more common notation is sn-1, which emphasizes that the sphere has dimension 
n - 1 as a manifold. We use Sn to emphasize that the sphere lives in Rn. 
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S[ice Integration an Syfieres 
The map l/J: Bn-l - Sn defined by 

parameterizes the upper hemisphere of Sn. The corresponding change 
of variables is given by the formula 

A.3 d ( ( )) = dVn-dx) 
Sn l/J x .J 2 • I-Ixl 

Equation A.3 is found in most calculus texts in the cases n = 2,3. 
Consider now the map 'Y: Bn-k x Sk - Sn defined by 

'Y(x, () = (x, ~I - Ixl2 (). 

Here 1 :s; k < n. The map 'Y is one-to-one, and the range of'Y is Sn minus 
a set that has Sn -measure 0 (namely, the set of points on Sn whose last 
k coordinates vanish). We wish to find the change of variables formula 
associated vvith 'Y. 

Observe that Bn-k x Sk is an (n - 1 )-dimensional submanifold of R n 
whose element of surface area is d(Vn-k x Sk). For fixed x, 'Y changes 
(k - I)-dimensional area on {x} x Sk by the factor (1 - IxI 2 )(k-l)f2. 

For fixed (, A.3 shows that 'Y changes (n - k)-dimensional area on 
Bn-k x {S'} by the factor (1-lxI2)-1/2. Furthermore, the submanifolds 
'Y ( {x} X Sk) and 'Y (Bn-k x {(} ) are perpendicular at their point of inter­
section, as is easily checked. The last statement implies that 'Y changes 
(n -1 )-dimensional measure on Bn-k x Sk by the product of the factors 
above. In other words, 

The last equation and A.2 lead to the useful formula given in the 
next theorem. This formula shows how the integral over a sphere can 
be calculated by iterating an integral over lower-dimensional spheri­
cal slices. We state the formula in terms of normalized surface-area 
measure because that is what we have used most often. 
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AA Theorem: Let f be a Borel measurable, integrable {unction on Sn. 
If 1 :::; k < n, then 

f f dan = 
Sn 

Some cases of Theorem A.4 deserve special mention. We begin by 
choosing k = n - 1, which is the largest permissible value of k. This 
corresponds to decomposing Sn into spheres of one less dimension by 
intersecting Sn with the family of hyperplanes orthogonal to the first 
coordinate axis. The ball Bn-k is just the unit interval ( -1, 1), and so for 
x E Bn-k we can write x 2 instead of Ix12. Thus we obtain the following 
corollary of Theorem A.4. 

A.S Corollary: Let f be a Borel measurable, integrable (unction on Sn. 
Then 

f f dan = 
Sn 

n-1 V(Bn-I) fi 2 n;-3 f f( ~7") 7" d -- V(B) (l-x) x,v1-x'-." dan-d.,,) x. 
n n -1 Sn-l 

At the other extreme we can choose k = 1. This corresponds to 
decomposing Sn into pairs of points by intersecting Sn with the family 
of lines parallel to the nth coordinate axis. The sphere S 1 is the two­
point set { -1, I}, and dal is counting measure on this set, normalized 
so that each point has measure 1/2. Thus we obtain the follo\-ving 
corollary of Theorem A.4. 

A.6 Corollary: Let f be a Borel measurable, integrable function on Sn. 
Then 

f fdan = 
Sn 

1 f f(x, ~1 - Ix12) + f(x, -~1 - Ix12) dV () 
, n-I X . nv (Bn) Bn-l ~1 - Ixl2 

Let us now try k = 2 (assuming n > 2). Thus in A.4 the term 
(l - IxI 2)(k-2)!2 disappears. The variable 7;; in the formula given by 
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Theorem AA now ranges over the unit circle in R 2, so we can replace 
(by (cose,sine), which makes dU2(() equal to de/(2rr). Thus we 
obtain the follm,ving corollary of AA. 

A.7 Corollary (n > 2): Let f be a Borel measurable, integrable func-
tion on 5n . Then 

f fdun == 
51t 

An important special case of the last result occurs when n == 3. 
In this case Bn -2 is just the interval (-1 t 1), and we get the following 
corollary. 

A.S Corollary: Let f be a Borel measurable, integrable function on 53. 
Then 

f Ill ITT ~ f dU3 == -4 f(x, -./1 - x 2 cos e, -/1 - x 2 sin e) de dx. 
53 rr -1 -TT 
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'Exercises 

1. Prove that 

if and only if p > n. 

2. (a) Consider the region on the unit sphere in R 3 lying between 
two parallel planes that intersect the sphere. Show that the 
area of this region depends only on the distance between 
the two planes. (This result was discovered by the ancient 
Greeks.) 

(b) Show that the result in part (a) does not hold in R n if n f=. 3 
and "planes" are replaced by "hyperplanes". 

3. Let f be a Borel measurable, integrable function on the unit 
sphere 54 in R4. Define a function 'I' mapping the rectangular 
box [-1,1] x [-1,1] x [-IT, IT] to 54 by setting 'I'(x,y, e) equal 
to 

(x,~I- X2 y,~I- x2~1- y2 COSe,~I- x2~1- y2 sine). 

Prove that 

f 1 fi '-----;:f1 f1T fd(}"4 = -2 2 yl_X2 f('I'(X,y,e»)dedydx. 
s. IT -1 -1 -1T 

4. Without writing down anything or using a computer, evaluate 

5. Let m be a positive integer. Use A.5 to give an explicit formula 
for 
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6. Suppose that m is a positive integer. 

(a) Prove that 

f { l if m is even 
~l m d(J"(~) = m+l 

S3 0 if m is odd. 

(b) Find a formula for f ~l m d(J"(~). 
S4 

7. For readers familiar with the gamma function f: prove that the 
volume of the unit ball in R n equals 



ApPENDIX B 

J-{armonic Junction TFzeory 
ami :M.atliematica 

Using the computational environment provided by Mathematica,* 
the authors have written software to manipulate many of the expres­
sions that arise in the study of harmonic functions. This software al­
lows the user to make symbolic calculations that would take a pro­
hibitive amount of time if done without a computer. For example, Pois­
son integrals of polynomials can be computed exactly. 

Our software for symbolic manipulation of harmonic functions is 
available over the internet without charge. It is distributed as a Mathe­
matica package that will work on any computer that runs Mathematica. 
This Mathematica package and the instructions for using it are available 
at http://math.sfsu.edu/axler/HFT_Math.html and in the stan­
dard electronic mathematical archives (search for the files HFT. m and 
Harmoni cFuncti onTheory. nb). Comments, suggestions, and bug re­
ports should be sent to axler@sfsu.edu. 

Here are some of the capabilities of our Alathematica package: 

symbolic calculus in R n, induding integration on balls and 
spheres; 

solution of the Dirichlet problem for balls, annular regions, and 
exteriors of balls in R n (exact solutions with polynomial data); 

solution of the Neumann problem for balls and exteriors of balls 
in R n (exact solutions with polynomial data); 

"Mathematica is a registered trademark of Wolfram Research, Inc. 

247 
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computation of bases for spaces of spherical harmonics in Rn; 

computation of the Bergman projection for balls in Rn; 

manipulations with the Kelvin transform K and the modified 
Kelvin transform X; 

computation of the extremal function given by the Harmonic 
Schwarz Lemma (6.24) for balls in Rn; 

computation of harmonic conjugates in R2. 

New features are frequently added to this software. 
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Symbols are sorted by ignoring everything except Latin and Greek 
letters. For sorting purposes, Greek letters are assumed to be spelled 
out in full with Latin letters. For example, QE is translated to "Omega£", 
which is then sorted with other entries beginning with "0" and before 
o (n), which translates to "On". The symbols that contain no Latin or 
Greek letters appear first, sorted by page number. 

\ \, 1 \\ IIbP, 171 
'V,4 bP(Q),I71 

EB,76,81 
C~, 192 [ ],77 

( , ), 79 
Cc(Rn-l),148 

1., 136 
C(E),2 

3, 206 
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A,215 
cm ,87,217 

lX, 15 
Cm for n = 2, 107 
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13,5 ~, 1 
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bm ,215 'D y ,31,45 

Bn , 5 dS,4 
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da, 5 D,1 
dan, 240 Da «(l,128 
dsn, 240 DE,67 
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dVn, 4 
dX,144 II lip, 112, 146 

dy,192 PA [J],217 

PA (x,(),216 

E*,60 p(D),85 

Pe[f],66 

f, 245 Pe(x'(l,66 
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1111hP, 117, 151 P(x,Y),122 

h P (B),117 P(x, S), 12 

h P (H),151 
QQ,175 

K,61 R,20 
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LP(Rn-l),146 
RQ,173 

LP(S),112 5,4 
L2(5),79 5, 5 

S+,123 
:M,131 S-,123 
M(Rn-l),146 S,154 
M(S), III Sf,226 
IIpll, III a, 5 
Pf,112 an, 240 

Sn, 240 
n,l Sn, 240 
n,4 supp, 192 
N,103 
Na[u], 129 U, 123 
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Un, 123 
U y , 2, 112 
u y ,143 

w,185 

x*,59 
X*, 115 
XiX, 19 
XE, 67, 68 

Zm(x,Y),176 

Zm((, 17),94 
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annular region, 209 
approximate identity, 13, 144 
Arzela-Ascoli Theorem, 36 

Baire's Theorem, 42 
balls internally tangent to E, 

190 
barrier, 227 
barrier function, 227 
barrier problem, 228 
basis of J{m(Rn), J{m(S), 92 

Bergman projection, 175 
Bergman space, 171 
Bergman, Stefan, 171 
Bloch space, 43, 189 
Bacher's Theorem, 50, 57, 197, 

199 
boundary data, 15 
bounded harmonic function, 

31 
bounded harmonic function on E, 

40,119 
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onto J{m(R n ), 77 

Cauchy's Estimates, 33 
Cauchy, Augustin-Louis, 34 
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247 
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conjugate index, 112 
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decomposition theorem for 

holomorphic functions, 
206 
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direct sum, 81 
Dirichlet problem, 12, 223 
Dirichlet problem for H, 146 
Dirichlet problem for annular 

regions, 215 
Dirichlet problem for annular 

regions (n == 2), 221 
Dirichlet problem for convex 
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Dirichlet problem for smooth 

regions, 230 
Dirichlet, Johann Peter Gustav 

Lejeune, 13 
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divergence theorem, 4 
dual space, 115 

equicontinuity, 117 
essential singularity, 211 
essential singularity (n = 2), 

219 
essential singularity at 00, 220 
exterior Dirichlet problem, 66 
exterior Poisson integral, 66 
exterior Poisson kernel, 66 
external ball condition, 229 
external cone condition, 232 
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237 
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extreme point, 140 

Fatou Theorem, 128, 160 
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Fourier series, 82, 97 
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gamma function, 245 
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problem, 221 
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function, 131 
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Harnack's Principle, 49 
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Hopf Lemma, 28 

inversion, 60 
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isolated singularity, 32, 210 
isolated singularity at 00, 61 
isolated singularity of positive 
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isolated zero, 6 

Kelvin transform, 59,61, 155 

Laplace's equation, 1 
Laplacian, 1 
Laurent series, 193, 209 
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Lebesgue decomposition, 136 
Lebesgue Differentiation 

Theorem, 165 
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Uouville's Theorem, 31 



Index 

Liouville's Theorem for positive 
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Local Fatou Theorem, 161 
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