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Preface

Harmonic functions—the solutions of Laplace’s equation—play a
crucial role in many areas of mathematics, physics, and engineering.
But learning about them is not always easy. At times the authors have
agreed with Lord Kelvin and Peter Tait, who wrote {[18], Preface)

There can be but one opinion as to the beauty and utility of this
analysis of Laplace; but the manner in which it has been hitherto
presented has seemed repulsive to the ablest mathematicians, and
difficult to ordinary mathematical students.

The quotation has been included mostly for the sake of amusement,
but it does convey a sense of the difficulties the uninitiated sometimes
encounter.

The main purpose of our text, then, is to make learning about har-
monic functions easier. We start at the beginning of the subject, assum-
ing only that our readers have a good foundation in real and complex
analysis along with a knowledge of some basic resulits from functional
analysis. The first fifteen chapters of [15}], for example, provide suffi-
cient preparation.

In several cases we simplify standard proofs. For example, we re-
place the usual tedious calculations showing that the Kelvin transform
of a harmonic function is harmonic with some straightforward obser-
vations that we believe are more revealing. Another example is our
proof of Bocher’s Theorem, which is more elementary than the classi-
cal proofs.

We also present material not usually covered in standard treatments
of harmonic functions (such as [9}], {11], and [19]). The section on the
Schwarz Lemma and the chapter on Bergman spaces are examples. For

ix



X Preface

completeness, we include some topics in analysis that frequently slip
through the cracks in a beginning graduate student’s curriculum, such
as real-analytic functions.

We rarely attempt to trace the history of the ideas presented in this
book. Thus the absence of a reference does not imply originality on
our part.

For this second edition we have made several major changes. The
key improvement is a new and considerably simplified treatment of
spherical harmonics (Chapter 5). The book now includes a formula for
the Laplacian of the Kelvin transform (Proposition 4.6). Another ad-
dition is the proof that the Dirichlet problem for the half-space with
continuous boundary data is solvable (Theorem 7.11), with no growth
conditions required for the boundary function. Yet another signifi-
cant change is the inclusion of generalized versions of Liouville’s and
Bocher’s Theorems (Theorems 9.10 and 9.11), which are shown to be
equivalent. We have also added many exercises and made numerous
small improvements.

In addition to writing the text, the authors have developed a soft-
ware package to manipulate many of the expressions that arise in har-
monic function theory. Our software package, which uses many results
from this book, can perform symbolic calculations that would take a
prohibitive amount of time if done without a computer. For example,
the Poisson integral of any polynomial can be computed exactly. Ap-
pendix B explains how readers can obtain our software package free of
charge.

The roots of this book lie in a graduate course ‘at Michigan State
University taught by one of the authors and attended by the other au-
thors along with a number of graduate students. The topic of harmonic
functions was presented with the intention of moving on to different
material after introducing the basic concepts. We did not move on to
different material. Instead, we began to ask natural questions about
harmonic functions. Lively and illuminating discussions ensued. A
freewheeling approach to the course developed; answers to questions
someone had raised in class or in the hallway were worked out and then
presented in class (or in the hallway). Discovering mathematics in this
way was a thoroughly enjoyable experience. We will consider this book
a success if some of that enjoyment shines through in these pages.
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CHAPTER 1

Basic Properties of
Harmonic Functions

Definitions and Examples

Harmonic functions, for us, live on open subsets of real Fuclidean
spaces. Throughout this book, 7 will denote a fixed positive integer
greater than 1 and Q will denote an open, nonempty subset of R". A
twice continuously differentiable, complex-valued function u defined
on ) is harmonic on Q if

Au =0,

where A = D12+ - . +Dy? and D;? denotes the second partial derivative
with respect to the j® coordinate variable. The operator A is called the
Laplacian, and the equation Au = 0 is called Laplace’s equation. We
say that a function u defined on a (not necessarily open) set E C R"* is
harmonic on E if u can be extended to a function harmonic on an open
set containing E.

We let x = (xy,...,Xn) denote a typical point in R" and let [x| =
(x1% + -« - + xn%)/2 denote the Euclidean norm of x.

The simplest nonconstant harmonic functions are the coordinate
functions; for example, u(x) = x;. A slightly more complex example
is the function on R? defined by

u(x) = x12 + X22 - 2X32 +ix>.

As we will see later, the function
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u(x) = |x|>™

is vital to harmonic function theory when n > 2; the reader should
verify that this function is harmonic on R™ \ {0}.

We can obtain additional examples of harmonic functions by dif-
ferentiation, noting that for smooth functions the Laplacian commutes
with any partial derivative. In particular, differentiating the last exam-
ple with respect to x; shows that x,;|x|~™" is harmonic on R™\ {0} when
n > 2. (We will soon prove that every harmonic function is infinitely
differentiable; thus every partial derivative of a harmonic function is
harmonic.)

The function x1 |x|~™" is harmonic on R™\ {0} even when n = 2. This
can be verified directly or by noting that x;|x|~2 is a partial derivative
of log | x|, a harmonic function on R? \ {0}. The function log |x| plays
the same role when n = 2 that |x|2~" plays when n > 2. Notice that
limy . log | x| = o, but limy - |X]2~" = 0; note also that log |x| is nei-
ther bounded above nor below, but |x|?~" is always positive. These
facts hint at the contrast between harmonic function theory in the
plane and in higher dimensions. Another key difference arises from
the close connection between holomorphic and harmonic functions in
the plane—a real-valued function on Q ¢ R? is harmonic if and only
if it is locally the real part of a holomorphic function. No comparable
result exists in higher dimensions.

Invariance Properties

Throughout this book, all functions are assumed to be complex
valued unless stated otherwise. For k a positive integer, let Ck(Q)
denote the set of k times continuously differentiable functions on Q;
C*(9Q) is the set of functions that belong to C¥(Q) for every k. For
E ¢ R™, we let C(E) denote the set of continuous functions on E.

Because the Laplacian is linear on C?(Q), sums and scalar multiples
of harmonic functions are harmonic.

For v € R™ and u a function on , the y-translate of u is the func-
tion on  + y whose value at x is u(x — y). Clearly, translations of
harmonic functions are harmonic.

For a positive number r and u a function on Q, the r-dilate of u,
denoted u,, is the function
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(Uup)(x) =ulrx)

defined for x in (1/7)Q = {(1/r)w : w € Q}. If u € C2(Q), then a
simple computation shows that A(u,) = ¥2(Au), on (1/7)Q. Hence
dilates of harmonic functions are harmonic.

Note the formal similarity between the Laplacian A = D% +- - - +Dy,?
and the function |x|2 = x;2 + - - - + x,%, whose level sets are spheres
centered at the origin. The connection between harmonic functions and
spheres is central to harmonic function theory. The mean-value prop-
erty, which we discuss in the next section, best illustrates this connec-
tion. Another connection involves linear transformations on R" that
preserve the unit sphere; such transformations are called orthogonal.
A linear map T: R" — R" is orthogonal if and only if |Tx| = | x| for all
x € R™. Simple linear algebra shows that T is orthogonal if and only
if the column vectors of the matrix of T (with respect to the standard
basis of R") form an orthonormal set.

We now show that the Laplacian commutes with orthogonal trans-
formations; more precisely, if T is orthogonal and u € C2(Q), then

AUoT)=(Au)eT

on T~1(Q). To prove this, let [¢;x] denote the matrix of T relative to
the standard basis of R™. Then

n
Dm(uoT) = tpm(Dju)o T,
j=1

where D,, denotes the partial derivative with respect to the m™® coordi-
nate variable. Differentiating once more and summing over m yields

1

I
?M:
.5.[\/]: TIM=

1 j,

(

1

temtjm) (DiDju) o T
1

I
M=

Js
n

= (Diju) oT
j=1

=(Au) o T,
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as desired. The function u o T is called a rotation of u. The preced-
ing calculation shows that rotations of harmonic functions are har-
monic.

The Mean-Value Property

Many basic properties of harmonic functions follow from Green’s
identity (which we will need mainly in the special case when Q) is a
ball):

1.1 J (uAvV —vAu)dVv = LQ(anv —vDpu) ds.
Q

Here Q is a bounded open subset of R™ with smooth boundary, and
u and v are C2-functions on a neighborhood of Q, the closure of Q.
The measure V = V,, is Lebesgue volume measure on R", and s de-
notes surface-area measure on 0 (see Appendix A for a discussion of
integration over balls and spheres). The symbol Dy denotes differen-
tiation with respect to the outward unit normal n. Thus for ¢ € 9Q,
(Dau)(T) = (Vu)(T) - n(T), where Vu = (D1u,...,Dyu) denotes the
gradient of u and - denotes the usual Euclidean inner product.

Green's identity (1.1) follows easily from the familiar divergence the-
orem of advanced calculus:

1.2 J divde=J w-nds.
0 30

Here w = (wjy,..., wy) is a smooth vector field (a C*-valued function
whose components are continuously differentiable) on a neighborhood
of Q, and divw, the divergence of w, is defined tobe Dy wy +- + + + Dy Wp.
To obtain Green'’s identity from the divergence theorem, simply let
w = uVv — vVu and compute.

The following useful form of Green's identity occurs when u is har-
monicand v = 1:

1.3 Dauds =0.
a0
Green’s identity is the key to the proof of the mean-value property.
Before stating the mean-value property, we introduce some notation:
B(a,r) = {x € R" : |x — a| < r} is the open ball centered at a of
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radius r; its closure is the closed ball B(a, r); the unit ball B(0Q, 1) is
denoted by B and its closure by B. When the dimension is important we
write B, in place of B. The unit sphere, the boundary of B, is denoted
by §; normalized surface-area measure on S is denoted by o (so that
o(S) = 1). The measure o is the unique Borel probability measure on
S that is rotation invariant (meaning o (T(E)) = o (E) for every Borel
set E C S and every orthogonal transformation T).

1.4 Mean-Value Property: If u is harmonic on B(a,r), then u equals
the average of u over 0B(a,v). More precisely,

u(a) = L u(a+r¢)do(T).

PROOF: First assume that n > 2. Without loss of generality we may
assume that B(a,r) = B. Fix € € (0,1). Apply Green's identity (1.1)
withQ = {x e R": ¢ < |x| < 1} and v(x) = |x]2-™ to obtain

0= (2—n)J uds - (2—n)£1'"j uds
S £S

- J Dpuds — g2 J Dpu ds.
M &S
By 1.3, the last two terms are 0, thus

J uds = z“”J uds,
S &S

which is the same as
J udo = J u(e)do(T).
s S

Letting € — 0 and using the continuity of u at 0, we obtain the desired
result.

The proof when n = 2 is the same, except that |x|~™ should be
replaced by log | x|. |

Harmonic functions also have a mean-value property with respect to
volume measure. The polar coordinates formula for integration on R"
is indispensable here. The formula states that for a Borel measurable,
integrable function f on R™,
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1
nV(B) Jr

1.5 fdv = J: yn-l Lf(rz;) do(C)dr

(see [15], Chapter 8, Exercise 6). The constant nV(B) arises from the
normalization of o (choosing f to be the characteristic function of B
shows that nV(B) is the correct constant).

1.6 Mean-Value Property, Volume Version: If u is harmonic on
B(a,r), thenu(a) equals the average of u over B(a,r). More precisely,

1
ula) = V(B(aﬂ’)) JB(a,r) uav.

PROOF: We can assume that B(a,r) = B. Apply the polar coordi-
nates formula (1.5) with f equal to u times the characteristic function
of B, and then use the spherical mean-value property (Theorem 1.4). m

We will see later (1.24 and 1.25) that the mean-value property char-
acterizes harmonic functions.

We conclude this section with an application of the mean value prop-
erty. We have seen that a real-valued harmonic function may have an
isolated (nonremovable) singularity; for example, |x|2~™ has anisolated
singularity at 0 if n > 2. However, a real-valued harmonic function u
cannot have isolated zeros.

1.7 Corollary: The zeros of a real-valued harmonic function are
never isolated.

PROOF: Suppose u is harmonic and real valued on Q, a € Q, and
u(a) = 0. Letr > 0 be such that B(a,r) ¢ Q. Because the average of u
over dB(a,r) equals 0, either u is identically O on dB(a,r) or u takes
on both positive and negative values on ¢B(a,r). In the later case, the
connectedness of dB(a,r) implies that u has a zero on dB(a,r).

Thus u has a zero on the boundary of every sufficiently small ball
centered at a, proving that a is not an isolated zero of u. n

The hypothesis that u is real valued is needed in the preceding corol-
lary. This is no surprise when n = 2, because nonconstant holomorphic
functions have isolated zeros. When n > 2, the harmonic function
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n
(L-mx2+ > x? +ix
k=2

is an example; it vanishes only at the origin.

The Maximum Principle

An important consequence of the mean-value property is the fol-
lowing maximum principle for harmonic functions.

1.8 Maximum Principle: Suppose Q is connected, u is real valued
and harmonic on Q, and u has a maximum or a minimum in Q. Then
u is constant.

PROOF: Suppose u attains a maximum at a € Q. Choose * > 0 such
that B(a,r) ¢ Q. If u were less than u(a) at some point of B(a,7),
then the continuity of 1 would show that the average of u over B(a,r)
is less than u(a), contradicting 1.6. Therefore u is constant on B(a, r),
proving that the set where u attains its maximum is open in Q. Because
this set is also closed in Q (again by the continuity of u), it must be all
of Q (by connectivity). Thus u is constant on Q, as desired.

If u attains a minimum in 2, we can apply this argument to —u. =

The following corollary, whose proof immediately follows from the
preceding theorem, is frequently useful. (Note that the connectivity of
Q is not needed here.)

1.9 Corollary: Suppose Q is bounded and u is a continuous real-
valued function on Q) that is harmonic on Q. Then u attains its maximum
and minimum values over Q on 9Q.

The corollary above implies that on a bounded domain a harmonic
function is determined by its boundary values. More precisely, for
bounded Q, if u and v are continuous functions on Q that are har-
monic on (, and if u = v on 9, then u = v on Q. Unfortunately this
can fail on an unbounded domain. For example, the harmonic func-
tions u(x) = 0 and v(x) = x5, agree on the boundary of the half-space
{x eR":x, > 0}.
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The next version of the maximum principle can be applied even
when Q is unbounded or when u is not continuous on Q.

1.10 Corollary: Let u be a real-valued, harmonic function on Q, and
suppose
limsupu(ax) <M

k-0

for every sequence (ay) in Q converging either to a point in 02 or to «.
Thenu <M on Q.

REMARK: To say that (ay) converges to « means that {ag| — o. The
corollary is valid if “lim sup” is replaced by “liminf” and the inequalities
are reversed.

PROOF OF COROLLARY 1.10: Let M’ = sup{u(x) : x € Q}, and
choose a sequence (by) in Q such that u(by) — M'.

If (by) has a subsequence converging to some point b € Q, then
u(b) = M’, which implies u is constant on the component of Q) con-
taining b (by the maximum principle). Hence in this case there is a
sequence (ay) in Q converging to a boundary point of Q or to « on
which . = M’, and so M’ < M.

If no subsequence of (by) converges to a point in , then (by) has a
subsequence (ay) converging either to a boundary point of Q or to c.
Thus in in this case we also have M’ < M. |

Theorem 1.8 and Corollaries 1.9 and 1.10 apply only to real-valued
functions. The next corollary is a version of the maximum principle for
complex-valued functions.

1.11  Corollary: Let Q be connected, and let u be harmonic on Q. If
lu| has a maximum in Q, then u is constant.

PROOF: Suppose |u| attains a maximum value of M at some point
a € Q. Choose A € C such that {A| = 1 and Au(a) = M. Then the real-
valued harmonic function Re Au attains its maximum value M at a; thus
by Theorem 1.8, ReAu = M on Q. Because |Au| = |u| < M, we have
ImAu = 0 on Q. Thus Au, and hence u, is constant on Q. =

Corollary 1.11 is the analogue of Theorem 1.8 for complex-valued
harmonic functions; the corresponding analogues of Corollaries 1.9
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and 1.10 are also valid. All these analogues, however, hold only for
the maximum or lim sup of |u|. No minimum principle holds for |u|
(consider u{x) = x; on B).

We will be able to prove a local version of the maximum principle
after we prove that harmonic functions are real analytic (see 1.29).

The Poisson Kernel for the Ball

The mean-value property shows that if u is harmonic on B, then
u(0) = Lu(g) do(T).

We now show that for every x € B, u(x) is a weighted average of u
over S. More precisely, we will show there exists a function Pon B x S
such that

w(x) = Lu(z)P(x,mdom

for every x € B and every u harmonic on B.

To discover what P might be, we start with the special case n = 2.
Suppose u is a real-valued harmonic function on the closed unit disk
in R%. Then u = Re f for some function f holomorphic on a neigh-
borhood of the closed disk (see Exercise 11 of this chapter). Because

u = (f + f)/2, the Taylor series expansion of f implies that u has the
form

w(rg) = > ajriy,

je=oo

where 0 < ¥ < 1 and |C| = 1. In this formula, take v = 1, multiply both
sides by £ %, then integrate over the unit circle to obtain

ay = Lu(C)C‘kdU(C).

Now let x be a point in the open unit disk, and write x = rn with
r € [0,1) and {n| = 1. Then
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1.12 u(x) =ulrn)

x

= Y (|, w@e i do@)rins

j=—e

=Lu(§)( 5 rM(ing~Y7) do (L)

j==c

Breaking the last sum into two geometric series, we see that

42
u(x) = [ () o o (@),

4

Thus, letting P(x,T) = (1 — |x|?)/|x - C|?, we obtain the desired for-
mula for n = 2:

w(x) = jsu(zg)P(x,;)da@).

Unfortunately, nothing as simple as this works in higher dimen-
sions. To find P(x,T) when n > 2, we start with a result we call the
symmetry lemma, which will be useful in other contexts as well.

1.13 Symmetry Lemma: For all nonzero x and y inR",

PROOF: Square both sides and expand using the inner product. =

To find P for n > 2, we try the same approach used in proving the
mean-value property. Suppose that « is harmonic on B. When proving
that 1 (0) is the average of u over S, we applied Green’s identity with
v(y) = |y|?~", this function is harmonic on B \ {0}, has a singularity
at 0, and is constant on S. Now fix a nonzero point x € B. To show
that u(x) is a weighted average of u over S, it is natural this time to
try v(y) = |y — x|?"™. This function is harmonic on B \ {x}, has a
singularity at x, but unfortunately is not constant on S. However, the
symmetry lemma (1.13) shows that for y € §,

X ]2—n

_ ar|2-m _ 2-n _
=X = X Py -
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Y/

The symmetry lemma: the two bold segments have the same length.

Notice that the right side of this equation is harmonic (as a function
of y) on B. Thus the difference of the left and right sides has all the
properties we seek.

Soset v(y) = L{y) — R(y), where

b

x ‘2—71

_ _ al2-m = 2-n AN
L) =1y =xI7" RO) = x|y - o

and choose ¢ small enough so that B(x,&) ¢ B. Now apply Green’s
identity (1.1) much as in the proof of the mean-value property (1.4),
with Q = B\ B(x, ). We obtain

0= J UDpvds — (2 -n)s(S)u(x)
s
- J uDhRds + J RDpuds
9B(x,€) 9B(x,¢)

(the mean-value property was used here). Because uDyR and RDpu
are bounded on B, the last two terms approach 0 as £ — 0. Hence

1
u(x) = T L uDpvdo.

Setting P(x,ZT) = (2 — n)"1(Dyv)(X), we have the desired formula:

1.14 wix) = Lu(t)P(x,cmo(C).
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A computation of Dy v, which we recommend to the reader (the sym-
metry lemma may be useful here), yields

1-{x|?

1.15 P(x,C) = ————.

(x,0) x—Z"

The function P derived above is called the Poisson kernel for the
ball; it plays a key role in the next section.

The Dirichlet Problem for the Ball

We now come to a famous problem in harmonic function theory:
given a continuous function f on S, does there exist a continuous func-
tion u on B, with u harmonic on B, such that u = f on §? If so, how
do we find u? This is the Dirichlet problem for the ball. Recall that by
the maximum principle, if a solution exists, then it is unique.

We take our cue from the last section. If f happens to be the re-
striction to S of a function « harmonic on B, then

u(x) = Lf(@P(x,Q Ao (T)

for all x € B. We solve the Dirichlet problem for B by changing our
perspective, Starting with.a continuous function f on S, we use the
formula above to define an extension of f into B that we hope will have
the desired properties.

The reader who wishes may regard the material in the last section
as motivational. We now start anew, using 1.15 as the definition of
P(x,T).

For arbitrary f € C(S), we define the Poisson integral of f, denoted
P[f], to be the function on B given by

1.16 PLf1(x) = Lf(E)P(x,C) Ao (C).

The next theorem shows that the Poisson integral solves the Dirich-
let problem for B.
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Johann Peter Gustav Lejeune Dirichlet (1805-1859), whose attempt to
prove the stability of the solar system led to an investigation of
harmonic functions.

1.17 Solution of the Dirichlet problem for the ball: Suppose f is
continuous on S. Define u on B by

{P[f](x) if xeB
u(x) = .
f(x) ifxes.

Then u is continuous on B and harmonic on B.
The proof of 1.17 depends on harmonicity and approximate-identity

properties of the Poisson kernel given in the following two proposi-
tions.

1.18 Proposition: Let T € S. Then P(-, ) is harmonic on R™" \ {T}.

We let the reader prove this proposition. One way to do so is to
write P(x,Z) = (1 - |x|?)|x — £|~" and then compute the Laplacian of
P(-,T) using the product rule

1.19 AUuv) = uAv +2vVvu - Vv + vAu,

which is valid for all real-valued twice continuously differentiable func-
tions u and v.
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1.20 Proposition: The Poisson kernel has the following properties:

(@@ P(x,0)>0forallxeBandallTecsS;
(b) LP(x,@) do(C) =1 forall x € B;

(c) foreveryneS andevery é >0,

J P(x,C)do(C)—-0 asx—n.
ig-nl>6

PROOF: Properties (a) and (c) follow immediately from the formula
for the Poisson kernel (1.15).

Taking u to be identically 1 in 1.14 gives (b). To prove (b) with-
out using the motivational material in the last section, note that for
x € B\ {0}, we have

[ Pxrac@ = [ Puzix, £y dow@)
s s IT|

X
- LP(|x|c,|—x—l)do<c>,

where the last equality follows from the symmetrylemma (1.13). Propo-
sition 1.18 tells us that P(|x|C, %), as a function of C, is harmonic on
B. Thus by the mean-value property we have

| Px01ac@ =P, ) =1,
s x|
as desired. Clearly (b) also holds for x = 0, completing the proof. =

PROOF OF THEOREM 1.17: The Laplacian of u can be computed by
differentiating under the integral sign in 1.16; Proposition 1.18 then
shows that u is harmonic on B.

To prove that u is continuous on B, fix n € S and £ > 0. Choose
6 > 0 such that | f(T) — f(n)| < e whenever [T —n| <6 (and T € S).
For x € B, (a) and (b) of Proposition 1.20 imply that
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) = uim| = || (F©) - Fm)Px,0) do ()]
sj IFZ) = £ P(x,T) do(T)
{C-nl<é
+J If(C) - £ P(x,C) do (L)
[E-nl>6

ss+2|lf||oo_[1 P(.D)do(D),

T-ni>

where || f||» denotes the supremum of | f| on S. The last term above is
less than ¢ for x sufficiently close to np (by Proposition 1.20(c)), proving
that u is continuous at n. [ ]

We now prove a result stronger than that expressed in 1.14.

1.21 Theorem: If u is a continuous function on B that is harmonic
on B, then u = P{uls)] on B.

PrROOF: By 1.17, u — P{u|s] is harmonic on B and extends continu-
ously to be 0 on S. The maximum principle (Corollary 1.9) now implies
that u — P{uls] is O on B. ]

Because translations and dilations preserve harmonic functions, our
results can be transferred easily to any ball B(a,r). Specifically, given
a continuous function f on ¢B{(a,r), there exists a unique continuous
function u on B(a, r), with u harmonic on B(a, ), such that u = f on
0B(a,r). In this case we say that u solves the Dirichlet problem for
B(a,r) with boundary data f.

We now show that every harmonic function is infinitely differen-
tiable. In dealing with differentiation in several variables the following
notation is useful: a multi-index « is an n-tuple of nonnegative inte-
gers (&y,...,0y); the partial differentiation operator D is defined to
be D,%...D,%" (Dj0 denotes the identity operator). For each T € §,
the function P(-,¥) is infinitely differentiable on B; we denote its «®
partial derivative by D®P(-, T) (here T is held fixed).

If u is continuous on B and harmonic on B, then

u(x) = Lu(t)P(x,m d0(0)
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for every x € B. Differentiating under the integral, we easily see that
u € C*(B); the formula

1.22 D%u(x) = Lu(C)D"‘P(X. 0)do ()

holds for every x € B and every multi-index o.

The preceding argument applies to any ball after a translation and
dilation. As a consequence, every harmonic function is infinitely dif-
ferentiable.

The following theorem should remind the reader of the behavior of
a uniformly convergent sequence of holomorphic functions.

1.23 Theorem: Suppose (u,,) is a sequence of harmonic functions
on Q such that uy, converges uniformly to a function u on each compact
subset of Q. Then u is harmonic on Q. Moreover, for every multi-
index o, D*u.,, converges uniformly to D*u on each compact subset
of Q.

PROOF: Given B(a,r) C Q, we need only show that u is harmonic on
B(a,r) and that for every multi-index o, D*u,, converges uniformly
to D*u on each compact subset of B(a,r). Without loss of generality,
we assume B(a,r) = B.

We then know that

() = [ um(©)P(x,5) do (@)

for every x € B and every m. Taking the limit of both sides, we obtain

wlx) = Lu(g)mx, ) do (0)

for every x € B. Thus u is harmonic on B.
Let « be a multi-index and let x € B. Then

D% (x) = L wm(T)DP(x, T) do(T)
- LM(C)D"‘P(X, 0)do(T) = D*u(x).

If K is a compact subset of B, then D*P is uniformly bounded on K x §,
and so the convergence of D%*u,, to D*u is uniform on K, as desired. =
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Converse of the Mean-Value Property

We have seen that every harmonic function has the mean-value prop-
erty. In this section, we use the solvability of the Dirichlet problem for
the ball to prove that harmonic functions are the only continuous func-
tions having the mean-value property. In fact, the following theorem
shows that a continuous function satisfying a weak form of the mean-
value property must be harmonic.

1.24 Theorem: Suppose u is a continuous function on Q. If for each
x € Q there is a sequence of positive numbers r; — 0 such that

ul(x) = JS u(x +7;0)do(C)
for all j, then u is harmonic on Q.

PROOF: Without loss of generality, we can assume that u is real
valued. Suppose that B(a,R) C Q. Let v solve the Dirichlet problem
for B(a,R) with boundary data u on 9B(a,R). We will complete the
proof by showing that v = u on B(a, R).

Suppose that v — u is positive at some point of B(a,R). Let E be
the subset of B(a, R) where v — u attains its maximum. Because E is
compact, E contains a point x farthest from a. Clearly x € B(a,R), so
there exists a ball B(x,r) < B(a, R) such that u{x) equals the average
of u over 0B(x,7r).

Because v is harmonic, we have

(v-u)(x)= L(v —u)(x +rC)do(T).

But (v - u)(x +7vT) < (v —u)(x) for all T € S, with strict inequality
on a nonempty open subset of S (because of how x was chosen), con-
tradicting the equation above. Thus v — u < 0 on B(a,R). Similarly,
v —-uz=0o0nB(a,R). n

The proof above can be modified to show that if u is continuous
on Q) and satisfies a local mean-value property with respect to volume
measure, then u is harmonic on Q; see Exercise 22 of this chapter.

The hypothesis of continuity is needed in Theorem 1.24. To see this,
let QO = R™ and define u by
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1 ifxn,>0
u{x)=40 ifx,=0
-1 ifx, <O.

Then u{x) equals the average of u over every sphere centered at x if
xn = 0, and u(x) equals the average of u over all sufficiently small
spheres centered at x if x, # 0. But u is not even continuous, much
less harmonic, on R™.

In the following theorem we replace the continuity assumption with
the weaker condition of local integrability (a function is locally inte-
grable on Q if it is Lebesgue integrable on every compact subset of Q).
However, we now require that the averaging property (with respect to
volume measure) hold for every radius.

1.25 Theorem: If u is a locally integrable function on Q such that

1
ula) = m B(a,r) udv

whenever B(a,r) C Q, then u is harmonic on €.

PROOF: By Exercise 22 of this chapter, we need only show that u is
continuous on Q. Fix a € Q and let (a;) be a sequence in {2 converg-
ing to a. Let K be a compact subset of Q with a in the interior of K.
Then there exists an v > 0 such that B(a;,r) C K for all sufficiently
large j. Because u is integrable on K, the dominated convergence the-
orem shows that

1
u(aj) = V(B(a, 7)) ,[B(aj,r)udv
1
= Vg o W 4V

1
. X V=
V(B(a,r)) JK UXB(a,r) d u(a)
(as usual, Xg denotes the function that is 1 on E and 0 off E). Thus u
is continuous on 2, as desired. a
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Real Analyticity and
Homogeneous Expansions

We saw in the section before last that harmonic functions are in-
finitely differentiable. A much stronger property will be established in
this section—harmonic functions are real analytic. Roughly speaking,
a function is real analytic if it is locally expressible as a power series in
the coordinate variables x;, x2,..., x5, of R™.

To make this more precise, we need to discuss what is meant by a
series of complex numbers of the form } c,, where the summation is
over all multi-indices «. (The full range of multi-indices will always be
intended in a series unless indicated otherwise.) The problem is that
there is no natural ordering of the set of all multi-indices when n > 1.
However, suppose we know that >’ ¢, is absolutely convergent, i.e., that

sup Y. leal < o,

acF

where the supremum is taken over all finite subsets F of multi-indices.
All orderings a(1), x(2),... of multi-indices then yield the same value
for Z;’-‘;l Ca(j); hence we may unambiguously write >’ ¢, for this value.
We will only be concerned with such absolutely convergent series.

The following notation will be convenient when dealing with multi-
ple power series: for x € R™ and o« = (o3, 0t2,..., 0Xn) a multi-index,
define

x® =x1%x%2 | xp,%n,
ol = olog! ... oyl

=0+ 02+« + 0y,

A function f on Q is real analytic on Q if for every a € Q there exist
complex numbers ¢, such that

f(x) =2 calx —a)®

for all x in a neighborhood of a, the series converging absolutely in
this neighborhood.
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Some basic properties of such series are contained in the next propo-
sition. Here it will be convenient to center the power series at a = 0,
and to define

R(y)={xeR":|xjl <|yjl, j=12,...,n}

for vy € R™; R(y) is the n-dimensional open rectangle centered at 0
with “corner y". To avoid trivialities we will assume that each compo-
nent of v is nonzero.

1.26 Theorem: Suppose {c,y*} is a bounded set. Then:

(a)  For every multi-index B, the series
> DB(cax®)
[24

converges absolutely on R(y) and uniformly on compact subsets
of R(y).

(b)  The function f defined by f(x) = > cux* for x € R(y) Is in-
finitely differentiable on R(y). Moreover,

DEf(x) = > DP(cax®)
[24

for all x € R(y) and for every multi-index B. Furthermore,
cq = DEf(0)/ ! for every multi-index «.

REMARKS: 1. To say the preceding series converges uniformly on
a set means that every ordering of the series converges uniformly on
this set in the usual sense.

2. The theorem shows that every derivative of a real-analytic func-
tion is real analytic, and that if > axx® = 3 bex® for all x in a neigh-
borhood of 0, then ay = by for all «o.

PROOF OF THEOREM 1.26: We first observe that on the rectangle
R((1,1,...,1)), we have

S DA(x*) = DAL(L - x1) 11 - x2)7 . (1= xp) 7]

o

for every multi-index 8, as the reader should verify (start with 8 = 0).
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Now assume that |cqv®! < M for every «. If K is a compact subset
of R(y),then K C R(ty) for somet € (0,1). Thus for every x € K and
every multi-index «,

leax®] < t®l|cyay®| < Mtlat,

By the preceding paragraph, 3 t'® = (1 - t)~" < oo, establishing the
absolute and uniform convergence of > c,x* on K. Similar reasoning,
with a little more bookkeeping, applies to 3. D#(c4x%). This completes
the proof of (a).

Letting f(x) = > cqx® for x € R(y), the uniform convergence on
compact subsets of R(y) of the series 3 D#(cyx®) for every B shows
that f € C*(R(y)), and that Dff(x) = 3 DB(cyx®) in R(y) for ev-
ery B. The formula for the Taylor coefficients c4 follows from this by
computing the derivatives of f at 0. u

A word of caution: Theorem 1.26 does not assert that rectangles
are the natural domains of convergence of multiple power series. For
example, in two dimensions the domain of convergence of ZJ°-°=1 (x1x2)d
is {(x1,x2) € R?: |x1x2] < 1}.

The next theorem shows that real-analytic functions enjoy certain
properties not shared by all C*-functions.

1.27 Theorem: Suppose Q) is connected, f is real analytic in Q, and
f = 0 on a nonempty open subset of Q. Then f =0 inQ.

PROOF: Let w denote the interior of {x € Q: f(x) = 0}. Then w is
an open subset of Q. If a € Q is a limit point of w, then all derivatives
of f vanish at a by continuity, implying that the power series of f ata
is identically zero; hence a € w. Thus w is closed in ). Because w is
nonempty by hypothesis, we must have w = Q by connectivity, giving
f=0inQ. u

1.28 Theorem: If u is harmonic on £, then u is real analytic in Q.

PROOF: It suffices to show that if % is harmonic on B, then u has a
power series expansion converging to u in a neighborhood of 0.

The main idea here is the same as in one complex variable—we use
the Poisson integral representation of u and expand the Poisson kernel
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in a power series. Unfortunately the details are not as simple as in the
case of the Cauchy integral formula.

Suppose that |x] < vV2~1and C € S. Then 0 < |x ~ C]? < 2, and
thus

P(x,0) = 1 -Ix{)(Ix-CIH) ™2 = 1-1x[%) Z cm(lxI2 =2x - 0™,

m=0

where Yo _ocm(t — 1)™ is the Taylor series of t7"/2 on the interval
(0,2), expanded about the midpoint 1. After expanding the terms
(Ix|? = 2x - €)™ and rearranging (permissible, since we have all of the
absolute convergence one could ask for), the Poisson kernel takes the
form

P(x,0) = ). x*qu(D),

for x € (V2-1)Band € € S, where each g is a polynomial. This latter
series converges uniformly on S for each x € (V2 ~ 1)B.
Thus if u is harmonic on B,

u(x) = Lummx,z:) do (Z)
= Z(L UGu dT) x™

for all x € (/2 — 1)B. This is the desired expansion of u near 0. =

Unfortunately, the multiple power series at 0 of a function har-
monic on B need not converge in all of B. For example, the function
u(z) = 1/(1 — z) is holomorphic (hence harmonic) on the open unit
disk of the complex plane. Writing z = x + iy = (x,y) € R?, we have

o«

uz)= Y (x+iy)™ = Z Z( )xd (i)™

m=0

for z € B,. As a multiple power series, the last sum above converges
absolutely if and only if {x| + {y| < 1, and hence does not converge in
all of B,. The reader should perhaps take a moment to meditate on the
difference between the “real-analytic” and “holomorphic” power series
of u.
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As mentioned earlier, the real analyticity of harmonic functions al-
lows us to prove a local maximum principle.

1.29 Local Maximum Principle: Suppose Q is connected, u is real
valued and harmonic on Q, and u has a local maximum in Q. Then u
Is constant,

PrOOF: If u has a local maximum at a € Q, then there exists a
ball B{a,r) c Q such that u < u{a) in B(a,r). By Theorem 1.8, u is
constant on B(a,r). Because u is real analytic on Q, u = u(a) in Q by
Theorem 1.27. ]

Knowing that harmonic functions locally have power series expan-
sions enables us to express them locally as sums of homogeneous har-
monic polynomials. This has many interesting consequences, as we will
see later. In the remainder of this section we develop a few basic re-
sults, starting with a brief discussion of homogeneous polynomials.

A polynomial is by definition a finite linear combination of mono-
mials x%. A polynomial p of the form

p(x)= D cax®

lxl=m

is said to be homogeneous of degree m; here we allow m to be any
nonnegative integer. Equivalently, a polynomial p is homogeneous of
degree m if

p(tx) = t"p(x)

for all t € R and all x € R™. This last formulation shows that a homo-
geneous polynomial is determined by its restriction to S: if p and g are
homogeneous of degree m and p = q on §, then p = g on R™. (This
is not true of polynomials in general; for example, 1 - |x]> = 0 on §.)
Note also that if p is a homogeneous polynomial of degree m, then so
is p o T for every linear map T from R™ to R™.

It is often useful to express functions as infinite sums of homo-
geneous polynomials. Here is a simple uniqueness result for such
sums.
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1.30 Proposition: Let v > 0. If pm and g, are homogeneous poly-
nomials of degree m, m = 0,1,..., and if

Pmix) = > am(x)
0 m=0

?.Mz

for all x € rB (both series converging pointwise in rB), then p,, = qm
for every m.

PrROOF: Fix T € S. Since the two series above converge and are equal
at each point in 7B, we have

%Ms

PO = D am(O)t™
0 m=0

for all t € (-v,r). By the uniqueness of coefficients of power series in
one variable, pm (C) = @m (T) for every m. This is true for every T € §,
and thus pm = qm on S for all m. By the preceding remarks, pm = gm
on R™ for every m. |

Suppose now that u is harmonic near 0. Letting

Dyu(0)

24
o X5

pm(x) = Z

laf=m

we see from Theorem 1.28 that

u(x) = Pm(x)

0

?Ms

for x near 0. Because each p, is homogeneous of degree m, the latter
series is called the homogeneous expansion of u at 0. Remarkably, the
harmonicity of u implies that each p,, is harmonic. To see this, observe
that Au = 3 Apy, = 0 near 0, and that each Apy, is homogeneous of
degree m — 2 for m = 2 (and is O for m < 2). From 1.30 we conclude
Apm = 0 for every m. We have thus represented u near 0 as an infinite
sum of homogeneous harmonic polynomials.

Translating this local result from 0 to any other point in the domain
of u, we have the following theorem.



Origin of the Term “Harmonic” 25

1.31 Theorem: Suppose u is harmonic on Q and a € Q. Then there
exist harmonic homogeneous polynomials p., of degree m such that

1.32 u({x) = Z Pm(x —a)

m=0

for all x near a, the series converging absolutely and uniformly near a.

Homogeneous expansions are better behaved than multiple power
series. As we will see later (5.34), if v is harmonic on Q and B(a,r) C Q,
then the homogeneous expansion 1.32 is valid for all x € B(a,r).
This is reminiscent of the standard power series result for holomor-
phic functions of one complex variable. Indeed, if u is holomorphic on
Q C R? = C, then by the uniqueness of homogeneous expansions, 1.32
is precisely the holomorphic power series of 1 on B(a, ).

Origin of the Term "“Harmonic”

The word “harmonic” is commonly used to describe a quality of
sound. Harmonic functions derive their name from a roundabout con-
nection they have with one source of sound—a vibrating string.

Physicists label the movement of a point on a vibrating string “har-
monic motion”. Such motion may be described using sine and cosine
functions, and in this context the sine and cosine functions are some-
times called harmonics. In classical Fourier analysis, functions on the
unit circle are expanded in terms of sines and cosines. Analogous ex-
pansions exist on the sphere in R, n > 2, in terms of homogeneous
harmonic polynomials (see Chapter 5). Because these polynomials play
the same role on the sphere that the harmonics sine and cosine play on
the circle, they are called spherical harmonics. The term “spherical har-
monic” was apparently first used in this context by William Thomson
(Lord Kelvin) and Peter Tait {see [18)], Appendix B). By the early 1900s,
the word “harmonic” was applied not only to homogeneous polynomi-
als with zero Laplacian, but to any solution of Laplace’s equation.



26 CHAPTER 1. Basic Properties of Harmonic Functions

Exercises

1. Show that if « and v are real-valued harmonic functions, then
uv is harmonic if and only if Vu - Vv = 0.

2. Suppose Q is connected and u is a real-valued harmonic function
on Q such that u? is harmonic. Prove that u is constant. Is this
still true without the hypothesis that u is real valued?

3. Show that A(|x|?) = t(t +n - 2)|x|t~2.

4, Laplacian in polar coordinates: Suppose u is a twice continuously
differentiable function of two real variables. Define a function U
by U(r, 0) = u(r cos 8, r sin 8). Show that

Tror\ or/) r2096%°
5. Laplacian in spherical coordinates: Suppose U is a twice continu-

ously differentiable function of three real variables. Define U by
U(p,B,p) = u(psinecos b, psin e sin b, p cos ). Show that

Au—_]'-_.a.__ ZQ_I_J_ + 1 i Sin a_U +____1 az_l].
B P dp ) p2sing o (pa<p p2sin’e 002"

6.  Suppose g is a real-valued function in C?(R") and f € C?(R).
Prove that

A(fog)(x) = f (gx))IVag) | + f (g(x))Ag(x).

7. Show that if u is a positive function in C2(Q) and t is a constant,
then
Aul) = tut1Au + t(t - Dut~?|vull

8. Show that if u, v are functions in C2(Q) with u positive, then

AWY) = vu¥ lAu + w”Wdog w)Av + v(v - D)uv"?|Vul?

+u¥(logu)?|Vv)? +2u¥ (1 + vlegu)Vu - Vv.
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10.

11.

12.

13.

14.

15.

16.

17.

Suppose A is an m-by-n matrix of real numbers. Think of each
x € R™ as a column vector, so that Ax is then a column vector
in R™. Show that

|Ax|?]Al3 ~ |A'Ax|?

A(JAx]) = TP .

where |Al3 is the sum of the squares of the entries of A and A'
denotes the transpose of A.

Let u be harmonic on R?. Show that if f is holomorphic or con-
jugate holomorphic on C, then u o f is harmonic.

Suppose u is real valued and harmonic on By. For (x,y) € By,
define

bY% X
vix,y) = Jo (Diuw)(x,tydt — Jo (Dru)(t,0)dt.

Show that u + iv is holomorphic on B».

Suppose u is a harmonic function on Q. Prove that the function
x — x - Vu(x)is harmonic on Q. (For a converse to this exercise,
see Exercise 23 in Chapter 5.)

Let T: R™ — R" be a linear transformation such that u o T is
harmonic on R" whenever u is harmonic on R"™. Prove that T is
a scalar multiple of an orthogonal transformation.

Suppose Q is a bounded open subset of R™ with smooth bound-
ary and u is a smooth function on Q such that A(Au) = 0 on Q
and u = Dyu = 0 on Q. Prove that u = 0.

Suppose that Q is connected and that u is real valued and har-
monic on Q. Show that if u is nonconstant on Q, then u(Q) is
open in R. (Thus u is an open mapping from Q to R.)

Suppose Q is bounded and 6Q is connected. Show that if u is
a real-valued continuous function on Q that is harmonic on Q,
then u(Q) ¢ u(0Q). Is this true for complex-valued u?

A function is called radial if its value at x depends only on |xi.
Prove that a radial harmonic function on B is constant.
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18.

19.

21.

22.

23.

24.

25.

Give another proof that [ P(x,T) do(T) =1 for every x € B by
showing that the function x — [¢ P(x, ) do(¥) is harmonic and
radial on B.

Show that P[f o T] = P[f] o T for every f € C(S) and every
orthogonal transformation T.

Find the Poisson kernel for the ball B(a, R).

Use the mean-value property and its converse to give another
proof that the uniform limit of a sequence of harmonic functions
is harmonic.

Suppose u is a continuous function on 2, and that for each x € Q
there is a sequence of positive numbers r; — 0 such that

1
S S— %
utx) V(B(x,7})) JB(x,rj)ud

for each j. Prove that u is harmonic on Q.

One-Radius Theorem: Suppose u is continuous on B and that for
every x € B, there exists a positive number r(x) < 1 — |x]| such
that

uix) = Lu(x +1r(x)C)do(T).

Prove that u is harmonic on B.

Show that the one-radius theorem fails if the assumption “u is
continuous on B” is relaxed to “u is continuous on B”. (Hint sug-
gested by Walter Rudin: Whenn = 2, set u(x) = am + bm log | x|
on the annulus {1 - 2°™ < |x| < 1 — 2-™-1}, where the con-
stants am, by, are chosen inductively. Proceed analogously when
n>2)

Hopf Lemma: Suppose that u is real valued, nonconstant, and
harmonic on B. Show that if u attains its maximum value on B
at L € S, then there is a positive constant ¢ such that

u(C) -u(rg)=c(l-r)

forallr € (0,1). Conclude that (Dau)(T) > 0.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

Show that the previous exercise can fail if instead of having a
maximum at T, the restriction uls has only a strict local maxi-
mum at £. (Hint: Take n = 2 and u(x,y) = x* — y? - 3x.)

Prove that a harmonic function on B whose normal derivative
vanishes identically on § is constant.

Show that the previous result holds if the ball is replaced by a
bounded smooth domain in R™ that has an internally tangent ball
at each boundary point.

Show that a polynomial p is homogeneous of degree m if and
onlyif x - Vp = mp.

Prove that if p is a harmonic polynomial on R" that is homoge-
neous of degree m, then p/|x|2™*"~2 js harmonic on R™ \ {0}.

Suppose that 3 cxx® converges in R(y). Prove that > cax* is
real analytic in R(y).

A function u: Q — R™ is called real analytic if each component
of u is real analytic. Prove that the composition of real-analytic
functions is real analytic. Deduce, as a corollary, that sums, prod-
ucts, and quotients of real-analytic functions are real analytic.

Let m be a positive integer. Characterize all real-analytic func-
tions # on R™ such that u(tx) = t™u(x) for all x € R" and all
t €R.

Show that the power series expansion of a function harmonic on
R™ converges everywhere on R™.



CHAPTER 2

Bounded Harmonic
‘Functions

Liouville’s Theorem

Liouville’s Theorem in complex analysis states that a bounded holo-
morphic function on C is constant. A simnilar result holds for harmonic
functions on R". The simple proof given below is taken from Edward
Nelson’s paper [13], which is one of the rare mathematics papers not
containing a single mathematical symbol.

2.1 Liouville’s Theorem: A bounded harmonic function on R" s
constant.

PROOF: Suppose u is a harmonic function on R", bounded by M.
Let x € R" and let r > 0. By the volume version of the mean-value
property (Theorem 1.6),

1
|u(X) —u(O)I B W.JB(x,r)udv_ B(O,r)udv|
-y V(D)
~ T V(B(O,7))’

where D, denotes the symmetric difference of B(x,r) and B(0,r), so
that D, = [B{x,r) UB(0,7)]1\ [B(x,7r) nB(0,7)]. The last expression
above tends to 0 as ¥ — oo, Thus u(x) = u(0), and so u is constant. m

Liouville’s Theorem leads to an easy proof of a uniqueness theorem
for bounded harmonic functions on open half-spaces. The upper half-

31
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space H = H, is the open subset of R" defined by
H={xeR":x, > 0}.

In this setting we often identify R™ with R*~1 xR, writing a typical point
zeR"as z = (x,y), where x € R ! and y € R. We also identify dH
with R*1,

A harmonic function on a compact set is determined by its restric-
tion to the boundary (this follows from the maximum principle). How-
ever, a harmonic function on a closed half-space is not determined by
restriction to the boundary. For example, the harmonic function w on H
defined by u(x, y) = y agrees on the boundary of the half-space with
the harmonic function 0. The next result shows that this behavior can-
not occur if we consider only harmonic functions that are bounded.

2.2 Corollary: Suppose u is a continuous bounded function on H that
is harmonicon H. If w = 0 on 0H, thenu = 0 on H.

PROOF: For x € R™! and y < 0, define u(x,y) = ~u(x,~-y),
thereby extending u to a bounded continuous function defined on all
of R™. Clearly u satisfies the local mean-value property specified in
Theorem 1.24, so u is harmonic on R". Liouville’s Theorem (2.1) now
shows that u is constant on R”. =

In Chapter 7 we will study harmonic functions on half-spaces in
detail.

Isolated Singularities

Everyone knows that an isolated singularity of a bounded holomor-
phic function is removable. We now show that the same is true for
bounded harmonic functions.

We call a point a € Q an isolated singularity of any function u de-
fined on Q\ {a}. When u is harmonic on Q\ {a}, the isolated singularity
a is said to be removable if u has a harmonic extension to (.

2.3 Theorem: An isolated singularity of a bounded harmonic func-
tion is removable.



Cauchy’s Estimates 33

PROOF: It suffices to show that if u is bounded and harmonic on
B\ {0}, then u has a harmonic extension to B. Without loss of generality,
we can assume that u is real valued. The only candidate for a harmonic
extension of u to B is the Poisson integral P[uls].

Assume first that n > 2. For € > 0, define the harmonic function v,
on B\ {0} by

Ve(x) = u(x) — Pluls](x) + e(|x|>™™ - 1).

Observe that as {x| — 1, we have v.(x) — 0 (by 1.17), while the bound-
edness of u shows that v:(x) — = as x — 0. By Corollary 1.10 (with
“lim sup” replaced by “lim inf”), v, > 0 in B\ {0}. Letting ¢ — 0, we
conclude that u — P[u|s] = 0 on B\ {0}. Replacing u by —u, we also
have u — P[ujs] < 0, giving u = P[u|s] on B\ {0}. Thus P[u|s] is the
desired harmonic extension of u to B.

The proof when n = 2 is the same, except that (|x|2~" — 1) should
be replaced by log 1/|x1. n

Cauchy’s Estimates

If f is holomorphic and bounded by M on a disk B(a,r) c C, then

m'M
'rm

IfM™(a)| <

for every nonnegative integer m; these are Cauchy’s Estimates from
complex analysis. The next theorem gives the comparable results for
harmonic functions defined on balls in R",

2.4 Cauchy’s Estimates: Let «« be a multi-index. Then there is a
positive constant Cy such that

CaM

(o4
iD*u(a)} < al

for all functions u harmonic and bounded by M on B(a, ).

PROOF: We can assume that a = 0. If u is harmonic and bounded
by M on B, then by 1.22 we have
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p%u(0)| = | | w@DP(0,0)do (@)

ij ID*P(0,7) do (Z)
S
= C(xA/I,

where Cy = [ |ID*P(0,T)| do (D).
If u is harmonic and bounded by M on B(0,7), then applying the
result in the previous paragraph to the r-dilate u, shows that

CaM
ylal

ID*u(0)| < .
Replacing r by r — € and letting ¢ decrease to 0, we obtain the same
conclusion if u is harmonic on the open ball B(0,7) and bounded by
M there. ]

Augustin-Louis Cauchy (1789-1857), whose collected works consisting
of 789 mathematics papers fill 27 volumes, made major contributions
to the study of harmonic functions.

The following corollary shows that the derivatives of a bounded har-
monic function on Q cannot grow too fast near 3Q. We let d{(a,F)
denote the distance from a point a to a set E.
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2.5 Corollary: Let u be a bounded harmonic function on Q, and let
o« be a multi-index. Then there is a constant C such that

x C
Pl < g amye

foralla € Q.

PROOF: For each a € Q, apply Cauchy’s Estimates (Theorem 2.4)
with r = d(a, Q). n

Normal Families

In complex analysis the term normal family refers to a collection
of holomorphic functions with the property that every sequence in the
collection contains a subsequence converging uniformly on compact
subsets of the domain. The most useful result in this area (and the
key tool in most proofs of the Riemann Mapping Theorem) states that
a collection of holomorphic functions that is uniformly bounded on
each compact subset of the domain is a normal family. We now prove
the analogous result for harmonic functions.

2.6 Theorem: If (uy,) is a sequence of harmonic functions on Q) that
is uniformly bounded on each compact subset of ), then some subse-
quence of (um) converges uniformly on each compact subset of Q.

PROOF: The key to the proof is the following observation: there
exists a constant C < o such that for all u harmonic and bounded by
M on any ball B(a, 27),

lu(x) —u(a)l < (sup |Vul)lx - al < Qbilx—al
B(a,r) r

for all x € B(a,r). The first inequality is standard from advanced cal-
culus; the second inequality follows from Cauchy’s Estimates (2.4).
Now suppose K ¢ Q is compact, and let ¥ = d(K,3Q)/3. Because
the set K2y = {x € R" : d{x,K) < 2r} is a compact subset of Q, the
sequence (uU,,) is uniformly bounded by some M < « on K. Let
a,x € K and assume |x —a| < r. Then x € B(a,r) and |u,| < M on
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B(a,2r) C K>, for all m, and so we conclude from the first paragraph
that

[Um(x) —um(a)l < %{L[lx - al

for all m. It follows that the sequence (uy,) is equicontinuous on K.
To finish, choose compact sets

KicKyc---Ccf

whose interiors cover ). Because (uU4,) is equicontinuous on K;, the
Arzela-Ascoli Theorem ([15], Theorem 11.28) implies (u4,) contains a
subsequence that converges uniformly on X;. Applying Arzela-Ascoli
again, there is a subsequence of this subsequence converging uniformly
on K>, and so on. If we list these subsequences one after another in
rows, then the subsequence obtained by traveling down the diagonal
converges uniformly on each K;, and hence on each compact subset
of Q. ]

Note that by Theorem 1.23, the convergent subsequence obtained
above converges to a harmonic function; furthermore, every partial
derivative of this subsequence converges uniformly on each compact
subset of Q.

Theorem 2.6 is often useful in snowing that certain extrema exist.
For example, if a € Q, then there exists a harmonic function v on Q
such that |[v| < 1 on Q and

[Vv(a)| = sup{|Vu(a)! : u is harmonic on Q and |u| < 1 on Q}.

Maximum Principles

Corollary 1.10 is the maximum principle in its most general form.
It states that if u is a real-valued harmonic functionon Q and u < M
at the “boundary” of Q, then u < M on Q. The catch is that we need to
consider « as a boundary point. (Again, the function u(x,y) = ¥ on
H shows why this is necessary.) Often it is possible to ignore the point
at infinity when u is bounded; the next result shows that this is always
possible in two dimensions.
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2.7 Theorem: Suppose Q@ c R?Z and Q + R2. If u is a real-valued,
bounded harmonic function on Q satisfying

2.8 limsupu(ag) <M

k—oo

for every sequence (ay) in Q converging to a point in 0Q, thenu < M
on Q.

PROOF: Because Q # R?, 9Q is not empty. Let £ > 0, and choose
a sequence in Q converging to a point in 0Q. By hypothesis, u is less
than M + ¢ on the tail end of this sequence. It follows that there is a
closed ball B(a,7) € Q onwhich u < M + &.

Define Q' = Q\ B(a, ), and set

z—a‘

v(z) = log ’ "

for z € Q. Then v is positive and harmonic on Q', and v(z) — o as
z — oo within €)'.
For t > 0, we now define the harmonic function w; on Q' by

Wr=u—-M-eg-tv.

By 2.8 and the preceding remarks, lim supy_., w:(ak) < 0 for every se-
quence (ay) in Q’ converging to a point in 0Q’, while the boundedness
of u on Q' shows that w;(ax) — — for every sequence (ay) converg-
ing to « within Q’. By Corollary 1.10, w; < 0 on Q.

Wenowlett — Otoobtainu < M+ ¢eon. Because u < M + ¢
on B(a,r), we have u < M + ¢ on all of Q. Finally, since ¢ is arbitrary,
u < M on (, as desired. |

The higher-dimensional analogue of Theorem 2.7 fails. For an ex-
ample, let Q = {x e R": |x| > 1} and set u(x) =1 - |x|> . Ifn > 2,
then u is a bounded harmonic function on Q that vanishes on 9Q but
is not identically 0 on Q. (In fact, u is never zero on .)

The proof of Theorem 2.7 carries over to higher dimensions except
for one key point. Specifically, when n = 2, there exists a positive
harmonic function v on R"* \ B such that v(z) — o as z — «. When
n > 2, there exists no such v; in fact, every positive harmonic function
on R™ \ B has a finite limit at 0 when 7 > 2 (Theorem 4.10).
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The following maximum principle is nevertheless valid in all dimen-
sions. Recall that H, denotes the upper half-space of R".

29 Theorem: Suppose Q@ C Hy,. If u is a real-valued, bounded
harmonic function on Q satisfying

limsupu(ay) <M

k—oo

for every sequence (ay) in Q converging to a point in 0Q, thenu < M
on Q.

PROOF: For (x,y) € Q, define

n-1

vix,y) = > log(xi® + (¥ + 1)%.
k=1

Then v is positive and harmonic on , and v(z) — o as z — o within
H,,. Having obtained v, we can use the ideas in the proof of Theorem 2.7
to finish the proof. The details are even easier here and we leave them
to the reader. ]

Limits Along Rays

We now apply some of the preceding results to study the boundary
behavior of harmonic functions defined in the upper half-plane H,. We
will need the notion of a nontangential limit, which for later purposes
we define for functions on half-spaces of arbitrary dimension.

Given a € R* ! and « > 0, set

Ix(a) = {(x,y) €Hy:lx—-al < ay}.

Geometrically, I'x(a) is a cone with vertex a and axis of symmetry par-
allel to the y-axis.

We have I'x(a) C Ig(a) if @ < B, and Hy, is the union of the sets
Tx(a) as aranges over (0, «).

A function u defined on H,, is said to have a nontangential limit.L at
a € R*Lif for every @ > 0, u(z) — L as z — a within I'y(a). The term
“nontangential” is used because no curve in I'y(a) that approaches a
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| \\/ _

a

The cone IT'x(a).

can be tangent to dH,,. Exercise 17 of this chapter shows that a bounded
harmonic function on H, can have a nontangential limit at a point of
0H, even though the ordinary limit does not exist at that point.

The following theorem for bounded harmonic functions on H, as-
serts that a nontangential limit can be deduced from a limit along a
certain one-dimensional set.

2.10 Theorem: Suppose that u is bounded and harmonic on H». If
0<0; <6, <1 and

limu(re®) = L = limu(rei®),
r—0 r—0
then w has nontangential limit L at 0.

PROOF: We may assume L = 0.

If the theorem is false, then for some o > 0, u(z) fails to have
limit O as z — O within [4(0). This means that there exists an € > 0 and
a sequence (z;) tending to 0 within I'y(0) such that

2.1 fu(z;) > ¢

for all j.
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Define K = [~«, «] x {1}, and write z; = r;w;, where w; € K and
r;j > 0. Because zj — 0, we have r; — 0.

Setting u(z) = u(r;z), note that (u;) is a uniformly bounded se-
quence of harmonic functions on H,. By Theorem 2.6, there exists a
subsequence of (u;) that converges uniformly on compact subsets of
H; to a bounded harmonic function v on H»; for simplicity we denote
this subsequence by (u;) as well.

Examining the limit function v, we see that

v(re®) = lim u;(re’®) = lim u(r;re’®) = 0
j=ce j=

for all ¥ > 0. Similarly, v(rei®2) = 0 for all > 0. The reader may now
be tempted to apply Theorem 2.7 to the region between the two rays;
unfortunately we do not know that v(z) — 0 as z — 0 between the given
rays. We avoid this problem by observing that the function z — v(e?)
is bounded and harmonicon the strip Q = {z =x +iy:0; <y < 82},
and that v(e?) extends continuously to Q with v(e?) = 0 on 0Q. By
Theorem 2.7, v(e?) = 0 on Q, and thus v = 0 on H,.

The sequence (u;) therefore converges to 0 uniformly on compact
subsets of H,. In particular, u; — 0 uniformly on K. It follows that
uj(w;) = u(z;) - 0as j — oo, contradicting 2.11. n

Does a limit along one ray suffice to give a nontangential limit in
Theorem 2.10? To see that the answer is no, consider the bounded
harmonic function « on H» defined by u(rei®) = 0 for 8 € (0, ). This
function has a limit along each ray in H»> emanating from the origin, but
different rays vyield different limits. (One ray will suffice for a bounded
holomorphic function; see Exercise 22 of this chapter.)

Bounded Harmonic Functions on the Ball

In the last chapter we defined the Poisson integral P[ f] assuming
that f is continuous on S. We can easily enlarge the class of functions
f for which P[f] is defined. For example, if f is a bounded (Borel)
measurable function on S, then

PLFI(x) = Lfmp(x, 2)do (0)
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defines a bounded harmonic function on B; we leave the verification to
the reader.

Allowing bounded measurable boundary data gives us many more
examples of bounded harmonic functions on B than could otherwise
be obtained. For example, in Chapter 6 we will see that the extremal
function in the Schwarz Lemma for harmonic functions is the Poisson
integral of a bounded discontinuous function on S. In that chapter we
will also prove a fundamental result (Theorem 6.13): given a bounded
harmonic function © on B, there exists a bounded measurable f on S
such that u = P[f] on B.
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Exercises

1. Give an example of a bounded harmonic function on B that is not
uniformly continuous on B.

2. (@) Suppose u is a harmonic function on B\ {0} such that
x| 2u(x) -0 asx — 0.

Prove that u has a removable singularity at 0.
(b) Suppose u is a harmonic function on B; \ {0} such that

u(x)/logix| -0 asx—0.

Prove that u has a removable singularity at 0.

3. Suppose that u is harmonic on R" and that u(x,0) = 0 for all
x € R""L, Prove that u(x,-y) = —u(x,y) forall (x,y) € R™.

4. Under what circumstances can a function harmonic on R™ vanish
on the union of two hyperplanes?

5. Use Cauchy’s Estimates (Theorem 2.4) to give another proof of
Liouville’s Theorem (Theorem 2.1).

6. Let K be a compact subset of Q and let « be a multi-index. Show
that there is a constant C = C(Q, K, &) such that

ID*u(a)} < Csup{lu(x)|:x € Q}

for every function u harmonic on Q and every a € K.

7. Suppose u is harmonic on R™ and |u(x)| < A(1 + {x]|?) for all
x € R", where A is a constant and p = 0. Prove that u is a
polynomial of degree at most p.

8. Prove if (un) is a pointwise convergent sequence of harmonic
functions on Q that is uniformly bounded on each compact sub-
set of Q, then (u,,) converges uniformly on each compact subset
of Q.

9. Show that if u is the pointwise limit of a sequence of harmonic
functions on Q, then u is harmonic on a dense open subset of Q.
(Hint: Baire's Theorem.)
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10. Let u be a bounded harmonic function on B. Prove that

sup(l — |x)|Vu(x)| < .
XEB

11. The set of harmonic functions u on B satisfying the inequality
in Exercise 10 is called the harmonic Bloch space. Prove the har-
monic Bloch space is a Banach space under the norm defined by

lull = sup(1l — [xD)IVui{x)| + 1u(0)!.

X€&B

12.  Give an example of an unbounded harmonic function in the har-
monic Bloch space.

13.  Prove that if u is in the harmonic Bloch space and « is a multi-
index with |«| > 0, then

sup(1l — |x)'¥D%*u(x)| < .
x€B

14. For a € B, let B; denote the ball centered a with radius 1'7““'
Prove that if u is harmonic on B, then u is in the harmonic Bloch
space if and only if

5l
su u-ua)|dv < e,
SUD V(B Jp, T M@ AV <o

15. Let U denote the set of harmonic functions u on B such that
u(0) =0 and
sup(l — |x])|Vu(x)} = 1.

xX€B

Prove that there exists a function v € ‘U such that

J v(T/2)|do(T) = sup | |u(T/2)Ido(T).
S ueu’s

16. Suppose Q ¢ H, and that u is a continuous bounded function
on  that is harmonic on Q. Prove that if u = 0 on 9(, then
u=0onQ.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

Let f(z) = e"¥%. Show that f is a bounded holomorphic function
on Hp, that f has a nontangential limit at the origin, but that f
does not have a limit along some curve in H, terminating at the
origin.

Suppose 0 < 6; < 6> < wand L,L, € C. Show that there is a

bounded harmonic function u# on H; such that u(rei®x) — Ly as
r—-0fork=1,2.

Suppose u is a bounded harmonic function on H, with limits at 0
along two distinct rays. Specifically, suppose

limu(reif) = L,
r—0

for k = 1,2, where 0 < 0} < 8 < 1. Show that lim,_ou(rei?)
exists for every 6 € (0, 1), and evaluate this limit as a function
of 6.

Define f(z) = e'1°8Z, where log z denotes the principal-valued
logarithm. Show that f is a bounded holomorphic function on
H; whose real and imaginary parts fail to have a limit along every
ray in H, emanating from the origin.

Let 6y € (0, ). Prove that there exists a bounded harmonic
function u on H, such that lim,_qu(re'?) exists if and only if
0 = 0y. (Hint: Do this first for 8y = /2 by letting u(z) =
Re eil22 and considering u(x, y) — u(-x,y).)

Let f be a bounded holomorphic function on H,, and suppose
lim,_¢ f(rei®) exists for some 8 € (0,7r). Prove that f has a
nontangential limit at 0.

Let # be a bounded harmonic function on Hj that has the same
limit along two distinct rays in H3 emanating from 0. Need u
have a nontangential limit at 0?

Prove that when n > 2 there does not exist a harmonic function
v on R™ \ B such that v(z) — « as z — o,

Let K denote a compact line segment contained in B3. Show that
every bounded harmonic function on B3 \ K extends to be har-
monic on Bs.



CHAPTER 3

Positive Harmonic Functions

This chapter focuses on the special properties of positive harmonic
functions. We will describe the positive harmonic functions defined
on all of R" (Liouville’s Theorem), show that positive harmonic func-
tions cannot oscillate wildly (Harnack's Inequality), and characterize
the behavior of positive harmonic functions near isolated singularities
(Bocher’s Theorem).

Liowville’s Theorem

In Chapter 2 we proved that a bounded harmonic function on R" is
constant. We now improve that result. In Chapter 9 we will improve
even the result below (see 9.10).

3.1 Liouville’s Theorem for Positive Harmonic Functions: A posi-
tive harmonic function on R" is constant.

PrROOF: The proof is a bit more delicate than that given for bounded
harmonic functions. Let 1 be a positive harmonic function defined
on R™. Fix x € R™. Let v > |x|, and let D, denote the symmetric
difference of the balls B(x,*) and B(0,7). The volume version of the
mean-value property (1.6) shows that

1
u(x) —u0) = W[JB(x,r)udv - JB(O,r)udV]'

45
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Because the integrals of u over B(x,r) n B(0,r) cancel (see 3.2), we
have

1
lu(x) —u(0)| < W D,
1
<
V(B(0,7)) JB.r+ixIN\BOr-Ix])
1
- V(B(O,T)) [.[B(O,r+lx|) udv - JB(O,r~IxI) “ dv]

(r +[xD™ - (r —|xHhH"
rn )

udv

udv

= u(0)

Note that the positivity of u was used in the first inequality.

Now letting r — o, we see that u(x) = u(0), proving that u is
constant. |

3.2 The symmetric difference D, (shaded) of B(x,r) and B(0,r).

Liouville’s Theorem for positive harmonic functions leads to an easy
proof that a positive harmonic function on R? \ {0} is constant.

3.3  Corollary: A positive harmonic function on R? \ {0} is constant.

PROOF: If u is positive and harmonic on R? \ {0}, then the function
z ~ u(e?) is positive and harmonic on R? (= C) and hence (by 3.1) is
constant. This proves that u is constant. n
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The higher-dimensional analogue of Corollary 3.3 fails; for example,
the function |x|2~™ is positive and harmonic on R \ {0} when n > 2.
We will classify the positive harmonic functions on R" \ {0} for n > 2
after the proof of Bécher’s Theorem; see Corollary 3.14.

Harnack’s nequality and
Harnack’s Principle

Positive harmonic functions cannot oscillate too much on a com-
pact set K ¢ Q if Q is connected; the precise statement is Harnack'’s
Inequality (3.6). We first consider the important special case where Q
is the open unit ball.

3.4 Harnack’s Inequality for the Ball: If u is positive and harmonic
on B, then

1-]x]|
(1+ [x[)n-t

1+ |x]|

u(0) < u(x) < (1——|X|)7:T

u(0)
for all x € B.

PROOF: If u is positive and harmonic on the closed unit ball B,
then

u(x) = Plulsl(x)

_ 2
- [uo R do@
1- 2
= Tl J; 0 40©
1+ |x]
= Tyt

for all x € B. If u is positive and harmonic on B, apply the estimate
above to the dilates u, and take the limit as r — 1. This gives us
the second inequality of the theorem. The first inequality is proved
similarly. -
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Define x(t) = (1-t)/(1+t)*Land B(t) = (1+t)/(1—t)*"1. Aftera
translation and a dilation, 3.4 tells us that if u is positive and harmonic
on B(a,R), and {x —a} < r <R, then

3.5 o(r/R)u(a) < u(x) < B(r/R)u(a).

3.6 Harnack’s Inequality: Suppose that Q is connected and that K
is a compact subset of Q. Then there is a constant C € (1, ) such that

1 _uy)

< %) <C

)

for all points x and y in K and all positive harmonic functions u on Q.

PROOF: We will prove that there is a constant C € (1, «) such that
u(y)/u{x) < C for all x,y € K and all positive harmonic functions u
on Q. Because x and y play symmetric roles, the other inequality will
also hold.

For (x,y) € Q x Q, define

s(x,y) = sup{u(y)/u(x) : u is positive and harmonic on Q}.

We first show that s < o on Q x Q.
Fix x € Q, and define

E={yeQ:s(x,y) < w}.

Because x € E, E is not empty. If v € E, we may choose r > 0 such
that B(y,2r) € Q. By 3.5, u < B(1/2)u(y) on B(y,r) for all positive
harmonic functions u on Q. We then have B(y,*) C E, proving that E
is open. If z € Q is a limit point of E, there existsanr > 0anday € E
such that z € B(y,r) C B(y,2r) C Q. By 3.5, u(z) < B(1/2)u(y) for
all positive harmonic functions u on Q. We then have z € E, proving
that E is closed. The connectivity of Q therefore shows that E = Q.

We now know that s is finite at every point of Q x Q. Let K C Q be
compact, and let (a,b) € K x K. Then by 3.5,

u(y) B/2)ulb)  B(1/2)
w0 S adDu@ S a2’ @
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for all (x, y) in a neighborhood of (a, b), and for all positive harmonic
functions u on Q. Because K x K is covered by finitely many such
neighborhoods, s is bounded above on K x K, as desired. ]

Note that the constant C in 3.6 may depend upon Q and K, but that
C is independent of x, y, and wu.

An intuitive way to remember Harnack’s Inequality is shown in 3.7,
Here we have covered K with a finite chain of overlapping balls (possi-
ble, since Q) is connected); to compare the values of a positive harmonic
function at any two points in K, we can think of a finite chain of inequal-
ities of the kind expressed in 3.5.

3.7 K covered by overlapping balls.

Harnack’s Inequality leads to an important convergence theorem for
harmonic functions known as Harnack’s Principle. Consider a mono-
tone sequence of continuous functions on Q. The pointwise limit of
such a sequence need not behave well—it could be infinite at some
points and finite at other points. Even if it is finite everywhere, there
is no reason to expect that our sequence converges uniformly on every
compact subset of Q. Harnack’s Principle shows that none of this bad
behavior can occur for a monotone sequence of harmonic functions.

3.8 Harnack’s Principle: Suppose ) is connected and (Uy,) is a point-
wise increasing sequence of harmonic functions on Q). Then either (Uy)
converges uniformly on compact subsets of Q to a function harmonic
on Q or uym(x) — o for every x € Q.
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PROOF: Replacing um, by um — u1 + 1, we can assume that each u,
is positive on Q. Set u(x) = liMy, — Um(x) for each x € Q.

First suppose u is finite everywhere on Q. Let K be a compact subset
of Q. Fix x € K. Harnack’s Inequality (3.6) shows there is a constant
C € (1, «) such that

Um(y) —ur(y) < C(um(x) "uk(x))

for all y € K, whenever m > k. This implies (4y,) is uniformly Cauchy
on K, and thus u, — u uniformly on K, as desired. Theorem 1.23
shows that the limit function u is harmonic on Q.

Now suppose u(x) = « for some x € Q. Let y € Q. Then Harnack’s
Inequality (3.6), applied to the compact set K = {x, v}, shows that there
is a constant C € (1, ) such that u,,(x) < Cun(y) for every m.
Because Uy, (x) — oo, we also have Uy, () — o, and so u(y) = o. This
implies that u is identically « on Q. [ |

Isolated Singularities

In this section we prove Bocher’s Theorem, which characterizes the
behavior of positive harmonic functions in the neighborhood of an iso-
lated singularity. Recall that when n = 2, the function log(1/]x|) is
positive and harmonic on B\ {0}, while when n > 2, the function [x[?>~"
is positive and harmonic on B\ {0}. Roughly speaking, Bocher’s Theo-
rem says that near an isolated singularity, a positive harmonic function
must behave like one of these functions.

3.9 Bocher’s Theorem: If u is positive and harmonic on B\ {0}, then
there is a function v harmonic on B and a constant b > 0 such that

{V(XHblog(l/IXI) ifn=2
ulx) = '
v(x) + blx|>" ifn>2

forall x € B\ {0}.

The next three lemmas will be used in the proof of Bécher’s The-
orem (our proof of Bocher’s Theorem is taken from [3], which also
contains references to several other proofs of this resuit). The first
lemma describes the spherical averages of a function harmonic on a
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punctured ball. Given a continuous function u defined on B \ {0}, we
define A[u](x) to be the average of u over the sphere of radius |x|:

Alul(x) = Lu(lxlC) do (Z)

for x € B\ {0}.

3.10 Lemma: Suppose u is harmonic on B\ {0}. Then there exist
constants a, b € C such that

a+blog(l/lx]) ifn=2
a+b|x|2 " ifn>2

Aful(x) = {

for all x € B\ {0}. In particular, Alul is harmonic on B \ {0}.

PROOF: Let ds denote surface-area measure (unnormalized). Define
fon(0,1)by

fr) = Lu(‘rC) ds(T);

so A{u](x) is a constant multiple of f(]x|). Because u is continuously
differentiable on B \ {0}, we can compute f’ by differentiating under
the integral sign, obtaining

f )= L C-(Vuw@rt)ds(@)y=r"" LST (V) (T)ds(T).

Suppose 0 < 1p <7y <land Q = {x € R": 1y < |{x] < 11}. The
divergence theorem, applied to Vu, shows that

J n-vVuds =J’ Audv;
30 Q

here n denotes the outward unit normal on Q. Because u is harmonic
on £, the right side of this equation is 0. Note also that 6Q = rySun S
and thatn = ~7/rgon S and n = 1/7; on 7 S. Thus the last equation
above implies that
1 1
— T-(Vu)(T)ds(t) = —f T (Vu)(r)ds(T),
¥y JnS Y1Jns
which means f’(r) is a constant multiple of =" (for 0 < r < 1). This
proves f(r) is of the desired form. n
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An immediate consequence of the lemma above is that every radial
harmonic function on B \ {0} is of the form given by the conclusion
of 3.10 (a function is radial if its value at x depends only on |x|). Proof:
if u is radial, then u = A[u]. (For another proof, see Exercise 13 of this
chapter.)

The next lemma is a version of Harnack's Inequality that allows x
and y to range over a noncompact set provided |x| = |y].

3.11 Lemma: There exists a constant ¢ > 0 such that for every positive
harmonic function u on B \ {0},

cu(y) <u(x)
whenever 0 < |x| = |yl <1/2.

PROOF: Harnack’s Inequality (3.6), with Q = B\ {0} and K = (1/2)S,
shows there is a constant ¢ > 0 such that for all positive harmonic u
on B\ {0}, we have cu(y) < u{x) whenever |x| = |y| = 1/2. Applying
this result to the dilates u,,0 < v < 1, gives the desired conclusion. =

The following result characterizes the positive harmonic functions
on B\ {0} that are identically zero on S. This is really the heart of our
proof of B6cher’s Theorem.

3.12 Lemma: Suppose u is positive and harmonic on B \ {0} and
u(x) — 0 as |x| — 1. Then there exists a constant b > 0 such that

{blog(l/lxl) ifn=2
u(x) = ” .
bixi-—n ifn>2

for all x € B\ {0}.

PROOF: By Lemma 3.10, we need only show that u = A[u] on B\ {0}.
Suppose we could show that u > A[u] on B\ {0}. Then if there were a
point x € B\ {0} such that u(x) > Alul(x), we would have

Alul(x) > A[Alull(x) = Alul(x),

a contradiction. Thus we need only prove that u = A[u] on B\ {0},
which we now do.
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Let ¢ be the constant of Lemma 3.11. By Lemma 3.10, u — cA[ul is
harmonic on B \ {0}. By Lemma 3.11, u(x) — cA[ul(x) > 0 whenever
0 <|x| =1/2, and clearly u(x) — cAful](x) — 0 as |x| — 1 by our
hypothesis on u. The minimum principle for harmonic functions (1.10)
thus shows that u — cA[u] > 0 on B\ {0}.

We wish to iterate this resuit. For this purpose, define

gty =c+t(l-c)
for t € {0, 1]. Suppose we know that
3.13 w=u-tA[ul>0

on B\ {0} for some t € [0, 1]. Since w(x) — 0 as |x| — 1, the preceding
argument may be applied to w, yielding

w -~ cAlwl=u-gt)Alul>0

on B\ {0}. This process may be continued. Letting g™ denote the m™®
iterate of g, we see that 3.13 implies

u-g™m™@Aul >0

on B\ {0} form = 1,2,.... But g™ (t) - 1 as m — o for every
t € [0,1], so that 3.13 holding for some t € [0,1] impliesu—A[u] = 0
on B\ {0}. Since 3.13 obviously holds whent = 0, we have u —A[u] = 0
on B\ {0}, as desired. ]

Now we are ready to prove Bocher’s Theorem (3.9).

PROOF OF BOCHER'S THEOREM: We first assume that n > 2 and that
u is positive and harmonic on B \ {0}. Define a harmonic function w
on B\ {0} by

w(x) = u(x) - Plulsl(x) + |x|>™™ ~ 1.

As |x]| — 1, we have w(x) — 0 (by 1.17), and as [x] — 0, we have
w(x) — o (because u is positive and P[uls] is bounded on B \ {0}).
By the minimum principle (1.10), we conclude that w is positive on
B\ {0}.
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Lemma 3.12, applied to w, shows that u(x) = v(x) + b|x|> " on
B\ {0} for some v harmonic on B and some constant b. Now letting
x — 0, we see that the positivity of « implies that b > 0; we have thus
proved Bécher’s Theorem in the case where u is positive and harmonic
on B\ {0}.

For the general positive harmonic u on B \ {0}, we may apply the
result above to the dilate u(x/2), so that

u(x/2) = vix) + blx|*>™"

on B\ {0} for some v harmonic on B and some constant b = 0. This
implies that
u(x) = v(2x) + b22 x|

on (1/2)B\ {0}, which shows that u(x) —b22-"|x|2~" extends harmon-
ically to (1/2)B, and hence to B. Thus the proof of Bocher's Theorem
is complete in the case where n > 2. The proof of the n = 2 case is the
same, except that log(1/]x]) should be replaced by |x|2~". ]

In Chapter 9, in the section Bdcher’s Theorem Revisted, we will see
another approach to this result.

We conclude this section by characterizing the positive harmonic
functions on R\ {0} for n > 2. (Recall that by 3.3, a positive harmonic
function on R2 \ {0} is constant.)

3.14 Corollary: Suppose n > 2. If u is positive and harmonic on
R™\ {0}, then there exist constants a,b = Q such that

u(x) =a+blx]?™"
for all x € R\ {0}.

PROOF: Suppose u is positive and harmonic on R” \ {0}. Then on
B\ {0} we may write

u(x) = v(x) + blx|>™"

as in Bécher’s Theorem (3.9). The function v extends harmonically to
all of R™ by setting v(x) = u(x) — b|x[?~" for x € R™ \ B. Because
liminfy_.. v{x) = 0, the minimum principle (1.10) implies that v is
nonnegative on R". By 3.1, v is constant, completing the proof. ]
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Positive Harmonic Functions on the Ball

At the end of Chapter 2 we briefly discussed how it is possible to
define P[f] when f is not continuous, and indicated that it was neces-
sary to do so in order to characterize the bounded harmonic functions
on B. A similar idea works for positive harmonic functions on B—given
a positive finite Borel measure y on S, we can define

Plul(x) = LP(x,mu(c)

for x € B. The function so defined is positive and harmonic on B,
as the reader can check by differentiating under the integral sign or
by using the converse to the mean-value property. In Chapter 6 we
will show (see 6.15) that every positive harmonic function on B is the
Poisson integral of a measure as above. Many important consequences
follow from this characterization, among them the result (see 6.44)
that every positive harmonic function on B has boundary values almost
everywhere on S, in a sense to be made precise in Chapter 6.
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Exercises

1. Use 3.5 to give another proof of Liouville's Theorem for positive
harmonic functions (3.1).

2. Can equality hold in either of the inequalities in Harnack’s In-
equality for the ball (3.4)?

3. Show that for every multi-index o« there exists a constant C, such

that
Cau(0)

ID%u(x)| < 1= [xplain-1

for every x € B and every positive harmonic u on B. Use this to
give another proof of Liouville's Theorem for positive harmonic
functions.

4. Let Q be an open square in R2. Prove that there exists a positive
harmonic function u on Q such that u(z)d(z, 9Q) is unbounded
on Q.

5. Define s on Q X Q by
s(x,y) = sup{u(y)/u(x) : u is positive and harmonic on Q}.

Prove that s is continuous on Q x Q.

6. Suppose u is positive and harmonic on the upper half-space H.
Prove that if z € H and u is bounded on the ray {rz : r > 0},
then u is bounded in the cone I'4(0) for every & > 0.

7. Suppose u is positive and harmonic on the upper half-space H,
ze€e H,and u(rz) - L asr — 0, where L € [0, «].-Show that
if L = oo, then u has nontangential limit o at 0. Prove a similar
result for the case L = 0. Show that u need not have a nontan-
gential limit at 0 if L € (0, o).

8. Prove the analogue of Theorem 2.10 for positive harmonic func-
tions on H, with a common limit along two distinct rays.

9. Suppose u is positive and harmonic on H. Show that u has non-
tangential limit L at 0 if and only if lim, g u(rz) = L for every
ZEH.



Exercises 57

10.

11.

12.

13.

14.

15.

16.

17.

Show that if pointwise divergence to c occurs in Harnack'’s Prin-
ciple (3.8), then the divergence is "uniform” on compact subsets
of Q.

Prove that a pointwise convergent sequence of positive harmonic
functions on €} converges uniformly on compact subsets of Q.

Suppose Q is connected and (u,,) is a sequence of positive har-
monic functions on Q. Show that at least one of the following
statements is true:

(@) (um) contains a subsequence diverging to o pointwise on €);

(b) (um) contains a subsequence converging uniformly on com-
pact subsets of Q.

Suppose that u is a radial function in C2(B \ {0}). Let g be the
function on (0, 1) defined by g(|x|) = u(x). Compute Au in
terms of g and its derivatives. Use this to prove that a radial
harmonic function on B \ {0} must be of the form given by the
conclusion of 3.10.

Prove that the constant b and the function v in the conclusion
of Bocher’s Theorem (3.9) are unique.

Suppose n > 2. Assume a € Q and u is harmonic on Q \ {a}.
Show that if u is positive on some punctured ball centered at a,
then there exists a nonnegative constant b and a harmonic func-
tion v on Q such that u(x) = blx —al> " +v(x) on Q\ {a}.

(a) Suppose n > 2. Let u be harmonic on B\ {0}. Show that if

liminf u(x)]|x|™ 2 > -,
x-0

then there exists a function v harmonic on B and a constant
b such that u(x) = b{x|2~" + v(x) on B.

(b} Formulate and prove a similar result for n = 2.

Let A = {a;,ay,...} denote a discrete subset of R". Characterize
the positive harmonic functions on R™ \ A.



CHAPTER 4

The Kelvin Transform

The Kelvin transform performs a role in harmonic function the-
ory analogous to that played by the transformation f(z) — f(1/2)
in holomorphic function theory. For example, it transforms a function
harmonic inside the unit sphere into a function harmonic outside the
sphere. In this chapter, we introduce the Kelvin transform and use it
to solve the Dirichlet problem for the exterior of the unit sphere and to
obtain a reflection principle for harmonic functions. Later, we will use
the Kelvin transform in the study of isolated singularities of harmonic
functions.

Inversion in the ‘Unit Sphere

When studying harmonic functions on unbounded open sets, we will
often find it convenient to append the point « to R™. We topologize
R™ U {o} in the natural way: a set w C R™ U {} is open if it is an
open subset of R" in the ordinary sense or if w = {e} U (R" \ E),
where E is a compact subset of R™. The resulting topological space
is compact and is called the one-point compactification of R". Via the
usual stereographic projection, R™ U {0} is homeomorphic to the unit
sphere in R"**1,

The map x —~ x*, where

x/|1x|? ifx+#0, 00
x*=40 ifx =00
1) ifx=0

59
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is called the inversion of R"™ U {o} relative to the unit sphere. Note
that if x ¢ {0, «}, then x* lies on the ray from the origin determined
by x, with |[x*| = 1/|x|. The reader should verify that the inversion
map is continuous, is its own inverse, is the identity on S, and takes a
neighborhood of « onto a neighborhood of 0.

For any set E ¢ R™ U {}, we define E* = {x* : x € E}.

The inversion map preserves the family of spheres and hyperplanes
in R™ (if we adopt the convention that the point « belongs to every
hyperplane). To see this, observe that a set E C R™ is a nondegenerate
sphere or hyperplane if and only if

4.1 E={xeR":alx|?+b-x+c=0},

where b € R™ and a, ¢ are real numbers satisfying |b|? — 4ac > 0. We
easily see that if E has the form 4.1, then E* has the same form (with
the roles of a and ¢ reversed); inversion therefore preserves the family
of spheres and hyperplanes, as claimed.

Recall that a Cl-map ¥: Q — R is said to be conformal if it pre-
serves angles between intersecting curves; this happens if and only if
the Jacobian ¥’ (x) is a scalar multiple of an orthogonal transformation
for each x € Q.

4.2 Proposition: The inversion x — x* is conformal on R™ \ {0}.

PROOE: Set ¥(x) = x* = x/|x|2. Fix y € R"\ {0}. Choose an or-
thogonal transformation T of R” such that Ty = ({¥1,0,...,0). Clearly

Y=T1o¥oT,

sothat ¥/ (y) =T o ¥ (T(y)) o T.

Thus to complete the proof we need only show that ¥'(T(»y)), which
equals ¥'(]¥1,0,...,0), is a scalar multiple of an orthogonal transfor-
mation. However, a simple calculation, which we leave to the reader,
shows that the matrix of ¥'(|¥|,0,...,0) is diagonal, with —~1/|y|? in
the first position and 1/]y|? in the other diagonal positions. Hence the
proof of the proposition is complete. n
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Motivation and Definition

Suppose E is a compact subset of R™. If u is harmonic on R" \ E, we
naturally regard « as an isolated singularity of u. When should we say
that u has a removable singularity at «? There is an obvious answer
when n = 2, because here the inversion x —~ x* preserves harmonic
functions: if O ¢ R?\ {0} and u is harmonic on €, then the function
x — u(x*) is harmonic on Q*. (Note that on R? = C, inversion is the
map z — 1/Z.) When n = 2, then, we say that u is harmonic at «
provided the function x — u(x*) has a removable singularity at 0.

Unfortunately, the inversion map does not preserve harmonic func-
tions when n > 2 (consider, for example, u(x) = |x]2~"). Nevertheless,
there is a transformation involving the inversion that does preserve har-
monic functions for all n > 2; it is called the Kelvin transformation in
honor of Lord Kelvin who discovered it in the 1840s [17].

We can guess what this transformation is by applying the symme-
try lemma to the Poisson kernel. Fixing § € S, recall that P(-,T) is
harmonic on R \ {T} (1.18). By the symmetry lemma (1.13), we have

Ix - Cl=]lxI"lx - |x|T |

for all x € R\ {0}. Applying this to P(x,Z) = (1 — [x]?)/|x - C|™, we
easily compute that

43 P(x,0) = —|xI>"P(x*,T)

for all x € R™\ {0, C}. The significant fact here is that the right side
of 4.3 is a harmonic function of x on R" \ {0, T}. Except for the minus
sign, the definition of the Kelvin transformation is staring us in the
face.

Thus, given a function u defined on a set E ¢ R" \ {0}, we define
the function K[u] on E* by

K{ul(x) = |x]> " u(x*);

the function K{u] is called the Kelvin transform of u. Note that when
n =2, Klul(x) = u(x*).

We easily see that K[K[u]] = u for all functions u as above; in other
words, the Kelvin transform is its own inverse.
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The transform K is also linear—if u, v are functions on E and b, ¢
are constants, then K{bu + cv] = bK{u] + cK[v] on E*.

The Kelvin transform preserves uniform convergence on compact
sets. Specifically, suppose E is a compact subset of R™ \ {0} and (u,)
is a sequence of functions on E. Then (u,,) converges uniformly on E
if and only if (K{um]) converges uniformly on E*.

The Kelvin Transform Preserves
Harmonic Functions

In this section we will see that the Kelvin transform of every har-
monic function is harmonic. We begin with a simple computation.

44 Lemma: If p is a polynomial on R™ homogeneous of degree m,
then
A(lx‘Z—n—Zmp) - lx‘Z—n—ZmAp_

PROOF: Let t € R. Use the product rule for Laplacians (1.19) along
with Exercise 3 in Chapter 1 to get

Allx|tp) = |x|'Ap + 2t|x|'%x - Vp + t(t + n - 2)|x|!?p.

If p is homogeneous of degree m, then x - Vp = mp (see Exercise 29
in Chapter 1), so the equation above reduces to

4.5 Allx|tp) = Ix|'Ap + t2m + t + n - 2)|x|'?p.
Taking t = 2 — n — 2m now gives the conclusion of the lemma. [ ]

If p is homogeneous of degree m, then clearly K[p] = |x|2""2™p.
This observation is used twice in the proof of the next proposition,
which shows that the Kelvin transform comes close to commuting with
the Laplacian.

4.6 Proposition: If u is a C? function on an open subset of R™\ {0},
then

A(K[ul)) = K[Ix|*Aul.
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PROOF: First suppose that p is a polynomial on R” homogeneous of
degree m. Then

A(K[p]) = A(lx|>"""2™p)
- leZ—n-—ZmAp

= K[|x|*Ap],

where the second equality follows from Lemma 4.4 and the third equal-
ity holds because |x|*Ap is homogeneous of degree m + 2.

The paragraph above shows that the proposition holds for poly-
nomials (by linearity). Because polynomials are locally dense in the
C?-norm, the result holds for arbitrary C? functions u, as desired. =

We come now to the the crucial property of the Kelvin transform.

4.7 Theorem: If Q C R™\ {0}, then u is harmonic on Q if and only
if K[u] is harmonic on Q*.

PROOF: From the previous proposition, we see that A(K[ul) = 0 if
and only if Au = 0. n

Harmonicity at Infinity

Because the Kelvin transform preserves harmonicity, we make the
following definition: if E ¢ R™ is compact and « is harmonic on R* \ E,
then u is harmonic at « provided K[u] has a removable singularity at
the origin. Notice that in the n = 2 case this definition is consistent
with our previous discussion.

If u is harmonic at o, then K{u] has a finite limit L at 0; in other
words

)1(151(1)|x12‘"u(x/|x|2) =L

From this we see that if u is harmonic at o, thenlimy, .., #{x) = 0 when
n > 2, while lim, ., u(x) = L when n = 2. This observation leads to
characterizations of harmonicity at . We begin with the n > 2 case.
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4.8 Theorem: Assume n > 2. Suppose u is harmonic on R™ \ E,
where E C R™ is compact. Then u is harmonic at « if and only if
lim,_. u(x) =0.

PROOF: We have just noted above that if u is harmonic at «, then
limy_ o u(x) = 0.

To prove the other direction, suppose that limy.. #(x) = 0. Then
Ix|"2K[u](x) — 0 as x — 0. By Exercise 2(a) of Chapter 2, K[u] has
a removable singularity at 0, which means « is harmonic at . ]

Now we turn to the characterization of harmonicity at « in the n = 2
case.

4.9 Theorem: Suppose u is harmonic on R? \ E, where E C R? is
compact. Then the following are equivalent:

(@)  u is harmonic at «;
() limy_..ul(x) =L for some complex number L;
(0 u(x)/loglx| —0asx — o;

(d) u is bounded on a deleted neighborhood of .

PROOF: We have already seen that (a) implies (b).

That (b) implies (c) is trivial.

Suppose now that (c) holds. Then K[u](x)/log|x| - O as x — 0. By
Exercise 2(b) of Chapter 2, K[u] has a removable singularity at 0. Thus
u is harmonic at o, which implies (d).

Finally, suppose that (d) holds, so that u is bounded on a deleted
neighborhood'of «. Then K{u](x) = u(x*) is bounded on a deleted
neighborhood of 0. Thus by Theorem 2.3, (a) holds, completing the
proof. ]

Boundedness near o« is thus equivalent to harmonicity at « when
n = 2, but not when n > 2. We now take up the question of bounded-
ness near o in higher dimensions.
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4.10 Theorem: Suppose n > 2 and u is harmonic and real valued on
R™ \ E, where E is compact. Then the following are equivalent:

(@) u is bounded in a deleted neighborhood of ;
(b)  u is bounded above or below in a deleted neighborhood of oo;
(©)  u - c is harmonic at « for some constant c;

(d) u has a finite limit at .

PROOF: The implications (a) = (b) and (d) = (a) are trivial. If (c) holds
then u has limit ¢ at c by Theorem 4.8; hence (¢) = (d). We complete
the proof by showing (b) = (c).

Without loss of generality, we assume that u is positive in a deleted
neighborhood of «. Thus the Kelvin transform K{[u] is positive in a
deleted neighborhood of 0. By Bocher's Theorem (3.9) there is a con-
stant ¢ such that K{u](x) - ¢|x|>~" extends harmonically across 0.
Applying the Kelvin transform shows that # — ¢ is harmonic at «. m

Conditions (a), (c), and (d) of Theorem 4.10 are equivalent without
the hypothesis that u is real valued.

Note that Theorem 4.10 provides a new proof of Liouville’s Theorem
for positive harmonic functions (3.1). Specifically, if n > 2 and u is
positive and harmonic on R”, then by Theorem 4.10 © must have finite
limit ¢ at . By the maximum/minimum principle, # = ¢. This new
proof of Liouville’s Theorem amounts to the observation that—via the
Kelvin transform—Bo6cher’s Theorem implies Liouville’s Theorem, at
least for n >.2.

The implication also holds when n = 2. If u is positive and harmonic
on R?, then by Bocher’s Theorem (3.9) there is a constant b = 0 such
that v(x) = K[ul(x) — blog|1/x| has harmonic extension across 0.
Thus v is an entire harmonic function. If b > 0, then we would have
limy .« vV(x) = oo, which contradicts the minimum principle. Thus
b = 0 and limy_ . v(x) = u(0), from which it follows that v = u(0).
Hence u = u(0), as desired.

In Chapter 9, we will see that Liouville’s Theorem implies Bocher’s
Theorem when n > 2, and we will present generalized versions of these
theorems.
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The Exterior Dirichlet Problem

In Chapter 1, we solved the Dirichlet problem for the interior of
the unit sphere S—given any f € C(S), there is a unique function u
harmonic on B and continuous on B such that u|s = f. To solve the
corresponding problem for the exterior of the unit sphere, we define
the exterior Poisson kernel, denoted P,, by setting

Ix|2 -1

lx —-Cin

for [x|] > 1 and T € §. Given f € C(S), we define the exterior Poisson
integral P.[ f] by

Pe(x,C) =

PLF1(x) = Lf(me(x, 2) do ()
for (x| > 1.

4.11 Theorem: Suppose f € C(S). Then there is a unique function u
harmonic on B* and continuous on B® such that u| s = f. Moreover,
u = Pe[f]onB*\ {o}.

REMARK: For n > 2, we are not asserting that there exists a unique
continuous ¢ on B*, with u harmonic on {x € R" : |{x| > 1}, such
that u|s = f. For example, the functions 1 — }x|2-" and 0, which agree
on S, are both harmonic on R™ \ {0}. The uniqueness assertion in the
theorem above comes from the requirement that # be harmonic at
(recall that oo € B*).

PROOF OF THEOREM 4.11: Let v € C(B) denote the solution of the
Dirichlet problem for B with boundary data f on S, so that v|s = f and

V(x) = Lﬂcw(x,c) do ()

for x € B. The function u = K[v] is then harmonic on B* (if we set
Uu(o) = limy - K[v](x)), u is continuous on F*, and uls = f.
We have

w(x) = Lf(C)IXIZ‘"P(x*, 2) do(T)

for {x] > 1. By 4.3, this gives u = P,[f] on B* \ {»}, as desired.
The uniqueness of u follows from the maximum principle. ]



Symmetry and the Schwarz Reflection Principle 67

Symmetry and the
Schwarz Reflection Principle

Given a hyperplane E, we say that a pair of points are symmetric
about E if E is the perpendicular bisector of the line segment joining
these points. For each x € R", there exists a unique xz € R™ such that
x and xg are symmetric about E; we call xg the reflection of x in E.
Clearly (xg)r = x for every x € R™.

We say Q) is symmetric about the hyperplane E if Qf = Q, where
Qr = {xp:x € Q}.

Q is symmetric about E.

If T is a translation, dilation, or rotation, then T preserves symmetry
about hyperplanes; in other words, if T is any of these maps and E is
a hyperplane, then T(x) and T(xg) are symmetric about T(E) for all
x € R",

Given a hyperplane E = {x € R" : b - x = c}, where b is a nonzero
vector in R™ and c is a real number, we set E* = {x e R"*: b - x > c};
geometrically, E* is an open half-space with 0E* = E.
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We now come to the Schwarz reflection principle for hyperplanes;
the reader who has done Exercise 3 in Chapter 2 can probably guess
the proof.

4.12 Theorem: Suppose ) is symmetric about a hyperplane E. If u is
continuous on Q N E*, u is harmonicon QN E*, and u = 0 on QN E,
then u extends harmonically to .

PROOF: We may assume that E = {(x,y) € R": y = 0} and that
E* = {(x,y) € R": y > 0}. The function

u(x,y) if(x,y)eQandy=0

vix,y) = {—u(x, -y) if(x,y)eQandy <0

is continuous on Q and satisfies the mean-value property. Hence, by
Theorem 1.24, v is a harmonic extension of u to all of Q. ]

We now extend the notions of symmetry and reflection to spheres.
If E = §, the unit sphere, then inversion is the natural choice for the
reflection map x —~ xg. So here we set xg = x*. More generally, if
E = 0B(a,r), we define

4.13 XE=a+7r%(x-a)*,

and we say that x and xg are symmetric about E. Note that the center
of E and the point at infinity are symmetric about E. We say that Q is
symmetric about the sphere E if Qf = Q, where Qf = {xg: x € Q};
see 4.14.

We remark in passing that symmetry about a hyperplane can be
viewed as a limiting case of symmetry about a sphere; see Exercise 10
of this chapter. (We adopt the convention that o = c when E is a
hyperplane.)

Translations, dilations, and rotations obviously preserve symmetry
about spheres. The inversion map also preserves symmetry—about
spheres as well as hyperplanes—although this is far from obvious. Let
us look at a special case we need below. Suppose E is the sphere with
center (0,...,0,1) and radius 1. Then F contains the origin, so that E*
is a hyperplane; in fact,

E* ={(x,y) eR":y =1/2} U {0},
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4.14 Q is symmetric about E.

as the reader can easily check. Assume for the moment that n = 2;
here we identify R? with C, so that inversion is the map z — 1/ Z. Given
z € C\ {0}, we need to show that z* and (zg)* are symmetric about E*.
A moment’s reflection shows that to do this we need only verify that
the conjugate of z* —i/2 equals (zg)* — i/2; this bit of algebra we leave
to the reader. To go from R? to R™ with n > 2, observe that inversion
preserves every linear subspace of R". Given z € R"\ {0}, then, we look
at the two-dimensional plane determined by 0, z, and zg. Because the
center of E is on the line determined by z and zg, this plane contains the
(0, ¥)-axis. We can thus view this plane as C, with (0,...,0,1) playing
the role of i. The proof for R? therefore shows that z* and (zg)* are
symmetric about E* in R™.

We can now prove the Schwarz reflection principle for regions sym-
metric about spheres.

4.15 Theorem: Suppose Q2 is a region symmetric about 0B{a,r). If u
is continuous on Q n B(a,r), u is harmonic on Q n B(a,r), and u = 0
on QN oéB(a,r), then u extends harmonically to Q.

PROOF: We may assume a = (0,...,0,1) and r = 1; we are then
dealing with the sphere E discussed above. Because Q is symmetric
about E, Q* is symmetric about the hyperplane E*, as we just showed.
Our hypotheses on u now show that the Schwarz reflection principle
for hyperplanes (4.12) can be applied to the Kelvin transform of u.
Accordingly, K[u] extends to a function v harmonic on Q*. Because
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the Kelvin transform is its own inverse, K[v] extends 1 harmonically
to Q. ]

Let us explicitly identify the harmonic reflection of u across a sphere
in the concrete case of S, the unit sphere.

4.16 Theorem: Suppose Q) is connected and symmetric about S. If u
is continuous on QN B, u is harmonicon QnB, and u =00nQ N S,
then the function v defined on Q) by

iu(x) ifxeQnB
vix) = —
-K{ul(x) if xeQn(R™*\B)

is the unique harmonic extension of u to Q.

PROOF: Seta = (0,...,0,1) and define w(x) = v{(x —a); the domain
of the function w is then Q + a, which is symmetric about the sphere
E of the previous proof. We will be done if we can show that K[w] has
the appropriate reflection property about the hyperplane E*. What we
need to show, then, is that

KIwl((x +a)*) = -K[wl{{(x* + a)*)
for all x € Q. This amounts to showing that
Ix +al"?v(x) = —|x* + al"?v(x*)
for all x € Q. By Exercise 1 of this chapter, |x*+al/|x+al| = |x|~L. We

therefore need only show that v = —K{v] on Q. But this last identity
follows easily from the definition of v. n
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FExercises

1.  Show thatif € € S and x € R"\ {0}, then
Ix + T

IX*+§|=T.

2. Show that at x € R\ {0}, the determinant of the Jacobian of the
inversion map equals —1/]x|?".

3. Let f be a function of one complex variable that is holomorphic
on the complement of some disk. We say that f is holomorphic
at o provided f(1/z) has a removable singularity at 0. Show
that the following are equivalent:

(a) f is holomorphic at o;
(b) f is bounded on a deleted neighborhood of co;
(¢ lim;-. f(2)/z=0.

4, Assume w C R" U {«} is open. Show that u is harmonic on w if
and only if K[u] is harmonic on w*.

5. (a) Show that if n > 2, then the only harmonic function on
R™ U {o0} is identically zero.
(b) Prove that all harmonic functions on R2 U {c} are constant.

6. Suppose that u is harmonic and positive on R? \ E, where E is
compact. Characterize the behavior of u near .

7. Prove that the solution to the exterior Dirichlet problem in The-
orem 4.11 is unique.

8. Suppose that f is continuous on dB(a,r) and that u solves the
Dirichlet problem for B(a,r) with boundary data f. What is the
solution (expressed in terms of u) of the Dirichlet problem for
(R® U {o}) \ B(a,r) with boundary data f?

9. Let E denote the hyperplane {x € R" : b - x = c}, where b is a
nonzero vector in R" and ¢ is a real number. For x € R", show
that the reflection xg is given by the formula

2((x-b) -c)b

X=X —
E IE
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10.

11.

12.

13.

Let E denote the hyperplane R"~! x {0}. Fix a point z = (0, y)
in the upper half-space. Show that the reflections of z about
spheres of radius R centered at (0,R) converge to zz = (0, -y)
as R — oo.

Suppose E is a sphere of radius r centered at a, with 0 ¢ E.
Show that the radius of E* is v/ |72 — |a|?| and the center of E*
isa/(lal? - r?).

Show that the inversion map preserves symmetry about spheres
and hyperplanes. In other words, if E is a sphere or hyperplane,
then x* and (xg)* are symmetric about E* for all x.

Let E be a compact subset of S with nonempty interior relative
to S. Prove that there exists a nonconstant bounded harmonic
function on R™ \ E.



CHAPTER 5

Harmonic Polynomials

Recall the Dirichlet problem for the ball in R™: given f € C(S), find
u € C(B) such that u is harmonic on B and uls = f. We know from
Chapter 1 that

- |x|?

-g"

for x € B. To prove that P[ f] is harmonic on B, we computed its Lapla-
cian by differentiating under the integral sign in the equation above and
noting that for each fixed T € S, the Poisson kernel (1 - |x|%)/|x - "
is harmonic as a function of x.

Suppose now that f is a polynomial on R™ restricted to S. For fixed
C € S, the Poisson kernel (1 — |x|?)/|x ~ |™ is not a polynomial in x,
so nothing in the formula above suggests that P[ f] should be a poly-
nomial. Thus our first result in this chapter should be somewhat of
a surprise: P{f] is indeed a polynomial, and its degree is at most the
degree of f.

Further indications of the importance of harmonic polynomials will
come when we prove that every polynomial on R™ can be written as
the sum of a harmonic polynomial and a polynomial multiple of |x|2.
This result will then be used to decompose the Hilbert space L2(S) into
a direct sum of spaces of harmonic polynomials. As we will see, this
decomposition is the higher-dimensional analogue of the Fourier series
decomposition of a function on the unit circle in RZ.

Our theory will lead to a fast algorithm for computing the Poisson
integral of any polynomial. The algorithm involves differentiation, but
not integration!

u(x) = PLf1(x) = jf(;) o (C)

73
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Next, we will use the Kelvin transform to find an explicit basis for
the space of harmonic polynomials that are homogeneous of degree m.
The chapter concludes with a study of zonal harmonics, which are used
to decompose the Poisson kernel and to show that the homogeneous
expansion of a harmonic function has nice convergence properties.

Polynomial Decompositions

We begin with a crucial theorem showing that the Poisson integral of
a polynomial is a polynomial of a special form. The proof uses, without
comment, the result that the Poisson integral gives the unique solution
to the Dirichlet problem.

Note that the theorem below implies that if p is a polynomial, then
the degree of P[pls] is less than or equal to the degree of p. This
inequality can be strict; for example, if p(x) = |x|?, then P[pls] = 1.

5.1  Theorem: If p is a polynomial on R™ of degree m, then
Plplsl=(1-IxP)g+p
for some polynomial q of degree at most m — 2.

PROOF: Let p be a polynomial onR" of degreem. lf m =0orm =1,
then p is harmonic and hence P{p|s] = p, so the desired result follows
by taking q = 0. Thus we can assume that m > 2.

For any choice of g, the function (1 -|x|?)q +p equals p on S. Thus
to solve the Dirichlet problem for B with boundary data p|s, we need
only find g such that (1 - |x|%)q + p is harmonic. In other words, to
prove the theorem we need only show that there exists a polynomial g
of degree at most m — 2 such that

5.2 A((1 - Ix1%)q) = ~Ap.

To do this, let W denote the vector space of all polynomials on R" of
degree at most m — 2, and define a linear map T: W — W by

T(q) = A((1 - |x1%)q).
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If T(g) = 0, then (1 — |x|?)q is a harmonic function; this harmonic
function equals 0 on S, and hence by the maximum principle equals 0
on B; this forces g to be 0. Thus T is injective.

We now use the magic of linear algebra (an injective linear map from
a finite-dimensional vector space to itself is also surjective) to conclude
that T is surjective. Hence there exists a polynomial g of degree at most
m — 2 such that 5.2 holds, and we are done. ]

The following corollary will be a key tool in our proof of the direct-
sum decomposition of the polynomials (Proposition 5.5). Here “poly-
nomial” means a polynomial on R", and “nonzero” means not identi-
cally 0.

5.3  Corollary: No nonzero polynomial multiple of |x|? is harmonic.

PROOF: Suppose p is a nonzero polynomial on R" of degree m
and |x|?p is harmonic. Because pls = (Ix|?p)|s, the Poisson integral
P{pl|s] must equal the harmonic polynomial |x|?p, which has degree
m + 2. This contradicts the previous theorem, which implies that the
degree of P{p|s] is at most m. n

Every polynomial p on R™ with degree m can be uniquely written
in the form p = 2;-10 pj, where each p; is a homogeneous polynomial
on R" of degree j. We call p; the homogeneous part of p of degree j.
Note that Ap = Z}":O Apj, and thus p is harmonic if and only if each
p; is harmonic (because a polynomial is identically 0 if and only if each
homogeneous part of it is identically 0).

In the next section we will be working in L2(S). Two distinct poly-
nomials of the same degree can have equal restrictions to S, but two
homogeneous polynomials of the same degree that agree on S must
agree everywhere. Thus we will find it convenient to restrict atten-
tion to homogeneous polynomials. Let us denote by P, (R") the com-
plex vector space of all homogeneous polynomials on R™ of degree m.
Let H,»(R") denote the subspace of P, (R") consisting of all homoge-
neous harmonic polynomials on R" of degree m. For example,

5.4 p(x,y,z) = 8x° -40x3y% + 15xy* - 40x32% + 30xy?2z% + 15x 2%

is an element of H5(R3), as the reader can verify; we have used (x, y, z)
in place of (x, x», x3) to denote a typical point in R3.
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In the following proposition, we write 2, (R™) as the algebraic di-
rect sum of the two subspaces Hy, (R") and |x|2Pm_»(R™), meaning
that every element of Py, (R™) can be uniquely written as the sum of
an element of H, (R™) and an element of |x|2P,,_>(R™). In the next
section we will see that this is an orthogonal decomposition when we
restrict all functions to § and use the usual inner product that comes
from surface-area measure.

5.5 Proposition: If m = 2, then

Pm(R™) = Hp (RN D x[2Pm-2(R™).

PROOEF: Let p € P, (R"). Then

p = Plpls]+Ixl%q—q

for some polynomial g of degree at most m — 2 (by Theorem 5.1). Take
the homogeneous part of degree m of both sides of the equation above,
getting

5.6 p=pPm+Ix1°qm-2,

where p,, is the homogeneous part of degree m of the harmonic func-
tion P[pls] (and hence p,, € Hnm (R™)) and gm-2 is the homogeneous
part of degree m — 2 of g (and hence gp-2 € Ppy_2(R™)). Thus every
element of P, (R™) can be written as the sum of an element of H,, (R™)
and an element of |x}|2P,—2(R™).

To show that this decomposition is unique, suppose that

P+ X Am-2 = Pm + 1X 1 dm-2,
where pm, Pm € Hm (R™) and qm_2,dm-2 € Pm-2(R™). Then
Pm = Pm = X1 (Gm-2 — Am-2).
The left side of the equation above is harmonic, and the right side is a

polynomial multiple of |x|2. Thus Corollary 5.3 implies that p, = Pm
and gm-2 = dm-—», as desired. ]
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The map p — pm, where p € P,,,(R") and p,, € Hp (R™) are as
in 5.6, is called the canonical projection of P (R™) onto Hpy (R™). Later
we will find a formula for this projection (see Theorem 5.18).

We now come to the main result of this section. Asusual, [t] denotes
the largest integer less than or equal to t. Thus in the theorem below,
the last index m — 2k equals 0 or 1, depending upon whether m is even
or odd.

5.7 Theorem: Every p € P,,(R") can be uniquely written in the form

p=Pm+ IxPPm-zt -+ 1x1Kpm_ak,
where k = [%] and each p; € H;(R™).

PROOF: The desired result obviously holds when m = 0 or m = 1,
because P,, (R™) = H,n(R") in those cases. Thus we can assume that
mz= 2.

Suppose that p € P,,(R"). By the previous proposition, p can be
uniquely written in the form

p = pm + |x|%q,

where p, € Hpm(R™) and g € P _2(R™). By induction, we can as-
sume that the theorem holds when m is replaced by m — 2. Taking
the unique decomposition for g given by the theorem and plugging it
into the equation above gives the desired decomposition of p. This
decomposition is unique because p;, is uniquely determined and the
decomposition of g is also uniquely determined. ]

Ifp € Pm(R") and pm, Pm-2,..., Pm-2k are as in the theorem above,
then the solution to the Dirichlet problem for B with boundary data pls
is

Pm+Pm-2+ -+ Pm-2k-

To see this, observe that the function above is harmonic and that it
agrees with p on S. Later in this chapter we will develop an algorithm
for computing pm, Pm-2,--., Pm-2k {and thus P{p|s]) from p.

We finish this section by computing dim H,,(R"), the dimension
(over C) of the vector space Hn, (R™). Because Hy(R™) is the space of
constant functions, dim Hy(R") = 1. Because #(R") is the space of
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linear functions on R™, we have dim 4 (R") = n. The next proposition
takes care of higher values of m.

5.8  Proposition: If m = 2, then

. ny_(n+m-1}y (n+m-3
dlmj-[m(R)—( -1 ) ( "1 )

PROOF: We begin by finding dim P,, (R"). Because the monomials
{x%:|x| = m} form abasis of P,, (R"), dim P,, (R™) equals the number
of distinct multi-indices & = («y,..., &y) with {a] = m. Adding 1 to
each o, we see that dim P, (R") equals the number of multi-indices

o = (&1,...,0,), with each «; > 0O, such that |Ja| = n + m. Now
consider removing n—1 integers from the interval (0, n + m) C R. This
partitions {0, n + m) into n disjoint open intervals. Letting «y,..., oy,

denote the lengths of these intervals, taken in order, we have

&j=n+m.

M

1

J

Each choice of n — 1 integers from (0, n + m) thus generates a multi-
index x with {&| = n + m, and each multi-index of degree n + m arises
from one and only one such choice. The number of such choices is, of

course, ("‘;’:‘1' 1). Thus

dim P,, (R") = (”+m - 1).

n-1
From Proposition 5.5 we have
dim Hp, (R™) = dim Py, (R") — dim P2 (R™).

Combining the last two equations gives the desired result. =

Spherical Harmonic Decomposition
of L3(S)

In Proposition 5.5, we showed that the space of homogeneous poly-
nomials of degree m decomposes as the direct sum of the space of
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harmonic homogeneous polynomials of degree m and |x|? times the
homogeneous polynomials of degree m — 2. Now we turn to ideas re-
volving around orthogonal direct sums, which means that we need to
introduce an inner product.

Because a homogeneous function on R™ is determined by its restric-
tion to §, we follow the natural impulse to work in L2(S, do), which we
denote simply by L2(S). In other words, L2(S) denotes the usual Hilbert
space of Borel-measurable square-integrable functions on § with inner
product defined by

(f.g) = Jsf”g‘do-

Our main result in this section will be a natural orthogonal decompo-
sition of L2(S).

Homogeneous polynomials on R” of different degrees, when re-
stricted to S, are not necessarily orthogonal in L2(S). For example,
x12 and x;* are not orthogonal in this space because their product is
positive everywhere on S. However, the next proposition shows that
if the homogeneous polynomial of higher degree is harmonic, then we
indeed have orthogonality (because H,, (R") is closed under complex
conjugation).

5.9 Proposition: If p,q are polynomials on R" and q is harmonic
and homogeneous with degree higher than the degree of p, then

J rqdo =0.
s

PROOF: The desired conclusion involves only the values of p and
q on S. Hence by linearity and Theorem 5.7, it suffices to prove the
proposition when p is replaced by a homogeneous harmonic polyno-
mial. Thus we can assume that p € H(R") and that g € H;n(R"),
where k < m.

Green's identity (1.1) implies that

5.10 L(pan —gqDpp)do = 0.

Butfor T € S,

4

(Dap)(C) = =

d
POy = Er—(r"p(;))tm = kp(Z).
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Similarly, Daq = mq on S. Thus 5.10 implies that
(m—-k) L pqdo = 0.

Because k < m, the last integral vanishes, as desired. [

Obviously |x|?Pm_2(R™) restricted to S is the same as Pp-2(R™)
restricted to S. Thus the last proposition shows that if we restrict all
functions to S, then the decomposition given in Proposition 5.5 is an or-
thogonal decomposition with respect to the inner product on L2(S).

The restriction of H,,(R™) to S is sufficiently important to receive
its own name and notation. A spherical harmonic of degree m is the
restriction to S of an element of H,, (R™). The collection of all spherical
harmonics of degree m will be denoted by H,(S); thus

Hm(S) = {pls:p € Hn(R™M}.

The map p — pls provides an identification of the complex vector
space H, (R™) with the complex vector space HHy, (S). We use the no-
tation H,, (S) when we want to emphasize that we are considering the
functions to be defined only on S.

For example, take n = 3 and consider the function

5.11 a(x,v,z) = 15x — 70x3 + 63x°

defined for (x,y,z) € S. Is g an element of #5(S)? Although g ap-
pears to be neither harmonic nor homogeneous of degree 5, note that
on S we have

a(x,y,z) = 15x(x% + y2 + 2%)% = 70x3 (x% + ¥ + z%) + 63x°.

The right side of the equation above is a homogeneous~polynomial
on R3 of degree 5, and as the reader can check, it is harmonic. Thus g,
as defined by 5.11, is indeed an element of #5(S). (To save a bit of
work, note that the right side of the equation above equals the polyno-
mial p € H5(R3) defined by 5.4, so g = pls. Examples 5.4 and 5.11
were generated using the software described in Appendix B.)
Restating some previous results in terms of spherical harmonics, we
see that Proposition 5.9 implies that H(S) is orthogonal to H,,(S) in
L2(S) whenever k # m. Theorem 5.7 implies that if p is a polynomial
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on R™ of degree m, then p|s can be written as a sum of spherical har-
monics of degree at most m. In our next theorem, we will use these
results to decompose L2(S) into an infinite direct sum of spaces of
spherical harmonics.

We will need a bit of Hilbert space theory. Recall that if H is a
complex Hilbert space, then we write H = ;,,_, Hm when the following
three conditions are satisfied:

(a) H, is aclosed subspace of H for every m.
(b)  Hg is orthogonal to Hy, if k + m.

(¢) Forevery x € H, there exist x;, € Hy, such that
X=Xp+X1+ -,

the sum converging in the norm of H.

When (a), (b}, and (c) hold, the Hilbert space H is said .to be the direct
sum of the spaces Hy,. If this is the case, then the expansion in (c) is
unique. Also, if (a) and (b) hold, then (c¢) holds if and only if the complex
linear span of |J;,_o Hm is dense in H.

We can now easily prove the main result of this section.

5.12 Theorem: L?(S) = Py o Hm(S).

Proor: Condition (a) above holds because each Hy, (S) is finite di-
mensional and hence is closed in L2(S).

We have already noted that condition (b) above follows from Propo-
sition 5.9.

To verify condition (c), we need only show that the linear span of
Um=0 Hm(S) is dense in L>(S). As we have already noted, Theorem 5.7
implies that if p is a polynomial on R", then p|s can be written as a
finite sum of elements of s,_o Hm (S). By the Stone-Weierstrass The-
orem (see [14], Theorem 7.33), the set of restrictions p|s, as p ranges
over all polynomials on R", is dense in C(S) with respect to the supre-
mum norm. Because C(S) is dense in L?(S) and the L?-norm is less
than or equal to the L®-norm on S, this implies that the linear span of
Um0 Hm(S) is dense in L%(S), as desired. n

The theorem above reduces to a familiar result when n = 2. To
see this, suppose p € Hp, (R?) is real valued. Then p is the real part
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of an entire holomorphic function f whose imaginary part vanishes
at the origin. The Cauchy-Riemann equations imply that all (complex)
derivatives of f except the m™ derivative vanish at the origin. Thus
f = cz™ for some complex constant c, and so

p=cz™+czm,

This implies that #,» (R?) is the complex linear span of {z™,z™}. Thus
Hom(S), as a space of functions of the variable e'?, is the complex linear
span of {ei™? ¢~™®} (or of {cosm0,sinm@}). Hence for f € L%(S),
the decomposition promised by the theorem above takes the form

®
f= Z Am eimG,
m=-~oo
where the sum converges in L2(S). In other words, when n = 2 the
decomposition given by the theorem above is just the standard Fourier
series expansion of a function on the circle.

When n > 2, we can think of the theorem above as providing an
expansion for functions f € L?(S) analogous to the Fourier series ex-
pansion, with spherical harmonics playing the roles of the exponential
functions ei™? (or of the trigonometric functions cos m#@, sinm®).

Inner Product of Spherical Harmonics

Suppose p = > ybxx*and q = 3 4 cxx® are harmonic polynomials
on R™. In this section we focus on the question of computing the inner
product of p and g in L?(S). We denote this inner product by (p, q),
although technically (pls, qls) would be more correct.

Each of p, g can be written as a sum of homogeneous harmonic poly-
nomials, and we can expand the inner product (p, q) accordingly. By
Proposition 5.9, the inner product of terms coming from the homoge-
neous parts of different degrees equals 0. In other words we could, if
desired, assume that p and g are homogeneous harmonic polynomials
of the same degree. Even then it appears that the best we could do
would be to write

(p.a) = Zzb@j x**B dor (x).
a B N
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The integral over S of the monomial x**# was explicitly calculated by
Hermann Weyl in Section 3 of [20]; using that result would complete a
formula for (p,q). We will take a different approach.

We have no right to expect the double-sum formula above to reduce
to a single-sum formula of the form

(p,q) = Z buCoawa,
o

because distinct mononials of the same degree are not necessarily or-
thogonal in L%(S). For example, x12 and x,? are not orthogonal in
this space because their product is positive everywhere on S. However,
a single-sum formula as above is the main result of this section; see
Theorem 5.14.

The single-sum formula that we will prove makes it appear that the
monomials form an orthonormal set in L?(S), which, as noted above,
is not true. But we are dealing here only with harmonic polynomials,
and no monomial of degree above 1 is harmonic. In some mysterious
fashion being harmonic forces enough cancellation in the double sum
to collapse it into a single sum.

The following lemma will be a key tool in our proof of the single-sum
formula.

513 Lemma: If m > 0and p,q € Hm(R"), then

1

quda: mn+2m — 2)

J Vp - -Vgdo.
s

PrROOF: Fix m > 0 and p,g € Hm(R™). Using the homogeneity
of pg, we see, just as in the proof of Proposition 5.9, that pg equals
(1/2m) times the normal derivative of pgq on S. Thus

1
JS pqdo = mJSV(pQ) -nds

1
= | A 1%
2mnV(B) L; (pa)av,
where the nV(B) term appears in the first equality because of the switch
from normalized surface-area measure do to surface-area measure ds
(see A.2 in Appendix A) and the second equality comes from the diver-
gence theorem (1.2). Convert the last integral to polar coordinates (1.5),
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apply the product rule for the Laplacian (1.19), and use the homogene-
ity of Vp and Vg to get

1
J pqdo = LJ r"*z’"‘3f Vp - Vqdo dr
s m Jo s

1

- mn+2m-2) LVP +Vado,

as desired. n

Now we can prove the surprising single-sum formula for the inner
product of two harmonic polynomials.

514 Theorem: If p = > ybux® and q = 3 ,cax® are harmonic
polynomials on R", then

(P,Q) = Z baawrx,
o

where
(xl

Tham+2).. . n+2la-2)

Wa

PROOF: Every harmonic polynomial can be written as a finite sum of
homogeneous harmonic polynomials. We already know {from Proposi-
tion 5.9) that homogeneous harmonic polynomials of different degrees
are orthogonal in L?(S). Thus it suffices to prove the theorem under
the assumption that p,q € Hp,(R™) for some nonnegative integer m.
Because H.,(R") is closed under complex conjugation, we can also
assume, with no loss of generality, that each c4 € R.

If m = 0, then p,q are constant and the desired result obviously
holds (where the empty product in the denominator of the formula
defining w, is interpreted, as usual, to equal 1).

So fix m > 0 and assume, by induction, that the theorem holds for
smaller values of m. Lete; = (0,...,0,1,0,...,0), where the 1 appears
in the j* slot. Now Vp - Vq is a sum of terms, each of which is a prod-
uct of harmonic polynomials. Thus using our induction hypothesis we
have
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n
J Vp-Vado = > J’ (O baotjx® %) (D cartjx* %) do (x)
s S5 S m

n
(o —ej)!
e nn+2)...(n+2m-4)
- !
= %b“c“;"‘fn(n+2)...(n+2m—4)

il

Z boc alm

T n+2) . (n+2m - 4)°

The equation above, when combined with Lemma 5.13, gives the de-
sired formula. ™

Spherical Harmonics Via Differentiation

Compute a few partial derivatives of the function |x|?>~". You will
find the answer is always of the same form—a polynomial divided by a
power of |x|. For example,

(2 - n)(Ix|?> - nx1?)

Dlz(lx|2—n) = |x|n+2

Notice here that the polynomial in the numerator is harmonic. This
is no accident—differentiating |x|2~" exactly k times will always leave
us with a homogeneous harmonic polynomial of degree k divided by
[x|"-2+2k as we will see in Lemma 5.15. We will actually see much more
than this, when we show (Theorem 5.18) that this procedure gives a for-
mula for the canonical projection of P,,(R") onto H,,(R"). This sec-
tion concludes with the development of a fast algorithm for finding the
Poission integral of a polynomial via differentiation (Theorem 5.21).

The Kelvin transform will play a key role here. To see why, ob-
serve that the Kelvin transform applied to the example in the paragraph
above leaves us with the harmonic polynomial in the numerator. This
indicates how we will obtain homogeneous harmonic polynomials—we
first differentiate {x|?~", and then we apply the Kelvin transform.

For p = > 4cax® a polynomial on R"?, we define p(D) to be the
differential operator >, coD*.
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5.15 Lemma: If p € Pm(R"), then K[p(D)|x|%" "] € Hm(R").

PROOF: First we will show that K[p(D)|x|>""*] € P (R"). By lin-
earity, we need only prove this in the special case when p is a monono-
mial. To get started, note that the desired result obviously holds when
m = 0. Now we will use induction, assuming that the result holds for
some fixed m, and then showing that it also holds for m + 1.

Let o be a multi-index with || = m. By our induction hypothesis,
there exists u € H,, (R™) such that

K[D¥|x}>™"] = u.
Take the Kelvin transform of both sides of the equation above, getting
DaIX|2—n - lx|2—n—2mu_

Fix an index j, and differentiate both sides of the equation above with
respect to x;, getting

DiD¥|x|>™ = (2~ n-2m)x;|x|7"*™u + |x|>"2"MDju

5.16 = |x|272mH D2 —n - 2m)xju + |x|°Dju]

- IXIZ—n—Z(mH)V

where v € Pp,.1(R™). Now take the Kelvin transform of both sides of
the equation above, getting

K[D;D¥|x|>™"] = v.

Thus K[DjD“lxIZ“"] € Pm+1(R™). Because D;D® represents differ-
entiation with respect to an arbitrary multi-index of order m + 1, this
completes the induction argument.

All that remains is to prove that K[p(D)|x|?~"] is harmonic. But
Ix]2~™ is harmonic and every partial derivative of any harmonic func-
tion is harmonic, so p(D)|x|?~™" is harmonic. The proof is completed
by recalling that the Kelvin transform of every harmonic function is
harmonic (Theorem 4.7). ]
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Suppose p € P, (R™). Proposition 5.5 gives a unique decomposition

p = pm + Ix1%q,

where p,, € Hpm(R*) and g € Pp-2(R™). The previous lemma states
that K{p(D)|x1>"]) € Hn(R™). So p determines two harmonic poly-
nomials, pp, and K[p(D)|x|2~"], leading to an investigation of the re-
lationship between them. As we will see {Theorem 5.18), one of these
harmonic polynomials is a constant multiple of the other, with the con-
stant depending only on m and n. The key to proving this is the follow-
ing lemma, which we can guess by looking at the proof of Lemma 5.15.
Specifically, note that in 5.16, u gets multiplied by xj, just as D% is
multiplied by D;. An extra factor of 2 — n — m also appears. Thus 5.16
suggests the following lemma, where ¢, is the constant defined by

m-1
cm=]]@2-n-2k).
k=0

Although ¢y, depends upon n as well as m, we are assuming that n > 2
is fixed. For n = 2, the definition of ¢,, and the analogue of the follow-
ing lemma are given in Exercise 14 of this chapter.

517 Lemma: If n>2 and p € Py (R™), then
K{pD)|xI*"] = cm(p - Ix1%q)
for some q € P> (R").

ProoF: The proof is a modification of the proof of the previous
lemma. By linearity, we need only consider the case when p is a mono-
mial. The desired result obviously holds when m = 0. Now we will use
induction, assuming that the result holds for some fixed m, and then
showing that it also holds for m + 1.

Let & be a multi-index with || = m. By our induction hypothesis,
there exists g € Pp,—2(R"™) such that

K[D*|x[?7"] = cm(x* - |x12q).

Follow the proof of Lemma 5.15, setting u = ¢y (x* - |x|2q), taking the
Kelvin transform of both sides of the equation above, and then applying
Dj to both sides, getting (see 5.16)
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DjDDllxIZ——n

_ |X|2—n—2(m+1')cm[(2 —n- 2m)xj(x°‘ _ iXIZQ) + M]

m

= [x[Fm2m e, o (xx® = x 2y,

where v € Py, _1 (R™). Now take the Kelvin transform of both sides of
the equation above, getting

K[D;D*|x>™™"] = Cma1 (x* — |x|?¥),

Because x;x* represents an arbitrary monomial of order m + 1, this
completes the induction argument and the proof. [ ]

In the next theorem we will combine the last two lemmas. Recall
that the canonical projection of P, (R™) onto H, (R™) comes from the
decomposition given by Proposition 5.5. By the orthogonal projection
onto Hn,(S), we mean the usual orthogonal projection of the Hilbert
space L2(S) onto the closed subspace H;, (S). In part (b) of the.next the-
orem, to be formally correct we should have written (p(D)|x|> ") |s/cm
instead of p(D)|x|2"/cp.

5.18 Theorem: Supposen > 2 and p € Py, (R™). Then:

(@) The canonical projection of p onto Hp (R™) is K[p(D)|x|°""]/cm.
(b)  The orthogonal projection of pls onto Hpm(S) is p(D)|x|>""/Cm.

PROOF: By Lemma 5.17, we can write
5.19 p =K[p(D)1x1* ™) /cm + 1x1%q

for some g € Pp_>(R™). Lemma 5.15 shows that the first term on the
right side of this equation is in H;, (R™). Thus this equation is the
unique decomposition of p promised by Proposition 5.5, and further-
more K[p(D)|x|>~"]/cm is the canonical projection of p onto H,, (R"),
which proves (a).

To prove (b), restrict both sides of 5.19 to S, getting

pls = p(D) x> ™/cm + qls.
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By Proposition 5.9, gls is orthogonal to H,(S). Thus taking the or-
thogonal projection onto H,(S) of both sides of the equation above
gives (b). n

See Exercise 14 of this chapter for the analogue of the preceding
theorem for n = 2.

As an immediate corollary of the theorem above, we get the follow-
ing unusual identity for homogeneous harmonic polynomials.

520 Corollary: If n > 2 and p € Hm(R™), then

p =K[p(D) x> "/cm.

Recall from Theorem 5.7 that for p € Py (R™), there is a unique
decomposition of the form

P = Pmt xPPmez + -+ x|

pm—2k;
where k = [%] and each pj € {;(R"). Recall also that the solution to
the Dirichlet problem for B with boundary data p|s equals

Pm~+ Pm-2+- -+ Pm-2k.

Part (a) of the previous theorem gives a fast algorithm for computing
Pm:Pm~2,.-., Pm-2x and thus for computing the Poisson integral of
any polynomial. Specifically, p» can be computed from the formula
Pm = K[p(D)|x|2~"}/cm. Use this to then solve for g € Pm_>(R") in
the decomposition p = pm +1x12q. To find pm_», repeat this procedure
with g in place of p and m — 2 in place of m. Continue in this fashion,
finding pm, pm-2,..., Pm-2k-

The algorithm for computing the Poisson integral of a polynomial
described in the paragraph above relies on differentiation rather than
integration. We have found it typically to be several orders of magni-
tude faster than algorithms involving integration. The next theorem
gives another algorithm, also using only differentiation, for the exact
computation of Poisson integrals of polynomials. We have found it to
be even faster than the algorithm described in the paragraph above,
typically by a factor of about 2.
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The algorithm described by the next theorem is used by the software
discussed in Appendix B. This software shows, for example, that if
n = 5 then the Poisson integral of x1°x; equals

Sy — 10x13x20x ]2 15x1x2]x|*  10x13x2  10x1x2]x | L 5x1x
b 13 143 13 39 33

Note that in the solution above, the homogeneous part pg of highest or-
der (the first three terms above) consists of the original function x;5x;
plus a polynomial multiple of |x|2. This is expected, as we know that
Ps = X1°x2 — |x|?q for some q € P4(R>).

Finally, we need one bit of notation. Define A%p = p, and then for i
a positive integer inductively define Alp = A(A"1p).

In the theorem below, we could have obtained a formula for ¢; ; in
closed form. However, in the inductive formulas given here are more
efficient for computation. These formulas come from [4], which in turn
partially based its derivation on ideas from [6].

5.21 Theorem: Suppose p € Py, (R™) has the decomposition

P =Pm+IxXPPma+ -+ x|

pm—Zk»
where k = [5t] and each pp_2j € Hm—2;(R™). Then
k . . .
pm-2j = 3. cijlxPDalp
i
forj=0,...,k, wherecop =1 and

_ Cj-1,j-12m +n - 2j)
2j2m+n+2-4j)2m +n-4j)

Cj.j
forj=1,...,k and

cii= Ci-1,j
M2 -Cm+n—-2-2j-2i)

fori=j+1,...,k.
PROOEF: As a special case of 4.5, we have

Allx[*q) = 2i2m +n - 2 - 2i)|x|*%q
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for g € Hm-2:(R™). Repeated application of this equation shows that
for every nonnegative integer j, the operator |x|2/AJ equals a constant
times the identity operator on | x |2t #,_»; (R™). Denoting this constant
by b; j, note that b; j = 0 if and only if j > i. Furthermore, the reader
should verify that

j
5.22 bjj=2/jt[](em+n-2j-2i).

i=1

For j = 0,...,k, apply the operator |x|>/A/ to both sides of the
equation p = 3% |x|2pm_2i, getting the lower-triangular system

k
5.23 IxI1?ATp = 3 by jlx | pm-zi.
i=j

Let (c; ;) denote the matrix inverse of the (k + 1)-by-(k + 1) matrix
(b;;); thus (c;;) is also a lower-triangular matrix. View the system
5.23 as a matrix equation whose right side consists of the row matrix
of unknowns |x|%'pm-»; times the matrix (b; ;). Now multiply (on the
right) both sides of this matrix equation by the matrix (c; ;) to solve for
|x|2tp . _»¢, then divide by |x|? and interchange i and j to obtain

k
5.24 Pm-2j = Z cijlx|?DAlp,
i=j

for j =0,...,k, as desired.

The only remaining task is to prove the inductive formulas for c; ;
and ¢; ;. The diagonal entries of the inverse of a lower-triangular matrix
are easy to compute. Specifically, we have cj; = 1/b;,j. The claimed
inductive formula for ¢ j now follows from 5.22.

To prove the inductive formula for c; j, fix j and use 4.5 to take the
Laplacian of both sides of 5.24, then multiply by |x |/, getting

k
0= cij(IxI2a* p + 2(i - j)(2m + n - 2 - 2j - 20)|x|¥"2Alp)
i=j
k . :
= > (cictg+20-HE@m+n-2-2j-2i)c;;)lx|¥2Alp,
i=j+1
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where the second equality is obtained from the first by breaking the
sum into two parts, replacing i by i — 1 in the first part, and recombin-
ing the two sums (after the change of summation, the first summation
should go to k + 1, but the (k + 1)-term equals O; similarly, the second
sum should start at j, but the j-term equals 0).

The equality above must hold for all p € P, (R™) (the ¢;; are inde-
pendent of p). This can happen only if

Ci-1,j+ 2(1—])(2‘"’1 +n-2- 2] - Zi)ci,j =0,

which gives our desired inductive formula. ]

Explicit Bases of Hm(R™) and Hp(S)

Theorem 5.18 implies that {K[D%|x|2-"]: |&| = m} spans Hm (R™)
and that {D%|x|2"": x| = m} spans HHm(S). In the next theorem, we
find an explicit subset of each of these spanning sets that is a basis.

5.25 Theorem: If n > 2 then the set
{K[D%x|>"]: || = m and o; < 1}
is a vector space basis of Hpy (R™), and the set
{D%Ix|>™:|a| =m and &) < 1}
is a vector space basis of Hp, (S).

PROOF: Let B = {K[D%|x}° "] : |&| = mand o < 1}. We will
first show that B spans H,,(R™). For this we need only show that
K[D%|x|27"] is in the span of B for every multi-index « of degree m
(by Theorem 5.18). So suppose « is a multi-index of degree m. If «; is
0 or 1, then K[D%|x|2-™] is in B by definition. Now we use induction
on ;. Suppose that &; > 1 and that K[D#|x|?~"] is in the span of
B for all multi-indices 8 of degree m whose first components are less
than ;. Because A]x|2~" = 0, we have
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K[D¥|x|?>™] = K[D1*'72D;% ... Dp** (D1 %|x]?>™™)]

n
= —K[D1™72D;% ... Dy, Z D;2|x|*™)

n
= = > K[D1®72D;%2 ... Dp* (D} |x|>™™)].
Jj=2

By our induction hypothesis, each of the summands in the last line is
in the span of B, and therefore K[D*|x|2~"] is in the span of B. We
conclude that B spans Hm (R").

To complete the proof that B is a basis of #,, (R"), we show that
the cardinality of B is at most the dimension of #,,(R"). We have

= {K[D%|x|?~"]}, where « ranges over multi-indices of length m
that are not of the form (81 +2, B2,..., Bn) with | 8| = m —2. Therefore
the cardinality of B is at most #{a : || = m} —#{B : |B] = m — 2},
where # denotes cardinality. But from Proposition 5.5, we know that
this difference equals the dimension of H,, (R").

Having shown that B is a basis of #,,(R"), we can restrict to S,
obtaining the second assertion of this theorem. |

The software described in Appendix B uses Theorem 5.25 to con-
struct bases of Hp, (R™) and Hm (S). For example, this software pro-
duces the following vector space basis of H3(R3):

{31x1% - 301x[%x2% + 35x2%,

3x12x2x3 ~ 7x23x3,

lx1* = 51x12x2°% = 51x1%x32 + 35x2%x32,
31x[%x2x3 — Tx2x33,

3(x|* - 301x]2x3° + 35x3*,

31x12x1x2 — 7x1%2°,

I 1213 — 7x1%2% X3,

Ix|2x1%2 - 7x1X2%3%,

3{X|2X1X3 - 7X1X33}.
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Although the previous theorem is valid only when n > 2, the n = 2
case is easy—earlier in the chapter we saw that {z™,z™} is a basis of
Hpm(R?) and {ei™P e-im¥} is a basis of Hm(S).

Zonal Harmonics

We continue to view H,,(S) as an inner product space with the
L2(S)-inner product. Fix a point n € S, and consider the linear map
A: Hu(S) — C defined by

Ap) =p(n).

Because H,,(S) is a finite-dimensional inner-product space, there ex-
ists a unique function Zm (-, n) € Hm (S) such that

p(0) = (P, Zm (- ) = Lp(mzm(c,n)do(:)

for all p € #{,,(S). The spherical harmonic Z, (-, n) is called the zonal
harmonic of degree m with pole . The terminology comes from geo-
metric properties of Z,, that will be explained shortly.

We easily compute Z,, when n = 2. Clearly Zg = 1. For m > 0,
Hm(S) is the two-dimensional space spanned by {ei™?¢ e~i"f} as we
saw earlier. Thus if we fix e!® € §, there are constants «, 8 € C such
that Zp, (%9, ei®) = xei™? + Be~i™? The reproducing property of the
zonal harmonic then gives

. on 2Tr . . - —_— .
yetmcp + S iMe — j (yetm(-) + 58—1m6)(ae—1m9 + Bezme) g
0
=y&+ 68

for every y,8 € C. Thus & = e~™® and B = ¢!™®. We conclude that
5.26 Zm (e, el®) = oim(0-®) 4 oim(@-0) _ 3 co5m (0 - @).

Later (5.38) we will find an explicit formula for zonal harmonics in
higher dimensions.

We now return to the case of arbitrary n > 2. The next proposition
gives some basic properties of zonal harmonics. The proof of (¢} below
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uses orthogonal transformations, which play an important role in our
study of zonal harmonics. We let O(n) denote the group of orthogo-
nal transformations on R”. Observe that #,,(R"™) is O(n)-invariant,
meaning thatif p € H(R*)and T € O(n),thenpoT € Hpn(R?). It
follows that H,,(S) is O (n)-invariant as well.

5.27 Proposition: Suppose T,n € S and m = 0. Then:

(a) Zy is real valued.

) Zm(C,n) = Zn(n,0).

©  Zm(T.T(M) = Zm(THQ),n) forall T € O(n).
(d  Zm(n,n) = dimHp(R").

(©  1Zm(T,m! < dimHpn(R™).

PROOF: To prove (a), suppose p € H,,(S) is real valued. Then
0=Imp(n)

_ ImL P(C)Zm (T, 1) do (C)

- Lp(C) Im Zm (Z, 1) do (T).

Defining p by p(T) = Im Z,4 (T, n) yields

L(Imzm(c,n))zda(m -0,

which implies Im Z,,, = 0, proving (a).

To prove (b), consider any orthonormal basis ey,...,ep,, of Hn(S),
where hy, = dim Hp(S) = dim H,n (R™) (see Proposition 5.8 for an
explicit formula for h,,). By standard Hilbert space theory,

hm hm
Zin(-,n) = > (Zm(-,n).e)e; = > ej(n)e;.
Jj=1 j=1

Thus

hm

5.28 Zm(T,n) = > e;(n)e;(T).
j=1



96 CHAPTER 5. Harmonic Polynomials

Because Z,, is real valued, the equation above is unchanged after com-
plex conjugation, which implies (b).
To prove (c), let T € O(n). For every p € Hn,(S) we have

p(T(m) =(p=T)Xn)

- Lp(ng))zm(c,n)do(m

- Lp(z;)Zm(T‘l(C),n)dcr(C),

the last equality following from the rotation invariance of o. By the
uniqueness of the zonal harmonic, the equation above gives (c).
To prove (d), note that taking T = T(n) in (c) gives

Zm(T(N), T(N) = Zm(n,n).

Thus the function n - Z,,(n,n) is constant on S. To evaluate this
constant, take £ = n in 5.28, obtaining

hm
Zm(m,m) = D lej(mI2.
j=1
Now integrate both sides of the equation above over S, getting
hm
Zm(n,m) = L(Z le; (M)12) dor(n) = hum = dim Hm (R™),
j=1

which gives (d).
To prove (e), note that

1 Zm (-3 = {Zm (s 0)y Zim (-, 1)) = Zin (11, 0) = dim Hm (R™),
where || |2 denotes the norm in L2(S). Now

1Zm (T, M) = UZm(-,T), Zm (-, n))|
< ”Zm('v C)“Z”Zm(': ’7)“2
= dim Hon (R™),

completing the proof. ]
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Exercise 19 of this chapter deals with the question of when the in-
equality in part (e) of the proposition above is an equality.

Our previous decomposition L(S) = @yg Hm(S) has an elegant
restatement in terms of zonal harmonics, as shown in the next theorem.
Note that this is just the Fourier series decomposition when n = 2.

5.29 Theorem: Suppose f € L2(S). Let pm(n) = {f, Zm(-, )} for
m=20andne€S. Then py € Hm(S) and

f= z Pm
m=0

in L2(S).

PROOF: By Theorem 5.12, we canwrite f = >, _o gm for some choice
of Gm € Hm(S), where the infinite sum converges in L2(S). The proof
is completed by noticing that

Pm(n) = (f, Zm(C,m)) =D @k, Zm (-, 1)) = (@m, Zm (-, 1)} = am (),
k=0

where the third equality comes from the orthogonality of spherical har-
monics of different degrees (Proposition 5.9). [ ]

The Poisson Kernel Revisited

Every element of H,,(S) has a unique extension to an element of
Hm(R"); given p € Hn, (S), we will let p denote this extension as well.
In particular, the notation Z, (-, T) will now often refer to the extension
of this zonal harmonic to an element of H,,(R").

Suppose x € R™. If x # 0 and p € H,(R"), then
5.30 p(x) =1x|"p(x/1x])
= |xi™ LP(C)Zm(X/IXI.C)dU(Q

- LP(C)Zm(X,C)dO'(C)-
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We easily check that the first and last terms above also agree when
x = 0. Note that Z,y(x, -) is a spherical harmonic of degree m for each
fixed x € R™.

Our next result uses the equation above to expresses the Poisson
integral of a polynomial in terms of zonal harmonics.

5.31 Proposition: Let p be a polynomial on R" of degree m. Then

Plpls](x) = Zj p(C) Zi(x, ) do(C)
k=075

for every x € B.

PROOF: By Theorem 5.1, P[p|s] is a polynomial of degree at most m
and hence can be written in the form

m

5.32 Plplsl= > p«
k=0

where each py € Hy(R™). For each x € B and each k we have
pr(x) = | pu(©)Z(x, D) dor(©)

- | S pi0Zx D do @)

j=0

where the first equality comes from 5.30, the second equality comes
from the orthogonality of spherical harmonics of different degrees (see
Proposition 5.9), and the third equality holds because p and its Poisson
integral Z}":O p; agree on S. Combining the last equation with 5.32
gives the desired result. |

The proposition above leads us to the zonal harmonic expansion of
the Poisson kernel.
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5.33 Theorem: Forevery n = 2,
P(x,8) = > Zm(x,0)
m=0

for all x € B, T € §. The series converges absolutely and uniformly on
K x S for every compact set K C B.

PROOF: For a fixed n, Proposition 5.27(e) and Exercise 10 of this
chapter show that there exists a constant C such that

[ Zm(x,0)| < Cm™ 2| x|™

for all x € R", T € S§. The series Y., _o Zm(x,C) therefore has the
desired convergence properties.

Fix x € B. From Propositions 5.31 and 5.9 we see that
[ forxDdo@ = | @) Y Znix0)do@)
m=0

whenever f is the restriction of a polynomial to S. Because such func-
tions are dense in L%(S), this implies that P(x,{) = > -0 Zm(x, T) for
almost every T € S. But all the functions involved are continuous, so
we actually have equality everywhere, as desired. n

When n = 2, we can express the theorem above in a familiar form.
Recall that we used complex analysis (see 1.12) to show that the Poisson
kernel for B, takes the form

P(re®,ei®) = S rmlem®-® =1, % y™2cosm(0 - @)
m=-—oo m=1

for all » € [0,1) and all 8, € [0,2m]. By 5.26, this is exactly the
expansion in the theorem above.

The preceding theorem enables us to prove that the homogeneous
expansion of an arbitrary harmonic function has the stronger conver-
gence property discussed after Theorem 1.31.
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5.34 Corollary: If u is a harmonic function on B(a, v), then there exist
Pm € Hm (R™) such that

u(x) = > pm(x-a)

m=0

for all x € B(a,r), the series converging absolutely and uniformly on
compact subsets of B(a,r).

PROOF: We first assume that u is harmonic on B. For any x € B,
Theorem 5.33 gives

w0 = [ w©OPx DA = ¥ [ 4@)2Zn(x,0)do(©).
m=0

Letting pm(x) = [u(T)Zm(x,0)do(T) for x € R", observe that
Pm € Hm(R™). As in the proof of Theorem 5.33,

1pm ()] < Cm"“ZIXI"‘L ul do

for all x € R", and thus the series > p, converges absolutely and
uniformly to u on compact subsets of B.

After a translation and dilation, the preceding argument shows that
if u is harmonic on B(a,*), then u has an expansion of the desired
form in each B(a,s), 0 < s < r. By the uniqueness of homogeneous
expansions, all of these expansions are the same, and thus u has the
desired expansion on B(a,r). =

A Geometric Characterization
of Zonal Harmonics

In this section we give a simple geometric characterization of zonal
harmonics. Recall the definition of a “parallel” from cartography: if we
identify the surface of the earth with S ¢ R3 so that the north pole is at
(0,0,1), then a parallel is simply the intersection of S with any plane
perpendicular to the z-axis. The notion of a parallel is easily extended
to all dimensions. Specifically, given n € S, we define a parallel orthog-
onal to n to be the intersection of S with any hyperplane perpendicular
ton.
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Parallels orthogonal to n.

We claim that the zonal harmonic Z,, (-, 7) is constant on each par-
allel orthogonal to . To prove this, observe that a function f on S
is constant on parallels orthogonal to n if and only if f o T! = f for
every T € O(n) with T(n) = n. Thus Proposition 5.27(c) proves our
claim.

Our goal is this section is to show that scalar multiples of Zn (-, n)
are the only members of #,,(S) that are constant on parallels orthog-
onal to i (Theorem 5.37). This geometric property explains how zonal
harmonics came to be named—the term “zonal” refers to the “zones”
between parallels orthogonal to the “pole” n.

We will use two lemmas to prove our characterization of zonal har-
monics. The first lemma describes the power series expansion of a
real-analytic radial function.

5.35 Lemma: If f is real analytic and radial on R", then there exist
constants ¢,, € C such that

flx) =D cmlx|P™

m=0

for all x near 0.
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PROOF: Assume first that f € P,,(R™) and that f is not identically 0.
Because f is radial, it has a constant value ¢ # 0 on S, which implies
that f(x) = ¢|x|™ for all x € R™. Clearly m is even (otherwise f would
not be a polynomial). Thus f has the desired form in this case,

Now suppose that f is real analytic and radial, and that 3 p,, is
the homogeneous expansion of f near 0. Let T € O(n). Because f is
radial, f = f o T, which gives > pm = X pm o T near 0. Since p,, is a
homogeneous polynomial of degree m, the same is true of py, o T, so
that pym = pm o T for every m by the uniqueness of the homogeneous
expansion of f. This is true for every T € O(n), and therefore each
pm is radial. The result in the previous paragraph now completes the
proof. ]

The next lemma is the final tool we need for our characterization of
zonal harmonics. Recall that we can identify R™ with R*~1 x R, writing
a typical point z € R" as z = {x, ).

5.36 Lemma: Suppose that u is harmonic on R™ and that u(-,y) is
radial on R™~! for each v € R. Suppose further that u(0,y) = 0 for all
vy €R. Thenu = 0.

PrROOF: Recall that the power series of a function harmonic on R*
converges everywhere on R" (see Exercise 34 in Chapter 1). Because u
is real analytic on R™ and each u(-, y) is radial on R*"!, Lemma 5.35
implies that the expansion of u takes the form

ux,y) = > cm(¥)x®,

m=0

where each ¢, is a real-analytic function of . Because u is harmonic,
we obtain

0 = Au(x,J’)

cm DNXP™ + > otmem (y)|x|2MmD
0 m=1

M

m

1
Ms

[em” (¥) + am+lcm+1(y)]|xlzm.
0

3
]
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where o, = 2m{2m + n — 3). Looking at the last series, we see that
each term in brackets vanishes. Because co(y) = u(0, y) = 0, we easily
verify by induction that each c,, is identically zero. Thus u = 0, as
desired. [

Let N denote the north pole (0,...,0,1). We can now characterize
the zonal harmonics geometrically.

5.37 Theorem: Let n € S. A spherical harmonic of degree m is con-
stant on parallels orthogonal to n if and only if it is a constant multiple
Of Zm ( %y r’)'

PROOF: We have already seen that Z,, (-, n) is constant on parallels
orthogonal to 1.

For the converse, we may assume m > 1. For convenience we first
treat the case n = N. So suppose p € H., (R") is constant on parallels
orthogonal to N. For T € O(n — 1), we then have

p(Tx,y) =p(x,y)

for all (x,y) € S, and hence for all (x, y) € R™. Because this holds for
all T € O(n - 1), we conclude that p(-,y) is radial on R*"! for each
v € R. In particular, Z,, ((-, ¥),N), regarded as an element of H,, (R"),
is radial on R"~! for each y € R.

Now choose ¢ such that p(N) = ¢Z,,(N,N), and define
u = p - CZm(',N).

Then u is harmonic on R”®, u(-,y) is radial on R*~! for each y € R,
and u(0,y) = u(yN) = y™u(N) = 0 for every v € R. By Lemma 5.36,
u = 0. Thus p is a constant multiple of Z,,(-,N), as desired.

For the general n € S, choose T € O(n) such that TN) = n. If
p € Hm(S) is constant on parallels orthogonal to n, then p o T is
constant on parallels orthogonal to N. Hence poT is a constant multiple
of Z, (+,N), which implies that p is a constant multiple of Z,, (+,N)o T},
which, by Proposition 5.27(c), equals Z,, (-, n). n
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An Explicit Formula
for Zonal Harmonics

The expansion of the Poisson kernel given by Theorem 5.33 allows
us to find an explicit formula for the zonal harmonics.

5.38 Theorem: Let x e R" andlet T € S. Then Z,,(x,T) equals

(m/2]
(n+2m-2) > (-1
k=0

PROOF: The function (1 — z)~™?2 is holomorphic on the unit disk in
the complex plane, and so it has a power series expansion

5.39 z)™?2 = Z crzk

for |z| < 1. We easily compute that

(%)(%+1)...(§+k—1).

5.40 Ck = Xl

Fix £ € S. For |x| small, 5.39 and the binomial formula imply
that

P(x,0) = (1—-IxI>)(1 + x> -2x -g)™™?

=(1-1x?) > cx(@x - T - Ix|H)*
k=0

o k
=(1-1x1?) Y a 3 (=D (5) 2T (x - D* x|
j=0

By Theorem 5.33, Z, (-, T) is equal to the sum of the terms of degree m
in the power series representation of P(-, T). Thus the formula above
implies that

5.41 Zm (x,T) = gm(x) — IXIqu-z(x),
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where gy, and g, -2 are the sums of terms of degree m and m - 2,
respectively, in the double series above. It is easy to see that

Am(x) = Y a(=)™K( K)ok . )2k x| 2me2k,
m/2<ksm

Replacing the index k by m — k in this sum shows that

[m/2}
Am(x) = > cmoa(=DF(MK)2m K (x - gymoKx 2k,
k=0

Using 5.40, the last equation becomes

[m/2]

An(x) = > (_1)kn(n+2)...(n+2m—2k—2)
m(x) =
k=0

2%KI (m - 2K)! SE Ul

By replacing m by m — 2, we obtain a formula.for g, ->. In that formula,
replace the index k by k—1, and then combine terms in 5.41 to complete
the proof. ]

Note that for x € S, the expansion in the theorem above shows
that Z,,(x, T) is a function of x - T. We could have predicted this by
recalling from the last section that on S, the zonal harmonic Z,, (-, )
is constant on parallels orthogonal to T.

The formula for zonal harmonics given by the theorem above may
be combined with Proposition 5.31 and the formula for the integral
over S of any monomomial ([20], Section 3) to calculate explicitly the
Poisson integral of any polynomial. However, this procedure is typi-
cally several orders of magnitude slower than the algorithm given by
Theorem 5.21.
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Exercises

1. Suppose p is a polynomial on R" such that p|s = 0. Prove that
there exists a polynomial g such that p = (1 — |x]?)q.

2. Suppose p is a homogeneous polynomial on R” and u = P[p|s].
Prove-that u is a homogeneous polynomial with the same degree
as p if and only if p is harmonic.

3. Suppose p is a polynomial on R™ and u = P{pls]. Prove that the
degree of u is less than the degree of p if and only if the homo-
genenous part of p of highest degree is a polynomial multiple
of |x|2.

4, Suppose that f is a homogeneous polynomial on R" of even (re-
spectively, odd) degree. Prove that P[ f] is a polynomial consist-
ing only of terms of even (respectively, odd) degree.

5. Suppose E is an open ellipsoid in R™.

(a) Prove that if p is a polynomial on R" of degree at most m,
then there exists a harmonic polynomial g on R" of degree
at most m such that qgl3r = plae.

(b) Use part(a)and the Stone-Weierstrass Theorem to show that
if f € C(E), then there exists u € C(E) such that ulze = f
and u is harmonic on E.

6. Let f be a polynomial on R”. Prove that P.[f|s], the exterior
Poisson integral of fls (see Chapter 4), extends to a function
that is harmonic on R™ \ {0}.

7. Generalized Dirichlet Problem: Show that if f and g are polyno-
mials on R”, then there is a unique polynomial p with p{s = fls
and Ap = g. (The software described in Appendix B can find p
explicitly.)

8. From Pascal’s triangle we know (NA’;I) = (f;) + (Mz\fl) Use this
and Proposition 5.8 to show that

amtesr= (759 (75

form = 1.
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9.

10.

11.

12.

13.

14.

15.

16.

Prove that dim #H,, (R*) < dim H,,, .1 (R") when n > 2.

Prove that for a fixed n,

dim H,, (R™) _ 2
mn-2 (n - 2)!
as m — o,
Prove that 4
: 1x12 = %2212 do(x) = i)

Suppose p,q € Hm (R™). Prove that
pD)gl=nn+2)...(n+2m-2) L pqdo.

(Note that the left side of the equation above, which appears to
be a function, is actually a constant because p and g are both
homogeneous polynomials of degree m.)

Where in the proof of Lemma 5.17 was the hypothesis n > 2
used?

Forn = 2, let ¢y = (=2)™ " 1(m - 1)I. Suppose m > 0 and
p € Pm(R?).

(a) Prove that
Klp(D)loglx|l = cm(p - Ix1%q)

for some q € Ppm_2(R2).

(b) Prove that the orthogonal projection of p onto Hp, (R?) is
K[p(D)log|x!|]l/cm.

Given a polynomial f on R", how would you go about determin-
ing whether or not f|s is a spherical harmonic?

Prove that if p € H,,(R™), then
DiK[pl = K[leszp +(-n-2m)xjp]

forl<j=<n.
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17.

18.

19.

20.

21.

22,

Prove that if p € H,n (R"), where n > 2 and m > 0, then

1 ZDjK[Djp].

Kipl= m{4 -n-2m) st

Let f € C(S). The Neumann problem for B with boundary data
f is to find a function harmonic on B whose outward normal
derivative on S equals f and whose value at the origin is 0.

(a) Show that the Neumann problem with boundary data f has
at most one solution.

(b) Show if the Neumann problem with boundary data f has a
solution, then [¢ fdo = 0.

(c) Show that if p is a polynomial on R", then the Neumann
problem with boundary data p|s has a solution if and only
if ¢ p do = 0. Describe how you would calculate a solution
to the Neumann problem with boundary data p|s from the
solution to the Dirichlet problem with boundary data p|s,
and vice versa.

(a) For n = 2, find a necessary and sufficient condition for
equality in Proposition 5.27(e).

(b) Prove that if n > 2 and m > 0, then the inequality in Propo-
sition 5.27(e) is an equality f and only f T =nor ¢ = —-n.

Define Py (x,T) = ngo Zm{x,T). Show that for fixed € € S,

inf Py(x,0) - ~0 asM — o,
X€ER

even though for each fixed x € B, Py(x,T) — P(x,C) > 0 as
M — oo (by Theorem 5.33).

Fix x € B. For f = P(x, ), what is the expansion given by The-
orem 5.29? Show how this could be used to give an alternative
proof of Theorem 5.33.

Give an example of a real-analytic function on B whose homoge-
neous expansion (about 0) does not converge in all of B. (Com-
pare this with Corollary 5.34.)
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23.

24.

25.

26.

27.

28.

29.

Suppose u € C1(B) is such that the function x — x - Vu(x) is
harmonic on B. Prove that u is harmonic on B.

Suppose u is harmonic on R” and u is constant on parallels or-
thogonal to n € S. Show that there exist ¢, cy,... € C such that

u(x) = > cmZm(x,n)

m=0
for all x € R™.

Suppose that u is harmonic on B, u is constant on parallels or-
thogonal ton € S, and u(rn) = 0 for infinitely many r € [-1,1].
Prove that u = 0 on B.

Show that u need not vanish identically in Exercise 25 if “har-
monic on B” is replaced by “continuous on B and harmonic on B”.
(Suggestion: Set gm (x) = Zy(x, n)/(dim Hp, (R™)) and consider
a sum of the form Z,"(‘;l(—l)"ckqu(x), where the coefficients
Cy are positive and summable and the integers m; are widely
spaced.)

Show that there exists a nonconstant harmonic function u on R?
that is constant on parallels orthogonal to e? as well as on par-
allels orthogonal to e? if and only if 6 — @ is a rational multiple
of .

Suppose n > 2 and T, n € S. Under what conditions can a func-
tion on S be constant on parallels orthogonal to T as well as on
parallels orthogonal to n?

Fix a positive integer m. By Theorem 5.38, there is a polynomial
q of one variable such that Z,,(n,C) = q(n-¢) foralln,g € S.
Prove that if n is even, then each coefficient of g is an integer.



CHAPTER 6

Harmonic Hardy Spaces

Poisson Integrals of Measures

In Chapter 1 we defined the Poisson integral of a function f € C(S)
to be the function P[f] on B given by

6.1 PLFI(x) = Lf(;)P(x, 2) do(C).

We now extend this definition: for ¢ a complex Borel measure on S, the
Poisson integral of u, denoted P[u], is the function on B defined by

6.2 Plu)(x) = LP(x,C)du(C).

Differentiating under the integral sign in 6.2, we see that P{u] is har-
monic on B.

The set of complex Borel measures on S will be denoted by M(S).
The total variation norm of y € M(S) will be denoted by ||u|. Recall
that M(S) is a Banach space under the total variation norm. By the
Riesz Representation Theorem, if we identify y € M(S) with the linear
functional A, on C(S) given by

Ag(f) = Lfdu,

then M(S) is isometrically isomorphic to the dual space of C(S). (A
good source for these results is [15].)

111
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We will also deal with the Banach spaces LP(S),1 < p < «. When
p € [1,%), LP(S) consists of the Borel measurable functions f on §
for which

Ifll, = (L 1P do)YP < o

L= (S) consists of the Borel measurable functions f on § for which
1 flle < oo, where || fll» denotes the essential supremum norm on §
with respect to 0. The number g € [1, ] is said to be conjugate to p
ifl/p+1/g=1. 11 < p < = and q is conjugate to p, then L4(S)
is the dual space of L?(§). Here we identify g € L4(S) with the linear
functional A4 on L?(S) defined by

Ag(f) = Lfgda.

Note that because ¢ is a finite measure on S, L?(S) c L1(S) for all
p € [1, ]. Recall also that C(S) is dense in LP(S) for 1 < p < .

It is natural to identify each f € L}(S) with the measure ¢ € M(S)
defined on Borel sets E C S by

6.3 us(E) = L fdo.

Shorthand for 6.3 is the expression duy = fdo. Themap f — prisa
linear isometry of L!(S) into M(S). We will often identify functions in
L1(S) as measures in this manner without further comment.

For f € L1(S), we will write P[f] in place of P[u¢]. Here one could
also try to define P[f] as in 6.1. Fortunately the two definitions agree,
because if @ is abounded Borel measurable function on S (in particular,
if = P(x,-)), then [ @ duys = [ @ f do. Our notation is thus consis-
tent with that defined previously for continuous functions on S.

Throughout this chapter, when given a function u on B, the notation
U, will refer to the function on S defined by u,(T) = u(rC); here, of
course, 0 < r < 1.

We know that if f € C(S), then P{f] has a continuous extension
to B. What can be said of the more general Poisson integrals defined
above? We begin to answer this question in the next two theorems.
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6.4 Theorem: The following growth estimates apply to Poisson inte-
grals:

(@) If ue M(S) and u = P[u], then ||lu,l; < lull forall r € [0,1).

(b) Ifls<p=<oo, feLP(S),andu = P[f], then uyll, < I flp for
all r € [0,1).

PROOF: The identity
6.5 P(Yn, 2:) = P(TC: n)!
valid for all n, € S and all ¥ € [0, 1), will be used to prove both (a)

and (b).
Toprove(a),lety € M(S)and setu = P{u]. Forn € Sandr € [0,1),

lu(rn)l < LP(TTI, 0) dlui(T),

where |u| denotes the total variation measure associated with u. Fu-
bini’s theorem and 6.5 then give

gl = L luern) do ()
sj j P(rn, ) dlul(Z) do(n)
SJS
- L LP(TC,!)') do () dlpl(T)

= llpll.

For (b), assume firstthat 1 < p < . Let f € LP(S) and setu = P[ f].
Then

lu(rn)| < L IF 1PN, 0) do (D).
By Jensen's inequality,
lwrmI? < L \F(O)PP(rn, ©) do(T).

Integrate this last expression over S and use an argument similar to
that given for (a) to get |lu,llp < || fllp, as desired.
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The case f € L™(S) is the easiest. With u = P[f], we have
utrml < [ 1£©1Prn. ) do (@)

< IIfIImJSP(Tn,E)dO(C)
= 1flle. .

Our first consequence of the last theorem is that [lu,ll, is an in-
creasing function of r for each harmonic function u. A necessary and
sufficient condition for the inequality in the corollary below to be an
equality is given in Exercise 4 of this chapter.

6.6 Corollary: If u is harmonicon Band 0 <r <s < 1, then
lurily < llusllp
forall p € [1, ©].
PROOF: Suppose u is harmonic on B and 0 < r < s < 1. The idea

of the proof is to think of u, as a dilate of the Poisson integral of ug;
then the result follows from the previous theorem. More specifically,

||ur||p = ”P[us]§”p =< ”uS”p»

where the equality follows from Theorem 1.21 and the inequality fol-
lows from Theorem 6.4(b). ]

If fe C(S)and u = P(f], we know that u, — fin C(S) asr — 1.

This fact and Theorem 6.4 enable us to prove the following result on
LP-convergence.

6.7 Theorem: Supposel < p < . If f € LP(S) and u = P{f], then
luy — fllp = 0asr — 1.

PROOF: Let p € [1,»), let f € LP(S), and set u = P[f]. Fix € > 0,
and choose g € C(S) with || f — gll, < €. Setting v = P[g], we have

fhuy _pr < lluy - Vr“p + vy *g”p +llg "’f”p-
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Now (u, — vy) = (P[f — g])r, hence [[u, — v¢|l, < € by Theorem 6.4.
Note also that v, — gll, < l1Vy — gllw. Thus

iy — fllp < lve = glle + 2¢.

Because g € C(S), we have ||[vy — gllo — 0 as ¥ — 1. It follows that
limsup,_; lu, — fllp < 2¢&. Since ¢ is arbitrary, lu, — fll, — 0, as
desired. =

Theorem 6.7 fails when p = . In fact, for f € L*(S) and u = P[f],
we have [uy — flle — 0as v — 1if and only if f € C(S), as the reader
should verify. ‘

Inthe case y € M(S) and u = P[u], one might ask if the L!-functions
1, always converge to y in M(S). Here as well the answer is negative.
Because L1(S) is a closed subspace of M(S), u, — p in M(S) precisely
when p is absolutely continuous with respect to o.

We will see in the next section that there is a weak sense in which
convergence at the boundary occurs in the cases discussed in the two
paragraphs above.

Weak* Convergence

A useful concept in analysis is the notion of weak* convergence.
Suppose X is a normed linear space and X* is the dual space of X. If
A1,A9,... € X*, then the sequence (Ayg) is said to converge weak” to
A € X* provided limy_.« Ar(x) = A(x) for every x € X. In other
words, Ax — A weak* precisely when the sequence (Ay) converges
pointwise on X to A. We will also deal with one-parameter families
{A,:r €[0,1)} C X*; here we say that A, — Aweak*if A, (x) — A(x)
as v — 1 for each fixed x € X. ,

A simple observation we need later is that if Ay — A weak*, then

6.8 Al < liininf AN,

Here ||A|l is the usual operator norm on the dual space X* defined by
Al = sup{lA(x)|:x € X, [Ix|l < 1}

Convergence in norm implies weak* convergence, but the converse
is false. A simple example is furnished by #2, the space of square
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summable sequences. Because £ is a Hilbert space, (£2)* = £2. Let
ex denote the element of £2 that has 1 in the k™ slot and 0’s elsewhere.
Then for each a = (ay,az,...) € €2, (a,ex) = ax for every k. Thus
ex — O weak* in £2 as k — oo, while |lex]| = 1 in the £2-norm for every k.
This example also shows that inequality may occur in 6.8.

Our next result is the replacement for Theorem 6.7 in the cases
mentioned at the end of the last section.

6.9 Theorem: Poisson integrals have the following weak* conver-
gence propetrties:

(@ IfueM(S)andu = P[u], thenu, — u weak*in M(S) asr — 1.

by If f € L¥(S) and u = P[f], then u, — f weak* in L*(S) as
r - 1.

PROOF: Recall that C(S)* = M(S). Suppose u € M(S), u = Pu],
and g € C(S). To prove (a), we need to show that

6.10 JgurdU~Jgdu
s S

asr — 1.
Working with the left-hand side of 6.10, we have

[ gurao =j 9@ | POEm dun) do (@)
S S S
= [ [ a@Pirn.0 0@ auwm
sJs
= LP[g](rn)du(n),

where we have used 6.5 again. Because g € C(S), P[gl(rn) — g(n)
uniformly on S as ¥ — 1. This proves 6.10 and completes the proof
of (a).

The proof of (b) is similar. We first recall that L}(§)* = L= (S). With
f e L*(S) and u = P[ f], we thus need to show that

6.11 Jgu,da—»Jgfda
s s



The Spaces h” (B) 117

as v — 1, for each g € L1(S). Using the same manipulations as
above, we see that the left side of 6.11 equals [((P[g]),f do. By The-
orem 6.7, (P[g])y — g in L1(S) as v — 1. Because f € L*(S), we
have (P{g])rf — gf in L}(S). This proves 6.11, completing the proof
of (b). ]

In Chapter 2 we told the reader that every bounded harmonic func-
tion on B is the Poisson integral of a bounded measurable function
on S. In Chapter 3, we claimed that each positive harmonic function
on B is the Poisson integral of some positive measure on S. We will
prove these results in the next section. The key to these proofs is the
following fundamental theorem on weak* convergence.

6.12 Theorem: If X is a separable normed linear space, then ev-
ery norm-bounded sequence in X* contains a weak* convergent sub-
sequence.

PROOF: Assume (A;,) is a norm-bounded sequence in X*. Then
(Am) is both pointwise bounded and equicontinuous on X (equiconti-
nuity follows from the linearity of the functionals A ). By the Arzela-
Ascoli Theorem for separable metric spaces (Theorem 11.28 in [15]),
(Am) contains a subsequence (A, ) converging uniformly on compact
subsets of X. In particular, (A, ) converges pointwise on X, which
implies that (A, ) converges weak* to some element of X*. n

In the next section we will apply the preceding theorem to the sep-
arable Banach spaces C(S) and L4(S),1 < g < .

The Spaces h? (B)

The estimates obtained in Theorem 6.4 suggest the definition of
some new function spaces. For 1 < p < o, we define h?(B) to be the
class of functions u harmonic on B for which

lullpe = sup lluyllp < co.
O<r<l

Thus h? (B) consists of the harmonic functions on B whose L?-norms
on spheres centered at the origin are uniformly bounded. Because
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llurlly is an increasing function of r for each harmonic function u
(Corollary 6.6), we have

lullne = Lln} lurllp

for each u € hP(B). Note that h*(B) is the collection of bounded
harmonic functions on B, and that

lulln= = sup|u(x)|.
xX€E€B

We refer to the spaces h” (B) as “harmonic Hardy spaces”. The usual
“Hardy spaces”, denoted by H? (B;), consist of the functions in h” (B;)
that are holomorphic on B»; they are named in honor of the mathemati-
cian G. H. Hardy, who first studied them.

It is straightforward to verify that h? (B) is a normed linear space
under the norm || ||n». A consequence of Theorem 6.13 below is that
h?(B) is a Banach space.

Here are some observations that can be elegantly stated in terms of
the h?-spaces:

(@ Themap u — P{u] is a linear isometry of M(S) into h!(B).

(b) Forl < p < o, themap f — P[f]is alinear isometry of LP(S)
into h” (B).

Let us verify these claims. First, the maps in question are clearly
linear. Second, in the case of (a), we have

Pl < Ml
by Theorem 6.4. On the other hand, 6.8 and Theorem 6.9 show that

lpll = Hminf | (PLpDrlle = HPL I

1

This proves (a). The proof of (b) when p = « is similar. The proof of
(b) when 1 < p < « is even easier, following from Theorem 6.7.

We now prove the remarkable result that the maps in (a) and (b)
above are onto.
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6.13 Theorem: The Poisson integral induces the following surjective
isometries:

(a) The map u — P[] is a linear isometry of M(S) onto h!(B).

(b) Forl<p <, the map f — P[f] is a linear isometry of L?(S)
onto h¥ (B).

PrROOF: All that remains to be verified in (a) is that the range of the
map u — P{u]is all of h1(B). To prove this, suppose u € h!(B). By
definition, this means that the family {u, : ¥ € [0, 1)} is norm-bounded
in L1(S), and hence in M(S) = C(S)*. Theorem 6.12 thus implies there
exists a sequence v; — 1 such that the sequence u,; converges weak*
to some p € M(S). The proof of (a) will be completed by showing that
u = Plul. 3

Fix x € B. Because the functions y — u(r;y) are harmonic on B,
we have

6.14 u(rjx) = Lu(?’jC)P(X,C) do(T)

for each j. Now let j — o. Simply by continuity, the left side of 6.14
converges to u(x). On the other hand, because P(x,-) € C(S), the
right side of 6.14 converges to P[u](x). Therefore u(x) = P{ulix),
and thus u = P[u] on B, as desired.

The proof of (b) is similar. Fixp € (1, x],let u € h?(B), and let g be
the number conjugate to p. Then the family {u, :r € {0,1)} is norm-
bounded in LP(§) = L9(S)*. By Theorem 6.12, there exists a sequence

r; — 1 such that u,; converges weak* to some f € LP(S). The argument
given in the paragraph above may now be used, essentially verbatim,
to show that u = P[f]; the difference is that here we need to observe
that P(x,-) € L%(S). We leave it to the reader to fill in the rest of the
proof. |

The theorem above contains the assertion made in Chapter 2 that if
u is bounded and harmonic on B, then u = P[f] for some f € L*(S).
We next take up the claim made in Chapter 3.

6.15 Corollary: If u is positive and harmonic on B, then there is a
unique positive measure yu € M(S) such that u = P{u].
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PROOF: Suppose u is positive and harmonic on B. Then
J luyldo = J u,ydo =u(0)
s s

for every » € [0,1), the last equality following from the mean-value
property. Thus u € h!(B), which by Theorem 6.13 means that there is
a unique py € M(S) such that u = P[u]. Being the weak* limit of the
positive measures 1, (Theorem 6.9(a)), u is itself positive. ]

Our next proposition gives a growth estimate for functions in h? (B).
For a slight improvement of this proposition, see Exercise 11 of this
chapter.

6.16 Propaosition: Suppose 1 < p < «. If u € h?(B), then

1/p
ool < (s ) il

for all x € B.
PROOF: Suppose u € h”(B) and x & B. First consider the case
where 1 < p < oo. By Theorem 6.13, there exists f € L?(S) such that

u = P[f]; furthermore |[ulln» = || fllp. Let q be the number conjugate
to p. Now

ool = || )P0 do@)]
l/q
6.17 < (], P 01240 @) Il
Notice that

J P(x,0)2do (Z) < sup P(x, :)‘Hj P(x,7) do(T)
S resS S

c1s - ()

Combining 6.17 and 6.18 gives the desired result.
The p = 1 case is similar and is left to the reader. n
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We conclude this section with a result that will be useful in the next
chapter.

6.19 Theorem: Let T € S. Suppose that u is positive and harmonic
on B, and that u extends continuously to B\ {C} withu =0 on S\ {T}.
Then there exists a positive constant ¢ such that

u = cP(-,0).

PROOF: We have u = P[u] for some positive y € M(S) by The-
orem 6.15, and we have u, — u weak* in M(S) as v — 1 by Theo-
rem 6.9. The hypotheses on u imply that the functions u, converge
to 0 uniformly on compact subsets of S\ {T} as v — 1. Therefore
[s pdp = 0 for any continuous @ on S that is zero near . This im-
plies that u(S \ {T}) = 0, and thus that u is a point mass at {. The
conclusion of the theorem is immediate from this last statement. =

The Hilbert Space h?(B)

The map f — P{f]is alinear isometry of L2(S) onto h?(B) (by Theo-
rem 6.13). Because L?(S) is a Hilbert space, we can use this isometry to
transfer a Hilbert space structure to h?(B). Specifically, we can define

(PLf1, PLgY) = (f.g) = Lf?da

for f,g € L3(S), where we use {, ) to denote the inner product on
both h?(B) and L?(S), allowing the context to make clear which is in-
tended.

Given u, v € h?(B), it would be nice to have an intrinsic formula for
(u,v) that does not involve finding f,g € L?(S) such that u = P[f]
and v = P[g]. Fortunately, Theorem 6.7 leads to such a formula. We
have u, — f and v, — g in L2(S), and thus (u,,v,) — (f,g). Hence

(u,v) = Erll L u(r)v(r{)do(T).

For f € L?(S) and x € B, we have

6.20 Pfl(x) = {f,P(x, ).
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To translate this to an intrinsic formula on h?(B), we need to find the
Poisson integral of P(x, -). In other words, we need to extend P(x, -),
which is currently defined on S, to a harmonic function on B. To do
this, note that

1-)x2 _ 1 |xP?

PO = g = T ax - v

for € € §. We extend the domain of P by defining

1 - |x|?y}?
(1-2x-y+|x]2[y]2)n/2

6.21 P(x,y) =

for all x, y € R" x R" for which the denominator above is not 0. Note
that this agrees with our previous definition when y € S.

Our extended Poisson kernel P has the pleasant properties that
P(x,y) = P(y,x) and P(x,y) = P(|x|y,x/Ix|). The last equation
shows that for x fixed, P(x,-) is a harmonic function (because it is
a dilate of a harmonic function). In particular, for x € B, the func-
tion P(x, -) is harmonic on B and hence is the function in h?(B) that
corresponds to the unextended Poisson kernel P(x,-) € L%(S). The
extended Poisson kernel will play a major role when we study Bergman
spaces in Chapter 8.

Translating 6.20 to h?(B), we have the intrinsic formula

6.22 u(x) ={u,P(x,-))

forall x € Band u € h?(B). The usefulness of this viewpoint is demon-
strated by the next proposition, which gives a sharp growth estimate
for functions in h?(B), slightly better than the p = 2 case of Proposi-
tion 6.16.

6.23 Proposition: If u € h?(B), then

1+ x]?

A

Huline
for all x € B.

PROOF: Suppose u € h?(B) and x € B. From the Cauchy-Schwarz
inequality and 6.22, we have
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[u(x)! < IP(x, ) lp2lulipe.

Now
IP(x, )22 = (P(x,),P(x,-)) = P(x,x),

where the last equality comes from 6.22. Use 6.21 to compute P(x, x)
and complete the proof. |

The Schwarz Lemma

The Schwarz Lemma in complex analysis states that if h is holo-
morphic on By with |h| < 1 and hA(0) = 0, then |h(z)| < |z| for all
z € By; furthermore, if equality holds at any nonzero z € B, then
h(z) = Az for all z € By, where A is a complex number of modulus one.
In this section we take up the Schwarz Lemma for functions harmonic
on B,.

Hermann Amandus Schwarz (1843-1921), whose reflection principle
we used in Chapter 4 and whose lemma we now extend to harmonic
functions, is also noted for his discovery of a procedure for solving the
Dirichlet problem.

Let S* denote the northern hemisphere {€ € S : T, > 0} and let
S~ denote the southern hemisphere {{ € S : T, < 0}. We define a
harmonic function U = U, on B by setting
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U =P[XS+ —XS-]-

In other words, U is the Poisson integral of the function that equals 1
on S* and ~1 on S~. Note that U is harmonic on B, with |U| < 1 and
U0y =290.

The following theorem shows that U and its rotations are the ex-
tremal functions for the Schwarz Lemma for harmonic functions. Re-
call that N = (0,...,0,1) denotes the north pole of S.

6.24 Harmonic Schwarz Lemma: Suppose that u is harmonic on B,
lul <1 on B, and u(0) = 0. Then

lu(x)! <= U(|xIN)

for every x € B. Equality holds for some nonzero x € B if and only if
u = A(U o T), where A is a complex constant of modulus 1 and T is an
orthogonal transformation.

PROOF: Fix x € B. After a rotation, we can assume that x lies on the
radius from O to N, so that x = |x|N.

First we consider the case where u is real valued. By Theorem 6.13,
there is a real-valued function f € L*(S) such that u = P[f] and
Ifllo < 1.

We claim that u(x) < U{(x). This inequality is equivalent to the
inequality

[ a+s@ipwacs [ 0-f@)pxdo.

Because x = |x|N, we have P(x,C) = (1 - |x[2)/(1 + |x]% = 2|x|Cn)"/2,
so the inequality above is equivalent to

1+ £(Z)
6.25 L— 1+ X = 2IxICn)7 2
sj 1- £(D)

s+ (1 +|x]2 = 2|x|Cp)™?

do(T)

do(T).

The condition u(0) = 0 implies that [;- fdo = — [;. f do. Thus, since
T, is negative on S~ and positive on S+, we have
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1+ £(D) 1+ £(2)
L- T X~ 2x|gynr 40(&) = L‘ T e 0@
o 1-f©
= Js+ T+ ) 40 (&)
1- (D)
< L* AT x2= 2ixgne 40 )

Thus 6.25 holds, completing the proof that u(x) < U(x). Note that if
x # 0, then the last two inequalities are equalities if and only if f = 1
almost everywhere on S* and f = —1 almost everywhere on S™. In
other words, we have u(x) = U(x) if and only if u = U.

Now remove the restriction that u be real valued. Choose g &€ C
such that || = 1 and Bu(x) = |u(x)|. Apply the result just proved to
the real part of Bu, getting |u(x)| < U(x), with equality if and only if
Bu="U. |

Note that while the extremal functions for the Schwarz Lemma for
holomorphic functions are the entire functions z — Az (with |A] = 1),
the extremal functions for the Harmonic Schwarz Lemma are discontin-
uous at the boundary of B. Later in this section we will give a concrete
formula for U when n = 2; Exercise 24 of this chapter gives formulas
for U({x|N) when n = 3,4. The software package described in Ap-
pendix B can compute U(|x|N) for higher values of n.

The Schwarz Lemma for holomorphic functions has a second part
that we did not mention earlier. Specifically, if h is holomorphic on B;
and |h! < 1 on By, then [h'(0)] < 1; equality holds if and only if
h(z) = Az for some constant A of modulus one. (Almost all complex
analysis texts add the hypothesis that h(0) = 0, which is not needed
for this part of the Schwarz Lemma.) The next theorem gives the cor-
responding result for harmonic functions. Here the gradient takes the
place of the holomorphic derivative.

6.26 Theorem: Suppose u is a real-valued harmonic function on By
and luf <1 onBy. Then

ZV(Bn—l)

[(Vu)(0)] < VB

Equality holds if and only if w = U o T for some orthogonal transforma-
tionT.
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PROOF: We begin by investigating the size of the partial derivative
D,u(0). By Theorem 6.13, there is a real-valued function f € L*(S)
such that u = P{f] and || il =< 1. Differentiating under the integral
sign in the Poisson integral formula, we have

D,u(0)

If

L FIODnPO.7) do (D)

il

n | f©Cdo @)
S
< nL Tl do (D).

Equality holds here if and only if f = 1 almost everywhere on S* and
f = —1 almost everywhere on §~, which is equivalent to saying that
u equals U. The last integral can be easily evaluated using A.6 from
Appendix A:

2
V(Bn)
2V (Bn-1)

V(Bn)

nj Caldo (C) J (1 = [x13)7V2(1 = (12 AV, (x)
S Bn—l

Thus D, u(0) < 2V(Byn-1)/V(By), with equality if and only if u = U.
Applying this result to rotations of u, we see that every directional
derivative of u at 0 is bounded above by 2V (B, -1)/V(B3); the length
of Vu(0) is therefore bounded by the same constant, with equality if
and only if u is a rotation of U. ]

The bound given above on |(Vu)(0)| could not be improved if we
added the hypothesis that u(0) = 0, because the extremal function
already satisfies that condition.

When n = 2, the preceding theorem shows that |(Vu)(0)| < 4/m.
Note that the optimal constant 4/7r is larger than 1, which is the optimal
constant for the Schwarz Lemma for holomorphic functions.

Theorem 6.26 fails for complex-valued harmonic functions (Exer-
cise 23 of this chapter). The gradient, which points in the direction of
maximal increase for a real-valued function, seems to have no natural
geometric interpretation for complex-valued functions.
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We now derive an explicit formula for the extremal function U when
n = 2. Here the arctangent of a real number is always taken to lie in
the interval (-1 /2,17/2).

The graph of the harmonic function U, along with the boundary of its
domain. On the upper-half of unit circle in the xy-plane, this function
equals 1; on the lower half of the circle it equals —1.

6.27 Proposition: Let z = (x,y) be a point in B;. Then

2y

2
Us (x,y) = ;T_ aI‘Ctal’l1"’:‘}2‘2'—_‘3/—2

and .
U2(|z|N) = —arctan |z].
g

PROOF: Think of z = x + iy as a complex variable. The conformal
map z — (1+2)/(1-z) takes B, onto the right half-plane. The function
z - log[(1+2z)/(1 - z)], where log denotes the principal branch of the
logarithm, is therefore holomorphic on B,. Multiplying the imaginary
part of this function by 2/, we see that the function u defined by

2y

2
u(va) = ;arctani—sz—_?

is harmonic on B>.
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Because u is bounded on B, Theorem 6.13 implies that u = P[f] on
B> for some f € L”(S). Theorem 6.9 shows that u, ~ f weak*in L*(S)
as v — 1. But note that u extends to be continuous on B U St U S,
withu=1onS" and u = -1 on S~; thus u, — uls weak* in L*(S) as
r — 1 (by the dominated convergence theorem). Hence f = u|s almost
everywhere on S. Thus u = U, completing the proof of the first part
of the proposition.

The second assertion in the proposition now follows from standard
double-angle identities from trigonometry. n

The Fatou Theorem

Recall the cones I'y(a) defined in the section Limits Along Rays of
Chapter 2. We will use these cones to define nontangential approach
regions in the ball. For o« > 0 and € € S, we first translate and rotate
I'x(0) to obtain a new cone with vertex € and axis of symmetry con-
taining the origin. This new cone crashes through the sphere on the
side opposite of €, making it unsuitable for a nontangential approach
region in B. To fix this, consider the largest ball B(0, 7 («)) contained in
the new cone (we do not need to know the exact value of r («)). Taking
the convex hull of B(0,7(«x)) and the point £, and then removing the
point T, we obtain the open set Q4 (T) pictured here.

The region Qu(C) has the properties we seek for a nontangential
approach region in B with vertex €. Specifically, Q4(T) stays away
from the sphere except near £, and near T it equals the translated and
rotated version of I'y(0) with which we started.

We have Q4 (T) < Qg(T) if @ < B, and B is the union of the sets
Qx(T) as « ranges over (0, «).

Note that

T(Qa(D)) = Qu(T(D))

for every orthogonal transformation T on R". This allows us to transfer
statements about the geometry of, say, Q«(N) to any Qu(Z).

A function u on B is said to have nontangential limit L at ¢ € S if
for each ot > 0, we have u(x) — L as x — C within Q4(T).

In this section we prove that if u € h!(B), then u has anontangential
limit at almost every € € S. (In this chapter, the term “almost every-
where” will mean “almost everywhere with respect to 0”.) Theorems
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The nontangential approach region Qu(T).

asserting the almost everywhere existence of limits within approach
regions are commonly referred to as “Fatou Theorems”. The first such
result was proved by Fatou [8], who in 1906 showed that bounded har-
monic functions in the open unit disk have nontangential limits almost
everywhere on the unit circle.

We approach the Fatou theorem for h!(B) via several operators
known as “maximal functions”. Given a function u on B and « > 0,
the nontangential maximal function of u, denoted by Ny[ul, is the
function on S defined by

Nlul(T) = sup lulx)l.
x€Qa(T)

The radial maximal function of u, denoted by R[u], is the function on
S defined by
Rul(T) = sup lu(r o).

O<r<

Clearly R[u](C) < Nylul(T) for every T € S and every « > 0. The
following theorem shows that, up to a constant multiple, the reverse
inequality holds for positive harmonic functions on B.
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6.28 Theorem: For every « > 0, there exists a constant Cy < oo such
that

Nolul(T) = CoR[ul(T)
for all T € S and all positive harmonic functions u on B.

PROOF: Let T € S. The theorem then follows immediately from the
existence of a constant C4 such that

6.29 P(x,n) < C«P(IxIT,n)

forall x € Q4(C)and all n € S. To prove 6.29, apply the law of cosines
to the triangle with vertices 0, x, and T in 6.30 to see that there is a
constant Ay such that

|x - Tl < Aa(l = [x])

for all x € Qx(2).

6.30 |x — C| is comparable to (1 — |x|) for x € Qu(T).

Thus
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[x1C - n| < [IxIT - x| +|x ~n
<|T-x|+Ix-nl

< (Ag + Dix - nl

for all x € Q4(T) and all n € S. This shows that 6.29 holds with
Cu = (1 + Aa)n. | }

We turn now to a key operator in analysis, the Hardy-Littlewood
maximal function. For T € S and § > 0, define

k(C,8)={neS:in-Cl| <6}

Thus (T, §) is the open “spherical cap” on S with center § and radius &.
(Note that «(C,8) = S when 6 > 2.) The Hardy-Littlewood maximal
function of u € M(S), denoted by M[u], is the function on S defined
by

lul(k(T,9))

MUIT) = Sup~ 2 5))

Suppose u € M(S) is positive and & > 0 is fixed. Let (T;) be a
sequence in S such that ; — T. Because the characteristic functions
of k(Tj, ) converge to 1 pointwise on k(Z, §) as j — o, Fatou’s Lemma
shows that

u(k(Z,8)) < lignglfu(K(Kj,é))-

In other words, the function £ — u(kx(Z,d)) is lower-semicontinuous
on S. From the definition of M{[u], we conclude that M{pu] is the
supremum of lower-semicontinuous functions on S, and thus M[u]
is lower-semicontinuous. In particular, M[u]: S — [0, o] is Borel mea-
surable.

In the next theorem we begin to see the connection between the
Hardy-Littlewood maximal function and the Fatou Theorem.

6.31 Theorem: If y € M(S) and u = P{u], then
R[ul(T) < M{ul(T)

forallT € S.
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PROOF: Observe that if f is a continuous, positive, and increasing
function on [-1, 1], then given £ > 0, there exists a step function

m
@ = coX(-1,1] + 2 X (t;,1]
j=1

suchthat f <@ < f+econ[-1,1];here -1 <t; <--- <ty <1and
Coy..-,Cm € [0, 00).

We may assume p is positive and that £ = N. Fix v € [0,1). Then
P(rN,n) = f(na), where

1-7v?
1-2rt+7r2)ni2

f(t)=(

fort € [-1,1]. Let £ > 0. Because f has the properties specified in the
first paragraph, there exists a step function @ as above with

P(rN,n) < @(nn) < P(rN,n) + ¢

for all n € S. Now for any t € R, the function on S defined by
n — X,13(nx) is the characteristic function of an open cap centered
at N. We conclude that there are caps ko,..., Km, centered at N, and
nonnegative numbers cp, ..., Cm, such that

m

6.32 P(rN,n) < > cjXy;in) SP(¥N,n) +¢
j=0

foralln € S.

Integrating the first inequality in 6.32 over S with respect to u, we
get

w(rN) < > cjulk;)
j=0

Z o (Kj) U(KJ)/U(KJ))

m

(N)(z cjo (k)

< M{u](N)(1 + €).
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The last inequality follows by integrating the second inequality in 6.32
over S with respect to ¢. Because ¢ is arbitrary, we conclude that
u(rN) < M[ul(N), and thus R[u](N) < M[u](N), as desired. a

Theorem 6.37 below estimates the g-measure of the set where M[u]
islarge. The “covering lemma” that we prove next will be a crucial ingre-
dient in its proof. We abuse notation slightly and adopt the convention
that if k = k (T, 8), then 3k denotes the cap x(T,30).

6.33 Covering Lemma: Given caps kj = k(L;,6;),j =1,...,m, there
exists a subset J c {1,...,m} such that:

(@)  The collection {kj: j € J} is pairwise disjoint;

®  Uxkjc 3«

Jj=1 jeJ

PROOF: We describe an inductive procedure for selecting the desired
subcollection. Start by choosing a cap «;, having the largest radius
among the caps k1i,..., km. If all caps intersect «j,, we stop. Otherwise,
remove the caps intersecting kj,, and from those remaining, select one
of largest radius and denote it by «j,. If all the remaining caps intersect
Kj,, we stop; otherwise we continue as above. This process gives us a
finite subcollection {k; : j € J}, where J = {ji, j2,...}.

The subcollection {k; : j € J} clearly satisfies (a).

Given k € {Ki1,...,Km}, let ¥’ denote the first cap in the sequence
Kjy» Kj,, ... such that k N k" is nonempty. The way in which the caps in
{kj:j € J} were chosen shows that the radius of «’ is at least as large
as that of . By the triangle inequality, k C 3«’, proving (b). ]

In proving the next theorem we will need the fact that there exist
constants a > 0, A < o, depending only on the dimension n, such that

6.34 ad™ ! < o(k(L,8)) < As™!

forall T € S and all § € (0, 2]. Intuitively, (T, 8) looks like an (n - 1)-
dimensional ball of radius § for small § > 0, indicating that 6.34 is
correct. One may verify 6.34 rigorously by using formula A.3 in Ap-
pendix A.

From 6.34 we see that
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6.35 o(3k) < 3" N A/a)o (k)

for all caps x C S.
To motivate our next result, note that if f € L!(S) and t > 0, then

to({If] > t}) < j \fldo < ILfllh,
{f1>t}
giving

6.36 ao(Ifl > t}) < ”le

Here we have used the abbreviated notation {|f| > t} to denote the
set {T € S:{f(T)| > t}. The next theorem states that for y € M(S),
the Hardy-Littlewood maximal function M[u] is almost in L (S), in the
sense that it satisfies an inequality resembling 6.36.

6.37 Theorem: For every u € M(S) and every t € (0, ),

o (i) > 1) = L

where C = 3" 1(A/a).

PROOF: Suppose t € (0,). Let E c {M[u] > t} be compact. Then
for each T € E, there is a cap « centered at T with {u|(k)/o (k) > t.
Being compact, E is covered by finitely many such caps. From these
we may choose a subcollection with the properties specified in 6.33.
Thus there are pairwise disjoint caps Ki,..., Ky such that 3xy,...,3ky
cover E, and such that |u|(xj)/o(k;) > t for j=1,...,N. By 6.35 and
the definition of C, we therefore have

o(E) < Z o(3kj) < C Z o(kj) < C Z 'ulixﬂ - C”t“”;

j=1 Jj=1 J=1

the pairwise disjointness of the caps ki,...,ky was used in the last
inequality. Taking the supremum over all compact E ¢ {M[u] > t}
now gives the conclusion of the theorem. ]

Let us write M[ f] in place of M[u] when du = fdo for f € L1(S).
The conclusion of Theorem 6.37 for f € L1(S) is then
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6.38 g({M[f]>t}) < %f”l

We now prove the Fatou theorem for Poisson integrals of functions
in L1(S).

6.39 Theorem: If f € LY(S), then P[f] has nontangential limit f ()
at almost every T € §.

PROOF: For f € L!(S) and « > 0, define the function L[ f] on S by

L[ fHT) =limsup |P[f1(x) - f(D)I.
xexf;f(C)

We first show that L4[ f] = 0 almost everywhere on S.
Note that

6.40 Lol f1 < No[PUFN] + 1],

and that L[ fi+fo] < L[ f1]+ Lx[ f2] (both statements holding almost
everywhere on §). Note also that L[ f] = 0 for every f € C(S).

Now fix f € L'(S) and « > 0. Also fixing t € (0, ), our main goal
is to show that o ({L,[f]1 > 2t}) = 0.

Given € > 0, we may choose g € C(S) such that || f — gll; < &. We
then have
Lalfl = Lalf — gl + Lalg]
= Lalf - g]
< No[PlIf ~ gll] + 1f - gl
< CaR[P[If - gll] + If ~ gl
< CaM[If -gll+1f -4l
this holding at almost every point of S. In this string of inequalities we

have used 6.40, 6.28, and 6.31 in succession.
We thus have

6.41 {Lalf1> 2t} CH{CaMUS —gll >t} U{If - gl >t}
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By 6.38 and 6.36, the o-measure of the right side of 6.41 is less than
or equal to
CCull.f —glla N ILf ~ gl
t t )

Recalling that || f — gll1 < € and that ¢ is arbitrary, we have shown that
the set {L4[f] > 2t} is contained in sets of arbitrarily small o-measure,
and therefore o ({L4[f] > 2t}) = 0.

Because this is true for every t € (0, «), we have proved L,4[f]1=0
almost everywhere on S.

To finish, let f € L(S), and define Ep, = {Lm[f] = 0} for m =

1,2,.... We have shown that E,, is a set of full measure on S for each
m, and thus " E,, is a set of full measure. At each T € () Em, P{f] has
nontangential limit f(&), which is what we set out to prove. =

Recall that u € M(S) is said to be singular with respect to o, writ-
ten u L o, if there exists a Borel set E C S such that o(E) = 0 and
[l (E) = {lujl. Recall also that each y € M(S) has a unique decomposi-
tion du = fdo + dus, where f € L1(S) and y;s L o; this is called the
Lebesgue decomposition of y with respect to o. The following result is
the second half of the Fatou Theorem for h!(B).

6.42 Theorem: If u 1 o, then P{u] has nontangential limit 0 almost
everywhere on S.

PROOF: Much of the proof is similar to that of Theorem 6.39, and so
we will be brief about certain details.

It suffices to prove the theorem for positive measures, so suppose
U € M(S) is positive and ¢ 1 o. For o > 0, define

Lo[p(T) = limsup P{ul(x)
xéﬂ—(ﬁlj)

for T € S. Fixing t € (0, »), the proof will be completed by showing
that o ({Lalu] > 2t}) = 0. 7

Let ¢ > 0. Because y t o, the regularity of y implies the exis-
tence of a compact set K ¢ S such that o(K) = 0 and u(S\K) < &.
Writing u = py + pz, with dy; = Xxdy and dy; = Xs\x du, observe
that L[] = 0 on S\ K (see Exercise 2 of this chapter) and that
Tuzll = (S \K) < &.
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Because L[] < Lolu1] + Lal2], we have

6.43 {Lalp] > 2t} C {Lalpr] >t} U {Lalu2] > t}
CKU{CoeM[u] > t}.

(The inequality L,[u2] < CoM[u2] is obtained as in the proof of Theo-
rem 6.39.) Recalling that o (K) = 0, we see by Theorem 6.37 that the left
side of 6.43 is contained in a set of o-measure at most (CCxlit2 1)/,
which is less than (CCxe)/t. Since ¢ is arbitrary, we conclude that
o{({Ly[u] > 2t}) = 0, as desired. ]

Theorems 6.39 and 6.42 immediately give the following result.

6.44 Corollary: Suppose u € M(S) and dy = fdo + du; is the
Lebesgue decomposition of p with respect to . Then P{u] has non-
tangential limit f(T) at almost every T € S.

If u € h(B), then u = P[u] for some y € M(S) by Theorem 6.13.
Corollary 6.44 thus implies that u has nontangential limits almost ev-
erywhere on S. Because h”(B) c h!(B) for all p € [1, ], the same
result holds for all u € h?(B).
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Exercises

1.  Show thatif f € L1(S) and € € S is a point of continuity of f,
then P[ f] extends continuously to B u {C}.

2. Suppose V C S is open, u € M(S), and || (V) = 0. Show that if
C €V, then P[u](x) — 0 as x — T unrestrictedly in B.

3. Suppose that 4 € M(S) and T € S. Show that
(1 -7 Pp)(rT) - 2u({ThH
asr — 1.

4. Suppose that u is harmonic functionon Band 0 < v < s < 1.

(a) Prove that ||[u,ll; = llusli; if and only if there is a constant
¢ such that culsp is positive.

(b) Suppose 1 < p < c. Prove that [|u,li, = llusll, if and only
u is constant.

5. (a) Give an example of a normed linear space and a weak* con-
vergent sequence in its dual space that is not norm-bounded.

(b) Prove that in the dual space of a Banach space, every weak*
convergent sequence is norm-bounded. (Hint: Use the uni-
form boundedness principle.)

6.  Itis easy to see thatif uj — p in M(S), then P(u;] — P[u] uni-
formly on compact subsets of B. Prove that the conclusion is still
valid if we assume only that p; — p weak* in M(S).

7. Suppose that (u;) is a norm-bounded sequence in M(S) such
that (P[u;]) converges pointwise on B. Prove that (u;) is weak*
convergent in M(S).

8. Prove directly (that is, without the help of Theorem 6.13) that
h? (B) is a Banach space for every p € [1, »].

9, Prove that a real-valued function on B belongs to h1(B) if and
only if it is the difference of two positive harmonic functions
on B.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Let T € S. Show that P(-,T) € h?(B) for p = 1 but not for any
p>1

Suppose 1 < p < o and u € h?(B). Prove that
(1 - Ix)™DPy(x) - 0

as |x| — 1.

A family of functions F ¢ L1(S) is said to be uniformly integrable
if for every & > 0, there exists a § > O such that [;|fldo < ¢
whenever f € F and ¢ (E) < 6. Show that a harmonic function
u on B is the Poisson integral of a function in L (S) if and only
if the family {u, : » € [0,1)} is uniformly integrable.

Prove that there exists u € h!(B) such that u(B n B(L,¢)) =R
forall T € S, € > 0. (Hint: Let u = P{u], where p is a judiciously
chosen sum of point masses.)

Suppose that p € [1,~) and u is harmonic on B. Show that
u € h?(B) if and only if there exists a harmonic function v on B
such that |u|?” < v on B.

Suppose n > 2. Show that if u is positive and harmonic on
{x € R":|x| > 1}, then there exists a unique positive measure
u € M(S) and a unique nonnegative constant ¢ such that

u(x) = Po[pl(x) + c(1 - |x]>™)

for |{x| > 1. (Here P, is the external Poisson kernel defined in
Chapter 4.) State and prove an analogous result for the case
n=2.

Let Q denote By minus the x3-axis. Show that every bounded
harmonic function on Q extends to be harmonic on Bs.

Suppose € € S and f is positive and continuous on S \ {T}.
Need there exist a positive harmonic function u on B that extends
continuously to B\ {C} withu = f on S\ {C}?

Suppose E ¢ S and o (E) = 0. Prove that there exists a positive
harmonic function u on B such that u has nontangential limit oo
at every point of E.
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19.

20.

21.

22.

23.

24,

25.

Let F denote the family of all positive harmonic functions u
on B such that u(0) = 1. Compute inf{u(N/2) : u € F} and
sup{u(N/2) : u € F}. Do there exist functions in F that attain
either of these extreme values at N/27? If so, are they unique?

Find all extreme points of ‘F, where F is the family defined in the
previous exercise. (A function in ¥ is called an extreme point of
F if it cannot be written as the average of two distinct functions
in F.)

Show that

1 - |x[?|y|?
1-2x -y +|x|2|yl2)ni2

LP(x,m(y,c) 4o (@) = -

for all x,y € B.

Prove that if u € h2(B), u(0) = 0, and ||ullz < 1, then
1+ ]x]2
WO\ Tt !

Show that the bound on [(Vu)(0)| given by Theorem 6.26 can
fail if the requirement that u be real valued is dropped.

for all x € B.

Show that )
L[, s
Us(|xIN) = > [1 T |Xl2]
and
_ 2 (1+|x]*)?%arctan|x| - |x|(1 - |x]?)
UallxIN) = o2 XL+ 1X1)

(Hint: Evaluate the Poisson integrals that define Us(/x|[N) and
Us(1x|N), using an appropriate result from Appendix A. Be pre-
pared for some hard calculus.)

Suppose u is harmonic on B and Y ;,_q Pm is the homogeneous
expansion of u about 0. Prove that

el = (éo | 1pmiac)

1/2
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26.

27.

28.

29.

30.

31

Schwarz Lemma for h?-functions: Prove that if u is harmonic
on B and [|ullz < 1, then |Vu(0)| < y/n. Find all functions for
which this inequality is an equality.

For a smooth function u on B, we define the radial derivative Dru
by setting Dru(x) = x - Vu(x) for x € B. Show that there exist
positive constants ¢ and C, depending only on the dimension n,
such that

1/2
clulle < 1)1+ (| 1D~ XD AV0) < Clulie

for all u harmonic on B. (Hint: Use the homogeneous expansion
of u, Exercise 29 in Chapter 1, and polar coordinates.)

(@) Find a measure p € M(S) with M[u] ¢ L1(S).

(b) Can the measure u in part (a) be chosen to be absolutely
continuous with respect to o?

Let u € M(S). Show that if

p(k(T,8) _
I cic.0)) ~L€C
then lim,—; P[u](rT) = L. (Suggestion: Without loss of general-
ity, T = N. For n near N, approximate P(¥N, n) as in the proof of
Theorem 6.31.)

Let f € L1(S). A point T € S is called a Lebesgue point of f if

. 1 )
fm s |1 - f@)1do -0,

Show that almost every € € S is a Lebesgue point of f. (Hint:
Imitate the proof of Theorem 6.39.)

For u a function on B, let u*(T) denote the nontangential limit
of u at € € S, provided this limit exists. Show thatif 1 < p <
and u € h?(B), then u = P[u*], while this need not hold if
u € h(B).
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32.

Let f(z) = e1+?/0-2) for z € B,. Show that the holomorphic
function f has a nontangential limit with absolute value 1 at
almost every point of S, even though f is unbounded on B;. Ex-
plain why this does not contradict h?-theory.



CHAPTER 7

Harmonic Functions

on Half-Spaces

In this chapter we study harmonic functions defined on the upper
half-space H. Harmonic function theory on H has a distinctly differ-
ent flavor from that on B. One advantage of H over B is the dilation-
invariance of H. We have already put this to good use in the section
Limits Along Rays in Chapter 2. Some disadvantages that we will need
to work around: ¢H is not compact, and Lebesgue measure on 0H is
not finite.

Recall that we identify R™ with R"*~! x R, writing a typical point
z € R"as z = (x,y), where x € R*! and y € R. The upper half-
space H = Hy, is the set

H={(x,y)eR":y >0}

We identify R*! with R"*~! x {0}; with this convention we then have
0H =R 1,

For u a function on H and y > 0, we let u,, denote the function
on R"*"1 defined by

Uy (x) = ulx,y).

The functions u, play the same role on the upper half-space that the
dilations play on the ball.

143
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The Poisson Kernel
for the Upper Half-Space

We seek a function Py on H x R®~! analogous to the Poisson kernel
for the ball. Thus, for each fixed t € R*~1, we would like Py (-, t) tobe a
positive harmonic function on H having the appropriate approximate-
identity properties (see 1.20).

Fix t = O temporarily; we will concentrate first on finding Py (-, 0).
Taking our cue from Theorem 6.19, we look for a positive harmonic
function on H that extends continuously to H \ {0} with boundary val-
ues 0 on R*"! \ {0}. One such function is u(x, y) = y, but obviously
this is not what we want—u doesn’t “blow up” at 0 as we know Py (-,0)
should. On the other hand, u does blow up at . Applying the Kelvin
transform, we can move the singularity of « from « to 0 and arrive at
the desired function.

Thus, with u(x, y) = y, let us define

v = K[u]

on H, where K is the Kelvin transform introduced in Chapter 4. A
simple computation shows that

Y

VO = s

for all (x,y) € H. Because the inversion map preserves the upper
half-space and the Kelvin transform preserves harmonic functions, we
know without any computation that v is a positive harmonic function
on H.

The function v has the property that vy (x) = y~ "Dy, (x/y) for
all (x,y) € H. Therefore the change of variables x — yx’ shows that
Jan-1 vy (x)dx is the same for all y > 0. (Here dx denotes Lebesgue
measure on R""1) Because [gn-1 Vi(Xx)dx < oo (verify using polar
coordinates—see 1.5), there exists a positive constant ¢, such that

Y
Cn JR"'I Vy(x) dx = Cn JR""I (IXIZ +y2)n_/2 dx =1

for all ¥ > 0. We will show that ¢, = 2/(nV(By)) at the end of this
section.
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The function ¢,V has all the properties we sought for Py(-,0). To
obtain Py (-,t), we simply translate ¢, v by t. Thus we now make our
official definition: for z = (x,y) € H and t € R*"!, set

y
"(lx - t]2 + y2yni2z’

Pylz,t)=c

The function Py is called the Poisson kernel for the upper half-space.
Note that Py can be written as

Y

PH(Z, t) = Cnm.

In this form, Py reminds us of the Poisson kernel for the ball. (If
(x,y) € H, then v is the distance from (x, ¥) to dH; analogously, the
numerator of the Poisson kernel for B is roughly the distance to éB.)

The work above shows that Py (-, t) is positive and harmonic on H
for each t € R*~1. We have also seen that

7.1 J Py(z,t)dt =1
Rn—l

for each z € H. The next result gives the remaining approximate-
identity property that we need to solve the Dirichlet problem for H.

7.2 Proposition: For every a € R"*™! and every § > 0,

J Py(z,t)dt - 0
it-al>8
asz — a.

We leave the proof of Proposition 7.2 to the reader; it follows without
difficulty from the definition of Py.

Let us now evaluate the normalizing constant ¢,. We accomplish
this with a slightly underhanded trick:

1 _2 (™ 1 y

Cn T Io 1+ 2 J-Rn—l (Ix|2 + y2)ni2 dxdy
_2 Y
T .[H (1 + y2)(Ix|2 + y2)ni2 dxdy

_ 2nV(B) J +L)°° Cn dr do(2)

T 1+ (rcy)?

I

nV(B)/2,
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where the third equality is obtained by switching to polar coordinates
(see 1.5) and S* denotes the upper half-sphere.

The Dirichlet Problem
for the Upper Half-Space

For p a complex Borel measure on R""1, the Poisson integral of y,
denoted by Pylu], is the function on H defined by

Palu)(2) = | Putz.t)du).

We can verify that Py[u] is harmonic on H by differentiating under the
integral sign, or by noting that Py[u] satisfies the volume version of
the mean-value property on H.

We let M(R""1) denote the set of complex Borel measures on R*~1,
With the total variation norm || ||, the Banach space M(R""!) is the dual
space of Co(R"1), the space of continuous functions f on R*~1 that
vanish at « (equipped with the supremum norm).

For 1 < p < o, LP(R""!) denotes the space of Borel measurable
functions f on R™"! for which

1/p

1 = (], 1fG0IPax) T <o

L®(R"1) consists of the Borel measurable functions f on R*"! for
which || flle < oo, where || f]l» denotes the essential supremum norm
on R"~! with respect to Lebesgue measure.

Recall thaton S, if p > g then LP(S) c L4(S). OnR*},if p £ q
then neither of the spaces L? (R*"1), L4(R""1) contains the other. The
reader should keep this in mind as we develop Poisson-integral theory
in this new setting.

The Poisson integral of f € LP(R"*1), for any p € [1, «], is the
function Py[f] on H defined by

PalfI2) = | | FOPutz D dt.

Because Pg(z,-) belongs to L4(R™"!) for every q € [1, «], the inte-
gral above is well-defined for every z € H (by Hoélder’s inequality). An
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argument like the one given for Py[u] shows that Py[ f] is harmonic
on H.

We now prove a result that the reader has surely already guessed.

7.3  Solution of the Dirichlet Problem for H: Suppose f is continu-
ous and bounded on R"~!. Define u on H by

u(z)_{PH[fuz) fzeH
L f2 if ze R 1,

Then w is continuous on H and harmonic on H. Moreover,

lul < |l flle
on H.

PROOF: The estimate |u| < || fll» on H is immediate from 7.1. We
already know that u is harmonic on H.

The proof that u is continuous on H is like that of Theorem 1.17.
Specifically, let a € R*~1 and § > 0. Then

) - fla)l = || (0~ f@)Pazt)dt
< j L£(8) - F(@)| Pu(z, t) dt
It-al<é

+ 2anmj| BPH(z,t)dt

t-al>
for all z € H. If 6 is small, the integral over {|t — al < 6} will be small
by the continuity of f at a and 7.1. The integral over {|t — a| > &}
approaches 0 as z — a by Proposition 7.2. n

In the special case where f is uniformly continuous on R*~!, we can
make a stronger assertion:

7.4  Theorem: If f is bounded and uniformly continuous on R*!
and u = Py[f1], thenu,, — f uniformly onR"*~1 as y - 0.

PROOF: The uniform continuity of f on R®~! shows that the esti-
mates in the proof of Theorem 7.3 can be made uniformly in a. ]
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See Exercise 4 of this chapter for a converse to Theorem 7.4.
The next result follows immediately from Corollary 2.2 and Theo-
rem 7.3; we state it as a theorem because of its importance.

7.5 Theorem: Suppose u is a continuous bounded function on H that
is harmonic on H. Then u is the Poisson integral of its boundary values.
More precisely,

Uu = PH[u‘Rn-l]

onH.

We now take up the more general Poisson integrals defined earlier.
Certain statements and proofs closely parallel those in the last chapter;
we will be brief about details in these cases.

7.6  Theorem: The following growth estimates apply to Poisson inte-
grals:

(@ If ue MR™1) and u = Py(u], then lluy (i, < llult forall y > 0.

(b) Supposel < p < . If f € LPR™ 1) and u = Py[f], then
luylly < Ifllp forall y > 0.

PROOF: The identity

7.7 PH((X,y),t)=PH((t,y)-x)1

valid for all x,t € R"*"! and y > 0, is the replacement for 6.5 in this
context. The rest of the proof is the same as that of Theorem 6.4. =

The next result is the upper half-space analogue of Theorem 6.7.
Here the noncompactness of 0H = R™"! forces us to do a little extra
work.

7.8  Theorem: Suppose that1 < p < «. If f € LP(R"!) and
u = Py(fl, thenfluy, - fll, ~0asy - 0.

PROOF: We first prove the theorem for f € C.(R"*"1), the set of con-
tinuous functions on R™®~! with compact support. Because C.(R"™1)
is dense in LP(R®!) for 1 < p < o, the approximation argument
used in proving Theorem 6.7 (together with Theorem 7.6) will finish
the proof.
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Let f € C.(R™ 1), and set u = Pgy[f]. Choose a ball B(0,R) that
contains the support of f. Because f is uniformly continuous on R*1,
Theorem 7.4 implies that u, — f uniformly on R*~! as y — 0. Thus
to show that lu, — fll, — 0, we need only show that

7.9 j luy ()P dx — 0
Ix|>2R
asy — 0.
For x| > 2R, we have
Cny
x)|P sj )P 1t dt
S S
(x| ~R)"

where C = cpll fll% Va1 (B(0,R)) and the first inequality follows from
Jensen’s inequality. It is now easy to verify 7.9 by integrating in polar
coordinates (1.5). n

As in the last chapter, weak* convergence replaces norm conver-
gence for Poisson integrals of measures and L®-functions.

7.10 Theorem: Poisson integrals have the following weak* conver-
gence properties:

(@ If ue MR"!) and u = Pylul, then u, — u weak* in M(R"1)
asy — 0.

(b) Iffel*®R"Y)yandu = Pyl f], thenu, — f weak*inL®(R""1)
asy — Q.

PROOF: The Banach spaces M(R"™"!) and L*(R""1) are, respectively,
the dual spaces of Co(R™"1) and L1 (R""1). Note that if g € Co(R""1),
then g is uniformly continuous on R”*~!, and therefore (Py(gl)y — g
uniformly on R*! as y — 0 (by Theorem 7.4). The proof of Theo-
rem 6.9 can thus be used here, essentially verbatim. Again, the identity
7.7 replaces 6.5. u

If f is continuous and bounded on R”~I, then there is a function on
the closed half-space H that is harmonic on H and agrees with f on the
boundary R"~!; see 7.3. What happens if we drop the assumption that
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f is bounded? Without any growth estimate on f, we cannot expect
to find a solution to the Dirichlet problem with boundary data f by
integrating f against some kernel as in 7.3. Nevertheless, the following
theorem asserts that a solution exists with just the assumption that
f is continuous. We are not asserting any sort of uniqueness for the
solution, because a multiple of ¥ can be added to any solution to obtain
another solution.

7.11  Theorem: Suppose f € C(R""1). Then there exists u € C(H)
such that u is harmonic on H and ulgr-1 = f.

PROOF: We will construct a sequence of functions ug, u1,... in C(H)
such that for each k the following hold:

(@)  ug is harmonic on H;

b))  ur(x,0) = f(x) for all x € R*" ! with |x]| < k;

1
ok
This will prove the theorem, because (c) implies that the sequence
(ug) converges uniformly on each compact subset of H to a function
u € C(H); from (a) and Theorem 1.23 we have that u is harmonic on H;
from (b) we have that u|g=-1 = f.

We construct the sequence (uy) inductively, starting by taking ug
to be the constant function whose value is f(0). Now fix k and suppose
that we have uy € C(H) satisfying (a) and (b) above. To construct Ui,
let w € C(H) be such that w is harmonic on H and w(x,0) = f(x)
for all x € R*! with |x] < k + 1 (to see that such a w exists, extend
Slk+1)8,., to abounded continuous function on R*~! and then use 7.3).
Now

(©  [(ur+1 —ur)(x,y)| < = for all (x,y) € H with |(x,y)| < k/2.

(Ww-u)(x,0) =0
for all x € R™*"! with |x| < k. Thus by the Schwarz reflection principle
(4.12), (W — ux) lypng extends to a harmonic function v on kB. The
proof of 4.12 shows that
7.12 vix,y)=-v(x,~y)

for all (x,y) € kB.
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The expansion of v into an infinite sum of homogeneous harmonic
polynomials converges uniformly to v on (k/2)B (see 5.34). Taking an
appropriate partial sum, we conclude that there is a harmonic polyno-
mial p such that

(v = p)(x, )] < —2%

for all (x,y) € (k/2)B. Note that p(x,0) = 0 for all x € R"*"!, because
7.12 implies that the power series expansion of v contains only odd
powers of y.

Now let U1 = w — plg. Then ug.1 € C(H) and 1y is harmonic
on H. Furthermore, uy41(x,0) = f(x) forall x € R* ! with |x| < k+1.
Finally, if (x,y) € H with |(x, y)| < k/2, then

[{(Uke1 — U (X, Y) = (W - p —up)(x,y)I

= [(v - p)x, ¥
1
<ok
and thus uy.; has all the desired properties. ]

The Harmonic Hardy Spaces h? (H)

For p € [1, =], we define the harmonic Hardy space h? (H) to be the
normed vector space of functions © harmonic on H for which

lullpe = sup luyll, < oo.
y>0

Note that h®(H) is simply the collection of bounded harmonic func-
tions on H, and that

lullp> = sup lu(z)|.
zeH

We leave it to the reader to verify that h? (H) is a normed linear space
under the norm || ||xr.

As the reader should suspect by considering what happens in the
ball, if u € h”(H) then the norms |lu,ll, increase as y — 0 to f[ulips.
To prove this, we need to do some extra work because of the noncom-
pactness of dH = R™~1. We begin with the following result.



152 CHAPTER 7. Harmonic Functions on Half-Spaces

7.13 Theorem: Let p € [1, ). Then there exists a constant C, de-
pending only on p and n, such that

Cllullne

= T

for all w € h? (H) and all (x,y) € H. In particular, every u € h? (H)
is bounded on H + (0, y) for each y > 0.

PROOF: Let (xg, Yo) € H, and let w denote the open ball in R™ with
center (xg, yo) and radius yq/2. The volume version of the mean-value
property, together with Jensen's inequality, shows that

1
Va(w)

2" P4
= —— Va.
Vn(B)yo™ jwlul "

7.14 [u{xo, Yo)I? < J [ul? dv,
w

Setting Q = {(x,y) € H: y9/2 <y < 3y0/2}, we have
J Iul”ansj [u|? dVyn
w Q

3y0/2
=j [ lu(x, )P dxdy
yo/2 JRML

< yo(llullne)?P.

This estimate and 7.14 give the conclusion of the theorem after taking
p't roots. n

Theorems 7.5 and 7.13 show thatif p € [1, o] and u € h&(H), then
for each v > 0 we have

7.15 u(z +(0,y)) = Pyluyl(2)

forallz € H.

The next corollary is not entirely analogous to Corollary 6.6 because
the conclusion that ||u, ||, increases as y decreases is not true for an
arbitrary harmonic function on H. For example, if u(x,y) = y - 1,
then {luill, = 0 while luyll, =  for all ¥ # 1. Thus we have the
hypothesis in the next corollary that u € h? (H).
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7.16 Corollary: Supposel < p < < and u € h?(H). Then

“uyg ”p = ”u)q ”p

whenever 0 < y; < y,. Furthermore,

lullpe =§£% Huylly.

PrOOF: The idea is the same as in the proof of Corollary 6.6. Specif-
ically, if 0 < y; < y, then

”uyzllp = “P[uyl]yg—ylnp = ”uylnp,

where the equality follows from 7.15 and the inequality follows from
Theorem 7.6(b).

The formula for |||, now immediately follows from the definition
of |lully» and the first part of the corollary. "

The next theorem is the analogue for the half-space of Theorem 6.13
for the ball. The results we have proved so far in this chapter allow the
proof from the ball to carry over directly to the half-space, as the reader
should verify.

7.17 Theorem: The Poisson integral induces the following surjective
isometries:
(@  The map u — Py[u] is a linear isometry of M(R™"1) onto h! (H).

(b) Forl < p < o, the map f — Py{f] is a linear isometry of
LP(R™ 1) onto h? (H).

From the Ball to the Upper Half-Space,
and Back

Recall the inversion map x — x* defined in Chapter 4. This map
takes spheres containing 0 onto hyperplanes, and takes the interiors
of such spheres onto open half-spaces. Composing the inversion map
with appropriate translations and dilations will give us a one-to-one
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map of B onto H. There are many such maps; the one we choose below
has the advantage of being its own inverse under composition.

LetN = (0,1) and S = (0, —1) (here 0 denotes the origin in R*~1); we
can think of N and $ as the north and south poles of the unit sphere S.
Now define &: R" \ {§} — R"\ {S} by

$(z) =2(z-9)* +S.

It is easy to see that ¢ is a one-to-one map of R" \ {8} onto itself. We
can regard & as a homeonforphism of R" U {0} onto itself by defining
®(S) = o and ®(») = S. The reader may find it helpful to keep the
following diagram in mind as we proceed.

e —» *N
3 P —

& maps B onto H and H onto B.

The next result summarizes the basic properties of .

7.18 Proposition: The map & has the following properties:

(@ ®(®(z2)) =z forall zeR"U {w};

(by @ is a conformal, one-to-one map of R™ \ {8} onto R™ \ {S};
(¢) & maps B onto H and H onto B;

(d) & maps S\ {S} ontoR" ! and R"*1 onto S \ {S}.
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PrROOF: The proof of (a) is a simple computation.

In (b), only conformality needs to be checked. Recalling that the
inversion map is conformal (Proposition 4.2), we see that ¢ is the com-
position of conformal maps, and hence is itself conformal.

We prove (c) and (d) together. Noting that ®(S) = «, we know that
® maps S\ {S} onto some hyperplane. Because the inversion map pre-
serves the (0, y)-axis, the same is true ®. The conformality of ¢ thus
shows that (S \ {S}) is a hyperplane perpendicular to the (0, y)-axis.
Since ®(N) = 0, we must have ®(S \ {S}) = R"!, It follows that ®(B)
is either the upper or lower half-space. Because ®(0) = N, we have
&(B) = H, as desired. a

We now introduce a modified Kelvin transform X that will take har-
monic functions on B to harmonic functions on H and vice-versa. Given
any function u defined on a set E ¢ R" \ {S}, we define the function
XK[ulond(E) by

Kiul(z) = 202121z ~ §|>" "y (®(2)).

Note that when n = 2, K[u](z) = u(®(2)).
The factor 2("~2/2 ig included so that X will be its own inverse.
That is, we claim
K(Kull=u

for all u as above, a computation we leave to the reader.
The transform X is linear—if u, v are functions on E and b, ¢ are
constants, then

Kbu +cv] =bK[ul + cK[v]

on &(E).
Finally, K preserves harmonicity. The real work for the proof of
this was done when we proved Theorem 4.7.

7.19 Proposition: If QO c R™\ {S}, then u is harmonic on Q if and
only if K{u] is harmonic on ®(Q).

PROOF: Because X is its own inverse, it suffices to prove only one
direction of the theorem. So suppose that © is harmonic on Q. Define
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a harmonic function v on %(Q - 8) by v(z) = u(2z + S). By Theo-
rem 4.7, the Kelvin transform K{v] is harmonic on 2(Q2 - S)*, and thus
K[v](z - S) is harmonic on 2(Q - S)* + S = $(Q). But, as is easily
checked, K[v](z - S) = 2@-M/2K[u](z), so that K [u] is harmonic on
®(Q), as desired. ]

Positive Harmonic Functions on the
Upper Half-Space

Because the modified Kelvin transform X takes positive functions to
positive functions, Proposition 7.19 shows that X preserves the class
of positive harmonic functions. Thus u is positive and harmonic on H
if and only if K[u] is positive and harmonic on B. This will allow us to
transfer our knowledge about positive harmonic functions on the ball
to the upper half-space. For example, we can now prove an analogue
of Theorem 6.19 for the upper half-space.

7.20 Theorem: Let t € R""L, Suppose that u is positive and harmonic
on H, and that u extends continuously to H\ {t} with boundary values 0
on R*~1\ {t}. Suppose further that

1(0,y)
y

7.21 -0 asy — o,

Then u = cPy(-,t) for some positive constant c.

PrOOF: The function K[u] is positive and harmonic on B. Thus
by 6.19,
Klul = Plu]

for some positive y € M(S), where as usual P denotes the Poisson
kernel for the ball. Our hypothesis on u implies that K[u] extends
continuously to B\ {S,®(t)}, with boundary values 0 on S \ {S,®(¢)}.
The argument used in proving Theorem 6.19 then shows that y is the
sum of point masses at § and ®(¢).

An easy computation gives

1+1’)

_ n(n=-2)/2 _ 2-n s
K[ul(rs) =2 (1-7) ”(0'1—r
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foreveryr € [0,1). Now from 7.21 we see that (1-7)"" 1K [ul(*S) — 0
as r — 1, and this implies p({S}) = 0 (see Exercise 3 in Chapter 6).
Thus p is a point mass at ®(t), and therefore K{u] is a constant
times P(-,®(t)). Because Py(-,t) also satisfies the hypotheses of The-
orem 7.20, K[Py(-,t)] is a constant times P(-,®(t)) as well. Thus

Klul = cX([Py(-,t)]

for some positive constant c. Applying X to both sides of the last
equation, we see that the linearity of X gives the conclusion of the
theorem. n

We can think of the next result as the “t = «” case of Theorem 7.20.

7.22 Theorem: Suppose that u is positive and harmonic on H and that
u extends continuously to H with boundary values 0 onR"~1. Then there
exists a positive constant ¢ such that u(x,y) =cy forall (x,y) € H.

PrOOF: The function X [u] is positive and harmonic on B, extends
continuously to B \ {S}, and has boundary values 0 on S \ {S}. By The-
orem 6.19, K[u] is a constant times P(-,S). Because the same is true
of X[v], where v(x,y) = y on H, K{ul is a constant times KX[v]. As
in the proof of the last theorem, this gives us the desired conclusion. =

The modified Kelvin transform X allows us to derive the relation
between P and Py, the Poisson kernels for B and H, with a minimum
of computation.

7.23 Theorem:
Py(z,t) = 2" 2c, (1 + [£]?)"™2|z = S|27"P(®(2), B (1))
forallze Handt € R*1,

PROOF: Fix t € R"*"1, and let u(z) denote the right side of the equa-
tion above that we want to prove. Then u is positive and harmonic on
H, and it is easy to check that u extends continuously to H \ {t} with
boundary values 0 on R"*~1\ {t}. We also see that u(0,y)/y — 0 (with
plenty of room to spare) as v — . Thus by Theorem 7.20, u is a con-
stant multiple of Py(-,t). Evaluating at z = N now gives the desired
result. n
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We turn now to the problem of characterizing the positive harmonic
functions on H. We know that if u is a finite positive Borel measure on
R™-1 then Py[u] is a positive harmonic function on H. Unlike the case
for the ball, however, not all positive harmonic functions on H arise in
this manner. In the first place, Py{u] defines a positive harmonic func-
tion on H for some positive measures u that are not finite—Lebesgue
measure on R"~1, for example. Secondly, the positive harmonic func-
tion y is not the Poisson integral of anything that lives on R*~1,

Let us note that if u is any positive Borel measure on R*~1, then

7.24 Palil(2) = |, Patzt) dpu(t

is well-defined as a number in [0, «] for every z € H. We claim that
7.24 defines a positive harmonic function on H precisely when

au(t) -
7.25 JRH RTBE <

To see this, note that if z € H is fixed, then Py(z,t), as a function
of t, is bounded above and below by positive constant multiples of
(1 + |t|?)-™/2, Thus if 7.24 is finite for some z € H, then it is finite
for all z € H, and this happens exactly when 7.25 occurs. In this case
Py[p] is harmonic on H, as can be verified by checking the volume
version of the mean-value property.

We now state the main result of this section.

7.26 Theorem: If u is positive and harmonic on H, then there exists
a positive Borel measure y on R*! and a nonnegative constant ¢ such
that

u(x,y) = Pululx,y) +cy
forall (x,y) € H.

The main idea in the proof of this result is the observation that if
u is positive and harmonic on H, then X[u] is positive and harmonic
on B, and hence is the Poisson integral of a positive measure on S. The
restriction of this measure to S \ {S} gives rise to the measure y, and
the mass of this measure at S gives rise to the term cy.

Before coming to the proof of Theorem 7.26 proper, we need to
understand how measures on S pull back, via the map @, to measures
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on R"*"!, For any positive v € M(S), we can define a positive measure
vo® € M(R" 1) by setting (v o ®)(E) = v(®(E)) for every Borel set
E ¢ R*"1, We then have the following “change of variables formula”,
valid for every positive Borel measurable function f on § \ {S}:

727 L\{S} fav=[ (fe@rdro).

The last equation is easy to verify when f is a simple function on S\ {S};
the full result follows from this by the monotone convergence theo-
rem.

PROOF OF THEOREM 7.26: If u is positive and harmonic on H, then
XK[u] is positive and harmonic on B, and thus X[u] = P[A] for some
positive measure A € M(S). Define v € M(S) by dv = X (s, dA. We
then have

Klul =Pv]+A({S}HP(-,9).

By the linearity of X,

u = K[P[v]] + A({SH K[P(-,9)].
From Theorem 7.22 it is easy to see that K[P(-,S)] is a constant multi-
ple of y on H. The proof will be completed by showing that X{P[v]] =

Py (] for some positive Borel measure p on R*1,
Because v({S}) =0,

P Z) = p Z, dv E
for all z € B. ThuS by ;27,

K[PIV]](2) = L\{S} 2(-2)12|5 _ §12-1p(d(2), T) dv(T)

- Ln_l 2n-B21z —§12"P(2(2), 9 (1)) d(v ° @) (t)
for every z € H. In the last integral we may multiply and divide by

Ww(t), where @(t) = 2=2/2¢, (1 +1{t|2)"™2, Withdp = (1/@) d(v e d),
we then have K[P[v]] = Py[u], as desired. n
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Nontangential Limits

We now look briefly at the Fatou Theorem for the Poisson integrals
discussed in this chapter. Rather than tediously verifying that the maxi-
mal function arguments of the last chapter carry through to the present
setting, we use the modified Kelvin transform X to transfer the Fatou
Theorem from B to H.

The notion of a nontangential limit for a function on H was defined
in Chapter 2; the analogous definition for a function on B was given
in Chapter 6. We leave it to the reader to verify the following asser-
tion, which follows from the conformality of the map ¢: a function u
on H has a nontangential limit at t € R"*"! if and only if X[u] has a
nontangential limit (within B) at ®(t).

Another observation that we leave to the reader is that the map ¢
preserves sets of measure zero. More precisely, a Borel set E C R*71
has Lebesgue measure 0 if and only if (E) has o-measure 0 on §; this
follows easily from the smoothness of &.

In this chapter, the term “almost everywhere” will refer to Lebesgue
measure on R*~1. Putting the last two observations together, we see
that a function © on H has nontangential limits almost everywhere
on R™* ! if and only if K[u] has nontangential limits o-almost every-
where on S.

The next result is the Fatou theorem for Poisson integrals of func-
tions in LP (R"*"1).

7.28 Theorem: Let p € [1,]. If f € LP(R™ 1), then Py[f] has
nontangential limit f(x) at almost every x € R*"1,

PROOF: Because every real-valued function in L? (R""!) is the dif-
ference of two positive functions in L? (R*"!), we may assume that
f = 0. The function u = Py[ f] is then positive and harmonic on H,
and thus KX [u] is positive and harmonic on B. By 6.15 and 6.44, K [u]
has nontangential limits o-almost everywhere on §. As observed ear-
lier, this implies that « has a nontangential limit g(x) for almost every
x € R

We need to verify that f = g almost everywhere. For p < o, The-
orem 7.8 asserts that |lu, — fll, — 0 as ¥ — 0; thus some subse-
quence (uy, ) converges to f pointwise almost everywhere onR""!, and
hence f = g. For p = o, Theorem 7.10(b) shows that u, — f weak*
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in L*(R""!) as y — 0. But we also have u, — g weak* in L*(R"*!) by
the dominated convergence theorem, and so we conclude f = g. |

The theorem above shows, by Theorem 7.17, that if u € h? (H) and
p € (1, ], then u has nontangential limits almost everywhere on R"*~1,
The next theorem gives us the same result for h! (H) as a corollary.

7.29 Theorem: Suppose u € M(R""1) is singular with respect to
Lebesgue measure. Then Py{u} has nontangential limit 0 almost ev-
erywhere on R L,

PROOF: We may assume that u is positive. By analogy with 7.27, we
define pod € M(S) by setting (uo®)(E) = u{®(E\ {S})) for every Borel
set E C §. We then have

X[P[u o ®]] = Pulv],

where dv = (1/¢) dy and ¢ is as in the proof of 7.26. Because u is
singular with respect to Lebesgue measure on R*"!, 1 o ¢ is singular
with respect to 0. By 6.42, P{u o ®] has nontangential limit 0 almost
everywhere on S. The equation above tells us that Py[v] has nontan-
gential limit 0 almost everywhere on R?~1, From this we easily deduce
that Py[u] has nontangential limit O almost everywhere onR*"l. =

The Local Fatou Theorem

The Fatou Theorems obtained so far in this book apply to Poisson
integrals of functions or measures. In this section we prove a different
kind of Fatou theorem—one that applies to arbitrary harmonic func-
tions on H satisfying a certain local boundedness condition.

We will need to consider truncations of the cones I'y(a) defined in
Chapter 2. Thus, for any h > 0, we define

IMa)={(x,y)eH:|x—al <ayand y < h}.

A function u on H is said to be nontangentially bounded at a € R*!
if u is bounded on some I'*(a). Note that if u is continuous on H, then
u is nontangentially bounded at a if and only if u is bounded on T} (a)
for some o > 0. We can now state the main result of this section.
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— Rn--l

The truncated cone T (a).

7.30 Local Fatou Theorem: Suppose that u is harmonic on H and
E c R"*"1 js the set of points at which u is nontangentially bounded.
Then u has a nontangential limit at almost every point of E.

A remarkable feature of this theorem should be emphasized. For
each a € E, we are only assuming that u is bounded in some I, ,f}(a); in
particular, o can depend on a. Nevertheless, the theorem asserts the
existence of a set of full measure F C E such that « has a limit in [ (a)
for every a € F and every o > 0.

The following lemma will be important in proving the Local Fatou
Theorem. Figure 7.32 may be helpful in picturing the geometry of the
region ) mentioned in the next three lemmas.

7.31 Lemma: Suppose E ¢ R*"! s Borel measurable, « > 0, and

Q= {JIka).

ackE

Then there exists a positive harmonic function v on H such that v > 1
on (6Q) n H and such that v has nontangential limit 0 almost every-
where on E.
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PROOF: Define a positive harmonic function w on H by
w(x,y) = PH[XEC](va) +,

where Xgc denotes the characteristic function of E¢, the complement
of E in R®"1. By Theorem 7.28, w has nontangential limit 0 almost
everywhere on E.

F E E E

7.32 Q= xa.
acE

We wish to show that w is bounded away from 0 on (3Q) n H. Be-
cause w(x, 1) = 1, wehave w > 1 on the “top” of ). Next, observe that
(x,y) belongs to['y(a) if and only if a € B(x, x:y) (where B(x, ay) de-
notes the ball in R"~! with center x and radius «xy). So if (x,y) € 9Q
and 0 < y < 1, then (x, ¥) ¢ Ix(a) for all a € E (otherwise (x, y) € Q),
giving B(x, oty) C E€. Therefore

PulXpelGe,y) = | eny dt
HIRE O YD = | U — £12 + y2ynr2
> tnY dt
I,y (Ix = t|2 + y2)ni2
- oy

JBo,w (JE12 + 1)n/2 77
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Denoting the last expression by c4 (a constant less than 1 that depends
only on « and n), we see that if v = w/cg, then v satisfies the conclu-
sion of the lemma. [ ]

The crux of the proof of 7.30 is the following weaker version of the
Local Fatou Theorem.

7.33 Lemma: Let E ¢ R"*"! be Borel measurable, let « > 0, and let

Q= ia).

acE

Suppose u is harmonic on H and bounded on Q. Then for almost every
a € E, the limit of u(z) exists as z — a withinTy(a).

PROOF: Because every Borel set can be written as a countable union
of bounded Borel sets, we may assume E is bounded. We may also
assume that u is real valued.

Because u is continuous on H and E is bounded, we may assume
that |u| < 1 on the open set

Q' = |Jia).

ack

Choose a sequence (yi) in the interval (0, 1) such that yx — 0, and
set Ex = [Q - (0, yx)] n R™*"L. Each E is an open subset of R*"! that
contains E. (At this point we suggest the reader start drawing some
pictures.)

For x € R*"1, define

Se(x) = Xg, (x)ulx, yi).

Because (x, yx) € Q if and only if x € E, we have [fx] < 1 on R*"!
for every k. The sequence (fx), being norm-bounded in L (R™"!), has
a subsequence, which we still denote by (fk), that converges weak* to
some f € L®(R""1),

Now each fi is continuous on E; (because Ex is open), and thus
Py [ fr] extends continuously to H U Ej (see Exercise 17(a) of this chap-
ter). The function uy given by

uk(x,y) = Pyl fil(x,y) —u(x,y + )
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is thus harmonic on H and extends continuously to H U Ex, with uy = 0
on Fy. In particular, ux is continuous on Q with u = 0 on E. Further-
more, because Q + (0, yx) € Q', we have |ux| <2 on Q.

Now let v denote the function of Lemma 7.31 with respect to .
Then liminf,_30(2v — ug}(z) = 0. By the minimum principle (1.10),
2V — Ug = 0 on Q. Letting k — o, we then see that 2v - (Py[f]1~u) =20
on Q. Because this argument applies as well to 2v + ug, we conclude
that |Py[f] - ul <2von Q.

By Theorem 7.28, Py[ f] has nontangential limits almost everywhere
on R”~! while Lemma 7.31 asserts v has nontangential limits 0 almost
everywhere on E. From this and the last inequality, the desired limits
for u follow. [

Recall that if E ¢ R™"! is Borel measurable, then a point a € E is
said to be a point of density of E provided

. Vn-1(Bla,r) NE)
g Vn-1(B(a,1))

= 1.

By the Lebesgue Differentiation Theorem ([15], Theorem 7.7), almost
every point of E is a point of density of E.

Points of density of E are where we can expect the cones defining Q
in Lemma 7.33 to “pile up”; this will allow us to pass from 7.33 to the
stronger assertion in 7.30.

7.34 Lemma: Suppose E C R*"! is Borel measurable, « > 0, and

Q= Ixa.
acE

Suppose u is continuous on H and bounded on Q. If a is a point of
density of E, then u is bounded in rl}(a) for every B > 0.

PROOF: Let a be a point of density of E, and let 8 > 0. It suffices to
show that rg‘(a) c Q for some h > 0.
Choose & > 0 such that

7.35

Vai(B@nnk) . [ _« nol
V-1 (B((LT)) x+f

whenever v < §; we may assume é/(x+ ) < 1. Set h = 6/(x + B),
and let (x,y) € I} (a). Then B(x,ay) C B(a, (« + B)¥). This implies
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B(x, oy )nE is nonempty; otherwise we violate 7.35 (take v = (a+8)y).
Choosing any b € B(x,ay) N E, we have (x,y) € [}(b), and thus
I} (a) C Q, as desired. »

PROOF OF THEOREM 7.30: We are assuming u is harmonic on H and
E is the set of points in R*~! at which u is nontangentially bounded.
For k = 1,2,..., set Ex = {a € R* ! : ju} < konT},(a)}. Then each
Ey is a closed subset of R*"!, and E = |J Ex (incidentally proving that
the set E is Borel measurable). Applying Lemma 7.34 to each Ex, and
recalling that the points of density of Ex form a set of full measure in Ej,
we see that there is a set of full measure F C E such that u is bounded
onT}(a) for every a € F and every o > 0. For each positive integer k,
we can write F as F = Fj, where Fj = {a € F : |u| < jonT}(a)}.
Lemma 7.33, applied to F;, now shows that u has nontangential limits
almost everywhere on E, as desired. n



Exercises 167

FExercises

1. Assume n = 2. For each t € R, find a holomorphic function g;
on H such that Py(-,t) = Reg:.

2. In Chapter 1, we calculated P(x, T) as a normal derivative on ¢B
of an appropriate modification of |x — T|>"" (n > 2). Using an
appropriate modification of |z—t|2~", find a function whose nor-
mal derivative on 0H is Py(z,t).

3. Let y € M(R"!) and let u = Py[u]. Prove that

9By
[ upax — u@ay + HO21)
Bn-1 2
asy — 0.

4, Letp € [1, ] and assume u € h” (H). Show that if the functions
u, converge uniformly on R®"! as y — 0, then u extends to a
bounded uniformly continuous function on H.

5. For € € S, show that

(CI;CZ-----C‘n—I,O).

(L) = 1+ 7,

6. For (x,y) € R"\ {8}, show that

_ 24

7. Show that if n = 2, then

P(z) = 1__ l.z
Z-1

for every z € C\ {~i}.

8. Suppose £ € S and f € C(S\ {T}). Prove that there exists
u € C(B\ {T}) such that u is harmonic on B and u|s\z} = f-
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10.

11.

12.

13.

14.

15.
16.

Prove that
J fd0=cn2"‘2J F@®)A+ 1) at
s Rn—-l

for every positive Borel measurable function f on S. (Hint: Be-
cause ®: S\ {S} — R is smooth, there exists a smooth function
w onR"! such that d(o o ®) = wdt. To find w, apply 7.27 with
V=0.)

Using the result of the last exercise, show that
2
[ fwa=2] fe@) @+ dow©
.JR" Cn JS

for every positive Borel measurable function f on R*"!.

(@) Let ube a positive Borel measure on R"~! that satisfies 7.25,
and set u = Py[u]. Show that limy .. u(0,y)/y = 0.

(b) Let u be a positive harmonic function on H. Show that
liminfy .o u(0,y)/y > 0.

Show that if u is positive and harmonic on H, then the decompo-
sition u(x,y) = Pylul(x, y) + cy of Theorem 7.26 holds for a
unique positive Borel measure y on R*~! and a unique nonneg-
ative constant c.

Let u be a positive Borel measure on R"~! that satisfies 7.25, and
set u = Py[u]). Prove that

im | e0umde=| | ewdu

for every continuous function ¢ on R*~! with compact support.

Prove that X[h?(H)] c h'(B) for every p € [1, »]. (Hint: Exer-
cise 9 in Chapter 6 may be helpful here.)

Let p € [1,0] and let f € LP(R™*"1). Show that K[f] € L1(S).
Let p € [1,0] and let f € L7 (R""1). Show that
K[PIX1£1])(2) = Pulf1(2)

for every z € H.
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17.  Assume that f is measurable on R""! and that

Ln_l LA+ [t12) ™2 dt < oo

(a) Show that if f is continuous at a, then Py{f] - f(a) as
Z — a within H.

(b) Show that Py{ f] tends nontangentially to f almost every-
where on R"*~!, (Hint: Let g denote f times the character-
istic function of some large ball. Apply Theorem 7.28 to
Pylgl; apply part (a) to Py f — g].)

18. Let u be a positive Borel measure on R*! that satisfies 7.25.
Show that if u is singular with respect to Lebesgue measure, then
Py 1] has nontangential limit O at almost every point of R*"1,



CHAPTER 8

Harmonic Bergman Spaces

Throughout this chapter, p denotes a number satisfying 1 < p < oo.
The Bergman space b¥ (Q) is the set of harmonic functions u on Q such

that
lp

s = (|_uirav) <.

We often view b?(Q) as a subspace of LP(Q,dV). The spaces b?(Q)
are named in honor of Stefan Bergman, who studied analogous spaces
of holomorphic functions.

Stefan Bergman (1895-1977), whose book [5] popularized the study of
spaces of holomorphic functions belonging to L? with respect to
volume measure.

171
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Reproducing Kernels
For fixed x € Q, the map u — u(x) is a linear functional on b? (Q);

we refer to this map as point evaluation at x. The following proposition
shows that point evaluation is continuous on b?(Q).

8.1 Proposition: Suppose x € Q. Then

1
V(B)V/rd(x,aQ)n/p

lu(x)| < Mulipe

for every u € b?(Q).

PROOF: Let ¥ be a positive number with r < d(x,0Q), and apply
the volume version of the mean-value property to u on B(x,r). After
taking absolute values, Jensen’s inequality gives

Nullh,.

1 1
r
ol =y 7V (B)

_— Pdv <
(B(X,T)) JB(x.r) ul”dv =

The desired inequality is now obtained by taking p™ roots and letting
v — d(x,0Q). ]

The next result shows that point evaluation of every partial deriva-
tive is also continuous of b?(Q2).

8.2 Corollary: For every multi-index o there exists a constant Cy
such that

C
ID*u(x)! < - S el

(x, oQ)lat+n/p

for all x € Q and every u € b? (Q).

PrOOF: Apply 8.1 and Cauchy’s Estimates (2.4) to u on the ball of
radius d(x, 0Q)/2 centered at x. |

The next proposition implies that b? () is a Banach space.
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8.3  Proposition: The Bergman space b? (Q)) is a closed subspace of
LP(Q,dV).

PROOF: Suppose u; — u in LP(Q,dV), where (u;) is a sequence
in b?(Q) and u € L?(Q,dV). We must show that, after appropriate
modification on a set of measure zero, u is harmonic on Q.

Let K € Q be compact. By Proposition 8.1, there is a constant C < «
such that

luj(x) ~ur(x)| < Clluj — uklipr

for all x € K and all j, k. Because (u;) is a Cauchy sequence in b¥ (Q),
the inequality above implies that (u;) is a Cauchy sequence in C(X).
Hence (u;) converges uniformly on K.

Thus (u;) converges uniformly on compact subsets of Q to a func-
tion v that is harmonic on Q (Theorem 1.23).

Because u; — u in L7 (£, dV'), some subsequence of (u;) converges
to u pointwise almost everywhere on Q. It follows that u = v almost
everywhere on Q, and thus u € b? (Q}), as desired. n

Taking p = 2, we see that the last proposition shows that b?(Q) is
a Hilbert space with inner product

{(u,v) = J;) uvdyv.

For each x € Q, the map u — u(x) is a bounded linear functional on
the Hilbert space b2(Q) (by Proposition 8.1). Thus there exists a unique
function Ra(x, -) € b2(Q) such that

w(x) = JﬂumRQ(x,y)dV(y)

for every u € b?(Q)). The function Rq, which can be viewed as a func-
tion on Q) x Q, is called the reproducing kernel of Q.

The basic properties of Rg given below are analogous to properties
of the zonal harmonics we studied in Chapter 5 (even the proofs are
the same).
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8.4 Proposition: The reproducing kernel of Q has the following
properties:

(@) Rq is real valued.

()  If (um) is an orthonormal basis of b?(Q), then

Ra(x,¥) = X Um(X)um(y)

m=1

forall x,y € Q.
() Ra(x,y)=Ra(y,x) forall x,y € Q.
(@  IRa(x, )lp2 = vVRalx,x) forall x € Q.

PROOF: To prove (a), suppose that u € b?(Q) is real valued and
x € Q. Then

0=Imuix)
=1mj w(NRaX, ) dV(y)
Q
- JQu(y)ImRQ(X,y)dV(J’)-

Take u = ImRq(x, -), obtaining

L} (ImRq(x,y)) dV(y) =

which implies ImRq = 0. We conclude that each Rg is real valued, as
desired.

To prove (b), let (1,,) be any orthonormal basis of b2(Q). (Recall
that L2(Q,dV), and hence b?(Q), is separable.) By standard Hilbert
space theory,

Il

ﬁ[\/]s f[\/}s

Ra(x, ") (Ra(x, ), um)um

1

Um (X)Um
1
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for each x € Q, where the infinite sums converge in norm in b2(Q).
Since point evaluation is a continuous linear functional on b2(Q), the
equation above shows that the conclusion of (b) holds.

To prove (c), note that (b) shows that Rq(x,y) = Rq(y,x), while
{a) shows that Rq(x,y) = Ra(x, y) for all x,y € Q. Putting these two
equations together gives (c).

To prove (d), let x € Q. Then

IRa(x, )5: = (Ra(x,-),Ralx, "))
= Ra(x,x),

where the second equality follows from the reproducing property of
Rq(x, -). Taking square roots gives (d). =

Because b?(Q) is a closed subspace of the Hilbert space L2(Q,dV),
there is a unique orthogonal projection of L?(Q, dV) onto b2(Q). This
self-adjoint projection is called the Bergman projection on Q; we denote
it by Qq. The next proposition establishes the connection between the
Bergman projection and the reproducing kernel.

8.5 Proposition: If x € (, then
Qalul(x) = | w(»)Ralx, ) dV(y)
forall u € L?(Q,dV).
PROOF: Let x € Q and u € L?(Q,dV). Then
Qolul(x) = {Qalul,Ralx,-))
= {u,Ralx, "))
- | wIRalx, 2 V),

where the first equality above follows from the reproducing property of
Rq(x, +), the second equality holds because Qq is a self-adjoint projec-
tion onto a subspace containing Rq (X, -), and the third equality follows
from the definition of the inner product and Proposition 8.4(a). |

In the next section, we will find a formula for computing Qp(p]
when p is a polynomial; see 8.14 and 8.15.
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The Reproducing Kernel of the Ball

In this section we will find an explicit formula for the reproducing
kernel of the unit ball. We begin by looking at the space #{,, (R"), which
consists of the harmonic polynomials on R” that are homogeneous of
degree m. Recall that the zonal harmonics introduced in Chapter 5 are
reproducing kernels for #,,, (R™). Thus if p € #H,n (R™), then

8.6 p(x) = LP(C)Zm(X. 2)do (T)

for each x € R" (by 5.30). By using polar coordinates, we will obtain
an analogue of 8.6 involving integration over B instead of S.

First we extend the zonal harmonic Z,, to a function on R" x R,
We do this by making Z,, homogeneous in the second variable as well
as in the first; in other words, we set

8.7 Zm(x,y) = |x|™y 1" Zm(x/1x], ¥ /1¥]).

(If either x or v is 0, we define Z,,(x,y) to be 0 when m > 0; when
m = 0, we define Z; to be identically 1.) With this extended definition,
Zm(x,-) € Hn(R™M) for each x € R™; also, Zy{x,y) = Zm(y,x) for
al x,y € R™.

We now derive the analogue of 8.6 for integration over B. For every
p € Hm(R™), we have

Lp(y)zm(x,y)dv(y)
1
=nV(B)J r"-lj prl)Zm(x,vC)do(T) dr
0 S
1
=nV(B)J T"*zm‘lj p(0)Zm(x,C)do(T)dr
0 S

1
=nV(B)p(x) L rnim-l gy

_ nV(B)
T n+2m

p(x)

for each x € R™. In other words, p(x) equals the inner product of p
with (n +2m)Zpm(x, )/ (nV(B)) for every p € H,, (R™).
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Now, Hy (R™) is orthogonal to H, (R™) in b2(B) if k # m, as can be
verified using Proposition 5.9 and polar coordinates (1.5). Thusif pisa
harmonic polynomial of degree M, then p(x) equals the inner product
of p with T _ (n + 2m)Zy(x, )/ (nV(B)). Taking M = o in the last
sum gives us a good candidate for the reproducing kernel of the ball;
Theorem 8.9 will show that this is the right guess. The following lemma
will be useful in proving this theorem.

8.8 Lemma: The set of harmonic polynomials is dense in b%(B).

PrROOF: First note that if u € L?(B,dV), then u, — u in L*(B,dV)
as v — 1. (For u € C(B), use uniform continuity; the general result
follows because C(B) is dense in L%(B,dV).) Thus any u € b%(B) can
be approximated in b?(B) by functions harmonic on B. But by 5.34,
every function harmonic on B can be approximated uniformly on B,
and hence in L?(B,dV), by harmonic polynomials. ]

Now we can express the reproducing kernel of the ball as an infinite
linear combination of zonal harmonics. We will use the theorem below
to derive an explicit formula for Rjp.

89 Theorem: If x,v € B then

1

"V (B) Z n+2m)Zy(x,y).

m=0

8.10 RB(x,y) =

The series converges absolutely and uniformly on K x B for every com-
pact K C B.

PROOF: For x,y € B\ {0} we have

| Zm (X, ) = x| Y™ Zm (x /1 x], ¥ 1Y D]
< |x|™|y ™ dim Hp, (R™),

where the inequality comes from Proposition 5.27(e). Now Exercise 10
in Chapter 5 shows that the infinite series in 8.10 has the convergence
properties claimed in the theorem. Thus if F(x, y) denotes the right
side of 8.10, then F(x, -) is a bounded harmonic function on B for each
x € B. In particular, F(x, -) € b?(B) for each x € B.
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Now fix x € B. The discussion before the statement of Lemma 8.8
shows that p(x) = (p,F(x, -)) whenever p is a harmonic polynomial.
Because point evaluation is continuous on b?(B) and harmonic polyno-
mials are dense in b?(B), we have u(x) = (u,F(x, -)) for all u € b*(B).
Hence F is the reproducing kernel of the ball. [

Our next goal is to evaluate explicitly the infinite sum in 8.10. Be-
fore doing so, note that a natural guess about how to find a formula
for the reproducing kernel would be to find an orthonormal basis of
b2(B) and then try to evaluate the infinite sum in Proposition 8.4(b).
This approach is feasible when n = 2 (see Exercise 14 of this chapter).
However, there appears to be no canonical choice for an orthonormal
basis of b?(B) when n > 2.

Recall (see 6.21) that the extended Poisson kernel is defined by

1-[x2y?
(1-2x -y +|xPly[2)n?

8.11 P(x,y) =

for all x, ¥y € R" x R" for which the denominator above is not 0. Fol-
lowing 6.21, we noted some properties of the extended Poisson kernel:
P{x,v) = P(y,x) = P(|x|y,x/|x|), and for x fixed, P(x, -} is a har-
monic function.

The key connection between the extended Poisson kernel and Rp is
the formula for the Poisson kernel given by Theorem 5.33, which states
that

P(x,0) = > Zm(x,0)
m=0

for x e Band € € S. For x, y € B, this implies that

S Zmx, ) = > Zulylx,y/1¥])

m=0 m=_{
=P(lylx,y/lyl)
=P(x,y).

Returning to 8.10, observe that
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o]

> 2mZm(x,y) = Z ;tt-mZm(x Y=t

m=0

o

( Z t2™ Zm (x, 7)) 11

I

(Z Zm(tx,ty) >|t 1

m=0

d
= EEP(tx,ty)lm-
Thus 8.10 implies the beautiful equation

nP(x,y) + dtp(tx ty)e=1

8.12 Rp(x,y) = V(B

This simple representation gives us a formula in closed form for the
reproducing kernel Rp.

8.13 Theorem: Let x,y € B. Then

(n-4)x*yl*+@8x-y-2n-4dx®|y12+n

Ry(x, ¥} = nV(B)(1 - 2x - ¥ + |x|2|y[2)1+n/2

PrROOF: Compute using 8.12 and 8.11. ]

The next result gives a formula for the Bergman projection on the
unit ball. It should be compared to Theorem 5.1 and Proposition 5.31.

8.14 Theorem: Let-p be a polynomial on R™ of degree m. Then Qg[p]
is a polynomial of degree at most m. Moreover,

Qglplix) =

nV(B }: (n+2k) Lp(y)zk(x,y)dV(y)

for every x € B.

PROOF: Fix x € B. For each v € (0, 1), the function p, is a polyno-
mial of degree m. Thus by Proposition 5.9 we have
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Lp(VZ)Zk(x, 0)do(L) =0
for all k > m. Hence

JB () Zk(x, ) AV ()
nV(B)

1

J Tn+k—1J p(rC)Zi(x,C) do (C) dr
0 S

0

Il

for all k > m. Combining this result with 8.10 and Proposition 8.5 gives
the desired equation. n

Recall that Py, (R") denotes the space of polynomials on R™ that
are homogeneous of degree m. The following corollary shows how
to compute the Bergman projection of a polynomial from its Poisson
integral.

8.15 Corollary: Suppose p € Py, (R™) and that 3.1 p« is the solution
to the Dirichlet problem for the ball with boundary data p|s, where each
Pk € Hi(R™). Then

i n+2k
n+k+m

Qglpl =

Pk.
k=0

PROOF: For 0 < k < m and x € B, we have

JBP(y)Zk(X,y)dV(y)
nV(B)

1
=J r"'lj p(r0) Zx(x,vC) do (T) dr
0 s

1
=J r"”‘*m‘lf p(C)Zx(x,0)do (L) dr
0 s

_ pr(x)
n+k+m'’

where the last equality comes from Proposition 5.31. Combining the
last equality with Theorem 8.14 now gives the desired result. [ ]

If p is a polynomial on R™, then the software described in Ap-
pendix B computes the Bergman projection Qg[p] by first computing
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the Poisson integral P{p] (using Theorem 5.21) and then uses the corol-
lary above to compute Qz[p]. For example, if n = 6 and p(x) = x1%x>,
then this software computes that

4 242 2 2
X2 + |x|%x [xi°x14x 3lx|°x 3x1°x
2+ 1x%x2  [x|°x) 2 4 x4 - 2 3x17xp

Qslpl(x) = =45 2 56 7

Let us make an observation in passing. We have sean that if p is
a polynomial on R", then the Poisson integral P{p] and the Bergman
projection Q{p] are both polynomials. Each can be thought of as the
solution to a certain minimization problem. Specifically, P{p] mini-
mizes
lp — ullL=(s),

while Qg[p] minimizes

lp — ull2,avy,

where both minimums are taken over all functions u harmonic on B.
Curiously, if p is a homogeneous polynomial, then the two harmonic
approximations P[p] and Qg[p] agree only if p is harmonic (see Exer-
cise 19 in this chapter).

Examples in b? (B)

Because the Poisson integral is a linear isometry of L7 (S) onto h¥(B)
(p > 1) and of M(S) onto h!(B) (Theorem 6.13), we easily see that
h?(B) +# h9(B) whenever p # q. We now prove the analogous result
for the Bergman spaces of B.

8.16 Proposition: If 1 < p < g < «, then b4(B) is a proper subset
of b?(B).

PROOF: Suppose 1 < p < q < . Because B has finite volume mea-
sure, clearly b4(B) C bP(B). To prove that this inclusion is proper,
consider the identity map from b4(B) into b?(B). This map is linear,
one-to-one, and bounded (by Hélder’s inequality). If this map were
onto, then the inverse mapping would be continuous by the open map-
ping theorem, and so there would exist a constant C < o such that
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8.17 (lellpa < Cliullpe

for all u € b?(B).

We will show that 8.17 fails. For m = 1,2,..., choose a homoge-
neous harmonic polynomial u,, of degree m, with u,, # 0. Integrating
in polar coordinates (1.5), we find that

1/p

/p 1
(nV(B)J’ remenlr)
0

umlor = (] 1uml? dor)

a similar result holding for |[um,|lye. Because L"-norms on S with re-
spect to o increase as r increases (Holder's inequality), we have

ltmllpe _ (nV(B)/(am +m))""?
lumller — (nV(B)/(pm +n))"'?’

As m — oo, the expression on the right of the last inequality tends
to . Therefore 8.17 fails, proving that the identity map from b%(B)
into b?(B) is not onto. Thus b4(B) is properly contained in b?(B), as
desired. [

We turn now to some other properties of the Bergman spaces on
the ball. First note that h?(B) C b?(B) for all p € [1, »), as an easy
integration in polar coordinates (1.5) shows. (In fact, h?(B) C b4(B)
for all g < pn/(n - 1); see Exercise 21 of this chapter.) However, each
of the spaces b? (B) contains functions not belonging to any h(B), as
we show below. In fact, we will construct a function in every b?(B)
that at every point of the unit sphere fails to have a radial limit; such a
function cannot belong to any h4(B) by Corollary 6.44. We begin with
a lemma that will be useful in this construction..

8.18 Lemma: Let fi () = e™% for C € S and m = 1,2,.... Then
P fm] — O uniformly on compact subsets of B as m — oo.

PROOE: Let g € C(S). Using the slice integration formula (A.5 in

Appendix A), we see that [; fmg do equals a constant (depending only
on n) times

1 n- .
j1<1-t2)—z—3elme GUNT—£20) dow-1 (D) dt,
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where S,-; denotes the unit sphere in R""! and do,_; denotes nor-
malized surface-area measure on Sy,-;. The Riemann-Lebesgue Lemma
then shows that [¢ fmgdo — 0 as m — . In particular, taking
g = P(x, ) for x € B, we see that P{ f,] — O pointwise on B.

Because |fml = 1 on S, we have |P[fin]l < 1 on B for each m.
Thus by Theorem 2.6, every subsequence of (P[f]) contains a sub-
sequence converging uniformly on compact subsets of B. Because we
already know that P[ f;n] — 0 pointwise on B, we must have P[f,,] — 0
uniformly on compact subsets of B. [ ]

The harmonic functions of Lemma 8.18 extend continuously to B
with boundary values of modulus one everywhere on S, yet converge
uniformly to zero on compact subsets of B. In this they resemble the
harmonic functions z™ in the unit disk of the complex plane.

8.19 Theorem: Let «: [0,1) — [1, ) be an increasing function with
o(r) -~ « as v — 1. Then there exists a harmonic function u on B such
that

@ |u@ll <a@) forallv € [0,1) andall T € S;
(b) atevery point of S, u fails to have a finite radial limit.

PrROOF: Choose an increasing sequence of numbers s, € [0, 1) such
that x(sy) > m+1. From the sequence (P[ fi,]) of Lemma 8.18, choose
a subsequence (Vy,) with {vy,| < 27™ on sy, B. Suppose v € {Sm, Sm+1)-
Because each vy, is bounded by 1 on B, we have

oo

D vkl =D DI+ D w0
k=1

k=1 k=m+1

<m+27mrl g pmlmed) o
<m+1
< (Sm)

< alr).

Thus 3 |V (rT)| < a(r) for all € (0,1) and all £ € S; furthermore,
> |vm| converges uniformly on compact subsets of B.

From the sequence (vy,) we inductively extract a subsequence (1,)
in the following manner. Set u; = v;. Because 1, is continuous on B,
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we may choose r; € [0,1) such that |u(rT) — u1(Z)| < 1/4 for all
r € [r;,1] and all T € S. Suppose we have chosen ui, u2,..., Um from
V1,V2,... and that we haveradii 0 <7} < - - - < ¥, < 1 such that

m
8.20 > luk(rl) —uk(sT) < 1/4 forallr,s € [rm, 1], T €S.
k=1

We then select Um41 such that [Um+i| < 2-™*D on v, B. Now choose
Ym+1 € (Tm, 1) so that 8.20 holds with m + 1 in place of m. The radius
¥m+1 can be chosen since each u is continuous on B.

Having obtained the subsequence (u,,) from (v,,) (as well as the
accompanying sequence (v,,) of radii), we define

o
U= Um.
m=1

From the first paragraph of the proof we know that [u(rZ)| < «(r) for
all » € [0,1), and that 3 u, converges uniformly on compact subsets
of B, which implies that « is harmonic on B.

We now show that at each point of S, u fails to have a radial limit.
(Here is where we use the fact that |u,,] = 1 on S for every m.) We
have

[U(Tm+18) — UTmT) ] = [Um+1(Tm+18) — Um+1 (rm D)

= > uk(rma1l) = u(rm0)!
kim+1

2 [ Um+1 (O = 1Ums1 ("m+18) — Ums1(T)]

—|Ums1(rmC)| - 1/4 -2 Z 27k

m+2

>1-1/4-2"m D _1/4-2 % 27k

m+2

21/2-2 > 27k

m+1

Thus for each € € S, the sequence (u(r,)) fails to have a finite limit
as m — oo, which implies that u fails to have a finite radial limitat . m



The Reproducing Kernel of the Upper Half-Space 185

8.21 Corollary: There is a function u belonging to (1, b? (B) such
that at every point of S, u fails to have a radial limit.

PROOF: Let ax(r) = 1+log % and let u be the corresponding func-
tion guaranteed by Theorem 8.19. Integrating in polar coordinates (1.5),
we easily check that u belongs to b? (B) for every p € [1, ). n

The Reproducing Kernel
of the Upper Half-Space

The goal of this section is to find an explicit formula for the re-
producing kernel of the upper half-space. A well-motivated, although
computationally tedious, method of deriving this formula is given in
Exercise 24 of this chapter. We will present a slicker method relying on
the magic of integration by parts.

As we did for B, we will derive the reproducing kernel of H in terms
of the Poisson kernel. Recall that for z € H and t € R""!, the Poisson
kernel for H is the function

2 Zn
Py(z, t) = .
Wzl = Bz
For w € R", define W = (wy,..., Wn-1, —Wn); note that W is the usual

complex conjugate of w on R? = C. We now extend the domain of Py
by defining

2  Zp+ Wy
nV(B) |z - win

8.22 Py(z,w) =

for z # W. Note that Py(z,w) = Py(w,z) and Py(z + (0,7),w) =
Py(z,w + (0,7)) for r € R whenever these expressions make sense.
Thus

Py(z,w) = Py(w, z)

= PH(W + (Oyzn)nz - (O-Zn))

for all z,w € H. Thus Py{z,-) is harmonic on {w € R"*: w,, > —z,}
for each z € H (being the translate of a harmonic function).
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Before proving the main result of this section, Theorem 8.24, we
prove an analogue of Lemma 8.8 for H.

8.23 Lemma: The set of functions that are harmonic and square inte-
grable on a half-space larger than H is dense in b*(H).

PROOF: Let u € b?(H). For § > 0, the function z ~ u(z + (0,8))
belongs to b?({z € R" : z, > —6&}). But the functions u(z + (0, §))
converge to u(z) in L2(H,dV) as § — 0. (This follows by uniform
continuity if u is continuous and has compact support in H; the set of
such functions is dense in L2(H,dV).) N

Now we can give an explicit formula for the reproducing kernel of
the upper half-space.

8.24 Theorem: Forall z,w € H,

4 n(zn+wn)®-lz-W?

Rulz,w) = -5 PaaW) = 20 = |zf)wlwlr2 ]

PrOOF: The second equality follows, with some simple calculus,
from 8.22. Note that this equality implies dPy(z, w)/dw, belongs to
b%(H) for each fixed z € H (see Exercise 1 in Appendix A). The re-
mainder of the proof will be devoted to showing that the first equality
holds.

Fix z € H. Suppose 6 > O and u € b>({w € R" : w, > -6}).
Then

O po(z, w)dV(w)

8.25 J u(w)
H 0Wn

® 0
- JRH ,[o u(xvy)g}‘PH(Z, (x,y))dydx.

Now, u is bounded and harmonic on H by 8.1. Thus, after integrating
by parts in the inner integral, the right side of 8.25 becomes

- Ln_l u(x,0)Py(z,x)dx

- JRn_l Jo [-a%u(x,y)] Py(z,(x,y))dxdy,
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which equals

= d
8.26 ~u(2) - JO Ln_l [Eu(x,y)] Pu(z,(x,y))dxdy.

Notice that we reversed the order of integration to arrive at 8.26. This
is permissible if the integrand in 8.26 is integrable over H. To verify
this, note that by Corollary 8.2 there exists a constant C < o such that

Iiu(x.y)l <

¢
ay (y+6)1+n/2.

Note also that
8.27 Pu(z,(x,¥)) = Pu(z + (0,¥),(x,0)),

which implies [gn-1 Py(z, (x,y))dx = 1 for each y > 0. The reader
can now easily verify that the integrand in 8.26 is integrable over H.

For each y > 0, the term in brackets in 8.26 is the restriction to
R”! of the function w — D,u(w + (0,y)), which is bounded and
harmonic on H. Thus by 8.27, the integral over R*"! in 8.26 equals
(Dpu)(z + (0,2y)). Therefore 8.26 equals

—u(z) - JO (Da) (z + (0,27)) dy = ~u(2)/2,

where the last equality holds because u(z + (0,2y)) — Oas y —
(by 8.1).

Let F(w) = —208Py(z, w)/dwn. We have shown that u(z) = (u, F)
whenever u is harmonic and square integrable on a half-space larger
than H. The set of such functions u is dense in b?(H) (Lemma 8.23),
and thus the proof is complete. ]
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Exercises

1. Prove that b? (R™) = {0}.

2. Suppose that u € bP(Q). Prove that d(x,dQ)"?P|u(x)| — 0 as
x — oQd.

3. Prove that if u € b?({x € R" : |x| > 1}), then u is harmonic
at oo.

4. Suppose u € b?(H) and y > 0. Prove that u(x,y) — 0 as
|x| — o in R""L

5. Prove that if u is a harmonic function on R" such that
[ oo+ 1x aveo <

for some A € R, then u is a polynomial.

6. (a) Assume thatn > 2 and p = n/(n - 2). Prove that if u is in
b? (B \ {0}), then u has a removable singularity at 0.
(b) Show that the constant n/(n — 2) in part (a) is sharp.
(c) Show that there exists a function in (<. b? (B2 \ {0}) that
fails to have a removable singularity at 0.
7. Prove that b? (R™\ {0}) = {0}.

8. Prove that

X —-a -a
RrQ+a(X-y)=r-nRQ( v ,yr )

forallr > 0, a € R".
1

. P that ||[Ra{x, )y < .
9 rove IRa(x, }lp TR
10. Suppose ©; C Q, C - -- is an increasing sequence of open sub-

sets of R” and Q = J;_; Q«. Prove that
Ro(x,y) = ,}im Ro, (x,¥)

forall x,y € Q.
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11.

12.

13.

14.

16.

17.

18.
19.
20.

21.
22,

Suppose ai,...,an are points in Q. Let A be the m-by-m matrix
whose entry in row j, column k, equals Rq(aj, ax). Prove that A
is positive semidefinite.

Show that the harmonic Bloch space is properly contained in
b?(B) for every p < o, (See Exercise 11, Chapter 2, for the defi-
nition of the harmonic Bloch space.)
Show that

w0 = | wRa(x,3) AV ()

for all u € b?(B) and for all p € [1, ).

Assume n = 2, and set ug(rel?) = rikigik® gk = 0,+1,.... Find
constants ci so that {cxu} is an orthonormal basis of b?(B), and
then use Proposition 8.4(b) to find a formula for the reproducing
of kernel of B;.

{a) Prove there are positive constants C;, C2 such that

C2

G
7z < IR (x, )llp2 < A X2

(1-1[x1)

for all x € B.

(b) Find an estimate analogous to (a) for {|Ry(z, )l p2.

Show that Rg(x, -)/lIRg(x, -)lly2 converges to O weak* in b2(B)
as |x| — 1.

Show that

2y 1 ) lxl?
QB[XI]—n+2+X1 et

Prove that if p € P, (R") and Qp{p] =0, then p = 0.

Prove thatif p € P (R™) and P{p] = Qglp], then p is harmonic.

Fix T € §. Show that P(-,C) € b?(B) for p < n/(n - 1). Also
show that P(-,Z) ¢ b (=1 (B),

Show that h? (B) C b%(B) for g < pn/(n-1).

Prove that every infinite-dimensional closed subspace of b?(B)
contains a function not in h?(B).
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23.  Show that functions in b? (B) belong to appropriate Hardy spaces
of balls internally tangent to B. More precisely, suppose that
l<g<(n-1)p/(2n) and u € b?(B). Prove thatif a € B\ {0},
then the function x — u(a + (1 - |Jal)x) is in h4(B).

24,  Derive the formula for the reproducing kernel Ry (Theorem 8.24)
by writing H = Ug-; B(kN, k) and then using Exercise 10 of this.
chapter and 8.13.

25.  Show that every positive harmonic function on B is in b! (B). Are
there any positive harmonic functions on H that are in b (H)?

26. Suppose 6 > Oand u € bP({z € R" : z,, > —6}). Show that
D*u € b?P(H) for every multi-index «.



CHAPTER 9

The Decomposition Theorem

If K ¢ Q is compact and u is harmonic on Q \ K, then u might be
badly behaved near both 6K and 90Q; see, for example, Theorem 11.18.
In this chapter we will see that u is the sum of two harmonic functions,
one extending harmonically across ¢K, the other extending harmoni-
cally across 6Q2. More precisely, u has a decomposition of the form

U=v+w

on Q \ K, where v is harmonic on Q and w is harmonic on R" \ K.
Furthermore, there is a canonical choice for w that makes this decom-
position unique.

This result, which we call the decomposition theorem, has many ap-
plications. In this chapter we will use it to prove a generalization of
Bocher’'s Theorem, to show that bounded harmonic functions extend
harmonically across smooth sets of dimension n — 2, and to prove the
logarithmic conjugation theorem. In Chapter 10, we will use the decom-
position theorem to obtain a “Laurent” series expansion for harmonic
functions on annular domains in R".

The Fundamental Solution
of the Laplacian

We have already seen how important the functions |x|2" (n > 2)
and log | x| (n = 2) are to harmonic function theory. Another illustra-

191
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tion of their importance is that they give rise to integral operators that
invert the Laplacian; we will need these operators in the proof of the
decomposition theorem.

The support of a function g on R™, denoted supp g, is the closure
of the set {x € R" : g(x) # 0}. We let C¥ = C¥(R") denote the set
of functions in C¥(R") that have compact support. We will frequently
use the abbreviation dy for the usual volume measure dV(y).

We now show how g can be reconstructed from Ag if g € C2.

9.1 Theorem (n > 2): If g € C?, then

1

9X) = G mvE

(Ag)W)Ix - y* " dy

for every x € R".

9.2 Theorem (n = 2): If g € CZ, then

1
g(x) = 5~ Lz(Ag)(y)log Ix ~yldy

for every x € R2.

PROOF: We present the proof for n > 2, leaving the minor modi-
fications needed for n = 2 to the reader (Exercise 1 of this chapter).
Note first that the function |x|2~™ is locally integrable on R" (use polar
coordinates 1.5).

Fix x € R™. Choose r large enough so that B(0,r) contains both x
and suppg. For small ¢ > 0, set Q. = B(0,7) \ B(x, £). Because g is
supported in B(0,7),

[ @ )ix -y dy = tim [ (89 (lx - ¥ dy.
Now apply Green'’s identity (1.1)
J (uag - gau)dv = J (uDng ~ gDnu) ds,
Q a0

with u(y) = [x — ¥|¥" and Q = Q,. Since g = 0 near 0B(0,r), only
the surface integral over 0B(x, &) comes into play. Recalling that the
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unnormalized surface area of S is nV(B) (see A.2 in Appendix A), we
calculate that

15193.[9 (AgY(Y)Ix - y1P "dy = (2 - n)nV(B)g(x),

which gives the desired conclusion. ]
For x € R"\ {0}, set

{[(2 -n)nVB)1 Yx)2 " ifn>2
F(x) =
(2m)~log | x| ifn=2.

The function F is called the fundamental solution of the Laplacian; it
serves as the kernel of an integral operator that inverts the Laplacian
on C?. To see this, define

93 (Tg)(x) = Lngmnx -y)dy = Lng(x - Y)F(y)dy

for g € C.. Now suppose g € C2. Then T(Ag) = g by 9.1 or 9.2. On
the other hand, differentiation under the integral sign on the right side
of 9.3 shows that A(Tg) = T(Ag); applying 9.1 or 9.2 again, we see
that A(Tg) = g. Thus T o A = Ao T = I, the identity operator, on the
space C?; in other words, T = A~! on C2.

We can now solve the inhomogeneous equation

9.4 Au=g

for any g € C?; we simply take u = Tg. Equation 9.4 is often referred
to as Poisson’s equation.

Decomposition of Harmonic Functions

The reader is already familiar with a result from complex analy-
sis that can be interpreted as a decomposition theorem. Specifically,
suppose 0 <7 <R < o, K = B(0,7), and Q = B(0,R). Assume f is
holomorphic on the annulus Q\ K, and let % arz* be the Laurent ex-
pansion of f on Q\ K. Setting g(z) = > axz® and h(z) = ZZL, aizk,
we see that f = g + h on Q\ K, that g extends to be holomorphic on Q,
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and that h extends to be holomorphic on (C U {e}) \ K. The Laurent
series expansion therefore gives us a decomposition for holomorphic
functions (in the special case of annular regions in C). The decom-
position theorem (9.6 and 9.7) is the analogous result for harmonic
functions.

We will need a large supply of smooth functions in the proof of
the decomposition theorem; the following lemma provides what we
want.

9.5 Lemma: Suppose K C Q is compact. Then there exists a function
@ eCPR") suchthat p =1 onkK,suppp C Q,and0 <@ <1onR"

PROOF: Define a C*-function f on R by setting

f(t)_{e'”‘ ift>0
o ift <0,

and define a function ¢ € CZ(R") by setting ¢(y) = cf(1 - 21y1%),
where the constant ¢ is chosen so that fg» @(y)dy = 1. Note that
supp Y C B.

Forr > 0,let Y, (y) = r "@(y/r). Observe that supp ¢/, C ¥B and
that fgn @, (¥)dy = 1. Now set r = d(K,0Q)/3 and define

w={xeQ:dxK)<r}

Finally, put

P(x) = j Wr(x - y)dy

for x € R™. Differentiation under the integral sign above shows that
@ € C*. Clearly 0 < @ < 1 on R". Because y,(x — y) is supported in
B(x,r), we have @(x) = 1 whenever x € K and @(x) = 0 whenever
d(x,K) > 2r. ]

We now prove the decomposition theorem; the n > 2 case differs
from the n = 2 case, so we state the two results separately.
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9.6 Decomposition Theorem (n > 2). Let K be a compact subset
of Q. If u is harmonic on Q \ K, then u has a unique decomposition of
the form

U=v+w,

where v is harmonic on Q and w is a harmonic function on R™ \ K
satisfying limy . w{x) = 0.

9.7 Decomposition Theorem (n = 2): Let K be a compact subset
of Q. If u is harmonic on Q \ K, then u has a unigue decomposition of
the form

U=v+w,

where v is harmonic on Q and w is a harmonic function on R? \ K
satisfying limy . w(x) — blog |x| = O for some constant b.

PROOF: We present the proof for n > 2 (Theorem 9.6), leaving the
changes needed for n = 2 to the reader (Exercise 3 of this chapter).

As a notation convenience, for E any subset of R™ and » > 0, let
Ey = {xeR":d(x,E) <7}

Suppose first that Q is a bounded open subset of R™. Choose r
small enough so that K, and (6Q), are disjoint. By Lemma 9.5, there
is a function @, € CZ(R") supported in Q \ K such that @, = 1 on
Q\ (Ky U (0Q),); Figure 9.8 may be helpful.

For x € Q\ (Ky U (3Q)r), apply Theorem 9.1 to the function u@-,
which can be thought of as a function in CZ(R"), to obtain

u(x) = (U Xx)

= _._l__ _ 2-n

= G nvE) JRHA(U(pr)(y)|X yietdy

_ 1 N 2-n

T (2-n)nV(B) I(am, Auen) ()ix -y dy
1

— . 2-n
* eI ® JKYA(uQDr)(y)Ix yietdy

=V (x) + wr(x),

where v,(x) is [(2 - n)nV(B)]! times the integral over (3Q), and
wy(x) is [(2 = n)nV(B)]~! times the integral over K,. Differentiation
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9.8 @, = 1 on the shaded region.

under the integral sign shows that v, is harmonic on Q\ (6Q), and that
Ww, is harmonic on R" \ K. We also see that w,(x) — 0 as x — oo.

Suppose now that s < r. Then, as in the previous paragraph, we
obtain the decomposition u = v; + ws; on Q \ (K U 0Q;). We claim that
vy = vs on Q\ (8Q), and w, = ws on (R? U {=}) \ K;. To see this,
note thatif x € Q\ (K, U (8Q),), then v, (x) + Wy (x) = Vs(x) + Ws(x)
{because both sides equal u(x)). Thus, w, ~w; is a harmonic function
on R™ \ K, that extends to be harmonic on R" (w, — w; agrees with
vs—V, near K, ). Because both w, and w; tend to 0 at infinity, Liouville's
Theorem (2.1) implies that w, — ws = 0. Thus w, = w; and v, = v; on
Q\ (Ky U (0Q)y), as claimed.

For x € Q, we may thus set v(x) = v, (x) for all  small enough so
that x € Q\ (3Q),. Similarly, for x € R*\ K, we set w(x) = w,(x) for
small . We have arrived at the desired decomposition u = v + w.

Now suppose that Q is unbounded and u is harmonic on Q \ K.
Choose R large enough so that K ¢ B(0,R) and let w = Q n B(0O,R).
Observe that X is a compact subset of the bounded open set w and that
u is harmonic on w \ K. Applying the result just proved for bounded
open sets, we have

ux) = v(x) + wix)

for x € w \ K, where ¥ is harmonic on w and w is a harmonic function
on R™\ K satisfying limy_. w(x) = 0. Notice that the difference u —w
is harmonic on O \ K and extends harmonically across K because it
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agrees with ¥ near K. Set v = u —w; the sum v + w is then the desired
decomposition of u.

Finally, the proof of the uniqueness of the decomposition is similar
to the proof given above that w, = w;and v, = v; on Q\ (K, U(0Q2),).m

Note that the function w of Theorem 9.6 is harmonic at «, by The-
orem 4.8. Note also that if u is real valued, then the functions v and
w appearing in the decompositon of u (Theorem 9.6 or Theorem 9.7)
will also be real valued. This can be proved either by looking at the
proofs of Theorem 9.6 and Theorem 9.7 or by taking the real parts of
both sides of the decomposition u = v + w and using the uniqueness
of the decomposition.

Bocher’s Theorem Revisited

The remainder of this chapter consists of applications of the decom-
position theorem. We begin by using it to obtain Bocher’s Theorem (3.9)
as a consequence of Liouville’s Theorem in the n > 2 setting.

9.9 Bocher’'s Theorem (n > 2): Let a € Q. If u is harmonic on
Q\ {a} and positive near a, then there is a harmonic function v on )
and a constant b = 0 such that

u(x) = v(x) + blx —al>™
forall x € O\ {a}.

PROOF: Without loss of generality we can assume that u is real val-
ued and a = 0. By the decomposition theorem (9.6), we can write
u = v +w, where v is harmonic on €, w is harmonic on R" \ {0},
and limy_. w(x) = 0. We will complete the proof by showing that
w(x) = b|x|>~" for some constant b > 0.

Because u is positive near 0 and v is bounded near O, w = u — v
is bounded below near 0. Let ¢ > 0 and set h(x) = w(x) + &[x|?™™.
Then limy .o h(x) = o and limx_« h(x) = 0, so the minimum principle
(1.10) implies that b = 0 on R™\ {0}. Letting ¢ — 0, we conclude that
w = 0onR"\ {0}.

Because w tends to zero at oo, the Kelvin transform K{w] has a
removable singularity at O (see Exercise 2(a) in Chapter 2). Thus K[w]
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extends to be nonnegative and harmonic on all of R". By Liouville's
Theorem for positive harmonic functions (3.1), K[w] = b for some
constant b > 0. Therefore w(x) = b|x|?>™", completing the proof. =

The preceding argument does not yvield a proof of Bocher's Theorem
when n = 2. (One difficulty is that the function w provided by the
decomposition theorem no longer vanishes at «.) We can, however,
still use the decomposition theorem to prove Bocher's Theorem in the
n = 2 case. We will actually obtain a generalized version of Bocher's
Theorem. Our proof relies on the following improvement of Liouville's
Theorem for positive harmonic functions (3.1).

9.10 Generalized Liouville Theorem: Suppose that u is a real-valued
harmonic function on R™* and

.. oulx
liminf ——— = 0.
x-e x|

Then u is constant on R".

PROOF: Fix x € R", let £ > 0 be arbitrary, and choose ¥ > |x| such
that u(y)/|y| = —& whenever |y| > ¥ ~ |[x]|. By the volume version of
the mean-value property,

1
u(x) - u(0) = ‘—/W[J’B(x,ﬂ udv — B udV].

Let D, denote the symmetric difference of the balls B(x,*) and B(0,r)
(see Figure 3.2) and let A, denote the annulus B(0, v +|x[)\B(0,7r —|x|).
Then

1
V(B(O, 7)) La, utdv.

1
V(B(0,7)) L, ulayv.

[u(x) — u(0)|

A

A

For every y in the annulus A, over which the last integral is taken, we
have
fuy) < 2elyl + uly) < 4er + u(y),

where the first inequality is trivial when 1 (y) = 0 and follows from our
choice of » when u(y) < 0. Combining the last two sets of inequalities,
we have
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lu(x) —u(0)] < v

—(B_(IO_?:)—) [4erV(Ar) + J u dv]

r

n
Take the limit as » — «, getting

lu(x) - u(0)| < 8enlx|.
Now take the limit as ¢ — 0, getting u(x) = u(0), as desired. ]

Note that u satisfies the hypothesis of the Generalized Liouville The-
orem if and only if

liminf |x|?*"1K[u](x) = 0,
x—-0

which explains the hypothesis of the following result.

9.11 Generalized Bocher Theorem: Let a € Q. Suppose that u is a
real-valued harmonic function on Q \ {a} and

liminf |x - a|®™ 'u(x) = 0.
X—a

Then there is a harmonic function v on Q and a constant b € R such
that
v(x)+bloglx —al ifn=2
ulx) =

vix)+bix-al>" ifn>2

forall x € Q\ {a}.

PROOF: We will assume that n = 2, leaving the easier n > 2 case as
an exercise for the reader.

Without loss of generality, we may assume that a = 0. Because u is
harmonic on Q \ {0}, it has a decomposition

U=V+w,
where v is harmonic on Q and W is a harmonic function on R?\ {0} sat-

isfying lim,_o(w(x) —blog{x|) = O for some constant b € R. Because
v is continuous at 0, our hypothesis on u implies that
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liminf [x{w(x) = 0.
x—-0

Now set h(x) = w(x) - blog |x| for x € R?\ {0}, and observe that the
Kelvin transform KX [h] has a removable singularity at 0. Moreover,

2y _
liminf9<[h](x) =liminfw(x/lxl )-blog|l/x]
X 00 Bq X~ 00 fx|
= liminf |x|w(x)
x-0
> 0.

Thus, by the the Generalized Liouville Theorem (9.10), X[h] must be
constant; in fact, it must be zero because its value at 0 is 0. Hence
h = 0, which implies that w(x) = blog|x|. Thus u has the desired
form. [

The preceding proof shows how the Generalized Bocher Theorem
follows from the Generalized Liouville Theorem. It is even easier to
show that the Generalized Liouville Theorem follows from the General-
ized Bocher Theorem (Exercise 8 of this chapter); hence, these results
are equivalent. The authors first learned of these generalizations of
Bécher’s and Liouville’s Theorems in [1] and [10].

Removable Sets for Bounded
Harmonic Functions

Let h=(Q) denote the collection of bounded harmonic functions
on Q). We say that a compact set K C Q is h®-removable for Q if every
bounded harmonic function on Q \ K extends to be harmonic on Q.
The following theorem shows that if K is h*-removable for some Q
containing K, then K is h*-removable for every Q containing K. Note
that by Liouville’s Theorem, K is h®-removable for R" if and oniy if
every bounded harmonic function on R" \ X is constant.

9.12 Theorem: Let K be a compact subset of 2. Then K is h*-
removable for Q if and only if K is h™-removable for R™.
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PROOF: If K is h*-removable for (), then clearly K is h*-removable
for R™.

To prove the converse, we use the decomposition theorem. The
n > 2 case is easy. Suppose that K is h*”-removable for R” and that u
is bounded and harmonic on Q\ K. Let u = v+ w be the decomposition
given by (9.6). Because n > 2, w(x) — 0 as x — o. The boundedness
near K of w = u — v thus shows that w is bounded and harmonic
on R" \ K. By hypothesis, w extends to be harmonic on R", and thus
w = 0 by Liouville’s Theorem. Hence u = v, and thus u extends to be
harmonic on Q, as desired.

The n = 2 case is more difficult (a rare occurrence); this is because
w need not have limit 0 at . We will show that if there is a bounded
harmonic function on Q \ K that does not extend to be harmonic on Q,
then there is a nonconstant bounded harmonic function on R? \ K.

We may assume that each connected component of K is a point,
in other words, that K is totally disconnected. Otherwise some com-
ponent of K consists of more than one point. The Riemann Mapping
Theorem then implies the existence of a holomorphic map of the Rie-
mann sphere minus that component onto B», giving us a nonconstant
bounded harmonic function on R? \ K, as desired.

Let u be a bounded harmonic function on Q\ K that does not extend
to be harmonic on Q2. Then there exist distinct points x and y in K such
that u does not extend harmonically to any neighborhood of x nor to
any neighborhood of y. (If only one such point in K existed, then we
would have found a nonremovable isolated singularity of a bounded
harmonic function, contradicting Theorem 2.3.)

Having obtained x and y, observe that the total disconnectivity of
K shows that there exist disjoint open sets Q, and Q, (open in R?),
with x € Q, and y € Q,, such that K € Q, U Q,,.

Now u is harmonic on (QNQy )\ (QxNK), so by Theorem 9.7 we have
the decomposition u = v + Wy, where v, is harmonic on Q n Q. and
Wy is harmonic on R? \ (Qx N K), with lim, .. wx(2) — b logiz| =0
for some constant b,. We also have a similar decomposition of u on
(2N Qy)\ (Qy NnK). Note that w, is not constant, otherwise u would
extend harmonically to a neighborhood of x. Note also that if by were 0,
then w, would be a nonconstant bounded harmonic function on R*\ K,
and we would be done; we may thus assume that b, is nonzero.

Setting h = wy, — (b, /bx) wx, we claim h is the desired nonconstant
bounded harmonic function on R2 \ K. To see this, note that both wy
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and w, are bounded near K, and lim,_. h(z) = 0; this proves h is
bounded and harmonic on R® \ K. If h were constant, then w, would
extend harmonically to a neighborhood of y, which would mean that u
would extend harmonically to a neighborhood of y, a contradiction. m

As an aside, note that the analogue of Theorem 9.12 for positive
harmonic functions fails when n = 2: the compact set {0} is removable
for positive harmonic functions on R2 \ {0} (see 3.3), but {0} is not
removable for positive harmonic functions on B> \ {0}.

Recall that if K ¢ Q is a single point, then K is h®-removable for Q
(Theorem 2.3). Our next theorem improves that result, stating (roughly)
that if the dimension of K is less than or equal to n — 2, then K is h*-
removable.

9.13 Theorem: If 1l <k <n-2and¥: By — Q is a C'-map, then
¥ (By) is h®-removable for Q.

PROOF: By Theorem 9.12, we need only show that if u is bounded
and harmonic on R™ \ ¥(By), then u is constant. Without loss of gener-
ality, we assume u is real valued. By Theorem 4.10, there is a constant
L such that u has limit L at . Let £ > 0 and set

v(x) = ulx) + EL X — ¥ ()12 dVi(y)
k

for x € R™ \ ¥(By). Note that v is harmonic on R \ ¥(Bx) and that v
has limit L at «. Suppose we know that

9.14 J X = ¥R dVi(y) - 00 as x — ¥(By).
By

The boundedness of u then shows v(x) — o as x — Y(By). By the
minimum principle, v = L on R™ \ ¥(By). Letting ¢ — 0, we conclude
that u = L on R™ \ ¥(B). A similar argument then gives u < L on
R™\¥(By), so that u is constant, as desired. In other words, to complete
the proof, we need only show that 9.14 holds.

To prove 9.14, first suppose that x € ¥(By). Then x = ¥(z) for
some z € By. Because ¥ has a continuous derivative, there is a constant
C € (0, o) suchthat |¥(z)~-¥(y)| < C|z-y| forevery y € Bi. Thus
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j |x—\v(y>|2-"dvk(y>=j ¥(2) - ¥() 2" dVi(y)
By By,

> 2 J;} |z -y " dVi(y)
k

= OO,
where the last equality comes from Exercise 10 of this chapter. The
assertion in 9.14 now follows from Fatou’s Lemma. u

Note that B; is the interval [~1,1]. Thus, any smooth compact arc
in  is h™-removable for Q provided n > 2. Exercise 13 in Chapter 4
and Exercise 12 of this chapter show that compact sets of dimension
n — 1 are not h*-removable.

The Logarithmic Conjugation Theorem

In this section, Q) will denote a connected open subset of R2. We
say that Q is finitely connected if R? \ Q has finitely many bounded
components. Recall that Q is simply connected if R?\ Q has no bounded
components.

If u is the real part of a holomorphic function f on Q, then the
imaginary part of f is called a harmonic conjugate of u. When Q is
simply connected, a real-valued harmonic function on Q always has a
harmonic conjugate ([7], Chapter VIII, Theorem 2.2).

The following theorem has been called the logarithmic conjuga-
tion theorem because it shows that a real-valued harmonic function on
a finitely connected domain has a harmonic conjugate provided that
some logarithmic terms are subtracted.

9.15 Logarithmic Conjugation Theorem: Let Q be a finitely con-
nected domain. Let Ky,...,Ky be the bounded components of R? \ Q,
andletaj € Kj for j = 1,...,m. If u is real valued and harmonic on Q,
then there exist f holomorphic on Q and by,...,by € R such that

u(z)=Ref(z) +biloglz-ail+--- +bpylogiz — aml

forall z € Q.
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PROOF: We prove the theorem by induction on m, the number of
bounded components in the complement of Q. To get started, recall
that if m = 0 then Q is simply connected and u = Ref for some
function f holomorphic on Q.

Suppose now that m > 0, and that the theorem is true with m — 1 in
place of m. With Q as in the statement of the theorem, set Q' = Q U Ky,
so that Q' is a finitely connected domain whose complement has m - 1
bounded components. Because u is harmonic on Q' \ K, 9.7 gives
the decomposition u = v + w, where v is harmonic on Q' and w is
harmonic on R? \ Ky, with lim,_.. w(z) — blog|z| = 0 for some con-
stant b.

Because v satisfies the induction hypothesis, we will be done if we
can show that

9.16 w(z) =Reg(z) + blogl|z — aml

for some function g holomorphic on R?\ Kp,.
To verify 9.16, set

h(z) =w(z) —bloglz - aml

for z € R?\ K,,. We easily calculate that h(z) — 0 as z — oo; thus h
extends to be harmonic on (C U {o0}) \ Kyn. Now, (CU {o}) \ K}, can be
viewed as a simply connected region on the Riemann sphere. On such a
region every real-valued harmonic function has a harmonic conjugate.
This gives 9.16, and thus completes the proof of the theorem. n

As an application of the logarithmic conjugation theorem, we now
give a series development for functions harmonic on annuli.

9.17 Theorem: If u is real valued and harmonic on the annulus
A={zeR?:ry<|z| <n}, then u has a series development of the
form

9.18 u(re'®) = blogr + > (cxr* + Togr*)e'o.
k=—oo

The series converges absolutely for each ve'® € A and uniformly on
compact subsets of A.
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PROOF: Use the logarithmic conjugation theorem (9.15) with Q = A,
K1 ={z€R%:|z| <15}, and a; = 0, to get

u(z) =bloglz| + Re f(2)

for some holomorphic function f on A. On A, f has a Laurent series
expansion

f2y=3 oz

k=—o00

that converges absolutely and uniformly on compact subsets of A.
Now,
f(z)+ f(z)

u(z) =bloglz| + >

the series representation 9.18 for u is obtained by setting z = re' and
replacing f with its Laurent series. [

The series representation 9.18 gives another proof that the averages
of u over circles of radius r satisfy the n = 2 part of 3.10.

In Chapter 10 we consider the problem of obtaining an analogous
series representation for functions harmonic on annular domains in R™.
There, as one might expect, the decomposition theorem (9.6, 9.7) will
play an important role.

Additional applications of the logarithmic conjugation theorem may
be found in {2].
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Exercises
1. Prove Theorem 9.2.
2. Suppose n > 2. Given g € C?(R"™), show that there exists a

unique u € C2(R") such that Au = g and u(x) — 0 as x — co.
What happens when n = 2?

3. Prove the decomposition theorem in the n = 2 case (9.7).
4,  For Q c R?, define the operator 2 on C}(Q) by

= 1,0 )
9=5(x *i5y)

Show that if f € C1(Q), then f is holomorphic on Q if and only
if3f = 0.

5.  Show thatif g € C}(R?), then

J (69) de( )
R

for all w € C. (Hint: Imitate the proof of 9.1, using Green's
Theorem instead of Green's identity.)

6. Let Q c C, let K Cc Q be compact, and let f be holomorphic on
Q\K. Using the previous exercise and an argument similar to the
proof of the decomposition theorem, prove that f has a unique
decomposition of the form f = g + h, where g is holomorphic
on Q and h is holomorphic on C \ K, with lim,_., h(z) =

7. Prove the Generalized Bocher Theorem (9.11) when n > 2.

8. Show that the Generalized Liouville Theorem (9.10) is a conse-
quence of the Generalized Bocher Theorem (9.11).

9. If u is a real-valued harmonic function on R™ such that u(x)/|x|
is bounded below for x near «, must u be constant?

10. Let x € B, and let ¢ € R. Prove that
L Ix —yl€dV(y) = o

if and only if ¢ < —n.
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11.

12.

13.

14.

15.

16.

17.

Does the conclusion of Theorem 9.13 remain true if we merely
assume that ¥ is continuous on B?

Suppose E is a compact subset of R?~1 ¢ R” with positive (n—1)-
dimensional Lebesgue measure. Show that

u(y) = L [x - ¥1> " dVy_y (%)

defines a function on R" that is continuous, bounded, and non-
constant. Show that this function is harmonic on R \ E.

Suppose ¥: By — By isa Cl-map, where 1 < k < n— 2. Show that
if ¥(By) is closed in By, then every bounded harmonic function
on B, \ Y(By) extends to a bounded harmonic function on B,.
(Note that Exercise 16 in Chapter 6 is a special case of this exer-
cise.)

Every polynomial p(x,y) on R” extends to a polynomial p(z, w)
on C? by replacing x and y with the complex numbers z and
w in the expansion of p. Show that if p is a harmonic poly-
nomial on R? with real coefficients, then the imaginary part of
2p(z/2,-iz/2) is a harmonic conjugate of p.

Let Q ¢ R? be finitely connected, and let K},K>,...,K;, be the
bounded components of RZ2\ Q. Let aj,a} € Kj. Suppose that
u is real valued and harmonic on Q. Prove that if f, g are holo-
morphic functions on Q and b}, b; € R satisfy

uz) =Ref(z)+bhloglz-ai|+---+bmloglz - anml

=Reg(z) +bjloglz-ajl+ - -+ byloglz —a,l,
then b; = b}. How are f and g related?

Using the logarithmic conjugation theorem (9.15), give another
proof of the n = 2 case of the Generalized Bécher Theorem (9.11).

Use the series representation 9.18 to show that the Dirichlet
problem for an annulus in R? is solvable. More precisely, show
that if A is an annulus in R? and f is continuous on 94, then
there is a function u harmonic on A and continuous on A such
that u{za = f



CHAPTER 10

Annular Regions

An annular region is a set of the form {x € R" : 5 < |x| < n};
here vy € [0,) and 7; € (0,«]. Thus an annular region is the re-
gion between two concentric spheres, or is a punctured ball, or is the
complement of a closed ball, or is R™* \ {0}.

Laurent Series

If u is harmonic on B, then 5.34 gives the expansion

u(x) = > pm(x),

m=0

where p,, is a homogeneous harmonic polynomial of degree m and the
series converges absolutely and uniformly on compact subsets of B.
This expansion is reminiscent of the power series expansion for holo-
morphic functions. We now take up the analogous Laurent series de-
velopment for harmonic functions on annular regions.

10.1 Laurent Series (n > 2): Suppose u is harmonic on an annular
region A. Then there exist uniqgue homogeneous harmonic polynomials
Pm and qm of degree m such that

00

pPm(x) + Z

0 m=0

am(x)

u(x) = |x|[2m+n=2

F Mg

on A. The convergence is absolute and uniform on compact subsets of A.

209
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PROOF: Suppose A has inner radius g € [0, ) and outer radius
71 € (0,]. By the decomposition theorem (9.6) we have u = v + w,
where v is harmonic on r; B and 'w is harmonic on (R" U {}) \ 19B. Be-
cause v is harmonic on the ball r; B, there are homogeneous harmonic
polynomials p,, such that

10.2 V(x)= Y pmix)

m=0

on r1B. The Kelvin transform of K[w] is harmonic on the ball (1/7y)B,
and so there are homogeneous harmonic polynomials g,, such that

o0

K[wlx) = > gm(x)

m=0

on (1/7y)B. Applying the Kelvin transform to both sides of this equa-
tion, we have

2m+n-2

10.3 w(x) = Z |x|m(X)

on R™\ r9B. Combining the series expansions 10.2 and 10.3, we obtain
the desired expansion for u on A. The series 10.2 and 10.3 converge
absolutely and uniformly on compact subsets of A, and hence so does
the Laurent series expansion of u. Uniqueness of the expansion follows
-from the uniqueness of the decomposition u = v + w and of the series
expansions 10.2 and 10.3. [

The preceding proof does not quite work when n = 2 because the
decomposition theorem takes a different form in that case (see 9.6,
9.7). Exercise 1 of this chapter develops the Laurent series expansion
for harmonic functions when n = 2.

Isolated Singularities

Suppose n > 2, a € , and u is harmonic on Q \ {a}. By Theo-
rem 10.1, there are homogeneous harmonic polynomials p,, and gm
such that
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oo 0o q (X _ a)
u(x) Z pm(x a) Z |x :na|2m+n—2
m=0 m=0

for x in a deleted neighborhood of a. We call the function

- qm(x-a)
]0'4 Z—O lx —_ al2m+n—2

the principal part of u at a and classify the singularity at a accord-
ingly. Specifically, u has a removable singularity at a if each term in
the principal part is zero; u has a pole at a if the principal part is a
finite sum of nonzero terms; u has an essential singularity at a if the
principal part has infinitely many nonzero terms.

If u has a pole at a, with principal part given by 10.4, and M is the
largest integer such that gy # 0, then we say that the pole has order
M +n - 2. For example, if « is a multi-index, then D%|x|2-™ has a pole
of order || + n — 2 at 0. Theorem 10.5(b) below shows why the order
of a pole has been defined in this manner. We call a pole of order n -2
a fundamental pole (because the principal part is then a multiple of the
fundamental solution defined in Chapter 9).

10.5 Theorem (n > 2). If u is harmonic with an isolated singularity
at a, then u has

(@)  aremovable singularity at a if and only if
lim | — al""|u(x)| = 0
(b) apoleat a of order M + n — 2 if and only if
0 < limsup |x — alM*" 2 |u(x)| < oo;
X—-a
{c)  an essential singularity at a if and only if
limsup |x — al¥|u(x)| = o
X-a
for every positive integer N.

PrOOF: The proof of (a) follows from Exercise 2(a) in Chapter 2.
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For the remainder of the proof, we assume that u has principal part
ata givenby w(x) = X, _odm(x —a)/lx — a|]?m "2,

To prove (b), first suppose that u has a pole at a of order M + n - 2.
Then the homogeneity of each g, implies that

limsup |x — a|M*"2ju(x)| = sup |qum!.
x—a N

The right side of this equation is positive and finite, and hence so is the
left side, proving one direction of (b).

Conversely, suppose 0 < limsup,_, |x — alM*"~2|u(x)| < «. Then
there is a constant C < oo such that jw(a +rZ)| < C/rM*"~2 for small
¥y >0and T € S. Let j be an integer with j > M. Then

quj(C)lsz(C) @ jtqm@n?do(m
s < 3

y2j+2n-4 yam+2n-4

m=0

L lwa +r0)2do (D)

CZ
<& —
= y2M+2n-4

for small » > 0; here we have used the orthogonality of spherical har-
monics of different degree (Proposition 5.9). Letting » — 0, we get
fslajl?do = 0, so that g = 0. Thus u has a pole at a of order at most
M +n-2. Because limsup, _, |x —a|™*"~2|u(x)| is positive, the order
of the pole is at least M + n — 2, completing the proof of (b).

To prove (c), first suppose that limsup, _, |x — al¥|u(x)| = « for
every positive integer N. By (a) and (b), u can have neither a remov-
able singularity nor a pole at a, and thus u has an essential singularity
at a.

To prove the other direction of (c), suppose there is a positive integer
N such that limsup,_, [x — a|N|u(x)| < «. By the argument used in
proving (b), this implies that q; = 0 for all sufficiently large j. Thus u
does not have an essential singularity at a, completing the proof of (c).m

The analogue of the theorem above for n = 2, along with the appro-
priate definitions, is given in Exercise 2 of this chapter.

Recall that Picard’s Theorem states if f is a holomorphic function
with essential singularity at a, then f assumes all complex values, with
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one possible exception, infinitely often on every deleted neighborhood
of a. Picard’s Theorem has the following analogue for real-valued har-
monic functions.

10.6 Theorem: Let u be a real-valued harmonic function with either
an essential singularity or a pole of order greater than n -2 at a € R™.
Then u assumes every real value infinitely often near a.

PROOF: By Bocher’s Theorem (3.9), u cannot be bounded above or
below on any deleted neighborhood of a. Thus, for every small » > 0,
the connected set u(B(a,r) \ {a}) must be all of R. This implies that
u assumes every real value infinitely often near a. =

There is no analogue of Theorem 10.6 for complex-valued harmonic
functions.

The Residue Theorem

Suppose u € C2(Q). Then u is harmonic on Q if and only if
J Dyuds =0
dB(a,r)

for every closed ball B(a,r) ¢ Q; as usual, Dp denotes the derivative
with respect to the outward normal n and ds denotes (unnormalized)
surface-area measure. Proof: apply Green's identity (1.1) with v = 1
to small closed balls contained in Q. We can think of this result as an
analogue of Morera’s Theorem for holomorphic functions.

Integrating the normal derivative over the boundary also yields a
“residue theorem” of sorts. Suppose n > 2 and the harmonic function
u has an isolated singularity at a, with Laurent series expansion at a
given by

u(x) = D pmx-a)+ > Qm (X ~ )

— l|2m+n-2"
m=0 m=0 1x al

We call the constant gg the residue of u at a, and write Res(u,a) = gq.
The following proposition and theorem justify this terminology.
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10.7 Proposition (n > 2): If u is harmonic on B(a,r) \ {a}, then

1
Res(u,a) = —mmm———— Dpuds.
.2) = G0V @) Josan T0

PROOF: Without loss of generality, assume a = 0. Suppose

oo

) = Y pm0+ 3 Qm (X)

2m+n-2
m=0 m=o X

is the Laurent expansion of u about 0. The first sum is harmonic
on B(0,7); hence, the integral of its normal derivative over 3B(0,7)
is zero. The integral of the normal derivative of the second sum equals

qor' (2 -n) ds+ > (2-n-m)ri-n2m J Am ds.
3B(0,r) gt 3B(0,r)

The value of the first integral is qonV (B)(2 — n); all other integrals
vanish by the mean-value property. |

10.8 Residue Theorem (n > 2): Suppose Q is a bounded open set
with smooth boundary. Let a.,...,ax be distinct points in Q. If u is
harmonic on Q\ {a1,...,ax}, then

k
LQ Dyuds = (2 - n)nV(B) > Res(u,a;).
J=1

PrROOF: Choose r > 0 so that B(a1,7),...,B(ak,r) are pairwise dis-
joint and all contained in Q. Set w = Q\ (U§=1 B(aj,r)). Then

dw

by Green'’s identity (1.3). Hence

k
J Dpuds = - j Druds
a0 S deman

k
= (2-n)nV(B) D Res(u,a;)
j=1

(note that n points toward a; on 0B(a;,7)). (]
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See Exercise 8 of this chapter for statement of the residue theorem
when n = 2.

The Poisson Kernel for Annular Regions

Let A be a bounded annular region. If f is a continuous function
on 04, does f have a continuous extension to A that is harmonic on A?
In this section we will see that this question, called the Dirichiet prob-
lem for A, has an affirmative answer if the inner radius of A is positive.
In fact, we will find a Poisson-integral type formula for the solution. (In
the next chapter, we show that the Dirichlet problem is solvable on a
much wider class of domains, although in the more general context we
will not have an explicit integral formula for the solution.)

Fix vy € (0,1). Throughout this section, we assume that A is the
annular region {x € R™ : 7y < {x| < 1}. This is no loss of generality
because dilations preserve harmonic functions.

To discover the formula for solving the Dirichlet problem for A,
we begin with a special case. Suppose g € H(S) for some m > 0.
Consider the problem of finding a continuous function u on A that is
harmonic on A, with u = gon § and u = 0 on rpS. We first extend
g 1o a harmonic homogeneous polynomial of degree m (which we also
denote by g). The Kelvin transform of g is then harmonic on R \ {0};
the homogeneity of g shows that K[gl(x) = g(x)/|x}®"*""2, Thus
the function u defined by

1 - (rg/|x[)?m+n-2
1 - 702m+n—2

u(x) = g(x)
solves the Dirichlet problem in this special case.
Let us define

1 - (ro/lx|)2m+n-2

10.9 bm(x) = 1 — ppm+n=2_

so that u(x) = by, (x)g(x), where u is the function displayed above.
Recall that integration against the zonal harmonic Z,, (x, T) reproduces
the values of functions in H,,(R") (5.30). Thus we can rewrite our
formula for the solution u as follows:

w(x) = bm(x) Lg(:)zm(x,zn 4o (0).
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Going one step further, if g = Z%:o 9m, where g, € H,,y (S), then
adding the solutions obtained for each g,, in the previous paragraph
solves the Dirichlet problem for A with boundary data g on S and 0
on ryS. Explicitly,

M
u(x) = Lg(c)( S bm(%)Zm(x,0)) dor (D).
m=0

Note that for each ¢ € S, the function x — by, (x)Zm (x,T) is harmonic
on A (because it equals a constant times Z,, (x, ) plus a constant times
K[ Zm (-, T)Hx)).

Any polynomial restricted to S is the sum of spherical harmonics
{(from Theorem 5.7). Furthermore, the set of polynomials is dense in
C(S) by the Stone-Weierstrass Theorem (see [14], Theorem 7.33). Sup-
pose, then, that g is an arbitrary continuous function on S. To find a
continuous function u on A that is harmonic on A, withu = gon §
and u = 0 on 7S, the results above suggest that we try

w(x) = Lg(:m(x,z) Ao (0),

where

10.10 Pa(x,T) = D bm(x)Zm(x,T).

m=0

Note that 0 < by (x) < 1 for x € A. Thus the last series converges
absolutely and uniformly on K x S for every compact K C A, as in
the proof of Theorem 5.33. In particular, for each T € S, the function
P4(-,C) is harmonic on A.

We handle the Dirichlet problem for A with boundary data h on 1S
and O on S in a similar manner. Thus a process like the one above
suggests that the solution u is given by the formula

ulx) = Lh(romPA(x,rom do(2),

where

10.11 Pa(x,100) = D cm(X)Zm(x,T)

m=0
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and

!x12m+n—2

- 21 -
10.12 Cm(x) = |x| 7 (ro/|x )™ " ZW‘—T'

Note that [cm(x)Zm(x,T)| < (ro/1x)™" 2| Zpm(x/|x], )| for x € A,
so the infinite sum in 10.11 converges absolutely and uniformly on
K x S for every compact K C A, as in the proof of Theorem 5.33. In
particular, for each T € §, the function P4 (-, 1) is harmonic on A.

Having approached the Dirichlet problem for A “one sphere at a
time”, we easily guess what to do for an arbitrary f € C(dA)—we sim-
ply add the two candidate solutions obtained above.

We now make the formal definitions. Forn > 2, P4 is the function on
A X 0A defined by 10.9-10.12. (For n = 2 and m = 0, the terms bg(x)
and co(x) must be replaced by appropriate modifications of log |x|;
Exercise 10 of this chapter asks the reader to make the necessary ad-
justments.) For f € C(0A), the Poisson integral of f, denoted P4[f],
is the function on A defined by

PALF1(x) = qug)PA(x, ) do () + Lf(roC)PA(x,ToC)dU(E).

We have already done most of the work needed to show that P4[f]
solves the Dirichlet problem for f.

10.13  Theorem (n > 2). Suppose f is continuous on 0A. Define u
on A by
PAlflx) ifxeA
u(x) = ,
fx) if x € 0A.

Then u is continuous on A’ and harmonic on A.

ProoF: The function P4[ f] is the sum of two harmonic functions,
and hence is harmonic.

To complete the proof, we need only show that u is continuous on A.
The discussion above shows that u is continuous on A in the case where
fls and f(rp-)|s are both finite sums of spherical harmonics. By The-
orem 5.7 and the Stone-Weierstrass Theorem (see [14], Theorem 7.33),
such functions are dense in C(3A). For the general f € C{(dA), we ap-
proximate f uniformly on 0A with functions fi, f>,... from this dense
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subspace; the corresponding solutions 1, up,... then converge uni-
formly to u on A by the maximum principle, proving that u is contin-
uous on A, n

The hypothesis that v; be greater than 0 is needed to solve the
Dirichlet problem for the annular region A. For example, there is no
function 1 harmonic on the punctured ball B \ {0}, with u continuous
on B, satisfying 4 = 1 on S and u(0) = 0: if there were such a function,
then it would be bounded and harmonic on B\ {0}, hence would extend
harmonically to B (by 2.3), contradicting the minimum principle.

The results in this section are used by the software described in
Appendix B to solve the Dirichlet problem for annular regions. For
example, the software computes that the harmonic function on the an-
nular region {x € R3:2 < |x| < 3} that equals x;2 when |x| = 2 and
equals x1x2x3 when |x| = 3 is

8 2592 8 32|x[* 32x;%  7776x;°

37 210xB | ixl T 633 211 211ix[S

2187x1x2x3 3 279936x1x2X3
2059 2059]x|7
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Exercises

1. Suppose u is harmonic on an annular region A in R2. Show that
there exist pm, gm € Hm(R?) such that

2]

u(x) = 3 pm(x) +aologlx|+ >,

m=0 m=1

Am(x)

on A. Show also that the series converges absolutely and uni-
formly on compact subsets of A.

2. Suppose u is a harmonic function with an isolated singularity at
a € R2. The principal part of u at a is defined to be

dm(x - a)

dologlx —al+ D X —apn

m=1
where u has been expanded about a as in Exercise 1. We say that
u has a fundamental pole at a if the principal part is a nonzero
multiple of log |x|. We say that u has a pole at a of order M if
there is a largest positive integer M such that qy # 0. We say
that u has an essential singularity at a if the principal part has
infinitely many nonzero terms. Prove that u has

{a) aremovable singularity at a if and only if

ulx)  _
x-alog|x — al

]

(b) afundamental pole at a if and only if

u(x)

0<lim{—"—
log |x — al

xX—a

(c) apole at a of order M if and only if

0 < limsup |x — alM{u(x)| < o;

(d) an essential singularity at a if and only if

limsup |x - alNlu(x)| = e
x—a

for every positive integer N.



220

CHAPTER 10. Annular Regions

Give an example of a harmonic function of n variables, n > 2,
that has an essential singularity at 0.

Let u be a real-valued harmonic function with an isolated singu-
larity at a € R™. Show that u has a fundamental pole at a if and
only if

Iim lu(x)| = .
X—a

Suppose n > 2 and u is a harmonic function with an isolated
singularity at a. Prove that

lim |x — al® 2u(x)
X—-a

exists (as a complex number) if and only if u has either a remov-
able singularity or a fundamental pole at a.

Singularities at «: Suppose u is harmonic on a deleted neigh-
borhood of «. The singularity of u at « is classified using the
Laurent expansion of the Kelvin transform K{u] at 0; for exam-
ple, if the Laurent expansion of K{u] at 0 has vanishing principal
part, then we say u has a removable singularity at .

(a) Show that u has an essential singularity at o if and only if

lu(x)|
x|M

lim sup
x-o |

for every positive integer M.

(b) Find growth estimates that characterize the other types of
singularities at c.

(a) Identify those functions that are harmonic on R"*, n > 2,
with fundamental pole at .

(b) Identify those functions that are harmonic on R? with fun-
damental pole at oo.
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8.

10.

11.

12.

Suppose n = 2 and the harmonic function u has an isolated
singularity at a € R?, with Laurent series expansion

o0

u(x) = Z: pm(X—a)+quOgIX—a|+ Z %;nl
m=0 m=1

We say that the constant qo is the residue of u at a and write
Res(u,a) = qo. Prove that if u is harmonic on B(a,r) \ {a}, then

1
Res(u,a) = 5 LB(M) Dpuds.

Also prove an analogue of the residue theorem (10.8) for the case
n=2

Show how formulas 10.11 and 10.12 are derived.

Find the correct replacements for 10.9 and 10.12 whenn = 2 and
m = 0, and use this to solve the Dirichlet problem for annular
regions in the plane.

letO<rp<landlet A= {x € R":15 < |x| < 1}. Let p, q be
polynomials on R", and let f be the function on A that equals p
on rpS and equals g on S. Prove that P4[ f] extends to a function
that is harmonic on R™ \ {0}.

Generalized Annular Dirichlet Problem: Suppose that A is the
annulus {x € R": 1y < |x] < 11}, where 0 < 13 < ; < . Prove
that if f, g, h are polynomials on R™, then there is a function
u e C(A)suchthatu = fonrS, u=gonnrsS and Au = h
on A. Show that if n > 2, then u is a finite sum of functions of
the form p(x)/|x|™, where p is a polynomial on R" and m is a
nonnegative integer. (The software described inn Appendix B can
find u explicitly.)



CHAPTER 11

The Dirichlet Problem and
Boundary Behavior

In this chapter we construct harmonic functions on Q that behave
in a prescribed manner near 0Q). Here we are interested in general do-
mains @ ¢ R"; the techniques we developed for the special domains
B and H will not be available. Most of this chapter will concern the
Dirichlet problem. In the last section, however, we will study a differ-
ent kind of boundary behavior problem—the construction of harmonic
functions on Q that cannot be extended harmonicaily across any part
of 9Q.

The Dirichlet Problem

If f is a continuous function on 9Q, does f have a continuous ex-
tension to Q that is harmonic on Q? This is the Dirichlet problem for Q
with boundary data f. If the answer is affirmative for all continuous f
on 2Q, we say that the Dirichlet problem for Q is solvable. Recall that
the Dirichlet problem is solvable for B (Theorem 1.17) and for the re-
gion between two concentric spheres (Theorem 10.13), but not for the
punctured ball B \ {0} (see the remark following the proof of 10.13).
The Dirichlet problem is sometimes referred to as “the first boundary
value problem of potential theory”. The search for its solution led to
the development of much of harmonic function theory.

We will obtain a necessary and sufficient condition for the Dirichlet
problem to be solvable for bounded . Although the condition is not

223
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entirely satisfactory, it leads in many cases to easily verified geometric
criteria that imply the Dirichlet problem is solvable. We will see, for
example, that the Dirichlet problem is solvable for bounded Q whenever
Q is convex or whenever 0Q is “smooth”.

Note that when  is bounded, the maximum principle (1.9) implies
that if a solution to the Dirichlet problem exists, then it is unique.

Subharmonic Functions

We follow the so-called Perron approach in solving the Dirichlet
problem. This ingenious method constructs a solution as the supre-
mum of a family of subharmonic functions. In this book, we call a
real-valued function u subharmonic on Q provided u is continuous on
Q and u satisfies the submean-value property on Q. The latter require-
ment is that for each a € Q, there exists a closed ball B(a,R) C Q such
that

R w(a) < Lu(awc) Ao (T)

whenever 0 < ¥ < R. Note that we are not requiring 11.1 to hold for all
¥ < d(a,oQ). (But see Exercise 5 of this chapter.)

Obviously every real-valued harmonic function on  is subharmonic
on Q. A finite sum of subharmonic functions is subharmonic, as is any
positive scalar multiple of a subharmonic function. In Exercise 8 of
this chapter we ask the reader to prove that a real-valued u € C?(Q)
is subharmonic on Q if and only if Au = 0 on Q. Thus u(x) = }x|?
is a subharmonic function on R™ that is not harmonic. This example
shows that subharmonic functions do not satisfy the minimum princi-
ple. They do, however, satisfy the maximum principle.

11.2 Theorem: Suppose Q) is connected and u is subharmonic on Q.
If u has a maximum in 2, then u is constant.

PROOF: Suppose u attains a maximum at a € Q. Choose a closed
ball B(a,R) c Q asin 11.1. We have u < u(a) on B(a,R). If u were
less than u(a) at any point of B(a, R), then the continuity of u would
show that 11.1 fails for some v < R. Thus u = u{(a) on B(a, R). The set
where u attains its maximum is therefore an open subset of Q). Because
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this set is also closed in €, it must be all of Q by the connectivity of Q,
proving that u is constant on Q. =

The following theorem indicates another sense in which subhar-
monic functions are “sub”-harmonic.

11.3 Theorem: Let Q be bounded. Suppose u and v are continuous
on Q, u is subharmonic on Q, and v is harmonicon Q. If u < v on 9Q,
thenu <v on Q.
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