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To Donna 



Preface 

This book presents the basic theory of fields, starting more or less 
from the beginning. It is suitable for a graduate course in field theory, 
or independent study. The reader is expected to have absorbed a serious 
undergraduate course in abstract algebra, not so much for the material 
it contains but for the oft-mentioned mathematical maturity it provides. 

The book begins with a preliminary chapter (Chapter 0), which is 
designed to be quickly scanned or skipped and used as a reference if 
needed. The remainder of the book is divided into three parts. 

Part 1, entitled Basic Theory, begins with a chapter on polynomials. 
Chapter 2 is devoted to various types of field extensions. In Chapter 3, 
we treat algebraic independence, starting with the general notion of a 
dependence relation and concluding with Luroth's Theorem on 
intermediate fields of a simple transcendental extension. Chapter 4 is 
devoted to the notion of separability of algebraic extensions. 

Part 2 of the book is entitled Galois Theory. Chapter 5 begins with 
the notion of a Galois correspondence between two partially ordered 
sets, and then specializes to the Galois correspondence of a field 
extension, concluding with a brief discussion of the Krull topology. In 
Chapter 6, we discuss the Galois theory of equations. In Chapter 7, we 
take a closer look at a finite field extension E of F as a vector space 
over F. The next two chapters are devoted to a fairly thorough 
discussion of finite fields. Mobius inversion is used in a few brief spots 
in these chapters, so an appendix has been included on this subject. 

Part 3 of the book is entitled The Theory of Binomials. Chapter 10 
covers the roots of unity (that is, the roots of the binomial xn -1) and 
includes Wedderburn's theorem (a finite division ring is a field). This 



viii Preface 

also seems like the appropriate time to discuss the question of whether a 
given group is the Galois group of a field extension. In Chapter 11, we 
characterize the splitting fields of binomials xn- u, when the base field 
contains the n-th roots of unity. Chapter 12 is devoted to the question 
of solvability of a polynomial equation by radicals. (This chapter might 
make a convenient ending place in a graduate course.) In Chapter 13, 
we determine conditions that characterize the irreducibility of a 
binomial and describe the Galois group of a binomial. Chapter 14 
briefly describes the theory of families of binomials -the so-called 
Kummer theory. 

Sections marked with an asterisk are optional, in that they may be 
skipped without loss of continuity. The unmarked sections might be 
considered as forming a basic core course in field theory. 
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Chapter 0 

Preliminaries 

The purpose of this chapter is to review some basic facts that will be 
needed in the book. The discussion is not intended to be complete, nor 
are all proofs supplied. We suggest that the reader quickly skim this 
chapter (or skip it altogether) and use it as a reference if needed. 

0.1 Lattices 

Definition A partially ordered set (or poset) is a nonempty set P, 
together with a binary relation ~ on P satisfying the following 
properties. For all a, {3, 'YEP, 

1) (reflexivity) 
2) (antisymmetry) 
3) (transitivity) 

If, in addition, 

a~a 
a ~ {3, {3 ~ a :::} a = {3 
a ~ {3, {3 ~ 'Y :::} a ~ 'Y 

a, {3 E P :::} a ~ {3 or {3 ~ a 

then P is said to be totally ordered. 0 

Any subset of a poset P is also a poset under the restriction of the 
relation defined on P. A totally ordered subset of a poset is called a 
chain. If S s; P and s ~ a for all s E S then a is called an upper bound 
for S. A least upper bound for S, denoted by lub(S) or V S, is an upper 
bound that is less than or equal to any other upper bound. Similar 
statements hold for lower bounds and greatest lower bounds, the latter 
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denoted by glb(S), or 1\ S. A maximal element in a poset P is an 
element a E P such that a~ (3 implies a= (3. A minimal element in a 
poset P is an element 1 E P such that (3 ~ 1 implies (3 = "'· Zorn's 
Lemma says that if every chain in a poset P has an upper bound in P 
then P has a maximal element. 

Definition A lattice is a poset L in which every pair of elements a, 
(3 E L has a least upper bound, or join, denoted by a V (3 and a greatest 
lower bound, or meet, denoted by a 1\ (3. If every nonempty subset of L 
has a join and a meet then L is called a complete lattice. 0 

Note that any nonempty complete lattice has a greatest element, 
denoted by 1 and a smallest element, denoted by 0. 

Definition A sublattice of a lattice L is a subset S of L that is closed 
under meets and joins. 0 

It is important to note that a subset S of a lattice L can be a lattice 
under the same order relation and yet not be a sublattice of L. As an 
example, consider the collection ':1 of all subgroups of a group G, 
ordered by inclusion. Then ':1 is a subset of the power set c:P(G), which is 
a lattice under union and intersection. But :f is not a sublattice of c:P(G) 
since the union of two subgroups need not be a subgroup. On the other 
hand, ':1 is a lattice in its own right under set inclusion, where the meet 
H 1\ K of two subgroups is their intersection and the join H V K is the 
smallest subgroup of G containing H and K. 

In a complete lattice L, joins can be defined in terms of meets: V T 
is the meet of all upper bounds ofT. The fact that 1 E L insures that T 
has at least one upper bound, so that the meet is not an empty one. 
The following theorem exploits this idea to give conditions under which 
a subset of a complete lattice is itself a complete lattice. 

Theorem 0.1.1 Let L be a complete lattice. If S ~ L has the properties 
(i) 1 E S and (ii) T ~ S, T I 0 =? 1\ T E S, then S is a complete lattice. 

Proof. Let T ~ S. Then 1\ T E S by assumption. Let U be the set of all 
upper bounds of T that lie in S. Since 1 E S, we have U I 0. Hence, 
1\ U E S and is V T. Thus, S is a complete lattice. (Note that S need 
not be a sublattice of L since 1\ U need not equal the meet of all upper 
bounds of T in L.) I 
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0.2 Groups 
Definition A binary operation on a set A is a map from A x A to A. 0 

Definition A group is a nonempty set G, together with a binary 
operation on G, denoted by juxtaposition, with the following properties: 

1) 
2) 

3) 

(Associativity) (a(i)'y = a(fi"t) for all a, (3, 1 E G; 
(Identity) There exists an element f E G for which m = af =a for 
all a E G; 
(Inverses) For each a E G, there is an element a-1 E G for which 
aa-1 = a-1a =f. 

A group G is abelian, or commutative, if a(i = (3a, for all a, (3 E G. 0 

The identity element is often denoted by 1. When G is abelian, the 
group operation is often denoted by + and the identity by 0. 

Definition A subgroup S of a group G is a subset of G that is a group in 
its own right, using the restriction of the operation defined on G. We 
denote the fact that Sis a subgroup of G by writingS< G. 0 

Let G be a group. Since G is a subgroup of itself and since the 
intersection of subgroups of G is a subgroup of G, Theorem 0.1.1 
implies that the set of subgroups of G forms a complete lattice, where 
H A J = H n J and H V J is the smallest subgroup of G containing both 
Hand J. We denote this lattice by !!'(G). 

A group G is finite if it contains only a finite number of elements. 
The cardinality of a finite group G is called its order and is denoted by 
I G I or o(G). If a E G, and if ak = f for some integer k, we say that k 

is an exponent of a. The smallest positive exponent for a E G is called 
the order of a and is denoted by o(a). An integer m for which am= 1 
for all a E G is called an exponent of G. (Note: Some authors use the 
term exponent of G to refer to the smallest positive exponent of G.) 

Theorem 0.2.1 Let G be a group and let a E G. Then k is an exponent 
of a if and only if k is a multiple of o(a). Similarly, the exponents of G 
are precisely the multiples of the smallest positive exponent of G. 0 

While the smallest positive exponent of an element a E G is the 
order of the cyclic subgroup (a) = {~In E l}, this does not extend to 
groups in general, that is, the smallest positive exponent of G may be 
smaller than the order of G. (Example: l 2 x l 2 has exponent 2 but 
order 4.) We next characterize the smallest positive exponent for finite 
abelian groups. 
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Theorem 0.2.2 Let G be a finite abelian group. 

1) If m is the maximum order of all elements in G then am = 1 for 
all a E G. Thus, the smallest positive exponent of G is equal to 
the maximum order of all elements of G. 

2) The smallest positive exponent of G is equal to o(G) if and only if 
G is cyclic. 

Proof. Let a have maximum order m among all the elements in G. 
Suppose that (Jm f. 1 for some fJ E G and let o(fJ) = k < m. It follows 
that kJm and so there exists a prime p for which pu I k but puJm. Let 
v < u be the largest integer for which p v I m. Consider the elements 

a'= aPv and (J' = (Jk/pu 

Since o(a') = m/pv and o(fJ') = pu and since (m/pv,pu) = 1, it follows 
that 

o(a'fJ') = o(a')o((J') = mpu-v > m 

in contradiction to the maximality of m. Thus, all elements fJ E G 
satisfy (Jm = 1. Clearly, m = o(a) is the smallest such positive integer 
and part 1) is proved. Part 2) follows easily from part 1 ), since a finite 
group G is cyclic if and only if it has an element of order o(G). I 

Let H <G. We may define an equivalence relation on G by saying 
that a'""" fJ if (J-1a E H (or equivalently a-1(3 E H). The equivalence 
classes are the left cosets aH = { ah I h E H} of H in G. Thus, the 
distinct left cosets of H form a partition of G. Similarly, the distinct 
right cosets Ha form a partition of G. It is not hard to see that all 
cosets of H have the same cardinality and that there are the same 
number of left cosets of H in G as right cosets. (This is easy when G is 
finite. Otherwise, consider the map aH~----+Ha- 1 .) 

Definition The index of H in G, denoted by (G:H), is the cardinality of 
the set G/H of all distinct left cosets of H in G. If G is finite then 
(G:H) = I G I I I H I· 0 

Theorem 0.2.3 Let G be a finite group. 

1) (Lagrange) The order of any subgroup of G divides the order of G. 
2) The order of any element of G divides the order of G. 
3) (Converse of Lagrange's Theorem for Finite Abelian Groups) If A 

is a finite abelian group and if k I o(A) then A has a subgroup of 
order k. D 
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Normal Subgroups 
Definition A subgroup H of G is normal in G, written H <1 G, if 
o:Ho:-1 = H for all o: E G. D 

Definition A group G is simple if it has no normal subgroups other than 
{1} and G. D 

Theorem 0.2.4 The following are equivalent for a subgroup H of G. 

1) H<1G. 
2) o:H = Ho: for all o: E G. 
3) For all o: E G, there exists a {J E G such that o:H = H{J. 
4) o:Ho:-1 ~ H for all o: E G. 
5) o:{J E H => {Jo: E H for all o:, {J E G. D 

Theorem 0.2.5 Any subgroup H of a group G of index 2 is normal. D 

Theorem 0.2.6 If G is a group and {Hi} is a collection of normal 
subgroups of G then n Hi and V Hi are normal subgroups of G. Hence, 
the collection of normal subgroups of G is a complete sublattice of the 
complete lattice !I'( G) of all subgroups of G. D 

Theorem 0.2.7 If H < G then the set G/H of all right cosets of H in G 
forms a group under the operation ( o:H)([JH) = o:{JH if and only if 
H <1 G. The group G/H is called the quotient group (or factor group) of 
H in G. The order of G/H is (G:H). D 

Euler's Formula 

If o: and {J are integers, not both zero, then an integer 6 is called a 
greatest common divisor (gcd) of o: and {J if (i) 61 o: and 61 {J and (ii) if 
"( I o: and "( I {J then 'Y 16. Note that if 6 is a gcd of o: and {J, then so is 
-6. It is customary to denote a gcd of o: and {J by (o:,{J) or gcd(o:,{J). 

If (o:,{J) = 1, then o: and {J are relatively prime. The Euler phi 
function ¢ is defined by letting ¢(n) be the number of positive integers 
less than or equal to n that are relatively prime to n. The Euler phi 
function is multiplicative, that is, 

¢(mn) = ¢(m)¢(n), when (m,n) = 1 

It also satisfies 

These two properties completely determine ¢. 
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Two integers a and {J are congruent modulo n, written a :: {J mod n, 
if a- {J is divisible by n. Let zn denote the ring of integers {0, ... I n-1} 
under addition and multiplication modulo n. 

Theorem 0.2.8 (Euler's Theorem) If a, n Eland (a,n) = 1, then 

atP(n) = 1 mod n 

Proof. We first show that the set G = {{J E zn I ({J,n) = 1} is a group of 
order ¢(n) under multiplication modulo n. Clearly, {J,-y E G imply {J-y E 
G. Also, if {J E G, then there exists a, bEl such that a{J + bn = 1 and 
so a{J = 1 mod n. Thus, a modn is the inverse of {J E G. Since G is a 
group of order ¢(n), we deduce that atP(n) = 1 mod n, for all a E G. If 
a rl. G, then there exists an a' E G for which a'= a mod n. Since 
(a,n) = 1 if and only if (a',n) = 1, we have 

atP(n) = (a')¢(n) = 1 mod n I 

Corollary 0.2.9 (Fermat's Theorem) If p is a prime not dividing the 
integer a, then 

aP:: a mod p [] 

Cyclic Groups 
If G is a group and a E G, then the set of all powers of a 

is a subgroup of G, called the cyclic subgroup generated by a. A group 
G is cyclic if it has the form G =(a), for some a E G. In this case, we 
say that a generates G. 

Theorem 0.2.10 Every subgroup of a cyclic group is cyclic. A finite 
abelian group G is cyclic if and only if its smallest positive exponent is 
equal to o(G). [] 

The following theorem contains some key results about finite cyclic 
groups. 

Theorem 0.2.11 Let G =(a) be a cyclic group of order n. 

1) For 1 $ k < n, 
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In particular, ak generates G = (a) if and only if (n,k) = 1. 
2) If d I n, then 

o(ak) = d ¢} k = r a, where (r,d) = 1 

Thus the elements of G of order d I n are the elements of the form 
arn/d, where 0 $ r < d and r is relatively prime to d. 

3) For each dIn, the group G has exactly one subgroup Hd of order 
d and ¢(d) elements of order d, all of which lie in Hd. 

Proof. To prove part 1), we first observe that if d = (k,n) then d = 
ak + bn for some integers a and b. Hence, 

whence (ad)~ (ak). But the reverse inclusion holds since d I k and so 
(ak) = (ad). Since dIn, it is clear that 

o(ak) = o(ad) =a= (n~k) 

To prove part 2), we let dIn and solve the equation 

Rearranging gives 

n -d 
(n,k)-

n = d(n,k) = (dn,dk) 

Setting r = k/(n,k), we get dk = n[k/(n,k)] = nr and so 

n = (dn,rn) = n(d,r) 

which holds if and only if ( d,r) = 1. 
For part 3), it follows from part 2) that all of the ¢(d) elements of G 

of order d lie in the subgroup Hd =(an/d). Moreover, if His a subgroup 
of G of order d then, being cyclic, it must contain an element f3 of order 
d. But f3 E Hd and so H = (/3} = Hd. I 

Counting the elements in a cyclic group of order n gives the following 
corollary. 

Corollary 0.2.12 For any positive integer n, 

n= E ¢(d) 
din 

0 
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Homomorphisms 

Definition Let G and H be groups. A map ,P:G-+H is called a group 
homomorphism if 1{1(01{3) = (1{101)(1{1{3). A surjective homomorphism is an 
epimorphism, an injective homomorphism is a monomorphism and a 
bijective homomorphism is an isomorphism. If 1/I:G-+H is an 
isomorphism, we say that G and H are isomorphic and write G ~ H. [) 

If 1/1 is a homomorphism then 1/lf = f and 1{101-1 = (1{101)-1. The kernel 
of a homomorphism 1/I:G-+H, 

ker 1/1 = { 01 E G I 1{101 = f} 

is a normal subgroup of G. Conversely, any normal subgroup H of G is 
the kernel of a homomorphism. For we may define the natural 
projection 11":G-+G/H by 11"01 = 01H. This is easily seen to be an 
epimorphism with kernel H. 

Let f:S-+T be a function from a set S to a set T. Let c:P(S) and c:P(T) 
be the power sets of S and T, respectively. We define the induced map 
f:c:P(S)-+c:P(T) by f(U) = {f(u) I u E U} and the induced inverse map by 
r 1(V) = {s E s I f(s) E V}. (It is customary to denote the induced maps 
by the same notation as the original map.) Note that f is surjective if 
and only if its induced map is surjective, and this holds if and only if 
the induced inverse map is injective. A similar statement holds with the 
words surjective and injective reversed. 

Theorem 0.2.13 Let ,P:G-+G' be a group homomorphism. 

1) 

2) 

a) If H < G then 1/I(H) < G'. 
b) If 1/1 is surjective and H <1 G then 1/I(H) <1 G'. 
a) If H' < G' then ,p-1(H') < G. 
b) If H' <1 G' then ,p-1(H') <1 G.[) 

Theorem 0.2.14 (The Isomorphism Theorems) Let G be a group. 

1) (First Isomorphism Theorem) Let 1/I:G-+G' be a group 
homomorphism with kernel K. Then K <1 G and the map 
-:jfi:G/K-+imt/1 defined by -:jfi(01K) = 1{101 is an isomorphism. Hence 
G/K ~ im 1{1. In particular, 1/1 is injective if and only if ker 1/1 = 
{f}. 

2) (Second Isomorphism Theorem) If H < G and N <1 G then 
N nH <1H and 
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3) (Third Isomorphism 
and 

Theorem) If H <I <l J < G 

J/H J 
1/H :::=I 

Hence (J:I) = (JjH:I/H). 0 

9 

then 1/H <l J /H 

Theorem 0.2.15 (The Correspondence Theorem) Let H <l G and let 1r be 
the natural projection 7r:G-+G/H. Thus, for any I< G, 

7r(I) = I/H = {iH I i E I} 

1) The induced maps 11" and 11"-l define a one-to-one correspondence 
between the lattice of subgroups of G containing H and the lattice 
of subgroups of G/H. 

2) 7r preserves index, that is, for any H <I< J < G, we have 

(J:I) = (7r(J):1r(I)) 

3) 7r preserves normality, that is, if H <I < J < G then I <l J if and 
only if 1/H <l J /H, in which case J /I:::= 7r(J)/7r(l). 0 

Action of a Group on a Set 
Definition Let X be a set and let G be a group. We say that G acts on 
X if there is a function G X x-x, sending (a,x) to axE X, satisfying 

1) lx = x for all x E X 
2) (aP)x = a(Px) for all x EX, a, PEG. 

We say that G acts transitively on X if for any x, y E X there exists an 
a E G such that ax = y. 0 

It follows from the definition that each a E G acts as a permutation 
7r 0 :xt--+ax of X and that the map at--+7r 0 is a group homomorphism from 
G to a subgroup of the group of permutations of X. 

Definition Let G act on X: The orbit of x E X is the set 

orb(x) = Gx ={ax I a E G} 

The stabilizer of x is the subgroup 

G x = {a E G I ax = x} 0 
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Note that G acts transitively on X if and only if orb(x) =X for all 
x E X. We may define an equivalence relation on X by setting x "' y if 
and only if there exists an a E G for which ax= y. The equivalence 
classes are precisely the orbits in X, which therefore partition the set X. 
Since ax= f3x if and only if p-1a E Gx, which in turn holds if and only 
if aGx = f3Gx, we deduce the existence of a bijection from GIGx onto 
orb(x). 

Theorem 0.2.16 Let G act on X. 

1) For any x EX, I orb(x) I = (G:Gx) and if X is finite then 
I orb(x) I = I G I I I Gx I· 

2) If G acts transitively on X then I X I = (G:Gx) for any x EX and 
if X is finite then I X I = I G I I I Gx I · 

3) (The class equation) 

I X I = L(G:Gx) 

where the sum is taken over one representative from each distinct 
orbit in X. 0 

Example 0.2.1 One of the most important instances of a group acting 
on a set is the case where X = G acts on itself by conjugation. To avoid 
obvious confusion, we denote the action of a E G on f3 E G by af3. Then 
af3 = af3a-1. The orbit of f3 EGis the conjugacy class of f3 

orb(f3) = {af3a-1 1 a E G} 

The stabilizer of f3 E G is the centralizer of f3 

C(/3) ={a E G I a/3 = f3a} 

The previous theorem says that the conjugacy class of f3 has cardinality 
(G:C(/3)). The class equation in this case is 

o(G) = L (G:C(/3)) 

where the sum is over one representative of each conjugacy class. 
The center of G is the set Z(G) = {/1 E G I a/1 = ~Ja for all a E G}. 

Thus Z(G) consists of those elements of G whose centralizer is equal to 
the entire group G, or equivalently, whose conjugacy class contains only 
the element itself. In other words, f3 E Z(C) if and only if (G:C(/1)) = 1. 
We may now write the class equation in the form 

o(G) = o(Z(G)) + L (G:C(/1)) 
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where the sum is taken over one representative from each conjugacy 
class of size greater than 1. 0 

Sylow Subgroups 
Definition If p is a prime, then a group G is called a p-group if every 
element of G has order a power of p. D 

For finite groups, if a E G then o(a) I o(G). The converse does not 
hold in general, but we do have the following. 

Theorem 0.2.17 Let G be a finite group. 

1) {Cauchy) If o(G) is divisible by a prime p then G contains an 
element of order p. 

2) If p is a prime and o(G) is divisible by pn then G contains a 
subgroup of order pn. D 

Corollary 0.2.18 A finite group G is a p-group if and only if I G I = pn 
for some n. 0 

Theorem 0.2.19 (Sylow) If G has order pnm where p l m then G has a 
subgroup of order pn, called a Sylow p-subgroup of G. All Sylow p
subgroups are conjugate (and hence isomorphic). The number of Sylow 
p-subgroups of G divides o(G) and is congruent to 1 mod p. Any p
subgroup of G is contained is a Sylow p-subgroup of G. 0 

The Symmetric Group 
Definition The symmetric group Sn is the group of all permutations of 
the set A= {1,2, ... ,n}, under composition of maps. A transposition is 
a permutation that interchanges two distinct elements of A and leaves 
all other elements fixed. The alternating group An is the subgroup of Sn 
consisting of all even permutations, that is, all permutations that can 
be written as a product of an even number of transpositions. 0 

·Theorem 0.2.20 
1) 
2) 
3) 
4) 

The order of Sn is n!. 
The order of An is n!/2. Thus, [Sn:An] = 2 and An <1 Sn. 
An is the only subgroup of Sn of index 2. 
An is simple (no nontrivial normal subgroups) for n ~ 5. 0 
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A subgroup H of Sn is transitive if for any k, j E {1,2, ... ,n} there is 
au E H for which uk =j. 

Theorem 0.2.21 If H is a transitive subgroup of Sn then o(H) is a 
multiple of n. 

Proof. The group H acts on the set X= {1,2, ... ,n} and Theorem 0.2.16 
gives I X I = I HI/ I Gx I, that is, I HI = n I Gx I· I 

0.3 Rings 

Definition A ring is a nonempty set R, together with two binary 
operations on R, called addition (denoted by + ), and multiplication 
(denoted by juxtaposition), satisfying the following properties. 

1) R is an abelian group under the operation +. 
2) (Associativity) (aPh = a(Pr) for all 01, p, -y E R. 
3) (Distributivity) For all 01, p, -y E R, 

(a+ Ph= ar + ap and r(a + P) = ra + rP o 

Definition Let R be a ring. 

1) R is called a ring with identity if there exists an element 1 E R for 
which al = 101 =a, for all 01 E R. In a ring R with identity, an 
element 01 is called a unit if it has a multiplicative inverse in R, 
that is, if there exists a P E R such that ap = Pa = 1. 

2) R is called a commutative ring if multiplication is commutative, 
that is, if ap = pa for all 01, P E R. 

3) A zero divisor in a commutative ring R is a nonzero element 01 E 
R such that ap = 0 for some P # 0. A commutative ring R with 
identity is called an integral domain if R contains no zero divisors. 

4) A ring R with identity 1 # 0 is called a field if the nonzero 
elements of R form an abelian group under multiplication. 0 

It is not hard to see that the set of all units in a ring with identity 
forms a group under multiplication. We shall have occasion to use the 
following example. 

Example 0.3.1 Let ln = {0, ... ,n-1} be the ring of integers modulo n. 
Then k is a unit in ln if and only if (k,n) = 1. This follows from the 
fact that (k,n) = 1 if and only if there exists integers a and b such that 
ak + bn = 1, that is, if and only if ak = 1 mod n. The set of units of ln, 
denoted by l~, is a group under multiplication. 0 
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Definition A subring of a ring R is a nonempty subset S of R that is a 
ring in its own right, using the same operations as defined on R. 0 

Definition A subfield of a field E is a nonempty subset F of E that is a 
field in its own right, using the same operations as defined on E. In this 
case, we say that E is an extension ofF and write F < E orE> F. 0 

Definition Let R and S be rings. A function .P:R-+S is a homomorphism 
if, for all a, {3 E R, 

tP( a + {3) = .Pa + .PP and tP( a{3) = ( .Pa )( .PP) 

An injective homomorphism is a monomorphism or an embedding, a 
surjective homomorphism is an epimorphism and a bijective 
homomorphism is an isomorphism. A homomorphism from R into itself 
is an endomorphism and an isomorphism from R onto itself is an 
automorphism. 0 

Ideals 

Definition A nonempty subset 3 of a ring R is called an ideal if it 
satisfies 

1) a, {3 E 3 implies a- {3 E 3. 
2) a E R, L E 3 implies at E 3 and ta E 3. 0 

If S is a nonempty subset of a ring R, then the ideal generated by S 
is defined to be the smallest ideal 3 of R containing S. If R is a 
commutative ring with identity, and if a E R, then the ideal generated 
by {a} is the set 

(a)= Ra = {pa I pER} 

Any ideal of the form (a) is called a principal ideal. 

Definition If 1f':R-+S is a homomorphism, then 

Ker.P ={a E R I ~a= 0} 

is an ideal of R. 0 

If R is a ring and 3 is an ideal in R then for each a E R, we can form 
the coset 
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It is easy to see that a + ~ = f3 + ~ if and only if a - f3 E ~. and that any 
two cosets a + ~ and f3 + ~ are either disjoint or identical. The collection 
of all (distinct) cosets is a ring itself, with addition and multiplication 
defined by 

and 
(a + ~) + (b + ~) = (a + b) + ~ 

(a+ ~)(b + ~) = ab + ~ 

The ring of cosets of~ is called a factor ring and is denoted by R/t 

Definition An ideal 3 of a ring R is maximal if 3 '1- R and if whenever 
3 ~ ~ ~ R for any ideal ~. then ~ = ~ or ~ = R. An ideal ~ is prime if 
3 '1- R and if af3 E 3 implies a E ~ or f3 E ~. 0 

It is not hard to see that a maximal ideal in a commutative ring 
with identity is prime. This also follows from the next theorem. 

Theorem 0.3.1 Let R be a commutative ring with identity and let ~ be 
an ideal of R. 

1) R/3 is a field if and only if 3 is maximal. 
2) R/3 is an integral domain if and only if~ is prime. 0 

The Characteristic of a Ring 
Let R be a ring and let r E R. For any positive integer n, we define 

nr= r+r+···+r 
~ 

n terms 

The characteristic char(R) of a ring R is the smallest positive integer n 
for which n1 = 0 (or equivalently, nr = 0 for all r E R), should such an 
integer exist. If it does not, we say that R has characteristic 0. If 
char(R) = 0 then R contains a copy of the integers 71., in the form 
7L ·1 = {n11 n E 71.}. If char(R) = r, then R contains a copy of 7/_r = 
{0,1, ... ,r -1}. 

Theorem 0.3.2 The characteristic of an integral domain is either 0 or a 
prime. In particular, a finite field has prime characteristic. 0 

If F is a field, the intersection of all of its subfields is the smallest 
subfield ofF and is referred to as the prime subfield of F. 
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Theorem 0.3.3 If char(F) = 0, the prime subfield of F is isomorphic to 
the rational numbers Q. If char(F) = p is prime, the prime field of F is 
isomorphic to lp. D 

The following result is of considerable importance for the study of 
fields of nonzero characteristic. 

Theorem 0.3.4 Let R be a commutative ring with identity of prime 
characteristic p. If q = pn then 

Proof. Since the binomial formula holds in any commutative ring with 
identity, we have 

where 

(P) _ p(p-1)· · ·(p-k+1) 
k - k! 

But p I (~) for 0 < k < p, and so (~) = 0 in R. The binomial formula 
therefore reduces to 

Repeated use of this formula gives (a + (J)q = aq + (Jq. The second 
formula is proved similarly. I 

0.4 Integral Domains 
Theorem 0.4.1 Let R be an integral domain. Let a, (3 E R. 

1) We say that a divides (3 and write a I (3 if (3 = pa for some pER. 
If p and a are nonunits and (3 = pa then a properly divides (3. 
a) A unit divides every element of R. 
b) a I (3 if and only if ((3} ~ (a}. 
c) a I (3 properly if and only if ((3} C (a} CR. 

2) If a = u(J for some unit u then a and (3 are associates and we 
write a ..... (3. 
a) a ..... (3 if and only if a I (3 and (31 a. 
b) a ..... (3 if and only if (a} = ((3}. 

3) A nonzero element pER is irreducible if p is not a unit and if p 
has no proper divisors. Thus, a nonunit p is irreducible if and only 
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if p = a(3 implies either a or (3 is a unit. 
4) A nonzero element 1r E R is prime if 1r is not a unit and whenever 

1r I a(3 then 1r I a or 1r I (3. 
a) Every prime element is irreducible. 
b) 1r E R is prime if and only if (1r) is a nonzero prime ideal. 

5) Let a, (3 E R. An element dE R is called a greatest common 
divisor (gcd) of a and (3, written (a,(3) or gcd(a,(3), if d I a and 
d I (3 and if whenever e I a, e I (3 then e I d. If gcd(a,(3) is a unit, we 
say that a and (3 are relatively prime. 
a) The greatest common divisor of two elements, if it exists, is 

unique up to associate. 0 

Theorem 0.4.2 An integral domain R is a field if and only if it has no 
ideals other than the zero ideal or R itself. Any nonzero homomorphism 
u:F-tE of fields is a monomorphism. 0 

Theorem 0.4.3 Every finite integral domain is a field. 0 

If R is an integral domain, we may form the set 

R' = {a/(31 a, (3 E R, (3 # 0} 

where a/ (3 = a/b if and only if ab = a(3. We define addition and 
multiplication on R' in the "obvious way" 

Q: +.!! _ ab + (3a 
(3 b- (3b , 

It is easy to see that these operations are well-defined and that R' is 
actually a field, called the field of quotients of the integral domain R. It 
is the smallest field containing R, in the sense that if F is a field and 
R ~ F then R ~ R' ~ F. The following fact will prove useful. 

Theorem 0.4.4 Let R be an integral domain with field of quotients R'. 
Then any monomorphism u:R-tF from R into a field F has a unique 
extension to a monomorphism IT:R'-tF. 

Proof. Define IT(a/(3) = uafu(3, which makes sense since (3 # 0 implies 
0' (3 # 0. One can easily show that IT is well-defined. Since uo:/ 0' (3 = 0 if 
and only if uo: = 0, which in turn holds if and only if o:/ (3 = 0, we see 
that IT is injective. Uniqueness is clear since 0' I R (u restricted to R) 
uniquely determines 0' on R'. I 
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0.5 Unique Factorization Domains 

Definition An integral domain R is a unique factorization domain (ufd) 
if 
1) 

2) 

Any nonunit r E R can be written as a product r =PI"· ·Pn where 
Pi is irreducible for all i. We refer to this as the factorization 
property for R. 
This factorization is essentially unique in the sense that if r = 
PI·· ·Pn = q1· · ·qm are two factorizations into irreducible elements 
then m = n and there is some permutation 1r for which Pi ""' q'll"{i) 
for all i. 0 

If r E R is not irreducible, then r = st where s and t are nonunits. 
Evidently, we may continue to factor as long as at least one factor is 
not irreducible. An integral domain R has the factorization property 
precisely when this factoring process always stops after a finite number 
of steps. 

When is an integral domain a unique factorization domain? The 
following answer helps explain the importance of ufd's. 

Theorem 0.5.1 Let R be an integral domain for which the factorization 
property holds. The following conditions are equivalent and therefore 
imply that R is a unique factorization domain. 

1) Factorization in R is essentially unique. 
2) Every irreducible element of R is prime. 
3) Any two elements of R (not both zero) have a greatest common 

divisor. 0 

Corollary 0.5.2 In a unique factorization domain, the concepts of prime 
and irreducible are equivalent. 0 

0.6 Principal Ideal Domains 
Definition An integral domain R is called a principal ideal domain (pid) 
if every ideal of R is principal. 0 

Theorem 0.6.1 Every principal ideal domain is a unique factorization 
domain. 0 

We remark that the ring Z[x] is a ufd (as we prove in Chapter 1) but 
not a pid (the ideal (2,x) is not principal) and so the converse of the 
previous theorem is not true. 
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Theorem 0.6.2 Let R be a principal ideal domain and let 3 be an ideal 
ofR. 

1) 3 is maximal if and only if 3 = {p) where pis irreducible. 
2) 3 is prime if and only if 3 = {0} or 3 is maximal. 
3) The following are equivalent: (i) R/{p) is a field (ii) R/{p) is an 

integral domain (iii) p is irreducible (iv) p is prime. D 

0. 7 Euclidean Domains 
Roughly speaking, a Euclidean domain is an integral domain in 

which we can perform "division with remainder." 

Definition An integral domain R is a Euclidean domain if there is a 
function u:(R-{0} )--tN with the property that given any a, {J E R, 
{J =f:. 0, there exist q, r E R satisfying 

a=q{J+r 

where r = 0 or ur < u{J. D 

Theorem 0.7.1 A Euclidean domain is a principal ideal domain (and 
hence also a unique factorization domain). 

Proof. Let 3 be an ideal in the Euclidean domain R and let a E 3 be 
minimal with respect to the value of u. Thus, ua $ u{J for all {J E 3. If 
s E 3 then 

s = ra+q 

where q = 0 or uq < ur. But q = s - ra E 3 and so the latter is not 
possible, leaving q = 0 and s E (a). Hence, 3 = (a). I · 

Theorem 0.7.2 If F is a field, then F[x] is a Euclidean domain with 
u(p(x)) = deg p(x). Hence F[x] is also a principal ideal domain and a 
unique factorization domain. 

Proof. This follows from ordinary division of polynomials; to wit, if 
f(x), g(x) E F[x], g(x) =f:. 0, then there exist q(x), r(x) E F[x] such that 

f(x) = q(x)g(x) + r(x) 

where deg r(x) < deg g(x). I 
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0.8 Tensor Products 

Tensor products are used only in the optional Section 5.6. 

Definition Let U, V and W be vector spaces over a field F. A function 
f: U XV~ W is bilinear if it is linear in both variables separately, that is, 
if 

f(ru + su',v) = rf(u,v) + sf(u',v) 
and 

f(u,rv + sv') = rf(u,v) + sf(u,v') 

The set of all bilinear functions from U x V to W is denoted by 
<:B(U,V;W). A bilinear function f:U X v~F, with values in the base field 
F, is called a bilinear form on U x V. 0 

Example 0.8.1 
1) A real inner product (,):VxV~IR is a bilinear form on VxV. 
2) If A is an algebra, the product map JJ:A x A~A defined by 

JJ(a,b) = ab is bilinear. 0 

We will denote the set of all linear transformations from U x V to W 
by L(U x V,W). There are many definitions of the tensor product. We 
choose a universal definition. 

Theorem 0.8.1 Let U and V be vector spaces over the same field F. 
There exists a unique vector space U ® V and bilinear map 
t: U X V ~ U ® V with the following property. If f: U XV~ W is any 
bilinear function from U x V to a vector space W over F, then there is a 
unique linear transformation r:U ® v~w for which 

TOt= f 0 

This theorem says that to each bilinear function f:U X v~w. there 
corresponds a unique linear function r:U ® v~w, through which f can 
be factored (that is, f =rot). The vector space U ® V, whose existence 
iS' guaranteed by the previous theorem, is called the tensor product of U 
and V over F. We denote the image of (u,v) under the map t by 
t(u,v) = u ® v. 

If X = Im t = { u ® v I u E U, v E V} is the image of the tensor map t 
then the uniqueness statement in the theorem implies that X spans 
U ® V. Hence, every element of a E U ® V is a finite sum of elements of 
the form u ®v 

a= 2::: ai(ui ®vi) 
finite 
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We establish a few basic properties of the tensor product. 

Theorem 0.8.2 If { u1, ••• , un} ~ U is linearly independent and 
{ v 1, ... , v n} ~ V then 

Proof. Consider the dual vectors 8i E U* to the vectors ui, where 8iuj = 
8ij· For linear functionals fi:V-+F, we define a bilinear form f:U X V-+F 
by 

n 

f(u,v) = L 8j(x)fj(Y) 
j=l 

Since there exists a unique linear functional T: U ® V -+F for which 
Tot= f, we have 

0 = T( 4: ui ®vi)= 4: To t(ui,vi) 
l l 

= L f(ui,vi) = L L 8j(ui)fj(vi) = L fi(vi) 
i i j i 

Since the fi's are arbitrary, we deduce that vi = 0 for all i. I 

Corollary 0.8.3 If u f:. 0 and v f:. 0, then u ® v f:. 0. 0 

Theorem 0.8.4 Let <:B = {ei I i E I} be a basis for u and e = {fj u E J} be 
a basis for V. Then the set G] = {ei ® fj I i E I, j E J} is a basis for U ® V. 

Proof. To see that the G] is linearly independent, suppose that 

""'r. ·(e· ®f.) = 0 L...J 1,) I J 

This can be written 
ij 

4=ei ®(4=ri}j) = 0 
I J 

Theorem 0.8.2 implies that 

""'r· .f. = 0 ~ IJJ 
J 

for all i, and hence rij = 0 for all i and j. To see that G] spans U ® V, let 
u ® v E U ® V. Since u = ~riei, and v = ~s/j• we have 

l J 

U ® V = ""'r-e· ® ""'S·f· = ""'S·(""' f·e· ®f.) L...JII L...JJJ L...JJL...JIJ J 
i j j i 
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= ~sj(4:>i(ei ®fj)) = ~risj(ei ®fj) 
J I IJ 

Since any vector in U ® V is a finite·sum of vectors u ® v, we deduce 
that G.D spans U ® V. I 

Corollary 0.8.5 For finite dimensional vector spaces, 

dim(U ® V) = dim(U) · dim(V) 

Exercises 

0 

1. The relation of being associates in an integral domain is an 
equivalence relation. 

2. Prove that the characteristic of an integral domain is either 0 or a 
prime, and that a finite field has prime characteristic. 

3. If char(F) = 0, the prime subfield of F is isomorphic to the 
rational numbers Q. If char(F) = p is prime, the prime field of F 
is isomorphic to lp. 

4. If F < E show that E and F must have the same characteristic. 
5. Let F be a field of characteristic p. The map u:F-+F defined by 

ua = aP is a homomorphism. It is called the Frobenius map. 
Show that F ~ FP ={aPIa E F}. What ifF is a finite field? 

6. Consider the polynomial ring F[x1,x2, ... ] where xi2 = xi-t· Show 
that the factorization process need not stop in this ring. 

7. Let R = l[ yCS] = {a + bJ=51 a, b E l}. Show that this integral 
domain is not a unique factorization domain by showing that 6 E 
R has essentially two different factorizations in R. Show also that 
the irreducible element 2 is not prime. 

8. Let R be a pid. Then an ideal ~ of R is maximal if and only if ~ = 
{p) where p is irreducible. Also, R/{p) is a field if and only if pis 
irreducible. 

9. Prove that {x) and {2,x) are both prime ideals in l[x) and that {x) 
is properly contained in {2,x). 

10. Describe the divisor chain condition in terms of principal ideals. 
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Chapter 1 

Polynomials 

In this chapter, we discuss properties of polynomials that will be 
needed in the sequel. Since we assume that the reader is familiar with 
the basic properties of polynomials, some of the present material may 
constitute a review. 

1.1 Polynomials Over a Ring 
We will be concerned in this book mainly with polynomials over a 

field F, but it is useful to make a few remarks about polynomials over a 
ring R as well. Let R[x] denote the ring of polynomials in the single 
variable x over R. If 

where ai E R and 8n -:f: 0 then n is called the degree of p(x), 
written deg p(x) and 8n is called the leading coefficient of p(x). A 
polynomial is monic if its leading coefficient is 1. The degree of the zero 
polynomial is defined to be -oo. 

If R is a ring, the units of R[x) are the units of R, since no 
polynomial of positive degree can have an inverse in R[x]. 

Definition Let R be a ring. A polynomial p(x) E R[x) is irreducible over 
R if whenever p(x) = f(x)g(x) for f(x), g(x) E R[x], then one of f(x) or 
g(x) is a unit in R[x]. A polynomial that is not irreducible is said to be 
reducible. D 
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Many important properties that a ring R may possess carry over to 
the ring of polynomials R[x]. For instance, if R is an integral domain, 
then so is R[x) and if R is a unique factorization domain, then so is 
R[x]. Note, however, that the ring l of integers is a principal ideal 
domain, but l[x] is not, since the ideal (2,x) is not principal. 
Nonetheless, if F is a field, F[x] is a principal ideal domain (Theorem 
0.7.2). 

1.2 Primitive Polynomials 
We now consider polynomials over a unique factorization domain. 

The reader may wish to take a quick look at Section 0.5. 

Definition Let f(x) E R[x] where R is a unique factorization domain. 
Any greatest common divisor of the coefficients of f(x) is called a 
content of f(x). A polynomial with content 1 is said to be primitive. We 
will use the notation c(f) to denote a content of f(x). 0 

If a is a content of f(x), then {3 is also a content of f(x) if and only if 
{3 ""' a, that is, {3 = ua, where u is a unit in R. Since 

c( ap(x)) ""' ac(p(x)) 

for all a E R, it follows that a is a content of f(x) if and only if f(x) = 
ap(x), where p(x) is primitive. 

We can also define the content of a polynomial over R', the field of 
quotients of R. To this end, if p is a prime in R, then any nonzero 
element a E R' has the form 

where r is an integer and p does not divide the numerator or 
denominator of B.o· The integer r is called the order of a at p, written 
op(a). If a= 0, we set op(a) = oo. It is easy to see that if ab ::f:. 0 then 

If f(x) = E aixi is a nonzero polynomial in R'[x], we set 

op(f) =~in op(ai) 
1 

and if f(x) = 0, we set op(f) = oo. Then a content of f(x) is defined to be 

II 0 (f) 
c(f) = u p P 
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where u is any unit in R and the product is taken over all primes p for 
which op(f) -:f. 0. Thus, content in R' is unique up to multiplication by a 
unit in R. 

For any a E R', we have c(ap(x)) = uac(p(x)) where u is a unit in R 
and so a is a content of f(x) E R'[x) if and only if 

f(x) = ap(x) 

where p(x) is a primitive polynomial (and hence in R[x]). It follows that 
f(x) E R[x] ifand only if its content is in R. 

We now come to a key result concerning primitive polynomials. 

Theorem 1.2..1 Let R be a unique factorization domain and let R' be 
the field of quotients of R. 

1) (Gauss' Lemma) If f(x) and g(x) are primitive in R[x) then so is 
f(x)g(x). 

2) If f(x), g(x) E R'[x] then c(fg) = uc(f)c(g), where u is a unit in R. 
3) Let f(x), g(x) E R[x), with g(x) primitive. If f(x) = g(x)h(x), where 

h(x) E R'(x) then, in fact, h(x) E R[x]. 

Proof. To prove Gauss' Lemma, suppose that fg is not primitive. Then 
there exists an irreducible element r E R for which r I fg. Since R is a 
unique factorization domain, r is also prime. Hence (r} is a prime ideal 
and R[x)/(r} is an integral domain. Since r I fg, we have fg E (r} and so 

(f + (r})(g + (r}) = fg + (r} = (r} 

whence f + (r} = (r} or g + (r} = (r), that is, r If or r I g. Hence, one off 
or g is not primitive. 

To prove part 2), observe that if cr is a content of f(x) and cg is a 
content of g(x) then f = ccf and g =egg', where r and g' are primitive. 
Hence, by Gauss' Lemma 

c(fg) = c(crclg') ""crcgc(rg') = crcg 

As to part 3), we have 

c(f) ""' c(g) c(h) ""' c(h) 

and since c(f) E R, so is c(h), whence h(x) E R[x]. I 

The previous theorem can be used to relate the irreducibility of a 
polynomial over a unique factorization domain R to its irreducibility 
over the field of quotients R' of R. The next theorem says in loose 
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terms that the only difference between irreducibility over R and over R' 
is how constant factors are treated. 

Theorem 1.2.2 Let R be a unique factorization domain, with field of 
quotients R'. . 

1) A primitive polynomial p(x) E R[x] is irreducible over R if and 
only if it is irreducible over R'. 

2) A polynomial f(x) E R[x] is irreducible over R if and only if it is 
either an irreducible element of R or a primitive polynomial that 
is also irreducible over R'. 

Proof. To prove part 1), observe that a primitive polynomial p(x) has 
no constant nonunit factors and so p(x) is irreducible over R if and only 
if it can be written as a product of nonconstant factors over R. Hence, if 
p(x) is reducible over R, it is also reducible over R'. On the other hand, 
if p(x) is reducible over R', then it has the form p(x) = f(x)g(x), where 
f(x) and g(x) are nonconstant polynomials in R'[x]. Now we may write 

p(x) = f'(x)[ c(f)g(x)] 

where f'(x) is primitive and hence, by Theorem 1.2.1, c(f)g(x) is a 
polynomial over R. Thus f(x) is reducible over R as well. 

To prove part 2), note that if f(x) is a constant, then there is nothing 
to prove, since the constant nonunits in R[x] are precisely the nonunits 
in R. On the other hand, if f(x) has positive degree, then it is 
irreducible over R if and only if it is both primitive and irreducible over 
R and this is equivalent, by part 1), to being primitive and irreducible 
over R'. I 

1.3 The Division Algorithm 
The familiar division algorithm for polynomials over a field F can be 

easily extended to polynomials over a commutative ring with identity, 
provided that we divide only by polynomials whose leading coefficient is 
a unit. We leave proof of the following to the reader. 

Theorem 1.3.1 (Division algorithm) Let R be a commutative ring with 
identity. Let g(x) E R[x] have invertible leading coefficient. Then for 
any f(x) E R[x], there exist unique q(x), r(x) E R[x] such that 

f(x) = q(x)g(x) + r(x) 

where deg r(x) < deg g(x). 0 
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This theorem has some very important immediate consequences. 

Corollary 1.3.2 Let R be a commutative ring with identity and let 
f(x) E R[x]. Then a is a root of f(x) if and only if x- a is a factor of 
f(x) over R. 0 

Since the usual degree formula deg f(x)g(x) = deg f(x) + deg g(x) 
holds when R is an integral domain, we have the following. 

Corollary 1.3.3 If R is art integral domain then a nonzero polynomial 
f(x) E R[x] can have at most deg f(x) roots in R. 0 

In the customary way, a polynomial p(x) E R[x] can be thought of as 
a function on R. If R is an integral domain, Corollary 1.3.3 insures that 
if p(r) = 0 for an infinite number of distinct values of r E R then p(x) 
must be the zero polynomial. Thus, if R is infinite, then p(x) is zero as 
a function if and only if it is zero as a polynomial. Note that this does 
not hold for finite fields, for instance, the nonzero polynomial p(x) = 
x2 - x is the zero function on 7L 2• This result can be extended to 
polynomials in more than one variable by induction and we leave the 
details to the reader. 

A polynomial in more than one variable may have infinitely many 
zeros, however, and yet not be the zero polynomial. For instance 
p(x,y) = x- y has infinitely many zeros over IR. This example 
notwithstanding, we do have the following useful result, which says 
informally that if a polynomial has a whole subfield worth of zeros, 
then it must be the zero polynomial. 

Theorem 1.3.4 Let F be an infinite field and let L be an extension of F. 
Suppose that q(x1, ..• ,xn) is a polynomial over L. lfq(a1, .•. ,an) = 0 for 
all ai E F then q(x1, •.• , xn) is the zero polynomial. 

Proof. Write 

q(xl•···•xn) = L'\xe 
e 

where xe = x~l. · ·x:n and Ae E L. Let {,Bj} be a basis for L as a vector 
space over F. Then 

for ae,i E F and so 

Ae = 4::: ae,i,Bi 
. I 

q(xl, ... ,xn) = L\xe = L Lae,i,Bixe = L,Bi(Lae,ixe) 
e e i i e 

If bi E F, we have 
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0 =q(bl, ... ,bn) = ~P(~:::ae,ibe) 
1 

and the independence of the Pi's implies that 

for all i. Since this holds for all hi E F, the polynomial I; ae ixe over F 
must be the zero polynomial. It follows that ae i = 0 for a11 e 'and i, and 
so Ae = 0 for all e, whence q(x1,. • .,~) = 0. I ' 

Corollary 1.3.3 can be used to prove a fundamental fact concerning 
finite fields. 

Corollary 1.3.5 Let F be a finite field. The multiplicative group F* of 
all nonzero elements ofF is cyclic. 

Proof. Let I F*l = q -1 and let a have maximum order m ~ q -1 
among all the elements in F*. Since F* is a finite abelian group, 
Theorem 0.2.2 implies that am = 1 for all a E F*. Thus, every element 
of F* is a root of the polynomial xm -1, which has at most m roots. 
Hence m = q -1, and F* is cyclic. I 

In defining the greatest common divisor of two polynomials, it is 
customary (in order to obtain uniqueness) to require that it be monic. 

Definition Let f(x) and g(x) be polynomials over F. The greatest 
common divisor of f(x) and g(x), denoted by (f(x),g(x)) or 
gcd(f(x),g(x)), is the unique monic polynomial p(x) over F for which 

1) p(x) I f(x) and p(x) I g(x). 
2) If r(x) E F[x] and r(x) I f(x) and r(x) I g(x) then r(x) I p(x). 0 

The existence of greatest common divisors and the fact that d(x) = 
gcd(f(x),g(x)) is independent of the field F, that is, d(x) lies in any field 
K containing the coefficients of f(x) and g(x), follow from the fact that 
F[x] is a principal ideal domain. In particular, the ideal l= (f(x),g(x)) 
of K[x] is principal and so I= (p(x)) where p(x) E K[x]. Since f(x) E 
(p(x)), we have p(x) I f(x) and similarly p(x) I g(x) over K and hence 
over any larger field F. Since p(x) E (f(x),g(x)), there exist a(x), b(x) E 
K(x] such that p(x) = a(x)f(x) + b(x)g(x). Hence, if q(x) I f(x) and 
q(x) I g(x) over F then q(x) I p(x) over F. Thus, p(x) = gcd(f(x),g(x)). 

Theorem 1.3.6 Let f(x), g(x) E F[x] and let K be the smallest subfield of 
F containing the coefficients of f(x) and g(x). Then there exist a(x), 
b(x) E K[x] such that gcd(f(x),g(x)) = a(x)f(x) + b(x)g(x) E K[x]. 0 



1 Polynomials 31 

Theorem 1.3.7 Let f(x), g(x) E F[x] and let F < E. Then f(x) and g(x) 
have a nonconstant common factor over F if and only if they have a 
nonconstant common factor over E. 

Proof. Any common divisor h(x) of f(x) and g(x) over E is also a 
divisor of a(x)f(x) + b(x)g(x) = gcd(f(x),g(x)). Hence, if h(x) is 
nonconstant, so is gcd(f{x),g(x)). I 

Definition The polynomials f(x), g(x) E F[x] are relatively prime if 
gcd(f{x),g(x)) = 1. In particular, f{x) and g(x) are relatively prime if 
and only if there exist polynomials a(x), b(x) E F[x] for which 

a(x)f(x) + b{x)g(x) = 1 0 

Corollary 1.3.8 The polynomials f{x), g(x) E F[x] are relatively prime if 
and only if they have no common roots in any extension field E of F. 

Proof. If gcd{f(x),g(x)) = 1 then a{x)f{x) + b{x)g(x) = 1 implies that 
f{x) and g(x) have no common roots in any extension. Conversely, if 
gcd{f(x),g(x)) is nonconstant, any of its roots is a common root of f{x) 
and g(x) in some extension. I 

Corollary 1.3.9 If f(x) and g(x) are distinct monic irreducible 
polynomials over F then they have no common roots in any extension E 
of F. 0 

1.4 Splitting Fields 
It is a fundamental fact that every nonconstant polynomial 

f{x) E F[x] has a root in some field. 

Theorem 1.4.1 Let F be a field, and let f{x) E F[x] be a nonconstant 
polynomial. Then there exists an extension E of F and an a E E such 
that f{a) = 0. 

Proof. We may assume that f{x) is irreducible. Consider the field E = 
F[x]/(f{x)}. The field F may be thought of as a subfield of E, by 
identifying a E F with a+(f(x)) E E. Then x + (f(x)) is a root of f{x) in 
E. {We have actually shown that F can be embedded in a field in which 
f{x) has a root, but this is sufficient in view of Exercise 17 of Chapter 
2.) I 

Repeated application of Theorem 1.4.1 gives the following corollary. 
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Corollary 1.4.2 Let f(x) E F[x]. There exists an extension E of F such 
that f(x) factors into linear factors over E. D 

If a polynomial f{x) E F[x] factors into linear factors 

over an extension field E (that is, if a, o:1, ... , o:n E E), we say that f(x) 
splits in E. 

Definition Let GJ = {fi(x)} be family of polynomials over a field F. A 
splitting field for GJ is an extension field E of F with the property that 
each fi(x) in GJ splits in E and that E is generated over F by the roots of 
the polynomials in GJ. D 

Corollary 1.4.3 Every finite family of polynomials over a field F has a 
splitting field. 

Proof. Corollary 1.4.2 implies that any single polynomial has a splitting 
field. If GJ is a finite family of polynomials, then a splitting field for GJ is 
a splitting field for the product of the polynomials in GJ. I 

We will see in the next chapter that any family of polynomials has a 
splitting field. We will also see that any two splitting fields S1 and S2 
for a family of polynomials over F are isomorphic by an isomorphism 
that fixes each element of the base field F. 

1.5 The Minimal Polynomial 
Let F < E. An element o: E E is said to be algebraic over F if there is 

some nonzero polynomial f(x) E F[x] for which f(o:) = 0. An element 
that is not algebraic over F is said to be transcendental over F. 

If o: is algebraic over F, the set 

~ = {g(x) E F[x] I g(o:) = 0} 

is a nonzero ideal in F[x] and is therefore generated by a unique monic 
polynomial p(x), called the minimal polynomial of o: over F and 
denoted by min( o:,F). The following theorem characterizes minimal 
polynomials in a variety of useful ways. Proof is left to the reader. 

Theorem 1.5.1 Let F < E and let p(x) = min(o:,F) where o: E E. Then 
among all polynomials in F[x], the polynomial p(x) is 
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1) the unique monic irreducible polynomial for which p( a) = 0 
2) the unique monic polynomial of smallest degree for which 

p(a) = 0 
3) the unique monic polynomial ~ith the property that f(a) = 0 if 

and only if p(x) I f(x). D 

Definition Let F < E. Then o, f3 E E are said to be conjugates over F if 
they have the same minimal polynomial over F. D 

1.6 Multiple Roots 
Definition Let a be a root of f(x) E F[x]. The multiplicity of a is the 
largest positive integer n for which (x- o)n divides f(x). If n = 1, we 
say that o is a simple root and if n > 1, we say that a is a multiple root 
of f(x). D 

Definition An irreducible polynomial f(x) E F[x] is said to be separable 
if it has no multiple roots in any extension of F. An irreducible 
polynomial that is not separable is inseparable. D 

Although, as we now show, all irreducible polynomials over a field of 
characteristic zero or a finite field are separable, the concept of 
separability plays a key role in the theory of more "unusual" fields. 

Theorem 1.6.1 A polynomial f(x) has no multiple roots if and only if 
f(x) and its derivative f(x) are relatively prime. 

Proof. Over a splitting field E for f(x), we have 

where the ai's are distinct. It is easy to see that f(x) and f'(x) have no 
nontrivial common factors over E if and only if ei = 1 for all i. Thus, 
f(x) has no multiple roots in E if and only if f(x) and f(x) are relatively 
prime. I 

Corollary 1.6.2 An irreducible polynomial f(x) is separable if and only if 
·r(x) 1:- 0. 

Proof. Since deg f(x) < deg f(x) an~ f(x) is irreducible, we deduce that 
f(x) and f(x) are relatively prime if and only if f'(x) #;. 0. I 

If char(F) = 0 then f'(x) #;. 0 for any nonconstant f(x). Thus, we get 
the following corollary. 
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Corollary 1.6.3 All irreducible polynomials over a field of characteristic 
0 are separable. [] 

For char(F) = p =f. 0, the next result says that the inseparable 
polynomials are precisely the polynomials of the form g( xp<l) for some 
d ~ 1. 

Corollary 1.6.4 Let char(F) = p ::f:; 0 and let f(x) E F[x] be irreducible. 

1) If f(x) is inseparable, then there exists a positive integer d such 
that f(x) = q(xvt), where q(x) is separable. In this case, all roots of 
f(x) have multiplicity pd. 

2) If f(x) = h(xp<l) where h(x) is any nonconstant polynomial and d is 
a positive integer, then f(x) is inseparable. 

Proof. For the first statement in part 1), suppose that f(x) = Eaixi has 
a multiple root in some extension E of F. Then f(x) = 0 which implies 
that iai = 0 for all i, which in turn implies that p I i for all i such that 
ai ::f:; 0. Hence, f(x) = q(xP). If q(x) has no multiple roots, we are done. 
If not, then we may repeat the argument with the irreducible 
polynomial q(x), eventually obtaining the desired result. 

For part 2), if h(x) is not separable, then by part 1), we have h(x) = 
q(xP'') where q(x) is separable and so 

~ d+k 
f(x) = h(x~ J = q(xP ) 

Thus, we may suppose that h(x) is separable. Let K be a field in which 
both f(x) and h(x) split. Over K, we have h(x) = (x- a 1)· · ·(x- ak) and 
so 

where the ai E K are distinct. Since f(x) splits in K, there exist roots 
{3i E K for each of the factors xp<l- ai, and so ai = f3f. Hence, 

Since char(F) = p, 

which shows that all the roots of f(x) have multiplicity pd. This proves 
part 2) and also the second statement in part 1). I 

Corollary 1.6.5 All irreducible polynomials over a finite field are 
separable. 
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Proof. Let char(F) = p. The field F is an extension of its prime subfield 
lp and if the dimension of F as a vector space over lp is n, then F has 
q = pn elements. Hence, the multiplicative group F* of nonzero 
elements of F has order q- 1 and so aq =a for all a E F. In particular, 
any element ofF is a p-th power of some other element of F. Thus, any 
polynomial of the form q(xP) satisfies 

q(xP) = ao + alxP + ... + anxpn 

= bE + bfxP + · · · + b~xnp 
= (b0 + b1x + · · · + bnxn)p 

and so is not irreducible. I 

We should note that in infinite fields of nonzero characteristic, there 
are irreducible polynomials with multiple roots. 

Example 1.6.1 Let F be a field of characteristic 2 and consider the field 
F(y) of all rational functions in the variable y. The polynomial f(x) = 
x2 - y2 is irreducible over the subfield F(y2), since it has no linear 
factors over F(y2). However, in F(y) we have f(x) = (x- y)2 and soy is 
a double root of f(x). 0 

1.7 Testing for Irreducibility 
We discuss two well-known methods for testing a polynomial for 

irreducibility. 

Theorem 1.7.1 (Eisenstein's criterion) Let R be an integral domain and 
let p(x) = a0 + a1x + · · · + ~xn E R[x] have relatively prime coefficients. 
If there exists a prime p E R satisfying 

p I ai for 0 ~ i < n, P Va p2 Vao A n• A 

then p(x) is irreducible. 

Proof. Suppose that p(x) = f(x)g(x) where neither factor is a unit. If 
f(x) = f0 E R then f0 divides ai for all i, implying that f(x) = f0 is a 
unit, which is not the case. Thus, deg f(x) > 0 and similarly 
deg g(x) > 0. Let 

f(x) = f0 + f1x + · · · + fkxk and g(x) = g0 + g1x + · · · + gmxm 

Since a0 = f0g0 and p I a0, p2[ a0 we may assume that p I f0 and p l g0. 
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Let 0 < i < n be the smallest integer for which p[fi and consider the 
coefficient 

We have pI ai, pI f0gi, ... ,fi_1g1 but pJfig0, a contradiction. Hence p(x) 
is irreducible. I 

Eisenstein's criterion can be useful as a theoretical tool. 

Corollary 1.7.2 For every positive integer n, there is an irreducible 
polynomial Pn(x) of degree n over the integers. 0 

A useful approach to testing for irreducibility over l[x], and hence 
also over Q[x], is localization. For a prime p, let u:l-+lp be the natural 
map 

un = ii = n + (p) 

If p(x) E l[x] we denote (up)(x) by p(x). 

Theorem 1.7.3 Let p(x) = a0 + a1x + · · · + anxn E l[x] be primitive. Let 
p be a prime that does not divide an. If p(x) is irreducible over lp then 
p(x) is irreducible over l. 

Proof. Assume that p(x) is irreducible over ll? bu~ that p(x) = f(x)g(x) 
i11 the product of nonunits over l. Then p(xJ = f(x)g(x). Since an :f. 0 
mod p, we have 

deg f(x) + deg g(x) = deg p(x) = deg p(x) = deg f(x) + deg g(x) 

which implies that deg f(x) = deg f(x) and deg g(x) = deg g(x). Since 
p(x) is irreducible, we must have deg f(x) = 0 or deg g(x) = 0, implying 
that one of f(x) or g(x) is a constant (nonunit), in contradiction to the 
primitiveness of p(x). Hence, p(x) is irreducible over l. I 

Exercises 
1. Prove that if R is an integral domain then so is R[x1, ... , ~]. 
2. Describe the units in F[x] where F is a field. 
3. Let R be an integral domain. Prove that c(o:p(x)) "'o:c(p(x)) for 

any p(x) E R[x] and o: E R. 
4. Prove that if n > 1 then the ring F[x1, ... ,xnJ is not a principal 

ideal domain. 
5. If f(x) E R[x] where R is an integral domain with field of quotients 

R', then f(x) can also be viewed as a polynomial in R'[x]. Show 
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that the definition of content for f(x) E R[x) agrees with the 
definition of content for f(x) E R'[x). 

6. Verify the division algorithm (Theorem 1.3.1) for commutative 
rings with identity. Hint: try induction on deg f(x). 

7. Show that the condition that p(x) be primitive is essential in the 
first part of Theorem 1.2.2. 

8. Prove Theorem 1.5.1. 
9. Let deg p(x) =d. The reciprocal polynomial is q(x) = xdp(x-1). 

Are the irreducibility of p(x) and q(x) related? Can you deduce an 
alternate version of Eisenstein's criterion from this? 

10. Show that if p is a prime in an integral domain R, the polynomial 
p(x) = xn- p is irreducible. 

11. Prove that for every positive integer n there is an irreducible 
polynomial Pn(x) E l[x) of degree n. 

12. For p prime show that p(x) = 1 + x + x2 + · · · + xP-1 is irreducible 
over l[x]. Hint: apply Eisenstein to the polynomial p(x+1). 

13. Use the idea of localization (apply the map u) to deduce that 
Eisenstein's criterion implies irreducibility in l[x]. 

14. Prove that for p prime, xn + px + p2 is irreducible over l[x]. 
15. If R is an infinite integral domain and p(x1, •.. , xn) is a 

polynomial in several variables over R, show that p(x1, ... , ~) is 
zero as a function if and only if it is zero as a polynomial. 

If f(x) is a polynomial of degree d, we define the reciprocal polynomial 
by fR(x) = xdf(x-1). Thus, if 

f(x) = anxn + ~-lxn-1 + · · · + a1x + a0 
then 

If a polynomial satisfies f(x) = fR(x), we say that f(x) is self-reciprocal. 

16. Show that a f:. 0 is a root of f(x) if and only if a-1 is a root of 
fR(x). 

17. Show that the reciprocal of an irreducible polynomial f(x) f:. x is 
also irreducible. 

18. Show that if a polynomial f(x) is self-reciprocal and irreducible, 
then deg f(x) must be even. 

19. Suppose that f(x) = p(x)q(x), where p(x) and q(x) are irreducible, 
and f(x) is self-reciprocal. Show that either 
(i) p(x) :::: opR(x) and q(x) = oq!\(x) with 6 = ± 1, or 
(ii) p(x):::: aqR(x) and q(x) =a- PR(x) for some a E GF(q). 
What can you say about this if deg p(x) is odd? 

20. There is a simple (but not necessarily practical) algorithm for 
factoring any polynomial over Q, due to Kronecker. In view of 
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Theorem 1.2.2, it suffices to consider polynomials with integer 
coefficients. Prove that a polynomial of degree n is completely 
determined by specifying n + 1 of its values. Hint: Use the 
Lagrange Interpolation Formula 

p(x) = tp(i)[rr~=~J 
i=O j ¢ i 1 J 

Let f(x) be a polynomial of degree n > 1 over l. If f(x) has a 
nonconstant factor p(x) of degree at most n/2, what can you say 
about the values p(i) for i = 0, ... , [ n/2]? Construct an algorithm 
for factoring f(x) into irreducible factors. 



Chapter 2 

Field Extensions 

Field extensions F < E can be characterized in a variety of useful 
ways. Some characterizations involve properties of the individual 
elements of the extension. For instance, an extension F < E is algebraic 
if each element a E E is algebraic over F. Other characterizations 
involve the field E as a whole. For instance, F < E is normal if E is the 
splitting field for a family of polynomials over F. In this chapter, we 
will describe several types of extensions and study their basic properties. 

2.1 The Lattice of Subfields of a Field 

If E is an extension field of F, then E can be viewed as a vector space 
over F. The dimension of E over F is denoted by [E:F] and called the 
degree of E over F. A sequence of fields E1, ... , En for which Ei < Ei+I 
is referred to as a tower of fields, and we write E1 < E2 < · · · < En. The 
f~t that dimension is multiplicative over towers is fundamental. 

Theorem 2.1.1 Let F < K < E. Then 

[E:F] = [E:K][K:F] 

Moreover, if A= {ni I i E I} is a basis forE over K and B = {.B· U·E J} 
is a basis for Kover F, then the set C = {ni,Bj I i E I, j E J} is a basis for 
E over F. 
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Proof. For the independence of C, if E ail~i,B.i = 0 then E ail~i = 0 .for 
all j, and the latter implies that aij = 0 for all i, j. Hence, C is 
independent. Next, if 'Y E E then there exist ai E K such that 'Y = 
E aiai. Since each ai is a linear combination of the ,8j's, it follows that 
'Y is a linear combination of the products ai,Bj. Hence C is a basis for E 
over F. I 

If F and E are subfields of a field K, then the intersection F n E is 
clearly a field. The composite FE of F and E is defined to be the 
smallest subfield of K containing both F and E. The composite FE is 
also equal to the intersection of all subfields of K containing E and F. 
More generally, the composite V Ei of a family S = {Ei I i E I} of fields, 
all of which are contained in a single field E, is the smallest subfield of 
E containing all members of the family. Note that the composite of 
fields is defined only when the fields are all contained in one larger field. 
Whenever we form a composite, it is with the tacit understanding that 
the relevant fields are so contained. 

A monomial over a family S = {Ei I i E I} of fields with Ei < E is an 
element of E of the form 

Note that the set of all finite sums of monomials over S is the smallest 
subring R of E containing each field Ei and the set of all quotients of 
elements of R (the quotient field of R) is the composite V Ei. Thus, 
each element of V Ei involves only a finite number of elements from the 
union U Ei and is therefore contained in a composite of a finite number 
of fields from the family S. 

The collection of all subfields of a field K forms a complete lattice L 
(under set inclusion), with meet being intersection and join being 
composite. The zero element in L is the prime subfield of K and the 
unit element is K itself. 

2.2 Distinguished Extensions 
Following Lang, we will say that a class e of field extensions is 

distinguished provided that 

Dl) If F < K < E, then (F <E) E e if and only if (F < K) E e and 
(K <E) E e. 

D2) If (F < E) E e and F < K and EK is defined, then (K < EK) E e. 
Note that if e is distinguished, then 
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D3) If (F < E) E e and (F < K) E e and EK is defined, then 
(F < EK) E e. In other words, e is closed under taking (a finite 
number of) composites. 

Figure 2.2.1 illustrates D1) and D2). We refer to K < EK as the 
lifting of the extension F < E by K. 

E EK 

I 
,. ... 

\ / 

K E K 

I \ ,/ 

.' 
/ 

F F 

Figure 2.2.1 

If a class e of extensions has the property that whenever (F < Ei) E e 
for each member of a family {Ei} of fields and if V Ei is defined, then 
(F < V Ei) E e, we say that e is closed under the taking of arbitrary 
composites. 

2.3 Finitely Generated Extensions 
If S is a subset of a field E and if F < E, we denote the smallest 

subfield of E containing F and S by F(S). When S = { a 1, •.. , an} is a 
finite set, it is customary to write F( a 1 , ••• , an) for F(S). Note that for 
1 ~ k ~ n -1, 

Definition Any field of the form E = F( a 1, ... , an) is said to be finitely 
generated over F. We also say that the extension F < E is finitely 
generated. Any extension of the form F < F(a) is called a simple 
extension and a is a primitive element in F(a). 0 

The reader may have encountered a different meaning of the term 
primitive in connection with elements of a finite field. We will discuss 
this alternate meaning when we discuss finite fields later in the book. 

It is evident that F( a 1, ... , an) consists of all quotients of 
polynomials in the ai 's: 
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Theorem 2.3.1 The class of all finitely generated extensions is 
distinguished. 

Proof. For Dl, let F < K <E. If E = K(S) and K = F(T) where Sand 
T are finite, then E = F(S U T) is finitely generated over F. Clearly, if 
F < E is finitely generated then K < E is also finitely generated by the 
same set of generators. However, the proof that F < K is finitely 
generated must be postponed until we have discussed transcendental 
extensions in the next chapter. Statement D2 follows from the fact that 
if E = F(S), S finite, and F < K then 

KE = K(F(S)) = K(S) 

and so KE is finitely generated over K. I 

2.4 Simple Extensions 

Since F[x] is a principal ideal domain, the ideal (p(x)) generated by 
p(x) E F[x) is maximal, and the quotient ring 

F[x] 
K = (p(x)) 

is a field, if and only if p(x) is irreducible. We can use this observation 
to characterize simple algebraic extensions. 

Theorem 2.4.1 Let F < E and let a E E be algebraic over F. Then F(a) 
is isomorphic to the field 

K _ F[x) 
- (min(a,F)) 

Proof. Let ¢:F[x]-+E be the evaluation (ring) homomorphism defined 
by !/l(f(x)) = f(a). The kernel of!/! is the ideal (min(a,F)), and so K is 
isomorphic to !/I(F[x]), which implies that !/I(F[x]) is a field. Thus, we 
need only show that !/I(F[x]) = F(a). Clearly, .P(F[x]) ~ F(a). But 
a= !/l(x) E !/I(F[x]) and F ~ !/I(F[x]) imply that F(a) ~ !/I(F[x]). Hence, 
!/I(F[x]) = F(a). I 

Let p(x) be irreducible over F. Since addition and multiplication in 
K = F[x]/(p(x)) is done using coset representatives and since 

K' = {f(x) E F(x] I deg f(x) < deg p(x)} 

is a complete set of distinct coset representatives for K, we may identify 
K with K', where addition and multiplication are performed modulo 



2 Field Extensions 43 

p(x). This allows us the customary practice of thinking of F as a 
subfield of K. Note also that, as a vector space over F, we have 
dim K = deg p(x). In the symbolism of Theorem 2.4.1, we have 
[F(a):F] = deg min(a,F). . 

Thus F( a) is the set of all polynomials in a of degree less than d = 
deg min(a,F), with addition and multiplication modulo min(a,F). It 
follows that the set {l,a, ... ,ad-1} is a basis for F(a) over F. 

As for simple transcendental extensions, we have the following. 

Theorem 2.4.2 Let F < E and let a E E be transcendental over F. Then 
F(a) is isomorphic to the field of all rational functions F(x) in a single 
variable x. 

Proof. The evaluation homomorphism 1/J:F(x)-+E is injective, for if 
f(a)/g(a) = 0 then f(a) = 0, which implies that f(x) = 0, since otherwise 
a would be algebraic. Since ,P(F(x)) = F(a), we deduce that 1/J is an 
isomorphism from F(x) onto F(a). I 

2.5 Finite Extensions 
If F < E and [E:F] is finite, we say that E is a finite extension of F or 

that F < E is finite. We have already seen that the following is true. 

Theorem 2.5.1 IfF< E and if a E E is algebraic over F then F < F(a) 
is finite, and [F(a):F] = deg min(a,F). D 

Theorem 2.5.2 An extension is finite if and only if it is finitely 
generated by algebraic elements. 

Proof. If F < E is finite and if { a 11 ... , an} is a basis for E over F, then 
E = F(a1, ... ,an) is finitely generated over F. Moreover, for each k, the 
infinite set of nonnegative powers of ak cannot be linearly independent 
over F, it follows that ak must be algebraic over F. 

For the converse, assume that E = F(a1, ... ,an), where each ai is 
algebraic over F, and consider the tower 

Since ai is algebraic over F(a1, ... ,ai_1), each extension in the tower is 
finite, and so E is finite over F by ~heorem 2.1.1. I 

Suppose that E = F( a 1, ... , an) is finitely generated by algebraic 
elements ai over F and consider the tower 
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Our results on simple algebraic extensions show that any element of 
F(a1) is a polynomial in a 1 over F. Further, any element of F(a1,a2) is 
a polynomial in a 2 over F(a1), and hence a polynomial in the two 
variables a 1 and a 2. Continuing in this way, we conclude that E is the 
set of all polynomials over Fin a 1, ... ,an. 

Theorem 2.5.3 The class of finite extensions is distinguished. 

Proof. The multiplicativity of degree shows that Dl holds. For D2, let 
F < E be finite, with basis { a 1, ..• , an} and let F < K. Thus E = 
F( a 1 , ... ,an) where each ai is algebraic over F and so also over K. Since 
EK = K(a1, ... ,an) is finitely generated by elements algebraic over K, it 
is a finite extension of K. I 

Note that if E is a splitting field for p(x) E F[x] then E is generated 
by a complete set of distinct roots a 1 , ... , an of p(x). Thus E = 
F( a 1, ••• , an) is finitely generated by algebraic elements and so is a 
finite extension ofF, of degree at most d!, where d = deg p(x). This also 
applies to the splitting field for any finite set of polynomials over F. 

Suppose that F < E is finite and let B = {.B1, ... ,.Bn} be a basis forE 
over F. IfF< K, then since EK = K(.B1, ... ,.Bn) and each .Bi is algebraic 
over F, and hence also over K, it follows that EK is the set of 
polynomials over Kin ,B1, ... ,.Bn· However, any monomial in the !Ns is 
a linear combination (over F) of .81, ... , .Bn and so EK is the set of 
linear combinations of ,81, ... , .Bn over K. In other words, B spans EK 
over K. We have proved the following, which says that a lifting cannot 
increase degree. 

Theorem 2.5.4 If B is a basis for E over F and if F < K then B spans 
EK over K. In particular, ifF < E is finite then [EK:K] ~ (E:F]. 0 

The next theorem characterizes finite simple extensions. 

Theorem 2.5.5 A finite extension F < E has the form E = F(a) for 
a E E if and only if there are only a finite number of intermediate fields 
F < K < E between E and F. 

Proof. Suppose first that E = F(a), and that p(x) = min(a,F). Define a 
map t/J that assigns to each intermediate field K the polynomial t/J(K) = 
min( a,K). Since p(x) E K[x] and p( a) = 0, we have t/J(K) I p(x). But a 
monic polynomial has only a finite number of monic divisors. Hence, 
the range of t/J is finite and therefore it is sufficient to show that t/J is 
injective. Let K be an intermediate field, let S be the set of coefficients 
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of tJl{K) and consider the tower F(S) < K < F(a). Since tJl(K) is a monic 
irreducible polynomial over F(S) and is satisfied by a, we have tJl(K) = 
min(a,F(S)). Hence, [F(a):K] = deg tJl(K) = [F(a):F(S)], which implies 
that [K:F(S)] = 1, that is, K = F(S). This shows that K is uniquely 
determined by the polynomial tJl(K), and so tJl is injective. 

For the converse, if E is a finite field, the multiplicative group E* of 
nonzero elements of E is cyclic. If a generates this group, then E = F(a) 
is simple. Now suppose that E is an infinite field and there are only 
finitely many intermediate fields between E and F. Let a, j3 E E and 
consider the intermediate fields F(a + a/3), for a E F. By hypothesis, 
F( a+ a/3) = F( a+ b/3) for some a :f. b E F. Hence, a+ bj3 E F( a+ a/3), 
implying that 

f3 =a~ b[(a + a/3)- (a+ b/3)] E F(a + a/3) 

and 
a = (a + a/3) - a/3 E F( a + aj3) 

Hence, F(a,/3) ~ F(a + a/3). The reverse inclusion is evident and so 
F(a,j3) = F(a + a/3), showing that any extension ofF generated by two 
elements is a simple extension. Since F < E is finite, it is finitely 
generated and an inductive argument can be used to show that F < E is 
simple. I 

2.6 Algebraic Extensions 

Definition An extension E of F is algebraic over F (or F < E is 
algebraic) if every element a E E is algebraic over F, Otherwise, E is a 
transcendental extension of F. 0 

Theorem 2.6.1 A finite extension is algebraic. 

Proof. If F < E is finite and a E E then the sequence of powers 1, a, 
a 2 , • • • cannot be linearly independent over F and therefore some 
nontrivial polynomial in a must equal 0, implying that a is algebraic 
over F. I 

Corollary 2.6.2 Any extension that is finitely generated by algebraic 
elements is algebraic. 0 

Theorem 2.6.3 Let F <E. The set K of all elements of E that are 
algebraic over F is a field, called the algebraic closure of F in E. 

Proof. Let a, j3 E K. The field F(a,/3) is finitely generated over F by 
algebraic elements and so is algebraic over F, that is, F(a,j3) ~ K. This 
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implies that a-1, a± f3 and af3 all lie in K, and so K is a subfield of 
E. I 

Theorem 2.6.4 The class of algebraic extensions is distinguished. It is 
also closed under the taking of arbitrary composites. 

Proof. For Dl, let F < K < E. It is clear that ifF< E is algebraic then 
so is F < K. Also, since any polynomial over F is a polynomial over K, 
K < E is also algebraic. Conversely, suppose that F < K and K < E are 
algebraic and let a E E have minimal polynomial p(x) = E aixi over K. 
Consider the tower of fields 

Since a is algebraic over F( a1, ... , an) and each ai, being in K, is 
algebraic over F, we deduce that each step in the tower is finite and so 
F < F(a1, ... ,an,a) is finite. Hence, a is algebraic over F. 

For D2, let F < E be algebraic and let F < K, with E and K 
contained in a field L. We must show that K < EK is algebraic. Let A 
be the algebraic closure of K in EK. Certainly K < A < EK. Since each 
element of E is algebraic over F it is a fortiori algebraic over K and so 
E < A. Hence, EK < A < EK, showing that EK = A is algebraic over K. 

Finally, if {Ei} is a family of fields, each algebraic over F, then so is 
V Ei, since an element of V Ei is also an element of a composite of only 
a finite number of members of the family. I 

The algebraic closure of the rational numbers Q in the real numbers 
IR is the field .A of algebraic numbers. We saw in the previous chapter 
that there is an irreducible polynomial Pn(x) E l[x) of every positive 
degree n. Hence, .A is an infinite algebraic extension of Q, showing that 
the converse of Theorem 2.6.1 does not hold. 

We note finally that if F < E is algebraic and if E = F(S) for some 
S ~ E then each element of E is a polynomial in finitely many elements 
from S. This follows from the fact that each a E F(S) is a rational 
function in finitely many elements of S and so there exists a finite 
subset S0 ~ S such that a E F(S0). Hence, our discussion in Section 2.5 
related to finitely generated algebraic extensions applies here. 

2. 7 Algebraic Closures 

Definition A field E is said to be algebraically closed if any nonconstant 
polynomial with coefficients in E splits in E. D 
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Theorem 2.7.1 Let F be a field. Then there is an extension E ofF that 
is algebraically closed. 

Proof. The following proof is due to Emil Artin. The first step is to 
construct an extension field F 1 of F, with the property that all 
nonconstant polynomials in F[x] have a root in F 1. To this end, for 
each nonconstant polynomial p(x) E F[x], we let XP be an independent 
variable and consider the ring ~ of all polynomials in the variables XP 
over the field F. Let ~be the ideal generated by the polynomials p(XpJ· 
We contend that ~ is not the entire ring ~. For if it were, then there 
would exist polynomials q1, ... , qn E ~ and p1, ..• , Pn E ~ such that 

This is an algebraic expression over F in a finite number of independent 
variables. :aut there is an extension field E of F in which each of the 
polynomials Pt(x), ... ,pn(x) has a root, say Qli"'IQn. Setting xp. = Qi 
and setting any other variables appearing in the equation above 1equal 
to 0 gives 0 = 1. This contradiction implies that ~ -=f:. ~. 

Since ~ -=f:. ~. there exists a maximal ideal l such that ~ ~ l C ~. 
Then F 1 = ~/l is a field in which each polynomial p(x) E F[x) has a 
root, namely X_p + l· (We may think of F1 as an extension of F by 
identifying a E 1" with a+ l.) 

Using the same technique, we may define a tower of field extensions 

such that each nonconstant polynomial p(x) E Fi[x) has a root in Fi+I. 
The union E = UFi is an extension field of F. Moreover, any 
polynomial p(x) E E[x] has all of its coefficients in Fi for some i and so 
has a root in Fi+11 hence in E. It follows that every polynomial p(x) E 
E[x) splits over E. Hence E is algebraically closed. I 

Definition Let F < E. Then E is an algebraic closure of F if F < E is 
algebraic and E is algebraically closed. We will denote an algebraic 
closure of a field F by F. D 

Theorem 2.7.2 Let F <E. The following are equivalent. 

1) E is an algebraic closure of F. 
2) F < E is algebraic and any nonconstant polynomial p(x) over F 

splits in E. 
3) E is a maximal algebraic extension of F, that is, F < E is algebraic 

and if E < K is algebraic then K = E. 
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Proof. Clearly 1) implies 2). Suppose 2) holds and E < K is algebraic. 
Let a E K. Then F < E < E(a) is an algebraic tower and so a is 
algebraic over F. But the minimal polynomial min( a,F) splits in E and 
so a E E. Thus K = E and 3) holds. Finally, suppose 3) holds and let 
p(x) E E[x]. Any splitting field K for p(x) is algebraic over E and so 
must equal E, which implies that p(x) splits in E. Hence, 1) holds. I 

We can now easily establish the existence of algebraic closures. 

Theorem 2.7.3 Let F <A< E where A is the algebraic closure ofF in 
E. If E is algebraically closed then A is also algebraically closed and 
hence is an algebraic closure of F. Thus, any field has an algebraic 
closure. 

Proof. We have already seen that A is an algebraic extension of F. By 
hypothesis, any p(x) E A[x] splits in E and so all of its roots lie in E. 
Since these roots are algebraic over A, they are also algebraic over F 
and thus lie in A. Hence p(x) splits in A and so A is algebraically 
closed. The final statement follows from Theorem 2. 7 .1. I 

2.8 Embeddings 
Homomorphisms between fields play a key role in the theory. Since a 

field F has no ideals other than {0} and F, it follows that any nonzero 
(ring) homomorphism u:F--+L from F into L must be a monomorphism. 
If f:A--+B is any function and if C ~A, we denote the restriction off to 
C by fl c· 

Definition Let F and L be fields. A monomorphism u:F--+L is called an 
embedding ofF into L. We will denote the image ofF under u by uF 
or Fa-. If F < E, an embedding r:E--+L for which T IF = u is called an 
extension of u to E. An embedding of E that extends the identity map 
t:F--+F is called an embedding over F, or an F-embedding. We will 
denote the se.t of all embeddings of E into L over F by HomF(E,L). If 
p(x) = L:aix1 E F(x]. and if u:F--+L is an embedding we denote the 
polynomial L: u(aJx1 by (up)(x) or pu(x). 0 

Lemma 2.8.1 
1) Let u:F--+L be an embedding ofF into Land let p(x) E F[x]. Then 

a E F is a root of p(x) if and only if ua is a root of pu(x). 
2) If u:K--+L is an embedding of K into L and if {Ei I i E I} is a 

family of subfields of K then u( V Ei) = V uF. 
3) If u:K--+L is an embedding of K into L and if F < K and 

a 1, ... , an E K then 
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Proof. Part 1) follows from the fact that u(p(a)) = pu(ua). For part 2), 
since u is injective, it preserves intersections. But 

and so 

Since u:K--+uK is an isomorphism, every H' satisfying uEi < H' < uK is 
of the form u H for some H satisfying Ei < H < K and so 

We leave proof of part 3) to the reader. I 

Even though the next result has a simple proof, the result is of major 
importance. 

Theorem 2.8.2 Let F < E be algebraic and let u:E--+E be an embedding 
of E into itself over F. Then u is an automorphism of E. 

Proof. Let a E E and let p(x) = min(a,F). Let S be the set of roots of 
p(x) that lie in E. Then a E S. If {3 E S then u/3 is also a root of p(x) in 
E, and so u/3 E S. Hence, u Is is a permutation on S and so there is a 
{3 E S for which u/3 =a. This shows that u is surjective, hence an 
automorphism of E. I 

It is a cornerstone of the theory that an embedding u:F--+L into an 
algebraically closed field can be extended to any algebraic extension of 
F. We begin with the case of a simple algebraic extension. 

Suppose that u:F--+L is an embedding of F into an algebraically 
closed field L. If F < E and a E E is algebraic over F then we may take 
advantage of the fact that a satisfies its minimal polynomial p(x) over 
F. to extend u to F( a) as follows. Since L is algebraically closed, 
pu(x) E Fu[x] splits in L, and since u is an embedding, pu(x) is 
irreducible over uF. Hence pu(x) is the minimal polynomial over uF of 
any of its roots in L. Let {3 be a root of pu(x) in L. Then 

F(a) = {f(a) I f(x) E F[x], deg f(x) < deg p(x)} 

and since deg pu(x) = deg p(x), 

Fu(/3) = {g(/3) I g(x) E Fu[x], deg g(x) < deg p(x)} 
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Thus we may define a map O':F(a)-+Fu(,B) by 

u(f(a)) = £0'(!3) 

for any f(x) E F[x]. It is straightforward to show that 0' is an embedding 
of F(a) into Fu(/3) over u and that O'a = /3. This proves the first part of 
the following theorem. The rest of the theorem follows easily. 

Theorem 2.8.3 Let F < E and let a E E be algebraic over F, with 
minimal polynomial p(x) = min(a,F). Let u:F-+L be an embedding of 
F into an algebraically closed field L. 

1) If /3 is a root of pu(x) in L then u can be extended to an 
embedding O':F(a)-+L for which O'a = /3. 

2) Any extension of u to F(a) must map a to a root of pu(x) in L. 
3) The number of extensions of u to F(a) is equal to the number of 

distinct roots of min( a,F) in F. I 

Zorn's Lemma can now be used to extend the first part of this 
theorem to arbitrary algebraic extensions. 

Theorem 2.8.4 Let F < E be algebraic. Any embedding u:F-+L into an 
algebraically closed field L can be extended to an embedding O':E-+L. 
Moreover, if a E E, p(x) = min(a,F) and /3 E L is a root of pu(x), then 
we can arrange it so that O'a = /3. (See Figure 2.8.1.) 

Proof. Let ~ be the set of all embeddings r:K-+L over u for which 
ra = !3 and F < K < E. Theorem 2.8.3 implies that ~ is not empty. 
Order the elements of~ by saying that (r':K'-+L) ~ (r:K-+L) if K < K' 
and T 1 is an extension of T. Then ~ is a partially ordered set. If e = 
{ ri:Ki-+L} is a chain in ~' the map r: U Kr-+L defined by the condition 
T I K. = Ti is an upper bound for e in ~- Zorn's Lemma implies the 
exist\mce of a maximal extension r:K-+L. We contend that K = E, for 
if not, there is an element -y E E - K. But -y is algebraic over K and so 
we may extend r to K(-y), contradicting the maximality of r. I 

Lalg.cl. 

E 
ij 

algebraic F(cx) u F(/3) 
ocroot of {3 root of 

p(x) up(x) 

F uF 
(J' 

Figure 2.8.1 
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We can now establish the essential uniqueness of algebraic closures. 

Corollary 2.8.5 Any two algebraic closures of a field F are isomorphic. 

Proof. Let K and L be algebraic closures of F. The identity map t:F-+F 
can be extended to an embedding r:K-+L. Since K is algebraically 
closed so is rK. But L is an algebraic extension of rK and so L = rK. 
Hence, T is an isomorphism. I 

We close this section with a highly useful result on independence of 
embeddings. We choose a somewhat more general setting, however. A 
monoid is a nonempty set M with an associative binary operation and 
an identity element. If M and M' are monoids, a homomorphism of M 
into M' is a map TJI:M-+M' such that TJI(o:/3) = TJI(o:)TJI(/3) and TJI(l) = 1. 

Definition Let M be a monoid and let K be a field. A homomorphism 
x:M-+K*, where K* is the multiplicative group of all nonzero elements 
of K is called a character of M in K. 0 

Note that an embedding u:E-+L of fields defines a character 
u:E*-+L*. 

Theorem 2.8.6 (E. Artin) Any set ~ of distinct characters of M in K is 
linearly independent over K. 

Proof. Suppose to the contrary that 

for Xi E ~ and o:i E K, not all 0. Look among all such nontrivial linear 
combinations of the Xi's for one with the fewest number of nonzero 
coefficients and, by relabeling if necessary, assume that these coefficients 
are o:1, ••• , o:r. Thus, 

(2.8.1) 

for all gEM and this is the "shortest" such nontrivial equation (hence 
o:i =f:. 0 for all i). Note thai since Xi(g) E K*, we have Xi(g) =f:. 0 for all 
g E M. Hence, r > 1. 

Since x1 =f:. Xr' there is a g E M for which x1 (g) f:. Xr(g). For any 
hEM, we have 

that is, 
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Multiplying (2.8.1) by XI(g) gives 

Subtracting the previous two equations gives 

and since the last coefficient is not zero, this contradicts the minimal 
nature of (2.8.1). Hence the characters are linearly independent. I · 

Corollary 2.8.7 (Dedekind Independence Theorem) Let E and L be 
fields. Any set of distinct embeddings of E into L is linearly 
independent over L. 0 

2.9 Splitting Fields and Normal Extensions 

Let us repeat a definition from Chapter 1. 

Definition Let GJ = {fi(x) I i E I} be a family of polynomials in F[x]. A 
splitting field for GJ over F is an extension field E of F with the property 
that each fi(x) splits in E and that E is generated by the set ofall roots 
of every polynomial in GJ. 0 

It is clear that, given a particular algebraic closure F ofF, there is a 
unique splitting field for GJ in F, since that splitting field must be the 
field generated by the roots in F of all polynomials in GJ. It is also true 
that any two splitting fields for GJ are isomorphic by an isomorphism 
that fixes the elements of the base field F. 

Theorem 2.9.1 Let p(x) E F[x]. Any two splitting fields for p(x) over F 
are isomorphic over F. Specifically, if SI and S2 are splitting fields for 
p(x) over F and if u:Sc-;S2 is an F-embedding of SI into an algebraic 
closure of s2 then u is an isomorphism of SI onto s2. 
Proof. By Theorem 2.4.8, we may extend the inclusion map j:F -s2 to 
an embedding u:SI-82 over F. For any such embedding, let Ri be the 
set of distinct roots of p(x) in Si. Then pu(x) = p(x) implies that 
uRI ~ R2• But u is injective and ·each set Ri is finite, whence by 
symmetry, we have uRI = R2• It follows that 

uSI = u[F(RI)] = F(uRI) = F(R2) = S2 

and so u is an isomorphism. I 
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This result also holds for arbitrary families of polynomials. 

Theorem 2.9.2 Let '!1 be a family of polynomials over F. Any two 
splitting fields for '!1 are isomorphic over F. Specifically, if S1 and S2 are 
splitting fields for '!1 over F and if u:S1-S2 is an F-embedding of S1 
into an algebraic closure of s2 then 0' is an isomorphism of sl onto s2. 

Proof. As in the proof of the previous theorem, we have an embedding 
u:S1-S2• Let E1 < S1 and E2 < S2 be splitting fields for a polynomial 
p(x) in '!f. Theorem 2.9.1 implies that the restriction of u to E1 is an 
isomorphism, whence uE1 = E2• Taking the composite over the splitting 
fields E1 in S1 of all polynomials in '!1 gives 

I 

Recall that if F < E is algebraic then E is an algebraic closure of F if 
and only if any nonconstant polynomial p(x) over F splits in E. Perhaps 
the next best thing V'•ould be that every irreducible polynomial p(x) 
over F that has one root in E splits in E. This property happens to 
characterize splitting fields. 

Theorem 2.9.3 Let F < E be algebraic and let F < E < F. The following 
are equivalent. 

1) E is a splitting field for a family '!1 of polynomials over F. 
2) Every embedding of E into F over F is an automorphism of E. 
3) Every irreducible polynomial over F that has one root in E splits 

in E. 

Proof. [1:::}2] Let u be an embedding of E into F over F. Since E is a 
splitting field for a family '!1 of polynomials over F, we have E = F(R), 
where R is the set of roots of the members of '!f. Since u acts as a 
permutation on the roots of any member of C!f, we have uR =Rand so 

uE = u(F(R)) = F(uR) = F(R) = E 

[2:::}3] Let f(x) be an irreducible polynomial over F, with a root a in 
E. According to Theorem 2.8.4, if (3 E F is a root of f(x), then the 

.injection j:F-F can be extended to an embedding u:E-F for which 
ua = (3. By hypothesis, u is an automorphism of E, whence (3 is also in 
E. Thus, f(x) splits in E. . 

[3:::} 1] This follows immediately, since E is a splitting field for the 
family '!1 = {min(a,F) I a E E}. I 
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Definition An algebraic extension F < E that satisfies any (and hence 
all) of the conditions in the previous theorem is said to be a normal 
extension. We also say that E is normal over F. [] 

Corollary 2.9.4 If F < E is a finite normal extension then E is the 
splitting field of a finite family of irreducible polynomials. 

Proof. Let E = F(a-1, ... ,an)· Since E is normal over F, each minimal 
polynomial min(ai,F) splits in E. Clearly, E is generated by the roots of 
min( ai,F) and so E is the splitting field of the finite family 
{min(ai,F)}. I 

Note that any extension F < E, withE algebraically closed, is normal 
since any nonconstant p(x) E F[x] splits in E. 

As it happens, the class of normal extensions is not distinguished. 

Example 2.9.1 It is not hard to see that any extension of degree 2 is 
normal. The extension Q < Q(\121 is not normal since Q(\12) contains 
exactly two of the four roots of x - 2, which is irreducible over Q. On 
the other hand, 

Q < Q( V2) < Q(\12) 

with each step of degree 2 and therefore normal. As another example, 
since C is algebraically closed, Q < C is normal but Q < Q(V2) is not 
normal.[] 

The previous example notwithstanding, many of the properties that 
define distinguished classes do hold for normal extensions. 

Theorem 2.9.5 
1) 
2) 

If F < E is normal and F < K < E then K < E is also normal. 
The class of normal extensions is· closed under lifting: If F < E is 
normal and F < K is any extension then K < EK is normal. 

3) The class of normal extensions is closed under the taking of 
arbitrary composites and intersections: If {Ej} is a family of fields, 
each normal over F, and each contained in a single larger field, 
then V Ei is normal over F and n Ei is normal over F. 

Proof. Part 1) follows from the fact that a splitting field for a family of 
polynomials over F is also a splitting field for the same family of 
polynomials over K. For part 2), let E be a splitting field for a family GJ 
of polynomials over F and let R be the set of roots in E of all 
polynomials in GJ. Then E = F(R). Hence, EK = K(R), which shows 
that EK is a splitting field for the family GJ, thought of as a family of 
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polynomials over K. Hence, K < EK is normal. For part 3), let 
u: V Ei-+F be an embedding over F. Then u is an embedding when 
restricted to each Ei and so uEi = Ei, whence 

and 
I 

Normal Closures 

Definition Let F < E be algebraic and let F be an algebraic closure of F 
containing E. The normal closure of F < E in F is the intersection of all 
fields L such that E < L < F and F < L normal. We denote this field by 
Enc. 0 

Note that since F < F is normal, the intersection described m the 
previous definition is a nontrivial one. 

Theorem 2.9.6 Let F < E < F be algebraic, with normal closure Enc. 

1) Enc is the smallest subfield of F with the property that E < Enc 
and F < Enc is normal. 

2) Enc = VuE, over all u E HomF(E,F). 
3) Enc is the splitting field in F of the family {min( a,F) I a E E}. 
4) Enc is the splitting field in F of the family {min(a,F) I a E B} 

where B is a basis forE over F. 
5) IfF < E is finite, then F < Enc is also finite. 

Proof. We prove only part 2), leaving the rest for the reader. Let 
E < L < F with F < L normal. Since E < L is algebraic, any u E 
HomF(E,F) may be extended to an embedding r:L-+F over F. Since 
F < L is normal, T is an automorphism of L. It follows that uE ~ L and 
so V u E < Enc. On the other hand, if we let L = V u E, then F < L is 
normal since if r E HomF(L,F) then TO' runs over all elements of 
HomF(L,F) as u does and so 

rL = r( VuE)= V ru(E) < VuE= L 

Since F < L is algebraic, we deduce that rL = L, that is, r is an 
automorphism of L over F. Hence, F < L is normal and so Enc < L = 
VuE. This shows that VuE= Enc. I 
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Exercises 
1. Let R be an integral domain containing a field F. Show that if 

[R:F] < oo then R must be a field. 
2. If F < E is algebraic and R is a ring such that F ~ R ~ E, show 

that R is a field. Is this true if-F< E is not algebraic? 
3. Let F < E and F < K be finite extensions and assume that EK is 

defined. Show that [EK:F) ~ [E:F)[K:F], with equality if [E:F] and . 
[K:F] are relatively prime. 

4. Let u:K-+E be a homomorphism of fields and let F < K n E. Show 
that u is F -linear if and only if u(a) =a for all a E F. 

5. Let F < E be a quadratic extension, that is, an extension of degree 
2. Show that E has a basis over F of the form {1,a} where a2 E F. 

6. Prove that any extension of degree 2 is normal. 
7. Let F be an infinite field and let F < E be an algebraic extension. 

Show that I E I = I F I · 
8. Let F < F where F is an algebraic closure of F and let G = 

A utF(F) be the group of all automorphism ofF fixing F pointwise. 
Let 

F0 = {a E F I ua = a for all u E G} 

be the fixed field ofF under G. Evidently F < F0 <F. Show that 
the minimal polynomial of any a E fG over F has only one 
distinct root in F. Show also that the minimal polynomial of any 
a E F over F0 has no multiple roots. Hint: for the latter 
statement, consider the polynomial p(x) = n (x- ai) where ai are 
the distinct roots of min(a,F0 ). 

9. Let p be a prime and let a::/= 1 be a complex p-th root of unity. 
Show that min( a,Q) = 1 + x + x2 + · · · + xP-1• What is the 
splitting field for xP- 1 over Q? 

10. Suppose that F < E is a finite extension and that E = F(S) for 
some set S ~E. Must there exist a finite subset S0 ~ S for which 
E = F(S0)? 

11. Let F be a field of characteristic p ::/= 0 and let a E F. Show that 
the following are equivalent: (i) a"t E F (ii) F(a"t) = F (iii) 
[F(a)]"t ~ F where [F(a)]"t = {s"t Is E F(a)}. 

12. Let F < E be a finite normal extension and let p(x) E F[x) be 
irreducible. Suppose that the polynomials f(x) and g(x) are monic 
irreducible factors of p(x) over E. Show that there exists a u E 
AutF(E) for which f"(x) = g(x). 

13. Let F < E be algebraic. Show that a normal closure for F < E 
exists and that any two normal closures are isomorphic over F. 
Show also that if F < E -is finite, so is F < Enc. If F < E is 
algebraic and u E HomF(E,E) then Imu is contained in the normal 
closure of F < E that lies in E. 
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14. Let F be a field and let o:1, ... , o:n be distinct elements of F. Prove 
that if a1 o:t + · · · +ana:~ = 0 for all integers k 2: 0 then ai = 0 for 
all i. 

15. Show that an extension F < E is algebraic if and only if any 
subalgebra S of E over F is actually a subfield of E. 

16. Let F < E be normal. Can any automorphism ofF be extended to 
an automorphism of E? 

17. Suppose that F and E are fields and u:F-->E is an embedding. 
Construct an extension of F that is isomorphic to E. 

Constructions 

The goal of the following series of exercises is to prove that certain 
constructions are not possible using straight edge and compass alone. In 
particular, not all angles can be trisected, a circle cannot be "squared" 
and a cube cannot be "doubled." The first step is to define the term 
constructible. We assume the existence of two distinct points P 1 and P 2 
and take the distance between these points to be one unit. 

Definition A point, line or circle in the plane is said to be constructible 
if and only if it can be obtained by a finite number of applications of 
the following rules. 

1) P 1 and P2 are constructible. 
2) The line through any two constructible points is constructible. 
3) The circle with center at one constructible point and passing 

through another constructible point is constructible. 
4) The points of intersection of any two constructible lines or circles 

are constructible. 0 

Cl. Show that if a line L and point P are constructible, then the line 
through P perpendicular to L is also constructible. 

C2. Show that if a line L and point P are constructible, then the line 
through P parallel to L is also constructible. 

C3. Taking the constructible line through P 1 and P 2 as the x-axis and 
the point P 1 as the origin, the y-axis is also constructible. Show 
that any point (a,b) with integer coordinates is constructible. 

C4. Show that the perpendicular bisector of any line segment 
connecting two constructible points is constructible. 

C5. If P, Q and R are constructible points and L is a constructible line 
through R then a point S can be constructed on L such that the 
distance from S to R is the same as the distance from P to Q. 
(Thus, given distances can be marked off on constructible lines.) 



58 2 Field Extensions 

Definition A real number r is constructible if its absolute value is the 
distance between two constructible points. 0 

C6. Show that any integer is constructible. 
C7. Prove that a point (a,b) is constructible if and only if its 

coordinates a and b are constructible real numbers. 
CS. Prove that the set of numbers that are constructible forms a 

subfield of the real numbers containing Q. Hint: to show that the 
product of two constructible numbers is constructible or that the 
inverse of a nonzero constructible number is constructible, use 
similar triangles. 

C9. Prove that if a > 0 is constructible, then so is y'a. Hint: first 
show that a circle of diameter 1 + a is constructible and that a 
line L through the center of the circle is constructible. Let P and 
Q be the intersection points of the circle with the line L. Mark off 
a units along the diameter PQ from P and denote that point by 
R. Is R constructible? Construct a line M through R perpendicular 
to L. Let S be one point of intersection of M and the circle. What 
is the length of the line segment RS? 

The two previous exercises prove the following theorem. 

Theorem Cl If the elements of a field F < R are constructible, ·and if 
a E F, then F( y'a) = {a+ by'a I a, b E F} is constructible. 0 

Theorem C2 Let F be a subfield of R and let E > F be a quadratic 
extension. Then E = F( y'a) for some a E F. 

Proof. Exercise. I 

It follows from the two previous theorems that if F is constructible 
and if F < E is a quadratic extension then E is constructible. More 
generally, we have 

Theorem CJ If Q < E1 < E2 < · · · < En is a tower of fields, each one a 
quadratic extension of the previous one then every element of En is 
constructible. 0 

We now turn to a converse of Theorem C3. 

Theorem C4 Let four constructible points, whose coordinates lie in a 
field F < R, be given. Let L and M be lines or circles constructed from 
these points. Then the points of intersection of L and M have 
coordinates in a quadratic extension of F. 

Proof. Exercise. I 

The import of the previous theorem is that each time we construct a 
constructible number a, the number lies in a quadratic extension of the 
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field of previously constructed numbers. Thus, we have 

Theorem CS A real number is constructible if and only if it lies in a 
field En that is at the top of a tower of fields 

each one a quadratic extension of the previous one. Hence, if a is 
constructible, then [Q(a):Q) must be a power of 2. 0 

Now consider what it means to say that an angle of ()" is 
constructible. Informally, we will take this to mean that we may 
construct a line L through the origin that makes an angle of ()" with the 
x-axis. 

ClO. Show that such a line L is constructible if and only if the real 
number cos ()" is constructible. (This is an informal demonstration, 
since we have not formally defined angles.) 

The previous exercise prompts us to make the following definition. 

Definition An angle of ()" is constructible if the real number cos(} is 
constructible. 0 

CU. Show that a 60" angle is constructible. 
C12. Show that a 20" angle is not constructible. Hint: verify the formula 

cos 30 = 4 cos3 (} - 3 cos (} 

Let r = cos 20" and show that r is a root of 

p(x) = 8x3 - 6x -1 

Show that p(x) is irreducible over Q and so [Q(r):Q] = 3. 
C13. Prove that every constructible real number is algebraic over Q. 

Assuming that 1r is transcendental over Q, show that any circle 
with a constructible radius cannot be "squared," that is, a square 
cannot be constructed whose area is that of a unit circle. 

C14. Verify that it is impossible to "double" any cube whose side length 
r is constructible, that is, it is impossible to construct an edge of a 
cube whose volume is twice that of a cube with side length r. 



Chapter 3 

Algebraic Independence 

In this chapter, we discuss the structure of an arbitrary field 
extension F < E. Specifically, we will see that, for any extension F < E, 
there exists an intermediate field F < F(S) < E whose second step 
F(S) < E is algebraic and whose first step F < F(S) is purely 
transcendental. The latter means that there is no nontrivial polynomial 
dependency (over F) among the elements of S, and so these elements 
act as "independent variables" over F. Thus, F(S) is the field of all 
rational functions in these variables. 

3.1 Dependence Relations 
We begin with a general notion of dependence, intended to model 

linear independence. 

Definition Let X be a nonempty set and let 6. ~ X x '!P(X) be a binary 
relation from X to the power set of X. We write x-< S (read: x is 
dependent on S) for (x,S) E 6. and S-< T when s-< T for all s E S. Then 
6. is a dependence relation if it satisfies the following properties, for all 
S, T and U E '!P(X), 

1) (reflexivity) 
S-<S 

2) (compactness) 

x-< S => x-< S0 for some finite subset S0 of S 
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3) (transitivity) 
S -< T, T -< U => S -< U 

4) (Steinitz exchange axiom) 

x-< S, x 1< S- {s} => s-< (S- {s}) U {x} 

If x 1< S we say that x is independent of S. 0 

Definition A subset S ~ X is dependent if s -< S - { s} for some s E S 
(equivalently, if S-<S-{s}). A subset S~X is independent if 
s 1< S - { s} for all s E S. (Hence the empty set is independent.) 0 

The reader should have no trouble supplying a proof for the following 
lemma. 

Lemma 3.1.1 
1) If S-< T then S-< T' for any superset T' ofT. 
2) Any superset of a dependent set is dependent. 
3) Any subset of an independent set is independent. 
4) If S is a dependent set, then some finite subset S0 of S is 

dependent. Equivalently, if every finite subset ofT is independent, 
then T is independent. 0 

Theorem 3.1.2 If S is independent and x 1< S then S U {x} is 
independent. 

Proof. Let s E S. If s-< (S U {x})- {s} then since s 1< S- {s}, the 
exchange axiom would imply that x -< S, a contradiction. Hence 
s 1< (S U {x})- {s}. Furthermore, by hypothesis x 1< S = (S U {x})- {x}. 
Thus, S U { x} is independent. I 

Definition A set B ~ X is called a base if B is independent and X -< B. 0 

Theorem 3.1.3 Let X be a nonempty set with a dependence relation -< . 

1) B ~X is a base for X if and only if it is a maximal independent 
set in X. 

2) B ~X is a base for X if and only if B is minimal with respect to 
the property X -< B. 

3) Let A~ S ~X, where A is an independent set (possibly empty) 
and X -< S. Then there is a base B for X such that A ~ B ~ S. 

Proof. For part 1), assume B is a base. Then B is independent. If B is 
not maximal independent, there exists an x E X - B for which B U { x} 
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is independent. Hence, x -1< (B U { x}) - { x} = B, a contradiction to 
X -< B. For the converse, if B is a maximal independent set and x -j< B 
then B U {x} is independent, which is not the case. Hence, X-< B and B 
is a base. 

For part 2), if B is a base, then X -< B. Suppose that some proper 
subset B0 C B satisfies X -< B0• If b E B- B0 then b -< B0 -< B- {b }, 
contracting the independence of B. Hence B is minimal. Conversely, 
suppose that B is minimal with respect to the property X -< B. If B is 
dependent then X -< B -< B - {b} for some b E B, a contradiction to the 
minimality of B. Hence B is independent and a base for X. 

For part 3), we apply Zorn's lemma. The set 'J of all independent 
sets B in X satisfying A~ B ~ S is nonempty, since A E 'J. Order 'J by 
set inclusion. If e = {CJ is a chain in '!, then the compactness property 
implies that the union u ci is an independent set, which also lies in 'J. 
Hence, Zorn's lemma implies the existence of a maximal element C E 'J, 
that is, C is independent, A ~ C ~ S and C is maximal with respect to 
these two properties. This maximality implies that S -< C and so 
X -< S -< C, which implies that C is a base. I 

To prove that any two bases for X have the same cardinality, we 
require a lemma. 

Lemma 3.1.4 Let S be a finite dependent set and let A ~ S be an 
independent subset of S. Then there exists a E S -A for which 
S-<S-{a}. 

Proof. Among all subsets of S-A, choose a maximal one B for which 
AU B is independent. Then B is a proper (perhaps empty) subset of 
S-A. If a E S- (AU B) then a -<AU B -< S- {a} and so S -< S- {a }.1 

Theorem 3.1.5 Any two bases for a set X have the same cardinality. 

Proof. Let B and C be bases for X. We first assume that at least one of 
B or C is finite; say B = {b1, ... , bm} is finite. Choose c1 E C. The set 
cl = { cl' bl' ... 'bm} satisfies the conditions of the previous lemma 
(with A= {c1}) and so, after renumbering the hi's if necessary, we 
deduce that 

For any c2 EC-{c1}, the set C2 ={c1,c2,b1, ... ,bm-l} satisfies the 
conditions of the lemma (with A= {c1,c2}) and so, again after possible 
renumbering, we get 
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Continuing this process, we must exhaust all of the elements of C before 
running out of elements of B, for if not, then a proper subset C' of C 
would have the property that X ~ C', in contradiction to the 
independence of C. Hence, I C I ~ I B I . Since this shows that C is 
finite, we may repeat the argument with the roles of B and C reversed 
to get I B I = I C I . 

Let us now assume that B and C are both infinite sets, and let C = 
{ ci I a E I}. Thus, I C I = I I I· For each b ~ B, we have b ~ C and so 
there is a finite subset Ib C I such that b ~ { ci I i E Ib}. This gives a 
map b-+Ib from B to the set of finite subsets of the index set I. 
Moreover, 

for if j E I - U Ib then, for any b E B, we have 

and so cj ~ B ~ C - { cj}, which contradicts the independence of C. 
Hence, 

Again reversing the roles of B and C shows that I B I = I C I . I 

3.2 Algebraic Dependence 
We recall a definition. 

Definition Let F < E. An element t E E is transcendental over F if t is 
not algebraic over F, that is, if there is no nonzero polynomial p(x) E 
F[x] such that p(t) = 0. 0 

Recall that if t is transcendental over F then F( t) is the field of all 
rational functions in the variable t, over the field F. 

Definition Let F < E and let S ~ E. An element a E E is algebraically 
dependent on S over F, written a~ S, if a is algebraic over F(S). If a is 
not algebraically dependent on S over F, that is, if a is transcendental 
over F(S) then a is said to be algebraically independent of S over F and 
we write a -j< S. 0 

The first order of business is to show that algebraic dependence is a 
dependence relation. 



3 Algebraic Independence 65 

Theorem 3.2.1 Algebraic dependence is a dependence relation. 

Proof. Since any s E S is algebraic over F(S) we have S -< S. To show 
compactness, let a -< S and let C be the set of coefficients of 
min( a,F(S)). Since C ~ F(S), each c E C is a rational function over F in 
a finite number of elements of S and so there is a finite subset S0 of S 
for which C ~ F(S0). Hence a is algebraic over F(S0), that is, a -< S0• 

For transitivity, suppose that a -< S and S -< T and consider the 
tower 

F(T) < F(T US) < F(T U S,a) 

Since every element of S is algebraic over F(T), and since a is algebraic 
over F(T US) we deduce that a is algebraic over F(T), whence a-< T. 

Finally, we verify the exchange axiom. Suppose that a-< S and 
a~ S- {s}. Let p(x) = min(a,F(S)). Since F(S) = F(S- {s})(s), the 
coefficients of p(x) are polynomials in s over F(S - { s} ), that is, 

d 
p(x) = E fi(s)xi 

i=O 

where we may assume that fd(x) 'I 0. Hence, the polynomial 
d 

p(x,y) = Efi(y)xi 
i=O 

in two independent variables is not the zero polynomial. This 
polynomial can also be written 

e 
p(x,y) = Egi(x)yi 

i=O 

where gi(x) E F(S - { s} )[x] and ge(x) 'I 0. Then 

e 

0 = p(a,s) = Egi(a)si 
i=O 

Since ge(x) E F(S- { s} )[x] is nonzero and a is transcendental over 
F(S- {s}), we infer that ge(a) 'I 0 and e > 0. Hence, the equation 
above shows that s-< F(S- {s} U {a}). I 

We may now take advantage of the results derived for dependence 
relations. 

Definition Let F < E. 

1) A subset S ~ E is algebraically dependent over F if s-< S- {s} for 
some s E S, that is, if s is algebraic over F(S- { s}) for some s E S. 
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2) A subset S ~ E is algebraically independent over F if s-f: S- {s} 
for all s E S, that is, if s is transcendental over F{S - { s}) for all 
s E S. (Hence the empty set is algebraically independent over F.) 0 

Lemma 3.2.2 
1) Any superset of an algebraically dependent set is algebraically 

dependent. 
2) Any subset of an algebraically independent set is algebraically 

independent. 0 

Theorem 3.2.3 If S is algebraically independent over F and a is 
transcendental over F(S) then S U {a} is algebraically independent over 
F. 0 

Let us provide another characterization of algebraically dependent 
sets. 

Theorem 3.2.4 Let F < E. A subset S of E is algebraically dependent 
over F if and only if there is some nonzero polynomial p(x1, .•. , ~) in 
n 2:: 1 variables over F for which p(s1, ... ,sn) = 0, for distinct si E S. 

Proof. Suppose first that S is algebraically dependent over F. Then 
some s E S is algebraic over F(S - { s}) and so there exists a polynomial 
p(x) of degree d>O over F(S-{s}) for which p(s)=O. Such a 
polynomial has the form 

( ) ~ Pi ( sv .. · • sm) i px=L,.. x 
i=O qi{sl' · · · 'sm) 

where Pi(x1, ... ,xm) and qi(x1, ... ,xm) are polynomials in m variables 
and the si E S- {s} are distinct. Note that Pd(s1, ... ,sm) f:; 0 and 
qi(s1, ... , sm) f:; 0 for all i. Letting x = s and clearing this of 
denominators gives 

for polynomials ri(x1, ... ,~), with rd(sv ... ,sm) '# 0. Thu~ 
rd{x1, ... ,xm) is not the zero polynomial and p(x) = L:ri(xv ... ,~)x1 

is a nonzero polynomial satisfied by the m + 1 distinct elements 
s1 , ... ,sm,s inS. 

For the converse, suppose th~t p{s1, ... ,sn) = 0 for distinct si E S, 
where p( x1, ... , xn) is a nonzero polynomial over F. We may assume 
without loss of generality that s2, ••. , sn do not enjoy a similar 
polynomial dependency and hence that 
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d 

p(x1, ... ,xn) = LPi(x2, ... ,~)x~ 
i=O 
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where pd(x2, ... ,xn) f. 0 and pd(s2, ... ,sn) f. 0. Hence the nonzero 
polynomial 

d 

p(x) = L Pi(s2, ... 'sn)xi 
i=O 

satisfies p(s1) = 0, showing that s1 is algebraic over F(S- { sd) and 
hence that S is algebraically dependent over F. I 

Corollary 3.2.5 Let F < E and let S = { s1, ... , sn} be a subset of E. Then 
S is algebraically independent over F if and only if sm is transcendental 
over F(s1, ... ,sm_1) for all m = l, ... ,n. 

Proof. If S is algebraically independent then sm is transcendental over 
F(S- {sm}) and therefore also over the smaller field F(s1, ... ,sm_1). For 
the converse, if S is algebraically dependent then there is a nonzero 
polynomial dependency of the form 

d 

0 = LPi(s1, ... ,sm-1)s~ 
i=O 

for some m ~ n where pd(s1, ... ,sm_1) f. 0, whence sm is algebraic over 
F(s1, ... , sm_1). This contradiction implies that S is algebraically 
independent. I 

3.3 Transcendence Bases 
Definition Let F < E. A transcendence basis for E over F is a subset 
B ~ E that is algebraically independent over F and for which E -< B, 
that is, for which F(B) < E is algebraic. D 

Since algebraic dependence is a dependence relation, we immediately 
get the following two results. 

Theorem 3.3.1 Let F < E. A subset B ~ E is a transcendence basis for E 
over F if and only if it satisfies either one of the following. 

1) B is a maximal algebraically independent subset of E over F. 
2) B is minimal with respect to the property that F(B) < E rs 

algebraic. D 
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Theorem 3.3.2 Let F < E. 

1) Any two transcendence bases for E over F have the same 
cardinality. This cardinality is called the transcendence degree of 
E over F, and is denoted by [E: F) t. 

2) Suppose F ~ A ~ S ~ E where A is algebraically independent over 
F and F(S) < E is algebraic. Then there exists a transcendence 
basis B for E over F satisfying A~ B ~ S. In particular, 
[E:F)t ~ I s I . 0 

Definition An extension F < E is said to be purely transcendental if 
E = F(B) for some transcendence basis B forE over F. 0 

We remark that if E is purely transcendental over F then E = F(B) 
for some transcendence basis B, but not all transcendence bases for E 
over F need generate E. The reader is asked to supply an example in 
the exercises. 

The following few simple results concerning transcendental extensions 
will prepare the way to finishing the proof (promised in Chapter 2) that 
the class of finitely generated extensions is distinguished. 

Corollary 3.3.3 If E is finitely generated over F and B - is a 
transcendence basis for E over F then B is a finite set and F(B) < E is a 
finite extension. 

Proof. Theorem 3.3.2 implies that B is finite. The second part follows 
from the fact that E is finitely generated over F(B) as well, and a 
finitely generated algebraic extension is finite. I 

Theorem 3.3.4 Let F < K < E and suppose that F < K is algebraic. If 
T ~ E is algebraically independent over F, then T is also algebraically 
independent over K. In other words, T remains algebraically 
independent over any algebraic extension of the base field. 

Proof. If T is not algebraically independent over K, there exists t E T 
algebraic over K(T - { t} ). Since F < K is algebraic, we deduce that 
F(T - { t}) < K(T - { t}) is algebraic, and so each step in the tower 

F(T- {t}) < K(T- {t}) <K(T- {t})(t) = K(T) 

is algebraic, whence t E K(T) is algebraic over F(T- { t} ), m 
contradiction to the algebraic independence ofT over F. I 

We are now in a position to finish the proof that the class of finitely 
generated extensions is distinguished. Note how much more involved 
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this task is than showing that finite or algebraic extensions are 
distinguished. 

Theorem 3.3.5 Let F < K < E. If E is finitely generated over F then K 
is also finitely generated over F. Thus, the set of finitely generated 
extensions is distinguished. 

Proof. Let S = { s1, ... , sk} be a transcendence basis for K over F. Then 
the second step in the tower F < F(S) < K < E is algebraic and E is 
finitely generated over F(S). Hence, if we can prove the theorem for 
algebraic intermediate fields, we will know that K is finitely generated 
over F(S) and therefore also over F, since S is a finite set. 

Thus, we may assume that F < K < E with F < K algebraic and 
show that [K:F] is finite. Let T = { t1, ... , tn} be a transcendence basis 
for E over F. Our plan is to show that 

[K:F) ::; [E:F(T)] 

(see Figure 3.3.1) by showing that any finite subset of K that is linearly 
independent over F is also linearly independent over F(T) [as a subset 
of E]. Since [E:F(T)] is finite by Corollary 3.3.3, the proof will be 
complete. 

E 

~rure 
K F(T) 

algebrai~ i i i 

F 

Figure 3.3.1 

First, we observe that, by Theorem 3.3.4, since T is algebraically 
independent over F, it is also algebraically independent over the 
algebraic extension K of F. 

Let Y = {y1, ... ,ym} ~ K be linearly independent over F. Suppose 
that 

where ri(t1, ... , tn) E F(T). By clearing denominators if necessary, we 
may assume that each ri( t1, ... , tn) is a polynomial over F. Collecting 
terms involving like powers of the ti's gives 
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where ael' ... ,en,i E F is the.coefficient of t;I. .. t:n in ri(t1, ... ,tn)· Since 

T is algebraically independent over K, the products t;l. · ·t:n are linearly 

independent over K, and hence also over F(y11 ... ,ym) ~ K. Thus 

and the linear independence of Y over F then implies that 

Hence ri( t 1, ... , tn) = 0 for all i. This shows that Y is linearly 
independent over F(T), as desired. I 

The next theorem gives some verisimilar facts about simple 
transcendental extensions; in particular, if E = F(t), where t is 
transcendental over F, then any nonconstant rational function in t is 
also transcendental over F and E is algebraic over any intermediate 
field other than the base field F. 

Theorem 3.3.6 
1) Suppose that E = F(t), where t is transcendental over F. If s = 

f(t)/g(t) E F(t) where f(t) and g(t) are relatively prime and at 
least one is nonconstant, then s is transcendental over F, t is 
algebraic over F(s) and (F(t):F(s)] = max(deg f(t), deg g(t)). 

2) If t is transcendental over F then F(t) is algebraic over any field K 
satisfying F < K < F(t), K -:f:. F. 

3) If F < E is purely transcendental then any a E E- F is 
transcendental over F. 

Proof. For 1), if we show that t is algebraic over F(s), it will follow that 
s is transcendental over F, for otherwise F < F(s) < F(t) would be an 
algebraic tower. The polynomial 

p(x) = g(x)s- f(x) E F(s)(x] 

has the property that p(t) = g(t)s- f(t) = 0. Moreover, p(x) is 
irreducible over F(s). For if we think of p(x) as a polynomial in the two 
(independent) variables x and s, it is clear that if p(x) has a nontrivial 
factorization, one of the factors must be a nontrivial common factor of 
f(x) and g(x), which is impossible. Since 
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deg p(x) = max( deg f(x), deg g(x)) 

part 1) is proved. Part 2) follows easily from part 1). 
For part 3), if o:EE-F then o:EF(t1, ••. ,tn) for some finite set 

{ t1, ... , tn} of algebraically independent elements. By part 1 ), every 
element of F(t1) not in F is transcendental over F. Similarly, every 
element of F(t1,t2) not in F(t1) is transcendental over F(t1) and hence 
also over F. Continuing this argument gives the desired result. I 

We leave it as an exercise to show that the converse of part 3) is 
false, that is, there exist extensions F < E that are not purely 
transcendental but for which every o: E E- F is transcendental over F. 

The following is an example of an extension that is neither algebraic 
nor purely transcendental. 

Example 3.3.1 Let n ~ 3 and let F be a field with char(F) ln. Let u be 
transcendental over F, let v be a root of p(x) = xn + un- 1 in some 
splitting field and let E = F(u,v). Clearly, E is not algebraic over F. We 
contend that E is also not purely transcendental over F. Since v is 
algebraic over F(u), we deduce that {u} is a transcendence basis for E 
over F and so [E:F]t = 1. If E were purely transcendental over F there 
would exist a transcendental element t over F for which F(t) = F(u,v). 
Let us show that this is not possible. 

If F(t) = F(u,v) then 
a(t) c(t) 

u = b(t) and v = d(t) 

where a(t), b(t), c(t) and d(t) are polynomials over F. Hence 

or 
[a(t)d(t)r + [b(t)c(t)r = [b(t)d(t)]n 

This can be written 

for nonconstant polynomials f(t), g(t) and h(t), which we may assume 
to be pairwise relatively prime. Let us assume that deg f(t) $ deg g(t), 
in which case deg h(t) $ deg g(t). We now divide by hn(t) and take the 
derivative with respect to t to get (after some simplification) 

fn-l[f'h- fh'] + gn-l[g'h- gh'] = 0 
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Since f and g are relatively prime, we deduce that gn-l I rh- fh'. But 
this implies 

(n -1)deg g ~ deg fh -1 = deg f + deg h -1 ~ 2deg g- 1 

which is not possible for n ~ 3. Hence, F < F(u,v) is not purely 
transcendental. 0 

While the vector space dimension is multiplicative over a tower of 
fields, the transcendence degree is additive, as we see in the next 
theorem. 

Theorem 3.3.7 Let F < K <E. 

1) If S ~ K is algebraically independent over F and T ~ E is 
algebraically independent over K then S U T is algebraically 
independent over F. 

2) If S is a transcendence basis for K over F and T is a transcendence 
basis for E over K then S U T is a transcendence basis for E over 
F. 

3) (E:F]t = [E:K]t + [K:F]t 

Proof. For part 1 ), suppose for the purposes of contradiction that S U T 
is algebraically dependent over F. Then there exists an a E S U T that is 
algebraic over F(S0 U T0) for some finite sets S0 ~ S and T0 ~ T not 
containing a, and we may assume that no proper subset T1 of T0 has 
the property that a is algebraic over F(S0 U T 1). If a E T then since a is 
algebraic over F(S0 U T0), it is also algebraic over the larger field 
K(T- {a}), in contradiction to the algebraic independence ofT over K. 
Hence a rf. T and so a E S. But then T0 cannot be empty, since S is 
algebraically independent over F. If t E T0 then the minimality of T0 
implies that a is not algebraic over S0 U T0 - { t}, that is, 
a 1< S0 U T 0 - { t}. But a --< S0 U T0 and so the exchange axiom gives 
t --< S0 U T 0 U {a} - { t}. In other words, t is algebraic over 
F(S0 U T 0 U {a} - { t} ), and hence also over the larger field K(T- { t} ), 
again contradicting the algebraic independence of T over K. This proves 
part 1). 

For part 2), we know by part 1) that S U T is algebraically 
independent over F. Also, since F(S) < K and K(T) < E are algebraic, 
each step in the tower F(S U T) < K(T) < E is algebraic and so 
F(S U T) < E is algebraic. Hence, S U T is a transcendence basis for F 
over E. Part 3) follows directly from part 2). I 
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*3.4 Simple Transcendental Extensions 
The class of purely transcendental extensions is much less well 

behaved than the class of algebraic extensions. For example, let t be 
transcendental over F. Then in the tower F < F(t2) < F(t), the 
extension F < F(t) is purely transcendental (and simple) but the second 
step F(t2) < F(t) is not transcendental at all. 

In addition, if F < E is purely transcendental and F < K < E, it does 
not necessarily follow that the first step F < K is purely transcendental. 
However, this is true for simple transcendental extensions. The proof of 
this simple statement illustrates some of the apparent complexities in 
dealing with transcendental extensions. 

Theorem 3.4.1 (Luroth's Theorem) Let t be transcendental over F. If 
F < K < F(t) and K =/= F then K = F(s) for somes E F(t). 

Proof. The idea behind the proof is straightforward. Since K =/= F, we 
know by Theorem 3.3.6 that K < F(t) is algebraic. Indeed, for any s E 
K- F, the tower F(s) < K < F(t) is algebraic. We want to find an s E 
K- F for which [F(t):F(s)) = [F(t):K), showing that K = F(s). Recall 
from Theorem 3.3.6 that if s = f(t)/g(t) E K- F where f and g are 
relatively prime polynomials over F, then 

d8 = [F(t):F(s)) = max( deg f(x),deg g(x)) 

Let 
· ( ) n al(t) n-1 an(t) 

p(x) = mm t,K =x +b1(t)x + .. ·+bn(t) 

where ai(t), bi(t) E F(t). Then [F(t):K) = n and we wish to show that 
d8 = n for some s E K - F. Evidently d8 ~ n for all s E K - F. 

Note that since t is not algebraic over F, not all of the coefficients of 
p(x) can lie in F. Therefore, we may let 

ak(t) 
s = bk(t) E K- F 

for some k and assume that ak(t) and bk(t) are relatively prime. 
Consider the polynomial 

Since s ~ F, we have h(x) =/= 0. But h(t) = 0 and so p(x) I h(x) over K. 
In other words, there exists q(x) E K[x] such that 

ak(t) 
ak(x)- bk(t)bk(x) = q(x)p(x) 
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or 

Multiplying both sides of this by 

gives 

(3.4.1) 

where 
n 

r(t)p(x) = b1(t)···bn(t)xn + L [b1(t)· ··bi_1(t)ai(t)bi+l(t)···bn(t)]xn-i 
i=l 

Now, we wis~ to factor out the greatest common divisor g(t) of the 
coefficients of xl (for j = O, ... ,n) from the right side of this expression. 
Note that g(t) ~ivides the gcd of any two of these coefficients, in 
particular, g(t) divides the gcd of 

which is b1(t) .. ·bk_1(t)bk+l(t) .. ·bn(t), since ak(t) and bk(t) are 
relatively prime. Hence, once g(t) is factored out of r(t)p(x): 

r(t)p(x) = g(t)p'(t,x) 

where p'(t,x) E F[t,x] is primitive, in the sense that it is not divisible by 
any nonconstant polynomial in t, we still have as factors among the 
coefficients of p'(t,x) the polynomia.s bk(t) and ak(t). Thus, the degree 
of p'(t,x) with respect to t satisfies 

(3.4.2) t-deg(p'(t,x))?: max(deg ak(t),deg bk(t)) = d5 

Thus, (3.4.1) becomes 

(3.4.3) 

Next we multiply both sides of (3.4.3) by a polynomial u(t) that will 
clear all of the denominators of q(x), giving 

where p'(t,x), q'(t,x) E F[t,x]. Since p'(t,x) is not divisible by any 
nonconstant polynomial in t, we must have u(t)r(t) I ~(t)q'(t,x). Hence, 
there exists a polynomial q"(t,x) E F[t,x] for which 
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(3.4.4) 

Now, the t-degree of the left hand side of this equation is at most 

and by (3.4.2) the t-degree of the right hand side is at least d5 • Hence, 
the t-degree of either side of (3.4.4) is d8 and (3.4.2) implies that 
t-deg(q"(t,x)) = 0, that is 

(3.4.5) 

where q"(x) E F[x). Since the right side of (3.4.5) is not divisible by any 
nonconstant polynomial in t, neither is the left side. But the left side is 
symmetric in x and t, so it cannot be divisible by any nonconstant 
polynomial in x either. Hence, q"(x)p'(t,x) is not divisible by any 
nonconstant polynomial in x, implying that q"(x) E F, that is, 

(3.4.6) 

where q" E F. Finally, since the x-degree and t-degree of the left side 
of (3.4.6) agree, this is also true of the right side. Hence by (3.4.2), 

n = x-deg(p'(t,x)) = t-deg(p'(t,x)) ;:::: d5 ;:::: n 

Thus, d8 = n, and the proof is complete. I 

It can be shown that Luroth's theorem does not extend beyond 
simple transcendental extensions, but a further discussion of this topic 
would go beyond the intended scope of this book. 

We conclude with a determination of all F-automorphisms of a 
simple transcendental extension F(t). Let GLn(F) denote the group of 
all nonsingular n x n matrices over F. The proof provides a nice 
application of Theorem 3.3.6. 

Theorem 3.4.2 Let F < F(t) be a simple transcendental extension and 
let AutF(F(t)) denote the group of all automorphism of F(t) over F 

1) For each A= [a ~] E GL2(F) there is a unique (fA E AutF(F(t)) 
for which c 
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Moreover, all automorphisms of F(t) over F have the form u A for 
some A E GL2(F). 

2) If A,B E GL2(F), then 

d -1 
uAB = uAuB an u A-1 = uA 

and u A= u8 if and only if AB-1 is a nonzero scalar matrix. In 
other words, the map r:GL2(F)-+AutF(F(t)) defined by rA = uA 
is an epimorphism with kernel equal to the group of all nonzero 
scalar matrices in GL2(F). 

Proof. Clearly, the map u A can be extended to a homomorphism of F(t) 
over F by setting 

u (f(t))= f(uA(t)) 
A g(t) g(u A(t)) 

Since max(deg(at+b), deg(ct+d)) = 1, Theorem 3.3.6 implies that 
(F(t):F(uAt)] = 1 and so uA(F(t)) = F(uAt) = F(t), showing that uA is 
surjective. Since u A is injective as well (fields have no nontrivial ideals), 
it is an automorphism of F( t) over F. 

We leave it to the reader to show that u AuB = u AB and that uc = £ 

if and only if C is a scalar multiple of the identity matrix. It follows 
that 

and so 
-1 

uA-1 =uA 

Also, u A= u8 if and only if u _1 = £1 that is, if and only if AB-1 is a 
scalar multiple of the identity. AB 

If u E AutF(F(t)) then F(t) = u(F(t)) = F(ut) and so (F(t):F(ut)] = 
1, which by Theorem 3.3.6 implies that ut = u At for some 2 x 2 matrix 
over F. Hence, u = u A· Since u-1 also has the form u8 for some matrix 
B, we have 

£ = uAuB =uAB 

which implies that AB = al, for some a E F, whence A is nonsingular. I 

Exercises 
1. Find an example of a purely transcendental extension F < E with 

two transcendence bases B and C such that E = F(B) but F(C) is 
a proper subfield of E. 

2. Let F < E and F < K. Show that (EK:K)t ~ [E:F)t· 
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3. Let F < E < K and let T E K - E. Show that [E(T):F(T)]t ::; [E:F]t 
with equality if T is algebraically independent over F or algebraic 
over F. 

4. Use the results of the previous exercise to show that if F < K < E 
and F < L < E then [KL:F]t ::; [K:FJt + [L:FJt. 

5. Let F be a field of characteristic =I 2 and let u be transcendental 
over F. Suppose that u2 + v2 = 1. Show that F(u,v) is a purely 
transcendental extension by showing that F(u,v) = F(w) where 
w = (1 +v)/u. 

6. Let F < K < E and suppose that S ~ E is algebraically 
independent over K. Prove that F(S) < K(S) is algebraic if and 
only if F < K is algebraic. 

7. Show that the converse of part 3) of Theorem 3.3.5 is false by 
describing an extension E of F that is not purely transcendental, 
but for which every a E E- F is transcendental over F. 

8. Prove that the transcendence degree of IR over Q is I R I . 
9. Show that [C:Q]t = I C I . 
10. (An extension of Luroth's Theorem) Suppose that F < E is purely 

transcendental. Show that any simple extension of F contained in 
E is transcendental over F. 

11. With regard to Theorem 3.4.2, show that u AuB = u AB and uc = t 
if and only if C is a scalar multiple of the identity matrix I. 

12. Prove Lemma 3.1.1. 



Chapter 4 

Separability 

4.1 Separable Polynomials 

Let us recall a few facts about separable polynomials from Chapter 1. 

Definition An irreducible polynomial p(x) E F[x) is separable if it has no 
multiple roots in any extension of F. An irreducible polynomial that is 
not separable is inseparable. 0 

Theorem 4.1.1 
1) An irreducible polynomial p(x) is separable if and only if 

p'(x) f. 0. 
2) If F is a field of characteristic 0, or a finite field, then all 

irreducible polynomials over F are separable. 
3) Let char(F) = p f. 0 and let p(x) be irreducible. 

a) If p(x) is inseparabl~ then there exists a positive integer d 
such that p(x) = q(x ), where q(x) is separable. In this case, 
all roots of p(x) have multiplicity pd. 

b) If p(x) = h(xPd) where h(x) is any nonconstant polynomial and 
d is a positive integer, then p(x) is inseparable. 

4) Inseparable polynomials exist. 0 

The exponent d in part 3a) of the previous theorem is quite 
important and deserves a special name. Note that it can be 
characterized as the largest integer for which p(x) = q(xP\ 
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Definition Let p(x) E F[x] be an irreducible polynomial. If char(F) = 
p "# 0, the integer d for which p(x) = q(xP\ with q(x) separable, is 
called the radical exponent of p(x). If char(F) = 0, the radical exponent 
of p(x) is defined to be 0. If o is algebraic over F, the radical exponent 
of o over F is the radical exponent of min( o,F). 0 

The following definition allows us to handle the cases char(F) = 0 
and char(F) = p "# 0 simultaneously. 

Definition The exponent characteristic expchar(F) of a field F is defined 
to be 1 if char(F) = 0 and char(F) otherwise. 0 

Thus, any irreducible polynomial p(x) has the form p(x) = q(xp<l) 
where q(x) is separable, p is the exponent characteristic of F and d is 
the radical exponent of p(x). Moreover, p(x) is separable if and only if 
its radical exponent is 0. 

Definition Let F < E. Then o E E is separable over F if o is algebraic 
over F and its minimal polynomial min( o,F) is separable. The 
extension F < E is separable (or E is separable over F) if every element 
of E is separable over F. 0 

Before proceeding, we record a useful lemma. If F is a field and 
s ~ F then sn denotes the set {sn Is E S}. 

Lemma 4.1.2 Let F < E be algebraic with expchar(F) = p and letS~ E. 

1) F(SJf) = F([F(S)]Jf) for any k?: 0. 

2) F(S) = F(SPk) holds for some k ?: 1 if and only if it holds for all 
k?: 1. 

3) F = fPk holds for some k ?: 1 if and only if it holds for all k ?: 1. 

k k " Proof. Part 1) follows from the fact that [F(S)]P = FP (S ) and so 

To prove part 2), suppose that F(S) = F(SP") for some k ?: 1. Using part 
1), we have 

k ..k k-1 k-1 
F(S) = F(SP) = F((F(S)]~') < F([F(S)]P ) = F(SP ) 

from which we conclude that F(S) = F(SP) for all r ~ k. In particular 
F(S) = F(SP) and so again using part 1 ), we obtain 
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and so F(S) = F(SPr) for all r ~ k as well. For part 3), we observe that 

Fpk < FP < F 
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and so F = Fpk holds for some k ~ 1 if and only ifF= FP, which holds 
if and only if F = Fpk for all k ~ 1. I 

4.2 Separable Degree 
If F < E is algebraic and if u:F-+L is an embedding of F into an 

algebraically closed field L, we let S17(E,F) denote the set of all 
extensions of u to an embedding of E into L. Remarkably, the 
cardinality of g17(E,F) does not depend on u or L. 

Theorem 4.2.1 If F < E is algebraic and u:F-+L is an embedding of F 
into an algebraically closed field L then the cardinality of S17(E,F) 
depends only on the extension F < E and not on u or L. In other words, 
if r:F-+L' is an embedding with L' algebraically closed, then 
I gi7(E,F) I = I ST(E,F) I· 
Proof. Observe first that if 7i is an extension of u to E then 7JE is 
algebraic over uF and therefore contained in the algebraic closure of uF 
in L. Hence we may as well assume that L is an algebraic closure of u F. 
Similarly, we may assume that L' is an algebraic closure of rF. 

Referring to Figure 4.2.1, the map ru-1:u(F)-+r(F) is an 
isomorphism that can be extended, by Theorem 2.8.4, to an embedding 
A:L-+L'. Since uF < L is algebraic, so is rF < AL, and since AL is 
algebraically closed, we have AL = L', implying that A:L-+L' is an 
isomorphism. 

If 7i E S17(E,F) then the map A7i:E-+L' is an embedding of E into L' 
extending ron F. This defines a map from S17(E,F) to gT(E,F) given by 
7i~---+A7i. It is clear that this map has an inverse given by TI--+A-1r and so 
both maps are bijections. I 

/ A =T 0' ·I 
L L 

A.(i 
E 

0' 
< > 

~algebraic 
T (F)< F >u (F) 

1' 0' 

Figure 4.2.1 
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In view of Theorem 4.2.1, we may make the following definition. 

Definition Let F < E be an algebraic extension and let u:F-+L be an 
embedding of F into an algebraically closed field L. The cardinality of 
the set !::u(E,F) is called the separable degree of E over F and is denoted 
by [E:F] 8 • D 

It will be convenient for our present discussion to adopt the following 
definitions, at least temporarily. 

Definition An algebraic extension F < E is degreewise separable if 
[E:F]5 = [E:F]. An algebraic extension F < E is separably generated if 
E = F(S) where each a E Sis separable over F. D 

We next prove that the separable degree is multiplicative. 

Theorem 4.2.2 If F < K < E then [E:F]8 = [E:K]8 [K:F]8 • 

Proof. The s_et l::j(_!(,F) of extensions of the inclusion map j:F-+E to_ an 
embedding j:K-+E has cardinality [K:F]8 • Each such extension j E 
!::j(K,F) can be further extended to an embedding j':E-+E. Clearly, the 
resulting extensions are all distinct and so 

On the other hand, if u E !::j(E,F) ~d u0:K-+E is the restriction of u to 
K then u0 is the extension of j:F-+E to K, hence an element of l::j(K,F). 
Since u is the extension of u0 to E, u is obtained by a double extension 
of j:F-+E and so equality holds in the inequality above. I 

4.3 The Simple Case 
Now let us consider simple extensions in the present context. Let 

F < F(a) be algebraic. If p(x) = min(a,F) and if j:F-+F is the inclusion 
map then Theorem 2.8.3 implies that [F(a):F]8 = I Sj(F(a),F) I is equal 
to the number of distinct roots of p(x). If p(x) is separable, it has 
deg p(x) = [F( a ):F] distinct roots and so 

[F(a):FJs = [F(a):F] 

If p(x) = q(xP) has radical exponent d ~ 1, then each root of p(x) has 
multiplicity p and so 

pd[F(a):F] 8 = deg p(x) = [F(a):F] 
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We thus have the following theorem. 

Theorem 4.3.1 Let F < F(a) be algebraic with expchar(F) = p. If 
min(a,F) has radical exponent d, then 

(4.3.1) 

In particular, [F(a):F)8 I [F(a):F). Moreover, the following are 
equivalent. 

1) a is separable over F. 
2) F < F(a) is degreewise separable; that is, [F(a):F)8 = [F(a):F). 
3) F < F(a) is separable. 

Proof. We have seen that (4.3.1) holds and since a is separable if and 
only if its radical exponent is 0, it follows that 1) and 2) are equivalent. 
Clearly 3) implies 1). To see that 2) implies 3), let f3 E F(a) and 
consider the tower F < F(/3) < F(a). Then 

[F(a):F(f3)) 8 [F(f3):F)8 = [F(a):F)8 = [F(a):F) = [F(a):F(/3)][F(f3):F) 

Since F(a) = F(f3)(a), the extension F(/3) < F(a) is simple and so each 
factor on the far left divides the corresponding factor on the far right, 
implying that the corresponding factors are equal. In particular, 
[F(f3):F)8 = [F(f3):F), showing (by the equivalence of parts 1 and 2) that 
f3 is separable over F. Hence F < F( a) is separable. I 

Note that, according to the previous theorem, if a is separable so is 
any polynomial in a. The following is another characterization of 
separable elements. 

Theorem 4.3.2 Let a be algebraic over F, with expchar(F) = p. Then a 
is separable over F if and only if 

k 
F(a) = F(aP) 

for some k ~ 1, and hence for all k ~ 1. 

Proof. Lemma 4.1.2 allows us to confine our attention to k = 1. Suppose 
a is separable over F. First suppose that a is separable over F. The 
polynomial (x - a )P = xP - aP E F( aP)[x] has a as a root and so there 
exists an r $ p such that 

min(a,F(aP)) = (x- aY 
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Since p(x) = min(a,F) also has coefficients in F(aP), we have 
(x- ay I p(x). But p(x) is separable, and so r = 1. Thus r(x) = x- a, 
implying that a E F(aP) and consequently F(a) = F(aP). 

Conversely, suppose that F(a) = F(aP) and let p(x) = min(a,F). If a 
is not separable over F then p(x) = q(xP). Since q(aP) = p(a) = 0, we 
get 

(F(aP):F) ~ deg q(x) = b[F(a):F) 

which is contrary to F(a) = F(aP). Thus a is separable over F. I 

4.4 The Finite Case 
Now we consider an arbitrary finite extension F <E. By Theorem 

2.5.2, we may let E = F( a 1,. .• , an) where ai is algebraic over F. Taking 
separable degrees in the tower 

(4.4.1) 

gives 
n 

[F(a1, ... ,an):F)8 = IT [F(a1, ... ,ai):F(a1,. .. ,ai_1))8 

i=l 

Since each step on the right is simple, Theorem 4.3.1 implies that each 
separable degree on the right divides the corresponding vector space 
degree, and so 

Theorem 4.4.1 Let F < E be finite. Then [E:F)8 I (E:F). Also, the 
following are equivalent. 

1) E is separably generated. 
2) F < E is degreewise separable; that is, (E:F)8 = (E:F). 
3) F < E is separable. 

Proof. [1=>2) Suppose that E = F(S) where the elements of S are 
separable over F. The finiteness of F < E implies that E = F( a 1 ••• an), 
for some n > 0, where ai E S. Since ai is separable over F(a1, ... , ai_1), 

each step in the tower ( 4.4_.1) is generated by a single separable element. 
Hence, each step is degreewise separable and the multiplicativity of 
degrees implies that F < E is degreewise separable. (2=>3) Let f3 E E and 
consider the tower F < F(/3) < E. Since F < E is degreewise separable, 
so is F < F(/3) and so f3 is separable over F. Hence, F < E is separable. 
[3=>1) This is clear from the definition. I 
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Thus, for finite extensions, the notions of separability, degreewise 
separability and separably generated are equivalent. Note that if 
F < K < E is finite then F < E is separable if and only if K < E and 
F < K are separable. We will show later that the class of separable 
extensions (finite or otherwise) is distinguished. Let us have another 
characterization of finite separable extensions. 

Theorem 4.4.2 If F < E is separable then E = F(E~) for all k ~ 1. By 
way of converse, ifF< E is finite and E = F(Epk) for some k ~ 1, then 
F < E is separable. 

Proof. Suppose F < E is separable. Lemma 4.1.2 allows to to confine 
our attention to k = 1. For any a E E, we have F(a) = F(aP) ~ F(EP) 
and so E ~ F(EP). The reverse inclusion is obvious and so E = F(EP). 

Now suppose that E = F(EP). Since F < E is finite, we have E = 
F(SP) for some finite subset S ~ E. Since E = F(SP) < F(S) < E, we 
have E = F(S) = F(SP) and so Lemma 4.1.2 implies that E = F(S~) for 
all k ~ 1. If d is the maximum of the radical exponents of the elements 
of S then every element of stP is separable over F and so E = F(StP) is 
separably generated over F and therefore separable over F. I 

Corollary 4.4.3 Let F < E be a separable extension and let S ~ E. 

1) If S spans E over F, then S~ spans E over F, for any k ~ 1. 
2) If F < E is finite and S is linearly independent over F, then S~ is 

linearly independent over F, for any k ~ 1. 
3) If F < E is finite and S is a basis for E over F, then S~ is a basis 

forE over F, for any k ~ 1. 

Proof. If S spans E over F, then SP spans EP over FP, and hence also 
over F. Hence SP spans F(EP) = E over F. Repeating this argument 
proves part 1). For part 2), since F < F(S) is separable and S spans 
F(S) over F, we conclude from part 1) that SPk spans F(S) over F. Since 

IS~I =lSI <oo 

it follows that S~ is a basis for F(S) over F and is therefore linearly 
independent over F. Part 3) follows from parts 1) and 2). I 

We now prove that all finite separable extensions are actually simple 
extensions. 

Theorem 4.4.4 If F < E is a finite separable extension then there exists 
arE E such that E = F(-y). IfF is an infinite field, there exist infinitely 
many such primitive elements -y. 

Proof. If F is a finite field, then so is E, and we appeal to the fact that 
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the multiplicative group E* of nonzero elements of E is cyclic. If E* = 
('y} then E = F(r) and E is simple over F. Let us now assume that F is 
an infinite field. 

Since F < E is finitely generated, it is sufficient to consider the case 
E = F(a,,B), and then appeal to an inductive argument. Let CT1, ... ,CTn 
be the distinct em beddings of E into F over F. Consider the polynomial 

p(x) = IT [(CTi- CTj)( a)+ { CTi- CTj)(,B)x] E F[x] 
i #j 

Since none of the linear factors on the right is 0, we conclude that 
p(x) =/= 0. Since F is infinite, there must infinitely many elements s E F 
such that p(s):;lO. Hence (CTi-CTj)(a)+s(CTi-CTj){,B):;lO for all i:;lj, 
that is, the n elements ri = O"ja + SCTi,B = CTi( a + s,B) are distinct. But 
each ri is a root of min( a+ s,B,F) and so 

[E:F] ;:::: [F(a + s,B):F];:::: n = [E:F]5 = [E:F] 

from which it follows that E = F( a+ s,B). I 

Corollary 4.4.5 If F has characteristic 0 or if F is a finite field then any 
finite extension of F is simple. 0 

We can improve upon Theorem 4.4.4 without too much additional 
work. This result will prove useful to us later. 

Theorem 4.4.6 If E = F(a1, ... ,an,,B) where ai is separable over F and ,8 
is algebraic over F then F < E is a simple extension. 

Proof. If F is finite, then E is finite, and therefore F < E is simple. Let 
us assume that F is infinite. Theorem 4.4.4 implies that E = F( a,,B) for 
some a separable over F. We may proceed as in the proof of that 
theorem to obtain an element ,8 +sa for which the elements CTi(,B +sa) 
are distinct, where CT1, ... , CT n are the distinct em beddings of E into F 
over F and CT1 =£.Note that the set {CT1a, ... ,CTna} contains a complete 
set of roots of p0 ,(x) = min(a,F) and {CT1,8, ... ,CTn,B} contains a complete 
set of roots of p13(x) = min(,B,F). 

Let q(x) = p13(,B +sa- sx). Since CT1 a = a, we have 

q(CT1a) = p13(,B) = 0 

and since CT1,8 + sCT1 a- sCTia :;l CTi,B for i :;ll, we have 

for i fl. Hence, the polynomials Pa(x) and q(x), both of which have 
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coefficients in F(/1 + ua), have precisely one root in common, namely 
u1a =a. Thus, since p0 (x) has no multiple roots, the greatest common 
divisor of p0 (x) and q(x) is x- a, which must have its coefficients in 
F(/1 +sa) as well. In other words a E F(/1 +sa), from which it follows 
that {1 E F(/1 +sa), whence F(a,/1) = F(/1 +sa). I 

4.5 The Algebraic Case 
For arbitrary algebraic extensions F < E, we have the following. 

Theorem 4.5.1 Let expchar(F) = p. An algebraic extension F < E is 
separable if and only if it is separably generated. If F < E is separable 
then E = F(E~) for all k ~ 1. 

Proof. If F < E is separable then E is separably generated (by itself) 
over F. For the converse, assume that E = F(S) where each a E S is 
separable over F and let {1 E E. Then {1 E F(S0) for some finite subset 
S0 ~ S. Since F < F(S0) is finitely generated and algebraic, it is finite. 
Thus, Theorem 4.4.1 implies that F < F(S0) is separable. Hence {1 is 
separable over F and so F < E is separable. The last statement was 
proved in Theorem 4.4.2. I 

We. may now establish that the class of separable extensions is 
distinguished. 

Theorem 4.5.2 The class of separable extensions is distinguished. It is 
also closed under the taking of arbitrary composites. If F < E is 
separable and Enc is the normal closure of E over F then F < Enc is 
separable. 

Proof. Let F < K < E. If all extensions are finite, we have already 
shown (by a degree argument) that F < E is separable if and only if 
F < K and K < E are separable. In general, we leave it as an exercise to 
show that if F < E is separable then F < K and K < E are separable. 
Suppose that F < K and K < E are separable and let a E E. Let C ~ K 
be the set of coefficients of p(x) = min(a,K). Then p(x) = min(a,F(C)) 
and so a is separable over F(C). It follows that each step in the tower 
F < F(C) <: F(C,a) is finite and separable, implying that a is separable 
over F. This shows that F < E is separable and completes verification of 
property Dl) in the definition of distinguished class. 

For property D2), let F < E be separable and let F < K. Since every 
elemerit of E is separable over F it i.s also separable over the larger field 
K. Hence EK = K(E) is separably generated and is therefore separable. 

The fact that separable extensions are closed under the taking of 
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arbitrary composites follows from the finitary property of arbitrary 
composites. That is, each element of an arbitrary composite involves 
elements from only a finite number of the fields in the composite and so 
is an element of a finite composite, which is separable. 

Finally, the normal closure Enc. is the composite V (uE) for 0' E 
Homp(E,E). Since F < E is separable and u:E-+uE is an isomorphism 
over F, the elements a E E and ua E uE have the same minimal. 
polynomial and so the separability of a over F implies that of ua, 
whence F < uE is separable. Since separability is preserved under 
composites, F < Enc is separable. I 

4.6 Pure Inseparability 

The antithesis of a separable element is a purely inseparable element. 

Definition An element a algebraic over F is purely inseparable over F if 
its minimal polynomial min(a,F) has the form (x- a)n for some n ~ 1. 
An algebraic extension F < E is purely inseparable if every element of E 
is purely inseparable over F. 0 

Note that any a E F is purely inseparable over F. In fact, an element 
a is both separable and purely inseparable over F if and only if a E F. 
It follows that, for extensions of fields of characteristic 0 or finite fields, 
there are no "interesting" purely inseparable elements. 

Example 4.6.1 Let char( F) = 2. If t is transcendental over F, then t is 
purely inseparable over F(t2), since its minimal polynomial over F(t2) is 
x2 -t2 =(x-t)2.o 

Example 4.6.2 Here we present an example of an element that is neither 
separable nor purely inseparable over a field F. Let char(F) = p and let 
a E F be nonzero. Let t be transcendental over F and let 

p2 
S - t 
-tP+a 

According to Theorem 3.3.6, F(s) < F(t) is algebraic and has degree 
equal to p2• Since t is a root of the monic polynomial 

2 
p(x) =xP -sxP-sa 

2 . 
of degree xP over F(s), this must be the minimal polynomial for t over 
F(s). Since p(x) = q(xP), we deduce that t is not separable over F(s). 
On the other hand, if t were purely inseparable over F(s), there would 
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exist (3 E F(s) for which 

2 2 2 2 
xP - sxP- sa = (x- (J)P = xP - (JP 

which would imply that s = 0, which is not the case. Hence, t is neither 
separable nor purely inseparable over F(s). D 

Definition Let F < E be finite. Since (E:F]8 I (E:F], we may write 

(E:F] = (E:F]5 (E:Fh 

where (E:Fh is the inseparable degree or degree of inseparability of E 
over F. D 

Note that, while the separable degree is defined for infinite 
extensions, the inseparable degree is defined only for finite extensions. 

Definition If F < E is algebraic and [E:F]5 = 1, we say that F < E is 
degreewise purely inseparable. When F < E is finite, this is equivalent 
to [E:Fh = (E:F]. D 

Theorem 4.6.1 Let F < E be a finite extension with expchar(F) = p. 

1) IfF< K < E then (E:Fh = (E:Kh(K:Fh. 
2) F < E is separable if and only if (E:F]i = 1. 
3) If a E E then (F(a):F]i = pd where dis the radical exponent of a. 
4) (E:F]i is a power of p. 

Proof. The first three statements are clear. The last statement follows 
from the fact that F < E is finitely generated and the inseparable degree 
is multiplicative. We leave the details to the reader. I 

We next characterize purely inseparable elements. 

Theorem 4.6.2 Let a be algebraic over F, with radical exponent d and 
let p(x) = min( a,F). The following are equivalent. 

1) a is purely inseparable over F. 

2) The polynomial (x- a)n has coefficients in F, for some n ~ 1. 

3) p(x) = (x- al = xtf- atf. 

4) a is a root of xPt- (3, for some (3 E F and k ~ 0. 

5) aP' E F for some k ~ 0. 

6) d is the smallest nonnegative integer for which atf E F. 
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Proof. We establish only those implications that are not immediate. 
Recall that p(x) = q(xPd) where q(x) is separable over F. 

[2=>3) If 2) holds then q(xp<l) I (x- a)n and so q(xp<l) = (x- aY for 
some 1 ~ r ~ n. It follows that r = mpd, where m = deg q(x). Hence, 

d d d ..d 
q(xP) = (x- a)mp = (xP - a"r 

Thus q(x) = (x- aPd)m and the separability of q(x) implies that m = 1, 
whence 

r = pd and p(x) = (x- a)Pd 

[5=>6) If 5) holds then 
k k k 

r(x) = xP - aP = (x- a)P 

is a polynomial over F with r(a) = 0. Hence q(xp<l) I (x- ai, showing 
that k ~ d. Since r(x) E F[x], the fact that 2) implies 3) shows that 

p(x) = xp<l- ap<l 

and so ap<l E F. Hence dis the smallest integer for which aPd E F. 
[6=> 1) If 6) holds, then 

d d ..d 
r(x) = (x- a)P = xP -a"-

is a polynomial over F with a as a root, and so p(x) I r(x). Hence, p(x) 
has the form (x- a)n for some n ~ 1 and a is purely inseparable over 
F. I 

Theorem 4.6.3 Let F < E be algebraic. The following are equivalent. 

1) E is purely inseparably generated; that is, generated by purely 
inseparable elements. 

2) F < E is degreewise purely inseparable; that is, [E:F]5 = 1. 
3) F < E is a purely inseparable extension. 

Proof. [1=>2) Suppose first that E = F(I) where all elements of I are 
purely inseparable over F. Any embedding u:E--.L over F is uniquely 
determined by its values on the elements of I. But if a E I then ua is a 
root of the minimal polynomial min(a,F) and so ua =a. Hence u must 
be the identity and [E:F)8 = 1. 

[2=>3) Let a E E. Then [F(a):F)8 = 1 and since F < F(a) is a finite 
extension, Theorem 4.3.1 implies that 

pd = [F(a):F) = deg min(a,F) 
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d 
Since min(a,F) = q(xP ), it follows that q(x) is linear and so 

min(a,F) = xrP- {3 

for some {3 E F, which implies by Theorem 4.6.2 that a is purely 
inseparable over F. [3=>1] This is clear. I 

We can now show that the class of purely inseparable extensions is 
distinguished. 

Theorem 4.6.4 The class of purely inseparable extensions is 
distinguished. It is also closed under the taking of arbitrary composites. 

Proof. Let F < K < E. Since pure inseparability is equivalent to 
degreewise pure inseparability and [E:F]8 = 1 if and only if [E:K)8 = 1 
and [K:F)8 = 1, it is clear that D1) holds. For D2), suppose that F < E 
is purely inseparable and F < K. Since every element of E is purely 
inseparable over F, it is also purely inseparable over the larger field K. 
Hence EK = K(E) is purely inseparably generated and therefore purely 
inseparable. We leave proof of the last statement to the reader. I 

4. 7 Separable and Purely Inseparable Closures 
Let F <E. According to Theorem 4.4.1, if a, {3 E E are separable 

over F then F(a,/3) is separable over F. It follows that a± /3, a/3, and 
a-1 (for a f. 0) are separable over F. Hence, the set of all elements of E 
that are separable over F is a subfield of E. A similar statement holds 
for purely inseparable elements. 

Definition Let F < E. The field 

Fsc = {a E E I a separable over F} 

is called the separable closure of F in E. The field 

Fie = {a E E I a is purely inseparably over F} 

is called the purely inseparable closure of F in E. 0 

The separable closure allows us to decompose an arbitrary algebraic 
extension into separable and purely inseparable parts. 
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Theorem 4.7.1 Let F < E be algebraic. 

1) In the tower F < psc < E the first step is separable and the second 
step is purely inseparable. 

2) E(E:F)j ~ psc. 

3) Any embedding u:E--+E is uniquely determined by its restriction 
to psc. 

Proof. For part 1), if a E E has radical exponent d, then min(a,F) = 
q(xPd) where q(x) = min(aPd,F) is separable and so ap<l E psc. Thus, 
Theorem 4.6.2 implies that a is purely inseparable over psc. This shows 
that psc < E is pusrely inseparable. For part 2), since pd = 
[F(a):Fh I [E:Fh we see that 

(E:F]. psc a 1 E 

for all a E E and so E(E:Fh ~ psc. We leave proof of the last statement 
to the reader. I 

Corollary 4.7.2 Let F < E be finite. Then [E:F]5 = (F5c:F] and [E:Fh = 
[E:F5c]. D 

Part 1 of Theorem 4. 7.1 shows that any algebraic extension can be 
decomposed into a separable extension followed by a purely inseparable 
extension. In general, the reverse is not possible. Although F < pic is 
purely inseparable, the elements of E - F1c need not be separable over 
F; they are simply not purely inseparable over F. However, it is not 
hard to see when pic < E is separable. 

Theorem 4.7.3 Let F < E be algebraic. Then pic< E is separable if and 
only if E = pscpic. 

Proof. If pic < E is separable then so is pscpic < E. But since psc < E is 
purely inseparable, so is pscpic <E. Thus, we have E = pscpic. 
Conversely, if E = pscpic then pic< pscpic, being a lifting of a 
separable extension F < psc, is also separable. I 

We can do better than the previous theorem when F <Eisa normal 
extension, which includes the case E =F. Let G = A utF(E) be the set of 
all automorphisms of E over F. Since F < E is normal, G is also the set 
of all embeddings of E into F over F. We define the fixed field of G in 
E by 

F(G) ={a E E I ua =a for all u E G} 
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Theorem 4.7.4 Let F < E be a normal extension. Let. G = A utp(E) and 
let F(G) be the fixed field of G in E. Then F(G) = F1c. Furthermore, in 
the tower F < pic < E, the first step is purely inseparable and the 
second step is separable. 

Proof. Let o: E F(G). If {J E F is a root of p(x) = min(o:,F) then there 
exists an embedding u:E-+F over F for which uo: = {3. But uo: = o: and 
so {J = o:. Hence min(o:,F) has only one root and so o: Epic. On the 
other hand, if o: E pic then any u E G must map o: to itself, since it 
must map o: to a root of min(o:,F). Hence o: E F(G). This proves that 
F(G) =pic. 

Now let o: E E and p(x) = min(o:,F(G)). Let q(x) = f1 (x- ri) where 
R = { r1, ... , rn} is the set of distinct roots of p(x) in E. Since any u E G 
is a permutation of R, we deduce that qtT(x) = q(x) and so the 
coefficients of q(x) lie in F(G). Hence q(x) = p(x) and o: is separable 
over F(G). I 

Corollary 4.7.5 If F < E is normal then pic< E is separable and E = 
pscpic. D 

Let us conclude this section with a characterization of simple 
algebraic extensions. If E = F( o:) is a simple algebraic extension of F 
and if d is the radical exponent of o:, we have seen that pd = [E:F); is 
the smallest nonnegative power of p such that o:p<f is separable over F, or 
equivalently, such that Ep<f ~ psc. It turns out that this property 
actually characterizes simple algebraic extensions. Before proving this, 
we give an example where this property fails to hold. 

Example 4.7.1 Let u and v be transcendental over K with char(K) = 
p f. 0. Let E = K(u,v) and F = K(uP,vP). It is easily seen that F < E is 
purely inseparable with [E:F]; = p2• However, o: E E implies o:P E F and 
soEP~F.O 

We next require the following useful lemma. 

Lemma 4.7.6 If char(F) = p f. 0 and o: E F, o: rt FP then f(x) = xPk- o: is 
irreducible for every k ~ 1. 

Proof. Let {J E F be a root of f(x) = xPt- o:. Then 

k 
f(x) = (x- (J)P 

If p(x) = min({J,F) then p(x) I f(x) and so p(x) = (x- {Jyf for some 
d ::::; k. But if d < k then 
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and so 
k k-1 

a = fJP = (fJP )P E pP 

contrary to assumption. Hence d = k and f(x) is irreducible. 1 

Theorem 4.7.7 Let F < E be a finite extension with [E:F]i = pd. Then 
F < E is simple if and only if d is the smallest nonnegative integer for 
which Ep<l ~ psc. 

Proof. We have seen that if F < E is simple then d is the smallest such 
nonnegative integer. For the converse, note first that ifF is a finite field 
then so is E, implying that E* is cyclic and so F < E is simple. Let us 
assume that F is an infinite field and look at the second step in the 
tower F < psc < E. This step is purely inseparable. Since psc < E is 
finite, we have 

If for some k < d, we have {Jfk E psc for all i, then EPk ~ psc, contrary to 
hypothesis. Hence one of the {Ji's, say {3, satisfies 

It follows that 

Since F8c({3) < E, we have [F8c(f3):F8ch = [E:Fsch and since the 
extensions involved are purely inseparable, we get [F8c(f3):F5c] = [E:F8c]. 
Hence, E = psc({J). 

Our tower now has the form F < psc < F8c(f3) where {3 is purely 
inseparable over psc. In addition, F < psc is finite and separable and 
therefore simple. Thus there exists a E psc such that psc = F(a) and the 
tower takes the form F < F(a) < F(a,{J) where a is separable over F 
and {3 is purely inseparable over F( a). By Theorem 4.4.6, the extension 
F < F(a,{J) is simple. I 

Note that Theorem 4.7.7 implies that the extension F < E of 
Example 4.7.1 is not simple. 

4.8 Perfect Fields 

Definition A field F is perfect if every irreducible polynomial over F is 
separable. 0 
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It is clear from the definitions that if F is perfect then any algebraic 
extension of F is separable. Conversely, suppose that every algebraic 
extension of F is separable. If p(x) E F[x) is irreducible and a is a root 
of p(x) in some extension of F then F < F(a) is algebraic and so a is 
separable over F, that is, p(x) is separable. Thus, F is perfect. 

Theorem 4.8.1 A field F is perfect if and only if every algebraic 
extension of F is separable over F. D 

Theorem 4.8.2 Every field of characteristic 0 and every finite field is 
perfect. D 

Note that if expchar(F) = p then FP ={aPIa E F} is a subfield of F. 
The map tf>:F---tF defined by upc:t = aP is called a Frobenius map. It is a 
monomorphism since aP ± (JP =(a± (J)P. 

Theorem 4.8.3 Let F be a field with expchar(F) = p. The following are 
equivalent. 

1) F is perfect. 
2) F = FTf for some (and hence all) k ~ 1. 
3) The Frobenius map upk is an automorphism, for some (and hence 

all) k ~ 1. 

Proof. [1=>2) Suppose F is perfect. Let a E F and consider the 
polynomial p(x) = xP- a E F[x). If (3 is a root of p(x) in a splitting 
field then (JP = a and so 

p(x) = xP _ (JP = (x _ f3)P 

Hence (3 is purely inseparable over F. But (3 is also separable over F and 
therefore (3 E F. Hence, a E FP for all a E F, that is, F ~ FP. Since the 
reverse inclusion is manifest, we have F = FP. Lemma 4.1.2 implies the 
desired result. 

[2::::}1] We may assume that p > 1. If 2) holds then Lemma 4.1.2 
implies that FP = F. It follows that if p(x) E F[x] is irreducible but not 
separable, then 

p(x) = L ai(xP)i = L br(xi)P = ( L bixi)P 

contradicting the fact that p(x) is irreducible. Hence, p(x) is separable 
and so F is perfect. Since the Frobenius map is a monomorphism, 
statements 2) and 3) are easily seen to be equivalent. I 

While it is true that any algebraic extension of a perfect field is 
perfect, not all subfields of a perfect field need be perfect. 
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Theorem 4.8.4 
1) If F < E is algebraic and F is perfect then E is perfect. 
2) If F < E is finite and E is perfect then F is perfect. 

Proof. Part 1) follows from Theorem 4.8.1 and the fact that every 
algebraic extension of E is an algebraic extension of F. For part 2), let 
expchar(F) = p and suppose first that F < E is simple. Thus, E = F(a) 
is perfect and a is algebraic over F, with minimal polynomial p(x) = 
Eaixi. Then 

Hence, the degree of aP over FP is no greater than the degree of a over 
F, in symbols, (FP(aP):FP] ~ (F(a):F]. But FP(aP) = (F(a)]P = F(a) 
since F(a) is perfect and so (F(a):FP] ~ (F(a):F]. Since FP < F, equality 
holds and FP = F, whence F is perfect. Since F < E is finitely generated 
by algebraic elements, the result follows by repetition of the previous 
argument. I 

Note that we cannot drop the finiteness condition in part 2) of the 
previous theorem since, for example, F < F is algebraic and F is perfect 
even if F is not. 

Perfect Closures 
Let char( F) = p f. 0 and let F be an algebraic closure of F. For each 

k ~ 1, the set 

F1fpk ={a E F I aP' E F} 

is a subfield of F. Moreover, we have 

F ~ yi/p ~ yi/pz ~ ... 

The union 
oo I k 

pel( F) = u yl P 

k=l 

which is also a subfield ofF, is known as the perfect closure ofF in F, 
which name is justified by the following theorem. 

Theorem 4.8.5 Let F be a field of characteristic p f. 0. Then pcl(F) is 
the smallest perfect subfield ofF containing F. 

Proof. To see that pcl(F) is perfect, observe that if a E pcl(F) then 
k . -

aP E F for some k ~ 1. Hence, letting {3 be a root of xP - a in F, we 
have a= f3P, where 



4 Separability 97 

k+l k 
[JP = aP E F 

and so {3 E pcl(F). This shows that pcl(F) ~ [pcl(F)]P. Since the reverse 
inclusion is obvious, it follows that pcl(F) is perfect. 

In addition, if F < K < pcl(F) and a E pcl(F) - K, the fact that aPk E 
F for some k ~ 1 implies that a is purely inseparable over F and hence 
also over K. But since a is not in K, it cannot be separable over K as 
well. Thus K is not perfect. I 

Exercises 
1. Let F < K < E. If F < E is separable, show that F < K and K < E 

are separable. 
2. Prove that if F < E is finite and separable then there are only 

finitely many intermediate fields between E and F. 
3. Show that all algebraically closed fields are perfect. If t is 

transcendental over F then F(t) is not perfect. 
4. Let a be algebraic over F, where expchar(F) = p and let d be the 

radical exponent of a. Show that apk is separable over F if and 
only if k ~d. 

5. Let p and q be distinct primes. Then Q < Q(JP,.Jij) is finite and 
separable and therefore simple. Describe an infinite class of 
primitive elements for this extension. Find the minimal 
polynomial for each primitive element. 

6. Let E = F( a 1, ••. , an) be separable over an infinite field F. Prove 
that there are an infinite n urn her of n-tuples ( a1,. .. , 8n) E Fn for 
which E = F(a1 a 1 +···+an an)· 

7. Show that the class of purely inseparable extensions is closed 
under the taking of arbitrary composites. 

8. Let F < E. Define the purely inseparable closure of F in E and 
show that it is a field. 

9. IfF< E is algebraic prove that any embedding u:E-+E is uniquely 
determined by its restriction to F8c(E). 

10. Prove that if F < E is finite and expchar(F) = p then [E:Fh is a 
power of p. 

11. Show that lifting an extension by a purely inseparable extension 
does not affect the separable degree. That is, show that if F < E is 
algebraic and F < P is purely inseparable then [EP:P]8 = [E:F]5 • 

12. Let F < S be finite separable and F < P be finite purely 
inseparable. Prove that P < SP is separable and [SP:P] = [S:F]. In 
fact, if B is a basis for S over F, prove that it is also a basis for SP 
over P. 

13. Show that if F < E is finite and F < S is finite separable then 
[ES:S]i = [E:Fh. 
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14. Let F < E be a finite extension and let a E E be algebraic over F. 
Let H be the set of embeddings of E into E over F. The elements 
of H permute the roots of p(x) = min(a,F). Let {3 be a root of 
p(x). Show that I {u E HI ua = /3} I = [E:F(a)]8 • Hence, the 
multiset { ua I u E H} contains [E:F( a )]8 copies of each root of 
p(x). 

15. Let F < E be a finite extension that is not separable. Show that 
for each n ~ 1 there exists a subfield En of E for which En < E is 
purely inseparable and [E:Enh = pn. 

16. Prove that ifF :f. pcl(F) then the extension F < pc/(F) is infinite. 



Part 2 

Galois Theory 



Chapter 5 

Galois Theory I 

5.1 Galois Connections 

The traditional Galois correspondence between intermediate fields 
and subgroups of the Galois group is one of the main themes of this 
book. We choose to approach this theme through a more general 
concept, however. 

Definition Let P and Q be partially ordered sets. A Galois connection 
on the pair (P,Q) is a pair (IT,O) of maps IT:P--+Q and O:Q--+P, where 
we write IT(p) = p* and O(q) = q', with the following properties: 

1) (order reversing) For all p E P, q E Q, 

p ~ q => p* ~ q* and r ~ s => r' ~ s' 

2) For all pEP, q E Q, 

p~p*' and q~q'* 0 

Theorem 5.1.1 For any p E P and q E Q, we have 

1) p*'* = p*, 
2) q'*' = q'. 

Proof. Since p ~ p*', the order reversing property of* gives 

p*'* ~ p* ~ (p*)'* 

from which part 1) follows. Part 2) is similar. I 
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Corollary 5.1.2 The map p-+p*' is a closure operation on P, that is, if 
we denote p*' by cl(p), then for all pEP, q E Q, 

1) (Extensive) 
p ~ cl(p) 

2) (Idempotent) 
cl( cl(p)) = cl(p) 

3) (Isotone) 
p ~ q => cl(p) ~ cl(q) 

Similarly, the map q-+q'* is a closure operation on Q. 0 

Definition An element pEP is said to be closed if cl(p) = p, and 
similarly for Q. We denote the set of all closed elements in P by CI(P), 
and similarly for Q. 0 

Theorem 5.1.3 The image of any element under II or n is closed. In 
addition, the maps II and n are order-reversing bijective inverse maps 
between the sets CI(P) and CI(Q). 

Proof. Theorem 5.1.1 shows that the image of an element under II or n 
is closed. Moreover, if q E C/(Q) is closed, then q' E C/(P) and IIq' = 
q'* = cl(q) = q is in the image of II, and so II maps CI(P) onto CI(Q). If 
p, r E C/(P) and p* = r*, then p*' = r*', that is, p = r. Hence II is 
injective. A similar argument applies to n. Finally, since p*' = p for 
p E C/(P), it follows that no II= t on CI(P) and similarly, II on= t on 
CI(Q). I 

Theorem 5.1.4 Let II:P-+Q and O:Q-+P be a Galois connection, where 
P and Q are lattices. 

1) If PiE CI(P) and 1\ Pi exists in P, then 1\ PiE Cl(P). If P is a 
complete lattice then so is CI(P), with meet given by meet in P. 
Similar statements hold for Q. 

2) De Morgan's Laws hold in C/(P) and C/(Q). That is, for p, 
q E C/(P) and r, s E C/(Q), we have 

(p 1\ q)* = p* v q*, (p v q)* = p* 1\ q* 

(rl\s)'=r'Vs', (rVs)'=r'l\s' 

Proof. For part 1), suppose that PiE C/(P) and 1\ Pi exists as a meet in 
P. Since 1\ Pi~ Pj for all j, we have cl( 1\ Pi) ~ c/(pj) = Pj1 whence 
cl( 1\ Pi) ~ 1\ Pj· Since the reverse inequality holds as well, we have 
equality, whence 1\ PiE C/(P). It follows from Theorem 0.1.1 that if P 
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is a complete lattice, so is Cl(P), under meet in P. 
For part 2), observe first that p A q ~ p and p A q ~ q imply that 

(p A q)* ~ p* and (p A q)* ~ q*, whence (p A q)* ~ p* V q*. If r ~ p* and 
r ~ q* for r E C/(P) then r' ~ p and r' ~ q, whence r' ~ p A q. Thus, 
r ~ (p A q)*. It follows by definition of join that (p A q)* = p* V q*. The 
other parts of De Morgan's Laws are proved similarly. I 

Let z+ denote the set of positive integers. 

Definition We will say that a Galois connection (ll,O) on (P,Q) is 
indexed if the following hold. For each p, q E P with p ~ q, there exists 
a number (q:p) E z+ U {oo}, called the degree of q over p. Similarly, for 
each r, sEQ with r ~ s, there exists a number (s:r) E z+ U {oo}, called 
the degree of s over r. Moreover, the following properties hold. 

1) (Degree is multiplicative) If s1, s2, s3 E P or s1, s2, s3 E Q then 

2) (D and 0 are degree-nonincreasing) If p, q E P then 

p ~ q => (p*:q*) ~ (q:p) 

If r, s E Q then 
r ~ s => (r':s') ~ (s:r) 

3) If s, t E P or s, t E Q then 

(s:t) = 1 => s = t 
If (s:t) < oo, then s is said to be a finite extension of t. (We observe 
some obvious understandings about oo; for instance, n ~ oo for all n E 
z+ I 00 ~ oo, n . 00 = 00 for n E z+ and 00 ~ k ~ 00 implies k = oo.) D 

From now on, when writing (p:q), it is with the tacit assumption 
that p ~ q. While IT and n are degree-nonincreasing in general, these 
maps are degree preserving when restricted to Cl(P) and Cl(Q), as we 
now show. 

Theorem 5.1.5 Let (IT,O) be an in~exed Galois connection on (P,Q). 

1) If p, q E Cl(P) and p ~ q then (q:p) = (p*:q*). 
2) If p E Cl(P) and (q:p) < oo then q E C/(P). In particular, if 0 is 

closed and (1:0) is finite then all elements are closed. 

Similar statements hold for Q. 



104 5 Galois Theory I 

Proof. If p E C/(P) then p = p*' and so 

(q:p) 2:: (p*:q*) 2:: (q*':p*') = (q*':p) = (q*':q)(q:p) 

If q E Cl(P) then q*' = q, equality holds throughout and part 1) is 
proved. If (q:p) is finite then we may cancel to get (q*':q) =I, which 
implies that q = q*' is closed. This proves part 2). I 

Thus, an indexed Galois connection induces a degree-preserving, 
order-reversing bijection between Cl(P) and Cl(Q). 

5.2 The Galois Correspondence 

Now we describe one of the most important Galois connections. 

Definition The Galois group of an extension F < E, denoted by GF(E), 
is the group of all automorphisms of E over F. 0 

Note that when F < E is algebraic, Theorem 2.8.2 implies that 
GF(E) = HomF(E,E). 

Let F < E and let GJ be the complete lattice of all intermediate fields, 
that is, fields K such that F < K < E, ordered by set inclusion. Let g be 
the complete lattice of all subgroups of the Galois group GF(E), ordered 
by set inclusion. We define two maps IT:GJ-+g and O:g-+GJ by 

and 
O(H) = F(H) = { o: E E I uo: = o: for all u E H} 

where F(H) is the fixed field of H. 

Theorem 5.2.1 Let F < E. The pair of maps (IT,O) defined by 
II:K~-+GK(E) and O:H~-+F(H) is a Galois connection. We refer to it as 
the Galois correspondence of F < E. 

Proof. It is clear from the definitions that 

and 
K ~ J =? GJ(E) ~ GK(E) 

H ~ I ::} F(I) ~ F(H) 

Also, any element of K is fixed by every element of GK(E), that is, 
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Finally, any u E J fixes every element in F(J), that is, 

I 

Since GJ and ~ are complete lattices, Theorem 5.1.4 gives 

Corollary 5.2.2 The set Cl(GJ) of closed intermediate fields and the set 
Cl(g) of closed subgroups of GF(E) are complete lattices, where meet is 
intersection. In particular, the intersection of closed intermediate fields 
is closed and the intersection of closed subgroups is closed. (] 

We would like to show that the Galois correspondence of an 
algebraic extension F < E is indexed, where (K:L) = [K:L] is the degree 
of the extension F < E and (H:J) is the index of the subgroup J in the 
group H. It is not hard to see that these degrees satisfy the first and 
third properties in the definition of an indexed correspondence. The 
next theorem shows that the map II:K~-+GK(E) is degree-nonincreasing. 

Theorem 5.2.3 Let F < E be algebraic and let F < L < K < E. Then 

(5.2.1) 

1) If F < E is normal, then equality holds in the first inequality in 
(5.2.1) and the map tP=GdE)-HomdK,E) defined by tPU = u I K 
induces a bijection 

~(E) 
GK(E) +-+ H omdK,E) 

2) If F < E is both normal and separable, then equality holds 
throughout (5.2.1). 

Proof. If u, T E GdE), the following are equivalent 

uiK=riK 

r-1ua = a, for all a E K 

T-IO' E GK(E) 

u E r~(E) 

Thus, tPO' = tPT if and only if u and T lie in the same coset of GK(E). 
Hence tP induces a bijection from the set of cosets of GJ((E) in GdE) 



106 5 Galois Theory I 

onto Im(t/J). Since 

Im(t/J) ~ HomdK,E) ~ HomdK,E) 

we get 

(GdE):GK(E)) = I Im(t/J) I < I HomL(K,E) I 
< I HomdK,E) I = [K:L]5 

which proves the first part of the theorem. 
To prove part 1), suppose that F < E is normal. Then L < E is also 

normal. If u E HomdK,E) then u can be extended to 7f E HomdE,E) = 
GL(E). It follows that u maps K into E, whence u E HomdK,E) and so 
HomdK,E) = HomdK,E). Moreover, since any u E HomdK,E) can be 
extended to 7f E GL(E) and since u = t/J7i E Jm( t/;), it follows that 
Im( t/J) = H omdK,E) and so equality holds in both inequalities in the 
previous display. This proves part 1). Part 2) is clear. I 

To show that the map H~F(H) is degree-nonincreasing, we require a 
preliminary result. 

Theorem 5.2.4 Let F <E. Let H ~ GF{E). For a E E, define ii:H-+E by 
au= ua (thus, fi is evaluation at a). Then a 11 ... , an are linearly 
independent over F(H) if and only if 51, ... , fin are linearly independent 
over E. 

Proof. Suppose that the fi/s are independent over E, and let E aiai = 0 
where ai E F(H). Then for any u E H, 

0 = u( Eaiai) = Eai(uai) = Eai(aiu) 

Hence E aiai = 0, implying that ai = 0 for all i. 
For the converse, suppose that a 1, ... , an are independent over F(H) 

and let E xiai = 0 on H. If this equation has a nonzero solution 
x1, ... , ~ in E, consider a solution with the fewest number of nonzero 
entries and, by renumbering if necessary, assume the nonzero entries to 
be x1, ... ,x5 • Dividing by x5 if necessary, we may also assume that 
x5 = 1. Thus 

(5.2.2) 

Equation (5.2.2) is equivalent to 

(5.2.3) 
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for all u E H. In particular, for u equal to the identity map, we get 

which implies, owing to the independence of the ai's, that not all of the 
xi's can lie in F(H). Let us assume that x1 ft. F(H). 

Applying r E H to (5.2.3) gives 

for all u E H. But as u varies over the subgroup H so does ru and so 

for all u,r E H, or equivalently, 

(5.2.4) 

Since x1 ft. F(H), we may choose r E H such that r(x1) #; x1. Finally, 
subtracting (5.2.2) from (5.2.4) gives 

which is shorter than (5.2.2). This contradiction completes the proof. I 

Now we can show that the map H~--+F(H) is degree-nonincreasing. 

Theorem 5.2.5 Let F < E be algebraic and let H and J be subgroups of 
GF(E) with J ~ H ~ GF(E). Then 

[F(J):F(H)) $ (H:J) 

Proof. If (H:J) = oo there is nothing to prove, so let (H:J) = r < oo. 
Choose one ui from each coset of J in H, for i = 1, ... , r. Let 
a 1, ... , an E F(J) be linearly independent over F(H) and assume for the 
purposes of contradiction that n > r. The system 

has more unknowns than equations and so it has a nonzero solution 
x1, ... ,xn in E. Hence, there exist {31, ... ,fln E E, not all 0, such that 
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(5.2.5) 

for all i = 1, ... , r. 
Now, any T E H has the form T = uip where p E J. Since aj E F(J), 

we have paj = aj and so 

Q·T = a·(U·p) = (u·p)(a·) = U·Q· = Q•U• J J I I J IJ Jl 

Hence, it follows from (5.2.5) that 

as a map on H. This contradicts the previous theorem, which says that 
the ai's are independent over E. Hence n ~ r. I 

Thus, the Galois correspondence of an algebraic extension F < E is 
indexed. As a consequence, we have the following theorem. 

Theorem 5.2.6 Let F < E be algebraic and let (II,O) be the Galois 
correspondence of F < E. Then (II,O) is indexed. Hence 

1) II and 0 are degree-nonincreasing, order-reversing maps. 
2) II and 0 are degree-preserving, order-reversing bijections (inverses 

of each other) between the lattice C/(GJ) of closed intermediate 
fields of F < E and the lattice Cl(Q) of closed subgroups of the 
Galois group GF(E). More specifically, 
a) IfF< L < K < E with K, L closed then 

[K:L] = (~(E):GK(E)) 

b) If J ~ H ~ GF(E) with H, J closed then 

(H:J) = [F(J):F(H)] 

c) For K, L E C/(GJ) and H, J E Cl(Q), we have 

~ n dE) = GK(E) V GdE), GK v dE) = ~(E) n ~(E) 
F(H n J) = F(H) V F(J), F(H A J) = F(H) n F(J) 

In addition, any finite extension of a closed intermediate field or closed 
subgroup is closed. 0 

We should note that the joins in part 2c) of the previous theorem are 
joins in the corresponding lattices. Thus, for instance, GK(E) V ~(E) is 
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the smallest closed subgroup of ~(E) containing ~(E) and GdE), 
which need not be the smallest subgroup of GF(E) containing these 
groups. (In other words, Cl(GJ) need not be a sublattice of GJ and C/((1) 
need not be a sublattice of (1.) 

Corollary 5.2.7 If F < E is finite then I GF(E) I < oo. 0 

5.3 Who's Closed? 

We turn our attention to the question of which intermediate fields of 
an extension and which subgroups of the Galois group are closed. 

Definition A normal separable extension is called a Galois extension. 0 

The next theorem follows from the relevant properties of normal and 
separable extensions. 

Theorem 5.3.1 
1) Let F < K <E. IfF< E is Galois then K < E is Galois. 
2) The class of Galois extensions is closed under lifting: If F < E is 

Galois and F < K then K < EK is Galois. 
3) The class of Galois extensions is closed under arbitrary composites 

and intersections: If F < Ei are Galois and V Ei is defined then 
F < V Ei is Galois and F < n Ei is Galois. 0 

It is not hard to describe the closed intermediate fields of an 
algebraic extension F < E. 

Theorem 5.3.2 Let F < E be algebraic and consider the Galois 
correspondence on F < E. 

1) An intermediate field K is closed if and only if K < E is a Galois 
extension. 

2) If K is closed and K < L < E then L is also closed. 
3) The following are equivalent. 

a) F is closed. 
b) F < E is a Galois extension. 
c) All intermediate fields are closed. 

Proof. Accord~ng to Theorem 4. 7 .4, if K < E is normal then cl(K) = 
F( GK(E)) = K1c, the purely inseparable closure of K in E. Hence, if 
K < E is Galois then cl(K) = K. For the converse, suppose that K is 
closed. Let o: E E with p(x) = min(o:,K) of degree n. Since [K(o:):K] is 
finite, we know that K(o:) is closed and 
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n = [K(a):K] = (GK(E):GK(a)(E}) 

Let u 1, ... ,un be a complete set of coset representatives of GK(a)(E) in 
~(E). It is easy to see that r E ui GK(a)(E) if and only if ra = uia. 
Hence there are precisely n distinct images of a under the Galois group 
GK(E). But each of these images is a root of the minimal polynomial 
p(x) and so p(x) is separable with all of its roots in E. Hence K < E is 
both separable and normal. This proves statement 1) and shows that 
3a) and 3b} are equivalent. All of the statements in 3) are equivalent 
since F < E is Galois if and only if K < E is Galois for all intermediate 
fields K. Similarly, 2) follows from 1). I 

Note that if F < E is algebraic then E is closed since E = F({t)) 
where L E ~(E) is the identity. 

If K is a closed intermediate field, then 

In the finite case, the converse also holds. 

Theorem 5.3.3 Let F < E be a finite extension. 

1) An intermediate field K is closed if and only if [E:K] = I ~(E) I· 
2) The following are equivalent. 

a) F < E is Galois. 
c) F is closed. 
d) All intermediate fields are closed. 
e) [E:K] = I GK(E) I for all intermediate fields K. 
f) [E:F] = I GF(E) I . 

Proof. We have seen that K closed implies [E:K] = I ~(E) I· 
Conversely, if [E:K] = I GK(E) I then 

and so the finiteness of F < E implies that K = F( ~(E)), that is, K is 
closed. Part 2) follows from the previous theorem. I 

As for the matter of which subgroups are closed, let F < E be 
algebraic. Since the trivial subgroup GE(E) = {t) is closed, any finite 
subgroup of GF(E) is closed. Thus, if F < E is finite then ~(E) is finite 
and all subgroups are closed. We may now give a complete answer to 
the question of who's closed in the finite case. 
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Theorem 5.3.4 IfF< E is finite then all subgroups of the Galois group 
GF(E) are closed and an intermediate field K is closed if and only if 
K < E is a Galois extension. In particular, if F < E is Galois then all 
intermediate fields are closed. 0 

As the next example shows, in the general algebraic case, not all 
subgroups need be closed. 

Example 5.3.1 For this example, we borrow from a later chapter the 
fact that for any prime power pd, there exists a finite field GF(pd) of 
size pd and GF(pd) < GF(pr) if and only if d I r. 

Let F = lp and let E = F be an algebraic closure of F. Since F is a 
finite field, it is perfect and so F < E is separable. Since E is 
algebraically closed, F < E is normal. Hence F < E is a Galois extension 
and therefore F is closed. Let H =(up) be the subgroup of GF(E} 
generated by the Frobenius map up:a-+aP. The fixed field F(H} is the 
set of all a E E for which aP =a, m other words, the roots in E of the 
polynomial p(x) = xP- x. But p(x) has p roots in F and so F(H} =F. 
It follows that 

Hence, all we need do is show that H "f:; GF(E) to conclude that H is not 
closed. 

Let q be a prime and consider the field 

2 3 
P = GF(pq) u GF(pq ) U GF(pq ) U · · · 

Then P is a proper subfield of E, since it does not contain, for instance, 
the subfield GF(pq+l). Hence [E:P] > 1 and since P < E is Galois, the 
group Gp(E) is not trivial. Let 11 E Gp(E). If 11 E H then 11 = 11~ for 
some k and so 

F((u)) ={a E E I u~a =a}= {a E E I arl' =a} 

is the set of roots in E of the polynomial xrl' -x. Hence F((u)) is finite. 
But F((u)) contains the infinite set P. This contradiction implies that 
11 ~ H and so H "f:; GF(E). 0 

The Galois correspondence begins with a field extension F < E and 
the corresponding Galois group GF(E). We may also begin with a field 
E and a group G of automorphisms of E. Then we can form the fixed 
field 

F(G) ={a E E I ua =·a for all 11 E G} 
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and consider the Galois correspondence (II,O) on F(G) <E. Since G is a 
subgroup of GF(G)(E), it is in the domain of the map nand so F(G) = 
O(G). Hence, F(G) is closed under the Galois correspondence and so 
F(G) < E is a Galois extension. If G is closed, which happens, for 
instance, when G is finite, then GF(G)(E) =G. 

Theorem 5.3.5 Let E be a field and let G be a group of automorphisms 
of E. Then the extension F(G) < E is Galois. If G is closed (for 
example, if G is finite) then G = GF(G)(E). 0 

5.4 Normal Subgroups and Normal Extensions 
If F < E is normal and K is an intermediate field, we know that 

K < E is also normal, but F < K need not be. However, we can neatly 
describe when F < K is normal in terms of Galois groups. (This is an 
example of the power and purpose of Galois theory.) 

Suppose first that F < K is normal (F < E need not be normal). 
Since any T E GF(E) sends K onto itself, it follows that T-1uT E GK(E) 
for any u E GK(E), that is, GK(E) is a normal subgroup of GF(E), in 
symbols, GK(E) <1 GF(E). 

Conversely, suppose that GK(E) <1 GF(E). We want to show that 
F < K is normal. Let a E K have minimal polynomial p(x) over F. If (3 
is any other root of p(x), then Theorem 2.8.4 implies the existence of a 
T E HomF(E,E) such that TO' = (3. If F < E is normal, then T E GF(E). 
If u E GK(E), the normality of GK(E) implies that UT = TU1 for some 
u' E GK(E) and so 

u/3 =uTa= Tu'a = TO'= f3 

Thus, u fixes all of the roots of p(x) and so all of the roots of p(x) lie in 
F( GK(E)). If K is closed, then all of the roots of p(x) lie in K and so K 
is normal over F. We have proven most of the following. 

Theorem 5.4.1 Let F < K <E. 

1) IfF< K is normal then GK(E) <1 GF(E). 
2) If F < E is normal, K < E is Galois and ~(E) <1 GF(E) then 

F < K is normal. 
3) If F < E is Galois then F < K is normal if and only if 

GK(E) <1 GF(E). 

Moreover, if F < K and F < E are normal, the map tP:GF(E)-+GF(K) 
defined by 
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is an epimorphism whose kernel is GK(E). Thus, 

Proof. We need only prove the last statement. Let u E GF(E). Since 
F < K is normal, the restriction u I K• being an embedding of K into E 
over F, is an automorphism of K and thus lies in GF(K). Hence 1/J maps 
GF(E) to ~(K). Moreover, for u, T E GF(E), we have 

(ur) I K = u(r I K) = (u I K)(r I K) 

which shows that 1/J is a group homomorphism. The kernel of 1/J is 
GK(E) since if u E GF(E) then u I K = t if and only if u E GK(E). 
Finally, the map 1/J is surjective since the normality of F < E implies 
that any u E GF(K) can be extended to an element of GF(E), whose 
restriction to K is u. I 

5.5 More on Galois Groups 

We now examine the behavior of Galois groups under lifting and 
under the taking of composites. We assume that all composites 
mentioned are defined. 

Theorem 5.5.1 (The Galois group of a lifting) Let F < E be Galois and 
let F < K. Then K < EK is Galois. Moreover, the restriction map 
1/J: GK(EK)---+ GK n E(E) defined by 1/Ju = u I E is an isomorphism. Thus 

In addition, 

1) K n E = F implies GK(EK) c::: ~(E). 
2) IfF< E is finite, then GK(EK) c::: GF(E) implies K n E =F. 

P'roof. We have already seen that K < EK is Galois. The normality of 
F < E implies that 1/J is a homomorphism from GK(EK) into GK n E(E). 
If u E GK(EK) and u I E = t then u fixes E as well as K and so it fixes 
all elements of EK, whence u = t. Thus 1/J is injective. It remains to 
show that Im'f/J = GKnE(E). 

To avoid confusion, let us use the notation FE(·) for the fixed field 
with respect to the Galois correspondence on F < E, and FEK( ·) for the 
fixed field with respect to the Galois correspondence on K < EK. Since 
K < EK is Galois, we deduce that K is closed with respect to the Galois 
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correspondence on K < EK and so 

FE(Im '1/;) ={a E E I m =a for all T E Jm('l/;)} 

= {a E E I ( u I E) a = a for all u E GK(EK)} 

= {a E E I ua = a for all u E GK(EK)} 

=En FEK( GK(EK)) 

=EnK 

Now, if we show that Im 'lj; is closed with respect to the Galois 
correspondence on F < E, it follows by taking Galois groups that 

and thus 'lj; is surjective, completing the proof. If F < E is finite, then all 
subgroups of the Galois group GF(E) are closed, and we are finished. 
We will postpone the proof in the infinite case until we have discussed 
the Krull topology, later in this chapter. 

Finally, statement 1) is clear. As to statement 2), we have 
GF(E) ::::: GK n E(E) and since GK n E(E) < GF(E) with both finite, we 
deduce that GK n E(E) = GF(E), whence K n E = F follows by taking 
fixed fields. I 

Theorem 5.5.1 yields a plethora of useful statements about degrees, 
all of which can be read from Figure 5.5.1. We leave details of the proof 
to the reader. [Part 3) of the next result is particularly useful.] 

EK 
//··· ~ 

E\ / .. ...- K 

~~7 
F 

Figure 5.5.1 

Corollary 5.5.2 Suppose that F < E is finite Galois and F < K, with EK 
defined. Then 

1) [EK:K] = [E:E n K] and [EK:K] I [E:F]. 
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IfF < K is also finite then 

2} [EK:F] = [E:E n K][K:F] and [EK:F] I [E:F][K:F]. 

3} [EK:F] = [E:F][K:F] if and only if En K =F. 

More generally, if F < Ei is finite Galois for i = 1, ... , n - 1 and F < En 
is finite then 

n 

4) [El· "En:F] = II [Ei:Ei n (Ei+t' "En)] 
i=l 

where Ei+t' ··En= F when i = n. 
n 

5) [Ec ·En:F] = II [Ei:F] if and only if Ei n (Ei+t" ·En) = F for all i, 
i=l 

where Ei+t' ··En= F when i = n. [] 

We now turn to the Galois group of a composite. 

Theorem 5.5.3 (The Galois group of a composite) Let G.f = {Ei I i E I} 
be a family of fields, all contained in a larger field. If F < Ei is Galois 
over F for all i E I, then the composite V Ei is Galois over F. If G = 
TI 0r-(Ei) is the direct product of the Galois groups GF(Ei) and if 
1ri:G--+GF(Ei) is projection onto the i-th coordinate, then the map 

defined by 
1/J: GF( V Ei)--+ TI GF(Ei) 

11'j(1/Ju) = u I E. 
I 

is a monomorphism of groups. Hence, GF( V Ei) is isomorphic to a 
subgroup of the direct product TI GF(EJ 

Moreover, if G.f = {E1, ... , En} is a finite family of finite extensions, 
then the following are equivalent 
1) 1/J is an isomorphism and 

2) Ei n (Ei+t' "En) = F "for all i = 1, ... ,n. 

Proof. Let K = V Ei. We have already seen that F < K is Galois. Let 
u E GF(K). Since each F < Ei is normal, we have u I E· E GF(EJ If r E 
GF(K) then 1 

and so 1/J(ur) = (1/Ju)(t/Jr). Thus, 1/J is a homomorphism of groups. If 
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u I E. = t for all i E I, then since each element of K is a rational function 
(ove~ F) in finitely many elements of UEi, we must have u = t, whence 
t/J is injective. 

When GJ is a finite family of finite extensions, all Galois groups are 
finite. It follows that 

llmt/JI 
and 

Hence t/J is surjective if and only if [ V Ei:F] = il [Ei:F] and Corollary 
5.5.2 gives the desired result. I 

The following corollary will prove useful. 

Corollary 5.5.4 Suppose that F < E is a finite Galois extension with 
Galois group of the form 

If 

where { t} is in the i-th coordinate and if Ei = F(Hi) then 

1) F < Ei is Galois with Galois group GF(Ei) ::::= Gi, 
2) E = E1 V · · · V En, 
3) Ei n (Ei+I' "En) = F for all i = 1, ... , n. 

Proof. Since F < E is finite and Galois, all intermediate fields and all 
subgroups of G are closed. Since Hi <1 G, it follows from Theorem 5.4.1 
that F < Ei is a Galois extension and 

GF(E) G 
GF(Ei) ::::= G (E) = H. ::::= Gi 

E. I 
I 

In addition, F < V Ei is Galois. Since 

taking fixed fields gives V Ei = E. Hence, GF( V Ei) ::::= il GF(Ei) and 
Theorem 5.5.3 implies that Ei n (Ei+l' "En) = F for all i = 1, ... , n. I 
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Abelian and Cyclic Extensions 
Extensions are often named after their Galois groups. Here is a very 

important example. 

Definition An extension F < E is abelian if it is Galois and if the Galois 
group ~(E) is abelian. An extension F < E is cyclic if it is Galois and 
if the Galois group Gp(E) is cyclic. 0 

The basic properties of abelian and cyclic extensions are given in the 
next theorem, whose proof is left as an exercise. 

Theorem S.S.S 

1) IfF< E and F < K are abelian, then F < EK is abelian. 
2) If F < E is abelian (cyclic) and F < K, then K < EK is abelian 

(cyclic). 
3) If F < K < E with F < E abelian (cyclic), then F < K and K < E 

are abelian (cyclic). 0 

*5.6 Linear Disjointness 
If F < K and F < L are finite extensions, the degree [KL:F] provides 

a certain measure of the "independence" of the extensions. Assuming 
that [K:F] $ [L:F], we have 

[L:F] $ [KL:F] $ [L:F](K:F] 

The "least" amount of independence occurs when [KL:F] = [L:F], or 
equivalently, when K < L and the "greatest" amount of independence 
occurs when 

(5.6.1) [KL:F] = [K:F](L:F] 

We have seen (Corollary 5.5.2) that, if one of the extensions is Galois, 
then (5.6.1) holds if and only if K n L =F. For finite extensions in 
general, we cannot make such a simple statement. However, we can 

·express (5.6.1) in a variety of useful ways. For instance, (5.6.1) holds 
for arbitrary finite extensions if and only if whenever { ai} ~ K is 
linearly independent over F and {~j} ~ L is independent over F then 
{ ai~j} is also independent over F. 

To explore the situation more fully (and for not necessarily finite 
extensions), it is convenient to employ tensor products. (All that is 
needed about tensor products is contained in Chapter 0.) 
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Let F < K and F < L. The multiplication map u:K x L-+KL defined 
by u( o:,(J) = o:(J is bilinear and so there exists a unique linear map 
,P:K ® L-+KL for which ,P(o: ® (3) = o:(J. (The tensor product is over F.) 
This map is a morphism of F -algebras, since 

,P[(o: ® (3)(1 ® c5)] = ,P(o:'"( ® (36) = 0:'"({30 = (o:(J)('Yc5) = ,P(o: ® (J),P('Y ® c5) 

Note that the image of ,P is the F-algebra K[L] = L[K] of all elements 
of the form · 

klel + ... + knen 

for ki E K and ti E L. Hence, if F < K or F < L is algebraic, then KL = 
K[L] and so the map ,P is surjective. 

If F is a field, we use the term F-independent to mean linearly 
independent over F. 

Theorem 5.6.1 Let F < E and suppose that K and L are intermediate 
fields. The following are equivalent. 

1) 
2) 
3) 

4) 

5) 

The linear map ,P defined above is injective. 
If { o:J ~ K is F -independent then it is also L-independent. 
If {o:J ~ K and {fJj} ~ L are both F-independent then {o:i(Jj} is 
also F -independent. 
If { o:J is a basis for K over F and {(Jj} is a basis for L over F 
then {o:i(Jj} is a basis for K[L] over F. 
There is a basis for K over F that is L-independent. 

IfF< K and F < L are finite, then each of 1) to 5) is equivalent to 

6) [KL:F] = [K:F][L:F]. 

IfF < K and F < L are finite and one is Galois, then each of 1) to 6) is 
equivalent to 

7) KnL =F. 

Proof. [1=>2] Let {o:J ~ K be F-independent and suppose that 
E eio:i = 0 for ei E L. Since ,p is a monomorphism and 

we have 
"' e. ® o:- = o L.... 1 1 

Theorem 0.8.2 now implies that ti = 0 for all i. 
[2=>3] Let { o:i} and {(Jj} be F -independent. If 
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~a--a·f3· = 0 L...J IJ I J 
ij 
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with aij E F then since { aJ is also L-independent, the coefficients of ai 
must equal 0, that is, 

for all i. Since the f3i's are also F-independent, we get aij = 0 for all i, j. 
[3=>4) This follows from the fact that if { aJ spans K over F and 

{f3·} spans Lover F then {aA} spans K[L) over F. 
t4=>1) The map 1/J sends a basis {ai ® {3j} forK® L to a basis {aif3j} 

for K[L) and is therefore injective. 
Thus, each of 1) to 4) is equivalent, and by symmetry we may add 

the equivalent statement that any F-independent subset of L is also K
independent. It is clear that 2) implies 5). 

[5=>2) Let { ai} be a basis for K over F that is L-independent. Let 
~f3J·} be an F-independent subset of L. We show that ~} is also K
m ependent. Let E iKi{3i = 0 where Ki E K. Then Ki = ~ jaijaj, where 
aij E F, and so 

~ ~ a-·f3·t:t· = 0 L...J L...J IJ J I 
i j 

But the ai's are L-independent and so 

~a-·f3· = 0 L...J IJ J 
j 

for all i. Hence aij = 0 for all i, j. It follows that Ki = 0 for all i, whence 
{f3·} is K-independent. 

h<=>6) In the finite (hence algebraic) case, we have remarked that the 
map 1/J:K ® L--+KL is surjective and so it is also injective if and only if 
dim K ® L = dim KL, which by Corollary 0.8.5 is equivalent to 

(dim K)(dim L) =dim KL 

all dimensions being over F. 
[6<=> 7) This follows from Corollary 5.5.2. I 

Definition If any of the equivalent conditions hold in Theorem 5.6.1, we 
say that K and L are linearly disjoint over F. 0 



120 5 Galois Theory I 

*5.7 The Krull Topology 

We have seen that if F < E is a finite Galois extension, then all 
subgroups of the Galois group GF(E) are closed but if F < E is infinite 
and Galois, this need not be true (see Example 5.3.1). The use of the 
term closed suggests the presence of a topology, which we now define. 

Definition Let EE be the set of all functions from E into E. We define a 
topology c:J' on EE, called the finite topology, by specifying as subbasis 
all sets of the form 

S = {f:E--+E I fu = v} u,v 

where u, v E E. A basis for c:J' thus consists of all sets of the form 

Of course, ifF < E, then the Galois group GF(E) is a subset of EE. 

Theorem 5.7.1 If F < E is algebraic then GF(E) is closed in th~ finite 
topology. 

Proof. We show that any f E EE that lies in the closure c/( ~(E)) of the 
Galois group is actually in GF(E). A basic open neighborhood off has 
the form 

and so f E c/( GF(E)) implies that for any u1, ... , uk E E there is a q E 
GF(E) for which qui = fui for i = 1, ... , k. It follows that f is a 
homomorphism. For if u, v E E and a, (3 E F then there is a q E GF(E) 
for which 

qu = fu, qv = fv, 

q(au + (Jv) = f(au + (Jv), q(uv) = f(uv) 

Hence, 

f(au + (Jv) = q(au + (Jv) = aqu + (Jqv = afu + (Jfv 
and 

f(uv) = q(uv) = (qu)(qv) = (fu)(fv) 

which shows that f is a homomorphism. Also, fu = 0 implies qu = 0 for 
some q E GF(E) and so u = 0, showing that f is injective. Similarly, f 
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fixes F pointwise. Thus, f is an embedding of E into itself over F. Since 
F < E is algebraic, we deduce that f E GF(E). I 

Thus, if F < E is a Galois extension, the Galois group GF(E) is 
closed in the finite topology on EE. The subspace topology inherited by 
GF(E) is called the Krull topology on GF(E). It follows that a subset of 
GF(E) is closed in the Krull topology if and only if it is closed in the 
finite topology on EE. 

To avoid any temporary confusion, we refer to a subset of GF(E) 
that is closed in the Krull topology as k-closed and a subgroup of GF(E) 
that is closed in the sense of the Galois correspondence as g-closed. 
Similarly, we use the term k-open for open sets in the Krull topology. 

Let us determine the closure H in the Krull topology of a subgroup H 
of GF(E). If T E H then given u1, ... , un E E, there is a u E H for which 
rui = uui, for i = 1, ... , n. This implies that r fixes any element of the 
fixed field F(H). Hence, T E H if and only if, given u1, ... , un E E, there 
is a u E H for which 

Since any finite extension of F(H) contained in E has the form 
F(H)(u1, •.. , un), we can say that r E H if and only if for any finite 
extension K of F(H) contained in E, there exists a u E H for which 
T I K = (j I K· 

If F(H) < K is a finite extension and Knc is the normal closure then 
F(H) < Knc is a finite Galois extension. Thus T E H if and only if for 
any finite Galois extension K of F(H) contained in E, there exists a u E 
H for which T I K = u I K· Finally, letting 

we can say that r E H if and only if for any finite Galois extension K of 
F(H) contained in E, we have T I K E H I K· 

If r E H and K = F(H), we have 

T I F(H) E H I F(H) = { l} 

and so r E G F(H)(E), the g-closure of H, whence 

To see that the reverse inclusion holds, suppose that r E GF(H)(E) and 
let F(H) < K be a finite Galois extension contained in E. Since F(H) is 
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contained in K, we have 

F(H) = {a E E I ua = a for all u E H} 

= { o E K I (TO = o for all u E H} 

= {a E K I uo = a for all u E H I K} 

= F(H I K) 

where F(H I K) is the fixed field of H I K with respect to the Galois 
correspondence on the Galois extension F(H) < K. (Note that since 
F(H) < K is a Galois extension, if u E H then u is an automorphism of 
E over F(H), whence its restriction u I K is an automorphism of K over 
F(H). Hence, HI K is contained in the Galois group GF(H)(K).) 

Since F(H) = F(H I K), the extension F(H I K) < K is finite and 
Galois, implying that HI K is g-closed in the Galois correspondence of 
F(H I K) < K. Hence, 

and soT E H. It follows that GF(H)(E) ~H. Let us summarize. 

Theorem 5.7.2 Let F < E be a Galois extension and let H be a subgroup 
of the Galois group Gp(E). Then the closure GF(H)(E) of H with respect 
to the Galois correspondence on F < E is the closure of H in the Krull 
topology. D 

Let F < E be a Galois extension. We leave it to the reader to show 
that the composition map 

and the inversion map 

are continuous under the Krull topology. Hence, Gp(E) is a topological 
group. In fact, it can be shown that Gp(E) is a compact, totally 
disconnected topological group. 

We conclude this section by completing the proof of Theorem 5.5.1 
in the infinite case. Recall that F < E is Galois and F < K. The map 
-rP:GK(EK)->Gp(E) is defined by -rPu = u IE and we wish to show that 
Im -rP is closed with respect to the Galois correspondence on F < E. 
Theorem 5.7.2 implies that this is equivalent to showing that I= Im -rP 
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is closed in the Krull topology on GF(E). 
Let T E I, the Krull-closure of I. We show that T E I by finding a u E 

~(EK) for which u IE= r. Let us define u:EK-+EK as follows. Since 
K < EK is algebraic, any element a E EK is a finite sum of the form 

a= '"e·k· L., I I 

where ei E E and ki E K. We set 

The first order of business is to show that this is well-defined. 
To this end, note that since T E I, it follows that for any finite set 

U = { u1, ... , un} s; E, there exists a uu E GK(EK) that agrees with T on 
the elements of U, that is, for which 

Hence, if U = { e1, •.• , en} then 

Now suppose that a can also be written as 

a= "e!k! L., I I 

Let V = {ei} s; E and let uu u v agree with Ton U U V. Then 

E(rei)ki = E(uuuvei)ki = uuuv(Eeiki) 

= uu u v( E e{ki) = E (uu u vei)ki = E (Tei)ki 

Thus, the definition of ua does not depend on the representation of a, 
and u is well-defined. 

Now suppose that 

is any finite set of elements of ~K and let U = {eij}· If u' E GK(EK) 
agrees with ron the elements of U, then 

u' aj = u' ~ ejiki = ~ T( eji)ki = u ~ ejiki = uaj 
I I I 
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for all j = 1, ... , n. In other words, for any finite subset S of EK, there is 
an element of GK(EK) that agrees with rr on S. 

It follows that rr is a homomorphism of EK, for if a, (J E EK then 
there exists a rr' E GK(EK) that agrees with rr on a, (J, a+ (J and a(J 
and since rr' is a homomorphism, we have 

rr(a + (J) = rr'(a + (J) = rr'a + rr'(J = rra + rr(J 
and 

rr(a(J) = rr'(a(J) = (rr'a)(rr'(J) = (rra)(rr(J) 

It also follows that rr is injective, for if rra = 0 then there is a u' E 
GK(EK) such that rr'a = 0, whence a= 0. The surjectivity of rr follows 
from that of r, since if a E EK, then 

Finally, it is clear from the definition that rra =a for all a E K and 
that rra = ra for all a E E. Thus, rr E GK(EK) and rr IE = r. This 
completes the proof of Theorem 5.5.1. 

Exercises 
1. If A:L--+.Ab is an order reversing bijection between two lattices, 

verify that A( a!\ b)= Aa V Ab and A( a V b)= Aa/\ Ab. 
2. With respect to a Galois connection, if P is a complete lattice then 

Cl(P) is also a complete lattice. 
3. If K < E and L < E are Galois extensions, show that K n L < E is 

a Galois extension. 
4. Let K and L be subfields of a field E and suppose that K < E and 

L < E are Galois, with Galois groups G1 and G2, respectively. Let 
G1 G2 be the join of G1 and G2 in the lattice g of all subgroups of 
GK n dE) and let G1 V G2 be the join of G1 and G2 in the lattice 
ij of all closed subgroups of GK n dE). Show that G1 G2 is finite if 
and only if GK n L(E) is finite, in which case G1G2 = G1 V G2. 

5. Let F < E be finite with G = GF(E). Let G1 <1 G2 < G, with Fi = 
F(GJ Show that GF (F1) ~ G2/G1• 

6. Find an example of 2an infinite algebraic extension whose Galois 
group is finite. 

7. Prove Corollary 5.5.2. 
8. Let F be a perfect field. Suppose that there is a prime p for which 

pI [E:F) for every proper finite extension E of F. Show that if E is 
a finite extension of F then [E:F) = pn for some n E N. Apply this 
to the case F = IR to deduce that if IR < E is a finite extension the 
[E:IR] = 2n for some n E N. 
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9. Let F < E be a finite Galois extension and let E < K. Then [EK:K] 
divides [E:F]. Use the following to show that the assumption that 
F < E be Galois is essential. Let a be the real cube root of 2, let 
w f. 1 be a cube root of 1. Let F = Q, E = Q(aw) and K = Q(a). 

10. Prove the following statements about abelian and cyclic 
extensions. 
a) IfF< E and F < K are abelian, then F < EK is abelian. 
b) If F < E is abelian (cyclic) and F < K, then K < EK is abelian 

(cyclic). 
c) If F < K < E with F < E abelian (cyclic), then K < E and 

F < K are abelian (cyclic). 
11. Let F < E and F < K be extensions, with E and K contained in a 

larger field. Show that E and K are linearly disjoint over F if and 
only if E' and K' are linearly disjoint over F for all intermediate 
fields F < E' < E and F < K' < K with [E':F] and [K':F] finite. 

12. Let F < E be a normal extension. Show that the separable closure 
psc of F in E and the purely inseparable closure pic of F in E are 
linearly disjoint over F. Moreover, ifF< K < E and if K and pic 
are linearly disjoint over F then F < E is separable. 

13. Let f(x) E F[x] and let F <E. Let SE be the splitting field of f(x) 
over E. Thus, if a 1, ... , an are the roots of f(x) in SE, we have 
SE = E(a1, ••• ,an)· Let SF= F(a1, ••• ,an) and let L = 
SF n F( GE(SE) ). Let '1/J: GE(SE)-+ GdSF) be defined by ,Pu = (1' I s . 
Show that '1/J is an isomorphism. This is known as the Theorem !n 
Natural Irrationalities. 

14. Referring to Theorem 5.5.3, show that if GJ is an arbitrary family 
then the map '1/J is an isomorphism if 

Ej n ( . ~ . Ei) = F for all j E I 
1.,.. J 

15. Extend the notion of closure obtained from the Galois extension to 
all subsets of GF(E), and show that it is a closure operation in the 
sense of topology. 

16. Prove that GF(E) is a topological group under the Krull topology. 
Show that this topological group is totally disconnected. 

17. Let F < E and suppose that S is a finite set of elements 
algebraically independent over E. Then F(S) and E are linearly 
disjoint over F. 

18. a) Show that in every Galois extension F < E, there is a largest 
abelian subextension pah, that is, F < pab < E, F < pali is 
abelian and ifF< K < E with F < K abelian then K < pah. 

b) If G is a group, the subgroup G' generated by all 
commutators a{ja-1/3-1, for a, /3 E G, is called the 
commutator subgroup. Show that G' is the smallest subgroup 
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of G for which G/G' is abelian. 
c) If the commutator subgroup GF(E)' of a Galois group GF(E) 

is closed, that is, if GF(E)' = GK(E) for some F < K < E, then 
K = Fab. 

19. Let F < K and let F < E < L. Assume that K and L are contained 
in a larger field. Then K and L are linearly disjoint over F if and 
only if K and E are linearly disjoint over F and KE and L are 
linearly disjoint over E. 

20. The following concept is analogous to, but weaker than, that of 
linear disjointness. Let F < K and F < L be extensions, with K 
and L contained in a larger field. We say that K is free from L 
over F if whenever S ~ K is a finite set of algebraically 
independent elements over F, then S is also algebraically 
independent over L. 
a) The definition given above is not symmetric, but the concept 

is. Show that if K is free from Lover F, then [KL:L]t = [K:F]t· 
Let T be a finite F -algebraically independent set of elements 
of L. Show that T is algebraically independent over K. 

b) Let F < K and F < E be field extensions, contained in a larger 
field. Prove that if K and L are linearly disjoint over F, then 
they are also free over F. 

c) Find an example showing that the converse of part b) does 
not hold. 



Chapter 6 

Galois Theory II 

In this chapter, we pass from the highly theoretical material of the 
previous chapter to the somewhat more concrete, where we consider the 
Galois groups of the splitting fields of specific types of polynomials. 

6.1 The Galois Group of a Polynomial 

The Galois group of a polynomial p(x) E F[x] is defined to be the 
Galois group of a splitting field S for p(x) over F. This group is 
sometimes denoted by GF(p(x)). If 

p(x) = p~l(x)· · ·p~(x) 

is a factorization of p(x) into powers of distinct irreducible polynomials 
over F, then S is also a splitting field for the polynomial q(x) = 
p1 (x) .. 'Pk(x). Moreover, the extension F < S is separable (and hence 
Galois) if and only if each Pi(x) is a separable polynomial. In particular, 
if p(x) has no multiple roots, then F < S is a Galois extension. 

Note that each u E GF(S) is uniquely determined by its action on the 
roots of p(x), which generate S, and that this action is a permutation of 
·the roots. However, not all permutations of the roots of p(x) need 
correspond to an element of GF(S). Thus, we have an injective group 
homomorphism from GF(S) into the symmetric group sn, where n = 
deg p(x). 

Let p(x) = f(x)g(x) where deg f(x) > 0 and let SP be the splitting 
field for p(x) over F and Sr the splitting field for f(x) over F. We clearly 
have F < Sr < SP with each step normal. Hence, by Theorem 5.4.1, 
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or, in another notation, 

GF(p(x)) 
GF(f(x)) ~ Gs (p(x)) 

f 

6 Galois Theory II 

Thus, the Galois group of a nontrivial factor of p(x) is isomorphic to a 
quotient group of the Galois group of p(x). 

6.2 Symmetric Polynomials 
If F is a field and t11 ... , tn are algebraically independent over F, the 

polynomial 
n 

g(x) = IT (x- ti) 
i=l 

is referred to as a generic polynomial over F of degree n. Since the roots 
t1, ... , tn of the generic polynomial g(x) are algebraically independent, 
this polynomial is, in some sense, the most general polynomial possible. 
Accordingly, it should (and does) have the most general Galois group, 
as we will see. 

The generic polynomial can be written in the form 

where the coefficients sk E F(t1, ... , tn) are given by 

n 

sl = tl + ... + tn, s2 = L titj ' ... ' sn = IT ti 
i <j i=l 

and are called the elementary symmetric polynomials in the variables ti. 
It follows that the coefficients of any polynomial are the elementary 
symmetric functions of the roots (in a splitting field) of that 
polynomial. 

Since F(t11 ... , tn) is the splitting field for g(x) over F(s1, ... , sn), and 
since g(x) has no multiple roots, we deduce from the remarks of the 
previous section that the extension F(s1, ... ,sn) < F(t11 ... ,tn) is Galois 
of degree at most n!. Moreover, any permutation u E Sn of {l, ... ,n} 
induces a unique automorphism of F( t1, ... , tn) defined by 
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Let us denote the group of all such automorphisms by G. 
According to Theorem 5.3.5, since G is a finite group of 

automorphisms of F(t1, ••• ,tn), the extension F(G) < F(t1, ..• ,tn) lS 

finite and Galois, with Galois group G and so 

Since every elementary symmetric function is fixed by the elements of 
G (hence the name symmetric function), we have 

and since 

we have equality above and F(G) = F(sv·· .,sn)· 

Theorem 6.2.1 Let t1, ••• , tn be algebraically independent over F and let 
s1, ... , sn be the elementary symmetric functions in t1, ... , tn. 

1) F{s1, ... ,sn) < F(t1, ... ,tn) is a Galois extension of degree n!, 
whose Galois group is isomorphic to the symmetric group Sn. 

2) The generic polynomial g(x) is irreducible over F[s1, ... , sn]· 

Proof. To prove part 2), observe that if g(x) = a(x)b(x) where 
deg a(x) = d > 0 and deg b(x) = e > 0, then the Galois group of g(x) 
would have size at most d!e! < ( d +e)! = n!. Hence g(x) is irreducible. I 

for all permutations u E Sn. Equivalently, p is symmetric if 

for all u E G. 0 

Thus, a polynomial p(t1, ... , tn) E F(t1, ... , tn) is symmetric if and 
only if it lies in the fixed field F(s1, ... , sn), that is, if and only if it is a 
rational function in s1, ••. ,sn. However, we can improve considerably 
upon this statement. 
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Theorem 6.2.2 Let t1, ... , tn be algebraically independent over F and let 
s1,. . .,sn be the elementary symmetric functions in t1, ... ,tn. A 
polynomial p( t1, ... , tn) E F[t1, ... , tn] is symmetric if and only if there 
exists a polynomial q(x1, ... ,~) over F for which p(t1, ... ,tn) = 
q(s1, ... ,sn)· Moreover, if p(t1, ... ;tn) has integer coefficients, then 
q(x1, ... ,~) can be chosen with integer coefficients. 

Proof. If p(t1, ... ,tn) has the form q(s1,. . .,sn), then it is clearly 
symmetric. For the converse, the proof consists of a procedure that can 
be used to construct the polynomial q(x11 ... ,~). Unfortunately, while 
the procedure is quite straightforward, it is recursive in nature and not 
at all practical. 

We use induction on n. The theorem is true for n = 1, since s1 = t1. 
Assume the theorem is true for any number of variables less than n and 
let p( t11 •.• , tn) be symmetric. By collecting powers of tn, we can write 

where each Pi is a polynomial in t1, ... , tn_1. Since p is symmetric in 
t1, ... , tn_1 and t1, ... , tn are independent, each of the coefficients Pi is 
symmetric in t1, ... , tn_1. By the inductive hypothesis, we may express 
each Pi as a polynomial in the elementary symmetric functions on 
t1, ... , tn_1. If these functions are denoted by u1 , ... , un_1, then we have 

(6.2.1) 

where each qi is a polynomial in u1, ... , un_1, with integer coefficients if 
p has integer coefficients. 

Note that the symmetric functions si can be expressed in terms of the 
symmetric functions ui as follows 

(6.2.2) 

s1 = u1 + tn 

s2 = u2 + u1tn 

sn-1 = un-1 + un-2tn 

sn = un-1tn 

These expressions can be solved for the ui's in terms of the si's, giving 

u1 =51- tn 

u2 = s2 - u1 tn = s2 - s1 tn + t~ 
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and from the last equation in (6.2.2), 

(6.2.3) 

Substituting these expressions for the ui 's into ( 6.2.1) gives 

where each ri is a polynomial in s1, ... , sn_1 and tn, with integer 
coefficients if p has integer coefficients. Again, we may gather together 
powers of tn, to get 

where each gi is a polynomial in s1, ... ,sn_1, with integer coefficients if 
p has integer coefficients. If m ~ n, we may reduce the degree in tn by 
using (6.2.3), which also introduces the term sn. Hence, 

(6.2.4) 

where each hi is a polynomial in s1, ... , sn, with integer coefficients if p 
has integer coefficients. 

Since the left side of (6.2.4) is symmetric in the t/s, we may replace 
tn by ti, for each i = 1, ... , n- 1, to get 

valid for all i = 1, ... , n. Hence, the polynomial 

has degree (in x) at most n- 1 but has n distinct roots t1, ... , tn, 
whence it must be the zero polynomial. Thus, hi = 0 for i ~ 1 and 
p(t1, ... ,tn) = h0 = h0(s1 , ... ,sn), as desired. I 

Example 6.2.1 Let p( x) = xn - s1 xn -l + .. · + ( -1 )nsn be a polynomial 
with roots r1, ... , rn in a splitting field. For k ~ 1, the polynomials 

uk = r~ + r~ + · · · + r~ 
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are symmetric in the roots of p(x), and so Theorem 6.2.2 implies that 
they can be expressed as polynomials in the elementary symmetric 
functions s1 , ... , sn of the roots. One way to derive an expression 
relating the uk's to the sk's is by following the proof of Theorem 6.2.2. 
In the exercises, we ask the reader to take another approach to obtain 
the so-called Newton identities 

for k 2:: 1. These identities can be used to compute recursively the uk's 
in terms of the si's. 0 

Since any symmetric polynomial in the roots of a given polynomial 
p(x) is a polynomial in the coefficients of p(x) as well, it therefore lies 
in the base field. 

Corollary 6.2.3 Let p(x) E F[x] have roots r1, ... ,rn in a splitting field. If 
f(t 1, ... ,tn) is a symmetric polynomial, then f(r1, ... ,rn) is a polynomial 
in the coefficients of p(x), and thus lies in F. 

Proof. We know that f(rp ... ,rn) = g(s1, ... ,sn) where si is the i-th 
elementary symmetric polynomial in the roots r1, ... , rn. But si or -si is 
the coefficient of xn-I in p(x), whence f is a polynomial in these 
coefficients. I 

Theorem 6.2.4 The elementary symmetric polynomials s1, ... , sn are 
algebraically independent over F. 

Proof. Since F(s1, ... ,sn) < F(t1, ... , tn) is algebraic, Theorem 3.3.1 
implies that S = { s1, ... , sn} contains a transcendence basis for 
F( t1, ... , tn) over F. But { t1 , ... , tn} is a transcendence basis and so 
[F(t1, ... ,tn):F]t = n. Hence, Sis a transcendence basis. I 

6.3 The Discriminant of a Polynomial 

We have seen that the Galois group GF(p(x)) of a polynomial of 
degree n is isomorphic to a subgroup of the symmetric group sn and 
that the Galois group of a generic polynomial is isomorphic to Sn itself. 
A special symmetric function of the roots of p(x), known as the 
discriminant, provides a useful tool for determining whether or not the 
Galois group is isomorphic to a subgroup of the alternating group. 

Let p(x) be a polynomial over F, with roots r1, ... ,rn in a splitting 
field E. Let 
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The discriminant of p(x) is d = 62• Note that d =F 0 if and only if p(x) 
has no multiple roots. 

Let us assume that d =F 0. Hence p(x) is the product of distinct 
separable polynomials, implying that F < E is a Galois extension. Each 
q E ~(p(x)) acts as a permutation of the roots ri and so 

where ( -1)u is 1 if q is an even permutation and -1 if q is an odd 
permutation. Hence, qd = d, implying that dE F. If char(F) = 2, then 
q6 = 6 for all q E GF(p(x)) and so 6 E F. 

If char(F) =F 2, we have two possibilities. If 6 E F then all q E 
GF(p(x)) fix 6 and are therefore even. Hence GF(p(x)) is isomorphic to 
a subgroup of the alternating group An. If 6 ~ F then GF(p(x)) must 
contain an odd permutation. It is not hard to show that if a subgroup 
of Sn contains an odd permutation then the subgroup has even order 
and exactly half of its elements are even. Hence, if 6 ~ F then GF(p(x)) 
has even order and 

If we let H = ~(p(x)) nAn then F(H) < E is Galois, with Galois group 
Hand so 

[E:F(H)] = I H I =~I GF(p(x)) I = ~[E:F] 

which implies that [F(H):F] = 2. But [F(6):F] = 2 and F(6) ~ F(H), 
whence F(H) = F( 6). In words, the fixed field of the even permutations 
in ~(p(x)) is F(6). Let us summarize. 

Theorem 6.3.1 Let p(x) E F[x] have splitting field E. 

1) a= 0 if and only if p(x) has multiple roots in E. 
2~ Assume that a =I= 0 and char(F) I 2. 

a) If a has a square root in F, then the Galois group GF(p(x)) is 
isomorphic to a subgroup of the alternating group An. 

b) If a does not have a square root in F, then the Galois group 
GF(p(x)) contains half <?dd and half even permutations of the 
roots of p(x). In addition, the fixed field of GF(p(x)) nAn is 
F(#). 

3) Assume that a # 0 and char(F) = 2. Then a has a square root in 
F, but GF(p(x) need not be isomorphic to a subgroup of An. 
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Proof. For part 3), observe that the generic polynomial 

The usefulness of Theorem 6.3.1 comes from the fact that .6. can 
actually be computed in some cases. To see why this is so, observe that 
o is the Vandermonde determinant 

1 1 1 1 

o= r1 r2 rn 

n-1 r1 n-1 r2 n-1 rn 

Taking the transpose and multiplying gives 

uo u1 un-1 

.6.= 
u1 u2 un 

un-1 un u2n-2 

where ui = r~ + r~ + · · · + r~. Newton's identities can then be used to 
determine the u/s in terms of the coefficients of the polynomial in 
question (see Example 6.2.1 and the exercises). We will see some 
examples of this in the next section. 

6.4 The Galois Groups of Some Small Degree 
Polynomials 

Quadratic Polynomials 
Quadratic extensions (extensions of degree 2) hold no surprises except 

perhaps for certain base fields of characteristic 2. Let 

p(x) = x2 + bx + c = (x- r)(x- s) 

be a quadratic over F, with splitting field E. To compute the 
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discriminant, observe that u1 = r + s = b and 

Hence 

A= 

a familiar quantity. 
If A= 0 then p(x) has a double root rand 

p(x) = (x- r)2 = x2 - 2rx + r2 

The root r will lie in F for most well-behaved base fields F. In 
particular, if char(F) ::J: 2, then -2r E F implies r E F. If char(F) = 2 
and F is perfect (a finite field, for example) then rEF. However, the 
following example shows that p(x) may have a multiple root not lying 
in F. Let F = Z2(t2) where tis transcendental over Z2 and let 

p(x) = x2 -t2 = (x-t)2 

Since t rt. Z2(t2), this polynomial is irreducible over Z2(t2), but has a 
multiple root t rt. F. 

If A ::J: 0 then p(x) has distinct roots and there are two possibilities: 
(i) the roots lie in F, p(x) is reducible and Gp(p(x)) is trivial, or (ii) the 
roots do not lie in F, p(x) is irreducible and Gp(p(x)) ~ Z2 is generated 
by the map u:r--+s. When char{F) ::J: 2, we can tell whether or not the 
roots lie in F by looking at the discriminant, since the quadratic 
formula gives 

-b ± Vb2 - 4c -b ± ..[ii 
r, s = 2 = 2 

Hence the roots lie in F if and only if A has a square root in F. 

Theorem 6.4.1 Let p(x) E F(x] have degree 2. 

1) If A= 0 then p(x)::: (x- r)2 has a double root r, which may or 
may not lie in F. In any case, Gp(p(x)) is trivial. 

2) If A ::J: 0 then p(x) has distinct roots and there are two 
possibilities: (i) the roots lie in F, p(x) is reducible and Gp(p(x)) is 
trivial, or (ii) the roots do not lie in F, p(x) is irreducible and 
Gp(p(x)) ~ Z2 is generated by the map u:r--+s. 

3) If char(F) ::J: 2 then all quadratic extensions F < E have the form 
E = F( .ja), for some o E F. 
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Proof. Part 3) follows from the fact that if ~ is the discriminant of 
min(a,F) then part 2) implies that fo fl. F, whence E = F( y'X). I 

Let us turn now to a more interesting case. 

Cubic Polynomials 

Let 
p(x) = x3 + bx2 +ex+ d = (x- r)(x- s)(x- t) E F[x] 

have splitting field E. Then p(x) is irreducible if and only if none of its 
roots lie in F. Let us assume that p(x) is irreducible. A straightforward 
but lengthy computation gives 

Assume first that ~ = 0. Then p(x) has multiple roots and Corollary 
1.6.4 implies that p(x) = q(xpk), where p = expchar(F) and pk > 1. 
Since deg p(x) = 3, we must have p = 3, k = 1 and so 

has a single root of multiplicity 3. The extension F < F(r) = E is purely 
inseparable of degree 3 and the Galois group is trivial. 

If A =f:. 0 then p(x) has no multiple roots and is therefore separable. 
Hence, F < E is Galois and I GF(p(x)) I = [E:F]. Since r fl. F, we have 
[E:F] > 1, which leaves the possibilities [E:F] = 3 or 6. If p(x) splits in 
F(r), then [E:F] = 3 and the Galois group is isomorphic to A3 :::: l 3 . If 
p(x) does not split in F(r), then [E:F] = 6, in which case the Galois 
group is isomorphic to S3. When char(F) =f:. 2, these two cases can be 
distinguished by examining the discriminant. If fo E F, then 
GF(p(x)):::: A3 and if fo fl. F then GF(p(x)):::: S3. 

Theorem 6.4.2 Let p(x) E F[x] be irreducible of degree 3. 

1) 

2) 
2) 

If A = 0 then p(x) has a single root of multiplicity 3 and 
char(F) = 3. The Galois group is trivial. 
If~ f. 0 then GF(p(x)) :::: ft_a or S3. 

Let char(F) f. 2. If 0 f. y ~ E F then GF(p(x)) :::= A3 and adjoining 
a single root of p(x) to F gives the splitting field for p(x). If 
.Ji. fl. F then GF(p(x)) :::= S3. 0 

Example 6.4.1 Let p(x) = x3 - 2x2 - x + 1 over Q. Any rational root of 
p(x) must be ± 1 (Theorem 1.2.2) and so p(x) is irreducible. The 
discriminant is ~ = 49 which has a square root in Q and so 



6 Galois Theory II 137 

G0 (p(x)) ~ A3 is cyclic of order 3. On the other hand, the irreducible 
porynomial q(x) = x3 - x + 1 has discriminant 6. = -23, which has no 
square root in Q. Hence, its Galois group is isomorphic to S3 . 0 

*Quartic Polynomials 

Since the Galois group of an irreducible quartic polynomial is 
isomorphic to a transitive subgroup of S4 , we should begin by 
determining all such subgroups of S4• Theorem 0.2.21 implies that if G 
is a transitive subgroup of s4 then I G I = 4, 8, 12 or 24. Here is a list. 

1) The cyclic group l 4 occurs as a subgroup of S4, for instance 
((1234)) ~ l4. 

2) The four group l 2 x l 2 occurs as a subgroup of S4 • In particular 

v = {t, (12)(34), (13)(24), (14)(23)} 

is isomorphic to l 2 x l 2 and is known as the viergruppe. We leave 
it to the reader to show that V is normal in S4• This and the 
previous case exhaust all nonisomorphic groups of order 4. 

3) The dihedral group D4 of symmetries of the square, thought of as 
permutations of the corners of the square, is a subgroup of s4 of 
order 8. Since D4 is a Sylow 2-subgroup of S4 , all subgroups of S4 
of order 8 are isomorphic to D4• 

4) The alternating group A4 is the only subgroup of S4 of index 2, 
that is, of order 12. 

5) Of course, S4 is the only subgroup of S4 of order 24. 

Let p(x) = x4 + ax3 + bx2 +ex+ d be an irreducible quartic over F 
and let us assume that char(F) =J 2, 3. This will insure that 4 =J 0 and 
that all irreducible cubic polynomials that we may encounter are 
separable. Replacing x by x- a/4 will eliminate the cubic term, 
resulting in a polynomial of the form 

q(x) = x4 + px2 + qx + r 

The polynomials p(x) and q(x) have the same splitting field and hence 
the same Galois group, so let us work with q(x). Let E be the splitting 
field of q(x), let r1, ..• ,r4 be its roots in E and let G = GF(E) be its 
Galois group. For convenience, we identify G with its isomorphic image 
in S4• 

The Quartic x4 + bx2 + c 

In order to get our feet wet, let us first consider the special case 
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q(x) = x4 + bx2 + c 

If we denote the roots of q(x) in E by ±a, ± (3 then E = F(a,(3) and 

b = -(a2 + (32), c = a2(32 

We define the associated quadratic to q(x) to be 

q(x) = x2 + bx + c 

The roots a 2 and (32 of q(x) are given by 

The irreducibility of q(x) can be determined as follows. Certainly if 
q(x) is reducible over F, then so is q(x). On the other hand, if q(x) is 
irreducible then its roots a 2 and (32 do not lie in F, whence q(x) cannot 
have a linear factor over F and, if reducible, must have the form 

q(x) = x4 + bx2 + c = (x2 + ux + v)(x2 - ux + w) 

where, as seen by equating coefficients, u(v- w) = 0. However, if u = 0 
then 

q(x) = (x2 + v)(x2 + w) 

which gives 

q(x) = (x + v)(x + w) 

contradicting the irreducibility of q(x). Thus, u ::j:. 0 and v = w. We can 
summarize as follows: 

1) If Vb2 - 4c E F then q(x), and therefore q(x), is reducible. 

2) If Vb2 - 4c rt_ F then q(x) is reducible if and only if it has the 
form 

q(x) = x4 + bx2 + c = (x2 + ux + v)(x2 - ux + v) 

where v2 = c and 2v - u2 = b. 

For example, let q(x) = x4 + 6x2 + 4 over Q. Then b2 - 4c = 20 and 
J20 rt_ Q. From 2) above we have 

v2 = 4, v = ±2 
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and 
u2 = 2v-6 = ±4-6 = -2, -10 

and since the latter has no solutions u E Q, we see that q(x) is 
irreducible over Q. 

Let us now assume that q(x) is irreducible over F and has distinct 
roots. We have seen that [E:FJ = 4, 8, 12 .·or 24. However, not all 
permutations of the roots are elements of the Galois group G. For 
instance, if u E G sends a to {3, it must send -a to -{3. The possibilities 
for elements of G are listed below, where we give the action on a and {3, 
as well as a description as a product of transpositions, assuming that 
the roots are taken in the order a, {3, -a, -{3. 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 

ul:a-+a, {3-+{3 
u2:a-+a, {3-+-{3 
u 3:a-+-a1 {3-+{3 
u 4:a-+-a, {3-+-{3 
u 5:a-+{3, {3-+a 
u6:a-+{3, {3-+-a 
u 7:a-+-{31 {3-+a 
u 8:a-+-{31 {3-+-a 

{1) 
(24) 
(13) 
(13){24) 
{12)(34) 
(14)(13){12) 
(12)(13)(14) 
(14)(23) 

Note tPat all nonidentity maps have order 2 except a6 and a7. In fact, 
{ u 1,. • ., u 8} is isomorphic to the dihedral group D 4, with rotation u 6 
(order 4) and reflection u8 (order 2). Thus G is (isomorphic to) a 
subgroup of D4 and so [E:F) = 4 or 8. In the latter case G ~ D4• In the 
former case, G ~ l 4 or G ~ V. 

The square root of the discriminant of q(x) is 

6 = (a_ {3)( a+ a)( a+ {3)({3 +a )({3 + {3)( -a+ {3) = -4af3( a2 _ p2)2 

and since (a2 - {32)2 is invariant under each ui, it must lie in the base 
field F. Hence, 6 E F if and only if a{J E F, or equivalently, y'C E F. It 
follows from Theorem 6.3.1 that 

1) If y'C E F then G is isomorphic to a subgroup of A4• Thus, it 
contains only even permutations and so 

2) If .fC rt, F then G contains half even and half odd permutations 
and G n A4 is F( 6) = F( y'C). · 
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Under case 2), we still have the possibilities I G I = 4 or I G I = 8. 
In the former case, G n A4 must consist of u 1 and one of the even 
permutations u 4, u5 or u8• The other two elements of G must come 
from the odd permutations u2, u3 , u6 and u7• If G has no element of 
order 4, then we can eliminate u6 and u7• But it is easy to check that 
the set {u1,ui,u2,u3}, where i = 4, 5 or 8, is not transitive on the roots 
of q(x). Hence, G must contain an element of order 4 and 

To identify the case G ~ Z4 directly from the coefficients of q(x), 
observe that in this case [E:F( JC)] = 2 and so q(x) has an irreducible 
quadratic factor over F( JC). Thus, 

q(x) = x4 + bx2 + c = (x2 + ux+ v)(x2 - ux+ w) 

where r(x) = x2 + ux + v is irreducible over F( JC). Since 

GF(Vc)(E) = {ul, u4} 

it follows that u 4 must send one root of r(x) to the other root and so 
the roots of r(x) are ±a or ± {3. In either case, u = 0 and so 

(6.4.1) q(x) = x4 + bx2 + c = (x2 + v)(x2 + w) 

which implies that q(x) is reducible over F( JC), that is, 

or, equivalently, 

Jc(b2 - 4c) E F 

Conversely, if this holds, then q(x) is reducible over F( JC) and 
therefore q(x) has the form (6.4.1), where v, wE F( JC). Since vw = c, 
the polynomial q(x) splits over F( JC,.JV), whence E = F( JC,.JV). 
Thus, [E:F( JC)] = 2 and [E:F] = 4. Let us summarize. 

Theorem 6.4.3 Let q(x) = x4 + bx2 + c be irreducible with distinct roots 
over F. Let G be the Galois group of q(x). Let V be the viergruppe. 

1) If JC E F then G = V. 

2) If JC ft. F and Jc(b2 - 4c) E F then G ~ Z4 and q(x) is reducible 
over F(y'C). 
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3) If .jC r/. F and J_c(b2 - 4c) r/. F then G ~ D4 and q(x) IS 

irreducible over F( JC). 0 

The General Quartic 

To analyze the general quartic polynomial p(x), we consider which 
elements of the Galois group lie in the viergruppe V. This gives us a 
subgroup V n G of G and hence an intermediate subfield F(V n G) of 
the splitting field E. Since V <1 S4 we have V n G <1 G. Our guide will be 
Figure 6.4.1. 

E = split(p(x)) 

degree: 1,2 or 4 

ptVnG) = sp/il(r(x)) 

possible degrees: 
l [r(x) splits over F] 
2 [r(x) has one root in F] 
3 or 6 [r(x) irred. over F] 

F 

Figure 6.4.1 

GF(p(x)) =G 

possible degrees: 
l [r(x) splits over F] 
2 [r(x) has one root in F] 
3 or 6 [r(x) irred. over F] 

VnG 

degree: 1,2 or 4 

To determine the fixed field of V n G, note that each element of V 
fixes the elements 

u = (r1 + r2)(r3 + r4) 

v = (r1 + r3)(r2 + r4) 

w = (r1 + r4)(r2 + r3) 

and so F(u,v,w) < F(V n G). By checking each permutation in S4, it is 
not hard to see that no permutation outside of V fixes u, v and w. 
Thus, 

GF(u,v,w)(E) < V n G 

Taking fixed fields gives F(V n G)< F(u,v,w) and so F(V n G)= 
F(u,v,w). 

Note also that any element of S4 permutes the elements u, v and w 
and so any symmetric function of u, v and w is also a symmetric 
function of r1, ... ,r4. 

Definition The resolvent cubic of q(x) = x4 + px2 + qx + r 1s the 
polynomial r(x) = (x- u)(x- v)(x- w). 0 
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To determine the coefficients of r(x), note that since q(x) has no 
cubic term, it follows that r1 + r2 + r3 + r4 = 0. Hence, 

Thus, r(x) is a polynomial satisfied by -(r1 + r2) 2• The polynomial q(x) 
factors into a product of quadratic polynomials over E, say 

q(x) = (x2 +ax+ b)(x2 - ax+ c) 

where the linear coefficients are negatives of each other since q(x) has 
no cubic term. We can always renumber so that the roots of the first 
factor are r1 and r2, whence a= -(r1 + r2). Multiplying out the 
expression for q(x) and equating coefficients gives 

b+c-a2 = p 
ac-ab = q 

be= r 

Solving the first two for b and c and substituting into the third gives 

and so a2 = (r1 + r2) 2 = -u satisfies the polynomial 

Thus u satisfies the polynomial 

Since we will get the same polynomial by repeating this argument 
using r1 + r3 or r1 + r4 in place of r1 + r2, we deduce that t(x) is the 
resolvent cubic of q(x). 

Theorem 6.4.4 The resolvent cubic of q(x) = x4 + px2 + qx + r is 

The splitting field of r(x) over F is the fixed field F(V n G). Hence, 

I GF(r(x)) I = [F(V n G):F] = (G:V n G) 0 

Let us put all of the pieces together. 
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Theorem 6.4.5 Let p(x) = x4 + ax3 + bx2 +ex+ d be an irreducible 
quartic over a field F, with char(F) '/2, 3. Let q(x) = x4 + px2 + qx + r 
be obtained from p(x) by substituting x- a/4 for x and let r(x) = 
x3 - 2px2 + (p2 - 4r)x + q2 be the res.>lvent cubic of q(x). Let .6.r be the 
discriminant of r(x) and let E be the splitting field for p(x) over F. 

1) If r(x) is irreducible over F and A E F then ~(p(x)) ~ A4• 

2) If r(x) is irreducible over F and A fl. F then ~(p(x)) ~ s4. 
3) If r(x) splits over F then GF(p(x)) ~ V. 

4) If r(x) has a single root in F there are two possibilities: (i) if p(x) 
is reducible over F(V n G) it has an irreducible quadratic factor 
and ~(p(x)) ~ l 4 , (ii) if p(x) is irreducible over F(V n G) then 
GF(p(x)) ~ D4• 

Proof. Let G = ~(p(x)). The situation is described in Figure 6.4.1. We 
begin by observing that V n G < V and so 

IV n G I = 1, 2 or 4, (G:V n G) = 1, 2, 3 or 6 

and 

IV n G I x (G:V n G) = I G I = 4, 8, 12 or 24 

This shows immediately that I V n G I '/1. Let us write the 
possibilities as follows 

IVnGI x(G:VnG)= IGI 

(2/4) X (1/2/3/6) = (4/8/12/24) 

Now we can use Theorem 6.4.2. Let S be the splitting field of r(x) 
over F. 

1) If r(x) is irreducible and A E F then ~(r(x)) ~ A3• Theorem 
6.4.4 gives (G:V n G)= 3, which implies that I v n G I = 4 and so 
I G I = 12. Thus G ~ A4• 

2) If r(x) is irreducible and A fl. F then GF(r(x)) ~ s3. Hence 
(G:V n G) = 6. If I v n G I = 2 then I G I = 12 so G ~ A4. But 
v ~ A4 then implies that I v n G I = 4. Thus, I v n G I 'I 2, 
leaving the only other possibility: I V n G I = 4. Hence I G I = 24 
and G ~ S4• 

3) If r(x) splits over F then (G:V n G) = [S:F] :::: 1 and so 
I V n G I = 4, whence V ~ G and G ~ V. 

4) Suppose that r(x) has a single root in F. Then (G:VnG)= 
[S:F] = 2. There are two possibilities. If IV n G I = 2 then 
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I G I = 4 and so G ~ l 4 or V. We leave it to the reader to show 
that since G acts transitively, G ~ V is not possible. Hence, 
G ~ l 4• Note that, in this case, since E is the splitting field for 
p(x) over S and [E:S] = 2 the polynomial p(x) must have an 
irreducible quadratic factor over S. If I V n G I = 4 then I G I = 8 
and G ~ D4. In this case, p(x) is irreducible over S. I 

Exercises 
1. Let p(x) =xn-a1xn-1+···+au where a1, ... ,8n are algebraically 

independent over F. Show that p(x) is irreducible over 
F(a1, ..• ,au), separable and its Galois group is isomorphic to Sn. 

2. Give an example to show that separability is required in Corollary 
6.2.3. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

If p(x) is a quartic polynomial then its discriminant is the 
negative of the discriminant of its resolvent cubic. Hint: u- v = 
-(rl - r4)(r2- r3). 
Find the Galois groups of the following polynomials: (i) 
x4 - 10x2 + 1; (ii) x4- 4x + 2; (iii) x4 + 8x -12 (iv) 
x4 +x2+x+ 1 
If p(x) E F[x] has roots r1,. . ., rn then a= ( -l)n(n-1)/2 I] p'(ri)· 

i 
Let p(x) E Q[x] have degree 3. Show that a< 0 if and only if p(x) 
has exactly one real root. 
Show that the splittin~eld for an irreducible cubic polynomial 
over F is given by F( v a,r), where r is a root of f(x) and a is the 
discriminant. 
Let p(x) = (x- r)(x- s)(x- t), where r, s and t are algebraically 
independent over Z2. Let s1, s2, s3 be the elementary symmetric 
functions on r, sand t. Show that V/i E F(s1,s2,s3) but the Galois 
group of p(x) over F(s1,s2,s3) is isomorphic to S3. 
Let 

p(x) = xn- s1xn-1 + ... + ( -l)nsn 

have roots r1, ... ,rn in a splitting field E over F. Let ui = 
r~ + ~2 + · · · + ~n· Since the ui's are symmetric polynomials in the 
roots of p(x), Theorem 6.2.2 implies that they can be expressed as 
symmetric polynomials in the elementary symmetric functions 
s1, ... ,sn. One way to derive an expression relating the ui's to the 
si's is by following the proof of Theorem 6.2.2. Here is another 
way. Let p(x) = (x- ri)qi(x) in E[x]. 

a) Show that nk+lp(x) = ~ Dkqi(x). 
1 
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b) Write 

and use part a) to derive Newton's identities: 

uk- uk-1s1 + uk-2s2 +· ... + (-1)k-1u1sk-1 + (-1)kksk = 0 

for k = 1, 2, 3, .... 
c) Let p(x) =a+ bx + xn. Find the values of ui and find the 

discriminant of p(x). 
10. Show that the viergruppe V is normal in S4• Find another 

subgroup of s4 besides v that is isomorphic to v. 
11. This exercise concerns the issue of when a real number that is 

expressed in terms of nested radicals 

n= Jr+sVt 

where r, s, t E F can be written in terms of at most two unnested 
radicals. For instance, we have 

but the number J1 + 2J5 cannot be so written. Note that a is a 
root of the quartic 

Assume that q(x) is irreducible over F. The question we are 
interested in is whether a E F(y'P,yq) for some p and q in F. 
Show that the answer to this question is yes if and only if 
F(y'P.~ is the splitting field E for q(x) over F. Then show that 
E = F(\/P,yq) if and only if the Galois group G of q(x) over F is 
the viergruppe V. Hence, a E F(y'P,yq) if and only if 

Vr2 -s2t E F 

Find a way to compute the unnested expression for a in terms of 
JP and yq. 

12. Let p(x) = x4 + bx3 + cx2 + qx + 1 E Q[x] have Galois group G. 
(i) If u = c2 + 4c + 4- 4b2 has a square root in Q then G ~ V. 
(ii) If u does not have a square root in Q but u(b2- 4c + 8) does 

have a square root in Q then G ~ l 4• 

(iii) If neither u nor u(b2- 4c + 8) has a square root in Q then 
G~D4• 



Chapter 7 

A Field Extension as a Vector Space 

In this chapter, we take a closer look at a finite field extension F < E 
from the point of view that E is a vector space over F. It is clear, for 
instance, that any (1' E Gp(E) is a linear operator on E over F. However, 
there are many linear operators that are not field automorphisms. One 
of the most important is multiplication by a fixed element of E, which 
we study next. 

7.1 The Norm and the Trace 

Let F < E be finite and let a E E. The multiplication map a:E-+E 
defined by a/3 = a/3 is an F-linear operator from E toE, since 

a(u/3 + vr) = ua/3 + var 

for all u, v E F and {3, r E E. We wish to find a basis for E over F 
under which the matrix of a has a nice form. 

Note that if r(x) E F[x], then r(a)/3 = r(a)/3 for all f3 E E and so 
r(a) = 0 as an element of E if and only if r(a) is the zero operator on E . 

. Hence, the set of polynomials over F satisfied by a is precisely the same 
as the set of polynomials satisfied by a. In particular, they have the 
same minimal polynomial over F. 

The vector subspace F(a) of E is invariant under a, since a(p(a)) = 
ap(a) E F(a). If G:B = {{311 ••• ,/3d} is an ordered basis for F(a) over F 
and if 

d 

af3· = "'b. ·/3· I L.J l,J J 
j=l 
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then the matrix ofCi I F(a) with respect to ':B is M = (biJ)• If {11, ... , 'Ye} 
is a basis forE over F(o:) where e = [E:F(o:)], then the set of products 

is a basis for E over F. Since 
d 

a( rk.Bi) = L biJ'Yk.Bj 
j=l 

it follows that each of the subs paces V k = ( 'Yk.Bl, 'Yk.B2, ... , 'Yk.B d) is 
invariant under a and the matrix of a I v is also equal to M. Hence, 
the matrix of a with respect to the or~ered basis e has the block 
diagonal form 

(7.1.1) [
M 0 0 0 J ~ 0 M 0 0 

.Ab( 0:) = 0 0 . . . 0 

0 0 0 M 

Thus, if the characteristic polynomial of a I F(a) is q(x), then the 
characteristic polynomial of a (on E) is 

But q(x) E F[x] has degree [F(o:):F] = deg min(a,F), is monic and is also 
satisfied by o:, whence q(x) = min(o:,F). 

Theorem 7.l.l Let F < E be finite and let a E E. If a:E-+E is the F
linear operator on E defined by a,B = o:.B then the characteristic 
polynomial of a is 

q0 (x) = [min( o:,F)][E:F(a)] 0 

We recall from linear algebra that if r: V-+ V is a linear operator on a 
finite dimensional vector space V over F, the trace of T is the sum of 
the eigenvalues of T and the norm (determinant) of T is the product of 
the eigenvalues of r, in both cases counting multiplicities. Recall also 
that the trace and the norm both lie in the base field F. We are 
motivated to make the following definition. 

Definition Let F < E be finite and let o: E E. The trace of o: over F < E, 
denoted by TrE/F(o:), is the trace of the F-linear operator a:E-+E and 
the norm of o: over F < E, denoted by NE/F(o:), is the norm of a:E-+E.O 
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Note that the trace and norm of a depend on the extension field E, and 
not just on the element a itself. 

Since the trace of a linear operator is the sum of the roots of its 
characteristic polynomial and the norm is the product of these roots, 
Theorem 7 .1.1 allows us to express the trace and norm in terms of the 
roots of the minimal polynomial. Let F < E be finite, let a E E and let 

p(x) = min(a,F) = xd + ad_1xd-1 +···+au 

have roots r1, ... ,rd in a splitting field. It follows from Theorem 7.1.1 
that 

d 
TrE/F(a) = [E:F(a)] Lri = -[E:F(a)]ad_1 

i=1 
and 

We remark that many authors simply define the trace and norm of a 
directly from these formulas. 

Alternate expressions for the trace and the norm can be obtained a8 
follows. Let r1, ... , rs be the distinct roots of p(x). Each of these roots 
appears with multiplicity [F(a):Fh (Theorem 4.6.1) and so 

s s 

TrE/F(a) = [E:F(a)][F(a):FhLri = [E:F(a)]8 [E:FhLri 
i=l i=1 

and 

N ( ) _ ITs [E:F(a)][F(a):F]i _ ITs [E:F(a)]8 [E:F]j 
E/F a - ri - ri 

i=l i=1 

Now let us take a look at the trace and the norm from the 
perspective of embeddings of E into an algebraic closure. Let F < E be 
finite and let HomF(E,F) = {u1, ... ,un} be the set of all embeddings of 
E into F over F. If a E E and p(x) = min(a,F), then u1a, ... ,una is a 
list of the roots of p(x) in F. However, each root may appear more than 
once in this list. 

To see how many times each root appears, consider the tower 
F < F(o:) <E. Each embedding ui is obtained by extending to E an F
embedding r of F(a) into F, and this can be done in [E:F(a)]8 different 
ways. Each extension of r has the same value on a and each embedding 
r of F( a) into F has a different val"!le on a. Hence, the list u 1 a, ... , una 
contains exactly [E:F(o:)]8 copies of each root of p(x). Thus, if r1, ... ,r8 

are the distinct roots of p(x) in F, then 
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n s 
Lcria = [E:F(a)]8 Lri 
i=1 i=1 

and 

lin O'·a = ITS r_[E:F(a)Js 
I , I 

i=1 i=1 

These formulas give another expression for the norm and the trace. Let 
us summarize. 

Theorem 7.1.2 Let F < E be finite and let a E E with p(x) = 
min(a,F) = xd + ad_1xd-1 + · · · + a0 . 

1) If p(x) has roots r1, ... ,rd then 

d 
TrE/F(a) = [E:F(a)] Lri = -[E:F(a)]ad_1 

i=1 
and 

2) If p(x) has distinct roots r1, ... , r8 then 
s 

and 

TrE/F(a) = [E:F(a)]5 [E:Fh L ri 
i=1 

N ( ) _ ITs [E:F(a))5(E:F)i 
E/F a - ri 

i=1 

n 

TrE/F( a) = [E:Fh L cria 
i=1 

and 

0 

Theorem 7.1.2 can be used to derive some basic properties of the 
trace and the norm. We leave proof of the following to the reader. 
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Theorem 7.1.3 Let F < E be finite. 

1) The trace is an F-linear functional on E, that is, for all a, {3 E E 
and a, bE F, 

TrE/F(aa+bf3) =a TrE/F(a)+b TrE/F(f3) 

2) For all a, {3 E E and a E F 

NE/F(af3) = NE/F(a)NE/F({3) and NE/F(aa) = a[E:F] NE/F(a) 

3) If a E F then 

TrE/F(a) = [E:F]a and NE/F(a) = a[E:F] 

3) IfF< E < L are finite and if a E L then 

TrL/F(a) = TrE/F(TrL/E(a)), NL/F(a) = NE/F(NL/E(a)) 0 

*7.2 The Discriminant of Field Elements 
Our goal in this section is to describe conditions that guarantee that 

a given set {a11 ••• ,an} of elements of E is a basis for E over F. We 
begin with a few remarks on metric vector spaces. (For more details, see 
Roman, Advanced Linear Algebra, Springer-Verlag, Graduate Texts in 
Mathematics Vol. 135, 1992.) 

Definition Let V be a vector space over a field F. A mapping 
(,):V xV ...... F is called a bilinear form if it is a linear function of each 
coordinate, that is, if for all x,y E V and a,{3 E F 

(ax+ {3y,z) = a(x,z) + {3(y,z) and (z,ax + {3y) = a(z,x) + {3(z,y) 

The pair (V,(,)) is called a metric vector space. A bilinear form is 
symmetric if (x,y) = (y,x) for all x, y E V. 0 

If S ~ V, we let (x,S) = {(x,s) Is E S}. 

Definition A metric vector space is nonsingular if (x,V) = {0} implies 
that x = 0. A metric vector space Vis null if (x,y) = 0 for all x, y E V. 0 

If '!A= {hi} is a basis for V over F and if x = Exibi E V, we will 
denote the coordinate (row) matrix (x1, ... ,xn) by the boldface notation 
x. The matrix of the form (,) with respect to '!A is 
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Here are some key facts about the matrix of a form. We leave proof 
to the reader. 

Theorem 7.2.1 
1) If Mc::s is the matrix of a bilinear form on V then 

for all x, y E V. 
2) Two matrices M and N represent the same bilinear forms on V, 

with respect to possibly different bases, if and only if they are 
congruent, that is, if and only if M = PNP T for some invertible 
matrix P. 

3) A metric vector space is nonsingular if and only if any, and hence 
all, of the matrices that represent the form are nonsingular. 0 

Now we can return to the business at hand. Let F < E be a finite 
extension and let 

(7.2.1) 

for all a, {J E E. This is easily verified to be a symmetric bilinear form 
~n E over F. If c::B = {Pv···,{Jn} is a basis forE over F, then the matrix 
of the form (,) is 

This form has rather special properties, due to the fact that 

for all a, {J, 'Y E E. 

Theorem 7.2.2 Let F < E be finite, with form given by (7.2.1). Then 
either 

1) E is null and the trace map is identically zero, or 
2) E is nonsingular and every matrix representing (,) is nonsingular. 

Proof. If E is singular then (a,E) = 0 for some a ::p 0 and so (l,E} = 
{0}. It follows that (,) is null and the trace map is identically zero. I 

Thus, any matrix representing the form (7.2.1) is either the zero 
matrix or it is nonsingular. Note that, if char(F) = p ::p 0, then the zero 



7 A Field Extension as a Vector Space 153 

matrix will arise when pI TrE/.F(a) for all a E E. Referring to part 3) of 
Theorem 7.1.2, we see that tliis happens when [E:F)i > 1, since [E:Fh is 
a power of p. In other words, if F < E is not separable, then E is null. 
The converse also holds. 

Theorem 7.2.3 Let F < E be finite, with form (7.2.1). Then E is 
nonsingular if and only if F < E is separable. 

Proof. We have just seen that if F < E is not separable then E is 
singular. For the converse, suppose that F < E is finite and separable. 
Then there exists a primitive element a E E. If E = F( a) has degree n 
over F then the elements 1, a, .. . ,an-1 form a basis for E over F. 
Referring to part 3) of Theorem 7.1.2, and letting ai = uia be the roots 
of min(a,F) and r)i. = (a~, ... ,a~), we have 

Thus, if V is the Vandermonde matrix 

oP 1 1 1 

01 Q1 Q2 Qn-1 

V= 02 Q2 Q2 2 
1 2 Qn-1 

0 n-1 n-1 Q1 n-1 Q2 n-1 
Qn-1 

then 
k • T 

[TrE/F(a a'))= VV 

and so 

It is well-known that 

det V =IT (ai -aj) 
i <j 

Since a is separable, the ai 's, being the roots of the separable 
polynomial min(a,F), are distinct and so det V f. 0. Hence (,) is 
nonsingular. I 
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In view of the previous results, the trace map and the form (7.2.1) 
are interesting only when the form is nonsingular, that is, only when 
F < E is separable. 

Definition Let F < E be finite and let a 1, •.• , an E E. The discriminant 
of a 1, ... , an is the determinant 

Thus, if al> ... , an is a basis for E over F then the discriminant is the 
determinant of the matrix that represents the form (7.2.1) with respect 
to this basis. 0 

When F < E is finite and separable, the discriminant can be used to 
determine whether or not a set of vectors is a basis for E over F. 

Theorem 7.2.4 If F < E is finite and separable of degree n, then 
{ a 1, ... , an} is a basis for E over F if and only if LlE/F( a 1, ... , an) =F 0. 

Proof. Since E is nonsingular, if { a 1, ... , an} is a basis for E over F, 
then ((ai,aj)) is nonsingular and so LlE/F(a1, ..• ,an) =F 0. Conversely, 
assume that LlE/F( a 1, ... , an) =F 0 and that 

"a·a· = 0 ~I I 
1 

for ai E F. Multiplying by ak and taking the trace gives 

~aiTrE/F(aiak) = 0 
1 

and since the rows of the matrix (TrE/F( aiaJ)) are linearly independent, 
we have ai = 0 for all i, whence { a 1, ... , an} 1s a basis for E over F. I 

We next derive an alternate expression for the discriminant. Let 
F < E be finite and separable and let a 1, ... , an E E. Let Hom(E,F) = 
{ u1, •.. , u nl and consider the matrix 

(7.2.2) 
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If A= M(o1, ... ,on) and B = M({31,. .. ,{3n) is the corresponding matrix 
for {311 ••• , {3k E E then the (ij)-th entry of ABT is 

{ABT)iJ = Lukoiuk{jj = Luk(oif3j) = TrE/F(oi{3j) 
k k 

and so 

In particular, if {3i = oi for all i, then 

Taking determinants gives the following. 

Theorem 7.2.5 Let F < E be finite and let o1, ... , on E E. Then 

Thus, { o1, ... , on} is a basis for E over F if and only if 

0 

*7.3 Algebraic Independence of Embeddings 

Let E and L be fields. Recall that the Dedekind Independence 
Theorem (Corollary 2.8.7) says that any set {u1, ... ,un} of distinct 
embeddings of E into L is linearly independent over L. To put this 
another way, let AiEL. and consider the polynomial p(x1, ... ,~) = 
E Aixi. Then the Dedekind Independence Theorem says that if 
p( u 1, ... , 0' n) is the zero map, then p(x1, ... , xn) must be the zero 
polynomial. Under certain circumstances, we can strengthen this result 
considerably. 

If u1,. . .,un are embeddings of E into L and if p(x1,. .. ,xn) is a 
polynomial with coefficients in L then p( u 1, ... , u n) is a function from E 
into L, defined by 

Note that we are dealing here with the product of maps, and not the 
composition. Thus, for instance, if n = 1 and p(x) = x2, we have 

p(u)o = p(uo) = (uo)2 
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and not p(u)a = u2a = u(ua). 

Definition Let F < E. A set of distinct F -em beddings { u 1, ... , u n} of E 
into a field L is algebraically independent over L if the only polynomial 
p(x1, ... ,xn) E L[x1, ... ,xnJ for which p(u1, ... ,un) is the zero function is 
the zero polynomial. 0 

Theorem 7.3.1 Let F be an infinite field, let F < E be finite and 
separable of degree n. Then any set { u 1, ... , u n} of distinct F
embeddings of E into any field L is algebraically independent over L. 

Proof. Suppose that p(x1, ... , xn) is a polynomial over L for which 
p(u1, ... ,un)a = 0 for all a E E. Let {aJ be a basis forE over F. Then 
for all ai E F, we have 

This implies that the polynomial 

over L satisfies q( a1, ... , an) = 0 for all ai E F. It follows from Theorem 
1.3.4 that q(x1, ... ,xn) = 0, that is, 

Now, the matrix M(a1, ... ,an)= (uiaj) is nonsingular by Theorem 7.2.5 
and so for any {31, ... ,{3n E L, there exists x1, ... ,xn E E such that 

*7.4 The Normal Basis Theorem 

Let F < E be a finite Galois extension of degree n. Since F < E is 
finite and separable, there exists a A E E such that E = F(A). As we 
know, the set {l,A, ... ,An-1} is a basis forE over F. This type of basis 
is called a polynomial basis. If GF(E) = { u 1, ... , u n} then the elements 
u1A, ... ,unA are precisely the roots of min(A,F) and so they are distinct. 
If they are linearly independent, then they also form a basis for E over 
F, called a normal basis. Put succinctly, a normal basis is a basis for E 
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over F consisting of the roots of some minimal polynomial min( ..X,F), for 
..XEE. 

We wish to show that any finite Galois extension has a normal basis. 
Theorem 7.2.5 can be reworded for finite Galois extensions as follows. 

Theorem 7.4.1 IfF< E is finite and Galois, with GF(E) = {u1, ... ,un} 
then { ..X1, ... , ..Xn} is a basis for E over F if and only if det( ui..Xj) =f:. 0. 

Proof. We give a proof that does not use the notions of Section 7.2. Let 
u = E {Jiui for {Ji E E. Since distinct F -automorphisms of E are linearly 
independent over E, it follows that u = 0 if and only if {Ji = 0 for all i. 
Now suppose that B = {..X1, ... ,..Xn} is a basis forE over F. Then u = 0 if 
and only if u..Xj = 0 for all j, that is, if and only if EifJiui..Xj = 0, for all 
j = 1, ... , n. It follows that E i{Jiui..Xj = 0 for all j = 1, ... , n if and only 
if {Ji = 0 for all i = 1, ... , n. Hence, det( ui..Xj) =f:. 0. 

Conversely, suppose that det( ui..Xj) =f:. 0 and let E j{Jj..Xj = 0. Then 

0 = U·O = "' a·U·A· I 4- f'J I ] 
J 

for all i = 1, ... , n. It follows that {Jj = 0 for all j = 1, ... , n and so {Ail 
is a basis for E over F. I 

Theorem 7.4.1 implies that {uj..X} is a (normal) basis for E over F if 
and only if det(uiuj..X) =f:. 0. Our goal is to find such an element A E E, 
when F < E is finite and Galois. 

Consider the matrix 

0"10"1 0"10"2 u1un 

M= 
0"20"1 0"20"2 u2un 

unu1 unu2 unun 

For each i, the product uiuj runs through u1, ... ,un as j runs through 
l, ... ,n, and so each row of M is a distinct permutation of u1, ... ,un. 
The same applies to the c(jlumns of M. Thus, we may write 

0"1 
1 

0"1 2 0"1 n 

M= 
0"2 

1 
0"2 2 0"2 n 

un 
1 

un 2 un n 
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where (1i,2i, ... ,ni) is a distinct permutation of {1, ... ,n}, fori= 1, ... ,n 
and (h,h, ... ,jn) is a distinct permutation of {l, ... ,n}, for j = 1, ... ,n. 
Replacing each ITi by an independent variable xi gives the matrix 

XI 
I 

XI 2 XI n 

N(x1, ... ,xn) = 
x2 

I 
x2 2 x2 n 

xn 
I 

xn 2 xn n 

We claim that the polynomial p(x1, ... ,xn) = det(N(xi, ... ,~)) is 
nonzero. Each row of N is a distinct permutation of the variables 
xi, ... ,xn and similarly for each column. Thus N(l,O, ... ,O) is a 
permutation matrix, that is, each row and each column of N contains 
one 1 and the rest O's. Since permutation matrices are nonsingular 

p(1,0, ... ,0) = det(N(l,O, ... ,O)) # 0 

Hence, p(x1, ... ,xn) # 0. 
If F is an infinite field, Theorem 7.3.1 implies that the distinct 

em beddings IT I, ... , IT n of E into L are algebraically independent over L 
and so there exists a A E L for which 

Thus, we have proven the following. 

Theorem 7.4.2 If F is an infinite field then any finite Galois extension 
F < E has a normal basis. 0 

This result holds for finite fields as well and the proof will be given 
in Chapter 8. 

Exercises 
1. Let F < E be finite. For all a, fJ E E, 

TrE/F(a+fJ) = TrE/F(a)+TrE/F({J), NE/F(a{J) = NE/F(a)NE/F({J) 

2. Let F < E be finite. If a E F then TrE/F(a) = [E:F)a and 
NE/F(a) = a(E:FJ. 
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3. If F < E < L are finite and if a E L then 

4. 

5. 

6. 

7. 

8. 

9. 

Let F < E be finite and let u E HomF(E,L). If a E E then 
NuE/uF(ua) = u(NE/F(a)). State and prove a similar statement 
for the trace. 
Find a normal basis for the splitting field of p(x) = x4 - 5x2 + 6 
over Q. 
If F is a finite field of characteristic 2 show that every element of 
F has a square root in F. 
If F is a finite field of characteristic p f. 2 then exactly half the 
nonzero elements of F have square roots in F and that if a E F has 
a square root in F then the set of all squares in F is {,82a I ,8 E F}. 
Let F < E be a finite separable extension, with E = F( a). Let 
p(x) = min(a,F) have degree n. Show that the discriminant 
A ( 1 n-1) · · b ( 1)n(n-1)/2N ( '( )) uE/F ,a, ... ,a 1s g1ven y - E/F p a . 
Let F < E be finite and separable with form (7 .2.1) and let { ai} be 
a basis for E over F. The dual basis {,BJ to { aJ is a basis with 
the property that 

TrE/F(aA) = (ai,,Bj) = oi,j 

where 8ij = 1 if i = j and 0 otherwise. In matrix terms, { ai} and 
{,Bi} are dual bases if 

M(al, ... ,an)M(,81, ... ,,8n)T =I 

where M is defined by (7.2.2). A basis for E over F is called a 
polynomial basis if it has the form {1, a, ... ,an-I} for some a E 
E. Any simple algebraic extension E = F( a) has a polynomial 
basis. Let F < E be finite and separable, with polynomial basis 
{1,a, ... ,an-I}. Let 

Prove that the dual basis for {1,a, ... ,an-l} is 

{ ao al an-I} 
p'(a)' p'(a)' · · · ' p'(a) 

10. If V is a vector space, let V* denote the algebraic dual space of all 
linear functionals on V. Note that if dim V is finite then dim V = 
dim V*. 
a) Prove the Riesz Representation Theorem for nonsingular 

metric vector spaces: Let V be a finite dimensional 
nonsingular metric vector space over F and let f E V* be a 
linear functional on V. Then there exists a unique vector x E 
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V such that fx = (y,x) for all y E V. Hint: Let '1/Jx:V-+F be 
defined by tPx(Y) = (y,x). Define a map r:V-+V* by rx = tPx· 
Show that r is an isomorphism. 

b) Let F < E be finite and separable, with form (7.2.1). Prove 
that, for any linear functional r:E-+F there exists a unique 
a E E for which r(J = TrE/F(af3) for all (3 E E. 



Chapter 8 

Finite Fields 1: Basic Properties 

In this chapter and the next, we study finite fields, which play an 
important role in the applications of field theory, especially to coding 
theory, cryptology and combinatorics. For a thorough treatment of 
finite fields, the reader should consult the book Introduction to Finite 
Fields and Their Applications, by Lidl and Niederreiter, Cambridge 
University Press, 1986. 

8.1 Finite Fields 

If F is a field, then F* will denote the multiplicative group of all 
nonzero elements of F. Let us recall some facts about finite fields that 
have already been established. 

Theorem 8.1.1 Let F be a finite field. 

1) F has prime characteristic. (Theorem 0.3.2) 
2) F* is cyclic. (Corollary 1.3.5) 
3) Any finite extension ofF is simple. (Corollary 4.4.5) 
4) F is perfect, and so every algebraic extension of F is separable. 

(Theorem 4.8.2) 0 

Lemma 8.1.2 IfF is a finite field and [E:F] = d then IE I = IF I d. 

Proof. If { a 1, ... , ad} is a basis for E over F, then each element of E has 
a unique representation of the form a1 a 1 + · · · +ad ad, where ai E F. 
Since there are I F I possibilities for each coefficient ai, we deduce that 
IE I = IF I d .• 
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Since a finite field F has prime characteristic p, we have ~ < F and 
so Lemma 8.1.2 gives 

Corollary 8.1.3 If F is a finite field with char(F) = p, then F has pn 
elements for some positive integer n. 0 

From now on, unless otherwise stated, p will represent a prime 
number, and q will represent a power of p. 

8.2 Finite Fields as Splitting Fields 

We have seen that every finite field of characteristic p has pn 
elements for some n > 0. Let us now show that there is, up to 
isomorphism, exactly one field of size pn, for each prime p and each 
integer n > 0. 

Let q = pn and let S be the splitting field for the polynomial 

over ~· If R is the set of roots of fq{x) in S, then a, {J E R imply that 
aq =a and {Jq = {3, whence 

Hence a± {J E Rand a{J-1 E R. It follows that R is a field and R = S. 
Furthermore, since 

fq'(x) = qxq-1 - 1 = -1 

the polynomial fq(x) has no multiple roots in S and so IS I = q. Thus, 
there exists a fimte field S of size q = pn for every prime p and every 
positive integer n. It is customary to denote such a field by F q' or 
GF(q). (The symbol GF stands for Galois Field, in honor of Evariste 
Galois.) 

To establish uniqueness, observe that if F is a field of size q = pn, 
then F* is a multiplicative group of order q- 1 and so every a E F* 
satisfies aq-1 = 1. Thus, every a E F is a root of the polynomial 
fq(x) = xq- x. Since this polynomial has exactly q roots, F is the set of 
roots of fq(x) and is therefore the splitting field for fq(x) over ZP. Since 
any two splitting fields for fq(x) are isomorphic, we conclude that any 
two finite fields of size q are isomorphic. 
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Theorem 8.2.1 
1) Every finite field has size q = pn, for some prime p and integer 

n > 0. 
2) For every q = pn there is, up to isomorphism, a unique field 

GF(q) of size q, which is both the set of roots of fq(x) = xq-x 
and the splitting field for fq(x) over ZP. [] 

In view of this theorem, we will often refer to the finite field GF(q). 

Corollary 8.2.2 The extension GF(q) < GF(qn) is a Galois extension.[] 

8.3 The Subfields of a Finite Field 

It is easy to determine the subfields of a finite field. If F < GF(pn) 
then Lemma 8.1.2 implies that IF I == pd for some dIn. On the other 
hand, we have 

and since f n(x) splits over GF(pn), so does f d(x). Thus GF(pn) contains 
a splitting Pfield for f d(x), that is, GF(pn) cd'ntains a subfield of size pd. 
Certainly, GF(pn) clnnot contain more than one such subfield, for then 
there would be more than pd roots of the polynomial f d(x) in GF(pn). 

p 

Theorem 8.3.1 The field GF(pn) has exactly one subfield of size pd, for 
each dIn. This accounts for all of the subfields of GF(pn). [] 

8.4 The Multiplicative Structure of a Finite Field 

Since GF(q)* is cyclic, Theorem 0.2.11 implies the following theorem. 

Theorem 8.4.1 There are exactly ¢(d) elements of GF(q)* of order d for 
each d I q -1 and this accounts for all of the elements of GF(q)*. [] 

It is customary to refer to any element of GF(q) that generates the 
cyclic group GF(q)* as a primitive element of GF(q). However, this 
brings us into conflict with the term primitive as used earlier to denote 
any element of a field that generates the field using both field operations 
(addition and multiplication). Accordingly, we adopt the following 
definition. 



164 8 Finite Fields I 

Definition Any element of GF(q) that generates the cyclic group GF(q)* 
is called a group primitive element of GF(q). In contrast, ifF< E then 
any element a E E for which E = F(a) is called a field primitive 
element of E over F. 0 

If {3 E GF(q), we may wish to know when the equation 

{8.4.1) 

has a solution in GF(q), that is, when {3 has a k-th root in GF(q). This 
question has a simple answer in view of the fact that GF(q)* is cyclic. If 
a is a group primitive element of GF(q) then {3 = ai for some i and so 
(8.4.1) has a solution x = ai if and only if 

for some integer j. This is equivalent to 

or 
kj = i mod (q-1) 

i = kj + n(q-1) 

for some integers n and j. But this holds if and only if 

{k,q -1) I i 

where (k,q- 1) is the greatest common divisor of k and q- 1. Thus, 
equation (8.4.1) has a solution for all {3 E GF(q) if and only if 
(k,q -1) = 1. 

Theorem 8.4.2 

1) 

2) 

Let a be a group primitive element of GF(q). The equation xk = 
ai has a solution in GF{q) if and only if {k,q -1) I i. 
The equation xk = {3 has a solution for all {3 E GF(q) if and only if 
(k,q -1) = 1, in which case the solution is unique. 0 

Theorem 8.4.2 says that if (k,q- 1) = 1, the function aHak is a 
permutation of the elements of GF(q). For this reason, in this case the 
polynomial p(x) = xk is called a permutation polynomial. 
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8.5 The Galois Group of a Finite Field 

Since the extension GF(q) < GF(qn) is Galois, if G IS the Galois 
group of GF(qn) over GF(q) then 

I G I = [GF(qn):GF(q)] = n 

The structure of G could not be simpler, as we now show. 

Theorem 8.5.1 The Galois group G of GF(qn) over GF(q) is cyclic of 
order n, generated by the Frobenius automorphism u q:a~-+aq. 

Proof. Since aq =a for all a E GF(q), we have uq E G. Moreover, then 
automorphisms 

are distinct elements of G, for if u~ = t then aqk =a for all a E GF(qn), 
which implies that k ~ n. Since I G I = n, we see that G = (u q)· I 

8.6 Irreducible Polynomials over Finite Fields 

The following theorem gives some key facts about irreducible 
polynomials over a finite field. 

Theorem 8.6.1 For every finite field GF(q), and every positive integer d, 
there exists an irreducible polynomial p(x) of degree d over GF(q). Let 
a be a root of p(x) in some extension field. 

1) (Splitting Field) The splitting field of p(x) is GF(q)(a) = GF(qd). 

2) (Roots) The roots of p(x) in a splitting field are 

3) 

4) 

(8.6.1) 
q q2 qd-1 

a, a ,a , ... ,a 

(Degree) dis the smallest positive integer for which aqd =a. 

(Degree) p(x) I xqk- x if and only if d I k. Hence, d is the smallest 
positive integer for which p(x) I xqd- x. 

5) (Order of Roots) All roots of p(x) have the same multiplicative 
order in GF(qd)*. 

Proof. Note first that since GF(q) < GF(qd) is simple, we have 
GF(qd) = GF(q)(jJ) and so min(jJ,GF(q)) is an irreducible polynomial 
of degree d over GF(q). For part 1), since GF(q) < GF(q)(a) is normal, 
p(x) splits in GF(q)(a), whence it is the splitting field for p(x). Also, 
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(GF(q)(a):GF(q)] = deg p(x) = d 

and so GF(q)(a) = GF(qd). 
To prove part 2), recall that the Galois group of GF(qd) over GF(q) 

is the cyclic group 

Applying these maps to a gives the complete list (8.6.~ of roots of 
p(x), with no duplicates since any automorphism of GF(q ) over GF(q) 
is completely determined by its value on a. 

For part 3), since a E GF(qd) we have aqd =a and it is clear from 
part 2) that no smaller power of q can have this property. Part 4) 
follows from the fact that p(x) I xqk- x if and only if the splitting field 
for p(x) is a subfield of the splitting field for xqk- x, that is, if and only 
if GF(qd) < GF(qk). Part 5) follows from the fact that since uq is an 
automorphism of GF(qd), it preserves multiplicative order and so the 
order of u~a is equal to the order of a. I 

Definition If p(x) is irreducible over GF(q) then the multiplicative order 
of any root of p(x) in its splitting field is called the order of p(x) and is 
denoted by o(p(x)) or o(p). 0 

Definition A polynomial p(x) over GF(q) of degree d is said to be 
primitive over GF(q) if it is the minimal polynomial of a group 
primitive element of GF(qd), that is, if its order is qd -1. 0 

According to part 5) of Theorem 8.6.1, an irreducible polynomial 
over GF(q) of degree d is primitive if and only if all of its roots are 
group primitive in GF( qd). Primitive polynomials play an important 
role in finite field arithmetic, as we shall see in the next chapter. 

The following theorem provides a characterization of order. ( cf. 
Theorem 8.6.1, part 4).) 

Theorem 8.6.2 Let p(x) E GF(q) be irreducible of order 11. Then 
p(x) I xk- 1 if and only if 11 I k. Hence, 11 is the smallest positive integer 
for which p(x) I xv- 1. 

Proof. Suppose first that 11 I k. Each root a of p(x) satisfies av -1 = 0 
and therefore also ak- 1. Since ~(x) is separable, we conclude that 
p(x) I xk- 1. Conversely, if p(x) I x - 1 then any root of p(x) is a root 
of xk- 1 and therefore has order dividing k, whence 11 I k. I 
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Relationship Between Order and Degree 
There is a simple relationship between the order and degree of an 

irreducible polynomial p(x) over GF(q). Let o(p(x)) = 11 and 
deg p(x) = d and suppose that a E GF(qd) is a root of p(x). Since 

aqk = a if and only if 11 I qk - 1 

and since d is the smallest positive integer for which aqd =a, we 
conclude that d is the smallest positive integer for which vi qd -1. Put 
another way, d = deg p(x) is the order of q modulo 11, written o..,(q). 
Since (v,q) = 1, the residue q of q modulo 11 lies in l~, the 
multiplicative group of elements of l,., that are relatively prime to 11 

and so deg p(x) = o(q) in the group l~. 
By way of converse, suppose that f(x) is a polynomial over GF(q) 

and a is a root of order 11 in a splitting field. If deg f(x) = o..,( q) then 
f(x) must be irreducible, since it has the same degree as p(x) = 
min(a,GF(q)) and is divisible by p(x). 

Theorem 8.6.3 Let p(x) be a polynomial over GF(q) of degree d, let a 
be a root of p(x) of order 11 in a splitting field. Then p(x) is irreducible 
if and only if any of the following equivalent conditions holds. 

1) d is the smallest positive integer for which vi qd- 1. 

2) d is the smallest positive integer for which ol =a. 
3) d = o..,(q) is the order of q modulo 11. 0 

Theorem 8.6.3 tells us that the degree of an irreducible polynomial is 
completely determined by its order. It is not true that the order of an 
irreducible polynomial is determined by its degree, as we will see in a 
moment. 

If p(x) E GF(q) is irreducible and has degree d, then GF(qd) is the 
splitting field for p(x). Of course, we may view p(x) as a polynomial 
over any intermediate field GF(qk) where 1 < k < d, in which case it 
may no longer be irreducible. Let a be a root of p(x) of order 11 in 
GF(qd), and suppose that. a is a root of the irreducible factor q(x) of 
p(x) over GF(qk). Since qk has order 6 = d/(k,d) in l~, we deduce from 
Theorem 8.6.3 that deg q(x) = 6. 

Theorem 8.6.4 Let p(x) be irreducible of degree d over GF(q). When 
thought of as a polynomial over GF(qli.), where 1 $; k $; d, the 
polynomial p(x) can be factored into (k,d) irreducible factors, each of 
which has degree d/(k,d). In particular, p(x) is irreducible over GF(qk) 
if and only if (k,d) = 1. 0 
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Computing the Order of a Polynomial 
We now present a procedure for finding the order 11 of an irreducible 

polynomial f(x) of degree d. Let p be a prime dividing qd- 1 and 
suppose that qd -1 = ptu with pju and 11 = p9v with p[v. Since 
vi qd- 1 we have s:::; t and pwvl q ~ 1 if and only if w:::; t- s. Hence, 
the largest w for which pwvl qd- 1 satisfies w = t- s, that is, s = t- w. 
Thus, the largest value of w for which 

, qd-1 
II-pw 

or equivalently by Theorem 8.6.2, 

gives the largest power pt-w of p dividing 11. Doing this for all primes 
dividing qd- 1 gives the value of 11. 

Example 8.6.1 Consider the irreducible polynomial f(x) = x6 + x + 1 
over GF(2). Since q = 2, we have 

q6 - 1 = 63 = 32 • 7 

Let p = 3. Division shows that 

f(x)Jx6319 -1, f(x)Jx6313 -1, f(x) I x63 -1 

and so w = 0, s = t - w = 2 - 0 = 2, whence 32 is the largest power of 3 
dividing 11. For p = 7 division gives 

and so 7 is the largest power of 7 dividing 11. Thus 11 = 32 • 7 = 63 
showing that f(x) is primitive over GF~2). 

The polynomial g(x) = x6 + x4 + x + x + 1 is also irreducible over 
GF(2). In this case for p = 3 we have 

g(x)Jx63/9 -1, f(x) I x63/3 -1 

and sow= 1, whence 3lv but 32Jv .. For p = 7 we have 

f(x)Jx6317 -1, f(x) I x63 -1 

hence 71 v and 11 = 21. Note that both of these polynomials have degree 
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6 but they have different orders. This shows that the degree of an 
irreducible polynomial does not determine its order. 0 

*8. 7 Normal Bases 
We saw in Chapter 7 that ifF< Eisa finite Galois extension and F 

is an infinite field, then E has a normal basis over F. To prove an 
analogous theorem when E is a finite field, we require a result from 
linear algebra, which we will not prove here. If T: V--+ V is a linear 
operator on an n-dimensional vector space V over a field F, then the 
minimal polynomial mT(x) for T is the unique monic polynomial over F 
of smallest degree for which mT(T) = 0. Since T satisfies its 
characteristic polynomial cT(x) = det(xl- Mat(T)), we have 
mT(x) I cT(x). A vector v E V is said to be cyclic forT if the vectors 

{ v,Tv,T2v, ... ,Tn-1v} 

form a basis for V. Here is the result that we need. 

Theorem 8.7.1 Let T:V--+V be a linear operator on a finite-dimensional 
vector space V over a field F. Then V contains a cyclic vector for T if 
and only if the minimal polynomial mT(x) and the characteristic 
polynomial cT(x) are the same. 0 

Now we can establish the existence of normal bases for finite fields. 

n-1 
Theorem 8.7.2 There exists a normal basis {a, aq, ... , aq } for 
GF{qn) over GF(q). 

Proof. If n = 1, there is nothing to prove, so assume that n > 1. The 
Galois group of GF{qn) over GF{q) is 

G { 2 n-1} = t,lT q'(T q' ••• '(T q 

where u q:a--+aq. By the Dedekind Independence Theorem, these maps 
are linearly independent over GF( qn). Thus, thinking of u q as a linear 
operator on the n-dimensional vector space GF(qn) over GF{q), we see 
that u q satisfies the polynomial xn - 1 and no polynomial over G F( q) of 

. smaller degree. Hence xn - 1 is the minimal polynomial of u q over 
G F( q). On the other hand, the characteristic polynomial of u q has 
degree n, is monic, and is divisible by xn -1, and so it must also be 
xn- 1. By the previous theorem, there exists a cyclic vector a for u q 
and so 

n-1 a, uqa, ... ,uq a 

is a normal basis for GF(qn) over GF{q). I 
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*8.8 The Algebraic Closure of a Finite Field 

In this section, we determine the algebraic closure of a finite field 
GF(q). Since GF(q) < GF(qn) is algebraic for all positive integers n, an 
algebraic closure of GF(q) must contain all of the fields GF(qn). Since 
n! I (n+1)!, it follows that 

and so the union 
00 

f(q) = U GF(qn!) 
n=O 

is an extension field of GF(q) that contains GF(qn), for all n ~ 1. 

Theorem 8.8.1 The field f(q) is the algebraic closure of GF(q). 

Proof. Every element of f(q) lies in some GF(qn!), whence it is 
algebraic over GF(q). Thus f(q) is algebraic over GF(q). Now suppose 
that f(q) < E is algebraic and let a E E have minimal polynomial p(x) 
over GF(q). If deg p(x) = d, then p(x) splits in GF(qd), which is 
contained in f(q). Hence a E f(q) and so E < f(q). Thus, f(q) has no 
proper algebraic extensions. I 

Steinitz Numbers 
We wish now to describe the subfields of the algebraic closure f(<IJ· 

Recall that a field K is a subfield of GF(qn) if and only if K = GF(q ) 
where d I n. The set N+ of positive integers is a complete lattice where 
m 1\ n = gcd(m,n) and m V n = lcm(m,n). If we denote by llJ q the set of 
all finite fields (or more properly the set of all isomorphism classes of 
finite fields) that contain GF(q), then ll.Jq is also a complete lattice 
where E 1\ F = En F and E V F = EF. 

Theorem 8.8.2 The map ¢:N+ -+ll.Jq defined by ¢(n) = GF(qn) is an 
order-preserving bijection. Hence, it is an isomorphism of lattices, that 
1S1 

1) n I m if and only if GF(qn) < GF(qm), 

2) GF(qn) n GF(qm) = GF(qnAm), 

3) GF(qn)GF(qm) = GF(qnvm). 

Proof. Left to the reader. I 
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It is clear that the lattice of intermediate fields between GF(q) and 
GF(qn) is isomorphic to the sublattice of N+ consisting of all positive 
integers dividing n. In order to describe the lattice of intermediate fields 
between GF(q) and f(q), we make the following definition. 

Definition A Steinitz number is an expression of the form 

where Pi is the i-th prime and ei E {0,1,2, ... } U {oo}. We denote the set 
of all Steinitz numbers by S. Two Steinitz numbers are equal if and 
only if the exponents of corresponding prime numbers Pi are equal. D 

We will denote arbitrary Steinitz numbers using upper case letters 
and reserve lower case letters strictly for ordinary positive integers. We 
will take certain obvious liberties when writing Steinitz numbers, such 
as omitting factors with a 0 exponent. Thus, any positive integer is a 
Steinitz number. We next define the algebra of Steinitz numbers. 

Definition Let S = TI p~i and T = TI p~i be Steinitz numbers. 

1) The product and quotient of S and T are defined by 
00 

ST II e-+f· = Pi 1 1 

i=l 
where oo- oo = 0. 

and 

2) We say that S divides T and writeS IT if ei ~ fi for all i. D 

Theorem 8.8.3 Under the relation of "divides" given in the previous 
definition, the set S is a complete distributive lattice, with meet and 
join given by 

SAT= ITP~n(ei,fi) and S VT = fip~ax(ei,fi) 
i=l i=l 

Moreover, the set of positive integers is a sublattice of S. D 

Subfields of the Algebraic Closure 

We can now describe the subfields of r(q). Let :t(r(q)) denote the 
lattice of all subfields of r(q) that contain GF(q). 
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Definition If S is a Steinitz number, let 

GF(q8) = U GF(qd) 
djS 

8 Finite Fields I 

where, as indicated by the notation, d is an ordinary positive integer. 0 

If a, {J E GF(q8) then a E GF(qk) for some k IS and {J E GF(qn) for 
some n IS. Thus a, {J E GF(qm) where m = lcm(k,n). It follows that 
GF(q8) is a subfield of f(q) containing GF(q). 

Theorem 8.8.4 The map ,P:S~!I'(f(q)) defined by ,P(S) = GF(q8) is an 
order preserving bijection. Hence, it is an isomorphism of lattices, that 
is, 

1) SIT if and only if GF(q8) < GF(qT), 

2) GF(q8) n GF(qT) = GF(q8 AT), 

3) GF(q8)GF(qT) = GF(qsvT). 

In addition, GF(q8) is finite if and only if Sis a positive integer. 

Proof. We begin by showing that n IS if and only if GF(qn) < GF(q8). 

One direction follows immediately from the definition: if n I S then 
GF(qn) < GF(q8 ). Suppose that GF(qn) < GF(q8). Let a be a field 
primitive element of GF(qn) over GF(q). Then a E GF(q8 ) and so a E 
GF(qd) for some dIS. Hence GF(qn) = GF(q)(a) < GF(qd), which 
implies that n I d, whence n IS. 

To see that ,P is injective, suppose that S =/= T. We may assume that 
there exists an integer n > 1 such that n IS but nJT. Then 
GF(qn) < GF(q8) but GF(qn) {: GF(qT) and so GF(q8) =/= GF(qT). 

To see that tP is surjective, let GF(q) < F < f(q). We must find an S 
for which GF(q8) =F. For each prime pi, let ei be the largest power of 
Pi for which 

(8.8.1) 

where ei = oo if (8.8.1) holds for all positive integers ei. Let 

If dIS then 

for some mEN+, where fi ~ ei and fi < oo. Hence 
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f. e. 

GF(qP/) < GF(qPi 1
) < F 

fori= 1, ... ,m and so 
f. 

GF(qd) = V GF(qPi1
) < F 

It follows that GF(q5) <F. Now, if a E F then a E GF(qn) < F for 
some n. If 

then 
g. 

GF(qPi 1) < GF(qn) < F 

and so gi :S ei for all i, by the maximality of ei. Hence n I S and so a E 
GF(qn) < GF(q5). This shows that F < GF(q5). Hence F = GF(q5) and 
so t/J is surjective. We leave the rest of the proof to the reader. I 

Exercises 
1. Show that 

d I n => pd- 1 I pn- 1 => fp"(x) I fpn(x) 

2. Is l 2 R:l F 2? Is l 4 R:l F 4? When is lq" R:l F q"? 
3. Determine the number of subfields of F 1024• Determine the 

number of subfields of F 729• 

4. Show that, except for the case of F 2 , the sum of all of the 
elements in a finite field is equal to 0. 

5. Find all group primitive elements of F 7: 
6. Show that the polynomial x4 + x3 + x2 + x + 1 is irreducible over 

F 2• Is it primitive? 
7. Let F be an arbitrary field. Prove that ifF* is cyclic then F must 

be a finite field. 
8. Consider the irreducible polynomial p(x) = x4 - 2 over Q. Show 

that adjoining one root of p(x) to Q does not produce the splitting 
field for p(x). What is the degree of the splitting field for p(x) 
over Q? 

Find the order of the following irreducible polynomials. 

9. x4 + x3 + x2 + x + 1 over GF(2). 
10. x4 + x + 1 over GF(2). 
11. x8 + x4 + x3 + x2 + 1 over GF(2). 
12. x8 + x5 + x4 + x3 + 1 over GF(2). 
13. x8 + x7 + x5 + x + 1 over GF(2). 
14. x4 + x + 2 over GF(3). 
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15. x4 + x3 + x2 + 1 over GF(3). 
16. x5 - x + 1 over GF(3). 
17. Show that every element in GF(qn) has a unique qi-th root, for 

i=1, ... ,n-1. 
18. If 2J q, show that exactly one-half of the nonzero elements of 

GF(q) have square roots. Hint. Let {J be a primitive element of 
GF(q). If {J = o:2, then o:2k = o: for some k. 

19. Show that if o: E GF(q) and n is a positive integer, then xq- x + o: 
divides xq"- x +no:. Hint: show that roots of the former are roots 
of the latter. 

20. Find a normal basis for GF(8) over GF(2). Hint. Let o: be a root 
of the irreducible polynomial x3 + x2 + 1. 

21. Show that f(q) = U~0GF(qn). 
22. Show that r( qn) = r( qm). 
23. Let F be a field F satisfying GF(q) < F < f(q). Show that all of 

the proper subfields ofF are finite if and only ifF is finite or F = 
GF(q8) where S = p00 for some prime p. 

24. Show that r( q) has no maximal subfields. 
25. Show that [f( q):F) is not finite for any proper subfield F < f( q). 
26. Show that r( q) has an uncountable number of nonisomorphic 

subfields. 
27. LetS IT. Show that [GF(qT):GF(q8)] is finite if and only ifT/S is 

finite, in which case the two numbers are equal. Hint: consider the 
intermediate fields. 
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Finite Fields II: Additional Properties 

9.1 Finite Field Arithmetic 

There are several ways in which to represent the elements of a finite 
field. One way is to use a factor ring GF(q)[x]/(p(x)), where p(x) is 
irreducible. Another is to use the fact that GF(q)* is cyclic, and so its 
elements are all powers of a group primitive element. It is clear that 
addition is more easily performed when field elements are written as 
polynomials and multiplication is more easily performed when all 
elements are written as a power of a single group primitive element. 
Fortunately, the two methods can be combined to provide an effective 
means for doing finite field arithmetic. 

Example 9.1.1 Consider the finite field GF(16) as an extension of 
GF(2). The polynomial 

p(x) = x4 + x + 1 

is irreducible over GF(2). To see this, note that if p(x) is reducible, it 
must have either a linear or a quadratic factor. But since p(O) f. 0 and 
p(l) f. 0, it has no linear factors. To see that p(x) has no quadratic 
factors, note that there are precisely four quadratic polynomials over 
GF(2), namely, 

and it is easy to check that no product of any two of these polynomials 
equals p(x). Since deg p(x) = 4, we have 
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GF(2)[x] = GF(l6) 
(x4+x+l) 

9 Finite Fields II 

Thus, letting a be a root of p(x), we can represent the elements of 
GF(16) as the 16 binary polynomials of degree 3 or less in a: 

Constant: 0, 1, 

Linear: a, a+ 1 

Quadratic: a 2 , a 2 + 1, a 2 +a, a 2 +a+ 1 

Cubic: a 3, a 3 +1, a3 +a, a3 +a2, a 3 +a+1, 
a 3 + a 2 + 1, a 3 + a 2 +a, a 3 + a 2 +a+ 1 

Addition of elements of GF(16) is quite simple, since it is just 
addition of polynomials, but multiplication requires reduction modulo 
p(a), that is, using the relation a 4 =a+ 1. On the other hand, observe 
that 

a15 = (a5)3 =(a. a4)3 =(a. (a+1))3 = a3(a+1)3 

= a 3 · ( a 3 + a 2 + a + 1) = a6 + a 5 + a 4 + a 3 

= ( a 3 + a 2 ) + ( a2 + a) + (a + 1) + a 3 

= ( a3 + a 2) + ( a2 + a) + (a + 1) + a 3 = 1 

and so o(a) 115. Since a 3 "1- 1 and a 5 "1- 1, we conclude that a is group 
primitive. Hence 

GF(16) = {0,1,a, ... ,a14} 

With this representation, multiplication is all but trivial, but addition 
is cumbersome. 

We can link the two representations of GF(16) by computing a table 
showing how each element ak can be represented as a polynomial in a 

of degree at most 3. Using the fact that a 4 = 1 +a, we have 

a 4 =a+ 1 
a 5 = a · a 4 = a( a + 1) = a 2 + a 
a6 = a · a 5 = a3 + a 2 

a7 = a·a6 = a 4 +a3 = a3 +a+ 1 

and so on. The complete list, given in Table 9.1.1, is known as a field 
table for GF(16). As is customary, we write only the exponent k for ak, 
and a3a2a1 a0 for the polynomial a3a 3 + a2a 2 + a1 a + a0• 
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Table 9.1.1 

0 0001 
1 0010 
2 0100 
3 1000 
4 0011 
5 0110 
6 1100 
7 1011 
8 0101 
9 1010 
10 0111 
11 1110 
12 1111 
13 1101 
14 1001 

Computations using this table are quite straightforward; for example, 

(o:8 + o:4 + 1)(o:3 + o:) = (0101 + 0011 + 0001)(1000 + 0010) 

= (0111)(1010) 

= 0:10 . 0:9 = 0:19 = 0:4 = 0: + 1 

Thus, the key to doing arithmetic in a finite field is having a group 
primitive element, along with its minimal (primitive) polynomial. In 
general, the task of finding primitive polynomials is not easy. There are 
various methods that achieve some measure of success in certain cases, 
and we mention one such method at the end of Section 11.2. 
Fortunately, extensive tables of primitive polynomials and field tables 
have been constructed. 

Let us use the primitive polynomial p(x) and the field table for 
GF(16) (Table 9.1.1) to compute the minimal polynomial over GF(2) 
for each element of GF(1~). We begin by computing sets of conjugates 
using Theorem 8.6.1 and the fact that o:16 = o:, 

Conjugates of o:: 

Conjugates of o:3 : 

Conjugates of o:5: 

Conjugates of o:7: 

0:3, o:6, 0:12, 0:24 = 0:9 

0:5, 0:10 

o:7, o:14, 0:28 = 0:13, 0:56 = 0:11 
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Letting mk(x) be the minimal polynomial for n.k, we have, for example 

The field table for GF(16) gives 

a 5 + a 10 = (0110) + (0111) = (0001) = a0 = 1 

and since a 15 = 1, we have 

The other minimal polynomials are computed similarly. The complete 
list is 

m0(x) = x+ 1 

m1 (x) = m2(x) = m4(x) = m8(x) = x4 + x + 1 

m3(x) = m6(x) = m9(x) = m12(x) = x4 + x3 + x2 + x + 1 

m5(x) = m10(x) = x2 + x + 1 

m7(x) = m11 (x) = m13(x) = m1ix) = x4 + x3 + 1 

Being able to factor polynomials of the form xn- 1 is important for 
a variety of applications of finite field theory, especially to coding 
theory. Since the roots of x15 - 1 over GF(2) are precisely the elements 
of GF(16)*, we have 

Of course, in order to obtain this factorization, we worked in the 
splitting field GF(16). In Chapter 10, we will see how to factor a 
polynomial of the form xn- 1 into a product of not necessarily 
irreducible factors, working only within the base field. D 

*9.2 The Number of Irreducible Polynomials 

Of course, if F is a finite field, then there are only a finite number of 
polynomials of a given degree d over F. It is possible to obtain an 
explicit formula for the number of irreducible polynomials of a degree d 
over GF(q) by using Mobius inversion. (See the appendix for a 
discussion of Mobius inversion.) First, we need the following result. 
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Theorem 9.2.1 Let GF{q) be a finite field, and let n be a positive 
integer. Then the product of all monic irreducible polynomials over 
GF(q), whose degrees divide n, is 

Proof. According to Theorem 8.6.1, an irreducible polynomial p(x) 
divides f11.(x) if and only if deg p(x) In. Hence, fqn(x) is a product of 
irreducible polynomials whose degrees divide n and every irreducible 
polynomial whose degree divides n divides fqn(x). Since no two such 
irreducible polynomials have any roots in common and since fqn(x) has 
no multiple roots, the result follows. I 

Let us denote the number of monic irreducible polynomials of degree 
d over GF(q) by Nq(d). By counting degrees, Theorem 9.2.1 gives the 
following. 

Corollary 9.2.2 For all positive integers d and n, we have 

0 

Now we can apply Mobius inversion to get an explicit formula for 
Nq(d). Classical Mobius inversion is 

g(n) = I: f(d) ::} f(n) = I: g(d)l{~) 
din din 

(9.2.1) 

where the Mobius function p. is defined by 

if m = 1 
if m = p1p2• • 'Pk for distinct primes Pi 
otherwise 

Corollary 9.2.3 The number Nq(n) of monic irreducible polynomials of 
degree n over G F( q) is 

Nq(n) = ~ l:P.(a)qd=~ LP.(d)qn/d 
din din 

Proof. Letting g(n) = qn and f(d) = dNq(d) in (9.2.1), we get the 
formula above. I 
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Example 9.2.1 The number of monic irreducible polynomials of degree 
12 over GF(q) is 

Nq(12) = Mp.(1)q12 + p.(2)q6 + p.(3)q4 + p.(4)q3 + p.(6)q2 + p.(12)q) 

= f.!...qt2 -q6 -q4+q2) 

The number of monic irreducible polynomials of degree 4 over GF(2) is 

N2(4) = ~p.(1)24 + p.(2)22 + p.(4)21) = 3 

as we would expect from the results of Example 9.1.1. 0 

Mobius inversion can be used to find not only the number of monic 
irreducible polynomials of degree d over GF(q) but also the product of 
all such polynomials. Let us denote this product by I(q,d;x). Then 
Theorem 9.2.1 is equivalent to 

xqn- x = II I( q,d;x) 
djn 

Applying the multiplicative version of Mobius inversion gives the 
following. 

Corollary 9.2.4 The product I( q,n;x) of all monic irreducible 
polynomials of degree n over GF(q) is 

( 
d )p.(n/d) ( nld )p.(d) 

I(q,n;x) = II xq -x = II xq -x 
djn djn 

0 

Example 9.2.2 For q = 2 and n = 4, we get 

0 

*9.3 Polynomial Functions 

Finite fields have the special property that any function from a finite 
field F to itself can be represented by a polynomial. As a matter of fact, 



9 Finite Fields II 181 

this property actually characterizes finite fields from among all 
commutative rings (finite and infinite)! 

Since GF(q) has size q, there are precisely qq functions from GF(q) 
to itself. Among these functions are the polynomial functions a~-+p(a) 
where p(x) E GF(q)[x]. We will denote this polynomial function by p(x) 
as well. If p(x) and q(x) are polynomial functions on GF(q) then 
p(x) = q(x) as functions if and only if p(a) = q(a) for all a E GF(q), 
which holds if and only if 

xq- x I p(x) - q(x) 

Thus, two polynomials represent the same function if and only if they 
are congruent modulo xq- x. Since every polynomial is congruent 
modulo xq- x to precisely one polynomial of degree less than q 
(namely, its remainder after dividing by xq- x), and since there are qq 
polynomials of degree less than q, we have the following theorem. 
(Proof of the last statement in part 2 of the theorem is left to the 
reader.) 

Theorem 9.3.1 
1) Two polynomials over GF(q) represent the same polynomial 

function on GF(q) if and only if they are congruent modulo 
xq-x. 

2) Every function f:GF(q)--+GF(q) is a polynomial function, for a 
unique polynomial of degree less than q. In fact, the unique 
polynomial of degree less than q that represents f is 

pr(x) = L f(a)(1- (x -a)q-1) 
ll' E GF(q) 

0 

Note that the representation of f given in part 2) above is the 
Lagrange interpolation formula as applied to finite fields. Part 2) has a 
very interesting converse as well. 

Theorem 9.3.2 If R is a commutative ring and if every function f:R--+R 
is a polynomial function, for some p(x) E R[x], then R is a finite field. 

Proof. First, we show that R must be finite. Suppose that I R I = A. 
The number of functions from R to itself is A~ and the number of 
polynomials over R is the same as the number of finite sequences with 
elements from R, which is N0A. Since distinct functions are represented 
by distinct polynomials we must have A~::; N0A, which only happens 
when A is finite. Thus, R is a finite set. 

Now let r, a E R with r ;f. 0. Define a function fr 8 :R--+R by 
I 
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ifx = r 

if x #= r 

By hypothesis, there exists a polynomial 8.o + al X + ... + auxn for which 

and 

Setting x = 0 gives a0 = 0 and so 

Thus, we conclude that for any r #= 0 and any a E R, there is a u E R 
for which ru =a. In other words, the map tPr=R-R defined by tP~ = rs 
is surjective. Since R is a finite set, tPr must also be injective. Hence, 
rs = 0, r #= 0 implies that s = 0 and so R has no zero divisors. In 
addition, since tPr is surjective, there exists a u E R for which tPru = r, 
that is, ru = r. If a E R then aru = ar and since R is commutative and 
has no zero divisors, we may cancel r to get au = a. Thus u E R is the 
multiplicative identity of R. Hence R is a finite iptegral domain, that 
is, a finite field. I 

*9.4 Linearized Polynomials 

We now turn to a discussion of linear operators on GF(qn) over 
GF(q). We will see that all such linear operators can be expressed as 
polynomial functions of a very special type. 

Definition A polynomial of the form 

with coefficients ai E GF(qn) is called a linearized polynomial, or a q
polynomial, over GF(qn). D 

The term linearized polynomial comes from the following theorem, 
whose proof is left to the reader. 
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Theorem 9.4.1 Let L(x) be a linearized polynomial over GF(qn). If a, 
{3 E GF(qn) and a, bE GF(q), then 

L(aa + bf3) = aL(a)b + L(f3) 

Thus, the polynomial function L(x):GF(qn)-+GF(qn) is a linear 
operator on GF(qn) over GF(q). D 

The roots of a q-polynomial in a splitting field have some rather 
special properties, which we give in the next two theorems. 

Theorem 9.4.2 Let L(x) be a nonzero q-polynomial over GF(qn), with 
splitting field GF(q8). Then each root of L(x) in GF(q5 ) has the same 
multiplicity, which must be either 1 or else a power of q. Furthermore, 
the roots of L(x) form a vector subspace of GF(q5) over GF(q). 

Proof. Since L'(x) :::: a 0, if a 0 "I 0 then all roots of L(x) are simple. On 
the other hand, suppose that a 0 = a 1 = · · · = ak-l = 0 but ak "/ 0. 
Then since ai E GF(qn), we have 

and so 
k 

m i m nk i ( m (n-l)k i-k)q 
L(x) = I: aixq = I: a~ xq = I: a~ xq 

i=k i=k i=k 

which is the qk-th power of a linearized polynomial with nonzero 
constant term, and therefore only simple roots. Hence, each root of L(x) 
has multiplicity qk. We leave proof of the fact that the roots form a 
vector subspace of GF(q5 ) to the reader. I 

The following theorem, whose proof we omit, is a sort of converse to 
Theorem 9.4.1. (For a proof of this theorem, and more on q
polynomials, see the book by Lidl and Niederreiter (1986).) 

Theorem 9.4.3 Let U be a vector subspace of GF(qn) over GF(q). Then 
for any nonnegative integer k, the polynomial 

k 
L(x) = II (x- a)q 

aeU 
is a q-polynomial over GF(qn). D 

If L(x) is a q-polynomial, then as a function, we have 
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m · m 
L:a~-+L(a) = L aiaq1 = L aiu~a 

i=O i=O 

where u q is the Frobenius automorphism. Thus, as an operator 
m 

L = "'a-ui L....J 1 q 
i=O 

is a linear combination over GF{qn) of the automorphisms u~. Since 
u~ = t we may reduce the expression for L to a polynomial in u q of 
degree at most n- 1. In fact, adding 0 coefficients if necessary, we can 
say that every q-polynomial function on GF(qn) has the standard form 

n-1 
L = "'O!·Ui L....J 1 q 

i=O 
2 

for ai E GF{qn). There are qn such q-polynomial functions on GF{qn), 
and this happens also to be the number of linear operators on GF(qn) 
over GF(q). Moreover, since the maps u~ are linearly independent over 
GF(qn), we deduce that each q-polynomial in standard form represents 
a unique linear operator. Thus, we have characterized the linear 
operators on GF(qn) over GF(q). 

Theorem 9.4.4 Every linear operator on GF(qn) over GF(q) can be 
represented by a unique q-polynomial in standard form 

n-1 
L(x) = L 

i=O 

Exercises 
1. Factor x5 - 1 over 

(a) F2 (b) F3 
2. Factor x7 - 1 over 

(a) F2 (b) F3 (c) Fs 
3. Factor x8 - 1 over 

(a) F2 (b) F3 (c) F4 (d) Fs 
4. Factor x10 - 1 over 

(a) F2 (b) F3 
5. Factor x13 - 1 over 

(a) F2 (b) F3 
6. Calculate Nq{20). 
7. Show that 

Nq{n) ~ A{qn- q) 
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8. 

and ln/2J 
qn = L dNq(d) :S nNq(n) + L qk :5 nNq(n) + ql+n/2 

din k=O 

Hence, Nq(n) ~ A{qn- ql+n/2). Finally, show that Nq(n) ~ qn/n. 
Show that the unique polynomial of degree less than q that 
represents the function f:GF(q)-+GF(q) is 

pr(x) = L f(a){l- (x- a)q-1) 
a E GF(q) 

9. Prove that a linearized polynomial over GF(qn) is a linear 
operator on GF(qn) over GF(q). 

10. Prove that the roots of a q-polynomial over GF(qn) form a vector 
subspace of the splitting field GF(q8 ) over GF(q). 

11. Prove that the greatest common divisor of two q-polynomials over 
GF(qn) is a q-polynomial, but the least common multiple need not 
be a q-polynomial. 



Part 3 

The Theory of Binomials 



Chapter 10 

The Roots of Unity 

Polynomials of the form xn- u, where 0 -:f:. u E F, are known as 
binomials. Even though binomials have a simple form, their study is 
quite involved, as is evidenced by the fact that the Galois group of a 
binomial is often nonabelian. As we will see, an understanding of the 
binomial xn - 1 is key to an understanding of all binomials. 

We can illustrate the interplay between the binomials xn - 1 and 
xn - u, for 0 -:f:. u E F as follows. Let E be the splitting field for xn - 1 
(with n odd) over F and let S be the splitting field for xn- u over F. It 
is not hard to show that 

for if r and s are roots of xn- u then r/s is a root of xn- 1. We will see 
in a later chapter that if E = F, that is, if xn - 1 splits over F, then 
F < S is abelian (in fact, cyclic). On the other hand, in the opposite 
extreme where [E:F) is as large as possible, then F < S is abelian if and 
only if S = E, that is, if and only if xn - u splits over E. 

·10.1 Roots of Unity 
The roots of the binomial xn - 1 , over a field F are referred to as the 

n-th roots of unity over F. Throughout this section, we will let F be a 
field with p = expchar(F), S a splitting field for xn- 1 over F and Un 
the set of n-th roots of unity over F in S. Notice that if n = kp then 
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and so the n-th roots of unity are the same as the k-th roots of unity, 
taken with a higher multiplicity. Thus, from now on, we assume that 
(n,p) = 1. 

Theorem 10.1.1 The set Un of n-th roots of unity over F is a cyclic 
group of order n under multiplication. Moreover, if (m,n) = 1 then 

where x is the internal direct product of groups. 

Proof. Clearly a, (3 E Un implies a(3, a-1 E Un. Hence, Un is a subgroup 
of the abelian group S* of nonzero elements of S. Since D(xn -1) = 
nxn-l -:f. 0, we deduce that xn- 1 is separable and therefore has n 
distinct roots, whence I un I = n. If m :::; n is the smallest positive 
integer for which am= 1 for all a E Un, then all n elements of Un are 
roots of xm -1, implying that m 2: n, whence m = n. Thus, the smallest 
exponent of un is I un I and Theorem 0.2.11 implies that un is cyclic. 

For the second part, if a E Urn nUn then am= 1 =an and since 
(m,n) = 1 there exist a, bE 7i. such that am+ bn = 1, whence 

which shows that urn nun= {1}. It follows that the mn products in 
the set urn un are distinct. Since urn un s:;; umn and I urn un I = mn = 
I umn I I we have umn = umun and thus umn = un X urn. I 

Definition An element wE Un of order n, that is, a generator of Un, is 
called a primitive n-th root of unity over F. We shall denote the set of 
all primitive n-th roots of unity over F by On and reserve the notation 
wn for a primitive n-th root of unity. 0 

Note that a primitive n-th root of unity w is a field primitive element 
of S, since F(w) = F(Un) = S. However, in general, S has field primitive 
elements that are not primitive n-th roots of unity. 

Theorem 10.1.2 

1) If wE nn then nn = {wk II:::; k < n, (n,k) = 1} and Inn I = 4>(n). 
2) u d 1 n then n~ = on/d. 
3) If (n,m) = 1 then nmn = nmnn. 

Proof. Part 1) follows from the theory of cyclic groups (see Theorem 
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0.2.10). For part 2), if d = n the result is trivial, so assume that d < n. 
If wn E On then 

O(wd) _ n _ n 
n - (n,d)- d 

and so w~ E On/d' Thus 0~ ~ On/ct For the reverse inclusion, let {3 E 
Onjd' Then {3 E Un and so {3 = w for some k, where wE On. Since 
o(f:J) = n/d, Theorem 0.2.11 implies that k = rd for some r satisfying 
(r,n/d) = 1 and so {3 = wrd. Now, if every prime dividing n also divides 
r, then we would have n/d = 1, contrary to assumption. Hence, we may 
let b = r + a(n/d), where a> 1 is the product of all primes dividing n 
but not r. Then (b,n) = 1. To see this, suppose that p is a prime and 
pIn. There are two possibilities: (i) if pI r then p[a and pl(n/d), 
whence p[a(n/d). Hence, p cannot divide r+a(n/d)=b; (ii) ifp[r 
then pI a and so pI a(n/d), and again p cannot divide r + a(n/d) =b. 
Thus, (b,n) = 1 and so wb EOn. Finally, 

{3 = wrd = wrd+an = wbd = (wb)d En~ 

For part 3), clearly wmwn E Umn. If (wmwn)k = 1 then since (m,n) = 
1, we have 

wk = w-k E U n U = {1} m n m n 

and so m I k and n I k, whence mn I k. Thus o( wmwn) = mn and 
nmnn ~ nmn. Since all of the products in Urn Un are distinct, so are all 
of the products in nmnn and so 

10.2 Cyclotomic Extensions 

Definition Let F be a field. The splitting field S of xn- 1 over F is 
called a cyclotomic extension of order n of F. 0 

(Cyclotomy is the process of dividing a circle into equal parts, which is 
precisely the effect obtained by plotting the n-th roots of unity over Q 
in the complex plane.) 

To determine the degree of S over F, note that S = F( wn) and so 

[S:F] = deg min(wn,F) 
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Since S is the splitting field of a separable polynomial, it follows that 
F < S is a finite Galois extension and we can get a better handle on its 
degree by looking at the Galois group ~(S). 

Any u E ~(S) is uniquely determined by its value on any w E On, 
and since u preserves order, uw must be one of the ,P(n) primitive roots 
of unity in S, that is, 

where k(u) E l~, the multiplicative group of integers in ln that are 
relatively prime to n. 

Thus, we may define a map .,P: ~(S)-+l~ by 

(10.2.1) t/Ju = k(u) 

Since 

we have 

t/J( UT) = k( U )k( T) = ( t/Ju )( t/JT) 

and so t/J is a homomorphism. Since k(u) = 1 implies that u = t, the 
map t/J is a monomorphism and thus ~(S) is isomorphic to a subgroup 
ofl~. 

Theorem 10.2.1 If F < S is a cyclotomic extension of order n then ~(S) 
is isomorphic to a subgroup of ~· Hence, ~(S) is abelian and [S:F] 
divides ,P(n). 0 

Since the structure of l~ is clearly important, we record the following 
theorem, whose proof is left as an exercise. 

Theorem 10.2.2 Let n = TI ri, where the ri = p~i are powers of distinct 
prime numbers. Then 

Moreover, l~ is cyclic if and only if n = pe, 2pe or 4, where pis an odd 
prime. 0 

Corollary 10.2.3 A cyclotomic extension F < S is abelian and if n = pe, 
2pe or 4, where p is an odd prime·, then F < S is cyclic. 0 
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Finite Fields 

For finite fields, we can improve upon Theorem 10.2.1. In particular, 
ifF= GF(q) is a finite field then S is also a finite field and the Galois 
group ~(S) is cyclic with generator u q:ct-+ctq. Hence, if t/J is defined by 
(10.2.1), then lm t/J is the cyclic subgroup of l~ generated by t/Juq. Since 

where q is the residue of q modulo n, we have t/Ju q = q and /m t/J = 
{q} < l~ and so t/J:~(S)-+{q} is an isomorphism. In particular, 

[S:F] = I GF(S) I = o(q) 

Note that we already knew this from Theorem 8.6.3, since 
min(w,GF(q)) has order n, and therefore degree o(q). 

Theorem 10.2.4 LetS be the splitting field for xn -1 over GF(q), where 
(q,n) = 1. Then 

1) S = GF(q0n(q)), 

2) GF(S) = (u q} is isomorphic to the cyclic subgroup {q} of l~. 0 

We should make a remark about the relationship between group 
primitive elements of S and primitive n-th roots of unity. A group 
primitive element {J generates s~ 

s~ = {1, {J, {32, ... } 

whereas a primitive n-th root of unity w generates un 

un = {1, w, w2, ... } 

If {J is a group primitive element of S then o({J) = qo(q)- 1 and so 

Since n I qo(q) -1, we may write qo(q) -1 = nr and so 

Hence pk is a primitive n-th root of unity if and only if nr/(k,nr) = n, 
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that is, if and only if r = (k,nr ). But this holds if and only if k = ur 
where (u,n) = 1. 

Theorem 10.2.5 Let j3 be a group primitive element of the cyclotomic 
extension F < S. Then pk is a primitive n-th root of unity if and only if 

where 1 ~ u < n and (u,n) = 1. 0 

The General Case 
Returning to the general case, we can at least say some interesting 

things about when the Galois group is isomorphic to l~. Let w be a 
primitive n-th root of unity over F. Since S = F(w), each u E GF(S) is 
uniquely determined by its value on w and so the elements uw are 
distinct and are the roots of min(w,F). Hence, 

min(w,F) = II (x- uw) 
u E GF(S) 

Since uw = wk for some k E l~ and since GF(S) is isomorphic to l~ if 
and only if there is a u E GF(S) satisfying uw = wk for every k E l~, it 
follows that GF(S) is isomorphic to l~ if and only if 

min(w,F) = II (x- wk) <!gf Qn(x) 
(k,n) = 1 

where Qn(x) is the polynomial whose roots are the primitive n-th roots 
of unity in S. Since Qn(w) = 0, this holds if and only if Qn(x) is 
irreducible over F. The polynomial Qn(x) is called the n-th cyclotomic 
polynomial over F. Note that it is defined only for (n,p) = 1 where p = 
expchar(F). 

Theorem 10.2.6 Let S be the splitting field for xn- 1 over F. Then 
GF(S) is isomorphic to l~ if and only if the n-th cyclotomic polynomial 
Qn(x) is irreducible over F. 0 

Here are some basic facts about cyclotomic polynomials. 

Theorem 10.2.7 Let Qn(x) be the n-th cyclotomic polynomial over F. 

1) deg Qn(x) = ¢(n). 
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2) Qn(x) is monic and has coefficients in the prime subfield of F. 

3) IfF= Q then the coefficients of Qn(x) are integers. 

4) The following product formula holds 

(10.2.2) xn- 1 = rr Qd(x) 
din 

Proof. Part 1) follows directly from the definition of Qn(x). Part 4) 
follows from the fact that un is the disjoint union of nd over all d 1 n 
and Qd(x) has no multiple roots. Hence, the factorizations of both sides 
of (10.2.2) into a product of linear factors are identical. 

Let F' be the prime field of F. It is clear from the definition that 
Qn(x) is monic. We prove parts 2) and 3) together by induction on n. 
Since Q1 (x) = x- 1, the result is true for n = 1. If p is a prime then 

Q (x) = xP- 1 = xP-1 + xP-2 + ... + x + 1 
P x-1 

and the result holds for n = p. Assume that 2) and 3) hold for all 
proper divisors of n. Then 

xn- 1 = Qn(x) IT Qd(x) = Qn(x)R(x) 
din 
d<n 

By the induction hypothesis, R(x) has coefficients in F', whence so does 
Qn(x) = (xn- 1)/R{x). Moreover, if F = Q then R(x) has integer 
coefficients and since R(x) is monic, Theorem 1.2.1 implies that Qn(x) 
has integer coefficients. I 

Example 10.2.1 Formula {10.2.2) can be used to compute cyclotomic 
polynomials rather readily, starting from the fact that 

and 

Qp(x) = xP-1 +xP-2 + ··· +x + 1 

for p prime. Thus, for example, 
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and 

This gives us, for instance, the following a factorization of x15 - 1 into 
cyclotomic polynomials over GF(2) 

Part 4) of Theorem 10.2.7 describes a factorization of xn -1 within 
the prime subfield ofF (cf. Example 9.1.1). In general, however, this is 
not a prime factorization since Qn(x) is not irreducible. For instance, 
comparing Examples 10.2.1 and 9.1.1 shows that Q15(x) is reducible 
over GF(2). 

With regard to the irreducibility of cyclotomic polynomials, we do 
have the following important results. 

Theorem 10.2.8 All cyclotomic polynomials Qn(x) over Q are 
irreducible over Q. Therefore, GQ(S) ~ l~ and [S:Q) = 1/l(n). 

Proof. Suppose that Qn(x) = f(x)g(x), where we may assume (by 
Theorem 1.2.2) that f(x) and g(x) are monic and have integer 
coefficients. Assume that f(x) is irreducible and that w is a root of f(x) 
and hence a primitive n-th root of unity. We claim that wP is also a 
root of f(x), for any prime pJn. For if not then wP, being a primitive n
th root of unity, must be a root of g(x). Hence, w is a root of g(xP), 
which implies that f(x) I g(xP) and we can write 

g(xP) = h(x)f(x) 

where h(x) is monic and has integer coefficients. Since aP = a mod p, 
for any integer a, we conclude that g(xP) = g(x)P mod p and so, taking 
residues gives 

g(x)P ::: h(x)f(x) mod p 

If we denote the residue of a polynomial p(x) modulo p by p(x), we get 

g(x)P = h(x)f(x) 

in lp[x) and so any irred_ucible factor of f(x) in lp[x] is also a factor of 
g(x). This shows that f(x) and g(x) are not relatively prime, and 
~herefore have.!' common root in some extension of ~· However, 
f(x)g(x) = xn- 1, which has no multiple roots in any extension. This 
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contradiction implies that wP is a root of f(x). In other words, if w is a 
root of f(x) then so is upw, where up is the Frobenius map. 

Now we observe that any primitive n-th root of unity 1.1 over Q has 
the form wr, for some integer r > 0. Writing r as a product of prime 
numbers, we see that 1.1 can be obtained from w by applying a finite 
number of Frobenius maps u , where p is prime. Hence, v is also a root 
of f(x). Thus all roots of QJx) are roots of f(x), implying that f(x) = 
Qn(x), whence Qn(x) is irreducible over Q. I 

Theorem 10.2.9 Let n be an odd positive integer. Then [F(wn):F] = ¢(n) 
implies [F(wd):F] =¢(d) for all dIn. In the language of cyclotomic 
polynomials, if Qn(x) is irreducible over F then Qd(x) is irreducible over 
F for all d I n. 

Proof. Let p be a prime dividing n. Since n is odd, p 'I 2. Let n = pm. 
Then 

where a= [F(wn):F(w~)] $ p and b = [F(~):F] I ¢(m), since w~ E Om. 
If pJm then ¢(pm) = ¢(p)¢(m) = (p -1)¢(m) and so 

(p- 1)¢(m) = ab 

If a= p, then b = (p -1)¢(m)/p cannot divide ¢(m) since p #2. Since 
b $ ¢(m), it follows that a= p -1 and b = ¢(m). On the other hand, if 
pI m then ¢(pm) = p¢(m) and so 

p¢(m) = ab 

whence a= p and b = ¢(m). In either case, b = ¢(m), and since w~ = 
wn/p' we have 

(10.2.3) 

Repeated use of (10.2.3) gives the desired result. I 

Let us return briefly to finite fields. If p(x) is monic and irreducible 
over GF(q) and has order v, then each root of p(x) has order v and thus 
p(x) I Q11(x). Since every monic ir.reducible factor of Q11(x) has order v, 
we conclude that Q11(x) is the product of all monic irreducible 
polynomials of order v. According to Theorem 8.6.3, the degree of any 
such factor p(x) is o11(q), the order of q modulo v. Hence, the number of 
monic irreducible polynomials of order v is ¢(v)/o11(q). 
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Theorem 10.2.10 Let 11 be a positive integer. 

1) The cyclotomic polynomial Q11(x) over GF(q) is the product of all 
monic irreducible polynomials of order 11 over GF(q). 

2) The number of monic irreducible polynomials over GF(q) of order 
11 is ¢(11)/oJq), where o11(q) is the order of q mod 11.0 

Equation (10.2.2) is a prime candidate for Mobius inversion. (See the 
appendix for a discussion of Mobius inversion.) Applying the 
multiplicative version gives 

Qn(x) = II (xd- l)IJ(n/d) = II (xn/d- l)IJ(d) 

din din 

where the Mobius function Jl. is defined by 

if d = 1 
if d = p1p2· • ·pk for distinct primes Pi 
otherwise 

Note that some of the exponents Jl.(d) may be equal to -1, and so a 
little additional algebraic manipulation may be required to obtain 
Qn(x) as a product of polynomials. 

Finally, let us mention that, according to the definition, if 11 = 
qn- 1, then the roots of the 11-th cyclotomic polynomial Q11(x) over 
GF(q) are the primitive 11-th roots of unity over GF(q). Hence, they are 
the group primitive elements of GF(qn). In other words, the monic 
irreducible factors of Q11(x) are precisely the primitive polynomials of 
GF(qn) over GF(q). Thus, one way to find primitive polynomials is to 
factor this cyclotomic polynomial. 

*10.3 Normal Bases and Roots of Unity 

Recall that a normal basis for F < E is a basis for E over F that 
consists of the roots of an irreducible poiynomial p(x) over F. (See 
Section 7.4.) We have seen that, in some important cases (especially 
F = Q), the cyclotomic polynomials Qn(x) are irreducible over F, which 
leaves open the possibility that the primitive n-th roots of unity nn 
might form a normal basis for S over F. Indeed, if Qn(x) is irreducible 
then Qn(x) = min(wn,F) and so 

deg Qn(x) = [S:F] 
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and since the roots of Qn(x) are distinct, there are the right number of 
primitive n-th roots of unity and they will form a basis for S over F if 

and only if they span S over F. It happens that nn spans S if and only 
if n has a certain simple form. 

Theorem 10.3.1 Let F be a field with the property that Qm(x) is 

irreducible over F for all m. Then On is a normal basis for the 

cyclotomic extension S over F if and only if n is the product of distinct 

primes. 

Proof. We prove first that if n is a product of distinct primes then On is 

a (normal) basis for S over F. Let wE nn. If n = p is prime then OP = 
{w,w2, ... ,wP-1}. Since S = F(w) and min(w,F) = Qp(x) has degree 

p-1, the set {1,w, ... ,wP-2} is a (polynomial) basis for S over F. Since 

1 p-1 wP -1 0 +w+ .. ·+w = w-1 = 
the set np = { w, ... , wP-1} is also a basis for S over F. Hence, the result 

is true if n is prime. 
For the purposes of induction, suppose the result is true for all proper 

divisors of n and let n = km with k < n, m < n and (k,m) = 1. If wk E 

nk and wm E Om then nk is a basis for F(wk) over F and Om is a basis 

for F(wm) over F. Since wkwm E nkm and (k,m) = 1, it follows that 

( wkwm)k = w~ E Om and ( wkwm)m = wr E Ok 

[F(wk,wm):F(wm)][F(wm):F] = [F(wk,wm):F) = [F(wkm):F] 

= ¢(km) = ¢(k)¢(m) = ¢(k)[F(wm):F) 

and so [F(wk,wm):F(wm)J = ¢(k). Since Ok spans F(wk,wm) over F(wm) 
and Ink I = ¢(k), it follows that nk is a basis for F(wk,wm) over 

F(wm), whence nkm = nknm is a basis for F(wk,wm) over F. This 
proves that if n is the product of distinct primes, then nn is a basis for 

F(wn)· 
For the converse, let n = mpk for k ~ 2. Since 

k-1 
Qn(x) = Qmpk(x) = Qmp(xP ) 

{an exercise) the coefficient of xt/>(n)-l in Qn(x) is 0, whence the sum of 

the roots of Qn(x), that is, the sum of the primitive n-th roots of unity, 

is 0, showing that these roots are linearly dependent. Hence, they 

cannot form a basis for S over F. I 
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*10.4 Wedderburn's Theorem 
In this section, we present an important result whose proof uses the 

properties of cyclotomic polynomials. 

Theorem 10.4.1 (Wedderburn's Theorem) If D is a finite division ring 
then D is a field. 

Proof. We begin by recalling Example 0.2.1, which describes an instance 
of the class equation. Let the group D* act on itself by conjugation. The 
stabilizer of {3 E D* is the centralizer 

C*(/3) ={a ED* I a/3 = f3a} 

and the class equation is 

I D* I = I Z(D*) I + L I b~~~ I 
where the sum is taken over one representative {3 from each conjugacy 
class o(f3) = {a {3 a - 1 I a E G} of size greater than 1. If we assume for 
the purposes of contradiction that Z(D*) f. D*, then the sum on the far 
right is not an empty sum and I C*(/3) I < I D* I for some {3 ED*. 

The sets 

Z(D) = {{3 ED I {3a = a/3 for all a ED} 
and 

C(/3) ={a ED I a/3 = f3a} 

are subrings of D and, in fact, Z(D) is a commutative division ring; 
that is, a field. Moreover, Z(D)* = Z(D*) and C(/3)* = C*(/3) for /31- 0. 
Let I Z(D) I = z. Since Z(D) ~ C(/3), we may view C(/3) and D as 
vector spaces over Z(D) and so 

for integers 1 $ b < n. The class equation now gives 

zn- 1 = z - 1 + L z:- 1 
b z -1 

and since zb- 11 zn- 1, it follows that bIn. 
If Qn(x) is the n-th cyclotomic polynomial over Q, then Qn(z) 

divides zn -1. But Qn(z) also divides each summand on the far right 
above, since for b I n, b < n we have 
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x:- 11 = IT Qk(x) I IT Qj(x) 
X- kin jib 

and Qn(x) divides the right hand side. It follows that Qn(z) I z- 1. On 
the other hand, 

Qn{z) = IT {z- w) 
wef!n 

and since wE nn implies that I z- w I > I z I - I w I = z -1, we have a 
contradiction. Hence Z(D*) = D* and D is commutative, that is, D is a 
field. I 

*10.5 Realizing Groups as Galois Groups 

A group G is said to be realizable over a field F if there is an 
extension F < E for which GF(E) ~G. Since any finite group of order n 
is isomorphic to a subgroup of a symmetric group sn, we have the 
following. 

Theorem lO.S.l Let F be a field. Every finite group is realizable over 
some extension of F. 

Proof. Let G be a group of order n. Let t1, ..• , tn be algebraically 
independent over F and let s11 ... , sn be the elementary symmetric 
functions in the ti 's. Then K = F{ t1, ... , tn) > F( s1, ... , sn) = E is a 
Galois extension whose Galois group is isomorphic to Sn. (See Theorem 
6.2.1.) We may assume that G is a subgroup of GE(K) and since G is 
closed in the Galois correspondence, it is the Galois group of F(G) < K.l 

It is a major unsolved problem to determine which finite groups are 
realizable over the rational numbers Q. We shall prove that any finite 
abelian group is realizable over Q. It is also true that for any n, the 
symmetric group sn is realizable over Q, but we shall prove this only 
when n = p is a prime. 

Realizing Finite Abelian Groups over Q 

We shall have use for a special case of a famous theorem of Dirichlet, 
which says that if n and m are relatively prime positive integers then 
there are infinitely many prime numbers of the form nk + m. We need 
the case m = 1. First a lemma on cyclotomic polynomials. 

Lemma 10.5.2 Let p be a prime and let {n,p) = 1. Let Qn{x) be the n-th 
cyclotomic polynomial over Q and let P n(x) be the n-th cyclotomic 
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polynomial over ll.P. If Qn(x) is the polynomial obtained from Qn(x) by 
taking the residue of each coefficient modulo p, then Qn(x) = P n(x). 

Proof. If n = r is a prime then Qr(x) , Pr(x) and Qr(x) are all equal to 

xr-1 + xr-2 + ... + 1 

and so the result holds for n prime. Suppose the result holds for all 
proper divisors of n. Since 

taking residues modulo p gives 

over ll.P. But 

xn-1 =II Qd(x) 
djn 

xn- 1 = II P d(x) 
djn 

~er ll.P and since P d(x) = Qd(x) for all d In, d < n, we have P n(x) = 
Qn(x). I 

Theorem 10.5.3 Let n be a positive integer. Then there are infinitely 
many prime numbers of the form nk + 1, fork E 71.+. 

Proof. Suppose to the contrary that p1, ... , p8 is a complete list of all 
primes of the form nk + 1. Let m = p1· · ·p8 n. Let Qm(x) be the m-th 
cyclotomic polynomial over Q and consider the polynomial Qm(mx). 
Since Qn(x) has integer coefficients, Qm(mk) is an integer for all k E 
z+. Since Qm(mk) can equal 0, 1 or -1 for only a finite number of 
positive integers k, there exists a positive integer k for which 
I Qm(mk) I > 1. Let p be a prime dividing Qm(mk). Since 

Qm(x) I xm- 1, we have 

pI (mk)m-1 

which implies that p J m, hence p =fo Pi for i = 1, ... , s. 
If p m(x) is the m-th cyclotomic polynomial over zp then it follows 

from the fact that pI Qm(mk), and the previous lemma, that 

in ZP, where mk is the residue of mk modulo..£:.. Thus, mk is a primitive 
m-th root of unity over ZP. In other words, mk has order m in z; and 
since the order of any element must divide the order of the group, we 
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get m I p -1. It follows that nIp -1, that is, p = nk + 1, which is a 
contradiction, proving the theorem. I 

Theorem 10.5.4 Let G be a finite abelian group. Then there exists an 
integer nand a field E such that Q < E < Q(w), where w is a primitive 
n-th root of unity, and such that GQ(E) ~G. 

Proof. By Theorem 10.2.8, the Galois group of Q(w) is isomorphic to 
l~. Since ~ is abelian, any subgroup K of ~ is normal in Z~ and so 
Q < F(K) is a Galois extension, with Galois group 

Thus, we need only show that any finite abelian group G is isomorphic 
to a quotient group Z~/K, for some integer n. 

Since G is finite and abelian, we have 

where C(ni) is cyclic of degree ni. According to Theorem 10.5.3, we may 
choose distinct primes p1, .•. ,p8 of the form n1· • ·n5k + 1 and so 
ni I Pi- 1 for i = 1, ... , s. Since the cyclic group 

Z* 
Pi 

has order Pi -1, it has a subgroup of any order dividing Pi- 1, in 
particular, a subgroup Ki of order (Pi- 1)/ni, whence the quotient 

is cyclic of order ni, and is therefore isomorphic to C(ni)· Hence, if K = 
K1 x ···X K8 and n = p1· · ·p8 then 

zp* zp* zp* x ... x zp* zp* .. ·p Z* 
G'""' 1X···X-s'""' 1 s ..... 1 s n - K;" K8 - K1 X··· X K8 - K ~ K 

as desired. I 

Realizing Sp over Q 

We begin by discussing a sometimes useful tool for showing that the 
Galois group of a polynomial is a symmetric group. 

Let G be the Galois group of an irreducible polynomial f(x) E F[x], 
thought of as a group of permutations on the set R of roots of f(x). 
Then G acts transitively on R. Let us define an equivalence relation on 
R by saying that r '""' s if and only if either r = s or the transposition 
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(r,s) is an element of G (more properly, an element of G acts as the 
transposition (r,s) on R.) It is easy to see that this is an equivalence 
relation on R. 

Let [r] be the equivalence class containing r, and assume there exists 
s, r E R such that s 'I r and s "' r. In other words, assume that G 
contains a transposition (r,s). If u E G then u(r,s)u-1 sends ur to us, us 
to ur and fixes all other elements of R, whence u(r,s)u-1 = (ur,us). 
Thus, s "'r implies us"' ur and so u[r] = [ur]. This shows that [r] and 
[ur] have the same cardinality and since G acts transitively on R, all 
equivalence classes have the same cardinality. 

It follows that if I R I is prime, then there can be only one 
equivalence class, which implies that (r,s) E G for all r, s E R. Since G 
contains every transposition, it must be the symmetric group on R. We 
have proved the following. 

Theorem 10.5.5 If f(x) E F[x] is a separable polynomial of prime degree 
p and if the Galois group G of f(x) contains a transposition, then G is 
isomorphic to the symmetric group sp. 0 

Corollary 10.5.6 If f(x) E Q[x] is irreducible of prime degree p and if 
f(x) has precisely two nonreal roots, then the Galois group of f(x) is 
isomorphic to the symmetric group sp. . 
Proof. Complex conjugation on C is an automorphism of C leaving Q 
fjxed. Since the splitting field S for f(x) over Q is Galois, conjugation is 
a Q-automorphism of S, and therefore belongs to GQ(S). Since it leaves 
the p- 2 real roots of f(x) fixed, it is a transpositiOn on the roots of 
f(x). Thus, the theorem applies. I 

Example 10.5.1 Consider the polynomial f(x) = x5 - 5x + 2, which is 
irreducible over Q by Eisenstein's criterion. A quick sketch of the graph 
reveals that f(x) has precisely 3 real roots and so its Galois group is 
isomorphic to S5. 0 

Corollary 10.5.6 IS just what we need to establish that SP is 
realizable over Q. 

Theorem 10.5.7 Let p be a prime. There exists an irreducible 
polynomial p(x) over Q of degree p such that p(x) has precisely two 
nonreal roots. Hence, the symmetric group SP is realizable over Q. 

Proof. The result is easy for p = 2 and 3, so let us assume that p ;::: 5. 
Let n be a positive integer and m;::: 5 be an odd integer. Let 
k1, ... , km_2 be even integers and let 
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It is easy to see from the graph that q(x) has (m- 3)/2 relative 
maxima. Moreover, if k is an odd integer, then 

Let p(x) = q(x)- 2. Since the relative maxima of q(x) are all greater 
than 2 and since q(-oo) = -oo and q(oo) = oo, we deduce that p(x) has 
the same number m- 2 of real roots as q(x). 

We wish to choose a value of n for which p(x) has at least one 
nonreal root z, for then the complex conjugate z is also a root, implying 
that p(x) has two nonreal roots and m- 2 real roots. Let the roots of 
p(x) in a splitting field be a 1, ... , am. Then 

m 

p(x) = IT (x- aJ = (x2 + n)(x- k1)· · ·(x- km_2) - 2 
i=1 

Equating coefficients of xm-1 and xm-2 gives 

and '"'0'·0'· = '"'kk· + n L..JIJ L..JIJ 
i<j i<j 

and so 
m m m-2 
?: al = ( ?: ai)2 - 2 ~ aiaj = ( ?: ki)2 - 2( .~ kikj + n) 
1=1 1=1 I <J 1=1 I <J 

m-2 
= Lkl-2n 

i=1 

If n is sufficiently large, then E al is negative, whence at least one of 
the roots ai must be nonreal, as desired. 

It is left to show that p(x) is irreducible, which we do using 
Eisenstein's criterion. Let us write 

In the product (x- k1)· · ·(x- km_2), each coefficient except the leading 
one is divisible by 2. Hence, we may write 

Multiplying by x2 + n gives 
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q(x) = xm + 2x2f(x) + nxm-2 + 2nf(x) 

Taking n to be even, we deduce that all nonleading coefficients of q(x) 
are even. In addition, the constant term of q(x) is divisible by 4 since 
m ~ 5. It follows that p(x) = q(x)- 2 is monic, all nonleading 
coefficients are divisible by 2, but the constant term is not divisible by 
22 = 4. Therefore p(x) is irreducible and the proof is complete. 1 

Exercises 
All cyclotomic polynomials are assumed to be over fields for which they 
are defined. 

1. Prove that if xn- 1 = Qn(x)p(x) where p(x) E l(x] then Qn(x) E 
l(x]. 

2. When is a group primitive element of the cyclotomic extension Sn 
also a primitive n-th root of unity over GF( q)? 

3. If (n,q) ::/: 1, how many n-th roots of unity are there over GF(q)? 
4. What is the splitting field for x4 -1 over GF(3)? Find the 

primitive 4-th roots of unity in this splitting field. Do the same for 
the 8-th roots of unity over GF(3). 

5. If a 1, ... ,an are the n-th roots of unity over GF(q) show that 
a~ + a~ + · · · + a~ = 0 for 1 < k < n. 

6. Show that Qn(x) E GF(q)(x] is irreducible if and only if 
on( q) = .P(n). 

7. If (n,q) = 1, prove that xn-1 + xn-2 + · · · + x + 1 is irreducible 
over GF(q) if and only if n is prime and Qn(x) is irreducible. 

8. Show that if r is a prime, then Q.n(x) = (x.n -1)/(x.n-1 -1). 
9. Evaluate Qn{1). 
10. Evaluate Qn( -1). 
11. Show that Q(wn) n Q(wm) = Q if (m,n) = 1. 

Verify the following properties of the cyclotomic polynomials. As usual, 
p is a prime number. 

12. Qnp{x) = Qn(xP)fQn(x)for pJn. 

13. Qnp(x) = Qn(xP) for all p In. 
lc-1 

14. Qnpk(x) = Qnp(xP ) 

15. Qn(O) = 1 for n ~ 2. 

16. Qn(x-1)xcP(n) = Qn(x) for n ~ 2. 

17. If n = p~l. · ·p~k is the decomposition of n into a product of powers 
of distinct primes, then 
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On the structure of l~. 

18. If n = n rj where rj = p~i are distinct prime powers then 

19. 

20. 

21. 

22. 

Assume p f. 2 is prime. Let n = pe. 
i) Show that ll~ I.= pe-l(p -1). 
ii) Show that l~ has an element of order p -1. 
iii) Show that 1 + p E l~ has order pe-l. 
iv) Show that l~ is cyclic. 
v) If n = 2e then l~ is cyclic if and only if e = 1 or 2. 
vi) Show that l~ is cyclic if and only if n = pe, 2pe or 4. 

If n > 1 then there exists an irreducible polynomial of degree n 
over Q whose Galois group is isomorphic to ln. 
Find an integer n and a field E such that Q < E < Q(wn) with 
G0 (E) = l 8• Here wn is a primitive n-th root of unity over Q. 
Calculate the Galois group of the polynomial f(x) = x5 - 4x + 2. 

More on Constructions 

The following exercises show that not all. regular n-gons can be 
constructed in the plane using only a straight edge and compass. The 
reader may refer to the exercises of Chapter 2 for the relevant 
definitions. 

Definition A complex number z is constructible if its real and imaginary 
parts are both constructible. D 

Cl. Prove that the set of all constructible complex numbers forms a 
subfield of the complex numbers C. 

C2. Prove that a complex number z = rei(} is constructible if and only 
if the real number r and the angle 9 (that is, the real number 
cos 9) are constructible. 

C3. Prove that if z is constructible, then both square roots of z are 
constructible. Hint: use the previous exercise. 

C4. Prove that a complex number z is constructible if and only if there 
exists a tower of fields Q < F 1 < · · · < F n' each one a quadratic 
extension of the previous one, such that z E F n' 

C5. Prove that if z is constructible, then [Q(z):Q] must be a power of 
2. 

C6. Show that the constructibility of a regular n-gon is equivalent to 
the constructibility of a primitive n-th root of unity wn. Since the 
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cyclotomic polynomial Qn(x) is irreducible over the rationals,. we 
have [Q(wn):Q] = deg Qn(x) = ¢(n). 

C7. Prove that ¢(n) is a power of 2 if and only if n has the form 

n = 2kPt'''Pm 

where Pm are distinct Fermat primes, that is, primes of the form 

228 + 1 

for some nonnegative integer s. Hint: if 2j + 1 is prime then j must 
be a power of 2. Conclude that if n does not have this form, then 
a regular n-gon is not constructible. For instance, we cannot 
construct a regular n-gon for n = 7, 11 or 90. [Gauss proved that if 
n has the above form, then a regular n-gon can be constructed. See 
Hadlock (1978).] 



Chapter 11 

Cyclic Extensions 

Continuing our discussion of binomials begun in the previous 
chapter, we will show that if a is a root of xn - u and if w is a primitive 
n-th root of unity over F, then F(w,a) is a splitting field for xn- u over 
F. Moreover, in the tower 

F < F(w) < F(w,a) 

the first step is a cyclotomic extension, which as we have seen, is 
abelian and may be cyclic. The second step is cyclic of degree d I n. 
Nevertheless, as we will see in Chapter 13, the Galois group GF(F(w,a)) 
need not even be abelian. In studying the second step in this tower, we 
will actually characterize finite cyclic extensions, when the base field 
contains appropriate roots of unity. 

Before beginning, we remark that if F is a field of characteristic 
pi= 0 and if pIn, then F cannot contain a primitive n-th root of unity. 
For if n = pm and wn - 1 = 0 then 

and so wm = 1, whence w is an m-th root of unity, for m < n. Thus, 
saying that a field F contains a primitive n-th root of unity tacitly 
implies that (n,expchar(F)) = 1. (Such an implication is not made by 
saying that F contains the n-th roots of unity.) 
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11.1 Cyclic Extensions 

Let F be a field with expchar(F) = p, let u E F and let S be the 
splitting field for the binomial xn- u over F. We will assume 
throughout that (n,p) = 1 and so xn- ~has n distinct roots inS. 

If a is a root of xn- u in S and w is a primitive n-th root of unity 
over F then the roots of xn - u are 

(11.1.1) n-1 a, wa, ... ,w a 

and so S = F(w,a). In words, all n-th roots of u can be obtained by first 
adjoining the n-th roots of unity and then adjoining any single n-th root 
ofu. 

The extension F < S can thus be decomposed into a tower 

F < F(w) < F(w,a) = S 

The first step is cyclotomic. We turn to a study of the second step. 
It will simplify the notation to assume that wE F. Thus S = F(a) is 

a splitting field for xn- u and so F < F(a) is a Galois extension. Each 
(]' E G = Gp(S) is uniquely determined by its value on a and 

(J'a = wk(u)a 

for some k((J') E zn. Since wE F, we have for (]', T E G 

((J'r)a = (J'(wk(r)a) = wk(r)(J'a = wk(r)wk(u)a 

Hence, the map (J'.._....Wk(u) is a group monomorphism from G into un 
and therefore G is isomorphic to a subgroup of Un. It follows that G is 
cyclic and if I G I = [F(a):F] = d then dIn. As the next theorem shows, 
this actually characterizes cyclic extensions when the base field contains 
a primitive n-th root of unity. 

Theorem ll.l.l Let F be a field containing a primitive n-th root of 
unity. The following are equivalent. 

1) F < E is cyclic of degree d I n. 
2) E = F(a) where min(a,F) = xd- v, for v E F and dIn. 
3) E is a splitting field for an irreducible binomial xd- v, where v E 

F and dIn. 
4) E = F(a) where a is a root of a binomial xn- u, for u E F. 
5) E is a splitting field for a binomial xn- u, for u E F. 

Proof. Let us first show that 2) through 5) are equivalent. Since F 
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contains a primitive d-th root of unity for any dIn, it is clear that 2) 
and 3) are equivalent, as are 4) and 5). If 2) holds then since ad = v E 
F and xd- ad divides xn- an, it follows that a is a root of xn- u 
where u =an E F. Hence 4) holds. Suppose now that 4) holds. The 
roots of xn-u are given by (11.1.1) and since the d roots of p(x) = 
min(a,F) are among the list (11.1.1), their product, which lies in F, has 
the form we ad. Hence ad E F and p(x) = xd- ad. Thus, 2) holds. 

We have already shown that 4) implies 1) so it remains to prove that 
1) implies 2). Suppose that F < E is cyclic of degree dIn, with Galois 
group 

G = (u) = {t,u, .•• ,ud-1} 

Note that F contains a primitive d-th root of unity e = w~ld. Now, 
ad E F = F(G) if and only if uad =ad, which is equivalent to (ua)d = 
ad, or 

(11.1.2) (u~~ = 1 

If we can find an a E E for which afua = e, then (11.1.2) will hold, we 
will have ad E F, whence xd- ad E F[x] and if p(x) = min(a,F) then 
p(x) I xd- ad. But the roots of p(x) are 

(11.1.3) d-1 a, ua, ... ,u a 

and since ua = e-1a, we have O'ka = e-ka, which implies that the 
elements (11.1.3) are distinct. Hence, deg p(x) = d and so p(x) = 
xd- ad and E = F(a), as desired. 

Thus, we are left with finding an a E E for which afua =e. Since 
e E F, its norm satisfies 

The proof is then completed by taking f3 = e in the following theorem. I 

Theorem 11.1.2 (Hilbert's Theorem 90) Let F < E be a finite cyclic 
extension with Galois group G = {u). An element f3 E E has the form 

f3 - a - ua 

for some a E E* if and only if its norm NE/F(/3) is equal to 1. 

Proof. Let [E:F) =d. Suppose that NE/F(/3) = 1. We desire an a E E for 
which f3(ua) =a. Consider the maps 
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Then 
Tk+l = f3(urk), for 0 ~ k ~ d-1 

Since T d = N E/F(f3)ud = t = T 0, the map 

d-1 

r= LTk 
k=O 

which is nonzero by the Dedekind Independence Theorem, satisfies 
f3(ur) = T. Since T f. 0, there exists a nonzero 'Y E E for which T'Y f. 0 
and so (f3u)(r-y) = r-y, that is, {3 = r-yfu(r-y), whence a= r-y is the 
desired element. We leave proof of the converse to the reader. I 

11.2 Extensions of Degree Char(F) 
There is an "additive" version of Theorem 11.1.1 which deals with 

cyclic extensions of degree equal to p = char(F) > 0, where the role of 
the binomial xn - u is played by the polynomial xP - x - u. 

Suppose that F is a field of characteristic p f. 0. Let F < E and 
suppose that a E E is a root of the polynomial 

f(x) = xP- x-u 

for u E F. Since the prime subfield ofF is ~' and since kP = k for any 
k E ZP, the p distinct elements 

a, a+ 1, ... , a+ p- 1 

are the roots of f(x). Unlike the previous case, we need no special 
conditions on F to insure that if an extension ofF contains one root of 
f(x), it contains all the roots of f(x). Hence, F(a) is a splitting field of 
f(x). 

We have two cases to consider. If a E F then f(x) splits in F. Now 
suppose that a rl. F. Then p(x) = min(a,F) has degree d > 1, with roots 

where 0 ~ ei ~ p- 1. The sum of these roots is da + k, for some integer 
k, and since this number lies in F but a rl. F, we must have d = p, 
whence f(x) = min(a,F) is irreducible. In short, f(x) either splits in For 
is irreducible over F with splitting field F(a), for any root a of f(x). 

Since F(a) is a splitting field for the separable polynomial f(x) = 
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xP- x-u, we deduce that F < F(a) is Galois. If f(x) is irreducible over 
F. and G = ~(F(a)), there exists a u E G for which ua =a+ 1. Since 
u1a =a+ i, it follows that G = (u} = {t,u, ... , uP-1} is the cyclic group 
generated by u. 

Theorem 11.2.1 (Artin-Schreier) Let char(F) = p ::f:. 0. The polynomial 
f(x) = xP- x-u either splits in F or is irreducible over F. Moreover, 
the following are equivalent. 

1) F < E is cyclic of degree p. 
2) E = F(a) where min(a,F) = xP- x-u, for u E F. 
3) E is a splitting field for the irreducible polynomial xP -x-u, 

where u E F. 

Proof. It is clear that 2) and 3) are equivalent and we have seen that 2) 
implies 1). To prove that 1) implies 2), suppose that F < E is cyclic of 
degree p, with Galois group G = (u) = {t,u, ... ,uP-1}. Then aP-a E F 
if and only if 

u( aP - a) = aP - a 

or, equivalently, 

(ua-a)P = ua-a 

Hence,· if we find an a E E for which ua- a= 1 then aP- a E F. 
Moreover, ua =a+ 1 and so uia =a+ i, which implies that the roots 
of min( a,F) are the distinct values 

a, a+ 1, ... ,a+p-1 

It follows that 

min(a,F) = xP- x- (aP- a) 

and hence that [F( a ):F] = [E:F] and E = F( a). Since TrE/F( -1) = 0, 
the proof is completed by taking {3 = -1 in the additive version of 
Hilbert's Theorem 90 given below. I 

Theorem 11.2.2 (Hilbert's Theorem 90, Additive Version) Let F < E be 
a finite cyclic extension with Galois group G = (u). An element {3 E E 
has the form f3 = a- ua for some a E E if and only if TrE/F((J) = 0. 

Proof. Let [E:F] = n and consider the map 

T = (Ju + [f3+(uf3)]u2 + · · · + [f3+(uf3)+· · ·+(un-2p)]un-1 

It is easy to verify that T- ur = (J(t + u + · · · + un-1) and so if 
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TrE/F('y) = 1 for some -y E E (such a -y must exists since F < E is finite 
and separable and so the trace map is not the zero map) then 

Thus, a = r-y is the desired element. I 

In this section and the previous one, we have discussed cyclic 
extensions of degree n where (n,expchar(F)) = 1 or n = p = char(F) =/= 0. 
A discussion of cyclic extensions of degree n = pk for k > 1 is quite a bit 
more involved (requiring a discussion of so-called Witt vectors) and thus 
falls beyond the intended scope of this book. The interested reader may 
wish to consult the books by Karpilovsky (1989) or Lang (1993). 

Exercises 
1. Let F < E be cyclic of degree n, with Galois group G = (u). If (3 E 

E has the form (3 = afua for some 0 =/=a E E, show that 
NE/F(f3) = 1. 

2. Let F < E be cyclic of degree pn where p is a prime. Let 
F < K < E with F < K cyclic of degree pd where d < n. Let 
F < L < E and suppose that E = KL. Show that E = L. 

3. Let char(F) = p =/= 0 and let F(a1) = F(a2) be cyclic of degree p 
over F, where min( ai,F) = xP- x- ui. Show that a 2 = na1 + b 
where bE F and 0 < n :s; p-1. 

4. Let F be a field and let E be the extension of F generated by the 
n-th roots of unity, for all n ~ 1. Show that F < E is abelian. 

5. Let E be a field and let u be an automorphism of E of order d. 
Suppose that (3 E E has the property that u(3 = (3 and (3d= 1. 
Prove that there exists an a E E such that ua = a(3. 

6. Let E be a field and let u be an automorphism of E of order d > 1. 
Show that there exists an a E E such that ua = a + 1. 

7. Let F < E be finite and abelian. Show that E = F 1" ·F m is the 
composite of fields Fi such that F < Fi is cyclic of prime power 
degree. Thus, the study of finite abelian extensions reduces to the 
study of cyclic extensions of prime power degree. 

8. Let F be a field containing the n-th roots of unity. Let F be an 
algebraic closure of F. Show that if a E F is separable over F and 
if a is a root of the binomial xn- u with u E F, then F < F(a) is 
cyclic of degree d I n. 



Chapter 12 

Solvable Extensions 

We now turn to the question of when an arbitrary polynomial 
equation p(x) = 0 is solvable by radicals. Loosely speaking, this means 
(for char(F) = 0) that we can reach the roots of p(x) by a finite process 
of adjoining n-th roots of existing elements, that is, by a finite process 
of passing from a field K to a field K(a), where a is a root of a 
binomial xn - u, with u E K. We begin with some basic facts about 
solvable groups. 

12.1 Solvable Groups 

Definition A normal series in a group G is a tower of subgroups 

where Gi <3 Gi+l" A normal series is abelian if each factor group Gi+tfGi 
is abelian, and cyclic if each factor group is cyclic. 0 

Definition A group is solvable (or soluble) if it has an abelian normal 
series. 0 

Theorem 12.1.1 The following are equivalent for a nontrivial finite 
group G. 

1) G has an abelian normal series. 
2) G has a cyclic normal series. 
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3) G has a normal series in which each factor group Gi+t/Gi is cyclic 
of prime order. 

Proof. It is clear that 3)=>2)=>1). Thus, we need only prove that 1)=>3). 
Let {GJ be an abelian normal series. We wish to refine this series by 
inserting subgroups until all quotients have prime order. The 
Correspondence Theorem (Theorem 0.2.15) says that the natural 
projection 1r:Gi+I--+Gi+I/Gi is a normality-preserving bijection from the 
subgroups of Gi+I containing Gi to the subgroups of Gi+t/Gi. Hence, 
by Cauchy's Theorem, if a prime p divides o(Gi+I/Gi) then Gi+tfGi 
has a subgroup of order p, which must have the form HJGi for 
Gi <Hi< Gi+1• 

Since Gi+1/Gi is abelian, HJGi <1 Gi+tfGi, whence Hi <1 Gi+l" Since 
Gi <1 Gi+I• we also have Gi <1 Hi. Thus, Gi <1 Hi <1 Gi+I· Note also that 
Hi/Gi is abelian and, by the Third Isomorphism Theorem, 

is the quotient of an abelian group and is therefore also abelian. 
Thus, we have refined the original abelian normal series by 

introducing Hi, where Hi/Gi has prime order. Since G is a finite group, 
we may continue the refinement process until we have an abelian 
normal series, each of whose quotient groups has prime order. I 

The next theorem gives some basic properties of solvable groups. The 
proofs of all but statement 2) can be found in standard texts on group 
theory. 

Theorem 12.1.2 
1) 
2) 
3) 
4) 
5) 
6) 

Any finitely generated abelian group is solvable. 
(Feit-Thompson) Any finite group of odd order is solvable. 
Any subgroup of a solvable group is solvable. 
If H <1 G then G is solvable if and only if Hand G/H are solvable. 
Any homomorphic image of a solvable group is solvable. 
The direct product of a finite number of solvable groups is 
solvable. 

7) The symmetric group Sn is solvable if and only if n $ 4. [] 

12.2 Solvable Extensions 

Although the upcoming results can be proved in the context of 
arbitrary finite extensions, we shall restrict our attention to separable 
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extensions. As the reader knows, this produces no loss of generality for 
fields of characteristic 0 or finite fields. 

Definition A finite separable extension F < E is solvable if there exists a 
field S for which F < E < S, where F < S is Galois and has a solvable 
Galois group GF(S). D 

Theorem 12.2.1 

1) IfF< E is solvable, .then there exists a field S such that F < E < S 
where F < S is finite, Galois and solvable. 

2) A finite Galois extension F < E is solvable if and only if the 
Galois group GF(E) is solvable. 

3) If F < E is solvable and Enc is the normal closure of E over F then 
F < Enc is solvable. 

Proof. Let F < E be solvable and let S be the field mentioned in the 
definition. Since F < S is normal, we have F < E < Enc < S. By 
Theorem 4.5.2, the separability of F < E implies that F < Enc is Galois. 
Moreover, 

is solvable and so F < Enc. This proves part 3). Theorem 2.9.6 implies 
that if F < E is finite then so is F < Enc and so part 1) is proved. 
Finally, ifF < E is finite, Galois and solvable then Enc = E and part 3) 
implies part 2). The converse is obvious. I 

In view of part 1) of the previous theorem, we may always assume 
that the field S in the definition of solvable is a finite extension of F. 

Theorem 12.2.2 The class of solvable extensions is distinguished. 

Proof. Suppose first that F < E is solvable and F < K is arbitrary. Then 
there exists a field S such that F < E < S with F < S finite, Galois and 
~(S) solvable. Hence, K < SK is finite and Galois. Since GK(SK) is 
isomorphic to GK n 8(S), which is a subgroup of GF(S), it too is 
solvable. Hence K < EK is solvable. 

Suppose now that F < E is solvable and F < K < E. Hence, there 
exists an S such that F < K < E < S where F < S is finite and Galois 
and GF(S) is solvable. It follows that K < S is Galois and since ~(S) is 
a subgroup of GF(S), the former is solvable, whence K < E is solvable. 
It is evident that F < K is solvable. 

Suppose now that F < K < E with F < K and K < E solvable and 
consider Figure 12.2.1. 
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Since F < K is solvable there exists SK such that F < K < SK where 
F < SK is finite, Galois and GF(SK) is solvable. Similarly, since K < E 
is solvable, there exists a field SE such that K < E < SE where K < SE is 
finite, Galois and ~(SE) is solvable. Since K < E is solvable, the lifting 
SK < SKE is solvable and so there exists a field T such that 
SK < SKE < T where SK <Tis finite, Galois and 

GsK(T) 

is solvable. 
If F < T was normal, our problems would be quickly solvable, but it 

need not be. Thus, we turn to the normal closure Tnc ofT over F. Since 
F < T is finite and separable, it follows that F < Tnc is finite and 
Galois. Recall that Tnc = V uT, for all u E HomF(T,T) and since 

I HomF(T,T) I = (T:F]8 

is finite, this composite is a finite one. For each u E HomF(T,T), the 
map u:T-+uT is an F-automorphism. The normality ofF< SK implies 
that uSK = SK and since SK < T is Galois and G8 (T) solvable, it 
follows that SK < uT is Galois and G8 (uT) is solvabl~ 

According to Theorem 5.5.3, the e!itension SK < Tnc is Galois and 
Gs (Tnc) is isomorphic to a subgroup of the product f1 G8 (uT) and 
sin~ this is a finite product, it is solvable. Finally, since K 

and both GF(SK) and G8 (Tnc) are solvable, so is GF(Tnc), whence 
F < E is solvable. I K 
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12.3 Solvability by Radicals 

Loosely speaking, when char(F) = 0, an extension F < E is solvable 
by radicals if it is possible to reach E from F by adjoining a finite 
sequence of n-th roots of existing elements. More specifically, we have 
the following definitions, which also deal with the case where 
char(F) f:. 0. 

Definition Let expchar(F) = p and let F < R. A radical series for F < R 
is a tower of fields 

F=R0 <R1 <···<Rn=R 

such that each step Ri < Ri+I is one of the following types: 

Type 1: Ri+l = Ri(,Bi) where ,Bi is an ri-th root of unity. 

Type 2: Ri+l = Ri(ai) where ai is a root of xri- ui, with 1 f:. ui E Ri 
and (ri,p) = 1. 

Type 3: (For p > 1 only) Ri+l = Ri(ai) where ai is a root of 
xP- x- ui, with ui E Ri. 

For steps of types 1 and 2, the number ri is the exponent of the step. 
The exponent of a type 3 step is p. 0 

Note that if expchar(F) = p f:. 1 and ,B is an r-th root of unity where 
r = mpe and (m,p) = 1 then ,B is also an m-th root of unity. Hence, we 
may assume that in a type 1 extension, the exponent ri is relatively 
prime to the characteristic p. 

Note also that lifting a radical series gives another radical series with 
the same type steps, for if Ri+l = Ri(a), where a is a root of f(x) E 
RJx], then 

where a is a root of f(x) E (KRi)(x]. 

Definition A radical extension is a finite separable extension F < R that 
has a radical series. A finite separable extension F < E is solvable by 
radicals if there exists a radical extension F < R containing E, that is, 
F < E < R. 0 

Theorem 12.3.1 The class of extensions that are solvable by radicals is 
distinguished. If F < E is solvable by radicals then so is F < Enc where 
Enc is the normal closure of E over F. 
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Proof. Let F < E be solvable by radicals, with associated radical series 
{Ri}. Thus, F < E < R. Let F < K be any extension. Lifting the series 
by K gives a radical series {KRi} from K to KR containing KE, whence 
K < KE is solvable by radicals. 

Now let F < K < E with F < K an.d K < E solvable by radicals. Let 
{Ri} be the radical series for F < R containing K and let {Si} be a 
radical series for K < S containing E. We lift the series {Sj} by R to get 
a radical series {RSJ for RK < RS containing RE. Since RK = K, the 
series {RJ, followed by the series {RSJ, is a radical series for F < RS 
containing EK. Thus, F < EK is solvable by radicals. 

If F < K < E and F < E is solvable by radicals then a fortiori F < K 
is solvable by radicals. If {RJ is a radical series for F < R containing E 
then {KRJ is a radical series for K < KR containing KE = E, whence 
K < E is solvable by radicals. 

For the last statement, let F < E < R where F < R is radical. Let 
a- E HomJclE,E). Since E < R is algebraic, we may extend a- to 7f E 
HomF(R,E). Since 7f:R->7i(R) is an F-isomorphism if {Rj} is a radical 
series for F < R then {uRi} is a radical series for F < uR containing uE. 
Hence, F < a-E is also solvable by radicals. Since Enc = V a-E is a finite 
composite, it follows that F < Enc is solvable by radicals. I 

Now we come to the key result that links the concepts of solvable 
extension and solvability by radicals. 

Theorem 12.3.2 A finite separable extension F < E is solvable by 
radicals if and only if it is solvable. 

Proof. Suppose first that F < E is solvable. Let S be a field for which 
F < E < S where F < S is finite, Galois and G = GF(S) is solvable. 
Thus, there is a normal series decomposition 

(12.3.1) 

where Gi <1 Gi+l and Gi+1/Gi is cyclic of prime order ri dividing I G I· 
Taking fixed fields gives 

(12.3.2) F = F(G) < F(Gn_1) < ... < F(G0 ) < F({t:}) = S 

Unfortunately, since the appropriate roots of unity may not lie in these 
fields, we cannot apply the relevant theorems (11.1.1 and 11.2.1) of the 
previous chapter to conclude that this is a radical series. Hence, we first 
adjoin the necessary ri-th roots of unity. 

If Gi < Gi+ 1 is a step in the series (12.3.1) then the corresponding 
step in (12.3.2) has prime degree 
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dividing [S:F]. So let 

[S:F] = n = mpe 

where p = expchar(F) and (m,p) = 1 and let w be a primitive m-th root 
of unity. If we show that F(w) < S(w) is solvable by radicals then since 
F < F(w) is a type 1 extension, it follows that F < S(w) is solvable by 
radicals and therefore so is F < S. Since F(w) < S(w) is a lifting of the 
finite, solvable Galois extension F < S by F(w), it is also finite, solvable 
and Galois. Note also that [S(w):F(w)] I [S:F] and so if r f. p is any 
prime dividing [S(w):F(w)], then rIm and so F(w) contains a primitive 
r-th root of unity. 

Thus, the extension F(w) < S(w) is finite, Galois and solvable and 
F(w) contains a primitive r-th root of unity for any prime r f. p that 
divides [S(w):F(w)). We need to show that F(w) < S(w) is solvable by 
radicals. In view of this, we may as well assume to begin with that F 
contains a primitive r-th root of unity for any prime r f. p dividing 
[S:F]. 

Referring to Equation (12.3.2), consider the Galois correspondence on 
the finite Galois extension F(Gi+1) < S. Since F(Gi) is an intermediate 
field and Gi <1 Gi+l' Theorem 5.4.1 implies that F(Gi+1) < F(Gi) is 
Galois and 

GF(Gi+l)(F(Gi)) ~ Gi+t/Gi 

which is cyclic of prime order ri dividing [S:F]. To simplify the 
notation, let 

Then GL(M) is cyclic of prime order r dividing mpe. 
If r = p, Theorem 11.2.1 implies that there exists an a EM for which 

M = L(a), where a is a root of xP- x-u for some u E L. Thus, L < M 
is an extension of type 3. If r ;:f:. p then rIm and so L contains a 
primitive r-th root of unity. Theorem 11.1.1 then implies that M = 

. L( a), where a is a root of xr- u for some u E L. Hence, L < M is an 
extension of type 2. Thus, each step in the tower (12.3.2) is of type 2 or 
type 3 and we conclude that F < S is solvable by radicals, as desired. 

For the converse, suppose that F < E is solvable by radicals. Then 
F < Enc is Galois and solvable by radicals. Let 
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be a radical series for F < R containing Enc. We wish to adjoin 
appropriate roots of unity, lifting the series to one in which each step is 
cyclic. Then, by tacking on a front end, we get a series with cyclic steps 
that begins with F and goes past E. 

Let r be the least common multiple of all of the exponents in the 
series {RJ and let w be a primitive r-th root of unity. If Ri < Ri(ai) is a 
step of type 1, then ai is an rrth root of unity where ri I r and so 
Ri(ai,w) = Ri(w). Hence, lifting {Ri} to {Ri(w)} eliminates all steps of 
type 1. (We remove any trivial steps of degree 1.) 

If Ri < Ri(ai) is a step of type 2, then ai is a root of xri- ui and 
since Ri(w) contains a primitive ri-th root of unity, Theorem 11.1.1 
implies that Ri(w) < Ri(w,ai) is cyclic. Finally, Theorem 11.2.1 
guarantees that if Ri < Ri+l is of type 3, then Ri(w) < Ri+l(w) is cyclic. 

Thus, each step in the tower 

F < F(w) = Ro(w) < · · · < !ln(w) = R(w) 

is abelian, all steps after the first one being cyclic. Taking Galois groups 
gives a series 

(12.3.3) 

{f} = GR(w)(R(w)) < GRn(w)(R(w)) < ... < GRo(w)(R(w)) < ~(R(w)) 

Since Ri < Ri+1 is normal, so is Ri(w) < Ri+1(w) and so 

and the quotient group is 

which is abelian. Thus, Equation {12.3.3) is an abelian normal series for 
~(R(w)) and so F < R(w) is solvable. Hence, F < R is solvable. I 

12.4 Polynomial Equations 

The initial motivating force behind Galois theory was the solution of 
polynomial equations f(x) = 0. Perhaps the crowning achievement of 
Galois theory is the statement, often phrased as follows: there is no 
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formula, similar to the quadratic formula, for solving polynomial 
equations of degree 5 or greater over Q. However, this is not the whole 
story. The fact is that, for some polynomial equations, there is a 
formula and for others there is not and, moreover, we can tell by 
looking at the Galois group of the polynomial whether or not there is 
such a formula. In fact, there are even algorithms for solving 
polynomial equations when they are "solvable," but these algorithms 
are unfortunately not practical. 

Let us restrict attention to fields of characteristic 0. We refer to the 
four basic arithmetic operations (addition, subtraction, multiplication 
and division) and the taking of n-th roots as the five basic operations. 

Let C be a field. We will say that an element a E C is obtainable by 
formula from C if we can obtain a by applying a finite sequence of any 
of the five basic operations, to a finite set of elements from C. 

Suppose we can obtain any element from the field K by formula from 
C. Applying any of the four basic arithmetic operations to the elements 
of K gets us nothing new. However, taking an n-th root of an element 
a E K gives us access to all elements of L = K( y.'a), since any element 
of L is a polynomial in y.'a over K. Hence, repeated use of the five basic 
operations allows us to obtain any element lying within any finite tower 
of the form 

(12.4.1) 

where Fi+I = Fi(ai), with ai a root of a binomial xni- ui over Fi. Since 
we are assuming that char(F) = 0, the tower (12.4.1) is just a radical 
series for C < F n· Hence, we can obtain by formula any element in any 
radical extension C < R of C. 

On the other hand, let a E R where Equation (12.4.1) is a radical 
series for C < R. Then a E Fi = Fi_1(ai), where ai =~foi-l, with 
ui-l E Fi-t· Since a is a polynomial in ai over Fi-l' it follo~s- that a 
can be obtained by formula from Fi-t· It is now clear that any element 
of R can be obtained by formula from C. 

Theorem 12.4.1 Let C be a field of characteristic 0. An element a E C 
can be obtained by formula from C if and only if a lies in a radical 
extension of C, that is, if and only if C < C(a) is solvable by radicals. D 

Let us say that a root a of a polynomial f(x) = &o + a1x + · · · + adxd 
over F is obtainable by formula if we can obtain a by formula from 
C = Q( a0, ••. , ad). Thus, a root a of f(x) is obtainable by formula if and 
only if C < C(a) is solvable by radicals. Theorems 12.3.1 and 12.3.2 
now imply the following. 
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Theorem 12.4.2 Let char(F) = 0 and let f(x) = a0 + a1x + · · · + adxd be 
a polynomial over F. 
1) The roots of f(x) are obtainable by formula if and only if the 

extension C < S is solvable, where C = Q(a0, ... ,ad) and S is the 
splitting field for f(x) over C. 

2) Let f(x) be irreducible over F. One root of f(x) is obtainable by 
formula if and only if all roots of f(x) are obtainable by formula. (] . 

According to Theorem 10.5.7, for any prime number p, there exists a 
polynomial fp(x) of degree p over Q whose Galois group is isomorphic 
to SP. Hence fp(x) is irreducible and since the group SP is not solvable 
for p ~ 5, Theorem 12.4.2 implies that if p ~ 5, then none of the roots 
of fp(x) can be obtained by formula. Although it is much harder to 
show, this also holds for any positive integer n [see Hadlock, 1987]. 
Thus, we have the following. 

Theorem 12.4.3 For any n ~ 5, there is an irreducible polynomial of 
degree n over Q none of whose roots are obtainable by formula. (] 

As a consequence, for any n ~ 5, there is no formula, similar to the 
quadratic formula, for the roots of any polynomial of degree n. More 
specifically, we have 

Corollary 12.4.4 Let n ~ 5 and consider the generic polynomial p(x) = 
Yo+ y1x + .. · + Ynxn, where y0 , ... , Yn are algebraically independent over 
Q. Then there is no algebraic formula, involving only the five basic 
operations, the elements of Q and the variables y0, ... , y n' with the 
property that, for any polynomial f(x) = a0 + a1x + · · · + ~xn of degree 
n over F, we can get a root of f(x) by replacing Yi in the formula by ai, 
for all i = O, ... ,n. 0 

Exercises 
1. Prove that if H <1 G then G is solvable if and only if H and G/H 

are solvable. 
2. Prove that if F < E is solvable by radicals and u E HomF(E,E) 

then F < uE is also solvable by radicals. 
3. Calculate the Galois group of the polynomial f(x) = x5 - 4x + 2. Is 

there a formula for the roots? 
4. Prove that if f(x) is a polynomial of degree n over F with Galois 

group isomorphic to Sn then f(x) is irreducible over F. 
5. A finite separable extension F < E of characteristic p is solvable 

by radicals if and only if there exists a finite extension F < R with 
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F < E < R and a radical series {Ri} for F < R in which each step 
Ri < Ri+l is one of the following types: (1) Ri+l = Ri(wi) where wi 
is an ri-th root of unity with ri prime and ri =/= p. (2) Ri+l = Ri(ai) 
where ai is a root of xr- u, with u E Ri, r prime and r =/= p. (3) (If 
p > 0 only) Ri+l = Ri(,.Bi) where .Bi is a root of the irreducible 
polynomial xP- x-u, with u E Ri. 

6. Prove Theorem 12.4.2. Hint: for part 2), consider the normal 
closure of C(a), where a is an obtainable root of f(x). 

7. Let f(x) be an irreducible cubic over Q with three real roots. Show 
that no root of f(x) can be obtained by formula if we allow only 
real n-th roots. (That is, no root of f(x) is contained in a radical 
series whose fields are subfields of IR.) Hint: Use the fact that the 
splitting field for f(x) over Q is given by Q( #,r), where r is a 
root of f(x) and ~ is the discriminant. 



Chapter 13 

Binomials 

We continue our study of binomials by determining conditions that 
characterize irreducibility and describing the Galois group of a binomial 
xn - u in terms of 2 x 2 matrices over ln. We then consider an 
application of binomials to determining the irrationality of linear 
combinations of radicals. Specifically, we prove that if p1, ... , Pm are 
distinct prime numbers, then the degree of 

over Q is as large as possible, namely, nm. This implies that the set of 
all products of the form 

~~ ... ~ 
where 0 $ e(i) $ n- 1, is linearly independent over Q. For instance, the 
numbers 

1, ~ =~, V4 =~ and V7"2 = 6{¥230320 

are of this form, where p1 = 2, p2 = 3. Hence, any expression of the 
form 

where ai E Q, must be irrational, unless ~ = 0 for all i. 
First, a bit of notation. If u E F, then ul/n stands for a particular 

(fixed) root of xn - u. The set of primitive n-th roots of unity is denoted 
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by nn and~ always denotes a primitive k-th root of unity. 

13.1 Irreducibility 
Let us first recall a few facts about the norm. Let F < E be finite 

with a E E. If the minimal polynomial of a 

· ( F) d d-1 mma, =x +ad_1x +···+ao 

d 
N(a) =II ri = (-1)dao 

i=l 

where N = NF(a)/F· Note that N(a) E F. Also, for all {3 E F(a) and a E 
F, we have 

1) N({Jn) = N({J)n, n a positive integer, 

2) N(a{J) = adN({J), 

3) N(a) =ad. 

We begin with Lemma 4.7.6, restated here for convenience. 

Lemma 13.1.1 If char(F) = p f. 0 and u E F, u rt FP then x"P"- u is 
irreducible for every k ~ 1. 

Proof. If {3 is a root of f(x) = x"P"- u then, in a splitting field, 

f(x) = (x- [J)"P" 

Since p(x) = min({J,F) divides f(x), we have p(x) = (x- Prf for some 
d ~ k. Since the constant term piP of p(x) lies in F, if d ~ k- 1 we get 

k k-1 
u = f3P = ([JP )P E FP 

contrary to assumption. Hence d = k and f(x) = p(x) is irreducible. I 

We turn next to primes different from char(F). 

Lemma 13.1.2 Let p be a prime different from char(F). If u E F, u rt FP 
then xP- u is irreducible over F. Thus, xP- u is irreducible over F if 
and only if it has no roots in F. 

Proof. Assume that u rt FP and let a be a root of xP - u with 
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[F(n):F] = d ~ p. Since aP = u, applying the norm N = NF(o)/F gives 

[N(n)]P = N(nP) = N(u) = ud 

Letting N(n) = v E F gives vP = ud. If p < d then (d,p) = 1 and there 
exist integers a and b for which ad + bp = 1. Hence 

a contradiction. Thus p:::: d and xP- u = min(n,F) is irreducible. The 
second statement follows from the first. I 

For p :/= 2, the previous result (and its proof) extends more or less 
directly to prime powers pk, that is, if u rf. FP then 

k 
xP -u 

is irreducible over F. However, the case p = 2 is not quite as simple. 
Since for any nonzero bE Q, we have -4b4 rf. Q2 but 

is reducible for all m ~ 1, we must at least include the restriction (for 
41 pk) that u cannot have the form -4b4 for any bE F, that is, u rf. 
-4F4 • It turns out that no further restrictions are needed. 

Lemma 13.1.3 Let p be a prime, k a positive integer and u E F. If u rf. 
FP and if u rf. -4F4 when 41 pk, then 

is irreducible over F. 

k 
f(x) = xP -u 

Proof. If p = char(F), the result follows from Lemma 13.1.1, so assume 
that p :/= char(F). We proceed by induction on k. Lemma 13.1.2 shows 
that the result is true for k = 1 and hence that xP - u is irreducible over 
F. Assume the result is true for any positive integer less than k ~ 2. Let 
f3 be a root of f(x). In a splitting field, we have 

Hence 

Thus f3 is a root of one of the binomial factors, say 
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k-1 
g(x) = xP -a 

13 Binomials 

k-1 
where a = ai for some i. Since a = (JP , we have the tower 

F < F(a) < F((J) 

where [F(a):F] = p. If g(x) is irreducible over F(a), it will follow that 
[F((J):F(a)] = pk-1 and so [F((J):F] = pk, whence f(x) = min((J,F), 
which is irreducible. We must now consider a few cases. 

Case 1: p =f.2. To show that g(x) is irreducible over F(a), we verify 
that a fl. F(a)P. Suppose to the contrary that a= IP E F(a)P for some 
1 E F(a). Since min(a,F) = xP- u, applying the norm N = NF(a)/F 
gives 

-u = (-l)PN(a) = (-1)PN(IP) = (-1)P(N(I)]P 

Since p is odd, we get u = [N ( 1 )]P E FP, contrary to assumption. Hence 
a fl. F(a)P, g(x) is irreducible over F(a) and f(x) is irreducible over F. 

Case 2: p = 2. If a fl. F(a)2 and a fl. -4F(a)4 , then the induction 
hypothesis shows that g(x) is irreducible over F(a), so we need to 
consider two subcases. 

Case 2a: p = 2, a= 12 E F(a)2 for some 1 E F(a). 
We show directly that f(x) is irreducible over F. If N = NF(a)/F then 

since min(a,F) = x2 - u, the usual norm computation gives 

Setting N(1) =bE F gives -u = b2 E F2 • Since u fl. F2, we get -1 fl. F2• 
In other words, i fl. F, where i is a root of x2 + 1. Over F( i), we have the 
factorization 

(13.1.1) 
k k k-1 k-1 

f(x) = x2 - u = x2 + b2 = (x2 + ib)(x2 - zb) 

If both of the factors on the right side are irreducible over F( i), then 
f(x) cannot factor nontrivially over F. For if f(x) = fi ai(x) is a 
nontrivial factorization, where the ai(x) are irreducible over F, then one 
of the factors has degree at most 2){-1, and is not one of the factors in 
(13.1.1). Factoring each ai(x) into irreducibles over F(i) would then 
produce a prime factorization over F(i) distinct from (13.1.1), which is 
not possible since F[x] is a unique factorization domain. 

Now, if one of the factors in (13.1.1) is reducible, the induction 
hypothesis implies that one of zb or -ib lies in F( i) 2 or -4F( i)4 = 
[2iF(i)2] 2• In either case, one of zb or -zb is in F(i)2 , say 
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± sb = (c +di)2 = c2 +2cdi-d2 

Thus, c2 = d2 and b2 = 4c2d2 = 4c4• It follows that u = -b2 = -4c4, a 
contradiction to the hypothesis of the lemma. Thus, f(x) is irreducible 
over F. 

Case 2b: p = 2, a fl. F(a)2 but a= -4"(4, for some 'Y E F(a). 
Since a has degree 2 over F, taking norms gives 

-u = N(a) = N(-4'Y4) = 16[N('Y)]4 

and so -u E F2• Hence, -u = a2 for a E F and so -1 = a2 fu = a2 fa2 E 
F(a)2, say -1 = i2, with i E F(a). Then 

a contradiction. Hence, this case cannot occur. I 

Now we can prove the main result of this section. 

Theorem 13.1.5 Let n ~ 2 be an integer and let u E F. The following are 
equivalent. 

1) f(x) = xn- u is irreducible over F. 
2) u fl. FP for all primes p I n and u fl. -4F4 when 4 I n. 

In particular, if 4/n, then xn- u is irreducible over F if and only if 
xP - u is irreducible over F, for all primes p I n. 

Proof. The last statement follows from Lemma 13.1.2. Proof of 1)=>2) is 
left to the reader. For the converse, we have seen that this result holds 
if n = pk is a prime power. Suppose that n = pkm where (p,m) = 1 and 
k ~ 1. We may assume that p is odd, for if 2 is the only prime divisor 
of n then n = 2k is a prime power. We proceed by induction on n. Let {3 
be a root of xn - u. In a splitting field, we have 

Thus 
k k k k 

f(x) = xn- u = xmp - u = (xP - a 1)(xP - a 2)· • ·(xP -am) 

Suppose that f3 is a root of 
k 

g(x) = xP -a 

where a = ai for some i. By induction, xm- u is irreducible over F and 
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so the first step in the tower 

F < F(o:) < F(/3) 

has degree m. If g(x) is irreducible over F(o:), then the second step will 
have degree pk, whence [F(,8):F] = mpk = n and f(x) = min(,8,F), which 
is irreducible. 

We apply the inductive hypothesis to sh~w that g(x) is irreducible. 
Since p is odd, we need only show that a: fl. F(o:)P. If a:= 'YP for some 
'Y E F(o:) then taking norms N = NF(a)/F gives 

If m is odd, we get u = [N('Y)]P E FP, a contradiction. If m is even then 
since pis odd, we have u = [-N('Y)]P E FP, again a contradiction. Hence, 
a: fl. F(o:)P, g(x) is irreducible over F(o:) and f(x) is irreducible over F. I 

13.2 The Galois Group of a Binomial 

Let us now examine the Galois group of a binomial x8 - u over F, for 
u -:f:. 0 and n relatively prime to expchar(F). If a: is a root of x8 - u and 
wE 0 8 , then the roots of x8 - u are a:, wo:, ... , w8 - 1o: and so S = F(w,o:) 
is a splitting field for x8 - u over F. Moreover, in the tower 

(13.2.1) F < F(w) < F(w,o:) = S 

the first step is a cyclotomic extension, which is abelian since its Galois 
group is isomorphic to a subgro'f of z:. The second step is cyclic of 
degree dIn with min(o:,F(w)) = x - o:d. Nevertheless, the Galois group 
GF(S) need not be abelian. 

The fact that a: and w both satisfy simple polynomials over F is the 
key to describing the Galois group GF(S). Since any 0' E ~(S) must 
permute the roots of x8 - u, there exists an integer k(u) E l 8 for which 

uo: = wk(O')o: 

Moreover, since F( w) is a normal extension of F, the restriction of 0' to 
F(w) is in GF(F(w)) and therefore 0' sends w to another primitive n-th 
root of unity, that is, 

O'W = J(O') 

where j(u) E z:. 
Multiplication in ~(S) has the following form. For u, T E GF(S), 
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and 

urw = uJ(T) = J(tr)j(T) 

There is something reminiscent of matrix multiplication in this. Indeed, 
let ..At,n be the set of all matrices of the form 

Since 

we see that ..At,n is a subgroup of the general linear group GL2(Zn) of all 
nonsingular 2 x 2 matrices over ln. (All entries are taken modulo n.) 
Comparing this product with the action of the product ur shows that 
the map '¢: GF(S)--+..Al.n defined by 

.,P:u H [ 1 0 ] 
k(u) j(u) 

satisfies 

'¢( ur) = '¢( u )'¢( r) 

and is, in fact, a monomorphism from ~(S) into ..Abn. 
Since I..Al.n I = n¢(n), where ¢ is the Euler phi-function, the map '¢ 

is surjective if and only if 

[S:F] = I GF(S) I = n¢(n) 

But in the. tower 

F < F(w) < F(w,a) = S 

we always have [F(w):F] :5 ¢(n) and [F(w,cr):F(w)] :5 n. (See Figure 
13.2.1.) Hence '¢ is surjective (and an isomorphism) if and only if 
equality holds in these two inequalities. 
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S=F(W,OC) 

"I ~q\(n) 

Figure 13.2.1 

Theorem 13.2.1 Let n be a positive integer relatively prime to 
expchar(F). Let S be the splitting field for xn- u over F, where u E F, 
u f:. 0. Let a be a root of xn- u and wE On. Then GF(S) is isomorphic 
to a subgroup of the group .Abn described above, via the monomorphism 

t/;:u .,_. [ 
1 0 ] 

k(u) j(u) 

where ua = wk(a)a and uw = J(a). In addition, t/J is an isomorphism 
and GF(S) ~ .Abn if and only if both steps in the tower (13.2.1) have 
maximum degree, that is, if and only if both of the following hold 

1) [F(w):F] = tP(n), 

2) [F(w,a):F(w)] = n, that is, xn- u is irreducible over F(w). D 

Statement 2) is phrased in terms of F(w) and we would prefer a 
statement involving only the base field F. For n prime, this is easy. 

Lemma 13.2.2 Let p be a prime and let w E OP. Then xP - u is 
irreducible over F(w) if and only if it is irreducible over F. Equivalently, 
xP- u has a root in F(w) if and only if it has a root in F. 

Proof. Certainly, if xn- u is irreducible over F(w), it is also irreducible 
over F. For the converse, consider the tower 

F < F(w) < F(w,a) 
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Since xP- u is irreducible over F, we have 

p = [F(a):F] $ [F(w,a):F] 

On the other hand, the first step in the tower has degree at most 
¢(p) = p - 1 and the second step is cyclic of degree d I p, whence d = 1 
or p. Hence [F(w,a):F(w)] = p, which implies that xP- u = min(a,F(w)) 
is irreducible over F(w). I 

In order to extend this result to arbitrary n (and for its own 
interest), we want to say more about when the Galois group GF(S) is 
abelian. Of course, since both steps in the tower 

F < F(w) < F(w,a) = S 

are abelian, if either step is trivial, then GF(S) is abelian. Thus, if w E F 
or if a E F(w) then GF(S) is abelian. The converse is also true when n is 
prime. 

Lemma 13.2.3 Let p be a prime and let w E OP. Then the Galois group 
~(S) is abelian if and only if at least one step in the tower (13.2.1) is 
trivial, that is, if and only if either w E F or xP - u has a root in F( w) 
[or, equivalently, a root in F]. 

Proof. One direction has already been discussed so we need only show 
that if w ~ F and xP- u is irreducible ~ver F(w) then GF(S) is not 
abelian. Since w ~ F, it has a conjugate wl =f. w that is also not in F. Let 
T E ~(F( w)) be defined by rw = wi. Since xP - u is irreducible over 
F(w), for each i E ZP, the map T may be extended to a ui E GF(S) 
defined by 

Taking i = 1 and i' = 0 gives 

u1u0a = u1a = wa 

and 

and these are distinct since w ::/:- wi. Hence, u1 and u0 do not commute 
and ~(S) is not abelian. I 

We can now strengthen the statement of Theorem 13.2.1 by showing 
that, in certain cases, when n is odd and [F(w):F] = ¢(n), then xn- u is 
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irreducible over F(w) if and only if it is irreducible over F. The idea of 
the proof is this. Suppose that p(x) is an irreducible polynomial over F, 
with splitting field S. Suppose also· that E is a normal extension of F. 
Then p(x) has a root in E if and only if it splits in E, that is, if and 
only if F < S <E. Now, if F < E is an abelian extension, that is, if 
~(E) is abelian, then so is any quotient group of ~(E), in particular, 
so is 

GF{E) 
GF(S) ~ Gs(E) 

Thus, if GF{S) is not abelian, we can conclude that p(x) does not have 
a root in E. 

Part of the hypotheses of the next theorem is that the base field F 
does not contain any n-th roots of unity, other than 1. Note that this is 
equivalent to saying that F does not contain any primitive p-th roots of 
unity for any prime p I n. 

Theorem 13.2.4 Let n be an odd positive integer relatively prime to 
expchar{F). Let w be a primitive n-th root of unity over F and suppose 
that F does not contain a primitive p-th root of unity for any prime 
p I n. Let F < A be any abelian extension. Then xn- u is irre4ucible 
over F if and only if it is irreducible over A. 

Proof. Clearly, if xn- u is irreducible over A, it is also irreducible over 
the smaller field F. Suppose that xn - u is irreducible over F, but not 
over A. Since 4/n, Theorem 13.1.5 and Lemma 13.1.2 imply that there 
exists a prime p I n for which no roots of xP - u lie in F, but some root 
a of xP- u lies in A. Hence, Lemma 13.2.3 implies that if e is a 
primitive p-th root of unity, then the Galois group GF{F(e,a)) is not 
abelian. 

On the other hand, since F < A is normal and A contains one root of 
the irreducible polynomial xP- u, it contains all roots of xP- u. Thus, 

F < F(e,a) <A 

But F < A is abelian and therefore so is the quotient 

This contradiction implies that xn - u is irreducible over A. I 

According to Theorem 10.2.9, if [F(w):F] = cf>(n), then F cannot 
contain any primitive p-th roots of unity for any pIn and we may 
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apply Theorem 13.2.4 to get the following strengthening of Theorem 
13.2.1. 

Corollary 13.2.5 Referring to Theorem 13.2.1, if n is an odd positive 
integer relatively prime to expchar(F) then GF(S) ~ ..Abn if and only if 
[F(w):F] = tjl(n) and xn- u is irreducible over F. 0 

Since [Q(w):Q] = tjl(n), we have 

Corollary 13.2.6 Referring to Theorem 13.2.1, ifF= Q and n is an odd 
positive integer then GQ(S) ~ ..Abn if and only if xn- u is irreducible 
over Q. 0 

Thus, when F < F(w) has the largest possible degree t/J(n) (which 
includes the important case F = Q), we see that GF(S) ~ ..Abn if and 
only if xn - u is irreducible over F. In some sence, ..Abn is the "most 
nonabelian" subgroup of ..Abn. At the opposite extreme, we can show, 
again when [F(w):F] = tjl(n), that GF(S) is abelian if and only if xn- u 
actually has a root in F. 

Theorem 13.2.7 Let n be an odd positive integer relatively prime to 
expchar(F). Let S be the splitting field for xn- u over F, where u E F, 
u :f: 0. Suppose that [F(w):F] = t/l(n) where wE On. Then the following 
are equivalent. 

1) ~(S) is abelian 
2) xn-u has a root in F 
3) xn- u has a root in F(w) [and therefore splits in F(w)] 

Proof. Clearly, 2)=>3)=>1). Suppose that GF(S) is abelian and let k be 
the largest divisor of n for which u E Fk, that is, u = :rk for some f E F. 
The proof will be complete if we show that k = n. If k < n, let p be a 
prime number dividing nfk. Consider the tower 

(13.2.2) 

Note that xP- f is irreducible over F, for if not, then f = gP E FP for 
some g E F, whence u = :rk = gPk E FPk, in contradiction to the 
definition of k. Hence [F(f1/P):F] = p and 

[F( wp,rl/P):F] ~ p 

Theorem 10.2.9 implies that [F(wp):F] = p -1 and since 
F(w ) < F(wp,rl/P) is cyclic of degree dividing the prime p, neither step 
in the tower (13.2.2) is trivial. Hence, Lemma 13.2.3 implies that the 
Galois group H = GF(F( wp,rl/P)) is not abelian. 
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We will now produce a contradiction by showing that GF(S~ abelian 
implies H is abelian. Since each root of xP - f is a root of xP - u we 
have 

F < F(w f1/P) < F(w u1/Pk) 
P' pk1 

Since (u11nt/pk is a root of xPk- u, at least one root of xPk- u is in 
F(w,u1/n). But wn/pk = wpk and so all roots of xPk- u are in F{w,u1/P). 
Hence, 

Since F < FAw,u1/n) is assumed to be abelian, so is the subextension 
F < F(wp,rl P), that is, H is abelian. This contradiction completes the 
proof that 1) implies 2). I 

In the exercises, we ask the reader to provide a simple example to 
show that Theorems 13.2.4 and 13.2.7 fail to hold when n is even. 

We conclude this section by generalizing the previous theorem, in 
order to characterize precisely {for n odd) when GF(S) is abelian. The 
proof follows lines similar to the proof of Theorem 13.2.7, but is a bit 
more intricate and since it involves no new insights, the reader may 
wish to skip it on first reading. However, the result is of interest since it 
shows how the relationship between the n-th roots of unity and the 
ground field F play a role in the commutativity of GF(S). We first need 
a result that is of interest in its own right. The proof is left as an 
exercise. 

Theorem 13.2.8 Let xn- a and xn- b be irreducible over F and suppose 
that F contains a primitive n-th root of unity. Then xn- a and xn- b 
have the same splitting field over F if and only if b = cnar for some c E 
F and r relatively prime to n. D 

Theorem 13.2.9 Let n be an odd positive integer relatively prime to 
expchar(F). Let Un be the group of n-th roots of unity over F and let 
Urn= Un n F*. If S is the splitting field for xn- u {u E F, u # 0), then 
~(S) is abelian if and only if urn E pn, 

Proof. Note first that mIn since urn is a subgroup of un. Moreover, 
since Urn= (wrn) is cyclic, wi E F if and only if i I m. Suppose first that 
urn = f!l for some f E F. Then 

for some integer k. (More precisely, given any n-th root ul/n of n and 
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any m-th root f1/m off, there exists a k such that this equation holds.) 
The field F(fl/m) is cyclic over F, since the latter contains a primitive 
m-th root of unity wm. Therefore, since F < F(wmn) and F < F(fl/m) 
are both abelian, so is the extension 

F < F(wmn)F(fl/m) = F(wmn,rt/m) = F(wmn,ul/n) 

Finally, since F < S < F(wmn,ul/n), we deduce from Theorem 5.5.5 that 
F < S is abelian. 

For the converse, assume that GF(S) is abelian. Let k be the largest 
positive integer such that m I k, kIn and urn E Fk, say urn= :tk for f E 
F. (There is such an integer since k = m satisfies these conditions.) We 
need to show that k = n. Suppose to the contrary that k < n and let p 
be a prime number dividing n/k. Let p8 be the largest power of p such 
that p8 I m. (The hypothesis that n is odd and [F(w):F] = ¢(n) in 
Theorem 13.2.7 implies that m = 1, whence s = 0.) 

The first step is to show that the extension 

1/ps+l 
F < F(w s+l•f ) 

p 

is abelian. It is clear that the notation is a bit unwieldy, so let us set 
q = p8 +1 and note that q In since p8 I m I k and pI (n/k). To see that 
this extension is abelian, we embed it in an abelian extension. Since 

we have fl/q = witqum/kq for some j and so 

F(w f1/q) < F(w f1/q) = F(w um/kq) q' . kq• kq• 

If we set 

then v is a root of xkq/m- u and v E F(wkq•ul/n). Hence, all roots of 
x~q/m- u are contained in F(wkq•ul/n), that 1s, 

F(w um/kq) < F(w u11n) kq• kq• 

Putting the pieces together gives 

F < F(wq,ri/q) < F(wkq•umfkq) < F(wkq•ul/n) < F(wqk)F(wn,ul/n) 

Since F < F(wqk) and F < F(wn,ul/n) are abelian (the latter by 
assumption), the composite 
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is abelian and therefore so is 

We now propose to arrive at a contradiction by considering the tower 

Note that xP- f is irreducible over F, since otherwise f = gP E FP for 
some g E F, whence u = fk = gPk E FPk, in contradiction to the 
definition of k. 

We first take the case s = 0, whence q = p. Since xP- f is irreducible 
over F, we have [F(f1/P):F] = p and 

Since p J m, it follows that wp fl. F and so the extension F < F( wp) is not 
trivial. Since [F(wp):F] ~ p -1 and F(wp) < F(wp,fl/p) is cyclic of 
degree dividing the prime p, the latter extension is also not trivial. 
Hence, Lemma 13.2.3 implies that the Galois group H = GF(F(wp,f1/P)) 
is not abelian, the desired contradiction. 

Now assume that s > 0. With regard to the first step in the tower, 
letting r = p5 ;::: p, we have rIm and qJm, hence wr E F but wq fl. urn. 
Since s > 0, we also get wp E F. Hence xP- wr is either irreducible or 
splits in F. But wq is a root not in F and so xP- wr is irreducible over 
F. (Note that for s > 0, the first step in the tower has degree p, rather 
than a number dividing p -1, hence we cannot use the same strategy as 
when s = 0.) Since the roots of xP - wr are 

for each j E 71. , there is a uj E GF(F(wq)) for which ujw = ~wq. To 
show that GF(F(wq,rl/q)) is not abelian, we shall need only u0:wqHWq 
and u1:WqHWrWq' 

There are two possibilities for the second step in the tower. If xq- f 
is irreducible over F(wq) then we can extend u0 and u1 to elements of 
GF(F(wq,f1/q)) by defining 

u ·w ·f1/q w f1/q 0,1' qHWql 0'0,1' H q 
and 
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Then 

u u f1/q = u f1/q = w f1/q 
0,1 1,0 0,1 q 

and 

u u f1/q = u (w f1/q) = w w f1/q 1,0 0,1 1,0 q r q 

which are distinct since wr =/= 1. Hence, ~(F(wq,f1/q)) is not abelian, a 
contradiction. 

If xq- f is reducible over F(wq) then f E F(wq)P. Thus f = fjP for 
some {3 E F(wq) and so F({j) < F(wq)· Since xP- wr and xP -fare both 
irreducible over F, it follows that [F(wq):F) = p and [F({j):F) = p, 
whence F(wq) = F({j). Thus, xP- f and xP- wr have the same splitting 
field over F and Theorem 13.2.8 implies that 

f=~vP r 

for some v E F. Taking k-th powers gives, since r I k, 

for v E F, which contradicts the definition of k. Thus, k = n and the 
theorem is proved. I 

* 13.3 The Independence of Irrational Numbers 

A familiar argument (at least for p = 2) shows that if p is a prime 
number then y'P f. Q and so [Q( y'P):Q) = 2. Our plan in this section is 
to extend this result to more than one prime p and to n-th roots for 
n ~ 2. Since the case when n is even involves some rather intricate 
details which give no further insight into the issues involved, we will 
confine our attention to n odd. (The case n = 2 is straightforward and 
we invite the reader to supply a proof of Theorem 13.3.2 for this case.) 
If Q > 0 is rational, the notations va and o?/n will denote the real 
positive n-th root of a. T4e results of this section were first proved by 
Bescovitch [1940) but the method of proof we employ follows more 
closely that of Richards [1974). 

Lemma 13.3.1 Let u = a/b be a positive rational number, expressed in 
lowest terms, that is, where (a,b) = 1. If n ~ 2 is an integer then 

Vf, E Q if and only if a = en and b = dn for some integers c and d 
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In particular, if p is a prime, then Z/P fl. Q. 

Proof. One direction is quite obvious. Suppose then that 

where c and d are positive integers and (c,d) = 1. Then adn =ben and 
since (a,b) = 1, it follows that a I en. Thus en= aa for some integer a. 
Substituting this into adn = ben gives adn = aab or dn = ab. But since 
(c,d) = 1, we also have (cn,dn) = 1, that is, (aa,ab) = 1. Hence a= J 
and so a= en and b = dn. I 

Suppose now that n is odd. Since p fl. qr for any prime r I n, Theorem 
13.1.5 implies that xn - p is irreducible over Q and so [Q( vP):Q] = n. 
Let us generalize this to more than one prime. 

Theorem 13.3.2 Let n ~ 2 be an integer and let p1, ... , Pm be distinct 
primes. Then 

[Q(ny'Pl, ... /~):Q] = nm 

Proof. As mentioned earlier, we confine our proof to the case where 
n ~ 3 is odd. Let w E nn. Since 

it is sufficient to show that 

[Q(w)(V'P!,···• ~):Q(w)] = nm 

which we shall do by induction on m. 
Let p be a prime. Since xn - p is irreducible over Q and Q contains 

no primitive r-th roots of unity for any prime r I n, Theorem 13.2.4 
implies that xn- pis also irreducible over Q(w). Hence, 

[Q(w,zyp):Q(w)] = n 

and the theorem holds for m = 1. 
Now let us suppose that the theorem is true for the integer m and let 

p be a prime distinct from the distinct primes p1, ... , Pm· Let 

F=Q(w) and E=Q(w)(Z/Pl, ... ,~) 

If xn- lr is not irreducible over E then there exists a prime r I n such 
that p1 r E E. Thus, pl/r is a linear combination, over Q(w), of terms of 
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the form 

rMW~···~ 
where 0 ~ e(i) ~ n- 1. There are two cases to consider. 

Case 1: If the linear combination involves only one term, then 

vP=crMW~ ... ~ 
where c E Q(w) and not all e(i) are 0. If n = rd, this can be written in 
the form 

pd 
e(l) e(m) E Q(w) 

Pt ···Pm 

This says that the radicand q is a positive rational number and the 
polynomial xn- q has a root in Q(w). According to Theorem 13.2.7, 
xn- q must also have a root in Q, which is not possible since q does not 
have the form an/bn, for integers a, b. Hence, this case cannot occur. 

Case 2: At least two terms in the linear combination are nonzero. It 
follows that one of the primes pi, which we may assume for convenience 
is Pm' appears to different powers in at least two distinct terms. 
Collecting terms that involve like powers of Pm gives 

(13.3.1) pl/r = Ao + Alp:r{n + A2p!(n + ... + An-tP~-1)/n 

where Ai E Q(w)(.ifi>I, ... ,~) and where at least two of the A/s 
are nonzero. Now, since 

Q(w) < Q(w)(V'Pt, ... ,V'i>;) 

is a Galois extension (this is why we adjoined w in the first place), the 
inductive hypothesis implies that its Galois group G has size nm. Since 
any .u E G must send roots of xn - Pi to other roots, it must send ~/Pi 
to wl ~ for some j = 0, ... , n - 1. Since there are nm such choices, all of 
these choices must occur. 

Thus, there is au E G for which 

up:r{n = wp!{n, upfl~ = pf/n (for all i < m) 

Since upd/n = wkpd/n for some 0 ~ k ~ n -1, applying u to (13.3.1) 
gives 

wkpd/n = A +A wp1/n +A w2p2/n + ... +A wn-lp(n-1)/n 
0 1 m 2 m n-1 m 
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We now multiply (13.3.1) by wk and subtract the previous equation to 
get 

0 = (wk -1)Ao + (wk- w)A1p:in + ... + (wk- wn-1)P!:-1)/n 

where at least one of the coefficients (wk- wi)Ai is nonzero. This is a 
contradiction to the inductive hypothesis. We have therefore established 
that xn - p is irreducible over E and the proof is complete. I 

Exercises 
1. Let n be relatively prime to char(F). Show that the Galois group 

of xn- u is isomorphic to a subgroup of the group generated by u, 
T where un = T.P(n) = 1, uru-1 = Tr. What is r? 

2. (Van der Waerden) Let n be relatively prime to char(F). Show 
that the Galois group of xn - u is isomorphic to the group of 
linear substitutions modulo n: X-+CX + d where d E zn, c E z~. 

3. Let xn- u E GF( q)[x]. Show that the following are equivalent: (i) 
r In, r prime implies u rt GF(q)r and (ii) r In, r prime implies 
r I o(u) but r /(q-1)/ o(u) where o(u) is the multiplicative order of 
u in GF(q). 

4. Prove Lemma 13.1.2 by factoring xP- u in a splitting field and 
then considering min(a,F). 

5. Prove the following without using any of the results of Section 
13.1. If u E F and (m,n) = 1 then xmn- u is irreducible over F if 
and only if xm - u and xn - u are irreducible over F. 

6. Let char(F) = p ::f. 0 and let F < E be cyclic of degree pk, with 
Galois group G = {u). If there exists a {J E E with TrE/F({J) = 1 
show that there exists an a E E for which the polynomial f(x) = 
xP- x- a is irreducible over E. 

7. Let char(F) = p > 0 and let n = pem where (m,p) = 1. Show that 
the Galois groups of 

are the same. 
8. Let n be a positive integer relatively prime to expchar(F) and let 

w be a primitive n-th root of unity over F. Let S = F(w,ul/n) be 
the splitting field for f(x) = xn- u over F, where u E F, u ::f. 0. If 
41 n and if u112 rtF then GF(S) is not abelian. 

9. Show that Theorem 13.2.4 and Theorem 13.2.7 fail to hold when 
n is even. Hint: J2 E Q(w), where w is a primitive 8-th root of 
unity. 

10. Prove the following: Let f(x) be a monic irreducible polynomial of 
degree m over F, with constant term -aa· Let n ~ 2 be an integer 
with the following properties (i) (m,n) = 1, (ii) 4Jn (iii) ao rt Fr 
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for all primes r In. Then the polynomial f(xn) is also irreducible 
over F. 

11. Let w be a primitive n-th root of unity over F, n odd, and let a be 
a root of xn- u over F. Then S = F(w,a) is the splitting field for 
xn- u. Assume that Gp(S) ~An. (See Theorem 13.2.1.~ In this 
exercise, we determine the largest abelian subextension Fa of S. 

12. 

a) If G is a group, the subgroup G' generated by all 
commutators a{3a-1(rl, for a, (3 E G, is called the 
commutator subgroup. Show that G' is the smallest subgroup 
of G for which G/G' is abelian. 

b) If the commutator subgroup Gp(E)' of a Galois group Gp(E) 
is closed, that is, if Gp(E)' = GK(E) for some F < K < E, then 
K is the largest abelian extension of F contained in E. 

c) The commutator subgroup of An is 

and 

,&( GF(w)(S)) = .P(<;,(s)) n .Abn' = {[ ,; 

where d = [F(w,a):F(w)]. 
d) Gp(S)' = GF(w)(S), and so F(w) is the 

extension ofF contained in F(w,a). 
Prove that if p1, ... , Pm are distinct primes then 

(1) [Q( vPI• ... ' JPrn):Q] = 2m 

by induction on m. 

largest abelian 

13. Show that y'60 fl. Q( y'42,JiQ). 
14. Let n be a positive integer relatively prime to expchar(F) and let 

w be a primitive n-th root of unity over F. Let S = F(w,ul/n) be 
the splitting field for f(x) = xn- u over F, where u E F, u f= 0. If 
for some prime pIn, we have wp fl. F and u1/P fl. F, where wp is a 
primitive p-th root of unity over F, then the Galois group Gp(S) 
is not abelian. 

15. Let xn- a and xn - b be irreducible over F and suppose that F 
contains a primitive n-th root of unity. Then xn- a and xn- b 
have the same splitting field over F if and only if b = cnar for 
some c E F and r relatively prime to n. Hint: if the splitting fields 
are the same, consider how the common Galois group acts on a 
root of each binomial. 
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16. Let F < E be a finite Galois extension and let a, (3 E E have 
degrees m and n over F, respectively. Suppose that [F(a,(J):F] = 
mn. 
1) Show that if ai is a conjugate of a and (Jj is a conjugate of (3 

then there is a u E GF(E) such that ua = ai and u(J = (Jj. 
Hence, the conjugates of a+ (3 are ai + (Jj' 

2) Show that if the difference of two conJugates of a is never 
equal to the difference of two conjugates of (3 then F( a,(J) = 
F(a + (3). 

17. Let r be a prime different from char(F). Let f(x) = xr- u and 
g(x) = xr- v be irreducible over F, with roots a and (3, 
respectively. Use the previous problem to show that if 
[F(a,(J):F] = r2 then F(a,(J) = F(a + (3). 



Chapter 14 

Families of Binomials 

In this chapter, we look briefly at families of binomials and their 
splitting fields and Galois groups. We have seen that when the base 
field F contains a primitive n-th root of unity, cyclic extensions of 
degree dIn correspond to splitting fields of a single binomial xn- u. 
More generally, we will see that abelian extensions of exponent n 
correspond to splitting fields of families of binomials. We will also 
address the issue of when two families of binomials have the same 
splitting field. 

14.1 The Splitting Field 

Let F be a field containing a primitive n-th root of unity and 
consider a family GJ of binomials given by 

where Us; F is the set of constant terms. We will refer to n as the 
exponent of the family GJ. 

If Su is the splitting field for xn- u, then S = V {SuI u E U} is the 
splitting field for the family GJ. Since each extension F < Su is Galois, so 
is F < S and Theorem 5.5.3 implies that GF(S) is isomorphic to a 
subgroup of the product 
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Since each F < Su is cyclic of degree dividing n, the group H is the 
direct product of cyclic groups of order dividing n and is therefore 
abelian with exponent n. (Recall that a group G has exponent n if an = 
1 for all a E G.) Hence, GF(S) is abelian with exponent n. An abelian 
extension F < S whose Gaiois group ~(S) has exponent n will be 
referred to as an abelian extension with exponent n. 

Thus, if F contains a primitive n-th root of unity, the splitting field 
of any family of binomials over F of exponent n is an abelian extension 
ofF with exponent n. Happily, the converse is also true. 

Suppose that F < E is an abelian extension with exponent n. Let K 
be any field for which F < K < E where F < K is finite. Since F < E is 
abelian, so is F < K. In addition, ~(K) is finite and has exponent n. 
Since a finite abelian group is a direct product of cyclic subgroups, we 
have 

where each Gi is cyclic with exponent n and hence order ni I n. Corollary 
5.5.4 implies that K is a composite K = Kc ·~ where ~(Ki) ~ Gi is 
cyclic of order ni In. Since F contains the nrth roots of unity and 
F < Ki is cyclic, Theorem 11.1.1 implies that Ki = F(ai) is the splitting 
field for 

( ) n· n· min a· F = x 1 - a· 1 11 I 

where ai E E. Hence K = F( a 1, ... , am) is the splitting field over F for 
the family 

It follows that E is the splitting field for the union U ~K' taken over all 
finite intermediate fields K. 

Theorem 14.1.1 Let F be a field containing a primitive n-th root of 
unity. An extension F < E is abelian with exponent n if and only if E is 
the splitting field for a family of binomials over F of exponent n. D 

Definition Let F be a field containing a primitive n-th root of unity. An 
extension F < E is a Kummer extension of exponent n if F < E is 
abelian and has exponent n. D 

Thus, according to Theorem 14.1.1, the Kummer extensions ofF of 
exponent n are precisely the splitting fields over F of families of 
binomials of exponent n. 
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14.2 Kummer Theory 

While each family of binomials gives rise to a unique Kummer 
extension, different families may produce the same extension, that is, 
different families may have the same splitting field. We seek a 
collection of families of binomials such that there is a one-to-one 
correspondence between families in the collection and Kummer 
extensions. 

Let us phrase the problem a little differentlh, for which we require 
some notation. Recall that if u E F, then b:y u1 n we mean a particular 
(fixed) root of xn- u. If A~ F, we let A lfn denote the set of all n-th 
roots of all elements of A. Also, if A~ F and n is a nonnegative integer 
then An = {an I a E A}. 

Let F be a field containing a primitive n-th root of unity. Of course, 
we may identify a family GJ = {xn- bIb E U} of binomials of (fixed) 
exponent n with the set U ~ F* of constant terms (since binomials with 
zero constant term are not very interesting, we exclude such binomials). 
Moreover, the splitting field for GJ is S = F(Ul/n). 

In seeking a bijective correspondence between subsets U ~ F* and 
splitting fields S = F(Ul/n), it is natural to restrict attention to 
maximal sets U C F* that generate the given splitting field. As we now 
show, if S = F(u1/n) for some U ~ F*, then 

where {U,F*n) is the subgroup of F* generated by U and F*n. To see 
this, note that if u11 ... , uk E U and f E F* then for some integer j, we 
have 

(fDu~l .. ·u~)l/n = winf(u~ln)el .. ·(u~ln)ek E F(Ul/n) 

and so we get nothing new in F(Ul/n) by adjoining any element of 

That is to say, 

It follows that, as far as split~ing fields for families of binomials of 
exponent n are concerned, we may restrict attention to sets of constant 
terms that are subgroups of F* containing F*n. Indeed, we will show 
that if CU.n is the class of all subgroups U of F* containing F*n then the 
association U~-+F(U 1 /n) is a bijection onto the class 9bn of all Kummer 
extensions E ofF with exponent n. We will also obtain a description of 
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the Galois group GofF< E in terms of U. 
Let F < F(U1/n) be a Kummer extension with Galois group G, and 

let u E G and u E U. If o is a root of xn - u then uo is also a root of 
xn-u and so 

for so!lle n-th root of unity w~,a· If [3 is ano.ther r.oot of xn- u, then 
[3 = w1o where wE On and so u({J/o) = u(w1) = w1 = [Jfo. It follows 
that 

W - u[J- uo- w 
~.f3 -p-a- ~.a 

Hence, w ~ = w ~,a depends only on u. 
It follows that the map (,}:G X U-+Un defined by 

(u,u} = w~ = u0°, for any o with on= u 

is well-defined (does not depend on o) and we may write 

1/n 
(14.2.1) (u,u} = uu 1 u1 n 

without ambiguity. Moreover, if on= u and bn = v then for u, T E G, 

w w 0 
(ur,u) = u~o = ~ = wTw~ = uoo Too= (u,u)(r,u) 

and 

(u,uv) = u~o:) = u: u: = (u,u)(u,v) 

Thus, for each u E G, the map 'lf~:U-+Un defined by 'lf~u = (u,u} is a 
group homomorphism and for each u E U, the map Ou:G-+Un defined 
by Ouu = (u,u} is also a group homomorphism. This prompts a 
discussion of the following notions. 

Dual Groups and Pairings 

If A and B are groups, we denote by Hom(A,B) the set of all group 
homomorphisms from A to B. Note that Hom(A,B) is a group under 
the product 

(,PO)(o) = (,Po)(Oo) 

with identity being the constant map ,Po= 1 for all o EA. Using this 
notation, we can state with regard to the pairing (14.2.1), that 'If~ E 
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Hom{U,Un), for all rr E G and (Ju E Hom(G,Un), for all u E U. 

Lemma 14.2.1 

1) If A, B and C are abelian groups then 

Hom( Ax B,C) ~ Hom{A,C) x Hom{B,C) 

2) If A is a finite abelian group of exponent n, then Hom(A,Un) ~A. 
Hence, I Hom(A,Un) I = I A I· 

Proof. We leave it as an exercise to show that the map 

~:Hom(A,C) x Hom(B,C)-+Hom(A x B,C) 

defined by 

~( .,P,O)( o:,{J) = .,P( a: )O({J) 

is an isomorphism, proving part 1). For part 2), since A can be written 
as the product of finite cyclic groups, part 1) implies that we need only 
show that Hom(A,Un) ~A when A= (a:) is cyclic. If A has order mIn, 
then 1/J E Hom(A,Un) maps A into Urn, since for any a: E A we have 

Suppose that Urn= (w) and let 1/J E Hom{A,Un) be defined by 1/J(a:) = w. 
Then 

is a cyclic subgroup of Hom(A,Un) of order m = I Urn I· Since every 
element of Hom(A,Un) is uniquely determined by its value on a:, we 
deduce that Hom(A,Un) = (1/J) is cyclic of order m, whence 
Hom(A,Un) ~A. I 

Definition If A, B and C are abelian groups, a pairing of A x B into C is 
a map (,):Ax B-+C that is a "bihomomorphism", that is, 

1) For each a: E A, the map 1/J0 :B-+C defined by .,P0 ({J) = (a:,{J) is a 
group homomorphism. 

2) For each {JEB, the map o13:A-+C defined by 013(o:)=(o:,{J) is a 
group homomorphism. 0 

A pairing is the analog of a bilinear map between vector spaces. Note 
that (l,{J) = (a:,l) = 1 for all a: E A and {J E B and that (a:,{J)-1 = 
(a:-1 ,{J) = (a:,{J-1). If S ~A and T ~ B, we set 
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(S,T} = {(s,t) Is E S, t E T} 

(We will write ({a},T} as (a,T) and (S,{,B}} as (S,,B).) The left kernel of 
a pairing is the set 

KL ={a E A I (a,B) = {1}} 

and the right kernel is defined similarly 

KR ={,BE B I (A,,B} = {1}} 

It is easy to see that these kernels are subgroups of their respective 
parent groups. 

Note that (a1,,B} = (a2,,B} for all ,BE B if and only if (a1a21,B} = 
{1}, that is, if and only if a 1a21 E KL, or equivalently, a 1KL = a 2KL. 
Similar statements holds for the right kernel. Thus, we may define a 
pairing from A/KL x B/KR to C by 

and this pairing is nonsingular, that is, both the left and right kernels 
are trivial. 

Theorem 14.2.2 Let (,}:Ax B--+Un be a nonsingular pairing from abelian 
groups A and B into Un. Then A and B both have exponent n. 
Moreover, A is finite if and only if B is finite, in which case 

1) A:::: Hom(B,Un) and B:::: Hom(A,Un), 
2) I A I = I B I· 

Proof. First observe that if a E A then (an,,B} = (a,,B}n = 1 for all ,B E 
B, and so an E KL, whence an = 1 and A has exponent n. A similar 
statement holds for B. Npw consider the map A--+Hom(B,Un) defined 
by at-'tt/J01 , where t/J01:,Bt-'t(a,,B). Since 

the map at--'tt/;01 is a group homomorphism from A to Hom(B,Un)· If 
t/;01 = 1 is the constant homomorphism then {a,,B) = 1 for all ,BE B, 
that is, a E KR, whence a= 1. Hence, the map at--'tt/;01 is injective. 

It follows from Lemma 14.2.1 that if B is finite, then 



14 Families of Binomials 253 

The dual argument shows that I B I $ I A I and so I A I = I B I . This 
also implies that the monomorphism OtHtP 0 is an isomorphism. I 

Back to Binomials 
We resume our study of the pairing {,}:G x U-+Un defined by 

1/n 
{u u} = .![!!___ 

' ul/n 

Since the identity is the only map in G that fixes every root of every 
binomial in the family, the left kernel of this pairing is 

KL = {u E G I uu1/n = u1/n for all u E U} = {t} 

An element u E U is in the right kernel if and only if 

for all u E G, that is, if and only if ul/n E F(G)* = F*. Since u1/n E F* 
if and only if u E p•n, we have KR = p•n. 

It follows that the pairing {,}:G X (U /F*n)-+Un given by 

1/n 
{u uF*n) = .![!!___ 

' u1/n 

is nonsingular. We may thus apply Theorem 14.2.2. 

Theorem 14.2.3 Let F be a field containing a primitive n-th root of 
unity. If E = F(Ul/n) then the pairing 

given by 

is nonsingular and so U /F*n has exponent n and I ~(E) I = [E:F] is 
finite if and only if (U :F*n) is finite, in which case 

[E:F] = (U :F*n) 

and 

[) 
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Theorem 14.3.1 not only describes the Galois grou:fJ of a Kummer 
extension, but allows us to show that the map U~-+F(U /n), from 'Unto 
%n, is a bijection. 

Theorem 14.2.4 Let F be a field containing a primitive n-th root of 
unity. Let %n be the class of all Kummer extensions F < E of F with 
exponent n and let 'Un be the class of all subgroups U of F* containing 
F*n. Then the map U~-+F(U1 /n) is a bijecti~n from 'Un onto %n with 
inverse given by E~-+E*n n F* 

Proof. To show that the map in question is injective, suppose that 
F(U1/n) = F(V1/n), with U, V E 'U.n. If u E U, then u1/n E F(V1/n) and 
so there exists a finite subset V0 of V for which u1/n E F(V~In). Let 
V 1 = (V 0,F*n) be the subgroup generated by V0 and F*n. Then 

and 
y1/n C y1/n C y1/n 

0 - 1 -

Note that V 1 E 'Un is finitely generated (by V0) over F*n and hence 
(V 1 :F*n) is finite. Theorem 14.2.3 implies that 

Let us now adjoin u. Let V2 = (u,V1) be the subgroup generated by u 
and V1. Then V2 E 'Un and 

F(v~/n) = F((u,V1)1/n) = F((a,vFn)) = F(vFn) 

Another application of Theorem 14.2.3 gives 

and since V 1 ~ V 2 we get V 1 = V 2• It follows that u E V 1 ~ V and since 
u was arbitrary, U ~ V. A symmetric ar~ument gives V ~ U, whence 
U = V. This proves that the map U~-+F(U ln) is injective. We have seen 
that any Kummer extension F < E in %n is a splitting field extension 
for a family GJ of binomials with exponent n. If C is the set of constant 
terms and if U is the subgroup of F* generated by C and F*n then E = 
F(U1/n) and so the map is surjective. 

Let F < E be a Kummer extension with exponent n and let U = 
E*n n F*. Then U is a subgroup ofF* containing F*n, that is, U E 'U.n. 
It is clear that E ~ F(ul/n). For the reverse inclusion, let pn E U. Then 
pn =an for some a E E*, which implies that {3 is a root of xn- an E 
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F[x] and so {J = WiQ E E*. This shows that ul/n ~ E* and so E = 
F(U1/n). Hence, E~-+U = E*n n F* is the inverse map. I 

Exercises 
1. Referring to Lemma 14.2.1, show that the map 

~:Hom( A, C) x Hom(B,C)--+Hom(A x B,C) 

defined by 

~( '1/;,0)( Q,{J) = .,P( Q )0([3) 

is an isomorphism. 
2. Let A be a finite group and let .,P E Hom(G,Un)· Show that 

:L a e A .,P( a) = I A I if .,P( a) = 1 for all a E A and :L a e A '1/;( a) = 0 
otherwise. 

3. Let A be a finite abelian group with exponent n. If Q E A satisfies 
'1/;(Q) = 1 for all .,P E Hom(A,Un) then Q = 1. 

4. Let B be a proper subgroup of a finite abelian group A and let 
Q E A- B. Then there exists .,P E Hom(A,Un) such that .,P(B) = 
{ 1} but .,P( Q) "1- 1. 

5. Let A be a finite abelian group and let B be a subgroup of A. Let 
B.L ={'I/; E Hom(A,Un) 1'1/J(B) = {1}}. Show that Hom(B,Un) ~ 
Hom(A, Un)/B'L. 

6. Let B be a subgroup of a finite abelian group A. Let B.L = { '1/J E 
Hom(A,Un) 1'1/J(B) = {1}}. Show that Hom(A/B,Un) ~ B.L. 

7. Let GJ = {fi(x)} be a family of binomials with deg fi(x) = ni. 
Suppose that ni I n for all i and let F contain a primitive n-th root 
of unity. Show that there is a family of binomials, each of which 
has degree n, with the same splitting field as GJ. 

8. In this exercise, we develop the analogous theory for families of 
polynomials of the form GJ = {xP- x- ui} where p = char(F) "1- 0. 
1) Prove that F < E is abelian with exponent p if and only if E is 

the splitting field of a family of the form GJ. 
2) Let ~:F--+F be the map ~Q = QP- Q. Let ~-lu = {Q E F 

such that ~Q E U}. Let CU. be the class of all additive 
subgroups of F with ~-1F ~ U. Let SP be the class of all 
abelian extensions F < E of F with exponent p. Prove the 
following theorem: The map U~-+F(~-1U) is a bijection 
between CU. and SP. If F < E = F(~-1 U) is in SP has Galois 
group G then there is a well-defined pairing (,}:G x U--+UP 
given by (u,Q) = u{J- {J for any {J E ~-lQ. The left kernel is 
{ 1} and the right kernel is ~F. The extension F < E is finite if 
and only if (U:~F) is finite, in which case [E:F] = (U:~F) and 
G ~ (U/~F)~. 
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Mobius Inversion 

Mobius inversion is a method for inverting certain types of sums. 
The classical form of Mobius inversion was originally developed 
independently by P. Hall and L. Weisner in 1935. However, in 1964, 
Gian-Carlo Rota generalized the classical form to apply to a much 
wider range of situations. To describe the concept in its fullest 
generality, we require some facts about partially ordered sets. 

PARTIALLY ORDERED SETS 

Definition A partial order on a nonempty set P is a binary relation, 
denoted by ~ and read "less than or equal to," with the following 
properties. 

1) (reflexivity) For all a E P, 
a~a 

2) (antisymmetry) For all a,b E P, 

a ~ b and b ~ a implies a = b 

3) (transitivity) For all a,b,c E P, 

a ~ b and b ~ c implies a ~ c [] 

Definition A partially ordered set is a nonempty set P, together with a 
partial order ~ defined on P. The expression a ~ b is read "a is less 
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than or equal to b." If a,b E P, we denote the fact that a is not less 
than or equal to b by a j; b. Also, we denote the fact that a ~ b; but 
a i= b, by a < b. 

If there exists an element z E P for which z ~ x for all x E P, we call 
z a zero element and denote it by 0. Similarly, if there exists an element 
yEP for which x ~ y for all x E P, then we call y a one and denote it 
by 1. 0 

As is customary, when the partial order ~ is understood, we will use 
the phrase "let P be a partially ordered set." 

Note that, in a partially ordered set, it is possible that not all 
elements are comparable. In other words, it is possible to have x,y E P 
with the property that x j; y and y j; x. Thus, in general, x j; y is not 
equivalent to y ~ x. A partially ordered set in which every pair of 
elements is comparable is called a totally ordered set or a linearly 
ordered set. 

Example A.2.l 
1) The set IR of real numbers, with the usual binary relation ~, is a 

partially ordered set. It is also a totally ordered set. 
2) The set N of natural numbers, together with the binary relation of 

divides, is a partially ordered set. It is customary to writ~ n I m 
(rather than n ~ m) to indicate that n divides m. 

3) Let S be any set, and let '!P(S) be the power set of S, that is, the 
set of all subsets of S. Then '!P(S), together with the subset relation 
~ , is a partially ordered set. 0 

Definition Let P be a partially ordered set. For a,b E P, the (closed) 
interval (a,b] is the set 

(a,b] = {x E PI a~ x ~ b} 

We say that the partially ordered set P is locally finite if every closed 
interval is a finite set. 0 

Notice that, if P is locally finite and contains a zero element 0, then 
the set {x E PIx~ a} is finite for all a E P, for it is the same as the 
interval (O,a]. 

THE INCIDENCE ALGEBRA OF A PARTIALLY ORDERED SET 
Now let P be a locally finite partially ordered set, and let F be a 

field. We set 

.A(P) = {f:P x P-F I f(x,y) = 0 if x j; y} 
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Addition and scalar multiplication are defined on .A(P) by 

(f+g)(x,y) = f(x,y) + g(x,y) 
and 

(kf)(x,y) = k[f(x,y)) 

We also define multiplication by 

(f*g)(x,y) = I: f(x,z)g(z,y) 
x~z~y 

259 

the sum being finite, since P is assumed to be locally finite. Using these 
definitions, it is not hard to show that .A(P) is an algebra, called the 
incidence algebra of P. The identity in this algebra is 

6(x,y) = {! if X= y 
if X ::j:. y 

The next theorem characterizes those elements of .A(P) that have 
multiplicative inverses. 

Theorem A.2.1 An element f E .A(P) is invertible if and only if 
f(x,x) ::j:. 0 for all x E P. 

Proof. An inverse g of f must satisfy 

(A.2.1) I: f(x,z)g(z,y) = 6(x,y) 
x~z~y 

In particular, for x = y, we get 

f(x,x)g(x,x) = 1 

This shows the necessity and also that g(x,x) must satisfy 

(A.2.2) g(x,x) = f('l.x) 

Equation (A.2.2) defines g(x,y) when the interval [x,y] has cardinality 
1, that is, when x = y. We can use (A.2.1) to define g(x,y) for intervals 
[x,y] of all cardinalities. 

Suppose that g(x,y) has been defined for all intervals with cardinality 
at most n, and let [x,y] have cardinality n+l. Then, by (A.2.1), since 
x ::j:. y, we get 

f(x,x)g(x,y) = - I: f(x,z)g(z,y) 
x<z~y 
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But g(z,y) is defined for z > x since [z,y] has cardinality at most n, and 
so we can use this to define g(x,y). I 

Definition The function ( E .A.(P), defined by 

{ 1 if X~ y 
((x,y) = 0 if x j; y 

is called the zeta function. Its inverse J.t(x,y) is called the Mobius 
function. [] 

The next result follows from the appropriate .definitions. 

Theorem A.2.2 The Mobius function is uniquely determined by any of 
the following conditions. 

1) J.t(x,x) = 1 and, for x < y, 

I: J.t(z,y) = 0 
x:5z:5y 

2) J.t(x,x) = 1 and, for x < y, 

I: J.t(x,z) = 0 
x:5z:5y 

3) J.t(x,x) = 1 and, for x < y, 

J.t(x,y) = - I: J.t{z,y) 
x<z:5y 

4) J.l(x,x) = 1 and, for x < y, 

J.t(x,y) = - I: J.l(x,z) 
x:5z<y 

Now we come to the main result. 

[] 

Theorem A.2.3 (Mobius Inversion) Let P be a locally finite partially 
ordered set with zero element 0. Iff and g are functions from P to the 
field F, then 

(A.2.4) g(x) = L f(y) => f(x) = L g(y)J.t(y,x) 
Y:5X Y:5X 

If P is a locally finite partially ordered set with 1, then 

(A.2.5) g(x) = L f(y) => f(x) = L J.t(x,y)g(y) 
x:5y x:5y 

Proof. Since all sums are finite, we have, for any x, 
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y~x g(y)f.l(y,x) = y~x [z~y f(z)f(y,x) 

= L L f(z)Jl(y,x) 
z$;x z$;y$;x 

= I: f{z) I: Jl(y,x) 
z<x z$y$;x 

= L f(z)c5(z,x) = f(x) 
z$x 

The rest of the theorem is proved similarly. I 

The formulas (A.2.4) and (A.2.5) are called Mobius inversion 
formulas. 

Example A.2.2 (Subsets) Let P = ~{S) be the set of all subsets of a 
finite set S, partially ordered by set inclusion. We will use the notation 
~ for subset and C for proper subset. {In the text, we use C for 

subset.) The zeta function is 

{ 1 if A~ B 
((A,B) = 0 otherwise 

The Mobius function Jl is computed as follows. From Theorem A.2.2, 
we have 

and 

p,(A,A) = 1 

Jl(A,B) = - L Jl(A,X) 
A~XCB 

So, for x,y,z rf. A, we have 

Jl(A,A U {x}) = - Jl(A,A) = -1 

f.l(A,A U {x,y}) = - p,(A,A)- p,(A,A U {x})- p,(A,A U {y}) 

= -1+1+1=1 

p,(A,A U {x,y,z}) = - f.l(A,A)- f.l(A,A U {x})- p,(A,A U {y}) 

= - f.l(A,A U {x,y})- f.l(A,A U {x,z})- Jl(A,A U {y,z}) 

= - 1 + 1 + 1 + 1-1- 1 -1 = -1 

It begins to appear that the values of p, alternate between +1 and -1 
and that 
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{
(-1)1B-AI 

p(A,B) = O 
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if A~ B 
otherwise 

To verify this, we have p(A,A) = 1 and, for A~ B, 

IB-AI L (-1)1B-AI = L (IB-AI)(-1)k = 0 
A~X~B k~ k 

Now let P 1, .•• , P n be properties that the elements of a set S may or 
may not possess. For K ~ {1, ... ,k}, let E(K) be the number of 
elements of S that have properties Pi for i E K, and no others. Let F(K) 
be the number of elements of S that have at least properties Pi, for 
i E K. Then 

F(K) = L E(L) 
K~L 

Hence, by Mobius inversion, 

E(K) = L (-1)1L-KI F(L) 
K~L 

In particular, if K = 0 is the empty set, then 

E(0) = L (-1)1LIF(L) 
L~S 

But E(0) is the number of elements of S that have none of the 
properties, and so we get 

Number elements with no properties= L (-1)k L F({i1, ... ,ik}) 
k ~ 0 il'" .,ik 

This formula is the well known Principle of Inclusion-Exclusion, which 
we now see is just a special case of Mobius inversion. [] 

CLASSICAL MOBIUS INVERSION 
Consider the partially ordered set N of natural numbers, ordered by 

division. That is, x is less than or equal to y if and only if x divides y, 
which we will denote by xI y. NotiCe that the natural number 1 (and 
not 0) is the zero element in this partially ordered set, since 11 n for any 
natural number n. 

In this case, the Mobius function J.t(x,y) depends only on the ratio 
yfx, and is given by 
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if ~= 1 1 

Jt(x,y) = Jt(~) = { ( -1)k 

0 

if ~ = p1p2• • ·Pk for distinct primes Pi 

otherwise 

Notice that the "otherwise" case can occur if either xJy (x does not 
divide y) or if p2 j (y/x) for some prime p. Thus, the value of Jt(x,y) 
depends on the nature of the prime decomposition of the ratio y fx. 

To verify that this is indeed the Mobius function, we first observe 
that Jt(x,x) = Jt(1) = 1. Now let xI y, x :f. y and 

where the Pi are distinct primes. Then 

Now, in the present context, the Mobius inversion formula becomes 

g(n) = L f(k) 
kin 

=> f(n) = L g(k)Jt(f) 
kin 

This is the important classical formula, which often goes by the name 
Mobius inversion formula. 0 

MULTIPUCATIVE VERSION OF MOBIUS INVERSION 
We now present a multiplicative version of the Mobius inversion 

formula. 

Theorem A.Z.4 Let P be a locally finite partially ordered set with zero 
element 0. Iff and g are functions from P to F, then 

g(x) = II f(y) => f(x) = II [g(y)]"(y,x) 
Y$X y<x 

Proof. Since all products are finite, we have, for any x, 

II [g(y)J"(y,x) = II [II f(z)f(y,x) 
y$x y$xz~y 

= II II [f(z)]"(y,x) 
z:Sx z$y$x 
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= fi f(z) 
z$x 

Appendix: Mobius Inversion 

I: IJ(y,x) 
z$y$x 

= IJ f(z)O(z,x) = f(x) I 
z$x 

Example A.2.3 Let P = N, and let F be the field of rational functions in 
x. Consider the formula 

Then, if we let f(k) = Qk(x) and g(n) = xn- 1, Theorem A.2.4 gives 

Qn(x) = II (xk -l)IJ(n/k) = II (xn/k -l)IJ(k) 0 

kin kin 
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