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Preface

This book presents the basic theory of fields, starting more or less
from the beginning. It is suitable for a graduate course in field theory,
or independent study. The reader is expected to have absorbed a serious
undergraduate course in abstract algebra, not so much for the material
it contains but for the oft-mentioned mathematical maturity it provides.

The book begins with a preliminary chapter (Chapter 0), which is
designed to be quickly scanned or skipped and used as a reference if
needed. The remainder of the book is divided into three parts.

Part 1, entitled Basic Theory, begins with a chapter on polynomials.
Chapter 2 is devoted to various types of field extensions. In Chapter 3,
we treat algebraic independence, starting with the general notion of a
dependence relation and concluding with Luroth’s Theorem on
intermediate fields of a simple transcendental extension. Chapter 4 is
devoted to the notion of separability of algebraic extensions.

Part 2 of the book is entitled Galois Theory. Chapter 5 begins with
the notion of a Galois correspondence between two partially ordered
sets, and then specializes to the Galois correspondence of a field
extension, concluding with a brief discussion of the Krull topology. In
Chapter 6, we discuss the Galois theory of equations. In Chapter 7, we
take a closer look at a finite field extension E of F as a vector space
over F. The next two chapters are devoted to a fairly thorough
discussion of finite fields. M6bius inversion is used in a few brief spots
in these chapters, so an appendix has been included on this subject.

Part 3 of the book is entitled The Theory of Binomials. Chapter 10
covers the roots of unity (that is, the roots of the binomial x" —1) and
includes Wedderburn’s theorem (a finite division ring is a field). This



viii Preface

also seems like the appropriate time to discuss the question of whether a
given group is the Galois group of a field extension. In Chapter 11, we
characterize the splitting fields of binomials x™ —u, when the base field
contains the n-th roots of unity. Chapter 12 is devoted to the question
of solvability of a polynomial equation by radicals. (This chapter might
make a convenient ending place in a graduate course.) In Chapter 13,
we determine conditions that characterize the irreducibility of a
binomial and describe the Galois group of a binomial. Chapter 14
briefly describes the theory of families of binomials —the so-called
Kummer theory.

Sections marked with an asterisk are optional, in that they may be
skipped without loss of continuity. The unmarked sections might be
considered as forming a basic core course in field theory.
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Chapter 0
Preliminaries

The purpose of this chapter is to review some basic facts that will be
needed in the book. The discussion is not intended to be complete, nor
are all proofs supplied. We suggest that the reader quickly skim this
chapter (or skip it altogether) and use it as a reference if needed.

0.1 Lattices

Definition A partially ordered set (or poset) is a nonempty set P,
together with a binary relation < on P satisfying the following
properties. For all o, 8, ¥ € P,

1)  (reflexivity) ala
2) (antisymmetry) <B,B<a=>a=p
3) (tramsitivity) a<B,f<y=>a<y

If, in addition,
o, BEP>a<forfB<La

then P is said to be totally ordered. [

Any subset of a poset P is also a poset under the restriction of the
relation defined on P. A totally ordered subset of a poset is called a
chain. If SCP and s < a for all s €S then a is called an upper bound
for S. A least upper bound for S, denoted by lub(S) or VS, is an upper
bound that is less than or equal to any other upper bound. Similar
statements hold for lower bounds and greatest lower bounds, the latter
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denoted by glb(S), or AS. A maximal element in a poset P is an
element o € P such that o < @ implies @ = 8. A minimal element in a
poset P is an element 7y € P such that § <+ implies § =+. Zorn’s
Lemma says that if every chain in a poset P has an upper bound in P
then P has a maximal element.

Definition A lattice is a poset L in which every pair of elements a,
B € L has a least upper bound, or join, denoted by oV § and a greatest
lower bound, or meet, denoted by a A 8. If every nonempty subset of L
has a join and a meet then L is called a complete lattice. [

Note that any nonempty complete lattice has a greatest element,
denoted by 1 and a smallest element, denoted by 0.

Definition A sublattice of a lattice L is a subset S of L that is closed
under meets and joins. [

It is important to note that a subset S of a lattice L can be a lattice
under the same order relation and yet not be a sublattice of L. As an
example, consider the collection ¥ of all subgroups of a group G,
ordered by inclusion. Then ¥ is a subset of the power set ?(G), which is
a lattice under union and intersection. But ¥ is not a sublattice of P(G)
since the union of two subgroups need not be a subgroup. On the other
hand, ¥ is a lattice in its own right under set inclusion, where the meet
H AK of two subgroups is their intersection and the join HV K is the
smallest subgroup of G containing H and K.

In a complete lattice L, joins can be defined in terms of meets: VT
is the meet of all upper bounds of T. The fact that 1 € L insures that T
has at least one upper bound, so that the meet is not an empty one.
The following theorem exploits this idea to give conditions under which
a subset of a complete lattice is itself a complete lattice.

Theorem 0.1.1 Let L be a complete lattice. If S C L has the properties
(i) 1€Sand (ii)) TCS, T#0= ATES, then S is a complete lattice.

Proof. Let T CS. Then AT €S by assumption. Let U be the set of all
upper bounds of T that lie in S. Since 1 €S, we have U # (. Hence,
AUES and is VT. Thus, S is a complete lattice. (Note that S need
not be a sublattice of L since AU need not equal the meet of all upper
bounds of T in L.) I
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0.2 Groups

Definition A binary operation on a set A is a map from Ax A to A. [I

Definition A group is a nonempty set G, together with a binary
operation on G, denoted by juxtaposition, with the following properties:

1)  (Associativity) (af)y = a(B7) for all o, 3, v € G;

2)  (Identity) There exists an element € € G for which ea = ae = a for
all a € G

3) (Inverses) For each o € G, there is an element a~! € G for which
aal=ala=e

A group G is abelian, or commutative, if af = fa, for all a, § € G. 0

The identity element is often denoted by 1. When G is abelian, the
group operation is often denoted by + and the identity by 0.

Definition A subgroup S of a group G is a subset of G that is a group in
its own right, using the restriction of the operation defined on G. We
denote the fact that S is a subgroup of G by writing S < G. 0

Let G be a group. Since G is a subgroup of itself and since the
intersection of subgroups of G is a subgroup of G, Theorem 0.1.1
implies that the set of subgroups of G forms a complete lattice, where
HAJ=HNJ and HVJ is the smallest subgroup of G containing both
H and J. We denote this lattice by ¥(G).

A group G is finite if it contains only a finite number of elements.
The cardinality of a finite group G is called its order and is denoted by
|G| or o(G). If @ € G, and if o* = ¢ for some integer k, we say that k
is an exponent of a. The smallest positive exponent for a € G is called
the order of a and is denoted by o(a). An integer m for which o™ =1
for all @ € G is called an exponent of G. (Note: Some authors use the
term exponent of G to refer to the smallest positive exponent of G.)

Theorem 0.2.1 Let G be a group and let & € G. Then k is an exponent
of « if and only if k is a multiple of o(a). Similarly, the exponents of G
are precisely the multiples of the smallest positive exponent of G. [I

While the smallest positive exponent of an element o € G is the
order of the cyclic subgroup (a) = {a” | n € Z}, this does not extend to
groups in general, that is, the smallest positive exponent of G may be
smaller than the order of G. (Example: Z,xZ, has exponent 2 but
order 4.) We next characterize the smallest positive exponent for finite
abelian groups.
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Theorem 0.2.2 Let G be a finite abelian group.

1) If m is the maximum order of all elements in G then o™ =1 for
all o € G. Thus, the smallest positive exponent of G is equal to
the maximum order of all elements of G.

2)  The smallest positive exponent of G is equal to o(G) if and only if
G is cyclic.

Proof. Let o have maximum order m among all the elements in G.
Suppose that g™ # 1 for some 3 € G and let o(8) =k < m. It follows
that k/m and so there exists a prime p for which p* |k but p"/m. Let
v < u be the largest integer for which p¥ | m. Consider the elements

o =aP’ and B’ = gH/P"

Since o(a') =m/p" and o(B’') = p" and since (m/p",p") =1, it follows
that
o(a'B') = o(a')o(B') =mp"~Y > m

in contradiction to the maximality of m. Thus, all elements 8 € G
satisfy ™ = 1. Clearly, m = o(e) is the smallest such positive integer
and part 1) is proved. Part 2) follows easily from part 1), since a finite
group G is cyclic if and only if it has an element of order o(G). 1

Let H < G. We may define an equivalence relation on G by saying
that a ~ 8 if f~la € H (or equivalently a1 € H). The equivalence
classes are the left cosets aH = {ah|h € H} of H in G. Thus, the
distinct left cosets of H form a partition of G. Similarly, the distinct
right cosets Ha form a partition of G. It is not hard to see that all
cosets of H have the same cardinality and that there are the same
number of left cosets of H in G as right cosets. (This is easy when G is
finite. Otherwise, consider the map aHHHa"l.)

Definition The index of H in G, denoted by (G:H), is the cardinality of
the set G/H of all distinct left cosets of H in G. If G is finite then
(GH)=|G|/|H|.O

Theorem 0.2.3 Let G be a finite group.

1) (Lagrange) The order of any subgroup of G divides the order of G.

2)  The order of any element of G divides the order of G.

3) (Converse of Lagrange’s Theorem for Finite Abelian Groups) If A
is a finite abelian group and if k| o(A) then A has a subgroup of
order k. 0
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Normal Subgroups

Definition A subgroup H of G is normal in G, written H<G, if
oHa '=Hforalla € G. 0

Definition A group G is simple if it has no normal subgroups other than
{1} and G. 0O

Theorem 0.2.4 The following are equivalent for a subgroup H of G.

1) H«G.

2) aH=Haforal a€G.

3) For all a € G, there exists a § € G such that oH = Hf.
4) oHa™ ' CH for all @ €G.

5) af€H=>pacHforala, f€G.0

Theorem 0.2.5 Any subgroup H of a group G of index 2 is normal. (]

Theorem 0.2.6 If G is a group and {H;} is a collection of normal
subgroups of G then NH; and V H; are normal subgroups of G. Hence,
the collection of normal subgroups of G is a complete sublattice of the
complete lattice $(G) of all subgroups of G. 0

Theorem 0.2.7 If H < G then the set G/H of all right cosets of H in G
forms a group under the operation (aH)(#H)=afH if and only if

H < G. The group G/H is called the quotient group (or factor group) of
H in G. The order of G/H is (G:H). 0

Euler’s Formula

If @ and B are integers, not both zero, then an integer 6 is called a
greatest common divisor (ged) of a and 8 if (i) 6| @ and 6| B and (ii) if
v|a and 4|8 then v|é. Note that if § is a gcd of o and B, then so is
-6. It is customary to denote a ged of o and 8 by (a,8) or ged(a,f).

If (a,8) =1, then a and [ are relatively prime. The Euler phi
function ¢ is defined by letting ¢(n) be the number of positive integers
less than or equal to n that are relatively prime to n. The Euler phi
function is multiplicative, that is,

¢#(mn) = ¢(m)¢(n), when (myn) =1
It also satisfies

é(P™) =p"!(p-1), p prime,n>0

These two properties completely determine ¢.
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Two integers a and § are congruent modulo n, written & = # mod n,
if o — B is divisible by n. Let Z denote the ring of integers {0,...,n-1}
under addition and multiplication modulo n.

Theorem 0.2.8 (Euler’s Theorem) If o, n € Z and (a,n) = 1, then
a®® =1 mod n

Proof. We first show that the set G = {# € Z,_|(8,n) =1} is a group of
order ¢(n) under multiplication modulo n. Clearly, 8,y € G imply fv €
G. Also, if 8 € G, then there exists a, b € Z such that af+bn =1 and
so aff =1 mod n. Thus, a modn is the inverse of # € G. Since G is a
group of order ¢(n), we deduce that a?®) =1 mod n, for all a € G. If
a ¢ G, then there exists an o’ € G for which o' =& mod n. Since
(a,n) = 1 if and only if (a’,n) = 1, we have

o®® = (a’)¢(n) =1modn 1

Corollary 0.2.9 (Fermat’s Theorem) If p is a prime not dividing the
integer «, then

aP = a mod p 0

Cyclic Groups
If G is a group and a € G, then the set of all powers of «

(@) ={a"|n€Z}

is a subgroup of G, called the cyclic subgroup generated by a. A group
G is cyclic if it has the form G = (a), for some «a € G. In this case, we
say that o generates G.

Theorem 0.2.10 Every subgroup of a cyclic group is cyclic. A finite
abelian group G is cyclic if and only if its smallest positive exponent is
equal to o(G). 0

The following theorem contains some key results about finite cyclic
groups.

Theorem 0.2,11 Let G = () be a cyclic group of order n.
1) Forl<k<n,

ky - n
o(a) = .5
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In particular, o* generates G = () if and only if (n,k) = 1.
2) Ifd|n, then

o) =d & k=r 3—1, where (r,d) =1

Thus the elements of G of order d | n are the elements of the form
o™/ d, where 0 <r < d and r is relatively prime to d.
3) For each d|n, the group G has exactly one subgroup Hy of order

d and ¢(d) elements of order d, all of which lie in H,.

Proof. To prove part 1), we first observe that if d = (k,n) then d =
ak + bn for some integers a and b. Hence,

od = (ak)a € (ak)

whence (ad) C (o). But the reverse inclusion holds since d |k and so
(o) = (ad). Since d | n, it is clear that

a(ak) = o(ad) = — = (nnk)
To prove part 2), we let d | n and solve the equation
_n_
@~ ¢

Rearranging gives

n = d(n,k) = (dn,dk)
Setting r = k/(n,k), we get dk = n[k/(n,k)] = nr and so
n = (dn,rn) = n(d,r)

which holds if and only if (d,r) = 1.

For part 3), it follows from part 2) that all of the ¢(d) elements of G
of order d lie in the subgroup Hy = (o n/d ). Moreover, if H is a subgroup
of G of order d then, being cyclic, it must contain an element 3 of order

d. But S € Hj and so H= () =H,. 8

Counting the elements in a cyclic group of order n gives the following
corollary.

Corollary 0.2.12 For any positive integer n,

n= Y ¢(d) 0

din
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Homomorphisms

Definition Let G and H be groups. A map ¥:G—H is called a group
homomorphism if Y(aB) = (Ya)(1B). A surjective homomorphism is an
epimorphism, an injective homomorphism is a monomorphism and a
bijective homomorphism is an isomorphism. If ¥:G—H is an
isomorphism, we say that G and H are isomorphic and write G ~ H. I

If ¢ is a homomorphism then ¢ = € and Ya~l= (¢a)_1. The kernel
of a homomorphism ¥:G—H,

kery = {a € G | Ya = ¢}

is a normal subgroup of G. Conversely, any normal subgroup H of G is
the kernel of a homomorphism. For we may define the natural
projection m:G—G/H by ma =aH. This is easily seen to be an
epimorphism with kernel H.

Let f:S—T be a function from a set S to a set T. Let P(S) and P(T)
be the power sets of S and T, respectively. We define the induced map
f:9(S)—%(T) by f(U) = {f(u) |u € U} and the induced inverse map by
f71(V) = {s € S| f(s) € V}. (It is customary to denote the induced maps
by the same notation as the original map.) Note that f is surjective if
and only if its induced map is surjective, and this holds if and only if
the induced inverse map is injective. A similar statement holds with the
words surjective and injective reversed.

Theorem 0.2.13 Let ¢:G—G’ be a group homomorphism.

1) a) IfH<G then y(H) < G"

b) If ¢ is surjective and H 4 G then y(H) <« G'.
2) a) If H'<G'then ¢ 1(H)<G.

b) If H' <G’ then ¥~ }(H') < G. [0

Theorem 0.2.14 (The Isomorphism Theorems) Let G be a group.

1) (First Isomorphism Theorem) Let #:G—G' be a group
homomorphism with kernel K. Then K«<G and the map
¥:G/K—im1 defined by ¥(aK) = yo is an isomorphism. Hence
G/K ~ im ¢. In particular, 9 is injective if and only if ker ¢ =
{e}.

2)  (Second Isomorphism Theorem) If H<G and NG then
NNH<H and

_H_ _NH
NNH™ N
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3) (Third Isomorphism Theorem) If H<I1<4J <G then I/H<J/H

and I/H

A pop |
/H =1

Hence (J:I) = (J/H:I/H). 0

Theorem 0.2.15 (The Correspondence Theorem) Let H « G and let 7 be
the natural projection m:G—G/H. Thus, for any I < G,

() =I/H = {iH |i € I}

1) The induced maps 7 and 7! define a one-to-one correspondence
between the lattice of subgroups of G containing H and the lattice
of subgroups of G/H.

2)  w preserves index, that is, for any H < I < J < G, we have

(J:1) = (w(J):m(D))

3) = preserves normality, that is, if H<I<J <G then I«J if and
only if I/H «J/H, in which case J/I ~ x(J)/=(I). 0

Action of a Group on a Set

Definition Let X be a set and let G be a group. We say that G acts on
X if there is a function G x X—X, sending (o,x) to ax € X, satisfying

1) 1x=xforallxeX
2) (aB)x=a(fx)forallxeX, a, B €G.

We say that G acts transitively on X if for any x, y € X there exists an
a € G such that ax =y. 0

It follows from the definition that each a € G acts as a permutation
7 :x—ax of X and that the map a7 is a group homomorphism from
G to a subgroup of the group of permutations of X.
Definition Let G act on X. The orbit of x € X is the set
orb(x) = Gx = {ax| @ € G}

The stabilizer of x is the subgroup

G,={a€eG|ax=x} 0
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Note that G acts transitively on X if and only if orb(x) = X for all
x € X. We may define an equivalence relation on X by setting x ~ y if
and only if there exists an o € G for which ax =y. The equivalence
classes are precisely the orbits in X, which therefore partition the set X.
Since ax = Bx if and only if 8~ la € G,,, which in turn holds if and only
if aG, = BG,, we deduce the existence of a bijection from G/G, onto
orb(x).

Theorem 0.2.16 Let G act on X.

1) For any x€X, |ord(x)| =(G:G,) and if X is finite then
[orb(x)| = |G|/]Gy]l-

2) If G acts transitively on X then |X| =(G:G,) for any x € X and
if X is finite then |X| = |G|/ |G,].

3)  (The class equation)

[X| =) (G:Gy)

where the sum is taken over one representative from each distinct
orbit in X. 01

Example 0.2.1 One of the most important instances of a group acting
on a set is the case where X = G acts on itself by conjugation. To avoid
obvious confusion, we denote the action of @« € G on § € G by @f. Then
@0 = afaL. The orbit of # € G is the conjugacy class of 3

orb(8) = {afa"!|a € G}
The stabilizer of 8 € G is the centralizer of 8
C(B) ={a€G|ap = pa}

The previous theorem says that the conjugacy class of B has cardinality
(G:C(B)). The class equation in this case is

o(G) = ) _(G:C(B))

where the sum is over one representative of each conjugacy class.

The center of G is the set Z(G) = {# € G| af = fa for all « € G}.
Thus Z(G) consists of those elements of G whose centralizer is equal to
the entire group G, or equivalently, whose conjugacy class contains only
the element itself. In other words, 8 € Z(C) if and only if (G:C(8)) = 1.
We may now write the class equation in the form

o(G) = o(Z(G)) + Y _ (G:C(B))
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where the sum is taken over one representative from each conjugacy
class of size greater than 1.0

Sylow Subgroups

Definition If p is a prime, then a group G is called a p-group if every
element of G has order a power of p. [

For finite groups, if & € G then o(a)| o(G). The converse does not
hold in general, but we do have the following.

Theorem 0.2.17 Let G be a finite group.

1)  (Cauchy) If o(G) is divisible by a prime p then G contains an
element of order p.

2) If p is a prime and o(G) is divisible by p" then G contains a
subgroup of order p”. 0

Corollary 0.2.18 A finite group G is a p-group if and only if |G| = p"
for some n. 0

Theorem 0.2.19 (Sylow) If G has order p"m where p/m then G has a
subgroup of order p", called a Sylow p-subgroup of G. All Sylow p-
subgroups are conjugate (and hence isomorphic). The number of Sylow
p-subgroups of G divides o(G) and is congruent to 1 mod p. Any p-
subgroup of G is contained is a Sylow p-subgroup of G. I

The Symmetric Group

Definition The symmetric group S is the group of all permutations of
the set A = {1,2,...,n}, under composition of maps. A transposition is
a permutation that interchanges two distinct elements of A and leaves
all other elements fixed. The alternating group A _ is the subgroup of S
consisting of all even permutations, that is, all permutations that can
be written as a product of an even number of transpositions. [I

-Theorem 0.2.20

1)  The order of S is n!.

2)  The order of A is n!/2. Thus, [S:A ] =2 and A <S,.
3) A, is the only subgroup of S of index 2.

4) A, is simple (no nontrivial normal subgroups) for n > 5.0
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A subgroup H of S is transitive if for any k, j € {1,2,...,n} there is
a o € H for which ok =].

Theorem 0.2.21 If H is a transitive subgroup of S, then o(H) is a
multiple of n.

Proof. The group H acts on the set X = {1,2,...,n} and Theorem 0.2.16
gives | X| = |H|/|G,]|, thatis, |H| =n|G,|.0

0.3 Rings

Definition A ring is a nonempty set R, together with two binary
operations on R, called addition (denoted by +), and multiplication
(denoted by juxtaposition), satisfying the following properties.

1) R is an abelian group under the operation +.
2)  (Associativity) (afB)y = a(B7) for all o, 8, vy €R.
3) (Distributivity) For all o, 8, ¥ € R,

(a+B)y=ay+af and y(a+pB)=va+78 1]

Definition Let R be a ring.

1) R is called a ring with identity if there exists an element 1 € R for
which al = la =a, for all « € R. In a ring R with identity, an
element « is called a unit if it has a multiplicative inverse in R,
that is, if there exists a 8 € R such that af = fa = 1.

2) R is called a commutative ring if multiplication is commutative,
that is, if af = Ba for all a, 8 € R.

3) A zero divisor in a commutative ring R is a nonzero element « €
R such that af@ =0 for some § # 0. A commutative ring R with
identity is called an integral domain if R contains no zero divisors.

4) A ring R with identity 1#0 is called a field if the nonzero
elements of R form an abelian group under multiplication. {J

It is not hard to see that the set of all units in a ring with identity
forms a group under multiplication. We shall have occasion to use the
following example.

Example 0.3.1 Let Z_ = {0,...,n-1} be the ring of integers modulo n.
Then k is a unit in Z_ if and only if (k,n) = 1. This follows from the
fact that (k,n) =1 if and only if there exists integers a and b such that
ak 4+ bn =1, that is, if and only if ak = 1 mod n. The set of units of Z_,
denoted by Z}, is a group under multiplication. 0
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Definition A subring of a ring R is a nonempty subset S of R that is a
ring in its own right, using the same operations as defined on R. ]

Definition A subfield of a field E is a nonempty subset F of E that is a
field in its own right, using the same operations as defined on E. In this
case, we say that E is an extension of F and write F<Eor E>F. 0

Definition Let R and S be rings. A function ¥:R—S is a homomorphism
if, for all a, 8 € R,

Yo+ ) =vYa+9f and P(af) = (Ya)(¥h)

An injective homomorphism is a monomorphism or an embedding, a
surjective homomorphism is an epimorphism and a bijective
homomorphism is an isomorphism. A homomorphism from R into itself
is an endomorphisn and an isomorphism from R onto itself is an
automorphism. ]

Ideals
Definition A nonempty subset 3 of a ring R is called an ideal if it

satisfies

1) @, B€dimpliesa—fF €l
2) a€R,.€3 implies e €Jand e €3.0

If S is a nonempty subset of a ring R, then the ideal generated by S
is defined to be the smallest ideal 3 of R containing S. If R is a
commutative ring with identity, and if o € R, then the ideal generated
by {a} is the set
(a) =Ra = {pa|p € R}

Any ideal of the form () is called a principal ideal.
Definition If 4:R—S is a homomorphism, then

Kery = {a € R|ya =0}
is an ideal of R.
If R is a ring and J is an ideal in R then for each @ € R, we can form

the coset ‘
a+d={a+¢|t€9}
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It is easy to see that a + 3= g+ 9 if and only if @ — # € 3, and that any
two cosets a + 3 and 8 + 3 are either disjoint or identical. The collection

of all (distinct) cosets is a ring itself, with addition and multiplication
defined by

(a+9)+(b+I)=(a+b)+3
and
(a+9)(b+3) =ab+13

The ring of cosets of J is called a factor ring and is denoted by R/3.

Definition An ideal 3 of a ring R is maximal if 3 # R and if whenever
JC 3 CR for any ideal }, then 3 =3 or $ = R. An ideal J is prime if
JZRandif ef €JimpliesacIor B€3.0

It is not hard to see that a maximal ideal in a commutative ring
with identity is prime. This also follows from the next theorem.

Theorem 0.3.1 Let R be a commutative ring with identity and let 3 be
an ideal of R.

1) R/3is afield if and only if 3 is maximal.
2) R/3is an integral domain if and only if 3 is prime. [J

The Characteristic of a Ring

Let R be a ring and let r € R. For any positive integer n, we define

nr=r+4r+4---+r
N, e

n terms

The characteristic char(R) of a ring R is the smallest positive integer n
for which nl =0 (or equivalently, nr = 0 for all r € R), should such an
integer exist. If it does not, we say that R has characteristic 0. If
char(R) = 0 then R contains a copy of the integers Z, in the form
Z-1={nl|neZ}. If char(R) =r, then R contains a copy of Z =
{0,1,...,r—1}.

Theorem 0.3.2 The characteristic of an integral domain is either 0 or a
prime. In particular, a finite field has prime characteristic. [

If F is a field, the intersection of all of its subfields is the smallest
subfield of F and is referred to as the prime subfield of F.
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Theorem 0.3.3 If char(F) = 0, the prime subfield of F is isomorphic to
the rational numbers Q. If char(F) = p is prime, the prime field of F is
isomorphic to Zp. 0

The following result is of considerable importance for the study of
fields of nonzero characteristic.

Theorem 0.3.4 Let R be a commutative ring with identity of prime
characteristic p. If ¢ = p™ then

(@+8)2=a%+ %, (a—p)?=ad-po

Proof. Since the binomial formula holds in any commutative ring with
identity, we have

P
(at 8P = Y (P)akpet
where k=0

(i) _ p(p-1) 'k'!(P—k+1)

But p i for 0 <k <p, and so (ﬁ): 0 in R. The binomial formula
therefore reduces to

(a+ )P = P+ 67

Repeated use of this formula gives (a+ )%= a9+ % The second
formula is proved similarly. i

0.4 Integral Domains
Theorem 0.4.1 Let R be an integral domain. Let «, 8 € R.

1) We say that o divides 8 and write a | 8 if # = pa for some p € R.
If p and a are nonunits and # = pa then a properly divides 3.
a) A unit divides every element of R.
b) «| g if and only if (8) C (a).
c) «a|pB properly if and only if (8) C (a) C R.

2) If a=up for some unit u then a and S are associates and we
write a ~ f.
a) a~fBifandonlyifa|f and 8|a.
b) a ~ g if and only if (a) = (B).

3) A nonzero element p € R is irreducible if p is not a unit and if p
has no proper divisors. Thus, a nonunit p is irreducible if and only
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if p = af implies either « or # is a unit.

4) A nonzero element 7 € R is prime if 7 is not a unit and whenever

7| af then 7| a or 7| B.
a) Every prime element is irreducible.
b) = € R is prime if and only if (7) is a nonzero prime ideal.

5) Let a, B€R. An element d €R is called a greatest common
divisor (ged) of o and B, written (a,8) or ged(a,p), if d|a and
d| B and if whenever e|a, e | § then e|d. If ged(e,B) is a unit, we
say that o and § are relatively prime.

a) The greatest common divisor of two elements, if it exists, is
unique up to associate. [

Theorem 0.4.2 An integral domain R is a field if and only if it has no
ideals other than the zero ideal or R itself. Any nonzero homomorphism
0:F—E of fields is a monomorphism. 0

Theorem 0.4.3 Every finite integral domain is a field.

If R is an integral domain, we may form the set

R'={a/B|a, BER, B#0}

where a/f =a/b if and only if ab=af. We define addition and

multiplication on R’ in the “obvious way”

a,a_ab+pfa a a_ oa

BYb="pb * BB pb
It is easy to see that these operations are well-defined and that R’ is
actually a field, called the field of quotients of the integral domain R. It
is the smallest field containing R, in the sense that if F is a field and
R CF then R C R’ CF. The following fact will prove useful.

Theorem 0.4.4 Let R be an integral domain with field of quotients R'.
Then any monomorphism ¢:R—F from R into a field F has a unique
extension to a monomorphism 7:R'—F.

Proof. Define (a/8) = ca/oB, which makes sense since 3 # 0 implies
0B # 0. One can easily show that 7 is well-defined. Since ca/os8 =0 if
and only if oa = 0, which in turn holds if and only if a/f =0, we see
that & is injective. Uniqueness is clear since o |g (o restricted to R)
uniquely determines o on R'. §
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0.5 Unique Factorization Domains

Definition An integral domain R is a unique factorization domain (ufd)

if

1)  Any nonunit r € R can be written as a product r = py---p,, where
p; is irreducible for all i. We refer to this as the factorization
property for R.

2)  This factorization is essentially unique in the sense that if r =
P1 " Pp = 91" "4y, are two factorizations into irreducible elements
then m=n and there is some permutation 7 for which p; ~ Ar(i)
for all i. 0

If r € R is not irreducible, then r =st where s and t are nonunits.
Evidently, we may continue to factor as long as at least one factor is
not irreducible. An integral domain R has the factorization property
precisely when this factoring process always stops after a finite number
of steps.

When is an integral domain a unique factorization domain? The
following answer helps explain the importance of ufd’s.

Theorem 0.5.1 Let R be an integral domain for which the factorization
property holds. The following conditions are equivalent and therefore
imply that R is a unique factorization domain.

1) Factorization in R is essentially unique.

2)  Every irreducible element of R is prime.

3) Any two elements of R (not both zero) have a greatest common
divisor. 01

Corollary 0.5.2 In a unique factorization domain, the concepts of prime
and irreducible are equivalent. [

0.6 Principal Ideal Domains

Definition An integral domain R is called a principal ideal domain (pid)
if every ideal of R is principal. 0

Theorem 0.6.1 Every principal ideal domain is a unique factorization
domain. 0]

We remark that the ring Z[x] is a ufd (as we prove in Chapter 1) but
not a pid (the ideal (2,x) is not principal) and so the converse of the
previous theorem is not true.
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Theorem 0.6.2 Let R be a principal ideal domain and let 3 be an ideal
of R.

1)  3is maximal if and only if 3 = (p) where p is irreducible.

2)  3is prime if and only if 3 = {0} or 3 is maximal.

3)  The following are equivalent: (i) R/(p) is a field (ii) R/(p) is an
integral domain (iii) p is irreducible (iv) p is prime. [

0.7 Euclidean Domains

Roughly speaking, a Euclidean domain is an integral domain in
which we can perform “division with remainder.”

Definition An integral domain R is a Euclidean domain if there is a
function o:(R-{0})—>N with the property that given any a, # €R,
B # 0, there exist q, r € R satisfying

a=qf+r

wherer =0 or or < 0. 1

Theorem 0.7.1 A Euclidean domain is a principal ideal domain (and
hence also a unique factorization domain).

Proof. Let 3 be an ideal in the Euclidean domain R and let a € 3 be
minimal with respect to the value of ¢. Thus, ca <of for all 8 € 3. If
s € J then

s=ra-+q

where q =0 or oq<or. But q=s—ra €3 and so the latter is not
possible, leaving q = 0 and s € (a). Hence, 3 = (a). 1

Theorem 0.7.2 If F is a field, then F[x] is a Euclidean domain with
a(p(x)) = deg p(x). Hence F[x] is also a principal ideal domain and a
unique factorization domain.

Proof. This follows from ordinary division of polynomials; to wit, if
f(x), g(x) € F[x], g(x) # 0, then there exist q(x), r(x) € F[x] such that

f(x) = a(x)g(x) +1(x)

where deg r(x) < deg g(x).
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0.8 Tensor Products

Tensor products are used only in the optional Section 5.6.

Definition Let U, V and W be vector spaces over a field F. A function
f:U x V—W is bilinear if it is linear in both variables separately, that is,
if

f(ru + su',v) = rf(u,v) + sf(u’,v)
and

f(u,rv + sv’) = rf(u,v) + sf(u,v’)

The set of all bilinear functions from UxV to W is denoted by
B(U,V;W). A bilinear function f:U x V—F, with values in the base field
F, is called a bilinear form on Ux V. [

Example 0.8.1

1) A real inner product (,):V x V=R is a bilinear form on V x V.

2) If A is an algebra, the product map pu:AxA—A defined by
p(a,b) = ab is bilinear. 0

We will denote the set of all linear transformations from UxV to W
by £(U x V,W). There are many definitions of the tensor product. We
choose a universal definition.

Theorem 0.8.1 Let U and V be vector spaces over the same field F.
There exists a unique vector space U®YV and bilinear map
tUxV-oU®V with the following property. If iUxV—W is any
bilinear function from U xV to a vector space W over F, then there is a
unique linear transformation 7:U ® V—-W for which

Tot=f 0

This theorem says that to each bilinear function f:U x V—-W, there
corresponds a unique linear function 7:U ® VW, through which f can
be factored (that is, f= 701). The vector space U ® V, whose existence
is guaranteed by the previous theorem, is called the tensor product of U
and V over F. We denote the image of (u,v) under the map t by
t(u,v) =u®v.

If X=Imt={u®v|u€eU,veV}is the image of the tensor map ¢
then the uniqueness statement in the theorem implies that X spans
U® V. Hence, every element of « € U®V is a finite sum of elements of
the form u® v

a= ) a(yev)

finite
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We establish a few basic properties of the tensor product.

Theorem 0.8.2 If {u;,...,u }CU is linearly independent and
{vir-+-»vy} CV then

Zui®vi=0=>vi=0for all i

Proof. Consider the dual vectors §; € U* to the vectors u;, where 6,u; =
5i,j' For linear functionals ¢;:V—F, we define a bilinear form f:U x V—F
by

f(u,v) = Zn;&j(x)ej(y)
i=

Since there exists a unique linear functional 7:U® V—F for which
Tot=f{, we have

0= T(Z u; ® Vi) = Z 7 o #(u;,v;)
i i
= D fv) = 30 D2 8m)g(v) = Do 6(v)
i i ] i
Since the ¢;’s are arbitrary, we deduce that v; = 0 for all i. §

Corollary 083 If u #0 and v# 0, thenu®v #0.0

Theorem 0.8.4 Let B = {e; | i €1} be a basis for U and € = {f; | j € J} be
a basis for V. Then the set 7= {¢; ®f;[i €1, j € J} 1sabaSISfor U®V.

Proof. To see that the 9D is linearly independent, suppose that

_Z:ri,j(ei ®fj) =0
ij

e ®(Zrm)

Theorem 0.8.2 implies that

This can be written

Z‘i,jfj =

for all i, and hence r; ij =0 for all i and j. To see that D spans U®V, let

u®veU®YV. Since u = Erlel, and v = Esjfj, we have

LRV = Z Zsf = zj:sj(zi:riei®fj)
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1

= JZ sj( Z (e ® fj)) = ; risj(ei ® fJ)

Since any vector in U® YV is a finite-sum of vectors u ® v, we deduce
that P spans U® V. 1

Corollary 0.8.5 For finite dimensional vector spaces,

dim(U ® V) = dim(U) - dim(V) 0

Exercises

1. The relation of being associates in an integral domain is an
equivalence relation.

2. Prove that the characteristic of an integral domain is either 0 or a
prime, and that a finite field has prime characteristic.

3. If char(F) =0, the prime subfield of F is isomorphic to the
rational numbers Q. If char(F) = p is prime, the prime field of F
is isomorphic to Z_.

4. If F < E show that E and F must have the same characteristic.

5. Let F be a field of characteristic p. The map o:F—F defined by
oa =aP is a homomorphism. It is called the Frobenius map.
Show that F ~ FP = {aP |a € F}. What if F is a finite field?

6. Consider the polynomial ring F[x,,X,,...] where xi2 =X;_;. Show
that the factorization process need not stop in this ring.

7. Let R=12Z[\/-5] = {a+by/-5|a,b € Z}. Show that this integral
domain is not a unique factorization domain by showing that 6 €
R has essentially two different factorizations in R. Show also that
the irreducible element 2 is not prime.

8. Let R be a pid. Then an ideal 3 of R is maximal if and only if I =
(p) where p is irreducible. Also, R/(p) is a field if and only if p is
irreducible.

9.  Prove that (x) and (2,x) are both prime ideals in Z[x] and that (x)
is properly contained in (2,x).

10. Describe the divisor chain condition in terms of principal ideals.
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Chapter 1
Polynomials

In this chapter, we discuss properties of polynomials that will be
needed in the sequel. Since we assume that the reader is familiar with
the basic properties of polynomials, some of the present material may
constitute a review.

1.1 Polynomials Over a Ring

We will be concerned in this book mainly with polynomials over a
field F, but it is useful to make a few remarks about polynomials over a
ring R as well. Let R[x] denote the ring of polynomials in the single
variable x over R. If

P(X) = g +apx+ ot apd”

where a;,€R and a, #0 then n is called the degree of p(x),
written deg p(x) and a_ is called the leading coefficient of p(x). A
polynomial is monic if its leading coefficient is 1. The degree of the zero
polynomial is defined to be —oo.

If R is a ring, the units of R[x] are the units of R, since no
polynomial of positive degree can have an inverse in R[x].

Definition Let R be a ring. A polynomial p(x) € R[x] is irreducible over
R if whenever p(x) = f(x)g(x) for f(x), g(x) € R[x], then one of f(x) or
g(x) is a unit in R[x]. A polynomial that is not irreducible is said to be

reducible. 0]
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Many important properties that a ring R may possess carry over to
the ring of polynomials R[x]. For instance, if R is an integral domain,
then so is R[x] and if R is a unique factorization domain, then so is
R[x]. Note, however, that the ring Z of integers is a principal ideal
domain, but Z[x] is not, since the ideal (2,x) is not principal.
Nonetheless, if F is a field, F[x] is a principal ideal domain (Theorem
0.7.2).

1.2 Primitive Polynomials

We now consider polynomials over a unique factorization domain.
The reader may wish to take a quick look at Section 0.5.

Definition Let f(x) € R[x] where R is a unique factorization domain.
Any greatest common divisor of the coefficients of f(x) is called a
content of f(x). A polynomial with content 1 is said to be primitive. We
will use the notation c(f) to denote a content of f(x). 0

If o is a content of f(x), then f is also a content of f(x) if and only if
B ~ a, that is, § = ua, where u is a unit in R. Since

c(ap(x)) ~ ac(p(x))
for all « € R, it follows that « is a content of f(x) if and only if f(x) =
ap(x), where p(x) is primitive.
We can also define the content of a polynomial over R’, the field of

quotients of R. To this end, if p is a prime in R, then any nonzero
element a € R’ has the form

a=p'a,
where r is an integer and p does not divide the numerator or

denominator of ay. The integer r is called the order of a at p, written
o,(a). If a =0, we set o,(a) = co. It is easy to see that if ab # 0 then

0, (ab) = 0,(2) + 0,(b)
If f(x) = Zaixi is a nonzero polynomial in R/[x], we set
op(f) = miin 0p(3;)
and if f(x) = 0, we set o,(f) = co. Then a content of f(x) is defined to be

0 o 5"
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where u is any unit in R and the product is taken over all primes p for
which op(f) # 0. Thus, content in R’ is unique up to multiplication by a
unit in R.

For any a € R, we have c(ap(x)) = uac(p(x)) where u is a unit in R
and so a is a content of f(x) € R'[x] if and only if

f(x) = ap(x)

where p(x) is a primitive polynomial (and hence in R[x]). It follows that
f(x) € R[x] if and only if its content is in R.
We now come to a key result concerning primitive polynomials.

Theorem 1.2.1 Let R be a unique factorization domain and let R' be
the field of quotients of R.

1) (Gauss’ Lemma) If f(x) and g(x) are primitive in R[x] then so is
f(x)g(x).

2) Iff(x), g(x) € R'[x] then c(fg) = uc(f)c(g), where u is a unit in R.

3) Let f(x), g(x) € R[x], with g(x) primitive. If f(x) = g(x)h(x), where
h(x) € R'(x) then, in fact, h(x) € R[x].

Proof. To prove Gauss’ Lemma, suppose that fg is not primitive. Then

there exists an irreducible element r € R for which r|fg. Since R is a

unique factorization domain, r is also prime. Hence (r) is a prime ideal
and R[x]/(r) is an integral domain. Since r | fg, we have fg € (r) and so

(f+ (g + (1)) =g+ (r) = ()

whence f+ (r) = (r) or g+ (r) = (r), that is, r |f or r|g. Hence, one of f
or g is not primitive.

To prove part 2), observe that if ¢; is a content of f(x) and c, is a
content of g(x) then f =cdf’ and g = c,8'y where f’ and g’ are prlmltlve
Hence, by Gauss’ Lemma

off) = clegege) ~ cregelfE) = cre,
As to part 3), we have
o(f) ~ c(g)e(h) ~ c(h)
and since c(f) € R, so is c(h), whence h(x) € R[x]. I
The previous theorem can be used to relate the irreducibility of a

polynomial over a unique factorization domain R to its irreducibility
over the field of quotients R’ of R. The next theorem says in loose
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terms that the only difference between irreducibility over R and over R/
is how constant factors are treated.

Theorem 1.2.2 Let R be a unique factorization domain, with field of
quotients R’.

1) A primitive polynomial p(x) € R[x] is irreducible over R if and
only if it is irreducible over R/'.

2) A polynomial f(x) € R[x] is irreducible over R if and only if it is
either an irreducible element of R or a primitive polynomial that
is also irreducible over R'.

Proof. To prove part 1), observe that a primitive polynomial p(x) has
no constant nonunit factors and so p(x) is irreducible over R if and only
if it can be written as a product of nonconstant factors over R. Hence, if
p(x) is reducible over R, it is also reducible over R'. On the other hand,
if p(x) is reducible over R’, then it has the form p(x) = f(x)g(x), where
f(x) and g(x) are nonconstant polynomials in R'[x]. Now we may write

p(x) = F(x)[c()g(x)]

where f(x) is primitive and hence, by Theorem 1.2.1, c(f)g(x) is a
polynomial over R. Thus f(x) is reducible over R as well.

To prove part 2), note that if f(x) is a constant, then there is nothing
to prove, since the constant nonunits in R[x] are precisely the nonunits
in R. On the other hand, if f(x) has positive degree, then it is
irreducible over R if and only if it is both primitive and irreducible over
R and this is equivalent, by part 1), to being primitive and irreducible
over R'. 1

1.3 The Division Algorithm

The familiar division algorithm for polynomials over a field F can be
easily extended to polynomials over a commutative ring with identity,
provided that we divide only by polynomials whose leading coefficient is
a unit. We leave proof of the following to the reader.

Theorem 1.3.1 (Division algorithm) Let R be a commutative ring with
identity. Let g(x) € R[x] have invertible leading coefficient. Then for
any f(x) € R[x], there exist unique q(x), r(x) € R[x] such that

f(x) = a(x)g(x) +r(x)

where deg r(x) < deg g(x). 0
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This theorem has some very important immediate consequences.

Corollary 1.3.2 Let R be a commutative ring with identity and let
f(x) € R[x]. Then « is a root of f(x) if and only if x — o is a factor of
f(x) over R. D

Since the usual degree formula deg f(x)g(x) = deg f(x) + deg g(x)
holds when R is an integral domain, we have the following.

Corollary 1.3.3 If R is arn integral domain then a nonzero polynomial
f(x) € R[x] can have at most deg f(x) roots in R. [I

In the customary way, a polynomial p(x) € R[x] can be thought of as
a function on R. If R is an integral domain, Corollary 1.3.3 insures that
if p(r) =0 for an infinite number of distinct values of r € R then p(x)
must be the zero polynomial. Thus, if R is infinite, then p(x) is zero as
a function if and only if it is zero as a polynomial. Note that this does
not hold for finite fields, for instance, the nonzero polynomial p(x) =
x?—x is the zero function on Z,. This result can be extended to
polynomials in more than one variable by induction and we leave the
details to the reader.

A polynomial in more than one variable may have infinitely many
zeros, however, and yet not be the zero polynomial. For instance
p(x,y) =x—y has infinitely many zeros over R. This example
notwithstanding, we do have the following useful result, which says
informally that if a polynomial has a whole subfield worth of zeros,
then it must be the zero polynomial.

Theorem 1.3.4 Let I be an infinite field and let L be an extension of F.
Suppose that q(x;,...,x,) is a polynomial over L. If q(a;,...,a,) = 0 for
all a; € F then q(x;,...,x,) is the zero polynomial.

Proof. Write
A(Xgye ey Xy) = Z,\exe
, €
where x° = xil-uxin and A, € L. Let {f;} be a basis for L as a vector

space over F. Then
’\e = Za'e,iﬁ i
i

for ae; € F and so

q(Xgye. 0y Xpy) = ZAexe = Z Zae,iﬂixe = Zﬂi(Zae,ixe)
e e i i €

If b; € F, we have
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0= q(bl" . .,bn) = Z ﬂi(zae,ibe)

and the independence of the §;’s implies that

Eae,ibe =0
e

for all i. Since this holds for all b; € F, the polynomial Eaevixe over F
must be the zero polynomial. It follows that a, ; = 0 for all e and i, and
so A, = 0 for all e, whence q(x;,...,x;) = 0.1

Corollary 1.3.3 can be used to prove a fundamental fact concerning
finite fields.

Corollary 1.3.5 Let F be a finite field. The multiplicative group F* of
all nonzero elements of F is cyclic.

Proof. Let |F*| =q—1 and let ¢ have maximum order m <q-—1
among all the elements in F*. Since F* is a finite abelian group,
Theorem 0.2.2 implies that ™ =1 for all a € F*. Thus, every element
of F* is a root of the polynomial x™ — 1, which has at most m roots.
Hence m = q — 1, and F* is cyclic. §

In defining the greatest common divisor of two polynomials, it is
customary (in order to obtain uniqueness) to require that it be monic.

Definition Let f(x) and g(x) be polynomials over F. The greatest
common divisor of f(x) and g(x), denoted by (f(x),g(x)) or
ged(f(x),g(x)), is the unique monic polynomial p(x) over F for which

1) p(x)|f(x) and p(x) | g(x).
2) If r(x) € F[x] and r(x) | f(x) and r(x) | g(x) then r(x) | p(x). O

The existence of greatest common divisors and the fact that d(x) =
ged(f(x),g(x)) is independent of the field F, that is, d(x) lies in any field
K containing the coefficients of f(x) and g(x), follow from the fact that
F[x] is a principal ideal domain. In particular, the ideal I = (f(x),g(x))
of K[x] is principal and so I = (p(x)) where p(x) € K[x]. Since f(x) €
(p(x)), we have p(x)|f(x) and similarly p(x)|g(x) over K and hence
over any larger field F. Since p(x) € (f(x),g(x)), there exist a(x), b(x) €
K[x] such that p(x)=a(x)f(x)+ b(x)g(x). Hence, if q(x)|f(x) and
q(x) | g(x) over F then q(x) | p(x) over F. Thus, p(x) = ged(f(x),g(x)).

Theorem 1.3.6 Let f(x), g(x) € F[x] and let K be the smallest subfield of
F containing the coefficients of f(x) and g(x). Then there exist a(x),
b(x) € K[x] such that ged(f(x),g(x)) = a(x)f(x) + b(x)g(x) € K[x]. O
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Theorem 1.3.7 Let f(x), g(x) € F[x] and let F < E. Then f(x) and g(x)
have a nonconstant common factor over F if and only if they have a
nonconstant common factor over E.

Proof. Any common divisor h(x) of f(x) and g(x) over E is also a
divisor of a(x)f(x)+ b(x)g(x) = ged(f(x),g(x)). Hence, if h(x) is
nonconstant, so is ged(f(x),g(x)). B

Definition The polynomials f(x), g(x) € F{x] are relatively prime if
ged(f(x),g(x)) = 1. In particular, f(x) and g(x) are relatively prime if
and only if there exist polynomials a(x), b(x) € F[x] for which

a(x)f(x) + b(x)g(x) =1 o

Corollary 1.3.8 The polynomials f(x), g(x) € F[x] are relatively prime if
and only if they have no common roots in any extension field E of F.

Proof. If ged(f(x),g(x)) =1 then a(x)f(x)+b(x)g(x) =1 implies that
f(x) and g(x) have no common roots in any extension. Conversely, if
ged(f(x),g(x)) is nonconstant, any of its roots is a common root of f(x)
and g(x) in some extension. I

Corollary 1.3.9 If f(x) and g(x) are distinct monic irreducible
polynomials over F then they have no common roots in any extension E
of F. O

1.4 Splitting Fields

It is a fundamental fact that every nonconstant polynomial
f(x) € F[x] has a root in some field.

Theorem 1.4.1 Let F be a field, and let f(x) € F[x] be a nonconstant
polynomial. Then there exists an extension E of F and an a € E such
that f(a) = 0.

Proof. We may assume that f(x) is irreducible. Consider the field E =
F[x]/(f(x)). The field F may be thought of as a subfield of E, by
identifying o € F with a+(f(x)) € E. Then x + (f(x)) is a root of f(x) in
E. (We have actually shown that F can be embedded in a field in which
f(x) has a root, but this is sufficient in view of Exercise 17 of Chapter

2)1

Repeated application of Theorem 1.4.1 gives the following corollary.
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Corollary 1.4.2 Let f(x) € F[x]. There exists an extension E of F such
that f(x) factors into linear factors over E. [I

If a polynomial f(x) € F[x] factors into linear factors

f(x) = a(x —a;)(x —ag)- - +(x — )

over an extension field E (that is, if a, ay,...,a, € E), we say that f(x)
splits in E.

Definition Let ¥ = {f(x)} be family of polynomials over a field F. A
splitting field for & is an extension field E of F with the property that
each f;(x) in ¥ splits in E and that E is generated over F by the roots of
the polynomials in ¥. ]

Corollary 1.4.3 Every finite family of polynomials over a field F has a
splitting field.

Proof. Corollary 1.4.2 implies that any single polynomial has a splitting
field. If ¥ is a finite family of polynomials, then a splitting field for ¥ is
a splitting field for the product of the polynomials in . 1

We will see in the next chapter that any family of polynomials has a
splitting field. We will also see that any two splitting fields S; and S,
for a family of polynomials over F are isomorphic by an isomorphism
that fixes each element of the base field F.

1.5 The Minimal Polynomial

Let F < E. An element « € E is said to be algebraic over F if there is
some nonzero polynomial f(x) € F[x] for which f(a) =0. An element
that is not algebraic over F is said to be transcendental over F.

If o is algebraic over F, the set

3= {g(x) € F[x] | g(e) = 0}

is a nonzero ideal in F[x] and is therefore generated by a unique monic
polynomial p(x), called the minimal polynomial of a over F and
denoted by min(a,F). The following theorem characterizes minimal
polynomials in a variety of useful ways. Proof is left to the reader.

Theorem 1.5.1 Let F < E and let p(x) = min(a,F) where a € E. Then
among all polynomials in F[x], the polynomial p(x) is
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1)  the unique monic irreducible polynomial for which p(a) =0

2) the unique monic polynomial of smallest degree for which
p(a) =0 ,

3) the unique monic polynomial with the property that f(a) =0 if
and only if p(x) | f(x). 0

Definition Let F < E. Then ¢, 3 € E are said to be conjugates over F if
they have the same minimal polynomial over F. I

1.6 Multiple Roots

Definition Let o be a root of f(x) € F[x]. The multiplicity of a is the
largest positive integer n for which (x —a)" divides f(x). If n =1, we
say that a is a simple root and if n > 1, we say that a is a multiple root

of f(x). 0

Definition An irreducible polynomial f(x) € F[x] is said to be separable
if it has no multiple roots in any extension of F. An irreducible
polynomial that is not separable is inseparable. [

Although, as we now show, all irreducible polynomials over a field of
characteristic zero or a finite field are separable, the concept of
separability plays a key role in the theory of more “unusual” fields.

Theorem 1.6.1 A polynomial f(x) has no multiple roots if and only if
f(x) and its derivative f'(x) are relatively prime.

Proof. Over a splitting field E for f(x), we have
f(x) = (x—0y) - (x — )0

where the a;’s are distinct. It is easy to see that f(x) and f'(x) have no
nontrivial common factors over E if and only if e; =1 for all i. Thus,
f(x) has no multiple roots in E if and only if f(x) and f'(x) are relatively
prime. i

Corollary 1.6.2 An irreducible polynomial f(x) is separable if and only if
f'(x) #0.

Proof. Since deg f'(x) < deg f(x) and f(x) is irreducible, we deduce that
f(x) and f'(x) are relatively prime if and only if f'(x) # 0. §

If char(F) = 0 then f'(x) # 0 for any nonconstant f(x). Thus, we get
the following corollary.
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Corollary 1.6.3 All irreducible polynomials over a field of characteristic
0 are separable. ]

For char(F) =p #0, the next result says that the inseparable
polynomials are precisely the polynomials of the form g(xP) for some
d>1.

Corollary 1.6.4 Let char(F) = p # 0 and let f(x) € F[x] be irreducible.

1) I f(x) is inseparable, then there exists a positive integer d such
that f(x) = q(x"d), where q(x) is separable. In this case, all roots of
f(x) have multiplicity pd.

2) Iff(x)= h(xpd) where h(x) is any nonconstant polynomial and d is
a positive integer, then f(x) is inseparable.

Proof. For the first statement in part 1), suppose that f(x) = 3" a;x! has
a multiple root in some extension E of F. Then f'(x) = 0 which implies
that ia; = 0 for all i, which in turn implies that p |i for all i such that
a; # 0. Hence, f(x) = q(xP). If q(x) has no multiple roots, we are done.
If not, then we may repeat the argument with the irreducible
polynomial q(x), eventually obtaining the desired result.

For part 2), if h(x) is not separable, then by part 1), we have h(x) =
q(xP) where q(x) is separable and so

£(x) = h(x*) = q(x*""")

Thus, we may suppose that h(x) is separable. Let K be a field in which
both f(x) and h(x) split. Over K, we have h(x) = (x — ;) (x — ) and

SO

() = (< — ) +(x¥ — )

where the o; € K are distinct. Since f(x) splits in K, there exist roots
B; € K for each of the factors x¥ — o;, and so o; = 7. Hence,

f(x) = (xF — BE)- - -(x* - B[
Since char(F) = p,
f(x) = (x = B --(x = B

which shows that all the roots of f(x) have multiplicity pd. This proves
part 2) and also the second statement in part 1). i

Corollary 1.6.5 All irreducible polynomials over a finite field are
separable.
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Proof. Let char(F) = p. The field F is an extension of its prime subfield
Zp and if the dimension of F as a vector space over Z_ is n, then F has
q=p" elements. Hence, the multiplicative group F* of nonzero
elements of F has order q -1 and so a% = a for all a € F. In particular,
any element of F is a p-th power of some other element of F. Thus, any
polynomial of the form q(xP) satisfies

q(xP) = ag+a;x" + -+ +axP"
=Dbf§ +bPxP+... 4+ bEx"P
= (bg +byx + -+ byx")P
and so is not irreducible. 1

We should note that in infinite fields of nonzero characteristic, there
are irreducible polynomials with multiple roots.

Example 1.6.1 Let F be a field of characteristic 2 and consider the field
F(y) of all rational functions in the variable y. The polynomial f(x) =
x?—y? is irreducible over the subfield F(y?), since it has no linear
factors over F(y2). However, in F(y) we have f(x) = (x —y)? and so y is
a double root of f(x). O

1.7 Testing for Irreducibility
We discuss two well-known methods for testing a polynomial for

irreducibility.

Theorem 1.7.1 (Eisenstein’s criterion) Let R be an integral domain and
let p(x) =ap+a;x+---+a x" € R[x] have relatively prime coefficients.
If there exists a prime p € R satisfying

pla;for0<i<n, pfa, leao

then p(x) is irreducible.

Proof. Suppose that p(x) = f(x)g(x) where neither factor is a unit. If
f(x) =fy € R then f; divides a; for all i, implying that f(x) =f, is a
unit, which is not the case. Thus, degf(x)>0 and similarly
deg g(x) > 0. Let

f(x) =f0+f1x+"'+kak and g(x) =g0+g1x+...+gmxm

Since ay = fyg, and p | a, p%/ a, we may assume that p |f, and p/g,.
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Let 0 <i<n be the smallest integer for which p/f, and consider the
coefficient

a; = fog; +118_1 +- - +figo

We have p | a;, p | fyg;,...,f;_,8, but pffg,, a contradiction. Hence p(x)
is irreducible. 1

Eisenstein’s criterion can be useful as a theoretical tool.

Corollary 1.7.2 For every positive integer n, there is an irreducible
polynomial p_(x) of degree n over the integers.

A useful approach to testing for irreducibility over Z[x], and hence
also over Q[x], is localization. For a prime p, let 0:Z—1Z, be the natural
map

on =T =n+(p)

If p(x) € Z[x] we denote (op)(x) by B(x).

Theorem 1.7.3 Let p(x) =ag+a;x+---+a x" € Z[x] be primitive. Let
p be a prime that does not divide a . If p(x) is irreducible over Z,, then
p(x) is irreducible over Z.

Proof. Assume that p(x) is irreducible over Z, but that p(x) = f(x)g(x)
is the product of nonunits over Z. Then P(x) = f(x)g(x). Since a, #0
mod p, we have

deg f(x) + deg g(x) = deg D(x) = deg p(x) = deg f(x) + deg g(x)

which implies that deg f(x) = deg f(x) and deg g(x) = deg g(x). Since
P(x) is irreducible, we must have deg f(x) = 0 or deg g(x) = 0, implying
that one of f(x) or g(x) is a constant (nonunit), in contradiction to the
primitiveness of p(x). Hence, p(x) is irreducible over Z. i

Exercises

1. Prove that if R is an integral domain then so is R[x,,...,x].

2. Describe the units in F[x] where F is a field.

3. Let R be an integral domain. Prove that c¢(ap(x)) ~ ac(p(x)) for
any p(x) € R[x] and a € R.

4.  Prove that if n > 1 then the ring F[x,,...,x ] is not a principal
ideal domain.

5. If f(x) € R[x] where R is an integral domain with field of quotients
R/, then f(x) can also be viewed as a polynomial in R'[x]. Show
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10.

11.

12.

13.

14.
15.

that the definition of content for f(x) € R[x] agrees with the
definition of content for f(x) € R'[x].

Verify the division algorithm (Theorem 1.3.1) for commutative
rings with identity. Hint: try induction on deg f(x).

Show that the condition that p(x) be primitive is essential in the
first part of Theorem 1.2.2.

Prove Theorem 1.5.1.

Let deg p(x) =d. The reciprocal polynomial is q(x) = xIp(x~1).
Are the irreducibility of p(x) and q(x) related? Can you deduce an
alternate version of Eisenstein’s criterion from this?

Show that if p is a prime in an integral domain R, the polynomial
p(x) = x™ — p is irreducible.

Prove that for every positive integer n there is an irreducible
polynomial p_(x) € Z[x] of degree n.

For p prime show that p(x) = 1 + x4 x? 4 .-+ xP~! is irreducible
over Z[x]. Hint: apply Eisenstein to the polynomial p(x+1).

Use the idea of localization (apply the map o) to deduce that
Eisenstein’s criterion implies irreducibility in Z[x].

Prove that for p prime, x® + px + p? is irreducible over Z[x].

If R is an infinite integral domain and p(x,,...,x,) is a
polynomial in several variables over R, show that p(x,,...,x,) is
zero as a function if and only if it is zero as a polynomial.

If f(x) is a polynomial of degree d, we define the reciprocal polynomial
by fr(x) = x4(x~1). Thus, if

then

f(x) =a x"+a,_x" " 4. 4ax+a

fr(x) =agx" +a;x® 4o ta, x+a,

If a polynomial satisfies f(x) = fy(x), we say that f(x) is self-reciprocal.

16.

17.

18.

19.

20.

Show that a # 0 is a root of f(x) if and only if ™! is a root of
fr(x).

Show that the reciprocal of an irreducible polynomial f(x) # x is
also irreducible.

Show that if a polynomial f(x) is self-reciprocal and irreducible,
then deg f(x) must be even.

Suppose that f(x) = p(x)q(x), where p(x) and g(x) are irreducible,
and f(x) is self-reciprocal. Show that either

(i) p(x) = 6pr(x) and q(x) = 6qu(x) with § = £1, or

(i) p(x) = aqg(x) and q(x) = o™ "pg(x) for some o € GF(q).
What can you say about this if deg p(x) is odd?

There is a simple (but not necessarily practical) algorithm for
factoring any polynomial over @, due to Kronecker. In view of
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Theorem 1.2.2, it suffices to consider polynomials with integer
coefficients. Prove that a polynomial of degree n is completely
determined by specifying n+1 of its values. Hint: Use the
Lagrange Interpolation Formula

b9 = > () [H%}]

i=0 i#i

Let f(x) be a polynomial of degree n>1 over Z. If f(x) has a
nonconstant factor p(x) of degree at most n/2, what can you say
about the values p(i) for i =0,...,[n/2]? Construct an algorithm
for factoring f(x) into irreducible factors.



Chapter 2
Field Extensions

Field extensions F < E can be characterized in a variety of useful
ways. Some characterizations involve properties of the individual
elements of the extension. For instance, an extension F < E is algebraic
if each element a € E is algebraic over F. Other characterizations
involve the field E as a whole. For instance, F < E is normal if E is the
splitting field for a family of polynomials over F. In this chapter, we
will describe several types of extensions and study their basic properties.

2.1 The Lattice of Subfields of a Field

If E is an extension field of F, then E can be viewed as a vector space
over F. The dimension of E over F is denoted by [E:F] and called the
degree of E over F. A sequence of fields E,,...,E, for which E; < E; +1
is referred to as a tower of fields, and we write E; < E, <:-- < E,. The
fact that dimension is multiplicative over towers is fundamental.

Theorem 2.1.1 Let F < K < E. Then

[E:F] = [E:K][K:F)
Moreover, if A = {a;|i €1} is a basis for E over K and B = {8, | j.€ J}
is a basis for K over F, then the set C = {aiﬂj liel,jel}lisa g)asis for
E over F.
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Proof. For the independence of C, if ) a; ;8 =0 then Y a; & =0 for
all j, and the latter implies that a;; =0 %or all i, j. Hence, C is
independent. Next, if ¥ € E then there exist a; € K such that vy =
Y a;a;. Since each a; is a linear combination of the 8.’s, it follows that
7 is a linear combination of the products a;f;. Hence C is a basis for E

over F. I

If F and E are subfields of a field K, then the intersection FNE is
clearly a field. The composite FE of F and E is defined to be the
smallest subfield of K containing both F and E. The composite FE is
also equal to the intersection of all subfields of K containing E and F.
More generally, the composite V E; of a family & = {E; |i € I} of fields,
all of which are contained in a single field E, is the smallest subfield of
E containing all members of the family. Note that the composite of
fields is defined only when the fields are all contained in one larger field.
Whenever we form a composite, it is with the tacit understanding that
the relevant fields are so contained.

A monomial over a family 8 = {E; |i €I} of fields with E; < E is an
element of E of the form

& &, -ein, where &, € Eik
Note that the set of all finite sums of monomials over & is the smallest
subring R of E containing each field E; and the set of all quotients of
elements of R (the quotient field of R) is the composite V E;. Thus,
each element of V E; involves only a finite number of elements from the
union |JE; and is therefore contained in a composite of a finite number
of fields from the family 8.

The collection of all subfields of a field K forms a complete lattice £
(under set inclusion), with meet being intersection and join being
composite. The zero element in L is the prime subfield of K and the
unit element is K itself.

2.2 Distinguished Extensions

Following Lang, we will say that a class C of field extensions is
distinguished provided that

D1) If F<K<E, then (F<E)€C if and only if (F<K)€C and
(K<E)ecC.

D2) If (F<E) €€ and F < K and EK is defined, then (K < EK) €C.
Note that if C is distinguished, then
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D3) If (F<E)eC and (F<K)€eC and EK is defined, then
(F < EK) € C. In other words, C is closed under taking (a finite
number of) composites.

Figure 2.2.1 illustrates D1) and D2). We refer to K < EK as the
lifting of the extension F < E by K.

E EK

K E K

F F
Figure 2.2.1

If a class C of extensions has the property that whenever (F < E;) € €
for each member of a family {E;} of fields and if VE; is defined, then
(F< VE;) €C, we say that C is closed under the taking of arbitrary
composites.

2.3 Finitely Generated Extensions

If S is a subset of a field E and if F < E, we denote the smallest
subfield of E containing F and S by F(S). When S = {o,...,0q,} is a
finite set, it is customary to write F(ay,...,a,) for F(S). Note that for
1<k<n-1,

Fay,...,ap) = [Flag,..., o)l (0g 415005 ap)

Definition Any field of the form E = F(ay,...,a,) is said to be finitely
generated over F. We also say that the extension F < E is finitely
generated. Any extension of the form F < F(a) is called a simple
extension and « is a primitive element in F(a). 0

The reader may have encountered a different meaning of the term
primitive in connection with elements of a finite field. We will discuss
this alternate meaning when we discuss finite fields later in the book.

It is evident that F(oy,...,a,) consists of all quotients of
polynomials in the o;’s:

Flagyeo ) = { motee®a)

glag,...,a;)

| glay,...,a;) #0}
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Theorem 2.3.1 The class of all finitely generated extensions is
distinguished.

Proof. For D1, let F < K < E. If E =K(S) and K = F(T) where S and
T are finite, then E = F(SUT) is finitely generated over F. Clearly, if
F < E is finitely generated then K < E is also finitely generated by the
same set of generators. However, the proof that F < K is finitely
generated must be postponed until we have discussed transcendental
extensions in the next chapter. Statement D2 follows from the fact that
if E = F(S), S finite, and F < K then

KE = K(F(S)) = K(5)

and so KE is finitely generated over K. i

2.4 Simple Extensions

Since F[x] is a principal ideal domain, the ideal (p(x)) generated by
p(x) € F[x] is maximal, and the quotient ring
Flx]
K=—%
(p(x))
is a field, if and only if p(x) is irreducible. We can use this observation
to characterize simple algebraic extensions.

Theorem 2.4.1 Let F < E and let a € E be algebraic over F. Then F(a)
is isomorphic to the field
_ F[x
K= (min(a,F))

Proof. Let ¢:F[x]—E be the evaluation (ring) homomorphism defined
by ¥(f(x)) = f(«). The kernel of 9 is the ideal (min(a,F)), and so K is
isomorphic to ¥(F[x]), which implies that ¥(F[x]) is a field. Thus, we
need only show that (F[x]) = F(a). Clearly, ¥(F[x]) C F(a). But
a = Y(x) € Y(F[x]) and F C 4(F[x]) imply that F(a) C ¥(F[x]). Hence,
Y(Fx]) =F(a). 1

Let p(x) be irreducible over F. Since addition and multiplication in
K = F[x]/(p(x)) is done using coset representatives and since

K’ = {f(x) € F[x] | deg f(x) < deg p(x)}

is a complete set of distinct coset representatives for K, we may identify
K with K’, where addition and multiplication are performed modulo
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p(x). This allows us the customary practice of thinking of F as a
subfield of K. Note also that, as a vector space over F, we have
dim K = deg p(x). In the symbolism of Theorem 2.4.1, we have
[F(a):F] = deg min(e,F). »

Thus F(e) is the set of all polynomials in o of degree less than d =
deg min(a,F), with addition and multiplication modulo min(e,F). It
follows that the set {l,a,...,ad‘l} is a basis for F(a) over F.

As for simple transcendental extensions, we have the following.

Theorem 2.4.2 Let F < E and let a € E be transcendental over F. Then
F(a) is isomorphic to the field of all rational functions F(x) in a single
variable x.

Proof. The evaluation homomorphism #%:F(x)—E is injective, for if
f(a)/g(a) = 0 then f(a) = 0, which implies that f(x) = 0, since otherwise
a would be algebraic. Since ¥(F(x)) = F(a), we deduce that 9 is an
isomorphism from F(x) onto F(a).

2.5 Finite Extensions

If F < E and [E:F] is finite, we say that E is a finite extension of F or
that F < E is finite. We have already seen that the following is true.

Theorem 2.5.1 If F <E and if o € E is algebraic over F then F < F(a)
is finite, and [F(a):F]) = deg min(o,F). 0

Theorem 2.5.2 An extension is finite if and only if it is finitely
generated by algebraic elements.

Proof. If F < E is finite and if {oy,...,a,} is a basis for E over F, then
E = F(ay,...,q,) is finitely generated over F. Moreover, for each k, the
infinite set of nonnegative powers of ) cannot be linearly independent
over F, it follows that o must be algebraic over F.

For the converse, assume that E = F(a;,...,a,), where each o; is
algebraic over F, and consider the tower

F < F(Otl) < F(O(l,a2) LEEER « F(al,...,an) = E

Since a; is algebraic over F(al,...,ai_l), each extension in the tower is
finite, and so E is finite over F by Theorem 2.1.1.

Suppose that E = F(a;,...,a,) is finitely generated by algebraic
elements a; over F and consider the tower
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F < F(ey) < F(oy,a9) <-+- < F(ay,...,a,) =E

Our results on simple algebraic extensions show that any element of
F(a;) is a polynomial in a; over F. Further, any element of F(a;,0,) is
a polynomial in o, over F(a;), and hence a polynomial in the two
variables a; and a,. Continuing in this way, we conclude that E is the
set of all polynomials over F in ay,...,qa,.

Theorem 2.5.3 The class of finite extensions is distinguished.

Proof. The multiplicativity of degree shows that D1 holds. For D2, let
F <E be finite, with basis {a;,...,a,} and let F <K. Thus E=
F(a;,...,a,) where each ¢ is algebraic over F and so also over K. Since
EK = K(a;,...,a,) is finitely generated by elements algebraic over K, it
is a finite extension of K. 1

Note that if E is a splitting field for p(x) € F[x] then E is generated
by a complete set of distinct roots ay,...,a, of p(x). Thus E=
F(ay,...,a,) is finitely generated by algebraic elements and so is a
finite extension of F, of degree at most d!, where d = deg p(x). This also
applies to the splitting field for any finite set of polynomials over F.

Suppose that F < E is finite and let B = {3,,...,4,} be a basis for E
over F. If F <K, then since EK = K(#8,,...,8,) and each f; is algebraic
over F, and hence also over K, it follows that EK is the set of
polynomials over K in 8,,...,,. However, any monomial in the 8,’s is
a linear combination (over F) of f8,,...,8, and so EK is the set of
linear combinations of B,,...,8, over K. In other words, B spans EK
over K. We have proved the following, which says that a lifting cannot
increase degree.

Theorem 2.54 If B is a basis for E over F and if F < K then B spans
EK over K. In particular, if F < E is finite then [EK:K] < [E:F]. 0

The next theorem characterizes finite simple extensions.

Theorem 2.5.5 A finite extension F < E has the form E = F(a) for
o € E if and only if there are only a finite number of intermediate fields
F < K < E between E and F.

Proof. Suppose first that E = F(a), and that p(x) = min(a,F). Define a
map 1 that assigns to each intermediate field K the polynomial ¥(K) =
min(a,K). Since p(x) € K[x] and p(a) =0, we have ¥(K) | p(x). But a
monic polynomial has only a finite number of monic divisors. Hence,
the range of 9 is finite and therefore it is sufficient to show that i is
injective. Let K be an intermediate field, let S be the set of coefficients
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of ¥(K) and consider the tower F(S) < K < F(«). Since ¥(K) is a monic
irreducible polynomial over F(S) and is satisfied by «, we have ¢(K) =
min(a,F(S)). Hence, [F(a):K] = deg ¥(K) = [F(a):F(S)], which implies
that [K:F(S)] =1, that is, K = F(S). This shows that K is uniquely
determined by the polynomial ¥(K), and so % is injective.

For the converse, if E is a finite field, the multiplicative group E* of
nonzero elements of E is cyclic. If o generates this group, then E = F(a)
is simple. Now suppose that E is an infinite field and there are only
finitely many intermediate fields between E and F. Let o, 3 € E and
consider the intermediate fields F(a + af), for a € F. By hypothesis,
F(a +af) = F(a +bp) for some a # b € F. Hence, a +bf € F(a +ap),
implying that

B = 1yl(a+ap) — (a+bp) € F(a+ap)

and
a=(a+af)—af eFla+aP)

Hence, F(a,8) C F(a+af). The reverse inclusion is evident and so
F(a,8) = F(a + af), showing that any extension of F generated by two
elements is a simple extension. Since F < E is finite, it is finitely
generated and an inductive argument can be used to show that F < E is
simple. I

2.6 Algebraic Extensions

Definition An extension E of F is algebraic over F (or F<E is
algebraic) if every element a € E is algebraic over F. Otherwise, E is a
transcendental extension of F. 01

Theorem 2.6.1 A finite extension is algebraic.

Proof. If F < E is finite and a € E then the sequence of powers 1, a,
a?,... cannot be linearly independent over F and therefore some
nontrivial polynomial in o must equal 0, implying that « is algebraic
over F. }

Corollary 2.6.2 Any extension that is finitely generated by algebraic
elements is algebraic. [

Theorem 2.6.3 Let F < E. The set K of all elements of E that are
algebraic over F is a field, called the algebraic closure of F in E.

Proof. Let «, 8 € K. The field F(d,ﬁ) is finitely generated over F by
algebraic elements and so is algebraic over F, that is, F(e,3) C K. This
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implies that o', a + 8 and af all lie in K, and so K is a subfield of
E. 1

Theorem 2.6.4 The class of algebraic extensions is distinguished. It is
also closed under the taking of arbitrary composites.

Proof. For D1, let F < K < E. It is clear that if F < E is algebraic then
so is F < K. Also, since any polynomial over F is a polynomial over K,
K < E is also algebraic. Conversely, suppose that F < K and K < E are
algebraic and let a € E have minimal polynomial p(x) = 3 axx’' over K.
Consider the tower of fields

F < F(ay,...,a,) < F(ay,...,a,,0)

Since o is algebraic over F(a;,...,a;) and each a;, being in K, is
algebraic over F, we deduce that each step in the tower is finite and so
F < F(ay,...,a,a) is finite. Hence, « is algebraic over F.

For D2, let F <E be algebraic and let F <K, with E and K
contained in a field L. We must show that K < EK is algebraic. Let A
be the algebraic closure of K in EK. Certainly K < A < EK. Since each
element of E is algebraic over F it is a fortiori algebraic over K and so
E < A. Hence, EK < A < EK, showing that EK = A is algebraic over K.

Finally, if {E;} is a family of fields, each algebraic over F, then so is
V E;, since an element of VE; is also an element of a composite of only
a finite number of members of the family. i

The algebraic closure of the rational numbers Q in the real numbers
R is the field A of algebraic numbers. We saw in the previous chapter
that there is an irreducible polynomial p_(x) € Z[x] of every positive
degree n. Hence, A is an infinite algebraic extension of Q, showing that
the converse of Theorem 2.6.1 does not hold.

We note finally that if F < E is algebraic and if E = F(S) for some
S CE then each element of E is a polynomial in finitely many elements
from S. This follows from the fact that each a € F(S) is a rational
function in finitely many elements of S and so there exists a finite
subset Sy C S such that a € F(S;). Hence, our discussion in Section 2.5
related to finitely generated algebraic extensions applies here.

2.7 Algebraic Closures

Definition A field E is said to be algebraically closed if any nonconstant
polynomial with coefficients in E splits in E. [
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Theorem 2.7.1 Let F be a field. Then there is an extension E of F that
is algebraically closed.

Proof. The following proof is due to Emil Artin. The first step is to
construct an extension field F, of F, with the property that all
nonconstant polynomials in F[x] have a root in F;. To this end, for
each nonconstant polynomial p(x) € F[x], we let X, be an independent
variable and consider the ring % of all polynomials in the variables X
over the field F. Let J be the ideal generated by the polynomials p(X).
We contend that 3 is not the entire ring %®. For if it were, then there
would exist polynomials q,,...,q, € % and py,...,p, € I such that

41P1(Xp )+ +anpn(Xp ) =1

This is an algebraic expression over F in a finite number of independent
variables. But there is an extension field E of F in which each of the
polynomials p,(x),...,p,(x) has a root, say ay,...,a,. Setting X, =
and setting any other variables appearing in the equation above equal
to 0 gives 0 = 1. This contradiction implies that 3 # %.

Since 3#£ B, there exists a maximal ideal § such that IC } C .
Then F; =R/} is a field in which each polynomial p(x) € F[x] has a
root, namely XP+§. (We may think of F,; as an extension of F by
identifying o € F with a + }.)

Using the same technique, we may define a tower of field extensions

F<F <F,<--

such that each nonconstant polynomial p(x) € F;[x] has a root in F;, ;.
The union E = {JF, is an extension field of F. Moreover, any
polynomial p(x) € E[x] has all of its coefficients in F; for some i and so
has a root in F;,, hence in E. It follows that every polynomial p(x) €
E[x] splits over E. Hence E is algebraically closed. i

Definition Let F < E. Then E is an algebraic closure of F if F < E is
algebraic and E is algebraically closed. We will denote an algebraic
closure of a field F by F. 0

Theorem 2.7.2 Let F < E. The following are equivalent.

1) Eis an algebraic closure of F.

2) F <E is algebraic and any nonconstant polynomial p(x) over F
splits in E.

3) E is a maximal algebraic extension of F, that is, F < E is algebraic
and if E < K is algebraic then K = E.
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Proof. Clearly 1) implies 2). Suppose 2) holds and E < K is algebraic.
Let o« € K. Then F <E <E(a) is an algebraic tower and so o is
algebraic over F. But the minimal polynomial min(a,F) splits in E and
so a € E. Thus K=E and 3) holds. Finally, suppose 3) holds and let
p(x) € E[x]. Any splitting field K for p(x) is algebraic over E and so
must equal E, which implies that p(x) splits in E. Hence, 1) holds. i

We can now easily establish the existence of algebraic closures.

Theorem 2.7.3 Let F < A < E where A is the algebraic closure of F in
E. If E is algebraically closed then A is also algebraically closed and
hence is an algebraic closure of F. Thus, any field has an algebraic
closure.

Proof. We have already seen that A is an algebraic extension of F. By
hypothesis, any p(x) € A[x] splits in E and so all of its roots lie in E.
Since these roots are algebraic over A, they are also algebraic over F
and thus lie in A. Hence p(x) splits in A and so A is algebraically
closed. The final statement follows from Theorem 2.7.1. 1

2.8 Embeddings

Homomorphisms between fields play a key role in the theory. Since a
field F has no ideals other than {0} and F, it follows that any nonzero
(ring) homomorphism o:F—L from F into L must be a monomorphism.
If A—B is any function and if C C A, we denote the restriction of f to
Cby f| .

Definition Let F and L be fields. A monomorphism o:F—L is called an
embedding of F into L. We will denote the image of F under o by oF
or F7. If F < E, an embedding 7:E—L for which 7| = o is called an
extension of ¢ to E. An embedding of E that extends the identity map
1:F—F is called an embedding over F, or an F-embedding. We will
denote the set of all embeddings of E into L over F by Homp(E,L). If
p(x) = Zax € F[x] and if 0:F—L is an embedding we denote the

polynomial 3 o(a; )x' by (op)(x) or p?(x). 0

Lemma 2.8.1

1) Let 0:F—L be an embedding of F into L and let p(x) € F[x]. Then
a € F is a root of p(x) if and only if sa is a root of p?(x).

2) If ¢:K—L is an embedding of K into L and if {E;|i€l} is a
family of subfields of K then o( VE;) = VoF.

3) If o:K—L is an embedding of K into L and if F <K and
aq,...,a, € K then
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o(F(ay,...,a,)) =F(0ay,...,00,)

Proof. Part 1) follows from the fact that o(p(a)) = p?(ca). For part 2),
since o is injective, it preserves intersections. But

VE;=[{H|E;<H<K foralliel}
and so

o(VE) = [{oH|E <H<Kforalliel}

Since 0:K—oK is an isombrphism, every H' satisfying 0E; < H' < 0K is
of the form oH for some H satisfying E; < H < K and so

o(VE) = [{H'| oE; < H'< oK for all i € I} = V oF;
We leave proof of part 3) to the reader.

Even though the next result has a simple proof, the result is of major
importance.

Theorem 2.8.2 Let F < E be algebraic and let o:E—E be an embedding
of E into itself over F. Then ¢ is an automorphism of E.

Proof. Let o € E and let p(x) = min(a,F). Let S be the set of roots of
p(x) that lie in E. Then o € S. If B €S then ¢/ is also a root of p(x) in
E, and so 08 € S. Hence, ¢ | g is a permutation on S and so there is a
B €S for which 0 = a. This shows that o is surjective, hence an
automorphism of E. I

It is a cornerstone of the theory that an embedding o:F—L into an
algebraically closed field can be extended to any algebraic extension of
F. We begin with the case of a simple algebraic extension.

Suppose that ¢:F—L is an embedding of F into an algebraically
closed field L. If F < E and « € E is algebraic over F then we may take
advantage of the fact that o satisfies its minimal polynomial p(x) over
F to extend o to F(a) as follows. Since L is algebraically closed,
p?(x) € F7[x] splits in L, and since ¢ is an embedding, p7(x) is
irreducible over oF. Hence p?(x) is the minimal polynomial over oF of
any of its roots in L. Let 3 be a root of p?(x) in L. Then

Pla) = {1(0) | 1x) € Flx), deg £(x) < deg p(x)}
and since deg p?(x) = deg p(x),

F7(B) = {&(8) | 8(x) € F7[x], deg g(x) < deg p(x)}
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Thus we may define a map 7:F(a)—F?(8) by
o(f(a)) = 17(8)

for any f(x) € F[x]. It is straightforward to show that 7 is an embedding
of F(a) into F?(B) over o and that o = 8. This proves the first part of
the following theorem. The rest of the theorem follows easily.

Theorem 2.83 Let F<E and let o« € E be algebraic over F, with
minimal polynomial p(x) = min(a,F). Let 0:F—L be an embedding of
F into an algebraically closed field L.

1) If B is a root of p’(x) in L then o can be extended to an
embedding 7:F(a)—L for which 7o = 3.

2)  Any extension of ¢ to F(a) must map a to a root of p?(x) in L.

3) The number of extensions of ¢ to F(a) is equal to the number of
distinct roots of min(a,F) in F. Il

Zorn’s Lemma can now be used to extend the first part of this
theorem to arbitrary algebraic extensions.

Theorem 2.8.4 Let F < E be algebraic. Any embedding ¢:F—L into an
algebraically closed field L can be extended to an embedding 7:E—L.
Moreover, if a € E, p(x) = min(a,F) and 8 €L is a root of p?(x), then
we can arrange it so that o = . (See Figure 2.8.1.)

Proof. Let & be the set of all embeddings 7:K—L over o for which
Ta=f and F <K < E. Theorem 2.8.3 implies that & is not empty.
Order the elements of & by saying that (r:K'=L) > (n:K—L) if K < K’
and 7' is an extension of 7. Then & is a partially ordered set. If € =
{r;:K;—L} is a chain in &, the map 7:{JK;—L defined by the condition
T|k.=T; is an upper bound for C in &. Zorn’s Lemma implies the
existence of a maximal extension 7:K—L. We contend that K = E, for
if not, there is an element ¥ € E — K. But v is algebraic over K and so
we may extend 7 to K(v), contradicting the maximality of 7. I

¢ Lalg cl
E o
algebraic { F(o) T F(ﬂ)
o root of B root of
p(x) op(x)
F oF
a

Figure 2.8.1
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We can now establish the essential uniqueness of algebraic closures.

Corollary 2.8.5 Any two algebraic closures of a field F are‘isomorphic.

Proof. Let K and L be algebraic closures of F. The identity map ¢:F—F
can be extended to an embedding 7:K—L. Since K is algebraically
closed so is TK. But L is an algebraic extension of 7K and so L = 7K.
Hence, 7 is an isomorphism. §

We close this section with a highly useful result on independence of
embeddings. We choose a somewhat more general setting, however. A
monoid is a nonempty set M with an associative binary operation and
an identity element. If M and M’ are monoids, a homomorphism of M
into M’ is a map ¥:M—M' such that ¥(afB) = ¥(a)¥(B) and (1) = 1.

Definition Let M be a monoid and let K be a field. A homomorphism
x:M—K*, where K* is the multiplicative group of all nonzero elements
of K is called a character of M in K. []

Note that an embedding o:E—L of fields defines a character
o:E*—L*.

Theorem 2.8.6 (E. Artin) Any set I of distinct characters of M in K is
linearly independent over K.

Proof. Suppose to the contrary that
Xy + ot apXy =0

for x; €9 and a; € K, not all 0. Look among all such nontrivial linear
combinations of the x;’s for one with the fewest number of nonzero
coefficients and, by relabeling if necessary, assume that these coefficients
are ay,...,a,. Thus,

(2.8.1) X1 (8) + - + apxe(g) =0

for all g € M and this is the “shortest” such nontrivial equation (hence
o; # 0 for all i). Note that since x;(g) € K*, we have x;(g) # 0 for all
g € M. Hence, r > 1.

Since Xx; # X, there is a g €M for which x,(g) # x,(g). For any
h € M, we have

;X4 (gh) +-+- + o x,(gh) = 0
that is,
a]X](g)Xl(h) +eeet arXr(g)Xr(h) =0
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Multiplying (2.8.1) by x,(g) gives

a;x;(8)xg(h) + -+ a;x;(8)x.(h) =0

Subtracting the previous two equations gives

ay[x,(8) — x2(8)xa(h) + -+ + o [x;(8) — X, ()] x,(h) = 0

and since the last coefficient is not zero, this contradicts the minimal
nature of (2.8.1). Hence the characters are linearly independent. I

Corollary 2.8.7 (Dedekind Independence Theorem) Let E and L be
fields. Any set of distinct embeddings of E into L is linearly
independent over L. []

2.9 Splitting Fields and Normal Extensions
Let us repeat a definition from Chapter 1.

Definition Let F = {f;(x) |i € I} be a family of polynomials in F[x]. A
splitting field for & over F is an extension field E of F with the property
that each f;(x) splits in E and that E is generated by the set of all roots
of every polynomial in . ]

It is clear that, given a particular algebraic closure F of F, there is a
unique splitting field for ¥ in F, since that splitting field must be the
field generated by the roots in F of all polynomials in ¥. It is also true
that any two splitting fields for F are isomorphic by an isomorphism
that fixes the elements of the base field F.

Theorem 2.9.1 Let p(x) € F[x]. Any two splitting fields for p(x) over F
are isomorphic over F. Specifically, if S; and S, are splitting fields for
p(x) over F and if 0:S,—S, is an F-embedding of S, into an algebraic
closure of S, then ¢ is an isomorphism of S; onto S,.

Proof. By Theorem 2.4.8, we may extend the inclusion map j:F—S, to
an embedding ¢:5,—S, over F. For any such embedding, let R; be the
set of distinct roots of p(x) in S;. Then p?(x)=p(x) implies that
oR, CR,. But o is injective and each set R; is finite, whence by
symmetry, we have R, = R,. It follows that

08y = o[F(R))] =F(oR;) = F(Ry) =5,

and so ¢ is an isomorphism. 1
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This result also holds for arbitrary families of polynomials.

Theorem 2.9.2 Let F be a family of polynomials over F. Any two
splitting fields for ¥ are isomorphic over F. Specifically, if S, and S, are
splitting fields for ¥ over F and if 0:5,—S, is an F-embedding of S,
into an algebraic closure of S, then ¢ is an isomorphism of S, onto S,.

Proof. As in the proof of the previous theorem, we have an embedding
o-:Sl-—->§2. Let E; <5, and E, < §, be splitting fields for a polynomial
p(x) in ¥F. Theorem 2.9.1 implies that the restriction of ¢ to E; is an
isomorphism, whence 0E; = E,. Taking the composite over the splitting
fields E, in S; of all polynomials in ¥F gives

0S, =0(VE;)= VoE, = VE, =85, ]

Recall that if F < E is algebraic then E is an algebraic closure of F if
and only if any nonconstant polynomial p(x) over F splits in E. Perhaps
the next best thing would be that every irreducible polynomial p(x)
over F that has one root in E splits in E. This property happens to
characterize splitting fields.

Theorem 2.9.3 Let F < E be algebraic and let F < E < F. The following
are equivalent.

1) Eis a splitting field for a family F of polynomials over F.

2)  Every embedding of E into F over F is an automorphism of E.

3) Every irreducible polynomial over F that has one root in E splits
in E.

Proof. [1=>2] Let o be an embedding of E into F over F. Since E is a
splitting field for a family ¥ of polynomials over F, we have E = F(R),
where R is the set of roots of the members of ¥F. Since o acts as a
permutation on the roots of any member of ¥, we have cR = R and so

oE = o(F(R)) =F(¢cR) =F(R)=E

[2=3] Let f(x) be an irreducible polynomial over F, with a root « in
E. According to Theorem 2.8.4, if €T is a root of f(x), then the
.injection j:F—F can be extended to an embedding o:E—F for which
oa = 3. By hypothesis, ¢ is an automorphism of E, whence  is also in
E. Thus, f(x) splits in E. .

[3=>1] This follows immediately, since E is a splitting field for the
family & = {min(e,F) |a € E}. I
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Definition An algebraic extension F < E that satisfies any (and hence
all) of the conditions in the previous theorem is said to be a normal
extension. We also say that E is normal over F. [

Corollary 294 If F <E is a finite normal extension then E is the
splitting field of a finite family of irreducible polynomials.

Proof. Let E =F(ay,...,a,). Since E is normal over F, each minimal
polynomial min(a;,F) splits in E. Clearly, E is generated by the roots of
min(a;,F) and so E is the splitting field of the finite family
{min(ai>F)}‘ 1

Note that any extension F < E, with E algebraically closed, is normal
since any nonconstant p(x) € F[x] splits in E.
As it happens, the class of normal extensions is not distinguished.

Example 2.9.1 It is not hard to see that any extension of degree 2 is
normal. The extension Q < Q( 2 is not normal since Q( \/— 2) contains
exactly two of the four roots of x* —2, which is irreducible over Q. On
the other hand,

Q< Q(v2) <Q(V2)

with each step of degree 2 and therefore normal. As another example,
since C is algebraically closed, Q < C is normal but Q < Q( \/_ ) is not
normal. [

The previous example notwithstanding, many of the properties that
define distinguished classes do hold for normal extensions.

Theorem 2.9.5

1) IfF<Eisnormal and F < K < E then K < E is also normal.

2)  The class of normal extensions is closed under lifting: If F < E is
normal and F < K is any extension then K < EK is normal.

3) The class of normal extensions is closed under the taking of
arbitrary composites and intersections: If {E;} is a family of fields,
each normal over F, and each contained in a single larger field,
then V E; is normal over F and (E; is normal over F.

Proof. Part 1) follows from the fact that a splitting field for a family of
polynomials over F is also a splitting field for the same family of
polynomials over K. For part 2), let E be a splitting field for a family ¥
of polynomials over F and let R be the set of roots in E of all
polynomials in ¥. Then E =F(R). Hence, EK = K(R), which shows
that EK is a splitting field for the family ¥, thought of as a family of
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polynomi_e_zls over K. Hence, K <EK is normal. For part 3), let
o:VE,—F be an embedding over F. Then o is an embedding when
restricted to each E; and so oE; = E;, whence

and

o(NE) = NoE; = NE; I
Normal Closures

Definition Let F < E be algebraic and let F be an algebraic closure of F
containing E. The normal closure of F < E in F is the intersection of all
fields L such that E < L < F and F < L normal. We denote this field by
EnC. []

Note that since F < F is normal, the intersection described in the
previous definition is a nontrivial one.

Theorem 2.9.6 Let F < E < F be algebraic, with normal closure E™°.

1) E" is the smallest subfield of F with the property that E < E"°
and F < E"° is normal.

2) E"™ = VoE, over all ¢ € Homg(E,F).

3)  E™is the splitting field in F of the family {min(a,F)|a € E}.

4) E"™ is the splitting field in F of the family {min(a,F)|a € B}
where B is a basis for E over F.

5) If F < E is finite, then F < E™® is also finite.

Proof. We prove only part 2), leaving the rest for the reader. Let
E<L<F with F<L normal. Since E <L is algebraic, any o€
Homgp(E,F) may be extended to an embedding 7:L—F over F. Since
F < L is normal, 7 is an automorphism of L. It follows that ¢E C L and
so VoE < E™. On the other hand, if we let L = VoE, then F <L is
normal since if 7 € Homg(L,F) then 7o runs over all elements of
Homg(L,F) as o does and so

tL=7(VoE)= V7o(E)< VeE=L
Since F <L is algebraic, we deduce that 7L =1L, that is, 7 is an

automorphism of L over F. Hence, F < L is normal and so E"° <L =
V oE. This shows that VoE = E"°. §
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Exercises

1.

2.

3.

10.

11.

12.

13.

Let R be an integral domain containing a field F. Show that if
[R:F] < oo then R must be a field.
If F <E is algebraic and R is a ring such that F C R C E, show
that R is a field. Is this true if F < E is not algebraic?
Let F < E and F < K be finite extensions and assume that EK is
defined. Show that [EK:F] < [E:F][K:F], with equality if [E:F] and .
[K:F] are relatively prime.
Let 0:K—E be a homomorphism of fields and let F < KNE. Show
that o is F-linear if and only if o(a) = a for all a € F.
Let F < E be a quadratic extension, that is, an extension of degree
2. Show that E has a basis over F of the form {1,a} where a? € F.
Prove that any extension of degree 2 is normal.
Let F be an infinite field and let F < E be an algebraic extension.
Show that |E| = |F|.
Let F <F where F is an algebraic closure of F and let G =
Autp(F) be the group of all automorphism of T fixing F pointwise.
Let

FC={aeF|oa=aforall o €G}

be the fized field of F under G. Ev1dently F < FC < F. Show that
the minimal polynomial of any a€ FO over F has only one
distinct root in F. Show also that the minimal polynomial of any
a€F over FC has no multiple roots. Hint: for the latter
statement, consider the polynomial p(x) = [](x —a;) where a; are
the distinct roots of min(a,F™).

Let p be a prime and let o # 1 be a complex p-th root of unity.
Show that min(a,Q)=1+x+x2+---4+xP~1. What is the
splitting field for xP — 1 over Q7

Suppose that F < E is a finite extension and that E = F(S) for
some set S C E. Must there exist a finite subset Sy C S for which
E =F(S,)?

Let F be a field of characteristic p # 0 and let « € F. Show that
the following are equivalent: (i) o el (i) F(ap) =F (iii)
[F(a)]” C F where [F(a)]" = {s"|'s € F(a)}.

Let F<E be a finite normal extension and let p(x) € F[x] be
irreducible. Suppose that the polynomials f(x) and g(x) are monic
irreducible factors of p(x) over E. Show that there exists a o €
Autg(E) for which {7(x) = g(x).

Let F < E be algebraic. Show that a normal closure for F < E
exists and that any two normal closures are isomorphic over F.
Show also that if F < E is finite, so is F<E™. If F<E is
algebraic and o € Homp(E,E) then Imo is contained in the normal
closure of F < E that lies in E.
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14. Let F be a field and let «,,...,a, be distinct elements of F. Prove
that if alall‘+---+ana]!§ =0 for all integers k > 0 then a, =0 for
all i,

15. Show that an extension F < E is algebraic if and only if any
subalgebra S of E over F is actually a subfield of E.

16. Let F < E be normal. Can any automorphism of F be extended to
an automorphism of E?

17. Suppose that F and E are fields and ¢:F—E is an embedding.
Construct an extension of F that is isomorphic to E.

Constructions

The goal of the following series of exercises is to prove that certain
constructions are not possible using straight edge and compass alone. In
particular, not all angles can be trisected, a circle cannot be “squared”
and a cube cannot be “doubled.” The first step is to define the term
constructible. We assume the existence of two distinct points P, and P,
and take the distance between these points to be one unit.

Definition A point, line or circle in the plane is said to be constructible
if and only if it can be obtained by a finite number of applications of
the following rules.

1) P, and P, are constructible.

2)  The line through any two constructible points is constructible.

3) The circle with center at one constructible point and passing
through another constructible point is constructible.

4)  The points of intersection of any two constructible lines or circles
are constructible. 0

C1l. Show that if a line L and point P are constructible, then the line
through P perpendicular to L is also constructible.

C2. Show that if a line L and point P are constructible, then the line
through P parallel to L is also constructible.

C3. Taking the constructible line through P, and P, as the x-axis and
the point P, as the origin, the y-axis is also constructible. Show
that any point (a,b) with integer coordinates is constructible.

C4. Show that the perpendicular bisector of any line segment
connecting two constructible points is constructible.

C5. If P, Q and R are constructible points and L is a constructible line
through R then a point S can be constructed on L such that the
distance from S to R is the same as the distance from P to Q.
(Thus, given distances can be marked off on constructible lines.)
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Definition A real number r is constructible if its absolute value is the
distance between two constructible points. []

C6. Show that any integer is constructible.

C7. Prove that a point (a,b) is constructible if and only if its
coordinates a and b are constructible real numbers.

C8. Prove that the set of numbers that are constructible forms a
subfield of the real numbers containing Q. Hint: to show that the
product of two constructible numbers is constructible or that the
inverse of a nonzero constructible number is constructible, use
similar triangles.

C9. Prove that if a >0 is constructible, then so is \/E. Hint: first
show that a circle of diameter 1+ « is constructible and that a
line L through the center of the circle is constructible. Let P and
Q be the intersection points of the circle with the line L. Mark off
a units along the diameter PQ from P and denote that point by
R. Is R constructible? Construct a line M through R perpendicular
to L. Let S be one point of intersection of M and the circle. What
is the length of the line segment RS?

The two previous exercises prove the following theorem.

Theorem C1 If the elements of a field F < R are constructible, -and if
@ € F, then F(y/a) = {a + by/a|a, b € F} is constructible. 0

Theorem C2 Let F be a subfield of R and let E > F be a quadratic
extension. Then E = F(y/a) for some a € F.
Proof. Exercise. 1

It follows from the two previous theorems that if F is constructible
and if F <E is a quadratic extension then E is constructible. More
generally, we have

Theorem C3 If Q<E, <E,<---<E is a tower of fields, each one a
quadratic extension of the previous one then every element of E is
constructible. [

We now turn to a converse of Theorem C3.

Theorem C4 Let four constructible points, whose coordinates lie in a
field F <R, be given. Let L and M be lines or circles constructed from
these points. Then the points of intersection of L and M have
coordinates in a quadratic extension of F.

Proof. Exercise. I

The import of the previous theorem is that each time we construct a
constructible number a, the number lies in a quadratic extension of the
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field of previously constructed numbers. Thus, we have

Theorem C5 A real number is constructible if and only if it lies in a
field E_ that is at the top of a tower of fields
Q<E <E;<---<E;

each one a quadratic extension of the previous one. Hence, if « is
constructible, then [Q(a):Q] must be a power of 2. ]

Now consider what it means to say that an angle of ¢ is
constructible. Informally, we will take this to mean that we may
construct a line L through the origin that makes an angle of §° with the
x-axis.

C10. Show that such a line L is constructible if and only if the real
number cos §° is constructible. (This is an informal demonstration,
since we have not formally defined angles.)

The previous exercise prompts us to make the following definition.

Definition An angle of ¢° is constructible if the real number cos§ is
constructible. [

C11. Show that a 60° angle is constructible.
C12. Show that a 20° angle is not constructible. Hin#: verify the formula

cos 30 =4 cos® 0 —3 cos @
Let 7 = cos 20° and show that 7 is a root of
p(x) = 8x3 —6x — 1

Show that p(x) is irreducible over Q and so [Q(7):Q] = 3.

C13. Prove that every constructible real number is algebraic over Q.
Assuming that 7 is transcendental over Q, show that any circle
with a constructible radius cannot be “squared,” that is, a square
cannot be constructed whose area is that of a unit circle.

C14. Verify that it is impossible to “double” any cube whose side length
r is constructible, that is, it is impossible to construct an edge of a
cube whose volume is twice that of a cube with side length r.



Chapter 3
Algebraic Independence

In this chapter, we discuss the structure of an arbitrary field
extension F < E. Specifically, we will see that, for any extension F < E,
there exists an intermediate field F < F(S) <E whose second step
F(S) <E is algebraic and whose first step F <F(S) is purely
transcendental. The latter means that there is no nontrivial polynomial
dependency (over F) among the elements of S, and so these elements
act as “independent variables” over F. Thus, F(S) is the field of all
rational functions in these variables.

3.1 Dependence Relations

We begin with a general notion of dependence, intended to model
linear independence.

Definition Let X be a nonempty set and let A C X x P(X) be a binary
relation from X to the power set of X. We write x < S (read: x is
dependent on S) for (x,5) € A and S < T when s < T for all s € S. Then
A is a dependence relation if it satisfies the following properties, for all

S, T and U € P(X),

1) (reflexivity)
S<S

2)  (compactness)

x < S = x < S for some finite subset S, of S
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3) (transitivity)
S<T, T<U=S8<U

4)  (Steinitz exchange axiom)
x<S,xS—{s} =>s<(S—{shu{x}
If x ¥ S we say that x is independent of S. 0]

Definition A subset S C X is dependent if s <S —{s} for some s €S
(equivalently, if S<S—{s}). A subset SCX is independent if
s ¥ S—{s} for all s € S. (Hence the empty set is independent.) 0

The reader should have no trouble supplying a proof for the following
lemma.

Lemma 3.1.1

1) IS <Tthen S < T for any superset T' of T.

2)  Any superset of a dependent set is dependent.

3)  Any subset of an independent set is independent.

4) If S is a dependent set, then some finite subset S, of S is
dependent. Equivalently, if every finite subset of T is independent,
then T is independent. [

Theorem 3.1.2If S is independent and xS then SU{x} is
independent.

Proof. Let s€S. If s <(SU{x})—{s} then since s {S—{s}, the
exchange axiom would imply that x <S, a contradiction. Hence
s € (SU {x}) — {s}. Furthermore, by hypothesis x ¥ S = (SU {x}) — {x}.
Thus, SU {x} is independent. §

Definition A set B C X is called a base if B is independent and X < B. [I

Theorem 3.1.3 Let X be a nonempty set with a dependence relation < .

1) B CX is a base for X if and only if it is a maximal independent
set in X,

2) BCX is a base for X if and only if B is minimal with respect to
the property X < B.

3) Let ACSCX, where A is an independent set (possibly empty)
and X < S. Then there is a base B for X such that ACBCS.

Proof. For part 1), assume B is a base. Then B is independent. If B is
not maximal independent, there exists an x € X — B for which B U {x}
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is independent. Hence, x K (BU{x})—{x} =B, a contradiction to
X < B. For the converse, if B is a maximal independent set and x ¥ B
then BU {x} is independent, which is not the case. Hence, X < B and B
is a base.

For part 2), if B is a base, then X < B. Suppose that some proper
subset By C B satisfies X < B,. If b€ B—B; then b <By<B—{b},
contracting the independence of B. Hence B is minimal. Conversely,
suppose that B is minimal with respect to the property X < B. If B is
dependent then X < B < B — {b} for some b € B, a contradiction to the
minimality of B. Hence B is independent and a base for X.

For part 3), we apply Zorn’s lemma. The set ¥ of all independent
sets B in X satisfying A C B CS is nonempty, since A € ¥. Order ¥ by
set inclusion. If € = {C;} is a chain in ¥, then the compactness property
implies that the union |JC; is an independent set, which also lies in .
Hence, Zorn’s lemma implies the existence of a maximal element C € ¥,
that is, C is independent, A CC CS and C is maximal with respect to
these two properties. This maximality implies that S <C and so
X < S < C, which implies that C is a base. I

To prove that any two bases for X have the same cardinality, we
require a lemma.

Lemma 3.1.4 Let S be a finite dependent set and let ACS be an
independent subset of S. Then there exists « € S—A for which
S<S—{a}.

Proof. Among all subsets of S— A, choose a maximal one B for which

A UB is independent. Then B is a proper (perhaps empty) subset of
S—A. IfaeS—(AUB) thena <AUB<S—{a} andso S<S—{a}l

Theorem 3.1.5 Any two bases for a set X have the same cardinality.

Proof. Let B and C be bases for X. We first assume that at least one of
B or C is finite; say B = {by,...,b_,} is finite. Choose ¢, € C. The set
C; = {c;ybyy...,by,} satisfies the conditions of the previous lemma
(with A = {c,}) and so, after renumbering the b,’s if necessary, we
deduce that

X <Cy < {cgby,..ybyy 1}
For any c, € C—{c,}, the set C, ={c;,cy,b;,...,b,, 4} satisfies the

conditions of the lemma (with A = {¢,,c,}) and so, again after possible
renumbering, we get

X < Cy < {cq,¢9,by,..., b o}
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Continuing this process, we must exhaust all of the elements of C before
running out of elements of B, for if not, then a proper subset C' of C
would have the property that X < C’, in contradiction to the
independence of C. Hence, |C| < |B|. Since this shows that C is
finite, we may repeat the argument with the roles of B and C reversed
toget |[B| = |C].

Let us now assume that B and C are both infinite sets, and let C =
{c;]a€1I}. Thus, |C| = |I|. For each b € B, we have b < C and so
there is a finite subset I C I such that b < {c;|i €I,}. This gives a
map b—I, from B to the set of finite subsets of the index set I.
Moreover,

I= I
L Op ™

for if j € I — JI, then, for any b € B, we have

and so ¢; <B < C—{c;}, which contradicts the independence of C.
Hence,

1 =111 =| U] <%IBI=IB|

Again reversing the roles of B and C shows that |B| = |C|.§

3.2 Algebraic Dependence

We recall a definition.

Definition Let F < E. An element t € E is transcendental over F if t is
not algebraic over F, that is, if there is no nonzero polynomial p(x) €
F[x] such that p(t) = 0.0

Recall that if t is transcendental over F then F(t) is the field of all
rational functions in the variable t, over the field F.

Definition Let F < E and let S CE. An element « € E is algebraically
dependent on S over F, written a < S, if « is algebraic over F(S). If a is
not algebraically dependent on S over F, that is, if « is transcendental
over F(S) then « is said to be algebraically independent of S over F and
we write o K S. 0

The first order of business is to show that algebraic dependence is a
dependence relation.
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Theorem 3.2.1 Algebraic dependence is a dependence relation.

Proof. Since any s € S is algebraic over F(S) we have S <S. To show
compactness, let a« <S and let C be the set of coefficients of
min(a,F(8)). Since C C F(S), each ¢ € C is a rational function over F in
a finite number of elements of S and so there is a finite subset Sy of S
for which C C F(Sy). Hence «a is algebraic over F(S;), that is, a < S.

For transitivity, suppose that & <S and S <T and consider the
tower

F(T) < F(TUS) < F(TUS,a)

Since every element of S is algebraic over F(T), and since « is algebraic
over F(T US) we deduce that o is algebraic over F(T), whence o < T.
Finally, we verify the exchange axiom. Suppose that a <S and
a S —{s}. Let p(x) = min(a,F(S)). Since F(S)=F(S— {s})(s), the
coefficients of p(x) are polynomials in s over F(S — {s}), that is,

d .
p(x) = 3_fi(s)x
i=0
where we may assume that f (x) # 0. Hence, the polynomial

d .
p(x,y) = Z;fi(Y)X‘

in two independent variables is not the zero polynomial. This
polynomial can also be written

p(x,y) = ;\gi(X)yi

where g;(x) € F(S — {s})[x] and g.(x) # 0. Then

0 = p(as) = 2gi<a)s‘

Since g, (x) € F(S —{s})[x] is nonzero and o is transcendental over
F(S—{s}), we infer that g, (a)#0 and e>0. Hence, the equation
above shows that s < F(S—{s} U {a}). 8

We may now take advantage of the results derived for dependence
relations.
Definition Let F < E.

1) A subset S CE is algebraically dependent over F if s < S — {s} for
some s € S, that is, if s is algebraic over F(S — {s}) for some s € S.
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2) A subset SCE is algebraically independent over F if s ¥ S — {s}
for all s €S, that is, if s is transcendental over F(S — {s}) for all
s € S. (Hence the empty set is algebraically independent over F.) 0

Lemma 3.2.2
1) Any superset of an algebraically dependent set is algebraically
dependent.

2)  Any subset of an algebraically independent set is algebraically
independent. 0

Theorem 3.2.3If S is algebraically independent over F and « is

transcendental over F(S) then SU {a} is algebraically independent over
F.0O

Let us provide another characterization of algebraically dependent
sets.

Theorem 3.2.4 Let F < E. A subset S of E is algebraically dependent
over F if and only if there is some nonzero polynomial p(xy,...,x,) in
n > 1 variables over F for which p(s,,...,s,) =0, for distinct s; € S.

Proof. Suppose first that S is algebraically dependent over F. Then
some s € S is algebraic over F(S — {s}) and so there exists a polynomial
p(x) of degree d >0 over F(S—{s}) for which p(s)=0. Such a
polynomial has the form

d

Pi(syye-r8)

p(x) - 1( B ’®m xi
£5q;(s,--+15y)

where p;(x,,...,x;,) and q;(xq,...,X,,) are polynomials in m variables
and the s; €S —{s} are distinct. Note that pg(s;,...,s,) #0 and
q;(Sys..»8,) #0 for all i. Letting x=s and clearing this of
denominators gives

d

0= Zri(sl,. cey8 )8t

i=0

for  polynomials  rj(x;,...,xy), with r4(sy,...,8,)#0. Thus
I4(Xy5+.+yXy,) is not the zero polynomial and p(x) = > r;(xq,..., %)%’
is a nonzero polynomial satisfied by the m+1 distinct elements

S1s-+18myS in S.
For the converse, suppose that p(s;,...,s;) =0 for distinct s; €S,
where p(x;,...,x,) is a nonzero polynomial over F. We may assume

without loss of generality that s,,...,s, do not enjoy a similar

polynomial dependency and hence that

n
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d
pP(Xy..0yXy) = Z P;(Xgs. .y X)X}
i=0

where pgy(x,,...,x,) #0 and py(sy,...,s,) #0. Hence the nonzero
polynomial

d .
P(X) = ) pif8gre.er8)X

i=0

satisfies p(s;) =0, showing that s, is algebraic over F(S—{s;}) and
hence that S is algebraically dependent over F. 1

Corollary 3.2.5 Let F < E and let S = {s,,...,s,} be a subset of E. Then
S is algebraically independent over F if and only if s is transcendental
over F(s,...,s, ;) forallm=1,...,n.

Proof. If S is algebraically independent then s_, is transcendental over
F(S — {s,,}) and therefore also over the smaller field F(s,...,s,, ;). For
the converse, if S is algebraically dependent then there is a nonzero
polynomial dependency of the form

d
0= 3 Bie1re st
i=0

for some m < n where py(s;,...,8,,_;) # 0, whence s is algebraic over
F(sy,...,8_1)- This contradiction implies that S is algebraically
independent. I

3.3 Transcendence Bases

Definition Let F < E. A transcendence basis for E over F is a subset
B C E that is algebraically independent over F and for which E < B,
that is, for which F(B) < E is algebraic. [I

Since algebraic dependence is a dependence relation, we immediately
get the following two results.

Theorem 3.3.1 Let F < E. A subset B C E is a transcendence basis for E
over F if and only if it satisfies either one of the following.

1) B is a maximal algebraically independent subset of E over F.
2) B is minimal with respect to the property that F(B) <E is
algebraic. 01
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Theorem 3.3.2 Let F < E.

1) Any two transcendence bases for E over F have the same
cardinality. This cardinality is called the transcendence degree of
E over F, and is denoted by [E:F],.

2)  Suppose F C A CS CE where A is algebraically independent over
F and F(S) < E is algebraic. Then there exists a transcendence
basis B for E over F satisfying ACBCS. In particular,
[EF], < [S].0

Definition An extension F < E is said to be purely transcendental if
E = F(B) for some transcendence basis B for E over F. [

We remark that if E is purely transcendental over F then E = F(B)
for some transcendence basis B, but not all transcendence bases for E
over F need generate E. The reader is asked to supply an example in
the exercises.

The following few simple results concerning transcendental extensions
will prepare the way to finishing the proof (promised in Chapter 2) that
the class of finitely generated extensions is distinguished.

Corollary 3.3.3If E is finitely generated over F and B.is a
transcendence basis for E over F then B is a finite set and F(B) < E is a
finite extension.

Proof. Theorem 3.3.2 implies that B is finite. The second part follows
from the fact that E is finitely generated over F(B) as well, and a
finitely generated algebraic extension is finite. I

Theorem 3.3.4 Let F < K < E and suppose that F < K is algebraic. If
T CE is algebraically independent over F, then T is also algebraically
independent over K. In other words, T remains algebraically
independent over any algebraic extension of the base field.

Proof. If T is not algebraically independent over K, there exists t € T
algebraic over K(T — {t}). Since F <K is algebraic, we deduce that
F(T — {t}) < K(T — {t}) is algebraic, and so each step in the tower

F(T - {t}) <K(T - {t}) <K(T —{t})(t) = K(T)

is algebraic, whence t € K(T) is algebraic over F(T-—{t}), in
contradiction to the algebraic independence of T over F. 1

We are now in a position to finish the proof that the class of finitely
generated extensions is distinguished. Note how much more involved
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this task is than showing that finite or algebraic extensions are
distinguished.

Theorem 3.3.5 Let F < K < E. If E is finitely generated over F then K
is also finitely generated over F. Thus, the set of finitely generated
extensions is distinguished.

Proof. Let S = {s;,...,s;} be a transcendence basis for K over F. Then
the second step in the tower F < F(S) < K < E is algebraic and E is
finitely generated over F(S). Hence, if we can prove the theorem for
algebraic intermediate fields, we will know that K is finitely generated
over F(S) and therefore also over F, since S is a finite set.

Thus, we may assume that F < K <E with F <K algebraic and
show that [K:F] is finite. Let T = {t,...,t,} be a transcendence basis
for E over F. Our plan is to show that

[K:F) < [E:F(T)]

(see Figure 3.3.1) by showing that any finite subset of K that is linearly
independent over F is also linearly independent over F(T) [as a subset
of E]. Since [E:F(T)] is finite by Corollary 3.3.3, the proof will be
complete.

' \fmite
K  FT)
algebraic .
F
Figure 3.3.1

First, we observe that, by Theorem 3.3.4, since T is algebraically
independent over F, it is also algebraically independent over the
algebraic extension K of F.

Let Y = {y;,...,¥m} € K be linearly independent over F. Suppose
that

Zri(tl,...,tn)yi = 0

where 1;(t;,...,t,) € F(T). By clearing denominators if necessary, we
may assume that each ry(t;,...,t,) is a polynomial over F. Collecting
terms involving like powers of the t,’s gives
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e e
Z ( Zael,...,en,iyi) t’11”'tn“ =0

€yeer€y

where e,y i € F is the coefficient of t;l---t;n in r;(t,...,t,). Since

T is algebraically independent over K, the products t;l- . -t;ﬂ are linearly

independent over K, and hence also over F(y,,...,y,,) C K. Thus
Za‘el,...,en,iyi =0
1

and the linear independence of Y over F then implies that

€1yeney € =0
Hence r1(ty,...,t,) =0 for all i. This shows that Y is linearly
independent over F(T), as desired. I

The next theorem gives some verisimilar facts about simple
transcendental extensions; in particular, if E =F(t), where t is
transcendental over F, then any nonconstant rational function in t is
also transcendental over F and E is algebraic over any intermediate
field other than the base field F.

Theorem 3.3.6

1)  Suppose that E = F(t), where t is transcendental over F. If s =
f(t)/g(t) € F(t) where f(t) and g(t) are relatively prime and at
least one is nonconstant, then s is transcendental over F, t is
algebraic over F(s) and [F(t):F(s)] = maz(deg f(t), deg g(t)).

2) If t is transcendental over F then F(t) is algebraic over any field K
satisfying F < K < F(t), K # F.

3) If F<E is purely transcendental then any a€E-F is
transcendental over F.

Proof. For 1), if we show that t is algebraic over F(s), it will follow that
s is transcendental over F, for otherwise F < F(s) < F(t) would be an
algebraic tower. The polynomial

p(x) = g(x)s — f(x) € F(s)[x]

has the property that p(t)=g(t)s—f(t)=0. Moreover, p(x) is
irreducible over F(s). For if we think of p(x) as a polynomial in the two
(independent) variables x and s, it is clear that if p(x) has a nontrivial
factorization, one of the factors must be a nontrivial common factor of
f(x) and g(x), which is impossible. Since
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deg p(x) = maz(deg f(x), deg g(x))

part 1) is proved. Part 2) follows easily from part 1).

For part 3), if « €E—F then a € F(t,...,t,) for some finite set
{tyy...,t,} of algebraically independent elements. By part 1), every
element of F(t;) not in F is transcendental over F. Similarly, every
element of F(t,,t;) not in F(t,) is transcendental over F(t;) and hence
also over F. Continuing this argument gives the desired result. §

We leave it as an exercise to show that the converse of part 3) is
false, that is, there exist extensions F < E that are not purely
transcendental but for which every a € E —F is transcendental over F.

The following is an example of an extension that is neither algebraic
nor purely transcendental.

Example 3.3.1 Let n > 3 and let F be a field with char(F)/n. Let u be
transcendental over F, let v be a root of p(x) =x"+u"~1 in some
splitting field and let E = F(u,v). Clearly, E is not algebraic over F. We
contend that E is also not purely transcendental over F. Since v is
algebraic over F(u), we deduce that {u} is a transcendence basis for E
over F and so [E:F], = 1. If E were purely transcendental over F there
would exist a transcendental element t over F for which F(t) = F(u,v).

Let us show that this is not possible.
If F(t) = F(u,v) then

where a(t), b(t), ¢(t) and d(t) are polynomials over F. Hence

c(t)

2'(t)
bi(t)

[a(t)d(t)]" + [b(t)e(t)]* = [b(t)d(t)]"

This can be written

or

f7(t) + g"(t) = h"(t)

for nonconstant polynomials f(t), g(t) and h(t), which we may assume
to be pairwise relatively prime. Let us assume that deg f(t) < deg g(t),
in which case deg h(t) < deg g(t). We now divide by h"(t) and take the
derivative with respect to t to get (after some simplification)

fn_l[f'h _ fhl] + gn-l[g/h — gh’] =0
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Since f and g are relatively prime, we deduce that g"~! | f'h — fh'. But
this implies

(n—1)degg < degth—1=degf+ degh—1<2degg—1

which is not possible for n>3. Hence, F < F(u,v) is not purely
transcendental. [

While the vector space dimension is multiplicative over a tower of
fields, the transcendence degree is additive, as we see in the next
theorem.

Theorem 3.3.7 Let F < K < E.

1) If SCK is algebraically independent over F and TCE is
algebraically independent over K then SUT is algebraically
independent over F.

2) If S is a transcendence basis for K over F and T is a transcendence
basis for E over K then SUT is a transcendence basis for E over
F.

3) [E:F], = [E:K], + [K:F],

Proof. For part 1), suppose for the purposes of contradiction that SUT
is algebraically dependent over F. Then there exists an « € SUT that is
algebraic over F(SyUT,) for some finite sets S; CS and Ty C T not
containing @, and we may assume that no proper subset T, of T, has
the property that « is algebraic over F(SyUT,). If o € T then since « is
algebraic over F(SyUT,), it is also algebraic over the larger field
K(T — {a}), in contradiction to the algebraic independence of T over K.
Hence o ¢ T and so a €S. But then T, cannot be empty, since S is
algebraically independent over F. If t € T then the minimality of T,
implies that o is not algebraic over SyUT,—{t}, that is,
aKSyUTy—{t}. But @ <SyUT, and so the exchange axiom gives
t<SoUTyU{a}—-{t}. In other words, t 1is algebraic over
F(SoUTyU{a} —{t}), and hence also over the larger field K(T — {t}),
again contradicting the algebraic independence of T over K. This proves
part 1).

For part 2), we know by part 1) that SUT is algebraically
independent over F. Also, since F(S) < K and K(T) < E are algebraic,
each step in the tower F(SUT)<K(T)<E is algebraic and so
F(SUT) < E is algebraic. Hence, SUT is a transcendence basis for F
over E. Part 3) follows directly from part 2). §
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*3.4 Simple Transcendental Extensions

The class of purely transcendental extensions is much less well
behaved than the class of algebraic extensions. For example, let t be
transcendental over F. Then in the tower F < F(t?) < F(t), the
extension F < F(t) is purely transcendental (and simple) but the second
step F(t%) < F(t) is not transcendental at all.

In addition, if F < E is purely transcendental and F < K < E, it does
not necessarily follow that the first step F < K is purely transcendental.
However, this is true for simple transcendental extensions. The proof of
this simple statement illustrates some of the apparent complexities in
dealing with transcendental extensions.

Theorem 3.4.1 (Luroth’s Theorém) Let t be transcendental over F. If
F <K < F(t) and K # F then K = F(s) for some s € F(t).

Proof. The idea behind the proof is straightforward. Since K # F, we
know by Theorem 3.3.6 that K < F(t) is algebraic. Indeed, for any s €
K —F, the tower F(s) < K < F(t) is algebraic. We want to find an s €
K —F for which [F(t):F(s)] = [F(t):K], showing that K = F(s). Recall
from Theorem 3.3.6 that if s =1f(t)/g(t) € K—F where f and g are
relatively prime polynomials over F, then

= [F(t):F(s)] = maz(deg f(x),deg g(x))
Let

p(x) = min(t,K) =x +b1§t; n-1 . ..+i&

where a;(t), b;(t) € F(t). Then [F(t):K] =n and we wish to show that
d, = n for some s € K~ F. Evidently d, > n for all s € K—F.

Note that since t is not algebraic over F, not all of the coefficients of
p(x) can lie in F. Therefore, we may let

a(t)
€EK-F
T by (t)
for some k and assume that a,(t) and by(t) are relatively prime.
Consider the polynomial

h() = 80 - by 0)

Since s ¢ F, we have h(x) # 0. But h(t) =0 and so p(x) | h(x) over K.
In other words, there exists q(x) € K[x] such that

ay(x) - bkggbk(x) q(x)p(x)
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or

2y (X)by(t) — ay (t)by (x) = by(t)a(x)p(x)

Multiplying both sides of this by

. £(t) = by () - by (1)
gives

(3.4.1) r(t) 2y (x)by(t) — a3 () by (x)] = by (t)a(x)r(t)p(x)

where

r(t)p(x) = by(t)---b (t)x" + zn: [by (t)- - b1 (t)a;(t)b; 41 (t)- -bn(t)]x“"i
i=1

Now, we wish to factor out the greatest common divisor g(t) of the
coefficients of x! (for j =0,...,n) from the right side of this expression.
Note that g(t) divides the gcd of any two of these coefficients, in
particular, g(t) divides the ged of

by(t)---by(t) and  by(t):-by_;(t)ay(t)by 1 (t): - bp(t)

which is bj(t)--by_;(t)by;(t)--b,(t), since a(t) and by(t) are
relatively prime. Hence, once g(t) is factored out of r(t)p(x):

r(t)p(x) = g(t)p'(t,x)
where p'(t,x) € F[t,x] is primitive, in the sense that it is not divisible by
any nonconstant polynomial in t, we still have as factors among the

coefficients of p’(t,x) the polynomials by (t) and a,(t). Thus, the degree
of p’(t,x) with respect to t satisfies

(3.4.2) t-deg(p'(t,x)) > maz(deg a,(t),deg by (t)) = d
Thus, (3.4.1) becomes
(343)  r(O)mIby(t) — a O] = b(O)aEBP(E,x)

Next we multiply both sides of (3.4.3) by a polynomial u(t) that will
clear all of the denominators of q(x), giving

u(t)r(8)[ag ()i (t) — ay ()b (X)] = by(t)a/(tx)p'(6:%)

where p'(t,x), q'(t,x) € F[t,x]. Since p’(t,x) is not divisible by any
nonconstant polynomial in t, we must have u(t)r(t) | b,(t)q'(t,x). Hence,
there exists a polynomial q"(t,x) € F[t,x] for which
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(3.4.4) 3, ()b (8) — a4 by (x) = T (EX)P/(t%)
Now, the t—degree of the left hand side of this equation is at most
maz(deg ay(t),deg by(t)) = d,

and by (3.4.2) the t—degree of the right hand side is at least d,. Hence,
the t—degree of either side of (3.4.4) is d, and (3.4.2) implies that
t-deg(q"(t,x)) = 0, that is

(3.4.5) ay(X)by(t) — ay (t)by(x) = q"(x)p'(t,x)

where q"'(x) € F[x]. Since the right side of (3.4.5) is not divisible by any
nonconstant polynomial in t, neither is the left side. But the left side is
symmetric in x and t, so it cannot be divisible by any nonconstant
polynomial in x either. Hence, q"(x)p'(t,x) is not divisible by any
nonconstant polynomial in x, implying that q"(x) € F, that is,

(3.4.6) ay (x)by(t) — 2y (t)by(x) = q"p'(t,x)

where q" € F. Finally, since the x—degree and t—degree of the left side
of (3.4.6) agree, this is also true of the right side. Hence by (3.4.2),

n = z—deg(p'(t,x)) = t-deg(p'(t,x)) > d, > n
Thus, d; = n, and the proof is complete. §

It can be shown that Luroth’s theorem does not extend beyond
simple transcendental extensions, but a further discussion of this topic
would go beyond the intended scope of this book.

We conclude with a determination of all F-automorphisms of a
simple transcendental extension F(t). Let GL_(F) denote the group of
all nonsingular nxn matrices over F. The proof provides a nice
application of Theorem 3.3.6.

Theorem 3.4.2 Let F < F(t) be a simple transcendental extension and
let Autp(F(t)) denote the group of all automorphism of F(t) over F

1) For each A ={2‘ Z}e GL,y(F) there is a unique o, € Autp(F(t))
for which

at+b
ct+d

o'A:t—->
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Moreover, all automorphisms of F(t) over F have the form o, for
some A € GL,(F).
2) If A,B € GLy(F), then

— |
oA =0p0g and T,-1= 0%

and o, = opg if and only if AB™1 is a nonzero scalar matrix. In
other words, the map 7:GLy(F)—Autp(F(t)) defined by 7A =0,
is an epimorphism with kernel equal to the group of all nonzero
scalar matrices in GL,(F).

Proof. Clearly, the map o, can be extended to a homomorphism of F(t)
over F by setting

- (@) _ foa(®)

A5/ = g, @)
Since maz(deg(at +b), deg(ct +d)) =1, Theorem 3.3.6 implies that
[F(t):F(ost)] =1 and so o, (F(t)) = F(o,t) = F(t), showing that o, is
surjective. Since o, is injective as well (fields have no nontrivial ideals),
it is an automorphism of F(t) over F.

We leave it to the reader to show that 0o = 0,5 and that o =1
if and only if C is a scalar multiple of the identity matrix. It follows
that

o0

1=0,=t and o, _j0)=0,=1

A A

and so

-1
o =0
Al A

Also, oy = op if and only if ¢ _ _; =, that is, if and only if ABlisa
scalar multiple of the identity.

If o € Autp(F(t)) then F(t) = o(F(t)) = F(ot) and so [F(t):F(ot)] =
1, which by Theorem 3.3.6 implies that ot = o4t for some 2 x 2 matrix
over F. Hence, 0 = g,. Since o~! also has the form opg for some matrix
B, we have

L=0A0B = 0AB

which implies that AB = al, for some a € F, whence A is nonsingular. I

Exercises

1. Find an example of a purely transcendental extension F < E with
two transcendence bases B and C such that E = F(B) but F(C) is
a proper subfield of E.

2. Let F <E and F < K. Show that [EK:K], < [E:F),.
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hd

11.

12.

Let F < E <K and let T € K —E. Show that [E(T):F(T)], < [E:F],
with equality if T is algebraically independent over F or algebraic
over F.

Use the results of the previous exercise to show that if F<K < E
and F < L < E then [KL:F}, < [K:F}, + [L:F],.

Let F be a field of characteristic # 2 and let u be transcendental
over F. Suppose that u?+v?=1. Show that F(u,v) is a purely
transcendental extension by showing that F(u,v) = F(w) where
w=(14+v)/u

Let F<K<E and suppose that SCE is algebraically
independent over K. Prove that F(S) < K(S) is algebraic if and
only if F < K is algebraic.

Show that the converse of part 3) of Theorem 3.3.5 is false by
describing an extension E of F that is not purely transcendental,
but for which every a« € E — F is transcendental over F.

Prove that the transcendence degree of R over Q is |R]|.

Show that [C:Q], = |C].

(An extension of Luroth’s Theorem) Suppose that F < E is purely
transcendental. Show that any simple extension of F contained in
E is transcendental over F.

With regard to Theorem 3.4.2, show that 005 = 0,5 and o =1
if and only if C is a scalar multiple of the identity matrix I.

Prove Lemma 3.1.1.



Chapter 4
Separability

4.1 Separable Polynomials
Let us recall a few facts about separable polynomials from Chapter 1.

Definition An irreducible polynomial p(x) € F[x] is separable if it has no
multiple roots in any extension of F. An irreducible polynomial that is
not separable is inseparable. []

Theorem 4.1.1
1) An irreducible polynomial p(x) is separable if and only if
p'(x) # 0.
2) If F is a field of characteristic 0, or a finite field, then all
irreducible polynomials over F are separable.
3) Let char(F) = p # 0 and let p(x) be irreducible.
a) If p(x) is inseparable, then there exists a positive integer d
such that p(x) = q(xpd , where g(x) is separable. In this case,
all roots of p(x) have multiplicity p®.

b) If p(x) = h(x"d) where h(x) is any nonconstant polynomial and
d is a positive integer, then p(x) is inseparable.
4) Inseparable polynomials exist. [

The exponent d in part 3a) of the previous theorem is quite
important and deserves a special name. Note thdat it can be
characterized as the largest integer for which p(x) = q(x?).
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Definition Let p(x) € F[x] be an irreducible polynomial. If char(F) =
p #0, the integer d for which p(x) = q(xpd), with q(x) separable, is
called the radical exponent of p(x). If char(F) = 0, the radical exponent
of p(x) is defined to be 0. If a is algebraic over F, the radical exponent
of a over F is the radical exponent of min(a,F). 0

The following definition allows us to handle the cases char(F) =0
and char(F) = p # 0 simultaneously.

Definition The exponent characteristic expchar(F) of a field F is defined
to be 1 if char(F) = 0 and char(F) otherwise. 0

Thus, any irreducible polynomial p(x) has the form p(x) =q(xpd)
where q(x) is separable, p is the exponent characteristic of F and d is
the radical exponent of p(x). Moreover, p(x) is separable if and only if
its radical exponent is 0.

Definition Let F < E. Then a € E is separable over F if « is algebraic
over F and its minimal polynomial min(a,F) is separable. The
extension F < E is separable (or E is separable over F) if every element
of E is separable over F. [

Before proceeding, we record a useful lemma. If F is a field and
S C F then S™ denotes the set {s" |s € S}.
Lemma 4.1.2 Let F < E be algebraic with expchar(F) =p and let S CE.
1) F(Spk) = F([F(S)]pk) for any k > 0.

2) F(S)= F(Spk) holds for some k > 1 if and only if it holds for all
k>1.

3) F= F* holds for some k > 1if and only if it holds for all k > 1.
Proof. Part 1) follows from the fact that [F(S)]pk = Fpk(Spk) and so

F([F(S)I") = F(FP(S")) = F(s¥)

To prove part 2), suppose that F(S) = F(Spk) for some k > 1. Using part
1), we have

F($) = F($") = F(F(S)P) < F(FE)P ) = PP

from which we conclude that F(S) = F(SP) for all r <k. In particular
F(S) = F(SP) and so again using part 1), we obtain
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k+1
F(S) = F(S") = F(F(S)I) = F(F(SP)IP) = F(s* )
and so F(S) = F(S") for all r > k as well. For part 3), we observe that
FF<FP < F

and so F = F¥ holds for some k > 1 if and only if F = FP, which holds
if and only if F = F* for all k >1.1

4.2 Separable Degree

If F <E is algebraic and if 0:F—L is an embedding of F into an
algebraically closed field L, we let &_(E,F) denote the set of all
extensions of o to an embedding of E into L. Remarkably, the
cardinality of & (E,F) does not depend on ¢ or L.

Theorem 4.2.1 If F < E is algebraic and ¢:F—L is an embedding of F
into an algebraically closed field L then the cardinality of §_(E,F)
depends only on the extension F < E and not on ¢ or L. In other words,
if mF-L’' is an embedding with L' algebraically closed, then
|&,(EF)| = [&,(EF)].

Proof. Observe first that if & is an extension of o to E then 7E is
algebraic over oF and therefore contained in the algebraic closure of oF
in L. Hence we may as well assume that L is an algebraic closure of oF.
Similarly, we may assume that L’ is an algebraic closure of 7F.

Referring to Figure 4.2.1, the map 7o lio(F)—7(F) is an
isomorphism that can be extended, by Theorem 2.8.4, to an embedding
A:L-L’. Since oF <L is algebraic, so is rF < AL, and since AL is
algebraically closed, we have AL =L', implying that Al:L—L’ is an
isomorphism.

If 7 € 8 (E,F) then the map A6:E—L’is an embedding of E into L'
extending 7 on F. This defines a map from 8 _(E,F) to & _(E,F) given by
@ \7. It is clear that this map has an inverse given by F—A~1r and so
both maps are bijections. i

>
Q|
Q|

Talgebraic

B F——>0(F)

Figure 4.2.1
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In view of Theorem 4.2.1, we may make the following definition.

Definition Let F < E be an algebraic extension and let o:F—L be an
embedding of F into an algebraically closed field L. The cardinality of
the set 8 (E,F) is called the separable degree of E over F and is denoted
by [E:F],. O

It will be convenient for our present discussion to adopt the following
definitions, at least temporarily.

Definition An algebraic extension F <E is degreewise separable if
[E:F], = [E:F]. An algebraic extension F < E is separably generated if
E = F(S) where each a € S is separable over F. 01

We next prove that the separable degree is multiplicative.

Theorem 4.2.2 If F < K < E then [E:F], = [E:K][K:F)]..

Proof. The set 8,(K,F) of extensions of the inclusion map j:F—E to an
embedding 7:K—E has cardinality [K:F],. Each such extension j€
Sj(K,F) can be further extended to an embedding j:E—E. Clearly, the
resulting extensions are all distinct and so

[8(EF)| 2 |8(KF)| |&EK)]

On the other hand, if 0 € € (E F) and 0, K—E is the restriction of o to
K then % is the extension of j:F—E to K, hence an element of & (K F).
Since o is the extension of o to E, o is obtained by a double extenswn
of :F—E and so equality holds in the inequality above. I

4.3 The Simple Case

Now let us consider simple extensions in the present context. Let
F < F(a) be algebraic. If p(x) = min(o,F) and if :F—F is the inclusion
map then Theorem 2.8.3 implies that [F(a):F], = | 8,(F(e),F)| is equal
to the number of distinct roots of p(x). If p(x) is separable, it has
deg p(x) = [F(«):F] distinct roots and so

[F(a):E], = [P(e):F]

If p(x) = q(x() has radical exponent d > 1, then each root of p(x) has
multiplicity p© and so

pd[F(a):F], = deg p(x) = [F(a):F]



4 Separability 83

We thus have the following theorem.

Theorem 4.3.1 Let F < F(a) be algebraic with expchar(F)=p. If
min(a,F) has radical exponent d, then

(4.3.1) pd[F(a):F], = [F(a):F]

In particular, [F(a):F]|(F(a):F]. Moreover, the following are
equivalent.

1) o is separable over F.
2) F < F(a) is degreewise separable; that is, [F(a):F]; = [F(a):F].
3) F < F(a) is separable.

Proof. We have seen that (4.3.1) holds and since « is separable if and
only if its radical exponent is 0, it follows that 1) and 2) are equivalent.
Clearly 3) implies 1). To see that 2) implies 3), let 8 € F(a) and
consider the tower F < F(8) < F(«). Then

[F(a):F(B))s[F(8):F]; = [F():F]s = [F(e):F] = [F(a):F(B)][F(B):F]

Since F(a) = F(B)(a), the extension F(f) < F(a) is simple and so each
factor on the far left divides the corresponding factor on the far right,
implying that the corresponding factors are equal. In particular,
[F(B):F], = [F(B):F], showing (by the equivalence of parts 1 and 2) that
B is separable over F. Hence F < F(a) is separable.

Note that, according to the previous theorem, if « is separable so is
any polynomial in a. The following is another characterization of
separable elements.

Theorem 4.3.2 Let a be algebraic over F, with expchar(F) = p. Then a
is separable over F if and only if

F(a) = F(o?)

for some k > 1, and hence for all k > 1.

Proof. Lemma 4.1.2 allows us to confine our attention to k = 1. Suppose
a is separable over F. First suppose that « is separable over F. The
polynomial (x —a)P = xP —aP € F(aP)(x] has a as a root and so there
exists an r < p such that

min(a,F(aP)) = (x —a)*
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Since p(x) = min(a,F) also has coefficients in F(aP), we have
(x —a)" [ p(x). But p(x) is separable, and so r = 1. Thus r(x) = x—a,
implying that o € F(aP) and consequently F(a) = F(aP).

Conversely, suppose that F(a) = F(aP) and let p(x) = min(a,F). If «
is not separable over F then p(x) = q(xP). Since q(aP) = p(a) =0, we
get

[F(aP):F] < deg q(x) = 5[F(e):F]

which is contrary to F(a) = F(aP). Thus a is separable over F.

4.4 The Finite Case

Now we consider an arbitrary finite extension F < E. By Theorem
2.5.2, we may let E = F(ay,...,a,) where o, is algebraic over F. Taking
separable degrees in the tower

(4.4.1) F < F(oy) < Flap,ay) <-+- < F(ay,...,ap)
gives

[F(ey,...,a,):Fly = ﬁ[F(al,...,ai):F(al,...,ai_l)]s

i=1

Since each step on the right is simple, Theorem 4.3.1 implies that each
separable degree on the right divides the corresponding vector space
degree, and so

[F(ay,... 0q):Fl | [Fey,...,a,):F]

Theorem 4.4.1 Let F <E be finite. Then [E:F]|[E:F]. Also, the
following are equivalent.

1) E is separably generated.
2)  F <E is degreewise separable; that is, [E:F], = [E:F].
3) F <E is separable.

Proof. [1=2] Suppose that E = F(S) where the elements of S are
separable over F. The finiteness of F < E implies that E = F(a;...qa,),
for some n > 0, where a; € S. Since o is separable over F(ay,...,o;_,),
each step in the tower (4.4.1) is generated by a single separable element.
Hence, each step is degreewise separable and the multiplicativity of
degrees implies that F < E is degreewise separable. [2=3] Let 8 € E and
consider the tower F < F(8) < E. Since F < E is degreewise separable,
so is F < F(B) and so f is separable over F. Hence, F < E is separable.
[3=>1] This is clear from the definition. i
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Thus, for finite extensions, the notions of separability, degreewise
separability and separably generated are equivalent. Note that if
F <K <E is finite then F < E is separable if and only if K < E and
F < K are separable. We will show later that the class of separable
extensions (finite or otherwise) is distinguished. Let us have another
characterization of finite separable extensions.

Theorem 4.4.2 If F < E is separable then E = F(Ep) for all k > 1. By
way of converse, if F < E is finite and E = F(Ep) for some k > 1, then
F < E is separable.

Proof. Suppose F < E is separable. Lemma 4.1.2 allows to to confine
our attention to k = 1. For any a € E, we have F(a) = F(aP) C F(EP)
and so E C F(EP). The reverse inclusion is obvious and so E = F(EP).

Now suppose that E = F(EP). Since F < E is finite, we have E =
F(SP) for some finite subset S CE. Since E=TF(S?) <F(S) <E, we
have E = F(S) = F(SP) and so Lemma 4.1.2 implies that E = F(Sp) for
all k > 1. If d is the maximum of the radical exponents of the elements
of S then every element of SP is separable over F and so E = F(Spd) is
separably generated over F and therefore separable over F. I

Corollary 4.4.3 Let F < E be a separable extension and let S C E.

1) If S spans E over F, then sP* spans E over F, for any k > 1.

2) If F <E is finite and S is linearly independent over F, then SP is
linearly independent over F, for any k > 1.

3) If F <E is finite and S is a basis for E over F, then %" is a basis
for E over F, for any k > 1.

Proof. If S spans E over F, then SP spans EP over FP, and hence also
over F. Hence SP spans F(Ep) E over F. Repeating this argument
proves part 1). For part 2), since F < F(S) is separable and S spans
F(S) over F, we conclude from part 1) that s¥ spans F(S) over F. Since

1] = |S| <o

it follows that S** is a basis for F(S) over F and is therefore linearly
independent over F. Part 3) follows from parts 1) and 2). I

We now prove that all finite separable extensions are actually simple
extensions.

Theorem 44.4 If F < E is a finite separable extension then there exists
a v € E such that E = F(y). If F is an infinite field, there exist infinitely
many such primitive elements «.

Proof. If ¥ is a finite field, then so is E, and we appeal td the fact that
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the multiplicative group E* of nonzero elements of E is cyclic. If E* =
(7) then E = F(v) and E is simple over F. Let us now assume that F is
an infinite field.

Since F < E is finitely generated, it is sufficient to consider the case
E =F(a,B), and then appeal to an inductive argument. Let Oyeees Oy
be the distinct embeddings of E into F over F. Consider the polynomial

p(x) = _1;[‘[(% = 0;)(@) + (0, — 0;)(F)x] € F[x]
i#]
Since none of the linear factors on the right is 0, we conclude that
p(x) # 0. Since F is infinite, there must infinitely many elements s € F
such that p(s) # 0. Hence (o, — o;)(a) +s(o; — 0;)(B) # 0 for all i#j,
that is, the n elements v; = aa+sa’ﬂ —a(a+sﬂ) are distinct. But
each v; is a root of min(« + sp, F) and so

[E:F] > [F(a +sf):F] > n = [E:F], = [E:F]
from which it follows that E = F(a +sf). 1

Corollary 4.4.5 If F has characteristic 0 or if F is a finite field then any
finite extension of F is simple. 0

We can improve upon Theorem 4.4.4 without too much additional
work. This result will prove useful to us later.

Theorem 4.4.6 If E = F(ay,...,a,,3) where q; is separable over F and g
is algebraic over F then F < E is a simple extension.

Proof. If F is finite, then E is finite, and therefore F < E is simple. Let
us assume that F is infinite. Theorem 4.4.4 implies that E = F(o,f) for
some o separable over F. We may proceed as in the proof of that
theorem to obtain an element 3+ sa for which the elements o;(4 +sa)
are distinct, where oy,...,0, are the distinct embeddings of E into F
over F and o, = . Note that the set {¢,a,...,0, a} contains a complete
set of roots of p,(x) = min(a,F) and {o,f,...,0,8} contains a complete
set of roots of pg(x) = min(B,F).
Let q(x) = pg(B + sa —sx). Since 0ja = a, we have

q(oy@) = pg(B) =0

and since 0,3 +soja —soja # 0;8 for i # 1, we have
q(o;0) = pg(018 +s0,a —soja) # 0

for i # 1. Hence, the polynomials p,(x) and q(x), both of which have
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coefficients in F(8 + oca), have precisely one root in common, namely
o,a = a. Thus, since p,(x) has no multiple roots, the greatest common
divisor of p,(x) and q(x) is x — , which must have its coefficients in
F(8 +sa) as well. In other words « € F(f +sa), from which it follows
that B € F(B +sa), whence F(a,3) = F(8 +sa). 1

4.5 The Algebraic Case

For arbitrary algebraic extensions F < E, we have the following.

Theorem 4.5.1 Let expchar(F) = p. An algebraic extension F <E is
separable if ar}‘d only if it is separably generated. If F < E is separable
then E = F(EF) for all k > 1.

Proof. If F < E is separable then E is separably generated (by itself)
over F. For the converse, assume that E = F(S) where each a €S is
separable over F and let § € E. Then § € F(S;) for some finite subset
So € S. Since F < F(S) is finitely generated and algebraic, it is finite.
Thus, Theorem 4.4.1 implies that F < F(S;) is separable. Hence f is
separable over F and so F < E is separable. The last statement was
proved in Theorem 4.4.2. 1

We. may now establish that the class of separable extensions is
distinguished. '

Theorem 4.5.2 The class of separable extensions is distinguished. It is
also closed under the taking of arbitrary composites. If F <E is
separable and E™° is the normal closure of E over F then F < E™® is
separable.

Proof. Let F <K < E. If all extensions are finite, we have already
shown (by a degree argument) that F < E is separable if and only if
F < K and K < E are separable. In general, we leave it as an exercise to
show that if F < E is separable then F < K and K < E are separable.
Suppose that F < K and K < E are separable and let € E. Let CCK
be the set of coefficients of p(x) = min(a,K). Then p(x) = min(a,F(C))
and so « is separable over F(C). It follows that each step in the tower
F < F(C) < F(C,a) is finite and separable, implying that o is separable
over F. This shows that F < E is separable and completes verification of
property D1) in the definition of distinguished class.

For property D2), let F < E be separable and let F < K. Since every
element of E is separable over F it is also separable over the larger field
K. Hence EK = K(E) is separably generated and is therefore separable.

The fact that separable extensions are closed under the taking of
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arbitrary composites follows from the finitary property of arbitrary
composites. That is, each element of an arbitrary composite involves
elements from only a finite number of the fields in the composite and so
is an element of a finite composite, which is separable.

Finally, the normal closure E"¢ is the composite V (¢E) for o €
Homg(E,E). Since F < E is separable and 0:E—¢E is an isomorphism
over F, the elements a € E and oca € cE have the same minimal
polynomial and so the separability of a over F implies that of oq,
whence F < ocE is separable. Since separability is preserved under
composites, F < E™¢ is separable. 1

4.6 Pure Inseparability

The antithesis of a separable element is a purely inseparable element.

Definition An element « algebraic over F is purely inseparable over F if
its minimal polynomial min(e,F) has the form (x — )" for some n > 1.
An algebraic extension F < E is purely inseparable if every element of E
is purely inseparable over F. []

Note that any « € F is purely inseparable over F. In fact, an element
o is both separable and purely inseparable over F if and only if a € F.
It follows that, for extensions of fields of characteristic 0 or finite fields,
there are no “interesting” purely inseparable elements.

Example 4.6.1 Let char(F) = 2. If t is transcendental over F, then t is
purely inseparable over F(t2), since its minimal polynomial over F(tz) is
x2—t?=(x-t)% 1

Example 4.6.2 Here we present an example of an element that is neither
separable nor purely inseparable over a field F. Let char(F) = p and let
a € F be nonzero. Let t be transcendental over F and let
— tp2
=P ta

According to Theorem 3.3.6, F(s) < F(t) is algebraic and has degree
equal to p?. Since t is a root of the monic polynomial

2
p(x) = xP —sxP —sa

2 .
of degree xP over F(s), this must be the minimal polynomial for t over
F(s). Since p(x) = q(xP), we deduce that t is not separable over F(s).
On the other hand, if t were purely inseparable over F(s), there would
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exist 8 € F(s) for which
xp2 —sxP —sa = (x— ﬂ)p2 = xpz - 61’2

which would imply that s = 0, which is not the case. Hence, t is neither
separable nor purely inseparable over F(s). 0

Definition Let F < E be finite. Since [E:F], | [E:F], we may write
[E:F] = [E:F] [E:F];

where [E:F]; is the inseparable degree or degree of inseparability of E
over F. [

Note that, while the separable degree is defined for infinite
extensions, the inseparable degree is defined only for finite extensions.

Definition If F < E is algebraic and [E:F], =1, we say that F<E is
degreewise purely inseparable. When F < E is finite, this is equivalent
to [E:F]; = [E:F]. 0

Theorem 4.6.1 Let F < E be a finite extension with expchar(F) = p.

1) IfF <K <E then [E:F]; = [E:K],[K:FJ;.

2) F <E is separable if and only if [E:F]; = 1.

3) If a € E then [F():F]; = pd where d is the radical exponent of a.
4)  [E:F); is a power of p.

Proof. The first three statements are clear. The last statement follows
from the fact that F < E is finitely generated and the inseparable degree
is multiplicative. We leave the details to the reader. I

We next characterize purely inseparable elements.

Theorem 4.6.2 Let o be algebraic over F, with radical exponent d and
let p(x) = min(a,F). The following are equivalent.

1)  «is purely inseparable over F.

2)  The polynomial (x — a)" has coefficients in F, for some n > 1.

3 px)=(x- cv)pd =xF — o

4) ais a root of X - B, for some B € F and k > 0.

5) o € F for some k > 0.

6)  d is the smallest nonnegative integer for which o eF.
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Proof. We establish only those implications that are not immediate.
Recall that p(x) = q(xp) where q(x) is separable over F.

[2=3] If 2) holds then q(x"d) | (x—a)* and so q(x"d) =(x—a)" for
some 1 <r < n. It follows that r = mp®, where m = deg q(x). Hence,

a(x¥) = (x — @)™ = (x¥' - o)™

Thus q(x) = (x — ap) and the separability of q(x) implies that m =1,
whence .
r =p? and p(x) = (x — a)”

[6=>6] If 5) holds then
r(x) = X —of = (x— a)pk

is a polynomial over F with r(a) = 0. Hence q(x"d) | (x—a)Pk, showing
that k > d. Since r(x) € F[x], the fact that 2) implies 3) shows that

p(x) = x¥' — ¥

and so o’ € F. Hence d is the smallest integer for which o €F.
[6=1] If 6) holds, then

r(x) = (x— oz)"d =xF— o

is a polynomial over F with a as a root, and so p(x) | r(x). Hence, p(x)
has the form (x —a)" for some n > 1 and « is purely inseparable over
F.1

Theorem 4.6.3 Let F < E be algebraic. The following are equivalent.

1) E is purely inseparably generated; that is, generated by purely
inseparable elements.

2) F <E is degreewise purely inseparable; that is, [E:F], = 1.

3) F < E is a purely inseparable extension.

Proof. [1=2] Suppose first that E = F(I) where all elements of I are
purely inseparable over F. Any embedding a:E—L over F is uniquely
determined by its values on the elements of I. But if & € I then o« is a
root of the minimal polynomial min(«,F) and so sa = a. Hence o must
be the identity and [E:F], = 1.

[2=3] Let o € E. Then [F(a):F], =1 and since F < F(a) is a finite
extension, Theorem 4.3.1 implies that

= [F(a):F] = deg min(a,F)
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d
Since min(a,F) = q(xP ), it follows that q(x) is linear and so
min(a,F) = -3

for some B € F, which implies by Theorem 4.6.2 that a is purely
inseparable over F. [3=>1] This is clear. 11

We can now show that the class of purely inseparable extensions is
distinguished.

Theorem 4.6.4 The class of purely inseparable extensions is
distinguished. It is also closed under the taking of arbitrary composites.

Proof. Let F <K < E. Since pure inseparability is equivalent to
degreewise pure inseparability and [E:F], =1 if and only if [E:K], =1
and [K:F], =1, it is clear that D1) holds. For D2), suppose that F < E
is purely inseparable and F < K. Since every element of E is purely
inseparable over F, it is also purely inseparable over the larger field K.
Hence EK = K(E) is purely inseparably generated and therefore purely
inseparable. We leave proof of the last statement to the reader. i

4.7 Separable and Purely Inseparable Closures

Let F <E. According to Theorem 4.4.1, if o, § € E are separable
over F then F(a,B) is separable over F. It follows that « + 8, af3, and
o~ (for a # 0) are separable over F. Hence, the set of all elements of E
that are separable over F is a subfield of E. A similar statement holds
for purely inseparable elements.
Definition Let F < E. The field

F*¢ = {a € E | « separable over F}
is called the separable closure of F in E. The field
Fic = {a € E | a is purely inseparably over F}

is called the purely inseparable closure of F in E. 0

The separable closure allows us to decompose an arbitrary algebraic
extension into separable and purely inseparable parts.
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Theorem 4.7.1 Let F < E be algebraic.

1) In the tower F < F5¢ < E the first step is separable and the second
step is purely inseparable.

2) E[E'F]i g FSC.
3) Any embedding 0:E—E is uniquely determined by its restriction
to F*C,

Proof For part 1), if a € E has radical exponent d, then min(a,F) =
q(xp) where q(x) = mm(cyp F) is separable and so o € Fe. Thus,
Theorem 4.6.2 implies that « is purely inseparable over F*¢, This shows
that F°<E is pusrely inseparable. For part 2), since pd=
[F(a):F]; | [E:F]; we see that

a[EF]l € FSC

E:F].

for all ¢ € E and so E[ 1 C F®¢, We leave proof of the last statement

to the reader. 1

Corollary 4.7.2 Let F < E be finite. Then [E:F], = [F*%:F] and [E:F]; =
[E:F*9). 0

Part 1 of Theorem 4.7.1 shows that any algebraic extension can be
decomposed into a separable extension followed by a purely inseparable
extension. In general, the reverse is not possible. Although F < F'° is
purely inseparable, the elements of E — F'® need not be separable over
F; they are simply not purely inseparable over F. However, it is not
hard to see when F' < E is separable.

Theorem 4.7.3 Let F < E be algebraic. Then Fi° < E is separable if and
only if E = F5Fi°,

Proof. If Fi¢ < E is separable then so is F*°F < E. But since F*¢ < Eis
purely inseparable, so is F*F'“<E. Thus, we have E =F*F"
Conversely, if E =FF'° then F'° < F°F'°, being a lifting of a
separable extension F < F*¢, is also separable. I

We can do better than the previous theorem when F < E is a normal
extension, which includes the case E = F. Let G = Autp(E) be the set of
all automorphisms of E over F. Since F < E is normal, G is also the set
of all embeddings of E into F over F. We define the fixed field of G in
E by

F(G)={a€E|ca=aforall e € G}
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Theorem 4.7.4 Let F <E be a normal extension. Let G = Autp(E) and
let F(G) be the fixed field of G in E. Then F(G) = F'. Furthermore, in
the tower F <F'°<E the first step is purely inseparable and the
second step is separable.

Proof. Let a € F(G). If B €T is a root of p(x) = min(c,F) then there
exists an embedding o:E—F over F for which ca = 8. But oo =« and
so = a. Hence min(a,F) has only one root and so a € Fi°. On the
other hand, if a € F'° then any o € G must map a to itself, since it
must map a to a root of min(a,F). Hence a € F(G). This proves that
F(G) = F°,

Now let a € E and p(x) = min(a,F(G)). Let q(x) = [](x—r;) where
R ={r,...,r,} is the set of distinct roots of p(x) in E. Since any ¢ € G
is a permutation of R, we deduce that q%(x) =q(x) and so the
coefficients of q(x) lie in F(G). Hence q(x) = p(x) and a is separable
over F(G).1

Corollary 4.7.5 If F < E is normal then F<E is separable and E =
FSCF]C D

Let us conclude this section with a characterization of simple
algebraic extensions. If E = F(a) is a simple algebraic extensmn of F
and if d is the radical exponent of @, we have seen that pd = [E: F]; is
the smallest nonnegative power of p such that o is separable over F, or
equivalently, such that EP CF*¢. It turns out that this property
actually characterizes simple algebraic extensions. Before proving this,
we give an example where this property fails to hold.

Example 4.7.1 Let u and v be transcendental over K with char(K) =
p #0. Let E = K(u,v) and F = K(uP,vP). It is easily seen that F < E is
purely inseparable with [E:F], = p>. However, a € E implies oP € F and
so E°PCF.0

We next require the following useful lemma.

Lemma 4.7.6 If char(F) = p # 0 and o € F, o ¢ FP then f(x) = x* —a is
irreducible for every k > 1.

Proof. Let 3 € F be a root of f(x) = x* — . Then

f(x) = (x— B)"

If p(x) = min(8,F) then p(x)|f(x) and so p(x) = (x- )pd for some
d <k. But if d <k then .
B¥ eF
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and so

k k-1
a=pP =(B° )PEFP
contrary to assumption. Hence d = k and f(x) is irreducible. §

Theorem 4.7.7 Let F < E be a finite extension with [E:F]; = pd. Then
F<Eis dsimple if and only if d is the smallest nonnegative integer for
which EF C F*¢,

Proof. We have seen that if F < E is simple then d is the smallest such
nonnegative integer. For the converse, note first that if F is a finite field
then so is E, implying that E* is cyclic and so F < E is simple. Let us
assume that F is an infinite field and look at the second step in the
tower F < F*¢ < E. This step is purely inseparable. Since F5° < E is
finite, we have

E =F*(y,...,8,)

If for some k < d, we have ﬂfk € F*¢ for all i, then 0 C F*¢, contrary to
hypothesis. Hence one of the §,’s, say £, satisfies

" e Fe, AP ¢ F* fork <d
It follows that

[Foe(@):F5, = pd = [E:F]; > [B:F%,
Since F*°(8) <E, we have [F*¢(B):F*]; =[E:F*°}; and since the
extensions involved are purely inseparable, we get [F*°(3):F*°] = [E:F*°].
Hence, E = F*¢(3).

Our tower now has the form F < F*¢ < F*(8) where § is purely
inseparable over F*¢. In addition, F < F*¢ is finite and separable and
therefore simple. Thus there exists o € F*¢ such that F*¢ = F(a) and the
tower takes the form F < F(a) < F(a,8) where « is separable over F
and f is purely inseparable over F(a). By Theorem 4.4.6, the extension
F < F(a,p) is simple. 1

Note that Theorem 4.7.7 implies that the extension F <E of
Example 4.7.1 is not simple.

4.8 Perfect Fields

Definition A field F is perfect if every irreducible polynomial over F is
separable. 0
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It is clear from the definitions that if F is perfect then any algebraic
extension of F is separable. Conversely, suppose that every algebraic
extension of F is separable. If p(x) € F[x] is irreducible and « is a root
of p(x) in some extension of F then F < F(a) is algebraic and so « is
separable over F, that is, p(x) is separable. Thus, F is perfect.

Theorem 4.8.1 A field F is perfect if and only if every algebraic
extension of F is separable over F. [I

Theorem 4.8.2 Every field of characteristic 0 and every finite field is
perfect. [

Note that if expchar(F) = p then FP = {aP | « € F} is a subfield of F.
The map ¢:F—F defined by ¢_a = oP is called a Frobenius map. It is a
monomorphism since aP + P = (a £ B)P.

Theorem 4.8.3 Let F be a field with expchar(F) = p. The following are
equivalent.

1) Fis perfect.

2) F =FP for some (and hence all) k > 1.

3) The Frobenius map O is an automorphism, for some (and hence
all) k> 1.

Proof. [1=2] Suppose F is perfect. Let a € F and consider the
polynomial p(x) =xP—-a €F[x]. If # is a root of p(x) in a splitting
field then 8P = a and so

p(x) =xP — P = (x - B)°

Hence 3 is purely inseparable over F. But f is also separable over F and
therefore 8 € F. Hence, a € FP for all o« € F, that is, F C FP. Since the
reverse inclusion is manifest, we have F = FP. Lemma 4.1.2 implies the
desired result.

[2=1] We may assume that p > 1. If 2) holds then Lemma 4.1.2
implies that FP = F. It follows that if p(x) € F{x] is irreducible but not
separable, then

p(x) = Y a(xP) = Y bPG)P = () bx)P

contradicting the fact that p(x) is irreducible. Hence, p(x) is separable
and so F is perfect. Since the Frobenius map is a monomorphism,
statements 2) and 3) are easily seen to be equivalent. I

While it is true that any algebraic extension of a perfect field is
perfect, not all subfields of a perfect field need be perfect.
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Theorem 4.8.4
1) If F <E is algebraic and F is perfect then E is perfect.
2) If F <E is finite and E is perfect then F is perfect.

Proof. Part 1) follows from Theorem 4.8.1 and the fact that every
algebraic extension of E is an algebraic extension of F. For part 2), let
expchar(F) = p and suppose first that F < E is simple. Thus, E = F(a)

is perfect and « is algebraic over F, with minimal polynomial p(x) =
>_ax". Then '

0=[Y a0allP = Y aPaP!

Hence, the degree of oP over FP is no greater than the degree of a over
F, in symbols, [FP(aP):FP] <[F(a):F]. But FP(aP) = [F(a)]P = F(a)
since F(a) is perfect and so [F(a):FP] < [F(a):F]. Since FP < F, equality
holds and FP = F, whence F is perfect. Since F < E is finitely generated
by algebraic elements, the result follows by repetition of the previous
argument. il

Note that we cannot drop the finiteness condition in part 2) of the
previous theorem since, for example, F < F is algebraic and F is perfect
even if F is not.

Perfect Closures

Let char(F) = p # 0 and let F be an algebraic closure of F. For each
k > 1, the set

F/" = {a € F| o € F}
is a subfield of F. Moreover, we have

FQFI/PQFUPZQ_,,
The union '
o0 1/ X
pcl(F) = UF P
k=1

which is also a subfield of F, is known as the perfect closure of F in F,
which name is justified by the following theorem.

Theorem 4.8.5 Let F be a field of characteristic p # 0. Then pc(F) is
the smallest perfect subfield of F containing F.

PrE)Of. To see that pcl(F) is perfect, observe that if a € pcl(F) then
af € F for some k > 1. Hence, letting 3 be a root of xP—a in F, we
have a = (P, where



4 Separability 97

k+1 k
AP =af €F

and so 8 € pcl(F). This shows that pcl(F) C [pcl(F)]P. Since the reverse
inclusion is obvious, it follows that pcl(F) is perfect.

In addition, if F < K < pcl(F) and « € pcl(F) ~ K, the fact that o e
F for some k > 1 implies that « is purely inseparable over F and hence
also over K. But since « is not in K, it cannot be separable over K as
well. Thus K is not perfect. Il

Exercises

1. Let F<K<E.If F<E is separable, show that F< K and K< E
are separable.

2.  Prove that if F <E is finite and separable then there are only
finitely many intermediate fields between E and F.

3. Show that all algebraically closed fields are perfect. If t is
transcendental over F then F(t) is not perfect.

4. Let a be algebraic over F, where expckhar(F) = p and let d be the
radical exponent of a. Show that of is separable over F if and
only if k > d.

5. Let p and q be distinct primes. Then Q < Q(,/p,,/q) is finite and
separable and therefore simple. Describe an infinite class of
primitive elements for this extension. Find the minimal
polynomial for each primitive element.

6. Let E=F(ay,...,a,) be separable over an infinite field F. Prove
that there are an infinite number of n-tuples (a,,...,a;) € F" for
which E = F(aa; +---+a 0,

7. Show that the class of purely inseparable extensions is closed
under the taking of arbitrary composites.

8. Let F < E. Define the purely inseparable closure of F in E and
show that it is a field.

9. If F <E is algebraic prove that any embedding 0:E—FE is uniquely
determined by its restriction to F*(E).

10. Prove that if F <E is finite and expchar(F) =p then [E:F]; is a
power of p.

11. Show that lifting an extension by a purely inseparable extension
does not affect the separable degree. That is, show that if F < E is
algebraic and F < P is purely inseparable then [EP:P], = [E:F]..

12. Let F<S be finite separable and F <P be finite purely
inseparable. Prove that P < SP is separable and [SP:P] = [S:F]. In
fact, if B is a basis for S over F, prove that it is also a basis for SP
over P.

13. Show that if F < E is finite and F < S is finite separable then
[ES:S); = [E:F};.
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14.

15.

16.

4 Separability

Let F < E be a finite extension and let o € E be algebraic over F.
Let H be the set of embeddings of E into E over F. The elements
of H permute the roots of p(x) = min(a,F). Let 8 be a root of
p(x). Show that |{c€H|oa=p}| =[E:F(a)l,, Hence, the
multiset {oa|o € H} contains [E:F(a)], copies of each root of
p(x).

Let F < E be a finite extension that is not separable. Show that
for each n > 1 there exists a subfield E_ of E for which E, < E is
purely inseparable and [E:E ], = p™.

Prove that if F # pcl(F) then the extension F < pcl(F) is infinite.
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Chapter 5
Galois Theory I

5.1 Galois Connections

The traditional Galois correspondence between intermediate fields
and subgroups of the Galois group is one of the main themes of this
book. We choose to approach this theme through a more general
concept, however.

Definition Let P and Q be partially ordered sets. A Galois connection

on the pair (P,Q) is a pair (II,2) of maps II:P—Q and Q:Q—P, where
we write II(p) = p* and Q(q) = ¢/, with the following properties:

1)  (order reversing) For all p € P, q € Q,
p<q=>p*>q* and r<s=>1'>s¢

2) ForallpeP,qeqQ,
p<p"” and ¢q<qg" 0

Theorem 5.1.1 For any p € P and q € Q, we have

Proof. Since p < p*/, the order reversing property of * gives
p*/* < p* < (p*)m

from which part 1) follows. Part 2) is similar. i
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Corollary 5.1.2 The map p—p™ is a closure operation on P, that is, if
we denote p*’ by cl(p), then for all p € P, q € Q,

1)  (Extensive)
p < cl(p)

2)  (Idempotent)
cl(cl(p)) = cl(p)

3) (Isotone)
p <q = clp) < cl(q)

Similarly, the map q—q'* is a closure operation on Q. ]

Definition An element p € P is said to be closed if cl(p) =p, and
similarly for Q. We denote the set of all closed elements in P by CI(P),
and similarly for Q. 0

Theorem 5.1.3 The image of any element under II or € is closed. In
addition, the maps II and Q are order-reversing bijective inverse maps

between the sets CI(P) and CI(Q).

Proof. Theorem 5.1.1 shows that the image of an element under II or Q2
is closed. Moreover, if q € Ci(Q) is closed, then ¢’ € Ci(P) and IIq' =
q"™* = cl(q) = q is in the image of II, and so Il maps CI(P) onto C(Q). If
p, r € CI(P) and p*=r" then p* =1, that is, p=r. Hence II is
injective. A similar argument applies to Q. Finally, since p*' =p for
p € C{(P), it follows that Qo Il = ¢ on CI(P) and similarly, ToQ =+ on

Ccl(Q). 1

Theorem 5.1.4 Let II:P—Q and :Q—P be a Galois connection, where
P and Q are lattices.

1) If p;€ CI(P) and Ap; exists in P, then Ap,€ CI(P). If P is a
complete lattice then so is CI(P), with meet given by meet in P.
Similar statements hold for Q.

2) De Morgan’s Laws hold in CIP) and CIQ). That is, for p,
q € CI(P) and 1, s € C(Q), we have

(PAQ)*=p"Vq", (pPVa) =p"Aq
(rAs) =r'Vs, (rvs) =r'As

Proof. For part 1), suppose that p; € CI(P) and A p; exists as a meet in
P. Since Ap;<p; for all j, we have cd(Apy) < cl(pj) =p;, whence
cl(Ap;) < Ap;. Since the reverse inequality holds as well, we have
equality, whence Ap; € CI(P). It follows from Theorem 0.1.1 that if P
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is a complete lattice, so is Cl(P), under meet in P.

For part 2), observe first that pAq<p and pAq<q imply that
(pAQ)*>p* and (pAq)® >q* whence (pAq)* >p*Vq*. If r > p* and
r>q* for r € C(P) then r' <p and r' <q, whence r' < pAq. Thus,
r > (pAq)*. It follows by definition of join that (p Aq)* =p* Vv q*. The
other parts of De Morgan’s Laws are proved similarly. I

Let Z denote the set of positive integers.

Definition We will say that a Galois connection (II,?) on (P,Q) is
indexed if the following hold. For each p, q € P with p < q, there exists
a number (q:p) € Z% U {x}, called the degree of q over p. Similarly, for
each 1, s € Q with r <s, there exists a number (s:r) € Zt U {0}, called
the degree of s over r. Moreover, the following properties hold.

1)  (Degree is multiplicative) If s, s,, s3 € P or s;, s, 53 € Q then
s <8y <83 = (s3181) = (53'8,)(sy78)
2) (I and Q are degree-nonincreasing) If p, q € P then

, P <q=(p"q*) <(q:p)
If r, s € Q then
r<s = (r'is') < (sir)
3) Ifs,tePors, teQ then
(st)=1=>s=t

If (s:it) < oo, then s is said to be a finite extension of t. (We observe
some obvious understandings about oo; for instance, n < oo for all n €
Zt, 0 <oo,n 00 =ooforneZt and oo <k < oo implies k = x.) 0

From now on, when writing (p:q), it is with the tacit assumption
that p <q. While II and  are degree-nonincreasing in general, these
maps are degree preserving when restricted to C(P) and CI(Q), as we
now show.

Theorem 5.1.5 Let (I1,Q2) be an indexed Galois connection on (P,Q).

1) If p, q € CIP) and p < q then (q:p) = (p™:q”).
2) If pe Cl(P) and (q:p) < oo then q € CI(P). In particular, if 0 is
closed and (1:0) is finite then all elements are closed.

Similar statements hold for Q.
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Proof. If p € CI(P) then p = p*' and so
(a:p) > (p*:q%) > (a*:p"™') = (q"":p) = (q*":q)(q:p)

If q € Ci(P) then q* =q, equality holds throughout and part 1) is
proved. If (q:p) is finite then we may cancel to get (q*:q) =1, which
implies that q = q* is closed. This proves part 2). I

Thus, an indexed Galois connection induces a degree-preserving,
order-reversing bijection between CI(P) and C{(Q).

5.2 The Galois Correspondence
Now we describe one of the most important Galois connections.

Definition The Galois group of an extension F < E, denoted by Gg(E),
is the group of all automorphisms of E over F. []

Note that when F < E is algebraic, Theorem 2.8.2 implies that
Gp(E) = Homp(E,E).

Let F < E and let F be the complete lattice of all intermediate fields,
that is, fields K such that F < K < E, ordered by set inclusion. Let § be
the complete lattice of all subgroups of the Galois group Gg(E), ordered
by set inclusion. We define two maps I:¥—§ and Q:G—%F by

; I(K) = Gk(E)
QH)=FH)={a€E|oca=qaforall c € H}

where F(H) is the fixed field of H.

Theorem 5.2.1 Let F < E. The pair of maps (II,2) defined by
ILK—Gg(E) and Q:H—F(H) is a Galois connection. We refer to it as
the Galois correspondence of F < E.

Proof. It is clear from the definitions that
K CJ = Gy(E) C Gk(E)
and

HCI= F(I)C F(H)

Also, any element of K is fixed by every element of Gi(E), that is,
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K C F(GK(E))
Finally, any o € J fixes every element in F(J), that is,
JCG fat J)(E) ]
Since ¥ and § are complete lattices, Theorem 5.1.4 gives

Corollary 5.2.2 The set CI%) of closed intermediate fields and the set
Cl(G) of closed subgroups of Gp(E) are complete lattices, where meet is
intersection. In particular, the intersection of closed intermediate fields
is closed and the intersection of closed subgroups is closed. [

We would like to show that the Galois correspondence of an
algebraic extension F < E is indexed, where (K:L) = [K:L] is the degree
of the extension F < E and (H:J) is the index of the subgroup J in the
group H. It is not hard to see that these degrees satisfy the first and
third properties in the definition of an indexed correspondence. The
next theorem shows that the map II:K+— G (E) is degree-nonincreasing.

Theorem 5.2.3 Let F < E be algebraic and let F < L < K < E. Then
(5.2.1) (G(E):Gy(B)) < [KiLl, < [K:L]

1) If F <E is normal, then equality holds in the first inequality in
(5.2.1) and the map ¢:Gy(E)—Hom;(K,E) defined by Yo =0 |
induces a bijection

GL(E)
m Land HomL(K,E)

2) If F<E is both normal and separable, then equality holds
throughout (5.2.1).

Proof. If o, 7 € G (E), the following are equivalent

"|K=T|K

7 loa = a, for all @ € K
rloe Gk(E)

cET GK(E)

Thus, Yo =97 if and only if 0 and 7 lie in the same coset of Gy (E).
Hence 9 induces a bijection from the set of cosets of Gk(E) in G (E)
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onto Im(%). Since
Im(y) C Hom (K,E) C Hom; (K,E)

we get

(G(B):Gk(E)) = | Im(y)| < | Homy (K,E) |
< | Hom(KE)| = [K:L),

which proves the first part of the theorem.

To prove part 1), suppose that F < E is normal. Then L < E is also
normal. If o € Homy(K,E) then o can be extended to & € Hom (E,E) =
Gi(E). It follows that ¢ maps K into E, whence o € Hom;(K,E) and so
Homy (K,E) = Hom (K,E). Moreover, since any o € Hom(K,E) can be
extended to &€ G (E) and since o =7 € Im(y), it follows that
Im(vy) = Homy (K,E) and so equality holds in both inequalities in the
previous display. This proves part 1). Part 2) is clear. §

To show that the map H—F(H) is degree-nonincreasing, we require a
preliminary result.

Theorem 5.2.4 Let F < E. Let H C Gp(E). For a € E, define a:H—E by
@o = oo (thus, @ is evaluation at a). Then a,...,0, are linearly
independent over F(H) if and only if &,,...,&, are linearly independent
over E.

Proof. Suppose that the @;’s are independent over E, and let ) aa; =0
where a; € F(H). Then for any o € H,

0=o( o) = Tafoa) = La@o)

Hence ) a;@; = 0, implying that a; = 0 for all i.

For the converse, suppose that a;,...,qa, are independent over F(H)
and let ) x;;,=0 on H. If this equation has a nonzero solution
Xyy...,X, in E, consider a solution with the fewest number of nonzero
entries and, by renumbering if necessary, assume the nonzero entries to
be x,,...,x,. Dividing by x, if necessary, we may also assume that
x, = 1. Thus

(5.2.2) Xlal + b + Xs_las_l + as = 0
Equation (5.2.2) is equivalent to

(56.2.3) xy(ooy) 4+ +x,_ (00,_;) + 00, =0
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for all o € H. In particular, for o equal to the identity map, we get
Xjoy +-o+ X0 1 +a,=0
which implies, owing to the independence of the a;’s, that not all of the
x;’s can lie in F(H). Let us assume that x; ¢ F(H).
Applying 7 € H to (5.2.3) gives
T(x)(T00y) + -+ 7(x,_y)(To0g_;) + Toa, =0
for all o € H. But as o varies over the subgroup H so does 7o and so
T(x)(0e) + -+ 7(x,_y)(00y_y) + 00, =0
for all o, € H, or equivalently,
(5.2.4) (rxp)ay +-- 4+ (%,_1)8,_; +8,=0

Since x; ¢ F(H), we may choose 7 € H such that 7(X,) # x;. Finally,
subtracting (5.2.2) from (5.2.4) gives

[(rx)) = xq)@ + -+ [(T8;_;) = x,_4])&,_; =0
which is shorter than (5.2.2). This contradiction completes the proof. i

Now we can show that the map H— F(H) is degree-nonincreasing.

Theorem 5.2.5 Let F < E be algebraic and let H and J be subgroups of
Gp(E) with J C H C Gp(E). Then

[F(3):F(H)] < (H:J)
Proof. If (H:J) =oco there is nothing to prove, so let (H:J)=r < oo.
Choose one o; from each coset of J in H, for i= 1,...,r. Let
0yy...,0y, € F(J) be linearly independent over F(H) and assume for the

purposes of contradiction that n > r. The system

x1(@y07) +x9(@50;) + -+ + x,(2,0,) =0

xl(alar) + XZ(aZUr) +- xn(anar) =0

has more unknowns than equations and so it has a nonzero solution
Xqy...,Xp in E. Hence, there exist 3,,...,08, € E, not all 0, such that
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(5.2.5) B1(@y07) +-- -+ By(@,0;) = 0

forall i=1,...,r.
Now, any 7 € H has the form 7 = o;p where p €J. Since o; € FQJ),

we have pa; = o; and so

ayr = aj(o;p) = (0p)(ey) = 0505 = Gjo;

Hence, it follows from (5.2.5) that
ﬂlal+"'+ﬁnan: 0

as a map on H. This contradicts the previous theorem, which says that
the &;’s are independent over E. Hence n <r. 1

Thus, the Galois correspondence of an algebraic extension F < E is
indexed. As a consequence, we have the following theorem.

Theorem 5.2.6 Let F < E be algebraic and let (II,?) be the Galois
correspondence of F < E. Then (II,Q) is indexed. Hence

1) 1II and Q are degree-nonincreasing, order-reversing maps.

2) I and Q are degree-preserving, order-reversing bijections (inverses
of each other) between the lattice CI(%F) of closed intermediate
fields of F < E and the lattice Cl(§) of closed subgroups of the
Galois group Gg(E). More specifically,

a) If F<L <K <E with K, L closed then

(K:L] = (GL(E): Gk (E))
b) If J CH C Gg(E) with H, J closed then
(H:J) = [F()): F(H)]

¢) For K, L € Ci(¥) and H, J € Cl(§), we have
Gk nL(E) = Gk(E) V G(E), Gk yL(E) = Gk(E)N GL(E)
FHn])=FH)VFQJ), FHAJ)=FH)NFQJ)

In addition, any finite extension of a closed intermediate field or closed
subgroup is closed. {1

We should note that the joins in part 2c) of the previous theorem are
joins in the corresponding lattices. Thus, for instance, Gk(E) V Gi,(E) is
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the smallest closed subgroup of Gp(E) containing Gk(E) and Gy (E),
which need not be the smallest subgroup of Gp(E) containing these
groups. (In other words, CI(¥F) need not be a sublattice of ¥ and CI(§)
need not be a sublattice of §.)

Corollary 5.2.7 If F < E is finite then | GR(E)| < 00. [

5.3 Who’s Closed?

We turn our attention to the question of which intermediate fields of
an extension and which subgroups of the Galois group are closed.

Definition A normal separable extension is called a Galois extension. 0]

The next theorem follows from the relevant properties of normal and
separable extensions.

Theorem 5.3.1

1) Let F<K<E.IfF <E is Galois then K < E is Galois.

2)  The class of Galois extensions is closed under lifting: If F < E is
Galois and F < K then K < EK is Galois.

3)  The class of Galois extensions is closed under arbitrary composites
and intersections: If F < E; are Galois and VE; is defined then
F < VE, is Galois and F < E; is Galois. [

It is not hard to describe the closed intermediate fields of an
algebraic extension F < E.

Theorem 53.2 Let F<E be algebraic and consider the Galois
correspondence on F < E.

1)  An intermediate field K is closed if and only if K < E is a Galois
extension. '
2) If Kisclosed and K < L < E then L is also closed.
3) The following are equivalent.
a) F is closed.
b) F <E is a Galois extension.
¢) All intermediate fields are closed.

Proof. According to Theorem 4.7.4, if K < E is normal then cl(K) =
F(Gk(E)) =K', the purely inseparable closure of K in E. Hence, if
K < E is Galois then cl(K) =K. For the converse, suppose that K is
closed. Let a € E with p(x) = min(a,K) of degree n. Since [K(a):K] is
finite, we know that K(«) is closed and
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n = [K(a):K] = (Gk(E): G () (E))

Let 04,...,0,, be a complete set of coset representatives of GK( o‘)(E) in
Gk(E). It is easy to see that 7€ ”iGK(a)(E) if and only if Ta'= g;0.
Hence there are precisely n distinct images of o under the Galois group
Gk(E). But each of these images is a root of the minimal polynomial
p(x) and so p(x) is separable with all of its roots in E. Hence K < E is
both separable and normal. This proves statement 1) and shows that
3a) and 3b) are equivalent. All of the statements in 3) are equivalent
since F < E is Galois if and only if K < E is Galois for all intermediate
fields K. Similarly, 2) follows from 1).

Note that if F <E is algebraic then E is closed since E = F({t))
where ¢ € Gp(E) is the identity.
If K is a closed intermediate field, then

[B:K] = (Gk(E): Gg(E)) = | Gk(E) |
In the finite case, the converse also holds.

Theorem 5.3.3 Let F < E be a finite extension.

1)  An intermediate field K is closed if and only if [E:K] = | Gk(E) | .
2)  The following are equivalent.

a) F < E is Galois.

c) F is closed.

d) All intermediate fields are closed.

e) [E:K]= | Gk(E)| for all intermediate fields K.

0 [EF] = | Ge(E) |-

Proof. We have seen that K closed implies [E:K]= | Gk(E)]|.
Conversely, if [E:K] = | GK(E)| then

(E:K] = (Gk(E): Gg(E)) = [F(G(E)): F(Gk(E))] = [E:F(Gk(E))]

and so the finiteness of F < E implies that K = F(Gk(E)), that is, K is
closed. Part 2) follows from the previous theorem. I

As for the matter of which subgroups are closed, let F <E be
algebraic. Since the trivial subgroup Gg(E) = (:) is closed, any finite
subgroup of Gp(E) is closed. Thus, if F < E is finite then Gg(E) is finite
and all subgroups are closed. We may now give a complete answer to
the question of who’s closed in the finite case.
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Theorem 5.3.4 If F < E is finite then all subgroups of the Galois group
Gp(E) are closed and an intermediate field K is closed if and only if
K < E is a Galois extension. In particular, if F < E is Galois then all
intermediate fields are closed. {1

As the next example shows, in the general algebraic case, not all
subgroups need be closed.

Example 5.3.1 For this example, we borrow from a later chapter the
fact that for any prime power pd, there exists a finite field GF(pd) of
size pd and GF(pd) < GF(p") if and only if d |r.

Let F =7, and let E = F be an algebraic closure of F. Since F is a
finite field, it is perfect and so F < E is separable. Since E is
algebraically closed, F < E is normal. Hence F < E is a Galois extension
and therefore F is closed. Let H =(c,) be the subgroup of Gp(E)
generated by the Frobenius map o :a—aP. The fixed field F(H) is the
set of all a € E for which aP = a, in other words, the roots in E of the
polynomial p(x) = xP —x. But p(x) has p roots in F and so F(H) =F.
It follows that

cl(H) = Gpy)(E) = Gp(E)

Hence, all we need do is show that H # Gg(E) to conclude that H is not
closed.
Let q be a prime and consider the field

P = GF(p?) U GF(pY) U GF(pT)U---

Then P is a proper subfield of E, since it does not contain, for instance,
the subfield GF(p9*!). Hence [E:P] > 1 and since P < E is Galois, the
group Gp(E) is not trivial. Let ¢ € Gp(E). If 0 € H then o =axl§ for
some k and so

F({o)) ={a €E|cka =a} = {e € E|o” = a}

is the set of roots in E of the polynomial x* ~ x. Hence F((0)) is finite.
But F((s)) contains the infinite set P. This contradiction implies that
o ¢ H and so H # Gg(E). O

The Galois correspondence begins with a field extension F < E and
the corresponding Galois group Gp(E). We may also begin with a field
E and a group G of automorphisms of E. Then we can form the fixed
field

F(G)={a €E|oa=afor all 0 € G}
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and consider the Galois correspondence (II,Q2) on F(G) < E. Since G is a
subgroup of G \(E), it is in the domain of the map Q and so F(G) =
Q(G). Hence, FL( ) is closed under the Galois correspondence and so
F(G) <E is a Galois extension. If G is closed, which happens, for
instance, when G is finite, then Gpg)(E) =G.

Theorem 5.3.5 Let E be a field and let G be a group of automorphisms
of E. Then the extension F(G)<E is Galois. If G is closed (for
example, if G is finite) then G = GF(G)(E)' 0

5.4 Normal Subgroups and Normal Extensions

If F<E is normal and K is an intermediate field, we know that
K < E is also normal, but F < K need not be. However, we can neatly
describe when F < K is normal in terms of Galois groups. (This is an
example of the power and purpose of Galois theory.)

Suppose first that F < K is normal (F < E need not be normal).
Since any T € Gp(E) sends K onto itself, it follows that 77 € Gk(E)
for any o € Gg(E), that is, Gg(E) is a normal subgroup of Gg(E), in
symbols, Gk (E) <« Gg(E).

Conversely, suppose that Gg(E) < Gp(E). We want to show that
F < K is normal. Let « € K have minimal polynomial p(x) over F. If 8
is any other root of p(x), then Theorem 2.8.4 implies the existence of a
T € Homg(E,E) such that ra = . If F < E is normal, then v € Gg(E).
If 0 € Gk(E), the normality of Gg(E) implies that o7 = 70’ for some
o' € G(E) and so

cf=cra=T10'la=Tta={

Thus, o fixes all of the roots of p(x) and so all of the roots of p(x) lie in
F(Gk(E)). If K is closed, then all of the roots of p(x) lie in K and so K
is normal over F. We have proven most of the following.

Theorem 5.4.1 Let F <K < E.

1) If F <K is normal then Gg(E) @ Gp(E).

2) If F<E is normal, K<E is Galois and Gyg(E) 1 Gp(E) then
F < K is normal.

3) If F<E is Galois then F<K is normal if and only if
Gk (E) <« Gg(E).

Moreover, if F <K and F < E are normal, the map %:Gp(E)— Gp(K)
defined by
Yo—o |k



5 Galois Theory I 113

is an epimorphism whose kernel is Gy(E). Thus,

Gg(E)

Gr(K) = Gk(E)

Proof. We need only prove the last statement. Let o € Gp(E). Since
F <K is normal, the restriction o |, being an embedding of K into E
over F, is an automorphism of K and thus lies in Gp(K). Hence 1 maps
Gp(E) to Gp(K). Moreover, for o, 7 € Gg(E), we have

(en) [k = o(r k) = (o | x)(7 | )

which shows that ¢ is a group homomorphism. The kernel of 1 is
Gk(E) since if o € Gp(E) then o |k = if and only if ¢ € Gk(E).
Finally, the map ¢ is surjective since the normality of F < E implies
that any o € Gp(K) can be extended to an element of Gg(E), whose
restriction to K is 0. B

5.5 More on Galois Groups

We now examine the behavior of Galois groups under lifting and
under the taking of composites. We assume that all composites
mentioned are defined.

Theorem 5.5.1 (The Galois group of a lifting) Let F < E be Galois and
let F<K. Then K <EK is Galois. Moreover, the restriction map
¥:Gk(EK)— Gk  g(E) defined by 4o = o |  is an isomorphism. Thus

Gk(EK) =~ Gk g(E)
In addition,

1)  KNE =F implies Gx(EK) ~ Gg(E).
2) If F <E is finite, then Gg(EK) ~ Gp(E) implies KNE =F.

Proof. We have already seen that K < EK is Galois. The normality of
F < E implies that 1 is a homomorphism from Gy(EK) into Gy g(E).
If 0 € GK(EK) and o | = then o fixes E as well as K and so it fixes
all elements of EK, whence ¢ = Thus % is injective. It remains to
show that Imy = Gy g(E).

To avoid confusion, let us use the notation Fg(-) for the fixed field
with respect to the Galois correspondence on F < E, and Fpy(-) for the
fixed field with respect to the Galois correspondence on K < EK. Since
K < EK is Galois, we deduce that K is closed with respect to the Galois
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correspondence on K < EK and so

Fg(Imy) ={a € E| ra =a for all T € Im(y)}
={a €E]| (¢]|g)a=afor all ¢ € Gx(EK)}
={a €E| oga =« for all ¢ € Gk(EK)}
= EN Fgk(Gk(EK))
=ENK

Now, if we show that Im v is closed with respect to the Galois
correspondence on F < E, it follows by taking Galois groups that

Im ¢ = Gk ng(E)

and thus 7 is surjective, completing the proof. If F < E is finite, then all
subgroups of the Galois group Gp(E) are closed, and we are finished.
We will postpone the proof in the infinite case until we have discussed
the Krull topology, later in this chapter.

Finally, statement 1) is clear. As to statement 2), we have
Gp(E) ~ Gk ng(E) and since Gy 4g(E) < Gp(E) with both finite, we
deduce that Gk g(E) = Gp(E), whence KNE =F follows by taking
fixed fields. §

Theorem 5.5.1 yields a plethora of useful statements about degrees,
all of which can be read from Figure 5.5.1. We leave details of the proof
to the reader. [Part 3) of the next result is particularly useful.]

EK
P,

5

Figure 5.5.1

Corollary 5.5.2 Suppose that F < E is finite Galois and F < K, with EK
defined. Then

1) [EK:K]=[E:ENK] and [EK:K]|[E:F].
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If F < K is also finite then

2) [EK:F] = [E:ENK][K:F] and [EK:F]|[E:F][K:F].

3) [EK:F] = [E:F][K:F]if and only if ENK =F.

More generally, if F < E; is finite Galois fori=1,...,n—1 and F<E_

is finite then

n

4)  [EpEgFl = [](EE N (Byy Byl

i=1
where Ei+1"'En = F when i =n.
T
5) [Ey-EgF] = [][E;:F] if and only if E;N(E;, - E,) = F for all i,
i=1
where Ei+1"'En =F wheni=n.[

We now turn to the Galois group of a composite.

Theorem 5.5.3 (The Galois group of a composite) Let ¥ = {E,|i €I}
be a family of fields, all contained in a larger field. If F < E; is Galois
over F for all i €1, then the composite VE, is Galois over F. If G =
[I Gp(E;) is the direct product of the Galois groups Gp(E;) and if
7,;:G— GR(E;) is projection onto the i-th coordinate, then the map

$:Gp( V E))—[] Gp(E)
defined by (o) ,
7|'i g)=0 E]

is a monomorphism of groups. Hence, Gp(VE;) is isomorphic to a
subgroup of the direct product [] Gg(E;).

Moreover, if ¥ = {E;,...,E_} is a finite family of finite extensions,
then the following are equivalent
1) % is an isomorphism and

GF(EI V e V En) jad GF(EI) Xoeee X GF(En)

2) EN(E,,;E)=F foralli=1,...,n.

Proof. Let K= VE,. We have already seen that F < K is Galois. Let
o € Gp(K). Since each F < E; is normal, we have ¢ | € Gp(E,). If €
Gp(K) then !

mi($(o7)) = (07) | g, = (0 | g )(7 | ) = m(o)m(y7) = m[(yo)(¥7)]

and so ¥(o7) = (¢o)(¢r). Thus, ¢ is a homomorphism of groups. If
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o |g. =t for all i €1, then since each element of K is a rational function
(ovet F) in finitely many elements of UE;, we must have o = ¢, whence
1 is injective.

When ¥ is a finite family of finite extensions, all Galois groups are
finite. It follows that

| my| = | Gp(VE)| =[VE;F]
and
| [TG(E) | = T | Gp(E;) | = [][E;:F]

Hence 9 is surjective if and only if [V E;:F] = [][E;:F] and Corollary
5.5.2 gives the desired result. I

The following corollary will prove useful.

Corollary 5.5.4 Suppose that F < E is a finite Galois extension with
Galois group of the form

G =Gp(E)=Gyx:-xG

n

If
H; =Gy x-x{e} x---xGy

where {¢} is in the i-th coordinate and if E; = F(H,) then

1) F <E; is Galois with Galois group Gp(E;) ~ G;,
2) E=E,V--VE,
3) EN(E,;E)=Fforalli=1,...,n

Proof. Since F < E is finite and Galois, all intermediate fields and all
subgroups of G are closed. Since H; <G, it follows from Theorem 5.4.1
that F < E; is a Galois extension and

In addition, F < VE; is Galois. Since

Gy, (E) = NG (E) = NH = {i} = Gg(E)

taking fixed fields gives VE;=E. Hence, Gp(VE;) ~ [] Gp(E;) and
Theorem 5.5.3 implies that E;N(E;,;---E ) =F foralli=1,...,n. 8
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Abelian and Cyclic Extensions

Extensions are often named after their Galois groups. Here is a very
important example. '

Definition An extension F < E is abelian if it is Galois and if the Galois
group Gp(E) is abelian. An extension F < E is cyclic if it is Galois and
if the Galois group Gp(E) is cyclic. 0

The basic properties of abelian and cyclic extensions are given in the
next theorem, whose proof is left as an exercise.

Theorem 5.5.5

1) IfF <E and F <K are abelian, then F < EK is abelian.

2) If F<E is abelian (cyclic) and F <K, then K < EK is abelian
(cyclic).

3) If F<K<E with F <E abelian (cyclic), then F <K and K< E
are abelian (cyclic). 0

*5.6 Linear Disjointness

If F <K and F <L are finite extensions, the degree [KL:F] provides
a certain measure of the “independence” of the extensions. Assuming
that [K:F] < [L:F], we have

[L:F] < [KL:F] < [L:F][K:F]

The “least” amount of independence occurs when [KL:F]=[L:F], or
equivalently, when K < L and the “greatest” amount of independence
occurs when

(5.6.1) [KL:F] = [K:F][L:F]

We have seen (Corollary 5.5.2) that, if one of the extensions is Galois,
then (5.6.1) holds if and only if KNL =F. For finite extensions in
general, we cannot make such a simple statement. However, we can
-express (5.6.1) in a variety of useful ways. For instance, (5.6.1) holds
for arbitrary finite extensions if and only if whenever {o;} CK is
linearly independent over F and {;} CL is independent over F then
{a;8;} is also independent over F.

To explore the situation more fully (and for not necessarily finite
extensions), it is convenient to employ tensor products. (All that is
needed about tensor products is contained in Chapter 0.)
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Let F < K and F < L. The multiplication map ¢:K x L—KL defined
by o(a,8) = af is bilinear and so there exists a unique linear map
¥:K ® L—KL for which ¥(a ® ) = afB. (The tensor product is over F.)
This map is a morphism of F-algebras, since

Y(a®B)(y ® 6)] = Y(ay @ B8) = ayBs = (af)(76) = Y(a ® B)¥(7 ® 6)

Note that the image of ¢ is the F-algebra K[L] = L[K] of all elements
of the form
k& +---+k &

for k; €K and ¢ € L. Hence, if F < K or F < L is algebraic, then KL =
K[L] and so the map ¥ is surjective.

If F is a field, we use the term F-independent to mean linearly
independent over F.

Theorem 5.6.1 Let F < E and suppose that K and L are intermediate
fields. The following are equivalent.

1)  The linear map ¢ defined above is injective.

2) If {o;} CK is F-independent then it is also L-independent.

3) If {} CK and {B;} CL are both F-independent then {o;f;} is
also F-independent.

4) If {o;} is a basis for K over F and {f;} is a basis for L over F
then {c;5;} is a basis for K[L] over F.

5)  There is a basis for K over F that is L-independent.

If F <K and F < L are finite, then each of 1) to 5) is equivalent to
6) [KL:F] = [K:F][L:F].

If F <K and F < L are finite and one is Galois, then each of 1) to 6) is
equivalent to

7) KNL=F.
Proof. [1=2] Let {o;} CK be F-independent and suppose that
> 4a; =0 for ¢ € L. Since 9 is a monomorphism and
WL E®o) = Yoy =0
we have

zei®°‘i:0

Theorem 0.8.2 now implies that £ = 0 for all i.
[2=3] Let {o;} and {B;} be F-independent. If
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1)

with a;; € F then since {o;} is also L-independent, the coefficients of o,
must equal 0, that is,
22 =0
i

for all i. Since the §;’s are also F-independent, we get a; =0 for all i, j.

[3=>4] This follows from the fact that if {c;} spans K over F and
{B;} spans L over F then {o;5;} spans K[L] over F.

4=>1] The map ¢ sends a basis {o; ® f;} for K®L to a basis {o;8;}
for K[L] and is therefore injective.

Thus, each of 1) to 4) is equivalent, and by symmetry we may add
the equivalent statement that any F-independent subset of L is also K-
independent. It is clear that 2) implies 5).

[65=2] Let {o;} be a basis for K over F that is L-independent. Let
{B;} be an F-independent subset of L. We show that {3.} is also K-
independent. Let ) ;x;8;, =0 where «; € K. Then «; = Ejjaijaj, where
a; € F, and so

Z d aijﬂjai =0
1 J

But the o;’s are L-independent and so
> a8 =0
j

for all i. Hence a;; = 0 for all i, j. It follows that x; = 0 for all i, whence
{B.} is K-independent.

146) In the finite (hence algebraic) case, we have remarked that the
map ¥:K ® L—KL is surjective and so it is also injective if and only if
dim K ® L = dim KL, which by Corollary 0.8.5 is equivalent to

(dim K)(dim L) = dim KL

all dimensions being over F.
[6<>7] This follows from Corollary 5.5.2. §

Definition If any of the equivalent conditions hold in Theorem 5.6.1, we
say that K and L are linearly disjoint over F. 0



120 5 Galois Theory I

*5.7 The Krull Topology

We have seen that if F <E is a finite Galois extension, then all
subgroups of the Galois group Gp(E) are closed but if F < E is infinite
and Galois, this need not be true (see Example 5.3.1). The use of the
term closed suggests the presence of a topology, which we now define.

Definition Let EF be the set of all functions from E into E. We define a
topology 7 on EE, called the finite topology, by specifying as subbasis
all sets of the form

Syy = {EE—-E|fu=v}
where u, v € E. A basis for T thus consists of all sets of the form
{EE-E|fu; = vy,...,fuy = v }
where u;, v, €E. [
Of course, if F < E, then the Galois group Gp(E) is a subset of EE.
Theorem 5.7.1 If F < E is algebraic then Gp(E) is closed in the finite

topology.

Proof. We show that any f € EE that lies in the closure cl( Gr(E)) of the
Galois group is actually in Gp(E). A basic open neighborhood of f has
the form

{e € EE | gu, = fu,,...,gu, = fu,}
and so f € cl(Gp(E)) implies that for any u,,...,u, € E there is a o €
Gp(E) for which ou;=fu; for i=1,...,k. It follows that f is a

homomorphism. For if u, v € E and «, 8 € F then there is a ¢ € Gp(E)
for which

ou="fu, ov=fy,
o(au + Bv) = f(au + Bv), o(uv) = f(uv)
Hence,

f(au + Bv) = o(au + Bv) = aou + Bov = afu + v
and

f(uv) = o(uv) = (ou)(ov) = (fu)(fv)

which shows that f is a homomorphism. Also, fu = 0 implies ou = 0 for
some o € Gp(E) and so u =0, showing that f is injective. Similarly, f
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fixes F pointwise. Thus, f is an embedding of E into itself over F. Since
F < E is algebraic, we deduce that f € Gg(E). 8

Thus, if F<E is a Galois extensmn, the Galois group Gg(E) is
closed in the finite topology on EE. The subspace topology inherited by
Gr(E) is called the Krull topology on Gg(E). It follows that a subset of
Gpr(E) is closed in the Krull topology if and only if it is closed in the
finite topology on EE.

To avoid any temporary confusion, we refer to a subset of Gp(E)
that is closed in the Krull topology as k-closed and a subgroup of Gg(E)
that is closed in the sense of the Galois correspondence as g-closed.
Similarly, we use the term k-open for open sets in the Krull topology.

Let us determine the closure H in the Krull topology of a subgroup H
of Gp(E). If r € H then given uy,...,u, €E, there is a o € H for which
Ty; = ou;, for i=1,...,n. Tlli_s implies that 7 fixes any element of the
fixed field F(H). Hence, 7 € H if and only if, given u,,...,u, € E, there
is a ¢ € H for which

7] F(H)(uyy..0ou ) =7 | F(H)(uy,...,u.)

Since any finite extension of F(H) contained in E has the form
F(H)(u,,...,u,), we can say that 7 € H if and only if for any finite
extension K of F(H) contained in E, there exists a 0 € H for which
Tk =0k

If F(H) <K is a finite extension and K"° is the normal closure then
F(H) < K™ is a finite Galois extension. Thus 7 € H if and only if for
any finite Galois extension K of F(H) contained in E, there exists a o €
H for which 7| ¢ = o | . Finally, letting

H|K={U|K:UEH}
we can say that 7 € H if and only if for any finite Galois extension K of

F(H) contained in E, we have 7| € H| k.
If 7 € H and K = F(H), we have

andsoT € G F(H)(E)’ the g-closure of H, whence
HC Gpy)(E)

To see that the reverse inclusion holds, suppose that + € Gp, m)(E) and
let. F(H) < K be a finite Galois extension contained in E. Smce F(H) is
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contained in K, we have

F(H) ={a €E|oa = afor all ¢ € H}
={a€K|oa=afor all ¢ € H}
={a€K|oa=aforall s € H|g}
= F(H | k)

where F(H|) is the fixed field of H |y with respect to the Galois
correspondence on the Galois extension F(H) < K. (Note that since
F(H) < K is a Galois extension, if o € H then ¢ is an automorphism of
E over F(H), whence its restriction o | i is an automorphism of K over
F(H). Hence, H| k is contained in the Galois group Gp, H)(K).)

Since F(H) = F(H|g), the extension F(H|y) <K is finite and
Galois, implying that H | is g—closed in the Galois correspondence of
F(H | k) < K. Hence,

7k € Gra)(K) = G (K) =H| g |

and so 7 € H. It follows that G F(H)(E) C H. Let us summarize.

Theorem 5.7.2 Let F < E be a Galois extension and let H be a subgroup
of the Galois group Gg(E). Then the closure Gy (E) of H with respect
to the Galois correspondence on F < E is the closure of H in the Krull
topology. Nl

Let F < E be a Galois extension. We leave it to the reader to show
that the composition map

Gp(E) x Gp(E)—Gp(E):(o,7)—0oT
and the inversion map
Gp(E)- Gp(E):a071

are continuous under the Krull topology. Hence, Gp(E) is a topological
group. In fact, it can be shown that Ggp(E) is a compact, totally
disconnected topological group.

We conclude this section by completing the proof of Theorem 5.5.1
in the infinite case. Recall that F < E is Galois and F < K. The map
¥:Gk(EK)—Gp(E) is defined by 9o = o | and we wish to show that
Im 1 is closed with respect to the Galois correspondence on F < E.
Theorem 5.7.2 implies that this is equivalent to showing that I = Im ¢
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is closed in the Krull topology on Gg(E).

Let 7 €I, the Krull-closure of I. We show that 7 € I by finding a ¢ €
Gk (EK) for which o | = 7. Let us define 0:EK—EK as follows. Since
K < EK is algebraic, any element o € EK is a finite sum of the form

a = Z eiki
where e; € E and k; € K. We set
ca =) (re¢)k;

The first order of business is to show that this is well-defined.

To this end, note that since 7 €1, it follows that for any finite set
U ={uy,...,u,} CE, there exists a g; € Gx(EK) that agrees with 7 on
the elements of U, that is, for which

ayy; = Tu;, for alli
Hence, if U = {e;,...,e,} then
oo =} (re)k; = 3 (oyeyk;
Now suppose that « can also be written as
a= ) ek
Let V = {e{} CE and let oyj, y agree with 7 on UUV. Then
Y (rek; = X (oyuvek = oyy v( ) eiki)
=oyuv( Selk) = T(oyuvedki = T (re)k!
Thus, the definition of oo does not depend on the representation of «,

and o is well-defined.
Now suppose that

o = Zeliki’ Qg = Ee2iki yeeey Qp = Zem i

is any finite set of elements of EK and let U= {e;}. If o' € Gk(EK)
agrees with T on the elements of U, then

ola; =o' Zepk. = Z (e5)k; = Uzepkl = oo
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for all j =1,...,n. In other words, for any finite subset S of EK, there is
an element of Gx(EK) that agrees with o on S.

It follows that o is a homomorphism of EK, for if o, 8 € EK then
there exists a o' € Gk(EK) that agrees with ¢ on @, §, a+ 8 and of
and since ¢’ is a homomorphism, we have

ocla+pB)=c'(a+B)=0'a+d'f=ca+af

o(af) = o'(af) = (d'a)(e'B) = (ca)(cf)

and

It also follows that o is injective, for if oo =0 then there is a o' €
Gk(EK) such that o’a =0, whence o = 0. The surjectivity of o follows
from that of 7, since if a € EK, then

a=Yek =Y (re)k; = "(Ze{ki)

Finally, it is clear from the definition that ca = a for all o € K and
that oa =ra for all a € E. Thus, 0 € G(EK) and o|g=r. This
completes the proof of Theorem 5.5.1.

Exercises

1. If :2—M is an order reversing bijection between two lattices,
verify that A(aAb) = AaV Ab and A(aVb) =AlaAAb.

2. With respect to a Galois connection, if P is a complete lattice then
CI(P) is also a complete lattice.

3. If K<E and L <E are Galois extensions, show that KNL < E is
a Galois extension.

4. Let K and L be subfields of a field E and suppose that K < E and
L < E are Galois, with Galois groups G, and G,, respectively. Let
GG, be the join of G; and G, in the lattice § of all subgroups of
Gk AL(E) and let G; V G, be the join of G; and G, in the lattice
§ of all closed subgroups of Gy 1,(E). Show that G,G, is finite if
and only if Gk 1 (E) is finite, in which case G,G, = G, V G,,.

5. Let F <E be finite with G = Gp(E). Let G; ¢G, < G, with F; =
F(G;). Show that Gy (F,) ~ G,/G,.

6. Find an example of %an infinite algebraic extension whose Galois
group is finite.

7.  Prove Corollary 5.5.2.

8. Let F be a perfect field. Suppose that there is a prime p for which
p | [E:F] for every proper finite extension E of F. Show that if E is
a finite extension of F then [E:F] = p" for some n € N. Apply this
to the case F = R to deduce that if R < E is a finite extension the
[E:R]} = 2™ for some n € N.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Let F < E be a finite Galois extension and let E < K. Then [EK:K]

divides [E:F]. Use the following to show that the assumption that

F < E be Galois is essential. Let a be the real cube root of 2, let

w # 1 be a cube root of 1. Let F = Q, E = Q(aw) and K = Q(a).

Prove the following statements about abelian and cyclic

extensions.

a) If F <E and F <K are abelian, then F < EK is abelian.

b) If F < E is abelian (cyclic) and F < K, then K < EK is abelian
(cyclic).

c) If F<K<E with F<E abelian (cyclic), then K <E and
F < K are abelian (cyclic).

Let F < E and F < K be extensions, with E and K contained in a

larger field. Show that E and K are linearly disjoint over F if and

only if E’ and K’ are linearly disjoint over F for all intermediate

fields F < E' < E and F < K' < K with [E":F] and [K":F] finite.

Let F < E be a normal extension. Show that the separable closure

F*¢ of F in E and the purely inseparable closure F'° of F in E are

linearly disjoint over F. Moreover, if F < K < E and if K and F'°

are linearly disjoint over F then F < E is separable.

Let f(x) € F[x] and let F < E. Let Sg be the splitting field of f(x)

over E. Thus, if a;,...,a, are the roots of f(x) in Sg, we have

Sg =E(ayy...,a;). Let Sp=F(ap...,a,) and let L=

Sp N F(Gg(Sg)). Let ¥:Gg(Sg)— GL(Sp) be defined by yo = o | Sp'

Show that % is an isomorphism. This is known as the Theorem on

Natural Irrationalities.

Referring to Theorem 5.5.3, show that if ¥ is an arbitrary family

then the map ¥ is an isomorphism if

B ( i:{j};i): F foralljel

Extend the notion of closure obtained from the Galois extension to

all subsets of Gp(E), and show that it is a closure operation in the

sense of topology.

Prove that Gp(E) is a topological group under the Krull topology.

Show that this topological group is totally disconnected.

Let F<E and suppose that S is a finite set of elements

algebraically independent over E. Then F(S) and E are linearly

disjoint over F.

a) Show that in every Galois extension F < E, there is a largest
abelian subextension F2P, that is, F<F2* <E, F < F?P s
abelian and if F < K < E with F < K abelian then K < F2P,

b) If G is a group, the subgroup G’ generated by all
commutators afa” 1871, for o, B€G, is called the
commutator subgroup. Show that G’ is the smallest subgroup
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19.

20.

5 Galois Theory 1

of G for which G/G’ is abelian.

c¢) If the commutator subgroup Gg(E)’ of a Galois group Gg(E)
is closed, that is, if GR(E)' = Gk(E) for some F < K < E, then
K = F2b,

Let F < K and let F < E < L. Assume that K and L are contained

in a larger field. Then K and L are linearly disjoint over F if and

only if K and E are linearly disjoint over F and KE and L are

linearly disjoint over E.

The following concept is analogous to, but weaker than, that of

linear disjointness. Let F < K and F <L be extensions, with K

and L contained in a larger field. We say that K is free from L

over F if whenever SCK is a finite set of algebraically

independent elements over F, then S is also algebraically

independent over L.

a) The definition given above is not symmetric, but the concept
is. Show that if K is free from L over F, then [KL:L], = [K:F},.
Let T be a finite F-algebraically independent set of elements
of L. Show that T is algebraically independent over K.

b) Let F <K and F < E be field extensions, contained in a larger
field. Prove that if K and L are linearly disjoint over F, then
they are also free over F.

c) Find an example showing that the converse of part b) does
not hold.



Chapter 6
Galois Theory II

In this chapter, we pass from the highly theoretical material of the
previous chapter to the somewhat more concrete, where we consider the
Galois groups of the splitting fields of specific types of polynomials.

6.1 The Galois Group of a Polynomial

The Galois group of a polynomial p(x) € F[x] is defined to be the
Galois group of a splitting field S for p(x) over F. This group is
sometimes denoted by Gp(p(x)). If

p(x) = pyl(x)- - pik(x)

is a factorization of p(x) into powers of distinct irreducible polynomials
over F, then S is also a splitting field for the polynomial q(x) =
p1(x)- - -pi(x). Moreover, the extension F <§ is separable (and hence
Galois) if and only if each p;(x) is a separable polynomial. In particular,
if p(x) has no multiple roots, then F < S is a Galois extension.

Note that each o € G(S) is uniquely determined by its action on the
roots of p(x), which generate S, and that this action is a permutation of
‘the roots. However, not all permutations of the roots of p(x) need
correspond to an element of Ggp(S). Thus, we have an injective group
homomorphism from Gg(S) into the symmetric group S, where n =
deg p(x).

Let p(x) ={(x)g(x) where degf(x) >0 and let S, be the splitting
field for p(x) over F and S; the splitting field for f(x) over F. We clearly
have F < S5;< Sp with each step normal. Hence, by Theorem 5.4.1,
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Gsf(Sp) 4 Gp(S,,) and

S
or, in another notation,
Gr(p(x
Grf(x)) = ——GSF:(‘;(())))

Thus, the Galois group of a nontrivial factor of p(x) is isomorphic to a
quotient group of the Galois group of p(x).

6.2 Symmetric Polynomials

If Fis a field and t,,...,t, are algebraically independent over F, the
polynomial

g(x) = _IjIl(x—ti)

is referred to as a generic polynomial over F of degree n. Since the roots
tiy...,t, of the generic polynomial g(x) are algebraically independent,
this polynomial is, in some sense, the most general polynomial possible.
Accordingly, it should (and does) have the most general Galois group,
as we will see.

The generic polynomial can be written in the form

g(x) =x"— slx“"1 +o 4+ (-1)%,

where the coefficients s € F(t,,...,t,) are given by

n
sy =ttty sp= D tity,., 5= [ [
1<j i=1
and are called the elementary symmetric polynomials in the variables t;.
It follows that the coefficients of any polynomial are the elementary
symmetric functions of the roots (in a splitting field) of that
polynomial.

Since F(ty,...,t,) is the splitting field for g(x) over F(s,,...,s,), and
since g(x) has no multiple roots, we deduce from the remarks of the
previous section that the extension F(s;,...,s;) < F(ty,...,t,) is Galois
of degree at most n!. Moreover, any permutation o €S of {1,...,n}
induces a unique automorphism of F(t;,...,t,) defined by
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P(tys--sty) P(ta(l)’- . "ta(n))
q(tl’ .o .,tn) - q(to‘(l)" . .,to,(n))

Let us denote the group of all such automorphisms by G.

According to Theorem 5.3.5, since G is a finite group of
automorphisms of F(t;,...,t;), the extension F(G)<F(ty,...,t;) is
finite and Galois, with Galois group G and so

[F(ty,...,t,):F(G) = |G| = |S, | =n!

Since every elementary symmetric function is fixed by the elements of
G (hence the name symmetric function), we have

F(syy...y8,) < F(G) < F(ty,...,t,)
and since

[F(tyy... t,):F(sqy...08,)] <n!
we have equality above and F(G) = F(sy,...,s,).

Theorem 6.2.1 Let t,,...,t, be algebraically independent over F and let

81..-,8, be the elementary symmetric functions in t;,...,t .
1)  F(sqy...,8,) <F(ty,...,t;) is a Galois extension of degree n!,
whose Galois group is isomorphic to the symmetric group S_.

2)  The generic polynomial g(x) is irreducible over F[s,,...,s_].

Proof. To prove part 2), observe that if g(x)=a(x)b(x) where
deg a(x) =d >0 and deg b(x) =e >0, then the Galois group of g(x)
would have size at most dle! < (d +e)! = n!. Hence g(x) is irreducible. i

Definition A polynomial p(t,,...,t,) € F[t;,...,t ] is symmetric if

p(ta(l)""’t‘tr(n)) = p(tl""’tn)

for all permutations o € S . Equivalently, p is symmetric if

o[p(tyy...,t)] =p(ty...,t,)
foralle €G. 0

Thus, a polynomial p(t,...,t,) € F(t;,...,t,) is symmetric if and
only if it lies in the fixed field F(s,,...,s ), that is, if and only if it is a
rational function in s,,...,s .. However, we can improve considerably
upon this statement.
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Theorem 6.2.2 Let t,,...,t, be algebraically independent over F and let
81y..-,5, be the elementary symmetric functions in t;,...,t,. A
polynomial p(t,,...,t,) € F[t;,...,t ] is symmetric if and only if there
exists a polynomial q(x,...,x;) over F for which p(t;,...,t))=
q(sy,...,s,)- Moreover, if p(t;,...,t,) has integer coefficients, then
q(Xq,...,%;) can be chosen with integer coefficients.

Proof. If p(ty,...,t,) has the form q(s,...,s,), then it is clearly
symmetric. For the converse, the proof consists of a procedure that can
be used to construct the polynomial q(x,,...,x,). Unfortunately, while
the procedure is quite straightforward, it is recursive in nature and not
at all practical.

We use induction on n. The theorem is true for n = 1, since s, = *t,.
Assume the theorem is true for any number of variables less than n and
let p(ty,...,t,) be symmetric. By collecting powers of t, we can write

P(tys--vrty) = Po+ Pyty +Pot2 +- +pyth

where each p; is a polynomial in t,,...,t, ;. Since p is symmetric in
tyy...,ty_; and tq,...,t, are independent, each of the coefficients p; is
symmetric in t;,...,t,_;. By the inductive hypothesis, we may express
each p; as a polynomial in the elementary symmetric functions on
t1y...1ty_q- If these functions are denoted by u,,...,u,_,, then we have

(621) p(tl"-'vtn) =qo+q1tn+q2t,2‘+---+qnt§

where each q; is a polynomial in u,,...,u,_;, with integer coefficients if
p has integer coefficients.

Note that the symmetric functions s; can be expressed in terms of the
symmetric functions u; as follows

8y =uy+t,
S = uy +ut,
(6.2.2)
Sp—1 = Up—1 T Uy oty
Sp = Up—1by

These expressions can be solved for the u;’s in terms of the s;’s, giving

—_ — 2
Uy =8, —Uyt, =8, —Sltn+tn
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Uy = 83— Uyt =83 —syt, +syt7 —t,

Up 1 =Sy 1~ Up_gby = Sp_1 —Sp gty + -+ (-1)"7Hp~!
and from the last equation in (6.2.2),
(6.2.3) 0=s,—u,_;t, =s —s,_t,+--+(-1)"th
Substituting these expressions for the u;’s into (6.2.1) gives
P(ty, e orty) =T+ Tyty +rpt2 o1 0
where each r; is a polynomial in s;,...,s,_; and t,, with integer

coefficients if p has integer coefficients. Again, we may gather together
powers of t_, to get.

P(tys--estn) = 8o + Brty + Bt + - + g t™

where each g; is a polynomial in s,,...,s,_;, with integer coefficients if
p has integer coefficients. If m > n, we may reduce the degree in t, by
using (6.2.3), which also introduces the term s . Hence,

(6.2.4) P(byyeesty) =hg+hyty +hot2 +--+h 21
where each h; is a polynomial in s,,...,s,, with integer coefficients if p
has integer coefficients.
Since the left side of (6.2.4) is symmetric in the t;’s, we may replace
t, by t;, for eachi=1,...,n -1, to get
P(tys--+sty) = ho+hyt +hpt? +- by tP1
valid for all i = 1,...,n. Hence, the polynomial

P(x) = ho +hyx +hyx? + oo+ hy_gx® 71— p(ty, .., t)

has degree (in x) at most n—1 but has n distinct roots t,,...,t,,
whence it must be the zero polynomial. Thus, h; =0 for i>1 and

p(ty,... t,) =hg =hg(syy...,8,), as desired. §

Example 6.2.1 Let p(x) =x" — slx“"l 4+ 4+ (-1)", be a polynomial
with roots ry,...,r, in a splitting field. For k > 1, the polynomials

=T+t
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are symmetric in the roots of p(x), and so Theorem 6.2.2 implies that
they can be expressed as polynomials in the elementary symmetric
functions s,,...,s, of the roots. One way to derive an expression
relating the uy’s to the s,’s is by following the proof of Theorem 6.2.2.
In the exercises, we ask the reader to take another approach to obtain
the so-called Newton identities

W — g8y +Upe_gsy o+ (1)  Tugs g + (=1)*ksy = 0

for k > 1. These identities can be used to compute recursively the uy’s
in terms of the s;’s. 0

Since any symmetric polynomial in the roots of a given polynomial
p(x) is a polynomial in the coefficients of p(x) as well, it therefore lies
in the base field.

Corollary 6.2.3 Let p(x) € F[x] have roots ry,...,r, in a splitting field. If
f(t,,...,t,) is a symmetric polynomial, then f(r;,...,r_) is a polynomial
in the coefficients of p(x), and thus lies in F.

Proof. We know that f(ry,...,r))=g(s;,...,s,) where s; is the i-th
elementary symmetric polynomial in the roots ry,...,r . But s; or —s; is
the coefficient of x"™' in p(x), whence f is a polynomial in these
coefficients. §

Theorem 6.2.4 The elementary symmetric polynomials s;,...,s, are
algebraically independent over F.

Proof. Since F(sy,...,s,) < F(tq,...,t,) is algebraic, Theorem 3.3.1
implies that S ={s;,...,s;} contains a transcendence basis for
F(t;,...,t,) over F. But {t;,...,t } is a transcendence basis and so
[F(tyy...,t,):F], = n. Hence, S is a transcendence basis. I

6.3 The Discriminant of a Polynomial

We have seen that the Galois group Gp(p(x)) of a polynomial of
degree n is isomorphic to a subgroup of the symmetric group S, and
that the Galois group of a generic polynomial is isomorphic to S itself.
A special symmetric function of the roots of p(x), known as the
discriminant, provides a useful tool for determining whether or not the
Galois group is isomorphic to a subgroup of the alternating group.

Let p(x) be a polynomial over F, with roots ry,...,r, in a splitting
field E. Let
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6—H(r

i<j

The discriminant of p(x) is A = 62. Note that A # 0 if and only if p(x)
has no multiple roots.

Let us assume that A # 0. Hence p(x) is the product of distinct
separable polynomials, implying that F < E is a Galois extension. Each
o € Gp(p(x)) acts as a permutation of the roots r; and so

o6 =(-1)76

where (-1)7 is 1 if ¢ is an even permutation and -1 if ¢ is an odd
permutation. Hence, cA = A, implying that A € F. If char(F) = 2, then
o6 = 6 for all ¢ € Gp(p(x)) and so § € F.

If char(F)#2, we have two possibilities. If § € F then all o €
Gp(p(x)) fix 6 and are therefore even. Hence Gp(p(x)) is isomorphic to
a subgroup of the alternating group A, . If 6 ¢ F then Gp(p(x)) must
contain an odd permutation. It is not hard to show that if a subgroup
of S, contains an odd permutation then the subgroup has even order
and exactly half of its elements are even. Hence, if § ¢ F then Ggp(p(x))
has even order and

| Ge(p(x)) A, | =11 Gelp(x)) |

If we let H = Gp(p(x)) N A,, then F(H) < E is Galois, with Galois group
H and so

(E:F(H)] = |H| = 3| Gp(p(x)) | =3{E:F)]

which implies that [F(H):F] =2. But [F(6):F] =2 and F(é) C F(H),
whence F(H) = F(8). In words, the fixed field of the even permutations
in Gp(p(x)) is F(8). Let us summarize.

Theorem 6.3.1 Let p(x) € F[x] have splitting field E.

1) A =0 if and only if p(x) has multiple roots in E.
2)  Assume that A # 0 and char(F) # 2.

a) If A has a square root in F, then the Galois group Ggp(p(x)) is
isomorphic to a subgroup of the alternating group A .

b) If A does not have a square root in F, then the Galois group
Gp(p(x)) contains half odd and half even permutations of the
roots of p(x). In addition, the fixed field of Gp(p(x))NA,
F(V/A).

3)  Assume that A # 0 and char(F) = 2. Then A has a square root in

F, but Gp(p(x) need not be isomorphic to a subgroup of A .
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Proof. For part 3), observe that the generic polynomial
B(0) = (x =) (x— t,)
has Galois group S over F(s,...,s,). 1
The usefulness of Theorem 6.3.1 comes from the fact that A can

actually be computed in some cases. To see why this is so, observe that
6 is the Vandermonde determinant

n-—1
1

Taking the transpose and multiplying gives

Ug U3 = Uy g
u u sen u
1 2 n
A=
Upp Uy " Ugpg

where u; =ri1 +ri2+---+r§l. Newton’s identities can then be used to
determine the u;’s in terms of the coefficients of the polynomial in
question (see Example 6.2.1 and the exercises). We will see some
examples of this in the next section.

6.4 The Galois Groups of Some Small Degree
Polynomials

Quadratic Polynomials

Quadratic extensions (extensions of degree 2) hold no surprises except
perhaps for certain base fields of characteristic 2. Let

p(x) =x2+bx+c=(x—r)(x—s)

be a quadratic over F, with splitting field E. To compute the
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discriminant, observe that u; =r+s=b and

uy=r’+s?=(r+s)?-2s=b%-2

Hence

2 b
A= =2(b% - 2c) —b? =b% - 4c
b b%-2c

a familiar quantity.
If A =0 then p(x) has a double root r and

p(x) = (x —’r)2 =x% - 2rx +12

The root r will lie in F for most well-behaved base fields F. In
particular, if char(F) # 2, then -2r € F implies r € F. If char(F) =2
and F is perfect (a finite field, for example) then r € F. However, the
following example shows that p(x) may have a multiple root not lying
in F. Let F = Z,(t?) where t is transcendental over Z, and let

P(x) = x* —t? = (x—t)?

Since t ¢ Z,(t?), this polynomial is irreducible over Z,(t?), but has a
multiple root t ¢ F.

If A #0 then p(x) has distinct roots and there are two possibilities:
(i) the roots lie in F, p(x) is reducible and Gp(p(x)) is trivial, or (ii) the
roots do not lie in F, p(x) is irreducible and Ggp(p(x)) ~ Z, is generated
by the map o:r—s. When char(F) # 2, we can tell whether or not the
roots lie in F by looking at the discriminant, since the quadratic

formula gives
b+tvb2—4c_-btA
2 - 2

r,s=
Hence the roots lie in F if and only if A has a square root in F.

Theorem 6.4.1 Let p(x) € F[x] have degree 2.

1) If A=0 then p(x) = (x—r)? has a double root r, which may or
may not lie in F. In any case, Gp(p(x)) is trivial.

2) If A#0 then p(x) has distinct roots and there are two
possibilities: (i) the roots lie in F, p(x) is reducible and Gp(p(x)) is
trivial, or (ii) the roots do not lie in F, p(x) is irreducible and
Gr(p(x)) ~ Z, is generated by the map o:r—s.

3) If char(F) # 2 then all quadratic extensions F < E have the form
E = F(/a), for some a € F.
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Proof. Part 3) follows from the fact that if A is the discriminant of
min(a,F) then part 2) implies that \/Z ¢ F, whence E = F(\/K) 1

Let us turn now to a more interesting case.

Cubic Polynomials

Let
p(x) =x3 +bx? 4+ ex+d = (x—r)(x —s)(x—t) € F[x]

have splitting field E. Then p(x) is irreducible if and only if none of its
roots lie in F. Let us assume that p(x) is irreducible. A straightforward
but lengthy computation gives

A = —4b3d + b2%c? + 18bcd — 4¢3 — 27d°

Assume first that A = 0. Then p(x) has multiple roots and Corollary
1.6.4 implies that p(x) = q(xpk), where p = expchar(F) and pE> 1.
Since deg p(x) = 3, we must have p =3, k =1 and so

p(x) = (x—1)’ =x> =1
has a single root of multiplicity 3. The extension F < F(r) = E is purely
inseparable of degree 3 and the Galois group is trivial.

If A # 0 then p(x) has no multiple roots and is therefore separable.
Hence, F < E is Galois and | Gp(p(x)) | = [E:F]. Since r ¢ F, we have
[E:F] > 1, which leaves the possibilities [E:F] =3 or 6. If p(x) splits in
F(r), then [E:F] =3 and the Galois group is isomorphic to A3~ Z5. If
p(x) does not split in F(r), then [E:F] =6, in which case the Galois
group is isomorphic to S;. When char(F) # 2, these two cases can be
distinguished by examining the discriminant. If \/A— € F, then

Gr(p(x)) ~ Az and if V/A ¢ F then Gp(p(x)) = S;.

Theorem 6.4.2 Let p(x) € F[x] be irreducible of degree 3.

1) If A=0 then p(x) has a single root of multiplicity 3 and
char(F) = 3. The Galois group is trivial.

2) If A #0 then Gp(p(x)) =~ Aj or S;.

2)  Let char(F) # 2. If 0 # /A € F then Gp(p(x)) ~ A3 and adjoining
a single root of p(x) to F gives the splitting field for p(x). If
V/A ¢ F then Gp(p(x)) = S5. 0

Example 6.4.1 Let p(x) = x3—-2x?—x+1 over Q. Any rational root of
p(x) must be 1 (Theorem 1.2.2) and so p(x) is irreducible. The
discriminant is A =49 which has a square root in Q and so
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Go(p(x)) = A3 is cyclic of order 3. On the other hand, the irreducible
polynomial q(x) = x3~x+1 has discriminant A = -23, which has no
square root in Q. Hence, its Galois group is isomorphic to S;. [

*Quartic Polynomials

Since the Galois group of an irreducible quartic polynomial is
isomorphic to a transitive subgroup of S,, we should begin by
determining all such subgroups of S,. Theorem 0.2.21 implies that if G
is a transitive subgroup of S, then |G| =4, 8, 12 or 24. Here is a list.

1) The cyclic group Z, occurs as a subgroup of S,, for instance
((1234)) ~ 2,.
2)  The four group Z, x Z, occurs as a subgroup of S,. In particular

V= {4, (12)(34), (13)(24), (14)(23)}

is isomorphic to Z, xZ, and is known as the viergruppe. We leave
it to the reader to show that V is normal in S,. This and the
previous case exhaust all nonisomorphic groups of order 4.

3)  The dihedral group D, of symmetries of the square, thought of as
permutations of the corners of the square, is a subgroup of S, of
order 8. Since D, is a Sylow 2-subgroup of S,, all subgroups of S,
of order 8 are isomorphic to D,.

4)  The alternating group A, is the only subgroup of S, of index 2,
that is, of order 12.

5)  Of course, S, is the only subgroup of S, of order 24.

Let p(x) =x?4ax34+bx?+cx+d be an irreducible quartic over F
and let us assume that char(F) # 2, 3. This will insure that 4 # 0 and
that all irreducible cubic polynomials that we may encounter are
separable. Replacing x by x—a/4 will eliminate the cubic term,
resulting in a polynomial of the form

q(x) =x*+px® +qx +1

The polynomials p(x) and q(x) have the same splitting field and hence
the same Galois group, so let us work with g(x). Let E be the splitting
field of q(x), let ry,...,r, be its roots in E and let G = Gg(E) be its
Galois group. For convenience, we identify G with its isomorphic image
in §,.

The Quartic x + bx? +cC

In order to get our feet wet, let us first consider the special case
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q(x) =x*+bx?+c
If we denote the roots of q(x) in E by +a, + 3 then E = F(e,8) and
b= —(a?+ 42, c=a?p?
We define the associated quadratic to q(x) to be
q(x) =x*+bx+c
The roots a? and 82 of G(x) are given by

2 o2_-b+ b% —4c
a?, g2 = ThE VD —de

The irreducibility of q(x) can be determined as follows. Certainly if
q(x) is reducible over F, then so is q(x). On the other hand, if g(x) is
irreducible then its roots a® and 42 do not lie in F, whence q(x) cannot
have a linear factor over F and, if reducible, must have the form

q(x) = x* + bx? 4 ¢ = (x2 4 ux + v)(x% — ux + w)
where, as seen by equating coefficients, u(v —w) = 0. However, if u =0
then
q(x) = (x* + v)(x* + w)
which gives
q(x) = (x+v)(x +w)

contradicting the irreducibility of g(x). Thus, u # 0 and v = w. We can
summarize as follows:

1) If v'b%—4c € F then §(x), and therefore q(x), is reducible.
2) If vb®—4c¢F then q(x) is reducible if and only if it has the

form
q(x) = x* +bx? 4+ ¢ = (x? + ux + v)(x? —ux + v)

2

where v2 =c and 2v—u? =b.

For example, let q(x) = x* + 6x% +4 over Q. Then b%—4c =20 and
V20 ¢ Q. From 2) above we have

vi=4,v= %2
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and
wW=2v-6=+4-6=-2,-10

and since the latter has no solutions u € Q, we see that q(x) is
irreducible over Q.

Let us now assume that q(x) is irreducible over F and has distinct
roots. We have seen that [E:F] =4, 8, 12 or 24. However, not all
permutations of the roots are elements of the Galois group G. For
instance, if ¢ € G sends a to 8, it must send —a to —3. The possibilities
for elements of G are listed below, where we give the action on « and S,
as well as a description as a product of transpositions, assuming that
the roots are taken in the order o, 8, —-a, -8.

1) o:a—a, f—4 (1)

2) oga—a, f—--F  (24)

3) oz:a—-a, f—0 (13)

4) oga—-a, f—-F (13)(24)

5) o5:a—p, foa (12)(34)

6) oga—p fo-a  (14)(13)(12)
7 opa—-p, f—a  (12)(13)(14)
8) oga—-F, f—-a (14)(23)

Note that all nonidentity maps have order 2 except o and a,. In fact,
{o4y...,08} is isomorphic to the dihedral group D,, with rotation og
(order 4) and reflection og (order 2). Thus G is (isomorphic to) a
subgroup of D, and so [E:F] =4 or 8. In the latter case G o~ D,. In the
former case, G~Z ,0or G~ V.

The square root of the discriminant of q(x) is

8= (a~ p)(a+a)(a+p)(B +a)(B + f)(-a+ ) = -4af(o” - )
and since (a? — %)% is invariant under each oy, it must lie in the base
field F. Hence, 6§ € F if and only if af € F, or equivalently, \/E eF. It
follows from Theorem 6.3.1 that

1) If \/(_:E F then G is isomorphic to a subgroup of A,. Thus, it
contains only even permutations and so

G = {0,,04,0508} =V

2) If /c¢F then G contains half even and half odd permutations
and GNA, is F(8§) = F(/c).
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Under case 2), we still have the possibilities |G| =4 or |G| =8.
In the former case, GNA, must consist of ¢; and one of the even
permutations o4, o5 or og. The other two elements of G must come
from the odd permutations ¢,, 03, 05 and o5. If G has no element of
order 4, then we can eliminate o4 and o,. But it is easy to check that
the set {0,,0,,04,03}, where i =4, 5 or 8, is not transitive on the roots
of q(x). Hence, G must contain an element of order 4 and

G={oy,050i=0403=0,}~1,

To identify the case G >~ Z, directly from the coefficients of q(x),
observe that in this case [E:F(,/c)] =2 and so q(x) has an irreducible
quadratic factor over F(y/c). Thus,

— ¢4 2 — (2 2
q(x) = x4+ bx*+ ¢ = (x* + ux + v)(x* —ux + w)
where r(x) = x? + ux + v is irreducible over F(y/c). Since
GF(\/;)(E) = {0y, 04}

it follows that o4 must send one root of r(x) to the other root and so
the roots of r(x) are +a or + f. In either case, u = 0 and so

(6.4.1) q(x) = x* +bx? + ¢ = (x2 + v)(x% +w)
which implies that G(x) is reducible over F(,/c), that is,

Vb? —4c € F(1/<)

Ve(bZ—4c) €F

Conversely, if this holds, then §(x) is reducible over F(\/E) and
therefore q(x) has the form (6.4.1), where v, w € F(,/c). Since vw =,
the polynomial q(x) splits over F(\/E,\/V), whence E=F(\/(_:,\/\_/)
Thus, [E:F(,/c)] =2 and [E:F] = 4. Let us summarize.

or, equivalently,

Theorem 6.4.3 Let q(x) = x* + bx? 4 ¢ be irreducible with distinct roots
over F. Let G be the Galois group of q(x). Let V be the viergruppe.

1) Ify/ceFthenG=V.

2) If/c¢F and \/c(b2 —4c) € F then G ~ Z, and q(x) is reducible
over F(,/c).
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3) If Jc¢F and c(b?~4c)¢F then G~D, and q(x) is
irreducible over F(4/c). 0

The General Quartic

To analyze the general quartic polynomial p(x), we consider which
elements of the Galois group lie in the viergruppe V. This gives us a
subgroup VNG of G and hence an intermediate subfield F(VNG) of
the splitting field E. Since V 4 S, we have VNG < G. Our guide will be
Figure 6.4.1.

E = split(p(x)) ¢ ¢ Gep(x) =G
possible degrees:
degree: 1,20r4 | ) { 1 [r(x) splits over F]

2 [r(x) has one root in F]
3 or 6 [r(x) irred. over F]

FVAG) = split(r(x)) 4 $ VAG
possible degrees:
1 [r(x) splits over F] ) { | degree:120r4

2 [r(x) has one root in F]
3 or 6 [r(x) irred. over F)

F e L
Figure 6.4.1

To determine the fixed field of VNG, note that each element of V
fixes the elements

u = (ry +r9)(r3+1y)
v =(r; +13)(ry+14)
w = (ry +1,)(ry +13)

and so F(u,v,w) < F(VNG). By checking each permutation in S, it is
not hard to see that no permutation outside of V fixes u, v and w.
Thus,

GF(u,v,w)(E) <vVnG

Taking fixed fields gives F(VNG)<F(u,v,w) and so F(VNG)=
F(u,v,w).

Note also that any element of S, permutes the elements u, v and w
and so any symmetric function of u, v and w is also a symmetric
function of ry,...,ry.

Definition The resolvent cubic of q(x)=x*+px?®+qx+r is the
polynomial r(x) = (x —u)(x — v)(x —w). 0



142 6 Galois Theory II

To determine the coefficients of r(x), note that since q(x) has no
cubic term, it follows that r; +r, 4+ r3+1r, = 0. Hence,

(ry + r2)2 = —(r; +1)(r3+14) = -u

Thus, r(x) is a polynomial satisfied by —(r, +r,)%. The polynomial q(x)
factors into a product of quadratic polynomials over E, say

a(x) = (x* + ax + b)(x? — ax +c)

where the linear coefficients are negatives of each other since q(x) has
no cubic term. We can always renumber so that the roots of the first
factor are r; and ry, whence a=-(r;+r;). Multiplying out the
expression for q(x) and equating coefficients gives

b+c—aZ=p
ac—ab=gq
be =1

Solving the first two for b and ¢ and substituting into the third gives
a®+2pat 4+ (p? —4r)a?—¢* =0
and so a? = (r; +1,)? = —u satisfies the polynomial
s(x) = x> + 2px? + (p? — 4r)x — ¢*
Thus u satisfies the polynomial
t(x) = x3 — 2px? + (p? — 4r)x + ¢*

Since we will get the same polynomial by repeating this argument
using r; + 15 or r; +1, in place of r; + 1, we deduce that t(x) is the
resolvent cubic of q(x).

Theorem 6.4.4 The resolvent cubic of q(x) = xt+px?+qx+ris
1(x) = x> — 2px? + (p% — 4r)x + ¢
The splitting field of r(x) over F is the fixed field F(V N G). Hence,
| Gp(r(x)) | = [F(VNG):F]=(G:VNG) 0

Let us put all of the pieces together.
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Theorem 6.4.5 Let p(x) =x*+ax3+bx?+cx+d be an irreducible
quartic over a field F, with char(F) # 2, 3. Let q(x) = x* + px> + qx +r
be obtained from p(x) by substituting x —a/4 for x and let r(x) =
x3 — 2px? 4 (p? — 4r)x + g% be the resolvent cubic of q(x). Let A, be the
discriminant of r(x) and let E be the splitting field for p(x) over F.

1)  If r(x) is irreducible over F and /A € F then Gp(p(x)) ~ A,.
2)  If r(x) is irreducible over F and /A ¢ F then Gp(p(x)) ~S,.
3)  If r(x) splits over F then Gp(p(x)) ~ V.

4) If r(x) has a single root in F there are two possibilities: (i) if p(x)
is reducible over F(VNG) it has an irreducible quadratic factor
and Gp(p(x)) ~ Z,, (ii) if p(x) is irreducible over F(VNG) then
Gr(p(x)) =~ Dy,

Proof. Let G = Gg(p(x)). The situation is described in Figure 6.4.1. We

begin by observing that VN G < V and so

[IVNG| =1,20r4, (G:VNG)=1,2,30r6
and

VNG| x(G:VNG) = |G| =4, 8,12 0r 24

This shows immediately that |VNG| #1. Let us write the
possibilities as follows

VNG| x(G:VNG) = |G|
(2/4) x (1/2/3/6) = (4/8/12/24)

Now we can use Theorem 6.4.2. Let S be the splitting field of r(x)
over F.

1) If r(x) is irreducible and /A € F then Gp(r(x)) ~ A3. Theorem
6.4.4 gives (G:VNG) = 3, which implies that | VNG| =4 and so
|G| =12. Thus G ~ A,.

2) If r(x) is irreducible and /A ¢F then Gp(r(x)) ~S;. Hence
(G:VNG)=6.If |VNG| =2 then |G| =12 so G~ A,. But
VCA, then implies that |VNG| =4. Thus, |VNG| #2,
leaving the only other possibility: |VNG| =4. Hence |G| =24
and G ~S,.

3) If r(x) splits over F then (G:VNG)=[S:F]=1 and so
|[VNG| =4, whence VC G and G ~ V.

4) Suppose that r(x) has a single root in F. Then (G:VNG)=

- [S:F] =2. There are two possibilities. If |VNG| =2 then
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|G| =4 and so G~ Z, or V. We leave it to the reader to show
that since G acts transitively, G~V is not possible. Hence,
G ~ Z,. Note that, in this case, since E is the splitting field for
p(x) over S and [E:S] =2 the polynomial p(x) must have an
irreducible quadratic factor over S. If |[VNG| =4 then |G| =8
and G ~ D,. In this case, p(x) is irreducible over S. i

Exercises

1.

Let p(x) = x" — alx“_1 +---+a, where a,,...,a_ are algebraically
independent over F. Show that p(x) is irreducible over
F(a;,...,a,), separable and its Galois group is isomorphic to S .
Give an example to show that separability is required in Corollary
6.2.3.

If p(x) is a quartic polynomial then its discriminant is the
negative of the discriminant of its resolvent cubic. Hint: u—v =
=(ry —14)(ry —13).

Find the Galois groups of the following polynomials: (i)
x*—10x2+1; (1) x*—4x+2; (i) xP48x-12 (iv)
x*+x?+x+1

If p(x) € F[x] has roots ry,...,r, then A = (—l)n(n"l)/2 ITp'(ry).

Let p(x) € Q[x] have degree 3. Show that A <0 if and olnly if p(x)
has exactly one real root.
Show that the splitting field for an irreducible cubic polynomial
over F is given by F(1v/A,r), where 1 is a root of f(x) and A is the
discriminant.
Let p(x) = (x —r)(x —s)(x —t), where r, s and t are algebraically
independent over Z,. Let s, sy, s; be the elementary symmetric
functions on 1, s and t. Show that /A € F(s;,89,83) but the Galois
group of p(x) over F(s;,s,,85) is isomorphic to S;.
Let

p(x) = x" —5,;x" 1 4. 4 (-1)",

have roots ry,...,r, in a splitting field E over F. Let u;=
rj + 15 +---+1}. Since the u;’s are symmetric polynomials in the
roots of p(x), Theorem 6.2.2 implies that they can be expressed as
symmetric polynomials in the elementary symmetric functions
S1y+++,Sy. One way to derive an expression relating the u;’s to the
s;’s is by following the proof of Theorem 6.2.2. Here is another
way. Let p(x) = (x —r;)q;(x) in E[x].

a) Show that DXtlp(x) = P D¥q;(x).
i
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10.

11.

12.

b) Write
a0 =222

and use part a) to derive Newton’s identities:
Wy = Upe_8y + g8 + oo+ (=D Muysy_y + (-1)Fksy =0

fork=1,2,3,.
c) Let p(x) =a+bx+x" Find the values of u; and find the
discriminant of p(x).
Show that the viergruppe V is normal in S,. Find another
subgroup of S, besides V that is isomorphic to V.
This exercise concerns the issue of when a real number that is
expressed in terms of nested radicals

:I\/r+s\/€

where 1, s, t € F can be written in terms of at most two unnested
radicals. For instance, we have

Vo4 VL = /B + VT

but the number /7 + 24/5 cannot be so written. Note that a is a
root of the quartic

q(x) = x* = 20 4 (2 = 8%1) = [ - (r + sy/D)x? = (¢ - 51/

Assume that q(x) is irreducible over F. The question we are
interested in is whether a € F(\/;_),\/a) for some p and q in F.
Show that the answer to this question is yes if and only if
F(,/P,4/q) is the splitting field E for q(x) over F. Then show that
E= F(\/_ /@) if and only if the Galois group G of q(x) over F is
the viergruppe V. Hence, o € F( \/—,\/-) if and only if

Vr2-—s2t€F

Find a way to compute the unnested expression for o in terms of

/P and ,/q.

Let p(x) = x* + bx® + cx? + dx + 1 € Q[x] have Galois group G.

(i) If u =c? 4 4c + 4 — 4b? has a square root in Q then G ~ V.

(ii) If u does not have a square root in @ but u(b? —4c + 8) does
have a square root in Q@ then G ~ Z,.

(iil) If neither u nor u(b?— 4c + 8) has a square root in Q then
G~D,.



Chapter 7
A Field Extension as a Vector Space

In this chapter, we take a closer look at a finite field extension F < E
from the point of view that E is a vector space over F. It is clear, for
instance, that any ¢ € Gp(E) is a linear operator on E over F. However,
there are many linear operators that are not field automorphisms. One
of the most important is multiplication by a fixed element of E, which
we study next.

7.1 The Norm and the Trace

Let F < E be finite and let o € E. The multiplication map &:E—E
defined by @8 = af is an F-linear operator from E to E, since

a(uf + vy) = uapf + vay

for all u, veF and 8, vy € E. We wish to find a basis for E over F
under which the matrix of & has a nice form.

Note that if r(x) € F[x], then r(@)8 =1(a)B for all € E and so
r(a) = 0 as an element of E if and only if r(&) is the zero operator on E.
Hence, the set of polynomials over F satisfied by & is precisely the same
as the set of polynomials satisfied by a. In particular, they have the
same minimal polynomial over F.

The vector subspace F(a) of E is invariant under &, since &(p(a)) =
ap(a) € F(a). If B={p,,...,84} is an ordered basis for F(a) over F
and if

d
a8, = 3 b ;

j=1
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then the matrix of @| p(,) With respect to B is M = (b ;). If {711--27e}
is a basis for E over F(a) where e = [E:F(a)], then the set of products

C= {71ﬂ1171ﬁ2a--'a71ﬂd’---1---a7eﬂ1,7eﬂ2a“-’7eﬂd}

is a basis for E over F. Since
d
a(nhy) = Zbi,j')’k@j
=1

it follows that each of the subspaces Vi = (781782 --+»7Ba) is
invariant under @ and the matrix of @|y is also equal to M. Hence,
the matrix of & with respect to the ordéred basis C has the block
diagonal form

oo
Booco

(7.1.1) Mo(B) =

0

coco R

0
M
0"
0

Thus, if the characteristic polynomial of &|F( a) is q(x), then the
characteristic polynomial of @ (on E) is
4a(x) = a(x)fEF @)
But q(x) € F[x] has degree [F(a):F] = deg min(a,F), is monic and is also
satisfied by a, whence q(x) = min(a,F).

Theorem 7.1.1 Let F < E be finite and let a € E. If &:E—E is the F-
linear operator on E defined by af =af then the characteristic
polynomial of @ is

ag(x) = [min(a,F)]EF ) 0

We recall from linear algebra that if 7:V—V is a linear operator on a
finite dimensional vector space V over F, the trace of 7 is the sum of
the eigenvalues of 7 and the norm (determinant) of 7 is the product of
the eigenvalues of 7, in both cases counting multiplicities. Recall also
that the trace and the norm both lie in the base field F. We are
motivated to make the following definition.

Definition Let F < E be finite and let o € E. The trace of a over F < E,
denoted by Trg /F(a), is the trace of the F-linear operator @:E—E and
the norm of a over F < E, denoted by NE/F(a), is the norm of a:E—E.0
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Note that the trace and norm of o depend on the extension field E, and
not just on the element « itself.

Since the trace of a linear operator is the sum of the roots of its
characteristic polynomial and the norm is the product of these roots,
Theorem 7.1.1 allows us to express the trace and norm in terms of the
roots of the minimal polynomial. Let F < E be finite, let a € E and let

p(x) = min(a,F) = xd + a,d_lxd_1

+ “ee + ao
have roots ry,...,rq in a splitting field. It follows from Theorem 7.1.1

that
d

Trg p(e) = [E:F(a)] ;ri = -[E:F(e)]ag_,

and 4
NE/F(a) - Hri[E:F(a)] — [(_l)dao][E:F(a)]
i=1

We remark that many authors simply define the trace and norm of «
directly from these formulas.

Alternate expressions for the trace and the norm can be obtained as
follows. Let r,,...,r; be the distinct roots of p(x). Each of these roots
appears with multiplicity [F(a):F]; (Theorem 4.6.1) and so

Trgp(a) = [EF()][F(e):F); Y 1 = [E:F(a)][E:F} Y
i=1 i=1
and
= E:F(a)][F(a):F). g E:Fva E:F).
NE/F(O‘) _ Hfi[ ()F(a):F); _ Hr‘[ (@] [E:F];

1

i=1 i=1

Now let us take a look at the trace and the norm from the
perspective of embeddings of E into an algebraic closure. Let F < E be
finite and let Homg(E,F) = {0y,...,0,} be the set of all embeddings of
E into F over F. If a € E and p(x) = min(a,F), then 00,...,0,a is a
list of the roots of p(x) in F. However, each root may appear more than
once in this list.

To see how many times each root appears, consider the tower
F < F(a) < E. Each embedding o; is obtained by extending to E an F-
embedding T of F(a) into F, and this can be done in [E:F(a)] different
ways. Each extension of 7 has the same value on a and each embedding
7 of F(e) into F has a different value on . Hence, the list 010...,0,0
contains exactly [E:F(a)]; copies of each root of p(x). Thus, if ry,...,t
are the distinct roots of p(x) in F, then

s
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and

These formulas give another expression for the norm and the trace. Let

7 A Field Extension as a Vector Space

i o,a = [E:F(a)], Zs: L
i=1 i=1

ﬁd_a _ ﬁr.[E:F(a)]s

us sumrnarize.

Theorem 7.1.2 Let F <E be finite and let a€E with p(x) =

min(a,F) = x4 + ad_lxd"l +-+ag.

1)

2)

3)

Theorem 7.1.2 can be used to derive some basic properties of the
trace and the norm. We leave proof of the following to the reader.

If p(x) has roots ry,...,rq then

d
Trg/p(@) = [E:F(a)] ;ri = -[E:F(a)]ay_,
and A
Ng/p(a) = H'i[E:F (@)] — [(~1)dag)EF (@)

i=1

If p(x) has distinct roots ry,...,r, then

8

Trgp(e) = [E:F(a)],[E:F]; Zri

i=1
and

= E:F(a)]_[E:F].
Ng/p(e) = Efi[ (@ LEF;

If Homg(E,F) = {0y,...,0,} then

TrE/F(a) = [E:F]; Za’ia
i=1

and

NE/F(") - ﬁ (o,ia)[E:F]i

i=1
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Theorem 7.1.3 Let F < E be finite.

1) The trace is an F-linear functional on E, that is, for all ¢, 3 € E
and a, beF,

Trgp(ac+bf) = a Trg p(a)+b Trg,p(6)

2) Forala,feEanda€F

Ng/p(eB) = Ng/p(@)Ng/p(8) and Np p(aa) = aFI N p(a)
3) IfacF then
Trg/p(a) = [E:Fla and Ng/p(a) = al*F)
3) IfF <E<L are finite and if « € L then
Try, p(e) = Trgp(Tryg(e)); Ny p(a) = Ng/p(Np /g(e)) 0

*7.2 The Discriminant of Field Elements

Our goal in this section is to describe conditions that guarantee that
a given set {oy,...,a,} of elements of E is a basis for E over F. We
begin with a few remarks on metric vector spaces. (For more details, see
Roman, Advanced Linear Algebra, Springer-Verlag, Graduate Texts in
Mathematics Vol. 135, 1992.)

Definition Let V be a vector space over a field F. A mapping
(,):Vx V—F is called a bilinear form if it is a linear function of each
coordinate, that is, if for all x,y € V and o, € F

(ax + By,z) = a(x,z) + B(y,z) and (z,0x + By) = a(z,x) + B(z,y)

The pair (V,(,)) is called a metric vector space. A bilinear form is
symmetric if (x,y) = (y,x) for all x, y € V. 0

If SCV, we let (x,S) = {(x,s) | s € S}.

Definition A metric vector space is nonsingular if (x,V) = {0} implies
that x = 0. A metric vector space V is null if (x,y) =0 for all x, y e V. [

If B={b;} is a basis for V over F and if x= ) x;b; € V, we will
denote the coordinate (row) matrix (x,,...,x,) by the boldface notation
x. The matrix of the form (,) with respect to @ is
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MqB = ((bhbj))

Here are some key facts about the matrix of a form. We leave proof
to the reader.

Theorem 7.2.1
1)  If Mgy is the matrix of a bilinear form on V then

(X1Y) = XM%yT

forall x,yeV.

2) Two matrices M and N represent the same bilinear forms on V,
with respect to possibly different bases, if and only if they are
congruent, that is, if and only if M = PNP" for some invertible
matrix P.

3) A metric vector space is nonsingular if and only if any, and hence
all, of the matrices that represent the form are nonsingular. 0

Now we can return to the business at hand. Let F < E be a finite
extension and let

(7.2.1) (o,8) = Trg p(aB)

for all @, B € E. This is easily verified to be a symmetric bilinear form
on E over F. If B = {f,,...,8,} is a basis for E over F, then the matrix
of the form (,) is

MG_B = ((ﬂivﬂj)) = (TrE/F(ﬂiﬂj))

This form has rather special properties, due to the fact that

(70"18) = (a77ﬂ)
for all a, B, y €E.

Theorem 7.2.2 Let F < E be finite, with form given by (7.2.1). Then
either

1) E is null and the trace map is identically zero, or
2) Eis nonsingular and every matrix representing (,) is nonsingular.

Proof. If E is singular then (a,E) =0 for some « # 0 and so (1,E) =
{0}. It follows that (,) is null and the trace map is identically zero.

Thus, any matrix representing the form (7.2.1) is either the zero
matrix or it is nonsingular. Note that, if char(F) = p # 0, then the zero
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matrix will arise when p | Trg /F(a) for all a € E. Referring to part 3) of
Theorem 7.1.2, we see that this happens when [E:F]; > 1, since [E:F); is
a power of p. In other words, if F < E is not separable, then E is null.
The converse also holds.

Theorem 7.2.3 Let F <E be finite, with form (7.2.1). Then E is
nonsingular if and only if F < E is separable.

Proof. We have just seen that if F <E is not separable then E is
singular. For the converse, suppose that F < E is finite and separable.
Then there exists a primitive element o € E. If E = F(a) has degree n
over F then the elements 1, a,...,a®! form a basis for E over F.
Referring to part 3) of Theorem 7.1.2, and letting o; = oo be the roots
of min(a,F) and o* = (ak,...,ak), we have

. n . n . .
Trg p(e*e’) = Y oj(a ad) = Y akal = o*(a))”
i=1 i=1
Thus, if V is the Vandermonde matrix
a® 1 1 1
al o, ay o g
v=| a® [= a% a% ag_l
| | op ot e and
then
[Trg/p(a*a))] = VVT
and so

det(Trg /p(a*ad)) = (det V)?

It is well-known that
det V = H (ai bl aj)
i<j

Since o is separable, the a;’s, being the roots of the separable
polynomial min(a,F), are distinct and so det V#0. Hence (,) is
nonsingular.
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In view of the previous results, the trace map and the form (7.2.1)
are interesting only when the form is nonsingular, that is, only when
F < E is separable.

Definition Let F < E be finite and let ay,...,a, € E. The discriminant
of a;,...,a, is the determinant
AE/F(ala---aan) = '(aiaaj)l = |TrE/F(aiaj)|

Thus, if ay,...,0, is a basis for E over F then the discriminant is the
determinant of the matrix that represents the form (7.2.1) with respect
to this basis. [1

When F < E is finite and separable, the discriminant can be used to
determine whether or not a set of vectors is a basis for E over F.

Theorem 7.24 If F <E is finite and separable of degree n, then
{ay,...,0,} is a basis for E over F if and only if AE/F(al,...,an) #0.

Proof. Since E is nonsingular, if {a,,...,a,} is a basis for E over F,
then ({a;,@;)) is nonsingular and so Ag /F(al’ .,ap) # 0. Conversely,
assume that AE/F(O‘I’ .,ay) # 0 and that

Yae=0
i
for a; € F. Multiplying by oy and taking the trace gives
Z aTrg (o) =0

and since the rows of the matrix (TrE r(a;;)) are linearly independent,
we have a; = 0 for all i, whence {a;,...,a,} 1s a basis for E over F. 11

We next derive an alternate expression for the discriminant. Let
F < E be finite and separable and let o;,...,a, € E. Let Hom(E,F) =

{o4s...,0,} and consider the matrix
01 Oy v Op0y
00y Oa0, <+ OO
12 272 n-2
(7.2.2) M(ay,...,a,) = .
010 020y Tnlp
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If A=M(ay,...,a,) and B =M(f,,...,B,) is the corresponding matrix
for fy,..., B € E then the (i,j)-th entry of AB” is

and so k ,

M(eyy- -y )M(Byy- .. By) " = (Trg/p(y8;))

In particular, if 8; = q; for all i, then

M(eyy. .y ) M(ay,. .y ay)’ = (TrE/F(aiaj))
Taking determinants gives the following.

Theorem 7.2.5 Let F < E be finite and let a;,...,a, € E. Then

Ap/p(agse o) = | M(ey,...p0) |2

Thus, {a;,...,a,} is a basis for E over F if and only if

| M(ays...,0) | #0 0

*7.3 Algebraic Independence of Embeddings

Let E and L be fields. Recall that the Dedekind Independence
Theorem (Corollary 2.8.7) says that any set {oy,...,0,} of distinct
embeddings of E into L is linearly independent over L. To put this
another way, let A, € L. and consider the polynomial p(x,,...,x,)=
Y Ax;. Then the Dedekind Independence Theorem says that if
p(04,...,0,) is the zero map, then p(xy,...,x;) must be the zero
polynomial. Under certain circumstances, we can strengthen this result
considerably.

If o4,...,0, are embeddings of E into L and if p(x;,...,x,) is a
polynomial with coefficients in L then p(o,,...,0,) is a function from E
into L, defined by

p(0qs...10)a =p(040y...,0,0)

Note that we are dealing here with the product of maps, and not the
composition. Thus, for instance, if n = 1 and p(x) = x2, we have

p(0)a = p(oa) = (0a)?
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and not p(0)a = o’a = o(ca).

Definition Let F <E. A set of distinct F-embeddings {c,,...,0,} of E
into a field L is algebraically independent over L if the only polynomial
P(Xqs- -3 X,) € L[xg,...,x,] for which p(ay,...,0,) is the zero function is
the zero polynomial. [

Theorem 7.3.1 Let F be an infinite field, let F <E be finite and
separable of degree n. Then any set {o;,...,0,} of distinct F-
embeddings of E into any field L is algebraically independent over L.

Proof. Suppose that p(x;,...,x,) is a polynomial over L for which
p(0yy...,0,)a =0 for all a € E. Let {o;} be a basis for E over F. Then
for all a; € F, we have

P(0q 22850,y 0p 2 a0) = p( 80405, > 80,04) =0
i i i i
This implies that the polynomial
q(xy,...,%,) = p( inalai,..., inanai
i i

over L satisfies q(a;,...,a,) =0 for all a; € F. It follows from Theorem
1.3.4 that q(x;,...,x,) =0, that is,

P( X010y D X0,04) =0

Now, the matrix M(a;,...,a,) = (0;a;) is nonsingular by Theorem 7.2.5
and so for any f;,...,8, € L, there exists x;,...,x, € E such that

By = X010 ..., By = D x0,0

Hence p(8,,...,8,) = 0 for all §; € L, implying that p(x,,...,x,) = 0.}

*7.4 The Normal Basis Theorem

Let F < E be a finite Galois extension of degree n. Since F < E is
finite and separable, there exists a A € E such that E = F()). As we
know, the set {1,},...,A""!} is a basis for E over F. This type of basis
is called a polynomial basis. If GR(E) = {0,,...,0,} then the elements
01A,...,0,A are precisely the roots of min(A,F) and so they are distinct.
If they are linearly independent, then they also form a basis for E over
F, called a normal basis. Put succinctly, a normal basis is a basis for E
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over F consisting of the roots of some minimal polynomial min(),F), for
A€eE.

We wish to show that any finite Galois extension has a normal basis.
Theorem 7.2.5 can be reworded for finite Galois extensions as follows.

Theorem 7.4.1 If F < E is finite and Galois, with Gp(E) = {0,...,0,}
then {};,...,A,} is a basis for E over F if and only if det(o;};) # 0.

Proof. We give a proof that does not use the notions of Section 7.2. Let
o = ) B0, for B; € E. Since distinct F-automorphisms of E are linearly
independent over E, it follows that o = 0 if and only if 8; = 0 for all i.
Now suppose that B = {},,...,A_} is a basis for E over F. Then o =0 if
and only if a/\j = 0 for all j, that is, if and only if Eiﬁi"'i’\j =0, for all
j=1,...,n. It follows that ziﬂi“i)‘j =0 for all j =1,...,n if and only
if 8, =0 for alli =1,...,n. Hence, det(ai/\j) # 0.
Conversely, suppose that det(vi/\j) # 0 and let Ejﬂj)\j = 0. Then

i
for all i =1,...,n. It follows that 8, =0 for all j=1,...,n and so N}
is a basis for E over F. 1

Theorem 7.4.1 implies that {o;} is a (normal) basis for E over F if
and only if det(s;0;A) # 0. Our goal is to find such an element A € E,
when F < E is finite and Galois.

Consider the matrix

010y 0410, 01%n
0,0 0,0 0,0
201 202 2%n
M=
i Una'l 0'n0'2 O'nO'n

For each i, the product 0;0; runs through ¢,,...,0, as j runs through
1,...,n, and so each row of M is a distinct permutation of oy,...,0.
The same applies to the columns of M. Thus, we may write

o' 0 e a
L 1y In
U 0’ v 0
M= 4 2y 2,
0' o’ oo a
I M ) L
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where (1;,2;,...,n;) is a distinct permutation of {1,...,n}, fori=1,...,n
and (jy,jg,...,Jp) is a distinct permutation of {1,...,n}, for j =1,...,n.
Replacing each o; by an independent variable x; gives the matrix

X X X
L 1y 1
X X X
2 2 2
N(xl,...,xn)z 1 2 n
X X X
L M ng oh ]

We claim that the polynomial p(xy,...,x,)=det(N(x,,...,x,)) is
nonzero. Each row of N is a distinct permutation of the variables
Xyy...,X, and similarly for each column. Thus N(1,0,...,0) is a
permutation matriz, that is, each row and each column of N contains
one 1 and the rest 0’s. Since permutation matrices are nonsingular

p(1,0,...,0) = det(N(1,0,...,0)) # 0

Hence, p(xy,...,x,) # 0.

If F is an infinite field, Theorem 7.3.1 implies that the distinct
embeddings o,,...,0, of E into L are algebraically independent over L
and so there exists a A € L for which

det(o;0;A) = (det M)(A) = p(0y,...,0,)A #0
Thus, we have proven the following.

Theorem 7.4.2 If F is an infinite field then any finite Galois extension
F < E has a normal basis. [

This result holds for finite fields as well and the proof will be given
in Chapter 8.

Exercises
1. Let F < E be finite. For all o, 8 € E,

TrE/F(a+,6) = TrE/F(a)+TrE/F(ﬂ), NE/F(a,B) = NE/F(a)NE/F(ﬂ)

2. Let F<E be finite. If a€F then TrE/F(a)z[E:F]a and
Ng/p() = o)
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10.

If F < E <L are finite and if a € L then

Let F<E be finite and let o € Homp(E,L). If o € E then
N, g/or(00) = a(NE/F(a)). State and prove a similar statement
for the trace.
Find a normal basis for the splitting field of p(x) = x* —5x% + 6
over Q.
If F is a finite field of characteristic 2 show that every element of
F has a square root in F.
If F is a finite field of characteristic p # 2 then exactly half the
nonzero elements of F have square roots in F and that if o € F has
a square root in F then the set of all squares in F is {#%a | 8 € F}.
Let F <E be a finite separable extension, with E = F(a). Let
p(x) = min(e,F) have degree n. Show that the discriminant
Ag/p(L,a,...,a"1) is given by (-1)""DNL L(p(a)).
Let F < E be finite and separable with form (7.2.1) and let {o;} be
a basis for E over F. The dual basis {§;} to {o;} is a basis with
the property that

Trg p(ei85) = (,8) = 6 5
where 6;; =1 if i =j and 0 otherwise. In matrix terms, {o;} and
{B;} are dual bases if

M(Otl,...,ozn)M(ﬂl,...,ﬂn)T =1

where M is defined by (7.2.2). A basis for E over F is called a
polynomial basis if it has the form {1, a,...,an_l} for some a €
E. Any simple algebraic extension E = F(a) has a polynomial
basis. Let F < E be finite and separable, with polynomial basis
{1,a,...,a"71}. Let

p(x) = min(a,F) = (x — a)(ag +a;x + -+ +a,_;x"1)

Prove that the dual basis for {1,a,...,a"7 '} is

{f_o_ A in_—_l.}

Py 7@’ " p(@)

If V is a vector space, let V* denote the algebraic dual space of all

linear functionals on V. Note that if dim V is finite then dim V =

dim V*,

a) Prove the Riesz Representation Theorem for nonsingular
metric vector spaces: Let V be a finite dimensional
nonsingular metric vector space over F and let f€ V* be a
linear functional on V. Then there exists a unique vector x €
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b)
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V such that fx = (y,x) for all y € V. Hint: Let ¥_:V—F be
defined by v¥,(y) = (v,x). Define a map 7:V—-V* by 7x = ¢,.
Show that 7 is an isomorphism.

Let F < E be finite and separable, with form (7.2.1). Prove
that, for any linear functional T:E—F there exists a unique
a € E for which 78 = TrE/F(aﬂ) for all 8 € E.



Chapter 8
Finite Fields 1I: Basic Properties

In this chapter and the next, we study finite fields, which play an
important role in the applications of field theory, especially to coding
theory, cryptology and combinatorics. For a thorough treatment of
finite fields, the reader should consult the book Introduction to Finite
Fields and Their Applications, by Lidl and Niederreiter, Cambridge
University Press, 1986.

8.1 Finite Fields

If F is a field, then F* will denote the multiplicative group of all
nonzero elements of F. Let us recall some facts about finite fields that
have already been established.

Theorem 8.1.1 Let F be a finite field.

1)  F has prime characteristic. (Theorem 0.3.2)

2)  F*is cyclic. (Corollary 1.3.5)

3)  Any finite extension of F is simple. (Corollary 4.4.5)

4) F is perfect, and so every algebraic extension of F is separable.
(Theorem 4.8.2) 0

Lemma 8.1.2 If F is a finite field and [E:F] =d then |E| = |F|%

Proof. If {ay,...,a4} is a basis for E over F, then each element of E has
a unique representation of the form a;a; +---+ajyay, where a; €F.

Since there are | F| possibilities for each coefficient a;, we deduce that
|E| = |F|%1



162 8 Finite Fields I

Since a finite field F has prime characteristic p, we have Zp < F and
so Lemma 8.1.2 gives

Corollary 8.1.3If F is a finite field with char(F) = p, then F has p®
elements for some positive integer n. [

From now on, unless otherwise stated, p will represent a prime
number, and q will represent a power of p.

8.2 Finite Fields as Splitting Fields

We have seen that every finite field of characteristic p has p"
elements for some n >0. Let us now show that there is, up to
isomorphism, exactly one field of size p™, for each prime p and each
integer n > 0.

Let q = p" and let S be the splitting field for the polynomial

f(x) =x%-x

over Zp. If R is the set of roots of fq(x) in S, then @, § € R imply that
o= a and f9 = B, whence

(axp)l=a%2p9=a+f and (aﬂ‘l)q = a‘l(ﬂ‘l)"l — aﬂ—l

Hence o+ 8 € R and af~! € R. It follows that R is a field and R = S.
Furthermore, since

f(x) = xd1-1=-1

the polynomial f_(x) has no multiple roots in S and so |S| = q. Thus,
there exists a finite field S of size q = p" for every prime p and every
positive integer n. It is customary to denote such a field by Fp or
GF(q). (The symbol GF stands for Galois Field, in honor of Evariste
Galois.)

To establish uniqueness, observe that if F is a field of size q = p",
then F* is a multiplicative group of order q—1 and so every a € F*
satisfies 971 =1. Thus, every a €F is a root of the polynomial
fq(x) = x9—x. Since this polynomial las exactly q roots, F is the set of
roots of f (x) and is therefore the splitting field for f (x) over Z . Since
any two splitting fields for fq(x) are isomorphic, we conclude tﬁat any
two finite fields of size q are isomorphic.
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Theorem 8.2.1

1)  Every finite field has size g = p”, for some prime p and integer
'n> 0.

2) For every q=p" there is, up to isomorphism, a unique field
GF(q) of size q, which is both the set of roots of f (x) =x%-x
and the splitting field for f (x) over Z,,. 0

In view of this theorem, we will often refer to the finite field GF(q).

Corollary 8.2.2 The extension GF(q) < GF(q") is a Galois extension. []

8.3 The Subfields of a Finite Field

It is easy to determine the subfields of a finite field. If F < GF(p")
then Lemma 8.1.2 implies that |F | = p? for some d|n. On the other
hand, we have

din = pi-1[|p"-1 = N [ Pl G RN fpd(x)|fpn(x)

and since fn(x) splits over GF(p"), so does f a(x). Thus GF(p™) contams
a splitting field for f a(x), that is, GF(p") contains a subfield of size pd.
Certainly, GF(p™) cannot contam more than one such subfield, for then
there would be more than pd roots of the polynomial f d(x) in GF(p"™).

Theorem 8.3.1 The field GF(p") has exactly one subfield of size pd, for
each d | n. This accounts for all of the subfields of GF(p").

8.4 The Multiplicative Structure of a Finite Field
Since GF(q)* is cyclic, Theorem 0.2.11 implies the following theorem.

Theorem 8.4.1 There are exactly ¢(d) elements of GF(q)* of order d for
each d | q — 1 and this accounts for all of the elements of GF(q)*. 0

It is customary to refer to any element of GF(q) that generates the
cyclic group GF(q)* as a primitive element of GF(q). However, this
brings us into conflict with the term primitive as used earlier to denote
any element of a field that generates the field using both field operations
(addition and multiplication). Accordingly, we adopt the following
definition.
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Definition Any element of GF(q) that generates the cyclic group GF(q)*
is called a group primitive element of GF(q). In contrast, if F < E then
any element o € E for which E =F(a) is called a field primitive
element of E over F. [1

If B € GF(q), we may wish to know when the equation
(8.4.1) x*=p

has a solution in GF(q), that is, when f has a k-th root in GF(q). This
question has a simple answer in view of the fact that GF(q)* is cyclic. If
a is a group primitive element of GF(q) then 8 = o' for some i and so
(8.4.1) has a solution x = of if and only if

o = o
for some integer j. This is equivalent to

kj =i mod (q-1)
or
i=kj+n(q-1)

for some integers n and j. But this holds if and only if

(k’q—l) Il

where (k,q—1) is the greatest common divisor of k and q— 1. Thus,
equation (8.4.1) has a solution for all §€ GF(q) if and only if

(kg—-1)=1.

Theorem 8.4.2

1) Let a be a group primitive element of GF(q). The equation xK =

o' has a solutlon in GF(q) if and only if (k,q—1) |i.
2)  The equation x¥ = B has a solution for all g € GF(q) if and only if
(k,q—1) =1, in which case the solution is unique.

Theorem 8.4.2 says that if (k,q—1) =1, the function aak is a
permutation of the elements of GF(q). For this reason, in this case the
polynomial p(x) = x¥ is called a permutation polynomial.
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8.5 The Galois Group of a Finite Field

Since the extension GF(q) < GF(q") is Galois, if G is the Galois
group of GF(q™) over GF(q) then

|G| =[GF(q"):GF(q)] =n
The structure of G could not be simpler, as we now show.

Theorem 8.5.1 The Galois group G of GF(q") over GF(q) is cyclic of

order n, generated by the Frébenius automorphism aq:ar—»aq.

Proof. Since o = « for all a € GF(q), we have ¢, € G. Moreover, the n
automorphisms
T ag,...,ag‘l

are distinct elements of G, for if oX = . then o® = a for all a € GF(q"),
which implies that k > n. Since | G| =n, we see that G = (o). I

8.6 Irreducible Polynomials over Finite Fields

The following theorem . gives some key facts about irreducible
polynomials over a finite field.

Theorem 8.6.1 For every finite field GF(q), and every positive integer d,
there exists an irreducible polynomial p(x) of degree d over GF(q). Let
a be a root of p(x) in some extension field.

1)  (Splitting Field) The splitting field of p(x) is GF(q)(a) = GF(qY).
2)  (Roots) The roots of p(x) in a splitting field are
2 d-1
(8.6.1) a,a%,a% ,...,09

3)  (Degree) d is the smallest positive integer for which o' =a.

4)  (Degree) p(x) |xq —x if and only if d | k. Hence, d is the smallest
positive integer for which p(x) | x¥ - x.

5) (Order of Roots) All roots of p(x) have the same multiplicative
order in GF(q%)*.

Proof. Note first that since GF(q)< GF(qd) is simple, we have
GF(q%) = GF(q)(B) and so mzn(ﬂ,GF(q)) is an irreducible polynomial
of degree d over GF(q). For part 1), since GF(q) < GF(q)(c) is normal,
p(x) splits in GF(q)(e), whence it is the splitting field for p(x). Also,
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[GF(q)(a):GF(q)] = deg p(x) =

and so GF(q)(a) = GF(q%).
To prove part 2), recall that the Galois group of GF(qd) over GF(q)
is the cyclic group

(o) =11, 0y ag,...,ag"l}

Applying these maps to a gives the complete list (8.6. 1) of roots of
p(x), with no duplicates since any automorphism of GF(q ) over GF(q)
is completely determined by its value on a. .

For part 3), since a € GF(qd) we have a% = a and it is clear from
part 2) that no smaller power of q can have this property. Part 4)
follows from the fact that p(x) qu —x if and only if the splitting field
for p(x) is a subfield of the splitting field for x¥ — X, that is, if and only
if GF(q) < GF(q¥). Part 5) follows from the fact that since 04 is an
automorphism of GF(qd), it preserves multiplicative order and so the
order of a']éa is equal to the order of c. i

Definition If p(x) is irreducible over GF(q) then the multiplicative order
of any root of p(x) in its splitting field is called the order of p(x) and is
denoted by o(p(x)) or o(p). 0

Definition A polynomial p(x) over GF(q) of degree d is said to be
primitive over GF(q) if it is the minimal polynomlal of a group
primitive element of GF(qd), that is, if its order is 4 — 1.0

According to part 5) of Theorem 8.6.1, an irreducible polynomial
over GF(q) of degree d is primitive if and only if all of its roots are
group primitive in GF(q ). Primitive polynomials play an important
role in finite field arithmetic, as we shall see in the next chapter.

The following theorem provides a characterization of order. (cf.
Theorem 8.6.1, part 4).)

Theorem 8.6.2 Let p(x) € GF(q) be irreducible of order v. Then
p(x) |x — 1 if and only if v | k. Hence, v is the smallest positive integer
for which p(x) | x¥ —1.

Proof. Suppose first that v | k. Each root a of p(x) satisfies a¥ -1 =10
and therefore also o*—1. Since g(x) is separable, we conclude that
p(x) | XX — 1. Conversely, if p(x) | x*—1 then any root of p(x) is a root
of x¥— 1 and therefore has order dividing k, whence v | k. I
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Relationship Between Order and Degree

There is a simple relationship between the order and degree of an
irreducible polynomial p(x) over GF(q). Let o(p(x))=v and
deg p(x) = d and suppose that o € GF(qd) is a root of p(x). Since

o =a if and only if v | g€ —1

and since d is the smallest positive integer for which aqdza, we
conclude that d is the smallest positive integer for which v | qd— 1. Put
another way, d = deg p(x) is the order of q modulo v, written o,(q).
Since (v,q) =1, the residue @ of q modulo v lies in Zj, the
multiplicative group of elements of Z, that are relatively prime to v
and so deg p(x) = o(q) in the group Z},.

By way of converse, suppose that f(x) is a polynomial over GF(q)
and a is a root of order v in a splitting field. If deg f(x) = o0,(q) then
f(x) must be irreducible, since it has the same degree as p(x) =
min(a,GF(q)) and is divisible by p(x).

Theorem 8.6.3 Let p(x) be a polynomial over GF(q) of degree d, let o
be a root of p(x) of order v in a splitting field. Then p(x) is irreducible
if and only if any of the following equivalent conditions holds.

1)  d is the smallest positive integer for which v | qd-1.
2)  d is the smallest positive integer for which o = a.

3) d=o,(q) is the order of q modulo v. 0

Theorem 8.6.3 tells us that the degree of an irreducible polynomial is
completely determined by its order. It is not true that the order of an
irreducible polynomial is determined by its degree, as we will see in a
moment,.

If p(x) € GF(q) is irreducible and has degree d, then GF(q%) is the
splitting field for p(x). Of course, we may view p(x) as a polynomial
over any intermediate field GF(q ) where 1 <k <d, in which case it
may no longer be irreducible. Let o be a root of p(x) of order v in
GF(qd), and suppose that a is a root of the irreducible factor q(x) of
p(x) over GF(q¥). Since q* has order 6 = d/(k,d) in Z;, we deduce from
Theorem 8.6.3 that deg q(x) = 6.

Theorem 8.6.4 Let p(x) be irreducible of degree d over GF(q). When
thought of as a polynomial over GF(q ), where 1<k<d, the
polynomial p(x) can be factored into (k,d) irreducible factors, each of
which has degree d/(k,d). In particular, p(x) is irreducible over GF(q¥)
if and only if (k,d) =1.0
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Computing the Order of a Polynomial

We now present a procedure for finding the order v of an irreducible
polynomial f(x) of degree d. Let p be a prime dividing q®-1 and
suppose that q@—1=pbu with pfu and v= p°v with pfv. Since
v|q4—1 we have s<t and p*v|q®~1 if and only if w <t —s. Hence,
the largest w for which p“v | qd -1 satisfies w = t —s, that is, s = t — w.
Thus, the largest value of w for which

o5
pw

or equivalently by Theorem 8.6.2,

d
f(x) lx(q —1)/pw -1

gives the largest power p*~" of p dividing v. Doing this for all primes
dividing qd-1 gives the value of v.

Example 8.6.1 Consider the irreducible polynomial f(x)=x%+x+1
over GF(2). Since q = 2, we have

®-1=63=32.7
Let p = 3. Division shows that

f(x),(x63/9—1, f(x),(x63/3—1, f(x) | x83 -1

and sow=0,s=t—w=2—0=2, whence 32 is the largest power of 3
dividing v. For p = 7 division gives

f(x) fx83/7 -1, f(x)|x%3 -1
and so 7 is the largest power of 7 dividing v. Thus v =3%2.7 =63
showing that f(x) is primitive over GF(I2).
The polynomial g(x) = x®+x*+x%®+x+1 is also irreducible over
GF(2). In this case for p = 3 we have
8(x)Jx*° ~1, f(x) | /% -1
and so w = 1, whence 3 | v but 32fv. For p = 7 we have

£(x) fx83/7 — 1, f(x) x5 -1

hence 7| v and v = 21. Note that both of these polynomials have degree
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6 but they have different orders. This shows that the degree of an
irreducible polynomial does not determine its order. [I

*8.7 Normal Bases

We saw in Chapter 7 that if F < E is a finite Galois extension and F
is an infinite field, then E has a normal basis over F. To prove an
analogous theorem when E is a finite field, we require a result from
linear algebra, which we will not prove here. If T:-V—V is a linear
operator on an n-dimensional vector space V over a field F, then the
minimal polynomial my(x) for T is the unique monic polynomial over F
of smallest degree for which my(T)=0. Since T satisfies its
characteristic  polynomial  cp(x) = det(xI — Mat(T)), we have
my(x) | ep(x). A vector v € V is said to be cyclic for T if the vectors

{v,Tv,T?,.., T* v}

form a basis for V. Here is the result that we need.

Theorem 8.7.1 Let T:V—V be a linear operator on a finite-dimensional
vector space V over a field F. Then V contains a cyclic vector for T if
and only if the minimal polynomial my(x) and the characteristic
polynomial cp(x) are the same. 0

Now we can establish the existence of normal bases for finite fields.

-1
Theorem 8.7.2 There exists a normal basis {eo, aq,...,aqn } for
GF(q™) over GF(q).

Proof. If n =1, there is nothing to prove, so assume that n > 1. The
Galois group of GF(q") over GF(q) is

G= {L,O'q,dg, e ,ag_l}

where crq:a—vaq. By the Dedekind Independence Theorem, these maps
are linearly independent over GF(q™). Thus, thinking of o as a linear
operator on the n-dimensional vector space GF(q") over GF(q), we see
that o, satisfies the polynomial x™ —1 and no polynomial over GF(q) of
.smaller degree. Hence x™—1 is the minimal polynomial of o_ over
GF(q). On the other hand, the characteristic polynomial of 04 has
degree n, is monic, and is divisible by x®—1, and so it must also be
x® —1. By the previous theorem, there exists a cyclic vector a for o
and so

q

n—1
q q

is a normal basis for GF(q") over GF(q). 1

o, 0. Q,...,00
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*8.8 The Algebraic Closure of a Finite Field

In this section, we determine the algebraic closure of a finite field
GF(q). Since GF(q) < GF(q™) is algebraic for all positive integers n, an
algebraic closure of GF(q) must contain all of the fields GF(q™). Since
n! | (n+1)!, it follows that

GF(qn') < GF(q(IH’l)!)
and so the union

r(a) = | J GR(q™)

n=0

is an extension field of GF(q) that contains GF(q"), for all n > 1.

Theorem 8.8.1 The field I'(q) is the algebraic closure of GF(q).

Proof. Every element of I(q) lies in some GF(q™), whence it is
algebraic over GF(q). Thus I'(q) is algebraic over GF(q). Now suppose
that I'(q) < E is algebraic and let a € E have minimal polynomial p(x)
over GF(q). If degp(x) =d, then p(x) splits in GF(qd), which is
contained in I'(q). Hence a € I'(q) and so E < I'(q). Thus, I'(q) has no
proper algebraic extensions. i

Steinitz Numbers

We wish now to describe the subfields of the algebraic closure I‘(q(}.
Recall that a field K is a subfield of GF(q") if and only if K = GF(q®)
where d | n. The set Nt of positive integers is a complete lattice where
m An = ged(m,n) and mVn = lem(m,n). If we denote by F the set of
all finite fields (or more properly the set of all isomorphism classes of
finite fields) that contain GF(q), then ¥  is also a complete lattice
where EAF =ENF and EVF = EF.

Theorem 8.8.2 The map ¢:Nt—%  defined by t¥(n) = GF(q") is an
order-preserving bijection. Hence, it is an isomorphism of lattices, that
is,

1) n|mif and only if GF(q®) < GF(q™),
2) GF(@")NGF(Q™) = GF(¢""™),

3) GF(Q")GF(q™) = GF(q"V™).

Proof. Left to the reader. I
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It is clear that the lattice of intermediate fields between GF(q) and
GF(q™) is isomorphic to the sublattice of N¥ consisting of all positive
integers dividing n. In order to describe the lattice of intermediate fields
between GF(q) and I'(q), we make the following definition.

Definition A Steinitz number is an expression of the form
00 e
S = H pil
i=1

where p; is the i-th prime and e; € {0,1,2,... } U {cc}. We denote the set
of all Steinitz numbers by S. Two Steinitz numbers are equal if and
only if the exponents of corresponding prime numbers p; are equal. [

We will denote arbitrary Steinitz numbers using upper case letters
and reserve lower case letters strictly for ordinary positive integers. We
will take certain obvious liberties when writing Steinitz numbers, such
as omitting factors with a 0 exponent. Thus, any positive integer is a
Steinitz number. We next define the algebra of Steinitz numbers.

Definition Let S = []p;i and T = [] pfi be Steinitz numbers.
1)  The product and quotient of S and T are defined by
PT e+, rT_e.—f
ST = :[[p;=i i and §/T= Hp?i i
=1 i=1

where oo — 0o = 0.
2) Wesay that S divides T and write S| T if ¢; < f;, for all i. 0

Theorem 8.8.3 Under the relation of “divides” given in the previous
definition, the set § is a complete distributive lattice, with meet and
join given by

= min(e-,f-) _ = max(e;,f;)
SAT:IIPi i and SVT_IIpi i
i=1 i=1

Moreover, the set of positive integers is a sublattice of S. 0

Subfields of the Algebraic Closure

We can now describe the subfields of I'(q). Let (I'(q)) denote the
lattice of all subfields of I'(q) that contain GF(q).
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Definition If S is a Steinitz number, let

GF(q®) = L'JSGF (q9)
d

where, as indicated by the notation, d is an ordinary positive integer. [

If o, B € GF(qS) then a € GF(q¥) for some k| S and 8 € GF(q") for
some n|S. Thus a, B € GF(q™) where m = lcm(k,n). It follows that
GF(q%) is a subfield of I'(q) containing GF(q).

Theorem 8.8.4 The map ¥%:S—¥(I'(q)) defined by ¥(S) = GF(¢®) is an
order preserving bijection. Hence, it is an isomorphism of lattices, that
is,

1) S| T if and only if GF(q5) < GF(q"),

2) GF(®)n GF(q") = GF(¢®"T),

3)  GR®)GFET) = GFG® V).

In addition, GF(q5) is finite if and only if S is a positive integer.

Proof. We begin by showing that n|S if and only if GF(q®) < GF(q5).
One direction follows immediately from the definition: if n|S then
GF(q™) < GF(q®). Suppose that GF(q") < GF(q®). Let a be a field
primitive element of GF(q") over GF(q). Then a € GF(q®) and so a €
GF(qY) for some d|S. Hence GF(q®) = GF(q)(e)< GF(q%), which
implies that n | d, whence n | S.

To see that 1 is injective, suppose that S # T. We may assume that
there exists an integer n>1 such that n|S but n/T. Then
GF(q®) < GF(q®) but GF(q®) & GF(qT) and so GF(q®) # GF(q").

To see that 1 is surjective, let GF(q) < F < I'(q). We must find an S
for which GF(qS) =F. For each prime p;, let e; be the largest power of
p; for which

(8.8.1) GF(i) < F

where €; = oo if (8.8.1) holds for all positive integers e;. Let

If d|S then

for some m € N¥, where f, <e and f; < co. Hence
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f. e.

p;! p;!
GF(q1')<GF(q')<F
fori=1,...,m and so .
GF(q?) = vV GF(™) < F

It follows that GF(q%) <F. Now, if a € F then a € GF(q®) < F for
some n. If

n= ﬁpfi

i=1

then .
GF(®) < GF(q™) < F

and so g; <e; for all i, by the maximality of e;. Hence n|S and so « €
GF(q™) < GF(q®). This shows that F < GF(q%). Hence F = GF(q5) and
so 9 is surjective. We leave the rest of the proof to the reader. i

Exercises
1. Show that
din = pd-1|p"-1 = £4(x) | f(x)

2. IsZ,=~F,?IsZ,~F,? Whenis an ~ Foo?

3. Determine the number of subfields of F,,,,. Determine the
number of subfields of Fyy.

4. Show that, except for the case of F,, the sum of all of the
elements in a finite field is equal to 0.

5.  Find all group primitive elements of F.,.

6. Show that the polynomial x* +x3+x2+x +1 is irreducible over
F,. Is it primitive?

7. Let F be an arbitrary field. Prove that if F* is cyclic then F must
be a finite field.

8. Consider the irreducible polynomial p(x) = x*—2 over Q. Show
that adjoining one root of p(x) to Q does not produce the splitting
field for p(x). What is the degree of the splitting field for p(x)
over Q7

Find the order of the following irreducible polynomials.

9. x*+x34+x%24+x41 over GF(2).
10. x*+x+1 over GF(2).
1. B4+x?+x3+x3+1 over GF(2).
12 B+x54x4+x341 over GF(2).
13. B4+x"4+x°+x+1 over GF(2).
14. x*4+x+2 over GF(3).
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15.
16.
17.

18.

19.

20.

21.
22.
23.

24.
25.
26.

27.
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4334+ x2 41 over GF(3).

x> —x+1 over GF(3). )

Show that every element in GF(q") has a unique q'-th root, for
i=1,...,n—-1.

If 2)q, show that exactly one-half of the nonzero elements of
GF(q) have square roots. Hint. Let 3 be a primitive element of
GF(q). If B = o?, then o®* = « for some k.

Show that if & € GF(q) and n is a positive integer, then x3—x + a
divides x% — x + na. Hint: show that roots of the former are roots
of the latter.

Find a normal basis for GF(8) over GF(2). Hint. Let o be a root
of the irreducible polynomial x3 + x2 + 1.

Show that I'(q) = U32,GF(q™).

Show that I'(q") = I'(q™).

Let F be a field F satisfying GF(q) < F < T'(q). Show that all of
the proper subfields of F are finite if and only if F is finite or F =
GF(qS) where S = p*™ for some prime p.

Show that I'(q) has no maximal subfields.

Show that [I'(q):F] is not finite for any proper subfield F < I'(q).
Show that I'(q) has an uncountable number of nonisomorphic
subfields.

Let S| T. Show that [GF(qT): GF(q®)] is finite if and only if T/S is
finite, in which case the two numbers are equal. Hint: consider the
intermediate fields.



Chapter 9
Finite Fields II: Additional Properties

9.1 Finite Field Arithmetic

There are several ways in which to represent the elements of a finite
field. One way is to use a factor ring GF(q)[x]/(p(x)), where p(x) is
irreducible. Another is to use the fact that GF(q)* is cyclic, and so its
elements are all powers of a group primitive element. It is clear that
addition is more easily performed when field elements are written as
polynomials and multiplication is more easily performed when all
elements are written as a power of a single group primitive element.
Fortunately, the two methods can be combined to provide an effective
means for doing finite field arithmetic.

Example 9.1.1 Consider the finite field GF(16) as an extension of
GF(2). The polynomial
p(x) =x?+x+1

is irreducible over GF(2). To see this, note that if p(x) is reducible, it
must have either a linear or a quadratic factor. But since p(0) # 0 and
p(1) #0, it has no linear factors. To see that p(x) has no quadratic
factors, note that there are precisely four quadratic polynomials over
GF(2), namely,

x2,x2+1,x2+1,x2+x+1

and it is easy to check that no product of any two of these polynomials
equals p(x). Since deg p(x) = 4, we have
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GF(2)[x]

i1y = OFU0)

Thus, letting a be a root of p(x), we can represent the elements of
GF(16) as the 16 binary polynomials of degree 3 or less in a:
Constant: 0, 1,
Linear: a,a+l
Quadraticc o2 a*+1,a’+a,a’+a+1
Cubic: o3, a3+1,a+a,0®+a? o +a+1,
a3+012+1, a3 +a’+a, 3+alta+l

Addition of elements of GF(16) is quite simple, since it is just
addition of polynomials, but multiplication requires reduction modulo
p(e), that is, using the relation o = &+ 1. On the other hand, observe
that

at® = (a%)? = (a- o) = (a- (a+1))? = a¥(a+1)?
=ad-(P+a’+a+l)=ab+a’+ot+d?
=(+a?)+(@®+a)+(a+1)+a®
=@+a?)+(@?+a)+(a+1)+a®=1
and so o(a)|15. Since o® # 1 and o5 # 1, we conclude that « is group
primitive. Hence
GF(16) = {0,1,a,...,a}
With this representation, multiplication is all but trivial, but addition
is cumbersome.
We can link the two representations of GF(16) by computing a table

showing how each element o* can be represented as a polynomial in a
of degree at most 3. Using the fact that o =1+, we have

al=a+1
a5=a-a4=aga+1)=a2+a
asza'a5=a +a2

o  =a-af=ct+aP=a+a+1

and so on. The complete list, given in Table 9.1.1, is known as a field

table for GF(16). As is customary, we write only the exponent k for ak,

and aa,a,a, for the polynomial a3a3 + a2a2 +a,a +a,.
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Table 9.1.1

0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001

O J O OB WN~=O

<o

10
11
12
13
14

Computations using this table are quite straightforward; for example,

(e® 4+ a* +1)(e® 4+ ) = (0101 + 0011 + 0001)(1000 + 0010)

= (0111)(1010)

= a10. 02 = o1°

:a4=a+l

Thus, the key to doing arithmetic in a finite field is having a group
primitive element, along with its minimal (primitive) polynomial. In
general, the task of finding primitive polynomials is not easy. There are
various methods that achieve some measure of success in certain cases,
and we mention one such method at the end of Section 11.2.
Fortunately, extensive tables of primitive polynomials and field tables

have been constructed.
Let us use the primitive polynomial

p(x) and the field table for

GF(16) (Table 9.1.1) to compute the minimal polynomial over GF(2)
for each element of GF(16). We begin by computing sets of conjugates

using Theorem 8.6.1 and the fact that o!®

8

Conjugates of a: @, o?, o, a

Conjugates of 03: a3, af, a!?, o®* =a°
Conjugates of o o al®
Conjugates of Qs o, ot e =013 o

:a’
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k

Letting my(x) be the minimal polynomial for a*, we have, for example

() = myo(x) = (x - o%)(x — al%) = x = (a%+a10)x + a1’
The field table for GF(16) gives

a® + a0 = (0110) + (0111) = (0001) = ® = 1

1

and since a!® = 1, we have

mg(x) = myo(x) = x* +x+1
The other minimal polynomials are computed similarly. The complete
list is
my(x) =x+1
my(x) = my(x) = my(x) = mg(x) = x*+x+1
my(x) = mg(x) = mg(x) = my,(x) =x* +x3 +x%+x+1
mg(x) = myo(x) = x* +x+1
my(x) = my(x) = mya(x) = myy(x) =x+x> +1
Being able to factor polynomials of the form x™ — 1 is important for
a variety of applications of finite field theory, especially to coding

theory. Since the roots of x!%—1 over GF(2) are precisely the elements
of GF(16)*, we have

xP-1= mg(x)my (x)mg(x)mg(x)m,(x)

Of course, in order to obtain this factorization, we worked in the
splitting field GF(16). In Chapter 10, we will see how to factor a
polynomial of the form x™-—1 into a product of not necessarily
irreducible factors, working only within the base field. {1

*9.2 The Number of Irreducible Polynomials

Of course, if F is a finite field, then there are only a finite number of
polynomials of a given degree d over F. It is possible to obtain an
explicit formula for the number of irreducible polynomials of a degree d
over GF(q) by using M&bius inversion. (See the appendix for a
discussion of M&bius inversion.) First, we need the following result.
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Theorem 9.2.1 Let GF(q) be a finite field, and let n be a positive
integer. Then the product of all monic irreducible polynomials over
GF(q), whose degrees divide n, is

—x"_
fqn(x) =X X

Proof. According to Theorem 8.6.1, an irreducible polynomial p(x)
divides f.(x) if and only if deg p(x) | n. Hence, f(x) is a product of
irreducible polynomials whose degrees divide n and every irreducible
polynomial whose degree divides n divides f«(x). Since no two such
irreducible polynomials have any roots in common and since fqn(x) has
no multiple roots, the result follows. i

Let us denote the number of monic irreducible polynomials of degree
d over GF(q) by Nq(d). By counting degrees, Theorem 9.2.1 gives the
following.

Corollary 9.2.2 For all positive integers d and n, we have

=) dN.(d) i

d|n

Now we can apply Mobius inversion to get an explicit formula for
Ng(d). Classical M&bius inversion is

(9.2.1) g(n) = ? f(d) = f(n)= EI: g(d)ﬂ(ﬁ)
dln din

where the M6bius function p is defined by

1 if m=1
p(m) = { (—1)k if m =p;py--py for distinct primes p,
0 otherwise

Corollary 9.2.3 The number Nq(n) of monic irreducible polynomials of
degree n over GF(q) is

Ny = £ S u@ad =1 Y ud)g™/

dIn dln

Proof. Letting g(n) =q" and f(d) =dN(d) in (9.2.1), we get the
formula above. I
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Example 9.2.1 The number of monic irreducible polynomials of degree
12 over GF(q) is

N(12) = {(u(1)a'? + u(2)a° + u(3)a* + u(9)a® + u(6)a® + p(12)a)
_ %(qm — g8 —q*+q?)
The number of monic irreducible polynomials of degree 4 over GF(2) is
N(4) = Hu(02* + w(2)2% + u(4)2!) = 3
as we would expect from the results of Example 9.1.1. 00

Moébius inversion can be used to find not only the number of monic
irreducible polynomials of degree d over GF(q) but also the product of
all such polynomials. Let us denote this product by I(q,d;x). Then
Theorem 9.2.1 is equivalent to

¥ —x = HI(q,d;x)
d l n

Applying the multiplicative version of Mo&bius inversion gives the
following.

Corollary 9.2.4 The product I(g,n;x) of all monic irreducible
polynomials of degree n over GF(q) is

n/d d
lanx) = J](x"- x)#( 19) _ II(<- x)u( ) .
d I n d I n
Example 9.2.2 For ¢ =2 and n = 4, we get
1(2,4;x) = (x16 — x)H(D(x? — x)H()(x2 _ y)H(4)

16

15
=x4—x___x3—1=x12+x9+x6+x3+1 0
X' —x x° -1

*9.3 Polynomial Functions

Finite fields have the special property that any function from a finite
field F to itself can be represented by a polynomial. As a matter of fact,
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this property actually characterizes finite fields from among all
commutative rings (finite and infinite)!

Since GF(q) has size q, there are precisely q? functions from GF(q)
to itself. Among these functions are the polynomial functions a—p(c)
where p(x) € GF(q)[x]. We will denote this polynomial function by p(x)
as well. If p(x) and q(x) are polynomial functions on GF(q) then
p(x) = q(x) as functions if and only if p(a) = q(a) for all a € GF(q),
which holds if and only if

x3—x | p(x) - q(x)

Thus, two polynomials represent the same function if and only if they
are congruent modulo x%—x. Since every polynomial is congruent
modulo x%—x to precisely one polynomial of degree less than q
(namely, its remainder after dividing by x%—x), and since there are q9
polynomials of degree less than q, we have the following theorem.
(Proof of the last statement in part 2 of the theorem is left to the
reader.)

Theorem 9.3.1

1) Two polynomials over GF(q) represent the same polynomial
function on GF(q) if and only if they are congruent modulo
x3—x.

2) Every function f:GF(q)—GF(q) is a polynomial function, for a
unique polynomial of degree less than q. In fact, the unique
polynomial of degree less than q that represents f is

px)= Y fla)(1-(x-a)?") 0

o € GF(q)

Note that the representation of f given in part 2) above is the
Lagrange interpolation formula as applied to finite fields. Part 2) has a
very interesting converse as well.

Theorem 9.3.2 If R is a commutative ring and if every function fR—R
is a polynomial function, for some p(x) € R[x], then R is a finite field.

Proof. First, we show that R must be finite. Suppose that [R| = A.
The number of functions from R to itself is A and the number of
polynomials over R is the same as the number of finite sequences with
elements from R, which is RyA. Since distinct functions are represented
by distinct polynomials we must have A < RyA, which only happens
when A is finite. Thus, R is a finite set.

Now let r, a € R with r # 0. Define a function f. a:R—R by
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a fx=r

fra.x =
) 0 ifx#r

By hypotbhesis, there exists a polynomial ag+a;x +---+a x" for which

ag+a;r+--+ar=a
and

agt+a;x+--+ax"=0, forx#r
Setting x = 0 gives ay = 0 and so
r(a; +ar 4+ anr“"l) =a

Thus, we conclude that for any r # 0 and any a € R, there is a u € R
for which ru = a. In other words, the map ¢ :R—R defined by ¢,s =rs
is surjective. Since R is a finite set, ¥, must also be injective. Hence,
rs =10, r #0 implies that s=0 and so R has no zero divisors. In
addition, since 1, is surjective, there exists a u € R for which ¥ u=r,
that is, ru =r. If a € R then aru = ar and since R is commutative and
has no zero divisors, we may cancel r to get au = a. Thus u € R is the
multiplicative identity of R. Hence R is a finite integral domain, that
is, a finite field. 1

*9.4 Linearized Polynomials

We now turn to a discussion of linear operators on GF(q™) over
GF(q). We will see that all such linear operators can be expressed as
polynomial functions of a very special type.

Definition A polynomial of the form
m, i
L(x) = Zaixq
i=0

with coefficients o; € GF(q") is called a linearized polynomial, or a q-
polynomial, over GF(q"). 00

The term linearized polynomial comes from the following theorem,
whose proof is left to the reader.
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Theorem 9.4.1 Let L(x) be a linearized polynomial over GF(q"). If o,
B € GF(q") and a, b € GF(q), then

L(aa +bpB) = aL(a)b + L(f)

Thus, the polynomial function L(x):GF(q")—GF(q") is a linear
operator on GF(q") over GF(q). 0

The roots of a q-polynomial in a splitting field have some rather
special properties, which we give in the next two theorems.

Theorem 9.4.2 Let L(x) be a nonzero g-polynomial over GF(q"), with
splitting field GF(q®). Then each root of L(x) in GF(q®) has the same
multiplicity, which must be either 1 or else a power of q. Furthermore,
the roots of L(x) form a vector subspace of GF(q°) over GF(q).

Proof. Since L'(x) = ay, if ay # 0 then all roots of L(x) are simple. On
the other hand, suppose that ay=a; =---=0ay_; =0 but o #0.
Then since o; € GF(q"), we have

nk

1 =q.
o =0

and so

i=k i=k

k
m i m . q
L(x) E Zk ?nkqu - ( Z a; (n l)k l-k)

which is the q -th power of a linearized polynomial with nonzero
constant term, and therefore only simple roots. Hence, each root of L(x)
has multiplicity q We leave proof of the fact that the roots form a
vector subspace of GF(q®) to the reader. I

The following theorem, whose proof we omit, is a sort of converse to
Theorem 9.4.1. (For a proof of this theorem, and more on g-
polynomials, see the book by Lidl and Niederreiter (1986).)

Theorem 9.4.3 Let U be a vector subspace of GF(q") over GF(q). Then
for any nonnegative integer k, the polynomial

L) = [T (-

a€U
is a g-polynomial over GF(q"). [

If L(x) is a g-polynomial, then as a function, we have
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I, i I .
L:a—L(a) = Z a0l = Zaiaaa

i=0 i=0

where Tq is the Frobenius automorphism. Thus, as an operator
m .
-_— 1
L= Z ®i0q
1=0

is a linear combination over GF(q“) of the automorphisms: ¢i. Since
aq =t we may reduce the expression for L to a polynomial in oq of
degree at most n — 1. In fact, adding 0 coefficients if necessary, we can
say that every g-polynomial functlon on GF(q") has the standard form

n-1 .
L=) ool
1=0
n
for o; € GF(q"). There are q" such g-polynomial functions on GF(q"),
and thxs happens also to be the number of linear operators on GF(q")
over GF(q). Moreover, since the maps o! are linearly independent over
GF(q"™), we deduce that each g-polynomial in standard form represents
a unique linear operator. Thus, we have characterized the linear
operators on GF(q") over GF(q).

Theorem 9.4.4 Every linear operator on GF(q") over GF(q) can be
represented by a unique g-polynomial in standard form

n-1 i
L(x) = Z ax?

i=0
for some o; € GF(q"). 0

Exercises
1. Factor x°—1 over

(a) F, (b) Fyg
2.  Factor x’—1 over

(a) F, (b) Fs (c) Fs
3. Factor x°*—1 over

(a) Fo (b) F3 () Fy (d) Fy

4. Factor x'"—1 over
(a) Fp (b) Fy4
5. Factor x13—1 over

(a) Fp (b) F,4
6. Calculate Nq(20).
7. Show that

Ny(n) < &(q"—q)
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10.

11.

and

[n/2]
q® = Y _dNy(d) <nN @)+ > g <nN(n) +q' /2
d | n k=0
Hence, N,(n) > Lqn - q1+"/2). Finally, show that N (n) ~ q"/n.
Show that the unique polynomial of degree less than q that
represents the function f: GF(q)— GF(q) is

px)= Y, fla)(1-(x-a)®?)

o € GF(q)

Prove that a linearized polynomial over GF(q") is a linear
operator on GF(q™) over GF(q).

Prove that the roots of a g-polynomial over GF(q") form a vector
subspace of the splitting field GF(q®) over GF(q).

Prove that the greatest common divisor of two g-polynomials over
GF(q™) is a g-polynomial, but the least common multiple need not
be a g-polynomial.



Part 3
The Theory of Binomials



Chapter 10
The Roots of Unity

Polynomials of the form x™—u, where 0 #u € F, are known as
binomials. Even though binomials have a simple form, their study is
quite involved, as is evidenced by the fact that the Galois group of a
binomial is often nonabelian. As we will see, an understanding of the
binomial x™ — 1 is key to an understanding of all binomials.

We can illustrate the interplay between the binomials x™ —~1 and
x®—u, for 0 #u €F as follows. Let E be the splitting field for x" -1
(with n odd) over F and let S be the splitting field for x" —u over F. It
is not hard to show that

F<E<S

for if r and s are roots of x™ —u then r/s is a root of x™ — 1. We will see
in a later chapter that if E = F, that is, if x™ — 1 splits over F, then
F < S is abelian (in fact, cyclic). On the other hand, in the opposite
extreme where [E:F] is as large as possible, then F < S is abelian if and
only if S = E, that is, if and only if x™ — u splits over E.

'10.1 Roots of Unity

The roots of the binomial x™ — 1 over a field F are referred to as the
n-th roots of unity over F. Throughout this section, we will let F be a
field with p = expchar(F), S a splitting field for x" —1 over F and U
the set of n-th roots of unity over F in S. Notice that if n = kp then
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X" —1=xKP 1= (xk-1)P

and so the n-th roots of unity are the same as the k-th roots of unity,
taken with a higher multiplicity. Thus, from now on, we assume that

(np) =1

Theorem 10.1.1 The set U, of n-th roots of unity over F is a cyclic
group of order n under multiplication. Moreover, if (m,n) =1 then

Upn =UnxU,

where x is the internal direct product of groups.

Proof. Clearly a, # € U, implies af, ale U,,. Hence, U, is a subgroup
of the abelian group S* of nonzero elements of S. Since D(x" —1) =
nx"! £ 0, we deduce that x™—1 is separable and therefore has n
distinct roots, whence |U | =n. If m <n is the smallest positive
integer for which ™ =1 for all a € U, then all n elements of U, are
roots of x™ — 1, implying that m > n, whence m = n. Thus, the smallest
exponent of U_is | U, | and Theorem 0.2.11 implies that U, is cyclic.

For the second part, if a € U, NU, then o™ =1=0a" and since
(m,n) =1 there exist a, b € Z such that am + bn = 1, whence

a = g@mtbn a®Mabn — 1

which shows that U ZNU_ = {1}. It follows that the mn products in
the set U U, are distinct. Since U U CU_ and |U U | =mn=
| Upn |» we have U\ =U_ U and thus U, =U xU_,. 1§

Definition An element w € U of order n, that is, a generator of U, is
called a primitive n-th root of unity over F. We shall denote the set of
all primitive n-th roots of unity over F by € and reserve the notation
w, for a primitive n-th root of unity.

Note that a primitive n-th root of unity w is a field primitive element
of S, since F(w) = F(U,) =S. However, in general, S has field primitive
elements that are not primitive n-th roots of unity.

Theorem 10.1.2

1) Hwe then @ ={w*|1<k<n,(nk)=1}and [Q,| = ¢(n).
2) 1fd|nthen Q1 =Q, .
3) If(nm)=1thenQ =Q Q.

Proof. Part 1) follows from the theory of cyclic groups (see Theorem
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0.2.10). For part 2), if d = n the result is trivial, so assume that d < n.
If w, € 2 then
o) = =1

and so w €Q_ ,4- Thus Q cQ n/d; For the reverse inclusion, let g €

Then ﬁGU and so f=w" for some k, where we€ Q. Since
o(/g) =n/d, Theorem 0.2. 11 implies that k = rd for some 1 satlsfymg
(r,n/d) =1 and so B = w'd. Now, if every prime dividing n also divides
r, then we would have n/d = 1, contrary to assumption. Hence, we may
let b=r+a(n/d), where a > 1 is the product of all primes dividing n
but not r. Then (b,n) = 1. To see this, suppose that p is a prime and
p|n. There are two possibilities: (i) if p|r then pfa and p}(n/d),
whence pfa(n/d). Hence, p cannot divide r+a(n/d) =b; (ii) if p,{'r
then p|a and so p| a(n/d), and again p cannot divide r +a(n/d) =
Thus, (b,n) =1 and so w € Q,. Finally,

ﬂ — wrd = wrd+an — wbd — (wb)d € Qg

For part 3), clearly w_ w €U . If (cumwn)k =1 then since (m,n) =
1, we have

wk =w;k€UmﬂUn:{1}

m

and so m|k and n|k, whence mn|k. Thus o(w,w )=mn and
0.9, CQ . Since all of the products in U U are distinct, so are all
of the products in €, and so

| 22y | = ¢(m)¢(n) = ¢(mn) = | Dy |

Hence, Q Q =Q_

10.2 Cyclotomic Extensions

Definition Let F be a field. The splitting field S of x®—1 over F is
called a cyclotomic extension of order n of F. []

(Cyclotomy is the process of dividing a circle into equal parts, which is
precisely the effect obtained by plotting the n-th roots of unity over Q
in the complex plane.)

To determine the degree of S over F, note that S = F(w,) and so

[S:F] = deg min(w,,F)
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Since S is the splitting field of a separable polynomial, it follows that
F <5 is a finite Galois extension and we can get a better handle on its
degree by looking at the Galois group Gg(S).

Any o € Gp(S) is uniquely determined by its value on any we @,
and since o preserves order, cw must be one of the ¢(n) primitive roots
of unity in S, that is,
ow = k)
where k(o) € Z;, the multiplicative group of integers in Z_ that are
relatively prime to n.

Thus, we may define a map ¥: Gp(S)—Z}, by

(10.2.1) Yo = k(o)

Since
(o7)w = o (W) = (ow)k(T) = JK(@IK(7)
we have

¥(o7) = k(o)k(r) = (Yo)(¥7)

and so ¥ is a homomorphism. Since k(¢) =1 implies that ¢ =, the
map % is a monomorphism and thus Gp(S) is isomorphic to a subgroup
of Z.

Theorem 10.2.1 If F < S is a cyclotomic extension of order n then Gp(S)
is isomorphic to a subgroup of Z}. Hence, Gp(S) is abelian and [S:F]
divides ¢(n). O

Since the structure of Z} is clearly important, we record the following
theorem, whose proof is left as an exercise.

Theorem 10.2.2 Let n = []r;, where the r; = pfi are powers of distinct
prime numbers. Then

Z} ~ ]’IZ;"l

Moreover, Z7 is cyclic if and only if n = p®, 2p® or 4, where p is an odd
prime. [

Corollary 10.2.3 A cyclotomic extension F < S is abelian and if n = p®,
2p°® or 4, where p is an odd prime, then F < S is cyclic. 0
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Finite Fields

For finite fields, we can improve upon Theorem 10.2.1. In particular,
if F = GF(q) is a finite field then S is also a finite field and the Galois
group Gp(8) is cyclic with generator aq:a—eaq. Hence, if 9 is defined by
(10.2.1), then I'm 4 is the cyclic subgroup of Z}, generated by ¢o'q. Since

— 9 =4
cw=wl=uw

where @ is the residue of q modulo n, we have ¢‘0q =g and Imy¢ =
(@) < Z} and so 1:GR(5)—(q) is an isomorphism. In particular,

[S:F] = | GR(S) | = o(a)

Note that we already knew this from Theorem 8.6.3, since
min(w,GF(q)) has order n, and therefore degree o(q).

Theorem 10.2.4 Let S be the splitting field for x™ — 1 over GF(q), where
(g,n) = 1. Then

1) S=GRq™?),
2)  Gg(S) = (o) is isomorphic to the cyclic subgroup (q) of Zj. O
We should make a remark about the relationship between group

primitive elements of S and primitive n-th roots of unity. A group
primitive element § generates Sy,

s5=11, 8, %...)
whereas a primitive n-th root of unity w generates U
U, =11, w, Wi ..}
If § is a group primitive element of S then o(f) = qo(a) —1 and so

q0(6)_1

o(f¥) = 31—
(%) (k,q*@-1)

Since n | qo(a) —1, we may write qo(a) —1=nr and so

ky _ _nr
o(B%) = (k,nr)

Hence §¥ is a primitive n-th root of unity if and only if nr/(k,nr) = n,
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that is, if and only if r = (k,nr). But this holds if and only if k = ur
where (u,n) = 1.

Theorem 10.2.5 Let 3 be a group primitive element of the cyclotomic
extension F < S. Then ﬂk is a primitive n-th root of unity if and only if

0.(9)
qr -1
k=u-"—7—

where 1 <u<nand (un)=1.10

The General Case

Returning to the general case, we can at least say some interesting
things about when the Galois group is isomorphic to Z}. Let w be a
primitive n-th root of unity over F. Since S = F(w), each o € GF(S) is
uniquely determined by its value on w and so the elements ow are
distinct and are the roots of min(w,F). Hence,

min(w,F) = H (x —ow)

o € Gp(S)

Since ow = w* for some k € Z} and since Gg(S) is isomorphic to Z} if
and only if there is a 0 € Gp(S) satisfying ocw = WK for every k € Z7, it
follows that GR(S) is isomorphic to Z} if and only if

min(w,F) = [ (x-u*) ¥ Q)

(kpn) =1

where Q, (x) is the polynomial whose roots are the primitive n-th roots
of unity in S. Since Q,(w)=0, this holds if and only if Q (x) is
irreducible over F. The polynomial Q (x) is called the n-th cyclotomic
polynomial over F. Note that it is defined only for (n,p) = 1 where p =
expchar(F).

Theorem 10.2.6 Let S be the splitting field for x"—1 over F. Then

GR(8) is isomorphic to Z}, if and only if the n-th cyclotomic polynomial
Q,(x) is irreducible over F. 01

Here are some basic facts about cyclotomic polynomials.

Theorem 10.2.7 Let Q (x) be the n-th cyclotomic polynomial over F.
1)  deg Q,(x) = ¢(n).
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2)  Q,(x) is monic and has coefficients in the prime subfield of F.
3) If F = Q then the coefficients of Q,(x) are integers.
4)  The following product formula holds

(10.2.2) x-1=J]Qyx)

din

Proof. Part 1) follows directly from the definition of Q,(x). Part 4)
follows from the fact that U is the disjoint union of €4 over all d [n
and Q4(x) has no multiple roots. Hence, the factorizations of both sides
of (10.2.2) into a product of linear factors are identical.

Let F’ be the prime field of F. It is clear from the definition that
Q,(x) is monic. We prove parts 2) and 3) together by induction on n.
Since Q;(x) = x — 1, the result is true for n = 1. If p is a prime then

P _ -
Qp(X)=2§2—_T1:X"'l+xp 2hotx4+1

and the result holds for n = p. Assume that 2) and 3) hold for all
proper divisors of n. Then

x ~ 1= Q9 [ Qqlx) = Qu(x)R(x)
i<n

By the induction hypothesis, R(x) has coefficients in F’', whence so does
Q,(x) = (x"—1)/R(x). Moreover, if F=Q then R(x) has integer
coefficients and since R(x) is monic, Theorem 1.2.1 implies that Q_(x)
has integer coefficients. §

Example 10.2.1 Formula (10.2.2) can be used to compute cyclotomic
polynomials rather readily, starting from the fact that

Qi(x) =x-1
and

Qu(x) =xP14xP2 4.4 x 41

for p prime. Thus, for example,

_ x1-1 _ x1_1 U2
AU = D, " G-Da+D - * *!
Qe(x) = X0 -1 X1 x2—x+1

Q;(x)Qy(x)Q3(x) = (x—D(x+1)(x2+x+1) -
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and
x15 _

7,.5
Q5(x) = Ql(x)Qz(X)Qg(x)Qs(x)

— X'+ X 3

—x4+x -x+1

This gives us, for instance, the following a factorization of x!% —1 into
cyclotomic polynomials over GF(2)

x15-1 = (x4 1) (242 1) (A3 4 x84 x4+ 1) (B 4x 3 +x 4 x34x4+1) O

Part 4) of Theorem 10.2.7 describes a factorization of x™ — 1 within
the prime subfield of F (cf. Example 9.1.1). In general, however, this is
not a prime factorization since Q(x) is not irreducible. For instance,
comparing Examples 10.2.1 and 9.1.1 shows that Q,(x) is reducible
over GF(2).

With regard to the irreducibility of cyclotomic polynomials, we do
have the following important results.

Theorem 10.2.8 All cyclotomic polynomials Q_(x) over Q are
irreducible over Q. Therefore, GQ(S) ~ 73 and [S:Q] = ¢(n).

Proof. Suppose that Q (x)=f(x)g(x), where we may assume (by
Theorem 1.2.2) that f(x) and g(x) are monic and have integer
coefficients. Assume that f(x) is irreducible and that w is a root of f(x)
and hence a primitive n-th root of unity. We claim that wP is also a
root of f(x), for any prime p/n. For if not then wP, being a primitive n-
th root of unity, must be a root of g(x). Hence, w is a root of g(xP),
which implies that f(x) | g(xP) and we can write

g(x®) = h(x)(x)

where h(x) is monic and has integer coefficients. Since aP =a mod p,
for any integer a, we conclude that g(xP) = g(x)P? mod p and so, taking
residues gives

g(x)° = h(x)f(x) mod p
If we denote the residue of a polynomial p(x) modulo p by p(x), we get

E(x)P = h(x)f(x)

in Z [x] and so any irreducible factor of f(x) in Z o[X] is also a factor of
g(x). This shows that f(x) and g(x) are not relatlvely prime, and
therefore have _a common root in some extension of Zp However,
f(x)g(x) = x™ — 1, which has no multiple roots in any extension. This
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contradiction implies that wP is a root of f(x). In other words, if w is a
root of f(x) then so is o0, ,w, where o, is the Frobenius map.

Now we observe that any primitive n-th root of unity v over Q has
the form o', for some integer r > 0. Writing r as a product of prime
numbers, we see that v can be obtained from w by applying a finite
number of Frobenius maps o _, where p is prime. Hence, v is also a root
of f(x). Thus all roots of Q,(x) are roots of f(x), implying that f(x) =
Q,(x), whence Q_ (x) is irreducible over Q. i

Theorem 10.2.9 Let n be an odd positive integer. Then [F(w,):F] = ¢(n)
implies [F(wq):F] = ¢(d) for all d|n. In the language of cyclotomic
polynomials, if Q, (x) is irreducible over F then Q4(x) is irreducible over
F for all d | n.

Proof. Let p be a prime dividing n. Since n is odd, p # 2. Let n = pm.
Then

¢(pm) = [F(w,):F(wB)][F(wR):F] = ab

where a = [F(w,):F(wB)] < p and b = [F(wR):F] | ¢(m), since wk € Q.
If pfm then ¢(pm) = ¢(p)$(m) = (p — 1)¢(m) and so

(p—1)¢(m) =ab

If a =p, then b = (p—1)¢(m)/p cannot divide ¢(m) since p # 2. Since
b < ¢(m), it follows that a =p—1 and b = ¢(m). On the other hand, if
p | m then ¢(pm) = pé(m) and so

p¢(m) = ab

whence a =p and b = ¢(m). In either case, b = #(m), and since wP =
Wy /pr W have

(10.2.3) [F(wy/p):F] = 6(5)
Repeated use of (10.2.3) gives the desired result. §

Let us return briefly to finite fields. If p(x) is monic and irreducible
over GF(q) and has order v, then each root of p(x) has order » and thus
p(x) | Q,(x). Since every monic irreducible factor of Q,(x) has order v,
we conclude that Q,(x) is the product of all monic irreducible
polynomials of order v. According to Theorem 8.6.3, the degree of any
such factor p(x) is 0,(q), the order of ¢ modulo v. Hence, the number of
monic irreducible polynomials of order v is ¢(v)/0,(q).
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Theorem 10.2.10 Let v be a positive integer.

1)  The cyclotomic polynomial Q,(x) over GF(q) is the product of all
monic irreducible polynomials of order v over GF(q).

2)  The number of monic irreducible polynomials over GF(q) of order
v is ¢(v)/o,(q), where o0,(q) is the order of q mod v. I

Equation (10.2.2) is a prime candidate for Mdbius inversion. (See the
appendix for a discussion of Mobius inversion.) Applying the
multiplicative version gives

Q,(x) = H (x4 - 1)#(n/d) — H (xn/d _ 1),‘(d)

dln dln

where the Mdbius function y is defined by

1 if d=1
pu(d) = { (—1)k if d =p,py--p for distinct primes p;
0 otherwise

Note that some of the exponents u(d) may be equal to -1, and so a
little additional algebraic manipulation may be required to obtain
Q,(x) as a product of polynomials.

Finally, let us mention that, according to the definition, if v =
q" —1, then the roots of the v-th cyclotomic polynomial Q,(x) over
GF(q) are the primitive v-th roots of unity over GF(q). Hence, they are
the group primitive elements of GF(q"). In other words, the monic
irreducible factors of Q,(x) are precisely the primitive polynomials of
GF(q") over GF(q). Thus, one way to find primitive polynomials is to
factor this cyclotomic polynomial.

*10.3 Normal Bases and Roots of Unity

Recall that a normal basis for F < E is a basis for E over F that
consists of the roots of an irreducible polynomial p(x) over F. (See
Section 7.4.) We have seen that, in some important cases (especially
F = Q), the cyclotomic polynomials Q_(x) are irreducible over F, which
leaves open the possibility that the primitive n-th roots of unity Q
might form a normal basis for S over F. Indeed, if Q_(x) is irreducible
then Q (x) = min(w,,F) and so

deg Q,(x) = [S:F]
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and since the roots of Q(x) are distinct, there are the right number of
primitive n-th roots of unity and they will form a basis for S over F if
and only if they span S over F. It happens that Q spans S if and only
if n has a certain simple form.

Theorem 10.3.1 Let F be a field with the property that Q_ (x) is
irreducible over F for all m. Then Q, is a normal basis for the
cyclotomic extension S over F if and only if n is the product of distinct
primes.

Proof. We prove first that if n is a product of distinct primes then €, is
a (normal) basis for S over F. Let w € Q. If n = p is prime then Q=
{ww?,...,wP71}. Since S=F(w) and min(w,F) = Q,(x) has degree
p—1, the set {l,w,...,wp—z} is a (polynomial) basis for S over F. Since

-1_WwP—1_
1+w+---+wp —-J_—l—_O
the set Q, = {ws.. .,wP~1} is also a basis for S over F. Hence, the result
is true if n is prime.

For the purposes of induction, suppose the result is true for all proper
divisors of n and let n = km with k <n, m <n and (km) =1. If w €
Q, and w,, € Q,, then Q is a basis for F(w,) over F and Q,, is a basis
for F(w,,) over F. Since wyw, € @, and (k,m) =1, it follows that

() = ok €y and (wwy)™ =t €Yy
whence F(uwp,wy) = F(Wwm) = F(Wym) Where wy, € Q. Hence,
[F (W) F (W) I [F(wa):F] = [F(wpwpn):F] = [F(wyerm):F]
= ¢(km) = ¢(k)$(m) = $(k)[F(wr,):F]

and so [F(w,wy,):F(wy,)] = ¢(k). Since @ spans F(wy,w,,) over F(wy,)
and | | = ¢(k), it follows that Q is a basis for F(wy,wpy) over
F(w,), whence @ =00, is a basis for F(wywy) over F. This
proves that if n is the product of distinct primes, then Q is a basis for
F(wp)-

For the converse, let n = mpk for k > 2. Since

Qn(x) = Qmp"(x) = Qmp(xpk—l)

(an exercise) the coefficient of x#®-1 ip Q,(x) is 0, whence the sum of
the roots of Q(x), that is, the sum of the primitive n-th roots of unity,
is 0, showing that these roots are linearly dependent. Hence, they
cannot form a basis for S over F. I
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*10.4 Wedderburn’s Theorem

In this section, we present an important result whose proof uses the
properties of cyclotomic polynomials.

Theorem 10.4.1 (Wedderburn’s Theorem) If D is a finite division ring
then D is a field.

Proof. We begin by recalling Example 0.2.1, which describes an instance
of the class equation. Let the group D* act on itself by conjugation. The
stabilizer of B € D* is the centralizer

C*(8) ={a € D*| af = fa}

and the class equation is

ID*| = lZ(D*)|+Z,'D |

c*(8)|

where the sum is taken over one representative 3 from each conjugacy
class o(8) = {afa"!|a € G} of size greater than 1. If we assume for
the purposes of contradiction that Z(D*) # D*, then the sum on the far
right is not an empty sum and |C*(8)| < | D*| for some 8 € D*.

The sets

Z(D)={B €D|Pa = af for all a € D}
and

C(B) ={a€D|af = fa}

are subrings of D and, in fact, Z(D) is a commutative division ring;
that is, a field. Moreover, Z(D)* = Z(D*) and C(8)* = C*(B) for 8 # 0.
Let |Z(D)| =z. Since Z(D) C C(8), we may view C(f) and D as
vector spaces over Z(D) and so

|C(B)| =2> and |D| =2"

for integers 1 < b < n. The class equation now gives
2" ~1=z-1+ 22 -1
Z 2?1

and since z° — 1|z" — 1, it follows that b | n.

If Qu(x) is the n-th cyclotomic polynomial over Q, then Q,(z)
divides z" — 1. But Q(z) also divides each summand on the far right
above, since for b |n, b < n we have
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-1l TJaw / T

5
x>—1 gyn ilb

and Q,(x) divides the right hand side. It follows that Q (z)|z—1. On
the other hand,

Q@) =]J] @-w)

wEQn

and since w € @ implies that |z—w| > 2| — |w| =2 —1, we have a
contradiction. Hence Z(D*) = D* and D is commutative, that is, D is a

field. B

*10.5 Realizing Groups as Galois Groups

A group G is said to be realizable over a field F if there is an
extension F < E for which Gp(E) =~ G. Since any finite group of order n
is isomorphic to a subgroup of a symmetric group S, we have the
following.

Theorem 10.5.1 Let F be a field. Every finite group is realizable over
some extension of F.

Proof. Let G be a group of order n. Let t;,...,t, be algebraically
independent over F and let s,,...,s, be the elementary symmetric
functions in the ts. Then K =F(t;,...,t;) > F(sy,...,s,)=F is a
Galois extension whose Galois group is isomorphic to S. (See Theorem
6.2.1.) We may assume that G is a subgroup of Gp(K) and since G is
closed in the Galois correspondence, it is the Galois group of F(G) < K.I

It is a major unsolved problem to determine which finite groups are
realizable over the rational numbers Q. We shall prove that any finite
abelian group is realizable over Q. It is also true that for any n, the
symmetric group S is realizable over Q, but we shall prove this only
when n = p is a prime.

Realizing Finite Abelian Groups over Q

We shall have use for a special case of a famous theorem of Dirichlet,
which says that if n and m are relatively prime positive integers then
there are infinitely many prime numbers of the form nk + m. We need
the case m = 1. First a lemma on cyclotomic polynomials.

Lemma 10.5.2 Let p be a prime and let (n,p) = 1. Let Q_(x) be the n-th
cyclotomic polynomial over Q and let P (x) be the n-th cyclotomic
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polynomial over Zp If Q (x) is the polynomial obtained from Q,(x) by
taking the residue of each coefficient modulo p, then Q,(x) = P_(x).

Proof. If n =r is a prime then Q/(x) , P(x) and Q,(x) are all equal to
xr—l +xr—2+n_+1

and so the result holds for n prime. Suppose the result holds for all
proper divisors of n. Since

xX"-1= H Qq4(x)
d|n
taking residues modulo p gives

x—1=J]Qux)
din
over Zp. But

x"—-1= HPd(x)

din

over Z, and since Py(x) = Qq(x) for all d|n, d <n, we have P (x) =
Qu(x). 1

Theorem 10.5.3 Let n be a positive integer. Then there are infinitely
many prime numbers of the form nk + 1, for k € zt.

Proof. Suppose to the contrary that p,,...,ps is a complete list of all
primes of the form nk+1. Let m = p;---p;n. Let Q_ (x) be the m-th
cyclotomic polynomial over Q and consider the polynomial Q. (mx).
Since Q,(x) has integer coefficients, Q_ (mk) is an integer for all k €
Zt. Since Q o(mk) can equal 0, 1 or -1 for only a finite number of
positive integers k, there exists a positive integer k for which
| Qu(mk) | > 1. Let p be a prime dividing Qg (mk). Since
Q(x) | x™ -1, we have

p | (mk)™ -
which implies that pfm, hence p # p; fori =1,...,s

If P (x) is the m-th cyclotomic polynomial over Z then it follows
from the fact that p | Q,,(mk), and the previous lemma, that

P (mk) = Q,(mk) = Q,,(mk) =0

in Z , where mk is the residue of mk modulo p. Thus, mK is a primitive
m- th root of unity over Z_. In other words, mk has order m in Zy and
since the order of any element must divide the order of the group, we
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get m|p—1. It follows that n|p—1, that is, p =nk+1, which is a
contradiction, proving the theorem.

Theorem 10.5.4 Let G be a finite abelian group. Then there exists an
integer n and a field E such that Q < E < Q(w), where w is a primitive
n-th root of unity, and such that GQ(E) ~G.

Proof. By Theorem 10.2.8, the Galois group of Q(w) is isomorphic to
Z;. Since Z} is abelian, any subgroup K of Z} is normal in Z} and so
Q < F(K) is a Galois extension, with Galois group

GQ(K) ~7r/K

‘Thus, we need only show that any finite abelian group G is isomorphic
to a quotient group Z7/K, for some integer n.
Since G is finite and abelian, we have

G ~ C(ny) x---x C(ny)

where C(n;) is cyclic of degree n;. According to Theorem 10.5.3, we may
choose distinct primes p;,...,p, of the form n;---nk+1 and so
n; | p;—1 fori=1,...,s. Since the cyclic group

Z;i
has order p;—1, it has a subgroup of any order dividing p;—1, in
particular, a subgroup K, of order (p; — 1)/n;, whence the quotient

Z; /%;
is cyclic of order n;, and is therefore isomorphic to C(n;). Hence, if K =
K, x---xK, and n = p;---p, then
* * * * *
ZPl mx%&’v Zplx---xZPSNZpl...ps ~§
~ K, K, ~ Kyx---xK;, - K TK

as desired. I

Realizing Sp over Q

We begin by discussing a sometimes useful tool for showing that the
Galois group of a polynomial is a symmetric group.

Let G be the Galois group of an irreducible polynomial f(x) € Fx],
thought of as a group of permutations on the set R of roots of f(x).
Then G acts transitively on R. Let us define an equivalence relation on
R by saying that r ~ s if and only if either r =s or the transposition
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(r,8) is an element of G (more properly, an element of G acts as the
transposition (r,s) on R.) It is easy to see that this is an equivalence
relation on R.

Let [r] be the equivalence class contalmng r, and assume there exists
s, T €R such that s#r and s~r. In other words, assume that G
contains a transposition (r,s). If ¢ € G then o(r,s)0 ! sends ot to os, os
to or and fixes all other elements of R, whence o(r,s)o™! = (or,08).
Thus, s ~ r implies os ~ or and so o[r] = [or]. This shows that [r] and
[or] have the same cardinality and since G acts transitively on R, all
equivalence classes have the same cardinality.

It follows that if |R| is prime, then there can be only one
equivalence class, which implies that (r,s) € G for all r, s € R. Since G
contains every transposition, it must be the symmetric group on R. We
have proved the following.

Theorem 10.5.5 If f(x) € F[x] is a separable polynomial of prime degree
p and if the Galois group G of f(x) contains a transposition, then G is
isomorphic to the symmetric group Sp. 1]

Corollary 10.5.6 If f(x) € Q[x] is irreducible of prime degree p and if
f(x) has precisely two nonreal roots, then the Galois group of f(x) is
isomorphic to the symmetric group S

Proof. Complex conjugation on C is an automorphism of C leaving Q
fixed. Since the splitting field S for f(x) over Q is Galois, conjugation is
a Q-automorphism of S, and therefore belongs to G (S). Since it leaves
the p—2 real roots of f(x) fixed, it is a transposition on the roots of
f(x). Thus, the theorem applies. B

Example 10.5.1 Consider the polynomial f(x)=x®—5x+42, which is
irreducible over Q by Eisenstein’s criterion. A quick sketch of the graph
reveals that f(x) has precisely 3 real roots and so its Galois group is
isomorphic to S;. [I

Corollary 10.5.6 is just what we need to establish that S
realizable over Q.

Theorem 10.5.7 Let p be a prime. There exists an irreducible
polynomial p(x) over Q of degree p such that p(x) has precisely two
nonreal roots. Hence, the symmetric group Sp is realizable over Q.

Proof. The result is easy for p =2 and 3, so let us assume that p > 5.
Let n be a positive integer and m>5 be an odd integer. Let

ky,..., ko be even integers and let



10 The Roots of Unity 205

q(x) = (x2 +n)(x—ky)-(x—k_5)

It is easy to see from the graph that q(x) has (m—3)/2 relative
maxima. Moreover, if k is an odd integer, then

la(k)| >2|k®+n| >2

Let p(x) = q(x) —2. Since the relative maxima of q(x) are all greater
than 2 and since q(-o0) = —co and g(co) = 0o, we deduce that p(x) has
the same number m — 2 of real roots as q(x).

We wish to choose a value of n for which p(x) has at least one
nonreal root z, for then the complex conjugate Z is also a root, implying
that p(x) has two nonreal roots and m — 2 real roots. Let the roots of
p(x) in a splitting field be o,...,a,,. Then

p(x) = T (x =) = (2 4 m)(x = ky)e - (x — Ky _p) =2
i=1

Equating coefficients of x™~! and x™~2 gives

m m-—2
Y=k and Y o= kkj+n
i=1 i=1 1<j i<j
and so
m m m-—2
Za?:(Zal) —220 (Zk,) —2( Zkk +n)
i=1 i=1 i<j =1 i<j
m—2
= kiz-—2n
i=1

If n is sufficiently large, then ) of is negative, whence at least one of
the roots a; must be nonreal, as desired.

It is left to show that p(x) is irreducible, which we do using
Eisenstein’s criterion. Let us write

q(x) = (X2 +n)(x - kl)' c(x - km—2) =x"+ am_lxm‘l +--+a

In the product (x —k;)--+(x —k,,_,), each coefficient except the leading
one is divisible by 2. Hence, we may write

(k= Ky)+ (X~ _g) = X2 4+ 26(x)

Multiplying by x? + n gives
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q(x) = x¥™ + 2x2(x) 4 nx™~2 4+ 2nf(x)

Taking n to be even, we deduce that all nonleading coefficients of g(x)
are even. In addition, the constant term of q(x) is divisible by 4 since
m >5. It follows that p(x) =q(x)—2 is monic, all nonleading
coefficients are divisible by 2, but the constant term is not divisible by
22 = 4. Therefore p(x) is irreducible and the proof is complete. §

Exercises

All cyclotomic polynomials are assumed to be over fields for which they
are defined.

1.  Prove that if x" —1 = Q_(x)p(x) where p(x) € Z[x] then Q_(x) €
Z[x].

2. When is a group primitive element of the cyclotomic extension S

also a primitive n-th root of unity over GF(q)?

If (n,q) # 1, how many n-th roots of unity are there over GF(q)?

4.  What is the splitting field for x*—1 over GF(3)? Find the
primitive 4-th roots of unity in this splitting field. Do the same for
the 8-th roots of unity over GF(3).

5. If a;,...,a, are the n-th roots of unity over GF(q) show that
all‘+al;+---+ah=0 for 1 <k<n.

6. Show that Q,(x) € GF(q)[x] is irreducible if and only if
0n(a) = ¢(n).

7. If (n,q) =1, prove that x 14x"24...4x+1 is irreducible
over GF(q) if and only if n is prime and Q,(x) is irreducible.

8.  Show that if r is a prime, then Q(x) = (xrn - 1)/(x""_1 -1).
9.  Evaluate Q,(1).

10. Evaluate Q (-1).

11.  Show that Q(w,) NQ(w,,) = Q if (m,n) = 1.

&

Verify the following properties of the cyclotomic polynomials. As usual,
p is a prime number.

12 Qup(x) = Qq(xP)/Qy(x) for pJn.
13, Qup(x) = Qu(xP) for all p | n.

14, Quy(x) = Qe )

15. Q,(0) =1forn>2.

16. Qn(x"l)x(ﬁ(n) =Q,(x) for n > 2.

17. Ifn= pil- . -pik is the decomposition of n into a product of powers
of distinct primes, then
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e, —1 e, —1
Q,(x) = Qpl___pk(xpll - -pek )

On the structure of 73,

18. If n = []r; where r; = p;i are distinct prime powers then
*
7112,

19. Assume p # 2 is prime. Let n = p®.
i) Show that |Z%| =p*~}(p—1).
ii) Show that Z} has an element of order p — 1.
iii) Show that 1+ p € Z} has order peL.
iv) Show that Zj is cyclic.
v) If n = 2° then Z} is cyclic if and only ife =1 or 2.
vi) Show that Z} is cyclic if and only if n = p®, 2p°® or 4.

20. If n>1 then there exists an irreducible polynomial of degree n
over Q whose Galois group is isomorphic to Z .

21. Find an integer n and a field E such that Q < E < Q(w,) with
Go(E) = Zg. Here w,, is a primitive n-th root of unity over Q.

22. Calculate the Galois group of the polynomial f(x) = x> —4x +2.

More on Constructions

The following exercises show that not all regular n-gons can be
constructed in the plane using only a straight edge and compass. The
reader may refer to the exercises of Chapter 2 for the relevant
definitions.

Definition A complex number z is constructible if its real and imaginary
parts are both constructible. 0

Cl. Prove that the set of all constructible complex numbers forms a
subfield of the complex numbers C.

C2. Prove that a complex number z = re'? is constructible if and only
if the real number r and the angle 6 (that is, the real number
cos @) are constructible.

C3. Prove that if z is constructible, then both square roots of z are
constructible. Hint: use the previous exercise.

C4. Prove that a complex number z is constructible if and only if there
exists a tower of fields Q< F; <. <F,, each one a quadratic
extension of the previous one, such that z € F .

C5. Prove that if z is constructible, then [Q(z):Q] must be a power of
2,

C6. Show that the constructibility of a regular n-gon is equivalent to
the constructibility of a primitive n-th root of unity w,. Since the
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cyclotomic polynomial Q,(x) is irreducible over the rationals, we
have [Q(w,):Q] = deg Q_(x) = ¢(n).
Prove that ¢(n) is a power of 2 if and only if n has the form

n= 2kp1. P
where p, are distinct Fermat primes, that is, primes of the form
S
22" +1

for some nonnegative integer s. Hint: if P41is prime then j must
be a power of 2. Conclude that if n does not have this form, then
a regular n-gon is not constructible. For instance, we cannot
construct a regular n-gon for n = 7, 11 or 90. [Gauss proved that if
n has the above form, then a regular n-gon can be constructed. See
Hadlock (1978).]



Chapter 11
Cyclic Extensions

Continuing our discussion of binomials begun in the previous
chapter, we will show that if a is a root of x® —u and if w is a primitive
n-th root of unity over F, then F(w,a) is a splitting field for x™ —u over
F. Moreover, in the tower

F < F(w) < F(w,a@)

the first step is a cyclotomic extension, which as we have seen, is
abelian and may be cyclic. The second step is cyclic of degree d|n.
Nevertheless, as we will see in Chapter 13, the Galois group Gp(F(w,a))
need not even be abelian. In studying the second step in this tower, we
will actually characterize finite cyclic extensions, when the base field
contains appropriate roots of unity.

Before beginning, we remark that if F is a field of characteristic
p # 0 and if p | n, then F cannot contain a primitive n-th root of unity.
For if n = pm and w™ ~1 =0 then

0=uw"-1=uwP"-1=(u"-1)P

and so w™ =1, whence w is an m-th root of unity, for m < n. Thus,
saying that a field F contains a primitive n-th root of unity tacitly
implies that (n,expchar(F)) = 1. (Such an implication is not made by
saying that F contains the n-th roots of unity.)
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11.1 Cyclic Extensions

Let F be a field with expchar(F)=p, let u€F and let S be the
splitting field for the binomial x®—u over F. We will assume
throughout that (n,p) = 1 and so x™ — u has n distinct roots in S.

If a is a root of x®—~u in S and w is a primitive n-th root of unity
over F then the roots of x™ —u are

(11.1.1) o, wa,..., " ta

and so S = F(w,a). In words, all n-th roots of u can be obtained by first
adjoining the n-th roots of unity and then adjoining any single n-th root
of u.

The extension F < S can thus be decomposed into a tower

F < F(w) < F(w,a) =S

The first step is cyclotomic. We turn to a study of the second step.

It will simplify the notation to assume that w € F. Thus S = F(a) is
a splitting field for x™ —u and so F < F(a) is a Galois extension. Each
o € G = Gg(S) is uniquely determined by its value on « and

oo = o
for some k(o) € Z,,. Since w € F, we have for 5, € G
(e7)a = a'(wk(r)a) =¥ Moa = M)y

Hence, the map o) is a group monomorphism from G into U
and therefore G is isomorphic to a subgroup of U . It follows that G is
cyclic and if |G| = [F(a):F] =d then d | n. As the next theorem shows,
this actually characterizes cyclic extensions when the base field contains
a primitive n-th root of unity.

Theorem 11.1.1 Let F be a field containing-a primitive n-th root of
unity. The following are equivalent.

1) F < Eis cyclic of degree d | n.

2) E =F(a) where min(e,F) =x4—v, for ve F and d | n.

3) Eis a splitting field for an irreducible binomial x4 — v, where v €
F and d|n.

4) E =F(a) where « is a root of a binomial x" —u, for u € F.

5) E is a splitting field for a binomial x™ — u, for u € F.

Proof. Let us first show that 2) through 5) are equivalent. Since F
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contains a primitive d-th root of unity for any d|n, it is clear that 2)
and 3) are equlvalent as are 4) and 5). If 2) holds then since a9 =v €
F and x9—ad divides x" —a® , it follows that a is a root of x™—u
where u = o" € F. Hence 4) holds. Suppose now that 4) holds. The
roots of x™ —u are given by (11.1.1) and since the d roots of p(x) =
min(a,F) are among the list (11.1.1), their product which lies in F, has
the form w®ad. Hence a9 € F and p(x) = x3 — o4, Thus, 2) holds.

We have already shown that 4) implies 1) so it remains to prove that
1) implies 2). Suppose that F < E is cyclic of degree d | n, with Galois
group

G = (o) = {1,0,...,0971}

Note that F contains a prlmltlve d—th root of unity € = w“/ d Now,

o € F = F(G) if and only if 7ad = o4, which is equivalent to (aa)d
a®, or

(11.1.2) (&) =1

If we can ﬁnd an a € E for which a/aa = ¢, then (11.1.2) will hold, we
will have a € F, whence x3—0d € F[x] and if p(x) = min(a, F) then
p(x) | x3 — o4, But the roots of p(x) are

(11.1.3) o, oa,...,097
and since oo = £ la, we have aka—-ﬁ_ a, which implies that the
elements (11.1.3) are distinct. Hence, deg p(x) d and so p(x)=
x4 —a? and E = F(a), as desired.

Thus, we are left with finding an « € E for which a/ga = €. Since
¢ € F, its norm satisfies

E:F
NE/F(f) = f[ I = ¢d=1
The proof is then completed by taking 8 = £ in the following theorem. 11

Theorem 11.1.2 (Hilbert’s Theorem 90) Let F < E be a finite cyclic
extension with Galois group G = (o). An element § € E has the form

¢ 1
B =7a

for some a € E* if and only if its norm Ng /F(ﬂ) is equal to 1.

Proof. Let [E:F] = d. Suppose that N /F(ﬂ) = 1. We desire an « € E for
which B(oa) = . Consider the maps
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To=14 T = B(aB)(a?B)-- -(ak_lﬂ)a'k, for0<k<d

Then
Tx41 = BloTy), for 0 <k <d-1

Since 74 = NE/F(,B)ad =1 =T, the map

d—1
=5
k=0

which is nonzero by the Dedekind Independence Theorem, satisfies
B(or) = 7. Since T # 0, there exists a nonzero 4 € E for which 7y #0
and so (Bo)(ry) =17, that is, B =ry/o(ry), whence a =7y is the
desired element. We leave proof of the converse to the reader. I

11.2 Extensions of Degree Char(F)

There is an “additive” version of Theorem 11.1.1 which deals with
cyclic extensions of degree equal to p = char(F) > 0, where the role of
the binomial x™ —u is played by the polynomial xP —x —u.

Suppose that F is a field of characteristic p#0. Let F <E and
suppose that a € E is a root of the polynomial

f(x) =xP—x—-u

for u € F. Since the prime subfield of F is Zp, and since kP =k for any
ke Zp, the p distinct elements

oa+l,...,a+p—-1

are the roots of f(x). Unlike the previous case, we need no special
conditions on F to insure that if an extension of F contains one root of
f(x), it contains all the roots of f(x). Hence, F(«) is a splitting field of
f(x).

We have two cases to consider. If o € F then f(x) splits in F. Now
suppose that a ¢ F. Then p(x) = min(a,F) has degree d > 1, with roots

a, a+tep,...,at+eq

where 0 < e; < p — 1. The sum of these roots is da + k, for some integer
k, and since this number lies in F but o ¢ F, we must have d =p,
whence f(x) = min(a,F) is irreducible. In short, f(x) either splits in F or
is irreducible over F with splitting field F(a), for any root o of f(x).
Since F(a) is a splitting field for the separable polynomial f(x) =
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xP —x —u, we deduce that F < F(a) is Galois. If f(x) is irreducible over
F and G = Gp(F()), there exists a 0 € G for which sa = a + 1. Since
o'a = a +1i, it follows that G = (¢) = {,0,...,0P7 1} is the cyclic group
generated by o.

Theorem 11.2.1 (Artin-Schreier) Let char(F) = p # 0. The polynomial
f(x) = xP —x —u either splits in F or is irreducible over F. Moreover,
the following are equivalent.

1) F < E is cyclic of degree p.

2) E =F(a) where min(a,F) =xP —x—u, forueF.

3) E is a splitting field for the irreducible polynomial xP —x —u,
where u € F.

Proof. It is clear that 2) and 3) are equivalent and we have seen that 2)
implies 1). To prove that 1) implies 2), suppose that F < E is cyclic of
degree p, with Galois group G = (¢) = {1,0,...,0P"1}. Then aP—a € F
if and only if

o(aP—a)=aP-a
or, equivalently,
(ca—a)l =ca—a
Hence, if we find an a € E for which ca—a =1 then o® —a € F.

Moreover, ca = a+1 and so oda=a+ i, which implies that the roots
of min(a,F) are the distinct values

a,a+l,...,a+p-1
It follows that
min(a,F) =xP —x - (aP —a)
and hence that [F(a):F] =[E:F] and E = F(a). Since TrE/F(-l) =0,

the proof is completed by taking § = -1 in the additive version of
Hilbert’s Theorem 90 given below. §

Theorem 11.2.2 (Hilbert’s Theorem 90, Additive Version) Let F < E be

a finite cyclic extension with Galois group G = (¢). An element § € E
has the form 8 = a — oca for some a € E if and only if TrE/F(,B) =0

Proof. Let [E:F] = n and consider the map
T = Bo +[B+(oB)lo® +- -+ [B+(0 )+ +("?B)]o"

It is easy to verify that r—or=8(4+0+--+0"!) and so if
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Trg /F(7) =1 for some ¥ € E (such a ¥ must exists since F < E is finite
and separable and so the trace map is not the zero map) then

Ty —ory = BTrgp(7) =
Thus, a = 7 is the desired element. 1

In this section and the previous one, we have discussed cyclic
extensions of degree n where (n,expchar(F)) =1 or n = p = char(F) # 0.
A discussion of cyclic extensions of degree n = p* for k > 1 is quite a bit
more involved (requiring a discussion of so-called Witt vectors) and thus
falls beyond the intended scope of this book. The interested reader may
wish to consult the books by Karpilovsky (1989) or Lang (1993).

Exercises

1. Let F < E be cyclic of degree n, with Galois group G = (¢). If 8 €
E has the form f# =afoca for some 0# a€E, show that
NE/F(ﬂ) =1L

2. Let F<E be cyclic of degree p"™ where p is a prime. Let
F<K<E with F<K cyclic of degree pd where d <n. Let
F < L < E and suppose that E = KL. Show that E = L.

3. Let char(F) =p #0 and let F(a;) = F(a;) be cyclic of degree p
over F, where min(q;F)=xP—x—u;. Show that ay =na; +b
where b€ F and 0 < n <p-1.

4. Let F be a field and let E be the extension of F generated by the
n-th roots of unity, for all n > 1. Show that F < E is abelian.

5. Let E be a field and let o be an automorphism of E of order d.
Suppose that B € E has the property that ¢8 = @ and ﬁd: 1.
Prove that there exists an « € E such that oo = of.

6. Let E be a field and let ¢ be an automorphism of E of order d > 1.
Show that there exists an o € E such that ca = a + 1.

7. Let F<E be finite and abelian. Show that E =F,;.--F_ is the
composite of fields F; such that F <F; is cyclic of prime power
degree. Thus, the study of finite abelian extensions reduces to the
study of cyclic extensions of prime power degree.

8. Let F be a field containing the n-th roots of unity. Let F be an
algebraic closure of F. Show that if a € F is separable over F and
if o is a root of the binomial x" —u with u € F, then F < F(a) is
cyclic of degree d | n.



Chapter 12
Solvable Extensions

We now turn to the question of when an arbitrary polynomial
equation p(x) =0 is solvable by radicals. Loosely speaking, this means
(for char(F) = 0) that we can reach the roots of p(x) by a finite process
of adjoining n-th roots of existing elements, that is, by a finite process
of passing from a field K to a field K(a), where a is a root of a
binomial x®—u, with u € K. We begin with some basic facts about
solvable groups.

12.1 Solvable Groups

Definition A normal series in a group G is a tower of subgroups
{1 =Gy <G;<Gy<- <G, =G

where G; 4G, ;. A normal series is abelian if each factor group G;,,/G;
is abelian, and cyclic if each factor group is cyclic.

Definition A group is solvable (or soluble) if it has an abelian normal
series. []

Theorem 12.1.1 The following are equivalent for a nontrivial finite
group G.

1) G has an abelian normal series.
2) G has a cyclic normal series.
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3) G has a normal series in which each factor group G;,,/G; is cyclic
of prime order.

Proof. It is clear that 3)=>2)=1). Thus, we need only prove that 1)=3).
Let {G;} be an abelian normal series. We wish to refine this series by
inserting subgroups until all quotients have prime order. The
Correspondence Theorem (Theorem 0.2.15) says that the natural
projection m:G; ;1 —G; +1/Gi is a normality-preserving bijection from the
subgroups of G;,; containing G; to the subgroups of G;,;/G;. Hence,
by Cauchy’s Theorem, if a prime p divides o(G;,,/G;) then G;,,/G;
has a subgroup of order p, which must have the form H;/G; for
G; < H; <Gy,

Since G;,,/G; is abelian, H;/G; < G;,/G;, whence H;<G;,,. Since
G;<4Gj,, we also have G;<H;. Thus, G;<H;<G,,,. Note also that
H;/G; is abelian and, by the Third Isomorphism Theorem,

G.../G.
Gy /H; = ‘T?/l—(/;—l

1 1
is the quotient of an abelian group and is therefore also abelian.

Thus, we have refined the original abelian normal series by
introducing H;, where H;/G; has prime order. Since G is a finite group,
we may continue the refinement process until we have an abelian
normal series, each of whose quotient groups has prime order. i

The next theorem gives some basic properties of solvable groups. The
proofs of all but statement 2) can be found in standard texts on group
theory.

Theorem 12.1.2

1)  Any finitely generated abelian group is solvable.

2)  (Feit-Thompson) Any finite group of odd order is solvable.

3)  Any subgroup of a solvable group is solvable.

4) If H<G then G is solvable if and only if H and G/H are solvable.

5)  Any homomorphic image of a solvable group is solvable.

6) The direct product of a finite number of solvable groups is
solvable.

7)  The symmetric group S, is solvable if and only if n < 4.0

12.2 Solvable Extensions

Although the upcoming results can be proved in the context of
arbitrary finite extensions, we shall restrict our attention to separable
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extensions. As the reader knows, this produces no loss of generality for
fields of characteristic 0 or finite fields.

Definition A finite separable extension F < E is solvable if there exists a
field S for which F < E < S, where F < S is Galois and has a solvable
Galois group Gg(S).0

Theorem 12.2.1

1) If F < E is solvable, then there exists a field S such that F < E < S
where F < § is finite, Galois and solvable.

2) A finite Galois extension F < E is solvable if and only if the
Galois group Gp(E) is solvable.

3) If F <E is solvable and E™° is the normal closure of E over F then
F < E™ is solvable.

Proof. Let F < E be solvable and let S be the field mentioned in the
definition. Since F < S is normal, we have F <E <E™ <S. By
Theorem 4.5.2, the separability of F < E implies that F < E™® is Galois.
Moreover,

)

is solvable and so F < E"°. This proves part 3). Theorem 2.9.6 implies
that if F <E is finite then so is F < E"® and so part 1) is proved.
Finally, if F < E is finite, Galois and solvable then E" = E and part 3)
implies part 2). The converse is obvious. I

In view of part 1) of the previous theorem, we may always assume
that the field S in the definition of solvable is a finite extension of F.

Theorem 12.2.2 The class of solvable extensions is distinguished.

Proof. Suppose first that F < E is solvable and F < K is arbitrary. Then
there exists a field S such that F < E < S with F < S finite, Galois and
Gr(S) solvable. Hence, K < SK is finite and Galois. Since Gk(SK) is
isomorphic to Gy nS(S), which is a subgroup of Gg(S), it too is
solvable. Hence K < EK is solvable.

Suppose now that F < E is solvable and F < K < E. Hence, there
exists an S such that F < K <E < S where F < S is finite and Galois
and Gg(S) is solvable. It follows that K < S is Galois and since Gk(S) is
a subgroup of Gp(S), the former is solvable, whence K < E is solvable.
It is evident that F < K is solvable.

Suppose now that F < K < E with F <K and K < E solvable and
consider Figure 12.2.1.
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Figure 12.2.1

Since F <K is solvable there exists Sk such that F < K < Sy where
F < Sk is finite, Galois and Gp(Sk) is solvable. Similarly, since K < E
is solvable, there exists a field Sg such that K < E < S where K < S is
finite, Galois and Gk(Sg) is solvable. Since K < E is solvable, the lifting
Sk <SkE is solvable and so there exists a field T such that
Sk < SkE < T where S < T is finite, Galois and

G, (T)

is solvable.
If F < T was normal, our problems would be quickly solvable, but it
need not be. Thus, we turn to the normal closure T"¢ of T over F. Since

F<T is finite and separable, it follows that F < T"¢ is finite and
Galois. Recall that T"¢ = V oT, for all ¢ € Homp(T,T) and since

| Homg(T,T) | = [T:F],

is finite, this composite is a finite one. For each ¢ € Homp(T,T), the
map 0:T—oT is an F-automorphism. The normality of F < Sy implies
that oSk =Sk and since Sy <T is Galois and GSK(T) solvable, it
follows that Sy < 0T is Galois and Gg_(oT) is solvable.

According to Theorem 5.5.3, the extension Sy < T"¢ is Galois and
Gg_ (T"°) is isomorphic to a subgroup of the product [[ Gg (¢T) and
e \ QN . o s . . K
since this is a finite product, it is solvable. Finally, since

G Tnc
Gp(Sg) =~ —G‘SL((T“_C)S
K

and both Gp(Sk) and Gg_(T"°) are solvable, so is Gp(T"°), whence
F < E is solvable. 1 K
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12.3 Solvability by Radicals

Loosely speaking, when char(F) =0, an extension F < E is solvable
by radicals if it is possible to reach E from F by adjoining a finite
sequence of n-th roots of existing elements. More specifically, we have
the following definitions, which also deal with the case where
char(F) # 0.

Definition Let expchar(F) = p and let F < R. A radical series for F <R
is a tower of fields

F:R0<R1<"'<Rn=R

such that each step R; < R;; is one of the following types:
Type 1: R;,; = R;(B;) where B, is an r;-th root of unity.

1
Type 2: R;,; = Ri(o;) where q; is a root of xi—u, with 1 £y, € R,
and (r;,p) = L.

Type 3: (For p>1 only) R;,,=Rj(e;) where @; is a root of
xP —x —u,;, with y; € R;.

For steps of types 1 and 2, the number r; is the exponent of the step.
The exponent of a type 3 step is p. 0

Note that if expchar(F) =p # 1 and # is an r-th root of unity where
r = mp® and (m,p) =1 then § is also an m-th root of unity. Hence, we
may assume that in a type 1 extension, the exponent r; is relatively
prime to the characteristic p.

Note also that lifting a radical series gives another radical series with
the same type steps, for if R;,; = R;(a), where o is a root of f(x) €
R;[x], then

KR; 4y = (KR))(a)
where a is a root of f(x) € (KR;)(x].

Definition A radical extension is a finite separable extension F < R that
has a radical series. A finite separable extension F < E is solvable by
radicals if there exists a radical extension F < R containing E, that is,
F<E<R.O

Theorem 12.3.1 The class of extensions that are solvable by radicals is
distinguished. If F < E is solvable by radicals then so is F < E™ where
E"€ is the normal closure of E over F.
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Proof. Let F < E be solvable by radicals, with associated radical series
{R;}. Thus, F <E <R. Let F <K be any extension. Lifting the series
by K gives a radical series {KR;} from K to KR containing KE, whence
K < KE is solvable by radicals.

Now let F < K < E with F <K and K < E solvable by radicals. Let
{R;} be the radical series for F <R containing K and let {S;} be a
radical series for K < S containing E. We lift the series {S;} by R to get
a radical series {RS;} for RK < RS containing RE. Since RK = K, the
series {R;}, followed by the series {RS;}, is a radical series for F < RS
containing EK. Thus, F < EK is solvable by radicals.

If F<K<E and F <E is solvable by radicals then a fortiori F < K
is solvable by radicals. If {R;} is a radical series for F < R containing E
then {KR;} is a radical series for K < KR containing KE = E, whence
K < E is solvable by radicals.

For the last statement, let F < E <R where F < R is radical. Let
g€ HomF_(E,E—). Since E < R is algebraic, we may extend o to @ €
Hompg(R,E). Since 7:R—5(R) is an F-isomorphism if {R;} is a radical
series for F < R then {R;} is a radical series for F < 7R containing oE.
Hence, F < oE is also solvable by radicals. Since E" = V ¢E is a finite
composite, it follows that F < E" is solvable by radicals. i

Now we come to the key result that links the concepts of solvable
extension and solvability by radicals.

Theorem 12.3.2 A finite separable extension F < E is solvable by
radicals if and only if it is solvable.

Proof. Suppose first that F < E is solvable. Let S be a field for which
F<E<S where F<S is finite, Galois and G = G(S) is solvable.
Thus, there is a normal series decomposition

(12.3.1) {f}:G0<G1<G2<"‘<Gn=G

where G; 4G, and G;,,/G; is cyclic of prime order r; dividing |G |.
Taking fixed fields gives

(123.2) F=FG)< FG,_;) << F(Gy) < F({e}) =S

Unfortunately, since the appropriate roots of unity may not lie in these
fields, we cannot apply the relevant theorems (11.1.1 and 11.2.1) of the
previous chapter to conclude that this is a radical series. Hence, we first
adjoin the necessary r;-th roots of unity.

If G; <Gy, is a step in the series (12.3.1) then the corresponding
step in (12.3.2) has prime degree
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r; = [F(G)):F(Gi )]
dividing [S:F]. So let
[S:F] =n = mp®

where p = expchar(F) and (m,p) =1 and let w be a primitive m-th root
of unity. If we show that F(w) < S(w) is solvable by radicals then since
F < F(w) is a type 1 extension, it follows that F < S(w) is solvable by
radicals and therefore so is F < S. Since F(w) < S(w) is a lifting of the
finite, solvable Galois extension F < S by F(w), it is also finite, solvable
and Galois. Note also that [S(w):F(w)]|[S:F] and so if r #p is any
prime dividing [S(w):F(w)], then r | m and so F(w) contains a primitive
r-th root of unity.

Thus, the extension F(w) < S(w) is finite, Galois and solvable and
F(w) contains a primitive r-th root of unity for any prime r # p that
divides [S(w):F(w)]. We need to show that F(w) < S(w) is solvable by
radicals. In view of this, we may as well assume to begin with that F
contains a primitive r-th root of unity for any prime r # p dividing
[S:F].

Referring to Equation (12.3.2), consider the Galois correspondence on
the finite Galois extension F(G;,,) <S. Since F(G;) is an intermediate
field and G;<G;,;, Theorem 5.4.1 implies that F(G;, ;) < F(G;) is
Galois and

GF(Gi+1)(F(Gi)) > Gi41/G;

which is cyclic of prime order r; dividing [S:F]. To simplify the
notation, let

F(Gyq) =L, F(G)=M and r;=r

Then Gy (M) is cyclic of prime order r dividing mp®.

If r = p, Theorem 11.2.1 implies that there exists an o € M for which
M = L(a), where a is a root of xP —x —u for some u € L. Thus, L<M
is an extension of type 3. If r #p then r|m and so L contains a
primitive r-th root of unity. Theorem 11.1.1 then implies that M =
.L(c), where o is a root of x"—u for some u € L. Hence, L <M is an
extension of type 2. Thus, each step in the tower (12.3.2) is of type 2 or
type 3 and we conclude that F < S is solvable by radicals, as desired.

For the converse, suppose that F < E is solvable by radicals. Then
F < E™ is Galois and solvable by radicals. Let

F=R0<R1<"'<Rn=R
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be a radical series for F <R containing E™. We wish to adjoin
appropriate roots of unity, lifting the series to one in which each step is
cyclic. Then, by tacking on a front end, we get a series with cyclic steps
that begins with F and goes past E.

Let r be the least common multiple of all of the exponents in the
series {R;} and let w be a primitive r-th root of unity. If R; < Ry(a;) is a
step of type 1, then «; is an r-th root of unity where r;|r and so
R;(o4,w) = Rj(w). Hence, lifting {R;} to {R;(w)} eliminates all steps of
type 1. (We remove any trivial steps of degree 1.)

If R; < Ri(;) is a step of type 2, then q; is a root of xri—ui and
since R;(w) contains a primitive r;-th root of unity, Theorem 11.1.1
implies that R;(w) < Ri(w,a;) is cyclic. Finally, Theorem 11.2.1
guarantees that if R; < R;,, is of type 3, then Rj(w) < R;,,(w) is cyclic.

Thus, each step in the tower

F < F(w) = Rg(w) < - < R (w) = R(w)

is abelian, all steps after the first one being cyclic. Taking Galois groups
gives a series

(12.3.3)
{6} = Gy (R()) < Gy_(y(R®)) <+ < Gy (1)(R(w)) < Gp(R(w))
Since R; < R;, is normal, so is Rj(w) < R;;,(w) and so
G ) (RE)) < G ) (RE))
and the quotient group is

GRi(w)(R("-’))

T, @) = (i)

which is abelian. Thus, Equation (12.3.3) is an abelian normal series for
Gp(R(w)) and so F < R(w) is solvable. Hence, F < R is solvable. i

12.4 Polynomial Equations

The initial motivating force behind Galois theory was the solution of
polynomial equations f(x) =0. Perhaps the crowning achievement of
Galois theory is the statement, often phrased as follows: there is no
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formula, similar to the quadratic formula, for solving polynomial
equations of degree 5 or greater over Q. However, this is not the whole
story. The fact is that, for some polynomial equations, there is a
formula and for others there is not and, moreover, we can tell by
looking at the Galois group of the polynomial whether or not there is
such a formula. In fact, there are even algorithms for solving
polynomial equations when they are “solvable,” but these algorithms
are unfortunately not practical.

Let us restrict attention to fields of characteristic 0. We refer to the
four basic arithmetic operations (addition, subtraction, multiplication
and division) and the taking of n-th roots as the five basic operations.

Let C be a field. We will say that an element o € C is obtainable by
formula from C if we can obtain o by applying a finite sequence of any
of the five basic operations, to a finite set of elements from C.

Suppose we can obtain any element from the field K by formula from
C. Applying any of the four basic arithmetic operations to the elements
of K gets us nothing new. However, taking an n-th root of an element
a € K gives us access to all elements of L = K({I/&), since any element
of L is a polynomial in {‘/& over K. Hence, repeated use of the five basic
operations allows us to obtain any element lying within any finite tower
of the form
(12.4.1) C=Fy<F, <F,<---<F,
where F;, = F;(;), with o; a root of a binomial xi— y; over F;. Since
we are assuming that char(F) =0, the tower (12.4.1) is just a radical
series for C < F. Hence, we can obtain by formula any element in any
radical extension C < R of C.

On the other hand, let @ € R where Equation (12.4.1) is a radical
series for C<R. Then a € F;=F,_;(;), where o;= n U,_;, with
u;_; € F;_,. Since a is a polynomial in o; over F;_;, it follows that o
can be obtained by formula from F;_;. It is now clear that any element
of R can be obtained by formula from C.

Theorem 12.4.1 Let C be a field of characteristic 0. An element a € C
can be obtained by formula from C if and only if « lies in a radical
extension of C, that is, if and only if C < C(a) is solvable by radicals. 0

Let us say that a root a of a polynomial f(x) =ajy+ a1x+---+adxd
over F is obtainable by formula if we can obtain a by formula from
C =Q(ay,...,aq). Thus, a root a of f(x) is obtainable by formula if and
only if C < C(a) is solvable by radicals. Theorems 12.3.1 and 12.3.2
now imply the following.
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Theorem 12.4.2 Let char(F) =0 and let f(x) =aj+a;x+-:: +adxd be

a polynomial over F.

1) The roots of f(x) are obtainable by formula if and only if the
extension C < § is solvable, where C = Q(ay,...,a4) and S is the
splitting field for f(x) over C. -

2)  Let f(x) be irreducible over F. One root of f(x) is obtainable by
formula if and only if all roots of f(x) are obtainable by formula. [ .

According to Theorem 10.5.7, for any prime number p, there exists a
polynomial f (x) of degree p over Q whose Galois group is isomorphic
to S, Hence f (x) is irreducible and since the group S, is not solvable
for p > 5, Theorem 12.4.2 implies that if p > 5, then none of the roots
of f (x) can be obtained by formula. Although it is much harder to
show, this also holds for any positive integer n [see Hadlock, 1987].
Thus, we have the following.

Theorem 12.4.3 For any n > 5, there is an irreducible polynomial of
degree n over Q none of whose roots are obtainable by formula. [J

As a consequence, for any n > 5, there is no formula, similar to the
quadratic formula, for the roots of any polynomial of degree n. More
specifically, we have

Corollary 12.4.4 Let n > 5 and consider the generic polynomial p(x) =
Yo+ Y1Xx -+ +ypx", where y,...,y, are algebraically independent over
Q. Then there is no algebraic formula, involving only the five basic
operations, the elements of Q and the variables yg,...,y,, with the
property that, for any polynomial f(x) =ay+a;x+:--+a_ x" of degree
n over F, we can get a root of f(x) by replacing y; in the formula by a;,
foralli=0,...,n.0

Exercises

1. Prove that if H<G then G is solvable if and only if H and G/H
are solvable.

2. Prove that if F <E is solvable by radicals and ¢ € Homg(E,E)
then F < oE is also solvable by radicals.

3. Calculate the Galois group of the polynomial f(x) = x® —4x +2. Is
there a formula for the roots?

4.  Prove that if f(x) is a polynomial of degree n over F with Galois
group isomorphic to S then f(x) is irreducible over F.

5. A finite separable extension F < E of characteristic p is solvable
by radicals if and only if there exists a finite extension F < R with
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F < E <R and a radical series {R;} for F < R in which each step
R; < R;,, is one of the following types: (1) R;,, = R;(w;) where w;
is an 1;-th root of unity with r; prime and r; # p. (2) R;;, = Ri(¢)
where o; is a root of x* —u, with u € R;, r prime and r # p. (3) (If
p >0 only) R;,; =R;(8;) where §; is a root of the irreducible
polynomial xP — x —u, with u € R;.

6. Prove Theorem 12.4.2. Hint: for part 2), consider the normal
closure of C(a), where « is an obtainable root of f(x).

7.  Let f(x) be an irreducible cubic over Q with three real roots. Show
that no root of f(x) can be obtained by formula if we allow only
real n-th roots. (That is, no root of f(x) is contained in a radical
series whose fields are subfields of R.) Hint: Use the fact that the
splitting field for f(x) over Q is given by Q(\/Z,r), where r is a
root of f(x) and A is the discriminant.



Chapter 13
Binomials

We continue our study of binomials by determining conditions that
characterize irreducibility and describing the Galois group of a binomial
x"—u in terms of 2x2 matrices over Z . We then consider an
application of binomials to determining the irrationality of linear
combinations of radicals. Specifically, we prove that if p,,...,p,, are
distinct prime numbers, then the degree of

Qo7 )

over Q is as large as possible, namely, n™. This implies that the set of
all products of the form

Yos® ps® ... fpetm
where 0 < e(i) < n—1, is linearly independent over Q. For instance, the
numbers

1, 3=%315 /1=%2 and /72= /250320

are of this form, where p, =2, p, =3. Hence, any expression of the

form
al{‘/:i + a2\5/Z + a3€/'?§

where a; € Q, must be irrational, unless a; = 0 for all i.
First, a bit of notation. If u € F, then ul/® stands for a particular
(fixed) root of x™ —u. The set of primitive n-th roots of unity is denoted




228 13 Binomials

by ©,, and w, always denotes a primitive k-th root of unity.

13.1 Irreducibility

Let us first recall a few facts about the norm. Let F < E be finite
with o € E. If the minimal polynomial of «

min(a,F) = x4 + ad__lxd_1 +.-+ag
has roots ry,...,rqy then

d
N(a) = [ =(-1)%,

i=1

where N = Np,y /. Note that N(a) € F. Also, for all 8 € F(a) and a €
F, we have

1)  N(B") =N(B)", n a positive integer,
2) N(ap) =aN(p),
3) N(a)=ad

We begin with Lemma 4.7.6, restated here for convenience.

Lemma 13.1.1 If char(F)=p#0 and u€F, u¢gFP then ¥ —u is
irreducible for every k > 1.

Proof. If § is a root of f(x) = xF —u then, in a splitting field,
f(x) = (x— )

Since p(x) = min(B,F) divides f(x), we have p(x) = (x— ,H)"d for some
d < k. Since the constant term (¥ of p(x) liesin F, if d <k — 1 we get

k k-1
u=pP =(° )PeFP
contrary to assumption. Hence d =k and f(x) = p(x) is irreducible. i
We turn next to primes different from char(F).

Lemma 13.1.2 Let p be a prime different from char(F). If u € F, u ¢ FP
then xP —u is irreducible over F. Thus, xP —u is irreducible over F if
and only if it has no roots in F.

Proof. Assume that u¢ FP and let o be a root of xP—u with
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F(a):F] = d < p. Since of = u, applying the norm N =N gives
F(a)/F
[N(@)]P = N(eP) = N(u) = ud

Letting N(a) =v € F gives vP =u9. If p < d then (d,p) =1 and there
exist integers a and b for which ad 4 bp = 1. Hence

u = u2d+bp — yadybp _ yap,;bp (v“ut’)p € FP

a contradiction. Thus p =d and xP —u = min(a,F) is irreducible. The
second statement follows from the first. i

For p # 2, the previous result (and its proof) extends more or less
directly to prime powers pk, that is, if u ¢ FP then

k
xP —u

is irreducible over F. However, the case p =2 is not quite as simple.
Since for any nonzero b € Q, we have ~4b* ¢ Q? but
xIM 4 4b? = (x2™ 4 2bx™ + 2b?)(x2™ — 2bx™ 4 2b?)

is reducible for all m > 1, we must at least include the restriction (for
4] pk) that u cannot have the form —4b* for any b € F, that is, u ¢
—4F4. 1t turns out that no further restrictions are needed.

Lemma 13.1.3 Let p be a prime, k a positive integer and u € F. If u ¢
FP and if u ¢ —4F* when 4 | pk, then

k
f(x) =xP —u
is irreducible over F.

Proof. If p = char(F), the result follows from Lemma 13.1.1, so assume
that p # char(F). We proceed by induction on k. Lemma 13.1.2 shows
that the result is true for k = 1 and hence that xP — u is irreducible over
F. Assume the result is true for any positive integer less than k > 2. Let
B be a root of f(x). In a splitting field, we have

xXP—u=(x-o)(x~-ay)(x—ap)
Hence ‘

k k-1 k—1 k—1
fx)=xP —u=(xP —a)(x® —ay)-(x* - ap)

Thus S is a root of one of the binomial factors, say
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k-1
gx)=x" -«

k-1
where o = o for some i. Since a = fP | we have the tower
F < F(a) < F(B)

where [F(a):F] =p. If g(x) is irreducible over F(a), it will follow that
[F(8):F(a)] = p*~! and so [F(B):F] = p¥, whence f(x) = min(B,F),
which is irreducible. We must now consider a few cases.

Case 1: p # 2. To show that g(x) is irreducible over F(a), we verify
that o ¢ F(a)P. Suppose to the contrary that a = 7P € F(a)P for some
v € F(a). Since min(a,F) =xP—u, applying the norm N = NE(a)/F
gives

-u = (-1)’N(a) = (-1)PN(y?) = (-1)P[N(7)]?

Since p is odd, we get u = [N(v)]P € FP, contrary to assumption. Hence
a ¢ F(a)P, g(x) is irreducible over F(a) and f(x) is irreducible over F.

Case 2: p=2. If a¢F(a)? and a¢ -4F(a)?, then the induction
hypothesis shows that g(x) is irreducible over F(a), so we need to
consider two subcases.

Case 2a: p = 2, a = 72 € F(a)? for some v € F(a).
We show directly that f(x) is irreducible over F. If N = NF( a)/F then
since min(a,F) = x? — u, the usual norm computation gives

—u = (~1)N(a) = N(y?) = [N(7)]?

Setting N(7) =b € F gives —u = b? € F2. Since u ¢ F?, we get -1 ¢ F2.
In other words, i ¢ F, where i is a root of x2 + 1. Over F(i), we have the
factorization

k k k-1 k—1
(13.1.1) f(x) =x* —u=x* +b2=(x* +ib)(x?

—ib)

If both of the factors on the right side are irreducible over F(i), then
f(x) cannot factor nontrivially over F. For if f(x) = [Ja,(x) is a
nontrivial factorization, where the a;(x) are irreducible over F, then one
of the factors has degree at most 2=, and is not one of the factors in
(13.1.1). Factoring each aj(x) into irreducibles over F(i) would then
produce a prime factorization over F(i) distinct from (13.1.1), which is
not possible since F[x] is a unique factorization domain.

Now, if one of the factors in (13.1.1) is reducible, the induction
hypothesis implies that one of ib or —ib lies in F(i)? or -4F(i)* =
[24F(i)%]2. In either case, one of &b or —b is in F(i)%, say
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+ib = (c+di)? =c?42di—d?

Thus, ¢ =d? and b? = 4c2d? = 4c%. It follows that u = -b%=-4c% a
contradiction to the hypothesis of the lemma. Thus, f(x) is irreducible
over F.

Case 2b: p = 2, a ¢ F(a)? but o = -444, for some v € F(a).
Since a has degree 2 over F, taking norms gives

~u = N(a) = N(-47%) = 16[N(7)]*

and so -u € F2. Hence, —u =a? for a€ F and so -1 =a?/u=a%/o® ¢
F(a)?, say -1 = i%, with i € F(a). Then

a = -4v* = (2iy%)? € F(a)?
a contradiction. Hence, this case cannot occur. i
Now we can prove the main result of this section.

Theorem 13.1.5 Let n > 2 be an integer and let u € F. The following are
equivalent.

1)  f(x) = x" —u is irreducible over F.
2)  u ¢ FP for all primes p |n and u ¢ ~4F* when 4 | n.

In particular, if 4)n, then x™ —u is irreducible over F if and only if
xP — u is irreducible over F, for all primes p | n.

Proof. The last statement follows from Lemma 13.1.2. Proof of 1)=2) is
left to the reader. For the converse, we have seen that this result holds
if n = p¥ is a prime power. Suppose that n = p¥m where (pym) =1 and
k > 1. We may assume that p is odd, for if 2 is the only prime divisor
ofnthenn=2isa prime power. We proceed by induction on n. Let 3
be a root of x™ — u. In a splitting field, we have

XM —u=(x-a)(x—ay)(x—a)

Thus

mpk

f(x) = X% —u = X —u = (P — o) (P — )P — )

Suppose that § is a root of

gx) =xP —a

where a = a; for some i. By induction, x™ —u is irreducible over F and
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so the first step in the tower
F < F(a) < F(8)

has degree m. If g(x) is irreducible over F(a), then the second step will
have degree p¥, whence [F(8):F] = mp* = n and f(x) = min(8,F), which
is irreducible.

We apply the inductive hypothesis to show that g(x) is irreducible.
Since p is odd, we need only show that a ¢ F(a)P. If a = 4P for some
v € F(a) then taking norms N = NF(a)/F gives

—u = (-1)"N(a) = (-1)"N(¥?) = (-1)"[N(7)]?

If m is odd, we get u = [N(y)]P € FP, a contradiction. If m is even then
since p is odd, we have u = [-N(¥)]P € FP, again a contradiction. Hence,
a ¢ F(a)P, g(x) is irreducible over F(a) and f(x) is irreducible over F. i

13.2 The Galois Group of a Binomial

Let us now examine the Galois group of a binomial x™ — u over F, for
u # 0 and n relatively prime to expchar(F). If a is a root of x" —u and
w € 2, then the roots of x" —u are a, wa,... ,w" 1o and so S = F(w,a)
is a splitting field for x™ —u over F. Moreover, in the tower

(13.2.1) F <F(w) < F(w,a) =S

the first step is a cyclotomic extension, which is abelian since its Galois
group is isomorphic to a subgro 5) of Z"‘ The second step is cyclic of
degree d | n with min(e,F(w)) = x% - ad Nevertheless, the Galois group
Gp(S) need not be abelian.

The fact that o and w both satisfy simple polynomials over F is the
key to describing the Galois group Gg(S). Since any o € Gp(S) must
permute the roots of x™ — u, there exists an integer k(o) € Z, for which

o = wk(”)a

Moreover, since F(w) is a normal extension of F, the restriction of o to
F(w) is in Gp(F(w)) and therefore o sends w to another primitive n-th
root of unity, that is,

ow = i)

where j(0) € Z}.
Multiplication in Gg(S) has the following form. For o, 7 € Gg(S),
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oTe = a(wk(f)a) = JO)k(r) k(o) wi(d)k(‘r)+k(0)a
and

orw = o (7 = (")

There is something reminiscent of matrix multiplication in this. Indeed,
let M be the set of all matrices of the form

1 0 )
Mo, = | kezyjez;
k j
Since
1 0 1 0 1 0
k § || K 3| | kk i

we see that M is a subgroup of the general linear group GLy(Z,) of all
nonsingular 2 x 2 matrices over Z,. (All entries are taken modulo n.)
Comparing this product with the action of the product or shows that
the map 1:Gp(S)— b, defined by

1 0

Yo — ko) i(0)

satisfies
P(or) = P(o)¥(r)

and is, in fact, a monomorphism from Gg(S) into .
Since | M | =n¢(n), where ¢ is the Euler phi-function, the map ¥
is surjective if and only if

[S:F] = | Gg(S) | = né(n)
But in the tower
F < F(w) < F(w,a) =S
we always have [F(w):F] < ¢(n) and [F(w,a):F(w)] <n. (See Figure

13.2.1.) Hence % is surjective (and an isomorphism) if and only if
equality holds in these two inequalities.
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S=F(Ww,X)

</ \<¢(n)

F(w) F(o0)

S(I)(n\ /Sn
F

Figure 13.2.1

Theorem 13.2.1 Let n be a positive integer relatively prime to
expchar(F). Let S be the splitting field for x™ —u over F, where u € F,
u # 0. Let a be a root of x" —u and w € . Then Gg(S) is isomorphic
to a subgroup of the group A described above, via the monomorphism

" 1 0
' k(o) j(o)

where oa = *®a and ow = «/(?). In addition, ¥ is an isomorphism
and Gp(S) ~ M, if and only if both steps in the tower (13.2.1) have
maximum degree, that is, if and only if both of the following hold

1) [F(w):F] = ¢(n),

2)  [F(w,a):F(w)] = n, that is, x® — u is irreducible over F(w). 0

Statement 2) is phrased in terms of F(w) and we would prefer a
statement involving only the base field F. For n prime, this is easy.

Lemma 13.2.2 Let p be a prime and let we N . Then xP—u is
irreducible over F(w) if and only if it is irreducible over F. Equivalently,
xP —u has a root in F(w) if and only if it has a root in F.

Proof. Certainly, if x® —u is irreducible over F(w), it is also irreducible
over F. For the converse, consider the tower

F < F(w) < F(w,a)
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Since xP — u is irreducible over F, we have
p = [F(e):F] < [F(w,a):F]

On the other hand, the first step in the tower has degree at most
#(p) = p—1 and the second step is cyclic of degree d | p, whence d =1
or p. Hence [F(w,a):F(w)] = p, which implies that xP — u = min(a,F(w))
is irreducible over F(w).

In order to extend this result to arbitrary n (and for its own
interest), we want to say more about when the Galois group Gg(S) is
abelian. Of course, since both steps in the tower

F < F(w) < F(w,a) =S

are abelian, if either step is trivial, then Gg(S) is abelian. Thus, if w € F
or if a € F(w) then Gg(S) is abelian. The converse is also true when n is
prime.

Lemma 13.2.3 Let p be a prime and let w € §2,. Then the Galois group
Gp(S) is abelian if and only if at least one step in the tower (13.2.1) is
trivial, that is, if and only if either w € F or xP —u has a root in F(w)
[or, equivalently, a root in F].

Proof. One direction has already been discussed so we need only show
that if w¢ F and xP—u is irreducible over F(w) then GF(S) is not
abelian. Since w ¢ F, it has a conjugate W # w that is also not in F. Let
7 € Gp(F(w)) be defined by 7w = ui. Since xP —u is irreducible over
F(w), for each i €Z,, the map 7 may be extended to a o; € Gg(S)
defined by

| —
ow=u, ga=da
Taking i =1 and i’ = 0 gives
01000 = 010 = Wa
and
0o0 & = 0p(wa) = Ja

and these are distinct since w # . Hence, 0, and oy do not commute
and G(S) is not abelian. §

We can now strengthen the statement of Theorem 13.2.1 by showing
that, in certain cases, when n is odd and [F(w):F] = ¢(n), then x" —u is
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irreducible over F(w) if and only if it is irreducible over F. The idea of
the proof is this. Suppose that p(x) is an irreducible polynomial over F,
with splitting field S. Suppose also that E is a normal extension of F.
Then p(x) has a root in E if and only if it splits in E, that is, if and
only if F<S <E. Now, if F<E is an abelian extension, that is, if
Gp(E) is abelian, then so is any quotient group of Gp(E), in particular,
so is

Gp(E)
Gs(E)

Thus, if Gp(S) is not abelian, we can conclude that p(x) does not have
a root in E.

Part of the hypotheses of the next theorem is that the base field F
does not contain any n-th roots of unity, other than 1. Note that this is
equivalent to saying that F does not contain any primitive p-th roots of
unity for any prime p | n.

Gg(S) ~

Theorem 13.2.4 Let n be an odd positive integer relatively prime to
expchar(F). Let w be a primitive n-th root of unity over F and suppose
that F does not contain a primitive p-th root of unity for any prime
p|n. Let F <A be any abelian extension. Then x™ —u is irreducible
over F if and only if it is irreducible over A.

Proof. Clearly, if x™ —u is irreducible over A, it is also irreducible over
the smaller field F. Suppose that x™ —u is irreducible over F, but not
over A. Since 4/n, Theorem 13.1.5 and Lemma 13.1.2 imply that there
exists a prime p |n for which no roots of xP —u lie in F, but some root
o of xP—u lies in A. Hence, Lemma 13.2.3 implies that if § is a
primitive p-th root of unity, then the Galois group Gp(F(,a)) is not
abelian.

On the other hand, since F < A is normal and A contains one root of
the irreducible polynomial xP — u, it contains all roots of xP — u. Thus,

F <F({,a) <A
But F < A is abelian and therefore so is the quotient

Gp(A)
Gr(¢,a)(A)

This contradiction implies that x™ — u is irreducible over A. §

Gp(F(§a)) =

According to Theorem 10.2.9, if [F(w):F]=¢(n), then F cannot
contain any primitive p-th roots of unity for any p|n and we may
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apply Theorem 13.2.4 to get the following strengthening of Theorem
13.2.1.

Corollary 13.2.5 Referring to Theorem 13.2.1, if n is an odd positive
integer relatively prime to expchar(F) then Gg(S)~ A if and only if
[F(w):F] = ¢(n) and x™ — u is irreducible over F. [

Since [Q(w):Q] = ¢(n), we have

Corollary 13.2.6 Referring to Theorem 13.2.1, if F = Q and n is an odd
positive integer then GQ(S) ~ M if and only if x™ —u is irreducible
over Q. ]

n

Thus, when F < F(w) has the largest possible degree ¢(n) (which
includes the important case F = Q), we see that Gg(S) ~ M if and
only if x" —u is irreducible over F. In some sence, b is the “most
nonabelian” subgroup of b . At the opposite extreme, we can show,
again when [F(w):F] = ¢(n), that Gp(S) is abelian if and only if x" —u
actually has a root in F.

Theorem 13.2.7 Let n be an odd positive integer relatively prime to
expchar(F). Let S be the splitting field for x® —u over F, where u € F,
u # 0. Suppose that [F(w):F] = ¢(n) where w € Q. Then the following
are equivalent.

1)  Gg(S) is abelian
2) x"™-—uhasarootinF
3) x™—u has aroot in F(w) [and therefore splits in F(w)]

Proof. Clearly, 2)=>3)=1). Suppose that Gp(S) is abelian and let k be
the largest divisor of n for which u € Fk, that is, u = % for some f € F.
The proof will be complete if we show that k =n. If k <n, let p be a
prime number dividing n/k. Consider the tower

(13.2.2) F < F(w,) < F(w,,f'/?)

Note that xP —f is irreducible over F, for if not, then f=gP € FP for
some g€F, whence u= = gpk € FPX, in contradiction to the
definition of k. Hence [F(fl/ P):F] =p and

[F(wp,!/7):F] > p
Theorem  10.2.9 implies that [F(w,):F]=p-1 and since
Flw)) < F(wp,fl/ P) is cyclic of degree dividing the prime p, neither step
in tfle tower (13.2.2) is trivial. Hence, Lemma 13.2.3 implies that the
Galois group H = GF(F(wp,fl/p)) is not abelian.
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We will now produce a contradiction by showing that Gg(S) abelian
implies H is abelian. Since each root of xP —f is a root of xP*—u we
have

F < F(wp,f/P) < F(wyu'/?)

Since (u'/%)™PX is a root of xPX—u, at least one root of xPX—u is in
F(w,u!/™). But w™/Pk = wpy and so all roots of xPK _y are in F(w,u'/P),
Hence,

F< F(wp,fl/p) < F(wpk,ul/pk) < F(w,u'/™)
Since F < F(w,u!/ ") is assumed to be abelian, so is the subextension

F< F(wp,f1 P), that is, H is abelian. This contradiction completes the
proof that 1) implies 2). 1

In the exercises, we ask the reader to provide a simple example to
show that Theorems 13.2.4 and 13.2.7 fail to hold when n is even.

We conclude this section by generalizing the previous theorem, in
order to characterize precisely (for n odd) when Gp(S) is abelian. The
proof follows lines similar to the proof of Theorem 13.2.7, but is a bit
more intricate and since it involves no new insights, the reader may
wish to skip it on first reading. However, the result is of interest since it
shows how the relationship between the n-th roots of unity and the
ground field F play a role in the commutativity of Gp(S). We first need
a result that is of interest in its own right. The proof is left as an
exercise.

Theorem 13.2.8 Let x™ —a and x™ — b be irreducible over F and suppose
that F contains a primitive n-th root of unity. Then x" ~a and x™—b
have the same splitting field over F if and only if b = c"a" for some c €
F and r relatively prime to n. [

Theorem 13.2.9 Let n be an odd positive integer relatively prime to
expchar(F). Let U be the group of n-th roots of unity over F and let
U, =U_NF* If S is the splitting field for x" —u (u € F, u #0), then
Gg(8) is abelian if and only if u™ € F".

Proof. Note first that m|n since U is a subgroup of U . Moreover,
since U, = (wp,) is cyclic, w; € F if and only if i | m. Suppose first that
u™ = {* for some f € F. Then

ul/n _ wl(nnfl/m

for some integer k. (More precisely, given any n-th root u'/™ of n and
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any m-th root f1/m of f, there exists a k such that this equation holds.)
The field F(fll ™) is cyclic over F, since the latter contains a primitive
m-th root of unity w_. Therefore, since F < F(w,_,,) and F < F(f!/™)
are both abelian, so is the extension

F < F(wpnn) F/™) = Fwgpf/™) = Fwgmu'/™)

mn’

Finally, since F < S < F(w 1 ), we deduce from Theorem 5.5.5 that
F < S is abelian.

For the converse, assume that Gp(S) is abelian. Let k be the largest
positive integer such that m |k, k |n and u™ € FX, say u™ = for f €
F. (There is such an integer since k = m satisfies these conditions.) We
need to show that k = n. Suppose to the contrary that k < n and let p
be a prime number dividing n/k. Let p® be the largest power of p such
that p°|m. (The hypothesis that n is odd and [F(w):F] = ¢(n) in
Theorem 13.2.7 implies that m = 1, whence s = 0.)

The first step is to show that the extension

mn’u

s+1
F< F(wps+1,f1/p )

is abelian. It is clear that the notation is a bit unwieldy, so let us set
q=p**t! and note that q|n since p*|m |k and p|(n/k). To see that
this extension is abelian, we embed it in an abelian extension. Since

(fl/q)kq — fk — ™ = (um/kq)kq
we have f1/9 = quum/ k4 for some j and so

F(wef'/?) < F(wygf'/?) = Fluwyqu™/*9)
If we set

v = (ul /n)nm/kq

then v is a root of x*a/m

—uand ve F(wkq,ul/“). Hence, all roots of
xka/m

—u are contained in F(wkq,ul/ ), that is,
F(wkq,um/kq) < F(wkq,ulln)
Putting the pieces together gives
1 k 1
F < F(wg,f /q) < F(wkq,um/ 1) < Fwyqu /n) < F(qu)F(wn,uI/n)

Since F < F(wy,) and F<F(wn,u1/“) are abelian (the latter by
assumption), the composite
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F< F(qu)F(wn,ul/“)
is abelian and therefore so is
F < F(wg, /%)
We now propose to arrive at a contradiction by considering the tower
F < F(w,) < F(wg,f'/9)

Note that xP ~f is 1rreduclble over F, smce otherwise f = gP € FP for
some g€F, whence u=fk=gPkeFPk in contradiction to the
definition of k.

We first take the case s = 0, whence q = p. Since xP —f is irreducible
over F, we have [F(f*/P):F] = p and

[F(w,,£/P):F] > p

Since pfm, it follows that w, ¢ F and so the extension F < F(w ) is not
trivial. Since [F(w, )F] <p-1 and F(w,) <F(wp, £t/ P) is cychc of
degree dividing the prime p, the latter extenswn is also not tr1v1al
Hence, Lemma 13.2.3 implies that the Galois group H = Gp(F(w, £ P))
is not abelian, the desired contradiction.

Now assume that s > 0. With regard to the first step in the tower,
letting r = p® > p, we have r | m and q}m, hence w_ € F but Wy ¢ U,
Since s >0, we also get w, € F. Hence xP—w_ is elther 1rreduc1ble or
splits in F. But w_ is a root not in F and so xp—w is irreducible over
F. (Note that for s > 0, the first step in the tower has degree p, rather
than a number dividing p — 1, hence we cannot use the same strategy as
when s = 0.) Since the roots of xP —w,_ are

WepWrWqr -+ wf.’_lwq
for each jeZ there is a 0; € Gp(F(wg)) for which ojw _-wa To
show that GFFF( q)) is not abehan, we shall need on‘}y oy quwq
and 0w W w

There are two possibilities for the second step in the tower. If x4 —f
is 1rreduc1ble over F(wq) then we can extend o, and o, to elements of
Gp(F(wef*/9) by defining

. 51/ 1/q
00,1:Wg Wy og,1:f qt—wqf

and / /
1 1

01,0 W Wy l,O:f Gf/ 4
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Then
ao'lal'ofllq = ao'lfllq = wqfllq
and

‘71,0"0,1f1/ 1= a'l,o(wqfl/ 9 = wrwqfl/ 4

which are distinct since w_ # 1. Hence, GF(F(wq,fl/ 9)) is not abelian, a
contradiction.

If x3—1f is reducible over F(wy) then f€ F(w,)P. Thus =P for
some f € F(w,) and so F(B) < F(wq) Since xp—w and xP —f are both
irreducible over F, it follows that [F(wy):F]=p and [F(B):F]=
whence F(wy) = F(8). Thus, xP —f and XP 2 — w, have the same sphttmg
field over F and Theorem 13.2.8 implies that

f= wi_vp
for some v € F. Taking k-th powers gives, since r | k,
m = k= Jldyke = ke

for v € F, which contradicts the definition of k. Thus, k =n and the
theorem is proved. 1

*13.3 The Independence of Irrational Numbers

A familiar argument (at least for p = 2) shows that if p is a prime
number then \/ﬁ ¢ Q and so [Q(ﬁ):Q] = 2. Our plan in this section is
to extend this result to more than one prime p and to n-th roots for
n > 2. Since the case when n is even involves some rather intricate
details which give no further insight into the issues involved, we will
confine our attention to n odd. (The case n =2 is straightforward and
we invite the reader to supply a proof of Theorem 13.3.2 for this case.)
If @ >0 is rational, the notations \/E and /™ will denote the real
positive n-th root of a. The results of this section were first proved by
Bescovitch [1940] but the method of proof we employ follows more
closely that of Richards [1974].

Lemma 13.3.1 Let u = a/b be a positive rational number, expressed in
lowest terms, that is, where (a,b) = 1. If n > 2 is an integer then

N % € Q if and only if a=c" and b = d" for some integers c and d
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In particular, if p is a prime, then {1/1—) ¢ Q.

Proof. One direction is quite obvious. Suppose then that
cyn —a
@ =%

where ¢ and d are positive integers and (c,d) = 1. Then ad™ = bc™ and
since (a,b) = 1, it follows that a|c™. Thus ¢" = aa for some integer a.
Substituting this into ad™ = bc™ gives ad™ = cab or d™ = ab. But since
(c,d) =1, we also have (c",d") =1, that is, (aa,ab) = 1. Hence a =1
andsoa=c"and b=d"

Suppose now that n is odd. Since p ¢ Q' for any prime r | n, Theorem
13.1.5 implies that x™ —p is irreducible over Q and so [Q({‘/;_))Q] =n.
Let us generalize this to more than one prime.

Theorem 13.3.2 Let n >2 be an integer and let py,...,p,, be distinct
primes. Then

[Q(\/Prr-++ry/Pm):Q) =n™

Proof. As mentioned earlier, we confine our proof to the case where
n > 3 is odd. Let w € . Since

Q) (Br- - /o) Q)] < QYT /Pr):Q] < ™

it is sufficient to show that

[Q(w)({/P1)+ - s /Pr):Q(w)] = 0™

which we shall do by induction on m.

Let p be a prime. Since x" —p is irreducible over Q@ and Q contains
no primitive r-th roots of unity for any prime r|n, Theorem 13.2.4
implies that x™ — p is also irreducible over Q(w). Hence,

[Q(w,y/P):Q(w)] =n

and the theorem holds for m = 1.
Now let us suppose that the theorem is true for the integer m and let
p be a prime distinct from the distinct primes p,...,p,. Let

F=Qu) and E=QW)(/Py-..»/Pm)

If x®—p is not irreducible over E then there exists a prime r|n such
that p!/* € E. Thus, p'/" is a linear combination, over Q(w), of terms of



13 Binomials 243

the form

Ios® ps® ... {petm)

where 0 < e(i) < n — 1. There are two cases to consider.

Case 1: If the linear combination involves only one term, then

=</ D .

where ¢ € Q(w) and not all e(i) are 0. If n = rd, this can be written in
the form

d

n

p
——— € Q(w)
pe0). . pem)

This says that the radicand q is a positive rational number and the
polynomial x™ —q has a root in Q(w). According to Theorem 13.2.7,
x" — q must also have a root in Q, which is not possible since q does not
have the form a”/b", for integers a, b. Hence, this case cannot occur.

Case 2: At least two terms in the linear combination are nonzero. It
follows that one of the primes p;, which we may assume for convenience
is p,,, appears to different powers in at least two distinct terms.
Collecting terms that involve like powers of p,, gives

(13.3.1)  p'/T=Ay+Ap/m+ At 4. 4 A pi-U/m

where A; € Q(W)({/Pps+++r+/Pm_y) and where at least two of the A’s

are nonzero. Now, since

QW) < Q)(YPrr---» /)

is a Galois extension (this is why we adjoined w in the first place), the
inductive hypothesis implies that its Galois group G has size n™. Since
any ¢ € G must send roots of x" —p; to other roots, it must send v D
to w‘\n/}Ti for some j = 0,...,n — 1. Since there are n™ such choices, all of
these choices must occur.

Thus, there is a & € G for which

ap}[{n = wp}n/n, a'pil/"‘ = pil/n (for alli< m)

S.ince O’pd/n = wkpd/n for some 0 <k <n-1, applying ¢ to (13.3.1)
gives

wkpd/n = Ao+A1wp111(n+A2w2pl2x{n+._.+An_1wn—1'p£:_1)/n
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We now multiply (13.3.1) by w¥ and subtract the previous equation to
get

0= (- DA+ (w* — w)Alp}I{“ 4ot (WK - c‘.v“—l)pf,fl"l)/n

where at least one of the coefficients (wk—wi)Ai is nonzero. This is a
contradiction to the inductive hypothesis. We have therefore established
that x™ — p is irreducible over E and the proof is complete. §

Exercises

1. Let n be relatively prime to char(F). Show that the Galois group
of x* —u is 1somor)ph1c to a subgroup of the group generated by o,
T where o® = % 1, oro™" = r*. What is r?

2. (Van der Waerden) Let n be relatively prime to char(F). Show
that the Galois group of x™ —u is isomorphic to the group of
linear substitutions modulo n: x—cx +d whered € Z , c € Z.

3. Let x®*—u € GF(q)[x]. Show that the following are equivalent: (i)
r|n, r prime implies u ¢ GF(q)* and (ii) r|n, r prime implies
r| o(u) but rf(q-1)/o(u) where o(u) is the multiplicative order of
u in GF(q).

4. Prove Lemma 13.1.2 by factoring xP —u in a splitting field and
then considering min(a,F).

5.  Prove the following without using any of the results of Section
13.1. f u€F and (m,n) =1 then x™" —u is irreducible over F if
and only if x™ —u and x™ — u are irreducible over F.

6. Let char(F)=p#0 and let F <E be cyclic of degree p¥, with
Galois group G = (o). If there exists a § € E with Trg /F(ﬂ) =1
show that there exists an a € E for which the polynomial f(x) =
xP — x — a is irreducible over E.

7.  Let char(F) =p >0 and let n = p°m where (m,p) = 1. Show that
the Galois groups of —e

x®~u and x™-uP
are the same.

8. Let n be a positive integer relatively prime to expchar(F) and let
w be a primitive n-th root of umty over F. Let S = F(w, ul/ ™) be
the sphttmg ﬁeld for f(x) = x™ —u over F, where u € F, u#0. If
4|n and if u! ¢ F then Gp(S) is not abelian.

9. Show that Theorem 13.2.4 and Theorem 13.2.7 fail to hold when
n is even. Hint: 1/2 € Q(w), where w is a primitive 8-th root of
unity.

10. Prove the following: Let f(x) be a monic irreducible polynomial of
degree m over F, with constant term -ag. Let n > 2 be an integer
with the following properties (i) (m,n) =1, (ii) 4/n (iii) ay, ¢ F'
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11.

12.

13.
14.

15.

for all primes r|n. Then the polynomial f(x") is also irreducible

over F.

Let w be a primitive n-th root of unity over F, n odd, and let o be

a root of x" —u over F. Then S = F(w,a) is the splitting field for

x" —u. Assume that Gp(S) ~ Sb . (See Theorem 13.2.1.) In this

exercise, we determine the largest abelian subextension F2° of S.

a) If G is a group, the subgroup G’ generated by all
commutators afa”187l, for a, B€G, is called the
commutator subgroup. Show that G’ is the smallest subgroup
of G for which G/G’ is abelian.

b) If the commutator subgroup Gp(E)' of a Galois group Gp(E)
is closed, that is, if GR(E)' = Gk(E) for some F < K < E, then
K is the largest abelian extension of F contained in E.

¢) The commutator subgroup of M is

1 0
.Man' = : k € Zn
k 1
and
1 0 .
H(Gpw)(S)) = Y(Gp(S)) N Mo, = - ti€Zy
d

where d = [F(w,a):F(w)].

d) Gg(S)' = Gp w)(S), and so F(w) is the largest abelian
extension of i“ contained in F(w,a).

Prove that if py,...,p,, are distinct primes then

(1) [Q(/Pr- -1 /P Q] = 2°

by induction on m.

Show that /60 ¢ Q(1/42,/10).

Let n be a positive integer relatively prime to expchar(F) and let
w be a primitive n-th root of unity over F. Let S = F(w,ul/n) be
the splitting field for f(x) = x™ —u over F, where ue€ F, u #0. If
for some prime p | n, we have w, ¢ F and ul/P ¢ F, where w_ is a
primitive p-th root of unity over F, then the Galois group Gp(S)
is not abelian.

Let x" —a and x™ —b be irreducible over F and suppose that F
contains a primitive n-th root of unity. Then x" —a and x" —-b
have the same splitting field over F if and only if b =c"a" for
some ¢ € F and r relatively prime to n. Hint: if the splitting fields
are the same, consider how the common Galois group acts on a
root of each binomial.
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16.

17.

13 Binomials

Let F <E be a finite Galois extension and let a, § € E have
degrees m and n over F, respectively. Suppose that [F(«,B):F] =
mn. :

1) Show that if a; is a conjugate of a and f; is a conjugate of §
then there is a o € Gp(E) such that ca=0o; and of =8,
Hence, the conjugates of a + 3 are o; + f;.

2) Show that if the difference of two conjugates of o is never
equal to the difference of two conjugates of 3 then F(a,0) =
F(a + ).

Let r be a prime different from char(F). Let f(x) =x"—u and

g(x) =x"—v be irreducible over F, with roots o and g,

respectively. Use the previous problem to show that if

[F(«,8):F] = 12 then F(a,8) = F(a + §).



Chapter 14
Families of Binomials

In this chapter, we look briefly at families of binomials and their
splitting fields and Galois groups. We have seen that when the base
field F contains a primitive n-th root of unity, cyclic extensions of
degree d |n correspond to splitting fields of a single binomial x™ —u.
More generally, we will see that abelian extensions of exponent n
correspond to splitting fields of families of binomials. We will also
address the issue of when two families of binomials have the same
splitting field.

14.1 The Splitting Field

Let F be a field containing a primitive n-th root of unity and
consider a family ¥ of binomials given by

F={x"—-u|ueU}

where U CF is the set of constant terms. We will refer to n as the
exponent of the family ¥.

If S, is the splitting field for x® —u, then S = V {S,|u € U} is the
splitting field for the family ¥. Since each extension F < § is Galois, so
is F<S and Theorem 5.5.3 implies that Gg(S) is isomorphic to a
subgroup of the product

H= H GF(Su)

uelU
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Since each F < S is cyclic of degree dividing n, the group H is the
direct product of cyclic groups of order dividing n and is therefore
abelian with exponent n. (Recall that a group G has ezponent n if o™ =
1 for all @ € G.) Hence, Gg(S) is abelian with exponent n. An abelian
extension F <S whose Galois group Gp(S) has exponent n will be
referred to as an abelian extension with exponent n,

Thus, if F contains a primitive n-th root of unity, the splitting field
of any family of binomials over F of exponent n is an abelian extension
of F with exponent n. Happily, the converse is also true.

Suppose that F < E is an abelian extension with exponent n. Let K
be any field for which F < K < E where F < K is finite. Since F < E is
abelian, so is F < K. In addition, Gp(K) is finite and has exponent n.
Since a finite abelian group is a direct product of cyclic subgroups, we
have

Gp(K) Gy x---xG,,

where each G, is cyclic with exponent n and hence order n; | n. Corollary
5.5.4 implies that K is a composite K = K;---K, where Gp(K;) ~ G; is
cyclic of order n;|n. Since F contains the n;-th roots of unity and
F <K; is cyclic, Theorem 11.1.1 implies that K; = F(e,) is the splitting
field for

min(ay,F) = x"i — o'

where o; € E. Hence K = F(qay,...,0,,) is the splitting field over F for
the family

G.FK= {xni—aili_—- 1,...,m}

It follows that E is the splitting field for the union |J%F, taken over all
finite intermediate fields K.

Theorem 14.1.1 Let F be a field containing a primitive n-th root of
unity. An extension F < E is abelian with exponent n if and only if E is
the splitting field for a family of binomials over F of exponent n.

Definition Let F be a field containing a primitive n-th root of unity. An
extension F < E is a Kummer extension of exponent n if F<E is
abelian and has exponent n. [

Thus, according to Theorem 14.1.1, the Kummer extensions of F of
exponent n are precisely the splitting fields over F of families of
binomials of exponent n.
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14.2 Kummer Theory

While each family of binomials gives rise to a unique Kummer
extension, different families may produce the same extension, that is,
different families may have the same splitting field. We seek a
collection of families of binomials such that there is a one-to-one
correspondence between families in the collection and Kummer
extensions.

Let us phrase the problem a little differentl )' for which we require
some notation. Recall that if u € F, then by u!/™ we mean a particular
(fixed) root of x™ —u. If A CF, we let AY/™ denote the set of all n-th
roots of all elements of A. Also, if A CF and n is a nonnegative integer
then A" = {a"|a € A}.

Let F be a field containing a primitive n-th root of unity. Of course,
we may identify a family F = {x"~b|b € U} of binomials of (fixed)
exponent n with the set U C F* of constant terms (since binomials with
zero constant term are not very mterestmg, we exclude such binomials).
Moreover, the splitting field for ¥ is S = F(U 1/n m.

In seeking a bljectlve correspondence between subsets U C F* and
splitting fields S = F(U ™), it is natural to restrict attention to
maximal sets U C F* that generate the given splitting field. As we now
show, if S = F(U T/n ™) for some U C F*, then

S = F((U,F*n)l/n)

where (U,F*") is the subgroup of F* generated by U and F*™. To see
this, note that if u,,...,u € U and f € F* then for some integer j, we
have

(ot )7 = Wl (/)1 (") % € FUTT)
and so we get nothing new in F (UI/ ™) by adjoining any element of

(U,F*™) = {fPuSt.-uk | f € F*, u; € U}
That is to say,
F((U,F*n)l/n) — F(Ul/n)

It follows that, as far as splitting fields for families of binomials of
exponent n are concerned, we may restrict attention to sets of constant
terms that are subgroups of F* containing F*". Indeed, we will show
that if U is the class of all subgroups U of F* containing F*" then the
assocnatlon U»—-»F(U1 ™) is a bijection onto the class % of all Kummer
extensions E of F with exponent n. We will also obtam a description of
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the Galois group G of F < E in terms of U.

Let F < F(Ul/ ™) be a Kummer extension with Galois group G, and
let 0 €G and u€ U. If a is a root of x® —u then ca is also a root of
x® —u and so

for some n-th root of unity Yo ar If g is another root of x™ —u, then
B =uw'a where we Q, and so a(ﬂ/a) = o(w') = W' = /a. It follows
that
o
WeB = _15' - 0(;6! o,a

Hence, w, = w, o depends only on o.
It follows that the map (,):G x U—U,, defined by

(ou) = w, =%, for any a with o™ =u
is well-defined (does not depend on a) and we may write
ul /n
1 /n

(14.2.1) (o,u) =

without ambiguity. Moreover, if a” = u and b™ = v then for 0, 7 € G,

(oru) = TE& = 2100 = o w, = G2 T2 = (gu)(r,u)
and
(o,uv) = 7(aB) _gaoB _ = (o,u){o,v)

af T

Thus, for each o € G, the map ¢,:U—U, defined by ¢ u=(o,u) is a
group homomorphism and for each u € U, the map 6,:G—U, defined
by 6,0 =(o,u) is also a group homomorphism. This prompts a
discussion of the following notions.

Dual Groups and Pairings

If A and B are groups, we denote by Hom(A,B) the set of all group
homomorphisms from A to B. Note that Hom(A,B) is a group under
the product

(¥0)(e) = (Ya)(6a)

with identity being the constant map $a =1 for all a € A. Using this
notation, we can state with regard to the pairing (14.2.1), that ¢, €
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Hom(U,U,), for all ¢ € G and 6, € Hom(G,U,), for all u € U.

Lemma 14.2.1
1) If A, B and C are abelian groups then

Hom(A x B,C) ~ Hom(A,C) x Hom(B,C)
2) If A is a finite abelian group of exponent n, then Hom(A,U, ) ~ A.
Hence, | Hom(A,U, )| = |A].

Proof. We leave it as an exercise to show that the map

?:Hom(A,C) x Hom(B,C)—Hom(A x B,C)
defined by
P(,0)(,8) = $()0(P)

is an isomorphism, proving part 1). For part 2), since A can be written
as the product of finite cyclic groups, part 1) implies that we need only
show that Hom(A,U ) >~ A when A = (a) is cyclic. If A has order m |n,
then 1 € Hom(A,U,) maps A into U, since for any o € A we have

(Yo)™ =9(a™) =91l =1

Suppose that U, = (w) and let ¢ € Hom(A,U,) be defined by ¥(a) = w.
Then

(¢‘) = {L,'P, 1/)2,---,1/)"1_1}

is a cyclic subgroup of Hom(A,U,) of order m = |U_,|. Since every
element of Hom(A,U,) is uniquely determined by its value on «, we
deduce that Hom(A,U )= (y) is cyclic of order m, whence
Hom(A,U, ) = A.

Definition If A, B and C are abelian groups, a pairing of A x B into C is
a map (,):A x B—C that is a “bihomomorphism”, that is,

1) For each a € A, the map 9 ,:B—C defined by ¥,(8) = (a,8) is a
group homomorphism.

2) For each § € B, the map 05:A—C defined by f4(c) = (@,f) is a
group homomorphism. [I

A pairing is the analog of a bilinear map between vector spaces. Note
that (1,8) =(a,1)=1 for all a€A and B€B and that (o,8)7!=
(a71,8) = (a,71). If S C A and T C B, we set
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(S,T)={(s;t) |s €S, t €T}

(We will write ({a},T) as (,T) and (S,{3}) as (S,3).) The left kernel of

a pairing is the set

Ky ={a€A[(a,B)={1}}
and the right kernel is defined similarly

Kgp ={8€B|(A,f) ={1}}

It is easy to see that these kernels are subgroups of their respective
parent groups.

Note that (a;,8) = (@,0) for all B €B if and only if (a;a;1,B) =
{1}, that is, if and only if alaé‘l € K;,, or equivalently, o; K|, = a)K;.
Similar statements holds for the right kernel. Thus, we may define a
pairing from A/K| x B/Kg to C by

(aKy,AKR) = (,f)

and this pairing is nonsingular, that is, both the left and right kernels
are trivial.

Theorem 14.2.2 Let (,):A x B—U_ be a nonsingular pairing from abelian
groups A and B into U . Then A and B both have exponent n.
Moreover, A is finite if and only if B is finite, in which case

1) A ~Hom(B,U,) and B ~ Hom(A,U),
2) |Al=|B]. |

Proof. First observe that if « € A then (¢",0) = (a,f)" =1 for all f €
B, and so " € K[, whence " =1 and A has exponent n. A similar
statement holds for B. Now consider the map A—Hom(B,U, ) defined
by a1, where 1 :0—(a,8). Since

b, B) = (ac!,B) = (0, B)(@,B) = ¥,(8)¥(B)

the map a1, is a group homomorphism from A to Hom(B,U,). If
$q =1 is the constant homomorphism then (a,8) =1 for all g € B,
that is, & € Kg, whence a = 1. Hence, the map a1, is injective.

It follows from Lemma 14.2.1 that if B is finite, then

|A| < |Hom(B,Uy)| = |B|
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The dual argument shows that |[B| < |A| and so {A| = |B|. This
also implies that the monomorphism a1, is an isomorphism. §

Back to Binomials
We resume our study of the pairing (,):G x U-U,, defined by

o,ul/n
ul/n

(ou) =

Since the identity is the only map in G that fixes every root of every
binomial in the family, the left kernel of this pairing is

Ky, ={c €G|ou!/"=u/" forall u € U} = {1}

An element u € U is in the right kernel if and only if

1/n i/n

ou =u

for all o € G, that is, if and only if u!/™ € F(G)* = F*. Since ul/m ¢ p*
if and only if u € F*", we have Ky = F*".
It follows that the pairing (,):G x (U/F*")—U_ given by

1/n
(o uF*™) = ———‘:;/n

is nonsingular. We may thus apply Theorem 14.2.2.
Theorem 14.2.3 Let F be a field containing a primitive n-th root of
unity. If E = F(U'/") then the pairing
(,):Gp(E) x U/F*™—=U
given by
1/n

(O',UF*“) = ou
ul/n

is nonsingular and so U/F*" has exponent n and | Gp(E)| = [E:F] is
finite if and only if (U:F*™) is finite, in which case

[E:F] = (U:F*D)
and |
Gp(E) ~ Hom(U/F*™,U ) 0
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Theorem 14.3.1 not only describes the Galois groulp of a Kummer
extension, but allows us to show that the map U—F(U n) from U to
%,,, is a bijection.

Theorem 14.2.4 Let F be a field containing a primitive n-th root of
unity. Let %, be the class of all Kummer extensions F < E of F with
exponent n and let U be the class of all subgroups U of F* containing
F*2, Then the map UrsF (u? “) is a bijection from AU, onto %, with
inverse given by E—~E**NF*

Proof. To show that the map in question is injective, suppose that

F(UY™) = F(VY/™), with U, V € U,. If u € U, then u!/? e F(V/?) and

so there exists a finite subset V of V for which u'/" ¢ F(VI/ ™). Let
= (V,F*") be the subgroup generated by V, and F**. Then

V(l)/n c V%/n C Vl/n

and

u'/™ e (Vi C F(V]/®)

Note that V, € U, is finitely generated (by V,) over F*" and hence
(V,:F*") is finite. Theorem 14.2.3 implies that

[F(VI/P):F] = (V,:F*™)

Let us now adjoin u. Let V, = (u,V{) be the subgroup generated by u
and V,. Then V, € U and

F(V3/™) = F((,V,)"/™) = F((@V}/™) = F(V}/™)
Another application of Theorem 14.2.3 gives
(Vg F*™) = (V:F™)

and since V, C'V, we get V; =V,. It follows that u € V; CV and since
u was arbitrary, U C V. A symmetric argument gives V C U, whence
U = V. This proves that the map U»——vF(U1 n) is injective. We have seen
that any Kummer extension F < E in % is a splitting field extension
for a family ¥ of binomials with exponent n. If C is the set of constant
terms and if U is the subgroup of F* generated by C and F*" then E =
F(UY™) and so the map is surjective.

Let F < E be a Kummer extension with exponent n and let U =
E*™NF*. Then U is a subgroup of F* containing F*", that is, U€ U .
It is clear that E C F(U'/™). For the reverse inclusion, let g™ € U. Then
B™ = o™ for some a € E*, which implies that 8 is a root of x" —a" €
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F(x] and so 8= wa € E*. This shows that U'/® CE* and so E=
F(Ulln). Hence, E—U = E*™™ N F* is the inverse map. I

Exercises
1. Referring to Lemma 14.2.1, show that the map

P:Hom(A,C) x Hom(B,C)—Hom(A x B,C)
defined by
P(1,0)(8) = $(a)8(B)

is an isomorphism.

2. Let A be a finite group and let 9 € Hom(G,U_). Show that
Yacav(@ =]A] ify(a)=1foralla€ A and ), p¥(a) =0
otherwise.

3. Let A be a finite abelian group with exponent n. If o € A satisfies
Y(a) =1 for all ¥ € Hom(A,U,) then a = 1.

4. Let B be a proper subgroup of a finite abelian group A and let
a € A —B. Then there exists 1 € Hom(A,U,) such that %(B) =
{1} but ¢(a) # 1.

5. Let A be a finite abelian group and let B be a subgroup of A. Let
B' = {¢ € Hom(A,U,) | ¥(B) = {1}}. Show that Hom(B,U,)~
Hom(A,U,)/B*.

6. Let B be a subgroup of a finite abelian group A. Let B* = {¢ €
Hom(A,U,) | ¥(B) = {1}}. Show that Hom(A/B,U,) ~ B*.

7. Let ¥ ={fi(x)} be a family of binomials with deg f;(x)=n;.
Suppose that n; | n for all i and let F contain a primitive n-th root
of unity. Show that there is a family of binomials, each of which
has degree n, with the same splitting field as F.

8. In this exercise, we develop the analogous theory for families of
polynomials of the form ¥ = {xP —x — u;} where p = char(F) # 0.
1) Prove that F < E is abelian with exponent p if and only if E is

the splitting field of a family of the form ¥.

2) Let ®:F—F be the map Pa=aP—a. Let P"U={a€eF
such that Pa € U}. Let U be the class of all additive
subgroups of F with ®7'F C U. Let €, be the class of all
abelian extensions F < E of F with exponent p. Prove the
following theorem: The map U—F(?7!U) is a bijection
between A and &,. If F <E =F(?7'U) is in &, has Galois
group G then there is a well-defined pairing (,):G x U-u,
given by (s,0) =0 - for any B € 91y, The left kernel is
{1} and the right kernel is'®PF. The extension F < E is finite if
and only if (U:PF) is finite, in which case [E:F] = (U:?F) and
G~ (U/2PF)".



Appendix
Mobius Inversion

Mboébius inversion is a method for inverting certain types of sums.
The classical form of Mobius inversion was originally developed
independently by P. Hall and L. Weisner in 1935. However, in 1964,
Gian-Carlo Rota generalized the classical form to apply to a much
wider range of situations. To describe the concept in its fullest
generality, we require some facts about partially ordered sets.

PARTIALLY ORDERED SETS

Definition A partial order on a nonempty set P is a binary relation,
denoted by < and read “less than or equal to,” with the following
properties.

1)  (reflexivity) For all a € P,
a<a

2) (antisymmetry) For all a,b € P,
a<band b<a implies a=b
3) (tramsitivity) For all a,b,c € P,
a<b and b<c implies a<c i

Definition A partially ordered set is a nonempty set P, together with a
partial order < defined on P. The expression a <b is read “a is less
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than or equal to b.” If a,b € P, we denote the fact that a is not less
than or equal to b by a £ b. Also, we denote the fact that a <b; but
a#£b,bya<hbh.

If there exists an element z € P for which z < x for all x € P, we call
z a zero element and denote it by 0. Similarly, if there exists an element
y € P for which x <y for all x € P, then we call y a one and denote it
by 1.0

As is customary, when the partial order < 1is understood, we will use
the phrase “let P be a partially ordered set.”

Note that, in a partially ordered set, it is possible that not all
elements are comparable. In other words, it is possible to have x,y € P
with the property that x €y and y € x. Thus, in general, x {y is not
equivalent to y <x. A partially ordered set in which every pair of
elements is comparable is called a totally ordered set or a linearly
ordered set.

Example A.2.1

1)  The set R of real numbers, with the usual binary relation <, is a
partially ordered set. It is also a totally ordered set.

2)  The set N of natural numbers, together with the binary relation of
divides, is a partially ordered set. It is customary to write n|m
(rather than n < m) to indicate that n divides m.

3) Let S be any set, and let P(S) be the power set of S, that is, the
set of all subsets of S. Then P(S), together with the subset relation
C, is a partially ordered set. {1

Definition Let P be a partially ordered set. For a,b € P, the (closed)
interval [a,b] is the set

[a,b] = {x € P|a <x <b}

We say that the partially ordered set P is locally finite if every closed
interval is a finite set. [

Notice that, if P is locally finite and contains a zero element 0, then
the set {x € P|x < a} is finite for all a € P, for it is the same as the
interval [0,a].

THE INCIDENCE ALGEBRA OF A PARTIALLY ORDERED SET
Now let P be a locally finite partially ordered set, and let F be a
field. We set

A(P) = {f:P xP—F | f(x,y) = 0 if x £ y}
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Addition and scalar multiplication are defined on A(P) by
(H+e)(x,y) = f(x,y) + 8(x,y)
(kD)(x,y) = k[f(x,y)]

We also define multiplication by

) (xy)= Y. f(x2)g(zy)

x<z<y

and

the sum being finite, since P is assumed to be locally finite. Using these
definitions, it is not hard to show that A(P) is an algebra, called the
incidence algebra of P. The identity in this algebra is

_J1 if x=y
6(’(»)’)—{0 if x#y

The next theorem characterizes those elements of A(P) that have
multiplicative inverses.

Theorem A.2.1 An element fe€ A(P) is invertible if and only if
f(x,x) # 0 for all x € P.

Proof. An inverse g of f must satisfy
(A.2.1) Y f(x2)e(zy) = (x.y)
x<z<y

In particular, for x =y, we get
f(x,x)g(x,x) =1
This shows the necessity and also that g(x,x) must satisfy

(A.2.2) g(x,x) = f(XIT)

Equation (A.2.2) defines g(x,y) when the interval [x,y] has cardinality
1, that is, when x =y. We can use (A.2.1) to define g(x,y) for intervals
[x,y] of all cardinalities.

Suppose that g(x,y) has been defined for all intervals with cardinality
at most n, and let [x,y] have cardinality n+1. Then, by (A.2.1), since
x £y, we get

f(xgloy) = = > f(x2)g(y)

x<z<y
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But g(z,y) is defined for z > x since [z,y] has cardinality at most n, and
so we can use this to define g(x,y). i
Definition The function { € A(P), defined by

1 if x<y

¢(xy) ‘_"{0 if x{y
is called the zeta function. Its inverse u(x,y) is called the M&bius
function. ]
The next result follows from the appropriate definitions.
Theorem A.2.2 The Mébius function is uniquely determined by any of
the following conditions.

1)  p(x,x) =1 and, for x <y,

Z u(z’Y) =0

x<z<y

2)  wu(x,x) =1 and, for x <y,

Z p(x,2) =0

x<z<y
3)  p(x,x) =1 and, for x <y,

pxy)= - uzy)

x<z<y
4)  p(x,x) =1 and, for x <y,
uxy) = — Z p(x,z) 0
x<z<y

Now we come to the main result.

Theorem A.2.3 (MaGbius Inversion) Let P be a locally finite partially

ordered set with zero element 0. If f and g are functions from P to the
field F, then

(A.2.4) g(x) = }; f(y) = fx)=) gO)u@x)
Ysx

y<x
If P is a locally finite partially ordered set with 1, then
(A25) g =) fy) = x)=7) uxyely)
x<y x<y

Proof. Since all sums are finite, we have, for any x,
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Y s = S [‘; f(z)}* y.x)

y<x y<x
=y f(z) u(y,x)
2<x z<y<x
=§:fh) E: #(y,x)
z<x z<y<x
= Z(: f(2)8(z,x) = f(x)

The rest of the theorem is proved similarly. i

The formulas (A.2.4) and (A.2.5) are called Mdbius inversion
formulas.

Example A.2.2 (Subsets) Let P = %(S) be the set of all subsets of a
finite set S, partially ordered by set inclusion. We will use the notation
C for subset and C for proper subset. (In the text, we use C for
subset.) The zeta function is

1 if ACB
¢(A,B) _{ 0 otherwise

The Mobius function g is computed as follows. From Theorem A.2.2,

we have
nAA)=1

and

I‘(A’B) = - Z #(A,X)

ACXCB

So, for x,y,z ¢ A, we have

HAAU{x}) = — p(A,A) = -1
A AU{xy}) = - u(A,A) — p(A,AU{x}) — w(A,A U {y})
=-14141=1
A AU{xyz}) = - p(AA) — p(A,AU{x}) - w(A,AU{y})
— #(AA U {xy}) — u(A,A U {x,2}) — p(A,A U {y,z})
—1414141-1-1-1=-1

It begins to appear that the values of u alternate between +1 and -1
and that
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_J(-nIB=Al s ACB
#(A;B) —{ 0 otherwise

To verify this, we have p(A,A) =1 and, for A C B,

[B-A|

> PN = () k=0

ACXC k=0

Now let Py,...,P_ be properties that the elements of a set S may or
may not possess. For K C {l,...,k}, let E(K) be the number of
elements of S that have properties P, for i € K, and no others. Let F(K)
be the number of elements of S that have at least properties P;, for
i € K. Then

F(K) = E E(L)
KCL
Hence, by M&bius inversion,

EK) = Y, (- ®r)

KCL

In particular, if K = @ is the empty set, then

E@) = > (-DMr()
LCS
But E(@) is the number of elements of S that have none of the
properties, and so we get

Number elements with no properties = Z (-1)k Z F({iy,...,ii})
k>0 ipyemnaiy

This formula is the well known Principle of Inclusion-Exclusion, which
we now see is just a special case of M&bius inversion. 0

CLASSICAL MOBIUS INVERSION

Consider the partially ordered set N of natural numbers, ordered by
division. That is, x is less than or equal to y if and only if x divides y,
which we will denote by x|y. Notice that the natural number 1 (and
not 0) is the zero element in this partially ordered set, since 1 | n for any
natural number n.

In this case, the M6bius function u(x,y) depends only on the ratio
y/x, and is given by
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1 if =1
p(xy) = p) = {(—1)“ if

0 otherwise

=ppy-'py for distinct primes p;

Notice that the “otherwise” case can occur if either xfy (x does not
divide y) or if p?|(y/x) for some prime p. Thus, the value of u(x,y)
depends on the nature of the prime decomposition of the ratio y/x.

To verify that this is indeed the M6bius function, we first observe
that p(x,x) = p(1) = 1. Now let x|y, x #y and

¥(. = pilpgz. . .p;n
where the p; are distinct primes. Then
Su® =Y w® =Y w= Y M=o
fedy ©ajElE by 14

Now, in the present context, the Mdbius inversion formula becomes

gm)= Y fk) = f@)= ) sku@

k|n k|n

This is the important classical formula, which often goes by the name
Mobius inversion formula. [I

MULTIPLICATIVE VERSION OF MOBIUS INVERSION
We now present a multiplicative version of the Mébius inversion
formula.

Theorem A.2.4 Let P be a locally finite partially ordered set with zero
element 0. If f and g are functions from P to F, then

g(x) = l;:[ fy) = fx)=]] )
Y<x

y<x
Proof. Since all products are finite, we have, for any x,

I EmFe® = ] [H i)

y<x y<x|z<Ly

=11 [0
z <X

z<y<x
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<E< I‘(va)
fiz) *=Y=*

z<x

=[] 1@°C® = t(x) X

z<x

Example A.2.3 Let P =N, and let F be the field of rational functions in
x. Consider the formula

»-1= [T Q)

kln

Then, if we let f(k) = Q(x) and g(n) = x" — 1, Theorem A.2.4 gives

Qn(x) — H (xk_ 1)!‘(“/“) - H (xn/k_ 1)#(]‘) i}

k|n kin
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