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Preface 

Textbook writing must be one of the 
cruelest of self-inflicted tortures. 

- Carl Faith 
Math Reviews 54: 5281 

So why didn't I heed the warning of a wise colleague, especially one who is a 
great expert in the subject of modules and rings? The answer is simple: I did not 
learn about it until it was too late! 

My writing project in ring theory started in 1983 after I taught a year-long 
course in the subject at Berkeley. My original plan was to write up my lectures 
and publish them as a graduate text in a couple of years. My hopes of carrying 
out this plan on schedule were, however, quickly dashed as I began to realize how 
much material was at hand and how little time I had at my disposal. As the years 
went by, I added further material to my notes, and used them to teach different 
versions of the course. Eventually, I came to the realization that writing a single 
volume would not fully accomplish my original goal of giving a comprehensive 
treatment of basic ring theory. 

At the suggestion of Ulrike Schmickler-Hirzebruch, then Mathematics Editor of 
Springer-Verlag, I completed the first part of my project and published the write
up in 1991 as A First Course in Noncommutative Rings, GTM 131, hereafter 
referred to as First Course (or simply FC). This volume contained a treatment 
of the Wedderburn-Artin theory of semisimple rings, Jacobson's theory of the 
radical, representation theory of groups and algebras, prime and semiprime rings, 
division rings, ordered rings, local and semilocal rings, culminating in the theory 
of perfect and semiperfect rings. The publication of this volume was accompanied 
several years later by that of Exercises in Classical Ring Theory, which contained 
full solutions of (and additional commentary on) all exercises in Fe. For further 
topics in ring theory not yet treated in FC, the reader was referred to a forthcoming 
second volume, which, for lack of a better name, was tentatively billed as A Second 
Course in Noncommutative Rings. 

One primary subject matter I had in mind for the second volume was that part 
of ring theory in which the consideration of modules plays a <:rucial role. While 
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an early chapter of Fe on representation theory dealt with modules over finite
dimensional algebras (such as group algebras of finite groups over fields), the 
theory of modules over more general rings did not receive a full treatment in that 
text. This second volume, therefore, begins with the theory of special classes of 
modules (free, projective, injective, and flat modules) and the theory of homolog i
cal dimensions of modules and rings. This material occupies the first two chapters. 
We then go on to present, in Chapter 3, the theory of uniform dimensions, comple
ments, singular submodules and rational hulls; here, the notions of essentiality and 
denseness of submodules playa key role. In this chapter, we also encounter several 
interesting classes of rings, notably Rickart rings and Baer rings, Johnson's non
singular rings, and Kasch rings, not to mention the hereditary and semihereditary 
rings that have already figured in the first two chapters. 

Another important topic in classical ring theory not yet treated in FC was the 
theory of rings of quotients. This topic is taken up in Chapter 4 of the present text, 
in which we present Ore's theory of noncommutative localization, followed by a 
treatment of Goldie's all-important theorem characterizing semiprime right Goldie 
rings as right orders in semisimple rings. The latter theorem, truly a landmark in 
ring theory, brought the subject into its modern age, and laid new firm foundations 
for the theory of noncommutative noetherian rings. Another closely allied theory 
is that of maximal rings of quotients, due to Findlay, Lambek and Utumi. This 
theory has a universal appeal, since every ring has a maximal (left, right) ring of 
quotients. Chapter 5 develops this theory, taking full advantage of the material on 
injective and rational hulls of modules presented in the previous chapters. In this 
theory, the theorems of Johnson and Gabriel characterizing rings whose maximal 
right rings of quotients are von Neumann regular or semisimple may be viewed 
as analogues of Goldie's theorem mentioned earlier. 

One theme that runs like a red thread through Chapters 1-5 is that of self
injective rings. The noetherian self-injective rings, commonly known as quasi
Frobenius (or QF) rings, occupy an especially important place in ring theory. 
Group algebras of finite groups provided the earliest nontrivial examples of QF 
rings; in fact, they are examples of finite-dimensional Frobenius algebras that 
were studied already in the first chapter. The general theory of Frobenius and 
quasi-Frobenius rings is developed in considerable detail in Chapter 6. Over such 
rings, we witness a remarkable "perfect duality" between finitely generated left and 
right modules. Much of the beautiful mathematics here goes back to Dieudonne, 
Nakayama, Nesbitt, Brauer, and Frobenius. This theory served eventually as the 
model for the general theory of duality between module categories developed by 
Kiiti Morita in his classical paper in 1958. Our text concludes with an exposition, 
in Chapter 7, of this duality theory, along with the equally significant theory of 
module category equivalences developed concomitantly by Kiiti Morita. 

Although the present text was originally conceived as a sequel to FC, the mate
rial covered here is largely independent of that in First Course, and can be used as 
a text in its own right for a course in ring theory stressing the role of modules over 
rings. In fact, I have myself used the material in this manner in a couple of courses 
at Berkeley. For this reason, it is deemed appropriate to rename the book so as to 
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decouple it from First Course; hence the present title, Lectures on Modules and 
Rings. I am fully conscious of the fact that this title is a permutation of Lectures 
on Rings and Modules by Lambek - and even more conscious of the fact that my 
name happens to be a subset of his! 

For readers using this textbook without having read FC, some orienting remarks 
are in order. While it is true that, in various places, references are made to First 
Course, these references are mostly for really basic material in ring theory, such as 
the Wedderburn-Artin Theorem, facts about the Jacobson radical, noetherian and 
artinian rings, local and semilocal rings, or the like. These are topics that a graduate 
student is likely to have learned from a good first-year graduate course in algebra 
using a strong text such as that of Lang, Hungerford, or Isaacs. For a student with 
this kind of background, the present text can be used largely independently of 
Fe. For others, an occasional consultation with FC, together with a willingness to 
take some ring-theoretic facts for granted, should be enough to help them navigate 
through the present text with ease. The Notes to the Reader section following 
the Table of Contents spells out in detail some of the things, mathematical or 
otherwise, which will be useful to know in working with this text. For the reader's 
convenience, we have also included a fairly complete list of the notations used in 
the book, together with a partial list of frequently used abbreviations. 

In writing the present text, I was guided by three basic principles. First, I tried 
to write in the way I give my lectures. This means I took it upon myself to select 
the most central topics to be taught, and I tried to expound these topics by using 
the clearest and most efficient approach possible, without the hindrance of heavy 
machinery or undue abstractions. As a result, all material in the text should be 
well-suited for direct class presentations. Second, I put a premium on the use of 
examples. Modules and rings are truly ubiquitous objects, and they are a delight to 
construct. Yet, a number of current ring theory books were almost totally devoid 
of examples. To reverse this trend, we did it with a vengeance: an abundance of 
examples was offered virtually every step of the way, to illustrate everything from 
concepts, definitions, to theorems. It is hoped that the unusual number of exam
ples included in this text makes it fun to read. Third, I recognized the vital role 
of problem-solving in the learning process. Thus, I have made a special effort to 
compile extensive sets of exercises for all sections of the book. Varying from the 
routine to the most challenging, the compendium of (exactly) 600 exercises greatly 
extends the scope of the text, and offers a rich additional source of information to 
novices and experts alike. Also, to maintain a good control over the quality and pro
priety of these exercises, I made it a point to do each and everyone of them myself. 
Solutions to all exercises in this text, with additional commentary on the majority 
of them, will hopefully appear later in the form of a separate problem book. 

As I came to the end of my arduous writing journey that began as early as 1983, 
I grimaced over the one-liner of Carl Faith quoted at the beginning of this preface. 
Torture it no doubt was, and the irony lay indeed in the fact that I had chosen to 
inflict it upon myself. But surely every author had a compelling reason for writing 
his or her opus; the labor and pain, however excruciating, were only a part of the 
price to pay for the joyful creation of a new brain-child! 
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If I had any regrets about this volume, it would only be that I did not find 
it possible to treat all of the interesting ring-theoretic topics that I would have 
liked to include. Among the most glaring omissions are: the dimension theory and 
torsion theory of rings, noncommutative noetherian rings and PI rings, and the the
ory of central simple algebras and enveloping algebras. Some of these topics were 
"promised" in FC, but obviously, to treat any of them would have further increased 
the size of this book. I still fondly remember that, in ProfessorG.-c. Rota's humor
ous review of my First Course, he mused over some mathematicians' unforgiving 
(and often vociferous) reactions to omissions of their favorite results in textbooks, 
and gave the example of a "Professor Neanderthal of Redwood Poly.", who, upon 
seeing my book, was confirmed in his darkest suspicions that I had failed to "in
clude a mention, let alone a proof, of the Worpitzky-Yamamoto Theorem." Sadly 
enough, to the Professor Neanderthals of the world, I must shamefully confess that, 
even in this second volume in noncommutative ring theory, I still did not manage 
to include a mention, let alone a proof, of that omnipotent Worpitzky-Yamamoto 
Theorem! 

Obviously, a book like this could not have been written without the generous 
help of many others. First, I thank the audiences in several of the ring theory courses 
I taught at Berkeley in the last 15 years. While it is not possible to name them all, 
I note that the many talented (former) students who attended my classes included 
Ka Hin Leung, Tara Smith, David Moulton, Bjorn Poonen, Arthur Drisko, Peter 
Farbman, Geir Agnarsson, loannis Emmanouil, Daniel Isaksen, Romyar Shar
ifi, Nghi Nguyen, Greg Marks, Will Murray, and Monica Vazirani. They have 
corrected a number of mistakes in my presentations, and their many pertinent 
questions and remarks in class have led to various improvements in the text. I 
also thank heartily all those who have read portions of preliminary versions of 
the book and offered corrections, suggestions, and other constructive comments. 
This includes Joannis Emmanouil, Greg Marks, Will Murray, Monica Vazirani, 
Scott Annin, Stefan Schmidt, Andre Leroy, S. K. Jain, Charles Curtis, Rad Dim
itric, Ellen Kirkman, and Dan Shapiro. Other colleagues helped by providing 
proofs, examples and counterexamples, suggesting exercises, pointing out refer
ences, or answering my mathematical queries: among them, I should especially 
thank George Bergman, Hendrik Lenstra, Jr., Carl Faith, Barbara Osofsky, Lance 
Small, Susan Montgomery, Joseph Rotman, Richard Swan, David Eisenbud, Craig 
Huneke, and Birge Huisgen-Zimmermann. 

Last, first, and always, lowe the greatest debt to members of my family. At the 
risk of sounding like a broken record, I must once more thank my wife Chee-King 
for graciously enduring yet another book project. She can now take comfort in my 
solemn pledge that there will not be a Third Course! The company of our four 
children brings cheers and joy into my life, which keep me going. I thank them 
fondly for their love, devotion and unstinting support. 

Berkeley, California 
July 4, 1998 

T.y.L. 
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Notes to the Reader 

This book consists of nineteen sections (§§ 1-19), which, for ease of reference, 
are numbered consecutively, independently of the seven chaptl~rs. Thus, a cross
reference such as (12.7) refers to the result (lemma, theorem, example, or remark) 
so labeled in §12. On the other hand, Exercise (12.7) will refer to Exercise 7 in 
the exercise set appearing at the end of § 12. In referring to an f:xercise appearing 
(or to appear) in the same section, we shall sometimes drop the section number 
from the reference. Thus, when we refer to "Exercise 7" within § 12, we shall mean 
Exercise (12.7). A reference in brackets, such as Amitsur [72] (or [Amitsur: 72]) 
shall refer to the 1972 paper/book of Amitsur listed in the reference section at the 
end of the text. 

Throughout the text, some familiarity with elementary ring theory is assumed, 
so that we can start our discussion at an "intermediate" level. Most (if not all) of 
the facts we need from commutative and noncommutative ring theory are available 
from standard first-year graduate algebra texts such as those of Lang, Hungerford, 
and Isaacs, and certainly from the author's First Course in Noncommutative Rings 
(GTM 131). The latter work will be referred to throughout as First Course (or 
simply FC). For the reader's convenience, we summarize bdow a number of 
basic ring-theoretic notions and n~su1ts which will prove to be handy in working 
with the text. 

Unless otherwise stated, a ring R means a ring with an identity element 1, and 
a subring of R means a subring S ~ R with 1 E S. The word "ideal" always 
means a two-sided ideal; an adjective such as "noetherian" likewise means right 
and left noetherian. A ring homomorphism from R to R' is supposed to take the 
identity of R to that of R'. Left and right R-modules are always assumed to be 
unital; homomorphisms between modules are usually written (and composed) on 
the opposite side of scalars. "Semisimple rings" are in the sense of Wedderburn, 
Noether and Artin: these are rings that are semisimple as left (right) modules 
over themselves. We shall use freely the classical Wedderburn-Artin Theorem 
(FC-(3.5)), which states that a ring R is semisimple iff it is isomorphic to a 
direct product Mn,(D\) x ... x Mn,(D,), where the Di's are division rings. 
The Mn; (Di) 's are called the simple components of R; these are the most typical 
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simple artinian rings. A classical theorem of Maschke states that the group algebra 
kG of a finite group G over a field k of characteristic prime to I G I is semisimple. 

The Jacobson radical of a ring R, denoted by rad R, is the intersection of the 
maximal left (right) ideals of R; its elements are exactly those which act trivially 
on all left (right) R-modules. If rad R = 0, R is said to be Jacobson semisimple 
(or just J -semisimple). Such rings generalize the classical semisimple rings, in 
that semisimple rings are precisely the artinian J -semisimple rings. A ring R is 
called semilocal if Rjrad R is artinian (and hence semisimple); in the case when 
R is commutative, this amounts to R having only a finite number of maximal 
ideals. If R is semilocal and rad R is nilpotent, R is said to be semiprimary. Over 
such a ring, the Hopkins-Levitzki Theorem (FC-( 4.15» states that any noetherian 
module has a composition series. This theorem implies that left (right) artinian 
rings are precisely the semi primary left (right) noetherian rings. 

In a ring R, a prime ideal is an ideal p <;;; R such that aRb S; p implies 
a E p or b E p; a semiprime ideal is an ideal <!: such that aRa S; <!: implies a E <!:. 
Semi prime ideals are exactly intersections of prime ideals. A ring R is called prime 
(semiprime) if the zero ideal is prime (semiprime). The prime radical (a.k.a. Baer 
radical, or lower nilradical l ) of a ring R is denoted by NiI* R: it is the smallest 
semiprime ideal of R (given by the intersection of all of its prime ideals). Thus, 
R is semiprime iff Nil*R = 0, iff R has no nonzero nilpotent ideals. In case R 
is commutative, Nil*R is just Nil(R), the set of all nilpotent elements in R; R 
being semiprime in this case simply means that R is a reduced ring, that is, a ring 
without nonzero nilpotent elements. In general, Nil* R S; rad R, with equality in 
case R is a I-sided artinian ring. 

A domain is a nonzero ring in which there is no O-divisor (other than 0). Domains 
are prime rings, and reduced rings are semiprime rings. A local ring is a ring R in 
which there is a unique maximal left (right) ideal m; in this case, we often say that 
(R, m) is a local ring. For such rings, rad R = m, and Rjrad R is a division ring. 
An element a in a ring R is called regular if it is neither a left nor a right O-divisor, 
and von Neumann regular if a E aRa. The ring R itself is called von Neumann 
regular if every a E R is von Neumann regular. Such rings are characterized by 
the fact that every principal (resp., finitely generated) left ideal is generated by an 
idempotent element. 

A nonzero module M is said to be simple if it has no sub modules other than (0) 
and M, and indecomposable if it is not a direct sum of two nonzero submodules. 
The socle of a module M, denoted by soc(M), is the sum of all simple submodules 
of M. In case M is RR (R viewed as a right module over itself), the socle is always 
an ideal of R, and is given by the left annihilator of rad R if R is I-sided artinian 
(FC-Exer. (4.20». In general, however, SOC(RR) =/: soc(RR). 

IThe upper nilradical Nil'R (the largest nil ideal in R) will not be needed in this book. 
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Chapter 1 

Free Modules, Projective, and Injective 
Modules 

An effective way to understand the behavior of a ring R is to study the various 
ways in which R acts on its left and right modules. Thus, the theory of modules can 
be expected to be an essential chapter in the theory of rings. Classically, modules 
were used in the study of representation theory (see Chapter 3 in First Course). 
With the advent of homological methods in the 1950s, the theory of modules has 
become much broader in scope. Nowadays, this theory is often pursued as an end 
in itself. Quite a few books have been written on the theory of modules alone. 

This chapter and the next are entirely devoted to module theory, with empha
sis on the homological viewpoint. In the three sections of this chapter, we give 
an introduction to the notions of freeness, projectivity and injectivity for (right) 
modules. Flatness and homological dimensions will be taken up in the next chap
ter. The material in these two chapters constitutes the backbone of the modem 
homological theory of modules. 

Limitation of space has made it necessary for us to present only the basic facts 
and the most standard theorems on free, projective, and injective modules in this 
chapter. Nevertheless, we will be able to introduce the reader to a number of 
interesting results. Readers desiring further reading in these areas are encouraged 
to consult the monographs of Faith [76], Kasch [82], Anderson-Fuller [92], and 
Wisbauer [91]. 

Much of the material in this chapter will be needed in a fundamental way in the 
subsequent chapters. For instance, both projectives and injectives will playa role 
in the study of flat modules, and are vital for the theory of homological dimensions 
in the next chapter. The idea of essential extensions will prove to be indispensable 
(even essential!) in dealing with uniform dimensions and complements in Chapter 
3, and the formation of the injective hull of a ring is crucial for the theory of rings 
of quotients to be developed in Chapters 4 and 5. Finally, projective and injective 
modules are exactly what we need in Chapter 7 in studying Morita's important 
theory of equivalences and dualities for categories of modules over rings. Given 
the key roles projective and injective modules play in this book, the reader will be 
well-advised to study this beginning chapter carefully. However, the three sections 
in this chapter are largely independent, and can be tackled "almost" in any order. 
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Thus, readers interested in a quick start on projective (resp. injective) modules can 
proceed directly to §2 (resp. §3), and return to §l whenever they please. 

§ 1. Free Modules 

§1A. Invariant Basis Number (IBN) 

For a given ring R, we write 9J1R (resp. R9J1) for the category of right (resp. left) 
R-modules. The notation MR (resp. RN) means that M (resp. N) is a given right 
(resp.left) R-module. We shall also indicate this sometimes by writing M E 9J1R, 
although strictly speaking we should have written M E Obj(9J1R) since M is an 
object in (and not a member of) 9J1R. Throughout this chapter, we work with right 
modules, and write homomorphisms on the left so that we use the usual left-hand 
rule for the composition of homomorphisms. It goes without saying that all results 
have analogues for left modules (for which the homomorphisms are written on the 
right). 

We begin our discussion by treating free modules in §1. For any ring R, the 
module RR is called the right regular module. A right module FR is calledfree if 
it is isomorphic to a (possibly infinite) direct sum of copies of RR. We write R(I) 
for the direct sum EBiEI Ri where each R is a copy of RR, and / is an arbitrary 
indexing set. The notation RI will be reserved for the direct product OiEI R. If / 
is afinite set with n elements, then the direct sum and the direct product coincide; 
in this case we write Rn for R(I) = RI. 

There are two more ways of describing a free module, with which we assume 
the reader is familiar. First, a module F R is free iff it has a basis, i.e. a set {ei : i E 

l} S; F such that any element of F is a unique finite (right) linear combination 
of the ei 's. Second, a module F R with a subset B = {ei : i E l} is free with B 
as a basis iff the following "universal property" holds: for any family of elements 
{mi : i E l} in any M E 9J1R, there is a unique R-homomorphism f: F -+ M 
with f(ei) = mi for all i E I. By convention, the zero module (0) is free with 
the empty set 0 as basis. 

As an example, note that free Z-modules are just the free abelian groups. If R is 
a division ring, then all M E 9J1R are free and the usual facts from linear algebra 
on independent sets and generating sets in vector spaces are valid. However, over 
general rings, many of these facts may no longer hold. One fact that does hold 
over any ring R is the following. 

(1.1) Generation Lemma. Let lei : i E l} be a minimal generating set of M E 

9J1R where the cardinality 1/1 is infinite. Then M cannot be generated by fewer 
than 1/1 elements. 

Proof. Consider any set A = {aj : j E 1} S; M where III < 1/1. Each aj is 
in the span of a finite number of the ei's. First assume III is infinite. Then there 
exists a subset /0 S; / with I/o I :::: III . ~o = III such that each a j is in the span 
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of lei : i E Io}. Since 1101 :::: III < III, we have 

span(A) ~ span{ei : i E Io} £;: M, 

as desired. If 111 is finite, then span(A) is contained in the span of a finite number 
of the ei's. Since I I I is infinite, the latter span is again properly contained in M. 

o 

Remark. As the reader can see, the preceding proof already works under the 
weaker hypothesis that (/ is infinite and) no subset lei : i E fa} of lei : i E I} 
with 1101 < III can generate M. 

From this Lemma, we can check easily that "finitely generated free module" is 
synonymous with "R" for some non-negative integer n". More importantly, the 
Generation Lemma has the following interesting consequence. 

(1.2) Corollary. If R(l) ~ R(J) as right R-modules, where R i= (0) and I is 
infinite, then III = I J I. (The rank of R(I), taken to be the cardinal III , is therefore 
well-defined in this case.) 

If I, 1 are both finite sets, this Corollary may no longer hold, as we shall see 
below. This prompts the following definition. 

(1.3) Definition. A ring R is said to have (right) IBN ("Invariant Basis Number") if, 
for any natural numbers n, m, R" ~ Rm (as right modules) implies that n = m. 
Note that this means that any two bases on a f.g.2 free module FR have the same 
(finite) number of elements. This common number is defined to be the rank of F. 

Another shorthand occasionally used for "IBN" in the literature is "URP", for 
"Unique Rank Property". As aptly pointed out by D. Shapiro, "URP" has the 
advantage of being more pronounceable (it rhymes with "burp"). In this book, 
we shall follow the majority of ring theorists and use the more traditional (if 
unpronounceable) term "IBN". 

Recalling that any homomorphism Rm -+ R" can be expressed by an n x m 
matrix via the natural bases on Rm and R", we can recast the definition (1.3) 
above in matrix terms. Thus, the ring R fails to have (right) IBN iff there exist 
natural numbers n i= m and matrices A, B over R of sizes m x n and n x m 
respectively, such that AB = 1m and BA = In. One advantage of this statement 
is that it involves neither right nor left modules. In particular, we see that "right 
IBN" is synonymous with "left IBN". From now on, therefore., we can speak of 
the IBN property without specifying "right" or "left". 

The zero ring is a rather dull example of a ring not satisfying IBN. C. J. Everett, 
Jr. was perhaps the first one to call attention to the following type of interesting 
examples. 

2Hereafter, we shall abbreviate "finitely generated" by "f.g." 
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(1.4) Example. Let V be afree right module of infinite rank over a ring k =I- (0), 
and let R = End(Vd. Then, as right R-modules, R" ~ Rm for any natural 
numbers n, m. For this, it suffices to show that R ~ R2. Fix a k-isomorphism 
e : V ---+ V EB V and apply the functor Homk(V, -) to this isomorphism. We get 
an abelian group isomorphism 

A: R ---+ Homk(V, V EB V) = REB R. 

We finish by showing that A is a right R-module homomorphism. To see this, note 
that 

A(f) = (rrl 0 eO f, TC2 0 eO f) (V fER), 

where TCI , TC2 are the two projections of V EB V onto V. For any g E R, we have 

A(fg) = (TCI oeofog, TC20eofog) 

= (TCI 0 e 0 f, TC2 0 e 0 f) g 

= A(f)g, 

as desired. An explicit basis {fl, h} on RR can be constructed easily from this 
analysis. In fact, in the case when V = el k EB e2k EB ... , we have essentially used 
the above method to construct such {fl, h} in Fe-Exercise 3.14. In the notation 
of that exercise, we have also a pair {g I, g2} with 

gJ/1 = g2h = 1, gJ/2 = gzil = 0, and flgl + hg2 = 1. 

This yields explicitly the matrix equations 

(fl, h) (;~) = 1, 

for checking the lack of IBN for R. 

(1.5) Remark. Let f : R ---+ S be a ring homomorphism. (This includes the 
assumption that f(l) = 1.) If S has IBN, then R also has IBN. In fact, if 
there exist matrix equations AB = 1m , BA = I" over R as in the paragraph 
following (1.3), with n i- m, then we'll get similar equations over S by applying 
the homomorphism f, contradicting the IBN on S. Alternatively, we can also 
prove the desired result by applying the functor - ®R S to free right R-modules. 

Now we are in a good position to name some classes of rings that have IBN. 

(1.6) Examples. 

(a) As we have mentioned before, division rings have IBN. 

(b) Local rings (R, m) have IBN. This follows from (1.5) since we have a natural 
surjection from R onto the division ring Rjm. 

(c) Nonzero commutative rings R have IBN. In fact, if m is any maximal ideal 
in R, then we have a natural surjection from R onto the field Rjm. 
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(d) Any ring R with a homomorphism into a nonzero commutative ring k has IBN. 
For instance, we can take R to be the group ring kG over any group G. We can 
also take R to be any k-algebra generated by {x; : i E I} with relations p..j(x)} 
where A j (x) are polynomials in the x; 's with a zero constant term. 

(e) A nonzero finite ring R has IBN. In fact, if RII ~ Rm , then IRIIl = IRlm , which 
implies that n = m. 

(f) (Generalizing (e).) A nonzero right artinian ring R has IBN. To see this, we can 
use, for instance, the fact that any f.g. right R-module has a composition series 
(FC-(4.15». Suppose RR has composition length i. If RII ;~ Rm , comparing 
composition lengths gives ni = mi, so n = m. 

§1 B. Stable Finiteness 

In order to understand IBN more thoroughly, and to come up with more classes 
of rings with IBN, it is advantageous to consider other, somewhat stronger, con
ditions. We do this in the present subsection and the next ones. 

First we introduce the important notion of stable finiteness. Recall that a ring 
Sis Dedekind-finite (FC-pA) if, for any c, dES, cd = I implies dc = 1. We 
say that a ring R is stably finite if the matrix rings Mn(R) are Dedekind-finite 
for all natural numbers n. The terminology here follows the usage of workers 
in operator algebras. The alternative term "weakly finite" is sometimes used by 
other authors, but we prefer the more traditional term "stably finite" here. The fact 
that the stably finite property is of interest was already noted many years ago in 
topology by H. Hopf, and in the theory of operator algebras by F. J. Murray and 
J. von Neumann. 

It is convenient to have some alternative descriptions of stable finiteness, which 
we assemble as follows. 

(1.7) Proposition. The following properties of R are equivalent: 

(1) R is stably finite. 
(2) For any n, Rn ~ RII EB N ==} N = 0 (in wtR)' 
(3) For any n, any epimorphism RII ---* RII in wtR is an isomorphism. 3 

The easy proof of this Proposition is left as an exercise. (In fact, Exercise 8 of 
this section offers a somewhat more general statement on the characterization of 
Dedekind-finite modules.) Of course, we could have added to (1.7) also the left 
module analogues of (2) and (3). 

The next proposition elucidates the relationship between stable finiteness and 
IBN. 

3In general, a module M R is said to be hopfian if any epimorphism M ~ M is an 
isomorphism. Therefore, (3) is the condition that any f.g. free right R-module be hopfian. 
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(1.8) Proposition. For any nonzer04 ring R, stable finiteness implies IBN, but not 
conversely (in general). 

Proof. The first half is clear from the characterization (2) of stable finiteness in 
(l.7). To see the second half, consider the algebra R generated over a commutative 
ring k i- 0 by x, y with a single relation xy = 1. One can check by a special
ization argument that yx i- 1 in R (cf. FC-p.4), so R is not Dedekind-finite, in 
particular not stably finite. On the other hand, R admits a k-algebra homomor
phism f into k defined by f (x) = f (y) = 1, so R has IBN by (1.6)( d). (For a 
refinement of this result, see (1.22) below.) . 0 

The preceding example shows, incidentally, that there is no analogue of (1.5) 
for stably finite rings; that is, if g : R ~ S is a ring homomorphism and S is 
stably finite, R need not be stably finite. In compensation, however, we have the 
following result, which was brought to my attention by O. Bergman. 

(1.9) Proposition. Let g : R ~ S be an embedding of the ring R into the ring S, 
not necessarily taking the identity e of R to the identity 1 of S. If S is stably finite, 
then so is R. 

Proof. Upon identifying R with g(R), the identity e of R is an idempotent in S, 
with the complementary idempotent f = 1 - e satisfying Rf = f R = O. Let 
A, B be n x n matrices over R such that AB = eIn. Then 

(A + fIn)(B + fIn) = AB + f2I" = (e + f)/n = In. 

If S is stably finite, this implies that 

In = (B + fIn)(A + fIn) = BA + fIn, 

so we get B A = e In. This shows that R is stably finite. o 

The flexibility gained by allowing g(e) i- 1 in S is seen, in part, from the 
following consequence of (1.9). 

(1.10) Corollary. A direct product ring S 
component ring R; is. 

niEI R; is stably finite iff each 

Proof. The "only if' part follows from the natural embedding of R; in S. The "if' 
part is done by a routine "componentwise" argument. 0 

Another noteworthy consequence of (1.9) is the following. 

411 is best to exclude the zero ring here. Of course, the zero ring is stably finite, but does 
not have IBN. 
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(1.11) Corollary. Let k be any division ring. Then any free k-ring R = k(Xi 
i E I) is stably finite. 

Proof. By FC-(14.25), R can be embedded in a division ring S (see also (9.25) 
below). Since S is stably finite, so is R by (1.9). D 

The next result shows that the "stably finite" property is worth exploring pri
marily for noncommutative rings. 

(1.12) Proposition (cf. FC-Exercise 20.9). Any commutative ring R is stably 
finite. 

Proof. The best way to prove this is perhaps by using determinant theory. Let 
C, D E Mn (R) be such that CD = In. Then (det C)(det D) = I, so det C is a unit 
in R. From this, it follows that C is invertible with inverse (det C)-I .adj(C), where 
adj(C) denotes the classical adjoint of C. In particular, D = (det C)-I. adj(C), 
and DC = In. D 

As it turns out, many "reasonable" noncommutative rings satisfy the stably finite 
property. For instance, in FC-(20.13), we have shown that any ring with "stable 
range I" is stably finite. This includes the class of all semi local rings, i.e. rings R 
such that R/rad R is semisimple. In particular, any right (resp. left) artinian ring 
is stably finite. Improving upon this, we have the following result. 

(1.13) Proposition (cf. FC-Exercise 20.9). Any right noetherian ring R is stably 
finite. 

To prove this, we first make the following observation on noetherian modules. 

(1.14) Proposition. Let M E 9J1R be a noetherian module. Then M is hopfian; 
that is, any epimorphism cp: M --+ M is an isomorphism. 

Proof. Suppose there exists a nonzero x E ker cp. Consider any iinteger n ::: 1 and 
choose y E M such that x = cpn (y). Then cpn+1 (y) = cp(x) = 01, so Y E ker cptl+l, 

but cpn (y) = x =I- 0 implies that y fj. ker cpn. Thus, we have a strictly ascending 
chain of submodules: 

ker cp ~ ker cp2 ~ ... ~ ker cpn ~ . .. , 

contradicting the fact that M is noetherian. D 

It follows from (1.14) that,for a right noetherian ring R, any fg. module M R 

is hopfian. Applying this to the free modules R" (and recalling (1.7», we deduce 
(1.13). 

Proving that a certain class of rings has the stably finite property can sometimes 
be tricky. For instance, consider the class of group algebras kG, where k is any 
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field and G is any group. Is kG always stably finite? If k has characteristic 0, 
Kaplansky has shown that the answer is yes. An elegant proof of this appeared 
in Montgomery [69] (cf. also Herstein [71: p. 34]; it uses some C*-algebra tech
niques. But if the characteristic of k is p > 0, the answer seems still unknown. 

We should also point out that stable finiteness is a stronger property than 
Dedekind finiteness. For more details on this, see Exercise 18. 

One good feature about stable finiteness is that there is a canonical procedure 
by which we can associate a stably finite ring R to any given ring R. The idea 
is that we "kill" all obstruction to stable finiteness in R, and pass to the largest 
stably finite homomorphic image of R. This universal construction was first suc
cessfully carried out by P. Ma1colmson [80]. We shall now present Ma1colmson's 
construction below. 

Starting from any ring R, let 2( be the ideal of R generated by all entries of 
matrices of the form I - Y X, where X, Yare arbitrary square matrices (of any 
size) over R such that X Y = I. Let R = R /2(, and write "bar" for the quotient map. 
Admittedly, this is a brute force construction. But now, whenever XY = lover R, 
we are assured that Y X = 1. Thus, R has come a little closer to being stably finite. 
However, square matrix relation X'Y' = i over R might not lift to one over R, 
so we cannot yet conclude that R is stably finite. To get a stably finite ring, it 
seems we would need to repeat the construction. Fortunately, the following result 
of Ma1colmson saves our day. 

(1.15) Theorem. For any ring R, the ring R constructed above is always stably 
finite. Moreover, any homomorphism from R to a stably finite ring factors uniquely 
through R. 

Proof (following Cohn [85: p.8n. The universal property of R (in the second 
part) is clear from its construction. To prove the first part, let A, B E Mn(R) be 
such that fiB = i. Then I - A B = L cij Eij where cij E 2( and the Eij 's are 
matrix units. Using the definition of 2( on each Cij, we can find an equation 

r 

(1.16) 1- AB = L Uk(l- YkXk)Vk> 
k=1 

where Xk> Yk E M m, (R) are such that Xk Yk = I, and Uk. Vk have sizes, respec
tively, n x mk and mk x n. Let 

X = diag(X I , ... , X r) , 

U=(UI, ... ,Ur ), 

Y = diag(YI , ... , Yr ), 

V = (VI, ... , Vr)t. 

(Here, V is supposed to mean the matrix with column blocks VI, ... , Vr: we do 
not transpose the Vi'S.) We have then XY = I and 1- AB = U(l - YX)V. 
Without loss of generality, we may assume that m := ml + ... + mr ~ n. 
After adding zero rows to U and zero columns to V, we may further assume that 

5There is a small error in the proof in Cohn's book, which is corrected here. 



§ I. Free Modules 9 

U, V E Mm(R), with 1m - A' B' = U(J - YX)V, where A' = diag(A, 1m- II ) and 
B' = diag(B, 1m - II ). Now let 

C = A'X + U(I- YX), D = Y B' + (I - Y X) V, 

where all matrices are m x m. Since 

X(I-YX)=O=(I-YX)Y, and (I-YX)2=I-YX, 

we have 

(1.17) CD = A'XYB' + U(I- YX)V = A'B' + (1- A'B') = I. 

On the other hand, CY = A' XY = A' and X D = XY B' = B', so 

(1.18) X(I- DC)Y = XY - (XD)(CY) = 1m - B'A'. 

In view of (1.17), (1.18) implies that 1m - B' A' E Mm (Ql). In pm1icular, III - B A E 

Mil (Ql), and so BA = ill E Mil (R), as desired. 0 

It goes without saying that R may sometimes be the zero ring. The preceding 
proof leads to an explicit criterion for this to happen. 

(1.19) Corollary. For any ring R, we have R = 0 iff there exist (for some m) 
C, D E Mm (R), a row vector x of size 1 x m, and a column vector y of size 
m xl, such that CD = I and x (I - DC) y = 1. 

Proof. If R = 0, we can apply the proof of (1.15) to A = B = 0 (and, say, for 
n = 1) to come up with the matrices X, Y, C, D E Mm(R) such that CD = I and 
X (I - DC) Y = diag(l, 0, ... , 0). Letting x be the first row of X, and y be the 
first column of Y, we have x (I - DC) y = 1. Conversely, if x, y, C, D exist with 
the given properties, then clearly the entries of I - DC generate the unit ideal in 
R, so we have Ql = Rand R = o. 0 

§l C. The Rank Condition 

In the study of vector spaces over fields (or more generally over division rings), we 
have encountered the following two very basic properties. For any n-dimensional 
vector space V: 

(A) Any generating set for V has cardinality ~ n. 

(B) Any linearly independent set in V has cardinality ::::: n. 

Over an arbitrary ring R, it is therefore natural to pursue the analogues of these 
properties, say, for free modules of finite rank over R. This leads us to the following 
definitions. 

(1.20) Definition. 

(1) We say that R satisfies the rank condition if, for any n < 00, any set of 
R-module generators for (Rn)R has cardinality ~ n. Equivalently, if there is an 
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epimorphism of right free modules ex : Rk -+ R", then k ~ n. (It will be seen 
that this is indeed a left-right symmetric condition.) 

(2) We say that R satisfies the strong rank condition if, for any n < 00, any set 
of linearly independent elements in (Rnh has cardinality:::: n. Equivalently, if 
there is a monomorphism of right free modules fJ : R m -+ Rn , then m :::: n. (It 
will be seen that this condition does depend on working with right modules, so a 
more proper name should have been the "right strong rank condition". Since this 
is too long, we propose to suppress the word "right".) 

Our terminology in (1) and (2) is justified by the following basic observation. 

(1.21) Proposition. If R satisfies the strong rank condition, then it satisfies the 
rank condition. 

Proof. The Proposition is possibly a bit surprising, since the formulations of the 
two conditions in terms of free modules seem to be "dual". Nevertheless, the 
Proposition is true! Assume R satisfies the strong rank condition, and consider an 
epimorphism ex : Rk -+ R". Then ex must split (by the universal property of the 
free module Rn ), and we get a monomorphism fJ : Rn -+ Rk with ex 0 fJ = I R" • 

By the strong rank condition, we have n :::: k, as desired. 0 

We shall give an example later (see (1.31)) to show that the strong rank condition 
is indeed stronger than the rank condition, in general. In this subsection, we focus 
our attention on the rank condition. The following is an elementary (but useful) 
observation due to P. M. Cohn [66]. 

(1.22) Proposition. For any nonzero ring R, 

stable finiteness ===} rank condition ===} IBN. 

Proof. First assume R satisfies the rank condition. If R" ~ R"', then the rank 
condition gives n :::: m and m :::: n, so m = n. Therefore, R has IBN. Now 
assume R does not satisfy the rank condition. Then there exists an epimorphism 
ex : Rk -+ R" with k < n < 00. But then 

Rk ~ Rn EEl ker ex ~ Rk EEl (R n - k EEl ker ex), 

where R"-k EEl ker ex =I O. Therefore, by (1.7), R is not stably finite. 0 

It follows from (l.12), (1.13), and (1.22) that (nonzero) commutative rings and 
right noetherian rings both satisfy the rank condition. In general, however, neither 
of the implications in (1.22) is reversible. To see this for the first implication, we 
can exploit the following observation on the rank condition, in parallel to (1.5). 

(1.23) Proposition. Let f : R -+ S be a ring homomorphism. If S satisfies the 
rank condition, so does R. 
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Proof. Let a : Rk --+ Rn be an epimorphism in !mR. Tensoring this with RS, 
we get an epimorphism a ® R S : Sk --+ sn, so k ::=: n by the rank condition on 
s. 0 

Now consider any commutative ring k i= 0, and the k-algebra R = k(x, y) with 
the single relation xy = 1. As in the proof of (1.8), we have a ring homomorphism 
R --+ k. Since k satisfies the rank condition, R also does by (1.23). But R is not 
Dedekind-finite, a fortiori not stably finite. 

To construct a ring that has IBN but not the rank condition, we use the following 
matrix-theoretic characterization of the (negation of the) latter. 

(1.24) Proposition. A ring R fails to satisfy the rank condition iff, for some 
integers n > k ::=: 1, there exist an n x k matrix A and a k x n matrix B (over R) 
such that AB = In. 

Proof. If such matrices A, B exist, then a : Rk --+ Rn defined by left multipli
cation by A on the column vectors of Rk is an epimorphism, so the rank con
dition fails. Conversely, if the rank condition fails, we can find an epimorphism 
a : Rk --+ Rn (in !mR) with k < n. Fixing a splitting f3 : R" --+ Rk for a, the 
matrices A, B representing a and f3 have the required properties. 0 

Incidentally, the Proposition above explains why we need not use the term 
"right rank condition". From (1.24), it is clear that right rank condition and left 
rank condition would have been the same thing. (God bless matrices!) 

With the aid of (1.24), the construction of a ring with IBN but not satisfying 
the rank condition proceeds as follows. Let R be the IQ -algebra with generators 
a, b, c, d subject to the relations 

(1.25) ac = 1, bd = 1, be = ad = O. 

Then (: ) (c, d) = h. so R fails to satisfy the rank condition, by (1.24). Nev

ertheless, R has IBN. A proof for this, using Exercise 5 below, can be found in 
Cohn [66]. 

As it turns out, there is a very close relationship between the rank condition 
and stable finiteness. The following remarkable theorem is due to P. Malcolmson 
(and in a special case to K. Goodearl and D. Handelman). Here, for any ring R, R 
denotes the largest homomorphic image of R that is stably finite; see (1.15). 

(1.26) Theorem. For any ring, the following are equivalent: 

(1) R satisfies the rank condition. 
(2) R i= O. 
(3) R has a nonzero homomorphic image that is stably finite. 
(4) R has a homomorphism into a nonzero stably finite ring. 
(5) Foranym ::=: 1 andC, D E Mm(R) with CD = I, wehavex(l-DC)y i= 

1 for any row vector x of size 1 x m and any column vector y of size m x 1. 
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Proof. By (1.19), (2) and (5) are equivalent, so it suffices to prove that 

(2) => (3) => (4) => (1) => (5). 

Here, (2) => (3) follows from the fact that R is stably finite, and (3) => (4) is 
trivial. (4) => (1) follows from (1.22) and (1.23). For (1) => (5), assume that, 
for some m, there exist matrices x, y, C, D of sizes as in (5) such that CD = I 
and x(I - DC)y = 1. Then 

(X(l ~ DC)) (D, (1- DC)y) = (COD X(I-ODC)Y) = lrn+1 , 

where the two matrices on the LHS have sizes (m + 1) x m and m x (m + 1), 
respectively. Therefore, R cannot satisfy the rank condition by (1.24). 0 

(1.27) Corollary. A simple ring R satisfies the rank condition iffit is stably finite. 

Proof. The "if' part follows from (1.22). (Recall that R "I- ° is part of the definition 
of a simple ring.) Conversely, if R satisfies the rank condition, then R "I- ° by 
(1.26). But then the projection map R ~ R must be an isomorphism, so R ~ R 
is stably finite. 0 

(1.28) Example. The simplest nontrivial example to illustrate the formation of the 
quotient ring R is perhaps the following. Let R = Q(x, y) with a single relation 
xy = 1. Let ~ be the ideal in R such that R = R/~. Since R satisfies the rank 
condition (see the paragraph following the proof of (1.23)), we expect R to be 
nonzero. Let 113 be the ideal in R generated by 1 - yx. Then ~ ~ ~ (since 
xy = 1). But R/113 ~ Q [x, X-I] which is commutative and hence stably finite. 
Therefore, we must have ~ = 113, and so R = R/~ ~ Q [x, X-I]. 

§lD. The Strong Rank Condition 

In this closing subsection of § 1, we shall investigate the strong rank condition for 
rings. Recall that a ring R satisfies the strong rank condition if, whenever there is 
a monomorphism f3 : R rn ~ Rn in !mR , then m ::: n; or equivalently, for any n, 
any set of more than n vectors must be linearly dependent in Rn. 

It is possible to express this condition in terms of linear equations. Writing Rn = 

E9~=1 ei R , consider m vectors {UI,.'" urn} ~ Rn, with, say, Uj = L:7=1 eiaij 
(aij E R). An R-linear combination of the U j 's has the form 

For this to be zero, the condition is that the scalars {XI, ... , xm} be a solution to 
the system of linear equations: 

(1.29) {taijXj = 0: 1::: i ::: nJ. 
J=I 
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Therefore, we have the following alternative description of the strong rank condi
tion (see also Exercise 19). 

(1.30) Proposition. A ring R satisfies the strong rank condition iff any homoge
neous system ofn linear equations over R (as in (1.29)) with m > n unknowns 
has a nontrivial solution over R. 

While the strong rank condition implies the rank condition by (l.21), the fol
lowing example shows that the two conditions are not equivalent in general. 

(1.31) Example. Let R be the free algebra k(X) generated over a field k by 
a set X with IXI ~ 2. Since we can map R to k by a ring homomorphism, 
(l.23) implies that R satisfies the rank condition. But if x i- y in X, then in 
the right regular module RR, the elements {Uj = xjy: O::s j < oo} are right 
linearly independent. (If L U j /j (X) = 0, the only monomials beginning with 
x j y can only occur in the summand U j fj (X), so each fj (X) = 0.) Therefore, 
RR contains a free submodule EB~o U j R of countably infinite rank. In particular, 
R does not satisfy the strong rank condition. 

(1.32) Remark. The strong rank condition should be more appropriately called 
the right strong rank condition. In the case of domains (nonzero rings in which 
xy = 0 ===? x = 0 or y = 0), we shall see in §10 (cf. Exercise (10.21)) that 
R satisfies the right strong rank condition iff R is "right Ore" . Since there exist 
right Ore domains that are not left Ore (see the second paragraph of §1OC), we see 
that the right strong rank condition is, in general, not the same as the left strong 
rank condition. However, for convenience, we shall continue to write "strong rank 
condition" to refer to the right strong rank condition. 

The example in (l.31) shows that if f : R ~ S is a ring homomorphism, 
the fact that S satisfies the strong rank condition may not imply the same for R. 
However, a partial result is available; see Exercise 20. 

Since (for nonzero rings) stable finiteness implies the rank condition, it is natural 
to ask for the relationship between stable finiteness and the strong rank condition. 
As it turns out, there is none. To see this, we first make the following observation. 

(1.33) Proposition. A direct product R = A x B satisfies the strong rank condition 
iffone of A, B does. 

Proof. Suppose A satisfies the strong rank condition. Given a homogeneous equa
tion of n linear equations over R with m > n unknowns, we can solve the system 
by taking a nontrivial solution in A and a trivial solution in B. Therefore, R also 
satisfies the strong rank condition. The converse can be shown by a similar con
sideration of linear equations, and is left as an exercise. D 
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(1.34) Remark. Stable finiteness and the strong rank condition are independent 
properties. First, the free algebra R = Q (x, y) is stably finite by (1.11), but does 
not satisfy the strong rank condition by (1.31). Second, let A be a ring satisfying 
the strong rank condition, and B be a ring that is not stably finite. Then R = A x B 
satisfies the strong rank condition by (1.33), but is not stably finite by (1.10). (This 
construction was shown to me by G. Bergman.) 

We shall now end this subsection by finding some interesting classes of rings 
that satisfy the strong rank condition. The most basic result in this direction is the 
following. 

(1.35) Theorem. Any right noetherian ring R =I- 0 satisfies the strong rank con
dition. 

Since right artinian rings are always right noetherian (FC-( 4.15)), the conclu
sion of the theorem holds also over a nonzero right artinian ring. A direct verifi
cation for this case can be given quite easily by a composition length argument on 
f.g. free modules. In the right noetherian case, however, we cannot use the length 
function. Hence, we must exploit the available finiteness condition in a somewhat 
more subtle way. 

(1.36) Lemma. Let A, B be right modules over a ring R, where B =I- o. If A Ea B 
can be embedded in A, then A is not a noetherian module. 

Proof. The hypothesis means that A has a submodule A \ Ea B \ , where A \ ~ A and 
B \ ~ B. It also implies that A Ea B can be embedded in A \ , so A \ in tum contains 
a submodule A2 Ea B2, where A2 ~ A and B2 ~ B. Iterating this process, we get 
an infinite direct sum B\ Ea B2 Ea ... in A, where each Bi ~ B =I- O. In particular, 
it is clear that A cannot be a noetherian module. 0 

Proof of (1.35). Let R =I- 0 be a right noetherian ring. Then, for any n, A = (Rn)R 
is a noetherian module (FC-(1.21)). By (1.36), A Ea B cannot be embedded in A 
for any B =I- O. In particular, for any m > n, Rm = A Ea Rm - n cannot be embedded 
in A = Rn. 0 

(1.37) Remark. After studying the theory of uniform dimensions in §6, we can 
make the following observation. The proof of (1.36) shows that, if A is a right 
R module of finite uniform dimension (i.e., not containing an infinite direct sum 
of nonzero submodules), then A Ea B cannot be embedded in A, for any B =I- O. 
The argument for (1.35), therefore, yields a sharper result: If RR =I- 0 has finite 
uniform dimension, then R satisfies the strong rank condition. (Of course, we 
need to use the fact that u.dim(Rn)R = n(u. dim RR)') This gives a large stock of 
examples of rings satisfying the strong rank condition. 
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(1.38) Corollary (to (1.35». Any commutative ring R =I- 0 satisfies the strong 
rank condition. 

Proof. Consider a system of n linear equations (l.29) in m > n unknowns, where 
aij E R. The subring Ro generated over Z· I by the aij's is a (nonzero) noetherian 
ring, by the Hilbert Basis Theorem. By (1.35), the system (1.29) has a nontrivial 
solution in Ro, so it also has a nontrivial solution in R. 0 

If R =I- 0 is a commutative ring, any two elements a, b E RR are linearly 
dependent, because of the relation a . b - b . a = O. This means that no Rm 

(m > 1) can be embedded in R' . The conclusion that no Rrn can be embedded 
in R" for m > n (ascertained in (1.38» does not seem to be as well known as it 
should be. For fields, of course, this lies in the very foundation of the subject of 
linear algebra. But the usual methods of proof (e.g., Gauss-Jordan elimination for 
solving linear equations) do not work well over a commutative ring, due to the 
possible lack of units. Because ofthis, we deem it of interestto give another proof of 
(1.38), using the properties of the exterior algebra of a module over a commutative 
ring. This proof, adapted from Bourbaki's Algebre, has the advantage of avoiding 
the reduction to the noetherian case. In particular, in this proof, the Hilbert Basis 
Theorem is not required. 

For the duration of this proof, R shall denote a nonzero commutative ring. If M 
is any right R-module, the exterior algebra 

(1.39) 

has the property that, for any right R-module N, the R-linear mappings from 
A' (M) to N correspond naturally to the multilinear alternating mappings from 
M' to N. We shall use the following exterior algebra-theoretic characterization 
for linear dependence of vectors in the free module M = R". 

(1.40) Theorem. Let u" ... , Urn E M = Rn. Then u, , ... , Urn are linearly depen
dent in Rn iff there exists a nonzero element a E R such that (u, /\ ... /\um)a = 0 
in Arn(M). 

Proof. For the "only if" part, take an equation L Uiai = 0, where the ai's are 
not all zero in R. By skew-symmetry, we may assume that a, f= O. Then Uta, = 

- Li":2 Uiai and hence 

(U,/\U21\···I\U rn )a,=-"'. 2u·aI\U-,/\···I\U =0 L-l~ I I '". m· 

For the "if" part, we induct on m, the case m = 1 being clear. Suppose (u, /\ ... 1\ 
urn)a = 0, where a =I- O. We may assume that (U2 1\ .. . 1\ urn)a =I- 0, for otherwise 
U2, ... , Urn are already linearly dependent. Since Am~' (M) is a free module, there 
exists a linear map f : A rn~' (M) -+ R such that 
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This f corresponds to a multilinear alternating map F : Mrn - I ---+ R such that 

(1.41) 

Now construct a map G : M rn ---+ M by 

rn 

G(VI, ... , vm ) = L(-l)i vi F(vl, ... , Vi, ... , Vm ) E M, 
i=1 

where Vi EM. (As usual, the hat means "omission".) The map G is easily checked 
to be multilinear and alternating. (If two of the Vi'S are equal, there are only two 
terms left in the summation, one being the negative of the other.) Therefore, G 
corresponds to a linear map g : Am (M) ---+ M. From U 1 /\ U2ct /\ .•. /\ Urn = 0, 
we have then 

where U is a right linear combination of U2ct, U3, ••• , Urn. Recalling (1.41), we see 
that U I, U2, ••• , Urn are linearly dependent. 0 

It follows from (1.40) that, if U I, ... , Urn are linearly independent in M = Rn, 
then 

On the other hand, we know that Ar(M) = 0 for r > n = rank M. Therefore, 
we must have m :s n. This completes the alternative proof for (1.38). 0 

Another proof of (1.38) can be found in McCoy [48: pp. 159-160]. The main 
tool used in this proof is the McCoy rank of a matrix over a commutative ring, 
defined via the annihilators of its various minors. The Bourbaki proof we presented 
above, though couched in the language of exterior algebras, is in fact rather akin to 
McCoy's proof. Yet another proof of (1.38), using the fact that any commutative 
noetherian ring R =I- 0 has a prime ideal p such that Rjp embeds in RR, can be 
found in Auslander-Buchsbaum [74: pp.355-358]. 

§lE. Synopsis 

The key notions discussed in § 1 and some of their main interrelations can be 
summarized in the following chart (where we assume the ring R in question is 
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right 
noetherian 

The fact that u.dim(RR) < 00 (resp. u.dim(RR) <::lO) implies stable finiteness 
can be deduced easily from Exercise (6.1) below. 

Exercises for §1 

1. Using (1.24), give a matrix-theoretic proof for "stable finiteness::::} rank 
condition" (for nonzero rings). 

2. A student gave the following argument to show that any algebra A over 
a field k has IBN. "Suppose A is generated over k by {Xi: i E I) with 
certain relations. Let A be the quotient of A obtained by introducing the 
further relations Xi X j - X j Xi = 0 (V i, j). Then A has a natural surjection 
onto A. Since the commutative ring A has IBN, it follows from (1.5) that 
A has IBN." Is this argument valid? 

3. Let R be the ring constructed in Example (104). Show that, for any integers 
n, m, Mn(R) and Mm(R) are isomorphic as rings. 

4. Does every simple ring have IBN? A much harder optional question: does 
every domain have IBN? (See the discussion after (9.16).) 

5. Suppose the ring R admits an additive group homomorphism T into an 
abelian group (A, +) such that T(cd) = T(dc) for all c, dE R. (Such a 
T is called a trace map.) If T (1) has infinite additive order in A, show that 
R must have IBN. 

6. A module MR is said to be cohopfian if every R-monomorphism ({J : 

M ---+ M is an isomorphism. Dualize the argument in the proof of (1.14) 
to show that, if M R is an artinian module, then M is cohopfian. 
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7. A ring that is Dedekind-finite is also known as von Neumann-finite. Is 
every von Neumann regular ring von Neumann-finite? 

8. A module M R is said to be Dedekind-finite if M ;::::: M EB N (for some 
R-module N) implies that N = O. Consider the following conditions: 

(A) M is Dedekind-finite. 
(B) The ring E := End(MR) is Dedekind-finite. 
(C) M is hopfian; that is, any R-epimorphism M -+ M is an isomorphism. 

Show that (C)==>(A){:=:>(B), and that (C){:=:>(A) if any R-epimorphism 
M -+ M splits (e.g., if M is a projective module). (Thus, the ring R is 
Dedekind-finite iff the module RR is Dedekind-finite. And, applying the 
preceding to f.g. free modules, we also completely recover (1.7).) Give an 
example to show that, in general, (A) =f1- (C). 

9. Show that a ring R is not Dedekind-finite iff there exists an idempotent 
e 1= 1 in R such that eR ;::::: R in !mR. 

10. (Vasconcelos, Strooker) We have shown in (1.12) that a commutative ring 
R is stably finite. More generally, show that any f.g. module RM over a 
commutative ring R is hopfian. (In particular, RM is Dedekind-finite in 
the sense of Exercise 8.) Is RM also cohopfian? 

11. (Jacobson, Klein) Let R be a ring for which there exists a positive integer 
n such that cn = 0 for any nilpotent element c E R. Show that R is 
Dedekind-finite. 

12. For any ring R, we can embed R into S = Mn(R) by sending r E R to 
diag(r, ... , r). Therefore, S may be viewed as an (R, R)-bimodule. Show 
that SR ;::::: R~2 and RS ;::::: (RR)n 2, with the matrix units {Eij : 1 :::: i, j :::: n} 

as basis. 

13. (Montgomery [83]) Let I be an ideal of a ring R contained in rad R (the 
Jacobson radical of R). Show that R is stably finite iff Rj I is. 

For the/ollowing exercises «14) to (17», let "P" denote anyone o/the 
properties: IBN, the rank condition, stable finiteness. 

14. Let S = Mn(R), where n ::: 1. Show that R satisfies the property "P" iff 
S does. 

15. (Small) Let S = R[[x]] (power series ring in one variable x over R). 
Show that R satisfies the property" P" iff S does. (Hint. For the "only if" 
part, note that the ideal I = (x) ~ S is contained in rad S, with S / I ;::::: R. 
Then use (1.5), (1.23), and apply Exercise 13.) 

16. (Small) Let S = R[x]. Show that R satisfies the property "P" iff S does. 
(Hint. In the case when "P" is stable finiteness, view R[x] as a subring 
of R[[x]]. Can you also do it without using the power series ring?) 
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17. (Cohn [66]) Let R = lim Ri (direct limit of a direct system of rings -{Ri : i E l}). Show that if each Ri satisfies the property" P", so does R. 

18. Construct a ring R such that R is Dedekind-finite but M 2CR) is not De
dekind-finite. (In particular, R is not stably finite.) (Hint. Following a 
construction of Shepherdson [51], let R be the k-algebra generated over 
a field k by {s, t, u, v; w, x, y, z} with relations dictated by the matrix 

equation AB = h, where A = (s u) and B = (x Y). Show that 
t v z tv 

R is a domain, but that BA i- 12 in M2(R). Thus, M 2(R) is not Dedekind
finite. Using similar methods, Cohn [66] has constructed (for any n 2: 1) 
a ring R for which Me(R) is Dedekind-finite for all e ::: n, but Mn+1 (R) 
is not Dedekind-finite. See also Montgomery [83] for results on finiteness 
questions for tensor products of algebras.) 

19. Show that a ring Ri-O satisfies the strong rank condition iff, for any 
right R-module M generated by n elements, any n + 1 elements in Mare 
linearly dependent. 

20. Let f : R -+ S be a ring homomorphism such that S becomes a flat left 
R-module under f (i.e., the functor - ®R S is exact on 9JtR ). Show that 
if S satisfies the (right) strong rank condition, so does R. Using this, give 
another proof for the "if" part of (1.33). 

21. Supply a proof for the "only if" part of (1.33). 

22. Let" P" be the strong rank condition. Redo Exercises 14, 16, and prove 
the "if" part of Exercise 15 for this" P". 

23. If R satisfies the strong rank condition, does the same hold for R[[x lJ? 
(This is a more challenging exercise. The answer, in general, is "no". A 
counterexample where R is, in fact, a domain can be found in (10.31). I 
don't know if it is easier to find a counterexample where R is allowed to 
have O-divisors.) 

24. Let R be a ring that satisfies the strong rank condition, and let f3 : RUl -+ 

R(Jl be a monomorphism from the free (right) module RUl to the free 
module RUl, where I, f are (possibly infinite) sets. Show that III ::: 1 f I. 

25. Let Ri-O be a commutative ring such that any ideal in R is free as an 
R-module. Show that R is a PID. (For a noncom mutative version of this, 
see Exercise (10.25).) 

26. Let R be any ring such that any right ideal in R is free as a right R-module. 
Show that any submodule of a free right R-module is fme. (Hint. Look 
ahead at Kaplansky's Theorem (2.24).) 

27. Let R be a ring and ~ ~ R be an ideal that is free as a left R -module with a 
basis {b j : j E f}. For any free left R-module A with a basis {ai : i E l}, 
show that ~A is a free left R-module with a basis {bjai : .i E f, i E I}. 
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28. Let Rand SB be as in Exercise 27, and let Q( ;2 SB be a left ideal in R that 
is free as a left R-module. Show that 

(1) for each i ~ 0, SBiQ(/SBi+lQ( and SB i ISB i+1 are both free left RISB
modules; 
(2) there is a long exact sequence of left RISB-modules: 

SB 2 SBQ( SB Q( R R 
... ~ -~ --~ -~ -~ -~ -~O 

SB 3 SB 2 Q( SB 2 SB Q( SB Q( , 

where all modules except RIQ( are free over RISB. (Such a sequence is 
called afree resolution for the RISB-module RIQ(.) 

29. Let G be a free group on a set of generators {Xi : i E l} and let R 
be the group ring kG, where k is a commutative ring. Show that, as a 
left R-module, the augmentation ideal Q( (the kernel of the augmentation 
map c : R ~ k defined by c(LZEG azZ) = Lz az) is R-free with basis 
{Xi - 1 : i E l}. (In particular, if III ~ 2 and k i- 0, R does not satisfy 
the left strong rank condition, although it does satisfy the rank condition.) 

30. Let G and k be as in the preceding exercise, and let H be a subgroup 
of G. It is known that H is also a free group, say, on a set of generators 
{YJ : j E J}. Let G I H be the coset space {g H : g E G} viewed as a left 
G-set, and let k[G I HJ be the permutation kG-module with k-basis G I H. 
Let a : kG ~ k[G I HJ be the kG-module homomorphism induced by the 
natural G-map G ~ G I H. Show that, as a left kG-module, SB : = ker(a) 
is free with basis {y j - 1 : j E J}. (This generalizes the last exercise, 
which corresponds to the case H = G.) 

31. Let k be any commutative ring, and E be any (multiplicative) group. Fix 
a presentation of E by generators and relations, say, 

l~H~G~E~l, 

where G (and hence H) is free. (Here, H is the normal subgroup of G 
generated by the "relations".) Let Q( := ker(c) and SB := ker(a) be as in 
the last two exercises. Show that k, viewed as a left kE-module with the 
trivial E -action, has the following free resolution 

SB 2 SB Q( SB Q( R 
···~-~--~-~-~-~k~O 

SB 3 SB 2 Q( 113 2 113Q( 113 

in the category of left kE-modules. (For k = Z, this is known as the 
Gruenberg resolution of the trivial ZE-module Z. This free resolution is 
of basic importance in the cohomology theory of groups.) 

32. (Bass) Show that any nonzero submodule of a free module FR contains a 
copy of a nonzero principal right ideal aR. 

33. (Bass) Let F R be a free R-module on a basis {el, ... , ell}, a = el al + 
... + ena" E F (ai E R), and A = Li Rai. Let f be an idempotent in R. 
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Show that the following are equivalent: (1) A = Rf; (2) a . R is a direct 
summand of F isomorphic to f R with a *+ f. 

34. ("Unimodular Column Lemma") Let F = E9:'=1 ei R and a = 2:.:i eiai E 
F be as in Exercise 33. 

(1) Show that 2:.::'=1 Rai = R iff a . R is a direct summand of F free on 
{a}. 

(2) In case 2:.:;'= I Rai = R, show that a direct complement of a . R in F 
is free of rank n - 1 iff there exists a matrix (aij) E G L" (R) with ail = ai 
for all i. 

35. Let R be a ring with IBN such that any direct summand of R~ is free (for 
a fixed n). Show that 2:.::'=1 Rai = R iffthe column vector (ai, ... , a"Y 
can be completed to a matrix in GL,,(R). 

§2. Projective Modules 

§2A. Basic Definitions and Examples 

This first subsection is a leisurely introduction to the basic facts on projective 
modules. Most of our readers have probably encountered projective modules in a 
graduate algebra course. To make the present exposition self-contained, however, 
we recall the definition here. A right R-module P is said to be projective (or R
projective) if, for any epimorphism ofright R-modules, say, g : B ---+ C, and any 
R -homomorphism h : P ---+ C, there exists an R -homomorphism h' : P ---+ B 
such that h = g 0 h'. 

(2.1) 

We refer to this property informally by saying that any h : P ---+ C can be 
"lifted" (along g) to a homomorphism h' : P ---+ B. If P is free, this lifting is 
always possible, by an easy application of the universal property of a free module. 
Therefore, a free module is always projective. In general, however, such a lifting 
may not be possible. For instance, over R = Z, if g is the unique epimorphism 
from B = Z/4Z to C = Z/2Z, then the identity map h from P = Z/2Z to C 
clearly cannot be lifted (along g) to a homomorphism P ---+ B .. Therefore, Z/2Z 
is not Z-projective. 

For any given R-module PR , the functorHomR(P, -) from WlR to the category 
of abelian groups is left exact, in the sense that, for any short exact sequence 

(2.2) 

in 9J1 R , we have a corresponding exact sequence of abelian groups: 

(2.3) 0 ---+ HomR(P, A) ~ HomR(P, B) ~ HomR(P, C). 
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In this functorial language, we see that PR is projective iff HomR(P, -) is ex
act, which means that, for any short exact sequence (2.2), we have a short exact 
sequence 

(2.5) Proposition. A direct sum P = EBi Pi of right R-modules is projective iff 
each summand Pi is projective. 

Proof. The functor HomR (P, -) is naturally equivalent to the direct product 
of the functors HomR(Pi , -). Therefore, HomR(P, -) is exact iff each functor 
HomR (Pi, -) is exact. 0 

From this, we can easily deduce the following. 

(2.6) Corollary. PR is projective iff it is (isomorphic to) a direct summand of a 
free module, iff any epimorphism BR ~ PR splits in 9'J1R • 

(2.7) Corollary (Eilenberg's Trick). If PR is projective, then there exists a free 
module FR such that P E9 F ~ F. 

Proof. Fix an R-module Q R such that E = P E9 Q is free. Then for the free 
module F = E EEl E E9 ... , we have 

PEEl F ~ P E9 (Q E9 P) E9 (Q EEl P) E9 ... ~ (P E9 Q) EEl (P E9 Q) EEl··· ~ F, 

as desired. o 

Note that if P -I- 0, then E -I- 0 also, so the free module F obtained above 
cannot be f.g., by (1.1). This fact, of course, severely limits the use of (2.7). 

Coming back to Proposition 2.5, we should also note that in general, the direct 
product of projective modules need not be projective. The following example 
illustrating this is attributed to R. Baer. 

(2.8) Example. The direct product M = Z x Z x ... is not a projective Z-module. 

The proofs of this fact available in the literature mostly depend on the result that 
subgroups of free abelian groups are free (proved in (2.27) below). In particular, 
if M is Z-projective, then it is free, and so is any of its subgroups. To complete the 
proof of (2.8), it suffices therefore to produce a non-free subgroup of M. For such 
a proof, see, for instance, Rotman [79: p. 122]. Instead of following this approach, 
however, we shall present below a proof of (2.8) avoiding any use of the fact that 
subgroups of free abelian groups are free. Our proof depends on the following 
lemma which is of independent interest (and will also be useful in solving the 
extra credit Exercise 8' below). 
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(2.8)' Lemma. Let P = Z EB Z EB··· c M. Then Homz(M/ P, Z) = o. 

Proof. Let f E Homz(M, Z) be such that f(P) = O. Consider the following two 
subgroups of M: 

A = {(2al, 22a2, ... , 2nan, ... ): a; E Z}, 

B = {(3b l , 32b2 , ••• , 3"b/l, ... ): b; E Z}, 

whose sum is clearly M. An element of A has the form 

(2al, ... , 2n- 1 an-I, 0, 0, ... ) + 2/1 . (an element of M). 

Since f(P) = 0, we have f(A) ~ 2nZ for every n, so f(A) = O. Similarly, we 
have feB) = 0, and so f(M) = f(A) + feB) = O. 0 

To prove (2.8), assume M is Z-projective. We have M ~ F for a suitable free 
abelian group F with basis lei : i E l}. Since P = Z EB Z EB· .. is countable, we 
can decompose I into a disjoint union II U h such that II is countable and P 
is contained in the span FI of lei : i E II} (cf. proof of (1.1)). Note that M Sf FI, 
since FI is countable but M is not. Taking a projection of F into e; Z for a suitable 
i E h we come up with a homomorphism f : F ~ Z with f(M) i- 0 but 
f(FI) = 0 (and hence f(P) = 0), contradicting (2.8),. 

I thank I. Emmanouil, P. Farbman, and D. Shapiro for their help in formulating 
the preceding proof of (2.8). A sketch of another proof of (2.8) using cardinality 
arguments is given in Exercise 6 below. 

§2B. Dual Basis Lemma and Invertible Modules 

The main result in this subsection is the following basic characterization of a 
projective module P in terms of its (first) dual P* := HomR(P, R). 

(2.9) Dual Basis Lemma. A right R-module P is projective iff there exist afamily 
of elements {a; : i E I} ~ P and linear functionals {J; : i E l} ~ P* such that, 
for any a E P, fiCa) = Ofor almost all i, and a = L; a;J;(a). 

Proof. Suppose the a; 's and J;'s exist as specified. Consider the epimorphism g 
from the free module F = ffie;R to P defined by gee;) = a; for all i E I. The 
map h : P ~ F defined by h(a) = Le;J;(a) is clearly an R-homomorphism 
splitting g. This implies that P is isomorphic to a direct summand of F; hence P 
is projective. Conversely, assume P is projective and fix an epimorphism g from 
a suitable free module F = ffi e; R onto P. By the second part of (2.6), g admits 
a splitting h : P ~ F, which may be expressed in the form 

h(a) = Led;(a) (Va E P). 

Here, the J; 's are easily checked to be R-linear (Le. J; E P*), and J;(a) = 0 for 
almost all i. Applying g to the above equation, we see that 

a = gh(a) = La;J;(a), 
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where ai := g(ei) E P. o 

For convenience, we shall loosely refer to {ai, fi} above as "a pair of dual bases" 
for the (projective) module P. Of course, the ai's only form a generating set, not 
necessarily a basis, for P. 

Note that for any right R-module P, the first dual P* = HomR(P, R) is a 
left R-modulebytheactiondefinedby (rf)(a) =rf(a),where r E R,f E P*, 
and a E P. Following the convention that homomorphisms are written opposite 
scalars, we therefore write the linear functionals on P* on the right. These linear 
functionals constitute the double dual P** which, like P itself, is a right R
module. There is a well-known canonical R-homomorphism e : P ~ P** 
defined by e(a) = a (for a E P), where fa = f(a) for any f E P*. 

(2.10) Corollary. For any projective right R-module P, the natural map e from 
P to P** is a monomorphism. 

Proof. If a E ker(e), then 0 = fa = f(a) for all f E P*. From the equation 
a = Li ai fi (a) in the Dual Basis Lemma, it follows that a = O. 0 

(2.11) Remark. The proof of (2.9) also shows that P is f.g. projective iff there 
exist {ai, fi : I ::s i ::s n} as in (2.9) such that a = L~=I ai fiCa) for every a E P. 
In this case, it can be shown that the fi 's also generate P*. Moreover, the map 
e : P ~ P** defined above is an isomorphism of right R-modules. For more 
details, see Exercise 7. 

(2.12A) Example. Let e be an idempotent in R. Then R = eR EB (l - e)R, so 
P : = e R is a projective right R -module. In the Dual Basis Lemma, we can choose 
I = {I}, a 1 = e E P, and fl : P ~ R to be the inclusion map. To check that 
these choices work, simply note that if a = er E P (r E R), then 

al fl (a) = ea = eer = er = a. 

We note, incidentally, that if e -=1= 0, 1, and R is Dedekind-finite, then PR cannot 
be free. For, if P were free, then P ~ R" for some n :::: 1, and we would have 

R ~ REB (R"- 1 EB (l - e)R), 

contradicting Dedekind-finiteness. (If R is not assumed to be Dedekind-finite, e R 
may indeed be free: see Exercise (1.9).) 

(2.12B) Example. Sometimes, an R-module P may be of the form Re in a 
somewhat non-obvious way. The following is an example. Let A be a ring and 
MA be a right A-module with a decomposition X EB Y where X is A-free of 
rank 1, say with a basis {x}. For R = End(MA) (operating on the left of M), 
we'll show that RM is a projective left R-module. To do this, let e E R be the 
projection of M onto X with respect to the decomposition M = X EB Y, and 
consider the map rp : R ---+ RM given by rp(g) = g(x) (V g E R). Clearly, 
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this is a left R-module homomorphism. We claim that (1) rp is onto, and (2) 
ker(rp) = R(1 - e). Once we have proved these, it will follow that 

M ~ R/ker(rp) = R/ R(l - e) ~ Re, 

and so (by (2.l2A)) RM is a projective R-module. To see (1), take any Z E M. 
There exists an A-homomorphism ho : X ---+ M given by ho(x) = z, and 
ho can be extended to an h E HomA (M, M) = R by the rule h(Y) = O. 
Then rp(h) = h(x) = ho(x) = z. To prove (2), note first that rp(l - e) = 
(1 - e)x = x - e(x) = 0, so R(1 - e) <; ker(rp). Conversely, if g E ker(rp), 
then ge(x) = g(x) = rp(g) = 0 and ge(Y) = 0 imply that ge = O. Therefore, 
g = g - ge = g(1 - e) E R(l - e), as claimed. 

For a concrete example, let M be any f.g. additive abelian group of rank:=-: 1, 
viewed as a Z-module. Then M has the decomposition X EB Y above, and it 
follows that M is a left projective module over Endz(M). The case when M has 
rank 0 can be handled similarly; for more details, see Exercise (3.37). 

(2.12C) Example. Let R = njEI R j, where R j are arbitrary rings. Each ideal R j 
is projective as a right R-module, so the ideal PR = E9 j EI R j is also projective. 
To see how the Dual Basis Lemma works here, let ai be the" ith unit vector" in 
P, and let Ii E P* be defined by fi«rj)) = (0, ... , ri, 0, ... ), with ri kept in 
the i th position. Then, for any r = (r j) E P, fi (r) is zero for almost all i, and 
we have r = Li ai fi (r) by a direct calculation. Note that, as an ideal in R, P is 
idempotent (P 2 = P). However, if infinitely many of the rings R j are nonzero, P 
is not f.g. as a right ideal. 

(2.12D) Example (Kaplansky). This is another elegant example illustrating the 
use of a countably infinite family of ai's and Ii'S in the Dual Basis Lemma (2.9). 
We take R here to be the (commutative) ring of real-valued continuous functions 
on [0, 1], with pointwise addition and multiplication for functions. Let 

P = {f E R: I vanishes on [0, s] for some s = s(f) E (0, I)} 

which is easily seen to be an ideal of R. We shall check that P is R-projective 
by explicitly constructing a family {an' In : n = I, 2, ... j as in (2.9). For any 
a E R, write 

supp(a) = {x E [0,1]: a(x) i= OJ. 
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We define bn E P (n 2: 1) by the following graphs: 

l 
II 

I \ 
bn + I I I 

",./ 
I 
I 
I 
I 
I 

0 1 0 1 I (n ;:. 2) I 
2 n+2 

1 
n 

1 
n+1 n-I 

where supp(bn ) = C~I' n~l) n [0,1]. For any x > 0, we have bn(x) of- 0 for at 
most two n's, and it is easy to see that L~ 1 bn (x) = 1. (The bn's come close to 
forming a "partition of unity"; however, L~ 1 bn ¢:. R since it is not continuous 
at 0.) Now define In : R ~ R by multiplication by an := A E P, where 
(A)(x) = v'b,,(x) for all x E [0,1]. By restricting to the ideal P, we may 
view 1" as an element of P*. For any function a E P, we have In (a) = aa ll = 0 
whenever n is so big that a vanishes on [0, I/(n - 1)]. Finally, we have a = 
L~1 a"f,,(a) since both sides are 0 at the origin, and for x > 0: 

00 

= L:)II(x)a(x) 
11=1 

= a(x). 

Three things are worth pointing out about the projective ideal P. First, since 
1" (a) = ana E P, the formula a = L an In (a) above shows that P is an idempo
tent ideal, i.e. P = p2. Second, the projective ideal P is not free, since any a E P 
has a nonzero annihilator in R. Third, P is not a f.g. ideal since the functions in any 
f.g. subideal of P must vanish on [0, 11m] for some m, while P clearly contains 
functions not vanishing identically there. 

A large number of examples of f.g. projective modules over a commutative ring 
R can be obtained by considering a commutative ring extension S ;2 R.6 Since R 

is commutative, we can afford to be somewhat sloppy about the term "R-module", 
noting that a right R-module may be viewed as a left R-module, and vice versa. 

6 A certain amount of what follows can be done for any pair of rings R ~ S, without 
assuming commutativity. However, in order to simplify the exposition and to focus on the 
main ideas, we work with commutative rings here. 
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Now consider the R-submodules of S. If P, Q are such submodules, we make 
the following two definitions: 

PQ = {I: Piqi: Pi E P, qi E Q} , 

P-I={SES: sPC;R}. 

Clearly, these are also R-submodules of S. Of course, the definition of p- I here 
depends on the choice of the extension S ;2 R. 

(2.13) Lemma. For any R -submodule P C; S, the following are equivalent: 

(1) There exists an R-submodule Q of S such that PQ == R. 
(2) pp- I = R. 

If(1) (or (2») holds, we say that P is an invertible R-submodule of s. 

Proof. (2) ===} (1) is trivial, so we need only prove (1) ===} (2). Given P Q = R, 
we have clearly Q C; p-I. Thus, R ;2 pp- I ;2 PQ = R, which implies that 
pp- I = R. 0 

(2.14) Theorem. Let P be an invertible R-submodule of S. Then 

(1) P is a/g. projective R-module. 
(2) For any R-submodule M C; S, the natural map a : P ®R M -+ PM is 

an R -module isomorphism. 
(3) P* ~ p- I as R-modules. 
(4) PR is free iff P = s R for some s E S (necessarily a unit of S). 

Proof. (1) Let Q = P -I . Since P Q = R, there exists an equation I = L;'= I Pi qi, 
where Pi E P, qi E Q. Define fi E P* by fi(p) =c: pqi (Yp E P). Then, for 
any PEP, P = L PPiqi = L P;!i(P)· By (2.9), P is a projective R-module 
generated by PI, ... , Pn. 

(2) Recall that P ®R M has a nat'lral R-module structure via the action 

(p ® m)r = (pr) ® m = P ® (mr). 

The map a is defined by a (L ai ® mi) = L ai mi, and it is clearly an R-module 
epimorphism. To show that a is also injective, we use the notations set up in the 
proof of (I). Since P ® R M = L Pi ® M, an arbitrary element of P ® R M may 
be expressed in the form z = Li Pi ® mi. Assume a(z) = I::i Pimi = 0. Then 

z = I:(Pi I: pjqj) ® mi = I: Pj ® I:(Piqj)mi. 
I J J I 

But in S, Li(Piqj)mi = qj Li Pimi = 0, so z = 0. 

(3) Define fJ: Q -+ P' by fJ(q)(p) = pq E R (Yp E P, q Eo Q). If fJ(q) = 0, 
then q E q R = q P Q = 0, so fJ is injective. Using again the notations in (I), we 
have fi = !3(qi). By (2.11), P* = L Rfi = fJ (L Rqi), so fJ is also surjective. 
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(4) First assume P = sR where s E S. Then R = PQ = sQ, so sq = 1 for 
some q E Q. This shows that s E U(S). In particular, PR is free on the basis 
{s}. Conversely, assume PR is free. Then P ;:; Rn for some n < 00, and so 
Q ;:; P' ;:; Rn for the same n. But then 

R = PQ;:; P ®R Q;:; (Rn) ®R (Rn);:; Rn'. 

If R =I 0, we must have n = I and so P = sR for some s E S. The latter is, of 
course, also true if R = O. 0 

The theorem we proved above enables us to construct many examples of non free 
projective modules. Continuing in the spirit of Kaplansky's example (2.12D), we 
first construct an explicit invertible module over a ring of continuous functions. 

Example. Let S be the (commutative) ring of real-valued continuous functions 
f(x) on [0, n] (with pointwise addition and multiplication as before). Let 

R = {f(x) E S: f(O) = fen)}, 

P = {f(x) E s: f(O) = - fen)}. 

An easy check shows that R is a subring of S, and that R . P C; P, p2 C; R. 
We claim that P is an invertible R-module with P EB P ;:; R EB R, but PR is 
not free. To see this, the crucial observation is that sin x, cos X E P, so that 
I = sin2 x + cos2 X E p2. This yields p2 = R, so P is indeed invertible (and 
"self-dual"). Letting 

A = (sinx 
cosx 

we can define R -homomorphisms 

cosx ) 
- sinx ' 

1j! : R EB R -+ P EB P by 

Since A 2 = I, cp and 1j! are mutually inverse isomorphisms. Therefore, P EB P ;:; 
REB R (and the proof above shows that (sinx, cosx), (cosx, - sinx) give a 
basis for P EB P). To see that P is non free, assume the contrary for the moment, 
so that, by (2.14)(4), P = f(x)R for some unit f(x) of S. Being a unit, f(x) is 
nowhere zero on [0, n]. On the other hand, f(O) and fen) have opposite signs, 
since f(x) E P. This obviously contradicts the Intermediate Value Theorem in 
calculus. Therefore, PR cannot be free. 

Many other examples of invertible modules over commutative domains will 
be constructed in the next subsection. Here, to conclude §2B, we would like to 
construct a class of examples (called "Schanuel modules") over a fairly general 
commutative ring R. I thank H. Lenstra heartily for his invaluable help in formu
lating the ideas in (2.15). In particular, the nice proof of (2.15B) below is his. 
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(2.15) Example. Let R c:; S be commutative rings, and let g E S be such that 
g2, g3 E R. This implies (easily) that gil E R for all n :::: 2, but g itself mayor 
may not be in R. For r E R, let Pr = (1 + rg, g2) be the R-submodule of S 
generated by the indicated elements.7 For r, s E R: 

PrP', = (1 +rg, g2)(1 +sg, g2) = (I +(r+s)g+rsg2, g2+ rg 3, g2+sg3, g4) 

contains g2(1 + (r + s)g + rsg2) - rsg 4 = g2 + (r + s)g3, so it also contains 
rg3, sg3 and g2, I + (r + s)g. Therefore, 

PrP', = (1 + (r + s)g, g2, rg 3 , sg3). 

From g3(1 + (r + s)g) - (r + s)g2g2 = g3, we see further that 

(2.15A) PrP, = (1 + (r +s)g, g2) = Pr+s ' 

Inparticular,PrP_r = Po = (1, g2) = R,so{Pr : r E R}isafamilyofinvertible 
(hence projective) R -submodules of S, with Pr* = pr- I = P -r' The criterion for 
Pr to be free turns out to be the following: 

(2. 15B) Pr is R-free iff u(1 + rg) E R for some u E U(R[gD. 

In fact, if Pr is R-free, by (2.14)(4) we have P-r = uR for some u E U(S). Since 

u E P-r = (1 - rg, g2) c:; R[g] and u- I E PI' := (1 + rg, g2) c:; R[g], 

we have u E U(R[gD and u(1 + rg) E uPr = R. Conversely, suppose u(1 + 
rg) E R for some u E U(R[gD. Since ug2 E R[g]g2 c:; R, we have uPr = 
(u(1 + rg), ug2) c:; R so Pr c:; u- I R. We finish by showing that Pr = u- I R. 

Let J = {c E R : cg E R}. This is an ideal of R[g] (called the "conductor" of 
the pair R c:; R[g D. Clearly, Rg2 c:; J. Also, for any c E J: 

c = cO - r2g2 + r2g2) = [c(1 - rg)](1 + rg) + [cr2]g2 E Pr , 

so J c:; PI" Let t = u(1 + rg) E R. Since (1 + rg)(1 - rg)E I + J, we have 
I + rg E U(R[g]/ J), and hence f E U(R[g]/ J). Using the fact that R c:; R[g] 
is an integral extension, we see that f E U(R/ J). Therefore, 

Pr/J = (I +rg)· (R/J) = u-1t· (R/J) = u- 1 • (R/J). 

This implies that u - I R c:; Pr , as desired. 

To further simplify the criterion for Pr to be free, we can impose an additional 
hypothesis. 

(2.ISe) Proposition. In the preceding example, assume that 

(2. 15D) For u E U(R[g]), u(l + rg) E R ====> u E R. 

7The construction of PI = (I + g. g2) was first given by S. Schanuel. It is, therefore, 
reasonable to call the PI' 's Schanuel modules. The direct calculation checking PI' P, = Pr+, 
in (2.ISA) appears to be new. 
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Then Pr is R-free iff r E J (the conductor defined above). 

Proof. If r E 1, then Pr C; R (since r g E R), and it contains 

(1 - rg)(1 + rg) + r2g2 = 1, 

so Pr = R. Conversely, assume Pr is R-free. By (2.ISB), there exists u E U(R[g]) 
such that u(l+rg) E R.By(2.ISD),thisimpliesthat u E R.Since R C; R[g] is 
an integral extension, we have as before u E U(R). Therefore, 1 + rg E u- i R = 
R, and so r E J. 0 

Though a bit technical, (2.ISD) is not at all an unreasonable hypothesis. For 
instance, if U(R[g]) C; R, (2.lSD) certainly holds. For a specific example, look 
at the subring R = k[Z2, Z3] of S = k[z], where k is a field. (R is the coordinate 
ring of the "cusp" x 3 = y2 over k.) Since U(S) = k* C; U(R), (2.ISD) holds. 
Choosing g to be z, we see easily that the conductor J for R C; R[g] = S is the 
R-ideal (Z2, Z3).1t follows from (2.ISC) that, for r E R, the projective R-module 
Pr is free iff r E (Z2, Z3). 

For a less obvious example, fix commutative rings A C; F with Nil(F) = 0, and 
an element bE F such that b2 , b 3 EA. Let R = A[x] C; S = F[x], where x is an 
indeterminate. For g := bx E S, we have clearly g2 = b2x 2 E R, g3 = b 3x 3 E R. 
We claim that (2.ISD) always holds for the pair R C; S. In fact, let r E Rand 
u E U(S) be such that u(l + rg) E R. Since Nil(F) = 0, we see easily that 
U(S) = U(F), so u E F. From 

u(1 + rg) = u + urbx E A[x], 

we have u E A C; R, so (2.ISD) holds. If 

10 = {a E A : ab E A} 

is the conductor for A C; A[b], the conductor J for R C; R[g) is easily seen to 
be 10[x).1t follows from (2.ISC) that, for r E R, the projective R-module Pr is 
free iff r E Jo[x). 

The preceding considerations will have nice applications to the computation of 
Picard groups in (2.23) below. 

§2C. Invertible Fractional Ideals 

In this subsection, we shall specialize the study of invertible R-submodules in a 
ring extension S :;2 R by taking S to be the total ring of quotients of R. Throughout 
this subsection, R continues to denote a commutative ring. 

An element r E R is called a non O-divisor if ra = 0 implies a = 0 for any 
a E R. Such an element r is also said to be regular in R. The set CR of regular 
elements in R is clearly multiplicatively closed, and 1 E CR' The localization of 
R at C R is a commutative ring K containing R, with the property that any regular 
element of K is invertible in K. In commutative ring theory, K is referred to 
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as the total ring of quotients of R, and is denoted by Q(R). Of course, if R is a 
commutative domain, Q(R) is just the quotient field of R. 

As in §2B, it will be useful to look at the R-submodules of K = Q(R): we 
call them fractional ideals. Note that a fractional ideal contained in R is simply 
an ideal of R; it is sometimes called an integral ideal for emphasis. 

(2.16) Lemma. For any fractional ideal Qt C; K such that Qt n CR -I 0, we have 
a K -isomorphism HomR (Qt, K) ~ K. 

Proof. Define)... : K --+ HomR(Qt, K) by )"'(k)(a) = ka, where k E K. The 
hypothesis Qt n CR -I 0 implies that)... is an injective K -homomorphism. Fix an 
element bE Qt n CR. For any f E HomR(Qt, K) and any a E Qt, pick r E CR such 
that ra E R. Then 

rbf(a) = f(rba) = (ra)f(b). 

Since b, r E CR, this gives f(a) = f(b)b- I • a. Therefore, f ,= )...(f(b)b- I ), so 
A is a K -isomorphism. D 

For fractional ideals Qt, s.B C; K, we define 

Qts.B = {Laibi : ai E Qt, bi E s.B}, 

s.B : Qt = {k E K : kQt C; s.B}, and 

Qt-I = {k E K: kQt C; R} = R: Qt. 

These are easily checked to be fractional ideals also. Note that if Qt C; R, then 
Qt-I :2 R. On the other hand, if 1 E Qt, then Qt-I C; R. 

Consider the R-module HomR(Qt, s.B), which consists of those R-homomor
phisms in HomR(Qt, K) sending Qt into s.B. Assuming that!2l n CR -I 0, and 
interpreting HomR (Qt, K) as in (2.16), we see that there is a natural identification 

(2.16') 

In particular, for such Qt, the (first) dual Qt* = HomR (Qt, R) may be identified 
with R: Qt = Qt-I. 

(2.17) Theorem. For any fractional ideal Qt C; K == Q(R), the following are 
equivalent: 

(1) Qt is invertible in the sense of§2B (i.e., QtQt-1 = R). 
(2) QtR is projective, and Qt n CR -10. 

If (1) (or (2)) holds, QtR must be fg., and it is free iff Qt = s R for some s E K 
(necessarily a unit of K). 

Proof. (1) ===} (2). By (2.14)(1), QtR is projective. Take an equation L Piqi = 1, 
where Pi E Qt, qi E Qt-I. For a suitable common denominator r E CR, we can 
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write Pi = air-I, qi = hir-I, where ai, hi E R. Then ai = rpi E m and 
rZ = ,£aihi E mnCR. 

(2) ~ (1). By (2.9), there exist ai E m and fi E m* (i E l) such that a = 
'£ ai !i (a) for any a E m. By what we said in the paragraph preceding the theorem, 
each !i is multiplication by some hi Em-I. Fix an element rEm n CR. Since 
fi (r) = hi r are almost all zero, we see that the hi'S are almost all zero. After 
dropping the unnecessary indices, we may therefore assume that I isfinite. From 

r = Ladi(r) = Laihir, 

we have 1 = ,£aibi E mm-I. Hence mm- I = R. 

The last statement in (2.17) is just a repeat of parts of (2.14). 

(2.18) Corollary. If R i= K = Q(R), then K is not a projective R-module. 

Proof. It suffices to show that K R is not f.g. If it is, say, 

II 

K=LR.Ci di- 1 

i=1 

o 

then, for d = d l •.• d" E CR ~ U(K), we have K = dK ~ R, a contradiction. 
o 

In the following, we give some explicit examples of invertible and non invertible 
ideals in commutative domains. 

(2.19A) Example. Let k be a field. Then, in the commutative polynomial ring R = 
k[XI, ... , xn] with n ::: 2 variables, the ideal m = (XI, ... , XII) is not invertible, 
and hence not projective. In fact, it turns out that m-I = R, so mm-I = m i= R. 
To see this, assume instead that there is some fig Em-I, where !, g E Rare 
relatively prime to each other, and g rt k. Then (f/g) . Xi = hi E R. If XI Ig, 
then XI also divides ghz = xz! , so xII!, a contradiction. Therefore, XI f g, and 
XI! = ghl implies that xilh l . Butthen fig = hi/xI E R, again a contradiction. 

(2.19B) Example. Let k be a field in which -1 rt k2, and R be the coordinate 
ring of the "circle" over k; that is, R = k[x, y] with the relation xZ + y2 = 1.8 

Let us compute m- I for the prime ideal m = (1 - y, x). For z := x/(1 - y) in 
the quotient field k(x, y) of R, we have 

z(1 - y) = X E Rand zx = X2/(1 - y) = (1 - i)/(1 - y) = 1 + y E R, 

so Z Em-I. Letting ~ = R + Rz ~ m- I, we see that ~m contains 

1 . (1 - y) + zx = (1 - y) + (l + y) = 2. 

8It is easy to verify that R is a domain. 
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Since -1 rf. k 2, we have 2 #- 0 in k, so s:B2( = R. This shows that 2( is invertible, 
with 2(-1 = s:B. We claim that 2( is not principal (so 2( is a projective R-module 
that is not free). To see this, we represent R as k[y) ED xk[y), and use the field 
norm N for the quadratic extension k(x, y)/ key). For j, g E k[y], we have 

N(f + xg) = (f + xg)(f - xg) = j2 - x 2g2 
(1) 

= j2 + li - g2 E k[y). 

If 2( is principal, say, 2( = (f + xg), then we'll have 

1 - Y = (f + xg)Ct, and x = (f + xg)f3 

for some Ct, fJ E R. Taking norms and subtracting, we get 

(2) [N(Ct) - N(fJ))N(f + xg) = (1 - y)2 + x 2 = 2(1 - y) in k[y). 

From (I) above, however, it is clear that the highest degree term in N(f + xg) 
can come only from l g2, or j2, or both. From the hypothesis that -1 rf. k2 , we 
see that N(f + xg) has (even) degree ~ 2. This clearly contradicts the equation 
(2). Therefore, 2( is not principal. Nevertheless, 2(2 is principal, since 

2(2 = (x 2, x(1 - y), (1 _ y)2) 

= (x 2 + (1 - y)2, x(1 - y), (l _ y)2) 

= (2(1 - y), x(l - y), (1 - y)2) 

= (l - y). 

(2.19C) Example. Let R = Z[8) where 8 = ../5. Note that R is a proper subring 
of the ring S = Z[ T) of algebraic integers in the number field K = Ql (8), where 
T is the "golden ratio" (8 + 1)/2 = 2cos 36°. Let us compute 2(-1 for the R
ideal 2( = (2, 1 + 8). Clearly, an element in 2(-1 must have the form (a +be)/2 
where a, bE Z. For (a + be)/2 to be in 2(-1, the condition is that 

(l + (})(a + be)/2 = [(a + 5b) + (a + b)8]/2 1= R, 

which amounts to a == b (mod 2). This shows that 2(-1 = S. However, from 

2( = 2R + 2RT = 2S 

and the fact that S is a ring, we have 

2(2(-1 = 2S· S = 2S = 2( ~ R. 

Hence, 2( is not invertible. Similarly, we can show that S is lIot invertible, with 
S-I = 2(. 

(2.19D) Example. Let R = Z[8) where 8 = R. Here, R is the full ring of 
algebraic integers in K = Ql(8).Let T = (8+1)/2,and 2( = (2, 1+8) ~ R.Just 
as in (2.l9C),wecan show that 2(-1 is given by S:= Z+ZLHowever,contraryto 
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the case in (2.19C), S is only an R -module, not a ring. From S = R + R r = ~ m, 
we have now 

1 1 
mm- I = 2m2 = 2 (4,2(1 +0),1 +20 +(2) 

= (2, 1 + 0, 0 - 2) = R. 

Therefore, m is invertible. The equation m2 = 2R obtained above can be used 
to show that m is not principal (and hence not free). For, if m = (x + yO)R 
(x, y E Z), then we have 2 = a (x + yO)2 for some a E R. Letting N be the 
field norm from K to Q, we get 

4 = N(a)N(x + yO)2 = N(a)(x2 + 5l)2. 

This forces (x, y) to be (± 1, 0), which is clearly impossible. 

(2.19E) Example. Let i = R and consider the domain 

R = Z[6 iJ = Z + 6 Z . i c Z[iJ c K = Q (i). 

It is well known that Z[iJ is a PID, but we shall show that, for the subring R, there 
exist nonprincipal invertible (fractional) ideals. In fact, for the fractional ideal 
m = (3, 1 + 2i) C K, an easy calculation shows that m2 = (3, 2i) and m4 = R, 
so m is invertible, with m -I = m3. We claim that m2 (and hence m) is not principal. 
To see this, assume, instead, that m2 is principal. Then 3 m2 = (9, 6i) c R is a 
principal ideal, say, 3 m2 = (x + 6yi) R for some x, y E Z. This gives 

9R = 9m4 = (x + 6yi)2 R, 

so 9 = a(x + 6yi)2 for some a E R. Taking the field norm from K to Q 
gives 92 = N(a)(x2 + 36y2)2, so Y = 0 and x E {±1, ±3}. But then (9, 6i) = 
(x + 6yi)R is either R or 3R, both of which are easily seen to be impossible. 
(What can we say about Q( if we define it as a fractional ideal, instead, over the 
rings Z[ki], where 1 S k s 5?) 

§2D. The Picard Group of a Commutative Ring 

In this subsection, we shall give an introduction to the notion of the Picard group. 
The material here is a natural continuation of that of §2C. The principal object of 
study will be the class of f.g. projective modules of rank 1. 

Throughout this subsection, R shall denote a commutative ring. By an R
module, we shall mean a right R-module, although it may also be viewed nat
urally as a left R-module. If P, Q are R-modules, so is P ®R Q. If P, Q are 
both projective, then they are direct summands of suitable free modules, and so 
is P ®R Q. Therefore, P ®R Q is also projective. This fact is a special feature of 
the commutative case, and will eventually enable us to define the Picard group. 

Let P be a f.g. projective R-module. For any prime ideal peR, the localization 
Pp := P ®R Rp is a f.g. projective Rp-module. Since Rp is a local ring, PI' must 
actually be free (FC-(19.29)), say, Pp ~ R~p. Thus, we get a function p ~ np 



§2. Projective Modules 35 

from Spec R (the prime spectrum of R) to Z. The case when this is a constant 
function is especially important. We shall say that P has rank n (rk P = n for 
short) if all np = n; that is, Pp :::::: R~ for all prime ideals p. The verification of 
the following fact is straightforward, and will be left to the reader: 

Fact. Let P, Q be fg. projective R -modules of rank n and rank m respectively, 
and let P* = HomR(P, R). Then rk(P*) = nand rk(P ®R Q) = nm. 

For many commutative rings R, every f.g. projective R-module P has constant 
rank. In fact, this is the case precisely for the class of commutative rings with 
no idempotents other than 0, 1. We shall not pause to prove this fact here (see 
Exercise 22); suffice it for us to keep in mind that, if R is a commutative domain 
with quotient field K, then every f.g. projective R -module P has constant rank, 
equal to dimKCP ®R K). This is easily seen by localizing P first to Rp (for 
p E Spec R), and then to its quotient field K. 

Next we make the following basic observation. 

(2.20) Lemma. Let R ~ S be commutative rings. Then any invertible R-r,odule 
P ~ S is fg. projective of rank 1. 

Proof. Say P Q = R, where Q is a suitable R -submodule of S. For any p E Spec R, 
localization gives PpQp = Rp ~ Sp. Therefore, Pp is a f.g. projective Rp
module. Since Rp is local, Pp is free and therefore isomorphic to Rp by (2.14)(4). 
This shows that rk(P) = 1. 0 

Now let Pic(R) be the set of isomorphism classes of f.g. projective R-modules 
of rank 1. We shall denote the isomorphism class of a module P by [Pl. From the 
fact on ranks stated earlier, it follows that Pic(R) has the structure of an abelian 
semigroup, by the operation [P][Q] = [P ®R Q]. Obviously, [R] serves as the 
identity for Pic(R). 

For any [P] E Pic(R), we have a natural map f : P ®R P* ---+ R in 9J'tR. 
Using the fact that (P*)p :::::: (Pp)* (the proof of which is left as an exercise), we 
see that the localization fp is an isomorphism for every p E Spec R. It follows 
that f is an isomorphism, and so 

[P][P*] = [P ®R P*] = [R] E Pic(R). 

Therefore, Pic(R) is an abelian group, with [p]-I = [P*] for any [P] E Pic(R). 
We say that Pic(R) is the Picard group of the commutative ring R. 

If f : R ---+ K is a homomorphism of commutative rings, we may view K as an 
R-module via f. For any [P] E Pic(R), itis easy to check that [P®R K] E Pic(K), 
and that [P] ~ [P ® R K] defines a group homomorphism f* : Pic(R) ---+ Pic(K), 
with the property that (fg)* = f*g* and (id)* = id. With these definitions, we 
see that "Pic" is a covariant Junctor from the category of commutative rings to the 
category of abelian groups. (See Exercise 13.) 
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Now let K = Q(R) (the localization of R at the multiplicative set CR of all 
regular elements), and let f : R -+ K be the inclusion map. By (2.20), every 
invertible fractional ideal in K is f.g. projective of rank lover R, but in general, 
a f.g. projective module of rank lover R need not be isomorphic to an invertible 
fractional ideal in K. To account for this discrepancy, we proceed as follows. Let 
][R be the set of invertible fractional ideals in K. Clearly, ][R is an abelian group 
under multiplication, with identity R. For any unit s E U(K), n(s) := s R is in 
][R since (SR)(s-1 R) = R. On the other hand, for any Qt E ][R, a(Qt):= [Qt] 

is in Pic(R). By (2.14)(2), we have a(QtIl3) = a(Qt)a(ll3) for Qt, 113 E ][R so 
a : ][R -+ Pic(R) is a group homomorphism. We are now in a position to prove 
the following important theorem. 

(2.21) Theorem. For f : R -+ K = Q(R), we have a five-term exact sequence 

1 -+ U(R) ~ U(K) ~ ][R ~ Pic(R) ~ Pic(K). 

Proof. It is straightforward to see that this is a O-sequence. (For f.a = 0, use the 
factthat QtnCR =1= 0 forany Qt E ][R.) For s E U(K), if n(s) = sR = R, we have 
clearly s E U(R). For Qt E ][R, if a(Qt) = [Qt] = [R], then Qt E im(n) by the last 
statement of (2.17). Finally, let [P] E Pic(R) be such that f.[P] = [K]. Then 
P (2)R K :?::: K as K -modules. Since P can be embedded in a free R-module, the 
localization map P -+ P (2) R K is injective. Composing this with P (2) R K :?::: K, 
we can embed P (as an R-module) in K. There exist PEP and r E CR such 
that pr- I = 1 E K, so P = rEP nCR and P nCR =1= 0. By (2.17), P E IT R, 
so [P] = a(P) E im(a). 0 

Let lP'R = n(U(K)) be the subgroup of ITR consisting of the principal invertible 
fractional ideals. Using (2.21), we see easily that coker(n) = ITR/lP'R is (essen
tially) the group of isomorphism classes of invertible fractional ideals. In view 
of this, ITR /lP' R is called the ideal class group of R. (Note that any Qt E ITR is 
isomorphic to an invertible ideal in R, since QtR is f.g.) From (2.21), we deduce 
immediately the following. 

(2.21), Corollary. Define the relative Picard group Pic(K / R) to be ker(f.) in 
(2.21). Then Pic(K / R) :?::: ][R /lP'R.lnparticular, if f. is the trivial homomorphism 
(e.g., in the case when R is a commutative domain and K is its quotient field), 
we have Pic(R) :?::: ITR/lP'R.ln this case, P is afg. projective R-module of rank 
J iff P is isomorphic to an invertible ideal of R. 

In general, however, f. may not be trivial. In this case, Pic(K / R) :?::: ][R/lP'R 
is only a proper subgroup of Pic(R), so there are (f.g.) rank I projectives over R 
that are not isomorphic to any invertible ideals. An easy example of this nature, 
shown to me by H. Lenstra, is given in (A) below. 
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(2.22) Examples. 

(A) We start by describing a very useful ring-theoretic construction called the 
"trivial extension". Let S be any ring and M be any (S, S)-bimodule. This 
means that M is at the same time a left and a right S-module, with the property 
that (sm)s' = s(ms') for all s, s' E S and all mE M. Given such a bimodule M, 
we form R := S EB M, and define a multiplication on R by the rule 

(s, m)(s', m') = (ss', sm' + ms'). 

It is routine to verify that R is a ring with identity (1,0), having S = S EB (0) as a 
subring, and with M = (0) EB M as an ideal of square zero, such that R/ M ~ S 
as rings. The (S, S)-bimodule structure on M is recovered by the ideal structure 
on M. The ring R constructed in this way is called the "trivial extension" of M 
by S. It is basically the only ring we can construct out of S EB M with all of the 
aforementioned properties.9 In the special case when the ring S is commutative, 
we could just take M to be, say, a right S-module, since we can define the left S
structure on M to be identical to its right S-structure. The resulting trivial extension 
R = S EB M will then be also a commutative ring. 

To apply this to our setting, we start with any commutative ring S, and take 
M to be any S-module such that any nonunit in S kills some nonzero element 
in M. (Such an S-module always exists; for instance, take M = ffi{S/aS : a E 

S \ U(S)}.) We then form the (commutative) trivial extension R = S EB M. It is 
easy to check that 

CR = {(s, m): S E U(S), m E M} = U(R). 

Thus, R coincides with its total ring of quotients, and the ideal class group lIR /P R 

is trivial. To compute Pic(R), consider the homomorphisms 

Pic(S) ~ Pic(R) ~ Pic(S) 

induced by the inclusion i : S --+ R and the projection j : R --+ R/ M = S. 
Since ji = Ids, Pic(R) ~ Pic(S) EB ker(j*). But by FC-(19.27), ker(j*) = 0, 
since M2 = O. Therefore, Pic(R) ~ Pic(S), which, of course, may not be trivial. 
Summarizing, the (f.g.) rank 1 projectives over R all "come" from those over 
S, but none of the non free ones is isomorphic to invertible ideals of R, since all 
invertible ideals are principal. (For an explicit construction, let S = Z[ H] and 
M be the quotient S-module Q [H]/S, on which every nonunit of S acts as 
a O-divisor. By (B) below, Pic(R) ~ Pic(S) ~ Z/2Z.) 

(B) For the commutative domains R in (2.19B), (2.19D), and (2.19E), we have 
constructed invertible fractional ideals that represent, respectively, elemen~s of 
order 2, 2, and 4 in the ideal class group lIR/PR ~ Pic(R). As a matter of fact, 

9We can also think of R, if we like, as the subring of the triangular ring (~ ~ ) 

consisting of matrices (~ :) where S E S and m EM. 



38 I. Free Modules, Projective, and Injective Modules 

Pic(R) turns out to be the group Zj2Z, Zj2Z, and Zj4Z respectively in these 
three examples, although we shall not go into the details of the computation here. 

(C) If R is a local ring, Pic(R) = {l} by FC-(19.29). (See also Exercise 12.) 

(D) Let R be asemilocal ring, with maximal ideals ml, ... , mn. Then the Jacobson 
radical of R is rad R = mIn· .. n mn , and by the Chinese Remainder Theorem, 

R := Rjrad R ~ Rjml x ... x Rjmn . 

Since Pic(A x H) ~ Pic(A) x Pic(H), Example (C) above gives Pic(R) = {l}. 
Applying FC-(19.27) again, we see that Pic(R) = {1}. In particular, this applies 
to all (commutative) artinian rings. 

(E) Let R be any noetherian ring, or more generally, a (commutative) ring with 
ACC on its annihilator ideals. JO We will show in (8.31)(2) that K := Q(R) is a 
semilocal ring. Assuming this result, we have Pic(K) = {I} by (D) above, and 
the "good" case in (2.21)' applies. It follows that Pic(R) ~ HRjIP'R; that is, any 
f.g. rank I projective over R is isomorphic to an invertible ideal of R. 

(F) If R is a UFD, Pic(R) = {l}. To see this, let us verify that any invertible 
ideal 2( ~ R is principal. Start with an equation I = L:7=1 b;aj, where the a; 's 
generate 2(, and b; E 2(-1. Write b; = c;jd;, where c;, d; E R have no common 
prime divisor. Since b;aj E R, we have d;lc;aj, and hence d;laj for any i, j. 
Letd = lcm{dl, ... ,dn}.Then dlaj for every j,so 2( ~ R·d.Ontheother 
hand, 

so we have 2( = R . d, as desired. In particular, if k is any field, and R 
k[XI' ... , xn ], then any f.g. rank I projective R-module is free. Confirming "Serre's 
Conjecture," A. Suslin and D. Quillen have independently shown that, in fact, any 
f.g. projective R-module is free. For a detailed exposition of this, see [Lam: 78]. 

In commutative algebra, a Dedekind ring (or a Dedekind domain) is defined to be 
a commutative domain R whose nonzero ideals are all invertible (or projective). 
By (2.17), it follows that such an R must be a noetherian domain. Among all 
(commutative) noetherian domains, Dedekind domains may be characterized as 
those that are integrally closed of Krull dimension::: I. Alternatively, Dedekind 
rings may also be characterized as commutative domains in which every ideal is a 
finite product of prime ideals. These results can be found in most standard treatises 
in commutative algebra, so they will not be repeated here. 

In algebraic geometry, Dedekind rings arise as the coordinate rings of smooth 
affine curves. For instance, the ring considered in Example (2.19B) is such a 

10 An annihilator ideal (in R) is one of the form annR (X), where X is any subset of R. 
Rings satisfying chain conditions on annihilator ideals will be considered in more detail in 
§6E. 
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Dedekind ring. In number theory, Dedekind rings arise as (full) rings of algebraic 
integers in number fields (= finite field extensions of Ql). For instance, the ring 
considered in Example (2.19D) is such a Dedekind ring. If R is a Dedekind ring of 
this type, a basic theorem in number theory states that Pic(R) is afinite (abelian) 
group; the cardinality hR of this group is called the class number of R (or of its 
quotient field). Using this famous "finiteness of class number" theorem, it can 
further be shown that if R is any commutative domain whose field of quotients 
is a number field, then Pic(R) is a finite group. These groups Pic(R) are among 
the best known and most computed invariants in the theory of algebraic numbers. 
In the case when R is the full ring of algebraic integers in a quadratic number 
field Ql (v'd), the structure of Pic(R) can even be determined (by experts!) on a 
programmable hand-held calculator, if Idl is within a reasonable range. However, 
to treat any of these results in detail would take us too far afield. 

In general, not much can be said about the structure of the Picard group of 
a Dedekind domain. In fact, L. Claborn has shown that, for any given (finite 
or infinite) abelian group G, there always exists a Dedekind domain R with 
Pic(R) ~ G! 

U sing the notion of the Picard group, we can also streamline some of our earlier 
results presented in (2.IS). As in (2.IS), let R ~ S be commutative rings and 
let g E S be such that g2, g3 E R. For r E R, let Pr = (l + rg, g2) be the 
R -submodule of S generated by I + r g and g2. Since Pr is an invertible R
submodule, [PrJ E Pic(R). The relation PrP, = Pr+s proved earlier shows that 
r 1-+ [PrJ defines a group homomorphism 7f : R -+ Pic(R). By (2.ISB), the 
kernel of 7f is given by the following subgroup of R: 

(2. 23A) J := {r E R: u(l + rg) E R for some u E U(R[g])}. 

Therefore, 7f induces an injective homomorphism 

(2. 23B) ft : R/ J ~ Pic(R). 

Note that J contains the conductor ideal J = {r E R : rg Eo R}. In the good 
case when the technical condition (2.IS)(D) is satisfied (i.e., for u E U (R[g]), 
u (l + r g) E R ==> u E R), then J = J by (2.1S)(C), and ft gives an embedding 
of R/ J into Pic(R). 

While the preceding results were based on the ad hoc computations in (2.1S), 
more precise results can be obtained by using the tools of algebraic K -theory. 
The following remarks are due to H. Lenstra, R. Swan, and R. Wiegand. From the 
"conductor square": 

R ~ R[gJ 

1 1 
R/J ~ R[g]/J 
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there results a Mayer-Vietoris sequence (see Bass [68: p.482]): 

U," ----> U(R"'7 U'R~VJ' 
Pic(R) ------7 Pic(R[g]) EEl Pic(RIJ) -----7 Pic(R(g]IJ). 

After "unhooking" this exact sequence and identifying Pic(R[g]/ J) with Pic(R/ J) 
(omitting all details), one obtains a short exact sequence: 

(2.23C) o ~ R/J ~ Pic(R) ~ Pic(R[g]) ~ 0, 

where J and it are as defined before. In particuLar, this enabLes us to identify R/ J 
with the reLative Picard group Pic(R[g]/ R). 

For an explicit example, consider R = k[Z2, Z3] C S = k[z]' where k is a field. 
(R is the coordinate ring of the degenerate elliptic curve y2 = x 3.) For g = z, we 
have observed before that (2.15D) is satisfied, and so J = J = (Z2, Z3). Since 

Pic(R[g]) = Pic(k[z]) = (I}, 

the short exact sequence (2.23C) yields: 

Pic(k[z2, Z3]) ~ k[Z2, Z3]/(Z2, Z3) ~ k. 

This is a well-known fact in algebraic geometry, usually proved by using more 
sophisticated machinery. 

There is also a useful application of this circle of ideas to the study of the Picard 
group of a polynomial extension. Let R = A[x], where A is a commutative ring. 
Consider the natural ring homomorphisms: 

i j 
A ~ R = A[x] ~ A, 

where i is the inclusion and j (h(x)) = h(O). We have the induced homomorphisms 

Pic(A) ~ Pic(A[x]) ~ Pic (A) 

whose composition is the identity. Following standard notation in algebraic K
theory, we write NPic(A) := ker(j*). Since i* is a split monomorphism from the 
above, we have 

Pic(A[x]) ~ Pic(A) EB NPic(A). 

Thus, NPic(A) may also be interpreted as the cokemel of i*. Assuming that Pic(A) 
is known, the computation of Pic(A[x]) boils down to that of NPic(A). 

Now let A ~ F be (commutative) rings with Nil(F) = 0, and let b E F be 
such that b2 , b3 EA. Form the polynomial rings 

R = A[x] ~ S = F[x], 

and let g = bx E S, with g2, g3 E R. For any r E R, we can then form the 
Schanuel module Pr = (l + rg, g2) which defines an element [PrJ E Pic(R). 
Putting together our earlier results on Schanuel modules, we have the following. 
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(2.23) Theorem. Let 10 = {a E A : ab E A} be the conductor ideal for the 
pair A S; A[b]. Then r t--+ [Pr] defines an injective group homomorphism it : 

(AIJo)[x] ~ NPic(A). 

Proof. As we have observed at the end of §2B, the subgroup j defined in (2.23A) is 
given by the idealJo[x]. Therefore, (2.23B) gives an embedding it : (AI Jo)[x] ~ 
Pic(R). We now finish by proving that [Prj E NPic(A) for any r E R. To this 
end, first note that 

g2 = (l + rg)(g2 - rg 3 ) + r2g4 E (l + rg)xR + g2xR = Prx. 

This shows that Pr = (1 + rg)A E9 Prx (as A-modules), and so 

Pr ®R (RlxR) ~ Prl Prx ~ (l + rg)A ~ A, 

whence [Prj E NPic(A). o 

To explain the significance of (2.23), we shall record an application of it to the 
study of "p-seminormal rings". For simplicity, we specialize now to the case where 
A is a commutative domain, and F is its quotient field. The following definition 
should not be surprising to the reader in view of what we have done so far. Let p 
be either a prime number, or O. We say that A is p-seminormal if, for any element 
bE F: 

b2 E A, b3 E A, pb E A ~ b EA. 

If A is O-seminormal, we simply say that it is seminormal. (The defining property 
here is that b2 E A, b3 E A ~ b EA.) 

The notion of p-seminormality is intended to be a generalization of the more 
familiar classical notion of normality. Note that if A is normal (i.e., integrally 
closed), then A is seminormal, and if A is seminormal, then A is p-seminormal 
for any prime p. 

With all this terminology in place, we can now derive the following consequence 
of (2.23). 

(2.23), Corollary. Let p be a prime number, or O. If the group NPic(A) has no 
p-torsion, then the domain A must be p-seminormal. II If A is not seminormal 
and Q S; A, then NPic(A) contains, infact, an infinite-dimensional vector space 
over Q. 

Proof. Assume A is not p-seminormal, and fix an element b E F\A such that 
b2, b3 , pb EA. The conductor ideal Jo = {a E A : ab E A} contains then the 
element p. 1, but is different from A, and, by (2.23), NPic(A) contains a copy 
of (AI Jo)[x]. If p > 0, NPic(A) then contains an IF p-vector space of infinite 
dimension; in particular, it has p-torsion. If p = 0, NPic(A) is an infinite group; 
in particular NPic(A) of- O. If, in the latter case, Q s;: A, then Q n Jo = 0, and 

II Convention: In the case p = 0, "no a-torsion" is to be interpreted as "equal to 0". 
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(AI Jo)[x] is an infinite-dimensional Q -vector space contained in NPic(A). 
o 

Remarkably, the converse of the first statement in (2.23)' is also true; that is, 
the domain A is p-seminormal iff NPic(A) has no p-torsion! The proof of this, 
using basic techniques of commutative algebra and algebraic K -theory, can be 
found in Swan [80]. The case when p = 0 appeared earlier in Brewer-Costa [79]. 
In the above, we have managed to prove half of the theorem of Brewer, Costa, and 
Swan without invoking commutative algebra or algebraic K -theory, and using the 
direct calculations in (2.15) instead. 

§2E. Hereditary and Semihereditary Rings 

In §§2C-2D, we have chosen to give a fairly detailed account of invertible frac
tional ideals and the Picard group since this material is truly basic to the theory 
of projective modules. Our coverage of invertible ideals and Dedekind domains 
in §2D was also intended as a motivation for what is to come in this subsection. 
Returning now to general (not necessarily commutative) rings, we introduce the 
following important definition. 

Definition. A ring R is said to be right (resp. left) hereditary12 if every right 
(resp. left) ideal of R is projective as a right (resp. left) R-module. If R is both 
right and left hereditary, we say that R is hereditary. 

According to this definition, the hereditary rings among commutative domains 
are precisely the Dedekind rings. Before giving further examples of right hereditary 
rings, let us first prove the following major result on submodules of free modules 
over such rings. 

(2.24) Kaplansky's Theorem. Let R be a right hereditary ring. Then any sub
module P of a free right R -module F = ffiaEl ea R is isomorphic to a direct sum 
of right ideals of R .. in particular, P is a projective module. 

Proof. We fix a well-ordering" < " on the indexing set I. For any a E I, let 
Fa (resp. Ga) be the span of the efJ 's with f3 :::: a (resp. f3 < a). Then each 
a E P n Fa has a unique decomposition a = b + ear with bE Ga and r E R. 
The mapping ((J : a r-+ r maps P n Fa onto a right ideal Illa with kernel P n Ga· 
Since (Illa) R is projective, ((J splits, so we have 

P n Fa = (P n Ga) ffi Aa 

for some submodule Aa of P n Fa isomorphic to ma. We finish off by showing 
that P = ffiaEl Aa. First suppose we have al + ... +an = 0, where ai E Aa;. We 
may assume that a 1 < ... < all in the ordering of I. Then aI, ... , an - 1 EGan 

12We have briefly encountered this notion in an example in FC-§25 (p.378). 
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and an E Au". Since GUn n Au" = 0, we have all = 0 and hence all ai = 0 
by induction. Finally, we need to show that P = LUEi A",. If this does not hold, 
there would exist a smallest fJ such that P n Ffl contains an element, say, a, not 
belonging to Lu A",. Write a = b + c, where b E P n Gfl and c E Afl. The 
element b lies in P n Fy for some y < fJ. By the minimal choice of fJ, we must 
have bE Lu Au. But then a = b + c E La Au, a contradiction. D 

(2.25) Corollary. Over a right hereditary ring R, an R-module PR is projective 
iff it is embeddable into a free right R -module. 

(2.26) Corollary. A ring R is right hereditary iff submodules of projective right 
R-modules are projective. 

(2.27) Corollary. If R is a PRID (principal right ideal domain), then any sub
module of a free right R-module is free. 

(Recall that a PRID is a domain R in which any right ideal ~ S; R is principal. 13 

Since R is a domain, ~ is in fact free, and hence projective; in particular, R is 
an example of a right hereditary domain.) 

(2.28) Definition. A ring R is said to be right (resp. left) semihereditary if every 
f.g. right (resp.left) ideal of R is projective as a right (resp.left) R-module. If R is 
both right and left semihereditary, we say that R is semihereditary. A commutative 
semihereditary domain is called a Priifer domain Gust as a commutative hereditary 
domain is called a Dedekind domain). 

For right semihereditary rings, we have the following easy analogue of (2.24), 
due to F. Albrecht. 

(2.29) Theorem. Let R be a right semihereditary ring. Then any fg. submodule 
P of a free (or projective) right R -module F is isomorphic to a finite direct sum 
offg. right ideals of R; in particular, P is a projective module. 

Proof. It suffices to deal with the case when F is free, and we may assume that F = 
EB~=j ei R. We proceed by induction on n, the case n = I being covered by the 
definition. Arguing as in the proof of (2.24), we have a direct sum decomposition 
P = (pnFj)EBA where F j = EB;~i ei R, and A is a submodule of P isomorphic 
to a f.g. right ideal of R. As a direct summand of P, P n F j is also f.g. We are 
done by invoking our inductive hypothesis on P n Fl S; Fl' D 

(2.30) Corollary. A ring R is right semihereditary iff fg. submodules of projective 
right R-modules are projective. 

13 Similarly, a PLID (principal left ideal domain) is a domain in which any left ideal is 
principal. 
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A right module M over a commutative domain R is said to be torsionfree if, 
for m E M and r E R, mr = 0 ===> m = 0 or r = O. Clearly, a free module is 
torsionfree, so a projective module is also torsionfree. Conversely, a torsionfree 
module need not be projective. For instance, if R :f. K, the quotient field of R, 
then K R is torsionfree, but not projective according to (2.18). A more interesting 
question to ask would be: when is afg. torsion free R-module projective? 

Note that any f.g. torsionfree module M over a commutative domain R can be 
embedded into a free module R". In fact, localizing M at S = R\ {O}, we have 
an inclusion 

M ~ S-'M = M ®R K = K n (forsomen), 

after making appropriate identifications. Since M is f.g., there exists rES such 
that M r ~ R n , so we can embed Minto R n by right multiplication by r. This 
observation leads quickly to the following consequence of (2.30). 

(2.31) Corollary. A commutative domain R is a Priifer domain iff every fg. tor
sionfree R-module is projective. 

Let us now give some examples of right hereditary (and semihereditary) rings. 

(2.32) Examples. 

(a) Every semisimple ring R is hereditary. In fact, over R, all left or right modules 
are projective. 

(b) As we have already mentioned, any PRID is right hereditary. A nice example is 
D[x], the polynomial ring in one variable over a division ring D. Another example 
is Hurwitz' ring of integral quatemions, mentioned in FC-(l.l). (A detailed proof 
for the fact that this latter ring is a PRID can be found in Herstein's Topics in 
Algebra, p. 375.) 

(c) Let R be a Dedekind ring, and S = MIl(R). In Chapter 7, we will show 
that there is a natural equivalence between the two module categories 9J1s and 
9J1 R • Under this natural equivalence, projective right S-modules M correspond to 
projective right R -modules P, and submodules of M correspond to submodules 
of P. Since submodules of P are projective in 9J1R (by (2.26», we see that 
submodules of M are projective in 9J1s . It follows again from (2.26) that S is a 
right hereditary ring. Similarly, if R is a Priifer domain, then S = Mil (R) is a 
semihereditary ring. 

(d) Consider any von Neumann regular ring, that is, a ring R in which every 
element a E R can be written in the form axa for some x E R (depending on a). 
Here, e = ax EaR is an idempotent, and a = ea E eR implies that aR = eR. 
More generally, any f.g. right ideal 2t of R can be expressed in the form e R 
for a suitable idempotent e (see FC-(4.23». Since R = eR E9 (l - e)R, 2tR is 
projective. Therefore, R is a right (and left) semihereditary ring. From (2.29), it 
follows that a f.g. right R-module P is projective iff P is isomorphic to a finite 
direct sum of principal right ideals. 
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(e) In a von Neumann regular ring R, any countably generated right ideal IB is 
projective. In fact, write IB as the ascending union of a chain 211 ~ 212 ~ ... , 
where each 21n is a f.g. right ideal. By what we said in (d) above, (21n)R is a 
direct summand in R, so we can write 21n+1 = 211/ EB IBn for a suitable right ideal 
IBn. Since (21n+ l h is projective, (IBnh is also projective. By (2.5), it follows 
that IB = 211 EB IB I EB IB2 EB ... is projective. In particular, if R is a countable 
von Neumann regular ring, then R is right (and left) hereditary. 

(f) "Hereditary orders" occur frequently in the theory of integral representations. 
In fact, if R is a Dedekind domain with quotient field K, then any maximal R
order 0 in a finite-dimensional separable K -algebra A is always hereditary. (See 
Reiner's book Maximal Orders for the details.) For instance, let R = Z, K = Q, 
and A be the division algebra of all rational quaternions. Then, Hurwitz' ring of 
integral quaternions, 0, is a maximal order in A. Here, 0 is not just hereditary; 
it is in fact a PRID (and a PLID), as we have mentioned in (b) above. 

(g) It is easy to see that the direct product of any two right (semi) hereditary rings 
is also right (semi) hereditary. 

(h) The Weyl algebras An (k) over a field k of characteristic zero are simple 
domains (cf. FC-(3.17». The first Weyl algebra A I (k) turns out to be hereditary; 
for a proof of this, see McConnell-Robson [87: p. 250]. 

(i) Let R be a free algebra generated over a field by {Xi: i E I}. It is known that 
R is a right free ideal ring (or "right fir") in the sense that R has IBN, and any 
right ideal of R is free. (See Cohn [85: p. 106].) In particular, R is right (and of 
course also left) hereditary. 

(j) For commutative domains R, (2.17) implies that if R is hereditary, then R is 
noetherian. Taking I I I :::: 2 in (i), however, we see that a hereditary domain need 
not be right noetherian or left noetherian. For a necessary and sufficient condition 
for a right hereditary ring to be right noetherian, see (7.58). 

(k) A commutative domain R is said to be a valuation domain if, for every nonzero 
element x in its quotient field, either x or X-I is in R. For such a domain R, it is 
easy to see that the ideals of R form a chain. It follows that (R is local and) every 
f.g. ideal of R is principal; thus, R is a semihereditary domain. 

§2F. Chase Small Examples I 4 

The first book in which the notion of a right hereditary ring appeared was probably 
Cartan-Eilenberg [56]. At the time when this classic was written, it was not known 
whether "right hereditary" and "left hereditary" were equivalent properties. One 
year later, I. Kaplansky constructed the first example of a right hereditary ring 
that is not a left hereditary ring. Another, considerably easier, example was later 
constructed by L. Small. We shall present this Small example below: it shows not 

14Due to lack of space, we won't pursue large ones. 
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only that "right hereditary" is different from "left hereditary", but also that "left 
hereditary" is different from "left semi hereditary". 

(2.33) Small's Example. The "triangular ring" T = (~ ~) is right noetherian 

but not left noetherian, by FC-( 1.22). We will show that it has the following three 
additional properties: 

(a) T is right hereditary. 
(b) T is not left hereditary. 
(c) T is left semihereditary. 

The proofs are based upon the knowledge of the structure of the left and right 
ideals ofT, as obtained in FC-(1.17). We begin with (a). According toFC-(1.17), 
the right ideals of T are of the following types: 

( nz 
M\= 0 

( nz 
M2 = 0 

~) 
~) 

(n # 0), 

(n # 0), 

We need to show that these are projective as right T -modules. Since 

( no) (r p) = (nr np ), 
On Oq Onq 

we have M \ = nT, and this is free of rank 1. On the other hand, 

M\ = M2 ffi (~ g) = M2 ffi Mvo ( Vo = (0) ffi Q ), 

so M2 and Mvo are also T-projective. Lastly, Mv as a T-module is obtained 
by "pulling back" the Q -module VIQ along the ring homomorphism T --+ Q 

sending (~ :) to q, since 

As a Q -module, VIQ is isomorphic to either (0), Q, or Q ffi Q. In the case 
when V ;:::: Q ;:::: Yo, we already know from (*) that Mv ;:::: Milo, is T -projective. 

(Alternatively, Mvo is just eT for e = (~ ~)!) Therefore, when V ;:::: Q ffi Q, 

Mv ;:::: Milo, ffi Mvo is T -projective as well. This proves (a). 
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For (b) and (c), recall from FC-( 1.17) that the left ideals of T are of the following 
types: 

(n i= 0), 

(r, p) E G (a subgroup of ZED Q)} . 
As before, we see easily that Nl = T . n is free of rank 1, and N2 = T . e (for 

e = (~ ~ )) is T -projective. Lastly, notice that N c as a T -module is obtained 

by "pulling back" the Z-module zG along the ring homomorphism cp : T --+ Z 

sending (~ :) to r. Take such an N c which is [g. as a left T -ideal. Then 

G is f.g. as a subgroup of Z ED Q, and is thus isomorphic to (0), Z, or Z ED Z. 

For Go = ZED (0), Nco = (~ ~) = T· e' for e' = (~ ~). so Nco 

is T -projective. It follows that, in general, Nc is isomorphic to (0), Nco, or 
Nco ED Nco, and is therefore T -projective as well. This proves (c). 

Finally, take G to be (0) ED Q, which is not f.g. over Z. Then Nc is not f.g. as 
a left ideal in T. If N c is T -projective, then, reducing modulo the kernel 1 of 
the homomorphism cp : T --+ Z, N c / 1 . N c ~ G ~ Q would be Z -projective. 
This contradicts (2.18), so we have proved (b). 15 

By a slight variation of the preceding arguments, we can show that the properties 

(a), (b), and (c) already hold for any triangular ring T = (~ ~). where R is any 

Dedekind domain not equal to its quotient field K. (For a further generalization, 
see Exercise (5.23).) 

(2.34) Chase's Example. Let S be a von Neumann regular ring with an ideal 1 
such that, as a submodule of Ss, 1 is not a direct summand. (For instance, any 
commutative nonsemisimple von Neumann regular ring S has such an ideal I.) 
Let R = S/I, which is also a von Neumann regular ring. As a right S-module, 
R is not projective (for otherwise S --» S/I splits in Wls). Viewing R as an 

(R, S)-bimodule, we can form the triangular ring T = (~ ~ ). We claim that 

T is left semihereditary but not right semihereditary. 

15 Actually, given the property (a) and the fact that T is right noetherian, (c) is not an 
accident. Small has shown in general that any right noetherian right hereditary ring is left 
semihereditary. For a proof of this result, see (7.65). 
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To see the latter, simply look at the principal right ideal 

M = (~ ~) = (~ ~) T ~ T. 

This is obtained by pulling back Rs along the natural surjection T --» S. Since R 5 

is not projective, it folIows as in the previous example that MT is not projective. 
Therefore, T is not right semihereditary. 

Next, consider a finitely generated left ideal N of T. By FC-(1.17), N has the 
form V EEl 2t , where 2t is a left ideal of S, and V is a left R -submodule of R EEl R 
containing ° EEl !2l, where !2l denotes the image of 2t in R. (Here we folIow the 

notation in FC-(1.17) and think of T as REEl REElS.) If (6 ~;) (1 ::: i ::: n) 

are left ideal generators of N, we see easily that 

2t=LSc; and V=LR'(a;,b;)+LR.(O,c;). 

The former implies that 2t = S . e for some idempotent e E S, since S is von 
Neumann regular. Let f = I - e and define 

U = {(a, bj): (a, b) E VI. 

This is a left R -submodule of R EEl R, and hence a left ideal of T. Also, since 

(a, bj) = (a, b) - (0, be), 

we have U ~ V. Writing E = (~ ~) EN, we have 

T . E = { (~ ~:): b E R, s E s} ~ N. 

From the matrix decomposition 

(~ ~) = (~ b t) + (~ ~:), 
we see immediately that N = U EEl T . E. Here, T . E is projective as a left 
T -module, since E is an idempotent. The last step will be to show that T U is also 
projective. Now T U is obtained as the pulIback of R U along the natural surjection 

T ...... R. The pullback of R R is (~ ~) = T . (~ ~ ), which is T -projective. 

Therefore, the pulIback of any projective left R -module is also T -projective. Now 
recall that R V is f.g., which implies that RU ~ REEl R is f.g. Since R = S is von 
Neumann regular, (2.32)(d) and (2.29) imply that RU is R-projective. It follows 
that T U is T -projective, and therefore so is TN. This completes the proof that T 
is left semihereditary. 

§2G. Hereditary Artinian Rings 

In the study of the structure of right hereditary rings, the class of such rings that are 
right artinian plays a rather significant role. It turns out that there is a simple way 
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to recognize whether a right artinian ring R is right hereditary: one only needs to 
check whether rad R, the Jacobson radical of R, is projective as a right R-module. 
This result is given in (2.35) below. In this result, we shall use the notion of a 
primitive idempotent (introduced in FC-(21.8)) and some basic facts about such 
idempotents. However, if the reader so prefers, he or she can ignore the primitive 
idempotents used in the proof and simply work with all idempotents. In this case, 
one would bypass the condition (4) below, and prove the equivalence of the other 
conditions by using the cycle of implications (1) ===} (2) ===} (3) ===} (5) ===} 

(1). 

(2.35) Theorem. For a right artinian ring R with ] 
conditions are equivalent: 

(I) R is right hereditary. 
(2) ] is projective as a right R-module. 

rad R, the following 

(3) e] is projective as a right R-module,for any idempotent e E R. 
(4) e] is projective as a right R-module,for any primitive idempotent e E R. 
(5) Any maximal right ideal m of R is projective as a right R-module. 

Proof. (1) ===} (2) is a tautology. 

(2) ===} (3) follows from the right ideal decomposition] = e] EB (1 - e)] for 
any idempotent e E R. 

(3) ===} (4) is a tautology. 

For the two remaining implications, we shall use Schanuel's Lemma, which 
will be proved a bit later in §5. As a matter of fact, the following arguments tum 
out to provide a very good illustration of how Schanuel's Lemma is applied in 
practice. We hope this would, at least in part, justify our use of a result whose 
proof is not yet given. This point aside, it does seem more natural to cover (2.35) 
in this section, rather than in §5. 

(4) ===} (5). Let R = R I ], and consider any maximal right ideal m of R. The 
simple right R-module Rim is isomorphic to eR for some primitive idempotent 
e of R. Since ] is nil, we can lift e to an idempotent e E R (FC-(21.28)). 
Then, e is a primitive idempotent of R, by FC-(21.18). We have the following 
two short exact sequences: 

O~m~ R~ Rlm~O, 

o ~ e] ~ eR ~ eRie] ~ 0, 

where Rim:::::: eR :::::: eRie]. Since RR and (eR)R are both projective, Schanu
el's Lemma (5.1) implies that 

m EB e R :::::: e] EB R, as right R -modules. 

By (4), the RHS is projective, so it follows that mR is projective as well. 

(5) ===} (1). To show that any right ideal I S; R is projective, we apply an induc
tion on n = length(RI J). (Recall that any f.g. right module over the right artinian 
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ring R has finite length.) If n = 0, I = R is, of course, projective. If n > 0, choose 
a right ideal I' ::J I such that 1'1 I is a simple right R-module, say, isomorphic to 
Rim, where m is a suitable maximal right ideal. Then length(RI I') = n - 1, so 
by the inductive hypothesis, I~ is projective. Applying Schanuel's Lemma to the 
short exact sequences: 

O~ I ~ I'~ I'll ~O, 

o ~ m ~ R ~ Rim ~ 0, 

we get an isomorphism I EEl R ~ I' EEl m. Using (5), we see that I' EEl m is 
projective, so it follows that IRis projective as well. D 

We note in passing that (1) <====} (2) in the theorem actually holds more 
generally for any semiprimary ring; see Auslander's Theorem in (5.62). 

As an application of (2.35), we shall give some classical examples of hereditary 
rings below. 

(2.36) Example. Let k be any division ring, and R be the ring of n x n upper 
triangular matrices over k. Then R is a right (and also left) hereditary ring. 

We have verified this before in FC-§25 (p.378), where we used an ad hoc argu
ment to show that any submodule of a f.g. projective right R-module is projective. 
Here, we shall directly apply our newly proved criterion (2.35). For the (artinian) 
ring R in question, J = rad R consists of all matrices in R with a zero diag
onal (FC- p. 60). We want to show that J R is projective. Consider the surjection 
qJ: RR ~ JR defined by left multiplication by the matrix E I2 +E23+·· +EII _I./I, 
where {Eij} denote the matrix units. The kernel of qJ consists of all matrices in 
R with all rows zero except perhaps the first. This is just the right ideal e R where 
e is the idempotent Ell E R. From the short exact sequence 

(2.37) o -----+ e R -----+ R ~ J -----+ 0, 

we see immediately that JR ~ RleR ~ (1 - e)R, which is a projective right 
R-module. 

There is also another, perhaps more direct, method by which we can prove the 
projectivity of JR. Note first that J decomposes into JI EEl ... EEl J/I_ I. where Ji 
consists of all matrices of J with all rows zero except perhaps the ilh. Each Ji is 
easily seen to be a right ideal of R, so it suffices to show that (Ji ) R is projective. 
Now, R itself decomposes into PI EEl ... EEl P/I' where Pi consists of all matrices 
of R with all rows zero except perhaps the ilh. Again, each Pi is a right ideal 
of R, so (Pi)R is projective. Now we finish by noting that Ji ~ PHI as right 
R-modules (both being isomorphic to the module of row vectors 

(2.38) {(O, ... , 0, bi+ l , ... , bnH 
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on which R acts by right multiplication.) Alternatively, we can get an explicit 
isomorphism Ji ~ Pi+1 by left multiplication by E i +l .i . 

A closely related example is the subring R' c R consisting of matrices (aij) in 
R with aij = 0 for 2 :s: i < j. The Jacobson radical J' = rad R' is just J n R', 
and similar arguments as before will show that (J'h' is projective. Therefore, R' 
is also a right (and left) hereditary ring. 

In both of the preceding examples, we could have replaced the division ring k 
by any semisimple ring. All arguments carry over to this case without any essential 
change. 

Of course, not all right artinian rings are right hereditary. For instance, if (R, m) 
is a local algebra of finite dimension n > lover a field k, and m #- 0, then m 
cannot be projective as a right R-module. In fact, if mR is projective, then it must 
be free by FC-(l9.29), and hence dimk m #- 0 is a multiple of n, a contradiction. 
This shows that R is neither right hereditary nor left hereditary. 

§2H. Trace Ideals 

We shall close §2 with a short introduction to the trace ideal of a (right) module. 
This notion will prove to be useful in the development of the Morita Theory of 
equivalence of module categories in Chapter 7. 

(2.39) Definition. For any right module PR , we define tr(P) to be L im(f) , 
where f ranges over P* = HomR(P, R). 

(2.40) Proposition. For T = tr(P) defined above, we have: 

(I) T is an ideal in R (henceforth called the trace ideal of P). 
(2) If PR is projective, then PT = P, T2 = T, and ann(P) = annr(T). 

Proof. (I) Clearly, T is a right ideal. For any f E P*, a E P, and s E R, we 
have s(f(a» = (sf)(a), where sf E P* (recalling that P* is a left R-module). 
This shows that RT s::: T, so T is an ideal. For (2), fix a pair of dual bases {ai, fi} 
(i E l) on P as in (2.9). For any a E P, a = La;!i(a) shows that PT = P. 
For any f E P*, 

f(a) = f(Laifi(a») = Lf(ai)fi(a) 

shows that T2 = T. Next, for any s E ann(P), we have f(a)s = f(as) = 0, 
so ann(P) s::: annr(T). Finally, for any s E annr(T) and a E P as above, 
as = (Laifi(a»)s = 0 shows that annr(T) s::: ann(P). D 

(2.41) Remark and Example. Assume that PR is f.g. and projective. Then we 
could have used the dual bases {ai, fi} with a finite indexing set I. In this case, 
T = tr(P) is generated as an ideal by the finite set {h(ai)}. Indeed, for any 
f E P*, we have f = Lj Sj fj for suitable Si E R (cf. (2.11», so for any 
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a E P: 

(2.42) 
j i.j 

proving our claim. For instance, consider the case P = eR, where e is an idem
potent. Recalling the choice of the dual bases in (2. 12A), we conclude from the 
preceding that T = tr(P) = ReR. Here the last equation in (2.40)(2) is clear 
since ann(P) = {s E R : eRs = O}. Note that in this case the dual of P is just 
the left ideal Re. 

In the commutative case, much more can be said about tr(P) for f.g. projective 
modules P, thanks to the following easy (but important) observation on idempotent 
ideals. 

(2.43) Lemma. Let T be any idempotent ideal in a commutative ring R. 1fT is 
fg., then T = eRfor a suitable idempotent e E R. 

Proof. Let T = 2.:7=1 RXi. Then T = T . 2.: RXi = 2.: TXi. Writing each Xj as 
a T -linear combination of XI, .•• , X n , the usual determinant argument yields an 
element e E T such that (I - e) T = O. In particular, 0 = (I - e)e = e - e2, so e 
is an idempotent. Finally, for any t E T, (1 - e)t = 0 implies that t = et E e R, 
so T = eR. 0 

(2.44) Theorem. Let PR be afg. projective module over a commutative ring R. 
Let T = tr(P) and N = ann(P). Then there exists an idempotent e E R such that 
T = e Rand N = (1 - e) R; in particular, R = T EB N. The projective module P 
isfaithful iffT = R, and both conditions hold if R has no nontrivial idempotents 
and P i= o. 

Proof. We know from (2.41) that T is f.g. Since T2 = T, it follows from (2.43) 
that T = eR for some e = e2 E R. Finally, from (2.40)(2), 

ann(P) = annr(T) = annr(eR) = (1 - e)R. 

The rest of the theorem is now clear. 16 o 

Keeping the hypotheses and notations in (2.44), let {ai, fd (1 :s i :s n) be a 
pair of dual bases for P. Instead of using the generators {fj (ai)} for T as in the 
argument of (2.43), we can also construct an idempotent generator for T explicitly 
as follows. Let M E Mn(R) be defined by Mij = fi(aj). Then for any a E P, 

fiCa) = fi(LaJJ(a)) = Lfi(aj)/j(a) 
J J 

(2.45) 

16 All we need for this argument is that T be f.g. Thus, (2.44) also holds if, instead of 
assuming that P is f.g., we assume that R is a (commutative) noetherian ring. 
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implies that M . (fl (a), ... , f" (a) r = (fl (a), ... , f" (a))1 . In particular, letting 
a be a I, ... , a", we see that M2 = M. So far, we did not require R to be 
commutative, but for the rest of the construction we do. Define e E R by det(I -
M) = 1 - e. Since (I - M)2 = 1- M, we have (1 - ef = 1 - e, and hence 
e2 = e. We claim that T = tr(P) is given by eR. First, e = 1 - det(I - M) is 
clearly in T upon expanding det(I - M), so eR ~ T. For the reverse inclusion, 
note that 

(I - M) . (fl (a), ... , fn(a))1 = 0 

implies (by Cramer's Rule) that (1 - e)J;(a) = 0 for all i, and all a E P. Thus, 
J; (a) = eJ; (a) E eR. Since the J; (a) 's generate T, we have T ~ eR, as desired. 

(2.46) Remark. In the case when P is a f.g. projective ideal in the commutative 
ring R, there is a yet simpler construction for an eo = e5 such that T = eoR. 
Keeping the same dual bases {a;, J;} as above, we simply define eo = L J; (a;) = 
trace(M) E T. For any a E P and f E P*, 

f(a)eo = L f(aJ;(a;)) = L f(J;(aa;)) 

= Lf(a;J;(a)) = f(La;J;(a)) = f(a). 

Letting f = J;, a = a;, and summing, we have, in particular, e5 = eo. The above 
equations also show that T ~ eaR, so we have T = eoR. (For more information 
on the element L J; (a;), see Exercises 29, 30, and 31.) 

(2.47) Remark. If the projective module PR is not f.g., the equation tr(P) + 
ann(P) = R need not hold. For instance, take R = Z x Z x .. " and its ideal 
P = ZED ZED· ... Then PR is projective by (2.5). Using the fact that P = p2, we 
see easily that tr(P) = P. On the other hand, ann(P) = (0), so tr(P) + ann(P) = 
P t- R. 

(2.48) Remark. If R is not a commutative ring, the equation tr(P) + ann(P) = R 
need not hold for a f.g. projective module PR • For a simple example, take R to be 
the ring of upper triangular n x n matrices over a ring k t- 0, and take P = e R 
where e is the matrix unit Ell. Then P = L j E 1j k is an ideal of R, and by 
(2.41), tr(P) = ReR = RP = P. However, it is easy to see that ann(PR) = 0, so 
tr(P) + ann(PR) = P t- R if n > 1. 

To give a nontrivial application of trace ideals, we first prove the following 
lemma due to Muller and Azumaya. 

(2.49) Lemma. Let R ~ S be rings. Then R is a direct summand of SR if and 
only iftr(SR) = R. 

Proof. First suppose S = R ED A, where A is an R-submodule of SR. Then 
tr(SR) :2 tr(RR) = R, so tr(SR) = R. Conversely, assume tr(SR) = R. Then 
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there exist /; E (SR)* and Si E S (1 ::: i ::: n) such that L/;(Si) = 1. Let 
).. : S ~ R be defined by )..(s) = L /;(SiS) for S E S. Then, for r E R: 

)..(sr) = L /;(Si sr ) = L /;(sis)r = )..(s)r, 
so ).. E (SR)*. Finally, 

)..{r) = Lfi{s;r) = L/;(si)r = r 

for any r E R, so ).. : S ~ R splits the inclusion map R ~ S in VJ'lR. 0 

(2.50) Theorem. Let R ~ S be rings such that R is commutative and S is a 
f.g. projective right R-module. Then R is a direct summand of SR. 

Proof. Clearly, ann{SR) = 0, so the last part of (2.44) gives tr(SR) = R. Now 
apply (2.49). 0 

(2.51) Remark. As in (2.44), the assumption in (2.50) that SR be f.g. can be 
replaced by R being noetherian. But again, the assumption that R be commutative 
is essential in (2.50). For a counterexample in the general case, consider the Rand 
P = eR constructed in (2.48), taking k there to be a division ring (and n ::: 2). 
Take the extension ring S to be Mn{k). By breaking up S into its "row spaces", 
we see that SR ~ P ffi ... ffi P (n copies), so SR is f.g. projective. However, this 
decomposition also shows that 

tr(SR) = tr(P) + ... + tr(P) = P =1= R (cf. (2.48»), 

so R is not a direct summand of SR by (2.49). This can also be seen directly 
as follows: If SR = R ffi A for some R-submodule A of SR, then the LHS 
has Krull-Schmidt decomposition P ffi ... ffi P, but the RHS has Krull-Schmidt 
decomposition P ffi P2 ffi ... ffi Pn ffi· .. , where dimk Pi = n - i + 1 < n = dimk P 
(see (2.36), or FC- p. 377), a contradiction. 

Later in the text, we shall return to the notion of trace ideals. In § 18, we define a 
module PR to be a generator if tr(P) = R (several characterizations are given in 
(18.8», and we define PR to be aprogenerator if P is a f.g. projective generator. 
The notion of progenerators will playa crucial role later in the development of the 
Morita theory of equivalence of module categories in § 18. 

Exercises for §2 

1. Let S, R be rings and let sPR be an {S, R)-bimodule such that PR is a 
projective right R-module. Show that, for any projective S-module M s, 
the tensor product M ®s P is a projective right R-module. In particular, 
if there is a given ring homomorphism S ~ R, whereby we can view R 
as an (S, R)-bimodule, then for any projective S-module Ms, M ®s R 
is a projective right R-module. Deduce that, for any ideal2l ~ S, if Ms is 
any projective S-module, then M / M2l is a projective right S /2l-module. 
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2. Show that a principal right ideal a R in a ring R is projective as a right 
R -module iff ann r (a) (the right annihilator of a) is of the form e R where 
e is an idempotent of R. 

3. (Ojanguren-Sridharan) Let a, b be two noncommuting elements in a di
vision ring D, and let R = D[x, y]. Define a right R-homomorphism 
rp : R2 --+ R by rp(l, 0) = x + a, rp(O, 1) = y + b, and let P = ker(rp). 
Show that: 

(l) P is a f.g. projective R -module with P E9 R ~ R2, and 
(2) P is isomorphic to a right ideal of R. 

(Remark: Ojanguren and Sridharan have also shown that P is nonfree. 
On the other hand, it is known that pn ~ R n for any n ::::: 2, at least when 
D has an infinite center.) 

4. ([Lam: 76]) Let P be a projective right R-module that has R as a direct 
summand. If P E9 Rm ~ R n where n > m, show that pm+1 is free. 

5. Suppose R has IBN and f.g. projective right R-modules are free. Show 
that R satisfies the rank condition, and conclude that R is stably finite. 

6. Give another proof for (2.8) using a cardinality argument (but again not us
ing the fact that subgroups of free abelian groups are free). (Hint. Assume 
that M embeds in a free abelian group F and use the notations in the proof 
of (2.8). Then M / M n FI embeds in F2 • Get a contradiction by showing 
that M \ FI contains an element of the form (2£1, 4£2, 8£3, ... ), where 
£; = ±1.) 

7. Let P be a f.g. projective right R-module, with a pair of dual bases 

{ai, fi: 1::: i ::: n}. 

Recall that p. is a left R-module, and that, fora E P, a E p •• isdefined 
by I a = I(a), for every IE po. Show that 

(I) {f;, a; : 1 ::: i ::: n} is a pair of dual bases for po; 
(2) P* is a f.g. projective left R-module; and 
(3) the natural map £ : P --+ p •• defined by £(a) = il (for every a E P) 
is an isomorphism of right R-modules. 

8. Give examples of (necessarily non-f.g.) projective right R -modules P, PI 
such that 

(1) the first dual P* of P is not a projective left R-module, and 
(2) the natural embedding of PI into Pt* is not an isomorphism. 

(Hint. For (1), take R = Z, P = Z E9 Z E9 ... , and use: (2.8). For (2), take 
R = Q and PI = Q E9 Q E9 .... ) 

8'. (Extra Credit) Let M be the Z-module Z x Z x ... and let el, e2, '" E 

M be the standard unit vectors. 
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(1) For any f E Homz(M, Z), show that fee;) = 0 for almost all i. 
(2) Using (1) and (2.8)',showthat,forthefree Z-module P = ZffiZffi···, 
the natural map e: P ~ p" is an isomorphism. 

9. Let R be the ring Z[8] in Example (2.19D). 

(1) Show that the ideallB = (3, I + 8) is invertible, and compute lB- 1 

explicitly. 
(2) Show that lB and the ideal III = (2, I + () in (2.19D) represent the 
same element in Pic(R). 
(3) Show that III ffi III is free of rank 2, and construct a basis for it explicitly. 

10. Show that a Dedekind ring R has trivial Picard group iff R is a PID, iff R 
is a unique factorization domain. 

11. Show that any semilocal Dedekind ring is a PID. (Hint. Use (2.22)(D).) 

12. Let R be a commutative local ring. Since Pic(R) = {I} by (2.22)(C), we 
know that every invertible ideal III of R is principal. Give a direct proof 
for this fact without using the notion of projective modules. 

13. In the text, we have stated that "Pic" is a covariant functor from the category 
of commutative rings to the category of abelian groups. Supply the details 
for a full verification of this fact. 

14. Show that the ideal P of the ring R in Example (2.12D) is the union of 
a strict ascending chain of principal ideals A I ~ Az ~ ... in R. (In 
particular, R does not satisfy ACC on principal ideals.) 

15. (1) Let R be a commutative ring, with [P][Q] = 1 in Pic(R). If P can be 
generated by two elements, show that P ffi Q ~ RZ. 
(2) For the Schanuel modules 

(r E R) 

introduced in (2.15), construct an explicit isomorphism (a, f3) : RZ ~ 
Pr ffi P- r • 

(Hint. (1) Fix pi such that P ffi pi ~ R2. Take the second exterior power 
to show that pi ~ Q. (2) Define a : R2 ~ Pr by a(el) = 1 + rg, 

a(ez) = gZ, and f3 : RZ ~ P- r by 

f3(el) = _r4gZ, f3(ez) = (1 + r 2i)(1 - rg). 

To show that (a, f3) is onto, check that P- r = (gZ, (l+rZgz)(l-rg».) 

16. (Modified Projectivity Test) Let lB be a class of objects in 9J1R such that 
any module in 9J1 R can be embedded in some module in lB. Show that, in 
testing whether a right module P is projective, it is sufficient to check the 
lifting condition in (2.1) in the case B E lB. (Note. In §3, we'll see that lB 
may be taken, for instance, to be the class of all injective right R-modules.) 
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17. Let P be a projective right module over a von Neumann regular ring R. 
Show that any f.g. submodule of P is a direct summand of P (and hence 
also a projective module). 

18. Show that any f.g. projective right R-module P can be represented as 
e(Rn), where e : R" ~ R" is left multiplication by some idempotent 
matrix (aij) E Mn (R). With respect to this representation, show that 
tr(P) = L Raij R, and deduce that Mil (tr(P» = Mil (R) e Mil (R). (Hint. 
Note that r EijeEHr' = rajkr' Ea.) 

19. If, for any n, any idempotent in Mil (R) is conjugate to some diag(l, ... , 1, 
0, ... , 0), show that any f.g. projective right R-module is free. Show that 
the converse is also true if R has IBN. 

20. For right modules A, B over a ring R, define 

a = aA.H: B ®R A* - HomR(A, B) 

by a(b ® f)(a) = bf(a), where b E B, a E A, and f E A* = 
HomR(A, R). (Recall that A* E RW1.) Show that, for any given A E W1 R, 

the following are equivalent: 

(1) A is a f.g. projective module; 
(2) aA.B : B ®R A* ~ HomR(A, B) is an isomorphism for all B E W1 R ; 

(3) aB.A : A ®R B* ~ HomR(B, A) is an isomorphism for all B E W1R ; 

(4) aA.A : A ® A* ~ EndR(A) is an epimorphism (resp. isomorphism). 

For more information on aA.B, see Exercise (4.11). 

In Exercises 21-31 below, R denotes a commutative ring. 

21. (Bourbaki) Let PR be a f.g. R-module. We say that P is locally free if 
the localization Pp of P at any maximal (or prime) ideal p is free over 
the local ring Rp. (It turns out that these P's are exactly the f.g. flat 
modules; see Exercise (4.15).) For such a locally free (f.g.) module P, 
define rk P : Spec R ~ Z by 

(rk P)(p) = the (uniquely defined) rank of the free module Pp over Rp. 

Here, Z is given the discrete topology, and the prime spectrum Spec R 
is given the Zariski topology. (The Zariski closed sets are of the form 
V(21) = {p : P :2 2l}, where 21. ranges over the ideals of R.) Show that 
the following are equivalent: 

(1) P is a projective R-module. 
(2) P is finitely presented; that is, there exists an exact sequence 

Rm ~ R" ~ P ~ 0 

for some integers m, n. 
(3) rk P is a continuous function from Spec R to Z. 
(4) rk P is a "locally constant" function; i.e., for any P E Spec R, rk P is 
constant on a suitable neighborhood of p. 
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22. Keeping the notations in Exercise 21, show that a subset S S; Spec R 
is clopen (closed and open) iff S = VeeR) for some idempotent e E 

R. Using this, show that the following statements are equivalent for any 
nonzero ring R: 

(1) R has no idempotents other than 0, 1. 
(2) Spec R is connected. 
(3) Every f.g. projective R-module has constant rank. 

23. The support of an R-module P is defined to be 

supp P = {p E Spec R: Pp i- OJ. 

For any f.g. P E Wl R, show that supp P = V (ann P). Deduce that Pp i- 0 
for all primes p iff ann P S; Nil(R). 

24. For any f.g. projective R -module P, show that P is faithful iff the function 
rk P : Spec R ~ Z is everywhere positive. (In particular, a f.g. projective 
module PR of rank n > 0 is always faithful.) 

25. Suppose P, Q E WlR are such that P ®R Q ~ Rn where n > O. Show 
that P and Q must be faithful f.g. projective R-modules. 

26. Deduce from Exercise 25 that P E Wl R is f.g. projective of rank 1 iff there 
exists Q E WlR such that P ®R Q ~ R. In this case, show that necessarily 
Q ~ P*. 

27. Show that a f.g. projective module PR has rank 1 iff the natural map 
).. : R ~ EndR(P) (defined by )..(r)(p) = pr) is an isomorphism of 
rings. 

28. Let P be a f.g. projective R-module. Show that there is a natural way to 
define the trace of an R-endomorphism of P so that we get an R-module 
homomorphism tr: EndR(P) ~ R. The definition should be such that, in 
case P = Rn , we get back the usual trace map on n x n matrices, upon 
identifying EndR(P) with Mn (R). (Hint. Identify EndR(P) with P ®R P* 
and show that a ® f f-+ f(a) gives a well-defined R-homomorphism 
Ci : P ®R P* ~ R.) 

29. Let P be a f.g. projective R-module, and let {ai, Ii} (1 :s i :s n) be a 
pair of dual bases as in (2.9). Show that reP) := Li fi(ai) E R is an 
invariant of P (not depending on the choice of {ai, Ii D. (Hint. Show that 
reP) = tr(ld p ), where "tr" is the trace map in Exercise 28.) Is the same 
conclusion true if R is not commutative? 

30. Recall that every idempotent (square) matrix defines a f.g. projective mod
ule (as in Exercise 18). Show that, if e, e' E Mm (R) are idempotent matri
ces that define isomorphic projective modules, then trace(e) = trace(e'). 
(Hint. If e defines P, show that trace(e) = reP) in the notation of Exercise 
29.) Is the same conclusion true if R is not commutative? 
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31. Let PR be a f.g. projective R-module of rank 1. 

(a) For a, b E P and f E P*, show that af(b) = bf(a) E P. 
(b) Show that the following diagram is commutative: 

(J 

P®P~ /E"'(Pl 
R 

Here, a = ap,p, A, and ex are defined, respectively, in Exercises 20, 27, 
and 28. 
(c) Show that the trace map tr: EndR(P) ~ R defined in Exercise 28 is 
the same as A -I. 
(d) Show that reP) = 1 (in the notation of Exercise 29). 

32. Let P be a projective module that is not f.g. Show that there is a split 
monomorphism f : P ~ EBiEI P for a suitable infinite indexing set I 
such that f(P) is not contained in EBiEJ P for any finite subset J S; I. 

33. In a ring theory monograph, the following statement appeared: "If G is a 
finite group, every projective module over (the integral group ring) ZG is 
free." Give a counterexample! 

The next two problems are suggested by R. Swan. Recall that, for a com
mutative ring R, Q(R) denotes the total ring of quotients of R; that is, 
the localization of R at the multiplicative set of its non O-divisors. 

34. For any commutative ring S, show that there exists another commutative 
ring R ;2 S with the following properties: (1) Q(R) = R; (2) S is a "re
tract" of R (i.e., the inclusion map S ~ R is split by a ring homomorphism 
R ~ S); (3) Nil(S) = Nil(R); and (4) U(S) == VCR). 

35. In (2.22)(A), we have constructed a commutative ring R with Q(R) = R 
and Pic(R) i- (1 j. However, this ring R has nonzero nilpotent elements. 
Now use Exercise 34 to construct a reduced ring R with the same proper
ties. 

The last two problems below are from a paper of H. Bass. 

36. For any right R-module P and x E P, let op(x) = U(x) : f E po}, 
where, as usual, P* denotes the left R-module HomR(P, R). 

(1) If pi is any right R-module and F = PEBP', show that op(x) = OF(X) 
for any x E P S; F. 
(2) If P is a projective right R -module and x E P, show that 0 p (x) is 
a f.g. left ideal of R, with op(x) i- 0 if x i- O. Deduce that the natural 
map P ~ P** is a monomorphism. 

37. For any right R-module P and x E P, let 

o~(x) = (y E P: V f E po, f(x) = 0 ===} fey) = OJ. 
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(1) If pi is any projective R -module and F = P ED pi, show that o~ (x) = 
o~(x) for any x E P C; F. 
(2) If P is a projective right R -module and x E P, show that o~ (x) ~ 
o p (x) *, where 0 p (x) is the left ideal associated with x E P in Exercise 
36. 
(3) Under the same hypothesis as in (2), show that o~ (x) is a direct 
summand of P iff op(x) is a projective left R-module. 

(Comment. Bass used (2) and (3) above to show that, over any left semi
hereditary ring R, any projective right R-module is a direct sum of f.g. 
(projective) R-modules, each isomorphic to the dual of a f.g. left ideal in 
R. In particular, if each f.g.left ideal in R is free, then any projective right 
R-module is free.) 

§3. Injective Modules 

§3A. Baer's Test for Injectivity 

In this subsection, we present the definition and the basic properties of injective 
modules. The definition of an injective module is formally "dual" to that of a 
projective module, in the sense that we just take the old definition and "tum all the 
arrows around." Indeed, some of the key properties of injective modules are dual 
versions of corresponding properties of projective modules. However, the process 
of dualization works only up to a point. In general, we are in no position to assume 
that properties of projectives always have analogues for injectives, or vice versa. 

By definition, a right R-module I is said to be injective if, for any monomor
phism g : A -+ B of right R-modules and any R-homomorphism h : A -+ I, 
there exists an R-homomorphism hi : B -+ I such that h = hi 0 g: 

(3.1) il """ h' 

h " , 
g " 

0----7) A ) B 

We refer to this property informally by saying that any h : A -+ I can be "ex
tended" to B, or to a homomorphism hi : B -+ I. 

The injectivity of I may also be expressed as a property of the contravariant 
functor HomR ( -, I) from 9J1R to abelian groups. In general, if 

g f 
(3.2) 0 ~ A ~ B ~ C ~ 0 

is a short exact sequence in 9J1 R , then, for any I E 9J1 R , the induced sequence of 
abelian groups 

(3.3) 

is also exact. In other words, HomR (-, I) is a left exact (contravariant) functor. 
For I R to be injective, we require precisely that g* be surjective; i.e., that (3.3) be 
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a short exact sequence when we add a zero term at the right end. We see, therefore, 
that IRis injective iff HomR (-, I) is an exact functor. 

(3.4) Proposition. (I) A direct product 1 = n. la olright R-modules is injective 
iff each la is. (2) A right R -module 1 is injective iff any monomorphism 1 R -+ M R 
splits in 9JtR. 

Proof. (1) follows from the natural equivalence of functors 

HomR( -, n fa) ~ n HomR( -, la). 
a a 

For (2), the "only if" part follows by extending the identity map 1 -+ 1 to a map 
M -+ I. For the "if" part, suppose we are given the maps hand gin (3.1). We 
form the "pushout": 

1 Ef) B 
M:= , 

((h(a), -g(a)) : a E A} 

and let I : 1 -+ M, k : B -+ M be the obvious maps. Then we have a commu
tative diagram: 

f 

The map I is clearly injective. For, if i E ker(f), then (i,0) = (h(a), -g(a)) 
for some a E A. The injectivity of g implies that a = 0, and so i = h(a) = O. 
By assumption, there exists a splitting f' : M -+ 1 for the monomorphism I. 
Taking h' = f'k : B -+ I, we have h'g = f'kg = f'lh = h, as desired. 0 

Remark. (1) above implies that a finite direct sum of injectives is injective. In 
general, however, an arbitrary direct sum of injectives need not be injective. See 
(3.46) below. 

The next result, called the "Injective Producing Lemma", enables us to use 
known injective modules over one ring to produce injective modules over another. 
It will be one of our main tools for constructing examples of injective modules. 
We proceed, in general, as follows. Let S, R be rings, and let P be afixed (R, S)
bimodule that is flat as a left R-module (cf. FC-(24.20), or (4.0) below). For any 
M E 9Jts , let us write 

M = Homs(Ps , Ms). 

Using the left R-action on P, we can make M into a right R-module by: 

(fr)(p) = I(rp), where IE M, r E R, and pEP. 
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(3.5) Injective Producing Lemma. If M is an injective right S-module, then M 
above is an injective right R-module. 

Proof. Our job is to prove the exactness of the functor HomR( -, M). For any 
A E Wl R , we have the following standard isomorphism: 

HomR(A, M) = HomR(A, Homs(P, M» ~ Homs(A ®R P, M). 

The fact that RP is fiat means that the functor - ®R P is exact on WlR. The fact 
that M s is injective means that Horns ( -, M) is exact on Wls . Combining these, 
we see from the isomorphism above that the functor HomR ( -, M) is exact on 
Wl R . Therefore, M is an injective right R-module. 0 

Let us indicate some of the principal ways in which the above lemma will be 
used. For the first one, we take a ring homomorphism 71 : R -+ S. We can view S 
as a left R-module via 71, and choose P to be RSS. For this choice of P, we can 
identify the right R-module HomS(RSS, Ms) with M R, where the right R-module 
structure on M is obtained by "pullback" along 71. In this case, (3.5) gives the 
following. 

(3.6A) Corollary. Let 71 : R -+ S be a ring homomorphism such that S becomes 
a flat left R -module under 71. Then, for any injective module M s, the right R
module M R (obtained by pullback along 71) is also injective. 

For the second way of using (3.5), we take now a ring homomorphism c : S -+ 
R, and choose P = RRs , where Rs is obtained via c. Here RR is projective and 
hence fiat (FC- p. 365), so we have the following special case of (3.5). 

(3.6B) Corollary. Let c : S -+ R be a ring homomorphism. Then for any 
injective module Ms , the right R-module HomS(RRs , Ms) is also injective. 

For the purposes of studying modules over a k-algebra R where k is a field, we 
note that any left R-module P may be viewed as an (R, k)-bimodule, and any 
k-vector space is certainly k-injective. Thus, we have the following special case 
of (3.5): 

(3.6C) Corollary. Let R be a k-algebra where k is a field. Let RP be a fixed 
projective left R-module, viewed as an (R, k)-bimodule in the natural way (e.g., 
P = R). Then, for any k-vector space M, Homk(P, M) is an injective right 
R-module. 

If we recall what happens with projective modules, (3.5) is not surprising at 
all. In fact, if S, R are rings and S PR is such that PR is projective, then, for any 
projective S-module Ms, M ®s P is a projective right R-module according to 
Exercise (2.1). This may be called the Projective Producing Lemma, and (3.5) is 
just its injective analogue. 
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While we are on this theme, let us recall another piece of information on pro
jective modules. In Exercise 2.16, we have noted that to check that a module PR is 
projective, it is sufficient to check the lifting condition in (2.1) for B belonging to 
a family 23 with the property that any right R-module embeds into a module in 23. 
We called this the Modified Projectivity Test. The proof is a completely routine dia
gram argument. The same kind of argument also yields a Modified Injectivity Test, 
as follows. Let 23 be a family of right R-modules such that any right R-module is 
an epimorphic image of a module in 23. Then, to test that an 1 E::: !JJ1R is injective, 
it is sufficient to check the extendibility condition in (3.1) for B belonging to 23. 
For instance, we can take 23 to be the family of all free right R -modules. 

As it turns out, we can even do better than that. The following remarkable 
criterion for injectivity, due to R. Baer, says that it will be sufficient to test the 
extendibility condition in (3.1) with B chosen to be the right regular module, RR. 
This result does not seem to have an analogue for the case of projective modules. 

(3.7) Baer's Criterion (or Baer's Test). A right R-module 1 is injective iff, for 
any right ideal 21 of R, any R-homomorphism f : 21 ---+ 1 can be extended to 
f' : R ---+ I. 

(Note. A homomorphism f' : R ---+ 1 is uniquely determined by specifying the 
image f' (1) E I. Therefore, to extend f to some f' means exactly to find an 
element i E 1 such that fer) = ir for every r E 21.) 

Proof. ("If" part) We test the injectivity of 1 by considering the diagram (3.1), 
where hand g are given. To simplify the notation, we think of A as a submodule 
of B. By a simple application of Zorn's Lemma, we can find some ho : Ao ---+ 1 
where A S; Ao S; B, holA = h, such that ho cannot be extended to any 
submodule of B properly containing Ao. We finish by showing that Au = B. 
Indeed, suppose there exists an element b E B\Ao. Then 

2t := {r E R: br E Ao} 

is a right ideal of R. We define f : 21 ---+ 1 by 

(3.8) fer) = ho(br) (Vr E 21), 

and check easily that f E HomR(21, I). By assumption (see Note after (3.7», there 
exists an element i E 1 such that fer) = ir for all r E 21. Now let A I = Ao + bR, 
and define hi: A I ---+ 1 by 

hi (ao + br) = ho(au) + ir (Vao E Ao, r E R). 

To check that h I is well-defined, suppose ao + br = ab + br'. Then b(r' - r) = 
ao - ab E Ao, so r - r' E 21, and hence fer' - r) = i (r' - r). On the other hand, 
by (3.8): 

fer' - r) = ho(b(r' - r» = ho(ao - ab) = ho(ao) - ho(ab) . 
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Therefore, we have i(r'-r) = ho(ao)-ho(a~),andhence ho(ao)+ir = ho(a~)+ 
ir'.Nowthatweknowh I is well-defined, we check easily that hI E HomR(A I, /). 
Since h I clearly extends ho, we get the desired contradiction. D 

As a first application of Baer's Criterion, we offer the following result in the 
commutative setting. 

(3.9) Proposition. Let R be a commutative domain with quotient field K, and let 
I be a (right) K -vector space. Then IRis an injective R-module. 

Proof. Let IE HomR(2l, IR ), where 2l is an ideal of R. By (3.7), it suffices to 
check that I can be extended to R. For this purpose, we may, of course, assume 
that 2l -I- O. Identify I with EB JEJ I j , where I j = K K, and let 

Ij = Trj 0 I: 2l ~ IJ = K (j E J), 

where Trj is the ph projection map. By (2.16), we know that Ij is multiplication 
by some element b j E K. Fix a nonzero element a E 2l. Since I(a) = (bja)jEJ 
has only finitely many nonzero coordinates, almost all b j 's are zero. Therefore, 
b := (bj)jEJ E I, and we have I(a) = ba for every a E 2l, as desired. D 

It is of interest to point out that this Proposition can equally well be proved by 
using (3.6A). Just note that, as a vector space over K, h is an injective module. 
With this observation, (3.6A) applies to give the injectivity of I R since the quotient 
field K is flat as an R -module. (The functor - ® R K is naturally equivalent to 
localization at the multiplicative set R \ {O}, and the localization functor is always 
exact.) This argument applies to noncommutative localization as well; for more 
information on this, see Exercise (10.29). 

§3B. Self-Injective Rings 

In the study of projective modules, the right regular module RR played a special 
role, since it is a free, and hence projective, module. In the context of injectivity, 
however, the situation is quite different. For most rings R, RR is simply not injec
tive. But there do exist rings R for which RR is injeclive; we say that such rings are 
right self-injective. Some positive and some negative examples are given below. 

(3.10A) Example. The ring Z is clearly not self-injective. In fact, I : 2Z ---+ 

Z defined by 1(2n) = n (for every n E Z) clearly cannot be extended to a 
homomorphism f' : Z ---+ Z. 

(3.108) Example. Let R be the ring of n x n upper triangular matrices over a 
ring k -I- 0, where n :::: 2. Then R is not right self-injective. To simplify the 

notations, we work in the case n = 2. Consider the ideal 2l = (~ ~) and 
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define f : ~ ~ R by f (~ ~) = (~ ~ ). This is easily checked to be a 

right R-homomorphism. If f can be extended to R, there would exist a matrix 

(~ ~) E R such that 

(VaEk), 

which is clearly impossible. This shows that RR is not injectiv(:. 

(3.11A) Example. Let R = A x B, with e = (1,0) E A, so A = eR = Re. Let 
MA be an A-module, viewed as an R-module via the projection R ~ A. Then 
MA is injective iff M R is injective. The "if" part is a special case of Exercise 29, 
so we shall only prove the "only if" part here. Assume MA is injective. To apply 
Baer's Test to MR, consider f E HomR(l, M), where I ~ R is any right ideal. 
Let ~ = I n A and SB = I n B, so I = ~ E9 SB. Note that f(SB) = f(SB)e = 
f (SBe) = f (0) = O. We can therefore extend f to f' : R ~ M by first extending 
f from ~ to A (using the injectivity of M A ) and taking f'IB = o. This checks that 
MR is injective. In particular, the ideal AR is injective iff A is a right self-injective 
ring. 

(3.11B) Corollary. Let R = njEJ A j, where the A j 's are rings. Then R is right 
self-injective iff each A j is. (Thus,for instance, any direct product of division rings 
is right and left self-injective.) 

Proof. By (3.4)(1), RR is injective iff each (Aj)R is injective, iff each (Aj)Aj is 
injective. D 

(3.11C) Remark. In the notation of (3.11 B), assume each A j 1= 0 is right self
injective, and let ~ = EBj Aj ~ R. If J is infinite, ~R is not injective (even 
though each (Aj)R is)! Indeed, if ~R is injective, we would have R = ~ E9 SB 
for a suitable right ideal SB 1= O. But for any b = (b j) E SB: 

b . (0, ... , 1, 0, ... ) = (0, ... , b j, 0, ... ) E SB n ~1 = 0, 

so all b j = 0, a contradiction. 

(3.11D) Corollary. Let J be any set and let R be the Boolean ring of all subsets 
of J. (Sum is given by symmetric difference and product is given by intersection.) 
Then R is self-injective. 

Proof. Identify R with the direct product njEJ Aj where each Aj = lF2 (the 
field of two elements), and apply (3.11B). D 

(3.12) Example. Let S be a PRID (principal right ideal domain), and b 1= 0 be 
an element of S such that bS = Sb. Then the quotient ring R := S = SibS 
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is always right self-injective. To check this, consider any right ideal QI. = as/bS 
of R. To apply Baer's Test, we must try to extend any given R-homomorphism 
h : QI.-+ R to R. Write h(a) = s, where s E S. ("Bar" shall always mean taking 
image in S.) Write b = ac, c E S\{O}. We have 

0= h(O) = h(b) = h(ac) = sc = sc, 

so, using bS = Sb, we can write sc = tb = tac for some t E S. Canceling c 
gives s = ta, so h(a) = s = t a. Now extend h to R by sending I to t. 

(3.13) Corollary. (1) Z/nZ (n > 0) is a self-injective ring. (2) For any field k 
and any nonzero polynomial J(t) in k[t], k[t]/(f(t» is a self-injective ring. 

The statements (1) and (2) in this Corollary are very useful conclusions. For 
instance, using (1), one can give a pretty quick proof of Priifer's Theorem for 
abelian groups, which says that any abelian group killed by a fixed integer n > 0 
is a direct sum of cyclic groups (each necessarily killed by the same n). The second 
conclusion (2) has, also, some nice applications to linear algebra. In fact, if T is 
a linear operator on a finite-dimensional vector space V over a field k, then the 
subalgebra k[T] <::; Endk V generated by T is isomorphic to k[t]/(f(t» where 
J is the minimal polynomial of T. The fact that k[T] is self-injective can be 
used to give surprising alternative proofs to various facts about linear operators, 
for instance, the Jordan Canonical Form Theorem. These applications of (3.13) 
are given in more detail in the exercises of this section. 

We shall now come to another class of examples of self-injective rings. For the 
balance oj this subsection, let R be a finite-dimensional algebra over a field k. 
First we remark that the dual k-space 17 R = Homk(R, k) has the structure of an 
(R, R)-bimodule. The right and left R-actions on R are defined, respectively, by 

(rp . x)(r) = rp(xr), and (y. rp)(r) = rp(ry), 

where rp E R, and x, y, r E R (cf. the formation of M in (3.5», from which 
the bimodule law (yrp)x = y(rpx) easily follows. It is of interest to compare, say, 
the right R-module R with the right regular module RR. By definition, R is said 
to be a Frobenius algebra (over k) if we have an isomorphism R ~ R in 9JtR • 

Now recall from (3.6C) that R is always an injective right R-module. Therefore, 
we have: 

(3.14) Proposition. Any Frobenius algebra R over afield k is right self-injective. 

Now whether this can be used to generate good examples of right self-injective 
rings depends on what kinds of Frobenius algebras we can come up with. Before we 
give any examples, let us first provide some useful characterizations of Frobenius 
algebras. (The convention dimk R < 00 remains in force.) 

17For an R-module M, we write M for the k-dual of M, and reserve the notation M* 
for the R-dual HomR(M, R) of M. 
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(3.15) Theorem. For any k -algebra R, the following are equivalent: 

(l) R is a Frobenius algebra. 
(2) There exists a nonsingular bilinear pairing B : R x R ~ k with the 

following "associative" property: B(xy, z) = B(x, y;~) for all x, y, Z E 

R. 
(3) There exists a hyperplane 18 H in the k -space R which contains no nonzero 

right ideal. 

Proof. (1)==>(2). Fix an isomorphism f: R ~ R in 9JlR , so f(xy) = f(x)y. 
Define B: R x R ~ k by B(x, y) = f(x)(y) E k. Since f is an isomorphism, 
B is nonsingular. Also 

B(xy, z) = f(xy)(z) = (f(x)y)(z) = f(x)(yz) = B(x, yz). 

(2)==>(3). Let H be the hyperplane {z E R: B(1, z) = O}. Suppose H contains 
a right ideal 2l. Then, for any x E 2l,0 = B(l, x R) = B(x, R), so x = 0, and 
hence 2l = O. (A similar proof also shows that H contains no nonzero left ideal.) 

(3)==>(1). Fix a linear functional "A : R ~ k with ker"A = H, and define 
f: R ~ R by f(x)(z) = "A(xz). If f(x) = 0, then xR ~ ker"A = H imrhies 
that x = O. Therefore, f is one-one, and hence onto. Finally, for all x, y, Z E R: 

(f(x)y)(z) = f(x)(yz) = "A(xyz) = f(xy)(z). 

Therefore, f(xy) = f(x)y, so f is an isomorphism in 9JlR • D 

Remark. We have defined the notion of a Frobenius algebra by working in 9JlR • 

The characterization (2) above (or the observation made in parentheses in the proof 
of (2)==>(3)) shows, however, that "Frobenius algebra" is a left-right symmetric 
concept. (Alternatively, given the pairing B in (2), one checks directly that g : 

R ---+ R given by (y g)(x) = B (x, y) is an isomorphism in J? 9Jl.) In particular, 
we see that a Frobenius algebra must also be a left self-injective ring. 

(3.15), Corollary. Suppose k is an infinite field. If R has only finitely many minimal 
right ideals, then R is a Frobenius algebra. 

Proof. Let 2l1' ... , 2ln be all minimal right ideals, and fix a nonzero ai E 2li for 
each i. Since k is infinite, an easy exercise in linear algebra shows the existence of 
a hyperplane HeR avoiding a I, ... , an. If 2l# 0 is any right ideal, then 2l ;2 2li 
for some i. Then ai E 2l so 2l C£:. H. Now apply the theorem. D 

(3.15A) Example. Suppose k is infinite and the k-algebra R is a proper quotient 
of a Dedekind k-domain A. Then R is a Frobenius algebra. 19 (Say, R = AI I; 

18By a hyperplane, we mean here a hyperplane containing the origin, that is, a linear 
subspace of codimension 1. 

19This conclusion is in fact true without any assumption on k; see Exercise 15. 
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I =P O. Then there are only finitely many ideals of A containing I.) For instance, 
we can take R = k[t]/(f{t» where f =P O. 

(3.15B) Example. Let R be the commutative k-algebra k[x, y] with relations 
x 2 = y2 = 0, where k is any field. Then R is a (loeal) Frobenius algebra. 
To see this, let H be the hyperplane k + kx + kyo Suppose H ;2 aR, where 
a = a + bx + ey E R. Then H contains axy = axy, so a = O. Similarly, H 
contains ax = exy and ay = bxy, so b = e = 0 and a = O. This argument 
can be generalized easily to the algebra R = k[XI, ... , x r ] with the relations 
x7' = ... = x:' = 0 (where all ni > 0). Here, we take H to be ker{>..) where 
>..: R ---+ k is the k-linearmapsending ! E R to the coefficient of X7'-' ... x:,-I 
in f. In algebraic geometry, this algebra R arises naturally in the study of isolated 
singularities. For the polynomial 

G{X 1, ... , Xr ) = X7'+' + ... + X~,+I E qxl , ... , Xr ], 

which defines a variety with an isolated singularity at the origin, the algebra R 
above arises as 

qxl , ... , Xr]/U~" ... , ;~J 

This example becomes considerably more general if we take G to be any weighted 
homogeneous polynomial. 

(3.15B') Example. In contrast to (3.15B), we mention a couple of (commutative) 
non-Frobenius algebras. For instance, R = k[x, y]/{x, y),,+1 (for n ~ 1) is not 
Frobenius. One easy way to check this is to apply Exercise 14 in this section: for our 
algebra R, the images of x" and yn both generate I-dimensional (hence minimal) 
ideals. Another (non-Frobenius) example is S = k[x, y]J{x2, xyn+l, yn+Z). For 
this algebra, the images of x y" and y"+ I both generate I-dimensional ideals. (For 
more information about these two algebras, see (3.69) and (3.70), respectively.) 

(3.15C) Example. Let K ;2 k be a field extension of degree n < 00. Viewing 
K in the natural way as a {K, K)-bimodule, we can form the "trivial extension" 
R = K EEl K (defined in (2.22){A», with the multiplication 

(a, b)(e, d) = (ae, ad + be) for a, b, e, dE K. 

This is a commutative k-algebra of dimension 2n. The ideal J := CO) EEl K ~ R 
has square (0) with R/ J ~ K, so R is a local algebra with unique maximal ideal 
J. Also, J is a minimal ideal of R, since any nonzero element CO, b) E J has 
a multiple (ab- I , 0)(0, b) = (0, a) for any a E K. Therefore, the only ideals in 
Rare (0), J, and R. Clearly, then, (3.15){3) holds if we take H to be any k
hyperplane in R not containing J. It follows that R is a Frobenius k-algebra. This 
example can be extended to a noneommutative setting; see (16.60) and Exercise 
(16.22) below. 
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(3.15D) Example. Any k-division algebra R is a Frobenius algebra. (The only 
right ideals of Rare (0) and R, so we can take H to be any hyperplane.) From this, 
one can show easily that any semisimple k-algebra is also a Frobenius algebra; 
see Exercise 12. 

(3.15E) Example. If R is the group algebra kG, where k is any field and G is any 
finite group, then R is a Frobenius algebra. Of course, if char k f IGI, then R is 
semisimple by FC-( 6.1); in this case, we can use Exercise 12 mentioned above. 
For general characteristic, let A : kG --+ k be defined by A(I:agg) = al. Then 
ker(A) is the hyperplane 

H={a=L:ag g : al=O}' 

If 0 i- a E H, fix gi-l such that a g i- O. Then 

ag- I = a g • 1 + ... f/. H, 

so a R £ H. Thus, H has the property in (3.15)(3), so kG is always a Frobenius 
algebra. The proof of (3.15) also shows that a nonsingular bilinear function B on 
kG as in (3.15)(2) is given by B(a, fJ) = A(afJ) E k. 

(3.15F) Example. In commutative algebra, a finite-dimensional algebra Rover 
a field k is said to be hale if the standard trace function "tr" on the algebra R has 
the property that the pairing B : R x R --+ k defined by B(x, y) = tr(xy) is 
nonsingular. Such a pairing is always associative since 

B(x, yz) = tr(xyz) = B(xy, z). 

Therefore, an etale algebra is always a Frobenius algebra. This is not surprising 
since an equivalent definition for R to be an etale algebra is that R ~ K I x· .. x K n , 

where the K;'s are finite separable field extensions of k. Since each K; is a 
Frobenius algebra by (3.15)(3), so is their direct product R by Exercise 12. 

By (3.14), all of the above algebras are right (and left) self-injective. In general, 
however, a ring may be left self-injective without being right self-injective. An 
example of such a ring can be found in (3.74B). 

The class of rings that are I-sided or 2-sided self-injective has been under close 
scrutiny by ring theorists. These rings will emerge again in §13 (Chapter 5) in 
connection with the formation of the maximal rings of quotients. The study of two 
special classes of self-injective rings, called Frobenius rings and quasi-Frobenius 
(QF) rings (both generalizing finite-dimensional Frobenius algebras) will be taken 
up in §15 and §16 in Chapter 6. The above excursion on Frobenius algebras is 
intended to be just a quick preview of some of this deeper material to come. 

§3C. Injectivity versus Divisibility 

Returning now to the study of injective modules, we shall next investigate the 
close relationship between injectivity and the notion of "divisibility". 
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Let I be a right module over a ring R. If u E I and a E R, we shall say that 
u is divisible by a if u E I a; that is, if there exists an element v E I such that 
u = va. For such an element v to exist, we have clearly the following necessary 
condition: 

For x E R, ax = 0 ====} ux = 0, 

or, in the notation of annihilators, annr(a) ~ ann(u). This observation leads to 
the following definition. 

(3.16) Definition. We say that IRis a divisible module2o if, for any u E I and 
a E R such that annr(a) ~ ann(u), u is divisible by a. 

For any ring R, the following easy Proposition offers two slightly different 
statements to characterize the divisibility of a module. 

(3.17) Proposition. For any right R -module I, the following are equivalent: 

(1) I is a divisible module. 
(2) For any a E R, ann/(annr(a)) = la. 
(3) For any a E R, any R-homomorphism f : aR ~ I extends to an R

homomorphism from RR to I. 

Proof. First note that (2) is just a symbolic way of expressing the definition of 
divisibility, so we really need not distinguish (2) from (1). 

(1)====}(3). Let f E HomR(aR, I), and let u = f(a) E I. Then 

x E annr(a) ====} 0 = f(ax) = f(a)x = ux ====} x E ann(u). 

By (1), u = va for some v E I, so f extends to RR ~ I given by 1 ~ v. 

(3)====}(2). We need only prove "~" in (2). Let u E annl (annr(a)). The map 
f : aR ~ I given by f(as) = us (V s E R) is then a well-defined R
homomorphism. By (3), f is left multiplication by some v E I. Therefore, u = 
f(a) = va. D 

In Nicholson-Yousif [95], a module IR satisfying the condition (3) above is 
said to be "principally injective". The preceding proposition says that this is just 
equivalent to I being divisible in the sense of (3.16). In view of Baer's Theorem 
(3.7), we see that these notions amount to a sort of "weakened" injectivity for the 
module in question. In particular, we have the following immediate consequence 
of (3.17), which puts the relationship between injectivity and divisibility in good 
perspective. 

2°In many books, IRis defined to be divisible if any U E I is divisible by any non-O
divisor of R. We are firmly convinced that this is not the "correct" definition. Our later 
results relating divisibility and injectivity will fully justify our use of Def. (3.16); see, for 
instance, (3.72), (3.73), Exer. (3.43), and so on. 
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(3.17), Corollary. If IR is injective, then it is divisible. The converse holds if R 
is a principal right ideal ring (PRIR), that is, a ring in which all right ideals are 
principal. 

The fact that in general a divisible module need not be injective is clear from 
the (first) "only if" part of the following observation. 

(3.18) Proposition. A ring R is von Neumann regular iff every right R-module is 
divisible, iffevery cyclic right R-module is divisible. 

Proof. If R is von Neumann regular, every aR is a direct summand of RR, so of 
course any f E HomR(aR, IR) can be extended to R. Thus, any IR is divisible. 
Conversely, assume every cyclic right R-module is divisible. Then for any a E R, 
aR is divisible so the identity map aR ~ aR can be extended to RR ~ aR. 
This simply means that the inclusion map aR '-+ RR splits, so every a R is a 
direct summand of RR. This amounts to R being von Neumann regular. D 

Note that, in the simple case when R is a domain, the condition for I R to be 
divisible boils down to I = I a for every 0 -j. a E R. With this interpretation, 
it follows that, in this case, any epimorphic image of a divisible module is also 
divisible, and so are any direct sum or direct product of divisible modules. 21 This 
remark will be useful whenever we work with divisible modules over domains, 
for instance over the ring of integers. 

(3.19) Proposition. A Z-module (i.e., an abelian group) is injective iff it is divis
ible. Any Z-module A can be embedded in an injective Z-module. 

Proof. The first statement is a special case of (3.17)'. To provt: the second state
ment, we identify A with a quotient F / H, where F is a free abelian group and 
H <; F is a subgroup. Expressing F as a direct sum of Z 's, we can embed F 
into a group K that is a direct sum of Ql 'so Since Ql is divisible (as a Z-module), 
K and hence also K / H are divisible. We are done by embedding A = F / H into 
K / H, and noting that K / H is an injective Z-module (by the first part). D 

The Proposition we just proved leads us quickly to the following major result 
in the theory of injective modules. 

(3.20) Theorem. For any ring R, any A E 9JlR can be embedded in an injective 
right R-module. 

Proof. First view A as a Z-module and embed it into an injective Z-module M, 
by (3.19). Now recall that M := Homz(R, M) is a right R-module via the action: 

(fr)(r') = f(rr') (for f E M, r, r' E R), 

21This statement is certainly not true in general over non domains. 
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and that MR is, in fact, injective by (3.6B). We finish by showing that A can be 
embedded in M. Define e : A 4- M by e(a)(r) = ar (a E A, r E R). This is an 
R-homomorphism since 

e(as)(r) = a(sr) = e(a)(sr) = (e(a)s)(r) 

foreverys E R.Finallye(a) = o implies that a = e(a)(1) = O,soeisthedesired 
embedding. 0 

(3.21) Remark. A more symbolic way to present the preceding proof is simply to 
note: 

A ~ HomR(R, A) ~ Homz(R, A) ~ Homz(R, M) = M. 

The next question to ask in the theory of injectives is, naturally, whether there 
is any degree of uniqueness on the embedding of A in an injective module. Before 
we take up this important topic, let us first pause to give a couple of applications 
of (3.20). We have seen in §2 that a ring R is right hereditary iff submodules of 
right projective R-modules are projective. The following is the injective analogue 
of this characterization. 

(3.22) Theorem. A ring R is right hereditary iff quotients of right injective R
modules are injective. 

Proof. Assuming first that quotients of right injectives are injective, we must 
check that any right ideal 2l ~ R is projective. Now that we have proved (3.20), 
we can apply the Modified Projectivity Test (Exercise 2.16) to achieve this goal; 
namely, we need only check that, for any epimorphism h : I 4- I', where IRis 
injective, any f E HomR(2l, I') can be lifted to some f' E HomR(2l, I). But by 
assumption, I' is also injective, so f can be extended to g : R 4- I', and, since 
RR is projeCtive, g can be lifted to k : R 4- I. We are done by choosing f' to 
be the restriction of k to 2l. 

The converse is done simply by "dualizing" the above argument. Even the diagram 
is the same; we'll leave it as a fun exercise. (Baer's Criterion will play the role of 
the Modified Injectivity Test.) 0 

(3.23) Corollary. Let R be a domain. If divisible right R -modules are all injective, 
then R is right hereditary. 
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Proof. By (3.22), it suffices to check that a quotient I' of an injective module I R 

is also injective. By (3.17)', I is divisible, and since R is a domain, I' is also 
divisible. By assumption, I' must then be injective, as desired. D 

(3.24) Corollary. Let R be a commutative domain, with quotient field K. Then 
divisible R -modules are injective iff R is a Dedekind domain. 

Proof. The "only if" is the commutative case of (3.23). For the "if" part, assume 
R is Dedekind, and let M be a divisible R-module. We apply Baer's Criterion to 
test the injectivity of M. Thus, let f : 2l --+ M, where 2l ~ R is a right ideal. We 
may assume 2l -j. 0, so we have an equation L ai bi = 1, where 0 -j. ai E 2l and 
bi E 2l- 1 ~ K. Since M is divisible, there exist mi E M such that f (ai) = mjaj. 
Now we have, for any a E 2l: 

f(a) = f( Lajbja) = L f(aj)(bja) 

= L(mjaj)(bja) = Lm;(ajbja) 

= (Lmi(ajbj»)a, 

(note bja E R) 

so we can extend f to I' : R --+ M by taking 1'(1) = Lmj(ajbj). (A small 
but subtle point: It is best to keep the parentheses around aibj E R, since (mjaj )b j 

may not make sense!) D 

While we are still on the subject of commutative domains, it is worth pointing out 
that there is another case in which we can prove that divisibility implies in jectivity. 

(3.25) Proposition. Let R be a commutative domain, and Mil be a torsion-free 
module (i.e., mr = 0 :::} m = 0 or r = 0). Then M is injective iffit is divisible. 

Proof. ("If" part) Let M be divisible. We test again that any f E HomR (2l, M) can 
be extended to R, where 2l is a nonzero ideal in R. Fix an elt:ment 0 -j. a E 2l, 
and choose m E M such that f(a) = mao For any bE 2l, we have 

f(b)a = f(ba) = f(ab) = f(a)b = mab = mba. 

Since M is torsion-free, we get feb) = mb for all b E 2l. D 

Example. In view of (3.24) and (3.25), it is of interest to give an explicit example 
of a module M over a commutative domain R that is divisiblt: but not injective. 
For this we can take the polynomial ring R = Z[x] and the R-module M = K / R, 
where K = Q (x) is the quotient field of R. Clearly M R is divisible; we'll leave 
it to the reader to show that M R is not injective. 
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§3D. Essential Extensions and Injective Hulls 

Next we shall present the basic theory of injective hulls of arbitrary modules, due 
to Eckmann-Schopf and Baer. Our exposition here follows that of Lambek [66] 
which seems difficult to improve upon. We begin by introducing the notion of an 
essential extension. 

(3.26) Definition. A right R-module E ;2 MR is said to be an essential extension 
of M if every nonzero submodule of E intersects M nontrivially. An essential 
extension E ;2 M is said to be maximal if no module properly containing E can 
be an essential extension of M. 

If E ;2 M is an essential extension, we shall also say that M is an essential 
(or large) submodule of E, and write M ~e E to denote this fact. 22 The notion 
of a large submodule is "opposite" to that of a small (or superfluous) submodule: 
recall from FC-(24.1) that a submodule S ~ E is small (written S ~,' E) if, for 
any submodule N ~ E, S + N = E implies that N = E. 

(3.27) Remarks. 

(1) M ~e E iff, for any nonzero a E E, there exists r E R such that 0 i- ar EM. 

This is a rather obvious fact that hardly requires a proof. Nevertheless, it provides a 
convenient way to verify M ~e E; in fact, most of the time, we check essentiality 
by applying this criterion. 

(2) (Transitivity) If M ~e E and E ~e E', then M ~e E'. This follows quickly 
from (1), or directly from definition. The transitivity property for essentiality is 
regarded as basic; in the sequel, we shall sometimes apply it without explicit 
mention or reference. 

The notion of an essential extension leads to a new interpretation of injectivity, 
as follows. 

(3.28) Lemma. A module MR is injective iffit has no proper essential extensions. 

Proof. First assume M is injective, and consider any proper extension E ;;2 M. 
By (3.4)(2), we have E = M EEl N for some submodule N i- O. Here N n M = 0, 
so E ;2 M is not an essential extension. Conversely, assume that M has no 
proper essential extensions, and embed M in an injective module IR • By Zorn's 
Lemma, there exists a submodule S ~ I maximal with respect to the property that 
S n M = O. Then in the quotient 1/ S, any nonzero submodule S' / S intersects 
the image of M nontrivially, so im(M) ~e 1/ s. By assumption, we must have 

22There seems to be no universally accepted notation for essential extensions. Many 
different notations have been used in the literature. Our notation here follows that of 
McConnell-Robson [87] and Goodearl-Warfield [89]. 
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im(M) = 1/ S. This means that I 
(3.4)(1). 

M EB S, so M is an injective module by 
o 

(3.29) Lemma. Any moduLe M R has a maximaL essentiaL extension. 

Proof. Fix an injective module I ;2 M, and consider any family of essential 
extensions of M in I that are linearly ordered by inclusion. By (3.27)(1), it is 
clear that the union of the family is also essential over M. By Zorn's Lemma, 
it follows that we can find a submodule E maximal with respect to the property 
that M S;e E S; I. We claim that E is a maximaL essentiaL extension of M. 
Indeed, if this is false, we would be able to find an embedding E S;; E' such that 
M S;e E'. (Note. E' is just some R-module; it may not be in I.) By the injectivity 
of I, the inclusion map E S; I can be extended to some g : E' -? I. Clearly 
(ker g) n M = 0, so M S;e E' implies that ker g = O. We can therefore identify 
E' with g(E'). But then M S;e E' contradicts the maximal choice of E. 0 

Now we are ready for the main results of Eckmann-Schopf and Baer. 

(3.30) Theorem. For moduLes M S; I, the following are equivaLent: 

(1) I is maximaL essentiaL over M. 
(2) I is injective, and is essentiaL over M. 
(3) I is minimaL injective over M. 

Proof. (1)===}(2). By the Transitivity Property in (3.27)(2), (1) implies that I has 
no proper essential extension. Therefore, I is injective by (3.28). 

(2)===}(3). Let I' be an injective module such that M S; I' S; I. By (3.4)(2), 
I = I' EEl N for some submodule N S; I. Since N n M = 0, we must have N = 0 
(since M S;e I), so I' = I. 

(3)===}(l). Assume I is minimal injective over M. The proof of (3.29) yields a 
submodule E S; I that is maximal essential over M. Using (l)===}(2), we know 
that E is injective, and therefore E = I, which proves (1). 0 

(3.31) Definition. If the modules M S; I satisfy the (equivalent) properties 
(1), (2), (3) above, we say that I is an injective hull (or injective enveLope) of 
M. (By (3.29), any module M has an injective hull.) 

(3.32) Corollary. Any two injective huLLs, I, I' of M are isomorphic over M; 
that is, there exists an isomorphism g : I' -? I which is the identity on M.23 

(From now on, we shall write E(M) for "the" injective hull of M.) 

23In general, however, this isomorphism is not unique. 
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Proof. By the injectivity of I, we can find g : I' ---+ I extending the inclusion map 
M ---+ I. As in the proof of (3.29), we have ker g = 0, since M S;e I'. Therefore, 
g(J') is an injective submodule of I containing M. Now the property (3) in (3.30) 
implies that g (J') = I, so g : J' ---+ I is the desired isomorphism. D 

Similar arguments, together with (3.27)(2), can be used to prove the following 
related results. 

(3.33) Corollary. (I) If I is an injective module containing M, then I contains a 
copy of E(M). (2) If M S;e N, then N can be enlarged into a copy of E(M). In 
fact, E(N) = E(M). 

The injective hull of M is an injective module I for which there is a monomor
phism M ---+ I whose image is "large". The projective cover of M is a projective 
module P for which there is an epimorphism P ---+ M whose kernel is "small" 
(cf. FC-p. 361). These are, therefore, dual notions. We have just seen that the in
jective hull of a module always exists. However, we have seen earlier (in FC-§24) 
that the projective cover of a module exists only over a very specific class of rings! 

We now give some examples of injective hulls of modules. 

(3.34) Example. Consider M S; I = E(M), and let N be any module such that 
either N S;e M or M S; N S; I. Then E (N) = I as well. (This follows from 
(3.33)(2).) 

(3.35) Example. Let R be a commutative domain with quotient field K. From 
(3.9), we know that KR is injective, and, by checking (3.27)(1), we know that 
R S;e K (as R-modules). Therefore, E(R) = K. More generally, consider any 
torsion-free module MR. Localizing at the multiplicative set S = R\{O}, we get 

M ®R K = S-IM;2 M, 

which is again easily seen to be an essential extension. Now, M ® R K is a K -vector 
space, so by (3.9) it is injective as an R-module. From this and what we said above, 
it follows that E(M) = M ®R K = S-l M. 

(3.36) Example. In the case R = Z, E(M) is what is usually known as the 
"divisible hull" of the abelian group M. Let Cn denote the cyclic group of order 
n. For any prime p, let Cpx (the "Priifer p-group") be the ascending union of 
the groups 

(3.37) C p C C p 2 C Cpl C .... 

Then C p= is p-divisible, and hence divisible. (It is isomorphic to the p-primary 
part of Q/Z.) By (3.19), Cp'" is Z-injective, and by (3.27)(1), Cp"" is essential 
over any C p' (i ::: 1). Therefore, E (C pi) = C p"'- for all i ::: 1. 

(3.38) Example. In general, over any ring R, if M j S; E j for all j E J, then 
E9 M j S;e EEl E j iff M j S;e E j for all j. The "only if" part is obvious. For the 
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"if" part, it suffices to check the case of a finite direct sum (by (3.27)(1)). Writing 
1 = {1, 2, ... , n}, and using the Transitivity Property, we need only check that 

M, E9 E2 E9 ... E9 En ~e E, E9 E2 E9 ... E9 En 

whenever M, ~e E,. This case is quickly checked again by using (3.27)(1). Now 
assume that all the Ej's are injective. If 111 < 00, then by (3.4)(1) EBjEJ E j IS 

also injective, so we get 

(3.39) (111<00). 

Specializing to R = Z, all the Ej's are divisible abelian groups. The direct sum 
EBjEJ E j is also divisible, and hence Z-injective, for an arbitrary indexing set 1. 
Therefore, (3.39) holds for Z-modules without any assumptions on 1. In particular, 
if we take 1 = {all primes} and M p = C p for pEl, then this gives 

(3.40) 

The latter group is isomorphic to QljZ, and also to the torsion subgroup of the 
circle group S'. 

(3.41) Example. Let R be a finite-dimensional algebra over a field k. We have 
shown that R = Homk(R, k), viewed as a right R-module as in (3.6C), is injective. 
We shall show that R is infact the injective hull of the right R-module Rjrad R, 
where rad R is the Jacobson radical of R. To see this, let S be the socle of (R)R, 
i.e. the sum of all simple R-submodules of R. Since any nonzero submodule 
contains a simple submodule, we see that S ~e R. Therefore, E(S) = R. It 
remains to identify the isomorphism type of S as a right R-module. Using FC
Exercise (4.18), we have 

S = {f E R: f· rad R = O} 

= {f E R: f(rad R) = O} 

~ (Rjrad Rf. 

Now, the semisimple algebra Rjrad R is a Frobenius k-algebra by Exercise 12; 
that is, (Rjrad Rf ~ Rjrad R. This is an isomorphism of right Rjrad R-modules, 
and hence also an isomorphism of right R-modules. We have thus shown that 
S ~ (Rjrad R)R and so R ~ E«Rjrad R)R). In particular, we see that (R)R is 
independent of the choice of k. This fact has an interesting consequence: it shows 
that the property of R being a Frobenius k-algebra is actually independent of k 
(as long as R is a finite-dimensional k-algebra). (For a much more precise version 
of this, see (16.21).) 

Before we give more examples of injective hulls, we first describe another useful 
method for checking the injectivity of a module. 

(3.42) Lemma. Let R be a subring of a ring S, and Q3 be a nonempty subset of R 
such that S . Q3 ~ R. Let Is be a right S-module on which Q3 has zero annihilator 
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(i.e.,for i E I, i . '.B = 0 ===} i = 0). If I is injective as an S-module, then I is 
also injective as an R -module. 

Proof. It suffices to show that for any right ideal 2( ~ R, any f E HomR(2(, I) 
can be extended to some g E Horns (2( . S, I) for g can then be extended to S 
by the injectivity of Is. We construct g as follows: 

(ai E 2(, Si E S). 

To show that this is well-defined, suppose Laisi = O. For any bE IB, we have 
sib E S· IB ~ R, so from Laisib = 0, we get L f(ai)(sib) = 0 by applying 
f. This means that L f(ai)si E I is killed by every b E IB, so by assumption, 
L f(ai )Si = O. This shows that the g above is well-defined, from which it is clear 
that g is an S-homomorphism. This completes Baer's Test for the injectivity of 
I R • 0 

(3.43) Example. Let S = MIn (k), where k is a semisimple ring, and let IB be 
the left ideal of S consisting of all matrices with nonzero entries only on the nth 

column. Then the left annihilator of '.B in S is clearly zero, since a nonzero matrix 
cannot left-annihilate every column vector. And, of course, we have S . '.B = lB. 
Thus, we can apply (3.42) with I = Ss and R any subring of S containing 
lB. Note that S is a semisimple ring so all right S-modules, in particular Ss, are 
injective. Moreover, the fact that, for s E S, s . IB = 0 ===} s = 0 implies that 
RR ~e SR, by (3.27)(1). Therefore, applying (3.42), we arrive at the conclusion 
that E(RR) = SR. This conclusion is possibly surprising, since all we need to 
assume about the subring R is that it contains lB. For instance, R may not even 
contain k, the subring of all scalar matrices. Some explicit examples of Rare 
given below. 

(3.43A) R = subring of all upper triangular n x n matrices over k. 

(3.43B) R = subring of matrices with nonzero entries only on the diagonal and 
on the nth column. 

(3.43C) R = subring of the ring in (3.43B) consisting of matrices with a constant 
diagonal. 

(3.43D) (n = 3) R consisting of all matrices (aU) with a31 = a32 = o. 

(3.43E) (n = 3) R consisting of all matrices (aij) with al2 = a31 = a32 = O. 
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Let us analyze a couple of these examples in more detail. The most basic example 
is perhaps (3.43A). Thus, let R be the ring of all n x n upper triangular matrices. 
For simplicity, let us assume that k is a division ring. In this case, we have the 
following decompositions: 

(3.44) 

where Ei is the (minimal) right S -ideal consisting of matrices with nonzero entries 
only on the i 1h row, and Pi = Ei n R. (The Pi'S are the principal indecomposable 
right R-modules; see FC-p.377.) From R S:::e S, we have Pi ';e Ei for all i, by 
(3.38). Also, since SR is injective, each (Eih is injective, so we have E(Pj ) = Ei 
for all i. Here, all E;'s are isomorphic as S -modules, and therefore also as R
modules. The fact that the Pi'S have the same injective hull is not surprising, since 
each Pi is isomorphic to an essential R -submodule of Pl. (Note that PI = E I is 
both projective and injective in !JJ1R, as well as in !JJ1s .) 

In the example above, we also have E (R R) = S, by a similar argument with left 
modules. For this, we have to apply the left-module version of (3.42), choosing 23 
to be the right ideal of S consisting of matrices with nonzero entries only on the 
first row. 

The situation is different, however, with the subring in (3.43B). To avoid con
fusion, let us rename this subring T. While we have E (Tr) == S on the general 
ground of (3.43), we do not have E(TT) = S, for n ::: 3. In fact, for the matrix 
unit E12 E S, we see easily that T . E12 n T = (0), so S 2 TT is not even an 
essential extension. Thus, (3.43) does not yield any information on the injective 
envelope E(TT). 

In (3.35), we have seen that, for a commutative domain R, E(RR) is the quotient 
field of R. In (3.43), we have constructed many examples of rings R for which 
E(RR) has the form M" (k); in particular, E(RR) turns out to have a ring structure 
that is compatible with the right R-module structure on E(RR)' However, the 
following remarkable example from Osofsky [64] shows that, in general, E(RR) 
may not have such a ring structure. 

(3.45) Osofsky's Example. Let A be the ring ::2:/4::2:, Q{ = 2A, and let R be the 

"triangular ring" (~ ~) of 32 elements (see FC-(1.l4)). We claim that any 

injective module E R 2 R cannot be given a ring structure compatible with the 
right R-module structure on E. (In particular, R #- E(RR)') Indeed, consider 

the ideal I = (~ ~ ). Viewing I as a right ideal of R, we can find a copy of 

E(l) 2 I inside E. There exists an element x E E(l) solving the equation 

X.(~ ~)=(~ ~), 
since E(l) is divisible, and it is easy to check that the right R-annihilator of 

( ~ ~) is contained in that of (~ ~ ). Similarly, we can check that there 
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exists Y E E such that 

Y'2=(~ ~). 
We claim that x . (~ ~) = O. Indeed, assume x . (~ ~) -I- O. Then, since 

I <;e E(/), x . (~ ~) R n I -I- o. But 

x . (~ ~) R = {x (~ ~) (~ 2:): a, b, C E A} 

={x(2; ~): aEA} 
= {o, x (~ ~)}. 

Therefore, we must have x (~ ~) = (~ ~) (the only nonzero element in 

I). But right multiplication by (~ ~ ) leads to x (~ ~) = 0, a contradiction. 

If E has a ring structure compatible with its right R-module structure, it would 
follow that 

a final contradiction. (For more information on the ring R, see (7.6)( 6) and Exercise 
(8.16).) 

In the above example, the ring R is not Jacobson semisimple; in fact, rad(R) is 

given by (~ :). In a later paper, Osofsky [67] has also constructed examples 

with similar properties that are Jacobson semisimple. 

§3E. Injectives over Right Noetherian Rings 

As a first application of the formation of the injective hull, we prove the following 
result which gives a somewhat surprising characterization of right noetherian rings. 
More results of a similar spirit will be given in (3.48). 

(3.46) Theorem (Bass, Papp). For any ring R, the following statements are equiv
alent: 
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(1) Any direct limit of injective right R-modules is injective. 
(2) Any direct sum of injective right R -modules is injective. 
(3) Any countable direct sum of injective right R-modules is injective. 
(4) R is a right noetherian ring. 

Proof. We shall prove that (1)==>(2)==>(3)==>(4)=}(1). 

(1)==>(2) follows from the fact that any direct sum of right R-modules can be 
re-interpreted as a direct limit of its finite partial sums. 

(2)==>(3) is a tautology. 

(3)==>(4). Consider any ascending chain of right ideals 2t\ !:; 2t2 !:; .... Let 2t 
be their union, and let 

Define the map f : 2t ~ E by sending a E 2t to (a + 2ti)i~\ where a + 2ti 
is viewed as an element in R/2ti !:; E(R/2ti). Notice that, since a E 2ti for 
sufficiently large i, f(a) is indeed in the direct sum E in (*). By our hypothesis 
(3), ER is injective, so the R-homomorphism f can be expressed in the form: 

f(a) = ea (VaE2t), 

where e = (ei)i:,:\ is a suitable element in E. Now for sufficiently large i, we 
have ei = 0, so we also have, for any a E 2t, 0 = f(a)i = a + 2ti. This means 
that 2t = 2ti for sufficiently large i, so we have proved that right ideals of R 
satisfy ACe. 

(4)==>(1). Let I be a direct limit lim 101 , where each 101 E 9JtR is injective, 
----> 

and a ranges over a directed set. To apply Baer's Test to I R, consider any f E 

HomR(2t, I), where 2t is any right ideal of R. Since R is right noetherian, 2tR 
is f.g., so f(2t) is contained in im(lOl) for some a. Pick a f.g. submodule A !:; 101 
that maps onto f (2t) in the direct limit, and let B be defined by the short exact 
sequence 

o ~ B ~ A ~ f(2t) ~ O. 

Since AR is f.g., so is BR (FC-(1.21». This together with the fact that B "be
comes" zero in the direct limit imply that, for some fJ 2': a, B maps to zero in 
Ip. Letting A' be the image of A in Ip, we have then A' ~ f(2t) under the map 
i p : I p ~ I. Therefore, we can "factor" f through a homomorphism g : 2t ~ I p 
(so that f = ip 0 g). Since Ip is injective, g can be extended to R; clearly this 
implies that f can be extended to R as well. This completes Baer's Test, so we 
have proved the injectivity of I. 0 

(3.47) Remarks. 

(A) If we are willing to forgo Condition (1) in the Theorem, the clinching implica
tion (4)==>(2) is considerably easier. Indeed, if {lOl} are injective modules and R 
is right noetherian, then for any right ideal2t !:; R and any f E HomR (2t, ED 101 ), 
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im(f) is contained in some la, EB ... EB Ia" since !21.R is f.g. Using the injectivity 
of la, EB··· EB Ia", we can then extend f to R. 

(B) Let {Ma} be right modules over a right noetherian ring R. Then E9a E(Ma) is 
injective by (3.46). But we also have E9a Ma S;e E9a E(Ma) by (3.38). Therefore, 
we get E(E9a Ma) ;:::: E9a E(Ma) in this case. 

The theorem of Bass and Papp (ca. 1959) was among the first major results on 
direct sums of injective modules, though the implication (4)===}(1) in the theorem 
was known earlier to Cartan and Eilenberg (see [56: p. 17, Exercise 8]). Developing 
this theme further, we next obtain another result characterizing right noetherian 
rings R in terms of the decomposition of injective right R -modules. In the following 
theorem, (1)-<==:>(2) is due to Matlis [58] and Papp [59], while (1)-<==:>(3) is due 
to Faith-Walker [67]. 

(3.48) Theorem. For any ring R, the following are equivalent: 

(1) R is right noetherian. 
(2) Any injective module M R is a direct sum of indecomposable (injective) 

submodules. 
(3) There exists a cardinal number ex such that any injective module M R is a 

direct sum of (injective) submodules of cardinality ::::; ex. 

Proof. (1)===}(2). We first show that, given (1), any injective module ER =1= 0 
contains an indecomposable injective submodule. Indeed, taking a nonzero x E E, 
it suffices to consider the case when E = E(xR) (see (3.33)(1». In view of (1), 
x R cannot contain an infinite direct sum. Since x R S;e E, E also cannot contain 
an infinite direct sum. From this, we see easily that E contains an indecomposable 
injective submodule. Now, for any injective module M R , consider all families 
of indecomposable injective submodules of M whose sum is direct. By Zorn's 
Lemma, there exists such a family {M; : i E I} that is maximal. Then 

(for some E S; M) 

since E9; M; is injective by (4)===}(2) in (3.46). The first part of the proof implies 
that the injective module E must be zero, so M = E9; M; as desired. 

(2)===}(3). Consider any indecomposable injective module E R , and letO =1= x E E. 
In view of (3.33)(1), E = E(x R), so E ~ E(R/!21.) for some right ideal !21. S; R. 
Thus, (2) implies that any injective M R is a direct sum of submodules isomorphic 
to the ones in the following list: 

{E(R/!21.): !21. S; R is a right ideal}. 

Since this is a set, (3) follows by taking ex to be, say, L 1 E(R/!21.) I· 

(3)===}(1). Let ex be a cardinal as in (3). By (3.46), it suffices to show that, for any 
nonzero injective right modules M J, M2, ... , M := MJ EB M2 EB ... is injective. 
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Let {3 = a + IMI (an infinite cardinal), and 

(3.49) M"=n M', 
C 

where ICI > {3. By (3.4), M' and Mil are injective. Therefore, by (3), Mil = 
EBbEB h for suitable submodules h with cardinality ~ a. We shall construct 
disjoint subsets BI. B2,'" ~ B with IBjl ~ {3 such that each M j can be 
embedded (necessarily as a direct summand) in EBbEB h. This will show that M 

} 

embeds as a direct summand in EBbEB Ib = Mil, and hence M is injective! To 
construct the B j 's, we use induction. Suppose B I , ... , Bn have been constructed, 
and let 

N = E9Ub: bE BI U··· U Bn} ~ Mil. 

Since IBIU .. ·UBnl ~ {3 andeach I/bl ~ a ~ {3,wehave INI ~ {3. From (3.49), 
Mil ;2 EBcEC Xc, where each Xc ;:;:: Mn+l • If N n Xc f 0 for each c E C, we 
would have INI ::: ICI > {3, which is not the case. Therefore, there exists c E C 
such that N n Xc = O. Hence Xc can be embedded in 

M"jN = E9Ub: bE B\(BI U··· U Bn)}. 

Since IXcl = IMn+11 ~ {3, Xc;:;:: Mn+1 can already be embedded in EBbEBn+1 Ib 
for a suitable Bn+1 ~ B\(BI U ... U Bn) with IBn+11 ~ {3. This completes the 
inductive construction of the B j 'so 0 

It is nice to have proved the above characterization theorem for right noetherian 
rings in terms of the decomposition properties of their injective right modules. For 
most practical purposes, however, the following special case of the theorem will 
be sufficient. This result depends only on (l)====>(2) of (3.48). 

(3.50) Corollary. Let N be af.g. right module over a right noetherian ring. Then 
E(N) is a finite direct sum of indecomposable injectives. 

Proof. By (l)====>(2) of (3.48), E(N) = EBi Mi where the Mi 's are indecom
posable. Since N is f.g., we have N ~ Mil EB ... EB Min for suitable it. ... , in. 
But this is an essential extension, since N ~e E(N). Therefore, we must have 
E(N) = Mil EB··· EB Min' 0 

It can be shown that this Corollary is already true for any noetherian module N 
over any ring R. The proof of this uses some of the material in the next subsection; 
see Exercise 21, or more generally, (6.12). 

§3F. Indecomposable Injectives and Uniform Modules 

In view of (3.48) and (3.50), the important role of the indecomposable injective 
modules is now apparent (at least over right noetherian rings). We need a good 
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working list of alternative characterizations for such modules. This is preceded by 
a couple of necessary definitions. 

Definition. A nonzero module M R is called uniform if any two nonzero submod
ules of M intersect nontrivially (equivalently: any nonzero submodule of M is 
indecomposable, or else: any nonzero submodule of M is essential in M). A right 
ideal I2l C;;; R is called (right) meet-irreducible if the cyclic module (Rjl2l)R is 
uniform (or equivalently, for right ideals 23, 23' ;2 12l, 23 n 23' = I2l implies that 
23 = I2l or 23' = 12l). 

(3.51) Examples. 

(1) For any M R, we have the obvious implications: 

simple ===> uniform ===> indecomposable. 

Over a semisimple ring, all three notions coincide. Over R = Z, however, Z, Q, and 
Zj pn Z (n :::: 2, p = prime) are all uniform, but not simple. Over the commutative 
Q-algebra R = Q[u, v] defined by the relations u2 = v2 = uv = 0, the right 
regular module RR is indecomposable, but is not uniform as it contains the direct 
sum of the two nonzero ideals Q u and Q v. (R here is a special case of the first 
algebra in Example (3. I 5B').) 

(2) For a commutative ring R, a prime ideal \.1 C R is always meet-irreducible. 
For, if 23, 23' ;2 \.1 ,md 23 n 23' = \.1, then 2323' ~ \.1, so we must have 23 = \.1 
or 23' = \.1. However, a primary ideal need not be meet-irreducible, even in a 
noetherian ring R. For instance, in the polynomial ring Q [x, y], 

I2l = (x 2, xy, y2) = (x, y)2 

is a primary ideal, but as we saw in (1), Q [x, y lIl2l is not uniform, so I2l is 
not meet-irreducible. On the other hand, over a commutative noetherian ring, any 
meet-irreducible ideal is primary; see Zariski-Samuel [58: Vol. 1, p. 209], or (3.80) 
below. 

(3) If R is not commutative, a prime ideal \.1 need not be (right) meet-irreducible. 
For instance, in R = M2(Q), the zero prime ideal can be written as 23 n23' where 

23 = (~ ~). 23' = (~ ~). (Where does the proof in (2) break down??) 

For more information about this, see Exercise 55. 

(3.52) Theorem. For any injective right module M over a ring R, the following 
conditions are equivalent: 

(1) M is indecomposable. 
(2) M i= 0, and M = E(M') for any nonzero submodule M' ~ M. 
(3) M is uniform. 
(4) M = E(U)for some uniform module U. 
(5) M = E(Rjl2l) for some meet-irreducible right ideal I2l C R. 
(6) M is strongly indecomposable; that is, E = End(MR) is a local ring. 
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Proof. (1 )===}(2)===}(3)===}( 4) are obvious (or very easy). 

(4)===}(5). Let V i- 0 be a cyclic submodule of U. Since U is uniform, V ~e U. 
But then V ~e E(U) by (3.27)(2), and this gives M = E(V). We are done by 
identifying V with RI21 for a (necessarily meet-irreducible) right ideal 21 c R. 

(5)===}(6). Here M = E(U) where U ~ RI21 is uniform. If a is a nonunit in 
E = End(M R), then ker a i- O. (If ker a = 0, then im(a) S;; M. But im(a) ~ M 
is injective, so M = im(a) EB A for some A i- O. Both im(a) and A must intersect 
U nontrivially, contradicting the fact that U is uniform.) Therefore, un ker a i- O. 
If f3 is another non unit in E, then likewise U n ker f3 i- 0 and we have 

ker(a + (3) :2 (U n ker a) n (U n ker (3) i- O. 

This implies that a + f3 is a nonunit in E; hence E is a local ring, by FC-(l9.1). 

(6)===} (1 ). If E is a local ring, it does not have nontrivial idempotents. 0 

(3.53) Corollary. If an injective module IR can be written as MJ EB ... EB Mn 
where the Mi 's are indecomposable, then n is uniquely determined, and (up to 
a permutation) so are the isomorphism types of the indecomposable summands 
M J , ••• , Mn. (This conclusion applies, in particular, to the direct decomposition 
of I = E(N), where N is a fg. right module over a right noetherian ring; see 
(3.50).) 

Proof. Since each Mi is strongly indecomposable, the Krull-Schmidt-Azumaya 
Theorem (FC-(l9.21» applies. 0 

Remark. Using an infinite version of the KS-Azumaya Theorem, it can be seen 
that the uniqueness statement in (3.53) also holds for infinite direct sums of inde
composable injectives. However, in FC, we have only proved the finite version of 
the KS-Azumaya Theorem, so we have to settle with (3.53) here. 

With the help of (3.52), we can make a good start toward the classification of 
the right indecomposable injectives over a ring R. To this end, we introduce the 
notion of the associated prime ideals of a right module, which is of interest in its 
own right. (For the definition and characterization of prime ideals in an arbitrary 
ring, see FC-(lO.2).) First we need a lemma. 

(3.54) Lemma. We say that a module N R is prime if N i- 0, and ann(N) = 

ann(N') for any nonzero submodule N' ~ N. For any such prime module N, 
p := ann(N) is always a prime ideal in R. 

Proof. Clearly p i- R, since N i- 0. Now assume there exist ideals 21, 113 =2 
P such that 21113 ~ p. Then, N' := N21 is a nonzero submodule of N with 
ann(N') :2 113 =2 p, a contradiction. 0 
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Definition. Let M be a right R-module. An ideal p of R is called an associated 
prime24 of M if there exists a prime submodule N ~ M such that I' = ann(N). 
(Note that I' is indeed a prime ideal by (3.54).) The set of associated primes of 
M is denoted by Ass(M). For instance, Ass(O) = 0; and, if N is a prime module, 
then Ass(N) = {ann(N)}. 

(3.55) Example. Let I' be an ideal in R. Then N = (R/p)R is a prime module 
iff I' is a prime ideal, in which case we'll have Ass(N) = {pl. Ineed, if N 
is a prime module, then, as we have observed above, ann(N) = I' is a prime 
ideal. Conversely, assume I' is a prime ideal and consider any nonzero submodule 
N' = 21/1' ~ R/p, where 21 ;;2 I' is a right ideal. We have for any r E R: 

N' . r = 0 <===> 21· r ~ I' <===> 21· (r R) ~ I' <===> rEp. 

Hence ann(N') = I' = ann(N), so N is a prime module, with Ass(N) = {pl. 

In commutative algebra, Ass(M) is defined a little differently. The following 
lemma reconciles this difference. 

(3.56) Lemma. Assume that R is commutative, and M is a right R-module. Then, 
a prime ideal I' belongs to Ass(M) iff I' = ann(m) for some m E M. 

Proof. First, let I' E Ass(M), so I' = ann(N) for a suitable prime submodule 
N ~ M. Fixing any element m =I- 0 in N, we have I' = ann(mR) = ann(m) 
(by commutativity). Conversely, suppose I' is a prime of the form ann(m), where 
m E M. Then mR ~ R/p is a prime module by (3.55), so its annihilator I' E 

Ass(M). 0 

You can perhaps try to remember (3.56) as follows: basically, it says that, in the 
commutative case, I' is an associated prime of M iff you can find "a copy of" 
R/p in M. A few more remarks (in the general case) should help. 

(3.57) Remarks and Examples (over an arbitrary ring R). 

(1) If M' is a submodule of MR, then Ass(M') ~ Ass(M). 

(2) If M' ~e M, then, using (1) and the definition of associated primes, we 
see easily that Ass(M') = Ass(M). In particular, we have always Ass(M) 
Ass(E(M)). 

(3) If 0 ~ M' ~ M ~ Mil ~ 0 is exact, then 

Ass(M) ~ Ass(M') U Ass(M"). 

For, let I' be a prime ideal such that I' = ann(N) where N is a prime submodule 
of M. If N' := N n M' =I- 0, then N' is also a prime submodule of M', and 

24The reader should perhaps be warned that there do exist other somewhat different 
definitions of associated primes of a module in the literature. 
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P = ann(N') E Ass(M'). If N n M' = 0, then N is isomorphic to a (prime) 
submodule of Mil, and it follows that P = ann(N) E Ass(M"). In general, 
however, we may not have equality in (*). For instance, over R = Z, if we take 
M = Z, M' = 2Z and Mil = Z/2Z, then the prime (2) c Z associated with Mil 
is not associated with M, since Ass(M) = {(O)}. 

(4) From (I), (3) and induction, it follows readily that 

Ass(MI EB '" EB Mn) = Ass(MI) U··· U Ass(Mn). 

(5) In general, Ass(M) may very well be empty for afg. module M. For instance, 
let R be the commutative local ring Q [XI, X2, ••• ] with the relations x? = xi = 
... = O. Since the only prime ideal of R is P = (XI, X2, ..• ) and ann(p) = 0, 
we see from (3.56) that any ideal M ~ R (e.g. M = R or M = Xi R) has the 
property that Ass(M) = 0. 

The last example shows that, to guarantee that Ass(M) be nonempty, some kind 
of "finiteness condition" is needed. The following lemma gives such a finiteness 
condition. 

(3.58) Lemma. Let M R i- o. If ann (No) is a maximal member in the family 
{ann(N)} where N ranges over all nonzero submodules of M, then No is a prime 
submodule and ann(No) is an associated prime of M. In particular, if R is a ring 
whose ideals satisfy ACC (e.g., R is a left or a right noetherian ring), then,for 
any nonzero module M R , Ass(M) i- 0. 

Proof. Clear. o 

Essential to the applications we have in mind for indecomposable injectives is 
the following general observation on the associated primes for uniform modules. 

(3.59)Lemma. If M isauniformrightmoduleoveranyring R,then IAss(M)1 ~ 
1. 

Proof. Let PI, P2 E Ass(M), say Pi = ann(Ni) for suitable prime submodules 
Ni (i = I, 2). Then N := NI n N2 i- (0) since M is uniform, and we have 
PI = ann(N) = P2. 0 

Note that the converse of (3.59) is not true in general. For instance, over the 
(commutative noetherian) ring R = Q [u, v] (u 2 = v2 = uv = 0) in (3.51)(1), 
the module M = RR is not uniform, but by (3.58), Ass(M) = Ip} for p:= (u, v), 
since p is the unique prime of R. (Of course, P = ann(u) = ann(v) also shows 
that P E Ass(M) on account of (3.56).) 

We now come back to the study of indecomposable injective modules. In the 
following, let us write I(R) for the set of isomorphism classes of the right inde
composable injectives over any ring R, and write Spec R for the "prime spectrum" 
of R (the set of all prime ideals of R). 
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(3.60) Theorem. Let R be a right noetherian ring. Then there is a natural sur
jection a : I(R) --+ Spec(R). In general, however, a is not a bijection. 

Proof. For any class [M] E I(R), M is uniform by (3.52), so M has exactly one 
associated prime according to (3.58) and (3.59). We can therefore define a[M] 
to be this associated prime. To show that a is onto, consider any p E Spec R, 
and let M = (R/P)R. By (3.50), E(M) = MI EB ... EB Mn where the M j 's are 
indecomposable injective modules.25 Using (1), (2) in (3.57) and then (3.55), we 
have: 

Ass(Mj ) ~ Ass(E(M» = Ass(M) = (pl. 

Therefore, a[Md = P for any i. 
To show that a is not a bijection in general, consider the case of a simple 

noetherian domain R that is not a division ring. Here, Spec R is a singleton, 
consisting of the zero prime ideal, but we claim that II (R) I :::: 2. To see this, first 
note that R R is uniform. (For, if otherwise, there would exist x, y t- 0 in R such 
that xR n yR = O. From this, we see easily that RR would contain an infinite 
direct sum 

xREByxREBixREB'" , 

contradicting the fact that R is right noetherian.) Therefore, [E(RR)] E I(R) 
by (3.52). On the other hand, fix any simple right R-module U. We finish by 
showing that [E(RR)] t- [E(U)] in I(R). Indeed, if E(RR) ~ E(U), this 
uniform (injective) module would contain a copy of RR and a copy of U; since 
U is simple, RR must contain a copy of U. But then, by FC-(3.1O), R is a right 
artinian domain, and hence a division ring, a contradiction. 0 

It is possible to formulate the precise conditions on a right noetherian ring R 
under which the map a above will be a bijection. However, we do not pursue this 
matter in detail here. In the following, we shall only cover the two most important 
cases in which it is known that a is a bijection. The first case is when we impose the 
stronger assumption that R be right artinian. In this case, the result is as follows. 

(3.61) Theorem. Let R be a right artinian ring. Then a : I(R) --+ Spec R is 
a bijection. If {VI, ... , Vn } is a complete set of simple right R -modules, then 
{E (VI), ... , E (Vn )} is a complete set of indecomposable injective right R -mo
dules, up to isomorphism. 

Proof. By the Hopkins-Levitzki Theorem (FC-( 4.15», R is right noetherian, so we 
can apply (3.60). Let n be the number of simple components of R/rad R. Then R 
has exactly n simple right modules, say, VI,"" Vn • Consider any [M] E I(R). 
For any xt-O in M, x . R has a composition series, so it contains a simple 

25The M; 's here are actually isomorphic to one another. The proof of this fact, however, 
depends on Goldie's Theorem; see (11.25) below. 
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module, say, Vi. Then, by (3.52), M = E(Vi ). Also, i I- j ===} E(Vi) 'Fe E(Vj ), 

since the E(Vi ) 's are uniform. Therefore, I(R) has exactly n elements, namely, 
[E(Vi))' ... , [E(Vn )]. On the other hand, since rad R is nilpotent, prime ideals of 
R correspond to prime ideals ofthe semisimple ring Rlrad R. From this, we see 
that ISpec(R)1 = n, which clearly implies that a is a bijection. (Of course, we 
can explicitly describe the inverse map f3 : Spec R ---+ I(R) too. For p E Spec R, 

Rip is a simple artinian ring. If V is "the" simple right Rip-module, viewed as 
a simple right R-module, we can define f3(p) = [E(V)] E I(R).) D 

The next case is when we assume the noetherian ring R to be commutative. 
Here, we have the following well known result in commutative algebra. 

(3.62) Matlis' Theorem. If R is a commutative noetherian ring, then 

a : I(R) ---+ Spec R 

is a bijection. Moreover, 

{E(Rlp): p E Spec R} 

gives a complete list of indecomposable injective R-modules, up to isomorphism. 

Proof. For p E Spec R, Rip is a uniform R-module by (3.51)(2). Therefore, we 
can define f3 : Spec R ---+ I(R) by 

f3(p) = [E(Rlp)] E I(R). 

Clearly, af3(p) = p, by (3.57). We finish by showing that f3a[M] = [M] for any 
[M] E I(R). Say Ass(M) = {pl. By (3.56), p = ann(m) for some m E M. Then 
mR ;::::: Rip as R-modules. But by (3.52)(2), M = E(mR). Therefore, 

[M] = [E(Rlp)] = f3(p) = f3a[M]. 

D 

(3.63) Example. Let R be a commutative PID with quotient field K. Let P be 
a complete set of nonzero prime elements of R (up to associates). According to 
(3.62), I(R) consists of the classes of E(R) = K and E(R/pR) for pEP. 
The latter modules can be easily constructed as follows. Let (K I R) P (p E P) 
denote the p-primary torsion submodule of K I R. Then K I R = ffipEP(K I R)p. 
Since K is a divisible R-module, so are K I Rand (K I R) p for each pEP. By 
(3.17)', each (KIR)p is an injective R-module. We see easily that (KIR)p is 
an essential extension of p-l RI R ;::::: RI pR, so we have E(RI pR) ;::::: (K I R)p 
for each pEP. A complete set of indecomposable injectives over R is there
fore {K, (K I R) p (p E P)}, generalizing the classification of indecomposable 
divisible objects in the category of abelian groups. 
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In the above example, the indecomposable injective module (K j R) p has the 
filtration 

(0) £;: p-I Rj R £;: p-2 Rj R £;: ... , 

with each filtration factor ~ Rj pRo It turns out that, in the general commutative 
noetherian case, an indecomposable injective (other than E(R) ~ K) has a rather 
"similar" feature. This discovery is also due to Matlis, who developed the detailed 
structure theory of indecomposable injectives in the commutative noetherian case 
in his Chicago thesis in the late 50s. In the interest of first completing our discussion 
of the general theory, we shall postpone the presentation of Matlis' results to a 
later subsection. Readers who are eager to see this material right away may of 
course proceed directly to §3I at this point. 

§3G. Injectives over Some Artinian Rings 

If R in (3.61) is a general right artinian ring (or even a right and left artinian 
ring), the injective hulls E(Vi ) there need not be f.g. R-modules, or equivalently, 
they may not be of finite (composition) length (see Exercise 34). Rosenberg and 
Zelinsky [59] have studied the precise conditions which would ensure the finite 
generation of the E(Vi ) 'so We do not go into the details of their results here; 
instead, we shall present a couple of classical results in the positive case where 
we can indeed draw a "f.g." conclusion. These positive cases include (1) R is 
commutative, (2) R is a finite-dimensional algebra over a field, and (3) R is 1-
sided self-injective. We shall treat the first two cases in this subsection; the last case 
will become clear when we study quasi-Frobenius rings in §15 (see Exer. (15.13)). 

We start now with the case when R is commutative. 

(3.64) Theorem. Let R be a commutative artinian ring. Keeping the notations 
in (3.61), let Ei = E(V;) and let M = EI ED··· ED En. Then: 

(1) M is afaithful R-module; 
(2) M isf.g. with lengthR(M) = lengthR(R); and 
(3) for any f.g. R-module N, E(N) is also f.g. 

Since artinian rings are noetherian, some of these results can be deduced from 
Matlis' general analysis of the injective indecomposables over a commutative 
noetherian ring, which we shall present later in §31. But the artinian case is really 
simpler, and the conclusions are also much sharper. Thus, we may as well give 
a quick ad hoc exposition of it here, without worrying about the efficiency issue. 
Besides, the theorem above goes well with the remaining results and examples in 
this subsection on modules over finite-dimensional algebras. 

Proofof(3.64). (1) Let 0 =1= a E R be such that Ma = O. Since aR has a simple 
quotient, there exists a nonzero R-homomorphism 

f : aR ~ VI ED· .. ED Vn ~ M. 
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By the injectivity of M, there exists m E M such that f(a) = ma. But then 
Ma = 0 implies that f(a) = 0, a contradiction. This proves the faithfulness of 
M. 

(2) Let (0) = 10 S;; •.. S;; It = R be a composition series for RR, and let 
M; = {m EM: ml; = OJ. To prove (2), it suffices to show that 

(0) = M t ~ M t - I ~ ••• ~ Mo = M 

is a composition series for M. Taking "Hom" from the exact sequence of R
modules 

o ~ /;+11/; ~ RII; ~ Rlli+1 ~ 0, 

into the injective module M, we get an exact sequence: 

where the "Hom" groups are still R-modules since R is commutative. Upon iden
tifying the first two modules with M;+I and M;, we obtain an R-isomorphism 

M;/Mi+1 ~ HomR{l;+III;, M). 

Say /;+1 I I; ~ Vj (for some j). Then the above R-module is isomorphic to 

HomR(Vj , M) = nHomR(Vj, Ed = nHomR(Vj, Vd = EndR(Vj ). 
k k 

Let Vj ~ Rim where meR is a maximal ideal. Then 

EndR(Vj) ~ EndR/m(Rlm) ~ Rim, 

and this is a simple R-module, as desired, 

(3) Let N R be f.g. Then, by (3.50) and (3.61), E(N) is a direct sum of copies 
of the E; 'so This direct sum must be finite. Since each E; is f.g. by the above, it 
follows that E(N) is also f.g. D 

The module M in (3.64) has a special significance. In the terminology of §19, it 
is a "minimal injective cogenerator" for R (and such a module is always faithful, 
by (19.7». The interesting role such a module plays in duality theory will be 
examined in detail in §19. 

A second case where we have positive results on the finite generation of injective 
hulls is the case of finite-dimensional (not necessarily commutative) algebras. 

(3.65) Theorem. Let N be af.g. right module over afinite-dimensional k-algebra 
R (where k is afield). Then dimk E(N) < 00. 

Proof. We need only modify slightly the proof of (3.20). Using the left R-module 
structure on R, we can make Homk(R, N) into a right R-module, which is in
jective according to (the paragraph following) (3.5). Since we can embed N ~ 
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HomR(R, N) into Homk(R, N) as R-modules, it follows that 

dimk E(N) .:::: dimk Homk(R, N) = (dimk R)(dimk N) < 00. 

D 

There is also another (somewhat different) way to prove (3.65), by using the 
formation of k-duals. For any left R-module M, let M denote its (first) dual 
Homk(M, k). Recall that M has a natural right R-module structure defined by 

(fr)(m) = term) (f E M, r E R, mE M). 

This gives an exact (contravariant) functor G : R!m -+ !mR, and we have a similar 
functor F : !mR -+ R!m. Now, let N E !mR be f.g., and fix an epimorphism 
Rn -+ IV in R!m. Applying G, we get a monomorphism 

N = N~ ----+ (R"r ~ (RR)" 

in !mR. Since (R)R is injective (by (3.6C», dimk E(N) .:::: n . dimk R < 00. 

Using the functors F, G, we also see the following: 

M = simple left R-module ==> M = simple right R-module, 

M = indecomposable left R-module ==> M = indecomposable right R-module. 

These observations will enable us to describe explicitly the injective hulls E(Vi ) 

for the simple right R-modules {Vi}. We proceed as follows. Let el, ... , en be 
a set of primitive idempotents in R such that ReI, ... , Ren give a complete set 
of principal indecomposable left R-modules (see FC-§25), and let J = rad R. 
Then Rei I J ei (1 .:::: i .:::: n) give a complete set of simple left R-modules (FC
(25.3», and consequently Vi = (Re;! Jeir (1 .:::: i .:::: n) give a complete set 
of simple right R -modules. The surjections Rei -+ Rei I J ei induce injections 
(Re;! J e;f -+ (Rei r, so each Vi is a submodule of (Rei r. Also, Rei being 
indecomposable implies that (Rei r is indecomposable, and by (3.6C), Rei being 
projective in R!m implies that (Re;), is injective in !mR. Therefore, by (3.52), 
we have (Rei r = E(Vi) for each i, and (3.61) yields the following. 

(3.66) Corollary (Nagao-Nakayama). Let R be a finite-dimensional algebra 
over afield k, and let el, ... , en be primitive idempotentso/ R such that ReI, ... , 
Rell give a complete set o/principal indecomposable left R-modules. Then 

give a complete set o/indecomposable injective right R -modules, and any injective 
right R-module is ("uniquely") a direct sum o/these. 

The "duality" between left and right R -modules provided by the functor" A" also 
puts certain other facts in a better perspective. For instance, we know from FC
(21.18) that J ei is the unique maximal submodule of Rei' Dualizing this, we obtain 
the fact that Vi is the unique simple submodule of (Reir. Of course, from the 
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perspective of injective modules, this follows from the fact that the indecomposable 
injective module (Reif is uniform. 

(3.67) Example. Let us compute the indecomposable injectives over the ring R 
of upper triangular n x n matrices over a field k. We shall first carry out this 
computation without using duality. Let e; be the matrix unit Eii . Then Pi = e; R 
consists of matrices in R with only nonzero entries on the ith row, and {Pi: 1 :::: 
i :::: n} gives a complete set of principal indecomposable right R -modules. For 
convenience, let us write P,,+, = 0, and let J = rad R. As in FC-(2S.II), 

(l :::: i :::: n + 1), 

and Vi := Md M;+, (l :::: i :::: n) are the simple right R-modules. We know (from 
the paragraph following (3.44)) that M, is injective. Since R is right hereditary, 
M, / M;+, is also injective (cf. (2.36), (3.22)). It is easy to see that 

Vi = M;/M;+, S;e M,/M;+" so E(Vi) = Mt/Mi +,. 
Therefore, the indecomposable injectives are given by M, / Mi+, for I :::: i :::: n. 
Now let us bring in the duality theory. The principal indecomposable left modules 
are Rei (consisting of matrices of R with nonzero entries only on the ith column), 
for 1 :::: i :::: n. By (3.66), we know that the indecomposable injective right R
modules are given by (Reif (l :::: i :::: n). By dimension comparison, we see 
that 

(3.68) 

and consequently 

(Redle;r ~ V; = M;/M;+, ~ eiRje;i (1:::: i :::: n). 

Of course, it is also easy to establish directly the duality between the ith simple 
left module Rei / 1 ei and the ith simple right module ei R/ ei l, from which we can 
then deduce (3.68) from (3.66). The duality between Re; and M, / M;+, asserted 
in (3.68) can likewise be seen directly as follows. We identify M, = P, with the 
space of row vectors and Re" with the space of column vectors, and define the 
pairing 

f: M, x Ren ~ k 

by taking usual inner products. This pairing is middle R -linear, so it induces a right 
R-module isomorphism (Renf ~ M,. If we further identify Rei with the sub
module of Ren consisting of column vectors of the form (b" ., .. , bi , 0, ... , Or, 
then the pairing f above induces a new pairing 

fi: M,/Mi+, x Rei ~ k, 

which yields directly (Re;f ~ M,/Mi+, for I:::: i:::: n. 

Next, we return to two commutative non-Frobenius algebras R introduced in 
Example (3.1SB'); we shall compute the injective hulls of RR for both of these 
algebras. 
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(3.69) Example. Let A be the polynomial algebra k[x, y] over a field k, and let 
R = A/21, where 

or ( ),,+1 ~ i jA 
~ = x, y = L ... d+j=,,+IX Y (n :::: 0). 

Then R is a (commutative) local k-algebra (with unique maximalideal x R + y R), 
with k-basis B = {Xi yj : i + j ~ n}. In particular, 

dimk R = 1 + 2 + ... + (n + 1) = (n + l)(n + 2)/2. 

Certainly, R is not self-injective. (For instance, the R-homomorphism X" R ~ R 
mapping x" to y" does not extend to R.) Let us apply (3.66) to determine the 
injective R-modules. Here, e = 1 is the only primitive idempotent, and there is 
only one simple R-module V = k (with Vx = Vy = 0). Therefore, by (3.66), 
every injective R-module is a direct sum of the unique indecomposable injective, 
given by E(V) = (Ret = R. We claim that the R-module R is given by 

I := (x, y)" /(X,,+I A + yn+1 A). 

Initially, I is only an A-module. Since obviously 121= 0, we may indeed view 
I as an R-module. To see that I ~ R, first note that a k-basis for I is given by 

B' = {xPyq: p + q :::: n; p ~ n, q ~ n}. 

(The "bars" here refer to modulo X,,+I A + y,,+1 A.) An easy counting shows that 

dimk I = IB'I = (n + l)(n + 2)/2 = dimk R = dimk R. 

Now, there is a k-bilinear pairing {3 : I x R ~ k defined by 

{3 (f, g) = coefficient of x" y" in f g. 

(Note that {3(f, g) = 0 whenever f E x,,+1 A + y,,+1 A or g E 21, so {3 is 
well-defined.) Under the pairing {3, B' and B are visibly a pair of dual bases, 
with X"-i y"-i E B' dualto Xi yj E B (for i + j ~ n). Also, clearly, {3(fh, g) = 
{3(f, hg) for any h E A. Putting all this information together, we see that I ~ R 
as R-modules. The indecomposable injective R-module I is the injective hull 
of its unique simple R -submodule generated by X" y" . We can now also compute 
the injective hull of R itself. The socle of R (sum of its simple submodules) is 
given 

S = E9 xiyj k ~ V ffi··· ffi V (n + 1 copies). 
i+j=" 

Since R is artinian, this socle is essential in R, so we have 

E(R) = E(S) ~ E(V ffi ... ffi V) ~ E(V) ffi ... ffi E(V) ~ (n + 1) . R. 

The following picture of B' and B in the case n = 3 illustrates very well the 
duality between these two k-bases on I and on R, respectively. (For convenience, 



we have omitted the "bars" in this picture.) 

x 3i 
X2y 3 x 3y2 

xy3 x 2y2 x 3y 
y3 xy2 x 2y x 3 
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x Y 
x 2 xy y2 

x 3 x 2y xl i 

(3.70) Example. Let A and n be as above, and let R = AI(x2, xyl1+l, yn+2). 
(Here, the denominator denotes the ideal generated by the three indicated elements 
in A.) Now, dimk R = 2n + 3, with k-basis 

Using the same notation V for the unique simple R-module as in (3.69), we can 
compute the unique injective indecomposable E(V). The calculations are similar 
to those in (3.69), so we shall just describe the answer here and omit the details. The 
claim is that R is isomorphic, as an R-module, to I := (x 2 , xy, y2)/(x2, yn+3). 
The k-pairing {3 : I x R ---+ k is now given by 

{3(f, g) = coefficient of xyl1+2 in fg. 

The (ordered) dual k-basis on I is given by 

8' = {xyn+2; yn+2, xyl1+l; ... ; yZ, xy}, 

leading to the following configuration (again with the "bars" suppressed); 

xyll+2 
yl1+2 xyn+1 
yl1+1 xyl1 

x 
xy 

y2 xy xyl1 )'11+1 

Finally, note that the socle S of R is x yn k EB yn+ 1 k ~ V EB V, so the injective 
hull of R is given by 

E(R) ~ E(V) EB E(V) ~ REB k 

In this example, we could have taken n = 0, for which R = k [x, y 11 (x 2 , x y, l). 
Here, we get R ~ (x 2, xy, y2)/(x2, y3). On the other hand, if we let n = 1 in 
(3.69), we get R ~ (x, y) 1 (x2 , y2). It is an easy exercise to see directly that these 
two descriptions of R are consistent. We note also that, although R fails to be a 
Frobenius algebra (being not self-injective), its quotient 

Rly l1+1 R ~ k[x, y1/(x2, y"+I) 

is a Frobenius algebra by (3.15B). 

The methods used for computing R in the examples above may look a bit ad 
hoc. Later, a more canonical method dealing with the same type of examples will 
be presented in §3J; see (3.92) and (3.93). 
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§3H. Simple Injectives 

In this subsection, we shall present a couple of standard results on simple injective 
modules. The case of commutative rings is easier, so we'll start with that. Later 
in the subsection, we'll return to noncommutative rings, and briefly discuss the 
notion of right V -rings (rings all of whose simple right modules are injective). 

We begin by recalling some well-known characterizations of von Neumann 
regular commutative rings. The following result was Exercise (4.15) in Fe. For 
the reader's convenience, a full proof is included here. 

(3.71) Theorem. For any commutative ring R, the/ollowing conditions are equiv
alent: 

(1) R is von Neumann regular. 
(2) R is a reduced ring 0/ Krull dimension O. 
(3) At every maximal ideal meR, the localization Rm is afield. 

Proof. (1)===}(2). For a E R, (1) implies that a = axa = a2x for some x E R. 
Therefore, a 2 = 0 ===} a = 0, so R is reduced. To prove the rest of (2), we have 
to show that any prime ideal p is maximal. We do this by showing that R = Rip 
is a field. For a ¢ p, we have a = a2 x for some x. Since ii E R is not a O-divisor, 
cancellation of ii yields iii = I E R. 
(2)===}(3). Let m be a given maximal ideal. If R is reduced, so is Rm. If R has 
Krull dimension 0, so does Rm. But then mm is the only prime ideal in Rm, so 
mm = Nil(Rm) = o. Since (Rm, mm) is a local ring, it follows that Rm is a field. 

(3)===}(I). Assume (3) and consider a E R. At any maximal ideal meR, we 
have 

(aRla2 R)m ~ (aR)m/(a 2 R)m ~ aRm/a2 Rm. 

Since Rm is a field, aRm = a2 Rm. This implies that (aRla 2 R)m = 0, for all m. 
Therefore, aRla2 R = 0, which means that a = a2x for some x E R. 0 

The next result gives criteria for a simple module over any commutative ring to 
be injective. The equivalence of (I) and (3) appeared in Rosenberg-Zelinsky [59]. 
Our choice of (3.16) as the definition of divisible modules enables us to add (2) to 
the list of equivalences. 

(3.72) Theorem. Let R be a commutative ring, and M = Rim, where m is a 
maximal ideal in R. Then the/ollowing conditions are equivalent: 

(1) M R is injective. 
(2) M R is divisible. 
(3) The localization Rm is afield. 

Proof. (1 )===}(2) holds for all rings, by (3.17)'. 
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(2)==>(3). Let rEm. The equation I v r clearly has no solution for v E 
M = Rim. Since M is divisible, there must exist x E R such that rx = 0 but 
o =1= 1 . x = x. This shows that every rEm is killed by some element outside of 
m. From this, it follows that mm = 0, so Rm is a field. 

(3)==>(1). Let f E HomR(21, M), where 21 is any ideal in R. Note that M = 
Rim ~ Rm/mm may be viewed as an Rm-module, so f induces the Rm
homomorphism g in the following commutative diagram 

Ttn~ //:rtn 
I yM::"" I 

\l[ ) R 

Since Rm is a field, 21m is either (0) or Rm. Clearly, then, g can be extended to 
Rm, from which it follows (see diagram) that f can be extended to R. D 

The first part of the Corollary below is due to I. Kaplansky. 1[fle second part is a 
bonus we derived from our choice of (3.16) as the "correct" definition of divisible 
modules. 

(3.73) Corollary. A commutative ring R is von Neumann regular iff all simple 
R -modules are injective, iff all simple R -modules are divisible. 

Proof. This follows immediately from (3.71) and (3.72). D 

Of course, (3.72) and (3.73) are results special for commutative rings. In the 
literature, a ring R is called a right V -ring (after O. Villamajor) if every simple 
right R-module is injective. Thus, (3.73) says that, in the category of commutative 
rings, the V -rings are exactly the (commutative) von Neumann regular rings. For 
noncommutative rings, the situation is quite a bit more subtle. The following 
example shows that, over a general von Neumann regular ring E, there may exist 
a simple right module which is divisible but not injective; in particular, E may not 
be a right V -ring. 

(3.74A) Example. Let k be a division ring and k V be a left k-vector space of 
infinite dimension. Let E = End(k V), defined as a ring of right operators on V. 
Then E is a von Neumann regular ring (FC-(4.27), and \/ is a simple right 
E -module. We claim that V E is divisible but not injective. (In particular, E is not 
a right V -ring.) 

To see that VE is divisible, let u E V and a E E be such that u ¢ Va. 
By working with a suitable basis, we can define an endomorphism x E E that 
vanishes on Va but not on u. Then (Va)x = 0 implies ax = 0 E E, but we 
have ux =1= O. This shows that, as long as ax = 0 ==> ux = 0, we can solve the 
equation u = va for v E V. 



98 I. Free Modules, Projective, and Injective Modules 

To show that VE is not injective, fix a k-basis {Vi: i E l} on V. For each i, 
let 1fi E E be defined by Vj1fi = 8ijVi' where 8ij are the Kronecker deltas. Let 
2l = Li 1fi E (a right ideal in E), and let f : 2l -+ V E be defined by: 

where ei E E are almost all zero. To show that f is well-defined, we have to 
prove that 

This follows by applying 1fi, ei, + ... + 1fi"ei" to Vi, + ... + Vi". If VE is injective, 
there would exist a vector V E V such that Vi = f (1fi) = V1fi for every i E I. 
But if V = eli, Vi, + ... + eli" Vi", then for any i f/. {ii, ... , in}, we have V1fi = 0, a 
contradiction. This shows that VE is not injective, as desired. 

Pursuing these ideas a little further, we also get the following interesting infor
mation. 

(3.74B) Example. The von Neumann regular ring E constructed above is left self 
injective, but not right self-injective! To see this, we keep the notations introduced 
before, and fix an index i E I. We have a natural E -epimorphism g : E -+ V E 

defined by g(e) = Vie ("Ie E E). It is easy to see that g' : VE -+ E sending Vie 
to 1fie ("Ie E E) is a well-defined E-homomorphism splitting g. Therefore, VE 

is isomorphic to the direct summand 1fi E of E E; in particular, V E is projective. 
However, we knew that VE is not injective. It follows from (3.4)(1) that EE is also 
not injective. 

It remains to show that E E is injective. This can be deduced from a judi
cious use of the Injective Producing Lemma (3.5). In fact, let us think of E E as 
Homk(k VE , k V), where k-homomorphisms are written on the right. Here, k V is 
surely an injective k-module since k is a division ring, and, as we have shown 
above, VE is a projective E-module. Therefore, by (3.5) (or more precisely the 
dual version of (3.5) with "left" and "right" interchanged), we can conclude that 
Homk(k VE , k V) = EE is an injective left E-module. Therefore, E is a left self
injective ring, as claimed.26 

For those readers who prefer to work with rings in more concrete terms, we 
observe that, using the basis {ei : i E l} on V and following the usual procedures 
of linear algebra, we can express E as the ring of "row-finite" matrices over k 
whose rows and columns are indexed by the set I indexing the given basis of V. 

To conclude this subsection, let us present a nice characterization theorem for 
right V -rings, due to Villamajor. The condition (3) below involves the notion of the 

26 After showing that E is left self-injective, one can actually infer that E is not right 
self-injective, since it will be shown (in (6.49» that a left and right self-injective ring must 
be Dedekind-finite, and the ring E in question here is not. 
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radical of a module M R: by definition, rad(M) is the intersection of all maximal 
submodules of M; if there are no maximal submodules, rad(M) is defined to be 
M itself. This is a straightforward generalization of the notion of the Jacobson 
radical of a ring since, upon viewing R as a right module over itself, rad RR is 
just the usual Jacobson radical of the ring R. 

(3.75) Theorem. For any ring R, the following are equivalent: 

(1) R is a right V -ring; 
(2) any right ideal A S;; R is an intersection of maximal right ideals; 
(3) for any right R-module M, rad(M) = o. 

Proof. (3) ==> (2) follows by applying (3) to the module M = R/ A. 

(2) ==> (I). We shall show that any simple right R-module S is injective by 
applying Baer's Test to S. Thus, consider any homomorphism f : B ~ S, where 
B C; R is any right ideal. In order to extend f to R, we may assume that f :I O. Fix 
an element x ~ A := ker(f). By (2), there exists a maximal right ideal m :2 A 
not containing x. Since B / A ~ S is simple, we have m n B = A, and cleUioly, 
B + m = R. We can then extend f to g : R ~ S by defining g(b + m) = f(b) 
for any b E B and any m E m. 

(1) ==> (3). We are supposed to show here that any x E M \ (OJ is excluded 
by some maximal submodule. The cyclic module x R certainly has a maximal 
submodule, so there exists a surjection h : x R ~ S for some simple module S. 
Since S is assumed to be injective, h extends to some homomorphism h' : M ~ S. 
Now ker(h' ) is a maximal submodule of M excluding x. 0 

(3.75), Corollary. If R is a right V -ring, then any quotient of R is a Jacobson 
semisimple ring, and any nonzero right R-module has a maximal submodule. 

In the case of commutative rings R, we can combine the above information 
with (3.73) to make the following sharper statement: R is a V -ring iffit is a von 
Neumann regular ring, iff all quotients of R are Jacobson semisimple rings. 

In the general case, however, right V -rings need not be von Neumann regular; 
also, they need not be left V -rings. Since we only have a passing interest in right 
V -rings, we shall not digress to give the necessary examples here. 

§3/. Matlis' Theory 

In this subsection, we return to the theme of (3.62) and present Matlis' theory of in
decomposable injectives over a commutative noetherian ring R. Recall from (3.62) 
that the set of indecomposable injectives over R is given (up to isomorphisms) by 

(E(R/p) : p E Spec R}. 
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For each p E Spec R, we would like to describe the injective hull E(R/p), 
and compute its endomorphism ring. The first step in this program is to pass to 
the localization Rp, which is a commutative noetherian local ring with unique 
maximal ideal pRp• The advantage of passing to the localization is that Rp/pRp 
is a field, in fact the quotient field of the integral domain R/p. 

Let us first work in a local setting. If R is (any) local ring with unique max
imal ideal m, we shall often refer to R by writing (R, m). The injective hull 
E(R(R/m)) of the unique simple left R-module R(R/m) is an important object 
in local algebra. It is convenient to refer to it by some name, so let us call it 
the "standard module" of the local ring for now. (In more formal terminology, 
to be introduced later in § 19, this module is called the (left) minimal injective 
cogenerator of R. We hesitate to use this term here since we have not yet defined 
the notion of a cogenerator.) Some concrete examples of standard modules over 
finite-dimensional local algebras have already appeared in (3.69) and (3.70). 

The following Proposition establishes a nice "double annihilator" result for the 
left ideals in a local ring R with respect to the standard module. For the record, 
we note that neither commutativity nor noetherianness is needed for this result. 

(3.76) Proposition. Let (R, m) be a local ring, and E = E(R/m) be the (left) 
standard module of R. Thenfor any left ideal Qt ~ R, we have annR(annE (Qt)) = 
Qt. 

Proof. Let A = annE(Qt) = (e E E: Qte = O}.Ofcoursewehave Qt ~ annR(A). 
To prove the equality, assume for the moment that there exists r E R\Qt with 
r A = O. The cyclic nonzero submodule R· T' in R/Qt certainly has a maximal 
submodule, so there is a surjection, say, f, from it to the copy of R(R/m) in E. 
By the injectivity of E, f extends to an R-homomorphism g : R/Qt ---+ E. Let 
a := gel) E A. Then f(T') = rg(l) = ra = 0, a contradiction. 0 

(3.76), Corollary. In the notation of the above Proposition, the standard module 
E = E(R/m) is afaithful R-module. 

Proof. Let Qt = 0 in (3.76). Then annE (Qt) = E, so it follows that ann R (E) = o. 
o 

In §19, it will be shown that any "cogenerator" module is always faithful; (3.76)' 
is a special case of this. 

Let us now return to the commutative setting, and try to explain how we may 
"localize" the study of the injective indecomposables. This step also does not 
require R to be noetherian. 

(3.77) Proposition. Let p E Spec R, and let Rp denote the localization of R 
at p. Then E(R/p) has a natural structure as an Rp-module, and as such, it is 
isomorphic to the standard module of the local ring Rp. 
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Proof. We first show that any r E R\p acts as an automorphism on E:= E(Rlp). 
If this is true, then E becomes an Rp-module by letting r- I s act as the composite 
of the action of s followed by the inverse of the action of r. Say r x = 0, 
where x E E. If x i= 0, then in view of Rip ~e E, there exists s E R such that 
o i= sx E Rip ~ E. Then r(sx) = s(rx) = 0 implies sx = 0 (since r certainly 
acts as an R-monomorphism on RIp), a contradiction. Next consider r . E. By 
the above, r . E ~ E is injective as an R-module, so by the indecomposability 
of E, we must have r . E = E, as desired. 

Viewing E now as an Rp-module, we claim that it is also injective. In fact, 
consider any Rp-module X 2 E. Then X = E EB Y for some R-module Y. 
This Y is automatically an Rp-module. For, if Y E Y and r E R\p, we have 
r-Iy = e + y' for some e E E and y' E Y. Then y = re + ry' implies that 
y = ry', so r-Iy = y' E Y. This proves the injectivity of E as an Rp-module. 
Now consider the element T E Rip ~ E.Since pRp kills T, Rp.T in Eisclearly 
isomorphic to Rp/pRp. From Rip ~e E (as R-modules), we have Rp . T ~e E 
as Rp-modules. Therefore, we have E ~ E(Rp . T), which is the standard module 
of the local ring Rp. 0 

Before we go over to a local setting, we shall prove another useful result, using 
an argument due essentially to Emmy Noether. 

(3.78) Theorem. Let R be a commutative noetherian ring, and M be a uniform 
left R-module. Let p E Spec R be the unique associated prime of M (see (3.58), 
(3.59»). Then,for any c E M, we have pnc = 0 for some positive integer n. 

Proof. We may assume that c i= 0, so that q:= annR(c) i= R.Then Rlq ~ R·c 
is also uniform, so the ideal q is meet-irreducible. We claim that every b E P has 
a power in q. If so, then, since p is a finitely generated ideal, we have pn ~ q 
for some n, and so p"C = 0 as desired. To prove our claim, note that 

Ass(Rlq) = Ass(R . c) ~ Ass(M) = {p} 

implies that Ass(Rlq) = {p} (again in view of (3.58». Therefore, by (3.56), 
P = annR(d) for some nonzero element d in the R-module Rlq. In particular, 
for any b E p, we have bd E q. Assume that bn rt. q for all n. The ideals 
q : bn = {r E R : rbn E q} form an ascending chain, so q : bn = q : bl/+ I for 
some n. We shall now establish the following equation: 

(3.79) q = (q + Rbl/) n (q + Rd). 

It suffices to prove the inclusion "2". Let x be any element in the RHS, say 

x = ql + ylbl/ = q2 + Y2d, 

where qi E q, and Yi E R. Then 

xb = qlb + ylbl/+ I = q2b + Y2db E q, 
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since db E q. Therefore, ylb,,+1 E q. But then ylb" is already in q, and we get 
x E q. This establishes (3.79), which expresses q as the intersection oftwo bigger 
ideals (since bn , d ¢ q). This contradicts the meet-irreducibility of q. 0 

(3.80) Historical Note. The above argument was essentially the one used by Emmy 
Noether to show that, in a commutative noetherian ring R, any meet-irreducible 
ideal q in R is p-primary with respect to the radical p of q. Noether used this 
result to derive the Lasker-Noether Decomposition Theorem for any commutative 
ring satisfying what she called the "finiteness condition" ("Endlichkeitsbeding
ung") for ideals: the time was 1921.27 

A typical indecomposable injective E = E(Rlp) (p prime) is always uniform 
(by (3.52» with Ass(E) = {p}, so we can apply (3.78) to E. Letting En = 
annE (pn) (n ~ 0), we have a filtration 

(3.81) 0= Eo ~ EI ~ ... ~ En ~ ... , 

with UII>O En = E according to (3.78). Note also that, upon viewing E as 
an Rp-module, we have En = annE «pRp)Il). In particular, the En's are Rp
submodules of E. We shall now pass to the localization Rp , so that we can work 
with E as the standard module of Rp. It is easy to see that, for any Rp-modules 
A, B, HomRp(A, B) is the same as HomR(A, B). Therefore, for the purposes 
of computing the endomorphism ring of E, the localization from R to Rp is 
also harmless. Having said the above, we shall now assume R is a (commutative, 
noetherian) local ring, with maximal ideal m (which is our former pRp). We have 
En = annE (mn), and, thanks to (3.76), we have now also mil = annR (En). (If 
we insist on working in the original ring, the annihilator of the En's would be the 
"contractions" of the mn 's, which are called the "symbolic powers" of p.) 

Working in the local setting, we write K for the residue class field Rim. 
Objects like Ell I En-I and mil-limn are now K -vector spaces, and the latter is 
finite-dimensional over K since m is a finitely generated ideal. Note that EI = 
EI I Eo is I-dimensional over K (since E is a uniform R-module). This means that 
EI = Rim in E. Using the standard module E, we can form, for any R-module 
M, the E-dual M* := HomR(M, E), which is also an R-module. (Usually, the 
* denotes the R-dual; here we have to use it to denote the E-dual.) Since E is 

27Should any reader have any trouble ever in recalling in what year Noether did this 
famous work, just count the number of letters in the not-so-long-in-German word "End
lichkeitsbedingung"! The Lasker-Noether Theorem was originally named after the chess 
master and mathematician Emanuel Lasker and Emmy's father, Max Noether. The version 
of this theorem for a commutative noetherian ring should perhaps be more appropriately 
called the "Lasker-Noether-Noether Theorem". Incidentally, Noether herself never knew 
that the rings satisfying her Endlichkeitsbedingung were to be christened Noetherian rings. 
This term was coined by Claude Chevalley only in 1943 (in his paper on local rings); Emmy 
Noether died in 1935, at the age of 53, shortly after escaping from the Nazis and emigrating 
to the United States. 
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injective, dualizing R -modules is an exact (contravariant) functor from R -modules 
to R-modules. With these observations, we are now in a position to compute the 
filtration factors in (3.81) and the duals of the En's (in the local case). 

(3.82) Theorem. (I) Enj En-I ~ (mn - I jmn)* ~ mn - I jmn as R-modules (or 
equivalently, as K -vector spaces). (2) E: ~ Rjmn as R-modules. 

Proof. (1) Taking an idea from the proof of (3.64)(2), consider the exact sequence 

o ~ mn-Ijmn ~ Rjmn ~ Rjmn- I ~ 0, 

which induces an exact dual sequence: 

(3.83) 0 ~ (Rjmn- I)* ~ (Rjmn)* ~ (mn - I jmn)* ~ O. 

Now (Rjmi )* = HomR(Rjmi , E) can be identified with Ei via the map ({J t-+ 

({J(T). Making this identification for i = nand i = n - 1 in (3.83), we see that 
(mn - I jmn)* ~ Enj En-I. This proves the first isomorphism in (1). Next, note that 
(mn-Ijmn)* is just HomR(mn-ljmn, E I). Since EI ~ K, this is the K-dual 
of the finite-dimensional K -vector space mn - I jmn, which is K -isomorphic to 
mn - I jmn (albeit not naturally). 

For (2), consider the natural R-homomorphism 

an : Rjmn ~ E; = HomR(En, E) 

given by sending r to the multiplication by r on En. If r En = 0, then r E 

annR(En) = mn by (3.76). Therefore, an is a monomorphism; we need to prove 
that it is an isomorphism. We proceed by induction on n, the case n = 0 being 
clear. Assuming that an-I is an isomorphism, we consider the following commu
tative diagram: 

o ----+ mn - I jmn ----+ Rjmn ----+ Rjmn- I ----+ 0 

o ----+ (Enj En-d* ----+ E: ----+ E;_I ----+ 0 

where fin is taken to be the restriction of an. Since an is a monomorphism, so is 
fin. But by (1), the domain and range of fin have the same (finite) K -dimension. 
Therefore, fin must be an isomorphism. Since an-I is also an isomorphism, 
it follows from a diagram chase (simple case of the 5-Lemma) that an is an 
isomorphism, as desired. 0 

We now come to the main result of this subsection, which is a computation of the 
endomorphism ring of the standard module E. The key example to keep in mind 
here is the Priifer group C p'X (the direct limit of the 7/.,j pn7/., 's): its endomorphism 
ring is well-known to be the ring of p-adic integers, which is the inverse limit of 
the 7/.,j pn7/., 's. Matlis' result below is a direct generalization of this: note that R 
continues to denote a local commutative noetherian ring (while the nonlocal case 
can be treated by first applying a localization). 
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(3.84) Theorem. The endomorphism ring EndR(E) is isomorphic to R, the m
adic completion28 of R. (By definition, R is the inverse limit lim Rim".) 

<--

Proof. We have observed before that E = U,,>o E". Taking full advantage of 
the notation of direct and inverse limits, we have- the following sequence of ring 
isomorphisms: 

HomR(E, E) = HomR(iim E", E) 
-------> 

lim Rim" 

~ R, 

as desired. D 

Incidentally, this theorem implies that the endomorphism ring for the standard 
module E is also commutative. This fact did not seem to be obvious at the outset. 

Much more can be said about the module E and the "duality" relationship of its 
submodules with the ideals of R, especially in the complete local case. We shall 
come back to this in § 19 when we have the proper terminology with which to 
discuss duality theory. Here, we'll just content ourselves with a few corollaries of 
the results so far obtained. 

(3.85) Corollary. Let R be a commutative noetherian (but not necessarily local) 
ring, m be a maximal ideal of R, and E = E(Rlm). Then: 

(I) Each R -module E" (annihilator of m" ) has finite length. 
(2) Each fg. R -submodule M C; E has finite length. 
(3) E is countably generated. 

Proof. To prove (l), note that if we go to the localization R m , the residue class 
ring does not change: Rim ~ Rm/mRm. From what we have proved in (3.82), 
each Ei I Ei _\ is finite-dimensional over this field, and therefore it has finite length 
over R. Since Eo = 0, it follows by induction on n that Ell has finite length. In 
particular, Ell is f.g., so E itself is countably generated. Finally, (2) also follows 
from (1) since each f.g. submodule M is contained in some Ell' D 

Using this, we can retrieve our earlier result (3.64) for commutative artinian 
rings as the "Krull dimension zero" case of the Matlis theory. In fact we have the 
following 2-way statement, also due to Matlis. 

28In other words, the completion of R with respect to the filtration given by the powers 
of m. 
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(3.86) Corollary. Let R be a commutative noetherian ring. Then R is an artinian 
ring iff every injective indecomposable module over R is f.g. 

Proof. First assume that R is artinian. Represent a typical injective indecomposable 
module in the form E = E(Rlp), where P E Spec R. Since R is artinian, the 
prime ideal p must be maximal, so we can try to apply (3.85). There exists some 
n such that pn = pn+l = .... Therefore, we have En = En+l = ... in E. Since 
E = Ui~O Ei , it follows that E = En, and by (3.85), this module is f.g. 

Conversely, assume that every injective indecomposable (i.e., every E = 
E(Rlp) where p E Spec R) is f.g. Since R is noetherian, it follows that El f: E 
is f.g. But El is just Rp/pRp which is the quotient field of Rip. It is easy to see 
that this quotient field is a f.g. module over Rip only if Rip is already a field. 
Therefore, it follows that every prime ideal in R is maximal. For a (commutative) 
noetherian ring R, this means that R is actually artinian. 0 

Notice that the argument for the "if" part above also goes through if we only 
assume every E(Rlp) to be noetherian. Therefore, the Corollary remains good 
if we replace the words "finitely generated" there by "noetherian". 

Another remark: as we saw in the proof of (3.64)(3), once we know the "only 
if" statement in (3.86), the finite generation of the injective hull of any f.g. module 
over a commutative artinian ring follows as a result. 

§3J. Some Computations of Injective Hulls 

All rings will be assumed to be commutative in this subsection, and modules will 
be taken to be left modules. 

If R is not an artinian ring, the injective hull of a f.g. R-module is often not f.g., 
so it is generally not easy to construct (or "get our hands on") such an injective 
hull. Of course, we have the example that E (R) is the quotient field of R when R 
is a domain, and we have the examples of injective hulls of cyclic modules over a 
PID. In this subsection, we would like to offer some explicit computations of E (V) 
where R V is cyclic but not free, and R is noetherian but not a PID. In fact, R will 
be ofthe form k[Xl, ... , x,]1 J where J is an ideal contained in (Xl, ... , x r ), and 
V will be the R-module k on which all Xi'S act trivially. (This action of RI J on 
k will be fixed throughout.) My thanks are due to D. Eisenbud and C. Huneke who 
encouraged me to include these interesting examples here, and gave me generous 
help toward the write-up of the following exposition. In presenting this material, 
I have also benefited from consulting a paper of D. G. Northcott [74]. 

We begin by recalling the following well known result in commutative algebra. 

(3.87) Artin-Rees Lemma. For any two ideals I, J in a noetherian ring A, there 
exists an integer s such that for any d ::: s, 1 n Jd = Jd-s (I n 1") f: Jd-s I. 
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A proof of this lemma can be found on p. 107 of Atiyah-Macdonald [69]. Using 
this lemma, we obtain the following basic result on injective modules over a 
noetherian ring. 

(3.88) Proposition. Let A be a noetherian ring, and M be an injective A -module. 
For any ideal J ~ A, 

N:= {x EM: rx = 0 for some n ~ O} = Un~oannM(r) 
is an injective A -submodule of M. 

Proof. (The proof relies partly on Exercise 28, so the reading of this proof should 
be preceded by a quick consultation of that exercise.) Let Mil = annM (JIl), which 
is an A-submodule of M. To check that N = Un>O Mil is injective, we apply 
Baer's Test (3.7). Let A: I ~ N be an A-homomotphism, where I ~ A is any 
ideal. Since A is noetherian, I is f.g. Therefore, A(/) ~ Mil for a suitable integer 
n. By (3.87) above, for a sufficiently large integer d ~ n, we have In Jd ~ JIll. 
This gives 

so A induces an A -homomorphism 

AI: 1/(/ n Jd) ---+ Mn ~ M d , 

which in tum induces A2 : (/ + Jd)/ Jd ~ Md. Now, by Exercise 28(1), Md is 
an injective A/Jd-module. Therefore, A2 extends to an A/Jd-homomorphism 
A/Jd ~ Md. Composing this with A ~ A/Jd, we get an A-homomorphism 
A ~ Md ~ N which extends A. This completes Baer's Test, thus proving the 
injectivity of N. 0 

(3.89) Remark. There is one special case of the Proposition that is particularly 
worth mentioning. Apply it to M = EA (A/ J), where J c A is a prime ideal. 
Let N be defined as above. Since N :2 MI "I- 0 and M is indecomposable, the 
injectivity of N implies that M = N = Un>O Mil. This conclusion has been 
obtained before by a different method in §3I. -

For the rest of this subsection, let A = k [x I , ... , Xr ], where k is a field, and let 
m be the maximal ideal (XI, ••• , x r ) in A. We shall first compute the injective 
hull EA (k). To carry out this computation, we start with M := A (the k-dual of 
A). By (3.6C), this is an injective A-module. Using the k-decomposition 

A = Ao EB AI EB A2 EB··· , 

where A" denotes the space of homogeneous polynomials of degree n, we have 
M = On>O A". (Note that, here, the k-dual An is identified with the space 
of functionals on A that vanish on Ai for all i "I- n.) Now by (3.88), N := 
Un~O annM (mn) is an injective A-module. Since m" = An EB An+\ EB ... , we 
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have 

annM (mn) = {f E A: f(mn) = O} 

= Ao Ef) AI Ef) .•. Ef) An-I, 

so N = EBn>O An. It is easy to see that AD is an A-submodule of M isomorphic 
to Ak, and that it is essential in N. Therefore, we have arrived at the injective hull 
E A (k): it is given by the A -module N. This basic observation leads to several nice 
computations of injective hulls, which we put together in the following result. 

(3.90) Theorem. Let J be an ideal of A contained in the maximal ideal m = 
(XI, ... , xr), and let R = A/ J. Then: 

(1) ER(k) = annN J = {f Eli: f(J + mn) = 0 for some n}; 
(2) as an A-module, ER(k) has injective hull N; 
(3) if R is a local artinian ring, then ER(k) = k and EA(R) = N.lf R is a 

Frobenius k-algebra, then infact EA (R) = N. 

Proof. (1) Since N is injective over A, Exercise 28(1) implies that P := annN J is 
injective over R. Now k ~ AD <;e P (as A-modules, and hence as R-modules), so 
P = ER(k). (Of course, we can also think of P as the R-module HomA(R, N). 
Note that, in the special case when J = 0, we get back EA (k) = N.) 

(2) Since ann N J lies between AD and N, its A-injective hull is of course N. 

(3) Assuming that R is a local artinian ring, we have mn <; J for some n, so (1) 
simplifies to 

ER(k) = {f E A : f(J) = O}= R. 

(This can also be deduced as a special case of (3.41).) Thus, the first conclusion in 
(3) follows from (2). This also yields the second conclusion since, in the case when 
R is a Frobenius algebra, R ~ R as R-modules, and hence as A.-modules. 0 

Next we offer some other useful descriptions for the two A-modules M and 
N, which can actually be traced back to the early work of F. S. Macaulay. Let us 
consider the following polynomial ring and formal power series ring 

T:=k[x(I, ... ,X;lj and S:=k[[X(I, ... ,X;I]] 

in the variables X(I, ... , X;I. To properly understand these two rings (and their 
relationship to A), let 

D:={X~I ... X:': di~O}; 

this is the set of monomials in the Xi'S, which forms a k-basis for A. Now form 
D- I , whose elements are known as "inverse monomials"; this s.et forms a k-basis 
for T. In the literature, the elements of T are called "inverse polynomials" in the 
Xi'S. Similarly, the elements of S are called "inverse formal power series" in the 
Xi'S. 
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We shall now define an A-module structure on T (and subsequently on S). 
For a, f3 E D, let a * f3-' be af3-' if af3-' E D-', and zero otherwise. 
Strictly speaking, it is necessary to check that this indeed gives an A-module 
structure on T; we leave this to the reader. (In any case, Exercise 51 greatly 
clarifies this point.29) Notice that essentially the same construction defines an 
A -module structure on S = k[(x;', ... , x;']]: although the elements in S are 
formally infinite linear combinations of the inverse monomials, the A -action on 
T can be formally extended to S so that S becomes an A-module containing the 
A-submodule T. 

(3.91) Proposition. 

(1) In the category of A-modules, we have EA(k) = N ~ T, and M ~ S. 
(2) In case k has characteristic 0, N (resp. M) is also isomorphic to the A

module T' := k[y" ... , Yr] (resp. S' := k[[y" ... , Yr ]V, where we let 
each Xi act on T' (resp. S') as the partial differential operator a/aYi 
(noting that these operators are k-linear, and that they commute on both 
T' and S'). 

Proof. (1) First let uS verify that N ~ T. We construct a map e : T ~ N ~ M 
by taking 

e(r')(y) = op.y (for f3, y ED), 

where "0" means the Kronecker deltas. Clearly, e is a k-Iinear isomorphism from 
T to N, so it only remains to show that e is an A -homomorphism, that is, to show 
that 

e(a * r')(y) = e(f3-')(ay) for any a, f3, y E D. 

We check this in the following two cases: 

Case 1. af3-' ¢. D-'. Here, the LHS above is zero, and so is the RHS since 
f3 # ay. 

Case 2. af3-' E D-'. Here, the LHS is oa-'p.y, and the RHS is op.ay, and these 
are clearly equal. 

Clearly, the isomorphism e can also be extended formally to give an A-isomor
phism from S to M. (The inverse of this isomorphism e -, : M ~ S can be 
described as follows: e-' (f) = LPED f(f3)f3-' , for every k-linear functional 

f E M = .4.) 
(2) We have a k-isomorphism cp : T ~ T' defined by 

d, yd, 
( -d, -d,) y,' .. r 

cpx, ···X = 
r d,! ... dr ! 

(for all d" ... , dr ~ 0). 

291n that exercise, T is portrayed as a certain subquotient of the injective A-module 
k(x" ... , xr ). 
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A routine calculation shows that this is an isomorphism of A-modules. The same 
construction gives an A-module isomorphism from S to S'. D 

In practice, it is convenient to think of e in the proof of (3.91) as an identification 
map, so that S = k[[xjl, ... , X;I]] can be identified with M (the space of all 
functionals on A), and T = k[xjl, ... , x; I] can be identified with N (the space 
of functionals on A that vanish on sufficiently high powers of m). In particular, 
we can then think of D- I S; T as the "dual basis" of D S; A, although this dual 
basis generates only N, and not M. 

Given this convenient viewpoint, let us use (3.90) to compute a couple of ex
amples of E R (k) for quotient rings R = A I ], where ] S; (XI,"" x r ). For 
comparison purposes, let us take two earlier examples of R == AI] «3.69) and 
(3.70» for which we have already computed ER(k) by ad hoc methods. We'll 
show how we can "recompute" these two injective hulls by using the more effi
cient machinery of this subsection. In the following, we take r = 2, and write 
A = k[x, y]. In both examples, R will be a local artinian ring, so by (3.90)(3) (or 
(3.41», ER(k) is given by k The crux of the matter is to determine R as an 
A-module. 

(3.92) Example. Let] = (x, y)Il+1 S; A, where n :~ O. Here R = AI] has a 
k-basis 

Therefore, R is the A -submodule in T spanned by the dual basis C- I . For in
stance, for n = 3, these dual bases can be displayed as follows: 

X-I y-I 

x-2 X-I y-I y-2 

x-3 x-2y-1 X-I y-2 y-3 

X Y 
x 2 xy y2 

x 3 x 2y xy2 y3 

Here, the A-module structure on R is clear: on its k-basis C- I displayed above, 
the action of x pushes the inverted monomials in the northeast direction, and the 
action of y pushes them in the northwest direction. (Of course, if X or y pushes 
some {3-1 into "blank space", the corresponding action on {3-1 is interpreted as 
zero.) Now in (3.69), we have obtained (for the case of a general n) another model 
for R, namely, R = (x, yt l(xn+ l , yn+I). An explicit A-isomorphism from one 
model to the other is provided by multiplication by x" y". A bonus conclusion 
(from (3.90)(1» is that EA «x, y)n l(xn+1 , y"+ I» ~ N. 

(3.93) Example. Let] = (x2, xyn+l, yn+2) S; A, where n :::: O. Here R = AI] 
has a k-basis 

C:= {l,x,y,xy,y2, ... , xyn,y"+I}, 
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so R is the A -submodule in T spanned by the dual basis C - , . These two bases 
can be displayed as follows: 

X-I X 

x-'y-I y-I xy y 

x-Iy-n y-n xyn yn 
y-(n+I) yll+1 

Here, the A -module structure on R is simply that x pushes the inverted monomials 
to the east, and y pushes them to the north. (Again, pushing something into blank 
space means a zero action.) 

Returning to the general notations introduced earlier in this subsection, we shall 
now conclude §3J with another supplementary remark concerning the A-module 
of inverted polynomials T = k[X~I, ... ,X;I]. Since T ~ N ~ EA (k), T is the 
standard module of the localization of A at m = (XI, ... , x r ), by (3.77). Now by 
Matlis' Theory, EndAm (T) = EndA(T) is the completion of Am, which is the 
ring of formal power series 

P := k[[XI, ... , Xr ll. 

The action of P on T is easy to describe: there is already an A -action on T, under 
which any inverted polynomial in T is killed by all monomials of a sufficiently 
high degree in XI, ... ,Xr • Such an A-action obviously extends to a P-action on T; 
this is the desired action. According to Exercise 49, T is also the standard module 
of the complete local ring P = k[[XI, ... , Xr ll. Thus, for the power series ring 
P, we have also managed to compute the injective hull Ep(k), where, as usual, 
the Xi'S act trivially on k. 

§3K. Applications to Chain Conditions 

Having led the reader through a rather long section on injective modules, we shall 
now regale him/her with a couple of nice applications of such modules! These 
applications are made to the study of the ascending/descending chain conditions 
on a ring and on its subrings. 

First we recall a well-known situation. Let S ~ R be rings (with the same 
identity) such that R is a f.g. as a right module over S. Suppose the ring S is 
right noetherian (resp. artinian). Then Rs is a noetherian (resp. artinian) module, 
so it follows that the ring R is also right noetherian (resp. artinian). In the case 
when R is a commutative ring, P. Eakin [68] proved the converse of this in the 
noetherian case: if R is noetherian, then S must also be noetherian. The same 
result was obtained independently by M. Nagata [68]. This has become a standard 
result in commutative algebra, and is known as the Eakin-Nagata Theorem. In 
the following, we shall present a noncom mutative version of this theorem, due to 
D. Eisenbud. Our exposition here follows closely Eisenbud [70]; the gist of his 
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proof is an application of the Bass-Papp Criterion for right noetherian rings in 
(3.46). 

We start with two preparatory lemmata. 

(3.94) Lemma. Let P be an (S, S)-bimodule (over any ring S) such that P = 
u, S + ... + Un S, where the U; E P are such that SUi = u;s for all s E S. For any 
right S-module M, let M = Homs(Ps , Ms ), which is viewed as a right S-module 
via the left S -action on P. Then,for any right S -module N, M S:;e N => M S:;e N. 

Proof. Take any nonzero fEN. Then (f(ud, ... , feu,,)) E N"\{O}. Assuming 
M S:;e N, we also have M" S:;e Nil by (3.38), so there exists s E S such that 

(f(u,)s, ... , f(u,,)s) E M"\{O}. 

Therefore, 

(fs)(u;) = f(su;) = f(u;s) = f(u;)s E M 

are not all zero. Since P = u,S + ... + u"S, we see that fs E M\{O}, so it 
follows that M S:;e N. D 

(3.95) Lemma. Let S s:; R be two rings such that R = u,S + ... + unS, 
where each U; E R commutes elementwise with S. For any right S-module M, 
let M = Homs(Rs, Ms ), which is a right R-module via the left R-action on R 
(in the first variable). Then M s is injective iff M R is injective. 

Proof. The "only if" part is ajust special case of the "Injective Producing Lemma" 
(see (3.6B)). To prove the converse, assume now 1M R is injective. Taking the 
injective hull N := E(Ms), our goal is to show that M = N. Since Ms S:;e Ns , 
the lemma above (applied with P = sRs) implies that Ms ~e N s. In particular, 
we have M R S:;e N R. Since M R is injective, this implies that M = N. Consider 
now the following commutative diagram: 

M = Homs(R, M) 
h 

Homs(R, N) = N ~ 

(3.96) 11 1R 
M = Homs(S, M) 

k 
Homs(S, N) = N ~ 

where f, g are defined by restrictions, and h is an isomorphism as observed 
above. Since Ns is injective, g is onto. It follows that k is also onto, so M = N 
is injective over S, as desired. D 

To obtain a consequence of (3.95), we need the notion of a semiprimary ring: 
we say that a ring A is semiprimary if its Jacobson radical rad A is nilpotent, and 
A/rad A is a semisimple ring. 

(3.97) Corollary. Let S s:; R be two rings as in (3.95). If R is a semisimple 
(resp. semiprimary) ring, then so is S. 
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Proof. First assume R is semisimple. Take any right S-module M. The right R
module M R is certainly injective, by the semisimplicity of R. In view of the 
Lemma, Ms must also be injective. Since this holds for all M s , S is a semisimple 
ring (by FC-(2.9». Next, assume that R is semiprimary instead. Let I = rad R, 
and 10 = Ins. Clearly, the pair of rings Silo S; Rll satisfies the same 
hypothesis as that imposed on S S; R. Since RI I is semisimple, the foregoing 
implies that Silo is also semisimple. On the other hand, the nilpotency of I 
implies that of 10 • It follows that rad S = 10 , and that S is semi primary. 0 

Note that the converse of the Corollary is not true, at least in the semisimple 
case. For instance, if we take S to be a field, and R to be the commutative extension 
S[u] with the relation u2 = 0, then S is semisimple, but R is obviously not. 

We now come to the main result of this subsection. 

(3.98) Theorem (Eakin-Nagata-Eisenbud). Let S C R be two rings as in 
(3.95). Then R is right noetherian iff Sis. 

Proof. We have already discussed the motivating "if" part (which is true without the 
commuting condition on the Ui 's). For the converse, assume R is right noetherian. 
To show the same for S, it suffices to show, according to the Bass-Papp Theorem 
(3.46), that if Mi (i E I) are injective right S-modules, then so is M := EBiEI Mi. 
By Lemma (3.95), we need only show that M is injective as a right R-module. 
Now 

(3.99) 

Here, the isomorphism in the middle is valid since Rs is a f.g. module. (This 
implies that any S-homomorphism I : R ~ EBi Mi has image in a finite direct 
sum of the Mi 's and therefore I corresponds to essentially a finite number of 
Ii : R ~ Mi.) Since Mi is injective over S, Mi is injective over R by the 
Injective Producing Lemma. Over the right noetherian ring R, this implies that 
EBi Mi is injective, so by (3.99), M is injective over R, as desired. 0 

There is also an artinian analogue of the above result, which we shall next prove. 
Here we need two basic facts about right artinian rings established in FC-§4. The 
first of these is that right artinian rings are semiprimary (FC-(4.12), (4.14»; the 
second is the all-important Hopkins-Levitzki Theorem (FC-(4.15», which says 
that a semiprimary ring is right noetherian iffit is right artinian. With these good 
tools at our disposal, the proof of the following result is a breeze. 

(3.100) Tbeorem (Eisenbud-Robson). Let S S; R be two rings as in (3.95). 
Then R is right artinian iff Sis. 

Proof. As before, it suffices to prove the "only if" part of the Theorem, so assume 
R is right artinian. Then R is semiprimary as noted above, and therefore so is S 
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by (3.97). In view of the Hopkins-Levitzki Theorem, (3.100) simply reduces back 
to (3.98). D 

Note that the results (3.95)-(3.100) apply well, for instance, when R is a ring 
that is f.g. as a module over its own center. In this case, we get good descent 
theorems from R down to its center. Throughout the above analysis, we have 
assumed that the elements Ui in the equation R = Li UiS commute with all 
elements of S. The following example shows that this assumption is actually 
essential for the truth of all of the results. 

(3.101) Example (J.-E. Bjork). Let k c K be a field extension of infinite degree, 

and let S be the subring (~ ~) of R = Mb(K). Let UI, U2 E R be the matrix 

units Ell and E21 , respectively. Then UI S = (~ ~) and U2S = (~ ~), 
so we have ulS + uzS = R. Here R is semisimple, but S is neither right 
noetherian nor right artinian (by FC-(l.22», let alone semisimple. The problem 
here is that the elements U I, Uz fail to centralize the subring S in R. 

One final thought concerns the hypothesis that the number of generators Ui be 
finite. This hypothesis turns out to be essential as well. The following rather trivial 
example shows that there are no results possible if we allow even a countable 
number of (central) generators. 

(3.102) Example. Let S be a countable commutative valuation domain that is not 
a discrete valuation ring, and let R be its quotient field. Then R is also countable 
and so R = L~ I Ui S for U I, UZ, ... ranging over the elements of R. Here R is 
a field, but S is again neither noetherian nor artinian, let alone semisimple. 

In the literature, there are various other versions of theorems relating the noe
therian/artinian conditions of a ring to those of its subrings, due to E. Formanek, 
I.-E. Bjork, and others. For some of these versions, we referthe reader to pp. 18-19 
in Matsumura [86]. Later in §6 (especially §6F), we shall return to study in more 
detail the fascinating relationship between various finiteness conditions of a ring 
and those of its subrings. 

Exercises for §3 

1. Let R be a commutative domain that is not a field. If a module M R is both 
projective and injective, show that M = O. 

2. Let R be a right self-injective ring. 

(I) Show that an element of R has a left inverse iff it is not a left zero
divisor in R. 
(2) If R has no nontrivial idempotents, show that R is a local ring, and that 



114 1. Free Modules, Projective, and Injective Modules 

the unique maximal (left, right) ideal m of R consists of all left O-divisors 
of R. 
(3) If R is a domain, show that it must be a division ring. 

3. In a ring theory text, the following exercise appeared: "Every simple pro
jective module is injective." Find a counterexample. 

4. True or False: If Is is injective and f : S --* R is a ring homomorphism, 
then I ®s R is injective as a right R-module. 

5. Let a, b be elements in a ring R such that ab = I and bR ~e RR. Show 
that ba = 1. 

The next three exercises collect a few important properties of essential 
submodules of a module. These exercises will be used freely in the sequel, 
so the reader will be well advised to do them at this point. 

6. (A) If M; ~e E for 1 :::: i :::: n, show that n:'=1 M; ~e E. Does the same 
statement hold for an infinite family of essential submodules? 

(B) (Prompted by (3.38).) If M; ~e E; for i E N, does it follow that 
HMi ~e HE;? 

7. Let f : E' --* E be a homomorphism of right R-modules. If M ~e E, 
show that f- I (M) ~e E'. (In particular, if E' ~ E, then M ~e E implies 
that M n E' ~e E'.) Use this to give a proof for the first part of Exercise 
6. 

8. Let U be an R-module that contains a direct sum ffia Va, and let Vi ~e 
EO' ~ U for every a. Show that the sum La EO' must also be a direct 
sum. 

9. Show that a module M R is semisimple iffno submodule N =1= M is essential 
in M. 

10. (Matlis) Show that a ring R is right hereditary iff the sum of two injective 
submodules of any right R-module is injective. (Hint. Use (3.22).) 

11. (Osofsky) Show that a ring R is semisimple iff the intersection of two 
injective submodules of any right R-moduIe is injective. 

12. If R, S are Frobenius k-algebras, show that R x Sand R ®k S are 
also Frobenius k-algebras. Using this together with (3.15D) and the Wed
derburn-Artin Theorem, show that any finite-dimensional semisimple k
algebra is a Frobenius algebra. 

13. In the commutative case, generalize (3.12) as follows. If S is any Dedekind 
domain and 123 ~ S is any nonzero ideal, show that R = S /123 is a seIf
injective ring. (Hint. Note that R is unchanged if we localize S to a 
suitable semi local Dedekind domain.) 

14. For any finite-dimensional commutative local algebra R over a field k, 
show that the following are equivalent: 



(1) R is a Frobenius k-algebra; 
(2) R is self-injective; 
(3) R has a unique minimal ideal. 
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(For much stronger versions of this exercise, see (15.27), and Exer. (16.1) 
below.) 

15. Show that the k-algebra R in (3.15A) is Frobenius for any field k. 

16. Let K / k be a field extension, and let R be a finite-dimensional k-algebra. 
Show that R is a Frobenius algebra over k iff R K = R ~'k K is a Frobenius 
algebra over K. (Hint. For the "if" part, use the Noether·Deuring Theorem 
(FC-(19.25».) 

17. Let R be a finite-dimensional algebra over a field k. The interpretation 
of (Rh as E«R/rad R)R) in (3.41) shows that the right R-module 
R = Homk(R, k) does not depend on the choice of the ground field k (as 
long as R is a finite-dimensional k-algebra). Prove the following partial 
generalization of this fact. Let K be a field extension of k within the center 
of R (so R is also a finite-dimensional K -algebra). Then for any f.g. left 
R-module M, Homk(M, k) and HomKCM, K) are isomorphic as right 
R-modules. 

18. Use (3.13)(1) to prove Priifer's Theorem: Any abelian group G of finite 
exponent n is isomorphic to a direct sum of cyclic groups, necessarily 
of exponents dividing n. (Your proof should show, in particular, that any 
element of order n generates a direct summand of G.) 

19. Explain how (3.13)(2) would impact upon the proof of the Jordan Canon
ical Form Theorem. 

20. Let S be a submodule of a right module M over a ring R. Show that there 
exists a sub module C S; M such that E(M) ;:::: E(S) EB E(C). 

21. For any noetherian right module M over any ring R, show that E(M) 
is a finite direct sum of indecomposable injective R-modules. (Hint. By 
"noetherian induction", show that any submodule M' can be expressed as 
M] n· .. n M" in such a way that each M / M; is uniform. Then apply this 
to M' = (0).) 

22. Show that any injective module is the injective hull of a direct sum of 
cyclic modules. 

23. Let H = End(lR) where I is an injective right R-module.For f, hE H, 
show that f E H . h iff kerCh) S; ker(f). 

24. Let I R be any injective module. If every surjective endomorphism of I 
is an automorphism, show that every injective endomorphism of I is an 
automorphism ("hopfian ===} cohopfian"). How about the converse? 

25. Let MR be any module, and let f E EndR(E(M». If f 1M is an automor
phism of M, show that f is an automorphism of E(M). 
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26. Show that Baer's Criterion for Injectivity (3.7) can be further modified as 
follows: To check that a module IRis injective, it is sufficient to show that, 
for any right ideal 2l ~e RR, any f E HomR(2l, l) can be extended to 
R. 

27. (P. Freyd) Give a direct proof for the validity of the modified Baer's Cri
terion in the last exercise by using the fact that a module IRis injective iff 
it has no proper essential extensions. 

28. (1) For an R-module M R and an ideal 1 ~ R, let P = {m EM: m1 = 
O}. If M is an injective R-module, show that P is an injective R/ 1 -module. 
(2) Use the above to give a new proof for the fact that any proper quotient 
of a commutative PID is a self-injective ring. 

29. Let MR be an R-module, and 1 ~ R be an ideal such that M 1 = O. By 
Exercise 28, if M R is injective, then M Rj J is injective. Is the converse 
also true (cf. (3.11 A»? (There is a "quasi-injective" analog for this and 
the last exercise: see Exer. (6.27 A).) 

30. Let S = R[X] where X is any commuting set of indeterminates over R. 
For any essential right ideal 2l ~e RR, show that 2l[X] ~e Ss. What if 
S = R (Y) where Y is a noncommuting set of indeterminates? 

31. ("Schroder-Bernstein for Injectives": Bumby [65].) Let A and B be in
jective R-modules that can be embedded in each other. Show that A ~ B. 

32. Suppose A, Bare R -modules which can be embedded in each other. Show 
that E(A) ~ E(B), but that we may not have A ~ B. 

33. Let 1 = rad R, where R is a semilocal ring (i.e., R/1 is semisimple). 
Let VR be a semisimple module, and E = E(V). Show that there is 
an R-isomorphism E/V ~ HomR(J, E). (Here, the right R-action on 
HomR(J, E) comes from the left R-action on 1.) If, moreover, 12 = 0, 
show that E/ V ~ HomR(J, V). 

34. (Big injective hulls over artinian rings: Rosenberg-Zelinsky [59].) Let A ~ 
B be division rings such that dim (A B) < 00 but dim(BA ) = 00. (Such 
pairs of division rings were first constructed by P. M. Cohn, in answer to a 

question of E. Artin.) Let R = (~ : ). By FC-(1.22), R is an artinian 

ring. Since 1 = rad R = (~ ~) with R/ 1 ~ A x B, the two simple 

right R -modules V', V may be thought of as A and B, respectively, with 
R acting via the projection R -+ A x B. 

(1) Show that Viis injective. 
(2) Determine the quotient module E(V)/ V and conclude that E(Vh is 
not f.g. 
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(Comment. Right artinian rings R over which E (V) is f.g. for every simple 
right R-module V have a special significance in Morita Duality Theory: 
see (19.74) below.) 

35. Over a right noetherian right self-injective ring R, show that any projective 
module PR is injective. (For more general results, see §15B below.) 

36. True or False: Let R ~ S be rings such that R ~e SR and Ss is injective. 
Then S = E(RR). 

37. (Douglas-Farahat) Let M be an additive abelian group, and let R = 
Endz(M) (operating on the left of M). Show that RM is a projective 
module in case (1) M is a f.g. abelian group, or (2) n M = 0 for some 
positive integer n. (Hint. Use (2.12B) and Exercise 18 above.) 

38. Use the fact that injective modules are divisible to prove the following: 
Let E = E(R/fJJ.) where fJJ. <;; R is a left ideal, and let s E R. If sE = 0, 
then ts = 0 for some t E R\fJJ.. Deduce that, if R\'Ql consists of non 
O-divisors (e.g., R is a domain, or R is a local ring with maximal ideal fJJ.), 
then E is a faithful R-module. (In the local ring case, this gives another 
proof for the faithfulness of the "standard module".) 

39. Let (R, m) be a commutative noetherian local ring. Use the faithfulness of 
the standard module E(R/m) to show that n::,:o mn == O. (This is a spe
cial case of the well-known "Krull Intersection Theorem" in commutative 
algebra.) 

The following exercises, (40A) through (40G), collect a few basic facts 
about associated primes and primary decompositions, mostly in a commu
tative setting. Some of these facts will prove to be useful in future chapters, 
when we consider the case of commutative rings. 

4OA. Let R be a commutative noetherian ring, and let q be a meet-irreducible 
ideal in R. By Noether's Theorem (see (3.80)), q must be a primary ideal 
(i.e., q =I R, and xy E q ==} x E q or yfl E q for some n), say with 
radical p. Show that E(R/q) ~ E(R/p). Does this isomorphism still hold 
if q is only assumed to be a primary ideal? 

4OB. Let I be an ideal in a commutative noetherian ring R. Show that 

(1) I is primary iff IAss(R/1)1 = 1. 
(2) By the Lasker-Noether Theorem (which we assume), there exists an 
(irredundant) primary decomposition I = q In· .. n qn where the qi 's are 
primary ideals with distinct radicals Pi'S. ("Irredundant" here means I is 
not the intersection of a smaller set of the qi 's.) Show that Ass(R/ I) = 

{p,,···,Pn}. 
(3) Show that any prime minimal over I lies in Ass(R/ l). Conclude from 
this that the minimal members in Ass(R/ I) (with respect to inclusion) 
are exactly the primes of R that are minimal over I. 
(4) Show that I is a radical ideal (i.e., I = .Ji) iff q = Pi for all i. In 
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this case, show that each Pi is a minimal prime over I. 
(5) Part (2) above shows that the primes PI, ... ,Pn arising as radicals of 
the qi 's in a primary decomposition depend only on I, and not on the 
decomposition chosen. Give an example to show, however, that the qi 
themselves may not be uniquely determined by I. 

(Hint. Prove the "only if" part in (1) first; then deduce the "if" part there 
from (2). For (4), use Emmy Noether's example 

1= (i, xy) = (y) n (i, x +ay) (Va E C) 

in the polynomial ring C [x, y], ca. 1921. For more information about the 
ring RII, see (12.23)(a).) 

40C. Use (2) of the above exercise to show that the conclusion of (3.78) holds 
already for any R-module M (over a commutative noetherian ring R) with 
Ass(M) = (pl. 

4OD. Let M be a f.g. module over a commutative noetherian ring R, and let 
I = ann(M). In a commutative algebra monograph, it was claimed that 
Ass(M) is the same as Ass( R I/). Find a counterexample to this statement; 
then state (and prove) a corrected version thereof. 

4OE. Let M be a module over a commutative ring R. 

(l) Show that any maximal memberofthefamily (ann(m): 0 f:- mE M} 
is in Ass(M). (This is a commutative version of (3.58).) 
(2) If R is noetherian, show that U (p : P E Ass(M)} is precisely the set 
of elements of R which act as O-divisors on M. 
(3) Does (2) still hold if R is not noetherian? 

4OF. Let M R be a noetherian module over an arbitrary ring R. 

(1) Show that IAss(M)1 < 00. 

(2) If R has ACC on ideals and M f:- (0), show that there exists a filtration 

(0) = Mo C;; ... C;; Mil = M 

such that each filtration factor Mi I Mi _I is a prime module. 
(3) If R is commutative and noetherian, show that the filtration for M 
above may be chosen such that each M;/ M i - I ~ Rlpi for a suitable 
prime ideal Pi c R. 

4OG. Let R be the Boolean ring niEi Zz. 

(1) Show that Ass(R) consists of all prime ideals of the form Pi = 
niEi Zz, where 1 is any subset of I such that II \ 11 = 1. 
(2) If I is infinite, show that there exist primes of R that are not in Ass(R). 

(Comment (not needed for the solution of the exercise). In general, the 
primes of R that are not associated primes correspond to the "nonprincipal 
ultrafilters" on the indexing set I.) 
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41. Let R be a commutative noetherian ring, and E = E(Rlp) where p is a 
prime ideal of R. For any ideal J <; p, let R = RI J, P = pi J, and let 
E' := annE (1) <; E. Show that E' is isomorphic to the injective hull of 
the R-module RIP. 

42. (Vamos, Faith-Walker) Show that a ring R is right artinian iff every injec
tive right R-module is a direct sum of injective hulls of simple R-modules. 

43. Define a module I R to be fully divisible if the following condition is satis
fied: For any families {u,,} <; I and {a,,} <; R such that 

L a"x" = 0 (finite sum, x" E R) ===> L U"X" = 0, 

there exists v E I such that u" = va" for all 01. Show that IRis fully 
divisible iff it is injective. 

44. A ring R is defined to be right principally injective if RR is a principally 
injective (or equivalently, divisible) module.3D For instance, a right self
injective ring is right principally injective. 

(1) Show that any von Neumann regular ring R is right principally injective. 
(2) Give an example of a right principally injective ring that is neither von 
Neumann regular nor right self-injective. 

The next three exercises below are taken from Nicholson-Yousif [95]. 

45. Prove the following for any right principally injective ring R: 

(1) (generalizing Exercise 2) a E R has a left inverse iff a is not a left 
O-divisor; 
(2) R is Dedekind-finite iff any non left O-divisor in R is a unit. 

46. Let R be a right principally injective ring, and / = /2 Eo R. If I <; R is a 
right ideal isomorphic to the right ideal/ R, show that I = eR for some 
e = e2 E R. (For more information about this conclusion, see Exercises 
35-38 in §6.) 

47. For any right principally injective ring R, prove the foillowing: 

(1) If we have a direct sum of principal left ideals E9:'=1 Rai in R, then 
any R-homomorphism g : Li ai R --* R extends to an endomorphism of 
RR. 
(2) If E9~=1 Ai is a direct sum of ideals in R, then for any left ideal B in 
R, B n (E9i Ai) = E9i(B n Ai). 

48. Let R be a commutative noetherian complete local ring, and E be its 
standard module. For any R -submodules A, B <; E, show that any R
homomorphism from A to B is given by a multiplication by an element of 
R. 

30 A good alternative name for such R would be a right divisible ring. 
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49. Let (R, m) be a commutative noetherian local ring with m-adic comple
tion R and standard module E = E(R/m). (You may assume that R 
is also a noetherian local ring.) Upon identifying EndR(E) with R by 
Matlis' Theorem (3.84), show that 

(1) the R-module E can be identified with the standard module E of R, 
and 
(2) the R-submodules of E are the same as its R-submodules. 

(Comment. It will be clear from Morita's duality theory to be developed 
later (see (19.56» that E is an artinian R-module. From this, it follows 
from (2) that E is also an artinian R-module, without a completeness 
assumption on R. A further extension of this fact to a nonlocal setting can 
be found in Exercise (19.8).) 

50. In the notation of the last exercise, let T be an R -submodule of E (so that 
it is also an R-submodule). Show that T = E iff T is a faithful R-module. 
(You may use the result mentioned in the Comment on Exercise 49.) 

51. Let A = k[XI, ... , x r ] where k is a field. In §3J, it is shown that 
the A-module k (with trivial xi-action for all i) has injective hull T = 
k[X,I, ... ,xr- l ]. Show that T is isomorphic to a quotient ofthe A-module 
of Laurent polynomials k[X~I, ... , X;l]. In the case r = 1 (where we 
write R = k[x]), show that T is isomorphic to the x-primary component 
of the torsion A-module k(x)/k[x]. 

52. Let A = k[XI, ... ,xr], P = k[[XI, ... ,xr]], and T = k[X,I, ... ,x;l], 
where k is a field. In §3J, we observed that there is a P -module structure on 
T extending its A-module structure. Show directly that T is a faithful P
module, and use Exercises (49) and (50) above to give an alternative proof 
for the fact that T = EA(k) = Ep(k), where k denotes the A-module 
(resp. P -module) with trivial Xi -action for all i. 

53. For any r-tuple a = (ai, ... , a r ) over a field k, let ma be the maximal 
ideal (x] - a], ... ,Xr - a,.) in the polynomial ring A = k[x], ... , xr ]. 

Let k" = A/m" , so that k" is the A-module k on which each Xi acts as 
multiplication by ai. Construct the injective hull EA (k,,). 

54. Lat (A, mA) be a commutative noetherian local ring, with (right) standard 
module (VA. Let (B, m B) be a right artinian local ring that is a module
finite algebra over A such that 1 B . mA S;;; mB. Show that the right standard 
module (VB := E«B/mB)n) of B is given by HomA(B, (VA). [Here, B 
is viewed as an (B, A)-bimodule, and the right B-module structure on 
HomA(B, (VA) comes from the left B-structure on B.] 

55. Let R be a right noetherian ring, and p be a prime ideal of R. If R/p is a 
domain, show that p is right meet-irreducible (i.e., if A, B are right ideals 
such that An B = p, then A = P or B = p). (Comment. The converse 
is true too, but is much deeper. Its proof requires Goldie's Theorem to be 
proved in § 11; see (11.25) below.) 



Chapter 2 

Flat Modules and Homological 
Dimensions 

This chapter is a natural continuation of Chapter 1 and consists of two long sections. 
In §4, we study in detail the notion of flat (and faithfully flat) modules, and in §5, 
we develop the theory of homological dimensions of modules and rings. 

The idea of flat and faithfully flat modules plays a special role in many parts of 
ring theory. On the one hand, flat modules are natural generalizations of projective 
modules. On the other hand, flat modules are related to injective modules via the 
formation of character modules. Also, by a theorem of Lazard and Govorov, flat 
modules are precisely the direct limits of (f.g.) free modules. Thus, in the section 
on flat modules in this chapter, the theories developed in § 1, §2, and §3 for free, 
projective, and injective modules find their common ground. 

Upon developing the theory of flat modules, two other important classes of 
modules come to the fore. These are the class of finitely presented (f.p.) modules, 
and the class of coherent modules. These classes are discussed in some detail in 
§4. In particular, we shall encounter the class of left coherent rings (those rings 
whose f.g. left ideals are f.p.). By a theorem of S. Chase, these are precisely the 
rings over which a direct product of flat right modules is always flat. 

Section 4 concludes with a subsection on pure exact sequences. These sequences 
are intimately related to the notion of flat modules. A highlight in this subsection 
is the result that pure exact sequences are precisely direct limits of split short exact 
sequences. 

We note, in passing, that flat modules are used not only in algebra and algebraic 
geometry, but also in topology and analysis. For instance, in the homology theory 
of Banach algebras, the notion of flatness (for bimodules) is related to the notion 
of "amenability" of such algebras. 

In §5, we develop the theory of projective, injective, and flat dimensions of 
modules via the use of Schanuel 's Lemma. By taking suprema of these dimensions 
over all (right) modules, we arrive at two important homological invariants of a 
ring, namely, its (right) global dimension, and its weak dimension. These invariants 
control the arithmetic of a ring in a rather subtle way. For instance, a famous 
theorem of Serre says that a commutative noetherian local ring is regular iff it 
has finite global dimension, which must then be equal to its Krull dimension. An 
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attempt to "globalize" Serre's result leads to the class of right regular rings (right 
noetherian rings whose f.g. right modules have finite projective dimensions). These 
rings are known to be of importance in algebraic K -theory. Due to limitation of 
space, however, we shall confine ourselves to the study of commutative regular 
rings. For these rings, global dimension agrees with Krull dimension, although 
these dimensions are not necessarily finite in general. 

Most of what we cover in this chapter is standard fare in the theory of rings 
and modules. To aid the reader's understanding of this material, many interesting 
examples are included. More module theory of a somewhat different spirit will be 
presented in Chapter 3. 

§4. Flat and Faithfully Flat Modules 

§4A. Basic Properties and Flatness Tests 

The purpose of §4 is to give an introduction to the theory of fiat (and faithfully 
fiat) modules. In FC-§24, I have given a brief account of fiat modules, with the 
goal of applying them to the study of perfect and semiperfect rings. Here, we 
are concerned with fiat modules over arbitrary rings. For the convenience of the 
reader, therefore, this section is written independently of FC-§24 and does not 
presuppose a knowledge of perfect and semiperfect rings; any reference to FC-§24 
will only be of a peripheral nature. 

The importance of fiat modules can partly be gauged from the fact that "Mod
ules Plats" occupy the very first chapter of Bourbaki's famous treatise "Algebre 
Commutative". Fortunately for all algebraists, Bourbaki wrote this chapter without 
imposing any commutativity conditions on the ground ring. Needless to say, our 
presentation here is heavily infiuenced by Bourbaki's. In the course of consulting 
the literature, however, we were astonished by a nontrivial number of careless 
statements and wrong assertions about fiat modules, even in standard ring theory 
textbooks. A few of these will be pointed out in the Exercises for this section, as 
well as in §41. 

(4.0) Definition. A right module PR is called flat (or R -flat) if the functor P ® R -
is exact on R9J1 (the category of left R-modules). Since this functor is in any case 
right exact, the condition for P to be fiat is that, whenever A --+ B is injective 
in R9J1, so is P ®R A --+ P ®R B, in the category of abelian groups. 

The term "flat module" is due to J.-P. Serre: a good choice of words since such 
a module does not "bend" an inclusion map? Just as in the case of projective and 
injective modules, the notion of flat modules is "functorial" in the following sense. 

(4.1) Proposition. Let ({J : R --+ S be a ring homomorphism, whereby S is 
viewed as a left R-module.lf PR is R-flat, then the right S-module pl:= P®RS 
is S-flat. 
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Proof. Let A' --+ B' be an injection in sm. We must show that pi I8is A' --+ 

pi I8is B' is an injection of abelian groups. Now 

pi I8is A' = (P I8iR S) I8is A' 

can be identified with P I8iR A' (where A' is viewed as a left R-module via 
cp) and similarly pi I8is B' can be identified with P I8iR B'. Since P is R-flat, 
P I8iR A' --+ P I8iR B' is injective, which gives what we want. D 

If an R-module PR is a direct sum of {Pi: i E l}, then the functor P I8iR -
is the direct sum of the functors Pi I8iR -, so P I8iR - is exact on Rm iff each 
Pi I8i R - is. We have, therefore: 

(4.2) Proposition. If P = EBi Pi, then P is flat iff each Pi is flat. 

Since R I8iR A ~ A for any left R-module A, the right regular module RR is 
flat. Thus, (4.2) implies that any free right module is flat, and, moreover: 

(4.3) Proposition. Any projective (right) R-module isflat. 

The converse of (4.3) is false in general. In fact, we have shown in FC-(24.25) 
that the converse of (4.3) holds precisely when the ring R in question is "right 
perfect". In any case, it is easy to construct examples of flat modules that are not 
projective. For instance, let R be a commutative ring and let P = (S-1 R)R, 
where S is a multiplicatively closed set in Rand S- 1 R denotes the localization 
of R with respect to S. The functor" P I8i R - " in this case is the localization 
functor "S-I" which is well-known to be exact. Therefore, (S-I R)R is always 
R-fiat. But, choosing R to be a commutative domain, and S := R\{O), S-1 R is 
the quotient field K of R, and K R is not a projective module unless R = K, by 
(2.18). 

(4.4) Proposition. Let {Pi: i E l} be a direct system of right modules over any 
ring R, where I is a directed set. If each Pi (i E I) is fiat, then so is the direct 
limit module P := lim Pi. -
Proof. Let A --+ B be an injection in Rm. Then Pi I8iR A --+ Pi I8iR B is an 
injection for each i E I. It follows easily that 

lim (Pi I8iR A) ~ lim (Pi ®R B) - -
is also injective. The LHS (resp. RHS) is canonically isomorphic to P I8i R A 
(resp. P I8iR B). Therefore, P ®R A --+ P I8iR B is injective, as desired. D 

(4.5) Corollary. Ifeveryfg. submodule ofa module PR isflat, then PR itselfis 
flat. 
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Proof. We can think of P as a direct limit of the direct system of its f.g. submodules. 
Now apply (4.4). 0 

(4.6) Corollary. Let R be a right semihereditary ring. Then any right idealf}1 S; R 
is flat as a right R -module. 

Proof. Consider any f.g. right ideal f}10 S; f}1. Since R is right semihereditary, 
(f}10)R is projective, and hence flat by (4.3). By (4.5), it follows that f}1R is flat. 3l 

o 

While flat modules are related to projective modules by (4.3), there is also an 
interesting relationship between flat modules and injective modules, discovered 
by J. Lambek. This relationship is formulated by using the notion of character 
modules. For any right R-module P, the character module of P is defined to be 

p' := Homz(P, Q/Z). 

This is a left R-module via the action (r, f) f-+ rf, where (rf)(x) = f(xr) for 
r E R, f E P', and x E P. The abelian group Q/Z is used here for two reasons: 
it is a divisible group and hence an injective Z-module; and it has the following 
convenient ("cogenerator") property. 

(4.7) Lemma. For any abelian group X with a given nonzero element x E X, 
there exists a group homomorphism f: X -+ Q/Z such that f(x) i= o. 

Proof. Since Q/Z contains elements of any given finite order, there clearly exists 
a homomorphism fo : Z· x -+ Q/Z with fo(x) i= O. By the injectivity of Q/Z, 
fo can be extended to a homomorphism f : X -+ Q/Z. 0 

Using this lemma, we can show that the character module formation gives a 
(contravariant) functor from 9JlR to R9Jl with the following exactness property. 

(4.8) Proposition. For right R-modules A, B, C, a sequence A ~ B ~ C 

in 9JlR is exact iff the induced sequence C' ~ B' ~ A' in R9Jl is exact. 

Proof. The "only if" part follows from the injectivity of the abelian group Q/Z. 
For the converse, we assume that im fJ' = ker (X', and try to show that im (X = ker fJ. 
(a) If im (X S; ker fJ does not hold, we would have fJ(X(a) i= 0 for some a E A. 
By (4.7), there exists fEe' such that 

o i= f(fJ(X(a)) = «(X' fJ'(f))(a), 

contradicting (x' fJ' = o. 

31 We shall see later that any left ideal in R is also flat; see (4.66). 
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(b) If ker fJ £ im a does not hold, we would have some b E B\im a such that 
fJ(b) = O. Applying (4.7) to B/im a, there exists f E B' such that f(im a) = 0 
and feb) =1= O. The former implies that a'Cf) = 0, so f := fJ'(g) for some 
g E C' . But then 

feb) = fJ'(g)(b) = g(fJ(b» = 0, 

a contradiction. o 

We arrive now at the following remarkable connection between injective mod
ules and flat modules. 

(4.9) Theorem (Lambek). A right R -module P is flat in !m R iff its character 
module pi is injective in R!m. 

Proof. The "only if" part follows from the Injective Producing Lemma (3.5), 
applied with S = Z and M = QjZ. (Of course, (3.5) has to be applied with a 
left-right switch, since here P = sPR .) For the reader's convenience, we recall 
this proof. This recall is useful since the proof of the converse will consist of 
reversing the steps. Assume P is flat, and let 0 ~ A ~ B be exact in R!m. Then 
o ~ P ®R A ~ P ®R B is also exact, and hence 

(4.10) 

is exact since QjZ is Z-injective. Identifying the two groups above (via canonical 
isomorphisms) with HomR(B, Homz(P, Q/Z» and HomR(A, Homz(P, Q/Z», 
we see that 

(4.11) 

is exact. This shows that pi is an injective left R-module. 
Conversely, assume that pi is injective, and let 0 ~ A ~ B be exact in R!m 

as before. Then (4.11) is exact, and therefore so is (4.10). Applying (4.8) over the 
ring Z, it follows that 0 ~ P ® R A ~ P ® RBis also exact. This shows that 
P is flat in !mR. 0 

Combining Lambek's Theorem with Baer's Test for Injectivity, we shall derive 
the following. 

(4.12) Modified Flatness Test. A right R-module P is flat iff, for any (finitely 
generated) left ideal2t £ R, the natural map P ®R 2t ~ P2t is an isomorphism 
(of abelian groups). 

Proof. Note that P2t is the image of P ® R 2t ~ P ® R R, if we identify P ® R R 
with P. Therefore, to say that P ® R 2t ~ P2t is an isomorphism amounts to 
saying that 

o ~ P ®R 2t ~ P ®R R is exact. 
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If P is fiat, this certainly holds for all left ideals Ill. Conversely, if (*) holds for 
all f.g. left ideals Q{, then by taking direct limits, it also holds for all left ideals Q{. 
Therefore, (4.10) and (4.11) are exact for A = Q{ and B = R. By Baer's Criterion 
(3.7), this implies that pi is injective in R9'.n. Now Lambek's Theorem implies 
that P is fiat in 9'.nR. 0 

(4.13) Corollary. 32 Suppose 0 ---+ A ---+ B ---+ C ---+ 0 is exact in 9'.nR. If A, C 
are fiat modules, then so is B. 

Proof. For any left ideal Q{, we have the following commutative diagram: 

C ® R Q{ ------+ 0 

CQ{ ------+ 0 

where a, y are isomorphisms, by (4.12). If x E ker f3, then 0 = 1jJ(f3(x» 
y(r(x» so rex) = O. Since the top row is exact, we have x = a(y) for some 
YEA ®R Q{. But then 0 = f3(a(y» = qJ(a(y» implies a(y) = 0 (since qJ 
is injective). Therefore y = 0 and x = a(y) = O. This shows that f3 is an 
isomorphism, so B is fiat by (4.12). 0 

Of course, (4.13) is also valid with "fiat" replaced by "projective" or "injective". 
In these cases, the exact sequence actually splits. But in the fiat case, it need not. 

The Modified Flatness Test has other useful applications. In the next result, we 
apply it to obtain a criterion for a quotient module of a fiat module to be fiat. 

(4.14) Proposition. Let 0 ---+ K ---+ F ---+ P ---+ 0 be exact in 9'.nR, where F is 
fiat. Then P is fiat iff K n FQ{ = KQ{ for every (f.g.) left ideal Q{ c::; R. 

Proof. Start with the exact sequence 

(4.15) 

Since F is fiat, we may identify F ® R Q{ with FQ{ by (4.12). Therefore, (4.15) 
induces an isomorphism 

(4.16) FQ{/ KQ{ ----+ P ® R 2l. 

On the other hand, we have an isomorphism 

(4.17) FQ{/(K n F2l) ----+ P2l 

induced by the surjection F ---+ P. If we think of (4.16) and (4.17) as "iden
tifications", the natural surjection P ®R 2l ---+ PQ{ corresponds to the natural 

32For another proof of this Corollary (and a further refinement), see (4.86)(2). 



§4. Flat and Faithfully Flat Modules 127 

surjection 

F21/ K21 ~ F21/(K n F21). 

By (4.12), P is fiat iff this is an isomorphism, for all (f.g.) left ideals 21 ~ R. The 
Proposition now follows. 0 

§4B. Flatness, Torsion-Freeness, and von Neumann Regularity 

If IRis any injective right R -module, then, for any a E R with annr (a) = 0, right 
multiplication by a on I is surjective (see (3.17)'). Using (4.14), we can prove the 
following "dual" of this property for fiat modules. 

(4.18) Proposition. Let P be any flat module in m'tR. If an element a E R has 
anng (a) = 0, then right multiplication by a on P is injective. 

Proof. Assuming anne (a) = 0, the map {L: R ~ R given by right multiplication 
by a is an injection in Rm't. Since P is fiat, 1 ® {L: P ®R R --+ P ®R R is also 
an injection. But, after identifying P ® R R with P as usual, I ® {L is just right 
multiplication by a on P. This gives the desired conclusion. 0 

If a right module PR has the property in the conclusion of (4.18), let us say 
that P is torsion-free. (Clearly, this definition of torsion-freeness generalizes the 
earlier one given for modules over commutative domains in §2.) Thus, (4.18) says 
that any flat module in m'tR is torsion-free. The converse is not true in general, as 
the following easy example shows. 

(4.19) Example. Let R = k[x, y 1. where k is any commutative domain. Then 
the torsion-free R -module 21 = (x, y) = x R + y R is not flat. The quickest way 
to see this is to use (4.1) with S = R/(x), which we can identify with k[yJ. If 21 
is R-fiat, then by (4.1) applied to the quotient map R ~ S, 

21®R S = 21®R (R/(x));::: 21/21x = (x, y)/(x 2 , yx) 

is S-flat, and hence torsion-free as an S-module. But this is not the case since 
0=1 YES annihilates the nonzero element x = x ® I E 21 ®R S. Another way 
to show that 21 is not R-fiat is to use (4.12): we shall show below that the natural 
map f : 21 ®R ~ ~ ~2 is not injective. Since 

f(x ® y - y ® x) = xy - yx := 0, 

we are done if we can show that x ® y =I y ® x in 21 ® R 21. Consider the natural 
map 
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We can identify (2l/2l2)R with VR , where V := kx ffi ky is acted on trivially by 
2l. With this identification, 

(2l/2l2) ®R (2l/2l2) = V ®R V = V ®k V 

= k(X ® x) ffi k(x ® y) ffi k(y ® x) ffi k(y ® y). 

Hence g(x ® y) i- g(y ® x), which shows that x ® y i- y ® x in 2l ®R 2l. 

Over certain rings, torsion-free right modules can be shown to be flat. For 
instance, we have: 

(4.20) Proposition. Let R be a Prufer domain (see (2.28»). Then a right R -module 
P is flat if (and only if) it is torsion-free. 

Proof. It suffices to prove the "if" part, so assume P is torsion-free. By (4.5), 
we are done if we can show that any f.g. submodule Po ~ P is flat. Since Po is 
torsion-free, (2.31) implies that Po is projective, so by (4.3), Po is indeed flat. 

D 

The Proposition applies, in particular, to all Dedekind domains. For instance, 
applying it over Z, we see that any torsion-free abelian group (e.g., P = Z x Z x 
... ) is Z-flat. (Recall, however, that P is not Z-projective, by (2.8).) 

More examples of flat modules are given by the following interesting result, 
which may be viewed as the "flat analogue" of similar earlier results on projectives 
and injectives (cf. FC-(2.8), (2.9». 

(4.21) Theorem. For any ring R, the following are equivalent: 

(1) R is von Neumann regular; 
(2) any right R -module P is flat; 
(3) any cyclic right R-module isflat. 

Proof. (1 )==>(2). Let 2l be any f.g. left ideal of R. Then 2l = Re for some 
e = e2 E R (by FC-(4.23», and so the inclusion map i : 2l -+ R is a split 
injection in ROOt. It follows that 1 ® i : P ®R 2l -+ P ®R R is also a (split) 
injection. By (4.12), this implies that P is flat. 

(2)=H3) is a tautology. 

(3)==>(1). For any a E R, consider the exact sequence 

o~ aR ~ R ~ R/aR ~ o. 
Since R/aR is flat by (3) and R is flat by (4.3), (4.14) implies that aR n Ra ~ 
aRa. In particular, we have a E aRa, as desired. D 

It follows immediately from (4.9) and (4.21) that 
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(4.22) Corollary. For any right module P over a von Neumann regular ring, the 
character module P' is an injective left R-module. 

§4C. More Flatness Tests 

Developing the theme of (4.14) a bit further, we next prove the following theorem 
of O. ViIIamayor. 

(4.23) Theorem. Let 0 --,» K --,» F --,» P --,» 0 be exact in !:D1R, where F is a 
free module with basis lei : i E I}. Then the following are equivalent: 

(1) P is fiat. 
(2) For any C E K, there exists 0 E HomR(F, K) with O(c) = c. 
(3) For any Cj, ••. , Cli E K (n EN), there exists 0 E HomR(F, K) with 

O(Ci) = Ci for all i. 

Proof. (2)==>(1). We shall check that K n F2t ~ K2t, where 2t ~ R is any 
left ideal. For C E K n F2t, write C = ei,r, + ... + ei,,,rm (rj E 2t). Take 
o E HomR(F, K) with O(c) = c. Then 

C = O(ei,r, + ... + ei,,,rm) = O(ei,)r, + ... + O(ei",)rm E K2t, 

as desired. 

(1)==>(2). Write the given C E K as ei,r, + ... + ei,,,rm (rj E R), and let 
2t = Lj Rrj. Since P is flat, we have C E K n F2t == K2t by (4.14). Therefore, 
C = L" C"S" for suitable C" E K and Sa E 2t. Writing further Sa = Lj tajrj 
(taj E R), we have then 

(4.23') 

Defining 0 E HomR(F, K) by sending eiJ to cJ := La c"t"j E K (for 1 ::: j ::: 
m) and sending all other basis elements to zero (for instance), we have 

O(c) = o (L::>i/j) = z=cjrj = C by (4.23'). 
J J 

(3)==>(2) follows by taking n = I. 

(2)==>(3). We prove (3) by induction on n, the case n = I being covered by (2). 
For n > 1, find first 0" E HomR(F, K) fixing cn,anddefine C; = Ci-On(Ci) E K 
for i ::: n - 1. By the inductive hypothesis, there exists 0' E HomR(F, K) fixing 
all C;. Now define 0 := 0' + 011 - O'On E HomR(F, K). Then 

O(cn) = O'(cn) + Cn - O'(cn) = CIl, and 

O(Ci) = O'(Ci) + (Ci - c;) - O'(Ci - C;) 
= Ci - C; + 0' (C;) = Ci 
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for i :::: n - 1, as desired. D 

As a consequence of (4.23), we shall present some other characterizations of flat 
modules in terms of linear relations. The exposition here follows closely [Chase: 
60]. 

(4.24) Theorem. (Equational Criteria for Flatness) For any right R -module P, 
the following are equivalent: 

(1) Pis R-fiat. 
(2) Given any linear relation LjaJfj = 0 (aj E P, rj E R, I:::: j:::: n), 

there exist 

bi E P (l :::: i :::: m) and sij E R (l :::: i :::: m, 1 :::: j :::: n) 

such that a j = Li bisij for all j, and Lk Sikrk = 0 for all i. 
(3) Given any linear relations Lj ajrj£ = 0 (aj E P, rje E R, 1 :::: j :::: n, 

I :::: e :::: p), there exist 

bi E P (l:::: i :::: m) and sij E R (l:::: i :::: m, 1 :::: j :::: n) 

such that aj = Li bisij for all j, and Lj sijrje = 0 for all i and all e. 

Remarks. (3) may be expressed formally in matrix notation as follows. Let 

and p = (rje) (an n x p matrix over R); if exp = 0, then ex = fJa for some 
fJ = (b l , .•• , bm) E pm and some m x n matrix a over R, such that ap = O. 

(2) is the special case of (3) when p = I. In a manner of speaking, (2) and (3) 
express the fact that linear relations in P are consequences of linear relations in 
R. In the special case when P is a ring containing R as a subring, the condition for 
PR to be flat boils down to the following: any solution over P for a homogeneous 
system of linear equations defined over R is a P -combination of solutions of the 
same system over R. 

Proof. (3)==}(2) is trivial, as we have noted above. 

(2)==} (I ). Fix an epimorphism f : F -+ P, where F is a suitable free R -module. 
Let K = ker(f). We shall show that P is flat by checking (2) in (4.23). Given 
any c E K, write c = elrl + ... +enrn, where rj E Rand el, ... , en arepartof 
a basis of F. Let aj = f(ej). Then Lj ajrj = 0 in P, and we can find the (bd, 
{Sij} as in (2). Fixing Zi E F such that f(zi) = bi, we can define () : F -+ F 
by sending each ej (l :::: j :::: n) to ej - Li ZiSij, and sending all other basis 
elements to zero. Since 
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for all j :s n, we have ()(F) ~ K, and finally: 

e(c) = e(~>krk) = ~(ek - ~Zisik)rk 

= L ekrk - L Zi (L Sikrk) = c. 
k i k 

(1 )==>(3). Fix f : F ~ P and K = ker(f) as above. Choose x j E F such that 
f(xj) = aj, and let Ye = Lj xjrje· Then f(ye) = Lj ajrJe = 0, so Ye E K. 
Since P is fiat, (4.23) implies that there exists () E HomR(F, K) fixing each Yeo 
Write Xj -e(Xj) = L::\ eiSij, where sij E R,and e\, ... ,em arepartofabasis 
of F. Then, for bi := f(ei), we have 

aj = f(xj) = f(xj - e(Xj» = f(~elSij) = ~biSij' 
Finally, since 

we have Lj Sijrj€ = 0 for all i and e, as desired. 

§4D. Finitely Presented (fp.) Modules 

o 

Before we give further applications of (4.23) and (4.24), we need to introduce a 
couple more definitions: 

(4.25) Definitions. (a) A module PR is said to be finitely related (abbreviated f.r.) 
if there exists an exact sequence 0 ~ K ~ F ~ P ~ 0 in 91tR where F is 
free (of arbitrary rank) and K is f.g. (finitely generated). 

(b) A module PR is said to be finitely presented (abbreviated f.p.) if there exists 
an exact sequence 0 ~ K ~ F ~ P ~ 0 in 91t R where F is free of finite 
rank, and K is f.g. (or equivalently, there exists an exact sequence R m ~ R n ~ 

P ~ 0 with m, n EN). 

A word of caution is necessary here. The definition of "finitely presented" 
above is universally accepted, but in some books, "finitely r,elated" is taken to 
mean the same thing as "finitely presented". We believe this choice is unwise, and 
that "finitely related" should be defined as in (a) above (meaning that P can be 
generated with a certain set of generators subject to a finite number of relations). 
Our terminology here follows that of P. M. Cohn [911. 

We record in the following a few facts relating the notions introduced in Def. 
(4.25). For the proofs of these, we shall need Schanuel's Lemma, which will 
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appear, for expository reasons, in the next section. We suggest, therefore, that the 
reader look up the statement of Schanuel's Lemma (5.1) at this point, in order to 
apply it to the proof of the proposition below. 

(4.26) Proposition. (a) A module PR isfp. iffit is bothfg. andfr. 
(b) Let PR be fp., and f3 : Q ---+ P be an epimorphism. If Q is fg., then so is 
ker(f3). 
(c) A module PR is fr. iff it is a direct sum of a free module (of arbitrary rank) 
and afp. module. 

Proof. (a) The "only if" part is clear. For the "if" part, assume P is both f.g. and 
f.r. Then, by definition, we have exact sequences 

(4.27) o ---+ L ---+ Rk ---+ P ---+ 0 and 0 ---+ K ---+ F ---+ P ---+ 0, 

where kEN, F is free, and K is f.g. Since Rk and F are both projective, 
Schanuel's Lemma (5.1) gives an R-isomorphism L EB F ~ K EB Rk. The RHS 

is f.g., so L is also f.g., and the first sequence in (4.27) shows that P is f.p. 

(b) Fix an epimorphism a : Rk ---+ Q, where k < 00. We have a composite 
epimorphism f3a : Rk ---+ P, inducing an epimorphism ker(f3a) ---+ ker(f3). By 
the work done in (a), ker(f3a) is f.g., so ker(f3) is also f.g. 

(c) The "if" part is clear. For the "only if" part, let P be f.r., say, with 0 ---+ K ---+ 
F ---+ P ---+ 0, where F is free, and K is f.g. Working with a finite number of 
generators for K, we can find a decomposition F = F\ EB F2 where FI is free, 
and F2 is f.g. free containing K. But then P ~ F / K ~ FI EB (F2/ K), with F\ 
free and Fd K f.p., as desired. 0 

(4.28) Remark. It is possible to prove the "if" part of (a) without using Schanuel's 
Lemma, as follows. Let P be f.r. By (c), P = FI EB PI, where FI is free and PI 
is f.p. If P is also f.g., then F\ ~ R" for some n < 00. It follows easily that P 
is f.p. 

In general, "f.g." and "f.r." are each weaker than "f.p." It would be futile to look 
for rings whose f.r. (right) modules are all f.p.: only the zero ring has this property. 
(Why?) It is, however, not futile to look for rings whose f.g. (right) modules are 
all f.p. We have, in fact, the following clean-cut result. 

(4.29) Proposition. A ring R is right noetherian iff all fg. (resp. cyclic) right 
R-modules arefp. 

Proof. First assume R is right noetherian. Let P be a f.g. right R-module, and 
fix a surjection f : Rk ---+ P (k EN). By FC-(l.21), Rk is a noetherian module, 
so ker f is also noetherian and hence f.g. This shows that P is f.p. Conversely, 
assume all f.g. (or just cyclic) right R-modules are f.p. Let 2l ~ R be any right 
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ideal, and consider the exact sequence 

o ----+ 21 ----+ R ----+ R/21 ----+ 0 in 9J'tR. 

Since R/21 is cyclic and hence f.p., (4.26)(b) implies that 21R is f.g. This shows 
that the ring R is right noetherian. 0 

We now return to (4.23), (4.24), and give some further applications. First we 
have: 

(4.30) Theorem. Let PR be aJ.r. module over any ring R. Then P isflat iffit is 
projective. 

Proof. It suffices to prove the "only if" part, so assume P is flat. Fix an exact 
sequence 

(4.31) O----+K----+F----+P----+O 

as in (4.25)(a), where F is R-free (ofany rank), and K is f.g., say, by CI, ..• , CII' 

By (4.23), there exists a () E HomR(F, K) with ()(c;) = Ci for all i. Therefore, 
() is the identity on K, and splits the exact sequence (4.31). This then implies that 
PR is a projective module. 0 

Next we shall give a reformulation of the Equational Criteria for flat modules 
in (4.24), using the notion of f.p. modules. 

(4.32) Theorem. A module PR is flat, ifffor any R-homomorphism A : M ~ P 
where M is any J.p. R-module, there exist R-homomorphisms M ~ Rm ~ P 
(for some m < (0) such that A = 11- 0 v (i.e., iff any A factors through a J.g. free 
module). 

Proof. For the "only if" part, assume P is flat and let A be given. The idea of 
M being f.p. is that M can be generated by a finite number of elements, say, 
XI, ••. , XII' which are subject to a finite number of relations, say, Lj xjrje = 0 
(l :::: l :::: p). For aj = A(Xj), we have then Lj ajrje. = O. Since P is flat, we can 
findthe bi E P (l :::: i :::: m) and sij E R (1 :::: i :::: m, 1 :::: j ~ n) as in (4.24)(3). 
Now let el, ... ,em be the standard basis of Rm and define 11- : Rm ~ P by 
l1-(e;) = bi, and v : M ~ Rm by v(Xj) = Li eiSij' The latter is well-defined, 
since 

(This shows that the necessary relations on the Xj 's are "respected" by v.) Now 

I1-v(Xj) = 11-(~eiSjj) = Lbjsij = aj = A(Xj) 
, I 

for all j, so 11- v = A on M. The "if" part is proved similarly. o 
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(4.33) Corollary. A module P R is flat iff, for any R -epimorphism rp : Q ~ P 
(where Q is any R-module) and any J.p. R-module M, any homomorphism 
A: M ~ P can be "lifted" to some 1/1 : M ~ Q. 

Proof. First assume P is flat, and consider rp, A as above. By (4.32), we can 
"factor" A into M ~ Rm ~ P for some m < 00. Since Rm is free, p., can 
be "lifted" to some 8 : Rm ~ Q. Taking 1/1 = 8v : M ~ Q we have rp1/l = 
(rp8)v = p., v = A, as desired. Conversely, assume the lifting condition. We shall 
check that P is flat by applying (the "if" part of) (4.32). Consider A : M ~ P, 
where M is any f.p. R-module. Fix an epimorphism rp : F ~ M, where F is a 
suitable (possibly not f.g.) free module. By assumption, A can be "lifted" to some 
v : M ~ F. Since M is f.g., v(M) is contained in some f.g. free sub module Fa 
of F. Taking p., = rplFa, we obtain a factorization M ~ Fa ~ P for A, as 
desired. 0 

We are now in a position to prove the following remarkable characterization 
theorem for flat modules. 

(4.34) Theorem (Lazard, Govorov). A right module PR is flat iff it is a direct 

limit ofJ.g.free modules. 

Proof. By (4.3) and (4.4), any direct limit of projective modules is flat. Thus, it 
suffices to prove the "only if" part of the theorem. For any module P, let F be 
the free module with basis {e(p.n) : (p, n) E P x N}, and let rp : F ~ P be 
defined by rp(e(p,n») = p. We shall define a directed set I as follows. An element 
ex E I is a pair ex = (La, Ka), where La is ajinite subset of P x N, and Ka 
is a f.g. submodule of ker rp lying in Fa, the free submodule of F with basis 
{e(p.ll) : (p, n) E La}, For ex, {3 E I, we define ex ::: {3 if La S; LfJ and 
Ka S; KfJ. Let Pa be thejinitely presented module Fa/ Ka. For ex ::: {3, we have a 
natural map Pa ~ PfJ , so we get a direct system {Pa : ex E I}. The natural maps 
Pa ~ P induce lim Pa ~ P, which is easily seen to be an isomorphism.33 The 

-----> 

main point of the proof is to show that, if P is flat, the set 

(4.35) 10 := {{3 E I: PfJ is (f.g.) free} is cojinal in I, 

for then P is the direct limit of the f.g. free modules {PfJ : {3 E la}. To prove 

(4.35), let ex E I. By (4.32), Pa ~ P has a factorization Pa ~ Rm ~ P 
for some m < 00. We define a new "index" {3 = (L fJ , KfJ) E I as follows. Let 
{el, ... , em} be a basis on Rm and let Pi = p.,(ei) E P. We take 

33The argument given so far shows that any module P is a direct limit of f.p. modules. 
For this, of course, we could have used {e p : pEP} for the basis of F. The choice of 
(e(I'.n) : (p, n) E P x N} will be justified a bit later in the proof. 
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where n I, ... ,nm are chosen to be distinct and such that (Pi, ni) ¢ La. Then 
define 1/1 : FfJ 4 Rm by 

1/1 (Pi , ni) = ei and 1/I(p, n) = v(e(p,,,) + Ka) for (p, n) E La. 

Clearly, J.L 1/1 = qJ IFfJ' so ker 1/1 ~ kef(p. Since 1/1 is an epimorphism onto Rm , it 
splits. Therefore, ker 1/1 is f.g., and it makes sense to define K fJ = ker 1/1. 

(4.36) Fl"~ . .;Vf~ 
/ ... ~ ........ ~R ~"""" ............ /p 

F~ ) p~ 

From the definition of 1/1, we have Ka ~ K fJ , so Cl! ::: f3. Finally, f3 E 10, since 
PfJ = FfJIKfJ ~ Rm. 0 

§4E. Finitely Generated Flat Modules 

We have shown earlier (in (4.30» that any f.r. flat module is projective. This 
gives rise to the question: is every fg. flat module also projective? The following 
example shows that the answer is "no" in general; see also Exercise 17. 

(4.37) Example. Let R be any nonsemisimple von Neumann regular ring. Since 
RR is not a semisimple module, there exists a right ideal 21 that is not a direct 
summand of RR. By (4.21), P = (RI21)R is flat (and cyclic). But P is not 
projective, for otherwise 0421 4 R 4 P 4 0 would split in !D1R. 

Over certain rings, however, f.g. flat modules can be shown to be projective. We 
collect some results of this nature in the following theorem. 

(4.38) Theorem. Assume that the ring R satisfies one o/the/ollowing conditions: 

(1) R is a right noetherian ring. 
(2) R is a local ring (see FC- § 19). 
(3) R is a domain satisfying the strong rank condition; that is,for any n, any 

set 0/ n + 1 elements in (Rn)R is linearly dependent. 

Then, any fg.flat module PR is projective. 

Proof. Under assumption (1), the assertion follows from (4.29) and (4.30). Next, 
assume R is local, and let m be the maximal ideal of R. Choose ai, ... ,a" E P 
such that ai, ... ,an form a basis of PI Pm as a vector space over the division 
ring Rim. Then P = Pm+ L a; R, and Nakayama's Lemma (FC-(4.22» implies 
that P = La;R. Let F be a free (right) R-module with basis e], ... , ell and let 
qJ: F 4 P be the epimorphism defined by qJ(ei) = ai. If L e;r; E K := ker qJ, 
then L ai ri = 0 E PI Pm and hence all ri E m. This shows that K ~ Fm. Let 
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m = L Rri. By (4.14), 

(4.39) 

This shows that m = mm. Since Rm is f.g., Nakayama's Lemma implies that 
m = O. Therefore K = 0 and we have P ~ F. 

Finally, assume that R is as in (3). Fix a short exact sequence 0 --+ K ~ F ~ 
P --+ 0, where F ~ Rn (n < 00). Let m be the largest integer such that K 
contains a submodule K' ~ Rm. (Such an integer m ~ 0 exists by (3).) Then 
K / K' is a torsion module, in the sense that every element of K / K' is killed by 
some nonzero element of R. Consider the commutative diagram: 

\jJ iii o --~) KIK' --'-----)0) FIK' --'-----)0) P ---7) 0 

~rl" 
F 

Here the existence of a is given by (4.33) (noting that P is flat and F / K' is f.p.) 
But then a "" = 0, since K / K' is torsion and F is torsion-free. Therefore, a 
induces a: P --+ F such that a = aqi. Now rpaqi = rpa = qi, so rpa = 1p 
(since qi is an epimorphism). Thus, rp splits, and this shows that P is projective. 

o 

(4.40) Remark. The theorem above is folklore in Case (1), and an observation of 
Endo in Case (2). Case (3) covers in particular the case of commutative domains; 
the theorem in this latter case is a result of Cartier. In general, the domains satisfying 
the strong rank condition tum out to be precisely the right Ore domains to be 
studied later in § 10 (see Exercise (10.21)). There are other classes of rings for 
which f.g. right flat modules are projective, e.g. semiperfect rings (generalizing 
local rings); see Exercise 21. 

§4F. Direct Products of Flat Modules 

The next topic of our discussion is the direct product of flat modules. In general, if 
Pi (i E I) are flat right R-modules, P = Oi Pi need not be flat. But S. U. Chase 
has determined the rings R for which P = Oi Pi is always flat (for arbitrary flat 
Pi'S): these rings are the left coherent rings to be defined below (note the switch 
from "right" to "left"). Because of its completeness and elegance, Chase's result 
has become a fixture in the modem treatment of flat modules. Our exposition of 
Chase's result below follows Goodearl [76]. 

We begin with a general discussion of direct products and tensor products. Let 
Bi (i E I) be right R-modules and A be a left R-module. We have a natural group 
homomorphism: 

(4.41) 
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defined on the generators of the domain by 

(e(b ® a»i = bi ® a (b = (bi)iEI E ni Bi ; a E A). 

In the special case when each Bi = RR, we can identify Bi ®R A with A as 
usual, and get a map 

(4.42) 

defined by b ® a ~ (bia)iE[, for b E RI. Here, A I denotes niEI A, whose 
elements are "functions" from I to A. 

In general, e is not an isomorphism. For instance, for R = Z, take Bi = Zj i Z 
(i EN) and A = Q. Then ni(Bi ®R A) = (0) since Bi is torsion and A is 
divisible. However, we can find an embedding of Z into ni Bi , so there is also 
an embedding of Q into (n Bi) ®z Q (since Q is Z-ftat). Thus, the map e 
has nonzero domain and zero range, so it is not injective. On the other hand, if we 
choose Bi = Z (i E N) and A = Q, the map e : (n Z) ®z Q ---+ ni Q is not 
surjective, since, for any (qi)iEI (qi E Q) to lie in im(e), all qi must lie in ~ Z 
for some "common denominator" n. 

For a given left R -module A, the next two propositions determine exactly what is 
needed to guarantee that e be surjective or bijective. (The corresponding condition 
for e to be injective for all {Bi} is more subtle, and will be left out.) 

(4.43) Proposition. For any left R-module, the following are equivalent: 

(1) e is surjective for all families of right R -modules {Bi }. 

(2) 8 is surjective for all indexing sets I. 
(3) A is af.g. R-module. 

Proof. (3 )==}( 1). Note that e is an isomorphism in the special case when A = Rn. 
If A is f.g., fix an epimorphism Rn -+ A. Comparing the e-maps for Rn and for 
A in the form of a commutative diagram, we see quickly that (4.41) is surjective 
for A. (Cf. Exercise 10.) 

(1)==}(2) is obvious, since 8 is a special case of e. 

(2)==}(3). We shall only assume (2) for I = A, namely, that 8 : RA ® R A -+ A A 
is surjective. In fact, we need only assume that t E im(8), where t is the special 
element in AA given by ta = a (Va E A). Writing t = 8(L~=1 bj ® aj) for 
bj E RA and aj E A, we have for every a E A: 

a = ta = L (8(b j ® aj»)a = L (bj)a aj, 
j 

(4.44) Proposition. For any left R -module A, the following are equivalent: 

(1) e is bijective for all families of right R -modules {Bi }. 

(2) 8 is bijective for all indexing sets I. 

o 
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(3) A is afp. R-module. 

Proof. (3)==>(1). Fix a presentation Rm ~ Rn ~ A ~ 0 in Rm1. The con
clusion (1) follows easily from the commutative diagram relating the e-maps for 
Rm , Rn , and A, noting that (4.41) is an isomorphism for A = Rm , Rn and that 
the tensor product functor is right exact. (Cf. Exercise 10.) 

(1 )==>(2) is obvious as before. 

(2)==>(3). Assuming (2), we know already from (4.43) that A is f.g. Fix a short 
exact sequence 0 ~ K ~ F ~ A ~ 0 in Rm1, where F is f.g. free. For any 
indexing set I, consider the following commutative diagram: 

RI®RK ~ RI®RF ~ RI®RA ~ 0 

o~ ~ FI ~ ~O 

whose rows are both exact. By assumption I5A is bijective, and by (4.43) I5 F is 
surjective. An easy diagram chase shows that 15 K is also surjective. Since this 
holds for all I, (4.43) implies that K is f.g., so A is f.p. 0 

In preparation for Chase's Theorem, we shall now introduce the notion of a left 
coherent ring. 

(4.45) Definition. A ring R is said to be left coherent if every f.g. left ideal of 
R is f.p. (as a left R-module). Right coherent rings are defined similarly, and, as 
usual, we say that R is coherent if it is both left coherent and right coherent. 

(4.46) Examples. 

(a) If R is left noetherian, then it is left coherent. This follows from (the left 
analogue of) (4.29). 

(b) If R is left semihereditary, then it is left coherent. In fact, if 2l is a f.g. left 
ideal, then R2l is projective, and hence f.p. by Exercise l(a). In particular, any 
(commutative) valuation ring is coherent, and any von Neumann regular ring is 
coherent. 

(c) Given any cyclic left module R . a, we have an exact sequence 

o ~ ann(a) ~ R ~ R . a ~ 0 (q;(r) = ra). 

Therefore, R . a is f.p. iff ann(a) is f.g. as a left ideal. In particular, if R is left 
coherent, annt(a) is a f.g.left ideal for any a E R. 

(d) Let us construct a ring R with an element y E R such that annt(Y) is not f.g.as 
a left ideal. Such an R will be an example of a non left coherent ring. Define R 
to be the Q -algebra with generators y, x I, X2, ••• and relations Xi y = 0 for all 
i. We can represent R as a direct sum EEr;:o yjQ (X), where X = {x" X2, ••• }. 

Using this representation, we see easily that annt(Y) = Li RXi. This left ideal 
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is not f.g., since its image in Q (X) (by specializing y to 0) is already not f.g. 
Therefore, the principal left ideal Ry is not f.p., and the ring R is not left coherent. 
For a commutative example, we can simply add the relations yx; = 0, XiX j = 
XjX; to R. The proof that the (commutative) quotient ring is not coherent is the 
same as above. (For another commutative example, see Exercise 17.) 

(e) We construct here a right coherent (in fact right artinian) ring that is not left 
coherent. This example is taken from Bourbaki's Algebre. Take K to be a field 
with a subfield L such that dimL K = 00, and that there exists a field isomorphism 
q; : K ~ L. (For instance, K = Q (XI, X2, X3, .•• ), L = Q (X2, X3, ••• ).) We 
define a ring R by taking R = K x K, with multiplication 

(X, y)(x', y') = (xx', q;(x)y' + yx') (x, y, x', y' E K). 

This ring is simply a "trivial extension" of K by K in the sense of (2.22)(A), 
with K viewed as a (K, K)-bimodule where the left K -action on K is given by 
x . y' = q;(x)y'. The identity element for R is (1,0). Let a = (0, 1). Since 
(x, y)a = (0, q;(x», we see that anne(a) = (0, K). For any Z E K, 

R· (0, z) = {(O, q;(x)z): x E K} ~ Lz. 

Since dimLK = 00, it follows that the left ideal anne(a) ~ R is not f.g. In 
particular, R is not a left coherent ring. On the other hand, it is easy to see34 

that R has exactly three right ideals, (0), R, and (0, K). Therefore, R is right 
noetherian, right artinian, and in particular right coherent. 

More examples of left/right coherent rings will be given later; see (4.62). With
out further ado, we now give Chase's result. 

(4.47) Theorem (Chase). For any ring R, the following are equivalent: 

(1) Any direct product of flat right R -modules is flat. 
(2) For any indexing set I, (RI)R is flat. 
(3) The ring R is left coherent. 

Proof. (l)===}(2) is clear, since RR is flat. 

(2)===}(3). Let A be any f.g. left ideal in R. To show that A is f.p., it suffices (by 
(4.44» to show that the map 8 : Rl ® R A ~ A I in (4.42) is bijective, for any 
indexing set I. By (4.43), we know already that 8 is surjective, so we need only 
show that 8 is injective. Consider the following factorization of 8: 

(4.48) R'®RA~R'A~A'. 

Since (RI)R is flat by assumption, the first map is injective by (4.12). Therefore, 
the composition 8 in (4.48) is also injective. 

34For (x, Y) i- 0, a direct calculation shows that (x, y) . R is R if x i- 0, and is 
(0, K) if x = o. 
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(3)==}(l). Let {B; : i E I} be fiat right R-modules. To show that 0; B; is also 
fiat, it suffices by (4.12) (the Modified Flatness Test), to show that the natural 
surjective map a: (0; B;) ® R 2t --* (0; B;) 2t is injective for any f.g. left ideal 
2t S; R. Consider the following commutative diagram: 

(0; B;) ®R 2t 
a (0; B;)2t ---+ 

(4.49) £1 1 
O;(B;®R2t) 

f3 0; (B i 2t) ---+ 

Since R is left coherent, R2t is f.p., so £ is bijective by (4.44). By (4.12) again, 
fJ is also bijective. It follows from (4.49) that a is injective, as desired. 0 

Recalling (4.46)(a,b), we have the following immediate application of (4.47): 

(4.50) Corollary. Let R be either left noetherian or left semihereditary. Then 
any direct product of flat right R -modules is flat. 

§4G. Coherent Modules and Coherent Rings 

The notion of "left coherence" for rings can be generalized to left modules over 
an arbitrary ring as follows. 

(4.51) Definition. A f.g. left module RA is said to be coherent if every f.g. sub
module of A is f. p. (Thus, a ring R is left coherent iff the left regular module R R 
is coherent.) 

With this definition, we have the following supplement to Chase's Theorem. 

(4.52) Corollary. A ring R is left coherent iff any fp. left R-module A is coher
ent. 

Proof. The "if" part is clear by taking A to be RR. For the "only if" part, assume 
that R is left coherent. Let A be any f.p. left R-module, and let A' S; A be 
any f.g. sub module. For any indexing set I, we have the following commutative 
diagram: 

(4.53) 

RI®RA ~ AI 

By (4.44), !SA is bijective. By (4.47), (Rlh is fiat, so y is injective. It follows that 
!SA' is injective. By (4.43), !SA' is also surjective. Therefore, !SA' is bijective, and 
by (4.44) again, A' is f.p. This shows that the left R-module A is coherent. 0 
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We want to offer a couple of interesting characterizations for coherent modules. 
To do this, we need the following two elementary lemmas on f.p. modules. 

(4.54) Lemma. Let 0 --+ M' --+ M --+ Mil --+ 0 be exact in RVR. 

(I) If M isJ.p. and M' isJ.g., then Mil is J.p. 
(2) If M' and Mil are J.P., then M is J.p. 
(3) A direct sum M\ EB ... EB Mn is J.p. iff each Mi is J.p. 

The proof of this Lemma is easy, and is left as an exercise (see Exercise 8). 

(4.55) Lemma. Let A, B be submodules of a left R -module M. 

(1) Assume that A, B are J.p. Then A + B isJ.p. iff A n B isJ.g. 
(2) Assume that A is J.p. and B = Rb for some b E M. Then A + B is 

J.p. iff Ab-\ := {r E R : rb E A} is aJ.g. left idealin R.35 

Proof. (1) Consider the exact sequence 

(4.56) 
rp Vt o ~ An B ~ A EB B ~ A + B ~ 0, 

where q;(a) = (a, a), 1/1 (a, b) = a-b. Here AEBB isf.p. by (4.54)(3). If AnB 
is f.g., A + B is f.p. by (4.56) and (4.54)(1). Conversely, if A + B is f.p., An B 
is f.g. by (4.56) and (4.26)(b). 

(2) Consider the exact sequence 

(4.57) O~A~A+B~Rh~O, 

where we have identified (A + B)IA with BIA n B = Rh. Note that ann(h) 
is exactly Ab-\. If this is f.g., then R h is f. p. by (4.46)( c), so A + B is f.p. by 
(4.57) and (4.54)(2). Conversely, if A + B is f.p., (4.57) and (4.54)(1) imply that 
R h is f.p., and (4.46)(c) implies that ann (h) = Ab-\ is f.g. 0 

(4.58) Theorem. For any J.g. left R-module M, the following are equivalent: 

(1) M is coherent. 
(2) Foranyb EM andanyJ.g. submodule A ~ M, Ab-\ isaJ.g.leftideal. 
(3) ann(b) is aJ.g. left ideal for any b E M, and the intersection of any two 

J.g. submodules of M isJ.g. 

Proof. (1)==>(3). The cyclic module R . a must be f.p., so ann(a) is a f.g. left 
ideal in R by (4.46)(c). Let A, B be f.g. submodules of M. Then A, Band 
A + B are f.p., so by (4.55)(1), A n B is f.g. 

35 Ab- I is a somewhat informal notation, since b- I itself is undefined. 
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(3)===}(1). We shall show, by induction on n, that any sub module 

Ral + ... + Ran + Rb ~ M 

is f.p. If n = 0, this follows from (4.46)(c). For n ::::: I, let 

A = Ral + ... + Ran and B = Rb. 

Then B is f.p. as above, and A is f.p. by the inductive hypothesis. By assumption 
An B is f.g., so (4.55)(1) implies that A + B is f.p. 

(1)===}(2). Here, the f.g. sub modules A and A + Rb must be f.p., so by (4.55)(2), 
Ab- I is a f.g. left ideal. 

(2)===}(1). The argument here is the same as in (3)===}(1). Just use (4.55)(2) 
instead of (4.55)(1), and note that ann (b) = (O)b- I • 0 

(4.59) Corollary. Let R be a domain. Then afg. torsion-free left R-module M 
is coherent iff the intersection of any two fg. submodules of M is fg. 

Theorem 4.58 is due to S. Chase in the case when M is the left regular module 
R R. In this case, we get the following nice characterization of left coherent rings 
in terms of purely ideal-theoretic conditions. 

(4.60) Corollary (Chase). For any ring R, the following are equivalent: 

(1) R is a left coherent ring; 
(2) for any b E R and any fg. left ideal Q( ~ R, 

Q(b- I := {r E R : rb E Q(} 

is afg. left ideal; 
(3) anne(b) is afg. left ideal for any b E R, and the intersection of any two 

fg. left ideals in R isfg. 

In particular, a domain R is left coherent iff the intersection of any two fg. left 
ideals in R is fg. 

At this point, it behooves us to mention some more examples of left coherent 
rings. 

(4.61) Examples. 

(a) Let K be any field, and X be any (possibly infinite) set of commuting inde
terminates. Then the polynomial ring R = K[X] is (left) coherent. To see this, 
consider any f.g. (left) ideal J = L7=, RJ;. Choose a subset {XI, ... , xm} ~ X 
such that all fi lie in S := K[XI, ... , xm]. Then, for Q( = L7=, Sfi, we have 
J = RQ(. Since S is a noetherian ring (by the Hilbert Basis Theorem), we have a 
finite presentation SP ~ sq ~ Q( ~ 0 in sOOt. Tensoring this with R, we have 
an exact sequence 

(4.62) 
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Now R is a polynomial ring over S, so Rs is a free (and hence flat) module. By 
(4.12), we can identify R ®s ~ with R ~ = J, so (4.62) gives a finite presentation 
for J. The same argument works over any left noetherian ring K, for, by a more 
general form of the Hilbert Basis Theorem, K being left noetherian implies that 
K[Xlo ... , xm] is also left noetherian. 

As a note of caution, however, we should point out that, in general, the left 
coherence of a ring K does not imply that of K[x] for one variable x. In fact, 
if K is a countable direct product of the polynomial ring IQ [y, z], then K is 
coherent but K[x] is not coherent, according to a result of Soublin [70]. (In the 
positive direction, Nagata has shown that if K is a commutative semihereditary 
ring, then indeed K[XI, ... , xn ] is coherent for any n.) 

(b) By what we said in (a) above, Z[X] is a coherent ring for any set of commuting 
variables X. Since any commutative ring is isomorphic to a quotient ring of some 
Z[X], and not every commutative ring is coherent (cf. last part of (4.46)(d», we 
see that a quotient ring of a coherent ring need not be coherent. 

(c) Let 2t be an ideal in R which is f.g. as a left ideal.lf R is left coherent, then 
so is the quotient ring Ii := R/~. To see this, note that any f.g. left ideal of Ii 
has the form ~/~, where ~ is a f.g.left ideal of R. (This uses the fact R~ is f.g.) 
Taking a finite presentation Rm ~ Rn ~ ~ ~ 0 in R!JJ1 and tensoring it with 
R/~, we get an exact sequence lim ~ lin ~ !B/~!B ~ 0 in "R!JJ1, so ~/~~ 
is a f.p. left Ii-module. Viewing 

(4.63) 

as an exact sequence in "R!JJ1 and using the fact that ~/2t!B is f.g., we see (from 
(4.54)(1» that ~/~ is f.p. in "R!JJ1. Thus, the ring Ii is left coherent. However, 
in general, the left coherence of Ii need not imply the left coherence of R. For 
instance, the commutative ring 

R = IQ [y, XI, X2, ... ]/(XIY, X2Y, ... ) 

is not coherent by (the last part of) (4.46)(d); but for the principal ideal ~ = Ry, 
the quotient ring 

is coherent, by (a) above. 

(d) Here, we modify the construction in (4.46)(d) to get an example of a noncom
mutative non-noetherian coherent ring. This example does not seem to have been 
pointed out before in the literature. Let R be the IQ -algebra with generators x, y 

and relation xy = 0, so that R = E9::o /IQ [x]. We claim that R is left coherent. 
To see this, first note that yR (= E9::1 yilQ [x]) and Rx are both ideals of R. 
Let A be the quotient ring R/ Rx. As a left R-module, A is f.p. Let ~ be any 
f.g. left ideal of R. To show that it is f.p., let us first treat the important special 
case ~ ~ yR. In this case, x~ = 0, so ~ may be viewed as a (f.g.) left module 
over A. Since A ~ IQ [y] is a noetherian ring, there exists a finite presentation 
Am ~ An ~ ~ ~ 0 in A!JJ1. But An and Am are f.p. in R!JJ1 (since A itself 
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is), so Ql is also f.p. in Rm (see (1) and (3) in (4.54)). It remains to treat the case 
when Ql is not contained in yR. Let us write R for the quotient ring R j y R, which 
we identify with Q [x]. Since this is a PID, m = Q [x]/cJ for some polynomial 
fo(x) I- O. Therefore, Ql contains an element ot = fa + yro (ro E R). Let Ql be 
generated by 

oti = fi + yri (fi E Q [x], ri E R, I::::: i ::::: n). 

Then fi = hi fa for suitable hi E Q [x], and we have 

oti = hi(ot - yro) + yri = hiot + yr; 

for some r; E R. Therefore, Ql = Rot + Qlo, where Qlo is the f.g. left ideal L Ryr: 
in yR. Since ot = fa + yro with fa I- 0, we see easily that annl'(ot) = 0, so 
Rot ~ RR; in particular, it is f.p. On the other hand, Qlo and hence mo n Rot 
are f.g. over the noetherian ring A. By the case we have already treated, Qlo and 
mo n Rot are both f.p. in Rm. By (4.55)(1), it follows that m = Rot + mo is 
f.p. as well. This completes the proof that R is left coherent, and by left-right 
symmetry, R is right coherent as well. To produce a "less symmetric" example, 
take S = Rjy2 R = Q (x, y) with relations xy = y2 = 0 (cf. FC-(1.26)). As in 
FC-( 1.26), S is right noetherian and not left noetherian. By a simple modification 
of the argument above, we can show that S is nevertheless left coherent. 36 

§4H. Semihereditary Rings Revisited 

As a byproduct of his investigations on direct products of flat modules, Chase 
has also obtained an interesting characterization of left semihereditary rings. This 
characterization is in terms of the notion of "torsionless" modules due to H. Bass. 

(4.64) Definition. A right module B over R is said to be torsionless if B can be 
embedded into some direct product (R1)R' 

(4.65) Remarks. 

(a) Clearly, B R is torsionless iff, for any b I- 0 in B, there exists a functional 
f E B* = HomR(B, R) such that feb) I- O. Thus, B is torsionless iff the natural 
map i : B -+ B** is injective. (Because of this characterization, torsionless 
modules are sometimes called semi-reflexive; recall that a module B is reflexive if 
i : B -+ B** is an isomorphism.) 

(b) Any submodule of a (right) free module is torsionless. Thus, any projective 
right module as well as any right ideal is torsion less. 

(c) Clearly, any submodule of a torsionless module is torsionless, and any direct 
product (or direct sum) of torsionless modules is torsionless. 

(d) Let R be any domain. Then any torsionless module BR is torsion-free. 

361t would have been nice if we could get this conclusion from (c). Unfortunately, (c) 
does not apply here since y2 R is not f.g. as a left ideal. 
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(e) Let R be a commutative domain, and B be a f.g. right R-module. If B is 
torsion-free, then B can be embedded into some Rm (by the paragraph preceding 
(2.31», so B is torsionless. But in general, a torsion-free module need not be 
torsionless. For instance, over R = Z, the module B = Q is torsion-free, but not 
torsionless. 

(f) For any left module RA, A* has a natural structure as a right R-module. It 
can be shown that the natural map A * -+ A *** is always a split monomorphism. 
In particular, A * is always a torsionless right R -module. (For a more general 
perspective, see (19.38).) 

Before we state Chase's characterization of left semi hereditary rings, it is useful 
to first formulate the following preliminary result. 

(4.66) Lemma. For any ring R, the following are equivalentY 

(1) All right ideals of R are flat. 
(2) All left ideals of R are flat. 
(3) Submodules of flat right R -modules are flat. 
(4) Submodules offlat left R-modules are flat. 

Proof. (1)<===}(2). By (4.12) (and its analogue for left modules), we see that each 
of (1), (2) amounts to the condition that ~ ® R m -+ ~ m is an isomorphism for 
all right ideals ~ and left ideals m. We finish by showing (1)===>(3). (This will 
give (1)<===}(3), and (2)<===}(4) is similar.) Assume (1). 

Stepl.Allsubmodules M ~ (Rn)R areflat. We induct on n,tht:case n = 1 being 
covered by (1). Let rr be the projection Rn -+ R given by the "first coordinate". 
We identify ker rr with Rn- 1, and get an exact sequence 

o ~ M n Rn - I ~ M ~ rr(M) ~ O. 

Now apply (1) (to rr(M», the inductive hypothesis, and (4.13). 

Step 2. Any submodule M of a free R -module F R is flat. By (4.5), it suffices to 
show that any f.g. submodule Ma ~ M is fiat. There exists a f.g. free sub module 
Fa ~ F such that Ma ~ Fa. By Step 1, Ma is indeed fiat. 

Step 3. Any submodule N of a flat module P R is flat. Fix a short exact sequence 
o ~ K ~ F ~ P ~ 0 where F is free. By Step 2, M := q;-I(N) is 
fiat, and by (4.14), K n F m = K m for any left ideal m ~ R. But then we also 
have 

KnMm~ KnFm~ Km, 

37 As it turns out, the rings R satisfying the conditions (J), (2), (3), (4) are precisely 
those with (left/right) weak dimension::: 1. See (5.52). 
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so K n M21 = K21. Applying (4.14) now to 0 ~ K ~ M ~ N ~ 0, we 
conclude that N is flat. 0 

(4.67) Theorem (Chase). For any ring R, the following are equivalent: 

(A) R is left semihereditary. 
(B) All torsion less right R-modules are flat. 
(C) R is left coherent, and satisfies one (and hence all) of the conditions 

(1), (2), (3), (4) in (4.66). 

Proof. (A)==>(C) follows from (4.46)(b) and (the left analogue of) (4.6). 

(C)==>(B). For any set I, (RI)R is flat by (4.47), so by (3), any submodule of 
(RI)R is flat. This gives (B). 

(B)==>(A). From (B), it follows that (R1h is flat (for any I), so by (4.47) again, 
R is left coherent. Let ~ ~ R be any f.g.left ideal. Then ~ is f.p., and flat (since 
~ is torsionless). By (4.30), R~ is projective, so we have proved (A). 0 

(4.68) Remark. In general, the conditions (A), (B) in (4.67) are stronger than the 
conditions (1), (2), (3), (4) in (4.66). In fact, take a ring R that is right semihered
itary but not left semihereditary. (See (2.34): take R to be the opposite ring of 
the ring T constructed there.) By (4.6), R satisfies (1) (and hence (2), (3), (4», 
but R does not satisfy (A) by choice. Being right semihereditary, R is also right 
coherent, but by (4.67), R cannot be left coherent. 

In the case of commutative domains, it turns out that there is no difference among 
(A), (B), and (1), (2), (3), (4) after all. This is part of the following characterization 
theorem for Priifer domains, which, incidentally, provides a converse to (4.20) 
(cf. also (2.31». 

(4.69) Theorem. For any commutative domain R, the following are equivalent: 

(A) R is a Priifer domain. 
(B) All torsionless (right) R-modules are flat. 
(D) All torsion free (right) R-modules are flat. 
(1) All ideals are flat. 
(3) Submodules offlat modules are flat. 
(5) A, B torsion free in OOlR ==> A ®R B is torsion free. 
(6) 21, ~ ideals in R ==> ~ ®R 21 is torsionfree. 

Proof. We have (D)==>(B)==>(A)==>(I)==>(3), where each implication is either 
already known or else a tautology. To close this cycle, let us prove (3)==>(D). 
Consider any torsionfree R-module P. Any f.g. submodule Po of P can be 
embedded in some Rn (see the paragraph preceding (2.31», so by (3), Po is flat. 
Since P is a direct limit of such Po's, P is also flat. 
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For the rest of the proof (and for the statements (5), (6», we use the fact that, over 
a commutative ring R, the tensor product of two R -modules is an R -module (in a 
natural way). Since the tensor product of two flat modules is flat (Exercise 18), and 
flat modules are torsionfree, we have (D)===}(5). Clearly, (5)===}(6), so we can 
finish by showing (6)===}(1). Let ~ be any nonzero ideal. To show that ~ is flat, it 
suffices to show that, for any ideal ~, the multiplication map () : ~ ® R ~ ~ ~~ 

is injective (cf. (4.12». Let x = L b; ® a; E ker«(), so L b;a; = O. For b i= 0 
in ~, we have then 

bx = Lbb; ®a; = b® Lb;a; = O. 

Since (by (6» ~ ®R l2t is torsionfree, we have x = 0, so () is injective, as 
~~d 0 

There are many more known criteria for a commutative domain R to be Priifer. 
For instance, Bourbaki's "Commutative Algebra" (pp. 558-559, Addison-Wesley, 
1972) listed a total of 14 characterizations for Priifer domains (which did not 
include all of ours). Some of these, for example, are formulated in terms of lo
calizations, Chinese Remainder Theorem, the distributive laws for ideals, and so 
forth. They are all of interest one way or another. In Theorem (4.69), we have 
settled with the five characterizations germane to this section, in terms 6f flatness, 
tensor products, and torsion-free modules. 

In concluding our exposition of Chase's work on direct products and flat mod
ules, we should point out that Chase has also characterized rings R over which 
any direct product of projective right R -modules is projective: these tum out to be 
precisely the rings that are left coherent and right perfect (and in the commutative 
case, these are just the artinian rings; see Exercise 22). However, we do not want 
to assume the material on right perfect rings from FC-§24, so we shall not present 
this theorem here. 

§4I. Faithfully Flat Modules 

In this subsection, we give a short introduction to faithfully flat modules. These 
modules are useful in ring theory and algebraic geometry for making certain 
"descent" arguments. 

(4.70) Theorem. For any right module P over a ring R, the following are equiv
alent: 

(1) A sequence M' ~ M ~ Mil in R9Jl is exact iff 

P ®R M' ~ P ®R M ~ P ®R Mil 

is exact. 
(2) P is flat, and for any left R -module M, P ® R M = 0 ===} M = O. 
(3) P isflat, and a homomorphism M' ~ Mil in R9Jl is zero if the induced 

homomorphism P ® R M' ~ P ® R Mil is zero. 
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If any of these conditions holds, we say that PR is faithfully flat. 

Proof. (1)==>(2). The "only if" part of (1) says that "P ®R -" is exact on R!m, 
so P is flat. Next, assume P ®R M = 0, where M is a left R-module. Then 

P ®R (0) ---+ P ®R M ---+ P ®R (0) 

is exact, so the "if" part of (1) implies that 0 -+ M -+ 0 is exact; that is, M = O. 

(2)==>(3). Let M = qJ(M'), and assume Ip ® qJ : P ®R M' -+ P ®R Mil is 
zero. Then the composition of 

P ®R M' ---+ P ®R M ---+ P ®R Mil 

is zero. Here the first map is onto, and the second map is one-one (since PR is 
flat). Therefore, P ® R M must be (0), and (2) implies that M = 0; that is, qJ = O. 

(3)==>(1). The "only if" part of (1) follows from the flatness of PR , so it suffices 
to show the "if" part. Assume P ®R M' -+ P ®R M -+ P ®R Mil is exact. 

By (3), M' ~ Mil is zero. Writing I = im(qJ), K = ker(1/I), we have then 
I £; K. Since 0 -+ K -+ M -+ Mil is exact, so is 

1®1/t o -+ P ® R K -+ P ® R M ---+ P ® R Mil ; 

and hence 

P ®R K = ker(1 ® 1/1) = im(1 ® qJ) = P ®R I £; P ®R M. 

Now the natural map rr : K -+ K I I induces 

By (3), rr = 0; that is, K = I, so M' -+ M -+ Mil is exact. D 

The next result gives a useful way to check that a flat module is faithfully flat, 
using the maximal left ideals of R. 

(4.71) Proposition. A flat right module PR is faithfully flat iff Pm =1= P for any 
maximal left ideal m of R. 

Proof. Assume P is faithfully flat, and let m be any maximal left ideal. Since 
Rim =1= 0 in R!m, we have 

0=1= P ®R (Rim) = PI Pm, so P =1= Pm. 

Now assume P =1= Pm for any maximal left ideal m, and let M be any nonzero 
left R-module. Fix a nonzero element x E M. Then R . x ~ RI2J. for some left 
ideal 2J. £; R. Since 2J. is contained in some maximal left ideal, p2J. =1= P. By the 
flatness of PR, P ®R M contains 

P ®R Rx ~ P ®R (RI2J.) ~ PI P2J. =1= 0, 

so P ®R M =1= O. By (4.70), P is faithfully flat. D 
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(4.72) Examples. 

(1) Let R be any commutative ring. For any prime ideal peR, the localization 
Rp is R-flat. By (4.2), P := ffip Rp is also R-flat, where p ranges over all 
prime (or maximal) ideals. We claim that P is faithfully flat. Indeed, if M is any 
R-module such that P ®R M = 0, then 

0= (EB Rp) ®R M ~ EB (Rp ®R M) ~ EB Mp , 
p p p 

so each localization Mp = O. It is well known that this implies that M = 0, so 
by (4.70), PR is faithfully flat. 

(2) Over R = Z, the module Q is flat, but not faithfully flat, since Q®z (Zj2Z) = 
O. In general, a Z-module P is faithfully flat iff P is torsion free and P p =1= P 
for any prime number p (use (4.71), and the paragraph after (4.20». A similar 
statement holds over any (commutative) PID. 

(3) Over any ring R, a nonzero free module FR is always faithfully flat. In 
particular, any polynomial ring R[X] (and any free R-ring R(X}) is faithfully 
flat as right R-module. 

(4) Over any ring R, if PR is flat and P~ is faithfully flat, then P (J) pI is faithfully 
flat; in particular, P (J) RR is always faithfully flat. 

(5) Let P =1= (0) be a f.g. flat right module over a local ring (R, m). By 
Nakayama's Lemma (FC-(4.22», Pm =1= P. Since m is the only maximal left 
ideal in R, (4.71) implies that PR is faithfully flat. 

(6) Let R be any simple artinian ring. Then any nonzero module PR is faithfully 
flat. It suffices to show this in the case when PR is simple. For such P, we have 
RR ~ pn for some n. If M is a left R-module such that P ®R M = 0, then 

Since PR is projective, it follows that PR is faithfully flat. 

(7) Let cp : R ~ S be a ring homomorphism, whereby we can view S as a left 
R-module. If PR is faithfully flat over R, then P ®R S is faithfully flat over S. 
Indeed, by (4.1), P ®R S is S-flat, and, for any left S-module A =1= 0, 

(P ®R S) ®s A ~ P ®R A =1= O. 

(4.73) Proposition. A faithfully flat module PR is both faithful andflat. 

Proof. Suppose Pro = 0 for some ro E R. Consider the left R-module homo
morphismcp: R ~ Rdefinedbycp(r) = rro. The induced map l®cp: P®RR ~ 
P ® R R is zero, since 

(1 ® cp)(p ® r) = p ® rro = (pr)ro ® 1 = 0 

for every PEP, r E R. Therefore, cp = 0 by (4.70), so ro = cp(1) = O. This 
shows that PR is faithful. D 
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The example of Q over the ring Z in (4.72)(2) shows that a module may be 
faithful and flat, but not faithfully flat! Of course, Q is not Z-projective. In general, 
even a faithful projective right module PR need not be faithfully flat. For instance, 
let R be the direct product Z x Z x ... , and let P be the ideal Z E9 Z E9 ... 
in R. Clearly PR is faithful, and it is projective by (2.l2C). However, we have 
p2 = P, so for any maximal ideal m of R containing P, we have Pm = P. By 
(4.71), PR is not faithfully flat. 

Let ({! : R ---+ S be a ring homomorphism. Then S can be viewed as a right 
R-module via ({!. It is of importance to understand the situation when SR is a 
faithfully flat R-module. The following result gives a few characterizations for 
this condition. 

(4.74) Theorem. For ({!: R ---+ S as above, the following are equivalent: 

(1) S R is faithfully flat. 
(2) SR isflat, andfor any left ideal ~ ~ R, ({!~I (S~) = ~. 
(3) S R is flat, and for any maximal left ideal meR, there exists a maximal 

left ideal m' C S such that m = ({!~I (m'). 
(4) ({! is injective, and the right R-module (S/({!(R»R is flat. 

In case Rand S are commutative rings, these are also equivalent to 

(5) SR is flat, and for any prime ideal peR, there exists a prime ideal 
p' C S such that p = ({!~I (p'). 

Proof. (1)==>(2). We need to show that q5 : R/~ ---+ S/S~ is injective. Since 
SR is faithfully flat, it suffices to show that 

(4.75) 

is injective. As usual, we can identify S ® R (R /~) with S / S~. The map 

S/S~ ~ S ®R (S/S~) 

is in facta split injection, since we can define a left-inverse by sending s®(s' +S~) 
to ss' + S~. 
(2)==>(3). By (2), we have Sm i S, so Sm is contained in a maximal left ideal 
m' of S. Clearly, ({!~I (m') = m. 

(3)==>(1). Let m be any maximal left ideal of R. Choose m' as in (3). Then 
Sm ~ m' implies that Sm is. By (4.71), SR is faithfully flat. 

(1)==>(4). Since SR is faithful by (4.73), ({! is clearly injective. Let us identify 
R with ((!(R). Using (1)==>(2), we have R n S~ = ~ for any left ideal ~ ~ R. 
Applying (4.14) to 

(4.76) 

it follows that (S / R) R is flat. 
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(4)==>(2). In (4.76), RR and (Sf R)R are flat, so SR is flat by (4.13). The second 
statement in (2) now follows from (4.14). 

Finally, assume that R and S are both commutative. 

(5)==>(3). Let m be any maximal ideal in R. By (5), m = qJ-l (p') for a suitable 
prime ideal p' C S. For any maximal ideal m' of S containing p', we have clearly 
qJ-l (m') = m. 

(2)==>(5). Let P be any prime ideal in R. By (2), we have p = qJ-l (Sp). Let E 
be the multiplicative set R \ p. Then qJ(E) is a multiplicative set in S disjoint 
from Sp. If p' is an ideal containing Sp maximal with respect to being disjoint 
from qJ(E), then p' is a prime ideal in S by a familiar argument in commutative 
algebra, and we clearly have qJ-l (p') = p, as desired. D 

(4.77) Definition. If a ring homomorphism qJ : R ~ S satisfies the conditions in 
(4.74), we shall say that rp is (right) faithfully flat, or that S is a (right)faithfully 
flat extension of R. (The word "extension" is justified here, since rp has to be 
injective by (4.74)(4).) 

(4.78) Examples. 

(1) Any polynomial extension R ~ R[X] is a (right) faithfully flat extension. 

(2) If R is a commutative noetherian ring, then, for any ideal 2l in the Jacobson 
radical of R, the 2l-adic completion of R is a faithfully flat extension of R. For 
a proof of this, we refer the reader to Matsumura [86]. 

(3) Let R be any commutative coherent ring. Then the ring S = Om Rm (m 
ranging over all maximal ideals of R) is a faithfully flat extension of R with 
respect to the natural map qJ : R ~ S. Here, the flatness of S as an R-module 
follows from (4.47). To see that SR is faithfully flat, note that, for any maximal 
ideal m' C R: 

and apply (4.71). 

Some key properties of faithfully flat extensions are given below in (4.79) and 
(4.80). In applications, these and other similar properties are used to carry out 
"descent" arguments (deducing information over R from information over S). 

(4.79) Lemma. Let qJ : R ~ S be (right) faithfully flat. Then a left R-module 
M isf.g. (resp.f.p.) iff the left S-module S ®R M isf.g. (resp.f.p.). 

Proof. ("If" part.) First assume S ®R M is f.g. We can pick a finite number of 
S-module generators to be {l ® mi : I :::: i :::: n}. Let Mo = L R mi ~ M. Then 
S ®R Mo ~ S ®R M ~ 0 is exact. Since SR is faithfully flat, Mo ~ M ~ 0 
is exact, i.e. Mo = M. Next, assume that S ®R M is f.p. By the above, RM is 
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f.g. Fix an exact sequence 0 ~ K ~ R" ~ M ~ 0 in RDJ1. By tensoring with 
S, we get an exact sequence 

o ~ S ®R K ~ S ®R Rn(~ S") ~ S ®R M ~ O. 

Since S ®R M is f.p., (4.26)(b) implies that S ®R K is f.g., and hence (by the first 
part again) RK is f.g. This shows that RM is f.p. D 

(4.80) Proposition. Let q; : R ~ S be (right) faithfully flat, and assume that 
q;(R) ~ Z(S) (the center of S). 

(1) Let f: N ~ M be a homomorphism in RDJ1, where M isfp. Then f 
is a split surjection iff 1 ® f : S ®R N ~ S ®R Mis. 

(2) A left R -module M is fg. projective iff the left S -module S ® R M is 
fg. projective. 

(3) A left R -module M is flat (resp.faithfully flat) iff the left S -module S ® R 
M is flat (resp.faithfully flat). 

Proof. Since q; is injective, the hypothesis q;(R) ~ Z (S) implies that R is com
mutative (and that S is an R-algebra). In particular, for R-modules M, N, the 
abelian groups HomR(M, N), M ®R N have natural R-module structures. This 
observation will be used freely below. 

(1) Using Exercise 12 (for the third "¢::=>"), we have: 

f is a split surjection ¢::=> HomR(M, N) ~ HomR(M, M) is onto 

¢::=> S ®R HomR(M, N) ~ S ®R HomR(M, M) is onto 

¢::=> Homs(S ®R M, S ®R N) ~ Homs(S ®R M, S ®R M) is onto 

¢::=> S ® R f is a split surjection. 

(2) ("If" part.) Assume that S ® R M is f.g. projective. By Exercise 1 (a), it is f.p., 
so by (4.79), RM itself is f.p. By (1), it follows that any epimorphism N ~ M 
in RDJ1 splits, so RM is f.g. projective. 

(3) The "only if" parts follow from (the left module analogues of) (4.1) and 
(4.72)(7). For the converses, assume first S ®R M is flat. Let A ~ B be a 
monomorphism in DJ1 R. Then A ®R S ~ B ®R S is a monomorphism in 9'Jts , 
since R S is flat over R. 38 Tensoring with the flat left S -module S ® R M, we get 
another monomorphism a in: 

(A ®R S) ®s (S ®R M) 

( 4.81) 

38It does not matter much whether we view 5 as a left or a right R-module, since 
cp(R) ~ Z(5). 
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Using the isomorphisms shown above, we see that fJ is also a monomorphism. 
Since S R is faithfully fiat, it follows that A ® R M --+ B ® R M is a monomorphism, so 
we have shown that R M is flat. Finally, assume that S ® R M is faithfully flat. For any 
AR i (0), we have A®RS i (0) andhence (A®RS)®S(S®RM) i (0). By the 
isomorphism on the left side of the above diagram, we have S®R (A®RM) i (0), 
so in particular A ®R M i (0). Since we already know RM is flat, this shows 
that it isfaithfully flat. 0 

(4.82) Remark. The example Z C Ql shows that the "if" parts of (1), (2), (3) 
Proposition (4.80) need not hold if R ~ S is only assumed to be a flat extension 
(instead of a faithfully flat extension). 

§4J. Pure Exact Sequences 

The following notion of a pure short exact sequence is closely related to the notion 
of flatness and will be developed in some detail in this subsection.39 

(4.83) Definition. A (short) exact sequence £ : 0 --+ A ~ B -"* e --+ 0 in 9JtR 

is said to be pure (exact) if £ ®R e' is an exact sequence (of abelian groups) for 
any left R -module e'. (Of course, only the injectivity of A ® R e' --+ B ® R e' is 
at stake.) If this is the case, we say that q:I(A) is a pure submodule of B (or that 
B is a pure extension of q:I(A)). 

(4.84) Examples. 

(a) Any split short exact sequence is pure. 

(b) Any direct sum of pure exact sequences is pure. 

(c) More generally, the direct limit of any direct system of pure short exact se
quences is pure exact. (The proof results from the fact that tensor product commutes 
with direct limits.) In particular, the direct limit of any direct system of split short 
exact sequences is pure exact. We shall show later in this subsection that any pure 
short exact sequence arises in this way. 

(d) For any family of right R-modules {Bi} (i E I), EBiEl Bi is always a pure 
submodule of DiEl B i • Indeed, for any left R-module e', we have a commutative 
diagram 

(Di Bi ) ®R e' 
, 

Di (Bi ®R e') ----+ 

aT T 
(EBi Bi) ®R e' ----+ EBi (Bi ®R e') 

where 8 is defined as in (4.41). This clearly implies that ex is an injection. 

39My thanks go to I. Emmanouil whose notes on pure exact sequences were most helpful 
to me in the writing of this subsection. 
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(e) Let A £ B £ D be right R-modules. If A is pure in D, then A is also pure 
in B. Conversely, if A is pure in B and B is pure in D, then A is pure in D. 
The proofs are straightforward by using Def. (4.83). (For more information, see 
Exercises (30) and (31).) 

(0 Let f : R ~ S be a ring homomorphism, whereby S is viewed as a left 
R-module. If £ is pure exact in !mR, then £ ®R S is pure exact in !ms . Again, 
the proof is routine by using the definition of purity. 

(g) If R is a von Neumann regular ring, then any short exact sequence in !mR is 
pure. The converse is true also. See Exercise 29. 

The basic relationship between flat modules and pure exact sequences is given 
in the following theorem. 

(4.85) Theorem. A right R -module C is flat iff any short exact sequence 

£: 0 ---+ A ---+ B ---+ C ---+ 0 

in !m R is pure. 

Proof. First assume C is flat. Let C' be any left R-module, and fix an exact 
sequence £' : 0 ~ A' ~ B' ~ C' ~ 0 in R!m, where B' is free. Since C is flat, 
C ® R £' is exact. By FC-(24.22)(l) it follows that £ ® R C' is exact, so we have 
proved that £ is pure. Conversely, assume that C R is such that any exact sequence 
o ~ A ~ B ~ C ~ 0 in !mR is pure. Fix such a sequence £ with B free, 
and let 

£': 0 ---+ A' ---+ B' ---+ C' ---+ 0 

be any exact sequence in R!m. By assumption, £ ®R C' is exact, so by FC
(24.22)(2), C ® R £' is exact. This shows that C is flat. 0 

The Theorem we just proved deserves to be in §4A. However, we have promised 
to make the first few subsections of §4 independent of FC-§24. Since the proof 
above depends on FC-(24.22) (actually the proof of FC-(24.22) is only a straight
forward diagram chase), we have reserved (4.85) for this subsection. 

(4.86) Corollary. Let £ : 0 ~ A ~ B ~ C ~ 0 be exact in !mR. 

(1) Assume B isflat. Then £ is pure iff C is flat. 
(2) Assume C is flat. Then B is flat iff A is flat. 

Proof. (1) The "if" part follows from the Theorem (and does not require B to be 
flat). For the "only if" part, assume £ is pure. Repeating the second half of the 
proof of (4.85), we see that C ®R £' is exact for any exact sequence £' in R!m, 
so C is flat. 
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(2) Let M --+ N be any monomorphism in R9J1. We have a commutative diagram: 

o ~ A ®R M ~ B ®R M ~ C ®R M ~ 0 

(4.87) 

o ~ A®RN ~ B®RN ~ C®RN ~ 0 

Here, both rows are exact since the flatness of C implies that E is pure (by (4.85». 
But also, the flatness of C implies that y is injective. A simple diagram chase in 
(4.87) shows that f3 is injective iff a is injective. (2) follows immediately from this 
observation. (A somewhat different proof for the "if" part of (2) was given earlier 
in (4.13». 0 

(4.88) Example. There do exist pure short exact sequences 0 --+ A --+ B --+ 
C --+ 0 that are not split, and in which A, B, C are all non-flat. For instance, 
over R = Z, take Bo = Z x Z x .. " Ao = Z EB Z EB ... , and Co = Bo/ Ao. 
Here, Ao, Bo, Co are torsion-free, and hence Z-f1at (by (4.20». In particular, 
Eo : 0 --+ Ao --+ Bo --+ Co --+ 0 is pure.40 However, Eo is non-split. (In fact, any 
homomorphism g : Co --+ Bo must kill x = (2, 22 , 23 , ... ) + Ao since x E 2i Co 
for any i :::: 1.) If E1 denotes the direct sum exact sequence 

o ~ Z/2Z ~ Z/2Z EB Z/2Z ~ Z/2Z -~ 0, 

then Eo EB E1 remains pure, non-split, and the three modules involved in this new 
sequence are now non-flat. 

We now come to the main characterization theorem for pure exact sequences, 
due to Cohn, Fieldhouse, Warfield, and others. One of the most appealing condi
tions characterizing purity of A ~ B is (3) below in terms of solving inhomoge
neous systems of linear equations. Another interesting characterization, (6), is in 
terms of direct limits of split exact sequences. 

(4.89) Theorem. For any short exact sequence E : 0 --+ A <-~ B --+ C --+ 0 in 
9J1R, the following are equivalent: 

(1) E is pure exact. 
(2) £ ®R C' is exactforanyfp.left R-module C'. 
(3) If a j E A (1 ~ j ~ n), bi E B (l ~ i ~ m) and Sij E R (1 ~ i < 

m, 1 ~ j ~ n) are given such that aj = Li bisjj for all j, then there 
exist a; E A (1 ~ i ~ m) such that aj = Li a;sij for all j. 

400f course, we could have seen this more directly by using (4.84)(d). 
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(4) Given any commutative diagram (in !)J1R): 

R" 
(J' 

) Rm 

(4.90) 

1° 1~ (m,n <x) 

A ( ) B 

there exists e E HOmR(R m , A) such that ea = Ct. 

(5) HomR(M, £) is exact for any J.p. right R-module M (i.e.Jor any such 
M, any homomorphism y from M to C can be lifted to a homomorphism 
A from M to B). 

(6) £ is the direct limit of a direct system of split exact sequences 

o ----+ A ----+ B, ----+ C i ----+ 0 (i E I), 

where the C; 's are J.p. right R -modules. 

Before we proceed to the proof of the theorem, a word of caution is in order. In 
several textbooks, some of the characterizing conditions for purity in this theorem 
have been incorrectly stated. In Rotman [79: p. 95], the condition (4) was stated 
in terms of the existence of a e E HOmR(Rm , A) "making the diagram (4.90) 
commutative." This is not the case, as we only require the upper triangle to be 
commutative. Similarly, the formulation of the linear equations condition (3) in 
the form "aj E Li BSij ==> aj E Li Asi/' in Rowen [89: p. 338] is not correct. 
(Why?) Finally, we should note that, in contrast to (2), (5) is not equivalent to 
HomR(N, E) being exact for every N R. In fact, the latter condition in the special 
case N = C would have already implied that £ splits! 

Proof of (4.89). (1 )==>(2) is a tautology. 

(2)==>(3). Given the equations aj = Li bisij as in (3), we define K to be the 
submodule of RR" = E9~=, Rej generated by {Lj sijej : 1 :::: i :::: m}. By (2), 
the map 

p: A ®R (R"/K) ----+ B ®R (R"/K) 

is injective. We shall identify B®R(W / K) as a quotient of B®RR" byim(B®RK) 
(and likewise for A ®R (R" / K)). Then 

P(L aj ®ej ) = LL bisij ®ej = L bi ® LSijej = 0, 
J J I I J 

so Lj aj ® ej E im(A ®R K). This means that, for some a;, ... , a:n E A: 

Laj ® ej = La; ® LSijej = L(La;sij) ® ej. 
J I J J I 
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(3)::::=}( 4) is straightforward. 

(4)::::=}(5). Fix a finite presentation R" ~ R m ~ M -+ 0 in 9J1 R • We can 
construct a commutative diagram: 

Rn~Rm~M~O 

1" 1~. 1, 
O~A~B~C~O 

(First construct fJ by using the freeness of RIn; then note that 

ljIfJa = yra = 0 ::::=} fJa(Rn) ~ A, 

and take a = fJa.) By (4), there exists e : R m -+ A ~ B such that ea = a. For 
fJ' = fJ - e : Rm -+ B, we have 

fJ' a = fJa - ea = fJa - a = 0, 

so there exists A : M -+ B such that fJ' = A r. But then 

ljIh = ljIfJ' = ljI(fJ - e) = ljIfJ = yr, 

and the fact that r is an epimorphism implies ljI A = Y, as desired. 

(5)::::=}(6). Represent C as a direct limit lim Ci where the Ci 's are f.p. right 
--+ 

R-modules (see the footnote to the proof of (4.34)). Consider the commutative 
diagram with exact rows: 

1iJ; 

E: 

0----> F---> F~~ 1;'----> n 

O~A~B~C~O 

where Bi = {(x, y) E BtJJC; : ljI(x) = Yi(Y)} is the pullback of ljI and Yi.By(5), 
Yi can be lifted to a homomorphism Ai : C; -+ B. The rule Pi (y) = (Ai (Y), y) 
for Y E C; now defines a splitting Pi : Ci -+ Bi for ljIi. Thus, each Ci is a split 
exact sequence. It is easy to show that C ~ lim Ci, so we have proved (6). 

---> 

(6)::::=}(1) follows from (4.84)(c). 

(4.91) Corollary. If C is af.p. right R-module, then an exact sequence 

o ---+ A ---+ B ---+ C ---+ 0 

o 

in 9JtR is pure iffit is split. In particular, if R is a right noetherian ring and BR 
is f.g., then the pure submodules of B are just its direct summands. 

(4.92) Corollary. If A is a pure submodule of B R, then An B2t = A2t for any 
left ideal 2t ~ R. 
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Proof. This follows by applying (4.89)(3) for n == 1. (Or more directly, note that 
AnB21 == A21 amountstotheinjectivityof A®R(RI21) ~ B®R(RI21).) D 

For certain classes of rings, we also have a converse to (4.92). 

(4.93) Corollary. Let R bea commutative PID, and A S; B be right R-modules. 
Then A is pure in B iff An Br == Ar for any r E R. 

Proof. ("If" part.) Assume that A n Br == Ar for all r E R. Then A ~ B 
remains injective upon tensoring by any cyclic R-module. Since any f.g. R-module 
is a direct sum of cyclic modules, it follows that A ~ B remains injective upon 
tensoring by any f.g. R-module. Therefore, A is pure in B by (l)<===}(2) in 
(4.89). (A slight modification of the argument also shows that A is pure in B iff 
An Bpn == Apn for any n :::: 1 and any nonzero prime element p of R.) D 

In Rowen's "Ring Theory, I" [88: p. 338], there is an exercise asking the reader 
to prove the converse of (4.92) in general. Unfortunately, the converse of (4.92) is 
false, even over a commutative noetherian ring. We shall conclude this subsection 
by recording a counterexample to this effect, shown to me by I. Emmanouil. 

For any nonzero commutative ring R, let F be the family of nonzero ideals of 
R.Tobeginwith,weconsiderany R #- (0) with the property that n'BEY'B == 0.41 

Let 

(4.94) A == R and B == n RI'B in VRR , 
'BEY 

and let i : A ~ B be the natural map (given by the various projections from R 
to RISJ3). The assumption we made on F means that i is injective. We claim 
that: 

(4.95) The injectivity of i : A ~ B is preserved by tensoring with RI21, where 
21 S; R is any ideal. 

Indeed, assuming 21 #- 0 (as we may) and taking the projection map from B 
to RI21, we get a map 

R 

21 

in VRR. Therefore, i ®R (RI21) is in fact a split monomorphism. Note that, if we 
view i as an inclusion of A in B, (4.95) means exactly that A n B21 == A21 for 
any ideal 21 S; R. 

Next we want to show that A need not be pure in B. This is to be accomplished 
via the following observation. 

41In the setting of FC-§12, these are the "subdirectly reducible rings". However, it is 
not necessary to bring in this terminology here. 
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(4.96) Suppose N is af.p. left R-module such that No := n'BeF fJ3N i= O. Then 
the injectivity of i : A -+ B is lost upon tensoring with N. 

In fact, by (4.44), we can identify B®RN with n«R/fJ3)®N) ~ n N/fJ3N. 
If we also identify A ® R N with N, then i ® N has clearly kernel No i= O. 

To complete our construction, we need only come up with a module N as in 
(4.96), over a suitable ring R. Take, for instance, the 3-dimensional commutative 
algebra 

(4.97) R = k[x, y]/(x2, xy, i) = k E9 kx E9 ky 

over any field k. The condition n'BeF fJ3 = 0 is clear since kx and ky are ideals 
with kx n ky = O. Now take N = k E9 k E9 k with R-action well-defined by: 

(4.98) x(a, b, c) = (0, 0, a) and y(a, b, c) = (0,0, b). 

Of course RN isf.p. To check the rest of (4.96), it suffices to show that (0,0, 1) E 

fJ3N for any nonzero ideal fJ3 ~ R.Fixanelement fJ = a+bx+cy E fJ3\{O}.If 
a i= 0, we have x = a-I xfJ E fJ3, so (0,0, I) = x(l, 0, 0) E fJ3N. Now assume 
a = O. If c = 0, then x = b- I fJ E fJ3 and we are done as before. If c i= 0, then 
fJ(O, 1,0) = (0,0, c), so again (0, 0, 1) = (c-IfJ)(O, 1,0) E fJ3N. (In fact, 
this computation shows that the No in (4.96) is precisely 0 E9 0 E9 keN.) 

The choice of B as n'BeF R/fJ3 above should not give the impression that we 
get a counterexample to the converse of (4.92) only by taking B to be a "large" 
R-module. In fact, if we take the algebra R in (4.97) over a finite field k, then :F 
is a finite family, and A, B are both R-modules with finite cardinalities. 

Although the converse of (4.92) is false in general, it turns out to be true if B is 
a projective module. This is a result of Fieldhouse; see Exercise 41. 

Exercises for §4 

1. For any ring R, show that 

(a) every f.g. projective right R-module is f.p., and that 
(b) every f.p. right R-module is projective iff R is von Neumann regular. 

2. Prove the following slight generalization of (4.5): If every f.g. submodule 
Po of a module PR is contained in a fiat submodule PI of P, then P itself 
is fiat. 

3. In a ring theory text, the following statement appeared: "A module is fiat 
iff every f.g. submodule is fiat." Give a counterexample to the "only if" 
part of this statement. (The "if" part is true by (4.4).) 

4. In a ring theory text, the following statement appeared: "If 0 -+ C -+ 
Q -+ P -+ 0 is exact with C and Q f.g., then P is f.p." Give a counterex
ample. 



160 2. Flat Modules and Homological Dimensions 

5. In a ring theory text, the following statement appeared: "For right R
modules N S; M, if NnMr = Nr forevery r E R, then NnM'i)! = N'i)! 
for every left ideal 'i)! S; R." Give a counterexample. 

6. (a) Let M, N be submodules of a module E such that M + N is flat. 
Show that M n N is flat iff M and N are both flat. 
(b) Give an example of a flat module with two submodules M, N such 
that M, N, M n N are all flat, but M + N is not flat. 

7. Show that Q is isomorphic to a direct summand of G = Q/Z x Q/Z x .... 

8. Prove (1), (2), and (3) in (4.54). 

9. Let 0 -+ M' -+ M -+ Mil -+ 0 be exact in R9J1. If M, Mil are f.p., and 
M' is f.g., is M' necessarily f.p.? 

10. Let FJ , F2 be left exact contravariant additive functors from R9J1 to 
abelian groups, and let () : FJ -+ F2 be a natural transformation. If () (R) : 
FJ (R) -+ F2(R) is a monomorphism (resp. isomorphism), show that 
()(M) : FJ (M) -+ F2(M) is also a monomorphism (resp. isomorphism) 
for every f.g. (resp. f.p.) module RM. State and prove the analogue of this 
for right exact covariant additive functors. 

11. Recall that, for arbitrary right R -module P and M, there exists a natural 
map aM./' : P ®R M* -+ HomR(M, P), where M* := HomR(M, R) is 
viewed, as usual, as a left R-modu1e (see Exercise (2.20)). 

(1) Assume that P is flat and M isf.p.Showthat aM,/' is an isomorphism. 
Using this, give another proof for the "only if" part of (4.32). (Hint. 
Viewing P as fixed, define FJ(M) = P®RM*, F2(M) = HomR(M, P), 
and apply Ex. 10.) 
(2) Show that aM,/' is also an isomorphism if we assume, instead, that 
M is projective and P is f.p. 

12. Let cp: R -+ R' be a ring homomorphism. Assume that R is commuta
tive, cp(R) is in the center of R', and that R' is a flat R-module via cpo Let 
M be a f.g. (resp. f.p.) left R-module. Show that, for any left R-module 
N, the natural map 

()M,N: R' ®R HomR(M, N) ----+ HomR'(R' ®R M, R' ®R N) 

is a monomorphism (resp. isomorphism). 

13. Let E : 0 -+ A -+ B -+ C -+ 0 be an exact sequence in 9J1R. Assume 
that R is commutative and C is f.p. Show that E is split iffthe localization 
of E at every maximal ideal is split. Does this remain true if C is not f.p.? 

14. Over a commutative ring R, show that a module P is flat iff, for any 
maximal ideal meR, the localization Pm is flat over Rm. 

15. Show that the following are equivalent for any f.g. module P over a 
commutative ring R: (1) P is flat; (2) for any maximal ideal meR, Pm 
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is free over Rm. If P is f.p., show that (1) and (2) are further equivalent 
to P being projective. 

16. (Vasconcelos) Let P be a f.g. flat module over a commutative ring R. 
Define the nIh invariant/actor of P to be In(P) = ann(J\n(p)), where 
J\"(P) denotes the nIh exterior power of P. Let rk P : Spec R ---+ Z 
be the rank function of P, as defined in Exercise (2.21). Show that: 

(1) For any p E Spec R, (rk P)(p) ~ n iff In(P) s::: p. 
(2) {p E Spec R: (rk P)(p) = n} = V(/n(P))\ V (/11+' (P)), where 
V(~) denotes the Zariski closed set {p : P 2 ~} in Spec R. 
(3) For any n and any prime p, In(P)p is either (0) or Rp. Using this, 
show that In(P)2 = In(P). 
(4) Show that P is projective iff In (P) is f.g. for all n. 
(5) Show that, if R has no nontrivial idempotent ideals, any f.g. flat module 
PR is projective. 
(6) Deduce from (4) that a f.g. ideal P s::: R is projective iff P is flat and 
ann(P) is f.g. 

17. (Vasconcelos) Construct a principal ideal P = a R in a commutative ring 
R such that P is flat but not projective, as follows. Let Ro = Z/2Z EB 
Z/2Z EB ... , viewed as a (commutative) ring without I, with addition 
and multiplication defined componentwise. Let R = Z EEl Ro be the ring 
obtained by adjoining an identity 1 E Z to Ro.For a = (2,0) E ZEBRo = 
R, show that 

(1) the principal ideal P = aR is not f.p. (so R is not coherent), and 
(2) P is flat but not projective. 

18. Show that, over a commutative ring, the tensor product of any two flat 
(resp. faithfully flat) modules is flat (resp. faithfully flat). 

19. Let PR be a flat right module and R M be a left module with submodules 
M" M2. Show that P ®R (M, n M2) = (P ®R M,) n (P ®R M2) in 
P®RM. 

20. Let PR be a projective module, and K be a submodule of rad P (the 
intersection of maximal submodules of P; see FC-(24.3)). If PI K is flat, 
show that K = O. 

21. (This problem, due to H. Bass, assumes familiarity with the class of 
semiperfect rings introduced in FC-§23.) Let R be a semiperfect ring. 
Use Exercise 20 to show that any f.g. flat module MR is projective. 

22. (This problem, due to S. Chase, assumes familiarity with the class of right 
perfect rings introduced in FC-§23.) Let R be a commutative ring. Show 
that R is coherent and perfect iff R is artinian. (Sketch (for "only if"). 
Assume R is coherent and perfect. By FC-(23.11), one may assume R 
is local, say, with maximal ideal m. Since R satisfies DCC on principal 
ideals by FC-(23.20), it has a minimal ideal ~. Thus Rim ~ ~ is f.p., 
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whence m is f.g. Since m is nil, it must then be nilpotent. Each mi Imi+!, 
being f.g. and semisimple, has finite length, so RR has finite length.) 

23. Let J be a f.g. left ideal in a left coherent ring R. For any finite set 
A <;; R, show that K = {r E R: rA <;; J} is a f.g.left ideal. From this, 
conclude that, for any two f.g. ideals I, J in a commutative coherent ring, 
(J: /) = {r E R : r I <;; J} is also a f.g. ideal. 

24. In an algebra text, the following statement appeared: "A direct sum 
EBiEI Mi of R-modules is faithfully flat iff each Mi is flat and at least 
one of the Mi 's is faithfully flat." Give a counterexample to the "only if" 
part of this statement. (Hint. Use (4.72)(1 ).) 

25. For any ring extension R <;; S, show that the following are equivalent: 

(1) R <;; S is a (right) faithfully flat extension. 
(2) S is a pure, flat extension of R in 9J1R • 

(3) For any system of linear equations 

,£:,Xibij = aj (aj, bij E R, 1::s j ::s n), 

any solution (s" ... , sm) E sm can be expressed in the form Si = 
ri + '£k tkCki, where (r" ... , r m) is a solution of the system in R m, 
and for each k, tk E Sand (Ck', ... ,Ckm) is a solution of the associated 
homogeneous system '£;:, Xibij = 0 in Rm. 

26. Let E : 0 ~ A ~ B ~ C ~ 0 be an exact sequence in 9J1 R , where 
A, C are flat and one of them is faithfully flat. Show that B must be 
faithfully flat. 

27. Let R <;; S be a (right) faithfully flat extension. If S is left noetherian 
(resp. artinian), show that R is also left noetherian (resp. artinian). 

28. Deduce the characterization of flat modules in (4.33) from the characteri
zation of pure exact sequences in (4.89)(5). (Hint. Use (4.85).) 

29. Show that a ring R is von Neumann regular iff all short exact sequences in 
9J1R are pure, iff all right ideals are pure in RR. (Hint. Use (4.21), (4.85), 
and (4.86).) 

30. Let K <;; A <;; B be right R-modules. Show that (1) if A is pure in B, 
then AI K is pure in B I K, and (2) if we assume K is pure in B, the 
converse of (1) also holds. 

31. Let A, A' be sub modules of a module BR • 

(1) If A + A' and A n A' are pure in B, show that A and A' are pure 
in B. 
(2) If A, A' are pure in B and A + A' is flat, show that A n A' is pure 
in B. 
(3) Construct an example of A, A' <;; B such that A, A', A + A' are all 
pure in B, but A n A' is not. 
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(4) Construct an example of A, A' ~ B such that A, A', A n A' are all 
pure in B, but A + A' is not. 

32. Let A be a submodule of a f.p. module B R • Show that A is a direct 
summand of B iff A is f.g. and pure in B. 

33. Show that, over any domain R, a right ideal ~ is pure in RR iff ~ is 
(0) or R. 

34. Over a commutative ring R, show that A ~ B is pure (in 9J1 R ) iff 
Am ~ Bm is pure (in 9J1Rm ) for every maximal ideal meR. 

35. (Priifer) Show that a subgroup A of an abelian group B is pure iff any 
coset f3 with respect to the subgroup A contains an element b whose 
order (s CXl) equals the order of f3 in B / A. 

36. For a module B R over a commutative domain R, let Bf denote its torsion 
submodule {b E B : br = 0 for some r E R\{O}}. Is Bf always a pure 
submodule of B? 

37. Let B be an additive abelian group, viewed as a 2;-module. True or False: 
the (pure) torsion subgroup Bf is always a direct summand of B? 

38. A monomorphism ({J : A ~ B in 9J1R is said to be locally split if, for 
any a E A, there exists a E HomR(B, A) such that a«({J(a» = a. In 
this case, an argument used in the last part of the proof of (4.23) shows 
that, for any ai, ... , an E A, there exists a E HomR(B, A) such that 
a «({J(ai» = ai for all i. Using this, show that if ({J is locally split, then 
o ~ A ~ B ~ B / A ~ 0 is pure. (Hint. Check condition (3) in (4.89).) 

39. (Azumaya) An epimorphism 1/1 : B ~ C in 9J1R is said to be locally split 
if, for any c E C, there exists T E HomR(C, B) such that 1/IT(C) = c. 
In this case, prove the following statements. 

(I) For any CI, ... , Cn E C, there exists Tn E HomR(C, B) such that 
1/ITn(Ci) = Ci for 1 SiS n. 
(2) For any countably generated submodules D ~ C, the epimorphism 
1/1 -I (D) ~ D induced by 1/1 is split. (In particular, if C itself is countably 
generated, then 1/1 is already split.) 

(3) The short exact sequence £ : 0 ~ ker 1/1 ~ B .! C ---+ 0 is pure. 

(Hint. For (1), construct Tn'S by induction on n. For (3), check that condi
tion (5) in (4.89) holds here for any finitely (or even countably) generated 
module M.) 

40. Let £: 0 ~ A ~ B.! C ~ 0 be exact in 9J1R • 

(I) If ({J is locally split, does it follow that 1/1 is locally split? 
(2) If £ is pure, does it follow that one of ({J, 1/1 is locally split? 

41. (Fieldhouse) For any submodule A of a projective module BR , show that 
the following are equivalent: 
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(I) The inclusion map A ~ B is locally split. 
(2) A is pure in B. 
(3) A n BI)! = AI)! for any left ideal I)! ~ R. 

(Hint(for(3)==>(I».Take B' suchthat F:= BffiB' is free, and consider 
the projection 7r : F ~ B.) 

42. Let E : 0 ~ A ~ B ~ C ~ 0 be a short exact sequence in !)]lR where 
B is projective. 

(I) If A is f.g. and pure in B, show that A is a direct summand of B 
(and hence also a projective R-module). 
(2) If 1/1 is locally split, show that qJ is also locally split. 

43. (Zimmermann-Huisgen) Let R be a left noetherian ring, and C be an arbi
trary direct product R1 , viewed as a right R-module. For any f.g. submod
ule D ~ C, show that there exists p E Aut(CR ) such that p(D) ~ Ri 
for some finite subset 1 ~ I, where, by R i , we mean the direct summand 
of RI consisting of (Xi)iEI with Xi = 0 for all i rf. 1. 

44. (Zimmermann-Huisgen) Let E : 0 ~ A ~ B ~ C ~ 0 be a short 
exact sequence of right R -modules over a left noetherian ring R. If C is 
a direct product (R1h where I is any set, show that 1/1 is locally split. 

45. Use Exercises (42) and (44) to construct a short exact sequence 

E: O~A~B~C~O 

over some ring R in which qJ and 1/1 are both locally split, but E itself 
is not split. 

cp 0/ 
46. Construct a short exact sequence E : 0 ~ A ~ B ~ C ~ 0 where 1/1 

is locally split, but qJ is not. 

47. Let C be a right R-module and M, N be left R-modules. Let 

F: O~C'~M~N~O 

be an exact sequence in R!)]l, where C' = Homz (C, Q/Z) is the character 
module of C. Show that if F is pure, then it splits. 

48. For any exact sequence E : 0 ~ A ~ B ~ C ~ 0 in !)]lR, show that 
the following are equivalent: (1) E is pure; (2) E' is pure; (3) E' is split. 

49. Show that any right R-module A is naturally embedded in A" as a pure 
submodule. 

50. Let R be a (commutative) UFD, and let X, y be two nonzero elements 
of R with gcd(x, y) = 1. If the ideal I)! = X R + y R is fiat, show that 
I)! = R. 

51. Let R be a (commutative) UFD. Show that R is a PID iff all ideals of R 
are fiat, iff all torsion-free R-modules are fiat. 
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§5. Homological Dimensions 

§5A. Schanuel's Lemma and Projective Dimensions 

After discussing the notions of projective, injective and flat modules, it is nat
ural to include a treatment of homological dimensions of modules in general. 
Therefore, we devote the present section §5 to an introduction to the theory of 
projective dimension, injective dimension, and flat dimension of modules. This 
theory leads us to the definition of some new numerical invariants of rings, called 
their global dimensions. There are several kinds of global dimensions, and right 
global dimensions need not always be the same as left global dimensions. These 
homological invariants offer new tools with which to study (both commutative 
and noncommutative) rings, and by now there is a rather extensive literature on 
this theory. 

Due to limitation of space, our coverage of homological dimensions of mod
ules will be primarily limited to a discussion of the main definitions, some basic 
examples, and a selection of principal results. In particular, in order to avoid a 
long digression on the theory of derived functors, we shall develop the definition 
of homological dimensions without using "Ext" or "Tor", but rather using the 
projective, injective, and flat "shift operators". In doing so, we follow closely the 
exposition in Kaplansky [72]. However, to minimize the overlap, we shall offer a 
few different proofs. 

(5.1) Schanuel's Lemma. Let M be a right module over any ring R, and let 

O~K~P~M~O, 

(J 
O~L~Q~M~O 

be short exact sequences in 9J'lR, where PR is projective. Then there exists a short 
exact sequence 

o ~ K ~ L E9 P ~ Q ~ O. 

In particular, if QR is also projective, then we have K E9 Q ~ L E9 P in 9J'lR. 

Proof. We shall prove the existence of (*) in two ways. First, let 

x = {(p, q) E P E9 Q: a(p) = P(q)}, 

which is a submodule of P E9 Q. The map X ~ P obtained by first coordinate 
projection is surjective. In fact, for any PEP, there exists q E Q such that 
P(q) = a(p) since P is surjective. This gives (p, q) E X with 1l'1 (p, q) = p. 
Next, 

ker 1l'1 = {(O, q): (0, q) EX} 

= {(O, q): P(q) = O} 

~kerp~L. 
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Therefore, we have an exact sequence 

(5.2) O~L~X~P~O, 

and similarly, we have 

(5.3) O~K~X~Q~O. 

Since P is projective, (5.2) splits and we have X ~ L EB P. Replacing X by L EB P 
in (5.3) yields (*). 

The second proof is essentially a reformulation of the first, but it yields a more 
explicit construction of (*). To simplify the notation, it is convenient to think of 
K (resp. L) as a submodule of P (resp. Q). By the projectivity of P, we can find 
y : P ~ Q with a = {3 0 y. Then we construct 

(5.4) '" ({J O~K~LEBP~Q~O 

by epee, p) = yep) - e, and 1/I(k) = (y(k), k). A routine check shows that (5.4) 
is a short exact sequence. 0 

Schanuel's Lemma was conceived by S. Schanuel when I. Kaplansky taught 
a course on homological ring theory at the University of Chicago in the Fall of 
1958. The circumstances of discovery are vividly described by the following words 
of Kaplansky [72: p. 165]: "Early in the course I formed a one-step projective 
resolution of a module, and remarked that if the kernel was projective in one 
resolution it was projective in all. I added that, although the statement was so 
simple and straightforward, it would be a while before we proved it. Steve Schanuel 
spoke up and told me and the class that it was quite easy, and thereupon sketched 
what has come to be known as "Schanuel's Lemma". It took a couple of days and 
a half-dozen conversations before the proof was fully in hand." 

The following long exact sequence version of Schanuel 's Lemma is just an easy 
self-strengthening of (5.1). 

(5.5) Corollary. Suppose we have long exact sequences 

O~ K~ PIl - I ~ ... ~ PI ~ Po~M~O, 

f3 
O~L~ QIl-I ~ ... ~ QI ~ Qo~M~O 

in wt R , where the Pi'S and Qi 's are projective modules. Then 

(5.6) K EB Qn-I EB Pn- 2 EB Q,,-3 EB ... ~ L EB P,,-I EB Qn-2 EB P,,-3 EB ... 

Proof. Let K' = ker a and L' = ker {3. By (5.1), K' EB Qo ~ L' E9 Po. We can 
form the following new (shorter) exact sequences: 

o ~ K ~ Pn- I ~ ... ~ P2 ~ PI EB Qo ~ K' E9 Qo ~ 0, 

o ~ L ~ Q,,_I ~ ... ~ Q2 ~ QI EB Po ~ L' EB Po ~ 0, 
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where the "middle" modules are all projective. Invoking an inductive hypothesis 
at this point, we get the desired conclusion (5.6). D 

Schanuel's Lemma suggests naturally the following definition. For A, B E 

!JJ1R, we say that A, B are projectively equivalent (written A"" B) if there exist 
projective modules P, Q E !JJ1R such that A EB P ~ B EB Q. We verify quickly 
that " "" " is an equivalence relation. Let us denote the equivalence class of A by 
[A], and write G for the set of all such equivalence classes. 

The binary operation on G given by [A] + [B] = [A EB B] is easily checked to 
be well-defined, and it has the following properties. 

(5.7) Proposition. (G, +) is an abelian semigroup with identity (henceforth writ
ten O) given by the class of the zero module. A class [P] has an inverse in G iff 
[P] = 0, iff P is a projective module. 

The proof is completely routine and is therefore left to the reader. 
For any M E !JJ1R, we can define a class P(M) E G as follows. Take any short 

exact sequence 

o ----+ K ----+ P ----+ M ----+ 0, 

where P is projective,42 and take P(M) = [K] E G. Schanuel's Lemma says 
exactly that this is well-defined. 

(5.8) Proposition. Let M, N E !JJ1R. Then 

(1) P(M EB N) = P(M) + P(N) E G. 
(2) P(M) depends only on [M] (so it is legitimate to write P(M) as P[M]). 
(3) P : G --+ G is an endomorphism of the semigroup G. (We call P the 

projective shift on right R-modules.) 

Proof. (1) follows by taking the direct sum of two short exact sequences of the 
type (*), one for M and one for N. For (2), assume that [M] = [M'], so we 
have M EB P ~ M' EB Q for some projective modules P, Q. By (1) we have 
P(M) + P(P) = P(M') + P(Q) E G, and hence P(M) = P(M'), since 
P(P) = P(Q) = O. Finally (3) also follows from (I). D 

The iterates pn [M] (n ~ 0) can be found in one step as follows. Let 

(5.9) 

be a long exact sequence where the Pn's are projective modules. (We say that 
(5.9) is a projective resolution for M.) Let Kn = im(an) (n ~ 0); by induction, 

420f course such an exact sequence exists. For instance, we can take P to be a big free 
module that maps onto M. 
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it follows immediately that PI1[Ml = [Knl for all n. We say that Kn (or, more 
precisely, the class [Knl) is the nth syzygy of the module M. The factthat the class 
[Knl is uniquely determined by M and n can, of course, also be seen directly 
from (5.5). 

(5.10) Definition. The projective dimension of M E 9J1R (or of the class [Ml) is 
defined to be: 

pd(M) = pdR(M) = min{n: pn[Ml = O}. 

If no such n exists, we define pdR (M) to be 00. (Clearly, pd(M) = 0 iff M is a 
projective module.) 

(5.11) Proposition. For M E 9J1R and n > 0, the following statements are 
equivalent: 

(1) pdR(M) :::: n. 
(2) For any "partial" projective resolution 

Pn- I ~ Pn- 2 ~ •.• ~ PI ~ Po ~ M ~ 0, 

the kernel of an-I is projective. 43 

(3) There exists a finite projective resolution 

o~ Pn~ P,,-I ~ ... ~ PI ~ Po~M~O. 

Moreover,for n :=:: 1, we have pdR(M) = n iff there exists a finite projective 
resolution as in (3) where an is nonsplit. 

Proof. (1 )==} (2)==} (3)==}( 1) all follow from the remarks made before Definition 
(5.10). To prove the last statement suppose pdR(M) = n :=:: 1, and take a finite 
projective resolution as in (3). Then, for K n - I := im(an-I), 

is nonsplit, for otherwise K n- I is projective and we would have pn-I [M] = 
[Kn - d = O. Conversely, if there is a finite projective resolution as in (3) where 
an is nonsplit, then, in (*), K n- I cannot be projective and we'll have pn-I [M] = 
[K,,-d -10. This implies that pdR(M) = n. D 

For later reference, it is useful to note that, for any M E 9J1R which is not 
projective, we have always 

(5.12) 

(5.13) Definition. The right global dimension of a ring R is defined to be 

r. gl. dim R = sup{pdR (M): M E 9J1 R } :::: 00. 

43In the case n = 0, (2) should be interpreted to mean simply "M is projective". 
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In the case when this supremum is finite, it is precisely the index oJnilpotency of 
the shift operator P on G. The left global dimension of R, denoted by l.gl.dim 
R, is defined similarly. If R is commutative, we shall write gl.dim R for the 
common value of r.gl.dim Rand I.gl.dim R. 

The next proposition clarifies the meaning of rings with small right global 
dimensions. With this hindsight, it is now clear why we took all1 interest in (right) 
hereditary rings in §2. 

(5.14) Proposition. (1) r. gl. dim R = 0 iff R is semisimple. (2) r. gl. dim R :::: 1 
iff R is right hereditary. 

Proof. (1) We have seen in FC-(2.8) (right module analogue) that R is semisimple 
iff all M E 9J1R are projective. This immediately gives (1). For (2),jirst assume 
r.gl.dim R :::: 1. For any right ideal l.2t ~ R, consider the short exact sequence 

o ~ l.2t ~ R ~ R/l.2t ~ O. 

Since pdR(R/l.2t) :::: 1, we have [l.2t] = P[R/l.2t] = 0, so l.2tR is projective. 
Conversely, assume that R is a right hereditary ring. For any M E 9J1R, take a 
short exact sequence 

O~K~F~M~O 

with FE 9J1 R free. By (2.24), KR is projective, so by (5.11), pdR(M) :::: 1. This 
implies that r.gl.dim R :::: 1. 0 

(5.15) Remark. If r.gl.dim R = 0, then R is semisimple, and so l.gl.dim R = 0 
as well. In (2.33), however, we have seen that there exists a right hereditary ring 
R that is not left hereditary. For such a ring R, we have therefore r.gl.dim R = 1 
but l.gl.dim R ~ 2. Kaplansky has constructed such a ring with gl.dim R = 2, 
and Small has constructed one with gl.dim R = 3. For more information on the 
relation between r.gl.dim Rand I.gl.dim R (orthe lack of it), see (5.59)-(5.61), 
and (5.70)-(5.71). 

Following an idea of Kaplansky, we can make up easily some examples of 
modules of infinite projective dimensions. As in First Course, we write annr (S) 
for the right annihilator of a set S (in a given ring). 

(5.16) Lemma. Let a, b E R be such that annr(a) = bR and annr(b) = aR. 
Then we have pd(aR) = pd(bR) = 00 unless aR EB bR ~ R (in which case, oj 
course, pd(aR) = pd(bR) = 0). 

Proof. The surjection R --+ aR defined by x 1--+ ax has kernel annr(a) = bR, so 
we have 

(5.16A) O~ bR ~ R ~aR~ O. 
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This gives P[aR] = [bR], and we have similarly P[bR] = [aRlo If aR is not 
projective, then pn[aR] and pn[bR] are never 0, so pd(aR) = pd(bR) = 00. On 
the other hand, if aR is projective, then (S.16A) splits, and we have aREBbR ~ R. 

o 

It is worth noting that, in the above situation, we have the following infinite 
"free resolution" 

(S.17) ... -----+ R ~ R ~ R ~ aR -----+ 0, 

where an (x) = ax when n is even, and an (x) = bx when n is odd. 
We list below several examples of a ring R with a pair of elements a, b satisfy

ing the hypothesis of(S.16). The verifications for annr(a) = bR and annr (b) = aR 
are easy in all cases, and will be left to the reader. Also, in each case, a R EB b R will 
not be isomorphic to R, so we shall always end up with pd(aR) = pd(bR) = 00. 

(5.18) Examples. 

(1) R = k[t] with a relation t n = 0, where n :::: 2 is fixed, and k is a nonzero 
ring. We take a = t and b = tn-I. Here we cannot have an R-isomorphism 
aR EB bR ~ R, since (aR EB bR)tn- 1 = ° but Rtn - 1 i=- 0. Therefore, we have 
pd(aR) = pd(bR) = 00, and hence r.gl.dim R = 00. (Note that bR is the 
R-module kR on which t acts trivially.) 

(2) R = k[x, y] with the relation xy = 0, where k is any nonzero ring. We take 
a = x and b = y. Then (S.16A) is a nonsplit sequence. For, if(S.16A) splits, then 
bR is a direct summand of RR, and must therefore contain a nonzero idempotent. 
But 

bR = yk[x, y] = yk[y] S; k[y] 

shows that b R cannot contain a nonzero idempotent. Therefore, we have again 
pd(aR) = pd(bR) = 00, and r.gl.dim R = 00. 

(3) Let R be the integral group ring ZG where G is the cyclic group (a) of 
order n :::: 2. Take 

a = I + a + ... + an-I and b = a-I. 

Here, bR is exactly the "augmentation ideal" of R = Z G (the kernel of the 
augmentation map e : ZG ~ Z defined by e(g) = I for all g E G). The other 
module aR is just a . Z, with trivial G-action. The sequence (S.16A) is again 
nonsplit in 9JlR, for, if R = bR EB M for some ideal M, then M ~ aR implies 
that M = c· Z for some C E R with e(C) = ±I and c· g = c for all g E G. 
But the latter implies that C E annr(b) = aR, and hence e(C) E e(a)Z = n Z, a 
contradiction. Therefore, we have pd(aR) = pd(bR) = 00, and gl.dim R = 00. 

In this example, (S.17) yields the infinite free resolution 

... -----+ ZG ~ ZG ~ ZG ~ Z -----+ 0, 
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where an is multiplication by b when n is odd, and multiplication by a when 
n =1= 0 is even, and ao = c. (For convenience, we have replaced aR by Z, the so
called trivial ZG-module.) The resolution above is well-known in homological 
group theory, where it is used to compute the group cohomology of the cyclic 
group (a) with coefficients in any ZG-module. 

(4) R = Z/abZ where a, b> 1 are not relatively prime. For any common prime 
divisor p of a and b, 

aR EB bR ~ Z/bZ EB Z/a Z 

contains a copy of Z/ pZEBZ/ pZ, so it cannot be isomorphic to the cyclic group R. 
Therefore, again, pd(aR) = pd(bR) = 00, and gl.dim R = 00. This observation 
leads immediately to the following computation of the global dimension of any 
quotient ring of Z. 

(5.19) Corollary. The global dimension of the ring Z/nZ (n > 0) is 0 when n 
is square-free, and is 00 otherwise. 

Next, let us study the relationship among the projective dimensions of the three 
modules A, B, C in a short exact sequence 0 ~ A ~ B ~ C ~ 0 in OO1 R • The 
following result holds over any ring R. As suggested by Kaplansky [72: p. 169], we 
should view this result as an attemptto compute pd(C) via pd(A) and pd(B): the 
attempt is successful except in the "ambiguous" case pd(A) =: pd(B), where we 
have only an upper bound estimate on pd(C). (In this result, the usual conventions 
about the symbol 00 apply.) 

(5.20) Theorem. Let 0 ~ A ~ B ~ C ~ 0 be an exact sequence in OO1 R .If 
two of pd(A), pd(B), pd(C) are finite, so is the third. In any case, 

(1) If pd(A) < pd(B), then pd(C) = pd(B). 
(2) If pd(A) > pd(B), then pd(C) = pd(A) + 1. 
(3) If pd(A) = pd(B), then pd(C) ~ pd(A) + 1. 

Proof. First assume C is projective. Then, the given sequence splits, so B ~ 
A EB C and pd(A) = pd(B). Here, only Case (3) can occur, and the desired 
conclusion is a tautology. Next assume B is projective; that is, pd(B) = O. Here, 
pd(A) < pd(B) is impossible. If pd(A) > pd(B), then A and hence C are not 
projective, and we have pd(C) = pd(A) + I by (5.12). If pd(A) = pd(B), then 
A is projective, and pd(C) ~ 1 = pd(A) + 1. 

In the following, we may therefore assume that neither B nor C is projective. 
We express B as a quotient module P / K where P is projective, and take A as 
Q/K, so C ~ P/Q. Then 

(5.21) pd(B) = pd(K) + 1 and pd(C) = pd(Q) + 1, 

and we have a new exact sequence 

(5.22) o ---+ K ---+ Q ---+ A ---+ O. 
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The first conclusion of the theorem now follows by induction on the sum of the 
two finite projective dimensions (the inductive hypothesis being applied to (5.22)). 

If at least two of pd(A), pd(B), pd(C) are 00, the conclusions in Cases (1), 
(2), and (3) are easy to check. Thus, for the remainder of the proof, we may assume 
that pd(A), pd(B), and pd(C) are finite; we then induct on their sum. Applying 
the inductive hypothesis to (5.22), we have the following. 

(1)' If pd(K) < pd(Q) (i.e., pd(B) < pd(C», then 

pd(A) = pd(Q) = pd(C) - 1 ::: pd(B). 

(2)' If pd(K) > pd(Q) (i.e., pd(B) > pd(C», then 

pd(A) = pd(K) + 1 = pd(B). 

(3)' If pd(K) = pd(Q) (i.e., pd(B) = pd(C», then 

pd(A) .:::: pd(K) + 1 = pd(B). 

Now suppose pd(A) < pd(B). We can only be in Case (3)', so pd(C) = pd(B), 
as desired. Next, suppose pd(A) > pd(B). Here, we can only be in Case (1)', so 
pd(C) = pd(A) + 1, as desired. Finally, suppose pd(A) = pd(B). If we are in 
Cases (2)' or (3)', then 

pd(C) .:::: pd(B) < pd(A) + 1; 

and if we are in Case (1)', then pd(C) = pd(A) + 1. D 

(5.23) Corollary. Let 0 --+ A --+ B --+ C --+ 0 be an exact sequence in 9JtR• 

Then 

pd(B) .:::: max{pd(A), pd(C)}, 

with equality unless pd(C) = pd(A) + 1. 

Proof. (1) Suppose pd(A) < pd(B). By (5.20), we have pd(C) = pd(B) > 

pd(A), so 

max{pd(A), pd(C)} = pd(C) = pd(B). 

(2) Suppose pd(A) > pd(B). By (5.20), pd(C) = pd(A) + 1; here, 

max{pd(A), pd(C)} = pd(A) + 1 ::: pd(B) + 2. 

(3) Suppose pd(A) = pd(B). By (5.20), pd(C) .:::: pd(A) + 1. If pd(C) < 
pd(A) + 1, then max{pd(A), pd(C)} = pd(A) = pd(B). Otherwise, 

max{pd(A), pd(C)} = pd(A) + 1 = pd(B) + 1. 

D 

It can be seen (cf. Exercise 0) that (5.23) is in fact an equivalent formulation of 
(5.20). The following is an easy consequence. 
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(5.24) Corollary. Let 0 = Bo ~ BI ~ ... ~ Bn = B be a finite filtration of a 

module B R • Then pd(B) ::: max{pd(Bi+11 Bi)}. 

We also take this opportunity to record the following related result. 

(5.25) Proposition. Let M = EBi Mi' Then pd(M) = sup{pd(Mi)}' 

Proof. If Ki is a module representing pn[M;], then pn[MJ is represented by 
EBi K i · In particular, pn [M] = 0 iff pn[Mi] = 0 for all i, iff n ~ sup{pd(Mi)}' 

D 

§5B. Change of Rings 

Our next goal is to construct a module of a given finite projective dimension over 
a suitable ring, using the idea of "regular sequences". We start by considering a 
general quotient map qJ : R ---+ R I x R, where x is a central element of R that is 
not a O-divisor. In the following, we shall write Ii for the quotient ring R I x R. 
To avoid the trivial case Ii = 0, we shall also assume that x is a non unit in R. Via 
the map qJ, we can view any (say, right) Ii-module M as a (right) R-module. 
The relationship between pd7?( M) and pd R (M) is given by the following basic 
result of Kaplansky. 

(5.26) Change of Rings Lemma. Assume that M is a nonzero right Ii-module 

with n := pd7?(M) < 00. Then pdR(M) = n + 1. 

(Note that the conclusion is not true in general if pd7?(M) == 00. For instance, 
for R = Q [t] and x = t 2 , the Ii-module M = Q with trivial (-action has 
pd7?(M) = 00 by (5.18)(1). But pdR(M) = I, since M is a nonprojective 
module over the principal ideal domain R.) 

Proof of (5.26). We induct on n. First assume n = 0, that is, M is Ii-projective. 
Then M is a direct summand of a free Ii-module, say, F. Consider the exact 
sequence 

0--+ xR --+ R --+ R --+ 0 in 9J1R. 

Since xR ~ R, we have pdR(R) ::: 1. This implies that pdR(M) ::: pdR(F) ::: 1, 
by (5.25). Ontheotherhand,since Mx = 0 and x isnotaO-divisorin R, MR i= 0 
cannot be embedded in a free R-module, and in particular is non-projective. This 
shows that pdR(M) = 1, as desired. 

To treat the case n ~ 1, fix an exact sequence 

o --+ K --+ F --+ M --+ 0 in 9J17?, 

with F free. Then pd7?(K) = n-l, and the inductive hypothesis gives pdR(K) = 
n. If n ~ 2, then pdR(K) > 1 ~ pdR(F) and (5.20)(2) yields 

pdR(M) = pdR(K) + 1 = n + 1. 
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We are thus left with the case n = 1, for which (5.20) yields pdR(M) ::: 2. Take 
an exact sequence 

(5.27) 

with F free. Since Mx = 0, we have Fx S; T, so we have an exact sequence 

(5.28) o ~ T/Fx ~ F/Fx ~ M ~ 0 in 001][. 

Therefore, pd][(T / Fx) = pd][(M) - 1 = 0, and so the exact sequence 

(5.29) o ~ Fx/Tx ~ T/Tx ~ T/Fx ~ 0 in 001][ 

splits. Identifying M ~ F / T with F x / T x (by multiplication by x), we see that 
M is a direct summand of T / T x. If T is R -projective, T / T x and hence M 
would be R-projective, which is not the case. Therefore, we must have pdR(M) = 
1 + pdR(T) ~ 2 from (5.27), whence pdR(M) = 2. 0 

(5.30) Corollary. In the above notations, if R =1= 0 and n := r. gl. dim R < 00, 

then r. gl. dim R ~ n + 1. 

(Again, the example R = Q [t] with x = t 2 shows that, in this corollary, the 
hypothesis r.gl.dim R < 00 is essential !) 

To construct a module with a given projective dimension, we shall use the notion 
of a regular sequence defined below. 

(5.31) Definition. An ordered sequence of central elements x" ... ,Xn in a ring 
R is called a regular sequence if E Xi R =1= R and, for any i ~ 1, the image of 
Xi is not a zero-divisor in the ring R/(x,R + ... + xi_,R). (Note that, by this 
definition, the empty sequence is regular if R =1= 0.) 

The next Proposition gives the basic connection between regular sequences and 
projective dimensions. 

(5.32) Proposition. Let x" ... , Xn be a regular sequence in R, and let I 
E7=, xiR. Then pd«R/ I)R) = n. 

Proof. We induct on n, the case n = 0 being trivial. For n > 0, the images 
X2, ... , xn clearly form a regular sequence in R := R/x, R. By the inductive 
hypothesis, we have then 

pd(R/(x2R + ... +xIlR»][) = n - 1. 

Identifying R/(X2R + ... + xnR) with R/(x,R + ... + xllR) = R/I, (5.26) 
yields 

pd(R/I)R) = (n - 1) + 1 = n. 

o 
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In the case when R is a commutative ring, there is, in fact, a "canonical" reso
lution 

(S.33) 

with Fi free in 9Jt R. This is called the Koszul resolution for R j I, and is defined 
as follows: 

Fo = R, 

where 1\' (Fl ) denotes the rlh exterior power of Fl. The map ao is the projection 
map from R to RjI, and al sends each ei E Fl to Xi E I. For r :::: 2, a, is 
defined by 

, 
(S.34) a (e· /\ ... /\ e·) = '""' (-I)j-l(e /\ ... /\ e·. /\ ... /\ e )x· r 11 lr ~ II I J lr Ij' 

j=l 

where the hat means "omission". For the proof of the exactness of (S.33), see 
Matsumura [80]. Note that the injection a" is non-split. In fact, if a" is split by 
some q; : F,,-l -+ Fn, then, writing 

we have 

" 
el /\ ... /\ en = q;an(el /\ ... /\ en) = (el /\ ... /\ en) L (-I)j-Ibjxj. 

j=1 

This implies that L~=I(-I)j-Ibjxj = 1, a contradiction. Therefore, once we 
know that the Koszul resolution (S.33) is exact, the last part of (S.Il) will also 
give pd(Rj I) = n, yielding a more explicit proof of (S.32) in the commutative 
case. 

Since (S.33) provides one of the few known constructions of a finite free res
olution, it is worthwhile to work out some of its special cases. The case n = 1 
is essentially trivial, and the case n = 2 is very easy. So let us work out the case 
n = 3. Here (S.33) takes the form 

(S.3S) ex 3 fJ 3 Y 
0---+ R ---+ R ---+ R ---+ R ---+ Rj(x, y, z) ---+ 0, 

where we have rewritten XI, X2, X3 as X, y, z. We shall express elements in Rr 

as column r-vectors, and express a homomorphism R' -+ R"' by an s x r matrix. 
Using the basis 

il=e2/\e3, h=-el/\e3, h=el/\t'2 

on 1\2(R3) ~_ R3 d th t lb' 1\1 (R3) , an e na ura aSIS el, e2, e3 on R 3 , (S.34) 
yields 
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so f3 has the matrix (~z ~ -:). On the other hand, y has matrix (x, y, z), 
y -x 0 

and ex has matrix (x, y, zr. Thus, (5.35) is a rather "symmetrical" free revolution, 
with ex = yt and f3 given by an alternating matrix. By matrix multiplication, we 
see directly that f3ex = 0 and yf3 = O. Using the fact that x, y, z form a regular 
sequence, we can further check that ker f3 <; im ex, and ker y <; im f3 (cf. Exercise 
6). Therefore, (5.35) gives indeed a free resolution for R/(x, y, z)R. 

For an explicit example of a regular sequence, we can take Xl, ... , x" III a 
polynomial ring R = A[Xl, ... , Xn] over any nonzero ring A. Here 

R/(Xl R + ... + Xi-l R) ~ A[Xi, ... , xn], 

in which Xi is clearly not a O-divisor. The right R-module R/(Xl R + ... + x"R) 
is just A with all Xi acting trivially; Prop. (5.32) shows that pd(A) = n. In the case 
when A is a semisimple ring, our forthcoming result (5.36) will show that r.gl.dim 
R = n, so A is a right R-module of the largest possible projective dimension. 

Our next goal is to prove the following important result on the right global 
dimension of a polynomial extension of a ring. 

(5.36) Theorem. For any nonzero ring A and R = A[x], we have 

r. gl. dim R = 1 + r. gl. dim A. 

(By induction, itfollows that r. gl. dim A[Xl, ... , xn] = n + r. gl. dim A.) 

Proof. For any right A-module M, let us write M[x] for the R-module M ®A R. 
We can think of elements of M[x] as "polynomials" of the form L mixi, on 
which x acts by right multiplication. It is easy to see that M is projective over A 
iff M[x] is projective over R. Since the functor "- ®A R" is exact, it follows 
readily that 

(5.37) 

To prove the theorem, first consider the case r.gl.dim A = 00. In this case, there 
exists aright A-module M with pdA (M) = 00. (The proofofthis is left as Exercise 
3 in this section.) From (5.37), we see immediately that r.gl.dim R = 00. Thus, 
we may now assume d = r. gl. dim A < 00. It suffices to show that 

(5.38) r. gl. dim R ~ d + 1, 

for, once this is proved, we can apply (5.30) to the quotient map R ~ R / x R ~ A 
to get r.gl.dim R :::: d + 1. Consider any right R-module M: we think of M as 
a right A -module given with an A -endomorphism f. As in the beginning of the 
proof, we can form the R-module M[x] with elements Lmixi. (Here mixi is 
just an abbreviation for mi ® Xi, not to be confused with the action of Xi on 
mi E MR.) We shall construct a short exact sequence 

(5.39) '" 'P o ----+ M [x] ----+ M [x] ----+ M ----+ 0 
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in 9J1 R. First, we define cp by CP(L mixi) = L t (mi). Clearly, cP is a surjective 
R-homomorphism from M[x] onto M. Next, observe that j := f ®A IdR is 
an R-endomorphism of M[x], sending L mixi to L f(mi)x i • We also have the 
R-endomorphism i of M[x] sending Lmixi to Lmixi+I.Define 1/1 in (5.39) 
to be the difference i - j. Then 

1/I(~mixi) = - f(mo)+(mo- f(ml))x+" ·+(mr-I - f(mr))x r +mrxr+1 , 

so 1/1 is clearly injective. A routine calculation shows that cP1/l = 0, so the exactness 
of (5.39) boils down to ker cp <:; im 1/1. Suppose cP (L mi Xi) := L t (mi) = O. 
Then 

i":O i,,:a i,,:1 

which is clearly in im(i - j) = im(1/I). Since (5.39) is now exact, (5.20)(3) 
applies to give 

pdRM::: 1 + pdRM[x] = 1 + pdAM ::: 1 + d, 

in view of (5.37). This establishes (5.38). D 

In the classical case when A is afield, (5.36) shows that S = A[XI, ... ,xn ] has 
global dimension n. This result essentially goes back to Hilbert. In fact, Hilbert 
proved the following interesting statement: for any ideal Ql S; S, there exists a 
resolution 

o ~ Fn - I ~ ... ~ FI ~ Fa ~ Ql -~ 0, 

where the Fi 's arefg.free S-modules. This is known in the literature as Hilbert's 
Syzygy Theorem.44 By a slight abuse of terminology, Theorem 5.36 is sometimes 
called Hilbert's Syzygy Theorem as well. 

Hilbert's classical result suggests that we can somehow get by with the use of 
f.g. free modules in the place of f.g. projective modules over the polynomial ring 
S = A[XI' ... , xn ]. In 1955, Serre raised the question whether all f.g. projective 
S -modules are free. The affirmative answer to this question soon became known as 
"Serre's Conjecture". After much work in the 60s and 70s, this famous conjecture 
was proved independently by D. Quillen and A. Suslin in 1976. For an exposition 
of their proofs and a historical survey, see Lam [78]. 

§5C. Injective Dimensions 

We shall now tum our attention to the injective dimensions of modules. Here the 
situation is dual to that of projective dimensions, so we can state various facts 
without repeating their proofs. To begin with, we have the following. 

44In view of Auslander's Theorem, to be proved in (5.51) below, lhis result of Hilbert 
does give the upper bound gl.dim S ~ n. 
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(5.40) (Injective) Schanuel's Lemma. Let N be a right module over any ring R, 
and let 

(5.41) 0 ~ N ~ I ~ S ~ 0 and 0 ~ N ~ J ~ T ~ 0 

be short exact sequences in OO1R, where IRis injective. Then there exists a short 
exact sequence 

o ~ J ~ T E9 I ~ S ~ O. 

In particular, if J R is also injective, then we have S E9 J ~ T E9 I in OO1 R. 

By analogy with the projective case, we define two (right) modules S, T to 
be injectively equivalent if S E9 J ~ T E9 I for suitable injective modules I 
and J. Whenever no confusion is liable, we shall write [S] for the "injective 
equivalence class" of S. As before, we get an additive semi group G' of such classes, 
whose identity 0 is given by the class of all injective modules. Again Schanuel's 
Lemma (5.40) enables us to define an additive shift operator I : G' -+ G'. Here, 
I(N) = [S] whenever we have a short exact sequence 0 -+ N -+ I -+ S -+ 0 
with IR injective. We shall call I the injective shift on right R-modules. As 
before, the I(N) 's are given by the kernels (or syzygies) of an injective resolution 
(with all Ill's injective): 

o ~ N ~ 10 ~ II ~ h ~ .... 

Note that such a resolution exists since (by (3.20» any module can be embedded 
in an injective module. 

(5.42) Definition. The injective dimension of N E OO1R (or of the class [N] E G') 
is defined to be 

(5.43) id(N) = idR(N) = min{n: r[N] = O}. 

If no such n exists, we define idR(N) to be 00. The right injective global dimension 
of R is defined to be 

(5.44) r. inj. gl. dim R = sup{idR(N): N E OO1 R} ~ 00. 

The left injective global dimension (Linj.gl.dim R) of R is defined similarly, by 
using left R-modules. 

If r.gl.dim R = 0, then R is semisimple and hence all right R-modules are 
injective, which shows r.inj.gl.dim R = O. If r.gl.dim R = 1, then R is not 
semisimple but right hereditary. Here, not every right R-module is injective by 
FC-(2.9), but any quotient of an injective right R-module is injective by (3.22). 
Therefore, from (5.44), we have r.inj.gl.dim R = 1. As it turns out, these facts are 
not accidents; they are the first two cases of the following beautiful result in the 
theory of global dimensions of rings. 

(5.45) Theorem. For any ring R, r. gl. dim R = r. inj. gl. dim R (and similarly 
for left dimensions). 
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In most standard textbooks in homological algebra, this theorem is proved by 
the use of the "Ext" functors. However, defining these "Ext" functors properly 
would take us too far afield, and in any case we do not need these functors in 
the sequel. Therefore, we shall try to give a proof for (5.45) without introducing 
the full machinery of the "Ext" functors. This approach to (5.45), which makes 
use of only the vanishing of Ext I , comes from Kaplansky's authoritative treatment 
[Kaplansky: 72]. The outline of our proof is the same as Kaplansky 'so However, the 
details of our proof are different, in that we make full use of the functorial nature 
of the "Hom" functors. In fact, the steps of the proof are arranged in such a way 
that hardly any arguments are necessary for each step! Moreover, this approach 
can be carried over mutatis mutandis for the treatment of left and right weak global 
dimensions a little later in this section. The heart of the matter lies in the following 
observation. 

(5.46) Lemma. Let £ : 0 -+ A -+ B -+ C -+ 0 and £' : 0 -+ C' -+ B' -+ 
A' -+ 0 be an exact sequence in VJ1 R. 

(1) Assume B is projective. Then 

(a) HomR(£, A') exact ~ HomR(A, £1) exact. 
(b) HomR(£, C' ) exact ~ HomR(C, £1) exact. 

(2) Assume B' is injective. Then 

(a) HomR(A, £1) exact ~ HomR(£, A') exact. 
(b) HomR(C, £1) exact ~ HomR(£, C' ) exact. 

Proof. It suffices to prove (1), since the prooffor (2) is completely dual. Consider 
the following exact commutative diagram (where "Hom" means "HomR "): 

0 0 0 

1 1 1 
o~ Hom(C, C/) Hom(B, C /) 

I{i 
Hom(A, C') ~ ~ 

1 1 1 
o~ Hom(C, B') ~ Hom(B, B') ~ Hom(A, B') 

l~ la ly 
o~ Hom(C, A') Hom(B, A') fJ Hom(A, A') ~ ~ 

Here ct is surjective, since we assume B is projective. If Hom(£, A') is exact, 
then f3 is surjective, so y is surjective, which means that Hom(A, £/) is exact. 
This proves (l )(a). To prove (l )(b), we need to show that if rp is surjective, then 
1/1 is surjective. This is done by an easy diagram chase, using again the surjectivity 
of ct. 0 
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(5.47) Theorem. For any two given right R-modules C, C', the following are 
equivalent: 

(I) HomR(C, £') is exact for some £' : 0 -+ C' -+ B' -+ A' -+ 0 where 
B' is injective. 

(1)' HomR(C, £') is exact for all £' : 0 -+ C' -+ B' -+ A' -+ O. 
(2) HomR(£, C') is exactfor some £ : 0 -+ A -+ B -+ C -+ 0 where B is 

projective. 
(2)' HomR(£, C') is exact for all £ : 0 -+ A -+ B -+ C -+ O. 
(3) The only extension of C' by C is the split extension (i.e. any short exact 

sequence 0 -+ C' -+ X -+ C -+ 0 in 9J1R splits). 

Proof. (1)=* (2)' follows from (5.46)(2b), and (2)=* (1)' follows from 
(5.46)(1 b). Since (I)' =*(1) and (2)' =*(2) are tautologies, (1), (l)', (2), (2)' are 
equivalent. 

(1)' =*(3). Applying (I)' to £' : 0 -+ C' -+ X -+ C -+ 0, we see that 

HomR(C, X) -----+ HomR(C, C) 

is onto. This means that £' splits. 

(3)=* (I)'. Consider any £' : 0 -+ C' -+ B' ~ A' -+ O. To show that 
HomR(C, £') is exact, we must try to "lift" any g : C -+ A' to a homomorphism 
C -+ B'. The argument here is standard. We form the "pullback" 

X = {(b', c) E B' EB C: feb') = g(c)} 

and get an exact sequence 0 -+ C' -+ X -+ C -+ O. By (3), the surjection 
X -+ C splits by some h : C -+ X. Then the composition of h with the projection 
of X to B' gives the desired lifting of g to a homomorphism C -+ B'. D 

(5.48) Definition. If the right R -modules C, C' satisfy the (equivalent) conditions 
in (5.47), we say that Ext(C, C') = o. 

In the standard notation of homological algebra, Extk(C, C') is the group of 
isomorphism classes of extensions of C' by C. Here, we have avoided a formal 
introduction of the group Extk(C, C'), but shall try to get by with the notion 
of Extk(C, C') = O. In fact, for the purposes of proving (5.45), we need only 
know the equivalence of (1), (1)" (2), (2)' in (5.47). In other words, we could have 
defined Ext( c, C') = 0 via these conditions without ever using the interpretation 
in (5.47)(3)! Thus, even the proof for (3)=* (I)' above could have been omitted. 
The reader should check that (5.47)(3) is indeed never used below. 

(5.49) Lemma. For any right R -module C', the following are equivalent: 

(I) C' is injective. 
(2) Ext(C, C') = Of or all CR. 
(3) Ext(R/~, C') = Ofor all right ideals ~ S; R. 
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Similarly, a right module C is projective iff Ext(C, C') = 0 for all C~; however, 
there is no analogue for (3). 

Proof. (1){:=::}(2) follows by using the condition (5.47)(2'), so it only remains to 
prove (3)==}(I). But (3) implies that HomR([, C') is exact for 

[: 0 ---+ 21 ---+ R ---+ RI21 ---+ 0, 

where 21 is any right ideal. By Baer's Criterion (3.7), the surjectivity of 

HomR(R, C') ~ HomR(21, C') 

for all right ideals 21 ~ R implies that C' is an injective R-module. 0 

From Def. (5.48), we see quite generally that 

Ext(C, EEl C2, C') = 0 {:=::} Ext(Ci , C') = 0 for i = I, 2; 

and similarly for Ext(C, C; EEl C~) = O. Using these in conjunction with (5.49), 
it follows that Ext(C, C) = 0 is a property depending only on the projective 
equivalence class of C and the injective equivalence class of C'. Keeping this 
observation in mind, we now prove the following crucial property. 

(5.50) Theorem. For any right R-module C, C, we have Ext(P(C), C') = 0 
iffExt(C, I(C» = o. 

Proof. Fix exact sequences 

[ : 0 ~ A ~ B ~ C ~ 0, and [' : 0 ~ C' ~ B' ~ A' ~ 0, 

where B is projective and B' is injective. By (5.46)(I(a)and2(a», HomR([, A') 
is exact iff HomR(A, [') is exact. Using Def. (5.48), this means that Ext(C, A') = 
o iff Ext(A, C') = O. This is exactly (5.50), since A' = I(C'), and A = P(C). 

o 

Equipped with the above relationship between the shift operators P and I, we 
can now return to the main theorem (5.45). 

Proof of (5.45). We have r.gl.dim R ~ n iff pn (C) is projective for all C E 9JtR , 

iff Ext(P"C, C') = 0 for all C, C' E 9JtR • Similarly, r.inj.gl.dim R ~ n 

iff Ext(C, Inc') = 0 for all C, C' E 9JtR • But by repeated use of (5.50), 
Ext(PnC, C') = 0 iff Ext(C, I"C') = O. Therefore, r.gl.dim R ~ n iff 
r.inj.gl.dim R ~ n, which proves (5.45). 

(5.51) Corollary (Auslander). r. gl. dim R = sup{pd(C)}, where C ranges over 
all cyclic right R-modules. 
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Proof. We may assume that the supremum above is a finite number. Then, for any 
right ideal m C; R, we have 

Ext(pn(R/m), C') = 0 and so Ext(R/m, :[fl(C')) = 0, 

for any right R-module C'. By (5.49), this implies that In is the zero operator, 
so n ::: r.inj.dim R = r.gl.dim R, by (5.45). 0 

We may think of (5.51) as a way of computing r.gl.dim R via the projective 
dimensions of the right ideals of R. In fact, for any non-semisimple ring R, (5.51) 
gives the formula 

(5.51') r. gl. dim R = 1 + sup{pd(m)}, 

where m ranges over all right ideals of R. 
Auslander's result (5.51) leads one to wonder if r.gl.dim R can also be computed 

via the injective dimensions of the cyclic right R-modules. Unfortunately, this is 
not the case in general. However, if R is a right noetherian ring, then the "injective 
analogue" of (5.51) does hold: 

r. gl. dim R = sup{id(C)}, 

where C ranges over all cyclic right R-modules. This result is due to B. Osofsky; 
for a sketch of the proof, see Exercise 27. 

(5.52) Remark. If we define Extk (M, N) to be the group of isomorphism classes 
of extensions of N by M, it can be shown quite generally that Extk(M, N) 
depends only on the projective (resp. injective) equivalence class of M (resp. N), 
and that 

Extk(p(c), C') ~ Extk(C, I(C')) 

as groups. The higher Ext-groups Ext~+1 (C, C') can then be taken as 

Extk(pn(C), C') ~ Extk(C, In(C')). 

Using these definitions, we have then r.gl.dim R :::: n iff Ext~+1 == 0 (the zero 
bifunctor). (Since r.inj.gl.dim R is always equal to r.gl.dim R, we shall henceforth 
discard the former notation.) 

§5D. Weak Dimensions of Rings 

We now go on to study the flat dimensions of right R-modules. To define this 
notion, we shall make use of the formation of character modules. At the beginning 
of §4, we have defined the character module of a right R-module M to be the left 
R-module M' = Homz(M, Q./7l,). In this section, it will be convenient to use a 
different notation, MO, for the character module of M, so that we can free up the 
"prime" notation for other uses. Indeed, we have been using "primes" freely in this 
section anyway in the absence of character modules. In the following, therefore, 
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MO shall denote the character module of M, while M' shall just denote some 
other module. 

Since we do not have a "flat Schanuel's Lemma" (cf. Exercise 3), we adopt the 
following definition of a "flat equivalence." 

(5.53) Definition. Two right R modules K \, K 2 are said to be flat equivalent if 
there exist flat right modules F\, F2 such that (K\ E9 F\)o ~ (K2 E9 F2)o as left 
R-modules. (Since" 0" is additive over direct sums and the Fjo 's are injective, 
this implies, in particular, that K? and K~ are injectively equivalent in Root.) 

The above being obviously an equivalence relation, we have now the notion of 
flat equivalence classes. In general, the partition of isomorphism classes of right 
modules into flat classes is a coarsening of the partition into projective classes. 

The definition in (5.53) is chosen such that we can define a "flat shift" operator 
on the semigroup, say, H, of flat equivalence classes. For any module M R, take 
any exact sequence 0 ~ K ~ F ~ M ~ 0 in ootR where F is flat; we then 
take F(M) = [K] E H. Note that if 0 ~ K' ~ F' ~ M ~ 0 is also exact 
with F' flat, then 

o ~ MO ~ FO ~ KO ~ 0, 0 ~ MO ~ F'O ~ K 'O ~ 0 

are exact (by (4.8)) with FO, F'O injective (by (4.9)). By the Injective Schanuel's 
Lemma (5.40), we have 

(K' E9 F)o ~ K 'O E9 FO ~ KO E9 F'O ~ (K E9 F')O, 

so K, K' are flat equivalent by Def. (5.53). This checks that F(M) = [K] E H 
is well-defined, and, as we can see easily, F(M) depends only on the flat class 
of M. Therefore, F is an additive shift operator on H. Clearly, this operator is 
"induced" by the projective shift operator P defined on the semigroup G of the 
projective equivalence classes. Finally, note that 

(5.54) [M] = 0 in H iff MR is flat. 

In fact, if [M] = 0 E H, then (M E9 F)o ~ F'O for suitable flat modules F, F'. 
But then MO E9 FO ~ F'0 implies that MO is injective, and hence M is flat, by 
(4.9). 

(5.55) Definition. The flat dimension of M R is defined to be 

fd(M) = fdR(M) = min{n: Fn(M) = 0 E H}. 

In particular, fd(M) :s pd(M). The right weak dimension of R is defined to be 

(5.56) r. wd(R) = sup{fd(MR)} :s r. gl. dim R. 

The left weak dimension of R (l.wd(R)) is defined similarly, by using left R
modules. 

While F is related to the projective shift P by "coarsening", it is also related 
to the injective shift I (on left modules) through the character module formation. 
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This relation can be expressed in the form of a commutative diagram, where H 
is as above, and H' is the semigroup of injective equivalence classes of left R
modules: 

H'~H' 
In a formula, we have T(Mo) = F(M)o for any MR. This together with (S.54) (or 
(4.9» immediately imply that 

(S.S7) fd(M) = id(Mo) for any MR. 

Of course, id(Mo) here denotes the injective dimension of the left R-module MO. 
Using (S.57) in conjunction with fd(M) ::: pd(M) and (S.4S), we obtain the 
following. 

(5.58) Theorem. r. wd(R) ::: min{r. gl. dim R, l. gl. dim R}. 

This inequality is perhaps the main reason for the choice of the term "weak 
dimension". We also have the following two important results due to M. Auslander. 

(5.59) Theorem. Let R be any right noetherian ring. Then fd(M) = pd(M) 
for any f.g. right R-module M, and r. gl. dim R = r. wd(R) ::: 1. gl. dim R. (For 
instance, if R is left hereditary, it is right hereditary.) 

Proof. Since R is right noetherian, there exists a projective resolution 

... -+ Pn ~ Pn- I -+ ... -+ PI ~ Po ~ M -+ 0 

with f.g. projective right modules {Pn }. Then Kn := im(un ) is f.g., and represents 
the fiat class F n (M) as well as the projective class pn (M). But if Kn is fiat, then 
it is also projective, by Case (1) of (4.38). This shows that pd(M) ::: fd(M), and 
hence the equality. For the last part of the Theorem, it suffices to show that r.gl.dim 
R ::: r.wd(R). This follows from the above, since, by (S.SI), r.gl.dim R can be 
computed as sup{pd(M)} where M ranges over all f.g. right R-modules. 0 

(5.60) Corollary. For any noetherian ring R, we have 

r. wd(R) = 1. wd(R) = r. gl. dim R = 1. gl. dim R. 

(5.61) Remark. For right noetherian rings that are not left noetherian, we have 
mentioned before (cf. (S.IS» that r.gl.dim R < l.gl.dim R is possible. C. Jensen 
showed, in 1966, that if all ideals of R are countably generated, then the two 
dimensions differ at most by 1. On the other hand, in 1969, A. V. Jategaonkar 
produced examples of right noetherian rings R with r.gl.dim R = m and l.gl.dim 
R = n where m, n are arbitrary, with 0 < m ::: n ::: 00. 
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We now tum our attention to the relationship between r.wd(R) and l.wd(R) 
for general rings. First, some examples are in order. 

(S.62a)Example.Aring R has r.wd(R) = 0 iffallright R-modules are flat, iff R 
is von Neumann regular (by (4.21». It follows that r.wd(R) = 0 iff l.wd(R) = O. 
(Using (5.59), we obtain a homological proof for the fact (see FC-(4.25» that a 
right noetherian von Neumann regular ring must be semisimple.) 

(S.62b) Example. Let R be a ring that is not von Neumann regular. Then r. wd( R) = 
1 (resp. l.wd(R) = 1) iff submodules of flat right (resp. left) modules are flat. 
From (4.66), it follows that r.wd(R) = 1 iff l.wd(R) = 1, iff right (resp. left) 
ideals are flat. For commutative domains R, this condition means precisely that 
R is a Priifer domain (and not a field); see (4.69). 

For a noncommutative example, consider Small's triangular ring 

Since R is right noetherian and right hereditary (cf. (2.33», (5.60) applies and we 
have 

1 = r. gl. dim R = r. wd(R) = l. wd(R). 

But by (2.33) R is not left hereditary, so l.gl.dim R ~ 2. As it turns out, l.gl.dim 
R = 2. (For more details, see Exercise 23.) 

The equality of r.wd(R) and l.wd(R) in the above examples is, again, a special 
case of the following general theorem in the theory of homological dimensions. 

(S.63) Theorem. For any ring R, r. wd(R) = l. wd(R). 

This theorem is possibly a bit surprising, since the same result does not hold for 
(projective or injective) global dimensions. We shall show, however, that (5.63) 
can be proved by essentially the same argument used earlier for proving r.gl.dim 
R = r.inj.gl.dim R. First, we have the following analogue of (5.46). 

(S.64) Lemma. Let £ : 0 ---+ K ---+ F ---+ M ---+ 0 and £' : 0 ---+ K' ---+ F' ---+ 

M' ---+ 0 be exact sequences in, respectively, !.mR and R!.m. 
(I) Assume F is flat. Then 

(a) £ ®R K' exact ==} K ®R £' exact. 
(b) £ ®R M' exact ==} M ®R £' exact. 

(2) Assume F' is flat. Then 

(a) K ®R £' exact ==} £ ®R K' exact. 
(b) M ®R £' exact ==} £ ®R M' exact. 
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Proof. As in (5.46), the proof is an easy diagram chase in: 

K®K' ------+ F®K' ------+ M®K' ------+ 0 

1 1 1 
K®F' ------+ F®F' ------+ M®F' ------+ 0 

1 1 1 
K®M' ------+ F®M' ------+ M®M' ------+ 0 

1 1 1 
0 0 0 

(where ® = ®R)' In fact, we have already proved (l)(b) and (2)(b) in FC-(24.22) 
by chasing the same diagram. 0 

As before, we can prove by using (5.64)(l(b) and 2(b»: 

(5.65)Theorem. Fora right R-module M andaleft R-module M',thefollowing 
are equivalent: 

(1) M ®R £' is exact for some £' : 0 -+ K' -+ F' -+ M' -+ 0 where F' is 
flat. 

(1') M ®R £' is exact for all £': 0 -+ K' -+ F' -+ M' -+ O. 
(2) £ ®R M' is exact for some £ : 0 -+ K -+ F -+ M -+ 0 where F is 

flat. 
(2') £ ®R M' is exact for all £ : 0 -+ K -+ F -+ M -+ O. 

(5.66) Definition. If M, M' satisfy the (equivalent) conditions in (5.65), we shall 
say that Tor(M, M') = O. (Unfortunately, there is no description for this relation 
analogous to the simple description (5.47)(3) for Ext(C, C') = O. This is part of 
the reason why we have tried to "avoid" using the description (5.47)(3) before.) 

Again, we shall try to get by with the notion of Tor(M, M') = 0, thus avoiding a 
full introduction ofthe higher Tor-functors. As before, we can deduce the following 
characterization of flatness from (5.65)( (1') and (2'». 

(5.67) Lemma. For any right R-module M, the following are equivalent: 

(1) M is flat. 
(2) Tor(M, M') = 0 for all RM'. 
(3) Tor(M, RI21) = 0 for all left ideals 21 S; R. 

A similar result holds for the characterization of left flat modules. 

Here the proof of (3)==>( 1) uses the Modified Flatness Test (4.12). 
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As before, Tor(M, M') = 0 is a pl'Operty depending only on the flat equivalence 
classes of M R and R M'. Keeping this observation in mind" we deduce from 
(S.64)(1 (a) and 2(a»: 

(5.68) Theorem. For any right R-module M and left R-module M', we have 
Tor(F(M), M') = 0 iff Tor(M, F(M'» = o. (Of course, the second F here 
refers to the fiat shift on left R-modules.) 

Using this and (S.67), we deduce immediately Theorem (S.63), as well as the 
following flat analogue of Auslander's result (S.SI). 

(5.69) Theorem. r. wd(R) = sup{fd(M)}, where M ranges over all cyclic right 
R-modules. Equivalently, if R is not a von Neumann regular ring, then 

r. wd(R) = 1 + sup{fd(Ql)}, 

where Ql ranges over all right ideals of R. 

Note that, by (S.63), r.wd(R) = l.wd(R) :::: l.gl.dim R. This provides a prooffor 
(S.S8) (and hence (S.S9), (S.60) without the use of character modules. Of course, 
in view of (S.63), we should now write wd(R) for the common value of r.wd(R) 
and l.wd(R), and call it simply the weak dimension of R. 

In homological algebra, Tor:(M, M') (n :::: 1) are a sequence of abelian 
groups associated with M E !mR and M' E R!m. They depend only on the flat 
classes of M and M', and are "covariant" in these variables. Moreover, we have 

Torf(F(M), M') ~ Torf(M, F(M'», 

which, of course, subsumes (S.68). The higher Tor-groups Tor:+ 1 (M, M') may 
be taken as Torf(Fn(M), M') ~ Torf(M, P'(M'». Finally, wd(R) :::: n iff 
Tor:+ 1 == 0 (the zero bifunctor). These facts about the Torn-functors together 
with those about the Extn-functors certainly give a broader and more complete 
view of the theory of homological dimensions of modules and rings. However, it 
is remarkable that one can also prove most of the main results about homological 
dimensions without a full introduction of these higher functors. 

§5E. Global Dimensions of Semiprimary Rings 

Let us now give some applications of the theorems obtained above by studying 
certain special classes of rings. The next group of results, from (S.70) to (S.7S), 
assumes some familiarity with the material on right perfect rings developed in 
FC-§§23-24. Readers not familiar with the notion of right perfect rings may skip 
to (S.76) without loss of continuity. 

(5.70) Theorem (Bass). Let R be a right perfect ring. Then for any right R
module M, fd(M) = pd(M). In particular, r. gl. dim R = wd(R) :::: 1. gl. dim R. 
If R is also left perfect, equality holds. 
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Proof. Over R, every right flat module is projective, by FC-(24.25). Applying the 
argument in the proof of (5.59) to M gives the desired conclusion. 0 

To note a useful special case of (5.70), let us recall the class of semiprimary 
rings mentioned earlier in §3I. A ring R is called semiprimary if its Jacobson 
radical J = rad R is nilpotent, and the quotient ring R/ J is semisimple. Since 
any semiprimary ring is (left and right) perfect by FC-(23.19), (5.70) yields the 
following. 

(5.71) Corollary. For any semiprimary ring R, we have 

wd(R) = r. gl. dim R = I. gl. dim R. 

For any semi primary ring R, we may write g1.dim R for the three equal numbers 
above. This number may be computed as follows. 

(5.72) Theorem (Auslander). Let R be any semiprimary ring with Jacobson 
radical J = rad R. Let {Cd be a complete set of simple right R-modules (up to 
isomorphism). Then 

(5.73) gl.dim R = max{pd(Ci )} = pd«R/J)R)' 

In particular, the following are equivalent: 

(1) R is right semihereditary. 
(2) R is right hereditary. 
(3) JR is a projective R-module. 
(4) JR is aflat R-module. 

(1)'-(4), The left analogues of (1)-(4). 

Proof. The C; 's are just the simple right modules over the semisimple ring R := 
R/ J (up to isomorphism). In particular, they are finite in number. This justifies 
the notation "max" in (5.73). Let m = max{pd(Ci )} S 00. Let C be any right 
R-module with C J = O. Then C is semisimple and is isomorphic to a direct sum 
of the Ci 's (with multiplicities). By (5.25), pd(C R) S m. Now consider any right 
R-module M. If, say, JII = 0, we have a finite filtration 

0= MJ" s;: ... s;: MJ 2 s;: MJ s;: M. 

Since each filtration factor is killed by J, (5.24) gives 

pd(M) S max{pd(Mf/MJi+ 1)} S m, 

and so r.gl.dim R = m. The equality m = pd«R/ Jh) follows from (5.25) as 
well since (R/J)R is a (finite) direct sum of the Ci 's, each occurring at least 
once. 

(1)===}(4) follows from (4.6). 
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(4)===>(3). Since R is right perfect, any flat right R-module is projective (by 
FC-(24.24». 

(3)===>(2). The sequence 0 --+ J --+ R --+ Rj J --+ 0 in 9JtR shows that 

1 ~ pd«RjJh) = gl.dim R (by (5.73». 

(2)===>( I) is a tautology. 

(2) {:=:} (2)' follows from l.gl.dim R = r. gl. dim R, and the equivalence of 
(1)'-(4)' follows from left-right symmetry. 0 

To obtain a nice consequence of (5.72), we shall use informally the following 
notion: a ring R is called right Kasch if every simple right R -module is isomorphic 
to a (minimal) right ideal of R. This notion will be studied more systematically in 
§8C; right now, we just have the following application in mind. 

(5.74) Corollary. Let R be a semiprimary ring that is right (or left) Kasch. Then 
gl. dim R is 0 or 00. 

Proof. Assume, instead, that gl.dim R is a positive integer m. By (5.73), m = 
pd( C) for some simple right R -module C. Since R is right Kasch, C R is iso
morphic to a suitable right ideal 21. The module (Rjf2J.)R is not projective, for 
otherwise 

would split and we would have m = pd(f2J.) = O. Therefore, (*) gives 

pd(Rjf2J.) = pd(f2J.) + I = m + I, 
a contradiction! o 

(5.75) Corollary. Let R be a semiprimary ring, with J = rad R. Assume either 
Rj J is a simple ring or R is commutative. Then, R is right (resp. left) Kasch, 
and in particular gl. dim R is 0 or 00. 

Proof. First assume R j J is an (artinian) simple ring. Then R has, up to isomor
phism, a unique (say, right) simple module C. Let n be the least integer such that 
JIl = O. We may assume that n > 1 (for otherwise gl.dim R =: 0 already). Then 
r- i =1= 0, and (being killed by J) it is a semisimple right R -module. In particular, 
it must contain a minimal right ideal, necessarily isomorphic to C. Therefore, R 
is right (and similarly, left) Kasch, and (5.74) applies. Next, assume R is commu
tative. Since R is semi perfect, it decomposes into a finite direct product of local 
rings (Ri' mi) (by FC-(23.11 ». Here the mi 's remain nilpotent, and each Ri jmi 
is a field. Applying the first case of the Corollary, we see that each Ri is Kasch, 
and gl.dim Ri E {O, oo}. From this, we see easily that R is also Kasch, and that 
gl.dim R E {O, oo}. 0 
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Since any right or left artinian ring is semiprimary, the results (5.71)-(5.75) 
apply well to any such ring R. For instance, if R is any right or left artinian 
local ring, then Rjrad R is a division ring, and (5.75) implies that gl.dim R is 
o or 00. For another example, let R be any right or left artinian ring that is right 
self-injective (for instance any group algebra kG over a finite group G). This is 
what we shall later call a "quasi-Frobenius ring": such a ring will be shown to 
be always Kasch (see the proof of (15.1». Therefore, again, (5.75) implies that 
gl.dim R is 0 or 00. On the other hand, the following example shows that there 
do exist finite-dimensional (necessarily noncommutative) algebras over any field 
k with arbitrary finite global dimension n ~ 1. 

(5.76) Example. For any field k and any natural number n, let R be the (2n+ 1)
dimensional k-algebra on the basis 

{eo, el,·.·, en, VI,.··, vn } 

with multiplication defined as follows: 

(5.77) 
eje j = 8ijej , 

vjej = 8ijvj , 

VjVj = 0, 
ejvj = 8j+l.ivj. 

Since many multiplications simply give 0, it is easy to check the associative law 
for the basis elements. (The most significant case we need to check is 

eH (vjej) = (ej_1 vJej (i ~ 1). 

Here, both sides are equal to Vj.) Note that eo, e I, ... ,ell are mutually orthogonal 
idempotents, and that 1 := eo + el + ... + ell is the identity for R. Actually, 
if we let S be the ring keo x ... x ken, and equip J := kVI ED··· ED kVIl with 
the (S, S)-bimodule structure given by the bottom formulas of (5.77), then R is 
precisely the "trivial extension" of J by S defined in (2.22)(A). A couple of more 
concrete realizations of R will be given later, which will give us a broader view of 
this ring. Right now, we shall just work formally with the multiplication formulas 
given in (5.77); these will enable us to make quick computations. 

Since J := EB~=I kVj is an ideal with square zero and 

Rj J ~ S ~ k x ... x k (n + 1 copies), 

we see that J = rad R, and that there are n + 1 distinct simple left R-modules 
Co, ... , Cn, where dimk C j = 1, and ej acts as 8ijI on C j . (It is a bit more 
convenient to work with left R-modules here.) An easy computation shows that 

where, for convenience, we have set Vo = O. In view of this computation, we may 
identify C j with Pj j J Pj . Since this module is simple, P j must be indecomposable. 
Therefore, {Po, ... , Pn } gives a full set of principal indecomposable (projective) 
left modules over R. Also, noting that J Pj = kv j ~ C j -I , we have a short exact 
sequence 
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for each j ~ 1. This enables us to determine pd(Cj ). To begin with, pd(Co) = 
pd(Po) = O. It is easy to check that the above sequence does not split for j = 1, 
so we have pd(Cd = 1. Since P(Cj ) = [Cj -I1, we conclude by induction that 
pd(Cj) = j for all j.lt now follows from (5.72) that gl.dim R = n. Also, by 
"connecting" the short exact sequences obtained above, we can write down for 
each j ~ 0, an explicit projective resolution for C j: 

'Pi o ---+ Po ---+ ... ---+ Pi ---+ Pi+1 ---+ ... ---+ Pj ---+ C j ---+ O. 

Here, rpi is simply right multiplication by Vi+l. (Note that, by (5.77), PiVi+l 

Reivi+l = RVi+l = kVi+l ~ Pi+1.) 

The (2n + I)-dimensional k-algebra R can be identified more explicitly as 
follows. Let k' be the "ring of dual numbers" over k; that is, k' = k[e] with 
e2 = O. It is easy to see that R is isomorphic to the following k-subalgebra of the 
matrix algebra Mn+l (k'): 

(

k ke 

A = k 

o 
An explicit k-algebra isomorphism from R to A is given by: 

rp(ej) = Ej+l.j+l (j ~ 0) and rp(Vj) = eEj.j+l (j ~ 1), 

where the Eij 's (i, j ranging from 1 to n + 1) are the matrix units of Mn+l (k'). 
It is straightforward to check that rp respects all the relations in (5.77). Thus, 
in retrospect, we could have taken R to be the matrix algebra A C Mn+! (k'). 
Note that if we identify R with A, the ph principal indecomposable module Pj 

(0 ::: j ::: n) is simply the left ideal of A consisting of matrices in A with nonzero 
entries only on the (j + Vh column. We have shown that gl.dim A = n. In 
particular, when n = 1, A is a hereditary k-algebra. This algebra is, however, 

nothing new: it is just isomorphic to (~ ~) by the isomorphism that sends 

(~ b:) to (~ ~) (for a, b, c E k). In fact, for any n ~ I, it is not difficult 

to see (by constructing a similar isomorphism) that A is isomorphic to the ring 
T / (rad T)2, where T is the ring of (n + 1) x (n + I) upper triangular matrices 
over k, and (rad T)2 is the square of the Jacobson radical of T. 

After the foregoing analysis on the algebra R, the following remark on the 
Kasch property is in order. We know that, among the n + 1 simple left R-modules 
Cj (0 ::: j ::: n), Co, ... , Cn-l do embed into RR, namely, as the minimal left 
ideals kVl, ... , kvn • Of course, Co also embeds as keo, but this is relatively 
insignificant. The truly significant thing here is that gl. dim R = n. From this, 
for instance, we could have predicted from (5.75) that R is not left Kasch, and 
this necessarily means that the remaining simple module CII cannot be embedded 
in R R. We invite the reader to verify this directly. Similarly, if C~, ... , C~ are 
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the distinct simple right R-modules (labeled in accordance with the idempotents 
eo, ... , en), then C;, ... , C~ embed in RR as minimal right ideals kVJ, ... ,kv,,, 
but R is also not right Kasch so there is no such embedding for Ch. 

To restore the Kasch property, we can make the J bigger by adding a Vo; in other 
words, take J = EB~=o kVi. We can keep the multiplication formulas in (S.77), 
with the sole modification that en Vo = Vo. The new ring R' obtained this way is 
now left and right Kasch, so we have gl. dim R' = 00 according to (S.7S). But 
what about our cute little calculation of the global dimension using the projective 
shifts? We 'II leave it to the reader to find out exactly what goes wrong with that 
argument for the new algebra R'. 

To conclude the present subsection §SE, we shall mention a relevant open prob
lem. Given a ring R, it is of interest to find out when r.gl.dim R can be computed 
via knowledge of the numbers {pd(Ci )}, where C i ranges over the simple right 
R-modules. Auslander's Theorem (S.72) gives the simple equation 

r. gl. dim R = sup{pd( C;)} 

for any semiprimary ring R. It is known that this equation is not true in general for 
I-sided noetherian rings, but it has remained an open question whether the equation 
holds for (2-sided) noetherian rings. Affirmative answers are known in several 
cases, of which we shall mention two. The first case is when R is commutative: 
this will be handled below in (S.92). The second case is when r.gl.dim R < 00 

(work of Bhatwadekar and Goodearl). The unknown case is when (R is noetherian 
and) r.gl.dim R = 00: here, one must decide if sup{pd( C i )} = 00 also. 

A few other interesting open problems concerning homological dimensions of 
modules and rings (with detailed commentary) can be found in the Appendix of 
[Goodearl-Warfield: 89]. 

§5F. Global Dimensions of Local Rings 

We tum our attention now to the class of local rings R. Throughout the treatment 
of local rings, we let m = rad R, and k be the residue division ring Rim. Via 
the projection map R --+ k, we can view k as a right (resp. left) R-module. It 
turns out that this unique simple right (resp. left) R -module controls much of the 
homological behavior of the modules in 9J1R (resp. R9J1). To develop this theme, 
we start with the following elementary observation. 

(5.78) Lemma. Let (R, m) be a local ring as above, and C be a fg. right 
R-module. If HomR(C, k) = 0, then C = 0. 

Proof. Assume C -I- O. By Nakayama's Lemma FC-(4.22), C -I- Cm. Fix a k
vector space epimorphism f : C I Cm --+ k. Composing this with C --+ C I Cm, 
we see that HomR(C, k) -I- 0. D 

(5.79) Proposition. Let (R, m) be a right noetherian local ring, and C be a 
fg. right R-module. Then the following are equivalent: 



(1) C is projective. 
(1') C is free. 
(2) Ext(C, kR ) = O. 
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(2') HomR(£, k) isexactforanyexactsequence £: 0 --+ A --+ B --+ C --+ 0 
in 9'J1R • 

(3) Tor(C, Rk) = O. 
(3') £ ®R k is exact for any £ as in (2'). 

Proof. (l){=:::=} (1') is well known; see FC-(19.29). 

(2){=:::=} (2') and (3){=:::=} (3') are "definitions", from our perspective. 

(I):::=:::} (2') is clear, since £ must split under (I). 

(2') :::=:::}(I). Fix an exact sequence 0 --+ K ~ F --+ C --+ 0 as in the proof of 
(4.38)(2). In particular, K C; Fm. By (2'), we have the following exact sequence: 

(5.80) 

Any homomorphism F --+ k is zero on Fm, and hence on K. This means that 
q;* = 0, so the exactness of (5.80) implies that HomR(K, k) = O. But KR is 
f.g. since R is right noetherian. Therefore, K = 0 by (5.78) and C ~ F is free. 

(1):::=:::} (3') is clear as before. 

(3') :::=:::}(I). Proceeding as in the proof of (2') :::=:::}(1), we get an exact sequence 

o ~ K ®R k ~ F ®R k ~ C ®R k ~ 0, or 

"'. O~ K/Km~ F/Fm~ C/Cm~O 

underthe usual identifications. Now K C; Fm implies that 1/1* = 0, so K / Km = 
o and hence K = 0 by Nakayama's Lemma. We conclude again that C ~ F is 
~e. 0 

At this point, the reader should recall our earlier remark about the higher 
Ext and Tor functors, made in (5.52) and in the second paragraph after 
(5.69). In keeping with the general notations used in the literature, let us 
define Ext~+I(AR' BR) = 0 to mean Extcpn(A), B) = 0 (equivalently, 
Ext(A, rn(B» = 0), and Tor:+1 (AR' RB) = 0 to mean Tor(.P(A), B) = 0 
(equivalently, Tor(A, Fn(B» = 0). Using this suggestive notation, we now de
duce the following. 

(5.81) Corollary. Let M be any f.g. right R-module, where R is as above. Given 
any n ~ 0, the following are equivalent: 

(1) pd(M) :::: n. 
(2) Ext~+1 (M, k) = O. 
(3) Tor:+1 (M, k) = O. 
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Proof. We need only prove (2)==}(1) and (3)==}(1). Let C be a f.g. right 
R-module representing P"(M). If (2) or (3) holds, then Ext(C, k) = 0 or 
Tor(C, k) = 0, and (5.79) implies that C is projective. This means that pn(M) = 
0, and so (1) holds. 0 

(5.82) Theorem. For any right noetherian local ring R: 

r. gl. dim R = id(kR) ::::: pd(Rk). 

Proof. (1) Suppose pd(Rk) ::::: n. Then for any f.g. M R, Tor(M, P(Rk» = 0, 
and so Tor~+1 (M, k) = O. By (5.81), we have pd(M) ::::: n. In view of (5.51), this 
proves that r.gl.dim R ::::: pd(Rk). 

(2) Now suppose id(kR) ::::: n. Then for any f.g. M R , Ext(M, In(k R » = 0, and so 
Ext~+I(M, k) = O. By (5.81), we have pd(M) ::::: n, thus proving r.gl.dim R ::::: 
id(kR)' On the other hand, we have always 

id(kR) ::::: r. inj. gl. dim R = r. gl. dim R, 

so equality holds. o 

In the case of a commutative R, the result above can be further refined, as 
follows. 

(5.83) Corollary. Let R be a commutative noetherian local ring. Then: 

(1) gl. dim R = id(k) = pd(k). 
(2) gl. dim R ::::: n iff Tor~+1 (k, k) = 0, iff Ext~+1 (k, k) = O. 

Proof. (1) follows from (5.82) since, in this commutative case, 

pd(Rk) = pd(kR) ::::: r. gl. dim R. 

For (2), it suffices to prove the "if" parts. Assume either Tor~+1 (k, k) = 0 or 
Ext~+1 (k, k) = O. Applying (5.81) to M = kR' we see that pd(kR) ::::: n, and 
therefore, by (1), gl.dim R ::::: n. 0 

For commutative noetherian local rings, there is an extensive theory of homo
logical and cohomological dimensions of modules. The first major result is the 
following, which identifies the class of commutative noetherian local rings of finite 
global dimension. 

(5.84) Theorem (Serre, Auslander-Buchsbaum). Let (R, m) be a commutative 
noetherian local ring. Then gl. dim R < 00 iff R is a regular local ring. In this 
case, gl. dim R = dim R (the Krull dimension of R). 

Recall that the Krull dimension of a commutative ring R is the supremum of the 
lengths of all chains of prime ideals in R. Unless stated otherwise, (R, m) shall 
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denote a commutative noetherian local ring below, with residue field k = R/m. 
In this case, dim R is just the height of m, and by a theorem of Krull, this height 
is bounded by the minimum number V(R) of generators of the ideal m. By 
Nakayama's Lemma, V(R) = dimk m/m2. If the inequality dim R :::: V(R) 
happens to be an equality, (R, m) is said to be a regular local ring. It is known 
that a regular local ring is always an integral domain;45 we shall assume this fact 
without proof. 

Let us first prove the "if" part of (5.84), and its last statement. Suppose R is 
regular, with dim R = d. Then m = L~=I XiR for suitable Xi E R. Since R 
is a domain, XI is not a O-divisor in R. It is easy to see that R/xI R is a regular 
local ring of dimension d - 1, with maximal ideal generated by the images of 
X2, ... ,Xd. Therefore, by induction on d, we see that XI, ... ,Xd form a regular 
sequence in R. By (5.83)(1) and (5.32), we have then 

gl. dim R = pd(k) = pd(R/m) = d = dim R. 

The "only if" part of (5.84) is quite a bit harder. Its proof depends on the 
following lemma on commutative noetherian local rings (R, m). 

(5.85) Lemma. Suppose m \ m2 consists of O-divisors of R. Then am = 0 for 
some nonzero element a E R. 

Proof. Let Ass(R) = {PI, ... , PrJ, so that PI U··· U Pr is the set of O-divisors 
of R (see Exercise (3.40E». By the given hypothesis, we have thus 

(5.86) m \ m2 ~ PI U ... U Pro 

We may assume that m =1= 0 (for otherwise we can take a = 1). By Nakayama's 
Lemma, there exists an element X E m \ m2. For any y E m2, we have X + yP E 

m \ m2 for p ~ I, so by the Pigeon-Hole Principle, X + yP, X + yq E Pi for 
suitable p, q, i with p < q. By subtraction, we have yP(1 - yq-P) E Pi, so 
Y E Pi. This (together with (5.86» yields 

(5.87) m ~ PI U··· UPr. 

By the Lemma of Prime Avoidance,46 this implies that m ~ P j for some j. Since 
P j has the form ann(a) for some a =1= 0, we have am = 0 as desired. D 

We can now prove the "only if"partof(5.84), by induction on n := gl. dim R < 
00. If n = 0, R is semisimple. Then R is a field, and we are done. Now assume 

45This can be proved, for instance, by working with the associated graded ring Rim E9 
m/m2 E9 m2 /m3 E9 ... of R. For more details, see Zariski-Samuel [58: vol. 2, p. 302]. 

46This is a well-known classical lemma in commutative algebra due to Neal McCoy. The 
nomenclature of "prime avoidance" used here follows Eisenbud [95: pp. 90-91]. Eisenbud 
explained this lemma in the following words: "If an ideal I (in a commutative ring) is not 
contained in any of a finite number of prime ideals P j, then there is an element of I that 
"avoids" being contained in any of the P j 's." We shall use this basic fact freely in the 
following. 
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n > O. We claim that m \ m2 contains a non O-divisor. For, if otherwise, the 
lemma above yields an element a i- 0 with am = O. Fix a f.g. R-module P with 
pd(P) = 1, and take an exact sequence 0 ~ K ~ F ~ P ~ 0 as in the proof 
of (4.38)(2). Then K is f.g. projective, and hence free. But K a ~ Fma = 0, so 
K = O. This implies that P ~ F is free, a contradiction. Now fix a non O-divisor 
x E m \ m2, and let R = R/(x). This is a noetherian local ring with maximal 
ideal in = m/(x). We make the following two crucial claims: 

(A) As an R-module, in is isomorphic to a direct summand of m/xm. 
(B) pdR m/xm < 00. 

Assuming these claims, we can complete the proof as follows. From (A) and (B), 
we have pdR in < 00 and hence pdR k < 00. By (5.26) and (5.83), it follows that 

gl. dim R = pdR k = pd R k - 1 = n - 1. 

By the inductive hypothesis, R is a regular local ring, and by what we have already 
shown, dim R = n - 1. (This can also be gotten, if we wish, as part of the inductive 
hypothesis.) Therefore, there exists a prime chain 

PI £; ... £; Pn in R with (x) ~ PI. 

Since x is a non O-divisor, an easy localization argument shows that P I is not a 
minimal prime, so dim R :::: n. On the other hand, from x E m \ m2, we deduce 
readily that 

VCR) = 1 + VCR) = 1 + dim R = n. 

Since VCR) :::: dim R in general, it follows that VCR) = dim R = n, so R is a 
regular local ring, of dimension n. 

It remains to prove the two outstanding claims. 

Proof of (A). Pick {Yi} such that {x, YI, ... , Yt} is a minimal set of generators for 
m, and let S = xm + L Yi R. We claim that xm ~ S n (x) is an equality. In fact, 
if Z E S n (x), then 

Z = xa = ylb l + ... + Ytbt + xm 

for some a E R, bi E R, and m Em. Therefore, 

xa - (ylb l + ... + Ytbr) = xm E m2 . 

Since the images of x, YI, ... ,Yr in m/m2 are k-independent, we must have 
a E m, and hence z = xa E xm. From S n (x) = xm and S + (x) = m, it 
follows that 

m/xm ~ S/xm EEl (x)/xm. 

This implies (A), since, by Noether's Isomorphism Theorem, m := m/(x) 
S/xm. 
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Proof of (B). More generally, let us show that, for any R-module M on which 
x acts as a non O-divisor, 

pdRM = r < 00 ===} pdf[ M/xM :::: r. 

The proof is by induction on r. If r = 0, M is projective over R. Then M / x M 
is projective over R, so pdf[M/xM = O. If r > 0, fix an exact sequence 

o ~ K ~ F ~ M ~ 0 in R9Jl, 

where F is free. We claim that 

o ~ K/xK ~ F/xF ~ M/xM ~ () 

is exact in 9Jlf[. For this, it suffices to check that K n x F ~ x K. But if a E K 
has the form xb where b E F, then 

0= q;(a) = q;(xb) = xq;(b) ===} q;(b) = O. 

Hence, bE K and a = xb E xK. From (*), pdRK = r -1. Since x is a non 0-
divisor on F and hence on K, our inductive hypothesis gives pdf[ K / x K :::: r - 1, 
so from (**), we conclude that 

pdf[ M / x M :::: 1 + pdf[ K / x K :::: r. 

This completes the proof of Serre's Theorem (5.84). Before we move on, we 
should stress once more that the noetherian assumption on the local ring R in (5.84) 
is truly essential. In fact, B. Osofsky has constructed commutative local rings R 
with gl.dim R < 00 that are not integral domains (and therefore necessarily 
non-noetherian). She has also shown that there exist commutative non-noetherian 
valuation domains with any prescribed global dimension. Therefore, the theory of 
global dimensions for non-noetherian local rings is an entirely different ball game 
(which we shall not further pursue). 

Returning to the theorem of Serre and Auslander-Buchsbaum, let us now record 
what is perhaps its most remarkable consequence: 

(5.88) Corollary. Let R be any regular local ring. Then, for any prime ideal p 
in R, the localization Rp is also a regular local ring. 

Proof. Since any Rp-module is the localization of some R ·module, we have 
gl.dim Rp :::: gl. dim R. Now apply (5.84). 0 

The result proved above was a conjecture of Krull made in the 1930s. It had 
remained open for years, and was solved only with the advent of the homological 
methods. To the best of my knowledge, there is still no known proof of (5.88) 
using only classical commutative algebra techniques. This is why we have chosen 
to include a full treatment of (5.84) here. 

The homological theory of modules over commutative noetherian local rings 
was developed in the late 1950s by Auslander, Buchsbaum, and Serre. Without 
going into any details, let us just mention two of the most beautiful results in the 
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theory (beyond (5.84)). The first is the theorem that any regular local ring is a 
unique factorization domain - another long-standing conjecture. The second is 
a formula due to Auslander and Buchsbaum, valid for any f.g. module M i= 0 of 
finite projective dimension over any (commutative) noetherian local ring (R, m): 

(5.89) pd(M) + depth(M) = depth(R) .:s V (R). 

Here, the "depth" of a f.g. R-module M i= 0 is defined to be the length of a 
maximal" M -regular sequence" in m. It is also the smallest integer d such that 
Ext~ (k, M) i= O. (The latter description of depth(M) is to be compared with the 
description of pd(M) in (5.81 ).) In the case when R is a regular local ring, (5.89) 
holds for all f.g. R-modules M i= 0, and depth(R) = VCR) = dim R. 

§5G. Global Dimensions of Commutative Noetherian Rings 

While we do not go into the finer theory of local homological algebra here, we 
would like to conclude this section by showing how to "globalize" some of our 
earlier results. This will lead us to the notion of a regular ring, in generalization of 
the notion of a regular local ring. We begin with the following basic observation. 

(5.90) Lemma. Let R be a commutative noetherian ring, and let M be any 
fg. R-module. Then there exists a maximal ideal m) C R such that 

(5.91) 

for all m E Max(R) (the spectrum of maximal ideals of R). 

Proof. That pd(M) :::: pdRm (Mm) follows from the exactness oflocalization (and 
requires neither the ACC on R nor the finite generation of M). The existence of 
m) for (5.91) depends on a "compactness" argument. We may clearly assume that 

d(m) := pdRm (Mm) < 00 for all m. 

For each integer n, let Mil be a f.g. R-module representing the projective equiv
alence class of PIl(M). For any mE Max(R), (Mn)m represents the projective 
equivalence class of pn (Mm), so (Md(m»)m is free, say, of rank rem). Thus, there 
exists an R-homomorphism <p(m) : w(m) ~ Md(m) which, when localized at 
m, is an Rm-isomorphism. This means that, for a suitable element Sm ¢ m, we 
have 

sm . ker(<p(m)) = Sm . coker(cp(m)) = O. 

The elements {sm} (m E Max(R)) generate the unit ideal R, so there exist 
m), ... , mk E Max(R) such that {sm" ... , sm,} already generate R. Let 

We claim that Md is projective. If so, then we'll have 
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proving (5.91). Now, by (4.29), Md is a finitely presented R-module. To show that 
Md is projective, it suffices to show, according to Exercise (4.15), that (Md)m is 
free for any m E Max(R). Fix any index i (1 ::::: i ::::: k) such that smi ¢ m. Since 
Smi kills both ker(<{J(m;)) and coker(<{J(m;)), 

«J(m;): Rr(mi) ~ Md(mi) 

localizes to an isomorphism at m; that is, (Md(m;))m is free over Rm. On the 
other hand, d ~ d(m;), so (Md)m can be obtained by applying a power of the 
projective shift operator (over Rm) to (Md(mi»)m. This shows that (Md)m is free, 
as desired. 0 

(5.92) Theorem. Let R be a commutative noetherian ring. Then, for any m E 

Max(R), we have gl. dim Rm = pdR(Rlm), and 

(5.93) gl. dim R = sup{gl. dim Rm} = sup{pdR(S)}, 

where m ranges over all maximal ideals of R, and S ranges over a complete set 
of simple R -modules. 

Proof. For a fixed m E Max(R), apply (5.90) to M = R/m. Since Mm ~ 
Rm/mRm (~ Rim) and Mm, = 0 for other maximal ideals m', (5.90) and 
(5.83)(1) give 

pdR(Rlm) = pd Rm (Rm/mRm) = gl. dim Rm. 

In view of this, it is sufficient to prove the first equality in (5.93). Here, the equality 
" ~ " is true for any commutative R, since any Rm -module is the localization of 
an R-module. The inequality" ::::: "for noetherian R follows from (5.91). 0 

We are now in a position to derive the following global version of the result of 
Serre-Auslander-Buchsbaum (5.84). 

(5.94) Theorem. For any commutative noetherian ring R, the following are equiv
alent: 

(1) Rp is a regular local ring for any P E Spec R. 
(2) Rm is a regular local ring for any m E Max(R). 
(3) pdR(m) < 00 for any m E Max(R). 
(4) pdR(p) < 00 for any p E Spec R. 
(5) pdR(M) < ooforanyf.g. R-module M. 

If any of these conditions holds (and R is noetherian), we say that R is a regular 
ringY For such a ring R, we have gl. dim R = dim R. 

Proof. (5)===}(4) is clear since p is f.g., and (4)===}(3) is a tautology. 

47Not to be confused with a von Neumann regular ring! 
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(3)===}(2). In view ofthe exact sequence 0 ~ m ~ R ~ Rim ~ 0, (3) implies 
that pd(R/m) < 00, and hence gl.dim Rm < 00 by the·first part of (5.92). 
Therefore, by (5.84), Rm is a regular local ring for any mE Max(R). 

(2)===}(1) follows from (5.88) since any prime ideal peR is contained in a 
maximal ideal m, and Rp is a localization of Rm. 

(l)===}(5) follows from (5.91), and the "if" part of (5.84). 

Now assume the above equivalent conditions hold. Then 

gl. dim R = sup {gl. dim Rm: m E Max(R)} 

= sup {dim Rm: mE Max(R)} 

= sup {height(m): m E Max(R)} 

= dim R. 

(by (5.92» 

(by (5.84» 

D 

(5.95) Corollary. Let R be a commutative noetherian ring. If gl. dim R < 00, 

then R is regular. The converse holds if R is a semilocal ring. 

Proof. The first part follows from the characterization (5.94)(5) of a regular ring. 
The second part follows from (5.93) (or from the equation gl.dim R = dim R for 
regular rings). D 

In general, a commutative regular ring R need not have finite global (or Krull) 
dimension, even when R is an integral domain. Such an example can be gleaned 
from the Appendix of Nagata [62], as follows. 

(5.96) Example (Nagata). Let U::, Ii be a partition of the set of natural numbers 
N = {I, 2, 3 ... } with the property that 1/,1 < IIzI < Ihl < ... , and let A = 
K [x, , X2, ..• ] where K is any field. Let Pi be the prime ideal of A generated 
by {Xj : j E Id, and R = As be the localization of A at the multiplicative set 
S = A \ U::, Pi. Each prime Pi can be seen to be of height 1/;1 in A, so it is 
clear that the localization of R of A has infinite Krull dimension. The fact that 
R is a noetherian domain is proved on p. 203 of Nagata [62]. It remains only to 
show that R is a regular ring, in the sense of (5.94). For this, let us check that, 
for any m E Max(R), Rm is a regular local ring. It is easy to see that m is of 
the form Pi R for some i. (The proof of this is left as an exercise.) Therefore, 
the localization Rm is isomorphic to Ap;. To reach the latter localization, we can 
first localize A at the multiplicative set K[{xj : j f/. Id] \ {OJ. Letting Ki be the 
rational function field K ({ x j : j f/. Id), we have thus 

where Ii = {i" ... , in}. Since Ki is a field, this is a local ring of Krull dimension 
n, and it is a regular local ring since its maximal ideal is generated by the n 
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elements Xi" ••• ,Xi". This completes the proof that R is a regular ring, and by 
what we have said before, 

gl. dim R = dim R = 00. 

Admittedly, rings such as the R above are among what Nagata called "bad" 
noetherian rings. If we restrict our attention to (commutative:) noetherian rings 
of finite Krull dimensions, then regular rings are exactly those of finite global 
dimensions. Many examples of regular rings can be obtained by using the remark 
(easily deducible from (5.94)) that any localization of a regular ring remains 
regular. Thus, for instance, if K is any field, any localization of K[x), ... ,xn ] is 
regular (recall (5.36)). Using the methods of classical algebraic geometry, it can 
also be shown that the ring of regular functions of any nonsingular variety (say, 
over an algebraically closed field K) is regular. This class of examples explains 
the origin of the name "regular rings". 

In conclusion, we should also point out that Theorem (5.94) suggests a very 
good way to extend the definition of regular rings to the noncommutative setting. 
Namely, we can define a ring R to be right (resp. left) regular if R is right 
(resp.left) noetherian and every f.g. right (resp.left) R -module has finite projective 
dimension. Then, again, any right noetherian ring R with r.gl.dim R < 00 

is right regular, but a right regular ring R may have r.gl.dim R = 00. And, 
not surprisingly, if R is right regular, then so is the localization of R at any 
central multiplicative set. Furthermore, Swan has proved the following result on 
the invariance of right regularity under a polynomial extension. 

(5.97) Theorem. If R is a right regular ring, then so is the polynomial ring R[t]. 

Of course, the fact that R[t] is right noetherian follows from the Hilbert Basis 
Theorem. For the proof that any f.g. right R[t]-module has finite projective di
mension, we refer the reader to Lam [78: p. 61]. In the special case when r.gl.dim 
R < 00, the conclusion of (5.97) would have followed from (5.36). In the general 
case, the argument needed for proving (5.97) is somewhat similar. 

The notion of right regularity defined above is particularly useful in algebraic 
K -theory. Due to limitation of space, however, we shall not pursue this matter 
here, and refer our reader to the excellent treatise [Bass: 68]. In closing, we should 
mention that, for ring-theoretic applications, there are other, perhaps even more 
appropriate notions of noncommutative regularity as well. These include "Aus
lander regularity" and "Artin-Schelter regularity", developed largely in the setting 
of graded rings. This is a topic of much current interest. For the details, we refer 
our reader to the recent papers of Artin-Schelter, Bjork, Levasseur, and Stafford
Zhang. 
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Exercises for §5 

O. Show that (S.23) is an equivalent formulation of (S.20). 

1. Let R be a ring with r.gl.dim R = n ~ 1, and let B be a right R-module 
with pd(B) = n - 1. Show that pd(A) :::: n -1 for any submodule A ~ B. 

2. Show that r.gl.dim R = 00 iff there exists a right R -module M such that 
pd(M) = 00. 

3. Let 0 ~ Ki ~ Fi ~ M ~ 0 (i = 1,2) be exact in !)JlR, where FI , Fz 
are flat. Show that K I E9 Fz may not be isomorphic to K z E9 Fl. (Hint. 
Let M = Q/Z, KI = Z, FI = Q, and let 0 ~ K z ~ Fz ~ M ~ 0 be 
any projective resolution of the Z-module M.) 

4. Recall that for any right R-module A, A' = Homz(A, Q/Z) is a left R
module. Show that A' ~ B' need not imply A ~ B. (Hint. For R = Z, 
"dualize" the two exact sequences in Exercise 4.) 

S. Let x, y, z be central elements in a ring R such that x R n y R = z Rand 
x, y are not O-divisors. For ideal [ = x R + y R, show that there exists a 
free resolution 0 ~ R ~ RZ ~ [R ~ O. (In particular, pdR(I) :::: 1.) 

6. Show that ker f3 ~ im a and ker y ~ im f3 in (S.3S). (This amounts to 
the exactness of the Koszul resolution (S.33) for n = 3.) 

7. Show that, if [ = LXi R, where XI, .•. ,Xn is a regular sequence in R 
(in the sense of (S.31», then [/ [z is a free right R/ [-module with basis 
XI + [2, ... , Xn + [2. (Hint. Induct on n ~ 0, the case n = 0 being 
trivial.) 

8. Let (R, m) be a commutative noetherian local ring. Using Exercise 7, 
show that R is regular iff m can be generated (as an ideal) by a regular 
sequence of R. 

9. Let (R, m) be a right noetherian local ring with annr(m) # O. Show that 
any f.g. right R-module P with pd(P) < 00 is free. Deduce that r.gl.dim 
R = 00 or else R is a division ring. (Hint. Generalize the argument in 
the beginning of the proof of the "only if" part of (S.84).) 

The next three exercises (with hints) are based on Kaplansky [72: pp. 176-
181]. 

10. Let Ii = R/ Rx, where x is a central element in the ring R. Let M be 
a right R-module, and let M = M/Mx. If x is not a O-divisor on RR 
and M R , show that pd"R(M) :::: pdR(M). (Hint. For any exact sequence 
o ~ K ~ F ~ M ~ 0 in !)JlR with F free, show that the induced 
sequence 0 ~ K ~ F ~ M ~ 0 remains exact.) 

11. Keep the hypotheses in Exercise 10, and assume, in addition, that R is 
right noetherian, x E rad R, and M is f.g. Show that pd"R(M) = pd R (M). 
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[Hint. First show that M is free (resp. projective) over Ii iff M is free 
(resp. projective) over R.] 

12. Keep the hypotheses in Exercise II and assume that R =I- 0 and n = 
r. gl. dim Ii < 00. Show that r.gl.dim R = n + 1. (Hint. For any f.g. M R , 

fix a short exact sequence 0 -+ K -+ F -+ M -+ 0 in 9.nR with F 
f.g. free. Then apply Exercise 11 to K (not to M !), and invoke (5.30).) 

13. (Auslander-Buchsbaum, Small, Strooker) For any right noetherian ring 
A =I- (0), show that 

r. gl. dim A[[x]] = 1 + r. gl. dim A, 

where A[[x]] denotes the power series ring in one variable over A. 

14. A right R-module P is said to be stably free if, for some integer n :::: 0, 
PEEl Rn is free. If R is commutative, and P is a f.g. stably free R-module 
of rank 1, show that P ~ R. (Hint. Use a localization argument to show 
that A k P = 0 for k :::: 2.) 

15. A right R-module M is said to have a finite free resolution (FFR) if, for 
some integer n :::: 0, there exists a long exact sequence 

o ~ Fn ~ ... ~ F\ ~ Fo ~ M ~ 0 in 9.nR , 

where the F; 's are f.g. free right R-modules. If such a module M is 
projective, show by induction on n that M is stably free. 

16. Let P be a f.g. projective module of rank lover a commutative ring R. 
If P has a FFR, use Exercises (14) and (15) to show that P ~ R. 

17. Let R be a right coherent ring over which any f.g. projective right module 
is stably free. Show that any f.g. module M R with d == pd(M) < 00 has 
a FFR as in Exercise 15 with n = 1 + d. 

Thefollowing three exercises assume some familiarity with UFDs (Unique 
Factorization Domains) and the Auslander-Buchsbaum Theorem (that 
commutative regular local rings are UFD's). 

18. Let R be a commutative regular domain. Show that R is a UFD iff 
Pic(R) = {I} (i.e., invertible ideals of R are all principal). [Hint (for 
sufficiency). The Auslander-Buchsbaum Theorem implies that any prime 
peR of height 1 is locally principal. Now apply (2.17).] 

19. Let R be a commutative noetherian domain over which any f.g. module 
has a FFR. Show that R is a UFD. (Hint. Deduce that R is regular, and 
apply Exercises 16 and 18.) 

20. Let R be a commutative regular domain over which all f.g. projectives are 
stably free. Show that R is a UFD. 

21. Let R be a ring with IBN, and let M be a right R-module 
with a FFR as in Exercise IS. Using (5.5), show that the integer 
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X(M) := L.:;'=o(-l)i rank(Fi ) depends only on M; that is, it is indepen
dent ofthe particular FFR chosen. (X (M) is called the Euler characteristic 
of M.) 

(1) If R is right noetherian or commutative, show that X (M) ~ O. 
(2) Give an example to show that X (M) may be negative in general. 
(3) If R is a commutative domain with quotient field K, show that 
X(M) = dimK(M ®R K). 

22. Let R be a ring with IBN, and let 0 --+ M' --+ M --+ Mil --+ 0 be exact in 
9JLR • If each of M', Mil has a FFR, show that M also has a FFR, and that 
X(M) = X(M') + X (Mil) in Z. 

23. (L. Small) Let R be a commutative noetherian domain with quotient field 

K f. R, and let T be the triangular ring (~ ~). Recall (from FC

(1.22)) that T is right noetherian but not left noetherian. Suppose gl.dim 
R = n < 00. 

(1) Show that r.gl.dim T = n. 
(2) Show that I.gl.dim T = n + I if K contains an R-submodule M 
with pdR(M) = n, and I.gl.dim T = n otherwise. 

(Hint. The one-sided ideals of T are classified in FC-(1.17). Compute 
their projective dimensions and use (5.51'). For (2) show that if A is 

any R -submodule of K, then Q( = (~ ~) is a left ideal of T, with 

pdT(Q() = pdR(A). Cf. (2.33) for the case R = Z, K = QI.) 

24. Let R ~ ! (~ ~ ;)). where x. y. u. ". w ore "b;ttru-y o)omont, ;n 

a division ring k. Show that the artinian ring R has exactly two simple 
right modules M 1, M2, each I-dimensional over k, with pdR(M1) = 00 

and pd(M2) = O. What are the projective shifts of Ml and the Jacobson 
radical of R? 

25. Let qJ : R --+ S be a ring homomorphism, and let n = pd(SR) where S 
is viewed as a right R-module via qJ. Show that, for any right S-module 
M, pd(MR) :::: n + pd(Ms). 

26. (Bass) Let R be a right noetherian ring and let {Mi : i E I} be a direct 
system of right R-modules, with direct limit M. If id(Mi ) :::: n for all 
i E I, show that ideM) :::: n. (Sketch. Let E be the injective hull of 
EB RIQ(, where Q( ranges over all right ideals of R. For any N R, let N = 
HomR(N, E) andlet F(N) be the injective module nR E.Bythechoice 
of E, the natural R-homomorphism N --+ F(N) is an embedding. Note 
that this construction is "functorial" in N, thus leading to a "canonical" 
injective resolution of N. Now take the direct limit of these resolutions for 
the Mi 's, and use (3.36)(1).) 
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27. (Osofsky) For any right noetherian ring R, prove the following injective 
dimension analogue of (5.51): r.gl.dim R = sup{id(C)}, where C ranges 
over all cyclic right R-modules. (Note. Osofsky has also shown that, for 
any right noetherian ring R, r.gl.dim R = sup{id(21) I, where 2t ranges 
over all the right ideals of R.) 



Chapter 3 

More Theory of Modules 

In this Chapter, we shall cover some other aspects of the theory of modules that 
were not yet touched upon in the first two chapters. In contrast to Ch. 1 and Ch. 2, 
the module theory presented in the three sections of this Chapter is essentially non
homological in nature. Nevertheless, the idea of injective modules and essential 
extensions plays a discernible role, especially in the first and last sections of the 
Chapter. 

Section 6 is devoted to several important topics in module theory developed 
in the 1960s (and thereafter). First and foremost is the general theory of uniform 
dimensions of modules initiated by A. W. Goldie, which occupies §6A. The notion 
of complements and the equivalent notion of essentially closed submodules are 
introduced and discussed in detail in §6B. Another subsection, §6D, focuses on a 
class of modules called CS modules, and presents two applications of this notion 
to the study of injective modules. Finally, various finiteness conditions on rings 
and their relationships are studied, and there is a closing subsection introducing 
the notion of quasi-injective (QI) modules. This notion has gained considerable 
popularity in recent years, so a good discussion of it is worthwhile. The class of 
QI modules lies between that of injective modules and that of CS modules. It will 
be seen that, in certain theorems, the natural class to look at is that of QI modules, 
rather than injective modules; some specific instances of this are the later theorem 
(13.1) on the structure of endomorphism rings, and the double annihilator theorem 
(13.5) of Johnson and Wong. 

In §7, we tum to R. E. Johnson's theory of singular submodules, and introduce 
the important notion of (right or left) nonsingular rings. Iterating the formation 
of singular submodules, we arrive at Goldie's definition of the "closure" of a 
submodule, which leads directly to the idea of the (Goldie) "reduced rank", a 
variant of the uniform dimension. As an excursion, we also introduce and study 
Rickart rings and Baer rings (and their * -analogues) as special cases of nonsingular 
rings. These classes of rings arise naturally and playa substantial role in the 
theory of operator algebras in functional analysis. The final section, §8, is occupied 
with the theory of dense submodules and rational completions of modules, after 
Findlay-Lambek and Utumi. We also introduce the important notion of (right or 
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left) Kasch rings, which will show up again in the later sections on Frobenius and 
quasi-Frobenius rings. 

The main material covered in §§6-8 in this Chapter is, to some extent, in prepa
ration for the theory of rings of quotients and Goldie rings in Chapters 4 and 5. 
For instance, semiprime right Goldie rings, which occupy center stage in § 11, are 
examples of right nonsingular rings, and of rings of finite (right) uniform dimen
sion. The notion of reduced rank will find natural applications in the problem of 
characterizing right noetherian rings that are right orders in right artinian rings. 
Furthermore, the rational completion E(R) of the right regular module RR (over 
any ring R) will be shown to have a natural ring structure extending its inherent 
right R-module structure. The ring E(R), called the maximal right ring of quo
tients of R, turns out to provide the best and the most convenient setting in which 
to study the theory of rings of quotients over R. 

Aside from these applications, however, the material developed in this chapter is 
also important in its own right. The notions of uniform dimensions, reduced ranks, 
CS modules, singular submodules, dense submodules, and rational completions 
apply not only to the right regular module RR, but also to arbitrary modules over 
a general ring, and thus provide powerful tools for studying the theory of modules 
in general. 

In writing this chapter, I have consulted extensively the works of Goldie [64], 
[72], Lambek [66], and Goodearl [76], among other sources. 

§6. Uniform Dimensions, Complements, and CS Modules 

§6A. Basic Definitions and Properties 

This subsection is a quick introduction to the theory of uniform dimensions of 
modules due to A. Goldie. The basic idea of this theory is that one measures the 
"size" of a module M by finding out how big a direct sum of nonzero sub modules 
M can contain. 

The notion of an essential submodule plays a crucial role in this theory. It is 
perhaps useful to point out that, before the term "essential extension" was firmly 
established in the literature, "algebraic extension" had been used by some authors 
at one time. Accordingly, injective modules were called "algebraically closed" 
modules, and injective hulls were regarded as "algebraic closures". In Goldie's 
theory of uniform dimensions, one seeks, within a given module M, a sub module 

(N; # 0) 

with the largest possible k. Assuming that such an N exists, then N S;e M, and 
M is assigned uniform dimension k (see (6.6)). If we think of M as an "algebraic 
extension" of N, then we find a useful analogy between the notion of uniform 
dimension and the notion of transcendence degree for a field extension. 
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The central fact which makes the notion of uniform dimensions possible is the 
following parody of a familiar fact in linear algebra. (Keep in mind that, in the 
context of vector spaces, a uniform module is just a "line".) 

(6.1) The "Steinitz Replacement Theorem". Let U = UI EB ... EB Um and 
V = VI EB ... EB Vn be essential submodules of a right module M over a ring R, 
where the Ui 's and Vj 's are uniform modules. Then m = n. 

Proof. We may assume that n 2: m. We claim that 0 := U2 EB· .. EB Um intersects 
some Vj trivially. For, if otherwise, we would have 0 n Vj ~e Vj (I ~ j ~ n) 
since Vj is uniform, and (3.38) would give 

(0 n VI) EB ... EB (0 n Vn) ~e VI EB··· EB Vn = V, 

and hence also 0 n V ~e V ~e M. By "transitivity" (cf. (3.27)(2», this implies 
o ~e M, a contradiction. Therefore, after relabeling the Vj 's, we may assume 
that 0 n VI = O. Let U' = 0 EB VI. We must then have U' n lIt i= 0 (otherwise 
UI + U2 + ... + Um + VI would be a direct sum, contradicting U ~e M), and so 

(U ' nUl) EB U2 EB··· EB Um ~e UI EB··· EB Um ~e M. 

Since the LHS is contained in U', it follows as before that U' ~;e M. Going from 
U to U', we have thus "replaced" the summand UI by VI. Repeating this process 
(and relabeling V2, ... , Vn if necessary), we can pass from U' to some 

U" = VI EB V2 EB U3 EB ... EB Urn ~e M. 

After m steps, we'll arrive at 

U(m) = VI EB ... EB Vm ~e M. 

On the other hand, we have V = VI EB ... EB Vn ~e M, so we must have m = n! 
D 

(6.2) Definition. We shall say that an R-module MR has uniform dimension n 
(written u.dim M = n) if there is an essential submodule V ~e M that is a direct 
sum of n uniform submodules. (By (6.1), u.dim M is well-defined.) If, on the other 
hand, no such integer n exists, we write u.dim M = 00. (The meaning of u.dim 
M = 00 will be further clarified in Proposition 6.4 below.) 

Another name used for the uniform dimension is Goldie dimension, named after 
its discoverer. We prefer the term "uniform dimension" since uniform modules play 
a key role in its definition. Also, we want to avoid the term "Goldie dimension" 
so that there is no confusion with Goldie's "reduced rank" to be introduced later 
in §7C. 

It is easy to check from the definition that u.dim M = 0 iff M = 0, and 
u.dim M = I iff M is a uniform module. For modules over a division ring, of 
course uniform dimension is just the usual vector space dimension as defined in 
linear algebra. 
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The following result offers a useful piece of information for modules of finite 
uniform dimension (over any ring). 

(6.3) Proposition. Suppose u.dim M = n < 00. Then, any direct sum of nonzero 
submodules N = NI EB ... EB Nk S; M has k :::: n summands. 

Proof. Let V S;e M be as in Definition (6.2). Then 

N: := Ni n V =1= (0) and V;2 N; EB ... EB N~ . 

Thus, we may as well assume that M = V, say M = VI EB ... EB VI!, where the 
Vi'S are uniform. Let ill = N2 EB· .. EB Nk. Arguing as in the first part ofthe proof 
of (6.1), we see that, after relabeling the Vi'S, we may assume that ill n VI = 0.48 
Projecting M modulo VI onto V2 EB ... EB Vn , we have then an embedding of ill 
into V2 EB ... EB Vn • Invoking an inductive hypothesis (on n) at this point, we'll 
have k - 1 :::: n - 1, and therefore k :::: n. (One may start the induction from n = 0 
or from n = 1, whichever one prefers.) 0 

Next we give a nice interpretation for infinite uniform dimension. 

(6.4) Proposition. u.dim M = 00 iff M contains an infinite direct sum of nonzero 
submodules. 

Proof. The "if" part is clear from (6.3). For the "only if" part, let us assume that 
M does not contain an infinite direct sum of nonzero submodules. We claim that: 

(6.5) Any nonzero submodule N S; M contains a uniform submodule. 

In fact, if this is false, then N is surely not uniform, so it contains some A I EB BI 

with A I =1= (0) =1= 8 1. Then BI is again not uniform, and contains some A2 EB B2 
with A2 =1= (0) =1= B2. Continuing this process, we'll get an infinite direct sum 
Al EB A2 EB A3 EB ... S; M, a contradiction. Having now proved our claim (6.5), 
pick a uniform VI S; M. If VI is not essential in M, we'll have M ;2 VI EB V2 
for some V2 =1= 0, which we may assume to be uniform, by virtue of (6.5). If 
VI EB V2 is still not essential in M, we can similarly find VI EB V2 EB V3 S; M 
for a suitable uniform submodule V3• But by assumption this process cannot be 
continued indefinitely, so we are bound to arrive at some VI EB ... EB Vn S;e M 
with all Vi'S uniform. By definition, we have then u.dim M = n. 0 

(6.6) Corollary. u.dim M is the supremum o/the set 

{k: M contains a direct sum ofk nonzero submodules}. 

48Note that, for that part of the proof of (6.1), we did not need the Vi'S (or the Ni 's here) 
to be uniform. 
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Proof. Let ko :s 00 be this supremum. If ko = 00, then by (6.3), u.dim M must 
be 00 too, and we have u.dim M = ko in this case. Next, assume ko < 00. By 
(6.4), we see that u.dim M must be finite, and by (6.3), we deduce easily that 
u.dim M = ko. D 

(6.7) Corollary. (1) If MR is either a noetherian or an artinian module, then 
u.dim M < 00. 

(2) Suppose M has finite composition length n. Then u.dim M :s n, with equality 
iff M is semis imp Ie. 

Proof. (1) Either chain condition will rule out the existence of an infinite direct 
sum (of nonzero sub modules) in M. 

(2) If M contains NI EB ... EB Nk where Ni f= 0, then 

k 

(6.8) k :s L length(Ni ) :s length(M) = n . 
i=1 

By (6.6), this implies that u.dim M :s n. If M is semisimple, it is clear from 
Def. (6.2) that u.dim M = n. Conversely, if u.dim M = n, then M contains some 
NI EB ... EB Nfl with Ni f= 0, and (6.8) above for k = n implies that 

M = NI EB ... EB Nfl 

with length(Ni ) = 1 for every i. Thus, M is semisimple. D 

(6.9) Remarks. 

(a) For R = Z, if p is any prime, M = Z/ prz (r ::: 1) has composition length r, 
but u.dim M = 1. More generally, for M = Z/ m Z (m > 0), u.dim M is given 
by the number of distinct prime divisors of m, while length(M) is the number of 
distinct prime-power divisors of m (not counting O-th powers). 

(b) If MR is only f.g. (instead of being noetherian), u.dim M need not be finite. 
For instance, the right regular module over R = Z x Z x . .. contains the infinite 
direct sum of ideals Z EB Z EB ... , so u.dim(RR) = 00, although RR is a cyclic 
module. 

(c) Regarding the results (6.4) and (6.6), the following curious situation is note
worthy. We know from these results that, if, for any k, a module M contains a 
direct sum of k nonzero modules, then M contains in fact an inl5nite direct sum of 
nonzero modules. Now try to "dualize" this statement: if, for any k, the module 
M has a quotient which is a direct sum of k nonzero modules, does it follow that 
M has a quotient which is an infinite direct sum (or product) of nonzero modules? 
A moment's thought shows that the answer is "no"! For instance, over the ring Z, 
the module Z maps onto 

Z/PI'" Pk Z ~ EB~=IZ/PiZ 
(for any distinct primes PI, ... , pd, but clearly Z does not map onto any infinite 
direct sum (or product) of nonzero abelian groups! This is an interesting example 
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which serves to show that we should not assume that "dualizing" a COrrect module
theoretic statement should always give another COrrect statement. 

(6.10) Corollary. (1) u.dim( EB:=I Mi) = 2::=1 u. dim Mi (with the usual con
ventions about (0). 
(2) Suppose N S; M. Then (a) u.dim N .:::: u. dim M, with equality when N S;e M. 
(b) If N is not essential in M, then u. dim N < u. dim M, unless u. dim N = 
u.dim M = 00. 

Proof. (1) is obvious from Def. (6.2) and (6.4). (2)(a) follows quickly from (6.6). 
For (2)(b), assume N is not essential in M. If u.dim N = 00, then u.dim M = 
00 too, so we may focus on the case u.dim N = n < 00. Here, N contains 
NI E9 ... E9 Nn with Ni 1= 0, and since N S; M is not essential, M contains 

N' E9 N = N' E9 NI E9 ... E9 Nil 

for some submodule N' 1= O. By (6.3), u.dim M 2: n + 1. o 

(6.11) Caution. Unlike certain other kinds of dimension or rank, uniform dimen
sion is not additive over short exact sequences. For instance, over R = Z, we have 
a short exact sequence 

o ---+ Zj pZ ---+ Zj p 2Z ---+ Zj pZ ---+ 0, 

but all three modules have uniform dimension I, as we have pointed out in 
(6.9). More surprisingly, the existence of a surjection M --» M need not im
ply u.dim M 2: u. dim M. For instance, over R = Z again, if M = Z and 
N = PI ... PkZ where the Pi'S are distinct primes, then 

M:= MjN ~ ZjplZ E9 ... E9 ZjPkZ 

has uniform dimension k, whereas u.dim M = 1. Even more spectacularly, u.dim 
Q = I, but, since QjZ is an infinite direct sum (of its primary components), 
u.dim QjZ = oo! Fortunately, all of this can be explained, in theory. We shall 
return to give an analysis of the behavior of uniform dimension with respect to 
short exact sequences in §6C. 

Now let us relate uniform dimensions to some other kinds of measure of the 
size of a module. The next Proposition interprets u.dim M via the "decomposition 
length" of the injective hull E(M); Proposition (6.14) below compares u.dim M 
with the "rank" of M for torsion-free modules M over commutative domains. 

(6.12) Proposition. For a natural number n, we have u. dim M = n iff E(M) is 
a direct sum of n indecomposable injective modules. 

Proof. Since u.dim M = u. dim E(M) by (6.1O)(2a), we may assume that M is 
injective. If M = MI E9 ... E9 Mn where the Mi 's are indecomposable injectives, 
then, since each Mi is uniform by (3.52), we have u.dim M = n. Conversely, if 
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u.dim M = n, then M contains an essential submodule V = VI ffi· .. ffi Vn, where 
the Vi'S are uniform. From (3.33)(2) and (3.39), it follows that 

M = E(V) = E(VI ffi ... ffi Vn) = E(Vt> ffi ... ffi E(Vn), 

and by (3.52), each E(Vi) is indecomposable, as desired. o 

(6.13) Example. For the commutative ring R = Q [u, v] defined by the relations 

u2 = v2 = uv = 0, 

RR is essential over u Q ffi v Q where u Q , v Q are minimal ideals. Thus, 
u.dim R = 2. The injective hull E(R) is R ffi R where R = HomQ(R, Q) 
is the unique indecomposable injective R-module; see (3.69) (with n = 1). 

(6.14) Proposition. Let R be a commutative domain with quotient field K. For 
any torsion-free module M R, we have 

(6.15) 

Proof. Since M is torsion-free, we may think of M as embedded in MK 
M ®R K. First assume u.dim M = 00. In this case, M contains VI ffi V2 ffi··· 
with (Vj)R 1= 0, so MK contains V{ ffi V{ ffi ... ; hence dimdMK) = 00 

also. Next, assume that u.dim M = n < 00. The same argument as above gives 
dimK (M K) ~ n. If this is a strict inequality, there would exist a direct sum 

VI ffi ... ffi Vn+ 1 ~ MK , 

where the Vj 's are nonzero K -subspaces. By "clearing denominators", we see 
that the M n V; 's are nonzero R-submodules of M, and 

M:2 (M n VI) ffi··· ffi (M n Vn+t> 

gives a contradiction. Therefore, dimK(M K) = n. o 

Remark. Of course, the formula (6.15) is no longer true if M is not torsion-free. 
For instance, in the "extreme" case when M is a torsion R-module, we have 
dimdMK) = 0, but u.dim M can be 00 or any finite number. For the correct 
generalization of (6.15) to any M, see Exercise 10. 

In closing this subsection, we should point out that the theory of uniform di
mensions has a dual version, which is also worthy of consideration. The dual of 
uniform dimension is called co-uniform dimension, or dual Goldie dimension. The 
dual of the notion of a uniform module is that of a hollow module: a module M is 
hollow if M = X + Y (for submodules X and Y) implies that X = M or Y = M. 
These are the modules with co-uniform dimension 1. For lack of space, we shall 
not go into the details of this dual theory here, but shall merely refer the reader to 
its original source, namely, Varadarajan [79]. (In this paper, Varadarajan used the 
term "co-rank" for the dual Goldie dimension.) 
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§6B. Complements and Closed Submodules 

To better understand the meaning of uniform dimensions, we need to introduce 
the notion of complements in a module. 

(6.16) Definition. Let S be a submodule of an R-module MR. A submodule 
C S; M is said to be a complement49 to S (in M) if C is maximal with respect 
to the property that C n S = O. By Zorn's Lemma, any submodule S has a 
complement; in fact, any submodule Co with Co n S = 0 can be enlarged into a 
complement to S in M. 

(6.17) Examples. 

(1) If M = C EB S, then C is a complement to S. We speak of C as a "direct com
plement" in this case. Note that the isomorphism type of C is uniquely determined 
by S, since C ~ MIS as R -modules. 

(2) If S S;e M, then (0) is the only complement to S. 

(3) In the commutative ring R = Q [u, vl discussed in (6.13), Q . (u + av) (for 
any a E Q) is a complement to Q v. 

(4) In M = Z EB Z over R = Z, C = (0) EB Z is a complement to any S of the 
form n Z EB (0) (n -I 0). 

(5) The isomorphic type of a complement to S need not be determined by S. For 
instance, over R = Z, consider the module M = C EB S where C = (c) has order 
8 and S = (s) has order 2. While C is a (direct) complement to S, the subgroup 
C' = (c') of order 4 generated by c' := 2c + s is also a complement to S. (For 
otherwise C' C;; N for some N with N n S = O. We must have M = NEBS so 
N ~ Z/8 Z and c' E 2N S; 2M = 2C, a contradiction.) Therefore, S has two 
complements of different cardinalities (and, in particular, different isomorphism 
types). 

(6.18) Proposition. Let C, S be submodules of any module M R, with C n S = O. 
Write "bar" for "image in M I C". Then C is a complement to S iff S S;e M. 

Proof. This follows easily from definition, since the nonzero submodules of M 
are of the form D where D ;2 C. 0 

(6.19) Remark. If C is a complement to S, then we have C EB S S;e M (for 
otherwise we would have a direct sum X EB C EB S with X -I 0). However, 
C EB S S;e M is in general not enough to guarantee that C be a complement to S. 

49In the literature, this is often called an "intersection complement", as opposed to another 
kind of complement called "addition complement". In this book, "complement" shall always 
mean intersection complement. Addition complements will only be briefly considered in 
an exercise in §19; see Exercise (19.34). 
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For instance, if Co ~e C with Co -=J C, then 

(6.20) C E9 S ~e M ===} Co E9 S ~e M, 

but surely Co cannot be a complement to S. 

(6.21) Definition. We say that a submodule C ~ MR is a complement in M 
(written C ~c M) if there exists a submodule S ~ M such that C is a complement 
to S in M. 

We can think of C ~c M as a weakening of the condition that C be a direct 
summand of M. Note that the module C' ~ M constructed in Example (6.17)(5) 
is a complement in M, without being a direct summand thereof. 

With the notion of C ~c M defined in (6.21), we can now rectify the situation 
in Remark (6.19). 

(6.22) Proposition. Suppose C ~c M, and T is a submodule of M such that 
C n T = O. Then C is a complement to T iffC E9 T ~e M. 

Proof. We need only prove the "if" part, so assume C E9 T ~e M. Say C is 
complement to S, as in Def. (6.20). To show that C is maximal with respect to 
having zero intersection with T, consider any submodule D ;2 C with D n T = O. 
Then 

(C + T) n (D n S) = «C + T) n D) n S = C n S = O. 

Since C + T ~e M, we have D n S = (0) and therefore D = C. This shows that 
C is a complement to T in M. 0 

(6.23) Corollary. Suppose C ~c M. Let T be a complement to C in M (which 
always exists). Then C is a complement to T. 

Proof. Since T is a complement to C, we have T E9 C ~e M by (6.19). But then 
by (6.22) this implies that C is also a complement to T. 0 

The next two results, (6.24) and (6.28), describe some basic properties of com
plements. 

(6.24) Proposition. (1) Suppose C ~ N ~ M. Then C ~c M ==> C ~c N. 
(2) (Transitivity) C ~c Nand N ~c M ===} C ~c M. 

Proof. (1) If C is a complement to, say, X in M, it follows easily from definition 
that C is a complement to X n N in N. Therefore C ~c N. 

(2) Suppose C is a complement to S in N, while N is a complement to T in M. 
We claim that C is a complement to S E9 T in M. Indeed, consider any submodule 
D ::2 C in M. We wish to show that D n (S E9 T) =1= O. We may assume that 
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D n N = C (otherwise D n N n S =f. (0) already). Then, there is an element 
d E D\N. We have (N + d R) n T =f. 0, so there exists an equation 

(6.25) n + dr = t =f. 0, where n E N, r E R, t E T. 

If n E C, then n + dr E D and we are done. If n ¢ C, then, as above, we get an 
equation 

(6.26) c + nr' = s =f. 0, where c E C, r' E R, s E S. 

Subtracting r' times (6.25) from (6.26), we obtain 

c - drr' = s - tr' E (D n (S EB T»\{O}. 

o 

(6.27) Caution. In spite of (6.24)(1), we have in general 

(6.27(a» C ~ M, C' ~c M =/==} C n c' ~c C, 

even in the case when C is a direct summand of M. In fact, let M and C, C' be 
as in Example (6.17)(5). Then C' ~c M, but C n C' = 4C is not a complement 
in C. This example also suffices to show that: 

(6.27(b» C ~c M, C' ~c M =/==} C n c' ~c M. 

(6.28) Proposition. Let C ~ L ~ M be R-modules. Then: 

(1) L ~c M =} LIC ~c MIC. 
(2) IfC ~c M, then L ~c M <===> LIC ~c MIC, so there is a one-one 

correspondence between the complements in M I C and the complements 
in M containing C. 

Proof. Let us write "bar" for "image in MIC". For (1), fix a submodule V ~ M 
to which L is a complement. Applying (6.18), it is straightforward to check that 
L is a complement to V in M, so L ~c M. For "{=" in (2) (which is all we need), 
fix a submodule S such that C is a complement to S in M. Assume that L ~c M, 
say L is a complement to Q where Q 2 C. Then 

(Q n S) n L = S n (Q n L) = S n C = o. 

Enlarge L to L' which is a complement to Q n S in M. Then 

(L' n Q) n S = (0) =} L' n Q = C 

=}L'nQ=o 

=}L=L' 

=} L = L' ~c M. 

o 
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In the next few results, we shall explore the relationship between complements 
and uniform dimensions. The first result about modules of finite uniform dimension 
is an analogue of (6.3). 

(6.29) Proposition. Suppose u. dim M = n < 00. Then, in M, any chain of 
complements has length ~ n. More precisely, ifwe have Co ~;;; Cl ~ ... ~ Ck 

where each Ci ~c M, then k ~ n. 

Proof. By (6.24)(1), we know that Ci- l ~c Ci , say, Ci-l is a complement to Si 
in Ci (1 ~ i ~ k). Since Ci-l i= Ci, Si i= O. Now we have Sl EEl··· E9 Sk ~ M, so 
(6.3) gives k ~ n. (Note: Of course we also have Co E9 Sl E9 ... E9 Sk ~ M. But 
we cannot deduce k + 1 ~ n from this, as Co might be zero!) 0 

Next we present the analogue of (6.4). 

(6.30) Proposition. For any module M R , the following are equivalent: 

(1) u. dim M = 00. 

(2) There exists an infinite strictly ascending chain of complements in M. 
(3) There exists an infinite strictly descending chain of complements in M. 

Proof. (1) ==} (2). By (6.4), we know that M contains U l E9 U2 E9 ... , where 
each Ui i= O. Enlarge U l into a complement to U2 E9 U3 E9 ... , say, Cl. Then 
enlarge Cl E9 U2 into a complement to U3 E9 U4 E9 ... , say C2. In this way, we get 
an ascending chain Cl ~ C2 ~ ... , where each Ci ~c M. Since Ci contains Ui 

and Ui n Ci- l =0, we have Ci- l i= Ci for each i. 

(2)==}(3). Say we have Co ~ Cl ~ ... , where each Ci ~c M.. As in the proof 
of (6.29), Ci- l is a complement to some Si i= 0 in Ci . Enlarge Sl E9 S2 E9 .. . 
into a complement to Co, say, Yl . Then, working in Yl , enlarge S2 E9 S3 E9 .. . 
into a complement to Sl in Yl , say Y2 . By the Transitivity Property (6.24)(2), 
Y2 ~c Yl ~c M implies that Y2 ~c M. Also Yl ;;2 Y2 since Yl contains Sl 
while Y2 n Sl = O. Continuing in this way, we get a strictly descending chain of 
complements Yl ;;2 Y2 ;;2 . .. in M. 

(3)==}(1) follows from (6.29). 0 

Negating the three statements in (6.30), we get the following equivalent result. 

(6.30), Proposition. For any M R, the following are equivalent: 

(1) u. dim M < 00. 

(2) The complements in M satisfy ACe. 
(3) The complements in M satisfy DCC. 

Finally, we have the following analogue of (6.6), the proof of which we can 
safely omit. 
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(6.31) Proposition. u. dim M is the supremum of the set 

{k: M contains a chain of complements of length k}. 

To conclude the present subsection, we shall give another important charac
terization of complement submodules. Let us say that a submodule C ~ M is 
essentially closed in M if C has no proper essential extension within M. To sim
plify language, we shall sometimes drop the word "essentially", and just refer to 
such C as a closed submodule of M. 

(6.32) Proposition. For any submodule C ~ M, the following are equivalent: 

(1) C ~c M. 
(2) C is (essentially) closed in M. 
(3) C = X n M for some direct summand X of the injective hull E(M). 

Proof. (1) ==> (2). Say C is a complement to a submodule S ~ M. If C ~e C' ~ 
M, then C n (C' n S) = 0 implies that C' n S = O. Hence C = C', so C is closed 
inM. 

(2) ==> (3). Since C ~ M ~ E(M), E(M) contains a copy of the injective hull 
of C, say E(C). Then C ~e E(C) n M implies that C = E(C) n M since C is 
closed in M. Now the injectivity of X := E(C) implies that X is a direct summand 
of E(M), so we have proved (3). 

(3) ==>(1). Say E(M) = X EB Y, and let S = M n Y. We are done if we can show 
that C is a complement to S in M. The property C n S = 0 is, of course, clear. 
Now consider a sub module D of M properly containing C, say, with d E D\C. 
From (X + dR) n Y i- 0, we have an equation 

(6.33) x + dr = y i- 0, where x EX, Y E Y, and r E R. 

From M ~e E(M), we have 0 i- yr' E S for some r' E R. Multiplying (6.33) by 
r', we get 

o i- yr' = xr' + drr', 

from which we see that xr' E X n M = C, and consequently that D n S contains 
the nonzero element yr'. 0 

If the reader does not wish to go through the condition (3), it is equally easy to 
see directly that (2) ==> (1). Say C is closed in M and let T ~ M be a complement 
to C. We finish by showing that C is a complement to T. To see this, let B 2 C 
be such that B n T = O. Since T is a complement to C, we have C EB T ~e M, 
and hence (by Exercise (3.7» (C EB T) n B ~e B; that is, C ~e B, and so B = C. 

It is indeed fortunate that the words "complement" and "closed" start with the 
same letter, so we can now regard "c ~c M" as referring to either one. Note 
that the new criteria in (6.32) do make it easier sometimes to check that a given 
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submodule is a complement. For instance, a direct application of (6.32)(2) shows 
the following. 

(6.34) Example. If M is a module over a commutative domain, then the torsion 
submodule of M is a complement in M. 

§6C. Exact Sequences and Essential Closures 

We are now in a good position to study the behavior of uniform dimension with 
respect to short exact sequences. We first prove the following general result on 
"subadditivity". 

(6.35) Theorem. Let A be a submodule of M. Then 

(6.36) u.dim M ~ u. dim A + u. dim MIA, 

with the usual conventions on the symbol 00. If A ~c M, then equality holds. 

Proof. Fix a complement T to A in M. Then A EEl T ~e M, so 

u. dim M = u. dim (A EEl T) = u. dim A + u. dim T 

by (6.10). Since we may view T ~ MIA, we have u.dim T :~ u. dim MIA, so 
we get the inequality (6.36). Now assume A ~c M. From the argument given in 
the paragraph following the proof of (6.32) (or else from (6.23)), we see that the 
image of Tin MIA is in fact essential in MIA. Hence u.dim T = u. dim MIA, 
so the proof above yields equality in (6.36). 0 

While (6.36) fails to be an equality in general (as we have already observed), 
we can obtain, in some sense, a measure of how much the two sides in (6.36) can 
differ. As a special case of this, we can deduce that, under a finiteness assumption 
on u.dim M, equality in (6.36) can occur (if and) only if A is a closed submodule 
ofM. 

To carry out this analysis, we introduce the idea of essential closures. For a given 
submodule A ~ M, consider the family of essential extensions of A inside of M. 
By Zorn's Lemma, this family has a maximal member, say C. Such a maximal 
member is by no means unique, but it is clearly closed in M; we call it an essential 
closure of A. Using such an essential closure C, we can formulate the following 
more precise version of (6.36) due to Camillo and Zelmanowitz [78]. The proof 
given below is believed to be new. 

(6.37) Theorem. Let A ~ C ~ M be as above. Then 

(6.38) u.dim A +u.dim MIA = u.dim M +u.dim CIA, 

with the usual conventions on the symbol 00. Ifu. dim M < (XI, we have 

u. dim M = u. dim A + u. dim MIA iff A ~c M ; 
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and u. dim CIA is independent of the choice of C (as an essential closure of A) 
inM. 

Proof. The fact that A ~e C implies that u.dim A = u. dim C. Now consider the 
following two exact sequences: 

o ~ C ~ M ~ MIC ~ 0 and 0 ~ CIA ~ MIA ~ MIC ~ o. 

By (6.28)(1), C ~c M implies that CIA ~c MIA. Therefore, applying the last 
part of (6.35) to the two exact sequences above, we have 

u. dim A + u. dim MIA = u. dim C + u. dim MIA 

= u. dim C + u. dim M I C + u. dim CIA 

= u. dim M + u. dim CIA, 

proving (6.38). If A ~c M, then C = A, in which case (6.38) gives back the 
equation 

u.dim A + u.dim MIA = u.dim M. 

Conversely, if this latter equation holds and u. dim M < 00, then (6.38) implies 
that u.dim CIA = 0, which in tum implies that C = A, i.e. A ~c M. The 
independence of u.dim CIA on the choice of the essential closure C (in case 
u.dim M < 00) is immediate from the equation (6.38). D 

Note that in (6.38), u.dim CIA emerges as the "error term" for the failure of 
additivity of uniform dimension over short exact sequences. In general, we have 
little control over this error term, as the examples in (6.11) showed already. A good 
illustration for the nonuniqueness of the essential closures C of A (and for the 
independence of u.dim CIA on C) is given by Example (6.17)(5) for Z-modules. 
In the notations there, let A = 4C ~ M. Since C and C' are both complements to 
S in M, they give two nonisomorphic essential closures of A. Though CIA ~ Z4 
and C' I A ~ Z2 are also nonisomorphic, each has uniform dimension 1, and 
(6.38) checks out as 

u. dim A + u. dim MIA - u. dim M = 1 + 2 - 2 = 1. 

Note that the assumption u.dim M < 00 is essential for the "only if" statement 
in the second conclusion of (6.37). If u.dim M = 00, the condition 

u. dim M = u. dim A + u. dim MIA 

only means that one of u.dim A, u.dim MIA is 00. Of course, we do not expect 
such a weak piece of information to yield the conclusion A ~c M. 

We close this subsection with the following refinement of the second part of 
(6.37). 
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(6.39) Corollary. Let 0 = Ao S; AI S; ... S; A,,+I = M be a filtration in M.I! 
each Ai S;c M, then 

" 
(6.40) u.dim M = Lu.dim Ai+dAi. 

i=O 

Conversely, ifu. dim M < 00 and (6.40) holds, then each Ai S;c M. 

Proof. The equation (6.40) follows from (6.24)(1), the second part of (6.37), and 
induction on n. Conversely, assume (6.40) holds and that u.dim M < 00. Fix any 
j E [1, nJ. By (6.35) and induction, we have 

u. dim M :::: u. dim A j + u. dim MIA j 

j-I " 
:::: Lu.dim Ai+IIAi + Lu.dim Ai+IIAi 

i=O i=j 
n 

= Lu.dim Ai+IIAi . 
i=O 

In view of (6.40), all inequalities above must be equalities. In particular, 

u. dim M = u. dim Aj + u. dim MIA j • 

By the second part of (6.37), we conclude that A j S;c M. Of course, Ao = 0 and 
An+ I = M are closed in M as well. 0 

Now a final remark. In spite of the rather precise results in this subsection, the 
failure of "u.dim" to be additive over arbitrary short exact sequences remains a 
serious drawback for the theory of uniform dimensions. As a remedy for this, 
Goldie has introduced a modified version of uniform dimension which has come 
to be known as the "reduced rank". This is an invariant of modules that is bounded 
by the uniform dimension (hence its name), and enjoys the full additivity property 
over short exact sequences. The treatment of the reduced rank will be given in 
§7C below. 

§6D. CS Modules: Two Applications 

In the previous subsection, we have introduced the notion of an essential closure 
of a submodule. For two modules A S; M, an essential closure of A in M means 
a maximal essential extension C of A in M. Such a C always exists; incidentally, 
C is also minimal among closed submodules of M containing A. However, as we 
have observed before, C is in general not unique. 

The lack of uniqueness of essential closures is largely a result of the fact that, in 
general, the intersection of two (essentially) closed submodules of a module need 
not be closed. Nevertheless, the formation of essential closures turns out to be a 
useful tool, as we have already seen, for instance, in the formulation and proof 
of (6.37). In the following we shall give some further applications of essential 
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closures. (Another kind of closure called the Goldie closure, defined by using the 
idea of singular submodules, will be introduced later in §7C.) 

We begin with the following easy observation. 

(6.41) Lemma. For any (right) R -module M, the following are equivalent: 

(1) Every complement (i.e., closed submodule) in M is a direct summand. 
(2) For every submodule A ~ M, there exists a direct summand C of M 

such that A ~e C. 

Proof. (2) ==> (I) is trivial. (1) ==> (2) follows by taking C to be an essential 
closure of A in M. 0 

Definition. If MR satisfies (1), (2) above, we say that M is a CS module ("com
plements are summands"). If all quotients of M are CS, we call M a completely 
CS module. 

(6.42) Examples. 

(0) A semisimple module is completely CS. 

(1) Any uniform module is CS. (So for instance, any subgroup of tQ is a CS module 
over Z.) 

(2) Any injective module is CS. (More generally, any "quasi-injective" module, to 
be defined in §6G, is already CS; see (6.80).) 

(3) A closed submodule N of a CS module M is always CS. In fact, let C ~c N. 
By (6.24)(2), we have C ~c M. Since M is CS, C is a direct summand of M, 
and hence of N. 

(4) Over a Priifer domain R, any fg. torsion free module N R is CS. To see this, let 
C ~c N. Then N / C is torsionfree. For, if otherwise, there would exist x E N\ C 
suchthatxr E Cforsomenonzeror E R.ButthenC <;;e C+xR,acontradiction. 
Since N / C is f.g., it must therefore be projective by (2.31). Hence 0 --+ C --+ 

N --+ N / C --+ 0 splits, so E is a direct summand of N. 

(5) By (4) and (1) above, zn and Z/pmz (for any prime p) are CS modules over 
Z. However, the Z-module M = Z-module Z/8Z EEl Z/2Z in (6.17)(5) turns out 
to be not CS. (In the notation of (6.17)(5), the submodule C' is easily seen to 
be closed in M, but it is not a direct summand.) Thus, the direct sum of two CS 
modules may not be CS. For a complete determination of the f.g. CS modules over 
Z, see Exercise 19D. 

The following property of a CS module is noteworthy. 

(6.43) Lemma. A CS module MR has u. dim M < 00 iff Mis ajinite direct sum 
of uniform modules. 
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Proof. ("Only If") Assume M =I- 0 and u.dim M < 00. By (6.2), M contains a 
uniform submodule A. By (6.41), there is a decomposition M = C EB M' where 
A <;e C. Using (6.24)(2), it is easy to see that M' is also CS. Since u.dim M' < 
u.dim M, the proof proceeds by induction. 0 

In this subsection, we shall prove a couple of interesting results about CS mod
ules. These are deeper results, the proofs of which require more substantial work. 
If the reader so wishes, he or she can skip these harder proofs for a first reading, 
and go on with the rest of §6 without suffering from any discontinuity. 

The first result we propose to prove is a powerful theorem of B. Osofsky and 
P. F. Smith [91] which guarantees that certain classes of CS modules are of finite 
uniform dimension. For any ring R, consider a family P of f.g. right R-modules 
with the following properties: 

(PI) If N is isomorphic to a quotient of some module in p, then N E P. 

(P2 ) If X E P and Y is any P-submodule of a quotient module of X, then 
there is a P-submodule Y' <; X that projects onto Y. (Here and in the 
following, "P-submodule" means "submodule belonging to P".) 

For instance, if P is any family of f.g. modules closed under submodules, 
quotient modules (and isomorphic copies), then P clearly satisfies (PI) and (P2 ). 

Thus, the family of f.g. semisimple right R-modules satisfies (PI) and (P2). The 
family of cyclic (resp. f.g.) R-modules also satisfies (PI) and (P2). 

We can now state the following main theorem of Osofsky and Smith (loc. 
cit. [91 D. 

(6.44) Theorem. Let P be afamity of right R-modules satisfying (PI) and (P2), 
and let M E P. If every P -submodule of M is completely CS, then M is a finite 
direct sum of uniform modules. 

Since the formulation of this theorem is rather abstract, it behooves us to state 
a few special cases of the theorem in the form of corollaries. 

(6.45) Corollary. Let R be a ring such that every cyclic (resp.fg.) right R-module 
is CS. Then every cyclic (resp.fg.) right R-module is a finite direct sum ofuniform 
modules. 

Proof. Apply the theorem to the class P of cyclic (resp. f.g.) right R-modules. 
o 

(6.46) Corollary. Let N be any right R-module such that every quotient of every 
cyclic submodule of N is injective. Then N is semisimple. 

Proof. It suffices to show that every cyclic submodule M <; N is semisimple. 
Again, let P be the class of all cyclic R-modules. Consider any quotient AI B 
of a P-submodule A <; M. By assumption, AlB is injective, and therefore CS. 
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Thus, A is completely CS, and M satisfies the hypothesis of (6.44). By (6.44), 
M = MI E9 ... E9 Mn , where the Mi 's are uniform. For any 0 -I- mi E Mi, miR 
is injective, so mi R is a direct summand of Mi. This implies that m; R = Mi. It 
follows that each Mi is simple, and therefore M is semisimple, as desired. 0 

The following result was stated without proof in FC- p. 30. It was first proved 
by B. Osofsky in her Rutgers thesis in 1964. We can now deduce it easily from 
(6.46). 

(6.47) Corollary. Let R be a ring such that every cyclic right R-module is injec
tive. Then R is a semisimple ring. 

Proof. By (6.46), every module N R is semisimple. o 

In appreciation of this Corollary, we remark that, under the hypothesis that right 
cyclic R-modules are injective, every principal right ideal aR is a direct summand 
of RR, and this amounts to saying that R is a von Neumann regular ring (see FC
(4.23)). And of course, R is right self-injective. However, all this is still a far cry 
from the semisimplicity of R, for which there is no "easy" proof. For a nice direct 
application of (6.47), see (7.52)(2) below. 

Having seen some of the interesting applications of Theorem (6.44), let us now 
embark upon its proof, following closely the arguments given by Osofsky and 
Smith. 

Proof of (6.44). Let M and P be as in (6.44). By (6.43), it suffices to show that 
u.dim M < 00. Assume, instead, u.dim M = 00. Then 

where M; -I- O. Since M is CS, M = A I E9 B I, where MI ~e A I. After applying 
the projection map iTl from M to BI (with kernel A I)50 we may assume that 
EBi>2 Mi ~ B I. Repeating the construction, we have BI = A2 E9 B2, with M2 ~e 
A2 ,-and we may assume as before that EBi>3 Mi ~ B2 • This process leads to 
nonzero submodules {Ai, Bi} such that, for any n, 

In particular, Ai, B; E P. Since any module in P is f.g., each Ai contains a maximal 
submodule C;. Let Si be the simple module A;/C;, and let M = M/EB~I C;, 
which is CS. For any n, we have: 

AI ffi ••• ffi A ffi B 
M = <I7 <I7 n <I7 "= SI E9 ... E9 S" E9 ( ... ). 

C I E9 ... E9 Cn E9 ... 

50 Note that:IT1 is injective on ffii:':2 Mi. since AI n ffii:':2 Mi = O. 
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Let S be the semisimple module EB~I Si s:;; M, and let N be an essential closure 
of Sin M. Since M is CS, N is a direct summand of M. We note the following 
properties of N: 

(A) Being isomorphic to a quotient of M, N E P and N is completely 
CS. 

(B) Any P-submodule A <; N is completely CS. (By the property 
(P2), A <; M is the image of a P-submodule A' <; M, and by 
assumption A' is completely CS.) 

(C) Any fg. submodule T <; S is a direct summand of N. (This follows 
from (*) above since T is a direct summand of SI (f) ... EB Sn for 
some n.) 

Now write N = {l, 2, ... } as a disjoint union U~I Nj where each Nj C N 
is (countably) infinite. Let Sj = EBiENj Si, and let Nj be an essential closure of 
Sj in N. By (A), N j is a direct summand of N and so N j E P. Also, we have 
S = EB j?: I Sj and N j n S = Sj for all j. Since N ISis also CS by (A), it has a 
direct summand, say N' IS, with 

(EBj?:INj)/S <;e N'IS. 

(Here, the sum Lj?:1 N j is direct by Exercise (3.8).) From N E p, we deduce 
that N I S E P and N'I S E p, so by (P2 ), N contains a P-submodule A with 
A + S = N'. We claim that: 

(D) An Sj -# ° for every j. 

To see this, fix a submodule V in the semisimple module S such that S = V EB 
(AnS),andconsidertheprojectionll' from AEBV(= A+S) to V.If AnSi =0, 
we will have 

Si ;:: ll'(Si) s:;; ll'(Nj ) <; V. 

But N j E P implies that N j is f.g., so ll' (Nj ) is of finite length, in contradiction 
to the definition of Si. This proves (D); in particular, there exists a simple module 
Tj <; A n Sj, for each j. Since A is CS (by (B», A has a direct summand Y 
with EB~ I Tj <;e Y. The latter implies that Y ~ S, since A and hence Y are 
both f.g. But by (C), 

n II 

S n Y n EB N j = EB Tj (n ~ 1) 
j=1 j=1 

is a direct summand of N. Since S <;e N, we must have 
n n 

y n EB Nj = EB Tj 

j=1 j=1 

for all n, and hence Y nEB~1 Nj <; S. This contradicts (EB~I Nj)1 S <;e N'I S, 
since Y <; N' but Y ~ S. 0 
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Though the proof of Theorem (6.44) is rather long, the strength of the result 
and the richness of its corollaries amply justify its inclusion. For instance, after we 
introduce the notion of singular modules in §7, it will be clear that the class P of 
cyclic (resp. f.g.) singular right modules over a ring R also has the two properties 
(PI) and (P2 ). Thus, (6.44) applies to P. For many other applications of (6.44) in 
a similar spirit, we refer the reader to the paper of Osofsky and Smith [91]. 

We now go on to give a second application of the notion of CS modules. This is 
a remarkable result of Y. Utumi which is a byproduct of his work on self-injective 
rings in the mid-1960s (see Utumi [65]). 

(6.48) Theorem. Let R be a ring such that both RR and RR are CS modules. 
Then R is Dedekind-finite. 

In fact, the following special case of the theorem is already noteworthy. 

(6.49) Corollary. Any self-injective ring is Dedekind-finite. 

This follows from the Theorem since, for a self-injective ring R, RR and RR 
are injective modules, and hence CS modules. The Corollary does require R to 
be both left and right self-injective, since we have shown earlier (in (3.748» that 
the ring R of linear endomorphisms of an infinite-dimensional left vector space 
over a division ring is left but not right self-injective - and we know that R is 
not Dedekind-finite ! 

Proof of (6.48). Let R be as in (6.48), and assume that ab = 1 -I ba for some 
a, b E R. Then, by a standard observation of Jacobson (FC-(21.26», the elements 
eij = bi (1 - ba )a j (i, j :::: I) are nonzero elements of R satisfying the matrix 
units' equations: eijekf = Ojkeii. Since RR is CS, 

(A) LReii ~e Rg 

for some idempotent g. (Note that any direct summand of R R is generated by an 
idempotent.) Similarly, since RR is CS, 

(8) L g(elj + ejj) R ~e f R 
j>i 

for some idempotent f. Having chosen the idempotents g and f, we proceed in 
the following sequence of steps. 

Step 1. If a E Rg is such that aeu = 0 (Vi), then a = O. Indeed, let 

A = {x E Rg: xeii = 0 (V i)}, 

which is a left ideal in Rg. We have An Li Reu = O. (For, if a = Li XieU E A, 
then 0 = aejj = xjejj (V j), and so a = 0.) Since Li Reii ~e Rg, it follows 
that A = O. 
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Step 2. We claim that g = fg. Indeed, if otherwise, (l - f)g E Rg \ {OJ, so by 
(A), we have 

n 

o i= x(l - f)g E L Reii (for some x E R, n:::: 1). 
i=l 

From this, we have x(l - f)g en+l,n+l = O. Left multiplying (B) by x(l - f), 
we get 

x(l - f)g(elj + ejj) = 0 (V j > 1). 

Comparing this (for j = n+l)withthelastequation, we get x(l- f)gel,n+l = O. 
Right multiplying this by ell+l,j, we get x(1 - f)gelj = 0 (V j :::: 1), and so 
x(1 - f)gejj = 0 for all j > I (as well as for j = 1). By Step 1, we get 
x(l - f)g = 0, a contradiction. 

Step 3. Note that, from (A), eiig = eii for all i. In particular, ellgell = ell i= 0 
guarantees that gell i= O. Now by Step 2, gell = fgell E f R, so (B) implies 
that 

m 

(C) o i= gellZ = L g(elj + ejj) Zj 
j=2 

for some z, Zj E R, and some m :::: 2. Left multiplying (C) by ejj (j > 1), we 
have ejjZj = 0, and hence eljZj = eljejjZj = O. Now the RHS of (C) is 0, a 
contradiction. 0 

In closing this subsection, we note that the notion of CS modules has also found 
other applications in ring theory, for instance in the study of simple rings and 
noetherian rings. In a recent paper of Huynh, Jain, and L6pez-Permouth [96], it is 
shown that, if every cyclic singular right module over a simple ring R is CS, then 
R must be a right noetherian ring. In another paper of Huynh, Rizvi, and Yousif 
[96], it is shown that, if every f.g. right R-module is CS, then R must again be a 
right noetherian ring. 

Some remarks on terminology are also in order. The property (6.41)(2) on a 
module M, namely, that any sub module of M is essential in some direct sum
mand, is often known in the literature as the extending property. Accordingly, 
the CS modules defined by the (equivalent) properties in (6.41) are also known 
as extending modules (especially in the work of M. Harada, B. Muller, and oth
ers). Extending modules (and some subclasses of them, notablly "quasi-injective 
modules", "continuous modules", and "quasi-continuous modules") have gained 
considerable popularity since the 80s, and were extensively sltudied in a mono
graph by that name by Dung, Huynh, Smith and Wisbauer [94], as well as in the 
earlier book by Mohamed and Muller [90]. While we have no space for continuous 
and quasi-continuous modules (except in a few exercises), we shall return in §6G 
to give a quick exposition on quasi-injective modules. If the reader so wishes, he 
or she can proceed directly to §6G at this point, and come back to work on §6E 
and §6F later. 
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§6E. Finiteness Conditions on Rings 

Viewing a ring R as a right module over itself, we have an invariant u.dim RR of 
the ring, which is either a natural number, or the symbol 00. According to (6.30)', 
the finiteness condition u.dim RR < 00 amounts to Aee on the complements 
in RR, or equivalently, Dee on such complements. On the other hand, the two 
finiteness conditions 

(6.50) u. dim RR < 00, u.dim RR < 00 

tum out to be completely independent. For instance, in Exercise 14, a ring R is 
exhibited with the property that u. dim RR = 2, but u. dim RR = 00. Later (in 
§10), it will also be seen that, for any domain R which is left Ore but not right 
Ore, we have u.dim R R = 1, but u.dim RR = 00. 

Many types of finiteness conditions in ring theory can be formulated in terms 
of Aee or Dee on suitable classes of I-sided ideals. Upon fixing attention on a 
specific type of I-sided ideals, we can investigate if there is a relation between 
Aee and Dee on such, or if there is a relation between the "left" condition and the 
"right" condition. And then we can investigate if there is a relation between one 
finiteness condition and another. Traditionally, concrete results on such relations 
(or explicit counterexamples showing the lack of them) are of great interest to ring 
theorists. 

In Fe, we have considered several types of finiteness conditions. Here, we have 
introduced new ones in (6.50) via uniform dimensions. In this subsection, we shall 
explain how the different types of finiteness conditions are interrelated. 

To make our discussions more systematic, we introduce the following notational 
system (where R is a ring): 

right (left) ideals in R, 

II principal right (left) ideals in R, 

(6.51) III right (left) complements in R, 

IV right (left) annihilators in R, 

V right (left) direct summands in R. 

Here, I, II, III, and V should be self-explanatory. In IV, we mean by "right (resp.left) 
annihilator" a subset in R of the form annr (A) (resp. anne (A», where A is a subset 
of R. Note that a right (resp. left) annihilator is always a right (resp. left) ideal. 

The inclusion relations between the different families (indicated by the inclusion 
arrow ")---7") are summarized in the following chart: 

(6.52) 
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Here, only the three lower inclusion arrows need to be explained. To be specific, let 
us work with right ideals. If 2t ~ R R is a right direct summand, then 2t = e R for 
some idempotent e (see FC-Exercise 1.7). Therefore, 2t is a plincipal right ideal. 
We can check easily that eR = annr(R(l - e», so 2t is also a right annihilator. 
Finally, of course, 2t is a light complement (to (l - e)R) in R .. 

Continuing to work with right ideals, let us introduce the notations ACCr, ... , 
ACCv for the ACC conditions on the five families of right ideals, and DCCr, ... , 
DCCv for the corresponding DCC conditions. (Putting the numerals I, .. , , V on 
the right suggests working with right ideals.) In view of the inclusion relations in 
(6.52), we obtain immediately the following implication chart: 

(6.53) 

and a similar one for ACC. Note that DCCr is just "right artinian", DCCm is just 
"(right) finite-dimensional" (u.dim RR < 00), and DCCll amounts to "left perfect" 
(by Bass' Theorem: FC-(23.20»5r. However, there are no special names in the 
literature for DCCrv and DCCv. (A nice interpretation for DCCv will be given 
later in (6.59).) 

Of course, we can also work with left ideals. In that case, we arrive at the 
finiteness conditions r ACC, ... , v ACC, and r DCC, ... , v DCC, and charts similar 
to (6.53) hold for these. 

Next, we shall go through each of the families in (6.51), and investigate the 
relations between "left" and "right", ACC and DCC. Beginning with the family 
I, we have the following relations according to the Hopkins-Levitzki Theorem 
FC-(4.l5): 

(6.54) 

Here, as in the following, if two conditions are not connected by an implication 
arrow, then there is (usually) none. Thus, in (6.54), left noetherian does not imply 
left artinian, nor does it imply right noetherian, etc. 

51There is no misprint: we did mean to say "left perfect" here. The switch from "right" 
to "left" is part of the nature of Bass' Theorem. 
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For the family II, we consider principal I-sided ideals. Here, Jonah [70] has 
proved the following remarkable "criss-cross" implications: 

(6.55) 
"DCCXDCC" 

"ACC ACC" 

These implications are, of course, not reversible, as the example Z shows. Since 
nDCC means "right perfect" and DCCn means "left perfect", the example in FC
(23.22) of a right perfect ring which is not left perfect shows that nDCC and 
DCCn are independent conditions. We leave it to the reader to check that in fact, 
there are no horizontal or vertical implications at all in (6.55): this is a rather tricky 
"extra credit" problem (Exercise 24). 

For the family III, we consider I-sided complements and uniform dimensions. 
Here we get more implication arrows. According to what we said at the beginning 
of this subsection, we have the following chart: 

(6.56) 

lIIACC ACClII 

The examples on uniform dimensions cited at the beginning of §6E show, however, 
that no implication is possible horizontally. 

Next we come to the family IV. Here we consider I-sided annihilators. Note that 
a right ideal Q{ S; R is a right annihilator iffQ{ = annr(anneQ{). Suppose R satisfies 
IVACC, and consider a descending chain of right annihilators Q{, :2 Q{2 :2 .... 
Taking left annihilators, we get anne (Q{,) S; anne (Q{2) S; .... By IV ACC, this 
chain stabilizes. Taking right annihilators again, we see that the original chain 
Q{, :2 Q{2 :2 ... stabilizes. Therefore, we have IvACC ==> DCCIV , and the 
converse can be proved similarly. Thus we have 

(6.57) 

"OCC X DCC" 

,yACC ACC,y 

We leave it to the reader to confirm (Exercise 23) that there are no horizontal 
(equivalently, vertical) implication arrows. For commutative rings, of course, ACC 
and DCC for annihilator ideals are equivalent. 

Finally, we come to the family V. Here we consider I-sided direct summands 
(e R 's and Re 's for e = e2 E R). The following turns out to be true: 

yDCC ¢::::=::> DCCy 

(6.58) II II 
yACC ¢::::=::> ACCy 

This follows from the following proposition (and left-right symmetry). 
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(6.59) Proposition. For any ring R, the following are equivalent: 

(1) R satisfies ACC on right direct summands. 
(2) R satisfies DCC on left direct summands. 
(3) R has no infinite set of nonzero orthogonal idempotents.52 

Proof. (I){::=:}(2). Suppose eR S;; e'R, where e, e' are idempotents. Taking left 
annihilators, we have R(I - e) 2 R(I - e'). Here the inclusion remains strict, for 
otherwise we can take right annihilators again and get the contradiction e R = e' R. 
This observation clearly gives the equivalence of (1) and (2). 

(1)===}(3). Assume R has an infinite orthogonal set of nonzero idempotents 
{el' e2, ... }. Let Cn = el + ... + en for n ::: 1; these are easily checked to 
be idempotents. Also, 

Cn+ICn = (el + ... + ell + en+l)(el + ... + en) = c~ = Cn, 

CnCn+1 = Cn ::I Cn+l· 

These imply that Cn R S;; Cn+ I R for all n, so (1) fails. 

(3)===}(2). Assume there exist R = Bo ;2 BI ;2 ... where each Bn is a direct 
summand of RR. Then Bn- I = An EB Bn for suitable nonzero left ideals {An: 
n ::: 1}. Write 1 = el + fl with el E AJ, fl E B I, and write fl = e2 + h 
with e2 E A 2, h E B2, and so on. Then All = Ren so ell ::I 0 for each n ::: 1. 
Moreover, 

1 = el + fl = el + e2 + h = ... = el + ... + en + fn 

is the decomposition of 1 with respect to the direct sum expression R = A I EB· .. EB 
An EB Bn. It follows that e I, e2, ... are mutually orthogonal (nonzero) idempotents 
(cf. FC-Exercise 1.7). 0 

Using the five families I, ... ,V, we have generated altogether 20 finiteness 
conditions in (6.54)-(6.58). In the following Proposition, we shall show that any 
of these implies two other familiar finiteness conditions. 

(6.60) Proposition. Assume that R satisfies any of the 20 finiteness conditions 
specified above. Then 

(1) RR (resp. RR) is a finite direct sum of indecomposable right (resp. left) 
ideals (or, equivalently, J is a sum of a finite number of mutually orthogonal 
primitive idempotents). 

(2) R is Dedekind-finite. 

Proof. In view of the hierarchy in (6.52), R satisfies each of the conditions in 
(6.59). 

52Two idempotents e, e' E R are called orthogonal if ee' = e'e = O. 
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(1) This follows by an easy application of the Konig Tree Lemma. To give a more 
self-contained proof, we can proceed as follows. By (6.59)(1) (left ideal version), 
there exists a left ideal A S; R maximal with respect to the following properties: 

(a) A is a direct summand of RR. 
(b) A is a finite direct sum of indecomposable left ideals. 

Let R = A EB B, where B is a left ideal. If B -10, then by (6.59)(2), B contains an 
indecomposable left ideal C that is a direct summand of RR. But then A EB C also 
has the properties (a), (b) above, which contradicts the choice of A. Therefore, 
B = 0 and R = A has the property (b), as desired. 

(2) The proof of this part is a famous observation of Jacobson. If R fails to be 
Dedekind-finite, let us fix a, b E R such that ab = 1 -I ba. According to 
Jacobson (cf. FC-(21.26)), 

lei = bi(l_ ba)a i : I::: i < oo} 

is an infinite orthogonal set of nonzero idempotents in R. Thus R does not satisfy 
(3) in (6.59). Alternatively, we can proceed as follows. If R is not Dedekind-finite, 
RR = A] EB BJ for some B] -10, A] :;::: RR (cf. Exercise 1.8). Again, we can 
decompose A] into A2 EB B2 for some B2 -I 0, A2 :;::: RR, and so forth. This 
leads to an infinite chain of direct summands A] ;? A2 ;? .. , in R R, so R does 
not satisfy (2) in (6.59). 0 

§6F. Change of Rings 

Let" P" be any of the finiteness conditions introduced in §6E. It is natural to ask: 

(I) Is the property" P" on a ring R inherited by subrings of R? 
(2) Does the property" P" on R "go up" to the polynomial ring R[x l? Or the 

power series ring R[[x])? 
(3) Ditto for the matrix rings Mn(R). 

For instance, one of the most famous theorems in ring theory, the Hilbert Basis 
Theorem, says precisely that if R satisfies ACC], then R[xl also does. But then if R 
satisfies DCC], R[xl never does (unless R = 0). For the matrix ring S = Mn (R), 
it is quite easy to see that, if R satisfies ACC] or DCCr, then S also does, and 
conversely. On the other hand, according to Exer. (1.18), it is possible for a ring R 
to be Dedekind-finite, and a matrix ring S = Mn (R) to be not Dedekind-finite. 
Generally speaking, the answer to the questions (I), (2), and (3) above is: it all 
depends! 

There is much to be done if we want to answer all of these questions fully, but 
we have neither the time nor the space here. In any case, Question (3) above is 
best dealt with later in the context of the Morita Theory for categories of modules. 
We shall return to this point in Chapter 7. 

Instead of trying to answer the questions (1)-(3) in full, let us just make a 
few comments on some important sample cases here. We'll start with (1): the 
question on inheritance of the various properties to subrings.1t is true that most of 
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the conditions we considered are not inherited by subrings. However, some are. 
For instance, the "subscript V" conditions (on direct summands) in (6.58), when 
interpreted in the form (6.59)(3), are obviously inherited by subrings. In the same 
spirit, Dedekind-finiteness (and stable finiteness) is inherited by subrings. More 
substantially, the "subscript I" conditions (ACC and DCC on I-sided ideals) are 
inherited by subrings under suitable conditions, according to the Eakin-Nagata
Eisenbud Theorem (3.91) and the Eisenbud-Robson Theorem (3.93). As for the 
chain conditions on annihilators, we have the following proposition which is often 
greeted by beginning ring theory students with surprise and delight. 

(6.61) Proposition. Let" P" be any of the conditions in (6.57) for annihilators. 
If R has the property "P", so does any subring S ~ R. 

Proof. Consider, say, the case P = ACC[v. Let ~, ~ ~2 ~ ... be a chain of 
right annihilators in S, and let ~i = ann: (~i)' (The superscript "S" suggests that 
the annihilators are taken in S.) Then !B, ;2 ~2 ;2 .. " and we have 

ann~ (!B,) ~ ann~ (!B2) ~ .... 

By ACC[v on R, this chain stabilizes. Since 

S n ann~(!Bi) = ann;(!Bi) = ~i' 

the chain~, ~ ~2 ~ ... also stabilizes. D 

Although (6.61) is basically an easy result, its significance is not to be underesti
mated. It implies, for instance, that any subring of a right noetherian ring satisfies 
ACC[v (on right annihilators). As we shall see in §11, this observation plays a 
key role in formulating the definition of a (right) Goldie ring. 

In contrast to (6.61), ACC[v does not go up to matrix rings. In Exercise (1.18), 
we have mentioned Shepherdson 's example of a domain R for which S = Ml2 (R) is 
not Dedekind-finite. By (6.60), S does not satisfy any of the 20 finiteness conditions 
in (6.54)-(6.58). But of course R satisfies ACC and DCC on both left and right 
annihilators, since R is a domain! 

Returning now to uniform dimensions which are the main concern of §6, we 
shall conclude the present subsection with some results on the behavior of"u.dim" 
vis-a-vis the types of change of rings in Questions (1)-(3) above. For subrings, 
not too much can be said. If R ~ S are rings, u.dim Ss < ()O need not imply 
u.dim RR < 00. For instance, the free algebra R = Q (x, y) has infinite right 
uniform dimension (it contains ffi~, Xi yR); yet it can be embedded in a division 
ring S (FC-(14.25», which has right uniform dimension 1. For matrix rings, the 
situation is much more amenable, as the following result shows. 

(6.62) Proposition. Suppose u. dim RR = d, and let S = Mln (R). Then u. dim Ss 
=nd. 
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Proof. Let M = RII. Viewing the elements of RII as row vectors, we can make M 
into a right S-module by matrix multiplication. For any right ideal 21 S; R, define 

(6.63) Cl(21) = {(al, ... , an) EM: al, ... , an E 21}, 

which is an S-submodule in M. Conversely, for any S-submodule N S; M, let 

(6.64) f3(N) = {a E R: (a, 0, ... ,0) E N}, 

which is a right ideal in R.1t is easy to check that Cl and f3 define mutually inverse 
1-1 correspondences between the right ideals of R and the S -submodules of M. 
Moreover, Cl and f3 both preserve direct sums. It follows immediately that u.dim 
Ms = u. dim RR = d. Since Ss ~ n . Ms, we have u.dim Ss = nd. 0 

For polynomial extensions S = R[x], "(right) finite dimensionality" (ACCIIr) is 
preserved as well. This may be viewed as an analogue ofthe Hilbert Basis Theorem. 
However, while other kinds of dimensions (Krull dimension, global dimension, 
... ) tend to get bigger under a polynomial extension, the right uniform dimension 
does not, as the following result of R. C. Shock [72] shows. 

(6.65) Theorem. For S = R[x], u. dim Ss = u. dim RR. 

The proof of this result is preceded by a few lemmas. The notation S = R[x] 
will be fixed below. 

For convenience, let us say that a polynomial I E S is good if I -I- 0, and all 
nonzero coefficients of I have the same right annihilator in R. Note that if I is 
good, then for any d E R, I d remains good, unless it is zero. 

(6.66) Lemma. For any I E S\ {O}, there exists d E R such that I d is good. 

Proof. We induct on the number k of nonzero coefficients of I, the case k = 
being clear. Assume k :::: 2, and that I is not yet good. Then I has two coefficients 
a, a' -I- 0 with ann~(a) -I- ann~ (a ' ). We may assume there exists b E R such that 
ab = 0 -I- a'b. Then Ib -I- 0 and has fewer than k nonzero coefficients. By the 
inductive hypothesis, (f b)c is good for some c E R, so we can pick d = be. 

o 

(6.67) Lemma. Let I(x) = anxll + ... + ao E R[x] be good, where all -I- O. Let 
IB = ann~(an)' Then ann;(f) = lB[x]. 

Proof. The inclusion ann;(f) ;2 lB[x] is clear. If equality does not hold, pick 
g E ann; (f)\IB[x] of the least degree m, say, 

g(x) = bmxm + ... + boo 

Then anbm = 0 implies that bm E lB. But then 

bm_1xm- 1 + ... + bo E ann;(f)\IB[x], 
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a contradiction. 0 

(6.68) Lemma. II2/. is a uniform right ideal in R, then 2([x] is a unilorm right 
ideal in S = R[x]. 

Proof. Suppose 2([x] is not uniform in Ss. Then there exist I, g E 2([x]\{O} such 
that IS n g S = O. We may assume that this pair is chosen such that deg I + deg g 
is as small as possible. In view of (6.66), we may assume (after a right scaling) 
that I and g are both good, say, 

I = anxn + ... + ao (an =1= 0), g = bmxm + ... + bo (bm =I- 0), and m ::: n. 

Since!2lR is uniform,anc = bmd =1= o for suitable c, d E R. After replacing I andg 
by I c and gd (which remain good as noted earlier), we may assume that an = bm . 

From (6.67), it follows that ann~(f) = ann~(g). Now consider g' := g - Ixm - n , 

which has degree < m, and is not zero (for otherwise 0 =1= gEl S n gS). Choose 
e E R such that g' e is good. By the minimal choice of m + n, IS n g' eS =I- 0, so 
there exist h, k E S such that 

(6.69) 0=1= Ih = g'ek = (g - Ixm-n)ek. 

But then I(h + xm-nek) = gek implies that gek = O. Since ann~ (f) = ann~(g), 
we must also have I ek = O. Now the RHS of (6.69) is zero, a contradiction! 

o 

With the aid of the above lemma, we can now prove Shock's Theorem. 

Proof of (6.65). If 2( = 2/.1 ED ... ED 2(n is a direct sum of right ideals in R, clearly 
2([x] = !2l1 [x] + ... + 2(n[x] is a direct sum of right ideals in S. This gives the 
desired conclusion if u.dim RR = 00. Now assume u.dim RR = n < 00. Pick 
uniform right ideals {2(j} such that 

2( = 2(1 ED· .. ED 2(n ~e RR. 

By (6.68), each 2(j[x] is uniform in Ss. But by Exercise (3.30), 

2(1 [x] ED··· ED 2(n[x] = 2([x] ~e Ss. 

Therefore, u.dim Ss = n. o 

By an easy induction, it follows that, for S = R[X] where X is any finite set 
of commuting indeterminates, we have u.dim Ss = u. dim RR. In fact, as Shock 
has pointed out, the same conclusion holds for any (possibly infinite) set X of 
commuting indeterminates.53 We invite the reader to verify this fact in Exercise 
26. 

53The commutativity of the set X is essential here, as the case of free algebras in more 
than one variable shows. 
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For the power series extension S = R[[x]], however, "(right) finite-dimension
ality" is no longer preserved, in general. In (10.31 A), we shall provide an example 
of a (noncom mutative) domain R with u.dim RR = u. dim RR = I (a so-called 
Ore domain) but with u.dim Ss = 00 for the power series ring S = R[[x]]. 

§6G. Quasi-Injective Modules 

In this subsection, we discuss in some detail the notion of a quasi-injective module 
which generalizes that of an injective module. At first, this material might look 
a little out of place since the present section (§6) is supposed to be on uniform 
dimensions, closed submodules, and the like. However, in studying the theory of 
quasi-injective modules, it turns out that we will have occasion to use some of the 
notions developed earlier in this section such as complements, essential closures, 
and CS modules, and so forth. Thus, it makes sense to present the material on 
quasi-injective modules here and showcase it as an interesting application of the 
earlier material in §6. 

(6.70) Definition. A module MR over an arbitrary ring R is said to be quasi
injective (QI) if, for any submodule L ~ M, any f E HomR(L, M) can be 
extended to an endomorphism of M. 

The definition of a quasi-injective module was given by R. E. Johnson and 
E. T. Wong in 1961. With such a definition, several thoughts immediately come 
to mind. 

(6.71) Remarks. 

(I) Clearly, any injective module is always QI. The converse is not true in general; 
see (6.72) below. 

(2) If M R contains a copy of the right regular module RR, then M is QI iff it 
is injective. (The nontrivial direction follows from Baer's Criterion (3.7), since, 
upon viewing RR as a submodule of M, any homomorphism from a right ideal to 
M extends to an endomorphism of M, which then restricts to a homomorphism 
from RR to M.) The following are some quick consequences of this fact: 

(2A) Over a domain R, any torsionfree QI module M is injective. (If 0 f. m EM, 
then M 2 m . R ~ R.) 

(2B) For any module N, RR (J)N is QI iff RR and M are both injective. In particular, 
RR is QI iff R is right self-injective. 

(3) To check that M is QI, it suffices to check, in the notation of (6.70), the 
extendibilityof f E HomR(L, M) in the case when L ~e M. Once this is 
checked, the case of a general submodule L ~ M follows from an easy application 
of Zorn's Lemma. 

(4) Of course, there also exists the obvious dual notion of a quasi-projective mod
ule: a module P is quasi-projective if, for any quotient module Q of P, any 
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g E HomR(P, Q) can be "lifted" to an endomorphism of P. We shall, however, 
limit ourselves to a discussion of quasi-injectives, and shall not go into quasi
projectives in this text. 

In mathematics, we often generalize notions that we have defined earlier. Whe
ther a particular generalization is worthwhile should be judged, among other fac
tors, by whether the generalization allows for nice new examples, and whether it 
leads to a mathematically interesting theory. To justify the notion of QI modules, 
we should therefore first look at some nontrivial (i.e., non-injective) examples. 

(6.72) Examples. 

(I) Any simple module M R is obviously QI, since the only submodules of Mare 
(0) and M. Of course, a simple module need not always be injective (unless R is 
a so-called right V -ring; see §3H). 

(2) More generally, any semisimple module M is QI. Given f E HomR(L, M) 
where L <; M, we can extend f to g E End R (M) by letting g be zero (for instance) 
on a direct complement of L in M. 

(3) Let R be a commutative PID. Then any cyclic module M ~ R is QI. To see 
this, write M = RIA, where A is a nonzero ideal, and consider any submodule 
L = BIA, where B ::2 A is an ideal. Say, B = bR, and A =, bcR (c i= 0). For 
any f E HomR(L, M), write f(b) = X, where the "bars" mean modulo A. Since 
0= f(bc) = xc, we have xc E bcR, whence x = br for some r E R. Therefore, 
f extends to the endomorphism of M given by multiplication by r, and we have 
checked the quasi-injectivity of M. (A slightly different proof for this can be given 
using the self-injectivity of RIA; see Exercise 278.) 

(4) Let R be a finite-dimensional algebra over a field k such that any simple right 
R-module has endomorphism ring k. Then any module MR of length :s 2 is QI. It 
suffices to check the case of a nonsemisimple M of length 2. In this case soc(M) 
is a simple module S. Consider f E HomR(L, M) where L <; M. In order to 
extend f, we may assume that L has length 1. But then L = S, and we must have 
f(L) <; soc(M) = L. By assumption, f is a scalar multiplication on L by some 
a E k, so obviously it extends to an endomorphism of M. Thus, for instance, in the 

3-dimensional k-algebra R = (~ ~), any proper right ideal (and every proper 

homomorphic image of RR) is QI. 

(6.73) Proposition. (J) A direct summand of a QI module is always QI. (2) In 
general, a direct sum of two QI modules need not be QI. 

Proof. (1) Suppose N = M EB M' is QI. To see that M also is, consider 
f E HomR(L, M), where L is any submodule of M. We may view f as in 
HomR(L, N) and extend it to some g E EndR(N). If IT is the projection map 
from N to M (with kernel M'), clearly IT 0 g restricted to M extends f. Hence M 
is QI. 
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(2) We give here a nice (and quick) counterexample due to B. Osofsky. Over the 
ring R = Z, let M = Q and M' = Zn for any natural number n. By (6.71)(1) and 
(6.72)(2), these are QI Z-modules. However, N = M E9 M' is not QI. In fact, let 
L = Z E9 (0) ~ N, and take f E Homz(L, N) such that f takes Z to Zn by the 
natural projection map. This f clearly cannot be extended to an endomorphism 
of N, since Homz(Q, Zn) = 0 (Q being divisible). Therefore, N fails to be QI! 
Another example is N = M E9 M' where M, M' are the QI modules Zm and 
ZIl, with nlm and 1 < n < m. An argument similar to that above shows that 
N is not QI. (This observation, plus (6.77) below, leads quickly to a complete 
determination of the f.g. abelian groups which are QI as Z-modules; see Exercise 
28.) 0 

Next, we give an interesting characterization of QI modules M in terms of the 
injective hull E(M). 

(6.74) Theorem. A module MR is QI iff M isfully invariant in E(M) (i.e., iff M 
is stabilized by every endomorphism of E(M)). 

Proof. First suppose M is fully invariant. For any f E HomR(L, M) where L ~ 
M, we can extend f to an endomorphism g of E (M) (since E (M) is injective). 
By assumption, geM) ~ M, so glM E EndR(M) extends f. This checks that 
Mis QI. Conversely, assume M is QI, and let f E EndR(E(M)). It is easy to 
check that L = {m EM: f(m) E M} is an R-submodule of M. Since we 
have f : L ~ M, there exists g E EndR(M) such that flL = giL. Without 
complicating the notation, we may assume that g E EndR(E(M)) (since E(M) is 
injective). Suppose for the moment that (g - f)M =I- O. Then M n (g - f)M =I- 0, 
so (g - f)m = m' =I- 0 for some m, m' E M. Now f(m) = gem) - m' E M 
implies that mEL, and flL = giL leads to m' = 0, a contradiction. Therefore, 
we must have (g - f)M = 0, and hence f(M) = geM) ~ M. This checks that 
M is fully invariant in E(M). 0 

(6.75) Remark. Let S = EndR(E(M)) operate on the left of E(M), so that E(M) 
is an (S, R)-bimodule. From this perspective, we can rephrase (6.74) by saying 
that M is QI iffit is an (S, R)-subbimodule of E(M). 

Let us state some useful consequences of (6.74). The first one is obvious from 
the proof given above. 

(6.76) Corollary. If MR is QI, there exists a natural surjection 

defined by restriction of endomorphisms. 

In general, of course, the surjection ex is not an isomorphism. For instance, 
consider the simple (and hence QI) module M = Zp over R = Z. Here, E(M) is 
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the Priifer p-group C pOC, whose endomorphism ring is the ring of p-adic integers. 
This maps onto Endz(M) which is the ring 7L. p • The kernel of Ci is the unique 
maximal ideal of the ring of p-adic integers. However, in some important special 
cases, Ci is an isomorphism; see, for instance, Exercise (7.32), where it is claimed 
that Ci is an isomorphism when M is a "nonsingular" QI module. 

(6.77) Corollary. If a module M is QI, so is any finite direct sum Mn. 

Proof. Let E = E(M), and S = EndR(E). For N = M n , we have E(N) = e, 
and so EndR (E (N)) = Mn (S), operating on the right of N by "matrix multiplica
tion". Given any row vector (mt. ... , mn ) E N, right multiplication by a matrix 
in Mn (S) results in another row vector in N, since M is invariant under any entry 
of the matrix. This checks that N is fully invariant in E(N), so by (6.74), N is 
~ 0 

Another application of (6.74) is to the notion of a quasi-injective envelope (QI 
envelope, or QI hull) of a module. The definition is the obvious one: a QI envelope 
of M is a QI module Q ;2 M which is minimal with respect to these properties 
(Le., Q does not properly contain a QI module ;2 M). 

(6.78) Corollary. Any module M has a QI envelope. 

Proof. Let S = EndR(E(M)) as before, and let Q be the smallest (S, R)-sub
bimodule of E(M) containing M. Since E(Q) = E(M), we see that Q is fully 
invariant in E(Q). Therefore, Q is QI, and clearly Q has the required minimal 
property of a QI envelope. 0 

Let us denote the Q constructed above by Eq(M) (the subscript "q" standing 
for "quasi"). It is natural to ask if, up to an isomorphism over M, Eq(M) is the 
only QI hull of M. This turns out to be the case; however, it is not quite obvious. 
The main point here is that we have by construction M ~e Eq (M), but it is not 
clear that another QI hull will also be essential over M. To see that this is indeed 
the case, we shall need the machinery of closed submodules and complements 
developed earlier in this section. The key step is to observe the following crucial 
"cutting property" in the injective hull of a QI module. 

(6.79) Proposition. Let MR be a QI module, and let E(M) = ffiiEf Xi be a 
direct sum decomposition of E(M). Then M = ffiiEf X; for X; = M n Xi. 

Proof. Let 7ri be the projection map from E{M) to Xi with respect to the given 
decomposition. If m = LiEf Xi E M (finite sum, with Xi E Xi for each i), then, 
by (6.74), Xi E 7ri{m) E M n Xi = X;, so we have M = ffiiEf X;. 0 

The "cutting property" in (6.79) was first proved by Goel and Jain in a slightly 
more general context. In fact, they showed that this property characterizes a notion 
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called "n-injectivity" which is a generalization of the notion of quasi-injectivity 
of M. For more details on this, see Exercise 37 below. 

Recall that a CS module is one in which any closed submodule is a direct 
summand. We have remarked before (in (6.42)(2)) that any injective module is 
CS. The Proposition above allows us to extend this fact to quasi-injective modules, 
after Faith and Utumi. 

(6.80) Corollary. Any QI module M is CS (but not conversely). 

Proof. Let N ~c M (i.e., N is a closed submodule of M), and take a complement 
T for N in M. Then NEB T ~e M, so E(M) = E(N) EB E(T). By (6.79), 

M = (M n E(N» EB (M n E(T». 

Since N ~c M and N ~e M n E(N), we have N = M n E(N). Thus, M = 
NEB (M n E(T», proving that M is a CS module. On the other hand, a CS module 
need not be QI. For instance, over the ring R = Z, the module RR is CS, but is 
clearly not QI. Another example is Zp EB Zp2 (for any prime p): this is CS by 
Exercise 19C, but is not QI by what we said in the proof of (6.73)(2). D 

We can now use Corollary (6.80) to prove the uniqueness of a QI envelope. 

(6.81) Corollary. Up to an isomorphism over M, Eq (M) is the only QI envelope 
of M. Any QI module containing M contains a copy of Eq (M) (over M). 

Proof. It suffices to prove the second statement. Let Q be a QI module containing 
M, and let N :2 M be an essential closure of Min Q. By (6.80), N is a direct 
summand of Q, so by (6.73)(1), N is also QI. We finish by showing that N contains 
a copy of Eq(M) over M. Since M ~e N, we may assume that N ~ E(M). But 
then N is fully invariant in E(N) = E(M), so N :2 Eq(M) (since Eq(M) is the 
smallest fully invariant submodule of E(M) containing M). D 

(6.82) Examples. Let us compute a few quick examples of QI hulls over R = Z. 
Changing notations, let us write Cn for the cyclic group of order n. First let 
M = Q EB CpA (p a prime), which has injective hull E(M) = Q EB Cpx, where 
Cpx denotes the Priifer p-group. Proper submodules of E(M) containing Mare 
Q EB C p; (for i ~ k), none of which is QI by the proof of (6.73)(2). Therefore, 
Eq(M) = E(M) = Q EB Cpx. Now let us try another M, say, M = Cm EB en 
where nlm and 1 < n < m. Note that M is contained in H := Cm EB Cm, which 
is QI by (6.77). Any proper submodule of H containing M cannot be QI (by what 
we said in the proof of (6.73)(2)), so we must have Eq (M) = H. 

In (6.47), we proved Osofsky's result that a ring R must be semisimple if all 
cyclic right R-modules are injective. Taking full advantage ofthis result, we obtain 
almost for free the following interesting quasi-injective analogue. 
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(6.83) Theorem. For any ring R, the following are equivalent: 

(1) R is a semisimple ring; 
(2) every right R-module is QI; 
(3) every f.g. right R-module is QI; 
(4) every right R-module generated by two elements is QI. 

Proof. The implications (1) ==> (2) ==> (3) ==> (4) are trivial, so we need only 
show (4) ==> (1). Let N be any cyclic right R-module. By (4), RR EB N is QI, 
so by (6.71)(2), N must be injective. Therefore, by Osofsky's result (6.47), R is a 
semisimple ring. 0 

(6.84) Remark. The condition: (5) Every cyclic right R -module is QI is, in general, 
weaker than the four conditions in the Theorem. For instance,. the self-injective 
ring R = IQ [x]/ (x 2 ) is not semisimple, but clearly satisfies (5). 

The notion of QI modules has several interesting generalizations, the most 
notable among which are the notions of continuous and quasi -continuous modules. 
It would take us too far afield to develop these notions in any detail in the text, so 
we shall only include the beginning part of this development in a few exercises 
below (see Ex.'s 36-39). 

Exercises for §6 
1. Recall that a module M R is called Dedekind-finite (d. Exercise 1.8) if 

M EB N ~ M (for some module N) implies that N = O. Show that any 
module M with u.dim M < 00 is Dedekind-finite. 

2. Show that IAss(M)1 ::: u.dim M for any module M. 

3. Give an example of a f.g. module M over a commutative noetherian ring 
such that IAss(M)1 = 1, and u. dim M = n (a prescribed integer). 

4. Let M R be any module with u.dim M = n < 00. Show that there exist 
closed submodules Mi S;c M (l ::: i ::: n) with the following properties: 

(1) Each M / Mi is uniform. 
(2) MJ n ... n Mn = O. 
(3) E(M) ~ EB~=l E(M/Mi). 
(4) Ass(M) = U7=J Ass(M/Mi ). 

5. Let R = k[x, y]/(x, y)n where k is a field. Show that Ul.dim(RR) = n. 

6. Give an example of a module of finite uniform dimension that is neither 
noetherian nor artinian. 

7. For any sub modules A, B of a module M, show that 

u. dim A + u. dim B ::: u. dim(A n B) + u. dim(A + B). 
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8. Let C I:; D be modules such that u.dim D < 00 and u.dim D / C = 00, 

and let C' = {(e, -c): e E C} I:; DEB D, M = (D EB D)/C'. 

(I) Show that u.dim M = 00. 

(2) Let A = DEB 0 I:; M and B = 0 EB D I:; M. Show that A ;::::: B ;::::: D 
and A + B = M. (Thus, it is possible for u.dim A, u.dim B to be finite 
and u.dim(A + B) = 00 in Exercise 7.) 

9. Show that an abelian group M # 0 is a uniform Z-module iff either 
M I:; Q, or M ;::::: Z/pnz, or M ;::::: lim Z/pnz, where p is a prime. 

-+ 

Generalize this to a (commutative) PID. 

10. Let R be a commutative domain with quotient field K. For any R-module 
M with torsion submodule t(M), show that 

dimK(M ®R K) = u. dim M/t(M); 

this number is called the "torsion-free rank" of M. If u. dim t (M) < 00, 

show that the torsion-free rank of M is given by u. dim M - u. dim t (M). 

II. Show that a module M R is noetherian iff every essential submodule of M 
is f.g. 

12. For any module M R, let soc(M) (the socle of M) be the sum of all simple 
submodules of M (with soc(M) = 0 if there are no simple submodules). 
Show that: 

(I) M· SOC(RR) I:; soc(M); 
(2) soc(M) = n{N: N 1:;, M};54 
(3) for any submodule N I:; M, soc(N) = N n soc(M); 
(4) if N 1:;, M, then soc(N) = soc(M); 
(5) a maximal submodule N I:; M is essential in Miff N 2 soc(M); 
(6) SOC(EBiEI Mi) = EBiEI soc(Mi ); 
(7) for any idempotent fER, soc(f R) = f . SOC(RR). 

13. If R is a semisimple ring with Wedderburn decomposition Mnl (D,) x 
... x Mn, (Dr) where D" ... , Dr are division rings, show that 

u. dim RR = n, + ... +n r . 

14. Let S I:; R be fields such that dims R = 00. Let T be the triangular ring 

(~ ~ ) . By FC-( 1.22), T is left artinian but not right noetherian. Show 

that u.dim(T T) = 2 and u.dim(TT) = 00. 

15. Let R be a commutative PID, and C I:; M be right R-modules. Show that 
C I:;c M iff, for every nonzero prime element pER, C n Mp = Cpo 
Using this, show that any pure submodule of M is a complement. 

54This description of soc(M), due to Kasch and Sandomierski, may be viewed as dual 
to the description of the radical of M as the sum of the "small" submodules of M (cf. FC
(24.4)). 
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16. (1) Give an example of a complement C S;::C M (over a commutative PID if 
possible) such that C is not a pure submodule of M. (2) Give an example 
of a pure submodule C s;:: M (over some ring R) such that C is not a 
complement in M. 

17. Decide which of the following statements is true: 

(1) If T is a direct summand of a module M R, then any submodule N s;:: M 
with N n T = 0 can be enlarged to a direct complement to T in M. 
(2) Let f E HomR(M, M'). Then L S;::C M implies that f(L) S;::C f(M). 

18. Show that a subgroup C of a divisible abelian group M is a direct summand 
iff C n Mp = Cp for every prime p. 

The following four exercises are intended to give a complete determination 
of all f.g. abelian groups that are CS modules over the ring of integers Z. 

19A. Show that a free abelian group F is CS as a Z-module iff F has finite 
rank. 

I9B. Let M be a f.g. abelian group of rank n :::: 1. Show that M is a CS module 
over Z iff M ~ zn. 

19C. Let p be any prime, and r :::: 1. 

(1) Show that Zp' Ell Zp,+i (i :::: 2) is not CS as a Z-module. 

(2) Show that (Zp,)k Ell (Zp'+I)C is CS as a Z-module. 

19D. Show that a f.g. abelian group M is a CS module over Z iff either M ~ zn 
for some n, or M is finite and for any prime p, the p··primary part Mp 

of M is of the form (Zp,)k Ell (Zp'+I)C for some r, k, and f (depending 
on p). 

20. Show that, if R is a von Neumann regular ring, then the 20 finiteness 
conditions formulated in §6E are each equivalent to R being semisimple. 

21. Show that R satisfies DCC on right annihilators iff, for any set S s;:: R, 
there exists afinite subset So s;:: S such that annr(S) = annr(So). 

22. Show that R does not satisfy ACC on right (resp.left) annihilators iff there 
exist elements Si, ti E R (i = 1, 2, ... ) such that Si ti -# 0 for all i and 
Sit) = 0 for all i > j (resp. for all i < j). 

23. Show that "ACC on right annihilators" and "DCC on right annihilators" 
are independent conditions (for noncommutative rings). 

24. (Extra Credit) Find examples to show that there cannot be any horizontal 
or vertical implications in (6.55) for chain conditions on principal I-sided 
ideals. (Hint. Search far and wide!) 

25. Show that for any ring R, the set A of right annihilator ideals in R is a 
complete lattice with respect to the partial ordering given by inclusion. 
Show that A is anti-isomorphic to the lattice A' of left annihilator ideals in 
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R. (A complete lattice is a partially ordered set in which any subset has a 
greatest lower bound, or equivalently, any subset has a least upper bound. 
Here, of course, "subset" means "possibly empty subset".) 

26. (Shock) Let S = R[X], where X is any (possibly infinite) set of com
muting indeterminates. Show that u.dim S5 = u. dim RR. 

The remaining exercises in this section are devoted to the study of the prop
erties of QI (quasi-injective) modules and their generalizations. Exercise 
27A is to be compared with Exercises (3.28) and (3.29) in §3. 

27A. For any module MR and an ideal J c; R, let P = {m EM: mJ = O}. 

(I) If M is a QI R -module, show that P is a QI R / J -module. 
(2) If M J = 0, show that M is a QI R-module iff it is a QI R/ J -module. 

27B. For an ideal J in a ring R, show that the cyclic right R-module R/ J is 
QI iff R/ J is a right self-injective ring. 

28. Show that a f.g. abelian group M is QI as a Z-module iff M ~ (Zn)k for 
some natural numbers nand k. (This is to be compared with Exercise 19D, 
where we determined all f.g. abelian groups that are CS as Z-modules.) 

29. Let MR beaQI module, and let A be an R-submoduleof E(M) isomorphic 
to a subquotient (quotient of a submodule) of M. Show that A c; M. 

30. (Ravel) Let M, N beQImoduleswithE(M) ~ E(N).Showthat M(f)N 
is QI iff M ~ N. 

31. For any module M R, consider the following conditions: 

(I) M is Dedekind-finite; 
(2) E(M) is Dedekind-finite; 
(3) for any nonzero module X, X (f) X (f) ... cannot be embedded into 
E(M); 
(4) for any nonzero module X, X (f) X (f) . .. cannot be embedded into M. 

Show that (2) {::::::} (3) ===} (4) ===} (I), and that all four conditions are 
equivalent in case M is QI. In general, show that (I) does not imply (2), 
(3) or (4). 

32. For any QI module M R, show that the following are equivalent: 

(1) M is uniform; 
(2) M is indecomposable; 
(3) End(MR) is a local ring; 
(4) E(M) is uniform; 
(5) E(M) is indecomposable; 
(6) End(E(M)R) is a local ring. 

Under these assumptions, show that the unique maximal (left, right) ideal 
of End(M) is If E End(M) : ker(f) =Ie O}. Is this the same set as 
If E End(M) : f(M) =Ie M}? 
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33. Over a right artinian ring R, show that any faithful QI module MR is 
injective. (Hint. Show that RR embeds into Mil for some natural number 
n, and use (6.71)(2).) 

34. (L. Fuchs) For any module M R, show that the following are equivalent: 

(1) M is QI; 
(2) for any submodule L ~ M contained in a cyclic submodule of M, any 
f E HomR(L, M) extends to an endomorphism of M; 
(3) for any BR such that Vb E B, 3m EM with ann(m) ~ ann(b), any 
R-homomorphism from a submodule of B to M extends to B; 
(4) ("Quasi Baer's Test") For any right ideal J ~ R, any R-homomor
phism g : J -+ M whose kernel contains ann(m) for some m E M 
extends to RR. 

(Hint. The most efficient route is (3) ===} (1) ===} (2) ===} (4) ===} (3).) 

35. An exercise in a ring theory monograph asked the reader to prove the 
equivalence of the following two conditions on a right ideal I ~ R: 
(a) I = eR for some idempotent e E R; (b) I is isomorphic to a direct 
summand of R. Provide some counterexamples to this alleged equivalence. 

36. For any module M R, consider the following conditions, where the word 
"summand" means throughout "direct summand": 

(C I ) M is CS (i.e., any N ~c M is a summand); 
(C2) If K ~ M is isomorphic to a summand A of M, then K itself is a 
summand of M; 
(C 3) If A, B are summands of M and An B = 0, then A + B is a summand 
ofM. 

Show that (C2) ===} (C3 ), and that any QI module M satisfies (C I ), (C2 ), 

and (C3). In the literature, M is called continuous if it satisfies (Cd, (C2), 
and quasi-continuous if it satisfies (C I)' (C3). With this terminology, we 
have the following basic implications: 

Injective ===} QI ===} continuous ===} quasi-continuous ===} CS. 

37. (Goel-Jain) For any module M R , show that the following are equivalent: 

(1) M is quasi-continuous (i.e., M satisfies (C I ) and (C3»; 
(2) any idempotent endomorphism of a submodule of M extends to an 
idempotent endomorphism of M; 
(3) any idempotent endomorphism of a sub module of M extends to an 
endomorphism of M; 
(4) M is invariant under any idempotent endomorphism of E(M); 
(5) if E(M) = EBiEI Xi, then M = EBiE/(M n Xi); 
(6) if E(M) = X E9 Y, then M = (M n X) E9 (M n n. 

Note. In the literature, the property (3) above is often referred to as the 
"TC-inJectivity" of the module M ("TC" here stands for "projection"). 
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38. For any von Neumann regular ring R, show that the following are equiv
alent: 

(a) RR is continuous; 
(b) RR is quasi-continuous; 
(3) RR is CS. 

(A von Neumann regular ring R is said to be right continuous if it satis
fies these equivalent conditions. For instance, any right self-injective von 
Neumann regular ring is right continuous.) 

39. Show that each of the four implications listed at the end of Exercise 36 is 
irreversible. 

40. For any QI module M R , let S = End(MR), and m E M. If m . R is a 
simple R-module, show that S· m is a simple S-module. From this fact, 
deduce that soc(MR) S; soc(sM). 

§7. Singular Submodules and Nonsingular Rings 

§7 A. Basic Definitions and Examples 

In this subsection, we introduce the notion of the singular submodule of a module, 
due to R. E. Johnson. This leads us to the notions of nonsingular modules and (right 
or left) nonsingular rings which will be needed later in developing the theory of 
rings of quotients and the theory of semi prime Goldie rings in Chapter 4. In a later 
subsection (§7C), we shall deal with Goldie's work on the closure of submodules 
and Goldie's definition of the reduced rank. 

(7.1) Definition. Let M be a right module over a ring R. An element m E M is 
said to be a singular element of M if the right ideal ann(m) is essential in RR. The 
set of all singular elements of M is denoted by Z(M). 

(7.2) Lemma. 

(I) Z(M) is a submodule, called the singular submodule of M. 
(2) Z(M) . SOC(RR) = 0, where SOC(RR) denotes the socle of RR. 
(3) Iff: M ~ N is any R-homomorphism, then f(Z(M)) S; ZeN). 
(4) If M S; N, then Z(M) = M n ZeN). 

Proof. (l) Ifm" m2 E Z(M), then ann(m;) S;e RR (i = 1,2) imply that 

ann(m,) n ann(m2) S;e RR. 

Since ann(m, +m2) contains the LHS, it follows that m, +m2 E Z(M).ltremains 
to prove that 

(7.3) ann(m) S;e RR ==> ann(mr) S;e RR (V r E R). 
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For this we apply the criterion for essential extensions in (3.27)(1). Given any 
element s E R\ann(mr), we have m(rs) i- 0, so from ann(m) ~e RR, we see that 
m(rst) = 0 for some t E R such that rst i- O. Now we have 0 i- sf E ann(mr) 
which yields the desired conclusion ann(mr) ~e RR. 

(2) For any m E Z(M), ann(m) ~e RR, so by Exercise (6.12)(2), ann(m) ;2 
SOC(RR). This shows that m . SOC(RR) = 0, as desired. 

(3) follows from the fact that ann(m) ~ ann(f(m» for any m E M, and (4) 
follows directly from definition. 0 

(7.4) Corollary. (1) Z(RR) is an ideal in R, called the right singular ideal of 
R. (The left singular ideal is similarly defined to be Z(RR).) (2) If R i- 0, then 
Z(RR) i- R. 

Proof. (1) In view of (7.2)(1), we need only show that m E Z(RR) and s E R 
imply that sm E Z(RR)' This is clear from the fact that annr(sm) ;2 annr(m). (2) 
annr(1) = 0 cannot be essential in RR, unless R = O. 0 

(7.5) Definition. We say that MR is a singular (resp. nonsingular) module if 
Z (M) = M (resp. Z (M) = 0).55 In particular, we say that R is a right nonsingular 
ring if Z(RR) = 0 (or equivalently, any right ideal m ~e RR has anne(m) = 0). 
Left nonsingular rings are defined similarly, and "nonsingular ring" shall mean a 
ring that is both right and left nonsingular. 

(7.6) Examples. 

(0) Any simple ring is nonsingular: this follows readily from (7.4). 

(1) Let R be a commutative domain. Then all nonzero ideals of R are essential. 
Therefore, for any M R , 

Z(M) = {m EM: ann(m) i- O} 

is just the torsion submodule of M. In particular, M is singular iff M is torsion, 
and M is nonsingular iff M is torsion-free. (For a module lYl over an arbitrary 
ring, it is perhaps not inappropriate to think of Z(M) as a kind of substitute for 
the torsion submodule of a module over a commutative domain.) 

(2) Let M ~ N be R -modules. If N is nonsingular, so is M, and the converse 
holds if M ~e N. The first part follows from (7.2)(4). For the second part, assume 
that Z(M) = 0 and M ~e N. Then, by (7.2)(4), ZeN) n M = Z(M) = 0 and so 
ZeN) = O. (In particular, we see that Mis nonsingular iff its injective hull E(M) 
is nonsingular.) 

(3) An R-module MR is singular iff there exist R-modules A. ~e B such that 
M ~ B / A. Indeed, suppose such A, B exist, and identify M with Ii : = B / A. For 

55 Caution: "Nonsingular" /0 "not singular"! But of course, if a module is both singular 
and nonsingular, it must be zero. 
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any element bE B\{O}, we have to show that 

ann(b) = {x E R: bx E A} ~e RR. 

Let y E R\ann(b). Then by fj. A, so from A ~e B, we see that byz E A \ {O} for 
some z E R. Therefore, 0 =1= yz E ann (b) , proving (*). We have now established 
the "if" part of (3). The "only if" part is left to the reader; see Exercise 2(a) below. 

(4) Let R be the Z-algebra generated by x, y with relations yx = y2 = O. We 
have used R in FC-( 1.26) as an example of a left noetherian ring that is not right 
noetherian. We claim that R is left nonsingular but not right nonsingular. For the 
latter, let us show that y E Z (RR)' Since ann, (y) 2 x R + y R, we need only show 
that x R + yR ~e RR' Consider any nonzero element 

ex := f(x) + g(x)y E R = Z[xl EB Z[xly. 

If f(x) = 0, then 

0=1= ex· 1 = g(x)y E xR + yR. 

If f(x) =1= 0, thenexx = xf(x) E xR\{O}. This shows thatxR + yR ~e RR. Now 
let us show that Z(RR) = (0). Say, 

f3 = PI (x) + P2(X)y E Z(RR). 

Then anne (f3) ~e R R, so for the element x E R, there would exist h (x), k (x) E 

Z[x 1 such that 

0=1= (h(x) + k(x)y)x = h(x)x E annt(f3). 

This means that h(x)xp;(x) = 0, so p;(x) = 0 for i = 1,2, which shows that 
f3 = O. 

(5) The triangular ring R = (~ ~~~~) is left and right noetherian (see FC

(1.22». This implies, as we shall see in (7.15)(1), that Z(RR) and Z(RR) are nil 

ideals, so they are contained in (~ z/gz ). For the matrix x = (~ b)' an 

easy computation shows that 

( 2Z Z/2Z) 
anne(X) = 0 Z/2Z ' ( z Z/2Z) ann,(x) = 0 0 . 

The former is essential in R R, so Z (R R) = {O, x}. The latter is not essential in 
RR, so Z(RR) = O. Therefore, R is a noetherian ring that is right nonsingular 
but not left nonsingular. 

(6) The ring R = (Z/04Z 2:/4~) considered in (3.45) is finite and hence left 

and right noetherian. We leave it to the reader to show that 

( 2Z/4Z 2Z/4Z) 
Z(RR) = Z(RR) = rad(R) = 0 2Z/4Z' 
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where rad(R) is the Jacobson radical of R. In particular, R is neither left nor 
right nonsingular. 

(7) Any semisimple ring is nonsingular. More precisely, a ring R is semisimple 
iff every right R-module MR is nonsingular. Indeed, if R is semisimple, and 
m E Z(M), then ann(m) ~e RR implies that ann(m) = R. so m = O. Con
versely, suppose every M R is nonsingular. For any right ideal !2t ~ R, let ~ be a 
complement, so that m EB ~ ~e RR. Then R/(m EB~) is a singular right module 
(by (7.6)(3», and so m EB ~ = R. Thus, every right ideal is a direct summand in 
RR so R is a semisimple ring. 

(8) (A generalization of (7).) If R is a ring whose principal right ideals are all 
projective, 56 then R is right nonsingular. In fact, for any m #- 0 in R, consider 
the exact sequence: 

f o ~ annr(m) ~ R ~ mR ~ 0 where f(x) = mx. 

Since (mR)R is projective, this sequence splits. Thus, annr(m) is a proper direct 
summand of RR, and cannot be essential in RR' Hence, Z(RR) = O. 

(9) There exist primitive rings that are neither left nor right nonsingular. This 
is by no means easy: the first such examples were constructed by Osofsky and 
Lawrence. For more information in this direction, see (11.21)(4) below. 

(7.7) Corollary. Any right semihereditary ring is right nonsingular.ln particular, 
any von Neumann regular ring is nonsingular. 

More examples of nonsingular rings are provided by the next three or four 
results. 

(7.8) Lemma. Let R be a reduced ring (i.e., R has no nonzero nilpotent elements). 
Then R is right (and also left) nonsingular. 

Proof. It suffices to show that, for any x E R, ann r (x) n x R ==, 0 (for this shows 
that annr (x) cannot be essential in R R if x #- 0). For any y E annr (x) n x R, 
write y = xz where z E R. We have (yx)2 = y(xy)x = 0, so yx = O. But then 
l = y . xz = 0 gives y = O. 0 

There is a good analogue of (7.8) for rings with involution. Recall that an 
additive homomorphism * : R -+ R is called an involution on R if (a*)* = a 
and (ab)* = b*a* for all a, b E R. 

(7.9) Lemma. Let (R, *) be a ring with involution such that y* y = 0 => y = 0 
in R. Then R is right (and also left) nonsingular. 

56 Such a ring is known as a right P P -ring, or a right Rickart ring. For more details, see 
§7D. 
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Proof. As before, it suffices to show that, for any x E R, ann, (x) n x* R = O. For 
any y E ann, (x) nx*R, write y = x*z. Then 

y*y = (x*z)*y = z*xy = 0, 

so y = o. (The argument for proving that R is left nonsingular is similar.) D 

The lemma enables us to draw many examples of nonsingular rings from anal
ysis. In fact, if R is any ring of bounded operators on a Hilbert space H such that 
R is closed under the adjoint, then, taking the involution on R to be the adjoint 
map *, the lemma implies that R is nonsingular. (If T* T = 0 for T E R, then 
0= (T*Tv, v) = (Tv, Tv) implies that Tv = 0 for every v E H.) 

On the other hand, Lemma (7.9) also leads to a large class of nonsingular rings 
via the group ring formation. 

(7.10) Proposition. Let (k, *) be a ring with involution such that L Ci7Cii = 0 ===} 

all Cii = 0 in k. Then,for any group G, R = kG is a nonsingular ring. 

Proof. We can extend the involution * from k to R by defining g* = g-I for any 
g E G. The hypothesis on (k, *) is easily seen to yield that y*y = 0 ::::} Y = 0 
in R (cf. FC-(6.11)). Now apply (7.9). D 

From this Proposition, we see, for instance, that kG is nonsingular for any group 
G and any subring k of a formally real field. However, not all group rings R = kG 
are nonsingular, even when k is a field. For instance, if I G I < 00 and k is a field, 
we shall show (see (13.2) and the paragraph thereafter) that Z(RR) = Z(RR) = 
rad R (the Jacobson radical of R). Thus, if k has positive characteristic dividing 
IGI, Maschke's Theorem (as stated in FC-(6.1)) implies that kG is neither left 
nor right nonsingular. 

Our next result demonstrates a large supply of rings that fail to be (left or right) 
nonsingular. 

(7.11) Lemma. Let x be a central nilpotent element ina ring R. Then x E Z(RR) 
(and by symmetry, x E Z(RR) as well}. 

Proof. To show that ann, (x) <;e R R, consider any nonzero y E R. There exists a 
smallestn :::: 0 such that x n+1 y = O. Then xn y E ann, (x)\{O}. Since xn y = yxn, 
we have shown that ann,(x) <;e RR. D 

From (7.8) and (7.11), we conclude that: 

(7.12) Corollary. A commutative ring is nonsingular iffit is reduced. 

We shall try to construct an example to show that (the "only if" part of) this 
Corollary is not true in general for noncommutative rings. For this construction, it 
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is useful to know another description for the right singular ideal in a right artinian 
ring. 

(7.13) Proposition. For any ring R, let S = SOC(RR) be its right socle (the sum 
of all minimal right ideals of R). Then Z(RR) S; anne (S). If R is right artinian, 
equality holds. If R is semiprime, Z(RR) n S = o. 

Proof. The first conclusion follows from (7.2)(2), which gives Z(RR) . S = o. 
From this, we have (Z(RR)nS)2 = O. If R is semiprime, this implies Z(RR)nS = 
O. Now assume R is right artinian. Then S S;e RR. For, if Ql -I- 0 is any right ideal, 
then Ql contains a minimal right ideal, so Ql n S -I- o. Therefore, if x E anne(S), 
we have annr(x) :2 S, and hence annr(x) S;e RR. This gives the inclusion 
anne(S) S; Z(RR), and so equality holds. 0 

(7.14a) Example. Let (R, m) be arightartinian local ring, with m(= rad R) -I- o. 
Then R is not right nonsingular. To see this, recall that m is nilpotent (FC-(4.12)), 
and note that S := SOC(RR) is a nonzero ideal in m. Choose n ~ 2 such that 
sn = 0 -I- sn-I. Then 

For instance, if R = k[u, v] with relations u2 = v2 = uV= 0, where k is a 
division ring, then R is local with m = uk E9 vk. Since m2 = 0, we have S = m, 
and Z(RR) = anne(m) = m as well. 

(7.14b) Example. Let R be the ring of upper triangular n x n matrices over a 
semisimple ring k. We claim that R is nonsingular. To see this, note first that the 
right socle S := SOC(RR) is the left annihilator of rad R, the Jacobson radical of 
R. (see FC-Exercise (4.20)). Since rad R consists of all matrices of R with a zero 
diagonal, an easy computation shows that S is the ideal of all matrices in R with 
only nonzero entries on the last column. Identifying such matrices with their last 
columns, we may view S askn. In particular, it follows that Z(RR) = annl(S) = O. 
Similarly, we can show that SOC(R R) consists of all matrices of R with only nonzero 
entries on the first row, and consequently that Z(RR) = annr(soc(RR)) = O. This 
shows that R is a nonsingular ring. However, for n ~ 2, R is not reduced; in fact, 
it is not even semiprime. 

(
k k k) 

(7.14c) Example. Let R = 0 k 0 ,where k is semisimple, as in (7.14b). 
o 0 k 

Here, again, rad R consists of all matrices in R with a zero diagonal. Computing 
the left and right annihilators of rad R, we see that 

(0 k k) 
SOC(RR) = 0 k 0 , 

o 0 k 
(

k k k) 
soc(RR) = 0 0 0 . 

000 
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Computing the left and right annihilators ofthese, we get, respectively, Z (RR) = 0 
and Z(RR) = 0, so again R is a nonsingular ring. 

(7.14d) Example. Here is another way by which we can deal with the rings in 
the two examples above. Let R be a subring of a ring T such that RR ~e TR. 
According to Exercise 33, if T is right nonsingular, so is R. To apply this, let 
T = Mn (k), where k is some other ring. Let R be any subring of T containing 
k = k· I" and the matrix units Ell, ... , E"I for a fixed i. It is easy to check that 
RR ~e TR • If we choose k to be a semisimple ring, then T is also semisimple 
and hence right nonsingular (by (7.6)(7)), so by what we said above, R is also 
right nonsingular. This applies well to the ring in (7.14b), and its left analogue 
applies to the same ring, as well as to the ring in (7 .14c). 

(7.14e) Example (Shock). If R is a right nonsingular ring, so is the polynomial 
ring R[xl. (More generally, see Exercise 35.) 

§7B. Nilpotency of the Right Singular Ideal 

In this subsection, we shall develop some results concerning the nilpotency of the 
right singular ideal of a ring R. Loosely speaking, if we impose suitable chain 
conditions on R, then we might expect some nilpotency property for Z(RR)' The 
chain conditions will be imposed on the "right annihilators". Recall that a right 
annihilator is a subset in R (necessarily a right ideal) of the form ann r (X), where 
X is some subset of R. In the case when X is a singleton set {x}, we speak of 
annr (x) as a right annihilator of an element. 

(7.15) Theorem. Let R be a ring. 

(I) Assume that R satisfies ACC on right annihilators of elements. Then 
Z(RR) is a nil ideal, and Z(RR) ~ Nil*R (the lower nilradical of R). 

(2) (Mewborn-Winton) Assume that R satisfies ACC on right annihilators. 
Then Z(RR) is a nilpotent ideal. 

Proof. (I) Let x E Z (R R). The assumption on R implies that 

(7.16) annr (xnl) = annr (x nl+ 1) = . . . for some m :::: 1. 

We claim that x'" = O. For, if otherwise, annr(x"') nxm R would contain a nonzero 
element x'" y (y E R), with x'" . x'" y = O. But then 

y E annr (x 2m ) = annr(xnl ) 

yields xmy = 0, a contradiction. This shows that Z(RR) is nil, and FC-(lO.29) 
gives Z(RR) ~ Nil*R. 

(2) is proved by using similar ideas. Let I := Z(RR). The assumption in (2) 
implies that 

(7.17) annrU m ) = annrUm+l ) = ... for some m :::: 1. 
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We claim that [III = O. Indeed, assume [III =1= O. In the family of right annihilators 

(7.18) 

choose a maximal member, say, annr(x), where [mx =1= o. Consider any a E [. 

Since annr(a) n xR =1= (0), we have axy = 0 for some y E R such that xy =1= O. 
This shows that annr(x) s;: annr(ax), so the choice of x forces ["'ax = o. Since 
this holds for any a E [, we get 

x E annr U Il1+I ) = annrUm ), 

a contradiction. o 

Remark. Under the hypothesis of (1) above, we have in particular Z(RR) ~ 
rad(R) (the Jacobson radical of R). This inclusion, however, does not hold in 
general, since we have pointed out in (7.6)(9) that it is possible for rad(R) to be 
zero without Z(RR) being zero. 

Let us now record some consequences of (7.15). 

(7.19) Corollary. Let R be a semiprime ring (FC-§10) that satisfies ACC on 
right annihilators of elements. Then R is right nonsingular. 

Proof. This follows from (7.15)(1) since Nil*R = 0 when R is semiprime. 0 

(7.20) Corollary. Let R be a commutative ring that satisfies ACC on annihilators 
of elements. Then Z(R) = Nil R (the nilradical of R). 

Proof. This follows from (7.15)(1) and (7.11). o 

If a commutative ring R does not satisfy the chain condition in (7.20), Nil R ~ 
Z(R) may be a strict inclusion; see Exercise 9. 

The results (7.15) and (7.19) will find applications in the next Chapter where 
we study the theory of rings of quotients in the noncommutatilve setting. In that 
Chapter, the utility of the notion of a right nonsingular ring will become clear. For 
instance, we shall see that if R is right nonsingular, then the injective hull E(RR) 
has a natural (and unique) ring structure that is compatible with its structure as a 
right R-module; the ring E (RR) is the so-called "maximal right ring of quotients" 
of R. 

§7C. Goldie Closures and the Reduced Rank 

In this subsection, we shall present the theory of Goldie closures of submodules, 
leading up to the definition of "reduced rank" of a module. Goldie's theory, which 
originated from Goldie [64], has found many applications in the modem theory 
of noetherian rings. 
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For any R-module M R, we have defined its singular submodule Z(M), so we 
can form the quotient module M / Z(M). It is natural to ask if this will be a 
nonsingular module. The following result shows that this is indeed the case, if R 
is a right nonsingular ring. 

(7.21) Theorem. Let R bea right nonsingular ring, and M be any right R-module. 
Then Z(M/Z(M» = O. 

Proof. Let m E M be such that mE Z(M / Z(M». Then m!2t S; Z(M) for some 
right ideal!2t S;e RR. To show that m E Z(M), we must show that ann(m) S;e RR. 
Let!.l3 t- 0 be any right ideal in R. Fixing a nonzero element b E !2t n!.l3, we have 
mb E m!2t S; Z(M), so mbl! = 0 for some right ideal I! S;e RR. But bl! t- 0, 
for otherwise b E Z(RR)\{O}. Therefore be t- 0 for some eEl!, and mbe = 0 
implies that be E ann(m) n!.l3. This shows that ann(m) S;e RR, as desired. 0 

Without the assumption that R be right nonsingular, however, the quotient mod
ule M / Z(M) is not necessarily nonsingular, as the following example shows. 
(With due apology to the reader, we shall work with left modules in this example.) 

(7.22) Example. Let R be the triangular ring (~ ~~~~). According to (7.6)(5), 

R is right nonsingular, though not left nonsingular, with Z(RR) = {O, x} where 

x = (~ ~). We claim that R/ Z(RR) is not nonsingular as a left R-module; 

indeed, the image of m = (~ ~ ) in R / Z (R R) turns out to belong to its singular 

submodule. To see this, note that mER / Z (R R) has annihilator (~ z/gz ), 
which is easily seen to be essential in RR (though not essential in RR, as noted 
in (7.6)(5». Thus, 0 t- m E Z(R/ Z(RR». The curious reader can further verify 
that, in fact, Z(R/Z(RR» = {O, m}. 

Coming back to right modules M R, we must therefore exercise caution in dealing 
with M / Z(M), for it may not be nonsingular. This remark suggests the idea 
of iterating the construction of singular submodules. To formalize this idea, we 
proceed as follows. 

(7.23) Definition. Let N be any submodule of MR' We define N* to be the (unique) 
submodule of M containing N such that N* / N = Z(M / N). This process can be 
repeated, so we can define N**, N***, and so forth. Of course, 0* is just Z(M). 

Elsewhere in the text, N* is used to denote the R-dual of the right module N. 
In this section, however, we will not be concerned with the R-dual, so the notation 
N* will be used only in the sense of (7.23). To facilitate working with N*, let us 
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introduce one more piece of notation. For any element y EM, we shall write 

(7.24) y-I N = {r E R: yr EN}. 

This is a right ideal of R, which is nothing but the annihilator of the element 
Y E M / N. (Another possible notation for y-I N is (N : y). However, y-I N is 
the better notation, especially in the case when M is a right ideal in R.) With the 
notation in (7.24), we have, for instance: 

(7.25) 

(7.26) 

N* = {y EM: y-I N <;e RR} 

N** = {y EM: y-I N* <;e RR}, etc. 

Using (7.25), we see immediately that: 

(7.27) Lemma. IfL <; N <; M, then L* <; N*. Inparticular, Z(M) = 0* <; N*. 

At first sight, the idea of forming repeated "stars" may not look promising, for 
apparently one has to deal with a messy chain N* <; N** <; ... in M. However, 
the following nice result of Goldie saves the day. 

(7.28) Theorem. For any submodule N <; M, N*** = N**. In other words, 
although M / N* may not be nonsingular, M / N** is always nonsingular. 

We shall now develop the necessary tools to prove this wonderful theorem of 
Goldie. First, we need a slight generalization of the idea of an {:ssential extension. 
Following Goldie, we say that two submodules S, T <; M are related (written 
S ~ T) if, for any submodule X <; M, X n S i- 0 iff X n T i- o. Clearly, ,,~ " is 
an equivalence relation on the submodules of M. In the special case when S <; T, 
S ~ T simply boils down to S <;e T. 

A few basic properties of the equivalence relation "~,, are collected in the 
following. 

(7.29) Proposition. Let N, S, T be submodules of MR. Then: 

(1) N + 0* ~ N*. 
(2) N* ~ N**. 

(3) S ~ N ===} S <; N*. 

(4) S ~ T ===} u.dim S = u.dim T. 

Proof. (1) Our job is to check that N + 0* <;e N*. Let X be a submodule of N* 
such that X n (N + 0*) = O. For any x E X there is a right ideal ~ <;e RR such 
that x ~ <; N. Then x ~ <; X n N = 0 implies that x E X n 0* = 0, and hence 
X =0. 

(2) Replacing N by N* in (1), we get 

N** ~ N* + 0* = N* (i.e., N* <;e N**). 
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(3) Let s E S where S ~ N. We must show that s-I N ~e RR. Consider any 
r E R\S-I N. Thensr ~ N. Since S ~ N, we have sr RnN =I- 0, sosrr' E N\{O} 
for some r' E R. But then rr' E s-I N\{O}. This checks that s-I N ~e RR. 

(4) follows easily from (6.6). D 

We are now ready to tackle (7.28). 

Proof of (7.28). Let N ~ M be given. Replacing N by N* in (7.29)(2), we deduce 
that 

N*** ~ N** ~ N*. 

Applying (7.29)(3) with N there replaced by N* and with S 
N*** <:; N**, and hence N*** = N**. 

N***, we get 
D 

(7.30) Corollary. For any N ~ M, N** ~c M (i.e., N** is a complement in M). 

Proof. By (6.32), it suffices to show that N** is essentially closed in M. Consider 
any submodule Y such that N** ~e Y <:; M. Then, by (7.29)(3), Y ~ N** implies 
that Y ~ N*** = N**, so Y = N**. D 

(7.31) Definition. For any N ~ M, we write cl(N) N**, and call this the 
(Goldie) closure of N (in M).57 This is a reasonable terminology since 

(7.32) cl(cl(N» = (N**)** = N** = cl(N). 

Note that in the special case when R is a right nonsingular ring, cl(N) = N* by 
(7.21) (applied to MIN). 

(7.33) Example. For the ring R = (~ ~~;~) and the left regular module RR, 

we have 

Z(RR) = 0* = (00 Z/02Z) , d 1(0) 0** (0 Z/2Z) an c = = 0 Z/2Z 

by the calculations in (7.22). 

We are now in a position to define the notion of the reduced rank of a module, 
due to A. Goldie. 

(7.34) Definition. For any module MR, define the (Goldie) reduced rank of M by 
rank(M) = u. dim M 10**. Note that, since 0** ~c M and 0* ~ 0**, (6.35) and 

57This is to be distinguished from an "essential closure" of N. Note that although N*' is 
essentially closed, it need not be essential over N. Thus, the (Goldie) closure need not be an 
essential closure, and conversely, an essential closure need not be a (Goldie) closure. In the 
rest of this book, "closure" will always mean Goldie closure, unless otherwise specified. 
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(7.29)(4) imply that 

u. dim M = rank(M) + u. dim 0** 

= rank(M) + u. dim 0* . 
(7.35) 

In particular, we have always rank(M) :::: u. dim M, which perhaps explains why 
rank(M) is called the reduced rank of M. 

(7.36) Examples. 

(a) For the ring R in (7.33), the reduced rank of the left regular module RR is 1, since 
RR/O** ~ Z with the left R-action given via the natural projection from R to Z. 
On the other hand, since 0* ~ Z/2Z, u.dim 0* = 1 and so u.dim (R R) = 1 + 1 = 2 
by (7.35). 

(b) Let R be any commutative domain with quotient field K. Then, for any M R, 

0* is just the torsion submodule t (M) of M, and 0** = t (M) as well. By Exercise 
(6.10), 

(7.37) rank(M):= u.dim M/t(M) = dimKCM ®R K). 

Thus, the reduced rank of M boils down to what is usually called the "torsion-free 
rank" of M. After we develop the basic theory of rings of quotients in Chapter 4, 
we shall see that (7.37) has a nice generalization to right modules over semiprime 
right Goldie rings; see (11.15)(B). 

As we have pointed out before, one serious drawback in the theory of uniform 
dimensions is the lack of additivity of this invariant over short exact sequences. 
Since the reduced rank is the correct generalization of the torsion-free rank for 
modules over commutative domains, we might hope that this new invariant has 
a better behavior with respect to short exact sequences of modules. Indeed, the 
reduced rank function enjoys the full additivity property, as the following funda
mental result of Goldie shows. 

(7.38) Theorem. For any right R-modules N ~ M, we have 

rank(M) = rank(N) + rank(M / N), 

with the usual conventions on the symbol 00. 

There are several proofs of this theorem in the literature. However, all these 
proofs seem to rely on the implicit assumption that the uniform dimensions of all 
modules involved are finite. In order to prove (7.38) in general, we have to recast 
some of these earlier arguments. As a preliminary step, we prove the following 
lemma. 

(7.39) Lemma. Let C ~c M and let S, T be R-submodules of M containing 
C. Then 

S "" T in M =} S / C "" T / C in M / C. 
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Proof. Consider any nonzero submodule XIC ~ SIC. Since C ~c M, we have 
also C ~c X by (6.24)(1). Suppose C is a complement to a submodule Y in X. 
Then Y i= 0 since X i= C. Pick a nonzero element Y E Y n T (which exists since 
S ~ T). Then, the image of yin MIC is nonzero and lies in (XIC) n (T/C). 
This shows that (X/C) n (T /C) i= O. By symmetry, we see that SIC ~ T /C in 
M/C. 0 

Proof of (7.38). Let P = cl(N) = N**. Then PIN is the closure of (0) in M/N, 
so by definition 

(7.40) . (M/N) . rank(M/N) = u.dlm PIN = u.dlm(M/P). 

On the other hand, using the fact that N n Z(M) = ZeN) for any submodule 
N ~ M, we see easily that N no** is the same as the closure of (0) in N. Therefore, 

rank(N) = u. dim(N INn 0**) 

= u. dim [(N + 0**)/0**]. 
(7.41) 

By (1) and (2) of (7.29), we have N + 0* ~ N** = P. Since N + 0** is between 
N + 0* and P, it follows that N + 0** ~ P. Now 0** ~c M by (7.30), so we 
have 

(N + 0**)/0** ~ P /0** in M /0** 

by (7.39). Therefore, (7.41) and (7.29)(4) give 

(7.42) rank(N) = u. dim(P /0**). 

Adding (7.40) and (7.42), we get 

(7.43) rank(N) + rank(M IN) = u. dim(P /0**) + u. dim(M / P). 

But P ~c M by (7.30), so P 10** ~c M /0** by (6.28)(1). From the exact sequence 

o ---+ P /0** ---+ M 10** ---+ M / P ---+ 0 

and (6.35), we see that the RHS of (7.43) is u.dim(M /0**) = rank(M), as desired. 
o 

The proof above is slightly longer than the proofs that have appeared in the 
literature. The point is that we have to work harder in order to use only addition, 
but not subtraction, in the above proof. (Subtraction is troublesome, as we can see 
from the fact that m + 00 = n + 00 does not imply m = n !) 

For various applications, it may be necessary to modify the reduced rank in
variant some more. For instance, if M is a uniform module, (7.35) implies that 
rank(M) E to, I}, which may not be very desirable. For right noetherian rings R 
with prime radical 2.l, it turns out to be useful to define another rank function on 
R-modules MR , by using the reduced ranks of certain associated RI2.l-modules. 
We shall come back to this matter in § 12 when the need for such a modified rank 
function arises. 
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To conclude this section, let us make some useful remarks about nonsingular 
modules. If N ~ M where M is a general module, then N need not be essential 
in N*. For instance, (0) is not essential in 0*, unless M is nonsingular. In case M 
is nonsingular, the star operation behaves in a much nicer way. We summarize the 
relevant facts in the proposition below. Note in particular that, in a nonsingular 
module, the notions of Goldie closure and essential closure coincide. 

(7.44) Proposition. Let M be a nonsingular right R-module, and let N ~ M. 
Then: 

(1) N ~e N*. 
(2) N* is the largest submodule '" N. 
(3) N* is the smallest essentially closed submodule of M containing N. (In 

particular, N* is the unique essential closure of N in M.) 
(4) N** = N*. 
(5) N = N* iffN ~c M. 
(6) If N; ~c M (i E l) then nEI N; ~c M. 

Proof. Since 0* = 0, (7.29)(1) gives N '" N*, proving (1). If S ~ N, (7.29)(3) 
gives S ~ N*, proving (2). From (7.29)(2), we have N** ~~ N* ~ N so (2) 
shows that N** = N*, proving (4). To prove (5), first assume N = N*. Then 
N = N** ~c M by (7.30). Conversely, if N ~c M, then (1) implies that 
N* = N. To prove (3), note that N* = N** ~c M. Moreover, if N ~ X ~c M, 
then N* ~ X* = X by (5). For (6), let N := n N;. We have an injection 
MIN ~ ED MIN;. Since Nt = N; by (5), each MIN; is nonsingular. By 
Exercise 11, EDMIN; is nonsingular, and by (7.2)(4), so is MIN. This means 
that N = N*, so by (5) again, N ~c M. 0 

Dropping the word "essentially" for the moment, we see from (7.44) that, in a 
nonsingular module M, the Goldie closure operator N ~ cl(N) = N** = N* 
assigns to N the smallest closed submodule containing N. The family of closed 
submodules is closed under intersections by (6) above. This suggests that one can 
start doing some topology in the module M, although we will not pursue this 
matter here. If M is not a nonsingular module, however, we knew that even a 
finite intersection of closed submodules need not be closed; see (6.27)(b). In this 
case, for N ~ M, cl(N) is closed and is equal to cl(cl(N»; it still contains all 
submodules '" N by (7.29)(3), and is essential over N* (by the first step in the 
proof of (7.28», although it may not be essential over N. The description of cl(N) 
is not nearly as nice as in the nonsingular case. 

We close this subsection with the following well-known result of R. E. Johnson. 

(7.44), Corollary. Let E = E(M) where M is a nonsingular right R-module. 
Then there is a one-one correspondence between the closed submodules of M and 
thoseofE. 
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Proof. By (7.6)(2), E is also a nonsingular module. To any closed submodule 
N S;c M, we associate the closed submodule N* S;c E (where N* is formed with 
respect to E). Since N* n M = N, we get a one-one map from closed submodules 
of M to those of E. Applying (6.32), we see that this map is also onto (with inverse 
given by contraction). 0 

For a fuller understanding of (7.44)', we should recall that closed submodules 
of E are just direct summands in E; hence, for N S; M (closed or not), N* is a 
copy of the injective hull E (N) of N. 

§7D. Baer Rings and Rickart Rings 

In this subsection, we give a quick introduction to two classes of rings, namely, 
Baer rings and Rickart rings. There are two reasons why we are interested in these 
rings. First, they form natural subclasses of the class of nonsingular rings. Second, 
and more importantly, they playa special role in the theory of rings of operators in 
functional analysis. Because of limitation of space, however, we shall treat Baer 
rings and Rickart rings primarily as interesting examples, rather than as main 
objects for a theoretical study. For a full development of a theory of these rings in 
the proper context of operator algebras, the reader should consult Kaplansky [68] 
and Berberian [72]. 

(7.45) Definition. A ring R is called a right Baer ring if every right annihilator in R 
is of the form e R for some idempotent e E R; R is called a right Rickart ring if the 
right annihilator of any element in R is of the form e R for some idempotent e E R. 
(Clearly, a right Baer ring is always a right Rickart ring.) Left Baer (resp. Rickart) 
rings are defined similarly. 

For the first notion introduced above, it turns out that there is actually no dif
ference between "left" and "right". We prove this below. 

(7.46) Proposition. A ring R is right Baer iff it is left Baer. 

Proof. Say R is right Baer, and consider a left annihilator anne (S), where S is a 
subset of R. By assumption, annr(annt S) = eR for some e = e2 E R. We have 
then 

anne S = annt (annr (annt S» = anne(eR) = R· (l - e). 

This checks that R is left Baer, and the converse follows from left-right symmetry. 
o 

Because of (7.46), we are at liberty to drop the adjectives "left", "right" when 
we talk about Baer rings. As we shall see later, however, the situation is different 
for left/right Rickart rings. 
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(7.47) Examples. 

(1) Clearly, any domain is Baer. Any semisimple ring is also Baer. 

(2) Let Vk be any semisimple right module over a ring k. Thlm R =End(Vd is 
always a Baer ring. In fact, consider any right annihilator annr (S), where S ~ R. 
Let U = n'ES ker(s) , and write V = UffiU' as k-modules.Define e = e2 E R 
by e I U' = 0 and e I U = Iv. For any s E S, (se)(V) = s(U) = O. And if 
S· f = 0, then f(V) ~ U and so f = ef. Therefore, annrS = eR, and R is 
Baer. In particular, if V is a right vector space over a division ring k, End(Vd 
is always a Baer ring. This fact was first observed by R. Baer in his book [52] 
on linear algebra and projective geometry. The term "Baer ring" was coined by 
I. Kaplansky in his writings on rings of operators. 

(3) The same proof as in (2) (with minor modifications) shows that the ring of 
bounded operators on a Hilbert space is a Baer ring. (See also (7.57) below.) 

(4) Let R = niEi R i , where each Ri is a Baer ring. A routine check shows that 
R is a Baer ring. Thus, for instance, any direct product of domains is a Baer ring. 
Taking each domain to be 'lL.j2'lL., we see that the Boolean ring of all subsets of a 
given set is a commutative Baer ring. 

We now tum our attention to right Rickart rings. First we give an alternative 
characterization. 

(7.48) Proposition. A ring R is right Rickart iff every principal right ideal in R 
is projective (as a right R-module). 

Proof. This follows basically from Exercise (2.2). For the sake of completeness, 
we include the proof. Assume R is right Rickart. For any principal right ideal aR, 
we have the exact sequence 

(7.49) f o --+ annr(a) --+ R --+ aR --+ 0, 

where f(x) = ax for any x E R. Since R is right Rickart, lmnr(a) = eR for 
some e = e2 E R, so the above sequence splits. This implies that a R is projective. 
Conversely, if aR is projective, the sequence must split, and this implies that 
annr(a) = eR for some e = e2 E R. 0 

Because of this new characterization, right Rickart rings are often called right 
P P -rings ("principal => projective"). As an application of (7.48), we see that right 
semihereditary rings are right Rickart. Recall that, in §2F, we have presented an 
example, due to Chase, of a ring T that is left semihereditary, but has a principal 
non-projective right ideal. Therefore, T gives an example of a left Rickart ring 
that is not right Rickart. 
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For later reference, we record the following chart of basic implications. It is not 
hard to verify that all implications are irreversible. 

(7.50) 

B[r), 
( von Neumann ) ~ ( right ) ( right ) (right) 

regular semiherditary ~ Rickart ~ nonsingular 

Here, the last horizontal implication follows from (7.6)(8). 
Remarkably, if we impose a suitable property on the ring, then all conditions in 

this chart become equivalent! To see this, let us first make the following general 
observation on right nonsingular rings. 

(7.51) Lemma. For any set S in a right nonsingular ring R, the right annihilator 
A = annr(S) is (essentially) closed in RR. 

Proof. Consider any right ideal B such that A S;e B, and let b E B. By (7.6)(3), 
C := {x E R: bx E A} is essential in RR' From b C S; A, we have S b C = O. 
This implies that S b S; Z(RR) = 0, so b E A. We have therefore shown that 
A=B. 0 

(7.51}' Corollary. Let R be any right nonsingularring with u. dim RR = n < 00. 

Then any chain of right (resp. left) annihilators in R has length ~ n. In particular, 
R satisfies both ACC and DCC on right (resp. left) annihilators. 

Proof. This follows from the Lemma in view of (6.31) and the "duality" between 
left and right annihilators (as expressed in the chart (6.57)). 0 

Since a right Rickart ring R is always right nonsingular, the lemma applies, in 
particular, to R. Thus, any right annihilator in R is always a complement, though 
not necessarily a direct complement, of RR (as would be the case for a Baer ring). 

(7.52) Theorem. Let R be any right self-injective ring. Then: 

(1) The five notions listed in the chart (7.50) are all equivalent. 
(2) If R is right hereditary, then it must be semisimple. 

Proof. (1) In view of (7.50), it is enough to show that, if R is right nonsingular, 
then R is Baer, and also von Neumann regular. Let A = annr(S) (S S; R) be 
any right annihilator. By Lemma (7.51), A S;c RR. Since RR is injective, (6.32) 
implies that A is a direct summand. Hence A = e R for some e = e2 E R, so R is 
Baer. Now consider any element a E R. Since R is right Rickart, aR is projective, 
so the sequence (7.49) splits. This implies that aR is also injective (as RR is). 
Therefore, aR is a direct summand of RR. This checks that R is von Neumann 
regular (see FC-(4.23)). 
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(2) Assume R is right hereditary. Since RR is injective, (3.22) implies that any 
quotient module of RR is also injective. This means that any cyclic right R-module 
is injective, so by (6.47) R is a semisimple ring. 0 

The following is just a part of (1) of the theorem we just proved. We state it 
explicitly for the reason that von Neumann regular rings and Baer rings are both 
important classes of rings arising in the theory of operator algebras. 

(7.53) Corollary. Any right (or left) self-injective von Neumann regular ring is 
Baer. 

Readers with a good memory will recall that there exist von Neumann regular 
rings which are left self-injective but not right self-injective (see (3.74B». 

The fact that right self-injective nonsingular rings are von Neumann regular will 
be further generalized later in Chapter 5; see (13.2). In that chapter, we shall see 
that these rings arise naturally as maximal (right) rings of quotients. In fact, for 
any right nonsingular ring R, the maximal right ring of quotients of R will be a 
right self-injective von Neumann regular (Baer) ring; see (13.36). 

(7.54) Example. Of course, a Baer ring (e.g., a domain) need not be von Neumann 
regular. We construct here a ring R that is von Neumann regular, but not Baer. By 
(7.53), R is necessarily neither right self-injective nor left self-injective. Also, in 
view of the implication chart (7.50), R will provide an example of a right Rickart 
ring that is not Baer. Let F be a field, and A = F x F x .... This ring is 
commutative, von Neumann regular, and is a Baer ring by (7.47)(4). Now let R be 
the subring of A consisting of "sequences" (aI, a2, ... ) E A that are eventually 
constant. For any (aI, a2, ... ) E R, define x = (xt. X2, ... ) by: Xn = a;1 if 
an 1= 0, and Xn = 0 if an = o. Then x E R and a = axa. Therefore, R is von 
Neumann regular. Let ei E R denote the ith "unit vector" (0, ... , 1, 0, ... ), and 
let S = let. e3, e5, ... }. Then annR (S) consists of sequences a = (aI, a2, ... ) 
which are eventually zero, and such that an = 0 for n odd. Clearly, annR (S) 
cannot be a f.g. ideal of R since, for any f.g. ideal!! £; annR (S), there exists a 
big integer N such that (aI, a2, ... ) E !! implies that an = 0 for n ~ N. In 
particular, R is not a Baer ring. 

Note that in the above example the ring R has an infinite orthogonal set of 
nonzero idempotents, namely, {e I, e2, e3, ... }. This turns out to be a feature com
mon to all rings which are right Rickart but not Baer, as the following result of 
L. Small shows. 

(7.55) Theorem. Let R be a ring that has no infinite orthogonal set of nonzero 
idempotents. Then the following are equivalent: 

(1 ) R is Baer. 
(2) R is right Rickart. 
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(3) R is left Rickart. 

Ifany of these conditions holds, then R satisfies ACC andDCC on left (resp. right) 
annihilators. 

The proof of this result will be preceded by a lemma. 

(7.56) Lemma. Let R be a right Rickart ring. Then any nonzero left annihilator 
L contains a nonzero idempotent. 

Proof. LetS = ann,(L)sothatL = anne (S). Fix a nonzero element a E L.Since 
R is right Rickart, ann, (a) = e R for some e = e2 i= 1 in R. But S ~ ann, (a) = e R 
implies that (1 - e)S ~ (l - e)eR = 0, so L = anne(S) contains the nonzero 
idempotent 1 - e. 0 

Proofof(7.55). It suffices to prove (2) "* (1), so assume R is right Rickart. To show 
that R is (left) Baer, consider any nonzero left annihilator L = anne (S), where S 
is any subset of R. According to (6.59), the hypothesis on R amounts to the fact 
that direct summands of R R satisfy the DCC. Among all nonzero idempotents in 
L (which exist by the lemma), choose e with R(1 - e) = anne(e) minimal. We 
claim that L n anne (e) = o. Indeed, if 

o i= L n anne (e) = anne(S U {eD, 

there would exist a nonzero idempotent f in this left annihilator. Since f e = 0, 
e' := e + (1- e)f is an idempotent in L. Also, e'e = e implies that e' i= 0 and 
anne(e') ~ anne (e). This inclusion is proper since fe = 0 but 

fe' = f(1 - e)f = f i= O. 

This contradicts the choice of e, so we have proved our claim. Thus, for any 
x E L, 

x - xe E L nanne(e) = 0, 

and hence x = xe. This shows that L = Re, so R is (left) Baer. With this 
conclusion, the last statement in (7.55) now follows from (6.59). 0 

In closing, let us make some remarks about terminology. The ring-theoretic 
notions that are really needed in operator theory are not quite Baer rings and 
left/right Rickart rings, but rather their" * -analogues". Let (R, *) be a ring with 
an involution *. An idempotent e E R with the property that e* = e is called a 
projection. By definition, (R, *) is aBaer * -ring if every right annihilator ann, (S) 
(S ~ R) has the form eR where e is a projection, and (R, *) is a Rickart *-ring 
if every ann, (s) (s E R) has the form e R where e is a projection. Of course, any 
Rickart * -ring is a (right) Rickart ring, and any Baer * -ring is a Baer ring. 

Note that in the * setting, there is an additional "built-in" good feature. Since 
R is isomorphic to its opposite ring, there is no need to distinguish "left" from 
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"right". More explicitly, if (R, *) is a Rickart *-ring as defined above, then, for 
any t E R, annr(t*) = eR for some projection e and hence 

annt(t) = (annr(t*»* = (eR)* = R*e* = Re. 

The left-right symmetry for Baer * -rings is derived similarly! This contrasts with 
the "non * " case, where "Baer" is left-right symmetric, but "Rickart" is not. In the 
special case when idempotents in R happen to be all central, a theorem of Endo 
guarantees that, if R is right Rickart and annr (t) = e R for an idempotent e, then 
anne (t) = Re; in particular, R is also left Rickart (cf. Exercise 21). This is as close 
as one can come to what happens in the * case without assuming the presence of 
an involution. 

As we mentioned above, the motivation for studying Baer * -rings and Rickart 
* -rings comes from functional analysis, or more specifically, from the theory of 
operator algebras on a Hilbert space. In this context, of course, * is given by the 
adjoint. The major example to keep in mind is the following. 

(7.57) Example. Let R be the ring of all bounded linear operators on a Hilbert 
space V,andlet * be the adjoint involution on R. Then (R, *) is a Baer *-ring. 
This is checked by using the same argument as that given in Example (7.47)(2). We 
just replace the V there by a Hilbert space, and work with the ring R of bounded 
linear operators on V instead. Keeping the notations there, we can define e E R 
to be the projection operator on the closed subspace U (taking U' to be the 
orthogonal complement of U). Then annr(S) = eR and e2 = e = e*, so we 
have checked that (R, *) is a Baer *-ring. 

By definition, a von Neumann algebra (on the Hilbert space V) is a * -invariant 
subalgebra A of the algebra R above which is closed with respect to the weak 
operator topology. (An equivalent condition, according to a theorem of von Neu
mann, is that A has the "double-commutant" property: A" = A, where A' 
denotes the commutant of A in R.) Example (7.57) can be generalized easily: 
Any von Neumann algebra in the above sense is a Baer * -ring. 

In operator theory, a C* -algebra that is a Rickart * -ring is called a Rickart C*
algebra, and a C*-algebra that is a Baer *-ring is called a Baer C*-algebra (or 
an A W* -algebra following I. Kaplansky). Generally speaking, the introduction of 
these classes of C* -algebras provides an algebraic framework in which to study 
the theory of von Neumann algebras of operators on Hilbert spaces. For a thorough 
treatment of these topics, see S. K. Berberian's book [72]. 

§7E. Applications to Hereditary and Semihereditary Rings 

In this subsection, we shall present some applications of the material of §6 and the 
earlier subsections of §7 to hereditary and semihereditary rings. Other applications 
of the notion of right nonsingular rings will be reserved for the next chapter on 
rings of quotients. 
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The first application below is due to F. L. Sandomierski. It says, in short, that 
for right hereditary rings, some of the finiteness conditions in §6E coincide. This 
result does not involve right nonsingular rings in its statement, but its proof relies 
on a certain property of such rings, and on the notion of singular modules as well. 

(7.58) Theorem. Let R be a right hereditary ring. Then R is right noetherian if 
(and only if) u. dim RR < 00. 

The "only if" part here is clear from (6.7)(1), so the thrust of the theorem is in 
its "if" part. Even in the case when R is a domain, (7.58) is a highly interesting 
result. In (10.22), we shall see that, for any domain R: 

u. dim RR < 00 <===} u. dim RR = 1 <===} R is right Ore. 

Therefore, (7.58) implies that any right hereditary Ore domain is right noetherian. 
In the commutative case, this boils down to the fact that any hereditary domain 
(= Dedekind domain) is noetherian: we knew this earlier, as a consequence of 
(2.17). 

To prove (7.58), we need a definition: we say that a module M (over any ring R) 
is essentially f.g. if there exists a f.g. submodule N ~e M. The following lemma 
shows that this notion is closely related to the finiteness of uniform dimension. 

(7.59) Lemma. A module M R has u. dim M < 00 iff every submodule of M is 
essentially f.g. 

Proof. First assume u.dim M < 00. Then, for any submodule N ~ M, we have 
also n := u. dim N < 00, so there exist uniform submodules Vi ~ N such that 

V, EB ... EB Vn ~e N. 

Fixing a nonzero element Ui E Vi (l :::: i :::: n), we have then 

LUi R ~e EBVi ~e N, 

so by (3.27)(2), N is essentially f.g. 
Next, assume u.dim M = 00. By (6.4), M contains some N = M, EB M2 EB· .. 

withMi I- O.Anyf.g.N' ~ NiscontainedinsomeM,EB·· ·EBM"soN'nMr +, = 
O. This shows that N' is not essential in N, so N fails to be essentially f.g. 0 

The proof of (7.58) is based on an interesting property of right nonsingular rings 
given in the Proposition below. 

(7.60) Proposition. Let R be a right nonsingular ring, and MR be a projective R
moduLe. Then M isf.g. iffit is essentiallyf.g. (lnparticular, u. dim M < 00 ==> M 
is f.g.) 

Proof. ("If" part) Say N = b, R + ... + btl R ~e M. We claim that: 

(7.61) Forany f E HomR(M, R), feN) = 0 ==> f = o. 
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Indeed, if f (N) = 0, then f induces a functional! : M / N --+ R. Since N ~e M, 
we have Z (M / N) = M / N by (7.6)(3), and hence (7.2)(3) implies 

!(M/N) = !(Z(M/N)) ~ Z(RR) = O. 

Therefore, ! = 0, proving (7.61). Continuing our proof, let ai E M, /; E 

HomR(M, R) (i E l) be as in the Dual Basis Lemma (2.9). Foreachbj , /;(b j ) = 0 
for almost all i, so there exists afinite subset 10 ~ I such that 

i rt 10 ==> /;(b j ) = 0 (V j, 1 :::: j :::: n). 

Now the RHS implies that /;(N) = 0, and hence /; = 0 by (7.61). It follows 
immediately that M = LiEfo ai R. D 

Proof of (7.58). If R is right nonsingular with u.dim(RR) < 00, it follows from 
(7.60) that any projective right ideal of R is f.g. Now let R be any right hereditary 
ring with u.dim(RR) < 00. Then R is right nonsingular by (7.7), so we conclude 
that any right ideal is f.g.; i.e., R is right noetherian. D 

Next we shall give some applications of the results in §7C to hereditary and 
semihereditary rings, due to L. Small. We first state the following result. 

(7.62) Theorem. For any fixed integer n ::: 1, a ring R is right (semi) hereditary 
iff the matrix ring S = Mn(R) is. 

This result is best proved by using the fact that the right module categories 
over Rand S are "naturally equivalent". This is the beginning point of the Morita 
Theory of category equivalences which will be presented in Chapter 7. Therefore, 
instead of giving an ad hoc proof for (7.62) here, we shall postpone its proof 
altogether, until Morita theory is developed. (See (18.6) below.) 

Recall that a right Rickart ring may be characterized by the "right PP" property; 
that is, R is right Rickart iff every principal right ideal in R is projective (see 
(7.48)). In particular, a right semi hereditary ring is always right Rickart. While the 
converse of this is not true in general, we do have the following interesting result. 

(7.63) Proposition. A ring R is right semihereditary ifJ,for every n ::: 1, Mn(R) 
is right Rickart. 

Proof. The "only if" part is clear from (7.62) and the remarks preceding the 
Proposition. Conversely, assume Mn (R) is right Rickart for every n ::: 1. Let 
I = al R + ... + anR be any f.g. right ideal in R. Denote by A the matrix in 
S := Mn (R) with first row (aI, ... , an), and zeros elsewhere. By assumption, 

(

I I 

A·S~ ! ! f) 
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is a projective right S-module. On the other hand, with R embedded in S in the 
usual way, S is a free right R-module, generated by the n 2 matrix units. Therefore, 
A . S is also projective as a right R -module. Since (A . S) R ;:: n . I R, it follows 
that IRis projective, so R is right semi hereditary. 0 

(7.64) Theorem (Small). Assume that u. dim RR < 00 or u. dim R R < 00. Then 
the following are equivalent: 

(1) R is right semihereditary. 
(2) R is left semihereditary. 

If one of these holds, then Mn (R) is a semihereditary Baer ring for every n ::: 1. 

Proof. By symmetry, it is enough to work with the case where u.dim RR < 00. 

Let S = Mn(R). By (6.62), 

u.dim Ss = n· u.dim RR < 00, 

so by (6.59), S has no infinite orthogonal set of nonzero idempotents. Assume (1). 
By (7.63), S is right Rickart, so by (7.55), Sis Baer (for every n ::: 1). Applying 
now the left analogue of (7.63), we deduce (2). It now follows from (7.62) that 
S = M" (R) is (right and left) semihereditary. The reverse implication (2) ==? (1) 
is proved similarly. 0 

As a consequence of (7.64), we have the following result which was promised 
earlier in §2F. 

(7.65) Corollary. A one-sided noetherian ring is right semihereditary iffit is left 
semihereditary. 

(7.66) Corollary. Let R be either a PRID, ora Pruferdomain (i.e., a commutative 
semihereditary domain). Then S = Mn (R) is a semihereditary Baer ring for every 
n:::1. 

Proof. To make sure that (7.64) applies, we need only check that u.dim RR < 00. 

In the latter case, we have clearly u.dim RR = 1. In the former case, R is right 
noetherian, so we also have u.dim RR < 00. (Actually, u.dim RR = 1 in the 
former case too, but we don't need this information for the proof here.) 0 

(7.67) Remark. If R is a commutative domain, a sharper statement is possible: 
if n > 1, Mn (R) is a Baer ring iff R is a Prufer domain. This is a theorem of 
Wolfson and Yohe; we shall not prove the harder "only if" part here. 

Exercises for § 7 

1. Compute Z (R R) for the ring R in Example (7.6)(4). 
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2. (a) Show that an R-module S is singular iff there exist two R-modules 
N ~e M such that S ~ M / N. (The "if" part here is already proved in 
(7.6)(3).) 
(b) Let N ~ M be two R-modules, where M is R-free. Show that M / N 
is singular iff N ~e M. 

3. For any submodule N in a nonsingular module M, show that M / N is 
singular iff N ~e M. 

4. Show that an R-module M is nonsingular iff, for any singular R-module 
S, HomR(S, M) = o. 

5. Let N ~ M be R-modules. 

(a) If N and M / N are both nonsingular, show that M is also nonsingular. 
(b) Does this statement remain true if we replace the word "nonsingular" 
throughout by "singular"? 

6. Let I ~ R be any left ideal. 

(a) For any n ~ 1, show that annt(I) ~e RR iff annt(r) ~e RR. 
(b) If I is nilpotent, show that annt(I) ~e RR. 

7. Let R be a ring for which every ideal right essential in R contains a non 
left-O-divisor. Show that R must be semiprime. 

8. (a) For any central element x E R and any n ~ 1, show that annt (x) ~e RR 
iff annt(xn) ~e RR. 
(b) Use (a) to show that the center of a right nonsingular ring is reduced. 
(c) Use (a) to show that, for any commutative ring R, R/ Z(R) is a non
singular ring. 

9. Showthat,foranycommutativeringR,Nil(R) ~e Z(R).Giveanexample 
of a commutative ring R for which this inclusion is not an equality. 

10. Show that a commutative semihereditary ring must be reduced. 

11. Show that, for R-modules Mi (i E I), Z(ffii Mi) = ffii Z(Mi). 

12A. Let MR be a simple R-module, and S = SOC(RR). Show that 

(a) M is either singular or projective, but not both; 
(b) M is singular iff M . S = 0; 
(c) Deduce from (a) that a semisimple module is nonsingular iff it is pro
jective. 

12B. Let M R be an R -module all of whose nonzero quotients have minimal sub
modules.58 Show that M is nonsingular iff P := soc(M) is nonsingular, 
iff P is projective. 

58Such a module M is said to be semi-artinian in the literature. For instance, an artinian 
module is always semi-artinian. 
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12C. Let R be a right self-injective ring, and M R be a nonsingular module with 
u.dim(M) < 00. Show that M is f.g. semisimple, and is both projective 
and injective. 

13. Let M R be any CS module over a ring R. 

(1) Show that any surjection from M to a nonsingular module splits. 
(2) Show that the Goldie closure 0** (defined in (7.31» splits in M. 

14. (Sandomierski) Let R be a right nonsingular ring, and let N R be a quotient 
of a CS module. Show that 

(1) ZeN) splits in N, and deduce that 
(2) if N is indecomposable, then it is either singular or nonsingular. 

15. Let N J, N2 be injective submodules of a nonsingular module MR. Show 
that NJ + N2 is also injective. Give an example to show that this may not 
be true if M is an arbitrary module over R. 

16. Let S c:; R be rings such that Ss C:;e Rs, and let M, N be right R-modules. 
If Ms is nonsingular, show that Homs(N, M) = HomR(N, M). 

17. Show that "right semihereditary" and "Baer" are independent notions. 

18. Let R be any right semihereditary ring and S c:; R be a finite set. Show 
that annr(S) = eR for some idempotent e E R. 

19A. For any a E R, show that the following are equivalent: 

(1) a = ava forsome v E U(R). (Such a is called a unit-regular element 
of R.) 
(2) a = uf for some f = f2 E Rand u E U(R). 
(3) a = eu for some e = e2 E Rand u E U(R). 
(4) a = asa for some s E R, and R/aR ~ annr(a) as right R-modules. 
(5) aR is a direct summand of RR, and R/aR ~ annr(a) as right R
modules. 

19B. Refer to Condition (5) in the list of equivalent conditions in the last exer
cise. Show that 

(A) If R is von Neumann regular, we can drop the first condition in (5). 
(B) If R is commutative, we can drop the second condition in (5). 
(C) If R is commutative and von Neumann regular, every a E R is unit
regular. 
(D) In general, the two conditions in (5) are independent. 

20. Let R be a ring in which all idempotents are central, and let a E R. Show 
that aR is projective iff a = be where e = e2 and annr(b) = O. 

21. (Endo) Let R be a ring in which all idempotents are central. Show that R 
is right Rickart iff it is left Rickart. 

22. (a) Show that a reduced ring is right Rickart iff it is left Rickart. 
(b) Name a Rickart ring that is not reduced. 
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23. Let R be a ring with exactly two idempotents 0 and 1. Show that R is right 
Rickart iff R is Baer, iff R is a domain. 

24. (a) Show that a commutative Rickart ring is always reduced. 
(b) Name a commutative reduced ring that is not Rickart. 

25. For any domain k, and a fixed integer n > 1, let T be the ring of upper 
triangular n x n matrices over k. Show that T is a Baer ring iff T is a 
right Rickart ring, iff k is a division ring. 

26. Let R be a Baer ring. Show that the annihilator of a central subset is 
generated by a central idempotent. State and prove the analogue of this for 
a Rickart ring. 

27. Show that the center of a Baer (resp. Rickart) ring is also a Baer (resp. Rick
art) ring. 

28. For any Baer ring R, let L be the poset (with respect to inclusion) of 
principal right ideals of the form e R where e = e2. Show that L is a 
complete lattice,59 anti-isomorphic to the complete lattice L' of principal 
left ideals of the form Re' where e' = e,2. 

29. Let (R, *) be a Rickart *-ring. 

(1) For any x E R, show that annr(x) n x* R = O. 
(2) Deduce from (1) that xx* = 0 ===} x = O. 

The next two exercises are intended for readers who are familiar with the 
notion of Boolean algebras. Briefly, a Boolean algebra is a distributive 
lattice with 0 and 1 in which every element has a complement. 

30. For any ring R, the set B(R) of central idempotents is known to form a 
lattice under the following (binary) meet and join operations: 

e /\ f = ef, e v f = e + f - ef (e, f E B(R». 

In fact B(R) is isomorphic to the lattice B'(R) of ideal direct summands 
of R (by the map e ~ e R), where meet is given by intersection and join 
is given by sum. (B(R) and B'(R) are both Boolean algebras.) For any 
Baer ring, show that the lattices B(R) and B'(R) are complete. 

31. For any commutative ring R and any ideal !1t £; R, recall that V (!1t) 
denotes the Zariski closed set 

{p E Spec R: p 2 !1t} ~ Spec R. 

Let B(Spec R) be the Boolean algebra of clopen (closed and open) sets in 
Spec R. Show that rp : B(R) ~ B(Spec R) defined by rp(e) = VeeR) is 
an anti-isomorphism of Boolean algebras, and rp : B(R) ~ B(Spec R) 
defined by rp(e) = V ((l - e)R) is an isomorphism of Boolean algebras. 

59 See Exercise (6.25) for definition. 
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32. (Johnson-Wong) For any nonsingular module M R , show that 

(I) there is a canonical embedding € of the ring EndR(M) into the ring 
EndR(E(M)); and 
(2) M is QI (quasi-injective) iff € is an isomorphism. 

33. (Johnson-Wong) Let MR be a nonsingular uniform module, with E 
EndR(M). 

(I) Show that any nonzero fEE is injective, and deduce that E is a 
domain. 
(2) If M is also QI, show that E is a division ring. 

34. Let R be a subring of a ring T such that RR 5;e TR. Show that Z(RR) 5; 
Z(Tr). In particular, if T is right nonsingular, so is R. 

35. (Shock) Let S = R[X] where X is a set of commuting indeterminates 
over the ring R. Show that Z(Ss) = Z(RR)[X]. (In particular, R is right 
nonsingular iff Sis.) 

§8. Dense Submodules and Rational Hulls 

§8A. Basic Definitions and Examples 

In this subsection we introduce the notions of dense submodules and rational 
extensions. This theory will be needed in the construction of the maximal right 
ring of quotients in Chapter 5. Much of the content of the current section comes 
from the work of Utumi and Findlay-Lambek. Our exposition here follows in part 
Storrer [72]. 

The notion of a dense submodule is a refinement of that of an essential sub
module. To discuss this notion, let us first recall a notation introduced in §7. Let 
N 5; M be right R-modules, and let y E M. In (7.24), we have defined 

(8.1) y-1N:= {r E R: yr EN}; 

this is a right ideal in R. Using this notation, the condition for N 5;e M may be 
expressed as follows (see (3.27)(1 )): 

y E M\{O} ==} y. (y-I N) i- (0). 

By strengthening this condition, we are led to the following new notion. 

(8.2) Definition. We say that N is a dense submodule of M (written N 5;d M) if, 
for any y E M and x E M\{O}, x . y-I N i- 0 (i.e., there exists r E R such that 
xr i- 0, and yr EN). If N 5;" M, we also say that M is a rational extension of 
N. 

(8.3) Examples. 

(1) Of course, N 5;" M ==} N 5;e M. The converse is not true in general. For 
instance, for R = Z, if M = Z/ pn+ I Z and N = pZ/ p"+ I Z (p = prime, n ~ 1), 
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then N <;e M, but N is not dense in M. (For y = T and x = pn, x(y-I N) = 0.) 
A similar example is given by R = Q [u, v] with relations u 2 = v2 = uv = O. 
Taking M = RR and N = u Q EEl v Q, we have N <;e M, but N is not dense in 
M. (Here, u· I-IN = 0.) 

(2) Let R be a commutative domain with quotient field K. For any torsion-free 
module N R, let M = N ®R K. Then N <;d M since y-I N i 0 for any y E M 
and hence x . y-I N i 0 for any x E M\{O}. 

(3) Surprisingly perhaps, N; <;d M; (i = 1, 2) does not imply NI EEl N2 <;d MI EEl 
M 2. In fact this implication may fail already in the special case N2 = M 2. For a 
concrete example over R = Z, take NI = Z <;d Q = MI and N2 = M2 = ZlnZ, 
where n > O. For y = (1ln, 0) E MI EEl M2 and x = (0,1), if yr E NI EEl N2, we 
must have n I r, but then xr = (0, r) = 0 ! 

(4) For any right ideal2( <; R, we have 2( <;d R R iff, for any y E R, anne (y -12() = 
O. If 2( is in fact an ideal, then 

2( <;d RR <===} anne (2() = 0, 

since, in this case, y -12( :2 2(. (In particular, if R is a commutative ring, 2( <;d R 
simply amounts to 2( being faithful as an R-module.) 

For instance, in Osofsky's example (3.45), the ring R = (~4 2~4) has an 

ideal2( = (~ ~4). Since (~ ~) 2( = 0, 2( is not dense in RR. In fact, 2( is 

not even essential in RR, as the reader may check. On the other hand, in the ring 
R = RI X R2 X ... where R; are arbitrary rings, the ideal 2( = RI EEl R2 EEl ... 
in R has annr (2() = anne (2() = 0, so 2( is left and right dense in R. 

(8.4) Corollary. 

(1) If a E R is a central element that is not a O-divisor, then aR <;d RR (and 
Ra <;d RR). 

(2) Let 2( be any right ideal in a ring R, and z E R. Then 2( <;d RR implies 
that z-l2( <;d RR. 

(3) Let R be a prime ring (Fe-(10.1S». Then any nonzero ideal in 2( is dense 
in RR and RR. 

Proof. All parts follow quickly from (8.3)(4). For (2), note that y-I (Z-I2() 
(zy)-I2( for any y, z E R. 0 

Note that (1) above applies to the polynomial ring R = S[t], if we take a = t. 
Another concrete example is the following, where we construct an ideal that is left 
dense but not right dense. 

(8.5) Example. Let R = Z[x] EEl Z[x]y be the ring in (7.6)(4), where we have the 
relations yx = y2 = O. Let 2( = Rx + Ry, which is easily checked to be an ideal 
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of R. Since x is not a left O-divisor, we have annr (21) = o. By (8.3)(4) (left ideal 
version), 21 c;d RR. On the other hand, since yRx = 0 and yRy = 0, we have 
y E anne (21), so 21 is not dense in RR. (In fact, a short calculation shows that 
anne(21) = R . y.) Nevertheless, we have 21 c;e RR, for, if f(x) + g(x)y I/. 21, 
then f(x) i- 0 and 

(f(x) + g(x)y)y = f(x)y E 21\{0}. 

The next Proposition provides two more characterizations for dense submodules 
in terms of the nonexistence of certain types of homomorphisms. Here, E(M) 
denotes the injective hull of a module M. 

(8.6) Proposition. For right R-modules N c; M, the following are equivalent: 

(1) N c;d M. 
(2) HomR(MIN, E(M» = O. 
(3) For any submodule P such that N c; P c; M, HomR(P I N, M) = O. 

Proof. (1) ===} (2). Assume, instead, that there exists a nonzero R -homomorphism 
f: M -+ E(M) with f(N) = O. Then Mnf(M) i- Osothereexistx, y E M\{O} 
such that f(y) = x. By (1), there exists r E R with xr i- 0 and yr E N. But then 

0= f(yr) = f(y)r = xr, 

a contradiction. 

(2) ===} (3). Suppose that, for some P as in (3), there exists a nonzero R-homo
morphism g : PIN -+ M. By the injectivity of E(M), we can extend g to a 
(nonzero) MIN -+ E(M). 

(3) ===} (I). Suppose that x . y-I N = 0 for some y E M, x E M\{O}. We define 
f : N + y R -+ M by 

fen + yr) = xr (n EN, r E R). 

This map is well-defined, for, if n + yr = n' + yr', then n - n' = y(r' - r) E N, 
hence x(r - r') = O. Clearly, f is an R-homomorphism vanishing on N, so by 
(3),0= f(y) = x, a contradiction. 0 

Note that conditions (2) and (3) apply very well, for instance, to check the failure 
of N c;d M in (8.3)(1). In fact, in both examples there, HomR (M IN, M) i- o. 

(8.7) Proposition. 

(1) If N c;d M, N' c;d M, then N n N' c;d M. 
(2) Let N c; P c; M. Then N c;d Miff N c;d P and P c;d M. 
(3) Assume M is a nonsingular module. Then N c;d Miff N S:::e M. 

Proof. (1) Let x, y E M, where x i- O. There exists r E R such that xr i- 0, 
yr E N. There also exists r' E R such that xrr' i- 0 and yrr' E N n N'. 
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(2) We need only prove the "if" part. Assume that N t;;.d P and P t;;.d M and let 
x, y E M, x -=J O. There exists r E R such that xr -=J 0, yr E P. Since P t;;.e M, 
there also exists s E R such that 0 -=J xrs E P (and yrs EO P). Finally, use 
N t;;.d P to find t E R such that x(rst) -=J 0 and y(rst) E N. 

(3) Again, we need only prove the "if" part, so let us assume N t;;.e M. Let 
x, y EM, x -=J O. Consider the R -homomorphism f : R---+ M defined by 
fer) = yr (r E R). By Exercise (3.7), f-I(N) t;;.e RR, where 

(8.8) f-I(N) = {r E R: yr E N} = y-IN. 

Therefore, x . y-I N -=J 0, for otherwise annex) ;2 y-I N would give the contra
diction x E Z(M). 0 

(8.9) Corollary. A ring R is right nonsingular iffevery essential right ideal f)1 t;;. R 
is dense in RR. 

Proof. The "only if" part follows by applying (8.7)(3) to M == RR' For the "if" 
part, assume there exists x E Z(RR)\{O}. Then annr(x) t;;.e RR, but annr(x) is 
not dense in RR, since x . 1-1 annr(x) = O. 0 

§8B. Rational Hull of a Module 

Our next goal is to show that any module M has a unique maximal rational 
extension. Weproceedasfollows.Leti = E(M),andletH = End(lR),operating 
on the left of I. We define 

(8.10) E(M) = {i E I : V h E H, heM) = 0 ===} h(i) := O} . 

Clearly, this is an R-submodule of I containing M. 

(8.11) Lemma. Let M' be any submodule of I containing M. Then M t;;.d M'iff 
M't;;. E(M). 

Proof. For the "if" part, it suffices to show that M t;;.d E(M). We do this by 
applying (8.6). Consider any R-homomorphism 

(8.12) h : E(M) ---+ E(E(M)) = E(M) with heM) == O. 

After extending the domain of h to E(M), we may assume that h E H. But then 
(8.10) implies that h(E(M)) = O. Thus, (8.6) yields M C;d E(M). 

For the "only if" part, assume that M C;d M', and consider h E H such that 
heM) = O. If heM') -=J 0, then 

o #- HomR(M' / M, E(M)) = HomR(M' / M, E(M')) , 

contradicting M C;d M' (by (8.6)). Therefore, heM') = 0, and we have proved 
M't;;. E(M). 0 
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(8.13) Proposition. Suppose M ~d P. Then there exists a unique R-homomor
phism g : P --* E(M) extending the inclusion map M "--+ E(M). This g is 
necessarily one-to-one. 

Proof. Since M ~e P, the inclusion M --* E (M) extends to an embedding 
g: P --* E(M). Clearly M ~d g(P) so by (8.11), g(P) ~ E(M). Now suppose 
g" g2 : P --* E(M) both extend the inclusion map M --* E(M). Since M ~e P, 
the gi 's are monomorphisms. Consider the map f : g, (P) --* E(M) defined by 

(p E P). 

Since f(M) = 0 and M ~d E(M), we must have f = 0 (by (8.6», so g, (p) = 
g2(P) for all pEP. D 

In view of (8.11) and (8.13), E(M) is the unique maximal rational extension 
of M; we call it the rational hull (or rational completion) of M. As the notation 
suggests, E(M) is an object somewhat akin to E(M). However, there is one main 
difference between E(M) and E(M). For E(M), it is possible to have a non
identity R-automorphism of E(M) that is the identity on M. However, according 
to (the uniqueness part of) (8.13), any R-endomorphism of E(M) that is the identity 
on M must be the identity on E(M). The following basic example illustrating this 
phenomenon should be kept in mind. 

(8.14) Example. Let R = Z, and p be a fixed prime. Let M = C P' using the 
cyclic group notations in (3.37). We have 

where I = E(M) = Cpx is the Priifer p-group. As is well-known, End(Cp") ~ 

Cp" (viewed as a ring), for n < 00. Each element h E H = End(l) induces a 
"compatible" family {hI! E End(Cp") : n ~ I}. Therefore, 

(8.15) H = End(lim Cp") ~ lim Cp'" 
----> <---

which is isomorphic to Zp, the discrete valuation ring of the p-adic integers. As 
we can see, there are many endomorphisms (and automorphisms) of I that are 
not the identity, but restrict to the identity of M. On the other hand, since C p" is 
not dense in Cp"+1 (by (8.3)(1», we have E(Cp") = Cp". (Note that if E(Cp") 
were bigger than C p", it would have had nontrivial automorphisms restricting to 
the identity on C p".) 

The following Proposition offers a description of E(M) in general which is 
ostensibly not dependent on the use of the ring H = End(E(Mh). 
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(8.16) Proposition. E(M) = {y E E(M) : V x E E(M)\{O}, x . y-l M =f:. O}. 

Proof. Let y E RHS. Let h E H be such that heM) = O. If x := hey) =f:. 0, there 
exists r E y-I M such that xr =f:. O. But then 

xr = h(y)r = h(yr) E heM) = 0, 

a contradiction. Thus, hey) = 0, which shows that y E E(M). Conversely, assume 
y E E(M) and let x E E(M)\{O}. Fix an element r E R such that 0 =f:. xr E 

E(M). Since M r:;d E(M), there exists s E R such that (xr)s =/: 0 and (yr)s E M. 
Now we have rs E y-I M, and x . y-I M contains x(rs) =I- O. 0 

(8.17) Definition. An R -module M R is said to be rationally complete if it has no 
proper rational extensions, or equivalently E(M) = M. Note that, by the transi
tivity property of denseness (cf. (8.7)(2», E(M) is always rationally complete. 

(8.18) Examples. 

(1) If MR is injective, then M is rationally complete. 

(2) Let (R, m) be a local ring, and MR be any R-module that has a simple sub
module N. Then M is rationally complete. To see this, note first that we have an 
R-isomorphism N ~ (R/mh. Let x E N correspond to T under such an isomor
phism. Consider any rational extension M' :2 M, and y E M'. Then there exists 
r E R such that yr E M and xr =I- O. The latter implies that r ¢ m so r is a unit 
of R. But then yr E M implies that y E M. Hence M' = M. 

(3) As seen in (8.14), over R = Z, any cyclic group C p" is rationally complete. 
Infact, any torsion abelian group M is rationally complete. To see this, consider 
M r:;d M', and assume M =f:. M', say, Yo E M'\M. Let n be the least natural 
number such that Yon EM. Write n = nop where p is a prime. Then y := yono ¢ 
M and yp E M. Clearly, y has finite order divisible by p, so a suitable mUltiple 
of y will give an element x E M' of order p. Since M r:;d M', there exists r E Z 
such that yr E M and xr =f:. O. Such an r must be relatively prime to p, but then 
yr E M, yp E M imply that y E M, a contradiction. 

(4) Let R be an integral domain with quotient field K. For any torsion-free module 
M R, we have E(M) = M ®R K by (3.35) and M r:;" M ®R K by (8.3)(2). Thus, 
E (M) = E (M), so M is rationally complete iffit is already injective. In particular, 
RR is rationally complete iff R is afield. 

(5) (Generalizing (4).) Let M be a nonsingular module, over any ring R. Then 
we have E(M) = E(M). (By (7.6)(2), E(M) is also nonsingular, so by (8.7)(3), 
E(M) is a rational extension of M.) Therefore, M is rationally complete iff Mis 
injective. Specializing to the case of the right regular module, we see that, if R is a 
right nonsingular ring, then E(RR) = E(RR), so RR is rationally complete iff R 
is right self-injective. These facts will be of importance in the next chapter when 
we study the various rings of quotients associated with a given ring. 
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What can we say about E(M, EEl M2)? As it turns out, this is not always given 
by E(Md EEl E(M2) ! To analyze E(M, EEl M2), we shall work inside E(M, EEl M2), 
which we identify with E(M,) EEl E(M2). 

Proof. Let M = M, EEl M2. We shall write any element y of E(M,) EEl E(M2) in 
the form y = (y" Y2). Suppose y E E(M). Then, for any x, E E(M,)\{O}, we 
have (x" 0)· y-' M =1= (0) by (8.16). Since y-' M = y,' M, nY2' M2, this implies 
that (x" 0) . y,' M, =1= (0). Hence x, . y,' M, =1= (0) for all x, E E(Md\{O}, and 
so y, E E(M,) by (8.16). Similarly, Y2 E E(M2)' and we have 

y = (y" Y2) E E(M,) EEl E(M2). 

o 

(8.20) Corollary. If M" M2 are rationally complete, then so is M, EEl M2. 

Proof. By (8.19), we have 

E(M, EEl M2) S; E(M,) EEl E(M2) = M, EEl M2 S; E(M, EEl M2), 

so equality must hold throughout. o 

In general, although M; S;d E (M;) (i = 1, 2), we need not have 

M, EEl M2 S;d E(M,) EEl E(M2) 

(see (8.3)(3)). Therefore, we should not expect E(M, EEl M2) to be given by 
E(M,) EEl E(M2). Let us make an explicit computation for E(M, EEl M2) to il
lustrate this point. 

(8.21) Example. Let R = Z, M = M, EEl M2 with 

M, = Z c E(Md = E(M,) = Q, 

M2 = ZI pZ = E(M2) c E(M2) = Cp"- , 

where p is a prime. We use the notations in the proof of (8.19). Let 

y = (y" Y2) E E(M,) EEl M2 , 

with 0 =1= y, = min where (m, n) = 1 in Z. Then y-' M = y,' M, = n Z. We 
claim that: 

(8.22) Y E E(M) {=} (n, p) = 1 . 

Indeed, assume that y E E(M) but n = naP (no E Z). Considering the element 

(y,nO, Y2na) E E(M), 
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we can find r E IE such that y,nor E M, and (O,1}r #- (0,0). The former 
implies that plr, which contradicts the latter. This proves" ==>" in (8.22). For 
the converse, assume that (n, p) = 1. Consider any 

x = (xt. X2) #- (0,0) E E(M). 

If x, #- 0, then x, . y-' M #- 0 since y-' M #- (0). If X2 #- 0, then 

X2' y-' M = X2 . nlE #- (0) 

since (n, p) = 1 and X2 is p-primary. Therefore, in any case, x . y-' M #- (0), 
and (8.16) yields y E E(M). Having now proved the claim (8.22), 'Ye conclude 
that 

(8.23) E (IE E9 (7L.I pIE)) = lE(p) E9 (lEI pIE) , 

where lE(p) denotes the localization of IE at the prime ideal (p). In particular, we 
see that lE(p) E9 (lEI pIE) is rationally complete, although its direct summand IE(P) 
is not rationally complete. (We have, of course, E(7L.(p» = Ql.) 

In spite of this, one could expect that a rationally complete module M R has 
some of the features of an injective module. We finish this subsection with the 
following result which characterizes a rationally complete module in terms of a 
property for extending homomorphisms. 

(8.24) Theorem. For any module M R, the following are equivalent: 

(1) M is rationally complete. 
(2) For any right R-modules A ~ B such that HomR(BI A, E(M)) = (0), 

any R-homomorphism f : A ---+ M can be extended to B (necessarily 
uniquely). 

Proof. (1) ===> (2). We can certainly extend f to g : B ~ E(M). We claim 
that 

M ~d M +g(B). 

Once we have proved this, then (1) implies that g(B) ~ M and we are done. To 
prove (*), it suffices to check 

HomR«M + g(B»1 M, E(M + g(B))) = (0), 

by (8.6). This follows from HomR(BIA, E(M)) = (0), since E(M + g(B» = 
E(M), and g induces a surjection from BI A to (M + g(B»/M. 

(2)===>(1). Suppose M ~d M'. By (8.6), HomR(M' I M, E(M)) = (0), where 
we have identified E(M') with E(M). By (2), the identity map M ~ M extends 
to some g : M' ~ M which is necessarily a split surjection. On the other hand, 
(ker g) n M = (0) implies that ker g = (0), since M ~e M'. Therefore, g is an 
isomorphism, which implies that M' = M. D 
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An easy application of (8.24) leads to the following generalization of (8.20). 
The details of the proof will be left to the reader. 

(8.25) Corollary. Let M = £liEf Mi.lf each (Mi)R is rationally complete, then 
so is MR. 

§8C. Right Kasch Rings 

If V is a simple right module over a ring R, it is of interest to know whether V can 
be embedded in the right regular module RR. Consideration of this issue leads to 
the notion of right Kasch rings. Actually, we have already had an earlier encounter 
with the "right Kasch" property; see (5.74). We shall now reintroduce this property 
formally, and take a closer look at it in this subsection. 

(8.26) Definition. We say that R is a right Kasch ring if every simple right R
module V can be embedded in RR. "Left Kasch ring" is defined similarly. As 
usual, R is called a Kasch ring if it is both right and left Kasch. 

We can always think of a simple right R -module as Rim, where m is a maximal 
right ideal. The following Proposition gives a characterization for the embedding 
of Rim into R in terms of denseness and double annihilator properties. 

(8.27) Proposition. For any maximal right ideal meR, the following are equiv
alent: 

(0) Rim embeds into RR. 
(1) m = annr(x) for some x E R. 
(2) annl(m) 1= O. 
(3) m = annr (annl m). 
(4) m is not dense in RR. 

Proof. (0) ===} (1). There exists an endomorphism of RR ,say, f, with kernel m. 
Then f is given by left multiplication by some nonzero element x, and we have 
m = annr(x). 

(1) ===} (2). From (1), we have clearly 01= x E anne(m). 

(2) ===} (3). Since annl(m) 1= 0, m C; annr(anne m) =I- R. The maximality of m 
then implies (3). 

(3) ===} (4). If m is dense, (8.3)(4) implies that ann/(y-'m) = 0 for all y E R. 
In particular, ann/em) = 0, which contradicts (3). 

(4) ===} (0). Let x, y E R be such that x =I- 0 and x . (y-'m) = O. Then, left 
multiplication by x defines a nonzero R-homomorphism f : Rly-'m ~ R. 
Also, left multiplication by y gives an R-embedding g : Rly-'m ~ Rim. Since 
Rly-'m 1= 0, g must be an isomorphism. Thus, f 0 g-' gives an embedding of 
Rim into RR. 0 
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(8.28) Corollary. For any ring R, the following are equivalent: 

(0) R is right Kasch. 
(1) Any maximal right ideal in R has the form annr(x) for some x E R. 
(2) For any maximal right ideal m in R, anne(m) i- O. 
(3) For any maximal right ideal m in R, m = annr(anne m). 
(4) The only dense right ideal in R is R itself. 
(S) For any right ideal Qt ~ R in R, anne(Qt) i- O. 

Proof. We deduce the equivalence easily from (8.27), noting that any right ideal 
Qt ~ R is contained in a maximal right ideal. 0 

(8.29) Examples. 

(0) Any semisimple ring is clearly (right, left) Kasch. (For a more precise statement, 
see Exercise IS.) 

(1) If R is a domain but not a division ring, then R is not (right) Kasch in view of 
(2) above. 

(2) If R is any nonartinian simple ring, then R is not right Kasch. Indeed, if it is, 
then R will have minimal right ideals, and Fe-(3.tO) implies that R is artinian. 

(3) Let R be any semiprimary ring with J := rad R. If either RI J is simple or R is 
commutative, then R is Kasch by (S.7S). In particular, any local I-sided artinian 
ring is Kasch. 

(4) Let R = njEJ A j, where the A j 's are nonzero rings and the indexing set J 
is infinite. The ideal Qt := E9 jEJ A j ~ R clearly has anne (Qt) = annr (Qt) = o. 
Thus, for any maximal right (left) ideal m ;2 Qt, the simple right (left) module 
Rim fails to embed in R, so R is neither a right Kasch ring nor a left Kasch ring. 

(S) Let R = (~ ~) where k is any field. Consider the maximal right ideals 

m = (~ ~) and m' = (~ ~), from which we can form the two simple right 

R-modules V = Rim, V' = Rim'. A quick calculation shows that anne(m) = 
m' i- 0, and anne (m') = O. Therefore, V' cannot be embedded in RR, but V can. 

(Of course, V is isomorphic to the minimal right ideal (~ ~).) This shows that 

R is not a right Kasch ring, and a similar argument shows that R is not a left Kasch 
ring. (Readers with a good memory might recall that this example is just a special 
case of (S.76)!) 

(6) In general, "right Kasch" and "left Kasch" are independent conditions. In 
the following, we shall construct an artinian ring that is right Kasch but not left 
Kasch. Let k be a division ring, and let R be the ring of matrices 

o 
o a 

y = 0 0 
(

a 

o 0 

~ ~) 
a 0 
o e 
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over k. The set ] of y E R with zero diagonals is a nilpotent ideal with R /] ~ 
k x k (the isomorphism being given by y ~ (a, e», so ] is exactly rad(R). The 
two simple right R-modules SI, S2 can be taken to be k, with y acting by right 
multiplication by a for SI, and by right multiplication by e for S2. The simple 
left R-modules S;, S~ can be described similarly. Next let us calculate the two 
socles SOC(RR) and soc(RR). By FC-Exer. (4.20), SOC(RR) = annie]), which 
is easily computed to be {y E R: a = OJ. The right action of R on this is 
computed by the following equation: 

( 
~ ~ ~ ~) (~ ~ ~ ~ ) (~~ b~a ~:: ) 
0000 OOaO=OO 00' 
o 0 0 e' 0 0 0 e 0 0 0 e' e 

which shows that SOC(RR) ~ SI EEl 3 S2. In particular, R is right Kasch. On the 
other hand, soc(RR) = annr(J) is computed to be {y E R: a = e = O} (which 
is just ]). Since 

( ~ ~ ~ ~) (~ ~ ~ ~:) (~~ a;' :~) 
OOaO 0000 =00 00' 
OOOe 0000 0000 

we see that soc(RR) ~ 3 S;. Thus, S~ does not embed into RR, so R is not left 
Kasch. 

This example also provides a good illustration for the result (8.27). In fact, let 
ml be the ideal {y E R : a = OJ, and m2 be the ideal {y E R : e = OJ. 
These are both maximal left and maximal right ideals in R, with (R/mi)R ~ Si 
and R(R/mi) ~ S;. Clearly, the matrix unit El3 left and right annihilates ml, 
so (8.27) already predicts that SI embeds into RR and S; embeds into RR (and 
that ml is not dense in RR or in RR). As for m2, E44 clearly left annihilates it, 
so S2 embeds into RR (and m2 is not dense in RR). On the other hand, a direct 
calculation shows that annr (m2) = 0, so (by the left analogue of (8.27», S~ does 
not embed into RR (and Rm2 is dense in RR). 

There also exist local rings R that are right Kasch but not left Kasch: for an 
explicit construction, see Exercise 13. 

The Kasch property is already of great interest in the category of commutative 
rings. Let us now conclude this subsection by giving a couple of results to illustrate 
how Kasch rings arise naturally in the commutative case. 

For the first result, we start with a commutative ring S, and construct a commu
tative Kasch ring R :2 S, as follows. Let M = EBi Vi, where {\.'i} is a complete 
set of simple S-modules. Viewing M as an (S, S)-bimodule in the obvious way 
(with identical left, right S-actions), we can form the "trivial extension" R of M 
by S, as in (2.22)(A). 

(8.30) Proposition. The trivial extension R = M EEl S (in which M is an ideal of 
square zero) is a commutative Kasch ring containing S. 
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Proof. The defining formula for the multiplication in R shows clearly that R 
is commutative. Since M2 = 0, Rand S have the same simple modules. By 
construction, each simple S-module Vi is a minimal ideal in M <; R, so R is a 
(commutative) Kasch ring. D 

For the second way of constructing commutative Kasch rings, we start with 
any commutative ring R, and let Q(R) be its total ring of quotients; i.e., the 
localization of R at the multiplicative set of non O-divisors in R. It turns out that, 
under a reasonable finiteness assumption on R, Q(R) will be a (commutative) 
semi local Kasch ring. 

(8.31) Theorem. In the above notations, assume that R has ACC on annihilator 
ideals (e.g., R is a subring of a commutative noetherian ring: see (6.61»). Then: 

(l) (Small) An ideal ~ is dense in R iff it contains a non O-divisor; 
(2) (Faith) K := Q(R) is a (commutative) semilocal Kasch ring. 

Proof. Among the element-annihilators (ann(a) : 0 i- a E R}, let (ann(ai) : 
i E l} be the maximal members. By Exercise (3.40E)(l), each Pi := ann(ai) is a 
prime ideal. We claim that I I I < 00. In fact, if we have an infinite set Pi, ' Pi2' ••• , 

then Pi, 2 Pi, n Pi, 2 ... are also annihilator ideals, and so 

Pi, n ... n Pi, = Pi, n ... n Pi, n Pi,.+, <; Pi,,, 

for some r, by (6.57). Since Pi,+, is prime, we have Ph <; Pi,.+, for some k :S r, 
a contradiction to the maximality of Pi,. Therefore, I I I < 00, and we may relabel 
I as {I, 2, ... , n}. The given ACC hypothesis also implies that each element-an
nihilator is contained in a maximal one. Hence 

(8.32) T := PI U··· U Pn 

gives precisely the set of all O-divisors of R. 

(l) If ~ contains a non O-divisor, then ~ is faithful as an R -module, and so 
~ <;d R by (8.3)(4). On the other hand, if ~ consists of O-divisors, then ~ <; T. 
By (8.32) and the Lemma of Prime Avoidance (Eisenbud [95: pp. 90-91]), ~ <; Pi 
for some i. But then ai ~ = 0, so (by loco cit.) ~ is not a dense ideal. 

(2) Let S := R \ T, so that the total ring of quotients of R is K = Rs. Consider 
any maximal ideal M of K. Then M is the localization N s of some ideal N <; 
PI U ... U Pn. By the Lemma of Prime Avoidance again, N (; Pi for some i. 
Thus, M <; (P;)s, so we must have M = (Pi )s. This shows that K is semilocal, 
with maximal ideals Mi := (Pi)s (l :S i :S n). Since aiMi == 0 for each i, it 
follows from (8.28) that K is a Kasch ring. D 

(8.33) Remark. In the foregoing proof, we worked mostly with element-anni
hilators. But a moment's reflection shows that the ann(ai) 's introduced at the 
beginning of the proof above are also the maximal members in the set of all 
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(proper) annihilator ideals, under no assumptions other than the commutativity of 
R. 

The main reason we have included a quick expose on Kasch rings in this sub
section is that several classes of Kasch rings prove to be of importance in future 
chapters. The quasi-Frobenius (QF) rings studied in Chapter 6 and the cogenerator 
rings studied in Chapter 7 (a generalization of QF rings) will be seen to be both 
Kasch rings. Small's result in (8.31)(1) above also turns out to be useful in the 
consideration of maximal rings of quotients of commutative rings; see (13.16). 

Exercises for §8 

1. LetM'beasubmoduleofMRandN r;;.d M.Forany I E HomR(M', M), 
show that I-I (N) r;;.d M'. 

2. Let M be an R -module containing the right regular module R R. Show that 
RR r;;.d Miff RR r;;.e M and for every y E M, y-I R r;;.d RR. 

3. Let C S;; N r;;. M be R-modules. 

(a) Does N r;;.e M imply N IC r;;.e MIC? 
(b) Does N r;;.d M imply N IC r;;.d MIC? 

4. Let MR be a nonsingular uniform R-module. Show that any nonzero sub
module N r;;. M is dense in M. 

5. Let m i= R be an ideal in a commutative ring R, and let M R = Rim. 
Show that any nonzero submodule N C M is dense in Miff m is a 
prime ideal. 

6. Let k be a field and R = k({Xi : i ::: I}) with relations XiX) = 0 for 
all unequal i, j. Let Pi(Xi) E k[x;]\{O}. Show that the ideal generated by 
{Pi(Xi): i::: I} is dense in R. 

7. Show that a ring R is semisimple iff R is right nonsingular and every right 
ideal (resp. right R-module) is rationally complete. 

8. Let I : S -+ R be a surjective ring homomorphism, where S is a commu
tative ring. If N R is rationally complete as an R-module, show that Ns is 
rationally complete as an S-module. 

9. Let N r;;.d M, where M, N are right R-modules. For any YI, ... , Yn EM 
and 0 i= X EM, show that there exists r E R such that YI r, ... , Yn r E N 
and xr i= O. 

10. Let S r;;. R be rings such that Ss r;;.e Rs, and let N r;;. M be right 
R-modules. 

(1) Assume Ns is nonsingular. Show that 
(a) NR r;;.e MR iff Ns r;;.e Ms, and 
(b) Ns is injective ==> NR is injective. 
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(2) Assume Ms is nonsingular. Show that NR ~d MR iff Ns ~d Ms. 
(3) If N s is nonsingular and rationally complete, show that N R is also 
rationally complete. 

11. Prove Corollary (8.25). 

12. Let R be a local ring with a nilpotent maximal ideal. Show that any module 
M R is rationally complete. 

13. Give an example of a local ring R that is right Kasch but not left Kasch. 
(Hint. Let S be the ring of power series in two noncommuting variables 
x, y over a field k, and try R = S/(yx, y2).) 

14. Show that a ring R is right Kasch iff, for any nonzero finitely generated 
module MR, HomR(M, R) =I- O. 

15. For any ring R, show that the following are equivalent: 

(l) R is semisimple; 
(2) R is von Neumann regular and right Kasch; 
(3) R is Jacobson semisimple (Le., rad(R) = 0) and right Kasch; 
(4) R is semiprime and right Kasch. 

16. Let R be Osofsky's ring of 32 elements in (3.45). 

(l) Show that R is a Kasch ring by finding explicit embeddings of the 
simple (right, left) R-modules into R. 
(2) Show that the modules RR and RR are not divisible (and hence not 
injective). 

17. Let A be the direct product k x k x k x ... where k is a field. Let ei (i :::: 1) 
be the i th "unit vector" and S be the k-subalgebra of A generated by the 
ei 's (that is: S = k EB ke, EB ke2 EB ... ). 

(1) Show that the simple S-modules are V; (i :::: 0) with Vi ~ kei c S for 
i :::: 1, and Vo ~ S / EDi>' kei with all ei 's acting as zero. 
(2) Show that Vo is the-only simple S-module not embeddable into S (so 
S is not a Kasch ring). 

The next four exercises arise from a correspondence b,etween the author 
and Carl Faith in June, 1998. 

18. Show that a commutative Kasch ring R with IAss(R)1 <: 00 (e.g., in case 
u. dim(RR) <: 00: see Exercise (6.2» must be semilocal. Then construct 
a commutative Kasch ring that is not semilocal. 

19. For a prime ideal p in a commutative ring R, show that p E Ass(R) 
implies that the localization Rp is a Kasch ring, and conversely if p is 
a f.g. ideal (e.g. if R is noetherian). Give an example: to show that the 
converse need not hold if p is not a f.g. prime ideal. (Hint (for the last 
part). Use (3.71) and Exercise (3.40G).) 
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20. Construct a commutative noetherian Kasch ring R with a prime ideal p 
such that the localization Rp is not a Kasch ring. 

21. Let R be a commutative noetherian ring. If Rm is Kasch for every maximal 
ideal m, show that R is Kasch. What if R is not assumed to be a noetherian 
ring? 

22. Compute the left and right singular ideals of the ring R in Example 
(8.29)(6). 



Chapter 4 

Rings of Quotients 

After developing enough module theory in the three previous chapters, the stage 
is now set for the study of the theory of rings of quotients. The present chapter is 
a general introduction to this theory, in the setting of noncommutative rings. 

In a preamble section (§9), we discuss the general issues of "inverting" a given 
multiplicative set S of nonzero elements in a (possibly) noncommutative ring R. 
If R is a domain and S = R\ {O}, a related issue is that of embedding R into a 
division ring. Unfortunately, such embeddings need not always exist: in §9, we 
present Mal'cev's famous example of a domain that cannot be embedded in a 
division ring. Even if such embeddings exist, they may not be unique, as shown 
by an intriguing example of J. L. Fisher [71].60 

In the second section (§ 10) of this chapter, we study Ore's localization theory, 
developed by Ore in the early 1930s. Here we find the necessary and sufficient 
conditions for constructing the (Ore) localization RS- 1 with respect to a given 
multiplicative set S ~ R. Letting S be the multiplicative set of all non O-divisors 
in R, in particular, we arrive at the notion of right Ore rings, which are the rings 
with a classical (total) right ring of quotients. 

Section 11 introduces the important notion of right Goldie rings, and presents 
the landmark Goldie Theorem(s) proved by A. Goldie (and in part by L. Lesieur 
and R. Croisot) in the late 1950's. These theorems characterized the "right orders" 
in semisimple (resp. simple artinian) rings: such right orders are precisely the 
semiprime (resp. prime) right Goldie rings. On the one hand, these theorems led 
to various other embedding results of a similar spirit; on the other hand, since right 
noetherian rings are right Goldie, these theorems provided the first powerful tools 
for a new in-depth study of noetherian rings. Before the appearance of the Goldie 
theorems, the theory of noetherian rings was mainly confined to the commutative 
case (work of Noether, Krull, Zariski, and applications to algebraic geometry). 

60There are two ring theorists named J. Fisher, and it is not always easy to distinguish 
their publications. The paper referred to here was written by James L. Fisher. However, in 
the author index of the AMS collected Ring Theory Reviews (1940-1979), this paper was 
listed under the name of Joe W. Fisher. Later in this Chapter, we shall present some results 
on nil multiplicative sets; our presentation there follows a paper of J. W. Fisher [70]. 
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In the last three decades, thanks to the pioneering work of Goldie, the theory of 
noncommutative noetherian rings has also come to fruition. 

A natural extension of Goldie's Theorems is the characterization of right orders 
in right artinian rings. This was successfully carried out by Robson and Small 
in the 1960s. In § 12, we present such a characterization in the convenient form 
expounded by Warfield. Here we use in an essential way the idea of the "p-rank" 
of a module, which is a variant of Goldie's reduced rank introduced earlier in §7. 

Throughout the text, we use the terms "quotients" and "fractions" more or less 
interchangeably. Most of the time, we speak of "rings of fractions", but "rings 
of quotients" is in such common use that it can hardly be ignored. As a rule, the 
reader should feel free to use the term "rings of quotients" as long as there is no 
possible confusion with "quotient rings" (RI21 for ideals 21 <; R). 

§9. Noncommutative Localization 

§9A. "The Good" 

One of the first things we learn in undergraduate algebra is the fact that, for any 
commutative domain R, we can formally invert the nonzero elements of R to 
form a unique quotient field (or field of fractions) for R. Later, in commutative 
algebra, we are taught the general procedure of localizing any commutative ring R 
at a multiplicative set s. This procedure yields a commutative ring Rs and a ring 
homomorphism 8: R --+ Rs such that 8(S) is a unit in Rs for every S E S, and 8 

is "universal" with respect to this property. Moreover, we have the following two 
key facts for 8 and Rs: 

(9.1a) Every element in Rs has the form 8(r)8(s)-1 where r E Rand S E S. 

(9.1b) ker 8 = {r E R: rs = 0 for some s E S} (an ideal in R). 

The ring Rs is called the localization of R at S. To simplify the notation, 
we write the elements of Rs as fractions rls or rs- 1 (instead of 8(r)8(s)-I). 
We add fractions by taking common denominators, and multiply fractions by 
mUltiplying numerators and denominators. The classical case of embedding a 
commutative domain R into its quotient field corresponds to the localization of R 
at the multiplicative set R\{O}. 

In commutative algebra, localization provides one of the most powerful tools 
for proving theorems. Thus, in studying noncommutative rings, it is natural to 
ask first how much of the localization machinery can be made to work in the 
noncommutative setting. In this initial subsection, we shall give some preliminary 
answers to this question, mainly by looking at some key examples. The finer issues 
of localizing a ring R to get "sufficiently decent" rings of quotients will be taken 
up in more detail in later sections of this Chapter. 

In studying the beginning part of the theory of noncommutative localization, 
we will already encounter new phenomena that are not present in the commutative 
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setting. Let us now discuss three of these phenomena; we shall refer to them as 
The Good, The Bad, and The Ugly. "The Good" is embodied in the fact that, for 
any multiplicative set S in any ring R, we can define a "universal S-inverting 
ring" Rs. At first sight this looks encouraging, but in the general setting we lose 
both of the properties (9.1 a) and (9.1 b). This greatly compromises the usefulness 
of Rs. After this comes "The Bad", a surprising example of a noncom mutative 
domain R found by Mal' cev which cannot be embedded in any division ring. This 
suggests the need to find necessary and sufficient conditions for a domain to be 
embeddable in a division ring. But even for such embeddable domains, there may 
not be a unique "division ring offractions". In the subsection dubbed "The Ugly", 
we'll see that, for the domain A = Q (u, v), there exist embeddings e" : A ~ D" 
where the Dn 's are "minimal" division rings over en (A) for n ~ 2, but there 
is no isomorphism (or homomorphism) f : Dm ~ Dn for m =I- n such that 
f 0 em = en' The free algebra Q(u, v), therefore, has infinitely many essentially 
different "division rings of fractions". 

We shall begin here with "The Good", since it is quite easy and completely 
general. By a multiplicative set in a ring R, we shall mean throughout the text a 
subset S ~ R such that S is closed under multiplication, 0 fj. S, and 1 E S. A 
homomorphism Ci : R ~ R' is said to be S-inverting if Ci(S) ~; U(R') (the group 
of units of the ring R'). 

(9.2) Proposition. Given S ~ R as above, there exists an S-inverting homo
morphism e from R to some ring, denoted by Rs , with the following universal 
property: For any S-inverting homomorphism Ci : R ~ R', there exists a unique 
ring homomorphism f: Rs ~ R' such that Ci = fOe. 

(As usual, the universal property above guarantees the uniqueness of the data 
e : R ~ Rs. This is why we are justified in using the notation Rs for the receiving 
ring of the "universal S-inverting homomorphism" e .)61 

Proof. Fix a presentation of R by generators and relations. For each s E S, adjoin 
a new generator s* and two additional relations ss* = 1, s*s = 1, where s is an 
element in the free Z -algebra that maps to s in the given presentation. The new 
set of generators and relations defines a ring Rs, along with a ring homomorphism 
e: R ~ Rs. For each s E S, the image of s* in Rs provides an inverse for e(S), 
so e(S) ~ U(Rs). The asserted universal property of e follows quickly from the 
definition of Rs. 0 

(9.3) Example. Contrary to the commutative case, the "universal S -inverting ring" 
Rs may be the zero ring, even though R =I- (0) and 0 fj. S. For instance, let 
R = Mn(k) (n ~ 2), where k is a nonzero ring, and let S be: the multiplicative 

61 The Proposition is, in fact, true for any subset 5 <; R. The hypotheses we assumed on 
5 are imposed only for convenience, and to avoid trivial situations. (For instance, note that 
if 0 E 5, then Rs would be the zero ring.) 
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set {I, Ell}, where Eij denote the matrix units. Being an ideal in R, the kernel of 
e : R -+ Rs has the form M,,(m), where m is an ideal in k (cf. FC-(3.1)). But 
Ell E22 = 0 implies that E22 E ker e, so we have I E m, i.e., m = k. Therefore, 
e is the zero map and Rs = (O)! (Here, R is not a domain. But even when R is a 
domain, Rs may still be equal to (0). For the construction of such an example, see 
Exercise 5.) 

The preceding shows that the nature of the ring Rs may be rather unpredictable. 
In general, it is difficult to prove things about Rs, since e: R -+ Rs may no longer 
have the properties (9.1a) and (9.lb). There is apparently no easy description for 
the kernel of e; and, rather than looking like e(r)e(s)-I, elements of Rs are sums 
of words in e(r) and e(S)-I, like 

(9.4) 

where r, r', r" E R, and s, s', s" E S. For instance, if we start with a domain R 
and take S = R\{O}, we cannot be sure that e : R -+ Rs is injective, nor can we 
guarantee that Rs is a division ring. (In this case, any nonzero summand in (9.4) 
is a unit in Rs; but this is a far cry from the sum being a unit, if it is nonzero.) In 
fact, in general, Rs may not even be a domain (cf. Exercise 5), so it is not clear 
either how we might try to repeat the construction. 

§9B. "The Bad" 

The above discussion brings us back to the quintessential question: Can any do
main be embedded in a division ring? Let us now present Mal'cev's negative 
answer to this question below. 

More generally, Mal'cev was concerned with the problem of embedding a can
cellative semigroup H into a group G. (A cancellative semigroup is a semigroup 
in which both cancellation laws hold. We shall assume that all semigroups consid
ered have an identity element.62 ) In a famous paper published in 1937, Mal'cev 
produced an example of a cancellative semi group H that cannot be embedded into 
a group. He showed further that the semigroup algebra QH is a domain. It then 
follows that this domain cannot be embedded in a division ring D, for if D were 
to exist, then H would be embeddable in the group of units U(D) of D ! 

The main observation that makes the above work possible is the following 
lemma. 

(9.5) Lemma. Let a, b, c, d, x, y, u, v be elements of a semigroup H. If H is 
embeddable into a group G, then 

(9.6) ax = by, cx = dy, au = bv ===} cu = dv in H. 

62 Semigroups with I are usually called "monoids". However, this assumption is not really 
essential for what follows; we make this assumption throughout only for convenience. 
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Proof. Working in the group G, we have b-Ia = yx- I = d-Ic from the first 
two equations, and b-Ia = vu- I from the third equation. Therefore, d-1c = 
vu- I E G, and hence cu = dv E H. (Alternatively, as suggested by D. Moulton, 
cu = cx . x-la-I. au = dy· y-Ib- I . bv = dv in G.) 0 

If the equations in (9.6) seem a little mysterious, the following (purely formal) 
matrix interpretation should help. The three relations on the LHS of (9.6) may be 
expressed formally by the matrix equation: 

(9.7) 

By formal multiplication, "*" here is "cu -dv". Therefore, (9.6) may be expressed 
by saying that, if (9.7) holds, then the RHS of (9.7) must in fact be the zero matrix. 
Following Mal'cev, we prove next: 

(9.8) Theorem. There exists a cancellative semigroup H with elements a, b, c, 
d, x, y, u, v such that ax = by, cx = dy, au = bv, but cu l dv. In particular, 
H cannot be embedded in any group G. 

Proof. Let fl be the free semi group on the letters A, B, e, D, X, Y, U, V. For 
two words Wand W', let us define W ~ W' if W can be transformed into W' by 
a finite number of replacements of subwords of length 2 of the following kinds: 

(9.9) AX +---+ BY, ex +---+ DY, AU +---+ BV. 

Clearly, "~,, is an equivalence relation on words. Let H be the set of ~-equivalence 
classes, and let W denote the class of a word W E fl. The multiplication in 
fl induces a multiplication in H that makes H into a semigroup. The classes 
a, b,··· E H of A, B, ... now satisfy ax = by, cx = dy and au = bv. But we 
don't have cu = dv E H since the word e U simply cannot be transformed into 
D V. The only thing that remains to be verified is the fact that H does satisfy both 
of the cancellation laws! 

Let us say that a word fl is reduced if it does not contain a subword AX, ex, or 
AU. Using the "forward" transformations in (9.9), it is clear that any word W E fl 
is ~-equivalent to a unique reduced word. Equipped with this. knowledge, let us 
now prove the left cancellation law: 

(9.10) WWI = WWz E H ===> WI = Wz E H. 

We may assume that w, WI, Wz are classes of reduced words W, WI and Wz. If 
W WI and W Wz are both reduced, then we have W WI = W Wz ; hence WI = 
Wz Efland WI = Wz E H. Now assume, say, WWI is not reduced. Let us 
examine a typical case, say, 

W= ... LA, 

In this case, the class W W I is represented by the reduced word ... L B Y MIN I .... 
How about the class wwz? If Wz did not start with X or U, thl~n W Wz is already 
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reduced, and it is not ... LBY MI NI ... , which contradicts WWI = WWz. If Wz 
starts with U, then W Wz is given by a reduced word of the form ... L B V ... , 
still contradicting WWI = WWz. Thus, we must have Wz = X MzNz ... , so 
that WWz is given by the reduced word ... LBY M2N2 .... But then we must 
have MI NI ... = M2N2 ... , which implies that WI = W2 E fI and hence 
WI = Wz E H. The other cases are similarly dealt with, and we can prove the 
right cancellation law in the same manner. 0 

(9.11) Theorem. Let R be the semigroup algebra kH, where H is as in (9.8), 
and k is any domain. Then R is a domain, and R cannot be embedded into any 
division ring. 

Proof. In view of our earlier remarks, it suffices to prove that R is a domain. 
Suppose, instead, that there is an equation 

where ai "I- 0 "I- ai, and the Wi'S (resp. wi's) are given by different reduced 
words Wi'S (resp. Wi's). Note that the "length" of an element in H is well
defined, since the transformations allowed in (9.9) are all length-preserving. We 
may, therefore, assume that all the words Wi (resp. Wi) have the same length. (If 
otherwise, we just replace hi ai Wi by the subsum given by the terms of the longest 
length, and do the same for L j a j wi.) In order to "cancel out" the class WI W; , we 
must have WI W; = Wi wi for some i "I- I, j "I- I. Since WI "I- Wi and they have 
the same length, the only way for WI W; = Wi wi to be possible is that we have 
(say) 

WI = K ... LA, W; =XMN ... , 

Wi = K ... LB, Wi = YMN ... . 

But then on the LHS of (*) above, we have a term alaiwlwi corresponding to 
the reduced word K ... LAYM N ... , which clearly cannot be cancelled out by 
any other term - a contradiction. 0 

The fact that R = kH is a domain can be strengthened a bit further. As observed 
independently by Chihata and Vinogradov in 1953, the semigroup H can in fact 
be ordered; that is, there exists a total ordering" <" on the elements of H such 
that 

(9.12(a» a < fJ in H ===> ay < fJy and ya < yfJ (Vy E H). 

Upon fixing such an ordering on H, a routine argument involving minimal support 
terms (cf. the proof of FC-(6.29» shows that R is a domain. To construct an 
ordering on H is not too difficult. In fact, Chihata has shown that 

(9.12(b» x<u<d<c<y<b<a<v 
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extends uniquely to an ordering on H (satisfying (9.12(a))). The details of this 
construction will be left to the reader: see Exercise 6. Summing up, the ordered 
(and hence cancellative) semigroup (H, <) cannot be embedded in a group; a 
fortiori, Q H cannot be embedded in a division ring. On the other hand, an easy 
modification of the Mal' cev-Neumann construction in FC-§ 14 shows that Q H 
can be embedded in an ordered "formal power series ring". 

In another important paper in 1939, Mal'cev also solved the general problem of 
finding the necessary and sufficient conditions for a semi group to be embeddable 
in a group. These conditions are in the form of an infinite sequence of implication 
statements of the kind: 

where A and Ai'S are equations in the semigroup. Mal' cev called these implication 
statements "quasi-identities". The simplest quasi-identities required for embed
dability are the two cancellation laws. Another quasi-identity required is (9.6), and 
so forth. However, this study belongs more properly to the domain of Universal 
Algebra,63 so we shall not go more deeply into this matter here. 

The example of a domain R that is not embeddable in a division ring given in 
(9.11) is such that the (multiplicative) semigroup R\ {O} is already not embeddable 
in a group. This led Mal' cev to ask if there also exist domains R for which R\ {O} 
is embeddable in a group, and yet R is not embeddable in a division ring. It took 
nearly thirty years before three mathematicians, L. A. Bokut', A. J. Bowtell, and 
A. A. Klein, independently and almost simultaneously found such examples. 

The point about the existence of such examples is that, besides the semi group 
"quasi-identities" such as (9.6), there are also other, more ring-theoretic,64 neces
sary conditions for the embeddability of a domain into a division ring. For instance, 
if a domain R is embeddable in a division ring D, then R must satisfy the following 
conditions: 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

R must have IBN (since D has IBN). 

R must be stably finite (since D is stably finite). 

(Klein's Nilpotence Condition) For any nilpotent matrix A E Mn (R), 
we have An = 0 (since, by linear algebra, the same statement holds 
for nilpotent matrices over the division ring D). 

M,,(R) must satisfy ACC (and DCC) on left and right annihilators 
(since Mn(D) does; cf. (6.61». 

These four necessary conditions for the embeddability of R are related as follows. 
First, (9.14) implies (9.13), by (1.8). Second, each of (9.15), (9.16) implies that 

631n the tenninology of Universal Algebra, the class of semigroups embeddable in groups 
is a "quasi-variety". 

64A "ring-theoretic condition" means here a condition expressed not just in tenns of 
multiplication, but in tenns of both addition and multiplication. 
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Mn (R) is Dedekind-finite, by Exercise (1.11) and (6.60), respectively. Since this 
holds for all n, R is stably finite, by definition. It seems, indeed, that (9.15) is 
stronger than most of the known conditions for a domain R to be embeddable in 
a division ring. As for the sufficiency of (9.15) for embedding problems, Klein 
has shown that (9.15) does imply that the semigroup R\{O} embeds into a group. 
However, Bergman produced an example later to show that (9.15) is still not 
sufficient for the embeddability of the domain R into a division ring. Bergman's 
example, incidentally, also answered affirmatively the question raised by Mal'cev 
mentioned in the second paragraph before (9.13). 

The necessary conditions assembled above enable one to come up with other 
"types" of nonembeddable domains. For instance, Shepherdson's construction 
(Exercise (1.18)) of a k-domain R over a field k with M 2(R) not Dedekind
finite gives such an example. While Shepherdson's example has IBN (it has a 
homomorphism into the field k), there are examples of domains that do not have 
IBN. The construction is again "generic". For a pair of integers n > m ~ 1, let 
R = Rm,n be the ring with 2mn generators 

(9.17) (l :::: i, i :::: m; 1:::: j, k :::: n), 

and relations dictated by the matrix equations 

(9.17') 

Over R, we have (Rm)R ~ (Rn)R. Therefore R does not have IBN, and there is 
no homomorphism from R to any ring with IBN, let alone a division ring. On the 
other hand, Cohn [66] has shown that Rm,n is a domain whenever m > 1.65 Not 
surprisingly, Cohn's method is a generalization of the method used in the proofs 
of (9.8) and (9.11). However, it would take us too far afield to discuss the details 
here. 

§9C. "The Ugly" 

While not every domain can be embedded in a division ring, various special classes 
of domains have been proved to be embeddable. For instance, we have the follow
ing nice result which will be proved in the next section (see (10.22)): 

(9.18) Theorem. Any right noetherian domain can be embedded in a division 
ring. In particular, any PRID (principal right ideal domain) can be embedded in 
a division ring. 

We have stated this theorem here with a specific purpose in mind. For a domain 
A, let us say that a division ring D is a division hull of A if there is a given inclusion 
map A ~ D such that D is generated as a division ring by A (i.e. there is no 

65For m = 1, we have bklalj = 0 for all k # j, so we do not expect R I ,. to be a 
domain. 
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division ring Do such that A ~ Do S;; D).66 Clearly, a domain A has a division 
hull iff A can be embedded in a division ring. Two division hulls of A are regarded 
as "the same" if they are isomorphic over A. Using Theorem (9.18), we shall carry 
out the promised construction, due to J. L. Fisher, of an example of a domain A 
that has infinitely many mutually different division hulls. In fact, we shall take A 
to be C(u, v), the free algebra on two generators u, v over any field C. 

It is by no means clear that C(u, v) can be embedded in a division ring. Since 
C (u, v) is neither left nor right noetherian, Theorem (9.18) does not apply directly. 
In order to get embeddings of C(u, v) into division rings, we shall make crucial 
use of Hilbert's skew polynomial rings (cf. FC-(1.7». Recall that, for any ring k 
equipped with an endomorphism a, the skew polynomial ring k[x; al consists of 
left polynomials ofthe form L aixi (ai E k) which are multiplied using "Hilbert's 
twist" xa = a(a)x (for every a E k). The following basic fact will prove to be 
important for the constructions we have in mind. 

(9.19) Lemma. Let a : k ~ k be an injective endomorphism of the ring k, and 
let R = k[x; a). If{ti : i E l} ~ k are right linearly independent over a(k), then 
{tiX : i E l} ~ RR are right linearly independent over R. 

Proof. Suppose Li(tiX)fi = 0, where fi E R are almost all O. Write fi 
Lj aijx j (aij E k). Then 

0= LtiX Laijx j = L (Ltia(aij»)xHl. 
I J J I 

Therefore, for each j, we have Li tia(aij) = 0, and so a (aij) = 0 for all i, j. 
Since a is injective, it follows that fi = Lj aijx j = 0 for all i.. 0 

If k is a division ring, then any endomorphism a : k ~ k is automatically 
injective, from which we can see easily that k[x; a) is a domain. In addition, the 
usual Euclidean algorithm argument can be used to show that k[x; a) is a PLID 
(cf. FC-(l.2S». Therefore, we have from (9.18): 

(9.20) Corollary. Ifa is an endomorphism ofa division ring k, then k[x; a) can 
be embedded in a division ring. 

Therefore, to embed C (u, v) into a division ring, we might try to embed it first 
into k[x; a) where k is a division ring (or even a field). This will be accomplished 
with the help of the following beautiful observation: 

(9.21) Jategaonkar's Lemma. Suppose a, b are two elements in a ring R that 
are right linearly independent over R. Let C ~ R be any nonzero subring whose 

66In the case when A is a commutative domain, this simply means that D is a quotient 
field of A. 
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elements commute with a and b. Then the subring of R generated by a, b over C 
is afree C-ring on a, b. 

Proof. If a, b are not free over C, choose a nonconstant polynomial f(x, y) E 

C (x, y) of the least degree n such that f (a, b) = O. Express f in the form 
a + xg(x, y) + yh(x, y) (a E C), where, say, g(x, y) 1= O. From 

(9.22) 0= f(a, b)b = a(g(a, b)b) + b(a + h(a, b)b), 

we see that g(a, b)b = O. Now write g in the form fJ + xp(x, y) + yq(x, y) 
(fJ E C). Then we have: 

(9.23) 

(9.24) 

deg g ::5 n - I, deg p ::5 n - 2, deg q ::5 n - 2, and 

0= g(a, b)b = a(p(a, b)b) + b(fJ + q(a, b)b). 

The latter implies that p(x, y)y and fJ +q(x, y)y are both satisfied by a, b. Using 
(9.23), we see that p(x, y) = q(x, y) = 0 and fJ = 0, contradicting g(x, y) 1= O. 

o 

Now let C be a fixed field, and k be the rational function field C(t). Let (Tn 
be the endomorphism of k such that (Tn is the identity on C, and (Tn (t) = tn. We 
shall assume that n > 1, so that (Tn is not surjective. Let Rn = k[x; (Tn]. Then, 
since p, t} in k are linearly independent over (Tn(k) = C(tn), (9.19) implies that 
{x, tx} ~ Rn are right linearly independent over Rn. Applying (9.21) with a = x 
and b = tx in Rn, we see67 that there is a C-embedding C(u, v} <---+ Rn defined 
by u ~ x, v ~ tx. By (9.20), we can embed Rn into a division hull, say, D". 
Composing the two embeddings, we then obtain a C -embedding 

(9.25) e" : C(u, v} <---+ Dn, with ell(U) = x, en(v) = tx. 

Note that Dn is also a division hull of C (u, v), for, if E is a division subring of 
D" containing im(en), then E contains x, tx, and hence t. But then E contains 
k = C(t) and k[x; (Tn] = R", so E = Dn. Next, note that 

(9.26) (en(u)-len(V»n = (X- ItX)" = x-Itnx = x-Ixt = ell (V)en(u)-I E Dn. 

We can now complete the construction of "The Ugly" by proving the following. 

(9.27) Theorem. For n 1= m (both> I), there does not exist a ring homomorphism 
f : Dm ~ Dn such that f 0 em = en (so that D" and Dm give essentially different 
division hulls of C(u, v}). 

Proof. Suppose f exists. Applying it to the equation 

(9.28) (em(U)-lem(v))m = em(V)em(u)-1 E Dm (see (9.26)), 

67Note that, since an is the identity on C, xc = an (c)x = ex for every e E C, so C is in 
the center of Rn. 
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we get 

(9.29) 

Sinceen(u)-len(V) =x- 1txinDn,(9.29)givestn- m = 1 E Dn,acontradiction. 
o 

Theembeddability ofC(u, v) in a division ring is an important fact, even though 
there is no "uniqueness" in such an embedding. Recalling that any free algebra 
C(X) with X countable can be embedded in C(u, v) (cf. FC-(l.2)), we see that 
such C (X) can be embedded in a division ring. By a different method, we have in 
fact shown, in FC-(l4.25), that C (X) can be embedded in a division ring,for any 
set X and any division ring C. 

§9D. An Embedding Theorem of A. Robinson 

We shall now close §9 by proving a couple of additional embedding results that 
are related to the notion of strongly (von Neumann) regular rings. A ring R is 
called strongly regular if, for any a E R, there exists x E R such that a = a 2x. 
In order not to repeat ourselves, we quote the following result from FC-Exercises 
(12.5) and (12.6): 

(9.30) Theorem. A ring R is strongly regular iff it is von Neumann regular and 
reduced. Such a ring is always a subdirect product of division rings. 

We do not really need the first statement of this theorem below, and, for the 
purposes of proving the next result, the second statement is needed only to the 
extent that a nonzero strongly regular ring admits at least one homomorphism 
into a division ring. Let us now state and prove the following embedding result of 
A. Robinson. The original proof of this result made use of ultrafilters; the proof 
presented below avoiding the use of ultrafiIters follows Cohn [71]. 

(9.31) Theorem. If a domain R can be embedded in a direct product of division 
rings Di (i E I), then R can be embedded in a division ring. 

Proof. Let P = f1 D i , and write each element x E P in the form (Xi)i EI. For 
such x E P, we define an element x* = (X7)iEI E P by: x; == 0 if Xi = 0, and 
x; = Xi-

1 if Xi i- O. Also, we define 

(9.32) 

Clearly, ~x is an ideal in P (in fact, ~x = anne (x) = annr(x)), and we have 

(9.33) 

(9.34) 

1 - xx* E ~x, 

(~x + ~y + ... + ~z)xy ... z = O. 

Viewing R as a subring of P, let ~ = L~x where x ranges over R\{O}. Then 
~ i- P, for otherwise 1 E ~x + ~y + ... + ~z for suitable x, y, ... , Z E R\{O}, 
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and (9.34) would give xy ... z = 0, contradicting the fact that R is a domain. 
Since each Di is strongly regular, so are P = Oi Di and P IW., and hence (by 
what we said after the statement of (9.30)) there exists a ring homomorphism f 
from P to a suitable division ring D, with f(W.) = O. Now, for any x E R\ {O}, 
(9.33) implies that 

0= f(l - xx*) = 1 - f(x)f(x*), so f(x) i- 0 ED. 

Therefore fiR gives the desired embedding of R into a division ring. 0 

Using the full version of the second statement of (9.30), we have the following 
consequence of (9.31). 

(9.35) Corollary. If a domain R can be embedded in a strongly regular ring R', 
then R can be embedded in a division ring. 

Proof. By (9.30), R' is a subdirect product of a family of division rings Di (i E /). 

In particular, R' (and hence R) can be embedded into Oi EI D i • Since R is a domain, 
(9.31) implies that R can be embedded in a division ring. 0 

In view of this Corollary and Mal'cev's result, we see that not every domain 
can be embedded in a strongly regular ring. By contrast, we shall prove in a future 
section (see (13.38)') that every domain R can be embedded in a (simple, right 
self-injective) von Neumann regular ring Q:;'ax(R) - the maximal right ring of 
quotients of R. 

There is also another important application of (9.35). Using it, one can show that 
the class of domains embeddable in division rings can be defined by an (infinite) 
system of "ring-theoretic quasi-identities" (see Cohn [77: p.5]). 

Exercises for §9 

1. Show that, for any multiplicative set S ~ R, the universal S-inverting 
homomorphism 8 : R -+ Rs is injective iff R can be embedded into a ring 
in which all elements of S have inverses. 

2. Let S, S' be, respectively, multiplicative sets in the rings R, R' , which 
give rise to the ring homomorphisms 8 : R -+ Rs and 8' : R' -+ R~,. 

For any ring homomorphism f : R -+ R' such that f(S) ~ S', show 
that there is a unique ring homomorphism f* : Rs -+ R~, such that 
f*8 = 8' f· 

3. (Cohn) Let M = (~ ~) and N = (~y ~v) be matrices over a ring 

T in which b and x are units. If L := M N = (~ ~), show that L = O. 

Does the conclusion hold if one of b, x fails to be a unit in T? 
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4. True or False: The kernel of the universal S-inverting homomorphism 
e : R --+ Rs is generated as an ideal by the set 

A = {r E R: s'rs = 0 for some s,s' E S}. 

5. Construct a domain B with a multiplicative set S such that Bs = O. (Hint. 
Let R = kH be as in (9.11), and let B = RjW. where W. is the ideal of 
R generated by cu - dv + 1. Then, for any multiplicative set S ~ B 
containing b and x, we have Bs = 0.) 

6. (Chihata, Vinogradov) Show that Mal'cev's semigroup H constructed in 
(9.8) with generators {a, b, c, d, u, v, x, y} can be ordered as follows. First 
order the eight generators as in (9. 12)(b ). Then define an order relation" <" 
on H first according to length, and then "lexicographically" for reduced 
words. In other words, if Of. = a, ... am, fJ = b, ... bn are reduced words, 
where the a; 's and b j 's are generators, we define Of. <: fJ if m < n, or if 
m = n and there exists t :s m such that a; = b; for i < t, and at < bt 
in the ordering of (9. 12)(b). The heart of the Exercise is to show that the 
ordering axiom (9.l2)(a) is satisfied. 

§ 1 O. Classical Rings of Quotients 

§lOA. Ore Localizations 

In §1O, we continue to write S for a multiplicative set in a ring R, so we have 
S . S ~ S, 1 E S, and 0 f/. S. The ring Rs receiving the universal S-inverting 
homomorphism e : R --+ Rs is too difficult to work with, since elements of Rs 
have very complicated forms (cf. (9.4», and we have little control over ker e. What 
we would like to do in this section is to introduce additional conditions on S so 
that we can form simpler, "classical" rings of fractions. The following definition 
sets forth the features of the kind of classical rings of fractions we would like to 
form (cf. (9.1a) and (9.1b». 

(10.1) Definition. A ring R' is said to be a right ring offractions68 (with respect 
to S ~ R) if there is a given ring homomorphism q; : R --+ R' such that: 

(a) q; is S-inverting 
(b) Every element of R' has the form q;(a)q;(s)-' for some a E Rand s E S. 
(c) ker q; = {r E R: rs = 0 for some s E S}. 

(10.2) Remark. Contrary to the situation with Rs (cf. (9.3», we have always 
R' =1= 0 here, in view of (c). 

68 Alternatively "right ring of quotients". 
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But of course we have no reason to expect such a nice right ring of fractions to 
exist. In fact, if R' does exist, we can quickly deduce two necessary conditions on 
S, as follows. 

(10.3) For any a E Rand s E S, as n s R =I 0. (We refer to this property 
by saying that S is right permutable, or that S is a right Ore set.) To prove this 
property, write q;(s)-Iq;(a) in the form q;(r)q;(s')-I, where r E Rands' E S. Then 
q;(as') = q;(sr), so (as' - sr)s" = 0 for some s" E S by (lO.1)(c). Therefore, we 
have as's" = srs" E as n sR. 

(10.4) For a E R, if s' a = 0 for some s' E S, then as = 0 for some s E S. (We 
refer to this property by saying that S is right reversible.) To prove this property, 
note that s'a = 0 implies q;(s')q;(a) = O. Hence q;(a) = 0, and (l0.l)(c) implies 
that as = 0 for some s E S. 

(10.5) Definition. If the multiplicative set S ~ R is both right permutable and 
right reversible, we shall say that S is a right denominator set. 

We come now to the first major result in this section, which is due to Ore, Asano 
and others. Ore started the investigation of noncom mutative localization in the 
early 1930s by proving the theorem below for R a domain and S = R\ {OJ. Asano 
and others extended Ore's theory to more general rings. According to P. M. Cohn, 
Noether was also aware of the key ideas underlying the following theorem, but 
did not publish them in her writings.69 

(10.6) Theorem. The ring R has a right ring offractions with respect to S iff S 
is a right denominator set. 

Of course we have already proved the "only if" part (as a motivation for Defi
nition (l0.5». In the following, we shall assume that S is a right denominator set, 
and construct a right ring of fractions denoted by R S-I. The construction is not 
very hard; unfortunately, the detailed verifications showing that the construction 
really gives a ring are very tedious. To save space (and also not to bore our readers 
to tears), we shall suppress almost all of the details. This will enable us to focus 
more on the key ideas of the construction instead. 

Since elements of RS- I will be right fractions of the form "as-I" (a E R, 
s E S), we start the construction by working with R x S. We define a relation "~,, 

69\ made this remark in my second Trjitzinsky Lecture (on ring theory) given at the 
University of Illinois on April 14, 1998. After the lecture, my friend and collaborator 
Bruce Reznick came up and showed me a new anagram that he had just composed: it was 
"Noether" --+ "Then Ore" ! \ loved this anagram (and found it rather uncanny); however, 
its composition did not seem to reflect well on my Trjitzinsky Lectures! 
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on R x S as follows: 

(a, s) '" (a', s') (in R x S) iff there exist 
(10.7) 

b, b' E R such that sb = s'b' E Sand ab = a'b' E R. 

Intuitively, the condition means that after we "blow up" s and s' to the common 
denominator sb = s'b' E S, the numerators ab and a'b' are the same. (This is 
the time-honored method for checking that two fractions are equal.) Notice that 
although sb = s'b' E S, band b' themselves need not belong to S. 

We claim that ""," is an equivalence relation on R x S. Reflexivity and symmetry 
need no verification, so let us just prove transitivity below. Assume that (a, s) '" 
(a', s') as in (10.7), and also that (a', s') '" (a", s"), so that we have c, c' E R 
with s'c = s"c' E S, and a'c = a"c' E R. From (s'c)S n (s'b')R i= 0, there exist 
r E Rand t E S such that s'b'r = s'ct E S. Using right reversibility, we have 
b'rt' = ctt' for some t' E S. Now 

sbr = s'b'r = s'ct = s"c't E S ==> s(brt') = s"(citt') E S, 

a(brt') = a'b'rt' = a'ctt' = a"(c'tt') , 

so we have checked that (a, s) '" (a", s"). 
In (10.7), if we let b' = I, we see that (a, s) '" (ab, sb) as long as sb E S. 

Therefore, we can think of ""," as the best equivalence relation which "identifies" 
(a,s) with (ab,sb) (Va E R, s E S, sb E S). This remark enables us to work 
with ""," very efficiently. 

We need a notation for the equivalence class of (a, s). In anticipation of our 
goal, we write als or as-' for this equivalence class. The set of all equivalence 
classes will be denoted by R S-, ; of course as-' is so far only a formal expression 
in RS-'. 

To define addition in RS-', we observe that any two "fractions" a, Is" a2/s2 
can be brought to a common denominator. More formally, from SIS n S2R i= 0, 
we get elements r E R, s E S such that S2r = SIS E S, so now a,/s, = a,sls,s, 
and ad S2 = a2r I S2r. We can then define 

(10.8) 

After showing that this is a well-defined binary operation on RS-', one can go 
ahead to show that (RS-', +) is an additive group, with zero element OIL We 
shall not present the details here, but note quickly that cp(a) = all gives a group 
homomorphism cp : R ~ RS-' with 

(10.9) kercp = {a E R: (a, 1) '" (0, I)} = {a E R: as = 0 for some S E S}, 

as we had hoped. We also note in passing that, in connection with (10.8), any 
finite number o/fractions can be brought to a common denominator, by using the 
permutability property together with induction. 

So far we have used the permutability condition (10.3) only in the case when 
both a and s are in S. We shall need the full version of(10.3) in the next step, when 
we try to define multiplication on R S-' . In order to multiply a, Is, with a21 S2, we 
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use sl R n a2S =1= 0 to find r E Rand s E S such that Sl r = a2s. Then we define 

(10.10) 

keeping in mind that (alsjl)(a2s2"l) should be 

( -I ) -I (-I) -I ()-I al sl a2 s2 = al rs s2 = air S2S . 

Again, a substantial amount of work is needed in checking that (10.10) gives a 
well-defined multiplication on R S-I , and finally, that (R S-I , +, x) is a ring. After 
understanding the key ideas in the definition (10.1 0), however, carrying out all the 
verification steps is not much more than an exercise in patience. We shall, therefore, 
suppress all details here. Note that III is the multiplicative identity in RS- I , and 
that the map rp defined just before (10.9) is clearly a ring homomorphism from R to 
RS- I. Also lis (s E S) is the inverse of rp(s) = s/l, so rp is S-inverting. Finally, 
we see easily that als = rp(a)rp(s)-I. Recalling (10.9), we have now shown that 
R S-I is a right ring of fractions of R with respect to S, completing the proof of 
(10.6). 

(10.11) Corollary. If S is a right denominator set, then rp : R ~ RS- I is a 
universal S -inverting homomorphism. In particular, there is a unique isomorphism 
g : Rs ~ RS- I such that go e = rp, where e : R ~ Rs. 

Proof. It suffices to prove the first statement. Let a : R ~ T be any S-inverting 
homomorphism. We define f : RS- I ~ T by 

(10.12) f(als) =a(a)a(s)-I (a E R, s E S). 

If b E R is such that sb E S, then a(s)a(b) = a(sb) is a unit in T, so a(b) is also 
a unit in T. But then 

a(ab)a(sb)-l = a(a)a(b)a(b)-la(s)-l = a(a)a(s)-I. 

This shows that f : RS- I ~ T is well-defined. From (10.8) and (10.12), we 
can show easily that f is a ring homomorphism, with f 0 rp = a. Finally, f as 
defined in (10.12) is clearly the only homomorphism from RS- 1 to T satisfying 
f 0 rp = a, since als = rp(a)rp(s)-l E RS- 1. 0 

(10.13) Remark. Since the verification for (RS- 1, +, x) to be a ring is not easy, 
one might wonder if one could bypass this verification by using the ring structure 
on Rs instead. In view of (l0.3), one can show easily (as in the construction of 
RS- 1) that every element of Rs can be expressed in the form e(a)e(s)-l, where 
a E Rand s E S. However, we have no direct method for computing ker e, so 
we cannot conclude that Rs is a right ring of fractions, prior to the explicit (and 
laborious) construction70 of RS- I • 

70There are, indeed, some slick methods available (for instance, using the maximal ring 
of quotients to be introduced later) by which we can lighten the task of verifying that R S-I 
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Of course, we also have the notions of "left permutability", "left reversibility", 
and "left denominator set". If S is a left denominator set, the left ring of fractions 
of R with respect to S is denoted by S-I R. From (10.11) and its corresponding 
left version, we deduce the following result. 

(10.14) Corollary. Ifboth RS- 1 and S-IR exist, then RS-1 ~ S-IR (~ Rs) 
over R. 

§lOB. Right Ore Rings and Domains 

To begin this subsection, let us consider some particular choices of the multiplica
tive set S ~ R. 

(10.15) If S is central in R, then S is clearly both a left and a right denominator 
set, and we can safely identify S-I R with R S-I . We speak of S-I R = R S-I as 
a "central localization" of R. In this case, we have in fact R S-I ~ R ®c C S-I , 
where C is the center of R. 

(10.16) We say that an element s E R is regular if it is neither a left O-divisor nor 
a right O-divisor. If S consists only of regular elements of R, then S is clearly left 
and right reversible. 

(10.17) Let S be the multiplicative set of all regular elements. We say that R is 
a right Ore ring iff S is right permutable, iff R S-I exists (by virtue of (10.16) 
and (10.6». In this case, we speak of RS-1 as the (total) classical right ring of 
quotients of R, and denote it by Q~I(R). The left analogues of these notions are 
defined similarly. If R is both left and right Ore, we shall say that R is an Ore 
ring: in this case, Q~I(R) = Q~I(R) by (10.14). For instance, if S ~ U(R) (R 
is called a classical ring in this case; see (11.4)), then R is clearly an Ore ring, 
with Q~'l (R) = Q~l (R) = R. In particular, any von Neumann regular ring is an 
Ore ring (see (11.6)(1) below). 

(10.18) Any commutative ring R is an Ore ring, according to (10.15). 

(10.19) Let R be a domain and S = R\{O}. In this case, the "right permutable" 
condition (10.3) on S may be re-expressed in the equivalent form: 

aR n bR =I (0) for a, b E R\{O}. 

This is called the (right) Ore condition on R (since it first appeared in the seminal 
paper [Ore: 31 D. Thus, the domain R is right (resp.left) Ore iff R satisfies the right 
(resp. left) Ore condition. For instance, any division ring is an Ore domain. For 
other examples, see (10.23), (10.26), (10.28), (10.30), and so on. Some relations 

is a ring. However, these methods do not seem to be in keeping with the classical spirit of 
the results in this section. 
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between right Ore domains and the notions of injectivity, flatness, and rank are 
given in Exercises 20-23 below. 

To prepare our way for § 11, it is convenient to introduce the following definition. 

(10.20) Definition. Let R S; Q be rings. We say that R is a right order in Q if 
(1) every regular element of R is a unit in Q, and (2) every element of Q has the 
form as - 1 , where a E R, and s is a regular element of R. Left orders are defined 
similarly. If R is both a left and right order in Q, we shall simply say R is an order 
in Q. 

Using this terminology, we deduce quickly the following result. 

(10.21) Proposition. The ring R is right Ore iff it is a right order in some ring 
Q. In this case, Q ~ Q~I(R) over R. ff, moreover, R is a domain, then Q is a 
division ring, and up to a unique R-isomorphism, it is the only division hull of R. 

Let us dwell a little more on the case of domains. The formulation ofthe right Ore 
Condition (*) (in (10.19» for domains enables us to make a connection between 
this section and the section on uniform dimensions. 

(10.22) Theorem (Goldie). For any domain R, the following are equivalent: 

(1) R is a right Ore domain. 
(2) u. dim(RR) = 1. 
(3) u. dim(RR) < 00. 

Proof. (1) {=::} (2) ==} (3) are obvious. We finish by showing that (3) ==} (1). 
Assume that there exist a, b E R\{O} such that aR n bR = (0). Following 
A. Goldie, we show that {a i b : i ~ O} are right R-linearly independent. Indeed, if 
Li:::O a i bri = 0 where ri E R are almost all zero, then 

bro + a(brl + abr2 + ... ) = 0 ==} ro = 0 and brl + abr2 + ... = O. 

Repeating this argument, we see that all ri = O. Therefore, R contains EBi>O ai bR 
(a free right module of countably infinite rank), so we have u.dim(RR) =-00. 

o 

Note that the equivalence of (2) and (3) is a special feature for domains, and is 
false in general, even for semisimple rings. For instance, if R is direct product of 
m division rings, then u.dim(RR) = m, which can be any positive integer. 

(10.23) Corollary. If R is a right noetherian domain, then R is right Ore. In 
particular, Q~I(R) exists, and it is the unique division hull of R. 

Proof. The noetherian module RR cannot contain an infinite direct sum of nonzero 
submodules (cf. (6.7)(1». 0 
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Needless to say, the converse to the first statement in (10.23) is false: any 
commutative domain R is Ore, but R need not be noetherian. 

Although the notion of a right Ore domain has been known since the early 1930s, 
the fact that a right noetherian domain is right Ore was apparently not noticed until 
much later.71 The following is another result of a similar spirit. 

(10.24) Corollary. A domain R is called a right Bezout domain if every finitely 
generated right ideal of R is principal. Such a domain is always right Ore. 

Proof. Assume that aR n bR = 0 where a, bE R\{O}. Choose c E R such that 
cR = aR EEl bR. Then c = ar + bs and b = cd for suitable r, s, d E R. Right 
multiplying the former equation by d, we get b = ard + bsd, so rd = O. This 
implies that r = 0, so c = bs and hence c R = b R, contradicting a i= o. D 

Before we give more explicit examples of right Ore domains, let us note the 
following remarkable conclusion. 

(10.25) Proposition. If a domain R is not an Ore domain, then R contains a copy 
of the free algebra C (Xl, X2, ... ), where C is the center of R. 

Proof. Say R is not right Ore. Then there exist a, b E RR that are right R-linearly 
independent. Jategaonkar's Lemma (9.21) then implies that the ring generated by 
a, b over C is isomorphic to C (x, y). It follows from FC--( 1.2) that the ring 
generated by a, ab, ab2, ... over C is isomorphic to C (Xl, X2, X3, ... ). D 

An algebra over a field k is said to be a PI-algebra (polynomial identity algebra) 
if there exists a nonzero polynomial 

f(xI, ... , xn) E k(XI, ... , xn) 

such that f(al, ... , an) = 0 for all aI, ... , an E R. It follows immediately from 
(10.25) that: 

(10.26) Corollary. If a domain R is a PI-algebra over afield k, then R is an Ore 
domain. 

We shall offer some examples below. Some of the examples assume Exercise 
1 in this section, so we advise our reader to first take a look at Exercise 1 before 
reading these examples. 

(10.27) Examples. 

(a) For any domain k, the free k-domain R = k(X) is not right (or left) Ore 
whenever I X I :::: 2. For, if a, b are distinct elements in X, we have a R n b R = (0). 

7lNote, however, that the domain assumption is essential here: in general, a right noe
therian ring need not be a right Ore ring. For such an example, due to L. Small, see (12.27). 
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(b) Let R be the ring in (7.6)(4) that is generated by x, y over Z with the relations 
yx = y2 = O. Let S = {xn : n ~ O}. Expressing the elements of R in the form 

f(x) + g(x)y (f, g E Z[x]) 

as in (7.6)(4), we see that elements of S are not left O-divisors, so S is right 
reversible. We claim that S is also right permutable. For this, we need to check 
that as n s R =I- 0 for a = f(x) + g(x)y and s = xn (where we may assume 
n ~ 1). This is clear since axn = f(x)x n = sf(x). Therefore, RS- i exists. 
Using Exercise 1, it is easy to compute RS- i • The kernel of rp : R ~ RS- i is 
2t = Ry = Z[x]y, so R := Rj2t can be identified with Z[x]. According to 
Exercise 1, R S-i is isomorphic to the localization of the commutative ring Z[x] 
at {x fl : n ~ O}. On the other hand, S is not left reversible, since yx = 0 but 
Xfl Y =I- 0 for all n ~ o. The ring R being left noetherian (cf. FC-(1.26)), it follows 
from Exercise 6 that S is also not left permutable. (More directly, Sy n Rx = 0.) 
In any case, S-i R does not exist. For more information on the ring R, see Exercise 
9. 

(c) Let R = ZG where G is a group, and let S = Z\{O}. It is easy to see that 
IQ G is a right ring of fractions of R with respect to S. Therefore, the central 
localization R S-i gives a ring naturally isomorphic to IQ G. Similarly, if R is the 
ring of quaternions a + bi + cj + dk where a, b, c, dE Z, and S = Z\{O}, then 
RS- i is the ring of all rational quaternions. In this case, in fact, RS- i = Q~/(R), 
since it is a division ring. 

(d) Let R = (~ ~). First choose T = {n· I : 0 =I- n E Z}. Using the method in 

(c), we see easily that the central localization RT- i gives the ring Q = (~ ~). 
It is easy to see that any regular element of R is a unit in Q. Therefore, R is an 
order in Q, and Q = Q~/(R) = Q~/(R). In particular, R is an Ore ring. Next, let 
us consider the multiplicative set 

S={(~ ~):a,b,cEZ' a=l-o}, 

whose elements are not necessarily regular. Using the homomorphism q; : R ~ IQ 

defined by rp (~ ~) = a, it is easy to check that IQ is a right ring of fractions of 

R with respect to S. Therefore, RS- i exists and is isomorphic to IQ. (The "Ore 

localization" here kills precisely all matrices of the form (~ ~).) On the other 

hand, (~ ~) is killed by (~ ~) E S on the right, but for any (~ ~) E S: 

(a b) (0 1) = (0 a) =1-0. o cOO 0 0 

Therefore, S is not left reversible, so S-i R does not exist. 
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(e) For a fixed prime p, let Zp denote Zj pZ, and let R = (~ ~p)' Proceeding 

as in the last example, let T be the central multiplicative set {n . I : nEZ, p f n}. 

(Of course, n . I here means (~ ~).) The central localization RT- 1 gives the 

ring 

Q = (~:) 1p)' 
where Z(p) denotes the localization of Z at the prime ideal (p). (Note that Zp = 
Z(p)/ pZ(p) is a Z(p)-module.) We can check easily that the multiplicative set of 
regular elements of R is 

S={(~ ~): pfx, Z#OEZp }, 

and that these elements are units in Q. Therefore, R is an order in Q, and Q = 
Q~'l (R) = Q~/R).ln particular, R is an Ore ring. This fact can be checked directly 

as follows. To see that S is right permutable, consider any s = (~ ~) E Sand 

a = (~ ~) E R. We can show that as n s R # 0 by solving the special matrix 

equation: 

This amounts to a single equation vx = yu + zn, which has a unique solution 
n E Zp since z is a unit in Zp. The fact that S is left permutable can be proved 
similarly. For later reference, let us note the following three additional properties 
of R: 

(1) For s E R, annl(s) = 0 ===> s E S. 

(2) The element t = (~ ~) has annr(t) = 0, but t f/ S. 

(3) For t as above and a = (~ ~), we have as n t R = 0. 

To see (1), let s = (~ ~) f/ S. If p I x, (~ ~ ) s = O. If p f x, we must 

have z = 0, in which case (0 ~) s = O. For (2), note that t (u 0) = 
-y x v w 

(~u ~) is zero only if u = 0 E Z and v = w = 0 E Zp. For (3), assume there 

is an equation 
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This leads to x = pu, a contradiction. 

(f) Let R = (~ ~~~ ~). where k is a field. The multiplicative set of regular 

elements of R is 

S={(~ ~&n: cEk, f,gEk[x], c.g#o}. 

A quick calculation shows that R is a right order in Q = (~ ~~~~). Therefore, 

Q~'/(R) = RS- 1 = Q. On the other hand, Q~/(R) does not exist, as S turns out to 

be not left permutable: for a = (~ ~) E Rand s = (~ ~) E S, a direct 

calculation shows that Sa n Rs = 0. Therefore, the ring R is right Ore but not left 
Ore. Although every regular element of R becomes invertible in Q, the equation 

( 0 -I) Sa n Rs = 0 translates into the fact that as -I = 0 X 0 E Q cannot be 

written in the form t- I r with r E Rand t a regular element of R. Therefore, Q is 
not a left ring of quotients of R with respect to S. 

§10C. Polynomial Rings and Power Series Rings 

In ring theory, it is well known that twisted polynomial rings provide a rich source 
of examples of rings which exhibit different "left" and "right" behavior. We begin 
this subsection by using twisted polynomials to produce another easy example of 
a left Ore domain that is not a right Ore domain. The basic facts and notations 
pertaining to the two types of twisted polynomial rings R[x; a] and R[x; 8] can 
be found in FC-( 1.7) and FC-( 1.9). 

Let a be an endomorphism of a division ring R, and S = R[x; a]. Then S 
is a PUD; in particular, it is left Ore, by (10.23) or (10.24). If a(R) # R, say 
t E R\a(R), then {l, t} ~ R are right linearly independent over a(R). By (9.19), 
{x, tx} are right linearly independent over S, so S is not right Ore (and hence not 
right noetherian). On the other hand, if a(R) = R, then every left polynomial 
L ai Xi E S is also a right polynomial, and we can think of S as a ring of twisted 
right polynomials over R (with the twist rule ax = xa- I (a) for a E R). In this 
case S is a PRID, and hence right noetherian and right Ore. 

More generally, we can start with any domain R, and try to find out when a 
twisted polynomial ring of the type S = R[x; a] is left Ore. We have the following 
result. 

(10.28) Theorem. Let a be an injective endomorphism of a domain R, and let 
S = R[x; a ].If R is left Ore, so is S. The converse holds if a is an automorphism. 

Proof. We begin by noting that the injectivity of a guarantees that S is also a 
domain. Assume S is left Ore, and let a, b E R\{O}. Then fa = gb for suit
able f, g E S\{O}. Considering the leading coefficients of both sides, we obtain 
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an equation crr"(a) = da"(b) for some c, d E R\{O}, and n ~ O. If a is an 
automorphism, we can apply a -n to get Ra n Rb i= 0, so R is left Ore. Con
versely, assume R is left Ore. Let K be the (unique) division ring of fractions of 
R (cf. (10.21)). We can extend a uniquely to an endomorphism of K by defining 
a(as- I) = a(a)a(s)-I. Therefore, we can form 

K[x; a] =2 R[x; a] = S. 

Since K[x; a] is a PLID, it is left Ore by (10.23) (or (10.24)). Let Q be the 
division ring Q~'I(K[x; aD. In view of (10.21), it suffices to show that S is a left 
order in Q. Of course, we have already S \ {O} S; U(Q). Next, each element of 
Q has the form f- I g, where 

o i= f = Laixi, g = Lbixi, ai, bi E K. 

Choose a suitable "common denominator" s E R\{O} such that ai = S-I Ci , 

bi = s-Idi (Ci, di E R). Then 

f - I ( - I "" i) - I ( - I "" d i) ("" i) - I ("" d i) g = S ~CiX S ~ iX = ~CiX ~ iX . 

o 

If 8 is a derivation of the domain R, we can form the domain R[x; 8] 
O=aixi} using the law xa = ax + 8(a) for all a E R (see FC-(1.9)). If R is 
left Ore, with division ring of fractions K, we can again extend 8 (uniquely) to a 
derivation on K by defining: 

(aER,OfsER). 

The same proof used in (10.28) (with a couple of minor modifications) yields the 
following analogue. 

(10.29) Theorem. Let 8 be a derivation on the domain R. Then the differential 
polynomial domain S = R[x; 8] is left Ore iff R is. 

For a useful special case of this, take R = k[y] where k is a left Ore domain, 
and define 8 by 8 (L b J yJ) = L j b J yJ - I (formal differentiation with respect to 
y). Then R[x; 8] is the first Weyl algebra A I (k) (cf. FC-(1.9)). Applying (10.29) 
twice, we see that R and hence A I (k) are left Ore domains. Since the higher Weyl 
algebras are defined inductively by An (k) = A I (An- I (k)), it follows that: 

(10.30) Corollary. If k is a left Ore domain, so are the Weyl algebras An (k). In 
particular, each An (k) has a unique division hull. 

The reason we considered twisted polynomial rings is, in part, to get results such 
as (10.30) for Weyl algebras. If we are interested only in the usual polynomial ring 
S = R[x], then another approach is possible. By Shock's Theorem (6.65), u.dim 
sS = u. dim RR. It follows immediately from (10.22) that a domain R is left Ore 
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iff S = R[x] is. Note that this proof does not depend on the existence of a division 
hull of R. (For yet another such proof, see Exercise 22.) 

How about power series rings? Given nonzero power series f, g E S = R[[x]J, 
to show that f S n g S 1= 0 would involve working with infinitely many coeffi
cients in the base domain R. Good intuition would suggest that this is generally 
impossible. However, good intuition is not always mathematically reliable. What 
we need is a counterexample in real terms. 

The first counterexample in the literature appeared only in 1982: 1. Kerr [82] 
produced aright Ore domain R for which S = R[[x]J is not right Ore. Her example 
is based on the use of free products of rings. In 1992, G. Bergman produced 
another, more elementary example, where R is in fact (2-sided) Ore. Moreover, in 
this example, the power series f (for the inequality f S n g S 1= 0) is a constant. 
We are grateful to Bergman who has kindly permitted us to present his example 
below. 

(lO.31A) Example. Let A be any commutative domain with an element z and an 
automorphism (I with the following properties 72,' 

(1) zA is a prime ideal of A. 
(2) ni<O (Ii (z)A = O. 
(3) n>o (Ii (z)A 1= O. 

Then R = A[t; (I] is a (2-sided) Ore domain, but the power series domain S = 
R[[x]J is not right Ore. 

To see this, first note that A is Ore, since it is commutative. From (10.28), it 
follows that R is Ore. To show that S is not right Ore, fix a nonzero element 
y E ni>O (Ii (z)A. In view of (2), there exists a largest integer k :::: 0 such that 
y f/. (lk(z)A. The choices of y and k guarantee that 

(4) y E (lk+l(z)A for any l > O. 

For the following two (nonzero) power series: 

(5) f = y, g = L (lj-k(y)t 2j x j in S, 
j~O 

we'll show that f S n g S = O. Assume, instead, that f u = g v for certain nonzero 
power series u = L UiXi, V = L ViXi in S. After extracting powers of x from 
the right and cancelling, we may assume that Uo 1= 0 1= Vo. For any fixed i > 0, 
comparing the coefficients of Xi in fu = gv yields 

'"' . k 2" . k 2· ,",. k 2· (6) YUi = ~ (lJ- (y)t JVi _j = (1'- (y)t 'vo + ~ (lJ- (y)t JVi _j . 
O~j~i O~j<i 

For 0:::: j < i, we have y E (lk+i-j (z)A by (4), so 

(lj-k(y)t2jVi_j E (li(z)R. 

72Explicit constructions for such (A, Z, a) will be given subsequently. 
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Together with YUi E a i (z)R, (6) implies that a i - k (y)t 2i Vo E a i (z)R. Comparing 
leading coefficients in the skew polynomial ring R = A[t; a], we get 

a i - k(y)a 2i (a) E ai(z)A, 

where a i= 0 is the leading coefficient of Vo E R. Applying a-i , we have 
a-k(y)a i (a) E zA. Since a-k (y) ¢ zA and zA is a prime ideal, a i (a) E zA, 
and hence a E a- i (z)A, for every i > O. This contradicts (2), showing that S is 
not right Ore. 0 

To complete our work, we must construct a commutative domain A with the data 
z, a as specified. This is easy. Start with the rational function field K = Q (z, y), 
and define an automorphism a on K by a(z) = z + 1 and a(y) = y/(z + 1). 
By induction, we have ai(y) = y/(z + 1) ... (z + i) for i :::: O. Let 

(7) A = Q [z, y, a(y), a 2 (y), ... ] ~ K. 

Since a(A) ~ A and a-I (A) ~ A (note that a-I (y) = yz), a defines an 
automorphism on A, which we continue to denote by a. From y /(z + 1) ... (z + 
i) E A, we have y E a i (z)A for i > 0, so (3) in (10.31) holds. To verify (1), 
assume z I be in the ring A. This divisibility relation must hold already in a subring 

Ai = Q[z, y/(z + 1)··· (z + i)] 
for a sufficiently large i. Since Ai is a polynomial ring in the two listed generators, 
we have z I b or z I c in Ai (and hence in A). Finally, the fact that no nonzero 
element in A can be divisible by a j (z) = z + j for all j < 0 can be seen 
by enlarging A to A' = Q [z]r[y], where T is the multiplicative set of Q [z] 
generated by {z + i : i > O}. Since Q [z] is a UFD, so are Q [Z]T and A', and 
{z + j : j < O} remain pairwise nonassociate prime elements of A'. It is therefore 
clear that no nonzero element of A' is divisible by all {z + j : j < O}. 

Note that, in the ring A constructed above, y/z ¢. A, since a polynomial ex
pression in 

z, y, y/(z + 1), y/(z + 1)(z + 2), ... 

cannot involve z in the denominator. Therefore, we could have used this y for the 
construction of f and g in (5) (with k = 0). 

Another way to construct (A, z, a) would be to start with K = Q «Zi )iEZ, y), 
with an automorphism a defined by a (Zi) = Zi + 1 (i E Z) and a (y) = y / z 1. 

We then take z = zo, 

(8) A = Q [(Zi)iEZ, y, a(y), a 2 (y), ... ] ~ K, 

and "a" = alA. The verifications for (1), (2) and (3) are completely similar to 
the ones given above for the smaller ring in (7). 

Throughout this subsection, we have been studying polynomial rings and power 
series rings over a base domain R. If R is not assumed to be a domain, the situation 
becomes quite a bit more complicated. In fact, if R is an Ore ring with O-divisors, 
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the polynomial ring R [x] may fail to be right or left Ore, as the following remark
able example of Ced6 and Herbera [95] shows. 

(10.31B) Example. Take a domain A that is neither right nor left Ore which can 
be embedded in a division ring D. (For instance, A = Q (x, y): see §9C.) View 
D / A as an (A, A)-bimodule, and form the "trivial extension" R = A EB (D / A) 
(cf. (2.22)(A» with the multiplication 

(a, d)(a', d') = (aa', ad' + da') (a, a' E A; d, d' ED), 

with respect to which D / A becomes an ideal of square zero. Then any regular 
element of R is a unit. In fact, if r = (a, d) E R is regular, we must have a -I 0 
in A. For a' = a-I E D, reO, a') = 0 implies a' = 0, so a' E A. From this we 
check easily that rr' = r'r = 1 for r' = (a', -a'da') E R. It follows in particular 
that R is an Ore ring (see (10.17». We finish by showing that R[x] is not right (or 
left) Ore. 

Let b, c E A \{O} be such that bA n cA = 0, and consider the regular element 
I + (b, O)x in R[x]. Assume, for the moment, that R[x] is right Ore. Then there 
exist 

rn 

p(x) = L (Pi, p;)xi 
i=O 

with q (x) regular, such that 

n 

and q(x) = L(q), qj)x) inR[x], 
)=0 

(l + (b, O)x) p(x) = (c, 0) q(x) E R[x]. 

If all q) = 0 E A, we would have q(x) . (0, d) = 0 for any dE D. Therefore, we 
may assume that qll -10 E A. Projecting the equation (*) from R[x] to A[x] we 
get 

rn " 
(l + bx) L Pi Xi = c Lq)x). 

i=O )=0 

A comparison of coefficients shows that Pi = 0 for i :::: n and that bpn-I = cqn -I 
0, which contradicts bA n cA = O. A similar argument shows that R[x] cannot 
be left Ore. 

Ced6 and Herbera have shown further that, as long as A is a subring of a 
division ring D, then for the ring R defined above, the power series ring R[[x]] 
is Ore.73 In fact, the Laurent series ring R«x» will be the left and right classical 
ring of fractions of R[[x]]. To see this, it suffices to show that every regular 
element a = L::o (ai, di)X i E R[[x]] has an inverse in R«x». First note that 
the regularity of a implies that the ai's are not all 0, so let us write a = fJ + y xn 

73Together with the preceding material, this shows that R[[x]] being Ore need not imply 
R[x] being right or left Ore. 
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where 

n-I 00 

fJ = L (0, d;)x; and y = L (an+;, dn+;) x; 
;=0 ;=0 

with an =I ° in A. Let 

An easy calculation shows that 

00 ; 

a L (0, h;)x; = yxn L (0, h;)x; = (0, l)xn = 0. 
;=0 ;=0 

Since a is regular in R[[x]], all h; must be 0. In particular, bo E A, so anbo = 1 
implies that an E U(A). As before, this yields (an, dn) E U(R), so y-I exists 
in R[[x]]. Multiplying a = fJ + yxn by y-I, we get ay-I = fJI + xn, where 
f31 := f3y-1 belongs to (D/ A)[[x]]. Since (D/ A)2 = 0, it follows that M = 0, 
and so 

Thus a has a right inverse in R((x», and a similar argument shows that a has a 
left inverse in R((x» as well. 

For an arbitrary ring R, one can also ask the converse question whether R[x] 
(or R[[x]]) being right Ore would imply R is right Ore. The answer is easily seen 
to be "yes" if R is a domain. Otherwise, the situation is again more complicated. 
Ced6 and Herbera have shown that, in general, R[[x]] being right Ore need not 
imply that R is right Ore. But it seems to be an open question whether R[x] being 
right Ore would imply that R itself is right Ore.74 

The same kind of questions can be posed for matrix rings. We close this sub
section by giving one or two references on the question of whether the right Ore 
property "goes up" to matrix rings. Again the case of a domain is more spe
cial. If R is a right Ore domain, then any matrix ring MIn(R) is right Ore. This 
will be deduced a little later from a result on right Goldie rings; see (11.21)(1). 
In general, however, P. Menal [88] has shown that there exist Ore rings R with 
R = Q~/(R) = Q~'/(R) such that MIn(R) is neither right nor left Ore for any 
n> 1. 

74Although this question is not yet fully answered, Ced6 and Herbera have proved the 
remarkable result that R[xl being right (or left) Ore implies that R is Dedekind-finite. 
Thus, for any Ore ring R (e.g., a von Neumann regular ring) that is not Dedekind-finite, 
R[xl fails to be right or left Ore! 
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§lOD. Extensions and Contractions 

In this subsection, we return to the study of the right ring of fractions of a ring R 
with respect to an arbitrary right denominator set S ~ R. For future reference, it is 
convenient to collect here some facts on the relationship between the right ideals 
of R and those of RS- 1• To simplify the notation, we shall write Q = RS- 1, and 
let cp be the natural homomorphism from R to Q. 

For any right ideal 21 of R, we define 2le (the extension of 2l) to be cp(2l) . Q, 
the right ideal generated by cp(2l) in Q. For any right ideal lB of Q, we define 
lBe (the contraction of lB) to be cp-I (lB). We have then the following properties. 

(10.32) Proposition. 

(1) lBce = lB. 
(2) 2le = {as-I: a E 2l, s E S}. (Here, as before, as- I is used as an informal 

notation for cp(a)cp(s)-I E Q.) 
(3) 2lec = {r E R: rs E 2l for some s E S}. 
(4) Ifwe have a direct sum of right ideals EB i 2li ~ R,thenwehave EBi2lf ~ 

Q. 
(5) Ifwe have a direct sum of right ideals EBi lBi ~ Q,thenwehave EBi lB~' ~ 

R, assuming that cp IlB~' is injective for all i. 
(6) If R is right noetherian (resp. artinian), so is Q. 

Proof. (1) is routine, and it implies (6). For (2), we need only verify the inclusion 
"~". Consider a sum 

-I +-1 q = als l +... ansn , 

where ai E 2l, Si E S. We can express aisi-I in the form a;s-I (1 .::::: i .::::: n), 
where s E S and a; E ai R ~ 2l. Therefore, q = (a; + ... + a~)s-I. For (3), if 
rs E 21 where s E S, then r E 2ls- 1 ~ 2le in Q implies that r E 2lee . Conversely, 
if r E 2lee, then (by (2» r = as- I in Q where a E 21 and s E S. This gives 
rs = a E Q so we have r(ss') = as' E 2l for some s' E S. The proofs for (4) 
and (5) are both routine. 0 

In general, if 21 is an ideal in R, 2le need not be an ideal in Q (see Exercise 
11). However, as observed independently by Jategaonkar and Ludgate, a mild 
assumption on Q will restore this property. This fact and some of its consequences 
are recorded in the Proposition below. 

(10.33) Proposition. 

(1) Assume that Q is right noetherian. If 2l is an ideal in R, then 2le is an 
ideal in Q. 

(2) Let 2l be an ideal in R such that 2le is an ideal in Q. Then for any 
right ideal 211 ~ R, (21121), = 2l~21e. If 21 is nilpotent, then 2le is also 
nilpotent. 
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(3) Assume that R is noetherian. Then there is a one-to-one correspondence 
between Spec Q (the set of prime ideals ofQ) and Specs R (the set of prime 
ideals of R that are disjoint from S), given by contraction and extension. 

Proof. (1) Consider any s E S. Since s I.<{ <; I.<{, we have 

I.<{ <; s-II.<{ <; s-21.<{ <; ... <; Q, and hence 

I.<{e <; s-ll.<{e <; s-2l.<{e <; ... <; Q. 

Since Q is right noetherian, s-lIl.<{e = s-(II+l)l.<{e for some n > 0, and hence 
I.<{e = s-ll.<{e. Left multiplying by any r E R, we get 

rs-ll.<{e = rl.<{e <; I.<{e, 

since I.<{ is a left ideal in R. Therefore, we have Q I.<{e <; I.<{e, so I.<{e is an ideal in 
Q. 

(2) The inclusion (I.<{II.<{)' <; 1.<{~l.<{e is clear. For the reverse inclusion, consider 
an additive generator q = (als,I)(as- l) of 1.<{~l.<{e, where al E I.<{I, a E I.<{, 

and s, Sl E S. Since I.<{e is an ideal, s,las-1 E I.<{e, so S,las-1 = a's'-I for 
some a' E I.<{ and s' E S. Therefore, q = (ala')s,-I E (I.<{I.<{)'. This proves 
(I.<{II.<{)' = 1.<{~l.<{e. In particular, (I.<{n)' = (I.<{e)n, and I.<{n = 0 implies (I.<{e)" = o. 
(3) By (10.32)(6), Q is right noetherian, so (1) above applies. Let q E Spec Q; we 
claim that p = qC is a prime. Indeed, if I.<{, I.<{' are ideals of R sUich that I.<{ I.<{' <; p, 
then, extending to Q and using (2), we get 

I.<{el.<{" = (1.<{1.<{,)e <; pe = qce = q. 

Therefore, we have (say) I.<{e <; q, so I.<{ <; qC = p. Since q :c/o. Q, clearly p E 

SpecsR. We have thus a map ex : Spec Q --+ SpecsR defined by contraction. 
Next, consider any p E SpecsR, and write p' = pec. Since R is (left) noetherian, 
p' is finitely generated as a left ideal. Using (10.32)(3), we can therefore find an 
element s E S such that p's <; p. Since p is prime and s R CJ:. p, this implies that 
p = p' = pec. In particular, pe f. Q. We claim that pe E Spec Q. To see this, 
suppose IB IB' <; pe, where IB, IB' are ideals of Q. Then IBc IB'c <; pec = p 
implies that (say) IBc <; p. Therefore, by (1), IB = IBec <; pe, as desired. It 
follows that p r-+ pe defines a map f3 : SpecsR --+ Spec Q which is inverse to 
the map ex above. This completes the proof of (3). D 

To get other desirable facts relating Rand Q, we shall need to assume that S 
consists only of regular elements. Recall that A <;e B is the notation for A being an 
essential submodule of B. In the following Proposition, we shall use this notation 
alongside the notation of I.<{e for extensions. This should not cause any confusion 
since A <;e B is a subscript notation while I.<{e is a superscript notation. 

(10.34) Proposition. Assume that the right denominator set S <; R consists only 
of regular elements of R. Let I.<{ <; I.<{' be right ideals of R, and IB <; IB' be right 
ideals in Q = RS- I ;2 R. Then: 
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(a) m ~e m' iff me ~e m'e . 

(b) ~ ~e ~' iff ~c C:;e ~'C. 

(c) If R is a prime (resp. semiprime) ring,15 so is Q. The converse holds if Q 
is right noetherian. 

Proof. (a) First assume m C:;e m' , and consider 0 f a's- I E m,e, where a' E m ' 

and s E S. Fix an element r E R such that 0 f a'r Em. Then 

(a's-I)(sr) = air E m'\{O} c:; mle\{O}. 

Next, assume me C:;e m'e, and consider 0 f a' E mi. Then 0 f a'(rs-I) = 
as,1 for some r E R, a E m, s, Sl E S. After expressing rs- I and as,1 
with a common denominator, we may assume that s = Sl (without affecting the 
condition a Em). Therefore, we have air = a E m\{O}. 

(b) Assume first ~c C:;e ~'C. Taking extensions and using (a) with (10.32)(1), 
we get ~ ~e ~'. Conversely, assume ~ C:;e ~'. Then (~cy ~e (~Icy implies 
~c ~e ~'C, again by (a). 

(c) Assume first R is prime. Say as-I Qbt- I = O. Then 0 = as-I (sR)b = aRb, 
so we have a = 0 or b = O. This shows that Q is prime. The semiprime case is 
similar, upon letting a = b. Now let Q be right noetherian. Then we can apply 
(10.33)(1). Assume Q is prime, and say aRb = O. We are done if we can show 
that aQb = 0 for then a = 0 or b = O. Consider an element rs- I E Q, where 
r E Rand s E S. Since (RbRY is an ideal, s-Ib E s-I(RbRY ~ (RbR)'. 
Therefore 

a(rs-I)b E ar(RbR)· Q = 0, 

as desired. The semiprime case follows similarly, by letting a = b. 

(10.35) Corollary. Under the hypotheses of(IO.34), we have 

u. dim mR = u. dim (me)Q = u. dim (meh, and 

u. dim ~Q = u. dim ~R = u. dim (~C)R . 

In particular, u.dim RR = u.dim QQ = u.dim QR. 

o 

Proof. This follows from (10.34), and the easy observation that m C:;e me and 
~c C:;e ~ as right R -modules. 0 

Note that, for the last two results (10.34) and (10.35), it is essential to have the 
assumption that S consist only of regular elements (so that we have R c:; Q). For 
instance, if Rand S are as in Example (1O.27)(b), the ideal m = R . y c:; R 
is an infinite direct sum EBi>O Xi yZ of right ideals. Thus, u.dim mR = 00, but 
me = (0) since y maps to zero in Q. Also, we have m C:;e RR, but me = (0) is 
not essential in QQ. Finally, u.dim RR = 00 here, but u.dim QQ = 1. 

7SFor the notions of prime and semiprime rings, see FC-§ 1 O. 
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Exercises for §10 

o. Let S S; R be a right permutable multiplicative set. Show that 

21 = {a E R: as = 0 for some s E S} 

is an ideal in R. 

1. Let S S; R be a right denominator set, and 21 be as in the above exercise. 
Let R = R 121 and write "bar" for the natural surjection from R to R. 
Show that oS is a right denominator set in R consisting of regular elements 
and that RS- 1 ~ RS- 1 over R. 

2. Let S S; R be a multiplicative set. 

(a) If s E S has a right inverse, show that as n S R # 0 holds for any 
a E R. 
(b) If R is a reduced ring, show that S is right and left reversible. 

3. Let S S; R be any commutative multiplicative set, and let 

A={aER: aSnsR#0 foreverysES}. 

Show that A is a subring of R containing the centralizer of Sin R. 

4. Let x, Y E R be such that xy = I # yx, and let S be the multiplicative 
set {xl! : n 2: OJ. Show that 

(1) S is left reversible but not right reversible; 
(2) S is right permutable; and 
(3) if R is generated over a central subring k by x and y, then S is also 
left permutable. 

5. Let V be a right vector space over a field k, with basis {el, e2, ... }. Let 
R = End(Vk), and let x, y E R be defined by y(e;) = e;+l (i 2: 1), and 
x(el) = 0, x(e;) = e;-l (i 2: 2). Show that S = {xl! : n 2: O} S; R is a 
left denominator set, but not a right denominator set. 

6. Let R be a ring satisfying ACC on right annihilators of elements. If a 
multiplicative set S S; R is right permutable, show that it is necessarily 
right reversible. Conclude from Exercise 4 that the ring R is Dedekind
finite. 

7. Prove the last statement of (l 0.21). 

8. Let G be the free group generated by a set X with IXI 2: 2. Show that 
the domain Z G is not right (or left) Ore. 

9. Let R be the ring Z(x, y) defined by the relations y2 = yx = O. Show 
that R is left Ore but not right Ore. 

10. Let R = k[x; a] where a is an automorphism of the ring k. Show that 
S = {xl! : n 2: O} is a right and left denominator set of R, and that 
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RS~I and S~I R are both isomorphic (over R) to the ring of skew Laurent 
polynomials k[x, X~I; a] (as defined in FC-(1.8». 

1 I. Let k in Exercise 10 be the polynomial ring Q[{ti : i E Z}], with a 
defined by a(ti) = ti+1 for all i E Z, and let R, S be as above. Show 
that Ql = tl R + t2R + ... is an ideal in R, but the extension Qle is not an 
ideal in RS~I = k[x, X~I; a]. (Hint. Note that x~1 tl = a~1 (tl )x~1 = 
tox~If/-Qle.) 

12. Let R be the first Weyl algebra A I (k) over the field k (see FC-(1.3)(c», 
identified with k[y][x; 8] where 8 denotes formal differentiation on key). 
Show that S = k [y ] \ {O} is a right and left denominator set of R, and that 
RS~I and S~I R are both isomorphic (over R) to k(y)[x; 8]. 

13. Let R be a right Ore domain with division ring of right fractions K. Show 
that the center of K is given by 

{as~1 : a E R, s E R\{O}, ars = sra for all r E R}. 

14. For R, K as in Exercise 13, show that any ring between Rand K is a right 
Ore domain. 

15. Let S be a right denominator set in a ring R and let rp : R ---+ Q be 
the natural map, where Q = R S~ I. (l) If Q R is a noetherian R -module, 
show that rp(R) = Q.(2)If RQ isaf.g.R-module,showthat rp(R) = Q. 

16. Let f : R ---+ R' be a homomorphism between right Ore rings. Does f 
induce a ring homomorphism Q~I(R) ---+ Q~I(R')? 

17. Let S be a right denominator set in a ring R. Show that the right ring of 
fractions Q = RS~I is flat as a left R-module. 

18. Let S c:; Rand Q be as in Exercise 17 and let M be a right R-module. 

(1) Generalizing the procedure in the text, show that there exists a "lo
calization" M S~ I which is a right Q-module with elements of the form 
m/s = ms~1 (m E M, s E S). 
(2) Show that the kernel of the natural map M ---+ M S~ I is given by 

Mo := {m EM: ms = 0 for some s E S}. 

(3) Show that "localization" is an exact functor from OO1 R (the category 
of right R-modules) to OO1Q (the category ofright Q-modules). 
(4) Show that MS~I ~ M®R Q in OO1Q• Using this and(3),giveanother 
proof for the fact that R Q is flat. 
(5) If Mo = 0 in (2), show that 

u.dimMR =u.dim(MS~lh =u.dim(MS~I)Q' 

19. For any right R-module M, let 

t(M) = {m EM: ms = 0 for some regular element s E R}. 
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Show that R is right Ore iff, for any right R-module M, I(M) is an R
submodule of M. In this case, t(M) is called the torsion submodule of M; 
M is called torsion if t (M) = M, and torsion-free if t (M) = O. Show 
that, in case R is right Ore, M / t (M) is always torsion-free. 

20. Let R be a subring of a division ring D. Show that R D is a flat left R -module 
iff R is a right Ore domain. 

21. Show that a domain R satisfies the (right) strong rank condition ("for any n, 
any set of n + 1 elements in (Rnh is linearly dependent": see (1.20)(2» 
iff R is right Ore. (This is an interesting conclusion since it means that, to 
guarantee that we can solve nontrivially m homogeneous linear equations 
in n > m unknowns over R, it suffices to guarantee that we can always 
solve one such equation in two unknowns.) 

22. Use Exercise 21 to give another proof for the fact that, if R is a right Ore 
domain, so is R[x]. (Hint. Recall Exercise (1.22).) 

23. Show that, over a right Ore domain, any f.g. flat right module is projective. 
(Hint. Recall (4.38).) 

24. Let R ~ L be domains. Show that L is injective as a right R-module iff 
R is right Ore and L contains the division ring of right fractions K of R. 

25. Show that a domain R is right Ore iff it has a nonzero right ideal of finite 
uniform dimension. 

26. Let R be a domain. Show that R is a PRID iff R is right Ore and all right 
ideals are free, iff R is right noetherian and all right ideals are free. 

27. (This exercise leads to another proof of (10.24).) Let Ql ]1:- 0 be a right 
ideal in a domain R, and bE R\{O}. If Ql n bR = 0, show that Ql + bR 
is a nonprincipal right ideal. 

28. Let S ~ R be a right denominator set consisting of regular elements, and 
let Q = RS- 1• True or False: (1) R is simple iff Q is? (2) R is reduced 
iff Q is? 

29. Let Q = RS- 1, where S is a right denominator set in R. For any right 
Q-module N, show that N Q is injective iff N R is. (Hint. For the "if" 
part, consider N Q ~ X Q, and show that any direct complement of N R in 
X R is a Q-module (cf. the proof of (3.77». For the "only if" part, use the 
flatness of R Q and (3.6A).) 

30. In two different graduate algebra texts, the following exercise appeared: 
"Let S be a multiplicative subset of the commutative ring R. If M is an 
injective (right) R-module, show that MS- 1 is an injective (right) RS- 1-

module." Find a counterexample. 

31. Show that the statement in quotes in the last exercise is true under either 
one of the following assumptions: 
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(1) R is noetherian (or more generally, R is right noetherian and S is a 
central multiplicative set in R); 

(2) M is S-torsionfree (i.e., for s E S and m E M, ms = 0 ==> m = 0). 
Your proof should work under the more general assumption that S is a 
right denominator set in a possibly noncommutative ring R. 

§ 11. Right Goldie Rings and Goldie's Theorems 

§11A. Examples of Right Orders 

In §11, we shall study a beautiful chapter of noncommutative ring theory inaugu
rated by Goldie and Lesieur-Croisot in the late 1950s. The class of rings emerging 
from this study is the class of right Goldie rings (and especially the class of semi
prime right Goldie rings). Before we give the motivation for this study, let us first 
introduce the following 

(11.1) Notation. For any ring R, we shall write CR for the multiplicative set of 
regular elements of R, and VCR) for the group of units of R. (We have, of course, 
VCR) ~ CR.) 

Recall that, if R ~ Q are rings, we say that R is a right order in Q if CR ~ V (Q) 
and every element of Q has the form as-I, where a E Rand s E CR. We can 
pose the following two natural questions: 

(11.2) When is a ring R a right order in some other ring Q? 

(11.3) When does a ring Q have a right order R ~ Q ? 

In the last section, we have fully answered the first question; namely, R is a 
right order in some ring, say Q, iff R is right Ore, in which case Q ~ Q~/(R) 
over R. The second question can now be answered easily as well. 

(11.4) Proposition. For a ring Q, the following are equivalent: 

(1) Q has a right order R. 
(2) Q has a left order R. 
(3) CQ = V(Q). 
(4) Q = Q~/(Q). 
(5) Q = Q;'/(Q). 

If Q satisfies these equivalent conditions, we shall say that Q is a classical 
ring. 76 

76Classical rings are also known as "rings of quotients" in the literature. 
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Proof. By left-right symmetry, it suffices to prove the equivalence of (1), (3), and 
(5). But clearly, (3)==>(5)==>(1), so it is enough to prove (1)==}(3). Suppose (1) 
holds, and let us identify Q with Q~I(R). Let q E CQ• Then q = as-I for some 
a E Rand s E CR. Since s E CR ~ U(Q) ~ CQ , we have 

(11.5) 

Therefore, q' := sa-I is an element of Q, with qq' = 1 = q'q, so q E U(Q). 
o 

Recall from (10.17) that any classical ring Q is always Ore. In the following, 
we shall give various examples of classical rings. 

(11.6) Examples. 

(1) If Q is a von Neumann regular ring, then Q is a classical ring. Indeed, let 
q E CQ , and write q = qq'q for some q' E Q. Then 

q(l - q'q) = 0 = (1 - qq')q 

gives q'q = 1 = qq', so q E U(Q). As a special case, any Boolean ring Q 
(q2 = q V q E Q) is a classical ring. (Here, CQ = {I} = U(Q).) 

(2) Let Q be a ring in which any chain q Q ;2 q2 Q ;2 ... stabilizes for any q E Q. 
(Such a Q is called a strongly Jr-regular ring.) Then Q is a classical ring. Indeed, 
let q E Q be any element for which annr (q) = O. Then qn Q == qn+ I Q for some 
n::::: I,sowecanwrite qn =qn+l q, for some q' E Q.Butthen qn(I_qq') =0 
implies qq' = 1, and q(l-q'q) = q -q = 0 implies q'q = 1, so q E U(Q).1t 
follows from FC-(24.25) that all left perfect rings are classical rings. In particular, 
all I-sided artinian rings are classical rings. In the commutative category, strongly 
Jr -regular rings are precisely the rings of Krull dimension 0 (see Exer. (4.15) in 
[Lam: 95]), so the latter rings are always classical rings. 

(3) Any local ring (R, m) with a nil maximal ideal m is clearly a classical ring, 
since CR ~ R\m = U(R). 

(4) For any vector space Vk over a division ring k, Q = End(Vk) (operating on 
the left of V) is a classical ring. This follows from (1) above since it is well-known 
that Q is von Neumann regular (see FC-(4.27». More directly, for q E Q, 
annr(q) = 0 means that q is an injective endomorphism, and anne(q) = 0 
means that q is a surjective endomorphism. Therefore, q E CQ clearly implies 
that q E U(Q). 

(5) The ring Q in (4) above is a right self-injective ring, by (the right analogue 
of) (3.748). More generally, any right self-injective ring is a classical ring. The 
proof of this is left as an exercise (see Exercise 8). 

We now tum our attention to right orders. 
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(11.7) Remarks. 

(1) We have noted that any Boolean ring Q is classical. Such a ring has only one 
left (or right) order, namely, Q itself. 

(2) In general, if R ~ R' ~ Q are rings, and R is a right order in Q, then so is R'. 
(In particular, R' must be right Ore.) First, by the same argument in the proof of 
(11.4) (applied to R' instead of Q), we see that CR, ~ U(Q). Next, every element 
ofQ hastheformas- I , where a E Rands E CR. Butthen s E U(Q)nR' ~ CR" 
so we have indeed Q = Q~I(R'). 

(3) Suppose R ~ Q, where Q is a strongly rr-regular ring. To check that R is a 
right order in Q, it suffices to check that every element of Q has the form as-I, 
wherea E Rand s E RnU(Q). The other property, CR ~ U(Q),can be deduced 
from this as follows. Let q E CR. Then ann9(q) = 0, for, if q . as-I = 0 E Q 
where a E Rand s ERn U(Q), then qa = 0 E R and so a = 0 E R, 
as -I = 0 E Q. By the proof given in (11.6)(2), we can conclude that q E U (Q). 

(4) Let R be a right order in a right artinian ring Q. Then Rn := Mn(R) is a 
rightorderin Qn :=Mn(Q).Indeed,ifq E Qn, we can express the entries of the 
matrix q in the formaijs-I whereaij E Rands E CR. Therefore, q = (aij)(sIn)-1 
where sIn E Rn n U(Qn). It is not difficult to see that Qn is a right artinian ring, 
so (3) above implies that Rn is a right order in Qn. 

Some examples of right orders R in Q are given below. Many more examples 
can be generated from these by using (11.7)(2). 

(11.8) Examples. 

(1) R is any commutative domain and Q is its quotient field. 

(2) More generally, R is any right Ore domain, and Q is its division ring of 
right fractions. For instance, we can take Q to be the division ring of all rational 
quatemions, and R to be any subring of Q containing i, j, k (see (11.7)(2». 

(3) Q=QxQ, R={(a,b)EZxZ: a=b(modn)}(fixedn:;l:O). 

(4) R = (~ ~). Q = (~ ~} R = (~ ~p). Q = (~;) ~p}or 
R = (~ ~~~D' Q = (~ ~~~~). where k is any field. (See (10.27)(d,e,f).) 

(5) Let A be any commutative domain with quotient field K, and let Q be any 
finite-dimensional K -algebra. An A-subalgebra R ~ Q is called a (classical) 
A-order in Q if R is f.g. as an A-module satisfying R . K = Q. (These are 
the orders studied extensively in the theory of integral representations.) Any such 
classical A -order R is a right order of Q in our sense. Indeed, consider any SEC R. 

We must have s E CQ , for, if sq = 0 where q E Q, we can find a E A\{O} 
such that r := qa E R; but then sr = 0 implies r = 0, so q = O. Since Q is 
artinian, (11.6)(2) above implies that s E U(Q). Also, any q E Q has the form 
ra- I as above where r E R and a E A \{O} ~ CR , so R is a right order in Q. 
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(Note that the finite generation of R as an A-module is actually not needed for 
this conclusion.) 

(6) Examples of classical A-orders abound. For instance, in the 2-dimensional 
Q-algebra Q( "j5), Rn = Z + n Z·"j5 (0 i- n E Z) is a classical Z -order, and 
R = Z + Z . ("j5 - 1) /2 (the ring of algebraic integers in Q("j5) ) is a maximal 

classical Z -order. The ring (~ n ZZ) (0 i- n E Z) is a classical Z -order in 

M2 (Q), as is (n Zz nzZ ). If we write Q for the rational quatemion division 

algebra, then 

R = Z + i Z + j Z + k Z and S = Z + 2i Z + 2j Z + 2k Z 

are both classical Z -orders in Q, and Hurwitz' ring of quatemions 

H = ~(1 + i + j + k) Z + i Z + j Z + k Z 

(cf. FC-( 1.1» can be seen to be a maximal classical Z -order in Q (containing 
Rand S). The rings 

M 2 (R), M 2(H), (n~ n;) (0 i- n E Z), and (~ 2;) 

are all classical Z-orders in the semisimple Q-algebra M2 (Q). (Note that 2R . 
H = R· (2H) ~ R· R = R.) 

(7) Let A ~ K be as in (5), and let G be any finite group. Then AG is a classical 
A -order in KG. In general, it is not a maximal classical A -order. For instance, let 
K be a number field (i.e., a finite extension of Q ), and A be the ring of algebraic 
integers in K. Consider any (finite) Galois extension L/ K, with Galois group G, 
and let B be the ring of algebraic integers in L. Then L may be viewed as a 
(say, left) KG-module, and the Galois extension L/ K gives rise to a ring 

R = {A E KG: A' B ~ B} ~ KG. 

Since AG· B ~ A· B = B, we have AG ~ R. It can be checked that R is a 
classical A-order of KG (containing AG, usually properly). 

§11 B. Right Orders in Semisimple Rings 

According to Ore's Theorem, right orders in division rings are exactly the right 
Ore domains. What about right orders in semisimple rings? In other words, which 
rings will have classical right rings of fractions Q~I (R) that are semisimple? The 
answers to these questions are provided by Goldie's Theorem, which we shall now 
try to formulate. 

In §6E, we have investigated various finiteness conditions on rings. By com
bining two of these finiteness conditions, we arrive at the notion of a right Goldie 
ring. The justification for this definition will come very shortly. 
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(11.9) Definition. A ring R is said to be right Goldie if it satisfies ACCm and 
ACC[v in the notation of §6E; that is, ifu.dim RR < 00, and R has ACC on right 
annihilator ideals. (Left Goldie rings are defined similarly.) 

The following remarks should shed some light on this definition. 

(11.10) Any right noetherian ring is right Goldie. The converse, however, is not 
true, since clearly any commutative domain is also right Goldie. 

(11.11) If Q is right Goldie, so is any right order R ~ Q. This follows quickly 
from (6.61) and (10.35). 

(11.12) As a consequence of (11.10) and (1 l.l 1), any right order in a right 
noetherian ring is right Goldie. 

We are now in a good position to state and prove the celebrated result of Goldie 
[60]. The main part of the theorem is the equivalence of (1), (2), and (5) below; we 
have added the other two equivalent conditions (3) and (4) to show more clearly 
how the ideas in the proof are tied together, and, of course, also to present a more 
complete form of the theorem. Recall that a ring R is called right nonsingular 
if the right singular ideal Z(RR) is zero (see (7.5», and CR denotes the set of 
regular elements of a ring R. 

(11.13) Goldie's Theorem. For any ring R, the following are equivalent: 

(1) R is a right order in a semisimple ring, say, Q. 
(2) R is semiprime right Goldie. 
(3) R is semiprime, u. dim RR < 00, and R has ACC on right annihilators 

of elements. 
(4) R is semi prime, right nonsingular, and u. dim RR < 00. 

(5) For any right ideal min R, m ~e Riff m n CR i= 0. 

Note that, by (2)===}(1) of this theorem, semiprime right Goldie rings form a 
subclass of the right Ore rings. 

Before we proceed to the proof of Goldie's Theorem, the following cautioning 
note on terminology is in order. In some books on ring theory (e.g., Renault [75], 
Passman [91]), a "right Goldie ring" is defined to be a ring R such that u.dim 
RR < 00 and R has ACC on right annihilators of elements. The equivalence of 
(2) and (3) in the Theorem above means that, for semiprime rings, this definition 
agrees with ours. But in general, this definition is not equivalent to ours, and it gives 
a bigger class of rings. We shall, however, follow the majority of practitioners in 
the field, and define right Goldie rings by using the full right annihilator condition, 
as in (11.9). 
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Proof of (11.13). We shall prove 

(1) =} (2) =} (3) =} (4) =} (S) =} (1). 

(1)=}(2). (This basic implication provides the motivation for Def. (11.9).) Sup
pose (1) holds. Since Q is right noetherian, (11.12) implies that R is right Goldie, 
and (10.34)(c) implies that R is semiprime. If we don't want to invoke the deeper 
fact (10.34)(c), we can also deduce the semiprimeness of R as follows. Let Qt S; R 
be a left ideal with Qt2 = O. We claim that Qt' := annt Qt S;e RR. Indeed, for any 
r ¢ Qt', we have ra 7= 0 for some a E Qt. Then ra Qt S; Qt2 = 0, so ra E Qt'\{O}. 

This checks that Qt' S;e RR, and hence Qt' . Q S;e QQ by (l0.34)(a). Since QQ 
is semisimple, we must have Qt' . Q = Q. In particular, we have I = a's -I for 
some a' E Qt' and s E CR (see (l0.32)(2». But then 0 = a' Qt = s Qt implies that 
Qt = o. 
(S)=}(l). We first check that R is right Ore. Let a E Rand s E CR. By (S), we 
have sR S;e R. Applying Exercise (3.7) to left multiplication by a, we get 

{r E R: ar E sR} S;e RR. 

Using (S) again, the LHS contains an element s' E CR. Thus, as' E s R, and hence 
aCR n sR 7= 0. This checks that R is right Ore, so we can form Q := Q~I(R). 
To show that Q is semisimple, consider any right ideal !B S; Q, with contraction 
Qt := !Be S; R. Let Qt' be a complement to Qt in RR (i.e., Qt' is a right ideal in 
R maximal with respect to Qt n Qt' = (0». Clearly, Qt EB Qt' S;e RR, so by (S) 
again, Qt EB Qt' contains a regular element of R. Taking extensions to Q, we get 
Qte EB Qt'e = Q by (10.32)(S), and therefore !B = !Bee = Qte is a direct summand 
of QQ. This shows that Q is a semisimple ring. 

(2)=}(3) is a tautology. 

(3)=}(4) follows from (7.19). (We also have (4)=}(3) from (7.SI), but we don't 
need this implication here.) 

(4)=}(S) is part of the following Proposition: 

(11.14) Proposition. Let R be a ring satisfying (4) above. 

(a) Leta E Rberightregular,inthesensethatannr(a) = O. ThenaR S;e RR, 
and infact a E CR. 

(b) Any right ideal Qt S; R contains an element a such that annr (a) n Qt = (0). 
(S) For any right ideal Qt in R, Qt S;e R iff Qt n CR 7= 0. 

Proof. (a) The hypothesis on a implies that R ~ aR as right modules, so 

u. dim (aRh = u. dim RR < 00, 

which clearly implies that aR S;e RR. (For another argument, see Exercise 2(b).) 
So far, we have only used the hypothesis u.dim RR < 00. To see that a E CR, we 
shall also use Z(RR) = O. Indeed, if r E anne(a), then reaR) = 0 and aR S;e RR 
imply that r E Z(RR) = 0, so a is left regular as well. 
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(b) We induct on n = u. dim 2lR < 00. The case n = 0 being trivial, let us check 
the crucial case n = 1. Here, 2lR is uniform. Since R is semiprime, 212 i= 0, 
so there exist a, a' E 2l with aa' i= O. We claim that the element a is what we 
want. Indeed, if!B : = ann, (a) n 2l i= 0, then !B ~e 2l (since 2lR is uniform). By 
Exercise (3.7) again, 

a,-l!B := {x E R: a'x E !B} ~e RR. 

But now aa'·(a,-l!B) ~ a!B = 0 impliesthataa' E Z(RR) = O,acontradiction. 
For the general case, fix a right ideal 210 ~ 2l with u.dim(2lo) R = n - 1, and pick 
ao E 2lo with ann,(ao) n 2lo = O. We may assume that U := ann,(ao) n 2l i= 0 
(for otherwise ao already works for 2l). Clearly u.dim U = 1, so by the work 
above, there exists u E U with ann,(u) n U = O. Then a := u + ao E 2l is what 
we want since 

ann,(a) n 2l = ann,(u) n ann, (ao) n 2l = ann,(u) n U = O. 

(5) First assume 2l ~e R, and pick a E 2l as in (b). Clearly, ann, (a) must be 
(0), so by (a), a E CR. Conversely, if a right ideal 2l contains some a E CR, then 
aR ~e RR by (a), so a fortiori 2l ~e RR. 0 

Remarks. After proving Goldie's important theorem (11.13), several additional 
observations on a semi prime right Goldie ring R are worthwhile. 

(1) Part (a) of (11.14) shows that, in R, any right regular element is regular. 
However, there are examples of R in which left regular elements need not be 
regular: see Exercise 4 in this section. In particular, such rings R cannot be left 
Goldie. 

(2) According to (7.51)" all chains of right (resp. left) annihilators in R have 
bounded length. In particular, right (resp. left) annihilators in R satisfy both the 
ACC and the DCC. 

(3) In connection to the conclusion (5) in (11.14), more can be said about the 
relationship between essential right ideals I ~e RR and the regular elements in 
R. For instance, it can be shown that any coset of I must contain a regular element. 
and that I is always generated (as a right ideal) by the regular elements it contains. 
The proofs of these statements depend on the observation (2) above: see Exercises 
24-27. (Some information in the non-Goldie case is given in Exercises 1-2; see 
also Exercise 7 in §7.) 

For any right module M over a ring R, let Z(M) denote the singular submodule 
of M (see (7.1», and let 

t(M) = {m EM: mr = 0 for some r E CR }. 

As a consequence of (11.13) and (11.14), we obtain the following simple module
theoretic characterization of semi prime right Goldie rings. The first part of this 
result is to be compared with Exercise (10.19). The second part gives a natural 
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interpretation for the reduced rank of a right module over a semi prime right Goldie 
ring. 

(11.15) Proposition. A ring R is semiprime right Goldie iff Z(M) = t(M) for 
all right R-modules M.ln this case, ifQ = Q~'/(R), we have infact 

(A) Z(M) = t(M) = ker{M ~ M ®R Q}, and 
(B) rank(M) = lengthQ(M ®R Q), 

where rank(M) is the reduced rank of MR defined in (7.34). 

Proof. The "only if" part follows by applying (2)==>(5) in Theorem 11.13 to right 
ideals of the form ann(m) (m EM). Conversely, assuming that t(M) = Z(M) 
for all M R, let us verify (5) in (11.13) for any right ideal 2l ~:::; R. First assume 
2l ~e RR. Then i E RI2l belongs to Z(RI2l) = t(RI2l), so I . r = 0 for some 
r E CR , and this means that r E 2l. Next, assume that 2l contains an element 
r E CR. Then I E RI2l is killed by r, so I E t(RI2l) = Z(RI2l), whence 
2l = ann(l) ~e RR. 

Assume now R is a semi prime right Goldie ring. Then the second equality in 
(A) follows from Exercise (10.18). To compute rank(M), recall that it was defined 
as u.dim M 10**, where 0** is the "closure" of (0) in the sense of (7.31). Since R is 
a right nonsingular ring, 0** is just Z(M) by (7.21), so rank M = u.dim Nt where 

Nt := MIZ(M) = Mlt(M). 

Applying Exercise (10.18)(5) to this torsion-free module, we have 

rank(M) = u. dim (Nt ®R Q) 

= u. dim(M ®R Q) 

= lengthQ(M ®R Q). 

Here, we have used the isomorphism Nt ® R Q ~ M ® R Q which results from the 
right exactness of the tensor product, and the fact that t(M) ®II Q = O. D 

Returning now to Goldie's Theorem (11.13), let us state an important special 
case of it, which is often called "Goldie's First Theorem" «11.13) being the Sec
ond). 

(11.16) Corollary (Goldie, Lesieur-Croisot). A ring R is a right order in a simple 
artinian ring (say, Q) iff R is a prime right Goldie ring. 

Proof. This follows from (11.13) in view of (10.34)(c) and the fact that simple 
artinian rings are exactly the prime semisimple rings. Here is a direct argument 
avoiding the reference to (10.34)(c). Suppose R is prime Goldie, and Q = Q~I (R) 
is its semisimple classical right ring of quotients. If 113, 113' are right ideals in Q such 
that 113113' = 0, then SBcSB'c ~ 113113' = 0 implies (say) SBc = 0, so 113 = SBce = O. 
Therefore Q is prime and hence simple artinian. Conversely, if R is a right order 
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in a simple artinian ring Q, then R is right Goldie by (11.13). Suppose mm' = 0, 
where m, m' are left ideals in R, with m i- O. Then Q m Q = Q, so there exists 
an equation 1 = Li XiaiYi, where Xi, Yi E Q, ai E m. Writing Yi = ris-1 with 
a common denominator s E CR , we have s = Li Xiairi, so s m' ~ Q mm' = 0, 
and hence m' = O. This shows that R is a prime ring. 0 

There is no lack of examples illustrating (11.16). Forinstance, (11.8)(6) provides 
many noetherian prime rings that are right orders in simple artinian rings. 

As usual, we shall say that R is a Goldie ring if it is both left and right Goldie. 
Let us say that a subring R in a ring Q is a 2-sided order (or order for short) if R 
is both a left order and a right order in Q. 

(11.17) Corollary. Let R be a semiprime right Goldie ring, with Q = Q~I(R). 

The following are equivalent: 

(1) R is a Goldie ring. 
(2) R is an order in Q. 
(3) u. dim(RR) < 00. 

Proof. (1)==>(2). Since R is (semiprime) left Goldie, it is also left Ore, so Q 
coincides with Q~I(R) by (10.14). Therefore, R is a left order in Q as well. 
(2)==>(3) is clear by (the left version of) (10.35). Finally, assume (3). Since Q 
has DCC on right annihilators, R also has DCC on right annihilators by (6.61) and 
hence R has ACC on left annihilators by (6.57). Together with (3), this shows that 
R is left Goldie. 0 

(11.18) Corollary. If R is a semiprime (resp. prime) right Goldie ring, then so is 
Rn := Mn(R). 

Proof. We first do the semiprime case. Since R is a right order in Q = Q~'I(R) 

and Q is right artinian, (11.7)(4) implies that Rn is a right order in Qn := Mn(Q). 
But Qn is also semisimple, so (11.13) implies that Rn is semiprime right Goldie. 
The prime case is entirely similar. 0 

Remark. The proof of (11.18) using Goldie's Theorem (11.13) may seem a little 
circuitous. However, if R is only a right (or even 2-sided) Goldie ring, Mn(R) 
need not be right Goldie! J. Kerr [79] has found an example of a commutative 
Goldie ring R such that A = M 2 (R) does not have ACC on right annihilators. In 
particular, A is not right Goldie, although 

u. dim AA = 2(u. dim RR) < 00 

by (6.62). In light of this, the semiprime assumption is essential for the truth of 
(11.18), and Goldie's Theorem does playa key role in its proof. 

(11.19) Corollary (Small). Let S = R[x]. Then R is semiprime (resp. prime) 
right Goldie iff Sis. 
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Proof. We shall focus on the semi prime case, as the prime case is similar. This 
time we cannot use the main equivalence (1){=:::}(2) in Goldie's Theorem (11.13). 
However, we can use (2){=:::} ( 4) there. By (6.65), R is right finite-dimensional 
iff S is. By Exercise (7.35), R is right nonsingular iff S is. By FC-(10.18), R is 
semi prime iff S is. The desired conclusion follows from these.77 D 

Remarks. 

(1) We could have applied the same method above to the proof of (11.18), if we 
only know that R is right nonsingular iff Mll (R) is. This is, in fact, true, but we 
have not yet proved it. An indication of the proof will be given later in the context 
of the Morita Theory in Chapter 7: see Exercise (18.3). 

(2) As in the Remark following (11.18), if R is just right Goldie (without the 
semiprime condition), then the polynomial ring S = R[x] need not be right 
Goldie. Indeed, J. Kerr [90] has constructed a commutative Goldie ring R for 
which S = R[x] does not have ACC on annihilator ideals; in particular, S fails 
to be Goldie. Kerr's ring R is an algebra over the field of two elements. On the 
other hand, V. Camillo and R. Guralnick [86] have shown that, if R is an algebra 
over an uncountable field, then R being right Goldie implies that R[X] is right 
Goldie for any set of (commuting) variables X. 

(11.20) Corollary. A domain R is right Goldie iffit is right Ore. 

Proof. The "only if" part follows from the fact (shown in the course of proving 
(11.13)) that semiprime right Goldie rings are right are. Conversely, if R is a right 
are domain, then u.dim RR = I and the only right annihilator ideals are {O} and 
R, so R is clearly right Goldie. (In this case, R is a right order in the division ring 
Q~.I(R).) D 

(11.21) Examples. 

(1) If R is any right are domain with Q = Q~I(R), then any ring between M ll (R) 
and Mn (Q) is a prime right Goldie (and hence right are) ring. (This follows from 
(11.20), (11.18), and (11.7)(2).) 

(2) Let G be any finite group. By Maschke's Theorem (FC-(6.1)), Q Gis semisim
pie. It follows as in (1) that any ring between Z G and Q G is a semiprime Goldie 
ring. 

(3) Let R be the ring in Example (7.6)( 4). Since R is left noetherian, it is left Goldie. 
However, LXi yZ is an infinite direct sum of right ideals, so R is not right Goldie. 
Of course, this R is not semiprime. It is just as easy to find semiprime examples. 
For instance, if A is a left are domain that is not right are, as in the second 

77 Since Shock's results used here are also valid for R [Xl where X is any set of commuting 
indeterminates (see Exercises (6.26), (7.35», the conclusion of (I 1.19) holds for S = R[Xl 
as well. 
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paragraph before (10.28), then, by (11.20), A is (semi prime) left Goldie, but not 
right Goldie. We have here u.dim AA = 1, but u.dim AA = 00. 

(4) There is a very remarkable example, due to G. Bergman, of a prime (in fact 
primitive) ring R which has left and right uniform dimension 1 but is neither left 
nor right Goldie. Such a ring R is necessarily not a domain, and is neither left nor 
right nonsingular. In fact, for any left zero-divisor a E R, we have annr (a) =1= 0; 
hence annr(a) S;e RR, and so Z(RR) =1= 0 (and similarly Z(RR) =1= 0). (Of 
course, the fact that R fails to be left or right nonsingular is also predicted by 
the characterization (11.13)(4) for semiprime I-sided Goldie rings.) Bergman's 
example is not easy, but the details for the construction are well covered in pp. 27-
30 of the book by Chatters and Hajarnavis [80], so let us just refer the reader to 
that source. 

At this point, let us record one more useful result related to (11.13); this con
cerns the structure of minimal prime ideals. Again, we work in the setting of a 
semiprime right Goldie ring; somewhat more general results on minimal primes 
in any semiprime ring will be presented later in § 11 D. 

(11.22) Proposition. Let R be a semiprime right Goldie ring, and let QI x· .. X QI 
be the Wedderburn decomposition of the semisimple ring Q := Q~,(R). Let qi = 
L d-i Q j and Pi = q~ = qi n R. Then {p I , ... , pd are all the minimal prime ideals 
ofR.Each R/Pi is a prime right Goldie ring with Q;',(R/Pi);:: Qi (1.:::: i.:::: t). 

Proof. Each Pi is prime by the first argument used in the proof of (10.33)(3), and 
by (10.32)(1), Pi r:J:. Pj for i =1= j. Also, n Pi S; n qi = (0). If P S; R is any 
prime ideal, 

(11.23) PI'" PI S; PI n··· n PI = (0) S; P 

implies that P :2 Pi for some i. From this, we see easily that PI, ... , Pt are all the 
minimal prime ideals of R. Identifying Q/qi with Qi, we have R/Pi S; Q/qi = Qi 
and 

(11.24) R"-+ R/PI X ... X R/pt S; QI X ... X Qt = Q. 

By (11.7)(2), R/PI x ... X R/Pt is a right order in Q, so by Exercise 0 below, 
each R/Pi is a right order in Qi. Therefore, by (11.16), R/Pi is a prime right 
Goldie ring, with Q~,(R/Pi) = Qi. 0 

To illustrate this Proposition, consider, as in (11.21 )(2) above, the case R = ZG 
where G is a finite group. Let QI x ... X Qt be the Wedderburn decomposition 
of the semisimple ring Ql G, and let Jri be the projection map from ZG to 
Qi with respect to this decomposition. Then the minimal primes of ZG are 
precisely the kernels of the Jri 's. In the case when G is abelian, the situation is 
especially transparent. Here, the Qi 's are cyclotomic fields Ql [Si] where the Si 's 
are various roots of unity, and the Jri 's are ring homomorphisms from ZG onto 
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Z[~i] ~ Q [~i]' The kernels of these homomorphisms give all minimal primes of 
the abelian group ring ZG. 

§11C. Some Applications of Goldie's Theorems 

Using the Goldie Theorems, one can often prove results about right noetherian 
rings which may not be easy to prove otherwise. To see how Goldie's Theorems 
can be applied, let us sample a few such applications below. The first application 
concerns the structure of the injective hull E(Rlp) where p is a prime ideal in a 
right noetherian ring R. This leads, in particular, to a criterion for p to be right 
meet-irreducible (in the sense of the definition given at the beginning of §3F). 

(11.25) Theorem. Let p be a prime ideal in a right noetherian ring R. Let A = 
Rip and n = u. dim A R. Then the injective hull E(A R) is a direct sum of n 
mutually isomorphic indecomposable injective R -modules. In particular, p is right 
meet-irreducible iff A = Rip is a domain. 

Proof. Since the prime ring A is right noetherian and hence right Goldie, Q := 
Q~/(A) exists and is simple artinian, by (1l.16). Therefore, Q ~ Mm(D) where 
m ~ 1 and D is a division ring. In particular, Q has a unique simple right module 
BQ such that QQ ~ mB. By (6.7)(2) and (10.35): 

(11.26) 

(11.27) 

m(u. dim BA) = u. dim QA = u. dim QQ = m, 

m = u.dim QQ = u.dim AA = u.dim AR = n. 

Therefore, u.dim BR = u.dim BA = 1, so E(BR) is an indecomposable injective 
R-module, and, since AR ~e QR, 

(11.28) 

as desired. In this notation, p is right meet-irreducible iff n = 1, iff Q is a division 
ring, iff A = Rip is a domain. 0 

(11.29) Remark. In the last conclusion of (11.25), neither implication is true 
without the right noetherian assumption on the ring R. For instance, if R is a 
domain that is not right Ore, then the prime p = (0) is not right meet-irreducible. 
On the other hand, in the example of Bergman referenced in (11.21)(4), we have 
a prime ring R with u.dim(RR) = u.dim(RR) = 1 that is neither left Goldie nor 
right Goldie. Thus, p = (0) in R is left and right meet-irreducible, but R fails to 
have ACC on left as well as on right annihilators. In particular, R is not a domain. 

Note that Theorem (11.25) has a very natural interpretation in terms of the 
classification of the indecomposable injective right modules over R. Recall from 
(3.60) that we have a natural "fibration" ex : I(R) -+ Spec R where I(R) denotes 
the set of isomorphism classes of the indecomposable injective right R-modules. 
If we define f3 : Spec R -+ I(R) by taking f3(p) to be any indecomposable direct 
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summand of E«Rlp)R), then f3 gives a natural splitting for ex (over any right 
noetherian ring R). 

Let us now give another nice application of Goldie's Theorems to bimodules, 
due to T. H. Lenagan. The term "length" below refers, as usual, to the length of a 
composition series. 

(11.30) Theorem. Let I be an (S, R)-bimodule, where Rand S are arbitrary 
rings. Assume that length(sl) < 00. Then IR is noetherian ifflength(lR) < 00. 

Lenagan proved this result in the case when S = R and I is an ideal in R, but his 
arguments carryover verbatim to (S, R)-bimodules. Before presenting the proof 
of this beautiful result, let us first record a couple of its consequences. 

(11.31) Corollary. Let I bean idea lin a noetherian ring R. Then length(R I) < 00 

iff length(lR) < 00. 

This follows from (11.30) and left-right symmetry. On the other hand, if we 
apply (11.30) to the (R, R)-bimodule I = R, we get the following: 

(11.32) Corollary. If a ring R is left artinian, then it is right noetherian iff it is 
right artinian. 

For readers familiar with the results in FC, this should come as no surprise. In 
fact, according to the Hopkins-Levitzki Theorem, FC-( 4.15), the conclusion in 
(11.32) is true more generally for any semiprimary ring; that is, any ring R such 
that rad R is nilpotent and Rlrad R is semisimple. To place (11.30) in perspective, 
we should think of it as a generalization of the classical result (11.32). Let us now 
present: 

Proof of (11.30). ("Only if" part.) Assume that IRis noetherian. By induction 
on length(sl), we are reduced to the case when I is a simple (S, R)-bimodule. 
Let p = ann (I R) # R. This is a prime ideal in R, for, if 2l, 93 S; R are ideals 
not contained in p, then I2l = I = 193, so I2l93 = I and hence 2193 Cl:. p. 
After replacing R by RIp, we may therefore assume that R is a prime ring acting 
faithfully on I. Since s I is artinian, there exist a I , ... ,an E I such that I = 
L S· ai. The map R ~ r sending r E R to (air, ... , anr) is a monomorphism 
of right R-modules, so RR is noetherian; that is, R is now a prime right noetherian 
(in particular right Ore) ring. Consider 

(11.33) t(l):= {a E I: ar = 0 for some r E CR}. 

By Exercise (10.19), t(l) is an R-submodule of I R, and from its definition, t(l) 
is also an S-submodule of sI. Since SIR is a simple bimodule, we have either 
t(l) = I or t(l) = O. If t(l) = I, then airi = 0 for suitable ri E CR. Taking 
a common right multiple r E CR for {rl' ... , rn}, we get Ir = L S . air = 0, 
contradicting the faithfulness of IR. Therefore, we must have t(l) = O. This 
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means that each element SEeR acts as an injective endomorphism of s I. Since 
length(sl) < 00, S must act as an automorphism of sl. Therefore, IR can now 
be made into a Q-module IQ, where Q := Q~/R) is a simple artinian ring, by 
(11.16). Fix a simple sub module JQ S; I Q. Then 

QQ ~ k . JQ S; k . IQ 

for some k > 0, and in particular, Q R <-+ k . I R. Since IRis noetherian, so is 
Q R, and by Exercise (10.15)(1), this implies that R = Q. Therefore, R is (right) 
artinian, and hence length (I R) < 00 as desired. 0 

The above remarkable argument (in the case when R = S and I is an ideal in R) 
appeared in Lenagan [75] in the "Short Notes" section of the Proceedings of the 
AMS. Lenagan's paper seemed to fit perfectly the explicitly stated policy of the 
"Short Notes" department, which is, "to publish very short papers of an unusually 
elegant and polished character, for which there is no other outlet." Indeed, although 
the argument above is quite short, it seemed to have used the full force of Goldie's 
First Theorem (11.16), and it is not clear at all how one could have proved (11.30) 
otherwise. 

It is of interest to mention an application of (11.30) to the so-called artinian 
radicals of a ring. For any ring R, let A r (R) be the sum of all right ideals Ql S; R 
which are artinian as right R-modules. Since r Ql is a homomorphic image of Ql for 
any r E R, Ar (R) is an ideal of R. This is called the right artinian radical of R; 
the left artinian radical AC(R) is defined similarly. Clearly, Ar(R) ;2 SOC(RR), 
and AC(R) ;2 soc(RR). 

(11.34) Remark. N (R) = R iff R is right artinian. The "if" part is clear. For 
the "only if" part, assume N(R) = R. Then 1 E Ql] + ... + Qln for suitable 
right ideals Ql], ... ,Qln which are artinian as right R-modules. But then RR is a 
homomorphic image of Ql] EB ... EB Qln, so it is artinian. Using this remark, we see 
easily that A e (R) i- Ar (R) in general. For, if R is a ring which is left artinian but 
not right artinian, then Ae(R) = R i- Ar(R). For another, somewhat different 
example, see Exercise 12. 

Now consider a ring R which is right noetherian. Then there exists a maximal 
artinian right ideal Qlo. Since the sum of any two artinian right ideals is artinian, 
mo contains all artinian right ideals. This implies that Qlo = N (R), and this is 
the largest artinian right ideal, and hence the largest right ideal of finite length. 
Similarly, if R is left noetherian, A C (R) is the largest left ideal of finite length. 
We close with the following interesting application of (11.30). 

(11.35) Corollary. For any noetherian ring R, At(R) = N(R). 

Proof. Since the ideal A e (R) has finite length as a left R-module, it also has finite 
length as a right R-module, by (11.30). Therefore, A C (R) S; A r (R), and similarly, 
Ar(R) S; Ae(R). 0 
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§11 D. Semi prime Rings 

In this subsection, we collect some special results on semiprime rings that are 
relevant to Goldie's Theorem (11.13). In particular, at the end of this subsection, 
we shall give a reworked list of characterizations for commutative semiprime 
Goldie rings. 

We begin with the following basic observation on semiprime rings. 

(11.36) Lemma. Let 21 be an ideal in a semi prime ring. Then anne 21 = ann, 21. 
In particular, this is an ideal (which will henceforth be denoted by ann 21). 

Proof. If x 21 = 0, then (21 x)2 = 21 x 21 x = 0 implies 21 x = O. Similarly, 
21x = 0 implies x 21 = O. 0 

(11.37) Definition. In a semiprime ring R, an ideal !B is said to be an annihilator 
(ideal) if !B = ann 21 for some ideal 21. As is easily seen, !B is an annihilator iff 
!B = ann (ann !B). (See also Exercise 16(a).) 

For any ring R and (R, R)-bimodules, RMR , we can define essential submod
ules, uniform submodules, uniform dimensions, complements, and the like, by 
interpreting "submodules" to mean (R, R)-submodules of M. The general results 
developed in §6 can all be carried over to this setting. To see this, we can sim
ply remark that an (R, R)-bimodule is the same as a right module over the ring 
R ®z ROP. Therefore, we need only apply the results of §6 to the ring R ®z ROP 
to get the desired results for bimodules. In particular, we can talk about the essen
tialityof 21, u.dim 21, complements to 21, and so on, for ideals in 21 in a ring R, by 
viewing 21 as R21 R . 

(11.38) Lemma. Let 21 be an ideal in a semiprime ring R. Then 21 has a unique 
complement ann 21, and we have 21 E9 ann 21 £;e R RR (essential in the two-sided 
sense). 

Proof. Let !B be any complement to 21; that is, !B is an ideal maximal with respect 
to the property of having zero intersection with 21. (Recall that such a complement 
always exists, by Zorn's Lemma.) Note that 21!B £; 21 n !B = 0, so !B £; ann 21. 
Since R is semiprime, 21 nann 21 = 0, so we must have !B = ann 21. This shows 
that ann 21 is the unique complement to 21 (in R), and by (6.19), 21 E9 ann 21 £;e 

RRR. 0 

An immediate consequence of the lemma is the following characterization of 
annihilator ideals in a semi prime ring. 

(11.39) Corollary. Let !B be an ideal in a semiprime ring R. Then !B is an 
annihilator iff it is a complement. 
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Remark. In a semiprime ring R, the partially ordered set of all annihilator ideals 
has a natural structure of a "complete Boolean algebra". The "meet" of an arbi
trary family of annihilators {23;} is their intersection n; 23; (which is clearly an 
annihilator), and the "join" of the same family is the intersection of all annihilators 
containing all of the 23; 'so The complement operation in the Boolean algebra is 
given by taking annihilators.78 For more details of this construction, we refer the 
reader to Lambek [66: p. 111]. To make our exposition self-contained, however, 
we shall carry out all of our proofs in this subsection without explicitly assuming 
the existence of such a Boolean structure. Nevertheless, it will be convenient to 
speak of this Boolean structure at least in some of the examples given below. 

(11.40) Lemma. Let m be an ideal in a semiprime ring R. Let S be the set of 
minimal prime ideals of R which do not contain m. Then ann 1.<1 = n{p: pES}. 

Proof. Let 23 = n{p: pES}. Any element in m n 23 is in the intersection 
of all minimal primes of R, so m n 23 = 0 (Fe-Exercise (10.14)). In particular, 
m 23 = 0, so 23 S; ann m. On the other hand, for any PES, m . ann m = (0) S; P 
implies that ann m S; p (since m ~ p). Therefore, ann m S; 23. D 

In a (semiprime) ring R, an annihilator 23 is said to be a maximal annihilator 
if 23 #- R, and there is no annihilator strictly between 23 and R. 

(11.41) Theorem. For any ideal m in a semiprime ring R, the following are 
equivalent: 

(1) m is a maximal annihilator. 
(2) m is a minimal prime and an annihilator. 
(3) m is a prime and an annihilator. 
(4) m = ann U for some uniform ideal U S; R. 

If R has only finitely many minimal primes, then these are also equivalent to: 

(5) m is a minimal prime. 

Proof. (1)===}(2). Say m = ann m' (#- R). Suppose 23\! S; m but \! ~ m, where 
23, \! are ideals. We have 0 #- \!m' S; m', so 

R #- ann(\!m') ;2 ann m' , 

hence anne\! m') = ann m'. Since 23(\! m') = 0, we must have 23 m' = 0; i.e., 
23 S; ann m' = m. This shows that m is prime. If p is a prime £; m, then 
m'm = (0) S; p implies m' S; p S; m; hence (m,)2 = 0 (while m' #- 0), a 
contradiction to R being semiprime. 

78Note that the Boolean algebra obtained here always contains the Boolean algebra 
B'(R) defined in Exercise (7.30). 
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(2)===>(3) is a tautology. 

(3)===>(4). Let U := ann ~. Since ~ is an annihilator, ~ = ann U. If U is 
not uniform, there would exist nonzero ideals U I , U2 with UI Ef) U2 S; U. Since 
all minimal primes intersect at (0), U I ~ P for some minimal prime p. Then 
U I • ann UI = (0) S; P implies P ;2 ann U I • But 

U I U2 = (0) -I- U U2 ===> ann UI ::;2 ann U = ~, 

and hence P ::;2 ~, a contradiction. 

(4)===>(1). For ~ as in (4), suppose ~ s;:; IE, where IE is an annihilator. Since 
~ = ann U is a complement to U, we have IE n U -I- (0), and so IE n U S;e U 
(as ideals). Therefore, by (11.38), 

(IE n U) Ef) ann U S;e U Ef) ann U S;e RRR. 

Since the LHS is contained in IE, we have IE S;e RRR. This (together with IE n 
ann IE = 0) implies that ann IE = 0 and so IE = ann (ann IE) = R, proving (1). 

Finally, assume R has only finitely many minimal primes, say, PI, ... , PI' Using 
PIn· .. n PI = 0, we see easily from (11.40) that each Pi is the annihilator of the 
intersection of the other P j 's. Thus, in this case (5){:::::::}(2). D 

(11.42) Corollary. Let R be a semiprime ring with finitely many minimal prime 
ideals PI, ... , Pt· Then an element a E R is regular iff a +Pi is regular in Rlpi 
for every i. 

Proof. For the "if" part, suppose ab = O. Working in Rlpi, we see that b E Pi 
and hence b E ni Pi = O. Similarly, ba = 0 =} b = O. Conversely, assume a is 
regular in R, and fix any index i. As observed above, Pi = ann(~) where ~ is the 
intersection of the P j 's for j -I- i. Suppose ab E Pi. Then ab ~ = 0 and so b ~ = 0 
since a is regular. Therefore b E ann ~ = Pi. Similarly ba E Pi ===> b E Pi, so 
a + Pi is regular in Rlpi. D 

The following theorem offers various criteria for a semi prime ring to have only 
finitely many minimal primes. 

(11.43) Theorem. For any semiprime ring R, the following are equivalent: 

(1) n:= u. dim RRR < 00. 

(2) The number t of minimal primes in R is finite. 
(3) The number m of annihilators in R is finite. 
(4) R has ACC on annihilators. 

(4') R has DCC on annihilators. 
(5) R has ACC on complements. 

(5') R has DCC on complements. 

If these conditions hold, then n = t and m = 21. Finally, n = t = 1 iff R is a 
prime ring. 
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Proof. (1 )=}(2). Let Ui (1 ::: i ::: n) be uniform ideals of R such that 

UI EB ... EB Un ~e RRR. 

By (11.41), Pi := ann Ui are minimal primes, and we have 

PI n ... n PI ~ ann(UI EB ... EB Un) = 0, 

since ann(UI EB ... EB Un) has zero intersection with U I EB ... EB Un. If P is any 
minimal prime, (*) implies that Pi ~ P for some i and hence P = Pi. This proves 
(2), and we see that t = n. 
(2)=}(3). Given t < 00, we see right away from (11.40) that m ::: 21 < 00. 

Using the last part of (11.41) (and the definition of a prime ideal), we see further 
that m ~ 21, so we have m = 21. 

(3)=}(4) is a tautology. 

(4)<=> (5) and (4') <=> (5') follow from (11.39). 

(4)<=> (4') follows by taking annihilators. 

(5)=}(1) follows by applying (6.30)' to the bimodule RRR. 

The last statement in the theorem is now immediate. o 

For semiprime rings, (4) is generally weaker than ACC on right annihilators, 
and (5) is weaker than ACC on right complements (in RR). The equivalence of 
(4) and (5) is clear from (11.39), but ACC on right annihilators and ACC on 
right complements are independent in general! Semi prime rings satisfying the 
conditions in (11.43) comprise a class that is considerably larger than the class of 
semi prime one-sided Goldie rings. (Recall that for semiprime right Goldie rings, 
we have given another construction of the minimal primes of R in (11.22).) 

(11.44) Corollary. Let R be a semiprime ring with finitely many minimal prime 
ideals PI, ... , PI' Then R is right Goldie iff each Rlpi (1 ::: i ::: t) is right 
Goldie. in which case Q~I(R) ;:::::; n Q~I(Rlpi)' 
Proof. Assume that each Rlpi is right Goldie, and consider the embedding R ~ 

Di Rlpi.Since Di Rlpi satisfies ACC on right annihilators, so does R by (6.61). 
Also, 

u.dim RR ::: Lu.dim(RIPi)R = Lu.dim(RIP;)R/p; < 00, 

i i 

so R is right Goldie. The rest follows from (11.22). o 

We pause to offer some examples for (11.43). 

(11.45) Examples. 

(1) Let R = RI X ••. X R I , where the Ri 's are prime rings. Then the minimal 
primes of R are Pi = D#i R j (1 ::: i ::: t). These are clearly maximal annihi
lators, and each Pi is the annihilator of the uniform ideal Ri in R, as predicted 
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by (11.41). The 21 annihilator ideals in R are given by all subproducts of the 
Ri 'so Thus, the Boolean algebra of annihilators in this example is the same as the 
Boolean algebra B' (R) in Exercise (7.30). 

(2) Let k be any field, and R be the (commutative) semiprime ring k[x, y, z] 
with the defining relation xyz = O. Since the principal ideals (x), (y), (z) are 
prime and their intersection is (0), they are all the minimal primes in R. (Note also 
that (x) = ann(yz), (y) = ann(xz), and (z) = ann(xy).) In view of (11.40), the 
Boolean algebra of all annihilators in R is given by: 

R 

(x) (z) 

(xy) (yz) 

(0) 

This is, of course, isomorphic to the Boolean algebra of all subsets of a 3-element 
set. Note that this is bigger than the Boolean algebra B'(R) which has only two 
elements since R has no nontrivial idempotents. This example generalizes readily 
to the case when R = k[Xl, ... , XI] with the relation Xl ... XI = O. 

In the rest of this subsection, let us focus on commutative rings. In this more 
specialized setting, we shall offer a reworked list of characterizations for semi
prime Goldie rings. The redundancies in some of the conditions in (11.13) in the 
commutative case are eliminated in this version. Also, we shall give a direct proof 
for this new version using only results in this subsection, mainly independently of 
(11.13). 

(11.46) Theorem. For a reduced (i.e., semiprime) commutative ring R, the seven 
conditions (1) through (5') in (11. 43) are equivalent to each of the following: 

(6) R is Goldie. 
(7) Every dense ideal 2t of R contains a regular element.79 

(8) Every essential ideal 2t of R contains a regular element. 
(9) R is an order in a finite direct product offields. 

79It is helpful to recall here that, in a commutative ring R, !2l ~d R simply means that 
ann(!2l) = 0; that is, !2l isjaithful as an R-module (see (8.3)(4)). 
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Proof. (9)===}(6) follows from (11.12), and (6)===}(4) (in (11.43» is a tautology. 

(4)===}(7) is true by (S.31)(1) (even without the assumption that R is semiprime). 

(7)===}(S). By (7.S), R is a nonsingular ring, so by (S.9), essential ideals are dense 
in R. 

(S)===}(9). Let S := CR be the multiplicative set of regular elements of Rand 
let Q = RS- I = Rs. Repeating the last part of the argument for (5)===}(1) in 
(11.13), we see that Q is semisimple. Since Q is commutative, it is a finite direct 
product of fields. 0 

It is also of interest to see directly, by using the standard tools of commutative 
algebra, that Condition (2) (R is reduced and has only finitely many minimal 
primes PI, ... , PI ) implies Condition (9) on the structure of the classical ring of 
quotients Q = Rs. In fact, from (11.42), we obtain the equation80 

(11.47) 

Thus, by the Lemma of Prime Avoidance and standard facts about localizations, 
the only primes in Q are (p I) s, ... , (PI) s , and these are all maximal. Since their 
intersection is (0), the Chinese Remainder Theorem gives 

Q = Rs~nDi' 
i 

where Di := RS/(Pi)S (I ~ i ~ t) are fields. 

§ll E. Nil Multiplicatively Closed Sets 

In the ring theory literature, there are many theorems about the nilpotency of 
nil subrings and nil one-sided ideals in rings. Clearly, when we talk about "nil 
subrings" S in a ring R, the word "subring" meanS that S is a subgroup of R that 
is closed under multiplication, but which may not contain the identity I of R. 
This more general notion of "subring" will be used throughout this subsection. In 
particular, anyone-sided ideal in a ring R is a subring of R in this sense. 

The earliest results on "nil ===} nilpotent" were due to Levitzki and Hopkins, 
who proved that any nil subring in a right artinian ring is necessarily nilpotent. 
Later, Levitzki proved that any nil one-sided ideal in a right noetherian ring is 
nilpotent (cf. FC-(l0.30». As a further improvement ofthis result, Goldie showed 
that any nil subring of a right noetherian ring is nilpotent. In this subsection, we 
shall present a theorem of Herstein, Small, and Lanski which includes all of the 
above results. Our proof of this theorem follows that of J. W. Fisher [70]. 

Instead of working with subrings, we shall work more generally with multiplica
tively closed (m.c.) subsets below. These are simply nonempty subsets 1 ~ R that 
are closed under multiplication. By r, we shall mean the set of products XI ••• X,,, 
where Xi E I. Clearly, r is also m.c., with 1 ;2 12 ;2 13 ;2 .... We say that 1 is 

80 See also Exercise 15. 
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nil if, for any x E I, x" = 0 for some n (depending on x), and we say that I is 
nilpotent if I" = (0) for some n 2: l. In general, of course I being nilpotent is a 
much stronger property than I being nil. For some classes of rings, however, these 
two properties for an m.c. set tum out to be equivalent, as we shall see below. 

In Fe-(23.13), we have defined a set A ~ R to be right T -nilpotent if, for any 
sequence {Xi : i 2: I} in A, there exists an integer m 2: 1 such that Xm ... X2X I = O. 
This notion is a useful tool for proving the nilpotency of m.c. sets, since we have 
the following convenient result. 

(11.48) Lemma. Let R be a ring with ACC on right annihilator ideals. Then an 
m.c. set I ~ R is nilpotent iff it is right T -nilpotent. 

Proof. We need only prove the "if" part. Assume that the m.c. set I is not nilpotent. 
Since I ;2 12 ;2 ... , we have annr (/) ~ annr (/2) ~ ... , so there exists an integer 
n such that annr(/") = annr (/"+ I). Since 1"+1 i- (0), there exists XI E I such that 
/"XI i- 0, and so /,,+I XI i- O. This means that I"x2xl i- 0 for some X2 E I, and 
so /,,+1 X2XI i- O. Continuing in this manner, we get a sequence {Xi: i 2: I} ~ I 
with Xm ... X2XI i- 0 for all m 2: 1, so I is not right T -nilpotent. 0 

We shall now state the main theorem in this subsection. We stress again that it 
applies to subrings and one-sided ideals, since these are all m.c. sets. 

(11.49) Theorem. Let R be a ring with ACC on right annihilators, and assume, 
furthermore, that one of the following two conditions holds: 

(1) R has ACC on left annihilators. 
(2) u. dim RR < 00. 

Then any nil m.c. set I ~ R is nilpotent. 

(In case (1), this theorem is due to Herstein and Small. In case (2), it is due 
to Lanski. Note that in case (2), the Theorem simply says that any nil m.c. set 
in a right Goldie ring is nilpotent. In particular, this subsumes the theorems of 
Levitzki, Hopkins, and Goldie mentioned earlier in this subsection.) 

Proof of (11.49). In view of (11.48), it suffices to show that I is right T -nilpotent. 
Assume this is not true. Let us say that an element YI E I is "bad" if there exist 
Y2, Y3, ... E I such that y" ... Y2YI i- 0 for all n. Among elements in 

(11.50) SI := {y E I: Y is bad} i- 0, 

choose XI E SI withannr(xdmaximaI.WethendefineS" ~ I and x" E I(n 2: 1) 
inductively as follows. If XI, ... , X,,_I are already defined, we take: 

(11.51) S" := {y E I: YX,,_I'" X2XI is bad}, and 

(11.52) X" E S" such that annr (x,,) is maximal. 
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(Note that, by choice Xn-I (X,,-2 ... X2X I) is bad, so there exists at least one y E I 

such that YX,,_I ... X2XI is bad; this guarantees that Sn is nonempty.) For the 
elements 

a" := x" ... X2XI E I\{O} (n ~ 1), 

we make the following two claims: 

(A) annr(xi) = annr(xi+j" 'Xi+IXi), for any i, j ~ 1; 
(8) Xian = o for any n ~ i ~ 1. 

For (A), note that since xi+j ... Xi" . X2XI is bad, we have Xi+j ... Xi+IXi E Si 
and so, by the choice of Xi (cf. (11.52)): 

annr (Xi) S; annr (Xi + j ... Xi + I Xi) is an equality. 

For (8), assume, for the moment, that Xian I- 0, for some n :~ i ~ 1. Then, by 
(A), 

Xi+ j ... Xian I- 0 for every j ~ 1. 

This implies that 

Xian = (XiXn" 'Xi)(Xi-1 .. 'XI) is bad. 

Therefore, XiX" ... Xi E Si, and hence (again by (11.52)): 

(11.53) annr(Xi) S; annr(xixn ... Xi) is an equality. 

Fix an integer k ~ 1 such that (x" ... Xi l = O. Then, by (11.53): 

Xi(Xn " 'Xi)(Xn ' ooXi)k-1 = 0 ==> Xi(Xn " 'Xi)k--l = O. 

Repeating this argument, we get Xi (Xn ... Xi) = 0 and hence Xian = 0, a contra
diction. 

Having established (A) and (8), we now make the following two new claims: 

(C) L~ I ai R is a direct sum of right ideals. 
(D) If Ai = {aj : j ~ i}, then anne(AI) S;; annt(A2) S;; .... 

Once we have established (C) and (D), the theorem will clearly follow. To prove 
(D), note that (8) implies that xi+laj = 0 whenever j ~ i + 1, while Xi+lai 

ai+1 I- O. Therefore, we have 

To prove (C), consider any relation: 

airi + ... +ai+pri+p = 0, where rj E R, i ~ 1, p ~ 2. 

Left multiplying by Xi+ I, we have 
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Thismeansthatxi_l" 'Xlri E annr(Xi+lXi).But,by(A),annr(Xi+lXi) = annr(Xi) 
so we have 

Repeating this argument, we get a jrj = 0 for i ::: j ::: i + p, thus proving (C). 
o 

Exercises for §11 

o. Let Ri ~ Qi (i E I) be rings. Show that n Ri is a right order in ni Qi 
iff each Ri is a right order in Q i . 

1. Let a E R be right regular (Le., annr(a) = 0), and let I ~ R be a right 
ideal such that aR n I = O. 

(a) Show that the sum Li>O a i I is direct. 
(b) From (a), deduce that If u.dim RR < 00, we must have aR ~e RR. 
(c) Give an example to show that aR ~e RR need not hold if u.dim 
RR = 00. 

2. Let R be a right Ore ring. 

(a) Show that any right ideal ~ containing a regular element is essential 
(in RR). 
(b) Show that R is semi prime right Goldie iff any essential right ideal of 
R contains a regular element. 
(c) Give an example of a commutative (hence Ore) ring with an essential 
ideal ~ ~ R not containing any regular elements. 

3. (Goldie) For any element a in a right Goldie ring R, show that there exists 
an integer n ~ 1 such that ~ := an R + annr(an ) is a direct sum and 
~ ~e RR. 

4. Let R be a right Ore domain that is not left Ore, say, Ra n Rb = 0, where 
a, bE R\{O}. The ring A = M 2 (R) is prime right Goldie by (11.18), so 
right regular elements of A are regular by (l1.14)(a). Show, however, that 

a = (: :) E A is left regular but not regular. 

5. Let R be a semiprime right Goldie ring with 

Q = Q~/(R) ~ Mn,(Dd x··· x Mn,(Dr), 

where the Di 's are division rings. Show that u.dim RR = n I + ... + nr. 
and that a right ideal ~ ~ R is uniform iff ~e is a minimal right ideal in 
Q. If, in addition, R is prime, show that u.dim RR is the largest index of 
nilpotency of the nilpotent elements in R. 

6. Let x, y E R where R is a semiprime right Goldie ring. If xy E CR , show 
that x, y E CR. 
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7. Let Q be an algebraic algebra over a field k (see FC-(4.19)). Show that 
any q E CQ is a unit by considering the minimal polynomial of q over k. 
(Thus, Q is a classical ring. This is a special case of (11.6)(2), since an 
algebraic algebra over a field is always strongly 7r -regular: see Exer. (23.6) 
in [Lam: 95].) 

8. Show that any right self-injective ring is a classical ring. 

9. Show that a f.g. projective right module M over a commutative classical 
ring Q is "cohopfian", in the sense that any injective Q-endomorphism 
qJ : M -4 M is an automorphism. Is this still true if Q is not commutative? 
(Hint. Reduce to the case M = Qn, and show that det( qJ) is regular in Q.) 

10. Let R = RI2J. where 2J. is an ideal of R. 

(a) Ifu.dim RR < 00, is u.dim Ri? < oo? 
(b) Exhibit a right Goldie ring R with a quotient ring R that is not right 
Goldie. 

11. True or False: Every right Goldie ring is stably finite? 

12. The ring R = (~ ~) is right noetherian but not left noetherian, by 

FC-(1.22). Show that the right artinian radical AT (R) = (~ ~). but 

the left artinian radical Af(R) = O. (Hint. For the latter, use the fact that 
the only artinian Z-submodule of Z EB Q is (0).) 

13. Find A'(R) and Af(R) for R = (~ ~ ~:n. 
14. Use (11.43) to show that, if R has ACC on ideals, then R has only finitely 

many minimal primes. (For a different approach to the same problem, see 
FC-Exer. (10.15).) 

15. Prove the equation (11.47) by a direct localization argument, without using 
(11.42). (Note that there is no noetherian assumption on the ring R here!) 

16. Let R be a semiprime ring. (a) Show that an ideal ~ ~ R is an annihilator 
(in the sense of (11.37)) iff ~ is a right annihilator. (b) If R is also right 
Goldie and Q = Q~/(R) has t Wedderburn (simple) components, show 
that the annihilator ideals of R are exactly the contractions to R of the 
2t ideals of Q. 

17. Let R be a semiprime ring with only finitely many minimal prime ideals 
PI. ... , Pt· Let ~i = ONi Pj, and let 13i = (~i + Pi)/pi in Ri = Rlpi. 
After identifying R with a subring of S := Oi Ri , show that ~ := Oi 13i 
is an ideal of S lying in R, and that ann: (~) = O. 

18. Keep the notations in Exercise 17, and assume that each Ri = Rlpi is 
right Goldie, with Qi := Q~/(R;). Independently of (11.44), show that R 
is also right Goldie, with Q~·/(R) ~ Q := Oi Qi. 
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19. (See Exercise (8.6).) Let R be the (commutative) ring Q ({Xi: i 2: I}) 
with relations XiXj = 0 for all unequal i, j. 

(1) Show that R is semiprime (i.e., reduced). 
(2) R does not satisfy ACC on annihilators. 
(3) u.dim RR = 00. 

(4) Let Pi (X;) (i 2: 1) be nonzero polynomials without constant terms. 
Then the ideal generated by (Pi (Xi) : i 2: I} is dense, but contains no 
regular elements of R. 
(5) Show that the minimal primes of R are given precisely by Pi = 
L#i RXj for all i 2: 1. 

20. Show that R is a reduced right Goldie ring iff R is a right order in a finite 
direct product of division rings. 

The following four exercises (with hints) are taken from Procesi-Small 
[65], where they used these results to give an alternative prooffor the main 
equivalence (1){:}(2) in Goldie's Theorem (11.13). We assume, in these 
exercises, that R is a semiprime ring satisfying ACC on right annihilators. 

21. Let B ~ A be right ideals in R such that anne (A) S;; annf(B). Show that 
there exists X E A such that X A =J 0 and X A n B = O. In particular, B 
cannot be essential in A. (Hint. Pick a left annihilator U minimal w.r.t. 
annf(A) S;; U ~ anne (B).) 

22. Deduce from Exercise 21 that any chain of right annihilators in R has 
length :::: u. dim RR. (Note that this conclusion is already available in 
(7.51)' in view of (11.13). Exercise 21 just provided an alternative route 
to the same result.) 

23. Let x, y E R. If xR ~e R and yR ~e R, show that xyR ~e R. (Hint. 
For any right ideal C =J 0, consider 

A = {s E R: xs E C} 2 B = annr(x) , 

and use Exercise 21 to show that C n xyR =J 0.) 

24. Let a E R. If aR ~e R, show that a is regular in R. (Hint. Apply 
Exercise 21 with B = aR and A = R to show that anne (a) = O. Then 
use Exercise 23 to show that annr(a) = 0.) 

25. Let R be a prime right Goldie ring, and I be an essential right ideal in R. 
Show that any coset c + I (c E R) contains a regular element of R. (Hint. 
Choose a E c + I with annr(a) minimal and check that a is regular.) 

26. Prove the result in Exercise 25 for any semiprime right Goldie ring R (by 
using a reduction to the prime case). 

27. (Robson) Let R be any semiprime right Goldie ring, and J be an essential 
right ideal in R. Show that J is generated as a right ideal by the regular 
elements in J. 
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28. (Small) If a ring R is right perfect and right Rickart, show that it is semipri
mary. (Hint. By Bass' Theorem (FC-(24.25», R satisfies DCC on princi
pal left ideals, so R has no infinite orthogonal set of nonzero idempotents. 
Then use (7.55) and (11.49).) 

29. For any idempotent e in a semiprime ring R, show that the following are 
equivalent: (a) e is central in R; (b) (1 - e)Re = 0; (c) eR is an ideal 
in R. 

30. Let R be a semiprime ring with u. dim RR < 00. 

(1) Show that SOC(RR) = eR for a central idempotent e E R. 
(2) There exists a direct product decomposition R = S x T where S is 
a semisimple ring, and T is a semiprime ring with SOC(TT) = o. 
(3) If SOC(RR) ~e RR, show that R is a semisimple ring. 

Deduce from the above that a prime ring R is simple artinian if and only 
if u.dim RR < 00 and R has a minimal right ideal. 

31. (Attarchi) Let R be a ring such that dR ~e RR whenever annr(d) = 0, 
and Rd ~e R R whenever anne (d) = O. Let S be the ring of 2 x 2 upper 

triangular matrices over R. Show that a = (~ ~) is regular in S iff 

a and c are both regular in R. 

32. Let R and S be as in the last exercise. If R is right Ore, with Q = Q~l (R), 
show that S is also right Ore, with Q~l (S) given by the ring T of 2 x 2 
upper triangular matrices over Q. 

§ 12. Artinian Rings of Quotients 

§12A. Goldie's p -Rank 

In the last section, we have characterized the class of rings that are right orders in 
semisimple rings: these are precisely the semi prime right Goldie rings. The next 
natural step to take will be to characterize, more generally, the class of rings that 
are right orders in right artinian rings. In other words, what rings R have a classical 
right ring of quotients Q~l (R) that is right artinian? This question was considered, 
and satisfactorily answered, by J. C. Robson, L. W. Small, and T. D. Talintyre 
in the mid 1960s. In this section, we shall give a characterization of the rings 
in question, following a 1979 paper of R. Warfield. Warfield's characterization 
involves the notion of the" p-rank" of a module, which is a variant of the reduced 
rank defined in §7C. The idea of using such ranks comes from the seminal work 
of A. Goldie in 1964. 

To begin with, we introduce a notation which seems to have become rather 
standard in the ring theory literature. For any ideal N in a ring R, we shall write 
C(N) (or, if necessary, CR(N» for the set of elements r E R such that r + N is a 
regular element in R / N. In particular, C (0) = C R (0) is the set of regular elements 
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of R. (In §11, we have written CR for this set.) It is easy to see that C(N) is a 
multiplicatively closed set, for any ideal N ~ R. In general, we do not have an 
inclusion relationship between C (N) and C (0). But for right artinian rings, we have 
the following result, which turns out to playa rather special role in this section. 

(12.1) Lemma. Let Q be a right artinian ring. Then CQ (0) = CQ (1) for any nil 
ideal J ~ Q. 

Proof. Recall that an element of a right artinian ring is regular iff it is a unit. (This 
follows by an easy length argument: see Fe-Exercise (4.16).) On the other hand, 
since J is nil, an element q E Q is a unit in Q iff q + J is a unit in Q/ J. Taken 
together, these two observations clearly imply the Lemma. 0 

Next we shall introduce the notion of the "p-rank" of a module. First consider the 
case of a semiprime right Goldie ring S. Let T = Q~l (S), which is a semisimple 
ring. For any right S-module M, we have defined in (7.34) its reduced rank, 
ranks(M) which is a nonnegative integer or the symbol 00. In (11.15), we have 
further obtained a simple interpretation of this rank, namely, 

(12.2) ranks(M) = lengthT(M ®s T). 

Using this interpretation, we can, for instance, give a "more conceptual" proof 
for the fact that "rank" is additive over short exact sequences. In fact, this follows 
quickly now from the exactness of the tensor product with T (Exercise 10.18), and 
the additivity of the length function over short exact sequences of T -modules. 

Let us now consider more general rings. Specifically, take any ring R that 
satisfies the following two properties: 

(12.3) The prime radical (a.k.a. lower nilradical) N = NiI*R is nilpotent. 

(12.4) S := R/ N is (semi prime) right Goldie. 

The idea is to define a new "p-rank" for right R-modules by using the reduced 
rank for right S-modules. For any right R-module M, a filtration 

(12.5) o = Mn ~ ... ~ Mo = M 

is said to be a Loewy series for M if Mi N ~ Mi + 1 for all i. (Such a series always 
exists; e.g., fixing an integer n with N n = 0, we can take M; = M N i .) Noting 
that each M;/ M;+l in (12.5) is a right S-module, we define 

(12.6) PR(M) = L ranks(M;/M;+d 

for any Loewy series (12.5) in M. 

(12.7) Proposition. The p-rank p(M) is independent of the choice of the Loewy 
series, and p is additive over short exact sequences of right R-modules. 
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Proof. Since (by Schreier's Theorem) any two Loewy series for M have a "common 
refinement," it suffices to show that the sum in (12.6) is unchanged if we refine a 
given Loewy series (12.5). But each Mi / Mi+ I is a right S-module, so this follows 
from the additivity of "ranks" over short exact sequences of right S-modules. The 
last part of (12.7) now follows easily by "joining" Loewy series. D 

Having successfully defined the p-rank for modules over rings satisfying (12.3), 
(12.4), let us note below the most important special case which perhaps provided 
the main impetus for all of this work. 

(12.8) Corollary. Let R be any right noetherian ring. Then PR is defined, and 
PR(M) < ooforanyfg. right R-module M. 

Proof. By Levitzki's Theorem (FC-(10.30)), N = Nil*R is nilpotent, and since 
S = R/ N remains right noetherian, Sis semiprime right Goldie. Therefore, PR 
is defined. To prove the last part of the Corollary, it suffices to consider the case 
when M N = O. In this case M is a f.g. S-module, so for T = Q~I(S), M ®s Tis 
a f.g. T -module. Therefore, by (12.2): 

PR(M) = ranksM = lengthT(M ®s T) < OCI. 

D 

Next, we shall characterize R-modules of zero p-rank. This characterization 
will be crucial for the work in the rest of this section. 

(12.9) Proposition. Let M be a right R-module, where R satisfies (12.3) and 
(12.4). Then, PR(M) = 0 iff, for any m E M, there exists r E C(N) such that 
mr = O. 

Proof. Fix a Loewy series 0 = Mil S; ... S; Mo = M. First assume PR(M) = O. 
Then, for S = R/N, each ranks(M;/Mi+d = 0, and this means that each 
M;/ Mi + I is a torsion S -module. (For the notion of S -torsion modules, see Ex
ercise (10.19).) Thus, for any m E M, we can find rl, ... , rn E C(N) such that 
mrlr2'" rn E Mn = 0, so we are done by choosing r = rl '" r1l E C(N). Con
versely, if every m E M is killed by some element of C(N), each M;/ Mi+1 is 
clearly a torsion S-module, so PR(M) = Lranks(M;/Mi+ I ):= O. D 

§12B. Right Orders in Right Artinian Rings 

We are now ready to state and prove the following characterization theorem for 
rings that are right orders in right artinian rings. The characterization is in terms 
of the prime radical N = Nil*R, the multiplicative sets C(O), C(N), and Goldie's 
p-rank PRo 

(12.10) Theorem. A ring R is a right order in a right artinian ring iff the following 
conditions are satisfied: 
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(A) N = Nil*R is nilpotent. 
(B) S = R/ N is (semiprime) right Goldie. 

(C) PR(RR) < 00. 

(D) C(N) <; C(O). 

For any such ring R, we have C(N) = C(O) and 

PR(RR) = lengthQ(QQ) :0': u. dim RR, 

Proof. First assume (A), (B), and (C) are satisfied. We claim that: 

(12.11 ) v S E C(O), a E R, :3 t E C(N), bE R such that at = sb. 

In fact, since s R ~ R as right R-modules, peR) = pes R). From 

(12.12) peR) = p(sR) + p(R/sR) < 00, 

it follows that p (R / s R) = O. Therefore, (12.11) follows from (12.9). In particular, 
taking a = 1, we see that for any s E C(O), there exist t E C(N) and bE R such 
that t = sb. In the semiprime right Goldie ring S, sb = t is regular, so s is 
also regular by Exercise (11.6). Therefore, s E C(N), so we have proved that 
C(O) <; C(N). If (D) is also satisfied, we'll get C(O) = C(N). With this, (12.11) 
says that C (0) is right permutable, so Q := Q~'I (R) exists. To prove that Q is right 
artinian, consider first a pair of right ideals 21 <;;; IB in Q. Let A = 21 n Rand 
B = IB n R. Since 21 = AQ and IB = BQ, we have A <;;; B. If PR(B/A) = 0, 
then (by (12.9)) for every b E B, there exists s E C(N) = C(O) such that bs E A; 
that is, 

bE R n As- 1 <; R n 21 = A, 

a contradiction. Therefore, we must have PR(B / A) > O. Thus, for any chain of 
right ideals 

0= 21n <;;; ... <;;; 210 = Q, 

we have a bound n :s PR(RR) < 00. In particular, the ring Q is right artinian. 
For the converse, assume that Q : = Q~I (R) exists and is right artinian. Let 

J = Nil* Q, which is, of course, just the Jacobson radical of Q (since the latter is 
nilpotent). Let Q be the semisimple ring Q/ J, and let R = R/ J n R <; Q. For 
any s E C(O), we have s E U(Q); hence s E U(Q) and so s is regular in R. Since 
every element in Q has the form as- I (a E R, s E C(O)), every element in Q has 
the form as -I , with s regular in R. It follows from (11.7)(3) that Q = Q~I (R), so 
by Goldie's Theorem (11.13), R is semiprime right Goldie. In particular, J n R is 
a semiprime ideal in R, so J n R ;2 N. On the other hand, J n R is nilpotent, so 
J n R = N, and R is just S = R/ N. We have now proved the properties (A) and 
(B) in the Theorem. By (12.1), we also have 

C(N) <; CQ(J) n R = CQ(O) n R <; C(O), 
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which gives (D). To prove (C), first note that J = (J n R)Q = N Q, from which 
we see easily that f = N i Q for any i :::: O. We leave it to the reader to show that 

(12.13) (Ni/Ni+1) ®R Q ~ NiQ/Ni+1Q = f/f+l. 

U sing this isomorphism, we have: 

PR(RR) = LrankR(Ni/Ni+1) 

= LlengthQ(Ji/f+1) 

= LlengthQ(f/Ji+1) 

= lengthQ(QQ) < 00. 

Finally, by (6.7)(2) and Exercise (10.18)(5), lengthQ(QQ) :> u.dim QQ 
u.dim RR. 0 

(12.14) Corollary. Let C'(O) denote the set of right regular elements of R; i.e., 
those elements whose right annihilators are zero. If R satisfies (A), (B), (C) in 
(12.10), then C'(O) ~ C(N).If R also satisfies (D), then C'(O) = C(O) = C(N), 
and every nil I-sided ideal of R is nilpotent. (In particular, the upper and lower 
nilradicals of R coincide.) 

Proof. In retrospect, the proof for (12.11) is valid under the assumptions (A), (B), 
(C), as long as s E C'(O). Therefore, our earlier work shows that C'(O) ~ C(N). 
Now assume (D) also holds. Then C' (0) ~ C(N) ~ C(O), so we must have equal
ities. Also, since R embeds into a right artinian ring, every nil multiplicatively 
closed set of R is nilpotent by the theorem of Hopkins and Levitzki (cf. §11E). 
This gives the last part of the Corollary about nil I-sided ideals in R. 0 

If R is a right noetherian ring, we have observed already (cf. (12.8» that (A), 
(B), and (C) all hold for R. Therefore, for such a ring, we have the following 
greatly simplified form of (12.10) (and (12.14», due to L. Small (and in part to 
T. Talintyre). 

(12.15) Theorem. Let R be any right noetherian ring, with N = Nil*R. Then 
C(O) ~ C'(O) ~ C(N); R isarightorderinarightartinianringijfC(N) ~ C(O). 

(12.16) Corollary. Let R be any noetherian ring with C(N) ~; C(O). Then R is 
a (2-sided) order in an artinian ring. 

Proof. Let Q be the right artinian ring Q~'I(R), in which R is a right order. Since 
the condition C(N) ~ C(O) is left-right symmetric, we know that Q~I(R) also 
exists and is left artinian. By (10.14), we can identify Q~I(R) with Q~I(Q) = Q. 
Therefore, Q is artinian, and R is an order in Q. 0 

The following are two nice applications of (12.15), due to L. Small. 
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(12.17) Corollary. Let R be a right noetherian ring that is right Rickart. Then 
R is a right order in a right artinian ring. 

Proof. It suffices to check C(N) s:; C(O). Let s E C(N). Then annr(s) s:; N. The 
ring R being right Rickart, annr (s) = e R for some idempotent e E annr (s) s:; N. 
Since N is nil, we have e = 0, so annr(s) = O. It now remains to show that 
annl(s) = O. For any a E annl(s), annr(a) contains sR which, by Exercise 
(11.1), is essential in RR. Therefore, by definition, a E Z(RR) (the right singular 
ideal of R). But by (7.6)(7), R is right nonsingular, so a = 0 as desired. 0 

(12.18) Corollary. A right hereditary ring R is right noetherian iff it is a right 
order in a right artinian ring. 

Proof. The "only if" part follows from (12.17). The "if" part follows from (7.58) 
and the last part of (10.35). 0 

(12.19) Examples. 

(1) Consider the noetherian ring R = (~ ~ ), with prime radical N = 

(~ ~). Clearly, Rj N ~ Z x Z. If (~ ~) E C(N), we must have a, c -=J 0, 

so (~ ~) E C(O). Therefore, C(N) s:; C(O), and (12.16) implies that R is an 

order in an artinian ring. In fact, we have seen in (10.27)( d) that R is an order in 

the artinian ring (~ ~ ) . 

(2) For a fixed prime p, let Zp = Zj pZ and R be the noetherian ring (:p ~p ). 

The prime radical of R is N = (~p ~), with Rj N ~ Z x Zp . Thus, 

and from this, we see easily that C(N) = C'(O). On the other hand, we have seen 
in (10.27)(e) that 

'C (0) = C (0) = { (~ ~): p f x, z -=J o} , 
where 'C(O) denotes the set of left regular elements of R. Therefore, we have 

C(O) = 'C(O) s;; C'(O) = C(N), 
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and (12.15) implies that R is not a right order in a right artinian ring. In fact, we 
have seen in (l0.27)(e) that R is an Ore ring, with 

Q = Q~I(R) = Q~I(R) = (~:) 1p)· 
This is not an artinian ring since Q /Nil* Q ~ Z(p) x Z p is not. (For a generalization 
of this example, see Exercise 3.) 

(3) Let A be a commutative noetherian domain of characteristic p > 0 and K be 
its quotient field. Let G be any finite group whose order is divisible by p. Then the 
group ring A G is an order in the group algebra KG. Since KG is not semisimple 
(FC-(6.1», AG gives an example of a non-semiprime noetherian ring with an 
artinian (left and right) ring of quotients. 

§12C. The Commutative Case 

In this subsection, we point out that the result (12.15) of Small and Talintyre is 
already of interest for commutative noetherian rings. Let us therefore take a careful 
look at (12.15) in the context of commutative rings, in order to get more insight 
into this important result. We start with the following easy observation. 

(12.20) Lemma. For any commutative ring R, with nilradical N = Nil* R, C (0) ~ 
C(N). 

Proof. Let s E C(O). If t E R is such that st E N, then, for some k ~ 1, 
0= (st)k = sktk. Therefore t k = 0 and so tEN. This shows that s E C(N). 

D 

The condition C(N) ~ C(O) is already rather subtlefor commutative rings. The 
following result, (12.21), gives an interpretation of this condition for commutative 
noetherian rings. The proof of this result assumes familiarity with some basic 
facts about associated primes in the commutative (and mainly noetherian) case, 
as given explicitly in Exercises (3.40B) and (3.40E). In fact, in the proofs of all 
remaining results in this subsection, we shall be using these facts freely without 
giving further references. Thus, the reader should first carefully review the two 
exercises (3.40B) and (3.40E) before proceeding with the material below. 

(12.21) Proposition. Let R be a commutative noetherian ring. and let {PI, ... , 
Pn} be the set of associated primes of RR. Let N = Nil. R. Then C(N) ~ C(O) iff 
each Pi is a minimal prime of R. 

Proof. Say PI, ... , PI are minimal, and the others are not.81 First assume that 
t = n. Consider any element a ¢ C(O). Then a E Pi for some i. By assumption, 

81The primes PHI, ... ,Pn are called "embedded primes" in the theory of primary 
decomposition in commutative algebra. 
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Pi is a minimal prime over N, so Pi is an associated prime of (R/Nh. This 
means Pi has the form {x E R: xb E N} for some element b rJ N. But then 
ab E N implies that a rJ C(N). This shows that C(N) ~ C(O). Next, assume that 
t < n. Then, by the Lemma of Prime Avoidance (Eisenbud [9S: pp. 90-91]), there 
exists an element 

c E PI! \ (PI U··· U Pt). 

Since p" consists ofO-divisors of R, c rJ C(O). We claim that c E C(N). For, if 
cd E N (d E R), then, for any i ::: t, we have cd E Pi ==> d E Pi by (t). This 
shows that 

d E PI n ... n PI = N. 

Therefore, C(N) £ C(O). D 

In view of the above, (12.1S) can be restated as follows in the commutative 
case. 

(12.22) Proposition. A commutative noetherian ring R is an order in a (com
mutative) artinian ring iff all the associated primes of RR are minimal primes. 

Of course, this result could have been checked directly using commutative 
algebra techniques alone, without invoking the general result (12.1S). We continue 
to use the notation in the proof of (12.21), and recall the key fact (already used 
above) that S := C(O) is the complement of PI U ... U PI! . The classical ring 
of quotients of R is the localization Rs, which is a noetherian ring. If Pi <;; P j 
for some i, j, then (Pih <;; (Pj)s in Rs, so Rs cannot be artinian. If, on 
the other hand, there is no inclusion relation among PI, ... , Pn, then there is 
also no inclusion relation among (p I) s, ... , (PI!) s, and, by the Lemma of Prime 
Avoidance (along with standard facts about localizations), these give all prime 
ideals of Rs. Hence Rs has Krull dimension 0, and is artinian by FC-(23.12). 

In general, if R is a commutative noetherian ring (or just a commutative ring 
with ACC on its annihilator ideals), then by (8.31)(2) the classical ring of quotients 
of R is a (commutative) semilocal Kasch ring. For a related result, see Exercise 
10. 

(12.23) Examples. 

(a) For any field k, let R be the (noetherian) commutative k-algebra generated by 
x, y, with relations yx = y2 = O. (This is a "commutative version" of the ring 
studied in Example (7.6)(4).) We see easily that N = Nil*R = (y), and that the 
associated primes of R Rare 

PI = annex) = (y) and P2 = ann(y) = (x, y) 2 PI. 

Here PI is a minimal prime of R, but P2 is not. Hence R is not an order in an 
artinian ring. In the spirit of (12.1S), we have 

C(O) = R \ P2 and C(N) = R \ PI (since R/N ~ k[x]); 
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in particular, C(O) £; C(N). It is easy to check that 

(0) = (y) n (x + ay) = PI n (x + ay) (VaEk), 

and that each (x + ay) is a primary ideal with radical P2. (*) is often cited in 
commutative algebra to show that the zero ideal may have more than one primary 
decomposition: any (x + ay) may be taken as a primary component of (0) within 
the "embedded prime" P2. (See the Hint for Exercise (3.40B).) 

(b) To make an even nicer example, we can take, instead, R' = k[[X, Y]]/ 
(Y X, y2), which is a commutative noetherian local ring. For x = X and y = y, 
we have exactly the same information as before. But now CR'(O) is exactly the 
complement of the unique maximal ideal (x, y) of R'. Hence C R' (0) = U (R'), 
which means that R' is its own classical ring of quotients. Here, R' is local, 
nonartinian, with Krull dimension 1. (A noncommutative version of the ring R' 
has been used before as an example of a right Kasch ring that is not left Kasch: 
see Exercise 13 in §8.) 

While we are on the subject of commutative noetherian rings, the following two 
consequences of (12.22) are worth recording. 

(12.24) Proposition. Let R be a commutative noetherian ring in which (0) is a 
primary ideal. Then Qcl(R) is a local artinian ring. 

Proof. As usual, let N = Nil*R. Since (0) is primary, N is prime, and is in 
fact the unique associated prime of R. Thus, (12.22) applies, and Qcl(R) is a 
(commutative) local artinian ring. 0 

(Note. Here, the condition C(N) ~ C(O) is also very easy to check directly. 
Indeed, if a E C(N) and ab = 0, then a rt. N = v'(O) implies b = 0 since (0) 
is primary. This shows that a E C(O). We note further that, in the case when (0) is 
meet-irreducible in (12.24), Qcl(R) is in fact a quasi-Frobenius ring in the sense 
of §I5; see Exercise (15.19).) 

(12.25) Corollary. Every commutative noetherian ring R can be embedded in a 
commutative artinian ring. 

Proof. By the Primary Decomposition Theorem, (0) = q In· .. n qn , where 
ql,"" qn are suitable primary ideals. By (12.24), each Qcl(R/qi) is artinian. 
Now R ~ ni R/qi embeds into the commutative artinian ring ni Qcl(R/qi). 

o 

(12.26) Remarks. 

(1) In contrast to (12.25), not every commutative ring can be embedded in a I-sided 
artinian or noetherian ring. This can be easily seen from (6.61). 

(2) In contrast to (12.25), there also exist right noetherian rings R that cannot be 
embedded in a I-sided artinian ring or a left noetherian ring. (See Exercise 8.) 



354 4. Rings of Quotients 

(3) The result (12.22) characterizing commutative noetherian rings R with Qd (R) 
artinian in terms of the associated primes and minimal primes of R does admit 
an analogue for noncommutative noetherian rings, due to J. T. Stafford. (See e.g., 
Goodearl-Warfield [89: p. 173].) 

In conclusion, let us make one more observation about Goldie rings in the com
mutative setting. Since commutative noetherian rings are always Goldie, one may 
ask whether some kind of "strengthened" Goldie condition might imply noethe
rianness. Such a result has indeed been obtained by V. Camillo [75], who proved 
that a commutative ring R is noetherian iff all homomorphic images of Rare 
Goldie. The proof of this is not easy, depending on a result of R. C. Shock. There 
seems to be no known analogue of this result for noncommutative rings. 

§12D. Noetherian Rings Need Not Be Ore 

Consider any right noetherian ring R with prime radical N. If C(N) ~ C(O), 
then by (12.15), Q~l (R) exists and is right artinian; in particular, R is right Ore. 
Various other classes of right noetherian rings have also been proved to be right 
Ore. This raises the following question: Is every right noetherian ring right Ore? 
In other words, does every right noetherian ring possess a classical right ring of 
fractions? This question has been answered in the negative by L. Small. We shall 
close this section by presenting below the example from [Small: 66]. 

(12.27) Example. There exists a noetherian ring that is neither left Ore nor right 
Ore. 

For the construction, we start, curiously enough, with an Ore ring. In (I O.27)(e), 

we have seen that R = (~ ~p ) is an Ore ring with the following properties: 

(A) CR(O) = 'CR(O) (the set of left regular elements of R). 
(B) There exist a E Rand t E C~(O) such that as n tR = 0, where 

S = CR(O). 
(C) There exists a subring T ~ R with t E T and annT (t) = O. 

For (C), we simply take T = (~ ~p ). For the element t = (~ ~) E T 

in (10.27)(e), it is clear that annT (t) = O. The idea now is that, starting from any 
ring R, with the properties (A), (B), and (C) above, we can construct a non-Ore 
ring (even when R itself is Ore). 

(12.28) Lemma. Let R be any ring satisfying the properties (A), (B), and (C). 

Then the triangular ring R' = (~ ~) is not right Ore. (In defining this trian

gular ring, the off-diagonal entry R above is to be viewed as a (T, R)-bimodule, 
by means of the ring inclusion T ~ R.) 
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Proof. Let S' = CR'(O). Using the elements t, a E R, we construct: 

t' = (~ ~) E R and a' = (~ ~) E R'. 

We finish by proving that: (1) t' E S', and (2) a'S' n t'R' == 0. To prove (1), 

suppose t' ( ~ ~) = O. Then u = 0 and tv = tw = O. Since t E C~(O), we 

have v = w = O. Next, suppose (~ ~) t' = 0 instead. Then u = v = 0 and 

wt = O. Since WET and ann; (t) = 0 by (C), we have also w = O. To prove 
(2), assume that there exists an equation (in R'): 

(12.29) h ( u wO ) E S'. were v 

We claim that u E 'CR(O). In fact, if cu = 0 in R, then (~ ~) (~ ~) = 0 

in R', and hence c = 0 since ( ~ ~) E S'. In view of (A), we have therefore 

u E CR(O) = S. Reading the (2,1)-entries in the equation (12.29), we now obtain 
au = ty, which contradicts (B). Therefore, (12.29) cannot exist. 0 

If we let R above be the ring (:p ~p) in (10.27)(e), then the ring R' just 

obtained is noetherian, since R' is clearly a f.g. abelian group. By (12.28), this 
noetherian ring is not right Ore. It does tum out that R' is left Ore, although we 
shall not digress to give the proof here. Suffice it to note that, if we form the direct 
product A = R' X R" , where R" is the opposite ring of R', then A remains a 
noetherian ring, while an easy argument shows that A is neithf:r left Ore nor right 
Ore, as required in (12.27). 

Exercises for §12 

In all o/the/ollowing Exercises, N = Nil*R. 

1. Name a ring that is not right noetherian, but satisfies the conditions (A), 
(B), (C), and (D) in (12.10). 

2. Show that a ring R is right artinian iff it is right noetherian and C(N) ~ 
U(R). 

3. Let Zn = Z/nZ, where n :::: 2. Compute C(O) and C(N) for the ring 

R = (:, ~n ), and show that R is a 2-sided order in a noetherian, 

nonartinian ring. 

4. Let k be a field. 
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(I) Compute C(O) and C(N) for the ring R = (~ ~~~D. 
(2) Show that R is right noetherian and is a right order in the right artinian 

ring Q = (~ ~~~n. 
(3) Show that every right regular element of R is (right) regular in Q, but 
a left regular element of R need not be left regular in Q. 

5. Prove or disprove: every left regular element in a right artinian ring is a 
unit. 

6. Name a ring R for which N is nilpotent, RI N is noetherian, RR has finite 
p-rank, but R R has infinite p-rank. (Hint. Use the ring in Exercise 4, and 
recall that it is not left Ore by (10.27)(£).) 

7. Let R -I- (0) be a ring with a faithful, singular right module M, and let A be 

the triangular ring (~ ~). where M is viewed as a (2, R)-bimodule. 

(1) Show that, for any finite set N ~ M, ann~ (~ ~);2 (~ ~) for 

some essential right ideal m ~ R. 

(2) Show that ann~ (~ ~) -I- ann~ (~ ~) for any finite subset 

N ~ M. Deduce from Exercise (6.21) that A does not satisfy DCC on 
right annihilators. 
(3) Using (2), show that A cannot be embedded in a right artinian or a left 
noetherian ring. 

8. Construct a right noetherian ring A that cannot be embedded in a right 
artinian or a left noetherian ring. 

9. For an ideal m ~ R, let C(m) (resp. C'(m» be the set of elements r E R 
such that r + m is regular (resp. right regular) in Rim. If R is right 
noetherian and m is a semiprime ideal, show that C(m) = c'(m). Ex
hibit an example to show that the hypothesis that m be semiprime cannot 
be removed. (Hint. Apply (11.l4)(a) to the semiprime right Goldie ring 
Rim.) 

10. (E. Davis) For any commutative ring R, show that QcI(R) is a semilocal 
ring iff the set of O-divisors of R is a finite union of prime ideals. 



Chapter 5 

More Rings of Quotients 

In this Chapter, we study rings of quotients of a different sort, breaking away from 
the "classical" rings of quotients studied in Chapter 4. Injective modules will play 
a major role here. 

We begin the Chapter with some basic theorems on the endomorphism ring of 
an injective (or more generally, quasi-injective) module. By applying these results 
to the regular module RR in case it is injective, we get a first glimpse into the 
structure of a right self-injective ring. If RR is not injective, we can nevertheless 
apply these results to the endomorphism ring of E(RR)' the injective hull of RR. 
This leads us to the Findlay-Lambek-Utumi theory of maximal rings of quotients, 
which occupies the main part of §13. 

Contrary to the situation with Q~l (R) (the classical right ring of quotients of 
R), the maximal right ring of quotients Q;;'ax (R), always exists. In the case when 
R is a right Ore ring so that Q~I(R) does exist, Q~I(R) can be identified naturally 
with a subring of Q;;'ax (R). In this sense, one can say that the study of Q;;'ax (R) 
subsumes the study of Q~I(R). We shall also see that, if we extend the notion 
of "classical rings of quotients" to "general rings of quotients", then Q;;'ax (R) is 
indeed the biggest general (right) ring of quotients one can associate with R. 

Our exposition of the theory of maximal rings of quotients is based on the work 
of Utumi, Findlay, and Lambek, which was inspired by the pioneering work of 
R. E. Johnson on nonsingular rings. After developing the basic theory of Q;;'ax (R), 
we shall specialize to the case when R is a right nonsingular ring. In this case, we 
shall retrieve Johnson's theory of (von Neumann) regular rings of quotients for 
right nonsingular rings. 

Throughout § 13, we shall use freely the theory of dense submodules and rational 
extensions developed in §8. In particular, the notations N C;d M (for N being a 
dense submodule of M) and E(M) (for the rational completion of a module M) 
will be in force. The reader will be well advised to first review the material of §8 
before reading this section. 

The Chapter concludes with §14 which is an introduction to Martindale's rings 
of quotients. This theory is included in our exposition since it has played an 
increasingly important role in the recent study of prime and semi prime rings. 
Although we stop short of venturing into the full Galois theory of such rings, a 
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quick exposition is given for important topics such as normalizing elements in ring 
extensions and X-inner automorphisms of semiprime rings. Limitation of space, 
however, precludes us from presenting the many applications of this theory to the 
study of group rings and rings with polynomial identities. 

§13. Maximal Rings of Quotients 

§13A. Endomorphism Ring of a Quasi-Injective Module 

The theme of this subsection is that the endomorphism ring of an injective module 
is a very nice kind of ring. For instance, over the ring R = Z, the injective module 
Qz has endomorphism ring ~ Q, and the injective module Zpx := lim Zlpnz 

-+ 
(for a fixed prime p) has endomorphism ring lim ZlpnZ, the ring of p-adic 

~ 

integers. 
As it turns out, in analyzing the structure of the endomorphism ring of an 

injective module I, what we need is not so much the injective property of I, but 
the quasi-injective property. Recall that a module IR is quasi-injective (or QI for 
short) if, for any submodule L ~ I, any R-homomorphism from L to I extends 
to an R-endomorphism of I. As long as we are dealing with endomorphisms of 
I (rather than homomorphisms from arbitrary modules into I), it is reasonable to 
expect that the QI property on I will be strong enough to give us good information. 
Thus, in this subsection, we shall analyze the structure of End (I R) assuming only 
that I is a QI module. 

Let us first set up some general notations which will be fixed throughout this sub
section. For any right R-module I, let H = End(IR) be its endomorphism ring, 
operating on the left of I. It is convenient to think of I as an (H, R)-bimodule. 
We shall be working heavily with the following subset of endomorphisms: 

N := {f E H: ker(f) ~e l}. 

We start with the following general result which is valid for any module I R. 

(13.0) Lemma. With the notations above: 

(I) N is an ideal of H. 
(2) If f = f2 E H, then for any R -submodule A ~e I, we have f A ~e fl. 
(3) Let /j (j E J) be idempotents in H whose images Ij in H := HIN 

are mutually orthogonal. Then L /j I is a direct sum in I. 

Proof. (I) Let f, gEN. Then ker(f) , ker(g) are both essential in I; hence so 
is ker(f) n ker(g). Since this intersection is contained in ker(f - g), it follows 
that ker(f - g) ~e I, so f - gEN. Now let h E H. Then 

ker(hf) 2 ker(f), and ker(fh) 2 h- 1 (ker(f)). 
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Thus, ker(f) ~e I implies that kerCh!) and ker(f h) are both essential in I 
(for the latter, see Exercise (3.7)), and hence hf, fh E N. This checks that N is 
an ideal in H. 

(2) Consider any nonzero element fx E f I (where x E I). Since A ~e I, there 
exists r E R such that 0 # fxr E A. Noting that (fx)r = f(fxr) E fA, we 
have checked that f A ~e fl. 

(3) It suffices to verify (3) when I J I < 00, say, J = {I, 2, ... , n}. Since J; /j = 
8ij in H, we have ker(J; /j) ~e I whenever i # j. Then, by Exercise (3.6)(A): 

A := n h ker(fi/j) <;;e I, 

and we have fi fj A = 0 whenever i # j. It follows that L /j A is a direct sum, 
for, if we have an equation f]a] + ... + fnan = 0 where ai E A, an application 
of fj gives /jaj = O. Now from (2), /jA ~e /jI for each j, so by Exercise 
(3.8), we conclude that L /j I is also a direct sum in I. D 

We shall now specialize to QI modules. As we proceed formally with our results 
on the endomorphism rings of such modules, the reader should keep in mind the 
basic examples mentioned in the opening paragraph of this subsection. It would 
also be helpful if the reader is familiar with Exercise (6.32), the gist of which 
is that the endomorphism ring of an indecomposable (equivalently, uniform) QI 
module M is local, with Jacobson radical consisting of all the endomorphisms 
with nonzero kernels. The following theorem is a generalization of this fact to the 
case of an arbitrary QI module, due to Utumi, Faith, Johnson, Wong, Osofsky, 
Renault, and others. 

(13.1) Theorem. Let I R be a QI right module over any ring R, and let H = H / N, 
where Hand N are as above. Then 

(1) N = rad H (the Jacobson radical of H; see FC-§4). 
(2) H is a von Neumann regular ring. 
(3) H is a right self-injective ring. 
(4) Idempotents of H can be lifted to (idempotents oj) H. 
(5) If IR is nonsingular or semisimple, then N = 0 (so by (2) and (3) above, 

H itself is a von Neumann regular right self-injective ring). 

Proof. (1) Let f E rad H. Suppose M ~ I is any submodule wi,th Mn ker f = O. 
Then flM: M ~ I is a monomorphism. The quasi-injectivity of I implies that 
there exists g E H such that g(f(m)) = m for every m E M. Since 1 - gf is 
a unit in H (FC-(4.3)), M = (0). Therefore, ker f ~e I and we have fEN. 
For the converse, we use the fact that N is an ideal of H. To see that N <;; rad H, 
it suffices to show (according to FC-(4.5)) that, for any fEN, 1 - f is left 
invertible in H. Now, from 

ker f n ker(1 - !) = (0), and ker f <;;e I, 
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we have ker(1 - f) = (0). Therefore, by the quasi-injectivity of I, there exists 
g E H whose restriction to (l - f)M is the inverse of the isomorphism 1- f : 
M ---+ (1 - f)M. We have thus g(l - f) = I E H, as desired. 

(2) Let f E H and let M be a complement to K : = ker f, so M EEl K ~e I. Again, 
there exists h E H whose restriction to f(M) is the inverse of f : M ---+ f(M). 
Then f hf = f on M and, of course, f hf and f are both zero on K. Therefore, 
fhf - f is zero on M EEl K ~e I, and hence fhf - fEN. We have then 
] = ]Ii] E H, so H is a von Neumann regular ring. 

(5) For any fEN, consider K := ker f ~e I. If I is semisimple, the latter implies 
that K = I. If I is nonsingular instead, consider the injection f' : 1/ K ---+ I 
induced by f. Since 1/ K is singular (by (7.6)(3)) and I is nonsingular, f' is 
the zero map, so we have again K = I. Therefore, in either case, f = 0, and we 
have shown that N = 0, as desired. 

(4) Let f E H be such that] E H is an idempotent. Then, by (1), 

L := ker(f2 - f) = {x E I : f2(x) = f(x)} ~e I. 

For x E L, we have 

x = f(x) + (x - f(x)) E ker(1 - f) E8 ker f. 

Therefore, kerO - f) EEl ker f ~e I. Taking injective hulls in E(I), we get 

E(I) = E(ker(l - f) EEl E(ker f). 

Let Tr be the projection of E(I) onto E(ker(1 - f) with respect to this de
composition, and let Tro E H be its restriction to I (see (6.74». For x E L, the 
decomposition (*) above shows that Tro(x) = f(x). Therefore, L ~ ker(Tro - f). 
This implies that Tro - f = 0 E H, so the idempotent Tro E H lifts ]. 

We now come to the most difficult part of the Theorem, which is the proof of 
the right self-injectivity of H. We first prove the following improvement of (13.0) 
in the QI case. 

(13.0), Lemma. Assume IRis QI, and let e j (j E J) be idempotents in H such 
that Lj ejH isadirectsumin H. Then Ljejl isa direct sum in I. 

Proof. We may assume, as before, that J = {I, ... , n}. Since el HEEl· .. E8 en H 
is a f.g. right ideal in the von Neumann regular ring H, we can write 

H=e I HE8···E8en HE8X 

for some right ideal X ~ H (see FC-( 4.23». Let I fl + ... + f" + f 
be the corresponding decomposition of L Then {fl,"" fn, f} are mutually 
orthogonal idempotents in H, with h H = e j H for all j and f H = X (see 
FC-Exercise (1.7». By (4), we may assume that h is the image of an idempotent 
h E H. Since hej = ej, there exist (by (1)) R-submodules K j ~e I such 
that (ej - fjej)K j = O. From this, we have ejKj ~ hI. Now by Lemma 
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(13.0), L hI is a direct sum; hence so is L e j K j. But K j ~e 1 implies that 
ejKj ~e ejl by (13.0)(2), so it follows (again from Exercise (3.8» that LeJ 
is a direct sum in I. D 

With the aid of the above lemma, we are now ready to give the proof of (13.1 )(3). 

(3) We'll check Baer's Criterion for the injectivity of HH. Let qJ : C ~ H be 
a right H-homomorphism, where C is any right ideal of H. By Zorn's Lemma, 
there exists a maximal family of nonzero principal right ideals Cj (j E J) with 
EBj Cj ~ C. Then we must have EBj C j ~e C. By (2) and (4) in (13.1), there 

exist idempotents ej E H such that Cj = ej H, for all j. Say qJ(ej) = 0, 
where tj E H. By the lemma above, the sum '£ejl is direct, and so EBtj 
defines an R -homomorphism from EB e j 1 to I, which can then be extended to 
an endomorphism h of 1 (by the quasi-injectivity of I). Since h agrees with tj 

on ejl, we have hej = tjej E H, and so 

h ej = qJ(ej) ej = qJ(ej ej) = qJ(ej). 

Hence qJ agrees with left multiplication by h on EB e j H. At this point, we repeat 
an argument used in the proof of(13.1)(5). Since H is von Neumann regular, it is 
right nonsingular (by (7.7», and EB j Cj ~e C implies that C I(EBj Cj ) is singu
lar (by (7.6)(3». From these, it follows that qJ must agree with left multiplication 
by h on C, as desired. D 

Remarks. 

(A) It is worth pointing out that all of the results obtained above on End(lR) 
remain valid (with slight modifications of the proofs) for a larger class of modules 
1 called continuous modules, which we briefly introduced in Exercise (6.36). (Of 
course, the conclusion (3) in this case is to be modified into: HH is continuous.) 
Since we do not intend to make use of continuous modules in the text, it seemed 
best to restrict the formulation of (13.1) to quasi-injective modules here. For a 
full treatment of continuous (quasi-continuous, and discrete) modules, including 
detailed information on the endomorphism rings thereof, see the book of Mohamed 
and Muller [90]. 

(B) If no assumption is imposed on 1 R, the equation N = rad H certainly need 
not hold. For instance, let R be a domain with rad R =1= 0, and let 1 = RR. 
We may identify H with R (acting on the left of R). Obviously, we have here 
N = (0) S;; rad H. And, even if N = rad H holds, the quotient ring H need not 
be either right self-injective or von Neumann regular: just consider 1 = Z over 
the ring Z. 

(C) In case 1 is a semisimple module, 1 is automatically quasi-injective (by 
(6.71)(1», so (13.1)(5) applies. The fact that End(lR) is von Neumann regu
lar is well known in this case (see FC-(4.27», and (13.1)(5) yields the additional 
information that H is a right self-injective ring. This latter conclusion can also 
be deduced directly as follows. First, by decomposing 1 into a direct sum of its 
isotypic components and using (3.11B), we can reduce our considerations to the 
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case when I = L, S, where S is a simple right R-module (and J is some index
ing set). By Schur's Lemma, k := End(SR) is a division ring, and, exploiting the 
fact that S is a f.g. (indeed cyclic) R-module, we can identify H = EndR(J) with 
the ring of "column-finite" matrices over k whose rows and columns are indexed 
by J. The fact that such a ring is right self-injective follows from (3.7 4B) with a 
change of side: see the last paragraph of that example. 

If the module IRis QI and "essentially semisimple" (in the sense that it has an 
essential socle), the situation is still somewhat close to that in the case (C) above. 
To make this explicit, we state the following result which actually gives a good 
illustration of (13.1) in a special case. 

(13.1), Theorem. Let IR be a QI module such that S := soc(J) ~e I, and as 
before let H = End(J R). Then 

(1) rad H = (f E H: f(S) = OJ, and 
(2) H jrad H ;;::: End(SR). (By the remarks made in (C) above, it can be 

checked directly that the latter is a right self-injective von Neumann regular 
ring.) 

Proof. (l) Let f E rad H. Then ker(f) ~e I, so ker(f) :2 S; that is, f (S) = o. 
Conversely, if f E H is such that f(S) = 0, then f E rad H since S ~e I. 

(2) Clearly, any f E H maps S to S. Therefore, we have a ring homomorphism 
8 : H ~ End(SR) defined by 8(f) = liS. By (1), ker(8) = rad H. Since IR 
is QI, any endomorphism of S extends to an endomorphism of I, so 8 is onto. 
Therefore, 8 induces a ring isomorphism H jrad H ;;::: End(SR). D 

Theorems (13.1) and (13.1)' have some very nice consequences on the structure 
of right self-injective rings, which we record below. 

(13.2) Corollary. Let R be any right self-injective ring. Then: 

(1) rad R = Z(RR) (right singular ideal of RJ. 
(2) Rjrad R is a von Neumann regular ring. 
(3) Rjrad R is a right self-injective ring. 
(4) Idempotents of Rjrad R can be lifted to R. 
(5) If R is right nonsingular, then it is a von Neumann regular ring. 

In case S .- SOC(RR) ~e RR, we have rad R = anne (S), and Rjrad R 
End(SR). 
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Proof. Apply Theorem (13.1) to J = RR, for which H = End(RR) ~ R. This 
gives (2)-(5) right away.82 The ideal N in (13.1) is given here by 

N = (a E R: annr(a) ~e RR}, 

which is exactly Z(RR)' This gives (I). (For a more general version of (1), see 
Exercise 25.) Finally. in the case when SOC(RR) ~e RR, the additional information 
on rad Rand Rjrad R follows from Theorem (13.1)'. 0 

For instance, by (3.15E), the conclusions (1)-(4) above apply to any group ring 
kG where G is any finite group, and k is any field. It follows, in particular, that 
kG is (right) nonsingular iff it is semisimple. (Of course, by Maschke's Theorem 
FC-(6.1), kG is semisimple iff char k does not divide IGI.) 

Continuing our study of the endomorphism ring of an injective module JR , we 
shall now specialize to the case when J is the injective hull E(M) of a right 
module M, and collect the conditions characterizing the decomposability of J 
into a finite direct sum of indecomposable modules (expanding upon (6.12), etc.). 
Let us first recall the definitions for some of the terms to be used in the theorem 
below. A ring H is called semilocal (cf. FC-(20.1» if Hjrad His semisimple; 
H is called semiperfect (cf. FC-(23.1» if His semilocal and the idempotents of 
H jrad H can be lifted to H. A module N R is called strongly indecomposable 
(cf. FC-(l9.12» if End(NR) is a local ring. 

(13.3) Theorem. Let IR = E(MR), where M is any R-module, and let H 
End(l R). The following are equivalent: 

(1) u. dim MR < 00. 

(2) u. dim IR < 00. 

(3) J is a finite direct sum of indecomposable modules. 
(4) I is a finite direct sum of strongly indecomposable modules. 
(5) H is a semiperfect ring. 
(6) H is a semilocal ring. 

Proof. The proof is just a matter of piecing together various earlier results. In fact, 
(lH==>(2){:::=:}(3) is (6.12); (3){:::=:}(4) follows from (3.52); (4){:::=:}(5) is FC
(23.8) (which holds for any module I R ); and (5){:::=:}(6) follows from (13.1)(4). 

o 

In connection with the Theorem, note that the case where the endomorphism ring 
H is local corresponds to u. dim I = u. dim M = 1; that is, I is indecomposable. 
In case M is QI, this is also equivalent to M itself being indecomposable, according 
to Exercise (6.32). 

82Note that the first conclusion of (5) has been proved before, by a different method, in 
(7.52)(1). 
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(13.4) Corollary. Let R be any right self-injective ring. Then the following are 
equivalent: 

(1) u. dim RR < 00. 

(3) RR is afinite direct sum of indecomposable right ideals. 
(5) R is semiperfect. 
(6) R is semilocal. 
(7) R has no infinite orthogonal set of nonzero idempotents. 

Proof. The equivalence of (1), (3), (5) and (6) follows by applying the theorem 
to I = RR (upon noting that End(RR) ~ R). By (6.30)" (1) means ACC on 
complements in RR' Since RR is injective, complements in RR are just its direct 
summands (cf. (6.32». Therefore, (1) amounts to the ACC on direct summands 
of RR, which is just (7) according to (6.59). 0 

It is interesting that the three finiteness conditions (1), (3), and (7) above 
(cf. §6E) are equivalent for any right self-injective ring, but in general they are 
still pretty weak as far as finiteness conditions go. If we add the further condition 
that SOC(RR) S;e RR, then the right self-injective ring R becomes what is known 
as a right pseudo-Frobenius ring: we shall encounter these rings again (albeit very 
briefly) in (19.25), when we study the concept of an "injective cogenerator". If we 
assume the much stronger condition that R be right (or left) noetherian, then the 
right self-injective ring R becomes a quasi-Frobenius ring: these rings are very 
important, and there are many interesting results about their structure. In the next 
chapter, we shall take up the detailed study of these quasi-Frobenius rings. 

In a future section (see (19.24», we shall construct an example of a commutative 
nonnoetherian, self-injective, local (and hence semilocal) ring. Such a ring is then 
a pseudo-Frobenius, but not quasi-Frobenius, ring. On the other hand, there are 
many rings that are right self-injective, but do not satisfy any of the finiteness 
conditions in (13.4). For instance, Q x Q x ... is such an example (by (3.118». 
The opposite ring of the ring E constructed in (3.74A) is another. 

To conclude this subsection, we shall present one more result on the endomor
phism ring of a QI module. This one deals with double-annihilator conditions in 
a QI module MR. For any subset X S; M, we shall write 

annR(X) = {r E R: Xr = OJ. 

This is a right ideal in R. Similarly, for any subset A S; R, we shall write 

annM(A) = {m EM: mA = OJ. 

Note that this annihilator is always an H -submodule of M, where, as before, 
H = End(MR)' As usual, any set X S; M is contained in annM(annR(X», and 
equality holds iff X is an annihilator in the above sense. The following important 
result offers a good supply of annihilators in a quasi-injective module M. 
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(13.5) Theorem (Johnson-Wong). Let MR be any QI module, with H = 
End(MR). If X is an annihilator in M, then so is X + Hm for any m E M. 
(From this, it follows that any fg. H -submodule of M is an annihilator, in the 
above sense.) 

Proof. As we have observed above, the job is only to prove that 

annM(annR(X + Hm)) ~ X + Hm. 

Letm'belongtotheLHS,andletA := annR(X). We define a map rp: mA ~ m'A 
by rp(ma) = m'a for any a E A.Notethatthismapiswell-definedfor,if ma = 0, 
then 

implies that m'a = O. Clearly, rp is an R-homomorphism, so there exists an en
domorphism h E H extending rp (by the quasi-injectivity of M). Now h(ma) = 
m' a (for any a E A) yields 

m' - hem) E annM (A) = annM (annR(X)) = X, 

so we have m' E X + hem) ~ X + Hm, as desired. The last statement of 
the Theorem follows from the above by a simple induction (on the number of 
generators of a given H -submodule), starting with X = (0). D 

Note that the above theorem applies to all semisimple modules M since such 
modules are always quasi-injective. In this case, the theorem was noted by Artin 
and Tate; it may be viewed as a variant of the Density Theorem of Jacobson 
and Chevalley (cf. (11.16) in First Course). For a good illustrative example, the 
reader should take a look at the case when M is the simple right module kn over 
R = Mn (k) where k is a division ring: what does the last part of the theorem give 
us in this case? 

In the case when M = RR and R is a right self-injective ring, we retrieve from 
(13.5) the following classical result about such rings, due to Ikeda and Nakayama. 
(Note the change of side.) 

(13.5), Corollary. For any right self-injective ring R, any fg. left ideal Q( is a 
left annihilator; that is, Q( = anne (annr(Q()). 

This Corollary will playa useful role in the proof of the later theorem (15.1) 
which gives the main characterizations of a quasi-Frobenius ring. 

§13B. Construction ofQ~ax(R) 

In this subsection, we shall apply the results of §13A to I := E(R), the injective 
hull of the right regular module RR. The following notation will be fixed through 
the balance of § 13. 
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(13.6) Notation. For 1 = E(RR), let H = End(/R), operating on the left of I. 
Furthermore, let Q = End(H I), operating on the right of I, so we have 1 = HI Q. 

(The ring Q ;2 R is the "double commutant" of R constructed from the injective 
right module IR') 

Recall that the rational hull E(R) of RR can be characterized as 

(13.7) E(R) = {i E 1 : V h E H, heR) = 0 ~ h(i) = OJ. 

Using this information, we shall prove the following basic facts. 

(13.8) Proposition. (1) HI is a cyclic H -module generated by 1. (2) The map 
c : Q ~ 1 defined by c(q) = 1 . q (q E Q) is an R-isomorphismfrom Q onto 
E(R). 

Proof. (1) Let i E I. The R-homomorphism RR ~ IR sending 1 to i can be 
extended to some h E HomR(/, I) = H (by the injectivity of IR), so i = h(l) E 

H·1. 

(2) Clearly, c is an R-homomorphism. If q E ker c, then 1 . q = 0, and so by (1): 

(13.9) 0= H· (1 . q) = (H· 1) . q = 1 . q. 

Therefore, q = O. This shows that c is injective. To compute im(c), first note that, 
for any h E H such that heR) = 0, we have h(l . Q) = (h· I)Q = 0, so by 
(13.7), im(c) = 1 . Q ~ E(R). Conversely, let i E E(R). Then h . 1 ~ h . i is a 
well-defined H -endomorphism of HI, since h . 1 = 0 implies h . i = O. Therefore, 
there exists q E Q such that h . i = (h . l)q for all h E H. In particular, letting 
h = 1, we get i = 1 . q = c(q), so we have proved that im(c) = E(R). 0 

In summary, we have the following diagram: 

H » H· 1 = HIQ ::J 1 • Q ( 
e 

Q 
II 

-

I E(R) 

U 
R R 

To cut down on the formalities, let us henceforth identify Q with E(R) using 
the isomorphism c above. This then gives E(R) a ring structure extending its given 
right R-module structure. We shall denote this ring also by Q:-nax(R), and call it 
the maximal right ring of quotients of R. (The maximal left ring of quotients, 
Q~ax(R), is defined similarly, by working with E(RR).) The multiplication on 
E(R) = Q:-nax(R) will be denoted as usual by (i, j) ~ ij. 

To justify the terminology of "maximal right ring of quotients", let us first 
introduce the following definition. 

(13.10) Definition. A ring T containing the ring R is called a (general) right ring of 
quotients of R if RR ~d TR. (The word "general" is used, whenever necessary, to 
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distinguish this new kind of rings of quotients from the classical rings of quotients 
studied before in §1O.) 

Clearly, Q:;'ax (R) ;2 R is such a general right ring of quotients. The following 
theorem explicates the sense in which it is the "maximal" one. 

(13.11) Theorem. Let T be any general right ring of quotients of R, and let 
Q = Q:;'ax(R). Then 

(1) There exists a unique ring homomorphism g : T ~ Q extending the 
identity map on R. 

(2) The homomorphism g above is one-one. 
(3) The ring structure on Q is the only one extending the R-module structure 

on QR. 

Proof. By (8.13), there exists a unique R-homomorphism g : T ~ E(R) = Q 
extending the identity map on R, and g is one-one. If we can show that g(t't) = 
g(t')g(t) for all t, t' E T, clearly all three parts of the Theorem follow. Let h E H 
extend the R-homomorphism E(R) ~ E(R) given by left multiplication by 
g(t't) - g(t')g(t). For every rEt-I R := {x E R: tx E R}, we have 

her) = (g(t't) - g(t')g(t»r 

= g(t'tr) - g(t')g(tr) 

= g(t')(tr) - g(t')(tr) = 0 . 

Therefore, h(t-I R) = O. But RR C;d TR implies that t- I R C;d RR (cf. Exercise 
(8.2», so (8.6) gives heR) = O. In particular, 0 = h(l) = g(t'l') - g(t')g(t). 

D 

Regarding the ring structure on Q:;'ax (R) C; E(R), we should recall, from 
Osofsky's example (3.45), that in general, E(R) itself may not admit any ring 
structure extending the R-module structure on E(R). Therefore, the fact that its 
R-submodule Q:;'ax (R) has such a natural ring structure is a valuable piece of 
information. 

We have, also, the following nice consequence of (13.11). 

(13.12) Corollary. If Q~.l (R) exists,83 then it has a unique embedding in the ring 
Q:;'ax (R) extending the identity map on R. 

Proof. In view of (13.11), it suffices to show that Q~l (R) is a general right ring of 
quotients of R; i.e., RR C;d Q~.I(R). For x, y E Q~/R), we can write x = as-I 
and y = bs- I for a, bE R, and s a regular element of R. Then ys = b E R, and 
xs = a i= 0 if x i= O. This shows that RR is dense in Q~/R). D 

83Recall that this is the case iff R is right Ore. 
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In the case when R is a commutative domain with quotient field K, we have, of 
course, Q~l (R) = Q~ax (R) = K. The following example shows that, in general, 
Q~ax (R) may be bigger than Q~l (R), if the latter exists. 

(13.13) Example. Let R be the ring of upper triangular n x n matrices over a 
semisimple ring k. Since R is artinian, all regular elements are units (cf. (11.6)(2», 
so R = Q~I(R). On the other hand, by (3.43A), E(RR) = Mn(k). We claim that 
RR ~d Mil (k). Once we have shown this, it will follow that Q~ax(R) = Mn(k) 
as rings, by (13.11)(3). To show the denseness of R, let x = (Xij), Y = (Yij), be 
n x n matrices, where x i- o. Choose s E R with last column (a" ... ,an)! and 
all other columns zero. Clearly ys E R, and, choosing (a" ... ,all) to be the ph 

unit vector where xij i- 0 for some i, we also have xs i- O. This proves our claim 
that RR ~d Mil (k). Similarly, it can be shown that RR ~d Mil (k). Since Mn(k) 
is also the injective hull of RR (see the paragraph following (3.44», we deduce as 
before that Q~ax(R) = Mn(k), while Q~.I(R) = R. 

Our next result gives a sufficient condition for Q~ax(R) to be equal to Q~I(R), 
in case Q~I(R) exists. 

(13.14) Proposition. Suppose Q~I(R) exists, and every dense right ideal of R 

contains a regular element. Then Q~ax(R) = Q~I(R). 

Proof. We shall show that every q E Q = Q~ax(R) belongs to Q~I(R). Since 
RR ~d QR, q-' R ~d RR by Exercise (8.2). By hypothesis, q-' R contains a 
regular element s of R. Then a := qs E R, and, since s E U(Q~I(R», we have 
q = as-' E Q~I(R), as desired. 0 

In view of (11.13), we have in particular: 

(13.15) Corollary. If R is a semiprime right Goldie ring, then Q~ax (R) = Q~l (R), 
and this is a semisimple ring. 

Note that, by the example given in (13.13), this Corollary is not true in general 
if R is not assumed to be semi prime. However, if we restrict ourselves to commu
tative rings, we can prove a corresponding result without the semi prime condition. 
(Recall that, in the commutative case, Q~l (R) always exists.) 

(13.16) Corollary (Small). If R is a commutative ring with ACC on annihilator 

ideals, then Q~ax(R) = Q~I(R). 

Proof. By (8.31)(1), every dense ideal of R contains a regular element, so (13.14) 
applies. 0 

Recall that, if a ring R is Ore, so that Q~I(R) and Q~I(R) both exist, then they 
are isomorphic over R. If R is also a domain, then (13.15) and (11.20) imply 
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(13.17) Q~ax(R) ;:: Q~ax(R) over R. 

For a domain that is not Ore, however, this need not be the case, as we shall show 
later in (13.28). 

§13C. Another Description of Q~ax (R) 

In this subsection, we shall give another useful description for Q~ax (R) (for any 
ring R) in terms of the dense right ideals of R. First let us prove the following 
criterion for dense R-submodules of Q = Q~ax (R). 

(13.18) Proposition. An R-submodule DR <; QR is dense in QR iff, for any 
h E H (see (13.6»), h(D) = 0 implies that h(1) = O. 

Proof. Assume first D <;d Q, and suppose h E H is such that h(D) = O. Then 

h: Q ----+ J = E(R) = E(Q) 

must be zero by (8.6). In particular, h(1) = O. Conversely, suppose h(D) = 0 ===} 

h(1) = 0, for any h E H. Let P be any right R-module between D and Q. Any 
R -homomorphism f : P ~ Q is the restriction of some h E H, by the injectivity 
of JR. Thus, if feD) = 0, we have h(D) = 0 and so h(l) = 0 .. Therefore, 

(13.19) f(P) = h(1 . P) = h(1)P = O. 

This shows that HomR(P / D, Q) = (0), so by (8.6), D <;d Q, as desired. 0 

(13.20) Proposition. Let D, D' be R -submodules of Q R such that D <;d Q. Then 
HomR(D, D') is isomorphic (as a group) to 

E = E D .D, := {q E Q: qD <; D'}. 

Jnparticular, End(DR) is isomorphic to thesubring E IJ .D <; Q,andeach R-ho
momorphismfrom D to RR is given by left multiplication by a suitable q E Q. 

Proof. DefineqJ : E ~ HomR(D, D')bYqJ(q)(d) = qdwhereq E Eandd ED. 
Clearly, qJ(q) is a (right) R-homomorphism. If qJ(q) = 0, then qD = O. Write 
q = h . 1 where h E H. Then 

h(D) = h(1 . D) = (h· I)D = qD = o. 
Since D <;d Q, (13.18) implies that q = h· 1 = O. To show that qJ is onto, consider 
any f E Hom R (D, D'). We may assume that f is the restriction of some h E H. 
Now let q = h . 1 E J. We claim that q E Q. Indeed, for every h' E H such that 
h'(R) = 0 we have 

(h'h)(D) = h'(hD) = h'(f(D» <; h'D' <; h'Q = O. 
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As before, this implies 0 = (h'h)(1) = h'(q). Therefore, by (13.7), we have 
q E Q, and now 

fed) = h(d) = (h . l)d = qd = rp(q)(d) 

for all d E D, so f = rp(q). In the case when D' = D, the map rp is clearly a ring 
homomorphism; this gives the last conclusion in the Proposition. 0 

Note that, in the above, if we let R be a commutative ring for which Q:;'ax (R) = 
Q~I(R), then (13.20) would give back our earlier equation (2.16'). However, 
(13.20) applies more generally to any ring R. With its help, we arrive at the 
following alternative description of Q:;'ax (R). 

(13.21) Theorem. Q:;'ax (R) can be identified as a ring whose elements are 
classes of R-homomorphisms lX ~ R where lX is any dense right ideal of 
R. Two such R-homomorphisms f : lX ~ R, f' : lX' ~ R are regarded to be in 
the same class if f = f' on lXn!2l'. The classes of f : 2l ~ Rand g : ~ ~ R 
are added by taking the class of f + g : lX n ~ ~ R, and they are multiplied by 
taking the class of fg : g-l(lX) ~ R. 

Proof. We shall only give a sketch of the proof here. To see that the description 
of multiplication is meaningful, note that since lX ~d RR, the preimage g-1 (lX) 
is dense in ~ by Exercise (8.1), and hence dense in RR by (8.7)(2). Therefore 
f g : g -1 (lX) ~ R does define a class. For q E Q, Exercise (8.1) also implies 
that q-l R ~d RR, so left multiplication by q gives a right R-homomorphism 
q-l R ~ R. Conversely, for lX ~d RR, any R-homomorphism f : lX ~ R is 
given by left multiplication by a unique q E Q, according to (13.20). For such 
an element q, we have q2l ~ R so lX ~ q-l R. The remaining details are easy to 
complete, and will be left to the reader. 0 

Another important application of (13.20) is given by the following result of 
Utumi. 

(13.22) Theorem. Suppose R has a minimal dense right ideal D (e.g. R is right 
artinian). Then: 

(1) D ~ D' for any right ideal D' ~d RR. 
(2) D is an ideal of R containing the right socle SOC(RR)' 
(3) Q:;'ax(R) ~ End(DR) as rings. 

Proof. (1) follows from the observation that Dn D' ~d RR (see (8.7)(1)). Consider 
any q E Q. Since D ~d QR, Exercise (8.1) gives 

(13.23) q-l D = {r E R: qr E D} ~d RR. 

By (1), we have D ~ q-l D, so qD ~ D. In particular, R . D ~ D so D is an 
ideal of R. Since D ~e RR, any minimal right ideal of R is contained in D; hence 
SOC(RR) ~ D. Finally, (13.20) gives (3). 0 
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Note that if we identify Q~ax (R) with End(DR) in (13.22), then R embeds in 
End(DR) by a 1-+ left multiplication by a. The fact that this is an embedding is 
double-checked by (8.3)(4). 

(13.24) Corollary. Let R be a right Kasch ring (in the sense of (8.26»). Then 
Q~ax (R) = R. (In particular, if R is a commutative Kasch ring, then Qrnax (R) = 
Qc/(R) = R.) 

Proof. By (8.28), the only dense right ideal in R is R itself. Thus, we can apply 
(13.22) to D = R. For this choice of D, Q~ax(R) ~ End(DR) ~ R. (Of course, 
this conclusion can be obtained directly: for q E Q~ax(R) we have as before 
q-l R ~d RR, so q-l R = R. Therefore, I E q-l R, whence q = q . 1 E R.) The 
last statement of the Corollary now follws from (13.12). D 

(13.25) Corollary. Let R be a right nonsingular right artinian ring. Then S := 
SOC(RR) is the smallest dense right ideal of R, and Q~ax (R) ~ End(SR). 

Proof. Recall that, for the right artinian ring R, the right singular ideal Z(RR) is 
annl(S) by (7.13). Therefore, annl(S) = (0) here, which implies that S ~d RR 
by (8.3)(4). In view of (13.22)(2), it follows that S is the smallest dense right ideal 
of R, and (13.22)(3) applies with D = S. D 

The two results above enable us to give a few more explicit computations of 
Q = Q~ax(R). 

(13.26) Examples. 

(1) Let (R, m) be a local ring where m = rad R is nilpotent. Then, by (8.29)(3), 
R is a (right) Kasch ring, so by (13.24), Q~ax(R) = R. If we take R to be, for 
instance, the local 3-dimensional k-algebra in (6.13) where k is a field, then we 
have 

(13.27) 

since dimk E(R) = 6. 

(2) Let R = (~ 2:) where A = Z4, as in Osofsky's example (3.45). This ring 

of 32 elements is not (left, right) nonsingular by (7.6)(6), but it is Kasch by Exercise 
(8.16). Thus, we conclude from (13.24) and (3.45) that R = Q~ax(R) £; E(RR)' 
This implies that no ring properly containing R can be a general right ring of 

quotients of R. Take, for instance, the ring T = (1 2:);;2 R. For 

X=(~ ~), y = (~ ~), and r = (~ :) in T, 

it is clear that yr E R implies a = 0 and hence necessarily XI' = O. This shows 
that RR is not dense in TR, so T is indeed not a general right ring of quotients of R. 
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The same is true already for the smaller ring T' = (2~ 2:);? R. We choose 

y = (~ ~ ) in this case, and note that yr E R ==> a E 2A ==> xr = O. 

(3) Let R be the (artinian) ring of upper triangular n x n matrices over a semisimple 
ring k. This ring is right nonsingular (by (7.l4b)), so (13.25) applies. In (7.14b), 
we have observed that S := SOC(RR) is the ideal of all matrices with zeros on all 
but the last column. Identifying such matrices with their last columns, we may 
view S as kn. Here, any a = (aij) E R acts on the right of a column vector by 
right multiplication by anI!. Therefore, 

Under the composite isomorphism, elements of R do correspond to themselves as 
upper triangular matrices. Of course, this computation of Q:;'ax (R) is in agreement 
with the earlier one given in (13.13). A similar computation with soc(RR) shows 
that Q~ax(R) ~ Mn(k), again with elements of R corresponding to themselves. 

(
k k k) 

(4) Let R = 0 k 0 , where k is as above. By (7.14c), R is again artinian, 
o 0 k 

nonsingular, with 

(0 k k) 
S = SOC(RR) = 0 k 0 , (

k k k) 
SOC(R R) = 0 0 0 . 

o 0 k 000 

From the latter, we get Q~aX<R) ~ M 3 (k) as before. From the former, we get a 
decomposition SR = Q( EB ~ where 

(0 k 0) 
Q(= 0 k 0 

000 
and ~ = (~ ~ ~). 

o 0 k 

After computing the actions of R on Q( and ~, we see that Q(, ~ are the isotypic 
components of the semisimple module S R, and deduce that 

Q:;'ax (R) ~ End(Q( EB ~h 

~ End Q(R x End ~R 

~ End Q(k x End ~k 

~ M 2 (k) x M 2 (k). 

Thus, as long as k of=- 0, the two rings Q:;'ax (R), Q~ax (R) are not isomorphic. (For 
a somewhat different approach to these computations, see Exercise 14.) 

(5) (Zelmanowitz and Li) Let k be a nonzero semisimple ring and V = k EB ... EB k 
(n copies), viewed in the natural way as a (k, k)-bimodule. Let R be the triangular 
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. (k nng 0 ~ ), which is, of course, artinian. We have here 

, (k and S = soc(RR) = 0 ~) , 
so by (7.13), R is nonsingular. Using (13.25), it follows as in the last example that 

Q~ax(R);::: End(SR);::: End(e+1h ~ Mn+l(k), and 

Q~ax(R) ~ End(RS') ~ Endk(kn+l ) ~ Mn+l(k) .. 

While these two maximal rings of quotients are isomorphic as rings, they are 
not isomorphic over R if n :::: 2. In fact, if rp : Q:;'ax (R) ~ Mn+l (k) and 1/1 : 
Q~ax(R) ~ Mn+l (k) are the isomorphisms given above, we can check easily 
that, fora, bE k and v = (VI, ... , vn) E kn: 

rp (~ ~) = (ai" }:) 
0 ... 0 b 

and (
a VI ••• vn) 

( a V) 0 
1/I 0b =: . 

. bIn 
o 

(Of course, these matrix representations depend on a specific labeling of the usual 
basis of kn+1.) Let A = rp(R) ~ Rand B = 1/I(R) ~ R. By (3.43) (and its left 
analogue), we know that 

Moreover, it is easy to see that A C;d Mn+l (k) as right A-modules. In fact, if 

x, y E Mn+l (k) with x -I- 0, there exists (~) E k n+1 with x . (~) -I- O. For 

(X : = (~ ~) E A, we have then X·(X -I- 0, and automatically y.(X E A. It follows 

that Q:;'ax(A) = Mn+1(k), and similarly Q~ax(B) = Mn+1(k). This provides 
alternative computations to Q:;'ax (R) and Q~ax (R). (Actually, even the density 
check above can be omitted, since R is a nonsingular ring; see (13.39)(1).) On the 
other hand, it iseasy to check that B is not essential in Mn+l (k)H, so Mn+l (k) 2 B 
is not a maximal right ring of quotients of B. Similarly, M II+1 (k) 2 A is not a 
maximal left ring of quotients of A. There is no contradiction here; this simply 
means that Q~lax(R) and Q~lax(R) cannot be isomorphic over R. 

In the last three examples above «3), (4), and (5», the rilng R is right non
singular, and we have Q:;'ax(R) = E(RR)' This turns out to be true for any right 
nonsingular ring R: see (13.36) below. 

We shall include one more example below which shows that, if R is a domain 
(resp. R is countable), Q:;'ax (R) may not be a domain (resp. may not be countable). 
In this example, it turns out also that Q:;'ax (R) and Q~ax (R) are not isomorphic 
over R. 
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(13.28) Example. Let R = Ql (a, b) (the free Ql-algebra on a, b), and let D be 
the ideal generated by b in R. Since R is a domain, (8.4)(3) implies that D ~d RR. 
As a right R-module, 

(13.29) 

is free of countable infinite rank (cf. the proof of (10.22». Therefore, by (13.20), 
Q = Q~ax(R) contains a subring isomorphic to End(DR ), which is the ring of 
column-finite N x N matrices over R. In particular, Q is uncountable and has 
many O-divisors (even nilpotent elements), although R itself is countable and is a 
domain. Similarly, since D is contained in 

(13.30) 

we have Dn ~d RR, and so Q also contains (as a subring) a copy ofEnd(R~+2) ~ 
M n+2(R) (for each n). Thus, Q contains (as subrings) copies of all finite matrix 
rings over R. 

Next, we claim that Q~ax(R) and Q~ax(R) cannot be isomorphic over R. In
deed, consider the right R-homomorphism a from Do = aR EEl bR to R defined 
by a(af+bg) = f.By(l3.20), there exists q E Q such that q·(af+bg) = f, 
for all f, g E R. In particular, qa = 1 and qb = O. Assume, for the moment, 
that Q is also the maximal left ring of quotients of R. Then there would also exist 
a q' E Q such that (fa + gb)q' = g for all f, g E R. In particular, aq' = 0 
and bq' = 1. But now 

q' = (qa)q' = q(aq') = 0, 

contradicting bq' = 1 (and hence proving our claim). 

§13D. Theorems of Johnson and Gabriel 

Let us now return to the general theory, and prove a few more results about Q = 
Q~ax (R). Again, the notations introduced in (13.6) will remain in force. The 
following Proposition confirms that the association of Q to R is a sort of "closure 
operation". (See also Exercises (10) and (11).) 

(13.31) Proposition. 

(1) I Q is the injective hull of QQ. 
(2) HomQ(lQ, IQ) = H. 
(3) Q~ax(Q) = Q. 

Proof. Since any Q-endomorphism of I is an R-endomorphism, (2) follows. If 
we can prove (1), clearly (3) will follow from (1) and (2). To prove (1), it suffices 
to show that IQ is Q-injective, for RR ~e IR implies QQ ~e I Q. Let A ~ B 
be right Q-modules and q;o : A ---+ I be a Q-homomorphism. We can extend q;o 
to an R -homomorphism q; : B ---+ I. We are done if we can show that q; is a 
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Q-homomorphism. Let b E B and define 0"0 : Q ~ I by 

CTo(q) = rp(bq) - rp(b)q (V q E Q). 

For any r E R, we have 

CTo(qr) = rp(bqr) - rp(b)qr = (rp(bq) - rp(b)q)r = CTo(q)r. 

Therefore, 0"0 is an R-homomorphism, and it can be extended to 0" : IR ~ IR. 
Since rp is an R-homomorphism, we have O"o(R) = 0 and hence O"(R) = O. But 
0" E H, so by (13.7), O"(Q) = 0 too, and this implies that rp(bq) = rp(b)q for all 
bE Band q E Q. Therefore, rp E HomQ(BQ, IQ), as desired. 0 

(13.32) Corollary. For R, I, Q, ... as in (13.6), the following are equivalent: 

(1) Q = I. 
(2) Q R is injective. 
(3) QQ is injective. 
(4) The surjection rp : H H ~ H I defined by rp (h) = h . 1 is an isomorphism. 

If these conditions hold, then H ~ Q as rings. 

Proof. The equivalence of (1), (2), and (3) follows easily from (13.31). Assume 
(1). To show that rp in (4) is injective, suppose h ·1 = 0 where hE H. By (13.7), 
h· Q = 0 too, and hence h . 1= 0 by (1). Therefore, h = o. Conversely, assume 
(4). Then, for any hE H: 

hR = 0 =:} h· 1 = 0 =:} h = 0 =:} h· I = O. 

By (13.7) again, we see that I = Q. Moreover, from (4), we have 

Q = End(H I) ~ End(H H) ~ H 

as rings. (Alternatively, one can show directly that rp is a ring isomorphism, after 
we identify I with the ring Q by (1).) 0 

In general, of course, Q may be smaller than I so (13.32) may not apply; see, 
for instance, Examples (1) and (2) in (13.26). But even in the general case, we can 
identify Q as a "subquotient" of the ring H, by the following considerations. Let 
K be the kernel of the map rp defined in (13.32); this is a left ideal of H. Let 

(13.33) P = {h E H: Kh ~ K}; 

this is the biggest subring of H in which K is an ideal. 

(13.34) Proposition. We have a ring isomorphism P / K ~ Q. If R is commuta
tive, then Q ~ Z(H) (the center of H); in particular, Q is also commutative in 
this case. 
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Proof. By (13.7), Q = {i E I: K· i = O}. Thus, for h E H: 

q;(h) E Q ~ K . q;(h) = 0 

~ (K . h)(1) = 0 

~ K·h <; K. 

This shows that the subring P defined in (13.33) is exactly q;-l (Q). Therefore, 
the surjection q; : H -+ I induces a group isomorphism P / K ~ Q. To show that 
this is a ring isomorphism, we must verify that q;(hh') = q;(h)q;(h') for h, h' E P. 
Let q;(h) = h . 1 = q and q;(h') = h' . I = q'. The product qq' is identified with 

I· qq' = (lq)q' = (h . I)q' = h(lq') = h(h'I) = (hh')(l), 

so indeed q;(hh') = qq' = q;(h)q;(h'). Now let C = Z(H). For h E C, we have 
Kh = hK <; K, so by (13.33), C <; P. Also, for hE C n K: 

h· I = h . HI = Hh· 1 = 0 ==? h = O. 

Thus, C n K = (0), so q; defines an inclusion of the ring C into the ring Q. 
Assuming now that R is commutative, let us show that q;(C) = Q. Let q E Q. 
Consider f E Endz I given by f Ci) = i q (i E l). For any h E H, we have 

(fh)(i) = f(h(i» = h(i)q = h(iq) = h(f(i» = (hf)(i) 

for any i E I, so 

(13.35) fh = hf (Vh E H). 

For any fixed element r E R, define h E Endzl by right multiplication by r. Since 
R is commutative, we have h E H, and (13.35) yields fCir) = fCi)r. This shows 
that f E H, and (13.35) further shows that f E C. Finally, q;(f) = f(l) = q, as 
desired. 0 

From (13.34), we see easily that, for any commutative ring R, Q~ax(R) 
Q~ax(R) over R. For another proof of the fact that Q = Q~ax (R) is commutative 
if R is (as well as a characterization for the center of Q for a general R), see 
Exercise 5. 

We now come to an important theorem of R. E. Johnson on right nonsingular 
rings. The main part of this theorem says that a ring R is right nonsinguLar iff 
Q, its maximaL right ring of quotients, is von Neumann reguLar. Actually, Johnson 
proved this result before the discovery of the general theory of maximal right rings 
of quotients. In Johnson's original paper, the injective hull I = E(RR) was used 
in the place of Q. As the reader will see below, Q is just I for right nonsingular 
rings R. 

(13.36) Johnson's Theorem. For any ring R, the following are equivaLent: 

(1) R is right nonsinguLar. 
(2) IR = E(RR) is a nonsinguLar R-moduLe. 
(3) H = End(lR) is Jacobson semisimpLe (i.e., rad H = 0). 
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(4) Q = Q~ax (R) is von Neumann regular. 

If these conditions hold, then Q = I, and Q ~ H are right se!f-injective rings. 

Proof. (1)==>(2). Since RR ~e I R, this follows from (7.6)(2). 

(2)==>(3) follows from (1) and (4) of(13.1). 

(3)==>(4). Consider the H -homomorphism cp : H --+ I defined by cp(h) = h . 1. 
By (13.8)(1), cp is onto. We claim that cp is also one-one. In fact, if h E ker(cp), 
then heR) = h(1)R = (0). Since RR ~e I R, (13.1) gives hEN = (0). Applying 
(13.32), we get Q ~ H = H / N, which is von Neumann regular by (13.1 )(2). The 
other conclusions in the last statement of the Theorem also follow from (13.32). 

(4)==>(1). Let b E Z(RR).Then~:= annr(b) ~e RR,sowealsohave~ ~e QR. 
Pick q E Q such that b = bqb. If b i=- 0, then qb i=- 0 E Q, so there exists c E R 
such thatqbc E ~\{O}. Butthenbc = (bqb)c E b~ = (0), a contradiction. 0 

To illustrate the power of Johnson's Theorem, let us record a few important 
special cases of it, as follows. 

(13.37) Corollary. Assume that R is a reduced ring, or a right Rickart ring (e.g., 
a Baer ring or a right semihereditary ring), or an integral group ring ZC. Then 
Q:-nax (R) is a right self-injective von Neumann regular ring. 

In the case when R is a domain, a bit more can be said. The following lemma 
and its corollary are due to S. K. Jain. 

(13.38) Lemma. Let R ~ S be such that R is a domain and S is a von Neumann 
regular ring. If RR ~e SR, then S is a simple ring. 

Proof. Let I be a nonzero ideal of S. Then there exists a nonzero a ERn I. Since 
R is a domain, R n ann;(a) = O. Therefore, ann;(a) = O. Let s E S be such that 
a = asa. Then a(1 - sa) = 0 implies that 1 = sa E I, so I = S. This shows that 
S is a simple ring.84 0 

(13.38), Corollary. For any domain R, Q:-nax (R) is a simple (right self-injective 
and von Neumann regular) ring. 

Proof. This follows by applying (13.37), together with (13.38). o 

Johnson's Theorem suggests that, for a right nonsingular ring R, the structure of 
Q:-nax (R) is particularly susceptible to analysis since it is a right self-injective, von 

84If we interpret the" I " in this proof as Is, we do not need to assume I R = I s in this 
result. On the other hand, it is easy to see that the assumption RR S;e SR actually implies 
that IR = 15. 



378 5. More Rings of Quotients 

Neumann regular ring. Also, for right nonsingular R, Q~ax (R) is often "easy" to 
identify, in view of following statement, which is handy to have in explicit form, 
although it is just a recap of earlier results. 

(13.39) Proposition. Let R S; S be rings such that R is right nonsingular. If 
either (1) SR = E(RR), or (2) RR S;e SR and S is right self-injective, then 
S = Q~ax(R) (as rings). 

Proof. Let Q = Q~ax(R). We first work in Case (1). Here, Q = S as right R
modules by (13.36). Therefore, Q = S as rings by (13.11)(3). Next, we work in 
Case (2). Here, RR S;e SR implies that Z(SR) = 0 by (7.6)(2), which in tum 
implies that RR S;d SR by (8.7)(3). Thus, by (13.11)(2), we can identify S as a 
subring of Q (over R). In particular, we may view Q as a right module over S. 
Since Ss is injective, Q = Ss EEl X for some S-submodule X C Qs. But then 
X n R = 0 and RR S;e QR imply that X = 0, so S = Q. D 

The above additional observations (13.37)-(13.39) conclude our discussions 
on Johnson's Theorem (13.36). While this theorem gives characterizations for the 
rings R for which Q~ax (R) is von Neumann regular, we can try to specialize 
it further by asking for characterizations for those rings R for which Q~ax (R) is 
semisimple. This brings us to the next result, which is usually attributed to Gabriel, 
although half of it (the implication (2)===}(1)) was also proved by Johnson. 

(13.40) Gabriel's Theorem. For any ring R, the following are equivalent: 

(1) Q = Q~ax(R) is semisimple. 
(2) R is right nonsingular and u. dim RR < 00. 

Proof. (1)===}(2). Certainly Q is von Neumann regular, so (13.36) shows that R 
is right nonsingular, and that H ~ Q. Let 1 = el + ... + em where the ei's 
are pairwise orthogonal primitive idempotents in the semisimple ring H. Then 
I = el I EEl· .. EEl em I is a decomposition of I into a direct sum ofm indecomposable 
(injective) modules. By (6.12), this implies that u.dim RR = m < 00. 

(2)===}(1). By (6.12) again, u.dim RR < 00 implies that IR is a finite direct sum 
of indecomposables. Therefore, by (13.3), H Irad H is semisimple. On the other 
hand, since R is right nonsingular, (13.36) yields Q ~ Hand rad H = 0, so Q is 
now semisimple. D 

It behooves us to say a few words on the relationship between Gabriel's Theorem 
proved above and Goldie's Theorem proved earlier in (11.13). The former gives a 
characterization of rings R for which Q~ax (R) is semisimple, while the latter gives 
various characterizations of rings R for which Q~I(R) exists and is semisimple. 
The relationship between the two theorems may be seen in part from the following 
observation. 
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(13.41) Proposition. The conditions (1) and (2) in (13.40) imply that R is right 
Goldie. If R is semiprime, the converse holds, and we have Q;;'ax (R) = Q~I (R). 

Proof. Assume (1) and (2) in (13.40). Then, being a semisimple ring, Q has ACC 
on right annihilators, and by (6.61), R has the same property. Since we also have 
u.dim RR < 00, R is right Goldie. Conversely, if R is semiprime right Goldie, 
then R is right nonsingular by (7.19), so we have (2) in (13.40). (Cf. (2)<===>(4) 
in (11.13).) In this case, we have Q;;'ax(R) = Q~I(R) by (13.15). 0 

Note that the "semiprime" assumption is essential for the second statements in 
(13.41). If R is a right Goldie ring, the conditions (1) and (2) in (13.40) need not 
hold in general. For instance, a right noetherian ring R is always right Goldie, 
but R certainly need not be right nonsingular (see, e.g., (7.6)(6)). Therefore, we 
might think of Gabriel's Theorem as a result extending Goldie's Theorem. In the 
case of semiprime right Goldie rings, the two theorems basically give the same 
conclusions. For right Goldie rings R that are not semiprime, Goldie's Theorem 
does not yield any information, but Gabriel's Theorem implies that Q;;'ax(R) is 
semisimple iff R is right nonsingular. The germane examples here are the right 
nonsingular right artinian rings. For these rings, (2) in (13.40) is satisfied, and 
according to (13.25), 

(13.42) 

Since SR is af.g. semisimple R-module, the rings in (13.42) are indeedsemisimple, 
as predicted by (13.40). For explicit examples of this, see (13.26)«3), (4), and (5)). 
In these examples, R is not semiprime, and (since R is artinian), Q~'I(R) = R is 
not semisimple. 

We now conclude this section with the following special case of Gabriel's The
orem. 

(13.43) Corollary. For Q = Q;;'ax (R), the following are equivalent: 

(1) Q is a division ring. 
(2) R is a right Ore domain. 
(3) R is a domain and Q is reduced. 

Proof. (1)==>(2) follows from (13.40) and (10.22). 

(2)==>(3). Under (2), Q = Q;;'ax (R) = Q~I(R) is a division ring, hence reduced. 

(3)==>(1). Under (3), Q is simple by (13.39) and hence prime .. Since Q is also 
reduced, it is a domain (see FC-Exer. (10.3)). The fact that Q is von Neumann 
regular (by (13.37)) now implies (1). 0 

It follows from (13.43) that, for any domain R which is not right Ore, Q;;'ax (R) 
must have nonzero nilpotent elements. We have already seen an explicit example 
of this in (13.28) by taking R = Q(a, b). 
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For R a nonzero right nonsingular ring, there are also results characterizing, in 
terms of R, the conditions for Q = Q:;'ax(R) to be (1) a prime ring, (2) a simple 
ring, or (3) a simple artinian ring. These results are due to Johnson, Goodearl, 
Handelman, Jain, Lam, Leroy, and others. For instance, Q is a prime ring iff 
R is "right irreducible" in the sense of Johnson; that is, for any ideal A ~ R, 
A = anne(anneA) and A n anne (A) = 0 imply that A = 0 or A = R. There is 
also a general theory for the direct product decomposition of Q into prime (von 
Neumann regular, right self-injective) rings: see Goodearl [91: Ch. 10] and Jain
Lam-Leroy [98]. In particular, in the latter, it is shown that Q is a direct product 
of n prime rings iff n is the largest integer for which there exist nonzero ideals 
A I, ... , An ~ R such that A I EEl ... EEl An is right essential in R. 

Exercises for §13 

(In the following Exercises, the notations in (13.6) are in force.) 

1. (Utumi) Show that Q:;'ax (n j R j) ~ nj Q:;'ax (R j) for any family of 
rings {R j }. 

2. Let b E R be right regular in R; i.e., ann~ (b) = O. Show that (1) b remains 
right regular in Q, and (2) if R is right nonsingular, b has a left inverse in 
Q. (3) If b is regular in R, is it necessarily regular in Q? 

3. Show that an element b E R is a unit in Q iff b is right regular in R and 

bR ~d RR' 

4. For q E Q, show that the following are equivalent: 

(1) q E U(Q); 
(2) q is right regular in Q and q Q ~d Q Q; 

(3) for i E /, iq = 0 ==} i = 0, and, for r E R, qr = 0 ==} r = O. 

5. Show that an element q E Q is central in Q iff it commutes with all 
elements of R. Deduce from this that, if R is commutative, so is Q. (The 
first part will be proved later in (14.15); look up the proof there only if you 
are absolutely stuck.) 

6. (Utumi) Let R be a prime ring with S = SOC(RR) i= O. Show that Q = 
Q:;'ax (R) is isomorphic to End(V D) for a suitable right vector space V over 
some division ring D. 

7. (1) Show that a ring R has the form End(VD ) where V is a right vector 
space over a division ring D iff R is prime, right self-injective, and 
with SOC(RR) i= O. (2) Show that a prime, self-injective ring R with 
SOC(RR) i= 0 must be semisimple. 

8. Show that if R is simple (resp. prime, semiprime), so is every general 
right ring of quotients of R. 

9. Let IJ3 ~ R ~ S, where R, S are rings, and IJ3 is a left ideal of S with 
annz(lJ3) = O. Let / = E(Ss). Show that 
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(1) For i E I, i ~ = 0 ===> i = 0; 
(2) I = E(RR); 
(3) End(lR) = End(ls); and finally, 
(4) Q:-nax(R) = Q:-nax(S), 

(Note that this exercise can be used to compute Q:-nax (R) for many rings, 
for instance those in Examples (3.43A) through (3.43F).) 

10. (This exercise provides a more general view, and a new proof, for the 
fact that R f-+ Q:-nax(R) is a "closure operation": d. (13.31)(3).) Let 
R <; S <; T be rings such that S (resp. T) is a general right ring of 
quotients of R (resp. S). Show that T is a general right ring of quotients 
of R. 

11. Let T be a general right ring of quotients of R. 

(1) Show that T = Q:-nax(R) iff Q:-nax(T) = T; and that, 
(2) in general, Q:-nax(R) = Q:-nax(T). 

12. Let k ~ K be fields and let R = (~ ~) <; S = M2(K). Show that 

S = Q:-nax(R), but S is not a general left ring of quotients of R. 

13. For the ring R = (~ ~), compute Q~l (R) and Q:-nax (R). 

14. (Cf. (13.26)(4).) Let R = (~ ~ ~), where k is a semisimple ring. 
o 0 k 

Determine Q~ax (R) and Q:-nax (R) directly by computing the injective hulls 
of RR and RR. (Hint. To compute E(RR), use the embedding cp : R ~ 
A = M 2(k) x M2(k) defined by 

and use (3.42) to show that E(RR) = A.) 

15. Show that any automorphism of a ring R extends uniquely to an automor
phism of Q = Q:-nax (R). 

16. (R. E. Johnson) Let Q = Q:-nax (R), where R is a right nonsingular ring. 
Show that any closed R -submodule of Q R is a principal right ideal of Q 
(and conversely). Using this, show that there is a one-one correspondence 
between the closed right ideals of R and the principal right ideals of Q. 

17. Show that a commutative ring R is reduced iff Qrnax (R) is reduced, iff 
Qrnax (R) is von Neumann regular. 

18. Show that R is a Boolean ring iff Q:-nax (R) is a Boolean ring. 
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19. A subset X in a set W is said to be co finite if W\X is finite. Show that 

R = {X c::; W: X is either finite or cofinite} 

is a Boolean subring of the Boolean ring S of all subsets of W, and show 
that Qmax(R) = S. 

20. Let R be a domain and Q = Q~nax (R). 

(I) For any nonzero idempotent e E Q, show that eQ ~ QQ. 
(2) Show that any nonzero f.g. right ideal m c::; Q is isomorphic to QQ. 
(3) If Q is Dedekind-finite, show that R is a right Ore domain and Q is its 
division ring of right fractions. 

21. Let R be a semiprime ring with only finitely many minimal prime ideals 
PI,···, Pt, and let Ri = Rlpi. Show that Q:;'ax(R) ~ Oi Q:;'ax(Ri). 
(Hint. Use the ideal ~ c Oi Ri constructed in Exercise (11.17), and 
apply Exercise 1.) 

22. (Cf. Exercise (11.19).) Let R be the (commutative) ring Q ({Xi : i ?: 
I}) with the relations Xi X j = 0 for all unequal i, j. (1) Show that 
Qmax(R) is isomorphic to the direct product T = Oi>1 Q (Xi), where 
R is embedded in T by sending a E Q to (a, a, .. ~) and sending 
Xi to (0, ... , Xi, 0, ... ) with Xi in the ith coordinate. (2) Show that 
Qcl (R) S;; Qmax (R). 

23. Let T = k x k x ... where k is any right self-injective ring, and let R be 
the subring of T consisting of all sequences (aI, a2, ... ) E T which are 
eventually constant. Show that T = Q:;'ax(R). 

24. Give an example of a pair of commutative local artinian rings R c::; S such 
that R C::;e SR, but S is not a general (right) ring of quotients of R. 

25. (Nicholson-Yousif) Recall that a ring R is right principally injective if, 
for any a E R, any f E HomR(aR, R) extends to an endomorphism of 
RR (see Exercise (3.44)). Show that, for such a ring R, rad R = Z(RR). 
(This generalizes (13.2)(1).) 

26. Show that a ring R is semisimple iff R has the following properties: (1) 
R is semiprime, (2) R is right principally injective, and (3) R satisfies 
ACC on right annihilators of elements. (Hint. Use (7.15)(1), (13.2)(5), 
FC-(10.29), and Exercise 25.) Note that, from this exercise, it follows that 
any right principally injective semiprime right Goldie ring is semisimple. 

27. For any right principally injective ring R, show that SOC(RR) c::; soc(RR). 
(In particular, equality holds for any 2-sided principally injective ring.) 

28. Let IR be a QI module, and I' = £(1). Let H = End(lR), N = rad H, 
and H' = End(l~), N ' = rad H'. Show that there is a natural ring 
isomorphism H'I N ' ~ HI N. 
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29. (Ikeda-Nakayama) Show that a ring R is von Neumann regular iff, for any 
a E R and any right ideal I S; R, any / E HomR(aR, Rj /) is induced 
by left multiplication by an element of R. 

§ 14. Martindale Rings of Quotients 

§14A. Semiprime Rings Revisited 

After discussing maximal rings of quotients in §13, it is natural to include an 
introduction to the idea of Martindale rings of quotients. This kind of rings of 
quotients was introduced by W. S. Martindale [69] for prime rings in 1969, and 
by S. A. Amitsur [72] for semiprime rings in 1972. A more precise term for such 
rings of quotients would have been the Martindale-Amitsur rings of quotients as, 
for instance, in the book of Rowen [88]. In the interest of brevity, however, we 
shall refer to them simply as Martindale's rings of quotients. 

Since the theory of Martindale's rings of quotients works only for semiprime 
rings, we shall begin our discussion by stating and proving a few properties of 
semi prime rings which are crucial for the development of this theory. This short 
subsection may thus be viewed as a continuation of § lID on sl~miprime rings. 

We begin with a basic observation on left annihilators in any ring R. Note that 
for any left ideal A S; R, the left annihilator, anne(A), is always an ideal in R. 

(14.1) Proposition. For any ideal A in a ring R with the property that A n 
anne(A) = 0, the/ollowing are equivalent: 

(1) anne(A) = O. 
(2) A S;e RRR (A is 2-sided essential in R). 
(3) A S;e RR (A is right essential in R). 
(4) A S;d RR (A is right dense in R). 

Proof. (4)===>(3)===>(2) are clear. 

(2)===>(1). Assume that A S;e R RR. Since anne (A) is an ideal with zero intersection 
with A, we have anne (A) = O. 

(1)===>(4) follows from (8.3)(4). o 

We shall now specialize to semi prime rings. Recall that, if R is semiprime, then 
for any ideal A S; R, we have ann, (A) = anne(A). This common annihilator is 
denoted simply by ann(A), and is called an annihilator ideal in R. Since (A n 
ann(A))2 = 0, the assumption that R is semiprime forces A n ann(A) = O. 
Therefore, (14.1) boils down to the following simpler statement, which provides 
the beginning point for Martindale's theory of rings of quotients for semiprime 
rings. 
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(14.2) Corollary. For an ideal A in a semiprime ring R, we have ann(A) = 0 iff 
A ~e RRR, iff A ~e RR, iff A ~d RR. 

(14.3) Notation. For a given semiprime ring R, we write F = F(R) for the set of 
ideals A ~ R satisfying the (equivalent) conditions in (14.2). 

The family F will play an important role in the following, so the notation 
F = F(R) will be fixed throughout §14. The fact that, for any essential ideal 
A, b . A = 0 ==> b = 0 suggests that, for a semiprime ring R, the module RR 
"comes close" to being nonsingular. (The latter requires that b . B = 0 for an 
essential right ideal B implies that b = 0.) However, in general, a semiprime (or 
even prime) ring need not be right nonsingular: see, for instance, (11.21)(4). 

(14.4) Proposition. If A, BE F (in the semiprime ring R), then AB, An Band 
An (n ~ 0) all belong to F. 

Proof. It suffices to prove that ABE F. Suppose x . A B = 0, where x E R. Then 
xA = 0 (since ann(B) = 0), and hence x = 0 (since ann(A) = 0). This shows 
that ann(AB) = 0, and hence AB E F. 0 

A typical way of exploiting the properties of the ideals in F is as follows. 

(14.5) Proposition. Suppose A E F in the semiprime ring R and let C ~ R be 
a right ideal containing A. For f, g E HomR(C, RR), flA = glA ==> f = g. 

Proof. We may assume that g == 0, and start with f I A = o. Consider any element 
c E C. From cA ~ A, we have 0 = f(cA) = f(c)A, and hence f(c) = 0 (since 
ann(A) = 0). This shows that f == 0 on C. 0 

We close this subsection with the following important observation which indi
cates why the case of prime rings is particularly easy and pleasant to work with. 

(14.6) Remark. Suppose R is a prime ring. Then any nonzero ideal A ~ R has 
ann(A) = 0 (by one of the definitions of primeness). On the other hand, the zero 
ideal has annihilator R =1= O. Therefore, F = F(R) is simply the set of all nonzero 
ideals in R. 

§14B. The Rings Qr(R) and QS(R) 

In this subsection, we shall introduce the definitions of Martindale's right rings 
of quotients and symmetric rings of quotients. Throughout the exposition, unless 
otherwise specified, R denotes a semiprime ring. Martindale's original theory was 
introduced for prime rings, and was designed for applications to rings satisfying 
a polynomial identity. As we have observed earlier in § 14A, the generalization 
to semiprime rings was due to Amitsur. These rings of quotients associated with 
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semiprime rings have since proved to be useful not only for the theory of rings with 
polynomial identities, but also for the Galois theory of noncommutative rings, and 
for the study of prime ideals under ring extensions in general. Due to limitation 
of space, however, we shall not delve into these applications, but shall content 
ourselves mainly with an exposition of the basic properties of Martindale's rings 
of quotients Qr (R) and Q' (R), with examples along the way. 

The quickest way to get our hands on Qr (R) and Q' (R) is to define them as 
subrings of the maximal right ring of quotients Q;;'ax (R) (of a semiprime ring R). 
Recall that F = F (R) denotes the set of ideals A ~ R which are right (or 2-sided) 
essential in R. 

(14.7) Definition/Proposition. For R semiprime, we define 

Qr(R) = {q E Q;;'ax(R): qA ~ Rforsome A E F}, 

Q'(R) = {q E Q;;'ax(R): qA, Bq ~ Rforsome A, BE F}. 

These are subrings of Q;;'ax(R), with R ~ Q'(R) ~ Qr(R). The ring Qr(R) 
(resp. Q'(R») is called Martindale's right (resp. symmetric) ring of quotients of 
R. 

Proof. Both Qr(R), Q"(R) are closed under addition, since F is closed under 
intersection. For multiplication, let q, q' E Qr (R); say, q A ~ R, q' A' ~ R, 
where A, A' ~ F. Then 

qq'A'A ~ qRA = qA ~ R. 

By (14.4), A' A E F, so we have qq' E Qr(R). Similarly, we can show that 
q, q' E Q' (R) ==> qq' E Q' (R). Thus, Qr (R), Q' (R) are subrings of Q;;'ax (R), 
and it is clear that R ~ Q' (R) ~ Qr (R). 0 

Note that, since F is closed under finite intersections, we could have taken A, B 
to be the same ideal (in F) in the definition of Q' (R). 

Recall that, without any assumptions on R, we have always 

(14.8) q-1R = {x E R: qx E R} ~d RR, and q(q-1R) ~ R. 

Here, q-I R is in general only a right ideal. The point in the definition of Qr (R) 
in (14.7) is that we require the A there to be an ideal (essential in R). 

Just as we can think of the elements of Q;;'ax (R) as equivalence classes of the 
right R-linear functionals on dense right ideals of R (see (13.21), we can interpret 
the elements of Qr (R) as classes of right R-linear functionals on the ideals in F. 
The following result is a specialization of (13.21). 

(14.9) Proposition. Qr (R) consists of equivalence classes [A, fl where A E 

F and f E HomR(A R, RR)' Here, two pairs (A, j), (A', f') are defined to 
be equivalent if f = f' on A n A'. If we think of the elements of Qr (R) as 
equivalence classes of the form [A, fl, then addition and multiplication in Qr (R) 
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are described by 

[A, fl+[B, g]=[AnB, f+g], 

[A, fl· [B, g] = [BA, fg]. 

Proof. (Sketch) The relation we defined on the pairs (A, f) is clearly reflexive 
and symmetric. To show that it is also transitive, assume that (A, f) ~ (A',!,) 
and (A', f') ~ (A", f"), where A, A', A" E F, and f, f', f" are the respective 
functionals. Certainly, f, 1', f" are all equal on AnA'nA". Since AnA'nA" E F 
by (14.4), it follows from (14.5) that f and I" are equal on A n A". Therefore, 
we have (A, f) ~ (A", 1"). Now it is safe to talk about the equivalence classes 
[A, fl. 

For each q E Qr(R), we have qA ~ R for some A E F. To such q, we can 
associate the class [A, fl where f : A --+ R is given by left multiplication by 
q. Conversely, given f E HomR(AR, RR) where A E F, we know from (13.20) 
that f is given by left multiplication by a unique q E Q::nax (R). (Note that (14.1) 
guarantees that A ~d RR!) Since qA ~ R, we have by definition q E Qr(R). It 
is easy to check that the above procedure establishes a one-one correspondence85 

between Qr(R) and the set of equivalence classes of the form [A, fl. 
The interpretation of addition on equivalence classes is immediate, upon noting 

that An B E F by (14.4). For multiplication, note that by (14.4), BA E F. Since 
g(BA) ~ g(B)A ~ A, fg is defined on BA. If [A, fl and [B, g] correspond 
respectively to q, q' E Qr(R), the class [BA, fg] clearly corresponds to qq'. 
(Note. The choice of B A as the domain for f g is somewhat arbitrary. We could 
have chosen, for instance, the more symmetrical expression (A n B)2.) 0 

It is possible to give a more axiomatic definition for Qr (R). In this definition, 
we obtain Qr (R) as an extension ring of R with certain quotient ring properties. 
This approach will be presented later in § 14D. Similarly, the symmetric Martindale 
ring of quotients Q" (R) can also be described by axiomatic properties. Aside from 
their theoretical interest, these alternative descriptions do tum out to be of practical 
use. Indeed, if we work with the maximal left ring of quotients Q~ax(R), then 
we can define the Martindale left ring of quotients Qf (R), and define inside it 
another symmetric Martindale ring of quotients. The axiomatic characterizations 
developed in § 14D below will show that the two symmetric Martindale rings 
of quotients are indeed the same, thereby justifying the terminology. For now, 
QS (R) continues to denote the symmetric Martindale ring of quotients defined 
within Q::nax (R). 

85The injectivity of the map q 1-+ [A, fJ corresponds to the fact that, if q A = 0 where 
A E F, then q = O. This is a consequence of A S;d RR, and should be viewed in the light 
of (13.20). This fact will be used over and over again in the following. 
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(14.10) Examples. 

(a) Let the semiprime ring R be right duo, i.e. such that right ideals in Rare 
ideals. Then F = F(R) is the family of all dense right ideals. lin this case, Qr (R) 
boils down to the entire maximal right ring of quotients Q:;'ax(R), by (13.21). 
This is the case, for instance, if R is any commutative ring. Here, we also have 
Q'(R) = Q:;'ax(R). 

(b) Let R be any simple ring. Then clearly F(R) consists of a single ideal, namely, 
R. In this case, the definition of Qr (R) shows that Qr (R) =: R, and therefore 
Q" (R) = R too. 

We shall give below more examples for the Martindale rings of quotients. For 
later reference, let us first note the following special property of Qr (R). 

(14.11) Lemma. Let q E Qr (R) where R is semiprime, ana' let A E F(R). If 
either q A = 0 or Aq = 0, then q = O. 

Proof. If qA = 0, then we know q = 0 (as long as q E Q:;'ax(R». Now assume 
Aq = 0 instead. Since q E Q' (R), there exists B E F such that q B £; R. From 
Aq = 0, we get A(qB) = 0, and so qB = 0 since ann(A) = 0 in R. Therefore, 
we are back to the first case, and can conclude that q = o. 0 

(14.12) Proposition. Suppose R is a domain (resp. prime, semiprime). Then so 
is Q'(R). 

Proof. First, suppose R is a domain. Let q, q' E Q" (R) be such that qq' = O. 
There exist A, A' E :F such that Aq £; Rand q' A' £; R. Then 

0= A(qq')A' = (Aq)(q' A') 

implies that Aq = 0 or q' A' = O. By (14.11), it follows that q = 0 or q' = O. 
Therefore, QS(R) is also a domain. Next assume that R is prime. Let q, q' E 

QS(R) be such that qQS(R)q' = O. Choose A, A' E F as before and note that 

qQS(R)q' = 0 ===} qRq' = 0 ===} (Aq)R(q' A') = o. 
Since Aq, q' A' £; Rand R is prime, we have Aq = 0 or q' A' = 0, and so 
q = 0 or q' = 0 as before. The case when QS (R) is semiprime: follows similarly, 
since 

qQS(R)q = 0 ===} (Aq)R(Aq) £; A(qRq) = 0 ===} Aq = 0, 

and hence again q = O. o 

In the case of "prime" and "semiprime", (14.12) is also true with QS (R) replaced 
by Qr (R). The proofs are similar, and are left as exercises in this section. However, 
in the "domain" case, the example below shows that we cannot replace QS (R) by 
Qr(R) in (14.12). 
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(14.13) Example. Let R be the free algebra k(Xl, ... , x,,) over a field k, where 
n ~ 2. Then Q" (R) is a domain by (14.12), but we shall show that the Xi'S 

are O-divisors in Qr (R), so Qr (R) is not a domain. (In particular, we must have 
QS(R) £; Qr(R).) Consider the ideal A S; R consisting of (noncommuting) 
polynomials in the Xi'S with zero constant term. Since R is a prime ring, A E F. 
As a right R-module, A = Xl REB··· EB x"R is free with basis {Xl, ... , XII}. 
Let f : A ~ R be the right R-module homomorphism defined by f(Xl) = 1 
and f(X2) = ... = f(x,,) = o. Let q E Qr(R) be the unique element such 
that f is given by left multiplication by q. Then qXl = 1 and qX2 = ... = 
qx" = 0, so X2, ... , X" are right O-divisors in Qr (R). Similarly, Xl is a right 
O-divisor in Qr (R) too (and Qr (R) is not Dedekind-finite). According to a 
result of V. K. Kharchenko [79], Q" (R) is in fact equal to R for the free algebra 
R = k(Xl, ... ,x,,). For a self-contained proof ofthis fact, see D. S. Passman [87]. 

To close this subsection, we shall prove a useful result which enables us to 
conclude that a semiprime ring R has the same Martindale rings of quotients as 
some of its subrings. This result is, for instance, very convenient in generating 
new examples from old ones. (Cf. Exercise 9 in §13.) 

(14.14) Theorem. Let R be a ring, and I S; R be an ideal with annr(I) 
anne(I) = O. Let T be any subring of R containing I. Then 

(1) R is prime (resp. semiprime) iffT is. 
(2) If R is semiprime, then Qr (R) = Qr (T) and Q' (R) = Q" (T). 

Proof. (1) We shall only work with the "prime" case since the "semiprime" case 
is similar. Assume R is prime, and consider any nonzero ideal B of T. Then I B I 
is an ideal of R lying in B, and I B I i- 0 by the assumptions on I. Therefore, if 
B' is another nonzero ideal of T, then 

BB';2 (I Bl)(I B'l) i- 0, 

so T is prime. Conversely, if T is prime, then again, for nonzero ideals A, A' 
of R, I AI, I A' I, are nonzero ideals of T (in fact, of R too), and so 

AA' ;2 (I Al)(I A'l) i- O. 

This shows that R is prime. 

(2) Here we only give a sketch of the proof. Since R (and hence also T) is semi
prime, we can use the notations F(R) and F(T). We shall define mutually inverse 
homomorphisms: 

cp: Qr(R) ~ Qr(T), 1/1: Qr(T) ~ Qr(R). 

To define cp, take f : AR ~ RR, where A E F(R). By (14.4), I AI E F(R). 
Since I AI S; T, we have I AI E F(T). We then define 

cp[A, f] = [l AI, f'] E Qr(T), 
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where f' is the restriction of f to I AI. Similarly, if g : BT ---+ TT where 
BE F(T), then I BI E F(R). Indeed, for x E R: 

x(l Bl) = 0 ===} (xl)B = 0 ===} xl = 0 ===} x = O. 

Since / B I S; B, we can define 

1/I[B, g] = [l B/, g'] E Qr(R), 

where g' is the restriction of g to / B I. Here, we do have to verify that g' is a right 
R-homomorphism. Take i, i' E /, bE B, and x E R. We have: 

g'(ibi' . x) = g(ib· (i'x» = g(ib)i'x = g'(ibi')x, 

as desired. It is routine to check that rp, 1/1 are well-defined, mutually inverse ring 
homomorphisms. Therefore, we can use them to identify Qr (R) with Qr (T). If 
q E Q' (R) S; Qr (R), then Aq S; R for some A E F(R). But then (I Al)q S; 

/ Aq S; T shows that q E Q' (T). Similarly, we can show that Q' (T) S; Q' (R), 
so equality holds. 0 

Remark. In the context of (14.14), I must (somewhat grudgingly) concede that the 
formulation of the theorem would have been easier if we had admitted throughout 
rings without identities. In that case, / itself would be a ring, for which we could 
form the Martindale rings of quotients. Then (14.14) could have been formulated 
by saying that Qr (I) = Qr (R) and QS (I) = QS (R), without the use of rings T 
between R and /. 

The following typical application of (14.14) is worth mentioning. Here we go 
back to rings with identities! 

Example. Let R = k (x, y) where k is a field. We can take the ideal I = Rx R S; R, 
and form the subdomain T = k+ / C; R. Then Qr (T) = Qr (R), and, if we assume 
Kharchenko's result (mentioned in (14.13» that QS(R) = R, then (14.14) shows 
that QS(T) = R = k(x, y). 

§14C. The Extended Centroid 

We begin our considerations here with a result describing the elements in Z(Q), 
the center of the maximal right ring of quotients Q := Q;;'ax (R). For this result 
(which was actually given earlier as Exercise 5 in § 13), no assumptions are needed 
on the base ring R. 

(14.15)Lemma. Letqo E Q where Risanyring. Thenqo E Z(Q)iffqocommutes 
with every element of R. 

Proof. ("If" part) Assume that qo commutes with every element of R, but qoq #
qqo for some q E Q. Then there exists a E R such that (qoq -- qqo)a #- 0 and 
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qa E R. But then 

qo(qa) = (qa)qo = q(aqo) = qqoa, 

a contradiction. o 

Coming back to semiprime rings, we further observe the following. 

(14.16) Lemma. Let Q = Q:;'ax(R) where R is semiprime. If qo E Z(Q), then 
qo E QS (R) (the symmetric Martindale ring of quotients). 

Proof. We know by Exer. (8.1) that B := qr;1 R = {x E R : qox E R} is a dense 
right ideal in R. Now B is also a left ideal. Indeed, for any x E Band t E R, we 
have 

qo(tx) = (qot)x = tqox E tR S; R, 

so tx E B. Therefore, we have B E F = F(R). Moreover, qo E Z(Q) implies 
that 

so qo E QS (R). o 

The lemma leads to the following important fact. 

(14.17) Proposition. For any semiprime ring R, we have 

Z(QS(R» = Z(Qr(R» = Z(Q), and Z(Q) n R = Z(R). 

Proof. If qo E Z(Q), then qo E QS(R) by (14.16), so qo is central in both QS(R) 
and Qr (R). Conversely, a central element in QS (R) or in Qr (R) commutes 
elementwise with R, and so is also central in Q by (14.15). This shows the first 
part of the Proposition, and the second part follows similarly. 0 

(14.18) Definition. The (commutative) ring Z(Q'(R» = Z(Qr(R» = Z(Q) is 
called the extended centroid of R. 

It is of interest to give an alternative description of the extended centroid Z (Q) 
in terms of the equivalence classes [A, fl (A E F, and f E HomR(A R, RR». 

(14.19) Proposition. Upon interpreting the elements of Qr (R) as the equiva
lence classes [A, fl as in (14.9), the elements of the extended centroid Z(Q) 
are precisely those of the form [A, fl where A E F and f : A -+ R is an 
(R, R)-bimodule homomorphism. 

Proof. First consider a class [A, fl where A and f are as described above. Let 
qo be the corresponding element in Qr (R), so f is left multiplication by qo. Since 
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f is a left (as well as right) R-module homomorphism, (qot - tqo)A = 0 for any 
t E R. This implies that qo commutes with every element of R, so by (14.15) 
qo E Z(Q). Conversely, suppose a class [A, f] (A E F, f E HomR(A R, RR» 
corresponds to an element qo E Z(Q'(R)) = Z(Q). For any a E A and t E R, 
we have f(ta) = qota = tqoa = tf(a), so f is a left (as well as right) R-module 
homomorphism, as desired. 0 

Next, we state and prove a very pleasant property of the extended centroid, due 
to S. Amitsur. (We continue to assume that R is semiprime.) 

(14.20) Proposition. Z(Q) is a von Neumann regular ring. 

Proof. Recall that if M is a semisimple module, End(M) is always a von Neumann 
regular ring: see FC-( 4.27). The proof of the present proposition uses the same 
idea as in that proof. Let [A, f] E Z(Q), so A E F, and f : A --+ R is an 
(R, R)-bimodule homomorphism. Then B := ker(f) ~ A is an ideal of R. Let C 
be a 2-sided complement to B in A (i.e., C is an ideal of R contained in A maximal 
with respect to C n B = 0). Then B EEl C ~e RAR, so upon replacing A by B EEl C 
(which clearly belongs to :n, we may assume that B EEl C = A. Consider the ideal 
C' := f(A) = f(C) ~ R, which is isomorphic to C as an (R, R)-bimodule. 
Let B' := ann(C'), for which we have B' EEl C' ~e RRR by (11.38). Therefore, 
A' := B' EEl C' E F. Now define g : A' --+ C ~ R by 

g(b' + f(c)) = c (b' E B', c E C). 

We check easily that g is an (R, R)-bimodule homomorphism. Note that g is 
defined on im(f) and f is defined on im(g). For a general element b + c E A 
(b E B and c E C), we have 

(fgf)(b + c) = fg(f(c» = f(g(f(c))) = f(c) = f(b + c), 

so fgf = f as bimodule homomorphisms from A to R. Here [A', g) E Z(Q) 
since A' E F and g is a bimodule homomorphism. Therefore, we have checked 
that every element f E Z(Q) has a "pseudo-inverse" g E Z(Q). 0 

(14.21) Remark. If R is not assumed to be semiprime, then the conclusion of 
(14.20) may not hold. For instance, if R is a nomeduced commutative ring, then 
so is Q = Q;;'ax(R) and hence Z(Q) = Q cannot be von Neumann regular. 
On the other hand, in case R is a semi prime ring which happens to be also right 
nonsingular, then Q is von Neumann regular by (13.36), and therefore Z(Q) is 
also von Neumann regular by FC-Exer. 21.7. This gives an alternative proof of 
(14.20) in a special case. 

(14.22) Corollary. If R is a prime ring, then the extended cmtroid Z(Q) is a 
field. 
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Proof. First, by (14.12), the fact that R is prime implies that QS (R) is prime. Now, 
clearly, the center of a prime ring is a domain. Therefore, Z(Q) = Z(QS(R» 
is a domain. Since Z(Q) is von Neumann regular by (14.20), it follows readily 
that Z(Q) is a field. In fact, a much more direct argument is possible. Let 0 i= 
c E Z(Q). As in (14.19), we can think of c as the class of an (R, R)-bimodu1e 
homomorphism f : A -+ R given by left multiplication by c, where A E :F. 
Now f must be injective. For, if 0 = f(a) = ca, then 

(14.23) c(AaA) = AcaA = 0 ===> AaA = 0 ===> a = O. 

If g : cA -+ A ~ R is the inverse of f : A -+ cA, then [cA, g] is the inverse 
of [A, f] = c in Z(Q). D 

As a follow-up on this corollary, consider Z(R), the center of the prime ring 
R. This is a domain, contained in the field Z(Q). In general, Z(Q) contains, but 
may not be equal to, the field of quotients of Z(R). However, since the elements 
of S := Z(R)\{O} are all invertible in Z(Q) ~ Q" (R), the Martindale symmetric 
ring of quotients QS (R) contains the central localization S-l R of R. 

We close this subsection with a remark on terminology. Why is Z(Q) called 
the extended centroid of the semiprime ring R? In the study of rings possibly 
without identities, there is a useful notion of the "centroid": for a ring R which 
may not have an identity, the centroid C of R is defined to be the ring of all 
endomorphisms of R as an (R, R)-bimodule. Under reasonable assumptions on 
R (for instance, R· R = R), C can be shown to be a commutative ring (and it 
coincides with the center of R if R already has an identity). Via (14.19), C may 
be viewed as a subring of Z(Q). Thus, Z(Q) is a somewhat bigger object than 
the centroid, and it makes sense to call it the "extended centroid" of R. 

§14D. Characterizations ofQr(R) and QS(R) 

We return now to give axiomatic characterizations of the Martindale rings of 
quotients. As we shall see later in this section, these characterizations are quite 
useful for the purposes of computations. Our exposition here follows closely that 
of Passman [87]. 

We start with the following characterization of Martindale's right ring of quo
tients, Qr (R). 

(14.24) Proposition. Let R be a semiprime ring, and let S be a ring containing 
R as a subring. Let F = F(R) be the set of ideals in R with zero annihilators. 
Then S is R-isomorphic to Qr(R) iff S has the following properties: 

(1) For any q E S, there exists A E F such that q A ~ R. 
(2) For q E S and A E F, q A = 0 ===> q = O. 
(3) For any A E F and f E HomR(A R, RR), there exists q E S such that 

f(a) = qafor all a E A. 
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Proof. Since (1), (2) and (3) are known properties of Q' (R), we need only prove 
the "if" part. Assume that S has the above properties. For any q E S, take A E F 
such that qA ~ R. Let f E HomR(A R, RR) be defined by left multiplication by 
q. Then [A, fl E Q' (R) depends only on q. (For if B E F is such that q B ~ R 
and g is defined by left multiplication by q on B, then f, g clearly agree on 
An B E F.) Defining ((J : S --+ Q'(R) by f{J(q) = [A, fl, we check easily 
that ((J is a ring homomorphism over R. By (2), f{J is injective and by (3), f{J is 
surjective, so we have S ~ Q'(R) over R, as desired. 0 

Needless to say, there is a left analogue of (14.24) giving the characterization of 
Ql (R). Next, we come to the characterization of QS (R), the symmetric Martindale 
ring of quotients defined within Q~ax (R). 

(14.25) Proposition. Let R ~ Sand F be as in (14.24). Then S is R-isomorphic 
to QS (R) iff S has the following properties: 

(1) For any q E S, there exist A, BE F such that qA, Bq ~ R. 
(2) For q E S and A, BE F, qA = 0 or Bq = 0 ==> q = o. 
(3) Let A, B E F and f E HomR(A R, RR), g E HomR(RB, RR) be such 

that b(fa) = (bg)a for all a E A and b E B. Then there exists q E S 
such that fa = qa and bg = bq for all a E A and b E B. 

(Note that since g is a homomorphism between left R-modules, we write it on 
the right of the arguments. Also, to simplify notations, we have suppressed the 
usual parentheses around the arguments.) 

Proof. First assume S = QS (R). Then (1) follows by definition, and (2) follows 
from (14.11). To verify (3), let f, g be as given. Then there exists q E Q'(R) 
such that fa = qa for all a E A. Plugging this equation into b(fa) = (bg)a, we 
get (bq - bg)A = 0, so by (2), bg = bq for all bE B, as desired. 

Conversely, suppose a ring S 2 R satisfies (1), (2), and (3). For any q E S, 
fix A, B E F such that qA, Bq ~ R. Let f E HomR(A R, RR) (resp. g E 

HomR(RB, RR» be defined by left (resp. right) multiplication by q. Then 

(14.26) b(fa) = b(qa) = (bq)a = (bg)a (VaEA, bEB). 

By what we have shown in the first part, there exists (a unique) q' E Q"(R) such 
that fa = q' a and bg = bq' for all a E A and b E B. It is easy to check that 
f{J(q) = q' gives a well-defined ring homomorphism f{J from S to QS(R). As 
in the proof of (14.24), (2) implies that f{J is injective, and (3) implies that f{J is 
surjective, so we have S ~ QS(R) over R, as desired. 0 

(14.27) Remarks. 

(A) Since the conditions (1), (2) and (3) above are left-right symmetric, an imme
diate consequence of (14.25) is that (as we have pointed out earlier) the symmetric 
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Martindale ring of quotients defined within Q:;'ax (R) is R -isomorphic to that de
fined within Q~ax(R). 

(B) By the argument given in the proof of (14.11), we see that, in the presence 
of (1) in (14.25), the condition (2) there could have been weakened to qA = 
o ====} q = 0, or to Bq = 0 ~ q = O. However, this would have destroyed the 
symmetry of the condition. Therefore, it seemed best to formulate the condition 
(2) as we did in (14.25) and just let the redundancy there stand. 

An application of the characterization theorems in this subsection will be given 
later in § 14F. 

§14E. X-Inner Automorphisms 

In this subsection, we introduce briefly the notion of an X-inner automorphism. 
This notion plays an interesting role in the Galois theory of prime and semi prime 
rings, and has also applications to other areas in ring theory. However, we intro
duce the notion of X-inner automorphisms mainly as an illustration of the utility 
of Martindale's rings of quotients. Our exposition here is therefore limited to a 
rendering of ideas, definitions, and examples. 

We begin with the notion of a normalizing element. 

(14.28) Definition. Let R ~ S be rings (with the same identity). An element XES 
is said to normalize R if xR = Rx. In this case, we shall also say that x E S is an 
R-normalizing element. 

Some immediate properties of R-normalizing elements are the following. 

(14.29) Lemma. Let N be the set of R-normalizing elements in S. Then 

(1) N is closed under multiplication. 
(2) The set R· N consisting ofjinite sums L rjXj (rj E R, Xj EN) is a subring 

of S containing R (called the normal closure of R in S). 
(3) [fx E N and A is an ideal of R such that xA ~ R, then xA is also an 

ideal of R. 
(4) Suppose x E N is such that,for any r E R, xr = 0 or rx = 0 implies 

that r = o. Then there exists a unique automorphism rp of R such that 
xa = rp(a)x for all a E R. 

Proof. (1) Let x, YEN. ThenxyR = xRy = Rxy, soxy E N. 

(2) For x, YEN and r, s E R, we have 

(rx)(sy) = r(s'x)y = (rs')(xy) 

for some s' E R, so R . N is closed under multiplication. Therefore, R . N is a 
ring containing R. (It is just the subring of S generated by Rand N.) 
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(3) We have (xA)R = x(AR) ~ xA and 

R(xA) = (Rx)A = xRA ~ xA, 

so xA is an ideal in R. 

(4) For a E R, there exists a' E R such that xa = a'x. Such an element a' E R 
is unique, by our assumptions on x in (4). We can therefore define q; : R -+ R 
by taking q;(a) = a'. A routine calculation shows that q; is a ring endomorphism 
of R. If q;(a) = 0, then xa = a'x = 0 implies that a = O. For any given 
a' E R, there exists a E R such that a'x = xa, so a' = q;(a). Therefore, q; is 
an automorphism of R. The uniqueness of q; is clear (again by our assumptions 
on x). (Of course, if x E U(S), then q; is just the restriction {to R) of the inner 
automorphism s ~ xsx- 1 of S.) 0 

Returning now to semiprime rings, we study below the R-normalizing elements 
in the maximal right ring of quotients. The following result shows immediately 
the relevance of Martindale's symmetric ring of quotients QS (R). 

(14.30) Theorem. Let R be a semiprime ring, and let N be the set 0/ R -normalizing 
elements in Q~ax (R). Then N ~ QS (R). 

Proof. For x E N, let A := {a E R : xa E R}. This is a dense right ideal in R. 
We claim that A is also a left ideal of R. In fact, if a E A and t E R, then 

x(ta) E xRa = R(xa) ~ R, 

so indeed ta E A. Since A ~d RR, we have A E F(R). Now let B = {b E R : 
bx E xA}. This is a left ideal in R sincexA is an ideal by (14.29)(3). We claim that 
B is also a right ideal of R. In fact, if bE Band t E R, then (bOx E bxR ~ xA, 
so indeed bt E B. Note that Bx ~ xA is an equality (sincexA I::::: Rx). Using this, 
we can check that B E F(R). For if t E annR (B), then 0 = t Bx = tx A shows that 
tx = O. The latter implies, in particular, that t E B, so now t E B n annR (B) = O. 
From Bx = xA ~ R and A, BE F(R), we conclude that x E QS(R). 0 

(14.31) Corollary. The normal closure86 R . No/ R in Q~ax(R) is contained in 
QS (R). 

(14.32) Proposition. In the notation 0/(14.30), let x E N be such that,forc E R, 
xc = 0 ===} c = O. Then x E U(Q'(R)). 

Proof. Let A E F(R) be as in the proof of (14.30). By (14.29)(3), xA ~ R is an 
ideal. In fact, xA E F(R) also. For, if t E R is such that (xA)t = 0, then At = 0 

86There is a notion of "central closure" also. Let C = Z(Q:;'ax(R» be the extended 
centroid. Then the central closure of R is defined to be R . C. Since clearly C <; N, we 
have R· C <; R· N <; Q'(R). 
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(by the hypothesis on x) and thus t = O. Now let f : AR ---+ RR be the R-homo
morphism given by left multiplication by x. Then f is an injection, and we have 
an inverse map g : xA ---+ A ~ R which defines an element [xA, g) E Q'(R) 
inverse to x = [A, f]. Therefore, x E U(Q'(R». From xR = Rx, we have 
Rx- I = X-I R, so X-I is also R-normalizing. By (14.30), X-I E QS(R) also, so 
we have x EU(QS(R». 0 

(14.33) Corollary. If R is a prime ring, then 

0=1= x EN===} X E U(QS(R». 

(In particular, N* := N\ {O} is a multiplicative group.) 

Proof. It suffices to check that, for c E R, xc = 0 ===} c = O. For the ideal 
A E F(R) in the above proof, we have (xA)(cR) ~ Rx(cR) = O. Since xA ~ R 
is a nonzero right ideal by (14.11) and R is prime, c = O. The parenthetical 
statement is clear since x =1= 0 and Rx = xR now imply Rx- I = X-I R. 0 

Of course, this result implies, once again, that the extended centroid is a field 
in case R is a prime ring. 

The following special cases of (14.32) and (14.33) are already worth noting. 

(14.34) Corollary. Let R be a semiprime (resp. prime) ring. Then any regular 
(resp. nonzero) element x E R such that xR = Rx is invertible in QS(R). 

We shall now point out the relevance of R -normalizing elements to the study 
of automorphisms of a semiprime ring R. We shall write Aut(R) for the group of 
all automorphisms on R. For any rp E Aut(R), we define 

X(rp) = {x E Q~ax(R): xa = rp(a)x for all a E R}. 

This is clearly an additive group. In fact it is a module over the extended centroid 
Z(Q~ax (R». In the special case when rp = IdR (the identity automorphism), 

X(Id R) = {x E Q~ax(R): xa = ax Va E R} 

is exactly the extended centroid, according to (14.15). 

(14.35) Lemma. For any rp E Aut(R) (R semiprime), we have X(rp) ~ N ~ 
QS (R). 

Proof. Let x E X(rp). For any a E R, xa = rp(a)x E Rx, and similarly, 
ax = xrp-I(a) E xR. Thus, x E N, and N ~ QS(R) isjust(14.30). 0 

We can now define the notion of an X-inner automorphism of a semiprime ring. 
This interesting notion was introduced by the Russian mathematician V. K. Khar
chenko, although, as S. Montgomery has pointed out to me, similar ideas had been 
used earlier by analysts and by researchers working with orders in semisimple 
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algebras. The "X" in "X-inner" is taken from the first letter of Kharchenko's 
Russian name. 

(14.36) Definition. An automorphism q; of a semiprime ring R is said to be X
inner if X(q;) 0/ 0; that is, if there exists a nonzero x (necessarily in N S; Q' (R)) 
such that xa = q;(a)x for any a E R. The set of all X-inner automorphisms on 
R is denoted by X-InneR). 

For a semiprime ring R, X-InneR) may not be a subgroup of Aut(R). The 
problem is the following. If q;, q;' E X-InneR), say, 00/ x E X(q;) and 00/ x' E 

X(qJ'), then for any a E R, 

(14.37) xx'a = xq;'(a)x' = q;q;'(a)xx', 

so xx' E X(q;q;'). Unfortunately, xx' may be zero, so we cannot conclude that 
q;q;' E X-InneR). The following offers an explicit example (even over a commu
tative ring) of a pair of X-inner automorphisms whose product is not X-inner. 

(14.38) Example. Let R be a commutative semiprime (i.e., reduced) ring, and let 
Q = Qmax(R). Then, for any q; E Aut(R), 

X(q;) = annQ{q;(a) - a: a E R}, 

so q; is X-inner iff this annihilator is nonzero. This makes it pretty "easy" to decide 
if q; E X-InneR). For instance, let R = k x k x k, where k is any field. Then 
R = Qmax (R). We define q;, q;' E Aut(R) as follows, where a = (ai, a2, a3) E 

R: 

q;(a) = (ai, a3, a2), and q;'(a) = (a3, a2, £II)' 

An easy computation shows that 

X(q;) = k x 0 x 0 and X(q;') = 0 x k x 0, 

so both q; and q;' are X-inner. However, since 

q;q;'(a) = q;(a3, a2, al) = (a3, ai, (12), 

we have X(q;q;') = O. Therefore, the composition q;q;' is not X-inner! 

Fortunately, the failure of multiplicative closure of X-InneR) cannot happen 
over a prime ring. This is a consequence of (14.33), which we shall spell out 
explicitly. The notation N* = N\{O} in (14.33) will remain in force. Recalling 
that the extended centroid C : = Z (Q' (R» is a field in case R is a prime ring, let 
us also write C* = C\ {OJ for the multiplicative group of C. 

(14.39) Proposition. Let R be a prime ring. Then X-InneR) is a group, isomorphic 
to N* / C*. Also, X-InneR) contains Inn(R) (the group of inner automorphisms 
of R) as a normal subgroup. 
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Proof. By (14.33) for any rp E X-InneR), any nonzero x E X(rp) is a unit in 
Q" (R); so rp is just the restriction to R of the inner automorphism t t--+ X t X -I of 
QS(R). If rp, rp' E X-InneR) and 0 -I x E X(rp), 0 -I x' E X(rp'), then x, x' and 
hence XXi are units of QS (R); hence (14.37) implies that rprp' E X-InneR). Also, 
x-Ia = rp-I(a)x- I (Va E R) shows that X-I E X(rp-I), so rp-I E X-InneR). 

This verifies that X-InneR) is a group, which clearly contains Inn(R). There is 
a surjective group homomorphism rr : N* -+ X-InneR) given by rr(x)(a) = 
xax- I (for any a E R). If rr(x) = Id R , then xa = ax for all a E R, and hence 
x E C* by (14.15). This shows that X-InneR) ~ N* jC*. 

Quite generally, Inn(R) is a normal subgroup of Aut(R). Therefore Inn(R) 
is also normal in X-InneR). (If 'fj! E Inn(R) is induced by u E VCR) and 
rp E X-InneR) is induced by x E V(Q"(R», then rp'fj!rp-I is induced by rp(u) = 
xux- I E V(R).) 0 

We mention in passing the following nice result of Kharchenko. 

(14.40) Theorem. For any rp E X-InneR) over a semiprime ring R, X(rp) is a 
cyclic module over the extended centroid C. 

We shall prove this only in the case when R is a prime ring. Here C is a field, 
so the result means that X (rp) is a I-dimensional C -vector space. This is easy: if 
o -I x E X(rp), then for any y E X(rp), 

x-Iya = x-Irp(a)y = ax-Iy (Va E R). 

This shows that x-I y E C by (14.15), and hence y E xC. o 

For a proof of (14.40) in the semiprime case, see Cohen-Montgomery [79]. 
If R happens to be a simple ring, then Q" (R) = R by (14.1O)(b). Therefore, 

X-InneR) = Inn(R). Some examples of X-inner automorphisms that are not 
inner over noncommutative domains are given in the following. In each of these 
examples, we can actually compute the quotient group X-Inn(R)jInn(R). 

(14.41) Example. Letk be a field, andu be an automorphism onk. Let R = k[x; u] 

be the skew polynomial domain over k, with elements of the form L aixi (ai E k) 
and with multiplication defined via the twist equationxa = u(a)x for a E k. Note 
that we can extend u to an automorphism rp of R by taking rp(x) = x; in other 
words, we define 

To check that rp is an automorphism of R depends mainly on checking that 
rp "respects" the twist equation xa = u (a)x. This is indeed the case since 
rp(u(a»rp(x) = u 2(a)x and rp(x)rp(a) = xu(a) = u 2 (a)x also. Since 

(" i)" i+1 (" i) X L.,.aix = L.,.u(ai)x = rp L.,.aix x, 
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we have x E X(rp)\ {OJ. Therefore, rp E X-InneR). On the other hand, U(R) = k*. 
Using this, it is easy to show that rp (j. Inn(R) provided a #- idk • 

If we assume that a E Aut(k) has infinite order, it is also possible to compute 
explicitly the various rings of quotients of R, as well as the quotient group X
Inn(R)jInn(R). First, by the discussion at the beginning of §lOC, R is an Ore 
domain, with a division ring of fractions Q. Then Q = Q:;'ax (R) by (13.15). To 
compute Qr (R) and QS (R), we use the fact that F(R) = {xm R : m :::: O} (see 
FC-(11.12); this is where we need the fact that a has infinite order.) From this, 
we have 

Qr(R) = {q E Q: qA S; R for some A E F(R)} 

= {q E Q: qxm E R for some m :::: O} 

= U Rx-m • 

m,,:O 

This is precisely the (twisted) Laurent polynomial ring k[x, X-I; a]. Since we 
already know that X-I E Q'(R) (by (14.33», it also follows that Q'(R) = 
k[x,x-I;a]. An easy computation shows that U(Q'(R» = k*· (x): this is a 
semidirect product with normal subgroup k* and with x acting on k* by a. Here, 
x induces the X-inner automorphism rp on R, while elements of k* induce inner 
automorphisms. Therefore, we have 

X-Inn(R)jInn(R) ~ (rp) ~ (a) ~ Z, 

where the isomorphism (rp) ~ (a) is due to the fact that rpn I k = an for all n. 

The X-inner automorphisms in the above example are all induced by elements 
in R or by their inverses. An easy modification of the construction, however, will 
lead to examples of X-inner automorphisms that are not induced by elements in 
the base ring or by their inverses. 

(14.42) Example. Keep the notations above, and let m be a fixed positive integer. 
Let Rm = k + xm R, which is the subdomain of R consisting of skew polynomials 
of the form 

(n :::: m, ai E k). 

Since Rand Rm have a common nonzero ideal xm R, we have by (14.14) 

Qr(Rm) = Q'(Rm) = Q'(R) = k[x, X-I; al. 

Exactly as before, X-Inn(Rm)jInn(Rm) ~ (rpm) ~ (a) ~ Z, where rpm := 
rplRm. Here, the X-inner automorphisms rp;m, rp;(m+I), ... are induced by 
x m, xm+ I, ... E Rm and their inverses, while rp; I, rp;2, ... , rp;(m -I) are in-
duced by x±l, X±2, ... , x±(m-I) which are outside of Rm. 

In the two examples above, the various Martindale rings of quotients (and the 
normal closures of the base ring) are all given by S = k[x, X-I; a]. Now, since a 
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is assumed to have infinite order, this latter ring is a simple domain by FC-(3.19). 
Therefore, we have 

Q'(S) = Qi(S) = Q"(S) = S 

by (14.1O)(b). However, in general, Q', Qi and Q" are not "closure operations"; 
in other words, Q" (Q" (R» may not be equal to QS (R), etc. The formation of the 
normal closure (of a semiprime ring) is not a closure operation either. All of these 
contrast sharply with the fact, proved earlier in (13.31 )(3), that R ~ Q:-nax (R) is 
a closure operation. (There is a "silver lining": see Exercise 17.) 

(14.43) Example. Let R = Z 1 EB Z i EB Z j EB Z k be the domain of integer 
quatemions. This is a 2-sided order in the division ring Q of rational quatemions. 
Therefore, 

Q:-nax(R) = Q~I(R) = Q, 

and the same holds for the left quotient rings. The extended centroid C is Z (Q) = 
Q. Each automorphism of R induces an automorphism of U(R) = {±1, ±i, 
±j, ±k} (the quatemion group) and the map Aut(R) --+ Aut(U(R» is a group 
isomorphism. In fact, it is well known that both groups are ~ S4 (see, e.g., Zassen
haus' Theory ojGroups, p. 148). We just give a quick explanation for the fact that 
I Aut(R) I = 24. Each automorphism cp of R is determined by cp(i) and cp(j) 
which must be from {±i, ±j, ±k}. There are six choices for cp(i), and after 
cp(i) is chosen, there are four choices for cp(j). (If cp(i) is chosen from {±j}, 
then cp(j) must be chosen from {±i, ±k}, etc.) Therefore, the total number of 
choices is 6·4 = 24 (and all choices are possible). Using the notations in (14.39), 
we have 

N* /C* ~ X-InneR) ~ Aut(R) ~ S4. 

We claim that X-InneR) = Aut(R); i.e., all automorphisms are X-inner. To see 
this, let us introduce the bigger domain of Hurwitz quatemions: 

R = {(a + bi + cj + dk)/2: a, b, c, dE Z all even or all odd} ;2 R. 

It is known that 

U(R) = {±1, ±i, ±j, ±k, (±1 ± i ± j ± k)/2}, 

where the signs are arbitrarily chosen. This is the binary tetrahedral group,87 
which is an extension of U(R) by the cyclic group (x) of order 3 where x = 
-(1 + i + j + k)/2. By easy calculation, we have 

xix- 1 = j, xjx- 1 = k, and xkx- 1 = i. 

Thus, U(R) ~ N*; e.g., x induces an X-inner automorphism cp given by cp(i) = 
j, cp(j) = k, and cp(k) = i. We have an injection 

7r: U(R)/U(R) n C* = U(R)/{±l} ~ X-InneR), 

87 As an abstract group, this is isomorphic to SLz(lF3). 
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whose image is of order 12. Now U(R) . C* is not yet the whole group N*. For 
instance, the element y = 1 + i clearly satisfies 

yi = iy, yj = ky and yk = - jy, 

so we have y E N* \ U (R) . C*. Thus, y induces a new X-inner automorphism 1/1 of 
R given by 1/1 (i) = i, 1/I(j) = k and 1/I(k) = - j. This shows that IX-Inn(R) I > 12 
and therefore we must have 

X-InneR) = Aut(R) ~ S4, and X-Inn(R)/Inn(R) ~ S3. 

(Note that Inn(R) ~ U(R)/{±I} is the Klein 4-group.) This also enables us to 
determine the group N*, which has U(R) . C* as a subgroup of index 2, with a 
nontrivial coset given by the representative y = 1 + i. 

Since the extended centroid C is the field Ql , it goes without saying that Qr (R), 
Qi (R), Q' (R), and the normal closure are all equal to Q. 

We close this subsection with an example of a trivial X-inner automorphism 
group. This example assumes, however, a result mentioned earlier without proof. 

(14.44) Example. Let R be the free algebra k(x\, ... , xn ) over a field k, where 
n ~ 2. By a result of Kharchenko mentioned in (14.13), Q'(R) = R. There
fore, by (14.33), the group N* of nonzero R-normalizing elements is already in 
U(R). Since U(R) = k*, it follows that X-InneR) = {l}. But of course, the 
automorphism group Aut(R) itself is much larger. 

§14F. A Matrix Ring Example 

In this final subsection, we present a clever example, due to D. Passman [87], of 
a prime ring R for which we can compute all three of the Martindale rings of 
quotients Qr (R), Qi (R) and Q' (R) (and these tum out to be all different, and all 
bigger than R). In this example, we can also give substantial information on the 
X-inner automorphisms of R. What makes the computations possible here is the 
fact that R has only one ideal A besides 0 and R, so that the family F = F(R) 
consists of only A and R. 

(14.45) Example. Let Moo(k) be the additive group of all N x N matrices over a 
field k and let A be the set of finite matrices in Moo(k) (i.e., matrices with only 
a finite number of nonzero entries). Let R = k + A, where k is identified with 
{diag(a, a, ... ) : a E k}. Then R is a prime k-algebra with F = {A, R} and we 
have: 

(A) Qf (R) = {row finite matrices}; 
(B) Qr(R) = {column finite matrices}; and 
(C) Q' (R) = {row and column finite matrices} = Qf (R) n Qr (R). 

First note that A is a ring without identity. Thus R = k + A is a k-algebra, 
consisting of matrices with only finitely many nonzero elements off the diagonal, 
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and with diagonal entries eventually constant. Clearly, A is a maximal ideal in R. 
Let a E R\{O}. We shall verify below that RaR is either A or R. This will show 
that.F = {A, R}, and since A2 (as well as A . R, R· A, and R2) is nonzero, R is 
a prime ring. 

Case 1. a E A. Then a E Mn(k) for all large n. Since Mn(k) is a simple ring, 
Mn(k) a Mn(k) = Mn(k). Therefore, all finite matrices lie in Mn(k) a Mn(k) for 
some large n, and therefore in RaR. In this case, we have RaR = A. 

Case 2. a fj. A. In this case, we will show that Ra contains a nonzero matrix 
ao E A. If so, then RaR ;2 RaoR = A by Case 1, and therefore RaR = R since 
A is a maximal ideal of R. Write the matrix a in the form 

(14.46) 
( L A , ..• ), I\, where L E M,(k) and A E k\{O}. 

Left multiplying a by the matrix unit E,+I,,+I, we see that Ra contains the nonzero 
finite matrix ao = AE,+I,,+10 as desired. 

We have now confirmed that R is a prime ring with F = {A, R}. To verify 
(B), let S be the k-algebra of all column finite matrices, which contains our prime 
algebra R. To see that S ~ Q'(R), it suffices to check that S has the properties 
(1), (2) and (3) in (14.24). In the following, we shall work with the matrix units 
{E;j} in R. 

(1) Let q E S; i.e., q is a column finite matrix. By direct inspection, each matrix 
in q A is column finite and has only finitely many nonzero columns. Therefore, we 
have qA ~ A ~ R. Since A E F, this verifies (1) in (14.24). 

(2) Suppose q B = 0 where q E Sand B E F. Since B is either R or A, we have 
in any case q Eu E q A = O. This means that the ith column of q is zero (for all 
i); hence q = O. 

(3) Let f E HomR(BR, RR), where B E F. If B = R, then f is left multipli
cation by an element of R ~ S. Now assume B = A. Again using the fact that 
Eu E A ~ R, we have 

f(Eu) = f(EuEu) = f(Eu)E;; E R. 

This means that f(Eu) is a finite matrix with nonzero elements only in the ith 

column. Therefore, the infinite sum q := Lj f(E jj ) makes sense, and is an 
element of S. We have clearly qEu = f(Eu) for each i and, for j i- i, 

f(Eij) = f(EuE;j) = f(Eu)Eij = qE;;Eij = qEij. 

Since f is a k-vector space homomorphism and the Eij's span A over k, we see 
that f coincides with left multiplication by q on A, checking the property (3) in 
(14.24). 
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We can now identify Q'(R) with S, the ring of all column finite matrices. 
Similarly, we can identify Qf(R) with S', the ring of all row finite matrices. 
Finally, we compute Q-' (R), using the definition 

QS(R) = {q E Q'(R): Bq ~ R for some BE F} 

= {q E S: Aq ~ R}. 

Since Eijq has its i lh row given by the ph row of q, and has zeros elsewhere, 
the condition Aq ~ R (for any q E MIoo(k» means simply that q is a row finite 
matrix. Therefore, the expression for QS (R) above yields 

Q-' (R) = S n s' = {row and column finite matrices}, 

as asserted in (C). 
It is also possible to give some information on the group of X-inner automor

phisms of R. As it turns out, the quotient group X-Inn(R)/Inn(R) is quite large. 
To see this, we first construct some "large" groups of units of T := QS(R). For 
any fixed integer n, we have a k-algebra embedding 0 : Min (k) -+ T defined by 

OeM) = diag(M, M, ... ) E T. 

Therefore U(T) contains O(GLn(k». It is easy to see that each matrix OeM) 
(M E GLn(k» is R-normalizing. (Use the fact that each matrix in R has the form 
(14.46) and choose r there to be a multiple of n.) Moreover, 0 (M) commutes with 
all matrices in R iff M is a scalar matrix. Therefore, 0 (G Ln (k» induces a group G 
of X-inner automorphisms of R which is isomorphic to GLn(k)/ k* = PGLn(k). 
It turns out that G n Inn(R) = {l}. In fact, any matrix in R commutes with all 
matrix units EN+i,N+j for large N. If OeM) commutes with all these matrix units, 
M must commute with all n x n matrix units and hence M is scalar. This shows 
that G n Inn(R) = {Il, and therefore that X-Inn(R)/Inn(R) contains a copy 0/ 
the group G ~ PGLn(k) for any n. This is significant for the Galois theory of 
prime rings as G provides an example of a so-called "Noether group" of non-inner 
automorphisms of R. 

By using group ring constructions, Passman [87] has shown that, in fact, any 
group can be realized as X-Inn(R)/Inn(R) for a prime ring (or even a domain) R. 

Exercises for §14 

Throughout the/ollowing exercises, F = F(R) denotes the/amity o/ideals with 
zero annihilators in a semiprime ring R, 

1. For any semiprime ring R, show that F contains any prime ideal of R 
which is not a minimal prime ideal. 

2. Let S = Q'(R), where R is a prime ring. If I, I' ~ S are nonzero right 
(resp.left) R-submodules of S, show that I I' =1= O. (In particular, S is also 
a prime ring.) 
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3. Let S = Qr(R), where R is a semiprime ring. 

(I)If [~S isanonzerorightorleftR-submoduleofS, show that [2 =1= O. 
(In particular, S is also a semiprime ring.) 
(2) If J ~ S is an (R, R)-subbimodule of S, show that ann; (1) = 
annJ(1). 

4. Let R be any reduced ring. Show that Q"' (R) is also a reduced ring. How 
about Qr(R)? 

5. Let R be a semiprime ring. If the extended centroid of R is a field, show 
that R must be a prime ring. 

6. Let Moo (k) be the additive group of N x N matrices over a field k and let 
E be the ring of matrices in Moo (k) which are both row finite and column 
finite. Show that E is a prime ring, and determine the Martindale rings of 
quotients Qr(E), Qf(E), and Q"(E). 

7. (Martindale) Let R be a prime ring and let a, b, c, d E R\{O}. Show that 
the following are equivalent: 

(1) arb = crd for all r E R. 
(2) There exists a unit q in the extended centroid C = Z (Qs (R» such 
that c = qa and d = q-1b. 

8. Let R ~ S be rings, and N ~ S be the set of R-normalizing elements in 
S. Show that if e = e2 EN, then e commutes with every element of R. 
Deduce that any R-normalizing idempotent in Q~ax(R) is central. 

9. Let qJ E Aut(R),where Risasemiprimering.ByExer. (13.15), qJ extends 
uniquely to an automorphism of Q~ax (R), which we denote by <1>. Show 
that 

(1) <l>IQr(R) (resp. <l>IQS(R» is the unique extension of qJ to Qr(R) 
(resp. QS(R». 
(2) For any a E Aut(R), <I> (X(a» = X(qJaqJ-l). (In particular, <I> (X(qJ» 

= X(qJ». 
(3) The set X-InneR) is closed under conjugation in Aut(R). 
(4) X(qJ) = X(<I». (Basically, this requires proving that, whenever x E 

X(qJ), xq = <I>(q)x for any q E Q~ax(R).) 

10. Keep the notations in the last exercise, and let x E X(qJ). 

(1) Show that <I>(x2 ) = x 2 • 

(2) Show that <I>(x) = x if R is either commutative or prime. 

11. Keeping the notations in the last exercise, show that <I> (x) = x always 
holds (for any x E X(qJ». (Hint. Write z = <I>(x), and consider any q E 

Q := Q~ax(R). Using <I>(x2) = x 2 , show that zqx = xqx = zqz. From 
these equations (and semiprimeness), deduce that (z - x) Q (z - x) = 0.) 
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12. Let C denote the extended centroid of a semiprime ring R, and let G be 
any subgroup of Aut(R). Recall that, for any cp E G: 

X(cp) = {x E Q:;'ax(R): xa = cp(a)x (Va E R)}, 

and let X (G) := LCPEG X(cp). Show that X(G) is a C-subalgebra of the 
normal closure of R in Q:;'ax(R), and deduce that X(G) ~ Q'(R). 

13. Compute Inn(R), X-InneR), and X-Inn(R)/Inn(R) for the Hurwitz ring of 
quatemions R. Also, determine the group of nonzero normalizing elements 
for R in its division ring of quotients. 

14. Let A be a commutative unique factorization domain with quotient field K, 
and let R = MIn (A). Show that Q:;'ax (R) = MIn (K) and that the group of 
nonzero R-normalizing elements N* in Q:;'ax(R) is exactly K* . U(R). 
What are the normal and central closures of R in this example? 

15. Show that the conclusion N* = K* . U(R) in the last exercise may not 
hold if the commutative domain A there is not a unique factorization 
domain. 

16. Let A be a commutative domain with a non identity automorphism CPo 
and let cp be the automorphism on R = Mln(A) defined by cp«aij)) = 
(cpo(aij)). Show that cp is not an X-inner automorphism. 

17. Let R be a semiprime ring with extended centroid C and let R . C be its 
central closure. Show that the central closure of R . C is itself. 



Chapter 6 

Frobenius and Quasi-Frobenius Rings 

The class of rings that are self-injective (as a left or right module over themselves) 
has been under close scrutiny by ring theorists. There is a vast literature on the 
structure of self-injective rings satisfying various other conditions. In a book of 
limited ambition such as this, it would be difficult to do justice to this extensive 
literature. As a compromise, we focus our attention in this chapter on a special class 
of such rings called quasi-Frobenius (QF) rings, and the subclass of Frobenius 
rings. It will be seen that the finite-dimensional Frobenius algebras discussed in 
§3B are examples of the latter. 

A QF ring is, in short, a right noetherian ring that is right self-injective. There 
is no need to use the term "right QF", since, miraculously, this definition turns out 
to be left-right symmetric. Moreover, a QF ring is always (2-sided) artinian. There 
is a very rich structure theory for both the I-sided ideals of R and the left/right 
modules over R, including a very elegant duality theory for f.g. modules. The basic 
features of these theories, as well as some of the many interesting characterizations 
of QF rings, are given in §15. 

The second section ofthis chapter, §16, is devoted to the study of Frobenius 
rings. Historically, Frobenius rings made their first appearance, in the work of R. 
Brauer, C. Nesbitt, T. Nakayama, and others, in the form of Frobenius algebras. 
These are finite-dimensional algebras over a field that have a certain "self-dual" 
property (with respect to the field). The study of such algebras was motivated by 
the representation theory of finite groups, since group algebras of finite groups pro
vided a large source of examples. Later, the notion of Frobenius algebras evolved 
into that of Frobenius rings and quasi-Frobenius rings (which, in tum, spawned 
a plethora of generalizations, such as the QF-l, QF-2, QF-3 rings of Thrall, and 
the PF (pseudo-Frobenius) rings of Azumaya, etc.). For maximum efficiency in 
our exposition, we have chosen to reverse the historical order, so Frobenius rings 
will come only in §16, after a full discussion of quasi-Frobenius rings in §15. In 
order not to lose sight of the historical perspective, however, we have intentionally 
included a discussion of finite-dimensional Frobenius algebras in §3, in our intro
ductory treatment of injective modules. This was our early start on QF rings and 
Frobenius rings. We shall return to Frobenius algebras midway in § 16, and show 
that these are just the finite-dimensional algebras which happen to be Frobenius 
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rings. Some remarkable characterizations of Frobenius algebras in terms of certain 
dimension equations involving dual modules and annihilator ideals will be given 
in § I6D. This is followed by a short introduction to symmetric algebras, their char
acterizations, and some of their special properties. The chapter concludes with a 
historical subsection (§ I6G: "Why Frobenius?") in which we put the mate'rial in 
perspective by backtracking to the classical approach to the subject pioneered by 
Frobenius, Brauer, and others. 

Besides the connection to group representation theory, Frobenius rings appear 
also in other branches of algebra. For instance, commutative local Frobenius rings 
are precisely the zero-dimensional local Gorenstein rings: these rings play an in
teresting role in number theory, algebraic geometry, and combinatorics. Frobenius 
algebras have also shown up in the recent study of Hopf algebras and Koszul al
gebras. Today, the use of Frobenius rings has reached way beyond the realm of 
pure algebra and ring theory. For instance, some applications of Frobenius rings 
to coding theory are presented in 1. A. Wood's recent article [97]. In topology 
and geometry, Frobenius algebras occur as cohomology rings of compact oriented 
manifolds and as quantum cohomology rings of certain compact Kahler manifolds, 
and they have also shown up in the recent work on the solutions of the Yang-Baxter 
equation. In Marchi April 1996 I attended the series of Hitchcock Lectures on ge
ometry and physics given by Chern Professor Sir Michael F. Atiyah at Berkeley, 
and was delighted to see that one of his transparencies in Lecture 3 displayed the 
impressive equation 

"TOP QFT (d = 1) = Frobenius Algebra". 

(Here, "TOP QFT (d = 1)" referred to "I-dimensional topological quantum field 
theory.") By Lecture 6, Sir Michael has upgraded this equation to "2-dim. TOP 
QFT = Frobenius Algebra", and was well on way to expound 

"3-dim. TOP QFT -+ 2-dim. QFT (Frobenius Algebra)"! 

§15. Quasi-Frobenius Rings 

§15A. Basic Definitions of QF Rings 

At the beginning of § 13, we have had our first glimpse into the structure of a right 
self-injective ring. In particular, in (13.5), we saw that, for aright self-injective ring 
R, two of the finiteness conditions, namely, u.dim RR < 00 and the nonexistence 
of an infinite orthogonal set of nonzero idempotents, are equivalent, and these 
amount to the fact that R is semilocal (or even semiperfect). However, this is still 
a far cry from R being right noetherian. 

To get the strongest structure theorems on right self-injective rings, we follow 
the lead of Emmy Noether and impose the ascending chain condition on right 
ideals. By adding this condition, we are led to one of the most important classes 
of rings, called QF (quasi-Frobenius) rings. Without further ado, we now embark 
on the main result of this subsection. 
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(15.1) Theorem. For any ring R, the following are equivalent: 

(1) R is right noetherian and right self-injective. 
(2) R is left noetherian and right self-injective. 
(3) R is right noetherian and satisfies the following double annihilator con

ditions: 

(3a) annr(anne A) = A for any right ideal A S; R. 
(3b) anne (annr 2t) = 2t for any left ideal2t S; R. 

(4) R is (2-sided) artinian and satisfies (3a) and (3b). 

If R satisfies any of (1 )-( 4), we say that R is a QF ring. Of course, the Frobenius 
algebras studied in §3B are QF rings, by (3.14). 

Note that (4) above is left-right symmetric. Thus, the theorem implies the same 
for (1), (2), and (3). In particular, QF rings may also be defined as left (resp. right) 
noetherian left self-injective rings, or as left noetherian rings satisfying the double 
annihilator conditions. The fact that we can so randomly combine these conditions 
and end up with the same notion is quite remarkable. Indeed, this single theorem 
summarizes, and presents in a nutshell, a large quantity of work done by various 
authors over a considerable period of time spanning the 1940s and SOs. 

Before beginning the proof of (1S.1), we make the following remark about 
(3ab). The condition (3a) (resp. (3b» simply amounts to the assumption that any 
right (resp. left) ideal is a right (resp. left) annihilator. In the proof of (1S.1), it 
will be important, of course, to distinguish right ideals from left ideals. To this 
end, we shall write A, B, . .. to denote right ideals, and 2t, Sl3, . .. to denote left 
ideals in the ring R. 

Proof of (15.1). We shall show (4)==>(3)==>(1)==>(2)==>(4). 

(4)==>(3). If R is right artinian, it is right noetherian by the Hopkins-Levitzki 
Theorem (FC-( 4.1S». 

(3)==>(1). Given (3), consider any right ideals A, B. We have 

(IS.2) 

Taking left annihilators, we deduce that 

(1S.3) annt A + anne B = annt (A n B). 

To see that RR is injective, we apply Baer's Test. Let g E HomR(C, RR), where 
C is any right ideal, say, C = L::;'=I Ci R. To show that g is a left multiplication by 
some element of R, we inductonn. Forn = 1, letd = g(cl). Thend·annr(cl) = 0 
implies that dE anne(annr(Rcl» = RCI (by (3b», so d = YCI for some y E R. 
Therefore, left multiplication by y extends the given g. Now assume n > 1, and 
let B = L::7=2 Ci R. Then glcl R is left multiplication by some y E R, and (by the 
inductive hypothesis) glB is left multiplication by some x E R. On CI R n B, left 
multiplication by x - y is then the zero map, so 

(lS.4) x - Y E annt(cl R n B) = anne(cl R) + annt B (by (1S.3». 
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Write x - y = Xl - y' where Xl E anne Band y' E anne(CI R). Letting z := 
x - x' = y - y" we can then extend g to RR by using left multiplication by z. 

(1 )==>(2). The quotient ring R jrad R is right noetherian, and von Neumann regular 
by (13.2)(2), so it is semisimple by FC-(4.25). On the other hand, by (7.15)(2) 
and (13.2)(1), rad R is a nilpotent ideal. Therefore, R is a semiprimary ring in the 
sense of FC-( 4.15), and the latter implies that R is right artinian. To show that R is 
left noetherian, it is enough to check the ACe for f.g. left ideals m1 s;: m2 s;: .... 
By the Dee on right ideals, we have annr m" = annr m,,+l = ... for some n, and 
therefore 

(15.5) 

By Step 2 below, we conclude that mil = mll+1 = ... , as desired. 

We now come to (2)==>(4), which is the hardest part of the theorem. We break 
up the proof into a sequence of steps. 

Step 1. If RR is injective, then (15.3) always holds. We need only prove the 
inclusion ";2". Let x E anne (A n B). Define f : A + B -+ RR by f(a + b) = xb 
where a E A and b E B. This is a well-defined map (hence an R -homomorphism) 
since, in the event that a + b = 0, we have b E An B and hence xb = 0. Since 
RR is injective, there exists an element y E R such that xb = yea + b) for all 
a E A, bE B. For b = 0, this shows that y E anne A; for a = 0, this shows that 
x - y E anne B. Adding these two elements, we see that x E anne A + anne B. 

Step 2. If RR is injective, then anne (annr m) = m for any fg. left ideal m. This 
property of a right self-injective ring was noted before as a consequence of the 
Johnson-Wong Double Annihilator Theorem; see (13.5),. In order to make the 
proof of (15.1) more self-contained, we shall give an ad hoc (and slightly different) 
proof for the desired equation here, banking on Step 1. First consider the special 
case m = Rc (c E R). We need only prove that any d E anne(annr(Rc» belongs 
to Rc. Define g : cR -+ RR by g(cx) = dx ("Ix E R). This map is well defined 
(and hence an R-homomorphism) since, if cx = 0, then x E annr(Rc) and hence 
dx = 0. By the injectivity of RR again, there exists y E R such that dx = ycx 
(V x E R). Inparticular,d = yc E Rc. For any m = I: 7= I Rc;, we have therefore: 

anne (annr m) = anne (0 annr (RC;») 

n 

= L anne (annr(Rc;» (by Step 1) 
;=1 

;=1 

In the following, we shall assume that R is left noetherian as well as right 
self-injective. Then Step 2 gives (3b) for all left ideals m: we are 114 done toward 
proving (4). 
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Step 3. R is left artinian. By the Hopkins-Levitzki Theorem again, it suffices to 
show that R is semiprimary. Since R/rad R is left noetherian, and von Neumann 
regular, it is semisimple as before. It remains to show the nilpotency of J := 
rad R. Here we cannot use the argument in (1)===>(2). Instead., look at the chain 
annr(J) ~ annr(J2) ~ .... Since the Ji 's are ideals, so are their annihilators. 
Viewing the latter as left ideals, we have then annr(r) = annr(r+ l ) = ... for 
some n. Taking left annihilators (and using Step 2), we have then In = r+ l , and 
Nakayama's Lemma (FC-(4.22)) shows r = 0, as desired. 

Step 4. R is left Kasch (in the sense of (8.26)). This follows by applying the left 
analogue of (8.27), and using (3b) for maximal left ideals. 

Step 5. R is also right Kasch. To see this, let 2l1' ... , 2lm be thf: isotypic ("homo
geneous") components of soc(RR). These are easily seen to be ideals of R. We 
claim that the ideal 

SB i := anne(J) n 2li -I- 0 (Vi), 

where J = rad R. Indeed, fix 0 -I- ai E 2li . If SB i = 0, aiXI -I- 0 for some XI E J. 
Then aiXlx2 -I- 0 for some X2 E J. This eventually leads to a contradiction since 
J is nilpotent. From SB i J = 0, we see therefore that SB i contains a minimal right 
ideal, say, Vi. (Recall that R / J is semisimple.) For i -I- j, we have Vi -::P Vj as right 
R-modules. For, if Vi ::::::: Vj , such an isomorphism is induced by left multiplication 
by some r E R (since RR is injective). But then 

gives a contradiction. Since R / J has m simple left modules and therefore m simple 
right modules, each simple right module is isomorphic to some Vi ~ RR. 

Step 6. For any nonzero right module MR, HomR(M, RR) -I- O. To see this, note 
that M J -I- M for J = rad R (since J is nilpotent). Viewing M / M J as a right 
module over the semisimple ring R / J, we can map it onto a simple module V R. 

Embedding V into RR (by Step 5), we get a nonzero homomorphism from M to 
R. 

Step 7. (3a) holds for any right ideal A. Indeed, let M = annr(annc A)/ A, 
and consider any f E HomR(M, RR). We may view f as a homomorphism 
annr (anne A) ~ RR vanishing on A. Since RR is injective, this is given by 
left multiplication by some y E R. But yA = 0 implies that yx = 0 for any 
x E annr(anne A), so f == O. Step 6 then gives M = 0, so we have proved (3a). 

Step 8. Since R has Aee on left annihilators, it has Dee on right annihilators (see 
(6.57)). But by (3a), any right ideal is a right annihilator, so R is right artinian. 
This is our last step! D 
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Some of the properties obtained for QF rings in Steps 1-8 above are worth 
celebrating over. The fact that QF rings are Kasch is already highly significant 
for Frobenius algebras. Indeed, for group algebras kG of a finite group G over a 
field k (which are Frobenius algebras by (3.15E», this translates into the fact that 
any irreducible k-representation of G is afforded by a minimal i-sided ideal of 
kG. This is an especially interesting fact in the case of "modular representations" 
(when char k divides IGI). 

From the "double annihilator conditions" (3a), (3b) (and from (3.17», we de
duce immediately the following. 

(15.6) Corollary. For any QF ring R, the maps 

Q( ~ ann, Q( and A ~ anne A 

define mutually inverse lattice anti-isomorphisms between the left ideals and the 
right ideals of R. 

(15.7) Corollary. For any QF ring R with J = rad R: 

annt(J) = SOC(RR) = soc(RR) = ann,(J). 

Proof. Use the notations in Step 5 above. If V is any right ideal of R isomorphic 
to V;, we must have V = r Vi for some r E R, so V ~ rQ(i ~ Q(j. This shows that 
Ai ~ Q(i for the isotypic component Ai of SOC(RR) containing Vi. By left-right 
symmetry, we must have Ai = Q(i and a fortiori SOC(RR) = soc(RR). The other 
equalities follow easily from the fact that R is artinian (cf. Fe-Exer. (4.20». 

o 

(15.8) Remark. In fact, the equation SOC(RR) = soc(RR) holds more generally 
in any (2-sided) principally injective ring R: see Exercise (13.27). 

What are some examples of QF rings? As a starter, we can take any semisim
pIe ring, or Z/nZ (n I- 0), or k[t]/(f(t) (f I- 0), where k is any field (see 
(3.13». Among finite-dimensional algebras over a field k, Frobenius algebras are 
prominent examples of QF rings (see (3.14». This includes all the examples from 
(3.15A) through (3.15F) (not counting, of course, (3.15B'». However, as we shall 
see later, not all QF algebras are Frobenius algebras. More examples of QF rings 
will be given below in §15D. 

§15B. Projectives and Injectives 

Here, we offer another very charming characterization of QF rings, in terms of 
their projective and injective modules. 

(15.9) Theorem. For any ring R, the following are equivalent: 

(I) R is QF. 
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(2) A right R -module is projective iff it is injective. 

Proof. (1 )==>(2). Say IRis injective. Since R is right noetherian, I ~ EBi Ii for 
suitable indecomposable injective modules {/;} (see (3.49». Fix 0 =1= ai E Ii. 
Since R is right artinian, ai R certainly contains a simple submodule V;. The 
indecomposability of Ii then implies that E(Vi) = Ii. Viewing Ii as embedded in 
the injective module RR (cf. Step 5 above), we see that Ii = E(Vi) is isomorphic 
to a direct summand of RR. Therefore, Ii is projective, and so is I ~ EBi Ii. Next, 
consider any projective module PRo Then P EB Q is a free module R(J) for some 
indexing set J. Since R is right noetherian, R(J) = EB jEi RR is injective, and so 
is PRo 

(2)==>(1). Since RR is projective, it is injective by (2). Also, since any direct 
sum of projectives is projective, (2) implies that any direct sum of injectives is 
injective (for right modules). By (3.46), R is a right noetherian ring, and hence 
QFby(15.1). D 

(15.10) Remark. In fact, the theorem above can be further improved. Faith and 
Faith-Walker have shown that R is QF iffright projective R-modules are injective, 
iff right injective R-modules are projective. To prove this would require more 
work, so we have chosen to prove the simpler form of the Faith-Walker Theorem 
in (15.9). A proof for the full formofthis theorem can be found in Faith [76: p. 209]. 

We shall develop a few more properties of QF rings below. Recall that a mod
ule M R is called torsionless if, for any m =1= 0 in M, there exists f E M* = 

HomR(M, RR) such that f(m) =1= O. (In other words, the natural map M ---+ M** 
is injective: see (4.65)(a).) A torsionless module M R is said to be reflexive if the 
injection M ---+ M** is in fact an isomorphism (of right R-modules). 

(15.11) Theorem. Let R be a QF ring. Then 

(1) Any module MR can be embedded in afree module, and is torsionless. 
(2) Anyfg. module MR is reflexive. 88 

(3) A (left or right) R-module M is fg. iff M* is fg. 

Proof. (1) The injective hull E(M) is projective by (15.9), so it embeds into a free 
module F. As we have observed in (4.65)(b), M <; E(M) <; F implies that Mis 
torsionless (since F is). 

(2) Assume M R is f.g. Fix an exact sequence 0 ---+ K ---+ F --+ M ---+ 0, where 
F = Rn. Since RR is injective, the duality functor HomR(-, RR) is exact from 
SJ.nR to RSJ.n. Similarly, HomR (-, R R) from RSJ.n to SJ.nR is also exact. Therefore, 

88The converse of (2) is true too for a QF ring R: we shall prove this later in § 19. 



414 6. Frobenius and Quasi-Frobenius Rings 

we have an exact commutative diagram 

o ------+ K ------+ F ------+ M ------+ 0 

1 la ly 

o ------+ K** F** 
fJ 

M** ------+ 0 ------+ ------+ 

Since F = R", ex is an isomorphism. The surjectivity of f3 therefore implies the 
surjectivity of y. Since M is torsionless, y is an isomorphism. 

(3) It suffices to verify this for right modules MR. If MR is f.g., we can take a 
surjection F --+ M as in (2) where F = R". Taking the first dual, we have an 
injection M* --+ F* = R(Rn ). Since R is a left noetherian ring, M* is is f.g. 
Conversely, suppose M* is f.g. Then by the above, M** is f.g. By (1), M embeds 
into M** . Since R is a right noetherian ring, this implies that M is also f.g. 0 

§15C. Duality Properties 

As observed in the proofof(15.11)(2) above, for a QFring R, the "dual" operator * 
is a contravariant exact functor from 9Jt R to R 9Jt, and we have also a similar functor 
from R9Jt to 9JtR • Writing 9Jt~g and ~g9Jt for the subcategories off.g. modules, we 
see that the double-dual functors are naturally equivalent to the identity functors 
on 9Jt~g and ~g9Jt. Thus we have a "perfect duality": 

(15.12) nnfg ~ fgnn 
:JJ~ R <-;- R :JJ~ 

between the two categories of f.g. modules. As an easy consequence of this, we 
obtain the following: 

(15.13) Corollary. Let R be a QF ring, and M be a right R-module. Then M is 
simple (resp.f.g. indecomposable) iff M* is (as a left R-module). 

The term "perfect duality" for the one-one correspondence in (15.12) was coined 
by Dieudonne [58]. We shall not define this term precisely here, but it will be 
convenient to use it occasionally in an intuitive way. To explain more explicitly the 
features of this perfect duality, let us introduce the "..1" notation. Let M E 9Jt~g. 
For any submodule A ~ M, let A1- = {f E M* : f(A) = O}, which is a 
submodule of M*. Similarly, for any submodule 2( ~ M*, let 2(1- = naEQ{ ker(a) 
(a submodu1e of M). Then we have: 

(15.14) A1-;:::: (MIA)* and A*;:::: M*IA1-. 

(15.15) AH = A and 2(H = 2(. 

(15.16) (A + B)1- = A1- n B1- and (A n B)1- = A1- + B1-. 
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Here, the first formulas in (15.14), (15.16), and (15.17) are true without any 
assumptions on the modules or the ring, and A * ~ M* I A 1- is true as long as R R 

is injective, without any assumptions on A ~ M. The others are easily deduced 
from the duality in (15.12), under the assumptions that R is QF and M R is f.g. In 
particular, by taking duals, we have, for A, B ~ M: 

(15.18) A ~ B in !mR iff M* I A 1- ~ M* / B1- in R!m. 

Remarkably, even more is true. We now prove: 

(15.20) Proposition. Let M be fg. projective over the QF ring R, and A, B 
be submodules 0/ M. Then any R-isomorphism h : A --+ B extends to an R
automorphism 0/ M. 

Proof. Since MR is also injective, h extends to an endomorphism of M, which we 
continue to denote by h. Let H = EndR(M), which is a semilocal ring by (13.3). 
Let ~ be the left ideal of H consisting of all endomorphisms vanishing on A. We 
claim that H = Hh +~. Once this is proved, Bass' Theorem FC-(20.9) implies 
that there is a unit u := h + v E U(H) for some v E ~. Since v(A) = 0, we have 
ulA = hlA, as desired. To prove our claim, it suffices to find a decomposition 
IdM = / + g where / E Hh and g E ~. For C = kerCh), we have A n C = O. 
By the injectivity of M, there exists g E H such that glC = Ide and glA = O. 
Then g E ~, and / := IdM - g is zero on C = kerCh). By Exercise 3.23, the 
latter implies that / E Hh, as desired. 0 

(15.21) Theorem. Let M be as above, and A, B ~ M. The/allowing are equiv
alent: 

(1) A ~ B in !mR. 
(1') M*IA1- ~ M*IB1- in R!m. 
(2) MIA ~ MIB in !mR. 

(2') A1- ~ B1- in R!m. 

Proof. From (15.18) and (15.19), we have (1) {::=:} (I') and (2) {::=:} (2'). From 
(15.20), we have (1) ::=:} (2), and, applying (15.20) to A 1-, B1- in the f.g. projective 
module M*, we have (2') ::=:} (1'). 0 

The theorem above reveals the beginning of an unusually rich module theory 
for QF rings; we shall return to develop this a little further in § 16. At this point, 
let us note that, in (15.21), both assumptions on M are essential for the truth of 
the theorem. If M need not be f.g., we can take M = R EB R EE' ... , and 

(15.22) A = (0) EB R EB REB· .. , B = (0) EB (0) EB R EB REB· .. . 
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Here, A ~ B, but M / A ~ Rand M / B ~ R EB R are not isomorphic (unless R = 
(0». Therefore, no isomorphism from A to B can be extended to an automorphism 
of M. To construct a counterexample in the case when M is f.g. but not projective, 
we proceed as follows. Let RR = PI EB ... EB Pr be a decomposition of RR into 
a direct sum of principal indecomposables, and let Pi = ei R where e; = ei =1= 0, 
and el + ... + er = 1. Assume that 1 = rad R =1= O. Then e;l =1= 0 for some i, 
and Nakayama's Lemma implies that T := P;/e;l =1= O. Let 

(IS.23) M = T EB Pi, and A = (0) EB Pi <; M, B = T EB e;l <; M. 

Then M / A ~ T ~ M / B. However, A 'F- B since A is indecomposable but B is 
not! Therefore, (1S.21) holds for all f.g. M over a right artinian ring R only if R 
is semisimple. 

Let us now specialize our general results to the case when M = RR and A <; R 
is a right ideal. Here M* is just R R, and A -1 = anne A. Therefore, we have: 

(15.24) Corollary. For any right ideals A, B in a QF ring R, A ~ B iff R/ A ~ 
R/ B, iff anne A ~ anne B, iff R/anne A ~ R/anne B (in the appropriate module 
categories). If A, B are ideals, then A ~ B in mLR iff A = B. 

(The last statement follows from the (by now familiar) fact that AR ~ BR 
implies B = r A for some r E R. If A, B are ideals, then B = r A <; A and 
similarly A <; B.) 

To complete our discussion of duality properties, it will be useful to bring in 
the viewpoint of bimodules. Note that if A <; R is an ideal, then A and R/ A 
are both (R, R)-bimodules. For any (R, R)-bimodule M, we can form the dual 
Mk = HomR(MR, RR), and this again carries a natural structure of an (R, R)
bimodule. (The left R-action on Mk is defined via the left R-action on R, and the 
right R-action on M* is defined via the left R-action on M.) Similarly, the other 
dual, RM* = HomR(RM, RR) is also an (R, R)-bimodule. 

Let A be an ideal in a QF ring R. Then, so is anne A, and by what we said 
above, A~ and R/anne A are both (R, R)-bimodules. By (1S.14), the natural map 
R / anne A -+ A ~ is an isomorphism of left R -modules. An easy check shows that 
this is, in fact, an (R, R)-bimodule isomorphism. Let us now apply this observation 
to deduce a useful fact about the socle of a QF ring. 

In a QFring R, let us write soc(R) to denote the ideal SOC(RR) = soc(RR), and 
recall that soc(R) = annr 1 = anne 1, where 1 = rad R (see (1S.7». Let us also 
write R for the (R, R)-bimodule R/l. 

(15.25) Proposition. For any QF ring R, we have (R, R)-bimodule isomorphisms 

soc(R) ~ (RR)* ~ (RR)'. 

Proof. By symmetry, it is sufficient to prove the first bimodule isomorphism. By 
what we said before the Proposition (applied to A = soc(R», we get a bimodule 
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isomorphism 

(soc R)~ ~ Rjanne(soc R) = Rjanne(annr J) = Rj J = R. 

Treating these as left R -modules and taking their duals, we get the desired bimod
ule isomorphism soc(R) ~ (RR)*. 0 

Note that it is not a priori clear that the right module dual (RR)* and the left 
module dual (RR)* are isomorphic as (R, R)-bimodules. We have proved this to 
be the case, however, over any QF ring R. 

§15D. Commutative QF Rings, and Examples 

In this last subsection of §I5, we would like to understand the structure of com
mutative QF rings. Before we go over to the commutative case, let us first look at 
some examples and nonexamples of QF rings, besides the ones already mentioned 
at the end of § 15A. 

(15.26) Examples. 

(1) Let R = (~ ~). where k is a division ring. This is an artinian ring with 

J = rad R = (~ ~). We have shown in (3.IO)(B) that R is not right self

injective, and in (8.29)(5) that R is not right Kasch. In particular, R is not QF. Let 
us mention a few other properties of a QF ring which fail in R. Consider m = 

(~ ~). which is an ideal in R. As in (8.29)(5), annr(anne m) = m. However, an 

easy computation shows that annr m = 0; in particular, annt(annr m) = R -=I- m, 
so the double-annihilator condition fails for the left ideal m. Secondly, 

so the two socles are not the same. If V, V' denote the two simple right R-modules 
defined in (8.29)(5)(with V = Rjm), then SOC(RR) ~ V EB V. Therefore, V* -=I- 0, 
but V' * = O. 

(2) Let R = S j~ where S is a Dedekind ring and ~ S; S is a nonzero ideal. By 
Exercise (3.13), R is self-injective. Since R is clearly noetherian, it is QF. 

(3) Let R = [17=1 Ri . Then R is QF iff each Ri isQF. This follows readily from 
(15.1) and (3.llB). 

(4) If R is QF, then so is any matrix ring MIn (R). This can be proved as a somewhat 
intriguing exercise; or more conceptually, it can be deduced easily from the theory 
of category equivalences to be developed in the next chapter. 

(5) (Nakayama) If A is a QF ring and G is any finite group, then the group ring 
AG is also QF: this is part of Exercise 14 below. 
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(6) We have noted before that a self-injective ring may not be artinian or noetherian, 
so it may not be QF. However, for certain classes of rings, the chain conditions 
may be implied by self-injectivity. We mention without proof the following two 
interesting results in this direction. First, J. Lawrence has shown that any countable 
right self-injective ring is QF. Second, S. P. Smith and J. J. Zhang have shown that 
any self-injective graded algebra EBi>O Ai over a field k with Ao = k (and 
AiAj ~ A i+j ) is also QF. -

Let us now go over to the commutative case. While it is true that commutative 
QF rings do not reveal all the subtleties of general QF rings, the former have 
the advantage of being much easier to handle. We have the following standard 
characterization theorem for these rings. 

(15.27) Theorem. For any commutative ring R, the following are equivalent: 

(1) R is QF; 
(2) R is an artinian ring, and soc(R) is "square-free" (i.e., it contains no 

more than one copy of each simple R -module); 
(3) R ~ R, x ... x R." where each Ri is a local artinian ring with a simple 

soc/e. 

Proof. (1) ==> (2). Suppose soc(R) contains AffiB, where A, B areisomorphic 
simple R-modules. Let q; : A ~ B be an R-isomorphism. Since RR is injective, 
q; is given by multiplication by an element r E R. But then B = rA ~ A, a 
contradiction. 

(2) ==> (3). Let 1 = e, + ... + e .. be a decomposition of 1 into a sum of 
orthogonal primitive idempotents. Let Ri = eiR. By FC-(21.18), each Ri is a 
local (artinian) ring, and R is isomorphic to the direct product of rings R, x· .. x R.,. 
Since R; has only one simple module, (2) clearly implies that R; has a simple 
socle. 

(3) ==> (1). In view of (15.26)(3), it suffices to show that each R; is QF. There
fore, we may assume that R is local, with V := soc(R) simple. Since R is 
artinian, every nonzero ideal contains a minimal ideal, which must be V. Hence 
V ~e R, and we may assume that R is contained in the injective hull E := ER(V). 
Now V is (up to isomorphism) the unique simple R-module, so by (3.64)(2), 
lengthR(E) = lengthR(R). Therefore, we must have R = E. This shows that R 
is self-injective, hence QF. 0 

In the above, we have established (1) {::::::::} (3) in the commutative case. This 
equivalence turns out to have a noncommutative analogue, but the proof is con
siderably harder: see (16.4) below (and for the local case, Exercise (16.1)). 
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From the above theorem, we see that, in the category of commutative rings, 
the local artinian rings with simple socles89 are the building blocks for QF rings. 
Such local artinian rings are of basic importance, and are known to commutative 
algebraists and algebraic geometers as "zero-dimensional local Gorenstein rings." 
These are the zero-dimensional noetherian local rings (R, m) for which the in
jective hull E := ER(R/m) in §3I is free ofrank I: see Exercise (16.1) below. 
(In §3I, we called E the "standard module" over R; in this case, E is exactly 
what commutative algebraists call the "canonical module" of the Gorenstein ring 
R.) Generally, zero-dimensional local Gorenstein rings arise in abundance, for 
instance, as quotients of regular local rings R modulo an ideal generated by a 
maximal R -sequence. For details on this and much more related information in 
the commutative case "with a view toward algebraic geometry", see Chapter 21 
in Eisenbud [95]. 

In the case of commutative finite-dimensional algebras over a field k, the "build
ing blocks" referred to in the last paragraph are precisely the (commutative) local 
Frobenius k-algebras (see Exercise (3.14». We close this subsection by making 
a list of examples of such algebras. 

(I) Finite field extensions of k. 

(2) Trivial extensions of the type constructed in (3.15C). 

(3) Group algebras kG, where G is a finite abelian p-group and k has prime 
characteristic p. (See (3.15E) and FC-(19.1 I).) 

(4) The algebra R = k[x" ... , x r ] defined by the relations x~ = ... = x~' = 0, 
where all ni > O.(See (3.15B).)Its k-dimensionis n,···nr.Infact,Risjustthe 
tensor product of the local Frobenius k-algebras k[til/ (tin,). 

(5) The algebra S = k[x, y], defined by the relations xy = x 2 -- y2 = O. Note that 
in S, x 3 = X . x 2 = xy2 = 0, and similarly y3 = O. Thus, dimk S = 4, and S is 
local with maximal ideal (x, y). The socle of S is easily seen to be k· x 2 = k . y2, 
so S is a local Frobenius k-algebra. 

(6) The algebra W = k[x, y, z], defined by the relations 

x 2 = y2 = XZ = yz = xy - Z2 = O. 

This is a 5-dimensionallocal algebra with maximal ideal (x, y, z), and with a 
simple socle k . xy = k . Z2, so W is again a Frobenius k-algebra; see Exercise 
24. 

A general method for constructing commutative local Frobenius algebras is 
sketched in Exercise 21. The examples (4), (5), and (6) above are all special cases 
of this construction: see Exercise 24. 

89For readers familiar with the notion of subdirect products (see FC-§12), it is worth 
pointing out that, among commutative artinian rings, the ones with silmple socles are pre
cisely the subdirectiy irreducible ones. 
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Exercises for § 15 
I. Redo Exercise (3.2)(3) ("A right self-injective domain R is a division ring") 

using the idea from Step 2 in the proof of (2)==}(4) in (15.1).) 

2. Give an example of a commutative ring R with two ideals A, B such 
that ann(A) + ann(B) is properly contained in ann(A n B). 

3. Show that if R has ACC on left annihilators and is right self-injective, then 
R is QF. (Comment. The statement is also true upon replacing "left anni
hilators" by "right annihilators". The proof is quite a bit harder, requiring 
Bass' Theorem FC-(23.20) for right perfect rings.) 

4. Show that R is QF iff every right ideal is the right annihilator of a finite 
set and every left ideal is the left annihilator of a finite set. 

5. Show that a quotient R/ I of a QF ring R need not be QF. 

6. Let C be a cyclic right R-module, say, C = R/ A where A is a right ideal 
in R. 

(I) Show that C* ~ anne(A) as left R-modules. 
(2) Show that C is torsionless (i.e., the natural map E : C ~ C** is an 
injection) iff A is a right annihilator. 
(3) Show that C is reflexive iff A is a right annihilator and every left 
R-homomorphism anne(A) ~ RR is given by right multiplication by an 
element of R. 

7. Show that a right noetherian ring R is QF iff every I-sided cyclic R -module 
is torsionless. 

8. Let e = e2 E R, and J c;: R be a right ideal such that eJ c;: J. Use 
Exercise 6 to show that (eR/eJ)* ~ annt(J) . e as left R-modules. 

9. Let R be a QF ring and J = rad(R). In (15.7), a proof is given for 
anne(J) = annr(J) using the equality of the right and left socles of R. 
Give another proof for anne (J) = annr (J) by using the last exercise. 

10. (Nakayama) For CR, J) in the last exercise, show that anne(J/) 
annr(J/) for any positive integer n. 

II. Show that a QF ring is right semihereditary iff it is semisimplc. 

12. Assuming the Faith-Walker Theorem (see (15.10», show that a ring R is 
QF iff every module M R embeds into a free R -module. 

13. For any QF ring R, show that: 

(1) For any simple module SR, the injective hull E(S) is a principal 
indecomposable R-module; 
(2) For any f.g. module M R, E(M) is also f.g. 

14. (Nakayama, Connell) Let R be a group ring AG, where A is a ring and G 
is a finite group. Show that R is right self-injective (resp. QF) iff A is. 
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15. Let R be a QF ring. Show that, for any central multiplicative set S S; R, 
the localization RS- l is also a QF ring. 

16. Show that an idempotent e in a QF ring R is central iff eR is an ideal of 
R. 

17. For any module MR overaQFring R,showthat pdR(M) (the projective 
dimension of M) is either 0 or 00. Prove the same thing for idR(M) (the 
injective dimension of M). 

18. (Bass) Let R be a left noetherian ring such that, for any f.g. module MR, 

pdR(M) is either 0 or 00. Show that R is a left Kasch ring. (Hint. Use the 
Unimodular Column Lemma (Exercise (1.34» to show that any left ideal 
L~=l Rai C;;; R has a nonzero right annihilator.) 

19. Let R be a commutative noetherian ring in which the ideal (0) is meet
irreducible. Show that Qcl(R) is a (commutative) local QFring. 

20. For any field k, let R = k[u, v], with the relations u 2 = v2 = 0, and 
S = k[x, y], with the relations xy = x 2 - y2 = O. By (4) and (5) at the 
end of §15D, Rand S are (commutative) 4-dimensionallocal Frobenius 
k-algebras. Show that R ~ S as k-algebras iff -1 E k 2 and char(k) oj: 2. 
(In particular, R ~ S if k = C, and R '/'. S if k = R) 

The next exercise describes a general method for constructing quotients 
of a polynomial ring that are local Frobenius algebras. The remaining 
exercises amplify this point, and provide further explicit computational 
examples for the construction. 

21. Let A = k[Xl, ... , X,.] (where k is a field), and let TIl = (Xl, ... , X,.). 
Let A : A ~ k be a k-linear functional with ker(A) ;> mil for some 
n ::: 1 and let 1;.. be the largest ideal of A that is contained in ker(A). If 
A oj: 0, show that 1;.. S; m and that AI1;.. is a local Frobenius k-algebra. 
Conversely, if J S; m is an ideal in A such that AI J is a local Frobenius 
k-algebra, show that J has the form 1;.. for some nonzero functional A 
as described above. (Hint. Use the characterization of Frobenius algebras 
given in (3.15)(3).) 

22. Keep the notations in the last exercise, and let N be the space of functionals 

{A E Homk(A, k): A(mn) = 0 for some n ::: I}, 

viewed as an A-submodule of the A-module Homk(A, k). For any Je E N, 
let annA(AA) denote the A-annihilator of tile cyclic submodule AA S; 
AN, and let AnnA(AA) denote the space of common zeros of the linear 
functionals in AA. Show that annA(AA) = AnnA (AA) = 1;.., and deduce 
that AJe ~ AI JA as A-modules. 

23. In the notations of the last two exercises, let ann N (1;..) be the annihilator 
of 1;.. in the A-module N, and let AnnN (1;..) be the space offunctionals in 
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N vanishing on the ideal h. Show that annN (1A) = AnnN (h) = AA, and 
deduce that, for any A, f..L E N, h = 1/1 iff AA = Af..L. (Comment.Com
bining this with Exercise 21, we get a one-one correspondence between 
the nonzero cyclic A-submodules of N and the ideals I ~ (XI, ... , x r ) 

of A for which AI I is a local Frobenius k-algebra.) 

24. Keeping the notations in the above exercises, let us identify the space 
of functionals N with the A-module of "inverse polynomials" T = 
k[xi ' , ... ,x;I], as in (3.91)(1). Take the "functionals" 

AI = X-I y-2, A2 = x-2 + y-2, A3 = X-I y-I + Z-2 

in T = k[x- I, y-I] and T = k[x- I, y-I , Z-I] respectively, and show 
that 

hI = (x 2, i), h2 = (xy, x 2 -l) and h3 = (x 2, l, xz, yz, xy - Z2). 

State a generalization for each of these three cases. (For further amusement, 
make up your own nonzero inverse polynomial A E T, and come up with 
a local Frobenius algebra AI h that no one has set eye upon before!) 

25. For the ideal I := (y3, x 2 - xy2), in A = k[x, y], show that AI I is 
a 6-dimensional local Frobenius k-algebra, and find a linear functional 
A E k[x-1, y-l] such that 1= l A• 

§ 16. Frobenius Rings and Symmetric Algebras 

§16A. The Nakayama Permutation 

In order to introduce the notion of Frobenius rings, we shall first develop in more 
detail some special properties of a QF ring R. Recall from (15.13) that if M 
is a simple right (resp. left) R-module, then its first dual, M*, is a simple left 
(resp. right) R-module. Let us now prove that, for artinian rings, this statement 
actually characterizes a QF ring. This result is due to J. Dieudonne. We begin with 
a lemma. 

(16.1) Lemma. Let A ~ B be right ideals in a ring R such that (B I A)* is either 
(0) or a simple left R-module. Then anne (A)/anne (B) is either (0) or isomorphic 
to (BIA)*. 

Proof. We can define a map f : anne(A) -7 (BI A)* by f(x)(b + A) = xb for 
X E anne (A) and b E B. This is easily checked to be a left R-homomorphism, and 
its kernel is anne(B). Therefore, anne(A)/anne(B) embeds into (BIA)*. Since 
(B I A)* is either (0) or a simple module, the desired conclusion follows. 0 

(16.2) Theorem (Dieudonne). An artinian ring R is QF iff the dual of any simple 
i-sided R-module is either (0) or simple. In this case, M ~ M* gives a one-one 
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correspondence between the isomorphism classes of simple left R -modules and 
simple right R-modules. 

Proof. The "only if" part and the last statement of the theorem are already con
tained in (15.12) and (15.13). For the converse, assume that R is an artinian ring 
such that the dual of any simple I-sided R-module is either (0) or simple. Consider 
any composition series 

o = Ao ~ A I ~ ... ~ An = R 

of RR. By assumption, each (A i+1 I Ai)* is either (0) or simple. Therefore, by 
(16.1), anne(Ai)/anne(Ai+l) is either (0) or a simple left R-rnodule. Thus, if we 
ignore possible collapsings, 

is a composition series for RR. Hence we have length(RR) :s length(RR). By 
symmetry, we also have the reverse inequality, so equality holds. In particular, 
there is no collapsing possible in (*), and it is a composition series for R R as it 
stands. Applying the same argument on (*), we see that 

is also a composition series for RR. Since Ai ~ annr(anne(Aj)), it follows that 
equality holds for each i. Now any right ideal in R is part of a composition series, 
so we have proved the double-annihilator property for right ideals. By symmetry, 
the same holds for left ideals. According to (15.1), R must be QF. 0 

(16.3) Remark. Clearly, the same argument can be used to give a slightly different 
characterization of QF rings using only the duals of simple right modules. If we 
assume from the outset that length(RR) :s length(RR), then a criterion for QF is 
that the dual of any simple right R-module be either (0) or simple. 

Recall that, for an artinian ring, a right principal indecomposable R-module 
is a module of the form e R where e is a primitive idempotent (i.e., a nonzero 
idempotent which is not the sum of two nonzero orthogonal idempotents). In the 
following, we shall write] = rad R (the Jacobson radical of R), and R = RI] (a 
semisimple ring). For the principal indecomposable module e R above, it is easy 
to check that e] is a (unique) maximal submodule of eR, with eRie] ~ eR; 
furthermore, up to isomorphism, every simple right R-module has this form (see 
Fe-(2U8), (21.22), or (25.2)). Similar results hold, of course, for left principal 
indecomposable modules. 

Let us now prove the following new characterization of a QF ring. 

(16.4) Theorem. Let R be an artinian ring. Then R is QF iff R is Kasch and every 
I-sided principal indecomposable R -module has a simple socle. 
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Proof. First assume R is QF. By the proof of (15.1), R is Kasch. For any primitive 
idempotent, consider the principal indecomposable right R-module eR. Since eR 
is projective, by (15.9)(2) it is also injective. Let M be a simple submodule of eR. 
Clearly eR must be the injective hull of M, so M is essential in eR. In particular, 
socCeR) = M is simple. By symmetry, soc(Re) is also simple. 

Conversely, assume that R is Kasch and that every I-sided principal indecom
posable R-module has a simple socle. We will show that R is QF by applying the 
criterion in (16.2). We proceed in a number of steps. 

Step 1. SOC(RR) = soc(RR). Let e be any primitive idempotent. By assumption, 
soc(RR) contains a copy of the simple module Re, so e . soc(RR) -=I- O. Since 
SOC(R R) is an ideal, e· SOC(R R) is a nonzero right submodule of e R. The simplicity 
of socCeR) then yields socCeR) S; e . soc(RR) S; soc(RR). Now RR is a direct 
sum of principal indecomposables of the form eR (for a finite set of primitive 
idempotents Ie}), so SOC(RR) is a direct sum of soc(eR)'s (see Exer. (6.12)(6». 
This shows that SOC(RR) S; soc(RR), and by symmetry soc(RR) S; soc(RR). 

Step 2. Let M be any simple right R-module. By assumption, M has an embedding 
into RR, and hence also an embedding into a suitable principal indecomposable 
eR. Thus, we may assume that M = socCeR) (since socCeR) is simple). We claim 
that 

(16.5) M* = (soc(eR))* ~ Re. 

This will show that M* is simple, and by symmetry, the R-dual of any simple left 
R-module will also be simple. Thus, (16.2) applies to show that R is QF. 

Step 3. Let a : Re -+ M* be the left R-homomorphism sending re to the left 
multiplication by re (on M). For J = rad(R), we have (using Step 1): 

a(Je)(M) = J(eM) S; J . SOC(RR) = J . soc(RR) = O. 

Thus, a induces a homomorphism Re / J e -+ M*. Since Re / J e ~ Re is simple, 
(16.5) will follow if we can show that a is onto. 

Step 4. To show that a is onto, let M ~ j R, where f is a primitive idempotent. 
Say s E M corresponds to j under this isomorphism. Then M = s R, and s = sf 
(since sf E M corresponds to j f = j also). Given any nonzero rp E M*, let 

t := rp(s) = rp(sf) = tf E rp(M) ~ M. 

Using Step 1, we have 

sERf n M S; Rf n SOC(RR) = Rf n soc(RR) S; soc(Rf), 

and similarly t E soc(Rf). Since soc(Rf) is simple, we have Rs = soc(Rf) = 
Rt. In particular, t = rs for some r E R. Recalling that M S; eR, we have, for 
any x E R: 

rp(SX) = rp(s)x = tx = rsx = (re)(sx). 
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Thus qJ is just left multiplication by re, as desired. 0 

Remark. The example (15.26)(1) of the triangular matrix ring (~ ~) (where 

k is a division ring) shows that the Kasch condition in Theorem (16.4) cannot 
be omitted. Also, the condition on the simplicity of the socles in (16.4) must be 
imposed on both right and left principal indecomposables. There do exist artinian 
local (necessarily Kasch) rings for which the left socle is simple but the right socle 
is not. Such rings are not QF: see Exercise 2 below. 

(16.6) Corollary. Let e, f be primitive idempotents in a QF ring R such that 
socCeR) ~ JR. Then: 

(1) soc(Rf) ~ Re; 
(2) (j R)* ~ Re; 
(3) (Re)* ~ JR. 

Proof. (2) is just (16.5), and (3) follows from (2) by taking the dual (and us
ing (15.11)(2». To prove (1), we use the left module analogue of (16.5) to get 
soc(Rf)* ~ J R. Taking the dual and using (2), we get soc(Rf) ~ (j R)* ~ Re. 

D 

For any artinian ring R, let 

(16.7) 1 = ell + ... + el ll , + ... + e.d + ... + e."" 

be a decomposition of 1 into a sum of orthogonal primitive idempotents, where 
ei := eil (1 ::: i ::: s) are mutually nonisomorphic (meaning that eiR 'l- ejR or 
equivalently Rei 'l- Rej for i i- j: see FC-(21.20», but ei is isomorphic to each 
eie. Let 

(16.8) 

Thus, {Ui } (resp. {Un) is a complete set of right (resp. left) principal indecompos
ables, and {Si} (resp. {Sm is a complete set of simple right (resp.left) R-modules. 
Note that, since 

RR ~ nlUI EEl··· EEln,U .. ====} RR ~ niSI EEl··· EEln,S" 

the Wedderbum-Artin theorem gives a ring isomorphism 

(16.8') 

where Di is the division ring EndR(Si) = EndR(Si). 
In case R is a QF ring, define a map 7r : {I, ... , s} ~ {I, ... , s} by 

(16.9) (1 ::: i ::: s). 

Then by (16.6), we have 

(16.10) 
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From the last two isomorphisms (or else), it is clear that 17: is a permutation of 
{I, ... , s}. This is called the Nakayama permutation (of the QFring R). Of course, 
the principal indecomposables and the corresponding simple modules could have 
been labeled in any way; thus, 17: is only determined up to a conjugation. 

As a bonus of the above considerations, we obtain the following characterization 
of a QF ring that was actually used as its definition by T. Nakayama (ca. 1941). 

(16.11) Corollary. An artinian ring R is QF iff there exists a permutation 17: of 
{I, ... , s} such that soc(Vi) ~ Sn:(i) and soc(V~(i) ~ s; for every i. 

Proof. ("If" part) Suppose 17: exists with the stated properties. Then Sn:(i) and S; 
can be embedded in R so R is Kasch. Also, the given isomorphisms imply that 
the principal indecomposables have simple socles. Therefore, R is QF by (16.4). 

o 

After the above discussion on the Nakayama permutation, a small question re
mains. What happens when we take the R -duals of the principal indecomposables? 
We call this a small question since it turns out to have a small answer: 

(16.12) Proposition. Over a QF ring R, we have V;* ~ V! and (V!)* ~ Vi . 

This is a special case of the following more general result. 

(16.13) Theorem. (1) If R is a right self-injective ring, then for any a E R, 
(aR)* ~ Ra as left R-modules. (2) If R is a self-injective ring, then principal 
I-sided ideals of R are reflexive, and for a, b E R, aR ~ bR iff Ra ~ Rb. 

Proof. (1) Consider the exact sequence 

o ----+ anne(a) ----+ R ~ Ra ----+ 0 

which yields 

(g(x) = xa), 

Ra ~ Rjannt(a) = Rjanne(aR) ~ (aR)*, 

where the last isomorphism follows from the second half of (15.4) (applicable as 
long as RR is injective). Note that the isomorphism q; : Ra --+ (aR)* obtained 
here is given by q;(ya)(az) = yaz for y, z E R. 

(2) Assume now R is self-injective. Informally, we have 

(aR)** ~ (Ra)* ~ aR (Va E R), 

by first applying (1) to (aR)* and then applying it again to (Ra)*. The remark 
made at the end of the paragraph above enables us to check that this, indeed, means 
that the natural map 6 : aR --+ (aR)** is an isomorphism. By left-right symmetry, 
6' : Ra --+ (Ra)** is also an isomorphism. The last statement in (2) follows by 
taking the first duals. 0 
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§16B. Definition of a Frobenius Ring 

We are now ready to introduce the definition of a Frobenius ring (as a specialization 
of a quasi-Frobenius ring). We do this by stating several equivalent conditions. 
(The basic notations in (16.7) and (16.8) will remain in force.) 

(16.14) Theorem. For any artinian ring R, let R = Rj J, where J = rad(R). 
Then the following are equivalent: 

(I) R is QF and SOC(RR) ::::::: RR. 
(2) R is QF and soc(RR) ::::::: RR. 
(3) R is QF and ni = nrr(i) (1 ::: i ::: s) in the notation of(16.7), where 7r is 

the Nakayama permutation of R. 
(4) SOC(RR)::::::: RR and soc(RR) ::::::: RR. 

If R satisfies these equivalent conditions, it is said to be a Frobenius ring.9o 

Proof. First assume R is QF. From (16.7), RR ::::::: EBi ni Ui. Computing the soc1e 
using (16.9) and Exercise (6.12)(6), we have 

(16.15) 

Comparing this with RR ::::::: EBi ni . Si, we get (1){::=>(3), and (2){::=>(3) follows 
by symmetry. (Of course, it is crucial to note that the decomposition (16.7) is 
independent of side.) Clearly, (1),(2),(3) imply (4), so it only remains to show that 
(4) ==> R is QF. Assume (4). Since all Si'S appear in RR, they also appear in 
SOC(RR), so R is right Kasch. Similarly, R is left Kasch. Furtht!rmore, 

EBi ni . Si ::::::: RR ::::::: SOC(RR) ::::::: EBi ni . soc(Ui). 

The LHS has length Li ni, and the RHS has length Li ni·length(soc(Uj». Since 
each length(soc(Ui» > 0, we must have length(soc(Ui» = 1, so soc(Ui) is 
simple for all i. Similarly, soc( U:) is simple for all i, so by Theorem (16.4), R is 
~ 0 

(16.16) Corollary. A QF ring R is a Frobenius ring iff RR 
R-modules), iff RR ::::::: (RR)* (as left R-modules). 

Proof. For the QF ring R, recall the following (R, R)-bimodule isomorphisms 
from (15.25): 

(16.17) 

where soc(R) denotes the common soc1e SOC(RR) = soc(RR). Specializing the 
above isomorphisms to one side, we see that the second condition in (16.14)(1) 

90In §3B, we have defined separately the notion of Frobenius k-algebras over a field k. 
Fortunately, this double usage of the term "Frobenius" turns out to be harmless. In §16C, 
it will be shown that the Frobenius k-algebras in §3B are precisely thl~ finite-dimensional 
k -algebras that are Frobenius rings. 
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translates into RR ~ (R R)* (as right modules), and the second condition in 
(16.14)(2) translates into RR ~ (RR)* (as left modules). D 

(16.18) Corollary. Suppose the QF ring R is such that R ~ MIl(D 1) x ... x 
M,JD.,) where the Di'S are division rings. Then R is a Frobenius ring. (In 
particular. this is the case if R is either a commutative ring or a simple ring.) 

Proof. The hypothesis on R implies that n I = ... = n., = n in the notation 
of (16.7) and (16.8'), so the condition (3) in (16.14) is automatic. Hence R is a 
Frobenius ring. If R is a simple ring, then s = 1 and we are certainly in the present 
case. If R is a commutative ring instead, then nl = ... = ns = 1 (from (16.8'» 
so we are again in the case of this corollary. D 

(16.19) Examples. 

(1) If R = Sj!J3 where S is a Dedekind ring and !J3 S; S is a nonzero ideal, then 
R is QF by (15.26)(2) and hence Frobenius by (16.18). 

(2) Any semisimple ring R is always Frobenius: this follows readily from the 
criterion (16.14)(4) since R = Rjrad R = Rand soc(R) = R. Alternatively, in 
the notations of (16.7) and (16.8), we have Ui = Si and Ur = S;. These imply that 
the Nakayama permutation of R is the identity; clearly, any QF ring with such a 
property is a Frobenius ring, by the criterion (16.14)(3). 

(3) It is easy to check directly that a finite direct product R = n:=l Ri is a 
Frobenius ring iff each factor Ri is. 

(4) For any division ring k, let R be the 4-dimensional k-ring consisting of matrices 
of the form 

y= (

a x 0 
o b 0 
o 0 b 
000 

The Jacobson radical J consists of all matrices in R with a zero diagonal. The 
quotient R = Rj J ~ k x k, with the isomorphism given by ji ~ (a, b). In the 
notation of (16.7), we can take 

el = diag(1, 0, 0,1) and e2 = diag(O, 1, 1,0), 

which give rise to the right principal indecomposables: 

o 0 
b 0 
o b 
o 0 
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each 2-dimensional over k. We have 

U, J ~ I G ~ ~ Dl' ,nd U,J ~ I G ~ ~ Dl 
Let St = Ut/UtJ, S2 U2/U2J be the two simple right R-modules. Since 
(uE 12)y = ubE t2 and (VE34 )y = vaE34 (Eij's being the matrix units), we see 
that 

soc(U t) = U\J ~ S2 and soc(U2) = U2J~: St. 

By (16.4), R is QF with Nakayama permutation given by the transposition (12). 
Since RR ~ Ut EB U2, R is necessarily a Frobenius ring. Note that in this example, 
we have J2 = 0 and soc(R) = Ut J EB U2J = J. 

One nice thing about this example is that it generalizes easily to an example of 
a Frobenius ring with an n-cyc1e as its Nakayama permutation. We need only take 
R to be the set of 2n x 2n matrices with 2 x 2 diagonal blocks 

( a2 X2) (an o a3 ' ... , 0 

where all entries are chosen from k. This new ring R has dimension 2n over 
k, and is the direct sum of the distinct right principal indecomposable modules 
Ui = ei R, where ei is the primitive idempotent in R obtained by setting all 
x j = 0 and a j = 8ij. Exactly the same computation as given above shows that R 
is a Frobenius ring with a Nakayama permutation given by the n-cyc1e (12· .. n). 

In the case when k is a field, one can also show directly that R is a Frobenius 
k-algebra in the sense of §3. A nonsingular bilinear pairing B : R x R --+ k with 
the associativity property will be computed in (16.51) below. 

It is also worth noting that, by coupling this example with a direct product 
construction, we can construct a Frobenius ring whose Nakayama permutation is 
a prescribed permutation in the symmetric group on any (finite} number of letters. 
See Exercise 3. 

(5) Many books contained material on QF rings and Frobenius rings, but few of 
them offered any worked out examples of QF rings which are not Frobenius rings! 
We present such an example, from Nakayama's original paper [39]. Let k be any 
division ring, and let R be the subset of M 6 (k) consisting of matrices of the form 

a b p 0 0 0 
c d q 0 0 0 

(A) 
0 0 r 0 0 0 

y= 
0 0 0 r s t 
0 0 0 0 a b 
0 0 0 0 c d 

It is easy to check that R is a ring containing the scalar matrices k . h. We can 
compute the U i 's and Sj 's as follows (using the notations in (16.7) and (16.8)). 
The Jacobson radical rad(R) is given by the ideal J of R consisting of y 's with 
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a = b = C = d = r = O. This is clear since , is obviously nilpotent and 
R/' ~ k x M 2 (k) is semisimple. Let SI, S2 be the two simple right R/ '-modules 
(viewed also as R-modules) labeled so that dimkSi = i. We can think of SI 
as k with right action of y above given by right multiplication by r, and S2 as 

k2 with right action of y given by right multiplication by (: !). We have a 

decomposition 1 = el + e2 + e~ where 

(B) 

are orthogonal idempotents in R. (To save space, we shall henceforth express our 
matrices by using the matrix units Eij.) By working in R = R/', we see that 
el, e2, e~ are primitive idempotents in R with SI ~ el Rand S2 ~ e2R ~ e~R. 
(The fact that e2, e~ are isomorphic idempotents in R can also be seen directly by 
noting that e2 = exfJ and e~ = fJex for ex = EI2 + E56 and fJ = E21 + E65 in 
R.) A direct computation now yields the two (distinct) principal indecomposables 
Ui =ei R: 
(C) 

UI = k(E33 + E44)+kE45 +kE46 , U2 = k(EII +E55)+k(EI2+E56)+kEI3. 

For the record, we note that e;R = k(E21 + E65 ) + k(E22 + E66 ) + kE23: we can 
"ignore" this one, since it is ~ e2R. The maximal submodules in the Ui's are 

(D) 

with Ui / Uj ' ~ Sj. Now, for a general element y ERas in (A), the actions of y 
on Ui' are as follows: 

(XE45 + yE46)y = (xa + YC)E45 + (xb + yd)E46, (zE 13 )y = zrEI3. 

Therefore, we have U I' ~ S2 and U2' ~ S I. In particular, 

(E) soc(Ud = UI' ~ S2 and SOC(U2) = U2' ~ SI, 

so (16.4) implies that R is QF. The Nakayama permutation 1f is the transposition 
(12). Since RR ~ UI EB 2· U2, the multiplicity numbers in (16.7) are nl = 1 and 
n2 = 2. This shows immediately that R is not Frobenius! We might also point out 
that, in this example, 

(F) 

These are indeed not isomorphic as right R-modules. 

We mention in passing the notion of a Cartan matrix. For any right artinian ring, 
let U I , ••• , Us be a complete set of right principal indecomposables, and let Sj be 
the unique simple quotient of Ui , as in (16.8). 

(16.20) Definition. The (right) Cartan matrix of R is the s x s matrix (cij) E 
Mn (Z), where cij is the number of composition factors of Ui that are isomorphic 
to Sj. (The integers cij are called the Cartan invariants of R.) The left Cartan 
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matrix of R is defined similarly. (Of course, since we could have labeled the 
Vi'S in any way, these Cartan matrices are defined only up to a conjugation by a 
permutation matrix.) 

For instance, the Cartan matrix of a local right artinian ring R is (c), where 
c = length(RR). The Cartan matrix of a right artinian ring R is the identity matrix 

iff R is semisimple. The Cartan matrix for the ring R in (16.19)(5) is (~ ~ ). 

And, for the (generalized) ring R in (16.19)(4), the Cartan matrix is 

In + El2 + E23 + ... + En-l. n + E nl , 

where the Eij 's denote the matrix units. In general, the left and the Cartan matrices 
of an artinian ring may be different. For instance, the "Hint" for Exercise 2 below 
offers a local artinian with left Cartan matrix (2) and right Cartan matrix (n + 1). 

There are many interesting results on Cartan matrices. For instance, in the case 
of group algebras of finite groups over fields of characteristic p, the study of Cartan 
matrices is an important part of the modular representation theory of groups. Due 
to limitation of space, however, we shall not delve into this matter here. 

§16C. Frobenius Algebras and QF Algebras 

In §3, we have made an early introduction to a class of finite-dimensional algebras 
called Frobenius algebras, partly as a source of self-injective rings. We must now 
explain the relationship between these Frobenius algebras and the Frobenius rings 
defined in the last subsection. 

Let R be a finite-dimensional algebra over a field k. Recall that the k-dual 
R := Homk(R, k) has a natural structure as an (R, R)-bimodu1e. For now we shall 
use the right R -structure on R, which is defined via the equation (f r) (r') = f (r r') 
for any fER and r, r' E R. The two right R-modules RR lmd (R)R have the 
same k-dimension so it is of interest to compare their isomorphism types. By 
definition, R is a Frobenius k-algebra if RR ~ (R)R as right R-modules. Since 
(R)R is always an injective right R-module by (3.6C), R is a Frobenius algebra 
only if it is a right self-injective ring. 

We shall now give the precise relationship between Frobenius rings and Frobe
nius algebras. 

(16.21) Theorem. Let R be a finite-dimensional algebra over a field k. Then R 
is a Frobenius k-algebra iff R is a Frobenius ring. 

In particular, this result shows that" R being a Frobenius algebra over k" is 
independent of the choice of the field k, as long as, of course, R is a finite
dimensional k-algebra. (This fact has been derived earlier by another argument: 
see the last paragraph of (3.41).) A similar statement applies to the notion of QF 
algebras to be introduced below, after (16.22). 
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Proof of (16.21). If R is a Frobenius k-algebra, then, as we have recalled above, 
R is a right self-injective ring. Since R is clearly right noetherian, R is a QF ring. 
Now let R = Rj J where J = rad(R). In (3.41), the socle sOC«R)R) has been 
computed (for any finite-dimensional k-algebra R) to be isomorphic to (R)R' In 
the present case, we have therefore 

RR ~ soc«Rh) ~ SOC(RR)' 

Thus, (16.14)(1) holds, so R is a Frobenius ring. 
Conversely, suppose R is a Frobenius ring. Then R is QF, and we have RR ~ 

SOC(RR). By (3.41), the injective hull E(RR) is given by (R) R. On the other hand, 
since R is right artinian, SOC(RR) is essential in RR. Since RR is injective, the 
injective hull E(soc(RR» is given by RR. Therefore, RR ~ SOC(RR) leads to 
(Rh ~ RR by taking injective hulls, so now R is a Frobenius k-algebra. D 

(16.22) Corollary. A commutative finite-dimensional algebra R over afield k is 
a Frobenius k-algebra iff R is a self-injective ring. 

Proof. This is now immediate from (16.21), since a commutative QF ring is always 
a Frobenius ring by (16.18). (Other proofs are possible too.) D 

Classically, there is also a definition of QF algebras in generalization of that for 
Frobenius algebras, based on a comparison of the two right R-modules RR and 
(R) R. Instead of comparing their isomorphism types, we compare the isomorphism 
types of their (Krull-Schmidt) indecomposable components. 

Definition. Let R be a finite-dimensional k-algebra. We say that R is a QF alge
bra (over k) if RR and (Rh have the same distinct indecomposable components 
(occurring possibly with different multiplicities). Clearly, any Frobenius algebra 
is a QF algebra. 

Fortuitously, we have the following complete analogue of Theorem (16.21). 

(16.23) Theorem. A finite-dimensional k-algebra R is a QF algebra iffit is a QF 
ring. 

Proof. First assume R is a QF algebra. Since (R)R is injective (by (3.6C», so are its 
indecomposable components. By assumption, each indecomposable component 
of RR is isomorphic to one of (Rh, so RR is also injective. Therefore, R is a 
QF ring. Conversely, assume R is a QF ring. Let el,"" e, E R be primitive 
idempotents as in the context of (16.8). We shall use the fact that the k-dual of an 
indecomposable left R-module is an indecomposable right R-module. Since RR 
is injective, we have by (3.66): 

(m; :::: 0). 
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Here, the mi 's must be all positive. (Every injective indecomposable (Rei f, being 
projective also, must show up in some free module R~, and therefore must show 
up in RR, by the Krull-Schmidt Theorem (FC-(19.23».) On the other hand, 

RR~n,(Re,)EEl"'EEln,(Re,) (ni >0) 

implies that 

(R)R ~ n, (Re,), EEl· .• EEl n,(Re,)" 

so (R)R has distinct indecomposable components (Rei)' (1 ::: i ::: s), just as 
RR does. Thus, R is a QF algebra. (Of course, by the Krull-Schmidt Theorem 
again, the (Rei)"S are just a permutation of the ei R 's, up to isomorphism.) 0 

Next we shall give another interpretation for the Nakayama permutation :rr of a 
QF algebra R, in terms of the k-duals of R-modules. Recall that, upon forming R
duals, the principal indecomposables go to themselves in the same order «16.12)), 
while the simple modules are permuted by:rr «16.10». We will show that, when 
we form k-duals, exactly the opposite happens; namely, the simple modules go to 
themselves in the same order, while the principal indecomposables are permuted 
by :rr -, . We begin by checking the former, which is actually valid over any (finite
dimensional) algebra. Here again, the notations in (16.7) and (16.8) will be in 
force, and R := Rjrad(R). 

(16.24) Proposition. For any primitive idempotent e in a finite-dimensional k
algebra R, we have (Re), ~ eR as right R-modules, and (eRr ~ Re as left 
R-modules. 

Proof. First observe that rad(R) acts as zero on all the modules concerned, and 
that the formation of the k-duals depends only on k and not on R. Therefore, 
we may replace R by R to assume that R is semisimple. Under this assumption, 
the principal indecomposables coincide with the simple modules. By the proof of 
(16.23), (Re,r, ... , (Re,r are a permutation of e,R, ... , e,R, so (Reir ~ 
ei'R for some i'. Now let R = RE, x ... x RE, be the decomposition of R 
into its simple components, where the Ei 's are central idempotents. For j oj:- i, 
E j acts trivially on Rei, and hence also on (Re;)'. This implies that the simple 
right R -module ei' R must be associated with the simple component REi, and so 
(Reir ~ ei,R = eiR. Taking the k-duals, we have then also (eiRf ~ Rei. 

o 

(The fact that (R e r ~ e R for a primitive idempotent e in a s(!misimple algebra 
R is a special case of a much more general result to be obtained later. In fact, over 
any "symmetric algebra" R, it will be shown in (16.74) that (Rar ~ aR and 
(aRr~ Ra for any element a E R.) 

Returning to QF algebras, let us now proceed to study the way in which the 
formation of k-duals acts on the principal indecomposables. 
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(16.25) Proposition. Let R be a QF algebra over a field k, and let rr be the 
Nakayama permutation of R. (With respect to the notation in (16.8), (S~)* ~ SrrU).J 
Then,for the right and left principal indecomposables {Vj } and {Vf}, we have 

A ~ , 

Vj = Vrr(i) , and 

Proof. By (16.9), soc(Vj) ~ Srr(i)' so there exists an injection SrrU) ~ Vj. This 
induces a surjection from OJ to SrrU), which is S~(i) by (16.24). Since OJ is an 
indecomposable injective (and hence projective) left R-module, it must then be 
V~(i)'Takingk-dualsagainandreplacingiby rr-I(j),weget VjA~ (Urr-I(j))~ ~ 
Vrr-I(j)' 0 

Throughout this subsection, we have assumed that R is an algebra over a field 
k. As it turns out, this assumption can be relaxed. In the 1950s, Eilenberg and 
Nakayama succeeded in extending the theory of Frobenius algebras to algebras 
over commutative rings. If k is a commutative ring (instead of a field), we consider 
k-algebras R such that R is f.g. projective as a k-module. Using the left R-module 
structure on R, we can, as before, view the k-dual R = Homk(R, k) as a right 
R-module. We can then define R to be a Frobenius k-algebra if R ~ R as right 
R-modules. In the case when k itself is a Frobenius ring, it can be shown that 
any Frobenius k-algebra R is also a Frobenius ring. In this way, we can get new 
examples of Frobenius rings by taking, for instance, (Z/nZ)-Frobenius algebras. 
This more general framework for studying Frobenius algebras is useful for coding 
theory; in fact, various results in classical coding theory over finite fields have been 
extended to finite commutative Frobenius rings (e.g., Z/4Z). For more details on 
this, see the article of 1. A. Wood [97]. 

§16D. Dimension Characterizations of Frobenius Algebras 

In this subsection, we shall obtain other classical characterizations of Frobenius 
algebras, in terms of certain formulas involving the dimensions of simple modules, 
their k-duals, and the annihilators of I-sided ideals. To the extent possible, we shall 
formulate these dimension-theoretic results for QF algebras. The characterization 
theorems for Frobenius algebras will be deduced as easy consequences from them. 

Throughout this subsection, R shall denote a finite-dimensional algebra over a 
field k. The notations Vj = ejR, V: = Rej, etc. in (16.7), (16.8) will be in force, 
and R shall always denote R/rad(R). Furthermore, we shall write Di = ejRej; 
recall that these Di'S are division k-algebras and that we have a Wedderburn 
decomposition 

(16.26) 

for the integers nl, ... ,ns in (16.7). 

(16.27) Lemma. Let R be a QF algebra over k, with Nakayama permutation rr. 
Then dimk DrrU) = dimk D j for all i. 
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Proof. Let S be the ideal SOC(RR) = soc(RR) in R. By (16.10) and Exercise 
(6.12)(7): 

Rei:;:: soc(Re"(i) = Se"U)' 

so D; = e; Re; :;:: e; Se"U) as k-spaces. Similarly, 

e"U) R :;:: soc(ei R) = e; S 

gives D"U) = e"(i) Re"U) 
dimk D"U) = dimk Di. 

ei Se"U) as k-spaces. It follows immediately that 
D 

Over a QF algebra R, S; = ei Rand S; = Re; are k-dual spaces (by (16.24», 
so they have the same k-dimension. Let us denote this common dimension by di 

(1 :::: i :::: s). We have the following proportionality theorem between these di 's 
and the n; 's in (16.26). 

(16.28) Theorem. For any QF algebra R, d,,(i)/di = n"(i)/n; for all i. 

Proof. Note that Rei is a right vector space of dimension ni over eiRe; D;. 
Therefore, 

(16.29) 

Replacing i by n(i) and using (16.27), we get by simple division d"u)/d; 
n"(i)/ n;. D 

(16.30) Remark. Recall from (16.10) that (Re;)* :;:: e"U)R. Therefore, we can 
interpret the d"U) above as dimk (Re;)*. This enables us to express (16.28) in the 
following equivalent form in terms of R-duals of simple left R-modules: 

(16.31) 

For the record, we also state the right-side analogue of this formula: 

(16.32) 

The above considerations lead us immediately to the following dimension
theoretic characterizations of Frobenius algebras: 

(16.33) Theorem. A QF algebra R is Frobenius iff d"(i) d; for all i, iff 
dimk M* = dimk M for all simple left (resp. right) R-modules. 

Remark. Since n is a permutation, it is easy to see that the above theorem remains 
to be true if, in the second and/or third condition, we replace the equal sign by an 
inequality sign (either "::::" or "~"). 

The fact that, over a Frobenius algebra R, a simple module has the same dimen
sion as its R-dual admits the following generalization. 
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(16.34) Theorem. Let R be any Frobenius k-algebra, and N be any f.g. left R
module. Then dimk N = dimk N*. 

Proof. We induct on the integer lengtheN). If lengtheN) = I, N is a simple 
module and the result follows from (16.33). Now assume lengtheN) > I, and let 
M ~ N be a simple submodule. Then M* is a simple right R-module (of the same 
dimension as M*), and by (15.14), we have 

(16.35) M.l:={fEN*: f(M)=O}~(N/M)*, and N*/M.l~M* 

as right R-modules. By the inductive hypothesis, dimk (N / M) = dimk (N / M)*. 
Therefore, 

as desired. 

dimk N = dimk M + dimk (N / M) 

= dimk M* + dimk (N / M)* 

= dimk M* + dimk M.l 

= dimk N*, 

o 

Since QF algebras need not be Frobenius algebras, (16.33) implies that dimk M 
= dimk M* need not hold over QF algebras. It behooves us to make this explicit 
by working with a concrete example. 

(16.36) Example. Let k be a field, and R be the QF algebra (of dimension 9) 
defined in (16.19)(5). We shall use the notations in that example (and those in 
(16.8». Since the Nakayama permutation of R is the transposition (12), we have 
Sr ~ S; and S; ~ S; . Thus, dimk SI = I while dimk Sr = 2, and dimk S2 = 2 
while dimk S; = I. The information on the dimensions of the St 's is also encoded 
in the socle equation: SOC(RR) ~ S2 ED 2· SI. In fact, this equation tells us that 
there is essentially one way to embed S2 into R, namely, sending 

(x, y)(E e = S2) t-+ XE45 + yE46 E SOC(UI). 

On the other hand, there are two essentially different ways of embedding SI into 
R: first by sending Z E k = SI into ZEl3 E SOC(U2) = soc(ezR), and second, by 
sending the same Z E k = SI into ZE23 E soc(e;R) where e;R = Ezz + E66 
is the "ignored" idempotent isomorphic to ez = Ell + E55 in the decomposition 
1 = el + ez + e~. 

Although the dimension equation dimk(N) = dimk(N*) may not hold in the 
QF case, there is, nevertheless, a good analogue of (16.34) for QF algebras (in fact 
even for QF rings). For this analogue, we simply replace "dimension" by "length". 
We state the following result, the proof of which is left as an exercise. 

(16.37) Theorem. An artinian ring R is QF iff lengtheN) = length(N*) for 
any f.g. module N Rand RN. 
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Recall that a Frobenius k-algebra R is characterized by the fact that it carries 
a nonsingular k-bilinear pairing B : R x R ~ k with the associativity property 
B(xy, z) = B(x, yz) (for all x, y, Z E R). For any set T ~ R,let 

TO = {x E R: B(T, x) = O} and °T = {x E R: B(x, T) = O}. 

We note the following nice consequences of associativity on TO and ° T. 

(16.38) Lemma. Let (R, B) be as above. 

(1) Iff)! is a left ideal, then f)!0, of)! are right ideals, with f)!0 = ann,(f)!) and 
of)! :2 anne (f)!). Moreover, 

21 ~ Rj°f)! and (Rjf)!r ~ Of)! as right R-modules. 

(2) If A is a right ideal, then ° A, AO are left ideals, with ° A = annt(A) and 
AO :2 ann, (A). Moreover, 

A ~ RjAO and (RjAr ~ AO as left R-modules. 

Proof. By symmetry, it is sufficient to prove (1). First let x E ann,(f)!). Then 
B(2l, x) = B(l2lx, 1) = 0, so X E f)!0. Conversely, if x E f)!0, then 

B(R,l2lx) = B(Rf)!, x) = B(f)!, x) = O. 

Since B is a nonsingular pairing, this implies that l2lx = 0; that is, x E ann,(f)!). 
This gives f)!0 = ann, (f)!) , which is a right ideal. If y E of)!, then B(y R, f)!) = 
B(y, Rf)!) = 0; hence yR ~ of)! so of)! is also a right ideal. For any z E anne(f)!), 
we have B(z, f)!) = B(1, zf)!) = 0; this shows that anne (f)!) ~ of)!. 

Recall that, for the Frobenius algebra R, the pairing B above "corresponds" 
to a right R-module isomorphism f : R ~ R, with f(x)(y) = B(x, y). (See 
the proof of (3.15).) Using the definition of of)!, we see that f induces the two 
isomorphisms asserted in (1). 0 

(16.39) Remark. In (1), the inclusion of)! :2 anne (f)!) need not be an equality. In 
fact, of)! is only a right ideal, but anne (f)!) is always an ideal. For instance, if R is a 
simple algebra and f)! t= 0, R, then we have necessarily annt(f)!) = 0 but of)! t= O. 
A similar remark can be made about (2). 

We are now in a position to prove the following remarkable characterization 
theorem of Frobenius algebras due to T. Nakayama. 

(16.40) Theorem. For any finite-dimensional k-algebra, the following are equiv
alent: 

(1) R is a Frobenius algebra. 
(2) For any right ideal A ~ R and any left ideal f)! ~ R, 

dimk A + dimk annt(A) = dimk R = dimk f)! + dimk ann, (f)!). 
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(3) R is QF, and/or any minimal right ideal A ~ R: 

dimk A + dimk annt(A) = dimk R. 

Proof. (I )==>(2). Fix a nonsingular (associative) k-bilinear pairing B : R x R -+ k 
as in (16.38). Since B is nonsingular, we have 

dimk R = dimk 2( + dimk 2(0 = dimk 2( + dimk annr(2() 

by (16.38)(1), and a similar formula for A follows. 

(2)==>(3). For any left ideal 2(, 

dimk annt(annr(2(» = dimk R - dimk (annr (2(» 

= dimk R - (dimk R - dimk 2() 

= dimk 2(. 

Thus, 2( ~ anne(annr(2(» must be an equality, and similarly, we have A 
annr(anne(A» for any right ideal A ~ R. Therefore, by (15.1), R is a QF ring. 

(3)==>(1). According to (16.33), all we need is to show that, for any simple right 
R-module A, dimk A* = dimk A. Since R is right Kasch, we may assume that A 
is a minimal right ideal of R. Then by (15.14), A* ~ Rjanne(A), so 

dimk A* = dimk R - dimk annt(A) = dimk A, 

as desired. o 

Remark. In view of the Remark made after (16.33), we can strengthen the above 
result by adding another (ostensibly weaker) condition (3)' where we replace the 
equality in (3) by an inequality (either "::;" or "~"). For the proof, we just replace 
(3)==>(1) above by (3) ==> (3)' ==> (1). 

§16E. The Nakayama Automorphism 

The idea here is that, for a Frobenius k-algebra R, there actually exists a k-algebra 
automorphism a on R which "effects" the Nakayama permutation j{ of R. This 
is one of several special features which distinguish Frobenius algebras from QF 
algebras. 

To define the automorphism a of R, we first fix a nonsingular bilinear pairing 
B : R x R -+ k with the associativity property. Let a E R be given. The map 
x ~ B(a, x) is ak-linearfunctional on R, so it has the form B( -, b) fora uniquely 
determined element b, which we then define to be a(a). In other words, a(a) is 
characterized by the equation 

(16.41) B(a, x) = B(x, a(a» ("Ix E R). 

If we use the functional J.. : R -+ k defined by J..(x) = B(x, 1) (cf. proof of 
(3.15», whose kernel contains no nonzero I-sided ideals, then B(x, y) = J..(xy), 
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so we can re-express the characterization (16.41) of a in the form 

(16.42) ).,(ax) = ).,(xa(a» (Vx E R). 

It is easy to see that a is a k-vector space automorphism. From 

).,(xa(a)a(b» = )"(bxa(a» = ).,(abx) (Vx E R), 

we see that a(ab) = a(a)a(b), so a is a k-algebra automorphism. It is called the 
Nakayama automorphism of the Frobenius algebra R. 

Of course, the definition of a above depended on the choice of the pairing B. 
Fortuitously, changing the choice of B only changes a by an inner automorphism, 
as we'll presently show. 

(16.43) Proposition. The Nakayama automorphism a of a Frobenius algebra R 
is determined up to an inner automorphism. 

Proof. Suppose B, B' are both nonsingular, associative pairings. Then g, g' : R ~ 
R defined by 

(yg)(x) = B(x, y), (yg')(x) = B'(x, y) 

are isomorphisms of left R-modules (see the Remark after the proof of (3.15», so 
there exists an automorphism h of RR such that g' = hog (composition of right 
operators). Such h is given by right multiplication by some unit u E U(R). Then, 

(16.44) B'(x, y) = g'(y)(x) = «yu)g)(x) = B(x, yu). 

Bringing in the automorphisms a and a' defined by B and B', respectively, we 
can rewrite (16.44) as 

B'(y, a'(x» = B(yu, a(x» = B(y, ua(x». 

Using (16.44) to replace the LHS by B(y, a'(x)u), we see that ua(x) = a'(x)u, 
so a'(x) = ua(x)u- I for all x E R, as desired. (The same proof shows that 
x r-+ ua(x)u- I is a Nakayama automorphism, for any unit u E U(R).) 0 

(16.45) Proposition. Let (R, B) be as above, and leta be the Nakayama automor
phism of R associated with B. Then for any right ideal A, we have the following 
left R-module isomorphisms: 

A ~ Rja(annt A), (Rj At ~ a(annt A). 

Similarly for any left ideal2l, we have right R -module isomorphisms: 

(R/2lt ~ a-I (ann, 2l). 

Proof. It suffices to deal with the case of a right ideal A. First note that 

(16.46) AO = {x E R: 0 = B(A, x) = B(x, a A)} = o(a A). 
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For the right ideal a A, we have by (16.38)(2): 

(16.47) D(a A) = anne (a A) = a (anne A). 

Now the asserted isomorphisms in the Proposition follow from those in (16.38)(2) 
upon replacing AD there by a(anne A). 0 

(16.48) Proposition. In the above notations, we have for any idempotent e E R: 

(eRf ~ Ra(e), and (Ref ~ a-I (e)R. 

Proof. Let A = eR in (16.45). Since 

a (anne eR) = a(R(l - e» = R(l - a(e», 

we get (eRf ~ Rj R(1 - a(e» ~ Ra(e) as left R-modules. The other iso
morphism follows similarly, or by taking "hat" (k-dual) of the isomorphism just 
obtained, and replacing e by a-I (e). 0 

The Proposition bears out our earlier remark that the Nakayama automorphism 
a "effects" the Nakayama permutation Jr (in the case of a Frobenius algebra). For, 
if e I R, ... , e" R give all different types of right principal indecomposables, we 
will have from (16.48) and (16.25): 

(16.49) 

In other words, the idempotent a (ei) is isomorphic to e;r(i). It follows that the 
R -duals of the simple R -modules can also be expressed in terms of a, namely: 

(16.50) 

To conclude this subsection, let us compute an explicit example of a Frobenius 
automorphism a. The case when a is the identity is, of course, possible: this 
happens for instance when R is a "symmetric algebra". We shall treat this case in 
more detail in § 16F below. Here, we would like to give an example of a nontrivial 
(noninner) a. 

(16.51) Example. Let k be a field and R be the 2n-dimensional k-algebra defined 
at the end of(16.19)(4), consisting of the 2n x 2n matrices y with diagonal blocks 

where all entries are chosen from k. We have shown in (16.19)(4) that R is a 
Frobenius ring, so it is a Frobenius k-algebra by (16.21). A direct verification 
of this is also possible. We define the linear functional).. : R -+ k by )..(y) = 
XI + ... + Xn E k, where y is as above. It suffices to show that ker()..) contains 
no nonzero right ideal of R. Suppose, indeed, )..(y R) = 0, where y has the 
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parameters iii'S and Xi'S. By a direct calculation, this yields 

n 

0= )..(jI y) = L (iii Xi + Xiai+l) (Vy E R), 
i=1 

where the sUbscripts are taken mod n (so that an+1 means al). Clearly, this implies 
that jI = O. Therefore, B(y, y') = )..(yy') defines a nonsingular bilinear pairing 
on R with the associativity property. This checks directly that R is a Frobenius 
k-algebra. 

Now consider the map a : R ~ R defined by cyclically permuting the diagonal 
blocks of a matrix y in R. This is induced by the conjugation by a suitable permu
tation matrix in M 2n (k), so it is a k-algebra automorphism of R. For y, jI E R 
as above, an easy computation shows that 

n 

)..(y . a(jI)) = L (aiXi-I + Xiiii), 

i=1 

again with subscripts taken modulo n. An easy inspection shows that this is exactly 
the same sum as that computing )..(jI y). Therefore, a is precisely the Nakayama 
automorphism associated with B that we are looking for! 

The n crucial primitive idempotents in this example are 

ei := E2i - 2,2i-2 + E2i -1.2i-1 (1::: i ::: n), 

with subscripts taken now mod 2n (so that el = E2n ,2n + Ell). Obviously, these 
are cyclically permuted by the automorphism a. Therefore, as is predicted by the 
general theory, a "effects" the Nakayama permutation 1f, which, according to 
(16.19)(4), is the n-cycle (12··· n). 

§16F. Symmetric Algebras 

We shall conclude §16 by examining an important class of Frobenius algebras 
consisting of the so-called symmetric algebras. Throughout this subsection, R 
denotes a finite-dimensional algebra over a fixed field k. 

Recall that, given R, we can form the k-dual R and give it the structure of an 
(R, R)-bimodule. The right and left R-actions of R are defined, respectively, by 

(16.52) (qJ . x)(r) = qJ(xr) and (y. qJ)(r) = qJ(ry), 

where qJ E R and x, y, r E R. If R ~ R as right (or equivalently, left) R -modules, 
R is by definition a Frobenius k-algebra. It is, of course, equally natural to try 
to compare R to R in the category of (R, R)-bimodules. This leads us to the 
following: 

(16.53) Definition. R is called a symmetric algebra over k (or a symmetric k
algebra) if R ~ R as (R, R)-bimodules. Of course, a symmetric k-algebra is 
always a Frobenius k-algebra. 
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The several initial characterizations of Frobenius algebras do have analogues 
for symmetric algebras. We collect them in the following result. 

(16.54) Theorem. For any (finite-dimensional) k-algebra R, the following are 
equivalent: 

(1) R is a symmetric algebra. 
(2) There exists a nonsingular, symmetric bilinear pairing B : R x R -+ k 

with the associativity property B(xy, z) = B(x, yz) for all x, y, z E R. 
(3) There exists a k-linear functional)" : R -+ k such that ).,(xy) = ).,(yx) 

for all x, y E R, such that ker().,) contains no nonzero right ideals of R. 

Proof. The proof follows the same general pattern as that for (3.15). We simply 
"add on" the symmetric property. 

(1)<==>(2). First assume R is a symmetric algebra. We fix an (R, R)-bimodule 
isomorphism f : R -+ R and define B : R x R -+ k by B(x, y) = f(x)(y). 
Then B is nonsingular and "associative" as in the proof of (3.15): this followed 
from the fact that f is a right R -module isomorphism. Let us now bring in the fact 
that f is also a left R-module homomorphism, which is expressed by the equation 
f(zx) = zf(x) (z, x E R). This amounts to 

f(zx)(y) = (zf(x»(y) = f(x)(yz) ('Ix, y, z E R), 

orequivalently,B(zx,y) = B(x,yz).Settingx = I,wegetB(z,y) = B(1,yz) = 
B(y, z) so B is symmetric. Conversely, if a nonsingular associative pairing B hap
pens to be symmetric, then 

B(zx, y) = B(y, zx) = B(yz, x) = B(x, yz), 

so the associated map f : R -+ R (defined by f(x)(y) = B(x, y» will be an 
(R, R)-bimodule isomorphism. 

(2)<==>(3). Given B as in (2), we define)., by ).,(x) = B(x, 1). Then 

).,(xy) = B(xy, 1) = B(x, y) = B(y, x) = B(yx, 1) = ).,(yx), 

and, as in the proof of (3.15), ker().,) contains no nonzero right (or left) ideals of R. 
The converse is completely similar, since, if we define B via)., by B(x, y) = ).,(xy), 
the symmetry of B follows from that of ).,. 0 

(16.55) Example. Any commutative Frobenius k-algebra R is a symmetric al
gebra. This is clear since, if)., is a nonzero k-linear functional on R such that 
ker().,) contains no nonzero right ideals, the symmetry property ).,(xy) = ).,(yx) 
is automatic because of the commutativity of R. 

(16.56) Example. For any finite group G, the group algebra R = kG is always a 
symmetric algebra. Recall from (3.15E) that R is a Frobenius algebra, with respect 
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to the functional A: R ~ k given by A(Lagg) = at. Now for a = Lagg and 
fJ = L fJhh in R, we have 

A(afJ) = I>gfJg-I = LfJhah- ' = A(fJa), 
gEG hEG 

so it follows from (16.54) that R is a symmetric algebra. (Historically, it is precisely 
this group ring example which prompted the definition of a symmetric algebra.) 

(16.57) Example. Any matrix algebra R = MII(k) is a symmetric k-algebra. We 
define A : R ~ k to be the trace function. As is well-known, ).(xy) = ).(yx) for 
all matrices x, y E R. If x E R is such that A(xR) = 0, then ).(xEij) = 0 for all 
matrix units Eij. Since ).(x Eij) = X ji (the (j, i)-entry of x), it follows that x = o. 
Obviously, ). ¢ 0 also, so again by (16.54), R is a symmetric algebra. 

(16.58) Example. If R, R' are symmetric algebras, then so are the algebras R x R' 
and R ®k R'. The verification of this is left as an easy exercise .. 

(16.59) Example (Eilenberg-Nakayama). Any semisimple k-algebra R is a sym
metric algebra. In view of Wedderburn's Theorem and (\6.58) above, we need 
only consider the case R = Mil (D) where D is a division k-algebra. Since 
Mn(D) ~ D ®k Mn(k) and (by (16.57)) M,,(k) is a symmetric algebra, another 
application of (16.58) reduces us to the case when R is a division algebra. In this 
case, it suffices to show that [R, R] (the additive group generated by xy - yx for 
all x, y E R) is not equal to R. (Note that [R, R] is also a k-space. If [R, R] =I- R, 
any nonzero functional). : R ~ k vanishing on [R, R] will saltisfy the properties 
stipulated in (16.54)(3), since the only nonzero right ideal in R is R itself.) To see 
that [R, R] =I- R, it is harmless to replace k by the center of R. If we "go up" to 
the algebraic closure K of k, we have 

RK := R ®k K ~ M" (K) 

for some n (by Fe-(15.1)). Since [R, R]K ~ [R K, R K], it suffices to check that 
[R K, RK] =I- RK. This is clear since the trace function tr: Mn (K) ~ K is 
nonzero and tr(xy) = tr(yx) for all matrices x, y E Mn(K). 

(16.60) Example (Tachikawa). Recall from (2.22)(A) that if M is any (A, A)
bimodule over any ring A, we can form the so-called "trivial extension" of M by A 
and get a new ring R containing M as an ideal such that Rj M ~ A. By definition, 
R = A EB M, and multiplication on R is defined by 

(16.61) (a, m) . (a', m') = (aa', am' + ma') (a, a' E A; m, m' EM). 

Here M ~ R is an ideal with zero multiplication, and (a, m) ~ a induces the 
ring isomorphism Rj M ~ A. Now let A be any finite-dimensional k-algebra and 
take M to be the (A, A)-bimodule A. We claim that 

(16.62) The trivial extension R := A EB A is always a symmetric k-algebra. 
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To see this, we define)., : R ~ k by taking ).,(a, q;) = q;(1) for any a E A and 
q; E A. (Yes, the value of)., on (a, q;) is independent of a !) Clearly, )., '1= 0, and 

).,«a, q;)(a', q;'» = ).,(aa', aq;' + q;a') = (aq;' + q;a')(l) = q;'(a) + q;(a') 

shows that ).,(xy) = ).,(yx) for all x, y E R. Now suppose ).,«a, q;)R) = O. Then 
q;'(a) + q;(a') = 0 for all a' E A and q;' E A. Setting a' = 0 shows that a = 0, 
and q;(a') = 0 for all a' E A shows that q; = O. Therefore, by (16.54), R is a 
symmetric k-algebra, as claimed. 

Note that (16.62) gives a good supply of symmetric (in particular, Frobe
nius) algebras. This result also has the remarkable consequence that any (finite
dimensional) k-algebra A is a quotient of a symmetric k-algebra. 

We have not yet given an example of a Frobenius algebra that is not a symmetric 
algebra. This will become easy once we observe the following basic result. 

(16.63) Theorem. A Frobenius k-algebra R is a symmetric algebra if and only if 
the Nakayama automorphism of R is an inner automorphism. 

Proof. To begin with, we first recall that the Nakayama automorphism a of R is 
determined only up to an inner automorphism. So the result at hand is tantamount 
to: R is a symmetric algebra iff a can be taken to be the identity. Let B : 
R x R ~ k be the nonsingular associative pairing used to define a, so that 
we have B(x, y) = B(y, a(x». If a = IdR, then B is symmetric, so R is a 
symmetric algebra. Conversely, if R is a symmetric algebra, then we can take B to 
be symmetric. Then B(x, y) = B(y, x) shows that the Nakayama automorphism 
defined via B is the identity automorphism. 0 

(16.64) Corollary. The Nakayama permutation 11: of a symmetric algebra R is the 
identity. In other words,for any primitive idempotent e E R, we have socCeR) ~ 
eR and (eR)* ~ Re, where R = Rjrad(R). 

Proof. This follows by applying the theorem to (16.49), which says that 11: is 
"effected" by the Nakayama automorphism of R. 0 

The Corollary (16.64) suggests another viable notion: let us call a QF algebra 
R weakly symmetric if its Nakayama permutation 11: is the identity. (Note that, in 
this case, R is automatically a Frobenius algebra, by (16.14).) We have the fol
lowing hierarchical relationships among the various classes of finite-dimensional 
k-algebras: 

( .. I) ( .) (WeaklY) (F b .) ( QF ) semlslmp e symmetrIc . ro emus 
algebras C algebras C sylmmbetrIC C algebras C algebras . 

age ras 

It can be shown that each "inclusion" is strict (as indicated). We have already seen 
an example of a QF algebra that is not a Frobenius algebra in (16.19)(5). The 
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algebra in (16.19)(4) (with k taken to be a field) is Frobenius with the Nakayama 
permutation rr = (12) (or, if we wish, (12· .. n», so it is not weakly symmetric. 
A group algebra kG with char(k) = p > 0 and G a nontrivial finite p-group is 
a symmetric algebra and is not semisimple. Finally, to construct an example of a 
weakly symmetric algebra that is not symmetric, we make use of the following 
observation. 

(16.65) Proposition. For any ideal A in a symmetric k-algebra R, we have 
annr(A) = annt(A). 

Proof. Let B : R x R ---+ k be a nonsingular symmetric and associative pairing. 
By (16.38), we know that annr(A) is given by AD := {x E R : B(A, x) = A}, and 
that ann€(A) is given by D A := {x E R: B(x, A) = O}. Since B is symmetric, we 
have AD = D A, and therefore annr(A) = ann€(A). 0 

(16.66) Example (Nakayama-Nesbitt). To construct a weakly symmetric algebra 
that is not symmetric, the idea is to specialize to local algebras. If R is a local 
QF k-algebra, there is only one (left or right) principal indecomposable, so the 
Nakayama permutation of R is necessarily the identity. All we need then is an 
example of such an R that is not a symmetric algebra. Let k be a field with two 
nonzero elements u, v such that u2 -=1= v2 , and let R be the set of matrices 

(16.67) (

a b c 
o a 0 

y = 0 0 a 

000 

over k. It is easy to see that R is a 4-dimensionallocal algebra over k, with 

J := rad R = {y E R: a = A}, 

and R/ J ~ k. Moreover, a direct calculation shows that 

annr(J) = anni(J) = {y E R: a = b = c = O} (= J2). 

Since this is I-dimensional over k, it is equal to soc(RR) and SOC(RR)' Therefore, 
by (16.4) and (16.23), R is a QF algebra, and hence a weakly symmetric algebra. 
To show that R is not a symmetric algebra, consider the elements 

(16.68) (0 1 1 0) o 0 0 u 
a= 0 0 0 v ' 

000 0 

(

0 v 

f3 = 0 0 
o 0 
o 0 

-u 
o 
o 
o 

in R, for which we have f3a = 0, and af3 = (v 2 - u2 )E14 -=1= O. By matrix 
multiplication, we can check that 

a R ~ Ra ~ {n ~ ~ ~) a, d E k I 
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Let A be this ideal. Then f3A = f3aR = 0 so f3 E annt(A); but Af3 3 af3 f= 0 
so f3 rt annr(A). This shows that annf(A) f= annr(A), so by (16.65), A is not a 
symmetric algebra! (The case when u2 = v2 can be treated too; for the details, 
see Exercise 29.) 

We shall now conclude §16F by giving another remarkable characterization of 
symmetric algebras. This characterization is prompted by a comparison between 
the R-dual and the k-dual functors on the category of (say, left) R-modules over a 
finite-dimensional algebra R over a field k. In fact, this characterization theorem 
shows clearly why symmetric algebras are such an interesting (and desirable) class 
of k-algebras. 

To facilitate our discussion, let us first introduce some notations. Given the 
(finite-dimensional) k-algebra R, let F, G : Root ~ ootR be the contravariant 
functors from left R-modules to right R-modules, given by: 

(16.69) F = Homk(-, k) and G = HomR(-, R). 

This makes sense since, for any left R-module M, F(M) = Homk(M, k) is a 
right R-module (the right R-module structure coming from the left R-structure 
on M), and G(M) = HomR(RM, RRR) is also a right R-module (the right R
structure coming from that of R). We can introduce a third contravariant functor 
F' : Root ~ ootR, given by F'(M) = HomR(RM, R(R)R) (the right R-structure 
coming from that of R: recall that R is an (R, R)-bimodule). The following result 
is valid over any finite-dimensional k-algebra R. 

(16.70) Brauer's Equivalence Theorem. ThetwocontravariantJunctors F, F' : 
Root ~ ootR are naturally equivalent. 

Proof. For any left R-module M, we have the following isomorphism relations: 

HomR(M, R(R)R) = HomR(M, Homk(RRR, k» 
~ Homk(M ®R R, k) 

~ Homk(M, k) = M. 

Clearly, all isomorphisms are functorial, so we have established a natural equiva
lence of functors: F' ~ F. 0 

The result above is attributed to Brauer since it was he who first observed it in 
a matrix form. Note that, in view of the natural equivalence F' ~ F, we can say 
that the k-dual functor F is "represented" by the bimodule R(R)R' This compares 
nicely with the fact that the R-dual functor G is (by its definition) "represented" 
by the bimodule RRR. With this observation, we are now in a position to state and 
prove the following nice characterization of a symmetric algebra. 

(16.71) Theorem. A finite-dimensional k-algebra R is a symmetric k-algebra iff 
the k-dualJunctor F is naturally equivalent to the R-dualJunctor G. 
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Proof. First suppose R is a symmetric k-algebra. Then, by definition, the (R, R)

bimodules Rand R are isomorphic. Since F is (up to natural equivalence) rep
resented by R(R)R (as we have observed above) and G is represented by RRR, it 
follows that F ~ G. Conversely, suppose F ~ G. Then, by (16.70), there is a nat
ural equivalence of functors <I> : G --* F'. For any left R -modulle homomorphism 
h : N --* M, we have therefore a commutative diagram 

(16.72) 

G(M) 
<I>(M) 

------+ F'(M) 

IF'(h) 

G(N) ------+ F'(N) 
<I>(N) 

where <I> (M), <I>(N) are right R-module isomorphisms. Let us apply this to M = 
N = RR, taking h to be the endomorphism of RR given by right multiplication 
by an element r E R. We have clearly 

G(R) = HomR(RR, RRR) ~ (R*)R ~ RR , and 

F'(R) = HomR(RR, R(Rh) ~ (R)R . 

By a direct calculation, we can check that G(h) is left multiplication by r on 
RR, and that F'(h) is left multiplication by ron (R)R' The isomorphism <I>(R) : 
G(R) --* F'(R) is a priori only an isomorphism of right R-modules, but the 
commutative diagram (16.72) (for M = N = RR and h as above) shows that 
<I>(R) is also an isomorphism of left R-modules. Therefore, <I>(R) is an (R, R)
bimodule isomorphism from R to R, and so R is a symmetric k-algebra. D 

The fact that M* ~ if for any left module M over a symmetric k-algebra R is 
very nice indeed.91 If R is only a Frobenius k-algebra and RM is f.g., we do know, 
from (16.34) that 

dimk M* = dimk M = dimk if. 

However, in general, M* and if may not be isomorphic as right R-modules, even 
in the case when RM is a f.g. projective module to begin with. For instance, let M 

be the jth principal indecomposable left R-module U/ (in the notation of (16.8». 
By (16.12), we have (U[)* ~ Ui (the jth principal indecomposable right R

module). However, by (16.25), we have (U[r~ Urr-l(i) where:rr is the Nakayama 
permutation of R. Thus, if IT is not the identity (as, for example, in (16.19)(4)), 
there exists a left principal indecomposable R-module M with M* '1- if as right 
R-modules. 

Returning now to a symmetric algebra R, let us explain a bit more explicitly 
the natural equivalence between the R-dual functor G and the k-dual functor F. 
Let 'A : R --* k be a k-linear functional with 'A(xy) = 'A(yx), such that ker('A) 

91 For instance, a somewhat surprising consequence of this is the fact that, as a right 
R-module, M is actually independent of k. 
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contains no nonzero left ideal in R. Then an explicit (R, R)-bimodule isomorphism 
f : R --+ R is given by f(x)(y) = A(XY). Using this to define the isomorphism 
<l>(M) in (16.72), we can then compute the composition "'(M) of the following 
two isomorphisms: 

G(M) ~ F'(M)~) F(M), 

where <l>'(M) is the natural isomorphism worked out in the proof of (16.70). In 
fact, for any g E G(M) = HomR(M, R), <l>(M)(g) is just fog: M --+ R, and 
we can see (by working through the isomorphisms in the proof of (16.70» that 
<l>'(M)(f 0 g) is just A 0 g : M --+ k. Summarizing, we conclude that the natural 
isomorphism 

"'(M) : G(M) = M* = HomR(M, R) ----+ Homk(M, k) = !VI = F(M) 

is given by g ~ A 0 g for any g E M*. 
This unraveling of the map <l>'(M) 0 <l>(M) actually leads to a more direct (and 

less abstract) view of the isomorphism between the R -dual and the k -dual of M. 
In fact, for a given RM, define 1/1 : M* --+ !VI by 1/I(g) = A 0 g for any g E M*. 
This is a right R-module homomorphism, since, for any r E Rand mE M: 

1/I(g . r)(m) = A«g . r)(m)) 

= A(g(m)r) 

= A(r . gem»~ (by the symmetry of A) 

= A(g(r . m)) (g is an R-homomorphism) 

= 1/I(g)(r· m) 

= (1/I(g). r)(m), 

which implies that 1/1 (g . r) = 1/1 (g) . r. Next, 1/1 is injective. In fact, if 1/1 (g) = 0, 
then A(g(M)) = o. Since geM) is a left ideal of R (g being a left R-module 
homomorphism), this implies that geM) = 0; that is, g == O. In the case when 
RM is f.g., we know from (16.34) that dimk M* = dimk!VI, so it follows that 
1/1 : M* --+ !VI is an isomorphism of right R-modules. 

(16.73) Remark. Some special cases of M* ~ !VI over a symmetric k-algebra R 
are already implicit in some of our earlier results. For instance, let m be a left ideal 
in R. Since the Nakayama automorphism of R can be taken as the identity, (16.45) 
and (15.14) give isomorphisms 

!11 ~ Rjannr m ~ m* and (Rjmr ~ ann r m ~ (Rjm)* 

in the category of right R-modules. Combining, for instance, the first isomorphism 
with (16.13) in the case of a principal I-sided ideal, we deduce the following: 

(16.74) Corollary. For a symmetric algebra R and any element a E R: 

(Rat ~ (Ra)* ~ aR and (aRr ~ (aR)* ~ Ra. 
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There are other interesting special properties of symmetric algebras too which 
are not shared by general Frobenius algebras. Foremost among these is the sym
metry property of the Cartan invariants of a symmetric algebra (over a sufficiently 
large ground field). We shall now conclude § 16F by proving this result, in a some
what more general setting. We start with the following observation. 

(16.75) Lemma. Let P, Q be fg. right modules over a weakly symmetric k
algebra R. II P is projective, then dimk HomR(P, Q) = dimk HomR(Q, Pl. 

Proof. We may assume that P = e R where e is a primitive idempotent. Since e R is 
projective, Hom R (e R, -) is an exact functor, so dimk Hom R (e R, -) is additive 
over exact sequences of f.g. R-modules. Similarly, the injectivity of eR implies 
the same for dimk HomR(-' eR). Therefore, it suffices to prove the Lemma in 
the case when Q is a simple R-module. Let J = rad(R), and write R as usual 
for R/J. Since eJ is the unique maximal submodule of P = eR, we have 
HomR(P, Q) ~ HomRCeR, Q). Invoking now the assumption that R is weakly 
symmetric, we also have socCeR) ~ eR, and this is the unique simple submodule 
of P. Thus, HomRCQ, P) ~ HomRCQ, eR). It follows that, if Q ~ eR, both 
HomRCP, Q) and HomRCQ, P) are zero, and if Q ~ eR, both HomR(P, Q) 
and HomR(Q, P) are ~ EndR(eR). D 

For a simple R-module eR as above, let us write (eR, Q) for the number of 
times eR occurs as a composition factor in the f.g. R-module Q. The following 
result relating (eR, Q) to HomRCeR, Q) is valid over any finite-dimensional 
algebra. 

(16.76) Lemma. Let Q be any fg. right module over a k-algebra R, and e E R 
be any primitive idempotent. Then 

dimk HomRCeR, Q) = (eR, Q) . dimk EndRCeR). 

Proof. Again, both sides of the equation are additive over exact sequences of 
f.g. R-modules 0 --+ Q' --+ Q --+ Q" --+ O. Therefore, it suffices to check this 
equation in the case Q is simple. If Q ~ e R, both sides of the equation are zero. 
If Q ~ eR, both sides of the equation are equal to dimk End/i'CeR). D 

(16.77) Theorem. For any primitive idempotents e, I in a weakly symmetric 
k-algebra R, we have 

(eR, IR) . dimk EndRCeR) = (JR, eR) ·dimkEndR(JR). 

In particular, ifdimk EndR(eR) = dimk EndR(jR), we have (eR, IR) = (JR, 
eR). 

Proof. By (16.76), the left-hand side is dimk HomR(eR, I R), and the right-hand 
side is dimk HomR(f R, eR). These two numbers are equal according to (16.75). 

D 
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From this, we immediately deduce the following classical result. 

(16.78) Corollary. Suppose a weakly symmetric k-algebra R splits over k (in the 
sense that every simple right R-module has endomorphism ring equal to k). Then 
the (right) Cartan matrix of R is a symmetric matrix. 

In particular, this applies to a group algebra R = kG of a finite group G (over a 
splitting field k). In the case when char k does not divide 1 G I, the Cartan matrix (Cij) 

is just the identity matrix, so the real interest in (16.78) lies in the case when char k 
divides IG I. In this case, (16.78) is a well-known result in modular representation 
theory. Here, the symmetry of the Cartan matrix takes on an even stronger form: 
(cij) has a factorization DT D where D is a certain (rectangular) matrix known 
as the decomposition matrix (and "T" denotes transposition). Moreover, if p > 
o is the characteristic of k, then the determinant of (cij) is a power of p; in 
particular, (cij) is always nonsingular. All of this belongs more properly to the 
modular representation theory of finite groups; for the details, we refer the reader 
to authoritative treatments of the subject, such as "Representation Theory of Finite 
Groups and Associative Algebras" by Curtis and Reiner [62]. 

§ 16G. Why Frobenius? 

While Frobenius algebras have been covered in numerous textbooks, few authors 
have tried to explain why these algebras were called Frobenius algebras. Thus it 
behooves us to say a few things here on Frobenius' role in this study. (Besides, this 
author happens to be a great fan of Frobenius! See Part I of my article, [Lam: 98].) 
Throughout the following, R denotes a finite-dimensional algebra over a field k. 

The idea of comparing the representations afforded by the two right modules 
RR and (Rh originated with Frobenius' work on "hypercomplex systems" (an 
older term for algebras), ca. 1903. Of course modules were not in vogue then, so 
Frobenius was working solely with matrices. Let 101, ••. ,En be a fixed k-basis for 
R. For any element r E R, let 

(16.79) '"' (rl d '"' b(r l 
Eir = ~aij Ej an rEi = ~ ji Ej, 

j 

where ai;l, bj~l E k. Define the matrices A(r), B(r) by A(r)ij = ai? and 

B(r)ji = bj/. Note that the subscript notations are set up in such a way that 
we have A(rr') = A(r)A(r') and B(rr') = B(r)B(r') (along with the obvious 
additivity properties), so from the classical (in particular Frobenius') viewpoint, 
r r+ A(r) and r r+ B(r) give two representations of the algebra R. Let us 
call these the first and second regular representations of R. In modem terms, A is 
just the matrix representation afforded by the right module RR with respect to the 
basis {E i }, and a quick calculation involving dual spaces shows that B is the matrix 
representation arising from the right module (R) R given with the dual basis {Ei}. 
(Clearly, A and B are both faithful representations.) Although Frobenius did not 
use the technique of modules, the idea of comparing the two matrix representations 
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r 1-* A(r) and r 1-* B(r) came to him naturally.92 In 1903, Frobenius obtained 
the first criterion for the equivalence of these two representations, as follows. 

Let {Cfij} be the structure constants of the algebra R with respect to the basis 
{E;}, so that we have the equations 

(16.80) E;Ej = L ceijEe for all i, j. 
e 

For any n-tuple a = (ai, ... ,an) E kn,Frobeniusdefinedamatrix Pet E Mn(k) 
by taking 

(16.81) (Pa)ij = L ae Ci;j ; 
e 

he called Pet a paratrophic matrix. Frobenius' basic result is the following: 

(16.82) Frobenius' Criterion. The first and second regular representations of R 
are equivalent iff there exists a nonsingular paratrophic matrix (or, in Frobenius' 
own terms, iff the paratrophic determinant det(P,,) does not vanish identically 
for a E kn). 

Proof. For the modem reader, Frobenius' Criterion can be proved easily as follows. 
We already know from (3.15) that the representations A and B are equivalent 
iff some hyperplane (passing the origin) in R contains no nonzero left ideals. 
Therefore, we need only show that this latter condition is equivalent to the existence 
of a nonsingular paratrophic matrix. For an arbitrary hyperplane 

H"={LxeEe: Laexe=O}, 

where a = (ai, ... ,an) =I- 0, we claim that 

(16.83) R . {3 S; H et <===} Pet . {3 = 0 

for any column vector {3 = ({3I, ... , {3n) T E k". Indeed, R . {3 <; Het amounts to 

Ha 3E; L{3jEj = L {3j ~CeijEt = ~(L Cfij{3j)Et (foraB i), 
J J C C J 

which, in tum, amounts to 

0= L ae L ceij {3j = L(Pa)ij {3j = 0 (for all i); 
f j 

that is, Pa . {3 = O. This proves (16.83). From the equivalence in (16.83), it 
is immediate that some H" contains no nonzero left ideals in R iff a suitable 
paratrophic matrix Pa is nonsingular. 0 

92Actually, Frobenius did not write down explicitly the basic equations (16.79) in his 
1903 paper. Instead, he arrived at the two representations A and B by working with the 
structure constants of the algebra, which we shall introduce momentarily. 
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Some years later, Frobenius' result was generalized by Brauer, who determined 
the space of intertwining matrices for the (first and second) regular representations 
A and B defined above. In classical terminology, an n x n matrix P over k is said 
to intertwine the representations A, Bif A(r)P = PB(r) for all r E R.Brauer's 
result (for an arbitrary n-dimensional k-algebra R) is as follows. 

(16.84)Theorem. A matrix P E MlI(k) intertwines A, B iff P isaparatrophic 
matrix Pu (for some a = (aI, ... ,an) E k"). 

(Note that A and B are equivalent representations iff there exists a nonsingular 
matrix intertwining A and B. Therefore, the above theorem subsumes (16.82), 
and may be viewed as its generalization. From a logical standpoint, the proof for 
(16.82) above could have been omitted; we gave it only for the sake of illustrating 
the relationship between Frobenius' Criterion and our earlier result (3.15).) 

Proof of (16.84). Again, we prove (16.84) by using the modem method of R
modules. From the module-theoretic viewpoint, an intertwining matrix P for the 
representations A, B amounts to an R-homomorphism from the module RR 

(affording the representation A) to the module (R) R (affording the representation 
B). Therefore, the k-space S of matrices intertwining A and B corresponds to 
HomR(RR, (R)R), which we can identify with (R)R in the usual way. This shows 
that dimk S = n, and that a typical intertwining matrix is the matrix of a map 
f: RR ------+ (R)R given by 

fer) = (al€1 + ... + an€n)' r (r E R), 

where a; E k and {€d is the dual basis to {Ed in R. 
Now let us compute the right R-action on R. Since 

(€t. E;)(Ej) = €t(E;Ej) = €e(I: CpijEp) = Cfij, 
P 

we have €e . E; = Lj Ciij€j E R. Therefore, for the R-homomorphism f 
described in the last paragraph, we have 

f(Ei) = (~ae€i) 'E; = ~ (~aeCfij)€j, 
Consequently, the matrix of f (with respect to the bases {E;} on Rand {€ j} on 
R) is precisely the paratrophic matrix Pu • D 

(16.85) Corollary. A k-basisfor the space S of matrices intertwining the repre
sentations A and B is given by {PI, ... , Pn} ,where (Pt)ij = CUj. 

Proof. Note that Pi is the paratrophic matrix Pu when we seta = (0, ... , 1, ... , 0) 
(the lth unit vector). Since 
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{PI, ... , P,,} generate the space T of all paratrophic matrices. By the Theorem, 
we have S = T. Since dimk S = n, it follows that {PI, ... , P,,} form a k-basis 
for S. 0 

In the late 30s, with the result (16.84) as the starting point, R. Brauer and his 
student C. Nesbitt revived the study of the regular representations of an algebra. 
From this work, the idea of a Frobenius algebra came to the fore. Naming these 
algebras after Frobenius was, of course, natural and completely justified. But how 
exactly should one name them? Widely accepted terms such as "Abelian groups" 
and "Noetherian rings" would suggest that one uses Frobenius' name also in an 
adjectival form. In a footnote of his 1938 paper in the Annals of Mathematics, 
C. Nesbitt wrote: "The writer, in collaborating with T. Nakayama, adopted the 
term Frobeniusean algebra, but now, quailing before our critics, we return to simply 
Frobenius algebra." So apparently, people were not attracted by a six-syllable word. 
However, the "we" in Nesbitt's statement did not seem to apply to Nakayama, 
who continued to use the term "Frobeniusean algebra" in most of his subsequent 
papers. Today, there is no question that "Frobenius algebra" has won out. There 
are currently probably as many as 15 mathematical objects and results named after 
Frobenius; all of these are called "Frobenius X" for some "X". Frobenius even 
has the unique distinction that his name is a mathematical object without any "X" 
attached: on an affine variety V defined over a finite field IF q, "the frobenius" 
is the endomorphism of V which maps a point (XI, ... , x,,) E V to the point 
(xi, ... , X%) E V. 

This is my little spin on my favorite mathematician Ferdinand Georg Frobenius, 
1849-1917. 

Exercises for §16 

o. Show that, for a QF ring R, two principal indecomposable right R -modules 
V, V' are isomorphic iff soc(V) ~ soc(V'). 

1. Let (R, m) be a local artinian ring with K = Rjm. Show thatthe following 
are equivalent: 

(1) R isQF; 
(1)' R is Frobenius; 
(2) SOC(RR) is a simple right R-module and soc(RR) is a simple left 
R-module; 
(2)' anne (m) is a I-dimensional right K -vector space and ann, (m) is a 
I-dimensional left K -vector space; 
(3) RR and RR are uniform R-modules; 
(4) E«Rjmh) ~ RR; 
(4)' E(R(R/m» ~ RR. 

Show that these conditions imply each of the following: 

(5) E«Rjmh) is a cyclic R-module; 
(5)' E(R(Rjm» is a cyclic R-module; 
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(6) R is a subdirectly irreducible ring in the sense of FC-(12.2) (i.e. R 
has a smallest nonzero ideal). 

If R is commutative, show that all ten conditions above are equivalent. 
(The next exercise will show that the condition (2) has to be imposed on 
both socles, and that (6) ==> (1) need not hold if R is not assumed to be 
commutative.) 

2. Construct a local artinian (necessarily Kasch) ring (R, m) such that 

(I) R is subdirectly irreducible; and 
(2) soc(RR) is simple but SOC(RR) is not. 

Such a ring R is, in particular, not QF. (Sketch. Let a be an endomor
phism of a field K such that [K : a(K)] is an integer n > 1. Let 
R = K[x; a]/(x2 ) where K[x; a] = {Laixi} is the skew polynomial 
ring over K with xa = a (a)x for a E K. Show that R is local with maxi
mal ideal m = KX,andthatsoc(RR) = Rm issimple,butsoc(RR) = mR 
is semisimple with length n > 1.) 

3. Let R = R, x· .. x R" where each Ri is aQFring. Describe the Nakayama 
permutation of R in terms of the Nakayama permutations 7ri of Ri (1 ::5 
i ::5 r). (Note that R is a QF ring by (15.26)(3).) Using this result and 
the computation in (16.19)(4), show that there exist Frobenius algebras 
over any given field whose Nakayama permutation 7r is any prescribed 
permutation on a finite number of letters. 

4. Show that the Nakayama permutation of a commutative QF ring R is the 
identity. 

5. For a QF ring R, it is shown in (15.25) that there is an (R, R)-bimodule 
isomorphism SOC(RR) ~ (RR)*, where R = R/rad(R). Confirm this as a 
right R-module isomorphism by using the Nakayama permutation 7r for 
R. 

6. For any primitive idempotent f in a QF ring, it is shown in (16.5) that 
soc(Rf) ~ (j R)* as left R-modules (where R = R/rad(R». Give a 
direct proof of this by using Exercise (15.8), assuming only that R is 
I-sided artinian and that SOC(RR) = soc(RR). 

7. Prove (16.37). 

8. Let a E R where R is a QF ring. Show that length(Ra) = length(aR). 
If R is, in fact, a Frobenius algebra over a field k, show that dimk Ra = 
dimk aR. Does this equation hold over a QF algebra? 

9. Leta, b, c be elements in aQFring R such that a = b+c. IfaR = bR+cR 
and bR n cR = 0, show that Ra = Rb + Rc and Rb nRc = O. 

10. Let R be a QF ring with J = rad(R) such that r = 0 i= r-'. Show that 
if MR is a f.g. indecomposable module such that M r-' i= 0, then M is 
isomorphic to a principal indecomposable module. 
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11. A ring R is said to have (right) finite representation type if R has only 
finitely many isomorphism types of f.g. indecomposable R-modules. Let 
R be a QF ring as in Exercise 10. (1) Show that R has (right) finite repre
sentation type iff Rj r- 1 does. (2) If each Rj Ji is QF, show that R has 
finite representation type. 

12. Let M be a right module over a QF ring R. Show that M R is faithful 
iff M has a direct summand isomorphic to e I REB· .. EB e .. R, where 
{el R, ... , e .. R} is a complete set of principal indecomposable right R
modules. (In view of (18.8) below, this means that a module M R is faithful 
iff it is a generator. For a more general result, see (19.19).) 

13. For the algebra R = k[x, yl/(x, y)n+l over a field k, show that the m lh 

R-dual of the unique simple R-module V is isomorphk to (n + l)m . V. 

14. Let R be the algebra k[t]/(f(t)) over a field k, where f(t) is a non
constant polynomial. Verify explicitly that R is a Frobenius k-algebra by 
applying Nakayama's "dimension characterizations" for such algebras (as 
in (16.40)(2)). 

15. (D. Benson) For any division ring k, show that the set of matrices of the 
form 

a 0 b 0 0 0 
0 a 0 b p 0 
c 0 d 0 0 0 Y= 0 c 0 d q 0 
0 0 0 0 r 0 
s 0 0 0 r 

over k forms a QF ring that is not a Frobenius ring. (Hint. Compare this 
ring with the ring in (16.19)(5).) 

16. Let k S; K be a field extension of degree n > 1. In (16.19)(4), it is shown 
that the ring S of matrices 

Y=(H H) 
o 0 0 a 

(a, b, x, y E K) 

is a QF (in fact Frobenius) ring. For the subring R = {y E S: a E k} of 
S, show that R is Kasch but not QF, and compute the (right) Cartan matrix 
of R. 

17. Let R be the ring of matrices 

Y~n ~ ~ D 
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over a division ring k. Show that the socle of any I-sided principal in
decomposable R -module is simple, and compute the (left, right) Cartan 
matrices of R. Is R a QF ring? 

18. In a ring theory text, the following statement appeared: "If R is QF, then R 
is the injective hull of (R/rad R)R." Find a counterexample; then suggest 
a remedy. 

19. In the 4-dimensional Frobenius algebra R in (16.19){4), find an ideal A S; 

R for which annr{A) 1= annf{A). 

20. Show that if R and S are symmetric algebras over a field k, then so are 
R x S, R ®k S, and Mn{R). 

21. Let K / k be a field extension, and let R be a finite-dimensional k-algebra. 
ShowthatRis asymmetric algebraoverkiff RK = R®kK is asymmetric 
algebra over K. 

22. Let K ;2 k be a finite field extension with a non-identity k-automorphism 
r on K. With the multiplication 

(a, b){c, d) = (ac, ad + br(c» (a, b, c, d E K), 

R := K EB K is a k-algebra of dimension 2[K: k]. Show that R is a weakly 
symmetric, but not symmetric, local k-algebra. 

23. (Nakayama-Nesbitt) In the last exercise, assume that [K : k] = 2, char 
k 1= 2, and let R be the weakly symmetric k-algebra defined there. Show 
that the scalar extension RK := R ®k K is a K -algebra isomorphic to 

h {n ~ i D: a, b, x, y E K } 

Deduce that RK is not a weakly symmetric K -algebra. (This contrasts with 
the conclusions of Exercise 21.) 

24. If Rand S are both symmetric algebras over a field k, show that R ®k S 
is also a symmetric k-algebra. 

25. If R is a symmetric k-algebra over a field k and 0 1= e = e2 E R, show 
that eRe is also a symmetric k-algebra, with soc{eRe) = e{soc{R»e. 
Using this, show that, for any nonzero f.g. projective right R-module P, 
EndR{P) is also a symmetric k-algebra. 

26. For any symmetric k-algebra R with center Z{R), show that: 

(1) Z E (xRy)o <==> yzx = 0; 
(2) x Ry = 0 <==> y Rx = 0 ; 
(3) Z(R) = [R, R]o, where [R, R] denotes the additive subgroup of R 
generated by xy - yx (x, Y E R). 
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27. For a field k, compute the paratrophic determinants of the commutative 
k-algebras R = k[x, y]/(x2, y2), 

S = k[x, y]/(xy, x 2 -i), T = k[x, y]/(x 2 , x)" i), 

and apply Frobenius' Criterion (16.82) to determine which of these is a 
Frobenius algebra. (Of course, it helps to have known the answers from 
earlier work: R, S, but not T.) 

28. (Nakayama-Nesbitt) Show that a finite-dimensional k-algebra (over a field 
k) is a symmetric k-algebra iff there exists a symmetric nonsingular para
trophic matrix. 

29. Let k be a field with u, v E k (possibly zero), and let R be the 4-
dimensional k-algebra defined in (16.66). Using Frobenius' Criterion 
(16.82) and the last exercise, show that: 

(1) R is a Frobenius k-algebra iff uv i= 0; 
(2) R is a symmetric k-algebra iff u = v i= o. 

30. For any field k and any finite group G, compute the paratrophic matrix of 
the group algebra R = kG. Using this computation and Exercise 28, give 
another proof for the fact that R is a symmetric k-algebra. 

31. (Theorem on Structure Constants) Let R be an algebra over a field k with 
basis {El, ... , En} and let EiEj = Lt CfijEt. For ai, ... , an E k, show 
that: 

(1) Le aeCUj = 0 (V i, j) ==> at = 0 (V l). 
(2) Le atCitj = 0 (V i, j) ==> ae = 0 (V l). 
(3) Le aeCijt = 0 (V i, j) ==> at = 0 (V l). 

32. (Pascaud-Valette) For any field k of characteristic i= 2, show that there 
exists a symmetric k-algebra R with a k-automorphism a of order 2 such 
that the fixed ring Wi = {x E R : a (x) = x} is any prescribed finite
dimensional k-algebra. In particular, R Ci need not be QF. (Hint. Use a 
symmetric algebra R of the type (16.62).) 

33. (K. Wang) Let R be a Frobenius algebra over a field k with a nonsingular 
associative k-bilinear form B : R x R ~ k. Let G be a finite group of k
automorphism of R such that B is G-invariant (i.e., B(gr, gr') = B(r, r') 
for every g E G). If IGI is not divisible by the characteristic of k, show 
that the fixed ring RG is also a Frobenius k-algebra. Prove the same result 
for symmetric algebras. (Hint. For s E RG , show that B(s, RG) = 0 ==> 
B(s, R) = 0.) 

34. (Rim, Giorgiutti) Let R be a right artinian ring with (right) Cartan ma
trix (cij). If det(cij) i= 0, show that two f.g. projective right R-modules 
are isomorphic iff they have the same composition factors (counted with 
multiplicities). 



Chapter 7 

Matrix Rings, Categories of Modules, 
and Morita Theory 

This last chapter offers an introduction to the basic categorical aspects of the 
theory of rings and modules. Since its introduction in the 1940s by Eilenberg 
and MacLane, the categorical viewpoint has been widely accepted by working 
mathematicians. For ring theorists especially, the convenient use of the categorical 
language in dealing with modules serves to provide a unifying force for the subject, 
and has subsequently become an indispensable tool in its modem study. In this 
chapter, we shall focus on two of the most important concepts in the application of 
category theory to rings and modules, namely, the equivalence and duality between 
two categories of modules. Both of these concepts come from the ground-breaking 
paper of K. Morita [58], which set in place the basic treatment of these topics pretty 
much as they are in use today. 

In the spirit of concrete approach to ring theory used in this book, we preface 
our discussion of the equivalence of module categories by a section (§17) on 
matrix rings. The equivalence of the category of modules over a ring S and the 
category of modules over a matrix ring R = MI" (S) can be described in very 
simple terms; yet this simple description already exhibits most of the features of a 
general equivalence between the categories of modules over two arbitrary rings R 
and S. Thus, before going on to the general study of equivalences, the matrix ring 
example is definitely worthy of a good scrutiny. Besides presenting this material, 
§ 17 also features other related material on matrix rings, notably a study of the 
recognition of a ring R as an n x n matrix ring over some other ring S, and an 
investigation of the uniqueness in the choice of the base ring S. As far as I can 
tell, such material has not been made available in book form before. 

In § 18, we take up the formal study of equivalences between two module cat
egories wtR and wts. Here, the role played by the free module of finite rank 
in the matrix ring example is simply replaced by that of a "progenerator", or a 
finitely generated projective generator. If s P is a progenerator over S with an 
endomorphism ring R, tensoring with s P gives a category equivalence from 
wts to wtR; and furthermore, any equivalence between two module categories 
essentially arises in this manner. (There is also an alternative description of equiva
lences by covariant "Hom" functors instead of tensor functors.) This main theorem 
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of Morita on module category equivalences was hailed as "probably one of the 
most frequently used results in modem algebra" in the article of Arhangel'skii, 
Goodearl, and Huisgen-Zimmermann [97]. Morita's theory leads directly to the 
important notion of Morita equivalence of rings, and the adjunct notion of Morita
invariant properties. All of these are presented in § 18, where our treatment follows 
largely the influential lecture notes of H. Bass [62]. In particular, the terminology 
of "Morita Context" used in §18 is due to Bass. 

Of course, a good mathematical theory is never created without historical prece
dent. In the case of the Morita theory of equivalences, the precursor was the fa
mous Artin-Wedderburn classification of semisimple rings. From Morita's view
point, the Artin-Wedderburn Theorem can be simply retrieved in the form that any 
semisimple ring is Morita-equivalent to a unique finite direct product of division 
rings. More generally, a right artinian ring is Morita-equivalent to a unique right 
artinian "basic ring" (one which, modulo its Jacobson radical, is a finite direct 
product of division rings). The theory of basic rings was also fairly well under
stood by the time Morita wrote his paper, and was invented earlier by M. Osima 
and others working in the theory of finite-dimensional algebras in connection with 
the representation theory of groups. 

The last section (§19) of our book is devoted to Morita's duality theory for 
categories of modules. Here Morita was motivated by the classical Pontryagin 
duality for locally compact Hausdorff topological groups. Simply put, Morita 
replaced the role of the circle group by a suitable injective module, nowadays 
called an "injective cogenerator". The case of self-duality for f.g. modules over 
quasi-Frobenius rings (where the injective cogenerator is taken to be the ring itself) 
provided a simple yet compelling example. Morita's main results on duality are 
parallel to those he had for equivalences, the only difference being that, here, 
the duality functors are restricted to suitable subcategories of m1R and m1s. The 
same ideas were presented a little later (but independently) by G. Azumaya [59] 
in the case of right artinian rings. In this connection, we should mention that, 
again independently of Morita, E. Matlis arrived at his duality theory for modules 
over a commutative complete noetherian local ring in the same year, 1958. In 
retrospect, Matlis' theory is a most concrete and very lovely example of Morita 
(self)-duality. Our treatment of duality in § 19 follows the classical line, though 
it does contain some of the later contributions to the subject (using the notion of 
linear compactness of modules) due to B. Muller, T. Onodera and others. 

As a historical note, we might mention that the main objective of Morita's 1958 
paper appeared to be the development of duality theory with applications to the 
case of artinian rings. The treatment of equivalences was almost an afterthought, 
occupying only a smaller part of this classic paper. Yet today, this paper is cited 
much more for equivalences than for dualities, and Morita's ideas on how to con
struct category equivalences have been repeated many times over in other branches 
of mathematics, usually with fruitful results. Morita died in August of 1995, but 
his basic contributions to the category theory of modules are likely to occupy a 
long-lasting place in algebra and ring theory. The afore-mentioned obituary arti
cle on Kiiti Morita written by Arhangel'skii, Goodearl, and Huisgen-Zimmermann 
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puts his work in excellent historical perspective, and is highly recommended as 
companion reading material for anyone studying this chapter. 

§ 17. Matrix Rings 

§17 A. Characterizations and Examples 

In this first subsection, we present the basic characterization theorems for matrix 
rings. Some of these, for instance (17.10), (17.17), and (17.18) are surprisingly 
recent results. 

For any ring S, we write R = Mn(S) for the ring of n x n matrices over S.It 
will be convenient to identify S with the subring of R consisting of the "scalar 
matrices", {sIn: s E S}. Thus, 

(17.1) s I" = diag(s, ... , s) = s(E" + ... + E"n), 

where lEi)} are the matrix units in R. It is easy to see that R is a free left 
(resp. right) S-module on the basis lEi)} (cf. Exercise 1.12). Besides satisfying 
the additive relation 

(17.2) 

the matrix units also satisfy the multiplicative relations: 

(17.3) (1 :::: i, j, k, f. :::: n), 

where 8 jk are the Kronecker deltas. Using these relations, we arrive at our first 
basic result in this subsection: 

(17.4) Proposition. The sub ring S S; R = Mn (S) is the centralizer (in R) of the 
set of matrix units IEi)}. 

Proof. First, we clearly have s Ei) = Ei)s for any s E S. Now consider any 
x = LSi) Eij E R commuting with all Eke. From x Eke = Ektx and the relations 
(17.3), we obtain Li Sik Eif = Lj Stj Ekj' For i #- k, this shows that Sik = 0, and 
the previous equation simplifies to Skk Ekt = Sa E kf , so we also have Skk = Sa 
for all k, f.. Thus, x = s"ln E S. 0 

Axiomatizing the properties of the Eij 's, let us say that a set of elements 

lei): 1 :::: i, j :::: n} 

in a ring R is a set of matrix units if ei)eke = 8jk e;e (for all i, j, k, f.). If, in 
addition, ell + ... + enn = 1 E R, we say that {ei)} is a full set of matrix units 
in R. The effect of fullness is to ensure some kind of nondegeneracy for the set 
(ei)}. For instance, if ab = 1 in a ring R, then e = ba is an idempotent, and (by 
FC-p.328) 

(1 :::: i, j :::: n) 
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will be a set of matrix units for any fixed n. However, this may not be a full set. 
Indeed, if we also have ba = 1, then all eij = 0, and they are not of any interest. 
On the other hand, if eij (1 ~ i, j ~ n) is a full set of matrix units in a ring 
R, the following theorem, together with Remark (17.6), will show that R can be 
represented as an n x n matrix ring, with the eij 's as matrix units in the usual 
sense. 

(17.5) Theorem. For any ring R and any fixed integer n :::: 1, the following are 
equivalent: 

(I) R ~ Mn (S) for some ring S. 
(2) R has a full set of matrix units (ei) : 1 ~ i, j ~ n}. 
(3) R = Qt l EB ... EB Qt" for suitable right ideals Qti which are mutually 

isomorphic as right R-modules. 

Proof. It suffices to prove (2)==>(3)==>(1). Assume (2) holds, and let Qti = eil R. 
Then Qti ~ Qt l as right R-modules. In fact, if we define f : Qt l -+ Qti by left 
multiplication by eil, and g : Qti -+ Qt l by left multiplication by eli, then f, g 
are mutually inverse isomorphisms of right R-modules. Next, note that Li Qti = 
R, since the sum contains Li eileli = Li eii = 1. To prove (3), it remains only 
to show that the sum Li Qti is direct. Say Li eilri = 0, where ri E R. Then 
0= ejj Li eilri = e}lr} for all j, as desired. 

To prove (3)==>(1), let Qt = Qtl, where the Qti 's are as given in (3), and let 
S = End(QtR)' Then RR ~ Qt EB ... EB Qt, and 

R ~ End(RR) ~ End(QtEB'" EBQth ~ Mn(S). 

D 

(17.6) Remark. While we have proved (2)==>(3)==>(1) above, it would be de
sirable to know also how to get (2)==>(1) directly without using the right ideals 
Qti in (3). To give such a direct proof, we use the idea in (17.4). Given the eij 's in 
(2), let S be the centralizer (in R) of the set {eij}. It suffices to show that s R is 
free on the basis {eij}, for then the multiplication rules for the ei} 's will show that 
R ~ Mn (S). For any x E R, define aij = Lk ekixe}k E R. By direct calculation, 
we see that 

so aij E S. Letting u = i and v = j, we have aijeij = eiiXejj. Summing 
over i, j, we get x = Li.} aijeij. This shows that R = Li.} Seij, and an easy 
calculation shows that the eij 's are (left) linearly independent over S (cf. Exercise 
2). 

(17.7) Corollary. Let f : R -+ R' be a ring homomorphism, where R = M,,(S) 
for some ring S. Then R' can be expressed in the form M,,(S') for some ring S' 
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such that f is "induced" by some ring homomorphism fo : S --+ S'. (In particular, 
any ring containing Mn(S) has theform Mn (S') for some ring S' ;2 S.) 

Proof (Sketch). If {Eij} are the matrix units for R = Mn(S), then {f(Eij)} give 
afoll set of matrix units in R'. (It is important that f(l) = I here.) Let S' be the 
centralizer of these matrix units in R'. Then R' = Mn (S') and f is essentially 
Mn(fo), where fo is the ring homomorphism S --+ S' induced (by f) from the 
centralizer of {Eij } to the centralizer of {f(Eij)}. D 

The following basic result on ideals in matrix rings was proved by an ad hoc 
calculation in FC-(3.1). A new conceptual prooffor it is given below, using (17.7). 

(17.8) Corollary. Let 1 be an ideal in R = Mn(S). Then 1 = Mn(Qi) for some 
ideal Qi in S. 

Proof. Let f : R --+ R = R/I be the quotient map, and let Qi = ker(fIS). 
Clearly Mn(Qi) ~ I, so we can finish by showing that 1 ~ Mn(Qi). By (17.7), 
R = Mn(A), where A is the centralizer (in R)of {f(Eij)}. Clearly I(S) ~ A. For 
any x E EaijEij E 1 (aij E S), we have E f(aij)f(Eij) = 0, so f(aij) = 0 
for all i, j. Therefore, aij E Qi and x E Mn (Qi). D 

Another application of (17.5) is to the question of when an endomorphism ring 
of a module is a full n x n matrix ring. The following result, our second recognition 
theorem in this subsection, provides a natural answer. 

(17.9) Theorem. Let S = EndA(P), where P is a right A-module. Then S ~ 
Mn (T) lor some ring T iff P ~ n . Q lor some right A -module Q. 

Proof. If indeed P ~ n . Q (for some Q), then 

S ~ EndA(n· Q) ~ Mn(T), where T = EndA(Q). 

Conversely, assume that S ~ Mn(T) for some ring T. Then, by (17.5), Ss = 
Qil E9 ... E9 Qin where the Qii 's are mutually isomorphic right ideals in S. We 
can then write Qii = ei S where the ei 's are mutually orthogonal isomorphic 
idempotents with sum I. (For the notion of isomorphism between idempotents, 
see FC-(21.20).) Let Pi = Qii P = ei P, which are right A-modules of P for all i. 
It is easy to see that P = PI E9 ... E9 Pn , so we are done if we can show that the 
Pi'S are mutually isomorphic. To simplify the notations, let e, I be isomorphic 
idempotents in S; it will be sufficient to show that e P ~ I P (as A-modules). By 
FC-(21.20) we can write e = ab, 1= ba for suitable elements a, bE S. Now 
define ({J : eP --+ I P by ((J(ep) = Ibp, and 1/1 : I P --+ eP by 1/I(fp') = eap'. 
A routine check shows that these maps are well-defined A -homomorphisms. Since 

1/I({J(ep) = 1/I(fbp) = eabp = ep, and ({J1/I(p') = ({J(eap') = Ibap' = Ip', 

({J and 1/1 are mutually inverse isomorphisms, as desired. D 
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We come now to our third recognition theorem for matrix rings; this is a recent 
result due to Agnarsson, Amitsur, and Robson [95]. 

(17.10) Theorem. Let R be a ring, and p, q ::: 1 be fixed integers. Then R = 
Mp+q(S) for some ring S iff there exist elements a, b, fER such that 

(17.11) jP+q = 0, and ajP + rb = 1. 

In order to motivate the two equations in (17.11), we shall first prove the "only 
if" part of the theorem. Suppose M p+q (S), where S is some ring. Along with the 
matrix 

f = E21 + E32 + ... + Ep+q.p+q_1 E R (with fp+q = 0), 

consider the following block matrices 

a=(~ ~)ER, b=(~ ~)ER. 

Since f p = (0 0) and r = ( 0 
Iq 0 Ip 

~), we have 

ajP+rb=(~ ~)(~ ~)+(~ ~)(~ ~) 
= (~ ~) + (~ ~) = I p+q' 

This proves the "necessity" part of the theorem. 
For the "sufficiency" part of (17.10), we need the following lemma. 

(17.12) Lemma. Let A, B be two additive subgroups of a ring R which are closed 
under squaring. Let fER be an element such that f Band B f are both contained 
in B. Then 1 E Af + f B implies that 1 E Af2 + B. 

Proof. Write 1 = xf + fy, where x E A and y E B. Then 

1 = x(xf + fy)f + fy 

= x 2 f2 + (xf)yf + fy 

= x 2f2 + (1 - fy)yf + fy 

= x 2 f2 + yf + fy - fi f. 

Since x 2 E A and yf + fy - fy2 fEB, we have 1 E Af2 + B. o 

(17.13) Corollary. Let fER be such that 1 E RfP + r R, where p, q ::: 1. 
Then 1 E Rfp+q- I + fR. 
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Proof. We may assume that q ~ 2 (for otherwise there is nothing to prove). Let 
A = Rf p - I and B = r- I R, which obviously have the properties stipulated in 
the above lemma. Since 1 E Af + f B, the lemma implies that 

1 E RjP-I f2 + r- I R = RjP+I + r- I R. 

Repeated use of this argument then gives 1 E Rfp+q - , + f R. D 

We can now begin the proof of the "sufficiency" part of (17.lO). Assume 
a, b, fER exist as in (17.11). By (17.13), there also exist c, d E R such 
that cr- I + f d = 1, where n = p + q. Left multiplying this equation by 1"-1 
and using the fact that I" = 0, we get r-1cr- 1 = 1"-1, so e := cr- I E R 
is an idempotent. 

Let 2li = t-1eR, where 1 ::: i ::: n. We claim that: 

(A) For each i ::: n, 2li ~ eR as right ideals. 

(B) R = 211 EI3 212 EI3 ... EI3 2ln • 

Once these two facts are proved, we will have 

(17.14) 

where S = EndR(eR), as desired. 
To prove (A), consider the R-epimorphism 

r{Ji: eR ~ 2li = t-leR 

defined by left multiplication by fi -I. To show that r{Ji is injective, suppose 

0= r{Ji(er) = t-Ier, 

where r E R. Left mUltiplying by cr-i , we get 

0= cfn - i fi-Ier = cf"-Ier = e2r = er, 

so ker(r{Ji) = O. For (B), note that 

1 = e + fd 

= e + fee + fd)d 

=e+fed+f2d 2 

= e + fed + f2(e + fd)d 2 

= e + fed + f 2ed2 + f 3d 3 = ... 
= e + fed + f 2ed2 + ... + j"-Iedn- I + j"dn • 

Since I" = 0, this yields 1 E Li 2(i. Finally, to show that this sum is direct, 
consider an equation 

erl + fer2 + ... + fn-' ern = O. 

Since ef = cr- I f = 0, left multiplication by e shows that 0 = e2rl = erl. 
Dropping the first term above and left multiplying by cr-2 , we get 

o = cfn- 2 f er2 = e2r2 = er2· 
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Repeating this argument, we see that er; = 0 for all i. 

This completes the proof of Theorem 17.10. However, there is much more to 
be said. To give the additional information, we continue the analysis started in 
the above proof. By "identifying" each !!; with ~I E eR via the isomorphism 
({J;, we get an identification of R with the matrix ring Mn{S) as in (17.14) where 
S = EndR{eR). In particular, R has now a full set of n x n matrix units {Eij}. 
The following result completes the information. 

(17.15) Theorem. With the above identifications, we have 

(I) / = E21 + E32 + ... + EII ,II_1 E Mn{S). 
(2) Eij = t-Iedj- I (I ~ i, j ~ n). 
(3) S ~ EndR{r- 1 R) ~ HR(f R)I/ R, where 

HR(fR)={rER: r/E/R} 

is the "idealizer" o/the right ideal/ R in R. 

Proof. Under the identification End{RR) = R, / E R acts as left multiplication 
on RR, which takes !!; "identically" to !!i+1 for i < n, and takes !!n to (O). 
(Here, all !!i'S are "identified" with !!I.) Therefore, / corresponds to the matrix 
E21 + E32 + ' .. + En,II-I. Next, note that e corresponds to Ello and so 

t-Ie = {E21 + E32 +.,' + EII,n_l)i-1 Ell 

= {Ei,1 + E i+ I ,2 +.,. + En ,lI-i+dE" 

= En 

for i ~ n. To compute the other matrix units, think of d ERas an n x n matrix, 

and write it in the block form (; ~), where f3 is an (n - 1) x (n - 1) block. 

Since 

/d = 1 - c/n - I = 1 - e = E22 + ... + Enn , 

we have 

so ex = 0 and f3 = III_I. It follows now by easy matrix multiplications that 
ed = E]2, ed2 = E\3, ... , and ed"- I = E III . Therefore, for all i, j ~ n, we 
have 

E E E / i-I dj-I /i-I d j- I 
ij = j] Ij = e . e = e , 

as asserted in (2). We finish now by verifying the two descriptions of the base 
ring S in (3). For the first description, recall that e R ~ 1"-1 e R. Left mUltiplying 
e + /d = 1 by 1"-1, we have r-Ie = 1"-1, so 

S = EndR{eR) ~ EndR{r- 1 R). 
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For the second description of S, note that 

fR = f(eR + feR + ... + r-leR) 

= feR + f 2eR + ... + r-leR. 

From this, we have R = e R ffi f R, and hence e R ~ R / f R as right R -modules. 
Taking endomorphism rings, we get S ~ EndR(R/f R), which is easily seen to 
be isomorphic to the quotient ring [R (f R) / f R. 0 

The good thing here is that we have been able to compute a base ring for the 
n x n matrix ring R by using only the element f, and not using the elements c, d 
(or the elements a, b in the original equations in (17.10)). The description (3) 
above for the base ring S appeared in Lam-Leroy [96]. 

In view of the results above, it is possible to define a "generic" n x n matrix 
ring, as follows. For any given commutative ring k, let R be the k-algebra with 
generators c, d, f and relations 

(17.16) r = 0 and cr- I + f d = 1. 

The ring R is a generic n x n matrix k-algebra in the sense that another k-algebra 
R' is an n x n matrix algebra iff there exists a k-algebra homomorphism from 
R to R'. The following result of Agnarsson, Amitsur, and Robson computes R 
explicitly and determines a base ring over which R is an n x n matrix ring. 

(17.17) Theorem. For the generic n x n matrix algebra R defined above, we have 
R ~ M/I(T), where T = k(xij)) is the free k-algebra in the (noncommuting) 
variables {xij : 1 :s i, j :s n}. 

Proof. We shall use here the notations in the proof of (17.15). In particular, R is 
realized as an n x n matrix algebra M/I(S) over some k-algebra S, in such a way 
that e, fER are realized, respectively, as Ell and E21 + E32 +- ... + EII./I_ I , and 

d E R is realized as (~ 1/18- 1 ). Since Ell = e = Cj"-I == CEII,I, it follows 

similarly that c E R is realized as 

SI,Il-1 

Sn,Il-} 

for suitable sij E S. Now let the last row of the matrix d be 

(y, 8) = (SII" S2/1' ... , slln), where Sin E S. 

Let rp : T --+ S be the unique k-algebra homomorphism with q;(xij) = sij for 
all i, j. Then rp extends naturally to a k-algebra homomorphism 

<1>: MIl(T) ~ MII(S) = R. 
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In MIn (T), we have the matrices 

( ~.I~ 
C ·-. -

Xnl 

XI,n-1 

1) ( 0 o . 
D'- . 

~ X~n Xn,n-I 

and F := E21 + ... + En .n- h which satisfy the relations 

Fn = 0 and CFn- 1 + FD = In. 

o 

Therefore, there exists a (unique) k-algebra homomorphism \II : R -+ MIII(T) 
sending c, d, I, respectively, to C, D, F. Clearly, <1>\11 = Id R (since it is the 
identity on c, d, f). If we can show that \II is a surjection, then <I> must be an 
isomorphism and we are done. To show that \II is a surjection, it suffices to check 
the following: 

(1) \II(Eij) = Eij lor all t, J; 
(2) im(\II) ;2 T (the subring olscalar matrices in MIn(T)). 

Here, (1) follows readily since 

Eij = li-I (c!"-I)d j - I E MIn(S) , 

and we have a similar equation in MIn(T). To prove (2), it suffices to show that 
xIn E im(\II) for any x in the set {xij}. Now x appears as an entry in either C or 
D. Since im(\II) contains C, D and all matrix units, it follows easily that im(\II) 
contains xEpq for all p, q. In particular, im(\II) contains xL Epp = xIn , as 
desired. 0 

Remark. Of course, the fact that \II is a surjection implies that \11<1> is also 
the identity map (on MIn (T)), so <I> and \II are mutually inverse isomorphisms. 
From this, it follows that q;: T -+ S is an isomorphism, so we can conclude that 
S ~ k{(xij)}. 

Using Theorem (17.10), one can come up with some rather surprising examples 
of matrix rings. We present below an example from Robson [91] and Chatters [92] 
on 2 x 2 matrix rings. 

(17.18) Example. Let H = Z E9 Zi E9 Zj E9 Zk be the ring of integer quatemions, 

and let R be the subring (Z 3::) of MI2 (H). It turns out that R is a 2 x 2 

matrix ring! To see this, we apply the criterion (17.10) with m = n = 1. Let 
a=i+j+kEH,and 

(17.19) 
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Since a 2 = -3, we have f2 = (a 2 + 3)h = 0, and a direct calculation shows 
that 

af + fa = (3 + ia + ai)h = h 

From (17.10) and (17.15)(3), it follows that R ~ MIn(S) where S = EndR(f R). 

To compute S more explicitly, consider the unit u = (~ -t) of MIn(H). We 

have f' := uf = (~ ~a) E R, and so 

f R ~ uf R = f'R = (~ a~)' 
We claim that EndR(f'R) is isomorphic to T := TIH(aH) (the idealizer of 
the right ideal aH in H). To see this, define a ring homomorphism)" : T ---+ 

EndR(f'R) by taking ),,(/3) (/3 E T) to be left multiplication by (~ ~) on 

( ~ a~). It is easy to see that)" is injective. To see that)" is also surjec

tive, consider any g E EndR (f' R). Then g (~ ~a) = (~. aOy) for some 

/3, y E H. Since 

( 0 0) (0 0) (0 0) ( ° 0) (--a ° ) 
1 -a 1 ° - -a ° - 1 -a <0 ° ' 

we must have 

( ~ aOy) (~ ~) _ (~ aOy) (~a ~ ) , 

that is, ay = -/3a. Thus /3 E T, and g = ),,(/3). Summing ILIP, we have R ~ 
MI2 (TIH (a H)). (We leave it to the readerto show that the idealizer TIH (a H) is just 
the subring Z + a H in H.) 

Using a little bit of number theory, it can be shown by a similar application of 

(17.10) that, for any odd integer n, the ring Rn = (Z n:;) is also a 2 x 2 

matrix ring. On the other hand, if n is even, then Rn is not a 2 x 2 matrix ring. 
To see this, note that 

(~ ~x) ~WE H/nH 

defines a surjective ring homomorphism rpn from Rn onto H / n H. Composing 
this with H / n H ---+ H /2H, we get a surjection Rn ---+ H /2H. Since H /2H is 
commutative, it cannot be a 2 x 2 matrix ring. It follows from (17.8) that Rn also 
cannot be a 2 x 2 matrix ring (if n is even). 

The fact that R3 is a 2 x 2 matrix ring would appear less surprising in view of 
the existence of the ring homomorphism rp3 : R3 ---+ H /3H. The ring H /3H is 
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just the Hamiltonian algebra of quaternions defined over the field IF 3. Since this 
is a central simple lFralgebra, it must be isomorphic to M 2 (lF3). The elements a 
and I in H /3H obviously satisfy 

a2 =-3=0 and fa+af=2F=1, 

thus reaffirming H/3H ~ M 2(lF3) by (17.10). To apply (17.10) to R3 , it suffices 
to "lift" the above two equations via ({J3 to R3 • The two elements a, / E R3 
constructed in (17.19) provide precisely such a lifting. 

§17B. First Instance of Module Category Equivalences 

This subsection is intended to be an introduction to a special case of the Morita 
Theory. As such, it provides important motivational material for the general Morita 
Theory which is to be developed in §§18-19. 

In a nutshell, what we shall do in this subsection is to provide an explicit 
"equivalence" between the categories of right modules over a ring S and over the 
matrix ring R = Mil (S) (for a fixed n). The construction of this "equivalence" is 
entirely explicit, so we can see in a very concrete way how two different rings can 
have "equivalent" module categories. In our opinion, this construction is definitely 
worth knowing before the onslaught of all the tensor product formations necessary 
for developing the general Morita Theory. Furthermore, the particular construction 
of the equivalence between the module categories over Sand MIl(S) turns out to 
contain most of the key features of an equivalence of module categories in general. 
Therefore, a good mastery of the material in this subsection will prove to be a 
valuable aid for understanding the general theory presented in §§ 18-19 below. 

Continuing to write 9RR for the category of right R-modules, we state the main 
result in this subsection as follows. 

(17.20) Theorem. For R = MII(S) (/oranyfixed n ~ 1), the module categories 
9RR and 9Rs are "equivalent". 

By this statement, we mean that there exist a functor93 F : 9RR ~ 9Rs 
and a functor G : 9Rs ~ 9RR such that G 0 F ~ identity functor on 9RR , 

and FoG ~ identity functor on 9Rs. (Here, we use the symbol "~" for the 
isomorphism, or more precisely, natural equivalence, of functors). If such functors 
F, G can be found, we shall say that F (or G) defines an equivalence between 
the two categories 9RR and 9Rs . At this point, we should note that, since we shall 
be dealing exclusively with additive categories, all functors (such as F and G 
above) are assumed to be additive/unctors. 

Proof of (17.20). For V E 9Rs (shorthand for V E Obj 9Rs), define G(V) to 
be V(II), the space of row n-tuples (V\, ... ,vll ) (Vi E V). Letting R=MIl(S) 
operate on V(II) by matrix multiplication from the right, we have G(V) = v(n) E 

93Unless stated otherwise, the word "functor" shall always mean a covariant functor. 
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9J1 R • For a E Homs(V, V') (written on the left, opposite the scalars), we define 
G(a) : G(V) ---+ G(V') by 

(17.21) 

We check easily that G(a) is an R-homomorphism, and that G defines a functor 
from 9J1s to 9J1R • (Roughly speaking, G is given by "tensoring with a free left 
S-module of rank n ". This is a useful remark to keep in mind when we try to 
generalize the construction of G later in §18.) 

Forany U E 9J1R,define F(U) tobe UEII.Since UElIs =: UsEII <; UEII 

for any s E S, we have F(U) E 9J1s . For any fJ E HomR(U, U'), clearly 

fJ(U Ell) = (fJU)E II <; U' Ell. 

Taking F(fJ) to be the map F(U) ---+ F(U') induced by fJ, we have 

F(fJ) E Homs(F(U), F(U')). 

Again, it is routine to check that F defines a functor from 9J1R to 9J1s . 
For V E 9J1s , (F 0 G)(V) = F(v(n» = v(n) Ell consists of rows of the form 

(v, 0, ... ,0) (v E V), so v(n) Ell is "naturally isomorphic" to V. This shows 
that FoG is naturally equivalent to the identity functor on wts. 

To compute Go F, consider U E 9J1R and write V = U Ell = F(U). Our job 
is to find a natural isomorphism eu from U to v(n) = (G 0 F)(U). We define 
eu by: 

(17.22) 

noting that uEiI = (UEil)E II E V for all i. To check that E'u is an R-homo
morphism, it suffices to show that eu(U . sEij) = eu(u)sEi) (for s E S). By 
definition: 

eu(u·sEij) = (u·sEijEII' ... , u·sEijEnl ) 

= (0, ... , u . S E it , ... , 0), 

where U· s Ei I occurs in the ph position. On the other hand, by direct matrix mul
tiplication, eu(U)S Eij is seen to be the same thing. Hence eu E HomR(U, v(n». 
Next, we check that eu is an isomorphism. First, if eu(U) = 0, then 

UEii = (UEil)E li = 0, so u = u(L Eii) == O. 

To show that eu is surjective, it suffices to show that (v, 0, ... ,0) E im(eu) for 
any v E V. Fix any element u E U such that v = u Ell' Then 

eu(V) = (VEil, ... , VEil, ... , VEnl) 

= (v, 0, ... , 0). 

Finally, it is easy to check that eu is a natural isomorphism. Therefore, Go F ~ 
identity functor on 9J1 R , and we have completed the proof of (17.20). 0 
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Several remarks about the category equivalences F and G above are in order. 

(17.23) Remarks. 

(A) Suppose P is a certain "categorical" property; that is, a property on modules 
that can be defined by using only the module category, and not using the base 
ring. Then, the fact that G : !ms ~ !mR is a category equivalence implies that 
a right S-module V has the property P iff the right R-module G(V) does 
(and a similar statement holds for F). Some examples of such properties are 
"projectivity", "injectivity", and "finite generation" of (right) modules. The first 
two cases are clear. For the third case, we have to give a characterization of "finite 
generation" in terms of submodules (rather than in terms of elements). This is easy 
to do: a module Vs is finitely generated iff, for any set of submodules {Vi : i E I} 
in V, V = LiEf V; implies that V = LiE} V; for some finite subset J ~ I. 

(B) Being the right regular module is not a categorical property. In fact, neither 
F nor G preserves the right regular modules (if n > 1). For the right regular 
module V = Ss, G(V) = s(n) is only a projective R-module,with n·S(n) ~ RR. 
Loosely speaking, G(Ss) is "lin" of RR. On the other hand, for U = RR, 

F(U) = REll = EllS EEl··· EEl Enl S, 

and this is "n copies" of Ss. Thus, F takes free modules to free modules, but (in 
general) G does not. 

(C) The number of elements needed to generate a f.g. module is not a categorical 
quantity, and behaves in a rather interesting way with respect to the functors F, G. 
For instance, if V E !ms is generated by n elements, then G(V) is a cyclic module 
in !mR. In fact, suppose V = L;'=I aiS, and consider any (v" ... , vn) E v(n) = 
G(V). Writing Vj = L~=I ajsjj, we have 

(VI, ... , vn) = (al,"" an)(sij), 

so (aI, ... ,all) is a cyclic generator for the R-module G(V). 

The last remark has, for instance, the following interesting application to the 
study of principal right ideal rings. 

(17.24) Theorem. Let S be a principal right ideal domain. Then for any n 2': I, 
R = Mn (S) is a principal right ideal ring. 

Proof. As we have observed in (B) above, F(RR) is a free S-module ~ Ss. Aright 
ideal 2t ~ RR corresponds to an S-submodule V ~ Ss. By (2.27), Vs ~ S'S 
for some m, and since S is right noetherian, m ::s n (cf. (1.35». Thus, Vs can 
be generated by n elements. It follows from the discussion in (C) above that 2tR 
is cyclic, so 2t is a principal right ideal in R. 0 

In general, a ring T is said to be Morita equivalent to S if there exists a 
category equivalence between !ms and !mT. Obviously, Morita equivalence is an 
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equivalence relation among rings. For a given ring S, it is of great importance to 
describe the Morita equivalence class of S. By (17.20), all matrix rings MIII(S) 
(n ~ 1) belong to this class, but in general, there may be other rings in the class 
too. The following result is a sneak preview of Morita's main theorems in §18. 

(17.25) Theorem. A ring T is Morita equivalent to S iff T ~ Ends(P), where 
Ps is a progenerator in !Uk 

The notion of a progenerator used here was briefly introduced at the end of §2: 
we say that Ps is a progenerator if P is f.g. projective, and tr(P) = Ss (or 
equivalently, there exists an epimorphism n . P ~ Ss for some n ~ 1). For 
instance, the free modules n . S (for any n ~ 1) are progenerators. Choosing P 
to be n . S, we get the rings Ends(P) ~ MIn(S) in the Morita equivalence class 
of S. Other choices of P, in general, might lead to further rings in the class not 
isomorphic to any MIn(S). 

The proof of Morita's Theorems will be presented in full in § 18. At this point, 
the reader should assume (17.25) without proof, since we have an application of 
this result in mind for § 17C. 

§17C. Uniqueness of the Coefficient Ring 

If R is an n x n matrix ring, say, R ~ MIn (S), it is natural to ask if S is uniquely 
determined by R, up to an isomorphism. In the first subsection (§17A), we were 
concerned with the problem of recognition of R as an n x n matrix ring, but the 
question of the uniqueness of the base ring was never raised. And then in § 17B, 
we shifted our attention to category equivalences which do not seem to have any 
bearing on the uniqueness issue. In this subsection, we shall address the uniqueness 
question in earnest. As it turns out, the material developed in § 17B is quite relevant 
to this discussion after all. 

For convenience, let us say that a ring S is MIn -unique if, for any ring S', 
MIn (S) ~ MIn (S') implies that S ~ S'. The question is: are there rings that are 
not MIll -unique, and if so, which classes of rings are MIn -unique? 

For the latter question, one class of rings comes to mind immediately, namely, 
the class of division rings. Using the Wedderburn-Artin Theorem (FC-(3.5)), it 
is easy to see that any division ring (and for that matter any semisimple ring) is 
MIn-unique, for any n ~ 1. Another class of MIn-unique rings is given by the 
following theorem. 

(17.26) Theorem. Let rp : MIn(S) ~ MIn(S') be a ring isomorphism, where S 
is a commutative ring. Then rp induces an isomorphism from S onto S' (where, 
as usual, Sand S' are identified with the subrings of scalar matrices in MIn (S) 
and MIn (S').) In particular, any commutative ring S is MIn -unique. 

Proof. We first make a useful observation without assuming commutativity on S. 
For any ring A, let Z(A) denote the center of A. Consider any M E Z(MIn (S)). 
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Since M commutes with all Eij 's, (17.4) implies that M E S, and hence M E 

Z(S). This shows that Z(M" (S» = Z(S). Therefore, any isomorphism rp : 
M,,(S) -+ M,,(S') mustinduce an isomorphism from Z(S) to Z(S'). 

Now assume S is commutative. Then rp induces an injection of S into Z(S'). 
To simplify the notations, let us identify S with rp(S), so that S "becomes" the 
center of S'. Our job is to show that, in fact, S = S'. Let us work in the category 
!D1s . Since rp is an isomorphism, M" (S) s ~ Mn (S')s. On the other hand, 

M,,(S)s ~ S~2 and M,,(S')s ~ (S'''')s ~ (S~)"'. 

Therefore, (S~),,2 ~ S~2. This shows that S~ is a f.g. projective right S-module 
of rank 1. By (2.50), S~ = S EEl X for some (f.g. projective) right S-module X. 
Taking the rank, we see that X = 0, so S = S', as desired. 0 

In order to get more definitive results on M,,-uniqueness (or the lack of it), 
we must now bring to bear some module-theoretic techniques. We introduce the 
following two notions of "cancellation", where R is a ring, C is a class of right 
R-modules, and n :::: I is a given integer. 

(17.27) Definition. (1) We say that C satisfies n-cancellation if, for any P, P' E 

C, 

n . P ~ n . P' ===} P ~ P'. 

(2) We say that C satisfies weak n-cancellation if, for any P, P' E C, 

n . P ~ n . P' ===} EndR(P) ~ EndR(P'). 

Needless to say, if C satisfies n-cancellation, then it satisfies weak n-cancella
tion. The converse is, however, not true. For instance, if R is a commutative ring, 
the class of rank I projectives trivially satisfies weak n-cancellation for any n (in 
view of Exercise (2.27», but may not satisfy n-cancellation. 

The relevance of n-cancellation and weak n-cancellation to the problem of M,,
uniqueness stems from the case where C is the class of progenerator modules. To 
explain this connection, we first make the following observation. 

(17.28) Proposition. Let A be any ring that is Morita-equivalent to S. Let P s 
be the class of/g. (resp./g. projective, progenerator) right S-modules, and let 
P A be defined similarly. Then Ps satisfies n-cancellation iff PA does. The same 
statement holds for weak n-cancellation. 

Proof. Let G : !D1s -+ !D1A be a category equivalence. Under G, it is easy to see 
that P s corresponds to P A. (In case Psis the class of progenerators, interpret a 
progenerator in !D1s as a f.g. projective Ps such that any f.g. projective in !D1s 
is an epimorphic image of some n . P.) Since "direct sums" and "endomorphism 
rings" (of modules) are both categorical notions (therefore preserved by G), the 
desired conclusion follows. 0 
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With the above proposition as a tool, we can now formulate more precisely the 
relationship between weak n-cancellation and Mil-uniqueness. 

(17.29) Theorem. For any ring S, and any given integer n ::: I, the following two 
statements are equivalent: 

(I) Any ring T Morita-equivalent to S is Mil-unique. 
(2) The class Ps of pro generators in !JJ1s satisfies weak n-cancellation. 

Proof. (2)===>(1). Let T be as in (1), and let T' be another ring with MII(T) ~ 
MII(T' ). To argue more symmetrically, let A be a ring isomorphic to these two 
matrix rings. Then A is Morita-equivalent to T, and hence to S. By (17.28), (2) 
implies that P A satisfies weak n-cancellation. Identifying A with Mil (T) (resp. 
Mil (T' )), we get a decomposition of AA into n· P (resp. n . Pi), where P is the 
right Mil (T)-module given by (T, ... , T) (and similarly for Pi). Therefore, we 
have 

n . P :::::: n . pi ~ AA, 

which implies that P, pi EPA. By weak n-cancellation, we have then EndA (P) 
~ EndA (Pi). Now, by a straightforward calculation (cf. FC-p. 34), EndA (P) is 
isomorphic to T, and similarly EndA (Pi) is isomorphic to T'. Therefore, T ~ T ' , 
as desired. 

(1)===>(2). Suppose n· P ~ n . pi, where P, pi E Ps . Let T = Ends(P) and 
T' = Ends(p l ). By (17.25) (which we assumed without proof), T is Morita
equivalent to S. Taking the S-endomorphism rings of n . P ~ n . pi, we get 
an isomorphism MII(T) ~ Mn(T'). But by (1), T is Mn-unique, so we have 
T ~ T'; that is, Ends(P) ~ Ends(p l ), as desired. 0 

Remark. Part of the subtlety of Theorem (17.29) lies in the fact that, in the 
condition (1) above, we must impose Mn-uniqueness on all rings T that are 
Morita-equivalent to S. In general, this condition is not equivaknt to the condition 
that S itself be Mil-unique. For instance, by (17.26), a commutative ring S is MII -

unique (for any n), but some matrix ring T = Mr(S) may fail to be Mn-unique. 
Examples of this nature will be constructed later in this section. 

A big payoff of Theorem (17.29) is the following. 

(17.30) Corollary. Let R = Rjrad R, where R is any ring. If the class 'P7[ (of 
progenerators in !JJ1R) satisfies n-cancellation, then so does the class PR , and 
the rings R, Ii are both Mn -unique. 

Proof. Let J = rad R. If P E PR, it is easy to see that P := P j P J E PRo Now 
assume n· P ~ n . pi, where P, pi E PRo Then n· P ~ n . pi E PR, and our 
hypothesis implies that P ~ pl. By a standard lifting theorem (see FC-(19.27)), 
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we have P ~ P'. Since n-cancellation implies weak n-cancellation, it follows 
from (17.29) that R, R are both Mn -unique. 0 

The most concrete case of (17.30) is the following. 

(17.31) Corollary. Any semi/ocal ring (a ring R for which Rjrad R is semisim
pie) is Mn-uniquefor any n.ln particular, any right artinian ring is Mn-unique. 

Proof. It is easy to see that f.g. modules over the (semisimple) ring Rjrad R 
satisfy n-cancellation (for any n). Therefore, (17.30) applies. 0 

The point about the general formulation in (17.30) is, of course, that it has 
far wider applications than just to the case of semilocal rings. If R = Rjrad R 
is a commutative PID, for instance, then by the fundamental structure theorem 
for modules over such rings, f.g. R-modules satisfy n-cancellation. Therefore, 
(17.30) guarantees that R is Mn-unique for any n. There are also many types 
of von Neumann regular rings over which f.g. projective right modules satisfy 
n-cancellation: see, for instance, Goodearl [91]. Thus, if R = Rjrad R is one of 
these von Neumann regular rings, (17.30) will again guarantee that Rand R are 
Mn-unique for any n. 

Another class of rings that are Mn -unique for all n is the class of (2-sided) 
self-injective rings. This is a result of E. Gentile [67]; it is also proved by module
theoretic cancellation techniques. 

Next we shall tum our attention to non-uniqueness. According to (17.29), the 
nonuniqueness of base rings for matrix rings can only be caused by the (possible) 
failure of weak n-cancellation for progenerators. Therefore, to produce exam
ples of rings that are not Mn -unique, we need only come up with rings whose 
progenerators fail to satisfy weak n-cancellation. We can proceed as follows. 

(17.32) Example. Let A be a Dedekind domain, with a nonzero ideal I such 
that r is principal and I is not an rth power in the Picard group Pic(A), where 
n, r :::: 1 are given integers. Let 

(17.33) p = (r - 1) . A EB I and pi = r . A, 

which are clearly progenerators in 9JtA • Let 

We claim that 

(17.34) n . P ~ n . pi, but S -;p S', 

so progenerators in ootA do not satisfy weak n-cancellation. Also, since n . P ~ 
n . pi implies that Mn (S) ~ Mn (S'), Sand S' are not Mn-unique. To prove 
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(17.34), note that, by repeated use of Steinitz' Isomorphism Theorem,94 

n . P ~ nCr - 1) . A EB n . [ 

~ nCr - 1) . A EB (n - 1) . A EB r 
~ (nr - 1) . A EB A 

~n· P'. 

For the second conclusion in (17.34), assume instead that 

EndA(P) = S ~ S' ~ Mr(A). 

By (17.9), we have P ~ r . J for some A-module J, which is necessarily 
f.g. projective of rank 1. We may assume that J is an ideal in A, in which case 

r . J ~ (r - 1) . A EB F (as above). 

Comparing this with (17.33) and taking the rth exterior powers, we get [ ~ r, 
in contradiction to the given properties of I. Thus, S ? S'. 

(17.35) Remark. In the above example, it should not go unnoticed that, although 
the (commutative) ring A is Mil-unique (by (17.26», the matrix ring Mr(A) ~ S' 
is not! 

For an explicit instance of (17.32), let A = Z[8] where 8 = .;=5, and let 
I = (2, I + 8) S; A. As we saw in (2.19D), [ is not principal, but [2 = 2A. 
Since Pic(A) ~ Z/2Z (a well-known fact in number theory), (17.32) applies to 
I with n = r = 2. Thus, for P = A EB I and S = EndA(P), we have 

M2 (S) ~ M2(M2(A», but S? M 2(A). 

Note that Sand M 2 (A) are (2-sided) noetherian rings, so, although I-sided 
artinian rings are Mil -unique for all n (by (17.31 », 2-sided noetherian rings may 
notbe M2-unique. The ring S above can be described explicitly: since P = AEBI, 

its endomorphism ring S issimplythesubringofmatrices (~ I~l) S; M2(K), 

where K is the quotient field of A, and 

rl = {a E K : aI S; A} ~ HomA(l, A). 

To conclude this section, let us mention another well-known example on the 
lack of Mil -uniqueness. Here, however, we can only describe the example in some 
detail, but we will not be able to give the complete verifications of our claims. 

(17.36) Example. Let A be the coordinate ring of the real 2-sphere; that is, 
A = ffi.[x, y, z] with the relation x 2 + y2 + Z2 = 1. Let (f! : A 3 ~ A be 
the A-homomorphism given by mapping the unit vectors el, e2, e3 E A 3 to 

94We use the following version of this theorem: For any nonzero ideals i, l' in a 
Dedekind domain A, i EB l' ~ A EEl i i' as A-modules. 
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x, y, Z E A, and let P := ker(<p). Since xA + yA + zA = A, <p is a split 
epimorphism. This shows that P EB A ~ A 3 ; thus, P is a stably free A-module 
of rank 2. The following two interesting facts are known about P: 

(1) n· P is free for any n:::: 2. 
(2) P is an indecomposable A-module. (In particular, P is not free.) 

Assuming these facts, we have then an instance of the failure of n-cancellation: 
for F : = A 2 , we have n· P ~ n . F for all n :::: 2, but P '1- F. In fact, even weak 
n-cancellation fails. To see this, let S := End A (P) and S' := End A (F). Taking 
endomorphism rings of n . P ~ n . F, we have Mn(S) ~ M,z(S') for all n :::: 2. 
However, S'1- S', since S' ~ EndA (A 2) ~ M 2 (A) has nontrivial idempotents, 
but according to (2), S does not. Thus, the ring S fails to be Mn-unique (for 
all n :::: 2), and so does S' ~ M 2(A) (even though the commutative ring A is 
Mn -unique for all n). 

The fact (l) above can be proved in at least two different ways. First, it can be 
deduced from general stability results on f.g. projective modules over commutative 
rings of finite Krull dimension. Second, it can also be deduced, over any commu
tative ring A, from the isomorphism P EB A ~ A 3 (see [Lam: 76]). The fact (2) is, 
however, much harder to prove; most known proofs seem to involve topological 
considerations, using the fact that the projective A-module P "corresponds to" 
the tangent bundle of the 2-sphere. The fact that P is not free can be deduced 
from the "Hairy Ball Theorem" for the 2-sphere, but the indecomposability of P 
requires another topological step. 

Exercisesfor §17 

1. Let R = Mn (S), where n :::: 1. Show that R satisfies IBN (resp. the rank 
condition in §1) iff S does. 

2. In the notation of Remark (17.6), show that the eij 's are left (and right) 
linearly independent over their centralizer S in R. 

3. Suppose a ring R has three elements a, b, f such that f2 = 0 and af + 
fb = 1. Show that R also has an element c such that cf + fc = 1. 

The next three exercises are due to G. Agnarsson. 

4. Suppose a ring R has two elements a, f such that f P+" = 0 and afP + 
f"a = 1, where p, q:::: 1 and p =1= q. Show that R = O. 

5. Let k be a commutative ring, and R be the k-algebra with generators 
a, f and relations f2 p = 0, afP + fPa = I, where p :::: 1. Show that 
R ~ M 2p (S) for a suitable k-algebra S ;2 k. (In particular, if k =1= 0, 

then R =1= 0.) 

6. (1) Let k be a commutative ring, and R be the k-algebra with generators 
a, f and relations a" = f" = 0, an-I f n- I + fa = 1. Show that 
R ~ M I1 (k) as k-algebras. 
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(2) Show that a ring A is an n x n matrix ring iff there exist ao, fo E A 
such that ag = f~' = 0 and ag- 1 f;-1 + foao = 1. 

7. (Agnarsson-Amitsur-Robson) Show that, for n ~ 3, the existence of 
c, d, fER such that r = 0 and cf + fd 1 need not imply 
that R is an n x n matrix ring. 

8. Let R = Mn(S) and R' = Mn(S'), where S, S' are rings. 
(1) For any (R, R')-bimodule M, show that the triangular ring T 

(R M). . . o R' IS an n x n matnx nng. 

(2) Let N be an (S, S')-bimodule and let M = Mn (N), viewed as an 

(R, R')-bimodule in the obvious way. According to (1), T = (~ ~) 
is an n x n matrix ring. Determine a base ring for T. 

9. For s, t E F* where F is a field of characteristic i 2, let R be the 
F -quatemion algebra generated by two elements i, j with the relations 
i 2 = s, j2 = t, and ij = - j i. Assume thatthere exist u, v E F such that 
su 2 + tv2 = 1. Using the Recognition Theorem (17.10) for p = q = 1, 
show that R ;:: M 2 (F) as F -algebras. (Hint. In the notation of (17.10), 
let f = tvi + suj + ij.) 

10. (Fuchs-Maxson-Pilz) Show that a ring R is a 2 x 2 matrix ring iff there 
exist f, g E R such that f2 = g2 = 0 and b := f + g E U(R). (Hint. 
Let a = b- 1, and show thataf = ga, whence 1 = ga + fa = af + fa.) 

11. Let R = Mn(S), which may be viewed as a left S-module. Let V, W be 
right S-modules. 

(1) Show that V ®s R ;:: n . v(n), where v(n) = (V, .... , V) is viewed as 
a right R-module in the obvious way. 

(2) Show that EndR{V ®s R);:: Mn(EndsV). 

(3) Show that V ®s R ;:: W ®s R as R-modules iff n . V ;:: n . W as 
S-modules. 

12. For any S-module Ms, let Lats(M) denote the lattice of S-submodules 
of M. For any ring Sand R = Mn(S), let M = S~ be identified with 
RE 11 . Define 

j 

LatR(RR) ~ Lats(M) 
R 

by feU) = U Ell for U E LatR(RR) and g(V) = 'L:!=1 V Elj for V E 

Lats(M). Show that f and g are mutually inverse lattice isomorphisms. 
(Note, in particular, that this "classifies" the right ideals in the matrix ring 
R.) 

13. If S, T are two rings such that Mn(S) ;:: Mm(T) as rings, show that 
Lats(S1) ;:: LatT(T;") as lattices. 
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14. Let S, T be nonzero commutative rings, and n, m > I be integers. If 
Mn(S):::::: Mm(T), show that n = m and S:::::: T. 

15. Let S, T be two rings such that MIl(S):::::: Mm(T) as rings, where n, m:::: 
2 are given integers. If S is commutative and n is prime, show that we 
must have n = m and S :::::: T. 

16. Show that Q:;'ax(Mn(R» :::::: Mn (Q:;'ax (R)). If R is a semlpnme ring, 
prove the same results for Martindale's right (resp. symmetric) ring of 
quotients. 

§18. Morita Theory of Category Equivalences 

§18A. Categorical Properties 

Before going into the full discussion of how equivalences of module categories 
might arise, we shall devote this preliminary subsection to the notion of "categor
ical properties" of modules (and their morphisms). 

A property P on objects (resp. morphisms) in a module category 9J1 R is said to be 
a categorical property if, for any category equivalence F : 9J1 R ---+ 9J1s , whenever 
M E 9J1R (resp. g E HomR(M, N» satisfies P, so does F(M) (resp. F(g)). 
Thus, if a property P is defined (or definable) purely in categorical terms (using 
only objects and morphisms, and without reference to elements of modules or 
to the underlying ring), then P is a categorical property, since the categorical 
equivalence F will "transport" P from M (resp. g) to F(M) (resp. F(g)). 

At the level of morphisms, g : M ---+ N being an isomorphism is certainly a cat
egorical property. Less obviously, g being a monomorphism (resp. epimorphism) 
are also categorical properties. Here, we must abandon the usual "elementwise" 
definition for "one-one" and "onto". Instead, we characterize g being a mono 

(resp. epi) by the property that, whenever X ~ M ~ N has composition 

zero, then h = 0 (resp. whenever M ~ N ~ Y has composition zero, then 
k = 0). From these observations, it follows readily that 0 ---+ M ---+ N ---+ M' ---+ 0 
being an exact sequence is a categorical property. 

At the level of modules, M E 9J1 R being zero, nonzero, simple, semisimple, 
indecomposable, uniform, noetherian, artinian, or having unifonn dimension = n, 
composition length = n (n :s (0), etc., are certainly categorical properties. The 
module M R being strongly indecomposable is also a categorical property, since 
this requires that the endomorphism ring EndRM be local, which is preserved by 
a categorical equivalence. In a similar vein, a submodule N ~ M being maximal, 
minimal, essential ("large"), superfluous ("small") in M, or being a direct sum
mand or a complement in M, are also categorical properties (for the pair N ~ M). 
The property of N being dense in M is a bit trickier: the first definition for dense
ness given in (8.2) was certainly in terms of elements. However, if we resort to the 
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characterization of denseness: 

(18.1) "HomR(P/N, M) = 0 whenever N ~ P ~ M" 

in (8.6)(3), it becomes clear that N being dense in M is a categorical property as 
well. 

For the study of module theory, "f.g." (finite generation) is an all-important 
property. It is very fortunate indeed that this property turns out to be categorical. 
To see this, we check (for instance) that the usual "elementwise" definition for RM 
being f.g. can be replaced by either one of the following categorical conditions: 

(18.2) For any family of submodules {Ni : i E I} in M, if Li EI Ni = M, then 
LiE) Ni = M for some finite subset J ~ I. 

(18.3) For any family of submodules {Ni : i E I} in M which form a chain, if 
each Ni =I M, then UiEI Ni =I M. 

The equivalence of (18.2) with "f.g." is clear; the equivalence of (18.3) with 
"f.g." is left as an exercise (viz. Exercise (18.0». This example dealing with the 
notion "f.g." serves to show that sometimes there may be several interesting cat
egorical formulations for a module-theoretic property first defined by using ele
ments. 

Coming now to some of the homological properties of modules, being projective 
or injective are certainly categorical properties, and therefore, so are the properties 
of being a projective cover or an injective hull. Using this and the above paragraph, 
we see that M R being "f.p." (finitely presented) is also a categorical property (M R 

is f.p. iff there exists 0 --+ K --+ P --+ M --+ 0 with K, P f.g. and P projective). 
In view of this (plus (4.33) for instance), it follows in tum that M being flat is 
also a categorical property. Using resolutions, we conclude that pd(M) = n, 
ideM) = n, and fd(M) = n (n ::::: 00) are categorical properties as well. 

Of course, not all module-theoretic properties are categorical. For instance, as 
we have seen near the end of §17C, the property of MR being afree R-module 
is not categorical, nor is the property of MR being a cyclic (or an n-generated) 
R-module. 

Then there are properties for which we can make no immediate conclusions, 
due to an apparent lack of a categorical characterization. A good example is the 
property of MR beingafaithful R-module. The definition "Mr = 0 ==} r = 0 E 

R" certainly sheds no light. On the other hand, under the equivalence F : 9JtR --+ 
9J1s (S = Mn (R» constructed in § 17C, if M is faithful, a quick matrix calculation 
shows that F(M) = M(n) does remain faithful over S = Mn (R). This gives us 
hope that faithfulness may be a categorical property. Indeed, we shall show that it 
is, in (18.37) below. 

Next, we tum to ring-theoretic properties. We make the following formal defi
nitions. 
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(18.4) Definition. Two rings R, S are said to be Morita equivalent (R ~ S for 
short) if there exists a category equivalence F : 9JtR ~ 9Jts. A ring-theoretic 
property P is said to be Morita invariant if, whenever R has the property P, so 
does every S ~ R. 

Thus, a property P is Morita invariant if it can be characterized purely in terms 
of the module category 9JtR associated with R (without reference to elements of 
modules, or to the ring R itself). 

(18.5) Remark. It will be shown later that if we have an equivalence F : 9JtR ~ 
9Jts, then we also have an equivalence F' : R9Jt ~ s9Jt. In anticipation of this 
fact, we chose not to use the term "right Morita equivalent" in (18.4). 

Some obviously Morita invariant properties for rings are: "semisimple", "right 
noetherian" (f.g. right modules have ACC), "right artinian" (f.g. right modules 
have DCC), "right (semi)hereditary" (see (2.26) and (2.30)), or "r.gl.dim = n", 
"weak dim = n". In the case n = 0, the last of these implies that R being von 
Neumann regular is a Morita invariant property (cf. (5.62)(a)). Using these facts, 
for instance, we can now deduce, in a purely conceptual way: 

(18.6) Corollary. If R is semisimple, right noetherian (resp. artinian), right hered
itary (resp. semihereditary), or von Neumann regular, then so is Mn(R), and 
conversely. 

Granted the fact that a module being faithful is a categorical property, we see 
that R being right primitive (resp. semiprimitive) ["there exists a faithful simple 
(resp. semisimple) right R-module"] is a Morita invariant property. As we delve 
more deeply into the Morita Theory, we will be able to prove that other important 
properties such as "prime", "semiprime", "simple", "semilocal", "right nonsingu
lar", "right self-injective", "QF", etc. are likewise Morita invariant. The finiteness 
of a ring turns out to be a Morita invariant property too. 

On the other hand, many ring-theoretic properties are seen to be lost as we pass 
to matrix rings. Such properties are, therefore, not Morita invariant. These include, 
for instance, R being commutative, local, reduced, a domain, a division ring, right 
Goldie (remark following (11.18)), Dedekind-finite (Exercise (1.18)), ACC on 
right annihilators (remarks following (6.51)), "f.g. right projective R-modules are 
free", etc. 

Checking whether a ring-theoretic property is Morita invariant can sometimes 
be downright confusing. For instance, my colleague G. Bergman once sent me 
email suggesting an example of a ring S with IBN such that some R ~ S is 
without IBN. But later in the day, I found to my amazement an exercise on p. 10 
of P. M. Cohn's book (Cohn [85]) asking the reader to show that IBN is a Morita 
invariant property! (For the construction of Bergman's example, see Exercise 11.) 
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§18B. Generators and Progenerators 

In preparation for the development of the Morita Theory, we make the following 
formal definition. 

(18.7) Definition. A right R-module P is said to be a generator (for !DlR) if 
HomR(P, -) is a faithfulfunctor from !DlR to the category of abelian groups. This 
means that HomR(P, -) does not kill nonzero morphisms; that is, if f: M ~ N 
is nonzero, then so is HomR(P, j), or, more explicitly, there exists g: P ~ M 

such that the composition P ~ M ~ N is nonzero.95 

The most obvious example of a generator is the right regular module P = RR. 
For this P, the functor Hom R (P, -) is the forgetful functor from !Dl R to abelian 
groups, which is, of course, a faithful functor. The faithfulness property in this case 
amounts to the fact that a morphism f : M ~ N is nonzero iff it takes at least 
some element of M to a nonzero element of N. Other examples of generators can 
be produced by using the observation that, if pI ~ P is a surjection and P is 
a generator, then so is P'. In particular, if P is a generator, so is any direct sum 
P (B Q. 

The notion of a generator bears a close relationship to the notion of the trace 
ideal of a module. Recall from §2 that, for any P E !DlR, tr(P) (the trace ideal of 
P) is defined to be 'L,gP where g ranges over P* = HomR(P, R). We have 
the following alternative characterizations for P to be a generator. 

(18.8) Theorem. For any PR the following are equivalent: 

(1) P is a generator (for !DlR). 
(2) tr(P) = R. 
(3) R is a direct summand of a finite direct sum Eei P. 
(4) R is a direct summand ofa direct sum Eei P. 
(5) Every M E !DlR is an epimorphic image of some direct sum Eei P. 

Proof. (1)==>(2). Assume ~ = tr(P) -=I- R. Then the projection map R ~ R/~ 

is nonzero in !DlR, so for some g E P* = HomR(P, R), the composition P ~ 
R ~ R/~ is nonzero. But this means that g P 1:. ~, a contradiction. 

(2)==>(3). By (2), there exist gl, ... ,gn E P* with gl P + ... + gn P = R. Then 
(gl, ... , g,,): P (B ... (B P ~ R is a split epimorphism, hence (3). 

(3)==>( 4) is a tautology. 

(4)==>(5). This is easy since M is an epimorphic image of a free module. 

(5)==>(1). Let f: M ~ N be nonzero, and fix a surjection Eei Pi ~ M where 
Pi = P. Clearly, the composition Eei Pi ~ N is nonzero. This implies that, for 

some i, the composition Pi (= P) ~ M ~ N is nonzero, proving (1). 0 

95In the older literature, a generator was also known as a "completely faithful" module. 
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(18.9) Remarks (on Generators). 

(A) By (18.8)(4), over any commutative domain, a torsion module cannot be a 
generator. 

(B) Also by (18.8)(4), any generator PR is faithful. 

(C) The converse of (B) is true in some interesting cases. For instance, it is true 
over any QF ring R, according to Exercise (16.12). (For more information on this, 
see § 19B below.) 

(D) The converse of (B) is certainly not true in general. For instance, over R = Z, 
P = Q is faithful but is not a generator, since P* = o! The trouble here is 
that PR is not f.g. If we consider only f.g. modules, the converse of (B) stands a 
better chance to hold. For instance, if R is either (1) a commutative self-injective 
ring, or (2) a Priifer domain, then any fig. faithful module PR is a generator. In 
Case (1), write P = XI R + ... + Xn R and define f E HomR(R, pI!) by fer) = 
(Xlr, ... , xl!r) for any r E R. If fer) = 0, then P r = (LXiR) r = LXirR = 0, 
so r = O. This shows that f embeds R into pn. Since R is self-injective, R is 
isomorphic to a direct summand of pI! , so P is a generator. In case (2), let Po be the 
torsion submodule of P. Since Q : = P / Po is f.g. and torsionfree, it is projective 
by (2.31). We have thus P ~ Po EB Q, and so Po is also f.g. Using this, we see that 
the faithfulness of P implies that of Q. By (18.11) below, Q is a generator, so P 
is also a generator. 

(E) Let 2l S; R be a right ideal in any ring R. If R2l = R, then 2lR is a generator. 
(If L riai = 1 where ai E 2l, tr(2l) contains L r i 2l = R.) In particular, over a 
simple ring R, any nonzero right ideal is a generator for 9J1R • 

Theorem (18.8) suggests an interesting "analogy" between generators and f.g. 
projective modules: PR is fig. projective if.! P is a direct summand of some RI!, 
and PR is a generator iff R is a direct summand of some pl!. By combining 
these two conditions, we obtain a powerful new notion: a module PR is called a 
progenerator if it is a f.g. projective generator. 

(18.10) Remarks (on Progenerators). 

(A) From Oef. (18.7), we see that P being a generator (progenerator) is a cate
gorical property. Therefore, under a category equivalence F : 9J1 R -+ 9J1s , P is 
a (pro)generator iff F(P) is. In particular, F(RR) is always a progenerator in 
9J1s . As it turns out, this observation holds the key to much of the Morita Theory 
to be developed later. 

(B) Over any commutative ring R, (18.11) below implies that any invertible R
ideal is a progenerator. 

(C) Let R be a right artinian ring (or more generally a semiperfect ring). Let 
1 = e I + ... + el! be a decomposition of 1 into a sum of primitive orthogonal idem
potents, and suppose el R, ... , er R is a complete set of principal indecomposable 
modules. An arbitrary fig. projective right module P = ml (el R) EB· .. EBmr(erR) 
is a progener(J{or iff mi > 0 for 1 :::: i :::: r. This follows easily from (18.8). 
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(D) Let PR be a f.g. projective module represented in the form e·R~ where e is 
an idempotent in MIneR) = End(R~). Let e = (aij). By Exercise 2.18, 

tr(P) = LRaijR, and Mn(R)eMn(R) = Mn(tr(P». 

Therefore, PR is a progenerator iff e E Mn (R) is a full idempotent. (Recall that 
an idempotent e in a ring A isfuLl if AeA = A: see Fe-(2l.1I).) In the special 
case n = 1, it follows that, for e = e2 E R, we have tr(eR) = ReR, and eR is a 
progenerator iff e is a full idempotent. 

In the commutative case, we have the following easy (but important) criterion 
for the recognition of progenerators. 

(18.11) Theorem (Azumaya). Let P be a fg. projective module over a commu
tative ring R. Then P is a progenerator iffit is faithful. 96 If R has no nontrivial 
idempotents, then any fg. projective module P i= 0 is a progenerator. 

Proof. This follows by combining (18.8) with (2.44). D 

(18.12) Example. If R is not a commutative ring, a faithful f.g. projective module 

P may not be a progenerator. In fact, over the ring R = (~ ~) (where k i= 0 

is any ring), let e = Ell and P = e R = (~ ~). We check easily that the 

f.g. projective module PR is faithful, but P is not a progenerator in !JJ1R since 
tr(P) = ReR = eR i= R. 

§18C. The Morita Context 

We first introduce some general constructions and notations which will be useful 
for understanding category equivalences. 

Let P be a right R-module, where R is any ring. We write Q = P* = 
HomR(P, R) and S = EndR(P), both operating on the left of P. This makes 
P into an (S, R)-bimodule. Viewing P as sPR and R as RRR, it follows that 
Q = HomR(P, R) is an (R, S)-bimodule. The left R-action on Q is defined 
by (rq)p = r(qp) ("RQP-associativity"), and the right S-action is defined 
by (qs)p = q(sp) ("QSP-associativity"). Here and in the following, we write 
p, q, r, s (and p', q', r', S/) for elements in P, Q, R, and S. 

As far as P and Q are concerned, we have the following two basic pairings. 
For PEP and q E Q, we have (as above) qp E R which is the result of 
applying q to p. We also have pq E S which can be defined by 

(18.13) (pq)p' = p(qp') (" P Q P-associativity"). 

96For a criterion for P to be faithful in terms of localization, see Exercise (2.24). 
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We suppress the routine calculation for verifying that pq is an R-endomorphism 
of P. Instead, let us show that 

(18.14) q(pq') = (qp)q' (" Q P Q-associativity"). 

It suffices to check that both sides have the same effect on p' E P: 

(q (pq')) p' = q «pq') p') 

= q(p(q' p')) 

= (qp)(q' p') 

= «qp)q')p' 

("QS P-associativity") 

(" P Q P -associativity") 

(" Q P R -associativity" : q is R -linear) 

(" R Q P -associativity"). 

(18.15) Lemma. In the above notations: 

(1) (q, p) f4 qp defines an (R, R)-homomorphism a: Q ®s P -+ R; 
(2) (p, q) f4 pq defines an (S, S)-homomorphism fJ : P ®R Q -+ S. 

Proof. (1) Since P = s PR and Q = R Qs, Q ®s P makes sense and it is an (R, R)
bimodule. The well-definition of a results from Q S P -associativity. The rest fol
lows from R Q P -associativity and Q P R -associativity (already noted above). Sim
ilarly, the proof of (2) boils down to P R Q-, S P Q-, and P Q S-associativities; the 
straightforward verification of these is left to the reader. D 

The different kinds of associativities used above naturally suggest that there 
ought to be a larger ring at work whose associativity property subsumes all of the 

above. Indeed, if we let M = (; ~ ) with formal matrix multiplication 

(18.16) ( r q) (r' 
p s p' 

q') _ (rr' +qp' 
s' - pr' + sp' 

rq' + qS') 
pq' + ss' , 

then M is such a ring, called the Morita ring associated with PRo (For more 
details, see Exercise 18.) The 6-tuple (R, P, Q, S; a, fJ) is called the Morita 
Context associated with PRo (Note the order in which a, fJ are written: we first 
write down the pairing going into the ground ring R, then the pairing going into the 
endomorphism ring S of P.) Fixing now the Morita Context (R, P, Q, S; a, fJ), 
let us now prove a number of interesting propositions about it. 

(18.17) Proposition. (l) PR is a generator if.! a is onto. 
(2) Assume PR is a generator. Then 

(a) a: Q ®s P -+ R is an (R, R)-isomorphism. 
(b) Q ~ Homs(sP, sS) as (R, S)-bimodules. 
(c) P ~ Homs(Qs, Ss) as (S, R)-bimodules. 
(d) R ~ EndCsP) ~ EndCQs) as rings. 
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Proof. (1) is clear since im(a) = tr(PR ). For (2), assume PR is a generator. Then 
there is an equation 1 R = L qi Pi. To prove (2a), suppose 0 = a(Lj qj ® Pj) = 
Lj qjpj. Then 

j i.j i.j 

i.j j 

To prove (2b), define 'A : Q -+ Homs(sP, sS) by P . 'A(q) = pq E S. The 
fact that 'A(q) E Homs(P, S) follows from SPQ-associativity. To show that 'A 
is injective, suppose pq = 0 for all pEP. Using the equation 1 R = L qi Pi 
above, we have 

(18.18) 

To show 'A is onto, consider any f E Homs(P, S). From 
(18.18') 

pf = (p LqiPi)f = L «pqi)Pi)f = L (pqi)(Pif) = P L qi(Pif), 

we see that f = 'A(Lqi(Pif)). The fact that 'A is an (R, S)-homomorphism 
follows from RP Q- and P QS-associativities. This completes the proof of (2b), 
and the proof for (2c) is similar. To prove (2d), define ring homomorphisms 

a: R -+ End(sP) and r: R -+ End(Q.sl 

by P . a(r) = pr and r(r)q = rq. The same calculations as in (18.18) and 
(18.18') show that a and r are isomorphisms. D 

The following is the "analogue" of (18.17) for f.g. projective modules. 

(18.19) Proposition. (1) PR is fg. projective iff f3 is onto. 
(2) Assume PR is fg. projective. Then 

(a) f3 : P ®R Q -+ S is an (S, S)-isomorphism. 
(b) Q ~ HomR(PR, RR) as (R, S)-bimodules. 
(c) P ~ HomR(RQ, RR) as (S, R)-bimodules. 
(d) S ~ End(PR) ~ End(R Q) as rings. 

Proof. (1) f3 is onto iff there is an equation Is = L pZqf. This means that 

(for every pEP). 

By the Dual Basis Lemma, this amounts precisely to PR being f.g. projective. 
The proof of (2) is completely similar to that of (18.17)(2), using the equation 
Is = LPZqZ. D 
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(18.20) Remarks. 

(A) Of course, the isomorphism in (2b) and the first isomorphism in (2d) are just 
the identity maps! They are included here for completeness (and symmetry with 
(18.17». 

(B) (2c) expresses the "reflexivity" of the f.g. projective module PR, which already 
figured in Exercise 2.7. 

(C) (2a) was also covered in an earlier exercise, namely, Exercise 2.20. In fact, if PR 

is f.g. projective, this exercise gives a more general (abelian group) isomorphism: 
U ®R Q ::::::: HomR(P, U) for any UR. This fact will be used below in (18.25). 

(18.21) Definition/Corollary. For rings A, B, an (A, B)-bimodule C is said to 
be faithfUlly balanced ifthe natural maps A --7 End ( C B) and B --7 End(A C) are 
both ring isomorphisms. With this terminology, (18.17)(d) and (18.19)(d) together 
imply that, if PR is a progenerator, sPR and RQS are both faithfUlly balanced 
bimodules. 

(18.22) Proposition. Suppose PR is a progenerator. Then s P, R Q, Q s are also 
progenerators (and a, f3 are isomorphisms). 

Proof. It suffices to prove that s Q is a progenerator, for the proofs of the other parts 
are similar. Starting with the right S-module Q, we have Homs(Qs, Ss) ::::::: P and 
End( Q s) ::::::: R, by (18.17)(2). Since a, f3 are onto, it follows from (18.17)(1) and 
(18.\9)(1) (applied to Q s) that Q s is a progenerator. 0 

(18.23) Remark. The proof above shows that, if PR is a progenerator, then the 
Morita Context associated with the progenerator Qs is (S, Q, P, R; f3, a). There
fore, we have attained full symmetry between P and Q. Similarly, we have also 
attained full left-right symmetry. These phenomena will be made more explicit in 
the statement of "Morita I" below. 

§18D. Morita I, II, III 

With the preparatory material in the last subsection, we are now fully ready to state 
and prove Morita's main theorems for module category equivalences. We shall do 
this in three parts. 

(18.24) Theorem ("Morita I"). Let PR beaprogenerator, andeR, P, Q, S; a, (3) 
be the Morita Context associated with PR' Then 

(I) -®RQ: WlR --7 Wls and -®sP: Wls --7 WlR are mutually inverse 
category equivalences. 

(2) P ®R - : RWl ~ sWl and Q ®s - : sWl ~ RWl are mutually inverse 
category equivalences. 
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Proof. For any U R, we have (by (18. 17)(a» natural isomorphisms: 

(U ®R Q) ®s P ~ U ®R (Q ®s P) ~ U ®R R ::::~ U. 

Similarly, for any Vs, (V ®s P) ®R Q ~ V. This proves (1), and (2) is proved 
similarly. D 

(18.25) Remark. Let PR be a progenerator. For any U R, it is easy to check that 
/3u : U ®R Q --+ HomR(PR, UR) defined by /3u(u ® q)(p) = u(qp) is an 
isomorphism of right 5-modules (cf. (l8.20)(C)Y7 Therefore, we can identify 
- ®R Q with the Hom-functor HomR(PR, -) from 9JlR to 9Jls . Similarly, we 
have functor isomorphisms - ®s P ~ Homs(Qs, -), and 

Q ®s - ~ Homs(sP, -). 

(18.26) Theorem ("Morita II"). Let R, 5 be two rings, and 

F : 9Jl R --+ 9Jls , G: 9Jls --+ 9JlR 

be mutually inverse category equivalences. Let Q = F(RR) and P = G(5s). 
Then we have natural bimodule structures: P = sPR, Q = RQS. Using these, 
we have functor isomorphisms F ~ - ®R Q and G ~ - ®s P. 

Proof. Since P E 9Jl R and 5 E 9Jls correspond under G, we have End(PR ) ~ 

End(5s) ~ 5. This enables us to view P as sPR. Similarly, we can view Q as 
RQS. Also, since 5s is a progenerator for 9Jls , PR is a progenerator for 9JlR 
(cf. (l8.10)(A». We can now compute the R-dual of P as follows: 

HomR(P, R) ~ Homs(F(P), F(R» ~ Homs(5s , Qs) ~ Q. 

Therefore, the Morita Context associated with PR is (R, P, Q, 5; a, /3), where 
a, /3 are appropriate pairings. In particular, the various conclusions of Morita I 
apply. To "identify" F, note that, for any M E 9JlR : 

F(M) ~ Homs(5s , F(M» ~ HomR(PR, MR)' 

Therefore, F ~ HomR(PR, -) ~ - ®R Q by (18.25), and by a similar argument, 
G ~ Homs(Qs, -) ~ - ®s P. D 

To state the last part of the Morita Theorems, let us make the following conve
nient definition: 

(18.27) Definition. Let R, 5 be rings. An (5, R)-bimodule P iscalledan (5, R)
progenerator if s PR is faithfully balanced and PR is a progenerator. (Note that by 
(18.22) this definition is left-right symmetric: we could have equally well required 
s P to be a progenerator.) 

971n the special case U = PR , we just get back the isomorphism .8 : P ®R Q ~ S. 
Therefore, f3u is just a generalization of f3. 
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With this terminology, we can state the following addendum to Morita I, II: 

(18.28) Theorem ("Morita III"). For two given rings Rand S, the isomorphism 
classes of category equivalences !.Uts ~ !.UtR are in one-one correspondence 
with the isomorphism classes of (S, R)-progenerators. Composition of category 
equivalences corresponds to tensor products of such progenerators. 

Proof. Every (S, R)-progenerator sPR gives rise to an equivalence - ®s P : 
!.Uts ~ !.UtR, the isomorphism type of which depends only on the isomorphism 
type of sPR. Conversely, if G : !.Uts ~ !.UtR is an equivalence, P := G(Ss) is 
an (S, R)-progenerator (as we saw in the proof of Morita II), and its isomorphism 
type depends only on that of G. This proves the first conclusion. If R P~ is an 
(R, T)-progenerator, the composition of the equivalences !.Uts ~ !.UtR ~ !.UtT is 
given by - ®s (P ®R P'); hence the second conclusion. (It follows for free that 
P ®R P' is an (S, T)-progenerator.) 0 

For S = R, we obtain, in particular: 

(18.29) Corollary. The isomorphism classes of self-equivalences of!.UtR under 
composition form a group isomorphic to the group of isomorphism classes of 
(R, R)-progenerators under tensor product. 

§18E. Consequences of the Morita Theorems 

In this subsection, we would like to apply the Morita Theorems in § 18D to study 
the finer aspects of a Morita equivalence of two rings. First we offer the following 
important example which provides what is perhaps the most explicit illustration 
of the situation in "Morita I". 

(18.30) Example. Let e be a full idempotent of a ring R; that is, e = e2 and 
ReR = R.Weknowfrom(18.1O)(C) that P = eR isaprogeneratorof!.UtR.Here 
we have Q = P* ~ Re and S = End(PR) = eRe (see FC-(21.6». The Morita 
Context associated with P is (R, eR, Re, eRe; a, {3), where the isomorphism 

(l8.30A) a : Re ®eRe eR ~ Rand {3: eR ®R Re ~ eRe 

are given by a(re®er') = rer' and {3(er®r'e) = err'e, respectively. By Morita 
I, we get mutually inverse category equivalences: 

(18.30B) 

given explicitly (on the module level) by: 

(l8.30C) 

(l8.30D) G(V) = V ®eRe eR ~ HomeRe(Re, V), 
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for U E anR and V E aneRe . Note that although the ring S := eRe sits inside 
R, we should not call it a subring of R, since its identity element e may not be 
equal to l R • 

In the special case when R is a matrix ring Mn(A) and e is the matrix unit E", 
we have clearly 

(18.31) S:= eRe = {aE" : a E A} ~ A (as rings), 

although A (always identified with the scalar matrices) is a subring of Rand 
S is not (unless n = 1). It is easy to check that, upon identifying S with A as 
in (18.31), the two functors F and C between anR and an/I in (18.30B) are 
essentially the ones constructed earlier in § 17C. For F in (18.30C) this is clear. 
For C in (18.30D),justnote that eR = AE" EB···EBAE1n,sofor V E anA, 
C(V) = V ®A eR ~ v(n) (space of row n-tuples over V), with R acting on the 
right by matrix multiplications. (Here, eR happens to be afree left A-module of 
rank n, while in the general setting we just have to replace it with a left progenerator 
over A.) 

Going back to general rings, we shall now record some consequences of the 
Morita Theorems in a sequence of propositions. Recall that two rings Rand S are 
Morita equivalent (R ~ S) ifthere exists a category equivalence F : anR ~ ans. 
The first consequence of Morita I, II is the left-right symmetry of this relation: 

(18.32) Proposition. If anR and ans are equivalent, then so are Ran and san. 

(18.33) Proposition. For rings Rand S, the following are equivalent: 

(1) R ~ S. 
(2) S ~ End(PR) for some progenerator PR of anR. 
(3) S ~ eMn(R)e for some full idempotent e in a matrix ring Mn(R). 

Proof. (3)===}(1). If S ~ e Mn (R) e as in (3), then S ~ Mn (R) by (18.27). 

(1 )===}(2) follows from Morita II. 

(2)===}(3). Identify P with a direct summand of some Rn, and write Rn = PEBP'. 
We also identify End(R~) with Mn (R). Let e E Mn (R) be the projection of 
R n onto P (defined by elP' = 0 and elP = Id p ). By (18.1O)(D), the fact 
that tr( P) = R means that e is a full idempotent in Mn (R). The proof is now 
completed by noting that the ring homomorphism 

(18.34) 

defined by )..(f)IP = f, )..(f)IP' = 0 for f E End(PR ) is in fact an isomor
phism. (The key observation here is that the endomorphisms in e Mn (R) e are 
exactly those sending P' to (0) and P to P.) 0 

The next two corollaries follow quickly from (18.33). 
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(18.35) Corollary. A ring-theoretic property P is Morita invariant iff, whenever 
a ring R satisfies P, so do eRe (for any full idempotent e E R) and Mn (R) (for 
any n :::: 2).98 

From this, it follows, for instance, that finiteness of a ring is a Morita invariant 
property (cf. Exercise 5). Similarly, semiprimitivity, primeness, semiprimeness, 
etc. can be shown to be Morita invariant properties via (18.35). (Alternatively, see 
(18.45), (18.50) below.) 

(18.36) Corollary. Let R be a ring over which all fg. projective right modules 
are free. Then R ~ S iff S ~ Mn(R) for some n. 

The above result applies, in particular, to local rings, principal right ideal do
mains, and polynomial rings k[XI, ... , Xn] over a field k (the last case using 
the Quillen-Suslin solution of Serre's Conjecture: see (2.22)(F». For any ring R 
satisfying the hypothesis of (18.36), the Corollary implies that R is the "smallest 
representative" of its Morita equivalence class. 

It turns out that, for the class of semiperfect rings defined in FC-§23, there is 
also a smallest "canonical representative" for a Morita equivalence class. To see 
this, we need to use the notion of a basic idempotent, defined in FC-(25.5). Readers 
not familiar with this notion may, however, skip the following discussion without 
loss of continuity. Also, readers who have only dealt with basic idempotents in 
the context of right artinian rings rather than semi perfect rings may assume that 
the rings appearing below are right artinian rings. 

Let R be any semiperfect ring. A basic idempotent in R is an idempotent of 
the form e = el + ... + er where the ei 's are orthogonal primitive idempotents 
in R such that el R, ... , er R represent a complete set of isomorphism classes of 
principal indecomposable right R-modules. For any such e, eRe is called a basic 
ring for R. From FC-(25.6), we know that eRe is also semi perfect, and e is 
necessarily a full idempotent. 

(18.37) Proposition. Let R, R' be semiperfect rings and e E R, e' E R' be basic 
idempotents. Then R ~ R' iff eRe ~ e' R' e' as rings. In particular, the basic 
ring eRe is a "canonical representative" for the Morita equivalence class of the 
semiperfect ring R. 

Proof. The "if" part is clear, since R ~ eRe and R' ~ e' R' e'. For the "only if" 
part, it will certainly be sufficient to show that the isomorphism type of the basic 
ring eRe can be determined from the category !JJlR. Using the notation set up in 
the paragraph preceding (18.37) we have 

(18.38) eRe ~ End(eRh ~ End(el REB··· EB erRh . 

98In practice, many ring-theoretic properties P pass from R to eRe for any idempotent 
e, without the fullness assumption. 
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Since P := el REEl··· EEl erR is the direct sum of a complete set of the f.g. in
decomposable projective objects in 9Jl R , P and hence End(PR ) are uniquely 
determined by the category 9JlR • 0 

It is worth pointing out that the classical Wedderburn-Artin Theorem on the 
structure of semisimple rings can also be deduced from the Morita Theorems in 
this section. In fact, let R be a semisimple ring, and write RR = m l EEl· .. EEl mn 
where the m; 's are minimal right ideals. Assume m l , ... ,mr give a complete set 
of isomorphism types of the m; 'so Then, by (18.8), P := m l EEl··· EEl mr is a 
progenerator for 9JlR • Let (R, P, Q, S; a, f3) be the Morita Context associated 
with P. By Schur's Lemma, D; = End(m;h (1 :::: i :::: r) are division rings, and 

(18.39) 

Now, by (18.17)(2d), R ~ End(s P). Let n; = dim f); (m;). (Note that n; < 00 

since s P is f.g.) Then 

(18.40) 

This is precisely the Wedderburn-Art in Theorem. By comparing (18.38) and 
(18.39) we see that the basic ring of R is DI X ... x Dr. This essentially gives the 
uniqueness of the D; 's as well. It is true that, at the time when Artin proved the 
structure theorem for semisimple rings (1927), category theory was an unknown 
subject. In the light of the above discussion, however, it seems fair to say that, 
historically, the Wedderburn-Artin theory of semisimple rings was a harbinger for 
Morita's theory of category equivalences to come thirty years later. 

Next, we shall explore a little bit the impact of the Morita Theorems on the 
structure of rings in general. The first proposition in this direction concerns Z (R), 
the center of the ring R. We first make the following observation. 

(18.41) Lemma. Let AM8 be afaithfully balanced (A, B)-bimodule. Then Z(A) 
~ Z (B), and both rings are isomorphic to the ring E ofbimodule endomorph isms 
of M (say, operating on the left of M ). 

Proof. Define f : Z(A) ~ E by f(z)(m) = zm (for z E Z(A) and m EM). 
Note that left multiplication by z on M commutes with left multiplication by 
any a E A, as well as with right multiplication by any b E B: this shows that 
fez) E E. It is routine to check that f is a ring homomorphism. The fact that 
AM 8 is faithfully balanced then implies that f is an isomorphism. By symmetry, 
there is also a natural isomorphism g : Z(B) ~ E. (A direct isomorphism h 
from Z(A) to Z(B) is given by: h(z) = z' where zm = mz' for all m EM.) 

o 

Applying this lemma to the faithfully balanced (S, R)-bimodule P in Morita 
I, we obtain the following statement, which is certainly closely related to (17.26): 
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(18.42) Corollary. R ~ S ==> Z(R) ~ Z(S) as rings. In particular, if R, S 
are commutative rings, R ~ S ==> R ~ S. 

(18.43) Remark. The Corollary above shows that Z(R) is an invariant of the 
Morita equivalence class of the ring R. Since this is the case, one is led to wonder 
if Z(R) can be directly determined from the category W1R (without reference 
to bimodules). Indeed, this turns out to be the case. Let I be the identity functor 
on W1R , and let C be the set of all natural transformations from I to I. These 
natural transformations can be added and multiplied (= composed), whereby C 
acquires the structure of a ring. This ring is known to category theorists as the 
center of the additive category W1R. We claim that C ~ Z(R) as rings, which 
will certainly give (18.42). To prove our claim, construct A : Z(R) ---+ C as 
follows. For r E Z(R) and any M E W1R, let A(r)M : M ---+ M be given 
by right multiplication by r. Since r E Z(R), A(r)M is a morphism in W1R. 
Also, for any morphism f : M ---+ N in W1 R , we have A(r)N 0 f = f 0 A(r)M. 
Thus, {A(r)M : M E W1R} defines a natural transformation A(r) E C. Clearly, 
A : Z(R) ---+ C is an injective ring homomorphism. To show that A is onto, 
consider c E C. Since CR : RR ---+ RR commutes with all endomorphisms of 
RR, CR is given by (left) multiplication by some r E Z(R). For any M E W1R 
and m EM, the commutativity of the diagram 

R~M 

(where f(x) = mx) 

R~M 
shows that cM(m) = cMf(l) = f(cR(l» = f(r) = mr. Therefore, the natural 
transformation c is just A(r), which proves our claim. 

(18.44) Proposition. Let (R, P, Q, S; a, fJ) be as in Morita I,II. Then the lattice 
of right ideals in S (resp. R) is isomorphic to the lattice of submodules of PR 
(resp. Qs). Moreover, the following lattices are isomorphic: 

(I) the lattice of ideals in R; 
(2) the lattice of ideals in S; 
(3) the lattice of (S, R)-submodules of sPR; 
(4) the lattice of (R, S)-submodules of RQS· 

Also, the isomorphism between the lattices in (I) and (2) preserves products. 

Proof. The first conclusion is clear since S E W1s corresponds to S ®s P ~ P E 

W1R • Under this correspondence, a right ideal ~ ~ S corresponds to ~ ®s P ~ 
~ P ~ P. We claim that ~ is ideal iff ~ P is an (S, R)-submodule of P. The 
"only if" part is clear. For the "if" part, assume ~ P is an (S, R)-submodule of 
P. For s E S, we have s~ P ~ ~ P, so by the correspondence established earlier, 
s~ ~ ~. This shows that ~ is an ideal, and we have proved the isomorphism 



§ 18. Morita Theory of Category Equivalences 495 

between (2) and (3). Considering the equivalence P ®R - : R!m ---+ s!m, which 
sends R R to s P, we have a correspondence between the left ideals Q{ ~ Rand 
the S-submodules PQ{ ~ s P, with ideals corresponding to (8, R)-submodules. 
This shows the isomorphism between (1) and (3), and the isomorphism with (4) 
follows by symmetry. Note that under these isomorphisms, an ideal Q{ ~ Rand 
an ideal ~ ~ S correspond iff ~P = PQ{ (iff Q{Q = Q~). Thus, if Q{ ++ ~ 

and Q{' ++ ~', we have ~~' P = ~ PQ{' = PQ{Q{', and therefore Q{Q{' ++ ~~'. 

o 

(18.45) Corollary. Under the above correspondence. nilpotent (resp. prime, semi
prime) ideals correspond to nilpotent (resp. prime, semiprime) ideals, and the 
prime radical of R corresponds to the prime radical of S. In particular, R is prime 
(resp. semiprime) iff Sis. 

(18.46) Remark. In view of (18.45), it seems natural to ask if, under the ideal 
correspondence in (18.44), nil ideals of R will correspond to nil ideals in S. 
Unfortunately, the answer to this question is not known. In fact, in the case when 
S = :MIn (R), an affirmative answer to this question would amount to a positive 
solution of the very difficult "Kothe Conjecture" in noncom mutative ring theory! 
(For more details on this, see FC-(10.25).) 

(18.47) Proposition. Keeping the notations in (18.44), suppose MR and Ns 
correspond under the category equivalence - ®R Q : !mR ---+ !ms. Then the 
ideal ann(M) ~ R corresponds to the ideal ann(N) ~ S. In particular, M is 
faithful iff N is faithful. 

Proof. Let Q{ = ann(M) ~ R, and suppose Q{ corresponds to an ideal ~ ~ S. 
Then 

(18.48) N~ ~ (M ®R Q)~ = M ®R (Q~) = M ®R Q{Q =: MQ{ ®R Q = O. 

Thus, ~ ~ ann(N), and symmetry gives ~ = ann(N). o 

(18.49) Corollary. Keep the above notations, and suppose an ideal Q{ C R 
corresponds to an ideal ~ ~ S. Then RjQ{::::o Sj~. 

Proof. For M E!mR and N E !ms,wehaveseenthat MQ{ = 0 iff N~ = O.lfwe 
think of !mR/2( (resp. !ms/'B) as the full subcategory of 9J1 R (resp. 9J1s) consisting 
of objects annihilated by Q{ (resp. ~), then the given category equivalence between 
9J1 R and 9J1s induces an equivalence between !mR/2( and !ms/'B' 0 

(18.50) Corollary. In the above notations, rad R corresponds to rad S, and 
Rjrad R ::::0 Sjrad S. In particular, R is semiprimitive (resp. semilocal, semipri
mary) iff Sis. 
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Proof. This first conclusion follows from the fact that rad R is the intersection of 
the annihilators of all simple right R-modules. The other conclusions follow from 
the first. (Recall that R is semiprimitive if rad R = 0, semilocal if Rlrad R is 
right artinian, and semiprimary if R Irad R is right artinian and rad R is nilpotent.) 

o 

§18F. The Category a [M] 

In this closing subsection of § 18, we would like to present an important extension of 
Morita's theory of equivalences to a somewhat more general situation. In this new 
setting, we fix a right module M over a ring R, and introduce a certain subcategory 
arM] of !mR that is uniquely determined by M. Extending earlier definitions, 
we can set up the notions of a [M]-projective modules and a [M]-generators, etc. 
Then we generalize Morita's theory to the study ofthe equivalence of the category 
arM] to another full module category !ms . By letting M = RR, we retrieve the 
equivalence theory studied earlier in §18D. 

The generalization of Morita's theory to the arM] setting is worthwhile since 
it is very natural on the one hand, and also quite useful on the other. As the readers 
would expect, many of the steps needed in this generalization are simply repetitions 
of those used earlier in § 180. Therefore, in presenting the a [M] theory, we shall 
try to be a little brief, and just focus our discussion on that part of the generalization 
which might need special attention or clarification. 

Although in retrospect the arM] theory is a rather immediate generalization 
of Morita's theory, it had remained unnoticed for some time. In fact, the earliest 
instance of the use of a [M] I can find in the literature is in the work of A. Dress in 
the representation theory of finite groups, in the early 70s. Today, this generaliza
tion of Morita's theory is discussed in several textbooks. In fact, some authors even 
go to the length of developing module theory in the "relative" setting, working in 
the subcategory arM] (for a fixed choice of M R ), rather than in the full category 
!mR; see, for instance, Wisbauer [91]. 

The beginning point of the relative theory is the formal introduction of the 
subcategory arM], as follows. 

(18.51) Definition. Let M be a fixed right module over a ring R. By arM], 
we mean the full subcategory of !mR whose objects are "subquotients" of direct 
sums of copies of M; that is, submodules of quotients of direct sums M(l) (for 
arbitrary indexing sets I). The reader need not feel unsure about the interpretation 
of the term "subquotient", since "submodules of quotients" of M(I) are, up to 
isomorphisms, the same as "quotients of submodules" of the same. 

The following examples will give an idea of what the category a [M] may look 
like. 
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(18.52) Examples. 

(1) Suppose MR is a generator in 9JlR (in the sense of(18.7». Then clearly arM] 
is the full module category 9JlR • 

(2) The Z-module M = Q is not a generator of 9Jlz. But since Z S; Q, we have 
nevertheless a[Q] = 9Jlz. For a general statement on when arM] equals 9JlR , 

see Exercise 32. 

(3) Let M = (R/A)R' where A is an ideal in R. It is easy to see that arM] isjust 
9JlRj A, viewed (in the usual way) as a full subcategory of 9JlR. SO, for instance, 
for R = Z and any prime p, a [Z/ pZ] is the category of vector spaces over the 
field of p elements. 

(4) Again let R = Z. For the Priifer p-group Cp-x- (p a prime), it is easy to see 
that a [C px] is the category of all" abelian p-groups. (Note that the injective hull 
of an abelian p-group is another abelian p-group, and use the classification of 
injective modules over Z.) From this and the primary decomposition theorem, it 
can be seen that a[Q/Z] is the category of all torsion abelian groups. 

(5) Let M be a f.g. module over a commutative ring R. Then for A := ann R (M), 
we have arM] = 9JlRjA : see Exercise 33. 

Note that the class of modules arM] (for any M) is closed with respect to 
the formation of submodules and quotient modules, so it yields a nice category 
in which the notions kernels, cokernels, and exact sequences, etc. are meaningful. 
Also, the class a [M] is closed under arbitrary direct sums; in particular, it is closed 
under the usual "pushout" and "pullback" constructions carried out in 9JlR • (It can 
be shown that direct products also exist in a [M], although it may not be the same as 
the direct product formed in 9Jl R. In order to move the discussion along, however, 
we shall not dwell on this point here.) 

Having introduced the category a [M], we can now define the a [M]-projective 
modules. As the readers would expect, these are simply the modules P in arM] 
for which the functor Hom R (P, -) is exact on a [M]. We have the following 
natural characterization of these projective objects. 

(18.53) Lemma. A module P in a [M] is a [M]-projective ijJ every short exact 
sequence 0 ~ A ~ B ~ P ~ 0 in arM] splits. 

Proof. (Sketch) This "only if" part follows as usual by "lifting" the identity map 
P ~ P to a map P ~ B. For the "only if" part, assume the given splitting 
property, and consider an epimorphism f : X ~ Y in o·[M] and another 
homomorphism g : P ~ Y. We can form the pullback B of (j, g), which 
comes with a surjection h : B ~ P, with B and A := kerCh) in arM]. By 
assumption, 

splits. Composing a splitting of h with the natural map from B to X, we obtain 
a lifting of the given map g : P ~ Y. D 
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(18.54) Remark. Of course, if M = RR, then the a[M]-projectives are just 
the ordinary R-projectives. In general, a projective R-module in a[M] is always 
a [M]-projective, though the converse is not true. Also, M itselfmay notbe a[M]
projective! For instance, for M = Q over the ring R = Z, we know that a [M] = 
!mz (by (18.52)(2», but M is certainly not a projective object in this category. 

Next we define the a[M]-generators: these are the modules P in a[M] for 
which the functor HomR(P, -) is faithful on a[M]; in other words, for every 
nonzero f : A ~ B in a[M], there exists h : P ~ A such that f 0 h =1= o. 
The proof of the following lemma can be safely left as an exercise, since it is very 
similar to part of the proof of (18.8). 

(18.55) Lemma. A module P in a [M] is a a [M]-generator iff every module in 
a [M] is a quotient of some direct sum p(I). 

(18.56) Examples. Let R = Z, and M = Q/Z. Then, as in (18.52)(4), arM] is 
the category of all torsion abelian groups. In this case, a a [M]-generator is given 
by the torsion group P := EBi>2 Z/ i Z. In fact, if f : A ~ B is a nonzero 
morphism in arM], then f(a) i= 0 for some a E A. Letting j be the order of 
a, we can define h : P ~ A by mapping a generator of Z/ i Z to 8ija, to ensure 
that f 0 h =1= O. In a similar vein, we can check that, if Cpx is the Priifer p-group 
(fora prime p),thena a [Cpx]-generator is given by EBi>:lZ/piZ. 

With the definitions of a [M]-projectives and a [M]-generators in place, we can 
now formulate the analogue of Morita I, which shows how a category equivalence 
can be constructed from arM] to some full module category !ms , provided that 
a suitable object, called a "a [M]-progenerator", exists in a[M]. 

(18.57) Theorem. For a given module M R, suppose there exists a a [M]-progen
erator, that is, af.g. R-module P in arM] which is both a [M]-projective and a 
a [M]-generator. Let S := EndR(P), and define (covariant)functors 

F : arM] ----+!ms and G:!ms ----+ a[M] by 

F:= HomR(P, -) and G:= - ®s P. 

Then F and G are mutually inverse category equivalences between arM] and 
!ms . 

This theorem has a converse also, which says that any equivalence between 
arM] and another full module category !ms must arise essentially in the above 
fashion (with S = EndR(P) for a suitable a[M]-progenerator P). This converse 
is then the appropriate generalization of "Morita II" (i.e. (18.26». To save space, 
however, we shall omit the proof of this converse, so the discussion below will be 
focused solely on (18.57), the generalization of "Morita I". 

Let us first give a few details to elucidate the definition of the two functors F 
and G in (18.57). First, since P is a right R-module, we are assuming as usual 
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that S acts on the left of P, so that P becomes an (S, R)-bimodule. For any 
X R E a[M], F(X) = HomR(P, X) is then a right S-module since P = sP. 
On the other hand, for any right S-module Y, we can form the tensor product 
G(Y) = Y ®s P, which is a right R-module since P = PRo We need to check that 
G(Y) = Y ®s P is in a[M]. This is not hard. In fact, express PR as a quotient 
of some Q S; M(l), and express Y as a quotient of some S(J). Then Y ®s P is 
a quotient of 

S(J) ®s Q ~ (S ®s Q)(J) ~ Q(J), 

which embeds in M(lxJ). Therefore, Y ®s P E a[M]. (For this argument, we 
have used the right exactness of the tensor product functor, as well as the fact that 
tensor products commute with direct sums.) 

Proof of (18.57). First note that F is an exact functor and G is a right exact 
functor. Therefore, their compositions G 0 F and FoG are both right exact. The 
functor G preserves (arbitrary) direct sums, and, using the hypothesis that PR 

is f.g., it is easy to check that F also does. Therefore, the compositions G 0 F 
and FoG both preserve direct sums. Our job is to show that these are naturally 
equivalent to the identity functors on a [MJ and !ms , respectively. 

For any X E a[M], we have a natural R-homomorphism 

a(X): (G 0 F)(X) = HomR(P, X) ®s P ~ X 

defined by a(X)(f ® p) = !(p), for any PEP and! E HomR(P, X). (The 
well-definition of a(X) is checked by 

a(X)(fs ® p) = (fs)(p) = !(sp) = a(X)(f~, sp) 

for any s E S.) We need to show that a(X) is an isomorphism. Since P is a 
a[M]-generator, there exists a resolution p(l) ~ p(J) ~ X ~ O. The right 
exactness of G 0 F leads to a commutative diagram with exact rows: 

(G 0 F)(P(I») ~ (G 0 F)(P(J») ~ (G 0 F)(X) ~ 0 

la (X) 

p(l) p(J) X 

Therefore, it suffices to show that a(p(l») and a(p(J») are isomorphisms. Since 
Go F preserves arbitrary direct sums, we are reduced to showing that a(P) itself 
is an isomorphism. Now the domain of a(P) is 

(G 0 F)(P) = HomR(P, P) ®s P ~ S ®s P ;~ P. 

Upon viewing these isomorphisms as identifications, a(P) :is just the identity 
map on P, so indeed a(P) is an isomorphism. 

The fact that FoG is naturally equivalent to the identity functor on !ms can 
be checked similarly, this time using the natural maps 

f3(Y): Y ~ HomR(P, Y ®s P) = (F 0 G)(Y) (Y in !ms) 
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defined by tl(Y)(y)(p) = y ® p for any y E Y and pEP. o 

(18.58) Examples. 

(1) In the special case when M = RR, we can choose P to be any progenerator 
in 91tR . Here, the two functors F, G in (18.55) are essentially those in (18.24) 
for the equivalence of 91tR and 91ts (where S = EndR(P)); see Remark (18.25). 
Therefore, in this case, we simply recapture the original "Morita I". 

(2) Let M = (R/ Ah, where A is a given ideal in a ring R. As in (18.52)(3), 
we may identify arM] with 91tR/ A (the latter thought of as a full subcategory 
of 91tR ). A rather "trivial" illustration for (18.57) is provided by choosing P to 
be M, which is indeed a a [M]-progenerator. For the functor F constructed in 
(18.57), we have 

F(X) = HomR(P, X) ~ HomR/A(R/A, X) ~ X 

for any X in arM]. In particular, S := EndR(P) is just R/ A, and F is naturally 
equivalent to the identity functor on arM] = 91tR/A. 

(3) Of course, the equivalence of categories in (18.57) exists only if we have 
a a[M]-progenerator P. In general, such an object may not exist. An example 
is given by a [Q/Z] over the ring of integers. Since this is the category of all 
torsion abelian groups, a f.g. Z-module therein must be finite, and therefore killed 
by some integer n. By (18.55), it cannot be a a[Q/Z]-generator. Hence there 
does not exist a a [Q/Z]-progenerator. (It turns out that a [Q/Z] has, in fact, no 
projective objects other than (0): see Exercise 34.) 

In general, even if a a [MJ-progenerator does not exist, all is not lost, since we 
can still use the module M itself in lieu of P to get some useful information. We 
proceed as follows. Let V(M) (resp. Vo(M)) be the full subcategory of arM] 
whose objects are direct summands of direct sums (resp. finite direct sums) of 
copies of M. For S := EndR(M), let peS) (resp. Po(S)) be the full subcategory 
of 91ts whose objects are the projective (resp. f.g. projective) right S-modules. 
Then we have the following useful result which is due to A. Dress. 

(18.59) Theorem. For a given module M R, define the two functors F, G as in 
(18.57) using M in the place of P, and let S = EndR(M). Then: 

(1) F and G define mutually inverse category equivalences between Vo(M) 
and Po(S); 

(2) In case M is afg. R-module, F and G define mutually inverse category 
equivalences between V(M) and peS). 

Proof. (l) Note that both F and G preserve finite direct sums, and 

F(M) = HomR(M, M) = S, G(S) = S ®s M ~ M. 

For any X E Vo(M), we have the natural map £l(X) : X -+ (G 0 F)(X) defined 
in the proof of (18.57). Pick X' E Vo(M) such that X ffi X' ~ M n for some 



§ 18. Morita Theory of Category Equivalences 501 

integer n. From what we said above, Ol(M) is an isomorphism. Therefore, Ol(M)n 
is also an isomorphism, and it follows that Ol(X) is an isomorphism. Similarly, 
we can show that, for any Y E Po(S), the map f3(Y) : Y ~ (F 0 G)(Y) defined 
in the proof of (18.57) is an isomorphism. 

The proof of (2) is similar, upon noting again that, in case M is f.g., the functor 
F preserves arbitrary direct sums (as G does). 0 

The point about (18.59) is that, in proving theorems about modules associated 
with a given module M, it is sometimes possible to use (18.59) to make a "transfer" 
from the category Do(M) to the category Po(S), so that the consideration is 
reduced to that of finitely generated projective modules over the ring S. 

Exercises for §18 

O. Show that a module M R is f.g. iff it satisfies the property for chains of 
submodules in (18.3). (Hint ("Sufficiency"). Assume M is not f.g. and 
apply Zorn's Lemma to B = {B <:; M : M/ B is not f.g.}.) 

IA. In an additive category 9Jl with arbitrary direct sums, an object M is said 
to be small if every morphism f : M ~ EBiEI Ai factors through afinite 
direct sum of the Ai'S. Show that 

(I) every quotient object of a small object is small; 
(2) M = N E9 N' is small iff N, N' are small. 

IB. For any module category 9JlR, prove the following: 

(I) A module MR is small iff there does not exist an infinite family of 
sub modules M j c;:: M (j E J) such that every m E M lies in almost all 
M j • 

(2) Every f.g. R-module is small in the category 9Jl R . 

(3) MR is noetherian iff every submodule of M is small in 9JlR. 
(4) If R is right noetherian, M R is small iff M is f.g. 
(5) If M R is projective, M R is small iff M is f.g. 
(6) Give an example of a module that is small but not f.g. 

2. Show that M R being a singular (resp. nonsingular) R -module is a cate
gorical property. 

3. Characterize right nonsingular rings R by the property that every right 
projective R-module is nonsingular, and deduce that R being right non
singular is a Morita invariant property. 

4. Show that R being semiperfect (resp. right perfect) is a Morita invariant 
property (cf. FC-(24.16) and FC-(24.l8». 

5. Show that finiteness of a ring is a Morita invariant property without using 
(18.35). (Hint. Consider endomorphism rings of f.g. modules.) 

6. Show that "u.dim RR < 00" is a Morita invariant property. 



502 7. Matrix Rings, Categories of Modules, and Morita Theory 

7 A. Show that the property of R being right self-injective or quasi-Frobenius 
can be characterized by suitable categorical properties of!mR. Deduce that 
"right self-injective" and "QF" are Morita invariant properties of rings. 

7B. (1) Show that the basic ring of a QF ring is always a Frobenius ring. 

(2) Compute the basic ring of the QF ring in Example (16.19)(5). 

(3) Show that being a Frobenius ring is not a Morita invariant property. 

7C. Show that being a symmetric algebra over a field k is a Morita invariant 
property. 

8. (A slight variation of (18.35).) Show that a necessary and sufficient condi
tion for a ring-theoretic property P to be Morita invariant is that, for any 
full idempotent e in a ring R, R satisfies P iff eRe does. 

9. Use (18.35) (instead of (18.45), (18.50)) to show that semiprimitivity, 
primeness, and semiprimeness are Morita invariant properties. (Hint. Re
fer to FC-(10.20) and FC-(21.13).) 

10. Let S = End(PR ) where PR is a progenerator over the ring R. Show that 
the ring S has IBN iff pn ~ pm (in !mR) implies n = m. 

11. (Bergman) For any ring R, let P(R) be the monoid of isomorphism classes 
off.g. projective right R-modules (under the direct sum operation). Using 
the technique of coproducts from Bergman [74], it can be shown that there 
exists a ring R for which P(R) is generated as a monoid by [R] together 
with [M], [N], with the defining relations [M]+[N] = [R] = [R]+[R]. 
Show that S = EndR(M EEl R) is Morita equivalent to R and has IBN, 
but R does not have IBN. (This shows that IBN is not a Morita invariant 
property.) (Hint. Apply Exercise 10 with P := M EEl R.) 

12. Suppose a ring-theoretic property P is such that, for any n :::: 1 and any 
ring R, R satisfies P iff Mn (R) does. Is P necessarily a Morita invariant 
property? 

13. Show that a projective module PR is a generator iff every simple module 
M R is an epimorphic image of P. 

14. Find the flaw in the following argument: "Let R, S be division rings. 
Construct functors F : !mR ~ !ms and G : !ms ~ !mR by: F(U R) = 
EBiEl Ss where III = dimRU, and G(Vs) = EBjEJ RR where IJI = 
dims V. Then F, G are inverse category equivalences and hence R :::::: S." 

15. Let e = e2 E R, and let a, (J be as defined in (18.30A). 

(1) Give a direct proof for the fact that {J is an isomorphism by explicitly 
constructing an inverse for (J. 

(2) Show that eR· ker(a) = O. Using this, give another proof for the fact 
that a is an isomorphism if e is a full idempotent. 
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16. (Partial refinement of (18.22).) Let PR be a right R-module, with associ
ated Morita Context (R, P, Q, S; a,f3). 

(1) If PR is a generator, show that s P is f.g. projective. 

(2) If PR is f.g. projective, show that s P is a generator. 

(Hint. For both cases, apply the functor Hom R ( -, S PR ) from 9J1 R to 
s9J1.) 

17. (Morita) Show that PR is a generator iff, for S = End(P!?), s P is f.g. pro
jective and the natural map R ---+ End(s P) is an isomorphism. (Note. The 
"only if" part is already covered by (18.17)(2d) and (1) of the above ex
ercise.) 

18. Let R, S be rings, and sPR , RQS be bimodules. Let O~ : Q ®s P ---+ R 
be an (R, R)-homomorphism, and 13 : P ®R Q ---+ S be an (S, S)-homo
morphism. Define pq = f3(p ® q) E Sand qp = a(q 181 p) E R, and let 

M = (; ~) (formally). Show that M is a ring under formal matrix 

multiplication (as in (18.16)) iff q'(pq) = (q'p)q and p(qp') = (pq)p' 
hold for all p, p' E P and q, q' E Q. (Note that, in the special case 
when P = 0, the additional conditions are vacuous, and we get back the 

"triangular ring" construction M = (~ ~) in FC-(1.14).) 

19. Suppose the "associativity" conditions in the above exercise are satisfied, 

so M is a ring. Let e = (~ ~). f = (~ ~). Show that R = eMe, 

S = fMf, P = fMe, and Q = eMf. 

20. Let M be a ring with idempotents e, f such that e + f = 1. Let R = 
eMe, S = fMf, P = fMe, and Q = eMf. Show that the natural 
maps a : Q ®s P ---+ R, 13 : P ®R Q ---+ S satisfy the "associativity" 

conditions in Exercise 18, and that the formal Morita ring (; ~ ) 
constructed there is isomorphic to the original ring M. 

21. Suppose, in Exercise 18, the associativity conditions are satisfied, and that 
a, 13 are both onto. Show that 

(1) a, 13 are isomorphisms; 
(2) PR is a progenerator; and 
(3) the Morita Context for PR is (R, P, Q, S; a,f3). 

22. Using the category equivalence between 9J1s and 9J1 R where R = M,,(S), 
show that there is an isomorphism from the lattice of right ideals of R to 
the lattice of S -submodules of the free module S1. From this, deduce that, 
if two rings S, T are such that Mil (S) ;::::: Mm (T), then the free modules 
S1 and T!j' have isomorphic lattices of submodules. 
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23. Show that, under the ideal correspondence between S and Mil (S) es
tablished in (18.44), an ideal !B ~ S corresponds to the ideal Mn (!B) ~ 
Mn(S).Deducefrom(I8.50)that radMn(S) = Mn(radS) (cf.FC-p.6I). 

24. Let e be a full idempotent in a ring R, so that R ~ eRe. Show that the 
ideal correspondence between Rand eRe is as given in FC-(2I.II); that 
is, 21 ~ R goes to e21e ~ eRe, and !B ~ eRe goes to R!BR ~ R. 

25. Under a category equivalence F: !D1R ~ !D1s , show that the ideal corre
spondence between Rand S sends an ideal 21 ~ R to the annihilator of 
the right S-module F(R/21). 

26. True or False: "If R ~ S, then there is a one-one correspondence between 
the subrings of R and those of S". 

27. True or False: "If R ~ S, then there exist natural numbers nand m such 
that Mn(R) ~ Mm(S)"? 

28. For any (right) R -module P, let peN) denote the direct sum P (f) P (f) . .. , 

and let S = EndR(P). Show that, if PR is f.g., then EndR(p(N») ~ 
CFM(S), the ring of column-finite N x N matrices over S. 

29. Show that a f.g. right R-module P is a progenerator iff peN) ~ R(N) 

as right R-modules. Is this still true if P is not assumed f.g.? (Hint. If 
P is a progenerator, show that peN) and R(N) are both isomorphic to 
peN) (f) R(N).) 

30. (Camillo) Show that two rings Rand S are Morita equivalent iffCFM(R) 
~ CFM(S). (Sketch. For the "only if" part, take S = End(PR), where 
PR is a progenerator. Then peN) ~ R(N) by Exer. 29. Now take their 
endomorphism rings. For the converse, assume there is an isomorphism 
a : CFM(S) ~ CFM(R). Let {eu} be the matrix units in CFM(S), and 
identify CFM(R) with EndR(R(N»). Show that R(N) = EBi a(eii)R(N), 

and that P := a(el dR(N) is f.g. as an R-module. Deduce from Exercise 
29 that PR is a pro generator, and show that End(PR) ~ S. One final note: 
Camillo's result also holds with "CFM" replaced by "RCFM", where, 
for a ring A, RCFM(A) denotes the ring of row and column finite N x N 
matrices over A. This is a recent (1997) result of J. Haefner, A. del Rio, 
and J. J. Simon.) 

31. (Hattori-Stallings Trace) For any ring R, let R be the quotient group 
R/[R, R], where [R, R] denotes the additive subgroup (L(ab - ba) : 
a, bE R} of R. 

(1) Show that the projection map "bar": R ~ R is a universal group 
homomorphism with respect to the "trace property" ab = ba (for all 
a, bE R). 
(2) Show that the group R is uniquely determined by the Morita equiva
lence class of R. (Hint. Say R ~ S and use the notations in "Morita I". 
Define a map f: Q ®s P ~ S by f(q ®s p) = pq E S.) 
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32. For any right R-module M, let a[M] be the full subcategory of !JJ1R 
defined in §18F. Show that a[M] =!JJ1R iff RR can be embedded in Mil 
for some integer n. 

33. Let M be a right R-module with A = annR(M). Let S = EndR(M) 
(operating on the left of M). If M is f.g. as a left S-module, show that 
a[M] = !JJ1R/A. Deduce that, if M is a f.g. (right) module over a commu
tativering R, then a[M] = !JJ1R/A (for A = annR(M)). 

34. For R = Z and M = Q/Z, show that the only a [M]-projective module 
is (0). 

35. (Blackadar) In this exercise, we write r . P for the direct sum of r copies 
of a module P. Let P, Q, X be right modules over a ring R such that 
P EB X ~ Q EB X. If X embeds as a direct summand of r· P and of r· Q 
(for some integer r), show that n . P ~ n . Q for all n ::: 2r. Deduce that 
if P, Q are generators over R and X is a f.g. projective R-module such 
that P EB X ~ Q EB X, then n . P ~ n . Q for all sufficiently large n. 

§19. Morita Duality Theory 

§19A. Finite Cogeneration and Cogenerators 

The goal of § 19 will be to give an exposition of Morita's theory of equivalences of 
(subcategories of) module categories under contravariant functors. Some features 
of this so-called duality theory are similar to those in the theory developed in 
§18. However, there are various new problems to be addressed and solved, and 
it is not just a matter of reversing the arrows of the morphisms. (The pitfalls of 
blindly "dualizing" a statement have already been well illustrated by the example 
in Remark (6.9)(c).) The main motivation for this duality theory will be given 
in § I9C. In this preliminary subsection, we first discuss the notion of finitely 
cogenerated modules, and the notion of cogenerator modules. 

The notion of a finitely cogenerated module was first introduced in Vamos [68]. 
In this paper, the definition for such a module was given in terms of its injective hull. 
For us, it is more natural to arrive at the definition by "dualizing" the conditions 
(18.2) and (18.3) for f.g. modules. The dualized conditions are given as (1) and (2) 
in the proposition below. It is, however, a bit tricky to see directly that these two 
conditions are equivalent. The proof becomes easier if we add another condition, 
namely (3), in the following. It turns out, fortunately, that (3) itself is a very useful 
condition to work with. For good measure, we shall also add (4), which is just a 
reformulation of (1). 

(19.1) Proposition. For any right module M over a ring R, the following are 
equivalent: 

(1) For any family of sub modules {Ni : i E I} in M, if nEI Ni = 0, then 
niEJ Ni = 0 for some finite subset J C;; I. 
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(2) For any family of submodules {Ni : i E I} in M which form a chain, if 
each Ni i- 0, then niEI Ni i- O. 

(3) The socle S := soc(M) isf.g., and S S:;e M. 
(4) If M ~ DiEI Mi is an embedding (where the Mi 's are any right R

modules), then M ~ DiU Mi is already an embedding for some finite 
subset J s:; I. 

Proof. (4) ¢::=} (1) =:::} (2) are clear. 

(2) =:::} (3). If the (semisimple) module S is not f.g., it would contain an infinite 
direct sum EBj')oI Sj where each Sj i- O. Then 

Sj EB Sz EB ... :2 Sz EB S3 EB ... :2 S3 EB S4 EB ... 

is a chain of nonzero modules with a zero intersection, in contradiction to (2). Thus, 
S must be f.g. To see that S S:;e M, consider any nonzero submodule N s:; M, and 
the family of nonzero submodules of N, ordered by (reverse) inclusion. In view of 
(2), we can apply Zorn's Lemma to this family, to conclude that it has a minimal 
member No. This is then a simple submodule of N, and so it lies in soc(M) = S. 
Thus, N n S :2 No i- 0, and we have checked that S S:;e M. 0 

(3) =:::} (1). Suppose that, in (1), nu Ni i- 0 for any finite J s:; I. We 
may assume that the family {Nd is closed under finite intersections. The first 
assumption in (3) implies that S is artinian, and the second implies that N/ := 
Ni n S i- O. Therefore, the family {Nfl has a minimal member, say, N/o i- O. 
Then, for any i E I, Ni' n Ni' = Ni' by the minimality of Ni' . This shows that o () 0 nEI Ni :2 N!., i- O. 0 

(19.2) Definition. A module M R is said to be finitely cogenerated99 (f.cog. for 
short) if it satisfies the equivalent conditions in (19.1). (For Vamos' characteriza
tions of f.cog. modules in terms of their injective hulls, see Exercise 7.) 

Let us make two remarks concerning the various conditions in (19.1). First, 
since (1) and (2) are conditions of a similar nature, it would be of interest to find a 
direct proof for their equivalence which does not involve an extrinsic notion such 
as that of a socle. We challenge the reader to provide such a proof: see Exercise 1. 
Second, since S := rad(M) in (19.1)(3) is a semisimpie module, to say that S is 
f.cog. is the same as saying that it is f.cog., according to Exercise 3 below. If we 
replace "f.g." by "f.cog." in (19.1)(3), we see that the resulting characterization 
of a f.cog. module becomes the dual of one of the known characterizations for a 
f.g. module: "a module M is f.g. iff rad(M) is small in M and M /rad(M) is f.g." 
(Recall that a submodule X s:; M is small if, for any submodule Y, X + Y = M 

990ther names are sometimes used in the literature, e.g. "co-finitely generated", "finitely 
embedded", or "essentially artinian". 
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implies Y = M; rad(M) is the intersection of all maximal submodules of M, and 
is M itself if there are no maximal submodules.) 

Working with a f.cog. module M requires different intuition from working 
with a f.g. module. Note, for instance, that while RR is always f.g. (it is "cyclic"), 
it is not always f.cog., as the example R = Z shows. However, a number of 
facts about f.g. modules can be "dualized" to give suggestive statements about 
f.cog. modules. These "suggestive statements", of course, would require proofs 
(and in general there is no guarantee that they are always true!). For instance, the 
fact that "any quotient module of a f.g. module is f.g." dualizes into: 

(19.3A) Any submodule of a f.cog. module is f.cog. 

This happens to be true, and can be checked easily by using (for instance) the 
condition (1) in (19.1). The fact that "any proper submodule of a f.g. module is 
contained in a maximal submodule" dualizes into: 

(19.38) Any nonzero submodule of af.cog. module contains a minimal submodule. 

This is also true, and was in fact proved in the argument for (2) ==> (3) in (19.1). 
Finally, the well known fact that "a module M R is noetherian iff every sub module 
of M is f.g." also admits a valid dual, as follows. 

(19.4) Proposition. A module M R is artinian iff every quotient of M is f.cog. (In 
particular, R is a right artinian ring iff every cyclic (resp. f.g.) right R-module is 
f.cog.} 

The easy proof of this is left as Exercise O. Other relevant facts about f.cog. mod
ules are collected at the beginning of the set of exercises for this section. Their 
proofs are mostly routine. 

Our next goal is to study cogenerator modules, which will playa very substantial 
role in the rest of this section. The definition of cogenerator modules is obtained 
by dualizing that of generator modules. 

(19.5) Definition. A module URis called a cogenerator if HomR ( -, U) is a 
faithful (contravariant !) functor from 91t R to the category of abelian groups (in 
other words, if for every nonzero f : M ~ N in 91t R, there exists g : N ~ U 
such that gf i= 0.) Clearly if U is a cogenerator, so is any module U' :2 U. 

(19.6) Proposition. For U R E 91t R , the following are equivalent: 

(1) U is a cogenerator. 
(2) For any N E 91tR and 0 i= x E N, there exists g : N ~ U such that 

g(x) i= O. 
(3) Any N E 91tR can be embedded into some direct product Oi U. 
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Proof. (1 )====}(2). Let f : R --+ N be defined by f (1) = x =1= O. Take g : N --+ 
U such that gf =1= O. Then g(x) = (gf)(1) =1= O. 

(2)====}(3). For any 0 =1= x E N, fix trx : N --+ U with 7rxCx) =1= O. Then 
7r = (7rx) gives an embedding of N into nx,to U. 

(3)====}(1). Say f : M --+ N is nonzero, and take an embedding 7r = (7r;) : 

N --+ n; U. Then 7r f =1= 0, so we must have 7r; f =1= 0 for some i. 0 

(19.7) Corollary. (I) Any cogenerator U R is faithful. (2) lfsome direct product 
n; U is a cogenerator, so is U. 

Proof. Apply Criterion (3) in (19.6) to N = RR. o 

(19.8) Theorem. URis a cogenerator ifJ,for any simple module VR, U contains 
a copy of E(V) (the injective hull of V). 

Proof. First suppose U is a cogenerator. For any simple module V, there exists 
g : E(V) --+ U with gjV =1= O. This implies that (ker g) n V = 0, and hence 
ker g = O. Thus, E(V) embeds in U. Conversely, assume U contains a copy of 
E (V) for every simple V. To see that U is a cogenerator, we check Criterion (2) 
in (l9.6). Let 0 =1= x EN, where N E !mR. Take a maximal submodule M of xR, 
andlet V = xRjM. We have a map go: xR --+ E(V) withkemel M and image 
V. By the injectivity of E(V), go extends to some gl : N --+ E(V). Composing 
this with an embedding E (V) "--+ U, we get a homomorphism g : N --+ U with 
g(x) =1= O. 0 

Since projective generators played a major role in §18, we can expect that 
injective cogenerators will be important for this section. By specializing (19.8), 
we get the following useful characterization of injective cogenerators. 

(19.9) Corollary. An injective module URis a cogenerator iff every simple mod
ule V R embeds in U. 

Proof. The "only if" part is clear from (19.8). (This part does not require injectivity 
of U.) For the "if" part, simply note that if V embeds in U, so does E (V), since 
U is injective. 0 

It is worth noting that there does exist a "projective analogue" of (19.9): see 
Exercise (18.13). However, there is no projective analogue of (19.8), since not 
every module has a "projective cover" in the sense of FC-(24.9). 

It is not a priori clear from (19.5) that cogenerator modules exist. However, the 
following explicit construction of a cogenerator solves this problem, and more. 

(19.10) Theorem. Let {V;} be a complete set of simple right R-modules. Then 
Uo = EEl; E(V;) is a cogenerator, called the canonical cogenerator of !mR. A 
module URis a cogenerator iff Uo can be embedded in U. 
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Proof. The first conclusion is clear from (19.8). For the second conclusion, we need 
only prove the "only if" part. Let V be a cogenerator. By (19.8), we may assume 
that E (Vi) t; V for all i. Since the Vi'S are nonisomorphic simple modules, the 
sum Li Vi in V must be direct. By Exercise 3.8, the sum Li E(Vi ) t; V must 
also be direct, and so V contains a copy of Va = EBi E(Vi ). 0 

Let us call a cogenerator M R minimal if every cogenerator contains a copy of 
M. According to (19.10), the canonical cogenerator Va is minimal. However, 
as is recently shown by Osofsky [91] (and contrary to what was stated in earlier 
literature), a minimal cogenerator need not be unique. (If M I " M2 are minimal 
cogenerators, they can be embedded in each other; but this need not imply that 
MI ~ M2 .) 

If the number of Vi'S in (19.10) is finite, or if the ring R is noetherian, the 
canonical cogenerator Va will be an injective module. The following are some 
standard examples drawn from earlier material on injective hulls. 

(19.11) Examples. 

(1) Let R = Z. The simple modules are VI' = Zp for p = 2,3,5 ... , and E(Vp) 
is the Priifer p-group Cpx (see (3.37». Therefore, the canonical cogenerator over 
Z is 

(19.12) 

The fact that this is an (injective) cogenerator for 9Jtz was also proved directly in 
(4.7). With a little additional work, one can show that, over a Dedekind domain 
R with quotient field K, the canonical cogenerator is Va = K / R. 

(2) Let R be a right artinian ring. Then we have only a finite set of simple right 
R-modules {VI, ... , V,,}. By (3.61), 

Va = E(VI) ED··· ED E(V,,) 

is just the direct sum of a complete set of indecomposable injectives over R. 
However, Va need not be f.g.: see Exercise (3.34). 

(3) In the case when R is a finite-dimensional algebra over a field k, the description 
of Va can be made even more explicit. Using the notations in (3.65), the indecom
posable injective right R-modules are exactly the k-duals (Rei)', ... , (Re,,),. 
In particular, the canonical cogenerator 

remains finite-dimensional over k. Also, if we consider the k-dual 

R'= Homk(RR, k) 

(viewed as a right R-module), then by (3.41), R' ~ E«R/rad R)R). Since 
(R/radh contains a copy of every simple right R-module, R' is an injective 
cogenerator of 9JtR. (Alternatively, we can also deduce this from the fact that R R 
is a projective generator in R9Jt!) 
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Let us now come back to the general set-up and notations in the proof of (19.10). 
Over a general ring R, Uo need not be an injective module, since a direct sum 
of injectives may fail to be injective. However, this can be easily remedied by 
considering instead UO := E(ffii Vi). Clearly UO contains a copy of E(V;) 
for every i. As before, we can show that Li E(Vi ) ~ UO is direct, so we have 
Uo ~ UO. We conclude easily that: 

(19.13) Proposition. UO = E(Uo), and it is an injective cogenerator of 9J'lR. An 
injective module URis a cogenerator iff it contains UO (necessarily as a direct 
summand). 

We shall call UO the minimal injective cogenerator of 9J'lR. Note that if U 
is another injective cogenerator with the property that any injective cogenerator 
contains U, then U and UO can be embedded in each other, and therefore U ~ 
UO by Exercise (3.31). This is why we call UO "the" minimal injective cogenerator 
of 9J'lR. Note that both Uo and UO are solely determined by the module category 
9J'lR. 

The "easiest" (but nevertheless quite important) case of a minimal injective co
generator is that over a local ring (R, m). In this case, Uo = UO = E«R/m)R): 
we have dealt with this module before in §3I, where we have referred to it infor
mally as the "standard module" over R. Being a cogenerator, this standard module 
is faithful: this fact was independently proved before in (3.76). 

§19B. Cogenerator Rings 

For any ring R, the regular modules RR and RR are always generators. However, 
in general, they may not be cogenerators. For instance, according to (19.8), a 
necessary condition for RR to be a cogenerator is that R be right Kasch; i.e., that 
every simple module V R embeds in RR. Thus: for instance, Z is not a cogenerator 
for 9J'lz. 

(19.14) Definition. A ring R is said to be a cogenerator ring if RR and RR are 
both cogenerators. (In the literature, a cogenerator ring is also known occasionally 
as a Morita ring.) 

Recall that a (say right) module N is torsionless if the natural map from N to 
its double dual is injective; i.e., iffor every x E N there exists g E HomR (N, R) 
with g(x) =1= O. In view of (19.6), RR is a cogenerator iff every N R is torsionless. 
Therefore, to say that R is a cogenerator ring simply means that all (left and 
right) R-modules are torsionless. From (15.11)(1), it follows that any QF ring is 
a cogenerator ring. (Alternatively, see Exercise 12.) 

Our first goal is to obtain several characterizations of cogenerator rings. We 
begin with the following observation, which is part of Exercise (15.6). Since we 
shall need this result, a proof of it is included here for the sake of completeness. 
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(19.15) Proposition. For a right ideal A in any ring R, R/ A is torsionless iff 
A is a right annihilator (i.e., iff annr(anneA) = A). 

Proof. First suppose R/ A is torsionless. Let x ¢ A. There exists g : RR -+ RR 
with g(A) = 0 and g(x) -I- O. Let g(1) = r. Then rA = 0 bUll rx -I- 0, whence 
x ¢ annr(anneA). This proves the "only if" part, and the "if" part can be proved 
by reversing the argument. 0 

Let us assemble a few key properties of a cogenerator ring below. 

(19.16) Proposition. Let R be a cogenerator ring. Then: 

(1) R is a Kasch ring. 
(2) R satisfies both of the double-annihilator conditions (15.1)(3a,b). 
(3) Both RR and RR aref.cog. 

Proof. (1) has already been pointed out, and (2) follows from (19.15) (and its left 
analogue), since all modules are torsionless. For (3), suppose (li Ai = 0, where 
{Ai: i E I} are right ideals. Let Bi = anneAi. Then Ai = annrBi by (2), and 

o = n Ai = n annr Bi = annr L Bi . 

By (2) again, L Bi = R, so LiE} Bi = R for a finite subs(:t J <; I. Taking 
right annihilator now gives (liE) Ai = 0. This shows that RR liS f.cog., and so is 
R R by symmetry. 0 

Using (19.16) we can now clarify the exact relationship between cogenerator 
rings and QF rings. 

(19.17) Corollary. A ring R is QF iff it is a cogenerator ring satisfying right 
ACC (resp. DCC). 

Proof. We have already observed that a QF ring is a cogenerator ring. Con
versely, if R is a right noetherian cogenerator ring, then, by (19.16)(2), R satisfies 
(15.1)(3). Therefore, R is QF. 0 

We come now to the following important characterization of a cogenerator ring. 

(19.18) Theorem. A ring R is a cogenerator ring iff it is a self-injective Kasch 
ring. 

Proof. First assume R is right self-injective right Kasch. The latter property means 
that any simple module VR embeds into RR. Hence RR is a cogenerator by 
(19.9). Since the argument also applies to Rwt, we have the "if" part of (19.18). 
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For the converse, assume now R is a cogenerator ring. Then R is a Kasch ring by 
(19.16)(1). Let E = E(RR)' By (19.6), there exists an embedding 

T( = (T(i): E -+ n RR. 

Let ri = T(i (1), and consider the left ideal B = Li Rri. If Br = 0, then ri r = 0 
for all i and hence T( (r) = 0, which implies that r = O. Thus, annr (B) = 0 and 
so (by (19.16)(2» B = anne(annrB) = R. This gives an equation Li airi = 1 
where the ai E R are almost all zero. Now construct a homomorphism 

g: ni RR -+ RR by g«Xi» = Liaixi. 

This obviously splits the embedding T( IR : R ~ ni RR. In particular, RR splits 
in E and hence RR = E(RR)' By symmetry, the same holds for RR, so R is a 
self-injective ring. 0 

Remark. A somewhat stronger version of the "if" part of the theorem is true, 
namely: if R is self-injective and i-sided Kasch, then R is already a cogenerator 
ring. We will not prove this sharper version here. 

In general, "right Kasch" and "right self-injective" are independent properties. 
We can see this easily already for commutative rings. For instance, an infinite direct 
product (Q x (Q x ... is self-injective but not Kasch (see Exercise 17). On the 
other hand, the commutative local ring (Q [u, v] with relations u2 = v2 = uv = 0 
is Kasch but not self-injective (see (3.69». Neither ring is a cogenerator ring. 

(19.19) Proposition. Let R be a cogenerator ring. Then a right R-module M is 
faithful iff it is a generator, iff it is a cogenerator. 

Proof. Let M R be faithful. We are done if we can show that M is both a gener
ator and a cogenerator. The faithfulness of M can be expressed by the equation 
nmEM ann(m) = O. Since RR is f.cog. by (19.16)(3), n7=, ann(mi) = 0 for suit
able ml, ... ,mil E M. We have, therefore, an embedding f : RR ~ EB7=, M 
given by f(1) = (ml, ... , mil)' Since RR is a cogenerator, so is EBi M. There
fore, by (19.7)(2), M is a cogenerator. Since RR is injective, there also exists a 
surjection g : EBi M ~ RR splitting f. Therefore, M is also a generator. 0 

The Proposition yields immediately the following additional characterization 
of a cogenerator ring. 

(19.20) Corollary. A ring R is a cogenerator ring iff any (left and right) gen
erator R-module is a cogenerator, iff any (left and right) faithful R-module is a 
cogenerator.in particular, being a cogenerator ring is a Morita invariant property. 

From (19.17), we see that the class of cogenerator rings may be thought of as 
a generalization of QF rings to the class of rings without artinian or noetherian 
conditions. To make this generalization convincing, we need to produce some 
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cogenerator rings that are not QF. To this end, we introduce first a useful procedure 
for constructing (right, left, or 2-sided) self-injective rings, due to C. Faith. 

Recall that, if S is a ring and M is an (S, S)-bimodule, we can form the "trivial 
extension" R := SED M, which is a ring with the multiplication 

(19.21) (s + m)(s' + m') = ss' + (sm' + ms'). 

The ring R contains M as an ideal of square zero, and Rj M ~ S as rings: see 
(2.22)(A). We have used this construction earlier in (3.15C) and (8.30) in the case 
when S is commutative, and in (16.60) (and Exer. (16.22» in the case when S 
need not be commutative. To exploit trivial extensions as a means of constructing 
self-injective rings, we start with a lemma in the possibly noncommutative setting, 
and then specialize in the Proposition to the commutative setting. 

(19.22) Lemma. Assume, in the above, that s M is faithful. Then RR is injective 
iff Ms is injective and the natural map S --+ End(Ms) (giving the left S-action on 
M) is onto (hence an isomorphism). 

Proof. For the "if" part, we apply Baer's Test. Let A <; R be: a right ideal, and 
f E HomR(A, R). Since 

f(A n M)· M = f«A n M)· M) = 0, 

the faithfulness of sM implies that f(A n M) <; M. Since Ms is injective, f : 
A n M --+ M extends to some g E End(Ms), which is, by assumption, left 
multiplication by some s E S. After subtracting from f the left multiplication 
map by s, we may thus assume that f(A n M) = O. Then 

f(A)M = f(AM) <; f(A n M) = 0 

implies that f(A) <; M (as before), and we have an induced S-homomorphism 

f: Aj(AnM) ~ M. 

Since Aj(A n M) is isomorphic to a right ideal in Rj M ~ S, and Ms is injective, 
7 is given by left multiplication by some m E M. This completes Baer's Test, and 
proves the injectivity of RR' The "only if" part of the lemma (which is not needed 
below) is left as an exercise. D 

(19.23) Proposition. Let S be a commutative ring, and Ms be the minimal in
jective cogenerator, viewed as an (S, S)-bimodule in the obvious way. Assume 
that the map S --+ End(Ms) is onto. Then the trivial extension R = SED M is a 
(commutative) cogenerator ring. 

Proof. By (19.7)(1), M s is faithful, so R is a self-injective ring according to 
(19.22). As in (8.30), R is also a Kasch ring. Therefore, R is a cogenerator ring 
by (19.18). D 

Using (19.23), it is now very easy to produce some non-noetherian (commuta
tive) cogenerator rings. 
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(19.24) Example (Osofsky). Let S be a complete discrete valuation ring with 
quotient field K and maximal ideal nS (n -10). Let V = SinS. By (19.11)(1), 
the minimal injective cogenerator for S is 

M:= EeVs) ~ KIS ~ lim n-"SIS ~ lim SlnnS. 
---+ ---+ 

Since Ends(S Inll S) ~ Sinn S, it is easy to see (cf. (8.14» that 100 

End(Ms) = lim Sln"S. 
<--

Since S is complete, we have End(Ms) ~ S. By (19.23), the trivial extension 
R = SEeM is a (commutative) cogeneratorring. Butof course R is not noetherian. 
As an addendum, note that R is a local ring with maximal ideal n S + M = n R. 
Since R has no nontrivial idempotents, it follows further that R = E(VR). Finally 
by taking the matrix rings M" (R) and applying the last part of (19.20), we arrive 
at examples of noncommutative nonnoetherian cogenerator rings. 

In closing this subsection, we should point out that there are natural I-sided 
generalizations of the notion of a cogenerator ring, due to Azumaya, Osofsky, 
and others. One defines a ring R to be right PF (pseudo-Frobenius) if RR is an 
injective cogenerator in 9JtR. (As far as the right side goes, RR being injective and 
RR being a cogenerator are independent conditions: see Exercises 17 and 20.) Left 
PF rings are defined similarly. In view of (19.18), cogenerator rings are simply 
the 2-sided PF rings. Quite a few characterizations of right PF rings are found in 
the following result. 

(19.25) Theorem. For any ring R, the following are equivalent: 

(1) R is right PF; 
(2) R is right self-injective and right Kasch; 
(3) R is right self-injective and annr(anne(A» = A for any right ideal A <; 

R; 
(4) R is right self-injective and RR is f.cog.; 
(5) R is right self-injective, semiperfect (or Just semi/ocal), and SOC(RR) <;e 

RR; 
(6) Any faithful right R-module is a generator; 
(7) RR is a cogenerator and R is left Kasch; 
(8) RR is a cogenerator and there are only finitely many isomorphism classes 

of simp Ie right R-modules. 

In particular, a right PF ring is always a semiperfect Kasch ring. 

Since we will not be particularly concerned with right PF-rings in the following, 
we do not feel justified to present the full proof of the equivalences here. Some 

IOOS0 far, we have not used the completeness of S. Thus, for instance, the endomorphism 
ring of the Priifer p-group Cpx is the complete local ring of the p-adic integers. Of course, 
all of this is a special case of Matlis' Theorem (3.84). 
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of the equivalences are easy: for instance (1) {:} (2) {:} (3), which we offer as 
Exercise 16C below. The other equivalences require more work, for which we just 
refer the reader to two good sources: Osofsky [66] and Kasch [82: p. 322]. 

Azumaya, one of the originators of the notion of a I-sided PF ring, posed the 
subtle question whether a left PF ring need to be right PF. This has been answered 
negatively: in Dischinger-Milller [86], where a local ring is constructed that is left 
PF but not right PF. 

In summary, we have the following implication relations, where "e " means left 
and "r" means right: 

/' I.PF : l.self-inj.ring 

. rfi ,. ~PF ~ If" . semlpe ecl < cog.rIng = > se -InJ.rIng ,/ , /' 
r.PF ;. r.self-inj.ring 

And, for rings with anyone of: left/right ACC, left/right DCC, all of the above 
coincide with "QF ring". 

§19C. Classical Examples o/Dualities 
The notion of duality between categories is essentially the contravariant version 
of the notion of equivalence. 

(19.26) Definition. Let A, B be categories. A duality between A and B means a 
pair of contravariant functors F : A ~ Band G : B ~ A such that G 0 F ~ 1 A 

and FoG ~ IB, where IA and IB are the identity functors. 

Under such a duality, the objects of A and B are "matched up", and the mor
ph isms are "reversed". If F, G are given, we can use them to "dualize" properties 
of objects and morphisms from one category to the other. 

Now every category B gives rise to an opposite category BOP, with Obj(BOP) = 
Obj(B) and MorBop(B, B') = MorB(B', B). The obvious "do-nothing" functors 
from B to BOP and back clearly define a duality between B and BOP. Taking 
this into account, a duality between A and B then amounts to an equivalence 
between A and BOP. In this light, it may seem that the study of dualities has 
nothing to add to the study of equivalences. However, in practice, this is not so. 
When we work with the categories A, B in a certain framework, the opposite 
categories A oP, BOP usually have no concrete meanings, so it may not be desirable 
to work with them. Thus, we may still wish to study directly dualities between 
A, B without converting them into equivalences. 

The example of module categories is very much a case in point. For any ring 
R, the category VJt R is of great interest to module-theorists, but VJt';i has little 
more than a formal meaning. Therefore, the study of dualities between categories 
of modules is by no means directly reducible to the study of equivalences between 
these categories. In fact, in the case of dualities, it will be seen that we can never 
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have a duality between a full category of modules, say mtR , with another one, 
say mts, or smt (unless R = 0). Thus, it will only be fruitful to seek dualities 
between subcategories A <;::: mtR and subcategories B <;::: smt. This is a main 
difference between the study of dualities and the study of equivalences. (See 
Examples (19.28), (19.31), and (19.33) below.) 

Before we begin our formal study of dualities, it behooves us to recall some 
familiar examples. The first example below is perhaps the champion of them all. 

(19.27) Example (Galois Duality). Let K / k be a finite Galois field extension, 
with Galois group G. Let A be the category of fields L between k and K, with 
morphisms given by inclusion maps. Let B be the category of subgroups H of G, 
with morphisms also given by inclusion maps. Then the usual Galois correspon
dence L f-+ Gal (K / L) and H f-+ K H leads to contravariant functors 

F : A --* Band F': B --* A 

which give a duality between A and B. There is also a "profinite" version of 
this duality, where K / k is allowed to be an infinite Galois extension. Here, B is 
the category of closed subgroups of the profinite group G. For another variant of 
Galois duality, due essentially to A. Grothendieck, see Exercise 36 below. 

(19.28) Example (Vector Space Duality). Let k be any division ring. For any 
right (left) k-vector space V, let V denote its first dual. This gives contravariant 
functors 

which give a duality between the subcategories A, B offinite-dimensional (right, 
left) k-vector spaces. (The crucial fact here is that, for any such vector space V, 
we have a natural isomorphism V ~ V~.) We note gingerly that the duality does 
not work on the level of mtk and k mt. 

(19.29) Example (Pontryagin Duality). Let A = B be the category of locally 
compact Hausdorff topological abelian groups. For G E A, let X (G) be its 
character group Home (G, S I) (consisting of continuous group homomorphisms 
from G to the circle group Sl). With the compact-open topology, X (G) is again in 
B. By the Pontryagin Duality Theorem, X (X (G» ~ G in A, so (X, X) defines 
a duality between A and B. If we let Ao <;::: A be the subcategory of discrete 
abelian groups, and Bo <;::: B be the subcategory of compact abelian groups, it is 
further known that (X, X) defines a duality between Ao and Bo. Finally, (X, X) 
gives a self-duality on the category of finite abelian groups G, for which the 
definition of X simplifies to X(G) = Homz(G, Q/Z). (This last part admits a 
nice generalization to an arbitrary commutative ring: see Exercise 21.) 

(19.30) Example (Gel'fand-Naimark Duality). Let A be the category of com
mutative C* -algebras and B be the category of compact Hausdorff spaces. We 
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define contravariant functors 

f'... : A ---* 8 and C: 8 ---* A 

as follows. For A E A, f'...(A) is the maximal ideal space of A (identified with 
the set of C-homomorphisms from A to C), given the Gel'fand topology, and for 
X E 8, C(X) is the C* -algebra of continuous C-valued functions, with the sup
norm, and with involution given by complex conjugation. (f'... and C are defined 
on morphisms in the obvious way.) An elementary exercise in analysis shows that 
f'...(C(X)) is homomorphic to X, and the Gel'fand-Naimark Theorem shows that 
there is a *-isomorphism A ~ C(~(A)). (The natural map A -~ C(~(A)) is the 
"Gel'fand transform" which takes a E A to iJ E C(~(A)), where iJ(Je) = Je(a) 
for any complex homomorphism Je E ~(A).)Thus,thepair (f'..., C) gives a duality 
between A and 8. 

(19.31) Example (k-Duality over k-Algebras). Consider 9J1 R and R9J1, where 
R is a finite-dimensional algebra over a field k. We have functors 

F : 9J1R ---* R9J1 and G: R9J1 ---* 9J1R 

defined by taking k-duals: V f-+ V. The pair (F, G) gives a duality between 
A = 9J1~g and 8 = ~g9J1 since, for any R-module M with dimkM < 00, the 
natural map M ---* M~ is an R-isomorphism. It is of interest to recall that F and G 
are both representableJunctors. In fact, consider the module R= Homk(RRR, k), 
which has a natural structure as an (R, R)-bimodule. For any !vi E 9J1R, Brauer's 
Equivalence Theorem (16.70) gives a natural left R-module isomorphism 

(19.32) 

and hence F ~ HomR(-, (Rh). Similarly, we have G ~ HomR(-, R(R)). In 
other words, both duality functors F and G are "represented by" the canonical 
(R, R)-bimodule k (Recall (from (19.11)(3)) that (R)R and R(R) are injective 
cogenerators, respectively, in 9J1R and R9J1.) 

(19.33) Example (QF Ring Duality). Consider 9J1R and R~m, where R is a 
QF ring. We have functors F : 9J1R ---* R9J1 and G : R9J1 -~ 9J1R defined by 
taking R-duals, as in (15.12). We note again that both functors arise from a single 
bimodule, in this case, RRR. If we take A = 9J1~g and 8 = ~g9J1, then (F, G) 
gives a duality between A and 8, in view of the reflexivity of f.g. modules over 
a QF ring (see (15.11)(2)). 

What happens when R is not a QF ring? We can certainly define the same 
functors F, G as above by taking R-duals. Here we need to introduce the sub
categories Ao, 8 0 of reflexive modules, and F, G will give a duality between 
these. lol In general, there is no lack of reflexive modules: Au and 8 0 always con-

IOIThis statement actually requires a short proof. For a more general formulation, see 
(19.38) and (19.40) below. 
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tain the f.g. projective modules (see Exercise (2.7)), and these are matched up under 
the above duality. However, various things may "go wrong" with the formation of 
R-duals. For instance, with the commutative local algebra R = k[x, y]/(x, y)2 
over a field k (with maximal ideal m = (x, y)/(x, y)2), the unique simple module 
V = Rim has the following higher R-duals (see Exer. (16.13»: 

V* ~ 2 . V, V** ~ 4· V, V*** ~ 8 . V, etc., 

none of which is reflexive. The only obvious examples of reflexive modules here 
are the free modules Rn. With the example R = Z, bad things happen the other 
way round: here, all cyclic modules ZI nZ (n > 1) have zero duals! In either 
example, the categories Ao, 8 0 of reflexive modules are not closed under the 
formation of quotient objects - a serious drawback. 

§19D. Morita Dualities: Morita 1 

Motivated by the classical examples and the discussions in § 19C, we study in 
this subsection a special kind of duality, called Morita dualities. These are the 
ones given by a pair of functors F, G, both defined via a fixed bimodule U. 
We shall define precisely what is meant by a Morita duality, and characterize the 
bimodules U which give rise to such dualities. This constitutes "Morita I", which 
is essentially the analogue of the theorem under the same name for category 
equivalences (Thm. (18.24», now developed in the context of duality. 

Let R, S be given rings, and SUR be an (S, R)-bimodule. We define contravari
ant functors 

(19.34) 

(19.35) 

with obvious definitions on the morphisms. The modules in (19.34) are called the 
U -duals of M and N. We shall view U as fixed throughout this subsection, so we 
often drop the reference to U and simply speak of the modules in (19.35) as the 
duals of M and N. To further simplify the notation, we shall denote them by M* 
and N* , without reference to U. (Various motivating examples have been given 
in §19C.) 

Just as in the classical theory of vector spaces over fields, we can define, for any 
M E !D1R, an R-homomorphism ()M : M ---+ M**, namely, ()M(rn) = m where 
m(n = fern) for any f E M*. After some checking, we see that {()M} gives a 
natural transformation from the identity functor on !D1R to the double-dual functor 
**. And, of course, we have the same thing for the category s!D1. Generalizing 
earlier definitions, we introduce: 
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(19.36) Definition. (1) M E !JJtR is called U -torsionless (or simply torsionless102) 

if ()M is an injection. (2) M E !JJtR is called U -reflexive (or simply reflexive) if 
()M is a bijection. (Same definitions for left S-modules.) In the following, we shall 
write !JJtR[U) and s!JJt[U) for the subcategories of reflexive modules in!JJtR and 
s!JJt. (All subcategories are understood to be full subcategories in our discussions.) 

(19.37) Remarks. It is routine to check that !JJtR[U) and s!JJt[U) are closed 
under finite direct sums and taking direct summands. On the other hand, the sub
categories of torsionless modules are closed under arbitrary direct products and 
taking arbitrary submodules. Also, just as in the case of U = RRR, a module 
M R is torsionless iff M can be embedded into a direct product of copies of U R. 

In particular, all M E !JJtR are torsionless iff URis a cogenerator for !JJtR. The 
latter is, generally speaking, a reasonable assumption. However, we should not 
have any expectation that all M E !JJtR be reflexive. Finally, the subcategories 
of torsionless and reflexive modules are usually not closed with respect to the 
formation of quotient modules. 

Consider the R-homomorphism ()M : M ~ M**, where M E !JJtR. Applying 
the functor F to this morphism, we get a morphism F«()M) : M*** ~ M* in 
s!JJt. The following result, valid for any choice of the bimodule U, is possibly a 
bit surprising. 

(19.38) Third Dual Theorem. The S-homomorphism ()M' : M* ~ M*** is a 
monomorphism split by F«()M ).In particular, M* is always torsionless (for any 
ME !JJtR), and if M is reflexive, then so is M*. 

Proof. Let f E M*, so f : M ~ URis an R-homomorphism. By definition, 
/ := OM-(f) is an R-homomorphism M** ~ U. This induces an R-homomor
phism g : M ~ U, upon composition with ()M : M ~ M**. To see that f = g, 
consider any m E M. Writing m = ()M(m), we perform what is literally a "hat 
trick": 

(19.39) g(m) = /(m) = m(f) = f(m). 

This little piece of magic proves the first conclusion in (19.38), from which we 
see that M* is always torsionless. Now suppose M E !JJtR[U). Then ()M is an 
isomorphism, and the functor F must transform it into an isomorphism F«()M). 
From the first conclusion of (19.38), it follows that OM- is an isomorphism, so 
M* E s!JJt[U). 0 

(19.40) Corollary. In the above notations, the functors F, G give a duality 
between !JJtR[U) and s!JJt[U). 

102We adopt the convention that, whenever some U is present, "torsion less" always 
means "U -torsionless", just as "dual" always means "U -dual", etc. This convention will 
be used freely throughout §19. 
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The duality in this corollary will be more interesting, of course, if 9J1R[Uj and 
s9J1[ Uj are nice subcategories of 9J1R and s9J1. The nicest kind of subcategories 
in (say) 9J1R are those 9J1 S; 9J1R with the property that, for any exact sequence 
o ---+ K ---+ L ---+ M ---+ 0 in 9J1 R, we have L E 9J1 iff K, M E 9J1. Such 
subcategories 9J1 are known as Serre subcategories. This prompts the following 

(19.41) Definition. We say that U = SUR defines a Morita duality (from R 
to S if the rings need to be mentioned) if both 9J1R[Uj and s9J1[Uj are Serre 
subcategories containing RR and sS, respectively. Note that, although the duality 
applies only to 9J1R[Uj and s9J1[Uj, the functors F and G are defined as before 
between 9J1R and s9J1. 

Let us rehash two quick examples. ForR = Sasin(19.31),and U = R(Rh,we 
have 9J1RlUj = 9J1~g and R9J1[Uj = ~g9J1. (We assume the fact that V ---+ V~ is 
an isomorphism iff dimk V < 00.) These are Serre subcategories containing RR 
and RR, respectively. Therefore, U defines a Morita duality. On the other hand, 
if R = S = Z and U = Q/Z, the first U -dual of Z is Q/Z, and the second 
U -dual of Z is End(Q/Z) '1- Z. Therefore, Z is not U -reflexive, so U does not 
define a Morita duality (although U defines exact functors F, G as in (19.34)). 

We shall now seek necessary and sufficient conditions for a bimodule U = SUR 
to define a Morita duality. To begin this task, we first compute the first and second 
duals of the regular modules RR, 5S, Since the set-up is symmetric, it is enough 
to work with RR (after which we'll assume the same results for sS). 

(19.42) Lemma. (1) (RR)*::?:: sU, and (RR)** ::?:: Homs(sU, SUR). 
(2a) R E 9J1R is torsionless iff URis faithful. 
(2b) RR is reflexive iff the natural map R ---+ End(sU) is an isomorphism. 
(3) If RR is reflexive, then so is sU. 

Proof. (1) For the first dual, we have the standard isomorphism 

R* = HomR(RR, SUR) ::?:: sU. 

Taking the dual again yields R** ::?:: Homs(sU, SUR). 

(2) It is routine to check that, under the above identifications, eR : R ---+ R** 
corresponds to the natural map R ---+ End(sU). This immediately yields (2a) and 
(2b). 

(3) This follows from the last part of (19.38), since sU ::?:: (RR)*' D 

With the above lemma, we can now characterize the bimodu1es U which define 
Morita dualities. The following important result is to be viewed as an analogue of 
(19.24) which described equivalences of 9J1R and s9J1 by progenerators. Because 
of this analogy, we shall refer to it again as "Morita I". 

(19.43) Theorem (Morita I). For a bimodule U = SUR, the following are equiv
alent: 
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(I) U defines a Morita duality (between Rand S); 
(2) every quotient of R R, S S, U Rand s U is reflexive; 
(3) U Rand sU are injective cogenerators, and SUR is faithfully balanced. 

If these conditions hold, any fg. or fcog. module M R is reflexive. 

Proof. (1)===}(2) follows directly from the definitions (in view of (19.42)(1 ». 
(2)===}(3). Part (2b) of (19.42) implies that SUR is faithfully balanced. To show 
the injectivity of U R, we apply Baer's Test. For any right ideal I S; R, we need 
to show that g : R* -+ 1* is surjective. Let P = im(g). The exact sequence 

o -+ I -+ R -+ Rj I -+ 0 induces 0 -+ (Rj 1)* -+ R* -.;. P -+ 0, which in 
tum induces the bottom row of the following exact diagram: 

0_ 1_ R _ RjI 

o _ P* _ R** _ (RjI)** 

Here, h is the composite of 1-+ [** -+ po. Since eR and eR/1 are isomorphisms 
(by hypothesis), so is h. The hypothesis also gives R* ~ sU E sVJt[U] and 
P E sVJt[U]. Therefore, I ~ P" E VJtR[U] by (19.38). Recalling the definition 
of h, we see that [** -+ P* is an isomorphism, and hence P*" -+ [*"* is an 
isomorphism. Since P ~ P** and 1* ~ [***, we conclude that P -+ 1* is an 
isomorphism. Thus, URis injective. For any simple module VR , (2) implies that 
VR E VJtR[U]. In particular, V" -# 0, so we have an embedding of VR in UR. By 
(19.9), we see that UR is an injective cogenerator, and by symmetry, so is sUo 

(3)===}(1). From (19.42), we see that RR, sS are reflexive. To check that VJtR[U] 
is a Serre subcategory, consider any exact sequence 0 -+ K ~ L -+ M -+ 0 in 
VJtR. Since U Rand s U are injective, we have an exact diagram: 

O_K_L_M---+O 

o _ K** _ L** _ M"" ---+ 0 

If K, M E VJtR[U], eK, eM are isomorphisms. By the 5-Lemma, eL is also an 
isomorphism, so L E VJtR[U]. Conversely, assume eL is an isomorphism. Since 
URis a cogenerator, K and Mare torsionless by (19.6); that is, eK, eM are injective. 
By a simple diagram chase, we see that eK, eM are also surjective. Therefore, 
K, M E VJtR[U]. By symmetry, it follows that sVJt[U] is also a Serre subcategory. 

Finally, assume the above conditions hold, and let M R be f.g. We have an 
epimorphism R n -+ M for a suitable n ~ 1. Since R~ is reflexive, so is M. If 
M is f.cog. instead, fix an embedding M -+ ni U. Using the finite cogeneration 
of M, we can choose an embedding M -+ n;'= I U. Since URis reflexive, so is 
M. 0 
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The conditions listed in (3) of the theorem above are not all independent. First, 
of course, the fact that U Rand s U are cogenerators already implies that they are 
faithful. More importantly, Colby and Fuller have shown that, if SUR is faithfully 
balanced and SUR are cogenerators, then they are necessarily injective cogener
ators. We shall not present this finer result, but point out that we have proved this 
in the special case R = S, U = RRR: see (19.18). Since, in this special case, U is 
automatically faithfully balanced, Morita I simplifies to the following. 

(19.44) Corollary. For any ring R, the following are equivalent: 

(1) the bimodule U = RRR defines a Morita duality (from R to R); 
(2) every cyclic (right and left) R-module is reflexive; 

(2') every fg. (right and left) R-module is reflexive; 
(3) R is a cogenerator ring. 

Thus, a cogenerator ring R has a "self-duality" defined by the canonical bi
module RRR. For this reason, a cogenerator ring is sometimes called a "ring with 
perfect duality" (see, e.g., Kasch [82]). 

§19E. Consequences of Morita I 

We shall now record some properties of a Morita duality in general. The first 
couple of results in this direction do not require the full assumptions of a Morita 
duality, so we state precisely the hypotheses needed in each case. The annihilator 
notations used below should be self-explanatory (cf. (15.14), of which (I) of the 
following result is a generalization). 

(19.45) Lemma. Let U = SUR and M E 9J'lR. Let N be an R-submodule of M 
and P be an S -submodule of M*. 

(I) (Mj N)* ~ annM.N, and, ifU R is injective, N* ~ M* jannM·N. 
(2) Assume URis a cogenerator. Then annM(annM,N) = N. 
(3) Assume sU isacogeneratorand M E 9J'lR[U]. Then annM.(annMP) = 

P. 

Proof. (1) is easy. For (2), we need only prove the inclusion" s:;; ". If m E M\N, 
there exists f E M* with feN) = 0 but f(m) #- 0 (since URis a cogenerator). 
Hence f E annM,N, and m f/ annM (annM' N). For (3), just identify M** with M 
and apply (2) to M*. 0 

(19.46) Proposition. Assume that U Rand sU are cogenerators, and M E 

9J'lR[U]. Then 

(1) N f-+ annM' N gives an anti-isomorphism from the lattice of submodules 
of M to that of M*. 
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(2) M is simple iff M* is. 
(3) M is noetherian (resp. artinian) iff M* is artinian (resp. noetherian). 
(4) M is fg. (resp. fcog.) iff M* is fcog. (resp. fg.). (In particular, sU is 

fcog.) 
(5) (Osofsky) If M = E9iEI Mi, then Mi = Of or almost all i. 

Proof. (1) follows from (2) and (3) of (19.45). The fact that we get a lattice 
anti-isomorphism follows from the obvious formula 

(19.47) 

and the less obvious formula 

(19.48) annM' (n N j ) = L annM' (Nj ) 

j 

obtained easily by using (19.47) and (2), (3) of (19.45). 

(2), (3), (4) These follow easily from (1) (together with (19.47) and (19.48) in the 
case of (4)). 

(5) Suppose, on the contrary, that I is infinite and each Mi ::/:. O. Since URis a 
cogenerator, there exists f E M* with f(Mi) i- 0 for each i. Let Nj = E9ih M;. 
Then nj N j = 0 implies that 

(19.49) M* = annM·(n N j ) = L annM·(Nj ) (by (19.48». 
j j 

In particular, f = h + ... + h where h (Nj ,) = O. But then, for any i E 

I\U" ... , jll}, we have M; ~ N j , for all k, so f(M;) ~ I:k heM;) = 0, a 
contradiction. 0 

The last conclusion (5) above can be proved under considerably weaker hy
potheses. For the details, see Exercise 22. 

(19.50) Corollary (Osofsky). Suppose SUR defines a Morita duality from R to 
S, and let J = rad R. Then: 

(1) for any M E OO1 R [U], u. dim M < 00 and N = M]" / M ]"+, is a 
fg. semisimple R-module (for any n :::: I). 

(2) R is a semiperfect ring (i.e., R/ J is semisimple, and idempotents in R/ J 
can be lifted to R). Same for S. 

Proof. That u.dim M < 00 follows from (6.4) and (19.46)(5) since submodules 
of M also belong to OO1 R[U]. Applying this to M = UR, we see from (13.3) 
that S ~ End(UR ) is semiperfect, so by symmetry R is also semiperfect. 103 Now 

\03For another view of the semiperfectness of Rand S, see Exercise 24. 



524 7. Matrix Rings, Categories of Modules, and Morita Theory 

consider N, which is a right module over R / J. Since R / J is semisimple, N is a 
semisimple module. It follows that N R is f.g. since 

M E 9J1R [U] ==} N E 9J1R [U] ==} u. dim N < 00. 

o 

Some special cases of (19.50) are noteworthy. For instance, in the case when 
R is a division ring and U = RRR, (I) above implies the known fact that only 
finite-dimensional R-vector spaces can be reflexive. The second conclusion (2) 
above implies, for instance, the following. 

(19.51) Corollary. Any cogenerator ring is a semiperfect ring. 

We stated this Corollary only because it follows for free from (19.50). In general, 
a stronger result is available: according to (19.25) (which we did not prove), even 
a I-sided PF ring is already a semiperfect ring. 

Our next result focuses on the relations between a pair of rings R, S which are 
linked by a Morita duality. 

(19.52) Theorem. Suppose SUR defines a Morita duality from R to S. Then: 

(1) Rand S have isomorphic ideal lattices, both being anti-isomorphic to 
the lattice of(S, R)-submodules ofU. The isomorphism between the ideal 
lattices of Rand S preserves finite products (and therefore preserves prime, 
semi prime, and nilpotent ideals). 

(2) Let I ~ R, J ~ S, and V ~ U correspond under (I), and let R = R/ I, 
s = S/ J. Then sV][ defines a Morita duality from R to S. 

(3) Z(R) ~ Z(S) as rings. (In particular, if there is a Morita duality from one 
commutative ring to another, then these rings are isomorphic.) 

Proof. (I) We have R* ~ U (as left S-modules), and a right ideal I ~ R corre
sponds to an S -submodule annu (I) ~ U.1t is easy to see that I ~ R is an ideal iff 
annu(l) ~ U is an (S, R)-submodule. Repeating this argument for ideals of S, 
we deduce the first part of (I). Now suppose II, h are ideals of R corresponding 
to ideals J I, lz of S. We have then annu (Ii) = annu (Ji ) (i = I, 2). For u E U, 
we have 

uIlh = 0 {::::::::} lzuII = 0 {::::::::} JIlzu = O. 

Hence annu(llh) = annu(JIlz), and Ilh corresponds to JIlz. 

(2) Since V = annu(l) = annu(J), we can view Vas an (S, R)-bimodule. Now 
view 9J1][ and s9J1 as subcategories of 9J1R and s9J1, respectively. It is easy to 
check that M E 9J1][ is V -reflexive iff it is U -reflexive as an R -module. (Note that 
Hom][(M, V) ~ HomR(M, U).) From this, we deduce that 9J1][[V] and s9J1[V] 
are Serre subcategories of 9J1][ and s9J1, containing Rand S, respectively. 
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(3) follows from (18.41), since SUR is faithfully balanced. D 

(19.53) Remark. An alternative proofto (2) can also be given by checking directly 
that sV, V]? are injective cogenerators, and that sV]? is faithfully balanced. (For 
this check, Exercise (3.28) is relevant.) 

For convenience of language, we shall say that a ring R admits a Morita duality 
if there exists a Morita duality from R to another ring S, defined by some bimodule 
SUR. (Of course, S is necessarily isomorphic to End(U R).) According to (19.50), 
the fact that R admits a Morita duality places rather severe restrictions on R and its 
right modules. In particular, by (19.50)(2), R must be semiperfect. Therefore, rings 
such as Z, k[X1, ... ,xn ] (k a field, n ~ 1) cannot possibly have a Morita duality. 
This is in stark contrast to the fact that there always exist Morita equivalences 
from a ring R to other rings, namely, the matrix rings Mn (R). 

The problem of characterizing rings R admitting Morita dualities is largely 
solved. In the case of right artinian rings, this goes back to the work of Morita 
and Azumaya in the late 1950's. For general rings, this problem was successfully 
tackled by B. J. Muller in 1970. Some of Miiller's (and Onodera's) main results 
in this direction will be presented in § 19F. To conclude the present subsection, we 
would like to compile a good list of examples of rings admitting Morita dualities. 

To begin with, any finite-dimensional algebra R over a field k admits a Morita 
self-duality (from R to R). The details were in (19.31). Secondly, any cogenera
tor ring R also admits a Morita self-duality (defined by RRR). This includes all 
Frobenius and quasi-Frobenius rings (in particular all semisimple rings and group 
algebras of finite groups over fields). To give an example of a Morita duality that 
is not a self-duality, we proceed as follows. 

(19.54) Example. Suppose R' ~ R; that is, R, R' are Morita equivalent rings. 
If R admits a Morita duality, then so does R'. (In the terminology introduced 
in §18, "admitting a Morita duality" is a Morita invariant property.) Indeed, 
if SUR defines a Morita duality from R to S, then, for any category equivalence 
F: 9JlR ~ 9Jlw,wecandefinean (S, R')-bimodulestructureonU' = F(U) and 
check that s U~, defines a Morita duality from R' to S. It follows, for instance, that 
for any finite-dimensional k-algebras R, R' over a field k, if R' ~ R, then there 
exists a Morita duality from R' to R. More desirably, ifthere is a k-equivalence from 
R'to R, then there is a Morita k-duality from R' to R. (By "k-equivalence" and 
"k-duality", we simply mean that the defining functors are "k-functors" making 
everything in sight k-linear.) 

For our next example, we consider the case of a commutative noetherian local 
ring (R, m). Here, the minimal injective cogenerator is just U = E(R/m); we 
have studied the structure of this module in §3I, where we called it informally the 
"standard module" of the local ring. For this module U, we have the important 
result of Matlis (3.84) which states that EndR(U) is isomorphic to the m-adic 
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completion R = lim R/mi of R. Let us now explore the remarkable conse-
<--

quences of this theorem in the context of duality theory. It is of historical interest 
to observe that Matlis' paper on injective indecomposables and Morita's paper 
on equivalences and dualities appeared in the same year, 1958. Although Matlis 
did refer to a "forthcoming" work of Azumaya on duality for injective modules, 
it seems all but certain that neither Matlis nor Morita had seen the other's work 
before his own paper appeared. 

(19.55) Example (Matlis). Let (R, m) be a commutative complete noetherian 
local ring (so that R = R) with U = E(R/m). Then, by Matlis' Theorem recalled 
above, RU R is faithfully balanced. Since U Rand RU are injective cogenerators, 
Morita I implies that U defines a Morita duality from R to R. Let 'k9Jl <:; R9Jl 
be the subcategory of artinian left R-modu1es. Since these modules are f.cog. and 
therefore U -reflexive, their U -duals are noetherian, or equivalently f.g. It follows 
that, under the Morita self-duality, 9Jlkg corresponds exactly to ~9Jl. The duality 
functors can be described as follows. For A E 9Jlkg, let A = Rn / N. Identifying 
(R")* with un, we have from (19.45)(1): 

A* ~ {(UI, ... , un) E Un: LUiri = 0 V(rl, ... , rn) EN}. 

For B E ~9Jl, we may assume that B <:; un (for some n). Identifying (U")* with 
Rn , we have, again from (19.45)(1): 

In view of (19.46), we have the following duality facts for our ring R. 

(19.56) Corollary. Let (R, m) be a commutative complete noetherian local ring, 
with U = E(R/m). Then U is an artinian R-module, and it defines a Morita 
duality from R to itself. Thus: 

(1) The U -dual of a noetherian R -module is an artinian R -module. 
(2) The U -dual of an artinian R -module is a noetherian R -module. 
(3) If an R-module M is either noetherian or artinian, then it is U -reflexive; 

in other words, we have a natural isomorphism M*' ~ M. 
(4) Ifan R-module M is both noetherian and artinian (i.e., length(M) < 00), 

then 1engthR(M) = JengthR(M*). 

Note that this Corollary applies, in particular, to any commutative artinian local 
ring (R, m). (Such R is necessarily noetherian, and m must be nilpotent, which 
implies easily that R is m-adically complete.) The duality facts in this special case 
are already quite important in commutative algebra and in algebraic geometry. 

More examples of rings admitting Morita dualities will be given at the end of 
§19F. 
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§19F. Linear Compactness and Reflexivity 

In this subsection, we shall explore a somewhat surprising connection between 
Morita duality theory and a topological/module-theoretic notion, that of linear 
compactness. The study of linearly compact modules goes as far back as to the 
work of Lefshetz in the 1940's, and was continued in papers of Dieudonne, Zelin
sky, and others in the 1950's. An account of the basic properties oflinearly compact 
modules and rings may be found in the exercises of Bourbaki's Algebre Commu
tative, Ch. 3, §2. 

While Bourbaki's inclusion of the material on linearly compact modules 
helped popularize this notion, the connection between linearly compact mod
ules and Morita duality theory was apparently not noticed until the publication of 
B. J. Miiller's paper [70]. In this paper, Miiller not only proved the equivalence 
of linear compactness and reflexivity for modules under a Morita duality, but also 
found the criterion for any ring R to admit a Morita duality (into some other ring 
S) in terms of linear compactness. This subsection is intended as a more or less 
self-contained introduction to some of Miiller's main results. Besides the original 
papers Miiller [70] and Onodera [72], I have also consulted the very well-written 
recent Springer Lecture Notes volume of Xue [92]. In this volume, the reader will 
find many more current results on Morita duality theory which we will not have 
space to cover in our general introduction here. 

For the most general study of linear compactness, we should work in the frame
work of topological modules. However, as far as the connection with reflexive 
modules is concerned, it turns out to be largely sufficient to use the discrete topol
ogy. In the interest of keeping the prerequisites minimal for our exposition, we 
shall therefore avoid altogether any use of topological modules (and their com
pletions with respect to uniformities). In particular, this makes possible a purely 
algebraic treatment of the subject at hand, yet without any sacrifice of the central 
results. We shall now introduce the notion of linearly compact modules below, 
specifically for the case of modules with the discrete topology. 

Consider any system of submodules {Mi liEf in a module MR, and elements 
mi EM indexed by the same set I. We say that the system {mi' Mi hEf is finitely 
solvable if, for any finite subset J ~ I, there exists an element In] E M such that 
m] == In j (mod M j ) for all j E J. Similarly, we say that {mi' MdiEf is solvable 
if there exists In E M such that m == Ini (mod M i ) for all i E I. 

(19.57) Definition. A module MR is said to be linearly compact (or I.c. for short) 
if every finitely solvable system {lni' Mi liEf in M is solvable. (Stated in coset 
notation, M is I.c. if, for any system as above, njE] (In j + M j ) # 0 for any finite 
J ~ I implies that niEf (mi + Mi) # 0.) For instance, any module of finite 
cardinality is I.c. We shall denote the subcategory of all linearly compact modules 
. nn b nnlc 
In :J"lR Y :J"l R' 

(19.58) Lemma. (Zelinsky) 9Jl~' is a Serre subcategory of !mR. 
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Proof. Let 0 ~ K ~ L ~ M ~ 0 be exact in 9JlR • If L is I.e., a routine 
check shows that K and M are also I.e. If, conversely, K, M are I.e., it requires 
a little work to show that L is I.e. We shall not need this result below, so it will be 
relegated to Exercise 35. 0 

Let us say that a ring R is right linearly compact (right I.e.) if RR is I.e. As 
usual, we also have the notion of R being left I.e. and (2-sided) I.e. Some examples 
follow. 

(19.59) Example. The ring Z is not I.e. In fact, let Mi = Pi Z, where 2 = PI < 
P2 < ... are the primes. Let ml = 1 and m2 = m3 = ... = O. Clearly, the 
system {mi' Mi};~ I is finitely solvable, but not solvable. (The first n congruences 
m := mi (mod Mi) can be solved by m = P2P3 ... p,,, since this product is odd. 
But m := mi (mod Mi) for all i would imply m = 0 and m is odd!) 

(19.60) Example. For any ring k i- 0, the polynomial ring R = k[x] is not (right) 
I.c. Here, let Mi = xi R (i 2: 1) which are ideals, and let mj = 1 +x + ... +x i - I . 

The first n congruences m := mi (mod M j) can be solved by choosing m = m". 
But if there exists f(x) = Laixi E R solving all congruences f(x):= mi (mod 
M i ), then all ai = 1 and we have a contradiction. 

(19.61) Example. This example shows that there is a close connection between 
completeness and linear compactness. To be precise, let (R, m) be a commutative 
noetherian local ring. We claim that R is l.c. iff (R, m) is complete. To see this, 
first assume R is not complete. Then the natural map e : R ~ lim Rlmi is 

<--

not onto. This means there exists a compatible sequence (mi)i~1 E lim Rlmi 
<--

that is not in im(R). This amounts to the fact that {mi' mi};~1 is not solvable. 
However, this system isfinitely solvable, since m := mj (mod mi) for 1 ~ i ~ n 
can be solved by taking m = mil' Thus, R is not I.c. By using a similar (but 
somewhat more elaborate) argument, one can show that (R, m) being complete 
also implies R is I.c. From this, we deduce, for instance, that the power series ring 
R = k[[XI, ... , x,,]] is I.c. for any field k. 

Next, let us work a little with modules. 

(19.62) Proposition. If MR is l.c., then u. dim M < 00. 

Proof. Assume u.dim M = 00. Then there exists a submodule N = EBiEI M j 

where I is infinite and each M j i- O. Since N is also I.c. (by (19.58)), we may 
as well assume N = M = EBiEI Mi. Let 0 i- mi E M j and let Nj = EBj#j Mi. 
We see easily that {mi' Nd is finitely solvable, but not solvable, a contradiction. 
(Note. m := mi (mod Ni) simply means that the" ith coordinate" of m is mi with 
respect to the direct sum decomposition M = EBi Mi.) 0 
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(19.63) Corollary. If u. dim RR = 00, then R is not right i.c. (This applies,for 
instance, to R = k(x, y), and to R = k x k x ... ,for any nonzero ring k.) 

(19.64) Proposition. Any artinian module M R is l.c. 

Proof. Let {mi' MdiEl be a finitely solvable system in M. With a little abuse of 
notation, say MI n· .. n Mil is minimal among all finite intersections of the Mi 'so 
Fix m E M such that m == mi (mod Mi) for i = 1, ... , n. We claim that m solves 
the above congruences for all i E I. It suffices to check that m == mn+ I (mod 
Mn+d (with another abuse of notation). First find m' E M such that m' == mi 
(mod M i ) for i = 1, 2, ... , n + 1. Then 

m - m' E MI n ... n Mil = MI n ... n Mil n M'II+I. 

But then m == m' == mn+1 (mod M II +1), as claimed. o 

(19.65) Corollary. For any module M R over a right artinian ring R, the following 
are equivalent: 

(1) M isf.g. 
(2) M is artinian. 
(3) Mis l.c. 

Proof. (1) => (2) is well known over a right artinian ring R, and (2) => (3) is true 
over any ring by (19.64). We finish by proving (3) => (1). For this implication, 
we can get by with the weaker hypothesis that R is a semiprimary ring, that is, 
a ring R with ] := rad R nilpotent and R/] semisimple. Say 1" = 0 and 
M R is I.e. Since R/] is semisimple, M / M] ~ EBiEI Vi where the Vi'S are 
simple R -modules. But M / M] is I.e. by (19.58), so I must be finite. Therefore, 
M = N + M] for a suitable f.g. submodule N s; M. But then 

M = N + (N + M])] = N + M]2 = ... = N + Mi" = N, 

so M R is f.g., as desired. o 

For further information relating I.e. modules to artinian modules, see Exercises 
27-29. Since our main objective is not so much to study I.e. modules for their own 
sake, we shall not dwell on giving more examples, but go directly to the task of 
analyzing the relationship between linear compactness and reflexivity. The first 
important theorem in this direction is the following poetic rendition of Muller's 
result in Onodera [72]. 

(19.66) Theorem. Let UR be a cogenerator, S = End(UR), and M E mtR. 
Then M E mt~ iff, for any S-submodule N s; M* and any g E Homs(N, sU), 
there exists m E M such that g = miN. (Recall that m = (}M(m) where 
(}M : M ~ M**.) 
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Proof. First assume M E 9J1~', and consider g as above. The idea is to "ap
proximate" g on N by mIl ..... f" for finitely many f" ... , fn E N and then use 
I.e. to express g as miN for a suitable m EM. Given f" ... , f" EN, consider 
(f" ... , fn) : M R --+ UZ, with image V, say. We claim that (g(f,), ... , g(fn)) E 

V. To see this, it suffices to show (since URis a cogenerator) that 

v S E (UZ)*: s(V) = 0 ==> s(g(f,), ... , g(f,,)) = O. 

Express s in the form (s" ... , sn), where Si E (U R)* = HomR(U R, U R) = S. 
The fact that s(V) = 0 means that 

V m E M, 0 = s(f, (m), ... , f" (m)) = Li Si (fi (m)), 

so L s;fi = 0 E S. But then 

s(g(f,), ... , g(f,,)) = LSi(g(fi)) = Lg(Sifi) = 0, 

since g : M* --+ U is an S-homomorphism. This proves our claim, showing that 

(g(f,), ... , g(f,,)) = (f,(m), ... , fn(m)) 

for some m = m I, .... ,f" E M. In particular, for every single element fEN, we 
have an associated element m I E M such that g(f) = f(m I)' Now consider the 
system {m I, ker(f) }fEN. This system is finitely solvable: given f" ... , fn EN, 
the congruences m == m j; (mod ker(fi)) are solved by taking m = m!J, ... J", since 

fi(mfl .. ,f" - mI) = g(fi) - g(f;) = O. 

Since M is I.e., there exists m E M such that, for all fEN, m == m I (mod 
ker(f)); that is, f(m) = f(mI) = g(f). Therefore, g = miN. 

For the converse, let {mi' MdiEI be afinitely solvable system in M. We con
struct a map 

(19.67) g: N = L annM·(Mi) ~ sU by g(L fi) = L fi(m;) E U, 

where fi E annM'(Mi ). To see that g is well-defined, suppose LjE} h = 0, 
where J S; I is finite. Take m E njE}(mj + M j ). Then hem) = h(mj) (since 
h(Mj ) = 0), and so 

Clearly, from (19.67), g is an S-homomorphism. By assumption, g = miN for 
some m E M. For any f, E annM·(Mi ), (19.67) shows f(mi) = g(fi) = fi(m). 
Therefore, by (19.45)(2): 

for every i E I, as desired. o 

For left S-modules U and X, let us say that U is X -injective if, for any S-module 
N S; X, any g E Homs(N, U) can be extended to X. Using this convenient 
terminology, we may rephrase (19.66) as follows. 
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(19.66), Theorem. In the setting of(19.66), M E 9J1~ iff ME 9J1R[Uj and sU 
is M* -injective. 

Note that, if sU is injective, then it is X-injective for any sX (and conversely). 
In this case, the last condition above can be dropped. In particular, we obtain: 

(19.68) Muller's First Theorem. Suppose a bimodule SUR defines a Morita 
duality from R to S. Then 9J1R[Uj = 9J1/~ (and similarly s9J1[Uj = ~'9J1). In 
particular, any fg. or fcog. right R-module is l.c. 

This is a nice theorem in that it gives a new characterization for the U -reflexive 
modules (in terms of the solution of congruences). It is rather surprising because 
the characterization given is completely independent of the bi.module U which 
defines the duality! The theorem tells us that, if a Morita duality exists at all (from 
R to some other ring), then the reflexive modules with respect to the duality are 
already "predetermined": they must coincide with the linearly compact modules, 
independently of U! As a special case, consider a right artinian ring R. If a Morita 
duality exists (from R to some S), then the reflexive right R-modules (with respect 
to this duality) are precisely the f.g. ones, according to (19.65). Thus, for instance, 
for a QFring R (with the self-duality given by RRR)' we know that the R-reflexive 
modules must be precisely the f.g. R-modules. 

In his paper [72], Onodera has given various applications of his result (19.66). 
Particularly noteworthy among these is his I-sided characterization of a cogener
ator ring, which can be stated as follows. 

(19.69) Theorem. (Onodera) A ring R is a cogenerator ring iff RR is a I.c. co
generator. 

Since this deeper result will not be needed in the text, we shall not go into its 
proof here. Instead, we move on to give a new characterization for a bimodule 
SUR to define a Morita duality, in terms of linear compactness. The advantage of 
this characterization is that it involves only properties of (right) R-modules, and 
not S-modules. It is Onodera's refinement of a result of Miiller; Miiller's result 
will be retrieved in (19.71) below. 

(19.70)Theorem. Let U R E 9J1R and S = End(UR). Then SUR definesaMorita 
duality from R to S iff URis afcog. injective cogenerator, and RR, U R E 9J1~ . 

Proof. The "only if" part follows from Morita I, (19.46)(4), and (19.68). Now 
assume the conditions on RR, U R. To show that SUR defines a Morita duality, it 
suffices (by Morita I) to check that: 

(a) 5 URis faithfully balanced, and 
(b) sU is an injective cogenerator. 

Since URis a cogenerator, (19.66)' gives 9J1~ S; 9J1R[Uj. Therefore, by (19.58): 
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(c) Quotient modules of RR, V R are in 9J1R [V). 

The fact that RR E 9J1 R [V) means that R ~ End(sV) (by (19.42)(2b)), so (a) 
follows. Since V R is injective and f.cog., Exercise 6 yields V R = E(V1) EB· .. EB 
E(Vn ) where the Vi'S are simple right R-modules. Let ei E S be the projection 
of V onto E(Vi). By (13.3), S is a semiperfect ring, and 1 = el + ... + en is a 
decomposition of 1 E S into orthogonal primitive idempotents. Let J = rad S. 
By FC-(25.3), any simple left S-module is isomorphic to some Sei j J ei. Since 
J . Vi = 0 by (13.1) (and Exercise (6.12)(2)), we can define (Xi : Se;j J ei ---+ sV 
by writing Vi = Uj R and taking 

(Xi (sej + J ei) = seiUj for any s E S. 

This is clearly a (nonzero) S-homomorphism, and therefore embeds the (typical) 
simple S-module Se;jJej into sV. It only remains for us to prove that sV is 
injective, for then (b) will follow, by (19.9). To this end, we apply (19.66)' to 
M = V R E 9J1~'. Since (U R)* ~ sS, (19.66)' implies that sV is S-injective. By 
Baer's Criterion, it follows that sV is injective, as desired. 0 

Now let {Vi: i E I} be a complete set of simple right R-modules and let 
VO = E(EBi Vi) be the minimal injective cogenerator over R. By specializing 
(19.70) to VO, we deduce the following. 

(19.71) Muller's Second Theorem. A ring R admits a Morita duality iff RR 

and V~ are I.e. In this case,for T = End(V~), TV~ defines a Morita duality 
from R to T. 

Proof. Suppose sV R defines a Morita duality, from R to some ring S. Being 
V-reflexive, RR, VR E 9J1~' by (19.68). On the other hand, V R is an injective 
cogenerator by Morita I, so V~ embeds in V R by (19.13). Therefore, V~ E 9J1~. 
Conversely, assume that RR, V~ E 9J1~' and let T = End(V~). By (19.62), we 
have u.dim V~ < 00, so III < 00. Then VO ~ EBi E(V;), and V~ is f.cog. by 
Exercise 7. From (19.70), it follows that TV~ defines a Morita duality from R 
to T. 0 

(19.72) Example. A simple illustration for (19.71) is given by the case when R is a 
commutative complete noetherian local ring, say with maximal ideal m. Suppose 
we have verified, one way or another, that the minimal injective cogenerator V~ = 
E(Rjm) is an artinian R-module; then by (19.64), it is I.c. By (19.61), RR is also 
I.c., so by (19.71), VO defines a Morita duality from R to End(U~). Of course, 
we already know this from (19.55); in fact, according to Matlis' Theorem (3.84), 
End(V~) is canonically isomorphic to R. On the other hand, if R is not complete, 
then by (19.61) RR is not I.c., and (19.71) implies that R admits no Morita duality 
into any ring whatsoever. 
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Next, we shall apply (19.70) and (19.71) to right artinian rings. For these rings, 
we recover some of the classical duality results of Morita and Azumaya. The first 
of these substantially simplifies Morita I. 

(19.73) Corollary. Let R be a right artinian ring, U R E !JJ1 R, and S = End(U R)' 
Then SUR defines a Morita duality from R to S iff URis a f.g. injective cogen
erator. 

Proof. This follows from (19.4), (19.65), and (19.70). D 

(19.74) Corollary. Let R be a right artinian ring, with simple right modules 
VI, ... , v". Then the following are equivalent: 

(1) R admits a Morita duality; 
(2) each E(Vj ) isf.g.; 
(3) eachf.cog. right R-module isf.g. (cf. (19.4». 

Under these conditions, UO = E(VI )E9· .. ffi E(VIl ) defines a Morita duality from 

R to T = End(U~). 

Proof. Since RR is artinian, it is I.c. By (19.65), U~ is I.c. iff it is f.g. Therefore, 
the equivalence (1)<===}(2) and the last statement of the Corollary both follow 
from (19.71). 

(1)==}(3). Let MR be f.cog. Then M E !JJ1~ = !JJ1~g by (19.68) and (19.65). 

(3)=}(2) follows from the fact that E(Vj) is always f.cog. (cf. Exercise 7). D 

In the case when (R, m) is a commutative local artinian ring, we have UO = 
E(Rjm) and End(U~) ~ R. Here, of course, we get back the special case of the 
Matlis duality given in (19.56). 

We mention without proof another interesting class of right artinian rings ad
mitting Morita duality, due to K. Fuller. 

(19.75) Example. Let A be a right artinian ring, and e E A be an idempotent such 
that eA is injective (as well as projective). Then the right artinian ring eAe (see 
FC-(21.l3» admits a Morita duality. In fact, there exists a suitable idempotent 
f E A such that, forthe rings R = eAe, S = f Af, the bimodule U = s(f Ae)R 
defines a Morita duality from R to S. The details of the veri fication can be found 
in Fuller [69]; see also Xue [92]. This example applies well, for instance, to any 
idempotent e in a QF ring A. 

We have seen, from Exercise (3.34), that there exist 2-sided artinian rings R 

for which some E(Vj ) is not f.g., in the notation of (19.74) (although E(Vj ) is 
always f.cog.). By (19.74), therefore, such artinian rings R have no Morita duality 
into any ring whatsoever. 

In the case of commutative artinian rings, however, the situation is much more 
amenable, as the following result shows. 
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(19.76) Corollary. Let R be a commutative artinian ring. Then R has a Morita 
self-duality. 

Proof. Recall from the proof of (2) ==> (3) in (15.27) that R ~ RI X ... x R", 
where the R; 's are (commutative) artinian local rings. As we have observed in the 
paragraph following the proof of (19.74), each R; has a Morita duality into itself. 
Therefore, the same follows for R. 0 

The above result and its proof suggest that the theory of Morita duality for 
commutative rings should be considerably simpler than the corresponding theory 
for general (semiperfect) rings. Indeed, in the case of commutative rings, it turns 
out that Muller's Second Theorem can be further simplified. We mention without 
proof the following recent result of Anh [90], which affirms earlier conjectures of 
Zelinsky, Muller, and Vamos. 

(19.77) Theorem. If R is a commutative ring, then R admits a Morita duality iff 
RR is l.c. In this case, a suitable bimodule RU R defines a Morita self-duality from 
R to R. 

§19G. Morita Dualities: Morita II 

To conclude our discussion of duality theory, we shall prove in this subsection 
a theorem of Morita which shows that, for suitable subcategories A s; 9J1R, 
B S; s9J1 (for two rings R, S), any duality between A, B is essentially a Morita 
duality in the sense of Definition (19.41). We shall call this theorem "Morita II" 
again, in analogy with the corresponding theorem (18.26) classifying equivalences 
of module categories. In retrospect, this new "Morita II" gives the ultimate justi
fication for the earlier emphasis we placed on Morita dualities in §§ 19D-F. Our 
proof of "Morita II" given below is a somewhat more informal version of the one 
given in Anderson-Fuller [92: pp. 273-275]. 

(19.78) Theorem (Morita II for Dualities). Let A S; 9J1R, B S; s9J1 be (full) 
subcategories of9J1R and s9J1 with the following properties: 

(i) RR E A and sS E B. 
(ii) A, B are closed under quotients. More precisely, if A ~ is isomorphic to 

a quotient of some A E A, then A' E A (and the same for B). 

Let F : A -* Band G : B -* A be a duality between A and B (in the sense 
of(19.26»). Then there exists a bimodule SUR such that 

(1) F ~ HomR(-, U) and G ~ Homs(-, U). 
(2) AS; 9J1R[U] and B S; s9J1[U]. 
(3) U defines a Morita duality from R to S (in the sense of(19.41»). 

Proof. There is a considerable amount of formal details in this proof. In order to 
better focus on the key ideas, we shall present the main steps in the proof, skipping 
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some of the formal verifications (such as proving that certain isomorphisms are 
natural). 

Let V = F(RR) E B and V = G(sS) EA. For any r E R, left multiplication 
by r is an endomorphism of RR, so it gives rise to an endomorphism of sV 
(written on the right of sU). This makes U an (S, R)-bimodule, and similarly, V 
is an (S, R)-bimodule. In view of the duality given by F, G, we have, for any 
A E A and BE B: 

(19.79) Homs(sSs, F(A» ~ HomR(A, SG(S)R) (left S-isomorphism), 

(19.80) HomR(RRR, G(B» ~ Homs(B, sF(R)R) (right R-isomorphism). 

Applying the former to A = RR, we have: 

(19.81) V ~ Homs(S, V) ~ HomR(R, V) ~ V. 

This is a left S-isomorphism by (19.79), but the "naturality" of the isomorphism in 
A in (19.79) can be used to show that (19.81) is an (S, R)-isomorphism. Therefore, 
for any A E A: 

s(F(A» ~ Homs(sSs, F(A» ~ HomR(A, sVR) ~ HomR(A, SUR). 

After checking that this S -isomorphism is natural in A, we see that F ~ Hom R ( - , 

SVR), and similarly, using (19.80), we can show that G ~ Homs(-, SVR). This 
gives (1) in the theorem. 

From now on, we can think of F and G as given by the "V-dual" functors. In 
particular, we shall use the star notation (cf. § 19D) for F and G whenever it is 
more convenient to do so. However, we only know from the given hypotheses that 
there are natural equivalences 

(19.82) 

In order to prove (2), we still have to show that, for B E B, the canonical "hat" 
map (cf. §19D): 

(19.83) OB : B -+ B** = FG(B), b f-+ b 

given by beg) = g(b) (b E B, g E B*) is an isomorphism (and similarly for 
A E A). Since B is the V -dual of some R-module by (19.82), the injectivity of OB 
follows from (19.38). The proof of the surjectivity of OB is, however, nontrivial, 
and requires careful work. 

We first try to define an R-homomorphism y : B* -+ B*, as follows. By 
(19.82), we know there exists some natural S-homomorphism 1/IB : B -+ B**. 
Let us write b for the image of b E B under this isomorphism. For f E B*, we 
then define y (f) by 

(19.84) y(f)(b) = b(f) E V. 

It is easy to check that y(f) E B*, and that y : B* -+ B* is an R-homomorphism. 
The crucial claim is that 

(19.85) y is a surjective map. 



536 7. Matrix Rings, Categories of Modules, and Morita Theory 

Assuming this claim, the proof for the surjectivity of () B can be given as follows. 
For any a E B**, consider the composition 

I * Y * a a = a 0 y: B _ B _ U. 

Since a' E B**, a' = b for some bE B. For any g E B*, find f E B* such that 
y(f) = g (by (19.84». Then 

a(g) = a(y(f» = b(f) = y(f)(b) = g(b) = b(g), 

so a = b, as desired. 
To complete the proof, we must show how to construct the f above,for a given 

g E B*. First note that, since U = SUR, U~ = HomR(UR, UR) is an (S, S)
bimodule, so Homs(U~, B) is a left S-module. We construct an S-isomorphism 
"CB : B -+ Homs(U~, B) so as to make the following diagram commutative: 

(19.86) 

Here, the isomorphism on the right comes from the duality pair (F, G), and the 
bottom isomorphism is induced by rpu : U R ~ U~*. Assuming the fact that "C B is 
natural in B, we see that: 

(19.87) Thefunctor Homs(U~, -) : B -+ B is naturally equivalent to lB. 

Given g E B*, there is a unique S-homomorphism h making the following 
diagram commutative: 

(19.88) 

(Here, we need the fact that rpu is not only an R-isomorphism, but also an S
isomorphism: this follows from the naturality of rp.) Let b E Band fJ = "CB(b), 
as in (19.88). By (19.87), the map h induced by a unique f : sB -+ sUo Thus, 
rpu(g(b» = h(fJ) = f 0 fJ. But by the commutativity of (19.86), rpu 0 b = fJ* 
(recall that b is by definition 1/1 B (b». More explicitly, we have the commutative 
diagram 

u** 
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For f E B*, this gives 

((Ju(b(f)) = f3*(!) = f 0 f3 = ((Ju(g(b)). 

Thus, g(b) = b(!) = y(f)(b) (cf. (19.84», and we have g = y(f), proving 
(19.85). This completes the proof of B ~ s9Jt[U], and A c;; 9"JtR [U] follows 
from symmetry. Since RR, UR E A and sS, sU E B, and A, B are closed 
under quotients, we see that the quotients of the above four modules are all U
reflexive. Therefore, "Morita I" (Theorem (19.43» implies that U defines a Morita 
duality from R to S. D 

Exercises for §19 

o. Prove (19.4): a module M R is artinian iff every quotient of M is f.cog. 

\. Give a direct proof for the equivalence of the conditions (1) and (2) in 
(19.1), without using the notion of the socle. 

2. Let N ~ M be R-modules. If M is f.cog., it is clear that N is also f.cog. 
Show that the converse holds if N ~e M. 

3. For any module M, show that the following are equivalent: 

(1) M is semisimple and f.g.; 
(2) M is semisimple and f.cog.; 
(3) rad M = 0 and M is f.cog. 

Show that these statements imply, but are not equivalent to: 

(4) rad M = 0 and M is f.g. 

4. True or False: For any exact sequence 0 ---+ K ---+ L ---+ M ---+ 0, if K, M 
are f.cog., so is L ? 

5. Show that M = MI EEl· .. EEl Mtl is f.cog. iff each M j is. 

6. Show that any f.cog. module has finite uniform dimension. Is the converse 
true, at least for injective modules? 

7. (Vamos) For any module M R , show that the following are equivalent: 

(1) MR is f.cog.; 
(2)E(M);::: E(VI)EEl·· ·EElE(Vtl) for suitable simple modules VI, ... , Vtl ; 
(3) M ~ E (VI) EEl ... EEl E (Vr ) for suitable simple modules VI, ... , Vr • 

8. (Matlis) For any commutative noetherian ring R, show that a module MR 
is artinian iff it is f.cog. Your proof should work as liong as R has the 
property that its localizations at maximal ideals are all noetherian. (Hint. 
Reduce to the case when R is local, noetherian, and complete, and use 
(19.56).) 

9. A module MR is said to be cofaithful if RR embeds into M n for some 
n < 00. 
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(1) Show that a cofaithful module MR is always faithful. 
(2) If R is commutative, show that a f.g. M R is faithful iff it is cofaithful. 
(3) (Beachy) Show that RR is f.cog. iff all faithful right R-modules are 
cofaithful. (In particular, the latter condition holds over any right artinian 
ring, and any cogenerator ring.) 

9'. If R is a semiprime ring such that RR is f.cog., show that R is a semisimple 
ring. 

10. For any ring R, R' := Homz(R, QjZ) is an (R, R)-bimodule. Show that 
(R')R is an injective cogenerator in 9J1R (and similarly for R(R')). 

11. Show that R = n~ = I R j is a cogenerator ring iff each R j is. 

12. Give another proof for the fact that any QF ring R is a cogenerator 
ring, without using (15.11)(1). (Hint. Recall Exercise (15.13)(1) and use 
(19.8).) 

13. Show that over R = Z, a module URis a cogenerator iff every nonzero 
M R admits a nonzero homomorphism into U. (Hint. Every nonzero epi
morphic image of the Priifer group C pX is isomorphic to C pX.) 

14. Prove the "only if" part of (19.22). 

15. Keep the notations in (19.22), and assume that sM and Ms are faithful, 
M = E(V) for some module Vs, and that the map S -+ End(Ms) is 
onto. Show that, upon viewing V as a right ideal in R = S E9 M, we have 
R = E(VR). (A special case of this appeared in the arguments in (19.24).) 

16A. Suppose RR is a cogenerator. 

(1) If R has no nontrivial idempotents, show that R is a right self-injective 
local ring. 
(2) If R is a domain, show that R is a division ring. 

16B. For any ring R, show that E(RR) is an (injective) cogenerator iff R is a 
right Kasch ring. 

16C. (Kato) For any right self-injective ring R, show that the following are 
equivalent: 

(1) RR is a cogenerator; 
(2) R is right Kasch; 
(3) ann, (anne (A)) = A for any right ideal A ~ R. 

(Recall that, for a right self-injective ring R, these (and other) equivalent 
conditions define the notion of a right PF ring: see (19.25).) 

16D. Let R be a commutative ring that is subdirectly irreducible; Le., R has 
a smallest nonzero ideal. If R is self-injective, show that R is a local 
cogenerator ring. 

The next four exercises purport to show that" RR being injective" and" RR 
being a cogenerator" are, in general, independent conditions. (These two 
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conditions together define the notion of a right PF ring.) Exercises 18-20 
are adapted from Osofsky [66]; see also Kasch [82: pp. 323-333]. 

17. Let R = njEJ A j , where the Aj 's are division rings, and J is infinite. 
By (3.11B), RR is injective. Without assuming (19.18), show that RR is 
not a cogenerator, and that R is not right Kasch. 

18. Let k be a field, and S be the commutative k-algebra k E9 EBi>1 kei con
structed in Exercise (8.17) (with eiej = 8ijei). Let V; = kVi (i ~ 0) be 
the simple right S-modules constructed in that exercise, with the S-action 

Vi e j = 8ij Vi (i ~ 0, j ~ 1). 

Let M be the right S-module EBi>O Vi = kvo E9 kVI E9 ... , and define a 
left S -action on M by -

ejVi = 8j_1,i Vi (i ~o, j ~ 1). 

(1) Check that, underthe above actions, M is an (S, S)·bimodule, faithful 
on both sides. 
(2) Let R = S E9 M be the trivial extension of sMs by S. Show that R is 
right Kasch but not left Kasch. 
(3) Use (19.22) to show that R is neither right nor left self-injective. 

19. Keep the above notations and work in the ring R. Show that: 

(1) eiR = kei + Vi-I (i ~ 1), with eiR/Vi-1 ~ V; as right R-modules; 
(2) soc(ei R) = Vi -I S;e ei R; 
(3) For any right ideal A S; R and any i, j ~ 1, show that any R-ho
momorphism f : A ~ eiR can be extended to an R-homomorphism 
g: A + ejR ~ eiR; 
(4) Using (3) and Baer's Criterion, show that eiR = E«Vi-dR) for any 
i ~ 1. 

20. For the ring R in the last two exercises, show that: 

(1) RR is a cogenerator, but RR is not a cogenerator; 
(2) R is neither right nor left PF. 

21. Let U R be the minimal injective cogenerator over a commutative ring R. 
View U as a bimodule RUR and let F : !mR -+ R!m, G : R!m -+ !mR 
be the U -dual functors, denoted as usual by *. Show that for any simple 
VR , V* is a simple (left) R-module. Using this, show that F, G define a 
self-duality on the Serre subcategory of R -modules of finite length. (This 
generalizes the usual self-duality of finite abelian groups noted in (19.29). 
However, RUR may not define a Morita duality since RUR may not be 
faithfully balanced.) 

22. Let U be an (S, R)-bimodule, and let * denote the U -dual as usual. Let 
PR = EBiEI Pi. We identify P* with n Pt, and (EB P;*)* with n pr· 
Let B : EB Pt -+ n Pt be the inclusion map. 
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(I) Show that P E 9JLR [U] iff each Pi E 9JL R [U], e* is injective, and 
im(e*) = EB Pt* (in n Pt*)· 

(2) Show that e* is injective iff (n Pt / EB Pt)* = o. 
(3) Show that, if sU is injective or a cogenerator, then P E 9JLR [U] 
implies that Pi = 0 for almost all i. 

(The theme of this exercise is due to B. Osofsky. The formulation above 
was suggested to me by I. Emmanouil; see also Kasch [82: p. 329], for the 
case U = RRR') 

23. Show that the hypothesis on U in (3) of the exercise above cannot be 
dropped. (Hint. Recall Exercise (2.8').) 

24. Suppose SUR defines a Morita duality from R to S. Show that any M E 

9JL~g has a projective cover (in the sense of FC-(24.9». In view of FC
(24.16), this yields another proof for the fact that R is semiperfect.) (Hint. 
Deduce the existence of projective cover for M E 9JL~g from the existence 
of injective hull for M* E s9JL[U].) 

25. Suppose SUR defines a Morita duality from R to S. If R is right artinian, 
show that S is left artinian, and U gives a duality between 9JL~g = 9JL R [U] 
and JI9JL = s9JL[UJ. (Hint. Show that sN f.g. ==> sN f.cog.; then use 
(19.4).) 

26. Suppose SUR defines a Morita duality from R to S. If R is QF, show 
that S is also QF. 

27. (Partial converse to (19.64).) Let R be a ring such that every nonzero 
right R -module has a simple submodule. Show that if N R is I.c., then it is 
artinian. 

28. Let R be a left perfect ring (i.e., R/rad(R) is semisimple, and for any 
sequence {ai, a2, ... } ~ rad(R), ala2·· ·an = 0 for some n). 

(1) Show that every nonzero right R-module has a simple submodule. 
(2) For any MR , show that soc(M) ~e M. 
(3) (Generalization of (19.65» Deduce from the last exercise that a right 
R-module is I.c. iff it is artinian. 

29. Let R be a right perfect ring (i.e., R/rad(R) is semisimple, and for any 
sequence {ai, a2, ... } ~ rad(R), an ... a2al = 0 for some n). Show that 
if a module M R is I.e., then it is noetherian. Deduce that, over a perfect 
ring, a (left or right) module is I.c. iff it has finite length. 

30. (Osofsky, Sandomierski) Let R be a right I.e. ring (e.g., any ring R that 
admits a Morita duality into some other ring S). If R is I-sided perfect, 
show that R must be right artinian. 

31. (Osofsky) Let R be a cogenerator ring. If R is I-sided perfect, show that 
R is QF. 
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32. Suppose SUR defines a Morita duality from R to S. Assuming Onodera's 
I-sided characterization of cogenerator rings (19.69), show that if R is a 
cogenerator ring, then so is S. 

33. (Leptin) Let N ~ M be R-modules where N is I.c. Let {Ai: i E I} be 
an inverse system of sub modules in M, in the sense that, for any finite 
J ~ I, there exists j E I such that A j ~ Ai for all i E J. Show that 
nEt(N + Ai) = N + nEt Ai. 

34. (Sandomierski) Let N ~ M be R-modules where N is I.c. Show that the 
family F of submodules A ~ M such that N + A = M has a minimal 
member. (Such a minimal member is called an addition complement of N 
in M.) (Hint. Zorn's Lemma applies to F thanks to the last exercise.) 

35. The proof for half of Zelinsky's result (19.58) was left out of the text. 
Supply this missing proof. 

36. (Essentially Grothendieck) Let K / k be a finite Galois field extension with 
Galois group G. Let B be the category of finite G-sets, and A be the 
category of finite-dimensional commutative etale k-algebras that are split 
over K (i.e. algebras A such that A ®k K ~ K x ... x K). Show that there 
are natural contravariant functors F : A ~ Band F' : B ~ A defining 
a duality between A and B, such that the transitive G-sets in B correspond 
to field extensions of k which are embeddable into K. (Hint. The field K, 
being both a k-etale algebra and a G-set, plays the role of U in this duality. 
For A E A and B E B, define F(A) = A* = HOmk-alg(A, K) E B, and 
F'(B) = B* = Homc(B, K) E A. Then verify that A** ~ A and 
B** ~ B. There is a profinite version of this duality also.) 
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