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Preface 

This book is based on several courses given by the authors since 1966. It 
introduces the reader to the representation theory of compact Lie groups. 

We have chosen a geometrical and analytical approach since we feel 
that this is the easiest way to motivate and establish the theory and to indicate 
relations to other branches of mathematics. Lie algebras, though mentioned 
occasionally, are not used in an essential way. The material as well as its 
presentation are classical; one might say that the foundations were known to 
Hermann Weyl at least 50 years ago. 

Prerequisites to the book are standard linear algebra and analysis, 
including Stokes' theorem for manifolds. The book can be read by German 
students in their third year, or by first-year graduate students in the United 
States. 

Generally speaking the book should be useful for mathematicians with 
geometric interests and, we hope, for physicists. 

At the end of each section the reader will find a set of exercises. These vary 
in character: Some ask the reader to verify statements used in the text, some 
contain additional information, and some present examples and counter
examples. We advise the reader at least to read through the exercises. 

The book is organized as follows. There are six chapters, each containing 
several sections. A reference of the form III, (6.2) refers to Theorem (Defi
nition, etc.) (6.2) in Section 6 of Chapter III. The roman numeral is omitted 
whenever the reference concerns the chapter where it appears. References to 
the Bibliography at the end of the book have the usual form, e.g. Weyl [1]. 

Naturally, we would have liked to write in our mother tongue. But we 
hope that our English will be acceptable to a larger mathematical community, 
although any personal manner may have been lost and we do not feel 
competent judges on matters of English style. 



viii Preface 

Arunas Liulevicius, Wolfgang Liick, and Klaus Wirthmiiller have read 
the manuscript and suggested many improvements. We thank them for 
their generous help. We are most grateful to Robert Robson who translated 
part of the German manuscript and revised the whole English text. 
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CHAPTER I 

Lie Groups and Lie Algebras 

In this chapter we explain what a Lie group is and quickly review the basic 
concepts of the theory of differentiable manifolds. The first section illustrates 
the notion of a Lie group with classical examples of matrix groups from 
linear algebra. The spinor groups are treated in a separate section, §6, but 
the presentation of the general theory of representations in this book pre
supposes no knowledge of spinor groups. They only appear as examples 
which, although important, may be skipped. In §§2, 3, and 4 we construct the 
exponential map and exploit it to obtain elementary information about the 
structure of subgroups and quotients, and in §5 we explain how to construct 
an invariant integral using differential forms. We quote Stokes' theorem to 
get a result about mapping degrees which we shall use in Chapter IV. 

1. The Concept of a Lie Group and the 
Classical Examples 

The concept of a Lie group arises naturally by merging the algebraic notion 
of a group with the geometric notion of a differentiable manifold. However, 
the classical examples, as well as the methods of investigation, show the 
theory of Lie groups to be a significant geometric extension of linear algebra 
and analytic geometry. 

(1.1) Definition. A Lie group is a differentiable manifold G which is also a 
group such that the group multiplication 

Jl.: G x G-+ G 
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(and the map sending g to g- 1) is a differentiable map. A homomorphism 
of Lie groups is a differentiable group homomorphism between Lie groups. 

For us the word differentitJble means infinitely often differentiable. 
Throughout this book we use the words differentiable, smooth, and c«> as 
synonymous. 

The identity map on a Lie group is a homomorphism, and composing 
homomorphisms yields a homomorphism-Lie groups and homomor
phisms form a category. One may define the usual categorical notions: in 
particular, an isomorphism (denoted by ~)is an inv~rtible homomorphism. 

We will use e or 1 to denote the identity element of G, although we will 
sometimes use E when considering a matrix group and 0 when considering 
an additive abelian group. 

The reader should know what a group is, and the concept of a differen
tiable manifold should not be new. Nonetheless, we review a few facts about 
manifolds. 

(1.2) Definition. Ann-dimensional (differentiable) mtlllifold M" is a Hausdorff 
topological space with a countable (topological) basis, together with a 
maximal differentitJble atltu. This atlas consists of a family of charts 
h1 : U;.-+ UJ. c R", where the domains of the charts, {U J.}, form an open 
cover of M", the UA, are open in R", the charts (local coordinates) h1 are 
homeomorphisms, and every change of coordinates h1,. = h,. o hi 1 is differ
entiable on its domain of definition h1(U;. n U ,.). 

-~ ' . ' . 
I ' . ' . ' 

Figure 1 

The atlas is maximal in the sense that it cannot be enlarged to another 
differentiable atlas by adding more charts, so any chart which could be added 
to the atlas in a consistent fashion is already in the atlas. 

A continuous map f: M-+ N of differentiable manifolds is called 
differentiable if, after locally composing with the charts of M and N, it induces 
a differentiable map of open subsets of Euclidean spaces. 
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The reader may find an elementary introduction to the basic concepts of 
differentiable manifolds in the books by Brocker and Janich [1] or Guillemin 
and Pollak [1], but we will assume little in the way of background. We now 
turn to the examples which, as previously mentioned, one more or less knows 
from linear algebra. 

(1.3) Every finite-dimensional vector space with its additive group structure 
is a Lie group in a canonical way. Thus, up to isomorphism, we get the 
groups IR", n E N0 . 

(1.4) The torus IR"/lL" = {IR/7L)" ~ (S 1)" is a Lie group. Here S1 = 
{ z E C II z I = 1} is the unit circle viewed as a multiplicative subgroup of C, 
and the isomorphism IRjlL--+ S1 is induced by t ~ e2";'. The n-fold product 
of the circle with itself has the structure of an abelian Lie group due to the 
following general remark: 

(1.5) If G and H are Lie groups, so is G x H with the direct product of the 
group and manifold structures on G and H. 

GxH 
Figure 2 

H 

It will turn out that every connected abelian Lie group is isomorphic to the 
product of a vector space and a torus (3.6). 

(1.6) Let V be a finite-dimensional vector space over IR or C. The set Aut(V) 
of linear automorphisms of V is an open subset of the finite-dimensional 
vector space End(V) of linear maps V--+ V, because Aut(V) = 

{A E End(V)Idet(A) # 0} and the determinant is a continuous function. 
Thus Aut(V) has the structure of a differentiable manifold. After the intro
duction of coordinates, the group operation of Aut(V) is matrix multiplica
tion, which is algebraic and hence differentiable. Therefore Aut(V) has a 
canonical structure as a Lie group, and we get the groups 

GL(n, IR) = AutR(IR") and GL(n, C) = Autc(IC"). 

Linear maps IR"--+ IRk may be described by (k x n)-matrices, and, in 
particular, GL(n, IR) is canonically isomorphic to the group of invertible 
(n x n)-matrices. Thus we will think of GL{n, IR), its classical subgroups 
SL(n, IR), O(n), SO(n), ... , and GL(n, C) as matrix groups. 
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The group GL(n, IR) has two connected components on which the sign 
of the determinant is constant. Automorphisms with positive determinant 
form an open and closed subgroup GL + (n, IR). It is connected because 
performing elementary row and column operations which do not involve 
multiplication by a negative scalar does not change components. 

These linear groups yield many others once one knows, as we will show 
in (3.11) and (4.5), that a closed subgroup of a Lie group and the quotient of 
a Lie group by a closed normal subgroup inherit Lie group structures. 

(1. 7) As a result we get the groups 

SL(n, IR) = {A E GL(n, IR)Idet(A) = 1}, and 

SL(n, C)= {A E GL(n, C)ldet(A) = 1}, 

the special linear groups over IR and C. We also get the projective groups 

PGL(n, IR) = GL(n, IR)/IR* and PGL(n, C) = GL(n, C)/C*, 

where IR* = IR\{0} and C* = C\{0} are embedded as the subgroups of 
scalar multiples of the identity matrix. The projective groups are groups of 
transformations of projective spaces, see ( 1.16), Ex. 11. 

In this book, however, we are primarily interested in compact groups, so 
we recall the following closed subgroups of GL(n, IR) from linear algebra: 

(1.8) The orthogonal groups O(n) ={A E GL(n, IR)I'A ·A= E}, where 1A 
denotes transpose and E is the identity matrix. Analogously there is the 
unitary group V(n) = {A E GL(n, C) I* A ·A = E}, where *A = 1A is the 
conjugate transpose of A. Elements of O(n) are called orthogonal and ele
ments of U(n) are called unitary. On IR" there is an inner product, the standard 
Euclidean scalar product 

n 

(x, y) = L x. · y., 
v= 1 

and on C" one has the standard Hermitian product 

n 

(x, y) = L x. · Yv· 
•= 1 

O(n) (resp. U(n)) consists of those automorphisms which preserve the inner 
product on IR" (resp. C"), i.e., those automorphisms A for which 

(Ax, Ay) = (x, y). 

O(n) is also split into two connected components by the values ± 1 of the 
determinant, and one of these is the special orthogonal group 

SO(n) = {A E O(n)ldet(A) = 1}. 
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The connectedness ofSO(n) follows from (4. 7), but one may also, for example, 
join A E SO(n) to E by an arc in GL +(n, IR) and apply Gram-Schmidt 
orthogonalization to this arc (see Lang [2], VI, §2). 

The special unitary group is defined analogously: 

SU(n) = {A E U(n)jdet(A) = 1}. 

These groups are compact, being closed and bounded in the finite-dimen
sional vector space End(V). 

(1.9) Quaternions. There is up to isomorphism only one proper finite field 
extension of IR, namely the field C of complex numbers. There is, however, 
a skew field containing C of complex dimension 2 and real dimension 4, 
called the quaternion algebra D-0, which may be described as follows: The 
IR-algebra D-0 is the algebra of (2 x 2) complex matrices of the form 

with matrix addition and multiplication. 

If such a matrix is nonzero, its determinant, lal2 + jbj2, is nonzero, and 
its inverse is another matrix of the same form. Thus every nonzero h E D-0 
has a multiplicative inverse, so D-0 is a division algebra (also called skew field). 
We consider Cas a subfield of IHI via the canonical embedding C--... IHl given 
by 

so we may think of C, and therefore also IR, as subfields of IHI. 
The field IR is the center of IHI. For the center, Z = {z E D-0 I zh = hz for all 

hE IHI}, certainly contains IR, and, were Z larger than IR, then Z as a proper 
finite field extension of IR, would be isomorphic to C. But Z -=1- IHI, so choosing 
x E D-0 with x ¢ Z we get a proper finite (commutative!) field extension 
Z(x) ~ C(x), which is impossible; see also (1.16), Ex. 14. 

The algebra IHI is a complex vector space, C acting by left multiplication. 
As such it has a standard basis comprised of two elements 

1 = [~ ~] and j = [ _ ~ ~l 
with the rules for multiplication 

zj = jz for z E C and/ = -1. 
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This basis gives the standard isomorphism of complex vector spaces 

(a,b)~a+bj=[-~ :]. 

The quaternion algebra IHl has a conjugation anti-automorphism 

1: IHl -+ IHl, h = a + bj ~ z(h) = 1i = a - bj, a, bE C. 

Viewing h as a complex matrix, z(h) = *h, where *h is the adjoint matrix. 
Conjugation is ~-linear, coincides with complex conjugation on C, and 
obeys the laws 

z(h · k) = z(k) · z(h) and 12 = id. 

The norm on IHl is defined analogously to the complex norm by 

N(h) = h ·li = 1i ·h. 

NotethatN(a + bj) = lal 2 + lbl 2 isrealandnonnegative,andthatN(h)=0 
precisely if h = 0. As with the complex numbers, the multiplicative inverse 
of hE IHl is 1i · N(h)-1, and if hE C, N(h) = lhl 2 • If one views has a (2 x 2) 
complex matrix, N(h) = det(h). 

As a real vector space IHl has a standard basis consisting of the four elements 

. [i OJ 
I= 0 -i' j = [ _ ~ ~]. and k = [~ ~]. 

with rules for multiplication 

i2 = / = k2 = - 1, 

ij = -ji = k, jk = - kj = i, and ki = - ik = j. 

The quaternions ai + bj + ck, a, b, c E ~. are called pure quaternions, 
and, as a real vector space, IHl splits into ~ and the space of pure quaternions 
isomorphic to IR 3 • Each h E IHl has unique expression as h = r + q with 
r E ~and q E ~3 (pure). Conjugation may be expressed in this notation as 

z(r + q) = r - q, 

and therefore N(r + q) = r 2 - q2. Thus on the subspace IR3 of pure 
quaternions, N(q) = - q2 , so q2 is a nonpositive real number. The pure 
quaternions may be characterized by this property using only the ring 
structure of IHI. If h = r + q, r E ~. q pure, then h2 = r2 + q2 + 2rq is real 
if and only if r = 0 or q = 0, and is nonpositive real if and only if r = 0. 

With the standard isomorphism of real vector spaces IR4 -+ IHl sending 
(a, b, c, d) to a + bi + cj + dk, the norm on IHl corresponds to the Euclidean 
norm, the square of the Euclidean absolute value on ~4• With the standard 
isomorphism C2 ~ IHI, the quaternionic norm corresponds to the standard 
Hermitian norm on C2• The group 

Sp(l} ={hE IHIIN(h) = 1} 
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is called the quaternion group, or group of unit quaternions. In matrix 
notation Sp(l) consists of the matrices 

a, bEe, 

and thus is the same as SU(2). The standard isomorphism IHJ ~ ~4 identifies 
Sp(l) with the unit sphere, S3 . This group is the universal covering of the 
rotation group S0(3), see (6.17), (6.18), and plays an important role in 
theoretical physics. We will meet the quaternion algebra again in §6 in the 
guise of the Clifford algebra C 2 . 

(1.10) The IHI-Linear Groups. The basic statements of linear algebra may 
also be formulated for skew fields. An endomorphism <p: W -+ W, which is 
linear with respect to multiplication on the left by scalars from IHJ, may be 
described by an (n x n)-matrix (({))..)with coefficients in IHJ as follows: If 
e. E IHJn is the vth unit vector, then({)).. is defined by <p(e.) = L).C{J;...e).. Thus 
if h = (h 1, ••• , hn) E W, we have 

cp(h) = C{J(L h.e.) = L h.cp(e.) = L h.<p;...e;.., 
v v. 1.. 

and 

Consequently we may canonically identify the IHI-linear group 

GL(n, IHI) = Aut 11iW) 

with the group of invertible (n x n)-matrices with coefficients in IHI, as we 
did with linear groups earlier. In this case matrices are multiplied as follows: 

An IHJ-endomorphism of W is invertible precisely if it is invertible as an 
IR-linear map, so, as before, Aut 11i1Hln) is open in the IHJ-vector space EndiHI(IHJn) 
and GL(n, IHI) is a 4n2-dimensional Lie group. 

The standard isomorphism IHJ = e + ej = e 2 induces a standard 
isomorphism of complex vector spaces 

IHJn = en + en . j = en EEl en = ezn, 

and, accordingly, an IHI-linear endomorphism <p of W may be thought of as 
a special kind of e-linear endomorphism of e 2n: 

en$ en = e" + e" · j..!. e" + e" · j = en EEl en, 
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namely, one which commutes with the ~-linear (but not C-linear !) map 

j: C" EB C"-+ C" EB C", 

(u, v) = u + vjf-+j(u + vj) = -v + uj = (-v, u) 

coming from left multiplication by j. The condition that <p commute with 
left multiplication by j is equivalent to the condition that, as an endomor
phism of C" EB C", the map <pis given by a matrix of the form 

[ A -~] 
B A' 

A, BE Endc(C"). 

Note that an IHI-linear endomorphism may be represented uniquely in the 
form A + Bj, where A and Bare complex (n x n)-matrices. 

(1.11) There is an inner product on IHI", the standard symplectic scalar 
product: If h = (h 1, •.. , h") and k = (k 1, ..• , k")' then 

n 

<h, k> = I h.l< •. 
v=l 

The corresponding norm is given by (h, h) = L• h)i. = L• N(h.) ~ 0. The 
symplectic group, Sp(n), is the group of norm-preserving automorphisms of 
IHI": 

Sp(n) = {<p E GL{n, IHI)I N(<p(h)) = N(h) for all hE IHI"}. 

A norm-preserving automorphism leaves the inner product invariant 
((1.16), Ex. 10). If we identify IHI" with C2" as above, the standard norms on 
IHI" and C2" correspond, so Sp{n) is identified with the subgroup of U(2n) of 
matrices of the form 

[ AB -B] A E U(2n), A, BE End(C"). 

Thus we will view Sp(n) as a group of complex matrices. A complex (2n x 2n)
matrix in Sp(n) is called a symplectic matrix. 

(1.12) The map C2" = IHl" ~ IHI" = C2" from (1.10), which sends (u, v) = 
u + vj to (- v, u) = j(u + vj) is not C-linear. It is composed of the C-linear 
map induced by right multiplication by j followed by complex conjugation 
c: C2"-+ C2", where c(w) = w. Right multiplication by j may be written as 

(u, v) f-+ ( -v, u) 
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and expressed by the matrix 

[ 0 -E] 
J = E 0' E = identity matrix in GL(n, C). 

Hence a unitary matrix A e U(2n) is symplectic if and only if AcJ = cJA. 
Since Ac = cA, this means cAJ = cJ A, and therefore AJ = J A. And 
because A e U(2n), 1A = .A- 1, so we end up with 

1AJA = J. 

This equation expresses the fact that the linear transformation A fixes the 
bilinear form 

(u, v) H 1uJv, 

defined by the matrix J. 
Dropping the condition that A be unitary gives the complex symplectic 

group 

Sp(n, C)= {A e GL(2n, C)I 1AJA = J}. 

(1.13) As a matter of principle, one should always consider the three cases 
~. C, and Oil, and these are the only three finite-dimensional real division 
algebras. This is the content of the Frobenius theorem. For a proof see 
Jacobson [2], 7.7, p. 430. Further information and historical remarks on 
quaternions may be found in Chapters 6 and 7 by Koecher and Remmert in 
Ebbinghaus et al. [1]. 

We have defined subgroups 

GL(n, Oil) :::::> Sp(n), symplectic scalar product, 

GL(n, C):::::> U(n), Hermitian scalar product, 

GL(n, ~) :::::> O(n), Euclidean scalar product, 

in a completely analogous fashion. We refer to each of the scalar products 
involved simply as inner product. 

More generally, to every bilinear map of a finite-dimensional real vector 
space V into a real vector space H 

v X v-+ H, (v, w)H (v, w), 

there belongs a Lie group G = {A e Aut(V)I (Av, Aw) = (v, w) for all 
v, we V}. Many important Lie groups with a geometric flavor arise in this 
way, for example the Lorentz group, which comes from the scalar product 
on ~4 
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Some of the linear groups with which we shall be concerned are depicted, 
together with some of their inclusions, in the following diagram. 

(1.14) 
GL + (n, IR) --. GL(n, !R) --. 

i i 
SO(n) --. O(n) --. 

GL +(2n, IR) 

i 
GL(n, C) 

i 
U(n) 

! 
S0(2n) 

--. GL(n, IHI)--. GL(2n, C) 

i i 
--. Sp(n) --. Sp(n, C) 

! 
U(2n) 

(1.15) Finally, we should point out that every finite group is a zero-dimen
sional compact Lie group. Many things we will say about representations in 
general are of interest in the special case of finite groups. We will encounter 
the following important finite groups: 

The symmetric groups 

S(n) = the group of all permutations of { 1, ... , n}. 

The alternating groups 

A(n) = the group of all even permutations of {1, ... , n}. 

The cyclic groups 

7!../n = 7l../n7l.. = the cyclic group of order n. 

(1.16) Exercises 

1. Let G be a Lie group. Use the fact that 11: G x G-+ G is differentiable to show 
that the map G-+ G, g~--+g- 1 , is differentiable. Hint: Use the implicit function 
theorem in a neighborhood of the unit element. 

2. Show that O(n) is a Lie group as follows: LetS be the space of symmetric matrices 
and consider the map f: End(IR")-+ S defined by f(A) = 'AA. Then O(n) = r 1(E), 
and Eisa regular value off (i.e., rank(dfA) = dim(S) for all A E f- 1(E)). Use the 
same method to show that U(n) is a Lie group. 

3. Show that G0 , the connected component of the unit element, is a normal subgroup 
of the Lie group G. 

4. Show that a connected Lie group is generated by every neighborhood of the unit 
element. 

5. Show that a discrete normal subgroup of a connected Lie group must be contained 
in the center of the group. 

6. For the inclusions in diagram (1.14): Show that U(n) c S0(2n) and GL(n, C) c 

GL + (2n, IR) by viewing C" as a real vector space. Describe complex and unitary 
matrices as real (2n x 2n)-matrices of a special form. Show GL(n, C) 11 S0(2n) = 
U(n) and GL(n, IR) 11 U(n) = O(n). 

7. Explicitly describe an injective homomorphism O(n)-. SO(n + 1). 
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8. Let D c SL(n, IR) be the group of upper triangular matrices with positive elements 
on the diagonal. Show that the map 

D x O(n)-+ GL(n, IR), (A, C)t-+A · C 

is a diffeomorphism. (Hint: This is the content of the Gram-Schmidt orthogonaliza
tion process, see Lang [2], VI, §2.) Thus GL(n, IR) ~ O(n) x IR1112"'1•+ 11 as a 
differentiable manifold. 

Show in the same way that B x U(n)-+ GL(n, C), (A, C) 1-+ A · C, is a dif
feomorphism, where B is the group of triangular complex matrices with positive 
real diagonals. Thus GL(n, C)~ U(n) x IR"' • as a manifold. Also show that 
SL(n, IR) ~ SO(n) x IR1112>•·I•+ 11 - 1 as manifolds, and in particular SL(2, IR) ~ 
S1 x IR2• 

9. Let P c GL(n, IR) be the set of positive-definite symmetric matrices. Show that 
multiplication induces a bijection P x O(n)-+ GL(n, IR). (Hint: If A E GL(n, IR), 
then A · 'A E P, so A · 'A = B2 for some BE P, and B- 1 A E O(n).) Let H c GL(n, C) 
be the set of positive-definite Hermitian matrices. Show that multiplication induces 
a bijection H x U(n)-+ GL(n, C). 

10. Show that symplectic maps A: IHI" -+ IHI" leave the symplectic scalar product in
variant: If A E Sp(n), h, k E W, and (h, k) = Lv h, ·K, by definition, then (Ah, Ak) = 
(h, k). 

11. The real projective space IRP" of lines through the origin in IR"+ 1 may be given the 
structure of an n-dimensional manifold, and PGL(n + 1, IR) is a group of trans
formations (diffeomorphisms) of this manifold. Give the necessary definitions, 
and then repeat for the complex projective space CP" and PGL(n + 1, C). 

12. Show: 
(i) 0(2n + 1) ~ S0(2n + 1) x .l/2 as groups; and 

(ii) 0(2n) ~ S0(2n) x .l/2 and U(n) ~ SU(n) x S1 as manifolds. 
In case (ii) describe the multiplication S0(2n) x .l/2 inherits from the group 
0(2n) (semidirect product). 

There is a surjective homomorphism 

S1 x SU(n) -+ U(n), 

Show that the kernel is cyclic of order n. 

(C, A) t-+ C · A. 

13. Show that if one identifies IR3 with the subspace of pure quaternions in IHI, the vector 
product in IR3 is given by p x q = pure part of p · q. 

14. Verify that IRis the center of IHI by direct calculation. 

2. Left-Invariant Vector Fields and 
One-Parameter Groups 

For our next topic we discuss tangent spaces of manifolds and see what they 
look like for Lie groups. Intuitively, the tangent space at a point p of a sub
manifold M c ~·is the space of velocity vectors ci(O) of arcs ex: ~-+ M with 
cx(O) = p. 
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Figure 3 

There is an invariant description of this space, which may be given as follows: 

First we restrict our attention to the local situation. Let M be an n-dimen
sional manifold with p E M. Two differentiable maps f, g defined locally at 
p with values inN have equal germs at p iff I U = g I U for some neighborhood 
U of pin M. This is an equivalence relation: an equivalence class is called a 
germ and denoted f: (M, p)-+ (N, q) where f(p) = q. Thus such a germ is 
represented by a map f: U -+ N, where U is a neighborhood of p, and 
g: V-+ N represents the same germ iff and g agree on a smaller neighborhood 
W c U n V. The set BP of all germs of real-valued functions (M, p)-+ ~is 
an ~-algebra in a natural way, addition and multiplication being done on 
representatives. 

(2.1) Definition. A tangent vector at p EM" is a linear map X: BP-+ ~ 
satisfying the following product rule (a derivation of the ~-algebra 8 p): 

X(cp · t/1) = X(cp) · t/l(p) + cp(p) · X(t/1). 

One should think of X ( cp) as the directional derivative of cp in the direction X. 
The set T PM of all tangent vectors at pis a real vector space in a natural way 
and is called the tangent space of Mat the point p. The germ of a differentiable 
map f: (M, p) -+ (N, q) induces a homomorphism of ~-algebras 

and hence the tangent map (the differential) 

X 1-+X of*. 

Thus T Pf(X)cp = X(cp of). The map!~--+ TPf is functorial, which means 
T p/(id) = id, and the maps coming from a composition 

(M, p) ~ (N, q) ~ (L, r) 

obey (Tqg) o (Tpf) = Tp(g of): TPM-+ T,L. 
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It follows from functoriality that an invertible germ has an invertible 
differential, and therefore a chart h: U-+ U' c IR", p e U, induces an iso
morphism TPh: TPM = TPU-+ Th<P1U' = Th<P>IR". The right-hand side is 
easily understood because one has: 

(2.2) Proposition. If V is a finite-dimensional real vector space, then T P V is 
canonically isomorphic to V for all p e V. 

PRooF. We define a homomorphism V-+ T P V by sending the vector v to the 
derivation X.,: tiP-+ IR given by differentiation in the direction v: 

X.,(cp) = ~ I cp(p +tv). 
ut r=O 

The map V-+ TP Vis clearly injective (choose cp linear), so we must show it 
to be surjective. For this we may assume (V, p) = (IR", 0). In particular, the 
derivations ofox;, in the directions ofthe canonical basis vectors of IR", lie in 
the image of our map. Hence if X e T 0 IR" with X(x;) = a;, where X; is the 
ith coordinate function, the derivation Y = L al._ofox;) is also in the image 
of our map. Now for any derivation Z, the product rule implies that Z(l) = 
Z(l) + Z(l), so Z(l) = 0 and Z(c) = 0 for any constant c. Thus X - Y 
vanishes on constants, and also on each X; by construction. But this is enough 
to show that X = Y. For given any cp with cp(O) = 0, 

cp(x) = L cpl._x) · xh cpl._x) = f D;cp(tx) dt, 

where D; is differentiation with respect to the ith variable. Thus any tangent 
vector in T 0 IR" vanishing on each X; vanishes on cp by linearity and the 
product rule again. 0 

Note by the way that a derivation is completely determined by its values 
on linear functions. 

After the introduction of suitable charts around p and q, a differentiable 
germ f: (M, p)-+ (N, q) may be described by a germ (IRm, 0)-+ (IR", 0), 
which we will also call f. 

(M,p) __1___. (N, q) 

chart l l chart 

(IRm, 0) -r (IR",O) 

The tangent map T 0 f is calculated as follows: 

( a ) a I " a~; acp Tof ~ (cp) = ~ (cp of)= .L ~(0)·~(0), 
uX1 uX1 0 •=1 uX1 uy, 
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so 

To!(~)= I o}; (0)·~. 
oxj i=l oxj oyj 

That means that, with respect to the bases (ojox) and (ojoy) for T0 !Rm and 
T 0 IR", the tangent map T 0 f is described by the Jacobian matrix 

Df = (o};)· 
oxj 

The family of all tangent spaces (TpMip eM) fits together into a global 
object 

TM = U TPM (disjoint union), 
peM 

the tangent bundle. 
The tangent bundle is comprised of the total space T M, the base space M, 

the fibers T PM, and the projection n: T M -+ M, defined by sending v e T PM 
top. 

Each chart h: U-+ U' of M gives rise to a bundle chart T(h). This bundle 
chart is linear on fibers and is given by 

TM;::::, TU ~ TU' = U' x IR", 

where we use the previously mentioned fact that there is a canonical iso
morphism T P U' ;;: IR". These charts form an atlas, which makes TM into a 
2n-dimensional manifold. The projection 1t is locally trivial, namely the 
diagram 

TM;::,TU~U' X IR" 

·l h ]··· 
M ;::::, U -----+ U' 

commutes, and Th is a linear isomorphism on fibers. 
For a Lie group the situation is simple, insofar as the tangent bundle is 

trivial, i.e., the tangent bundle is globally isomorphic to the product of the 
base space and a fiber. Such an isomorphism is obtained as follows: Every 
group element x e G defines a left translation 

lx: G-+ G,g~--+xg 

with inverse r; I = lx-•· Let e be the unit of G and let LG = TeG. Then there 
is an isomorphism of vector bundles 

(2.3) 
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That is to say, the diagram commutes, and the restrictions to the fibers 
LG ;;:: { g} x LG --+ T 9 G are linear isomorphisms. 

(2.4) Definitions. The vector space LG := T e G is called the Lie algebra of G. 
The word "algebra" is not yet justified, but we will explain the algebra 
structure soon. A homomorphism of Lie groups/: G--+ H induces a homo
morphism Lf = Tef: LG--+ LH of Lie algebras in a functorial fashion. 

A differentiable vector field on a manifold M is a differentiable section of 
the tangent bundle, which is to say a differentiable map X: M --+ T M such 
that 

rcaX=idM, 

or, equivalently, X(p) E T PM. Saying that X is differentiable is the same as 
saying that iff: M--+ IR is differentiable, then so is the map Xf: M--+ IR, 
pH X(p)(f). In local coordinates (x~> ... , x.)-or on an open set in IR"-a 
differentiable vector field may be written in the form 

" a 
XH i~lalx) OX/ 

with smooth functions ai. 
A vector field X on a Lie group is called left-invariant if the diagram 

TG.-!LTG 

x[ [x 
G~G 

commutes for every x E G. 

(2.5) Remarks. Given v E LG, there is a constant section x H (x, v) of 
G x LG, and the trivialization (2.3) transforms this section into the vector 
field Xv: G--+ TG, x H Telx(v). The map v H Xv defines a canonical iso
morphism between LG and the vector space of left-invariant vector fields 
on G. From now on we will identify LG with this space, and we will denote a 
left-invariant vector field on G by X E LG. 

A vector field X: M --+ T M asks to be integrated. A germ of a curve 
a: (IR, <)--+ (M, p) defines a tangent vector 

;tjta = a(<)ETPM 

mapping CP--+ IR by sending cp to ojotj,cp(oc(t)). Using the canonical iso
morphism IR = T<IR, (2.2), in which 1 E IR corresponds to the basis vector 
ojot E T<IR, this can be expressed as a(<)= Tta(l). In other words, a para
metrized curve defines a tangent vector which, as a derivation, is differentia
tion with respect to the parameter. We will frequently describe and calculate 
tangent vectors as velocity vectors of curves. 
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An integral curve rx: ]a, b[ --> M of a vector field X on M is a differentiable 
curve with the property a(t) = X(rx(t)) for a < t < b. 

Figure 4 

In local coordinates, 

n a 
X(x) = i~ai(x) oxi and rx(t) = (rx 1(t), ... , rxit)). 

Thus, with respect to the basis (ojoxi) we have & = (& 1, •.• , &n), and the 
condition that a be an integral curve is &lt) = a!a 1(t), ... , an(t)) for 
i = 1, ... , n. The theory of differential equations (Brocker [1], III; Lang 
[1], VI) tells us that exactly one maximal integral curve passes through each 
point of M. More precisely: Given the vector field X on M, there is an open 
set A c: IR x M such that A n (!R x p) is an open interval containing the 
origin for each p E M, together with a differentiable map, the (local) flow of 
the vector field, 

<P: A--> M, (t, p) 1--4 rxp(t). 

The curve t 1--4 aP(t) is the unique maximal integral curve of X with initial 
value ap(O) = p, and ]ap, bp[ is its interval of definition. The flow <P satisfies 
the followingfiow equations 

<P(O, p) = p and <P(s, <P(t, p)) = <P(s + t, p), 

wherever the left-hand side is defined. This follows because the curves 

s 1--4 .P(s, .P(t, p)) and s 1--4 .P(s + t, p) 

are both integral curves of X starting at 4>(t, p). Setting 4>1(p) = <P(t, p) makes 
these equations more appealing to the eye and the intuition: 

(2.6) 

The vector field can be recovered from the flow: 

X(p) = :tio .P(t, p) E TPM. 
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Returning to the case of a Lie group G, if X is a left-invariant vector field on 
G, and a is an integral curve of X, then lxa is also an integral curve of X for 
every x E G. In other words, ax = lxae, and, as a consequence, if a. is defined 
on the interval ] - t:, t:[, then a may be extended beyond any time t by at 
least ±t:. This means that all the intervals of definition ]ax, bx[ of maximal 
integral curves are equal to all of ~. and the flow associated to X is global. 
So in this case the existence of the flow cP can be seen quite easily: cP(t, g) = 
gax(t), where ax is the integral curve for the field X E LG starting at ax(O) =e. 

(2.7) Remark. A one-parameter group of a Lie group G'is a homomorphism 
of Lie groups 

a:~ ..... G 

(the homomorphism, not just its image!). The correspondence 

a ~--+ &(0) E LG 

defines a canonical bijection between the set of one-parameter groups of G 
and the Lie algebra of G. 

PRooF (of last statement). Interpreting LG as the space of left-invariant 
vector fields on G, the inverse map is given by 

X ~--+ax = integral curve of X starting at e. 

This is, in fact, a one-parameter group. For if cP is the flow associated to X, 
a\s + t) = cPr+s(e) = cP1(cP.(e)) by (2.6), and cP1(ge) = gcPr(e) because of left 
invariance of X and hence cP. Setting g = cP.(e), we have cP1(cP.(e)) = 
cP1(cP.(e) ·e)= cP.(e)cPr(e) = ax(s) · ax(t), so ax is a homomorphism. The com
position X~--+ ax ~--+ tix(O) is the identity, and to see that a~--+ ti(O) =X~--+ ax 
is also the identity, note that the one-parameter group a defines a flow 
cP: ~ x G -+ G, (t, g)~--+ g · a(t), with ojot lo cP(g, t) = Tlg(a(O)). This is the 
same flow as the one corresponding to the left-invariant vector field X, so 
their integral curves starting ate coincide: a = ax. D 

(2.8) Examples. A finite-dimensional real vector space V, interpreted as a 
Lie group, coincides with LV, and av(t) = tv is the one-parameter group 
corresponding to v. 

Similarly, the torus 'f?.n;zn has 'f?.n as its Lie algebra, and the one-parameter 
group Corresponding to V E 'f?.n is av: t f-+ tv mod zn. 

The group of linear automorphisms Aut(V) has as its Lie algebra End(V), 
the vector space of all linear endomorphisms of V, since Aut(V) is an open 
submanifold of End(V). The one-parameter subgroup corresponding to 
A E End(V) is 

00 1 
t ~--+ exp(tA) = L I (tA)". 

v=O V • 

This instructive example will be of considerable concern to us. 
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So far we have examined what the basic constructions from the theory of 
manifolds mean for Lie groups. Before turning to more detailed study of one
parameter groups, we should say a few words about the algebra structure of 
the Lie algebra of a Lie group. Although we hardly use it in this book, which 
takes a geometric point of view, this structure is an important fundamental 
concept. The algebra structure of a Lie algebra may be described as follows: 
Taking X, Y e LG to be left-invariant vector fields, for each point g e G the 
fields X and Y yield derivations on function germs ds:fined about g. Now, if 
cp is a germ of a function, then X cp may also be viewed as a germ of a function, 
to which Y may be applied. The same is true with X and Y switched, and 
the Lie product [X, Y] of X and Y is given as a derivation by 

(2.9) [X, Y]cp = X(Ycp)- Y(Xcp}. 

An easy calculation shows that [X, Y](cpl/f) = [X, Y](cp) · 1/1 + cp ·[X, Y](l/1) 
and hence, in contrast to the individual summands, (2.9) really does satisfy 
the product rule. 

Referring to the group structure of G, we have an alternative description 
of the Lie product of left-invariant vector fields. Each element g e G gives 
rise to an inner automorphism 

c(g): G-+ G, 

This, in turn, gives rise to a homomorphism which will later be of con
siderable concern to us, namely the 

(2.10) Adjoint representation 

Ad: G -+ Aut(LG}, g H Lc(g). 

Here L denotes the differential at the unit-see (2.4). The homomorphism 
Ad induces a homomorphism of Lie algebras 

ad = LAd: LG -+ LAut(LG) = End(LG) 

sending X to the homomorphism Y r-+ [X, Y], so 

(2.11) [X, Y] = ad(X)Y. 

We will compute the right-hand side more explicitly to show that it coincides 
with the earlier definition (2.9) of [X, Y]. If X, Y e LG, then c(ocx(s))ar(t) = 
ocx(s). cxr(t) · cxx( -s), since cxx(s}- 1 = ocx( -s). Setting a(s, t) = c(cxx(s))ar(t), 
we have Ad(ocx(s))Y = ojotl0 a(s, t) e LG, and 

ad(X)Y = !lo :tlo a(s, t), 
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where we have used the identification of the vector space LG with its tangent 
space. If we view tangent vectors as derivations acting on germs of functions 
qJ at the unit, this last equation means that 

(ad( X) Y)qJ = a:~t lo qJ(a(s, t)), 

where qJ: (G, e)-+(~, 0). There is something to check here, see (2.22), Ex. 9. 
To calculate the derivative with respect to s, apply the chain rule to the 
composition 

The result is that 

(s, t) 1--> (s, t, - s), 

~2--+ ~3-+ ~ 

Thus if qJ is a differentiable germ at the unit, 

(ad(X)Y)qJ = o:~t~o f(J(IXX(s) ·IXY(t))- O:~t~o qJ(iXY(t) ·IXX(s)). 

But (t, g) H g · cxr (t) is the flow corresponding to Y, so 

:tlo qJ(g · cxx(s) · cxr(t)) = YqJ(g · ax(s)). 

Repeating this for X, 

and doing the same thing to the other summand, we see that (2.11) and (2.9) 
describe the same left-invariant vector fields. 

(2.12) Properties of the Lie Product. The Lie product LG x LG-+ LG, 
(X, Y) H [X, Y], is bilinear and hence provides LG with the structure of a 
real algebra. The Lie product also satisfies 

(i) [X, X] = 0, hence [X, Y] = - [Y, X]. 
(ii) [[X, Y], Z] + [[ Y, Z], X] + [[Z, X], Y] = 0, the Jacobi identity. 

These identities are easily verified from (2.9) (see (2.22), Ex. 3). An algebra 
over a field which satisfies the properties (2.12} is called a Lie algebra. 



20 I. Lie Groups and Lie Algebras 

We want to determine the Lie algebras of the linear groups we have 
previously introduced. The one-parameter groups for X, Y e LAut(V) = 
End(V) are functions(~. 0)-+ (Aut(V), E) such that 

so 

~x(s) = E + sX mod s2, 

~r(t) = E + tY mod t 2 , 

a(s, t) = ~x(s)~Y(t)~x( -s) = (E + sX)(E + tY)(E- sX) 

= E + tY + st(XY- YX) mod(s2, t2 ), 

and taking the derivative o2 fos ot at zero yields 

(2.13) [X, Y] = XY - YX. 

Any associative algebra becomes a Lie algebra with this Lie product. This 
also gives the Lie product for the subspaces and quotients of End(V) which 
are the Lie algebras of subgroups and quotient groups of Aut(V). We will 
examine our classical linear groups one by one. 

(2.14) The Lie algebra of an abelian group has trivial Lie product [X, Y] = 0, 
as is evident from (2.11). In particular, LT" = L~" = ~". with the Lie 
product [v, w] = 0. 

(2.15) so(n) = LSO(n) c End(~") is the Lie algebra of skew-symmetric 
matrices, and consequently dim SO(n) = !n(n - 1). The Lie algebra LSO(n) 
may be computed as follows: If ~xis a one-parameter group in SO(n), then, 
modulo s2 , 

E = t~x(s). cxx(s) = 1(E + sX)(E + sX) = E + s('X + X), 

so 'X + X= 0 and X is skew-symmetric. And if X is skew-symmetric, then 
1aX(s)cxx(s) = exp(s · 1X)exp(s ·X)= exp( -sX) · exp(sX) = exp(O) = E, so 
a.x lies entirely in SO(n). We still have not proved that SO(n) is a manifold. 

Similar calculations allow us to achieve our goal in other linear groups: 

(2.16) u(n) = LU(n) c End(IC") is the Lie algebra of skew-Hermitian 
matrices. This shows dim U(n) = n2• 

(2.17) sl(n) = LSL(n) is the Lie algebra of matrices in End(~") with zero 
trace. In this case the calculation with a one-parameter group in SL(n) gives 
(mod s2): 

1 = det(cxx(s)) = det(E + sX) = 1 + s Tr(X), 

which may be interpreted as saying (det cxx)'(O) = Tr(X) = 0. 
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Conversely, we have 

dd I det exp((t + s)X) = det exp(tX) ·!:._I det exp(sX), 
so ds 0 

and d/ds lo det exp(sX) = Tr(X) as we have just seen. This yields the differ
ential equation 

(det exp(tX))" = Tr(X) · det exp(tX), 

so if Tr(X) = 0, det exp(tX) is constant and, since det exp(O) = 1, we have 
exp(tX) E SL(n) for all t. 

By combining (2.16) and (2.17), one gets 

(2.18) su(n) = LSU(n) c End(C") is the Lie algebra of skew-Hermitian 
matrices with trace zero. 

(2.19) The Lie algebra sp(n) = LSp(n) consists of the skew-Hermitian 
matrices in End(IHI") c End(C2"), and these are obviously the complex 
(2n x 2n)-matrices of the form 

[A -~] 
B A' 

'A= -A, 'B =B. 

The dimension of Sp(n) is 2n2 + n. 
The adjoint representation (2.10) of the linear groups is given by 

(2.20) Ad(A): End(V)-+ End(V), X 1-+ AXA - 1. 

To see this, note that 

c(A)ax(t) = A exp(tX)A- 1 = exp(tAX A - 1) = aAXA- '(t) 

and differentiate at t = 0, showing that the groups operate by conjugation 
as claimed. 

(2.21) Physicists' Convention. By using a scaling factor on LS1 = IR, we may 

assume that the exponential map of S1 is given by 

exp: IR-+ Sl, 

If we describe LS1 as the space of skew-Hermitian (1 x I)-matrices, the 
element x E !Rcorresponds to the matrix (ix) E Endc ct, and multiplication 
by (- i) gives the inverse correspondence. Physicists are accustomed to 
multiplying the Lie algebra of any linear Lie group by (- i), and hence, 
denoting what we have called A E End(V) by B = - iA, the exponential 

map is given by 
exp: B 1-+ eiB. 

If A is skew-Hermitian, then iA is Hermitian, so, in physicists' notation, the 
Lie algebra of U(n) is the space of Hermitian (self-adjoint) operators. One 
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should always use the above method of translation when passing from our 
formulas to those of the physicists. 

(2.22) Exercises 

1. Show that a connected one-dimensional Lie group is isomorphic to IR or S1• 

2. Show that a bijective homomorphism of Lie groups is an isomorphism. 

3. Check the properties (2.12) of the Lie product. 

4. Calculate the Lie algebras of the projective groups PGL(n, IR) and PGL(n, C). 

5. Check that the Lie algebras of SO(n), U(n), SL(n, IR), SL(n, C), and Sp(n) (which we 
have given in the text) are, in fact, closed under the Lie product of matrices and 
invariant under conjugation by elements of their corresponding groups. For example, 
if A, B are skew-symmetric (n x n)-matrices, and C E SO(n), you must show that 
AB - BA and CAC- 1 are skew-symmetric. 

6. Show that the image of the one-parameter group t t--+ (t, jit) mod l 2 is dense 
in T 2• 

7. Specify n - 1 injective homomorphisms cp.: S' -+ SO(n), v = 1, ... , n - 1, such that 
SO(n) is generated by the elements {cp.(z)lz e S 1, v = 1, ... , n- 1}. 

8. Show that there is a linear isomorphism cp: so(3)-+ IR3 such that cp[X, Y] = 

cp(X) x cp(Y) (vector product in IR3) and cp(AXA -t) = Acp(X) for A E S0(3). 
This isomorphism sends a one-parameter group to the vector pointing in the direction 
of its rotation axis and scaled by its angular velocity. In components 

cp: [ ~ 
-y 

-z yl 
0 -x t--+(x,y,z). 

X 0 

9. Let a: (IR2, 0)-+ (M, p) be the germ of a differentiable map with a(s, 0) = p for all s. 
Then s 1--+ iJfotl0 a(s, t) E TPM is the germ of a differentiable curve, and so 
ofos loofot l0 a(s, t) E T PM is a well-defined tangent vector. Show that this vector 
acts as a derivation on germs of functions at p by cp t--+ o2 fos otl0 cpa(s, t). Hint: You 
may suppose that (M, p) = (IR", O) and that cp is linear. 

3. The Exponential Map 

Given a tangent vector X at the unit of a Lie group G, which determines a 
left-invariant vector field of G, there is the one-parameter group a.x: ~ -+ G 
with lix{O) = X. 

(3.1) Proposition. The map 

exp: LG--+ G, 
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which is called the exponential map, is differentiable. Furthermore, its differ
ential at the origin is the identity. 

[ZJ~ 
neighborhood of 

Oin LG 

Figure 5 

PROOF. The one-parameter groups s t-+ oc'x(s) and s t-+ ocx(ts) belong to the 

same vector tX E LG, and are therefore equal. In particular, 

exp(tX) = oc'x(l) = ocx(t), 

and so ojot lo exp(tX) = X. Thus if exp is differentiable, T0 exp = idLG. We 
show differentiability by considering the map 

~ X G X LG --+ G X LG, (t, g, X) t-+ (g · ocx(t), X). 

This is simply the flow on G x LG corresponding to the vector field 
(g, X) t-+ (X(g), 0), and hence is a differentiable map. Hence the restriction 
1 x e x LG --+ G, (1, e, X) t-+ ocx(l), is also differentiable. 0 

Note that, from now on, we may describe the one-parameter group ocx 
by t t-+ exp(tX). 

The exponential map plays a central role-it describes how the Lie 
algebra determines the structure of the corresponding Lie group. Thus, as 
in a first course in analysis, it is the most important map in the theory of 
Lie groups. 

(3.2) Naturality. A homomorphism 
commutative diagram 

LG~LH 

expl [exp 

G-rH 

of Lie groups f: G-+ H induces a 

sincef o ocx is a one-parameter group with initial vector T .f(ax(O)) = Lf(X). 

The exponential map is locally invertible (i.e., a local diffeomorphism) at 
the origin 0 E LG because its differential at 0 is the identity, by the inverse 
function theorem. 
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(3.3) Example. If G = Aut(V) is the group of automorphisms of a finite
dimensional vector space, then LG = End(V), and (see (2.8)) 

<X> 1 
exp(A) = L 1 A•. 

v;O V • 

By naturality of the exponential map, the same formula holds for all linear 
groups, U(n), O(n), etc. This is the origin of the name "exponential map." 

(3.4) Consequence. A homomorphism of connected Lie groups is determined 
by its differential at the unit element. 

PRooF. Since the exponential map is natural and is a local diffeomorphism, 
the differential Lf of a homomorphism f determines the homomorphism 
on a neighborhood of the unit. Thus Lf determines f on the entire Lie 
group, since it is a general fact that a connected topological group G is 
generated by every neighborhood U of the identity. In fact, after replacing 
U by U n u- 1, if necessary, where u-t = {u- 1 lu E U}, we may assume 
U = u- 1• Letting U" = {u 1 • ••• ·uniu;E U}, we see that U:: 1 U" is an 
open subgroup of G. As such it has open cosets. Since these are disjoint and 
G is connected, there is just one coset. 0 

Occasionally we will need to consider other differentiable maps (LG, 0) -+ 
(G, e) whose differentials at the origin are the identity. The multiplication 
Jl.: G x G -+ G has differential at the point (e, e) 

(3.5) T<e,e)Jl.: LG $ LG-+ LG, (X, Y) t--+ X + Y. 

This is clear from the observation that the stated differential is linear and 
restricts to the identity on each summand of the left. Thus when the Lie 
algebra LG is in some way split as a direct sum of vector spaces 

the map 

LG-+ G, 

has differential idw at the origin and hence is locally invertible. 
The exponential map need not be surjective (see (3.13), Ex. 1), even on a 

connected Lie group. But it will turn out that, in the case of a compact 
connected Lie group, the exponential map is always surjective. Furthermore, 
the exponential map of a connected Lie group G is, in general, a homo
morphism only on lines through the origin. In fact, it is a homomorphism 
on all of LG precisely if G is abelian. 

Indeed, the exponential map is a bijection on a neighborhood of the 
origin which, as we have seen, contains a set of generators of G. Since the 
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Lie algebra is commutative as an additive group, we conclude that, if the 
exponential map is a homomorphism, G is abelian. Conversely, if G is 
abelian, multiplication is a homomorphism G x G -+ G which induces the 
map LG x LG -+ LG, (X, Y) 1-+ X + Y by (3.5). The statement then follows 
by naturality of the exponential map (3.2). 

(3.6) Theorem. A connected abelian Lie group is the product of a torus and a 
vector space: G ~ T" x lijs. 

PRooF. Since the image of the exponential map contains a set of generators, 

exp: LG-+ G 

is a surjective homomorphism. Its kernel K c LG is a discrete subgroup of 
LG, because the exponential map is a local bijection at the origin. Therefore
as we will show in (3.8)-K is generated by linearly independent vectors 
gl> ... , gk E LG. We complete this system usinggk+ I> ••• , gn so that g1, •.• , gn 
form a basis of LG. This basis determines an isomorphism LG ~ lij" such 
that 

Hence LG/K ~ !ij"f(7L" x 0) = Tk x lij"-". The homomorphism 

T,. X !ijn-k ~ LGjK-+ G 

is a bijective local diffeomorphism, and hence an isomorphism of Lie 
groups. 0 

(3.7) Corollary. A compact abelian Lie group is isomorphic to the product of 
a torus and a finite .abelian group. 

PROOF. For the purposes of this proof, we will write our Lie groups additively. 
By (3.6), the connected component of the unit of a compact abelian Lie 
group G is a torus T (where T might be T 0 = {e}). Thus there is a short 
exact sequence (i.e., the image of the inclusion i is the kernel of the projec
tion p) 

0 -+ T ~ G -+ B -+ 0. 
• p 

The sequence splits, since T is divisible. In detail: the quotient group B is 
discrete, since Tis openinG, and also compact and hence finite. We must 
find a section for p-i.e., a homomorphisms: B-+ G with p o s = id8 . Once 
we have this section, we get the isomorphism 

T X B ....... G, (t.b)t-+i(t) + s(b) 

with inverse g 1-+ (g - s(p(g)), p(g)). 
To construct s we use, for the sake of simplicity, that B is a product of 

cyclic groups B = 7Ljn 1 x · · · x 7Ljn". Corresponding to generators b 1, ••• , b" 
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of these cyclic groups, we choose elements Cto ••. , ck e G with p(c.) = b •. 
Then n. ·c. e T, since p{n.c.) = n. · p{c.) = 0 and Tis the kernel of p. Since 
T = R"!l" is a torus, n.c. = v. mod Z" with v. e Rk. Let d. = v.!n. mod Z", 
then d. e T and n.d. = n.c •. Setting g. = c. - d., p(g.) = b., and n.g. = 0. 
Thus the homomorphism induced by b. 1--+ g. is a well-defined section 
B--+ G. D 

We still need to show the following: 

(3.8) Lemma. A discrete subgroup B of a finite-dimensional vector space V is 
generated by linearly independent vectors g1, •.• , g ... 

PRooF. We proceed by induction on n =dim V. For n = 1 we may assume 
without loss of generality that V = R, in which case either B = 0 or B is 
generated by its smallest positive element. Now let n > 1 and B ::1= 0. Choose 
a Euclidean metric on V and an element g 1 e B of smallest positive norm. 
Then there is an orthogonal splitting V = R · g1 $ W, where W = (R · g1)1.. 
Consider the projection p: B c ~ · g1 $ W--+ W. We claim that the group 
p(B) c W does not contain a nonzero element of norm smaller than I g 11/2. 

representative system 
.----+--..,· ..... - . --/of V mod lg 1 

--+---+-+-;--+---W 

Figure 6 

For given 0 < jp{g)l < jg11/2, g e B, there is an mel such that the projec
tion of g + mg 1 onto~· g1 has norm at most jg11/2. Thus g + mg 1 E B, but 
0 < lg + mg11 S lg 11/J2, contradicting the choice of g1• This means that 
p(B) is discrete, and by the induction hypothesis is generated in W by linearly 
independent vectors h2 , ••• , ht with k s n. The kernel of p is generated by 
g1, so we have a short exact sequence 

0--+ (g 1)--+ B--+ (h2, ... , hk)--+ 0. 
p 

In this case it is easy to find a section for p-just choose any g2 , ••• , g" e B 
with p{g.) = h •. Therefore B is generated by gto ... , gk and these vectors are 
linearly independent because p{g2), ••• , p(gk) are linearly independent and 
p(g1) = 0. D 
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(3.9) Definition. A (Lie-) subgroup of a Lie group G is an injective homo
morphism of Lie groups 

f:H~G. 

Thus every injective one-parameter group is a subgroup and the inclusions 
of the classical linear groups in (1.14) provide many examples of subgroups. 
Note, however, that a subgroup need not be an embedding of manifolds. 
Certainly a subgroup is always immersive, i.e., the tangent map T h f is 
injective for all h e H. To see this, it is only necessary to ascertain that Lf 
is injective, and since the mappings exp are local diffeomorphisms at the 
origin, the injectivity off implies the injectivity of Lf in the following 
commutative diagram: 

LH~LG 

"Pl l"P 
H ---y-+ G 

But the bijection f: H ~ f(H) need not be a homeomorphism! In fact, 
f(H) may be a dense proper subset of G ((2.22), Ex. 6). The map 

is just such an example-it is a subgroup with dense image which is not an 
embedding. Maps like these will prove quite useful to us. 

(3.10) Definition. A subset N of an m-dimensional manifold M is called an 
n-dimensional (or (m- n)-codimensional) submanifold of M if every point 
p E N possesses a chart of M 

h; (U, p) ~ (U', 0) C ~· $ ~m-n = ~m, 

such that h(N n U) = IR" n U', where IR" = IR" El3 0 c !Rm. 

[Rm-n 

-+----~------r-IR" 

M 
Figure 7 

Restricting the charts in the definition to maps N n U ~ IR" n U' provides 
us with an atlas and hence the structure of a differentiable manifold for N. 
Remember that, by convention, everything refers to the differentiable 
(smooth) category. 
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A map f: N -+ M is called an embedding if f(N) is a submanifold of M 
andf: N-+ f(N) is a diffeomorphism. An easy point-set topology argument 
shows that an injective immersion/: N-+ M is an embedding iff: N-+ f(N) 
is a homeomorphism (Brocker and Janich [1], Prop. (5.7)). 

A subset H of a Lie group G is called an abstract subgroup if, after for
getting the differentiable structure, it is a subgroup in the group-theoretic 
sense. Thus His an abstract subgroup of G if gh- 1 e H whenever g, he H. 
If His also a submanifold of G, then His also a Lie group, since the multipli
cation H x H -+ H is just the restriction of the differentiable multiplication 
G X G-+ G. 

(3.11) Theorem. An abstract subgroup H of a Lie group G is a submanifold 
of G if and only if H is closed in G. 

PRooF. If His a submanifold of G, then His locally closed in G. Thus there 
is a neighborhood U of the unite E G such that H n U is closed in U. Given 
y e H, let x e yU- 1 n H, sox e Handy e xU. 

xU 

H 

Figure 8 

Then ye H n xU, which implies x- 1y E H n U = H n U. Hence y e H 
and H is closed. 

Conversely, let H be a closed abstract subgroup of the Lie group G. By 
the usual translation argument it suffices to find a neighborhood U of the 
unit of G such that H n U is a submanifold of U. To this end, we first find a 
subspace of LG which is a likely candidate for LH. We then exponentiate, 
locally mapping LG onto U and LH onto H n U, showing H n U to be a 
submanifold. 

Give the vector space LG a Euclidean metric and consider the exponential 
map and a local inverse log: U-+ U' at the unit: 

LG~G=>H 

u u 

u'-u w .. ______ ... · w 

0 Jog e 
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H' 
H 

exp 

tr .... ____ .,' 

log 

U' 

Figure 9 

Let H' = log(H n U). The proof now proceeds in three steps, (i), (ii), and 
(iii). 

(i) Let (hJ be a sequence converging to zero in H' such that (hJihnl)-+ 
X E LG. Then exp(tX) E H for all t E ~-

PRooF OF (i). As n-+ oo, (t/lhnl) · h"-+ tX and lhnl -+ 0. Since lhnl -+ 0, we can 
find mn E Z such that (mn ·I h" I) -+ t, so exp(mn · hn) = exp(mn ·I hn I· (hn/1 hn I)) 
-+ exp(tX). But exp(mn · hn) = exp(hn)m" E H, and His closed, so exp(tX) E H. 

(ii) The set W = {sXIX = lim(hn/lhnl), hn E H', s E ~} is a linear subspace 
ofLG. 

PRooF OF (ii). Let X, YEW and h(t) = log(exp(tX) · exp(tY)). Then as 
t-+ 0 with t > 0, h(t)/t-+ X + Y by (3.5), and h(t)/lh(t)l = h(t)/t · t/lh(t)l -+ 
(X + Y)/1 X + Y 1. from which (ii) follows. 

It remains to show: 

(iii) exp(W) is a neighborhood of the unit in H. 

PROOF OF (iii). Let D be the orthogonal complement of W in LG. The map 

W$D-+G, (X, Y) ._. exp(X) · exp(Y) 

is locally invertible at the origin. Suppose that (iii) is false. Choose (X", Y,) E 
W $ D with exp(Xn) · exp(Y,) E H, Y, 'I= 0, and (Xn, Y,)-+ 0 as n-+ oo. 
Since Dis a (closed) subspace, we may find aYE D such that, after passing 
to a subsequence, Yn/1 Y,l-+ Y. Note that I Yl = 1, so Y 'I= 0. But since 
exp(Xn) E H, and His a subgroup, exp(Y,) E H. Thus YEW, a contradic
tion. 0 

(3.12) Proposition. Let f: G-+ H be a group homomorphism between Lie 
groups which is continuous as a map between manifolds. Then f is differentiable, 
and hence is really a Lie group homomorphism. In particular, a topological 
group has at most one Lie group structure. 
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PROOF. The second statement follows from the first by considering the identity 
map of the group itself. To prove the first statement, let 

F1 = {(g, f(g))ig E G} c G x H 

be the graph off. Then r 1 is a subgroup of the Lie group G x H, and, since 
it is closed, it is a Lie subgroup. The projection p = pr 1 IF 1 : r 1 -+ G is a 
differentiable homeomorphism, and, since Lp is bijective, it is a diffeo
morphism. Thus f = pr 2 o p- 1 is differentiable. 0 

(3.13) Exercises. 

l. Show that the exponential map of the group SL(2, IR) is not surjective. What values 
can the trace Tr exp(A) take, if A E s1(2, IR)? Calculate the image of the exponential 

map. 

2. Show that the exponential map is surjective for SO(n) and U(n). Hint: Each matrix 
in U(n) is conjugate to a diagonal matrix. 

3. Show that an abelian Lie group is the product of a vector space, a torus, and a 
countable discrete abelian group. 

4. Show that the adjoint representation defines a surjective homomorphism Sp(l) = 
SU(2)-+ S0(3) with kernel consisting of the two-element set {E, - E}. As a manifold, 
S0(3) is diffeomorphic to real projective space IRP3, and this homomorphism is 
the universal covering S3 -+ IJU>3• 

5. Show that in every Lie group there is a neighborhood of the unit not containing any 
subgroup other than {e}. 

6. Show that a compact connected (complex-) holomorphic Lie group is abelian, i.e., 
it is isomorphic to Cn/B, where B is a discrete subgroup of en. Hint: The adjoint 
representation G -+ Aut(LG) is trivial, since holomorphic functions on a compact 
manifold are locally constant. 

4. Homogeneous Spaces and Quotient Groups 

We wish to describe the geometry of both the right multiplication of a closed 
subgroup H c G on the Lie group G and the left multiplication of G on 
G/H. But first we need to introduce some terminology. 

(4.1) Definidon. Let G be a Lie group. A (left) G-space is a topological space 
X together with a continuous left operation (also called left action) of G 
on X 

~= G X X-+ X, (g, x) 1-+ IP(g, x) = g · x 

such that 

e·x = x and (gh)·x = g·(h·x). 
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We will usually denote the G-space just by its underlying topological space 
X. A map f: X-+ Y of G-spaces is called equivariant, or a G-map, if for all 
x E X and g E G we have 

f(g · x) = g · f(x). 

A subset A of a G-space X is called invariant if g · a E A for all a e A and 
g E G. An invariant point is called a .fixed point. The subgroup 

G" = {g E Gig· x = x} 

of G (closed if X is Hausdorff) is called the isotropy group of the point x EX, 
and the invariant subspace 

G·x = {g·xlgeG} 

of X is called the orbit of x. The set of all orbits in X is denoted by X jG, and 
there is a canonical projection 

n = na: X-+ X/G, XI-+ G. X. 

We provide the orbit space XjG with the quotient topology with respect to 
this projection. If X jG consists of a single point -in other words, if X contains 
only one orbit-the G-action is called transitive. 

A G-space 4>: G x X-+ X is said to be differentiable, and is called a 
G-manifold, if X is a differentiable manifold and q, is differentiable. We will 
only be concerned with differentiable G-spaces. 

The map 4>: G x X -+ X may be described by its adjoint 

G -+ Homeo(X) = group of homeomorphisms X -+ X, 

g 1-+ [x t-+g · x]. 

The equations e · x = x and (gh) · x = g · (h · x) just say that this map is well 
defined and a homomorphism. 

If x has isotropy group H, then g · x has isotropy group gHg- 1• Thus a 
conjugacy class of isotropy groups is attached to each orbit. The G-space is 
divided into disjoint orbits, and invariant subsets are precisely the sets 
n- 1(A), where A c X/G. 

Just as there are left actions, there are right actions 

X X G-+ X, (x, g) 1-+ x · g, 

with x · e = x and x · (gh) = (x ·g)· h. Each right operation canonically gives 
rise to a left operation via the formula 

and vice versa. 

-1 g·x=x·g , 
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There is no end to examples: Each finite-dimensional vector space V is 
an Aut(V)-space, and any homomorphism cp: G ___. Aut(V) defines a G-action 
on Vby 

g · v = cp(g)v. 

The G-spaces which interest us at the moment are homogeneous spaces, 
which we provisionally define as follows: Let H c: G be a closed subgroup 
of a Lie group. Then group multiplication defines a right operation 
G x H .... G, (g, h) H gh, of the group H on the manifold G. The orbit space 
G/H of right H-cosets of G is called homogeneous space. The group G acts 
on GfH on the left via 

G X G/H .... G/H, (g, xH) H gxH. 

But in order to come to a fuller understanding, we must first have a better 
description of both the projection 1t: G ___. G/H and the right action of H on 
G. For this purpose we use a concept basic to the theory of transformation 
groups-that of a principal bundle. 

(4.2) Definition. Let H be a Lie group. An H-principal bundle is a locally 
trivial right H-space 

EX H-E. 

The space E is called the total space, H is called the structure group, B = E/ H 
is called the base space, and the canonical map 1t: E ___. B is called the pro
jection of the bundle. The orbit 1t- 1 { b} is called the fiber over b e B. The 
axiom of local triviality says: Each point of the base space possesses a neigh
borhood U together with an equivariant homeomorphism (called a bundle 
chart) 

where we view U x Has a right H-space, with H operating on the right via 
multiplication on the second factor: (u, h)· k = (u, hk). 

A bundle map f: E ___. E' is an H-equivariant continuous map of total 
spaces. 

Locally, that is to say on the open sets 1t- 1(U), the total space with its 
projection looks like the product U x H with projection onto the first 
factor. 

Two bundle charts cpi: 1t- 1Ui .... Ui x H, j = 1, 2, give a change of 
bundle charts over U 1 n U 2 = U 12 of the form 

(u, h)___. (u, yu(u) ·h), 

where the continuous map y 12 : U 12 ___. H is defined by cp2 cp 11(u, e) = 
(u, y12(u)). Here it is important to distinguish right from left: The group H 
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operates onE on the right, whereas in order to change charts, one multiplies 
by y12(u) E H on the left. Note that left and right multiplications commute. 

The perhaps simplest example of a nontrivial principal bundle, that is, 
one which is not globally the product of its base space and fiber, is the double 
covering of the circle by itself n: S1 -+ S1, z 1-+ z 2 as a Z/2-principal bundle. 
Here S1 = {z E Cllzl = 1}. 

Figure 10 

An H -principal bundle is called differentiable if the total and base spaces are 
differentiable manifolds, the action of H and the bundle projection are 
smooth maps, and the bundle charts in the definition may be chosen to be 
diffeomorphisms. If it exists, the differentiable structure of the base space is 
determined by that of the total space, for by looking at the bundle charts one 
sees that a map f: B -+ M of the base space is differentiable if and only if the 
composition E ~ B .!.. M is differentiable. In other words B is the differ
entiable quotient of E with respect to n. 

As one would expect, a family ( <p).: n- 1 U). -+ U). x HI A E A) is called a 
bundle atlas if the sets U)., A E A, cover the base space. 

These concepts will serve here as a geometric description of the projection 
of a Lie group onto its homogeneous space, G -+ G/H. 

(4.3) Theorem. Let G be a Lie group and H a closed subgroup. The operation 
of HonG by right multiplication defines an H-principal bundle with total space 
G, structure group H, base space G/H, and projection n: G-+ G/H, g 1-+ gH. 
In particular, G/H is a differentiable manifold and n is a submersion, i.e., the 
rank of Tn is dim GjH at every point. 

PROOF. (i) First we must show that the quotient topology on G/H is Hausdorff. 
Examples in the exercises (( 4.15), Ex. 1 and 2) point outthat some care should 
be taken when proving this. So let xH ¥= yH be two points in G/H. Choose a 
compact neighborhood K of x disjoint from the closed coset yH. Then KH 
is a neighborhood of xH disjoint from yH, so it suffices to show that KH is 
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closed in G. This is a special case of the general fact that if K is compact and 
A is closed, then KA is closed in G. To verify this, consider the map 
f: K x G-+ G, (k, g) f-+ k- 1g. Now x E KA if and only if k- 1x E A for some 
k E K, so KA = pri/- 1 A). But f- 1 A is closed, and, since K is compact, 
pr2 : K x G-+ G is a (proper) closed map. Thus KA is closed. 

Next we need to describe the local product structure of Gas an H-space. 
Choose a Euclidean metric on LG, and let LG = V $ LH be an orthogonal 
linear splitting. Let V. = {X E VjiXI < s} and D.= exp(V.). We call D. a 
(transverse) slice to Hat e. We show: 

(ii) For sufficiently smalls > 0, the mapping 

fl.= D. X H-+ G, 

is an open embedding. 

(g, h) f-+ gh 

G 
Figure ll 

PRooF OF (ii). The differential of fl. at the point (e, e) is the identity on both 
summands TeD• = V and TeH = LH of T(e,e)(D, x H). Thus if we choose 
s sufficiently small, fl. gives a diffeomorphism D, x U-+ D, · U for some 
neighborhood U of the unit in H. This implies that fl. is a local diffeomorphism 
everywhere, for fl.I(D, x Uh) = h o (fl.ID. x U) o h- 1• 

It remains to show that we can make fl. injective by choosing s small 
enough. So let d1, d2 ED., h1, h2 E H with d1h1 = d2 h2 • Setting h = h1hi 1, 
we have d1h = d2 and we may chooses so that d1 and d2 are so near to the 
unit that h = d} 1d2 must lie in U. Since fl. is injective on D. x U and 
f1.(d 1, h)= f1.(d 2 , e), we then get h1 = h2 and d1 = d2 , showing global 
injectivity. 

(iii) It is more or less obvious how to proceed from here: The sets 

Ug = gD •. H, g E G 

are invariant under right H-operation, and the Ug/H, g e G, constitute the 
open cover of the base space GjH needed for an atlas of the manifold GjH 
and the H-principal bundle G. Charts for GjH are given by the maps 
h9 : U9/H-+ D. whose inverses are defined by the composition 

h;; 1 : D. = D. x e c D. x H--: D •. H 7 gD,H = U9 -: U9/H. 
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Charts for the bundle are given by diffeomorphisms qJ9 with inverses 

l{J; 1 : Ug/H x H~D. x H-+ D.· H-+ gD.H = U9 • 0 
/lgX id jl g 

We frequently denote a bundle (imprecisely) by a sequence 

fiber -+ total space -+ base space. 

For example, 

H-+ G-+ G/H. 

(4.4) CoroUary. If N c G is a closed normal subgroup of a Lie group, then 
GfN, with its canonical differentiable and group structures, is itself a Lie 
group. If N is contained in the kernel of a homomorphism!: G-+ H, there is a 
unique factorization of homomorphisms of Lie groups: 

G~H 

I ,," 
71: '/ 

GfN 

PRooF. The group multiplication G/N x G/N-+ GfN is differentiable, as is 
clear from the commutative diagram 

GxG- G 

71: X 71: I 171: 

GfN x GfN-GfN 

since 1t x 1t is locally (up to diffeomorphism) the projection of a product 
onto one of its factors. Similarly, the homomorphism GfN -+ H is differ
entiable. The statement about kernels is also easy. 0 

Left translation induces a left action of G on its homogeneous space GfH. 
Since left multiplication and right multiplication commute, that is, (gx)h = 
g(xh), the translations 19 : G-+ G, x H gx, are bundle maps of the bundle 
1t: G-+ GfH. We may now give a more fitting definition of homogeneous 
space: 

(4.5) Defillition. A homogeneous space of a Lie group G is a manifold M with 
a differentiable transitive left operation of G on M. 

(4.6) Proposition. Let M be a homogeneous space of the Lie group G, let 
p eM and let GP c G be the isotropy group of p. Then the map 

fp: GfGP-+ M, gGPHgp 

is well defined and is a diffeomorphism. 



36 I. Lie Groups and Lie Algebras 

PRooF. The definition of GP implies JP is well defined and injective, and 
transitivity implies thatfP is surjective. Since the map QCP: G ~ M defined by 
QCP(g) = g ·pis differentiable, so isfP.It remains to show thatfP is immersive, 
i.e., that its differential at every point is injective (see (4.15), Ex. 4). Now JP 
is G-equivariant and therefore it has constant rank. Since it is injective, it 
must be immersive by the rank theorem of calculus. 0 

On one hand, this proposition allows us to recognize as homogeneous 
spaces many spaces which are well known or, in any case, worth knowing. 
On the other hand, if we are given a set M on which a Lie group G acts 
transitively (as a group without differentiable structure) in such a way that 
the isotropy group G P of some p e M is closed, then we can use the bijection 
G/Gp ~ M of the proposition to provide M with the structure of a homo
geneous space with this bijection becoming a diffeomorphism. We give some 
classical examples. 

(4.7) T~e group SO(n) operates linearly on IR" and transitively when re
stricted to the sphere S"- 1 = {x E IR" II xI = 1 }. The nth unit vector e, = 
(0, ... , 0, 1) has isotropy group SO(n - 1) c: SO(n), and hence we have a 
diffeomorphism 

SO(n)/SO(n - 1) ~ S"- 1, [A] 1-+Ae, 

and the SO(n- !)-principal bundle 

SO(n- 1) ~ SO(n) ~ S"- 1. 

Incidentally, this yields an inductive proof that SO(n) is connected, for if a 
bundle has connected fiber and connected base space, then its total space is 
connected. 

The action of O(n) on S"- 1 leads to a similar fibration 

O(n- 1) ~ O(n) ~ O(n)/O(n- 1) = S"- 1. 

(4.8) The unitary group acts linearly on C" and transitively when restricted 
to S2"- 1 = {x + iy E C"llxl2 + IYI2 = 1}. The isotropy group of the last 
unit vector inC" is U(n- 1) c: U(n). As above, this gives a diffeomorphism 
U(n)/U(n - 1) ~ S2"- 1 and the U(n - !)-principal bundle 

U(n- 1) ~ U(n) ~ S2"- 1• 

We also find, as a consequence, that U(n) is connected. 
As a matter of fact, bundles can be exploited to obtain more delicate 

topological information relating the homotopy types of the total space, the 
base space, and the fiber. 

By the same methods used above, the operation of SU(n) on the unit 
sphere leads to the principal bundle 

SU(n - 1) ~ SU(n) ~ S2"- 1, 
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and the quaternion algebra IHI gives rise to a principal bundle 

Sp(n "'-' 1)--+ Sp(n)--+ S4 "- 1. 

37 

(4.9) The group SU(n) operates linearly on C" and the induced operation 
on the projective space cpn-t of lines through the origin is transitive. The 
isotropy group of the point p = C ·en e cpn-t consists of matrices of the 
form 

[~] 
in SU(n). Thus this isotropy group is the image of the embedding 

U(n - 1)--+ SU(n), 

Interpreting U(n - 1) as a closed subgroup of SU(n) in this way, we get a 
principal bundle 

U(n - 1)--+ SU(n)--+ CP"- 1• 

The same construction yields an embedding O(n- 1)--+ SO(n) and a 
principal bundle over the real projective space IRP"- 1 of lines through the 
origin in IR" 

O(n- 1)--+ SO(n)--+ IRP"- 1. 

(4.10) The Hop/fibration of the three-sphere was a surprising and important 
discovery in algebraic topology. It arises from (4.9) in the case n = 2. One 
can identify all three manifolds involved as spheres, namely U(1) = S1, 

SU(2) = Sp(l) = S3 is the quaternion group, and CP1 = S2 is the Riemann 
sphere. Thus one has a principal bundle 

S1 --+ S3 --+ S2 • 

As previously hinted, such a fibration gives a long exact sequence of homotopy 
groups, and, in this case, one obtains an isomorphism l = n3(S3) --+ n3(S2). 

In this way H. Hopf [1] discovered the first nontrivial higher homotopy 
group of a sphere. To this day higher homotopy groups of spheres are an 
active area of investigation. 

(4.11) The manifold of orthonormal k-tuples of vectors in IR" is called the 
Stiefel manifold V .(R"). Elements of V t(IR") are often called orthonormal 
k-frames in IR". The orthogonal group O(n) acts transitively on the set 
Vt(IR") by 

A· (vto ... , Vt) = (Av 1, ••• , Av.), 



38 I. Lie Groups and Lie Algebras 

and the isotropy group of the k-frame comprised of the last k unit vectors 
p = (en-k+ 1, .•• , e,.) is O(n - k). Thus there is a bijection 

O(n)/O(n - k)--+ Vk(~"), [A] f--+ Ap. 

We use this bijection to define a differentiable structure on Vk(~") and obtain 
the principal bundle 

O(n - k)--+ O(n)--+ Vk(~"). 

(4.12) The manifold of all k-dimensionallinear subspaces of ~~~ is called the 
Grassmann manifold Gk(~"). Elements of Gk(~") are sometimes called 
k-planes in ~~~.The group O(n) operates transitively on Gk(~") and the iso
tropy group of the element ~k E Gk(~") is O(k) x O(n - k) c O(n) via the 

embedding (A, B) f--+ [ ~ ~l Hence one may provide Gk(~") with a differ

entiable structure such that Gk(~") ~ O(n)/(O(k) x O(n - k)). This yields 
the principal bundle 

O(k) x O(n - k) --+ O(n) --+ Gk(~"). 

Analogously there are Grassmann manifolds 

Gk(C") ~ U(n)/(U(k) x V(n - k)) 

and 

G1(1HI") ~ Sp(n)/(Sp(k) x Sp(n - k)). 

Their descriptions as quotients yield obvious diffeomorphisms Gk(K") ~ 
G,._k(K"), K = ~. C, or IHI, corresponding to the pairing of a subspace with 
its orthogonal complement. Grassmann manifolds play an important role 
in the theory of vector bundles, and lead to yet another encounter with the 
projectivespacesG1(1R") = ~p"- 1,G 1(C") = CP"- 1• 

We end this section by tacking on an important and oft-used theorem 
concerning the torus T" = ~~~ /Z". An element t E T" is called a generator if 
the group {tklk E Z}, algebraically generated by t, is dense in T". 

(4.13) Kronecker's Theorem. A vector v E ~~~ represents a generator of T" 
if and only if land the components v1, ..• , v,. ofv are linearly independent over 
the rational numbers IQ. Thus almost every element is a generator and gener
ators form a dense subset of the torus. 

PRooF. We write group operations additively. The exact sequence 

0 --+ Z" --+ ~~~ --+ T" --+ 0 
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defining the torus canonically identifies R" = LR" = L T", thereby identifying 
the projection R" -+ T" with the exponential map. Thus a homomorphism 
f: T"-+ S1 induces a commutative diagram 

0-----. 7L"-----+ Ill" -----+ T" 

lLfiZ" lLf lf 
0 -----+ 7L -----+ Ill -----+ s 1 

Therefore Lf(v1, ... , v,) = oc1v1 + · · · + oc,v, with oc. e 7L.. Now the following 
statements are equivalent: 

(i) 1, v1, ••• , v, are linearly dependent over Q. 
(ii) L• q.v. e Q for some n-tuple 0 #- (q 1, ••• , q,) e 0". 
(iii) L• oc.v. e 7L for some n-tuple 0 #- (och ..• , oc,) e 7L.". 
(iv) v mod 7L." is in the kernel of a nontrivial homomorphism/: T"-+ S1• 

(v) v mod 7L" is not a generator. 

The equivalences (i) <=> (ii) <=> (iii) are trivial, (iii)<=> (iv) results from what has 
beeh said, and (iv) <=> (v) may be seen as follows. Let [v] e ker{f: T"-+ S1). 

Iff is nontrivial, this kernel is not all of T" and hence is a proper closed 
subgroup ofT", so [v] cannot be a generator. Conversely, a nongenerator 
[ v] is contained in a proper closed subgroup H c T", and the quotient group 
T"/H is a nontrivial compact connected abelian Lie group. Thus T"/H is a 
torus Tk, k > 0, and [v] is in the kernel of the nontrivial homomorphism 

0 

(4.14) Coronary. A compact Lie group contains a dense cyclic subgroup if 
and only if the group is isomorphic to Tk x 7L/l for some k e N0 , 1 e 11\J. 

PROOF. If tis a generator of Tk and we choose-r e Tk such that (in additive 
notation) f. -r = t, then 1(-r, 1) = (t, 0) is a generator of T 1 x 0 and 
pri-r, 1) = 1 generates 7L/l. Thus (-r, 1) generates a dense cyclic subgroup of 
Tk x 7L/l. Conversely, if (a) is dense in G, then G is abelian, so G ~ Tk x B 
for some finite abelian group B. But B is generated by pr2(a) and hence is 
cyclic. 0 

A Lie group is called topologically cyclic if it contains an element, called 
a generator or generating element, whose powers are dense. Thus a topo
logically cyclic compact Lie group is isomorphic to Tk x 7L/l. 

(4.15) Exercises 

1. Exhibit two closed sets A and B in IR 2 such that A + B = {a+ bia e A, be B} 
is not closed in IR2• 

2. A global flow on X = IR2 gives X the structure of a left IR-space <P: IR x X-+ X. 
Find a global flow on X such that all integral curves ax: IR-+ X, t 1-+ <P(t, x) are 
em beddings but X fiR is not Hausdorff. 
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3. Let G be a compact Lie group and M x G --+ M a differentiable right G-manifold. 
Assume further that the maps Of11 : G--+ M, g f-+ pg are injections for every p E M. 
Show that the G-manifold has the structure of a differentiable G-principal bundle. 

4. Show that a bijective immersion of differentiable manifolds is a diffeomorphism. 
Hint: An immersion!: M--+ N is locally an embedding. If we had dim N >dim M, 
then f(M) would have Lebesgue measure zero (locally) in N (see Br6cker and 
Jiinich [1], §6). 

5. Show that any two fibers of the Hopf fibration (4.10) are linked in S3 ; see Hopf [1]: 

Figure 12 

6. Give a diffeomorphism S0(3) ~ IRP3, and, if you know enough about fundamental 
groups, show that n 1(SO(n)) ~ Z/2 for n > 2 with a generator represented by the 
mapping S 1 = SO( I).=. SO(n). 

7. Show that Sp(n) is simply connected. Show that SU(n) is simply connected. 

8. Show that there is a G-equivariant diffeomorphism of homogeneous spaces G/H.; 
G/K if and only if Hand K are conjugate in G. 

9. Show that a homomorphism of tori T" --+ Tk is induced by a linear map IR" --+ IRk 
whose associated matrix has integer coefficients. 

10. Show that the only noncompact topologically cyclic Lie group is Z. 

11. Let G be a Lie group and let X, Y E L(G). Show that [X, Y] = 0 if and only if 
exp(sX) · exp(t Y) = exp(t Y) · exp(sX) for all s, t E IR. If G is connected, then the 
Lie algebra of the center of G is {X E LGj[X, Y] = 0 for all Y E LG}. 

5. Invariant Integration 

Let X be a locally compact space and C~(X) be the vector space of con
tinuous real-valued functions on X with compact support. An integral on 
X is a monotone linear map 

J C~(X) --+ IR, 

"Monotone" means that if f(x) ~ g(x) for all x eX, then Jf ~ J g. The 
integral J f is often denoted Jx f(x) dx. 
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If X = G is a Lie group, an integral on G is called left-invariant if for all 
heG 

f 1 ° lh = f f, i.e., t f(h. g) dg = t f(g) dg. 

If G is compact, a left-invariant integral is called normalized if J 1 = I. We 
will construct a left-invariant (normalized) integral on a Lie group by using 
the theory of differential forms on manifolds. We will recall the germane 
concepts, and, for detailed introductions and expositions, we refer the 
student to the books of Brocker [1], Lang [1], and Spivak [1]. 

First recall the transformation formula for integrals on IR". If U c IR" is 
open and({': U--. V c IR" is a diffeomorphism with positive Jacobian deter
minant, then, for every integrable functionf: V--+ IR, 

(5.1) L (f o ({') • det DqJ = t f. 
Thus the transformation of integrands 

f --+ (f o ({') • det DqJ 

corresponds to the transformation ({': U --+ V of domains of integration. The 
factor det DqJ tells us how the oriented volume (the determinant) of an 
n-frame in the tangent space is transformed under the (linear) tangent map 
DqJ:Ifu 1, ••. ,uneTPU = IR",then 

det(u 1, ... , un) · det(D({') = det(DqJ· u1, ... , DqJ · un). 

So what we really can integrate, independent of coordinates, are not functions 
but "volume forms," where we interpret the above function f as the volume 
form which attaches the volume f(p) · det(v 1, ... , v") to the n-frame 
(vt> ... , v") e (T P V)". The general formal definitions, which make the ideas 
discussed above precise, are as follows: 

(5.2) Definitions. An alternating k-form on a real vector space V is a function 

which is linear in each variable (multilinear), and alternating, i.e., 

1X(v 1, ..• , vk) = sign(a) · tx(V11o>• ... , Vcr(kl) 

for every permutation a of (1, ... , k). The sign of a permutation is given by 
sign(a) = ni<j(i- j)/(a(i)- aU)). 

Let Altk V be the real vector space of alternating k-forms on V. An 
alternating differential form IX of degree k (also called alternating k-form 
for short) on a manifold M is a map which attaches an alternating k-form 
IXP e Altk TPM to each point p eM. We will usually consider differentiable 
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forms, i.e., we require that, if X 1, ••. , Xk are differentiable vector fields on 
M, then the function 

M ~Ill, 

is also differentiable. 
The collection of alternating k-forms on M, viewed as a module over the 

ring C00(M) of differentiable functions on M, is denoted by a"M. A differ
entiable map ({': M ~ N induces a map 

qJ* = a"(qJ): a"(N) ~ a"(M), 

qJ*rx(X 1, ... , X k) = rx(T ({'(X 1 ), ... , T ({'(X k)), 

making a" into a contravariant functor, i.e., id* = id and(({' o t/J)* = tjl* o qJ*. 
For any V there is an exterior product 

= k !l/! ~ sign(a)rx(X a(l)•. ·.,X a(kl)fJ(X a(k + 1), · • ·, X a(k+l)). 

In particular, this induces an exterior product (occasionally called "wedge 

product") 

A : a"(M) ® fi(M) ~ Q'<+'(M). 

It should be clear that Alt" ~" is one-dimensional, generated by the deter
minant, and that locally, after introducing coordinates (x 1, ••• , Xn), an 
alternating n-form on an n-dimensional manifold N" may be written in the 
form q ~ cxq, with 

aq = f(q) · dx 1 1\ · • · 1\ dxn. 

Here dx 1 1\ • · • 1\ dx" is simply the determinant corresponding to the basis 
(ojox1, ... ' ojoxn) of the tangent space-for dx;(ojox) is 1 if i = j and 0 if 
i -=f. j, and hence 

dxl 1\ ••. 1\ dx"(o~1' ... ' o~J = 1. 

If qJ: (U, p) ~ (V, q) is a differentiable map of open subsets of~", or the 
representation of a differentiable map of n-manifolds in local coordinates, 
then for a form ex = f · dx 1 1\ · • • 1\ dxn we have 

(5.3) (qJ*cx)P = f(qJ(p)) · det DqJP · dx 1 1\ • · · 1\ dxn. 

Thus an alternating n-form transforms like the integrand in the trans
formation formula-namely, like a volume in the tangent space-as long as 
det DqJ > 0. (In general, in fact 1 det DqJ I appears in the integration formula.) 
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The set Alt"(V)\ {0} of nonzero alternating n-forms on then-dimensional 
real vector space V splits into two classes R+ ·IX and lfi_ ·IX, where IX is any 
element of Alt"(V)\ {0}. These classes are called the two orientations of V. 

(5.4) Definidon. A volume form on an n-dimensional manifold M is an 
alternating differential form w e D"(M) such that wP =/:- 0 for all p e M. An 
orientation of M is a class {f · wl f: M-+ R+ }, where w is a differentiable 
volume form. An oriented manifold is a manifold with an orientation which, 
when necessary, we indicate by giving the defining volume form. If M 1 and 
M 2 are oriented by w1 and w2 , then a differentiable map g: M 1 -+ M 2 with 
the property that 

TPg: TPM 1 ~ Tg(p1M 2 for all p e M 1 

is called orientation preserving if w1 and g*w2 define the same orientation. 
The Euclidean spaceR" is always oriented by dx 1 " • • • " dx" = det. An 

open subset U c M of an oriented manifold inherits an orientation such 
that the inclusion map is orientation preserving. An atlas of an oriented 
manifold is called oriented if all its charts (and hence all its changes of 
coordinates) are orientation preserving. 

The support Supp(IX) of a differential form rx on M (or of a function or a 
section of a vector bundle} is the closure of the set {p e Mlrx(p) =/:- 0}. Thus 
p rt Supp(rx) if and only if the germ of rx at p vanishes. 

Now let M be ann-dimensional oriented manifold and 

~(M) = {rx e D"(M)!Supp(rx) is compact}. 

Let us assume, for the sake of simplicity, that the forms we consider are 
continuous. 

(S.S) Proposition. There is a unique integral 

IM: D';M--+ IR, 

determined by the following properties: 

rx 1-+ L, rx 

(i) If h: U -+ U' c R" is an orientation preserving chart of M and 
Supp(rx) c U, then 

f IX = f rx = f h- 1*rx = f. a(x) · dx 1 ••• dxn, 
JM Ju Ju· u· 

where h- 1*a = a· dx 1 " • .. " dx". 
(ii) The map fM: ~M--+ IRis linear. 

PROOF. The definition (i) of the integral is independent of the choice of chart 
by (5.1) and (5.3)-that is to say the integral remains invariant under orienta
tion preserving changes of coordinates. Now if oc e ~(M) is arbitrary, we can 
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cover Supp(oc) by finitely many chart domains U;, i = 1, ... , k, and split oc 
into IX= oc 1 + · · · + ock with Supp(oc;) c U; (see (5.6) below). Then J IX = 
L; J IX; by (ii) and each J IX; is determined by (i), so we need only argue that 
the value of J oc is independent of the splitting of oc and the choice of chart 
domains. But if we cover U by different chart domains V1 , .•• , Yt, we have 
a splitting oc; = L oc;i with Supp(oc;) c U; n J.j, and the result follows from 
summing f IXu in two different orders. D 

We pause to say a few words about the technical device needed to obtain 
the splittings of forms in the proof above. 

(5.6) Definition and Notation. Let M be a manifold and U = (U ;,lA. E A) an 
open cover of M. A partition of unity subordinate to the cover U is a family of 
functions ({)i: M-+ [0, l],j E 1\J with the properties: 

(i) The family is locally finite. This means that each point p E M possesses a 

neighborhood U such that U n Supp(qJj) = 0 for all but finitely 
manyj. 

(ii) For every j E 1\J there is a A. E A with Supp( ({)) c U;,. 
(iii) Li= 1 ({)iP) = 1 for every p EM. Note that, due to (i), this is always a 

finite sum. 

Given any open cover U of M, there is a differentiable partition of unity 
subordinate to U (see Brocker and Jiinich [1]). 

For the proof above we may choose a partition of unity (cpi) subordinate 
to the cover of M formed by the Ui and M\Supp(oc). Then we obtain the 
splitting IX= (L ({)i) · oc = L cpiiX = Loci, with oci = cpi ·IX. We need not 
insist on differentiability in this case. All we need is that the function a(x) 
in (5.5)(i), which is the function to be integrated in the end, is really integrable. 
This is easy to do. 

In most cases one prefers to integrate functions, not forms, and this is 
carried out as follows: 

(5.7) Definition. Let M be a manifold with a volume form w andf: M-+ IR 
a function-say, continuous with compact support. Then 

In other words, the integral of f is defined to be the integral of the form 
f · w on M with orientation defined by w. 

Thus to integrate functions on a manifold, we need the additional structure 
w which attaches a volume to each n-frame of the tangent space T PM at 
every point p E M. Observe that the volume forms w and - w yield the same 
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integral of functions, because f · m and the orientation [ w] get simultaneously 
replaced by -fw and [ -w]. 

(5.8) Remark. Let M be oriented by wand let - M denote the manifold M, 
oriented by - w. Then for IX E Q~(M) 

_riX=f IX. 
JM -M 

Thus if ({J: N -t M is a diffeomorphism, 

where e is locally constant with value 1 or - 1 according to whether ({J 

locally preserves or reverses orientation. 

PRooF. If ({J: N -t M is an orientation preserving diffeomorphism, and e = 1, 
the second formula follows from computing the left-hand side using charts 
h;, of M and the right-hand side using the charts h;, a ({J of N. Hence we may 
deduce the second formula in full generality by applying the first formula 
separately to connected components. To prove the first formula, we may 
suppose that we have a chart h: U -t U' c ~".oriented for them-orientation, 
with Supp(IX) c U. Then 

r IX= i IX= i h- 1*1X = i adxl A··· A dxn = i a(x)dX1···dXn 
JM U U' U' U' 

for some function a: U' --+ ~. The transformation 

is orientation reversing, so 

f IX=J (l/lh)- 1*oc=J l/l- 1*h- 1*oc 
-M ojJU' t/IU' 

-J a( -x 1, x 2 , ... , xn) dx 1 A · · · A dxn 
ojJU' 

-J a( -X 1, X2, ... , Xn) ,j;, 1 ... dxn 
t/IU' 

-i a( X) dx 1 ... dxn = - r IX. 
U' JM 

D 

The key to this computation is that a factor of det DI/J- 1 enters into 
1/J- 1 *,but the usual integral of functions on ~n transforms using the absolute 
value I det Dl/1- 1 1. 
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If Supp(f) is contained in the domain U of some local coordinates 
x 1, ... , xn, we express the above a bit imprecisely as 

(5.9) f f. w = f f(x) ·lw(0~ 1 •..•• a~J 1 dxl ... dxn. 

By the way, if dim M = 0, then TPM = 0, Alt" TPM = Alt0 TPM = IR, 
Q"(M) is the vector space of functions M .__. IR, and a volume form is a func
tion M .__. IR\{0}. The integral of a functionf: M ._... IR with respect tow is 

(5.10) f f ·W = L f(p)·iw(p)i. 
JM peM 

In the case of a Lie group, there is, up to a constant factor, a canonical choice 
of a volume form: 

(5.ll) Definition. Let G be a Lie group. A form IX E fi'G is called left-invariant 
if t;IX = IX for every left translation 19 with g E G. The correspondence IX 1-+ 1Xe 
defines a canonical bijection between the space of left-invariant forms in 
fi'G and Alt" LG. From now on we will identify these spaces in this fashion. 

If G is compact, then, up to sign, there is precisely one left-invariant 
volume form dg such that J G dg = l. This determines a well-defined normal
ized integral of functions, the invariant (Haar-) integral. We will only consider 
integrals on compact groups, where we write the invariant integral using 
familiar notation 

fa! dg = tf(g)dg 

(5.12) Theorem. Let G be a compact Lie group, <p: G ._... G be any automorphism, 
and hE G be any element. Then (referring to the invariant integral) 

Jf(g) dg = f!(hg) dg = f!(gh) dg = f!(g- 1 ) dg = f! 0 <p(g) dg. 
(i) (ii) (iii) (iv) 

PROOF. Left invariance, i.e., equality (i), follows from the definition of dg and 
the observation that lh is orientation preserving: J f · dg = J f o lh ·It dg = 
J f o lh dg. Now we will show below, (5.13), that there is only one left-invariant 
normalized integral on G. 

If <p: G.__. G is a diffeomorphism, then the map f 1-+ J f o <p dg is linear, 
monotone, and normalized. It follows that if this map is also left-invariant, 
i.e., iff f o lh o <p · dg = f f o <p · dg or, in other notation, if f f(h · <p(g)) dg 
= J f<p(g) dg, then f f · dg = f f o <p · dg. We apply this principle to the 
remaining equalities in the theorem. 

(ii) Right invariance: Choose <p(g) = gh; left invariance follows 
from (i) since f f(kgh) dg = f f(gh) dg. 
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(iii) Choosing cp(g) = g- 1, f f(hg- 1)dg = f f((gh- 1)- 1)dg = 
f f(g- 1) dg the last equality coming from (ii) applied to the 
composition off with group inversion. 

(iv) Choosing cp = cp and letting k = cp - 1(h) we have 
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J f(h. cp(g)) dg = f f 0 cp(kg) dg = f f 0 cp(g) dg by (i). 0 

(5.13) Theorem. Let G be a compact Lie group and C(G) be the real vector 
space of continuous functions on G. The invariant integral C(G)--+ IR, f H 

f f(g) dg is uniquely determined by the following properties: 

(i) It is linear, monotone, and normalized (j 1 = 1). 
(ii) Left invariance: f f o lh = f f for any he G. 

PROOF. Suppose! H f f(h) ~h denotes an integral with the given properties. 
Let f H f f(g) dg be a particular right-invariant integral, so f f(gh) dg = 
J f(g) dg. It is our intention to compare all possible left-invariant integrals 
with the given right-invariant integral, but we first remark that the concept 
of a group is sufficiently symmetric to guarantee the existence of a right
invariant integral, assuming the existence of a left-invariant integral. The 
two integrals given so far define a monotone, linear, normalized integral for 
continuous functions on G x G: Iff: G x G--+ ~.then 

The second equality (a version of Fubini's theorem) may be seen as 
follows: If f(g, h) = cp(g) · t/l(h), the equality is clear. Next, by using ap
proximation techniques from analysis or partitions of unity, one shows that 
the functions (g, h) H cp(g) · t/l(h), cp, t/1 e C(G), span a dense subspace of 
C(G x G) in the topology of uniform convergence. But a linear, monotone, 
normalized integral commutes with uniform limits, since from -e ~ f ~ e 
one gets -e ~ f f ~ e. It follows that the equality in question is valid in 
general. 

Now iff: G --+ ~ is continuous, we can apply the above to the function 
{g, h) H f(gh). This, together with the invariance and normalization proper
ties of our integrals, yields 

f f(g) dg = f (f f(g) dg) ~h = J (f f(gh) dg) ~h 

= f (I f(gh) ~h) dg = f f(h) ~h. 
showing uniqueness. D 
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Once one can integrate real-valued functions on G, there is a well-defined 
integral J f dg E B for continuous functions f: G -+ B taking values in a 
Banach space (see, for example, Lang [1], Ch. XII). If B is a Hilbert space, 
there is a straightforward definition of this integral: 

Letf: G-+ B be continuous and bE B. Then 

(f, b): G-+ IR, gt-+(f(g),b) 

is a continuous real-valued function, and the map from B to IR sending b to 
J (f{g), b) dg is a continuous linear functional. But every such functional is 
given by scalar product with an element of B. We define J f{g) dg to be this 
element, so 

\I f(g) dg. b)= I (f(g). b) dg. 

More generally, if B is a space offunctions M-+ C (or IR), we may define the 
integral of a mapf: G-+ B by 

If dg: M-+ C, x HI f(g)(x) dg. 

In each specific case one must check whether this integral is contained in B. 
For a well-behaved example, iff: G x M-+ Cis continuous, andflg x M 
is holomorphic for each g e G, then the map M-+ C, x H J f(g, x) dg is also 
holomorphic, since we have assumed that G is compact. 

The invariant integral on a group is a tool of fundamental importance: 
integration is used to average functions over G, thereby making them in
variant. For most applications which concern us, it suffices to know that an 
invariant integral exists. Thus one could assume this and forget about 
differential forms-in fact, a left-invariant integral, uniquely determined up 
to a constant factor, may be constructed for any locally compact topological 
group, see Hewitt and Ross [1] or the classical monograph of A. Weil [2]. 
But we will use the theory of differential forms as a geometric tool. 

We will also integrate functions on homogeneous spaces. As long as we 
only deal with left-invariant integration, no problem arises. 

Let H be a closed subgroup of the compact Lie group G and 1t: G-+ G/H 
be the canonical projection. For continuous f: G/H -+ IR we may define a 
normalized integral 

i J= i jo1tdg 
G/H G 

which is invariant under the left operation of GonG/H. We would like to 
describe this integral by a volume form on G/H. 

Now, in general, this is not possible, since a homogeneous space need not 
be orientable-examples include the projective spaces !RP2" ((4.9) and 
(5.20), Ex. 2). Nonetheless, we recall that the subgroup H acts on the left 
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on G by conjugation and on G/H by left translation. Furthermore, the 
projection n: G--+ G/H is equivariant for these H-operations: (hgh- 1)H = 
hgH. The coset containing the unit HE G/H is fixed by the H-operation on 
G/H, and the induced operation on the tangent space is denoted by Ad6 /H, 

so 

xH ~---+ gxH, 
(5.14) 

If dim G/H = k, applying the contravariant functor Altk to the linear opera
tion Ad6 /H yields a linear operation 

Adt18 : H--+ Aut(Altk T 8 G/H), h ~---+ t;; 1*. 

(5.15) Proposition. Let G be a compact Lie group and H a closed subgroup. 
If the operation Adt;a is trivial, i.e., if It is the identity of Altk T 8 G/H for all 
hE H, then there is a volume form d(gH) on the homogeneous space G/H that, 
up to sign, is determined by the properties 

(i) d(gH) is left-invariant, i.e., tt d(gH) = d(gH)for all hE G. 
(ii) d(gH) is normalized, i.e., J618 d(gH) = 1. 

In particular, the hypothesis and hence the conclusion holds if H is 
connected. 

PROOF. Since Altk T 8 GjH is one-dimensional, its automorphism group is 
the multiplicative group ~*. and since the image of Adt;a is a compact 
subgroup, it is a subgroup of {1, -1} ~ 7Lj2. Thus if His connected, Ad~/H 
is trivial, verifying the last sentence. 

Now a left-invariant volume form on GjH is determined by its value at 
the point HE GjH, because 

A9a = (I;; 1 )*A. a 

if A. E fi'G/H is left-invariant. The only question is whether or not the right
hand side is independent of the choice of representative g E gH. But for 
hEH, 

(1-1)*A. = (z-1 0 1-1)*A. = 1-1* 0 1-t*A. = 1-t*A. 
gh H h g H g h H g H• 

the last equality holding due to the assumption that Ad~18 is trivial. Thus 
assigning a value at HE G/H determines a volume form and a volume form 
is uniquely determined by this value, and the proposition follows. 0 

(5.16) Proposition (" Fubini "). Let G be a compact Lie group, H a closed 
subgroup, and d(gH) a left-invariant normalized volume form on GjH. For any 
continuous real-valued function f on G, 

L f(g) dg = L,H (L f(gh) dh) d(gH). 
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PRooF. Evidently the right-hand side defines a normalized left-invariant 
integral on G, so the proposition follows from the uniqueness of such an 
integral (5.13). 0 

Thus for a function f: G/H -+ ~ we get 

i f o xdg = i ( [ f o x(gh) dh) d(gH) = i f d(gH), 
G ~~ ~ 

giving the desired description of J618 f using a volum~ form. 
In order to clarify the geometric result below, (5.19), we need to quote a bit 

more from the theory of differential forms and integration on manifolds. 
First recall the exterior derivative of (differentiable) differential forms 

d: !i'M-+ (1<+ 1M. 

This may be defined in local coordinates xl> ... , Xn by 

d(m · dx- 1\ • • • 1\ dx.) = dm 1\ dx- 1\ • • • 1\ dx1 'I' It llc: 'I' It k' 

but we do not need to delve into local coordinates here. The reader should 
also be acquainted with mtlllijolds with boundary. They possess an atlas with 
charts M ::l U-+ U' c ~': = {x E ~"lx 1 :s; 0} with differentiable changes 
of coordinates. The boundary oM consists of all points which are mapped by 
charts to ~n- 1 = {x E ~"lx 1 = 0}. 

Figure 13 

An orientation of M induces a canonical orientation of the boundary oM, 
since the hyperplane TPoM c TPM for p e oM has a canonically defined 
"side" corresponding to normal vectors pointing "away from M." The 
following is a beautiful and fundamental result relating these concepts. 

(5.17) Stokes' Theorem. Let M be an oriented n-dimensional manifold with 
boundary, and let ex be an alternating differential form on M of degree n - 1 
with compact support. Then 

i rx = [ da. 
oM JM 

See Brocker [1], V,3, or Lang [1], XVIII, §5. 
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(5.18) Corollary. Let M be a compact oriented n-dimensional manifold and 
let N be an arbitrary n-dimensional manifold (manifolds without boundary). 
Let a E D"N. If f0,f1 : M--+ N are differentiably homotopic, then 

PROOF. The homotopy is a map f: M x I--+ N, where I is the unit interval 
and f coincides withf0 on M = M x {0} and withf1 on M = M x {1}. 
Since da E Q"+ 1 N = 0, Stokes' theorem and (5.8) give 

0 = r f* da = r df*a = i f*a = r f1*a + f fo*a 
JMx/ JMxi o(MX/) JM -M 

0 

(5.19) Theorem on Mapping Degrees. Let M, N be compact, connected, 
oriented, n-dimensional manifolds. There is an integer deg{f) assigned to each 
homotopy class of (differentiable) maps f: M--+ N, called the mapping degree 
off, such that,for every form a E D"(N), 

L f*a = deg(f) · La. 

If q EN is a point with f- 1{q} consisting of k + l points p 1, ••. , Pk+t such 
that f is regular (i.e., 1f is bijective) at each Pi and preserves orientation at 
p1, ••• , Pk but reverses orientation at Pk+ 1, ••• , Pk+ 1, then deg{f) = k - 1. 
In particular, if deg(f) i= 0, f is surjective. 

PRooF. We know that JM f*a depends only on the homotopy class of f. 
Sard's theorem (Brocker and Janich [1], Milnor [1]) insures that a given 
differentiable map f: M--+ N has a regular value q, i.e., there is a point 
qEN such that Tf is an isomorphism at every pEj- 1{q}. In fact, Sard's 
theorem says that almost every point in N is regular. So let q be regular with 
f- 1 {q} = {p1, .•• , pk+ 1} as described in the statement of the theorem. Then 
f is a local diffeomorphism around each Pi• and the complement of an open 
neighborhood off- 1 { q} is mapped by f to a compact set not containing q. 
Hence we may choose small open balls B about q and B1, .•• , Bk+ 1 about 
p1, •.• , Pk+t such that 

and f- 1(B) = Ui B; (disjoint union). The orientation off is constant on 
each B; and hence equal to its value at P;· Now if we had Supp(a) c B, the 
theorem would hold by (5.8) for this particular choice of q. 
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Figure 14 
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Consequently, if we could find a diffeomorphism q>: N-+ N homotopic to 
the identity on N with Supp(a) c q>(B), the theorem would be proved, since 
Supp(q>*«) c B, and the integrals are homotopy invariant. But we will show 
below that the sets q>(B) cover N, where q> runs through diffeomorphism& 
N -+ N homotopic to the identity. Thus we choose a partition of unity 
(t/lili e 1\1) subordinate to this covering, and the theorem follows since it is 
valid for each summand of the splitting ex = L t/1 i · ex. 

To show that the q>(B) cover N we show that, given x eN, there is a q> as 
above with q>(q) = x. If x and q are both contained in a compact ball of a 
chart domain, it is fairly easy to construct such a diffeomorphism q>, for 
example by integrating an appropriate vector field which vanishes outside 
the ball. And from this case we derive the general case by joining q and x 
with a chain 

q = x 0 , xt> ... , x, = x 

such that xi and xi+ 1 are always contained in a compact ball in some chart 
domain. 0 

We intend to apply this theorem in IV, (1.7), where we will explicitly be 
given a regular value (a generator of a torus). Thus, for our purposes, we 
could incorporate the existence of a regular value as an assumption in our 
theorem. Then we would not need to resort to Sard's theorem. 

(5.20) Exercises 

l. Formulate and prove the converse of proposition (5.15). 

2. Show that IRP2" is not orientable. Use the facts that the antipodal map t: S2" __. S2•, 

x 1-+ - x is orientation reversing and that IRP" = S" /r. 

3. Prove that if a manifold has an atlas all of whose changes of coordinates are orienta
tion preserving then it is orientable. Hint: Partitions of unity. 
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4. Construction of partitions of unity: Show that there is a C"'-function qJ: IR"-+ IR 

such that qJ(x) > 0 for lxl < 1 and ({J(x) = 0 for lxl ~ 1. One way to do this is to 
start with the function A.: IR -+ IR given by 

A(t) = {exp(-t- 1) fort> 0, 
0 fort~ 0. 

Figure 15 

Show that if M is compact and { U .} is an open cover of M, then there is a partition 

of unity subordinate to the cover. 

5. The manifold IR x IR with the group structure 

(a1, b1) · (a2 , b2) = (a 1 + exp(b 1) · a2 , b1 + b2) 

is a Lie group (in fact it is a semidirect product of IR with itself). Show that a left

invariant integral on this group is not right-invariant, and that the left-invariant 

integral is not invariant under conjugation. 

6. Euler angles: Let ex, fJ be the one-parameter groups of S0{3) given by 

[
cost -sin t 0] 

cx(t) = sin t cos t 0 , 

0 0 1 
[ 

1 0 0 l 
{3(t) = 0 c~s t -sin t . 

0 smt cost 

Show that the map y: T 3 -+ S0(3), (({J, 9, 1/J) r-+ cx(qJ) · {J(9). a.(I/J), 0 :::; qJ, 9, 1/J :::; 21t 
is surjective. Which points of T3 are sent to the same place by y, i.e., how can S0(3) 

be described as a quotient of T 3 using y? Let dg be the normalized invariant volume 
form on S0(3). Then 

1 . 
y*dg = ± S1t2 sm 9 · dqJ A d9 1\ di/J. 

The invariant integral on S0(3) is given by 

1 f2"f"f2" fr-+-2 sin 9 ·fa y(qJ, 9, 1/J)dqJ d9 dljl. 
81t 0 0 0 

The parameters qJ, 9, and 1/1 are called Euler angles. 

7. Let f: G -+ H be a surjective homomorphism of compact Lie groups of equal di

mension. Show that every map homotopic to f is surjective. 

8. Show that given two points p, q E IR" there is a diffeomorphism qJ: IR" -+ IR" with 

qJ(p) = q such that qJ is homotopic to the identity via qJ,, where outside of a compact 
ball qJ.(x) = x for all t and x. 
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6. Clifford Algebras and Spinor Groups 

Assuming a little knowledge about fundamental groups and covering spaces, 
it is not hard to see that, for n > 2, SO(n) has a connected double cover. 
Furthermore, a covering space of a connected Lie group always has a 
canonical Lie group structure such that the projection is a homomorphism 
(see Tits [2], II, or Chevalley [1], Ch. II, §8). 

In any case, we will explicitly construct a compact connected (for n ~ 2) 
Lie group Spin(n) and a surjective homomorphism Spin(n) ~ SO(n) with 
kernel 7Lj2. In other words, we will construct a short exact sequence 

{e} ~ lL/2 ~ Spin(n) ~ SO(n) ~ {e}. 

The construction follows Atiyah, Bott, and Shapiro [1] and uses the theory 
of real Clifford algebras corresponding to the quadratic form Q: Rn - R, 
XI-+ -lxl2• 

(6.1) Definition. Let V be a real finite-dimensional vector space and Q: V ~ R 
a quadratic form. The Clifford Algebra C(Q) is an R-algebra with unit 1 
together with a linear map i = iQ: V ~ C(Q) called the structure map. The 
structure map is required to satisfy (i(x))2 = Q(x) · 1 for all x E V, and C(Q) 
is required to satisfy the following universal property: 

If A is any R-algebra with 1 and a linear map 

j: v~A. U(x))2 = Q(x) · 1, 

then there is a unique homomorphism K1 of real algebras with 1, called the 
universal homomorphism, which makes the following diagram commutative: 

C(Q) 

Y: 
'Kj v : 

~i 
Note that in this book we use the word "algebra" to mean "associative 

algebra" except when we specify "Lie algebra." 

(6.2) A familiar argument shows that there is, up to isomorphism, only one 
pair (C(Q), i) for a given (V, Q): if (A,J) has the same universal property, we 
get universal homomorphisms A.1: A~ C(Q) and K1: C(Q) ~A and conclude 
that A.1 o K1 and Ki o A.1 are the identity by the uniqueness of universal homo
morphisms. It is also easy to "construct" the Clifford algebra C(Q) with its 
canonical map i: V ~ C(Q): 

We start with the tensor algebra T of V: 
00 

T= Ef)v<vl, v<o' = ~. v< 11 = v, VM = V® ··· ® V 
v=O 
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(V<•l has v factors) and the inclusion map V = yo>.=. T. Multiplication in 
Tis induced by a· b = a® b for a e y<•l, be V<">. Then a® bE y<•+lll. 

Let a c T be the ideal of T generated by the elements 

{x ® X - Q(x) · 11 X E V}. 

Then C(Q) = Tfa, and the structure map i is the composition 

i: V ~ T-. Tfa. 

(6.3) Remark and Notation. If V = !Rn with the quadratic form Q: !Rn-.. IR, 
x 1-+ -lxl2 and the canonical basis e1, ... , en, then the corresponding 
Clifford algebraC(Q) is denoted by Cn. The relations in the ideal a then say 
that 

e2 = -1 and e · e = -e · e for v 4 "· • • " " • r,.. 

We have the canonical isomorphisms 

C0 = IR, 

PRooF. The relations are easily derived from (A. 1e1 + · · · + A.kek)2 = 
-(A.i + · · · + A.f). The isomorphism C 1 -.. C maps e1 to i = J=l, and the 
isomorphism C 2 -.. IHI is given by e1 1-+ i, e2 1-+ j (see (1.9)). We will see below, 
(6.16), that dim Cn = 2n, so the relations in the remark generate all the 
relations. 0 

(6.4) Another Remark and More Notation. The algebra C(Q) has a canonical 
anti-automorphism denoted 

t: C(Q) -t C(Q), x 1-+ x' 

satisfying (x · y)' = y' · x' and t 2 = id. It is uniquely determined by x' = x for 
X E i(V). 

PRooF. Given C(Q) we define the opposite algebra C(Q)0 P by letting 
C(Q)0 P •= C(Q) as a real vector space and setting x ·yin C(Q)0 P equal to 
y. x in C(Q). In C(Q)0 P we still have x 2 = Q(x) · 1 for x e i(V), and from (6.1) 
we conclude that C(QtP has the universal property for all opposite algebras. 
But the collection of all opposite algebras is the same as the collection of all 
algebras, so C(Q)0 P is universal and there is a unique isomorphism t: C(Q)-.. 
C(Q)0 P making the following diagram commutative: 

C(Q) 

Y: 
't v : 

~C(~)OP 
We also conclude from uniqueness of the universal homomorphism that 
the composition C(Q)-..!. C(Q)0 P-.. C(Q)opop = C(Q) is the identity. D 
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Each element from C(Q) may be expressed (nonuniquely) as a linear 
combinationofelementsoftheformx = x 1 ••• X~c withxv e i(V). Thediagram 
shows that 

which completely determines t. 
Analogously, there is a canonicallllltomorphism 

(6.5) 0!: C(Q) -+ C(Q), oc2 = id, oc(x) = - x for x e i(V). 

Thus oc(x1 ..• x1) = ( -lf(x1 ... X~c) for x1 e i(V). 
For v = 0, 1 let C(QY be the eigenspace for the eigenvalue ( -l)Y of oc. 

Thus C(Q)v = {x e C(Q)Ioc(x) = ( -ltx} and we have 

C(Q) = C(Q)o ffi C(Q)l 

as vector spaces. This is what is called a l/2-grading, which means that if 
x e C(QY and y e C(Q)", then x · y e C(Q)Y+" where we reduce exponents 
modulo 2. 

Now if we have two algebras which are l/2-graded in this sense 

there is a graded tensor product A ® B defined by 

with multiplication 

(A® B)o = (Ao ® Bo) ffi (At® Bt), 

(A® B)1 = (A0 ® B 1) $ (A 1 ® B0 ), 

(a'® b)· (a® b') = ( -lY"(a' ·a)® (b · b') 

for a e A" and b e Bv. It is easy to verify that A ® B is again a l/2-graded 
algebra. 

(6.6) Proposition. Let V and W be finite-dimensional vector spaces with 
quadratic forms P and Q. Then there is a quadratic form P ffi Q on V Ef) W 
defined by (P Ef) Q)(v, w) = P(v) + Q(w). Let i = ip: V-+ C(P) and 
j = ia: W-+ C(Q) be the structure maps of the corresponding Clifford algebras, 
and define a linear map 

f: V$ W-+ C(P) ® C(Q) 

by 

(v, w) H i(v) ® 1 + 1 ® j(w). 

Then f induces an isomorphism (also denoted by f) 

f: C(P ffi Q) -+ C(P) ® C(Q). 
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PROOF. For (v, w) E V EB W we have 

(f(v, w))2 = (i(v) ® 1)2 + (1 ® j(w))2 + ( -1)0(i(v) ® j(w)) 

+ ( -1)1(i(v) ® j(w)) 

= (P EB Q)(v, w) · (1 ® 1). 
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The universal property of the Clifford algebra C(P EB Q) then gives us an 
algebra homomorphism extending the given f 

f: C(P EB Q) __. C(P) ® C(Q). 

The inverse homomorphism may be obtained as follows: Let cp: C(P) __. 
C(P EB Q) and 1/J: C(Q) __. C(P EB Q) be the maps induced by the inclusions 
V ~ V EB W and W __. V EB W. Then 

v ® w H cp(v) · t/J(w). 0 

(6.7) Corollary. The structure map iQ: V __. C(Q) is injective. Thus we will 
view Vas a subspace ofC(Q) via this map. If e1, ..• , enform a basis of V, then 
the products 

and lform a basis of the real vector space C(Q). In particular, (6.3) contains a 
complete set of relations for these products, and C(Q) has dimension 2n. 

PRooF.If dim V = 1, the tensor algebra Tis just the polynomial ring IR[X] 
where i(e 1) = X. Thus C(Q) = IR[X]/(X2 - Q(e 1)) and in this case the 
corollary is clear. In general the relation Q(e, + e,) - Q(e,) - Q(e~') = 
e,e, + e,e, shows that the stated elements generate C(Q), so all that 
is left is the calculation of dim C(Q). For this purpose, we may pick any 
basis of V we so desire. But we may diagonalize any quadratic form over IR, 
which means there is an orthogonal splitting (V, Q) ~ EB~= 1 (V., Q,) with 
dim V. = 1. Choosing a basis element e, E V. c V, the corollary follows from 
(6.6) by induction on n = dim V. D 

(6.8) Still More Remarks and Notation. There is a conjugation defined on 
C(Q) by 

trx = rxt: C(Q) __. C(Q), denoted x H x 
with rx. and t as in (6.4) and (6.5). This is an algebra anti-automorphism. Let 
C(Q)* be the group of units of C(Q) and 

F(Q) = {x E C(Q)* lrx.(x) · V • x- 1 E V for all V E V}. 

Then F(Q) is a subgroup of C(Q)* and is called the Clifford group of Q. The 
map 

N: C(Q) __. C(Q), XHX·X 

is called the norm of C(Q). Thus for x E V we have N(x) = - Q(x) · l. 
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By the way, units are those x E C(Q) for which there is ayE C(Q) with 
xy = yx = 1. Also note that the equation ext = tex holds on V and hence all 
of C(Q), and that T(Q) is a group because ex is an automorphism (and Vis 
finite dimensional). 

(6.9) Lemma. The maps ex and tfrom (6.4) and (6.5) induce an automorphism 
and anti-automorphism of T(Q). 

PRooF. The maps are ± id on V. Hence if ex(x )vx- 1 E V for all v E V then 

ex(ex(x)) · v · ex(x)- 1 = -oc(oc(x)) · a(v). oc(x)- 1 

= -ex(a(x)·v·x- 1) 

= ex(x)·V·X- 1 E V, 

so oc(x) E r(Q). Analogously at(x). v. t(x)- 1 = texx. tv. t(x)- 1 = 

t(x- 1vex(x)) E V for all v because T(Q) contains inverses and a leaves T(Q) 
invariant. 0 

We now turn to the algebras C, corresponding to the vector spaces 
V = ~" with quadratic form Q: ~n -+ ~. x ..-. -I x 12• By ( 6.2) and ( 6.6) we 
have 

C, = C ® · · · ® C (n-factors) 

with basis and relations as in (6.2). The Clifford group r, of the algebra C, 
comes with a ready-made homomorphism 

(6.10) p: T,-+ Aut(~"), p(x)v = a(x)vx- 1 for X E T, and V E ~". 

(6.11) Lemma. The kernel of p: r,-+ Aut(~") is~*. the multiplicative group 
of nonzero real multiples of 1 E C,. 

PRooF. Let x E ker(p ). Then by definition 

(i) a(x) · v = v · x for all v E ~". 

Expressing X= x0 + xl, where c, = c~ El3 c~ and x• E c=. equation (i) 
says 

(ii) 

Next we use (6.7) to write x0 as a linear combination of monomials in the 
canonical basis of~". so 

where neither a0 nor b1 contains a summand with a factor e1• Applying. the 
first relation in (ii) to v = e1 yields 

(iii) 
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Since each monomial in a0 is of even degree and contains no factor e t> the 
relations (6.3) show that a0 e1 = e1a0 . Similarly e1b1 = -b1e1, so 

ao + e1b1 = ao- e1b1. 

We conclude that e1b1 = 0 and x0 contains no monomial with a factor e1. 
The same argument applied successively to the other basis elements demon
strates that we can write x0 as a linear combination of monomials with no 
ev as a factor. In other words, x0 E IR · 1. Proceeding in a like fashion with 
the second relation from (ii), x 1 = a1 + e1b0 and v = e1 shows 

a1 + e1b0 = -e1 1a1e1 - b0e1 = a1 - e1b0 . 

Thusb0 = Oandx1E!R. But IR c C~,sox 1 = 0. Thusx = x0 E!R n r. = IR*. D 

The norm N(x) = x · x = x · t!X(x) agrees with -x2 = -Q(x) = lxl 2 on 
IR", so there it is the customary square of the Euclidean absolute value. And 
by (6.9) we have N(r.) c r •. As a matter of fact, the following stronger 
statement holds: 

(6.12) Lemma. If X E r., then N(x) E IR*. 

PRooF. We compute that N(x) is in the kernel of p, i.e., that N(x) acts trivially 
on IR". To say x E r. means 

IX(x)vx- 1 E ~· for all v E IR". 

Applying t gives t(x)- 1vt1X(x) = IX(x)vx- 1 since tis the identity on ~·.Thus 
v = t(x)cx(x)v(tcx(x) · x)- 1 = cx(xx)v(.XX)- 1, so .XX E ker(p) and the same is 
true for xx = xx by (6.9). D 

(6.13) Lemma. Nir.: r. ~ IR* is a homomorphism and N(1X(x)) = N(x). 

PROOF. N(xy) = xyyx = xN(y)x = xxN(y) = N(x)N(y), the third equality 
holding because N(y) E IR*. 

N(1Xx) = 1X(x)1X(x) = cx(xx) = cxN(x) = N(x). D 

(6.14) Lemma. IR"\{0} cr., and if x E IR"\{0}, then p(x) is the reflection 
in the hyperplane orthogonal to x. Also, pr. c O(n). 

PROOF. Given x E IR"\{0}, we may choose a basis of IR" such that x = jxje1• 

By (6.11), p(ixle1) = p(e 1), so we may assume that x = e1• Then we have 

p(e1)e1 = 1X(et)ete1 1 = -et, 

v # 1. 

This demonstrates the first sentence. Now let x be any element of r. and let 
v E IR"\ {0}. Then N(p(x)v) = N(!X(x)vx- 1) = N(!X(x)). N(v). N(x- 1) = 

N(x) · N(v) · N(x)- 1 = N(v),andsinceN issimplythesquareoftheEuclidean 
absolute value, this says precisely that p(x) E O(n). D 
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We may now achieve our original goal: 

(6.15) Theorem. Let Pin(n) be the kernel of N: r"--+ IR*for n 2 1. Then the 
map piPin(n) has image O(n) and kernel generated by { -1} E en. Thus we 
have an exact sequence of groups 

{e} --+ Z/2--+ Pin(n) .4 O(n)--+ {e}. 

PRooF. Every orthogonal transformation A E O(n) is a product of k reflec
tions with k :::;; n. This is easily verified by induction on n, for given A E O(n), 
A =f; E, we can find a reflection C1 such that a(Aen) = en, and then 
a a A E O(n - 1). But all reflections are in the image of piPin(n) by (6.14), 
and the kernel of p!Pin(n) is ker(p) n ker(N) = {t E IR*IN(t) = 1} = 

{1, -1}. 0 

The group Pin(n) has a well-defined structure as a Lie group such that 
p. is a homomorphism of Lie groups and a double cover. The Lie group 
structure may be obtained as follows: 

The group of units e: is open in en because an element x is a unit if and only 
if left multiplication by x is a linear isomorphism, and linear isomorphisms 
are open in the space of linear endomorphisms of en. Thus e: is a Lie group, 
and since rn and Pin(n) are closed in e:, they are also Lie groups. Actually, 
one may apply a more general argument to show that Pin(n) is a Lie group 
(see (6.22), Ex. 5). 

(6.16) Definition. We define Spin(n) c Pin(n) to be the inverse image of 
SO(n) under p: Pin(n)--+ O(n). 

Thus we have an exact sequence of Lie groups 

For n = 1 we have 

e1 = c, 

{e} ___. Z/2-+ Spin(n)-+ SO(n)--+ {e}. 

rl = {z E C*lz(i!R)z- 1 c i!R} = (IR u i!R)\{0}. 

Thus Pin(l) = 7Lj4 and is generated by i E C, and Spin(l) = { -1, 1} = Z/2. 

(6.17) Proposition. For n 2 2 the homomorphism p: Spin(n)-+ SO(n) is a 
nontrivial double covering. 

PRooF. We need to show that there is an arc in Pin(n) connecting the elements 
1 and - 1 which constitute the kernel of p. Such an arc is given by 

w: t f-+ cos(t) + sin(t)e 1 · e2 , 

We have w(t)- 1 = w(t) = cos(t) - sin(t) · e1 • e2 , so w(t) E Pin(n). Since 
pw(t) must stay in a connected component of SO(n), and pw(O) = E E SO(n), 
w(t) E Spin(n) for all t. 0 
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(6.18) Remark. There is a standard isomorphism of groups 

1c: SU(2) = Sp(l) ~ Spin(3) 

and a diffeomorphism of manifolds S0(3) ~ IRP3 which may be described 
as follows. The group of units D-D* operates orthogonally on the space D-D of 
quatemions by 

D-D* X D-D -+ D-D, 

since N(qxq- 1) = N(q)N(x)N(q)- 1 = N(x) for the norm N on D-D. This 
operation leaves the subspace IR c D-D invariant. Hence it also fixes the ortho
gonal complement IR3 , which is the group of pure quatemions. Thus we get 
an induced operation of D-D* on IR3, and restricting this operation to the 
subgroup Sp(1) c D-D* of elements of norm one gives a projection 

n: Sp(1)-+ S0(3), n(q)(x) = qxq- 1 for q E Sp(1), 

This projection is essentially the same as the projection p: Spin(3) -+ S0(3). 
Now one has an inclusion of algebras ( !) 

which restricts to an injective homomorphism K: D-D*-+ r 3 preserving the 
respective norms ( !) and compatible with the respective operations on IR3• 

In other words, the following diagram commutes ( !) 

where the horizontal arrows come from the appropriate operations on IR3• 

Restricting K to elements of norm one again, we get an injection K: Sp(l)-+ 
Spin(3). Since the groups have the same dimension, this injection is an 
isomorphism. Note also that 1t = p o K, so ker(n) = {1, -1} and S0(3) ~ 
Sp(l)/{1, -1} = S3/(x"' -x) = IRP3• The reader is invited to check the 
details marked by a(!) in (6.22), Ex. 9. 

(6.19) Corollary. The fundamental group n1 SO(n) is isomorphic to 7Lf2for 
n ~ 3, so Spin(n) is simply connected and p: Spin(n)-+ SO(n) is the universal 
covering (for n ~ 3). 

PRooF. We use induction on nand consider the principal bundle (4.7) 

SO(n)--. SO(n + 1)-+ S". 

Since n 1S" = n2 S" = {e} for n ~ 3, the inclusion SO(n)-+ SO(n + 1) 
induces an isomorphism of fundamental groups (see Hu [1], V, 6, p. 152 or 
G. W. Whitehead [1], IV, 8), and the corollary follows. 0 
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We will not use this result in this book, but we will come back to the 
problem of computing the fundamental group of a compact Lie group in 
V,§7. 

The Lie algebra su(2) = sp(l) ~ so(3) of Sp(l), considered as a vector 
space, is the tangent space of S3 c D-D = ~4 at the point 1. Thus it is the space 
of pure quaternions-the orthogonal complement ~3 of ~ in D-D. As a real 
vector space it is generated by the three quaternions 

[i OJ [ 0 1] [0 i] 
i = 0 - i ' j = - 1 0 ' and k = i 0 · 

The map n: Sp(l)---. S0(3) therefore describes the operation of Sp(l) on its 
Lie algebra by conjugation. Rephrasing this: 

(6.20) Remark. The canonical projection n: Sp(l) = SU(2) ~ Spin(3)-. 
S0(3) is the adjoint representation of Sp(1). 

(6.21) Physicists' Notation. Recall that physicists apply a factor of (- i) to 
Lie algebras (2.21). Thus they also multiply the above complex matrices 
i, j, k E End( C2) by (- i) (this is not the same as multiplication in D-D !). This 
yields the Hermitian matrices 

[0 -i] [0 1] 
i 0 ' and 1 0 

as real generators of the (physicists') Lie algebra su(2), which is the same as 
( -i) su(2) c End(C2) in our notation. These matrices are called Pauli spin 
matrices. 

We will return to Clifford algebras in VI, §6. There we will describe the 
structure of the algebras em and classify the left modules over these algebras 
in order to construct the "half-spin" representations. 

The spin representation of the special orthogonal group by means of 
Clifford algebras was discovered by R. Lipschitz (Untersuchungen uber die 
Summen von Quadraten, Bonn, 1886), see also van der Waerden [2], p. 14. 
The reader should not forgo the pleasure of reading Lipschitz through his 
medium .•.... in Correspondence [1]. There one may also find the Cayley 
parametrization of the orthogonal group. 

(6.22) Exercises 

1. The tensor algebra T = EBj v(J) has a filtration pky = EB~=O V(j), and this yields 
a filtration of C(Q) by FkC(Q) = KFkT, where K is the canonical epimorphism 
K: T-+ C(Q), Kl V = idv. Show that FkC(Q) · F1C(Q) c: pk+ 1C(Q). Setting Ak = 
FkC(Q)/Fk-IC(Q), we get an induced multiplication Ak ® A1 -+ Ak+ 1, making 
EBk'=oAk an IR-algebra. Show that this algebra, considered as a real vector space, 
is isomorphic to C(Q), and that as an algebra it is isomorphic to the exterior algebra 
EBk'= 0 Altk v. 
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2. Show that in C(Q) we have x · y = 1 if and only if y · x = 1. 

3. Show that the map 

f: ( ~18"- 1 ) u ( :~: 8"- 1) -+ Pin(n) (disjoint union) 

(x~o ... , xk) H x 1 • .•• · xk, where k = nor n- 1 
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is surjective. Ifn is even, then Spin(n) = f(Xj= 1 8"- 1) and ifn is odd, then Spin(n) = 
J<Xj: ~ 8"-~). 

4. Show that Spin(n) = Pin(n) n C~. 

5. Let f: G -+ G be a covering with G a connected Lie group and let /(e) = e, the unit. 
Show that G has a unique structure of a Lie group with unit e such that f is a 
homomorphism of Lie groups. 

6. Let w be the arc in Spin(n) given in (6.17). Show 

Ieos 2t -sin 2t 

sin 2t cos 2t 
0 

J 
7. The linear group GL(2, C) acts on the Riemann sphere CP1 = C u { oo} ~ 82 by 

projective transformations, i.e., via the projection GL(2, C) -+ PGL(2, C). In the 

notation of complex analysis, the matrix A = [: ! ] in GL(2, C) acts by sending z 

to (az + b)f(cz + d). Show that A E U(2) if and only if the corresponding trans
formation of CP1 ~ 82 is orthogonal (isometric). This yields an isomorphism 
SU(2)/(.l/2) -+ S0(3) mapping A to the transformation of 82 induced by A, and 
hence we get a new description of the projection SU(2) -+ S0(3). 

8. Compute C! and r 2 • Check explicitly which two circles in r 2 form the group Pin(2). 

9. Compute r 3 and Pin(3) in terms of the canonical basis of C3 and check all the 
details in the description of the isomorphism 1c: Sp(1)-+ Spin(3) in (6.18). 



CHAPTER II 

Elementary Representation Theory 

In this chapter we meet the objects which are the focus of this book: finite
dimensional representations of compact Lie groups. In §1 we introduce and 
discuss the notion of a complex representation and show that every repre
sentation is the direct sum of irreducible representations. Uniqueness of the 
direct sum decomposition is shown in §2 in the context of semisimple 
modules. The standard constructions from linear algebra, such as tensor 
products, symmetric powers, and exterior powers, are reviewed briefly in 
§3 and used to build new representations from old. 

The emphasis shifts to characters of representations in §4. The character 
is a function on the group and determines the representation up to iso
morphism. Using characters greatly simplifies computations without 
sacrificing vital information. The orthogonality relations for characters and 
for entries of matrix representations are proved in this section. 

In §5 we give an elementary construction of the irreducible representations 
of the groups SU(2), S0(3), U(2), and 0(3). This is continued in §10. In §6 
we turn to representations. on real and quaternionic vector spaces and the 
relations between these and complex representations. We do some book
keeping which keeps track of these relations. 

The ring of functions generated by the characters on a group is the topic 
of §7. This character ring has a more abstract description as the 
(Grothendieck) representation ring. We also introduce the exterior power 
and Adams operations on the representation ring. 

Representations of the abelian groups are described in §8. These yield 
simple examples and are important for the development of the general 
theory because representations are determined by their restrictions to 
(certain) abelian subgroups. The key notions of weights and (in Chapter V) 
roots are based upon representations of tori. 
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In §9 we briefly introduce the infinitesimal form of a representation: the 
representation of a Lie algebra. Although we avoid using Lie algebra tech
niques in this book, it seems convenient to have the infinitesimal weights at 
our disposal. They are later used in computations for the classical groups. 

The infinitesimal aspect is furthered in §10, where the irreducible repre
sentations of the Lie algebra sl{2, C) are described. The elementary discussion 
of S0(3)-representations is also supplemented by spherical functions, 
Legendre functions, and the differential equations coming from the Lie 
derivative. 

1. Representations 

Representations of compact Lie groups are the chief objects of interest in 
this book. Groups are intended to describe symmetries of geometric and 
other mathematical objects. Representations are symmetries of some of the 
most basic objects in geometry and algebra, namely vector spaces. 

We begin by considering finite-dimensional vector spaces over the com
plex numbers C. Later we will indicate the modifications necessary for 
working with real vector spaces, infinite-dimensional vector spaces, and so 
on. 

Representations have three different aspects-geometric, numerical, and 
algebraic-and manifest themselves in corresponding forms. We begin with 
the geometric form. 

(1.1) Definition. A representation of the Lie group G on the (finite-dimen
sional complex) vector space V is a continuous action 

p: G X v-+ v 
of G on V such that for each g E G the translation 111 : v ~---+ p(g, v) is a linear 
map. We call the pair ( V, p) a complex representation and V the representation 
space. The dimension of V (as a complex vector space) is called the dimen
sion dim V of the representation. 

Recall that saying p is an action means that 

p(e, v) = v and p(g, p(h, v)) = p(gh, v). 

We usually denote p(g, v) by gv, so the defining equations of an action take 
on the more suggestive form 

ev = v and (gh)v = g(hv). 

Written in terms of translations, these equations become 
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Thus 19 is a linear automorphism of V with inverse 19 -,, and the map g~--+19 
is a homomorphism 

1: G-+ Aut(V) = Autc(V). 

Conversely, given any such homomorphism l, we may define an action 

p: G X v-+ v, 

The reader may easily check that pis continuous if and only if lis continuous. 
A choice of a basis for V determines an isomorphism Aut( V) ~ GL(n, C). 

This leads to the numerical form of a representation. 

(1.2) Definidon. A mtltrix representation of G is a continuous homomorphism 
l: G-+ GL(n, C). 

A representation is called faithful if the associated homomorphism 
G-+ Aut(V) is injective. Later we will show that every compact Lie group 
has a faithful representation and is therefore isomorphic to a closed sub
group of a matrix group. The desire to represent abstract groups in the 
concrete numerical terms of matrices and matrix multiplication is one of the 
origins of representation theory. 

Finally, we come to the algebraic form of a representation. To begin with, 
let G be a finite group. Then we may form what is called the group ring C[G] 
of G over C. Additively this is just the complex vector space with a basis 
consisting of the elements of G. Thus each element of C[ G] may be uniquely 
expressed as a formal linear combination LseG A.9 • g, A.9 E C. 

Two such elements are multiplied as follows: 

Given a representation G x V-+ V of G, we associate to x = L A.9 g the 
linear endomorphism v ~--+ L A.9gv = x * v of V. It is easy to verify that the 
map (x, v) ~--+ x * v makes V into a left module over the ring C[G], and if 
V has the structure of a left C[G]-module, we have by definition a linear 
action of G on V which is continuous since G is finite. Thus the theory of 
representations of the finite group G may be viewed as the theory of modules 
over the group ring C[ G]. 

This module-theoretic point of view presents technical difficulties in the 
case of Lie groups because continuity must play a role in the definition of 
"group ring" and "module." Nevertheless, it is good to have at least an 
heuristic understanding of the concepts involved. Otherwise some of the 
proofs in later sections will seem artificial and unmotivated. 
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Note that an element of C[G] defines a function G-+ C assigning the 
coefficient A.9 to g. Therefore it is natural to try to replace elements of the 
group ring with continuous functions f: G-+ C. In terms of functions, the 
multiplication rule reads 

<ft * fz)(g) = L ft(gh- 1) · fz(h). 
heG 

As usual for Lie groups, such finite sums have to be replaced by integrals. 
This leads to the convolution product 

(1.3) 

of two continuous functions f 1 and f 2 on the compact Lie group G. It turns 
out that the space C0 (G, C) of continuous complex-valued functions on G, 
with the supremum norm and the convolution product, is a Banach algebra, 
and that representations are suitable modules over this algebra. 

We mention one final difficulty with this approach. The element g eGis 
contained in C[ G] as the function whose value is 1 at g and zero otherwise. 
But this function is, in general, not continuous and hence not contained in 
C0(G, C). So if we want to include the group elements, we must enlarge 
C0(G, C) by "Dirac delta functions," i.e., we are forced to consider appro
priate measures. Occasionally we shall have this approach in mind as a guid
ing viewpoint, but we will not formally develop measure theory on groups. 

We will, however, abuse notation and allow ourselves to call representa
tions Vas in definition (1.1) complex G-modules. 

(1.4) Definition. A morphism f: V-+ W between representations is a linear 
map which is equivariant, i.e., which satisfies f(gv) = gf(v) for g E G and 
v e V. Morphisms are also called intertwining operators. 

We also call these morphisms of G-modules and let HomG(V, W) denote 
the set of all such morphisms. This defines a category, and, as usual, we have 
the notion of an isomorphism, which is a morphism with an inverse. Iso
morphic representations are also called equivalent representations. 

Let a and f3 be two matrix representations G-+ GL(n, C), and V,. = 
(C", Pa.), Vp = (C", pp) be the corresponding representations on C". Then 
using the correspondence between linear maps V,.-+ Vp and complex (n x n)
matrices, we see that V,. and Vp are isomorphic if and only if there is an 
invertible matrix A such that 

(1.5) Aa(g)A - 1 = f3(g) for all g e G. 

If two homomorphisms a and f3 are related as in (1.5), they are said to be 
similar or conjugate. This should not be confused with complex conjugation. 
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(1.6) Definition. If Vis a complex G-module, an (Hermitian) inner product 
V x V-. C, (u, v) 1-+ (u, v) is called G-invaritmt if (gu, gv) = (u, v) for all 
g e G and u, v e V. A representation together with a G-invariant inner 
product is called a unitlll'y representation. 

If we choose an orthonormal basis for the space V of a unitary represen
tation, then the associated matrix representation is a homomorphism 
G-. U(n). Conversely, any such continuous homomorphism defines a 
unitary representation on C" with its standard inner product. The existence 
of invariant inner products for compact groups is an important application 
of invariant integration. In fact, the results we are about to derive are true 
for arbitrary compact topological groups. But the reader not familiar with 
general topological groups may take the term "compact group" to mean 
"compact Lie group." 

(1.7) Theorem. Let V be a representation of the compact group G. Then V 
possesses a G-invariant inner product. 

PRooF. Let b: V x V-. C be any inner product and define 

c(u, v) = { b(gu, gv) dg, 

where the integral is normalized and left-invariant. Then c is linear in u, 
conjugate linear in v, G-invariant since the integral is left-invariant and 
positive definite since the integral of a positive continuous function is positive. 
Thus cis a G-invariant inner product. 0 

(1.8) Definition. Let V be a G-module. A subspace U c V which is G
invariant (i.e., gu e U for g e G and u e U) is called a submodule of V or a 
subrepresentation. A nonzero representation V is called irreducible if it has 
no submodules other than {0} and V. A representation which is not ir
reducible is called reducible. 

(1.9) Proposition. Let G be a compact group. If V is a submodule of the 
G-module U, then there is a complementary submodule W such that 
U = V $ W. Each G-module is a direct sum of irreducible submodules. 

PRooF. Choose a G-in variant inner product on U and let W be the orthogonal 
complement of V in U, then W is again a G-submodule. 

The second statement now follows by induction on the dimension of U, 
since if U =F {0} is reducible then U = V $ W with 0 < dim V < dim U. 0 

The next theorem is an extremely useful tool in the theory of representa
tions: 
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(1.10) Theorem (Schur's Lemma). Let G be any group and let V and W be 
irreducible G-modules. Then 

(i) A morphism V-+ W is either zero or an isomorphism. 
(ii) Every morphismf: V-+ V has theformf(v) = A,vfor some). E C. 

(iii) dime Hom6 (V, W) = 1 if V ~ W, and 

dime Hom6 (V, W) = 0 if V ?t. W. 

PROOF. Since Vis irreducible, the kernel off is either {0} or V. In the latter 
case f is zero, and in the former f is injective. Iff is injective, its image is a 
nonzero submodule of the irreducible G-module W, and hence is all of W. 
We conclude that f is an isomorphism, showing (i). 

To prove (ii), assume that f is nontrivial and let ). be any eigenvalue of 
f and W the corresponding eigenspace. Thus W ={wE Vlf(w) = Aw} and 
one easily checks that W is a G-submodule. Hence W = V, which gives (ii). 
The third part follows from (i) and (ii). D 

(1.11) Definitions. The representations of SU(n), U(n), and GL(n, C) on C" 
in which elements of the stated Lie groups simply operate by matrix multi
plication are called the standard representations. 

A representation is called trivial if each group element acts as the identity. 

(1.12) If V and W are G-modules, we may form their direct sum V EB W. 
This becomes a G-module with the action g(v, w) = (gv, gw). In terms of 
matrices, this corresponds to the following construction: If G -+ GL(m, C), 
g H A(g) and G -+ GL(n, C), g H B(g), then we obtain the direct sum 
representation G -+ GL(m + n, C) by forming the block matrices 

( A(g) 0 ) 
gH 0 B(g) . 

(1.13) Proposition. An irreducible representation of an abelian Lie group G 
is one-dimensional. 

PRooF. Since G is abelian, the translation 19 : V -+ V is a morphism of repre
sentations for each g E G. By (l.lO)(ii), every 19 is multiplication by ).(g) E C. 
But this implies that any subspace of V is G-invariant. The result follows, 
since if dim V > 1, V would have a one-dimensional subspace, and since all 
subspaces are submodules, this would contradict the irreducibility of V. D 

Let G be a compact group. We denote by Irr(G, q a complete set of 
pairwise nonisomorphic complex G-modules, i.e., each irreducible G-module 
is isomorphic to exactly one element of Irr(G, C). For arbitrary representa
tions of G we use the following terminology: 

If U is isomorphic to a submodule of V we say U is contained in V. If W is 
irreducible we call the dimension dime Hom6 (W, V) the multiplicity of W 
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in V. The significance of this number and its name is the following: Suppose 
we have a decomposition V = EBi Jj of V into irreducible submodules Jj 
(such a decomposition exists by (1.9)). Then HomG(W, V) = 
EBi HomG(W, Jj), and so by Schur's lemma, (1.10), dime HomG(W, V) is 
simply the number of Jj that are isomorphic to W. In particular, this 
multiplicity is nonzero if and only if W is contained in V, and this happens 
for only those finitely many We lrr(G, C) isomorphic to some Jj. 

The multiplicities become even more transparent in the c11110nicfll 
decomposition of V described in the next proposition. Given an irreducible 
W, we consider the map 

qJ ® w 1-+ qJ(w). 

The group G acts on the domain of dw by {g, qJ ® w) 1-+ qJ ® gw, and it is 
easy to see that dw is a G-map with this action. We can put all the maps dw 
together to form a map 

d = (dw): EB HomG(W, V) ®e W-+ V, 
w 

where W ranges over Irr(G, C). This is again a morphism of G-modules. 

(1.14) Proposition. The map above d: EBwelrr(G,C) HomG(W, V) ®c W-+ V 
is an isomorphism. 

PRooF. The map d is compatible with G-isomorphisms V-+ V' and direct 
sum decompositions V = V1 E9 V2 • Thus it suffices to consider V e lrr(G, C) 
(see (1.16), Ex. 11). In this case Schur's lemma, (1.10), tells us that the only 
nonzero summand in the domain of d is HomG(V, V) ®c V ~ C ®c V, and 
d describes the canonical isomorphism C ®c V-+ V, .i1. ® v 1-+ .il.v. Thus the 
proposition is proved. 0 

Let V(W) be the image of dw. We call V(W) the W-isotypiclll sumnuuul 
of V, and we also call dime HomG(W, V) the muhiplicity of V(W). The 
reader should show as an exercise that V(W1) = V(W2) if W1 ~ W2, so each 
isomorphism class of irreducible complex G-modules yields a uniquely 
determined submodule of V. The W-isotypical summand enjoys the following 
property: 

(1.15) Proposition. V(W) is generated by the irreducible submodules of V 
that are isomorphic to W. 

PRooF. If i: W-+ V is the inclusion of a G-submodule, then dw(i ® w) = 
i(w) = w. Hence W c: V(W). Thus if W1 c: V and W1 ~ We lrr(G, C), 
then W1 c: V(W1) = V(W), so V(W) contains all the submodules of V 
isomorphic to W. On the other hand, if qJ e HomG(W, V), the image of qJ 
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lies in the direct sum of the irreducible submodules of V isomorphic to W. 
Thus the image of dw lies in the same direct sum, which completes the proof. 

D 

If Vis a G-module and oc: H-+ G is a homomorphism of Lie groups, we 
obtain an H-module oc*V with the same underlying vector space, but with 
the H-action H x V-+ V, (h, v) 1-+ oc(h)v. For an inclusion oc: H-+ G we call 
a*V the restriction of V to Hand sometimes denote it by res~ V. 

We have already encountered representations in Chapter I, most notably 
the tuljoint representation 

G x LG-+ LG, 

which is a representation on a real vector space (cf. §6). This representation 
is of great importance to the structure theory of G and will be analyzed in 
detail in later chapters. 

(1.16) Exercises 

1. Show that the standard representations (l.ll) are irreducible. 

2. Show that the matrix 

A(t) = (~ ~). t ~ 0 

is not conjugate to any unitary matrix. Show that the representation ofthe additive 
group IR given by t .-. A(t) has no invariant inner product. Show that this repre
sentation is not a direct sum of irreducible submodules. What are the irreducible 
submodules? Show that IR has an uncountable number of nonisomorphic irre
ducible unitary representations. 

3. Show that SL(2, IR) has no nontrivial unitary representation as follows: 
(i) For any natural number m verify the identity 

(~ m~ 1)A(t)(~ m~~) -t = A(m2t) = A(tr2 

with A(t) as in Exercise 2. 
(ii) Let qJ: SL(2, IR)-+ U(n) be a representation. Use (i) to show that the eigen

values of qJA(t) are a permutation of their m2th powers for any m and are 
therefore roots of unity. Conclude that all eigenvalues must be 1. 

(iii) Show that the normal subgroup generated by the A(t) is equal to the whole 
group. 

Note that this proof does not use the continuity of qJ! For more details and references 
see Hewitt and Ross [1], p. 349. 

4. By viewing IR as a vector space over Q show that S1 = IR/l has many discontinuous 
representations S1 -+ S1 = U(1). 

It is a remarkable theorem of van der Waerden [1] that bounded representations 
of compact semisimple groups (like SO(n), SU(n), Sp(n) and products of such 
groups) are automatically continuous. 
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5. Consider the representation S1 -+ 0(2) c U(2) 

( cost -sin t) 
exp(it) f-+ . = R(t). 

sm t cost 

Find the irreducible subspaces. Find a unitary matrix A such that AR(t)A -t is 
diagonal and consists of two one-dimensional representations. 

6. Let A be an abelian subgroup of U(n). Show that A is conjugate to a subgroup of 
the group of diagonal matrices in U(n). (Use (1.13).) 

7. Let V be irreducible. Show that any two G-invariant inner products on V differ by 
a constant factor. How can one determine all G-invariant inner products for an 
arbitrary V? 

8. Let V and W be isomorphic unitary representations of the compact group G. Show 
that V and W are actually isometric. In other words, if two homomorphisms 
oc, P: G -+ U(n) are conjugate in GL(n, C), they are already conjugate in U(n). 

9. Let V be a representation of the compact group G with isotypical decomposition 
V = V1 $ · · · $ V,. Show that the group of G-automorphisms of Vis isomorphic 
to GL(n1o C) x · · · x GL(n, C). where ni is the multiplicity of V;. 

10. Does Schur's lemma help determine the center ofGL(n, C)? 

11. Verify the assertions in the first sentence of the proof of (1.14). 

2. Semisimple Modules 

We have seen that any complex representation of a compact Lie group is a 
direct sum of irreducible representations. In this section we shall see that 
the decomposition is unique in a certain sense. We discuss this in a slightly 
more general setting so that we may apply it to other situations we will 
encounter later. 

Let a be any set. An additive abelian group M has the structure of a (left) 
a-moduk if for each rx e a there is given an endomorphism x 1-+ rxx of M. An 
a-module M is also called a group with a-operators. An a-homomorphism 
between two a-modules M and N is a group homomorphism/: M --+ N such 
thatf(rxx) = rxf(x) for all rx Ea. A subgroup N of an a-module Miscalled 
a submodule if rxx e N for each x e N and rx e a. Kernels, images, and co
kernels of a-homomorphisms are a-modules. An a-module M =F {0} is 
called simple or irreducible if its only submodules are {0} and M. The argu
ments used in (1.10) yield the same result: 

(2.1) Schur's Lemma. Let f: M --+ N be an a-homomorphism. If M is simple 
then f is either injective or zero; if N is simple then f is either surjective or 
zero; if both are simple then f is either an isomorphism or zero. 0 
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The direct sum of a family of .0-modules is the group-theoretic direct sum 
with componentwise .0-operation. An .0-module is called semisimple if it is 
a direct sum of simple modules. 

(2.2) Theorem. Let M be an .0-module that is a sum (not necessarily direct) 
of a family (N iii E J) of simple submodules. Let E be any submodule of M. 
Then there is a submodule F of M such that M = E Ef> F and F is the direct 
sum of some subfamily (Nili E I), I c J. Furthermore, there is an index set 
I' c J with I f"'l I' = 0 such that M is the direct sum of the simple submodules 
(Niij E I u I') and E is isomorphic to the direct sum of the (Niii E I'). In 
particular, every submodule of M is semisimple. 

PROOF. Consider those subsets K c J such that LieK Ni = N(K) is in fact a 
direct sum and such that N(K) f"'l E = {0}. Applying Zorn's lemma, let 
I c J be maximal with respect to these properties. Suppose E + N(I) '#- M. 
Then there is aj E J with Ni not contained in E + N(J). Since Ni is simple, 
Ni f"'l E = Ni f"'l N(I) = {0}. Thus N(I) + Ni = N(J u U}) is direct and 
E f"'l N(I u U}) = {0}, contradicting the maximality of I. This proves the 
first statement, and the second follows by applying the first to the submodule 
N(I) in place of E. This yields I' with I f"'l I' = 0 and M = N(I) Ef> N(l'), 
and since M = E Ef> N(I), E ~ M/N(J) ~ N(J'). 0 

A semisimple .Q-module M is called isotypical if it is a direct sum of simple 
submodules each of which is isomorphic to a given simple moduleS. We 
also say that M is S-isotypical in this case. If M is S-isotypical, the previous 
theorem (2.2) implies that each simple submodule of M is isomorphic to S 
and hence each submodule of M is itself S-isotypical. 

(2.3) Proposition. Let M be a semisimple .0-module and S a simple .0-module. 
Let M(S) be the submodule of M generated by all simple submodules of M 
isomorphic to S. Then M(S) is S-isotypical and the S-isotypical submodules of 
Mare submodules of M(S). If N is a submodule of M, then N(S) = N f"'l M(S). 
Finally, M is the direct sum of the submodules M(S) '#- {0}, where S ranges 
over a complete set of pairwise nonisomorphic simple .0-modules (contained 
inM). 

PRooF. M(S) is semisimple and S-isotypical by (2.2) and contains every 
S-isotypical submodule of M by definition. If N is a submodule of M, then 
N(S) is S-isotypical, so N(S) c M(S) f"'l N, and conversely M(S) f"'l N is 
S-isotypical, so M(S) f"'l N c N(S), showing equality. To prove the final state
ment, note that by collecting those simple submodules isomorphic to the 
same S, we may write M = EBs M s with M s S-isotypical. Note also that if 
M has no submodule isomorphic to S, we have Ms = M(S) = {0}, so we 
may take S to run over the index set stated in the proposition. Fixing S, let 
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N be a submodule of M isomorphic to S. Then by Schur's lemma the map 
N c M-+ ffins MT is the zero map. Hence N c M8 , so Ms = M(S) and 
the proposition is proved. D 

We call the uniquely determined submodule M(S) the S-isotypical part 
ofM. 

The foregoing may be applied to the representations of a compact Lie 
group G as follows. Let Q = G u IC as a set. If V is a representation of G, 
then we are given an action of g E G c Q on V, and A. E IC c Q acts via scalar 
multiplication. Thus V may be considered an Q-module, and an Q-sub
module is clearly a subrepresentation. By (1.9), such representations are 
semisimple as Q-modules. Since simple Q-submodules of V are irreducible 
representations, we end up with a decomposition of V into its S-isotypical 
parts, where S runs through a complete set of pairwise nonisomorphic 
irreducible representations of G. 

This section is based on Dieudonne [2], annexe. See also Cartan and 
Eilenberg [1], 1.4. 

(2.4) Exercises 

l. Let M be an S-isotypical representation of the compact group G. Suppose M = 
M 1 Ef> • • • Ef> Mk, where each M; is irreducible. Show that k is uniquely determined 
by M, but that theM; themselves are not uniquely determined if k ;;::: 2. 

2. Show that the additive group IR admits representations which are not semisimple. 

3. Let V be a finite-dimensional complex vector space and let u be an endomorphism 
of V. Let Q = IC u {u}, with IC operating on V by scalar multiplication and u by 
x H u(x). The endomorphism u is called semisimple if Vis a semisimple Q-module. 
Show that Vis semisimple if and only if V has a basis consisting of eigenvectors of 
u. Determine the isotypical components. 

4. Show that the ring of Q-endomorphisms of a simple Q-module is a skew field. 

5. Explain how Q-modules may be considered as modules over the ring freely generated 
by Q. 

3. Linear Algebra and Representations 

Algebraic constructions may be used to obtain new representations from 
old ones. We have already seen how to form direct sums V EB W, and now we 
consider tensor products, exterior powers, and homomorphisms. 

Let V and W be representations of G. The tensor product representation 

V®W 
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has the action g(v ® w) = gv ® gw. Ifv 1, ..• , Vn is a basis of V and W~o ... , wm 
is a basis of W, then the v; ® w k form a basis of V ® Wand the map V x W -+ 
V ® W, (v, w)-+ v ® w, is bilinear. If g acts on V and W via the matrices (r;;) 
and (sk1), then g acts on V ® W via the matrix (riiskl) whose entry in the 
{i, k)th row and (j, l)th column is riiskl· More explicitly, if gvi = L; r;iV; and 
gw, = Lk ski wk> then 

g(vi ® w1) = L riisk1v; ®wk. 
i,k 

The matrix (riisk1) is sometimes called the Kronecker product of (r;) and 
(ski). 

We also have an action of G on 

Hom(V, W) 

given by (g · f)(v) = gf(g- 1v), where/ E Hom(V, W), g E G, and v E V. This 
makes the following diagram commute: 

v~w 

_qj j _q 

v ---g}·-· w 

If W = C is the trivial representation, then 

Hom(V, C) = V* 

is called the dual representation of V. If gvi = L; riivi with respect to the 
basis v1, ••• , v" of V, and if vj, ... , v: is the dual basis, then we may write 
g · vj = L; s;M)vt. But 

sii(g) = (gvj)(v;) = vj(g- 1v;) = vj(~rk;(g- 1 )vk) = rjj(g- 1), 

in other words g acts via the transpose of the inverse. 
If V is a complex vector space, we may define the conjugate space V 

which has the same additive structure as V but scalar multiplication defined 
by 

CxV-+V, (z, v) ~ zv. 

If V is a G-module, then V is also a G-module, called the conjugate represen
tation of V. If we choose an invariant inner product on V, then 

V-+ V*, v~<-.v) 
is an isomorphism. 

Occasionally we must resort to fancier constructions from linear algebra; 
for example, the ith exterior power N( V) of V and the ith symmetric power 
S ;( V) of V. If v 1, .•• , v" is a basis of V, then a basis of N( V) is given by the sym
bols vk, 1\ · · • 1\ vk;' k1 < · · · < k;, and the map Vi-+ N(V), (w 1, •.. , w;) ~ 
w 1 1\ · · · 1\ w; is linear in each variable and alternating. In particular, /\"( V) 
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is one-dimensional and g e G operates via multiplication by the determinant 
of/9 • 

There are many canonical isomorphisms between these kind of construc
tions, and they yield canonical isomorphisms between the corresponding 
representations. The examples listed below provide an excellent opportunity 
for the reader to check his understanding of linear algebra. 

(3.1) (U ® V) ® W ~ U ® (V ® W), 

U® V~ V® U, 

U ® (V EB W) ~ (U ® V) EB (U ® W), 

k 

N(VEB W) ~ Ef)N(V) ® N-j(W), 
i=O 

k 

sk(v EB w) ~ EB Si(V) ® sk-i(W), 
i=O 

V ® V ~ 5 2(V) ffi J\2(V). 

Of particular importance for representation theory is the isomorphism 

0: V* ® W--+ Hom(V, W), 

which maps v"' ® w to the homomorphism u 1-+ v*(u)w. We remark that 
although this map is canonical, it is an isomorphism only if V or W is finite 
dimensional. 

If V = W, then the map 

(3.2) Hom(V, V) ~ V"' ® V--+ C, v* ® u 1-+ v*(u) 

associates to f e Hom(V, V) its trace Tr(f) e C. If v1, .•• , v" is a basis of V 
and fvi = L; riivio then O(L r;kvt ® v;) =f. 

Consequently 

Tr(f) = L rii. 
i 

We collect some properties of the trace. 

(3.3) Proposition. 

(i) Tr: Hom(V, V)--+ C is linear. 
(ii) Tr( q>f q>- 1) = Tr(f) for each C-automorphism q> of V. 
(iii) For f: V--+ Wand h: W--+ V, Tr(fh) = Tr(hf). 
(iv) Tr(f (f) h) = Tr(f) + Tr(h). 
(v) Tr(f ® h) = Tr(f) · Tr(h). 

(vi) f: V--+ V induces a map f"': V"' --+ V* and Tr(f"') = Tr(f). 
(vii) Iff: V--+ Vis idempotent, then Tr(f) is the dimension of the image off. 
(viii) f: V--+ V induces a map J: V--+ V and Tr(J) = Tr(f). 

PRooF. The proof of this proposition is relegated to (3.4), Ex. 3. 0 
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(3.4) Exercises 

1. Let V be a G-module. The symmetric group S(k) acts on the k-fold tensor product 
y®t = V ® · · · ® V by permuting the factors. This action commutes with the action 
of G on y®t. The subspace of alterllllting tensors 

a(V®1) = {xl7tX =(sign n)x for alln e S(k)} 

and of symmetric tensors 

s(V®1} = {xlnx = x for alln e S(k)} 

are therefore subrepresentations of y®t. Show 

a(V®t) ~NV and s(V®t) ~ S1(V). 

2. Describe the representations I\2 V and S2V in matrix form. 

3. Prove (3.3). 

4. Prove the identities in (3.1). 

5. Use an invariant inner product to show that, for compact groups G and G-modules 
V, there is an isomorphism V ~ V*. 

6. Let V ben-dimensional. Show that diml\iV =(~)and dim Si(V) = e: ~ ~ 1). 

4. Characters and Orthogonality Relations 

We will now begin to use invariant integration on the compact Lie group G 
to derive some deeper insights into the structure of representations. 

Let V be a (complex) representation of G. The fixed point set 

yG = { v e V 1 gv = v for all g e G} 

is a linear subspace of V. For each v e V, let p(v) = f gv dg. By invariance of 
integration we have xp(v) = x f gv dg = f xgv dg = p(v) for x e G, so 
p(v) e VG. Also, if v e yG then f gv dg = f v dg = v. Therefore 

(4.1) p: v-+ VG, v~-+ J gv dg 

is a projection operator onto VG. 
Recall that the group G operates on Hom(V, W) by (g · f)v = gf(g- 1v). 

With this action Hom(V, W)G = HomG(V, W), the space of G-maps V-+ W. 
Therefore we obtain the projection operator 

p: Hom(V, W) -+ HomG( V, W), f 1-+ f (g . f) dg. 

If V is irreducible, Hom6 ( V, V) ~ C by Schur's lemma. 
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(4.2) Proposition. Let V be irreducible. Then for f e Hom(V, V) 

f(g ·f) dg =I ~I Tr(f) idv. 

where I VI = dime V and Tr(f) is the trace of f. 

PRooF. We have already remarked that by Schur's lemma the integral must 
be a multiple c · idv of the identity map idv. We compute the constant c by 
applying the linear map Tr: Hom(V, V)-+ C which, as does any linear map, 
commutes with integration: 

I VI· c = Tr(c · idv) = f Tr(g ·f)= f Tr(l, of o 1; 1) = f Tr{f) = Tr{f). 

Note that we have used (3.3)(ii). 0 

If v., ... , v, is a basis of V, then the matrix representation G -+ GL(n, C), 
g 1-+ (r;jg)) is given by gvi = Li r;1{g)v;. Thus if vf, ... , v: is the dual basis 
of V*, 

(4.3) 

This motivates us to consider general functions of the form 

g 1-+ <p(gv) 

with <p e V*, v e V. These are called representative jiiiiCtions on G. If we 
apply the linearity property of the integral to (4.2) we obtain 

(4.4) Proposition. Let V be irreducible. Then for <p e V*, v e V,J e Hom(V, V) 

f <p(gf (g- 1 v)) dg = I ~ I Tr(f)<p( v ). 

We wish to apply this result to the linear operator B: V-+ V, u 1-+ t/l(u)w, 
where t/1 e V* and we V. The trace of this operator is t/J(w) (see (3.2)). 

We compute 

Note that g acts on V* via g<p(w) = <p{g- 1w), and so, after identifying V** 
with V, the function g 1-+ <p(g- 1w) = w(g<p) is seen to be a representative 
function for V*. 

The following two theorems essentially express results about the operator 
B in terms of an Hermitian inner product (-, -) on V instead of in the 
language of dual spaces. For an explanation of the names of these theorems, 
see remarks (4.7) below. 
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(4.5) Theorem (Orthogonality Relations). Let V be irreducible. Then: 

(i) For any f E Hom(V, V) and v, wE V 

J (gf(g- 1v), w) dg =I ~I Tr(f)(v, w); and 

(ii) For V, w, ex:, f3 E V 

f -t I ) (g v, cx:)(g/3, w) dg = fVI (/3, cx:)(v, w . 

If V happens to be a unitary representation, (ii) may be written 

f 1 -
(gcx:, v) (g/3, w) dg = lVI (ex:, /3) (v, w). 

79 

PROOF. Statement (i) follows from ( 4.4) and linearity ofthe inner product and 
integral. Applying (i) to the linear map f defined by f(u) = (u, cx:)/3 yields 
~ 0 

(4.6) Theorem (Orthogonality Relations). Let V and W be nonisomorphic 
irreducible representations. Then for a G-invariant inner product ( -, -) 
on V and any ex:, v E V and {3, w E W 

f (gcx:, v) (g/3, w) dg = 0. 

PROOF. Fix ex: and {3. From (gcx:, v) = (v, gcx:) it follows that the integral is 
linear in v and conjugate linear in w. Thus it defines a bilinear form 
b: V x W- C which a calculation using the invariance of the integral and 
the linearity of the given inner products shows to be G-invariant. Hence it 
defines a G-map b': V- Hom(W, C). But Hom(JV, C)= W* ~ W (see 
(3.4), Ex. 5), so by Schur's lemma b' must be the zero map. 0 

(4.7) Remarks. There is an inner product (cp, 1/J) = J cpiji on the space 
C0(G, C) of continuous functions G- C. Theorems (4.5) and (4.6) concern 
the behavior of representative functions under this inner product. If 
v1, .•• , vm and w1, ..• , w. are orthonormal bases of the irreducible unitary 
representations V and W, we have the matrix representations 

rii(g, V) = (gvi, vi), 

rk,(g, W) = (gwl, wk) 
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and (4.5) and (4.6) yield 

Jr;ig, V)rt1(g, V)= l~lc5;kc5i, 
(4.8) 

f r;1{g, V)i'ki(g, W) = 0, V$W. 

Formulas (4.8) express the fact that the matrix entries coming from ir
reducible unitary representations form an orthogonal system with respect 
to the inner product (u, v) = J uv. In Chapter III we will show that, in the 
appropriate sense, this orthogonal system is complete (Theorem of Peter and 
Weyl). The reader is also referred to the special case of SU(2) treated in the 
next section. It turns out that the classical orthogonal systems of special 
functions all come from representations of Lie groups (see Vilenkin [1]). 

We now introduce characters of representations. They are important 
because they are functions on G which determine representations uniquely 
up to isomorphism, and it is easier to handle functions than matrices. 

Let V be a (complex) representation of G. 

(4.9) Definition. The clulracter of Vis the function 

xv: G --t C, 

where Tr(/9) is the trace of the linear map /9 : V-+ V, v 1-+ gv. The character of 
an irreducible representation is called an irreducible clulracter. 

Properties of the trace given in (3.3) immediately yield some properties of 
characters : 

(4.10) Proposition. 

(i) Xv is a C00{unction. 
(ii) If V and Ware isomorphic then Xv = Xw· 

(iii) xv(ghg- 1) = Xv(h). 
(iv) Xvew = Xv + Xw· 
(v) Xv®w = Xv · Xw· 

(vi) x.-.(g) = xv(g- 1). 

(vii) Xv(g) = Xv(g) = Xv(g- 1). 

(viii) Xv(e) = dime V. 

PRooF. For (i) write Vas a matrix representation g 1-+ (r;ig)). Then the r;ig) 
are coo by I, (3.12) and xv(g) = Li ru(g). For (ii), let f: V-+ W be an iso
morphism. Then 1': f = fl:, so 

Xv(g) = Tr(l:) = Tr(/- 11':!) = Tr(l':) = Xw(g). 
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Properties (iii)-(v) are clear from (3.3)(ii), (iv), and (v). To demonstrate (vi), 
apply (3.3)(vi) noting that the left translation by g on V* is defined to be the 
map {lr ,)*. Finally (vii) follows from (ii) and the isomorphism V ~ V*, 
and (viii) is clear. D 

By (4.10)(iii) a character is constant on conjugacy classes of G. A function 
f: G -+ C with this property is called a class function. 

The next theorem expresses the orthogonality relations for characters. In 
Chapter III we will show that the characters of irreducible representations 
form a complete orthogonal system in the space of class functions. 

(4.11) Theorem. 

(i) f Xv(g) dg =dim V 6 • 

(ii) <xw, Xv > = J Xv(g)xw(g) dg = dim Hom6 (V, W). 

( .. ') rl' d d bl f {1 if V ~ W, m 11 Van Ware irre uci e, XvXw = 0 h . 
ot erwzse. 

PROOF. The projection operator p from (4.1) has trace dim V 6 • Since Tr is 
linear and hence commutes with integration, we get 

dim V6 = Tr(p) = Tr(J [9 dg) = f Tr(l9) dg = f Xv(g) dg. 

This proves (i). To prove (ii), recall that Hom(V, W)6 = Hom6 (V, W), 
so using (i) dim Hom6 (V, W) = J XHom(V,W)(g) dg, but XHom(V,W) = 
Xv•®w = Xv Xw. The last statement (iii) follows from (ii) and Schur's lemma. 

D 

(4.12) Theorem. A representation is determined up to isomorphism by its 
character. 

PROOF. Let V = ffii ni VU) be a decomposition of V into irreducible repre
sentations (see notation following (1.13)). Then Xv = Li niXV(j) and ni = 

<xv.Xvw>· D 

Note. The inner product here and in the next proposition refers to 
<xv.xw> = Lxv(g)xw(g)dg. 

(4.13) Proposition. Suppose that <xv, Xv) = 1. Then V is irreducible. 

PROOF.If V = ffii ni V(j), then <xv, Xv) = L: nf. D 
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We may apply (4.13) to determine the irreducible representations of a 
product G x H of compact Lie groups G and H. Note that for representa
tions V of G and W of H we have the tensor product V ® W with the diagonal 
action (g, h)(v ® w) = gv ® hw. 

(4.14) Proposition. If V is an irreducible representation of G and W is an 
irreducible representation of H, then V ® W is an irreducible representation 
of G x H. Furthermore, any irreducible representation of G x H is a tensor 
product of this form. 

PROOF. The first half follows from (4.13) and the calculation 

( Xv®w iv®w = ( Xv(9)Xw(h)iv(g)iw(h) dg dh 
JGxH JGxH 

= L Xv(9)iv(g) dg · L Xw(h)iw(h) dh = 1 · 1 = 1. 

For the second half, suppose U is a G x H-module. Let 

cp: ffi HomH(»j, U) ® »)-+ U, 
j 

f ®WI-+ f(w) 

be the isotypical decomposition of U considered as an H-module. G acts on 
f E HomH(»j, U) by (af)(w) = g · f(w), for since the G- and H-actions on 
U commute, gf E HomH(»J, U). Note that the isomorphism cp is not only 
an H- but a G x H-isomorphism. Now decompose HomH("'J, U) = 
ffii nii V; as a G-module. This gives us an isomorphism U ~ ffii.i nii V;® »J. 

(4.15) From the proof of ( 4.14) we obtain a bijection 

lrr(G, C) x Irr(H, C)-+ Irr(G x H, C), 

(V, W)1-+ V® W. 

0 

The irreducible representations V of a compact abelian Lie group G are 
one-dimensional (see (1.13)). Therefore the irreducible characters are homo
morphisms G-+ U(l). The pointwise product of two such homomorphisms 
is again a homomorphism, and so the irreducible characters form a group, 
the character group G of the abelian group G. 

We close this section by recording for later reference a few identities 
concerning the behavior of representative functions and characters with 
respect to convolution. All of the identities follow from the orthogonality 
relations. 

(4.16) Proposition. Let g 1-+ (ui1{g)) and g 1-+ (vk1(g)) be nonisomorphic ir
reducible unitary matrix representations of the compact group G with characters 
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Xu and Xv. Let I U I, I VI denote the dimensions of the representations. Then 

(i) 
1 

uii * uk, = I U I t5ikui, and 

uii * vk1 = 0. 

(ii) 
1 

Xv * vii = vii * Xv = WI vii. 

Xu * vkl = Vkz * Xu = 0. 

(iii) 
1 

Xv * Xv = WI Xv· 

Xv *Xu= 0. 

PRooF. For (i) we start with the definition 

uii * ukl(g) = J uii(gh- 1)uk,(h) dh 

of the convolution and substitute the relations 

uiigh - 1) = L uu(g)u,j(h- 1) 

I 

and 

The result is 

~ Ui1(g) f Uj1(h)uk1(h) dh. 
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Using the orthogonality relation (4.8) in this sum leads to the first identity 
in {i), and the second identity in (i) is proved similarly. The identities (ii) and 
(iii) follow from (i) using Xv = Lr V11 • D 

For a finite group G, the convolution is given by u·v = IGiu*V, with the 
product in the group ring C[G] (see §1). In this case (4.16)(iii) says that 
(lvl: IGDxv = ev is an idempotent element (i.e., evHv = ev) and (ii) says 
that ev is contained in the center of C[G]. Since eu * ev = 0, one often says 
that the ev are central orthogonal idempotents ofC[G]. 

(4.17) Exercises 

1. Let G be a finite abelian group. Show that G is isomorphic to G. Let G act on the 
group ring C[G] by left translation. Show that the isotypical components of C[G] 
are one-dimensional and that Lg x(g )g generates the x-isotypical part for X E (; = 
Irr(G, C). 
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2. Let f.: G ..... GL(n, C), t E [0, 1], be a family of representations f. depending con
tinuously on g E G and t E [0, 1], i.e., a honwtopy of represent(ltions. Show that, for 
compact G, / 0 and / 1 are isomorphic representations. Show by way of a counter
example that this conclusion is not valid in the case of a noncompact group G. 

In general, the following is true: Let f,: G ..... H be a homotopy of homomorphisms 
for a compact Lie group G. Then/0 and/1 are conjugate; see Conner and Floyd [1], 
Lemma 38.1. This follows from a theorem of Montgomery and Zippin [1], p. 216, 
which states that each subgroup H in a sufficiently small neighborhood of a compact 
subgroup F is conjugate to a subgroup of F. Compare Bredon (1], 11.5.6. 

3. Let V be an irreducible G-module with G compact. Show that Xv(x)xv(Y) = 
I VI f Xv(gxg- 1y) dg. 

4. Relate the orthogonality relations for representations of S1 to the orthogonality 
relations between the trigonometric polynomials of classical Fourier analysis. 

5. Show that lrr(G, IC) is finite for finite G. 

5. Representations of SU(2), S0(3), U(2), 
and 0(3) 

Our goal in this section is to give elementary descriptions of the irreducible 
representations of the groups mentioned in the section heading. 

We begin with SU(2). Let V0 be the trivial representation on C and let 
V1 be the standard representation on C2 (the operation being given by 
matrix multiplication). In the terminology of §3 the other irreducible repre
sentations will have the nth symmetric powers S"V~> n ~ 2, as their represen
tation spaces. More explicitly: Let V,. be the space of homogeneous 

polynomials of degree n in two variables Zt and Zz. The dimension of vn is 
n + 1. Viewing polynomials as functions on C2, we obtain a left action of 
GL(2, C) and hence SU(2) on the polynomials by letting 

(gP)z = P(zg), 

where 

and 

zg = (az 1 + cz2 , bz1 + dz2 ). 

Since each g acts as a homogeneous linear transformation, the subspaces 
V,. £; C[zt> z2 ] are SU(2)-invariant. Note that, in this description, n = 0 
yields the trivial representation and V1 may be identified with the standard 
representation. 
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A basis of the space V,., consisting of the polynomials 

0 :S; k :S; n, 

is used in the proof of the next proposition. 

(5.1) Propbsition. The representations V,. are irreducible. 

PRooF. It suffices to show that each SU(2)-equivariant endomorphism A of 
V,. is a multiple of the identity. So let A be equivariant and, for a e U(l), set 

Then g,.P" = a2"-"P~c and g,.AP" = Ag,.P" = Aa2"-"P" = a2"-"AP~c. 
Now choose a such that all the powers a2"-", 0 :S; k :S; n, are distinct. It is 

not difficult to verify that, with a so chosen, the a 2"-"-eigenspace of g,. in V,. 
is generated by P". Thus AP" = c"P" for some c" e C. 

We now consider the real rotations 

r = (c~s t -sin t) e SU(2), t e IR 
' smt cost 

and compute: 

Ar,P. = A(z 1 cost + z2 sin t)" 

= ~(~)cos" t · sin•-" t 0 AP" 

"(" (n) " 0 ,_" p = f k cos t·sm t·c,.o "0 

Similarly, 

Comparing coefficients shows that c" =c., so A= c.· id. D 

Let 

e(t) = (exp(it) 0 
0 

)· 

0 exp( -It) 

Since any element in SU(2) is conjugate to a diagonal matrix, any element 
is conjugate to some e(t). Furthermore, e(t) and e(s) are conjugate if and 
only if s :::: ± t mod 2n. Thus if.f: SU(2)-+ Cis a class function,fe: 1R-+ C, 
t 1-+ f(e(t)), is an even 2n-periodic function. The space of continuous class 
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functions may thus be identified with the space of even 2n-periodic continuous 
functions IR --+ C. The character 'X.n of V, has the value 

n :L ei<n-2k)t 

k=O 

at e(t). For t not an integer multiple of n, this sum equals sin(n + l)t/sin t, 
which we will denote by Kn(t). Using the addition theorem for sin we get 

Kn(t) =COS nt + Kn-l(t) COSt, 

so K0(t), ... , Kn(t) generate the same vector space as 1, cost, ... , cos nt. It is 
well known from elementary Fourier analysis that the space generated by 
cos nt, n E N0 is uniformly dense in the space of even 2n-periodic continuous 
functions IR --+ IC, so we have shown that the characters Xn are uniformly 
dense in the space of class functions on SU(2). 

(5.2) Proposition. For continuous class functions f on SU(2) one has 

f f(x) dx = ~ J"fe(t) sin2 t dt. 
Jsu(2) 1t o 

PROOF. Since the V, are irreducible, we know from (4.11) that the integral 
J Xn = 1 for n ~ 0 and J Xn = 0 for n > 0. Since Xn(e(t)) sin2 t = 
sin(n + l)t ·sin t, it is easy to work out that the right-hand side gives the 
same result. And because the 'X.n generate a dense subspace, the stated equation 
~~~00~~~ 0 

(5.3) Proposition. Every irreducible unitary representation of SU(2) is 
isomorphic to one of the V,. 

PROOF. Suppose the irreducible representation W with character x were 
different from all the V,. By orthogonality (4.11)(iii) (x., Xn) = Oand (x., x> = 1, 
but this is a contradiction because the 'X.n generate a dense subspace. 0 

We now turn to irreducible representations of S0(3). There is an epi
morphism (1, (6.18)) n: SU(2)--+ S0(3) with kernel the diagonal matrices 
{ E, - E}. If W is an irreducible representation of S0(3), then the corre
sponding representation n*W of SU(2) is irreducible and - E acts as the 
identity. Conversely, if -E acts as the identity on the SU(2)-representation 
V, then we obtain an associated representation of S0(3). Therefore: 

(5.4) The irreducible representations of S0(3) are in bijective correspon
dence with the irreducible representations V, of SU(2) in which - E acts as 
the identity. 

We know that -E acts as multiplication by ( -1)" on V,, so the V2n yield 
the irreducible representations W, of S0(3). Note that W, has dimension 
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2n + 1. We will show later that the W, can be realized as suitable S0(3)
invariant spaces of polynomials on S2-the so-called spherical harmonics. 

The next result is often referred to as the C/ebsch-Gordan formula. 

(5.5) Proposition. 

q 

vk ® v, = EB v,.+l-2j• with q = min{k, 1}. 
j~O 

PROOF. We will prove the proposition by proving the corresponding result 
for characters. Since characters are determined by their values on the 
elements e(t), it suffices to verify the purely combinatorial identity 

and replace x by exp(it). To this end, we may assume that l ~ k. Now arrange 
the pairs of indices (k - 2JJ., I - 2v) in a rectangular scheme-to each such 
pair there corresponds a summand xk- 2P.x1- zv in the left-hand product. The 
right-hand sum then comes about by summing first over the pairs of indices 
on the separate lines "j = canst." indicated in Figure 16 and then over j. 

( -k, I) (k, I) 

. j = const. . . 

( -k, -/) 0 1 (k, -/) 

Figure 16 D 

Remark. The representations V,. are sometimes enumerated by half-integers 
in the literature, say V,. = V(k/2). The Clebsch-Gordan formula then reads 

V(a) ® V(b) ~ V(la- bl) EB V(la- bi + 1) EB · · · EB V(a +b). 

Turning to our other groups, recall that there is an epimorphism 
S1 x SU(2)--+ U(2) with kernel {(1, E), ( -1, - E)}(see I, (1.16), Ex. 12). The 
irreducible representations of S1 x SU(2) are given as tensor products 
(see (4.15)) Am® v,., where Am is the representation S1 X c--+ c, (A., z) f--+ A.mz 
formE ll... Of course, we have used the fact that all the irreducible representa
tions of S1 are of the form Am (compare I, (4.15), Ex. 9 or §8). The element 
( -1, -E) is contained in the kernel of Am® V,. if and only if (m + n) is 
even. Thus the representations Am® V,., for (m + n) even, yield the irre
ducible representations of U(2). 
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The group 0(3) is isomorphic to the direct product S0(3) x Z/2 (see 
I, (1.16), Ex. 12), so an application of (4.15) to the results above gives a 
description of its irreducible representations. 

In the rest of this section we will delve further into the previously men
tioned connection between representations of S0(3) and spherical harmonic 
functions. The homomorphism SU(2)--. S0(3) of I, (6.18) maps 

(
1 0 0 ) 

e(t) = ex~it) ex ~-it)) to R(2t) = 0 c~s 2t -sin 2t . 
p 0 sm2t cos2t 

The value of the character of W,. at R(t) is the same as the value of x2n at 
e(t/2), and this value is 

2n eQn+lW _ e-Qn+IW :L ei<n-11)1 = . . . 
k=O e"- e " 

Since every element of S0(3) is conjugate to an element R(t), the character 
of an S0(3)-module is determined by its restriction to the subgroup T 
generated by the R(t). 

Let P, be the complex vector space of homogeneous polynomials in three 
variables of degree l, viewed as functions on l!l3. The group GL(3, Ill) and its 
subgroup S0(3) act on this space: 

(Af)(x) = f(xA), A E GL(3, Ill), 

The space P1 is not irreducible for l ~ 2; the space P2 , for instance, contains 
the invariant subspace generated by xi + x~ + x~. 

Let ..d = iJ 2joxf + iJ2/ox~ + o2jox~ be the Laplace operator on lll 3• The 
vector space 

f)1 = {f E P,l..dj = 0} 

is called the space of luumonic polynomials of degree l. Restricting functions 
in f)1 to the sphere S2 yields the spherical harmonics of degree l. Note that a 
homogeneous function on'lll3 is uniquely determined by its restriction to S2• 

(5.6) Lemma. 

dim P1 = !(I + 1)(1 + 2) and dim f)1 = 21 + 1. 

PRooF. The monomials x~x1x3, p + q + r = l, form a basis for P1• There 
are (k + 1) ways for the nonnegative integers p and q to add to k, so the 
dimension of P1 is 

I 

:L (k + 1) = W + 1)(1 + 2). 
k=O 
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Now a polynomial f E P1 may be written in the form 

I X~ 
f(x., X2, x3) = k~o k! A(x2, x3), 

where A is homogeneous of degree l - k in x 2 , x 3 • Thus we have 

,_ 2 x~ ' ~ (aljk o2A) 
LJf = L -k, A+ 2 + L -k I ~ + -;2 . 

k=O • k=O • uX2 uX3 

Consequently LJf = 0 if and only if 

(5.7) O::;k::;l-2. 

89 

An element of f>1 is therefore uniquely determined by fo andf1, since all the 
higher fk may be computed from (5.7). Thus the dimension of i); is the sum 
of the dimensions of the spaces of homogeneous polynomials in two variables 
of degrees land l- 1, i.e., dim f>1 = (l + 1) + l = 21 + 1. 0 

We assume the following simple lemma: 

(5.8) Lemma. The action of the Laplace-operator on the space of coo -functions 
IR3 -+ C commutes with the action of S0(3), i.e., LJ is S0(3)-equivariant. 

As a corollary to (5.8) we obtain: 

(5.9) Coronary. f>r is an S0(3)-invariant subspace of P1• 

Having obtained the S0(3)-module f>1, it is natural to ask for its de
composition into irreducible modules. Since dim Dr= 21 + 1 =dim W,, the 
following result is not too surprising. 

(5.10) Proposition. The space Dr of harmonic polynomials of degree I is an 
irreducible S0(3)-module. 

PRooF. We will show that Dr~ W,. In fact, suppose that we have a decom
position into irreducible S0(3)-modules 

It suffices by reason of dimension to show that n. ~ l for some n •. To do this 
we restrict our attention to the subgroup T s;;; S0(3) of the matrices R(t) 
introduced above. We have already computed the character value of W, at 
R(t), and thus we know that the character value of Dr at R(t) is a linear 
combination of exp(ikt), 1 k 1 ::; max n •. Hence we will be done if we can find a 
T-invariant subspace of f>1 on which R(t) acts via multiplication by 
exp(± ilt). 
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To this end we consider fz(x~o x 2 , x 3) = (x 2 + ix3) 1• Then fz e s, and 

R(t)f,(x1, x 2 , x 3) = (x2 cost+ x3 sin t + i(xz( -sin t) + x3 cos t))1 

= e-ur,(x~o x 2 , x3). 

This completes the proof. 0 

Spherical functions are related to classical special functions (Legendre 
polynomials). For a representation theoretic explanation of this phenomenon, 
see §10. 

Representations of compact groups appear in physics in many guises. 
For instance, S0(3) acts as the group of orientation preserving orthogonal 
symmetries of IR3, and invariance under this action embodies the intuitive 
principle that physical reactions such as those between elementary particles 
should not depend on the observer's vantage point. But there are also situa
tions in which physical quantities are not represented by single vectors like 
position vectors but by classes of vectors. States in quantum mechanics, for 
example, are given by a class AX, A e S1, 1 x 1 = 1, of vectors, or equivalently 
a line through the origin, in a Hilbert space. Consequently physicists are 
often interested in actions of compact groups on projective spaces instead of 
vector spaces. 

We are thus motivated to consider projective representations, which are 
homomorphisms 

G-+ PGL(n, C) = GL(n, C)/C* = SL(n, C)/Cn, 

where G is compact and C" is the group of nth roots of unity viewed as a 
subgroup of SL(n, C) via the inclusion ( t-+ (E for (" = 1. Our goal is to 
describe such homomorphisms, up to conjugation, for the group S0(3). 

We know that linear matrix representations are similar to unitary ones. 
The next lemma gives an analogous statement for projective representations. 
The proof uses a general categorical construction called a jibered product. 

(5.11) Lemma. Every homomorphism G -+ SL(n, C)/Cn is conjugate to a 
homomorphism whose image lies in SV(n)/Cn. (That is to say, SV(n)/Cn is a 
maximal compact subgroup of PGL(n, C).) 

PRooF. Given qJ, consider the pullback diagram below, where pis projection 

H~SL(n,C) 

'l lp 
G~PGL(n,C). 

Thus H = {{g, A)lg e G, A e SL(n, C), pA = ({J(g)} is the fibered product of 
G and SL(n, C) over PGL(n, C). The maps cp and p are simply given by 
cp(g, A) = A and jj{g, A) = g. Then H is a group and is compact because G 
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is compact and p has finite kernel Cn. Thus by II, (1.7) the matrix represen
tation ip is similar to a homomorphism H--+ SU(n), and the lemma follows. 

D 

We are now reduced to considering homomorphisms 

cp: S0(3)--+ SU(n}/Cn. 

Since SU(n) is simply connected, the projections SU(n) --+ SU(n)/Cn in 
general, and the projection SU(2)--+ SU(2)/C2 = S0(3) in particular, are 
universal coverings. The theory of covering spaces tells us that there is a 
lifting ip of cp: 

SU(2) ---.!L. SU(n) 

j j 
S0(3) ~ SU(n)/Cn 

It is for this reason that physicists are often interested in unitary representa
tions of the quaternion group SU(2) = Spin(3) rather than in those of the 
more natural symmetry group S0(3). In fact, recovering the projective 
representations of S0(3) from the unitary representations of SU(2) is not 
difficult. 

First note that a representation SU(2) --+ U(n) automatically lands in 
SU(n) since (5.3) shows that there are no nontrivial homomorphisms 
SU(2)--+ U(l) (also see (5.13}, Ex. 7). So we only need to ask ourselves which 
homomorphisms ip: SU(2)--+ SU(n) may be pushed down to homomor
phisms S0(3)--+ SU(n)/Cn. Recalling that S0(3) = SU(2)/C2 , the necessary 
and sufficient condition needed on ip is clearly that ip(- E) be a multiple of 
the identity. Hence we find 

(5.12) Proposition. The projective representations of S0(3) are given up to 
conjugation by the representations ofSV(2) which have the form either 

EB kn v2n or EB kn v2n+ 1• 
n 

The first kind are called even and the second kind are called odd. 

PRooF. (-E) operates by id on the first space and ( -id) on the second 
space. D 

For an elementary treatment of the representation theory of SU(2) and 
S0(3) see Sugiura [1] and Gelfand, Minlos, and Shapiro [1]. For an extensive 
bibliography on projective representations see Beyl and Tappe [1]. 
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(5.13) Exercises 

1. Show that the space of conjugacy classes of G = SU(2)-i.e., the orbit space of the 
action G x G--+ G, (g, x) 1-+ gxg- 1-is homeomorphic to a compact interval. 

2. Show that 

defines an SU(2)-invariant inner product on V,.. Hint: Use the fact that an invariant 
inner product « , )) exists, and restrict to the action of {g. Ia E U{l)}. The Pk 
generate different irreducible summands for this action and hence must be pairwise 
orthogonal. Thus ( (L akPk, L bkPk)) = L ck · ak5k. To compute ck, use 

((r,P., r,P.)) = ((P., P.)) and show c./ck = (:). 

3. Describe a method to compute the multiplicity of V; in N(V,). 

4. The representation of U(2) on the space V, of homogeneous polynomials is ir
reducible. Which representation is it in terms of the classification Am ® V, given 
above? 

5. Verify the Clebsch-Gordan formula for representations of S0(3): 

For (m + p) even, let T(m,pJ be the irreducible representation of U(2) derived from 
Am ® VP as in the text. Show that 

T(m,p) ® T(n,q);:;;; ElJ T(m+n,p+q-2j)
0 

j 

where the summation is over integersj such that 0::;;; j::;;; min{p, q}. 

6. Show lemma (5.8). An easy argument is Ll = div grad. 

7. Let p: G--+ G be the universal cover of a connected group. Show that every homo
morphism fP: G--+ SU(n)/C. has a unique lifting ip which makes the diagram 

rL.·r 
G -----q;--+ SU(n)/C. 

commute-really, show that the universal cover is a functor. 
If G is compact, show that every homomorphism ip: G--+ U(n) has image in 

SU(n), and if the representation defined by ip is irreducible, then from ip one can 
produce a fP such that the diagram commutes. Thus in the latter case the irreducible 
projective representations of G (i.e., those without G-invariant projective subspace) 
correspond uniquely to the irreducible representations of G. 
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Remark. Note that cp gives rise to a pullback diagram 

1~sr 
G~ SU(n)/C. 

This provides a covering H--> G, which is classified by the homomorphism n1(G)--> 
n: 1(SU(n)/C.) 2! c •. Thus if this homomorphism is trivial, cp may be lifted to a homo
morphism G--> SU(n). Apply this to iP instead of cp. For the second part, show that there 
is no nontrivial homomorphism G --> S1 and apply Schur's lemma. 

6. Real and Quaternionic Representations 

If U is a finite-dimensional left vector space over the real numbers ~ (resp. 
the quaternions IHI), then a real (resp. quaternionic) representation of G on U 
is a continuous action p: G x U --+ U such that the left translations are 
~-linear (resp. IHI-linear). The pair (U, p) is called a real (resp. quaternionic) 
representation of G, or a real (resp. quaternionic) G-module. It will usually 
be denoted simply by U. 

Choosing a basis for U yields corresponding matrix representations 
G --+ GL(n, ~) (resp. G --+ GL(n, IHI)). 

If the representation space U carries a G-invariant inner product, we 
consider orthogonal (resp. symplectic) representations or G-modules. Matrix 
forms are, in this case, homomorphisms G --+ O(n) (resp. G --+ Sp(n)). 

As in the case of complex representations, one can show that invariant 
inner products exist for compact G. This leads to the conclusion that every 
real (resp. quaternionic) G-module is a direct sum of irreducible submodules: 
real and quaternionic representations of compact groups are semisimple 
(cf. §2). 

For the remainder of this section we assume that G is compact. 
We want to analyze the interaction between real, complex, and 

quaternionic representations. This requires a certain amount of book
keeping, but 1s not mathematically deep. In order to start the bookkeeping, 
we do two things: We introduce notation for various categories of represen
tations and functors between them, and we treat complex representations as 
basic objects, viewing real and quaternionic G-modules as complex G
modules with additional structure. 

We begin by defining the additional structure. Let V be a complex 
G-module. A real structure on V is a conjugate-linear G-map f: V--+ V such 
that f 2 = id. A quaternionic structure on V is a conjugate-linear G-map 
cf: V--+ V such that / 2 = - id. In both cases cf is called a structure map. 
A complex representation is said to be of real (resp. quaternionic) type if it 
admits a real (resp. quaternionic) structure. 
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At this point the reader should notice that a representation can be simul
taneously of real and quaternionic type (example?). Furthermore, a complex 
vector space has a large number of real structures ((6.10), Ex. 4). 

Next we introduce some categories of representations and functors 
between them. We Jet 

K = ~. C, or !HI 

and Jet 

Rep(G, K) 

be the category whose objects are G-representations on K-vector spaces 
and whose morphisms are K-linear G-equivariant maps. Moreover, we Jet 

Rep+(G, IC) and Rep_(G, IC) 

be the categories of complex G-modules with real and quaternionic struc
tures. Morphisms in these categories are !{>linear G-equivariant maps which 
commute with the structure maps. 

We continue by showing that Rep(G, ~)and Rep+(G, IC) are equivalent 
categories. This is the formalization of the statement that real representations 
are complex representations with additional structure. 

Given a real G-module U, Jet e+(U) = C ®R U with the structure map 
f(z ® u) = z ® u. Conversely, given (V, f), let V+ and V_ be the ( + 1) and 
( -1) eigenspaces of f. The equality 2v = (v + fv) + (v - fv) implies 
that v = v+ Ee v_ . Also, note that multiplication by i E c induces isomor
phisms V+ -t V_ and V_ -t V+. Let s+(V, f)= V+, considered as a real 
G-module. These constructions supply functors 

e+: Rep(G, ~) -t Rep+(G, IC), 

s+: Rep+(G, IC) -t Rep(G, ~). 

Furthermore, the compositions e+ s+ and s+ e+ are naturally equivalent to 
the identity: The reader may check that a natural isomorphism e + s + (V, f) ;;;;: 
(V, f) is given by C ®R V+ -t V, z ® v ~---+ zv and a natural isomorphism 
s + e + U ;;;;: U is given by U -.. (C ®IRI U) +, u ~---+ 1 ® u. 

In the case of quaternionic representations we have functors 

e_: Rep(G, !HI) -t Rep_(G, IC), 

s_: Rep_(G, IC) -t Rep(G, !HI). 

Here e_(W) is (W, f), where W is considered as a C-vector space by restric
ting scalars from !HI to C. The G-action on W remains the same, and f is 
defined as multiplication by j E !HI. We define s_(V, f) to be V viewed as an 
!HI-module, where the action of j E !HI is defined as f. A straightforward 
calculation similar to that above shows that e _ s _ and s _ e _ are naturally 
isomorphic to the identity. 
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We will also consider relations (i.e., functors) between different types of 
representations coming from restriction, extension, and conjugation. 

First, we may view a complex representation as real, forget about the 
structure maps J, and so on. These processes lead to the following maps 
called restriction maps. Thus, for example, r~ of the complex G-module V 
is V viewed as an IR-vector space with the same G-action, while r +(V, J) = V 
as a complex G-module with no additional structure. 

r~: Rep(G, C)--+ Rep(G, IR), 

r~: Rep(G, IHI)--+ Rep(G, C), 

r~: Rep(G, IHI)--+ Rep(G, IR), 

r +: Rep+(G, C)--+ Rep(G, C), 

r _: Rep_(G, C) --+ Rep(G, C). 

Second, we have extension maps, 

e~: Rep(G, IR)--+ Rep(G, C), 

e~: Rep(G, C)--+ Rep(G, D-11), 

e~: Rep(G, IR)--+ Rep(G, D-11). 

The map e~ is defined by e~U) = C ®111 U, and the map e~ is defined by 
e~(V) = D-11 ®c V where we view IHI as a right C-module via right multipli
cation: IHI x C --+ IHJ, (w, v) ~ wv. Finally, we let e~ = e~e~, which is the 
same thing as saying that e:(V) = IHI ® 111 V. 

Third, we have conjugation 

c: Rep(G, C)--+ Rep(G, C) 

mapping V to the conjugate module V. 

(6.1) Proposition. The maps defined above satisfy the following relations: 

r~e~ = 2, 

e~r~ = 1 + c, 

e~r~ = 2, 

r~e~ = 1 + c, 

e~ = r + e+, 

ce~ = e~, 

r~c = r~, 

cr~ = r~, 

e~c = e~, 

r~ = r_e_, 

c2 = id. 

PROOF. The magnanimous reader will not misinterpret these statements but 
will understand that the first claims the existence of a natural isomorphism 
r~ e~ U) ~ U Ef> U, for real G-modules U, the second maintains that 
e~r~V) ~ V Ef> V for complex G-modules V, and so on. The verification of 
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these relations is chiefly a matter of patience. As an example, we will prove 
that e~r~ = 1 +c. Define a map IX: V Ef> V ~ C ®Iii V by 

IX(v, w) = !{1 ® v - i ® iv) + !{1 ® w + i ® iw). 

Then IX is ~-linear by construction and satisfies the relation 1X(iv, - iw) = 
iiX(v, w). Thus IX may be considered as a C-linear map V Ef> V ~ C ®Iii V. An 
inverse to IX is given by the map {3: C ®R V ~ V Ef> V, z ® v H (zv, zv). 

As another example, the relation r~e~ = 1 + c comes from the C
isomorphism 

D-11 ®c V ~ V Ef> V, 

Here we view {1,j} as a C-basis of D-11 with respect to right multiplication, 
and z1, z2 E C. The rest of the proof is no more difficult than the examples 
~~. D 

We now come to the main goal of this section: To relate the irreducible 
real and quaternionic representations to the irreducible complex represen
tations. We do this by considering the sets 

Irr(G, K), K= ~.C,D-11 

of irreducible G-modules over K and partitioning each of these into three 
disjoint (but possibly empty) parts. Thus we end up with. nine sets
admittedly a little rough on the reader who rebels against bookkeeping. 

In order to simplify the exposition, we will adhere to the following 
notational convention: The letters U, V, and W will, respectively, denote 
elements of Irr(G, ~). Irr(G, C), and Irr(G, D-11), regardless of the presence of 
indices or conjugation signs. 

(6.2) Table and Definitions. The following table gives the definitions of the 
various subsets lrr(G, L)K of irreducible representations. 

K= ~ c D-11 

e~U= V U = r~V U = r~V 
U E lrr(G, ~)K Vofreal type V$ V V of quaternionic type 

V E lrr(G, C)K V of real type V$ V V of quaternionic type 

W=e~V W=e~V r~W= V 
WE Irr(G, D-li)K V of real type V$ V V of quaternionic type 

In words this means: U E Irr( G, ~)R if and only if e~ U is an irreducible 
complex G-module V and V possesses a real structure. Also, U E Irr(G, ~)c 
precisely ifthere is an irreducible G-module V, not isomorphic to its conjugate 
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V, such that U is isomorphic to r~ V. The rest of the definitions should be 
apparent from these examples. 

The reader may find it comfortable at this point to think of the set 
lrr(G, C) as the set of isomorphism classes of irreducible representations, 
whereas earlier we had to insist on choosing particular representatives. 

We will call an irreducible representation in a set with index IR, C, or IHI, 
respectively, of real type, complex type, or quaternionic type. Thus the columns 
of table (6.2) contain irreducible representations oflike type, and a glance at 
the second row shows that our more general usage of type is consistent with 
usage for complex representations. 

The next theorem constitutes the obvious next step in our plan. Despite 
the simplicity of its statement given here, its proof must be delayed for the 
sake of developing some more background. 

(6.3) Theorem. For L = IR, C, and IHI, the set lrr(G, L) is the disjoint union 
of its subsets Irr(G, L)lli, Irr(G, L)c, and lrr(G, L)IHI. 

The next proposition gives us a criterion which will be used in the proof 
of (6.3). 

(6.4) Proposition. A complex representation V is of real (resp. quaternionic) 
type if and only if there exists a nonsingular symmetric (resp. skew-symmetric) 
G-invariant bilinear form B: V x V ~ C. 

PROOF. Suppose such a form B is given. Then B(v, w) = eB(w, v), where 
e = ± 1. Choose a G-in variant Hermitian inner product ( , ) on V and 
define a map f: V ~ V by requiring that B(v, w) = (v, fw) for all v e V. 
Then f is conjugate-linear, G-equivariant, and an isomorphism since B is 
nonsingular. From the relation (v, fw) = B(v, w) = eB(w, v) = e(w,fv) = 
e(fv, w) applied twice, we find that 

(v, f 2w) = e(fv, fw) = (f 2v, w). 

Thus ef2 is Hermitian and positive-definite (i.e., (v, ef2v) ~ 0). Hence if2 

has positive real eigenvalues and we may decompose V into the orthogonal 
sum of eigenspaces of ef2 • It is easy to check that each such eigenspace is 
G-invariant and invariant under f, since f commutes with real scalars. 
Hence we may define a G-automorphism h: V ~ V by setting h = fi· id 
on the eigenspace of ef 2 with associated eigenvalue A. e IR + . Then hf = fh 
since the eigenspaces of e/ 2 are invariant under f, and ef 2 = h2 • The con
jugate-linear G-map ,I = hf- 1 then satisfies ,12 = e · id. 

Conversely, suppose that V has a structure map ,I such that ,/2 = e · id. 
If e = 1, then V ~ C ®Iii V+, and any nonsingular G-invariant symmetric 
IR-bilinear form on V+ may be extended to a C-bilinear form B on V, which 
again is nonsingular, G-invariant and symmetric. If e = -1, we consider 
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V to be an IHI-module, the action of j E IHI being that of f. Thus V carries a 
G-invariant symplectic inner product < , ). We write 

(u, v) = H(u, v) + B(u, v)j 

with H(u, v) and B(u, v) in C. Using the relations (A.u, v) = A.(u, v) and 
(u, A.v) = (u, v)I for u, v E V and A. E IHI is easy to verify that B is IC-bilinear. 
Moreover, since (u, v) = (v, u), we have H(u, v) + B(u, v)j = (H(v, u) + 
B(v, u)j)- = ll(v, u) - jB(v, u) = H(v, u) - B(v, u)j. This shows that B is 
skew-symmetric. To see that B is nonsingular, suppose B(u, v0 ) = 0 for all 
u E V. This means (u, v0 ) E IC for all u E V, and, since (ju, v0 ) = j(u, v0), 

this implies (u, v0 ) = 0 for all u E C. Since symplectic inner products are 
nonsingular, v0 = 0. 0 

A complex representation V is called self-conjugate if V ~ V. The next 
proposition is essentially a corollary of (6.4). 

(6.5) Proposition. Let V be an irreducible self-conjugate representation. 
Then Vis of real or quaternionic type and not of both. 

PRooF. We intend touse(6.4),so wewillexaminethespace Hom(V ® V, C)~ 
V* ® V* of bilinear forms on V. This space is the direct sum S E13 A of the 
space S of symmetric and the space A of skew-symmetric bilinear forms. 
The G-invariant forms are elements of the fixed-point set (S E9 A)0 = 
S0 E9 A0 . Since V is self-conjugate we have V ~ V ~ V*, and since V is 
irreducible Hom(V ® V, C)0 ~ Hom(V, V*)0 is one-dimensional by Schur's 
lemma. Thus there are just two cases: If dim SG = 1 and dim A G = 0, then 
V admits a symmetric G-invariant form which corresponds to an iso
morphism V ~ V* and hence is nonsingular, and V admits no nonsingular 
skew-symmetric G-invariant forms at all. The other case is that dim SG = 0 
and dim A0 = 1, and here the situation is reversed. D 

We now present a 

PRooF OF THEOREM (6.3). The proof is divided into three parts corresponding 
to L = IC, IR, and IHI. Letters U, V, W with or without indices denote ir
reducible representations over IR, IC, and IHI, respectively. 

First part: Let V E Irr(G, IC). If V is of either real or quaternionic type, the 
structure map f provides an isomorphism V ~ V. This observation, 
together with proposition (6.5) and a glance at the table (6.2) takes care of 
the case L = C. 

Second part: Let U E Irr(G, IR). Writing simply e and r for e~ and r~, the 
argument given in the proof of (6.4) shows that if eU is irreducible, then 
eU = V carries a symmetric bilinear form. Hence by (6.5) Vis of real type. 
If eU is not irreducible, let eU = V1 E9 · · · E9 V, be a decomposition into 
irreducible complex G-modules. The relation reU = U E9 U from (6.1) 
shows that U E13 U = rV1 E13 · · · E13 rV,. Hence t = 2 and rV1 = rV2 = U. 
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Applying another relation from (6.1), eU = erV1 = V1 E9 ~. so we must 
have V2 = V1• Therearenowtwo possibilities: IfV1 * V1, then U e lrr(G, IR)c. 
And if V1 ~ V1 we can show that V1 is not of real type, for if it were, we would 
have rV1 = (V1)+ E9 (V1)_ contradicting rV1 = U. Thus if V1 ~ V., then 
V1 e lrr(G, C)IHI and we have completed the case L = IR. 

Third part: Let W e Irr( G, D-U) and let rand e stand for r~ and e~. If rW = V 
is irreducible, it carries a quaternionic structure, so We Irr(G, D-U)111 in this 
case. IfrW is not irreducible, let rW = V1 E9 · · · E9 v;. As above the relations 
er = 2 and re = 1 + c from (6.1) imply that t = 2 and V2 = ~- This time 
we have eV1 = W. If V1 t V1, then We Irr(G, D-U)c. It only remains to 
demonstrate that if V1 ~ ~. then V1 is not of quaternionic type. But if it 
were, we could write Jt; = r X and W = e V1 = er X = X E9 X would con
tradict the irreducibility of W. This finishes the case L = D-U and the theorem 
is proved. 0 

In the course of proving (6.3) we have established the first six of the 
following implications. Analogous reasoning leads to the remaining ones, 
so we leave the remainder of the proof of the next proposition as an exercise. 

(6.6) Proposition. 

(i) U e Irr(G, IR}11 => e~U = V, 
(ii) U e Irr(G, IR}c => e~ U = V E9 V, 

(iii) U e lrr(G, IR)., => e~ U = V E9 V, 
(iv) wE Irr(G, D-U)R => rrw = v E9 V, 
(v) We lrr(G, D-U)c => r~W = V Ea V, 

(vi) We Irr(G, D-U)IHI => r~W = V, 
(vii) V e lrr(G, C)R => r~V = U Ea U, 

e~V= W, 
(viii) V e Irr(G, C)c => r~ V = U = r~ V, 

e~V = W = e~V, 
(ix) V e lrr(G, C)IHI => r~ V = U, 

e~V= Wffi W, 

V e Irr(G, C}111 • 

V e Irr(G, C)c. 
V e Irr(G, C)H. 
V e Irr(G, C)R. 
V e lrr(G, C)c. 
V e Irr(G, C} 111 • 

U e Irr(G, IR)111 , 

We Irr(G, D-U)IRI. 
U e Irr(G, IR)c. 
We lrr(G, D-U)c. 
U E lrr(G, IR)IHI, 
We Irr(G, D-U)IHI. 

The next result is an important and easily remembered characterization 
ofthe sets lrr{G, IR)K. 

(6.7) Theorem. The endomorphism algebra Homa(U, U) of U e lrr(G, IR) is 
isomorphic to K if and only if U e Irr(G, IR)K. 

PRooF. By Schur's lemma every nonzero cp e Homa(U, U) is invertible and 
hence Homa(U, U) is a division algebra over R There are only three possi
bilities, namely IR, C, and D-U (Frobenius' theorem, see Jacobson [2], 7.7, 
p. 430). Suppose Homa(U, U) =C. This means C acts on U, so U = r~V 
for some irreducible V. If V were of real type, then r~ V = V+ E9 V_ would 
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not be irreducible, and if V were of quaternionic type, then IHI would be 
contained in HomG(U, U). Thus V E Irr(G, C)c and U E Irr(G, ~)c. Next 
suppose HomG(U, U) = IHI. Then U = r: W and W is irreducible. From 
(6.6) we see that WE Irr(G, IHI)til, so U E Irr(G, ~)IHI. Finally, suppose 
HomG(U, U) = ~- Then U cannot be of the form r~ V for any irreducible V 
of complex or quaternionic type, for in either case C c HomG(U, U). This 
completes the proof. 0 

We have just seen that the type of an irreducible real representation is 
determined by its endomorphism algebra. The next proposition shows how 
the type of an irreducible complex representation is determined by its 
character. 

(6.8) Proposition. Let V be an irreducible complex representation of G with 
character xv: G-+ C. Then 

{ 

1 ¢? V is of real type, 

J Xv(g 2 ) dg = 0 ¢? V is of complex type, 

-1 ¢? V is of quaternionic type. 

PROOF. The representation V ® V splits into S EB A where S is the space of 
symmetric and A is the space of antisymmetric tensors. Both are G-modules. 
We claim that xv(g2 ) = Xs(g) - XA(g) for each g E G. For this we may view 
V, S, and A as representations of the closed abelian subgroup H of G gen
erated by the element g E G. As such V = E9; V(i) where all the V(i) are 
irreducible H-modules and hence one-dimensional. Now A = N(V) = 
N(EB; V(i)). Combining the general fact that N(B EB C) = E9i Ai(B) ® 
N-i(C) and the observation that N(V(i)) = 0 because V(i) is one-dimen
sional shows that A = EBi<i V(i) ® VU). Thus 

Xv(g 2 ) = I Xvulg 2 ) = I (Xv(i)(g))2 

i i 

= (~ Xv(i)(g))
2 

- 2 .L.Xvui9)Xvw(g) = Xv~IV(g) - 2xA(g) 
I 1<) 

= (Xv~w(g) - XA(g)) - XA(g) = Xs(g)- XA(g), 

establishing the claim. Integrating yields 

But dim SG = dim(S*)G, which is the dimension oft he symmetric G-invariant 
bilinear forms on V. The same is true for A G with respect to antisymmetric 
forms, so the current proposition follows directly from (6.4). 0 
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There is a canonical decomposition of real G-modules X which is analogous 
to (1.14). For U E lrr(G, IR), let D(U) = Homa(U, U) be the endomorphism 
ring of U. Then Homa(U, X) is a right D(U)-module via composition, and 
U is a left D(U)-module via evaluation. Therefore the tensor product 
Hom6(U, X) ®o<Ul U is defined and the map Hom6(U, X)® U--+ X, 
({' ® u--+ ({'(u) factors through this tensor product. Thus we obtain a homo
morphism 

d: EB Hom6(U, X) ®o<Vl U--+ X. 
Uelrr(G,R) 

(6.9) Proposition. The map dis an isomorphism. 

PRooF. See the proof of (1.14). 

The image of HomG(U, X) ®o<U) U is the U-isotypical part of X. 
An original source for this section is Malcev [1], §2. 

(6.10) Exercises 

D 

1. Let G be a finite group of odd order. Using (6.8) show that every nontrivial ir
reducible complex representation is of complex type. 

2. Let x be the character of an irreducible complex representation V of a compact 
group. Show that if x is real-valued, then V is of real or quaternionic type. 

3. Let U be a real G-module, G compact. The real character x~: G-+ IRis defined as 
X~(g) = Tr(/9). For U, U' E lrr(G, IR), show that 

{ x~x~ = dimR HomG(U, U), and 

LX~ X~·= 0 if U' * u. 

Let (aii) anq (bu) be inequivalent irreducible real matrix representations. Show 
that JG a;jbu = 0. 

4. Let X be the set of real structures on an n-dimensional complex vector space C". 
Then GL(n, C) acts on X by (A, f) f-+ Af A- 1• Show that X is isomorphic to 
GL(n, C)/GL(n, IR) as a GL(n, C)-space. 

5. Let G be compact. Show that two homomorphisms IX, p: G-+ O(n) are similar 
(conjugate) if and only if the corresponding homomorphisms G-+ GL(n, IR) are 
similar. 

6. Verify the assertions of ( 6.6). 
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7. The representations in lrr(G, C)c occur in pairs (V, V). Let t Irr(G, C)c c 

Irr( G, C)c be a subset containing exactly one from each pair. Show that the following 
maps are defined and are bijections. 

ec eH 
lrr(G, IR)R ~ lrr(G, C)R ~ lrr(G, lf·II)R, 

lrr(G, IR)c j! Irr(G, C)c:! lrr(G, IHI)c, 

,c r" 
lrr(G, IR)111 ~ lrr(G, C)111 .£ lrr(G, IHI)H. 

For example, to say that e~ U is defined means that for U E Irr(G, IR)c the represen
tation e~ U is irreducible and of real type. 

8. Let X and Y be real G-modules. Show that 

e+(X ®R Y) ~ e+(X) ®c e+(Y). 

If X E Rep(G, IR) and Y E Rep(G, IHI), then X ® 11 Y E Rep(G, IHI), with hE IHI acting 
via h(x ® y) = x ® hy. Show that 

e+(X) ®c e_(Y) ~ e_(X ®R Y). 

If X, Y E Rep(G, IHI), view X as a right IHI-module X' via xh =fix. Then X' ®H Y is 
a real G-module. Show 

X' ®IHI Y ~ s+(e_ X ®c e_ Y). 

Describe the behavior of tensor products of complex representations possessing 
structure maps. 

9. Use (4.14) and the previous exercise to give a detailed description of Irr(G x H, IR) 
in terms oflrr(G, K)L and Irr(H, K)L. In particular, show that for U E lrr(G, IR) the 
representation U* ®n<UJ U is in Irr(G x G, IR). Here D(U) is the endomorphism 
algebra of U. 

10. Show that a representation of G has a real (resp. quaternionic) structure if and 
only if it is self-conjugate and its quaternionic (resp. real) irreducible components 
have even multiplicity. Hint: Use (6.1) and first show that if U and U EEl V are real 
(resp. quaternionic), then so is V. Or use Exercise 7. 

7. The Character Ring and the Representation Ring 

Let G be a compact Lie group. The relations Xvew = Xv + Xw and Xv®w = 
Xv Xw suggest that characters might generate an interesting ring of functions 
on G. Therefore we let 

R(G) = R(G, C) 

be the additive group of functions G --+ C generated by characters of complex 
representations. Using orthogonality of irreducible characters and semi
simplicity we note that the characters of irreducible representations are 
linearly independent and generate R( G). Thus R( G) is the free abeli~n group 
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generated by these characters. Since Xv · Xw = Xv®w• the group R(G) is closed 
under multiplication. In fact, R(G) is a commutative ring with unit and a 
subring of the ring of C 00 -functions on G. We call R(G) the character ring 
of (complex representations of) G. Elements of R(G) are called virtual 
characters. 

The character ring is a weaker invariant of G than the set of representa
tions itself. This is because we cannot distinguish which elements of R( G) are 
positive, i.e., are actually characters. Moreover we cannot necessarily recover 
the irreducible characters from R( G). 

The character ring has an alternate description which exhibits a useful 
universal property. Let R + (G) be the set of isomorphism classes of complex 
G-modules together with the two composition laws 61 and ®. This object 
satisfies the axioms of a commutative ring, except that there are no additive 
inverses. Mapping representations to their characters gives a map 
x: R+(G)-+ R(G) satisfying the following: 

Universal Property. Given any map qJ: R +(G)-+ R into a commutative ring 
such that ({J( V 61 W) = qJ( V) + qJ( W), qJ( V ® W) = qJ( V)qJ( W), and qJ( 1) = 1, 

there is a unique homomorphism <1>: R(G)-+ R such that <1> ox = qJ. 
Similarly, if qJ is just a homomorphism into an abelian group R, there is a 

unique homomorphism of abelian groups <1>: R(G)-+ R such that <1> ox = qJ. 

The proof of these assertions is straightforward using the fact that the 
additive structure of R(G) is that of a free abelian group on the irreducible 
characters. Naturally, there is a purely formal construction of this universal 
ring which doesn't refer to characters, often called the Grothendieck con
struction. In this context R(G) is also called the (complex) representation 
ring of G. 

We use the universal property to give R(G) more structure. Recall that a 
fundamental property of the kth exterior power NV of a representation V 
is that 

(7.1) N(V61 W) = L N(V) ® N(W). 
i+ j=k 

N(V) = C with the trivial action corresponds to the unit of R(G). By using 
the formal power series with coefficients in R( G) 

~(V) = 1 + N(V)t + N(V)t 2 + .. ·, 

we can express all the relations (7.1) with the single relation 

(7.2) 

Thus V ~---+ A.,(V) maps the additive semi group R + (G) homomorphically into 
the multiplicative group 

1 + tR(G)[[t]] 

of formal power series over R( G) with constant term l. 
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The universal property yields an induced homomorphism 

A.r: R(G)-+ 1 + tR(G)[[t]]. 

For x e R(G) we set 

A.r(x) = A.0(x) + A.1(x)t + A.2(x)t2 + · · ·, 
thereby obtaining maps A.1: R( G) -+ R( G) such that 

(7.3) A.1(x) = x, A."(x + y) = L A_i(x). A_k-i(y). 
i 

A ring R together with maps A.1: R-+ R satisfying (7.3} is called a A.-ring. 
The behavior of the A.1 with respect to composition and products is quite 

complicated and is given by certain universal polynomials with integer 
coefficients (independent of G) 

. . 1 1ij A.'A.1(x) = P1.iA. x, ... , 11. x), 

A."(xy) = P"(A.1x, ... , A."x; A.1y, ... , A."y), 

making R(G) into a so-called special A.-ring. Definitions and details may be 
found in Atiyah and Tall [1]. 

We merely exhibit the definition of the polynomials P1•1 and P". Let 
xt> ... , xP, Yt> ... , Yq be indeterminates and let u1, v1 be the ith elementary 
symmetric functions in the xt> ... , xP and y 1, ••• , y9 , respectively. We define 
polynomials with integer coefficients by requiring P,(ut> .•• , u,; v~> ... , v,) 
to be the coefficient oft" in ni.j(l + X;Yjt) and P,,m(Ul> ... ' Umn) to be the 
coefficient oft" in nit<"·<im(l + X11 • ••• ·X;.,.t). 

Then P,. is a polynomial of weight n in the u1 and V;, and P,,m is of weight 
nm in the u1• If we assume that p ~ m, q ~ n (resp. p ~ mn ), then none of the 
variables u;, v1 are zero and the resulting polynomials are independent of 
pandq. 

We also mention the important Adlutrs opertltions 

'P": R( G) -+ R( G), keN, 

which are ring homomorphisms satisfying 'P" 'P1 = 'P"1• They, too, are 
certain polynomials in the .1.1-maps defined as follows: 

Consider the sum 

~+ .. ·+x~ 

in m ~ k variables x1 and express it as a polynomial Qk(u~o ... , u,.) in the 
elementary symmetric polynomials u1 of X~o •.• , xm. Now the polynomial Q,. 
is independent of m for m ~ k, as may be seen by setting Xm+ 1 = 0 and 
noting that u,.(xh ... , Xm, 0) = u"(X~o ... , Xm). We define 
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(7.4) Proposition. If we view x and IJikx as virtual characters, then 

for all g E G. 

PRooF. Let x = V beaG-module. We view Vas an H-module, where His 
the closed abelian subgroup of G generated by g. Expressing V as the direct 
sum of one-dimensional H-modules gives a basis vh ... , v" of eigenvectors 
for the action of g, say gvi = A;V;. The vi! " · · · " v;,, i1 < · · · < i, form a 
basis for NV, so g acts on NV with trace a,{A. 1, •.• , A.,), a, being the rth 
elementary symmetric function in the A.i. Hence l[lk(V)(g) = Qk(a1, ••• , a,,) = 
A.~ + ···+A.~. Since the trace of gk on Vis A.~ + ···+A.~, this proves the 
proposition for x actually a G-module. 

Now if xis any virtual character, we define a formal power series 'l',(x) = 
L,.~ 1 'l'(x,n)tnby 

(7.5) 'I' _,(x) = - t(:t A.,(x) );A.,(x) = - t :t log A,(x). 

It can be shown ((7.10), Ex. 2) that 'l'(x, n) = Qn(A 1{x), ... , A."(x)) = 'l'n(x). 
From the definition of the 'l'(x, n) it is clear that they are additive in x. This, 
together with the validity of the proposition for positive virtual characters, 
is enough to finish the proof. 0 

(7.6) Corollary. The Adams operation 'l'k is a ring homomorphism and 
ljlkiJII = IJikl. 

(7. 7) Proposition. If G and H are compact Lie groups there is a canonical 
isomorphism of rings 

R(G x H)~ R(G) ® R(H). 

PRooF. The isomorphism is induced by mapping the element 

V ® We R( G) ® R(H) 

to the G x H-module V ® W. This is an isomorphism due to (4.15). 0 

There is also a character ring R(G, ~)of real characters. Other notations 
for this ring include RO(G) and KR(G). It enjoys a similar universal property 
and A_i and 'Pi operations. But quaternionic representations only give an 
additive group R(G, IHI), since the tensor product of quaternionic represen
tations is real. The maps appearing in proposition (6.1) are compatible with 
direct sums and therefore yield additive maps between corresponding repre
sentation rings (groups). The identities of (6.1) remain valid, and from 
r~e~ = 2 and e~r~ = 2 we conclude: 
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(7 .8) The maps 

are injective. 

As a corollary: 

II. Elementary Representation Theory 

e~: R(G, IR)--+ R(G, C), and 

r~: R(G, IHI)--+ R(G, C) 

(7.9) If U 1 and U 2 are real G-modules such that 

U1 ®R c ~ U2 ®R c, then U1 ~ U2. 

R(G) and RO(G) may be considered as functors: If p: G--+ His a homo
morphism, then the assignment V 1-+ p*V (see end of §1) induces ring homo
morphisms 

p*: R(H)--+ R(G), p*: RO(H)--+ RO(G). 

(7.10) Exercises 

I. Splitting principle. Note that the homomorphism 

(resg): R(G) ...... n R(S) 
s 

is injective, where S ranges over the family of closed topologically cyclic subgroups 
of G. Consequently, if qJ, t/f: R(G) ...... R(G) are natural transformations of functors 
(or at least transformations compatible with restrictions), which agree on all integral 
linear combinations of one-dimensional characters, then qJ and t/1 are equal. 

2. Verify the identity 'l'(x, n) = 'l'"(x) as follows: First observe that if xis one-dimen
sional (i.e., x or - x is a one-dimensional character), then (7.5) yields 'l'(x, n) = 
x" = 'l'"(x). Next show that if x = x1 + · · · + x. is a sum of one-dimensional virtual 
characters, then 'l'(x, n) = D~ 1 xj = 'l'"(x). Finally, apply Exercise 1 to get the 
complete result. 

3. Use Exercise 1 as in the previous exercise to verify the equations 

A.i..l.i(x) = P;j..l.lx, ... ' A.iix), 

A.k(xy) = Pk(A.lx, ... ' A.kx; A.ly, ... ' A.ky). 

4. Show that 'l'kA.i = A.i'l'k in R(G). 

5. Let G be finite, k prime to the order of G, and Van irreducible G-module. Prove that 
'l'kV is also irreducible (and not just virtual!) as follows: First notice that V may be 
obtained as a matrix representation with entries in some cyclotomic field Q(w), w 
an nth-root of unity. Next use (7.4) to see that the character of 'l'kV is obtained by 
applying a suitable Galois automorphism of Q(w). This automorphism applied to 
the matrix entries gives the irreducible G-module 'l'kV. 

Show by example that 'l'kV may be "virtual" if k is not prime to IGI. Hint: Try 
the symmetric group G = S(3). 

6. Let 0 ...... V0 ...... V1 ...... • • • ...... V,. ...... 0 be an exact sequence of representations of G. 
Show I~~o ( -IYV. = 0 in R(G). 
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7. Form the power series S,(V) = 1 + S 1(V)t + S2(V)t2 + · · ·, where Si(V) is the 

ith symmetric power of V. Show that 

for complex (or real) G-modules V and W. Hint: First show that for every n there is 

an exact sequence 

0-+ 1\"(W)-+ S 1(W) ® /\"- 1(W)-+ ... -+ S"- 1(W) ®A 1(W)-+ S"(W)-+ 0 

whose morphisms are given by 

k 

IX® (u! " ... " uk) H I ( -l}"IX. u. ® (u! " ... " a. " ... " uk), 
v=! 

where IX E s•-k(W}, u. E W, and· means "delete this factor." Then use Exercise 6. 

8. Let RC(G) be the subring of elements of R(G) fixed under complex conjugation. Let 

cp: R(G)-+ R(G) be defined by cp(x) = x- x. Show that the sequence 

c c 
0-+ RC(G)-+ R(G)--'!'. R(G) eA 'a R(G) 

is exact. 

8. Representations of Abelian Groups 

Let G be a compact abelian group. Then G is isomorphic to a product 

G ~ S1 X .•. X S1 X Z/ml X ... X Z/mk 

of circle groups and finite cyclic groups (see I, (3.7)). The irreducible complex 

G-modules are one-dimensional (1.13) and given by homomorphisms 
G-+ S1• Such homomorphisms are called characters of G. In order to deter
mine all representations of G, it suffices by ( 4.15) to determine the irreducible 

representations of S1 and Z/m. 

(8.1) Proposition. The irreducible complex representations of S1 are given 

by the characters z 1-+ zm, me Z. The characters of the torus T" = fR"/Z" all 
have the form 

8: [x] 1-+ exp(2nioc(x)), X E fR", 

with oc(x) = (a, x) = L• a.x., a = (al> ... , a.) e Z". 

PRooF. Given a character 8ofT", there is a commutative diagram 

0---+ Z"---+ LT" -----+ T"-----+ 0 

i· l· l: 
0 ---+ z -----+ fR ---exp-+ s -----+ 1 
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where a= L.9, exp(t) = e2"i' forte~. and LT" = ~".The result on char
acters ofT" follows from this diagram, and the statement about S1 is the case 
n = 1 expressed in multiplicative notation. D 

(8.2) Definition. Let T be a torus and V a complex T-module. An irreducible 
character .9: T-+ S1 is called a weight of V if the corresponding isotypical 
summand 

V(8) = {v e Vlxv = 8(x) · v for all x e T} 

is nonzero. In this case V(.9) is called the weight space of .9. 

It follows from (1.14) that every complex T-module is the direct sum of 
its weight spaces. 

Now the characters of an abelian group themselves form a group under 
multiplication-the character group(; of G. The connection between(; and 
the character ring R(G) is given by the next proposition. Note that for any 
discrete group S, the integral group ring l[S] is additively the free abelian 
group on S with multiplication defined by 

<I Agg) * <I llllh) = I AgJlhgh 
g,h 

as in §1. 

(8.3) Proposition. If G is abelian there is a canonical isomorphism of rings 

R(G) ~ l[<J]. 

PRooF. It is clear that the irreducible characters freely generate both R(G) 
and l[{;], and multiplication is the same in both rings. This proves the 
proposition. D 

From (8.1) we see that the character group of the torus (S1t ~ ~"/Z" is 
isomorphic to Z". Furthermore, the group ring Z[Z"] is isomorphic to the 
ring 

of Laurent polynomials with coefficients in l. We deal quickly with Zjm. 

(8.4) Proposition. The irreducible characters of l/m are given by 

x mod m 1-+ exp(2nixj/m) for j = 0, 1, ... , m - 1. 

PROOF . .9: l/m-+ S1 is determined by .9(1) which must be an mth root of 
unity. D 

The nontrivial irreducible complex G-modules of a torus are not self
conjugate. Combining this observation with (6.6) produces the following 
proposition: 
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(8.5) Proposition. The real irreducible G-modules of a torus T" = ~"(l.." are 

(i) the one-dimensional trivial G-module (which is of real type) and 

(ii) the two-dimensional real G-modules r~ V, with nontrivial V as in (8.1). 

These are of complex type, and given two irreducible complex T"-modules 

V1 and V2 , r~ V1 ~ r~ V2 if and only if V1 ~ V2 or V1 ~ V2 • 

The representations in (8.5)(ii) may be given more explicitly by 

[ ] ( cos 2n(a, x) sin 2rc(a, x)) 
Xl, ... ,Xn I--+ 

-sin 2rc(a, x) cos 2n(a, x) 

with a= (a 1, ... , a.) E Z"\{0} and (a, x) = Li aixi. Moreover, a and -a 

give equivalent (i.e., isomorphic) representations. 

(8.6) Definition. Let T" = ~·;z• be a torus and U a real T"-module. By a 
weight of U we mean a weight of its complexification 

V= e~U = IC®~ U. 

We may decompose the real T"-module U into irreducible real modules 

U = no U o EB n 1 U 1 EB · · · EB nk U k 

with U 0 trivial, U v = r~ V., for some nontrivial complex P-module V.,, and 

V., not isomorphic to V" or ~if v i= J.l. By (6.1) we have 

V = e~ U = n0 V0 EB EB nve~r~ Vv = noVo EB EB nv(V.. EB V,), 
v>O v>O 

with trivial V0 • 

If 9 is the character of V., then V(9) = n. V.,, and we denote the corre

sponding real isotypical summand by V(9) = U(9) = n. Uv. This space is 
called the real weight space corresponding to 9. The space U may be thought 

of as the set of fixed points of V under conjugation (see §6). Thus U = V" 

and 

U(9) = (V(9) EB V(9))-' = (V(9) EB V(9)) n U. 

For later use we note: 

(8.7) Proposition. Let T be a torus and U a real T-module. 

(i) If 9 is a weight of U, then 9 is also a weight of U. 

(ii) Let V = e~ U. If 8 is constant, then V(9) = e~ U(8). If 9 is not constant, 

then V(9) n V(9) = 0 and 

U(9) = r~ V(9) = r~ V(9) = (V(9) EB v(9)) n U, 

e~ V(9) = V(8) EB V(S). 

Hence dim~ U(9) = 2 dime V(9) = 2 dime V(.9). 
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(iii) U = ffi3 U(9), where 9 ranges over a system of weights of U containing 
exactly one element of each pair 9, 8 of conjugate weights. 0 

We end this section by noting that for any compact abelian G we can 
say: 

(8.8) Proposition. An irreducible real G-module of the compact abelian group 
G is either one-dimensional and of real type or two-dimensional and of com
plex type. 

PRooF. The proposition follows from (6.6) and the fact that irreducible 
complex G-modules are one-dimensional. 0 

Finally, note that if U is one-dimensional it is given by a homomorphism 
G - 0(1) ~ Z/2. 

(8.9) Exercises 

In the following exercises we assume that groups are compact abelian Lie groups. 

1. Let V and W be real representations of a torus T such that dim V8 = dim W 8 for 
all subgroups H of T. Show that V ;: W. 

2. If 

S2 -s 
is a pullback diagram of groups, show that the induced map R(S1) ®R1s1 R(S2)-> 
R(S 1 x s S 2) is an isomorphism. 

3. For abelian Lie groups G and H, let(; and 8 denote the groups of irreducible charac
ters (see §4). Let f: G-> H be a homomorphism. Show that iff is injective then 
/: 8-> (;is surjective, and iff is surjective then] is injective. Show that 

for any family of Lie groups G 4 • 

4. Show that every projective representation of a torus factors through the unitary 
group as in the following diagram: 

///.ur 
T1 - U(n)/S'. 

Hint: Start with a lifting W-> SU(n) (see (5.11), Ex. 7), or use IV, (1.12), Ex. 5 with 
G a suitable fiber product. 
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9. Representations and Lie Algebras 

The purpose of this section is to give a brief introduction to the infinitesimal 
form of a representation. It also contains a detailed discussion of torus 
representations and infinitesimal weights. 

Let G x M -+ M be a differentiable G-action on a manifold M. Each 
X E LG determines an action 4>x: ~ x M-+ M, (t, p) f-+ exp(tX) · p of the 
one-parameter group corresponding to X on M. The map 4>x is the global 
flow of the vector field X whose value at p is the tangent ol/ector at t = 0 of 
the map t f-+ exp(tX) · p. The Lie derivative of a function f: M-+ ~ with 
respect to the vector field X is 

Lxf(p) = :tl,~ 0 f(exp(tX)·p), 
which is just the ordinary directional derivative with respect to the same 
vector field. 

If G x V-+ V is a representation, we may form the Lie derivative for 
VE Vand X E LG 

Lx v: = lim~ (exp(tX) · v - v). 
t-+0 t 

The map (X, v) f-+ Lxv is linear in both X and v. Moreover, as we will see 
in a moment, 

(9.1) 

Let p: G-+ Aut(V) be the homomorphism corresponding to the represen
tation G x V-+ V, and let Lp: LG-+ LAut(V) be its differential. Since 
LAut(V) is canonically isomorphic to End(V) (see I, (2.8), (2.13)), we may 
interpret Lp(X) in End(V). As such Lp(X) is none other than the map 
v f-+ Lxv. This observation also proves (9.1). Note that the diagram 

L(G)~End(V) ~ LAut(V) 

(9.2) expl lexp 

G -pAut(V) 

commutes (see I, (3.2)). The right-hand exponential map is given by 
exp(A) = LO/v!)A" = eA, see I, (3.3). This says that for X E L(G) the left 
translation by exp X on Vis given by the automorphism eLx. 

The map LG x V-+ V, (X, v) f-+ Lxv is the infinitesimal version of the 
representation G x V-+ V. It is also an example of a representation of a 
Lie algebra. In general, if L is a Lie algebra and V is a vector space, then any 
bilinear map L x V-+ V, (X, v) f-+ Xv, satisfying X(Yv)- Y(Xv) = [X, Y]v 
is called a representation of the Lie algebra Lon V. In this context Vis also 
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called an L-module. Of course, a representation of L has an equivalent 
definition as a homomorphism of Lie algebras L -+ End(V). 

If L happens to be the Lie algebra LG of a simply connected Lie group 
G, then a homomorphism -r: LG-+ End(V) uniquely determines a repre
sentation p: G-+ Aut(V) such that replacing Lp by -r in (9.2) results in a 
commutative diagram (see Tits [2], §4.2, or Chevalley [1], Ch. VI, §VI, 
Th. 2). This opens the way for dealing with representations algebraically. 
We will not pursue this point, but it may nonetheless serve to illuminate the 
following exposition. 

We now study the infinitesimal versions of torus representations. This 
leads to infinitesimal weights and an infinitesimal characterization of weight 
spaces. 

Let V be a complex T-module for a torus T. Recall from (8.2) that a 
homomorphism 8: T-+ U(l) is called a weight of V if the corresponding 
weight space 

V(8) = {v e Vlxv = 8(x) · v for all x e T} 

is nonzero. As explained above, we have the infinitesimal version of the 
T-module V 

LT X v-+ v, 

and the differential 

e = L8: LT-+ LU(l). 

Recall from I, (2.16) that LU(l) = {a e Cia + a= 0} = iR. 

(9.3) Defiuition. An R-linear form 8: LT-+ LU(l) = iR c C is called an 
injinitesiltllll weight of the T-module V if the corresponding weight spt~ce 

V(8) = {v e VILxv = B(X) · v for all X e LT} 

is nonzero. 

(9.4) Proposition. The map 8-+ L8 is a bijection between weights and in
finitesimal weights of the T-module V. For every weight 8 we have V(8) = 
V(L8). 

PRooF. Let 8 be a weight of V and let v e V(8). By differentiating 
t 1-+ (exp(tX))v = 8(exp(tX)) ·vat t = 0 we obtain the equation 

Lxv = L8(X) · v. 

Hence v e V(L8). Therefore V(8) c V(L8) and L8 is an infinitesimal weight. 
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Conversely, let e: LT-+ LU(l) be an infinitesimal weight of V and let 
0 # v E V(8) be given. Then for all X E LT we have Lxv = 8(X) · v, so 
eLx · v = e8<X> • v. Combining this with (9.2), we see that exp(X) · v = e8<Xl • v; 
hence the map LT-+ U(l), X 1---+ e9 <X> factors through exp: LT-+ T and 
yields a map 88 : T-+ U(l). Furthermore, {0} # V(8) c V(88 ), so 88 is 
actually a weight of V. It is now easy to check that 8u~ = 8 and that L(88 ) = e, 

so e ~---+ 88 is inverse to 8 -+ L8. 0 

Since V is a complex vector space, every representation LT x V-+ V of 
the Lie algebra LT on V extends to the complexified Lie algebra LTc = 
C ®~LT. The extended action LTc x V-+ Vis also written (X, v) ~---+ Lxv. 

(9.5) Definition. A C-linear form <P: LTc-+ C is called a complex in
finitesimal weight of the T-modu1e V if the corresponding weight space 

V(<P) = {v E VIL8 v = <P(H) · v for all HE LTc} 

is nonzero. 

Note that C ®~ LU(1)-+ C, z ® u ~---+ zu, is an isomorphism. An ~-linear 
forme: LT-+ LU(l) therefore induces a C-linear form 

mapping X+ iY to 8(X) + i8(Y) for X, Y E LT. 

(9.6) Proposition. The assignment e ~---+ <P8 is a bijection between infinitesimal 
and complex infinitesimal weights of the T-module V. Furthermore, V( 8) = 
V(<Pe). 

PRooF. Given e and v E V(e) we have 

L8 v = Lxv + iLyv = 8(X) · v + i8(Y) · v = <P8 (H) · v 

for H = X + iY E LTc. Hence <P8 is a complex infinitesimal weight with 
V(e) c V(<P8 ). Now suppose we start with a complex infinitesimal weight 
<P. Let 0 # v E V( <P) be a corresponding weight-vector. Then a fortiori for 
any X in the real Lie algebra LT we have Lxv = <P(X) · v. However the 
LT-module V decomposes into weight spaces (see (1.14), (9.4)): 

V= EB vee), 
j 

Therefore Lxv = Li 8j(X) ·vi, and hence <P(X) ·vi= ei(X) ·vi. We re
number so that v1 # 0. Then <P(X) = 8 1(X) for all X E LT. Therefore vi= 0 
for j # 1 and, since <Pis determined by <P 1 LT, we have <P = <P8 ,. This shows 
that the assignment e ~---+ <P8 is surjective and V(<P8 ) c V(e). Since 8~--+<P8 
is obviously injective and V(e) c V(<P8 ), the proposition follows. D 
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For the purpose of general formulas it is convenient to use a slightly 
different parametrization of the circle U(1) and its Lie algebra. The iso

morphism ~/Z-+ U(1), t + Z 1-+ e21<i1, induces an isomorphism of exact 
sequences 

0---+ Z--+ ~--+ ~/Z---+ 0 

ll•i l'·' t~ 
0---+ 2niZ--+ m --exp-+ U(l)---+ 1. 

Weights T-+ U(l) then correspond to homomorphisms T-+ ~/Z and 
infinitesimal weights LT -+ i~ correspond to ~-linear forms ex: LT -+ ~. 

(9.7) Notation. An ~-linear form ex: LT -+ ~ is a real (infinitesimal) 
weight of the T -module V if 2niex is an infinitesimal weight of V. The weight 
space of oc is then 

V(ex) = {v E VILxv = 2niex(X) · v for all X E LT} 

The nonzero vectors in V(ex) are called weight vectors of ex. 

So all told we have weights and three different types of infinitesimal 
weights. We close by mentioning that for a real T-module W we define the 
infinitesimal (or real) weights to be those of its complexification We = 
C®RW. 

(9.8) Exercises 

1. Show that if 8 is an infinitesimal weight of a real T-module W (in one of its three 
forms) then -8 is also a weight. 

2. Consider S1 c C* = C\{0} as multiplicative groups. Then there is a canonical 
isomorphism LSt ~ LC*. Let V be a complex S1-module. Show it has an extension 
to a C*-module C* x V--+ V. Show that the corresponding infinitesimal action 
LC* x V--+ V is the complexification of LS1 x V-+ V. Are there representations of 
C* which do not come from representations of S1 in this way? 

3. Let ex be a nonconstant weight ofthe real T-module W with W(ex) the corresponding 
weight space. Show that W(ex) decomposes as W(oc) = W1 EB W2 with t e T acting via 

(::) ~ (:::~:~ :::~:~)(::) = cx(t)(::)· 
where ex: T --+ S0(2). Describe this in terms of 

Lex: LT--+ LS0(2) = { ( -~ ~) Ia e ~} 
4. Let B: V x V--+ ~beaG-invariant inner product on the real G-module V. Show that 

B(Lxu, v) + B(u, Lxv) = 0 

for all X E LG and u, v E V. 
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10. The Lie Algebra sl(2, C) 

The theory of representations of the groups SU(2) and S0(3) provides a 
simple and instructive example of the general theory. Furthermore, these 
groups play a fundamental role in the structure theory of compact Lie 
groups (see Chapter V). We therefore devote this section to studying the 
infinitesimal forms of their representations and their applications to spherical 
functions and the associated special functions (Legendre polynomials). 

The Lie algebra su(2) of SU(2) consists of the skew-Hermitian (2 x 2)
matrices with trace zero. An ~-basis is given by 

( j 0) 
iH = 0 -i ' (0 j) ( 0 1) 

y = i 0 ' and Z = -1 0 . 

These elements appeared in I, (1.9), (6.20) as a real basis for the pure 
quaternions, but here we consider them just as (2 x 2)-matrices. The 
relations between these elements in their new guise are 

Y(iH) = -(iH)Y = Z, (iH)Z = -Z(iH) = Y, ZY= -YZ= iH 

and hence their Lie products are 

[iH, Y] = - 2Z, [iH, Z] = 2¥, [Y, Z] = -2iH. 

Now, the Lie algebra sl(2, C) of SL(2, C) consists of the complex (2 x 2)
matrices with trace zero. The complexification 

IC ®IIi su(2) ~ sl(2, C), z® U~--+zU 

is an isomorphism of complex Lie algebras. Note that the action of IC on a 
matrix U is given by ordinary componentwise multiplication, which is not 
at all the same as the action induced by considering IC as a subalgebra of 
IHI. A complex basis of sl(2, IC) is given by 

H = G _ ~). x+ = !(z- iY) = (~ ~). 
and 

These elements satisfy 

(10.1) [H, x+J = 2x+, 

The corresponding one-parameter groups are given by 

(exp(t) 0 ) 
exp(tH) = 0 exp(- t) ' 

exp(tX-) = ( 1 0). 
-t 1 
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Next, we consider representations of the Lie algebra sl(2, C) on complex 
vector spaces E as defined in §9: 

sl(2, C) x E -. E, (A,x)HAX. 

Our first goal is to describe the simple sl(2, C)-modules. They correspond to 
irreducible SU(2)-modules. 

Slightly abusing the language from §9, we will call an element x e E 
satisfying Hx = .Ax an element of weight .t This is, of course, an element in 
some appropriate weight space. 

(10.2) Lemma. If xis an element of weight A., then x+ xis an element of weight 
A. + 2 and X- x is an element of weight A. - 2. 

PR.ooF.HX+x = [H, x+]x + x+ Hx = 2X+x + x+ .Ax= (A.+ 2)X+xand 
similarly for x-x. D 

(10.3) Definition. A nonzero element x of the sl(2, C)-module E is called 
primitive if it is an eigenvector of y H H y, and if X+ x = 0. 

(10.4) Proposition. Let x be a primitive element of the sl(2, C)-module E of 
weight A.. For j ~ 0 set x1 = (( -l)ijj!)(X-)ix and set x_ 1 = 0. Then Hx1 = 
(A.-2j)xi,x-x1 = -(j+ l)xi+handx+x1 =(A.-j+ l)x1_ 1• 

PRooF. The first formula follows from (10.2) and the second from the defini
tion of x1. The third is proved by induction onj starting withj = 0 where it 
is true because x_ 1 = 0 and x+x = 0. For j > 0 we have 

jX+x1 = -x+ x-x1_ 1 = -[x+, x-]x1_ 1 - x-x+x1_ 1 

= Hxj-1- x-o.- j + 2)Xj-2 (induction) 

=(A.- 2j + 2 + U- l)(A.- j + 2))x1_ 1 =j(A.- j + l)x1_ 1. D 

Noting that x = x0 , we see that the sl(2, C)-submodule of E generated by 
xis the vector space spanned by the x1• Moreover, if x1 =F 0 for j > 0, then 
xi- 1 =F 0. This means that U ~ Olx1 =F 0} is an interval of 1\10 • The 
corresponding x1 are linearly independent since they are eigenvectors of 
y H Hy associated to distinct eigenvalues. 

(10.5) Proposition. Suppose the sl(2, C)-submodule V of E generated by the 
primitive element x is finite-dimensional. Then 

(i) The weight A. associated to x is the nonnegative integer dim V- 1. 
(ii) The elements x0 , X1o ... , xAform a basis of V and x1 = Ofor j > A.. 

(iii) We have Hx 1 = (A. - 2j)x i· Hence the eigenvalues of y H H y are A., 
A. - 2, ... , -A. and the corresponding eigenspaces are one-dimensional. 

(iv) If y e Vis primitive, then y =ax for some a e C. 
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PROOF. Let m be the largest integer such that Xm-=/= 0. Then 0 = x+ Xm+ 1 = 
(A.- m)xm, so m =A.. As remarked above, the nonzero xi form a basis for 
V, so (i) and (ii) are proved. The fourth statement follows from (ii) and the 
fact that x+ Xi = C • Xj_ 1 , C -=/= 0 by (10.4). 0 

Note that x = x0 generates the kernel of X+ I V. 

(10.6) Lemma. Let E -=/= 0 be a finite-dimensional sl(2, C)-module. Then E 
contains a primitive element. 

PRooF. We know that there is some nonzero weight vector vEE. By (10.2) 
the iterates Vn = (X+)"v are either zero or linearly independent weight vec
tors. It follows that vn is primitive for some n < dim E. 0 

If a finite-dimensional sl(2, C)-module E -=1= 0 is simple in the sense that 
it has no proper nonzero submodules V, then E must be generated by a 
primitive element. Thus (10.5) describes the structure of E. Specific models of 
the modules appearing in (10.5) arise from the representations Vm of SL(2, C) 
on the vector space of homogeneous polynomials of degree m in variables 
z 1 and z 2 (§5). In fact, if we let X j E vm be the basis dement 

then we find : 

(10.7) Proposition.Hxi = (m- 2j)xi,x+xi = (m- j + l)xi_ 1 andX-xi= 
-U + l)xi+ 1, with x_ 1 = xm+ 1 = 0. Thus the elements x0 , ••• , Xm con
stitute the canonical basis derived from the primitive element x0 • 

PRooF. We use the one-parameter groups described after (10.1) and the 
definition of the Lie derivative in §9. We also recall that g E SL(2, C) acts on 
a polynomial p E Vm via 

(gP)(zh z2) = P((zh z2) ·g), 

see II, §5. Thus exp(tH) ·xi = exp((m - 2j)t) ·xi and hence 

Hxi =lim! (exp(tH) ·xi- x) = (m- 2j)xi. 
r-+0 t 

Verifying the other two equations is equally straightforward, for example, 
x+xi is calculated by computing that 

(exp(tX+) · xiXz 1, z2) = (7)zrr- i(z 1t + z2)i, 

differentiating with respect to t, and evaluating at t = 0. 0 

Our next task is to relate spherical functions to classical special functi<?ns, 
as promised in §5. The irreducible representations of S0(3) were realized by 
a natural action of S0(3) on the complex vector space ~~ of harmonic 
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polynomials R3 -+ C of degree I. The Lie derivative will make this into a 
module over so(3)c ~ sl(2, C). We may then apply (10.5) to find a basis of 
D1 and try to explicitly determine the functions of this basis. This program 
will occupy the rest of this section. 

It turns out that the functions we are seeking are best expressed in spherical 
coordinates. One a priori reason for this is the homogeneity of the poly
nomials involved. A second reason is that a weight vector for the zero 
weight corresponds to a function which is invariant under rotations about 
a suitable axis. 

The Lie algebra so(3) of S0(3) consists of the skew-symmetric real 
(3 x 3)-matrices. A basis is given by the infinitesimal rotations about the 
coordinate axes 

(0 0 0) 
Z(1) = 0 0 -1 , Z(2) = ( ~ ~ ~\ 

-1 0 ~) 
(0 -1 0) 

Z(3) = 1 0 0 . 
0 1 0 0 0 0 

The following Lie brackets may be easily computed (cf. I, (1.16), Ex. 13; 
(2.22), Ex. 8)); this is our old acquaintance the basic pure quaternions in 
another guise: 

(10.8) [Z(2), Z(3)] = Z(l), 

[Z(l), Z(2)] = Z(3). 

[Z(3), Z(l)] = Z(2), and 

The group S0(3) acts on smooth functions f: R3 -+ C by (Af)(x) = f(xA), 
A e S0(3), x e R3• The Lie derivative is 

Rx f(x) = dd I f(x · exp(tX)), X e so(3). 
tr=O 

We will frequently denote Rx f by Xf to simplify notation. We have 

XYf- YXJ = [X, Y]f. 

The operator Rx is a linear differential operator on smooth functions 
R3 -+ C. In terms of coordinates (x1, x 2 , x3) on R3, this operator is given at 
the point x e R3 by 

a a a 
(10.9) a1 ;;--- + a2 ;;--- + a3 ;;--- with (a1, a2 , a3) = x ·X. 

uX1 ux2 uX3 

To see this, note that Rx is the directional derivative with respect to the 
velocity vector of the curvet 1-+ x · exp(tX) at t = 0 and this velocity vector 
isx·X. 

(10.10) Remark. Recall that there is an isomorphism of Lie algebras 
cp: so(3)-+ R3 where the Lie bracket in R3 is given by the vector product 
(x, y) 1-+ x x y (see I, (2.22), Ex. 8). The image of ZU) under qJ- is the jth 
standard basis vector of R3, i.e., cpZ(l) = (1, 0, 0), etc. Moreover, one may 
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easily verify on the basis vectors that x · g = x x rp(g) for x e ~3 and g e so(3). 
Thus if rp(X) = u = (u 1, u2 , u3) we may formally write Rx at the point 
(x1, x2 , x 3) as 

Rx = (V, X x u) = det(V, x, u) with V = (:!-. -}--, -!--). 
ux1 uX2 uX3 

In other words, 

(10.11) 

In particular, 

(10.12) 

We may describe an isomorphism so(3)c ~ sl(2, C) by observing that the 
vectors 

(10.13) H = 2iZ(3), x+ = Z(1) + iZ(2), x- = Z(l)- iZ(2) 

satisfy the standard sl(2, C)-relations (10.1), i.e., 

[H, x+] = 2x+, [H, x-] = -2x-, 

We now wish to apply the differential operators corresponding to H, x+, 
and X- to the functions in the space Dr of harmonic polynomials of degree I. 
From §5 we know that Dr is an irreducible S0(3)-module, and so we want 
to find a basis of the form considered in (10.5). The basis vectors will have 
to be eigenvectors for the operator H. Since dim Dr = 21 + 1, a primitive 
element will have weight 21. Making a "lucky guess," we consider the poly
nomial Y(x1, x 2 , x 3) = (x 1 + ix 2)'. It is clearly harmonic of degree I, and 
applying H = 2i(xiiJ/iJx 1) - x 1(iJ/iJx2)) yields HY = 2/Y. Similarly, 
x+(Y) = 0 so Y is primitive. From (10.5) we conclude that f)1 has a basis 
consisting of the functions 

(10.14) 0 s; j s; 21, 

which is, up to constants, the canonical basis. Our intention is to identify 
these functions with classical spherical functions, and this requires the use 
of spherical coordinates. 
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The spherical coordinates 

x 1 = r sin 8 cos qJ, 

x2 = r sin 8 sin qJ, 

x3 = r cos 8, 

0::::;; r, 0::::;; qJ ::::;; 2n, 0::::;; 9::::;; n, 

obey the transformation rules (see Korn and Korn [1], table 6.5-1, p. 179 
(gradient)) 

o . o cos8cosqJ o sinqJ o 
-;----- = sm 8 cos qJ-;-- + :1o- -.-0 ~· ux 1 ur r u.:? r SID .:? uqJ 

_!_ _ . 0 . !.._ cos 9 sin qJ ~ cos qJ !__ 
:l - sm " sm qJ :l + :l 0 + . 0 :l , ux2 ur r u.:? r sm .:? u(/J 

o o sin 9 o 
- = cos 9 - - ---. 
OX3 or r 89 

Substituting this into (10.12) and (10.13) yields 

(10.15) 

H = -2i!_ 
oqJ' 

X + - i<p( . 0 t 0 0 ) - e -1 89 + co .:? oqJ , 

. ( 0 0) x- = e-'"' i 88 + cot 8 oqJ . 

The polynomial Y is transformed into Y = r1eu"' sin' 9. Since the operators 
H, x+, and x- do not involver, we may fix r = 1 and simply compute with 
Y = ei'"' sin' 8 in what follows. 

Since H = -2i(ojoqJ), the relation HYm = 2mYm, -1::::;; m::::;; I, shows 
that Ym has the form 

From iX-(Ym) = Ym- 1 and from the expression for x- in (10.15), we obtain 
the differential equation 

- ;[; - m cot 8 fm = fm _ 1. 

This equation may be solved by substituting s =cos 9. Denotingfm(8) by 
Pm(s), this substitution gives 

dfm o) dpm · o - (" = - - (s) · sm " 
d9 ds 
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and the differential equation becomes 

( 2 112(dPm ms ) _ 
1-s) ds- 1 _ 52Pm -Pm-1· 

Notice that this substitution is justified because 0 ~ 8 ~ n and cos 8 is 
monotonic in this interval. 

Setting um(s) = (1 - s2)m12 · Pm(s), we compute that 

Next, we observe that u1(s) = (1 - s2) 112p1(s) and that p1(s) = !,(8) = 
sin1 9 = (1 - cos 2 9)112 = (1 - s2) 112 • Thus u1(s) = (1 - s2) 1, so 

In this context one uses a conventional normalization by defining 

(1 - s2)-m/2 di-m 
Pj(s) = I! 2' dsl-m (s2 - 1}'. 

This yields the basis 

(10.16) -1 ~ m ~ l, 

for ~1 • The function 

(10.17) 
1 d' 2 I 

P,(t) = 2'1! dt' (t - 1) 

is called the /th Legendre polynomial, and the functions (1 - t 2ri2(dm/d~)P1(t) 
its associated Legendre functions. The eigenfunctions Ym for m = 0 have 

weight 0 and are hence annihilated by H = - 2i(iJ/iJ<p). They are independent 

of <p. The function Y0(<p, 8) = P1(cos 8) is invariant under rotations about 

the x 3-axis (zonal spherical function). For spherical functions on sn, see 

Dieudonne [3], 38. 

(10.18) Exercises 

1. Show that the Lie algebras su(2) and sl(2, IR) are not isomorphic but that su(2)c ~ 

sl(2, IC) ~ sl(2, IR)c (these are the real forms of sl(2, IC)). 

2. We made !)1 into an so(3)-module using the Lie derivative. But !)1 is also an so(3)

module via the infinitesimal representations. How are these two structures related? 
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3. Show that the isomorphism so(3)c ~ so(3, C) ~ sl(2, C) used in this section has 
the form 

( 
0 2ia 

-2ia 0 
-i(b +c) b- c 

i(b + c)) (a b) 
c-b +-+ 

0 c -a 

4. Define a differential operator C on the smooth functions IR3 ..._. C by 

C = -Z(1)2 - Z(2)2 - Z(3)2• 

This is the Cuimir operfltor. 

(i) Show that C commutes with each Z(i), i = 1, 2, 3. 
(ii) Show that 

C = -x2 .1 + I1_L +I), 

where 

a a a · h E 1 L = x1 - + x2 -a + x3 -a ts t e u er operator, ax1 x2 x3 

and x2 is multiplication by xi + x~ + xj. 
(iii) Show that Cf = 1(1 + 1)/for f E f)1• 

(iv) Use (i) to show that C must be a scalar multiple ofthe identity on each irreducible 
module of functions IR3 ..._. C (Schur's lemma). 

(v) Show that 4C = H 2 - 2(X+ x- + x-x+) = H 2 + 2H - 4X-x+ where H, 
x+, and x- are as in (10.13). 

(vi) Show that in spherical coordinates -C has the form 

1 i)2 1 j)(· i)) 
sin2 8 ilcp2 + sin 8 iJ8 sm 8 iJ8 · 

(vii) Show that H 2 - 2(X+ x- + x-x+) acts as multiplication by m(m + 2) on 
the space Vm (see (10.7)). How is this related to (iii)? 

For the Casimir element in general, see Bourbaki [1], Ch. I, §3.7, and 
Dieudonne (3], p. 277. 

5. Let V be a finite-dimensional sl(2, C)-module and let J.j c E be an eigenspace of 
HE sl(2, C) with corresponding eigenvaluej. Show that x-is injective on EBr~ 1 J.j. 



CHAPTER III 

Representative Functions 

The individual entries of a matrix representation of a Lie group G are con
tinuous functions on G. They generate the ring of representative functions. 
The celebrated theorem of Peter and Weyl asserts that the representative 
functions are dense in the space of all continuous functions. This central 
result is proved in §3 with the help of some functional analysis which is 
reviewed in §2. We devote §1 to definitions and to showing that any (left or 
right) G-translation invariant finite-dimensional subspace of the ring of 
continuous functions on G actually consists of representative functions. 

Applications of the theorem of Peter and Weyl are given in §4, and §5 
deals with some of the formal generalizations to the decomposition of 
infinite-dimensional representations. In §6 we introduce induced representa
tions. This is an important concept in representation theory, but, as its appli
cations are mainly to finite groups and infinite-dimensional representations 
of locally compact groups, it does not play much of a role in this book. 

The ring of representative functions determines the structure of G. This 
is shown in §7 and is part of the so-called Tannaka-Krein duality theory. The 
ring of representative functions may also be used to define the complexifi
cation of a compact Lie group, as is indicated in §8. This opens the way for 
looking at Lie groups as algebraic groups. 

1. Algebras of Representative Functions 

Let G be a compact Lie group and G-. GL(n, C), g H (a;1{g)), a matrix 
representation. Viewed as functions on G, the aii are continuous, and one 
should anticipate that such functions play a special role among all 
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continuous functions on G. For example, the orthogonality relations (II, §4) 
express some of the distinguished properties enjoyed by the aii. In fact, the 
investigation of functions arising as entries in matrix representations is an 
analytic side of representation theory, and the purpose of this section is to 
collect some results concerning the linear algebra of these functions. Before 
proceeding, we point out that we have already encountered analytic aspects 
of our theory in II, §5 (spherical functions). 

Matrix multiplication 

shows that the translated functions g H aiJ{gh) are linear combinations of 
the functions aik• 1 ~ k ~ n, and similarly for the functions g H aiJ{hg). Thus 
the vector space generated by the aii is invariant under left and right trans
lation. In other words, if it contains f it also contains every function of the 
form x H f(gx) and x 1-+ f(xg), g e G. In this manner we are led to undertake 
a more systematic study of the ring of continuous functions on G and its 
finite-dimensional G-invariant subspaces. 

Let C0(G, K) denote the ring of continuous functions G--. K into the 
field K of real or complex numbers. Left and right translation in G induce 
actions of G on C0(G, K) as follows: 

L: G x C0(G, K)--. C0(G, K), 

L(g,f)(x) = f(g- 1x). 

R: G x C0(G, K)--. C0(G, K), 
R(g, f)(x) = f(xg). 

Note that using g- 1 instead of gin the definition of L leads to a left action 
on C0(G, K)-the reader should check that both Land Rare left actions. 

(1.1) Definition. Let G act on C0(G, K) via R. A function f e C0(G, K) is 
called a (K-valued) representative function for G iff generates a finite
dimensional G-subspace of C0(G, K), i.e., if the smallest G-subspace con
taining f is finite-dimensional. 

We have already seen that the vector space generated by the entries of a 
matrix representation consists of representative functions. We will soon 
see that representative functions always stem from matrix representations, 
so (1.1) gives an axiomatic characterization of functions arising in this 
fashion. 

The next step is to understand how representations lead to representative 
functions on a more abstract level. Let V be a finite-dimensional continuous 
representation of Gover K and let V* = Hom(V, K) be the dual represen
tation on the space of K-linear maps V--. K. Recall that G acts on V* via 
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(g · f)(v) = f(g- 1v). Given v E V and f E V* we define d1 ,v E C0(G, K) by 
d1 ,v(g) = f(gv). Thus we obtain a linear map 

It is easy to verify that L(g, d1 ,v) = dg·f,v and R(g, d1 ,v) = df,gv• so the 
action L corresponds to the action on V* and the action R corresponds to 
that on V. The space 

S( V) = image of sv 

is a finite-dimensional G-subspace of (C0(G, K), R) and of (C0 (G, K), L)
this notation indicates a vector space and a specific action of G. Thus S(V) 

consists of representative functions. If e1, ••• , en is a basis of V, and ef, ... , e: 
is the dual basis of V*, then der,ej = aii where gei = L; a;A· Hence S(V) is 
simply the space generated by the aii coming from the matrix representation 
corresponding to V. 

(1.2) Proposition. Iff is a representative function, then f generates a finite
dimensional G-subspace of (C0 (G, K), L). The representative functions form 
a K-subalgebra !/(G, K) of C0 (G, K) closed under complex conjugation. 

PROOF. Let f be a representative function, so f generates a finite-dimensional 
G-subspace V of (C0(G, K), R). Let e1, ••• , en be a basis of Vande!, ... , e: 
be the dual basis of V*. If R(g, f)= Li aig)ei, we have 

sv(ej, f)(g) = a/g). 

Therefore 

f(g) = R(g,f)(l) = L aig)e/l) = L sv(ej,f)(g)eil). 
j j 

It follows that f = L ep)sv(ej,f) E S(V), which is known to be finite
dimensional and invariant under the L-action of G. This establishes the 
first assertion. 

For the second assertion, we need only consider representative functions 
coming from matrix representations, since we have seen above that ff(G, K) 
is generated by these as a K-vector space. But if g 1--+ (aii(g)) and g 1--+ (bk1(g)) 
are two matrix representations, considering their direct sum and tensor 
product will show that aii + bk1 and aiibk1 are representative functions. 
Considering a dual representation shows that iiii is a representative function, 
completing the proof. 0 

(1.3) Example. The algebra ff(S 1, C) consists of the trigonometric poly
nomials on S1• Namely, if V is a complex representation of S1, then we can 
find a basis e1, •.• , en of V SUCh that Z E S1 acts by sending e; to Zn(i)ei> n(i) E 7J.. 

(decomposition into irreducibles, see II, (8.1)). Thus ff(S 1, C) is generated 
by the functions z 1--+ zn, n E 7!... 



126 Ill Representative Functions 

We will consider two topologies on C0{G, K)-that defined by the 
supremum norm and that defined by the inner product (ft>f2 ) = Jafd2· 
The representations ff(G, K) for both actions R and L are, in general, 
infinite-dimensional, but they do admit the pleasant decomposition into 
isotypical submodules which we encountered in II, §1. Moreover, they are 
completely describable in terms of irreducible G-modules. 

(1.4) Proposition. Let B be a G-submodule of (ff(G, K), R). Then the following 
hold: 

(i) B is the orthogonal direct sum of the submodules B n S(U), where U 
ranges over Irr(G, K). 

(ii) The submodule B n S(U) is the U-isotypical part of B. 
(iii) B is closed in ff(G, K) with respect to both the inner product and supremum 

norm topologies. 

PRooF. The orthogonality relations of II, §4 and II, (6.10), Ex. 3 imply that 
the spaces S(U), U e Irr(G, K), are pairwise orthogonal. And from the proof 
of (1.2) we see that the S(U) generate ff(G, K). Thus ff(G, K) is the direct 
sum of the S(U). Since S(U) is the image of U* ® U, we see that S(U) is 
U -isotypical in the sense of II, §2. Applying II, (2.2) to the semisimple module 
ff(G, K) yields both (i) and (ii). 

Now let f be an element of ff(G, K) lying in the closure of Bin the inner 
product topology. Let nu be orthogonal projection from ff(G, K) onto S(U). 
Since 

(nu(f- b), nu(f -b))~ (f- b,f- b) 

forb E B we see that nu(f) lies in the closure of nu(B) in S(U). But S(U) is 
finite-dimensional, so nu(f) e nu(B). It follows that f is contained in the 
sum of the spaces nu(B) where U ranges over Irr(G, K), and hence fEB. 
Furthermore, (f,f) 112 ~ lfl shows that sets closed in the inner product 
norm topology are also closed in the supremum norm topology, and this 
establishes all of (iii). 0 

Needless to say, analogous results hold for submodules of (ff(G, K), L), 
but we now want to study submodules of ff(G, K) simultaneously invariant 
under both actions Rand L. In other words, we may consider ff(G, K) to be 
a (G x G)-module with the action (g, h)f = L(g, R(h,f)), which is well 
defined since R and L commute. The simultaneously invariant submodules 
which interest us are precisely the (G x G)-submodules. 

(1.5) Proposition. The maps su: U* ® U,.... C0 (G, K) induce an isomorphism 
of ( G x G)'-modules 

(su): EB U* ®n<U> U,.... ff(G, K), 
Uelrr(G,K) 
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where D(V) is the endomorphism algebra of U over K. Also, any (G x G)
submodule B of ff(G, K) is the direct sum of the B n S(V), and if B n S(U) =1= 

{0}, then B n S(U) = S(U). 

(1.6) Remark. It is no accident that the isomorphism of this proposition 
resembles the canonical isomorphisms in II, (1.14) and II, (6.9). Suitably 
rewritten, they turn out to be the same: For each G-module E there is a 
canonical isomorphism of vector spaces 

Hom(E, K) ~ Hom6(E, C0(G, K)) 

mapping cp E Hom(E, K) to the map if>: E--+ C0(G, K), i{>(x)(g) = cp(gx). The 
inverse maps 1/1 to tfr: x H t{l(x)(1). This isomorphism makes the following 
diagram commute, where dE is evaluation: 

Hom(E, K) ® E ~ Hom6 (E, C0(G, K)) ® E 

This is a special case of Frobenius reciprocity for induced representations, 
see (6.2) with H = {1}. 

PRooF OF PROPOSITION (1.5). Let cp: U--+ U be an endomorphism. Then 
su(f, cpv) maps g to f(gcpv) and su(fcp, v) maps g to fcp(gv). Since cp is a 
G-map, cp(gv) = gcp(v) and these two functions are the same. Thus su gives 
a(G x G)-mapsu: U* ®D<UJ U--+ ff(G, K). Usingthecommutativediagram 
from (1.6), the map su is transferred to the map 

du: Hom6 (U, ff(G, K)) ®D(UJ U--+ ff(G, K). 

We may now apply II, (1.14) and II, (6.9) to show that (su) is an isomorphism. 
(The reader may note that in the results referred to we only considered 
finite-dimensional vector spaces, and ff(G, K) could well be infinite
dimensional. However, the argument used to prove II, (1.14) remains valid 
for infinite direct sums of irreducible G-modules, i.e., for V semisimple in 
the sense of II, §2).) This proves the first statement. 

The second statement is equivalent to the assertion that U* ® D<UJ U is 
an irreducible (G x G)-module. In the case K = C, this follows from 
II, (4.14), and for the real case, see II, (6.10), Ex. 9. D 

We close with some general remarks concerning infinite-dimensional 
representations. 

Let G be a compact Lie group and consider a K -vector space V with 
G-action p: G x V--+ V such that all the left translations v H p(g, v) are 
K-linear. We do not assume that p is continuous. The finite-dimensional 
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continuous G-submodules of V generate a subspace V. of V which is G
invariant. Each element of V. is contained in a finite-dimensional continuous 
G-submodule. A representation V is called locally finite if V = V.. 

Given V, the G-module V. is the unique maximal locally finite subrepre
sentation of V. Furthermore, V. has an algebraic decomposition into 
isotypical summands as in the finite-dimensional case II, (1.14), II, (6.9). Let 
E be a finite-dimensional continuous G-module, and consider the vector 
space HomG(E, V) and the representation HomG(E, V) ® E. Then the 
evaluation map 

q> ® x 1-+ q>(x) 

is G-equivariant and linear. Moreover, its image c(E) is contained in V.-

(1. 7) Proposition. 

(i) The maps cE induce an isomorphism 

c = (cE): EB HomG(E, V) ®D<EJ E __. V. 
Eelrr(G, K) 

(ii) If W c V. is a G-subspace, then W = EBEetrr(G,KJ (c(E) n W). 
(iii) If E E Irr(G, K), then W c c(E) if and only if the irreducible submodules 

of W are isomorphic to E. 

PRooF. See Exercise 4. D 

The subspace c(E) c V. forE e lrr(G, K) is again called the E-isotypical 
part of V.. 

(1.8) Exercises 

1. Let V c C0(G, K) be a finite-dimensional subspace which is G-invariant with 
respect to the action R. Show that the induced action of G on V is continuous. 

2. Let U be a continuous finite-dimensional G-module and W a G-invariant subspace. 
Show that W and U jW are continuous. 

3. Show that if G is finite, then V = V. for any representation V of G, but that if G 
is not finite, then there exists a representation V such that V ¥- {0} and V. = {0}. 

4. Give a proof of (1.7). Hint: If x E W c V. (i.e., W is finite-dimensional), then 
x e c(W) so c is surjective. Show Homa(E, V) = Homa(E, V,). Each element in 
the domain of c is contained in a subspace EB Homa(E, U) ® E with U ~ V. 
finite-dimensional. Now apply II, (1.14) and II, (6.9). 

5. Prove or give a counterexample: Let f be a representative function withf(e) = 1. 
Then there is a continuous homomorphism G ..... GL(n, K), g ~--> (a;1{g)), such 
that a 11 =f. 

6. Let f e ff(G, C). Show that the real and imaginary part off are contained in 
ff(G, IR). Conclude that there is an isomorphism of algebras ff(G, IR) ®R C ~ 
ff(G, C). 
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7. Show that representative functions are smooth (CCX>). 

8. Show that convolution of functions on G makes ff(G, K) into a K-algebra. Use II, 
(4.16) and a real analogue. 

9. Composing the canonical isomorphism Hom(V, V) ~ V* ® V with the map sv 
yields a homomorphism tv: Hom(V, V)-+ ff(G, C). Show that ty(f) maps g to 
Tr(l, o f), and that composition of homomorphisms in Hom( V, V) is transformed 
into convolution by ty. Conclude that the algebra ff(G, C) with convolution is 
isomorphic to the direct sum of endomorphism algebras ffiveirr(G,Cl Hom(V, V). 

10. Let G act on itself by left translation. This gives rise to the notion of Lie derivative 
Lx f, X E L(G), f E C<X>(G, C). Show that Lx maps ff(G, C) into itself. 

11. Let ff(G, C) be the convolution algebra of Exercise 9. Show that its center is 
spanned as a vector space by the characters x v, V E Irr( G, C). 

12. Let G be finite and abelian and let C[G] = C0(G, C) be the group ring of G; see II, 
§1. Show that, as a representation (with the action L or R), C[G] is isomorphic 
to the direct sum of the distinct irreducible representations of G (each with multi
plicity one). Give an explicit decomposition of C[ljn] into irreducible ljn-modules. 

2. Some Analysis on Compact Groups 

This section is preparatory to the next, in which we will prove that representa
tive functions are dense in the space of all continuous functions. We need a 
few notions from analysis. 

Let H = C0(G, C) be the vector space of continuous complex functions on 
the compact group G. We equip H with the supremum norm 

lui= sup{lu(g)llg e G}. 

We also have the inner product and the corresponding norm 

(u, v) = t uv, llull = (u, u) 112• 

Completion of H for this norm yields the Hilbert space fi = L2(G) of square 
integrable functions on G. From the Cauchy-Schwarz inequality 

l(u, v)l ~ llull·llvll 

using v = 1, and then using J uu ~ lul2 , we get 

t lui ~ Uull ~ lui. 

By the second inequality, the identity map (and the inclusion) 

(H, 1·1)-+ (H, 11·11) c (H, 11·11) 
is continuous with respect to the topologies induced by the respective norms. 
It is a fact from functional analysis that a linear map (also called linear 
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operator) K: (E, 1·1) -+ (F, 11-11) between two normed vector spaces is con
tinuous if and only if there is a constant A such that IIKvll ~A ·I vi for all 
veE. If k: G x G-+ Cis a continuous function and f e ii, the integral 

Kf(g) = L k(g, h)f(h) dh 

defines a continuous function Kf on G. Moreover, 

IKf(g)l ~ Jlk(g, h)llf(h)l dh ~A Jlf(h)l dh ~ Allfll, 

where A= sup{lk(g, h)ljg, he G}. Hence 

K: (H, 11"11)-+ (H, 1·1), f 1-+ Kf 
is continuous. 

A subset L of a normed vector space F is called precompact if every 
sequence (J,) in L contains a subsequence which converges in F. A linear 
map K: E -+ F between normed vector spaces is called compact if it maps 
every bounded subset B c E into a precompact subset K(B) of F. 

The next theorem characterizes the precompact subsets of (e0(G, C), 1·1) 
for a compact group (or just space) G. 

(2.1) Theorem (Ascoli). A subset L of the space of continuous functions 
G -+ C with the supremum norm is precompact if and only if L is equicontinuous 
and bounded. 

For a proof of this theorem see, for example, Dieudonne [1] or Lang [1]. 
Recall that L is equicontinuous at x0 if for each B > 0 there is a neighborhood 
U of x0 such that lf(x)- f(x0)1 < B for all x e U and f e L. Then L is 
called equicontinuous if it is equicontinuous at every point of G. 

The following proposition is an application of the Ascoli theorem to the 
map K defined above. 

(2.2) Proposition. The operator K: (H, 11·11) -+ (H, 1·1) is compact and hence 
K: (H, 11·11)-+ (fi, 11·11) is compact. 

PRooF. Let B c ii be 11·11-bounded by a constant e > 0. Given B > 0, choose 
a neighborhood V of e e G such that given any he G one has 
lk(x, h)- k(x0 , h) I < ee- 1 as long as xx0 1 e V. Then 

IKf(x)- Kf(x0 )1 =I J (k(x, h)- k(x0 , h))f(h) dhl 

~ee-l Jlf(h)l dh ~ ee- 111!11 ~B. 

This shows that K(B) is equicontinuous, and since it is also bounded, K(B) 
is precompact and K is compact. D 
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Now suppose that k: G x G-+ C is symmetric in the sense that k(x, y) = 
k(y, x). Then the operator K turns out to be symmetric, i.e., we have 

(2.3) Proposition. If k: G x G -+ C is symmetric as explained above, then 
(Kft,/2) = (ft, K/2) for all / 1,/2 e L2(G). 

PRooF. Use Fubini's theorem to switch the order of integration. 0 

Also recall that the norm of an operator is defined by 

IIKII = sup{IIK/11111!11 = 1}. 

Thus IIKfll ~ IIKII·IIfll for aUf, and IIKII is the smallest constant A such 
that IlK/II ~ Allfll for all f. 

(2.4) Proposition. Suppose K is a symmetric operator. Then 

IIKII = sup{i(Kf,f>illl/11 = 1}. 

PRooF. By the Cauchy-Schwarz inequality, for 11/11 = 1 

i(Kf,f>l ~ IIK/11·11/11 ~ IIKII·IIfll = IIKII, 

so that the supremum (call it M) exists and is at most IlK II. 
In order to show that IlK II ~ M, i.e., that IIKxll ~ M for llxll = 1, we may 

assume that Kx =F 0 and let y = Kx/IIKxll. Then (Kx, y) = IIKxll = 
(x, Ky) and 

(K(x + y), x + y) = (Kx, x) + 211Kxll + (Ky, y) 

(K(x - y), x - y) = (Kx, x) - 211Kxll + (Ky, y). 

Subtracting these two equations we get 

411Kxll = (K(x + y), x + y) - (K(x - y), x - y) 

~ M·lix + Yli 2 + M·lix- Yli 2 = 4M. 0 

(2.5) Proposition. Let K be a symmetric compact operator. Then IIKII or 
-IlK II is an eigenvalue of K. 

PROOF. By (2.4) we can find a sequence Xn e H such that llxnll = 1 and 
lim I(Kx", x")l = IIKII. Passing to a subsequence if necessary, we may 
assume (Kx", x"> converges to an a which is either IlK II or -IIKII. Then we 
have 

0 ~ IIKxn- axnll 2 = (Kxn- ax", Kxn- ax"> 

= IIKxnll 2 - 2a(Kx", Xn) + a2llxnll 2 

~ a2 - 2a(Kxn, Xn) + a2• 
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The right-hand side converges to zero, and since K is compact we may 
assume (after passing to a subsequence again) that (Kxn) converges to some 
element y. The inequality above shows that (ax") also converges to y. If 
a = 0, then IlK II = 0 so K = 0, and the proposition is trivial. If a :f= 0, then 
(xn) converges to x, where x = a- 1y :f= 0. But then Kx =ax, showing that 
a is an eigenvalue of K. D 

We are now ready to prove the spectral theorem for compact symmetric 
operators K: H -+ fi. Note that every eigenvalue A. of such an operator is 
real; this follows from A.(x, x) = (A.x, x) = (Kx, x) = (x, Kx) = (x, A.x) 
= A:(x, x), where Kx = A.x and x :f= 0. Let H;. = {xiKx = A.x} be the eigen
space of A.. Then for A. :f= J.l the spaces H;. and H,. are orthogonal. In fact, for 
x e H;. andy e H,. we have A.(x, y) = (Kx,y) = (x, Ky) = J.t(x, y), which 
implies orthogonality. 

(2.6) Theorem. Let K: (H, 11·11)-+ (H, 11·11) be a compact symmetric operator. 
Then for each e > 0 the subspace 

Ef>H;. 
IAI~• 

is finite-dimensional and Ef>;. H;. is dense in fi. 
PRooF. Were the space in question not finite-dimensional, it would contain 
a sequence (xn, n e 1\J) of orthonormal eigenvectors. But then the equations 
Kxn = A.n xn, together with the inequalities II An xn - Am xm 11 2 = A.~ + A.! ~ 2e2 

for n :f= m, would contradict the compactness of K. 
Now let E be the closure of Ef>;.H;. in fl. Then K(E) c E. Let F be the 

orthogonalcomplementofEinH.Fore e Eandf e FwehaveO= (Ke,J) = 
(e, Kf), so Kf is orthogonal to E. Consequently, K induces a linear map 
K': F -+ F which is still symmetric and compact and as such has an eigen
value by (2.5).1f F :f= {0}, this contradicts the construction of E. D 

In closing we recall the Stone-Weierstrass approximation theorem. Let 
X be a compact space and let C0(X, K) be the space of continuous func
tions X-+ K with the supremum norm. (Here K is IR or C.) Pointwise 
multiplication of functions makes this into an algebra. A set B c C0(X, K) 
is said to septuate points if, given any two distinct points x 1, x 2 eX, there is 
anf e B such thatf(x1) :f= f(x 2 ). The real and complex Stone-Weierstrass 
approximation theorem goes as follows: 

(2.7) Theorem. 

(i) Let B c C0(X, R) be a subalgebra which contains all real constants and 
separates points. Then B is dense in C0(X, R). 

(ii) Let B c C0(X, C) be a subalgebra which contains all complex constants, 
separates points, and is closed under complex conjugation. Then B is 
dense in C0(X, C). 
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PROOF. See, for example, Lang [1], 111.1 or Dieudonne [1], 7.3. D 

(2.8) Exercises 

1. Let E0 ~ E1 4 E2 4 £ 3 be continuous linear operators. Show that f 2 o f 1 o fo is 
compact if / 1 is compact. Show that an operator with finite-dimensional image is 
compact. 

2. Show that a subset L in a normed vector space is precompact if and only if its closure 
is compact. 

3. Recall the geometry behind (2.4) and (2.5): If A E GL(n, IR), then 

C = {yly =Ax, llxll = l} 

is an (n- I)-dimensional ellipsoid defined by C = {y E IR"I'y'BBy = 1}, where 
B = A - 1. The matrix 'AA is symmetric and positive-definite, so 'AA = P2 for some 
symmetric positive-definite P. Hence C = {yiPx = y, llxll = 1} and 

IIAII = max{IIYIIjyEC} = IIPII· 

If A is symmetric, then for a suitable U E O(n) the matrix 'UAU =Dis diagonal 
with entries (A. I> ••• , A..) on the diagonal. Thus 

IIAII 2 = max{(Ax,Ax)l(x,x) = 1} = max{~A.fzrl~zf = 1} = max{A.f}. 

Moreover, in this case 

{(Ax,x)jllxll = 1} = {(Dx,x)jllxll = 1} = {LA.;xf!llxll = 1}, 

and consequently 
max{IA.;x?l!llxll = l} = max{IA.;I}. 

Show that the tangent space at y to {y E IR"I'yMy = 1} for a symmetric M is 
perpendicular toy if and only if y is an eigenvector of M. 

3. The Theorem of Peter and Weyl 

In §1 we introduced the ring ff(G) = ff(G, C) of complex-valued repre
sentative functions. This is a subring of the ring C0(G) = C0(G, C) of con
tinuous complex-valued functions on the compact group G. As a vector 
space, C0( G) is complete with respect to the supremum norm 

1!1 = sup{lf(g)ljg E G} 

and hence is a Banach space with this norm. The actions of G on this space 
given by left and right translation are continuous. 

On the other hand, we may complete C0(G) with respect to the inner 
product metric 

(u, v) = fa uv. 
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This yields the Hilbert space L 2(G) of square-integrable functions on G. The 
group G acts on L 2(G) by left and right translation. In variance of the integral 
shows that these actions are unitary. 

The goal of this section is to prove the following basic theorem due to 
Peter and Weyl [1]: 

(3.1) Theorem. 

(i) The representative functions are dense in both C0(G) and L 2(G). 
(ii) The irreducible characters generate a dense subspace of the space of 

continuous class functions. 

To gain some insight into the meaning of this result, we examine the special 
case of the classical groups before giving a proof. In this case, the result 
essentially follows from the Stone-Weierstrass approximation theorem (2.7). 

Let G be a subgroup of GL(n, C). Then the standard representation of 
GL(n, C) on C" restricts to a faithful representation of G. Hence the represen
tative functions !F(G, C) separate points. Thus by theorem (2.7)(ii), we see 
that !F(G, C) is dense in C0(G, C). On the other hand, we will later deduce 
from (3.1) that every compact Lie group admits a faithful representation on 
some C". Thus the existence of a faithful representation and the th~orem of 
Peter and Weyl are equivalent via the Stone-Weierstrass approximation 
theorem. 

PRooF OF (3.1). We begin by showing that (ii) follows from (i). Suppose we 
are given a qJ which is a class function, so ({J(gxg- 1) = qJ(x) for all g, x e G. 
Given B > 0, by (i) we may find a representative function f such that 
I qJ - f I < B. Then the function t/1 : x 1-+ J G f (gxg- 1) dg is a class function 
satisfying 1 qJ - t/1 1 < B. Thus it suffices to show that t/1 is a linear combination 
of irreducible characters. 

But f is a representative function, and hence 

f(g) = L if{ge;) 
i 

for some e; e E;,j; e Hom(E;, C), and E; irreducible ((1.5)(i}). Consequently 

J f(gxg- 1) dg = t i~(J gxg- 1e;dg). 

Letting • be the representation •: G--+ Aut(E;), we have seen in II, (4.4) that 

J r(gxg- 1) dg = (dim E;)- 1X;(x) · id(E;), 

where X; is the character of E;. Thus.f.{j' gxg- 1e;dg) = (dimE;)- 1j;(e;)x;(x), 
and we have shown that (i) implies (ii). 

We must now prove (i). So let f: G --+ C be continuous and let B > 0 be 
given. Then by uniform continuity off there is a neighborhood U of e in 
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G such that U = u- 1 and such that lf(x)- f(y)l < e whenever x- 1ye U. 
Let b: G - [0, oo [ be a continuous "bump function" with support contained 
in U SUCh that b(x) = b(x- 1) and rG b = 1. 

e 

Figure 17 
G 

This b should be thought of as an approximation to the Dirac b "function." 
We now consider the linear operator 

defined by 

Then we have 

ft--+ Kf 

Kf(x) = I b(g)f(xg) dg = I b(x- 1g)f(g) dg 

= I f(g)b(g- 1x) dg = f * b(x). 

IKJ- f I =sup I I o(g)(f(xg)- f(x)) dgl :s; I eo(g) dg = e 

because lf(xg)- f(x)l < e whenever b(g) =I= 0. Thus for the proof of (i) 
it suffices to approximate Kf by representative functions. 

Observe that K is of the type considered in §2, namely symmetric and 
compact. Furthermore, K is equivariant since (using left translation) 

K(hf)(x) = I f(h- 1g)b(g- 1x) dg 

= I f(g)b(g- 1h- 1x) dg = (hKf)(x). 

It follows that the eigenspaces of K are G-invariant. 
Let A, for n :2::: l and A.0 = 0 be the eigenvalues and Hn be the corre

sponding eigenspaces. Applying theorem (2.6), we have E:Bn~o Hn dense in 
fi = L2(G) and hence E:f>n2:o KHn dense in Kfi. But KH0 = 0 and KHn = Hn 
is finite-dimensional for n ;;::: l, so Hn c ff(G, C) for n ;;::: 1. Since Kf is 
contained in the closure of E:Bn~ 1 Hn, this completes the proof. D 
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(3.2) Exercises 

1. Show that ff(G, IR) is dense in C0(G, IR). 

2. Let f: G-+ IR be a class function such that f(g) = f(g- 1) for all g E G. Show that f 
can be uniformly approximated by IR-linear combinations of characters of real 
representations. 

3. Show that the function 1/1 E C0(G, C) is of the form 1/J = dim(V)- 1 · Xv for some 
character Xv of an irreducible V if and only if t/J satisfies 

f I/J(ghg- 1k)dg = 1/J(h)ljJ(k) 
G 

for all h, k E G. 

4. Let (V•jtx E A) be a set of irreducible unitary representations of G. Let (r~} be the 
matrix form of v• with respect to some orthonormal basis. Show that if the set of 
finite linear combinations of the functions ~i is dense in C0(G, C) or L 2(G), then 
every irreducible unitary representation is unitarily equivalent to one of the v•. 

5. Let f E L 2(S1). Show that the Fourier series off converges to fin the L 2 topology. 
Show that every continuous function f: S1 -+ C may be uniformly approximated 
by trigonometric polynomials. 

4. Applications of the Theorem of Peter and Weyl 

We remind the reader that our group G is supposed to be compact through
out. A representation V of G is called faithful if the associated homo
morphism G --+ Aut(V) is injective. Thus a faithful representation is a 
realization of G as a subgroup of Aut( V). 

(4.1) Theorem. Every compact Lie group G admits a faithful representation. 

Before giving the proof, we mention a property of compact Lie groups-the 
descending chain property-which will prove useful in other places as well. 
This property simply states that every sequence K 1 ::l K 2 ::J K 3 ::J · • · of 
closed subgroups K; of G is eventually constant. To prove this, note that 
the Ki are closed manifolds, and if K;+ 1 # K;, either dim K;+ 1 <dim K; or 
Ki+ 1 has fewer components thanK;. 

PRooF OF THEOREM 4.1. Let g e G\{1}. Then there exists a continuous 
function f: G --+ IR such that f (g) # f ( 1 ), and, by the theorem of Peter and 
Weyl, we are able to find a representative function u with u(g) t:- u(l). This 
implies the existence of a representation whose kernel is a proper closed 
subgroup K 1 of G, assuming G # {1}. If K 1 # {1}, we may choose 
g e K 1\ { 1} and find a representation of G whose kernel is K 2 with K 2 n K 1 

properly contained in K 1• Continuing in this fashion and applying the 
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descending chain property yields a finite number of representations whose 
kernels have trivial intersection. The direct sum of these representations is 
faithful. D 

(4.2) Proposition. Given any proper closed subgroup H of G, there is a non
trivial irreducible representation of G whose restriction to H contains the 
trivial representation as a summand. 

PRooF. Let f be a representative function belonging to a representation 
containing no trivial summand. Then, by II, (4.8), fG f = 0. Thus, assuming 
(4.2) to be false, we see that fn f = fG f for every f E Y(G, C). By the 
theorem of Peter and Weyl, this means fn F = fG F for all FE C0(G, C). 
But we know there are functions FE C0(G, C) such that FIH = 0 and 
fG F > 0, a contradiction. D 

(4.3) Proposition. Let G ~ GL(n, C), g 1-+ (riig)), be a faithful representation. 
Then the functions rii and rii generate Y(G, C) as a C.-algebra. 

PRooF. The C.-algebra A generated by the rii and rii satisfies the hypotheses 
of the Stone-Weierstrass theorem (2.7) and is therefore dense in Y(G, C). 
Since A is a G-submodule of Y(G, C), the assertion follows from (1.4). D 

Note that the combination of (4.1) and (4.3) shows that Y(G, C) is a 
finitely generated C.-algebra. 

Next, we let V be a faithful representation of G and V its conjugate 
representation. Define 

V(k, l) = (V ® · · · ® V) ® (V ® · · · ® V) 

with k factors of V and 1 factors of V. Then we have 

(4.4) Theorem. Every irreducible representation of G is contained in some 
V(k, 1). 

PRooF. Think of Vas a matrix representation g 1-+ (rii(g)). Then the matrix 
entries of V(k, l) are the various monomials of degree k in the rii and 1 in 
the rii. By (4.3), these monomials generate Y(G, C) ask and l run through 
the natural numbers. Now, suppose the irreducible representation U were 
not contained in any V(k, 1). Then fG uv = 0 for every representative function 
u of U and v of V(k, l) by or:thogonality II, (4.8). Yet such v are dense in 
C0(G, C), sou= 0, a contradiction. D 

(4.5) Theorem. Let H c G be a closed subgroup. Then each irreducible 
representation U of H is contained in the restriction to H of an irreducible 
representation of G. 

PRooF. Let V be a faithful representation of G and hence of H. By (4.4), U 
is contained in some V(k, l) and hence in one of the irreducible G-summands 
cl~~ D 
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(4.6) Theorem. Every closed subgroup H of G appears as the isotropy group 
of an element of some G-module. 

PROOF. Using the descending chain property it suffices to show that, given 
g e G\H, there exists a G-module V and an element v e V such that v E V8 

and gv =1= v. 
By the theorem of Peter and Weyl there is a representative function f 

such thatf(H) c [0, 2] andf(Hg- 1) c [3, 5]. In fact, the function f is an 
approximation to a u e C0(G, C) with the property that uiH = 1 and 
uiHg- 1 = 4. Let F(g) = J8 f(hg) dh. Then F(H) c [0, 2] and F(Hg- 1) c 
[3, 5]. Hence F(l) :::;; 2 and (g · F)(l) = F(g- 1) ~ 3. Consequently g · F =1= F. 
The function F is itself a representative function, since it is contained in the 
G-subspace of ff(G, C) generated by f. Thus we simply take V to be the 
G-submodule of ff(G, C) generated by F and take v =F. 0 

(4.7) Exercises 

1. Show that every compact Lie group is isomorphic to a closed subgroup of O(n) 
or U(n) for some n. 

2. Show that compact Lie groups are real analytic manifolds (use I, (3.11), the fact that 
exp is analytic, and (4.1)). Show that representative functions are analytic. 

3. Prove that an infinite compact Lie group has a countably infinite number of non
equivalent irreducible representations. 

4. Suppose that all irreducible representations of G are one-dimensional. Show that G 
is abelian. 

5. Let H c G be a closed subgroup. Show that there exists a neighborhood U of 1 
such that each closed sugroup K satisfying H c K c HU is equal to H. 

6. Let G be a compact group satisfying the descending chain condition for closed 
subgroups. Show that G is a Lie group. 

7. Let H c G be a closed subgroup and let W be an H-module. Show that there is a 
G-module V which contains G x 8 W as a differentiable G-submanifold 

(G x 8 W = G X Wf-, (g, w)- (gh, h- 1w) for he H). 

8. Prove or disprove: Let V be a G-module and H c G a closed subgroup. Then there 
exists an isotropy group K = {g e Gjgv = v} for some v e V with the property that 
V8 = VK. In other words, is there a point v e V8 such that gv = v if and only if g 
operates as the identity on V8 ? 

5. Generalizations of the Theorem of Peter and Weyl 

We will only consider compact groups G and will discuss two types of 
generalizations of the theorem of Peter and Weyl. First, we give more general 
conditions under which the finite-dimensional G-submodules of a contin-
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uous G-module A generate a dense subspace of A. Second, we show that any 
unitary representation may be decomposed into a Hilbert sum of isotypical 
pieces. The section following this one presents some applications. 

It seems appropriate at this stage to take a look at some of the analytic 
methods of representation theory already mentioned in II, §1. In particular, 
we want to treat representations as modules over convolution algebras. 
Since we will need to integrate vector-valued continuous functions, we start 
by collecting the necessary tools. 

Let A be an Hausdorff locally convex complete vector space over C. 
Recall that a locally convex space has a topology definable through a 
family of seminorms p: A--+ R Let C0(G, A) be the vector space of contin
uous functions G--+ A endowed with the compact-open topology (see 
(5.11), Ex. 1 and 2). Then invariant integration enjoys the following proper
ties: 

(S.I) Invariant Integration. There exists a continuous linear map, called 
integration, 

which is both left and right invariant and which satisfies 

(i) f a dg = a for all a E A, 
(ii) f f{g) dg = f f(g- 1) dg, 
(iii) p(fG f) ~ fG pf for each continuous seminorm p: A --+ lhl and any 

f E C0(G, A), and 
(iv) if L: A 1 --+ A 2 is a continuous linear map between locally convex com-

plete Hausdorff spaces, then L f f = f Lf for all f E C0(G, A1). 

PRooF. The case where A is a Hilbert space has been treated in the remarks 
after theorem I, (5.13). In general, one may approximate -continuous func
tions by A-valued step functions to construct the integral-see Lang [1], for 
example. 0 

Next, let C0(G) = C0(G, C) be the Banach space of continuous functions 
f: G --+ C with the supremum norm 1 f I· There is a convolution product 
II, (1.3) on this space 

The next lemma states some of the properties of this product. 

(S.l) Lemma. The convolution product makes C0(G) into a Banach algebra, 
i.e., {ft> f2) ~--+ f 1 * f 2 is bilinear and associative and satisfies I f 1 * f2l ~ 
l/tl·lf21· 
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PRooF. The proof is simply a matter of verification and is left to the reader in 
(5.11), Ex. 3. Note that C0(G) does not, in general, have a unit. D 

Now let A be a locally convex complete complex vector space as above, 
together with a continuous action G x A --+ A such that each left translation 
is linear-in other words, a continuous G-module. Our aim is to make A 
into a module over the convolution algebra C0(G). Define 

C0(G) X A--+ A, (f, a)~--+ f • a by f • a= L f(g)ga dg. 

Note that g 1--+ f(g)ga is a continuous map from G to A, so f • a exists by 
( 5.1 ). Some algebraic properties of this operation are stated in the next lemma. 

(5.3) Lemma. The map (f, a) 1--+ f * a is bilinear and satisfies 

Ut * f2) *a= ft * (f2 *a). 

Hence it makes A into a module over C0(G). 

PRooF. Again, verification is left to the reader. D 

A special case arises when A is a complex Hilbert space with inner product 
( -, -),and the left translations of G are unitary. In this situation we have: 

(5.4) Lemma (f *a, b)= (a,f- • b) for a, bE A, wheref-(g) = f(g- 1). 

PRooF. This time we write out the details. Using (5.1)(iv) and (ii), 

(J f(g)ga dg, b J = J (f(g)ga, b) dg 

= J (a, f(g)g- 1b) dg = J (a, f(g- 1)gb) dg. D 

The C0(G)-module structure of A is connected with the action of G on 
A as follows: 

(5.5) Lemma. For u E C0(G), a E A, and g E G we have g(u • a)= (g · u) • a, 
where (g · uXx) = u(g- 1x). 

PRooF. g(u *a)= g J u(x)xa dx = J u(x)gxa dx = J u(g- 1x)xa dx = (g · u) •a. 
D 

(5.6) CoroUary. Let u be a representative function. Then u * a is contained in 
a finite-dimensional G-subspace of A. 

PRooF. See (5.11), Ex. 4. D 

The next theorem is the first main result of this section. 
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(5.7) Theorem. Let A be a continuous G-module as defined above, and let A. 
be the subspace generated by the finite-dimensional G-subspaces of A. Then 
A. is dense in A. (Also see (5.11), Ex. 5.) 

PROOF. First, note that the result is plausible because of (5.6), which says 
that the operation C0(G) X A-+ A induces a map ff(G, C) X A-+ A •. The 
actual strategy for the proof involves first choosing a function v e C0(G) 
which acts as an approximate identity-i.e., approximates the Dirac measure 
-and then further approximating v by a representative function u. 

Let V = n7 = 1 V(pj, aj) be a basic neighborhood ofO in A, where p1, ..• , Pn 
are continuous seminorms and V(pj, ai) = {x e A IPi(x) < ai}. Let a e A be 
given. By continuity of the G-action, there is a neighborhood U of 1 in G 
such that ga- a e tv for all g e U. Let v e C0(G, ~) be a nonnegative 
function with support in U and J v(g) dg = 1. Then v *a- a = 
J v(g)(ga- a) dg by (5.1)(i), and v *a- a e tV by (5.l)(iii). 

Now integration J: C0(G, A)-+ A is continuous, so there is a neighbor
hood W of the function g 1-+ v(g)ga which integration maps into V + a. 
Scalar multiplication C x A -+ A induces another continuous map 

with A.(w,fXg) = w(g)f(g). Thus if ra(g) = ga as usual, then A.(v, ra) is the 
function g 1-+ v(g)ga, and hence A.(v, ra) e W. From the continuity of A., and 
from the theorem of Peter and Weyl, it follows that we may find au e ff(G, C) 
such that A.(u, ra) e W. But this implies that u *a e V + a, so u *a - a e V. 
By (5.6), u *a eA., so we have succeeded in approximating a by an element 
~~. 0 

(5.8) CoroUary. Let A be a Hausdorff locally convex complete G-module 
(e.g., a Banach or Hilbert space). If A is irreducible, then A is finite-dimensional. 

0 

We now consider continuous unitary representations of G on an Hilbert 
space H. We decompose Has a C0(G)-module by using idempotent elements 
of the convolution algebra C0(G) which come from the orthogonality 
relations. Everything we need was verified in II, (4.16): Let x be an irreducible 
character and set ex = dim x · x. Then by II, (4.16) 

(5.9) ex* ex= ex, 
ex * e"' = 0 if X =I= ljl. 

Thus the ex form a system of orthogonal idempotent elements of C0(G), and 
to this system there corresponds a decomposition of the C0(G)-module H. 

Define 
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(5.10) Theorem. 

(i) P x is an orthogonal projection operator onto a subspace H X' 

(ii) H x and H"' are orthogonal if x =I 1/J. 
(iii) His the Hilbert sum of the Hxfor x E Irr(G, C). 
(iv) H x is the smallest closed subspace of H containing all irreducible sub-

spaces with character X· 

PROOF. Px is a projection operator by (5.9), while (5.4) and the equation 
ex = e; imply that < P x v, w) = < v, P x w) and hence that P x is an orthogonal 
projection. Moreover, 

<Pxv, Pr/lw) = <v, PxPI/Iw), 

and PxPr/1 = 0 for x =I 1/1 by (5.9). Thus Hx and H"' are orthogonal, and we 
have verified (i) and (ii). 

To prove (iii), note that the convolutions lfJ * v with lfJ E 5'(G, C) and 
v E Hare dense in H due to (5.7). Also, if lfJ is a representative function for 
the irreducible representation V with character x, then ({J *ex = ex* ({J = ({J 

by II, ( 4.16). As a consequence, the lfJ * v are in H x for each such lfJ. Thus 
ffix Hx, X E Irr(G, C), is dense in H. 

As for (iv), if W is an irreducible G-submodule of H with character 1/J =1 x, 
then ex* w = 0 for wE W by II, (4.16). Hence Hx can only contain irre
ducible submodules with character x, and the result follows from II, §2. 0 

(5.11) Exercises 

1. Let X and Y be topological spaces, and let yx be the set of continuous maps from 
X to Y. The compact-open topology on yx is determined by a subbasis consisting 
of the sets 

W(K, U) = {f I f(K) c U}, K c X compact, U c Y open. 

(i) Given f: X x Y -+ Z, define the adjoint map J: X -+ zr by f(x)(y) = f(x, y). 
Show that J is continuous iff is continuous. 

(ii) As in (i), fH J defines a map IX: zx x Y -+ (Zrl. Show that IX is continuous if X 
is Hausdorff, that IX is surjective if Y is locally compact, and that IX is an em
bedding if X and Y are both Hausdorff. Thus, if X and Y are Hausdorff and Y 
is locally compact, then a is a homeomorphism. 

(iii) Show that the evaluation map yx x X-+ Y, (f, x) H f(x), is continuous if 
X is locally compact. 

(iv) Show that (Y x Zl and yx x zx are canonically isomorphic if X is Hausdorff. 
(v) Show that a continuous map f: X-+ Y induces continuous maps xz-+ yz, 

gHfog,andZY _.zx,gr-+gof. 
For details see Hu [1], III.9. 

2. Show that C0(G, A) is a topological vector space. 

3. Demonstrate the associativity of the convolution product in lemma (5.2). Use Fubini's 
theorem and in variance of the integral. 

4. Convince yourself that (5.6) is true. 
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5. Prove (5.7) for continuous real A-modules. 

6. Let A be a continuous G-module and B c A a closed subspace such that q> • w e B 
whenever q> e C0(G) and we B. Show that B is a G-subspace of A. Use Dirac approxi
mations. 

7. Show that G x C0(G,A)--+C0(G,A), (g,f}~-+g·f, (g·f)(x)=f(g- 1x}, is con
tinuous. 

8. Let M be a smooth compact G-manifold, and let C""(M, IRk) be the space of smooth 
maps M ..... IRk with the C"' topology. Thus two functions are "close" if their first 
n derivatives are "close" for a "large" n. This space is a Frechet space, and it is 
well known (and not too difficult to prove) that the set of em beddings M --+ IRk forms 
a dense open subspace of C""{M, IR") if k is large enough (k ~ 2 dim M + 1}, see, 
e.g., Narasimhan [1], Th. 2.15.8, p. 146. Using all this, prove that there is an equi
variant embedding of M into a finite-dimensional G-module. 

6. Induced Representations 

In this section we describe an important class of infinite-dimensional repre
sentations which may be studied using the results in §5. These representations 
arise by considering representations of a closed subgroup H of the compact 
Lie group G. Each representation of H induces a representation (the induced 
representation) of G as follows. 

We start with a given continuous representation of H on some topological 
K-vector space E. Let 

i~E = iE 

be the vector space of all continuous functionsf: G ~ E satisfying 

heH, geG. 

We endow iE with the compact-open topology and define a G-action on 
iE by 

(g · f)(u) = f(g- 1u). 

The reader may verify that this action is continuous, cf. (5.11), Ex. 2 and 7. 
This G-module (representation) ~E is called the induced G-module 
(representation). 

There is another more conceptual definition of iE. Let G x 8 E be the 
quotient space of G x E under the equivalence relation (g, v) - (gh, h- 1v) 
for he H. The map (g, v) 1-+ gH induces a projection p: G x 8 E-+ G/H 
which is a continuous G-map. In fact, p is a G-vector bundle with fiber 
p- 1{x} isomorphic toE for every x e G/H. And given a functionf: G-+ E 
withf(gh) = h- 1f(g) as above, we obtain a section s1 : G/H-+ G x 8 E of 
p (i.e., ps 1 = id) defined by s fgH) = (g, f(g)). 
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(6.1) Lemma. The mapft-+s1 is an isomorphism between i*E and the space 
of continuous sections of p. 

PRooF. It is clear that s 1 is continuous, so we need to construct an inverse 
to f 1-+ s 1 . Since the diagram 

is a pullback diagram, any section s of p induces a section S of pr 1. We thus 
define f. = pr 2 o S and check that this is in iE. The map s 1-+ f. is the desired 
inverse; see (6.5), Ex. 1. D 

The G-action on iE corresponds to the action on sections defined by 
(g · s)(x) = gs(g- 1x). 

The main property of this construction is the following result, known as 
Frobenius reciprocity. It says that the functor E 1-+ igE is right adjoint to the 
functor res* which assigns to every representation of G its restriction to H. 

(6.2) Proposition. Let E be an H-module and V a G-module over K. Then 
there is a canonical isomorphism 

PRooF. Of course, HomG denotes continuous linear G-maps. To prove this 
result, we will simply construct inverse isomorphisms between the two vector 
spaces in question. 

Let F: V-+ iE be given. The evaluation map 11: iE-+ E, ft-+ f(l), is a 
continuous H-map. The first of our isomorphisms is the map F 1-+ '7 oF. 

Now letf: V-+ E be given. We may then define a map F from V into the 
space of continuous functions G-+ E by F(v)(g) = f(g- 1v) forgE G and 
v E V. We have F(v)(gh) = f(h- 1g- 1v) = h- 1f(g- 1v) = h- 1 F(v)(g). Thus F 
is a G-map V-+ iE iff is an H-map. Iff is continuous, then so is the map 
V x G-+ E defined by (v, g) 1-+ f(g- 1v). Hence the adjoint F is also con
tinuous, and the map f 1-+ F is our second isomorphism. 

All that remains is for the reader to check that these two isomorphisms 
are inverses. D 

(6.3) Example. Let E be the trivial one-dimensional representation of H 
over K. Then iZE ~ C0(GjH, K), the spaceofcontinuousfunctions GjH -+K 
with G-action given by left translation. In this case Frobenius reciprocity 
says that the multiplicity of v E Irr(G, C) in C0(G/H, C) is equal to dime V8 • 
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In particular, V appears in C0(G/H, C) if and only if resZ V contains the 
trivial representation. The case G/H = SO(n + 1)/SO(n) = sn leads to 
spherical functions, see II, §5 for n = 2. 

If E is finite-dimensional, then ;z E is infinite-dimensional unless H has 
finite index in G. Also, any V E Irr(G, K) appears with finite multiplicity, 
although this multiplicity is, in general, hard to compute. We may also 
choose a norm onE, in which case the compact-open topology on iE is the 
same as the sup-norm topology. Thus iE becomes a Banach space with this 
norm, and the generalized theorem of Peter and Weyl is applicable. This 
shows that the locally finite part iE, of iE is dense in iE. 

The algebraic description of the space ·of representative functions ff( G, C) 
given in §1 may be generalized to iE, as follows. For V E lrr(G, V), we have 
the map 

sending qJ ® v tog H ({J(g- 1v). It is easy to check that dv(({J ® v) is actually 
in iE and that dv is G-equivariant. Frobenius reciprocity tells us that 
dim Homn(V, E) is the multiplicity of V in iE, and the map dv exhibits the 
V-isotypical part of iE •. This leads to an isomorphism 

(6.4) EB Homn(V, E)® V-+ iE,. 
V Elrr(G, C) 

A similar isomorphism exists for real representations. 

We mention in closing that induced representations may also be under
stood in the framework of Hilbert spaces, see, e.g., Robert [1], Ch. 1.8 or 
Pukansky [1]. 

The fundamental role that induced representations play for finite groups 
can be seen by looking at, for example, Curtis and Reiner [1] or Serre [4]; 
see, for example, the Brauer induction theorem. Generalities about induced 
representations for locally compact groups in Warner [1], Ch. 5. Induced 
representations can also be studied in the context of representation rings, 
see Bott [2] and Segal [1]. 

(6.5) Exercises 

1. Fill in the details in the proof of(6.1): The diagram is a pullback, what is an induced 
section, fs E iE, and s t-> s 1 , s t-> fs are inverses. 

2. Fill in the details in the proof of (6.2). 

3. Show that (6.4) is an isomorphism. 

4. What is the analogue of (6.4) for real representations? 

5. Let E be a finite-dimensional H-module. Let i00 E c i~E be the G-subspace of C"' 
sections of G x 8 E-+ GfH. Show that iE. c i00 E. 
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7. Tannaka-Krein Duality 

Duality theory is primarily concerned with reconstructing the compact Lie 
group G from the algebra ff(G, IR) of representative functions (or from the 
category of representations). The strategy for reconstructing G goes as 
follows: Let GR be the set of all!R-algebra homomorphisms ff(G, IR)-+ IR. 
Each g E G determines an evaluation homomorphism e9 : ff(G, IR)-+ IR, 
f ~---+ f(g). We thus obtain a map 

i: G-+ GIR, g ~---+ e9 

which we will show to be bijective. In fact, GIR may be naturally considered 
to be a topological group, and i turns out to be a topological isomorphism. 

It is an elementary result of point set topology that the algebra homo
morphisms C(X, IR)-+ IR for a compact space X are precisely the evaluations 
at points of X (see, e.g., Lang [1], p. 52). However, in our case it is not a 
priori clear that a homomorphism ff(G, IR)-+ IR extends to C(G, IR). 

Now, the ff(G, K) have more structure than just that of a K-algebra 
(K = IR, C). This additional structure may be used to make the set GK of 
K-algebra homomorphisms ff(G, K)-+ K into a group. For this we need 
an elementary lemma whose proof is relegated to (7.16), Ex. 1. 

(7.1) Lemma. The K-algebra homomorphism 

t: ff(G, K) ®K ff(H, K)-+ ff(G X H, K) 

sending u ® v to (g, h)~---+ u(g)v(h) is an isomorphism. 

Our intention is to use ff(G, K) as a kind of model for the group G. We 
are thus forced to translate the group axioms into statements about this 
algebra. For instance, group multiplication G x G-+ G, (g, h)~---+ gh, induces 
a homomorphism ff(G, K)-+ ff(G x G, K). The reader should check that 
the map (g, h)~---+ f(gh) is really contained in ff(G x G, K) iff E ff(G, K). 
Using this and (7.1), we obtain a K-algebra homomorphism 

(7.2) d: ff(G, K)-+ ff(G x G, K) ~ ff(G, K) ®K ff(G, K) 

called comultiplication. 
Similarly, the map g ~---+ g- 1 induces a K-algebra homomorphism 

(7.3) c: ff(G, K)-+ ff(G, K), 

called coinverse, and evaluation at the unit element 1 E G gives rise to the 
algebra homomorphism 

(7.4) e: ff(G, K)-+ K 

called counit. The prefix "co" here and in what follows refers to the fact that 
these operations and their governing axioms are obtained by taking the 
analogous defining diagrams for groups and reversing all the arrows. Thus 
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the homomorphisms (7.2)-(7.4) satisfy properties (7.5)-(7.7) below which 
are simply the translation ofthe standard axioms for a group, see (7.16), Ex. 2. 
The associativity of group multiplication yields the coassociativity of d: 

(7.5) (d ® id) 0 d = (id ® d) 0 d. 

The co unit satisfies: 

(7.6) (e ® id) o d = id = (id ®e) o d 

and coinverse satisfies 

(7.7) m o (c ® id) o d = '1 o e 

In (7.7), them and '1 refer to the multiplication and unit in !T as a K-algebra 
which we view as K -algebra homomorphisms 

(7.8) 

and 

(7.9) JHl. 

The algebra !T(G, K), together with comultiplication d and the counit e, is 
an example of what is called a Hopf algebra. The coin verse c lends additional 
structure to this Hopf algebra. 

With the aid of (7.2) we may multiply two homomorphisms s, t E GK as 
follows: 

(7.10) 

This map is again a K-algebra homomorphism. 

(7.11) Proposition. The composition law (7.10) makes GK into a group. 

PRooF. Associativity follows from (7.5), and by (7.6) the counit e serves as 
the unit element of GK. Finally, the element sc is inverse to s: 

sc · s = m(sc ® s)d = m(s ® s)(c ® id)d = sm(c ® id)d = s11e = e. 0 

(7 .12) Proposition. The map i: G -+ G K, g H e9 , is an injective homomorphism. 

PRooF. Iff E !T(G, K) and d(f) = Li jj' ® jj", then 

f(gh) = L jj'(g)jj"(h), and 
j 

(s · t)(f) = L s(jj')t(jj") 
j 

by the definitions of d and s · t. Hence 

U<g> · i(h>>U> = L: jj'(g)jj"<h> = f(gh) = i(gh><n. 
j 
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showing ito be a homomorphism. If g is in the kernel of i, thenf(g) = f(l) 
for allf E ff(G, K). Since the f separate points (Peter and Weyl), we con
clude that g = 1. D 

This is a good juncture at which to convince oneself of the analogy 
between the map i: G--+ GRand the more familiar embedding of a vector 
space in its double dual. This lends credence to the hope that i will be an 
isomorphism. 

Next, we define a topology for GK. We take the weakest topology for 
which all the evaluation maps 

SHS(f) 

are continuous. This topology is characterized by the following property: 
A map cp: X--+ GK from a topological space X into GK is continuous if and 
only if all compositions )..1 cp are continuous. 

Here are two immediate consequences of this definition. 

(7.13) Proposition. 

(i) GK is a topological group. 
(ii) i: G--+ GK is continuous. 

PRooF. (i) We have to show that the compositiOn of multiplication 
GK x GK--+ GK with A.1 is continuous. If d{f) =Lit' ®f./', then this map 
reduces to (s, t) H L s(Jj')t(Jj") and is therefore continuous. The inverse in 
GK may be treated similarly. 

(ii) A.1 i is just the map g H f(g), which certainly is continuous. D 

The group GR is a compact Lie group. This is shown by identifying it with 
a compact subgroup of some O(n)(see I, (3.12)). The proof uses the following 
construction which will also be used in the next section where we describe 
Gc as an algebraic group. 

Let r: G--+ GL(n, K), g H (riig)) be a matrix representation. This gives 
us a map 

rK: GK--+ GL(n, K), s H (s(ru»· 

(7.14) Proposition. 

(i) rK is a continuous homomorphism making the diagram 

G~GK 

\!K 
GL(n, K) 

commutative. 
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(ii) If the rii generate ff(G, K) as a K-algebra (e.g., if r: G-+ GL(n, IR) is 
faithful by (4.3)) then rK is injective. 

(iii) If r maps G into O(n), then rRGIIi c O(n) as a closed subgroup. 

PROOF. Supposes, t E GK are given. Since 

we get 

Thus rK is a homomorphism. The map rK is continuous if and only if all the 
maps s ~---+ s(rii), i, j = 1, ... , n, are continuous, but these are continuous by 
the definition of the topology on GK. This shows (i). 

If the rii generate ff(G, K), a homomorphisms: ff(G, K)-+ K is deter
mined by its values s(r;), so (ii) is clear. For (iii) we note that if r(G) c O(n), 
then (riiY(rii) =E. It follows that (s(r;i)Y(s(rii)) = E, so rlli(s) = (s(r;)) EO(n). 
It remains to show that rlliGIIi is closed, which we do by showing that Glli 
is, in fact, compact. 

For this purpose we consider any faithful representation r: G-+ O(n). 
Since the rii generate /Y(G, K) by (4.3), a typical element! E /Y(G, K) is a 
polynomial f = P(r;i) in n2 variables corresponding to the n2 entries of a 
matrix in O(n). Since O(n) is compact, the image of O(n) in IR under P is 
contained in some compact interval I 1 . We thus obtain a continuous map 

f E /Y(G, IR), 

of GIR into a compact space. An element (t f) E nf If is in the image of A if 
and only if it satisfies the conditions of an algebra homomorphism, i.e., 
t 1 = 1, t 19 = t J' t9 , and t.1 = r · t1 for l,J, g E /Y(G, IR) andrE JR. Thus the 
image of Glli is closed and hence compact. Since A is clearly an embedding, 
Glli is compact. 0 

(7.15) Theorem. The duality map i: G-+ Glli of (7.12) is an isomorphism of 
Lie groups. 

PRooF. The major step is showing that i induces an isomorphism of the 
algebras of representative functions. 

Let f E /Y(G, IR). Then A/ Glli-+ IR is a representative function of Glli, in 
fact, iff is a matrix coefficient of some representation r, then A.1 is the corre
sponding coefficient of rlli. The map 
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is a homomorphism of algebras, as the reader may verify. Iff E !T(G, IR) and 
t E GR, then t ·A. I maps s to 

A.j(s · t) = (s · tXJ) = L s(fj)t(fj') = L A.n(s)A.n(t), 
j j 

showing that the image of A. is GR-in variant. The functions A. I separate points 
in GR, so by (2.7) the image of A. is dense in the supremum norm topology. 
By (1.4Xiii), the image of A. must be all of !T(GR, IR). Since the composition 
of A. with the map 

i*: !T{GR, IR) ~ !T(G, IR), s 1---+ si, 

is the identity, both A. and i* must be isomorphisms. 
Since C(GR, IR) and C(G, IR) are the completions of !T(GR, IR) and 

ff(G, IR), we may conclude that i*: C(GR, IR) ~ C(G, IR) is also an iso
morphism. But this implies that i: G ~ GR is surjective, which together with 
(7.12) completes the proof. 0 

Theorem (7.15) is half ofthe duality theory. For the other half, one starts 
with a suitable Hopf algebra !T and considers the group G of all algebra 
homomorphisms !T ~ IR. One must show that the canonical map 
A.: !T-+ !T(G, IR) is an isomorphism (see Hochschild [1], 11.3, Theorem 3.5). 
Another presentation of duality is in Robert [1], 1.9, and a more extensive 
treatment appears in Hewitt and Ross [2], §30. The original sources are 
Tannaka [1] and Krein [1]. Our presentation is based on Hochschild [1]. 

(7.16) Exercises 

l. Prove lemma (7.1) as follows: First show that C(G, K) ®K C(H, K)-> C(G x H, K) 
is injective. To show surjectivity, let f E f/(G x H, K) be given and letS c f/(H, K) 
be generated by the functions h ~---> f(g, h). This space is finite-dimensional, so it 
has a basis e1, ••• , e. such that there are elements h1, ••• , h. E H with ei(hi) = (jii· 

Write f(g, h) = Li u,{g)e;(h) and show that u; E f/(G, K). 

2. Write the group axioms in terms of commutative diagrams and express (7.5)-(7.7) 
as diagrams. Use this to verify (7.5)-(7.7). Study the notion of an Hopf algebra and 
its relevance to the material in this section (Hochschild [2], Ch. I). 

3. Show that f/(S 1, C) ~ C[x, x- 1], where x corresponds to the inclusion S1 c C. 
Show that comultiplication is the map IC[x, x- 1] -> C[y, y- 1] ® C[z, z- 1] de

termined by x ~---> y ® z. Show that (S1)c ~ C*, the multiplicative group C\{0}. 

4. Show that f/(S 1 , IR) ~ IR[u, v]f(u 2 + v2 - 1) using the standard representation 
S 1 c 0(2). Give an explicit isomorphism 

(cf. (1.8), Ex. 6). Describe the comultiplication in f/(S 1, IR). 
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5. Let G~ c Ga:; be the subgroup of C-algebra homomorphisms s: ff(G, C)-+ C 
satisfying s(J) = s(f). 
Show: 

(i) The restriction of s E G~ to ff(G, IR) lies in GIR. This gives a homomorphism 
p: G~-+ GIR. 

(ii) pis an isomorphism. Use (1.8), Ex. 6. 
(iii) G~ c Ga:; is closed. 
(iv) The image of Gunder the homomorphism i: G-+ Ga:; is contained in G~ and 

pi: G-+ GIR is the isomorphism of (7.15). It follows that the image of i is all of 

G~. 

6. Show that ff(U(n), C)~ C[X 11 , X 12 , .•• , x •• , t]/1, where I is the ideal generated 
by t · det(X;)- l. Show thatthecomultiplication is given byd(Xii) = L,.. X;k ® Xkj· 
Hint: The reader may find it convenient to apply a dimension argument using the 
material in the next section. 

7. Let r be the group of those algebra automorphisms of ff(G, C) which commute 
with the action of G on ff(G, C) via left translation. Given a E r, define w. EGa:; by 
w.(f) = (af)(e). Show that the map r-+ Ga:;, at-> w., is an isomorphism. 

8. Let H c G be a closed subgroup. Let ff(G/H, K) c ff(G, K) be the subring of 
those functions which are compositions G-+ G/H-+ K. Show that G/H may be 
identified with the algebra homomorphisms ff(G/H, C)-+ IR (see lwahori and 

Sugiura [1]). 

9. Let i: H-+ G be a homomorphism of compact Lie groups inducing an isomorphism 
i*: ff(G, IR)-+ ff(H, IR). Show that i is an isomorphism. More precisely, if i* is 
surjective than i is injective (since ff(H, IR) separates points) and if i* is injective 
then i is surjective. Hint: If i is not surjective, use (4.2) or the proof of (4.6) to con
struct a nonzero f E ff(G, IR) with i*f = 0. 

8. The Complexification of Compact Lie Groups 

In the previous section we associated a commutative diagram 

(8.1) 

to each representation r: G --> GL(n, C). The group Gc consists of all 
(>algebra homomorphisms ff(G, C) --> C and i(g) is the evaluation map 
at g. In this section we will show that Gc is a complex analytic Lie group 
with Lie algebra L(Gd ~ C ®~ LG and that rc is a holomorphic represen
tation. In the process we essentially describe Gc as an algebraic group. 
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Let r be a representation such that the entries r,.1 of r generate !T(G, C) 
as a C-algebra, for example, a faithful real representation, by ( 4.3). Then 

!T(G, C) ~ C[X"1]/I, 

where I is the kernel of the map C[X"1]-+ !T(G, C), X,.1 ~--+ rkJ· 

At this point we recall some elementary notions from algebraic geometry. 
Suppose J c C[ X 1, ... , X,] is an ideal in a polynomial ring. Then the 
affine variety V(J) of J is defined to be the set of common zeros of the poly
nomials in J, 

V(J) = {z e C''lp(z) = 0 for all p e J}. 

Evaluating polynomials at z e V(J) defines a C-algebra homomorphism 
C[X h .•. , X"]/J-+ C. On the other hand, it is easy to see that any such 
homomorphism is evaluation at the point of V(J) whose coordinates are the 
images of the X v + J. If A is any finitely generated C-algebra, we may 
express A as a quotient of the form C[X1, ••. , XJ/J, and the set of all 
C-algebra homomorphisms A -+ C provides an intrinsic description of the 
associated affine variety V(J). 

We may apply these remarks to !T(G, C)~ C[X,.1]/I. This gives us a 
bijection 

u: V(l) -+ Gc 

which sends z to the map uz: p +I H p(z). The composition of u with rc 
is given by 

z t-+ O'z t-+ (uz(r,.j)) = (X,.1{z)) = z, 

so rc o u = id. This proves 

(8.2) Proposition. If r: G-+ GL(n, C) is a representation such that the r,.1 
generate !T(G, C), then rc maps Gc bijectively onto V(I) c GL(n, C) c C"'" 
with inverse u. In particular, rc is injective. 0 

The set V(I) is a closed subgroup of GL(n, C) and is therefore a Lie 
group. In (7.13) we defined a topology on Gc. and this coincides with the 
subspace topology induced by rc. Indeed, if the A.1 of §7 are continuous for 
f = r"i• then all the A.1 are continuous because the r"1 generate !T(G, C). 

It is a general fact that, for every nonempty variety V(I), there is an open 
set U c C"'" such that V(I) n U is a nonempty analytic submanifold of U, 
see Mumford [1], Ch. I. Since V(I) is also a group, we conclude by homo
geneity that all of V(l) is an analytic submanifold. Furthermore, group 
multiplication and inversion in GL(n, C) are globally defined rational maps. 
Their restrictions to V(J) are therefore certainly holomorphic. 

We also point out that Gc possesses an involution defined by sending 
s e Gc to the map 

s: !T(G, C) -+ C, f ~--+ s{f). 
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It is easily checked that s e Gc. and s 1--+ s is an automorphism. The fixed 
points form a set G~ which we saw ((7.17), Ex. 5) to be canonically iso
morphic to G ~ Glli. In terms of algebraic geometry, G~ consists of the real 
points of Gc, cf. (8.8), Ex. 10. 

Our next aim is to clarify the topological nature ofGc. For this purpose 
we assume that r: G-+ GL(n, C) is a unitary representation such that the 
rki generate ff(G, C). If A e GL(n, C), we define 

A= 1_..4-1. 

Then the maps 1--+ s corresponds to the map A 1--+ A via the embedding rc. 
In fact, applying s componentwise to the identity (rkl(rk) = E yields 
(srk) = 1(srkT 1, from which the identity rc(s) = rc(s)- follows. Since 
A= A precisely if A c U(n), we find that rlliGIIi = U(n) n rcGc. 

Let P(n) denote the set of positive-definite Hermitian (n x n)-matrices. 
Then there is a homeomorphism 

U(n) x P(n) -+ GL(n, C), (H, P)~--+HP, 

see I, (1.16), Ex. 9. Let G = rcGc. 

(8.3) Proposition. 

(i) If we express an A e G as A = HP with HE U(n) and P e P(n), then 
both H and P are in G. Furthermore, the map 

(G n U(n)) x (G n P(n))-+ G, 

is a homeomorphism. 
(ii) G n P(n) is homeomorphic to a Euclidean space of dimension dim G = 

dim(G n U(n)). 
(iii) G n U(n) is a maximal compact subgroup of G. 
PRooF. (i) Let A = HP. Then there is a U e U(n) such that VPV- 1 = D, 
where D is a nonsingular diagonal matrix with nonnegative real entries. 
Thus D = exp(Z), where Z is a diagonal real matrix with diagonal (a1 , •.• , an). 

Now G c GL(n, C) is an algebraic variety and the map Xki 1--+ 
(UXU- 1 )ki defines an algebraic isomorphism cn·n-+ cn·n. The image 
vcu- 1 of Gunder this map is therefore an algebraic variety, say V(J) for 
some ideal J c C[Xkj]. If A= HP E G, then 1..4 = A- 1 E G, so 1AA = 
P2 E G. Hence D2 E VGU- 1• If Q(Xk) E J, the substitution xkjl--+ 0 if k #- j 
and Xii 1--+ Xi yields a new polynomial q(X 1, •.. , Xn). Since D2k E UGU- 1 

fork e 7L, we have 

q(exp(2ka 1), ••• , exp(2kan)) = 0 

for all Q e 1. It follows ((8.8), Ex. 8) that q(exp(ta 1), ••• , exp(tan)) = 0 for all 
Q E 1. Setting t = 1, we conclude that DE V(1) = UGU- 1• 
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This also shows that P e li and H = AP- 1 e li. Thus the map in (i) is a 
continuous bijection and, being the restriction of the homeomorphism 
U{n) x P{n) ..... GL{n, C), it is also a homeomorphism. 

(ii) Let L be the Lie algebra of G n U(n). We show that the map 
X 1-+ exp{iX) establishes a homeomorphism L -+lin P{n). 

If X e L, then exp(tX) e li n U(n) for all t e IR. Writing the variety li as 
V(J), let p(X,.1) e J. Substituting the entries of exp(tX) for the X,.1 yields an 
entire analytic function in t which vanishes for t e IR and hence for t e C. 
Thus exp(itX) e G. Since L c: LU(n) consists of skew-Hermitian matrices, 
the matrix itX is Hermitian, thus exp(itX) lies in P(n). Hence X 1-+ exp(iX) 
defines a map L -+ li n P(n) which we must show to be a homeomorphism. 

The proof of (i) shows that every P e li n P{n) has the form P = exp{Y), 
where Y is H~rmitian and exp{t Y) e G for all t e C. Consequently the map 
in question is surjective. But then it must be a homeomorphism, since it is 
the restriction of the homeomorphism 

SH(n)..,.. P(n), X 1-+ exp(iX) 

from the set SH(n) of skew-Hermitian (n x n)-matrices to P(n). 

(iii) lin U(n) is closed in U(n) and therefore compact. Were K a 
larger compact subgroup of li, it would contain an element of 
li n P(n) other than E by (i). This is clearly impossible by (ii). 

0 

From the proof of {8.3) we see that the Lie algebra L{G) is the direct sum 
of its subspaces L = L(li n U(n)) and iL. We know that li n U(n) is the 
image of GRunder rR, and hence isomorphic to G. Thus L ~ L{G) and we 
obtain a linear isomorphism 

C ®R L(G) ~ C ®R L ~ L (9 iL = L(G) ~ L(Gc). 

(8.4) Proposition. C ®R L{G) ~ L{Gc) as Lie algebras. 

PRooF. The isomorphism of vector spaces just described preserves Lie 
brackets. 0 

(8.5) Defillldon. The homomorphism i: G ..... Gc. as well as the Lie group 
Gc itself, is called the complexijictdion of G. 

The complexification enjoys the following universal property: 

(8.6) Proposition. Given a representation r: G-+ GL{m, C) there is a unique 
holomorphic representation rc: Gc-+ GL(m, C) with rc o i = r. 



8. The Complexification of Compact Lie Groups 155 

PROOF. We first prove existence. We have already constructed rc, namely 
rds) = (s(rk)) if r = (rki). Suppose 

Identifying Gc with V(/) c: ICd as in (8.2), each rki becomes an algebraic 
function V(I)-+ IC. Thus rc is an algebraic map ICd-+ cm·m and is, in par
ticular, holomorphic. 

We now deal with uniqueness. We use (8.3) and identify Gc ~ G = 
(G n U(n)) x (G n P(n)). Suppose we are given the values of a holomorphic 
representation on G n U(n). If PEG n P(n) has the form exp(iX), we may 
then determine the values of this representation on exp(tX) for all t E llt 
Since exp: L( G) -+ G is holomorphic, this gives us the values for all t E IC. 0 

We close by describing the complexifications of the classical groups in 
terms of other classical groups. 

(8.7) Proposition. The following inclusions of matrix groups are complexifi
cations: 

U(n) c: GL(n, IC), 

O(n) c: O(n, IC), 

SU(n) c: SL(n, IC), 

SO(n) c: SO(n, IC), 

and Sp(n) c: Sp(n, IC). 

Note: The group O(n, q is defined as {A E GL(n, ICWAA = E}, and 
SO(n, IC) = O(n, q n SL(n, IC). The remaining groups are discussed in 
I, (1.6)-(1.12). 

PROOF. Let r: U(n)-+ GL(n, q be the canonical embedding. Then rc is 
injective ((8.8), Ex. l) and must be bijective by reasons of dimension. 

If we start with SU(n) c: GL(n, IC), then the image of the injection rc is 
contained in SL(n, IC), which is the variety defined by det(X k) = l. Again, 
comparing dimensions shows that rc: SU(n)c-+ SL(n, q is an isomorphism. 

Starting with r: O(n) c: GL(n, q, we see (as with SU(n)) that rc: O(n)c-+ 
GL(n, q is an injection onto a subvariety. The functions rki satisfy 
t(rk)(rki) = E. Hence the image of rc lies in O(n, q. Examining components 
and dimensions shows that rc maps O(n)c isoniorphically onto O(n, IC). 
The same goes for SO(n)c ~ SO(n, IC). 

Finally, we turn to the group Sp(n) and its standard representation 
r: Sp(n) c: GL(2n, q as the set of unitary matrices A satisfying tAJA = J, 
see I, (1.12). Taking determinants in this equation, we get (det A)2 = l. 
Since Sp(n) is connected, det A = l. Using Cramer's rule, which says that 
A · adj(A) = det(A) · E, we find that the rki generate ff(Sp(n), IC). Conse
quently rc: Sp(n)c-+ GL(2n, q is an embedding onto a subvariety which 
is contained in Sp(n, IC). Checking dimensions, Sp(n)c ~ Sp(n, IC). 0 
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The methods and results of this section point out the value of looking at 
Gcr:; as an algebraic group. See Humphreys [2] for an elementary exposition. 

The presentation in this section is based on Chevalley [1], Ch. VI. For a 
further discussion of complexifications, see Hochschild [1], XVII. 

(8.8) Exercises 

l. Let r: G-+ GL(n, C) be injective. Show that re is injective. Hint: reEf> i'e is in
jective (8.2). 

2. Given r: G-+ GL(n, C) and A E GL(n, C), show that (ArA- 1)e = AreA- 1• 

3. Prove or disprove: If r: G-+ GL(n, C) is injective, then the image of re is an affine 
subvariety of c·. •. 

4. Show that the assignment G 1-+ Ge is functorial in the following sense: A con
tinuous homomorphism qJ: H-+ G induces an algebra homomorphism 
qJ*: ff(G, C)-+ ff(H, C) and the induced map (/Je: He-+ Ge is an (algebraic and 
hence holomorphic) group homomorphism. The functorial relations ide= id 
and (({Jt/J)c = ({Jet/le hold. 

5. Show that (G X me~ Gc X He. 

6. Let qJ: G'-+ G be a finite cover with kernel K. The action of G' on ff(G', C) by 
right translation restricts to an action of K on ff(G', C). Let ff(G', qK be the ring 
of functions fixed by this action. Show that qJ* induces an algebra isomorphism 
ff(G, C) ~ ff(G', qK. Show that G~-+ Ge is also a finite cover with kernel K. 

7. Let H c GL(n, q be a subgroup such that 'A- 1 E H for all A E H and which is 
also an affine variety. Show that His the complexification of H n U(n) (use (8.3) 
and its proof). Use this result to show that Sp(n, C) is the complexification of 
Sp(n). 

8. Let ai, bi E IR and define g(t) = L ai exp(tbi). Show that if g(t) = 0 for all t E 7L, 
then g(t) = 0 for all t E IR. 

9. Representations of G correspond to holomorphic representations of Ge. Show 
that this correspondence preserves direct sums and tensor products. Show that 
holomorphic representations of Gc are semisimple in the sense of II, §2. 

10. Let r: G -+ GL(n, IR) c GL(n, C) be faithful. Show that rc(GDJ = rc(Gc) n IR"'". 



CHAPTER IV 

The Maximal Torus of a 
Compact Lie Group 

In this chapter we show that every connected compact Lie group G contains 
a maximal torus T. This maximal torus is unique up to conjugation, and its 
conjugates cover G.lf N is the normalizer ofT, then the Weyl group W = N /T 
is finite and operates effectively on T. Thus there is a one-to-one correspon
dence between functions on G which are invariant under conjugation and 
functions on T which are invariant under the action of W. In particular, the 
characters of G are the W-invariant characters ofT. For this reason under
standing the operation of the Weyl group on the maximal torus is important 
to representation theory. In the third section we compute the maximal tori 
and Weyl groups of the classical Lie groups, and in the last section we give 
a generalization which handles the case of nonconnected groups. 

1. Maximal Tori 

In this section G will be a compact connected Lie group. 

(1.1) Definition. A subgroup T c G is a maximal torus if T is a torus and 
there is no other torus T' with T Cf T' c G. By a torus we mean a Lie group 
isomorphic to ~k !7Lk for some k. 

Since tori are compact and connected, if T Sf T', then dim T < dim T'. 
This shows that maximal tori exist. In fact, a maximal torus is the same thing 
as a maximal connected abelian subgroup, since the closure of such a sub
group is also connected and abelian and hence is a torus (1, (3.7)). 
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Recall that an automorphism qJ: Tk-+ Tk of a torus induces a commuta
tive diagram of homomorphisms 

where we identify Tk with ~k /Zk and LT with ~k. Therefore the automorphism 
q> corresponds to an invertible matrix Lq> with integral entries: we have an 
isomorphism 

(1.2) 

(1.3) Definition. Let T be a maximal torus in G and N = N(T) the normalizer 
ofT in G, so 

N = {g E G!gTg- 1 = T}. 

Then the group W = N /T is called the Weyl group of G. 

Note that according to (1.3) W depends upon the choice of a maximal 
torus T. But we will see that all maximal tori are conjugate, so different 
choices of T yield isomorphic Weyl groups. However, when we talk about 
the maximal torus in G and the Weyl group of G, we have implicitly chosen 
a particular T which is to remain fixed throughout the discussion. 

The normalizer N of T operates on T by conjugation 

NxT-+T, (n, t)Hntn- 1, 

and since the operation of T on T is trivial, we obtain an induced operation 
of the Weyl group 

(1.4) Wx T-+T, 

(1.5) Theorem. The Weyl group is finite. 

PROOF. Let N 0 be the connected component of the identity in N. We will 
show that N 0 = T. Since N is compact, it will follow that W = N /N 0 is 
compact and discrete, and hence finite. 

We view the action of N on T as a continuous map 

L 

N -+ Aut(T) 8;: GL(k, Z), n f-+ Ad(n)l LT. 
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Since GL(k, Z) c Aut LT is discrete and N 0 is connected, the image of N 0 

is the identity, soN 0 acts trivially on T. Thus if tX: ~--+ N 0 is a one-parameter 
group, the product a(~) · T is a connected abelian group containing T. 
This means tX(~) · T = T, and hence tX(~) c T. But the groups tX(~) cover an 
open neighborhood of the identity in N 0 and hence generate N 0 • It follows 
that N0 = T. D 

The goal of this section is to prove the following theorem: 

(1.6) Main Theorem on Tori. Any two maximal tori in a compact connected 
Lie group G are conjugate, and every element of G is contained in a maximal 
torus. 

The proof of this theorem, as well as that of its generalization in (4.3), 
uses an argument based upon the mapping degree. Sard's theorem also plays 
an essential role in the proof in §4. Here we get by without it, but we need to 
use orientations on G and G/T. This involves the invariant volume forms. 
Theorem (1.6) will be easily proved from the following: 

(1.7) Main Lemma. Let G be a compact connected Lie group and T a maximal 
torus in G. Then the map 

q: G/T X T--+ G, 

has mapping degree deg(q) =I WI, where I WI is the order of the Weyl group 
associated to T. In particular, q is surjective. 

We first show how (1.6) follows from (1.7). 

PROOF (of the main theorem on tori from the main lemma). Let T and T' 
be maximal tori and t' a generator ofT', see Kronecker's theorem I, (4.13). 
By lemma (1.7), there is a g E G with t' E gTg- 1• Hence T' c gTg- 1, and 
since gTg- 1 is a torus, T' = gTg- 1• Since q is surjective every element of 
G is contained in some conjugate of T. D 

In order to compute the mapping degree of q: G/T x T--+ G, we need to 
investigate how the canonical volume form dg is transformed by q. To this 
end we choose a metric on the Lie algebra LG which is invariant under the 
action of the adjoint representation I, (2.10) 

Ad: G --+ Aut(LG), g f--+ Lc(g ), 

The adjoint representation is real and the corresponding metric is a real 
Euclidean metric. 
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The Lie algebra LG is the tangent space to G at its unit. It decomposes 
into the tangent space to T at e, namely L T, and its orthogonal complement 
which we will call L(G/T): 

LG = L(G/T) Ef) LT. 

This decomposition is invariant under the operation Ad 1 T. The torus T 

acts trivially on LT and, since T is maximal, T acts nontrivially on every 
nonzero vector in L(G/T). The induced action on the first summand (see 
I, (5.14)) is denoted by 

AdG1r: T--+ Aut L(G/T). 

Now recall that there are left-invariant volume forms d(gT), dt, and dg on 
GjT, T, and G. These forms are canonical up to a choice of sign. 

The projection n: G--+ G/T induces a map between LG = L(G/T) Ef) LT 
and the tangent space to G/T at the point eT. This maps L(G/T) iso
morphically onto this tangent space, so we will identify these two spaces 
via this map. 

Let n = dim G and k = dim T. We obtain a left-invariant alternating 
differential form n*d(gT) E an-k(G) from the volume form d(gT) on GfT, 
and the alternating form dte E AJtk(L T) gives rise to the alternating form 
pri dte E Altk(LG), where pr2 : LG = L(G/T) Ef) LT--+ LT is projection 
onto the second summand. But pri dte determines a left-invariant differential 
form dr E QlG such that dr IT= dt, and n*d(gT) A dr is a left-invariant 
volume form on G. We may choose our signs so that n*d(gT) A dr = c · dg 
with c > 0. 

For the proof of the main lemma, we could be satisfied with this state of 
affairs, but later we will need the not overly surprising fact that c = 1. In 
order to compute this constant, we integrate a suitable continuous function 
ljJ: G--+ ~ against both volume forms. We consider a bundle chart 
<p: n- 1 u--+ U x T of the T-principal bundle n: G--+ G/T and let ljJ be a 
nonzero nonnegative continuous real-valued function on G with support in 
n- 1 U. Then we have 

0 # L"' dg = L,T (fr t/J(gt) dt)d(gT) = L (fr t/J(gt) dt)d(gT). 

Here we have used the version of Fubini's theorem proved in I, (5.16). We 
may now make a change of coordinates based upon the following diagram 
associated to the bundle chart <p: 

G ::::> n- 1(U) ___!!!__., u X T----+ T 

]· ]·~ ,,, 

G/T=> U 
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Note that, for a fixed g e n- 1 U, qJ(g) = (u, s) with u = n(g) and somes E T, 
and qJ(gt) = (u, ts), since qJ is a right T-map. 

To simplify matters, we may arrange that the decomposition LG = 
L(G/T) EB LT above coincides with that induced by the bundle chart qJ, 
so that pr! dt = (qJ- 1)* dr. Then we have 

L (L 1/J(gt) dt)d(gT) = L (L ljlqJ- 1(u, t) pr! dt) prf d(gT) 

= J. ljlqJ - 1(u, t) prf d(gT) " pr! dt 
UxT 

= J. ljlqJ- 1(qJ- 1)*(n*d(gT) "dr) 
UxT 

Thus we conclude c = 1. D 

We now have the volume form 

dg = n* d(gT) 1\ dr, driT = dt, 

on G and the volume form 

(X = prf d(g T) " pr! dt 

on G/T x T. Identifying LG with L(G/T) $ LT as we have done and 
evaluating at the unit element gives (X(eT.e) = dge. 

The determinant det(q): G/T x T-+ IR of the conjugation map q is 
defined by the equation 

q* dg = det(q) · (X 

(1.8) Proposition. The determinant of the conjugation map q: G/T x T-+ G 
is given by 

det(q)(gT, t) = det(Ad61rlt- 1)- EG1T), 

where E61T is the identity on L(G/T). 

PROOF. The forms dg and d(gT) are left-invariant under the action of G, and 
the form dt is left-invariant under the action ofT. This allows us to compute 
our determinant at the point (gT, t) by first applying suitable left translations 
in G/T x T and G, and then computing the determinant at (T, e) of a map 



162 IV. The Maximal Torus of a Compact Lie Group 

which sends (T, e) to e. Specifically, we consider the differential of the map 
G/T x T-+ G which is induced by the following composition: 

G x T ~ G x T ~ G !!+ G, a = (g, t), b = gt- 1g-I, 

{x, y) A (gx, ty) ~ (gx)(ty)(gx)- 1 ~ gC 1xtyx- 1g- 1 

= c(g)(c(t- 1)(x) · y · x- 1). 

Here c(g): G -+ G, x H gxg- 1, is conjugation and ij is defined by 
ij: G x T-+ G, (g, t)Hgtg- 1• The determinant we want to compute is the 
determinant of the differential of this map at the point (e, e), restricted to 
the subspace L(G/T) E13 L(T) ofL(G) E\3 L{T) = L(G x T). 

Now, Lc{g) = Ad(g) has determinant 1, since Ad(g) is orthogonal and G 
is connected. Furthermore, the differential of a product is the sum of the 
differentials (I, (3.5)). Thus the determinant of q is the determinant of the 
linear endomorphism 

(X, Y)HAdG1r(t- 1)X + Y- X 

of L(G/T) E\3 L(T). In matrix form this is 

from which the proposition follows. D 

PRooF OF THE MAIN LEMMA (1.7). We may compute the mapping degree of 
q by counting the number of points (and keeping track of orientation) in 
the inverse image of any regular value of q; see I, (5.19). Thus (1.7) follows 
from the following: 

(1.9) Lemma. Lett e T be a generator (as in I, (4.13)). Then 

(i) q- 1(t) consists of I WI points, and 
(ii) det(q) > 0 at each of these points. 

PROOF. (i) Let N be the normalizer ofT in G. Then q(gT, s) = t if and only 
if gsg- 1 = t, i.e., if and only if s = g- 1tg e T. Of course, such an sexists if 
and only if g- 1 Tg c T, which means geN. Thus we have 

and hence q- 1(t) has [N: T] = 1 W 1 elements. 
(ii) The determinant we want is the determinant of the linear endo

morphism AdG1r(t- 1) - E of L( G /T). We will show that this map has no 
real eigenvalues. It will follow that the eigenvalues come in complex con
jugate pairs, and hence the determinant is positive. 
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So suppose AdG1r(t- 1)- E had a real eigenvalue. Then Ada1r(t- 1) would 
also have a real eigenvalue, which would have to be ± 1 since Ada1r<t- 1) is 
an orthogonal transformation. Observe that, in this case, AdG1r(t- 2) has 1 
as an eigenvalue. Since t- 2 is also a generator of T, we see it suffices to show 
that Ada1r(t) cannot have 1 as an eigenvalue. 

Now, T operates on G via conjugation, and linearly on LG via the adjoint 
representation. Since the exponential map exp: LG-+ G is natural (1, (3.2)) 
it is equivariant with respect to these T-actions. Thus if Ada1r(t)X = X for 
some X e L(G/T), then X is fixed by the action oft and hence by all ofT. 
But then the one-parameter group H = {exp(sX)Is e ~} is left pointwise 
fixed under conjugation by elements ofT. Consequently HT is abelian and 
connected, which implies that H c: T and X e LT n L(G/T) = 0. 0 

We record a result which comes out of the proof above. 

(1.10) Note. If t is a generating element of T, then AdG1r(t) has no real 
eigenvalues. Hence dim G/T is even. 

The main theorem on tori is of fundamental significance to both the 
structure theory of Lie groups and representation theory. The following 
formula will prove to be an important tool in the representation theory: 

(1.11) Weyl's Integral Formula. Let G be a compact connected Lie group, 
T the maximal torus, and fa continuous function on G. Then 

PRooF. Let fr: G/T-+ ~ be given by g ~--+ f(gtg- 1), so in the last integral 
f(gtg- 1) =fro 1r(g), where 1t is the canonical projection G-+ GfT. Thus the 
last integral is Ja1r fr d(gT) and, since dim(G/T) is even, we can use I, (5.19) 
as well as (1.7) and (1.8) to rewrite the right-hand side as 

LIT (t f o q(gT, t) · det(q)(gT, t) dt) d(gT) 

= i f o q(gT, t) · q* dg = deg(q) · i f = I WI i f(g) dg. 0 
GJTxT G G 

Our proof ofthe conjugation theorem (1.6) is based on expose 23 by Serre 
in Seminaire Sophus Lie [1], where also the Lie algebra proof based on 
work of E. Cartan, the proof of A. Weil [1] and other proofs are sketched; 
see also Hunt [1]. The use of maximal tori and the integration formula appear 
in the fundamental work of H. Weyl [1]. 
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(1.12) Exercises 

Where relevant, T denotes the maximal torus of the compact connected Lie group G. 

1. Show that the subgroup of the diagonal matrices 

['' ·. J ev = ± 1, e1 • ••• ·e. = 1 

is a maximal abelian subgroup of SO(n) but is not a torus. 

2. Let H c: G be a closed subgroup containing the normalizer N(T) of T. Show that 
N(H) =H. 

3. A Lie algebra is called abelian if [X, Y] = 0 for all X and Y in the Lie algebra. 
Show that LT is a maximal abelian Lie subalgebra of LG. 

4. Show that there is a linear decomposition LG =. LT $ L(G/T) such that 
[X, Y] E L(G/T) for every X E LT and Y E L(G/T), and such that the linear map 
adG1T(H): L(G/T) ..... L(G/T), Y 1-+ [H, Y] is an isomorphism for almost every 
HE LT. 

5. Letf: G --+ H be a surjective homomorphism of Lie groups and suppose His abelian. 
Show that f I T: T ..... H is also surjective. 

6. Show that every abelian normal subgroup of G lies in the center of G. 

7. Let G be a (not necessarily compact) Lie group and H c: G be a one-parameter 
group which is not closed. Show that His a torus. Hint: Use I, (3.6). 

8. LetS c: G be a closed subgroup such that G = UgeG gSg- 1• Show that S contains 
a maximal torus. 

9. Verify formula II, (5.2) for the invariant integral of a class function on SU(2) using 
the Weyl integral formula (1.11). Derive an analogous formula for 80(3). 

2. Consequences of the Conjugation Theorem 

We return to the main theorem on tori and collect a few consequences. Let 
G be a compact connected Lie group and T a fixed choice of a maximal 
torus in G with normalizer Nand Weyl group W. This torus, together with 
the action of the Weyl group, is uniquely determined by Gin the following 
sense: Suppose T' is another maximal torus with Weyl group W'. Then 
there is an inner automorphism lfJ of G such that l{J(T) = T'. Hence l{J(N) = N', 
where N and N' are the normalizers of T and T'. Thus lfJ induces an iso
morphism ijJ: W = N/T-+ N'/T' = W' and the following diagram com
mutes: 

Wx T--+ T 

~X ~J J~ 
W'x T'--+T' 
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(2.1) Definition. The dimension of a maximal torus in G is called the rank 
of G and is denoted rank( G). 

Henceforth any discussion of the maximal torus or operation of the Weyl 
group will refer to a particular torus chosen once and for all. A different 
choice simply leads to isomorphic structures and does not affect our results. 

(2.2) Theorem. The exponential map of a compact connected Lie group is 
surjective. 

PRooF. Every element of G is contained in a (maximal) torus T c G, and the 
exponential map of a torus is surjective. D 

As has already been mentioned, this result is, in general, false for non
compact groups (1, (3.13), Ex. 1). 

The centralizer Z(H) of a subgroup H c G is the subgroup 

Z(H) = {g E Gigh = hg for all hE H}. 

(2.3) Theorem. Let G be a compact connected Lie group and T its maximal 
torus. 

(i) Z(T) = T, so T is a maximal abelian subgroup of G. 
(ii) If S c G is a connected abelian subgroup, then Z(S) is the union of those 

(maximal) tori T containing S. 
(iii) The center of G is the intersection of all maximal tori in G. 

PROOF. (i) follows from (ii) with T = S, so we skip right to the proof of (ii). 
(ii) The closure S of S is compact, connected, and abelian. Thus it is a 

torus. Furthermore, if g E Z(S), then g e Z(S), so Z(S) = Z(S). Thus we may 
assume that S = S is a torus. Now let x e Z(S), and let B be the closure of the 
subgroup generated by x and S. Then B is compact and abelian, so its 
connected component of the unit, B0 , is another torus. Since xB0 generates 
BfB0 , we see that BfB0 ~ 71./m for some cyclic group 71./m. It follows that 
B ~ B0 x 71./m is the closure of a cyclic subgroup {g" In e 71.} for some 
geB (see I, (4.14)). But g is contained in some maximal torus Tin G, so 
S u {x} c T, which is what we need. 

(iii) If x is in the center of G, then x is clearly in every maximal torus in 
G. Conversely, if xis in every maximal torus, then x must commute with every 
g e G, since g is contained in some torus. D 

The reader is reminded again that, while all maximal tori are maximal 
abelian subgroups, maximal abelian subgroups need not be tori ((1.12), Ex. 1). 

The fact that Z(T) = T may be restated as follows: 

(2.4) Corollary. The Weyl group acts effectively on the maximal torus, i.e., 
the homomorphism W-+ Aut(T) defined by the action of Won T is injective. 
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Thus we may interpret Was a group of automorphisms ofT. The maximal 
torus decomposes into orbits under the action of W. 

(2.5) Lemma. Two elements of the maximal torus are conjugate in G if and 
only if they lie in the same orbit under the action of the Weyl group. 

PROOF. Let x, yET, g E G, and gxg- 1 = y. Let Z(x) and Z(y) be the cen
tralizers of x andy. Conjugation by g induces a map c(g): Z(x)-.. Z(y), and 
since T c Z(x) we have c(g)T c Z(y). Thus both T and c(g)T are maximal 
tori in the connected component of the unit Z(y)0 of Z(y). Hence there is an 
hE Z(y)0 with T = c(h)(c(g)T) = c(hg)T. But this means that hg EN and 
c(hg)x = c(h)y = y. Thus hgT is an element wE W with wx = y. 0 

We next define Con( G) to be the space of conjugacy classes of G. Thus 
Con( G) is the space of orbits under the action of G on the manifold G via 
conjugation ij: G x G--+ G, (g, x) 1:--+ gxg- 1• The topology on Con( G) is the 
quotient topology coming from the projection G-.. Con( G). 

(2.6) Proposition. There is a canonical homeomorphism 

1c T/W _:. Con(G), Wt ~--+c(G)t 

taking the orbit oft under the operation of W to the conjugacy class oft. 

PROOF. The map K is well defined and continuous. It is surjective because the 
conjugates ofT cover G ( 1.6) and injective because of (2.5). After convincing 
oneself that both spaces are Hausdorff (see (2.12), Ex. 8), one observes that 
they are compact, and so K is a homeomorphism. 0 

We let C0 (X) = C0(X, IC) denote the space of continuous complex-valued 
functions on a space X. Then conjugation induces an action of Won C0(T) 
and an action of G on C0 ( G): 

Furthermore, 

w X C0(T) -t C0(T), 

G X C0( G) -+ C0( G), 

(w,j)J:--+ f o w- 1 

(g, f) 1:--+ f o c(g- t ). 

(2.7) Corollary. There is a canonical isomorphism of normed complex vector 
spaces 

between the space of class functions on G and the space of continuous functions 
on the maximal torus invariant under the action of the Weyl group. D 
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The representation ring R(G) may be viewed as a ring of complex class 
functions on G, and we obtain: 

(2.8) Corollary. Restriction to the maximal torus induces an injective homo
morphism 

Xf--+XIT. 

In particular, R(G) has no zero-divisors (i.e., it is an integral domain). 0 

Later, in VI, (2.1) we will show that the map R(G) ..... R(T)w is an iso
morphism. 

If we start with a W-invariant character x on T, then (2.7) tells us that x 
has a unique extension to a class function on G. Now the question is, does 
this class function have integer coefficients (x, Xi) E 7L. with respect to the 
basis {Xi} of irreducible characters? In order to compute such an integral, 
we have Weyl's integral formula (1.11) at our disposal. However, to work out 
the right-hand side of (1.11), we have to analyze the function 
det(E - Ad61r(C 1 )). Thus we must study the restriction of the adjoint 
representation to the maximal torus. We will do this in the next chapter. 

Of course, we also need to determine the W-invariant characters on T. 
To do this we need a precise geometric picture of the operation of the Weyl 
group on T and its Lie algebra. Therefore we continue with our study of the 
maximal torus. The next theorem describes the behavior of the maximal 
torus under homomorphisms. 

(2.9) Theorem. Let f: G ..... H be a surjective homomorphism of compact 
connected Lie groups. Then if T c G is a maximal torus, so is f(T) c H. 
Furthermore, ker(f) c T if and only ifker(f) c Z(G). In this case f induces 
an isomorphism of the Weyl groups. In particular, this happens if dim G = 
dim H. 

PRooF. Let S be a maximal torus in H with generating element s. Let 
t E f- 1{s}. Then tis contained in some maximal torus Tin G, and, since 
f(T) is compact, abelian, and connected,f(T) is a torus in H. But S c f(T) 
because s E f{T), so we must have f(T) = S. To complete the proof of the 
first statement, simply note that any maximal torus in G is of the form 
c(g)T for some gET, andfc(g)T = c(f(g))S. 

Now suppose ker(f) c T. Since ker(f) c G is a normal subgroup, it is 
fixed under conjugation, and hence ker{f) is contained in every maximal 
torus in G. Thus ker(f) c Z(G), see (2.4)(iii). 

Next, we look at the Weyl groups. We always have f(N(T)) c N{f(T)). 
But if ker{f) c Z(G) and .f(T) = S, then N(T) = f- 1N(S). Indeed, if 
f(g)EN(S) and tET, then f(gtg- 1)=f(g)f(t)f(g)- 1 ES=f(T), so 
.f(gtg- 1) = f(t 1) for t 1 E T. Now this means gtg- 1 = t1z for some 
z E Z(G) c T, and hence gtg- 1 E T. Thus g E N(T). 
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Let W(T) and W(S) be the Weyl groups associated to the tori T c G and 
S = f(T) c H. If ker(f) c Z(G), the above says that f induces an iso
morphism 

W(T) = N(T)/T-+ N(S)/S = W(S), 

as claimed in the statement of the theorem. Finally, if dim G = dim H, then 
ker(f) = K is discrete. But a discrete normal subgroup-in fact, a totally 
disconnected normal subgroup-of a connected group is always in the 
center. This is seen by observing that the image of the map 

fk: G-+ K, 

lies in the connected component of k and is therefore constant for any 
keK. 0 

The equality dim G =dim H means that f: G-+ His a covering map 
with K = ker(f) the group of covering transformations. If S c H is a 
maximal torus, then T = f- 1s is a maximal torus in G, since some maximal 
torus T is mapped surjectively onto S and, since ker(f) c T, the torus T 
contains the full preimage of S under the covering f. The projection 
f I T: T-+ S of maximal tori is also a covering map with the same group 
K = ker(f) of covering transformations. We met this situation when con
sidering the covering Spin(n)-+ SO(n) with kernel Z/2. 

(2.10) Definition. Let G be a compact connected Lie group. An element 
g e G is called general if g is a generating element for some maximal torus in 
G. Otherwise, g is called special. The element g is called singular if g is con
tained in two distinct maximal tori and regular otherwise. 

(2.11) Theorem. Let G be a compact connected Lie group. 

(i) Every general element of G is regular. 
(ii) Almost every element of G is general. 

(iii) An element g e G is singular if and only if 

dim Z(g) > rank( G) = dim T. 

PROOF. (i) is trivial. Statement (ii) means that the set of special elements has 
Lebesgue measure zeroinG, and that, in turn, means that every chart ofthe 
manifold G maps the set of special elements in its domain to a set of measure 
zero in R". Now, using induction on dim T and Fubini's theorem, it is easy 
to see that the set U c T of special elements in the maximal torus T has 
measure zero. Therefore the same is true for the image q(G/T x U) under the 
conjugation map q: G /T x T-+ G. But this image is the set of special elements 
in G. 

(iii) Z(g) is the centralizer of g. Assuming that g e T n T1 with T and T1 

being distinct maximal tori, we have T u T1 c Z(g). Looking at the Lie 
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algebras, L(T) ::/= L(T1} and L(T) + L(T1) c LZ(g). Thus dim Z(g) :;;:: 
dim(LT + LT1} >dim LT =rank( G). In the other direction, assume that 
dim Z(g) > rank(G). Since g is in some maximal torus, we may assume 
geT and rank( G)= dim T. Now LZ(g) contains a vector which does not 
lie in LT, so Z(g) contains a one-parameter group H which does not lie in 
T. But H c T1 for some maximal torus T1 in Z(g), and, since T c Z(g), T1 

is actually a maximal torus in G. Furthermore, g e Z(T1}, from which it 
follows using (2.3)(i) that g e T1• Thus g e T1 n T and T =I T1 • 0 

This section is based on expose 23 in Seminaire Sophus Lie [1]. See also 
expose 24 for additional interesting results about subgroups of N(T), 
monomial representations and Blichfeldt's induction theorem. 

(2.12) Exercises 

1. Show that a one- or two-dimensional compact connected Lie group is a torus. 

2. Show that a compact connected Lie group is divisible, i.e., that given g e G and n e N 
there is an h e G with h" = g. 

3. Show that the exponential map on GL(n, C) is surjective. Hint: Jordan normal form. 

4. Show that every compact Lie group contains a finitely generated dense subgroup. 
Give an upper bound for the number of generators needed. 

5. If the compact Lie group G operates differentiably on M with fixed point p, then G 
also operates on the ring G, of germs of differentiable functions at p via g(/1(x) = 
qJ(g- 1x), where ({J e tf,. Show that if qJ e 1, is G-invariant then qJ has a G-invariant 
representative ip: U-+ IR with a G-invariant neighborhood U of p. 
Hint: Exercise 4. 

6. Let G be a compact connected Lie group and g e G. Show that Z(g)0 is the union of 
the maximal tori in G containing g. Find age S0(3) such that Z(g) is not connected. 

7. Let G be a compact connected Lie group, S c G connected and abelian, and g e Z(S). 
Show that there is a torus in G containing both g and S. 

8. Let G be a compact Lie group and X a Hausdorff G-space. Show that X fG is Hausdorff. 

9. Let f: G -+ H be a surjective homomorphism of compact connected Lie groups with 
ker(f) c Z(G). Show that f induces a diffeomorphism G/T-+ H/S, where S = f(T) 
is a maximal torus in H. 

3. The Maximal Tori and Weyl Groups of the 
Classical Groups 

The classical groups we consider are groups of linear maps, and the con
jugation theorem says things about transformations of such maps which are 
familiar to the student in other forms. 
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We begin with the unitary group U(n) and the special unitary group 
SU(n), see I, (1.8). Let Ll(n) c U(n) be the subgroup of diagonal matrices 

z. E Sl, 

and let SLI(n) = Ll(n) n SU(n) be the subgroup of diagonal matrices as 
above with z 1 • · • zn = 1. 

(3.1) Proposition. The groups Ll(n) and SLI(n) are maximal tori in V(n) and 
SU(n). 

PROOF. The inclusions T c U(n) and T c SU(n) of any tori are unitary 
representations of abelian groups. Thus by II, (1.13) they are conjugate to 
homomorphisms with image in Ll(n). Of course, we may achieve this through 
conjugation by an element in SU(n) and this sends SU(n) into itself. 0 

We will represent the diagonal matrix D above by the n-tuple 
(91, •.• , 9") e (~/.Z)" with z. = exp(2ni9.). The element D generates the torus 
Ll(n) if and only if 1, 9" ... , 9" are linearly independent over the rationals 
(I, ( 4.13) ). In particular, the values of the 9. mod 1 are distinct for a generating 
element. Since eigenvalues stay fixed under conjugation-and hence also 
under the action of the Weyl group W of U(n)- W operates on a generating 
element D = (9" ... , 9") by permuting the 9 •. This determines the operation 
of Won all of A(n), and it follows that W is contained in S(n), the group of 
permutations of {1, ... , n}. An element a e S(n) operates on Ll(n) by 

tX- 1(9,, ... , 9n) = (9tx(1)> ... , 9tx(n)). 

(3.2) Theorem. The Weyl group of the unitary group V(n) is the full symmetric 
group S(n). 

PROOF. Since 

(o -1)(' o)( o 1) = (, o). 
1 0 0 f1 -1 0 0 ' 

we see that every two-cycle, and hence every permutation, is induced by an 
element of the Weyl group. 0 

A diagonal matrix D = (9 1, .•. , 9") is in SLI(n) if and only if 

9, + ... + 9n-1 = -9n mod .z. 
Thus the torus SLI(n) has dimension n - 1, but the 9. of a generating element 
are still pairwise distinct. Since the transformation used in the proof of (3.2) 
has determinant 1, we get 
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(3.3) Theorem. The Weyl group ofSU(n) is also the symmetric group S(n). D 

Next we consider the special orthogonal group SO(n). Recall that 

S0(2) ~ U(1) ~ st ~ {(~s 2n9 -sin 2n9) 19 e R/l}. 
sm 2n9 cos 2n9 

Also recall that we may decompose 

Rz" = R2 E9 ... E9 Rz into n summands, and 

R2n+ 1 = R2 E9 ... E9 R2 E9 R into (n + 1) summands 

to obtain the inclusions 

T(n) = S0(2) x · · · x S0(2) c S0(2n) c S0(2n + 1). 

(3.4) Theorem. T(n) is a maximal torus in S0(2n) and S0(2n + 1). 

PRooF. A torus T c S0(2n) (or S0(2n + I)) is conjugate to one contained 
in T(n) by II, (8.5). D 

The tori .1(n) and T(n) correspond under the canonical inclusions 
U(n) c S0(2n) c S0(2n + 1). With this in mind we also represent the 
elements of T(n) by n-tuples (9., ... , 9"), 9. e R/l. The element represented 
by such an n-tuple has 

(c~s 2n9. -sin 2n9.) e S0(2) 
sm 2n9. cos 2n9,. 

as its vth component. The following will help us describe the Weyl group of 
SO(n): 

(3.5) Notation. We let 

9_. = -9. for v = 1, ... , n 

and let G(n) be the group of permutations cp of the set {- n, . .. , -1, 1, ... , n} 
for which cp( -v) = -cp(v). There is a split exact sequence 

1 -+ (l/2)" -+ G(n) -+ S(n)-+ 1, 

where S(n) operates on (l/2)" by permuting the factors. In other words, if 
you are familiar with the concept, you may identify G(n) with the wreath 
product (l/2) 1 S(n) of l/2 by S(n). The group G(n) operates on the torus 
T(n), its action being given by 

cp- 1(91,. · •, 9n) = (9,(1)• · • · • 9tp(n)). 

(3.6) Theorem. The Weyl group of S0(2n + 1) is G(n). Also, the Weyl 
group of S0(2n) is SG(n), the subgroup of G(n) consisting of even permuta
tions. 
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PRooF. We begin with S0(2n + 1). The eigenvalues of the matrix associated 
to the generating element (81, ••• , 8,J are the numbers exp(21ti(±.9.)). 
(This familiar observation from linear algebra is nothing more than the 
general equation e~ o r~ V ~ V E9 V for representations applied to the 
special case of the standard representation of A(n), see II, (6.1).) 

Now, these eigenvalues remain fixed under conjugation, so the generating 
element above is mapped to an element (A.1, ••• , An) with 

(-An,··· • -A to At, • · · • An) = (8q~(-n)• · · · • 8'1'(-1)• .9q1(1)o · • · • .9q1(n)) 

for some permutation cp of { -n, ... , -1, 1, ... , n}. Since the 1.9.1 are all 
distinct for a generating element, we certainly have W c G(n). We need to 
show that G(n) c W. 

Case 1. Let cp e G(n) and cp{1, ... , n} = {1, ... , n}. That is to say cp e S(n) c 
(Z/2}" · S(n) = G(n) in the description of G(n) as a semidirect product. Then 
we may use an equation like the one we had earlier, namely 

(~ ~)( ~ ~)(~ ~) = (~ ~)· 1, A, Be S0(2). 

Case 2. Let cp e G(n) be the element given by cp( -1) = 1 and cp(v) = v for 
I vi > 1. This is the element ( -1, 1, ... , 1) e (Z/2)n c G(n). Then 
conjugation by the matrix 

-1 

1 

h= 

-1 

yields cp. 
Since G(n) = (Z/2)" · S(n) is clearly generated by the elements considered 

in Cases 1 and 2, we have G(n) c W. 
Now we turn to the group S0(2n). The subgroup S(n) of G(n) operates 

via even permutations and, as in Case 1 above, lies in the Weyl group. The 
parity of a permutation in G(n) = (Z/2)" · S(n) depends only on the factor in 
(Z/2)n, and even permutations in (Z/2}" may be obtained via conjugation by 
a product of an even number of matrices of the type in Case 2. Since such a 
product is in S0(2n), we conclude that SG(n) c W. 

We now have to show that W is not bigger than SG(n). Since 
[G(n): SG(n)] = 2, it suffices to show that the permutation cp with cp(l) = -1 
and cp(v) = v for I vi > 1 is not in W. But if conjugation by some g E S0(2n) 
gave rise to this automorphism of T(n), we would have g- 1h acting as the 
identity on T(n), where h is the matrix in Case 2 above. This leads to 
g- 1h e T(n) c S0(2n) by (2.4), and this, in turn, says that he S0(2n), 
which is false. 0 
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Next in line is the symplectic group Sp(n) c U(2n) of unitary matrices 

of the form ( ~ - ~). This is the group of D-B-linear endomorphisms of D-B" 

which are unitary when viewed as endomorphisms of C2". Recall that we 

have a canonical inclusion U(n)-+ Sp(n), A 1-+ ( ~ ~) = A + Oj. We let 

T" c Sp(n) be the image of the torus A(n) under this inclusion; see I, (1.10). 

(3.7) Theorem. The torus T" is maximal in Sp(n). 

PROOF. We show that Z(T") = T". Assume that x e Z(T") with x =A+ Bj 
for some A, B e GL(n, C). Since x commutes with the element iE E A(n) = T", 
we have iA + iBj = ix = xi = iA - iBj. Thus B = 0 and A E U(n). Since 
A(n) is maximal abelian in U(n), it follows that A e Ll(n), which means 
X E T". 0 

The group G(n) operates on T" = A(n) = T(n) as in (3.5), where we 
identify these tori using the inclusions Sp(n) :::J U(n) c S0(2n). 

(3.8) Theorem. The Weyl group of Sp(n) is G(n). 

PROOF. The Weyl group W is certainly contained in G(n), since the eigen
values of a generating element 

t= 

of T" remain fixed under the operation of W, see the proof of (3.6). On the 
other hand, the subgroup S(n) of G(n) is contained in W since S(n) is the 
Weyl group of U(n). In other words, the transformations of the torus corre
sponding to the elements of S(n) are obtained via conjugation by unitary 
matrices. To get all of G(n), one applies the equation j).F 1 = 1 in D-B in 
order to exchange A.. with .A:. while leaving the other components fixed. 0 

As our final group we look at the spinor group, i.e., the universal cover 
p: Spin(n)-+ SO(n). The reader may wish to refer to the description of the 
spinor group and the projection p in I, §6. 

(3.9) Theorem. The elements of the form 

(cos '7 1 - e1e2 sin 17 1) ·(cos 172 - e3 e4 sin 17 2) · .•• ·(cos '1n- e2"_ 1e2" sin '1n) 

with 0 ~ 11. ~ 2n form a maximal torus f'(n) in Spin(k) for k = 2n and 
k=2n+l. 
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PRooF. It is easy to check that these elements form a connected abelian 
group: multiplying two such elements amounts to adding the corresponding 
"angles" Yf •• This group is clearly the continuous image of the torus with 
coordinates Yf., so T(n) is compact and, in particular, closed. It follows that 
T(n) is a torus. To show that T(n) is maximal, it suffices to show that 
pf(n) = T(n). But this can be seen by computing, for example, that the 
transformation p(cos 11 - e 1e 2 sin '1) maps the plane determined by e 1 and 
e2 onto itself via 

( cos 211 -sin 2'1) 
sin 211 cos 211 ' 

while acting as the identity on the orthogonal complement spanned by 
e3 , ••• , ek. The reader is referred to the calculation in the proof ofl, ( 6.17). D 

We actually have an explicit description of the double cover 

p: f(n)-+ T(n). 

The element written out in the statement of (3.9) is mapped onto 
(l/7tXYf1, ... , Yfn) e T(n). We remark by way of caution that, for n > 1, the 
parameters 11. in (3.9) do not give a diffeomorphism between R"/Z" and f(n). 
Indeed, all the subgroups {(cos 11 - e 2k-le2k sin '1)10 ~ 11 ~ 27t} isomorphic 
to S1 contain ( -1). But we do have an isomorphism 

(3.10) {3: R"/Z" -+ T(n), 

(C., C2, · · •' CJH f3t · · · · · f3n, '· E R/Z, 
with 

Pt =cos 27tC 1 - e1e2 sin 27tCt, 

/3; = (cos 1tCi + e 1 e 2 sin 1tCiXcos 1tCi - e 2i-t e 2i sin 1tCi), 

The map p o {3: R"/Z"-+ T(n) is given by 

(3.11) (Ct>···•Cn)~-+(2Ct- C2- ···- Cn,C2•···•Cn). 

j > 1. 

This map pf3 is clearly a double cover of one torus by another with kernel 
Z/2. Since the same is true for p, the map f3 must be an isomorphism. 

R"/Z" ____!!___ f(n) 

p~ f 
T(n) 

Therefore we denote the element x e f(n) by the corresponding 
p- 1(x) = ((1, ••• , Cn), and in this notation the projection T(n)-+ T(n) is 
given by (3.11). 
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By (2.9) the Weyl group W of Spin(2n) (or Spin(2n + 1)) is isomorphic to 
that of S0(2n) (or S0(2n + 1)). Its operation on T(n) is completely deter
mined by the fact that pis W-equivariant. We may also interpret (3.11) as a 
formula for Lp: LT(n)-+ LT(n). Since Lp is a W-equivariant isomorphism, 
an element t:p in the Weyl group SG(n) of S0(2n) or G(n) of S0(2n + l) 
operates on LT(n) via (Lp)- 1 o t:p o (Lp). If one so desired one could write 
this operation out explicitly in terms of the coordinates ( 1, ... , Cn. 

((to ... , Cn) Lf(n) ~ Lf(n) (t L 8., 82, ... , 8n) 

]Lp l· ·l IM' 
(2(1- L (., C2, ... , Cn) LT(n)----q;--+ LT(n) (81> ... , 8n) 

(3.12) 

v> 1 

Incidentally, for n ~ 2 there is no isomorphism T(n)-+ T(n) of the tori 
themselves which is compatible with this operation of the group SG(n) 
((3.14), Ex. 5). 

As an application of the explicit formulas we have just derived, and as a 
preview of some of the general results to come later in this book, we will 
compute the representation ring of U(n). 

The maximal torus Ll(n) has representation ring 

.Z[z1, ... ' Zn, z11' ... ' z;; 1], 

see II, (8.2) ff. The homomorphism RU(n)-+ RLI(n) of representation rings 
is injective, and the image is contained in RLI(n)S<nl since S(n) is the Weyl 
group of U{n), see (2.7). We write RLI(n) in the form 

Since u" is already symmetric, the subring of symmetric functions in RLI(n)
i.e., the functions invariant under the Weyl group S(n)-is simply given by 

RLI(n)S(n) = .Z[uto ... , Un, u;; 1], 

where u. is the vth elementary symmetric function. Namely, iff e RLI(n) is 
symmetric, thenj · u: e .Z[z 1, ... , znJstnJ for some k. Thusf · u: e .Z[u b ... , unJ 
and f e .Z[uto ... , un, u;; 1]. 

(3.13) Application. The representation ring RU(n) c RLI(n) is the ring 
.Z[ub ... , u", u;; 1]. 

PRooF. Let V be the standard representation of U(n), so V = C" with basis 
e1, ••. , en as a complex vector space. If we restrict the character ofthe U(n)
module NV to the torus Ll(n), then we get u •. In fact, the elements 

form a complex basis for NV. Now Ll(n) fixes the corresponding one
dimensional space, and the action of (z1, ... , zn) e Ll(n) on e11 A • • • A e1v is 
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multiplication by Z; 1 • ••• • Z;v· Therefore the value of the character of NV 
at (z" ... , z.) E L1(n) is u •. 

The representation 1\"V is one-dimensional and hence equal to its 
character. The conjugate representation has the conjugated and hence 
inverted character. Thus u1, ••• , u. and u;; 1 are all in the image ofRU(n)-. 
RL1(n), which is all we had left to show. 0 

(3.14) Exercises 

1. What is the center Z of U(n)? Show that the composition SU(n) c U(n) -+ U(n)/Z is 
surjective and find a maximal torus and the Weyl group of U(n)/Z. 

2. Show that S0(2n + 1) and Sp(n) have isomorphic representation rings. Use 
RG = RTw. 

3. Compute the representation ring of S0(2n + 1) in a fashion analogous to (3.13). 
The result you should get is the following: Let V be the standard real representation 
of S0(2n + 1) and W = C ® 111 V its complexification. Let A.i = AiW. Then 

RS0(2n + 1) = l[.A.1, ••• ,.A."]. 

Hint: Let a. be the vth elementary symmetric polynomial and 

Then 

RT(n)G(n) = Z['r1, ••• , 1'.]. 

To prove this, one defines an appropriate lexicographic ordering on monomials in 
R T(n)0 (•l and uses induction with respect to this ordering. We will recover this 
result in VI, (5.4). 

4. Compute the representation ring of SU(n). The result is: Let V be the standard 
representation of SU(n) and .A,k = AkV. Then RSU(n) = l[.A.l, ... , .A."- 1]. In this 
case the representation ring of the maximal torus has a natural description as 
RSLI(n) = l[z1 , ••• , z.]/(a.- 1). Again we will recover this result in VI, (5.1). 

5. Show that for n ;;:::: 2 there is no isomorphism T(n) -+ T(n) which is compatible with 
the operation of SG(n) (given in (3.11)-(3.12)) on these tori. Hint: Show that there 
is no SG(n)-equivariant endomorphism T(n) -+ T(n) whose kernel contains exactly 
two elements. 

4. Cartan Subgroups of Nonconnected Compact 
Groups 

Our aim in this section is to generalize some of the results on maximal tori 
to the case where G is compact but not necessarily connected. The reader 
who is primarily interested in the classical theory for connected groups will 
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therefore suffer no loss by skipping this section. We will follow the treatment 
given by Segal [1]. 

Throughout this section G will only be assumed to be cop1pact. We will 
let G0 be the connected component of the identity and r = G/G0 the group 
of components. A group is called topo/ogicaUy cyclic if it contains an element, 
called a generator, whose powers are dense in the group. Recall that a com
pact Lie group is topologically cyclic precisely if it is isomorphic to the 
product of a torus and a finite cyclic group (I, (4.14)). 

(4.1) Definidon. A closed subgroupS c: G is called a Carttlll subgroup if it 
is topologically cyclic and of finite index in its normalizer N(S). The finite 
group W(S) = N(S)/S is called the Weyl group of S. 

If G is in fact connected, then the Cartan subgroups are easily seen to be 
precisely the maximal tori of G ((4.10), Ex. 1). 

(4.2) Proposition. Each element g eGis contained in a Cartan subgroupS of 
G such that S/S0 is generated by gS0 • Here S0 is the connected component of 
the identity of S. 

PRooF. LetT be a maximal torus in the centralizer Z(g) of g and letS be the 
closed subgroup generated by T and g. Then S is compact and abelian, so 
S0 is a torus. Since T is connected, T c: S0 , and since T is maximal in S, we 
have S0 = T. The finite group S/S0 is generated by gS0 , so it is also cyclic. 
Thus Sis topologically cyclic by I, (4.14). 

It remains to show that [N(S): S] is finite. We have 

[N(S): S] = [N(S): Z(S)] · [Z(S): S]. 

Now Z(S)/S is certainly smaller than Z(S)/S0 . Since Z(S) c: Z(g) and 
T c: Z(S), we see that Tis a maximal torus in Z(S) and hence in Z(S)0 • By 
(2.4), Tis its own centralizer in Z(S)0 , so S0 = T = Z(S)0 • Hence Z(S)/S0 = 
Z(S)/Z(S)0 is finite. 

For the other factor, observe that the group N(S)/Z(S) can be viewed as 
being a subgroup of the group of automorphisms of S. Thus gZ(S) operates 
on S via conjugation by g. Now S is isomorphic to a product l./k x 
S1 x · · · x Sl, and since Hom(S1, S1) ~ l. and Hom(S1, l.jk) = 0, we see 
that the automorphisms of S form a countable discrete group. Since 
N(S)/Z(S) is compact, it is finite. 0 

(4.3) Proposition. If Sis a Cartan subgroup of G generated by z, then any 
g E G0 z is conjugate to an element of S0 z via conjugation by an element of 
G0 .Jn other words, the mapping 

(g, sz) 1-+ gszg- 1 

is surjective. 
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PROOF. We use a modified version of the proof of ( 1. 7). Since S is abelian and 
hence leaves S0 z pointwise fixed under conjugation, the map " induces a 
map 

q: G0/(G0 n S) x S0 z--+ G0 z. 

The inverse image of z under q consists of those pairs (g(G0 n S), sz) such 
that gszg- 1 = z. Since gszg- 1 = z implies that g- 1zg = sz e S0 z c S, and 
z generates S, the equation for g implies that g E N(S). Letting 
B = {bE G0 n N(S)ib- 1zb E S0 z} (soB is the closed subgroup of elements 
which induce the identity on S/S0 when acting via conjugation), we see that 
q- 1 { z} is the finite set 

{(b(G0 n S), b- 1zb)lb E B}. 

The finite group F = Bj(G0 n S) c N(S)/S operates on the right on 
G0/(G0 n S) via the translation (g(G0 n S), b(G0 n S)) H gb(G0 n S) and on 
the right on S0 z via conjugation (sz,b(G0 nS))Hb- 1szb. This yields a 
diagonal operation of F on G0/(G0 n S) x S0 z for which the map q is 
equivariant if F acts trivially on G0 z. Since the operation of F on 
G0/(G0 n S) is free-i.e., the only f E F with a fixed point is the identity-the 
quotient M = (G0/(G0 n S) x S0 z)/F possesses a canonical differentiable 
structure such that the projection n: G0/(G0 n S) x S0 z--+ M is a sub
mersion of differentiable manifolds (I, (4.15), Ex. 3). This induces a dif
ferentiable map 

q: M--+ G0 z 

between manifolds such that q on= q with q- 1{z} consisting of a single 
point, the class of (e, z) in M. Note that M and G0 z are compact, connected, 
and have the same dimension. Thus the proposition follows from the follow
ing two lemmas. 

(4.4) Lemma. The differential of qat the point represented by (e, z) in M is 
regular. 

(4.5) Lemma. Let f: M--+ N be a differentiable map between compact con
nected manifolds of the same dimension. Suppose there is a point p e N such 
that f - 1 {p} consists of a single x at which the diffirential off is bijective. 
Then f is surjective. 

PRooF OF LEMMA (4.4). It suffices to show that the differential of 
K: G0 x S0 z--+ G0 z is surjective at the point (e, z). Consider the map 
G0 x S0 --+ G0 given by the composition 

(g, s) H (g, sz) H gszg- 1 -----+ gszg- 1z- 1 = g · s · c(z)(g- 1). 
rz K rz 1 

Since rz and rz-t are diffeomorphisms, we may achieve our goal by showing 
that the differential of this map is surjective at (e, e). Splitting LG0 into 
LG0 = L(G0 /S0 ) Et> L(S0 ) as in the proof of (1.8), the differential under 
consideration is given by 

(X, Y) H X + Y- AdGo!So(z)X. 
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Thus we need only show that 1 is not an eigenvalue of AdGots0(z). But this 
follows as before from the observation that if 1 were an eigenvalue we could 
find a one-parameter group commuting with z but not contained in S0 • This 
would contradict the finiteness of N(S)/S. 0 

PRooF OF LEMMA (4.5). We once again use an argument concerning mapping 
degrees, but we are unable to refer directly to I, {5.19) because our manifolds 
need not be orientable. However, the lemma is a consequence of the following 
more general result. 

Statement. If f 0 , f 1 : M--+ N are di.fferentiably homotopic, and pEN is a 
regular value of both fo and f~o then fo 1{p} and f1 1{p} contain the same 
number of points modulo 2. 

Once we have established this statement, we may apply it as follows: 
Suppose p and q are two regular values of f. Then, as in the proof of I, ( 5.19), 
there is a diffeomorphism cp: N--+ N which is homotopic to the identity and 
maps q to p. Letting fo = f and / 1 = <p o f, we see that iff- 1 {p} contains 
exactly one point, then f- 1 { q} contains an odd number of points and hence 
is nonempty. 

PROOF OF THE STATEMENT. Let F: M X [0, 1]--+ N be a differentiable homo
topy between fo andf1• By Sard's theorem (Brocker and Janich [1], §6 or 
Milnor [1]) we may find points q eN arbitrarily close top which are simul
taneously regular values for F,f0 , andf1• If we take such a q, then F- 1{q} 
is a one-dimensional manifold with boundary fo 1{q} u f1 1{q}. 

M X 0 

M x (0, 1] 

Figure 18 

M X 1 

Since a compact one-dimensional manifold with boundary is easily seen 
to be diffeomorphic to a disjoint union of finitely many circles and intervals 
(( 4.10), Ex. 2), the number of points in f 0 1 { q} u f 1 1 { q} must be even. Since 
M is compact and pis a regular value of bothf0 andf1, we havef0 1{q} ~ 
fo 1{p} and f1 1{q} ~ f1 1{p} for q close enough top. 0 

The inclusion of a Cartan subgroup S c G induces a homomorphism 
S/S0 --+ r = G/G0 • The image of this homomorphism is a cyclic subgroup 
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of r denoted by p(S). Conjugate Cartan subgroups have conjugate images 
under p. 

(4.6) Proposition. The projection 

p: {Cartan subgroups of G} -+ {cyclic subgroups of r} 

induces a bijection of conjugacy classes. 

PROOF. A cyclic subgroup of r is generated by an element gG0 , and (4.2) 
tells us that g is contained in a Cartan subgroup S such that gS0 generates 
S/S0 • Thus p is surjective. 

Next, if S is a Cartan subgroup and y E r is a generator of p(S), then there 

is a generator z E S which is mapped to y by S-+ S/(G0 n S) c: r. In fact, 
S = S0 x l.jk, and the generators of S are those elements decomposing into 
z = (s, IX), where s is a generator of the torus S0 and IX generates l.jk. Since 
S0 projects to the unit in r, one need only verify that the inverse image of a 
generator of l./1 under a surjective homomorphism Z/k -+ l./1 always con
tains a generator of Z/k ((4.10), Ex. 3). 

Now, if S is a Cartan subgroup generated by z and R is another Cartan 
subgroup with p(S) conjugate to p(R), then there is agE G such that gzg- 1 

represents a generator of p(R). Hence gzg- 1 E rG0 for a generator r of R. 
But (4.3) then implies that there is a g0 E G0 such that g0 gzg- 1g0 1 E rR0 • 

Thus S is conjugate to a subgroup of R, and vice versa. But compact Lie 
groups cannot be conjugate to proper subgroups-more generally, a com
pact manifold is never diffeomorphic to a proper submanifold ((4.10), Ex. 4). 
Therefore we have shown that Sis conjugate toR. D 

It remains to decide when two elements of a Cartan subgroup are con
jugate. Looking at finite groups one sees that in contrast to the case of 
connected groups (2.5), it is unreasonable to expect that two elements of S 
will be conjugate only if they are conjugate in N(S). 

(4.7) Proposition. Let S be a Cartan subgroup of G and let S* denote the 
subset of elements which project onto a generator of SjS0 • Then two elements 
of S* are conjugate in G if and only if they are conjugate in N(S). 

PROOF. If x and gxg- 1 are both inS*, then Sand g- 1Sg are Carlan sub
groups of G with xES* n (g- 1Sg)*. In particular, both Sand g- 1Sg are 
Cartan subgroups of Z(x). Since x projects to a generator of both S/S0 and 
(g- 1Sg)j(g- 1Sg)0 , we know by (4.6) that the two subgroups are conjugate 
in Z(x). This means there is a z E Z(x) such that zg- 1Sgz- 1 = S. Hence 
zg- 1 E N(S) and (zg- 1)- 1x(zg- 1) = gxg- 1 as required. D 

(4.8) Coronary. Let [G] be the space of conjugacy classes of G with the 
induced quotient topology, and [r] be the same for r. Then the. inverse image 
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of a classy E [r] under the projection [G]-+ [r] is homeomorphic to S*/W(S), 
where S is a Cartan subgroup of G with a generator in y. D 

(4.9) Proposition. An element g E G is called general if it generates a Cartan 
subgroup and special otherwise. Suppose H c G is a closed subgroup. Then 
there are only finitely many fixed points under the action of a general element 
on G/H via left translation. 

PROOF. We have gxH = xH if and only if g(xHx- 1) = xHx- 1 and we have 
a G-equivariant diffeomorphism G/H -+ G/(xHx- 1), yH ~---+ yHx- 1 = 
yx- 1(xHx- 1). Thus if there are any fixed points we might as well assume 
that gH = H, i.e., g E H. Now, letS be the Cartan subgroup generated by g. 
Then we have gyH = yH ~ y- 1gy E H ~ y- 1Sy c H. Since by (4.6) there 
are only finitely many conjugacy classes of Cartan subgroups in H, we may 
choose a finite subset B of G such that y- 1Sy c H if and only if y- 1Sy = 
h- 1b- 1Sbh for some hE Hand bE B. That is to say, the coset yH is fixed by 
g if and only if y E N(S) · b · H for some b E B. In the bijection 

N(S)/(bHb- 1 n N(S))-+ (N(S) · b · H)/H, [n] ~---+ [nb ], 

the first set is finite since it is a quotient of N(S)/S. Hence the second set and 
therefore the fixed-point set of g is finite. D 

(4.10) Exercises 

1. Show that a subgroup of a compact connected Lie group is a Cartan subgroup if 
and only if it is a maximal torus. 

2. Show that up to diffeomorphism there are precisely four nonempty connected one
dimensional manifolds with boundary (the boundary may be empty). One possible 
approach involves first constructing a non vanishing vector field. 

3. Let cp: Z.jk-+ Z.jl be a surjective homomorphism, and let g E Z./1 be any generator. 
Show that cp- 1 {g} contains a generator of Z.jk. 

4. Show that a compact smooth manifold cannot be diffeomorphic to a proper sub
manifold. Hint: Argue by dimension and number of components. 

5. Consider the nontrivial semidirect product D = S1 • (Z./4) of S1 and 7L/4. Elements of 
Dare pairs (9, n) with 9 E S1 and n E 7L/4, and multiplication is given by 

(,, n) · (9, m) = (' · 9', n + m), e = (-1)". 

Let G = D/(7L/2), where 7L/2 ED is the subgroup generated by (eni, 2). Show that a 
Cartan subgroup of G is conjugate to either S 1 or 7Lj4, where these two groups are 
considered as subgroups of G ·in the obvious fashion. This points out that Cartan 
subgroups may have different dimensions and that S0 need not be equal to S n G0 . 

Show that Z(S) = S and W(S) = 7L/2 for both Cartan subgroups S of D. 

6. Show that the set of general elements is dense in any compact Lie group. 
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7. (Generalization of (2.9)). Let K c: G be a closed subgroup of finite index in its 
normalizer, and let H c: G be any closed subgroup. Show that (G/H)K is finite. 
Hint: In general, if K and H are closed, then ( G 1 H)K has finitely many N(K)/K -orbits, 
cf. Bredon [ l ], 11.57. The essential tool needed is quoted in II, ( 4.17), Ex. 2. 

8. Show that the groups 0(2) and S0(3) have infinitely many conjugacy classes of 
closed subgroups K with N(K)/K finite. See also V, (2.15), Ex. 5. 

9. Show that the homomorphism 

res~: R(G)..,. 0 R(S) 
s 

is injective, where S runs through the family of all Cartan subgroups S c G. 



CHAPTER V 

Root Systems 

As we saw in the last chapter, the space of conjugacy classes of a compact 
connected Lie group G is the orbit space T/W of a maximal torus T under 
the action of the Weyl group W. Characters are really functions on T/W, 
and the Weyl integral formula transforms integrals of class functions on G 
into integrals of W-invariant functions on T. We therefore wish to investigate 
the structure ofT as a W-manifold and of LT as a W-module. To do this we 
study the restriction of the adjoint representation to the maximal torus. In 
other words, we study L(G/T) as a T-module.lt turns out that this represen
tation is really the fundamental object of the theory-it contains all the 
information needed to specify both the structure of Lie groups and the 
arithmetic of their characters. 

In the first section we compute all groups of rank 1. This is used in §2, 
where the root system of a Lie group first appears. Sections 3, 4, and 5 deal 
with general root systems and their classification, after which the root 
systems of the classical matrix groups are computed in §6. The fundamental 
group is the focus of §7, and §8 concerns itself with the structure of compact 
connected Lie groups in general. Sections 1-4 and 6 are the ones primarily 
needed for representation theory. 

1. The Adjoint Representation and Groups of Rank 1 

In this chapter G will always be a nontrivial compact connected Lie group 
and T a fixed maximal torus in G. Note that dim T > 0 since G possesses 
nontrivial connected abelian subgroups, for example, one-parameter groups. 
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The infinitesimal structure of conjugation by elements of G in a neigh
borhood of the identity is described by the adjoint representation I, (2.10) 

Ad: G X L(G) ~ L(G). 

We therefore wish to investigate the adjoint representation, and this turns 
out to require precise knowledge of groups of rank 1. Our plan, then, is to 
make a few general remarks concerning the weights of Ad and to proceed 
to classify all groups of rank 1. We will give two proofs of this classification: 
One due to H. Hopf [2], which is topological in nature and one which 
utilizes computations in the Lie algebra. 

The infinitesimal form II, (2.9) of the adjoint representation is simply 
multiplication in the Lie algebra L( G) 

L(G) x L(G) ~ L(G), (X, Y) 1-+ [X, Y] 

as can be seen directly from the definition of ad(X) in I, (2.11). Since a 
representation of G is determined up to isomorphism by its restriction to the 
maximal torus T (IV, (2.8)), we will study L(G) as a T-module. As we know 
from II, (8.2), a T-module is determined by its weights and weight spaces. 
We will use the three different formulations of infinitesimal weights given 
in II, §9. 

(1.1) Definition. The (infinitesimal) real weights of a G-module V are the 
(infinitesimal) real weights of V viewed as a T-module through restriction. 

We remind the reader that, in the case of a real module V, one first has to 
pass to the complexification Vc = C ® V and then consider the weights 
there (II, (8.2), (9.2)). We therefore need to investigate the weights of the 
adjoint representation LGc. 

If T' is a different maximal torus we have a commutative diagram 

Txv-v 

<(q) "'· j l'· 
T'xv-v 

with c(g)t = gtg- 1• It follows that the map IX 1-+ IX o c(g)- 1 induces a bijection 
between weights of V as a T-module and as a T'-module. The analogous 
statement is true for infinitesimal weights with c(g) replaced by its differ
ential. Applying these observations to the case T = T' yields: 

(1.2) Proposition. Let P(V) be the set of weights of V. Then the Weyl group 

W = W(G, T) acts on P(V) via 

W x P(V) ~ P(V), (w, IX) 1-+ w(IX) = IX o w- 1. 

If Vis real, then w(li) = w(IX). In other words, the operation of W commutes 

with conjugation. 
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Conjugation is replaced by the map 0 1--4 -0 in the corresponding state
ments for infinitesimal and real weights. 

(1.3) Definition. The nontrivial weights of the adjoint representation are 
called the roots of G. In order to differentiate precisely between types of 
weights, we call the global weights 3: T ____. U(l) the global roots of G, the 
corresponding linear forms e = L:J: LT ____. i~ the infinitesimal roots of G, 
the induced linear forms <P: LTc ____. IC the complex roots of G, and the linear 
forms IJ( = ®j2rr.i the real roots of G. 

In the theory of Lie algebras, it is the complex roots of G which are called 
the roots of LGc. Note that the complex roots are not the complexified real 
but rather the complexified infinitesimal roots, see II, (9.6), (9.7). 

The real roots are more convenient for the purposes of investigating the 
elementary geometry of the corresponding vectors in the dual space L T* 
(root systems, §3). The complex roots are more convenient for computations 
in the classical groups (§6) and for describing the structure of LGc. 

Let R(IC) be the set of complex roots and R = R(~) be the set of real 
roots of G. The decomposition into weight spaces then has the form 

IJ( E R(IC) u {0} 

with weight spaces 

La= {X E LGci[H, X]= IJ((H)X for all HE LTc}. 

Of course La is defined for an arbitrary linear form 0(: LTc ____. IC. In fact, we 
have 

(1.4) Lemma. [La, Lp] c La+p· 

PROOF. By [La, Lp] we mean of course the set of all [X a, X p] with X a E La. 
and Xp E Lp.lf H c LTc, the Jacobi identity I, (2.12)(ii) gives us 

[H, [X a, Xp]] = -[Xa, [Xp. H]]- [Xp, [H, XJ] 
= [Xa, f3(H)Xp]- [Xp, IJ((H)Xa] 
= (IJ((H) + f3(H)) · [Xa, Xp]. 0 

(1.5) Theorem. Let G be a compact connected Lie group of rank with 
dim G > 1. Then dim G = 3 and the Weyl group of G has order 2. 

From this theorem, of which we give two proofs, we obtain the following 

(1.6) Corollary. With the hypotheses of the theorem either G ~ S0(3) or 
G ~ SU(2) ~ Sp(l) ~ Spin(3). 
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We will first prove (1.6) from (1.5), but in doing so we will only use the 
conclusion that dim G = 3. Since the Weyl groups of the groups listed in 
(1.6) all have order 2, it will only be necessary to prove that dim G = 3 when 
proving theorem (1.5). 

PRooF OF CoROLLARY (1.6). Choose an Ad-invariant metric on LG. Then 
the adjoint representation gives us a homomorphism 

Ad: G --+ S0(3) 

which we claim is immersive. Were this not the case, there would be a non
zero X E LG in the kernel of ad = LAd. The one-parameter group 
{exp(tX)It E IR} would then be invariant under conjugation. And since 
dim T = 1, the maximal torus T would have to lie in the center of G and 
hence would be normal. But this contradicts the conjugation theorem, since 
dimG>l. 

It follows that Ad: G--+ S0(3) is a covering. But there are only two 
coverings of S0(3)-the trivial and the universal (double) cover Spin(3)--+ 
S0(3). [] 

ALGEBRAIC PROOF OF THEOREM (1.5). Fix an HE LT\{0}. Taking the 
structure of the infinitesimal roots (II, §9) into account, there are numbers 
na. e IR such that 

[H, XJ = ina.Xa. 

for all X a. e La.. Furthermore, n_a. = -na.. 
Let c: LGc--+ LGc denote complex conjugation. Suppose 0 ¥=X a. e La.. 

Then eX a. e L-a.· If[Xa., eX a.] were zero, then the subalgebra ofLG generated 
by Xa. + cXa. and i(Xa.- cXa.) would be abelian. But since G has rank 1 
there are no abelian subalgebras of dimension greater than 1, see 
IV, (1.12), Ex. 3. Thus [Xa., eX a.] ¥= 0. However [Xa., cXa.] E L0 , and there
fore the subalgebra of LG generated by Hand i[Xa, eX a.] is abelian. So we 
end up with [X a., eX a.] =A.· H, A. E iiR\{0}. 

Now set R+ = {alna. > 0} and let np be the smallest of the numbers 
na., a e R+. Choose Xp e Lp \{0} and set X -p = cXp. Then the subspace V 
of LGc generated by LTc, EBa.eR+ La., and X -p is mapped into itself by 
ad H: X 1-+ [H, X]. On V the endomorphism ad H has trace 

L na. dim La. + inp(dim Lp - 1). 
a.eR+ \{/1} 

By lemma (1.4), ad Xp and ad X -p also map V into V. We have seen that 
[X P• X_ p] = A.H, A. ¥ 0, so ((1.7), Ex. 1.5) 

1 
ad H = - 1 (ad Xp ad X -p-ad X -pad Xp). 
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Therefore we have that ad H has trace zero on V. This is only possible if L« = 0 
for ex E R + \ {P} and dim Lp = 1. This implies that 

LGc = LTc EB Lp EB L_p, 

and this space has dimension 3. D 

TOPOLOGICAL PROOF OF THEOREM (1.5). We start by choosing a Euclidean 
metric on LG which is invariant under the adjoint representation as in the 
proof of (1.6). Let T;;;:: S 1 be a maximal torus in G and letHE LT a vector 
of norm 1. Consider the map 

f: G ..... sn- I c: LG, 

gHAd(g)H. 

n =dim G, 

For t E T we have f(gt) = Ad(gt)H = Ad(g)Ad(t)H = Ad(g)H = f(g), so 
f factors through a map q>: G /T ..... S"- 1 : 

G-.::....f....-.....sn-1 

\f 
G/T 

(i) Claim. The map <p is injective. 

PRooF OF (i). Suppose that Ad(g)H = Ad(b)H. Then Ad(bg- 1)ILT = idLT• 
and so (naturality of the exponential map I, (3.2)) Tis fixed under conjugation 
by bg- 1• Thus bg- 1 E Z(T) = T, and bE gT. 

(ii) Claim. The map q> is a diffeomorphism. 

PRooF OF (ii). Since both manifolds are compact the image of q> is closed. 
Moreover G/T and S"- 1 have equal dimension. The group G acts on sn-t c: 
LG via Ad and acts transitively on G/T via left translation. Since q> is equi
variant for these operations, <p has constant rank. Since q> is injective, it 
must have rank n - 1 by the rank theorem of calculus (see Brocker and 
Janich [1], 5.4). Therefore q> is open. Hence q>(G/T) c: S"- 1 is both open 
and closed, so <p is surjective. Since <p is locally invertible it is a diffeo
morphism. 

Now the projection 

n: G ..... G/T ~ sn-t 

is a locally trivial fibration with fiber T ~ S1• Such a fibration induces an 
exact sequence of homotopy groups (Hu [1], V, 6, p. 152 or G. W. Whitehead 
[1]) 
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Since n - 1 = dim(G/T) must be even (see IV, (1.10)), we know that n =F 2. 
Assume, then, that n > 3. In this case 11;iS"- 1) = n 1(S"- 1) = 0, so 
i*: n1(T)- n1(G) is an isomorphism. We show that this is impossible. 

Indeed by (ii) there is an element g E G such that Ad(g)H = -H. The 
induced automorphism c(g)* of n1(T) ~ 71. is the map -id. But in G we 
may find a path s ~ g., 0 :5;; s :5;; 1, with g0 = e and g1 = g. This path gives 
us a homotopy c(g.) between the automorphisms id and c(g) of G. Thus 
c(g)*: n1 (G)----+ n1 (G) is the identity, a contradiction. 0 

Note. The few facts about homotopy groups which were used in this proof 
are developed in (1.7), Ex. 2-4 in an elementary fashion. 

(1.7) Exercises 

1. Let G be a compact connected Lie group and K c LG an abelian subalgebra of 

maximal dimension. Show that K = LT for some maximal torus Tin G. 

2. A closed Euclidean cell D is a space homeomorphic to [0, l]k for some k. Show 

that every locally trivial bundle 

over a closed Euclidean cell is trivial. In other words, there is always a commutative 

diagram 

D 

Hint: Start with a decomposition of [0, 1 Jk into sufficiently small cubes. 

3. Show that every S 1-principal bundle 

S1 -+ G ...... S" 
X 

is trivial if n > 2. Hint: Let v- and D+ be the lower and upper hemispheres of s•. 
We are looking for a section u: S" -+ G. Since the bundle over D- is trivial (Exercise 2), 
there already is a section u- over D-. And since the bundle over D+ is also trivial, 

a section over D+ is given by a map D+ --+ S1 into the fiber. Restricting u- to 
s•- 1 =aD- =aD+ defines a map aD+ -+ S1 which must be extended to all of D+. 

To do this, show that every map s•-' --+ S1 is null-homotopic as it factors through 

exp: IR ...... S 1• 

4. Use Exercise 3 to argue that the map i*: n1(T) ...... n1(G) in the topological proof 

of(l.S) must be an isomorphism. 

5. (a) Show that 

ad[X, Y] = ad X ad Y - ad Y ad X 

in any Lie algebra L. In other words, ad: L ..... End Lis always a homomorphism 

of Lie algebras. 
(b) Let X and Y be endomorphisms of a finite-dimensional vector space. Show 

that Tr[X, Y] = 0. 
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2. Roots and Weyl Chambers 

Let R be the set of real roots of the Lie algebra LG associated to the maximal 
torus T and let 

k = rank( G) = dim T. 

The global root corresponding to the real root oc LT--+ ~ is the homo
morphism 

Notice that [La.= §.a.· The adjoint representation decomposes into the direct 
sum of its weight spaces 

LGc = L0 ffi EfJ La., 

(2.1) 
aeR 

LG = M 0 ffi E9 Ma.. 
aeR+ 

Here Ma. =(La. ffi L_a.) n LG = M -a.• and R+ is supposed to contain 
exactly one element from each pair {IX, -IX} of real roots. Later we will fix 
R + more precisely. 

We also use the notation 

(2.2) 

Thus U a. is a closed subgroup of T with codimension one and L. is the 
isotypical summand of LGc corresponding to the irreducible character 9a.. 
Similarly, theM a. are the real isotypical summands of the real T-module LG. 

(2.3) Proposition. 

(i) M0 = LT, L 0 = LTc = IC ®LT. 
(ii) 1ft E T and Z(t) is the centralizer oft in G,then LZ(t) = M0 ffi E9a.eN Ma., 

where N ={IX E R+ It E Ua.}. 
(iii) na.e R u a. = Z(G) is the center of G. 
(iv) Ua.e R U a. is the set of singular elements of G in T (see IV, (2.10)). 

PROOF. (i) If we decompose the T-module LG as LT ffi L(G/T), then IV,(l.lO) 
says that a generator t of T acts on L(G/T) without any real eigenvalue. 
Therefore LT = M 0 is the trivial summand of the T -module LG and L 0 = 
IC ® M 0 = C ® LT, see II, (8.7)(ii). 

(ii) Recall that Ad(t)X = X<=> c(t) exp(sX) = exp(sX) for all s <=> 
exp(sX) E Z(t) for all s <=>X E LZ(t). Thus LZ(t) is the eigenspace associated 
to the eigenvalue 1 of Ad(t). By the definition of Ua. we have 

Ad(t)X =X <=>t E Ua. 

for all nonzero X in M a.. 
(iii) n2ER Va.= {t E TIAd(t) = id} = {t E Tjc(t) = id}. 
(iv) Ua.eR U. is just the set of those t E Tsuch that c(t) fixes a one-param-

eter group not contained in T. 0 
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From the proposition we see once again that 

dim G/T = L dimR M,. = 2 L dime L,. 
acR+ acR+ 

is even. The nontrivial irreducible real representations of the torus are 
two-dimensional. 

The subgroups U .. c T need not be connected. 

(2.4) Example. Let G = Sp(l) = SU(2) and, as usual, let 

We then have 

( A. 0)( 0 x)(A: 0) ( 0 A.2x) 0 A: -x 0 0 A. = -12x 0 . 
Thus SU(2) has a root ex with .9,.(A.) = A.2, and soU~~.= {1, -1}. 

(2.5) Remark. If U is a closed subgroup of a torus T with codimension 1, 
then U is topologically cyclic. 

PROOF. We have U = U0 x A where U0 is a torus and A is finite (I, (3.7)). 
Also, the homomorphism A c T-+ T jU 0 ~ S1 is injective. Therefore A is 
cyclic and the statement follows from I, (4.14). D 

Incidentally, A can have at most order two for any U,. as in (2.2). This will 
be shown in (2.10). 

(2.6) Proposition. The singular elements of G form a subset of codimension 
;;:::: 3. More precisely: 

There exist a compact manifold M with dim M + 3::;; dim G and a smooth 
map M -+ G whose image contains all the singular elements of G. 

PROOF. Let u,. be a generator of U,.. By (2.3Xii) we have dim Z(u,.) ~ k + 2, 
k = rank(G), and therefore dim Z(U~~.);;:::: k + 2. The elements conjugate to 
elements of U « lie in the image of 

G/Z(U,.) X u .. -+ G, 

The dimension of the left-hand side is at most dim G - (k + 2) + k - 1 = 
dim G - 3. The proposition now follows from the fact that every singular 
element of G is conjugate to an element of some U «. D 
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(2.7) Proposition. Let U~ denote the connected component of the identity 
in U,.. 

(i) If U~ = ug, then either a = f3 or a = - {3. 
(ii) The real weight-spaces M,. of the 9,. have dimension 2. 

(iii) dim G = rank( G) + 2m, where 2m = I R I is the number of roots of G. 

PROOF. (i) and (ii) follow directly from (2.3Xii) and the following lemma (2.8), 
and (iii) then follows from (2.1). 

(2.8) Lemma. Let u be a generator of U~ and let k = rank(G) =dim T. 
Then dim Z(u) = k + 2. 

PROOF. Z(u) = Z(U~) is connected by IV, (2.3)(ii). Consider the diagram 

Z(u)--+ Z(u)/U~ 

u u 

T--+ T/U~. 

Since T is a maximal torus in G and hence in Z(u), the group T/U~ is a 
maximal torus in Z(u)/U~, see IV, (2.9). But dim T/U~ = 1 and dim Z(u) 2: 
k + 2 by (2.3)(ii). Therefore theorem (1.5) concerning groups of rank one 
tells us that dim Z(u)/U~ = 3. Thus dim Z(u) = k + 2. 0 

(2.9) Theorem. Let u,. be a generator of the subgroup U~ of the maximal torus 
(see (2.7)). 

(i) The Weyl group of Z(u,.) = Z(U~) has order 2. 
(ii) If a and f3 are proportional real roots, then either a = f3 or a = - {3. 

(iii) We have Z(U.) = Z(U~). Thus if w,. is a generator of the Weyl group 
of Z(u,.), then wa(u) = ufor all u E U,.. 

PROOF. (i) By IV, (2.9) the Weyl group of Z(u,.) with respect toT is isomorphic 
to the Weyl group of Z(u,.)/U~ with respect to T/U~. The statement now 
follows from (1.5). 

(ii) Let a = c · {3, c E IR. Then ker(a) = ker(/3) = LU~ = Lug. Thus 
u~ = ug and by (2.7)(i) we have (X = ± {3. 

(iii) By (2.5) U • is topologically cyclic. If u is a generator then Z(u) = 
Z(U,.) c Z(U~) = Z(u,.). But dim Z(u) 2: k + 2 by (2.3)(ii) and Z(U~) is 
connected by IV, (2.3)(ii). Thus Z(u) = Z(u,.). Since the automorphism w,. 
of the torus is induced by conjugation by an element of Z(u,.) = Z(U,.), it 
leaves u a pointwise fixed. 0 

(2.10) Corollary. The subgroups U • have at most two components. 

PROOF. The automorphism w,. ofT in (2.9)(iii) induces an automorphism 

cp: S1 ~ T/V~- T/U~ ~ S1 . 
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This is not the identity since, as the proof of (2.8) shows, lfJ is the nontrivial 
element of the Weyl group of Z(u)/U~ and therefore operates nontrivially 
on the maximal torus T /U~ of this group. Thus lfJ has exactly two fixed points 
and, since every component of U 11 determines a fixed point, there are at most 
two components. 0 

In (2.18), Ex. 1, we explicitly describe the automorphism w(l ofT. 
Of course, the elements w,. lie in the Weyl group of G with respect to T. 

We are now in a position to give a more precise geometric description of the 
Weyl group and its action on LT. 

(2.11) Definitions and Notation. The hyperplanes 

~ = LU 11 = ker ex, 

decompose LT into finitely many convex regions, namely the nonempty sets 
of the form 

{v e LTie,. · ex(v) > 0 for ex e R+}, 

with 811 = ± 1. These regions are called Weyl cluunbers. We choose a Euclidean 
inner product on LG which is invariant for the adjoint representation. We 
then consider W to be a group of orthogonal transformations of LT. Since 
W permutes the roots, W also operates on LT\UxeR ~and thereby on 
the set of Weyl chambers. The walls of a Weyl chamber K are those subsets 
K n ~of LT which have dimension k- 1, where k = rank(G). 

Weylchamber 

Figure 19 

The Weyl chambers and their walls form the elementary geometric con
figuration which will be used to elucidate the action of the Weyl group. 

Each hyperplane~ determines a reflections,. of LT. Thus s(l is the non
trivial orthogonal transformation of LT which leaves ~pointwise fixed. 
If K is a Weyl chamber and K f"'l ~ a wall of K, we also call s,. a reflection 
in this wall. 
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(2.12) Theorem. 

(i) The reflections s« in the hyperplanes ~ = ker tX are elements of the 
W eyl group W. 

(ii) The reflections in the walls of any given Weyl chamber K generate all 
ofW. 

(iii) The Weyl group acts simply transitively on the set of Weyl chambers 
(i.e.,for every pair of Weyl chambers K, K' there is exactly one w e W 
with wK = K'). 

PROOF. (i) The inclusion Z( U «) c G induces an inclusion of the Weyl groups 
with respect toT. Therefore the elements w« from (2.9)(iii) are also in W. The 
transformation w« of LT is nontrivial, orthogonal, and fixes ~ = LU«. 
Thus w« = s«. 

As a first step leading to (ii) and (iii) we prove the 

Claim. Let K be a Weyl chamber. The subgroup W' c W generated by the 
reflections in the walls of K acts transitively on the set of Weyl chambers. 

PRooF. Let L be another Weyl chamber and let x e K, y e L be fixed. We 
have to show that there is a w e W' with wy e K. Choose w so that the distance 
lwy- xl is minimal (here we use the fact that W, and hence W', is finite). 
Now suppose that wy ¢ K. Then wy and x are on different sides of a hyper
plane~. tX e R which supports a wall of K. 

Figure 20 

But then 1 s« wy - x 1 < I wy - x 1. and this contradicts the choice of w. 
Now (ii) and (iii) follow immediately once we have established the 

following 

Claim. If K is a Weyl chamber, w e W and wK c K, then w = 1. 

PROOF. Let n be the order ofw as an element of Wand let x e K be arbitrary. 
Then the point 
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lies in K since K is convex. Note that, in particular, y i= 0. Furthermore, 
wy = y and therefore w has a fixed point in K. Since w operates linearly on 
LT, the entire line {s · yls E IR} is left fixed by w. Ifw is induced via conjuga
tion by g E N(T) c G, then conjugation by g fixes the one-parameter group 
S = {exp(sy)ls E IR}. By IV, (2.3)(ii) we can find a maximal torus which 
contains both g and S. ButS is not contained in the singular set U«eR U« 
because y ¢ U" ~. see (2.3)(iv). Thus S is not in the intersection of two 
distinct maximal tori. Since S c T we see that g E T and thus w = 1. 0 

In summary, the Weyl group acts freely on the complement ofthe hyper
planes~ and nowhere else. That is to say, the isotropy group is {1} for each 
point in this complement, whereas ~ is fixed by sa.. In ( 4.1) we will give a 
more detailed description of the action of the Weyl group on points of the 
walls. 

TheW-invariant inner product on LT determines an isomorphism 

1c: LT-. LT*, XH(X, ). 

The Weyl group acts on LT and dually on LT*, and K is a W-equivariant 
isomorphism. In what follows we will often identify LT with LT* as W
modules via K. The transformations s" of LT and LT* may be described as 
follows: 

(2.13) Proposition. 

(i) For every a. E R there is precisely one IX* E LT such that 

Sa.(X) = X - 1X(X)1X* 

for all x E LT, namely 

a.*= 2K- 1(1X)/(1X, IX). 

(ii) For the dual operation of Won LT* we have 

si/3) = {3 - {J(rx*)rx 

for all {3 E LT*. This, too, uniquely determines IX*. 

PRooF. We identify LT with LT* via "· The defining equation (i) of IX* is 
then 

sa.(x) = x - (IX, x)IX*. 

If x is orthogonal to IX, then both sides are just x. If x = IX, then the equation 
becomes -IX= a.- (a., a)a.*. Thus the equation holds precisely if 

a* = 21X/(1X, IX). 
This proves (i). 

For (ii), consider {3 E LT*. We then have {Jsa(x) = {J(x)- {3(1X*)rx(x) and, 
since s" = s; 1, sa.{/3) = {3 - {J(a.*)a.. This is (ii), and if this equation holds for 
a particular a.* and all {3 E LT*, then (i) follows. 0 
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With LT and LT* identified via K, the equations (2.13) take on the 
following form: 

(2.14) 
s.{x) = x - (ex, x)cx* = x - (ex*, x)cx, 

ex* = 2cxj(cx, ex). 

(2.15) Notation. The elements ex* e L T for ex e R are called inverse roots. 
We denote the set of inverse roots by R* = {ex* lex e R}. The kernel I of the 
exponential map exp: L T -+ T is called the integral lattice and the group 
I*= {ex e LT* lex/ c Z} is called the lattice of integral forms. 

Observe that ex* e LT is independent of the choice of inner product. If 
one wants to distinguish between LT and LT*, one writes 

cxv = K(cx*) = 2cx/(r:x., ex). 

A real root ex corresponds to a global root 9,. and the diagram 

0-..Z-+ IR ~U(l)-+1, e(t) = e2nir, 

shows that R is contained in/*. In other words, the real roots are integral 
forms. 

(2.16) Proposition. R* c I, that is to say, the inverse roots are integral. 

PRooF. Let ex e Rand 2x = ex* e LT. By (2.13), ex( ex*) = 2, and hence cx(x) = 1. 
Looking at the diagram above we see that exp(x) e U,. = ker 9,.. Next 
observe that s,. e W also acts on T and that exp(s,.x) = s,. exp(x) = exp(x) 
since s,. is the identity on U,. by (2.9)(iii). Buts,. x = - x, so exp(- x) = exp(x ). 
Thus exp(cx*) = exp(2x) = 1, and therefore ex* e /. 0 

(2.17) Coronary. If ex, f3 e R then 

Note. 

s,.(/3) = f3 - f3(cx*)cx, f3(cx*) e Z. 

ex* e R* c I c LT, 

cxeR c I* c LT*. 

Observe, however, that even if we do identify LT with LT* via K, then 
ex, ex*, and R, R*, and I, I* in general do not correspond under this identifica
tion. 
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(2.18) Exercises 

1. Let w be a nontrivial automorphism of the torus 'Rt/lt of finite order. Suppose 
further that the set of points left fixed by w has dimension (k - 1 ). Show that: 

(i) w2 = 1. 
(ii) There is an automorphism y of T such that L(ywy- 1): Rt-+ Rt sends 

(x1, ••• , x.) to ( -x1, x 2 + vx 1, x3 , •.• , xt) for some vel. 
(iii) The fixed-point set of w has two components for v even and one for v odd. 

N.B. For Exercises 2, 3, 4, 7 and 8 we assume that G is a compact connected Lie group, 
T a maximal torus in G, and W the associated Weyl group. 

2. Suppose that rank(G) = 2 and dim G = 2(n + 1). Show that there is a split exact 
sequence 

0-+ lfn-+ W-+ l/2-+ 0 

such that the generator of l/2 acts on lfn by sending v to - v. Describe the decom
position into Weyl chambers. For more information, see (3.11) and (3.15), Ex. 3. 

3. Let dim G = 4 and rank(G) = 2. Show that Z(G) is isomorphic to S1 or S1 x l/2 
and that G/Z(G) ~ S0(3). 

4. Suppose that rank( G)= k and that dim Z(G) = 0. Show that if dim G = 3k, then 
w~ (l/2t. 

5. Let ~ •... , Jt:, be hyperplanes in ~and let s 1, ••• , sm be the reflections of Rt in 
the Jfl. Assume further that each s1 permutes the set of hyperplanes {~, ... , Jt:,}. 
Let W s;; O(k) be the group generated by the s1, and let K be a component of 
Rt\U -*'~·Reflections in the walls of K are defined as in (2.11). Show that: 

(i) W is finite. 
(ii) W is generated by reflections in the walls of K. 

(iii) W acts simply transitively on the set of components of 'Rt\U1 Jfl. 

Hint: In this case the fact that W is generated by the reflections s1, ••• , s. appears 
as part of the hypothesis. In the text we cannot assume this. The solution can be 
taken from the proof of (4.1). 

6. Let W s;; O(k) be a finite group generated by reflections as in Exercise 5 with 
dim(~ n · · · n Jt:,) =:;; l. Show that the normalizer of W in O(k) is finite. Show 
that O(k) contains infinitely many conjugacy classes of such subgroups if k ~ 2. 

7. Let H s;; G be a closed connected subgroup and suppose that the respective maximal 
tori T8 and TG are chosen so that T8 s;; TG. Show that every root of His the restric
tion 81 T8 of a root 8: TG-+ U(1) of G. 

8. With the hypotheses from Exercise 7, suppose that rank(H) = rank(G). Show that 
every root of H is also a root of G, and thus the Weyl group of H is a subgroup of 
the Weyl group of G. 

9. Show that for every !X e R there are elements 
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such that 
[H., XJ = 2X., 

[H., X -.J = -2X -•• 

[X., X -.J = -H., 
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Hint: Use the description of the structure of sl(2, C) in II, ( 10.1 ), LS0(3)c ~ 
LSU(2)c ~ sl(2, C), and the proof of (2.8). Thus for each oc E R there is an sl(2, C)
module structure on LGc, i.e., x., X-·· H. generate a Lie algebra isomorphic to 
sl(2, C). 

3. Root Systems 

The investigation of the T-module LGc in the previous section displayed an 
elementary geometric object which governs the structure theory of Lie 
groups: the root system. In this section we look at the notion of a root 
system in general. Our exposition is based on that of Serre [3]-also see 
Humphreys [l]. 

In what follows V is a k-dimensional real vector space. 

(3.1) Definition. A symmetry associated to a nonzero vector IX E V is an 
automorphism s of V which leaves some hyperplane Je c V pointwise fixed 
and maps IX to - IX. 

(3.2) Lemma. Let R c V be a .finite set which spans V. Then there is at most 
one symmetry associated to a vector IX which maps R into itself. 

PROOF. Let S be the group of automorphisms of V which map R into itself. 
Observe that S is finite since R is finite. We choose an S-invariant inner 
product on V. With respect to this metric, the symmetries in the lemma are 
orthogonal. Thus the only choice is reflection in the hyperplane orthogonal 
~~ 0 

(3.3) Definition. A finite subset R c V satisfying the following is called a 
(reduced) root system in V: 

(i) R spans V and 0 rt R. 
(ii) If IX, {3 E R are proportional, then IX = {3 or IX = - {3. 

(iii) To each vector IX E R there is an associated symmetry s. mapping R 
into itself. 

(iv) s.(/3) - {3 is an integer multiple of cx for allcx, {3 E R. 

The dimension of V is called the rank of the root system and the elements of 
R are called roots. 

Property (ii) is often omitted in the literature. A root system with this 
property is then called reduced. We, however, only consider reduced root 
systems. 
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The symmetry sa. in (iii) is uniquely determined due to (3.2). To every root 
rx we associate the hyperplane ~ left fixed by s" and the element rx* in the 
dual V* of V such that: 

(3.4) 
a* I~= 0, a*(a) = 2 and hence 

sa.(v) = v - IX*(v) ·a. 

The element IX* is called the inverse root of rx. Condition (iv) is then equivalent 
to 

(iv)' rx*({3) E 7L for all rx, {3 E R. 

From the symmetry of this formulation one gathers that the system R* of 
inverse roots is a root system in V* ((3.15), Ex. 2). This is called the inverse 
root system of R. 

(3.5) Definition. The Weyl group of a root system R in V is the subgroup 
W of Aut(V) generated by the symmetries sa in (3.3)(iii). 

The root system R is mapped to itself by elements of W. Since R generates 
V and is finite, W is also finite. We choose a W-invariant Euclidean inner 
product ( , ) on the W-module V. This allows us to identify V with its dual 
V* via the isomorphism 

IC v-+ V*, VI-+ (v, · ). 

With respect to this metric, the symmetries sa E W are reflections of V in 
hyperplanes ~ orthogonal to the rx's. Such a reflection is given by 

(1X,V) 
Sa: VI-+V- 2-( )·rx.. 

rx,rx 

Comparing this formula with the definition (3.4) of rx* and identifying V 
with V* via K, we get 

(3.6) 

as a vector in V and condition (iv) or (iv)' in (3.3) says that 

(IX*, {3) = 2/lrxl2 · (rx, {3) E Z for all IX, {3 E R. 

(3.7) Definition. The integers 

- < * {3) - 2 < rx, {3) 
nap - 0( ' - -< ) ' IX,rx 

rx, {3 E R, 

are called the Cartan numbers of the root system R. 
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These numbers are subject to rather strong restrictions, since 

(a, fl> = Ia I · I fl I · cos( a, fl), 

where cos(cx, fl) is the cosine of the angle 1:-(a, fl) between a and fl. Thus 

I fl I 
nap = 2 ~ cos( IX, fl), 

(3.8) 

nap. np(l = 4 cos2(1X, fl). 

Since nap is an integer, 4 cos2(cx, fl) must be equal to 0, 1, 2, 3, or 4 and in the 
last case IX = ±fl. From this we immediately obtain: 

(3.9) Proposition. Let a, fl be nonproportional roots and (a, fl) > 0 (this 
means n"p > 0 or, equivalently, the roots IX and fl form an acute angle). Then 
IX - fl is also a root. 

PROOF. We have nap > 0 if and only if npa > 0. Thus if nap. npa < 4, either 
nap = 1 or np12 = 1. In the second case, IX - fl = IX - n11a · fl = or: - (fl*, or:)fl = 
s11 1X. Similarly, in the first case we get fl - or: = sa fl. 0 

Using (3.8) we find that, possibly after switching or: and fl, there are only 
the following seven possibilities for non proportional roots: 

nap npa 1:. (or:, fl) lor:l 2/lfll 2 

(i) 0 0 n/2 ? 

(ii) 1 1 n/3 1 

(iii) -1 -1 2n/3 1 
(3.10) 

(iv) 1 2 n/4 2 

(v) -1 -2 3n/4 2 

(vi) 1 3 n/6 3 

(vii) -1 -3 Sn/6 3 

Up to similarity transformation there is only one root system of rank 1 and, 
with the aid of the list above, the reader may easily verify that up to similarity 
the only root systems of rank 2 are the following ((3.15), Ex. 3). The names 
A 1 x A 1, ••. of these diagrams are standard, see ( 5.6). 
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p 

~------~-------.a 

(3.11) 

3a + 2p 

p 

Figure 21 

Finally, before we say anything more about root systems in general, we 
point out how what we said in the last section about the roots of a Lie 
group fits into our current scheme. 

(3.12) Theorem. Let G be a compact connected Lie group with maximal torus 
T and let V c LT* be the subspace generated by the set R of real roots of G. 
Then R is a root system in V and the Weyl group W ofG, viewed as a subgroup 
of Aut(V), is the same as the Weyl group of this root system defined in (3.5). 

PRooF. We consider the individual parts of definition (3.3): (i) is trivial, 
(ii) is in (2.9)(ii), (iii) follows from (2.12), and (iv) follows from (2.17). D 

Let Z0 be the connected component of the identity of the center Z(G). 
TheW-module LT decomposes into the direct sum 

LT = LZ0 ffi L(T/Z0). 

Furthermore, S = T/Z0 is the maximal torus of G/Z0 and LZ0 = n .. eR ~ 
is trivial as a W-module, see (2.3) and IV, (2.3). We have the corresponding 
decomposition of the W-module 

LT* = LZ~ ffi V. 
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Thus R c Vis also the root system of G/Z0 • 

This root system and the system of real roots of G in LT* differ only by 
the trivial W-module LZ~. For the purpose of the present discussion it does 
not hurt to simply forget about this difference. 

(3.13) Definition. A Lie group is called semisimpk if it possesses no abelian 
connected normal subgroup other than {1}. 

(3.14) Renaark. A compact connected Lie group is semisimple if and only if 
its center is finite. 

PROOF. A connected abelian normal subgroup is a torus which is contained 
in every maximal torus and therefore in the center. D 

Thus, for a semisimple compact connected Lie group, the root system 
R in LT* is a root system in the sense of (3.3). We will give a more precise 
description of the structure of compact Lie groups in §8 of this chapter. 

(3.15) Exercises 

l. Let V be a finite-dimensional real vector space. Show that: 

(i) If sis an automorphism of V with finite order which leaves some·hyperplane 
pointwise fixed, then either s = id or s is the symmetry associated to some 
vector oc. 

(ii) If s is a symmetry associated to a vector oc in V, then s2 = id. 

2. Let R be a root system in V. Show that R* is a root system in the dual V* of V, 
that oc** = oc for oc e R, and that R and R* have isomorphic Weyl groups. 

3. Verify that, up to similarity, the only root systems of rank 2 are those given in 
(3.11). 

4. Show that the Weyl group of a root system in W has finite normalizer in O(k). 

5. Let R be a root system and oc, fJ nonproportional roots. Let p be the smallest and 
q be the largest integer n with (J + noc e R. Show that fJ + noc e R for p :s;; n :s;; q. 

(J + poe p p + qoc 
0- - - - - - - - - - - - - - - - - - - 7 - - - -- • 0 - - - - - - -- - -- -0 

o------~IX 

Figure 22 

The set of roots of the form fJ + noc, n e l, is called the oc-strillg tllrollgh fJ. Show 
that this string is invariant under s. and, in particular, that s.(fJ + poe) = fJ + qoc. 
Show that p + q = - n.11 , that this string contains at most four elements, and 
that strings of length 2, 3, 4 actually exist. Hint: (3.9). 
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6. Let G be a compact connected Lie group and IX, p real roots of G. Let 

n=p 

with p, q as in Exercise 5. Then L(IX, /3) is an sl(2, C)-submodule of LGc by 
(2.18), Ex. 9, Lp+q• is primitive in L(IX, /3), see II, (10.3), and L(IX, /3) is a simple 
sl(2, C)-module. In particular, [L., Lp] = L.+pifiX +peR. Compare Bourbaki [1], 
VIII, §2, No. 2, Prop 4. 

7. Show that a- P may also be a root when (a, P> < 0. 

8. Let Aut(R) be the group of orthogonal automorphisms of V which map the root 
system R into itself. Show that the Weyl group W of R is normal in Aut(R). 

9. Let R be a root system in V and R' c R a subset satisfying: If IX, peR', m, n e 71.., 
and ma + nfJ e R, then ma + nfJ e R'. Show that R' is a root system in the subspace 
V' of V generated by R'. 

10. Suppose the root system R contains a root of length c. Show that the set of all 
roots of length c forms a root system in the subspace they span. 

4. Bases and Weyl Chambers 

Let R be a root system in V with Weyl group W. To every root (X we have 
associated the hyperplane ~ c V which is fixed under the corresponding 
symmetry s« E W. We introduce a W-invariant metric on V, so ~ is the 
hyperplane orthogonal to IX and s« is the reflection in ~.The hyperplanes 
~divide V into finitely many convex regions-these are called the Weyl 
clulmbers of the root system. In other words, the Weyl chambers are the 
connected components of V\UaeR ~. They are open by definition. We 
will denote the closure of a Weyl chamber K by K. The walls of a Weyl 
chamber are defined as in (2.11). The Weyl group operates on the set of 
Weyl chambers and, as a generalization of (2.12), we have 

(4.1) Theorem. Let WP be the isotropy group of the point p E V in the Weyl 
group W of a root system R in V. 

(i) WP operates simply transitively on the set of Weyl chambers K with 
peK. 

(ii) If p E K, then »j, is generated by the reflections in the walls of K which 
contain p. 

(iii) The orbit of p meets every closed Weyl chamber in exactly one point. 

PROOF. We start by considering a special case. 

(4.2) Lemma. W is generated by reflections in the walls of any given Weyl 
chamber K and operates transitively on the set of all Weyl chambers. 
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PRooF. Let W' be the group generated by the reflections in the walls of K. 
As in the proof of (2.12), it follows that W' acts transitively on the set of 
Weyl chambers. Therefore we need to show that W = W'. Lets,. be the 
reflection in a hyperplane ~. Since ~ belongs to a wall of some Weyl 
chamber Kto and K 1 = wK for some we W', we see that~= w;tp for a 
wall JtP n K of K. Therefore s,. = wsp w- 1 e W'. Since, by definition, W is 
generated by the reflections s .. , it follows that W = W'. The theorem now 
follows easily from the following somewhat technical lemma. 

(4.3) Lemma. Let K be a Weyl chamber, x, y e K, and we W. lfwx = y, then 
x = y and w is a product of reflections in walls of K which contain x. 

PRooF OF THEOREM (4.1). (i) Let K and L be Weyl chambers and p e K n L. 
By (4.2) there is awe W with wi. = K. Since p e I. we have wp e K. But p 
is also inK, sop= wp by (4.3) and hence we Wr This shows transitivity of 
W, as claimed. If we choose for x in (4.3) a point of K, then xis contained in 
no wall. Thus the lemma says that the only element of W mapping x into 
K is the identity. Thus all of W acts simply transitively on the set of Weyl 
chambers. 

(ii) follows immediately from (4.3) with x = p. 
(iii) Since W acts transitively on the Weyl chambers, the orbit of p meets 

every closed Weyl chamber-in precisely one point by (4.3). D 

PRooF OF LEMMA (4.3). We express was a product of reflections in walls of 
K and proceed by induction on the number of reflections in this expression. 
So let w = sK · w', where s8 is the reflection in the wall K n .Yf of K. 

Case 1. The Weyl chambers K and wK lie on different sides of Jff. Then 
K n wK c Jr,andhencey e Jt: Thereforey =sKy= s1 wx = sKs1 w'x = 
w'x and the statement follows by induction. 

Case 2. The Weyl chambers K and wK lie on the same side of Jff. Let w' = 
s1 • ••• • sk with each s. a reflection in a wall of K. There is a first I such that 
sKs1 ••• s1K lies on the same side of .Yf asK. Let u = sKs1 ••• s1- 1• Then 
uK and us1K lie on different sides of Jt: Thus K and s1K lie on different sides 
of u- 1 Jr, and so K n s1 K c u- 1 Jff. Thus s1 is the reflection in the hyperplane 
u- 1.Yf and s1 = u- 1s1 u. Plugging this into the expression w = us1 ••• sk, we 
can shorten this product. D 

The hypotheses here are slightly different from those in the proof of (2.12). 
There are two points involved: First, that W is generated by the reflections 
s .. , a e Rand, second, that W operates freely on the set of Weyl chambers. 
Here we assume the first and derive the second, whereas in (2.12) we do the 
opposite. 

Among other things, the theorem says: The Weyl group operates simply 
transitively on the set of Weyl chambers, every closed Weyl chamber is a 
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fundamental domain of this operation, and every closed Weyl chamber is 
mapped homeomorphically onto the orbit space of the operation of W by 
the canonical projection. 

A given Weyl chamber may be described by specifying its walls and on 
which side of these walls the chamber lies. But the side of a wall is given by a 
root. Thus the Weyl chambers correspond to certain subsets of R which we 
now describe more algebraically. 

(4.4) Definition. A subset S of the root system R in V is called a basis or a 
system of simple roots if S is linearly independent in V and every root f3 e R 
may be written as 

with integers ma such that either all ma ~ 0 or all ma ~ 0. The elements of S 
are called simple roots with respect to S. 

We will soon see that bases actually exist. Suppose, then, that Sis a fixed 
basis. Then R splits into two disjoint parts 

R = R+ u R_, 

where R+ consists of those roots f3 whose coefficients ma in (4.4) are all 
nonnegative. These are called positive roots, and the elements of R _ are 
called negative roots. In general, an element in a subset R' c R is called 
decomposable in R' if it can be expressed as the sum of at least two elements 
of R'. Otherwise it is called indecomposable. The basis obviously consists of 
the elements indecomposable in R + (in fact, every decomposable positive 
root is the sum of two positive roots ((4.15), Ex. 2)). In this way the basis S 
is determined by the corresponding set of positive roots R+. 

The next theorem says that bases exist and are in one-to-one correspon
dence with Weyl chambers. 

(4.5) Proposition. The following assignment defines a bijection between the 
set of Weyl chambers and the set of bases of the root system R in V. 

We assign to every Weyl chamber K the set of positive roots R+(K) = 
{a e R I< a, t) > 0 for one and therefore all t E K} and the basis S(K) con
sisting of the elements indecomposable in R+(K). 

We assign to each basis S the Weyl chamber 

K(S) = {t E VI(IX, t) > Ofor all IX E S}. 

It has walls JF .. (', K(S), IX e S, where Jf"a is the hyperplane orthogonal to oc. 
We call K(S) the fundamental Weyl chamber corresponding to S. 
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Figure 23 

(4.6) Corollary. 

(i) If S is a basis of R, then the Weyl group is generated by the reflections 
s,., oc e S. These are called simple reflections. 

(ii) The Weyl group operates simply transitively on the set of bases of R, 
and every root is an element of some basis. 

PROOF. The corollary follows from (4.1) with p = 0. Clearly every root oc is 
orthogonal to a wall of some Weyl chamber K with (oc, t) > 0 forte K. 

We will prove the proposition in four steps: 

Step 1. Let K be a Weyl chamber, and t e K. Let 

and let S(t) be the set of elements indecomposible in R+(t). Then 

(4.7) S(K) = S{t) 

since the sign of (oc, t) as a function oft is constant on the connected set 
K. We show: 

Every element of R+(t) is the sum of elements of S(t). 

PROOF. If not, choose a counterexample oc e R+(t) with (oc, t) minimal. Since 
oc ¢ S(t), we have oc = oc 1 + · · · + ock, OCv e R+(t), k ~ 2. But then (ocl> t) < 
(oc, t), a contradiction. 

Step 2. S(t) is a basis. 

PROOF. We have to show that the elements of S(t) are linearly independent. 
This follows from the next two lemmas (4.8) and (4.9) which, incidentally, 
are interesting in their own right: 

(4.8) Lemma. Let oc, f3 e S(t), oc =/: /3. Then oc and f3 form an obtuse angle, that 
is (oc, /3) s; 0. 
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PROOF. Otherwise ex - f3 and f3 - ex would also be roots by (3.9) and one of 

these, say ex- {3, would lie in R+(t). But then ex= (ex- {3) + f3 would be 
decomposable. 0 

(4.9) Lemma. Let V be a Euclidean vector space, t e V, and S contained in 
V. Suppose that (ex, t) > 0 for every exeS and (a, /3) ~ 0 for all a, f3 e S, 
ex =F {3. Then the elements of S are linearly independent. Note that the hypo
theses simply say that the elements of S all lie in the same half-space and that 
no two form an acute angle. 

PROOF. A linear dependence between elements of S may be written in the 
form 

mp :?: 0, n1 ;;?: 0, 

where the f3 and y run through disjoint subsets of S. Denoting one side of the 

equation by A., we have 

1 .. 1.j2 = '[_mp·n1 ·(f3,y) ~0. 
p,y 

and so A.= 0. Thus 

0 = ()., t) = L mfJ(/3, t) = L ny(y, t). 
p 1 

But by assumption we have (/3, t) > 0 and (y, t) > 0. Hence mp = n1 = 0 

for all /3, y. 0 

Thus we have completed the second step and, in particular, proved the 
existence of bases. 

Step 3. If S is a basis then K(S) is a Weyl chamber with walls K(S) n ~. 
IXE S. 

PROOF. The basis S determines a set R+ of positive roots and K(S) = 
{ t I (a, t) > 0 for all ex e R +}. Since (a, t) < 0 for the negative roots a, all 
t E K(S) lie on the same side of every hyperplane~. a E R. Therefore K(S) 

lies completely in a Weyl chamber K'. On the other hand, (a, t) has constant 

sign on K' as a function oft for every root a. Thus K' = K(S) and K(S) is a 

Weyl chamber. The linear forms (a, · ), exeS, form a basis of the dual V* 
of V. Let B be the dual basis of V = V**. Then K(S) is the set of positive 

linear combinations of elements of B. The claim concerning the walls 

follows. 

Step 4. K = K(S(K)) and S = S(K(S)). 

PROOF. Clearly K c K(S(K)) and, since K(S(K)) is a Weyl chamber, both 
are equal. Let R + be the set of positive roots corresponding to S and let 
K(R+) = K(S). Then it is equally clear that R+ c R+(K(R+)), from which 

we again conclude equality. Thus the second equality follows. 
This finishes the proof of (4.5). 0 
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We now choose a fixed basis S of the root system R in V and let R+ be 
the corresponding set of positive roots. 

(4.10) Lemma. If I)( E S then the reflection sa permutes the positive roots 
different from 0(. 

PROOF. Let f3 be a positive root different from 1)(, Then f3 = LyeS my· y, my~ 0. 
Since f3 =F 0(, we have m1 > 0 for some y :I= 0(, But sa(/3) = f3 - nafJ · ct. Thus, 
in the representation of sa(/3) as a linear combination of elements in the 
basis S, only the coefficient of ct changes. In particular, the coefficient of y 
is m1 • Since this is positive, all coefficients are positive by definition of a 
~~ 0 

In applications to representation theory we will have to consider the half 
sum of the positive roots at key junctures. It is denoted by 

(4.11) e =! L: ct. 

We collect a few simple facts about this element. 

(4.12) Proposition. LetS be a basis of the root system R in V. For every ct E S 
we have 

(i) sa(e) = e - ct. 

(ii) (e, ct*) = 1 (see (3.6)). 
(iii) If W is the Weyl group of R and w E W, then 

w(e) = e- L: na ·ct, n" E 7L. 
s 

(iv) (e, /3*) is an integer for every root /3. 

PROOF. (i) Let ea = e - ct/2. Then by (4.10) we have sa(l?12) = (! 12 • Since 
S,.{IJ(/2) = -IJ(/2, we get S 12((!) = e - 1)(. 

(ii) We have (e, ct*) = ((!12 , ct*) + f(ct, ct*) = <ea, ct*) + 1. Further
more, ((!12 , ct*) = <sa(ea), ct*) = ((!12 , s,.(ct*)) = - ((!12 , ct*). Thus <ea, I)(*) = 0. 

(iii) This follows from (i) by writing was a product of reflections sa, ct E S. 
(iv) Let f3 be a root. By ( 4.6)(ii), there is a w E W such that w- 1 f3 E S. Thus 

(e, /3*) = (e - we, /3*) + (we, /3*) = ((! - W(!, {3*) + ((!, (w- 1 {3)*) E 7/._ 

by (ii) and (iii). 0 

Looking again at the case of a Lie group, the element e e L T* need not 
be an integral form. The element e - we, however, is an integral form for 
every w in the Weyl group since it is a linear combination of roots with 
integer coefficients. 

The inverse roots are integral elements. They generate a free abelian 
subgroup r of I. This subgroup has a geometric interpretation. In (7.1) we 
will show that I/F is the fundamental group of the Lie group G. 
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For the sake of convenience we identify L T and L T* in this section by 
means of a W-invariant metric. This isn't really essential (see (4.15), Ex. 1). 
Nevertheless, we have to distinguish the integral lattice I and its dual I* = 
{ex I <ex, y) E Z for y E I}. 

(4.13) Proposition. If S is a basis of the root system R in V, then S* = 
{ex* I exES} is a basis of the inverse root system R*. Thus S* is a basis of the 
abelian group r generated by the inverse roots. 

PROOF. The second statement follows from the first. Since ex* and ex differ 
only by a positive constant, the elements of S* are linearly independent. Now 
given /3* E R*, we may find a composition of reflections sa, with exES, 
sending /3* to an element of S*. Hence from the equation 

sa(/3*) = /3* - (ex, /3*)cx* = /3* - npa ·ex*, 

with exES, we see that every inverse root is an integral linear combination 
of elements of S*. This uniquely determines an expression for /3* of the form 

/3* = L my . y*. 
yeS 

But since roots differ from their inverses by a positive factor, all the my must 
have the same sign. 0 

The half sum e of the positive roots lies in the fundamental chamber K 
since (Q, ex*) = 1 for all ex E S. The roots of a compact connected Lie group 
lie in the lattice I* of integral forms, and we note the following for later 
applications: 

(4.14) Note. Let f3 be an integral form in LT* and let(! be the half sum of 
the positive roots. Then 

f3 + Q E K if and only if f3 E K.. 

PROOF. For exES we have (Q, ex*) = 1 by (4.12) and (/3, ex*) E Z by (2.16). 

Thus (/3 + (!,ex*) > 0 for all exES precisely when (/3, ex*) ;;:::: 0 for all 
IX E S. 0 

(4.15) Exercises 

1. In this section we have identified the real vector space V with its dual V* by 
choosing a W-invariant Euclidean metric. Show that the following do not depend 
upon the choice of metric: The decomposition of V into Weyl chambers, the hyper
planes .Jt:, the angles between the roots, and the bijection between Weyl chambers 
and bases. Show that the vectors IX*, IX E R, correspond to well-defined elements 
of the dual V*. 
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2. Show that every decomposable positive root is the sum of a positive and a simple 
positive root. 

3. Show that there is precisely one element w in the Weyl group of a root system 
R which sends R + to R _ . Furthermore, if w is represented as a product of reflections 
s., a e S, then every s. appears as a factor and the number of factors is at least as 
large as the cardinality of R + . 

4. If R is a root system and A c R, we set A*= {a* Ia e A}. Show that 

5. Show that the Weyl group of a root system R contains no reflections other than the 
s., 0( E R. 

6. Show that there is precisely one homomorphism of the Weyl group to 71../2 sending 
every reflection onto the generator of 71../2. 

7. Define Aut R as in (3.15), Ex. 7 and let E =Aut R/W. Show that Aut R is the 
semidirect product of W and E. 

8. Let a and p be roots in a basis and let s. and sp be the associated reflections. Show 
that s.sp has order n = 2, 3, 4, or 6 according to whether the angle between a and 
P is n/2, 2n/3, 3n/4, or 5nj6. 

9. Let S be a basis of a root system in V. Suppose p e V is a vector such that for 
each w in the Weyl group all the nonzero coefficients of wP with respect to S have 
the same sign. Show that p is a multiple of some root. 

5. Dynkin Diagrams 

In this paragraph we will give a short overview of Dynkin diagrams. Despite 
the fact that we will hardly need them, they belong to a systematic treatment 
of Lie theory and serve as a guide through what follows: A simply connected 
Lie group is determined by its Lie algebra and in this way the so-called 
compact semisimple Lie algebras are in one-to-one correspondence (up to 
isomorphism, of course) with the compact Lie groups. The compact semi
simple Lie algebras are the real Lie algebras with negative definite Killing 
form (see (5.10) below). Continuing, complexification (tensoring with tC) 
yields a one-to-one correspondence between these and the complex semi
simple Lie algebras. But the complex semisimple Lie algebras are classified 
by their root systems and the root systems are classified by their bases. Now, 
Dynkin diagrams give a quick and easy description of the bases. As a result, 
we have a bijective correspondence: 

Simply connected compact Lie groups ~ Dynkin diagrams. 

We now clarify the Dynkin diagram of a root system and related topics. 
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Let R be a root system in V with basis Sand Weyl group W. We assume 
that V is equipped with a W-invariant Euclidean inner product. The Cartan 
numbers nap= (IX*, P> = 2/I1XI2 ·(IX, P> form a matrix 

(5.1) IX, pES 

called the Cartan matrix of the root system. We know that 

napE{0,-1,-2,-3} foriX#P. 

For example, the root system G2 gives rise to the matrix ( _ ~ - ~). Of 

course, the order of the rows and columns depends upon an ordering of the 
roots inS. Up to this, the matrix is independent of the choice of basis because 
the Weyl group acts transitively on the set of all bases. It is an invariant of 
the root system. Cartan matrices are regular ((5.12), Ex. 2) and a root system 
is determined by its Cartan matrix. More precisely: 

(5.2) Proposition. Let R' be another root system in a vector space V' with 
basis S' and let qJ: S -+ S' be a bijection such that 

IX, PES. 

Then qJ extends to exactly one linear isomorphism qJ: V-+ V' which sends 
R toR'. Furthermore, nap = nrp(a)rp(p) for all IX, pER. 

PROOF. The bijection qJ has a unique linear extension qJ: V -+ V' because S 
and S' are vector space bases. The formula for a reflection 

for IX, P e S (or S') shows 

(/) 0 Sa(p) = ({J(p) - nap· ({J(IX) = ({J(p) - nrp(a)rp(fJ) · ({J(IX) 

= s<P(a)( ({J(p)). 

Therefore qJ o sa = srp(a) o qJ. Thus, if W and W' are the Weyl groups of R 
and R', then qJ induces an isomorphism 

»'-+ W', W f-+ (/JW(/J- 1, 

since the simple reflections generate the Weyl groups (see (4.6)). But the 
Weyl groups act transitively on the sets of bases and every root is in some 
basis, and so qJR = R'. The above formula s~~.(P) = P - napiX then implies that 
all Cartan numbers are invariant under qJ. D 

Choosing R = R', we obtain the automorphism group of the root system 

(5.3) Aut(R) = {({J e Aut(V)jqJ(R) = R}. 
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Given a finite family of root systems Rv in Vv, v = 1, ... , k, we may form 
the sum of the root systems. It consists of the disjoint union 

k k 

R = U Rv canonically embedded in V = EB V, 
v= i v= i 

with (oc*, /3) = 0 for oc E V,, f3 E V11 if v -:1= Jl and (oc*, /3) equal to its value on 
v, if v = Jl. 

Conversely, if the root system R in V is given, one can ask if R is the sum 
of two subsystems. 

(5.4) Proposition. Let V = V1 EB V2 and suppose that R = Ri u R 2 with 
Rv c V,, v = 1, 2. Then Rv is a root system in Vv and R is the sum of these root 
systems. In particular, Vi is orthogonal to V2 • 

PROOF. It is obviously enough to check the last statement. So let oc E Ri and 
f3 E R 2 • Then oc - f3 ~ Vi u V2 and hence by assumption oc - f3 ~ R. By 
(3.9) we have ( oc, /3) :::;; 0 and analogously ( oc, - /3) :::;; 0. Thus ( oc, /3) = 0. 0 

(5.5) Definition. A nonempty root system is called reducible if it decomposes 
into the sum of two nonempty root systems. Otherwise it is called irreducible. 

Every root system may clearly be written as a sum of irreducible root 
systems, and this decomposition is unique ((5.10), Ex. 3). Thus we should 
attempt to find all possible bases of irreducible root systems. As a first step, 
we look at the angles between the roots. 

(5.6) Definition. Let R be a root system in V with basis S. The associated 
Coxeter graph has one vertex for each element of S, and every pair oc, f3 of 
distinct vertices is connected by na.p · n11a. edges. 

By (3.8), the only possible values of na.p· n11a. = 4 cos2{oc, /3) for oc ¥= ±/3 
are 0, 1, 2 and 3. Moreover, these actually occur. The Coxeter graphs for the 
root systems of rank two in (3.11) are 

0 0 

o---o 
0===0 

Since the Cartan numbers are invariant under the operation of the Weyl 
group, and since the Weyl group transitively permutes the bases, the Coxeter 
graph is an invariant of the root system. 

The Coxeter graph is connected if and only if the root system is irreducible: 
For suppose the basis splits into two orthogonal subsets Si and S2 • Then 
they generate two orthogonal subspaces V1 and V2 which are invariant under 
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the Weyl group. Since every root is sent to a simple root by some element of 
the Weyl group, the set of roots decomposes accordingly as R = R 1 u R 2 

with R. c V,. 
The Coxeter graph characterizes the root system when all the roots have 

the same length. If, however, two different lengths occur, then the graph 
only gives the angle between two roots a and fJ. In this case one requires the 
additional information of which root is longer. 

(5. 7) Definition. The Dynkin diagram consists of the Coxeter graph together 
with the symbol > or < attached to each doubled or tripled edge pointing 
to the shorter root. 

B 2 Q===:::c=:O' G2 0 « 0 (see (3.11)). 

fJ a a fJ 
Dynkin diagrams are classified as follows: 

(5.8) Theorem. The Dynkin diagram of an irreducible root system is iso
morphic to exactly one of the diagrams in the following list having n vertices: 

An: 0----0--- · · · --o----o, n :2: 1, 

Bn: 0----()--- ... --Q::::=:::z:=O, 

c .. : 0----0--- ... -()::::=:::::::' 

n ;;::: 2, 

n ;;::: 3, 

n ;;::: 4, 

E6 : Of-------{0>--~lf------------iQ>--__,0 
E1: o----10>--~I>--~o>--__,of----~o 
Es: 0----10>--__,l>--~O\---~o~-~o>---0 
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The restrictions on the ranks in the series B., c., and D. only serve to avoid 
repetitions. 

For the proof, which is an ingenious argument involving only elementary 
geometry, we refer the reader to the literature on Lie algebras, see, e.g., 
Demazure [1], Th. 1, or Humphreys [1], p. 57 ff. There it is also shown that 
every Dynkin diagram on the list actually corresponds to a root system. 

(5.9) Proposition. A root system is determined up to isomorphism by its 
Dynkin diagram. 

PROOF. We show how to reconstruct the Cartan matrix from the Dynkin 
diagram. The information necessary for the following statements is contained 
in table (3.1 0). The roots ofthe basis correspond to the vertices of the diagram 
and we have: 

If Q( = /3, then nap = 2. 
If et =I= /3, then nap ~ 0 and moreover: 
If et and f3 are not connected by an edge, then nap = 0. 
If et and f3 are connected by at least one edge and I et I > I /31, then nap = - 1, 

see (3.10)(v), (vii). 
If et and f3 are connected by j edges and I et I ~ I /31, then nap = - j. 

To see this, compare the columns nap and I et 12 /I /31 2 in (3.10)(iii), (v), (vii). 
D 

Once we assume the classification (5.6), we can read off general statements 
about root systems simply by inspecting the list. For example: 

(5.10) Remark. There are at most two different lengths of roots in an ir
reducible root system. We correspondingly speak of the long and the short 
roots in R. If et is long and f3 short, then I et 12 /I /31 2 = 3 in the case of G 2 and 
llXI2/I/31 2 = 2 in the cases B., c., and F 4 . 

It is not difficult to show this directly ((5.12), Ex. 7). 
Thus the lengths of the roots are determined up to a common factor by 

the Dynkin diagram-one simply reads them off. Together with the Cartan 
matrix, this determines all inner products (et, /3) with ex, f3 E S. In other words, 
if R is an irreducible root system in V, then there is only one Euclidean 
W-invariant inner product on V -of course, up to a constant. This may also 
be seen directly ((5.12), Ex. 6). There is a canonical choice of such a metric 
given by the normalization 

(5.11) (u, v) = L (IX, u) · (et, v). 
aeR 

This metric has a more natural explanation. 



214 V. Root Systems 

(5.12) Definition. The Killing form 1/1 of a Lie algebra L is the symmetric 
bilinear form 

1/!(X, Y) = Tr(ad X o ad Y) for X, Y e LG. 

This form is invariant under the adjoint representation because the trace is 
invariant under conjugation. 

Now let L = LG be the Lie algebra of a compact Lie group and let X be 
in the Lie algebra of the maximal torus (this is no real restriction since, given 
X, one may choose the torus accordingly). Let (2n)- 1 R be the set of real 
roots of G. Then we can split LGc into the weight spaces of the roots and 
choose a corresponding basis of weight vectors. With respect to this basis, 
ad X is in diagonal form with the diagonal entries ia(X) with ex e R and 0. 
The number of zeros equals the rank of G. In this case we consequently have 

1/!(X, X)= - L a(X)2• 
o:eR 

This immediately yields 

(5.13) Proposition. The Killing form 1/1 of a compact connected Lie group is 
negative definite if and only if the center of G is finite, i.e., when G is semi
simple (see (3.14)). 

PROOF. The center of G is finite (discrete) if and only if n2ER ker(cx) = 0. 0 

Thus, if G is a semisimple compact connected Lie group, the Killing form 
1/1 yields a distinguished Ad-invariant metric on LG and thereby a W
invariant metric (u, v) = -1/!(u, v) on LT. Now, for a basis of weight 
vectors as above, ad(u) and ad(v) are given by diagonal matrices and 

1/!(u, v) = L ia(u) · ia(v). 
o:eR 

Thus if we identify the roots a with elements of L T using the chosen metric 
-1/1, then a(u) =(a, u) and -1/J(u, v) = (u, v). Hence 

(u, v) = L (ex, u) ·(a, v). 
o:eR 

With these identifications one can therefore say: The negative Killing form 
-1/1 is the canonical inner product on the root system of a semisimple 
compact Lie group. In order to compute the Killing form, one can start with 
an arbitrary Ad-invariant metric and normalize so that (5.11) is valid. 

The classification of connected Dynkin diagrams is simultaneously a 
classification of the simple complex Lie algebras. This appears as a central 



5. Dynkin Diagrams 215 

result in books on Lie algebras, see, e.g., Humphreys [1], 14.2, p. 75 ff. In the 
next chapter we will show how to read off the irreducible characters of a 
compact connected Lie group from the position of the root system in the 
lattice of integral forms. 

(5.14) Exercises 

l. Compute the Cartan matrices of the root systems ofrank two (3.11). 

2. Show that the Cartan matrices are regular. 

3. Show that a root system splits uniquely into a sum of irreducible root systems. The 
subspaces v. c: V and the subsets R, c: R of such a splitting are uniquely deter
mined by R c: V. Show that the Weyl group of R is the direct product of the Weyl 
groups of the irreducible components of R. 

4. Let R be a root system in V with Weyl group W. Show that R is irreducible if 
and only if V is irreducible as a W-module. In this case every W-orbit of R spans 
V. Show that the isotypical summands of the W-module V are irreducible. 
Hint: If V = V' $ V" is an s.-invariant splitting, then either IX e V' or IX e V". 

5. Show that the Coxeter graph determines the Weyl group and its operation on 
V up to isomorphism. 

6. Let R be an irreducible root system in V. Show that up to a constant factor there 
is exactly one W-invariant Euclidean metric on V (Ex. 4 and II, (1.16), Ex. 7). 

7. Let IX and P be roots of an irreducible root system with I lXI > 1/Ji. Let W be the 
Weyl group. Show that: 

(i) There is awe W such that (wiX, P> #: 0. Hint: Exercise 4. 
(ii) IIX 12/1 P 12 is either 2 or 3. 

(iii) There are at most two lengths of roots in R. 

8. Let R be a root system in V with Weyl group W. Show that there is precisely one 
W -invariant positive-definite inner product on V for which 

(u, v) = L (IX, u) · (IX, v). 
oeR 

This is called thectuWniclll inner product of the root system. Hint: Consider an 
irreducible root system. If ( ( , ) ) is any W-in variant inner product on V, then 
so is 

(u, v) ~ I ((IX, u)) · ((IX, v)). 
oeR 

Now apply Exercise 6. 

9. Show that 

L (IX, IX) =dim V 
oeR 

for the canonical inner product (Exercise 8). Hint: If A is the matrix of the inner 
products (IX, P> with IX, pER, then A2 = A and rank(A) =dim V. 
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10. Show directly that there are no cycles in a Coxeter graph, i.e., that a basis contains 
no roots a1, ••• , IXt such that a i is connected to a i + 1 and IXt is connected to a1• 

Hint: Let P = a1 + · · · + a1 • Then we would have <P. P> S: 0. 

11. Compute the determinant of the Cartan matrix for every type in the list (5.6). 
The answer is 

type A. B. c. D. E6 E, Es F• G2 

determinant n+1 2 2 4 3 2 1 1 1 

12. Let R be a root system of type B •. Show that its inverse root system R* is of type 
c. and that, for every other type of root system on the list (5.6}, R is isomorphic to 
R*. 

13. Let A, B, and C be endomorphism& of a finite-dimensional vector space and let 
[A, B] = AB - BA. Show that 

Tr([A, B] o C)= Tr(A o [B, C]). 

Now let L be a Lie algebra and ad X the endomorphism Z 1-+ [X, Z] of L. Show 
that ad[ X, Y] = [ad X, ad Y]. Let 1/I(X, Y) = Tr(ad X o ad Y) be the Killing 
form of L. Show that 

1/I([X, Y], Z) = 1/I(X, [Y, Z]). 

14. Let G be semisimple and H c LG be an ideal (i.e., a subalgebra such that 
[X, Y] E H whenever X E L and Y E H). Let H.l. be the orthogonal complement 
of H with respect to the Killing form. Show that H.l. is an ideal (Exercise 13). Show 
that LG is the direct sum of simple Lie algebras (i.e., algebras with no nontrivial 
proper ideals). 

6. The Roots of the Classical Groups 

In the abstract theory of Lie algebras it is most natural to work with the 
infinitesimal roots in the sense of (1.3) and II, (9.3). But with our approach, 
which best elucidates the connection with the integral lattice, we prefer to 
consider the real roots. We will give these for the various classical groups. 
This leads to the factor 2ni appearing at many places in our formulas. This 
factor can be avoided in abstract Lie theory. But we don't bother to do that 
since we only use Lie algebras as a means to an end. 

The reader should refer to IV, §3 for the description of the maximal tori 
and the Weyl groups, as well as for notational conventions. 

We start with the unitary group U(n) of complex (n x n)-matrices A such 
that* AA = E with • A = 1A. The other compact linear Lie groups appear as 
closed subgroups of the unitary groups. This gives us certain information 
about the other groups for free. 
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The Lie algebra consists of the skew-Hermitian matrices (but see I, (2.21) 
for physicists' notation) 

u(n) ={A e End(C")IA +*A= 0}. 

The Lie bracket is 

[A,B] =AB-BA 

and the exponential map is given by 

00 

exp(A) = L A"fk!. 
lc=O 

A convenient inner product on u(n) which is invariant for the adjoint repre
sentation is given by 

(6.1) (A, B)= (2n)- 2 Tr(*AB) = -(2n)- 2 Tr(AB). 

The maximal torus Ll( n) consists of the diagonal matrices, see VI, §3: 

We use then-tuple (.91, •.. , 811), .9. e IR/Z, to denoteD and have corresponding 
coordinates (81, ••. , .911), .9. e IR, for the Lie algebra LLI(n) ~ IR". The ex
ponential map sends (.9., ... , 8 .. ) e LLI(n) to D above and, thanks to the 
factor (2n)- 2, the invariant metric above restricts to the standard metric on 
L.d(n) ~ IR". 

As usual, we also denote the projection of LLI(n) onto the vth coordinate 
by 

Thus, in the following notation for roots, .9. is not an element of but rather 
a linear form on the Lie algebra of the torus. If we identify LLI(n) with its 
dual space as before, then .9. corresponds to the vth standard unit vector in 
LLI(n). 

We wish to determine the (real) roots of U(n). In other words, we are 
looking for the linear forms oc: L.d(n)-+ IR, oc '# 0, for which there is an 
element X '# 0 in C ® LU(n) such that 

[H, X] = 2nioc(H) ·X 

for all He LLI(n) c u(n); see (2.3)(f) and I, (2.11). 
So much for the preparations which are also relevant for the various 

subgroups of U(n). 
Now, the complexification of u(n) is gl(n, C) by the identification 

C ® u(n)-+ gl(n, C), z ® At--+z·A. 
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Here C ® L(U(n)/LI(n)) is the space of matrices with zero diagonal. The 
condition on IX now explicitly says 

HX - XH = 21titX(H) ·X 

where X =1:- 0 is a complex matrix with zero diagonal and H runs through 
the diagonal matrices 

H ~ 2•;[9' · ·. 9J 9.e Dl. 

(6.2) Proposition. For n 2::: 2 the group U(n) has the following root system: 

(i) Roots: 8,.- 8v, Jl =1:- v, 1 ~ Jl, v ~ n. 
(ii) Positive roots: 8,. - 8v, J.l < v. 

(iii) Basis: 8v - 8v+ 1, 1 ~ v < n. 
(iv) Type: An- 1 0---0- · · · ---0-----0. 
(v) Fundamental Weyl chamber: K = {H18v 2::: 8v+ 1, l ~ v < n} with H = 

(817 ••• , 8n) e LLI{n). 
(vi) Sum of the positive roots: 2e = L~= 1 (n - 2v + 1)8v. 

PRooF. The statements (ii)-(vi) follow from (i). To see (i), let E,.v e gl(n, C) 
be the matrix whose only nonzero entry is a 1 in the (/l, v)th position. These 
matrices for ll::;:. v form a basis for C ® L(U(n)/J(n)) and, for Has above, 
we have 

0 

The Weyl group is the symmetric group operating by permutations of 
the roots, see IV, (3.2). 

Notice that the root system of U(n) only has rank n - 1; the center of 
U(n) is one-dimensional. Since U(n) and SU(n) are the same modulo their 
centers, their root systems agree up to a trivial summand coming from the 
Lie algebra of the center (see end of §3). 

(6.3) Proposition. 

(i) The root system of SV(n) is that of U(n) as described in (6.2). 
(ii) The Lie algebra of the maximal torus is given by 

LSJ(n) = {(817 ••• , 8") e LLI(n)l J
1
8v = o} 

(iii) The integral lattice is given by 

I= Z" n LSLI(n) = {(817 ••• , 8n)l.9v e Z, ~ 8v = o} 
(iv) Let e. be the vth standard unit vector of LLI(n) ~ R". The inverse roots 

(8. - 8v+ 1)* = e. - e.+ 1, I ~ v < n, form a basis of the integral 
lattice of SU(n). 
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PROOF. Use the preceding remark and compare IV, (3.1). D 

Note that the element(} in (6.2)(vi) is an integral form for SU(n) but not 
for U(n). 

We now move on to the group S0(2n) for n ~ 2. Once again we use co
ordinates (9 1, ••• , 9") to describe the maximal torus. Each 9. determines a 
(2 x 2)-block 

D = [cos 2n9. -sin 2n9.] 
• sin 2n9. cos 2n9. 

in the matrix D which is an element of the torus. There is also a corresponding 
block 

H.= 2n[~. -~·] 
of the matrix H in the Lie algebra of the torus. 

The complexified Lie algebraIC® so(2n) consists of the skew-symmetric 
complex (2n x 2n)-matrices. Consider the two matrices 

M = [ 1 i] 
-i 1 ' 

One easily computes that 

H.· M = M ·H.= 2ni9. · M, 

Now we let 

Using 1H = -H we obtain 

[H"., X]= 2ni(9"- 9.)X, 

N ·H.= -H.· N = 2ni9. · N. 

Y=[-~ ~l 

[HI'•' Y] = 2ni(9" + 9.)Y. 

From this one can read off the roots of S0(2n): 

(6.4) Proposition. For n ~ 2 the group S0(2n) has the following root system: 

(i) Roots: ± 9" ± 9., 1 s J.l < v s n. 
(ii) Positive roots: 9" - 9., 9" + 9., 1 s J.l < v s n. 

(iii) Basis: a.= 9.- 9v+l> 1 S v < n, an= 9n-l + 9n. 

(iv) Type: D, 0----0-- · · ·-< fo' n ;, 4 ((6.8), Ex. I). 

(v) Fundamental Weyl chamber: K = {Hi9. ~ 9.+ 1, 1 s v < n, and 
9n-l ~ 19nl} for H = (91, ... , 9n) E LT(n). 

(vi) Sum of the positive roots: 2(} = 2 L~= 1 (n - v)9 •. 
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PROOF. (i) The preceding discussion shows that these are actually roots. 
There can't be more since we have already exhibited 2n(n- 1) = 
dim L(S0(2n)/T(n)) roots. As before, the rest is easily verified. D 

For n ~ 2, the group S0(2n + 1) has the same maximal torus and the 
roots of S0(2n) are also roots of S0(2n + 1 ). With H. as above, we define 

H . 
Z= . 

0 

rH. 1 1 R.=lTo], 
One computes that 

[H., Z] = 2ni8. · Z. 

Thus ±B. is a root ofS0(2n + 1) and by comparing numbers and dimensions 
as above we obtain: 

(6.5) Proposition. For n ~ 2 the group S0(2n + 1) has the following root 
system: 

(i) Roots: ±811 ±B., 1 ::;;; Jl < v::;;; n, and ±B., 1 ::;;; v::;;; n. 
(ii) Positive roots: 811 ± B.Jor Jl < v, and B.Jor 1 ::;;; v ::;;; n. 

(iii) Basis: a.= B.- Bv+t for 1 ::;;; v <nand an= Bn. 
(iv) Type: Bn 0----0- · · · ---():::::::z:: · 
(v) Fundamental Weyl chamber: K = {HI B. ~ B.+ 1, Bn ~ 0} for 

H = (81, ••• , Bn) e LT(n). 
(vi) Sum ofthe positive roots: 2{! = L~=t (2n- 2v + 1)8.. D 

The root systems of the symplectic groups Sp(n), n ~ 2, are similar to, 
but not exactly the same as these. We describe the maximal torus T" and its 
Lie algebra by coordinates (81, ••• , Bn) which in this case correspond to the 
matrices 

Zn 
E T", 

Zt 

Zn 

a. 

H = 2ni 
Bn 

eLT" 
-B. 

-Bn 
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with zv E exp(2ni.9v). The complexified Lie algebra C ® sp(n) is the same as 
the Lie algebra ofSp(n, iC) and therefore consists of those complex (2n x 2n)
matrices A such that 

'AJ + JA = 0, J = [0 -E] 
E 0 ' 

where E is the identity matrix in GL(n, IC); see I, (1.12)and Ill, (8.7). Explicitly 
this means that LSp(n, iC) consists of the complex matrices of the form 

U, V, WE gl(n, IC), 
'V= V, 'W= W. 

Again, let E!Jv denote the matrix with a 1 at position (Jl, v) and zeros every
where else. One computes that 

[H, En+!J,v + En+v,/JJ = -2ni(.9/J + .9v) · (En+!J,V + En+v,/J) 

for 1 s; Jl s; v s; n, and 

[H, E/JV- En+v,n+IJ] = 2ni(.9/l- .9v)' (E!Jv- En+v,n+!J) 

for 1 s; ll < v s; n. 
From this we obtain: 

(6.6) Proposition. For n ~ 2 the group Sp(n) has the following root system: 

(i) Roots: ± .9/J ± .9., 1 s; Jl < v s; n, and ± 2.9., 1 s; v s; n. 
(ii) Positive roots: .9/l ± .9vfor Jl < v and 2.9vfor 1 s; v s; n. 

(iii) Basis: IXv = .9v- .9v+ tfor 1 s; v < nand 1Xn = 2.9n. 
(iv) Type: Cn 0----0- .. ·----()::::::::; (Cn = Bn for n = 2). 
(v) Fundamental Weyl chamber: K = {HI.9v ~ .9v+ 1, .9n ~ 0} with 

H = (91> ... , 9n) E LT". 
(vi) Sum of the positive roots: 2g = L~= 1 2(n - v + 1).9v. D 

In all the cases above-with the exception of SU(n)-we have chosen the 
coordinates of the torus so that the integral lattice I c LT is simply the 
lattice 7L". Thus the lattice /* of integral forms is given by 

I* = L nv . .9., nv E 7L. 

With the chosen coordinates, the invariant metric on LT is the standard 
Euclidean metric. If we use this metric to identify LT and LT*, then I*= 7L" 
too. 

Of course, the root system depends only on the Lie algebra. Indeed even 
the Lie algebra of a maximal torus may be characterized as a maximal 
abelian subalgebra. Thus, for example, the root system of Spin(m) is iso
morphic to that ofSO(m) since Spin(m) is a cover ofSO(m) and has the same 
Lie algebra. But this is not the whole picture. The calculations above also 
yield information concerning the integral lattice and the lattice of integral 
forms. This will prove to be important for representation theory. One can 
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read off how the root system of Spin(m) sits in the lattice of integral forms 
from IV, (3.12). 

(6.7) Proposition. Let m = 2n or m = 2n + 1. The root system of Spin(m) 
is that of SO(m). Let p: Spin(m) ~ SO(m) be the covering map. Choose 
coordinates for Lf(n) ~ LT(n) in which Lp is the identity. Then the integral 

lattice of Spin(m) is given by 

i = {(.91, ... , 9n)19. E Z for 1 :$ v :$nand ~.9. E 21:}-

The lattice i* of integral forms of Spin(m) consists of the linear forms 

(.91, .•. , .9") ~ x 191 + · · · + xn9n with either x. E Z for all v or x. + t E Z 
for all v. If we identify LT(n) with (LT(n))* by means of the standard metric 
(which is invariant under the Weyl group), we therefore have 

i* = {( + t:(l, ... , 1)1( E zn and t: = 0 ore= t}. 0 

Note that the coordinates in this proposition are not the same as those 
in IV, (3.10), for which i would be Z" of course. However, the essential thing 
is to clarify how i of Spin(m) is related to I of SO(m) in LT(n) = LT(n). 

(6.8) Exercises 

1. Show that the root system of S0(6) is of type A3 and that the root system of S0(4) 
splits into two summands of Type A1. See also VI, (6.20), Ex. 12, 13. 

2. Show that the root systems ofS0(3) and Sp(l) are both of type A1. See also I, (6.18). 

3. For which irreducible root systems R in V is -idv an element of the Weyl group? 

4. Let G be a compact connected Lie group whose adjoint representation factors 
through Spin(n): 

///Spi•) 

G~SO(n) 

Show that the half sum of the positive roots of G is an integral form on LT. Hint: 
Let T be the maximal torus of G and T(n) that of SO(n). Without loss of generality 
there is a restriction Ad: T-+ T(n). Consider the compositions 

IX.: LT i:"AtLT(n) &: IR. 

Show: If /3~> ... , 13m are the positive roots of G, then L~~ 1 e./3. = L~~ 1 IX• with 
e.= ± 1. 

5. Does the adjoint representation factor through Spin? Show that the answer is 
no for U(n) and S0(2n + 1) and yes for SU(n), Sp(n), and Spin(n). Hint: The last 
three groups are simply connected. 
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In this section we stick to the following notation: G is a compact connected 
Lie group,j: T--+ G is the inclusion of a maximal torus, W is the Weyl group, 
R is the root system, and we assume we have fixed a W-invariant inner product 
as well as a basis and thereby positive roots. We will show how to read off 
the fundamental group x1(G) from the position of the root system in the 
lattice of integral forms. In the process we will see that the second homotopy 
group of G is always zero. As a prerequisite we require a little elementary 
knowledge about fundamental groups and covering spaces. 

Unless otherwise indicated, we will choose the unit element of G as base 
point. 

First we consider the torus. The exponential map exp: LT -+ T is the 
universal covering, since LT ~ iRk is contractible and the integral lattice 
I = ker(exp) is discrete. Thus I is the group of covering transformations of 
the universal cover and hence 

I ~ n1(T). 

Describing elements of the fundamental group as homotopy classes of 
paths, this isomorphism sends the element z e I to the homotopy class of the 
path tl-+ exp(tz). From now on we identify I with x1(T) in this way. The 
main result of this section is: 

(7.1) Theorem. The inclusion of the maximal torus induces a surjection 
j*: I= n1(T)--+ x 1(G). 

The kernel of j* is the group r c I generated by the inverse roots (see (3.4)). 
Thus 

x1(G) ~ Ijr. 

The second homotopy group x2(G) vanishes. 

The proof will be finished after (7.12). 

(7.2) Lemma. r c ker(i.). 

PRooF. An inverse root oc* e r corresponds to the path t H exp(toc*) in G. 
But for 0 $ t $ t we have 

exp(l - t)oc* = exp(- toc*) = s« o exp(toc*). 

Thus it suffices to show that the two paths 

t H j o exp(toc*), 

t H j o s« o exp(t()(*), 
0$ t $ t. 
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are homotopic with fixed endpoints. For the difference of these two paths 
is the path t ~--t j o exp(ta*). 

Now, the endpoint exp{ta*) is in U,.., the kernel of the global root 
8 .. : T-.. U(1) corresponding to a. This is because 8 .. o exp(ta*) = 
exp(2xia(ta*)) = exp(2xi) = 1. However, s .. is induced by conjugation with 
an element in the centralizer of U,.. 

g e Z(U,..) = Z(U~), 

and this group is connected (IV, (2.3)(ii) and (2.9)(iii)). Any path t ~--t g(r) 
in Z(U,..) with g(O) = 1 and g(l) = g induces a homotopy 

(t, r) ~--t g(r) exp(ta*)g(-r)- 1, 0 ~ t ~ 1, 

between the two paths above leaving the endpoints fixed. D 

Next, recall the notion of the regular elements IV, (2.10). We denote the 
set of regular elements of G by G,. 

(7.3) Lemma. G, is path-connected and the inclusion G, _:. G induces an 
isomorphism 

and a surjection 

x2(G,) _,. x2(G). 

Here we must choose the basepoint in G,. 

PROOF. The set of singular points G.= G\G, has codimension at least 3 in 
G in the sense of (2. 7). Now in general, a continuous map between differen
tiable manifolds can be deformed into a differentiable map. And in this 
situation, a differentiable path in G joining two points of G, can be deformed 
with fixed endpoints into a path in G,. Similarly, a differentiable map 
82 -.. G sending the basepoint to G, can be deformed with fixed basepoint 
into a map with image in G, (see, e.g., Brocker and Janich [1], 12.9, 14.8, 
14.9, Ex. 3). This shows that G, is path-connected and the maps in the lemma 
are surjective. Applying the same argument to a contraction of a loop 

we see that x1{G,)-.. x1{G) is injective. See also (7.16), Ex. 2. D 

Thus our task is to compute the first homotopy groups of the regular 
part G,. Here we can explicitly give suitable coverings including the universal 
covering. 

(7.4) Lemma. The conjugation map 

q: G/T X T,. _,.G., (gT, t) ~--t gtg- 1 
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is a (not necessarily connected) I Wl{old covering. Here I WI is the order of 
the Weyl group and T, is the regular part of T. 

PRooF. In a regular point t we have 

det(q) = det(AdG1rlt- 1) - EG1T) :F 0 

(see IV, (1.8)). Thus q is a local diffeomorphism. The Weyl group W operates 
from the left on G/T via 

w(gT) = gTn- 1 = gn- 1T for w = nTeN(T)/T = W. 

It also operates on T, and hence diagonally on G/T x T,. Moreover, q is 
equivariant for this action: 

qw(gT, t) = q(gn- 1T, ntn- 1) = gtg- 1 = q(gT, t). 

Let G/T x w T, be the orbit space of this operation. Then the map q factors 
as 

q: G/T X T, pt G/T X w T,-; G,. 

Since W acts freely on G/T, the projection pr is a covering of manifolds and 
ij is a local diffeomorphism. Since q is surjective, so is ij. Finally, we show 
that ij is also injective and hence is a diffeomorphism. By definition, each 
t e T, lies in no maximal torus other than T. Thus if gtg- 1 = g1t1g1 1, then 
(g1 1g)t(g1 1g)- 1 = t 1 e T, and therefore g1 1g = neN(T). Hence ifw = nT, 
then w(gT, t) = (g1 T, t 1). 0 

(7.5) Proposition. n:iG) = 0. 

PRooF. A covering induces isomorphisms of the higher homotopy groups. 
Thus we have an isomorphism 

q.: n:iG/T x K)-+ n:2(G,) 

for every connected component K c: T,. By (7.3), every element of n:2(G) is 
therefore induced by a map S2 -+ Gin the following diagram: 

s:_-----+ G/T x K c: G/T x r, ----q--+ G, 

--~~:~-~J'----------- l jc 
~G/T X T ----q--+ G 

Now, the second component cp2 : S2 -+ T is null-homotopic since n:2(T) ~ 
n:2(LT) = 0. Thus we may assume that cp2(S2) = {1} c: T. But then 
q(cp1(x), cpz(x)) = q(cp1(x), 1) = 1. 0 

(7.6) Proposition. n: 1(G/T) = 0. 



226 V. Root Systems 

PROOF. Let K be a component ofT,. as above and let p E K. Consider the 
diagram 

1tl(G/T) = 'Ttt(G/T X {p}) ~ 'Ttt(G/T X K)--=---. 'Ttt(G,) l· .. ]· 
'Ttt(G/T X {1}) q.=O 'Ttt(G) 

The map q* in the top row is injective since q is a covering there. Starting 
with a path joining p and 1, one constructs a homotopy which shows that 
the diagram commutes. D 

(7.7) Corollary. The map j*: n 1(T)- n 1(G) is surjective. 

PRooF. This follows from the exact sequence of homotopy groups for the 
fibration T c G- G/T (see Hu [1], V, 6, p. 152): 

D 

If we were willing to apply some facts from differential geometry we could 
show this result as follows: An element in n1(G) is represented by a closed 
curve which may be deformed into a geodesic through the unit element with 
respect to a translation invariant Riemannian metric. But the geodesics 
through the unit are simply the one parameter groups, that is, they are curves 
with constant covariant derivative. And each one-parameter group lies 
entirely in a torus. Thus, up to conjugation and hence homotopy, it lies 
in T. 

We can now directly give a universal covering of G,: Since n1(G/T) = 0, 
we need only replace the factor Kin G/T x K by its universal covering. This 
we will do somewhat systematically. 

(7 .8) Definition. The family of affine hyperplanes in LT 

Lan = IX- 1{n}, IXER+, nEZ 

together with the union LT, = Ua,n Lan is called the Stiefel diagram of G. 
The Stiefel diagram is the inverse image of the set of singular points of T 
under the exponential map. Therefore we call the elements of L T, singular 
and the points in the complement regular. The set LT, of regular points in 
LT decomposes into convex connected components which are called the 
chambers of the Stiefel diagram or the alcoves of G. The group a of iso
metries of LT generated by the reflections san in the hyperplanes Lan of the 
Stiefel diagram is called the extended Weylgroup of G. The walls of an alcove 
and the reflections in a wall are defined as for the Weyl group. 

Figure 24 illustrates some two-dimensional Stiefel diagrams together with 
the integral lattices (see Adams [1], (5.2), pp. 102-104, Bourbaki [1], 
Ch. IV-VI, PL. X, p. 276). 
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S0(4) 

Sp(2) 

o integral elements • inverse roots 

Figure 24 

(7 .9) Proposition. Let r be the group of translations of LT generated by the 
inverse roots. Then r is normal in Q and Q = W · r as a semidirect product. 

PROOF. Let y,. be the translation by ex*, ex E R+. From cx(cx*) = 2 we obtain 
y«L«n = La.n+l and hence the relations 

From this we see that Q is generated by rand W. We also have wyiT.w- 1 = 
Yw<«l for wE W, ex E R+. Thus r is normal in D. Also, W n r = {1}, since 
only the identity translation fixes the origin. 0 

In particular, this description shows that Q acts discontinuously on LT: 
An orbit can't have any cluster point. 

(7.10) Proposition. The extended Weyl group Dis generated by the reflections 
in the walls of any fixed alcove and acts simply transitively on the set of all 
alcoves. 

PROOF. If one uses the fact that the Q-orbits in LThave no cluster points, 
then this follows word for word as in the proof of the corresponding state
ment for the Weyl group (4.1) and (4.2), (2.12). 0 
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As promised, we can now explicitly give a universal covering of the regular 
part G,. Indeed, let P be a fixed alcove of the Stiefel diagram and K a con
nected component of T,. Consider the diagram 

G/T X LT => G/T X p 

id x apj ;d x apj ~ 
G/T X T => G/T X K ----q--+ G, 

The left vertical arrow is a covering, the inclusions are open, and the domain 
of the second vertical arrow is a connected component of the full inverse 
image of the range. Hence the second vertical arrow is a covering and from 
(7.4), (7.6) we get: 

(7.11) Proposition. Let P be any alcove. The map 

p: G/T x P ---.. G, (gT, v) 1-+ g · exp{v) · g- 1 

is a universal covering. 0 

Therefore the fundamental group we are looking for is the group Aut{p) 
of covering transformations of this cover. We compute this group as follows: 

First, we describe a group Ll of covering transformations of 

G/T x LT,---.. G, (gT, v) 1-+ g · exp(v) · g- 1 

which acts simply transitively on the fibers. This group Ll of isometries of 
LT is generated by the group I of translations together with W. Just as in 
the case of a, we see that I is normal in Ll and Ll = W · I as a semidirect 
product. The group Ll acts properly and discontinuously on LT. That is to 
say that every point possesses a neighborhood U such that bUn U = 0 
for all but finitely many b e Ll. Furthermore, b e Ll transforms the Stiefel 
diagram into itself and hence operates on LT,. The group W operates on 
G/T via 

w(gT) = gn- 1T for w = nTeN(T)/T= W 

and the projection Ll ---.. LI/I = W induces an action of Ll on G/T. With these 
actions Ll operates diagonally on G/T x LT,. This action is not only proper 
and discontinuous but also free. In other words, the only element of Ll with 
a fixed point is the identity. To see this, let w = nT as above and {) = wz 
with z e J. If (gn- 1T, n(t + z)n- 1) = (gT, t), then neT and so w is the 
identity in W. Thus z = 0. 

As in the proof of (7.3), it now follows that the map of the orbit space 

G/T xtJ LT,---.. G, (gT, v)/LI ~--+ g · exp{v) · g- 1 

is a diffeomorphism. And this, in turn, means that the map 

G/T X LT,---.. G, 
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is a covering with L1 operating simply transitively on the fibers. In other 
words, G jT x L T, -+ G, is the projection of a L1-principal bundle, see I, ( 4.2). 
Now, Q is a subgroup of L1 and, in fact: 

(7.12) Lemma. Q is normal in L1. 

PROOF. Conjugation by w E W sends Q into itself and (if we think of I as a 
group of translations) conjugation by 1 E I fixes r. Thus we only need to 
check that zwz- 1 ED. But zwz- 1 = w(w- 1 zw)z- 1 = w·w- 1(z)·z- 1• Here 
w- 1(1) is the result of w- 1 E W acting on z E I c LT. Thus w- 1(1) = yz for 
some y E r since (in additive notation) s..(z) = 1 - (a, z)a* for any reflection 
S11 E W. Putting this together, I WI- 1 = wy. 0 

PRooF OF THEOREM (7.1). After factoring out the action of Q, the covering 
G/T x LT,-+ G, induces the covering 

G/T X Cl LT,-+ G,. 

The factor group L1jQ operates as a group of covering transformations on 
this covering space-still simply transitively on fibers. But L1jQ = W I/W r ~ 
Ijr and G/T x a LT, ~ G/T x P because Q acts simply transitively on the 
set of alcoves. Therefore G/T x 0 LT,-+ G, is the universal cover and 
L1/Q ~ Ijr ~ Aut(p) its group of covering transformations. Consequently, 
Ijr ~ n 1(G,) ~ n 1(G). Admittedly, this proof doesn't clarify why the iso
morphism Ijr-+ n1(G) is induced by the inclusion of the maximal torus as 
claimed. However, we already know thatj*: I= n 1(T)-+ n 1(G) is surjective 
and that r is in the kernel (7.2), (7.7). And since the image is isomorphic to 
I/F, one readily sees that the kernel must be equal tor. 0 

(7.13) Remark. If G is a compact connected Lie group, then the following are 
equivalent: 

(i) G is semisimple (see (3.13)). 
(ii) The center Z(G) is finite. 

(iii) tt 1(G) is finite. 
(iv) The universal cover G of G is compact. 
(v) The Killing form of G is negative-definite. 

PROOF. The equivalence of (i) and (ii) is in (3.14). But (ii) says the rank of the 
root system-and hence of r -is equal to dim LT. This is the same as saying 
that Ijr is finite, so (ii) and (iii) are equivalent. The equivalence of (iii) and 
(iv) is clear from the theory of coverings and the equivalence of (ii) and (v) 
isin(5.11). 0 

We have already remarked that, in the case of a covering p: G-+ G, the 
root systems of G and G agree, whereas the integral lattices may be different. 
But for a simply connected Lie group I = r and the lattice r is determined 
by the root system. Thus if G is semisimple, r is the integral lattice of the 
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universal cover G. In a simply connected group, the half sum of the positive 
roots is always integral since it is integral on r; see (4.12)(iv). 

The following proposition complements the main theorem (7.1) of this 
section and facilitates reading off 1t 1 (G) ~ I I r from the Stiefel diagram. 

(7.14) Proposition. Let A be an alcove of G. Then the set In A forms a system 
of representatives of Ijr. Hence the order of n1(G) is the number of integral 
elements in A. 

PRooF. Every .0-orbit and hence every r -orbit meets A in at most one point 
((7.16), Ex. 3). Thus different elements of In A lie in different r-cosets in I. 
Suppose z E I. Since .0 acts transitively on the set of alcoves, there are 
we W and y e r such that y + w(z) eA. But we have already seen that 
w(z) - z e r since S11(z) = z - (!X, z)!X*. Together we have z + w(z) -

z + "'E A and w(z) - z + "'E r. 0 

The elements of I n A always lie on the boundary of A. If G is semisimple, 
they are vertices since they meet every family U .. eZ L 11,. of parallel hyper
planes of the Stiefel diagram. 

(7 .15) Definition. We will call an integral element central if it meets every 
family (L11,. In E Z) of parallel hyperplanes of the Stiefel diagram. Thus the 
closed subgroup of LT of all central elements is 

nUL~~ ... 
11eRneZ 

In other words, the central elements are precisely those which the exponen
tial map sends to nlleR u ... the center of G. 

(7.16) Proposition. Let Z(G) be the center, A the set of central elements, and 
A an alcove of G. 

(i) The exponential map induces an isomorphism 

A/I~ Z(G). 

(ii) If G is simply connected then 

Z(G) ~ A/r. 

(iii) The set An A forms a representative system for Ajr. 

PROOF. (i) and (ii) are clear since A = exp- 1 Z( G). For (iii) we may assume 
that G is semisimple and hence A is discrete since LZ(G) is orthogonal to 
the subspace of LT generated by r. However A is the integral lattice for 
G/Z(G) if G is semisimple and (iii) is a special case of (7.14). 0 
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To summarize: If we are given the root system of a semisimple Lie group 
and therewith the discrete groups r c A of translations, then there is pre
cisely one simply connected compact Lie group G with this root system and 
we have 

I(G) = r, Z(G) = A/F, 

I(G/Z(G)) = A. 

The other semisimple Lie groups with the same root system are obtained 
from G by factoring out a central subgroup. Every central subgroup C c A/F 
gives rise to a compact Lie group G = G/C with n 1(G) ~ C and integral 
lattice I(G) equal to the inverse image of C under the projection A-+ Ajr. 
Thus r is the smallest possible integral lattice (the inverse roots are integral) 
and A is the largest possible (the integral elements are central). The other 
possible integral lattices lie inbetween. The reader will not be denied the 
pleasure of using the Stiefel diagrams displayed following (7.8) to read off 
the possible coverings and quotients of the given groups (see also 
(7.17), Ex. 11). 

The geometric treatment of the fundamental group is due to Weyl [1]. 
For the Stiefel diagram, see Stiefel [1], [2], and for its structure, see also 
Bourbaki [1], V, §3.9. 

(7.17) Exercises 

1. Show that the fundamental group of any topological group is abelian. Hint: Group 
multiplication induces a homomorphism ll.: n1(G) x n1(G)-+ n1(G) which is 
multiplication in 1t 1 (G). 

2. For the proof of (7.3) we need the following result about general position: Let 
L, M, N be (compact) differentiable manifolds with dim L + dim N < dim M. 
Suppose we are given differentiable maps L -+ M +-- N. Let A c N be closed 

f g 
and f(L) n g(A) = 0. Then there is a differentiable map g1 : N-+ M homotopic 
tog withf(L) n g1(N) = 0 and g1 jA = gjA. Here is a way to prove this: 

Choose a closed neighborhood B of A such that f(L) n g(B) = 0. First look at 
a local situation 

L M N 

where D is compact, D n A = 0 and U ~ IR" may be considered as a vector 
space. Choose a small p e U not in the image of the map f- 1 U x g- 1 U -+ U, 
(x, y) 1-+ f(x) - g(y) and put g1 = g + t/J · p for a function t/J on N with value 1 
on D and 0 on A as well as outside g- 1 U. Given a finite set of similar local situations, 
there is a p sufficiently small so thatf(L) n g1 (B u D) = 0 and the other situations 
are not thrown out of wack. Thus one may proceed inductively, covering N by B 
and (locally) finitely many D's as above. 
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3. Generalize (4.1) to the operation of the extended Weyl group Don LT. In parti
cular, show that every D-orbit meets every closed alcove in exactly one point. 

4. Use the following to show that D acts transitively on the set of alcoves of the 
Stiefel diagram: Let P, Q be alcoves with a common wall. An orbit containing P 
also contains Q, and every two alcoves may be connected by a finite chain in 
which every pair of consecutive alcoves has a wall in common. 

5. The group of covering transformations Aut(p) of G/T x P-+ G may be thought 
of as that subgroup of ..1 consisting of elements mapping P into itself. Give an 
injective homomorphism 1/T-+ ..1 whose image is this subgroup. 

6. Show that n2(G/T) ~ T. 

7. Show that there is exactly one translation y e r with 0 e yP for a given alcove P. 

8. Show that the rank of the abelian group n1(G) is dim Z(G) and that the map 
n1(Z(G))--+ n1(G) is injective. 

9. Use (7.1) to compute the fundamental groups of the classical groups and compare 
the result with that in the first chapter. 

10. Classify the compact connected Lie groups of rank two. In other words, classify 
the Stiefel diagrams with integral lattices associated to the root systems of rank two. 
Verify the Stiefel diagrams (Figure 24) using §6. 

11. Let D be the extended Weyl group of R, let r c D be the subgroup of translations, 
and let W c D be the Weyl group. Show that the following statements concerning 
peLT are equivalent: 

(i) p is central. 
(ii) D, ~ W, where D, is the isotropy group of p in D. 
(iii) D = D, · T. 

8. The Structure of the Compact Groups 

This section is not part of the mainstream of this book and may be taken as 
a sort of appendix. We will therefore feel free to use certain important facts 
which we have not properly discussed. Included in these are the corre
spondences between Lie algebras and simply connected Lie groups and 
between subalgebras of the Lie algebra and connected subgroups. Although 
the rest of the book is independent of this section, knowledge of the main 
result (8.1) can help clarify the general picture. 

A semisimple compact connected Lie group G is the factor group of a 
simply connected group by a finite (central) subgroup (Remark (7.13)). 
The simply connected group is determined by the Lie algebra of G. Its center 
can be read off from the root system and hence from the Lie algebra as we 
have seen in the last section. This section concerns itself with the structure 
of an arbitrary compact connected Lie group. 
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(8.1) Theorem. A compact connected Lie group G possesses a finite cover 
which is isomorphic to the direct product of a simply connected Lie group G 
and a torus S. In particular, G is also compact. 

PROOF. According to the theory of covering spaces, the finite covers of G 
correspond to the subgroups of n 1(G) of finite index. Now n1(G) ~ Ijr, 
where I is the integral lattice of G and r, which is generated by the inverse 
roots, depends only on the Lie algebra. 

Let H c LT be the subspace spanned by the inverse roots and let HJ. be 
its orthogonal complement with respect to a W-invariant inner product. 

(i) Lemma. (I n H) EEl (I n H J.) has finite index in I. 

PROOF OF (i). Since His a W-submodule of LT, so is HJ.. In fact, HJ. is the 
fixed module of W since W leaves an element fixed precisely if it is orthogonal 
to every (inverse) root. Thus 

p:LT-+H\ X 1-+ I w 1- 1 L wx 
weW 

is the orthogonal projection with kernel H. Since I is invariant under W, 
we have I W lp(l) c I. Thus, if z E I, 

I Wlz =(I Wlz- I Wlpz) +I Wlpz E (In H) EEl (In HJ.). 

Thus the index of (In H) EEl (In HJ.) in I is at most I WI· dim T, which 
shows (i). 

By (i), we can find a finite cover G1 of G with integral lattice 

I(G 1) = (I n H) EEl (I n HJ.). 

Thus I(G 1) = (I(G 1) n H) EEl (I(G 1) n H1.). Replacing G by G1, we may 
assume 

(ii) I = (I n H) EEl (I n H1.). 

But r c I n H, and the rank of r is equal to the dimension of H. Hence r 
has finite index in I n H and as above we may assume 

(iii) r =In H. 

It is under these assumptions that we will show G is the product of a torus 
and a simply connected group. 

Now, HJ. is the intersection of the kernels of the roots and hence the Lie 
algebra of the center Z of G. LetS be the connected component of the identity 
of Z. Then Sis a torus and LS = H1.. 

Next, we find the complementary group as follows: We may suppose that 
theW-invariant metric on LT is induced by an inner product on LG which 
is invariant under the adjoint representation. Let K be the orthogonal 
complement of HJ. in LG with respect to this metric. Since Sis central, HJ. 
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is a (trivial) G-module. Therefore K is also a G-module for the adjoint 
representation and so K is a subalgebra (in fact an ideal) of LG. That is, 

[X, Y] = ad(X)Y = !Lo Ad(exp(sX))Y E K 

for Y E K, see I, (2.11). 
We now quote the general fact that there is a Lie subgroup G of G, corre

sponding to the subalgebra K c LG, such that LG = K. See, e.g., Lang [3], 
Ch. VI, 5, Th. 6, p. 148 or Chevalley [1], Ch. IV, §IV, Th. 1. 

Since S is in the center of G, we have a homomorphism 

(iv) <p: G x S ~ G, (g, s) 1-+ gs. 

Furthermore, <p is surjective since L<p is surjective. We will show that <p is 

also injective. Let x E G n S, where we think of G as a (not necessarily 
closed) subset of G. Then xis in the center and hence in the maximal torus 
f of G. Now Lf ffi Hl. = Lf ffi LS is the Lie algebra of a torus in G. Since 
H ffi Hl. = LT, it follows that H = Lf. Thus there are hE H and v E Hl. 
with exp(h) = x = exp(v). Since hand v both lie in LT, we have exp(h- v) = 1 
and soh - v E I. Thus hE I by (ii) and sox = exp(h) = 1. 

Thus we have shown cp to be bijective and hence cp is an isomorphism of 
Lie groups (I, (2.22), Ex. 1). Finally, G is simply connected since I(G) = 

I n H = r by (iii). 0 

Remark. A proof of the quoted theorem on integration of Lie subalgebras 
might go as follows: By a theorem of Frobenius, the Lie algebra K is in
tegrable. And since K is left-invariant, the maximal integral submanifold 
G of K containing the unit element is also left-invariant. But if x E G, then 
both G and xG are maximal integral submanifolds containing x. We conclude 
that xG = G and thus the inclusion G c G is a subgroup of G. (Recall that 
by definition I, (3.9) a Lie subgroup is an injective homomorphism of Lie 
groups.) 

We will now consider a short exact sequence 

1--..Z--..G-+H--..1 
p 

with G connected and Z finite. The surjective (covering) map p induces an 
injection of representation rings R(H)- R(G). We think of these rings as 
rings of functions on G and H and, since distinct irreducible characters are 
linearly independent over C, we obtain an embedding of R(G) ® C into the 
ring C(G) of continuous (or analytic) complex-valued functions on G. The 
same holds for Hand p induces injections C(H)- C(G) and 

p*: R(H) ® C ~ R(G) ®C. 

Using this, we think of R(H) ®Cas a subring of R(G) ®C. 
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(8.2) Lemma. Let x be an irreducible character of G and suppose that z is 
in the center of G. Then for all g E G: 

x(gz) = x(g) · x(z)/x(I), 

or, in perhaps more sensible notation, 

x(gz) x(g) x(z) 
xO) = x(l) · x(I) · 

PROOF. Let g H D(g) E U(n) be the representation corresponding to X· 
Then D(g). D(z) = D(z). D(g) and, by Schur's lemma, D(z) = ( · id for some 
( E C. Thus the claim says that 

Tr(( · D(g)) = Tr(D(g)) · Tr(( · id){fr(id), 

which is obvious. 0 

Now, the right translation rh: G...,. G, g H gh, induces a ring homo
morphism 

rt: C(G)...,. C(G), f H fh, with fh(g) = f(gh). 

The lemma tells us: 

(8.3) Corollary. If z is in the center of G then r: maps the subring R(G) ® C 
into itse !f. 

Looking at the exact sequence above, for z E Z we obtain an auto
morphism ri of R(G) ® C which is the identity on R(H) ®C. We let 

Aut(RG ® C, RH ® C) 

denote the group of all automorphisms of the ring RG ® C which leave 
RH ® C pointwise fixed. We get a homomorphism of groups 

(8.4) 0: Z...,. Aut(RG ® C, RH ®C), 

(8.5) Proposition. Let G be compact and connected and let Z c G be a finite 
subgroup of the center, and let H = GjZ. Then 0 is an isomorphism. 

PROOF. We will construct a homomorphism 

0': Aut(RG ® C, RH ®C) .... Hom(Hom(Z, S1), S1). 

The group on the right is canonically isomorphic to Z via the duality 
Z H (({J H qJ(z)). 

In order to define 0' we have to assign an element of S1 to every pair 
(IX, qJ) consisting of an automorphism IX of RG ®Cleaving RH ® C point
wise fixed and a homomorphism qJ: Z .... S1 . Since Z is finite, the assigned 
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element must be a root of unity. This root of unity is obtained using the 
following 

(8.6) Lemma. Let X be an irreducible character of G, let n be the order of Z, 
and let rJ. E Aut(RG ® C, RH ® C). Then there is an nth root of unity rJ.x 
such that 

PRooF. By (8.2) 

X"(gz) = X"(g) for Z E Z 

since (x(z)/x(1))" = x(z")/x(l) = 1. Thus x" as well as its associated repre
sentation is trivial on Z. Hence x" E RH ® C and rJ.X" = x". For g e G with 
x(g) "# 0 we define c9 by 

(rJ.x)(g) = c9 • x(g). 

Then c; = 1 and so c9 is constant on connected components of 
{g E Glx(g) "# 0}. But x(l) "# 0 and hence the analytic functions rJ.X and 
c 1 · x agree on a neighborhood of 1. It follows that c9 = c 1 = rJ.X every
where. 0 

Now we come to the construction of the homomorphism E>' as promised. 
So suppose a E Aut(RG ® C, RH ®C) and <p: Z--. S1 are given. Then <pis 
an irreducible character of Z and using III, (4.5) we choose an irreducible 
character x of G so that xiZ contains the character <p. Notice that xiZ is a 
multiple of <p since xis irreducible and Z is in the center ((8.7), Ex. 1). We 
define 

(E>'rJ.)(<p) = rJ.x. 

We now have to check the following points (i)-(v): 

(i) The definition is independent of the choice of X· 

PRooF. Let x' be another irreducible character such that x' I Z is a multiple 
of <p. Then 

(x(gz) - x'(gz))" = (x(g)x(z)/x(t) - x'(g)x'(z)/x'(l))". 

But xiZ = x(l) · <p, x'IZ = x'(l) · <p. Therefore x(z)/x(1) = x'(z)/x'(l) = <p(z), 
which is an nth root of unity, and so (x(gz) - x'(gz))" = (x(g) - x'(g))". Thus 
(x - x')" E RH ® C. As above we conclude that 

rJ.(X - x'> = c • <x - x') 

for a constant c. On the other hand 

rJ.(X - x') = IXx. • X - IXx.' • t. 
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Since distinct irreducible characters are linearly independent, it follows that 
!Y.x = !Y.x· =c. 

(ii) If a e Aut(RG ® C, RH ®C), then 0'a: Hom(Z, S1)-+ S1 

is a homomorphism. 

PROOF. Let((),(()' e Hom(Z, S1). Choose irreducible characters x and x' such 
that xI Z = m · ({) and x' I Z = m' · (()'. Then x · x' I Z = m · m' · ({) · (()' and 
a(x · x') = ax· ax·· x · x'. Although x · x' need not be irreducible, we clearly 
have a(xl) =ax· !Y.x· · X1 and (/) · (()' contained in x11Z for 'any irreducible 
summand x1 of x · x'. 

(iii) 0' is a homomorphism. 

PROOF. This is due to the formula (a o fJ)(x) = ax· Px ·X· 

(iv) 0' is injective. 

PROOF. Let 11. e ker(0'). If 11. #- 1 then ax #- 1 for some irreducible character 
X· Thus 0'a(({)) =ax#- 1 for any irreducible character(/) of Z contained in X· 

(v) 0' o 0: Z-+ Hom(Hom(Z, S1), S1) is the canonical iso
morphism. 

PROOF. Letz e Zanda = 0(z). Then ax= x(z)/x(l)by(8.2). Thus(0'a)(qJ) = 
qJ(z) for(/) E Hom(Z, S1 ). This finishes the proof of (8.5). 0 

(8.7) Exercises 

l. Let V be an irreducible G-module and Z a central closed subgroup of G. Show 
that, as a Z-module, V is a multiple of an irreducible Z-module. 

2. Let G be semisimple, T be the maximal torus of G, and V be an irreducible 
G-module. Show that if Vas aT-module is a multiple of an irreducible T-module 
(isotypical), then V is trivial. 

3. Let n: G--+ H be a surjective homomorphism of compact groups and x be a 
character of G. Show that x = x' o n for some character x' of H if and only if x factors 
through 1t as a map of sets. 

4. Let G be semisimple. Show that G has no nontrivial abelian factor group. 
Consequently every representation G--+ U(n) factors through SU(n). See also 
II, (5.13), Ex. 7. 

5. Let G be a compact connected Lie group and < , > an Ad-invariant inner product 
on the Lie algebra LG. Show that 

([X, Y], Z) = (X, [Y, Z]), 

and if His an ideal in LG, so is the orthogonal complement H.1. 
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6. Show that a compact simply connected Lie group is a direct product of compact 
simply connected Lie groups which have no nontrivial proper connected normal 
subgroups. Hint: Exercise 5 and "integration of subalgebras" of the Lie algebra, 
i.e., every subalgebra of LG is the Lie algebra of a connected subgroup of G. 

7. If we use the classification of root systems, the calculation of the center in (7.16), 
and Exercise 6, we may then completely enumerate all compact connected Lie 
groups. A typical conclusion would be: There are only finitely many isomorphism 
classes of compact Lie groups with a given dimension and number of components. 



CHAPTER VI 

Irreducible Characters and Weights 

The central result of this chapter is the Weyl character formula. It establishes 
a bijection between the irreducible characters of a compact connected Lie 
group and the integral forms in a distinguished Weyl chamber. The character 
formula is stated and proved in the first section. In the second section we will 
introduce partial orderings on LT* and analyze the structure of the character 
ring. The third section gives us some efficient formulas for computing the 
multiplicity of a weight in an irreducible representation. Finally, come the 
explicit calculations of representations and representation rings of classical 
groups. 

1. The Weyl Character Formula 

In this section we will work with a compact connected Lie group G for 
which the following have been chosen once and for all: The maximal torus 
T with Weyl group W, the W-invariant inner product on LT and LT*, 
the set R of real roots, and the fundamental Weyl chamber K which we 
consider to be a subset of LT*. This determines the basis S and the set of 
positive roots R+ = {a:eRI(a:, (J) > 0 for all (JeK}. The lattice I* of 
integral forms lies in LT* and the roots are integral; they have integral 
values on the integral lattice. 

In this chapter we have to deal with the global weights 8,. corresponding 
to real weights a:. More precisely we look at functions 

LT-+ U(l) = S\ H t--t 8,. o exp(H) = e2"ir.r(Hl. 
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We will use the notation 

Thus 9" o exp(H) = e(aH), i.e., 

9" o exp = e(a) = e o a. 

If 11 = 2nia: LT ~ m = LU(l) is the infinitesimal weight corresponding to 
a, then 

e(a) = e~ 

and what appears here as convenient shorthand simultaneously reflects the 
transition from real to infinitesimal weights. In the literature computations 
are often carried out using the infinitesimal roots and in general formulas 

e~ 
' 

11 E Hom(L T, i!R), '7/ c 2ni7L. 

appear instead of our 

e(a), aELT*, al c 7L.. 

A function q>: LT ~ C or q>: T ~ C is called symmetric if q> ow = q> and 
alternating if q> ow = det(w) · q> for all wE W. Here det(w) is the determinant 
of the linear automorphism w of LT. Of course, det(w) = ± 1 since the 
Weyl group is generated by reflections. 

The characters of representations are symmetric functions on the maximal 
torus. However, for the time being we are interested in alternating functions. 
If x = q>/tJ! is a quotient of alternating functions q> and t/J, then x is sym
metric. We shall see that every symmetric character of Tis the quotient of an 
alternating character by a very special alternating function. 

(1.1) Definition. Let A E LT* be a linear form. We define the alternating 
sum of A to be the function A( A): LT ~ C, 

A(A)(H) = L det(w) · e(Aw(H)). 
weW 

(1.2) Lemma. 

(i) The function A( A) is alternating. 
(ii) A(A) ow = A(A ow). 

(iii) A( A.) = 0 !f and only !f Aw = A. for some wE W, w =F 1 if and only if A 
is not contained in any Weyl chamber ofLT*. 

PRooF. (i) is trivial, in fact, w also operates on C00 (LT) via (w, q>) H 

det(w) · q> o w- 1 and the alternating functions are those which are invariant 
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under this operation. Thus if we let p: ceo(LT)-+ ceo(LT)w be the canonical 
projection for this operation (see II, (4.1)), then A(A.) = p(e o A.). 

(ii) A(A.) ow = L det(v) · e(A.vw) 
veW 

= L det(w- 1vw) · e(A.w(w- 1vw)) = A(A.w). 
veW 

(iii) The second equivalence follows from the fact that W acts simply 
transitively on the set of Weyl chambers (see V, (2.12) or (4.1)). Thus if 
A.w = A. for we W, w # 1, then A. is in a wall of LT*. Hence A.s .. = A. for a 
reflection s .. e W, so A( A.) = A(A.s .. ) = A( A.) o s .. = -A( A.) and A( A.) = 0. 
Conversely, if A(A.) = 0, then the various A.w, we W, cannot all be distinct 
by the following general 

(1.3) Remark. Let V be a vector space and A..: V-+ C, v = 1, ... , r, distinct 
~-linear maps. Then the functions expo A..: V-+ C, v = 1, ... , r, are linearly 
independent over C. 

PROOF. The A.. are distinct on a suitable one-dimensional subspace, so we 
may reduce to the case V = ~.A.. e C, and expo A.. is the function t H e4•''. 

But these functions are eigenvectors associated to the eigenvalues A.. of the 
linear map ceo(~. C) -+ ceo(~. C), qJ H (d/dt}qJ. D 

The alternating function lJ: L T -+ C is defined as follows: 

(1.4) l>(H) = n (e{11X(H))- e( -!1X(H))). 
OIER+ 

The index set for this product is the set of positive roots. Thus by V, (4.10) 
we have {J o s2 = - {J for IX e S. And since these reflections generate W, we 
see that lJ is alternating. Let e = t I .. eR+ IX be the half sum of the positive 
roots. Then 

(1.5) l>(H) = ee(H) · n (1- e( -1X(H))). 
OIER+ 

Thus {J is nonzero off the Stiefel diagram D = U .. eR + IX- 1l. That is to say, 
t5(H) # 0 when He LT,. is regular. Thus 

c(A.) = A(A.)/l>, A. e LT*, 

is a continuous function on LT. which has at most one continuous extension 
to all of LT. Such an extension must clearly be symmetric. We will show: 

(1.6) Proposition. Let y e I* be an integral form on LT. Then c(y + tl) has a 
continuous extension to L T which factors through the exponential map 
exp: LT-+ T. This defines a symmetric function in the character ring R(T} 
of the torus which we will also denote by c(y + e). 
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(1.7) The Weyl Character Formula. Let Irr(G, T) c R(T) denote the set 
of restrictions of irreducible characters of G to the maximal torus T. 

(i) If y is an integral form and (y, ex) <::: 0 for all positive roots ex, that is 
y E K n I*, then c(y + {!) E lrr(G, T). 

(ii) The map y 1-+ c(y + {!)yields a bijection 

K n I*-+ Irr(G, T). 

(iii) We have 

t5 = A(Q). 

Thus by (ii) the form 0 E K n I* corresponds to the character 1 of the 
trivial one-dimensional representation of G. 

(iv) If y E K n I*, the corresponding irreducible representation has dimension 

The rest of this section is devoted to proving the proposition and the 
character formula. Recall that the restriction R(G)-+ R(T) is injective 
IV, (2.8). Thus if we know the position of the roots in the lattice I* of integral 
forms then, with the help of the character formula, we can completely 
determine the irreducible characters. 

First we pause to make a remark about the function t5 which will make 
its appearance in this context more plausible. 

(1.8) Lemma. The function t5 • () factors through exp: LT-+ T; in fact 
{J • () = '1 o exp, where 'l(t) = det(Ad01T(t- 1)- E01T)· 

PROOF. The eigenvalues of Ad01T(t- 1 ), t = exp(H), are the values of the 
global roots e(±exH), ex E R+. Thus by (1.5) 

det(AdG/T- EG/T) 0 exp = n (e(cx)- 1)(e( -cx)- 1) = 0. 0. 0 
01eR+ 

Consequently l> · () = det(q) o exp is the functional determinant appearing 
in the Weyl integral formula IV, (1.11), which transforms the integral of a 
class function over G into an integral over T. 

We turn to proposition (1.6). We would like to divide A(y + {!) by b. 
If 8 .. : T-+ S1 is the global root associated to ex, 

0 = e((!)· n (1- 8_ .. ) = e(-p)· n (8,.- 1). 
aeR+ cxeR+ 

We start dividing by the individual terms of this product. 
Recall II, (8.3)f that the character ring of the torus is 

k = rank(G). 
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(1.9) Lemma. Let 9: T ~ S1 be a homomorphism and suppose that the virtual 
character g E R(T) vanishes on U = ker(9). Then there exists a virtual 
character h E R( T) so that g = ( 9 - 1) · h as a complex-valued function on T. 

PRooF. Choose coordinates on the torus so that I = Z". The homomorphism 
9 induces a linear forme = L9 on the Lie algebra which is, in fact, integral: 

e: 7L"-+ 71.. 

We may assume that e # 0 since otherwise any h will do. Thus B(Z") 
= n · Z for some n > 0 and the short exact sequence 

0 ~ ker( 8) ~ 7L" "i/ n7L -+ 0 

splits. In other words, we have a decomposition 71." ;;;;:; Z x z"- 1 and the 
map 7L X zk-l ~z induced bye maps ('1·····'") to n·'1" Rephrasing, 
we have an isomorphism 

T;;;;:; S1 x ... x S1 

so that 9 is given by 9 (z 1, ••. , z") = z~, n > 0. After multiplying by a power 
ofthe unit z1 · ... · z1 E R(T) if necessary, we may assume thatg E 7L[z 1, ... , z"]. 
Then we may write 

n-1 

g = (9 - 1) · h + L z{hiz2 , ... , z"), 
j=O 

where hand the hi are polynomials and hence also in R(T). If z = (z 1, ••. , z") 
is a point with z1 an nth root of unity, then z is in U and so g = (9 - 1) · h = 0 
at z. The remainder term~};; l z{hi is therefore a polynomial in z1 of degree 
::;;; n - 1 with n distinct roots. Consequently the remainder term vanishes. 

0 

(1.10) Lemma. If g E R(T) vanishes on all U ~ = ker(.9~), oc E R, then there is 
an hE R(T) such that 

g = h. n <8~ - 1). 
r:u:R+ 

PROOF. Let oc1, ••• , ocm be the distinct positive roots. Suppose we already 
have an expression 

r 

g = h,. n <.9~, - 1), h, E R(T), r < m. 
j= 1 

Since g vanishes on u~r+l and since the zeros Ujsr ua, of I1i=1 (8/Zj- 1) 
in u~ •• I havepositivecodimension, h, also vanishes on u IZr+ I" Thus the lemma 
follows by induction. 0 

The ring R(T) is factorial since it is the localization of the polynomial 
ring at the variables zi. What we have just shown is that the elements 
(1 - .9~) have no multiple prime factors and are relatively prime for non
proportional oc E J*, see (1.20), Ex. 1. 
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PROOF OF (1.6). By (1.5) we have 

(i) ( ) e(q) · A(y + q) 
c }' + q = n (e(oc) - 1)' 

czeR+ 

We will show that the numerator e(u) · A(y + u) factors through exp and 
defines a function in R(T) which vanishes on all the U,.. Then the pro
position follows from (1.10). Now 

e(u) · A(y + Q) = L det(w)e(y ow)· e(q ow + q) 
weW 

and qw + 11 = (qw - u) + 2q is an integral form by V, (4.12)(iii). Thus 
the numerator of (i) factors through exp and defines an element on R(T). 

We have to show that this element vanishes on all the U,.. So let X E LT 
and x = exp(X)e U,.. We show: 

(ii) e(qs,.X) · A(y + q)s,.X = e(qX) · A(y + q)X, 

(iii) A(y + q)s,.X = -A(y + u)X, 

(iv) e(qs,.X) = e(qX). 

These equations clearly imply the statement. 

PROOF OF (ii). We have x = exp(X) E U,., so s,.x = x, and since the function 
e(u) · A(y + q) factors through exp, the equation follows. 

PROOF OF (iii). A(y + q) o s,. = det(s,.) · A(y + q) = - A(y + q). 

PRooF OF (iv). e(us,.X) = e(q - Q(1X*)1X)X = e(qX) · e(- e(oc*)1XX) and by 
V, (4.12)(iv) q(oc*) = (q, IX*) = - r is an integer. Thus e( -q{oc*)1XX) 
= e(iXX)' = 9"(x)' = 1 since x E: U,.. 0 

Now we begin to tackle the main theorem (1.7). We start with a plausible 
remark. 

(1.11) Lemma. The abelian group of alternating complex-valued functions on 
LT of the form Li ni · e(A), A.i E LT*, ni E 7L is free on the generators A(y), 
yeK. 

PROOF. Let g = Li ni · e(A.i) be alternating with A.i E LT* distinct. Then 

IWI·g = L det(w)·gow = Lni·A(A.i) 
weW j 

and we obtain an equation 

g = L ri · A(A.i), 
j 
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Now A(A.1 ow) = det(w) ·A( A) and A( A.) = 0 if A. is not in a Weyl chamber. 
Since W permutes the Weyl chambers transitively, we end up with an 
equation 

g = Lqi·A(yi), qieQ 
j 

with distinct y1 e K. If we substitute the definition of A(y) and g, both sides 
are linear combinations of functions e(y) with distinct y e LT*. The left-hand 
side has integral coefficients and the right-hand side has rational coefficients 
±q1. But since the functions e(y) are linearly independent, the q1 must also 
be integral. Hence the A(y) generate the group in question and they are 
linearly independent. 0 

Next, we recall the Weyl integral formula IV, (1.11). Applying it to a class 
function 1/J: G-+ C and using the formula (1.8) for det(AdG1r(r 1)- EG1r) 
it says: 

(1.12) I WI· L t/J(g) dg = L t/l(t). '7(t) dt, '1 o exp = 158. 

Since we obtain the integrands via the Lie algebra LT of the torus, we define 
the integral JLr f of an arbitrary f: LT-+ C which is a linear combination 
of functions 

X 1-+ e( aX), IXE LT*, XeLT 

as follows: We choose an isomorphism T;:: ff:PNZ", LT;:: IR", I;:: l", so 
that the a may be read as linear forms and the f as functions on IR". We put 

(1.13) [ f = lim (2N1 )" JN · · · JN f(x 1, ..• , x") dx1 ... dx". 
JLT N-+oo -N -N 

For the functions we consider, this integral is easy to compute. Indeed, 
for ae IR 

1 JN {1 for a = 0, 
!~"!, 2N _/(at) dt = 0 for a -# 0. 

Thus the integral on LT is 

i {1 for a = 0, 
eo a= 

LT 0 for IX -# 0. 
In other words: 

(1.14) Remark. The functions eo a, a e LT* (also denoted by e(a)) form an 
orthonormal system for the Hermitian product 

of functions on LT. 

<f. g)= [ !· g 
JLT 
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Incidentally, this shows once again that the functions e(a:) are linearly 
independent over C. Iff e R(T) we clearly have 

r foexp = r f. 
JLT lr 

Having laid this groundwork we begin to prove parts of the character 
formula: 

(1.15) Lemma. Let x e Irr(G, T) and x = x o exp: LT-+ C. Then there is a 
linear form y e K such that x · lJ = ± A(y). 

PRooF. We have x = r/J IT for some irreducible character r/J of G and by the 
Weyl integral formula 

1 = f r/J·i/idg = IWI- 1 f x·X.·17dt = IWI- 1 f x·x·<>·~. 
JG lr JLT 

Using the inner product (1.14), this simply says 

<x<>. ib) = I WI. 
On the other hand, xtJ is an alternating function of the form considered in 
(1.11). Thus 

ib = L ni · A(yi), 
j 

Now, from the orthogonality relations (1.14) we immediately get 

A A A. = {0 for y ,P A., 
( (y), ( )) I WI for y = A., if y, A. e K. 

Hence, in our case, one of the coefficients n i must be ± 1 and the others vanish. 
0 

(1.16) Lemma. Let x e Irr(G, T) and let y e K be the linear form (uniquely 
determined by (1.11), (1.15)) such that (xoexp)·b = ±A(y). We set 
y = fJ + {},where{} is the half sum of the positive roots. Then P e K f"'ll*. 

PROOF. By assumption, the function A(y)/o factors through exp. Thus for 
any X e LT, Yel, we have 

A(y)(X + Y) · b(X) = A(y)(X) · b(X + Y). 

By the definition of A(y) and (1.5), this means explicitly 

{ ~ det(w)e((p + u)w(X + Y))} · e(eX) · JJ. (I - e(- a:X)] 

= {~det(w)e((p + e)wx>}·e(e(X + n>,.D. [t- e(-a:(X + Y))]. 
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Now, since Y E 1 we have e(ewY) = e(eY) by V, (4.12)(iii), and e( -aY) = 1 
for a e R+. Hence if X e LT,., we may divide both sides of the equation by 
the nonzero factor 

e(e(X + Y)) · fl (1 - e( -aX)). 
«ER+ 

What we get is 

Ldet(w)·e((fl + e)wX)·(e(flwY)- 1) = 0. 
w 

By continuity, this equation holds for every X E LT. Since P + e = y E K, 
the functions e((fl + e)w), wE W, are linearly independent. Consequently 
e(flw Y) = 1 for Y E 1, and therefore p E 1*. So we end up with P E K. n 1* 
by V, (4.14). 0 

We now show the converse and therewith-up to sign-the first two 
assertions of the character formula. If fleK. n1*, then c(fl +e)= A(/l +e)/{> 
is a symmetric virtual character on the torus by (1.6), and is nonzero, since 
p + (!is inK and not on any wall, see (1.2)(iii). 

(1.17) Lemma. If fl E K. n r, then c(fl + e) or -c(fl + e) is in lrr(G, T). 

PROOF. By IV, (2.7), there is a class function f: G-+ C with !IT= c(fl + Q), 
since c(fl + e) is symmetric. Now, the irreducible characters form a complete 
orthonormal system in the space of all class functions. So we compute the 
scalar product off with an irreducible character x of G. By the Weyl integral 
formula and (1.15) we get 

IWI·(f,x> = IWI· fa!·xdg = tc(fl + Q)·x·1Jdt 

= f c(fl + e)·b·(foexp)·J = ± f A(/l + e)·A(y) JLT JLT 
for some linear form y E K. But the last integral is I WI if P + p = y and 0 
otherwise. And it cannot always be zero, since f is nonzero and the irreducible 
characters form a complete orthonormal system. Thus there must be an 
irreducible character x with x o expiLT = ±A(y)/J andy= P + (!. 0 

(1.18) Lemma. J = A(p ). 

PROOF. If we expand the product {J = e(e). n«ER+ (1 - e( -a)), we get an 
expresston 

J = e(e) + L: ai · e(e - Pi), 
j 

where each pi is a nontrivial linear combination of positive roots with non
negative integer coefficients. In particular, these pi do not vanish. On the 



248 VI. Irreducible Characters and Weights 

other hand, applying (1.15) to the character 1 of the trivial one-dimensional 
representation we get {J = ±A( y + ll) for some integral form y e K., and 
this is another expression of tJ as a linear combination of functions e(A.), 
A. e L T*. In these expressions, the only linear form A. appearing in some term 
e(A.) and lying in K is ll in the first case and y + ll in the second. This is 
because ll - Pie K => -Pie K => - <P1, a) ~ 0 for all a e R+ => - <Pi• P1> 
~ 0 =>Pi= 0, see V, (4.14). So we conclude ll = y + ll andy= 0. Therefore 
{J = A(Q), since the coefficient of e(u) is l in both cases. 0 

To finish, we prove the dimension formula (1.7Xiv) and at the same time 
we get rid of the ambiguity of sign. 

(1.19) Lemma. If y e K n I*, then at the point 1 e T the function c(y + u) 
has the value 

n (ex, 'Y + u> > 0. 
«ER+ (ex, Q) 

The value of a character at 1 is the dimension of the corresponding 
representation. So the sign in (1.15) must be positive, since c(y + u) (1) is 
positive. 

PROOF OF THE LEMMA. We identify LT with LT* using the inner product. 
The point 1 e T corresponds to 0 e LT. So we are going to calculate 

lim c(y + uXtu). 
t-+0 

We have fJ(tQ) '# 0 for t > 0 since ll e K. From tJ = A(u) we get 

A(y + Q)(tu) = L det(w). e(t <uw, 'Y + ll)) = A(u)(t(y + Q)) = b(t(y + u)) 
w 

= n [exp(nit(a, 'Y + u))- exp( -nit(a, 'Y + u))] 
OIER+ 

= n 2nit(a, 'Y + ll > mod tm+ 1' 

OIER+ 

where m is the cardinality of R +.Now by l'Hospital's rule, the limit c(y + Q)(O) 
is as stated in the lemma, and its value is positive since y + ll e K and 
(oc,y+e)>OforalloceR+. 0 

PROOF OF THE CHARACTER FORMULA (1.7). Nothing is missing: By 
(1.15), (1.16) we have a map 

Irr(G, T)-+ K. n I*, x 1-+ y with c(y + u) = ±X· 

This is well defined by (1.11). It is injective since y determines c(y + u) and 
hence x because only one of the possible signs gives a positive value at the 
unit element. It is surjective by {1.17), and the sign is positive by (1.19). The 
further formulas are in (1.18), (1.19). 0 
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The calculations in this section would be somewhat simpler if the half 
sum of the positive roots were an integral form. This is in fact the case if the 
adjoint representation factors through Spin, see V, (6.8), Ex. 4. If the group 
is simply connected, then I = r and e is integral since it always takes 
integer values on r, see V, (4.12)(iv). 

The main theorem (1.7) is due to Hermann Weyl [1]. For an algebraic 
treatment, see Freudenthal and de Vries [1], p. 48. 

(1.20) Exercises 

Let G be a compact connected Lie group. 

1. Show that a localization of a factorial ring is factorial (i.e., it admits unique prime 
factorization). What are the prime elements? Let 9 be an irreducible character in 
R(T). Show that 9 - 1 has no multiple prime factors in R(T). If 91 is another 
irreducible character in R(T), then 9 - 1 and 91 - 1 are relatively prime unless 
L9 and L9 1 are proportional. 

2. Show that G possesses irreducible representations of arbitrarily high dimension if 
it is nonabelian. 

3. Let G be semisimple. Show that G possesses only finitely many nonisomorphic 
representations of a given dimension. 

4. Suppose that G is not semisimple. Show that G possesses infinitely many non
isomorphic irreducible representations of dimension 1. 

5. Which irreducible root system contains a simple root which is also contained in 
the closed fundamental Weyl chamber? 

2. The Dominant Weight and the Structure of the 
Representation Ring 

We continue to use the notation e(t) = e2"i1• 

Let j: T -+ G be the inclusion of the maximal torus in a compact connected 
Lie group. It induces a monomorphism of the representation rings 
j*: R(G)-+ R(T). 

The Weyl group W acts on T and hence on R(T). The image of j* lies 
in the ring R(T)w of the symmetric characters. From the character formula 
we now obtain: 

(2.1) Proposition. The inclusion of the maximal torus induces an isomorphism 

j*: R(G)-+ R(T)w. 

PROOF. Let f E R(T) be symmetric and g = fa exp: LT-+ C. Then g = 
Ls n, · e(y,), ')!. E I*, n. E 7L., and by (1.5) 

g·8 = e(p)·Im.·e(A..), m,E7L., A.,El*. 
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But since g · b is alternating, it may also be written in the form 

g · b = L, r1 • A(fJ1), 
I 

see (1.11). Comparing coefficients, we see that every /J1 must be of the form 
p + A..01 and hence the character formula (1.7) says that 

f = L rl . c(p + A.s(l)) 
I 

is in the image ofj*. 0 

In other words: A class function f: G--. IC is a virtual character if and 
only iff I Tis a virtual character of T. Of course, knowing the character ring 
is much less than knowing the characters themselves, let alone the rep
resentations. All the same, let us, once again, derive this proposition directly 
from the Weyl integral formula. This elucidates the basic ideas in the proof 
of the character formula: 

Let f E R(T)w. We need to show that Jaf · i dg is an integer for every irre
ducible character x of G. The Weyl integral formula says 

I w I · f ! · i dg = f. f · i · b · 1> = f. (f · b) · (f · b)-, JG LT ~T 
and the last integral is an integer multiple of the order I WI of the Weyl 
group. Indeed, the factors of the integrand are alternating and for the 
basis A(A.), A. E LT* of the alternating functions on LT we have the orthog
onality relations 

f. A(A.)A(y) = o or I WI. 
LT 

The character formula yields a bijection between the integral forms in the 
closed fundamental Weyl chamber K. and the irreducible characters. But 
how may we characterize the integral form y E K. with respect to the cor
responding representation? We will define certain partial orders on L T*, and 
we will show that y is the real weight of the corresponding representation 
which is maximal with respect to these orders. This will also yield information 
on the multiplication of characters. 

In fact, there are two different reasonable orders for elements of L T*. 

(2.2) Definition. Let y, A. E LT*, let K be the fundamental Weyl chamber, 
and let Conv(A) denote the convex closure of a subset A c LT*. Then we 
define 

(i) y £ A. if and only if y E Conv(W A.). 
(ii) y ::::;; A. if and only if (y, r) ::::;; (A., r) for every r E K. 

If y ::::;; A., y =F A., we will say that y is lower and A. is higher. 
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The relation y s A. is equivalent to 

Conv(Wy) c Conv(WA.), 

and this defines a partial order on the space of W-orbits of linear forms. 
This order has the advantage that it is independent of the choice of K; it is 
determined by the root system itself (compare Adams [1]). 

Nevertheless, the order :::;; is common in the literature. Although it is less 
invariant, it is quite useful in explicit calculations. It is reflexive: If (y, t) 
= (A, t) for all t E K, then y = A. since K is open. It is also compatible with 
algebraic operations: 

y :::;; A. and Jl :::;; v => y + Jl :::;; A. + v, 

(2.3) y :::;; A. and r E IR + => r · y :::;; r · A., 

')' :::;; A. => -A. :::;; - y. 

The following proposition explains how these two orders are related and 
gives a new description of the order :::;; . 

(2.4) Proposition. Let S be the distinguished basis corresponding to the 
Weyl chamber K. 

(i) Ify E K and wE W, then w(y) :::;; ')'. 
(ii) If y, A. E K., then y :::;; A. if and only if y s A.. 

(iii) We have 0:::;; y if and only ify = Laes Ca ·ex with nonnegative real Ca. 

PROOF. (i) Let w(y) '# y and t e K. Then we have to show (w(y)- y, t) :::;; 0. 
Now, suppose (w(y)- y, t) > 0 for some fixed t e K. Choose we W so 
that (w(y)- y, t) is maximal. Then w(y) ¢ K by V, (4.1)(iii) since w(y) '# y. 
Hence by V, (4.5) there is a root exeS such that (w(y), a) < 0. However, if 
sa is the reflection corresponding to a, we have 

(sa w(y), t) = (w(y) - (w(y), a*)a, t) > (w(y), t), 

contradicting the choice of w. 
(ii) Suppose y, A. e K and y s A., that is y e Conv(WA.). Explicitly, this 

means 

Y = L Cw • w(A.), 
w w 

Hence by (i) and (2.3) we get y :::;; Lw cw · A. = A.. 
Conversely, suppose y ¢ Conv(W A.). Then y and the orbit W A. lie on 

different sides of some affine hyperplane. In other words, there is some 
"e LT* such that (y, K) > (w(A.), K), and hence (y, K) > (A., w(K)) for 
all we W. One of the w(K) lies in K, and we may find some nearby t e K 
with (y, w- 1(t)) > (A., t). But then by (i) we have (y, t) ~ (w(y), t) 
= (y, w- 1(t)) > (A., t), and therefore y :$A.. 

(iii) Suppose y = Laes ca ·ex with ca ~ 0. Since for t E K we have 
(a, t) > 0 by definition of the basis S corresponding to K, we get (y, t) ~ 0 
andy~ 0. 
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To prove the converse, we choose a set B c LT*, disjoint from S, so 
that SuB is a linear basis of LT*. Let y = Les c,. ·ac + LlleB c11 • {J. Now, 
suppose Cv < 0 for some fixed v e S or that c. :1: 0 for some fixed v e B. By 
the theory of linear equations, we may find an element r e LT* so that 
(Jl, r) = 1 for all Jl e SuB, Jl :1: v, and so that -c.· (v, r) = x for some 
given x > 0. Then r e K since (ac, r) > 0 for all a e S. But we may choose x 
so large that ( y, r) < 0. Consequently 0 :f; y. 0 

From the description (iii)-or directly from the definition-one sees that 

R+ = {aeRia;;:::: 0}. 

Due to (ii), the rules (2.3) are also valid for the relation s;;; if y, A., Jl, v e K. 
It also follows that the order on the W-orbits of forms induced by s;;; is 
reflexive. If y £: A. and A. £ y, then there is a we W with w(y) = A. since the 
orbits Wy and WA. have the same representatives in K; see also (2.12), 
Ex. 1. 

As usual we set 

y ~ A <=> A ;;:::: y, 

y < A. <=> y ~ A. and y :1: A., 

}' < A. <=> A. > y, 

y £ A. <=> A 2 y, 

y c A. <=> y £: A. and Wy :1: W A., 

}' c A. <=> A. :::> y. 

Since the convex closure of Wy is compact and I* is discrete, there are only 
finitely many integral forms A with A £ y for any given y e LT*. This allows 
us to argue by induction with respect to the order £: (or :s; inK n I*). 

(2.5) Definition. The complex function 

S(y) = L e(A), 
).eWy 

on LT is called the symmetric sum of y. 

yeLT*, 

Needless to say, S(y) is symmetric, and using V, (4.l)(iii) we see that the 
functions S(y), y e K, form a basis of the abelian group of symmetric functions 
on LT of the form Li n1e(A), A1 e LT*, n1 e l. 

(2.6) Proposition. 

(i) Let y e K n I*. Then 

c(y + 12) = S(y) + L n1S(y) 
J 

(ii) An irreducible representation possesses a highest real weight in K. The 
corresponding weight space is one-dimensional. 

PROOF. Statement (ii) follows from (i) since the functions c(y + Q) are the 
restrictions of the irreducible characters to T. Thus the weights of the 
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representation associated to c(y + e) are the forms y, Yi together with their 
transforms under W. 

For the proof of (i) we need the following 

Lemma. 

S(y) · ~ = A(y + l!) + L miA(yi + {!), 
j 

PROOF. 

S(y) = L e().) and ~ = A(e) = L det(w) · e(w(e)). 
).eWy w 

Moreover, S(y) ·~is alternating and therefore of the form 

S(y)·~ = L ±A(r1), 
I 

The (not necessarily distinct) r1 may all be written as ). + w(e) e K, ). e Wy, 
as can be seen by comparing coefficients. Now, y e K and ll e K, so by 
(2.3), (2.4}(i). 

). + w(e) =:;;; 1' + l! 
and the form y + ll itself appears exactly once in the product S(y) ·~.hence 
exactly once among the r 1 • Indeed, if). =¢: y or w # 1, then). < y or w(e) < ll 
and ). + w(e) < y + ll· Hence r 1 < y + ll for all r 1 # y + ll· Also, r 1 - {! 

= ). + (w(e) - Q), ). e Wy, is an integral form and r, - ll e K since r1 e K; 
see V, (4.12), (4.14). This demonstrates the lemma. 

Now the statement (i) of the proposition follows by induction since in 
K n I* there are only finitely many forms lower than a given form: 

c(y + e) = S(y) - L mic(yi + e), 
j 

by the lemma. And the induction hypothesis for forms lower than y allows 
us to write this as 

0 

(2. 7) Definition. The integral form y e K n I* is called the dominant weight 
of the irreducible representation with the character x1 with x1 1 T = c(y + Q). 
If V and V' are irreducible representations with dominant weights y and y' 
then the irreducible representation with dominant weight y + y' is called 
the Cartan composite of Vand V' and is denoted by V * V'. 

Thus an irreducible representation is uniquely determined by its dominant 
weight or, what amounts to the same thing, by its largest W-orbit of weights 
in the order s;;; above. On occasion we will index the irreducible characters 
by their dominant weights. 
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Any virtual character of G, that is any symmetric element of R(T) may 
be recursively decomposed into its irreducible summands. This is the 
topic of the next section. Now we begin to analyze the multiplication of 
characters. The following lemma relates the tensor product and the Cartan 
composite of irreducible representations. 

(2.8) Lemma. X1 • Xl = X1 H + L11 n11 • X11 with coefficients n11 E N 0 and 
J.1. < y + A.. The indices are the dominant weights of the corresponding 
representations. 

PROOF. Let U and V be irreducible representations with dominant weights 
y and A.. The global weights of U ® V are the products of the global weights 
of U and V. Hence, the real weights are the sums ex + p of a weight ex of U 
and p of V. Among these, y + A is the highest and has multiplicity l by 

~~~ 0 

The lemma simply says that U * V appears as the irreducible summand 
of the highest dominant weight in U ® V and has multiplicity l. 

The set K n I* is additively closed and forms an abelian monoid. If 
A is a finite set, then we use N8 to denote the additive abelian monoid of 
all maps n: A--+ N0 , that is, all A-tuples n = (n(A.)IA. E A) of nonnegative 
integers. 

(2.9) Definition. A finite set of integral forms A £ K n I* is called a 
system of generators of K n I* if the map 

<p: NS--+ K n I*, n 1-+ L n(A) ·A. 
).eA 

is surjective. A system of generators is called free, or ajundamental system 
of weights, if <pis bijective. 

The corresponding irreducible representations with dominant weights 
A E A are then called fundamental representations. 

If K n I* possesses a fundamental system (i.e., if K n I* ~ N8) then, 
clearly, it is uniquely determined and consists of the indecomposable elements 
of the monoid K n I*. These are the elements A. ¥= 0 in K n I* which cannot 
be written in the form 

j = l, 2. 

(2.10) Theorem. Let A be a system of generators of K n I* and let Z[X ;.I A. E A] 
denote the ring of polynomials with indeterminates X;., A. E A with integer 
coefficients. 

(i) The ring homomorphism 

is surjective. 
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(ii) If A is free, then t/1 is an isomorphism. 

PROOF. (i) If y e K n I*, then ')' = LAeA n(A) ·A with n(A) e 1\10 . Therefore 
by (2.8) 

Xr = "'( n X1().)) - L m,.x,. with m,. E No and JL <A. 
AeA p 

Using the order on the forms inK n I* and applying induction as before, 
we see that Xr is in the image of 1/J. 

(ii) If the system of generators is free, then the monomials in the poly
nomial ring correspond bijectively to their tuples of exponents in N g and 
to the forms in K n I* via cp. Using this, we order the monomials so that 
this correspondence is order-preserving. Suppose, then, that 

for certain monomials R i among which 

R. = n Xl().) with L n(A) . A = )' 
).eA AeA 

is maximal. Then by (2.8) 

t/I(R.) = X1 + La,.· x.,., a,. E N0 , JL < y. 
!l 

Thus the character Xr in 1/J(L cr Ri) appears with the coefficient c •. It 
follows that c. = 0 and that t/1 is injective. 0 

(2.11) Corollary. Let G be simply connected with rank k. Then G possesses 
a fundamental system A= {A1, ••• , At} with k elements. Consequently, there 
is a ring isomorphism 

PROOF. By V, (7.1) we have n1(G) ~ Ijr. So in this case I = r. If S is the 
distinguished basis of the root system, then S* = { ex*l ex e S} is a basis of r 
and hence of I; see V, (4.13). Let A= {A1, •.• , At} be the vector space 
basis ofLT* dual to S*. Then A is a basis of the lattice ofintegralforms. The 
fundamental Weyl chamber corresponding to Sis 

K = {y e LT*I (y, ex*) > 0 for ex* e S*}. 

In other words, K (resp. K) is the set of linear combinations LAeA X;.· A 
with xA > 0 (resp. X;. ~ 0). Thus A is a fundamental system of weights. 0 

For the general structure of the set of weights of an irreducible representa
tion see Bourbaki [1], VIII, §7.2, Humphreys [1], 13 and 21.3. For the largest 
root, Bourbaki [1], VI, §1.8. For general results about the structure of the 
representation ring, also in connection with topology and K-theory, see 
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Atiyah [1], and Atiyah and Hirzebruch [1], Atiyah and Segal [1], Segal [1], 
Pittie [1], Steinberg [2], McLeod [1]. 

The determination of the characters does not settle the question of finding 
models of the irreducible representations themselves. This is the content of 
the Borel-Weil-Bott theorem; see Serre [1], Bott [1]. Roughly the result is: 

For each choice of a system of positive roots the space GjT carries the 
structure of a homogeneous complex manifold; compare Bourbaki [1], 
Ch. IX, §4, Ex. 9. One can obtain the representation with highest weight 
y: T-+ S1 as the space ofholomorphic sections of the bundle G x r C-+ G/T, 
i.e., as holomorphically induced representation. 

The Weyl character formula can also be interpreted as a computation 
of the character of an induced representation by an analytic Lefschetz 
fixed-point formula; see Atiyah and Bott [1]. 

(2.12) Exercises 

1. Let W be a compact group, V a finite-dimensional real W-module, and v e V. 
Show that Wv is the set of extremal points of Conv(Wv) in V. A point p e Vis called 
an extremal point of a convex set C c V if there is a hyperplane H c V such that 
H n C = {p}. 

2. Show that if G is semisimple, then 0 is the smallest integral form for the ordering 
s; in (2.2)(i). If G is not semisimple, then there are infinitely many minimal forms 
for this ordering. An integral form which is fixed under the Weyl group W is 
minimal. Is a minimal form necessarily fixed under W? 

3. Let y, A., J1 e LT*. Show that if y s; A c J1 or y c A s; J1, then y c Jl· If y ~ A < J1 
or y < A ~ J1, then y < Jl· 

4. Let y, A e K. Show that 

S(y) · S(A.) = S(y + A) + L m,. · S(p) with m,. e N0 and J1 < y + A. 
lA 

5. Let G be a compact Lie group. The following argument shows that the representa
tion ring R(G) is a finitely generated Z-algebra and hence is Noetherian (Atiyah, 
compare Segal [1]). R(G) may be made into an RU(n)-module by means of an 
embedding G ...... U(n), and RU(n) is finitely generated over Z. Thus it suffices to 
show that R(G) is finitely generated over RU(n). Choose one A1 from every con
jugacy class of Cartan subgroups of G. Then we have 

r 

RU(n)--+ R(G)--+ 0 R(A), 
j= 1 

where the second map is injective. Thus we are reduced to showing that R(A 1) 
is a finitely generated RU(n)-module. But the inclusion A1 --+ U(n) factors through 
a maximal torus T of U(n), so we may accomplish our goal by showing that R(T) 
is finitely generated over RU(n) and R(A1) is finitely generated over R(T). 
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3. The Multiplicities of the Weights of an Irreducible 
Representation 

Let V be an irreducible representation with dominant weight y E K n I*. 
Then we know that this highest weight y has multiplicity 1. We want to 
determine the multiplicities of the lower weights of V. To be specific, let 

VI T =ffi V(A.), m(A, y) = dim V(A), 
,t 

be the decomposition of V into its weight spaces. Then m(A, y) is called the 
multiplicity of A. as a weight of V. We set m(A., y) = 0 if A. is not a weight of V. 
Of course, for a given y E K n I*, the multiplicity m(A., y) only depends on 
theW-orbit of .:t. Once one knows these numbers m(A., y), one can decompose 
an arbitrary representation into its irreducible summands provided one is 
given its weights together with their multiplicities. 

We continue to use the notation e(A.) = e2"u. We will manipulate certain 
infinite series of the form 

cp = L m;. · e(.:t), 
..teLT* 

Such a series should be interpreted strictly formally as an element of the 
additive group n).eLT* 7L. e(A.). The support of the series cp is the set 

{AeLT*Im;. ::/= 0}. 

Let It = {A E I* I A ~ 0} be the set of positive weights with respect to the 
ordering (2.2)(ii). Consider those series cp whose supports lie in a finite 
union of sets of the form Jl - It , Jl E L T*. With the Cauchy product as 
multiplication, these form a ring denoted by 7L(I*). Thus, if the series cp 
above and t/1 = L n, · e(O are elements of 7L(I*), then 

cp · t/1 = L ( L m;. · n,)e(JI.). 
"' J.+C=p 

One easily verifies that the interior sum is finite, so the product is well 
defined ((3.5), Ex. 1). 

The restriction of a character to the maximal torus is a finite sum of 
functions e(.:t), and so each character defines an element of the ring 7L(I*). 
The subsequent computations are to be read as equations in this ring. 

A decomposition into positive roots of an integral form C E I* is a family 
of nonnegative integers (n .. I(X E R+) such that C = L«d+ n .. ·(X. Let p(O 
denote the cardinality of the set of all decompositions of C into positive 
roots. Let Q + = { C E I* I p(O > 0} denote the set of linear combinations 
of simple roots with nonnegative integral coefficients and let K E 7L(I*) be the 
series 

K = L p(C)·e(-C). 
CeQ+ 
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(3.1) Lemma. K · e( -e)· l5 = K · fl (1 - e( -a))= 1. 

PROOF. The first equation follows from (1.5). For the second, we have 

K = JL (~/( -mx)) 
and 

00 

(1 - e( -ex))· L e( -na) = 1. 0 
n=O 

(3.2) Theorem (Kostant). Let y E K n I* and let V be an irreducible repre
sentation with dominant weight y. Then the multiplicity m(A., y) of A. as a 
weight of V is 

m()., y) = L det(w) · p(w(y + Q) - (). + Q)). 
weW 

PROOF. The character of V restricts to c(y +e) on the maximal torus and, 
by the Weyl character formula and (3.1), 

c(y +g)= K · e( -Q) · o · c(y + Q) = K · e( -g)· A(y +g). 

Hence if we substitute the definitions of A(y + g) and K, we get 

c(y +e)= L det(w) · p(O · e( -e + w(y +a) - (). 
weW,,eQ+ 

Consequently 

m(A., y) = l:det(w) · p(O, w,, 
where w runs through the Weyl group and 'runs through the elements of 
Q + satisfying 

). = -Q + w(y + Q)- ,, or 

' = w(y + g) - (A. + Q). 0 

The theorem in particular says that the right side of the formula vanishes 
if A. is not a weight of V. This is not obvious from the expression itself and is 
still interesting even if y = 0; see (3.5), Ex. 1. 

(3.3) Proposition. With the assumptions of (3.2), suppose A. s y and ). t= y. 
Then 

m(A., y) = - L det(w) · m(A. + g - w(Q), y). 
w,.l 

PROOF. By the Weyl character formula and the definition of m(,, y), the 
character of V restricts on the maximal torus to 

c(y + a) = A(y + a)/A(a) = L m(,, y) · e(O. 

' 
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Multiplying the last equation by A(g), we obtain 

(i) L L det(w) · m((, y) · e(( + w(g)) = L det(w) · e(w(y + g)). 
weW ' weW 

Now g e K by V, (4.14). Therefore e -:f. w(g) and hence w(g) < g if w -:f. 1 by 
(2.4)(i). Consequently 

(ii) A. + g ¢ W(y + g), 

since w(A. + g) = w(A.) + w(g) ::s; y + w(g) < y + g for w -:f. 1. By (ii), the 
coefficient of e(A + g) vanishes on the right side of (i). Thus it must also 
vanish on the left, i.e., 

L L det(w) · m((, y) = 0, M = {(!( + w(g) =A+ g}. 
weW {eM 

In other words, 

L det(w) · m(A + g - w(g), y) = 0. D 
weW 

The formula in the proposition allows us recursively to compute the 
multiplicities m(A, y), since the forms A + g - w(g) appearing on the right 
are integral and higher than A, and we know the multiplicity m(y, y) = 1 of the 
highest possible weight. 

The multiplicity formula (3.2) allows us to completely describe the 
decomposition of a product of irreducible characters into irreducible 
summands. Let Xy denote the character of the irreducible representation 
with dominant weight y. 

(3.4) Proposition (Steinberg). If y, A e K n /*,then 

Xy ·X;. = L m(y, A, JJ.) · x"' 
llEKni• 

with 

m(y, A., ~-t) = L det(v · w) · p(v(y + e)+ w(A. + e)- (~-t + 2e)). 
v,weW 

PROOF. If we restrict the characters to the maximal torus, the proposition 
reads 

L m(y, A, JJ.) · c(JJ. + g) = c(y + g). c(A. + g) 
ll 

with the m(y, A, JJ.) above. If we multiply by A(g) this becomes 

L m(y, A., JJ.) · A(ft + g) = c(y + g)· A(A. + g). 
ll 

If we write 

c(y + g) = L m((, y) · e(O, 
~e 1* 
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this means that 

L m(y, ..1., Jl) · A(Jl + Q) = ( L m(,, y) · e(O) · L det(w) · e(w(..1. + Q)) 
ll {el• weW 

= L L det(w) · m('l + Q - w(..1. + (!), y) · e('l + (!). 
~el0 weW 

We once again use the fact that Q - w((!) is integral. The coefficient of 
e(Jl + (!) on the left-hand side of this equation is m(y, ..1., Jl). Comparing 
coefficients, 

m(y, A., Jl) = L det(w) · m(Jl + (! - w(..1. + (!), y). 
weW 

The proposition now follows by substituting the multiplicities from (3.2). 0 

A special case of this theorem is the Clebsch-Gordan formula, see 
(3.5), Ex. 7. 

The multiplicity formula, and in particular formula (3.2), contain all the 
information of the character formula. In fact, the Weyl character formula 
may be derived from (3.2). When it comes to practical explicit computations, 
the formulas (3.2) and (3.3) are considerably more efficient than the Weyl 
formula. 

Original sources for this section are Kostant [1], Steinberg [1], Cartier [1]. 
There is another recursion formula due to Freudenthal [1]; see also 
Freudenthal and de Vries (1], p. 245, Jacobson [1], VIII. 

(3.5) Exercises 

1. Verify that the Cauchy product in l(/*) is well defined and makes l(l*) into a 
commutative ring with 1. Show that o = A(g) is a unit in this ring and that l(I*) 
has no zero-divisors. 

2. Derive the recursion formula (3.3) from (3.2). Hint: Set y = 0 in (3.2). This yields 
a recursion formula for p(.\.) which may again be plugged into (3.2). 

3. Let e be the half sum of the positive roots. Show that p(e - w(a)) > 0 for all w e W. 

4. Let y e K and.\. c y. Show that lA + el < IY + Ul· 

5. Using the formula in (3.2), show that 

(i) 

(ii) 

m(y, y) = 1, 

m(.\., y) # 0 => A :S; y. 

6. Use (3.4) to prove lemma (2.8), which says that if y, .\., p, e K n 1*, then 

(i) 

(ii) 

m(y, A, p,) # 0 => p, :s; y + A, 

m(y, A, y + .\.) = 1. 
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7. Derive the Clebsch-Gordan formula II, (5.5) from (3.4). You will find: 

(i) SU(2) has exactly one positive root !X. 
(ii) I is generated by IX*, and I* by IX/2. 

(iii) p(k · !X/2) = 1 if k is nonnegative and even, whereas 

p(k . IX/2) = 0 otherwise. 
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Let V. be an irreducible representation with dominant weight n · IX/2. Let ')' = n · ~X/2, 
). = p · !X/2, Jl = q · !X/2 with n ~ p. 

(iv) m(y, A., Jl) = p((n + p - q)!X/2) - p((n - p - q - 2)!X/2). 

(v) V. ® V" ~ V,+p Ea V,+p-2 Ea V,+p-4 Ea · · · Ea V.-p· 

4. Representations of Real or Quaternionic Type 

An irreducible representation of a compact connected Lie group G is deter
mined by its dominant weight. But how does one recognize the real, complex, 
or quaternionic representations from the dominant weights? We will now 
address this question. 

(4.1) Proposition. Let V be an irreducible representation with dominant 
weighty. Then V ~ J7 if and only if- y = w(y) for some win the Weyl group W. 

PRooF. The global weights of J7 are the conjugates of those of V. The real 
weights of J7 therefore are the negatives of the real weights of V. Since the 
convex closure of Wy contains all weights of V by assumption, the weights 
of Jllie in -Conv(Wy) = Conv(W( -y)). Hence the weight -w(y), which 
lies in the closed fundamental Weyl chamber, is the dominant weight of V. 0 

Now suppose that y1, ••• , Yk form a fundamental system of weights, and 
let K be the fundamental Weyl chamber of G, see (2.9). If y i is indecomposable 
in K n I*, then - y i is indecomposable in - K n I*, and if w E W transforms 
the chamber -K into K, then we see that -w(yi) is indecomposable in 
K n I*. Therefore -w(y) E {y 1, .•• , yd. Since every W-orbit meets K in 
only one point, we conclude: 

(4.2) Note. Let y1, •.. , Yk be a fundamental system of weights of G. For every 
v with 1 s; v s; k there is awE Wand a v, uniquely determined by v, such that 
-y. = w(y,). The map v H vis an involution of the set {1, ... , k}. 

Now, if y = L~= 1 n. · y. is the dominant weight of a representation V, 
and -wK = K, then -w(y) = L• n. · y, = L• n, · y. is the dominant weight 
of V. Thus (4.1) says: 

(4.3) Proposition. Let V be an irreducible representation with dominant weight 
y = L• n. · y •. Then V ~ V if and only if n. = n,. for all v. 0 
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This is a condition on the v with v # v. The weights 1'. corresponding to 
the fixed points v = v of the permutation v H v satisfy -w(y.) = y •. This 
means that the associated fundamental representations are self-conjugate, 
whereas the fundamental representations associated to the v with v =1= v are 
of complex type. 

If V :;;;: V, we still have to determine whether Vis of real or quaternionic 
type. These structures are given by a conjugate-linear structure map 

f: V -+ V, f 2 = e · id, e = ± 1 ; 

see II, §6. If V is irreducible and V :;;;: V, then V possesses exactly one of 
these structures and the corresponding e is called the index of V. If e = 1, 
then Vis real, and if e = -1, then Vis quaternionic. 

The following lemmata (4.4), (4.5) show how to read off the index of an 
arbitrary irreducible representation from the dominant weight once we 
know the index of the fundamental representations. Recall that we intro
duced the Cartan composite V * V' in (2. 7). 

(4.4) Lemma. Let V and V' be irreducible seff-conjugate representations 

with index e, e'. Then V * V' is self-conjugate with index e · e'. 

PROOF. If the group possesses a fundamental system of weights, then the 
self-conjugacy follows from (4.3). In general one may apply an argument 
analogous to the following ((4.7), Ex. 5): 

Let y and y' be the dominant weights of V and V'. By (2.8), the term V * V' 
appears with multiplicity 1 as the irreducible summand of highest weight in 
V ® V', and this highest weight is y + y'. Now, iff and f' are the structure 
maps of V and V', then f ® f' is a structure map for V ® V' with 

(J ® /')2 = e · e' · id. 

Therefore we only have to convince ourselves that J ® f' maps the sum
mand V * V' into itself. We decompose V ® V' into irreducible summands 
and consider the composition. 

f: V• V' c V® V'-:f®7V® V';: U, 

where pr is the projection onto an irreducible summand U. Assuming that 
f =1= 0, by Schur's lemma f defines an isomorphism V * V' -+ D. Therefore U 
has dominant weight y + y' and U has dominant weight in the W-orbit of 
-(y + y'). It follows that -(y + y') ~ y + y'. In other words, 

-(y + y') E Conv(W(y + y')) 

and soy + y' E -Conv(W(y + /")) = Conv(W( -(/' + '/)).Hence 

y + y' £::; -(y + y') 

and we see that y + y' and -(y + y') define the same W-orbit. Thus 
U = V• V'. 0 
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(4.5) Lemma. Let V be an irreducible representation. Then V * V is self
conjugate of index 1. 

PROOF. V * V is self-conjugate by (4.3) and (4.7), Ex. 5. A structure map 
J: V --+ V is clearly also a structure map of V with the same index s. Thus 
V * V has index s 2 = 1 by (4.4). 0 

This allows us to read off the index of an irreducible representation from 
its dominant weight as follows: 

(4.6) Proposition.LetQ c {l, ... ,k}bethesetofv = vsuchthattheassociated 
fundamental representation with dominant weight Yv is of quaternionic type, 
that is, has index - 1. Let V be an irreducible representation with dominant 
weighty = L~= 1 n. · y. with n. = n;;. Then V has index 1 or -1 according to 
whether LveQ n. is even or odd. 

PROOF. (4.4), (4.5). 0 

To summarize, the index may be computed from the coefficients n. with 
v = v and is multiplicative 

Knowledge of the irreducible characters themselves, along with their 
types, is more than just knowledge of the representation rings. Thus we may 
use what has been said to describe the real representation ring R(G, R) and 
the abelian group R(G, IHI) of virtual quatemionic representations. 

Suppose that G admits a fundamental system of weights. We have em
beddings II, (7.8) 

R(G, R)--+ R(G, C)~ R(G, IHI), 

induced by extension and restriction. We will view R(G, C) as the ring of 
polynomials in the fundamental representations and describe R(G, R) and 
R(G, C) as a subring and a subgroup. 

Additivity, R(G, R) has a free system of generators, consisting of the 
following representations (see II, (6.10), Ex. 7 or 10): 

(i) V e lrr(G, C)01 , 

(4.7) (ii) 2Vfor Velrr(G, C)IHI, 

(iii) V + V for Ve! Irr(G, C>c· 

Exchanging R and IHI correspondingly yields a free additive system of 
generators for R(G, IHI). 

Now, suppose we have been given a fundamental system of irreducible 
representations 

xl, ... ,xk 

together with their types. In particular, we know the permutation v 1-+ v 
such that X,~ X •. If 

n = (n1, ••• , n11), 
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we let X" E Z[X 1, .•. , Xk] denote the monomial with exponent n and we 
define fi by n. = n;;. If we interpret a monomial X" as a representation, it is 
clearly real, complex, or quaternionic precisely if its irreducible summand of 
highest weight is of the corresponding type. We may determine this using 
(4.3), (4.6). 

(4.8) Proposition. The real representation ring 

R(G, ~) c R(G, C)= Z[X 1, .•• , X"] 

consists of the polynomials f = Ln a" X", n E N~, whose coefficients satisfy 

(i) a" = a;;, 

(ii) if n = fi and L n. is odd, then a" E 2Z. 
veQ 

Correspondingly, the abelian group R(G, IHI) of the virtual quaternionic 
representations consists of those polynomials f whose coefficients a" satisfy: 

(i) an = a;;, 

(ii) if n = fi and L n. is even, then a" E 2Z. 
veQ 

PROOF. Using (4.7) this follows exactly as (2.10). Condition (i) says that f is 
self-conjugate, while (ii) says that the monomial X" is quaternionic (resp. real). 

0 

The basic original source for this section is Malcev [1], §2. Compare also 
Iwahori [1]. 

(4.9) Exercises 

1. Let G be compact. Consider the maps 

R( G) 1+: R( G)-;-:: R( G), 

where t is a conjugation. Let H(G) = ker(l - t)/im(l + t). Show that H(G) is a 
Z/2-algebra and that the self-conjugate irreducible representations form a Z/2-basis 
of H(G). 

2. Let y1, ••• , 'l'k be a fundamental system of weights for G. Show that the algebra 
H(G) in Exercise 1 is a polynomial algebra in the equivalence classes of irreducible 
characters with dominant weights 

y., v = v and 'l'v + y,, v "# v. 
3. Consider a product G x H of compact Lie groups. Let V and V' be irreducible 

representations of G and H. Show that the irreducible representation V ® V' of 
G x H is self-conjugate if and only if V and V' are self-conjugate. In this case V ® V' 
is real if and only if V and V' are of the same type; see II, ( 4.15). 

4. Let G be compact and connected and let U be a representation of G which has a 
highest weight y with multiplicity 1. Let V be an irreducible representation of G 
with the same dominant weight y. Show that if U is self-conjugate, real, or quater
nionic, the corresponding holds for V. 
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5. Let V and V' be self-conjugate irreducible representations of a compact connected 
Lie group. Show that V • V' is self-conjugate. Let V be an arbitrary irreducible 
representation. Show that V • V is self-conjugate. Note that G need not possess 
a fundamental system. 

6. Show that if R( G) is generated by real representations as a ring, then every repre
sentation of G is real. Hint: II, (6.10), Ex. 10. 

5. Representations of the Classical Groups 

We continue to use the notation e(t) = e2"i1, and we work with the real 
weights II, (9.7). 

(5.1) The special unitary group SU(n + 1). 

It has type A". The root system is specified in V, ( 6.2), ( 6.3). Since the group 
is simply connected, the representation ring is a polynomial ring 

(i) RSU(n + 1):;;:: Z[N, ... , N] 

in the fundamental representations; see (2.11) and (iv) below. Recall that we 
have described LT as {.9E IR"+ 11.91 + · · · + .9n+ 1 = 0} and I as 

{.9EZ"+ 1 1.91 + ··· + .9n+l = 0}. 

Thus 

LT* = IR"+ 1 /IR · (1, ... , 1), 

I* = zn+ 1 /Z · (1, ... , 1). 

Now, the projection (.91> ... , .9n+ 1) H (.91, ... , .9") induces isomorphisms 

LT ~ IR" and I~ Z". Dually, we have 

IR" .:. IR" + I --+ L T*' 
Z" .:. zn+ I --+ 1*. 

We will later use these maps as coordinates of LT* and I* and will thus 
denote elements by n-tuples. However, for the time being it seems more 
convenient to work with (cosets of) elements in IR"+ 1 = L1(n)*, since the 
description of the roots and the action of the Weyl group is simpler for 
U(n + 1). The (integral) forms on LT then uniquely correspond to the 
(integral) elements 'E IR"+ 1 = L:1(n)* with '"+ 1 = 0. If .9 E LT, then 
'(.9) = (,, .9) is the standard inner product on IR"+ 1. Using these conventions, 
we have 

(1.1.) K- I* {r 71 +I 1 r r } r'1 =.,ElL" .. 1~ .. 2~···~(n~(n+1=0. 
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Let e,. denote the jlth standard unit vector in IR"+ 1• Then the weights 

(iii) A., = e1 + · · · + e,, 

form a fundamental system. 
Let N denote a fundamental representation for A.,. We compute its 

dimension using the Weyl formula (1.7) (iv): 

dim N = n (A., + (!, ex) = n (A., + .(!. e,.- ei) 
IllER+ ((!,ex) 1 Si<}Sn+ 1 ) - l 

= n . . = n (n + 2 - l)/0(v + 1 - l) = . 
j - i + 1 . . (n + 1) 

iSv<j ) - l iSv iSv V 

Let V = en+ 1 with the standard SU(n + 1)-action. Then V has the weights 
e" ... , en, en+ 1 = -(e1 + · · · + e,.). The vth standard basis vector v. of V 
is a weight vector for e,. Now, the exterior power NV has the same di
mension as A' and the same highest weight A., with weight vector 
v1 " • · • 1\ v,. Thus we have (see also (5.6), Ex. 1): 

(iv) The exterior power A • Vis a fundamental representation for A.,. 

The exterior product defines the dual pairing 

since the determinant is 1 on SU(n + 1). Hence A"+ t-v ~ N or, in the 
notation of (4.2), 

(v) v = n + 1- v. 

If n + 1 is odd, then all fundamental representations are of complex type. 
If n + 1 is even and Jl = (n + 1)/2, then the exterior product 

A :A,.®N-+ C 

is a regular bilinear form which is symmetric if Jl is even and skew-symmetric 
otherwise. Thus by II, (6.4): 

(vi) N is real if Jl = (n + 1)/2 is even and quatemionic if Jl is odd. 

The alternating sums may be computed as follows: Let C e LT* be given by 
an element of R"+ 1 as explained above. Suppose 8 e LT. Then 

A(C)(8) = L det(w) · e((w(8)) = L sign( a)· e(l: (18"u1\ 
weW tleS(n+ 1) j 1 

= I sign< a> n e(C1B"w>· 
tl j 
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That is 

(vii) 

In the case of SU(2) we recover some of our previous results II, §5. The 
irreducible characters are labeled by the integers. We have Q = .91, and if 
y E 71., then 

(S.l) The unitary group U(n + 1), n ~ 0. 

It has type An, but it is not semisimple. We identify S1 with the center 
{zEn+ 1 jz E S1} ofU(n + 1) via z 1-+ zEn+ 1• We have the short exact sequence 

(i) 1-+ cn+1-+ SU(n + 1) X S1 -+ U(n + 1)-+ 1. 
p 

Here Cn+ 1 is the group of (n + 1)st roots of unity. It is embedded into 
SU(n + 1) x S1 via z 1-+ (zEn+ 1, z), and p maps (A, z) to z ·A. 

Since p is surjective, a representation V of U(n + 1) is irreducible, self
conjugate, real, or quaternionic, if and only if the same holds for p*V. Now, 
the irreducible representations of SU(n + 1) x S1 have the form V' ® V", 
where V' and V" are irreducible representations of SU(n + 1) and S1; see 
II, (4.15). If Vis an irreducible representation of U(n + 1) and 

p*V~ V'® V", 

then 

(ii) V' ~ VISV(n + 1), dim(V') · V" ~ VjS1. 

The tensor product V' ® V" is self-conjugate if and only if both factors are. 
But only the trivial irreducible representation of S1 is self-conjugate. So we 
have: 

(iii) An irreducible representation Vof U(n + 1) is self-conjugate if 
and only if VjSU(n + l) is self-conjugate and VIS1 is trivial. 

Now we look at the dominant weights. Choosing coordinates as in 
V, (6.1), (6.2), the projection pin (i) induces the map of Lie algebras 

Lp: ((.91, .. ·' .9n+ 1), t) H (.91 - t, .. ·' .9n+ 1 - t), 
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where L• 9. = 0. The dual map is 

Lp*:(y1•····Yn+1)~-+((Y1- Yn+t•····Y•- Yn+1),- ~Y.)· 
Hence, if y = (y1, ... , Yn+ 1) is the dominant weight of V: 

(iv) VIS1 istrivialifandonlyif y1 + ··· + Yn+ 1 = 0. 

Now suppose that the dominant weight 

( = ((1, · · ·, (.) = (y1 - Yn+ 1• · · ·, Y. - Yn+ 1) 

of VISU(n + 1) is given. Then there is at most one corresponding 

Y = (y1, · · · • Yn+1) 

with L• Y. = 0, since ( 1 + · · · + (. = y1 + · · · + Yn+ 1 - (n + l)y.+ 1. More 
precisely, we see: 

(v) Let V' be an irreducible representation of SU(n + 1) with 
dominant weight ((1, ... , (.). Then there is a (unique) irre
ducible representation V of U(n + 1) such that VIS1 is 
trivial and VISU(n + 1) ~ V' if and only if ( 1 +···+(.is 
divisible by n + 1. 

Now consider self-conjugate irreducible representations of SU(n + 1). 
Then condition (v) automatically holds for the weights Av + A..+ 1 _. in 
(5.1)(iii); (v). If n + 1 = 211 is even, then there is also the fundamental 
weight A11 of a self-conjugate representation, and the sum of the components 
of A11 is Jl· Hence we have: 

(vi) Let ( = (( 1, ••• , (.)be the dominant weight of a self-conjugate 
irreducible representation of SU(n + 1). If n + 1 is odd, then 
condition (v) always holds for (. If n + 1 is even, then con
dition (v) holds if and only if 

( = 2n11 • A11 + L n. ·(A. + An+ 1 -.), Jl = (n + 1)/2. 
v<ll 

Therefore by (4.6), (4.9), Ex. 3: 

(vii) All irreducible self-conjugate representations of U(n + 1) are 
real. 

(viii) Let V = en+ 1 with the standard action of U(n + 1), and let 
N =NV. The representation 

A• ® A"+1-• ® A"+1 

has trivial restriction to S1, and the restriction to SU(n + 1) 
has highest weight Av + A..+ 1 _. of multiplicity 1. 

Note, however, that this representation is not irreducible; see (5.6), Ex. 4. 
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Recall that we have computed the representation ring of U(n + 1) in 
IV, (3.13): 

Finally, the alternating sums have the same description as those of 
SU(n + 1) 

(x) A(y)(.9) = det(e(yi · .9d). 

(5.3) The symplectic group Sp(n), n ~ 2. 

It has type Cn ( = Bn for n = 2); see V, (6.6). 
We have 

(i) Kr-.1* = ml, ... ,(n)l(l ~ (z ~ ... ~ 'n ~ O,(.EZ}. 

Let ell be the ,uth standard unit vector of IR". Then the weights 

(ii) A.. = e 1 + ... + e.= (1, ... , 1, 0, ... , 0), 1svsn, 

constitute a fundamental system of weights. 

(iii) The fundamental representations are self-conjugate, v = v, 
since -A.. = wA.. for some win the Weyl group G(n); see (4.3) 
and IV, (3.8). 

Let V = !HI" ~ C2" as a complex vector space, where C acts by right 
multiplication. Then Sp(n) acts on V in the obvious way, and Vis quaterni
onic. Let v1, ... , vn be the standard basis of the !HI-module V. Then vll and 
v_ll = j · vll (where j E !HI is the basic quaternion) are weight vectors of the 
Sp(n)-module V corresponding to the weights ell and -ell. Let N =NV 
denote the complex vth exterior power of V. 

(iv) The Sp(n)-module N, 1 s v :::; n, has highest weight A.. with 
multiplicity 1. 

Note, however, that for v > 1 these representations are not irreducible. 
Let p• denote the fundamental representation with dominant weight A. •. 
Then Nand p• only differ by summands with lower weights than A. •. This 
enables us to replace the fundamental representations p• by the I\ • and vice 
versa in some general situations. For instance, by (2.10) the p• are alge
braically independent generators of the representation ring. Hence the 
same holds for theN: 

(v) RSp(n) = Z[N, ... ,/\."]. 

Let f: V-+ V be the stucture map of the quaternionic structure of V. Then 
Nf is a structure map for NV with (N,/)2 = ( -1)" · id. Hence N is real 
if vis even and quaternionic if vis odd. By (4.9), Ex. 4: 

(vi) The fundamental representation p• is real if v is even and 
quaternionic if v is odd. 
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Before we proceed to find the representations P•, we compute the alternating 
sums as follows: Let y = (y1, ... , Yn). We have the general identity 

n 

L B1 ..... Bn. e(y1e1.91 + ... + 'l'nBn.9n) = n (e(y • .9.)- e( -y • .9.)) 
•• =± 1 v= 1 

n 

= (2i)" n sin(2ny • .9.). 
v=1 

Also, by IV, (3.8) the Weyl group is 

W = G(n) = (l/2)lS(n) = {(e1, ... , Bn, o)le. = ± 1, crE S(n)}. 

Using this, we obtain for .9 = (.9 1, ... , .9") E LT": 

n 

A(y)(.9) = Ldet(w). e(yw(.9)) = (2i)" L sign(cr) n sin(2ny • .9a(v)). 
w aeS(n) v= 1 

Thus, 

(vii) A(y)(.9) = (2i)" · det(sin(2nyA..)). 

We proceed to consider the fundamental representations p•, v ;;;::: 2. 

(viii) . (2") ( 2n ) dtm p• = v - v _ 2 for v ;;;::: 2. 

PROOF. We use the Weyl formula (1.7)(iv). From the data on the root system 
in V, (6.6) we obtain 

dim p• = n <A.v + e, .9j + .9k>. <A. + e . .9j - .9k) . fi (A.. + e, .9k) 

j<k <e. 9i + 9k> · (g, .9j - .9k> k= 1 <e. 9k> 

= n fi (2n - u ~ k) + 3)(k + 1 ~ j) 
j=l k=v+1 (2n- {j + k) + 2)(k- J) 

• - 1 • 2n - {j + k) + 4 • n - k + 2 

. }] k=Q 1 2n - (j + k) + 2. kn n - k + 1. 

The interior products are 

fi 2n - (~ + k) + 3 = 2n + 2 - {j : v), 

k=v+ 1 2n - (J + k) + 2 n + 2- J 

fJ k + 1 ~ j = n + 1 - ~' 
k=v+1 k-j v+l-j 

• 2n - U + k) + 4 (2n + 3 - 2j)(2n + 2- 2j) 

k=Q 1 2n- U + k) + 2 = (2n + 2- U + v))(2n + 3- U + v))' 

nn-k+2= n+1 . 
k= 1 n - k + l n + 1 - v 
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Substituting this above and simplifying a bit, we end up with 

d . pv 2( 1 ) v- 1 (2n + 3 - 2j)(2n + 2 - 2j) Im = n + - v . n -:-'-----:--:-:-"-:....:..._--c-_.,----___.::_':7 
i=! (v + 1 -j)(2n + 3- (J+ v)) 

= 2(n + 1 - v). '[l (2n + 3 - 2j)(2n + 2 - 2j) 
v i= 1 j(2n+3-U+v)) 

= 2(n + 1 - v) vii 2n + _2 - j 

v j=1 1 

= 2(n + 1 - v)(2n + 1). "[}2n + _1 - j 
v(v-1) i= 1 J 

= ((2n + 1 - v~2n + 2 - v) _ 1). '[}2n + _1 - j 
v(v 1) i= 1 1 

(ix) The construction of the fundamental representations p• of 
Sp(n) for n, v ~ 2 (compare Bourbaki [1], Ch. VIII, §13, IV). 
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As above, let v1, .•• , vn be the standard basis of the !HI-module V = IHI", and 
let v~> ... , vn, v_ 1, ... , v_n with v_ll = j · vll be the corresponding complex 
orthonormal basis of V ~ C2". Let v!.", ... , v: be the dual basis of V*. 

The group Sp(n) leaves the alternating two-form 

n 

r* = " v* 1\ v* L.... It -It 
~t=1 

invariant, since this form corresponds to the matrix - J; see I, (1.12). On the 
other hand, the Hermitian inner product gives us a conjugate linear Sp(n)
equivariant isomorphism v ~ V* which maps VJl to v;. Thus from r* we 
obtain the element 

n 

r = L v/J 1\ v_/JEI\2V, 
~t=l 

which is invariant under the action of Sp(n) on NV. We define endo
morphisms x+ and x- of 1\(V) by 

x-(u) = r A u, 

The bilinear product Alt'(V) ® N(V) '=. N-'(V) appearing in the definition 
of X+ is determined by the following properties: 

If ex, P E Alt(V) ~ 1\(V*) and u E /\(V), then 

(ex 1\ p) L u = ex L (p L u), 
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and if IX e Alt 1(V) = V*, x" e V for Jl = l, ... , r, then 

cx L (x 1 A • · · A x,) = L ( -1)"- 1cx(x") · x 1 A • • • A x" A · • • " x,. 

" 
In order to compute the action of X+ and X-, we specify a basis of /\.( V) 
as follows: For each triple (A, B, C) of disjoint subsets of {1, ... , n}, we set 

VA,B,C = Va, 1\ ••• 1\ Vak 1\ V-bt 1\ ... 1\ V-b 1 1\ Vet 1\ V-c1 1\ ... 1\ Vcm 1\ V-cm• 

where a1 < a2 < · · · < a,. are the elements of A, and analogously forB and 
C. The set of all these vA,B,c is, in fact, a basis of 1\.(V) and one may check: 

x+(vA.B,c) = - L VA,B,C\(1')• 
I'EC 

Let H be the endomorphism of 1\.(V) which is multiplication by n - von 
NV. Then, using this explicit description of x+ and x-, the reader may 
easily verify: 

In other words: the elements x+, x-, H generate a Lie subalgebra of 
End(/\.(V)) which is isomorphic to sl(2, C). The action of this subalgebra 
makes 1\.(V) into an sl(2, C)-module, and /\'Vis the subspace of the elements 
of weight n - v of this module. However, we know the structure of finite
dimensional sl(2, C)-modules; see II, (10.4), (10.5), ((10.18), Ex. 5). Let 
E. =(NV)(\ ker x+ be the subspace of primitive elements in NV. Then 
we have: 

For v < n the restriction of x- to /\'Vis injective, and for v::::;; none has a 
direct sum decomposition 

NV= E. ED x-E.-2 ED (X-)2E.-4 ED···= E, ED x-N- 2V. 

In particular, dim E.= e:)- (v: 2) =dim p•. 

By construction, the space E, is invariant under the Sp(n)-action on NV. 
Moreover, it contains the weight vector vA, 0 , 0 , A = {1, 2, ... , v}, corres
ponding to the highest weight A.. of NV, since x+vA. 0 , 0 = 0. 

So we conclude E. ~ p• as an Sp(n)-module. 

(5.4) The special orthogonal group S0(2n + 1). 

It has type B" for n ~ 2; see V, (6.5). The maximal torus and the Weyl 
group are the same as for Sp(n); see II, (3.7), (3.8). This suffices to conclude 
that the representation rings are isomorphic. We will see this more explicitly. 
As for Sp(n), we have 

(i) K (\I*= {((1, ... , (n)1'1 ~ ... ~ (" ~ 0, (,eZ}, 
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and the forms 

(ii) A.. = e1 + · · · + e. = (l, l, ... , l, 0, ... , 0), 

constitute a fundamental system of weights. If A • is a fundamental repre
sentation with dominant weight A.., then 

(iii) RS0(2n + l) = Z[A1, •.• , N]. 

Let V = C ® IR2"+ 1 = C2"+ 1 with the standard action of S0(2n + l). We 
will show: 

(iv) N ~ N(V). 

The S0(2n + 1)-module V has the weights 0 and ±e., 1 ~ v ~ n. Let 
u1, v1, ••• , ""' v", un+ 1 be the standard basis of IR2"+ 1. Then u. + iv. is a 
weight vector for the weight ±e. and "" + 1 has weight 0. Hence the vector 
(u1 - iv1) 1\ · • · 1\ (u.- iv.) in NV has weight A. •. So we need to show that 
NV is irreducible. 

(v) If v < m/2, then C ® NIR"' is an irreducible SO(m)-module. 

PROOF. Let w1, ••• , w.., be the standard basis of IR"'. Then an element of 
C ® NIR"' may be written in the form L,s as· Ws, where S runs through the 
subsets of {1, ... , m} with v elements, as e C, and Ws = w,., 1\ • • • 1\ w,. •• 
J.L 1 < · · · < Jl.., S = {J.L 1, .•• , Jl..}. Now let U be an SO(m)-submodule of 
C ® NR"'. Letx = L,s as· Ws,x =F O,bein U. Usinginductiononthenumber 
of coefficients as =F 0 of x, we will show U = C ® NR"'. Suppose this number 
island ar =F 0. Then wr is in U. But, up to sign, all theWs are obtained from 
wr by permuting the basis w1, •.• , w.., of R"' and, in the case of odd permuta
tions, substituting -w1 for w1• Hence all w8 are in U and U = C ® NR"'. 
Now, suppose that x has at least two nonvanishing coefficients as and ar. 
Choose indices j e S, j ¢ T and k ¢ S u T. This is possible, since S =F T and 
2v < m. Then consider the transformation A e SO(m) with Awi = -wi, 
Awk = -wk> Aw1 = w1 for l =F j, k. This transforms w8 to -w8 , fixes wr, 
and all the other wR are either fixed or transformed to their negatives. 
Hence x + Ax e U has fewer non vanishing coefficients than x, but still at 
least one. 0 

Thus we have proved (iv) and (v) and, by construction: 

(vi) A • is self-conjugate and real for 1 ~ v ~ n. 

The alternating sums have the same description as in the case of Sp(n). Hence 
the same result: Let 8=(81, •.• ,8")eLT" and y=(y1, .•• ,yn)e(LT")*, 
then 

(vii) 
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(5.5) The special orthogonal group S0(2n), n ~ 2. 

It has type D"; see V, (6.4). We postpone the computation of the repre
sentation ring until the next section (6.6). We have 

(i) K n I*= m1, ... , '")1'1 ~ · · · ~ '"-1 ~ l'nl• '·E Z}. 

A system of generators of this semigroup is 

A.. = e1 + · · · + e., 1 :5 v :5 n - 1, 

;.; = el + ... + en-1 ± e", (ii) 

where e. is the vth standard unit vector in IR". Let 

N for 1 :5 v :5 n - 1, and /\"+, /\"__ 
denote the corresponding irreducible representations with dominant 
weights A.., ..t:, A.;. By (2.10), 

(iii) RS0(2n) is generated by N, ... , /\" -1, /\"+, 1\ "--. 

We give an explicit construction of these representations: 

Let V = C ® IR2" and let u1, v1, ••• , u", v" be the standard basis of IR2". 

(iv) N ~ NV is the vth exterior power for 1 :5 v :5 n - 1. 

In fact, NV is irreducible for v :5 n - 1 by (5.4)(v), and 

(u 1 - iv1) A • • · A (u. - iv.) 

is a weight vector for the dominant weight A. •. 
The exterior power 1\"V, however, is reducible. It has two maximal weights 

A:, A.;, both with multiplicity one. Corresponding weight vectors are 
(u 1 - iv1) A · • • A (u"_ 1 - iv"_ 1) A (u" + iv"). We will show: 

(v) The S0(2n)-module 1\"V is the sum of two irreducible sub
modules /\"+ V and /\"__ V with dominant weights ..t: and A.;. 

These summands are the eigenspaces of the *-operator. We briefly recall 
what that is. 

In general, let E be an m-dimensional oriented Euclidean vector space. 
Then E has a canonical volume form w determined by the metric and 
orientation. In other words, we have a canonical isomorphism 

IR ~ /\mE, t ...._. t · w. 

Thus the exterior product gives us a dual pairing 

A: f\•E ® 1\m-vE ~/\mE = R 

Rewriting this, we have an isomorphism 

dx(y) =X A y. 
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On the other hand, the Euclidean inner product onE induces the isomorphism 

K: E--+ E*, x 1-+ (x, ). 

Combining these, we obtain the isomorphism 

* = (Am-vK)-lod:A•£--+Am-v£. 

If e1, ... , em is a positively oriented orthonormal basis of E, then 

•(e1 1\ .•. 1\ e.)= ev+1 1\ ... 1\ em. 

From this one easily gets the more general formula 

* (ea(l) 1\ ••• 1\ ea(v)) = sign( a). ea(v+ 1) 1\ ••. 1\ ea(m) 

for any permutation a E S(m), and 

* o * = ( -Jy<m-v), id. 

Now, in our case, m = 2n, v = n, E = IR 2", and we choose the orientation so 
that u1 1\ · • • 1\ u" 1\ v1 1\ • • • 1\ v" is positive. Hence 

* ( U 1 1\ • • • 1\ Un) = V 1 1\ • . • 1\ Vn. 

Tensoring with C, we obtain the automorphism 

(vi) r = ( -i)" · •: NV--+ A"V, tor= id. 

From this, we have the canonical decomposition 

(vii) NV=/\"+ V$ A"_ V 

into the eigenspaces of r corresponding to the eigenvalues 1 and - 1. These 
are S0(2n)-modules by construction, and we show: 

(viii) /\"_ ~A"_ v. 
PROOF. Modifying the proof of(5.4)(v), one easily shows that A" Vis irreducible 
as an 0(2n)-module. Moreover, transformation by an element TE 0(2n) 
of determinant -1 interchanges the summands of (vii). In fact, 

T:A"+V~N_V, 

since Tor= -roT. Now let U c A"+(V) be an S0(2n)-submodule. Then 
U EB TU is an 0(2n)-module, and so it is either 0 or equal to NV. Thus U 
is either 0 or equal to A"+ V. This shows that the S0(2n)-modules A± V are 
irreducible. We still have to check that 

X = (u1 - iv 1) 1\ · · • 1\ (un - ivn) E A"+ V. 

But this weight vector must lie in either A"+ V or /\"_ V. In other words, 
r(x) = x or r(x) = -x. Expanding 

X= U1 1\ · · • 1\ Un + · · · + ( -i)"vt 1\ • • • 1\ Vn, 
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we find that 

r(x) = (- i)" * (x) = (- i)"v1 A • • • A v,. + · · ·, 

and hence r(x) = x. 

(ix) If n is even, then all irreducible representations of S0(2n) are 
self-conjugate and real. 

0 

Indeed, in this case r is real, and the real S0(2n)-module NIR2" splits into 
the eigenspaces of r. The decomposition of NV arises from this by tensoring 
with IC. The NV = IC ® NIR2", v < n, are, of course, also real. 

(x) If n is odd, then an irreducible S0(2n)-module is self-conjugate 
if and only if the last component of its dominant weight 
vanishes. Also, all self-conjugate S0(2n)-modules are real. 

Indeed, let (y 1, ••. , y,.) be the dominant weight of the irreducible representa
tion U. Then U has dominant weight (y1, ... , y,._ 1 , -y,), since this lies in 
K n I* and in the orbit of -(y1, ..• , y,.) under the action of the Weyl group 
SG(n). Thus U ~ U if and only if Yn = 0. But in this case U is an iterated 
Cartan composite of the real representations A. 1, ••• , A"- 1, and hence is 
real. 

As in the case of S0(2n + 1), one may describe the alternating sums by 
suitable determinants. Let E = {(c:1, ... , c:,)lei = ± 1, c:1 • ... • c:,. = 1}. Then 

2 L e(c: 1y1 .9 1 + · · · + c:,.y,..9,) 
E 

n n 

= n (e(yj.9} + e(-yj.9)) + fl(e(yj.9)- e(-yj.9j)) 
j= 1 j= 1 

n n 

= 2" n cos(2nyj8) + (2i)" n sin(2nyj8j). 
j= 1 j= 1 

Now recall the structure of the Weyl group 

SG(n) = E · S(n) c C2 l S(n), with C2 = {1, -1}. 

So let 8 = (8 1, •.. , 8,.) E LT", andy= (y1, ••. , y,) E (LT")*. Then 

2A(y)(.9) = 2 L det(w)e(yw.9) 
weSG(n) 

= L sign(a)·2 }:e(c:1y1.9 .. 01 + ··· + e,.y,.9a(nl). 
aeS(n) E 

Substituting the above, we get 

(xi) 2A(y)(.9) = 2" det(cos(2nyi.91)) + (2i)" det(sin(2nyi.91)). 
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There are methods for the explicit construction of the irreducible representa
tions for the classical groups which are based on the fact that such representa
tions are contained in iterated tensor products V ® · · · ® V ® · · · of the 
standard representation V. Such tensor representations are decomposed 
using the representation theory of the symmetric group. This method has 
been developed by H. Weyl. For a detailed elementary exposition of Weyl's 
method see Boerner [1]. See also Naimark and Stern [1]. 

For computations for classical groups from the Lie algebra point of view, 
see Bourbaki [1], VIII, §13. This is also relevant for our V, §6. 

(5.6) Exercises 

1. Show that the representation NV of SU(n) has the weights wA.., each with multi
plicity 1, where w runs through the Weyl group S(n). This shows once more that 
NV is irreducible. 

2. Show that HSU(n) in (4.9), Ex. 1 is a polynomial algebra. The SU(n)-modules 
N ® A"-v, v < n- v, together with N 12 if n is even, represent algebraically 
independent generators. 

3. Similarly, show that HU(n) is polynomial. The U(n)-modules N ® A"-v ®A", 
v ::; n/2, represent algebraically independent generators. 

4. Show that the representations N ® A"- v ® li." of U(n) contain a nonzero trivial 
summand. 

5. Show in two ways that every (irreducible) representation of SU(n) may be extended 
to all of U(n): 

(i) By considering the dominant weight. 
(ii) Directly, by inspecting the action of the center C" of SU(n). 

6. Show that HSp(n) and HS0(2n + 1) in (4.9), Ex. 1 are polynomial algebras. In 
each case A 1, ••. , A" represent algebraically independent generators. 

7. Check the computation of dim pv in (5.3)(viii). 

8. Show that the Sp(n)-module N has the weights A.v _ 2" with multiplicities 

(n- vJl + 2Jl). 

9. Characterize those irreducible SU(n)-representations which factor through the 
projective group SU(n)/C" by a condition on their dominant weights. 

10. Show that the fundamental representation N of S0(2n + 1) has the weights 

' d ' h . h I . I' . (n - v + 2k) "'v- 2kan "'v-lk- 1,eac Wit muttptctty k . 

11. Compute the dimension of the fundamental S0(2n)-representations N, A"., A"_ 
using the Weyl formula (1.7)(iv). This gives a new proof of irreducibility. Similarly 
for S0(2n + 1). 
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12. Let n be odd. Show directly that the S0(2n)-representations A"+ and A"_ are 
conjugate. 

13. For n even, show HS0(2n) ~ RS0(2n) ®z (Z/2). For n odd, show HS0(2n) = 
Z/2[N, ... , A"- 1). 

14. Show that the S0(2n)-representation N has the weights J.._ 2 k with multiplicities 

(n - v + 2k) (4k) k . Also, A"+ has the weights J.,_ 4k with multiplicities 2k , and A"- has 

h . h 1 . h I . 1· . . (2k + 2) t e we1g ts "'rr-lk- 2 w1t mu tip !Cities k + 1 . 

15. Show that the inclusion jz.: S0(2n)-> S0(2n + 1) induces on the representation 
rings the injective homomorphism 

i!.: RS0(2n + 1)-> RS0(2n), 

for 1 s v s n, with A0 = 1 and A"= A"++ A"- in RS0(2n). Similarly, the inclusion 
hn-l: S0(2n- l)-> S0(2n) induces 

i!.- 1 : RS0(2n) -> RS0(2n - 1), A•r-+A• + A•- 1 for v < n, 

6. Representations of the Spinor Groups 

We start by describing the spin representations in terms of their weights. 
This leads to the computation of the representation ring in an easy way. 
Later we construct the so-called half-spin representations as modules over 
Clifford algebras as in Atiyah, Bott and Shapiro [1] and determine their 
real, complex, or quaternionic type. The computations of the representation 
rings, in particular theorems (6.2) and (6.6), are taken from mimeographed 
notes of J. Milnor. 

We recall the following conventions. Let m = 2n or m = 2n + 1. The 
maximal torus T(n) ofSpin(m) with Lie algebra L T(n), as well as the maximal 
torus T(n) of SO(m) with Lie algebra LT(n), are described in coordinates 
as in IV, §3. We have LT(n) ~ ~· with integral lattice I ~ 7L" for SO(m). 
The canonical projection p: Spin(m)-+ SO(m) induces a double cover 
T(n)-+ T(n) through which LT(n) is identified with LT(n). The invariant 
inner product on LT(n) corresponds to the standard Euclidean inner product 
on~·. Thus we have fixed isomorphisms 

LT(n)* ~ Lf(n) ~ LT(n)* ~ LT(n) ~ ~·. 

A representation of SO(m) induces one of Spin(m) by means of p. The 
induced representation has the same real weights (see II, (9. 7)) as elements of 
LT(n)* ~ ~·. The integral lattice of Spin(m) is a subgroup of index 2 in that 
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of SO(m). The lattice of integral forms of SO(m) is thus a subgroup of index 
2 in the lattice of integral forms of Spin(m). With our choice of coordinates, 
the lattice of integral forms of Spin(m) is given by 

zn + e. (1, ...• 1), e = 0 ore=!; 

see V, (6.7). 
From this, together with the description of the root system of SO(m) in 

V, (6.4), (6.7), we get 

(6.1) Proposition. Tbe group Spin(2n) has as fundamental system ofweights 

1 $; v $; n - 2, 

a; = !{e1 + ... + en-1 ± en), 

where e. is the vth standard unit vector of!R". The group Spin(2n + 1) has as 
fundamental system of weights 

A.., 1 :s;; v :s;; n - 1, 

an = t(e1 + ... + en>· 

These fundamental weights are dominant for fundamental representations 

N,N, ... ,A"- 2,A".toA"- ofSpin(2n), and 

N, N, ... , A"- 1, A" of Spin(2n + 1). 

The representations A • arise from the representations of SO(m) with identical 
notation via the projection p: Spin(m) ~ SO(m). In other words, N comes 
from the exterior powers A v = A v V, where Vis C2" or C2" + 1. The representa
tions A, A+, and A_ are the half-spin representations of the spinor groups 
mentioned above. 

Now, in order to compute the representation rings, we will only need to 
know the dominant weights. 

We will often omit the index n from A, a, ... , so A+ =A~, and so on. 
We will also denote the irreducible representation of Spin(2n + 1) with 
dominant weight 2a by A", and similarly, the irreducible representations of 
Spin(2n) with dominant weights 2a+, 2a-, and a+ + a- are denoted by 
A"+, !\"_, and A"- 1• These representations are induced by those of SO(m) 
with the same names. 

(6.2) Theorem. The representation ring of Spin(2n + 1) is the polynomial ring 

RSpin(2n + 1) = Z[N, ... , A"- 1, A]. 

Moreover 

(i) A·A= 1 +N +···+A"- 1 +A". 



280 VI. Irreducible Characters and Weights 

The representation ring of Spin(2n) is the polynomial ring 

Moreover 

(ii) 
(iii) 
(iv) 

RSpin(2n) = l[N, ... ,N- 2,A+,A-J. 

A+ ·A+ = A"+ + /\"-2 t /\"-4 + .. ·, 
A+ ·A_= /\"-1 + /\"-3 + 1\"-s + ... , 
A_ ·A_ = /\"_ + N- 2 + A"-4 + .. ·. 

The sums end in /\4 + 1\2 + 1 or /\3 +A Note that (i)-(iv) describe A", 
A±, and A"- 1 as polynomials. 

PROOF. See (2.11). We only have to check the relations (i)-(iv), and we do 
this by comparing the weights of the representations on both sides of the 
equation. We pause for a lemma: 

(6.3) Lemma. The weights of the half-spin representations are conjugate to 
the dominant weights under the action of the Weyl group. Thus they all have 
multiplicity 1 and dim A = 2", while dim A+ = dim A_ = 2"- 1. 

PRooF. Except for the trivial weight 0, the convex closure of the orbit of a 
under the action of the Weyl group G(n) contains no additional weights. 

If 0 were a weight of A, then a ~ 0 + a would be a weight of A ® A. But 
the central element -1 E Spin(2n + 1) operates on an irreducible represen
tation via multiplication by either + 1 or - 1 due to Schur's lemma. At any 
rate, it acts trivially on A ® A, so A ® A comes from a representation of 
S0(2n + 1). Therefore it only has integral weights, a contradiction. The 
same argument may be applied to A+ and A_, from which the lemma 
follows. 0 

Back to the proof of (i)-(iv). We know the weights on the left-hand side 
of the equation and must only show that the weights A.,, A:, and .t; appear 
equally often on both sides, since·'all the other weights which appear are 
conjugate to those under the operation of the Weyl group. 

We choose notation as in (5.4), so the Spin(2n + I)-module V = C ® 
R2"+ 1 has as standard basis u17 v1, ••• , u,., v,., u,.+ 1• The vectors u1 ± iv1 
generate the weight spaces of V associated to the weights + e 1, and u,. + 1 

generates the weight space associated to the weight 0 of V. Accordingly,_the 
weight spaces of N =NV are generated by those weight vectors which 
are v-fold exterior products with factors u 1 ± iv 1 and u,. + 1• For Spin(2n) the 
notation is the same-only the u,.+ 1 is gone-as in (5.5). 

(i) The weight A.v arises in A ·A as the sum 

!{1, ... ' 1, ev+ 1• ••. ' e,.) + !(1, ... ' 1, -ev+ 1• .•• ' -e,.), 
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of two weights of ll in 2"-· different ways. On the righthand side of (i), the 
weight A., appears exactly half as often as in the representation 

1 +NV+···+ I\ 2"+ 1 V, 

since AiV ~ 1\2"+ 1 -iV. 
In this representation, A., appears as a product 

(u 1 - iv1) 1\ • • · 1\ (u, - iv,) 1\ w, 

where w is itself an exterior product with factors (ui + iv) 1\ (ui- ivi), 
v < j:::;:; n, and u.+ 1• There are clearly 2 · 2"-• such products w, from which 
we see that A., also has multiplicity 2"- • on the right-hand side of (i). 

(ii) On both sides, only the weights conjugate to A.._ 2 i and;..: appear, the 
latter exactly once. The weight A., with even n - v arises on the left as a sum 

!(1, ... , 1, e,+ 1, ••. , e.) + t(l, ... , 1, -ev+ 1, •.. , -e.), 

in 2"_"_ 1 ways. Now, for v < n, the weight A., occurs the same number of 
times in A"+ and A"-, since changing the orientation of ~· switches these 
summands of NV. Consequently A., occurs on the right-hand side of (ii) 
exactly half as often as in 

... + I\"+ 2 V +(A"+ V +A"_ V) + A"- 2 V +···+NV. 

Here the A., come from weight vectors 

with w an exterior product of the factors (ui + iv) 1\ (ui - ivi), v < j :::;:; n. 
Since there are 2•-• such products w, the multiplicity of A., on the right-hand 
side of (ii) is also 2"- •- 1• 

(iii) and (iv) may be proved analogously. 0 

We will use the information about the spinor groups to describe the 
representation ring RS0(2n). The inclusion j: S0(2n)--+ S0(2n + 1) is the 
identity on the maximal torus T(n) and therefore induces an injective ring 
homomorphismj*: RS0(2n + l)--+ RS0(2n). This makes RS0(2n) into an 
RS0(2n + 1)-module. From the natural isomorphism N(V EfJ C) ~ 
N(V)EfJN- 1(V) we see that j*N=N+N- 1, l::;;v::;;n, with 
N = 1 and A" =A"+ +/\"_in RS0(2n). Thusj*RS0(2n + 1) is the subring 
of RS0(2n) generated by A 1, ••• , A", and these elements are algebraically 
independent in RS0(2n): 

(6.4) j*: RS0(2n + l} ~ Z[N, ... , A"] c RS0(2n) 
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The character ring of the maximal torus T(n) of S0(2n) and S0(2n + 1) has 
an algebraic description as the ring of finite Laurent series inn indeterminates 
z 1, •.. , zn. The ring RS0(2n + 1) sits inside this as the ring of those elements 
left invariant under all permutations and inversions of the variables z,, 
while RS0(2n) consists of those elements left fixed by arbitrary permutations 
and by inversions of an even number of the z,. In this description j* is the 
inclusion. Observe, however, that N E RS0(2n + 1) is different from 
N E RS0(2n) by (6.4). 

Inverting an odd number of the z, defines a ring automorphism 

(6.5) <p: RS0(2n)-+ RS0(2n), <p2 = id, 

and j*RS0(2n + 1) is the fixed ring of <p. The automorphism <p is induced 
via conjugation by an A E S0(2n + 1) where, for example, 

A= (blank places are zero). 

(6.6) Theorem. 

(i) The representation ring of S0(2n) is 

RS0(2n) ~ Z[A\ ... , N- 1, A~, A~]/R 

with the relation 

R = (A"t + N- 2 + N- 4 +···)(A~ + N- 2 + N- 4 +. · ·) 

-(N-1 + N-3 + ···)2. 

The sums in parentheses end as in (6.2), and under the isomorphism the 
indeterminates A', A± correspond to the representations with ·the same 
names. 

(ii) RS0(2n) is a free RS0(2n + i)-module generated by 1 and A"t. 

PROOF. If we use (6.2)(ii-iv) to expand (l1+)2(LL)2 - (ll+ .f1_)2, we obtain 
the relation R. Thus R is in the kernel of the homomorphism 

Z[N, ... ,N- 1,A"t,N-]-+ RS0(2n) 

sending N, A± to the corresponding representations. We already know 
(5.5)(iii) that this homomorphism is surjective. Using the relation N = 

A"t + N'_, we may write 

Z[N, ... ,N- 1,A~,N-J/R = Z[N, ... ,N- 1 ,N,A~]/F 

= RS0(2n + l)[A~]/F, 
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where F is a certain monic quadratic polynomial in the variable A"+ with 
coefficients in RS0(2n + 1). The reader has the opportunity to compute F 
from R in (6.20), Ex. 1. We thus have a surjective ring homomorphism 
RS0(2n + 1)[A"+]/F --+ RS0(2n) which allows us to express every 
g E RS0(2n) in the form 

g =a+ bA"+, a, bE RS0(2n + 1). 

Both statements (i) and (ii) are now equivalent to the statement that a and 
bare uniquely determined by g. But ifO = a + bA"+ with a, bE RS0(2n + 1), 
then a and b are fixed by the automorphism cp of (6.5). And since cpA"+ = 
I\"_ =F A"+, we conclude that a= b = 0. 0 

(6.7) Remark. The irreducible representations N of the spinor group are 
real. The representation A" of Spin(2n + 1) is self-conjugate. If n is even, then 
the half-spin representations A"-t, A~ of Spin(2n) are self-conjugate. For n odd, 
A"+ is conjugate to A~. 

Indeed, the N come from the representations IC ® NIR"' of SO(m), and 
the statements just made about the half-spin representations follow from 
( 4.1) by looking at the dominant weights. 

To read off the exact types of the half-spin representations, we need to 
explicitly construct them. They are obtained as irreducible modules over 
certain Clifford algebras, as we will now explain. First we recall a bit from 
I, §8: 

The real Clifford algebra Cm = C~ Ef> C~ associated to the quadratic form 
Q(x) = -I x 12 is generated by monomials 

sE {0, 1}, 0::; 2k + s::; m, x.es"'- 1. 

These monomials are units in the algebra and form the group Pin(m). 
Moreover, Spin(m) = Pin(m) n C~ consists of the monomials of the form 
above with s = 0. The product in the Clifford algebra satisfies the relation 

xy + yx = -2<x, y) for x, y E IR"'. 

Thus x 2 = -1 for X E sm- I and x, y E IRm anticommute precisely if they are 
orthogonal. If e1, ..• , em is any orthonormal basis for IR"', then the 2m 
monomials (including l) 

form a vector space basis for Cm. There is the canonical anti-automorphism 
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and this yields the projection ((6.20), Ex. 2) 

p: Pin(m)-+ O(m), p(a)v = ava'. 

If X E sm-l and v = rx + y E !Rm with r E IR and (x, y) = 0, then p(x)v = 
x(rx + y)x = rx3 + xyx = - rx + y. Thus p(x) is the reflection of !Rm in 
the hyperplane orthogonal to x. 

The even part C~ is a subalgebra of Cm, and there is an isomorphism of 
algebras 

(6.8) 

see I, (6.6). We are particularly interested in complex modules. We obtain 
the complex Clifford algebra C ® Cm from Cm by extending coefficients. Of 
course, the basis and relations remain unchanged. 

We now come to spin representations. The group Spin(m) acts on the 
real vector space C~ by left multiplication, and this representation cannot 
come via p* from a representation of SO(m) since the element -1 E Spin(m) 
does not act trivially. More generally, if Vis any left module over the algebra 
C~ or its complexification C ® C~, then Spin(m) acts on V by left multipli
cation and this yields a representation. We will obtain the still missing half
spin representations through such C~-modules. Therefore we are interested 
in the structure of these real algebras and hence by (6.8) in the structure of the 
Clifford algebra Cm. 

We know from I, (6.3) that 

C0 = IR, C 1 = c, 

Let K(n) denote the algebra of (n x n)-matrices over K, where K is IR, C, or 
IHJ. We then have the following standard isomorphisms of real algebras: 

(i) !R(n) ®IRK ~ K(n), 

(ii) IR(n) ®IR IR(m) ~ IR(nm), 

(6.9) (iii) C ®IRC ~ C XC, 

(iv) IHJ @IR C ~ C(2), 

(v) IHJ ®IR IHJ ~ IR(4). 

These isomorphisms are defined as follows: 

(i) (aii) ® k H (ka;). 
(ii) The map is induced by the isomorphism !Rn ® !Rm ~ !Rnm. 

(iii) Z (8) W H (zw, ZW). 
(iv) View 1HJ as a subalgebra of C(2). So, if A = (a;) E 1!-D is a complex (2 x 2)

matrix, then (a;) ® z H (z · aii). 
(v) A ® B is sent to the real-linear map 1!-D -+ 1!-D, X H AX* B, and 1!-D ~ !R4 . 

Note that the adjoint complex matrix * B is conjugate to B in 1!-D. 
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It is easy to check that the maps given are actually isomorphisms 
((6.20), Ex. 5). 

The Clifford algebras Cn may now be computed as follows: 

Let C~ = C(- Qn) be the Clifford algebra associated to the quadratic form 

giving the square of the Euclidean absolute value. Then C~ is generated by 
basis elements e~, v = 1, ... , n, with the relations 

e~e~ + e~e~ = 0 for v =!- ll· 

(6.10) Proposition. There are isomorphisms 

en® C2 ~ c~+2• 
c~ ® c2 ~ cn+2· 

PROOF. Let V' denote the linear subspace of C~ + 2 spanned by thee~. Consider 
the linear map 

t/J: V'-+ Cn ® C2, 

t/J(e~) = {e1.:2 e~. e'1e2 for 2 < v :S: n + 2, 
'CI for v = 1, 2. 

This map satisfies the hypotheses for the universal property I, (6.1) of the 
Clifford algebra C~ = C(- Qn), as may easily be verified. Therefore tjJ 
extends to a homomorphism of algebras 

It is clear that tjJ is surjective since the t/J(e~). v = 1, ... , n + 2, generate 
Cn ® C2. Since both algebras have the same dimension 2n+ 2, we conclude 
that t/1 is an isomorphism. Exchanging primed for unprimed symbols in the 
proof will give the second isomorphism. 0 

Now, we have 

(6.11) 
Co=~. 

co=~. C2 = ~(2). 

The last two isomorphisms in the second row are given by 
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Starting with these data we may use (6.9) and the inductive procedure in 
( 6.1 0) to compute the following table of Clifford algebras: 

n en C' n C®Cn ~ C®C~ 

0 ~ ~ c 

1 c ~X~ CxC 

2 IHl ~(2) C(2) 

3 IHlxiHI C(2) C(2) X C(2) 
(6.12) 

4 IHI(2) 1Hl(2) C(4) 

5 C(4) IHI(2) x IHI(2) C(4) X C(4) 

6 ~(8) IHI(4) C(8) 

7 ~(8) X ~(8) C(8) C(S) X C(S) 

8 ~(16) ~{16) C(16) 

For the following, the reader should always keep this important table at 
hand. 

The periodicity follows directly from {6.10): 

In the same way, C~+B ~ C~ ® ~(16). In the third column are the complex 
Clifford algebras associated to the unique equivalence class of regular 
complex quadratic forms. Here the analogue of (6.10) reads 

The sequence of real Clifford algebras is periodic with period 8 in that 
raising the index n by 8 fixes the field IR, C, or IHl and multiplies the "dimen
sion" by 16. Thus C 8k+ 1 ~ C(16k), C 8k+ 3 ~ IHI(16k) x H(16k), and so on. 
Similarly, the sequence of complex Clifford algebras is periodic with period 2. 
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This also answers the question of which modules exist over the algebras 
c. and (®c .. Namely, one makes the following purely formal and general 
remark: Let RandS be rings or, in our case, real algebras with unit (associa
tive but not necessarily commutative) and let R(n) be the ring of (n x n)
matrices with coefficients in R. Let Mod(R) denote the category of (left) 
R-modules. 

(6.13) Proposition. There are equivalences of categories: 

(i) 

(ii) 

Mod(R) x Mod(S) ~ Mod(R x S), 

Mod(R) ~ Mod(R(n)). 

PROOF. We do not wish to get lost in formal details but here are the main 
points. 

(i) If U is an R-module and V an S-module, then U x V is an (R x S)
module in an obvious way. Conversely, every (R x S)-module M is of this 
form with U = (1, 0) · M and V = (0, 1) · M. The equivalence (i) is therefore 
defined on the objects by (U, V) => U x V and on morphisms by (<p, 1/J) 1=> 

<p x 1/1. The inverse functor is easy to write down. 
(ii) If V is an R-module, then vn = V $ · · · $ V (n summands) is an 

R(n)-module in the obvious way. And iff: V--+ U is an R-module homo
morphism, thenf": V"-+ U", (v 1, ... , v.) t-+ {fv1, ... , fv.) is an R(n)-module 
homomorphism. Properly understood, the claim is that these are all the 
R(n)-modules and R(n)-module homomorphisms. In other words, the 
equivalence (ii) is defined by the functor VI=> V",f 1=> f". The inverse functor 
is obtained as follows: Let P. E R(n) be the matrix associated to the projec
tion onto the vth component, so the vth column of P. is the vth standard unit 
vector and all other entries are zero. Then 

n 

p~ = P., P,P~<=O forv=/=Jl, and _LP.= lER(n). 
v= I 

Also, there are invertible permutation matrices A. E R(n) (so A. has co
efficients in the center of R) such that 

A,P1 = P,A •. 

From this it follows that if M is an R(n)-module, then M = ffi~=t P,M, and 
A,: P1M .=. P,M as R-modules. Thus armed, one verifies that 

(f: M--+ M')l=> (PdiP 1M: P1M--+ P1M') 

defines a functor Mod(R(n)) => Mod(R) which, up to natural transformation, 
is the inverse we want. 0 

In our case we start with a field or skew field, and every module is there
fore a direct sum of irreducible(simple) modules, i.e., modules which contain 
no nontrivial proper submodules; see II, §2. And, up to isomorphism, there 



288 VI. Irreducible Characters and Weights 

is only one irreducible module over R, C, or IHI. This, together with proposi
tion (6.13) and a look at table (6.12), shows: 

(6.14) Proposition. Every module over the Clifford algebra en or C ®en is 
the direct sum of irreducible modules (is semisimple). Up to isomorphism there 
is precisely one irreducible module over en for n = 0, 1, 2, 4, 5, 6 mod 8, and 
there are precisely two for n = 3, 7 mod 8. Up to isomorphism there is exactly 
one irreducible module D" over C ® C2n and dime Dn = 2n. Up to isomorphism 
there are exactly two irreducible modules D"t and D"_ over C ® ezn- 1 and 

d. D" d" Dn 2"- 1 tmc += tmc -= . D 

As a C(2n)-module, the irreducible module Dn is the complex vector space 
C2~ and is determined up to isomorphism by its dimension. The modules 
D"+ and D"_ may be distinguished as follows: In C ® e 2,._ 1 we have the 
element 

(6.15) T == i" · e1 e2 ••• e2,._ 1 with T2 = 1 and Tev = e;r: for 1 ~ v =:; 2n - 1. 

A module V over C ® e 2n_ 1 decomposes into the eigenspaces V+ and V_ 
of T associated to the eigenvalues + 1 and -1. Since T is central, these are 
submodules of V. Neither summand is trivial in C ® e 2n- 1 considered as a 
left module over itself, since 

f(T + 1) = T + 1, T(f - 1) == -(T - 1). 

We fix the notation so that r acts on D"t via multiplication by + 1 and on 
D"_ via multiplication by - 1. 

If n is even, and hence 2n - 1 = 3, 7 mod 8, then T is already defined in 
e 2,_ 1• By the same argument, any e 2n_ 1-module V decomposes into 
V+ EB V_. As in the case of C ® e 2,_ 1, this allows us to distinguish the two 
irreducible e 2n_ 1-modules (also see (6.20), Ex. 7). 

Form= 2, 3, 4 mod 8, every em-module has a symplectic structure, that 
is, the structure of an IHI-vector space, on which em acts by IH-linear maps. 
This is evident from table (6.12). For m = 1, 5 mod 8 we see that every 
em-module has a complex structure. We have an inclusion of real algebras 

(6.16) 

induced by the inclusion R c C. This leads to an inclusion of the corre
sponding algebras which are explicitly specified in table (6.12). As such, r is 
given in the obvious way. Namely: for m = 2, 3, 4 mod 8, it is induced by the 
inclusion IHI c C(2). For m = 0, 6, 7 mod 8, it is induced by the inclusion 
R c C. And for m = 1, 5 mod 8, it is induced by the inclusion C = R ® C c 
C ® C ~ C x C; see the definition of the isomorphisms (6.9). The inclusion 
r makes every (C ® em)-module V into a em-module r*V by pulling back 
the structure, and r* V possesses a complex structure. 
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(6.17) Remark. If m = 2, 3, 4 mod 8 and if D (resp. D+> D_) are the ir
reducible (C ® Cm)-modules, then r* D (resp. r* D +, r* D _)are the irreducible 
modules over Cm. The complex structure comes from restricting the sym
plectic structure to C. If m = 0, 6, 7 mod 8, then r* D (resp. r* D + , r* D _) 
come from the real irreducible modules over Cm by tensoring with C. Finally, 
if m = 1, 5 mod 8 and if Vis the irreducible module over Cm with its complex 
structure, we have r*D+ ~ V and r*D_ ~ V, or vice versa. Observe that V 
and v are isomorphic as real em-modules. 

PROOF. Consider table (6.12). For even mit suffices to check dimensions. For 
m = 3, 7 mod 8, the two irreducible em-modules may be distinguished 
by means of the action of the central element r E Cm. Form= 1, 5 mod 8 
the dimension is correct, and the definition of the isomorphism C ®R C --.. 
C x C, z ® w H (zw, zw), shows that r* D + and r* D _ have conjugate 
complex structures. 0 

(6.18) Proposition. As a Spin(2n + l)-module, D" is the half-spin representa
tion ll". As Spin(2n)-modules, D"+ and D"__ are the half-spin representations 
ll"+ and fl"__. 

PROOF. The Spin-modules D" and D± certainly have the correct dimensions 
(6.13), (6.14), so we only have to show that the appropriate dominant 
weights a,., a;, or a;; appear among their weights. If this is so, all the con
jugates under the Weyl group also appear. By reasons of dimension, these 
must then be all the weights and each must have multiplicity one. 

Thus, for the group Spin(2n + 1 ), all we really need to show is the existence 
of any (C ® C~,.+ 1)-module (and hence (C ® C2,.)-module) which, as a 
Spin(2n + 1)-module, has the weight a with positive multiplicity. 

Now consider C ® C~,.+ 1 as a left-module over itself. We use the standard 
basis for this module consisting of 22" products of unit vectors of even degree. 
An element of the maximal torus f(n) of Spin(2n) or Spin(2n + 1) is given 
by 

e = (cos(.9tf2) - e1e2 sin(.9tf2)) ..... (cos(.9,./2) - e2n-le2n sin(.9,./2)) 

according to IV, (3.9). The projection p: Spin(2n) ~ S0(2n) maps e to the 
element in the maximal torus T(n) of S0(2n) and S0(2n + 1) whose com
ponents are 

Using the coordinates as in V, (6.7), the element e is described in the Lie 
algebra LT(n) = Lf(n) by 

t = lj2n · (.91, .•• , .9,.) mod [n 

with["= {(Ct •... '(,.) E Z"ll:v Cv E 2Z}. 
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Under our choice of basis of 1C ® C~,.+ 1, the action of~ is given by a 
(22" x 22")-matrix whose diagonal entries are obviously all equal to 
cos(.9tf2) · ... · cos(.9,./2). Therefore, as a representation of the maximal torus 
T(n) of Spin(2n + 1), the module C ® C~,.+ 1 has character 

22" · cos(.91/2) · ... · cos(.9,./2) 
= 2"(ei8t/2 + e-i8t/2)· ... ·(ei8n/2 + e-i8n12) 

= 2" exp(i.9tf2 + ... + i.9,./2) + ... = 2" exp(21ti o,.(t)) + .... 

Thus o,. is a weight of C ® C~,.+ 1 with multiplicity 2". Naturally, 
C ® C~n+ 1 ~ 2"A" as a Spin(2n + I)-module. 

The story for Spin(2n) is similar: The Spin(2n + I)-module D" yields the 
Spin(2n)-module j*D" through the inclusion j: Spin(2n) -t Spin(2n + 1). 
Moreover, j*D" ~ D".r $ D~. Indeed, 2"D" = C ® C~n+ 1 contains 
C ® C~,. as a (C ® C~,.)-module and this, in turn, contains both summands 
D"+ and D~ because C ® C2,_ 1 contains both irreducible modules as a 
module over itself, as has been pointed out above. Thus j* D" must contain 
D"+ and D"_ as summands. Counting dimensions, these occur exactly once. 

Now, the calculation above shows thatj*D" has the weights 

It follows that 

D"+ E13 D"_ = A"t E13 A~, 

and the question is only which is which. Consider the element ~ e f(n) with 
.91 = .92 = · · · = .9,. = 7t, which is associated to t = !{1, ... , 1) e Lf(n). 
Then 

~ = (-1)"e1e2 ••• e2,._ 1e2,. = i"·t·e2,., 

with -r as in (6.15). Under the isomorphism (6.8), the element~ corresponds 
to the element i"t E C Q9 C2n-1 and therefore, by definition, ~ Operates on 
D"t via multiplication by i". On the other hand, ~ operates on the weight 
space of A"t associated to the weight a: = !{1, ... , 1) via multiplication by 
exp(27ti ot) = exp(27tin/4) = exp(7ti/2)" = i". 0 

We can now read off the types of the half-spin representations from ( 6.17). 
Note the shift of dimensions caused by Spin(m) c C~ ~ Cm_ 1. 

(6.19) Proposition. For m = v mod 8, the irreducible half-spin representa
tions A or A+, A_ of Spin(m) have the following type: 

v 

I : I ~ I : I ~ I : I : I : I ~ Type 

PROOF. Compare (6.17) and the first column of (6.12) with v shifted by 1. 0 
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Even though we consider the fundamental representations of Spin(n) to 
be either SO(n) representations or as coming from modules over C,_ 1 ~ 
C2 ~ Spin(n), not every irreducible representation of Spin(n) arises in this 
fashion. For example, the weight 3 a of Spin(2n + 1) belongs to a represen
tation which cannot come from a Clifford module (since then the representa
tion would be a multiple of .6.) or from S0(2n + 1) (since 3 a is integral only 
in LT(n) and not in LT{n)). 

(6.20) Exercises 

1. Compute the polynomials F in the proof of ( 6.6). 

2. Show that ava' = ex(a)va- 1 for a e Pin(m), v e IRm. 

3. What happens to the fundamental representations under the map R Spin(m + 1)-+ 
R Spin(m) induced by the inclusion of groups form = 2n or 2n + 1? 

4. Describe RSpin(m) as a module over RSO(m) analogously to (6.6). 

5. Show that the maps given in (6.9) are isomorphisms of real algebras. 

6. Let K be'a field and let K(n) be the K-algebra of (n x n)-matrices with coefficients 
in K. Give a decomposition of the K(n)-module K(n) into irreducible modules. 

7. Show that the decomposition of a (C ® C 2._ 1)-module V into the eigenspaces 
V+ and V_ of t corresponds to the decomposition (6.13)(i) of V into two 
C(2"- 1)-modules via the isomorphism (/l: c ® cl.-1 ~ C(2"- 1) X C(2"- 1). Where 
cant be sent by q1? 

For the following Exercises 8-11 compare Loffier in Karoubi et al. [1]. 

8. Let A be a l/2-graded algebra; see I, §6. Grade A • = Ef>: = 1 A by 

(A")0 = A0 $ A1 $ A0 $ · · · (n summands), 

(A")1 = A1 $ A0 $ A1 $ · · · (n summands). 

Let A(n) be the algebra of (n x n)-matrices with coefficients in A with the chess
board grading: (aii) e A(nt with k = 0, 1 if and only if aii e A1 fori= i + j + k mod 2, 
i, j = 1, ... , n. Show that A" is a l/2-graded module over A(n); in other words, 

(A(n))~'· (A")' c (A"t+• for p,, v, p, + v e l/2. 

9. Let CM be the real Clifford algebra associated to the quadratic form 

Show that there is an isomorphism of graded algebras C 1, 1 ~ IR(2). For this IR 
is graded such that only 0 is odd, and IR(2) is then graded as in Exercise 8. 

10. Let A be a l/2-graded algebra and IR(n) be graded as in Exercise 8. Show that 
there is an isomorphism of graded algebras q1: IR(n) ®A ~ IR(n) ®A~ A(n). 
Hint: Grade IR" as in Exercise 8. Show that IR(n) ®A acts on IR" ®A by 

(B ® 1XXv ®a)= ( -1)"'Bv ® IXa 

for IXE A" and ve(IR")'. Then set IP(B ®ex)= B.® ex with B.v = ( -I)"'Bv. 
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11. Compute all the algebras Cp,q with the help of Exercises 9 and 10. In particular, 
you should find that C1, 3 ~ ~(2). This is the Clifford algebra for Minkowski 
space. Complexification yields an embedding C~, 3 ..... C ® C1, 3 ~ C ® C4 ~ C(4). 
The basis elements e0 , e1, e2 , e3 are sent to four complex (4 x 4)-matrices 
y0 , y1, Yz, y3 with Yi = y~ = y~ = -E, y~ = E and Y.Y,. = -y,.y. for 11. ~ v. Such 
a quadruple is called a system of Dirac matrices. Write down an explicit system 
of Dirac matrices. Hint: Consider the elements 1 ® e1, i ® e2 , j ® e2 , k ® e2 in 
~(2) ~ ~ ® C2. 

12. Show that Spin(4) ~ Spin(3) x Spin(3) as follows: Let A* denote the group of units 
in any given algebra A. There is an injective homomorphism Spin(4) c: (C~)* ~ 

q ~ ~· x ~·. Show that the image of Spin(4) is Sp(l) x Sp(l) ~ Spin(3) 
x Spin(3), where Sp(l) is the group of elements of norm l in ~·. The inverse 
isomorphism may be described as follows: Sp(1) x Sp(l) acts on IR4 ~ ~ by 
(a, b )h = ahb- 1• Show that this defines a surjective homomorphism Sp( 1) x Sp( l) 
..... S0(4) which, by the theory of coverings, may be lifted to an isomorphism 
Sp(l) x Sp(l) ..... Spin(4). Hint: Show that the action of Sp(l) x Sp(l) on ~ 
is norm-preserving and transitive, and that all rotations about the IR-axis are in 
the image of Sp(l) x Sp(1) ..... S0(4); see I, (6.18). 

13. Show that Spin(6) ~ SU(4) as follows: There is an injective homomorphism 
Spin(6) c: (q)• ~ q ~ C(4)* = GL(4, C). The image of Spin(6) is compact 
and has the right dimension. The same argument yields the isomorphism 
Spin(3) ~ Sp(l) which we explicitly described in 1,(6.18). Also see V,(8.7),Ex.4. 

7. Representations of the Orthogonal Groups 

Since the group 0(2n + 1) is isomorphic to the direct product 
S0(2n + 1) x Z/2, we may determine its irreducible representations from 
those of S0(2n + 1) and Z/2; see II, (4.14). In particular, there is an iso
morphism 

(7.1) R0(2n + 1) ~ RS0(2n + 1) ® R(Z/2) 

of representation rings; see (7.7). Furthermore R(Z/2) ~ Z[w]/(w2 - 1), 
and, in the isomorphism (7.1), the element 1 ® w corresponds to the deter
minant representation A 2" + 1, i.e., the (2n + 1 )st exterior power of the 
standard representation of 0(2n + 1) on C2"+ 1 = C ® IR2"+ 1• Thus using 
(5.4)(iii) we may write 

(7.2) R0(2n + 1) ~ Z[N, ... , N, N"+ 1]/1, 

where I is the ideal generated by (A2"+ 1) 2 - 1. Since the representations 
N are real, all representations of 0(2n + 1) are real (( 4.9), Ex. 6). 

We will now investigate the representations of 0(2n). Since some ir
reducible representations of0(2n) are induced from S0(2n)-representations, 
we first make a general remark on induced representations. 
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Inducing representations of G from those of a subgroup H is an important 
means of constructing irreducible representations; particularly if H has 
finite index in G. We will look more closely at the case where His a normal 
subgroup of G with prime index p, and we will compare the irreducible 
representations of H with those of G. First some notation: 

Let U be an H-module and g E G. Then the H-module U9 (U twisted by g) 
is defined to be U as an abelian group, with the H-action 

H Xu__.. U, 

The isomorphism type of U9 depends only on the coset x = gH E GjH, so 
it is simply denoted by U x with x = gH. With this notation, (U JY = U xy 

and U 1 = U. In other words: The factor group GjH acts on the set of iso
morphism types of (say, finite-dimensional) H-modules from the right by 
(U, x) 1-+ U x· The isotropy group of the isomorphism type of U is either 0 
or G/H. Hence the twisted isomorphism types Ux, x E GjH, are either all 
distinct or all equal. Note that, in the following, U x may denote an H -module 
or an isomorphism type of H-modules. 

Let V be a complex G-module. Let x be a fixed generator of GjH ~ 7Ljp, 
and let Q(k) be the representation 

G/H X IC __.. IC, (x, z) 1-+ exp(2nik/p) · z. 

This depends only on k E 7Ljp. We also consider Q(k) to beaG-module via 
the projection G-. GjH. Thus Q(k) ® Q(l) ~ Q(k + I) and Q(O) = C. 
Hence the G-modules V ® Q(k), k E 7Ljp, are either all isomorphic, or V 
gives rise to p mutually nonisomorphic G-modules 

V ~ V ® Q(O), v ® Q(l), ... ' v ® Q(p- 1). 

Note that if U is an irreducible H-module, then so is U x for all x E GjH, and 
if V is an irreducible G-module, then so is V ® Q(k) for all k E 7Ljp. 

We use these considerations to partition the irreducible complex H
modules and G-modules into two types: 

H-modules U 
G-modules V 

type I 

all U x isomorphic 
all V ® Q(k) distinct 

type II 

all U x distinct 
all V ® Q(k) isomorphic 

The reason for this arrangement will be apparent from the next theorem. Let 
res8 V denote the restriction of a G-module V to H, and let indH U be the 
G-module induced from the H-module U. 



294 VI. Irreducible Characters and Weights 

(7 .3) Theorem. 

(i) If V E lrr(G, C) is of type I, then res8 V = U is irreducible of type I and 
ind8 U ;: EBkeZ/p V ® D(k). If V e Irr(G, C) is of type II, then res8 V ~ 
EBxeG/H Ux with Ux irreducible of type II and ind8 Ux ~ V for all 
X E GjH. 

(ii) If U E Irr(H, C) is of type I, then ind8 U ~ EBkeZ/p V ® Q(k) with V 
irreducible of type I and res8 (V ® Q(k)) ~ U for all k E 7Ljp. If 
U e Irr(H, C) is of type II, then ind8 U = V is irreducible of type II and 
resn V = ffixeGJH Ux. 

(iii) Let V, V' E Irr(G, C) and suppose V ~ V' ® Q(k)for all k E 7Ljp. Then 
res8 V and res8 V' have no irreducible summand in common. 

(iv) Let U, U' E Irr(H, C) and suppose U ~ U~ for all x E GjH. Then 
ind8 U and ind8 U' have no irreducible summand in common. 

The proof of the theorem is based on the following: 

(7.4) Lemma. Let U be a complex H-module and V a complex G-module. 
Then 

(i) 

(ii) 

res8 ind8 U ;: EB U x• 
xeG/H 

ind8 res8 V ;: E9 V ® Q(k). 
keZ/p 

PROOF. Let H act from the left on G by (h, g) 1--+ gh- 1 for h E H and g e G. 
Then one may take ind8 U as the vector space C~(G, U) of all continuous 
H-maps from G to U. The G-action is given by (g.f)(x) = f(g- 1x); see 
Ill, §6. Now, an H-map is determined by its values on a system of represen
tatives of G modulo H. Since H is normal in G, the left operation of H on 
GjH is trivial, and the H-space of all H-maps gH-+ U is isomorphic to the 
H-module U4 , d = g- 1, viaf 1--+ f(g). This shows (i). 

Next, consider the group ring C[G/H] as a G-module and a G/H-module. 
Then, in our case, GjH ~ 7Ljp, and hence C[G/H] ~ ffik Q(k). This comes 
from III, (1.6), applied to the group 7Ljp; compare III, (1.8), Ex. 12. Thus we 
must show that ind8 res8 Vis isomorphic to C[G/H] ® V. So let f: G-+ V 
be an H-map, that is h · f(gh) = f(g) or gh · f(gh) = g · f(g) for all g e G 
and he H. Then g · f(g) depends only on the coset gH, and 

qJ(g) = L gH ® g. f(g) 
gHeG/H 

is a well-defined element of C[G/H] ® V. In this way we obtain a G-iso
morphism 

qJ: C~(G, V)--+ C[G/H] ® V. 

This proves (ii). 0 



7. Representations of the Orthogonal Groups 295 

PRooF OF THEOREM (7.3). We will use the notation 

(A, B)8 =dim Hom8 (A, B) 

for H -modules A and B. This coincides with the inner product <xA, x8) of 
the corresponding characters of H-modules. Note that, if U is an H-module 
and V is a G-module, then 

(U, res8 V) 8 = (ind8 U, V)a 

by Frobenius reciprocity III, (6.2). 
Now let V E Irr(G, C). We will first show that one of the following two 

cases holds: 

First Case: res8 V = U is irreducible of type I. 
Second Case: res8 V ~ EBxeG/H Ux, and all Ux are distinct (type II). 

Indeed, if res8 V = U is irreducible, then U is of type I, since U x ~ res8 V,., ~ 
res8 V. Conversely, suppose res8 V is reducible. Thus 

resH v = ul ffi ... ffi Uj,j > 1, 

and the uj are irreducible H-modules. Then EBk v ® Q(k) ~ EB1= 1 indH uj 
by (7.4)(ii). Each V ® Q(k) is an irreducible G-module. Hence there is a k 
such that V ® Q(k) is contained in ind8 U1. But then the H-module 
EBf= 1 Ui = res8 V ~ res8 (V ® Q(k)) is contained in res8 ind8 U 1 = 
EBx (U 1)x. This shows that all the U;, i = 1, ... , j are twisted modules of 
U = U 1. Also, all U x• x E G/H, must appear among the U;, since 
res8 V ~ resu V,., for all x. Now indu resu V splits into p irreducible sum
mands by (7.4)(ii). Thus the only alternative to the second case above would 
be resu V = p · U with U of type I. However in that case we would have 

p2 = (pU, pU)8 = (resu V, res8 V) 8 = (V, ind8 res8 V)0 

= L (V, V ® Q(k))0 ~ p, 
k 

which is absurd. 
We proceed to show (i). In the first case above we have 

1 = (resu V, res8 V)u = L (V, V ® Q(k))a-
k 

Hence the V ® Q(k) must all be distinct and V is of type I. Note that in this 
case, if U = resu V, then indu U = EBk V ® Q(k) splits into p distinct 
summands. In the second case we have 

p = (resu V, res8 V)u = L (V, V ® Q(k))a· 
k 

Hence all V ® Q(k) are isomorphic and V is of type II. Note that in this 
case ind8 U x = V for all x E GjH. 
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Proof of (ii). Given U E Irr(H, C), we choose V E Irr(G, C) so that U is 
contained in resH V; see Ill, (4.5). Then (ii) easily follows·from (i). 

Proof of (iii). We have 

<resH V, resH V')H = <V. indH resH V')6 = L <V, V' ® D(k))6 = 0. 
k 

The proof of (iv) is similar. D 

Suppose, now, that the irreducible representations of the subgroup H are 
known. Then, according to the theorem, we may itemize all irreducible 
representations of Gas follows: 

Each irreducible H-representation U of type I gives rise to p different ir
reducible G-representations V ® Q(O), ... , V ® Q(p- 1), all of which 
have restriction U. 

Each "twisting class" {Uxlx E G/H} of irreducible H-representations of 
type II gives rise to one further irreducible G-representation indH U. 

(7.5) We apply this to the inclusion H = S0(2n) c 0(2n) = G. According 
to (5.5), the irreducible representations of S0(2n), n ~ 2, may be labeled by 
their dominant weights in 

K rd* = {((1, ".' (,)"1 ~ '2 ~ ". ~ Cn-1 ~ ""'' '· E Z}. 
This description is also valid for n = 1, where we need just one integer 
( = (, to label the irreducible representations of S0(2) ~ S1• Now, suppose 
the representation U of S0(2n) has dominant weight ((1, •.• , (,)and g is a 
generator of 0(2n )/S0(2n ). Then the twisted module U 9 has dominant weight 
((1, •.. , (,_ 1, -(,). Hence the representations of type I are those with 
(, = 0. Each of these is a restriction of two nonisomorphic irreducible 
0(2n)-representations V and V ® Q(l). On the other hand, if(, :F 0, then 
the irreducible representations with dominant weights ((1, ••• , (,) and 
( ( 1, ... , (, _ 1, - (,) yield the same irreducible induced representation of 
0(2n). 

Finally, we determine the representation ring of 0(2n). Let A; denote the 
ith exterior power of the standard representation of0(2n)on C2" = C ® ~2". 
The exterior product defines a pairing 

1\; N ® A2n-i-+ 1\2". 

The adjoint of this is an isomorphism 

d: Ai-+ Hom(A2n-i, /\2") ~ (A2n-i)* ® A2", 

and the Euclidean inner product on ~2" yields an isomorphism 1\2"-i ~ 
(1\2"-i)*. Combining these, we have an isomorphism 

(7.6) 

Compare the definition of the •-operator in (5.5)(v). 
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Accordingly, we have a well-defined homomorphism 

f.J.: S = Z[/\1, ... , N, N"]/J ~ R0(2n), 

where J is the ideal generated by (N")2 - 1 and NN" - N. 

(7.7) Theorem. The homomorphism f1. is an isomorphism. 
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(7.8) Corollary. All representations of0(2n) are of real type, since the exterior 
powers are real ((4.9), Ex. 6). 

The proof of (7. 7) will be preceded by two lemmas. Consider the inclusion 

S0(2n- 1) x Z/2 ~ 0(2n) 

of the subgroup consisting of the matrices ( ~ 
also have the inclusion S0(2n) .=. 0(2n). 

(7.9) Lemma. The homomorphism 

+~).A e S0(2n- 1). We 
-

a= (a1, a 2): R0(2n) ~ RS0(2n) x R(S0(2n- 1) x Z/2), 

which is induced by these two inclusions, is injective. 

PROOF. The group 0(2n) has two conjugacy classes of Cartan subgroups in 
the sense of IV, §4, and the two subgroups above contain representatives of 
these two classes; see (7 .11 ), Ex. 2. 0 

In (6.4) we have seen that RS0(2n) contains the polynomial ring 
Z[N, ... , /\"]. 

(7.10) Lemma. The polynomial ring Z[N, ... , A"] is the image of the restric
tion homomorphism R0(2n)-+ RS0(2n). 

PROOF. Clearly, the image contains this polynomial ring. On the other hand, 
the automorphism cp from (6.5) is induced via conjugation by an element of 
0(2n). Hence the image of R0(2n) is contained in the fixed ring of q>. 0 

PROOF OF THEOREM(7.7). We show that f1. is injective by showing that a o f1. 
is injective. So let x e S be in the kernel of a o f.J.. Then x has a representative 
of the form 

X= Pl(N, ... , /\")+PiN, ... , N- 1)/\2", 

where P 1 and P 2 are polynomials in the indicated indeterminates with 
integral coefficients. Now a 1 maps /\2" to 1, and since a 1f.J.(x) = 0, we con
clude from (7.10) that P 1(N, ... ,/\") + PiN, ... ,N- 1) = 0. Thus 
P 1 = -P2 is independent of/\". As for the other component in (7.9), we 
have R(S0(2n - 1) x Z/2) ~ RS0(2n - 1) ® R(Z/2), and 

R(Z/2) = Z[w]j(w2 - 1). 
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Thus R(S0(2n - 1) x Z/2) is a free RS0(2n- 1)-module with 1, ro as a 
basis. Also u 2 maps /\.2·" to ro, and since 

0 == u2 Jt(x) = P 1(A1, ••• ,/\"- 1)- P 1(A1, ... ,A"- 1)ro, 

we conclude that the polynomial P 1 is zero. Hence x = 0. This shows 
injectivity. 

We now show that Jl is surjective. Let x e R0(2n) be given. Then u1(x) = 
P(N, ... , /\.") e RS0(2n) by (7.10). We may consider this polynomial Pas 
an element of S, and then u1(x- jd') = 0. Thus, replacing x by x- jlP, we 
may suppose u1(x) = 0. Next, 

u2(x) = Q1(A1, ••• , 1\."- 1) + Q2(N, ... , /\"- 1)ro, 

and Q2 = -Q1 since u1(x) = 0. Thus u2(x) = Q1 - Q1ro. We may consider 
Q1 as an element of S. Setting y = Q1 - Q1N" e S, we have x = Jl(y) since 
u(x) = u(JJ.Y) = (0, Q1 - Q1ro), and u is injective. 0 

Note that this computation is quite elementary and does not use the 
discussion on induced representations. It is also valid for n = 1, i.e., for the 
group 0(2). In this case the standard representation A 1 corresponds to the 
element z + z- 1 in the character ring l[z, z- 1] ofS0(2) ~ S1• 

(7.11) Exercises 

1. The factor group 0(2n)/S0(2n) = P acts on R0(2n). Show that there is a well
defined exact sequence 

0 .... RS0(2n)p :-+ R0(2n) ___.,-+ R0(2n)-+ RS0(2nt-+ 0. 
1nd ·(1-A") res 

The first term is defined to be the factor group of RS0(2n) by the subgroup of all 
elements of the form x - p(x), peP. 

2. Find the Cartan subgroups of 0(2n) and verify the statement in the proof of (7.9). 

3. Give an example of a group extension 1 .... H _. G _. l/2 -+ 1, such that there 
exist irreducible G-modules V of real type which have the form V = ind11 U with 
U of complex type. 

4. Consider a group extension 1 .... H -+ G _. l/p -+ 1, where p is an odd prime. We 
use table II, (6.2). Suppose V e Irr(G, C)g is oftype I. Show that res8 V e lrr(H, C)g. 
Suppose U e lrr(H, C)g is of type II. Show that ind11 U e lrr(G, C)g. 
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-representation 68, 141 
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- of G-modules 67 
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J (symplectic form) 9 
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Jacobian 
- determinant 41 
-matrix 14 
Jacobi identity 19 
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k (quaternion) 6, 62 
Killing form 209,214 ff, 229 
Kostant's formula 258 
Krein 146 
Kroneclc:er 
-product 75 
-theorem 38 
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L(G): Lie algebra 14 
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Subject Index 

L 2(G) square-integrable functions 134 
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1": left translation 14 
Laplace operator 88, 122 
largest root 257 
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- invariant 11 ff, 15, 41, 46, 49 
-translation 14, 181 
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Lie algebra 14 ff, 19, 20 f 
-,representation lll 
Lie 
- derivative Ill 
-group l ff 
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- -, holomorphic 30 
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- product 18 ff 
linear groups 3 ff 
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-,standard inclusions 10 
linked 40 
local coordinates 2 
localization 249 
locally 
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- trivial 14, 32 
log 28 f 
long root 213 
Lorentz group 9 
lower 250 
A.-ring 104 
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mapping degree 51, 179 
matrix algebra 284, 287 
matrix representation 66 
maximal 
-abelian Lie algebra 164 
- abelian subgroup 164 f 
-compact subgroup 90, 153 
-torus: torus, maximal 157 
Minkowski space 292 
Mod(R) 287 
module 67, 72 ff, 112 
- over convolution algebra ,67, 83, 140 
monotone (integral) 40 ' 
morphism of G-modules 67 
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n,._ (Cartan number) 198 ff 
naturality of exp 23 
negative root 204 
norm 
-, Qifford 57 
-, quaternion 6 
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-, operator 131 
normal subgroup 35 
normalized 41 
normalizer 
-of maximal torus 158 ff 
- of reflection group 196, 201 

0 

O(n): orthogonal group 4 
0(3)-representations 84 ff 
Ol(M) (alternating differential forms) 42 
one-parameter group 11 ff, 17 
operation of a group on a space 30 ff 
operator 72 
orbit 31, 35 
-,ofVVeylgroup 202 
-,of extended Weyl group 227, 232 
order on L T* 250 
orientation 43, 51, 52 
-preserving 43 
orthogonal group 4, 10, 11, 36, 38, 155 
-,representation ring 292, 297 
-, representations 292 ff 
orthogonal representation 93 
orthogonality relation 79, 81, 83, 101, 

142,245 ' 
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p(C) (decomposition into positive roots) 
257 

partition of unity 44, 53 
Pauli spin matrix 62 
Peter-VVeyl theorem 133 ff 
PGL(n, C), PGL(n, 11\t) 4, 11 
physicists' convention 21, 62 
Pin(n) 60 
positive (in R(G)) 103 
positive-definite 11, 153 
positive root 204, 252 
-,decomposition into 257 
positive weight 257 
precompact 130 
primitive 116 

product 
- of characters 80, 254, 259 
-,direct 3, 82, 105 
- of representative functions 125 
projection 
-,principal bundle 32 
-,tangent bundle 14 
projective 
- group 4, 11, 90 
- representation 90 ff, 110 
- space 11, 37, 52 
pure quaternion 6, 61 
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quadratic form 54 
quaternion 5, 61 
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-group 7, 61, 841f, 91, 1151f, 185, 292 
-,pure 6 
quaternionic 
-representation 93 ff, 261 ff 
-structure 93, 102 
-type 97 
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R 

r~,r~,r~,r+,r- 95 
R(G): representation ring 103 
rank 165, 189, 197 
- one 185, 199 
-two, root systems 200, 211, 227 
real 
- representation 93 ff, 136 
-root: root 185 
- structure 93, 101, 102 
- type 97, 261 ff 
-weight 114 
reduced root system 197 
reducible 68 
-root system 211 
reflection 192 ff, 202 ff 
regular element in Lie group 168, 224, 

226 
regular value 51, 52, 179 
Rep(G, K) 94 
representation 65 ff 
-,canonical decomposition 70, 101 
-, faithful 66, 136 f 
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-space 65 
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representative function 78, 123 ff 
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root 185 ff, 197 ff 
root system 189 ff, 197 ff 
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z 
Z(H): centralizer 165 
ll..fn: cyclic group 10 
ll..(I*> 257 
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