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Preface 

The origins of the mathematics in this book date back more than two thou
sand years, as can be seen from the fact that one of the most important 
algorithms presented here bears the name of the Greek mathematician Eu
clid. The word "algorithm" as well as the key word "algebra" in the title of 
this book come from the name and the work of the ninth-century scientist 
Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek
istan and worked in Baghdad at the court of Harun al-Rashid's son. The 
word "algorithm" is actually a westernization of al-Khowarizmi's name, 
while "algebra" derives from "al-jabr," a term that appears in the title of 
his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods 
for the solution of equations. This close connection between algebra and al
gorithms lasted roughly up to the beginning of this century; until then, the 
primary goal of algebra was the design of constructive methods for solving 
equations by means of symbolic transformations. 

During the second half of the nineteenth century, a new line of thought 
began to enter algebra from the realm of geometry, where it had been 
successful since Euclid's time, namely, the axiomatic method. The starting 
point of the axiomatic approach to algebra is the question, What kind of 
object is a symbolic solution to an algebraic equation? To use a simple 
example, the question would be not only, What is a solution of ax + b = 0, 
but also, What are the properties of the objects a and b that allow us to 
form the object -b/a? The axiomatic point of view is that these are objects 
in a surrounding algebraic structure which determines their behavior. The 
algebraic structure in turn is described and determined by properties that 
are laid down in a set of axioms. 

The foundations of this approach were laid by Richard Dedekind, Ernst 
Steinitz, David Hilbert, Emmy Noether, and many others. The axiomatic 
method favors abstract, non-constructive arguments over concrete algorith
mic constructions. The former tend to be considerably shorter and more 
elegant than the latter. Before the arrival of computers, this advantage 
more or less settled the question of which one of the two approaches was to 
be preferred: the algorithmic results of mathematicians like Leopold Kro
necker and Paul Gordan were way beyond the scope of what could be done 
with pencil and paper, and so they had little to offer except being more 
tedious than their non-constructive counterparts. 

On the other hand, it would be a mistake to construe the axiomatic and 
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the algorithmic method as being irreconcilably opposed to each other. As 
a matter of fact, significant algorithmical results in algebra were proved by 
the very proponents of axiomatic thinking such as David Hilbert and Emmy 
Noether. Moreover, mathematical logic-a field that centers around the ax
iomatic method-made fundamental contributions to algorithmic mathe
matics in the 1930s. Alan Turing and Alonzo Church for the first time made 
precise the concept of computability in what is known as Church's thesis, or 
also as the Church-Turing thesis. Kurt Godel proved that certain problems 
inherently elude computability and decidability. This triggered a wave of 
new results by Alfred Tarski and other members of the Polish school of logi
cians on the algorithmic solvability or unsolvability of algebraic problems. 
Again, because of their enormous complexity, these algorithms were of no 
practical significance whatsoever. As a result, the beginning second half 
of this century saw an axiomatic and largely non-constructive approach to 
algebra firmly established in both research and teaching. 

The arrival of computers and their breathtaking development in the last 
three decades then prompted a renewed interest in the problem of effective 
constructions in algebra. Many constructive results from the past were 
unearthed, often after having been rediscovered independently. Moreover, 
the development of new concepts and results in the area has now established 
computer algebm as an independent discipline that extends deeply into both 
mathematics and computer science. 

There are many good reasons for viewing computer algebra as an inde
pendent field. However, the fact that the mathematical part of it is some
what separated from the work of pure algebraists is, in our opinion, rather 
unfortunate and not at all justified. We feel that this situation must and 
will change in the near future. As a matter of fact, computational aspects 
are beginning to show up more and more in undergraduate-level textbooks 
on abstract algebra. There is, however, one particular contribution made 
by computational algebra that is in most dire need of being introduced in 
the mathematical mainstream, namely, the theory of Grabner bases. 

Grobner bases were introduced by Bruno Buchberger in 1965. The ter
minology acknowledges the influence of Wolfgang Grobner on Buchberger's 
work. To the reader who has any background in abstract algebra at all, the 
basic idea behind the theory is easily explained. Suppose you are given a 
finite set of polynomials in one variable over a field and you wish to decide 
membership in the ideal generated by these polynomials in the polynomial 
ring. What you must do is compute the greatest common divisor of the 
given polynomials by means of the Euclidean algorithm. Any given poly
nomial then lies in the ideal in question if and only if its remainder upon 
division by this gcd equals zero. Grobner basis theory is the successful at
tempt to imitate this procedure for polynomials in several variables. Given 
a finite set of multivariate polynomials over a field, the Buchberger algo
rithm computes a new set of polynomials, called a Grobner basis, which 
generates the same ideal as the original one and is an analogue to the gcd 
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of the unvariate case in the following sense. A given polynomial lies in the 
ideal generated by the Grabner basis if and only if a suitably defined normal 
form of the polynomial with respect to the Grabner basis equals zero. The 
computation of this normal form is a rather straightforward generalization 
of long division of polynomials, except that we are looking at the division 
of one polynomial by a set of finitely many polynomials. 

Considering both the outstanding importance of the Euclidean algorithm 
for the computation of gcd's of univariate polynomials and the scope of 
its implications in pure and computational algebra, it should come as no 
surprise that its multivariate analogue, the Buchberger algorithm for the 
computation of Grabner bases, is of similar relevance. It leads to solutions 
to a large number of algorithmic problems that are related to polynomials 
in several variables. Most notably, algorithms that involve Grabner basis 
computations allow exact conclusions on the solutions of systems of non
linear equations, such as the (geometric) dimension of the solution set, the 
exact number of solutions in case there are finitely many, and their actual 
computation with arbitrary precision. 

Most of the problems for which Grabner bases provide algortihmic s0-

lutions were already known to be solvable in principle. Grabner bases are 
a giant step forward insofar as actual implementations have become fea
sible and have actually provided answers to physicists and engineers. On 
the other hand, many problems of no more than moderate input size still 
defy computation. The mathematics behind the algorithms as well as the 
hardware that performs them have a long way to go before these problems 
can be considered solved to the satisfaction of the user. 

The purpose of this book is to give a self-contained, mathematically 
sound introduction to the theory of Grabner bases and to some of its ap
plications, stressing both theoretical and computational aspects. 

A book that would start out with Grabner basis theory would have to 
direct its readers to a source for a large number of elementary results on 
commutative rings and, more specifically, on polynomials in several vari
ables. These are of course all available somewhere, and certainly known to 
the mature mathematician. However, we found ourselves unable to name a 
reasonably small number of books that would enable the beginning grad
uate student or the non-mathematician with an interest in Grabner bases 
to aquire this background within a reasonable amount of time. We have 
therefore decided to write a book that requires no prerequisites other than 
the mathematical maturity of an advanced undergraduate student. In partic
ular, no prior knowledge of abstract algebra whatsoever is assumed. Under 
the European system, this means that the book can be used after the sec
ond semester of mathematics or computer science. People with different 
backgrounds will enter such a book at different points; for more details, we 
refer the reader to the comments on "How to Use This Book" on p. xi. 

As for the overall concept, the book traverses three stages. Chapters 0-3 
provide pre-Grabner-bases results on commutative rings with an emphasis 



viii Preface 

on polynomial rings, as well as the basics on vector spaces and modules. 
Chapters 4 and 5 then develop Grobner basis theory. The definition of a 
Grobner basis does not show up until Section 5.2, but the material of Chap
ter 4 and Section 5.1 is rather specific to Grobner bases already. Chapters 
6-10 cover a wide range of applications, intertwined with a development of 
post-Grobner-bases algebra. Algorithms are presented using a semi-forma
lism that is self-explanatory even to those with no background in computer 
programming. Strong emphasis is placed on a mathematically sound· veri
fication of the algorithms. Each chapter closes with a "Notes" section that 
puts the material in a larger mathematical perspective by tracing its his
torical development and providing references to the literature. 

Needless to say, the list of omissions is tremendous. If it is possible at all 
to write the definitive book on computational algebra, then this is not it. 

More specifically, the choice of the material and the reasons for mak
ing it are as follows. The introductory chapters 0-3 are written mainly 
for the purpose of providing the necessary background for Grobner bases 
and their applications. The solutions to algorithmic problems such as fac
torization of polynomials given there are strictly "in principle" solutions; 
implementations of any practical value involve considerably more mathe
matics. Our treatment is thus incomplete in a sense; on the other hand, 
we are laying firm mathematical foundations which can also be helpful for 
the reader who wishes to proceed to the advanced literature on topics in 
computational algebra other than Grobner bases. 

Chapters 4 and 5, the main chapters on Grobner bases, are fairly com
plete both theoretically and algorithmically. The theory of orders and re
duction relations of Chapter 4 is rather well-rounded. In Chapter 5, the 
theoretical aspects of Grobner bases are explored extensively. The Buch
berger algorithm for their computation is presented first in an "in principle" 
version and then in two real-life versions. The only major omission in these 
two chapters-and it is one that actually pervades the entire book-is the 
absence of any complexity theory, that is, the discussion of the time and 
space that an algorithm requires as a function of the size of its input. This 
omission is clearly a serious one. It was not made because we consider the 
issue to be of minor importance. On the contrary, we feel that complexitiy 
theory is too important an issue to be dealt with lightly. We hope that 
our effort will motivate others to treat these problems comprehensively in 
some kind of book format. A brief overview of complexity results for Grob
ner basis constructions is given in the appendix "Outlook on Advanced and 
Related Topics" at the end of the book. 

Once Grobner bases have been introduced, there is an almost limitless 
choice of topics that one could cover. Our focus in Chapters 6-10 is on the 
theory of polynomial ideals. A large number of ready-to-use algorithms is 
presented. FUrthermore, we demonstrate how Grobner bases can often be 
used to give elegant an enlightening proofs of classical results, for example, 
in the area of algebraic field extensions. This shows that Grobner bases are 
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not only a powerful tool for actual computations, but also a cornerstone of 
commutative algebra. 

The book closes with an appendix that tries to at least partly make up 
for the incompleteness of this book. Here, we have given brief summaries of 
a number of recent results that surround or extend Grabner basis theory. 
Each section explains a problem, outlines the solution, and provides a guide 
to the original literature. 

The authors wish to thank Johannes Grabmeier, Alexander Knapp, Frank 
Lippold, Wolfgang Mark, Christian Munch, Michael Pesch, Gernot Schreib, 
and Thomas Sturm for reading parts of the manuscript. Gerlinde Kollmer 
kept us organized and did a lot of work in 1B>TEX along the way. The typeset
ting of the final manuscript was done by the first author in 1B>TEX-with the 
additional use of several AMSFonts---on an Atari Mega 2. Special thanks 
is due to Michael Pesch for his superb software consulting, and to Thomas 
Sturm for his competence and dedication. 

Passau, Germany T.B., V.W., H.K. 
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Sections 6.1, 6.4, and 7.5-7.7 are exempt from this flow diagram. They 
can be postponed or dropped altogether; details are to be found at the 
beginning of each of these sections. 

Prerequisites 

Chapters 0-3 of this book are written for the reader with very little or 
no background in abstract algebra. The prerequisite for this part is the 
mathematical maturity of an advanced undergraduate student. You may 
skip these chapters if you can answer the following questions. 

What is a commutative ring with unity, and when is it a field? 

What is an ideal, and what is a residue class ring? 

What does the Euclidean algorithm do with two univariate polyno
mials over a field, and how does it do it? 

What is a vector space? 

If you failed the test, then you must read Chapters 0 and 1 and the first 
two sections of Chapter 2 to be able to understand the main part on Grob
ner bases (Chapters 4 and 5). If you decide to continue on past Chapter 5 
into the applications, you will soon feel the need to read the rest of Chapter 
2 as well as Chapter 3. 

If you passed the test or know you could, then for you, the book begins 
with Chapter 4. If you need to go back to one of the first four chapters 
for some specific definition or result that you have trouble with, then the 
index and the extensive cross-referencing of this book should make it easy 
for you to do so. 

Exercises 

There are two types of exercises: those printed in normal size, and those 
in small print. Normal size indicates that these exercises have the status of 
lemmas whose proof is left to the reader. Their statements will be used later 
on. None of them are hard; working them is also a good way of making sure 
that you are ready to grasp the material that is being presented next. Small 
print indicates exercises in the usual sense of application and extension of 
what has just been covered. The difficulty ranges from easy to moderate. 
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Use of Computer Algebra Systems 

It is possible to view this as a mathematics textbook that can be rearl 
without the use of a computer. On the other hand, most of the mathematics 
presented here is application-oriented, and seeing things happen or making 
things happen on the screen will greatly enhance the experience of studying 
the material. 

If a computer algebra system is at hand, then there are basically two 
things that you can do along with reading this book. Firstly, if an algorithm 
that you have just learned about is available on your system, you can 
simply run it on examples that you make up, get from the exercises, or 
find somewhere else. Although this is somewhat less than creative, you 
will be surprised how much it helps your understanding and motivation. 
The other thing is to implement algorithms from the book. Doing so from 
scratch will in general be a major endeavor. However, many algorithms in 
computational algebra are such that they allow a top-down approach, where 
good results can be obtained by tying together lower-level algorithms with 
relatively little effort. In order to do this, you need a system that provides 
a library of polynomial algorithms and the possibility to use them in your 
own programs. If you implement an algorithm that was alrearly part of 
your system, then you have worked a useful exercise; if it was not, then you 
have extended the capabilities of your system. 

Commercially available computer algebra systems that are suited to be 
used along with this book include Axiom, Macsyma, Maple, Mathematica, 
and Reduce. A system that the authors of this book recommend is MAS 
by Heinz Kredel. MAS makes available for interactive and programming 
use an extensive library of polynomial algorithms, including those that 
were developed for the system ALDES/SAC-2. In arldition to such classics 
as greatest common divisors, factorization, and real root isolation, you will 
find the Buchberger algorithm for the computation of Grabner bases as well 
as applications thereof such as ideal decomposition and real roots of poly
nomial systems. Of the more recent variants of the Buchberger algorithm, 
the non-commutative case (polynomial rings of solvable type), comprehen
sive Grabner bases, and Grabner bases over principal ideal domains and 
Euclidean domains are implemented. Programming in MAS is in a language 
that is based on MODULA-2. User-defined programs can be run interac
tively; if a MODULA-2 compiler is available, they can also be compiled, 
thus allowing a fair comparison between existing and user-defined versions 
of algorithms. MAS is available free of charge per anonymous ftp from 
alice.fmi.uni-passau.de and via World Wide Web from http://alice.fmi.uni
passau.de/mas.htm. Currently available is version 1.0 for UN*X worksta
tions (e.g. IBM RS6000/AIX, HP 9000/HP-UX, NextStep, Sun Sparc with 
a Modula-2 to C translator) and PCs 386,486,586 (DOS, OS2 and Linux). 
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Use as a Text book 

It should be clear from the above discussion of prerequisites that this book 
allows a variety of uses as a textbook on the advanced undergraduate as well 
as the graduate level. There is at present no established way of including 
Grobner bases in the mathematics/computer science curriculum. The fact 
that this book requires practically no specific prior knowledge should make 
it possible to experiment in this regard. 

One conceivable situation that deserves perhaps some comment is the 
following. Suppose you are at a point where the basic theory of commutative 
rings and polynomial rings is available. Now you wish to cover Grobner 
bases, but you do not have the time and/or the desire to get into the theory 
of orders and reduction relations to the extent that they are treated in 
Chapter 4. You may then essentially start with Section 4.5, which deals with 
reduction relations and Newman's lemma. This requires only a moderate 
amount of material from the earlier sections of Chapter 4, and you should 
have no trouble providing this material. You then jump ahead to Section 
5.1. You will need some more material from Chapter 4, most of which is 
obvious and easily provided, such as the definition of a quasi-order. The 
only deeper results that you will need are Dickson's lemma, whose proof you 
lift from the proof of Proposition 4.49, the well-foundedness of term orders, 
which you prove using the comments in Exercise 4.63, and the properties 
of the induced quasi-order on the polynomial ring, which you transfer from 
Lemma 4.67 and Theorem 4.69. 

Abbreviations 

The following abbreviations will be used throughout this book. 

cf., (Latin confer) compare 
e.g., (Latin exempli gratia) for example 
etc., (Latin et cetera) and so on 
i.e., (Latin id est) that is 
iff, if and only if 
w.l.o.g., without loss of generality 
w.r.t., with respect to 

Moreover, a 0 will indicate the end of a proof. 

Numberings 

Chapters and sections are numbered in the obvious way: Chapter 5, for 
example, consists of Sections 5.1-5.6. Definitions, lemmas, propositions, 
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theorems, corollaries, and exercises are treated as one type of item and 
numbered consecutively within each chapter: Chapter 5 contains Exercise 
5.1, Theorem 5.2, etc. Due to the fact that there is such an item on virtually 
every page, this should make it easy to locate referenced items. Algorithms 
are given in tables in order to prevent them from running across a page
break; these tables are also numbered within each chapter. 
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o 
Basics 

0.1 Natural Numbers and Integers 

A mathematically rigorous definition of the number systems requires the 
use of axiomatic set theory. As with most of mathematics, however, the 
intuitive understanding of the natural numbers N, the integers Z, the ra
tionals Q, the reals JR, and the complex numbers C gained in elementary 
mathematics is sufficient for the beginning student of algebra. The oc
casional intrusion of set theory and foundational problems can be dealt 
with later. In this section, we discuss some properties of Nand Z that are 
somewhat less than elementary. Throughout this book, we will use the con
vention that 0 E N. The set N \ {O} of all positive natural numbers will be 
denoted by N + . 

Theorem 0.1 (INDUCTION PRINCIPLE) Let P be a property that a natu
rol number mayor may not have, and let us write "P( n)" for "the naturol 
number n has property P." Assume that we can prove 

(i) P(O), and 

(ii) pen) implies pen + 1) for all n E N. 

Then P( n) holds for all n E No 

The induction principle is too close to the axiomatic foundations of math
ematics to be proved rigorously without the explicit knowledge and use of 
these foundations. We will therefore have to put it on the list of things that 
we accept by intuition. We can, however, make an intuitive argument for its 
plausibility. Assume that we can prove (i) and (ii) above. Now if someone 
hands us an arbitrary but fixed natural number m, then we can prove P(m) 
as follows. We know that P(O). Together with (ii) above, we conclude that 
P(l). Using (ii) again, we can prove P(2), and so on. Repeating the argu
ment m times, we arrive at the conclusion P(m). Being able to produce a 
proof of P(m) for arbitrary mEN, we may with some plausibility claim 
to know that P(m) holds for all mEN. Let us emphasize again that the 
above argument is not a mathematically satisfying proof since it makes a 
number of tacit assumptions on N (the existence of N being one of them) 
which would have to be postulated or derived from such postulates. 

1 
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Recall that we have included 0 in N. We mention that the induction 
principle may be applied with 0 replaced by any natural number k in (i) of 
Theorem 0.1. The conclusion of the theorem then states that pen) holds 
for all n E N with n ~ k. 

Exercise 0.2 Use the induction principle to prove that 

f> = n(n2+1) 

i=l 

for all n E !'Ii with n > O. 

Once we have accepted the induction principle for one reason or another, 
we can prove two important corollaries, each of which is in fact equivalent 
to the induction principle. 

Corollary 0.3 Let P be as in Theorem 0.1, and assume that we can prove 

(i) P(O), and 

(ii) for all n E N: P(m) for all m ~ n implies pen + 1). 

Then P( n) holds for all n EN. 

Proof For arbitrary n E N, let Q(n) be the property "P(m) for all m ~ n." 
Since obviously Q(n) implies pen) for all n E N, it will suffice to prove Q(n) 
for all n E N. We use the induction principle. Q(O) is equivalent to P(O) 
which we know to be true. Now assume that n E N with Q(n). This means 
that P(m) for all m ~ n, and (ii) allows us to conclude pen + 1). "Q(n) 
and pen + 1)" is equivalent to Q(n + 1). We have thus verified (i) and (ii) 
of the induction principle for Q, so it follows that Q(n) for all n E N as 
desired. 0 

Corollary 0.4 Let M be a non-empty subset of N. Then M has a least 
element. 

Proof We will show that if M does not have a least element, then it is 
empty. Assume that M does not have a least element. To prove that M 
is empty, it suffices to show that every n E N has the property "n ¢ M ," 
which will be achieved by means of the above version of the induction 
principle. If 0 were in M, then 0, being the least element of all of N, would 
be a least element of M. We see that 0 ¢ M. Now assume that n E N, and 
m ¢ M for all m ~ n. If n + 1 were in M, then it would be a least element 
of M since we have assumed that M does not contain any natural number 
that is less than n + 1. We have proved (n+ 1) ¢ M. 0 

Exercise 0.5 Show that Theorem 0.1, Corollary 0.3, and Corollary 0.4 are equiv
alent. 
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Corollary 0.4 is instrumental in the following rigorous proof of a widely 
known fact. 

Proposition 0.6 Let m, n E Z with n =I- o. Then there exist unique q, 
r E Z such that m = qn + rand 0 ~ r < Inl. 
Proof We begin by proving uniqueness. Assume that we have q, r, q', 
r' E Z with m = qn + r = q'n + r' and 0 ~ r, r' < Inl. Assume w.l.o.g. that 
r 2: r'. Then 

(q' - q)n = r - r' 2: O. 

From n =I- 0 it follows that r - r' = 0 iff q' - q = O. So if r - r' = 0, then we 
have r = r' and q = q' as desired. If r - r' =I- 0, then 0 < r - r' ~ r < Inl, 
and this contradicts the inequality 

r - r' = Ir - r'l = I(q' - q)nl = I(q' - q)llnl 2: Inl· 

To prove existence, we distinguish between two cases. 
Case 1: 0 < n. We define a subset M of N by setting 

M = { m - sn I s E Z} n N. 

Then M is not empty: if 0 ~ m, then m = m - 0 . n EM, and if m < 0, 
then 

m - mn = (-m)(-1 + n) = Iml(n -1) E M. 

By Corollary 0.4, M has a least element r. Since rEM, there must exist 
q E Z with r = m - qn which means m = qn + r. We claim that r 
satisfies 0 ~ r < Inl = n. We must have 0 ~ r since r E N. Assume for a 
contradiction that r 2: n. Then r > r - n 2: 0 and thus 

r - n = (m - qn) - n = m - (q + 1)n EM, 

contradicting the minimality of r. 
Case 2: n < o. By case 1 above, there exist q, r E Z with m = q( -n) + r 
and 0 ~ r < 1-nl = Inl. We see that -q and r have the desired properties. 
o 

The integers q and r of the proposition above are called, respectively, 
the quotient and remainder of m upon division by n. The proof that we 
have just given is a typical example of a non-constructive argument; it uses 
the existence of a least element in a set of natural numbers without giving 
a method to find it. The problem of effectively finding integer quotients 
and remainders will be taken up again in Section 0.3. 

Proposition 0.6 has a number of very important consequences, some of 
which the reader is certainly familiar with. They will be proved and dis
cussed thoroughly in Chapter 2. We list the more elementary ones here 
without proof for the sole purpose of providing a wider range of examples 
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as we go along. None of the following results will be used in the development 
of the theory until it has been proved. 

Let m, n E Z. We say that m divides n and write min if there exists 
q in Z with n = qm. Here, q and m are called divisors of n. An integer 
d is called a greatest common divisor, or gcd, of m and n if d divides 
m and n and is divided by any common divisor of m and n. It is true 
that any two integers m and n have a gcd d in Z. Moreover, there exist s, 
t E Z with d = sm + tn, and d, s, and t can be computed effectively by 
the so-called extended Euclidean algorithm which is described in the 
proof of Theorem 2.32. Although it is embedded in a much more abstract 
context there, it is actually possible for the interested reader to look it up 
now. We mention that d is a gcd of m and n iff -d is one, and that these 
are the only ones. 

An integer P :::: 2 is called prime, or a prime, or a prime number, if 
it has the following property: whenever pi mn with m, nEZ, then pi m 
or pin. It can be shown that this definition is equivalent to the condition 
that 1, -1, p, and -P be the only divisors of p. One concludes immediately 
that a gcd of a prime with any other integer must be one of those four, and 
that a gcd of a prime p with any integer n satisfying 1 :::; n < p must be 1 
or -1. Finally (still as a consequence of Proposition 0.6), it can be shown 
that every integer other than -1, 0, and 1 can be written as a product of 
primes and a possible factor of -1, and that this factorization is unique up 
to the order of the factors. 

Once all this has been proved, one can easily show that there must be 
infinitely many primes, a fact that is frequently used in computer algebra. 
There are a number of important algorithms that require, in addition to the 
input they are supposed to manipulate, the input of finitely many primes. 
One knows in advance that the algorithm may, depending on the input, 
reject a finite number of finite sets of primes which one tries to input. To 
be able to assert that the algorithm can be made to run for any input, one 
therefore needs to know that there is an unlimited supply of primes. 

Assume that there were only finitely many primes, say PI. ..• , Pk. Con
sider the integer m = Pl . .., . Pk + 1. Then m can obviously be written 
as m = qiPi + 1 for each 1 :::; i ::; k: take for qi the product of the k - 1 
primes different from Pi. If m were divisible by one of the k primes, say 
m = qPi, then we would be contradicting the uniqueness of the quotient 
and remainder of Proposition 0.6. But m does have a factorization into 
prime numbers (possibly just one, namely, itself), so there must be more 
primes out there than Pl, ... , Pk. 
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0.2 Maps 

Definition 0.7 Let AI, ... , An be sets. Then the Cartesian product 

Al x ... x An 

of Ab ... , An is defined as the set of all ordered n-tuples (ab ... ,an) such 
that ai E Ai for 1 ~ i ~ n. This is sometimes also denoted by n~=l Ai, 
and n~=l A is also written as An. 

Definition 0.8 Let A and B be sets. A map, or function, with domain 
A and range B is a set cp ~ A x B such that for each a E A, there exists 
exactly one bE B with (a, b) E cpo 

A map cp with domain A and range B is often given as a rule which 
assigns to each a E A exactly one b E B, namely, the unique b E B with 
(a, b) E cpo Adopting this point of view, we will speak of a map cp : A ~ B 
from A to B and denote, for a E A, the unique b E B with (a, b) E cp by 
cp(a). The notation a 1---+ cp(a) is often used when a map is to be defined. 
For example, 

cp: N ~ N 
n 1---+ n+l 

defines cp to be the map from N to N that satisfies cp( n) = n + 1 for all 
n E N. The set of all maps from A to B is denoted by BA. 

Definition 0.9 Let A and B be sets, cp : A ~ B a map from A to B. If 
a E A, then cp(a) is called the image of a in B under cpo If X c A, then 

cp(X) = { cp(a) I a EX} 

is called the image of X in B under cpo If b E B, then any a E A with 
cp(a) = b (of which there may well be more than one, or none at all) is 
called a preimage of b in A under cpo If Y ~ B, then 

cp-l(y) = {a E A I cp(a) E Y} 

is called the inverse image of Y in A under cpo If C is a subset of A, then 
the map 1jJ : C - B defined by 1jJ(e) = cp(e) for all e E C is called the 
restriction of cp to C. In this case, we write 1jJ = cp t C. 

By an abuse of notation which can become quite confusing, some people 
sometimes write cp-l(b) for cp-l({b}) when bE B. 

Lemma 0.10 Let cp: A ~ B be a map. 

(i) Let Yb Y2 ~ B. Then 

cp-I(YI U Y2 ) = cp-I(Yd U cp-l(y2 ), 

and 
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(ii) Let X I ,X2 ~ A. Then 

and 

Proof (i) The first claim holds because for all a E A, we have 

a E rp-I(YI U Y2) {=} rp(a) E (YI U Y2) 
{=} rp(a) E YI or rp(a) E Y2 

{=} a E rp-I(Yr) or a E rp-l(y2) 

{=} a E (rp-I(Yr) U rp-l(y2)). 

Similarly, 

a E rp-I(YI n 12) {=} rp(a) E (YI n Y2) 
{=} rp(a) E YI and rp(a) E Y2 

{=} a E rp-l(yl ) and a E rp-l(y2 ) 

{=} a E (rp-I(Yr) n rp-l(y2)). 

(ii) The first claim follows from the following equivalence which holds for 
all b E B. 

bE rp(XI U X 2) {=} b = rp(a) for some a E (Xl U X 2) 

{=} b = rp(a) for some a E Xl or some a E X 2 
{=} bE rp(XI) or bE rp(X2) 

{=} bE (rp(Xr) U rp(X2)) 

Finally, let bE (rp(Xl nX2 )). Then there exists a E (Xl nX2) with rp(a) = b. 
Since a E Xl and a E X 2, this shows that b E rp(XI) and b E rp(X2), i.e., 
bE (rp(XI) n rp(X2)). D 

The following example shows that the reverse inclusion for the intersec
tion in (ii) above does not hold in general. 

Example 0.11 Let rp : Z ---+ N be defined by rp(n) = Inl for all n E 
Z, and let Xl = {-I}, X 2 = {I}. Then rp(XI n X 2) = rp(0) = 0, but 
rp(Xr) n rp(X2) = {I}. 

Definition 0.12 Let rp : A ---+ B be a map. Then rp is called 

(i) injective, or one-to-one, if rp(ar) = rp(a2) implies that al = a2 for 
all al. a2 E A, i.e., no two different elements of A ever have the same 
image in B under rp, 

(ii) surjective, or onto, if rp(A) = B, i.e., for each b E B, there exists 
an a E A with rp(a) = b, and 
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(iii) bijective, or a bijection, if it is both injective and surjective. A 
bijection from a finite set X to itself is also called a permutation 
on S. 

Here is a simple reformulation of the above definition: cp is injective if for 
every b E B, there is at most one preimage under cp, surjective if there is at 
least one, and bijective if there is exactly one. Verification of the following 
examples is left to the reader. 

Examples 0.13 (i) The map cp : N ~ N defined by cp(n) = n + 1 for 
all n E N is injective but not surjective. 

(ii) The map cp : Z ~ N defined by cp(m) = Iml for all m E Z is 
surjective but not injective. 

(iii) The map cp : Z ~ Z defined by cp(m) = -m for all m E Z is 
bijective. 

If A is a set, then the map cp : A ~ A defined by cp(a) = a for all a E A 
is called the identity on A and is denoted by idA. If X ~ A, then the map 
t : X ~ A defined by t( a) = a for all a E X is called the inclusion map 
of X in A. 

Exercise 0.14 Show that the identity map is always bijective, and inclu
sion maps are always injective. 

Lemma 0.15 Let cp: A ~ B be a map. Then the following hold: 

(i) X ~ cp-l(cp(X)) for all X ~ A. Moreover, X = cp-l(cp(X)) for all 
X ~ A iff cp is injective. 

(ii) cp(cp-l(y)) ~ Y for all Y ~ B. Moreover, cp(cp-l(y)) = Y for all 
y ~ B iff cp is surjective. 

Proof (i) Let a E X ~ A. Using the definitions of image and inverse 
image, we see that cp(a) E cp(X) and thus a E cp-Icp«X)). Now assume 
that X = cp-l(cp(X)) for all X ~ A, and let aI, a2 E A with cp(ad = cp(a2)' 
Then 

a2 E cp-l(cp({ad)) = {ad 

and thus al = a2. Conversely, assume that cp is injective, and let X ~ A 
and a E cp-l(cp(X)). Then cp(a) E cp(X), and thus there exists c E X with 
cp(c) = cp(a). Injectivity of cp implies a = c, and so a E X. 

(ii) Let Y ~ B and b E cp(cp-l(y)). Then there exists a E cp-l(y) 
with cp(a) = b, and we conclude that b = cp(a) E y. Now assume that 
cp(cp-l(y)) = Y for all Y ~ B, and let bE B. Then in particular, 
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and so there exists a E rp-l({b}) ~ A with cp(a) = b. Finally, assume that 
rp is surjective, and let bEY ~ B. Then there exists a E A with cp(a) = b. 
We see that a E cp-l(y) and thus bE cp(rp-l(y». 0 

Exercise 0.16 Use the examples of injective and surjective maps given earlier 
to understand that (with the notation of the last lemma), cp-l(cp(X» ~ X does 
not hold in general for non-injective maps, and Y ~ cp(cp-l(y» does not hold in 
general for non-surjective maps. 

Definition 0.17 Let cp : A ~ B and 1/J : B ~ 0 be maps. Then the 
composition 1/J 0 rp of ~ and 1/J is the map 1/J 0 rp : A ~ 0 defined by 
(1/J 0 rp)(a) = 1/J(rp(a» for all a E A. 

Exercise 0.18 Let rp : A ~ B, 1/J : B ~ 0, and X : 0 ~ D be maps. 
Show that (X 0 1/J) 0 rp = X 0 (1/J 0 rp). 

Lemma 0.19 Let cp and 1/J be as in the above definition. Then the following 
hold: 

(i) If 1/J 0 rp is injective, then rp is injective. 

(ii) If 1/J 0 cp is surjective, then 1/J is surjective. 

Proof (i) Let al, a2 E A with rp(ad = rp(a2). Then 1/J(rp(ad) = 1/J(rp(a2», 
and so al = a2 since 1/J 0 rp is injective. To prove (ii), let cEO. Since 1/J 0 rp 
is surjective, there exists a E A with 1/J(rp(a» = c, and we see that rp(a) is 
the desired preimage of c under 1/J in B. 0 

Exercise 0.20 Let cp and 1/J be as above. Show that if both 1/J and rp are 
injective (surjective), then the composition 1/J 0 rp is injective (surjective). 

Lemma 0.21 Let cp : A ~ B be a map. Then the following hold: 

(i) If A", 0, then rp is injective iff there exists a map 1/J : B ~ A with 
1/J 0 cp = idA. 

(ii) rp is surjective iff there exists a map 1/J : B ~ A with rp 0 1/J = idB. 

(iii) rp is bijective iff there is a map 1/J : B ~ A such that both 1/Jorp = idA 
and cp 0 1/J = idB hold. 

Proof The directions "<==" follow immediately from Lemma 0.19 together 
with the fact that identities are bijective. For "===?" of (i) we define 1/J(b), 
for b E B, to be the unique preimage of b under rp if one exists at all, an 
arbitrary element of A otherwise. It is immediate from this definition that 
1/J(rp(a» = a for all a E A. For "===?" of (ii) we define 1/J(b), for b E B, to 
be anyone of the preimages of b under f, knowing that there must be at 
least one. One verifies immediately that rp(1/J(b» = b for all bE B. Finally, 
for "===?" of (iii), we set 1/J(b) equal to the unique preimage of b under rp, 
and it is now easy to check that 1/J 0 cp = idA and rp 0 1/J = idB. 0 
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It is easy to see that for bijective cp, the map 'I/J of (iii) above is uniquely 
determined by cpo It is also called the inverse of cp and denoted by cp-l (cf. 
the remark following Definition 0.9). 

The proof of the existence of'I/J in (ii) of the last lemma actually involves 
a set-theoretic subtlety. This will be discussed in Section 4.1 j it need not 
bother us for the moment. 

Exercise 0.22 Show that cp : A --+ B is injective iff the reverse inclusion for 
the intersection in Lemma 0.10 (ii) holds for all Xl, X2 ~ A. 

If A is a set with finitely many elements, then we denote by IAI the 
number of elements of A. (IAI is also called the cardinality of A.) 

Proposition 0.23 Let A be a finite set, cp a map from A to itself. Then 
cp is injective iff it is surjective. 

Proof Assume that cp is surjective. Then each one of the IAI elements of A 
has at least one preimage, and by the definition of maps, no two different 
elements can have a preimage in common. But there are only IAI preimages 
available, so each a E A can have at most one of them. Conversely, assume 
that cp is injective. Then the images of the IAI elements of A must be 
pairwise different, since cp never identifies two different ones. So there are 
IAI many images, and thus they exhaust all of A. 0 

Functions from N to a set A are often defined recursively: one chooses a 
specific element of A as the image of 0 and then defines f (n + 1), for all 
n E N, as some function of f(n), or even of {J(1), ... , f(n)}. Suppose, for 
example, that we wish to enumerate the prime numbers. This amounts to 
defining a function f : N --t Z such that f(n) is the nth prime. This can 
be done by setting f(O) = 2 and f(n+ 1) = F(J(n)), where F is a function 
from N to Z which assigns to mEN the least prime number greater than 
m. The recursion principle of set theory states that this is a legitimate 
way to define a function with domain N. The recursion principle is closely 
related to the induction principle, and it can be similarly justified on an 
intuitive level. 

Exercise 0.24 Give an intuitive argument to support the recursion principle on 
the basis of the assumption that a function f has been defined if we can tell what 
f(a) is for each a in its domain. 

0.3 Mathematical Algorithms 

One of the main goals of this book is to demonstrate how one can often 
construct a mathematical object-whose existence is known-in finitely 
many steps from other objects that it depends upon. A method to achieve 
such a construction under a particular set of circumstances is called an 
algorithm. A prerequisite for the problem to make sense is of course that 
the object itself and the data that it depends on are of a finite nature, so 
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that they may be represented by symbols on paper or by means of datatypes 
on a computer. Section 4.6 will discuss this in more detail; for the moment, 
let us note that we may certainly represent integers on a computer, that 
exact integer arithmetic can be implemented, and that there are not in 
principle any limits on the size of the integers we can compute with. We 
may now consider the non-constructive existence proof for the quotient and 
remainder upon division of one integer by another and ask whether, given 
m, n E Z with n =I- 0, we can compute q, r E Z with 

m=qn+r and O~r< Inl. 

Everybody knows of course that this is true; we use the problem solely to 
demonstrate how questions of computability will be formally handled in 
this book. 

We will present algorithms in a semi-formal "programming language." It 
uses the arrow "t-" to assign the value on the right-hand side of the arrow 
to the variable on the left; other than that, the "language" is modeled 
after Modula-2. However, all commands are self-explanatory even to those 
with no background at all in computer programming. It is clear that every 
algorithm requires verification: one must prove that it terminates after 
finitely many steps for every input as specified, and that it performs its 
task correctly, i.e., ouputs an object that has the desired properties. 

An important tool for proving the correctness of an algorithm is the 
concept of the loop invariant. This is a mathematical statement or a math
ematical object that remains unaffected by the execution of the loop in 
question. Typically, it will be an equation that holds before the loop is en
tered, while it involves one or more variables whose values are changed by 
the actions of the loop. A mathematical argument will then be required to 
prove that the equation continues to hold after each run through the loop. 

An algorithm provides a recipe for performing the construction in ques
tion for every input that meets the given specification. We will also en
counter the situation where we give an algorithm for the construction of 
some object without having an a priori abstract existence proof. It is then 
important to realize that the assignments of the algorithms in this book can 
also be interpreted as mathematical constructions. Mathematically speak
ing, an algorithm together with the proof of its correctness and termination 
is in fact nothing but a certain special type of mathematical existence proof. 
It differs from arbitrary existence proofs insofar as it does not allow non
constructive arguments of the type, "if object x did not exist, then there 
would follow a contradiction." For such an algorithmic existence proof to 
be valid we do not have to require that the objects involved are of a fi
nite nature, i.e., can be represented on a computer; this latter condition 
is required only if we wish to assert that the algorithm can be physically 
performed. We wish to emphasize that we do not subscribe to construc
tivism as a philosophical tenet. We have no qualms, for example, about 
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proving the termination of an algorithm by an argument of the type, "if 
the algorithm did not terminate, then there would result a contradiction." 

For the more mathematically inclined reader, it is an interesting exercise 
to translate algorithms into existence proofs as they are normally given 
in mathematics. Arguments involving loop invariants will then turn into 
proofs by "finite induction," where a property P of a certain natural number 
n is proved by showing "P{O)" and "P{m) implies P{m+l) for all m < n." 

To illustrate all this, we will now give and verify an algorithm for the 
computation of the quotient and remainder in Z. The algorithm uses suc
cessive subtraction of the divisor from the dividend until the range for the 
remainder is reached. It thus also demonstrates that it is not in general a 
priority of this book to discuss efficiency of algorithms: the division method 
that is taught in elementary school is vastly superior to the algorithm DIV
INT of the proposition below. We will, however, at least to some extent, 
avoid things that would make a programmer cringe. If, for example, an 
algorithm uses the absolute value of an integer repeatedly, then one should 
determine this absolute value just once and assign it to a variable rather 
than determine it over and over again. 

The algorithm DIVINT below uses a function sgn on Z which is defined 
by 

{
-I if n < 0 

sgn{n) = 0 if n = 0 
1 otherwise. 

We thus have n = sgn{n) . Inl for all n E Z. 

Proposition 0.25 The algorithm DIVINT of Table 0.1 computes, for giv
en m, n E Z with n =I- 0, integers q and r such that m = qn + rand 
0$ r < Inl. 
Proof Termination: If the algorithm did not terminate, then the set of 
values assigned to REM would be a set of natural numbers: each of them 
would have to be greater than or equal to Inl due to the fact that the 
while-clause would never fail. Moreover, this set would not have a least 
element because, as one easily concludes from the fact that n =I- 0, the value 
of REM decreases strictly with each execution of the while-loop. We would 
thus obtain a contradiction to Corollary 0.4. 

Correctness: The equation Iml = QUOT ·Inl + REM is a loop invariant: it 
is trivially true after initalization, and during each execution of the while
loop, QUOT is increased by 1, while Inl is subtracted from REM. From 
this together with the while-clause, we see that after the last execution of 
the while-loop, we have 

Iml = QUOT ·Inl + REM and 0 $ REM < Inl. (*) 

If m > 0, then we have Iml = m and Inl = sgn(n) . n, so (*) implies that 

m = sgn(n) . QUOT . n + REM, 
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TABLE 0.1. Algorithm DIVINT 

Specification: (q,r) +- DIVINT(m,n) 
Computation of quotient and remainder in Z 

Given: m,n E Z with n i 0 
Find: q,r E Z with m = qn+r and 0 ~ r < Inl 
begin 
M+-mj N+-n 
REM +- IMlj NABS +- INlj QUOT +- 0 
while REM ~ NABS do 

end 

REM +- REM - NABS 
QUOT +- QUOT + 1 

if M ~ 0 then QUOT +- sgn(N) . QUOT 
elsif REM i 0 then 

QUOT +- -sgn(N) . (QUOT + 1) 
REM +- NABS - REM 

else QUOT +- -sgn(N) . QUOT 
end 
return«QUOT, REM)) 
end DIVINT 

and we see that the output has all the required properties. If m < 0 and 
REM i 0, then m = -Iml, and so (*) tells us that 

m -QUOT -Inl - REM 

= -QUOT -Inl - Inl + (Inl - REM) 

= -(QUOT + 1) ·Inl + (Inl - REM) 
= -sgn(n)· (QUOT + 1) . n + (Inl- REM). 

Moreover, it follows easily from 0 < REM < Inl that 

0< Inl-REM < Inl, 

and we see that again, we obtain the correct output. Finally, suppose m < 0 
and REM = o. Then it follows immediately from (*) that 

m = -sgn(n) . QUOT· n 

as desired_ 0 

Notes 

For the longest time in the history of mathematics, the existence of the 
basic number systems N, Z, Q, and 1R was taken as self-evident, 1R being 
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represented by a geometric line of points, Z and Q being obtained from 
the natural numbers N by means of inverting addition and multiplication. 
It is noteworthy that there seems to have been much more of a reluctance 
to admit negative numbers than there was to talk about fractions. The 
Greek mathematicians of antiquity were already aware of the difference 
between Q and R They made a sharp distinction between "geometric" 
entities such as J2 and "arithmetic" entities such as 2/3. The ancient 
Greeks also had the concept of approximating real numbers by rational 
numbers, as exemplified by the approximations of areas and volumes given 
by Archimedes and Apollonios in the 3rd century B.C. on the basis of 
earlier work by Eudoxos. Their ideas were a remarkable anticipation of the 
rigorous definition of the real numbers as the result of infinite or limiting 
operations on rational numbers. This definition did not come about until 
the late nineteenth century, largely due to the German mathematicians 
Karl Weierstrass and Richard Dedekind. 

The system C of complex numbers was for a long time considered to be of 
a rather dubious, "imaginary" rather than real nature. This vagueness was 
eventually removed by the geometric interpretation of C as the real plane. 
The idea of identifying complex numbers with points in the plane appears 
in the work of the English mathematician John Wallis in the 17th century. 
It was made precise around 1800 by the Norwegian surveyor Caspar Wessel 
and, independently, the Swiss bookkeeper Jean Robert Argand. 

It was the eminent 17th-century French mathematician Pierre de Fermat 
who first recognized the induction principle as a rigorous method of prov
ing theorems on natural numbers. He actually used the version of Corollary 
0.4: he would prove that every n E N has property P by showing that the 
set of natural numbers that do not have property P does not have a least 
element and is thus empty. The version of Theorem 0.1 was employed for 
the first time by the French philosopher and scientist Blaise Pascal in his 
1665 treatise on the arithmetic triangle that later came to be known as 
the Pascal triangle. The induction principle as an axiom in a rigorous for
mal setting was formulated by Richard Dedekind, and also by the Italian 
mathematician Guiseppe Peano, both in the 1880s. Interestingly, mathe
maticians well into the 18th century were often content with verifying a 
conjecture concerning natural numbers on a finite number of examples, a 
method which was referred to as "proof by induction." This is why the 
induction principle is also known as the principle of complete induction. 

A common foundation for the number systems-and in fact for almost 
all of modern mathematics-was only found in the late 19th century, when 
the Russian-German mathematician Georg Cantor introduced the theory of 
sets. Set theory also provided the first rigorous definition of a map as a set 
of ordered pairs, in contrast to the more vague concept of a "rule" assigning 
certain objects to given ones. For an account of set theory as a foundation 
of mathematics, we recommend Hrbacek and Jech (1984) or Kunen (1983). 
A good reference for the history of the number systems is Kline (1985). 
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Commutative Rings 
with Unity 

1.1 Why Abstract Algebra? 

The main objects of study in this book are polynomials. Only the most 
elementary mathematical skills are required to manipulate polynomials. 
However, in order to develop the theory of Grabner bases it is necessary 
to work within the larger framework of abstract algebra. The concept of 
abstract algebra arises from the observation that certain operations such as 
addition and multiplication can be performed on a variety of objects, such 
as numbers, polynomials, functions, or matrices, to name just a few. Cer
tain properties of these operations are often shared by different objects on 
which these operations are performed. As an example, consider addition, 
multiplication, and division with remainder of integers which we discussed 
in the first section. We will see that these operations can be performed 
not only with integers, but with polynomials in one variable over the ra
tionals or reals as well (in fact, over any field), and that the same basic 
properties such as commutativity or the associative law hold. Now if two 
objects share structure and a property of that structure, then they also 
share all consequences of this property, and for economical reasons, one 
would want to derive these consequences simultaneously in a generalized 
setting. Indeed, all the results on integers that we mentioned before have 
precise counterparts for polynomials, and it would be a tremendous waste 
of time to prove them over again. This is exactly what abstract algebra 
is all about: investigating properties of operations and their consequences 
while neglecting the actual nature of the objects that these operations are 
performed on. 

Definition 1.1 Let A be a set. A binary operation on A is a map from 
AxAtoA. 

A binary operation on A can thus be visualized as a rule that assigns to 
each pair (a, b) of elements of A a new element c of A. 

Examples 1.2 (i) Addition and multiplication on integers, rationals, 
reals and complex numbers. 

15 
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(ii) Let X be a set, ZX, QX, JRx, and eX the set of all functions from X to 
Z, Q, JR, and C, respectively. Then pointwise addition and multiplica
tion are binary operations on each of these. Here, (f, g) f---+ 1 + 9 and 
(f,g) f---+ Ig, where (f+g)(x) = I(x)+g(x) and (fg)(x) = I(x)g(x) 
for all x E X. 

(iii) If I is an interval on the real line, let us denote by C( I, JR) the set 
of all continuous functions from I to the reals. Since sum and prod
uct of continuous functions are again continuous, pointwise addition 
and multiplication as defined in (ii) above are binary operations on 
C(I,JR). 

(iv) If S(X) is the set of all maps from a set X to itself, then composition 
of maps, where (cp,1/J) 1---+ 1/J 0 cp, is a binary operation on S(X). 

(v) If X is a set and P(X) the power set of X, i.e., the collection of all 
subsets of X, then union and intersection, where (U, V) 1---+ U U V 
and (U, V) 1---+ Un V, respectively, are binary operations on P(X). 

The next step is to introduce sets with operations that satisfy certain 
axioms, and to investigate consequences of these axioms. 

1.2 Groups 

Definition 1.3 A group is a set G with a binary operation (a, b) 1---+ a· b 
and a distinguished element e E G such that the following axioms hold: 

(i) "." is associative, i.e., a' (b· c) = (a· b) . c for all a, b, c E G. 

(ii) e· a = a for all a E G. 

(iii) For all a E G, there exists bEG with b· a = e. 

G is called an Abelian group if, in addition to (i)-(iii), "." is commuta
tive, i.e., a . b = b· a for all a, bEG. 

We will also write ab instead of a . b, and, in view of (i) above, abc 
instead of a(bc). Following the examples below, it will be shown that the 
distinguished element e of a group G is the only one satisfying (ii) above, 
and that it is also the only one satisfying a·e = a for all a E G. Moreover, we 
will show that for each a E G, the element bEG of (iii) above is uniquely 
determined by a, and that it is also the only one satisfying a . b = e. In 
view of this, the distinguished element e is called the neutral element of 
G, and for a E G, the element bEG of (iii) is called the inverse of a and 
is denoted by a-to The following examples are easy to verify. 

Examples 1.4 (i) The integers Z with the operation + form an Abelian 
group with neutral element 0 and -a as the inverse of a E Z. 
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(ii) Q \ {O}, i.e., the rationals without 0, is an Abelian group under mul
tiplication with neutral element 1 and l/a as the inverse of a E Q, 
a =F O. 

(iii) If X is a set, then ZX, QX, IRx, eX, and C(J,IR) with pointwise 
addition as defined in Example 1.2 (ii) and (iii) are Abelian groups. 
Here, the neutral element is the zero function 0 (where O(x) = 0 
for all x), and the inverse of a function f is its negative - f (where 
(- f)(x) = - f(x) for all x). 

(iv) Let X be a non-empty set, S(X) the set of all bijective maps from 
X to itself. Composition of maps is associative by Exercise 0.18, and 
idx satisfies lPoidx = idx olP = lP for all lP E S(X). Moreover, for all 
lP E S(X), there exists an inverse map 1/1 E S(X) with 1/1 0 lP = idx. 
Hence S(X) with composition of maps and neutral element idx is a 
group. 

When dealing with Abelian groups, it is common to write the operation 
as +. It is then understood that the neutral element is denoted by 0 and 
the inverse of a by -a in obvious reference to the standard example of the 
integers Z. 

Exercises 1.5 (i) Show that S(X) as defined in (iv) above is not in general 
an Abelian group. (Hint: Take X = {I, 2, 3}, and find cp,1/J E S(X) with 
cp 0 1/J =J: 1/J 0 cp.) 

(ii) Let X be a set, G its power set P(X). For A E G, denote by A the 
complement of A in X. Define a binary operation ~ on G by setting 

A~B = (AnB) U (B nA) 

for A, BEG. (A ~ B is often called the symmetric difference of A and 
B, or, more obviously, the union without the intersection of A and B.) 
Show that G with the operation ~ is an Abelian group. 

The next four lemmas provide the justification for the terminology "the 
neutral element" and "the inverse," and thus for the notation a-I for the 
inverse of a. Throughout, let G be a group with distinguished element e. 

Lemma 1.6 Let a, bEG. If ba = e, then also ab = e. 

Proof Let c E G with cb = e. From ba = e we get 

b = eb = (ba)b = b(ab). 

Multiplying this equation by c from the left, we obtain cb = (cb)(ab). If we 
replace (cb) bye, this becomes e = e(ab) = abo 0 

Lemma 1.7 The element e also satisfies ae = a for all a E G. 
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Proof Let a E G, and let bEG with ba = e. Then ab = e by Lemma 1.6, 
and we get a = ea = (ab)a = a(ba) = ae. 0 

Lemma 1.8 For each a E G, there is exactly one bEG with ba = e, and 
this is also the only element satisfying ab = e. 

Proof Let a, bEG with ba = e. We already know that then ab = e too. 
Now suppose that c E G with ca = e. Multiplying the equation ba = ca by 
b from the right yields be = ee, hence b = c by Lemma 1.7. If ac = e, then 
we can prove b = c in a similar way by multiplying the equation ab = ac 
by b from the left. 0 

Lemma 1.9 The distinguished element e EGis the only one satisfying 
ea = a for all a E G, and it is also the only one satisfying ae = a for all 
aEG. 

Proof Suppose e' E G satisfies e'a = a for all a E G. Then in particular, 
e'e = e. Moreover, e'e = e' by Lemma 1.7. We see that e = e'. If e' E G 
satisfies ae' = a for all a E G, then ee' = e, and this together with ee' = e' 
implies e = e'. 0 

Exercise 1.10 Let G be a group with neutral element e. Show the follow
ing: 

(i) (a-1)-1 = a for all a E G. 

(ii) If a, b, c E G with ab = ac or ba = ca, then b = c. 

(iii) If a E G with ab = b or ba = b for some bEG, then a = e. 

One of the most important concepts in group theory is that of a subgroup. 

Definition 1.11 Let G be a group and H a subset of G with H =I- 0. His 
called a subgroup of G if the following hold: 

(i) a, b E H implies that ab E H for all a, bEG. 

(ii) For all a E G, a E H implies that a-l E H. 

The following exercise provides examples. 

Exercises 1.12 (i) Let G be a group with neutral element e. Show that 
G and {e} are subgroups of G. 

(ii) Let m E Z, and denote by mZ the set {mk IkE Z}, i.e., mZ is the 
set of all integer multiples of m. Show that mZ is a subgroup of the 
additive group Z. 

Proposition 1.13 Let G be a group with neutral element e, 0 =I- H ~ G. 
Then the following are equivalent: 
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(i) H is a subgroup of G. 

(ii) H is closed under the group operation of G, e E Hand H is again a 
group with neutral element e under this operation. 

(iii) a, bE H implies ab-1 E H for all a, bEG. 

Proof (i)===?(ii). The claim that H is closed under the group operation 
of G is simply a reformulation of condition 1.11 (i). It remains to verify 
Definition 1.3 (i)-(iii). The associative law 1.3 (i) holds for all a, b, c E G, 
so in particular, it holds for all a, b, c E H. For 1.3 (ii), pick any element 
a E H. Then a-1 E H by 1.11 (ii), and thus e = aa-1 E H by 1.11 (i). 
Since e is a neutral element of G, it certainly satisfies ea = a for all a E H. 
Property 1.3 (iii) now follows immediately from 1.11 (ii). 

(ii)===?(iii). We first show that the neutral element e' of the group H 
necessarily equals the neutral element e of the group G. Indeed, e' satisfies 
the equation e' . e' = e' in H, and viewing this as an equation in the group 
G, we may apply Exercise 1.10 (iii) to conclude that e' = e. Next, we claim 
that for each a E H the inverse of a in the group H equals its inverse in 
the group G. If we denote these inverses by band c, respectively, then we 
have e = ab = ac and hence b = c by cancelation. Now let a, bE H. Then 
b-1 E H, and thus ab-1 E H. 

(iii)===?(i). Since H is not empty, we can pick a E H and conclude that 
e = a·a-1 E H. From this, we immediately get condition 1.11 (ii): if a E H, 
then a-1 = ea-1 E H. For 1.11 (i), let a, bE H. Then b-1 E H and hence 
ab = a(b-1 )-1 E H. 0 

1.3 Rings 

We have not even scratched the surface of the vast theory of groups with 
its countless applications, but our main interest in view of polynomials and 
Grobner bases are rings. 

Definition 1.14 A ring is a set R with two binary operations "+" and 
". ," referred to as addition and multiplication, as well as a distinguished 
element 0 such that the following hold: 

(i) R is an Abelian group w.r.t. addition with neutral element o. 
(ii) Multiplication is associative, i.e., (a . b) . c = a· (b . c) for all a, b, c E R. 

(iii) The distributive laws a· (b+c) = a·b+a·c and (a+b)·c = a·c+b·c 
hold for all a, b, c E R. 

If, in addition, multiplication is commutative too, i.e., a· b = b· a for all 
a, b E R, then R is called a commutative ring. R is called a ring with 
1, or ring with unity if it contains a distinguished element 1 with 1 =I 0 
and 1 . a = a for all a E R. 



20 1. Commutative Rings with Unity 

Again, we will write ab instead of a· b and abc instead of a(bc). As usual, 
the inverse of a E R w.r.t. addition will be denoted by -a. Also, a + (-b) 
will be written as a - b, and we will refer to this as subtracting b from a. 

From now on, "ring" will mean "commutative ring with 1." 

Verification of the following examples is left to the reader. 

Examples 1.15 (i) The integers, rationals, reals, and complex numbers 
are rings with their natural addition and multiplication. 

(ii) ZX, QX, RX , and (CX with pointwise addition and multiplication as 
defined in Example 1.2 (ii) are rings with the constant functions 0 
and 1 as zero element and unity, respectively. 

(iii) C(1, R) with pointwise addition and multiplication as defined in Ex
ample 1.2 (iii) is a ring. 

(iv) Let p be a prime number, Zp the set of all rational numbers whose 
denominator is not divisible by p after they have been reduced to 
lowest terms. It is not hard to see that Zp is closed under addition and 
multiplication of rational numbers. Hence these are binary operations 
on Zp. Moreover, 0, 1 E Zp, and we see that Zp is a ring. 

Other important examples that will be introduced later are polynomial 
rings and residue class rings. 

Definition 1.16 Let R be a ring, a E R. Then a is called 

(i) a zero divisor if a =I 0 and there exists ° =I b E R with ab = 0, 

(ii) invertible, or a unit, if there exists c E R with ac = 1. 

R is called an integral domain, or just domain, if it contains no zero 
divisors. R is called a field if every element of R other than 0 is invertible. 

The following examples are easily verified. 

Examples 1.17 (i) The integers Z form an integral domain whose only 
units are 1 and -1. 

(ii) The rationals, reals, and complex numbers are fields. 

(iii) For any interval 10n the real line that does not consist of just one 
point, C(1, R) is not an integral domain: one can easily construct 
continuous functions f and 9 on 1 such that f, 9 =I 0, but for each 
x E 1, either f(x) = ° or g(x) = 0, so that f . 9 = o. A function 
f E C(1, R) is a unit iff f(x) =I ° for all x E 1, since then 1/ f is 
defined and continuous. 



1.3. Rings 21 

(iv) IEp is an integral domain for all prime numbers p. A fraction sit E IEp 
(reduced to lowest terms) is a unit iff p does not divide s, since then 
tis E IEp. 

Note that in an integral domain, ab = 0 implies a = 0 or b = O. We will 
now prove some elementary properties of ring elements, zero divisors, and 
units. 

Lemma 1.18 Let R be a ring. Then the following hold: 

(i) a· 0 = 0 for all a E R. In particular, 0 is not invertible. 

(ii) If a, b E R with ab ¥ 0, then ab is a zero divisor iff a or b is a zero 
divisor. 

(iii) If a, bE R, then ab is a unit iff both a and b are units. 

(iv) Zero divisors are never invertible. 

(v) The set UR of all units of R is an Abelian group under ring multi
plication. In particular, the multiplicative inverse of a unit a E R is 
uniquely determined (Lemma 1.8), and it will be denoted by a-I. 

Proof (i) Let a E R. Then a + a . 0 = a . 1 + a . 0 = a(l + 0) = a . 1 = a. 
Subtracting a on both sides of the equation yields a . 0 = o. 

(ii) If ab is a zero divisor, then abc = 0 for some 0 ¥ e E R. Furthermore, 
a, b ¥ 0 by (i) since ab ¥ o. Now if be = 0, then b is a zero divisor. If be ¥ 0, 
then a(be) = 0 shows that a is a zero divisor. Conversely, assume that b is 
a zero divisor. Then be = 0 for some 0 ¥ e E R, so (ab)e = a(be) = a·O = 0 
which shows that ab is a zero divisor. The case that a is a zero divisor can 
be handled in a similar way. 

(iii) If ab is a unit, then abe = 1 for some e E R. Now a(be) = b(ae) = 1 
shows that both a and b are units. Conversely, if a and b are units, then 
ae = bd = 1 for some e, d E R, and hence (ab)(cd) = (ae)(bd) = 1·1 = 1, 
which shows that ab is a unit. 

(iv) Let a E R be a zero divisor, 0 =f:. e E R such that ae = O. If a were 
a unit, there would have to exist b E R with ab = 1. We would obtain 
0= b· 0 = b(ae) = (ab)e = 1 . e = e, a contradiction. 

(v) If a, bE UR, then ab E UR by (iii) above, hence ring multiplication 
is a binary operation on U R. The associative and commutative law of mul
tiplication hold in U R because they hold in all of R. 1 is obviously in U R 

and a neutral element w.r.t. multiplication. Finally, to prove the existence 
of inverses, let a E U R. Then there exists b E R with ab = 1. But this 
equation shows that b lies in U R too. 0 

If K is a field, then the inverse of 0 ¥ a E K is often denoted by l/a, 
and a(1/b) is written as a/b. 

Lemma 1.19 (i) Let R be a domain. Then the following cancelation 
rule holds in R: if ae = be and e ¥ 0, then a = b. 
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(ii) Every field is a domain. 

(iii) Every finite domain is a field. 

Proof (i) If ac = be, then (a - b)c = O. But c =1= 0 by assumption, and R 
has no zero divisors, so a - b = O. 

(ii) Let K be a field. Any zero divisor of K would by Lemma 1.18 (iv) 
be a non-zero, non-invertible element of K which is impossible in a field. 

(iii) Let R be a finite domain, 0 =1= a E R. We have to find b E R with 
ab = 1. Consider the map <p : R --+ R given by <p( c) = ac for all c E R. 
We claim that <p is injective: if <p(e) = <p(c'), then ae = ac' and thus e = c' 
by (i) above. Since an injective map from a finite set to itself is surjective 
by Proposition 0.23, we can find a preimage of 1 under <p, i.e., an element 
b E R with ab = 1. 0 

1.4 Suhrings and Homomorphisms 

As with most other algebraic theories, the concepts of substructure and 
homomorphism will play an important role in ring theory. 

Definition 1.20 Let R be a ring, and S ~ R such that 

(i) 1 E S, 

(ii) a - b E S for all a, b E S, and 

(iii) ab E S for all a, bE S. 

Then S is called a subring of R. 

Following are some obvious examples. 

Examples 1.21 (i) Z is a subring of Zp, and Zp is a subring of Q for 
any primep. 

(ii) C(I,R) is a subring ofRI. 

Lemma 1.22 Let R be a ring with unity 1, and let S be a subset of R 
with 1 E S. Then the following are equivalent: 

(i) S is a subring of R. 

(ii) The addition and multiplication of R, when restricted to elements of 
S, are binary operations on S, and S with these operations is a ring 
with the same zero element and unity as R. 
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Proof (i)===>(ii): Condition (ii) of the subring definition together with 
Proposition 1.13 implies that S is an additive subgroup of R with the same 
zero element as R. Condition (iii) of the definition tells us that multiplica
tion too is a binary operation on R, and inspection of the remaining ring 
axioms shows that they trivially hold in S because they hold in all of R. 

(ii)===>(i): Proposition 1.13 says that condition (ii) of the subring def
inition holds. Condition (iii) is simply a reformulation of the fact that 
multiplication is a binary operation on S, and condition (i) is immediate 
from the fact that S is a ring with the same unity as R. 0 

Note that by the above proposition, we have 0 E S, and a E S implies 
-a E S whenever S is a subring of R. 

Exercise 1.23 Let R be a ring, Sa subring of R. Give direct proofs of the facts 
that 0 E S, and a E S implies -a E S. 

If S is a subring of the ring Rand S is actually a field, then it is called 
a subfield of R. Clearly, Q is a subfield of JR which in turn is a subfield of 
IC. An example of a subfield of a ring where the latter is not a field is given 
by the set of all constant functions in C(I, JR). 

Exercise 1.24 Let D = {a + biy'51 a, bE Z}, where i 2 = -1. Show that 
D is a subring of C. 

Exercise 1.25 Let R be a ring, {SihEI a family of subrings of R. Show 
that niEI Si is again a subring of R. 

Exercise 1.26 Let S be a subfield of Rand 0 i= a E S. Show that a is a unit of 
R whose inverse is the same as that in the field S. 

Generally speaking, homomorphisms between algebraic structures are 
maps that preserve the operations, Le., whenever an equation such as ab = c 
holds in the domain of the map, then the images of a, b, and c must satisfy 
the same equation in the range. 

Definition 1.27 Let R and S be rings and r.p : R -----+ S a map. Then r.p is 
called a homomorphism of rings if the following hold: 

(i) r.p(a + b) = r.p(a) + r.p(b) for all a, bE R. 

(ii) r.p(ab) = r.p(a)r.p(b) for all a, bE R. 

(iii) r.p(lR) = Is. 

Here, 1R and Is denote the unities of Rand S, respectively. We will often 
drop this distinction and just write "1" and "0" even when more than 
one ring is involved. A homomorphism r.p is called an embedding if r.p is 
injective, and an isomorphism if r.p is bijective. A homomorphism from a 
ring R to itself is called an endomorphism, and an isomorphism from R 
to itself is called an automorphism. 
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The following easy exercises provide examples. 

Exercises 1.28 Show the following: 

(i) For any ring R, the identity map idR is an automorphism of R. 

(ii) If S is a subring of R, then the map <p : S ---4 R given by <pea) = a 
for all a E S is an embedding. 

(iii) If R = C(I,IR) and Xo E I, then exo : R ---4 IR given by exo(J) = 
f(xo) is a surjective homomorphism of rings. (Here, exo is the evalu
ation map: the image of f under exo is its value at xo). 

Lemma 1.29 Let <p : R ---4 S be a homomorphism of rings. Then <p(0) = 
o and <p( -a) = -<pea) for all a E R. 

Proof <p(0) = <p(0 + 0) = <p(0) + <p(0). Subtracting <p(0) on both sides 
yields 0 = <p(0). Furthermore, 

0= <p(0) = <p(a + (-a» = <pea) + <p( -a) 

for all a E R. Subtraction of <pea) on both sides yields -<pea) = <p( -a). 0 
The proof of the following simple facts is left to the reader. 

Lemma 1.30 (i) If <p : R ---4 S and 1/J : S ---4 T are homomorphisms 
(embeddings, isomorphisms) of rings, then 1/J 0 <p : R ---4 T is a 
homomorphism (embedding, isomorphism) of rings. 

(ii) If <p : R ---4 S is an isomorphism, then so is <p-l : S ---4 R. 

(iii) If <p : R ---4 S is a homomorphism of rings, then the image <peR) of 
<p is a subring of S. 0 

Two rings R and S are called isomorphic if there exists an isomorphism 
from R to S, and this is denoted by R ~ S. Statements (i) and (ii) of the 
lemma above say that R ~ S implies S ~ R, and R ~ S together with 
S ~ T implies R ~ T. Moreover, we saw in Exercise 1.28 (i) that R ~ R 
holds for any ring R. If <p : R ---4 S is a surjective homomorphism, then S 
is called a homomorphic image of R. Statement (iii) above thus tells us 
that <peR) is a homomorphic image of R for arbitrary homomorphism <p : 
R ---4 S. The following definition and lemma provide a test for injectivity 
of a homomorphism. 

Definition 1.31 Let <p : R ---4 S be a homomorphism of rings. We define 
the kernel of <p by setting 

ker(<p) = {a E R I <pea) = OJ. 

Note that by Lemma 1.29, 0 E ker(<p) for every homomorphism cpo 



1.5. Ideals and Residue Class Rings 25 

Lemma 1.32 Let cp be as above. Then cp is injective iff ker(cp) = {O}. 

Proof Suppose cp is injective, and let a E ker(cp). Then 0 = cp(a) = cp(O), 
hence a = 0 by injectivity. Conversely, if ker(cp) = {O} and a, bE R with 
cp(a) = cp(b), then 0 = cp(a)-cp(b) = cp(a-b), which means (a-b) E ker(cp). 
It follows that a - b = 0, and thus a = b. 0 

In a sense, the kernel of cp is a measure of how far cp is from being 
injective. The extreme case is cp injective with ker(cp) = {O}. Then R and 
cp(R) are isomorphic because cp, when viewed as a map from R to cp(R), 
is injective and surjective, hence an isomorphism. We see that here, the 
structure of cp(R) can be described completely just from knowing what 
ker(cp) was. We are now going to show that this is always the case: the 
kernel of cp determines the structure of cp(R). We will have to build up 
quite a machinery until we can state the result in Corollary 1.56. 

1.5 Ideals and Residue Class Rings 

Definition 1.33 Let R be a ring and 0 =1= I ~ R. Then I is called an ideal 
of R if 

(i) a + bEl for all a, bEl, and 

(ii) ar E I for all a E I and r E R. 

I is called trivial if I = {O}, proper if I =1= R. 

Condition (ii) above is sometimes expressed by saying that I is closed 
under inside-outside multiplication. Examples of ideals are provided by the 
following lemma and exercise. 

Lemma 1.34 Let cp : R ----t S be a homomorphism of rings. Then ker( cp) 
is a proper ideal of R. 

Proof ker(cp) =1= 0 since 0 E ker(cp). If a, bE ker(cp), then cp(a) = cp(b) = 0, 
hence cp(a + b) = cp(a) + cp(b) = 0 + 0 = 0, and thus a + b E ker(cp). If 
a E ker( cp) and r E R, then cp( a) = 0, hence 

cp(ar) = cp(a) . cp(r) = o· cp(r) = 0 

and thus ar E ker(cp). The ideal ker(cp) is proper since cp(ln) = Is =1= 0 and 
thus In tf. ker(cp). 0 

Exercises 1.35 Show the following: 

(i) {O} and R are ideals for any ring R. 
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(ii) Let R be a ring, a E R, and denote by aR the set {ar IrE R} of 
all multiples of a. Then aR is an ideal of R. In particular, the set 
mZ = { mk IkE Z} of all integer multiples of m E Z is an ideal of 
the ring Z. 

(iii) More generally, let R be a ring, ai, ... , an E R. Denote by L~=l aiR 
the set { t airi I ri E R for 1 ~ i ~ n } 

of all sums of multiples of the ai' Then L~=l aiR is an ideal of R. 

(iv) Generalizing even further, let R be a ring, A ~ R. Then the set 

of all "linear combinations" of elements of A is an ideal of R. 

For examples (ii), (iii), and (iv) above, there is some standard terminol
ogy and notation: 

Definition 1.36 Let R be a ring, a E R. The ideal aR described in (ii) 
above is called the principal ideal generated by a, and it is also denoted 
by Id(a). If ai, ... , an E R, then the ideal L~=l aiR described in (iii) above 
is called the ideal generated by ai, ... , an. An ideal of this form is called 
finitely generated, and it will also be denoted by Id( ai, ... , an). The ideal 
of (iv) above is called the ideal generated by A and will be denoted by 
Id(A). In this case, A is also called an ideal basis ofId(A). Here, we use the 
convention that the empty sum equals 0, so that the empty set generates 
the zero ideal. 

We will also allow the "mixed notation" Id(A, a) instead ofId(A U {a}). 

Exercise 1.37 Let R be a ring, I an ideal of R. Show that if we regard R 
as just a group under addition, then I is a subgroup of R. 

Note that you just showed that 0 E I for any ideal I of R, and a E I 
implies -a E I for all a E R. We will see that a proper ideal I of a ring R 
is never a subring of R since 1 ¢. I. 

Exercise 1.38 Let R be a ring, I an ideal of R, a E R. Show that a E I 
iff aR ~ I. 

The following lemma is used frequently when working with ideals. 

Lemma 1.39 Let R be a ring, I an ideal of R. Then the following are 
equivalent: 



(i) I is proper. 

(ii) 1 f/. I. 

(iii) u f/. I for all units u of R. 
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Proof (i)===}(ii). Assume that I is proper. If 1 were in I, then a = 1 . a 
would have to be in I for all a E R by inside-outside multiplication, a 
contradiction. 

(ii)===}(iii). Assume that 1 f/. I. If u were in I for some unit u of R, then 
1 = uu-1 would have to be in I too. 

(iii)===}(i). If I contains no unit, then, in particular, 1 f/. I, and thus 
I::J R. 0 

Exercise 1.40 Show that a ring R is a field iff {O} and R are the only 
ideals of R. 

Exercise 1.41 Let It and 12 be ideals of the ring R. Show the following: 

(i) The intersection It n 12 of It and 12 is again an ideal of R. 

(ii) If we define the sum of II and 12 by setting 

It +12 = {al +a21 al E It, a2 E 12 }, 

then It + 12 is an ideal of R with Ii ~ It + h for i = 1,2. 

We saw in Lemma 1.34 above that kernels of homomorphisms are always 
proper ideals. But kernels are actually more than just another class of 
examples of ideals: we are going to show that conversely, every proper ideal 
of a ring R is in fact the kernel of some homomorphism cp from R to some 
ring S. Given I and R, we will now construct cp and S. The idea is the 
following: given a, b E R, we must have cp(a) = cp(b) iff cp(a - b) = 0 iff 
(a-b) E I, since cp is to be a homomorphism with kernel I. We will achieve 
this by "lumping together" the elements of R in such a way that a, b E R 
belong to the same "lump" iff (a - b) E I. The "lumps" will then be taken 
as the elements of S, and cp( a) will be defined as the "lump" that a itself 
belongs to. That way, we will have cp(a) = cp(b) iff (a - b) E I as desired. 
For the rest of this section, let R be a ring and I an ideal of R. 

Definition 1.42 For each a E R, we define the residue class of a mod
ulo I to be the set a + I = { a + sis E I}. The set {a + I I a E R} of all 
residue classes will be denoted by Rj I. Residue classes are sometimes also 
called cosets, and a is called a representative of a + I. 

When it is obvious from the context what ideal I is being referred to, 
the residue class a + I of a is often denoted by a or raj. Note that I itself 
is a coset-namely, that of O-and that a E a + I since 0 E I. 
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Example 1.43 Consider 6Z, the principal ideal generated by 6 in the ring 
of integers. 6Z consists of all integer multiples of 6. Listing the integers in 
the following way will help to visualize the residue classes of Z modulo 6Z. 

-12 -11 -10 -9 -8 -7 
-6 -5 -4 -3 -2 -1 

0 1 2 3 4 5 
6 7 8 9 10 11 

12 13 14 15 16 17 

We see that the left-hand column equals 6Z. Moving over to the next 
column to the right amounts to adding 1 everywhere, so the second through 
sixth column are the residue classes 1+6Z through 5+6Z. They are pairwise 
disjoint and exhaust all of Z. It is customary to use the six representatives 
0, 1, ... , 5 when working in Z/6Z, but it is obvious that as a representative 
of a residue class, we could pick anyone of its members (e.g., 5 + 6Z = 
(-7) + 6Z). Residue classes ml + 6Z and m2 + 6Z are actually one and 
the same iff ml - m2 is a multiple of 6, i.e., is in 6Z. A similar picture 
can be drawn and the analogous statements hold if we replace 6 by any 
m E Z, m > O. In each case, we would find that Z/mZ consists of just 
m residue classes 0 + mZ, 1 + mZ, ... , (m - 1) + mZ, each of which has 
infinitely many members. Ideals mZ with m < 0 need not be considered 
since mZ = (-m)Z for all m E Z. For the zero ideal to} = OZ, each residue 
class m + to} consists of just m, and we see that here, we get infinitely 
many residue classes with one member each. 

The statements of the above example will be proved rigorously and more 
generally in Lemma 1.44, Example 1.45, and Lemma 1.47. The reader is 
encouraged to go back to this example for an illustration of those proofs. 
The next lemma shows that residue classes are precisely the "lumps" of 
elements of R that we were looking for. 

Lemma 1.44 For a, bE R, we have a + I = b + I iff a - bEl. 

Proof "==>": Assume that a + I = b + I. Since a E a + I, it follows 
that a E b + I. Hence there is s E I with a = b + s, which means that 
a- b = s E I. 

"{:=": Assume that a - bEl. We want to show that a + I ~ b + I and 
b + I ~ a + I. For the first inclusion, let c E a + I. Then c = a + s for some 
s E I, and we can write 

c = b + (a - b + s). 
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Now (a-b+s) E I since a-b E I and s E I. Hence the equation (*) shows 
that c E b + I. The reverse inclusion b + I ~ a + I can be proved similarly. 
o 

We can now say a little more about Example 1.43. 

Example 1.45 Let 0 < m E Z. Then Z/mZ consists of the m elements 
mZ, 1 + mZ, ... , (m - 1) + mZ. An arbitrary n E Z belongs to r + mZ 
where r is the remainder of n upon division by m. Both claims follow from 
Lemma 1.44: if n E Z and n = mq + r, then n - r = mq E mZ, and 
hence n E n + Z = r + Z. Since the remainder r can be found such that 
o ~ r ~ m-1, we see that every residue class equals one ofthe sets r+mZ, 
where 0 ~ r ~ m - 1. 

Exercise 1.46 List the elements of Z/5Z in a way similar to EXample 1.43. 
Which of these residue classes do the following elements of Z belong to: -2, 0, 3, 
9, 21, 329534, -329534? 

In Lemma 1.44, we gave a criterion for two residue classes a+I and b+I 
to be equal. Now we ask a slightly different question: given a + I, for what 
b does b + I equal a + I, i.e., what are the possible representatives of the 
coset a + I? The answer is that the possible representatives of a residue 
class are precisely its own members. 

Lemma 1.47 Let a, bE R. Then b + I = a + I iff b E a + I. 

Proof By Lemma 1.44 it suffices to show that b E a + I iff b - a E I. If 
b E a + I, then b = a + s for some s E I, so b - a = s E I. Conversely, if 
b - a E I, then the equation b = a + (b - a) shows that bE a + I. 0 

The reader is advised to memorize Lemmas 1.44 and 1.47 carefully. These 
will be used constantly when working with residue classes. 

We have already mentioned that each a E R lies in at least one residue 
class modulo I, namely, a + I. The next lemma shows that each a E R 
actually lies in exactly one residue class modulo I, so that R is the disjoint 
union of the different residue classes. This fact is sometimes expressed by 
saying that R/ I is a partition of R. 

Lemma 1.48 If a, b E R, then either a + I = b + I or a + I n b + I = 0. 

Proof We show that a+lnb+I =F 0 implies a+I = b+I. Let c E a+lnb+I. 
Then c = a + s = b + s' for some s, s' E I. From the second equation we 
obtain a - b = s' - s E I, and hence a + I = b + I by Lemma 1.44. 0 

In order to complete the program that we outlined preceding Definition 
1.42, it remains to turn R/ I into a ring by defining an appropriate addi
tion and multiplication, and to show that the map r.p : R --+ R/ I with 
rp( a) = a + I is a homomorphism. As we will see, this can be achieved in 
a very natural way. However, beginners often find it hard to believe that 
residue classes, which are by nature sets (or "lumps") of elements of R, 
can themselves be elements of a ring. But it is the very essence of abstract 
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algebra that the nature of the elements of a group, ring, field, etc., remains 
unspecified by the definition. In a specific example, these elements can be 
numbers, functions, matrices, or, as in this case, sets of elements of a given 
ring. 

The actual definition of "+" and "." on R/ I refers to addition and 
multiplication on R in a natural way. We will not distinguish notationally 
between the operations on R and those on R/I. 

Proposition 1.49 Let I be a proper ideal of the ring R. For a, b E R, set 

(i) (a + 1) + (b + I) = (a + b) + I, and 

(ii) (a+I)(b+I) =ab+I. 

With these opemtions, R/ I becomes a ring whose unity is the residue class 
1 + I and whose zero element is the residue class I. 

Proof Verification of the ring axioms is actually going to be easy. However, 
there is a problem with the way the operations are defined that needs to 
be taken care of first. We have defined (a + I) + (b + 1) as (a + b) + I. 
Now someone else may form the same sum using different representatives, 
i.e., a', b' E R with a + I = a' + I and b + 1= b' + I. The result would 
be (a' + b') + I, and we must show that this is the same as our result 
(a + b) + I. This is also called showing that the operations are well-defined, 
or independent of representatives. So let a, b, a', b' E R with a + I = a' + I 
and b + 1= b' + I. Then a - a' E I and b - b' E I, hence 

(a + b) - (a' + b') = (a - a') + (b - b') E I 

and thus (a + b) + I = (a' + b') + I. To see that multiplication is well
defined too, let a, b, a' I b' as before. We first note that by inside-outside 
multiplication, (a - a')b = ab - a'b E I and a'(b - b') = a'b - a'b' E I. It 
follows that the sum 

(ab - a'b) + (a'b - a'b') = ab - a'b' 

is in I, too, and we see that ab + 1= a'b' + I as desired. 
It is now easy to see that R/ I with these operations satisfies the ring 

axioms: they are inherited from R. We verify distributivity as an example. 
For a, b, c E R, we have 

(a+I)(b+I)+(c+I» = (a+I)(b+c) +1) 

= (a(b+c» +1 

= (ab+ac) +1 

= (ab+I)+(ac+I) 

= (a+1)(b+I)+(a+I)(c+I). 
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The zero element of Rj I is I since (a + I) + (0 + I) = (a + I) for all a E R, 
and the unity of Rj I is 1 + I since (a + 1)(1 + I) = (a + 1) for all a E R. 
0+ I oF 1 + I since otherwise 1 would have to be in I, which is not the case 
by Lemma 1.39 since I was assumed to be proper. 0 

Definition 1.50 Rj I as described in the proposition above is called the 
residue class ring of R modulo I, or mod I. 

We will use the notations 0, 0 + I, and I for the zero element of Rj I, 
1 and 1 + I for its unity. Note that in RjI, we add and multiply residue 
classes by adding and multiplying their representatives. 

Exercises 1.51 Let n stand for n + mZ (m, n E Z). 

(i) What are the elements of Z/2Z? What is I + I in the ring Z/2Z? 

(ii) What is 9(5 + 3) in the ring Z/12Z? 

(iii) Find all zero divisors and all units of the ring '1./12Z. 

Exercise 1.52 Consider the map 

cp: Z/3Z ---+ 

m + 3'1. f---> 

Z/6Z 
4m+6'1.. 

Show that cp satisfies properties (i) and (ii) of Definition 1.27, but not property 
(iii). Conclude that a ring may have a non-empty subset that satisfies properties 
(ii) and (iii) of Definition 1.20, but not property (i). 

We are now finally in a position to define the homomorphism whose 
kernel is the given ideal I. 

Proposition 1.53 If I is a proper ideal of the ring R, then the map 
cp : R -- R/I defined by cp(a) = a + I for all a E R is a surjective 
homomorphism of rings with ker{ cp) = I. 

Proof For all a, b E R, we have 

cp{a + b) = (a + b) + I = (a + I) + (b + I) = cp{a) + cp(b), 

and similarly cp(ab) = cp{a) . cp{b). Moreover, cp{l) = 1 + I, and the latter 
is the unity of Rj I. We have proved that that cp is a homomorphism of 
rings. It is surjective because if a + I E RII, then cp{a) = a + I. Finally, 
a E ker{cp) iff cp{a) = 0 iff a + I = 0 + I iff a E I. 0 

Definition 1.54 The homomorphism cp described in the proposition above 
is called the canonical homomorphism from R to Rj I. 

We have now completed the program described preceding Definition 1.42. 
Let us emphasize again that the canonical homomorphism should be visu
alized as "lumping together" elements of R into residue classes modulo I, 
with cp(a) = cp(b) iff a - bEl iff bE a + I iff a E b + I. We mention at this 
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point a different notation for the equivalent conditions above which is used 
primarily, but not exclusively, when working in the integers. One writes, 
instead of (a + I) = (b+ I), 

a:::bmodI 

and says "a is congruent b modulo I." Equivalence modulo I is thus 
equality in the residue class ring R/ I. If I is a principal ideal, say 1= Id(e), 
one also uses a ::: b mod e. The congruence notation has the advantage that 
one can simply write a, b, ... instead of the longer a + I, b + I, ... , thus 
suppressing the fact that the elements of R/ I are residue classes. It has the 
disadvantage that one might forget that fact. 

1.6 The Homomorphism Theorem 

Let us now once again consider a given homomorphism rp : R --+ S of 
rings. For a, b E R, we have rp(a) = rp(b) iff rp(a-b) = 0 iff (a-b) E ker(rp). 
So just like the canonical homomorphism, rp identifies those elements of 
R whose difference lies in the ideal ker(rp). Now if we are given an ideal 
I ~ ker(rp), then we can break up the action of rp into two steps: first we 
identify elements whose difference lies in I by passing to R/ I. Because of 
I ~ ker( rp), these will have to be identified by rp anyway, 80 we can continue 
from R/ I to S in such a way that the composition of the two steps yields 
rp. This is the content of the following theorem. 

Theorem 1.55 (HOMOMORPHISM THEOREM) Let rp : R --+ S be a ho
momorphism of rings, I an ideal of R with I ~ ker( rp). Denote the canonical 
homomorphism from R to R/I by X. Then the map 

'I/J: R/I --+ S 
(a + I) t---+ rp(a) 

is well-defined. 'I/J is a homomorphism of rings satisfying 'I/J 0 X = rp. 

R L S 

xl /'I/J 

R/I 

The map 'I/J is surjective iff rp is surjective. It is injective iff I = ker( rp ). 0 

Proof To say that 'I/J is well-defined is to say that the value rp( a) of (a + I) 
under 'I/J is independent of the representative of a + I that one chooses. Let 
a, a' E R with a + I = a' + I. Then a - a' E I ~ ker(rp), 80 

o = rp(a - a') = rp(a) - rp(a') 
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and hence <p(a) = <p(a'). It is easy to see that 1/1 is a homomorphism: we 
have 

1/1(a+I)+(b+I)) = 1/1 (a + b) +1) 
= <p(a + b) 

<p(a) + <p(b) 

1jJ(a + I) + 1jJ(b + I). 

Similarly, 1/1«a+I)(b+I)) = 1jJ(a+I)1jJ(b+I). Also, 1/1(1+I) = <p(lR) = Is. 
To see that 1jJ 0 X = <p, let a E R. Then 1jJ(x(a)) = 1jJ(a + I) = <p(a). 

If <p is surjective, then that means 1/1 0 X is surjective, and by Lemma 0.19 
(ii), it follows that 1jJ is surjective. Conversely, if 1/1 is surjective, then <p, as 
the composition of two surjective maps, is surjective too. Now assume that 
1/1 is injective. It suffices to show that ker(<p) ~ I, the other inclusion being 
part of the assumption. Let a E ker(<p). Then 1jJ(a+I) = <p(a) = O. Since 1jJ 
is injective, it follows that a + I equals zero in R/ I. But that zero element 
is I, so we have a + I = I and thus a E I. Finally, assume that 1= ker(<p). 
We want to show that 1/1 is injective. Using Lemma 1.32, we show that 
ker(1/1) = {O} = {I}. Let a + I E ker(1jJ). Then <p(a) = 1jJ(a + I) = 0, which 
means that a E ker(<p) = I. By Lemma 1.47, it follows that a + I = I. 0 

Following Lemma 1.32, we announced that we were going to use the 
concepts of ideals and residue class rings in order to show how the kernel of 
a homomorphism <p determines the structure of <p(R). We are now finally 
in a position to state this result. It is, in fact, an easy corollary to the 
homomorphism theorem. 

Corollary 1.56 Let <p : R ---+ S be a homomorphism of rings. Then 

R/ker(<p) ~ <p(R). 

An isomorphism 1/1 : R/ker(<p) ---+ <p(R) is given by 1/1(a + ker(<p)) = <p(a). 

Proof We apply Theorem 1.55 to <p and 1= ker(<p). We obtain an injective 
homomorphism 

1jJ : R/ ker( <p) 

1jJ( a + ker( <p)) 

It is easy to see that 1/1(R/ker(<p)) = <p(R). So if we consider 1/1 as a map 
from R/ ker( <p) to 1jJ( R/ ker( <p)) (and thus force it to be surjective too), 
then we are looking at an isomorphism between R/ker(<p) and <p(R). 0 

Corollary 1.56 is often applied in the following way. An ideal I of a ring 
R is given, and one wants to find out more about R/ I. Now if one can 
find a surjective homomorphism <p from R to some known ring S such that 
ker(<p) = I, then one may conclude that R/I = R/ker(<p) ~ <p(R) = S. 
The results of the rest of this section illustrate this technique. 
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Example 1.57 Let I be an interval on the real line, Xo E I, and J the 
set of all f E C(I, JR) with f(xo) = O. It is easy to verify that J is an 
ideal of C( I, 1R). We want to determine the structure of C( I, JR) / J. All we 
have to do is note that J = ker(exo), where cXo is the evaluation map 
defined in Exercise 1.28 (iii). The image of Cxo was all of JR, so C(I, JR)/ J 
is isomorphic to the reals. This fact plays an important role in the theory 
of rings of continuous functions. 

Exercise 1.58 Let R be a ring. Show that R/ {OJ is isomorphic to R. 

The following easy exercise prepares the ground for the next theorem. 

Exercises 1.59 Let R be a ring, 8 a subring of R, and I a proper ideal 
of R. Show the following: 

(i) 8 n I is a proper ideal of the ring 8. 

(ii) If we define 8 + I to be the set {s + a I s E 8, a E I}, then 8 + I is 
a subring of R that contains 8. 

(iii) I is a proper ideal of the ring 8 + I. 

Theorem 1.60 (FIRST ISOMORPHISM THEOREM) Let R be a ring, 8 a 
subring of R, and I a proper ideal of R. Then 

8/(8 n 1) ~ (8 + 1)/1. 

Proof Consider the map cp : 8 ----+ (8 + 1)/1 given by cp(s) = s + I. We 
see that cp = X 0 t, where t : 8 ----+ 8 + I is the natural embedding (where 
t(s) = s), and X : (8 + I) ----+ (8 + 1)/1 is the canonical homomorphism. 
It follows that cp, as the composition of two homomorphisms, is itself a 
homomorphism. By Corollary 1.56, we may conclude that 

8/ker(cp) ~ cp(8). 

The theorem can thus be proved by showing that ker(cp) = 8 n I, and 
that cp(8) = (8 + 1)/1, i.e., that cp is surjective. Now if s E ker(cp), then 
cp(s) = s + 1= 0 + I, hence s E 0 + 1 = I. But s was in 8 to begin with, 
so s E 8 n I. Conversely, if s E 8 n I, then cp(s) = s + 1= 0 + 1 and thus 
s E ker(cp). To see that cp is surjective, let b+1 E (8+/)/1. Then b = s+a 
for some s E 8 and a E I, and the fact that (s + a) - s = a E 1 implies 
that cp( s) = s + 1 = (s + a) + I = b + I. 0 

In the following exercise, the reader will verify Theorem 1.60 explicitly 
for a specific example. 

Exercise 1.61 Consider the ring Zp of Example 1.15 (iv) , where p is a fixed 
prime number. If we identify each integer m with the fraction mil, then Z is 
obviously a subring of Zp. It is also obvious that pZp, the principal ideal of Zp 
generated by p, consists of all rational numbers which, after reduction to lowest 
terms, have a denominator that is not divisible by p and a numerator that is a 
multiple of p. Finally, one sees easily that Z n pZp = pZ. Show the following: 
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(i) The subring Z + pZp of Zp actually equals all of Zp. (Hint: Use the fact 
that whenever p does not divide an integer m, then gcd(p, m) = 1, and 
thus there exist integers 8 and t with 1 = 8p + tm. These facts have not 
been proved yet, but were mentioned in Section 0.1.) 

(ii) Use (i) and the first isomorphism theorem to show that the residue class 
ring Zp/pZp is isomorphic to Z/pZ, and that Zp/pZp consisists of the p 
residue classes pZp, 1 + pZp, ... , (p - 1) + pZp. 

In order to state the next theorem, we need a lemma that relates the 
ideals of R to those of Rj I. This will be a special case of the following 
more general lemma. 

Lemma 1.62 Let cp : R ---+ S be a homomorphism of rings. Let us denote 
by I(R) and I(S) the set of all ideals of Rand S, respectively, and by I",(R) 
the set of all those ideals I of R that satisfy ker( cp) S;;; I. Then the following 
hold: 

(i) cp-l(J) E I", for all J E I(S). 

(ii) If cp is surjective, then cp(I) E I(S) for all I E I(R). 

(iii) If cp is surjective, then the map 

x: I",(R) 
I 

---+ I(S) 

1---+ cp( I) 

is bijective, and X-l(J) = cp-l(J) for all J E I(S). 

Proof (i) Let J be an ideal of S and set I = cp-l(J). If al, a2 E I, then 
cp(al), cp(a2) E J. It follows that 

cp(al + a2) = cp(al) + cp(a2) E J 

because J is an ideal, and we see that al + a2 E I. If a E I and r E R, 
then cp(a) E J and cp(r) E S, and so cp(ra) = cp(r) . cp(a) E J, which means 
ar E I. From 0 E J it is clear that ker(cp) = cp-l( {O}) S;;; I. 

(ii) Assume that cp is surjective. Let I be an ideal of R, and set J = cp(1). 
Then clearly J =F 0. If bl , ~ E J, then bl = cp(ad and ~ = cp(a2) with al, 
a2 E I, and thus 

bl + b2 = cp(al) + cp(a2) = cp(al + a2) E J 

because I is an ideal. If b E J and s E S, then b = cp( a) and s = cp( r) with 
a E I and r E R. We see that sb = cp(r) . cp(a) = cp(ra) E J. 

(iii) In view of Lemma 0.21 (iii), it suffices to show that the map 

K,: I(S) ---+ I",(R) 

I 1---+ cp-l (1) 
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satisfies K, 0 X = idz",,(R) and X 0 K, = idz(s). The second equality states 
that <p(<p-I(J» = J for all J E I(S), which is true by Lemma 0.15 (ii). 
The first equality means <p-1(<p(1» = 1 for all 1 E I",(R). The inclusion 
";2" is true by Lemma 0.15 (i). For the reverse inclusion, let 1 E I",(R) 
and a E <p-I(<p(I) Then <pea) E <p(I), and so there exists a' E 1 with 
<pea') = <pea). It follows that a - a' E ker(<p) ~ I, and we may conclude 
that a = a' + (a - a') E I. 0 

If 1 is a proper ideal of the ring Rand J is an ideal of R with 1 ~ J, 
then we denote by J 11 the subset 

{a+IlaEJ} 

of Rll, i.e., the image of J under the canonical homomorphism from R to 
RI I. The lemma above with the canonical homomorphism <p : R --t Rll 
taken for <p yields the following result. 

Lemma 1.63 Let I be a proper ideal of the ring R. Then there is a one
to-one correspondence between those ideals of R that contain 1 and the 
ideals of Rll. A bijection from the former set of ideals to the latter is given 
by J t------+ J 11. The inverse of this map is the "lifting" of ideals, where an 
ideal J' of Rll is mapped to {a E R I a+l E J'}. 0 

Theorem 1.64 (SECOND ISOMORPHISM THEOREM) Let R be a ring and 
1 and J proper ideals of R with 1 ~ J. Then 

RIJ ~ (Rll) / (Jll). 

Proof Consider the map 

<p: R --t (RII)/(JII) 
a I-------t (a+I)+Jll. 

We see that <p = X2 0 Xl, where 

Xl : R --t Rll and X2: Rll --t (Rll) / (Jll) 

are the canonical homomorphisms. Being the composition of two surjective 
homomorphisms, <p is itself a surjective homomorphism, and by Corollary 
1.56 we may conclude that 

Rlker(<p) ~ <peR) = (RII) / (Jll). 

It now suffices to show that ker(<p) = J. If a E ker(<p), then 

<pea) = (a + I) + Jll = Jll, 

the latter being the zero element of the ring (RII)I(Jll). By Lemma 1.47, 
it follows that a + 1 E J 11 and thus a E J by Lemma 1.63. Conversely, if 
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a E J, then a+1 E Jj1 by the definition of Jj I, hence <p(a) = (a+1)+Jj 1= 
J j I. We see that a E ker(<p). 0 

The following example, though somewhat tedious, provides a good un
derstanding of the second isomorphism theorem, and of the structure of 
residue class rings in general. 

Example 1.65 Consider the ring Z and the two ideals 12Z and 3Z. Then 
12Z C 3Z since every multiple of 12 is a multiple of 3. We have 

Zj12Z 

Zj3Z 

= {m + 12Z lOs m S 11}, 

{m + 3Z lOS m S 2}. 

and 

The ideal 3Zj12Z of the ring Zj12Z consists by definition of those residue 
classes of Zj12Z whose representatives are in 3Z, i.e., multiples of 3. We 
see that 

3Zj12Z = {O + 12Z, 3 + 12Z, 6 + 12Z, 9 + 12Z}. 

Finally, we have 

(Zj12Z) / (3ZjI2Z) = {(m + 12Z) + 3Zj12Z lOS m S 11}. 

We see that there are repetitions among these twelve elements: two residue 
classes (ml + 12Z) + 3Zj12Z and (m2 + 12Z) + 3Zj12Z are equal iff 

(ml + 12Z) - (m2 + 12Z) E 3Zj12Z iff (ml - m2) + 12Z E 3Zj12Z 

iff ml - m2 is divisible by 3. 

So the ring (Zj12Z)j(3Zj12Z) really consists of just the three residue 
classes 

{ (m + 12Z) + 3Zj12Z lOS m S 2}, 

and these behave like integers modulo 3Z. We have thus confirmed the 
statement of the second isomorphism theorem: 

Zj3Z ~ (Zj12Z) / (3Zj12Z). 

Lemma 1.66 Let R and 8 be rings, 'I' : R ---+ 8 a surjective homomor
phism of rings, I an ideal of R. The map 

'I/J: R/1 ---+ 8/<p(I) 
(a + I) f-+ <p(a) + <p(I) 

is well-defined, and it is a surjective homomorphism of rings. If cp is an 
isomorphism, then so is 'I/J. 

Proof We already know that '1'(1) is an ideal of 8, and so the statement 
of the lemma is meaningful. Let X : 8 ---+ 8/ '1'( 1) be the canonical homo
morphism, and consider the homomorphism 

X 0 'I' : R ---+ 8/'1'(1). 



38 1. Commutative Rings with Unity 

Now a E I implies <p(a) E <p(I) and thus X(<p(a)) = O. We see that I ~ 
ker(x 0 <p). We may thus apply Theorem 1.55 to conclude that the map 

'IjJ: RjI -t 8j<p(I) 

given by 
'IjJ(a + I) = x(<p(a)) = <p(a) + <p(I) 

is well-defined, and that it is a surjective homomorphism of rings. Now 
assume that <p is injective. We first note that a E ker(x 0 <p) always implies 
<p(a) E <p(I) and thus a E <p-l(<p(I)). Since <p is assumed to be injective, 
the latter set equals I by Lemma 0.15 (i). So in this case, ker(x 0 <p) = I, 
and hence 'IjJ is injective by Theorem 1.55. D 

1.7 Gcd's, Lcm's, and Principal Ideal Domains 

In this section, we will explore some of the connections between ideal theory 
and the concept of divisibility in a ring. 

Definition 1.67 Let R be a ring and a, b E R. Then we say that a divides 
b and write a I b if there exists c E R with b = ac. We call a, b E R 
associated if there exists a unit u E R with a = bu. If a, b E R, then 
dE R is called a greatest common divisor, or gcd, of a and b if it has 
the following two properties: 

(i) dl a and dl b, i.e., d is a common divisor of a and b, and 

(ii) whenever d' I a and d'i b for some d' E R, then d'i d, i.e., any common 
divisor of a and b divides d. 

Finally, a and b are called relatively prime if 1 is a gcd of a and b. 

Note that if a = bu for some unit u, then b = au-I, and u-1 is again a 
unit. This justifies the symmetry in the definition of associated elements. 
Let us point out a subtlety of the terminology here: every a E R divides 
0, since 0 = a . 0, but a is called a zero divisor of R only if there exists 
o =I- b E R with 0 = abo Although all of the definitions in this section make 
sense for arbitrary rings, they turn out to be interesting mainly for integral 
domains. 

The following exercise provides examples and some important elementary 
properties of divisibility, units, associated elements, and gcd's. 

Exercises 1.68 Let R be a domain and a, b, c, d, s, t, u E R. Show the 
following: 

(i) If u is a unit, then u I a. 

(ii) a and -a are associated. 



1.7. Gcd's, Lcm's, and Principal Ideal Domains 39 

(iii) If a I band b I c, then a I c. 

(iv) If a I b, then a is a gcd of a and b. 

(v) a is a gcd of a and o. 
( vi) If a I b and a I c, then a I (sb + tc). 

(vii) If a I (b + c) and a I b, then a I c. 

(viii) It is not true in general that a I (b + c) implies a I b. (Make up a coun-
terexample in Z.) 

(ix) It is not true in general that a I bc implies alb. 

(x) If a and b are associated, then a 1 c iff b I c, and cia iff c 1 b. 

(xi) al b iff bR ~ aR, and bR ~ aR iff bEaR. 

(xii) a and b are associated iff both a I b and b I a iff aR = bR. 

(xiii) If a and b are associated and b and c are associated, then so are a 
and c. 

(xiv) If al c and bl d, then abl cd. 

Lemma 1.69 Let R be a domain and a, bE R. Then any two gcd's of a 
and b are associated. Conversely, if d E R is a gcd of a and b, then so is 
every d' E R that is associated to d. 

Proof Let d and d' be gcd's of a and b. Then did' since d is a common 
divisor and d' is a gcd of a and b. Similarly, d' 1 d. Hence d and d' are asso
ciated by Exercise 1.68 (xii). The second claim follows immediatetely from 
Exercise 1.68 (x): associated elements satisfy the exact same divisibility 
relations with any element of R. D 

By a rather serious abuse of notation and terminology, it is common to 
speak of the gcd of a and b and to write gcd( a, b) in case one exists. It 
turns out that this causes no problems if the formula "d = gcd(a, b)" is 
understood to mean "d is a gcd of a and b." 

Greatest common divisors need not exist in general. Let, for example, D 
be the subring of C introduced in Exercise 1.24. Recall that for any complex 
number Z = a + ib (a, bE lR), the norm Izi of z is defined as v'a2 + b2 , and 
that IZIZ21 = IZlllz21 for all Zl, Z2 E C. Note that the norm of an element of 
D is necessarily of the form v' a2 + 5b2 with a, b E Z. Let us now consider 

Zl = 2 + 2iv'S ED and Z2 = 6 E D. 

Then 21 Zl since Zl = 2(1 + iv's), and 21 Z2 since Z2 = 2·3. Furthermore, 
1 + iv's I Zl again since Zl = 2(1 + iv's), and 1 + iv's 1 Z2 since 

Z2 = (1 + iv'S)(1 - iv's). 
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Now if dE D were a gcd of Zl and Z2 in D, we would have to have dl Zl, 

d 1 Z2, 21 d, and 1 + iv's 1 d. If we write out the meaning of these divisibilties, 
take norms everywhere and then square the equations, we see that there 
would have to be an integer m of the form a2 + 5b2 (a, bEll) such that m 
divides 24 and 36 and is divided by 4 and 6 in Il, and it is easy to see that 
this is impossible by checking the finitely many possibilities for m. 

Gcd's may exist for a variety of reasons. A natural sufficient condition 
for the existence of a gcd of two elements a and b of a domain R is that 
the ideal 

Id(a, b) = aR + bR 

(which consists of all "linear combinations" sa + tb) is principal: we will 
now show that every single generator of this ideal is then a gcd of a and b. 

Lemma 1.70 Let R be a domain and a, b, d E R. Then the following are 
equivalent: 

(i) d is a common divisor of a and b, and there exist s, t E R with 
d = sa+tb. 

(ii) d is a gcd of a and b, and there exist s, t E R with d = sa + tb. 

(iii) aR + bR = dR. 

Proof (i)~(ii): We must show that d'i a and d'i b implies d'i d for all 
d' E R. In view of Execercise 1.68 (vi), this is immediate from the equation 
d = sa + tb. 

(ii)~(iii): From the fact that d is a common divisor of a and b, it 
follows with Exercise 1.68 (xi) that aR ~ dR and bR ~ dR, and one 
easily concludes that aR + bR ~ dR. The equation d = sa + tb states that 
dEaR + bR, and it follows that dR ~ aR + bR. 

(iii)~(i): From aR + bR ~ dR it follows that aR ~ dR and bR ~ dR, 
and thus d is a common divisor of a and b. The existence of s and t with 
d = sa + bt is an immediate consequence of 

d E dR ~ aR + bR. 0 

An important consequence of the direction (i)~(ii) above is this: if a 
and b are elements of a domain R and there exist s, t E R with 1 = sa+tb, 
then 1 is a gcd of a and b in R. 

In Section 2.3, we will encounter domains R in which any two elements a 
and b have a gcd despite the fact that aR + bR is not in general a principal 
ideal. In that case, gcd(a, b) can not be written as a sum of multiples of a 
and b. 

Exercise 1. 71 Let R be a domain and a, b, d E R such that d is a gcd of a and 
b. Show that aR + bR ~ dR. 
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It is immediate from Lemma 1. 70 that in a domain R where every ideal is 
principal, any two elements a and b will have a gcd, namely, any generator 
of the ideal aR + bR. 

Definition 1.72 A principal ideal ring is a ring R with the property 
that every ideal of R is principal. A principal ideal ring which is also an 
integral domain is called a principal ideal domain, which is sometimes 
abbreviated to PID. 

The following theorem provides an example. Its statement is one of the 
most important facts in algebra and number theory. 

Theorem 1.73 Z is a principal ideal domain. 

Proof Let I be an ideal of Z. If I = {O}, then it is generated by O. 
Otherwise, we consider the set 

1+ = { mEl 1m> 0 } 

of natural numbers. This set is not empty because I =I- {O} and k E I 
implies -k E I for all k E Z. Since every non-empty set of natural numbers 
has a least element, we can find a least element n of 1+. We claim that 
I = nZ. Since n E I, we have nZ ~ I by Exercise 1.38. Conversely, let 
mEl. Dividing m by n, we can find q, r E Z with m = nq + r and 
o ::; r ::; n - 1. But r = nq - mEl, so we must have r = 0 by the 
minimality of n. The equation m = nq now shows that m E nZ. 0 

The proof of the following proposition is immediate from Lemma 1. 70. 

Proposition 1.74 Let R be a PID and a, b E R. Then a and b have a 
gcd d in R, and aR + bR = dR. In particular, there exist s, t E R with 
d = sa+ bt. 0 

We may now conclude that any two integers have a gcd in Z. The proof 
that we have given is, however, highly non-constructive: the gcd is a single 
generator of a certain ideal, and such a generator was obtained as the least 
element of some infinite set of natural numbers. Gcd's in Z-and in a variety 
of other domains-may actually be computed by means of the Euclidean 
algorithm which we will discuss in Section 2.2. For the moment, the reader 
who wants to see examples for the results in this section will have to rely 
on the elementary way of finding gcd's in Z by collecting common prime 
factors. Note that this method-as opposed to the extended Euclidean 
algorithm-does not provide s, t E Z with gcd(a, b) = sa + tb. Following 
are some more properties and examples of principal ideal rings. 

Lemma 1. 75 Every homomorphic image of a principal ideal ring is again 
a principal ideal ring. 
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Proof Let R be a principal ideal ring, S a ring, cp : R -----+ S a surjective 
homomorphism, and let J be any ideal of S. Then the ideal I = cp-l(J) 
of R (cf. Lemma 1.62) is principal, say I = aR. We claim that J = cp(a)S. 
Indeed, if b E J, then b = cp(c) for some eEl. It follows that c = ra for 
some r E R and thus 

b = cp(c) = cp(ra) = cp(r)cp(a) E cp(a)S. 0 

The following lemma is now obvious from the fact that any residue class 
ring of a a ring R modulo an ideal is a homomorphic image of R under the 
canonical homomorphism. 

Lemma 1.76 If R is a principal ideal ring, then so is R/ I for every proper 
ideal I of R. In particular, Z/nZ is a principal ideal ring for every n E 
Z\{l,-l}.D 

The example Z/nZ shows that there are indeed principal ideal rings that 
are not domains: 2+6Z is a zero divisor in Z/6Z. The next lemma provides 
more examples of PID's. It is important to note that in our development 
of the theory, this lemma has the status of just an example: its proof uses 
the unique prime factor decomposition of integers which we described but 
did not prove in Section 0.1. (The proof is to be found in Section 2.3, 
Theorem 2.51.) 

Lemma 1. 77 For any prime number p, the ring Zp is a principal ideal 
domain whose non-trivial ideals are Zp ::J pZp ::J p2Zp ::J p3Zp ::J ..•. 

Proof Using unique prime factor decomposition in the numerator, every 
non-zero element a of Zp may be written in the form a = pn(r/s) with 
n E N, and rand s not divisible by p. The exponent n is then unique, and 
we will call it h(a), the height of a. Now let I be a non-trivial ideal of Zp. 
The set 

{ mEN I there exists a E I with h( a) = m } 

has a least element, say n, and we can find a E I with h(a) = n. We can 
then write a = pn(r/s) with rand s not divisible by p. It follows that 
sir E Zp and hence 

pn = pn(r/s)(s/r) E I. 

This shows that pnzp ~ I. Conversely, let 0 i= bEl. Then h(b) ~ n, so 
b = pm( u/ v) with m ~ n and u, v not divisible by p. We can thus write 

b = pnpm-n(u/v) = pnc 

with c E Zp, which means that bE pnzp. We have proved that every ideal 
I of Zp is of the form I = pnzp with n ~ 0, and it is now rather obvious 
that the ideals form the indicated chain under inclusion. 0 

Next, we show that our third standard example C(1, 1R) is not in general 
a principal ideal ring. 
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Example 1.78 Let I be a proper interval on the real line, i.e., an interval 
that consists of more than just one point. Then C(I, JR.) is not a principal 
ideal ring. To see this, let Xo be a point in the interior of I, and let J 
be the ideal of all functions in C(I, JR.) that vanish at Xo. Assume for a 
contradiction that J were principal, generated by f E C(I, lR). Let 9 be 
any non-horizontal straight line with x-intercept Xo. Then 9 E J and hence 
9 = fh l for some hI E C(I,JR.). From g(x) =I- 0 for all x =I- Xo we see that 
f(x) =I- 0 for all x E 1\ {xo}. Since f is a continuous real-valued function 
on I, so is the function fl/3. Moreover, fl/3 is also in J, and thus there 
must exist h2 E C(I, JR.) with ji/3 = fh2. Then h2(X) = (f(X))-2/3 for all 
x E 1\ {xo}. Since f is continuous with f(xo) = 0, we must have 

lim f(x) = O. 
x-+xo 

It follows that limx-+xo h2(X) does not exist, contradicting the continuity 
of h2 at Xo. 

We now resume our discussion of gcd's in arbitrary domains. The concept 
of gcd's can easily be generalized to more than two elements. Let R be a 
domain, 2 :::; mEN, and aI, ... , am E R. Then d E R is called a greatest 
common divisor, or gcd, of aI, ... , am if 

(i) d I ai for 1 :::; i :::; m, and 

(ii) d'i d whenever d' E R with d'i ai for 1 :::; i :::; m. 

Furthermore, aI, ... , am are called relatively prime if they have 1 as a 
gcd. It is easy to see that the obvious generalization of Lemma 1.69 holds, 
and we will again frequently allow ourselves to speak of the gcd of ring 
elements. The next lemma shows that gcd's of more than two elements 
hardly pose any new problems. 

Lemma 1.79 Let R be a domain, 2 :::; mEN, and at, ... , am E R. Then 
the following hold: 

(i) If dm- l E R is a gcd of aI, ... , am-l and dm E R is a gcd of dm-l 
and am, then dm is a gcd of aI, ... , am. 

(ii) If R contains a gcd for any two elements, then it has one for every 
finite set of elements. 

(iii) d E R is a gcd of aI, ... , am iff it is a gcd of at, ... , am, o. 
(iv) If R contains a gcd for any two elements and 0 =I- d E R, then d is a 

gcd of da l , da2, ... , dam iff aI, ... , am are relatively prime. 

Proof (i) dm divides am and the gcd of aI, ... , am-l and hence it divides 
each of aI, ... , am. If d' E R has this latter property too, then it must 
divide dm- l and hence the gcd dm of dm- 1 and am. 
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Statement eii) follows easily from (i) together with an induction on the 
number of elements whose gcd we are considering, and (iii) is trivial. 

(iv) Suppose d is a gcd of dal, ... , dam, and let d' = gcd(al, ... ,am)' 
Then dd' is a conmmon divisor of dal, ... , dam by Exercise 1.68 (xiv), so 
dd' I d, say d = udd', and cancelation of d shows that d' is a unit. Conversely, 
assume that al, ... , am are relatively prime, and this time, let 

d' = gcd(dal , ... ,dam). 

Now d is a common divisor of dal , ... , dam, and so dl d', say d' = de. It 
follows that de I dai for 1 ~ i ~ m, and it is now easy to see that c is a 
common divisor of al, ... , am and thus a unit. 0 

From the lemma above together with Proposition 1.74 we conclude that 
in a PID, every finite set of elements has a gcd. Although we are not yet 
concerned with actual computations of gcd's here, we note that by (i) above, 
gcd's of finitely many elements can be computed as soon as the gcd of any 
two elements can be computed. 

Exercise 1.80 Let R be a domain, 2 ~ mEN, and d, al, ... , am E R. 
Show that the following are equivalent: 

(i) d is a common divisor of al, ... , am, and there exist Sl, ... , Sm E R 
with d = Slal + ... + Smam. 

(ii) d is a gcd of al, ... , am, and there exist Sl, ... , Sm E R with d = 
Slal + ... + Smam· 

(iii) dR = alR + ... + amR. 

We conclude this section with a discussion of least common multiples. 

Definition 1.81 Let R be a domain and a, b E R. A least common 
multiple, or lcm, of a and b is an element c E R that is a common multiple 
of a and b (i.e., a I c and b I c) and divides any other common multiple of a 
and b. 

Lemma 1.82 Let R be a domain and a, b E R. Then c E R is an lcm of a 
and b iff cR = aRn bR. 

Proof "~": Let c be any lcm of a and b. Being a common multiple of a 
and b, c is in aR n bR, which implies 

cR~ aRnbR. 

For the reverse inclusion, we note that every element of aR n bR, being a 
common multiple of a and b, is divided by c, which means that it is in cR. 
"~": Let c E R such that cR = aR n bR. Then c E aR and c E bR, 

which means that c is a common multiple of a and b. For arbitrary c' E R 
to be a common multiple of a and b means that 

c' E aR n bR = cR, 



1.7. Gcd's, Lcm's, and Principal Ideal Domains 45 

and thus c I d. This shows that c is actually the least common multiple of 
a and b. 0 

The following lemma is an easy consequence of the above one together 
with Exercise 1.68 (xii). 

Lemma 1.83 Let R be a domain and a, b, c E R such that c is an lcm 
of a and b. Then the set of all lcm's of a and b consists precisely of those 
d E R that are associated to c. 0 

As with gcd's, it is common to speak of the lcm of two ring elements a 
and b and to write "c = lcm(a, b)" for "c is an lcm of a and b." 

From Lemma 1.82, we may conclude that lcm's always exist in PIO's. 
The next proposition, however, is not only more general, but also shows 
an important connection between gcd's and lcm's. From a computational 
point of view, it guarantees that lcm's can be computed as soon as gcd's 
can be found and divisions can be performed, i.e., when a I b, then one can 
find c with ae = b. 

Proposition 1.84 Let R be a domain in which any two elements have a 
gcd. Then any two elements have an lem. Moreover, whenever a, b E R, 
then lcm(a, b) = a'b, where a' . gcd(a, b) = a. 

Proof Let a, b E R, and let d = gcd( a, b). FUrthermore, let a', b' E R such 
that a = da' and b = db'. Then a' b = ab', and we see that a' b is a common 
multiple of a and b. Now let e E R be any common multiple of a and b, 
with c = ra. Lemma 1.79 (iv) tells us that a' and b' are relatively prime, 
and that 

rd = gcd( rda', rdb') = gcd( ra, rb) = gcd( c, rb). 

Now b divides c and rb, and so it must divide their gcd rd, say rd = sb. 
We thus obtain 

c = ra = rda' = sba', 

and we see that indeed a'b I c. 0 

Corollary 1.85 Let R be a domain in which any two elements have a gcd, 
and let a, b E R be relatively prime. Then 

ab = lcm(a, b) and abR = aR n bR. 0 

Lcm's of finitely many ring elements at. ... , am with m ~ 2 are defined 
in the obvious manner as common multiples of al, ... , am that divide any 
other common multiple of these. 

Exercise 1.86 Let R be a domain and e, al, ... , am E R. Show that the 
following are equivalent: 

(i) c is an lcm of at. ... , am. 
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(ii) cR = n~l aiR. 

Exercise 1.87 Let R be a domain and aI, ... , am E R. Show the follow
ing: 

(i) If Cm-l E R is an lcm of aI, ... , am-l and Cm E R is an lcm of Cm-l 
and am, then Cm is an lcm of aI, ... , am. 

(ii) If R contains an lcm for any two elements, then it contains one for 
any finite set of elements. 

The exercise above reduces the computation of lcm's to the computation 
of lcm's of pairs of ring elements and thus, via Proposition 1.84, to the 
computation of gcd's of pairs of ring elements. It is worth noting, however, 
that the plain analogue of Proposition 1.84 fails for more than two elements: 
the lcm of more than two elements is not in general obtained by dividing 
their gcd out of their product. (Make up a counterexample in Z.) The 
next proposition, which is preceded by a lemma, shows how Corollary 1.85 
continues to hold for more than two elements if R is a PID. 

Lemma 1.88 Let R be a PID, 2 :::; mEN, and suppose aI, ... , am E R 
such that al and ai are relatively prime for 2 :::; i :::; m. Then 

gcd(aI, a2 ..... am) = 1. 

Proof We proceed by induction on m. If m = 2, then there is nothing to 
prove. Now let m > 2. Then 

1 = gcd{al' a2) = gcd{al' a3 ..... am) 

by induction hypothesis, and so there exist s, t, u, v E R with 

1 = sal + ta2 and 1 = ual + va3 ..... am. 

Multiplying these two equations with each other, we see that 

1 = (sual + sva3 ..... am + tua2)al + tva2 ..... am. D 

Proposition 1.89 Let R be a PID, 2:::; mEN, and suppose aI, ... , am E 
R are pairwise relatively prime. Then 

m 

al ..... am = lcm{al, ... , am) and al····· amR = naiR. 
i=l 

Proof We proceed by induction on m. For m = 2, the claim is identical 
with Corollary 1.85. Now let m > 2. Using Exercise 1.87, the previous 
lemma and the trivial fact that a2, ... , am are again pairwise relatively 
prime, we see that 

lcm{al, ... , am) = lcm{aI,lcm{a2' ... ' am)) 
lcm(all a2 ..... am) 

The second claim is now immediate from Exercise 1.86. D 
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1.8 Maximal and Prime Ideals 

We will now discuss how special properties of an ideal I of a ring R corre
spond to properties of the residue class ring Rj I. 

Definition 1.90 An ideal I of the ring R is called prime if I #- R and 
ab E I implies a E I or bEl for all a, b E R. I is called maximal if I #- R 
and for all ideals J of R, I ~ J implies that I = J or J = R (i.e., I is 
prope~ but not properly contained in any proper ideal of R). 

The following lemma and exercise provide examples. Recall that a prime 
number is an integer p 2: 2 with the property that if p divides a product of 
two integers, then it divides at least one of the factors. 

Lemma 1.91 Let 2 :s; p E Z. Then p is a prime number iff the ideal pZ of 
Z is prime. 

Proof The definition of primeness of pZ is hardly more than a reformula
tion of primeness of p: 

p prime {:::::::} pi mn implies p I m or pin for all m, n E Z 

{:::::::} mn E pZ implies m E pZ or n E pZ for all m, n E Z 

{:::::::} p7l. prime. 0 

Exercise 1.92 Let I be an interval on the real line, Xo E I. Show that the 
ideal 

{f E C(I,JR) I f(xo) = O} 

of the ring C(I, JR) is prime. 

It will be shown below that in both cases above, the ideals are actually 
maximal. We first prove a lemma that is often used to verify that a given 
ideal is maximal. 

Lemma 1.93 Let R be a ring, I a proper ideal of R. Then I is maximal 
iff for all a E R \ I, there exists r E Rand bEl such that b + ar = 1. 

Proof "===}": Let a E R \ I. Then the ideal J = I + aR as defined in 
Exercise 1.41 (ii) satisfies I ~ J. We have I #- J since a E J \ I, so it 
follows that J = R by the maximality of I. In particular, 1 E J, so 1 can 
be written in the form b + ar with bEl and r E R. 

"{==": Let J be an ideal of R with I ~ J. We must show that I #- J 
implies J = R. Now if I#- J, then there is a E J \ I. By assumption, we 
can find bEl and r E R with 1 = b + ar E J, hence J = R by Lemma 
1.39.0 

Proposition 1.94 Let I be a proper ideal of R. Then the following hold: 

(i) I is prime iff Rj I is a domain. 
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(ii) I is maximal iff R/ I is a field. 

Proof We first note that for any proper ideal I of R and a, b E R, we 
have (a + I)(b + 1) = 0 iff ab + 1= 0 iff ab E I. Now R/I is an integral 
domain iff (a+I)(b+I) = 0 implies a+I = 0 or b+I = 0 for all a, bE R. 
With the above observation, this translates into ab E I implies a E I or 
bEl. I is maximal iff I and R are the only ideals that contain I iff {O + I} 
and R/ I are the only ideals of R/ I (see Lemma 1.63) iff R/ I is a field (see 
Exercise 1.40). 0 

Exercise 1.95 Show that the ideal of Exercise 1.92 is actually maximal. 
(Hint: Use Example 1.57.) 

Corollary 1.96 Every maximal ideal I of a ring R is prime. 

Proof If I is maximal, then Rj I is a field and hence an integral domain 
by Lemma 1.19 (ii), and so I is prime. 0 

We will later see that the converse of the corollary above is not true in 
general. It does hold, however, in PID's. 

Proposition 1.97 Let R be a principal ideal domain. Then every non
trivial prime ideal is maximal. 

Proof Let aR be a prime ideal of R with a i:- 0, and let bR be an ideal 
with aR ~ bR. We want to show that bR = aR or bR = R. From aR ~ bR 
we conclude that a E bR, hence a = bc for some c E R. Since aR is prime 
and be = a EaR, we must have bEaR or c EaR. In the former case, 
bR ~ aR and thus bR = aR. In the latter case, c = ad for some d E R, 
hence 

a=be=bad=abd 

and thus bd = 1 by Lemma 1.19 (i). It follows that 1 E bR and so bR = R 
by Lemma 1.39.0 

We can now combine Theorem 1.73, Lemma 1.91, Corollary 1.96, and 
Proposition 1.97 to obtain the following complete description of the ideals 
ofZ. 

Proposition 1.98 Every ideal of Z is principal. A non-trivial ideal I of 
Z is prime iff it is maximal iff it is of the form pZ for some prime number 
pEZ.D 

It is clear from the description of the ideals of Zp given in Lemma 1. 77 
that pZp is the only maximal ideal of Zp. It is also the only non-trivial 
prime ideal, because pnzp contains the product ppn-l but none of the 
factors whenever n > 1. 

Proposition 1.97 does not apply to C(I, 1R), because C(I, 1R) is not a PID. 
As a matter offact, one can construct non-maximal prime ideals in C(I, 1R), 
but one needs set-theoretical techniques that are not available to us at this 
point. Examples of non-maximal prime ideals will occur naturally in the 
next chapter. 
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1.9 Prime Rings and Characteristic 

We will now use the homomorphism theorem to obtain some structural 
results on rings. 

Definition 1.99 Let R be a ring. For a E R and any natural number n 
with n > 0 we define 

n'a=g+a+"'+q, ... 
n times 

and we set OZ' a = OR. (The distinction between the two zero elements Oz 
and OR will be suppressed in the sequel.) If there exists a natural number 
n > 0 with n . 1 = 0, then we call the least such n the characteristic of R. 
If no such n exists, we say that the characteristic of R is O. We will write 
char(R) for the characteristic of R. 

Obviously, the characteristics of Z, Zp, and C(I,lR) are O. The charac
teristic of a ring cannot be 1 because we have required that 1 ~ O. 

Exercise 1.100 Let n E Z with n > 1. Show that char(ZjnZ) = n. 

Lemma 1.101 Let R be a ring with char(R) = n, and let mEN. Then 
the folllowing hold: 

(i) m E nZ iff m . 1 = O. 

(ii) If a E R, then m E nZ implies m . a = O. 

(iii) If in addition, R is a domain and 0 ~ a E R, then m E nZ iff m·a = O. 

Proof (i) If mE nZ, then m = qn for some integer q, and thus 

m·1 = qn·1 = q. (n· 1) = q. 0 = O. 

Now assume that m . 1 = O. If the characteristic n of R equals 0, then it 
follows immediately that m = O. If n > 0, then there exist q, r E Z with 
m = qn + r and 0 $ r < n. We may conclude that 

0= (qn + r) . 1 = (qn) . 1 + r· 1 = r· 1, 

and so r = 0 by the minimality of n. 
(ii) If mE nZ and a E R, then m . a = a(m . 1) = 0 by (i) above. 
(iii) In view pf (ii), it remains to prove the implication from right to left. 

Assume that m . a = O. If the characteristic n of R equals 0, then we may 
argue that 

o = m . a = a(m . 1) 

and so m . 1 = 0 since a ~ 0 and R is a domain, and we see that m = O. If 
n> 0, then we can once again find q, r E Z with m = qn+r and 0 $ r < n. 
We now write 

o = (qn + r) . a = (qn) . a + r . a = r . a = a(r . 1) 
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and conclude from a '" 0 that r . 1 = O. From the minimality of n, it now 
follows that r = O. 0 

Exercise 1.102 Let R and S be rings with char(R) =1= 0, and let cp: R --+ S be 
a homomorphism of rings. Show that char(S) divides char(R). 

The main result of this section states that every ring of characteristic 0 
contains an isomorphic copy of Z as a subring, whereas a ring of character
istic n contains an isomorphic copy of ZjnZ. We extend the definition of 
n· a to all of Z in the obvious way by setting n· a = -« -n)· a) for n < O. 

Proposition 1.103 Let R be a ring. If char(R) = 0, then the map cp : 
Z --+ R given by cp(n) = n· 1 is an embedding of rings. If char(R) = m, 
then the map .,p : ZjmZ --+ R given by .,p(n + mZ) = n· 1 is an embedding 
of rings. 

Proof It is easy to see from the definition of n·l that the map cp : Z --+ R 
given by cp(n) = n· 1 is always a homomorphism. If char(R) = 0, then 
c,o(n) '" 0 for all n '" 0, hence ker(cp) = {O} and cp is an embedding. If 
char(R) = m, then ker(c,o) = mZ by Lemma 1.101 (i). By Corollary 1.56, 
the map .,p : ZjmZ --+ cp(Z) given by .,p(n + mZ) = cp(n) = n· 1 is an 
isomorphism, so if we regard it as a map from ZjmZ to all of R, it becomes 
an embedding. 0 

It is an immediate consequence of the proposition above that a ring of 
characteristic zero must have infinitely many elements. The image of Z or 
ZjmZ, respectively, in R as described in the above proposition obviously 
consists of all sums n· 1 in R, where n E Z. It is also called the prime ring 
of R. R itself is called a prime ring if it equals its own prime ring. We see 
that Z and its residue class rings are prime rings. If p is a prime number, 
then the field ZjpZ is a also called the prime field of characteristic p. 

Exercise 1.104 Let R Le a ring. Show that the prime ring of R equals the 
intersection of all subrings of R. 

Recall from Section 0.1 that a prime number is an integer p with the 
property that if p divides a product of two integers, then it divides at least 
one of the factors. 

Proposition 1.105 Let R be an integral domain. Then char(R) equals 
either 0 or some prime number p. 

Proof Assume for a contradiction that char(R) = n, where n '" 0 and n 
is not prime. Then ZjnZ is not an integral domain by Lemma 1.91 and 
Proposition 1.94 and thus contains non-zero elements a and b with ab = O. 
Now if cp : ZjnZ --+ R is the embedding of the last proposition, then 
c,o(a) . cp(b) = 0 with cp(a), cp(b) =f:. 0, a contradiction. 0 

If a is an element of any ring and n E N, then the notation an is rather 
self-evident: aO = 1, a 1 = a, and for 2 $ n, an is a product of n factors each 
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of which equals a. The following lemma shows that the equation (a + b)2 = 
a2 + b2 is not as ludicrous after all as we have been taught. 

Lemma 1.106 Let R be a domain with char(R) = p =I- 0, and let a, b E R. 
Then (a + b)P = aP + bP. 

Proof By the binomial theorem, we have 

(a + b)P = aP + (~) . ap-1b + ... + ~ ~ 1) . abP-1 + bP. 

(We have not proved the binomial theorem for rings in general, but any 
one of the proofs given in elementary mathematics for the reals carries over 
verbatim.) The binomial coefficients are defined as 

( p) = (p - i + l)(p - i + 2) ..... P 
i 1·2· .... i 

for 0 < i < p. The numerator contains the factor p which does not divide 
anyone of the factors in the denominator since i < p. But p is a prime 
number and thus does not divide the entire denominator. We see that p 
cannot be canceled, so all binomial coefficients above are multiples of the 
characteristic p. By Lemma 1.101 (ii), it follows that all summands in the 
expansion of (a + b)P vanish except for aP and bP. 0 

Recall that a finite domain is automatically a field. It is clear that a finite 
field cannot have characteristic zero, since in the latter case the elements 
n . 1 with n E N are all different. 

Lemma 1.107 Let K be a finite field with char(K) = p. Then every 
element of K has a pth root, i.e., for all a E K, there exists b E K with 
bP =a. 

Proof We claim that the map cp : K -----+ K defined by cp( a) = aP is 
injective. Indeed, aP = bP implies aP - bP = (a - b)P = 0 by Lemma 1.106, 
and so a-b = 0 since K, being a field, has no zero divisors. K was assumed 
to be finite, so by Proposition 0.23, cp is surjective, which is what we have 
claimed. 0 

Exercise 1.108 (FERMAT'S THEOREM) Show that ifp is a prime number, 
then aP == a mod p for all a E Z. (Hint: Argue that it suffices to prove the 
claim for a E N, then use induction on a. See the end of Section 1.5 for an 
explanation of the congruence notation.) 

1.10 Adjunction, Products, and Quotient Rings 

In this section, we discuss three constructions of rings from given ones. We 
begin with ring adjunction. 
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Definition 1.109 Let S be a ring, R a subring of S, and M ~ S. Then we 
define R[M], the ring obtained by adjunction of M to R, as the intersec
tion of all subrings of S that contain both R and M. If M = {m}, ... , m n }, 

then we write R[m1, ... , m n ] instead of R[{m}, ... , mn }]. In this case, R[M] 
is also called a finitely generated extension ring of R. 

Note that in the above definition, the set of all subrings of S that contain 
both R and M is not empty since S itself is such a subring, and that R[M] 
is a subring of S by Exercise 1.25. We obviously have R, M ~ R[M]. It 
is important to note that although S is not part of the notation, the ring 
R[M] depends not just on the elements of M, but on the structure of S as 
well, i.e., on the definition of the operations in S. It is clear that R[0] = R, 
so that the concept of adjunction is interesting only for non-empty M. 
R[M] can be described explicitly as follows. 

Lemma 1.110 Let S, R, M = {m1' ... ,mn } be as in the definition above, 
and set 

T = { mr1 • ••• • m~n 1111,... ,lin EN}. 

Then R[M] consists of all sums of the form E~=l Titi, where Ti E Rand 
ti E T for 1 :5 i :5 k. 

Proof Let B be the set of all such sums. Since subrings are closed under 
addition and multiplication, every subring of S that contains R and M 
must contain B, hence B is contained in their intersection R[ M]. To prove 
the reverse inclusion, we note that B itself is such a subring. 0 

Examples 1.111 (i) Let S = C, R = Z, and M = {iv'5}. It is then 
easy to see that every element of R[iv'5J can be simplified to the form 
a + ibv'5 with a, b E Z. We see that what we obtain is the subring D 
of C introduced in 1.24. 

(ii) If S = Q, R = Z, p is a fixed prime number, and 

M = { lin I n E N, p does not divide n}, 

then it is not hard to see that R[MJ = Zp. 

The following lemma is often useful. 

Lemma 1.112 Let Rand S be rings, M 1, M2 ~ S. Then the following 
hold: 

(i) R[Md[M2J = R[M1 U M 2J. 
(ii) If M1 ~ M 2, then R[M1J ~ R[M2]. 
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Proof (i) It suffices to show that the set of all subrings S' of S that contain 
both R[Ml] and M2 equals the set of those subrings that contain R and 
Ml U M 2. We know that R, MI ~ R[MIJ, so if S' contains R[MI ] and M2, 
then it contains R, MI, and M2, and thus R and MI U M2. Conversely, if 
S' contains R and MI U M 2 , then it contains R and MI and thus R[MIJ, 
and it also contains M 2 • 

(ii) Here, it suffices to note that every subring of S that contains R and 
M2 contains R and MI, so the set of subrings of S whose intersection is 
R[M2J is a subset of the set of those whose intersection is R[MIJ. 0 

The second construction that we discuss is that of direct products. The 
proof of the following proposition is left to the reader as an easy though 
slightly tedious exercise. 

Proposition 1.113 Let RI, ... , Rn be rings, and let R be the set of all 
n-tuples (a}, ... , an) such that ai E ~ for 1 ~ i =:; n with the following 
operations: 

(i) (al, ... ,an) + (bl , ... , bn) = (al + bl , ... , an + bn), and 

(ii) (al,"" an) . (b}, . .. ,bn) = (alb}, ... ,anbn). 

Then R is a ring whose zero is (0, ... ,0) and whose unity is (1, ... ,1). 0 

R as defined above is called the (finite) direct product of RI, ... , Rn 
and is denoted by n~=l~' or by RI x ... x Rn. An n-fold direct product 
n~=l R of a ring with itself is also denoted by Rn. 

Exercises 1.114 (i) What is the negative of (al, ... ,an ) in a direct 
product R = n~=l Ri of rings? When is (a}, ... , an) a unit in R? 

(ii) Show that the direct product of two integral domains is not an integral 
domain. 

Products of rings have the following universal property. 

Lemma 1.115 Let RI, ... , Rn be rings. Then the following hold: 

(i) For each 1 =:; i =:; n, the map 

7ri: RI x ... x Rn -- ~ 
(a}, ... , an) ...- ai 

is a surjective homomorphism of rings. 7ri is called the ith projection 
of the product RI x '" x Rn. 

(ii) Whenever R is a ring and 'Pi : R --~ is a homomorphism of rings 
for 1 ~ i =:; n, then the map 

'P: R -- RI X ... x Rn 
a ...- ('PI (a), ... ,'Pn(a» 
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is a homomorphism of rings that satisfies 7ri 0 cP = CPi for 1 ::; i ::; n. 
Moreover, the kernel of cP equals the intersection of the kernels of the 
homomorphisms CPi. 

Proof The proof of (i) is a straightforward verification of the homomor
phism properties. It is equally easy to see that cP of (ii) is a homomorphism 
of rings, and the equation 7ri 0 cP = CPi can be read off directly from the 
definitions. Finally, we have, for all a E R, 

aEker(cp) ~ cp(a) =(0, ... ,0) 

~ CPi(a) = ° for 1 ::; i ::; n 
~ a E ker(CPi) for 1 ::; i ::; n 

n 

~ a E n ker(CPi). 0 
i=l 

The following lemma is obtained by specializing (ii) of the above lemma 
to the case where each CPi is a canonical homomorphism from R to a residue 
class ring of R modulo a proper ideal of R. 

Lemma 1.116 Let R be a ring and It, ... , In proper ideals of R. Then 

n 

cP : R -+ II R/ Ii 
i=l 

defined by cp(a) = (a + It, ... ,a + In) is a homomorphism of rings whose 
kernel equals n~=l h 0 

Finally, we discuss the construction of quotient rings. This is easy to 
understand if one recalls the construction of the rationals from the integers, 
which can be described informally as follows. One considers pairs (s, t) of 
integers with t # 0. Two such pairs (s, t), (q, r) are then considered to be 
equal iff sr = qt. (Formally, this identification is being made by means of 
an equivalence relation, but it turns out to be more convenient for practical 
purposes to just consider such pairs as equal.) With the notation s/t for 
(s, t) one then defines 

(s/t)(q/r) = (st/qr) and (s/t) + (q/r) = (sr + tq)/tr 

and shows that these definitions are consistent with the above identifica
tion of certain pairs. Under these operations, the set of all such fractions 
becomes a field Q whose zero element is 0/1 and whose 1 is 1/1. The inverse 
of an element s/t # 0 of Q is t/s. The ring Z can be embedded into Q by 
mapping n E Z to the fraction n/l, Le., Z is a subring of Q if one writes s 
for s/l. A formal proof of these facts is tedious but straightforward. Look
ing at such a proof, the reader will find that the exact same procedure goes 
through if one starts with any integral domain R instead of Z. Moreover, 
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all arguments continue to hold if one does not consider all fractions s/t 
with t '" 0, but only those with t E M where M is a given subset of R that 
is closed under multiplication and satisfies 1 E M and 0 ¢ M. The original 
proof is then just the special case M = R \ {o}. (This is a multiplicatively 
closed set since R is an integral domain.) The only difference is that for 
general M, the result of the construction is only an integral domain and 
not necessarily a field. This will be illustrated by an example below. Other 
than that, we will forego the proof entirely because the reader may in good 
conscience rely on the intuitive understanding of rational numbers when 
working with such general rings of quotients. 

Theorem 1.117 Let R be an integml domain, M a subset of R that is 
closed under multiplication, with 1 E M and 0 ¢ M. Let RM be the set of 
all formal jmctions s/t where s E Rand t E M, with s/t, q/r considered 
equal iff sr = qt. Then the opemtions s/t·q/r = sq/tr and s/t+q/r = (sr+ 
qt)/tr are well-defined, and RM becomes an integml domain under these 
opemtions whose zero is 0/1 and whose unity is 1/1. R can be embedded 
into RM by mapping a E R to a/I, i.e., RM contains R if we write a for 
a/I. If we choose M = R \ {O}, then RM becomes a field. In this case, 
(S/t)-l = tis whenever s, t #- o. 
Definition 1.118 RM as described above is called the ring of quotients 
of R w.r.t. M. If M = R \ {O}, then RM is called the field of quotients, 
or quotient field, or field of fractions, of R and is denoted by QR. 

It is easy to see that in RM, tit = 1/1 = 1 for all t E M, and that for 
all s E Rand t E M, we have sit = 0 iff s = O. 

Examples 1.119 (i) If R = Z and M = Z \ {O}, then RM = Q, i.e., we 
have Qz = Q. 

(ii) If R = Z, p is a fixed prime number and M = {m E Zip does not 
divide m}, then RM = Zp. Here, RM is not a field since p/1 is not 
invertible. 

(iii) More generally, let R be any integral domain, I a prime ideal of 
R. Then a, b ¢ I implies ab ¢ I by primeness of I. Hence the set 
M = R \ I is multiplicatively closed. Moreover, 0 ¢ M since 0 E I, 
and 1 E M since I is proper. Hence we may form RM, which consists 
of all fractions sit with s, t E Rand t ¢ I. In this case, RM is called 
the localization of R at I. By an abuse of notation, this is sometimes 
also denoted by RJ, or even by Rp if I = (p). We see that for any 
prime number p, Zp is the localization of Z at pZ. 

Exercises 1.120 (i) Let R be a ring, M a multiplicatively closed subset 
of R with 1 E M and 0 ¢ M, and let s, t E M. Show that s/t E RM 
is a unit of RM. Give a counterexample for the converse, i.e., an 
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example where s rt. M and yet s/t is invertible in RM. (Hint: Take 
R=ZandM=Z+.) 

(ii) Let R be a ring and I a prime ideal of R. Show that the set of all 
non-units forms an ideal J of RJ, and that J is a maximal ideal which 
contains every proper ideal of RJ. 

The above exercise explains the term localization: a ring is called local 
if it has exactly one maximal ideal, and we just saw that for any ring R 
and a prime ideal I of R, RJ is a local ring. 

Rings of quotients have the following universal embedding property. 

Lemma 1.121 Let R and S be integral domains, M a multiplicatively 
closed subset of R with 1 E M and 0 rt. M. Let cp : R ----+ S be an 
embedding of rings such that every element of cp( M) is a unit of S. Then 
there exists a unique embedding ;:P : RM ----+ S with ;:p r R = cpo 

R ~ S 

RM 

In particular, every embedding of an integral domain into a field extends 
uniquely to an embedding of Q R into that field. 

Proof We define 

Vi(s/t) = cp(s)' (cp(t»)-l (s E R, t EM). 

We claim that then Vi is well defined. Indeed, let s/t = q/r in RM' Then 
sr = qt, hence cp(s) . cp(r) = cp(q) . cp(t), and so 

cp(s)' (cp(t»-l = cp(q). (cp(r»-l. 

It is now a straightforward exercise to prove that Vi is a homomorphism of 
rings. It is clear that Vi extends cp: 

;:pea) = ;:p(a/1) = cp(a) . (cp(l»-l = cp(a). 

To see that Vi is an embedding, assume that Vi{s/t) = O. Then cp{s) = 0, 
hence s = 0 since cp was an embedding, and thus s/t = O. Finally, let 
.,p : RM ----+ S be another embedding of rings with .,p r R = cpo Then we 
must have, for all t E M, 

Is = .,p{1R) = .,p{t . (l/t» = .,p{t) . .,p(l/t) = cp{t) . .,p(l/t), 

and thus .,p(l/t) = (cp(t»-l. So whenever s/t E RM. we have 

.,p(s/t) = .,p(s).,p(l/t) = cp(s)· (cp(t»-l = Vi(s/t). 0 
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For the rest of this section, let R be a ring, M a multiplicatively closed 
subset of R with 1 E M and 0 ¢ M. We want to investigate the behavior 
of ideals under the passage from R to RM and vice versa. If I is an ideal 
of R, then the extension [e of I to RM is the ideal generated by the set 
[ in the ring RM. If J is an ideal of RM, then the contraction JC of J 
to R is defined as J n R. For the rest of this section, all extensions will be 
to RM, and all contractions will be to R. The following trivial observation 
will be used repeatedly: if a E RM, then there exists 8 E M with 8a E R. 

Lemma 1.122 Let I be an ideal of R. Then the following hold: 

(i) Ie={a/slaEI,8EM}. 

(ii) [e is proper iff [ n M = 0. 

(iii) [c;;, [ee. 

(iv) If [is prime and [n M = 0, then Ie is prime and I = [ee. 

Proof (i) The inclusion ";2" is trivial. Now let b E Ie. Then there exist 
r1, ... , rn E RM and a1, ... , an E [ such that b = E7=1 riai. Let Sl, 
... , 8n E M with 8iri E R, and set 8 = 81· .... Sn. Then 

1 n 

b= - L8riai, 
s i=l 

and this is of the desired form. 
(ii) If 8 E [n M, then 1 = sis E [e and so [e = RM. Conversely, if 

[e = RM, then 1 E [e and so there exist s E M and a E I with 1 = a/so 
We see that a = s E [ n M. 

(iii) This is immediate from the definitions of extension and contraction. 
(iv) Assume that [is a prime ideal of R. We already know that I c;;, [ee. 

Now let b E lee. By (i) above, there exists s E M with sb E I. Since 8 ¢ [ 
and I is prime, we must have bEl. To show that Ie is prime, we let a, 
bERM with ab E Ie. There are r, 8 E M with ra, 8b E R and thus 

(ra)(8b) = (rs)(ab) E [ee = [. 

It follows that ra E I or 8b E I, and so a = (ra)/r E Ie or b = (sb)/s E Ie. 
o 

Lemma 1.123 Let J be an ideal of RM. Then the following hold: 

(i) JC is an ideal of R. 

(ii) If J is proper, then JC n M = 0. 

(iii) If J is prime, then so is JC. 

(iv) J = Jce. 
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Proof (i) Both J and R are closed under addition and under multiplication 
with elements of R, so the same is true for their intersection JC. Moreover, 
JC is not empty because 0 E J n R. 

(ii) If J is a proper ideal of RM, then it does not contain any units of 
RM; in particular, it does not contain any elements of M. 

(iii) Assume that J is a prime ideal of RM. Then JC is proper by (ii) 
above. To see that JC is a prime ideal of R, we let a, b E R with ab E JC. 
Since JC ~ J and J is prime, we must have a E J or b E J and hence 
a E JC or b E JC. 

(iv) Let b E J and s E M with sb E R. Then sb E J n R = JC and thus 
b = (sb)js E Jce. Conversely, let b E Jce. Then b = ajs with a E JC ~ J 
and s EM, and so 

b=ajs=(ljs)aEJ. 0 

Lemma 1.124 Denote by I(R) and I(RM) the set of all ideals of R and 
RM, respectively. Then the following hold: 

(i) The map cp : I(R) ---+ I(RM) defined by cp(I) = Ie for all I E I(R) 
is surjective. 

(ii) The map t/J : I(RM) ---+ I(R) defined by cp(J) = JC for all J E 
I(RM) is injective. 

Proof To prove (i), let J E I(RM). Then by (iv) of the previous lemma, 
J = cp(l) for I = JC. For the proof of (ii), suppose J1, h E I(RM) with 
t/J(J1) = t/J(J2). Then again by (iv) of the previous lemma, 

Jl = J[e = (t/J(J1)r = (t/J(J2)r = J~e = h. 0 

Exercise 1.125 Show that the map J 1---+ JC is a bijection between the set of 
all prime ideals of RM and the set of all those prime ideals of R that do not 
intersect M. What is the inverse of this map? 

Notes 

Well into the 19th century, the subject matter of algebra was the search 
for algorithmic solutions of algebraic equations in number systems such 
as Z, Q, JR, or C. Within a period of about 50 years around the turn of 
the 19th century, algebra gradually changed its appearance and turned 
into a theory of algebraic structures such as groups, rings, and fields. This 
transition occurred for a variety of reasons. One of them was certainly the 
elegance of this axiomatic approach, which clarified the foundations such as 
the nature of an algebraic object and distilled from the traditional proofs 
the essence of the arguments. This helped to economize algebraic research 
by avoiding repetition of similar arguments in different contexts. 
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The concept of an abstract group was developed to various degrees of 
generality in papers by Cayley, Dedekind, and Kronecker, starting around 
1850. Abstract fields first appear in the work of Dedekind and Weber who 
named them "Korper" (German for "body"), and of Kronecker who used 
the term "Rationalitatsbereich" (German for "rational domain"). A land
mark in the study of the structure of fields is Steinitz's Algebmische Theorie 
der Korper (1910). The structure of finite fields had already been investi
gated in 1830 by Evariste Galois. 

The concept of an ideal was introduced by Dedekind as a set theoretic 
version of Kummer's "ideal number," which was invented in order to cir
cumvent the failure of unique factorization in certain natural extensions 
of the domain Z (The domain D of Exercise 1.24 is a case in point.) The 
relevance of ideals in the theory of polynomial rings was highlighted by 
the Hilbert basis theorem (cf. the discussion in the Notes to Chapter 4 on 
p. 183). The systematic development of ideal theory in more general rings 
is largely due to E. Noether. In the older literature the term "module" is 
sometimes used for "ideal" (cf. Macaulay, 1916). The term "ring" seems to 
be due to D. Hilbert; Kronecker used the term "order" for ring. 
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Polynomial Rings 

In this chapter, we will define and investigate polynomials, the main object 
of study in this book. We will occasionally find it convenient to work on 
the higher level of abstraction of general ring theory, but the focus remains 
on polynomial rings. Only Sections 1 and 2 of this chapter are directly 
relevant for the theory of Grabner bases. We will also discuss a number of 
algorithms, such as greatest common divisor or factorization, which are of
ten used in connection with Grabner basis techniques. When talking about 
these algorithms, we will not attempt to give fast, up-to-date versions. We 
will be content to give a method for solving the respective problem in 
finitely many steps. The reader who has a further interest in these algo
rithms is thus provided with the theoretical background to proceed to the 
advanced literature. 

2.1 Definitions 

To arrive at a rigorous and sufficiently general definition of polynomials 
we first remind the reader of a familiar special case: polynomials in one 
variable with real coefficients. Such a polynomial is usually written in the 
form 

m 

i=O 

with ai E JR. for 0 :5 i :5 m. Clearly f is uniquely determined by the 
ai. We can thus think of f as being given by a sequence {ai hEN of real 
numbers where ai = 0 for all but finitely many i E N. But such a sequence 
is nothing but a function F : N --+ JR., with ai being the function value 
F(i). We will now generalize this in two directions. Firstly, the reals will 
be replaced by an arbitrary ring R, which does not cause any problems 
in the definition. Secondly, we wish to allow several variables, i.e., we need 
coefficients not just for powers Xi of X, but for power products of variables, 
such as Xr1 • ••• • X:;n. The function F : N --+ JR. will thus have to be 
replaced by a function Nn --+ R that assigns a coefficient in the ring R to 
each n-tuple (Vl, ... , vn ), where the latter represents in a mathematically 
sound way the power product Xr1 • ••• • X:;n. 
Exercise 2.1 Imagine the mathematical definition of polynomials in the vari
ables Xl, ... , Xn over Q as "coefficient functions" from Nn to Q has been 

61 



62 2. Polynomial Rings 

achieved. Which function do you think will correspond to the constant poly
nomial c (with cEQ), and which one to a plain variable Xi? Which one will bear 
the name of the monomial cXr1 • ••• • X:;,"? 

The structure on the set Nn that is relevant here is that of a monoid. 

Definition 2.2 A monoid is a set M together with a binary operation 
" ." and a distinguished element 1 E M such that the following hold: 

(i) "." is associative, i.e., (a· b) . c = a· (b· c) for all a, b, c E M. 

(ii) 1· a = a . 1 = a for all a E M. 

The distinguished element 1 E M is also referred to as the neutral ele
ment of M. M is called Abelian, or commutative, if in addition, "." is 
commutative, i.e., a· b = b· a for all a, b EM. We will also write ab instead 
of a· b. 

Examples 2.3 (i) Every group is a monoid, every Abelian group is an 
Abelian monoid. In particular, every ring is an Abelian monoid under 
addition. 

(ii) Every ring is an Abelian monoid under multiplication. (Recall that 
by "ring" we always mean "commutative ring with 1.") 

(iii) Let 1 ~ n E N. Then it is easy to verify that the set Nn of all n-tuples 
of natural numbers with the operation of componentwise addition, 
where 

is an Abelian monoid with neutral element (0) = (0, ... ,0). We will 
call this monoid the additive monoid Nn. 

We mention that Nn can also be turned into a monoid by taking compo
nentwise multiplication as the operation and (1, ... , 1) as the distinguished 
element, but this structure is of no relevance to us. To avoid confusion in 
this respect, we will often write (M, 1,,) for the monoid M with opera
tion "." and neutral element 1. The additive monoid Nn thus becomes 
(Nn, (0), +). 

A homomorphism from a monoid M to a monoid N is a map cp 
M ----+ N with the following two properties: 

(i) cp(a)cp(b) = cp(ab) for all a, bE M, and 

(ii) cp(lM) = IN. 
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Condition (ii) above is not redundant: the map r.p of Exercise 1.52 provides 
a counterexample when the rings involved are viewed as just multiplica
tive monoids. A homomorphism r.p of monoids is called an embedding (of 
monoids) if it is injective, an isomorphism (of monoids) if it is bijective. 
The following lemma, whose proof is straightforward from the definitions, 
provides an example that will be useful later on. 

Lemma 2.4 Let S be a ring and CI, ..• , Cn E S, where 1 :::; n E N. Then 
the map 

a: 

is a homomorphism from (Nn, (0), +) to (S, 1, .). 0 

From now on, let R be a ring and M an Abelian monoid. If f is a function 
from M to R, then the support of f is defined as 

supp(f) = {u E M I f(u) =f. O}. 

Denote by RM the set of all functions f : M -----+ R with finite support, 
i.e., f(u) =f. 0 for only finitely many u E M. Define an addition and a 
multiplication on RM by setting, for f, gEM and all u EM, 

(f + g)(u) 

(fg)(u) 

f(u) + g(u), and 

L f(v)g(w). 
v,wEM 
vw=u 

Note that there are only finitely many non-zero summands in the second 
sum since there are only finitely many v, w E M such that f(v)g(w) =f. O. 
What we really mean here is the sum over all non-zero summands; it will 
often be convenient to work with sums that may be formally infinite. Both 
f + g and fg are again in RM, i.e., take non-zero value for only finitely 
many u E M: 

supp(f + g) ~ supp(f) U supp(g), and 

supp(fg) ~ {u E M I u = vw with v E supp(f), wE supp(g)}, 

and both sets on the right-hand side are finite since f, gERM. 

Proposition 2.5 RM as defined above is a ring whose 0 is the function f 
that satisfies f(u) = 0 for all u E M, and whose 1 is the function defined 
by 

1RM(U)={1 if u=lM 
o otherwise. 
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Proof We show associativity of "+" and the distributive law and leave 
verification ofthe remaining axioms as exercises. Let I, g, h E RM. Then, 
for all u E M, 

((f + g) + h){u) (f + g)(u) + h(u) 

= (I(u) + g(u») + h(u) 

= I(u) + (g(u) + h(u)) 

I(u) + (g + h)(u) 

(I + (g + h))(u), 

and thus (f + g) + h = 1+ (g + h). Again, for all u EM, 

(I(g + h))(u) L I(v)(g + h)(w) 
vw=u 

L I(v) (g(w) + hew») 
vw=u 

L I(v)g(w) + I(v)h(w) 
VW=U 

= L I(v)g(w) + L I(v)h(w) 
vw=tt vw=u 

(fg)(u) + (fh)(u) 

(fg + Ih)(u). 0 

Exercise 2.6 Complete the proof of the above proposition. 

Definition 2.7 The ring RM defined above is called the monoid ring 
over R and M. If M is the additive monoid Nn, then it is called the poly
nomial ring in n variables over R. The elements of the polynomial ring 
are called polynomials. The polynomial ring and its elements are called 
univariate if n = 1, multivariate otherwise. 

A function I E RM is called a monomial if it has only one non-zero 
value, i.e., supp(f) is a singleton {u} with u E M. 

Lemma 2.8 Let I E RM. Then I has a unique representation as a sum 
of monomials with pairwise different support which is given by 

1= L lu, 
uEsupp(f) 

where lu(v) = {/(u) if v ~ u 
o otherwise, 

with the understanding that the empty sum is the zero element of RM. 

Proof We proceed by induction on the number k = Isupp(f)I of elements 
of supp(f). If k = 0, then 1=0 and the indicated sum is empty. If 0 < k, 
then we may choose v E supp(f) and consider 9 = I - Iv. It is easy to 
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see from the definition of addition in RM that supp(g) = supp(J) \ {v} 
and I(u) = g(u) for all u E supp(g). We may thus apply the induction 
hypothesis to 9 to obtain 

I = Iv + 9 = Iv + L gu = L lu. 
uEsupp(g) uEsupp{f) 

To prove uniqueness, let N be a finite subset of M and gu E RM monomials, 
one for each u EN, such that 

1= L guo 
uEN 

It is now an immediate consequence of the definition of addition in RM 
that N = supp(J), and gu = lu for all u E N. 0 

If one insists that a summation symbol always implies a certain ordering 
of the summands, then the representation of the lemma above is unique 
only up to the order of the summands. In the presence of commutativity, 
however, there is no harm in allowing the "unordered sum" of a finite set 
of ring elements. As an unordered sum, the representation of the lemma is 
uniquely determined by I. 

Next, we show that both R and M can be embedded into RM in a natural 
way. A ring element a will be sent to the function that says a at 1 M and 
o otherwise, while an element u of M will be sent to the "characterisic 
function of {u}," which says 1R at u and zero otherwise. 

Lemma 2.9 Define a map L : R --+ RM by setting, for all a E R and 
uEM, 

{ a if u = 1M 
L(a)(u) = 0 otherwise. 

Then L is an embedding of rings. 

Proof Let a, b E R. Then we have, for all u E M 

and 

(L(a) + L(b»)(u) = L(a)(u) + L(b)(u) 

(L(a). £(b»)(u) 

{ a + b if u = 1M 
o otherwise 

= L(a+b)(u), 

L £(a)(v)· £(b)(w) 
v,wEM 
vw=u 

= {ab if u = 1M 
o otherwise 

£(ab)(u) , 
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the second equality being true because the only way to obtain a non-trivial 
summand is to have U = v = W = 1M. Finally, it is obvious that t(lR) = 
1RM, and that t is injective. 0 

Lemma 2.10 Define a map "I: M --+ RM by setting, for all U,W E M, 

( )() { 1R if W = U 
"I U W = 0 otherwise. 

Then "I is an embedding of (M, 1M,') into (RM, 1RM, .). 

Proof Let u, v EM. Then we have 

(rJ(U)' rJ(v»)(w) = L rJ(u)(wd . rJ(V)(W2) 
Wl,W2EM 
WIW2=W 

= {lR if W = uv 
o otherwise 

= rJ(uv)(w), 

the second equality being true because the only way to get a non-trivial 
summand is to have Wl = U and W2 = V. It is obvious that rJ(lM) = 
1RM. The map "I is injective because supp(rJ(u» = {u} and functions with 
different support are clearly different. 0 

The images in RM of elements of M under "I and of ring elements under 
t are obviously monomials. We will now show that every monomial in RM 
is of the form tea) . rJ(u). 

Lemma 2.11 Let f E RM be a monomial. Then there exists a E R and 
U E M with f = t(a)· rJ(u). Moreover, a and U are uniquely determined by 
f: U is the element of supp(J) and a = feu). 

Proof Let U be the element of supp(J) and a = feu). Then we have, for 
all W E M, 

(t(a). rJ(u»(w) = L t(a)(wt} . rJ(U)(W2) 
Wl,W2EM 
WIW2=W 

= {a if W=U 

o otherwise 
= few), 

the second equality being true because the only way to see a non-trivial 
summand is to take Wl = 1M and W2 = u. The equality of the first and 
third expressions above also shows that a and U are uniquely determined 
by f: taking different a or U will result in a different value or support and 
thus in a different function. 0 

The following proposition is a simple combination of Lemma 2.8 with the 
one above. It explains the notation RM for the monoid ring: if we identify 
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R and M with their respective images under the natural embeddings in 
RM, then RM consists of all sums of products of the form ru with r E R 
and u E M. 

Proposition 2.12 Every f E RM has a unique representation as a sum 
0/ monomials with pairwise different support which is given by 

/ = L t(f(u» . .,,(u). 0 
uEsupp(f) 

The remarks concerning uniqueness that were made following Lemma 2.8 
apply verbatim to the uniqueness of the representation of the proposition 
above. 

As happens so often when a new algebraic structure is constructed from 
one or several given ones, the monoid ring has a certain universal property. 
If S is a ring, then by the multiplicative monoid 0/ S we understand the 
monoid which is obtained from S by disregarding addition. 

Proposition 2.13 (UNIVERSAL PROPERTY OF MONOID RINGS) Let R 
and S be rings, M an Abelian monoid. Suppose cp : R -- S is a ring 
homomorphism and u : M -- S is a homomorphism from M to the 
multiplicative monoid 0/ S. Then there exists a unique homomorphism cp : 
RM -- S with cp 0 t = cp and cp 0 ." = u. 

R~RM:LM 

Proof Uniqueness: By Proposition 2.12, every element of RM is a sum of 
products of elements of the form t( a) and .,,( u) with a E R and u EM. A 
homomorphism from RM to any ring S is therefore uniquely determined 
by its values on elements of this form. For cp, these values are prescibed to 
be cp(a) and u(u). 

Existence: We define cp by setting, for / E RM, 

cpU) = L cp(J(u»· u(u) = L cp(J(u)) . u(u). 
uEsupp(f) uEM 

(Note that we are once again working with a formally infinite sum here.) 
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We have, for all I, gERM, 

cp(f) + cp(g) = L cp(J(u») . u(u) + L cp(g(u») . u(u) (De£. ~) 
uEM uEM 

= L (cp(J(u») + cp(g(u»)) . u(u) (Distrib. in S) 
uEM 

= L cp(g(u) + I(u») . u(u) (r,o hom.) 
uEM 

= L cp((f + g)(u») . u(u) (De£. + in RM) 
uEM 

= cp(f + g), (DeC. ~) 

and 

cp(f) . cp(g) ( L cp(J(v») . u(v») . ( L cp(g(w)) . u(w») (DeC.~) 
vEM wEM 

= L cp(J(v»)· cp(g(w)) . u(v)· u(w) 
v,wEM 

= L cp(J(v). g(w») . u(vw) 
V,wEM 

= L L cp(J(v). g(w») . u(u) 
uEM v,wEM 

vw=u 

= L cp( L I(v)· g(W») . u(u) 
uEM v,wEM 

vw=u 

= L cp(Jg(u») . u(u) 
uEM 

= cp(fg). 

Moreover, we have 

uEsupp(lRM) 

= cp(lRM(lM»)· u(lM) 

(Distrib. and 
comm. in RM) 

(r,o and u hom.) 

(Grouping sum
mands by vw) 

(r,o hom.) 

(DeC . . in RM) 

(DeC. ~) 

= cp(lR)· U(lM) = Is· Is = Is· 

To show that cp 0 L = cp, let a E R. Then 

cp(L(a)) = L cp(L(a)(u») . u(u) 
UE8upp(~(a» 

cp(t(a)(lM)) . U(lM) 
cp(a) . Is = cp(a). 
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To see that 7p 0 "I = u, let W E M. Then 

<p(T/(W)(U)) . u(u) 
uESUpp( '1( w» 

= <p(T/(w)(w))· u(w) = <p(IR)· u(w) 
Is· u(w) = u(w). 0 

We will now introduce the notation and terminology that will make poly
nomials look and behave as we know them from elementary algebra. (Cf. 
the remarks at the beginning of this section, where we explained how to 
get to the abstract point of view from the elementary one.) Let 1 :s: n E N 
and M = Nn, so that RM becomes the polynomial ring in n variables over 
R. We will use the notation (v) = (VI, .•. , vn ) for elements of M = Nn, 
and (0) for its neutral element (0, ... ,0) Note that the monoid operation 
on M is now denoted by +. 

First of all, we will identify each a E R with its image tea) in RM, so 
that a now stands for both the ring element a and the function that says 
a at (0) and 0 otherwise. This does not cause any trouble because £ is an 
embedding of rings and thus R is isomorphic to £(R). Under this point 
of view, we may treat R as a subring of RM. In particular, we now have 
lR = lRM. A polynomial of the form a with a E R (it is in fact a monomia~ 
is called a constant, or a constant polynomial. 

It would be entirely possible to do the same thing about "I, i.e., to identify 
T/((v)) with (v) for all (v) EM = Nn, but we can do better than that. For 
1 :s: i :s: n, we set 

(Ci) = (0, ... ,0,1,0, ... ,0) E M, 
1 

ith place 

and we let Xi E RM be the monomial T/((ci)), i.e., 

Xi((V)) = {I if (v).= (cd 
o otherwIse. 

Xi is called the ith variable, or indeterminate. (It is clear that any other 
letter is as good as X to denote variables, and this is frequently done.) It 
is quite obvious that each (v) E M has a unique representation of the form 

1/1 summands lin summa.nds 

(A rigorous proof is by induction on VI + ... + vn .) Applying "I to the 
equation, we see that every monomial in RM of the form T/((v)) with (v) E 
M can be written as 

II Xl· ... II Xn 
1/1 factors I/n factors 

= Xr l ••••• X;:", 
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and different exponent tuples give rise to different monomials because TJ is 
an embedding. A monomial of the form TJ((v)) = Xr1 •••• ·X~n with (v) E 

M is called a term, and the set of all terms is denoted by T(Xl"'" Xn), or 
simply by T when it is clear from the context what the number of variables 
is. Being the image of M = Nn under the embedding TJ, T forms an Abelian 
monoid under multiplication in the ring RM, and the exponent map 

Tf: (Nn,(o),+) ~ (T,lR,') 
(VI"'" lin) f---t Xr1 ••••• X~n 

is an isomorphism of monoids. We see that the structure of (T, 1, .) is 
independent of the ring R, and we may thus talk about the monoid 
of terms in the variables XI, ... , Xn without specifying a ring R. If 
t = Xr1 ••••• X~n E T, then the total degree of t is defined as 

n 

deg(t) = LVi. 
i=1 

Lemma 2.11 translated into our new notation now tells us that every 
monomial m of the polynomial ring has a representation of the form 

(a E R, (v) E Nn), 

and m uniquely determines a and the exponent tuple (v). Here, a is called 
the coefficient of m, whereas Xr1 • ••• • X~n, rather obviously, is called 
its term. 

If we now apply Proposition 2.12 to the polynomial ring and translate 
its statement into our new notation, then we see that every polynomial 
f E RM has a unique representation as a sum of monomials with pairwise 
different terms which is given by 

f= 
(v)Esupp(f) 

In other words, for each f E RM, there exists a unique finite subset N of 
M = Nn and a unique set {a(v) I (v) EN} of non-zero elements of R such 
that 

f = L a(v)Xrl ..... X~n. 
(v)EN 

Note that this representation of f really displays f as a function Nn ~ R: 
the set N of exponent tuples is the support of f, and a(v) is the value of fat 
(v). It is now easy to see from the definition of addition and multiplication 
in the monoid ring that if we represent polynomials in this way, then they 
behave the way they do in elementary algebra: we add them by combining 
like terms, and we multiply them by first multiplying out and then com
bining like terms. It is now even more obvious than before that the product 
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of two monomials is again a monomial, and thus the set of monomials, like 
the set of terms, forms an Abelian monoid under ring multiplication. This 
monoid, however, will be of much less interest to us than the monoid of 
terms. 

In the univariate case n = 1, it is customary to write X instead of Xl, 
and to add zero summands to the representation (*) to obtain 

m 

(m E N, ai E R). 

This is then a representation that is unique up to zero summands at the 
top. It becomes unique if one requires that in addition, am is not zero 
whenever 1 f= O. In that case, am is called the head coefficient of I, 
and m is the degree of I. Here, 1 is called monic if 1 f= 0 and its head 
coefficient equals 1. 

Now consider the ring R[XI' ... ' Xn] obtained by adjoining the variables 
XI, ... , Xn to R within RM in the sense of Definition 1.109. By Lemma 
1.110, the result is all of RM. It is customary to use this alternate notation: 
whenever R is a ring and M = Nn with 1 ::; n E N, then then RM is denoted 
by 

R[XI, ... ,Xn], 

or R[ X] for short. Now let 1 E R[ X]. Then we define the set M (f) of 
monomials of 1 as the set of summands occuring in the unique represen
tation (*) above, i.e., 

M(f) = {/(v») . Xr1 ••••• X~n I (v) E supp(f) }. 

The set T(f) of terms of 1 is defined as the set of terms of elements of 
M(f), i.e., 

T(f) = {Xrl ..... X~n I (v) E supp(f)}. 

The total degree of a non-zero polynomial 1 is defined as 

deg(f) = max{ deg(t) I t E T(f) }. 

For a univariate polynomial, the total degree thus coincides with the de
gree. Finally, we define the set C(f) of coefficients of 1 as the set of all 
coefficients of elements of M (f), i.e., 

C(f) = {/(v») I (v) E supp(f) }. 

If at E M(f), then the coefficient a of this monomial is, rather obviously, 
also referred to as the coefficient 01 t in I. With this notation, the unique 
representation (*) of 1 E R[ X] may be rewritten in two possible ways: 

1= L att = L m. 
tET(f) mEM(f) 

The following lemma states one of the most frequently used properties 
of polynomials. 
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Lemma 2.14 Let all"" am E R, and suppose h, ... tm E T are pairwise 
different. Then, in R[ Xl, 

m 

L ajtj = 0 iff al = ... = am = O. 
j=1 

Proof The direction "{:=" is trivial since R[ X 1 is a ring. For "==}," 
assume for a contradiction that not all aj equal zero. Dropping those aj that 
are zero and renumbering, we may assume that aj =f 0 for 1 ~ j ~ m. Now 
the sum on the left-hand side is the unique representation of a polynomial 
with support {h, ... , t m }, while the support of 0 in R[Xl is the empty set, 
a contradiction. D 

Lemma 2.15 (UNIVERSAL PROPERTY OF POLYNOMIAL RINGS) Let R 
and S be rings, ip : R ---t S a homomorphism of rings, Cl, •.. , en E S. 
Then there is a unique homomorphism Ij5 : R[Xll ... , Xnl ---t S of rings 
which extends ip, i.e., Ij5 r R = ip, and satisfies Ij5(Xd = Ci for 1 ~ i ~ n. 
Here, 

Proof Let 
U: 

be the homomorphism of Lemma 2.4. Then Proposition 2.13 provides a 
unique homomorphism Ij5 : R[ X 1 ---t S with the properties Ij5 0 t = ip and 
Ij5 071 = u. Now our notation is such that t is the identity map on R, so the 
first property becomes Ij5 r R = ip. The second property states that for all 
(II) E Nn, 

1j5( 71((11))) = U((II)). 

With our notation for the term 71((11)) and by our choice of u, this turns 
into 

- (XV1 XVn) V1 Vn ip 1" ... n = C1 • ••• • Cn . 

In particular, we have Ij5(Xi ) = Ci for all 1 ~ i ~ n. Moreover, every 
homomorphism that satisfies this latter condition must also satisfy (**), 
and thus Ij5 must be the unique homomorphism provided by Proposition 
2.13. The last statement of the proposition can now easily be verified by 
looking up the definition of Ij5 in the proof of Proposition 2.13. D 

From the equation (*) in the proposition above, we can easily determine 
under what condition the homomorphism Ij5 will be an embedding: Ij5 will 
be injective iff ip and Cl, ••• , en E S satisfy the following conditions: 

(i) ip is injective, and 
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(ii) whenever bl , ... , bm E cp(R) and (Vjl' ... , Vjn) E Nn are pairwise 
distinct for 1 ~ j ~ m, then 

implies bl = ... = bm = O. 

Intuitively speaking, (ii) means that the c; "behave like indeterminates over 
cp(R)." Again from the equation (*) of the last proposition, together with 
Lemma 1.110, we see that ~ will be surjective iff S = CP(R)[CI, ... , en]. We 
can thus formulate the following lemma. 

Lemma 2.16 Let R and S be rings, cp : R --+ S an embedding, and 
suppose Cl! ... , Cn E S are such that S = cp(R) [Cl' ... , en] and condition 
(ii) above is satisfied. Then S ~ R[X], and an isomorphism from R[X] to 
S is given by ~ as described in (*) of the last proposition. 0 

Now let 2 ~ n and 1 ~ i ~ n. We may then form the monoid ring RM 
with M = Nn. We know that it equals the result of adjoining to R the 
variables Xl! ... Xm which fact is expressed in our notation R[X1, ... , Xn] 
for RM. We may also adjoin Xl! ... , Xi to R in RM, and Lemma 1.112 
(ii) tells us that 

R[XI! . .. , Xi] ~ R[X1, . .. ,Xn]. 

Note that in a strict formal sense, the ring on the left is different from 
R[XI' ... ,Xi] when formed as the monoid ring RM with M = Ni : in the 
latter ring, Xl is a function from Ni to R, whereas in the former, it is a 
function from Nn to R. Our notational convention is such that it covers 
this distinction up, and this is in fact quite desirable: it is an easy though 
notationally tedious exercise to prove that the two rings that R[XI' ... ,Xi] 
stands for are naturally isomorphic by Lemma 2.16. A similar qualification 
applies to the following equation which is immediate from Lemma 1.112 (i): 

R[X1, ... ,Xi][XHI!··· ,Xn] = R[X1, ... ,Xn]. 

Let us describe this equality a little more explicitly. An element of 

R[X1, ... ,Xi][XH1 , ... ,Xn] 

is of the form E Itt with 

It E R[XI! ... ,Xi] C R[Xl , ... ,Xn] 

and 
t E T(XHI! ... ,Xn) C R[Xl, ... ,XnJ. 

It may hence be viewed as a sum of products of elements of R[XI' ... ,Xn], 
i.e., an element of R[XI! . .. ,Xn]. Conversely, elements of R[XI' ... ,Xn] 
are of the form I = E att with 

at E R and t E T(XI! ... ,Xn). 
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Every t E T(X1, ... ,Xn) can be uniqely written in the form uv with u E 
T(X1, ... ,Xi) and v E T(Xi+1,'" ,Xn). Hence each monomial att of J can 
be viewed as a monomial (auvu)v of the ring R[X1"",Xi ][Xi+1, ... X n]. 
Then 

J = 2:(auvu)v, 

and we see that J can also be viewed as an element of 

R[X1, ... , Xi][Xi+l, . .. , Xn]. 

This identification of R[X1, ... ,Xn] and R[X1!""Xi ][Xi+l, ... ,Xn] will 
tum out to be a simple but powerful tool in the theory of polynomial rings. 
If we take, for example, 

J = X3y3 Z3 + 3X3y3 Z - X2y3 Z3 + 2XY2 Z3 - I, 

in Z[X, y, Z] then, as an element of Z[X, Y][Z], 

J = (X3y 3 - X2y3 + 2Xy2)Z3 + (3X3Y3)Z - 1, 

whereas, as an element of Z[X][Y, Z], 

J = (X3 - X2)y3 Z3 + (3X3)Y3 Z + (2X)Y2 Z3 - 1. 

Since R[Xl! ... ,Xn] is a commutative ring which is obtained from R by 
adjoining Xl! ... , X n , it is true that 

R[X1, .. "Xn] = R[X1r(l) , .. "X1r(n)] 

for every permutation 7r of the indices {I, ... , n}. If 0 i= J E R[Xl! ... , Xn] 
and 1 ~ i ~ n, then the degree of J in Xi, denoted by degx. (I), is defined 
as the degree of J when viewed as a univariate polynomial in Xi, i.e., as 
an element of 

R[X1, ... ,Xi-l,Xi+1," "Xn][Xi]' 

The next lemma lists two important special cases of Proposition 2.15. 

Lemma 2.17 (i) If R is a subring of 8 and C1, ••• , en E 8, then the 
map 

--+ 8 
m m 

~ X V3 1 XV' L..J aj 1 ••••. n3n. ~ V31 V· t--t L..J ajc1 ••••• c.,(n. 

j=l j=l 

is a homomorphism of rings which acts as the identity on R and maps 
Xi to Ci (1 ~ i ~ n). 
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(ii) If 'I/J : R -- S is a homomorphism of rings, then the map 

is a homomorphism of rings. It is an embedding (surjective, an iso
morphism) iff 'I/J is an embedding (surjective, an isomorphism). 

Proof Statement (i) is a straightforward application of Proposition 2.15 
with the inclusion of R in S taken for cpo For statement (ii), we apply Propo
sition 2.15 where cp is 'I/J followed by the inclusion of S in S[Xl"'" Xnl and 
Ci = Xi for 1 ~ i ~ n. The proof of the last statement of the lemma is 
straightforward. 0 

The homomorphism of (i) above is called the substitution homomor
phism. In this case, the image of f is usually denoted by f(Cb"" cn). We 
will also allow ourselves to write f(c), where c = (Cl, ... , en). An n-tuple 
c E sn is called a zero of f if f(c) = O. 

Next, we discuss zero divisors and units in polynomial rings. 

Lemma 2.18 Let R be a ring. Then the following hold: 

(i) R[Xl , ... , Xnl is a domain if and only if R is a domain. 

(ii) If R is a domain, then deg(fg) = deg(f) + deg(g) for all f, 9 E R[XI 
withf,g#O. 

(iii) Every unit of R is a unit in R[Xb"" X n]. If R is a domain, then 
every unit of R[Xl , ... , Xn] is a constant and a unit in R. 

Proof "===}" of (i) follows immediately from R C R[Xl"'" Xn]. For 
"{::=," let R be a domain. We proceed by induction on the number n 
of variables. Let n = 1, 

ml m2 

f = LaiXi and 9 = LbiX i 

i=O i=O 

ml+m2-l 

fg = amlbm2Xml+m2 + L Ci Xi # 0 
i=O 

since am1 bm2 # O. If n > 1, then R[Xl"'" X n- l ] is a domain by induction 
hypothesis, and by the argument for n = 1, so is R[Xb ... , Xn-l][Xn] = 

R[Xb""Xn]' 
Statement (ii) has already been demonstrated in the proof of (i) above. 

The first statement of (iii) again follows from R C R[X l, ... , Xnl. Now let 
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R be a domain. We use induction on n. Let n = 1, and suppose 1 is a unit 
of R[X]. Then there exists 9 E R[X] with Ig = 1. Since I, 9 i:- 0, we may 
apply (ii) above to conclude that 

deg(f) + deg(g) = deg(1) = 0, 

and so both 1 and 9 must be constant. This shows that 1 E R and that 1 is a 
unit of R. Now let n > 1, 1 a unit of R[XI' ... ,Xn] = R[XI' ... ,Xn-I][Xn]. 
Since R[XI, ... ,Xn- l ] is a domain by (i), 1 is a unit of R[XI, .. . ,Xn-d 
by the argument for n = 1 above and hence of R by induction hypothesis. 
o 

The condition that R be a domain cannot be dropped in the second 
part of (iii) above: if R = Z/8Z, then 1 = 1 + 4X is a unit of R[X] since 
p = 1 + 8X + 16X2 = 1. If K is a field, then by (iii) above, the units 
of K[XI , ... ,Xn ] are precisely the non-zero constant polynomials. We also 
note that for any ring Rand I, 9 E R[X] , deg(f +g) ::; max( deg(f) , deg(g)). 

Exercise 2.19 Show that for any ring R, a constant polynomial which is a unit 
in R[Xl' ... ,XnJ is a unit in R. 

Exercise 2.20 Show that for any ring R, char(R) = char(R[XI' ... ,Xnj). 

We are now in a position to give the long overdue example of a prime 
ideal that is not maximal. 

Lemma 2.21 Let R be a domain, n ~ 2. Then the ideal Id(Xd generated 
by Xl in R[XI, ... , Xn] is prime but not maximal. 

Proof Id(XI) consists of all polynomials that are multiples of Xl, i.e., all 
polynomials 1 E R[XI' ... ,Xn] such that degx1 (t) ~ 1 for all t E T(f). We 
can write an arbitrary 1 E R[XI , ... , Xn] in the form 1 = iI + 12, where 
we have grouped all t E T(f) with degx1 (t) ~ 1 into iI, and we see that 
1 E Id(Xd iff 12 = O. Now if 1 is a product of two polynomials 9 and h, 
then 

1 = gh = glhl + glh2 + g2hl + g2h2, 

and it is easy to see that iI is the sum of the first three summands, while 
12 = g2h2· So, in this case, 12 = 0 implies that g2 = 0 or h2 = 0, i.e., 
1 E Id(Xd implies 9 E Id(Xd or h E Id(Xd We have proved that Id(XI) 
is prime. To see that it is not maximal, we first note that Id(Xd is properly 
contained in Id(Xl' X2) since Xl E Id(XI ,X2) but X 2 tt Id(XI ). It remains 
to show that Id(XI' X2) is proper. Id(XI, X 2) consists of all sums of mul
tiples of Xl and X2, and such a sum can clearly not contain a non-zero 
constant monomial. In particular, 1 tt Id(Xl. X 2 ). 0 

One reason why we have defined polynomial rings as a special case of 
the more general concept of monoid rings is the fact that in Section 7.2 we 
will need "polynomial rings in infinitely many variables," a concept that we 
will now make precise. The proof of the following lemma is straightforward 
from the definitions. 
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Lemma 2.22 Let I be a (possibly infinite) set. Then the set N1 of all 
functions from I to N is an Abelian monoid under pointwise addition of 
functions whose neutral element is the zero function. The same holds true 
for the set 

M = {K, E N1 I K,(i) =F 0 for only finitely many i E I}. 0 

Let now R be a ring, I a set, and M the additive monoid as defined 
in the lemma above. Then we may form the monoid ring RM according 
to Definition 2.7. (In order to visualize the construction, it is suggested to 
think of the elements of M as "infinitely long tuples of natural numbers 
with only finitely many non-zero entries.") For each i E I, we define a 
canonical element Ci E M by setting 

Ci( .) = {IN iff j ~ i 
J 0 otherwIse, 

and a canonical monomial Xi E RM by setting 

Xi(V) = {IR iff v ~ Ci 
o otherwIse. 

In analogy to the discussion following the proof of Proposition 2.13, we 
may now argue that every monomial in RM is of the form 

for some a E R and some kEN, and that every element of RM is a sum 
of such monomials. We see that each element of RM looks like an element 
of a polynomial ring over R in certain variables, and tracing the definitions 
of the operations in RM, it is not hard to see that these operations are 
performed in the same way as in the polynomial ring over R in the finitely 
many variables that are involved in each instance of the respective opera
tion. This phenomenon can actually be given a more precise formulation. 
Whenever kEN and i}, ... , ik E I, then, according to Proposition 2.15 
with r.p of that proposition taken as the natural embedding of R in RM, 
the map 

Cj5: 
m L ajX~;l ..... X;;k 

j=1 

--+ RM 

is a homomorphism, and in view of the discussion following the proof of 
Proposition 2.15, it is not hard to see that Cj5 is actually an embedding. 
All this shows that RM behaves like a multivariate polynomial ring over 
R, except that there is an unlimited supply of variables in case I is an 
infinite set. The ring RM is therefore called the polynomial ring in the 
variables {Xi liE I} over R. 
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We close this section with a few remarks on the possibility of effective 
computations with polynomials. It is rather obvious that polynomials of 
R[Xb ... ,XnJ can be represented on a computer and their addition, sub
traction, and multiplication can be effectively performed if and only if the 
same is true for the elements of R. In the latter case, we will call the ring R 
computable. A field K is called a computable field if it is a computable 
ring and the inverse of every non-zero element can be effectively computed. 
The notion of computability will be discussed more rigorously in Section 
4.6. For the time being, let us note that Z is a computable ring since ex
act integer arithmetic can be implemented on a computer. Q is easily seen 
to be a computable field, because exact integer arithmetic together with 
the possibility of reducing to lowest terms by means of integer gcd's (the 
next section has a rigorous discussion) allows us to compute with rational 
numbers. ZjmZ is a computable ring for m E Z because the arithmetic in 
ZjmZ is defined in terms of the arithmetic in Z, and each element k + mZ 
of ZjmZ has a unique representation as r + mZ where r is the remainder 
of k upon division by m. If p is a prime number, then ZjpZ is a field (see 
Proposition 1.98). Since it is also finite, inverses can in principle be found 
by trial and error, and we see that ZjpZ is a computable field. One ofthe 
results of the next section is a better way of finding inverses in ZjpZ. 

2.2 Euclidean Domains 

Univariate polynomial rings over a field stand out in the class of all poly
nomials rings as having particularly nice ring theoretic properties. This is 
due to the fact that they allow long division of polynomials. Euclidean do
mains are classically defined as domains with a property that is modeled 
after division with remainder of integers and long division of polynomials. 
Here, we use a seemingly weaker property which imitates a single step in 
the division process. We then prove that this is equivalent to the classical 
definition. 

Definition 2.23 A ring R is called a Euclidean domain if it is a domain 
and there exists a map <p : R \ {O} --+ N with the following properties. 

(i) <p(ab) ~ <pea) for all a, bE R with a, b =I- O. 

(ii) For all a, bE R with a, b =I- 0 and <pea) ~ <pCb), there exist s, t E R 
such that a - sb = t, and <pet) < <pea) or t = O. 

If, in addition, R is a computable ring and s and t as above can be computed 
effectively from a and b, then R is called a computable Euclidean domain. 

We will refer to the function cp as the abstract degree function of R, 
a terminology explained by the next proposition. 
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Proposition 2.24 Let K be a field. If we take for cp : K[X] --+ N the 
degree junction, then K[X] is a Euclidean domain. If, in addition, K is 
computable, then K[X] is even a computable Euclidean domain. 

Proof Condition (i) of the definition above is immediate from Lemma 2.18. 
Now let 0 '" f, 9 E K[X] with deg(f) ~ deg(g), say 

m n 

f = LaiXi and 9 = LbiXi 
i=O i=O 

with am, bn '" 0 and m ~ n. Then we can satisfy condition (ii) by writing 

f - am . X m - n . 9 = t 
bn 
~ 

s 

because the monomial amxm cancels out and hence t either equals zero 
or has a degree less than m. This can clearly be done effectively if we can 
compute with elements of K. 0 

Proposition 2.25 Z becomes a computable Euclidean domain if we take 
for cp : Z --+ N the absolute value junction. 

Proof Condition (i) of the definition is an elementary property of the 
absolute value function. Now let 0 '" m, n E Z with Iml ~ Inl. If m and 
n both have the same sign, then we may take s = 1 and t = m - n: then 
m - sn = t, and it is easy to see that 1m - nl < Iml. If m and n have 
opposite signs, then it is equally easy to see that s = -1 and t = m + n 
have the required properties. 0 

Next, we prove that our definition of Euclidean domains is equivalent 
to the classical one. The ring elements q and r of condition (ii) below are 
called, respectively, the quotient and remainder of a upon division by b. 

Proposition 2.26 Let R be a domain, and suppose there exists a map 
cp : R \ {OJ --+ N such that cp(ab) ~ cp(a) for all 0 '" a, b E R. Then the 
following are equivalent: 

(i) R is a Euclidean domain with abstmct degree junction cpo 

(ii) For all a, bE R with b '" 0, there exist q, r E R such that a = qb+r, 
and cp(r) < cp(b) or r = O. 

Moreover, if R is a computable Euclidean domain, then q and r as described 
in (ii) can be computed effectively from a and b. 

Proof (ii)==>(i) is trivial: we may simply take, for s and t, the elements 
q and r whose existence is guaranteed by (ii). For the proof of (i)==>(ii) 
and the additional statement concerning computability, we give an algo
rithm DIV (Table 2.1) that computes q and r from a and b. For a general 



80 2. Polynomial Rings 

TABLE 2.1. Algorithm DIV 

Specification: (q, r) +- DIV(a, b) 
Computation of quotient and remainder in a 
Euclidean domain 

Given: a, b E R with b =I- 0 
Find: q, r E R with a = qb + r, and cp(r) < cp(b) or r = 0 
begin 
REM +- aj QUOT +- 0 
while REM =I- 0 and cp(REM) ~ cp(b) do 

end 

- choose s, t E R with REM - sb = t and cp(t) < cp(REM) or t = 0 
REM +- t 
QUOT +- QUOT + s 

return((QUOT, REM)) 
end DIV 

Euclidean domain R we may interpret the assignments of the algorithm 
as mathematical constructions and thus read the algorithm together with 
the proof of its correctness and termination as an existence proof. The 
algorithm terminates since after each execution of the while-loop, either 
REM = 0 or the abstract degree of REM is less than before the loop was 
entered. The equation a = QUOT . b + REM is a loop invariant: it is triv
ially true after initalization, and during each execution of the while-loop, 
a certain ring element s is added to QUOT, while sb is subtracted from 
REM. Hence the equation holds for the output values of QUOT and REM. 
It follows immediately from the while-clause that QUOT and REM have 
the required properties upon termination. 0 

If we apply the proposition above to the integers, then we see that we 
could also have quoted Proposition 0.6 to show that Z is a Euclidean do
main: the quotient and remainder of Proposition 0.6 clearly satisfy (ii) 
above. Note that their uniqueness is not guaranteed by that condition, be
cause it is only required that the remainder r of m upon division by n sat
isfies -Inl < r < Inl. The algorithm DIV provides a (rather crude) method 
of dividing with remainder under the assumption that integer arithmetic 
is available. 

If we take R = K[X] with computable field K, then it is clear that DIV 
becomes long division of polynomials. In order to do the outstanding im
portance of this algorithm justice we have formulated it explicitly in Table 
2.2. The algorithm DIVPOL cannot in general be applied to polynomials 
over an arbitrary ring because it involves division of coefficients. We will 
later see that, indeed, R[X] is not a Euclidean domain unless R is a field. 
However, inspection of DIVPOL shows that all divisions occurring are by 
the head coefficient bm of the divisor g. So if 9 is monic, i.e., bm = 1, then 
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TABLE 2.2. Algorithm DIVPOL 

Specification: (q,r) - DIVPOL(j,g) 
Divide I by 9 with remainder 

Given: I, 9 E K[X] with 9 'I- 0 
Find: q, r E K[X] with 1= qg + r, deg(r) < deg(g) or r = 0 
begin 
R-/j G-gj Q-O 
while R 'I- 0 and deg(R) ~ deg(G) do 

R - R - (an/bm)xn-mG, 
where R = E~=o aiXi and G = E~o biXi with an, bm 'I- 0 
Q _ Q + (an/bm)xn-m 

end 
return«Q, R» 
end DIVPOL 

no division at all is required. We have proved the following lemma. 

Le~ma 2.27 Let R be a ring and I, 9 E R with 9 'I- 0 and 9 monic. Then 
there exist q, r E R[X] with I = qg + r, and deg(r) < deg(g) or r = o. 
Moreover, if R is a computable ring, then q and r can be computed from 
I and 9 by means of the algorithm DIVPOL. 0 

In contrast to the situation in Z, quotient and remainder of polynomials 
are automatically unique. 

Proposition 2.28 Let K be a field and I, 9 E K[X] with 9 'I- o. Then 
quotient and remainder of I upon division by 9 are uniquely determined by 
I and g. 

Proof Let q, r, q', r' E K[X] such that q, r and q', r' satisfy (ii) of 
Proposition 2.26. Then we have 

(q' - q)g = r - r'. 

Since 9 'I- 0 and K[X] is a domain, we conclude that q' - q 'I- 0 iff r - r' 'I- O. 
Assume for a contradiction that they were both different from o. Then 

a contradiction. 0 

deg( r - r') < deg(g), and 

deg(r - r') = deg(q' - q) + deg(g) 

~ deg(g), 

The next lemma shows that, in a manner of speaking, a remainder zero 
is always unique. 
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Lemma 2.29 Let R be a Euclidean domain with abstract degree function 
<p, and let a, b E R with b i= O. Then the following are equivalent: 

(i) a lies in the ideal generated by b. 

(ii) Zero is a remainder of a upon division by b. 

(iii) Every possible remainder of a upon division by b equals zero. 

Proof The implications (i)~(ii) and (iii)~(i) are trivial. For the proof 
of (ii)~(iii), suppose a = qlb with ql E R, and assume for a contradiction 
that there exist q2, r E R with r i= 0 and <per) < <pCb) such that a = q2b+r. 
Then (ql - q2)b = r, and so 

a contradiction. 0 

Euclidean domains have practically all the pleasant properties that a ring 
can have. 

Proposition 2.30 Every Euclidean domain is a PID. 

Proof Let R be a Euclidean domain with abstract degree function <p, I an 
ideal of R. If I = 0, then I = 0 . R is principal. Otherwise, the set 

{ <per) I 0 i= rEI} ~ N 

is not empty and thus has a least element, say m. Let a E I with <pea) = m. 
We claim that I = aR. The inclusion aR ~ I follows from a E I. Now let 
bEl. Then there exist q, r E R such that b = qa+r, and <per) < <pea) = m 
or r = O. Since r = b - aq E I, we must have r = 0 by the minimality of 
m. We see that bEaR. 0 

The proof of the proposition actually shows a little more: if I is a non
trivial ideal of a Euclidean domain, then every element of I of minimal 
degree generates I. But it was one of the more elementary results of Section 
1.7 that any two generators of a principal ideal are associated, i.e., differ 
by a unit factor. In the case of a univariate polynomial ring over a field, 
the units are precisely the constants, and we have proved the following 
corollary. 

Corollary 2.31 Let K be a field, I a non-trivial ideal of K[X]. Then I 
contains a unique monic polynomial f of minimal degree, and I = Id(J). 
o 

From Propositions 1.74 and 2.30 we conclude that any two elements a 
and b of a Euclidean domain R have a gcd d in R, and there exist s, t E R 
with d = sa + tb. The eminent importance of Euclidean domains stems 
from the fact that in the computable case, we can compute d, s, and t from 
a and b. For a computable Euclidean domain R, we will denote by DIV an 
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algorithm that returns, after input of any pair a, bE R with b f. 0, a pair 
consisting of quotient and remainder of a upon division by b. Note that by 
Exercise 1.68 (v), the computation of gcd(a, b) requires no effort if one of 
a and b equals zero. 

Theorem 2.32 Let R be a computable Euclidean domain with abstract 
degree function <p. Then the algorithm EXTEUC oj Table 2.3 computes, 
Jor given a, b E R with a, b f. 0, a gcd d oj a and b, and s, t E R with 
d = sa + tb. 

TABLE 2.3. Algorithm EXTEUC 

Specification: (d, s, t) ~ EXTEUC(a, b) 
Extended Euclidean Algorithm 

Given: 0 f. a,b E R 
Find: a gcd d of a and b in R, and s, t E R with d = sa + tb 
begin 
A-aj B~b 
8~1j T~O 

U~Oj V~1 

while B f. 0 do 
(QUOT, REM) ~ DIV(A, B) 
A~Bj B~REM 

81 ~8j T1~T 
8~Uj T~V 

U ~ 81 - QUOT . Uj V ~ T1 - QUOT . V 
end 
return(A,8,T) 
end EXTEUC 

Proof Termination: During one execution of the while-loop, the value of 
B is replaced by the remainder of A upon division by B. This means that 
either the abtract degree of the value of B decreases, or B is set to O. It is 
now immediate from Corollary 0.4 that the while-condition B = 0 must 
be reached eventually. 

C01T"ectness: Let the value of any of the variables after n executions of the 
loop be denoted by that variable with a subscript n, and assume that there 
are N executions altogether. We claim that the ideal In = An· R + Bn· R 
is a loop invariant. Indeed, the equations 

(n ~ 1) 

show that An, Bn E In-I and thus In ~ In-I. If we rewrite the second 
equation as 
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then we see that An- i , Bn- i E In, and so In- i ~ In. We have 10 = aR+bR 
and IN = AN . R, and we get 

AN . R = aR + bR. 

Lemma 1.70 now tells us that AN is indeed a gcd of a and b. It remains 
to show that SN and TN have the desired property. We claim that the two 
equations 

A = S . a + T . b and B = U . a + V . b 

are invariants of the while-loop. They are trivially true after initialization. 
Let 1 :::; n :::; N. Assuming that the stated equations are true after n - 1 
executions of the loop, we see that they remain true after the next one: 

and 

An Bn- i 

Un-i' a + Vn- i . b 

Sn ·a+Tn ·b, 

Bn An- i - QUOTn • Bn- i 

= Sn-i' a + Tn-i' b - QUOTn . (Un-i' a + Vn- i . b) 

= Un· a + Vn . b. 

In particular, we have AN = SN . a + TN' b. 0 
The algorithm of Theorem 2.32 is called the extended Euclidean al

gorithm. If one computes just d but not s and t, it is called the Euclidean 
algorithm. 

Exercise 2.33 (i) Compute the gcd of 124 and 56 in Z, and integers S and t 
with gcd(124, 56) = 124s + 56t. 

(ii) Compute the ged of I = X4 + X2 + 1 and 9 = 2X3 + X2 + 2X + 1 in 
Z/3Z[X], and p, q E Z/3Z[X] with gcd(f, g) = pi + qg. 

Exercise 2.34 Let R be a computable Euclidean domain, 2 ::; mEN, and let 
aI, ... , am E R. Combine Theorem 2.32 and Lemma 1.79 to show how one can 
compute aged d of aI, ... , am in R and Sl, ... , Sm E R with d = SIal + .. ·+Smam. 

Exercise 2.35 Let K be a field and I, 9 E K[X] both non-zero. Show the 
following: 

(i) If 0 =1= h E Id(f,g) is such that deg(h) < deg(fg) , then there exist s, 
t E K[X] with 

h = sl + tg, deg(s) < deg(g), and deg(t) < deg(f). 

In particular, this holds for h = gcd(f, g). Moreover, polynomials S and t 
with these properties can be computed from I and 9 in case K is com
putable. (Hint: Use the extended Euclidean algorithm, then divide S by 9 
with remainder.) 
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(ii) Show that s and t as in (i) are uniquely determined by h, f, and 9 if 
gcd(f, g) = 1. (Hint: Use the fact that here, lcm(f, g) = fg.) 

(iii) Make up a counterexample to the claim of (ii) in case gcd(f,g) is not a 
constant. 

Exercise 2.36 Let 2 :5 mEN, and let a be an m-tuple of positive integers. 
Consider an algorithm which non-deterministically performs one of the following 
actions as long as this is possible. 

(i) Find two entries ai and aj of a with i =f. j and a. ~ aj, and replace ai by 
ai - aj. 

(ii) Drop a zero entry from a. 

Show that the algorithm always terminates and outputs a l-tuple whose entry is 
the integer gcd of the entries of a. 

An important application of EXTEUC is the following method to com
pute inverses in the field K = Z/pZ where p is a prime number. For mE Z, 
let us denote the residue class m + Z by m. If m f. 0, then there exists 
s E Z with sm = 1 in K, i.e., 1 - sm E pZ, which means that there exists 
t E Z with 1 = sm + tp. It follows that gcd(m,p) = 1 (see the remark fol
lowing Lemma 1.70), and we can thus compute s, t E Z with 1 = sm + tp 
by means of the extended Euclidean algorithm. We see that 1 - sm E pZ, 
which means that s is the inverse of m in K. 

Note that by Lemma 1.69, Example 1.17, and Lemma 2.18, integer gcd's 
are unique up to a sign, whereas gcd's in K[X], where K is a field, are 
unique up to a non-zero constant factor. The following corollary summarizes 
our present knowledge about gcd's in polynomial rings. 

Corollary 2.37 Let K be afield, f, g E K[X]. Then f and g have aged d 
in K[X], and there exist s, t E K[X] with d = sf + tg. Here, d is uniquely 
determined by f and 9 up to a non-zero constant factor. Moreover, if K is 
a computable field, then d, s, and t can be computed from f and g. 0 

Apart from the fact that the Euclidean algorithm provides a way to ef
fectively compute gcd's, it also has the remarkable theoretical consequence 
that polynomial gcd's are invariant under extensions of the ground field. 

Proposition 2.38 Let K' be a field, K a subfield of K', and f, 9 E 
K[X] ~ K'[X]. Then the ged of f and 9 in the ring K[X] equals the 
one in the ring K'[X]. 

Proof We have stated the Euclidean algorithm only for computable field, 
because we already had a general existence proof for gcd's in PID's. But it 
is clear that the algorithm can also be viewed as an abstract mathematical 
construction that arrives at a gcd of f and 9 by means of a finite number of 
divisions with remainder starting with division of f by g. These divisions 
involve only addition, multiplication, and division of coefficients, and so 
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the construction will be the same regardless of whether we view f and 9 
as elements of K[X] or of K'[X]. D 

The reader should note that there are other constructions involving poly
nomials whose outcome depends strongly on the ground field: if, for exam
ple, we wish to factor f = X2 + 1, then the result will depend on whether 
we view f as an element of Q[X] or of qX]. 

We may now combine our results on computable Euclidean domains to 
obtain the following ideal membership test. 

Proposition 2.39 Let R be a computable Euclidean domain, and suppose 
a, b1 , ••. , bm E R are given. Then we can effectively decide whether or not 
a E Id(b1, ... , bm ). 

Proof By Theorem 2.32 and Lemma 1.79, it is possible to compute d = 
gcd(bl, ... , bm ). By Exercise 1.80, d generates the ideal Id(b1, ... , bm ), and 
Lemma 2.29 allows us to decide whether or not a E Id(d). D 

There are PID's that are not Euclidean. The class of non-Euclidean PID's 
is of little interest to us, though: we are now going to show that if we 
drop either one of the conditions that R be a field or that n = 1, then 
R[Xl, ... ,Xn] is no longer a PID (and hence, of course, not Euclidean). 

Proposition 2.40 Let R be a domain. Then R[X1, ••• ,Xn] is a PID iff 
R is a field and n = 1. 

Proof The implication "~" is immediate from Proposition 2.24 and 
Proposition 2.30. For "=*," assume that R is not a field and n = 1. Then 
there exists a non-unit a#-O of R, and we consider the ideal I generated 
by a and X in R[X]: 

1= Id(a,X) = {aft + Xh I ft,h E R[X]}. 

Then I is a proper ideal, for if there would exist ft, h E R[X] with 1 = 
aft + Xh, then the constant monomial of ft would be an inverse of a in 
R. Now assume for a contradiction that I = Id(g) for some 9 E R. Then 
9 is constant since 9 I a. It is easy to see that a constant 9 satisfying 9 I X 
must be a unit of R. But then Id(g) = R[X], a contradiction. Finally, if 
n> 1, then R[XlJ ... , Xn] = R[XlJ ... , Xn-1][Xn ] and R[X1 , •.. , Xn-d is 
not a field by Lemma 2.18 (iii), so R[X1 , ••• , Xn] is not a PID by the above 
argument. D 

Exercise 2.41 Let R be a domain, n ~ 2. Show that any ideal generated by 
more than one of the inderminates is a non-principal ideal of R[X 1, .•. , Xn). 

So all polynomial rings except those of the form K[X] are not Euclidean 
and not PID's. Much of the theory of polynomial rings is concerned with 
the question of how bad it really is, i.e., how much of the nice properties of 
Euclidean domains (more of which we will soon discuss) can be saved for 
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non-Euclidean polynomial rings. One classical result is the Hilbert basis the
orem, which implies that every ideal of K[X1 , ••• ,Xn ], where K is a field, 
is still finitely generated (see Definition 1.36). rungs with this property 
are called noetherian. Although Hilbert's theorem was obviously known 
long before the arrival of Grabner bases, we will obtain a proof of it in the 
course of the development of Grabner basis theory. Grabner basis theory 
is actually a step further in the same direction: it shows that the division 
algorithm for K[X] can be generalized to a kind of division of one poly
nomial by finitely many others in K[X1 , •• . ,Xnl in such a way that one 
still obtains an ideal membership test as in Proposition 2.39 (and many 
more nice algorithms). In the remaining sections of this chapter, we will 
pursue the theory of polynomial rings in a slightly different direction. We 
will discuss the theoretical foundations and some rudimentary algorithms 
concerning gcd computations, squarefree decomposition, and factoring of 
polynomials. 

2.3 Unique Factorization Domains 

Definition 2.42 Let R be a domain, 0 i- a a non-unit of R. Then a is 
called 

(i) irreducible if a = be implies that either b or e is a unit for all b, 
eE R, 

(ii) prime if a I be implies a I b or a I e for all b, e E R. 

Note that if a E Rand u is a unit of R, then we can always write 
a = u(u-1a). An irreducible element of R is thus one that allows no fac
torizations other than such trivial ones. A non-trivial factorization is also 
called proper. 

Lemma 2.43 Let R be a domain. Then every prime element of R is irre
ducible. 

Proof Let a E R be prime, and assume for a contradiction that a is 
reducible, i.e., a = be with non-units b and e of R. Since a I a and a is 
prime, we must have a I b or a I e, say a I b. Then b = ad for some d E R, 
and thus a = be = adc which implies de = 1, contradicting the fact that c 
is not a unit. 0 

Exercise 2.44 Let D be as in Exercise 1.24. Show that 2 is irreducible but not 
prime in D. (Hints: 216, use the square of the norm. Cf. also the discussion 
following Lemma 1.69.) 

Exercise 2.45 Let R be a domain, a E R prime. Show that if a divides a 
product of finitely many elements of R, then it divides one of the factors. 
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Exercises 2.46 Let R be a domain, a E R irreducible. Show the following: 

(i) au is irreducible for every unit u of R. 

(ii) For all b E R, b I a implies that b is a unit or a and b are associated. 

(iii) For all b E R, at b implies that a and b are relatively prime. 

Proposition 2.47 Let R be a PID. Then every irreducible element of R 
is prime. 

Proof Let a E R be irreducible, b, e E R such that a I be, and assume that 
at b. Then 1 is a gcd of a and b by Exercise 2.46 (iii). Since R is a PID, 
there exist s, t E R with 1 = sa + tb. It follows that e = sac + tbe. From 
this and a I be we conclude that a I e. 0 

We see that for PID's, the notions of prime element and irreducible ele
ment coincide. In the case of the integers, it is customary to speak of prime 
numbers, or primes, whereas for univariate polynomials over a field, the 
expression irreducible polynomials is preferred. It is also important to 
note that from the point of view of ring theory, 2 is just as prime an integer 
as -2, but it is customary to require primes to be positive. The next lemma 
relates primeness and irreducibility of a ring element to properties of the 
ideal generated by the element. 

Lemma 2.48 Let R be a domain, a E R. Then the following hold: 

(i) a is prime iff aR is a prime ideal. 

(ii) If R is a PID, then a is irreducible iff aR is maximal. 

Proof (i) The proof is the same as that of Lemma 1.91: 

a prime <===} a I be implies a I b or a I e for all b, e E R 

<===} be E aR implies bEaR or e E aR for all b, e E R 

<===} aR prime. 

(ii) Lemmas 2.43 and 2.47 say that a is irreducible iff it is prime. By (i), 
a being prime is equivalent to aR being a prime ideal, and this is equivalent 
to aR being maximal by Proposition 1.97. 0 

Exercise 2.49 Give a direct proof of (ii) of the lemma above. 

The above results together with those of the previous section show that 
as far as ideals and residue class rings are concerned, the polynomial rings 
K[X), where K is a field, behave just like the integers: every ideal is prin
cipal, and a non-trivial ideal is prime iff it is maximal iff it is generated 
by an irreducible polynomial. Moreover, the residue class ring K[X]/Id(g) 
is computable for all 9 E K[X) whenever K is a computable field: if 
f + Id(g) is an arbitrary element of the residue class ring K[Xl/Id(g), 
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then we may divide f by 9 with unique quotient q and remainder r satis
fying r = 0 or deg(r) < deg(g), and conclude that r + Id(g) = f + Id(g) 
since f - r = qg E Id(g). This together with the definition of addition 
and multiplication in residue class rings rather obviously allows us to rep
resent the residue classes on a computer in a unique way and to perform 
computations with them. Finally, if K is a computable field and 9 E K[X] 
is irreducible, then we claim that K[X]/Id(g) is even a computable field. 
Indeed, if 0 i= f + Id(g) E K[X], then 9 f f, so f and 9 are relatively prime 
by Exercise 2.46 (iii). By Corollary 2.37, we can compute polynomials s 
and t with 1 = sf + gt, which means that 1 - fs E Id(g) and thus 

1 + Id(g) = (s + Id(g) ) (J + Id(g) ) . 

If we now replace s by its remainder upon division by g, then we have 
computed the inverse of f+Id(g). (Cf. the remarks following Theorem 2.32.) 

Lemma 2.50 Let R be a Euclidean domain with abstract degree function 
ep, and let 0 i= a E R. Then the following hold: 

(i) If a = be is a proper factorization of a, Le., b and e non-units of R, 
then ep(b), ep(e) < ep(a). 

(ii) If ep(a) = 0, then a is a unit of R. 

(iii) If ep(a) = 1 and a is not a unit, then it is irreducible. 

Proof (i) By symmetry, it suffices to show ep(b) < ep(a). By the definition 
of Euclidean domains, we have ep(b) ::; ep(a). Assume for a contradiction 
that ep(b) = ep(a). There exist q, r E R with 

b = qa+ r, ep(r) < ep{a) or r = O. 

From r = b-qa = b-qbc we conclude that b I r and thus ep{r) ~ ep{b) = ep(a). 
This means that we must have r = 0, and hence a = be = qae. It follows 
that qe = 1, contradicting the fact that e is not a unit. 

(ii) Let q, r E R be a quotient and remainder of 1 upon division by a. 
Then we must have r = 0 because ep{ r) < ep{ a) = 0 is impossible, and thus 
1 = qa. 

(iii) Assume for a contradiction that a is not a unit and has a proper 
factorization a = be in R. Then ep{b) = ep{e) = 0 by (i) above, and thus 
both band e are units by (ii) above, a contradiction. 0 

Theorem 2.51 Let R be a Euclidean domain, 0 i= a a non-unit of R. Then 
a can be written as a product of irreducible elements (possibly consisting of 
just one factor) . Moreover, this factorization is unique up to order and unit 
factors, i.e., whenever Pl· .... Pk = ql ..... qm with Pi and % irreducible 
for 1 ::; i ::; k and 1 ::; j ::; m, then k = m, and, possibly after renumbering, 
Pi and qi are associated for 1 ::; i ::; m. 
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Proof We begin by proving the existence of the factorization. Let 0 "# a 
be a non-unit of R. We proceed by induction on m = rp(a). By (ii) of the 
last lemma, the induction starts at m = 1. If this is the case, then a is itself 
irreducible by (iii) of the last lemma. Now let m > 1. If a is irreducible, 
we are done. If not, then a = be with non-units b, c "# 0 of R. By (i) of 
the lemma above, we have rp(b), rp(c) < m. By induction hypothesis, both 
b and c have factorizations of the desired kind, and their product is clearly 
such a factorization of a. It remains to show uniqueness. Let PI, ... , Pk, 
ql, ... , qm E R be irreducible with 

Pl· .... Pk = ql ..... qm· 

We prove our claim by induction on k. If k = 1, then we must have m = 1 
too, since otherwise PI = (ql ..... qm-l )qm would be a proper factorization 
of PI (Lemma 1.18 (iii)). It follows that PI = ql. Now let k> 1. Obviously, 
PI I PI . ... . Pk, so PI I ql . ... . qm' Since PI is prime by Proposition 2.47, 
we obtain PI I qj for some 1 :$ j :$ m. Renumbering, we may assume j = 1. 
Since ql is irreducible and PI, being irreducible, is not a unit by definition, 
PI and ql must be associated by Exercise 2.46 (ii), say ql = UPI with U a 
unit. Substituting UPI for ql and then cancelling PI, our original equation 
becomes 

P2 ....• Pk = Uq2' ..•. qm' 

By Exercise 2.46 (i), Uq2 is again irreducible. We may thus apply the induc
tion hypothesis to conclude that m = k, and that, possibly after renum
bering, Pi and qi (2 :$ i :$ m) are associated too. (We have used Exercise 
1.68 (xiii).) 0 

Recall that a prime number, or prime, is a positive integer that is a prime 
element of Z. We have thus proved that every integer other than 1, -1, 
or 0 can be written as a product of primes and a possible factor of -1, 
and that this prime factor decomposition is unique up to the order of the 
factors. For univariate polynomial rings over a field, we have proved that 
every non-zero non-constant polynomial can be expressed as a product of 
irreducible polynomials, and this decomposition into irreducible factors is 
unique up to unit factors and the order of the factors. 

Definition 2.52 A domain R is called a unique factorization domain, 
or UFD for short, if the following two conditions hold: 

(i) Every non-zero non-unit of R can be written as a product of irre
ducible elements, and 

(ii) any such factorization is unique up to order and unit factors, i.e., 
whenever PI ..... Pk = ql ..... qm with Pi and % irreducible for 1 :$ 
i :$ k and 1 :$ j :$ m, then k = m, and, possibly after renumbering, 
Pi and qi are associated for 1 :$ i :$ m. 



2.3. Unique Factorization Domains 91 

We have already seen that every Euclidean domain is a unique factor
ization domain. It is even true that every PID is a unique factorization 
domain. The proof of this, although not hard, requires the use of the ax
iom of choice which will be discussed briefly in Chapter 3. We will give 
the proof there as an example of an application of the axiom of choice. 
More interestingly for us, we will show in the next section, by means of 
the Gaussian lemma, that a large class of non-Euclidean polynomial rings 
retains the unique factorization property. In view of this, it is interesting 
that UFD's still have a number of properties which we only know for PID's 
thus far. 

Proposition 2.53 In a UFD, every irreducible element is prime. 

Proof Let R be a UFD, a E R irreducible, and assume that a I be with 
b, c E R. Then bc = ad for some d E R. Taking unique factorization into 
irreducible elements everywhere, we obtain 

PI ..... Pk . ql ..... ql = a· rl ..... r m , 

where all factors are irreducible. By 2.52 (ii), there must exist a Pi (1 :::; 
i :::; k) or a % (1 :::; j :::; l) such that a and Pi or a and qj are associated. 
One concludes easily that a I b or a I c. D 

The proposition above explains the fact that the factorization into irre
ducible elements in a UFD is often referred to as the unique prime factor 
decomposition. 

Lemma 2.54 Let R be a UFD, 0 =1= a a non-unit of R. Then there exists 
a unit u E R, irreducible, pairwise non-associated elements PI, ... , Pk E R, 
and positive natural numbers VI, ••. , Vk such that 

k 

a = u IIpri • 

i=1 

Moreover, if 
m 

a = v II qfi 
i=1 

is another such representation, then m = k, and, possibly after renumber
ing, Pi and qi are associated and J.Li = Vi for 1 :::; i :::; m. 

Proof Let rl . ... . rl be a factorization of a into irreducible elements. 
Whenever r i and r j are associated for some 1 :::; i < j :::; l, then we 
can replace the product Tirj by ur; with some unit u E R. Since the 
product of units is again a unit, it is clear that we can arrive at the desired 
representation in this way. The stated uniqueness property is immediate 
from 2.52 (ii) and Exercise 1.68 (xiii). D 
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Exercise 2.55 Let R be a UFD. Show the following: 

(i) If 0 =I=- a is a non-unit of R, PI . .•. . Pk a factorization of a into 
irreducible elements, q an irreducible element of R, and 0 < A E N 
with q>'1 a, then, possibly after renumbering, q is associated to Pi for 
1 ~ i ~ A. 

(ii) Let 0 =I=- a, b be non-units of R. Then the following condition is equiv
alent to a I b: whenever p>'1 a for some irreducible pER and A E N, 
then p>'1 b. 

Proposition 2.56 Any two elements of a UFD have a goo. 

Proof Let R be a UFD and a, b E R. If one of a and b is 0 or a unit, 
then the claim follows from Exercise 1.68 (i), (iv), and (v). Otherwise, we 
produce a gcd seventh-grade style. Let 

k m 

a = u IIpri and b = v II qr' 
i=1 i=1 

be the representations of a and b, respectively, as described in Lemma 2.54. 
W.l.o.g., we may assume that k ~ m. Using the same technique as in the 
proof of Lemma 2.54, we can, at the cost of getting a different u, change 
the representation of a in such a way that Pi and qj are either equal or not 
associated for all 1 ~ i ~ k and 1 ~ j ~ m. Possibly after renumbering, we 
can thus find an 1 with 1 ~ 1 ~ k such that Pi = qi for 1 ~ i ~ l, and Pi 
and qj are not associated for 1 + 1 ~ i ~ k and 1 + 1 ~ j ~ m. We claim 
that 

is a gcd of a and b, where Ai = min(vi' Iti) for 1 ~ i ~ l. It is obvious that 
d I a and d I b. Now let d' E R be any common divisor of a and b. If r>'1 d' 
for some irreducible r E R and A E N, then by Exercise 2.55 (i), r must be 
associated to some Pi and to some qj (1 ~ i ~ k, 1 ~ j ~ m). By Exercise 
1.68 (xiii), we must have 1 ~ i ~ l. Again by Exercise 2.55 (i), we conclude 
that A ~ Ai' Since r and A were arbitrary, we finally get, by Exercise 2.55 
(ii), d'i d. 0 

2.4 The Gaussian Lemma 

The Gaussian lemma is a rather technical result on polynomials whose 
depth will only become apparent in its applications. We remind the reader 
of Lemma 2.18 (iii), which will be used frequently from now on. 
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Definition 2.57 Let R be a UFD and 

m 

o -I 1= LaiXi E R[X] 
i=O 

a univariate polynomial with coefficients in R. Then the goo of ao, ... , am 
in R is called the content of I and denoted by c(f). Since c(f) divides 
every coefficient of I, it is clear that I can be written in the form I = c(f)· 9 
with 9 E R[X], and this 9 is called the primitive part of I, denoted by 
pp(f). I is called primitive if c(f) = 1. 

With the obvious convention that the gcd of one ring element be that 
element, the content of a polynomial exists by Proposition 2.56 and Lemma 
1.79 (ii). Being a gcd, it is unique only up to a unit factor, but as with gcd's, 
there will be no harm in speaking of the content and the primitive part. 
Note that by Lemma 1.79 (iii), the gcd of ao, ... , am in the definition 
of the content is the same as the gcd of those ai that are non-zero. The 
statements of the following exercise are easy consequences of Lemma 1.79 
(iv). They will be of utmost importance in the rest of this chapter. 

Exercise 2.58 Let R be a UFD, 0 -I I E R[X]. Show the following: 

(i) pp(f) is a primitive polynomial. 

(ii) The decomposition of I into the product of content and primitive 
part is unique up to unit factors in the following sense: whenever 
I = ag = bh with a, b E R and g, h E R[X] primitive, then a and b 
are associated, and so are 9 and h. 

Exercises 2.59 (i) What are c(f) and pp(f) if f = 12X3 - 3X2 + 15 E Z[X], 
and what are they iff = (X2_2X+1)y5+(X3_1)y2_(X2_1) E Z[X][Y]? 

(ii) Show that if K is a field, then every non-zero polynomial in K[X] is prim
itive. 

(iii) If 0 =F f E R[X] and 0 =F d E R, then c(d!) = d· c(f). 

Theorem 2.60 (GAUSSIAN LEMMA) Let R be a UFD. Then the product 
01 two primitive polynomials in R[X] is again primitive. 

Proof Let 0 -I I, 9 E R[X] be primitive, and assume for a contradiction 
that their product I 9 was not primitive. We can write 

k 

1= LaiXi , 
i=O 

m 

9 = LbiXi , 
i=O 

k+m 

and Ig = L CiX i 

i=O 

where all coefficients are in R. By our assumption, Cl, ... , Ck+m have a 
gcd in R which is not a unit. By Exercise 2.55 (ii), there must exist an 
irreducible pER with pi Ci for 1 ~ i ~ k + m. Since I and 9 are primitive, 
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there exist 1 :s; i :s; k and 1 :s; j :s; m such that p f ai and p f bj , and we 
may assume that i and j are each minimal with that respective property. 
Now 

CHj = aibj + ai-I bj+1 + ai+1bj-1 + ai-2bj+2 + .... 
Because of the minimality of i and j, each summand on the right except 
for the first one is divisible by p, and so is CHj. It follows (Exercise 1.68 
(vi» that pi aibj. Since p is prime by Proposition 2.53, we obtain pi ai or 
pi bj , a contradiction. 0 

Recall from Theorem 1.117 that QR stands for the field of fractions of 
a domain R. Note that R[XI , ... ,Xn] is a subring of QR[XI , ... ,Xn] for 
all 1 :s; n E N. If K is a field, then the field of fractions of the domain 
K[Xll ... , Xn] is also called the rational function field over K in Xl, 
... , Xn and is denoted by K(XI' ... ,Xn ). 

Exercise 2.61 Let R be a domain. Show that QR[X1, ... ,Xn ] equals the ra
tional function field QR(XI , ... , Xn). 

The last statement of the following corollary is sometimes also referred 
to as the Gaussian lemma. 

Corollary 2.62 Let R be a UFD, 0 I- f E R[X]. Then the following hold: 

(i) Iff = gh where 9 E R[X] is primitive and hE QR[XJ, then hE R[X]. 

(ii) If g, h E QR[X] with f = gh, then there exist a, b E QR with ag, 
bh E R[X] and f = (ag) (bh) . In particular, if f is irreducible in 
R[XJ, then it is irreducible in QR[X], 

Proof (i) Let d be the product of all denominators of coefficients of h. 
Then dh E R[X], and we may write 

df = d· c(f) . pp(f) = gdh = c(dh) . 9 . pp(dh). 

By Exercise 2.58 (i), Theorem 2.60 and our assumption on g, pp(f) and 
9 . pp(dh) are primitive. By Exercise 2.58 (ii), c(dh) = ud· c(f) for some 
unit u of R. Substituting this into the above equation and cancelling d, we 
obtain 

f = g. (u. c(f)· pp(dh)). 

But we already know that f = gh, so it follows that h = u· c(f)· pp(dh) E 

R[XJ. 
(ii) Let d be the product of all denominators of coefficients of g. Then 

dg E R[X], and we obtain the equation 

1 c(dg) 
f = dg . d . h = pp(dg) . -d- . h. 
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By (i) above, (c(dg)jd)· hE R[X]. Since pp(dg) = (djc(dg))· g, we see that 

d b = c(dg) 
a = c(dg) and d 

have the desired properties. 0 
In elementary mathematics, statement (ii) above is rarely mentioned 

but often confirmed by experience: if a polynomial with integer coefficients 
cannot be factored over the integers (Le., into proper factors with integer 
coefficients), then it cannot be factored over the rationals either. The next 
best shot is then a factorization over the reals. 

Exercise 2.63 Generalize Corollay 2.62 (ii) to factorizations of I E R[X] 
into more than two factors. 

Exercise 2.64 Prove the "trivial directions" of Theorem 2.60 and Corol
lary 2.62: 

(i) if I, g, hE R[X] with I primitive and I = gh, then both 9 and hare 
primitive, and 

(ii) if IE R[X] is primitive and irreducible in QR[X], then it is irreducible 
inR[X]. 

The condition that I be primitive cannot be dropped in (ii) above: 2X + 
2 E Z[X] is irreducible in Q[X] since it is linear and can therefore only be 
factored into a constant (Le., a unit of Q[X]) and a linear polynomial. In 
Z[X], however, 2(X + 1) is a proper factorization. 

Theorem 2.65 II R is a UFD, then so is R[X]. 

Proof Suppose 0 =I- I is a non-unit of R[X]. Let 

c(f) = Pl· .... Pk 

and 
pp(f) = PH1 ..... Pm 

be the prime factor decompositions of c(f) and pp(f) in the UFD's R 
and QR[X], respectively. Since I is not a unit, at most one of c(f) and 
pp(f) can be a unit, in which case we can choose that factor to be 1 and 
disregard it in the above decompositions and the following discussion. If 
one of the Pi (1 S; i S; k) had a proper factorization in R[X], this would 
have to be a factorization into constants, and it would be proper in R too, 
which is impossible. Hence Pi is irreducible in R[X] for 1 S; i S; k. As for 
the remaining Pi, we may, by Exercise 2.63, lift them into R[X] without 
changing their product by means of multiplication with constants from QR. 
Since they were only unique up to unit factors (Le., constant factors from 
QR) anyway, we may as well assume that they are already in R[X]. They 
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are primitive by Exercise 2.64 (i) because their product equals the primitive 
polynomial pp(f) , and irreducible in QR[X], so they are irreducible in R[X] 
by Exercise 2.64 (ii). Hence 

f =Pl' .... Pm 

is a decomposition of f into irreducible elements of R[X]. 
It remains to show that this decomposition is unique up to order and 

unit factors. Let 
Pl' .... Pk = ql ..... qm, 

where all factors are irreducible elements of R[X]. Let PI, ... , Pk', qb 
... , qm' be the constants among the factors in the above equation. If one 
of k' and m' or both are 0, or k' = k and m' = m (just one of these is 
obviously impossible), the argument below must be modified accordingly. 
Each of Pk'+l, ... , Pk, qm'+b ... , Pm must be primitive, since otherwise 
the factorization into content and primitive part would be proper. With 
the Gaussian lemma, we obtain 

PI ..... Pk' . Pk'+l ..... Pk = ql ..... qm' . qm'+l ..... qm' 
'----.....----- '-----v-----' ~' '" ' 

ER primitive ER primitive 

We conclude from Exercise 2.58 (ii) that there exists a unit u of R with 

d -1 Pl· .... Pk' = Uql ..... qm' an Pk'+l····· Pk = U qm'+l····· qm· 

Since we claim uniqueness only up to unit factors, we may replace ql by Uql 
and qm'+1 by u-1qm'+1' Since R is a UFD, the first equation implies that 
k' = m' and that, possibly after renumbering, Pi and qi are associated in 
R and thus in R[X] for 1 $ iSm'. For k' + 1 $ i $ k and m' + 1 $ j $ m, 
Pi and qj are irreducible in QR[X] by Corollary 2.62 (ii). Since the latter 
ring is a UFD by Theorem 2.51, it follows that k = m and, possibly after 
renumbering, Pi and qi are associated in QR[X] for m' + 1 $ iSm. This 
means that there are ai, bi E R with 0 -# bi (m' + 1 $ iSm) such that 

We have already observed that the Pi and qi (m' + 1 $ iSm) must be 
primitive. Exercise 2.58 eii) allows us to conclude that ai = Uibi with units 
Ui of R. This means that ai/bi = Ui E R, and we see that Pi and qi are 
actually associated in R[X]. 0 

Corollary 2.66 If R is a UFD, then so is R[Xl , ... , Xn] for all 1 $ n E N. 

Proof We use induction on n. If n = 1, then the claim is identical with 
Theorem 2.65. If n > 1, then R[Xb ... ,Xn-d is a UFD by induction hy
pothesis, so again by Theorem 2.65, R[Xb ... ,Xn] = R[Xl' ... ,Xn-1J[Xn] 
is a UFD too. 0 
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Corollary 2.67 II K is a field, then K[Xl' ... ,Xn ] is a UFD lor all 1 ~ 
nEN. 

Proof The proof is the same as the proof of Corollary 2.66, except that 
Theorem 2.51 is used for the case n = 1. 0 

Note that by the last two corollaries, all polynomial rings over Z, Q, 
and Z/pZ are UFD's. So in all of these, every polynomial has a unique 
factorization into irreducible ones, and any two polynomials have" a gcd. 
Considering that these polynomial rings are computable, the question arises 
if we can actually compute gcd's and factorizations in these cases. Thus 
far, we have a positive answer only for gcd's in the Euclidean polynomial 
rings Q[X] and Z/pZ[X]. The rest of this chapter provides the missing 
algorithms. 

2.5 Polynomial Gcd's 

There are a variety of techniques for the fast computation of polynomial 
gcd's. They are based on the extended Euclidean algorithm combined with 
the following two lemmas. 

Lemma 2.68 Let R be a UFD and I, 9 E R[X] with I, 9 =F o. Suppose 
d is a gcd of c(f) and c(g) in R and h a gcd of pp(f) and pp(g) in R[X]. 
Then dh is a gcd of I and 9 in R[X]. 

Proof Clearly, d divides c(f) and c(g) in R and hence in R[X], and h 
divides pp(f) and pp(g) in R[X]. Consequently, dh is a common divisor of 
I and 9 by Exercise 1.68 (xiv). Now let q be any common divisor of I and 
9 in R[X]. Then there exist s, t E R[X] with I = qs and 9 = qt. Removing 
contents, we obtain 

c(f) . pp(f) = c(q)· c(s) . pp(q) . pp(s), and 

c(g) . pp(g) = c(q)· c(t) . pp(q) . pp(t). 

The products of the primitive parts are again primitive by the Gaussian 
lemma; hence there exist units u, v E R with 

c(f) = U· c(q) . c(s) 
c(g) = v· c(q) . c(t) and 

pp(f) = u-1 . pp(q) . pp(s) 
pp(g) = v-I. pp(q) . pp(t). 

We see that c(q) is a common divisor of c(f) and c(g) in R, and that pp(q) 
is a common divisor of pp(f) and pp(g) in R[X]. Since d and h were gcd's, 
c(q) must divide d in R and hence in R[X], and pp(q) must divide h in 
R[X]. Again by Exercise 1.68 (xiv), it follows that q = c(q) . pp(q) divides 
dh in R[X]. 0 
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Lemma 2.69 Let R be a UFD, 0 '" I, 9 E R[X] primitive polynomials, 
h a gcd of I and 9 in QR[X]. Let d be the product of all denominators of 
coefficients of h, so that dh E R[X]. Then the primitive part pp(dh) of dh 
is a gcd of I and 9 in R[X]. 

Proof It is clear that pp(dh) E R[X]. Moreover, h and pp(dh) are asso
ciated in QR[X] since pp(dh) = (d/c(dh» . h, and hence pp(dh) is still a 
gcd ofl and gin QR[X]. It remains to show that this is the case even in 
R[X]. pp(dh) is a common divisor of I and 9 in QR[X], I, g, and pp(dh) 
are in R[X], and pp(dh) is primitive. By Corollary 2.62 (i), it follows that 
pp(dh) is a common divisor of I and 9 in R[X]. Now let q be any common 
divisor of I and 9 in R[X]. Then trivially, q is a common divisor of I and 
gin QR[X], so ql pp(dh) in QR[X]. q is primitive by Exercise 2.64 (i) since 
it divides the primitive polynomial I in R[X], so by Corollary 2.62 (i), 
ql pp(dh) in R[X]. 0 

Theorem 2.70 Let R be a computable ring that is a UFD and lor which 
an algorithm is known that computes the gcd 01 any two elements. Then 
one can find an algorithm that computes the goo 01 any two polynomials in 
R[X]. 

Proof Let 0 '" I, 9 E R[X]. By the two previous lemmas, it suffices to 
compute gcd's of the contents and the primitive parts of I and 9 in R and 
QR[X], respectively, then lift the latter to R[X] by multiplying it by the 
product of all denominators of coefficients and then taking its primitive 
part, and finally multiplying those two gcd's together. Factoring I and 9 
into content and primitive part is a gcd computation in R which can be per
formed by assumption. The same is true for finding the gcd of the contents. 
Now QR[X] is a Euclidean domain. To see that we can actually compute 
gcd's in this domain by means of the Euclidean algorithm, we must, by 
Corollary 2.37, convince ourselves that QR is a computable field. It is clear 
that if we can add and multiply elements of R, then we can add and mul
tiply fractions, and we can certainly invert them simply by turning them 
upside down. We may even, if we wish, reduce them to lowest terms (i.e., 
make numerator and denominator relatively prime) by a gcd computation 
in R. Even when reduced to lowest terms, though, two fractions that are 
actually the same may still look very different due to the presence of unit 
factors other than -1 in numerator and denominator. We can, however, 
effectively decide whether or not two fractions are equal: p/q equals r/s 
iff ps = rq, and the latter condition can be decided by a computation in 
R. This decidability of equality is good enough for effective computations, 
even though there is no longer a computable unique represention for each 
element. (Sections 4.5 and 4.6 have a more rigorous discussion of the phe
nomenon.) The lifting back to R[X] of the gcd computed in QR[X] and the 
final multiplication can obviously be performed effectively. 0 
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Corollary 2.71 Let R be either a computable field, or a computable ring 
that is a UFD and for which an algorithm is known that computes the gcd 
of any two elements. Then one can find an algorithm that computes the gcd 
of any two polynomials in R[Xl , ... ,Xn). 

Proof We proceed by induction on n. If n = 1, then the claim is identical 
with Corollary 2.37 or Theorem 2.70. For n > 1, 

and R[X1 , .•• , Xn-d is a computable ring that is a UFD and allows effec
tive gcd computations by the induction hypothesis. Again our claim follows 
from Theorem 2.70. 0 

By the above corollary, we can effectively compute gcd's in R[Xl , ... , Xn) 
when R is Z, Ql, or Z/pZ. The inductive proof of the corollary of course 
translates into a recursive algorithm. 

Exercise 2.72 Write a programming-style version of the algorithm that is im
plicit in the proof of Corollary 2.7l. 

Exercise 2.73 Find the gcd in Z[X, YJ of 

f = X2y2 - Xy2 + 2X2y - 2y2 - 2XY + X2 - 4Y - X - 2 and 

g = Xy2 + X2y + y2 + 2XY + X2 + Y + X. 

Do this one by hand. You won't have to do a Euclidean algorithm. You will get 
an opportunity to use your nifty computer algebra system in the next section. 

It is noteworthy that in the multivariate case, we can not in general write 
the gcd of f and g in the form sf + tg. The gcd of X and Y in R[X, Y), for 
example, equals 1, but we cannot write 1 = tX + sY. This is of course due 
to the fact that Id(X, Y) is not a principal ideal and hence is not generated 
by the gcd of X and Y (cf. Lemma 1. 70 and Exercise 2.41). 

2.6 Square free Decomposition of Polynomials 

In this section, we will frequently make use of the fact that a polynomial 
ring over a field is a UFD, and that the notions of prime and irreducible 
elements coincide in UFD's. 

Let R be a UFD and 0 =1= a ERa non-unit of R. By Lemma 2.54, 
there exists a unit u E R, pairwise non-associated, irreducible elements PI, 
••• , Pk E R, and positive natural numbers 111, .•• , Ilk with a = upr1 •••• • p~k . 
We may now combine all factors that carry the same exponent and fill up 
the product with factors of the form IV (II E N) to arrive at a representation 
of the form 
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where bl , ... , bm are pairwise relatively prime, and each of them is a 
product of irreducible elements that are pairwise relatively prime. This 
latter property can obviously also be expressed by saying that whenever 
pSI bi with pER irreducible, then s ::; 1. Yet another way of saying it is 
that p2 f bi whenever pER is irreducible. 

Definition 2.74 Let R be a UFD. An element a E R is called squarefree 
if p2 f a whenever pER is irreducible. Now let 0 i- a be a non-unit of R. 
A squarefree decomposition of a is a representation of the form 

a = Ublb~b~ ..... b:, 

where u E R is a unit and bl , ... , bm E Rare squarefree and pairwise 
relatively prime. The product bl ..... bm is then called a squarefree part 
of a. 

Note that by our definition, every unit of R is squarefree, because it is 
not divisible by any non-unit at all. The zero element of R, however, is not 
squarefree because it is divided by everything. The label "squarefree part 
of a" for the product bl . '" . bm in the definition above suggests, quite 
strongly, that this product is squarefree. The next lemma says that this is 
indeed so. 

Lemma 2.75 Let R be a UFD, and let bl , ... , bm E R. Then the following 
are equivalent: 

(i) bl , ... , bm are squarefree and pairwise relatively prime. 

(ii) The product b = bl ..... bm is squarefree. 

Proof Using the unique prime factor decomposition, it is easy to see that 
any a E R is squarefree iff it is either a unit or a product of pairwise 
relatively prime irreducible elements. Now if this is true for b = bl · ... ·bm , 
then it is clearly true for each factor bi. Conversely, if it is true for each bi 

and the bi are pairwise relatively prime, then it is true for their product b: 
if we write down the product of the prime factor decompositions of those 
bi that are not units, then there cannot occur a pair of associated prime 
factors, because these would either have to come from one factor bi or from 
two factors bi and bj • 0 

Proposition 2.76 Let R be a UFD, and let 0 i- a E R. Then the following 
hold: 

(i) a has a squarefree decomposition in R. 

(ii) Whenever a is not a unit and 

b b2b3 bm 2 3 n a = u 1 2 3' ... . m = VCl C2C3 • ••• • Cn 

are squarefree decompositions of a with non-units bm and Cn, then 
m = n, and bi and Ci are associated for 1 ::; i ::; n. 
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Proof (i) If a is a unit, then it is its own squarefree decomposition. Oth
erwise, the discussion at the beginning of this section shows how to arrive 
at a squarefree decomposition of a. 

(ii) We manipulate each of the two given squarefree decompositions as 
follows . 

• Combine all unit factors to one unit and move it up front. 

• Write out each of the remaining factors, which must now be of the 
form r with / squarefree and not a unit, in the form r = pi· ... . p: 
with Pl, ... , Pr irreducible and pairwise relatively prime. 

It is easy to see that we obtain two represenations of a as discussed in 
Lemma 2.54. This means that up to order and unit factors, we are looking 
at the same prime factors and exponents, and this easily implies our claim. 
o 

We will continue our bad habit of speaking of the such-and-such if such
and-such is unique up to unit factors. 

In this section, we will show how one can compute squarefree decompo
sitions (meaning find the individual bi ) in certain polynomial rings. From a 
theoretical point of view, one could show how to do the complete factoriza
tion into irreducible elements in these polynomial rings and then get square
free decompositions as a by-product. However, the discussion of effective 
squarefree decompositions will provide us with quite a bit of mathematical 
insight that will be useful later. Moreover, it turns out that squarefree de
compositions can be computed much faster directly. There are situations 
where one needs no more than the squarefree decomposition, and even if 
one is looking for the complete factorization, it is much more efficient to 
do the squarefree decomposition first and then factor each of the bi , which 
then of course provides the complete factorization of the original input 
polynomial. 

Definition 2.77 Let R be a ring, 

m 

a polynomial in R[XJ. Then the derivative f' of / is defined as 

m 

/ ' ~. X i - l =L...J",·ai . 
i=l 

(See Section 1.9 for the meaning of i· ad 

The following exercise is tedious but straighforward. 

Exercise 2.78 Let R be a ring and /, 9 E R[XJ. Show the following: 
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(i) (f+g)'=1'+g'. 

(ii) (fg)' = f'g + fg'· 

(iii) (frn)' = m· l' f rn- 1 for mEN. (Hint: This is easily proved from (ii).) 

(iv) (f(g))' = 1'(g) . g'. (Hint: Use (i)-(iii).) 

Note that for R = JR, the algebraic definition of the derivative is the 
same as the one that is used in calculus. However, derivatives have a way 
of behaving somewhat strangely when char(R) =I- 0, as the following two 
lemmas show. 

Lemma 2.79 Let R be a domain and f E R[X]. Then the following hold: 

(i) If char(R) = 0, then l' = 0 iff f is constant. 

(ii) If char(R) = p =I- 0, then f' = 0 iff there exists 9 E R[X] with 
f = g(XP). 

Proof Let f = 2:;:'0 aiXi. Then we have 

rn 

l' = L i· aiXi - l . 

i=l 

We see that in the characteristic zero case, l' = 0 is equivalent to ai = 0 
for all i > O. If char(R) = p =I- 0, then we conclude with Lemma 1.101 that 
f' = 0 is equivalent to ai = 0 for all i with p t i, and so it is equivalent to 
f being of the form 

rn' rn' 

f = L aipXiP = L aip(Xp)i. 0 
i=O i=O 

Lemma 2.80 Let R be a domain with char(R) = p =I- 0, and let f E R[X]. 
If f = gP for some 9 E R[X], then l' = O. If, in addition, R is finite (and 
hence a field), then the converse is true too: l' = 0 implies that there exists 
9 E R[X] with gP = f. 

Proof If f = gP, then l' = p. g'gP-l = 0 by Lemma 1.101 and Exercise 
2.20. Next, let R be a finite field and assume that l' = O. Then f = g(XP) 
for some 9 E R[X] by the previous lemma, say 

rn 

f = L ai(Xp)i . 
i=O 

Since every element of R has a pth root by Lemma 1.107, we can write 

f = ~bf(Xi)P = (~biXi)P, 

the latter equation being true by Lemma 1.106. 0 
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Lemma 2.81 Let K be a field, char(K) = p, and assume that K is finite 
or p = O. Let I, q E K[X] with q irreducible, k a positive integer such that 
qk I I but qk+l f I. Then the following hold: 

(i) If p f k (in particular, if p = 0), then qk-11 /' and qk f I'. 

(ii) If pi k, then qk I I'. 
Proof From qk I I and qk+l f I we conclude that I =f. 0 and that there 
exists 9 E K[X] with I = gqk and q f g. We obtain 

I' = (gqk)' = g'qk + k. gq'qk-l. 

If pi k, then the last summand is zero by Lemma 1.101, and we see that 
qk I I'. Now assume that p f k. It is obvious that qk-l must divide /'. If 
p = 0, then q' =f. 0 since q is not a constant. If p =f. 0, then q' =f. 0 because 
q, being irreducible, is not a pth power. We see that the last summand 
is not zero in either case. Assume for a contradiction that qk I I'. Then 
q I g'q+ k· gq'. It follows that q I k· gq'. Viewing k· gq' as g(k· q') and using 
the fact that q is prime, we see that q I 9 or q I k . q'. The former contradicts 
an earlier conclusion, the latter is impossible since deg(k . q') < deg(q). 0 

Recall that by Proposition 2.56, the gcd of two elements a and b of a 
UFD can be produced by collecting all prime factors that a and b have in 
common, where associated ones are treated as equal. From this together 
with the last two lemmas, we obtain the following two results. 

Lemma 2.82 Let K be a field with char(K) = 0, I a non-constant poly
nomial in K[X], I = Cglg~ ..... g~ the squarefree decomposition of I. 
Then 

gcd(f,I') = g2g~ ..... g:-I, 

and 1/ gcd(f, I') = Cglg2g3· .... gm is the squarefree part of I. 0 

Lemma 2.83 Let K be a finite field with char(K) = p =f. 0, I a non
constant polynomial in K[X], I = cglg~· .... g: the squarefree decompo
sition of I. 

(i) If gi = 1 for all i rt. p'Z., i.e., if I is a pth power, then /' = O. 

(ii) Otherwise, 

gcd(f, I') = II g!. II g~-l. 0 
l<i<m l<i<m 
iEpZ i~pz 

Before we show how to compute squarefree decompositions, we point out 
that-as so often happens with algorithmic problems-it is much easier to 
decide whether a given decomposition I = cglg~ ..... g~ of a polynomial 
is the squarefree one or not. What we must be able to decide is whether 
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gl . ... . gm is squarefree. We will show that over the kind of field that we 
are considering here, squarefreeness of f is equivalent to gcd(J,1') = 1, a 
condition that can be decided by means of the Euclidean algorithm. One 
direction is actually true for an arbitrary field. 

Lemma 2.84 Let K be a field, and let f E K[X] with gcd(J,1') = 1. 
Then f is squarefree. 

Proof Assume for a contradiction that f is not squarefree. Then there 
exist g, hE K[X] with 9 non-constant and f = g2h. It follows that 

l' = 2· gg'h + g2h', 

and we see that 9 is a common divisor of f and f'. 0 

Using Lemmas 2.82 and 2.83, it is not hard to prove the following partial 
converse to the lemma above. (The case where f is constant is trivial.) 
Recall from Section 1.9 that fields of characteristic zero are necessarily 
infinite. 

Lemma 2.85 Let K be a field such that either char(K) = 0 or K is finite, 
and let f be a squarefree polynomial in K[X]. Then gcd(J, 1') = 1. 0 

It will be proved in Section 7.3 that this last lemma actually holds for a 
larger class of fields, and it will also be shown that it is not true over every 
field. 

Proposition 2.86 Let K be a computable field such that either char(K) = 
o or K is finite. Then one can find an algorithm that computes the square
free decomposition of any non-constant polynomial in K[X]. 

Proof Since constant factors, being units of K[XJ, are irrelevant to the 
problem, we may divide the input polynomial by its highest coefficient and 
assume henceforth that all polynomials involved have highest coefficient 1. 
Let f E K[X] with squarefree decomposition f = glgi ... , . g;:;. Assume 
first that char(K) = O. Set Fo = f, and for 1 ~ i E N, 

Fi = gcd(Fi - 1 ,F:_1) 

It is easy to see that there exists 1 ~ sEN with Fs+1 = 0 and Fi =I 0 for 
o ~ i ~ s. Now if we set 

Hi = Fi-dFi for 1~i~8, 

then, in view of Lemma 2.82, the following self-explanatory diagram ex
hibits the desired algorithm for the computation of gl, ... , gm' 

Fo = glg~g~gj . . . ---t F1 = g2g~g~ .. , ---t F2 = g3g~ , , , ---t 

1 / 1 / 1 / 
H1 =glg2g3g4'" H2 = g2g3g4 , .. H3 = g3g4 ,', 

1 / 1 /1/ 
gl g2 g3 



2.6. Squarefree Decomposition of Polynomials 105 

Now assume that K is finite and char(K) = p oF O. We will define the 
Fi as before, but in order to understand what we obtain, we arrange the 
factors gi of the squarefree decomposition not by ascending indices, but by 
the residue classes mod p that these belong to: 

f ( p 2p )( ...1'+1 2p+l )( 2 p+2 2p+2 ) (P-1 p+(p-1) ) 
= gpg2p'" g1Yp+1 g2p+l'" g2gp+2g2P+2'" ... gp-1gp+(p-1)'" . 

Let 0 ~ 8 ~ P - 1 be maximal with the property that there exists an index 
i E 8 + pZ with gi oF 1. Then we have 

f = (g:g~; .. ·)(g1~tfg~;tf·· ·)(g~g;t~g~;t~···)··· (g!g;t:·· .), 

and the rightmost expression is not equal to 1. Lemma 2.83 tells us that 
upon taking the gcd of f and f', those exponents that are a multiple of p 
will remain the same, while all others will go down by 1. If we now define 
Fi for 0 ~ i ~ 8 as before, we obtain 

F. - ( p 2p )( ...1'+1 2p+l )( 2...1'+2 2p+2 ) (S p+s o - gpg2p'" gIYp+1 g2P+1'" g2Yp+2g2p+2'" .. , gs gp+s 

F (p 2p ) (...1' 2p )( ...1'+1 2p+1 ) (s-1 p+(s-l) ) 
1 = gpg2p'" Yp+1 g2P+1 ... g2Yp+2g2p+2'" .. , gs gp+s .,. 

Po ( P 2p ) (P 2p ) (P 2p ) (s-2 p+(s-2) ) 2 = gpg2p'" gp+1g2p+1 . . . gp+2g2P+2 . .. ... gs gp+s ... 

.. . ). 

Since Fs is a pth power, we get F~ = 0, while Fi oF 0 for 0 ~ i ~ 8. In 
particular, when computing the Fi, we will find out what 8 is. If 8 = 0 (Le., 
if f itself is a pth power), then we continue at the paragraph marked (*) 
below, with h = f. Otherwise, we perform essentially the same compu
tations as before in the characteristic zero case, setting Hi = Fi - 1 / Fi for 
1 ~ i ~ 8, and it is obvious that we get 

H 1 = (glgp+1g2P+1 ... )(g2gp+2g2p+2 ... ) ... (gsgp+sg2p+s ... ) 

Hs = (gsgp+sg2p+s ... ). 

Setting Gi = Hi/Hi+1 for 1 ~ i ~ 8 - 1 and Gs = Hs now gives us 

G1 = g1gp+1g2p+1' .. 
G2 = g2gp+2g2p+2' .. 

Gs = gsgp+sg2p+s···· 
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Going back to Fo, ... , Fs , we see that in passing from Fi to Fi+1' it 
is precisely the factor gi+l that drops out, while everything else remains 
there, albeit with a possibly lower exponent. This means that if we set 
Qi = gcd(Gi , Fi ) for 1 :::; i :::; 8, then the result will be 

Ql = gp+lg2p+l" . 
Q2 gp+2g2p+2 ... 

Q s gp+sg2p+s ... . 

If we finally divide QI. ... , Qs out of GI. ... , G~, respectively, then we 
have isolated gl, ... , gs, and since we already knew that 

gs+1 = ... = gp-l = 1, 

we have in fact isolated gl, ... , gp-l. Next, we form the product 

H = gIQig~Q~'" g;Q~ 

to obtain 

PI = (glg;+1g~p+1 .. ·)(g~g;+2g~p+2···)··· (g;g;+sg~p+s··-). 

Now if we divide this out of the original I, setting II = Fol PI. then we get 

11 - (gPg2P . . . )(g +lgP+1 .• . )(g2 gP+2 ... ) ... (g8 gP+s ... ) 
- p 2p P 2p+l p+2 2p+2 p+s 2p+s . 

We see that deg(fd < deg(f), and we find ourselves in a position to make 
a recursive call of the procedure on II. Referring to the original call as the 
zeroth call, let us denote the polynomial on which the kth call is made by 
/k. It is clear that the kth call will isolate the factors gkp+1, ... , gkp+(p-l)' 
We will thus eventually have isolated all those gi ¥= 1 with p f i, say after 
L - 1 calls. Then 

I - p 2p 3p L - gpg2pg3p ... , 

and this will be made obvious to us by the fact that It = o. If h = 1, we 
are done. It remains to treat the case h ¥= 1. 

( *) Since h = g:g~;g:; ... , we must have 

r 

h = LaiXi 
i=O 

with ai = 0 unless pi i. Since K is a finite field of characteristic p, we can 
effectively extract a pth root from each ai (Lemma 1.107) and thus, by 
Lemma 1.106, write 
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with h = 9p9~p9~p. Since the degree of h is less than that of fL, a recursive 
call of the entire procedure on h must eventually terminate with a constant. 
o 

Exercises 2.81 (i) Write a programming-style version of the algorithm dis-
played in the proof of Proposition 2.86 for the case char(K) = O. 

(ii) If you really enjoy writing computer programs, do the same for non-zero 
characteristic. 

Exercise 2.88 If you have a computer algebra system at your disposal which 
computes derivatives and univariate polynomial gcd's, then compute the square
free decomposition in Q[X] of 

f = 2X17 - 9X16 - 38X15 + 329X14 - 390X13 - 2, 898X12 + 11, 700Xll-
9, 320X lO - 44, 792X9 + 149,900X8 - 187, 976X7 + 36, 840X6+ 
191,040X5 - 230,384X4 + 59, 680X3 + 74, 592X2 - 62, 208X + 13,824. 

Our results thus far allow us to compute squarefree decompositions in 
Q[X] and ZjpZ[X]. The treatment of multivariate polynomials parallels 
that for gcd's. 

Lemma 2.89 Let R be a UFD, f a non-constant polynomial in R[X]. Let 

c(f) = uala~ ..... a~ and pp(f) = V919~ ..... 9~ 

be the squarefree decompositions of c(f) and pp(f) in R and R[X], respec
tively. Filling up with factors of the form 1 i, we may assume that k = m. 
Then 

(uv)(a19t}(a292)2 . .... (am9m)m 

is a squarefree decomposition of fin R[X]. 

Proof The unique prime factor decomposition of c(f) in R is the same 
as that in R[X] since c(f) is a constant. The decomposition of pp(f) in 
R[X] does not contain any constants since otherwise pp(f) would not be 
primitive. The claim now follows from the definition of the squarefree de
composition as a partially combined prime factor decomposition. 0 

Lemma 2.90 Let R be a UFD, f a non-constant, primitive polynomial 
in R[X]. Let f = U919~ ..... 9: be the squarefree decomposition of f 
in QR[X], For 1 ~ i ~ m, let di be the product of all denominators of 
coefficients of 9i, and hi = PP(di9i) E R[X]. Then there exists a unit v E R 
such that f = Vhlh~ ..... h: is a squarefree decomposition of fin R[X]. 

Proof Since 91' .... 9m is squarefree in QR[X] and 9i is associated to hi 
in QR[X], hI ..... hm is still squarefree in QR[X], By Corollary 2.62 (ii), 
every prime factor decomposition of hI' .... hm in R[X] is one in QR[X], 
and hI ..... hm' being primitive by the Gaussian lemma, cannot have any 
constant prime factors, so it is still squarefree in R[X]. It now suffices to 
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find the unit v to make the equation I = Vhlh~ ..... h: hold. We have 
I = u91g~ ..... g:;:::, and if we multiply this by d = dld~ ..... d:, we get 

dl = ud1g1(d2g2)2 ..... (dmgm)m 

UChlh~· .... h:, 

where 
c = c(d1g1) . (C(d292))2 ..... (c(dmgm))m. 

By the Gaussian lemma, hlh~ ..... h: is primitive. Since I is primitive 
too, there must be a unit v of R such that uc = vd. Substituting this in 
the above equation and cancelling d yields the desired result. 0 

Theorem 2.91 Let R be a computable ring which is a UFD, has chamc
teristic zero, allows effective gcd computations, and lor which an algorithm 
is known that computes the square free decomposition 01 any non-zero non
unit. Then one can find an algorithm that does the same in R[X]. 

Proof Let I be a non-constant polynomial in R[X]. By the previous two 
lemmas, we may proceed as follows. First, we decompose I into content 
and primitive part, which is a gcd computation in R. Then we compute the 
squarefree decomposition of c(f) in R and the one of pp(f) in Qn[X]. The 
former is possible by assumption. The latter can be done by Proposition 
2.86 since we have already convinced ourselves in the proof of Theorem 
2.70 that Qn is a computable field, and it is easy to see that Qn[X] has 
again characteristic zero. The lifting of the squarefree decomposition of 
pp(f) from Qn[X] to R[X] as described in the previous lemma and the 
final combination of the two decompositions are trivially computable. 0 

Corollary 2.92 Let R be a computable ring with char(R) = o. Assume 
lurther that R is either a field or a UFD which allows gcd computations 
and effective squarefree decompositions. Then one can find an algorithm 
that computes square free decompositions in R[X1, ... ,Xn]. 

Proof We proceed by induction on n. If n = 1, then the claim is Proposi
tion 2.86 or Theorem 2.91. If n > 1, then 

R[Xb ... , Xn] = R[Xb . .. ,Xn-1][Xn], 

and the claim follows from Theorem 2.91, Corollary 2.71, and Exercise 2.20 
together with the induction hypothesis. 0 

Exercise 2.93 Write down a programming-style version of the recursive algo
rithm that is implicit in the proof of Corollary 2.92. 

By the above corollary, we can now do squarefree decompositions in all 
polynomial rings over IE and Q. In the case of IE, the algorithm is usu
ally applied to primitive polynomials only, because the derivative-gcd tech
nique that makes squarefree decompositions interesting cannot be applied 
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to constants. We already mentioned that we can do squarefree decompo
sitions in Z/pZ[X] (Proposition 2.86). There is a problem though with 
multivariate polynomials over Z/pZ. The recursive method of Theorem 
2.91 and Corollary 2.92 requires us to compute squarefree decompositions 
in Z/pZ(Xl , ... , Xn-1)[Xn]. But the rational function field 

is an infinite field of characteristic p to which Proposition 2.86 does not 
apply. 

Exercise 2.94 Is there anything one can do in the way of squarefree decompo
sitions in Z/pZ[X1 , .•• , Xn]? 

2.7 Factorization of Polynomials 

In this section, we will discuss the historically earliest method for the com
plete factorization of polynomials over the integers and rationals which is 
due to Kronecker. For gcd's and squarefree decompositions, the fast, indus
trial strength algorithms that are implemented in today's computer algebra 
systems are refined and more sophisticated versions of the basic algorithms 
that we have given. The methods employed for fast factorizations, however, 
are radically different from the classical algorithm. Kronecker's algorithm 
is still worth looking at because it provides by far the easiest way to see 
that the problem of effective factorization is solvable at all. We begin with 
some elementary facts about univariate polynomials. Recall that if R is a 
ring, I E R[X], and a E R with I(a) = 0 (cf. Lemma 2.17 (i», then we call 
a a zero of I in R. 

Proposition 2.95 Let R be a domain, IE R[X], and a E R. Then a is a 
zero of I iff (X - a) I I in R[X]. 

Proof From I = q(X - a) with q E R[X] we conclude that I(a) = 0 by 
substituting a for X. Conversely, assume that a is a zero of I. By Lemma 
2.27, there exist q, r E R[X] with 1= q(X -a)+r, and deg(r) < deg(X -a) 
or r = o. The condition on the degrees says that r is a constant, and 
substituting a for X in the equation 1= q(X - a) + r yields r = O. 0 

If 01= f E R[X] and a E R is a zero of I, then by the lemma above and 
an easy degree consideration, there must exist 0 < mEN with (X -a)m I f 
and (X - a)m+1 f I. This number m is called the multiplicity of the zero 
a of I. 

Proposition 2.96 Let R be a domain and 0 1= I E R[X], and suppose 
that al, ... , ak E R are the pairwise different zeroes of f. Then there exist 
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ml, ... , mk E N+ and a polynomial 9 E R such that g(a) -I- 0 for all a E R, 

k 

f = g. II(X - ai)mi , 

i=1 

and ml, ... , mk are the respective multiplicities of aI, ... , ak. If R is 
computable and the zeroes of f in R are known, then the multiplicities and 
the polynomial 9 can be computed from f· 

Proof We proceed by induction on m = deg(f). If m = 0, then I has no 
zeroes in R and we may take 9 = I. Now let m > O. If I does not have 
any zeroes in R, then we may again take 9 = I. If al E R is a zero of I, 
then by the previous lemma, we can write I = (X - al)q with q E R[XJ. 
The induction hypothesis applied to q yields a representation of the desired 
form. Now let 1 ~ j ~ k. To see that mj is the multiplicity of aj, assume 
for a contradiction that (X - aj)m;+11 I. Then 

k 

(X - ai) I g. II (X - ai)mi , 

i=l 
i¥-j 

but aj is not a zero of the polynomial on the right-hand side, a contradic
tion. The statement on computability is obvious from the fact that we can 
effectively divide in R[X]. 0 

It is immediate from the proposition above that the sum s of the multi
plicities of the zeroes of a polynomial 0 -I- I E R[X] satisfies s ~ deg(f). 
Since every zero has multiplicity at least 1, there can be at most deg(f) 
many of them. 

Corollary 2.97 Let R be a domain, 0 -I- I E R[X] with deg(f) = m. Then 
I has at most m different zeroes in R. 0 

The next proposition is a result that is often used in numerical mathe
matics. The proof given here is also known as the Lagrange interpolation 
method. 

Proposition 2.98 Let K be a field, aQ, ... , am E K pairwise different 
and bo, ... , bm E K. Then there is a unique polynomial I E K[X] with 
deg(f) ~ m and I(ai) = bi lor 0 ~ i ~ m. II K is computable, then I can 
be computed from the ai and bi (0 ~ i ~ m). 

Proof We begin by proving uniqueness. Assume that I, 9 E K[X] both 
have the indicated properties. Then 0 = I(ai) - g(ai) = (f - g)(ai) for 
o ~ i ~ m. It follows that I - 9 = 0 as a polynomial, since otherwise it 
would be a non-zero polynomial of degree less than or equal to m with 
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more than m different zeroes. To prove the existence of f, we define, for 
o ~ i ~ m, 

fi = II (X - ak). 
O<k<m 
-k,li 

Note that fi(aj) = 0 and fi(ai) =f 0 whenever 0 ~ i,j ~ m with i =f j. 
Now if we set 

then it is easy to see that f has the desired properties. Moreover, if K is 
computable, then f as above can obviously be effectively computed. 0 

The following definition describes those rings over which we will be 
able to factor first univariate-and then, by induction, also multivariate
polynomials. 

Definition 2.99 Let R be a computable ring. We call R a computable 
unique factorization domain, or computable UFD for short, if it 
satisfies the following conditions. 

(i) R is a UFD, and the unique prime factor decomposition of any non
zero non-unit can be effectively computed. 

(ii) R has infinitely many elements, but only finitely many units, and 
these can be algorithmically determined. 

Note that condition (ii) above requires not just that we can decide 
whether a given ring element is a unit; we must be able to actually list 
the finite set of units. 

Theorem 2.100 (KRONECKER FACTORIZATION ALGORITHM) If R is a 
computable UFD, then so is R[X]. 

Proof Condition (ii) of the definition of a computable UFD carries over to 
R[X] because R ~ R[X] and the units of the latter are precisely the units 
of the former. We know from Theorem 2.65 that R[X] is again a UFD. It 
remains to show that R[X] allows effective factorization. 

Let 0 =f f E R[X]. Since we know what the units of R are, we can decide 
whether or not f is a unit of R[X]. If it is not, we proceed as follows. Since 
R allows the effective computation of unique prime factor decompositions, 
it allows effective gcd computations. So we can factor f into content and 
primitive part, and by assumption we can factor the content in R. Since 
the irreducible factors in R of the content obviously remain irreducible in 
R[X], it now suffices to find the (non-constant) irreducible factors of a non
constant primitive polynomial f. Let 0 < m = deg(J). If f has a proper 
factor at all, then it must, by the degree formula for products, have one 
whose degree is less than or equal to m/2. We let s be the greatest integer 
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that is less than or equal to m/2. Regarding f as a polynomial in QR, we 
see that f can have at most m different zeroes in QR, and hence a fortiori 
in R. Since R has infinitely many elements, we can thus, by trial and error, 
find pairwise different ao, ... , as E R with f(ai) "# 0 for 0 ~ i ~ s. Since 
R is a UFD with only finitely many units, each 0 "# a E R has only finitely 
many divisors in R, and we can effectively find them by computing a prime 
factor decomposition of a and then forming all possible products of units 
and combinations of the prime factors. For 0 ~ i ~ s, we now set 

Since each Ti is finite (0 ~ i ~ s), there are only finitely many (s+ I)-tuples 
(bo, ... ,bs ) of elements of R with bi E Ti for 0 ~ i ~ s, and we can actually 
list them all. For each of them, we can compute the unique polynomial 
9 E QR[X] with deg(g) ~ s and g(ai) = bi (0 ~ i ~ s) by means of 
the Lagrange interpolation method since QR is a computable field. Now if 
9 E R[X] divides f, then it is easy to see, by substituting a for X, that 
g(a) I f(a) for all a E R. In particular, g(ai) I f(ai) for 0 ~ i ~ s, so 9 must 
be among the finitely many polynomials computed above. Testing f for a 
zero remainder upon division by all of these in QR[X] (which can be done 
since QR is a computable field), we can thus find out if f has proper factors 
at all, and if so, we can recursively call the entire procedure on factor and 
quotient. D 

A few words on the occurrence of QR[X] at the end of the above proce
dure are in order. By the theory, the proper factors of fin R[X] must be 
among the 9 computed by the Lagrange method. So we may, if we wish, 
disregard those that come out to be in QR[X] \ R[X] , even if they divide 
f in QR[X]. If one of the remaining ones divides f in QR[X] with a quo
tient not in R[X], we may again disregard it and keep on trying. In both 
of these cases, however, we know by the Gaussian lemma that it is only 
a matter of shifting a constant factor between factor and quotient to lift 
the factorization to R[X]. This is illustrated by the exercise below. Let us 
first note that the above theorem allows us to factor univariate polynomials 
with integer coefficients, because Z has infinitely many elements and the 
two units 1 and -1, and it certainly allows effective unique prime factor 
decomposition since m E Z can only have prime factors p with p ~ Iml (in 
fact, with p ~ JiffiT). 
Exercise 2.101 Use Kronecker's method to factor 

over the integers. (Suggestion: Choose ao = -1, al = 0, and a2 = 1. Then To, 
Tl, and T2 will have 8, 8, and 4 elements, respectively. That leaves you with 
256 Lagrange interpolations. First, give a reason why you need not consider 
combinations of the form (a,a,a). Then try (1,2,1), which will miss. Next, do 
(4,2,1). You should find a factor of f in Q[X]. Lift it to Z[X]. Which triple 
(ao,al,a2) would have given you that factor directly?) 
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An easy induction on n yields the following corollary. 

Corollary 2.102 II R is a computable UFD, then so is R[Xb ... , XnJ. 0 

Our results tlms far do not apply to polynomials with rational coeffi
cients, since there are infinitely many units in Q. Given any polynomial 
over Q, we can, since units are irrelevant to the factorization problem, 
multiply it by the product (or, more cleverly, the least common mUltiple) 
of the denominators of its coefficients, thus lifting it to a polynomial over Z, 
and then factor it over Z. In the univariate case, we know by the Gaussian 
lemma that the result is the desired factorization. In the multivariate case, 
we need the following "multivariate version of the Gaussian lemma," which 
is just a trifle more tedious to prove than one would think. 

Lemma 2.103 Let R be a UFD, and suppose I is an irreducible polyno
mial in R[X1 , ... , XnJ. Then I is irreducible in QR[Xb .·· XnJ. 

Proof If n = 1, then we are looking at the Gaussian lemma. Now let n > 1. 
The following two observations will be used in the proof below. 

(i) I is primitive as an element of the univariate polynomial ring 

since otherwise we would get a proper factorization in R[X1, ... , XnJ. 

(ii) Since I is irreducible as an element of 

it remains irreducible as an element OfQR(X1 , ... ,Xn-d[XnJ by the 
Gaussian lemma. 

Now assume for a contradiction that 1= gh were a proper factorization of 
I in QR[X1 , .•• ,XnJ. Viewing I, g, and h as elements of 

we conclude from (ii) above that one of I and 9 must be a unit in this ring, 
say 

9 E QR(X1 , ••• ,Xn-d· 

But we also had 9 E QR[Xb ... ,XnJ, and so 

Let d1 , d2 E R be the product of all denominators of coefficients in Q R of 
9 and h, respectively. Multiplying by dld2, we can lift the equation I = gh 
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to the univariate polynomial ring R[XI , ... , Xn-I][Xn] and then take out 
the content of d2h as a univariate polynomial in Xn: 

Now f is primitive in the univariate polynomial ring R[Xt. ... ,Xn-I][Xn] 
by (i) above, and dIg is a constant in this ring. Hence there must be a unit 
u of R[Xl. ... ,Xn - I ] (and thus of R) with 

Udl~ = dIg· c(d2h). 

The left-hand side of this equation is in R, and so we must have dIg E R, 
from which it follows that g E QR, contradicting the fact that g was not a 
constant in QR[Xt, ... ,Xn]. 0 

We can now prove the following second corollary to Theorem 2.100. 

Corollary 2.104 Let R be a computable UFD and 0 ~ i < n. Then one 
can effectively compute the prime factor decomposition of any non-zero 
non-unit of 

QR(Xl. ... ,Xi )[Xi+1,'" ,Xn], 

with the obvious convention that QR(X1 , ••• ,Xo) = QR' 

Proof Recall from Exercise 2.61 that QR(XI , ... , Xi) = QR[X1, ... ,x.j' Now 
if 

f E QR[X1, ... ,X.] [Xi+I' ... ,Xn], 

then we may multiply f by a unit of that polynomial ring-which is 
clearly irrelevant to the factorization problem-to obtain an element of 
R[XI , ... , Xn]. Corollary 2.102 tells us that we can perform a factorization 
in this latter polynomial ring, and the previous lemma, applied to the UFD 
R[Xl. ... , Xi] and the variables Xi+l. ... , X n, says that this is the desired 
factorization in 

QR[Xlo ... ,X.] [Xi+l. ... ,Xn]. 0 

We can now factor all polynomials, univariate and multivariate, over Z 
and Q. Kronecker's method does not apply to factorization over Z/pZ since 
the latter is finite. However, since there are only finitely many univariate 
polynomials of a fixed degree with coefficients in Z/pZ, it is not hard to see 
that all factorizations over Z/pZ can in principle be done by trial and error. 
It is precisely the improvement of this crude method of factoring modulo 
p that modem factorization algorithms focus on. 

2.8 The Chinese Remainder Theorem 

One of the stepping stones towards improved versions of many polynomial 
algorithms is the Chinese remainder theorem (CRT). Although we will not 
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pursue these improvements here, we give the CRT here because it is a classic 
of number theory and algebra. Furthermore, we will later use Grobner bases 
to obtain a Chinese remainder theorem in multivariate polynomial rings 
(Proposition 6.23). Since the CRT is classically a result on integer division 
with remainder, we use the congruence notation explained at the end of 
Section 1.5. Applied to the integers, the CRT states that one can always 
find an integer that leaves prescribed remainders upon division by each one 
out of a set of prescribed, pairwise relatively prime integers. 

Theorem 2.105 (CHINESE REMAINDER THEOREM) Let R be a PID. As
sume that ml, ... , mk E R are painoise relatively prime and TI, ... , Tk E 
R. Then the system 

(1 :::; i :::; k) 

of congruences has a solution a E R. The set of all solutions equals the 
residue class a + mR, where m = ml ..... mk. If R is a computable 
Euclidean domain, then the solution can be effectively computed. 

Proof We set, for 1 :::; i :::; k, 

We have gcd(ni' mi) = 1 by Lemma 1.88, and thus there must exist Si, 
ti E R with 1 = Sini + timi for 1 :::; i :::; k. We set 

k 

a = LnjSjTj. 
j=l 

It is easy to see from the definitions of ni and Si that nj == 0 mod mi and 
niSi == 1 mod mi for 1 :::; j, i :::; k with j i- i. We thus obtain 

k 

a == L njSjTj == niSiTi == Ti mod mi 
j=l 

for 1 :::; i :::; k as desired. If b E a + mR, then obviously b E a + miR and 
thus 

b == a == Ti mod mi for 1:::; i :::; k. 

Conversely, assume that bE R satisfies b == Ti mod mi for 1 :::; i :::; k. Then 

k 

b-aE nmiR, 
i=l 

and the latter ideal equals mR by Proposition 1.89, so b E a + mR. Inspec
tion of the above proof shows that if R is a computable Euclidean ring, 
then a can be effectively computed. 0 
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Corollary 2.106 Let R be a PID, assume that ml, ... , mk E R are pair
wise relatively prime, and set m = ml . ... . mk. Then the map 

cp: R/Id(m) ~ R/Id(ml) x ... x R/Id(mk) 
a + Id(m) ..- (a + Id(mt}, ... ,a + Id(mk» 

is well-defined, and it is an isomorphism of rings. 

Proof If we apply the homomorphism theorem to the homomorphism of 
Lemma 1.116 and observe that 

k 

nmiR=mR, 
i=l 

then we see that cp is a well-defined embedding of rings. Surjectivity of cp 
is precisely the statement of the Chinese remainder theorem. 0 

Exercise 2.107 Show that the Lagrange interpolation method of the proof 
of Proposition 2.98 is actually an application of the CRT in K[X]. (Hint: 
Take ri = bi and mi = (X - ai)') 

Very roughly speaking, the CRT is applied in practice as follows. One 
wishes to do some computation with polynomials with coefficients in Z. 
Moreover, it is known that for the particular input in question, all integer 
coeffcients that occur in the output have absolute value less than some 
bound BEN. (Obtaining such bounds is mathematically hard, but it is 
often possible.) One then performs the entire algorithm modulo p for a 
couple of different primes p whose product m exceeds 2B. The Chinese 
remainder theorem provides a way to combine these solutions modulo the 
primes p to a solution modulo m. Now if one chooses representatives of 
residue classes to be between -m/2 and m/2, then one may conclude from 
m > 2B that these are the actual coefficients in Z of the output. A similar 
technique may be applied with Z replaced by Q[X] and the prime numbers 
p replaced by linear polynomials X - q with pairwise different q E Q. 

Notes 

The concept of a polynomial is essentially as old as algebra itself: an alge
braic equation with one or more unknowns is by definition an equation be
tween univariate or multivariate polynomials. In the context of real-valued 
functions, polynomials with real coefficients arise naturally as functions 
that are most easily differentiated and integrated. As a matter of fact, the 
mathematical literature up to about 1900 does not distinguish between a 
polynomial as a formal expression and a polynomial as the description of a 
function. This does not cause any trouble as long as the coefficients belong 
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to an infinite domain, but it requires some care otherwise, for the follow
ing reason. As a consequence of the universal property of polynomial rings 
{Lemma 2.17 (i)), a polynomial in R[X!, ... ,Xnl can always be viewed as 
a function from S to S for any extension ring S of R. Conversely, the func
tion thus associated with a polynomial determines the polynomial uniquely 
in case the coefficient domain is infinite. (For univariate polynomials, this 
is an easy consequence of Corollary 2.97; induction on the number of vari
ables shows that it holds in the multivariate case as well.) Over a finite 
coefficient domain R, it may well happen that two different polynomials 
represent the same function from R to R; examples are easily constructed 
for R = Zj2Z. The definition of a polynomial f in R[X!, ... ,Xnl as a func
tion f : Nn ----t R is the set-theoretically rigorous version of a polynomial 
as formal expression. 

The Euclidean algorithm for positive integers appears in Book VII of 
Euclid's Elements (4th century B.C.) in the form of iterated subtraction 
{cf. Exercise 2.36}. His verification of the correctness of the algorithm is 
remarkably close to the method of finding and verifying loop invariants. 
He also proves gcd(a, b, c} = gcd(gcd{a, b}, c} for positive integers. Books 
VII and IX of the Elements also develop the theory of prime factor de
composition in the integers to an extraordinary degree of mathematical 
rigor. 

The Gaussian lemma for the ring Z[Xl can be found in Gauss's Dis
quisitiones arithmeticae, Paragraph 42 (1801). (Carl Friedrich Gauss was 
perhaps the greatest of the German mathematicians, which is why his por
trait appears on the recently redesigned lO-deutschmark bill.) 

Kronecker published his factorization algorithm in 1882. It seems that 
he had in fact rediscovered a much earlier result found by the astronomer 
F. von Schubert in 1793. It is noteworthy that Kronecker viewed his algo
rithm as mathematically essential rather than just a computational gim
mick; in Kronecker {1882}, he writes: "The definition of irreductibility [sic!] 
is void of a secure foundation so long as a method has not been stated by 
means of which it can be decided of a specific, given function whether or 
not it is irreductible according to the stated definition." Efficient factor
ization algorithms for polynomials are based on recent work of Berlekamp, 
Hensel, and Zassenhaus. For the factorization in Z[X], they employ what 
is called a modular method, i.e., factorization in ZjpZ[Xl for a suitable 
prime p, then a lifting to the rings ZjpkZ[X] for increasing exponent k, 
and finally the transition to a factorization in Z[X]. For the last step one 
needs an a priori bound on the size of the coefficients of a factor of a polyno
mial; such a bound was given by Landau and Mignotte (see, e.g., Mignotte, 
1982). Modular methods can also be used to improve the computation of 
polynomial gcd's and squarefree decompositions. For more information and 
guidance on all these improvements, we refer the reader to Knuth (1969), 
Buchberger et al. {1982}, Davenport et al. {1988}, and the landmark paper 
of Lenstra et al. (1982). 
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We have already pointed out at the end of the last section that the Chi
nese remainder theorem is a key ingredient in many improved versions of 
polynomial algorithms. The first written account of the Chinese remainder 
theorem is in the book Arithmetic by the 3rd century Chinese mathemati
cian Sun-Tsu. It begins to appear in the writings of Indian, Arabic, and 
European mathematicians in the 11th century. 
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Vector Spaces and Modules 

3.1 Vector Spaces 

The theory of vector spaces-also referred to as linear algebra-is as im
portant and widespread in higher mathematics as calculus. Most notably, 
it provides a complete understanding of the solvability of systems of linear 
equations. For our purposes, we will need no more than the basic features 
of the theory. 

Definition 3.1 Let K be a field. A K-vector space V is an additive 
Abelian group with an additional operation 0 : K x V ----+ V, called scalar 
multiplication, such that for all >., J.t E K and v, w E V, the following 
hold: 

(i) >.o(v+w)=>.ov+>.ow, 

(ii) (>. + J.t) 0 v = >. 0 v + J.t 0 v, 

(iii) (>,. J.t) 0 v = >. 0 (J.t 0 v), and 

(iv) 1 ov = v. 

Note that (iii) involves both the multiplication of K and the scalar mul
tiplication. In the following, we denote field multiplication >. . J.t by >'J.t and 
scalar multiplication by a dot. It is also customary-and possible without 
creating confusion-to write >.v for scalar multiplication too. The elements 
of V are referred to as vectors, whereas the elements of the field K are 
called scalars. The zero element of K and the zero vector (Le., the neutral 
element of the group V) are of course different objects, but we will denote 
them both by O. A sum of two vectors of the form v + ( -w) will be denoted 
by v - w, and this will be referred to as subtracting w from v. 

In each of the following examples, verification of the vector space axioms 
is a simple matter of checking them off one after another. 

Examples 3.2 (i) Let K be a field, V = {O} the trivial Abelian group. 
Then V is a K-vector space with scalar multiplication>. . 0 = 0 for 
all>' E K. 

119 
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(ii) Let K be a field, 1 S n E N. Define an addition on Kn by setting 

Then K n is an additive Abelian group with neutral element (0, ... ,0) 
and inverses - (VI, ... , vn ) = (-VI, ... , -vn ). If, in addition, we define 
a scalar multiplication K x K n __ K n by setting 

then Kn becomes a K-vector space. 

(iii) Let R be a ring, K a subring of R which happens to be a field. If we 
define scalar multiplication K x R -- R as multiplication in R and 
then view R as just an additive Abelian group, then R is a K-vector 
space. Moreover, if I is a proper ideal of R, then Rj I, when viewed 
as just an Abelian group, becomes a K-vector space under the scalar 
multiplication (A, a+I) ~ (Aa+I). This situation is given whenever 
R is a polynomial ring over K. 

Lemma 3.3 Let V be a K-vector space, V E V, and A E K. Then the 
following hold: 

(i) o· V = 0 and A . 0 = O. 

(ii) (-l)·v = -v. 

Proof For (i), it suffices to note that O· v = (0 + 0) . v = O· v + O· v implies 
o = 0 . v, and A . 0 = A· (0 + 0) = A . 0 + A . 0 implies 0 = A . O. For (ii), 
consider the equation 

0= O· v = (1 + (-1» . v = 1· v + (-l)v = v + (-1) . v. 

It now follows readily that -v = (-1) . v. 0 

A subspace of a K-vector space V is a non-empty subset U of V that is 
closed under addition and scalar multiplication, i.e., v, W E U and A E K 
imply v + wE U and A' v E U. Then for each v E U, we have 

-v = (-1) . v E U, 

and since U contains at least one element u, we get 0 = 0 . u E U. We see 
that in particular, U is a subgroup of V. An easy example is as follows: if 
we view C as a Q-vector space in the sense of Example 3.2 (iii) above, then 
lR is a subspace of C. 

Let V and W be K-vector spaces. A map cp : V -- W is called a 
homomorphism of K-vector spaces, or a linear map, if it satisfies 

cp(u + v) 
cp(A . v) 

cp(u) + cp(v), and 

A· cp(v) 
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for all u, v E V and A E K. Note that in the second equation, the scalar 
multiplication is in V on the left-hand side and in W on the right. A 
homomorphism of vector spaces is called an embedding if it is injective, 
an isomorphism if it is bijective. 

Exercises 3.4 (i) Let R be a ring containing the field K. Let I be an 
ideal of R, and view Rand R/ I as K-vector spaces as explained 
in Example 3.2. Show that the canonical map R ---+ R/l (where 
a f---+ a + I) is a homomorphism of K -vector spaces. 

(ii) Imitate the proofs of Lemmas 1.29 and 1.32 to show that a homor
phism of vector spaces satisfies cp(O) = 0 and cp( -v) = -cp(v), and 
that it is injective if and only if cp( v) = 0 implies v = O. 

(iii) Let cp : V ---+ W be a homomorphism of K-vector spaces. Show that 
cp(V) is a subspace of W and ker( cp) is a subspace of V, where ker( cp), 
the kernel of cp, is defined as the set of all v E V with cp( v) = O. 

If Vb ••• , Vn are pairwise different elements of a K-vector space V, then 
any sum of the form 

(Ai E K for 1 ~ i ~ n) 

is also called a linear combination of the Vi with coefficients Ai. It will 
be convenient from now on to define the empty linear combination EiE0 
to be the zero vector. 

Definition 3.5 Let V be a K-vector space and B a subset of V. 

(i) B is called linearly independent if for all n E N+, Vl, ... , Vn E B 
pairwise different, and Al, ... , An E K, 

n 

L Ai . Vi = 0 implies Al = ... = An = O. 
i=l 

A set that is not linearly independent is called linearly dependent. 

(ii) B is called a generating system for V if for all v E V, there exist 
n E N+, Vb ... , Vn E B, and Al, ... , An E K with 

n 

V= LAi·Vi. 
i=l 

(iii) B is called a basis of V if it is a linearly independent generating 
system. 
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It is easy to see that the empty set is linearly independent, that every 
subset of a linearly independent set is again linearly independent, and that 
any superset of a generating system is again a generating system. Moreover, 
by (ii) of Definition 3.1, we can always combine like summands in the 
representation of (ii) above, thus turning it into a linear combination. 

Exercise 3.6 Let V be a K-vector space and B = {VI, ... ,Vn } a finite 
subset of V. Show the following: 

(i) B is linearly independent iff for all AI. ... , An E K, 

n 

L Ai . Vi = 0 implies Al = ... = An = O. 
i=l 

(ii) B is a generating set for V iffor all V E V, there exist AI. ... , An E K 
with 

n 

V = LAi ·Vi. 
i=l 

(Hint: Argue that a linear combination Ej=l Aj . Vij (with 1 :S ij :S n for 
all j) can be rewriten in the form E~=l JLi • Vi by adding summands of the 
form 0 ·vd 

Example 3.7 Let V be the lR-vector space 1R2, B = {(I, 2), (3, 4)}. We 
claim that B is a basis of V. Any equation Al . (1,2) + A2 . (3,4) = (0,0) 
with AI, A2 E IR is equivalent to the system 

of linear equations, and this implies Al = A2 = O. We have proved linear 
independence of B. To see that it is also a generating system of V, let 
(aI, a2) E V be arbitrary. Converting the equation 

to a system of linear equations as above, we see that Al = (-4al + 3a2)/2 
and A2 = (2al - a2)/2 are (unique) solutions. 

Exercise 3.8 Let V be a K-vector space and v, w E V. 

(i) Show that {v} is linearly dependent iff v = O. 

(ii) Show that {v, w} is linearly dependent iff there exists A E K with 
V = A . w or w = A . v. 

Exercise 3.9 Let K be a field. Show the following: 
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(i) 0 is a basis of the zero K-vector space (Example 3.2 (i)) for any field 
K. 

(ii) For 1 ~ n E N, the set {ei 11 ~ i ~ n} is a basis of the K-vector 
space Kn, where ei is the n-tuple with ith entry 1 and all other entries 
O. 

A linearly independent set B in a K-vector space V is called maximal if 
B U { v} is linearly dependent for all v E V \ B. A generating system C for 
V is called minimal if C \ {v} is no longer a generating system for V for 
all vEe. The next proposition provides three important characterizations 
of bases of vector spaces. 

Proposition 3.10 Let V be a K -vector space, B a subset of V. Then the 
following are equivalent: 

(i) B is a basis of V. 

(ii) B is genemting system of V, and if we disregard zero summands, then 
the representation of each v E V as a linear combination of elements 
of B is uniquely determined by v up to the order of the summands. 

(iii) B is a minimal genemting system for V. 

(iv) B is a maximal linearly independent system. 

Proof (i)~(ii): B is a generating system of V by the definition of a basis. 
Now assume for a contradiction that there exists v E V and two represen
tations of v as linear combinations of elements of B that cannot be made 
identical by dropping zero summands and! or reordering the summands. 
Adding in summands of the form 0 . Vi, we may assume that the elements 
of B occurring in the two representations are the same: 

n n 

V = L Ai . Vi = L JLt • Vi, 

i=l i=l 

where Ai, JLi E K and Vi E B for 1 ~ i ~ n. We must have Ai ¥ JLi for at 
least one index 1 ~ i ~ n, and thus 

n 

L(Ai - JLi) . Vi = 0 
i=l 

contradicts the linear independence of B. 
(ii)~(iii): Assume that there exists v E B such that B' = B\ {v} is still 

a generating system for V. Then in particular, v has a representation as a 
linear combination of elements of B'. This is also a representation in terms 
of B since B' ~ B, and it is essentially different from the representation 
v = v of vasa linear combination of elements of B, contradicting (ii). 
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(iii)==>(iv): Assume for a contradiction that B is linearly dependent. 
Then there exists a linear combination 

n 

L~i ·Vi =0 
i=1 

where not all ~i equal zero. Renumbering, we may assume w.I.o.g. that 
~I :f= 0, and multiplying the equation by 1/~1' we may even assume that 
~I = 1. We see that 

n 

VI = - L~i ·Vi· 

i=2 

So whenever VI occurs in a linear combination of elements of B, we may 
replace it by the above expression, which, possibly after combining like 
summands, results in a linear combination of elements of B' = B \ {VI}. 

This means that B' is still a generating system for V, a contradiction. 
It remains to show that B is maximal as a linearly independent set. Let 
V E V \ B. Then V has a representation 

n 

V = L~i ·Vi 

i=1 

as a linear combination of elements of B, and the equation 

n 

V - L~i ·Vi = 0 
i=1 

shows that B U {v} is linearly dependent. 
(iv)==>(i): It remains to prove that B is a generating system for V. Let 

v E V. If v E B, then v = v is the desired representation. If not, then 
B U {v} is linearly dependent, and thus there is an equation 

n 

~.V+L~i·Vi=O 
i=1 

with Vb ••. , Vn E B and ~, ~b .•• , ~n E K not all zero. Now ~ cannot 
be zero since otherwise B would be linearly dependent. Hence we may set 
J.l.i = -(~d~) for 1 ~ i ~ n to obtain 

n 

V = LJ.l.i . Vi· 0 
i=1 

The proofs of the following two exercises are similar to the one above. 
Their statements are not needed in our setup of the theory, but they will 
be instrumental in two algorithms in the next section. 
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Exercise 3.11 Let V be a K-vector space, B a basis of V, v E V, and let 

n 

V = LAi' Vi 
i=1 

be a representation of vasa linear combination of elements of B. Show 
that for 1 :$ i :$ n, the set (B \ {Vi}) U {v} is again a basis of V iff Ai t= O. 

Exercise 3.12 Let V be a K-vector space, A a generating system of V, 
and v E A. Show that A \ {v} is still a generating system for V iff there 
exists a linear combination 

n 

A . v + L A •. Vi = 0 
i=1 

with VI, .•. , Vn E A \ {v} and A t= o. 
We have seen (Exercise 3.9) that all vector spaces of the form K n have 

bases. We are now in a position to prove the existence of bases in a more 
general situation. 

Theorem 3.13 Let V be a K -vector space, and assume that V has a finite 
genemting system C. Then V has a basis B ~ C. 

Proof The set 

N = { IBII B ~ C and B is a finite generating system for V} ~ N 

is not empty and thus has a minimal element no EN. Let Bo ~ C be a finite 
generating system for V with IBol = no; then Bo is a minimal generating 
system and thus a basis of V. 0 

An algorithmic version of the above theorem will be the subject of an 
exercise in the next section. We are now going to give an example of a vector 
space that does not have a finite generating system. In this example, we will 
be able to find a basis consisting of infinitely many elements. To prove that 
this is always the case, Le., that every vector space has a basis, one needs 
to make a set-theoretic assumption known as Zorn's lemma which will be 
described in Section 4.1. We will give the proof there as an illustration of 
the use of Zorn's lemma. 

Example 3.14 Let K be a field and R = K[X1 , .•• , Xnl a polynomial ring 
over R. We may then view R as a K-vector space V as explained in Example 
3.2 (iii). A linear combination in V is simply a sum of constant multiples of 
polynomials. Now if F is a finite subset of V, then there must be a term t 
in T = T(X1 , ... , Xn) (in fact infinitely many) with t (j. T(J) for all f E F. 
We see that the coefficient of t in any linear combination of elements of F 
equals zero, and thus the polynomial t cannot be written as such a linear 
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combination. This shows that V cannot have a finite generating system. 
We claim that the infinite set T of all terms is a basis of V. If f E V, then 
f has a natural representation 

f= L att 
tET(f) 

as a sum of monomials, and this can be viewed as a linear combination of 
elements of T. So T is a generating system for V, and it remains to prove 
that it is linearly independent. Let T' be a finite subset of T, and let 

(At E K) 

be a vanishing linear combination of elements of T'. Lemma 2.14 tells us 
that the coefficients At are zero for all t E T'. 

A K-vector space V is called computable if K is a computable field, 
the elements of V can be represented on a computer, and addition in V, 
subtraction in V, and scalar multiplication can be effectively performed. 
When computing in a vector space, one usually needs to know that for 
any given vector, one can effectively find a representation as a linear com
bination w.r.t. some specific basis, or any basis, or even any generating 
system. We do not incorporate any condition of this type into the defini
tion of a computable vector space; rather, we prefer to state the necessary 
assumptions explicitly in each case. 

The standard example of a computable vector space is Kn for computable 
field K (Example 3.2 (ii)). We have demonstrated in Example 3.7 how the 
problem of effectively dealing with representations as linear combinations 
then reduces to handling systems of linear equations. (Systems of linear 
equation are of course an interesting topic by themselves, both theoretically 
and computationally; we will treat them from the point of view of Grabner 
bases in Section 10.5. Here, we will simply assume that from experience in 
elementary mathematics, the reader is aware of the fact that solvability of 
such a system can be effectively dealt with.) 

Now assume V is a computable K-vector space, B is a basis of V, and we 
are given representations of vectors VI, ••. , Vn E V as linear combinations 
of elements of B: 

mJ 

Vj = LAij' bij 
i=l 

(1 ::;; j ::;; n, Aij E K, bij E B). 

Adding zero summands if necessary, we may assume that the basis vectors 
occurring in each sum are the same: 

m 

Vj = L Aij . bi 
i=l 

(1 ::;; j ::;; n, Aij E K, bi E B). 
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We can now constructively decide whether VI, •.. , Vn are linearly depen
dent. 

Proposition 3.15 Let V, B, and VI, ... , Vn be as described above. Then 
the algorithm LINDEP of Table 3.1 decides whether VI, ... , Vn are linearly 
dependent, and if so, produces a non-trivial zero linear combination. 

TABLE 3.1. Algorithm LINDEP 

Specification: V +--LINDEP(A, B', A) 
Constructive decision of linear dependence of A 

Given: A = {VI, ..• , Vn } ~ V, B' = {bl , ... , bm } ~ B, and 
A = {Aij 11 SiS m, 1 S j S n } with 
Vj = Alj . bl + ... + Amj . bm 

Find: V E {false} U ( {true} x (Kn \ {(O, ... , On)) 
such that V = false if A is linearly independent, and 
V = (true, (ILl.···, ILn)) with ILl . VI + ... + ILn . Vn = 0 otherwise 

begin 
if the system of linear equations 

has a solution (ILl. ... ,ILn) E K n \ (0, ... ,0) then 
return( true, (ILl, ... , ILn)) 

else return(false) end 
end LINDEP 

Proof If ILl, ... , ILn E K n , then 

t ILj . (~Aij. bi) 

~(tAijILj) ·bi 

From the fact that b1 , •.• , bm are linearly independent we conclude that 
such a sum equals zero iff 

n 

LAijILJ = 0 
j=l 

for 1 SiS m. With this observation in mind, it is easy to prove the 
correctness of the algorithm. 0 
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We close this section with a proposition on the behavior of bases under 
homomorphisms. 

Lemma 3.16 Let V and W be K-vector spaces, ep : V ----+ W a homo
morphism. Then the following hold: 

(i) ep is injective iff for every linearly independent subset A of V, the set 
ep(A) is linearly independent in W. 

(ii) ep is surjective iff for every generating system G for V, the set ep(G) 
is a generating system for W. 

(iii) ep is bijective iff for every basis B of V, the set ep(B) is a basis of W. 

Proof (i) Assume that ep is injective, let A ~ V be linearly independent, 
Vb ... , Vn E A, and 

n 

L:.Ai . ep(Vi) = 0 (.Ai E K for 1 ::; i ::; n). 
i=1 

Then we have 

o = t.Ai . ep( Vi) = ep (t .Ai . Vi ). 

From the injectivity of ep we conclude that the sum in parentheses equals 
zero, and this together with the linear independence of A implies that all 
.Ai must be zero. For the converse, let V E V with ep( v) = O. Then we must 
have V = 0, since otherwise A = {v} would be a linearly independent set 
with ep(A) = {O} linearly dependent. 

(ii) Assume ep is surjective, let G be a generating system for V, and 
wE W. Then there exists v E V with ep(v) = w, and VI, ... , Vn E G with 

It follows that 

n 

V = L:.Ai· Vi 

i=1 

(.Ai E K for 1 ::; i ::; n). 

For the converse, let w E W be arbitrary. Since all of V is a generating 
system for V, ep(V) is a generating system for W, and thus there exist VI, 

... , Vn E V with 

and the expression in parenthesis is dearly an element of V. Statement (iii) 
is now an immediate consequence of the definitions. 0 



3.2. Independent Sets and Dimension 129 

3.2 Independent Sets and Dimension 

It is an immediate consequence of Exercise 3.11 that if a vector space V has 
a basis at all, then it will in general have infinitely many different bases. 
The aim of this section is to prove that if V has a finite basis, then any two 
bases will have the same number of elements. We perform the argument on 
a more abstract level because that way, we will be able to use it again in a 
different context in Section 7.1. 

From now on, let X be a set and U a non-empty collection of subsets of 
X, Le., 

o =1= U r; P(X). 

In the applications below, X will be a vector space and U the collection 
of all linearly independent sets, so the following terminology is natural: for 
any A r; X, "A is independent" will mean A E U, and "A is dependent" 
will mean A rt U. Assume now that U satisfies the following two axioms. 

(Ul) A independent implies B independent for all B r; A. 

(U2) Whenever A r; X and a, b1, b2 E X such that A U {b1, b2} is inde
pendent, A U {a} is independent, and b1 =1= ba, then at least one of 
AU {b1,a} and AU {a,b2 } is independent. 

Note that Ul implies that 0 is independent. The following theorem states 
that if two finite independent sets are given, then the smaller one can be 
enlarged by elements of the larger one to at least the size of the larger one 
without becoming dependent. 

Theorem 3.17 Let A and B be finite independent subsets of X with IAI ~ 
IBI, and let B' r; B be such that AU B' is independent while AU B' U {b} 
is dependent for all b E B \ B'. Then IA U B'I ~ IBI. 

Proof The claim is trivial if A r; B. Else, we proceed by induction on 
n = IAI. If n = 0, then necessarily B' = B. Now let n > 0, and assume for 
a contradiction that IA U B'I < IBI. Choose a E A \ B. Then 

I(A \ {a}) U B'I ~ IBI- 2, 

and by induction hypothesis, there exist b1 , b2 E B \ B' such that 

is still independent. Applying axiom U2 to (A \ {a}) UB', a, b1 , and b2 , we 
see that at least one of A U B' U {btl and Au B' U {ba} is independent, a 
contradiction. 0 

We call an independent set A maximal if A U {a} is dependent for all 
aEX\A. 
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Corollary 3.18 Assume that there exists an independent set A ~ X that 
is finite and maximal. Then every independent set B is finite with I B I ::; I A I , 
and if in addition, B is maximal too, then IBI = IAI. 

Proof If there were an infinite independent set, then by axiom U1, there 
would have to be a finite one with more than IAI elements. It thus suffices to 
show that every finite independent set B satisfies IBI ::; IAI, and IBI = IAI 
if B is maximal. So let B be finite and independent. If B had more than 
IAI elements, then A could be enlarged by at least IBI-IAI many elements 
and still be independent, contradicting its maximality. If B is maximal too, 
then by the above, we have both IBI ::; IAI and IAI ::; IBI. 0 

Lemma 3.19 Let V be a K-vector space, and let U be the collection of 
all linearly independent subsets of V. Then U satisfies axioms U1 and U2. 

Proof U1 is immediate from the definition of linear independence. Now 
let A, a, b1 , and b2 be as in U2, and assume for a contradiction that both 
A U {b1 , a} and A U {a, b2 } are linearly dependent. Then we must have b1 , 

b2 ~ A. Moreover, there exist linear combinations 

m 

A . a + J.t • bl + L Ai . Vi 0 
i=l 
n 

A' . a + J.t' . b2 + L A~ . Wi = 0, 
i=l 

where vb"" Vm , WI. ... , Wn E A, and in each equation, not all coefficients 
equal O. We must have A, J.t, N, J.t' =I- 0 since otherwise the above equations 
would constitute a contradiction to at least one of the premises of U2. 
Multiplying by 1/A and liN, respectively, we may assume w.l.o.g. that 
A = A' = 1. Subtraction yields 

m n 

J.t • b1 - J.t' • b2 + L Ai . Vi - L A~ . Wi = O. 
i=l i=l 

Combining like summands if necessary, we see that this contradicts the 
linear independence of A U {b1, b2 }. 0 

The proof of the following theorem is now immediate from Proposition 
3.10, Theorem 3.13, Corollary 3.18, and Lemma 3.19. 

Theorem 3.20 Let V be a K -vector space, and assume that V has a finite 
basis B. Then every linearly independent set in V has at most IBI many 
elements, every generating system for V has at least IBI many elements, 
and every basis of V has exactly IBI many elements. 0 

In the situation of the theorem, the vector space V is called finite
dimensional with dimension IBI. The dimension of V is then denoted 
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by dimK(V). If V is not finite-dimensional, then it is called infinite
dimensional, and one often writes dimK(V) = 00. Examples of finite
dimensional vector spaces are K n with dimension n for arbitrary field K 
(Exercise 3.9). Examples of infinite-dimensional vector spaces are the poly
nomial rings over any field K (Example 3.14). Determining basis and di
mension of residue class rings of these modulo an ideal will be one of the 
main applications of the theory of Grobner bases. 

From Theorem 3.20 together with Proposition 3.10, one easily deduces 
the following corollary. 

Corollary 3.21 Let V be a finite-dimensional K -vector space and B a 
finite subset of V with IBI = dimK(V). Then B is linearly independent iff 
it is a genemting system for V iff it is a basis of V. D 

We can now describe the behavior of the dimension under homomor
phisms. 

Lemma 3.22 Let V and W be finite-dimensional K-vector spaces and 
ep : V ~ W a homomorphism. Then the following hold: 

(i) If ep is injective, then dimK(V) ~ dimK(W). 

(ii) If ep is surjective, then dimK(V) 2: dimK(W), 

(iii) If ep is bijective, then dimK(V) = dimK(W), 

Proof Set n = dimK(V), and let B be a basis of V. If ep is injective, 
then ep(B) is linearly independent by Lemma 3.16 (i), and lep(B)1 = n, so 
n ~ dimK(W) by Theorem 3.20. Similarly, surjectivity of ep implies that 
ep(B) is a generating system for W with lep(B)1 ~ n, and so n 2: dimK(W). 
Statement (iii) is now immediate from the definitions. D 

Lemma 3.23 Let V be a finite-dimensional K-vector space, and let n = 
dimK(V). Then the following hold: 

(i) Every subspace U of V is finite-dimensional with dimK(U) ~ n, and 
the inequality is strict iff U i= V. 

(ii) A homomorphism from V to itself is injective iff it is surjective iff it 
is bijective. 

Proof (i) Let U be a subspace of V, and assume for a contradiction that 
U is not finite-dimensional. U contains a finite linearly independent set, 
namely, the empty set, but no finite linearly independent set can be max
imal, since such a set would be a finite basis by Proposition 3.10. We can 
thus successively enlarge Go = 0 to linearly independent sets G1, •.• , Gn +! 

with IGil = i for 1 :::; i ~ n+ 1. Then Gn+1 is linearly independent in V too 
and has n + 1 many elements, contradicting Theorem 3.20. The inequality 
dimK(U) ~ n follows from (i) of the previous lemma together with the fact 
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that the inclusion map from U to V is obviously an injective homomor
phism. Now assume that dimK(U) = n, and let B be a basis of U. Then 
B is a linearly independent subset of V with n many elements and thus 
a basis of V by Corollary 3.21. Hence every element of V, being a linear 
combination of elements of B, is an element of U. Conversely, if U = V, 
then trivially dimK(U) = dimK(V) = n. 

(ii) Let cp : V ~ V be a homomorphism. We show that each of in
jectivity and surjectivity of cp implies bijectivity. To verify the latter, it 
suffices by Lemma 3.16 to show that cp(B) is again a basis of V whenever 
B is a basis of V. So let B be a basis of V. If cp is injective, then by (i) 
of Lemma 3.16, cp(B) is a linearly independent subset of V with n many 
elements and thus a basis of V by Corollary 3.21. If cp is surjective, then 
by (ii) of Lemma 3.16, cp(B) is a generating system for V. Theorem 3.20 
tells us that cp(B) has at least n elements. Being the image of a set with n 
elements under a map, cp(B) cannot have more than n elements, and so we 
may apply Corollary 3.21 to conclude that cp(B) is indeed a basis of V. 0 

We have now provided all the linear algebra that will be needed in the 
sequel. For a better understanding, we point out some more consequences 
of the above results. If we apply Theorem 3.17 to the linear algebra situa
tion and assume that in addition, the larger independent set B is actually 
maximal, then we obtain the following result: given a finite basis B and a 
linearly independent set A in a K-vector space V, we can always enlarge 
A to size IBI, i.e., to size dimK(V), by adding elements from B, and the 
result is again a basis of V. This is also known as the Steinitz exchange 
theorem. We are now going to show how the statement of Exercise 3.11 can 
be used to obtain an algorithmic version of this fact. 

Theorem 3.24 (STEINITZ EXCHANGE THEOREM) Let V be a finite
dimensional computable K -vector space, and assume that we can effectively 
express any given vector as a linear combination of vectors from any given 
basis. Let B be a basis of V and A a linearly independent subset of V. Then 
the algorithm EXCHANGE of Table 3.2 replaces IAI many elements of B 
with the elements of A, thus enlarging A to a basis of V. 

Proof We claim that the tasks of the for-loop can always be performed, 
and that after the kth run through the loop, {Vl' ... ' Vk, bk+ l, ... , bn } is 
still a basis of V. Consider the first run, where k = 1. The first task can be 
performed since B is a basis of V, the second since Vi, being an element of 
the linearly independent set A, cannot be the zero vector. After switching 
indices on bi and bll {Vb b2, ... ,bn } is a basis of V by Exercise 3.11. Now 
assume that k> 1, and that after the (k - l)-st run, 

is a basis of V. Let us inspect the kth run. The first task can be performed 
by the assumption that we just made. If Ai were 0 for all k ::; i ::; n, then 
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TABLE 3.2. Algorithm EXCHANGE 

Specification: C ~ EXCHANGE(A, B) 
Enlarging A to a basis C using elements of B 

Given: A = {Vb' .• , Vm } ~ V linearly independent, 
B = {bl , ... , bn } a basis of V 

Find: a renumbering of {bl , ... , bn } such that 
C = {VI, .•• , Vm , bm +1, ... , bn } is again a basis of V 

begin 
for k = 1 to m do 

write Vk as a linear combination E7~II Ai . vi + E~=k Ai . bi 

select k :s; i :s; n with Ai :f:. 0 
switch indices on bi and bk 

end 
return( {VI, •.• , Vm , bm +1, ... , bn }) 

end EXCHANGE 

the equation 
k-I 

Vk - L Ai . Vi = 0 
i=I 

would be contradicting the linear independence of A, so the second task 
can be performed too. It follows again from Exercise 3.11 that after the 
indicated renumbering, the set {Vl, ... ,Vk,bk+}, ... ,bn } is still a basis of 
V.D 

Exercise 3.25 Extend A = {(1,2,O), (2,4,3)} to a basis of 1Q3. (Hint: Apply 
the algorithm EXCHANGE to A and the basis B of Exercise 3.9.) 

Exercise 3.26 Let V be a finite-dimensional computable K-vector space, and 
assume that we can effectively express any vector in Vasa linear combination 
of elements from any generating system. Use Exercise 3.12 to write an algorithm 
that shrinks any finite generating system for V to a basis of V. 

3.3 Modules 

Modules arise naturally in many problems related to the theory of commu
tative and non-commutative rings. The definition of a module is identical 
with that of a vector space except that the field K is replaced by an arbi
trary ring. Here, we will continue to consider just commutative rings with 
1. The concept of a module may also be viewed as a generalization of that 
of an ideal I in a ring R. (Recall that a subset I of R is an ideal of R if I 
is non-empty and closed under addition and multiplication with arbitrary 
elements of R.) 
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Definition 3.27 Let R be a ring. An R-module M is an additive Abelian 
group with an additional operation 0 : R x M -+ M, called scalar mul
tiplication, such that for all a, /3 E R and a, bE M, the following hold: 

(i) ao(a+b)=aoa+aob, 

(ii) (a + (3) 0 a = a 0 a + /3 0 a, 

(iii) (a· (3) 0 a = a 0 (/3 0 a), and 

(iv) loa = a. 

As before with vector spaces, we denote ring multiplication a . b by ab 
and scalar multiplication by a dot although it would again be possible to 
write aa for scalar multiplication too. It is easy to see that Lemma 3.3 
continues to hold for modules. Verification of the following examples is left 
to the reader. 

Examples 3.28 Let R be a ring. 

(i) Let I be an ideal of R. Then I forms an R-module with respect to 
the addition and multiplication of R. In particular, R itself can be 
regarded as an R-module, and the zero ideal {OJ forms an R-module. 

(ii) Let M = {OJ be the trivial additive Abelian group and set a ·0 = 0 
for all a E R. Then M is an R-module, the trivial R-module. 

(iii) If R is a field, then the class of R-modules is precisely the class of 
vector spaces over R. 

(iv) Let M = R n be a finite direct product of R as a ring. If we dis
regard multiplication on M and define scalar multiplication by a . 
(/31, ... , /3n) = (a/31,' .. , a/3n), then M is an R-module. M is called 
a free R-module of rank n. 

(v) Every polynomial ring R[X 1, ... ,XnJ over R is an R-module if we 
define scalar multiplication as multiplication by a constant in the 
polynomial ring. 

(vi) More generally, let cp be a ring homomorphism from R into some 
ring S. Then S forms an R-module when scalar multiplication 0 is 
defined by a 0 b = cp( a) . b for a E R and b E S. In particular, every 
extension ring S of R forms in a natural way an R-module: take for 
cp the natural embedding t : R -+ S. Moreover, for every ideal I in 
R, R/ I forms an R-module: take for cp the canonical homomorphism 
R-+R/I. 

(vii) Let M be an R-module and let cp : S -+ R be a ring homomorphism. 
Then M is also an S-module under the new scalar multiplication 0 

defined by a 0 b = cp(a) . b for a E Sand bE M. 
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(viii) Let R' = R[al,"" an] be a finitely generated extension ring of Rand 
let S = R[XI' ... ,Xn] be the polynomial ring in the indeterminates 
Xl, ... , Xn over R. Then by Lemma 2.17 (i), there is a unique ring 
homomorphism cp : S --+ R' with cp(Xi ) = ai' So by (vii) above, any 
R'-module M becomes an S-module with respect to the map cpo 

A map cp : M --+ M' between two R-modules M and M' is a homo
morphism of R-modules if for all a, bE M and a E R, 

cp(a + b) cp(a) + cp(b), and 

cp(a . a) = a . cp(a). 

A homomorphism from M to itself is called an endomorphism of M. 
Let M be an R-module and let N be an additive subgroup of M. Then 

N is a submodule of M if N is closed under scalar multiplication. We use 
the notation N $ M for "N is a submodule of M." Let M = R[X] be a 
univariate polynomial ring over the ring R, n E N, and N the subset of M 
consisting of all polynomials of degree less than or equal to n. Then N is 
a submodule of M, but not a subring of the ring R[X]. Natural examples 
of submodules are kernels of homomorphisms, where of course the kernel 
ker( cp) of a homomorphism cp : M --+ M' of R-modules consists of all 
a E M with cp(a) = O. 

Whenever B is a subset of M, then there exists a unique smallest sub
module N of M that contains B as subset. N consists of all linear combi-
nations 

N is called the submodule generated by B in M or the linear hull 
of B in M and will be denoted by lin(B). A generating system for M 
is a subset B of M with lin(B) = M. M is called a finitely generated 
R-module if M has a finite generating system. M is called a noetherian 
R-module if every submodule of M is finitely generated. Note that this 
definition is consistent with the one given for rings. As in the case of vector 
spaces, a subset B of M is called linearly independent if for all n E N+, 
aI, ... , an E B pairwise different, and al,'" an E R, 

n 

L ai . ai = 0 implies al = ... = an = O. 
i=1 

B is called a basis of M if in addition, B is a generating system for M. 
Recall from Section 3.1 that in case R is a field, every R-module that has 

a finite generating system has a basis. For modules over an arbitrary ring 
this is false in general; in fact, it is false whenever R is not a field. In that 
case, there exists an ideal {O} =1= I =1= R in R. Let now M be the R-module 
R/I. Note that {I + I} is a generating system for M, and assume for a 
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contradiction that B is a basis of M. Then B contains some a + I with 
a E R \ I. Now whenever 0 =F a E I, then a· (a + 1) = 0, a contradiction. 

We have already mentioned in Section 3.1 that every vector space has 
a basis under the set-theoretic assumption of Zorn's lemma. Under that 
assumption, one can still prove that every module has a maximal linearly 
independent subset; in the case of vector spaces, any such set is a basis, and 
it may also be characterized as a minimal generating system. In a module, 
a maximal linearly independent set need not be a generating system at all: 
we have just seen an example where 0 is a maximal linearly independent 
set. Minimal generating systems need not even exist in modules. 

Exercise 3.29 Let p E Z be a prime number, P = {pk IkE N}. Consider 
Zp, the ring of quotients of Z w.r.t. P. Since Z c Zp, we may regard Zp as a 
Z-module M. Show that M does not contain a minimal generating system. 

If M is an R-module and aI, ... , an E M, then the set syz(al"'" an) 
of all syzygies of the n-tuple (al"'" an) E Mn consists of all n-tuples 
a = (ab'" an) ERn such that 

n 

L ai . ai = a . a = O. 
i=l 

It is easy to verify that syz(ab"" an) forms a submodule of the R-module 
Rn, which is also called the the (first) module of syzygies of (ab ... , an). 

In Section 1.5, we have explained how one defines the residue class ring 
RI I of a ring R modulo an ideal I of R. In a similar way, we can form 
the factor module MIN of the module M w.r.t. the submodule N of 
M: its elements are the residue classes a + N of elements a E M, and the 
operations on MIN are defined by 

(a + N) + (b + N) 

a· (a+N) 

(a+b)+N, and 

a·a+N. 

Again, the map K, : M ---t MIN with K,(a) = a + N is a homomorphism 
of R-modules, called the canonical homomorphism. It will not come 
as a surprise now that the homomorphism theorem for rings has a perfect 
analogue for modules. We leave it up to the reader to make sure that the 
following theorem can be proved just like Theorem 1.55. 

Theorem 3.30 (HOMOMORPHISM THEOREM) Let <p : M ---t M' be a 
homomorphism of R-modules, N a submodule of M with N ~ ker <po Denote 
the canonical homomorphism from M to MIN by x. Then the map 't/J : 
MIN ---t M', 't/J(a + N) <p(a) is well-defined. 't/J is a homomorphism 
satisfying 't/J 0 X = <po 

M ~ M' 

xl /'t/J 

MIN 
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The map 1/J is surjective iff cp is surjective, and it is injective iff N = kercp. 
o 

The following universal property of the module Rn is easy to prove. 

Proposition 3.31 Let M be an R-module generated by {bl , ... , bn}. Then 
the map 

cp: Rn -- M 
n 

(al,'" ,an) t--+ 2: ai bi 
i=l 

is a surjective homomorphism of R-modules. In particular, M is isomorphic 
to Rnlker(cp). 0 

Proposition 3.32 (i) Let M and M' be R-modules, let cp : M -- M' 
be a surjective homomorphism, and assume that M is noetherian. 
Then M' is noetherian too. 

(ii) Let M be a noetherian R-module and let N::::; M. Then N and MIN 
are noetherian. 

(iii) Let M = Rn be a free R-module of rank n over a noetherian ring R. 
Then M is noetherian. 

(iv) Let M be a finitely generated R-module over a noetherian ring R. 
Then M is noetherian. 

Proof (i) Let N' ::::; M'. Then N = cp-I(N') ::::; M, and so N has a finite 
generating system C. Then cp(C) is a generating system for cp(N), and by 
the surjectivity of cp, cp(N) = N'. 

(ii) If N' ::::; N ::::; M, then N' ::::; M and so N' is finitely generated. Let 
K, : M -- MIN be the canonical homomorphism; then K, is surjective, and 
so by (i), MIN is noetherian. 

(iii) The proof is by induction on n. The case n = 1 being trivial, let 
n> 1, assume that Rn-l is noetherian, and let N be a submodule of Rn. 
Let 1r be the projection 

1r: 

and set 

Rn-l 

(al,'" ,an-I), 

1= {r E R I (0, ... ,0, r) EN}. 

It is easy to see that 1r(N) is a submodule of R n - l and I is an ideal of 
R. It follows that 1r(N) and I have finite generating systems B and C, 
respectively. Let D be a finite subset of N with 1r(D) = B, and set 

E = {(O, ... , 0, r) IrE C}. 
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It is clear that E too is a subset of N, and we claim that DUE, which is 
clearly a finite subset of N, is in fact a generating system for N. To see this, 
let a E N. Then 7l'(a) E 7l'(N) = lin(B), and so there exist at. ... , ak E R 
and bl , ... , bk E B with 

k 

7l'(a) = L ai . bi • 

i=l 

By the choice of D, we can find d l , ... , dk E D with 7l'(di ) = bi for 
1 ~ i ~ k. It is now easy to see that the element 

k 

b=a- Lai·di 
i=l 

of N satisfies 7l'(b) = 0, so that b = (0, ... ,0, r) for some r E R. This means 
that actually rEI, and thus there exist f3l, ... , f3k E Rand Cl, ... , Ck E C 
with 

i=l 

and thus, setting ei = (0, ... ,0, Ci) E E for 1 ~ i ~ I, we have 

I 

b = (0, ... ,0, r) = L f3i . ei· 
i=l 

Together, we obtain 

k I k 

a = b+ Lai ·di = Lf3i ·ei + Lai ·di E lin(DUE). 
i=l i=l i=l 

(iv) Let {bl , ... , bn } be a generating system for M. Then by Proposition 
3.31 above, the map 

r.p: Rn --+ M 
n 

(at. ... ,an) t---+ Laibi 
i=l 

is a surjective homomorphism. The claim now follows immediately from (i) 
and (iii). 0 

Notes 

The concept of an abstract finite-dimensional vector space over the field of 
real numbers was introduced by H.G. Grassmann in his Ausdehnungslehre 
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(1844/1862). In 1888, G. Peano presented an axiomatic approach to real 
vector spaces that included infinite-dimensional spaces. An entirely differ
ent motivation, namely, the study of hypercomplex number systems, had 
led W.R. Hamilton to the four-dimensional space of quaternions (1844), and 
A. Cayley to the eight-dimensional space of octaves (1845). Infinite-dimen
sional vector spaces provided the algebraic framework for the development 
of functional analysis through the interpretation of integral operators as 
linear maps on a real or complex vector space of functions. 

An axiomatic treatment of linear independence was given by B.L. van 
der Waerden in the 1930s in his Modem Algebra. Our axioms U1 and U2 in 
Section 3.2 are based on a different approach that is due to Whitney (1935), 
who observed that a multitude of algebraic, geometric, and combinatorial 
situations can be handled using such simple axioms. The general study of 
these axioms and their equivalents and applications constitutes the theory 
of matroids (see Welsh, 1976 and White, 1986). 

The Steinitz exchange theorem appears in Steinitz's Algebraische Theone 
der Kiirper (1910), where it is used in connection with algebraic indepen
dence in field extensions (cf. Theorem 7.23). 

The concept of a module is a common generalization of a vector space 
and an ideal of a ring; as we have mentioned before, the older algebraic 
literature often uses "module" as a synonym of "ideal." One may also view 
the module concept as a generalization of Abelian groups: every additive 
Abelian group is a Z-module under a natural scalar multiplication, where 
n . a is, loosely speaking, the n-fold sum of a with itself. The algebraic 
structure of R-modules for a ring R is intimately related to the structure 
of the ring R. This fact plays an important role in the structure theory 
of non-commutative rings. Noetherian rings and noetherian modules are 
named after E. Noether, who gave the first thorough study of ideals and 
modules in a purely axiomatic manner. 
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Orders and Abstract 
Reduction Relations 

The theory of Grabner bases deals with ideals in polynomial rings and is 
thus part of commutative algebra. However, the concept of binary relations, 
and in particular, of orders, is instrumental in making Grabner basis the
ory work. This chapter provides the necessary results by discussing binary 
relations on an abstract set M. Our treatment centers around the study of 
various kinds of finiteness properties such as well-foundedness. These prop
erties will later be used in a number of ways; eventually, however, their 
relevance lies in the fact that they provide termination proofs for certain 
algorithms. We will frequently encounter the axiom of choice which we 
discuss in an introductory section to this chapter. 

4.1 The Axiom of Choice and Some 
Consequences in Algebra 

The axiom of choice is concerned with infinite products of sets. In Section 
0.2, we defined the Cartesian product of of n sets A l , ... , An. The product 
of infinitely many sets, however, cannot be obtained in this way: a tuple 
of infinite length is not a mathematically meaningful object. To arrive at 
such a generalization, we must change our point of view slightly. An ele
ment (al,'" ,an) of the product Il~=l Ai can obviously be described by a 
function 

n 

f: {I, ... , n} ---- U Ai 
i=l 

with f(i) = ai E Ai for 1 ~ i ~ n. 

Definition 4.1 Let I be a set, {Ai hEf a family of sets indexed by elements 
of I. Then we define 

II Ai = { f : I ---- U Ai I f(i) E Ai for all i E I}. 
iEI iEI 

We are now in a position to state the axiom of choice. 

Axiom of choice (AC) If {AihEI is a family of non-empty sets, then 
IliEI Ai is not empty. 

141 
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The point about AC that deserves some comment is of course the fact 
that from a naive point of view, its statement is completely trivial. If each 
of the sets Ai is non-empty, then we can choose (!) an element ai E Ai for 
each i E I and define an element f of the product by setting f(i) = az• 

Unfortunately, assuming the existence of even the most innocuous looking 
mathematical objects can lead to surprisingly bizarre consequences, and 
even to contradictions. The formal system of axiomatic set theory, which is 
now commonly accepted as the foundation of modern mathematics, there
fore proceeds as follows. One starts out with a set of axioms that require 
the existence of those mathematical objects that are certainly indispens
able, such as the existence of the empty set, or the existence of the power 
set of any existing set. The formal system thus obtained is called Zermelo
Fraenkel set theory, denoted by ZF. ZF does not yet include the axiom 
of choice. Interestingly, we do not at present know for sure whether ZF is 
consistent, i.e., leads to contradictions or not, but we know that if we drop 
anyone of its axioms, then we can hardly do any mathematics at all. 

The first axiom that is somewhat questionable is AC. On the one hand, a 
great deal of mathematics can be done without it, and adding it in leads to 
some conclusions that are much less plausible than AC itself. On the other 
hand, there are some desirable mathematical results that require the axiom 
of choice, e.g., the fact that every vector space has a basis. In the early days 
of axiomatic set theory, the choice between using AC and dropping it was 
made difficult by the possibility of ZF being consistent and ZF + AC being 
inconsistent. It is now known that if ZF is consistent, then so is ZF+AC. 
Mathematicians therefore often use AC tacitly when they need it, but it 
is still considered good practice by many to indicate any use of AC. 

As a matter of fact, we have already encountered an application of AC. 
In Lemma 0.21, we have given a naive proof of the fact that for a surjective 
map r,p : A ~ B, there exists a map ¢ : B ~ A with r,p 0 ¢ = idB . 

The map ¢ was defined by letting ¢(b) be any preimage of bE B under r,p. 
Really what we have to do here is to consider the family 

of subsets of A, and then to apply the axiom of choice to obtain a function 

¢: B ~ U r,p-l({b}) 
bEB 

with ¢(b) E r,p-l({b}) for all bE B. 
We will now show how AC implies that every PID is a UFD. (Cf. the 

remarks following Definition 2.52.) We precede the proof with a lemma on 
PID's that does not use AC. 

Lemma 4.2 Let R be a PID. Then there are no infinite sequences {an}nEN 
of elements of R such that an+l properly divides an for all n E N. 
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Proof Assume for a contradiction that {an}nEN is such a sequence. Let I 
be the ideal generated by the set {an I n EN}, i.e., the set of all finite 
sums of multiples of elements of this set. Since R is a PIn, 1= Id(b) for 
some b E R. We conclude that bl an for all n E N. Furthermore b, being an 
element of I, can be written in the form 

k 

b= Lrian, 
i=l 

for certain rl, ... , rk E Rand nb ..• , nk E N. From this and the divisibility 
property of the an, we see that an I b for all n ~ no = max{nl, ... , nk}. 
Together, we obtain that ami I am2 for all mI, m2 ~ no, contradicting the 
fact that each an is properly divided by its successor. 0 

Note that the statement of the lemma is easy to understand for Euclidean 
domains such as Z or K[X]: here, an infinite sequence with proper divisi
bilities would give rise to a strictly descending sequence in N according to 
Lemma 2.50. 

Proposition 4.3 (Ae) Every PID is a UFD. 

Proof Let R be a PID. Uniqueness of the prime factor decomposition can 
be proved in the exact same way as for Euclidean domains in Theorem 2.51. 
To prove existence, let S be the set of all non-zero non-units of R that do 
not have a factorization into irreducible elements. Assume that S 10. For 
each a E S, set 

Da = {b E Sib properly divides a}. 

We claim that Da is not empty for any a E S. Indeed, if a had no proper 
divisors at all, then a would itself be irreducible, contradicting a E Sj and 
if no proper divisor of a were in S, then we could write a = be with b, 
e rj. S, and a factorization of a into irreducible elements could be obtained 
by combining two such factorizations of b and e, respectively. By the axiom 
of choice, there exists a function 

I: S-t U Da ~ S 
aES 

such that I(a) properly divides a for all a E S. We now recursively define a 
sequence {an}nEN of elements of S by taking for ao an arbitrary element of 
S and setting an+l = I(an)' Then an+! properly divides an for all n E N, 
contradicting the lemma above. 0 

The statement of the proposition above is actually of little relevance to 
us: we have proved in Chapter 2 that a polynomial ring over a ring R is 
either Euclidean (namely, in the univariate case with R a field), in which 
case we can prove unique factorization without the axiom of choice (Theo
rem 2.51), or else it is no longer a PIn (namely, in the multivariate case or 
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when R is not a field). One of the most important results on multivariate 
polynomial rings over a field is that-assuming the axiom of choice~>ne 
can prove that every ideal is still finitely generated. This is an immediate 
consequence of the Hilbert basis theorem, which we prove next. 

Definition 4.4 A ring R is called noetherian if every ideal of R is finitely 
generated. 

Lemma 4.5 (AC) Let R be a ring and let I(R) be the set of all ideals of 
R. Then the following are equivalent: 

(i) R is noetherian. 

(ii) For every B ~ R there exists a finite subset C of B with Id(C) = 
Id(B). 

(iii) Whenever {aihEN is a sequence of elements of R, then there exists 
mEN with am+! E Id(ao, ... , am). 

(iv) There does not exist a strictly ascending ~-chain of ideals of R, i.e., 
a family {Ii hEN of ideals of R with I j ~ Ik and I j =I Ik for j < k. 

Proof (i)==:}(ii): If B ~ R, then, since Id(B) is finitely generated, there 
exists a finite subset D = {db ... , dm } of Id(B) with Id(D) = Id(B). In 
particular, we may write 

k. 

di = LTijbij 
j=l 

for 1 ~ i ~ m. If we let C = {bij 11 ~ i ~ m, 1 ~ j ~ ki }, then C is a 
finite subset of B which generates Id(B) because for every b E Id(B), there 
exist Sl, ..• , Sm E R with 

m 

b = LSidi 
i=l 

m k. 

= LSi I>ijbij 
i=l j=l 
m k; 

= LLSiTijbij. 
i=l j=l 

(ii)==:}{iii): Let {aihEN be a sequence of elements of R. Setting 

1= Id( {ai liE N}), 

we conclude from (ii) that there exists mEN with I = Id(ao, ... , am), and 
so am+l E Id(ao, ... ,am) as desired. 
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(iii)==?(iv): Assume for a contradiction that {lihEN is a strictly ascend
ing ~-chain in I(R). By the axiom of choice, there exists a function 'I' 
that assigns to each 0 -I A ~ R an element of A. We can now recur
sively define a sequence {aihEN of elements of R by setting ao = '1'(10 ) and 
aHl = 'P(IHI \ Ii). By (iii), there exists mEN with 

am+1 E Id(ao, ... , am) ~ 1m, 

a contradiction. 
(iv)==?(i): Assume for a contradiction that 1 is an ideal of R that is not 

finitely generated. Then we can recursively define a sequence {Ii hEN of 
ideals of R as follows. As before, let 'I' be a choice function which assigns to 
each 0 -I A E P(R) an element of A, and let ao E I be arbitrary. Then we 
set ai+! = '1'(1 \ Id(ao, ... , ai», and Ii = Id(ao, ... , ai) for all i E N. Now 
{Ii hEN forms a strictly ascending ~-chain in I(R), contradicting (iv). 0 

Theorem 4.6 (HILBERT BASIS THEOREM) (AC) Let R be a noetherian 
ring. Then the polynomial ring R[X] is again noetherian. 

Proof Assume for a contradiction that I is an ideal of R[X] that is not 
finitely generated. Then I is not the zero ideal. Using the axiom of choice 
in a similar way as in the proof of the lemma above, we may now define a 
sequence {fihEN of elements of I as follows. Let fo be a non-zero element 
of 1 of minimal degree, and let fi+! be an element of minimal degree of 
I \ Id(fo, ... , fi). It is clear that then deg(fj) ::; deg(lk) for j < k. For 
i E N, we denote the head coefficient of /i by ai. By (iii) of the previ
ous proposition, there exists mEN with am+! E Id(ao, ... , am). Let TO, 
... , Tm E R be such that am+1 = Toao + ... + Tmam, and consider the 
polynomial 

m 

r = fm+! - L Xdeg(fm+d-deg(f.) Tdi . 

i=O 
We must have f* E 1\ Id(fo, ... , fm) since otherwise the equation above 
would imply that fm+1 E Id(fo, ... ,fm). Moreover, it is easy to see that 
deg(f*) < deg(fm+!), and thus the existence of f* contradicts the choice 
of fm+!. 0 

Corollary 4.7 If R is a noetherian ring, then R[Xlo .•• , Xnl is again 
noetherian fOT every n ~ 1. In particular, K[Xlo ... , Xnl is noetherian 
if K is a field. 

Proof The proofis by induction on n. If n = 1, then the claim is identical 
with the Hilbert basis theorem as stated above. If n > 1, it follows from 

R[XI, ... ,Xnl = R[XI, ... ,Xn-I][Xn] 

together with the induction hypothesis. The rest of the corollary is imme
diate from the fact that a field K has only two ideals, namely, {O} and K, 
both of which are finitely generated. 0 
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We point out that the last theorem and its corollary will not be used in 
the sequel; for the special case of polynomial rings over fields, in which our 
main interest lies, the existence proof of Grabner bases in Section 5.2 will 
constitute an independent proof of the Hilbert basis theorem. 

The axiom of choice is often used in an equivalent form called Zorn's 
lemma. Let X be a set and A ~ P(X), where P(X) denotes the power set 
of X. Then Y E P(X) is called a maximal element of A if YEA, and 
Y ~ Z implies Y = Z for all Z E A. A subset B of A is called a chain in 
A if for all Y, Z E B, we have Y ~ Z or Z ~ Y. We say that A is closed 
under unions of chains if UYE8 YEA for every chain B in A. 

Zorn's Lemma Let X be a set, A a non-empty subset 01 P(X) which is 
closed under unions 01 chains. Then A has a maximal element. 

The proof of AC from Zorn's lemma is actually fairly easy. Given {Ai liEf 

as in the premise of AC, take for X the set of all ordered pairs (i, a) with 
a E Ai' Then let 

A = {I: J -+ U Aj I J ~ I and l(j) E Aj for all j E J}. 
jEJ 

A is not empty because it contains all singletons {(i, a)} with a E Ai. (Note 
that we are using the precise definition of a function given in Section 0.2.) It 
is now easy to see that A is closed under unions of chains. Hence it contains 
a maximal element, and one easily proves that any maximal element of A 
is an element of IliEl Ai. 

The proof of the reverse implication is more tedious. The general idea 
is to start with any element of A and then to look for a maximal one by 
choosing supersets as long as this is possible. This gives a chain whose union 
is then the desired maximal element. A precise formulation of the definition 
of this chain requires the use of ordinal numbers and thus a considerable 
amount of set-theoretical work. 

We will now look at some results in ring theory that are dependent upon 
Zorn's lemma and thus indirectly upon the axiom of choice. Recall that by 
a ring, we always mean a commutative ring with 1. Let R be a ring and 
A ~ I(R) where I(R) denotes the set of all ideals of R. Then A is called a 
chain of ideals if it is a chain of sets, i.e., I, J E A implies I ~ J or J ~ I 
for all I, J E A. 

Exercise 4.8 Show that if A is a chain of ideals of a ring R, then UfEA I 
is an ideal of R. 

Let R be a ring, M any subset of R and I an ideal of R. Then we say 
that I is maximally disjoint from M if I n M = 0, and for all ideals J 
of R such that I ~ J, we have 1= J or J n M # 0. 
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Lemma 4.9 (AC) Let R be a ring, MeR, and I an ideal of R with 
I n M = 0. Then I is contained in an ideal J of R which is maximally 
disjoint from M. In particular, every proper ideal of R is contained in a 
maximal ideal. 

Proof Let A be the set of all ideals J of R satisfying I ~ J and J n M = 0. 
Then A -# 0 since lEA. A is closed under the union of chains by Exercise 
4.8 and the obvious facts that a union of elements of A is again disjoint 
from M and contains I. By Zorn's lemma, A has a maximal element J. J 
contains I, and so does any ideal which contains J. From the maximality 
of J in A one now easily concludes that J is maximally disjoint from M. 
In order to extend a proper ideal I to a maximal one, apply the general 
result to I and M = {t}. 0 

Lemma 4.10 Let R be a ring, M a non-empty multiplicative subset of 
R (i.e., a non-empty subset that is closed under multiplication), and I an 
ideal of R that is maximally disjoint from M. Then I is a prime ideal. 

Proof The ideal I is proper because M -# 0 and I n M = 0. For the 
argument below, we note that for a E R, the ideal Id(I, a) consists of all 
ring elements of the form 8 + ra with 8 E I and r E R. Now assume that 
I were not prime. Then there exist a, b E R with ab E I but neither a E I 
nor bEl. The ideals Id(I, a) and Id(I, b) then both properly contain I. 
Since I is maximally disjoint from M, we can thus find 81, 82 E I and r1, 
r2 E R with 81 + rIa, 82 + r2b E M. Since M is multiplicative, it follows 
that 

(81 + r1a)(82 + r2b) = 8182 + 81r2b + 82r1a + r1r2ab E M. 

But this is also an element of I, contradicting the fact that that I is disjoint 
from M. 0 

The following proposition is now obvious. 

Proposition 4.11 (AC) Let R be a ring, M a multiplicative subset of R, 
I an ideal of R with In M = 0. Then I is contained in a prime ideal P of 
R which is still disjoint from M. 0 

Proposition 4.11 can also be used to obtain a characterization of the 
radical of an ideal. 

Definition 4.12 Let R be a ring, I an ideal of R. Then the set 

{ a E R I as E I for some 8 EN} 

is called the radical of I and is denoted by rad(I). I is called a radical 
ideal if 1= rad(I). 

Proposition 4.13 (AC) Let R be a ring, I an ideal of R. Then rad(I) 
equals the intersection of all prime ideals containing I. 
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Proof Let a E rad(I) , P a prime ideal of R with I ~ P. Then as E P 
for some sEN and thus a E P. Conversely, assume that a rt. rad(I). Then 
M n 1= 0 where M is the multiplicative set { as I sEN}. By Proposition 
4.11, I is contained in a prime ideal P of R with M n P = 0. In particular, 
art. P. 0 

It is an immediate consequence of the proposition above that rad(I) is 
an ideal of R. 

Exercise 4.14 Give a direct proof of the fact that rad(I) is an ideal of R. 
Show that rad(rad(I)) = rad(I), meaning that rad(I) is in fact a radical 
ideal. 

Another important consequence of Zorn's lemma is that every vector 
space has a basis. 

Theorem 4.15 (AC) Let V be a K -vector space. Then V has a basis. 

Proof If V = {O}, then 0 is a basis of V. Otherwise, let U be the collection 
of all linearly independent subsets of V. Then U =I- 0 since {v} E U for 
every 0 =I- v E V. Let C be a chain in U, and set 

c= UU. 
UEC 

Then it is easy to see that C is again linearly independent: if a finite 
linear combination of elements of C equals zero, then each of the finitely 
many vectors occurring in the sum lies in some U E C, so they all lie 
in the one that contains all others (C is a chain!). But the latter set is 
linearly independent, so all coefficients of the linear combination must be 
zero. By Zorn's lemma, U has a maximal element which is a basis of V by 
Proposition 3.10. 0 

To conclude this section, let us take another look at the proof of Propo
sition 4.3. The argument exemplifies a construction that we will encounter 
frequently: if one has assigned to each element a of a set A a non-empty 
subset Aa of A, then one may obtain a sequence {an}nEN of elements of A 
with an+! E Aan for all n E N by choosing ao E A arbitrarily and setting 
an+! = f(an), where f is a choice function on A that satisfies f(a) E Aa 
for all a E A. In Theorem 7.29 of Section 7.2, we will need an interesting 
variant of this construction which requires a little more thought. Let J be 
a set, and for any field L, let us denote by L[X] the polynomial ring in 
the variables {Xj I j E J} as defined in the discussion following Lemma 
2.22. Suppose that we have a mathematical construction that defines, for 
any given field L, a certain proper ideal h of the polynomial ring L[X]. 
Now we are given a field K, and we wish to construct a sequence {Kn}nEN 
of fields such that Ko = K and for all n E N, 

(h ~ M a maximal ideal of Kn[X]). 
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The example is somewhat artificial at the moment, but the construction in 
Theorem 7.29 is quite similar; the only difference is that J will depend on 
L. Naively, one would proceed as follows. Assign to each field L the set 

AL = { L[X]/ M I h ~ M a maximal ideal of L[X] }. 

Then AL is not empty by Lemma 4.9, and one would set Ko = K and 
Kn+1 = f(Kn), where f is a choice function satisfying f(L) E AL for every 
field L. Unfortunately, this argument is not legitimate because the "choice 
function" f operates on the collection of all fields which is not a set in the 
framework of ZF. (If you are not familiar with ZF, just recall that ZF 
takes an extremely conservative attitude towards allowing things to call 
themselves sets. Also, you will just have to accept the arguments of the 
rest of this paragraph at face value.) However, a fairly simple proof shows 
that the construction of the sequence {Kn}nEN given above is perfectly 
legitimate in ZF+AC. It is clear that AL as defined above is a set for 
every field L. Using the axioms of ZF, it is not hard to show that for every 
n EN, the collection 

An = {L I there exist fields Ko, ... , Kn with Ko = K, Kn = L, and 
Ki E AK,_l for 1 ::; i ::; n} 

is actually a set, where K is still the given field that is to be the starting 
point of our sequence. Finally, the union A = UnEN An is a set, and it 
is easy to see that K E A, and AL is a non-empty subset of A for all 
LEA. So if we now consider a choice function 9 on A with the property 
that g(L) E AL for all LEA, then 9 is legitimately defined in ZF+AC. 
Moreover, it is not hard to see that 9 can replace f in the construction of 
the sequence {Kn}nEN above: we are now looking at a construction of the 
type that was described at the beginning of this paragraph. 

Exercise 4.16 If you are familiar with ZF, then formulate and prove a theorem 
in ZF+AC that shows that every construction like the one of {Kn}nEN above is 
possible in ZF+AC. 

From now on, we will no longer mark results that need the axiom of 
choice by an (AC), but we will maintain awareness of the problem. 

4.2 Relations 

Definition 4.17 Let M be a non-empty set. Recall that M x M denotes 
the set of all ordered pairs (a, b) of elements a, b EM. A (binary) relation 
on M is a subset r of M x M. The relation 

~(M) = {(a, a) I a EM} 

is called the diagonal of M. If r and s are relations on M, then 

r- 1 = { (a, b) I (b, a) E r} 
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is the inverse relation of r, and 

so r = { (a, c) I there exists bE M with (a, b) E r and (b, c) E s} 

is the product of the two relations rand s. If r ~ s, then s is called an 
extension of r. 

It may appear more natural to denote s 0 r by r 0 Sj our notation is, 
however, chosen in order to conform with the product of two maps j, 9 : 
M -t M when regarded as relations on M. To simplify the notation, rela
tions are frequently written in infix notation, i.e., arb stands for (a, b) E r. 
If the name of the relation is irrelevant, r is often simply denoted by an 
arroWj then a -t b means (a, b) E r. This notation suggests a convenient 
way of describing a relation -t on a small finite set M: it suffices to draw 
the elements of M as points in the plane and connect appropriate points 
by arrows. Consider e.g. the relation r = {(I, 3), (2, 3), (3, 2), (4, 1), (5, 5)} 
on M = {I, 2, 3,4, 5}. Then r is represented by the following diagram: 

3 

1 Ie}. 
\e 

4 

Exercise 4.18 Show that the product of relations is associative, but in 
general non-commutative, i.e., ro(sot) = (ros)ot but in general ros :#: sor 
for relations r, s, and t on M. 

Definition 4.19 Let r be a relation on M. Then r is called 

(i) reflexive if a(M) ~ r, 

(ii) symmetric if r ~ r- 1, 

(iii) transitive if r 0 r ~ r, 

(iv) antisymmetric if r n r- 1 ~ a(M), 

(v) connex if r U r-1 = M x M, 

(vi) irreflexive if a(M) n r = 0, 

(vii) strictly antisymmetric if r n r- 1 = 0, 

(viii) an equivalence relation on M if r is reflexive, symmetric, and 
transitive, 

(ix) a quasi-order on M if r is reflexive and transitive, 
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(x) a partial order on M if r is reflexive, transitive and antisymmetric, 

(xi) a (linear) order on M if r is a connex partial order on M, and 

(xii) a linear quasi-order on M if r is a connex quasi-order on M. 

The infix notation for an equivalence relation, a quasi-order, and a partial 
order on M is frequently'" or =, ~, and ::;, respectively. The inverse of~, 
::;, and -+ is denoted by ?:, ~, and f- , respectively. 

Exercise 4.20 (i) For each of the definitions (i)-(vii) above, write an 
equivalent version like the following one for symmetry: arb implies 
bra for all a, bE M. 

(ii) Show that if r is a relation that is irreflexive, symmetric, and transi
tive, then r = 0. 

(iii) Let X be a set. Show that ~ is a partial order on P(X). 

(iv) Let R be a ring, I an ideal of R. Show that the relation =1 on R 
defined by 

a =1 b iff a + I = b + I 
is an equivalence relation on R. 

(v) Let R be a domain. Show that the divisibility relation I on R is a 
quasi-order which is not linear in general. 

(vi) Let J be an interval on the real line and Xo E J. Define a relation ~ 
on C(J,JR) by 

f ~ 9 iff f(xo)::; g(xo). 

Show that ~ is a linear quasi-order. 

(vii) Convince yourself that::; on I'll, Z, Q, and JR are linear orders. 

For a thorough understanding of the theory below, let us explain ex
actly how the different kind of orderings are obtained from each other by 
specialization. 

quasi-orders 
/ '\. 

linear quasi-orders partial orders 

'\. / 
(linear) orders 

Quasi-orders are reflexive and transitive, but they allow non-comparable 
elements (i.e., a ~ b and b ~ a) and the situation a ~ b and b ~ a with 
a ~ b. The natural example to think of is divisibility on a domain such as Z. 
Passing to a linear quasi-order means to require, in addition, comparability 
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of any two elements, i.e., a :::S b or b :::S a for all a and b in the underlying 
set. The set of functions of (vi) above is an easy example. On the other 
hand, passing to a partial order means to require antisymmetry, i.e., a $ b 
and b $ a is now possible only if a = b. The set inclusion of (iii) above is 
the natural example. Finally, orders combine all these properties, and they 
are exemplified by the natural orders on N, Z, Q, and lR. Let us emphasize 
again that we use the terms "order" and "linear order" as synonyms. If $ 
is a linear order on the set M, then it is also common to express this by 
saying that "M is totally ordered by $." 

Exercise 4.21 Using finite sets and diagrams as described above, exhibit exam
ples of relations that are 

(i) reflexive and transitive but not symmetric, 

(ii) reflexive and symmetric but not transitive, 

(iii) symmetric and transitive but not reflexive. 

A partition of M is a subset IT of the power set P( M) of M such that the 
elements of IT are pairwise disjoint, non-empty subsets of M whose union 
equals M. A subset S of M is called a system of unique representatives 
for the partition IT of M if P n S contains exactly one element for each 
P E IT. Whenever '" is an equivalence relation on M, then 

[aJ = { b E M I b '" a} 

is called the equivalence class of a with respect to "', and the set 

{[aJI a EM} 

of all equivalence classes is denoted by Mirv. If, for example, we take for 
rv the equivalence relation =1 of Exercise 4.20 (iv), then, by the results of 
Section 1.5, 

[aJ {b E Rib =1 a} 

{bERlb+I=a+I} 

a+I 

for all a E R. We already know that the set of residue classes 

RI=1 = RI I = {a + I I a E R} 

forms a partition of R. We will now show that this phenomenon occurs 
with every equivalence relation and its equivalence classes. 

Lemma 4.22 (i) If rv is an equivalence relation on M and a, b E M, 
then [aJ = [bJ iff a rv b. 

(ii) Whenever rv is an equivalence relation on M, then Mirv is a partition 
ofM. 
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(iii) Whenever II is a partition of M, and the relation ""II on M is defined 
by "a ""II b iff there exists B E II with a, b E B," then ""II is an 
equivalence relation on M. 

Proof (i) Assume that raj = [bj. We always have, by the reflexivity of "", 
a E [a], and so in this case, a E [b], from which it follows that a "" b. Now 
suppose a "" b. To prove [a] ~ [b], let c E [a]. Then c "" a, which together 
with a"" b implies c"" b by the transitivity of "". We see that c E [b]. The 
proof of the reverse inclusion is similar if we observe that "" is symmetric. 

(ii) We have raj ~ M for each equivalence class, so their union is con
tained in M. Conversely, each a E M satisfies a"" a and thus a E raj, which 
shows that 

M~ U raj. 
aEM 

It remains to show that the equivalence cl88SeS are pairwise disjoint. As
sume for a contradiction that a, b, c E M with raj =1= [bJ but c E raj n [bJ. 
Then, by the definition of raj and [bJ and the symmetry of "", we have a "" c 
and c "" b and so a"" b. Now (i) yields the desired contradiction. 

(iii) Reflexivity and symmetry of ""II are immediate consequences of its 
definition. Now let a, b, c E M with a ""II band b ""II c. Then there exist 
B I , B2 E II with a, bE BI and b, c E E2. We see that bE BI n B2, and so 
BI = B2 because different elements of II are disjoint. It follows that a "" c. 
o 

Exercise 4.23 Let", and II be as in the lemma above. Then 

"'(M/~) = '" and M/("'n) = II. 

Recall that the difference between a quasi-order and a partial order on a 
set M is that the former allows the situation a :j b and b :j a with a =1= b. 
The next lemma shows that a quasi-order can be coerced into becoming a 
partial order by "lumping together" into equivalence classes those elements 
of M that cause the trouble. 

Lemma 4.24 Let :j be a quasi-order on M, and let us denote by "" the 
relation :j n (:j)-l on M. Then the following hold: 

(i) The relation"" is an equivalence relation on M. 

(ii) The relation :$; on M I"" given by raj :$; [bJ iff a :j b is well-defined, 
and it is a partial order on MI"". 

(iii) If:j is a linear quasi-order on M, then:$; is a linear order on M/"". 

Proof (i) If a E M, then a :j a, and so a "" a. If a "" b, then a ~ b and 
b:j a, which is also the definition of b "" a. Now assume that a "" band 
b "" c. Then a :j b and b :j c, and so a :j c. A similar argument shows that 
c :j a, and we see that a "" c. 
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(ii) To prove that ~ is well-defined, we must prove that a ~ b iff a' ~ b' 
whenever [a] = [a'] and [b] = [b']. Assume that a, a', b, b' E M have the 
latter property and a ~ b. Using Lemma 4.22 (i), we see that a' ~ a and 
b ~ b', and so a' ~ b' by the transitivity of ~. The reverse implication is 
immediate from the symmetry of the problem. Reflexivity and transitivity 
of ~ are now immediate consequences of the corresponding properties of 
~. For antisymmetry, suppose [a] ~ [b] and [b] ~ [a]. Then a ::::$ band b ::::$ a, 
whence a '" b and so [a] = [b]. 

(iii) If a, bE M, then a ~ b or b ~ a, and so [a] ~ [b] or [b] ~ [a]. 0 

The relation rv of the lemma above is called the equivalence relation 
associated with ~, and ~ is called the partial order associated with ::::$. 

Example 4.25 Let us look at the special case of the divisibility relation 
on a domain R. Here, a rv b means that a and b divide each other and thus 
are associated (Exercise 1.68 (xii)). The equivalence class [a] of a E R thus 
collects all elements of R that are associated to a; in particular, [0] = {O} 
and [1] is the set of all units of R. The resulting partial order ~ on Rj '" 
is defined by [a] ~ [b] iff a I b, and we get [1] ~ [a] ~ [0] for all a E R. 
(Cf. the remarks preceding Exercise 1.68.) In the special case R = Z, this 
means that [0] = {O} and [m] = {m, -m} for m =1= O. A system of unique 
representatives for Zj rv is then given by the natural numbers. 

Exercise 4.26 Describe the equivalence relation associated with the divisibility 
relation on R = K[X] where K is a field, and find a system of unique represen
tatives for R/",. 

Exercise 4.27 Assume that ~ on M is already a partial order. Show that 
each equivalence class w.r.t. the associated equivalence relation contains 
exactly one element. 

Let r be a relation on M. Then rUr-1 is obviously the smallest relation 
extending r that is symmetric on M. It is called the symmetric closure 
of r. In order to get the smallest transitive relation on M extending r, we 
first define powers rn of r for n E N recursively by 

Then we call 

the transitive closure of r, and 

00 

roO = Urn 
n=O 
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the reflexive-transitive closure of r. So if a, b EM, then a r* b if cither 
a = b, or there exists a chain 

a = al r a2 r ... r an = b (n ~ 2, al, ... , an EM). 

For a symmetric relation r, this shows that r* is also symmetric. 

Exercise 4.28 Let r be a relation on M. Show the following: 

(i) r+ is the smallest transitive relation on M extending r. 

(ii) r* is the smallest reflexive and transitive relation on M extending r. 
If r is symmetric, then it is in fact the smallest equivalence relation 
on M extending r. 

(iii) Let rl be the symmetric closure ofthe reflexive-transitive closure of r, 
and let r2 be the reflexive-transitive closure of the symmctric closure 
of r. Show that rl C;; r2, and give an example showing that the reverse 
inclusion does not hold in general. 

With any relation r on M one may associate the strict part rs = r \ r- l 
of r. Here, r will usually be a quasi-order j or a partial order:::; on M, in 
which case rs is denoted by -< or <, respectively; the inverse of -< or < is 
then denoted by )- or >, respectively. 

The most natural example to visualize the strict part of a relation is the 
natural order on fIT, where m < n means m :::; nand m =I n. If r is the 
divisibility relation on a domain R, then a rs b means that a I b but not 
b I a, i.e., a is a proper divisor of b. 

Exercise 4.29 Show the following: 

(i) Let r be a relation on M. Then r = rs iff r is strictly antisymmetric. 

(ii) If j is a quasi-order on M, then -< is strictly anti symmetric and 
transitive. 

(iii) Let:::; be a partial order. Whenever a, b E M, then a < b holds iff 
a :::; b and a =I b. 

In view of the above exercise, the strict part of a quasi-order j is called 
the strict partial order associated with j. 

4.3 Foundedness Properties 

Definition 4.30 Let r be a relation on M with strict part rs, and let 
N C;; M. Then an element a of N is called r-minimal (r-maximal) in N 
if there is no bEN with b rs a (with a rs b). For N = M the reference to 
N is omitted. A strictly descending (strictly ascending) r-chain in 
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M is an infinite sequence {an}nEN of elements of M such that an+! rs an 
(such that an rs an+!) for all n E N. The relation r is called well-founded 
(noetherian) if every non-empty subset N of M has an r-minimal (an 
r-maximal) element. r is a well-order on M if r is a well-founded linear 
order on M. 

When it is clear from the context what relation r is being referred to, 
we will often speak of just minimal (maximal) elements and chains. In this 
section, these concepts will be applied to quasi-orders only, but they will 
also be relevant for other types of relations later on. It is an easy observation 
that minimality of a in N can be expressed by the condition "b r a implies 
arb for all bEN," and its maximality by "a r b implies bra for all 
bEN." Examples for the concepts defined above will be easier to give 
after the following proposition. 

Proposition 4.31 Let r be a relation on M. Then r is well-founded (noe
therian) iff there are no strictly descending (no strictly ascending) r-chains 
inM. 

Proof If {an}nEN is a strictly descending r-chain in M, then the set 

has no r-minimal element. Conversely, suppose 0 i:- N ~ M and N has no 
r-minimal element. Then the set 

Aa = { bEN I b rs a} 

is not empty for each a EN. The axiom of choice, applied to the family 
{Aa}aEN, provides a function 

with f(a) rs a for all a E N. Let ao E N. Now the sequence {an}nEN 
defined recursively by an+! = f(an) forms a strictly descending r-chain. 
The case in parentheses is handled analogously. 0 

Examples 4.32 (i) Corollary 0.4 states that the natural order on N is 
a well-order. 

(ii) Lemma 4.2 says that the divisibility relation I on a PID is well
founded. 

(iii) Z, Q, and JR. with their natural orders are not well-founded. In the 
case of Z, the entire set Z, or also the set of all even integers, do not 
have minimal elements. In Q and JR., there are many more examples 
of subsets without minimal elements, e.g., half-open intervals of the 
form (a, b]. For similar reasons, none of these orders is noetherian. 
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(iv) We claim that the relation ~ on the set I(R) of ideals of a PID R is 
noetherian. Indeed, suppose there was an infinite sequence {In}nEN 
of ideals of R such that In was properly contained in In+! for all 
n E N. The axiom of choice provides us with a sequence {an}nEN of 
generators of the In, which, according to Exercise 1.68 (xi), would be 
an infinite sequence in which each member is properly divided by its 
successor, contradicting Lemma 4.2. 

Exercise 4.33 Let R be a domain. Show the following: 

(i) a E R is I-minimal in R iff it is a unit of R. 

(ii) A non-zero non-unit a E R is irreducible iff it is a I-minimal element of 
R\UR. 

(iii) If there exists a i= bE R which is I-maximal in R \ {a}, then R is a field. 

Before we discuss the theory of well-founded and noetherian relations, 
we describe two applications that should give an idea of the relevance of 
these concepts. Suppose first r is a well-founded (noetherian) relation on 
the set M, and P is a property that an element of M mayor may not have. 
Then the claim "P(a) for all a E M" can often be proved as follows. One 
assumes for a contradiction that the set 

N = { a E M I P( a) does not hold} 

is not empty. Then there exists an r-minimal (an r-maximal) element bE 
N, and one then tries to achieve the desired contradiction by proving the 
existence of an element c E N with c rs b (with b rs c). This type of 
argument is often referred to as noetherian induction, a terminology 
that is further explained by the following variant of the argument. 

Exercise 4.34 Let r be a well-founded (noetherian) relation on the set M, and 
let P be a property that elements of M mayor may not have. Suppose that the 
following can be proved: whenever a E M and PCb) holds for all b E M with 
b rs a (with a rs b), then pea) holds. Show that then pea) for all a E M. 

The second application concerns a fundamental problem of computer 
science and computational mathematics, namely, termination proofs for al
gorithms. To prove that an algorithm terminates for any input that meets 
certain specifications, one must essentially proceed as follows. Suppose that 
the algorithm employs m different variables. Let us call an m-tuple s of 
values, one for each variable, a state of the algorithm if there is a possi
ble course of the computation that starts with an input as specified and 
encounters the configuration s of values for the variables at some point. 
One must now try to find a set M with a well-founded relation r and a 
map <p from the set S of all states to M such that the following holds: 
whenever Sl and S2 are states such that the algorithm, being in state Sl, 
may move to S2 as its next state, then <P(S2) rs <P(Sl)' It is clear that the 
algorithm must then terminate, because an infinite run would give rise to a 
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strictly descending r-chain in M. The argument can of course be modified 
to employ a noetherian instead of a well-founded relation. 

Recall that for a quasi-order j on a set M, the equivalence relation '" 
associated with j is defined by a '" b iff a j band b j a. In order to show 
that a given quasi-order is well-founded, the following lemma is sometimes 
useful. 

Lemma 4.35 Let j be a quasi-order on M with associated equivalence 
relation "', let ~ be a well-founded partial order on N, and let cp : M ---+ N 
be a map such that for all a, b EM, the following hold: 

(i) a j b implies cp(a) ~ cp(b), and 

(ii) cp(a) = cp(b) implies a '" b. 

Then j is well-founded. 

Proof Assume for a contradiction that {an}nEN is a sequence of elements 
of M such that aj -< ai for i < j. Then cp(aj) ~ cp(ai)' and cp(ai) i= cp(aj) 
since otherwise ai '" aj. So {cp(an)}nEN forms a strictly descending ~-chain, 
a contradiction. D 

Let us take another look at the equivalence relation '" associated with a 
quasi-order j on a set M. It is defined in such a way that the "'-equivalence 
class [a] of a E M collects all b E M that satisfy a j band b j a. If we 
are given a subset N of M, then we may of course consider the restriction 
of j to N and combine elements into such equivalence classes within N. 
It is easy to see that for a EN, this "restricted equivalence class" equals 
[a] n N, where, as before, [a] is the equivalence class of a w.r.t. "'. 

Lemma 4.36 If, in the situation described above, the intersection [a] n N 
contains one element b which is j-minimal in N, then every element of 
[a] n N is j-minimal in N. 

Proof If an element c of N is in the same "'-equivalence class as the 
minimal element b, then c '" b, and so in particular, c j b. To prove that c 
is minimal in N, suppose d j c for some dEN. Then d j b by transitivity. 
From the minimality of b, it follows that b j d, and so c j d again by 
transitivity. 0 

The intersections with N of ",-equivalence classes of minimal elements of 
a set N will turn out to be an important tool in describing and visualizing 
various kinds of quasi-orders; we therefore call such an intersection a min
class in N. 

There is now an obvious description of well-foundedness in terms of min
classes: j on M is well-founded iff every non-empty subset of M has at 
least one min-class. There can, however, be anything from one to infinitely 
many such min-classes. If we take, for example, the divisibility relation on 
Z and consider the subset N = Z \ {1, -1 }, then N has the infinitely many 
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different min-classes {p, -p}, where p runs through all prime numbers (cf. 
Example 4.25). The next lemma characterizes those quasi-orders where the 
number of min-classes is always one. 

Lemma 4.37 Let j be a quasi-order on M. Then the following are equiv
alent: 

(i) Each non-empty subset N of M has exactly one min-class in N. 

(ii) j is linear and well-founded. 

Proof (i)===?(ii): To see that j is linear, let a, b E M. If we had a ~ band 
b ~ a, then, as one easily proves, the set N = {a, b} would have the two 
different min-classes {a} and {b}. Well-foundedness of j is now immediate 
from the fact that min-classes are not empty by definition. 

(ii)===?(i): Let N ~ M. Well-foundedness of j clearly implies the ex
istence of at least one min-class in N. Now let a and b be two minimal 
elements in N. Linearity of j implies that at least one of a j b and b j a 
holds, and from the minimality of a and b, it follows that each of these 
implies the other. We see that a rv b, and so the two are in the same 
tv-equivalence class. 0 

We have already noted in Exercise 4.27 that for a partial order, each min
class contains exactly one element. We thus obtain the following important 
lemma. 

Lemma 4.38 A partial order on M is a well-order iff every non-empty 
subset of M contains a unique minimal element. D. 

The direction "===?" of the lemma above will be used frequently through
out this book. It is reflected in a common choice of terminology: the unique 
minimal element of a subset w.r.t. a well-order is called its least element. 
An example is of course N with its natural order. For an example of a lin
ear, well-founded quasi-order that is really "quasi," i.e., not antisymmetric, 
we can modify Exercise 4.20 (vi): take for M the set of those functions in 
C(I, R) that satisfy f(xo) EN. Then if N ~ M, the unique min-class in N 
equals 

{ fEN I f(xo) = m }, 

where m is the least element of {g(xo) I g EN}. 
What we have not seen is an example where there are finitely many, but 

more than one min-classes. This can be achieved in a trivial way with a 
finite set: let M = {a, b, c}, and take j = tJ.M. Then M itself has the 
three min-classes {a}, {b}, and {c}. Infinite sets that have this property 
in a non-trivial way are not easily constructed. They are, in fact, our next 
object of study. 

Definition 4.39 Let j be a quasi-order on M and let N ~ M. Then a 
subset B of N is called a Dickson basis, or simply basis of N w.r.t. j if 
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for every a E N there exists some b E B with b ~ a. We say that ~ has 
the Dickson property, or is a Dickson quasi-order, if every subset N 
of M has a finite basis w.r.t. ~. 

In the literature, Dickson quasi-orders are also called well-quasi-orders. 
The authors of this book agree that one should generally make every effort 
to conform with existing terminology. In this particular case though, using 
the term well-quasi-order makes it exceedingly difficult for the beginner to 
understand the ensuing theory: we will often discuss two or more closely re
lated orders and quasi-orders and investigate whether they are well-founded 
and/or Dickson. It is therefore desirable to make a sharp terminological dis
tinction between well-foundedness and the Dickson property, especially in 
view of the fact that a well-founded order is called a well-order. Besides, the 
term well-quasi-order is not universally agreed upon: Dickson quasi-orders 
have also been called narrow quasi-orders. 

Note that a finite set always has a finite basis, namely, itself, so the 
Dickson property is relevant only for infinite N ~ M. The next lemma 
provides a natural class of examples of Dickson quasi-orders. 

Lemma 4.40 Every well-founded linear quasi-order has the Dickson prop
erty. In particular, every well-order has the Dickson property. 

Proof Let ~ be a well-founded linear quasi-order on the set M, and let 
o =P N ~ M. Then N has a minimal element b, and we claim that B = {b} 
is a basis of N. Indeed, every a E N satisfies at least one of a ~ b and 
b ~ a, and we cannot have the former without the latter by the minimality 
of b. D 

We see that the most obvious example of a Dickson quasi-order is the 
natural linear order on N, where a basis of a non-empty set N is given 
by the one-element set consisting of the least element of N. The Dickson 
property is much more interesting for non-linear quasi-orders, but examples 
of those are not easy to come by. We will have to do a little theory out in 
mid-air before we can construct them. 

Exercise 4.41 Show the following: If a quasi-order ~ is Dickson, then so 
is every quasi-order ~' extending ~. 

Condition (iii) of the proposition below is the best we will have for a 
while to visualize Dickson quasi-orders. Together with Lemma 4.37, it also 
provides an immediate second proof of Lemma 4.40. 

Proposition 4.42 Let ~ be a quasi-order on M with associated equiva
lence relation rv. Then the following are equivalent: 

(i) ~ is a Dickson quasi-order. 

(ii) Whenever {an}nEN is a sequence of elements of M, then there exists 
i < j with ai ~ aj. 
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(iii) For every nonempty subset N of M, the number of min-classes in N 
is finite and non-zero. 

Proof (i)~(ii): Set N = {an I n EN} and let B be a finite basis of N. 
Pick j E N such that j > i for all i E N with ai E B. Then aio :S aj for 
some aio E B, and the choice of j implies io < j. 

(ii)~(iii): Suppose there exist infinitely many min-classes in some non
empty subset N of M. Using the axiom of choice, we get an infinite sequence 
{an}nEN of pairwise ",-inequivalent minimal elements in N. By our assump
tion (ii), ai :S aj for some i < j. From the the minimality of aj, we conclude 
that aj :S ai and so ai '" aj, a contradiction. If, on the other hand, N has 
no minimal element, then we can produce a strictly descending :S-chain as 
in the proof of Proposition 4.31, contradicting (ii). 

(iii)==>(i): Let N be a non-empty subset of M. Choosing one element 
out of each of the finitely many min-classes, we can find a finite subset B 
of N such that each b E B is minimal, and such that every minimal a E N 
is "'-equivalent to some b E B. We claim that B is a basis of N. Let a E N. 
Then the set 

N' = { dEN I d :S a } 

contains a minimal element c. It is easy to see that c is minimal in N too, 
and so c rv b for some b E B. We now have b:S c:S a and hence b:S a. 0 

There are two important corollaries to the above proposition. The first 
one deals with Dickson quasi-orders that are actually partial orders. In its 
proof, we will use the statement of Exercise 4.27. 

Corollary 4.43 Let:$ be a Dickson partial order on M. Then every non
empty subset N of M has a unique minimal finite basis B, i. e., a finite 
basis B such that B ~ C for all other bases C of N. B consists of all 
minimal elements of N. 

Proof Let B be the set of all minimal elements of N. Then by the propo
sition, B is finite and non-empty. Moreover, for every a E N there exists 
some b E B with b :$ a. So B is a basis of N. Let now C be another basis 
of N. Then for every b E B there exists some c E C such that c :$ b, and 
so c = b by the minimality of b. This shows that B ~ C. 0 

The next corollary is immediate from condition (iii) of Proposition 4.42. 

Corollary 4.44 Every Dickson quasi-order is well-founded. 0 

The converse of this last corollary is false in general: consider the divisi
bility relation I on Z. We know that I is well-founded (Example 4.32 (ii)), 
and we have already mentioned that in N = Z \ {1, -1 }, there are the 
infinitely many min-classes {p, -p} (p prime). This counterexample also 
nicely illustrates the equivalences of Proposition 4.42: if {Pn}nEN is a se
quence of pairwise different prime numbers, then there are no divisibilities 
in this sequence, and so I does not satisfy Proposition 4.42 (ii). Only in 
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the presence of linearity does well-foundedness indeed imply the Dickson 
property, because then the number of min-classes in each subset shrinks to 
one (Lemma 4.37). 

The following proposition strengthens condition (ii) of Proposition 4.42. 

Proposition 4.45 Let ~ be a Dickson quasi-order on M, and let {an}nEN 
be a sequence of elements of M. Then there exists a strictly ascending 
sequence {ni hEN of natuml numbers such that an. ~ an; for all i < j. 

Proof We define the sequence {nihEN recursively, and by simultaneous 
induction on i we verify the following properties: 

(i) an, ~ ani+l for all i E N, and 

(ii) for all i E N, the set {n E N I an, ~ an} is infinite. 

For i = 0, let {b1, ..• , bk } be a finite basis of the set {an In EN}, and for 
each j with 1 ~ j ~ k, set 

Then U;=l Bj = N by the choice of B. Since the union of finitely many 
finite sets is finite, we can find a B j which is infinite. Moreover, bj = am 
for some mEN, and we set no = m. For i + 1, we consider the set 

By condition (ii) for i, the set {n E N I an E Ui } is infinite. Choosing some 
finite basis of Ui, we can, as before, find an element am in this basis such 
that am ~ an for infinitely many different n EN, and we take niH = m. 
Conditions (i) and (ii) obviously continue to hold. It now follows easily 
from condition (i) and the transitivity of ~ that {nihEN has the desired 
property. 0 

For greater clarity, we did not mention the axiom of choice explicitly in 
the above proof. It is important to note, however, that we have used AC. 
This is because whenever a sequence {nihEN is defined recursively, then 
really niH is defined as F(ni) (or, more generally, as F({no, ... ,nil»~, 
where F is a function whose existence must be a priori guaranteed. Here, 
F is a function that assigns to each kEN with the property that ak ~ an 
for infinitely many n E N a natural number F(k) > k such that ak ~ aF(k) 

and aF(k) again has the property that aF(k) ~ an for infinitely many n E N. 
If ~ is a (Dickson) quasi-order on M, then we call (M,~) a (Dickson) 

quasi-ordered set; similarly for partial orders, orders, and well-orders on 
M. Recall that if M and N are sets, then the Cartesian product M x N 
of M and N is the set of all ordered pairs (a, b) with a E M and bEN. 
Let now (M,~) and (N,~) be quasi-ordered sets (where the quasi-orders 
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on M and N may be different). Then we define a quasi-order -::5.' on M x N 
as follows: 

( a, b) -::5.' (c, d) iff a -::5. c and b -::5. d 

for all (a, b), (c, d) E M x N. It is easy to see that that -::5.' is indeed 
reflexive and transitive. (M x N, -::5.') is called the direct product of the 
quasi-ordered sets (M, -::5.) and (N, -::5.). 

It is obvious that direct products of linear quasi-orders are not again 
linear in general: if we form N x N with the natural order on each copy 
of N, then the elements (0,1) and (1,0) are incomparable. Therefore, the 
following important theorem finally provides us with a means to construct 
non-linear Dickson quasi-orders from the linear ones that we had before. 

Theorem 4.46 Let (M, -::5.) and (N, -::5.) be Dickson quasi-ordered sets, and 
let (M x N, -::5.') be their direct product. Then (M x N, -::5.') is a Dickson 
quasi-ordered set. 

Proof We verify (ii) of Proposition 4.42. Let {(an. bn)}nEN be a sequence 
of elements of M x N. By Proposition 4.45, there exists a strictly ascending 
sequence {nihEN such that an. -::5. an, for all i < j. By (ii) of Proposition 
4.42 applied to the sequence {bn• hEN, there exist i < j with bni -::5. bn, and 
thus (an., bn,) -::5.' (an" bn,). 0 

The definition of a direct product of two quasi-ordered sets extends natu
rally to an arbitrary finite number n of factors: if (Mi' -::5.) are quasi-ordered 
sets for 1 :S i :S nand M = MI x··· x Mn is their Cartesian product, then 
the direct product of the (Mi' -::5.) is the quasi-ordered set (M, -::5.'), where 
-::5.' is defined by 

The following corollary can now easily be proved form Theorem 4.46 using 
induction on the number of factors. 

Corollary 4.47 Let (Mi' -::5.) be Dickson quasi-ordered sets for 1 :S i :S n, 
and let (M, -::5.') be the direct product of the (Mi' -::5.). Then (M, -::5.') is a 
Dickson quasi-ordered set. 0 

The following special case which is known as Dickson's lemma is of 
utmost importance for the theory of Grobner bases. (Recall that the natural 
order on N, being linear and well-founded, is Dickson.) 

Corollary 4.48 (DICKSON'S LEMMA) Let (Nn, :S') be the direct product 
ofn copies of the natural numbers (N,:S) with their natural ordering. Then 
(Nn, :S') is a Dickson partially ordered set. More explicitly, every subset S 
of Nn has a finite subset B such that for every (ml,"" m n ) E S, there 
exists (k l , ... , kn ) E B with k i :S m. for 1 :S i :S n. 0 
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Our proof of Dickson's lemma requires the axiom of choice since the 
proof of Theorem 4.46 uses the implication (ii) ==> (i) of Proposition 4.42 
as well as Proposition 4.45. It is worthwhile noting that if one is content 
with Dickson's lemma itself rather than the more general Corollary 4.47, 
then one does not need the axiom of choice; the following proposition can 
obviously replace Theorem 4.46 in the proof of Dickson's lemma. 

Proposition 4.49 Let (M,~) be a Dickson quasi-ordered set, (N,:5) the 
natuml numbers with the natuml order. Then the direct product (M x N, ~') 
is a Dickson quasi-ordered set. 

Proof Let S be a non-empty subset of (M x N, ~'). For every n E N, we 
set 

Mn={aEMI(a,n)ES}, 

and we let Bn be a finite basis of Mn and C a finite basis of UnEN Bn. 
Finally, let r E N be such that C ~ U~=l Bi, and set 

B = { (a, i) EM x N 11 :5 i :5 r, a E Bd. 

It is clear that B is a finite set, and we claim that it is also a basis of S. 
Let (a,n) E S. Then a E Mn, and so we can find b E Bn with b ~ a and 
thus (b, n) ~' (a, n). If n :5 r, then (b, n) E B and we are done. Otherwise, 
there exists e E C with e ~ b ~ a, and e E Bi for some i :5 r < n. We see 
that (e, i) E B and (e, i) ~' (a, n). 0 

Exercise 4.50 Draw a two-dimensional coordinate system (of which you will 
need the first quadrant only) with the points 1-10 labeled on each axis. Identifying 
the element (m, n) of N2 with the point whose x- and y-coordinates are m and n, 
respectively, use shading to indicate the following subsets of N2 in your picture. 

A = { (m, n) E N2 I 3 ~ m, 4 ~ n} 

B = { (m, n) E N2 I 5 ~ m, 1 ~ n} 

C = {(m, n) E N2 11 ~ m, 2 ~ n} 

Now indicate the set D = (A U B) n C, and find a finite basis of D according to 
Dickson's lemma. Do it with common sense first, then try to follow the proof of 
the proposition above. 

We conclude the discussion of the Dickson property by taking another 
look at the relationship between the Dickson property and well-founded
ness. We saw that every Dickson quasi-order is well-founded, but not vice 
versa (Corollary 4.44 and the discussion following it). Since every quasi
order that extends a given Dickson quasi-order is Dickson too, we immed~
ately obtain the following lemma which will be of great importance in the 
theory of Grabner bases. 

Lemma 4.51 Let ~ be a Dickson quasi-order on M. Then every quasi
order ~' on M extending ~ is well-founded. 0 
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The following lemma (which is of much less importance to us than the 
previous one) shows that the converse is true too. 

Lemma 4.52 Let :5 be a quasi-order on M. Then :5 has the Dickson 
property iff all quasi-orders :5' on M extending :5 are well-founded. 

Proof The direction "~" is Lemma 4.51. Conversely, suppose :5 is not 
Dickson. Then by Proposition 4.42 there exists a sequence {an}nEN of ele
ments of M such that ai ~ aj for all i < j. We will define a quasi-order :5' 
on M which extends :5 and is not well-founded. We set b :5' c iff b :5 cor 
there exist i < j such that b :5 aj and ai :5 c. Then :5' clearly extends :5. 
Moreover, :5' is obviously reflexive, and a straightforward though somewhat 
tedious argument shows that it is also transitive and hence a quasi-order 
on M. We claim that {an}nEN is a strictly descending :5'-chain. It is im
mediate from the definition of :5' that aj :5' ai for i < j, and it remains to 
prove that ai ~' aj for all i < j. Assume for a contradiction that ai :5' aJ 

with i < j. Since ai ~ aj, there must exist l, kEN with k < l such that 
ai :5 al and ak :5 aj. But this implies that l :::; i and j :::; k, which in turn 
implies l < k, a contradiction. 0 

We will now discuss a condition on partially ordered sets that will turn 
out to be a weakening of the Dickson property. 

Definition 4.53 Let :::; be a partial order on the set M. If a EM, then 
we call the set 

Ua = { b E M I a < b} 

the upper set (w.r.t. :::;) of a in M. We say that:::; has the Konig prop
erty, or is a Konig partial order, if for all a E M, the upper set Ua has 
a finite basis, and so does the entire set M. 

The above definition would also make sense for quasi-orders, but is really 
relevant only for partial orders. It is clear that every Dickson partial order 
is Konig; the example below shows that the converse is not true. 

Example 4.54 Let M be the set of all finite tuples whose entries are either 
o or 1, i.e., 

M= U{o,l}n. 
nEN 

It is easy to see that the relation :::; on M defined by 

is a partial order on M. The partially ordered set (M, $) is also called 
the full binary tree, and the following diagram indicates how it should be 
visualized. 
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(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 

~ ~ ~ ~ 
(0,0) (0,1) (1,0) (1,1) 

~ ~ 
(0) (1) 

o 
From the definition of ::;, it is easy to see that a finite basis of the upper 
set of an element (al"'" am) EM is given by the set 

{(al,.'" am, 0), (al"'" am, In. 

Moreover, {0} is a basis of all of M, and so ::; has the Konig property. On 
the other hand, the elements of the set 

N = { (all' .. , an+!) E Min E N, ai = ° for 1 ::; i ::; n, and an+l = 1 } 

are all incomparable under ::;. So N cannot have a finite basis, and we see 
that ::; does not have the Dickson property. 

The main theorem on Konig partial orders states that the following 
weaker version of the property of Proposition 4.45 holds. 

Theorem 4.55 (KONIG'S LEMMA) Let::; be a Konig partial order on the 
infinite set M. Then there exists a sequence {an}nEN of elements of M 
such that am < an for all m < n. 

Proof We define the desired sequence recursively, and by simultaneous 
induction on n, we verify the following properties for all n E N. 

(i) an < an+!' 

(ii) The upper set Uan of an is infinite. 

Let B be a finite basis of all of M. It is clear that then 

M= U({b}UUb)' 
bEB 
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Since M is an infinite set, there must exist b E B such that Ub is infinite, 
and we take for ao such an element of B. Now suppose ai has been defined 
for 0 ~ i ~ n. Let Bn be a finite basis of the upper set Uan of an. Then 
clearly 

Uan = U ({b} U Ub), 

bEBn 

and since Uan is infinite by induction hypothesis, Ub must be infinite for 
at least one b E Bn. Now if we take for an+! such an element of B n, then 
an+! satisfies conditions (i) and (ii). 0 

Exercise 4.56 Explain how the above proof of Konig's lemma uses AC. (Hint: 
Cf. the remarks following the proof of Proposition 4.45.) 

Exercise 4.57 Use Konig's lemma to give an alternate proof of Proposition 4.45 
for partial orders. 

Exercise 4.58 Let ~ be a partial order on the non-empty set M. Show that :5 
has the Konig property iff the number of :5-minimal elements in M and in every 
non-empty upper set Ua (a E M) is finite and non-zero. (Hint: Imitate the proof 
of Proposition 4.42.) 

4.4 Some Special Orders 

Besides Dickson's lemma, the other essential combinatorial ingredient in the 
theory of Grabner bases is the concept of admissible orders. To see what this 
means, we must first recall from Section 2.1 that Nn is an additive Abelian 
monoid in a natural way: the operation is componentwise addition of n
tuples, and (0, ... ,0) is the neutral element. If M is any Abelian monoid, 
we will denote its binary operation by + and its neutral element by O. 

Definition 4.59 Let M be an Abelian monoid and let ~ be a linear order 
on M. Then we say ~ is admissible if for all a, b, c EM, 

(i) 0 ~ a, and 

(ii) a < b implies a + c < b + c. 

If ~ is an admissible order on M, then we call (M,~) an ordered monoid. 

Exercise 4.60 Show that any ordered monoid satisfies the following can
celation law: 

a + c = b + c implies a = b 

for all a, b, c EM. 

The following exercise provides the most important examples of admis
sible orders on the additive monoid Nn. 
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Exercise 4.61 Show that each of the following is an admissible order on 
the additive monoid Nn. 

(i) (kb ... ' kn) ~ (mb ... , mn) iff the following condition holds: either 
(k1' ... ' kn ) = (m1' ... ' mn ), or there exists 1 ~ i ~ n with kj = mj 
for 1 ~ j ~ i - 1 and ki < mi. This admissible order is called the 
lexicographical, or lexical, order on Nn since it orders the elements 
of Nn as if they were words in a dictionary, where 0 is the letter A, 1 
is the letter B, and so on. 

(ii) (k1, ... , kn ) ~ (m1, ... ,mn ) iff the following condition holds: either 
(k1, ... , kn ) = (mb ... , mn ), or there exists 1 ~ i ~ n with kj = mj 
for i + 1 ~ j ~ n and ki < mi. This admissible order is called the 
inverse lexicographical, or inverse lexical, order on Nn . 

(iii) Let ~' be an order on Nn that satisfies condition (ii) of Definition 
4.59, e.g., an admissible order or the inverse of an admissible order. 
Set (kb" . , kn ) ~ (m1, ... , m n ) iff the following condition holds: 

n n 

Lk. < Lmi, or 
i=l i=l 
n n 

Lki = Lmi and (kl, ... ,kn)~' (m1, ... ,mn ). 

i=l i=l 

(iv) Let 1 ~ i < n, let ~1 and ~2 be admissible orders on Ni and Nn-i, 
respectively, and set (k1, ... , kn ) ~ (mb' .. ' m n ) iff the following 
condition holds: 

(k1 , ... , ki) <1 (mb ... , mi), or 
(kb ... ,ki) = (mb···,m.) and (k i +1, ... ,kn) ~2 (mi+1, ... ,mn). 

This type of order is often referred to as a block order on Nn. 

In the following discussion, we use the notation (m) for the n-tuple 
(m1, ... ,mn ). 

Theorem 4.62 Let 0 I- n EN. Let ~ be an admissible order on the ad
ditive monoid Nn and ~' the partial order on Nn as a direct product of n 
copies of N with its natural order. Then 5 is a well-order, and it extends 
~', i.e., (k)~' (m) implies (k) ~ (m) for all (k), (m) E Nn. 

Proof If (k) ~' (m) in Nn, then there exists (l) E Nn with (k) + (l) = (m). 
Since (0) ~ (l), this implies 

(k) = (k) + (0) ~ (k) + (l) = (m). 

This shows that ~ extends ~'. By Dickson's lemma, ~' is a Dickson partial 
order on Nn, and so by Lemma 4.51, ~ is a well-order on Nn. 0 
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To prove the important fact that every admissible order is a well-order, 
we have used Lemma 4.51 which in tum really was a corollary to the general 
theory. The following exercise provides a more hands-on proof which shows 
how one obtains ~-minimal elements from finite bases w.r.t. ~'. 

Exercise 4.63 Let 0 =i n E N. Let :5 be an admissible order on the additive 
monoid Nn and :5' the partial order on Nn as a direct product of n copies of N 
with its natural order. Suppose N is a non-empty subset of Nn • Let B be a finite 
basis of N w.r.t. the Dickson quasi-order :5', and let b be the :5-least element of 
B. Show that b is the :5-least element of N. 

We will now describe a method to construct admissible orders on Nn. 
Consider the ring R[Z] of univariate polynomials in Z with real coefficients. 
For 0 =I- f E R[Z], we denote by HC(f) the head coefficient of f, i.e., the 
coefficient of zm in f where deg(f) = m. Define 

p = {f E R[Z] I f =I- 0, HC(f) > O}, 

and set 
f ~ 9 iff 9 - f E P U {O}. 

Then one easily verifies that ~ is a linear order on JR.[Z] in with r < Z for 
all r E JR. Moreover, on JR this order coincides with the natural linear order 
of R. As an extension ring of Q, JR[Z] forms in a natural way a Q-vector 
space. We will call at. ... , an E JR[Z] rationally independent if they are 
linearly independent in this Q-vector space. 

Lemma 4.64 Let 0 < at. ... , an E JR[Z] be rationally independent, and 
let the relation :5 on Qn be defined by 

n n 

(ql,' .. ' qn) :5 (rl, ... , rn) iff L aiqi ~ L airi· 
i=l i=l 

Then ~ is a linear order, and ~ n (Nn)2 is an admissible order on Nn. 

Proof The fact that ~ is reflexive, transitive, and connex is obvious. Anti
symmetry follows from the fact that al, ... ,an are rationally independent. 
If (q), (r), (s) E Qn and (q) ~ (r), then 

n n 

Laiqi ~ Lairi, 
i=l i=l 

and so 
n n 

L ai(qi + Si) ~ L ai(ri + Si). 
i=l i=l 

We see that (q) + (s) ~ (r) + (s). Finally, we have (0) ~ (q) for (q) E Nn 
since 

n 

Laiqi ~ o. 0 
i=l 



170 4. Orders and Abstract Reduction Relations 

It can be proved that in fact every admissible order on Nn can be obtained 
in this way, using polynomials at, ... , an of degree less than or equal to n 
(cf. Section "Term Orders and Universal Grabner Bases" on p. 514 in the 
appendix). The following examples, whose verification is left to the reader, 
demonstrate this for some special cases. 

Examples 4.65 (i) The lexicographical order on Nn is induced by 

(zn-t, zn-2, ... , Z, 1). 

(ii) The inverse lexicographical order on Nn is induced by 

(1, Z, ... , zn-2, zn-l). 

(iii) The order of Exercise 4.61 (iii) on Nn is induced by 

(zn + zn-t, zn + zn-2, ... , Zn + Z, zn + 1). 

A slightly trickier argument shows that it is also induced by 

(zn-t + zn-2, Zn-l + zn-S, ... ,zn-l + 1, zn-l). 

(iv) Let 1 $ i < n, and <1 and <2 the orders of Exercise 4.61 (iii) on 

respectively. Using the second characterization of (iii) above, it is not 
hard to see that the order of Exercise 4.61 (iv) is induced by 

(zn+zn-l, ... , zn+zn-i+l, zn, zn-i+zn-i-l, ... , zn-i+l, zn-i). 

Exercise 4.66 Let :51 and :52 be the admissible orders on N3 induced by the 
triples (I, e, 11') and (Z, 1I'Z + 1, e), respectively, where e is the base of the natural 
logarithm. How do the triples (I, 1,0), (I, 0,1), (I, 3, 0), and (I, 0, 2) relate to 
each other in each of these orders? 

The crucial connection between the above results on Nn and polynomials 
will be made by passing from a term Xr1 • ••• • X~n to its exponent tuple 
(VI, ... , vn ). Dickson's lemma will then translate into a result on divisibility 
of terms, and admissible orders on Nn will give rise to linear orders of a 
certain kind on the set T of all terms. We will have to consider a certain 
quasi-order on the set of all polynomials which is dependent only on the 
terms occuring in the polynomials and on the linear order on T. Now the 
set of all terms occuring in a polynomial is just a finite subset of T, so the 
following definition and theorem will apply. 

Let (M, $) be an ordered set, and let Pfin(M) be the set of all finite 
subsets of M. Every 0 =F A E Pfin(M) obviously has a maximal and a min
imal element w.r.t. the order $. We denote these by max(A) and min(A), 
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respectively. With A' = A \ {max(A)}, we define a binary relation $' on 
Pfin(M) as follows. Let A, B E Pfin(M)j then A $' B is defined by recur
sion on the number IAI: if A = 0, then A $' B. If A 1= 0, then A $' B iff 
B 1= 0 and the following conditions holds: 

max(A) < max(B) , or 

max(A) = max(B) and A' $' B'. 

Lemma 4.67 Let (M, $), Pfin(M), and $' be as in the definition above. 
Then (Pfin(M), $') is an ordered set. 

Proof One easily proves by induction on IAI that A $' A for all A E 
Pfin{M) , i.e., $' is reflexive. For transitivity, assume that A, B, C E 
Pfin(M) with A $' B and B $' C. We use induction on n = IAI to prove 
that A $' C. This is trivial if n = 0. If n > 0, then A 1= 0, and it is easy to 
see from the definition of $' that the same must be true for Band C. We 
thus have 

max{A) $ max{B) and max{B) $ max(C). 

If at least one of the inequalities is strict, then it follows immediately that 
A $' C. If we have equality in both cases, then 

A' $' B' $' C', 

and so A' $' C' by induction hypothesis. This together with max(A) = 
max{C) implies that A $' C. 

For antisymmetry, suppose A, B E Pfin(M) with A $' B and B $' A. 
To prove that A = B, we proceed by induction on n = IAI. If n = 0, then 
A = B = 0. If n > 0, then both A and B must be non-empty, and we must 
have max{A) = max(B) and both A' $' B' and B' $' A'. The induction 
hypothesis now implies that A = B. 

It remains to prove that $' is connex. Let A, B E Pfin{M). If B = 0, 
then B $' A. For the remaining case B 1= 0, we use induction on n = IAI to 
prove that A $' B or B $' A. This is trivial if n = 0. Finally, if n > 0, then 
either the maxima of A and B are different, in which case we are done, or 
they agree, in which case we apply the induction hypothesis to A' and B'. 
o 

Exercise 4.68 With the notation and assumptions of the previous lemma, as
sume that A, BE "Pfin(M) and A is a proper subset of B. Show that A $.' B. 

Theorem 4.69 If (M, $) is a well-ordered set, then so is (Pfin(M), $'). 

The proof of the theorem will employ a method that is also known as 
Cantor's second diagonal aryument. Before giving the general proof, we 
will illustrate the argument using the special case where (M, $) is N with 
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its natural order. Assume that there was a strictly descending ~'-chain 
{An}nEN in 'Pfin{l'i}. We will show how one can arrive at a contradiction by 
producing a strictly descending chain {an}nEN of natural numbers. To this 
end, think of the elements of each set An as written in decreasing order 
from left to right, and the sequence of the An as written in descending 
order from the top down, as in the following example. 

Al = {17,13,9,5,1,O} 
A2 = {17,12,7,6,5,4,3,2,1} 
A3 = {16, 14, 12, 11, 10,3,O} 
~ = {16,13,12,9,5,4,3,O} 
A5 = {16,13,12,7,6,5,4,1} 
A6 = {16,13,12,7,5,4,3,2,1} 

From the fact that An+l <' An, we conclude that max(An +l } ~ max{An} 
for all n E N. It follows that there exists no EN with max{An} = max{Ano} 
for all n ? no. We set ao equal to this maximum. Now if we drop everything 
above Ano from the list, then we still have a strictly descending ~'-chain. 
Since all elements of the chain have the same maximum ao, we can cross 
out ao everywhere (i.e., delete the leftmost column) and still have the same 
kind of chain. Moreover, every natural number that is left on the list must 
be strictly less than ao. We can now repeat the game arbitrarily many times 
to arrive at the desired chain. 

Proof of Theorem 4.69 Assume for a contradiction that there is a strictly 
descending ~'-chain {An}nEN in 'Pfin{M). We will show that then there 
exists a strictly descending ~-chain in M. We first note that An =F 0 for 
all n E N by the definition of ~'. We construct by recursion on kEN a 
sequence 

{(ak, {Bkn}nEN) }kEN 

consisting of ordered pairs; the first component of each pair is an element of 
M, the second component is a sequence of elements of 'Pfin (M). By simul
taneous induction on k, we verify the following properties of this sequence: 

(i) {akhEN is a strictly descending ~-chain in M, 

{ii} whenever n, kEN, then b < ak for all b E Bkn, and 

(iii) {Bkn}nEN is a strictly descending ~'-chain in 'Pfin{M) for each kEN. 

Condition (i) will then yield the desired contradiction to the well-founded
ness of ~ on M. For k = 0, let 

C = {max{An) In EN}, 
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and set ao = min(C). Now let j be the least index such that ao E Aj • 

Then ao = max(An) for all n ~ j, and so if we set Bon = (AJ+n)', then 
conditions (ii) and (iii) are satisfied. For k + 1, we let 

D = {max(Bkn) In EN}, 

and set ak+l = min(D). Now let j be the least index such that ak+1 E Bkj. 
Then ak+1 = max(Bkj) for all n ~ j, and so if we set 

B(k+l)n = (Bk(n+j»)', 

then conditions (ii) and (iii) are satisfied. Moreover, condition (ii) for k 
implies that ak > ak+l, which proves (i). 0 

The following exercise generalizes the theorem above to well-founded 
linear quasi-orders. 

Exercise 4.70 Let ~ be a linear quasi-order on the set M with associated equiv
alence relation rv. For any subset A of M we set 

AI'" = {[all a E A } ~ MI"'· 

We denote by $ the associated order on Mirv, and by $' the induced order on 
PHn(Mlrv) of the above theorem. We define a binary relation ~' on PHn(M) by 
setting 

A ~'B iff AI'" $' BI'" 

for A, BE PHn(M). (Note that A, BE PHn(M) implies AI"', BI'" E PHn(MI"')· 
Show the following: 

(i) ~'as defined above is a linear quasi-order on PHn(M). 

(ii) If the linear quasi-order ~ on M is well-founded, then so is the induced 
linear quasi-order ~' on PHn(M). 

4.5 Reduction Relations 

In the discussion preceding Lemma 4.22, we saw that the elements of the 
residue class ring of a ring modulo an ideal are equivalence classes with 
respect to an equivalence relation. This situation occurs frequently in al
gebra: an algebraic structure (such as a group, a ring, etc.) is given as the 
set M / '" of equivalence classes of a set M with respect to an equivalence 
relation", on M. The set M is often given in such a way that membership 
in M can be decided algorithmically. The equivalence relation "', however, 
is usually given in an indirect way, e.g., as the least equivalence relation 
that contains some given relation on M and is closed under certain rules. 
When one wants to do computations with the elements of M/"" the most 
fundamental problem that has to be solved in an algorithmic way is the 
following: given a, b E M, decide whether [a] = [b], i.e., whether a '" b. 
This problem, the equivalence problem, is the set-theoretic version of 
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the word problem for the algebraic structure M. If, for example, Mirv is 
K[Xl!(f), the univariate polynomial ring over the field K modulo the ideal 
generated by f, then [g] = [h] iff 9 - hE (I) iff f I (g - h) iff the remainder 
of 9 - h upon division by f equals 0, and the latter condition can be decided 
effectively if we can compute with the elements of K. The central topic of 
this book, the theory of Grabner bases, provides a method for solving the 
equivalence problem in many other types of rings, notably polynomial rings 
in several variables over a field. The basic strategy for this method at the 
level of sets without algebraic structure is described in this section. 

Let rv be an equivalence relation on a non-empty set M. We try to 
find another relation (a reduction relation) ----+ on M with the following 
properties: 

(i) ----+ is noetherian and strictly antisymmetric. 

(ii) ----+ is a subset of rv. 

(iii) Whenever a, bE M, and a rv b and a, b are both ----+-maximal, then 
a =b. 

If this is the case, then the problem whether a rv b for two arbitrary 
elements of M can be solved in the following way: reduce both a and b via 
----+ as long as possible. By (i), this will result in two finite chains 

a ----+ al ----+ ... ----+ am = a' and 
b ----+ b1 ----+ . . . ----+ bn = b' , 

where a' and b' are ----+-maximal. If a' = b' , then a rv b by (ii). If a' :I b' , 
then a f b by (iii). 

In the following we discuss various properties of relations ----+ on M that 
help to find reduction relations with properties (i), (ii), and (iii) on M. 

Definition 4.71 Let ----+ be a relation on a non-empty set M. Then ----+ 
is called a reduction relation on M if ----+ is strictly antisymmetric. In 
connection with a reduction relation ----+ on M, we will write 

~ for the reflexive-transitive closure of ----+, 

+---+ for the symmetric closure of ----+, Le., a +---+ b iff a ----+ b or b ----+ a 
for a, bE M, 

~ for the reflexive-transitive closure of +---+, Le., the smallest equiva
lence relation on M extending ----+ (cf. Exercise 4.28), 

--?4 for (----+)n (where the exponent refers to the definition of powers of 
a relation given on p. 154), 

~ for (+---+)n, and 
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! for the relation on M defined by a ! b iff there exists c E M with 
a ~ c and b ~ c (or a ~ c t-.!.- b for short). 

An element a E M is said to be in normal form, or a normal form, with 
respect to -- if a is ---maximal in M. We say that bE M is a normal 
form of a E M with respect to -- if a ~ b and b is in ---normal form. 

Note that in the situation of the definition above, a ~ b means that 
a -..!!...t b for some n E N, and this in turn means that either a = b, or there 
exist ao, ... an E M with ao = a, an = b, and 

Here, the natural number n is called the length of the reduction chain 
a -..!!...t b. 

Lemma 4.72 If -- is a noetherian reduction relation on M, then each 
a E M has at least one normal form a' E M with respect to --. 

Proof The set 
N={bEMla~b} 

is non-empty because a E N, and so N contains a ---maximal element. 
o 

In order to establish the noetherianity of --, the following simple lemma 
is useful. 

Lemma 4.73 Let r be a well-founded relation on M with strict part rs, 
and assume that a -- b implies b rs a. Then -- is a noetherian reduction 
relation on M. 

Proof a -- b and b -- a implies a rs band b rs a, which is impossible. 
Assume M has a strictly ascending ---chain {an}nEN. Then {an}nEN is a 
strictly descending r-chain, a contradiction. 0 

In most applications, r is a well-order :::;, and so the condition of the 
lemma means that a -- b implies a > b. 

Definition 4.74 Let -- be a reduction relation on M. Then -- is said 

(i) to be confluent if b t-.!.- a ~ c implies b! c for all a, b, c E M, 

(ii) to be locally confluent if b +-- a -- c implies b ! c for all a, b, 
CEM, 

(iii) to have the Church-Rosser property if b ~ c implies b ! c for 
all b, c EM, 

(iv) to have unique normal forms if b t-.!.- a ~ c with b and c in 
---normal form implies b = c for all a, b, c E M. 
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The following theorem shows the equivalence of these properties for noe
therian reduction relations. 

Theorem 4.75 (NEWMAN'S LEMMA) Let - be a noetherian reduction 
relation on M. Then the following are equivalent: 

(i) - is locally confluent. 

(ii) - is confluent. 

(iii) - has unique normal forms. 

(iv) - has the Church-Rosser property. 

Proof (i)~(ii): Assume for a contradiction that - is locally confluent 
but that the set 

N = { a E M I there exist b, c E M with b ~ a ~ c, but not b 1 c} 

is non-empty. Since - is noetherian, N has a --maximal element a. 
Let b, c E M with b ~ a ~ c, but not b 1 c. If a = b or a = c, then we 
trivially have b 1 c. Hence there must exist b', c' E M (possibly b' = b or 
c' = c) with 

b ~ b' ~ a - c' ~ c. 

By the local confluence of -, there exists d EM with b' ~ d ~ c'. By 
the maximality of a in N and the fact that 

b~b' ~d, 

there exists e E M with b ~ e ~ d. A look at the diagram below shows 
that now 

e~c'~c, 

and thus, again by the maximality of a in N, there must be f E M with 
e~f~c. 

b * ~ b' ~ a - c' * - c 

~ ~ ;y 

e * ~ d ;y 

~ 

f 

The diagram shows that b 1 c, a contradiction. 
(ii)~(iii): Let b ~ a ~ c and suppose band c are in --normal 

form. By (ii) there exists d E M with b ~ d ~ c, and thus b = d = c. 
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(iii)=>(iv): We show by induction on kEN that for all a, b E M with 
a ~ b it follows that a ~ b. The case k = 0 is trivial. Let now a m b, 
say 

a ~ c +---+ b. 

Then by induction hypothesis there exists d E M with a ---!..t d ~ c. If 
c -- b, this implies a ---!..t d ~ b and so a ! b. If c - b, let d' be a 
normal form of d and let b' be a normal form of b with respect to -. Then 
d' ~ c ---!..t b', and so d' and b' are normal forms of c and hence equal. So 
a ---!..t d' ~ b, which means a ! b. 

(iv)=>(i): Let b -- a-c. Then b ~ c, and so b! c by (iv). 0 

Corollary 4.76 Let - be a locally confluent, noetherian reduction rela
tion on M and let a, b EM. Then the following assertions are equivalent: 

(i) a~b 

(ii) There exists c E M such that c is a normal form of a and of b with 
respect to -. 

(iii) Whenever a' and b' are normal forms of a and b with respect to -, 
respectively, then a' and b' are equal. 0 

We have now reached a point where it is necessary to make precise what 
we mean by decidability and computability. Computational algebra, as op
posed to pure algebra, is concerned not only with mathematical objects and 
their structure, but also with physical representations of these objects, and 
with procedures that manipulate such representations. Our treatment is 
based on the following basic viewpoint. Our mathematics, quite classically, 
takes place in the universe of sets of Zermelo-Fraenkel set theory where 
only sets exist. (Cf. the discussion of AC in Section 4.1.) Besides that, we 
count on the existence of certain physical primordial objects by which these 
sets are denoted, or given, or represented. These can be letters, or words in 
an alphabet, or, eventually, physical configurations inside a machine. These 
objects are finitary in nature and at our disposal in such a way that we 
can manipulate them or let a machine manipulate them. Furthermore, we 
assume that we have an understanding of these objects which allows us 
to decide their equality simply by inspection. If, for example, we use the 
letters of the alphabet, then in the strictest physical sense, a and a are two 
different objects. But it is not hard to agree on the basis of common sense 
that a equals a as a letter. 

Even on the most elementary level, it often happens that one and the 
same element of a set has many different representations: examples are 1/2 
and 2/4 in Q, or X + X and 2X in Z[X]. (See the next section for more 
examples.) In that case, meaningful computations are possible only if we 
have an algorithm that recognizes if two objects refer to the same element. 
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Definition 4.77 A set M is decidable if its elements are given in such 
a way that there is an algorithm which, upon input of a, b EM, decides 
whether or not a = b. 

Definition 4.78 Let ---- be a reduction relation on M and let rv be an 
equivalence relation on M. Then we call ____ adequate for rv if rv coincides 
with the reflexive-symmetric-transitive closure ~ of ----. We say ---- is 
decidable if there is an algorithm which, on input of a EM, decides 
whether a is reducible with respect to ----, and if so selects (possibly non
deterministically) some b E M with a ---- b. 

Using this terminology we can now summarize in a mathematically pre
cise way the use of reduction relations for the solution of the equivalence 
problem sketched at the beginning of this section. The algorithm EQUIV of 
the proof below is an example of a non-deterministic algorithm: it involves 
the choice of some b with a ---- b for reducible a. In practice, there is usu
ally some heuristic criterion for choosing a particular b with this property; 
from a theoretical point of view, however, the choice could be a random 
one. 

Theorem 4.79 Let rv be an equivalence relation on a non-empty set M. 
Let ---- be a locally confluent noetherian reduction relation on M that is 
adequate for rv, and suppose M and ---- are decidable. Then there exists 
an algorithm which, on input of a, bE M, decides whether a rv b or not. 

Proof It is easy to see that the algorithm EQUIV of Table 4.1 terminates 
and performs the desired task. 0 

4.6 Computing in Algebraic Structures 

In Chapter 2, we already worked with an intuitive definition of computable 
rings and fields. We are now in a position to make this more precise. Com
putability is of course a concept that verges on practical problems of con
ceiving computer algebra systems and implementing algorithms. Neither 
will we go into any technical details here, nor is it our aim to discuss 
space-time optimal solutions. On the other hand, every attempt to define 
computability also raises foundational and philosophical questions on the 
mathematical side. We will suppress these issues as well. All we are inter
ested in is a reasonably rigorous definition of computability that is based 
on common sense insofar as it reflects the capabilities of today's computers. 
(See also the discussion of decidability of sets in the last section.) 

Definition 4.80 A monoid M (a ring R) is called computable if the 
elements of M (of R) are given in such a way that M (R) is decidable as a 
set, and there is an algorithm (there are algorithms) which, upon input of 
a, bE M (of a, bE R) computes ab E M (compute ab, a + b, and -a E R). 
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TABLE 4.1. Algorithm EQUIV 

Specification: v- EQUIV(a, b) 
Test whether a '" b 

Given: a, b E M 
Find: v E {true, false} such that v = true iff a '" b 
begin 
A- aj B - b 
while A is reducible with respect to --+ do 

- select C E M with A --+ C 
A-C 

end 
while B is reducible with respect to --+ do 

- select D E M with B --+ D 
B-D 

end 
if A = B return(true) 
else return(false) end 
end EQUIV 

A field K is called a computable field if it is a computable ring and 
there is an algorithm which, upon input of 0 f:. a E K, computes a-l E K. 
A computable Euclidean domain is a Euclidean domain R which is 
a computable ring and for which there is an algorithm that computes, 
possibly non-deterministically, a quotient and remainder of a E R upon 
division by 0 f:. b E R. An order :$ on a set M is called decidable if there 
is an algorithm that decides, for a, bE M, whether a :$ b. 

Example 4.81 Z is a computable ring: integers can be uniquely repre
sented as strings of digits w.r.t. some base in N, and since handling dig
its and carries is a finite affair, integer arithmetic can then be performed 
effectively. Moreover, we can certainly, by means of iterated subtraction, 
effectively divide with remainder in Zj so Z is even a computable Euclidean 
domain. 

Example 4.82 If R is a computable domain, i.e., a computable ring with 
no zero divisors, then we claim that the field of quotients Q R of R is a 
computable field. The elements of QR are given as formal fractions p/q, 
where p, q E R with q f:. 0, and two such fractions p/q and r/s represent 
the same element of QR iff ps = rq. The latter condition can be decided 
by our assumption on R, and so Q R is decidable as a set. It is clear that 
rational arithmetic can be performed on the basis of the ring operations. If 
R = Z, then the elements of Q R = Q can even be uniquely represented as 
fractions with a positive denominator that are reduced to lowest terms. A 
gcd computation by means of the Euclidean algorithm must then be invoked 
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after each addition or multiplication to get the result in this normal form. 

Example 4.83 Let R be a computable ring, {O} :f. I an ideal of R such 
that there is an algorithm which, upon input of a E R, decides whether or 
not a E I. We claim that then the residue class ring R/ I is a computable 
ring. The elements a + I of R/ I are obviously given as elements of R 
viewed as residue classes modulo I. Two elements a and b of R represent 
the same residue class iff a - bEl, which condition we can effectively test 
by our assumption On I. Addition, subtraction, and multiplication in R/ I 
are performed by doing the respective operation in R on representatives, 
which is possible by the assumption on R. 

Example 4.84 The situation of the previous example is given whenever 
R is a computable Euclidean domain and an ideal I of R is given by a 
generating element 0 1= b E R: for a E R, we then have a E I iff every 
remainder of a upon division by b is zero iff some such remainder is zero 
(cf. Proposition 2.39). By assumption, we can compute such a remainder 
r, and r = 0 iff r + r = r. If b is a prime element of R, e.g., a prime number 
in Z, then R/ I is even a computable field: if a + I :f. I, then gcd(a, b) = 1 
(cf. Exercise 2.46), so the extended Euclidean algorithm computes s, t E R 
with 1 = as + bt, and we see that (a + I)(s + I) = 1 + I since bt E I. 

If, in the situation of the above example, remainders in R are either 
unique, or the division algorithm deterministically computes a specific one 
for each pair of dividend and divisor, then the elements of R/ I can even be 
uniquely represented by the set of these remainders: clearly, a + I = r + I if 
a = qb + r for some q E R. This is the case in Z, where remainders can be 
specified to be in a certain range like [0, b) or [-b/2, b/2). It is also the case 
in univariate polynomial rings over fields, where remainders are unique to 
begin with. In this case, the set of unique remainders is a system of unique 
representatives for the partition { a + I I a E R} of R. 

Throughout Chapter 2, we have been assuming that polynomial rings 
over computable rings are again computable. The rest of this section is 
devoted to a rigorous argument for this On the basis of our definition of 
computability. Let Xl! ... , Xn be indeterminate symbols and 

T = T(Xl! ... ,Xn) 

the set of all terms, i.e., power products, in these indeterminates. Recall 
that T is a multiplicative Abelian monoid which is isomorphic to the ad
ditive monoid Nn under the exponent map. An element of T can thus be 
uniquely represented as the n-tuple of its exponents, and under this rep
resentation, multiplication of terms is simply componentwise addition of 
n-tuples of natural numbers. We see that T with this multiplication is a 
computable monoid. 

Now, in addition, let R be a computable ring. We proved that every 
monomial in the polynomial ring R[X 1, ..• , Xn] has a unique representation 
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of the form at with a E R and t E T. This means that the elements of M 
can be uniquely represented as ordered pairs with one entry from R and 
one from T, and these are multiplied componentwise: (a,s)(b,t) = (ab,st). 
We have demonstrated that M is a computable monoid. 

Back in Section 2.1, we argued further that every polynomial has a unique 
representation as the sum of its monomials. So the obvious thing to do 
is to represent every polynomial as an ordered m-tuple (or a list, as the 
programmer would say) of monomials: 

m 

(a1 tb"" amtm) represents L aiti· 
i=l 

Contrary to the rigorous mathematical definition, we will, in this context, 
allow "monomials" of the form 0 . t with t E T and refer to these as dummy 
monomials. It is clear that under the representation (*), polynomials can 
be added by appending lists, the negative of a polynomial is obtained by 
taking the negative of each monomial in the list, and the product of two 
polynomials 

(a1s1, ... ,aksk) and (b1t1, ... ,bmtm) 

is obtained by appending the lists 

for 1 ~ i ~ k. The obvious problem that remains to be solved is decidabil
ity. The repesentation of a polynomial as a sum of monomials is unique only 
when the monomials have pairwise different terms (see Section 2.1), and 
since we are using lists, this uniqueness is only up to the order of the sum
mands. So what we need is an algorithm that effectively decides whether 
or not the polynomials represented by two lists are equal in R[X 1, ... , XnJ. 
We are going to show that we can even compute normal forms of lists in 
such a way that two normal forms are equal iff they represent the same 
polynomial. Rather obviously, a normal form will be a list where all like 
terms have been combined, all dummy monomials have been dropped, and 
the monomials are arranged in some specified order by their terms. 

Orders on T will playa crucial role in the theory of Grabner bases, and 
the more important ones will be decidable. For the moment, it suffices to 
note that there is at least one decidable order on T: given s =i- t E T, look 
through their representations (1'1, ... , /-Ln) and (111, ... , lin) as n-tuples of 
exponents by increasing indices, stop at the first index i where /-Li =i- IIi, and 
declare s < t iff /-Li < "i. 

Exercise 4.85 Show that < as defined above is the strict part of an order 
onTo 

Let now L be the set of all lists (Le., ordered tuples) of monomials as 
described above, and let ---+ be the following relation on L: h ---+ l2 iff l2 
can be obtained from h in one of the following ways: 
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(i) drop a dummy monomial, 

(ii) combine two like terms, i.e., find two entries of the form at and bt, 
replace at with (a + b )t, and drop bt, or 

(iii) switch two adjacent entries a,ti and a'+lti+l with tHl > ti' 

From the fact that (i) and (ii) shorten the list and that (iii) can be 
performed at most once on each pair of entries, we easily conclude that 
---t is a noetherian reduction relation. The following tedious exercise is 
recommended (to be worked at least partly) although we won't need its 
statement. 

Exercise 4.86 Show that ~ is locally confluent and thus has unique nonual 
fonus by Newman's lemma. 

The reason why we don't have to invoke Newman's lemma and the theory 
surrounding it is that the polynomial ring is not defined as L modulo some 
equivalence relation: we have an a priori definition of R[Xl, ... ,Xn ], we 
have the correspondence (*), and we know that two sums of monomials are 
equal in the polynomial ring iff they both add up to the same function from 
Nn to R. On the basis of this understanding, we can now argue as follows. 

(1) It is immediate from the definition of the polynomial ring that h ---t 
12 implies that hand 12 represent the same polynomial. It follows by in
duction on the length of the reduction chain that the same is true with ---t 
replaced by ~. 

(2) A list I of monomials is obviously ---t-maximal iff it contains no zero 
entries and the terms of the entries are pairwise different and in descending 
order. 

(3) Now let h :f 12 be ---t-maximal. By the above characterization of 
---t-maximality, h and 12 must be different as sets, i.e., there exists an 
entry at in h such that either t does not occur in 12 at all, or it occurs 
exactly once in a monomial bt with a :f b. We see that the corresponding 
polynomials have different coefficients on the term t and are thus different. 

Claim: ---t has unique normal forms, and II and 12 have the same normal 
form iff they represent the same polynomial. 

Proof: If h and 12 are normal forms of I, then by (1), they both represent 
the same polynomial as I and thus must be equal by (3). If h and 12 have 
the same normal form I, then they both represent the same polynomial as 
I by (1). Conversely, if h and 12 represent the same polynomial, then so 
do their respective normal forms by (1), and (3) tells us that these normal 
forms are equal. 

Since the reduction relation ---t is obviously decidable in the sense of 
Definition 4.78, the above claim provides the desired decidability of the set 
of polynomials under the representation as lists of monomials. Moreover, 
by passing to unique normal forms after each algebraic operation, we can 
even turn this into a unique representation. 
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The representation of polynomials as lists of monomials with each mono
mial consisting of a coefficient and a list of exponents is in fact the most 
common choice in computer algebra systems. It is often called the sparse 
representation. When working with univariate polynomials, one may con
sider the dense representation consisting of a list (ao, ... , am) with the 
understanding that ai is the coefficient of Xi. It may also be advantageous 
to represent multivariate polynomials recursively as univariate ones in one 
of their variables. 

Notes 

The axiom of choice is virtually indispensable in analysis. Up to at least 
the end of the 19th century its validity was considered to be self-evident. 
Zermelo (1904) proved that the axiom of choice implies that every set can 
be well-ordered. The well-ordering principle, however, had been vehemently 
questioned before by a number of mathematicians, and thus the axiom of 
choice became questionable too. Another somewhat disconcerting conse
quence of the axiom of choice is the fact that there exist non-Lebesgue
measurable sets of real numbers; in particular, not every subset of]Rn can 
be assigned a volume. It is now known that AC is independent of but 
consistent with the remaining axioms of Zermelo-Fraenkel set theory (see, 
e.g., Moore, 1982; Rubin and Rubin, 1963). This means that when AC is 
being used, there is no more danger of running into inconsistencies than 
there would be otherwise. This is why nowadays many mathematicians, in
cluding most calculus textbook authors, choose to use AC tacitly. On the 
other hand, any application of AC has a distinctly non-constructive flavor. 
An algorithmically oriented treatment of algebra is therefore well-advised 
to maintain a certain awareness of the problem. 

The Hilbert basis theorem appears for the first time as Theorem I in 
Hilbert (1890). It is proved there for homogeneous polynomials (homoge
neous meaning that all terms have the same total degree). The proof of the 
theorem that we have given here is by far the simplest one; interestingly, 
it has gone unnoticed until quite recently (Sarges, 1976). Hilbert's original 
interest was not in ideal bases; to him, his theorem was a tool in proving 
a conjecture in a now somewhat obsolete area of algebra called invariant 
theory. Given a homogeneous polynomial f in n variables, an invariant of 
f is a homogeneous polynomial i in as many variables as f has coefficients 
such that i(k.) = (det T)S . i(g) for some sEN whenever T is the regu
lar n x n matrix of a linear transformation of the original n variables, g 
are the coefficients of f, and k. are the coefficents of f(T . if). The conjec
ture that Hilbert proved was that the ring of invariants of a homogeneous 
polynomial (in fact, of a system of homogeneous polynomials) is finitely 
generated over the ground field. The basis theorem-in the strong form of 
Lemma 4.5 (ii)-provided a first step towards this goal: the ideal generated 
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by the invariants has a finite basis which itself consists of invariants. 
Hilbert's proof of his theorem prompted a major controversy between 

the Kronecker-Gordan school of algorithmic algebra and the proponents of 
the budding axiomatic viewpoint; P.A. Gordan is said to have commented 
on Hilbert's proof with the words, "This is not mathematics, this is the
ology." A more recent school of constructivism in mathematics (see Mines 
et al., 1988) has tried to soften the non-constructivity of the theorem by 
weakening the definition of noetherianity to the requirement that for every 
ascending chain {In}nEN of ideals, there exists an no EN with Ina = Ina+1 . 

Regardless of whether or not one believes in any kind of constructivism, 
it is interesting to see how this property is really all that is needed when 
applying the Hilbert basis theorem. A related constructive aspect of the 
theorem is the question of the maximal length of a strictly ascending chain 
of ideals when starting with a principal ideal; this is discussed in Seidenberg 
(1971), Seidenberg (1972), and Moreno Sodas (1991). 

Zorn's lemma is one of several related maximality principles discov
ered by Hausdorff, Kuratowski, Zorn, Teichmiiller, 'lUckey, and others (see 
Moore, 1982). Zorn (1935) published his "lemma" as an axiom that he 
hoped would supersede the use of the well-ordering principle in abstract al
gebra. Its equivalence to the axiom of choice was established much later (cf. 
Rubin and Rubin, 1963). For most applications in algebra, Zorn's lemma 
has indeed turned out to be the most convenient among the multitude of 
principles that are equivalent to the axiom of choice; as such it was popu
larized by the Bourbaki school. 

The fact that JR. has a basis as a vector space over the field Q of rational 
numbers was first proved in Hamel (1905); Hamel's proof was based on the 
well-ordering theorem. Using such a "Hamel basis," he was able to prove 
the remarkable fact that the functional equation f(x + y) = f(x) + fey) 
has infinitely many different non-continuous solutions besides the obvious 
continuous solutions f(x) = ex with c E JR.. A similar result holds for the 
functional equation f(x + y) = f(x) . fey). Hamel's proof can be readily 
adapted to show that every vector space over a field K has a basis. 

The theory of relations is formally part of set theory; its foundations 
were laid by Hausdorff and Sierpinski starting around 1910. The roots of 
the theory are much older. The motivations for studying relations are man
ifold; they arise among others from the study of linear orders, of divisibility, 
of combinatorial problems, of problems in graph theory, and of the prob
lem of termination of iterative mathematical constructions, in particular of 
algorithms involving loops. For a comprehensive study of relations we refer 
the reader to Fraisse (1986). 

Dickson's lemma is by nature a result in infinite combinatorics; it has 
been called "the most frequently rediscovered mathematical theorem." The 
first reference seems to be Dickson (1913), Lemma A. In Ritt (1950), it is 
attributed to Riquier. Other references include Higman (1952), Theorem 
2.3, who credits Erdos and Rado with part of the equivalences between dif-
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ferent versions of Dickson's lemma, Eilenberg and Schiitzenberger (1969), 
Proposition 4.2, and Kolchin (1973), Chapter 0, Section 17, Lemma 15. 

The general concept of a Dickson quasi-order (often referred to as well
quasi-order, recently also as narrow quasi-order) arises naturally from Dick
son's lemma (see Kruskal, 1972 and the references given there). The paper 
of Higman mentioned above actually discusses Dickson's lemma in this 
general framework. 

Konig's lemma is due to D. Konig (1936), who proved it in a graph 
theoretical form. It is usually applied to trees and is therefore also known 
as the Konig tree lemma. 



5 

Grabner Bases 

There are many different ways to look at the theory of Grabner bases. In the 
context of classical algebra, the natural point of view is as follows. Suppose 
first we are given univariate polynomials f, gl, ... , gm over a field, and 
we wish to decide whether f is in the ideal generated by the gi. According 
to the results of Section 2.2, the thing to do is to compute the gcd 9 of 
the gi and then perform long division of f by g. The polynomial f will lie 
in the ideal in question if and only if the remainder of this division equals 
zero. Moreover, if this is the case, then one also obtains a polynomial q 
that satisfies f = qg, namely, the quotient of the division, which equals the 
sum of the monomial multipliers that were used in the individual steps of 
the division. 

Grabner basis theory generalizes these ideas to multivariate polynomi
als. The attempt to obtain a suitable division with remainder runs into 
two difficulties. First of all, there will not exist a single generator of the 
given ideal in general (Proposition 2.40), and so one must come up with a 
division of one polynomial by a set of polynomials. This will turn out not 
to be a problem at all: instead of subtracting a monomial multiple of the 
divisor from the dividend in each step, one subtracts a monomial mUltiple 
of a suitable one of the divisors. A more serious problem is the fact that one 
needs an ordering of the terms to replace the natural ordering of univariate 
terms by ascending exponents. It will turn out that the theory works if 
one chooses an admissible order on Nn and then orders terms by increasing 
exponent tuples. The first section of this chapter will develop this general
ized division procedure; since the theory of reduction relations-Newman's 
lemma in particular-will come into play, the process will not be called 
polynomial division but polynomial reduction. 

If the "remainder" of a (possibly multivariate) polynomial upon this 
"generalized division" by g1, ... , gm equals zero, then just as in the classical 
case, the sums qi of the multipliers of the gi that were used in the individual 
subtraction steps yield a representation 

m 

f = Lqigi. 
i=1 

In particular, f then lies in the ideal generated by the gi' What one would 
hope for is that the converse is true too: if f lies in the ideal in question, 

187 
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then the above "remainder" should be zero. This cannot be true in general, 
not even in the univariate case, because we have skipped the Euclidean 
algorithm altogether. The key theorem that makes Grabner basis theory 
work states that it is possible to generalize the Euclidean algorithm to a 
"preprocessing" of the given set {gI, ... ,gm} in such a way that one obtains 
another set which still generates the same ideal and has the desired property 
to yield "remainder" zero for every "division" with a member of the ideal 
as the "dividend." Ideal bases with this property are called Grobner bases. 
The algorithm that achieves the "preprocessing," Le., the computation of 
a Grabner basis from a given basis, is called the Buchberger algorithm. 
According to the discussion above, it is the multivariate analogue to the 
Euclidean algorithm. It will later become apparent that it can also be 
viewed as a generalization of the Gaussian elimination algorithm to the 
non-linear case. 

5.1 Term Orders and Polynomial Reductions 

This section combines the results on quasi-orders and abstract reduction 
relations that were proved in Chapter 4 with the theory of multivariate 
polynomial rings. A rigorous mathematical definition of these polynomial 
rings has been given in Section 2.1. For the convenience of the reader, 
we will recall here the relevant terminology and notation pertaining to 
polynomials. Knowing that a formally sound treatment has already been 
achieved, we may now feel free to discuss things in a hands-on manner. 
Throughout, R will be a commutative ring with 1, and the polynomial ring 
R[X I, ... , Xn] over R will also be denoted by R[ X ]. 

A term t in the indeterminates, or variables, Xl, ... , Xn is a power 
product of the form Xfl ..... X~,.. with ei E N for 1 ~ i ~ nj in particular, 
1 = Xp· .... X~ is a term. We denote by T(XI , .•. ,Xn)' or simply by 
T, the set of all terms in these variables. T forms an Abelian monoid with 
neutral element 1 under the natural multiplication where two terms are 
multiplied by adding the respective exponents of each variable. 

The crucial connection with the results of the last chapter is now made 
possible by passing from a term to its exponent tuple, which is an element 
of Nn , and vice versa. For clarity, we will write (T, 1,·) for the multiplica
tive monoid of terms and (Nn,(o),+) for the additive monoid Nn. Two 
terms are different if and only if their exponent tuples are different, and 
they are multiplied by adding their exponent tuples componentwise. This 
means that (T,I,.) is isomorphic to (Nn,(o),+): a natural isomorphism 
(T, I, .) ---4 (Nn, (0), +) is given by the exponent map 7J which assigns to 
any term its exponent tuple, Le., 
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The inverse .,,-1 of." is of course the map from Nn to T given by 

We see that although T is a subset of R[ Xl, its structure is independent of 
R. The partial order 5:' on Nn obtained by forming the product of n copies 
of N with its natural order will be called the natural partial order on 
Nn. Recall that here, 

The divisibility relation I on T is defined by sit iff there exists s' E T 
with s . s' = t. It is now easy to see that under the exponential map, these 
two relations correspond to each other. 

Exercise 5.1 Let s, t E T. Show that sit iff .,,(s) 5:' .,,(t), where '50' is the 
natural partial order on Nn. 

Dickson's lemma states that the natural partial order on Nn has the 
Dickson property. Using the observation of the above exercise, this trans
lates into the following important theorem which is often also referred to 
as Dickson's lemma. 

Theorelll 5.2 The divisibility relation I on T is a Dickson partial order 
on T. More explicitly, every non-empty subset S ofT has a finite subset B 
such that for all s E S, there exists t E B with tis. 0 

The other important class of relations on Nn that we studied was the class 
of admissible orders. Under our natural correspondence between terms and 
exponent tuples, these translate into the following type of orders on T. 

Definition 5.3 A terlll order is a linear order on T that satisfies the 
following conditions. 

(i) 1 5: t for all t E T. 

(ii) t1 5: t2 implies t1 . s 5: t2 . s for all s, t 1 , t2 E T. 

Lelllllla 5.4 Let 5: be an admissible order on (Nn, (0), +), and define 5:' 
on T by setting 

s 5:' t iff 1](s) 5: .,,(t). 

Then 5:' is a term order on T. Moreover, every term order on T is obtained 
in this way, and the resulting correspondence between term orders on T 
and admissible orders on (Nn , (0), +) is one-to-one. 

Proof Let 5: be an admissible order on (Nn, (0),+). Then 5:' is a term 
order on T since .,,(1) = (0) and .,,(s· t) = 1](s) + 1](t). Using the fact that 

.,,-1: (Nn,(O),+) ---t (T,l,.) 
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is an isomorphism too, one easily proves that every term order on T is 
obtained in this way, and that the correspondence is one-to-one. 0 

Theorem 4.62 stated that every admissible order on Nn is a well-order (no 
strictly descending chains), and that it extends the natural partial order on 
Nn. Translating this by means of Exercise 5.1 and the proposition above, 
we obtain the following theorem. 

Theorem 5.5 (i) If ~ is a term order on T, then 8 I t implies 8 ~ t for 
all8,tET. 

(ii) Every term order is a well-order on T. 0 

Exercise 5.6 Prove (i) of the theorem above directly from the definition 
of a term order. 

Another important property of term orders which will be used frequently 
is as follows. 

Lemma 5.7 Let ~ be a term order on T and 81, t1, 82, t2 E Twith 81 ~ 82 

and t1 < t2· Then 81t1 < 82t2· 

Proof From 81 ~ 82 we may conclude that 81t1 ~ 82t1. From t1 < t2 it 
follows that t1 ~ t2 and thus 82t1 ~ 82t2. It is easy to see that 82t1 = 82t2 

would imply h = t2, so we even have 81t2 < S2t2. Transitivity of ~ now 
yields 81t1 < 82t2. 0 

From Exercise 4.61 together with Lemma 5.4 we get the following induced 
examples of term orders on T. 

Examples 5.8 Each of the following is a term order on T. 

(i) xt1 • ••• ·X~n ~ X~l .... ·X~n iff the following holds: (d1 , ..• , dn) = 
(e1, ... ,en), or there exists 1 ~ i ~ n with dj = ej for 1 ~ j ~ i-I 
and di < ei. This term order is called the lexicographical, or lexical 
order on T. 

(ii) xt 1 • •••• X~n ~ X~l ..... X~n iff the following holds: (d1 , • •. , dn) = 
(el, ... ,en), or there exists 1 ~ i ~ n with dj = ej for i + 1 ~ j ~ n 
and di < ei. This term order is called the inverse lexicographical, 
or inverse lexical order on T. 

(iii) Let ~ be an order on T that satisfies condition (ii) of Definition 5.3, 
e.g., a term order or the inverse thereof. Set 

X1d1 • ••• • X dn <' X1e l • ••• • X en 
n - n 

iff the following condition holds: 

or 
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n 

= Lei and Xfl ..... X~n ~ Xfl ..... X~n. 
i=l 

This class of term orders is called the class of total degree or
ders, because one first compares total degrees and then breaks ties 
by means of some other order. If this other order is the lexicograph
ical one, then the resulting term order is called the total degree
lexicographical order. 

(iv) Let 1 ~ i < n, and set 

Tl = T(Xb ... , Xi), and T2 = T(Xi+l' ... , X n ). 

Let ~l and ~2 be term orders on Tl and T2 , respectively. Any t E T 
may be written uniquely as t = tl h with ti E T;, for i = 1, 2. Then a 
term order ~ on T is defined by 8 ~ t iff 

81 <1 tl, or 

81 = tl and 82 ~2 t2' 

This type of order is sometimes called a block order on T. 

It is clear that all of the above examples are decidable orders on T. Note 
also that Lemma 4.64 together with Lemma 5.4 provides a uniform method 
to construct term orders. 

A common cause for confusion is to mix up the lexicographical and the 
inverse lexicographical term order. To help avoid this, we say that X J is 
lexicographically greater than Xi and write Xj » X t if Xj > X! for 
all dEN. Then the lexicographical order satisfies 

whereas the inverse lexicographical one satisfies 

For greater clarity, we will often add these specifications to the appropriate 
terminology. 

Exercise 5.9 Show that the lexicographical term order is the only one that 
satisfies 

Xl »X2 » ... »Xn , 

and the inverse lexicographical order is the only one satisfying the reverse in
equalities. 

A monomial in the variables Xl. ... , Xn over R is a polynomial of the 
form m = at with 0 =1= a E R and t E T. Here, a is called the coefficient 
of m and t the term of m. We have proved in Section 2.1 that a monomial 
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uniquely determines its coefficient and term. The set of monomials (in X I, 

... , Xn over R) is denoted by M. Multiplication on M is defined by 

M actually forms a commutative monoid under this multiplication, but 
this monoid structure on the set of monomials alone is of little interest to 
us. It is clear that M contains both R \ {O} and T. 

Now let $ be a term order on T. We define the relation ~ on the set M 
of monomials by setting 

as ~ bt iff s $ t 

for 0 i= a, bE R and s, t E T. 

Exercise 5.10 Use the fact that $ is a well-founded linear order to prove 
that ~ is a well-founded linear quasi-order. 

We will call ~ the quasi-order on M induced by $. It is clear that ~ will 
not be an order in general: whenever ml and m2 are two monomials with 
the same term but with different coefficients, then ml i= m2 but ml ~ m2 

and m2 ~ mI. If this is the case, then ml and m2 are equivalent under 
the equivalence relation associated with ~ (Lemma 4.24), and we will write 
ml '" m2. Now T is a subset of M, and clearly s $ t iff s ~ t for s, t E T, 
so there will be no harm in denoting ~ by $ too; it is important though 
to keep in mind that $ on M is only a quasi-order. 

One of the main results of Section 2.1 was that every element f of R[ Xl 
is a finite sum of monomials, and moreover, there is a unique set N of 
pairwise inequivalent monomials such that 

f= L:m. 
mEN 

Proposition 5.11 (i) Let $ be a term order on T. Then every poly-
nomial f E R[ X 1 has a unique representation in the form E~=l mi 

with mi E M and ml > ... > mk. 

(ii) If, in addition, R is a computable ring and $ is a decidable order on 
T, then there is an algorithm that computes the representation of (i) 
from any arbitrary representation of f as a sum of monomials. 

Proof For (i), take the unique representation of f as a sum of pairwise 
inequivalent monomials and index them in descending order according to 
$. For (ii), take the normal form algorithm described in Section 4.6. 0 

It is interesting to see what the above proposition says in the univariate 
case. Whenever s = XV and t = XI' are univariate terms with v < j.t, then 
sit, and so necessarily s < t in any term order by Theorem 5.5 (i). It fol
lows that there is only one term order, and it orders the terms by ascending 
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degree. The representation of (i) above is then the natural sparse represen
tation (no zero summands displayed) by decreasing exponents. The concept 
of term orders can thus be interpreted as a generalization of the natural 
ordering of univariate terms to the multivariate case. Moreover, Theorem 
5.5 and Lemma 5.7 guarantee that multivariate term orders behave just 
like the univariate one. 

The zero polynomial in R[ X] is identified with the empty sum, i.e., 

O=L:m. 
mE0 

Let f E R[ X] and assume that all like terms in f have been combined, 
i.e., f is written as a sum of pairwise inequivalent monomials. The set 
of monomials occurring in such a representation is denoted by M (f) and 
called the set of monomials of f. The set T(f) of terms of f is the set of 
all terms of monomials m E M(f). The set C(f) of all coefficients of f is 
the set of all coefficients of monomials m E M (f). 

Next, we show how a given term order may be extended to a well-founded 
quasi-order on all of R[ X]. Let ~ be a term order on T and let ~' be the 
induced well-order on Pfin(T) of Theorem 4.69. Define a relation ~ on 
R[ X] by setting 

f ~ 9 iff T(f) ~' T(g). 

This relation will play a central role in the theory, so let us describe its 
definition explicitly. If T(f) = T(g), then we have both f ~ 9 and 9 ~ f. 
We see that this can happen with f i: g, and thus ~ will be a quasi-order 
at best. If T(f) i: T(g), then we must look at the maxima 8 and t (w.r.t. 
the term order ~) of T(f) and T(g). If these are different, then their order 
is decisive: f ~ 9 iff 8 < t. If the maxima agree, we must drop them from 
T(f) and T(g) and repeat the procedure, comparing the maxima of the 
smaller sets thus obtained. If one of T(f) and T(g) becomes empty before 
a decision has been reached in this way, then the other, non-empty one 
"wins." 

Theorem 5.12 Let ~ be a term order on T. Then ~ is a linear, well
founded quasi-order on R[ X] which extends ~ and the induced quasi-order 
on the set M of monomials. 

Proof The order ~' on Pfin(T) upon which the definition of ~ is based 
is a linear order by Lemma 4.67, i.e., it is reflexive, transitive and connex. 
It is easy to see that these three properties are inherited by ~. Moreover, 
the premise of Lemma 4.35 is satisfied with M = R[X], N = Pfin(T), 
and <p : R[X] -- Pfin(T) defined by <p(f) = T(f). We see that ~ is 
well-founded. The rest of the theorem is obvious from the definitions. 0 

The quasi-order ~ as defined above will be called the quasi-order on 
R[X] induced by the term order ~. Since it extends ~, there will be no 
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harm in using :c::; for the induced quasi-order as well. It is of utmost im
portance in the theory of Grobner bases; whenever a term order :c::; has 
been fixed and I :c::; 9 occurs in a theorem or proof, then it is the induced 
quasi-order on R[ X] that is being referred to. Again, as with monomials, 
it is important to keep in mind that the original term order :c::; on T is a 
linear order, whereas the induced quasi-order :c::; on R[ X] is really just a 
quasi-order and not an order in general. From Lemma 4.38, we see that 
every non-empty set of terms has a unique :C::;-minimal element, Le., a least 
element. A non-empty set of polynomials has at least one :C::;-minimal ele
ment I, and by Lemma 4.37, the other minimal elements 9 in that set are 
precisely those that satisfy T(g) = T(f). 

Exercise 5.13 Let R[XJ = Q[X,Y,ZJ, :5 the lexicographical term order with 
Z « Y « X. How do the polynomials X2Y Z3 - 2Xy2 Z + 3Y Z + 1, 5X2y Z3 + 
2Xy2 Z - 3Y Z + 3, and X2Y Z3 + 2XY2 Z - Y relate to each other in the induced 
quasi-order on R[ X J1 

Exercise 5.14 Let :c::; be a term order on T. Show that if the ground ring 
R is an integral domain, then multiplication on M is still monotone w.r.t. 
:C::;, Le., ml :c::; m2 implies mi' m3 :c::; m2 . m3· 

For arbitrary polynomials in R[ X], multiplication is no longer monotone 
as the following example shows. Let R[X] = Q[X], and let 

I = X, 9 = X + 1, and h = X - 1. 

Let :c::; be the unique term order on T = {xn I n EN}. Then I < g, but 

I . h = X2 - X and 9 . h = X2 - 1, 

and so I . h > 9 . h. 

Definition 5.15 Let :c::; be a term order on T. For any finite, non-empty 
subset A of M consisting of pairwise inequivalent monomials, we let max(A) 
be the unique maximal element of A w.r.t. :C::;. For any non-zero polynomial 
IE R[X] we define the head term HT(f), the head monomial HM(f), 
and the head coefficient HC(f) of I w.r.t. :c::; as follows: 

HT(f) = max(T(f») , 

HM(f) = max (M(f» , and 
HC(f) = the coefficient of HM(f). 

The reductum red(f) of I w.r.t. :c::; is defined as I - HM(f), i.e., I = 
HM(f)+red(f). A polynomial I E R[X] is called monic w.r.t. :c::; if I =f 0 
and HC(f) = 1. 

Exercise 5.16 Show that red (f) < HM(f) :c::; I for 0 =f I E R[ X]. 

Lemma 5.17 Let R be an integral domain and let I, 9 E R[X] with I, 
9 =f O. Then 
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(i) HT(fg) = HT(f) . HT(g), 

(ii) HM(fg) = HM(f) . HM(g), 

(iii) HC(fg) = HC(f) . HC(g), and 

(iv) HT(f + g) :5 max{HT(f), HT(g)}. 

Proof (i) We first note that 

T(fg) ~ {st I s E T(f), t E T(g) }. 

Moreover, s E TU) and t E T(g) with s t HTU) or t t HT(g) implies 
st < HTU) . HT(g) by Lemma 5.7. It is now obvious that HT(f) . HT(g) 
is the head term of /g. 

(ii) Every monomial at E MUg) can be written as 

at = L {be. uv I bu E M(f), cv E M(g), uv = t }. 

Moreover, as we just saw, uv = HTUg) with u E TU) and v E T(g) 
happens only if u = HTU) and v = HT(g), and we see that HMU) . HM(g) 
is the head monomial of /g. 

(iii) is an immediate consequence of (ii), and (iv) follows easily from the 
fact that TU + g) ~ TU) U T(g). 0 

For the rest of this section, we assume that the ground ring is a field K; 
as before, we will write K[X] for K[X1, ••• ,Xn ]. Moreover, we fix a term 
order :5 on T and denote the induced linear quasi-order on K[ X] by :5 
too. 

The next definition generalizes the single steps of the division algorithm 
for univariate polynomials to the multivariate case. The most important 
difference is that here, we are aiming at an algorithm that "divides" one 
polynomial by a set of polynomials. This algorithm will appear in the proof 
of Proposition 5.22 under the name REDPOL. 

Definition 5.18 Let /, g, p E K[X] with /, p t 0, and let P be a subset 
of K[XJ. Then we say 

(i) f reduces to 9 modulo p by eliminating t (notation f 7 9 ltD, 
if t E TU), there exists sET with s· HT(p) = t, and 

a 
9 = f - HC(p) . s . p, 

where a is the coefficient of t in /, 

(ii) f reduces to 9 modulo p (notation f 7 g), if /7 9 [tJ for some 
t E TU), 
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(iii) 1 reduces to 9 modulo P (notation 1 -p+ g), if 1 --p+ 9 for some 
PEP, 

(iv) 1 is reducible modulo p if there exists 9 E K[X] such that 1 --p+ g, 
and 

(v) 1 is reducible modulo P if there exists 9 E K[ X] such that 1 -p+ g. 

If 1 is not reducible modulo p (modulo P), then we say 1 is in normal 
form modulo p (modulo P). A normal form of 1 modulo P is a 
polynomial 9 that is in normal form modulo P and satisfies 

I+g, 

where + is the reflexive-transitive closure of -p+ of Definition 4.71. We 
call 

1 --p+ 9 ttl 
a top-reduction of 1 if t = HT(J); whenever a top-reduction of 1 exists 
(with pEP), we say that 1 is top-reducible modulo p (modulo P). 

A polynomial 1 that is in normal form modulo some set P of polynomials 
is sometimes also called irreducible modulo P. We will avoid that#rminol
ogy here because it can lead to confusion with the established dtre of the 
word "irreducible" in the sense of "not allowing a proper factorization." 

Lemma 5.19 If ~ is a decidable term order and K[ X] is a polynomial ring 
over a computable field K, then -p+ is decidable for every finite P ~ K[ X]. 

Proof Using the normal form of polynomials of Proposition 5.11, we can 
clearly decide whether or not 1 is reducible modulo P. (We can even detect 
all possible reduction steps.) If the answer is positive, then computability 
of K and K[X] certainly allow us to compute 9 with 1 -p+ g. 0 

The most important property of polynomial reduction -p+ which will be 
proved soon is that it is a noetherian reduction relation. We will thus be 
able to apply the results of Section 4.5 here. Note that the above definition 
of normal forms is consistent with the one given in Definition 4.71. We 
will frequently make use of the notation for the various closures of --+ 

introduced in Definition 4.71. Note that 1 + 9 means that there is a 
reduction chain directed from 1 to g, whereas 1 + 9 means that there 
is a reduction chain between the two in which arrows in both directions 
may occur. Moreover, 1 !p 9 means that there exists h with 1 + h and 
g+h. 

The set of terms in a single variable allows only one term order, namely, 
the one by increasing exponents. Inspection of the algorithm DIVPOL (long 
division of polynomials) shows that if 1 and 9 are univariate polynomials 
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and we divide I by 9 with remainder r, then this computation gives rise to 
a reduction chain 

I~r 
9 

(r in normal form modulo g). 

The concept of reduction of multivariate polynomials w.r.t. a term order 
generalizes this in two ways: firstly, we do not, as in the case oflong division, 
insist on doing top reductions only. Secondly, we also consider reduction 
modulo a set of polynomials rather than just one polynomial. Still, long 
division of polynomials suggests a good way of visualizing what a reduction 
step does. If we write monomials in decreasing order, then the reduction 
step of (i) in the definition above can be visualized as follows. 

altl + ... + ait, + at + (lower monomials) 

( H;(P) . S • HM(P) + (lower monomials)) 
, , 

'" =at 

= altl + ... + aiti + (lower monomials) 

Another way of looking at this reduction step is to say that it replaces the 
monomial at in I by 

a 
-HC(P) . S· red(p). 

It is clear that an algorithm which reduces I modulo P will in general 
be non-deterministic. It does, however, always terminate: we will now show 
that -p+ is noetherian. This is essentially due to the fact that when a 
monomial m is eliminated from I by means of a reduction step, then all 
monomials m' of I with m' > m remain unchanged. 

Lemma 5.20 Let I, g, P E K[X] and P a subset of K[X]. Then the 
following hold: 

(i) I is reducible modulo p iff there exists t E T(f) such that HT(P) I t. 
(ii) If I ---p+ 1- mp for some monomial m, then HT(mp) E T(f). 

(iii) Suppose I ---p+ 9 [t]. Then t rf. T(g), while for all t' E T with t' > t, 
we have t' E T(f) iff t' E T(g). In fact, m E M(f) iff m E M(g) for 
every monomial m > t. 

(iv) If I ---p+ g, then 9 < I. 

(v) If I + g, then 9 ~ I, and 9 = 0 or HT(g) ~ HT(J). 

Proof (i) and (ii) are immediate from the definitions. 
(iii) By the definition of reduction, there must exist sET and a E K 

such that a 
9 = f - HC(P) . s· p, 
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where s· HT(p) = t and at E M(f). It is clear that 

HM(H~(P) . s· p) = a· s· HT(p) = at. 

Furthermore, every u E T(sp) is of the form u = sv with v E T(p), and so 

u::;s·HT(p)=t. 

Looking at the way in which polynomials are subtracted, the claims are 
now obvious from Proposition 5.11 (i). 

(iv) From (iii) above, we see that T(g) < T(f) in the well-order ofPfin(T) 
induced by::; (use the discussion preceding Theorem 5.12 and the diagram 
preceding the lemma to understand why), and so 9 < f. 

(v) The first statement follows easily from (iv) by induction on the length 
of the reduction chain f + g. The second one is now obvious from the 
definition of the induced quasi-order on K[ X]. 0 

As an immediate consequence of (iv) above, Lemma 4.73, and the fact 
that::; on K[ X] is well-founded, we obtain the following theorem. 

Theorem 5.21 The relation ----p+ is a noetherian reduction relation on 
K[X] for every P ~ K[X]. 0 

We may now conclude from Lemma 4.72 that every f E K[ X] has at 
least one normal form modulo P. The next proposition shows that we can 
say considerably more than that. The reader should note how the algorithm 
REDPOL below is a perfect generalization of DIVPOL to the multivariate 
case. 

Proposition 5.22 Let P be a subset of K[ X] and f E K[ X]. Then there 
exists a normal form 9 E K[X] of f modulo P and a family:F = {qp}PEP 
of elements of K[ X] with 

f = L qpp + 9 and max{ HT(qpp) I pEP, qpp =I=- O} ::; HT(f). 
pEP 

If P is finite, the ground field is computable, and the term order on T is 
decidable, then 9 and {qp}PEP can be computed from f and P. 

Proof We give an algorithm REDPOL (Table 5.1) for the computation 
of 9 and the qp. For general, possibly non-computable field, non-decidable 
term order, and infinite P, the steps of the algorithm can be interpreted 
as mathematical constructions that prove the existence of the qp. (The 
existence of 9 could of course be inferred in the same way, but we already 
know from Lemma 4.72 that 9 exists.) Let us denote by gi the value of 9 
after the ith run through the while-loop, with go = f. 

Termination: An infinite run of the while-loop would give rise to an 
infinite chain go ----p+ gl ----p+ .•• , contradicting Theorem 5.21. 
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TABLE 5.1. Algorithm REDPOL 

Specification: (F,g) +- REDPOL(J,P) 
Complete reduction of 1 modulo P 

Given: a finite subset P of K[ X] and 1 E K[ X] 
Find: a normal form 9 of 1 modulo P, and a family 

begin 

F = {qp }PEP of polynomials with 1 = EpEP qpp + 9 and 
maxi HT(qpp) I pEP, qpp ~ O} ~ HT(J) 

qp +- 0 (all pEP) 
9+-1 
while 9 is reducible modulo P do 

select pEP such that 9 is reducible modulo p 
determine a monomial m with 9 7 9 - mp 
9 +-g-mp 

end 
F +- {qp}PEP 
return(F,g) 
end REDPOL 

Correctness: Suppose there are N runs through the while-loop. From 
9i ---p+ 9i+l for all 0 ~ i < N, we conclude that 1 + 9 is an invariant of 
the loop. It is easy to see that the equation 

is also a loop invariant. Finally, we claim that 

maxi HT(qpp) I pEP, qpp ~ O} ~ HT(J) 

is an invariant of the loop. It is trivially true upon initialization. Now 
suppose it is true after the ith run for 1 ~ i < N. We have HT(gi) ~ HT(J) 
by Lemma 5.20 (v) and the first invariant. Let mp be the polynomial that 
is being subtracted from gi during the next run. Then HT(mp) E T(gi) and 
so HT(mp) ~ HT(gi) ~ HT(J). The claim now follows easily from Lemma 
5.17 (iv). 0 

An obvious consequence of the proposition is that 1 - 9 E Id(P). We 
will come back to this in Lemma 5.26. The statement in the proposition 
concerning the head terms will play an important role in the theory: it will 
lead to the concept of standard representations. 

When applied to the special case of long division of univariate polynomi
als, Proposition 5.22 has a rather surprising consequence. It says that when 
performing long division, we need not necessarily eliminate terms from the 
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dividend in descending order (although it is certainly a good idea to do 
so). We may well perform the division in such a way that a previously 
eliminated term reappears; the algorithm will terminate nevertheless. 

Exercise 5.23 Let K[X) = Q[X, Y,Z), f = XYZ - Xy2 + Z, P = {Pl,]J2} 
with PI = XY + 1, P2 = Y Z + 1. Perform the algorithm REDPOL with input 
(J, P) in all possible ways. Why is it not necessary to specify a term order here? 

The above exercise shows that the reduction relation -p+ does not in 
general have unique normal forms. We will later on define and construct 
Grobner bases as finite sets P ~ K[ X] for which -p+ does in fact have 
unique normal forms. We will now provide some more technical results 
concerning reduction. 

Lemma 5.24 Let P ~ K[X] and I, g, hE K[X], and let m EM. 

(i) If I E P, then hi + o. 
(ii) If I -p+ g, then ml -p+ mg. 

(iii) If I + g, then ml + mg. In particular, I + 0 implies ml + o. 
Proof (i) Assume for a contradiction that the set 

H = {h E K[X] I not hi + O} 

is non-empty. Then H contains a ~-minimal element h # o. With m = 
HM(h), we obtain HM(h!) = m . HM(f) , and so 

hi -r hi - ml and hi - ml = red (h) . I· 

We have red(h) rt H since red(h) < h, and so red(h) . I + o. It follows 
that hi + 0, contradicting the assumption h E H. 

(ii) Suppose I --p+ g, say 9 = 1- m'p for some pEP. Then HT(m'p) E 
T(f), and it follows easily that HT(m'mp) E T(m!). We see that 

ml --p+ ml - m'mp and ml - mm'p = mg. 

(iii) This follows from (ii) by induction on the length k of the reduction 
chain I +g. 0 

Lemma 5.25 (TRANSLATION LEMMA) Let I, g, h, hI E K[X], and let 
P~K[X]. 

(i) If I - 9 = h and h + hI, then there exist 11,91 E K[X] such that 
11 - gl = hI, I + 11, and 9 + gl· 

(li) If I - 9 + 0, then I Lp g, and so in particular I + g. 
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Proof For (i), we show by induction on kEN that f -9 = hand h + hi 
implies the existence of It, 91 E K[ X 1 with the indicated properties. For 
k = 0, we take It = f and 91 = 9. Let now h kt' hI, say 

By the induction hypothesis, there exist 12, 92 E K[ X] with 

12 - 92 = h2' f -1>+ 12, and 9 -1>+ 92· 

It now suffices to find It, 91 E K[ X] with 

and 

as indicated in the diagram below. 

Suppose 

f - 9 = h 
p!. p!. P!k 
h-92=h2 
p!. p!. p! 
It - 91 = hI 

C 
hi = h2 - b . U • P, 

wherep E P, b = HC(P), U E T, and 0 =F cis the coefficient of the monomial 
in M(ha) whose term is u·HT(p). Let Cl be the coefficient of the monomial 
in M(h) with term u . HT(P) if u . HT(P) E T(h), and let Cl be zero 
otherwise. Define C2 in the same way w.r.t. 92. Set 

Cl c2 It = h - b . u . P and 91 = 92 - b . u . p. 

Then Cl - C2 = C because h2 = h - 92, and we see that It - 91 = hI' 
Furthermore, we have defined It and 91 in such a way that 12 -1>+ It and 
92 -1>+ 91· (ii) is the special case hi = 0 of (i). 0 

Next, we relate polynomial reduction in K[ X] to con9ruence relations on 
K[X] induced byidealsinK[X]. For every P ~ K[X], we let Id(P) be the 
ideal generated by P in K[X], i.e., the set of all finite linear combinations 
EhiPi with hi E K[X] and Pi E P (see Definition 1.36). If I is an ideal in 
K[X], then the equivalence relation =1 defined by 

f =1 9 iff f - 9 E I 

(cf. Exercise 4.20 (iv» is called the congruence relation modulo I on 
K[X]. We thus have f =1 9 iff f + I = 9 + I in the residue class ring 
K[X]/I. Furthermore, f =1 9 implies that f E I iff 9 E I. (Cf. the remarks 
at the end of Section 1.5 and the discussion preceding Lemma 4.22.) 
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Lemma 5.26 Let P ~ K[X] and let I, 9 E K[X]. Then I =Id(P) 9 iff 
I + g. In particular, I --1>+ 9 implies 1- 9 E Id(P), and I --1>+ 0 implies 
IE Id(P). 

Proof "<==": We show by induction on kEN that I I ~ I 9 implies 
9 - I E Id(P). If k = 0, then I = g, and so 9 - I = 0 E Id(P). If I Ft\ g, 
say 

11~lh~g, 

then h - I E Id(P) by the induction hypothesis, and 9 - h = mp for 
some m E M and some pEP by the definition of -p+. Consequently, 
9 - I = (g - h) + (h - f) E Id(P). 

"==>": Let 9 - I E Id(P). Then there exist Pi E P and hi E K[X] 
(1:5 i :5 k) such that 

i=l 

We show by induction on k that I I ; I g. If k = 0, then I = g. If 

k 

9 = 1+ L hiPi + h k+1Pk+h 
i=l 

then 9 I; I (f +hk+1pk+l) by induction hypothesis. It now suffices to show 
that 

(f + hk+1Pk+l) I ; I I. 
This follows readily from the translation lemma together with the fact that 
hk+1Pk+1 --1>+ 0 by Lemma 5.24. 0 

The reader should note that in the computable case, the algorithm RED
POL effectively provides the representation of f as a sum of multiples of 
elements of P when it reduces f to zero modulo P. In the terminology of 
Definition 4.78, we have proved the following. 

Proposition 5.27 Let P ~ K[ X]. Then the reduction relation -p+ on 
K[ X] is adequate lor =Id(P). 0 

Exercise 5.28 Use the results on polynomial reduction to give an alternate 
proof of the Hilbert basis theorem for polynomial rings over fields. (Hint: Assume 
that there exists an ideal of K[ X J that is not finitely generated, define a sequence 
of non-zero polynomials such that every element of the sequence is in normal form 
modulo the set of its predecessors, and apply Proposition 4.42 (ii) to the sequence 
of head terms.) 

We close this section with an algorithm that turns an arbitrary finite 
subset P of K[ X] into another finite set that generates the same ideal 
and has the additional property that each of its elements is in normal form 
modulo the rest. 
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Definition 5.29 Let P ~ K[X]. Then P is called monic if every pEP 
is monic; P is called reduced (or autoreduced) if every pEP is monic 
and in normal form modulo P \ {p}. 

Note that 0 ¢. P if P is monic. The following algorithm and the proof 
of its correctness and termination can actually be interpreted as a math
ematical proof of the fact that every ideal in K[ X] has a finite reduced 
basis. This, however, turns out to be of little relevance in the theory (cf. 
Theorem 5.43), whereas the actual computation of a reduced basis from a 
given basis is often important. 

Proposition 5.30 Let P be a finite subset of K[X]. Suppose the ground 
field is computable and the tenn order on T is decidable. Then the algorithm 
REDUCTION of Table 5.2 computes a finite reduced subset Q of K[ X] 
such that Id(Q) = Id(P). 

TABLE 5.2. Algorithm REDUCTION 

Specification: Q - REDUCTION(P) 
Construction of a finite reduced set Q 
such that Id(Q) = Id(P) 

Given: P = a finite subset of K[ X ] 
Find: Q = a finite reduced set in K[X] with Id(Q) = Id(P) 
begin 
Q-P 
while there is p E Q which is reducible modulo Q \ {p} do 

select p E Q which is reducible modulo Q \ {P} 
Q - Q\ {P} 
h - some normal form of p modulo Q 
if h 1= 0 then Q - Q U {h} end 

end 
Q _ { (HC(q»-l . q I q E Q} 
end REDUCTION 

Proof It is an easy exercise to show that Id(Q) = Id(P) is a loop invariant 
of the while-loop. Correctness of the algorithm is now immediate from the 
while-clause. To prove termination, let P = {Pl,'" ,Pm} be any input set. 
We may regard P as an ordered m-tuple (Pl,'" ,Pm) rather than a set. If 
some Pi (1 ~ i ~ m) is selected in the while-loop, then we replace it by its 
normal form h even if h = 0 (rather than throwing it out). Let now Qi be 
the m-tuple thus obtained after the ith run through the loop. Assume that 
the algorithm does not terminate. Since at least one entry of the m-tuple 
Qi is changed when passing from Q, to Qi+1! there must be 1 ~ k ~ m 
such that the kth entry changes infinitely many times. But a zero entry 
never changes back to something non-zero, and all other changes replace 
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some p by h < p. Hence we are looking at a strictly descending chain w.r.t. 
the induced quasi-order on K[ X], which is impossible. 0 

It is clear that for an actual implementation of the above algorithm, one 
must find some way to test the while-clause without redundance. 

It is interesting to see what REDUCTION does when applied to a set of 
polynomials of total degree at most 1. Let F be a finite subset of K[ X] 
where each I E F has total degree at most 1. If we apply the algorithm 
REDUCTION to F, then it will subtract constant multiples of polynomials 
from others until no two polynomials have the same variable as their head 
term and no variable that is a head term of some polynomial occurs in 
any other polynomial. This is precisely what (a certain version of) the so
called Gaussian elimination algorithm for the solution of a system of linear 
equations does. This connection will be explained in detail in Section 10.5. 

Another special case that is worth mentioning is that of two univariate 
polynomials I and g. If we modify REDUCTION in such a way that it 
performs top reduction only, then it is easy to see that when applied to 
{I, g}, it will perform the same "back and forth divisions" as the Euclidean 
algorithm and eventually output {gcd(f,g)}. 

Exercise 5.31 Let P be a finite set of univariate polynomials over a field. Show 
that REDUCTION(P) is a one-element set consisting of the gcd of the elements 
of P. 

5.2 Grobner Bases-Existence and Uniqueness 

The main facts on polynomial reduction proved in the previous section can 
be summarized as follows. 

Proposition 5.32 Let K[ X] = K[X 1, ... ,Xn ] be a polynomial ring over 
a field K, let ~ be an arbitrary term order on T, and let polynomial re
duction ----p+ on K[X] lor P ~ K[X] be defined w.r.t. ~. Then ----p+ is a 
noetherian reduction relation on K[ X] that is adequate lor the equivalence 
relation =Id(P). In particular, 1--1>+0 implies I E Id(P). Moreover, il K 
is computable, ~ is decidable and P is finite, then ----p+ is decidable. 0 

Unfortunately, ----p+ is general not locally confluent, and so Theorem 4.79 
is not applicable in order to solve the equivalence problem for the relation 
=Id(P)' Consider the following example in Q[X]: I = X + 1 and P = 
{X,X + I}. Then 

1---+1 and 1---+0, 
x X+l 

and so 0 and 1 are different normal forms of I w.r.t. ----p+, contradicting 
Newman's lemma. The example also shows that it is not true in general 
that I E Id(P) implies I --1>+ 0: here, 1 = (X + 1) - X E Id(P), but 1 
is clearly in normal form modulo P. In this example, the problem can be 
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resolved easily. Since 1 E Id{P), we may enlarge P to pI = {X,X + 1, I}. 
Then Id{P) = Id{PI), every 0 :/= I E K[X] is reducible modulo pI, and 
so p;+ is locally confluent and adequate for =Id(P)' The reason why p;t is 
locally confluent is that 1 E pI is a generator for the ideal Id(PI) = Id(P). 
This will become apparent from the next proposition. 

As in the previous section, let K be a field, K[ Xl = K[X 1, ... , Xnl, and 
:s a fixed term order on T. 

Proposition 5.33 Let 0 =1= p E K[ X l. Then -p+ is locally confluent. 

Proof Suppose I -p+ Ii [til for i = 1,2. In order to show that It pl 12, 
it suffices by the translation lemma to verify that It - 12 7 o. Let Ii = 

1- miP with mi EM. Then It - h = (m2 - ml)· P 7 0 by Lemma 5.24. 
o 

Corollary 5.34 Let P ~ K[ X] such that Id( P) = Id(P) lor some 0 :/= P E 
P. Then -p+ is locally confluent. 

Proof Let I -p+ Ii for i = 1,2. Then It 4 ; I 12, and so by Lemma 5.26, 
It - h E Id(P) = Id(P). It follows that 

It+h, 
so It pl 12 by Newman's lemma and the fact that -p+ is locally confluent, 
and so It p 1 h. 0 

For the case of univariate polynomials, this shows once more in a some
what roundabout way that for any finite P ~ K[X] = K[X], the equiva
lence problem for =Id(P) is decidable: it suffices to compute P = gcd{P) by 
the Euclidean algorithm, and then to apply Theorem 4.79 to the reduction 
relation -p+ {or to p;t, where pI = P u {p} ). What is the unique normal 
form h of I E K[ X] obtained in this way? It is simply the remainder of I 
upon division by p. So for univariate polynomials all these considerations 
lead straight back to division with remainder and the Euclidean algorithm. 

For polynomial rings K[X] in several variables the situation is, however, 
entirely different: on the one hand, the Hilbert basis theorem asserts that 
every ideal I of K[ X] is finitely generated; on the other hand, we saw in 
Section 2.2 that not all ideals of K[ X] have a single generator. So given 
a finite set P of polynomials in K[ X ], it will in general be impossible to 
enlarge P by a generator p of Id{P) to pI so that p;t becomes locally 
confluent and thus can be employed to decide the equivalence problem for 
the relation =Id(P). 

This raises the following fundamental question: Given a finite set P ~ 
K[X], is it possible to construct another finite set G ~ K[X] such that 
Id(P) = Id(G) and cr is locally confluent? Rather surprisingly, the answer 
is yes. The rest of this section and the next are devoted to a proof of this 
fact and some of its consequences. We begin by relating the local confluence 
of cr to more algebraic properties of G. 
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If P ~ K[X], then we set HT(P) = {HT(p) 10 # pEP}j for S ~ T, 

mult(S) = { t E T I there is s E S with sit} 

denotes the set of all multiples of elements of S. 

Theorem 5.35 Let G be a subset 01 K[ X]. Then the lollowing are equiv
alent: 

(i) ----cr is locally confluent. 

(ii) ----cr is confluent. 

(iii) ----cr has unique normallorms. 

(iv) ----cr has the Church-Rosser property. 

(v) 1+ 0 lor all I E Id(G). 

(vi) Every 0 # I E Id(G) is reducible modulo G. 

(vii) Every 0 # I E Id(G) is top-reducible modulo G. 

(viii) For every s E HT(Id(G» there exists t E HT(G) with tl s. 

(ix) HT(Id(G» ~ mUlt(HT(G». 

(x) The polynomials that are in normallorm w.r.t. ----cr lorm a system 01 
unique representatives lor the partition 

{I + Id(G) I IE K[X]} 

oIK[X]. 

Proof The equivalence of (i)-(iv) has already been shown in Theorem 4.75 
for arbitrary noetherian reduction relations. 

(iv)=}(v): Let I E Id(G). Then 1-0 E Id(G) and thus I + 0 
by Lemma 5.26. Since ----cr has the Church-Rosser property, there exists 
h E K[ X] with I + h and 0 + h. Since 0 is always in normal form, we 
get h = O. 

(v)=}(vi): Let 0 # I E Id(G). By (v), there exists h E K[X] with 
I ----cr h + o. 

(vi)=}(vii): Assume for a contradiction that 0 # I E Id(G) is minimal 
(w.r.t. the given quasi-order on K[X]) such that it is not top-reducible 
w.r.t. ----cr. Then by (vi), there exists h E K[X] with I ----cr h. It follows 
that h E Id(G) and h < I. Moreover, HM(h) = HM(f) since I was not 
top-reducible. By the minimal choice of I, h is top-reducible w.r.t. ----cr ' say 
h 7 hI for some g E G. But then HT(g) I HT(h), and so I is top-reducible 
w.r.t. 7' a contradiction. 

(vii), (viii), and (ix) are simple reformulations of each other. 



5.2. Grobner Bases-Existence and Uniqueness 207 

(ix)~(x): Assume for a contradiction that there exist ft, 12 E K[X] 
both in normal form w.r.t. -0+ with ft :f= 12 and 

ft + Id(G) = 12 + Id(G). 

Then ft - 12 E Id(G), and so there exists g E G with HT(g) I HT(ft - h). 
But 

HT(ft - h) E T(ft) U T(h), 

and so ft or 12 is reducible modulo G. 
(x)~(iv): Let ft, 12 E K[X] with ft I;; , h. Then ft - 12 E Id(G) by 

Lemma 5.26, and so 

ft + Id(G) = 12 + Id(G). 

Let hI and h2 be normal forms of ft and 12, respectively. Then hI, h2 E 
/1 + Id(G) again by Lemma 5.26, and so hI = h2 by (x). 0 

Exercise 5.36 Give direct proofs for the following implications of the above 
theorem: (v)<==?(vii), (x)~(v), (vi)~(v), and (vi)~(iv). 

Definition 5.37 A subset G of K[X] is called a Grobner basis (w.r.t. 
the term order $) if it is finite, 0 ¢. G, and G satisfies the equivalent 
conditions of Theorem 5.35. If I is an ideal of K[ X], then a Grobner 
basis of I (w.r.t. $) is a Grobner basis G (w.r.t. $) such that Id(G) = I. 

The requirement 0 ¢. G of the definition above is of course not in any way 
essential. However, we will frequently make assumptions or draw conclu
sions concerning all non-zero elements of an ideal basis, and so excluding 
zero in the first place will make many results simpler to formulate. Recall 
that we have the convention Id(0) = {O}j the empty set is thus a Grobner 
basis of the zero ideal. 

If G is a Grobner basis of the ideal I of K[ X], then in particular, Gis 
a Grobner basis and thus satisfies conditions (v)-(x) of Theorem 5.35. We 
also have Id( G) = I by definition, so these conditions trivially remain valid 
if we replace Id(G) by I. The following proposition provides a converse to 
this. 

Proposition 5.38 Let I be an ideal oj K[ X] and G a finite subset oj I 
with 0 ¢. G. Then each 0/ the Jollowing is equivalent to G being a Grabner 
basis oj I. 

(i) J + 0 Jor all / E I. 

(ii) Every 0 :f= J E I is reducible modulo G. 

(iii) Every 0 :f= J E I is top-reducible modulo G. 

(iv) For every s E HT(I) there exists t E HT(G) with tis. 
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(v) HT{I) ~ mult{HT{G)). 

(vi) The polynomials hE K[X] that are in normal/orm w.r.t. ~ form a 
system 0/ unique representatives for the partition { / + I I / E K[ X] } 
o/K[X]. 

Proof We have just explained how G being a Grabner basis of I implies 
each of the listed conditions. Now assume that (i) holds. We have Id( G) ~ I 
by assumption, and so the condition trivially implies that G is a Grabner 
basis. It remains to show that I ~ Id(G). If / E I, then / + 0 and thus 
/ E Id( G) by Lemma 5.26. The proof can now be finished by showing that 
(i)-(vi) are equivalent, which can easily be achieved using exactly the same 
arguments as in the proof of Theorem 5.35 and Exercise 5.36. 0 

Exercise 5.39 Complete the proof of the above proposition. 

Exercise 5.40 Let G ~ K[X) be a Grabner basis w.r.t. ~ of the ideal I of 
K[X). Show that HT(G) is a Grabner basis w.r.t. ~ of the ideal Id(HT(I» of 
K[X). In fact, if 0 I- f E Id(HT(I», then every monomial of f is reducible 
modulo HT(G). 

We can now give a simple non-constructive existence proof for Grabner 
bases. 

Theorem 5.41 Let I be an ideal of K[X]. Then there exists a Grobner 
basis G 0/ I w.r.t. ~. 

Proof By Theorem 5.2, the divisibility relation is a Dickson partial order 
on T. So the set HT(I) has a finite basis S w.r.t. divisibility. For each t E S, 
there exists /t E I such that HT(ft) = t. Let now G = {/t It E S}. Then 
G satisfies condition (iv) of the previous proposition, and so G is a Grabner 
basis of I. 0 

Note that we have just found another proof of the Hilbert basis theorem 
for polynomial rings over a field K: a Grabner basis of an ideal I is a finite 
basis of I. A Grabner basis of an ideal I is of course far from being uniquely 
determined by Ij even if we work with the unique minimal basis of HT(I) 
in the above proof, I may still contain many different polynomials with 
the same head term. We are now going to show how Grabner bases that 
are reduced in the sense of Definition 5.29 always exist and are uniquely 
determined by the ideal they generate. Such a basis will, rather obviously, 
be called a reduced. Grabner basis. 

Lemma 5.42 Suppose I is an ideal of K[ X], m is a monomial, and / and 
9 are minimal polynomials in I such that HM(f) = HM(g) = m. Then 
/=g. 

Proof We must have T(f) = T(g) since otherwise / < 9 or 9 < /. Note 
that / - gEl, and / - 9 = 0 or 8 = HT(f - g) < m. In the latter case, 
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s E T(f) = T(g). It follows that there exists 0 =F c E K such that s ¢. T(h), 
where 

h = 1- c(f - g) E I. 

So HM(h) = m and h < I, contradicting the minimality of I. 0 
For reduced Grobner bases Theorem 5.41 can now be improved as follows. 

Theorem 5.43 Let I be an ideal 01 K[ X]. Then there exists a unique 
reduced Grobner basis G 01 I w. r. t. ~. 

Proof Let S be the unique minimal basis of HT(I) w.r.t. the divisibility 
relation (Lemma 4.43). For each t E S, there is It E I with HT(It) = t. 
Since I is an ideal, we may assume that HM(It) = t, and by Lemma 5.42 
we may even assume that It is the unique minimal member of I with this 
property. Set 

G = {It It E S}. 

Then G is a Grobner basis of I by the same argument as in the proof of the
orem 5.41 above. G is obviously monic, and we claim that it is also reduced. 
Assume for a contradiction that there exist g1, g2 E G and I E K[ X] with 
g1 --+ I and g1 =F g2· If this is a top reduction, then HT(g2) I HT(gd, and 

g2 

so Sf = S \ {HT(g1)} was also a basis of HT( 1), contradicting the minimal 
choice of S. Otherwise, HM(f) = HM(g1) and I < g1, contradicting the 
minimal choice of g1. 

It remains to prove uniqueness. Assume for a contradiction that H is 
another reduced Grobner basis of I. Let 9 be an element of the symmetric 
set difference G ~ H such that HT(g) is minimal in HT( G ~ H), and 
assume w.l.o.g. that 9 E G \ H. By Theorem 5.35 (viii), there exists h E 
H with HT(h) I HT(g). We must in fact have h E H \ G: otherwise G 
would not be reduced because h =F g. By the minimal choice of g, the 
divisibility HT(h) I HT(g) cannot be proper, i.e., we have HT(h) = HT(g). 
Now consider I = 9 - h. Then 

HT(f) < HT(g) = HT(h) 

because G and H were monic. Moreover, we must have HT(f) E T(g) or 
HT(f) E T(h), say HT(f) E T(g). But I E I implies that there exists 
pEG with HT(P) I HT(f). We see that now a term of 9 other than the 
head term is divisible by the head term of some element of G, and this 
contradicts the fact that G was reduced. 0 

The results of this section concerning the existence and uniqueness of 
Grobner bases for ideals of K[ X] are of great theoretical importance. How
ever, their proofs are non-constructive. They provide no means to construct 
such bases nor even to recognize whether a given set of polynomials in K[ X] 
is a Grobner basis since all the characterizations obtained so far refer to 
an infinity of tests. The next section will provide algorithmic solutions to 
these problems. 
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5.3 Grabner Bases-Construction 

We keep the conventions of the last section: K[X] = K[X1, ... ,Xn ] is a 
polynomial ring over the field K, and ::; is a term order on T that extends 
canonically to a well-founded linear quasi-order on K[X]. Our first goal 
is to find a characterization of Grabner bases that involves only finitely 
many tests. This will show that the property of being a Grabner basis is 
algorithmically decidable. 

Consider the following example. Let K[X] = IQ[X,Y,Z], P = {P1,P2} 
where P1 = XY + 1 and P2 = YZ + 1. Then I = Z - X E Id(P) since 
1= ZP1 - XP2, but I is in normal form modulo P w.r.t. every term order 
since XY and Y Z are necessarily the head terms of P1 and P2, respectively. 
We have found a member of Id( P) which does not reduce to 0 modulo P, so 
P is not a Grabner basis. The way we have created the problem polynomial 
was to lift the head terms of P1 and P2 to their least common multiple XY Z 
and then to subtract so that the head monomials drop out. It is clear that 
there is no reason why the result of this subtraction should be reducible 
modulo P in general. Grabner basis algorithms are based on the remarkable 
fact that if the finitely many differences of the above kind are all benign, 
i.e., reduce to 0, then every I E Id(P) reduces to 0 and hence P is a Grabner 
basis. 

The following lemma provides a characterization of Grabner bases that 
still involves infinitely many tests but is an important step towards the 
reduction to finitely many tests. 

Lemma 5.44 Let G be a finite subset of K[ X] with 0 fj: G. Assume that 
whenever gl, g2 E G with gl #- 92 and m1 and m2 are monomials such that 

it follows that m1g1 - m2g2 + o. Then G is a Grabner basis. 

Proof We show that ---a+ is locally confluent. Let I, 11, h E K[X] with 
I ---a+ Ii, where Ii = 1- migi for some mi EM and gi E G for i = 1, 2. 
Then by the translation lemma, 11 G 1 h provided that 

m1g1 - m2g2 = h - 11 + o. 
Case 1: HT(m1g1) #- HT(m292), say HT(m191) > HT(m292)' Then we 
may reduce m191 - m292 to 0 modulo G by means of two top-reductions: 

m191 - m292 ----t -m292 ----tg O. gl 2 

Case 2: HT(m191) = HT(m292) = t. Then HM(m191) = HM(m2g2) since 
both eliminate the same term t from I. It follows that 

by the hypothesis of the lemma. 0 
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Exercise 5.45 Let s, t E T, 

s = Xfl ..... X!n and t = xiI ..... X!t. 
Define lcm(s,t) as X~I ..... X;::n, where mi = max(ki,li) for 1 ~ i ~ 
n. Show that lcm(s, t) has the properties of a least common multiple 
(lcm): 

s Ilcm(s, t) and t Ilcm(s, t), 

and lcm(s, t) I u whenever s I u and t I u for u E T. 

Definition 5.46 For i = 1, 2, let 0 ¥- gi E K[X], ti = HT(gi), ai = 
HC(gi), and t = Siti = lcm(tl,t2) with Si E T. Then the S-polynomial of 
gl and g2 is defined as 

spol(gb g2) = a2slg1 - als2g2· 

Exercise 5.47 Let gl, g2 E K[X]. Show the following: 

(i) If gl = g2, then SPOl(gl,g2) = O. Similarly, if both gl and g2 are 
monomials, then SpOl(gl, g2) = O. 

(ii) If gl ¥- g2, then either spol(gb g2) = 0, or else 

HT(spol(gt, g2») < lcm(HT(gt}, HT(g2»). 

(iii) If HT(g2) I HT(gl), then HC(g2) . gl -+ SPOl(gl,g2), and this is ac-
92 

tually a top reduction. 

Theorem 5.48 Let G be a finite subset of K[X] with 0 rt G. Then the 
following are equivalent: 

(i) G is a Grabner basis. 

(ii) Whenever gl, g2 E G and h E K[ X] is a normal form of SPOl(gl' g2) 
modulo G, then h = O. 

(iii) spol(gt,g2) + 0 for all gl, g2 E G. 

Proof (i)===> (ii): SPOl(gl, g2) is obviously in Id( G) for all gl, g2 E G. So 
by Theorem 5.35, SPOl(gl,g2) has 0 as a normal form modulo G. Since 
moreover normal forms are unique, it follows that h = O. 

(ii)===>(iii) is trivial. 
(iii)===>(i): By the last lemma, it suffices to show that polynomials of the 

form mlgl - m2g2 with gl ¥- g2 in G, monomials ml and m2, and 

reduce to 0 modulo G. For i = 1, 2, let ti = HT(gi), ai = HC(gi), and 
mi = biui with bi E K and Ui E T. Then the equation (*) becomes 
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Now let SI, S2 E T such that Siti = lcm(h, t2) for i = 1, 2. From (**) we 
see that ulh = U2t2 is a common multiple Oftl and t2. It follows that there 
exists vET such that for i = 1, 2, 

We see that Ui = VSi. Furthermore, (**) implies that (bI/a2) = (b2/al), 
and we obtain 

bl U191 - b2U292 

= bl VS191 - b2VS292 

bl 
- . V . (a2s191 - als292) 
a2 
bl 

= -. V· spol(91 , 92). 
a2 

From Lemma 5.24 and the fact that spol(91 , 92) + 0, we conclude that 

bl () * - . v . spol 91> 92 ('J"" O. 0 
a2 

The following corollary is now immediate from the fact that the S
polynomial of two monomials equals zero. 

Corollary 5.49 Let G ~ K[ X] be a finite set of monomials. Then G is a 
Grabner basis. 0 

As another consequence of this theorem, we can now show that the Grob
ner basis property is preserved under extensions of the polynomial ring 
K[X]. It is clear that for n, n' EN with n < n', the restriction of a term 
order on T' = T(X1> ... , X n') to T = T(Xl' ... ' Xn) is a term order on T. 

Exercise 5.50 Show that every term order on T is the restriction of some 
term order on T'. 

Corollary 5.51 Let K[X] = K[Xl , ... ,Xn], K a subfield of K', n' 2': n, 
and K'[ X'] = K'[Xl , ... , X n,]. Then the followin9 hold: 

(i) Suppose :::; is a term order on T'. Then every Grabner basis G in 
K[X] w.r.t. the restriction of:::; to T is a Grabner basis in K'[X'] 
w.r.t. :::;. 

(ii) Let F be a finite subset of K[ X] and denote by 

IdK[K](F) and IdK'[K'] (F) 

the ideals genemted by F in K[ X] and K'[ X'], respectively. Then 

IdK'[K,](F) n K[X] = IdK[K](F). 
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Proof (i) Let gl, g2 E G. Then SPOI(gl,g2) is the same in K[X] and in 
K'[X']. So SPOI(gl,g2) + 0 in K[X] and hence in K'[X']. So by the 
theorem above, G is a Grabner basis in K'[X']. 

(ii) The inclusion ";2" is trivial. Now let 

f E IdK'[K'l(F) nK[X]. 

Let G ~ K[X] be a Grabner basis ofIdK[Kl(F) w.r.t. some term order::;. 
By (i), G is a Grabner basis in K'[ X'] w.r.t any term order on T' whose 
restriction to T equals ::;. From the fact that IdK[Xl(F) = IdK[Kl(G) one 
easily concludes that 

IdK'[K'l(G) = IdK'[K'l(F). 

It follows that f + O. Since f E K[ X] and G ~ K[ X], this reduction 
takes place in K[X], and we see that f E IdK[Kl(G) = IdK[Kl(F) by 
Lemma 5.26. 0 

As an immediate consequence of Theorem 5.48, we obtain an algorithm 
that decides whether or not a given finite set of polynomials is a Grob
ner basis. It is clear that we can test all S-polynomials for reduction to 0 
if we have computability of the ground field and decidability of the term 
order. Termination of the following algorithm is trivial, correctness follows 
immediately from Theorem 5.48. It is clear that the requirement 0 ¢ G 
is not in any way critical when it comes to algorithms involving Grobner 
bases; we will therefore henceforth assume that 0 is removed by default from 
all finite sets of polynomials occurring in algorithms (but not, of course, in 
theorems). 

Corollary 5.52 Let G be a finite subset of K[ X]. Suppose the ground field 
is computable, and the term order on T is decidable. Then the algorithm 
GROBNERTEST of Table 5.3 decides whether G is a Grobner basis. 0 

A more important consequence of Theorem 5.48 is the following algo
rithm for the construction of a Grabner basis from an arbitrary ideal basis. 
The algorithm of the following theorem that achieves this is also called the 
Buchberger algorithm. 

Theorem 5.53 (BUCHBERGER ALGORITHM) Let F be a finite subset of 
K[ X]. Suppose the ground field is computable, and the term order on T is 
decidable. Then the algorithm GROBNER of Table 5.4 computes a Grobner 
basis Gin K[X] such that F ~ G and Id(G) = Id(F). 

Proof Termination: Assume for a contradiction that the while-loop does 
not terminate. Let F = Go C G1 C G2 C ... be the successive values of 
G. Considering those runs through the while-loop that actually enlarge G, 
we see that there exists an ascending sequence {ni }iEN of natural numbers 
such that for aliI::; i EN, there exist h. E Gn • \ Gn ._ 1 which is in normal 
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TABLE 5.3. Algorithm GROBNERTEST 

Specification: v +- GROBNERTEST( G) 
Test whether G is a Grobner basis 

Given: G = a finite subset of K[X] 
Find: v E {true, false} such that v = true iff G is a Grobner basis 
begin 
B +- { {91,92} I 91,92 E G with 91 =1= 92} 
while B =1= 0 do 

select {91,92} from B 
h +- some normal form of spol(91,92) modulo G 
if h = 0 then 

B +- B \ {{9b 92}} 
else return(false) 
end 

end 
return(true) 
end GROBNERTEST 

TABLE 5.4. Algorithm GROBNER 

Specification: G +- GROBNER(F) 
Construction of a Grobner basis G of Id(F) 

Given: F = a finite subset of K[ X] 
Find: G = a finite subset of K[ X] such that G is a Grobner basis in 

K[X] with F ~ G and Id(G) = Id(F) 
begin 
G+-F 
B +- { {91,92} 191,92 E G with 91 =1= 92} 
while B =1= 0 do 

end 

select {91,92} from B 
B +- B \ {{9t,92}} 
h +- spol(9t, 92) 
ho +- some normal form of h modulo G 
if ho =1= 0 then 

B +- B U {{9,ho} 19 E G} 
G +- Gu {ho} 

end 

end GROBNER 
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form modulo Gn'_i' Let tk = HT(hk) for all k E Nj then i < j implies that 
ti does not divide tj, for otherwise hj would be top-reducible modulo {hi} 
and hence modulo {GnJ-J. Since divisibility of terms is a Dickson partial 
order, this contradicts Proposition 4.42 (ii). 

Correctness: We claim that the following are loop invariants of the while
loop: G is a finite subset of K[X] such that F ~ G ~ Id(F), and 

SPOI(gl,g2) ~ 0 
G 

for all gb g2 E G such that {gl,g2} ¢. B. The first claim follows easily from 
the fact that a normal form of an S-polynomial of two elements of G is in 
Id(G). For the second one, it suffices to note that 

SPOI(gl, g2) ~ ho implies spol(gl! g2) ~ o. 
G GU{ho} 

Upon termination, we have B = 0, and so SpOI(gl,g2) + 0 for all gl, 
g2 E G. It now follows from Theorem 5.48 that G is a Grabner basis. 0 

Note that this algorithm is non-deterministic; the resulting Grabner basis 
is not uniquely determined by the input F. The pairs that get placed in the 
set B are often referred to as critical pairs. It is clear that the algorithm 
is potentially rather complex: every newly added reduced S-polynomial 
enlarges the set B by all its descendants. In the next section, we will see how 
this combinatorial growth can be controlled to some extent by eliminating 
unnecessary critical pairs. 

Exercise 5.54 Let K[X] = Q[X, Y, Z], F = {X +1, Y +1,XY +Z}. Compute a 
Grobner basis for Id(F) w.r.t. the lexicographical term order where Z «: Y «: X. 
Get a feeling for the complexity of the algorithm by making up your own examples 
w.r.t. different term orders. 

Recall that if R is a ring and I a proper ideal of R , then the equivalence 
problem for R/ I is the problem to effectivly decide whether a =1 b (Le., 
whether a - bEl) for a, b E R. We can now combine the results obtained 
thus far in this chapter to prove the following important theorem. (Cf. 
Proposition 2.39, the remarks following Exercise 2.41, and also the remarks 
at the end of this section.) 

Theorem 5.55 Let F be a finite subset of K[X], let I = Id(F), and 
assume that K is computable. Then the following hold: 

(i) The equivalence problem for the ideal I is decidable. In particular, 
one can decide membership in I. 

(ii) The residue class ring K[X]/I (which may be formed if I is proper) 
is computable. 
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Proof (i) Let ~ be a decidable term order on T. By Theorem 5.53, we may 
compute a Grabner basis w.r.t. ~ of I. Now let f, g E K[ X]. By Theorem 
5.21 and Lemma 5.19, we can compute a normal form h of f - g w.r.t. this 
Grabner basis. By Theorem 5.35, h = 0 if and only if f - gEl. To decide 
membership in I, simply take g = O. 

(ii) By (i), we are in the situation of Example 4.83, so K[ X]/ I is a 
computable ring. (We are in an even better position since we can represent 
each residue class uniquely by the normal form it contains.) 0 

Next, we show how the unique reduced Grabner basis of an ideal Id(F) 
can be computed from a given ideal basis F ~ K[ X]. One way to achieve 
this would be to apply the algorithm REDUCTION to the Grabner basis 
GROBNER(F). It is clear that the output is reduced, and it is possible 
to show that it is still a Grabner basis of Id(F). This procedure, however, 
is far more costly than necessary in general. The following algorithm first 
throws away all those polynomials of a given Grabner basis of Id(F) whose 
head terms are multiples of head terms of others and then performs the 
remaining non-top reductions. 

Proposition 5.56 Let G be a Grabner basis in K [ X ]. Suppose K is com
putable and the term order on T is decidable. Then the algorithm RED
GROBNER of Table 5.5 computes the reduced Grabner basis of Id(G). 

TABLE 5.5. Algorithm REDGROBNER 

Specification: H ~ REDGROBNER( G) 
Construction of the reduced Grabner basis of Id( G) 

Given: G = a Grabner basis in K[ X] 
Find: H = the reduced Grabner basis of Id( G) 
begin 
H~0; F~G 
while F =f 0 do 

end 

select fo from F 
F ~ F\ {fo} 
if HT(J) f HT(Jo) for all f E F and 

HT(h) f HT(Jo) for all hE H then 
H ~ HU {fo} end 

H ~ REDUCTION(H) 
end REDGROBNER 

Proof Termination: The while-loop terminates trivially, and termination 
of REDUCTION has been proved for an arbitrary finite input set. 

Correctness: It is clear that mu1t(HT(HUF» is an invariant of the while
loop. At the beginning, H = 0, while at the end, F = 0. It is now immediate 
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from Proposition 5.38 (v) that at the end of the loop, H is still a Grabner 
basis ofId(G). The other loop invariant is that HT(f) f HT(h) for all hE H 
and f E FU(H\ {h}). We see that when F = 0, then HT(hl ) fHT(ha) for 
all hl, h2 E H with hl =I h2. It is clear that REDUCTION's first reduction 
step will not be a top reduction in this case. A non-top-reduction does not 
change any head terms; so none of REDUCTION's reduction steps ever will 
be a top reduction, and HT(H) is an invariant of the entire computation. 
It follows that at the very end, H is still a Grobner basis of Id(G), and we 
already know that the output of REDUCTION is a reduced set. 0 

Corollary 5.57 Let F be a finite subset of K[ X]. Suppose the ground field 
is computable and the term order on T is decidable. Then the composition 
of the algorithms GReBNER and REDGReBNER computes the unique 
reduced Grobner basis of Id(F). 0 

Exercise 5.58 Denote by '5' the linear quasi-order on Pfin(K[X]) induced by 
'5 on K[X] according to Exercise 4.70. Let F be a finite subset of K[X], and 
denote by g the set of all monic Grabner bases of Id(F). Show that G Egis the 
unique reduced Grabner basis of Id( F) if and only if the following two conditions 
are satisfied. 

(i) Gis '5'-minimal in g. 

(ii) IGI '5 IG'I for all G' E g with G '5' G' and G' '5' G. 

We have already mentioned at the beginning of Section 5.2 that for uni
variate polynomials, the Grabner basis problem leads back to gcd com
putations by means of the Euclidean algorithm. Indeed, if f, g E K[X], 
where K is a field, and h = gcd(f' g), then h is a generator for the ideal 
generated by f and g (Lemma 1.70). Moreover, {h} is trivially a Grobner 
basis for this ideal since there are no S-polynomials to be tested (cf. Propo
sition 5.33), and if we set the head coefficient of h to 1, then it is even a 
reduced Grabner basis. Now if we apply the plain algorithm GReBNER 
to the set F = {j,g}, then F will be enlarged by reduced S-polynomials 
the last one of which will be h: once h has been added, every member of 
the ideal, in particular every S-polynomial, reduces to 0 mod h. These con
siderations remain of course valid for the gcd of more than two univariate 
polynomials. It is important to note though that in the univariate case, the 
algorithm GReBNER does not provide any improvement-either theoret
ical or practical-over the Euclidean algorithm: in view of Exercise 5.47 
(iii), it is easy to see that the plain algorithm GReBNER is nothing but 
a tremendously blown-up Euclidean algorithm in this case. (Cf. also the 
discussion at the end of Section 5.1.) 
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5.4 Standard Representations 

In this section, we will provide some more characterizations of Grabner 
bases. Although non-algorithmic by nature, these characterizations will be 
powerful tools for the verification of improved Grobner basis algorithms. 
We let K[ X], T, and ::; be as in the previous section. 

Definition 5.59 Let 0 1= f E K[ X], P a finite subset of K[ X]. A repre
sentation 

k 

f = LmiPi 
i=l 

with monomials 0 1= mi = aiti E K[ X] and Pi E P not necessarily pairwise 
different (1 ::; i ::; k) is called a standard representation of f w.r.t. P 
(and ::;) if 

maxi HT(miPi) 11 ::; i ::; k} ::; HT(f). 

A standard representation w.r.t. P is thus a representation of f as a 
sum of monomial mUltiples of elements of P in which there is no cancela
tion of monomials "protruding beyond HT(f)." Note that we must have 
HT(miPi) = HT(f) for at least one index 1 ::; i ::; k. 

In the literature, standard representations are often defined as represen
tations of the form 

with polynomials qp such that HT( qpp) ::; HT(f) for all those pEP with 
qp 1= O. It is clear that using the distributive law, we can convert every sum 
of polynomial multiples into a sum of monomial multiples and vice versa, 
and that under this correspondence, the two definitions are equivalent. The 
monomial version will make some results and proofs easier to visualize. The 
following lemma is now immediate from Proposition 5.22. 

Lemma 5.60 Let P be a finite subset of K[ X] and 0 1= f E K[ X J with 
f + O. Then f has a standard representation w.r.t. P. 0 

From the obvious fact that HT(miPi) = HT(f) for at least one summand 
in a standard representation, we immediately obtain the following partial 
converse to the above lemma. 

Lemma 5.61 Let P be a finite subset of K[X] and 0 1= f E K[X] such 
that f has a standard representation w.r.t. P. Then f is top-reducible 
modulo P. 0 

We can now combine the last two lemmas to obtain a new characteriza
tion of Grabner bases. 
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Theorem 5.62 A finite subset G 01 K[ X] with 0 ¢. G is a Grobner basis 
w.r.t. the term order::; iff every 0 =/:- I E Id(G) has a standard representa
tion w.r.t. G and ::;. 

Proof If G is a Grabner basis, then every 0 =/:- I E Id( G) reduces to zero 
modulo G and thus has a standard representation w.r.t. G. Conversely, if 
every 0 =/:- I E Id(G) has a standard representation w.r.t. G, then every 
such I is top-reducible modulo G, and so G is a Grabner basis. 0 

The following exercise demonstrates that the existence of a standard 
representation does not in general imply reducibility to O. 

Exercise 5.63 Let P = {Pl,P2} ~ Q[X, Y, Zl with Pi = XY + 1, P2 = YZ + 1, 
/ = Xy2 + X + Y - Z, ::; the lexicographical term order with Z « Y « X. 
Show that / has a standard representation w.r.t. P, but not / + o. 

We are now going to show that for a finite subset G of K[ X] to be a 
Grabner basis it is sufficient that for all gl, g2 E G, spol(gl. g2), unless 
equal to 0, has a standard representation w.r.t. G. In view of the above 
exercise, this is a seemingly weaker condition than SPOI(gl,g2) + O. For 
the sake of a certain application in the next section, we will actually prove 
a somewhat more subtle result. 

The following terminology will be useful. Let P be a finite subset of 
K[X], 0 =/:- I E K[X], and t E T. Suppose 

k 

1= LmiPi 
i=1 

with monomials 0 =/:- mi E K[X] and Pi E P not necessarily pairwise 
different (1 ::; i ::; k). Then we say that this is a t-representation of I 
w.r.t. P if 

max{ HT(miPi) 11 ::; i ::; k} ::; t. 

Any HT(f)-representation of I is thus a standard representation of I. In the 
general case of a t-representation, the term t may be viewed as a measure 
of how far at most the representation is from being a standard representa
tion. It is clear that-as with standard representations-one can formulate 
a "polynomial version" of t-representations that is equivalent to the defi
nition above in an obvious sense: a t-representation of I w.r.t. P is then a 
representation 

with polynomials qp such that HT( qpp) ::; t for all those pEP with qp =/:- o. 
Theorem 5.64 Let G be a finite subset 01 K[ X] with 0 ¢. G. Assume that 
lor all gl, g2 E G, SPOI(gl, g2) either equals zero or it has at-representation 
w.r.t. G lor some t < Icm(HT(gd,HT(g2)). Then G is a Grabner basis. 
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Before we prove the theorem, we show how one may visualize its hypoth
esis. In the following picture, the dash lines represent polynomials with 
their monomials in descending order, so that the dot indicates the head 
monomial. Here, the S-polynomial of gl and g2 has at-representation w.r.t. 
G = {glog2,gg} as required in the theorem, but this representation is not 
a standard representation. 

mlgl - - - - - - - - - - - - - - - - - - - - --+ 
+~ft ----------------------+ 

= SPOI(glo g2) - - - - - - - - - - - - --+ 

= qlgl 
+ q2g2 
+ qggg 

--------------------+ 
------------------+ 

--------------------+ 

Proof of Theorem 5.64 We show that every 0 f f E Id( G) has a stan
dard representation w.r.t. G. Let 0 f f E Id(G). Then f has a representa
tion 

f= Lqgg 
gEG 

with qg E K[ X 1 for all 9 E G, which we can of course turn into a repre
sentation 

i=l 
with monomials 0 f mi = aiti E K[ X 1 and gi E G not necessarily pairwise 
different (1 ~ i ~ k). We may assume that 

s = max{HT(migi) 11 ~ i ~ k} 

is minimal among all such representations of f w.r.t. G. We must prove 
that s = HT(J). Assume for a contradiction that HT(J) < s. We will 
produce an s'-representation of f w.r.t. G for an S' < s, contradicting the 
minimal choice of s. We proceed by induction on the number ns of indices 
i with HT(migi) = 8. Since s cancels out, ns = 1 is impossible. Let ns = 2. 
W.l.o.g., we may assume that HT(mlgt} = HT(~g2) = s. This means 
that 

8 = tl . HT(gl) = t2 . HT(g2), 

and so Icm(HT(gl), HT(g2» I s, say s = u·lcm(HT(gt} , HT(g2» with u E T. 
Since ns = 2, we must even have HM(mlgl) = -HM(m2g2)' It follows that 

al . HC(gl) = -a2 . HC(g2)' 

Now if we set a = aI/HC(g2) = -a2/HC(gl), then it is not hard to prove 
that 
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By assumption, SpOI(gl,g2) = 0, or it has at-representation 

k' 

SPOI(gl' g2) = I: m~g: 
i=l 

for some t < Icm(HT(gl), HT(g2». Substituting for mlgl +m2g2 in (*), we 
obtain a representation 

k k' 

f = I: migi + au I: m~g:, 
i=3 i=l 

where the second sum is not present if the S-polynomial is zero. The maxi
mum of the head terms occurring in the first sum is < s by our assumption 
ns = 2; the maximum of the head terms in the second sum (if any) is less 
than or equal to ut, and 

ut < u .lcm(HT(gt},HT(g2») = s. 

Together, we see that the maximum s' of the head terms in the represen
tation (**) satisfies s' < s, which means that (**) is the s'-representation 
that we were looking for. 

Now let ns > 2, and assume w.l.o.g. that HT(migi) = s for i = 1, 2. 
Then we write 

k 

f = I:migi 
i=l 

HC(mlgl) (HC(mlgl») ~ 
= mlgl - HC(m2g2) m2g2 + HC(m2g2) + 1 m2g2 + ~ migi· 

The induction hypothesis clearly applies to the first two summands. In the 
remaining k - 1 summands, the term s occurs at most ns - 1 times: there 
are exactly ns - 2 occurrences in the last k - 2 summands on the right, and 
the third summand contributes one more occurrence unless it happens to 
vanish. It follows that the induction hypothesis applies here too, and the 
sum of the two representations thus obtained is clearly an s'-representation 
of f for some s' < s. 0 

The following corollary is obvious from the fact that HT(spol(gb g2» < 
Icm(HT(gt}, HT(g2». 

Corollary 5.65 Let G be a finite subset of K[X] with 0 f/. G, and as
sume that for all g1. g2 E G, SPOI(gl,g2) equals zero or has a standard 
representation w.r.t. G. Then G is a Grabner basis. 0 
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5.5 Improved Grobner Basis Algorithms 

In this section, we show how the combinatorial complexity of the algorithm 
GROBNER can be reduced by testing out certain S-polynomials which 
need not be considered. Let K[ X], T, and ~ be as in the previous section. 

We call s, t E T disjoint if sand t have no variable in common; in other 
words gcd(s, t) = 1 in the monoid T. It is easy to see that this is equivalent 
to lcm(s, t) = st. 

Lemma 5.66 (BUCHBERGER'S FIRST CRITERION) Let j, 9 E K[X] with 
disjoint head terms. Then spol(j, g) ~ o. 

{f,g} 

Proof Assume that 

l 

and 9 = L bjt) , 
j=l 

where ai, bj E K with ai, bj =1= 0, and Si, tj E T for 1 ~ i ~ k and 1 ~ j ~ l. 
We may assume that Sl > ... > Sk and tl > ... > tl' Since gcd(Sl,tl) = 1, 
we must have lcm(s!, tl) = Sltl and thus 

k l 

spol(j,g) = bltd - alslg = bltl L aiSi - alSl L bjtj. 
i=2 j=2 

We claim that the two sums have no terms in common. Indeed, if sitl = tjSI 
for some 2 ~ i ~ k and 2 ~ j ~ l, then S,tl, being a common multiple of 
Sl and t!, is divided by lcm(s!, tl) = sltl' It follows that sltl ~ Sitl and 
thus Sl ~ Si, a contradiction. Furthermore, each term in the second sum is 
a multiple of HT(j). If we now successively add 

Md, bl-ltl-d, ... , b2t2i 

to spol(j, g), then each of these additions is a reduction step: after adding 
bltd+" ·+bjtjf (2 < j ~ l), all terms tj-lSl, ... , t2Sl will still be present 
because each of them is strictly greater than anything in bltt! + ... + bjtj f. 
Algebraically speaking, reducing by means of j amounts to substituting 
- L:7=2 aisi for alsl. We see that 

k l k 

spol(j,g) + bltl Laisi + Lbjtj Laisi 
i=2 j=2 i=2 

k 

= 9 Laisi 
i=2 

7 O. 0 
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Exercise 5.67 Use the results of the previous section on standard representa
tions to give an alternate proof of Buchberger's first criterion. 

The proof of the following theorem is now immediate from Theorem 5.48 
and the lemma above. 

Theorem 5.68 Let G be a finite subset of K[X] with 0 rt G. Then the 
following are equivalent: 

(i) G is a Grabner basis. 

(ii) For all gl, g2 E G with non-disjoint head terms, spol(gl. g2) + o. 
(iii) Whenever gl,g2 E G with non-disjoint head terms and h E K[X] 

such that h is a normal form ofspol(gl,g2) modulo G, then h = 0.0 

Accordingly, the algorithms GROBNERTEST and GROBNER of Corol
lary 5.52 and Theorem 5.53 can be improved by placing only those pairs 
{91o 92} in the set B that have non-disjoint head terms. 

We are now in a position to see how the computation of Grabner bases 
generalizes the Gaussian elimination algorithm of linear algebra. Let F 
be a finite subset of K[ X] where each f E F has total degree at most 
1. We have already remarked at the end of Section 5.1 that the algorithm 
REDUCTION applied to F is precisely the Gaussian elimination algorithm: 
it will subtract constant multiples of polynomials from others until no two 
polynomials have the same variable as their head term. By Buchberger's 
first criterion, the result is already a Grabner basis. 

Buchberger's first criterion is a local criterion. It allows us to skip the 
testing of certain S-polynomials because we know beforehand that they will 
reduce to zero. The second criterion, which we discuss next, is considerably 
deeper. It says that certain S-polynomials can be deleted despite the fact 
that they might not be reducible to zero at the time when we drop them. 
The proof will make use of the concept of t-representations as discussed in 
the previous section. 

Exercise 5.69 Let s, t, u E T. Show that the following are equivalent: 

(i) t Ilcm(s, u) 

(ii) lcm(s, t) Ilcm(s, u) 

(iii) Icm(t,u)llcm(s,u) 

The next proposition, together with Theorem 5.64, is the theoretical 
basis for the second improvement of the algorithm GRaBNER. 

Proposition 5.70 (BUCHBERGER'S SECOND CWTERION) Let F be a fi
nite subset of K[ X] and gl, p, g2 E K[ X 1 such that the following hold: 

(i) HT(P) I1cm(HT(gl),HT(g2», and 
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(ii) spol(gi,p) has a ti-representation w.r.t. F with 

ti < Icm(HT(gi),HT(p») for i = 1,2. 

Then the S-polynomial SPOI(gl,g2) has at-representation w.r.t. F for some 
t < Icm(HT(gl), HT(g2»' 

Proof By assumption (ii), there are representations 

kl 

spol(gl,p) = L m1dli 
i=l 

with max{HT(mldti) 11:5 i:5 k1} < Icm(HT(gt} , HT(P» , and 

k2 

spol(p, g2) = L m2d2i 
i=l 

with max{ HT(m2d2i) I 1 :5 i :5 k2 } < Icm(HT(p), HT(g2» as sums of 
monomial multiples of elements of F. By Exercise 5.69, there exist 81, 
82 E T with 

81·lcm(HT(gl),HT(p») = Icm(HT(gl),HT(g2»), 

82 . Icm(HT(p) , HT(g2») = lcm (HT(gl)' HT(g2»)' 

We let a = HC(gI), b = HC(p), c = HC(g2), and Ull VI, U2, V2 E T such 
that 

lcm(HT(gt},HT(P» = U1' HT(gl) = VI' HT(P), 

lcm(HT(p),HT(g2») = U2' HT(P) = V2' HT(g2)' 

It is easy to see that 81 VI = S2U2, and we obtain 

CSI . spol(gl,p) + a82 . spol(p,g2) 

= cs1(bu1g1 - aVIP) + aS2(cu2P - bv2g2) 

= cbs 1 UIgl - ab82v2g2 

= b· spol(gl, g2)' 

Substituting the representations of the first two S-polynomials into the 
equation yields 

1 kl k2 

SPOI(gl, g2) = b ( CS1 L mlifti + aS2 L m2d2i)' (*) 
i=l i=l 

By the choice of these representations, we may conclude that 

81' HT(mtifli) < 81·lcm(HT(91),HT(p») 

= lcm(HT(gt},HT(g2», 
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for 1 ~ i ~ kb and similarly, 

S2 . HT(m2d2i) < S2 .lcm(HT(p), HT(g2)) 

= Icm(HT(gl),HT(g2)) 

for 1 ~ i ~ k2 • Now if we let t be the maximum of all Sl . HT(mldli) for 
1 ~ i ~ k1 and S2 . HT(m2i!2i) for 1 ~ i ~ k2' then we see that (*) is a 
t-representation ofspol(gl,g2), and t < Icm(HT(gl),HT(g2)). 0 

The above version of Buchberger's second criterion is rather convenient 
for correctness proofs of improved algorithms. A more general, theoretical 
version of the criterion will be given at the end of Section 6.1. 

There are at least two ways of incorporating the second criterion into 
the algorithm GROBNER. We present first the one that is most easily 
exhibited. The algorithm GROBNERNEWI of the next theorem is based 
on the algorithm GROBNER, with the following modifications. The algo
rithm keeps track of which critical pairs have already been selected from 
the list during an execution of the while-loop. If two polynomials gl and 
g2 in the set G have disjoint head terms, then, in view of Buchberger's first 
criterion, the algorithm does not even bother to put {gl, g2} on the critical 
pair list, but it does mark that pair as having been treated. The selection 
of elements from the critical pair list during executions of the while-loop 
is governed by the strategy to prefer those pairs where the lcm of the head 
terms is minimal w.r.t. the term order. This strategy is commonly called 
the normal strategy. (See also the comments following the proof of the 
next theorem.) When a critical pair {gl,g2} is selected from the list, the 
algorithm first checks if it can find pEG such that 

HT(p) Ilcm(HT(gt},HT(g2)) 

and the two pairs {gl,P} and {p,g2} are marked "treated." If this is the 
case, then nothing is done about {gl, g2}. Else, the pair {gl. g2} is treated 
as in the algorithm GROBNER. 

In the algorithm GROBNERNEWI of the theorem below, the marking 
of critical pairs already treated is achieved by creating a matrix that con
tains a Boolean entry for each critical pair that surfaces. This describes 
actual implementations of this version of the Buchberger algorithm fairly 
accurately. We mention that from a theoretical point of view, this matrix 
is superfluous: it is easy to see that a critical pair is marked "TRUE," i.e., 
"already treated," if and only if it is not on the critical pair list B. 

Theorem 5.71 Let F be a finite subset of K[ X]. Suppose the ground field 
is computable and the term order on T is decidable. Then the algorithm 
GROBNERNEWI of Table 5.6 computes a Grobner basis G in K[ X] such 
that Id(G) = Id(F). The algorithm eliminates superfluous S-polynomials 
according to Buchberger's criteria. 
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TABLE 5.6. Algorithm GROBNERNEWl 

Specification: G +- GROBNERNEWl(F) 
Construction of a Grabner basis G for Id(F) 

Given: F = a finite subset of K[ X] 
Find: G = a finite subset of K[ X 1 such that G is a 

Grabner basis in K[X] with Id(G) = Id(F) 
begin 
G +- REDUCTION(F) 
B +- { {gl, g2} I g1. g2 E G with non-disjoint head terms, gl t g2 } 
create a matrix M with a Boolean entry M(gl,g2) for 
each {g1,g2}, where gl,g2 E G with gl t g2 
for all {gl,g2} with gl,g2 E G and gl t g2 do 

end 

if {g1. g2} E B then M(gt, g2) +- false 
else M (gl, g2) +- true end 

while B t 0 do 

end 

select {g1,g2} from B with Icm(HT(gl), HT(g2» 
minimal among all pairs in B 
B +- B \ {{gt,g2}} 
M(gl,g2) +- true 
if there does not exist pEG with: 

HT(p) IIcm(HT(gd,HT(g2}) and 
M(gl,P) = M(p,g2) = true then 
h +- SpOI(gl, g2) 
ho +- some normal form of h modulo G 
if ho to then 

for all 9 E G do 

end 

enlarge M by an entry for {ho, g} 
if HT(g), HT(ho) disjoint then 

M(g, ho) +- true 
else 

B +- B U {{g, ho}} 
M(g, ho) +- false 

end 

G +- Gu {ho} 
end 

end 

end GROBNERNEWI 
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Proof The algorithm terminates since an infinite loop would be an infinite 
loop of the algorithm GROBNER. The application of REDUCTION to F 
at the beginning just produces a possibly different basis of the same ideal 
and may therefore be disregarded in the correctness proof. For correctness, 
we first note that as with the algorithm GROBNER, an invariant of the 
while-loop is the fact that G is finite with 

F ~ G ~ Id(F), 

and thus the output Gout is a finite basis of the ideal Id(F). To see that it 
is in fact a Grabner basis, we verify the criterion of Theorem 5.64. As
sume for a contradiction that there exists a pair {gt, g2} E Gout such 
that spol(gt, g2) does not have at-representation w.r.t. Gout for any t < 
Icm(HT(g1), HT(g2)). If g1 and g2 had disjoint head terms, then spol(g1, g2) 
would reduce to 0 modulo Gout by Lemma 5.66 and thus even have a stan
dard representation w.r.t. Gout by Lemma 5.60. We conclude that {g1,g2} 
was placed on the critical pair list B at some point during computation. 
We may assume w.l.o.g. that among all such problem pairs, {gl,g2} was 
the first one to be selected from B during an execution of the while-loop. 
The S-polynomial spol(gt, g2) does not reduce to 0 modulo Gout since oth
erwise it would even have a standard representation w.r.t. Gout. It follows 
that {g1,g2} must have been tested out by the if-condition following the 
assignment M(g1,g2)'- true. This means that there exists P E Gout with 

HT(P) Ilcm(HT(gd,HT(g2)), and M(gl,P) = M(P,g2) = true 

at that point of the computation. We may now conclude that for i = 1, 
2, either gi and P have disjoint head terms, or the pair {gi, p} made the 
list B and was selected from it at an earlier stage. By Lemma 5.66 and 
our choice of the pair {gl,g2}, spol(gi,p) has a ti-representation for some 
ti < lcm(HT(gi),HT(p)) for i = 1, 2, and Proposition 5.70 provides the 
desired contradiction. 0 

Exercise 5.72 We mentioned at the end of Section 5.3 that the plain algorithm 
GROBNER, when applied to univariate polynomials, is an unnecessarily blown
up version of the Euclidean algorithm. Show the following: 

(i) When GROBNERNEWI is applied to univariate polynomials f and g, 
it will perform the exact same back-and-forth divisions as the Euclidean 
algorithm. 

(ii) When GROBNERNEWI is applied to a finite set of more than two uni
variate polynomials, it will act like a recursive application of the Euclidean 
algorithm in the sense of Lemma 1.79, proceeding by ascending degrees of 
the input polynomials. 

Instead of applying REDUCTION at the beginning GROBNERNEWl, 
one may prefer to do top reductions only (or nothing at all, for that matter), 
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but this decision does not seem to influence the computation in a major 
way in general. 

The normal strategy for the selection of critical pairs from B which 
GROBNERNEWI employs has turned out to be a good one in practice, 
but the problem of finding the optimal strategy is not really considered 
settled. Another one which is often preferred will be described at the end 
of Section 10.3. A disadvantage of GROBNERNEWI is that one is forced 
to adhere to the normal strategy in the following sense. The correctness of 
the algorithm is independent of the strategy, simply because the strategy 
was never mentioned in the correctness proof. If one switches to a different 
strategy, however, the algorithm may miss out on instances of Buchberger's 
second criterion. To see this, assume that at some point during computa
tion, the pair {91! 92} is selected from B, and there is, at this time, pEG 
with 

HT(p) Ilcm(HT(9d,HT(92)). 

Then Buchberger's second criterion tells us that we should treat the pairs 
(91,P) and (P,92) and test out (91,92). If 9i and p have disjoint head terms, 
then we trivially have M(9i,p) = true for i = 1, 2 and so {91,92} is tested 
out. Iflcm(HT(9i),HT(p)) properly divides Icm(HT(9d,HT(92», then the 
same is true as one easily sees from the way the normal strategy works. 
Finally, assume that 

Icm(HT(9d,HT(P») = lcm(HT(91),HT(92»). 

Then HT(92) Ilcm(HT(9d, HT(p» , and we may just as well treat the pair 
{9I,92} first because {9I,P} will test out by means of 92. The same is true 
for the case 

Icm(HT(p), HT(92)) = lcm(HT(9d,HT(92)). 

It should be clear now how the algorithm misses instances of the second 
criterion when a different strategy is used; it thus does not allow a fair 
comparison of different strategies. This problem is overcome by the second 
implementation GROBNERNEW2 of the improved Buchberger algorithm 
which we discuss next. 

The main difference between GROBNERNEWI and GROBNERNEW2 
is as follows. GROBNERNEWI waits until a critical pair is up for treatment 
before it makes the decision whether or not that pair may be deleted on 
the basis of Buchberger's second criterion. GROBNERNEW2, by contrast, 
tries to eliminate critical pairs as early as possible. Moreover, it even deletes 
certain polynomials from the set G en route, knowing that every critical pair 
that they will henceforth occur in is superfluous, and that these polynomials 
themselves will be superfluous in the output set. The mechanisms that 
achieve these deletions of critical pairs and polynomials are placed in the 
main while-loop at the point where a new non-zero normal form h of 
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an S-polynomial has been found and the sets Band G are about to be 
updated. We formulate this process as a subalgorithm named UPDATE 
(Table 5.7) to be called by GROBNERNEW2. The reason for this is that 
the exact same procedure is used at the beginning of GROBNERNEW2 
for the initialization of B and G: the polynomials from the input set will 
be treated exactly as if they were new polynomials found by a run through 
the while-loop. (Here, it is of course assumed that K is computable and 
the term order ~ is decidable.) 

Before we give the algorithm GROBNERNEW2 and prove its correct
ness, we will, for a better understanding, discuss on an intuitive level 
why the eliminations performed by UPDATE are appropriate. If 91, h, 
92 E K[ X 1 are such that the equivalent conditions 

HT(h) Ilcm(HT(9t}, HT(92)), 

lcm(HT(91),HT(h)) Ilcm(HT(9t},HT(92)), and 

lcm(HT(h), HT(92)) Ilcm(HT{9t}, HT(92)) 

are satisfied, then we will refer to (9lo h, 92) as a Buchberger triple. 
Proposition 5.70 together with Theorem 5.64 tells us that if a Buchberger 
triple (91, h, 92) shows up in a Buchberger algorithm and the pairs {91, h} 
and {h, 92} have been taken care of, then the pair {91, 92} need not be 
treated. Now consider the special case where two of the three lcm's of head 
terms involved are equal, say 

lcm(HT(91), HT(h)) = lcm(HT(91), HT(92)). 

Then both (9loh,92) and (h,92,9t} are Buchberger triples, and we can 
choose either one of {91, 92} and {h, 91} for deletion. What makes the im
plementation of the criterion difficult is the danger of erroneously deleting 
both of these, first {91, 92} on account of h and then {h, gil on account of 
92. The version GROBNERNEWI solves this "two-out-of-three problem" 
by convincing itself explicitly, before deleting a pair, that the two other 
ones involved have been dealt with otherwise, either by reduction of the 
S-polynomial or by another instance of the criterion. 

Now let us look at the first while-loop of UPDATE. The loop looks 
at each element {h, 91} on the list of new critical pairs and tries to find 
another one {h, 92} still on the list such that 

lcm(HT{h), HT{g2)) Ilcm(HT{h), HT{gl)). 

If this is the case, then {h, 91} is deleted. This is possible because here, 
(h, 92, 9t} is a Buchberger triple. Moreover, the third pair {9lo g2} is not 
present on this list at all, and therefore the two-out-of-three trap is disabled 
at this point. This while-loop does, however, keep all pairs (h, g) where h 
and 9 have disjoint head terms. These are all thrown out by the next while
loop on the basis of Buchberger's first criterion. The reason for keeping all 
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TABLE 5.7. Subalgorithm UPDATE 

Specification: (Gnew , Bnew) +- UPDATE( Gold, Bold, h) 
Update of critical pair list and ideal basis as 
required by GROBNERNEW2 

Given: a finite subset GOld of K[ Xl, a finite set Bold of 
pairs of elements of K[ X], and 0 =1= h E K[ X 1 

Find: updates Gnew of Gold and Bnew of Bold 
begin 
C +- { {h,g} I 9 E Gold}; D +- 0 
while C =1= 0 do 

end 
E +- 0 

select {h,gl} from C; C +- C\ {{h,gl}} 
if HT( h) and HT(gl) are disjoint or 

( 
Icm(HT(h),HT(g2» t lcm(HT(h), HT(gl)) for all {h,g2} E C 
and 
lcm(HT(h) , HT(g2» fIcm(HT(h) , HT(gt) for all {h, g2} ED 
) 
then D +- D U { {h, g1} } end 

while D =1= 0 do 

end 

select {h,g} from D; D +- D \ {{h,g}} 
if HT(h) and HT(g) are not disjoint then 

E +- E U { {h,g} } end 

Bnew +- 0 
while Bold =1= 0 do 

select {g1, g2} from Bold; Bold +- Bold \ { {gl, g2} } 
if HT(h) fIcm(HT(gt) , HT(g2» or 

lcm(HT(gl), HT(h» = lcm(HT(gt) , HT(g2» or 
Icm(HT(h),HT(g2» = lcm(HT(gt),HT(g2» then 
Bnew +- Bnew U { {gl, g2} } end 

end 
Bnew +- Bnew U E; Gnew +- 0 
while Gold =1= 0 do 

select 9 from Gold; GOld +- Gold \ {g} 
if HT(h) t HT(g) then Gnew +- Gnew U {g} end 

end 
Gnew +- Gnew U {h} 
return(Gnew , Bnew) 
end UPDATE 
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of them during the first while-loop is this: If two or more pairs in C have 
the same lcm of head terms, so that there is a choice as to which one(s) 
should be deleted, then it is advantageous to try and keep one where the 
head terms are disjoint; that way, one eventually gets rid of all of them. 

The third while-loop eliminates from the list Bold of old pairs those 
pairs {g1, g2} where (g1, h, g2) is a Buchberger triple. Here, UPDATE pro
tects itself from the two-out-of-three error by dropping only those triples 
(gl, h, g2) where the two divisibilities 

Icm(HT(gt},HT(h») Ilcm(HT(gl),HT(g2» and 

lcm(HT(h),HT(g2») Ilcm(HT(gl),HT(g2») 

are proper. Using Exercise 5.69, one easily proves that then there cannot 
have been a divisibility between 

lcm(HT(g1)' HT(h») and lcm(HT(h), HT(g2», 

and so none of {h, g1} and {h, g2} was tested out by means of the other 
during the first while-loop. 

Next, the updated lists of the old and the new pairs are united and 
assigned to the output Bnew. Finally, UPDATE eliminates from GOld all 
those polynomials 9 whose head term is a multiple of the head term of h. 
This is legitimate for two reasons. Firstly, HT(h) I HT(g) implies 

HT(h) Ilcm(HT(g),HT(f») 

for arbitrary f E K[ X], and so (g, h, f) is a Buchberger triple for any 
future arrival f in G. Moreover, 9 will not be missed at the end because in 
a Grobner basis, polynomials whose head terms are multiples of others are 
superfluous. 

Let us emphasize again that the above informal discussion of UPDATE 
is very far from being a correctness proof of anything. 

Theorem 5.73 Let F be a finite subset of K[ X]. Suppose K is com
putable and the term order on T is decidable. Then the algorithm GROB
NERNEW2 of Table 5.8 computes a Grabner basis G in K[ X] such that 
Id(G) = Id(F). The algorithm eliminates superfluous critical pairs accord
ing to Buchberyer's criteria. 

Proof Termination: The first while-loop terminates trivially. An infinite 
number of repetitions of the second while-loop would, just as with the 
algorithm GROBNER, give rise to an infinite sequence {tkhEN of terms 
with ti f tj for all i < j, contradicting Proposition 4.42 (ii) since divisibility 
of terms is a Dickson partial order. 

Correctness: We must prove that Gout is a Grobner basis ofId(F), where 
Gout is the last value of G. Let us denote by Gall the union of all values 
that G ever held during computation. We claim that it suffices to prove 
that 
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TABLE 5.8. Algorithm GROBNERNEW2 

Specification: G +- GROBNERNEW2(F) 
Construction of a Grobner basis G of Id(F) 

Given: F = a finite subset of K[ X] 
Find: G = a finite subset of K[ X] such that G is a Grobner basis in 

K[X] with Id(G) = Id(F) 
begin 
G +- 0; B +- 0 
while F 1:- 0 do 

select f from F 
F +- F\ {f} 
(G,B) +- UPDATE(G,B,f) 

end 
while B =1= 0 do 

end 

select {gl, g2} from B 
B +- B \ {{gl,g2}} 
h +- some normal form of spol(gl, g2) modulo G 
if h =1= 0 then (G, B) +- UPDATE(G, B, h) end 

end GROBNERNEW2 

(i) Gout ~ Id(F), 

(ii) mult(HT(Gout») = mUlt(HT(Gau»), and 

(iii) Gau is a Grobner basis of Id(F). 

Indeed, from (ii) and (iii) together with Proposition 5.38, it follows that 

mUlt(HT(Gout ») = mult(HT(Gau») = mUlt(HT(Id(F»)), 

and this together with (i) implies that Gout is a Grobner basis ofId(F) again 
by Proposition 5.38. We are thus left with the task of proving statements 
(i)-(iii). 

For (ii), we first note that the inclusion "~" is trivial because clearly 
Gout ~ GaIl' For the reverse inclusion, assume for a contradiction that 
there exists 9 E GaIl with HT(g) ¢ mult(HT(Gout». Then in particular, 
9 ¢ Gout, and so 9 must have been tested out of some value of G by the last 
while-loop of some call of UPDATE. "\\~ may thus assume that 9 is the last 
such problem polynomial to be removed from G. Inspecting the mechanism 
of the last while-loop of UPDATE, we see that there exists h E GaU with 
HT(h) I HT(g). Moreover, h either stayed in G to the very end, or else it 
was removed at a later point in time than g. By our choice of g, we must 
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have HT(h) E mUlt(HT(Gout )) and so HT(g) E mult(HT(Gout )) as well, a 
contradiction. 

It remains to prove (i) and (iii). The reader should have no trouble ver
ifying the following observation which will be used below: if a polynomial 
or a pair are placed in G or B, respectively, at some point during computa
tion, then this is due to a call of UPDATE, and if the pair {gb g2} is being 
placed in B by some call of UPDATE, then each of gl and g2 was placed in 
G by that same call or an earlier one. We claim that an invariant of both 
while-loops is given by 

G ~ Id(F). 

The inclusion clearly holds upon initialization. The first while-loop places 
elements of F into G, and so (*) is trivially preserved. An execution of the 
second while-loop places into G, if anything at all, a normal form h of an 
S-polynomial of a pair (gbg2) taken from the list B. By the remark above, 
both gl and g2 are or have been members of G before the present execution 
of the second while-loop, and it follows easily that h E Id(F). We have 
proved that (*) is indeed an invariant of the entire computation, and we 
immediately obtain (i) as well as the inclusion "1d(Gall ) ~ Id(F)." For the 
inclusion "Id(F) ~ Id(Gall)," we note that every f E F is placed into G by 
the call of UPDATE which follows its selection from F. This means that 
F ~ Gall, even though the elements of F need not ever be in G all at the 
same time. We have now proved (i), (ii), and the equality Id(Gall) = Id(F), 
and thus the correctness proof is reduced to proving the rest of (iii), i.e., 
to the proof of the claim 

"Gall is a Grabner basis." 

The following terminology will greatly simplify the wording of the proof. 
Let gl, g2 E G with gl =F g2. The pair {gb g2} will be called good if the 
following holds: the S-polynomial of gl and g2 either equals 0, or else it has 
at-representation w.r.t. Gall for some t < lcm(HT(gl), HT(g2)). Theorem 
5.64 tells us that it now suffices to prove that every pair {gl, g2} of elements 
of Gall is good. There are essentially two ways for us to show that such a 
pair is good. Firstly, if 

SPOI(gl, g2) ~G* 0, 
all 

then by the results of the previous section, spol(gb g2) either equals 0, or 
else it has a standard representation w.r.t. Gal" and in both cases, it follows 
that it is good. Secondly, if we can find h E Gall such that (gl, h, g2) is a 
Buchberger triple and both {gl, h} and {h, g2} are good, then Proposition 
5.70 asserts that {gbg2} is good too. Now assume for a contradiction that 

V = { {gl,g2} I gl,g2 E Gal" gl =F g2, {gl,g2} not good} =F 0. 
Then the set 

Vmin = { {gbg2} E V Ilcm(HT(gd,HT(g2)) ::; Icm(HT(hl),HT(h2)) 

for all {hI, h2 } E V} 
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is not empty either. To arrive at the desired contradiction, we distinguish 
three cases. We denote by Ball the union of all values held by B during 
computation. 
Case 1: Vmin n Ball =/: 0. 
Let {gl,g2} E Vmin n Ball. Since B = 0 upon termination, {g1,g2} must 
have been removed from B at some point. There are two ways that this 
could have happened. If {g1, g2} was selected from B at the beginning of 
some run through the second while-loop of GROBNERNEW2, then, in 
view of the fact that UPDATE always places the third component of its 
input into the first one, it is clear that 

spol(g1, g2) =-tG* 0, 
all 

and so {g1, g2} is good, a contradiction. Else, {g1. g2} was removed from B 
by the third while-loop of some call of UPDATE. This means that there 
exists h E Gall such that (g1. h, g2) is a Buchberger triple, and moreover, 
the divisibilities 

Icm(HT(gt},HT(h») Ilcm(HT(gt},HT(g2») and 

Icm(HT(h) , HT(g2») I lcm (HT(gt} , HT(g2») 

are both proper. It follows that 

lcm(HT(gt}, HT(h») < lcm(HT(gt), HT(g2») and 

lcm(HT(h),HT(g2») < lcm(HT(gt},HT(g2»), 

and so the pairs {g1, h} and {h, g2} are good because {g1, g2} E V min' We 
see that again {g1, g2} is good, a contradiction. 

For the next case, we denote by Call the union of all values held by 
C, where the union ranges over all calls of UPDATE made by GROB
NERNEW2. 
Case 2: Vmin n Ball = 0 and Vmin n Call =/: 0. 
Let {h, gd E Vmin n Call. Then {h, g1} was placed in C by a certain call 
of UPDATE which we will refer to as the present call, and we may assume 
that this is the first call of UPDATE that ever places an element of Vmin in 
C. If {h,gd was passed on to D and then to E, then it ended up in Bnew 
and thus in Ball, and so it is good by our assumption Vmin n Ball = 0, a 
contradiction. If it was passed on to D but not to E, then the head terms 
of h and g1 are disjoint, and so 

spol(h, gt} =-tG* 0 
all 

by Lemma 5.66, which means that {h, gd is good, again a contradiction. It 
remains to treat the case where {h, g1} is tested out by the first while-loop 
of UPDATE. It is not hard to see from the mechanism of this loop that 
there must exist a pair {h,g2} E C which is passed on to D and satisfies 

lcm(HT(h),HT(g2») Ilcm(HT(h),HT(g1») 
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We see that (h, 92, 91) is a Buchberger triple. Since 92 is in the first com
ponent G of the input of the present call of UPDATE, it must be in Gall. 
To arrive at the desired contradiction "{h,91} good," we must thus prove 
that {h,92} and {92,9Il are both good. 

As for {h,92}, there are two possibilities. If the divisibility 

lcm(HT(h), HT(92)) Ilcm(HT(h), HT(91)) 

is proper, then {h, 92} is good by the same argument that was used in Case 
1 above. If the two lcm's are equal, then {h,92} E V implies {h,92} E Vmin' 
But {h, 92} was passed on to D, and we have already argued that no element 
of V min n C can have been passed on to D in the present case. So again, 
{h,92} must be good. 

For {92, 91}, we are looking at the same two possibilities. If the divisibility 

lcm(HT(92),HT(9d) Ilcm(HT(h),HT(9d) 

is proper, then {92, 91} is good by the same argument as above. If the two 
lcm's are equal, then as before, {92,9Il E V implies {92, 9Il E Vmin' But 91 
and 92 are in the value of G that is passed to the present call of UPDATE, 
and so they must both have been placed in G by earlier calls of UPDATE. 
These two placements happened in a certain order, and when the second 
one of 91 and 92 arrived, the first one was still there because otherwise 
they would not now both be in G. This means that when the second one 
arrived, the pair {92, 91} was placed in C by that call of UPDATE. But we 
are talking about an earlier call of UPDATE than the present one, and so 
{92,91} cannot be in Vmin n Call by the chronologically minimal choice of 
{h,9Il. So {92,9Il cannot be in Vmin and hence not in V by the remark 
above, which means that it is good. 
Case 3: Vrnin n Ball = 0 and Vmin n Call = 0. 
Let Sc be the chronological order on Gal\' where 91 Sc 92 iff 91 = 92 or 91 
was placed in G by an earlier call of UPDATE than 92. To every pair in 
Vmin , we assign an ordered pair with the same entries such that the first 
component of the ordered pair is chronologically less than the second one. 
We denote the set of ordered pairs thus obtained by V~r~, and we consider 
the "lexicographical-chronological" order Sic on V~r~, where 

(91,92) Sic (hl,h2) iff 91 <c hI. or 

91 = hI and 92 Sc h2 • 

Let now (91,92) be the Sic-last element of V~r~. Then 91 must have been 
tested out of G by the last while-loop of some call of UPDATE, and this 
must have happened before 92 was placed in G, because otherwise 92 would 
have met 91 when the former was placed in G, and so the pair {9I,92} 
would have been placed in C which is not the case by the assumption 
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Vmin n Call = 0. After gl was removed from G, the same call of UPDATE 
placed into G a polynomial h with HT(h) I HT(gl), and we see that 

HT(h) Ilcm(HT(gt},HT(g2)), 

which means that (gl, h, g2) is a Buchberger triple. To arrive at the de
sired contradiction" {gl, g2} good," it thus once again suffices to prove that 
{gll h} and {h, g2} are both good. 

For {gll h}, we first note that properness of the divisibility 

lcm(HT(gt},HT(h)) Ilcm(HT(gt},HT(g2)) 

implies that {gll h} is good by a now familiar argument. If these lcm's are 
equal, then {gl, h} E V implies {gb h} E V min' But h was the polynomial 
that was responsible for eliminating gl from G, and so the pair {gl, h} 
was placed in C at the beginning of that same call of UPDATE. The case 
assumption Vmin n Call = 0 thus implies that {gl, h} is good. 

As for {h, g2}, we can argue as before that properness of the divisibility 

lcm(HT(h),HT(g2)) Ilcm(HT(gd,HT(g2)) 

implies that {h, g2} is good, and that in the remaining case of equality 
of these lcm's, {h,g2} E V implies {h,g2} E Vmin . In order to prove that 
{h, g2} is good in this last case, we need to look at the chronological order 
of arrivals and departures in the set G: 

gl in ~ g10ut 
h in ~ (possibly h out) ~ g2 in. 

We see that if {h, g2} were in V min, then the corresponding element of V~r~ 
would be (h,g2), and moreover, we would have (gbg2) <Ie (h,g2) which 
is impossible by the choice of (gl, g2) as the ~lc-Iast element of V~i~. We 
have proved that {h,g2} is good. 0 

It is clear that the exploitation of Buchberger's second criterion by the 
algorithm GROBNERNEW2 does not have the kind of dependence on the 
selection strategy of critical pairs that we found in GROBNERNEWl. It 
should be noted though that there is always a certain random dependence: 
for any pair {gl, g2} that is on the critical pair list at some point, there may, 
in the unforeseeable future, appear ap. h such that (g1, h, g2) is a Buchberger 
triple, and a strategy that happens to hold {gl, g2} long enough will exploit 
this instance, while others may not. This phenomenon also makes it hard to 
make precise a statement like "GROBNERNEWI and GROBNERNEW2 
exploit the second criterion equally well." 

Exercise 5.74 Find reasons to support the statement "GROSNERNEW2 does 
not blatantly miss instances of the second criterion." (Hint: Use the fact that if 
(gl, h, g2) is a Buchberger triple and 

lcm(HT(gI),HT(h)) = lcm (HT(gI) , HT(g2)) , 

then (h, g2, gI) is a Buchberger triple too.) 
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It is perhaps noteworthy that GROBNERNEW2 keeps the set G top
reduced throughout the computation; so if one wishes to pass to the reduced 
Grabner basis afterwards, then one may skip the elimination of polynomials 
whose head terms are multiples of others in the algorithm REDGROBNER. 

Finally, we mention that the term order relative to which the Grabner 
basis is computed can have dramatic effects on the running time of the 
algorithm; since one often needs just some Grabner basis, it is therefore 
desirable to be able to make an intelligent choice of the term order. When 
the normal strategy is used, then the algorithm tends to run faster for to
tal degree orders than for lexicographical orders. Among all total degree 
orders, a good choice is the one that breaks ties according to an inverted 
lexicographical order. (This is sometimes referred to as the Buchberger or
der.) If a lexicographical order is desired without an a priori preference 
for the variable ordering, then the best choice in general seems to be the 
following. For 1 ::; i ::; n, let Di = {degxi (I) I f E F} where F is the 
input set. Let::; be a lexicographical term order such that Vi t: D j implies 
Xi « Xj, where t: is the linear order on Pfin(N') induced by the natural 
order on N' according to Theorem 4.69. In other words, a variable is placed 
lexicographically low if it occurs with a high degree in F. In case of a tie, 
variables that occur in larger numbers should be placed lexicographically 
lower. Then the algorithm tends to run faster for ::; than for any other 
lexicographical term order. 

5.6 The Extended Grabner Basis Algorithm 

Let us once more compare the algorithm GROBNER to the Euclidean al
gorithm. If we use the latter to compute the gcd d of univariate polynomials 
f and 9 (or of more than two by an iterated application), then we have 
found the reduced Grobner basis ofId(l, g). But we can do more than that: 
if we use the extended Euclidean algorithm, then we also obtain a repre
sentation of d as a sum of multiples of f and g. This raises the question 
if, in the multivariate case, we can effectively express each element of the 
(reduced) Grobner basis that we have computed as a sum of multiples of 
the input polynomials. In this section, we show how this can be achieved. 
An important application will be discussed in Section 6.1. 

Let K[X], T, and ::; be as in the previous section. Suppose F is a finite 
subset of K[X] and G = GROBNER(F). We wish to extend the algorithm 
GROBNER in such a way that it provides a family 

{{qgf }iEF} gEG (*) 

of families {qgf} fEF of polynomials qgf such that 

9 = Lqgtf 
iEF 
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for all 9 E G. This is quite easily achieved. The algorithm GROBNER 
starts out with G = F, and it is clear that then the polynomials qgJ = 6gJ 
have the required property, where 

Ii ={l if /=9 
gJ 0 otherwise 

is the Kronecker symboL Now suppose that we are about to enter a run 
through the while-loop, and the family (*) has been computed for the cur
rent value of G. If nothing is being added to G during that run, then there 
is nothing that needs to be done. Otherwise, the newly added polynomial 
h is a normal form modulo G of an S-polynomial of a pair of elements of 
G. This means that 9 + h where 

9 = ml91 - m292 = spol(91, 92) 

for a pair of elements 9lt 92 E G and certain monomials ml and m2. The 
algorithm has determined what the monomials ml and m2 are, and it has 
performed the reduction of 9 to h by means of the algorithm REDPOL. 
It may therefore provide itself with a family {qJ} JEF of polynomials such 
that 

We then have 

h = 9+ Lqpp 

If we now set 

pEG 

= ml91 - m292 + L qpp 
pEG 

= L mlqgti / - L m2q92Ji + L qp L qpJi 
JeF JEF pEG JEF 

== L ( mlqgti - m2q92J + L qpqPJ)/' 
JEF pEG 

qhJ = mlqgti - m2qg2J + L qpqpf, 
pEG 

then we see that {qhJ} JEF is the family by which the family (*) must be 
enlarged to achieve our purpose. (Note that h, being a normal form modulo 
G, is necessarily different from each element of G, and so there is no conflict 
with existing elements of the family (*).) 

In connection with representations of elements of G as sums of multi
ples of elements of F, one often needs the reverse transformation too, i.e., 
representations of elements of F as sums of multiples of elements of G. 
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This is even easier to achieve: since G is a Grabner basis of Id(F), we have 
I + 0 for all I E F, and so the desired representations can be obtained 
immediately by running the the algorithm REDPOL on (/, G). Moreover, 
they even come out as standard representations. 

We have actually proved the correctness of the algorithm EXTGROB
NER of the theorem below. Termination is trivial because the mechanism 
of the while-loop is the same as in the algorithm GROBNER. Before we 
state the algorithm, a remark on the assignments involving families is in 
order. If A is a set, then formally, a family :F = {aihEI of elements of A 
is a function from the index set I to A, which in turn is a. set of ordered 
pairs, namely, 

:F = {aihEI = {(i,ai) liE I}. 

So if we enlarge the index set I by a new element j, and we wish to enlarge 
the family :F accordingly by an element aj, then this is achieved by the 
assignment :F +- :F u {(j, aj)}. 

Theorem 5.75 Let F be a finite subset 01 K[ X). Suppose the ground field 
is computable, and the term order on T is decidable. Then the algorithm 
EXTGROBNER of Table 5.9 computes a Grabner basis G in K[X) such 
that F ~ G and Id(G) = Id(F), and families 

g = {{qgJ} JEF} gEG and :F = {{PJ9}9EG} JEF 

such that 
g = LqgJi and 1= LPJgg 

JEF gEG 

lor all g E G and I E F, and the representations of I E F are in fact 
standam representations. 0 

There is no need to state a general theorem for arbitrary field K and term 
order :$ here, because the mere existence of the families g and :F is trivial: 
F and G are bases of the same ideal I, and moreover, G is a Grabner basis of 
I, and so every I E I even has a standard representation w.r.t. G. It is clear 
that the algorithm GROBNERNEWI can be extended in the exact same 
way as above, because it differs from GROBNER only insofar as it skips 
certain critical pairs. Extending the second version GROBNERNEW2, by 
contrast, is a slightly more tedious affair because here, polynomials that 
are employed in the reduction of an S-polynomial may later be removed 
from the set G. 

Exercise 5.76 Discuss an extended version of GROBNERNEW2. 

Now assume that we wish to find the reduced Grabner basis G' of Id(F) 
and families g' and :F' as in the theorem above. We know that G' can 
be found by applying REDGROBNER to GROBNER(F). The family:F' 
poses no problem: we just perform the for all-loop of EXTGROBNER at 
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TABLE 5.9. Algorithm EXTGROBNER 

Specification: (G,g,:F) +- EXTGROBNER(F) 
Construction of a Grobner basis G of Id(F) and 
back-and-forth transformations between F and G 

Given: F = a finite subset of K[ X ] 
Find: G = a finite subset of K[ X] such that G is a Grobner 

basis in K[X] with F ~ G and Id(G) = Id(F), and 
families g and :F as described in Theorem 5.75 

begin 
G+-F 
g +- {{6gf }fEF}9EG 
B +- {{91.92} 191,92 E G with 91 :f:. 92} 
while B:f:. 0 do 

end 
:F +- 0 

select {91. 92} from B 
B +- B \ {{9t,92}} 
9 +- m191 - m292, where m191 - m292 = spol(91,92) 
({qphEG,h) +- REDPOL(9,G) 
if h:f:. 0 then 

B +- B U { {p, h} I pEG} 
g +- g U {(h, {qhf }fEF)}, 

where qhf = mlqglf - m2qg2/ + L.PEG qpqpf 
G+-GU{h} 

end 

for all f E F do 
:F +-:F U {(f, {P/9}gEG)}, where ({Pf9}9EG, 0) = REDPOL(f, G) 

end 
return(G, g,:F) 
end EXTGROBNER 

the end of the entire computation. AB for g', we first use EXTGROBNER to 
find a Grobner basis G ofId(F) and a family g as described in the theorem 
above. Then we apply an algorithm EXTREDGROBNER which acts just 
like REDGROBNER with the following extension. During the while-loop, 
REDGROBNER tries to delete polynomials from G. Everytime that this 
happens, we simply remove the corresponding element {q9/}/EF from g. 
REDGROBNER then applies REDUCTION, which tries to select 9 from 
G and replace it by the result h of a complete reduction modulo G \ {9}. 
(The normal form h will never be zero here because no top reductions are 
possible.) Every time this happens, we may let the algorithm REDPOL 



provide a family {qp}PEG\{9} with 

We then have 

h-g= L qpp. 
pEG\{g} 

h = g+ L qpp 
pEG\{g} 

= Lqgd+ L qpLqpd 
JEF PEG\{9} JEF 

= L(qgJ + L qpqpJ)/. 
JEF pEG\{g} 
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All we have to do to adjust the family 9 to the modified set G is thus to 
remove the pair (g, {qgJ }JEF) and replace it by (h, {qhJ}JEF), where 

qhJ = qgJ + L qpqpJ 
pEG\{g} 

for all 1 E F. 

Exercise 5.77 Write the algorithm EXTREDGROBNER as described above. 

Exercise 5.78 Use the result of Exercise 5.31 and the ideas of this section to 
write an algorithm that computes the gcd of a finite set of univariate polynomials 
and a representation of this gcd as a sum of multiples of the input polynomials. 

Notes 

Grabner basis theory originates in the doctoral dissertation of Bruno Buch
berger, which was written in 1965 at the University of Innsbruck, Austria, 
under the supervision of Wolfgang Grabner. Grabner had asked if there 
was an algorithm that computes a vector space basis over K of the residue 
class ring K[XlIId(F), where K[X] is a multivariate polynomial ring 
over the field K and F is a given finite subset of K[ X]. The algorithm was 
to be such that it would also make possible effective computations in the 
ring K[XlIId(F). Grabner's interest was mainly in algebraic geometry; 
however, he favored an ideal theoretic and thus potentially algorithmic ap
proach that was somewhat beside the mainstream of his time. Interestingly, 
Buchberger's results received precious little attention until the early sev
enties, when their relevance and the scope of their applications were finally 
realized. It was only then that Buchberger introduced the term "Grabner 
basis." 
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There are a number of results in the earlier literature which now, from 
hindsight, tum out to be reminiscent of and related to Grabner basis theory 
and the Buchberger algorithm. Macaulay (1916) introduced the concept of 
an H-basis of an ideal in K[X]. An H-basis is a finite subset F of K[X] 
such that every 0 :f g E Id(F) has a so-called H-representation, i.e., a 
representation of the form 

(hJ E K[X]) 

with max{ deg(hd) I f E F} ::; deg(g). This condition bears a strong 
resemblance to the characterization of Grabner bases in terms of stan
dard representations (cf. Theorem 5.62). In fact, if the term order in ques
tion is a total degree order, then every standard representation is an H
representation; as a consequence, every Grabner basis is an H-basis. The 
converse fails in general because the degree condition is strictly weaker 
than the corresponding condition for standard representations in case of a 
total-degree term order, and incompatible with the latter for other term 
orders. 

Macaulay proves the existence of an H-basis for a given ideal non-con
structively as a simple consequence of the Hilbert basis theorem together 
with homogenization techniques. For a particular example, he also sketches 
a construction method for H-bases, which he claims to be "a general one." 
The idea of the critical pair completion procedure which forms the over
all structure of the Buchberger algorithm appears independently in Knuth 
and Bendix (1970). More details and references can be found in the section 
"Term Rewriting" on p. 523 in the appendix. There, it is used to enlarge 
a set of equations between first-order terms in such a way that the corre
sponding set of rewrite rules gives rise to a confluent reduction relation. 
Hironaka (1964) proves the existence of a certain kind of ideal bases in 
rings of power series that have since turned out to be analogues to Grabner 
bases. Again, the appendix has more details. 

As we have mentioned before, the concept of standard representations 
is essentially present in Macaulay's work. The Grabner basis criterion in 
terms of t-representations of Theorem 5.64 derives from a criterion that 
goes back to Lazard (1983) and involves "lifting of syzygies" as discussed 
in Section 6.1 (see also the discussion in the Notes to Chapter 6 on p. 291). 
We have modified the argument in order to make Buchberger's second 
criterion accessible without the use of syzygies. The latter W88 first proved 
in Buchberger (1979); the algorithm GROBNERNEWI describes Buch
berger's original implementation. The version GROBNERNEW2 is due to 
Gebauer and Moller (1988). 
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First Applications of 
Grabner Bases 

In this chapter, we discuss some of the most immediate and important 
applications of Grobner bases. The central part is formed by Sections 6.2 
and 6.3, which deal with Grobner bases in ideal theory. The theory of 
polynomial ideals plays an important role in algebraic geometry. There, 
one considers polynomials with coefficients in some field K and investigates 
the behavior of zeroes of these polynomials in an extension field K' of K. 
(Recall that a zero of !(Xl, ... ,Xn) is an n-tuple (al, ... ,an) of elements 
of K' with !(al, ... ,an) = OJ cf. also Lemma 2.17 (i». This leads to a large 
number of questions of an algorithmic nature, such as these: given finite 
bases of two ideals, what is a basis of the intersection of the latter, or, 
given a polynomial ! and an ideal I, is it true or not that some power of 
! lies in I? It has been known for a long time that all these problems can 
be algorithmically solved. Before the arrival of Grobner bases, however, the 
complexity of these algorithms was out of bounds for all practical purposes. 
In this chapter, we will demonstrate how Grobner bases provide rather 
straightforward solutions to many decision and construction problems in 
the theory of polynomial ideals. Bringing these computations within the 
realm of feasibility has of course stimulated vigorous mathematical research 
on how to further improve them. We do not attempt to capture the state 
of the art in the fieldj our aim is to lay firm mathematical foundations and 
to present algorithms that anyone could implement in today's computer 
algebra systems. We will also use Grabner bases in the development of 
the theory, thereby demonstrating that the theory of Grabner bases is not 
only a powerful algorithmic method but also a cornerstone of commutative 
algebra. 

6.1 Computation of Syzygies 

The results of this section will be needed for Proposition 6.33 and its corol
lary, and then again in Section 10.5. Since Proposition 6.33 and its corollary 
have no further applications in this book, this section can be skipped for 
now by those who are mainly interested in ideal theory. 

We will use some terminology and notation (but not really any the-
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ory) from Section 3.3. Let R be any ring. Then a homogeneous lin
ear equation over R in the indeterminates YI , ... , Y m with coefficients 
iI, ... , f mER is an equation of the form 

Ydl + ... + Ymfm = O. (1) 

A solution of the equation (1) is any m-tuple (hI' ... ' hm) of elements of 
R with 

hdl + ... + hmfm = O. 

Quite obviously, the m-tuple (0, ... ,0) is always a solution, called the trivial 
solution; any other solution is called non-trivial. 

Let S ~ Rm denote the set of all solutions of (1). Recall from Section 
3.3 that Rm forms an R-module under componentwise addition and scalar 
multiplication. It is easy to see that a scalar multiple of a solution and a sum 
of two solutions of (1) is again a solution, and thus S is an R-submodule 
of Rm. It is clear that S is precisely what we have called the (first) module 
of syzygies of (iI, ... , fm) in Section 3.3. 

The goal of this section is to describe the R-module S by specifying a 
finite set of generators of S for the case that R is a multivariate poly
nomial ring K[X] = K[XI, ... ,Xn ] over a field K, and to compute this 
set of generators from the coefficients of the equation in case that K is 
computable. We will approach the problem in two steps. For the first step, 
we assume that the coefficients iI, ... , fm of (1) form a Grobner basis in 
K[ X] with respect to some term order; in the second step, we reduce the 
general problem to the first case by passing from the given coefficients iI, 
... , fm E K[ X] to a Grobner basis of the ideal Id(h, ... ,fm). 

For the first step, let F = {iI, ... , fm} be a Grobner basis in K[XJ with 
respect to some term order :::; on the set T = T( Xl, ... , Xn). To be sure 
that the set F determines the equation (1), we assume that the coefficients 
of the given equation are pairwise different; this is certainly a reasonable 
supposition. Furthermore, it will turn out to be convenient to assume that 
F is monic, i.e., HC(h) = 1 for 1 :::; i :::; m. If this is not already the 
case, then we replace fi by fdHC(h) for 1 :::; i :::; m. It is obvious that if 
(hI, ... , hm ) is a solution ofthe modified equation (1), then 

(hdHC(iI),· .. ,hm/HC(fm» 

is a solution of the original equation. 
For 1 :::; i < j :::; m, we let 

(2) 

with Sij, Sji E T be the S-polynomial of fi and fJ. Note that the constants 
appearing in the definition of the S-polynomial equal 1 because F is monic. 
Each Pij is an element of Id(F), and so it reduces to 0 modulo the Grabner 
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basis F of Id(F). This means that either Pij equals 0, or else there exist, 
by Proposition 5.22, polynomials qijk (1 ~ k :5 m) such that 

m 

Pij =, L qijkfk with HT(qijkfk):5 HT(Pij) for 1 :5 k :5 m. (3) 
k=l 

For simplicity, let us agree to ignore all references to HT(qijkfk) whenever 
%k = OJ if Pij = 0, then this convention applies to all %k for 1 :5 k :5 m. 
Subtracting (2) from (3) yields 

m 

(qiji - sij)fi + (qijj + Sji)!; + L qijkfk = 0, (4) 
k=l 

koFi,j 

and we see that we have found solutions of (1), one for each (i,j) with 
1 :5 i < j :5 m. We are going to prove that this set of solutions is already 
the desired generating system for the module S of syzygies in question. To 
this end, we introduce the following notation: 

and 

{ 
qiji - Sij if k = i 

rijk = qijj + Sji if k =: j 
qijk otherwIse, 

Proposition 6.1 The set B = {rij 11 :5 i < j :5 m} generates S as an 
K[ X] -module. 

Proof Assume for a contradiction that the set M = S \ lin(B) is non
empty. Let (hI, . .. ,hm) E M be such that 

t = maxi HT(hdk) 11 :5 k :5 m} 

is minimal w.r.t. the term order :5 in the set 

Assume further that among all possible choices that satisfy this require
ment, (hI, ... , h m ) is such that the cardinality of the set 

is minimal. We have 

(5) 
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since (hI. ... , hm ) E 5, and it follows that the sum of all monomials in this 
sum that have t as their term equals O. So the set J must contain at least 
two different elements, say i and j with i < j. This means that 

t = HT(hi}· HT(fi} = HT(hj )· HT(!i} 

is a common multiple of HT(fd and HT(fj}. By the definition of Pij as the 
S-polynomial of Ii and fj, we know that 

S = Sij . HT(fi) = Sji . HT(!i) 

is the least common multiple of HT(fd and HT(!i}, and we may conclude 
that S divides t, say t = us. With ai = HC(hi), we now add aiU times (4) 
to (5) and obtain 

m 

L(hk + aiUrijk}!k = o. 
k=l 

Setting gk = hk + aiUrijk for I :::; k :::; m, we see that (gb . .. ,gm) E 5. 
Claim: HT(gdk) :::; t for I :::; k :::; m, and the number of occurences of t 

in the sum gll1 + ... + gmfm is less than the cardinality of J. 
Proof: We first note tha.t (3) together with Exercise 5.47 (ii) implies that 

HT(qijkfk) < S for alII:::; k:::; m. The claim is an easy consequence of the 
following three statements. For k =f: i, j, we have 

HT(aiUrijdk) = U· HT(qijkfk) 

< us = t, 

and so HT(gk!k) :::; t, and HT(hkfk) < t implies HT(gk!k) < t. For k = j, 
we get 

HT(aiUrijdk) = U· HT(qijj!i + Sji!i) 
= us = t, 

and so HT(gjfj) $ t. Finally, for k = i, 

HM(aiUrijdi) = aiU· HM(qijdi - sijli) 
= -aiUS = -ait = -HM(hdi), 

and so HT(gili) < t. 
By the minimal choice of (h l , ... , hm), it now follows that (g1l . .. , gm) E 

lin(B). But 
(hI, ... , hm) = (gl, ... , gm) - aiU· rij, 

and so (hl, ... , hm ) E lin (B) as well, a contradiction. 0 

Exercise 6.2 Let 1 $ i < j $ m, and suppose there is 1 $ k $ m with k =I i, j 
and 

HT(fk) Ilcm(HT(f.),HT(!i»). 

Show that B \ {rij} still generates S. (Hint: Cf. the proof of Proposition 5.70.) 
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The special case where F = {h, ... , 1m} is a Grabner basis being settled, 
let now h, ... , 1m be arbitrary polynomials in K[X]. Let 91, ... , 9r E 
K[ X] be pairwise different such that G = {91, ... ,9r} is a monic Grabner 
basis of the ideal Id(F), and let us denote by SF and Se the module of 
syzygies of (h, ... , 1m) and (91, ... ,9r), respectively. We know how to find 
a generating system for Se, and we are now going to show how this can 
be used to obtain a generating system for SF' Since F and G generate the 
same ideal I in K[ X], we have "forward" and "backward" transformations 
between these ideal bases, i.e., there exist Cij, dji E K[X] with 

m 

gi = LCijIi for 1 ~ i ~ r, and 
j=l 

r 

Ii = L dji9i for 1 ~ j ~ m. 
i=l 

Composing these transformation both ways, we obtain 

for 1 ~ i ~ r, and 

(6) 

for 1 ~ j ~ m. Let Dij be the Kronecker symbol, i.e., Dii = 1 and Dij = 0 for 
i =F j. There is a certain temptation to conclude from the equations above 
that 

m 

L Cijdjk = Dik and 
j=1 

r 

L djiCil = Dj/. 
i=1 

Unfortunately, this conjecture is false in general, even when the transfor
mations are obtained from a Grabner basis computation and polynomial 
reduction. 

Exercise 6.3 Let F = {It, h} ~ Q[X, Y,Z] with It = XY +1 and h = XZ+1. 
Use the algorithms EXTGROBNER and REDPOL to compute a Grabner basis 
G of F w.r.t. the total degree-lexicographical term order (where X :» Y :» Z), 
and back-and-forth transformations between F and G. Show that these refute 
the above conjecture. 

We can, however, rewrite the equation (6) in the form 
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Now if we set 

r 

ajl = Djl - LdjiCiI for 1 ~ j,l ~ m, 
i=l 

then we see that the m-tuple aj = (ajl. ... , ajm) is an element of SF for 
1 ~j ~m. 

To obtain the desired generating system for 8F, we set A = {al. . .. ,am}. 
Let B = {b1, ••• ,bs } be a generating system for the K[X]-module 8G of 
syzygies of (gl, ... ,gr), and let B* = {bi, ... , b:} where 

r 

bi = (bi1' ... , bim) with bij = L bliCij 
i=l 

for 1 ~ 1 ~ s. The proof of the following theorem is based on the fact that 
we can use the transformations between F and G to transform elements of 
8 F into elements of 8G and vice versa. As we will see shortly, B* is in fact 
a transformation of B to a set of solutions of 8 F. 

Theorem 6.4 A U B* is a generating system for the K[ X ] -module 8 F of 
syzygies of (/t, ... , fm). 

Proof From the fact that bl = (bll , ... ,blr ) are elements of SG, we con
clude that 

r r m 

o = Lb/i9i = L b/i L Cij/; 
i=l i=l j=l 

This shows that B* ~ SF, and thus AU B* ~ SF. In order to show that 
AUB* generates SF as K[X]-module, let h = (hl. ... ,hm ) E 8F be 
arbitrary and define h* = (ho0 1' ••• ' hoOr ) by 

Then h E SF implies 

m 

hoOi = L hjdji. 
j=1 

j=1 j=1 i=l 
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and so h* E Sa. Now Sa is generated by B, and so h* is a linear combi
nation of elements of B, i.e., there exist 0:1, •.• , O:s E K[X] with 

Define k = (kb ... , km ) by setting 

T 

k j = L h*icij for 1 ~ j ~ m. 
i=l 

Then 
T(S ) 8 T 8 

kj = ~ ~O:lbli Cij = ~O:I ~bliCij = ~O:lb;j' 

and so k = L:;=1 O:lb; E lin(B*). We claim that h - k (where subtraction 
is performed componentwise) is in lineA). Indeed, 

i=l 

hj - t(~hldli)Cij 

hj - ~ hi (t dli Cij ) 

= ~hl(6Ij - tdliCij) 

for 1 ~ j ~ m, and so h - k E lineA). Together, we conclude that 

h = k + (h - k) E lineA U B*). 0 

If the ground field K is computable, then it is a simple matter of going 
through the constructions described thus far to prove that a generating 
system for the module of syzygies of any given m-tuple of elements of 
K[ X 1 can actually be computed: all that is needed are the algorithms 
REDPOL and EXTGROBNER (and EXTREDGROBNER if one wishes 
to work with reduced Grobner bases) w.r.t. a term order of our choice. 

Exercise 6.5 Let (b, h, fa) ~ (Q[X, Y, Z])3 with b = XY + 1, h = X Z + 1, 
and fa = y2 - Y Z. Compute a generating system for the first module of syzygies 
of (b, h, fa)· 
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Exercise 6.6 Write an algorithm that computes a generating system for the 
module of syzygies of any given m-tuple of elements of K[ X]. 

Having dealt with the solution of a homogeneous linear equation, we will 
now discuss the general linear equation 

YdI + ... + Ymlm = 9 (7) 

As before, we will assume that the Ii are pairwise different. A solution of 
(7) is of course an m-tuple (hI. ... , hm ) of elements of K[ X 1 such that 

hdI + ... + hmlm = g. 

It is obvious that such a solution exists if and only if 9 E Id(ft, ... ,1m). If 
h is a solution of (7) and ho is a solution of the corresponding homogeneous 
equation 

YdI + ... + Ymlm =0, (8) 

then it is easy to see that h + ho (where addition is performed compo
nentwise) is again a solution of (7). Conversely, whenever hI and h2 are 
solutions of (7), then hI - h2 is a solution of (8). We have proved the 
following lemma. 

Lemma 6.7 Let S be the set of solutions of the linear equation (7). Then 
S =I- 0 iff 9 E Id(ft, ... , 1m). In that case, S = h+S', where h is a solution 
of (7) and S' is the module of syzygies of (ft, ... , 1m). 0 

Now suppose K is computable. We wish to decide whether (7) has a 
solution and compute the set of solutions in case of a positive answer. The 
mere decision of solvability is an ideal membership test which we know 
how to do (Theorem 5.55). For the computation of a solution it suffices, 
by the lemma above and the earlier results of this section, to compute one 
special solution. This is easy enough if F = {ft, ... , 1m} is a Grabner basis 
w.r.t. some term order. In that case, we simply do REDPOL(g, F). If the 
resulting normal form h of 9 is not zero, then 9 rf. Id(F) and (7) has no 
solution. Otherwise, REDPOL provides hI, ... , hm E K[ X 1 with 

hdI +···+hm/m =g, 

and we have found a solution. If F is not a Grabner basis, then we may 
compute one w.r.t. a term order of our choice, say G = {gI, ... gr}, and 
using the algorithm EXTGROBNER, we also obtain polynomials Cij with 

m 

gi = L Cij f; for 1:5 i :5 r. 
j=I 

Now we do REDPOL(g, G). If the resulting normal form h of 9 is not zero, 
then 9 rf. Id(G) = Id(F) and (7) has no solution. Otherwise, REDPOL 
provides qI, ... , qm E K[ X 1 with 

qIgI + ... + qmgr = g, 
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and a now familiar argument shows that a solution of (7) is given by 
(hb ... , hm ) with 

r 

h j = L qiCij for 1::; j ::; m. 
i=l 

Exercise 6.S Write an algorithm that decides solvability of a linear equation 
over K[ X I and computes the set of solutions if the latter is not empty. 

As an application, we can now strengthen Theorem 5.55 (ii) as follows. 

Lemma 6.9 Let F be a finite subset of K[ X], and let I = Id(F). Suppose 
the ground field is computable and the term order on T is decidable. Then 
there is an algorithm that decides whether an element of K[XlII is a unit 
and computes the inverse if it exists. In particular, if I is maximal, then 
K[ X 11 I is a computable field. 

Proof The residue class g + I is a unit in K[ X 11 I iff there exist h E K[ X 1 
and q! E K[ Xl, one for each I E F, such that 

(9) 

Solvability in K[ X 1 of the equation 

can be decided and a solution can be computed if it exists. With the nota
tion of (9), the desired inverse is then h + I. 0 

Note that a different Grabner basis is needed for each computation of an 
inverse according to the lemma above. In practice, it would be advantageous 
to compute a Grabner basis of F first, so that afterwards, the set G U {f} 
is already "close" to being a Grabner basis. 

We close this section with a result that can be viewed as an abstract 
version of Buchberger's second criterion. For the rest of this section, F = 
{ft, ... ,/m} will be a finite subset of K[Xl, and ::; will be a term order 
on T = T(X1 , ••• ,Xn ). We assume w.l.o.g. that all Ii are monic, and using 
the same notation as earlier on in this section, we let, for 1 ::; i < j ::; n, 
the terms Sij and Sji be such that 

lcm(HT(/i),HT(Ji)) = Sij • HT(/i) = Sji . HT(Ji). 

We then have 
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We see that the set HT(F) = {HT(/t), ... ,HT(fm)} is a Grabner basis in 
K[X). (This has in fact already been observed in Corollary 5.49.) More
over, Proposition 6.1 tells us that the K[ X )-module 

of syzygies of (HT(/t), ... ,HT(fm») is generated by the set 

B = {rij 11 $ i < j $ n}, 

if k = i 
if k =j 
otherwise. 

This generating system is not in general a minimal one: whenever we are 
in the situation of Buchbeger's second criterion, say we have fi' 1;, !k E F 
satisfying the equivalent conditions (cf. Exercise 5.69) 

lcm(HT(fi), HT(fj» = U .lcm(HT(fi), HT(fk» with U E T 

and 

Icm(HT(fi),HT(fj») =v.lcm(HT(fk),HT(fj» with VET, 

then, as one easily sees, rij = U· rik + V· rkj (cf. the proof of Proposition 
5.70). Loosely speaking, the content of Buchberger's second criterion was 
that in this situation, SPOI(fi' 1;) can be disregarded when testing the orig
inal set F for the Grabner basis property. The aim of the rest of this section 
is to show that whenever C ~ B is a generating system for S, then to con
clude that F is a Grabner basis, it suffices to know that spol(fi, 1;) + 0 
for those pairs (i,j) of indices that satisfy rij E C. This will be proved in 
two steps. First, we prove a more general proposition on generating systems 
for S that satisfy a certain hypothesis; then we show that C as described 
above satisfies this hypothesis. The proof of the proposition will employ 
standard representations and t-representations; we will be using the "poly
nomial versions" as opposed to the "monomial versions" (see the remarks 
following the definitions in Section 5.4). 

Proposition 6.10 (LIFTING OF SYZYGIES) Let {db ... ' ds} be a gener
ating system for S with the following property: for all 1 $ i < j $ m, there 
exist q1, ... , qs E K[ X] with 

s 

rij = Lqk ·dk 
k=1 

(10) 
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and 

maxi HT(f,) . HT(qkdkl) 11 ~ l ~ m} ~ lcm(HT(fi), HT(/j)) (11) 

for 1 ~ k ~ 8, where dk = (dkl,'" dkm) for 1 ~ k ~ 8. Then the following 
are equivalent: 

(i) F is a Grobner basis. 

(ii) For all 1 ~ k ~ 8, 
m 

Ldkdl+ O• 
1=1 

Proof The direction "(i)==>(ii)" is trivial in view of Theorem 5.35 because 
the sum in (ii) is in Id(F). For the direction "(ii)==>(i)," we verify the 
hypothesis of Theorem 5.64. Let 1 ~ i < j ~ m and q1, ••• , qs E K[ Xl 
satisfying (10) and (11). Recalling the definition of rij, we conclude from 
(10) that 

m 

= LTijdl 
1=1 
m s 

= LLqkdkdl 
1=1 k=1 

s m 

= LqkLdkdl. (12) 
k=1 1=1 

Condition (ii) together with Lemma 5.60 provides us with representations 

m m 

Ldkdl = LPkdl (Pkl E K[X]) (13) 
1=1 1=1 

such that for 1 ~ k ~ 8, 

max{HT(Pklft) 11 ~ l ~ m} ~ HT(fdkdl)' (14) 
1=1 

Substituting from (13) into (12), we obtain the representation 

spol(/i, /;) = ~ qk t Pkd, = t (~qkPkl) fl . (15) 

We claim that this is a t-representation of spol(/i, /;) for some t E T with 

t < lcm(HT(fi), HT(fj») 
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as desired. We set 

Then (15) is clearly a t-representation of spol(fi, f;). Furthermore, from 
the fact the dk are elements of S, we conclude that for 1 :5 k :5 s, 

m 

Ldkl' HT(fl) = 0, 
1=1 

and it follows easily that 

From this together with (11), we may conclude that for 1 :5 k :5 s, 

Combining this last inequality with (14), we see that for 1 :5 1 :5 m and 
1:5 k :5 s, 

HT(qkPkdl) < Icm(HT(fi),HT(fj», 

and it now follows easily that indeed 

t < Icm(HT(fi), HT(fj»). 0 

The following simple example shows that the equivalence of the propo
sition above does not hold for arbitrary generating systems for S. 

Example 6.11 Let F = {X,X + I} ~ Q[X]. It is easy to see that the 
module S of "head term syzygies" is generated by the single element (1, -1) 
in this case. It is now clear that the the set {(X + 1, -X - 1), (X, -X)} 
is another generating system, and it is even a minimal one. The "liftings" 
of condition (ii) of Proposition 6.10 are -X - 1 and -X, both of which 
reduce to 0 modulo F. But F is obviously not a Grabner basis. 

Lemma 6.12 Let C = {ritil, ... , ri.j.} be a subset of B that still gener
ates S. Then C satisfies the hypothesis of the previous proposition. 

Proof For all 1 :5 i < j :5 m, we define Pij = (Pij!. ... ,Pijm) to be rij 
multiplied by HT(ft) in the Ith component, so that 

Pi'l = {lcm(HT(fi),HT(fj») if l=iorl=j 
3 0 otherwise. 
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Now let 1 ~ i < j ~ m. Since C generates S and rij E S, there exist q1, 
... , qs E K[X] such that 

8 

rij = Lqk· ri"j,,· 
k=1 

If we write the equation componentwise and multiply the 1 th equation 
by HT(I!) for 1 ~ l ~ m, we obtain 

~qp .. =p .. = {lcm(HT(Ji),HT(Jj») if l=iorl=j (16) 
L.J k '''3,,1 '31 0 th . 
k=1 0 erwlse. 

Next, we define monomials mk for 1 ~ k ~ s as follows. If there exists a 
monomial aktk in M(qk) with 

tkPi"j"ik = Icm(HT(fi),HT(fj»), 

then we let mk = aktk, and we set mk = 0 otherwise. For each 1 ~ k ~ s, 
the non-zero entries of the m-tuple Pi"j" (of which there are exactly two, 
namely, Pi"j"i" and Pi"j"j,,) agree, and so for 1 ~ k ~ s with mk #- 0, 

t p.. = {lcm(HT(fi),HT(Jj») if 1 = i or l = j 
k ',,}lel 0 th . o erwlse. 

Comparing coefficients of lcm(HT(Ji), HT(Jj» in (16), we see that 

~ m p. . = p .. = {lcm(HT(fi),HT(Jj» if l = i or l = j 
L.J k 'lc3,,1 131 0 th . 
k=l 0 erwlse 

for 1 ~ l ~ m. Now if we divide HT(I!) back out of the l th equation, we 
obtain 

s 

rij = L mk . ri"j" . 

k=l 

This representation of rij does indeed satisfy (11) of the previous proposi
tion: if 1 ~ k ~ s with mk #- 0, then 

HT(f/) . HT(mkrikjkl) = { HT(I!) . tkri"jkl if l = ik or 1 = jk 
o otherwise 

= {tkPikj"l if l = ik or l = ik 
o otherwise 

= { Icm(HT(!i), HT(Jj» if l = ik or l = jk 
o otherwise 

for 1 ~ l ~ m. 0 
Combining the lemma and the proposition, we get the following theorem. 
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Theorem 6.13 Let C be a subset 01 B that generates S. Then the lollow
ing are equivalent: 

(i) F is a Grobner basis. 

(ii) spol(fi, h) + 0 lor all pairs (i,j) 01 indices with rij E C. 0 

6.2 Basic Algorithms in Ideal Theory 

We have already seen how Grabner bases can be used to decide whether 
9 == h mod Id(It,···, 1m} for polynomials g, h, It, ... , 1m with coefficients 
in a computable field: we must compute a Grabner basis G of Id(lt, ... , 1m) 
and then compare the unique normal forms of 9 and h modulo G (Theorem 
5.55). In particular, this allows us to decide membership in a given ideal 
I, and to compute in the residue class ring modulo I. We also saw in the 
previous section how we can decide invertibility in the residue class ring 
and compute inverses where they exist. As another immediate application, 
we can decide inclusion of ideals: 

Id(It,···, /k) ~ Id(gI, ... ,gm) 

is true if and only if Ii E Id(gI, ... , gm) for 1 ~ i ~ k. In this section, 
we discuss a number of more sophisticated algorithms that make use of 
Grabner bases. 

Throughout this section, K will be a field. We write K[ X] for the poly
nomial ring K[XI, ... , Xn] and T(X) for the set of all terms in the variables 
XI, ... , X n. If {Ul!' .. , Ur} ~ {Xl!' .. , Xn}, then T(U) is the set of those 
terms in T(X) containing only variables in {UI, .. . , Ur }, with the conven
tion that T(0) = {I}. K[U] is the subring of K[X] consisting of those 
polynomials I E K[ X] that satisfy T(f) ~ T(U). In particular, K[0] = K. 
Similarly, T(X \ U) will denote the set of all those terms in T(X) that 
contain only variables in {Xl! ... , Xn} \ {UI, ... , Ur }. 

ELIMINATION IDEALS AND PROPERNESS 

If I is an ideal in K[X] and {Ut, ... ,Ur } ~ {Xt, ... ,Xn }, then it is 
easy to see that In K[U] is an ideal of the ring K[Il]. This ideal is 
called the elimination ideal of I w.r.t. {Ut, ... , Ur }, or w.r.t. U for short, 
and we will denote it by Iu. If a term order ~ on T(X) is given and 
{Ul! ... , Ur} ~ {Xl!"" Xn}, then we write 

U« X \ If.. for {Ul! ... , Ur}« {Xl! ... ,Xn} \ {Ut, ... ,Ur}, 

which means s < t for all s E T(U) and 1 i- t E T(X \ U). We see that we 
can always find a decidable term order ~ on T(X) satisfying U« X \ U: 
just take for ~ a lexicographical order where every variable in {Ut, ... , Ur } 
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is less than every one not in that set. Alternatively, we could take any pair 
of term orders $1 on T(U) and $2 on T(X \ U) and combine the two 
lexicographically as in Example 5.8 (iv). 

We remark that the notations involving U may be considered question
able from a formalist's point of viewj however, we feel that they express 
the intended meaning with the least degree of possible confusion. 

Lemma 6.14 Suppose {Ul , ... , Ur } ~ {Xl, ... , Xn} and $ is a term order 
that satisfies U ~ X \ U. Then the following hold: 

(i) If s E T(X) and t E T(U) with s < t, then s E T(U). 

(ii) If / E K[U] and p, 9 E K[X] with / 7 g, then p E K[U] and 
gEK[U]. 

(iii) If / E K[U] and G ~ K[X], then every normal form of / modulo 
G lies in K[ U]. 

Proof (i) Assume for a contradiction that s ¢ T(U). Then s can be written 
as uv with 1 =F v E T(X \ U). We obtain uv = s < t < v, a contradiction. 

(ii) Since HT(p) divides some t E T(f), we must have HT(p) E T(U) 
and thus T(p) ~ T(U) by (i), i.e., p E K[ U]. It now follows easily from the 
definition of reduction that 9 E K[ U] too. Statement (iii) can now easily 
be proved from (ii) by induction on the length of reduction chains. 0 

The next proposition will provide a way to compute elimination ideals. 
Recall that our convention is that Id(0) = {O}, so that the empty set is a 
Grobner basis of the zero ideal. 

Proposition 6.15 Let I be an ideal 0/ K[X] and {Ul , ..• , Ur } a subset 0/ 

{Xl, ... ,Xn }. Assume further that $ is a term order on T(X) that satisfies 
U ~ X \ U, and G a Grabner basis 0/ I w.r.t. $. Then G n K[U] is a 
Grabner basis 0/ the elimination ideal IJL. 

Proof Set G n K[ U] = G'. We show that every 0 =F / E Iu is reducible 
modulo G'. Let 0 =F / E Iu. Then / E I, and thus / is reducible modulo 
G, say / --g+ h with 9 E G~Lemma 6.14 (ii) tells us that 9 E G', and thus 
/ is reducible modulo G'. 0 

The proposition above applied with {Ut , ... , Ur } = 0 says that the elim
ination ideal InK is generated by G n K for every Grobner basis G of 
I. Since K is a field, this elimination ideal can only be {O} or Kj in the 
former case, Id(G) is proper, whereas in the latter case it is not. We thus 
obtain the following corollary. 

Corollary 6.16 Let I be an ideal 0/ K[ X]. Then I = K[ X] iff some 
Grabner basis 0/ I contains a constant iff every Grabner basis 0/ I contains 
a constant. 0 
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The following corollary uses the obvious fact that the intersection F n 
K[U] can be found by inspection whenever F is a finite subset of K[X] 
and {UI, ... , Ur } ~ {Xl, ... , X n }. 

Corollary 6.17 Assume that K is computable, let F be a finite subset of 
K[X], and let {Ut, ... ,Ur } ~ {XI, ... ,Xn }. Then the algorithm ELIM
INATION of Table 6.1 computes a Grabner basis of the elimination ideal 
(Id(F»![. 0 

TABLE 6.1. Algorithm ELIMINATION 

Specification: G +- ELIMINATION(F, UI, ... , Ur ) 

Computation of the elimination ideal of Id(F) w.r.t. U 
Given: F = a finite subset of K[X] and {Ut, ... , Ur } ~ {Xt, ... ,Xn} 
Find: G = a Grabner basis of (Id(F»![ 
begin 
choose a decidable term order:::; On T(X) with U « X \ U 
G' +- a Grabner basis of Id(F) w.r.t. :::; 
G +- G'nK[U] 
end ELIMINATION 

In the sequel, we will allow ourselves to write ELIMINATION(F, U) in
stead of ELIMINATION(F, Ult . .. , Ur ). It is clear that by choosing the 
inverse lexicographical term order (where Xn »Xn - l » ... »XI ) in the 
above algorithm, we can simultaneously compute elimination ideals w.r.t. 
{Xl. ... , Xi} where i ranges from 0 to n. 

Corollary 6.18 Assume that K is computable, and let F be a finite subset 
of K[ X]. Then the algorithm PROPER of Table 6.2 decides whether Id( F) 
is proper. 0 

TABLE 6.2. Algorithm PROPER 

Specification: v +- PROPER(F) 
Decision whether or not Id( F) is proper 

Given: F = a finite subset of K[ X] 
Find: v E {true, false} such that 

v = true iff Id( F) is proper 
begin 
choose a decidable term order:::; on T(X) 
G +- a Grabner basis of Id(F) w.r.t. :::; 
if G n K = 0 then return( true) 
else return(false) end 
end PROPER 
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INTERSECTION OF IDEALS 

Let YI, ... , Y m be new indeterminates. We will use the obvious notation 

K[X,Y] =K[XI, ... ,Xn,YI, ... Ym], 

and similarly, we write T(X, Y) for the set of terms in the variables Xl, 
... , X n, YI , ... , Ym . Moreover, X «Y will stand for 

{Xl> ... ,Xn } « {YI , .•. , Ym }, 

which of course means S < t for all S E T(X) and 1 #- t E T(Y). 

Proposition 6.19 Let h, ... , 1m be ideals of K[X], and let 

in the ring K[ X, Y]. Then n~l Ii equals the elimination ideal J x . 

Proof Let f E J x. Then in particular, f E J, so that we have a represen
tation 

( 
m ) m k; 

f = 9 1- t;Yi + t;f;9ijYiStj 

with kl' ... , km EN, g, gij E K[X, Y], and Sij E Ii for 1 ~ i ~ m and 
1 ~ j ~ k i . Now let 1 ~ k ~ m. Setting Yk = 1 and Yi = 0 for i #- k leaves 
the left-hand side unchanged and turns the right-hand side into an element 
of h. Conversely, let f E n~l h Then the equation 

shows that f E Jx. 0 

If h, .. . Im are ideals of K[ X] with finite bases Fi , then it is clear that 
in the ring K[X,Y], 

Corollary 6.20 Assume that K is computable, and let FI , ... , Fm be 
finite subsets of K[ X]. Then the algorithm INTERSECTION of Table 6.3 
computes a Grabner basis of the ideal n~l Id(Fi ) of K[ X]. 0 

Exercise 6.21 Let 11 and h be ideals of K[X], and let 

J = Id(Yl1 , (Y - 1)12). 

Show that It n 12 equals the elimination ideal J.K. 
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TABLE 6.3. Algorithm INTERSECTION 

Specification: G +- INTERSECTION(FI, ... ,Fm) 
Computation of the intersection n:l Id(Fi) 

Given: FI , ... ,Fm = finite subsets of K[XI 
Find: G = a Grobner basis of n:l Id(Fi) 
begin 
G +- ELIMINATION ( {I - ~:l Yi} u U:1 YiFi' X) 
end INTERSECTION 

Exercise 6.22 Compute the intersection of the ideals 

II = Id(X~ - 2,Xl +X2) and 12 = Id(X~ - 2,Xl - X2) 

in Q[Xl,X2j. 

The intersection of ideals being settled, we now turn to the intersection 
of residue classes. 

INTERSECTION OF RESIDUE CLASSES AND INTERPOLATION 

Let It. ... , 1m be ideals of K[XI and I = (ft, ... ,Jm) an m-tuple of 
polynomials in K[XI. As before, we let Y1, ••• , Ym be new indeterminates 
and set 

J = Id({I- (Y1 + ... + Ym )} U iQ YiIi). 

Furthermore, we let r = ~:l Yifi E K[ X, Y I and 

m 

A/ = nUi + Ii) ~ K[XI· 
i=l 

Now looking for an element of A/ is tantamount to looking for a solution 
of the system of congruences 

(I $ i $ m). 

The following theorem is thus a Chinese remainder theorem for K[ X I (cf. 
Section 2.8). 

Theorem 6.23 Let $ be a term order on T(X, Y) that satisfies X «Y, 
let G be a Griibner basis of the ideal J in K[X, YI w.r.t. $, and let h be 
the unique normal form of r modulo G. Then the following assertions are 
equivalent: 

(i) A/ -:f 0. 



(ii) hE K[X]. 

(iii) hEAl. 
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Moreover, AI = h+n~=l Ik, h is minimal in AI w.r.t. the quasi-order on 
K[X] induced by $, and for all 9 E K[X], we have 9 E AI iff h is the 
normal form of 9 modulo the Griibner basis G n K[ X ]. 

Proof (i)==}{ii): Let 9 E AI. Then 9 - fi E Ii for 1 $ i $ m, and so 

Since G is a Grobner basis of J, this implies that h is the unique normal 
form of 9 modulo G. By Lemma 6.14 (iii), the fact that 9 E K[X] implies 
that h E K[ X] as well. 

(ii)==}{iii): From the assumption h - f* E J, we may conclude that 
there exist kb ... , km, EN, q, qij E K[X, V], and Sij E Ii (I $ i $ m, 
1 $ j $ ki ) with 

m 

h - f* = h - E Yifi 
i=l 

For arbitrary but fixed k, we now set Yk = 1 and Yi = 0 for i :f k. The 
above equation then shows that h - fk E Ik, and thus hEAl. 

(iii)==}(i) is trivial. 
Proving the equality AI = h+n~=l h is a straightforward exercise. The 

rest of the theorem follows from the fact that G n K[ X] is a Grobner basis 
ofn~=lIk. 0 

Corollary 6.24 Assume that K is computable, and let $' be a decidable 
term order on T{X). If F1, ... , Fm are finite subsets of K[X] and 11, 
... , fm E K[X], then the algorithm CRT of Table 6.4 decides whether 

m n fi + Id{Fi) 
i=l 

is empty, and if it is not, it outputs an element of this intersection that is 
minimal w.r.t. the quasi-order induced by $. 0 

Exercise 6.25 Write an algorithm that decides whether or not a given polyno
miallies in the intersection of finitely many given residue classes. 
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TABLE 6.4. Algorithm CRT 

Specification: v+- CRT(FI , ... , Fm, il, ... , 1m) 
Decision whether or not AI = n:1 Ii + Id(Fi) = 0, 
computation of a minimal element of A I if one exists 

Given: FI , ... , Fm = finite subsets of K[X], il, ... , 1m E K[X], 
'5:' a decidable term order on K[ X] 

Find: v E {false} u ( {true} x K[ X]) such that 
_ { false if AI = 0 

v - (true, f) with I E A I minimal otherwise 
begin 
choose a decidable term order '5: on T(X, Y) with 

'5: n (T(X))2 = '5:' and X «: Y 
G +- a Grabner basis of Id( {I - r::1 Yi} u U:1 YiFd in 

K[X,Y] w.r.t. '5: 
I+- r::1 Yili 
h +- the normal form of I w.r.t. G 
if h E K[X] then return((true,h)) 
else return(false) end 
end CRT 

A noteworthy feature of the algorithm CRT is that the computation of 
the Grabner basis involves only the ideals but not the Ii; so it is particularly 
suitable if one wishes to vary the Ii but not the h Moreover, it decides 
the non-emptiness of AI in every specific case regardless of any conditions 
on the Ii which would guarantee solvability for arbitrary J. The lemma 
after the next gives such a condition (cf. the Chinese remainder theorem 
of Section 2.8). 

Two ideals I and J of a ring are called comaximal if 1 E I + J. 

Lemma 6.26 Let It, ... , 1m be pairwise comaximal ideals of a ring R. 
Then the ideals 

m 

Ii and n Ii 
j=l 
jf.i 

are comaximal for each 1 '5: i '5: m. 

Proof If 1 '5: i '5: m, then by assumption, there exist Pij E Ii and qj E I j 
for 1 '5: j '5: m and j i= i with 1 = Pij + qj. The equation 

m 

1 = Im-1 = II (Pij + qj) 
j=l 
jf.i 



shows that 

6.2. Basic Algorithms in Ideal Theory 263 

m 

1 Eli + n I j • 0 
j=l 
#i 

Lemma 6.27 Let h, ... , 1m be pairwise comaximal ideals of a ring R. 
Then n::l ai + Ii ¥- 0 for all (ab ... ,am) E Rm. 

Proof As before, we use the notation 

m 

Aa = nai+li 
i=l 

For 1 SiS m, let ei = (eil,"" eim) where 

{ I if i = j 
eij = 0 otherwise. 

Now if Aei ¥- 0, say bi E A e, for 1 SiS m, then 

m 

Lbiai E Aa 
i=l 

and thus Aa ¥- 0 for arbitrary a = {al, ... ,am}. Let 1 SiS m. By the 
previous lemma, 

m 

1 Eli + n I j , 

j=l 
#i 

say 1 = hI + h2 with hI and h2 in the first and second summand, respec
tively. We see that h2 E A ei . 0 

Recall from Lemma 2.17 (i) that for I E K[X] and aI, ... , an E K, 
we have given a meaning to I(al, ... ,an): I(al, ... ,an) E K is obtained 
by substituting ai for Xi (1 SiS n), and we will also refer to this as 
evaluating I at (al, ... , an). If a = (ab ... , an) E K''', then we also write 
I(a) for I(al,"" an). We say that I vanishes at a E Kn if a is a zero 
of I, i.e., I(a) = O. We saw in Section 2.8 that the Lagrange interpolation 
problem can be viewed as an instance of the Chinese remainder problem 
in K[X]. We will now use Theorem 6.23 to obtain a solution to the inter
polation problem in several variables. With every n-tuple a = (al"'" an) 
of elements of K we associate the vanishing ideal Ia of a: 

Lemma 6.28 Let a, b E Kn with a ¥- b, and I E K[ X]. Then the 
following hold: 

(i) The set G = {Xi - ai 11 SiS n} is a Grabner basis of Ia. 
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(ii) The unique normal form of I modulo G equals I(a). 

(iii) I vanishes at a iff I E 10.' 

(iv) 10. and Ib are comaximal. 

Proof Statement (i) is immediate from the fact that the head terms of 
any two different elements of G are disjoint. 

(ii) We first note that the unique normal form r of I modulo G is a 
constant since G contains a polynomial with head term Xi for 1 ~ i ~ n. 
The equation 

n 

1= Lqi(Xi - ai) + r (qi E K[X]) 
i=l 

shows that r = I(a). 
(iii) This is immediate from (ii) and the fact that I reduces to 0 modulo 

G iff IE 10.' 
(iv) From a =1= b it follows that ai =1= bi for some 1 ~ i ~ m, and so 

Combining the lemma with Theorem 6.23, Corollary 6.24, and Lemma 
6.27, we obtain the following corollary. 

Corollary 6.29 Let alt ... , am E Kn be pairwise different, rl, ... , rm E 
K. Then there exists I E K[ X] with I( ai) = ri lor 1 ~ i ~ m. II K 
is computable, then the algorithm CRT applied to /0.1, ... , Io.m and rl, 
... , r m computes such an I with the additional property that I is minimal 
w.r.t. the quasi-order induced by a chosen decidable term order on T(X). 
o 

Exercise 6.30 Use the corollary above to compute a polynomial/ E Q[X1,X2] 
with /(0,0) = 0, /(0,1) = -1, /(0, -1) = 1, and /(1, -1) = 3. (Hint: Set up 

J = Id( {1 - tYi } U Y1 . /(1,-1) U Y2' /(0,-1) U Ya' /(0,1) U Y4' /(0,0»), 

and use the lexicographical term order with Y1 » Y2 » Ya » Y4 » Xl » X2. 
Do not go for the full Grobner basis. Just reduce completely; this will be enough 
to reduce r into Q[Xl,X2].) 

IDEAL QUOTIENTS AND RADICAL MEMBERSHIP 

Let I be an ideal of K[ X ], F ~ K[ X]. Then we define the quotient I : F 
of I by F as 

I: F = {g E K[ X]I gf E I for all f E F}. 
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For ideals 1 and J, 1 : J is also called the ideal quotient of 1 by J. If 
F = {f}, then we also write 1: I instead of 1: F. 

Exercise 6.31 Let 1 be an ideal of K[ X], F ~ K[ X]. Show the following: 

(i) 1: F is an ideal of K[X]. 

(ii) I: F = n/EF 1: I· 
(iii) I: F = I : Id(F), so only ideal quotients need to be considered. 

Exercise 6.32 Let h, 12, J}, h be ideals of K[X]. Show the following: 

(i) (h n h) : (Jl + J2) = (h : Jl ) n (12 : h) n (h : J2) n (h : Jl ). 

(ii) If h ~ 12 and J2 ~ J1, then Ii : Jl ~ 12 : J2. 

We now show how Grabner bases can be used to compute1: J from 
finite bases of I and J. If FJ is a finite basis of J, then we already know 
that 

I : J = I : Id(FJ) = 1 : FJ = n I: I, 
/EFJ 

and so it will suffice to show how to compute I: f for an ideal I and an 
element f of K[X]. 

Proposition 6.33 Let F = {ft, ... , fm} ~ K[X], and let f E K[X]. 
Assume that G ~ (K[ X ])m+1 is a generating set for the module S of 
syzygies of (I, ft,···, fm), and let 

H = {h E K[X]I there are hi"'" hm with (h, hi"'" hm) E G}. 
Then H is a basis of the ideal Id(F) : f. 

Proof If hE H, then there are h1, ... , hm E K[X] with 

hf + hdl + ... + hmfm = 0, 

and so clearly hi E Id(F). We see that H ~ Id(F) : f. To show that H 
generates Id(F) : I, let 9 E Id(F) : f· Then there are g1, ... , gm E K[X] 
with 

gf = gift + ... + gmfm. 

This means that 9 = (g, -g1, ... , -gm) is an element of S. It follows that 
there exist (m + I)-tuples 91, ... , 9k E G and ql, ... , qk E K[X] with 

k 

9 = Lqi9i, 
i=l 

where addition and multiplication are performed componentwise. Looking 
at the first component only, we recognize 9 as a sum of polynomial multiples 
of elements of H, i.e., as an element of Id(H). 0 

Together with the remarks preceding the proposition, we have proved 
the following. 
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Corollary 6.34 Assume that K is computable, and let FI and F2 be finite 
subsets of K[ X l. Then the algorithm IDEALDIV1 of Table 6.5 computes 
a Grobner basis of the ideal Id(FI) : Id(F2)' 0 

TABLE 6.5. Algorithm IDEALDIVI 

Specification: G t- IDEALDIV1(FI,F2) 
Computation of the ideal Id(FI) : Id(F2) 

Given: F I , F2 = finite subsets of K[ Xl 
Find: a Grobner basis G of the ideal Id(FJ) : Id(F2) 
begin 
for all f E F2 do 

G f t- a generating system for the module of syzygies 
of (f, II,···, fm), where {/J, ... , fm} = FI 

H f t- {h E K[ X 1 I there exist hI, ... , hm 

with (h, hI,"" hm ) E G f } 
end 
G t- INTERSECTION({Hf hEF2) 
end IDEALDIV1 

Exercise 6.35 Find an algorithm for the computation of the intersection of 
ideals that uses the computation of syzygies. 

Next we discuss a construction similar to the division of ideals that is 
needed for a number of algorithms in ideal theory. 

Lemma 6.36 Let I be an ideal of K[Xl, f E K[Xl. Then there exists 
sEN with 

I : r = I : r+I = U I : fi. 
iEN 

Proof By Exercise 6.32 (ii), we have 

I = I : fO r; I : f r; I : f2 r; .... 

Since K[ X 1 is noetherian, this chain of ideals must eventually become 
constant. The claim of the lemma is now obvious. 0 

We will now show how the natural number s of the lemma and I : r 
can be computed from I and f. We write I: foo for UiEN I : fi. 

Proposition 6.37 Let I be an ideal of K[ X], 0 =F f E K[ Xl, and let J 
be the ideal Id(I, 1- Yf) of K[X, Yl. Then I: foo equals the elimination 
ideal Jx. If{/J, ... ,fk} is a basis of I and {gI, ... ,gm} is a basis ofJx 
with 

k 

9i = hi (1- Yf) + Lhijfj 
j=I 
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then 
s = max{ degy(hij ) 11 $ i $ m, 1 $ j $ k} 

satisfies I : r = I : foo. 

Proof If g E Jx, then g = qlP + q2(1- Yf) with ql, q2 E K[X, Y] and 
pEl. Temporarily passing to the field of quotients K(X, Y) of K[X, Y], 
we may replace Y by 1/ f and then multiply the equation by fd, where 
d = degy(qd. We thus obtain an equation fdg = qp with q E K[X]. 
Conversely, let gEl: f oo , say fdg E I ~ J. From 1 == Yf mod J we 
conclude 1 == (Y f)d mod J. We then have 

g == yd fd g == 0 mod J. 

It remains to show that I : ro = I : r. Let gEl: rXJ • Then 
m 

g = Lqigi 
i=l 

t,q;( h;(I- Yf) + th;;!j) 
If we now once again replace Y by 1/ f and multiply the equation by r, 
then we see that rg E I. 0 

Recall that the algorithm EXTGROBNER is capable of producing rep
resentations of the polynomials of the Grabner basis it computes in terms 
of the input basis. 

Corollary 6.38 Assume that K is computable. Let F be a finite subset of 
K[X] and 0 =i- f E K[X]. Then the algorithm IDEALDIV2 of Table 6.6 
computes a Grabner basis of the ideal Id(F) : foo as well as sEN with 
Id(F) : r'" = Id(F) : r. 0 

The exponent s that IDEALDIV2 computes need of course not be min
imal because we have not placed any requirements on the hgp at all. It is 
clear, however, that the least possible s could be found by trial and error 
using IDEALDIVl. 

Exercise 6.39 Let F = {X~+x3,xi+X3} S;; Q[Xl ,X2,X3) and f = Xl-X2 E 
Q[Xl,X2,X3). Compute Id(F) : foo and the least sEN with Id(F) : foo = 
Id(F) : r. 
Exercise 6.40 Let Pl, ... , Pm E K[ X) be irreducible, and suppose 

and 
f = pi1 ..... p~k (1 ~ k ~ m, Ill, ... , Ilk EN). 

Show that Id(g) : foo = Id(p~~il ..... p!;.m) (where the empty product is defined 
to be 1), and that the least s with Id(g) : foo = Id(g) : r is given by 

s = mini (T E N I (T • Ili ~ Vi for 1 ~ i ~ k}. 
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TABLE 6.6. Algorithm IDEALDIV2 

Specification: (G,s) +- IDEALDIV2(F,f) 
Computation of the ideal Id(F) : p:JO 
and sEN with Id(F) : /00 = Id(F) : r 

Given: F = a finite subset of K[ X] and 0 -:f:. / E K[ X] 
Find: (G, s) where G = a Grabner basis of Id( F) : /00, 

sEN with Id(F) : /00 = Id(F) : r 
begin 
G +- ELIMINATION(FU {1- Y/},X) 
s +- max{ degy(hgp) I 9 E G, p E F}, where 

9 = hg(1- Yf) + EpEFhgpp for all 9 E G 
end IDEALDIV2 

Combining the above algorithm with Corollary 6.18, we can now decide 
whether or not some power of a polynomial / lies in a given ideal I: this is 
obviously equivalent to 1 E I : /00. What we are looking at is of course a 
radical membership test (see Definition 4.12). 

Corollary 6.41 Assume that K is computable. Let F be a finite subset 0/ 
K[ X] and 0 -:f:. / E K[ X]. Then the algorithm RADICALMEMTEST 0/ 
Table 6.1 decides whether or not there exists sEN with r E Id(F), and i/ 
so, it computes such an s. 0 

TABLE 6.7. Algorithm RADICALMEMTEST 

Specification: v +- RADICALMEMTEST(F, f) 
Computation of sEN with rEI if existent, 
messagE; otherwise 

Given: F = a finite subset of K[ X J and 0 -:f:. / E K[ X J 
Find: v E {false} U ({true} x N) such that 

begin 

v = false implies r rt I for all sEN, and 
v = (true,s) implies rEI 

(G, s) +- IDEALDIV2(F, f) 
if G n K = 0 then return(false) 
else return(true, s) end 
end RADICALMEMTEST 

If one wishes to just decide membership in the radical without computing 
the exponent s, then it clearly suffices to do 

PROPER(FU{1- Y/}). 
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Exercise 6.42 Let p be a prime number and K = 'l./p'l.. Let I be the ideal 

Id(XP - 1, yP + 1) 

of K[X, Yj. Use the algorithm RADICALMEMTEST to decide whether or not 
X + Y E rad(I). Use Lemma 1.106 to confirm your answer. 

SUBRING MEMBERSHIP 

We have now seen how Grabner bases can be used to decide ideal member
ship and radical membership. Next, we will show how they can be used 
to decide membership in the ring K[/I, ... , 1m] obtained by adjoining 
{/I, ... ,/m} ~ K[X] to K within K[X]. It follows immediately from 
Lemma 1.110 that 

K[/I, ... ,/m] = {h(/I, ... , 1m} I hE K[Yl, ... , Ym]}. 

Lemma 6.43 Let Y1 , ... , Y m be new indeterminates, /I, ... , 1m E K[ X], 
and I the ideal Id(Yl - /I, ... , Ym - 1m} of K[X, Y]. Then the following 
hold: 

(i) h - h(/I, ... , 1m} E I for all hE K[Y]. 

(ii) In K[X] = {O}. 

Proof For the proof of (i), it suffices to note that Yi - Ii E I implies 
Yi == Ii mod I for 1 :5 i :5 m, and thus 

h(Y1 , ••• , Ym} == h(/I, ... , 1m} mod I. 

For (ii) , we consider a term order :5 on T(X, Y} with X « Y. Then 
G = {Y1 - /I, ... ,Ym - 1m} is a Grabner basis of I w.r.t. :5 by Lemma 
5.66. We see that if 0 =f h E K[ X ], then h is in normal form modulo G 
and thus h rt I. 0 

Proposition 6.44 With the assumptions 01 Lemma 6.43, let :5 be a term 
order on T(X, Y} satisfying Y « X, G a Grobner basis 01 I w.r.t. :5, 
9 E K[ X]. Then 9 E K[/I, ... , 1m] iff the unique normal lorm h 01 9 
modulo G is in K[Y], and in this case, 9 = h(/I, ... , 1m}. 

Proof Assume that 9 E K[/I, ... , 1m], say 9 = h(/I, ... , 1m} where h E 
K[Y]. Then h-g E I by Lemma 6.43 (i), and so the unique normal form 1&0 
of h modulo G equals that of g. Lemma 6.14 (iii) tells us that 1&0 E K[Y]. 
Conversely, assume that the normal form h of 9 modulo G lies in K[Yj. 
We have h - h(/I, ... , 1m} E I by Lemma 6.43 (i), and this together with 
9 - h E I implies 9 - h(/I, . .. , 1m} E I. It now follows from Lemma 6.43 
(ii) that 9 = h(/I, ... , 1m} E K[/I, ... , Imj. 0 
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Corollary 6.45 Assume that K is computable, and let g, h, ... , 1m be 
elements 01 K[X]. Then the algorithm SUBRlNGMEMTEST 01 Table 6.8 
decides whetherg E K[h, ... , 1m], and ilthe answer is positive, it computes 

hE K[Y] = K[Yt, .. "Ym] 

with 9 = h(h,··., 1m). 0 

TABLE 6.8. Algorithm SUBRlNGMEMTEST 

Specification: v+- SUBRlNGMEMTEST(g, h,··· ,1m) 
Decision whether 9 E K[h,.·., 1m], if so, 
computation of hE K[Y] with 9 = h(h,···, 1m) 

Given: g,h, ... ,1m E K[X] 
Find: 11 E {false} U ({true} x K[Y]) such that 

11 = (true, h) implies 9 = h(h, ... , 1m), 
11 = false implie8 9 ;. K[h,.··, 1m] 

begin 
choose a decidable term order on T(X, Y) with Y« X 
G +- a Grabner basis of Id(Yl - h, ... , Ym - 1m) w.r.t. ~ 
h +- the normal form of 9 w.r.t. G 
if h E K[Y] then return«true, h» 
else return(false) end 
end SUBRlNGMEMTEST 

In Section 10.7, we will obtain better results for a particular subring, 
namely, the one consisting of the symmetric functions. 

6.3 Dimension of Ideals 

The notion of the dimension of an ideal lies at the very heart of ideal theory 
and its connection with algebraic geometry; it will play an important role 
in the rest of this book. As before, K will be a field and 

K[X] = K[X1, ... ,Xn]. 

Recall that for an ideal I of K[X] and {Ut, ... ,Ur} ~ {X1, ... ,Xn}, I!J.. 
denotes the elimination ideal In K[ U], and U « X \ U means 8 < t for 
all 8 E T(Ll) and 1 t= t E T(X \ U). 

DeBnition 6.46 Let I be a proper ideal of K[X] and {U1, ... ,Ur } a 
subset of {Xt, ... ,Xn }. Then {Ut, ... ,Ur } is called independent modulo 
I if I!J.. = {a}. Moreover, {Ul , ••. , Ur} is called maximally independent 
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modulo I if it is independent modulo I and not properly contained in any 
other independent set modulo I. The dimension dim(I) of I is defined 88 

dim(I) = max{ lUll U ~ {X}, ... ,Xn } independent modulo I}. 

We will, rather obviously, call an ideal of K[X] zero-dimensional if it 
is proper and has dimension zero. 

We see that given a finite basis of the ideal I, we can decide whether 
a given set of variables is independent modulo I by computing the corre
sponding elimination ideal; the dimension of I can then be computed by 
testing all subsets of {Xl, ... , Xn} for independence. This method is of a 
rather unple88ant combina.torial complexity even when implemented in an 
intelligent way. We do not discuss details of such an implementation since a 
much more elegant way to compute dimensions and maximally independent 
sets will be presented in Section 9.3. However, it is important to note the 
following consequence of Proposition 6.15. Recall that by our definition, 
zero is never an element of a Grobner basis. 

Lemma 6.47 Let I be a proper ideal of K[X] and {Ul , .•. , Ur } a subset 
of {X}, ... , X n }. Then the following are equivalent: 

(i) {U}, ... , Ur } is independent modulo the ideal I. 

(ii) G n K[U] = 0 for some Grobner basis G of I w.r.t. a term order 
satisfying U « X \ fl.. 

(iii) G n K[ U] = 0 for every Grobner basis G of I w.r.t. a term order 
satisfying U « X \ u. 0 

It is clear that every independent set modulo an ideal I is contained in a 
maximally independent set modulo I. We will later see that for prime ideals 
P of K[ X], the cardinality of every maximally independent set modulo P 
equrus the dimension of P. The following example shows that this is not 
true in general. 

Example 6.48 Let K = Q, n = 3, G = {XlX3 + X3,X2X3 + X3}. Con
sidering that X l X3 a.nd X 2X3, respectively, are necessarily the head terms 
of the two polynomials, one immediately verifies that G is a Grobner ba
sis w.r.t. every term order. Independent sets modulo Id(G) are thus {Xl}, 
{X2}, {X3}, and {X},X2}. Among these, {X3} and {Xl ,X2 } are maxi
mally independent, and dim(Id( G» = 2. 

The next lemma is immediate from the definitions. 

Lemma 6.49 If I and J are proper ideals of K[ X] with I ~ J, then 
dim(J) $ dim(I). 0 
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Recall from Corollary 2.31 that a non-trivial univariate polynomial ideal 
over a field contains a unique monic element of minimal degree, namely, 
its monic generator. With the definition of the dimension and Proposition 
6.15 in mind, it is now easy to prove the following important lemma. 

Lemma 6.50 Let I be a proper ideal of K[XJ. Then the following hold: 

(i) I is zero-dimensional iff it contains a non-constant univariate polyno
mial in each of the variables in {Xl, ... , X n }. In this case, I actually 
contains a unique monic univariate polynomial Ii of minimal degree in 
each variable Xi, namely, the monic generator of the elimination ideal 
I n K[XiJ, and Ii is the polynomial of minimal degree in G n K[XiJ 
whenever G is a Grabner basis of I w.r.t. a term order ~ satisfying 
{Xi} « {Xl, ... ,Xn} \ {Xi}. 

(ll) If I is zero-dimensional, then so is every proper ideal J of K[ X J that 
contains I, and the elimination ideal Iu is a zero-dimensional ideal 
of K[UJ for each subset {Ul, ... ,Ur } of{Xll ... ,Xn }. 0 

We see that the univariate polynomials of minimal degree in a zero
dimensional ideal can in principle be found by means of n Grabner basis 
computations. A much more efficient way to achieve this that uses a single 
Grabner basis w.r.t. any term order will be presented in Proposition 9.6. 

For the rest of this section, let I be a proper ideal of the ring K[ X J 
and T = T(Xl"",Xn). We will now establish a connection between the 
dimension of I, the set HT(I) of head terms of elements of I (w.r.t. a 
term order), and properties of the K-vector space K[ Xl/I (Example 3.2 
(iii)). To avoid confusion with the dimension dim(I) of the ideal I, we will 
denote the dimension of the K-vector space K[XJII by dimK(K[Xl/I). 
One of the main results will be that I is zero-dimensional iff K[ X JI I is 
finite-dimensional. 

If ~ is a term order on T, then the set of reduced terms w.r.t. I and 
~ is defined as T \ HT(I) and denoted by RT(I). 

Lemma 6.51 Let ~ be a term order on T and G a Grabner basis of I 
w.r.t. ~. Then 

RT(I) = { t E Tis t t for all s E HT(I) } 
= {t E Tis t tfor all s E HT(G) }. 

Proof The first equation claims that RT(I) = T \ mult(HT(I)). But if 
I E I and sET, then sl E I and HT(sf) = s . HT(j), and thus HT(I) = 
mult(HT(I». For the second equation, just recall that mUlt(HT(G)) = 
HT(I) by Theorem 5.35. 0 

The residue class 9 + I E K[ Xl/I of an element 9 E K[ X J will from 
now on be denoted by g. If A ~ K[X), then A = {g I 9 E A}. 
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Proposition 6.52 Let $ be any term order on T, and let B = RT(I). 
Then B is a basis 0/ the K -vector space K[ X]/ I; moreover, the map 
RT(I) --+ B given by t 1--+ t is bijective. 

Proof Recall that scalar multiplication in K[XJ/I is defined by a'l = a/. 
We begin by showing that B is a generating system for K[X]/I. Suppose 
G is a Grabner basis of I w.r.t. $. Let / E K[X], and let h be the normal 
form of / w.r.t. ---cr. Then I = h, and T(h) ~ RT(I). It follows that 

I = h 

= 2: att (at E K) 
tET(h) 

= 2: att 

tET(h) 

= 2: at' t. 
tET(h) 

It remains to show that B is linearly independent. Assume that there exists 
a linear combination 

k 

O=2: ai·ti (ai E K, ti E RT(I» 
i=l 

where not all ai (1 $ i $ k) equal zero. We may assume w.l.o.g. that al =f 0 
and tt > ti for 2 $ i $ k. If we set 

k 

h = 2:aiti' 
i=l 

then h =f 0, HT(h) = til and h E I because h = O. By Theorem 5.35, 
there exists S E HT(G) with s I HT(h) = tt, contradicting tl E RT(I). 
The indicated map from RT(I) to B is clearly surjective. To see that it is 
injective, let s, t E RT(I) with s < t and s = t. Then s - t = 0, so s-t E I, 
and thus t = HT(s - t) E HT(I), a contradiction. 0 

B as in the proposition above is called the canonical term basis of 
K[X]/I w.r.t. $. 

Let us inspect the proof of the last proposition a little more closely. The 
equation 

7 = L att = 2: at' t 
tET(f) tET(f) 

holds for any 0 =f / E K[X]. Using this and the same arguments as in 
the proof above, the following facts are straightforward consequences of 
the definitions of linear independence, the canonical term basis, and scalar 
multiplication in the K-vector space K[X]/I. Here, $ is any term order 
on T and RT(I) is the set of reduced terms w.r.t. $. 
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Lemma 6.53 (i) If 0 f; f E I, say f = EtET(f) att, then 

and thus TU) is linearly dependent in K[ X JI I. 

(ii) If D is a subset of T such that D is linearly dependent in K[ Xl/I, 
say 

(at f; 0 for all tED'), 

where D' f; 0 is a finite subset of D, then 0 f; f = EtED' att E I. 

(iii) If D ~ RT(I}, then IDI = IDI. 
(iv) If f E K[X], then a representation of 7 E K[Xl/I as a linear 

combination of elements of RT(I) is given by 

h= E at· l , 
tET(h) 

where h is a normal form of f modulo any Grabner basis of I w.r.t. 
~. 

(v) If K is computable, ~ is decidable, and a Grabner basis G of I w.r.t. 
~ has been computed, then for any given f E K[ X J, one can effec
tively express 7 E K[ X JI I as a linear combination of elements of the 
canonical term basis w.r.t. ~. 0 

As an application of the above results, we can now give criteria for I to 
be zero-dimensional that are of great importance in the theory as well as 
for computational purposes. 

Theorem 6.54 Let I be a proper ideal of K[XJ. Then the following as
sertions are equivalent: 

(i) dim(I} = O. 

(ii) K[ X]/ I is finite-dimensional as a K -vector space. 

(iii) There exists a term order ~ on T(X) and a Grobner basis G of I 
w.r.t. ~ such that for each 1 ~ i ~ n, there is gi E G with HT(gi} = 
X;' for some 0 < Vi EN. 

(iv) For every term order ~ on T(X) and every Griibner basis G of I 
w.r.t. ~ there exists, for each 1 ~ i ~ n, gi E G with HT(gi) = X:, 
for some 0 < Vi EN. 
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Proof (i)==}(iv): Let G be any Grabner basis of I, and let 1 ::; i ::; n. 
Since I is zero-dimensional, there exists O:f fi E InK[XiJ. Moreover, fi is 
reducible modulo G and not constant, and so G must contain a polynomial 
whose head term equals Xri for some 0 < Vi EN. 

(iv)==>(iii) is trivial. 
(iii)==>(ii): Let B = RT(I) be the canonical term basis of K[ X JI I w.r.t. 

::;. It is clear that every t E RT(I) must satisfy degxi (t) < Vi for 1 ::; i ::; n. 
But there are at most V1 ••••• Vn terms with this property, and we see that 
B is finite. 

(ii)==>(i): To prove zero-dimensionality of I, we will show that I contains 
a non-zero univariate polynomial in each variable. Let 1 ::; i ::; n and 
consider the set Ci = {Xf IkE N}. If Ci is finite, then there exist 

k :f lEN with xf = X!, and so 0 :f xf - xI E I. If Ci is infinite, then 
(ii) together with Theorem 3.20 tells us that it is linearly dependent, and 
Lemma 6.53 (ii) guarantees the existence of 0 :f f E In K[XiJ. 0 

Proposition 8.27 will add another important equivalent condition to the 
characterization of zero-dimensional ideals. The fact that residue class rings 
of the type K[ Xl/I are K -vector spaces will be exploited further in Chap
ter 9. 

Using (iii) and (iv) above, we can now decide whether or not I is zero
dimensional simply by computing a single Grabner basis G w.r.t. a term 
order of our choice and looking at the head terms of G. The advanced 
method for computing dimensions which we will present in Section 9.3 
basically states that the same is true for arbitrary dimension. The proof of 
(iii)==}(ii) above shows in fact a little more. 

Corollary 6.55 Suppose there exists a term order::; on T(X) and a Grab
ner basis G of I w.r.t. ::; such that for each 1 ::; i ::; n, there is 9i E G with 
HT(9i) = xri for some 0 < Vi EN. Then 

dimK(K[ X l/ I) ::; 1.11 ••••• vn . 0 

The following corollary is now immediate from the fact that 

mult(HT(I») = mUlt(HT(G)) 

for any term order::; and Grabner basis G of I w.r.t. ::;. 

Corollary 6.56 Let I be a proper ideal of K[ X J. Then the following as
sertions are equivalent: 

(i) dim(I) = O. 

(ii) There exists a term order::; on T(X) such that for each 1 ::; i ::; n, 
there is 9i E I with HT(9i) = xr' for some 0 < Vi EN. 

(iii) For every term order::; on T(X) there exists, for each 1 ::; i ::; n, 
9i E I with HT(9i) = X;' for some 0 < Vi EN. 0 
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Exercise 6.57 Let K = Q, n = 2, F = {/l,h} with /l = X2 + Y + 1 and 
h = 2XY + Y. Show that dim(Id(F» = O. 

Exercise 6.58 Write an algorithm that tests an ideal for zero-dimensionality 
based on Theorem 6.54. 

6.4 Uniform Word Problems 

In this section we show how Grabner bases can be employed for the solution 
of a class of classical decision problems, namely, word problems. This section 
forms an aside within this book; none of the material presented here will 
be used in the rest of the book. 

In order to give a general and rigorous definition of what a word problem 
is, one needs concepts from mathematical logic and model theory such 
as formal language, terms, formulas, models, and the like. However, in 
order to understand the problems presented here and their solutions by 
means of Grabner bases, such formal rigor is not at all necessary. The 
following informal discussion of the first problem that we will discuss should 
sufficiently explain the idea that is being pursued here. Recall that "ring" 
always means "commutative ring with unity." 

Let K be a field and R an extension ring of K. As usual, we will write 
K[X] for the polynomial ring K[XI, ... ,Xn]. If e = (Cl,""Cn ) ERn, 
then for any f E K[X], Lemma 2.17 (i) defines fee) as an element of 
R. If f, g E K[X], then it mayor may not be true that fee) = gee) in 
R. Viewing fee) and gee) as nothing but strings of symbols, i.e., words 
formed according to certain rules from the letters of a certain alphabet, 
the equation fee) = gee) in R can be interpreted as saying that the words 
fee) and gee) have the same meaning in the ring R. Now let fo, ... , fm, 
go, ... , gm E K[X]. Then according to the discussion above, the condition 

(*) "whenever R is an extension ring of K, e = (ClI"" cn) E Rn, and 
fi(e) = gi(e) holds in R for 1 ~ i ~ m, then fo(e) = go(e) holds in 
R" 

can be interpreted as saying, "whenever Xl, ... , Xn are substituted for 
in an extension ring of K in such a way that fi and gi receive the same 
meaning for 1 :5 i :5 m, then fo and go receive the same meaning." It is 
precisely the condition (*) whose decidability is proved in the first theorem 
of this section, and we have just demonstrated why this decision problem 
deserves to be called the word problem for extension rings of K. The 
qualification uniform in the title of the section alludes to the fact that 
we are looking for a single algorithm that decides (*) for arbitrary given 
polynomials. 

Two remarks are in order before we can state our first theorem. It is clear 
that the equation fi(e) = gi(e) which occurs in (*) above is equivalent to 
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(fi - 9i)(C) = O. This means that we do not give up generality by consid
ering conditions of the form f{c) = 0 only. The second remark concerns 
not just the next theorem. Although we will not assume any familiarity 
with the formalisms of mathematical logic and model theory, we will try 
to conform with the notation that is commonly used in connection with 
word problems. This means that condition (*) above-with fi{c) = 9i{C) 
replaced by li{c) = 0 according to the previous remark-will be written as 
follows. 

(**) The implication 

VXl .•• VXn ( A li{:f) = 0 -+ IO{:f) = 0) 
t=1 

holds in the class of all extension rings of K. 

As long as we view (**) as nothing but a different notation for (*), this 
should need no further explanation, except perhaps that here, as in all 
formalized mathematics, the symbol "V" means "for all," """ means "and," 
"-+" means "implies," and "(:f)" stands for "(x}, ... , xn)." 

We are now in a position to formulate the theorem that will allow us to 
decide condition (**) above in case K is computable. The decision method 
is obtained by reducing the word problem to an ideal membership test. 
The notation K[ X] = K[X}, ... , Xn] where K is any field will be used 
throughout this section. 

Theorem 6.59 Let K be a field and 10, /I, ... , 1m E K[X]. Then the 
lollowing are equivalent: 

(i) The implication 

VXl .•• VXn ( A li{:f) = 0 -+ lo{:f) = 0) 
t=1 

holds in the class 01 all extension rings 01 K. 

(ii) fo E Id(f}, ... .Jm), where the ideal is taken in K[X]. 

Proof (i)===}{ii): We prove the contrapositive. Assume that (ii) does not 
hold, i.e., that 10 rt I, where we have set I = Id(/I, ... , 1m). Then I is 
proper, and so we may form the residue class ring K[X]/I. The canonical 
homomorphism 

x: K[X] -+ K[X]/I 
I 1---+ 1+1 

is injective when restricted to K, for otherwise I would contain an invertible 
element of K[ X] and would thus not be proper. We see that up to a natural 
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isomorphism which is obtained by replacing the image of K in K[Xl!I 
under X with K itself, K[Xl! I is an extension ring of K. Let us now 
consider the element (X(X l ), .. . ,X(Xn)) of (K[X]II)n. Then we have, for 
1 ~ i ~ m, 

because fi E I. On the other hand, 

because fo rt. I, and we have proved that condition (i) is violated with 
R = K[X]II and c = (x(Xt) , ... ,X(Xn)). 

(ii)=*(i): Condition (ii) means that there exist ql, ... , qm E K[X] with 

m 

fo = Lqdi. 
i=l 

Now let R be an extension ring of K and cERn such that fl(c) = ... = 
fm(c) = O. Then 

m 

fo(c) = L qi(c)fi(c) = O. 0 
i=l 

If K is computable, then there is an algorithm that decides condition 
(ii) of the theorem for arbitrary input fo, ... , fm: simply use the ideal 
membership test which computes a Grobner basis G of Id(ft, ... , fm) and 
outputs a positive answer if fo + o. Referring to the decidability of all 
instances of condition (i) by means of a single algorithm as the word problem 
for extension rings of K, we have thus proved the following corollary. 

Corollary 6.60 If K is a computable field, then the word problem for ex
tension rings of K is decidable. 0 

The next theorem is the basis for the solution of the word problem for 
extension fields of the given field K. Here, the word problem will be reduced 
to a radical membership test. As it turns out, the same solution applies to 
the word problem for integral domains extending K. 

Theorem 6.61 Let K be a field and fo, ft, ... , fm E K[X]. Then the 
following are equivalent: 

(i) The implication 

'<IXI ... '<Ixn ( A fi(!f,) = 0 -- fo(!f,) = 0) 
,=1 

holds in the class of all extension fields of K. 
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(ii) The implication 

holds in the class of all integral domains extending K. 

(iii) There exists sEN with f3 E Id(h, ... , fm), where the ideal is taken 
in K[X]. 

Proof (i)==?(ii): For a proof of the contrapositive, assume that (ii) does 
not hold. Then there exists an integral domain R that extends K and 
cERn with 

h(c) = ... = fm(c) = 0 and fo(c) # o. 

The domain R is naturally embedded in its quotient field QR. Replacing 
the image of R in Q R under this embedding by R itself, we see that up to 
a natural isomorhism, Q R is an extension field of K. Viewing (*) as taking 
place in Q R, we see that condition (i) is violated. 

(ii)==?(iii): Again, we will prove the contrapositive. Assume that (iii) 
does not hold, i.e., that f3 ¢ I for all SEN, where we have set I = 
Id(h, ... , fm}. Since the set {f3 I sEN} is closed under multiplication, 
Proposition 4.11 provides a prime ideal J of K[X] with I ~ J and f3 ¢ J 
for all sEN. Since J is prime, the residue class ring K[ Xl! J can be formed 
and is an integral domain. We may now argue as in the proof of (i}==?(ii) 
of the previous theorem. The canonical homomorphism 

x: K[X] ---+ K[Xl!J 
f 1--+ f+J 

is injective when restricted to K, and so up to a natural isomorphism which 
is obtained by replacing the image of K in K[ X] / J under X with K itself, 
K[ X]/ J is an integral domain which extends K. We now consider the 
element (X(Xl), ... ,X(Xn)) of {K[X]/ J}n. Then we have, for 1 ~ i ~ m, 

because li E I ~ J. On the other hand, 

because fo ¢ J, and we see that (ii) is violated. 
(iii}==?(i): If (iii) holds, then there exist sEN and ql, ... , qm E K[ X] 

with 
m 

f3 = Lqdi. 
i=l 
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Now let L be an extension field of K and c E Ln such that /I{c) = ... = 
Im{c) = O. Then 

m 

(fo(c)r = Lqi(c)li(c) = 0, 
i=1 

and so necessarily lo(c) = O. 0 
It is clear that condition (iii) of the theorem above can be read as 

10 E rad(Id(/I, ... , 1m». 

In view of the radical membership test of Corollary 6.41 (see also the re
marks preceding and following that corollary), we have thus proved the 
following. 

Corollary 6.62 If K is a computable field, then the word problem for ex
tension fields of K is decidable, and so is the one for integral domains 
extending K. 0 

In Section 7.2, we will define and investigate a class of fields that are 
called algebraically closed. One may then consider the word problem for the 
class of algebraically closed extension fields of a given field K. It will turn 
out that condition (i) of the theorem above with "extension field" replaced 
by "algebraically closed extension field" is still equivalent to condition (iii) 
of the theorem. This result, which we will prove in Section 7.4, is known 
as the Hilbert Nullstellensatz (theorem on zeroes). From our present point 
of view, the Hilbert Nullstellensatz is nothing but the solution to another 
word problem. However, it will turn out that it is a considerably deeper 
and more important theorem than the results of this section and does 
therefore not belong here. We point out that because of its proximity to 
the Hilbert Nullstellensatz, the previous theorem is also referred to as the 
weak Nullstellensatz, i.e., the weak theorem on zeroes. 

Before we turn to our next word problem, we prove another corollary to 
the last theorem which is perhaps another reason for calling the latter the 
weak theorem on zeroes. 

Corollary 6.63 Let K be a field and /I, ... , f m E K[ X]. Then the fol
lowing are equivalent: 

(i) There exists an extension field L of K and c E Ln such that Ii (c) = 0 
for 1 ~ i ~ m. 

(ii) There exists an integral domain R extending K and cERn such that 
h(c) = 0 for 1 ~ i ~ m. 

(iii) 1 rt Id(/I, ... fm). 
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Proof If we set 10 = 1 E K[ X j, then the implication 

VXI ••• VXn ( " h(~) = 0 -+ lo(~) = 0) 
1=1 

holds in an extension ring R of K if and only if its premise is always false, 
i.e., if and only if 

/t(c) = ... = Im{c) = 0 

does not hold for any cERn. It is now clear that (i)-{iii) of the corollary 
are precisely the negations of (i)-{iii), respectively, of the last theorem with 
10 = 1. 0 

Exercise 6.64 Prove the equivalence (i)<:==>(iii) of the corollary above directly. 
(Hint: Use the fact that every proper ideal can be extended to a maximal one.) 

In view of the fact that we can decide properness of polynomial ideals 
over a computable field (cf. Corollary 6.18), we have just proved that we 
can decide whether or not finitely many given polynomials over a com
putable field have a common zero in some extension field of K. For those 
who already have an understanding of algebraically closed fields, we men
tion that one of the central results of Section 7.4 will be as follows: if 
It, ... , 1m E K[X], then Id{/t, ... ,/m) is proper iff It, ... , 1m have a 
common zero in every algebraically closed extension field of K. 

The word problems that we have considered thus far were all for classes 
of structures extending a given field K. The words in question were poly
nomials over K evaluated in certain extensions of K. Next, we consider the 
word problem for the class of all rings (i.e., commutative rings with unity). 
At first glance, this does not even seem to be a meaningful question, be
cause it is not clear what the words could be in the absence of a common 
ground field. To see how we can make sense out of this word problem, recall 
from Section 1.9 that for any ring R, the map 

r.p: Z -+ R 
n 1--+ n ·IR 

is a homomorphism of rings. If cERn, then according to Proposition 2.15, 
r.p extends uniquely to a homomorphism r.pc : Z[ X] -+ R which is obtained 
by first mapping coefficients by means of r.p and then evaluating at c. Now 
if 10, .•. , 1m E Z[X], then we define our "word implication" 

VXI •.. VXn ( " h{~) = 0 -+ lo{~) = 0) 
0=1 

to hold in R if for all cERn, 

r.pc{/t) = ... = r.pcUm) = 0 implies r.pcUo) = o. 
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With this understanding, we can easily reduce the word problem for rings 
to a certain ideal membership test. The proof of the theorem below differs 
from the one of Theorem 6.59 only by some formal subtleties. We will be 
using the obvious fact that for any homomorphism ,p : R -- S of rings, 

(n· ls),p(r) = n· ,per) = ,p(n· r) 

for all n E Z and r E R. 

Theorem 6.65 Let 10, ft, ... , 1m E Z[ X]. Then the lollowing are equiv
alent: 

(i) The implication 

Y:rh ... YXn ( A li(lf.) = 0 -- lo(lf.) = 0) 
1=1 

holds in the class 01 all commutative rings with unity. 

(ii) 10 E Id(ft, ... ,1m), where the ideal is taken in E Z[X]. 

Proof (i)===*(ii): We prove the contrapositive. Assume that (ii) does not 
hold, i.e., that 10 ¢ I, where I = Id(ft, ... , 1m). Then I is proper, and 
so we may form the residue class ring Z[ X]/ I. Consider the canonical 
homomorphism 

x: Z[X] -- Z[XlII 
I t--+ 1+1, 

and set c = (X(Xl), ... ,X(Xn» E (z[x])n. Then we have, for arbitrary 
g = E;:1 ajX~jl ..... X;:jn E Z[X], 

'Pc (g) = 'Pc (t ajX~;l ..... x;:;n) 
3=1 

(aj E Z for 1 '5, j '5, m) 

m 

= Laj. (X(Xd)";l ..... (X(xn»)/I;n 
j=1 

= x(taj. X~jl ..... X;:Jn) = x(g). 
3=1 

It is now easy to see that 'Pc(fi) = 0 because Ii E I for 1 '5, i '5, m, while 
'Pc(fo) oF 0 because 10 ;. I. 

(ii)===*(i): Condition (ii) says that there exist Ql, ••• , qm E Z[ X] with 

m 

10 = Lqdi. 
i=l 
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Now let R be a ring and cERn such that 'Pc(Ji) = 0 for 1 ~ i ~ m. Then 

m 

'Pc(Jo) = 2: 'Pc(qi)'Pc(li) = O. 0 
i=l 

The theorem above reduces the word problem for rings to the ideal mem
bership test in Z[X]. Our Grobner basis theory thus far, however, allows 
the ideal membership test only for polynomial rings over a field. An algo
rithmic realization of the ideal membership test in Z[ X] will be presented 
in Section 10.1. Since the results of the present section will not be used 
in the sequel, there is no harm in making a forward quote by stating the 
following corollary. 

Corollary 6.66 The word problem for commutative rings with unity is 
decidable. 0 

Next, we consider the word problem for a special class of rings. Let R 
be a ring and a E R. Then a is called idempotent if a2 = a. A ring R 
is called Boolean if every a E R is idempotent. An obvious example is 
the ring Z/2Zj moreover, if Rb ... , Rm are Boolean rings, then the direct 
product Rl x ... x Rm of Proposition 1.113 is again a Boolean ring. The 
following lemma collects some facts about idempotents and Boolean rings 
that are needed for the next theorem. Recall from Section 1.9 that a ring 
of characteristic m contains an isomorphic copy of the ring Z/mZ. In the 
special case char(R) = 2, the isomorphic copy of Z/2Z contained in R is 
the subring {OR, lR} of R. 

Lemma 6.67 Let R be a ring. Then the following hold: 

(i) If a and b are idempotents of R, then so is abo If in addition, char(R) = 
2, then -a and a + b are idempotents of R. 

(ii) Let char(R) = 2, and let F be the subfield {O, I} of R. If M ~ R is 
a set of idempotents of R, then the subring F[M] generated by M in 
R is a Boolean ring. 

(iii) If R is Boolean, then char(R) = 2. 

(iv) If R is a Boolean domain, then R = {O, I}. 

Proof (i) If a and bare idempotents, then (ab)2 = a2b2 = ab, and so ab 
is idempotent. Now assume that in addition, char(R) = 2. Then a + a = 0 
which means that -a = a, and so -a is idempotent. Moreover, 

and so a + b is idempotent. 
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(ii) We first note that I and 0 are idempotents. This together with (i) 
above shows that the set S of all idempotents of R is in fact a subring of 
R. The ring F[M] is the intersection of all those subrings of R that contain 
F and M. Since S occurs in this intersection, we must have F[M] ~ S. 

(iii) Since R is Boolean, we have 

IR + IR = (IR + IR)2 = l~ + l~ + l~ + l~, 

and so IR + IR = O. 
(iv) If a E R, then a(a - 1) = a2 - a = 0, and so a = 0 or a = 1. 0 

Exercise 6.68 Let R be a ring and a E R idempotent. Show that as = a 
for alls E N+. 

There is a rather obvious way of posing a word problem for the class of 
rings of characteristic 2. Strictly speaking, the class of extension rings of 
Z/2Z is smaller than the class of all rings of characteristic 2. But every 
ring R in the larger class contains an isomorphic copy FR of Z/2Z and 
is thus naturally isomorphic to one in the smaller class. This shows that 
there is no harm in identifying FR with Z/2Z via the natural isomorphism. 
Under this point of view, the class of all rings of characteristic 2 equals 
the class of all extension rings of Z/2Z. Let R be a ring in this class. If 
10, ... , 1m E Z/2Z[X], then we may, as in Theorem 6.59, define the word 
implication 

VXl •.• VXn ( A h(;~J = 0 --+ lo(~) = 0) 
1=1 

to hold in R if for all e E Rn, 

!tee) = ... = Im(e) = 0 implies lo(e) = O. 

The resulting word problem has been solved in Theorem 6.59. In view of 
(iii) of the last lemma, we may pose a new word problem now by restricting 
ourselves to the class of all Boolean rings. The next theorem shows how 
this problem can in fact be reduced to the general one. 

Theorem 6.69 Let 10, ... , 1m E Z/2Z[X]. Then thelollowing are equiv
alent: 

(i) The implication 

VXl ••• VXn (A li(1t.) = 0 --+ 10(1t.) = 0) 
1=1 

holds in the class 01 all Boolean rings. 
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(ii) The implication 

VX1 ... VXn ('6 fi(~) = 0 A '6 x~ - Xi = 0 ~ fo(~) = 0) 

holds in the class of all rings of characteristic 2. 

Proof (ii)===>(i): This is immediate from the fact that every Boolean ring 
R has characteristic 2 and satisfies a2 - a = 0 for all a E R. 

(i)===>(ii): Let R be a ring with char(R) = 2, and let e = (C1,"" cn) E 
Rn such that 

h(e) = ... = fm(e) = 0 and ~ - C1 = ... = c~ - em = O. 

Then C17 ••• , en are idempotents, and so by (ii) of the previous lemma., 
S = Z/2Z[C1, ... ,en] is a Boolean subring of R. It now follows from our 
hypothesis (i) that fo(e) = 0 in S and hence in R. 0 

The theorem above combined with Theorem 6.59 provides the decida.bil
ity of the word problem for Boolean rings: if fo, ... , fm E Z/2Z[ X], then 
the implication of (i) of the last theorem holds iff 

fo E Id(h,··· ,fm'X~ - Xl, ... ,X~ - X n), 

where the ideal is taken in Z/2Z[ X]. The next theorem provides an entirely 
different solution to the same word problem. 

Theorem 6.70 Let fo, ... , f m E Z/2Z[ X J. Then the following are equiv
alent: 

(i) The implication 

VX1 ... VXn ( A fi(~) = 0 ~ fo(~) = 0) 
t=l 

holds in the class of all Boolean rings. 

(ii) The implication 

VX1 ... VXn ( A fi(~) = 0 ~ fo(~) = 0) 
t=l 

holds in Z/2Z. 

Proof (i)===>(ii): This is trivial because Z/2Z is a Boolean ring. 
(ii)===>(i): We prove the contrapositive. Suppose there exists a Boolean 

ring R and e E Rn such that 

h(e) = ... = fm(e) = 0 and fo(e) to. 
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Then (fO(C»8 = lo(c) =I 0 for all sEN, and so the previous theorem 
together with the remark following it tells us that 

la Ft Id(h,··· ,/m'X~ - Xl,." ,X~ - Xn) 

for all sEN. We may now apply Theorem 6.61 to conclude that the 
implication 

fails in some integral domain R extending Z/2Z, i.e., there exists b = 
(bb ... ,bn) E Rn with 

h(b) = ... = Im(b) = 0, b~ - bl = ... = b~ - bm = 0, 

and lo(b) =I O. Since R is a domain, the equations b~ - bi = bi(bi - 1) = 0 
imply that bi E {OR, lR} = Z/2Z for 1 ~ i ~ n, and so the implication 

fails in Z/2Z. 0 
The last theorem shows that the validity of a word implication 

in the class of Boolean rings can also be decided by testing the 2n many 
possible substitutions for Xl, •.• , Xn in Z/2Z. What we have proved in two 
different ways is the following corollary. 

Corollary 6.71 The word problem lor the class 01 Boolean rings is decid
able. 0 

For the reader who is familiar with propositional logic we digress briefly 
at this point to describe an interesting application of the last two the<r 
rerns. If cp is a compound statement in the formal system of propositional 
logic whose statement variables are ql, ... , qn, then one may assign to cp 
an element fl(J of Z/2Z(Xt. ... ,XnJ as follows. One replaces qi by Xi for 
1 $ i ~ n and then recursively replaces the logical connectives by ring 
operations according to the following rules. 

cpI\'I/J 1---+ II(JI"" 
cp V 'I/J 1---+ II(J + I"" + II(JI"" 

-.cp 1---+ 1 + I I(J 
cp -+ 'I/J 1---+ 1 + fl(J + Il(Jf"" 
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(The table is of course redundant.) The definitions of the logical connectives 
and the operations in 7l/271 are such that 'P is a tautology iff J<P{c) = 1 for 
all C E {71/2z)n. We see that a statement 'Po is a logical consequence of the 
statements 'Pl, ... , 'Pm iff the implication 

'v'Xl ... 'v'xn (3 J <p, (~fJ + 1 = 0 --+ J <Po (~) + 1 = 0) (*) 

holds in 7l/271. One way of testing this is by looking at the finitely many 
possible substitutions for the Xi from Z/271; this is the method of truth 
tables. From the last two theorems above and the remark between them, 
however, we may conclude that (*) is also equivalent to 

J'Po + 1 E Id(f'Pl + 1, ... , J'Pm + 1, Xt - Xl, ... , X~ - X n), 

a condition which can be tested by means of a Grobner basis computation 
over 7l/271. 

Resuming our discussion of word problems, we will now investigate the 
word problem for Abelian monoids. Here, the monoid operation will be 
written as multiplication and the neutral element as 1. Let M be an Abelian 
monoid and T the monoid of terms in n variables Xl, ... , Xno Then for 
each C = (Cl, ... ,en) E Mn, there is a natural homomorphism 

'Pc: 

In view of the obvious formal analogy to evaluation of polynomials, we will 
write 'Pc{t) = t{c) whenever t E T. These "evaluated terms" will be the 
words that the word problem for Abelian monoids is about. In other words, 
if So, ... , Sm, to, ... , tm E T, then we define the word implication 

'v'Xl .•• 'v'xn (3 Si{~) = ti{~) --+ so(~) = to(~») 

to hold in M if Si{C) = ti{C) for 1 ::; i ::; n implies so{c) = to{c) whenever 
c E Mn. The following theorem reduces the word problem for Abelian 
monoids to an ideal membership problem in K[ X], where K is a field that 
can be arbitrarily chosen. 

Theorem 6.72 Let K be field, and let So, ... , Sm, to, ... , tm E T. Then 
the following are equivalent: 

(i) The implication 

'v'Xl" ''v'xn(3 Si(~) = ti{~) --+ so(~) = to(~») 
holds in the class of all Abelian monoids. 
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(ii) So - to E Id{s1 - tb'" ,Sm - tm) in K[X]. 

Proof (i)===?{ii): Every extension ring R of K is an Abelian monoid under 
multiplication. Moreover, if we view a term t 88 an element of K[ X], then 
t evaluated as a polynomial at cERn coincides with t{c) in the sense that 
we are using it here, namely, as SOc{t). We see that the implication 

holds in the class of all extension rings of K. The claim now follows from 
Theorem 6.59. 

(ii)===?{i): Let M be an Abelian monoid and c E Mn such that Si(C) = 
ti(C) for 1 :5 i :5 m. Let N be the additive monoid Nn. Then K[X] is 
by definition the monoid ring K N over K and N, and both K and N are 
naturally embedded in KN. Moreover, c gives rise to a homomorphism 

T: N --+ M 
(Vb'" ,Vn ) ~ cr1 ..... ~n, 

and finally, both K and M are naturally embedded in the monoid ring K M 
over K and M. We obtain a diagram 

K ~ K[X] :L N 

KM 

where t, 1/, and SO are natural embeddings, and u is T followed by the 
natural embedding of M in KM. Proposition 2.13 now provides a ring 
homomorphism rp which completes the diagram 88 follows. 

K ~ K[X] :L N 

SO '\,. rp 1 ,/ u 

KM 

Here, 7p maps a term t to the monomial t(c) because t corresponds to its 
exponent tuple under 1/. Suppose now that 

m 

So - to = L hi . (Si - til 
i=1 

(hi E K[X]). 

If we map this equation into K M by means of rp, then the right-hand 
side becomes zero because Si(C) = ti(C) for 1 :5 i :5 m, and we see that 
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So ( c) = to( c) in K M and thus in M, because the monomials in K M corre
spond to the elements of M under the natural embedding of M in K M. 0 

For computational purposes, it is of course advantageous to use the sim
plest possible field K = Z/2Z. 

Corollary 6.73 The word problem for the class of Abelian monoids is de
cidable. 0 

Finally, we consider the word problem for the class of Abelian groups. 
Again, we write the group operation as multiplication and the neutral el
ement as 1. Accordingly, the inverse of an element a will be written as 
a-I. Let G be an Abelian group and c = (CI, ... ,cn) E Gn. Then we may 
consider the map 

!Pc: 

Again, there is a certain formal analogy to evaluation of terms, and so a 
natural notation is given by !Pc(u) = u(c) for u E zn. These u(c) are the 
words whose equality is to be uniformly decided here. In other words, if uo, 
••• , Urn, VO, ••• , Vrn E zn, then we define the word implication 

to hold in G if Ui(C) = Vi(C) for 1 ~ i ~ m implies uo(c) = vo(c) whenever 
c E Gn. Let us denote by T(X, Y) the set of all terms in the variables XI, 
... , X n, YI , ... , Yn . To each element u = (kI,"" kn) of zn, we assign an 
element tu = Xr1 ••••• X~" . yr ..... y,{"n of T(X, Y) by setting 

{ k· if k· > 0 
Vi = 0 t othe;wise, { -k· if k· < 0 

and lLi = • t o otherwise. 

The following theorem reduces the word problem for Abelian groups to the 
one for Abelian monoids. 

Theorem 6.74 Let Uo •...• Urn. Vo, ...• Vrn E zn. Then the following are 
equivalent: 

(i) The implication 

holds in the class of all Abelian groups. 
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(ii) The implication 

( 
m n 

'v'X1 ... 'v'Xn'v'Y1 ... 'v'Yn /J tu. (~, y) = tVi (~, 1!) 1\ 6 XiYi = 1 

-----+ tuo (~, 1!) = tvo (~, lL) ) 

holds in the class of all Abelian monoids. 

Proof (i)===}{ii): Let M be an Abelian monoid, and let 

be elements of Mn such that 

for 1 :::; i :::; m and 1 :::; j :::; n. It is not hard to prove that 

e - {aV1 ..... aVn • bl-'l ••••• bl-'n I V1 V 1/1 1/ E '1M } - 1 n 1 n'·· ., n,,- ,···,,-n !'q 

is an Abelian group under the operation of M, and that w{a) = tw{a, b) 
for all w E zn. It now follows easily from (i) that tuo (a, b) = tvo (a, b). 

(ii)===}{i): Let e be an Abelian group and a = (al, ... ,an) E en such 
that ui(a) = vi(a) for 1 :::; i :::; m. Setting bi = ail for 1 :::; i :::; n, it is easy 
to see that w( a) = tw (a, b) for all w E zn. It follows that 

tUi (a, b) = tv; (a, b) and ajbj = 1 

for 1 :::; i :::; m and 1 :::; j :::; n. Since e is an Abelian monoid, we may apply 
(ii) to conclude that 

uo(a) = tuo{a, b) = tvo(a, b) = vo(a). 0 

Together with the corollary to the last theorem, we obtain the following 
decidability result. 

Corollary 6.75 The word problem for the class of Abelian groups is de
cidable. 0 

We have demonstrated how Grobner bases can be used to decide a large 
number of word problems. We mention that in the area of word problems, 
undecidability tends to be much harder to prove. A famous result asserts 
that the word problem for groups is undecidable. 



Notes 291 

Notes 

Our approach to the computation of syzygies imitates that of Apel and 
Lassner (1988), where the non-commutative case is treated. The commuta
tive case is discussed in Zacharias (1978), Furukawa et al. (1986), and Wall 
(1989). The proposition and theorem on the lifting of syzygies at the end 
of Section 6.1 go back to Lazard (1983); the idea was further developed 
and discussed in Moller (1985), Moller and Mora (1986a), Moller (1988), 
and Gebauer and Moller (1988). In Moller et al. (1992), a version of the 
Buchberger algorithm is given that fully exploits Buchberger's second cri
terion in the strong form of Theorem 6.13. Here, an S-polynomial is tested 
out if the corresponding head term syzygy lies in the module generated 
by the syzygies corresponding to the S-polynomials that have already been 
treated. This version is indeed capable of detecting more superfluous critical 
pairs than any other known implementation; the cost of testing submodule 
membership, however, has thus far turned out to be too high to translate 
the deletion of more pairs into a computational gain (cf. Section 10.4). 

The standard pre-Grabner-bases work on algorithmic problems in ideal 
theory is Hermann (1926); an update with corrections and improvements 
was given by Seidenberg (1974). In particular, Hermann had an algorithm 
to test ideal membership, a problem which is sometimes referred to as the 
"main problem of the theory of polynomial ideals" (see, e.g., van der Waer
den, 1966, §131). Hermann's method is based on an effective bound on the 
degrees of the polynomials that are needed to represent a given polynomial 
as a sum of multiples of other given polynomials; the problem thus reduces 
to solving systems of linear equations after comparing coefficients. The 
bound depends on the number of variables and the degrees of the given 
polynomials. The method thus makes, in a manner of speaking, the worst 
case assumption for each instance of the ideal membership test, whereas 
the Grabner basis method is, in a sense, a flexible one. 

The Grabner basis solutions that are given in Section 6.2 are substantially 
different from the classical ones; their relevance lies in the fact that actual 
implementations and computations have now become feasible. The methods 
that we describe have become part of the folklore of the theory; many of 
them were found by Buchberger himself (see Buchberger, 1985a). For more 
on multivariate interpolation using Grabner bases, see Becker and Weis
pfenning (1990). 

Our definition of independent sets and dimension is that of Grabner 
(1970), Chapter II, §1. Classically, the dimension is first defined for prime 
ideals as the transcendence degree of the residue class ring over the ground 
field (cf. Section 7.1). The dimension of an arbitrary ideal is then defined 
as the maximum of the dimensions of the associated prime ideals of the 
primary components (cf. Section 8.5). Grabner's definition is clearly more 
in the spirit of algorithmic ideal theory; in particular, it makes it easy to see 
how to determine the dimension via Grabner bases (see also Section 9.3). 
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This was already noticed by Buchberger himself (see, e.g., Buchberger, 
1985a). The equivalence of Grabner's definition with the classical one will 
be proved for prime ideals in Lemma 7.25; the general case will be the 
subject of Exercise 8.58. 

The concept of a word problem was introduced by Thue in 1914. Word 
problems are a central topic in the theory of decidability and complexity. 
A standard argument to prove the undecidability of some problem is to 
argue that if it were decidable, then a word problem whose undecidability 
has already been established would be decidable too. The decision methods 
using Grabner bases can be found in Kandri-Rody et al. (1986). 
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Field Extensions and the 
Hilbert Nullstellensatz 

7.1 Field Extensions 

We have now reached a point in the theory of polynomial ideals where some 
classical results concerning field extensions are needed. Throughout this 
section, K will be a field, and until further notice K' will be an extension 
field of K, meaning of course that K is a subfield of K'. 

We begin by formulating an analogue to ring adjunction for fields. If A 
is a subset of K', then the intersection of all subfields of K' that contain 
both K and A is called the field obtained by adjunction of A to K, and it 
is denoted by K{A). The set whose intersection we are taking is not empty 
since K' itself contains K and A. K{A) is clearly a subfield of K' which 
extends K. If A = {ab ... an}, then we will also write K(al, ... ,an) for 
K(A). In this case, K' is called a finite extension of K. If a E K', then 
K(a) is called a simple extension of K with primitive element a. The 
following lemma can easily be proved in the same way as Lemma 1.110. 

Lemma 7.1 Let A ~ K'. Then K(A) consists of all elements of K' that 
can be written in the form 

I(al! ... , am) . (g(al, .. . , am»-l, 

where mEN, I, 9 E K[XI, ... ,Xm), and aI, ... , am E A such that 
g(a}, ... ,am) ~ o. 0 

Exercise 7.2 Let A, B ~ K'. Show that (K(A»(B) = K(A U B). 

An element a of K' is called algebraic over K if there exists 0 ~ 
IE K[X) with I(a) = 0, transcendental over K otherwise. K' is called 
algebraic (transcendental) over K, or an algebraic (transcendental) 
extension of K, if every a E K' \ K is algebraic (transcendental) over 
K. An element a E K' is thus either algebraic or transcendental over K, 
whereas, as we will see, K' may be neither algebraic nor transcendental 
over K. In the mathematical literature, transcendental extensions are also 
called purely transcendentaL 

Lemma 7.3 Let a E K' be algebraic over K. Then there exists a unique 
monic polynomial 0 ~ I E K[X) of least degree with I(a) = o. 

293 
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Proof From the fact that f(a) = 0 implies cf(a) = 0 for all c E K and from 
Corollary 0.4, it follows immediately that there exists a monic polynomial 
0=1- f E K[X] of least degree vanishing at a. Now let 9 E K[X] be another 
monic polynomial with g(a) = 0 and deg(g) = deg(f). Since K[X] with 
the degree function is a Euclidean ring, there exist q, r E K[X) with 

f = qg + r, and deg(r) < deg(g) or r = O. 

Evaluating at a, we see that r(a) = 0, and thus r = 0 by the minimality 
of deg(f). (Setting the highest coefficient of r to 1 does not change the 
degree.) Since f and 9 are both monic and of the same degree, we must 
have q = 1 and hence f = 9 as desired. 0 

The polynomial described in the above lemma is called the minimal 
polynomial of a over K and is denoted by minK' The minimal polynomial 
of an element depends heavily on the chosen ground field; for example, the 
minimal polymial of the complex number i over Q is X 2 + 1, whereas the 
one over C itself is X-i. In fact, whenever a E K, then a is algebraic over 
K with minimal polynomial X - a, and thus K is an algebraic extension 
of itself. 

Exercise 7.4 What is the minimal polynomial of the real number 1-~ over Ql? 
(Hint: Set up monic polynomials of increasing degree with unknown coefficients, 
try to compute rational coefficients to achieve vanishing at 1 - ~. There is a 
much more elegant way of doing this particular one which, if you don't see it 
now, you will be shown in a later example from a higher point of view). 

Lemma 7.5 Let a E K' be algebraic over K, and let f E K[X]. Then 
f(a) = 0 iff minK divides f in K[X]. 

Proof The direction "{:=" is trivial. Now assume that f(a) = O. Dividing 
f by minK with remainder, we obtain f = q. minK with q E K[X] by the 
same argument as in the proof of Lemma 7.3. 0 

Corollary 7.6 Let a E K' be algebraic over K. Then minK is the unique 
monic irreducible polynomial in K[X] that vanishes at a. 

Proof Assume for a contradiction that minK has a proper factorization 
minK = fg in K[X). Then we have 

deg(f) < deg(minK) and deg(g) < deg(minK)' 

and also f(a) = 0 or g(a) = 0 since f(a)g(a) = minK(a) = 0, contradicting 
the minimality of deg(minK)' Any other monic irreducible element of K[X] 
vanishing at a would have to be a multiple of minK by Lemma 7.5 and must 
thus equal minK' 0 

Next, we wish to obtain a structural description of simple field extensions. 
To this end, we temporarily change our point of view: let us forget now 
about the given extension field K'. Given nothing but K, we will construct 



7.1. Field Extensions 295 

an extension field K' of K in such a way that K' = K (a) for some a E K', 
where a is prescribed as being transcendental over K, or as being algebraic 
with prescribed minimal polynomial over K. 

The transcendental case is easy: we take for K' the rational function field 
over K in the variable X, i.e., the field of fractions of K[X]. Then K' is 
an extension field of K. Now if we look at the field obtained by adjoining 
X E K' to K within K', then we see from Lemma 7.1 that this gives 
all of K'. Moreover, X is transcendental over K since 9 = g(X) = 0 in 
K' only if 9 is the zero polynomial. This phenomenon justifies the double 
notation K(X) for the rational function field in the variable X over K and 
the simple extension obtained by adjoining the transcendental element X 
to K within some given extension of K. 

Now let 9 be a monic irreducible polynomial in K[X]. K[X] is a PID, 
and so by Lemma 2.48 (ii) and Proposition 1.94, the residue class ring 
K[Xl/Id(g) is a field. (See also the remarks following Lcmma 2.48.) We 
will denote the residue class 1+ Id(g) of I E K[X] by 7. We claim that 
the canonical homomorphism 

K[X] -+ K[X]/Id(g) 

I f--+ 1 
is injective when restricted to K: if a E K, then li = 0 implies a E Id(g) 
and so a = 0 since 9 is not a unit and thus not constant by the definition 
of irreducibility. We may therefore simply identify every a E K with a and 
thus operate on the assumption that K is a subfield of K[X]/Id(g). Now 
let I = E:'1 aiXi E K[X]. Then we havc, by the homomorphism property 
of the bar, 

m m 

7 = LaiXi = Lair = lex). 
i=1 i=1 

In particular, g(X) = 9 = 0, and I(X) = 7 l' 0 whenever deg(f) < deg(g). 
So if we set K' = K[Xl/Id(g) , then X E K' is algebraic over K with 
minimal polynomial 9 E K[X]. Moreover, the elements of K' are of the 
form 7 = I(X) with I E K[X] and thus K' = K(X) by Lemma 7.1. Note 
that for all I E K[X], we get 7 = r where r is the remainder of I upon 
division by g, so we even have 

K' = {/(X) I I E K[X], deg(f) < deg(g) }. 

We have proved the following proposition. 

Proposition 7.7 Let K be a field. Then the lollowing hold: 

(i) Let K' be the rational function field over K in the indeterminate X. 
Then K' is a simple extension 01 K with primitive transcendental 
element X. 
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(ii) Let g be a monic irreducible element oj K[X]. Then K' = K[X]/Id(g) 
is a simple extension oj K with primitive algebraic element X whose 
minimal polynomial equals g. 0 

The constructions of the above proposition can of course be iterated. We 
can, for example, extend K by an algebraic primitive element a and then 
extend K(a) by a primitive element which is transcendental over K(a) and 
hence over K. The field K(a)(b) = K(a,b) is then an extension of K which 
is neither algebraic nor transcendental. 

Let K' and Kif both be extension fields of K. An isomorphism (embed
ding) cp: K' --- Kif is called a K-isomorphism (K-embedding) if it is 
an isomorphism (embedding) and satisfies cp r K = idK. It is easy to see 
from Lemma 7.1 that a K-embedding cp from a simple extension of K to 
some other extension of K is completely determined by the cp-value of the 
primitive element. 

Proposition 7.7 now suggests how the structure of simple extensions of 
K in some given extension field K' can be described. 

Proposition 7.8 Let K' be an extension field of K, a E K'. IJ a is tran
scendental over K, then K( a) is K -isomorphic to the rational function field 
K(X) where X is mapped to aj else, it is K-isomorphic to K[X]/Id(mini<) 
where X = X + Id(mini<) is mapped to a. 

Proof Let cp : K[X] --- K' be the homomorphism that maps J to J(a) 
(Lemma 2.17 (i». If a is transcendental over K, then ker(cp) = {a}. So cp is 
an embedding and thus extends to a unique embedding 1/J : K(X) --- K' 
by the universal property of the field of fractions. It is clear that 1/J is a 
K-embedding and that 1/J(K(X» = K(a). If a is algebraic over K, then 
ker(cp) = Id(mini<) by Lemma 7.5. By Corollary 1.56, K[Xl/Id(mini<) is 
isomorphic to cp(K[X]) under the map 

1/J: K[Xl/Id(mini<) --- cp(K[X]) 
I I-t J(a) 

It is clear that 1/J is a K-embedding.1/J(K[X]/Id(mini<» is a subfield of K' 
containing a and all of K, and each of its elements is of the form J(a) with 
J E K[X]. We see that 1/J(K[Xl/Id(mini<» must equal K(a). 0 

The following corollary is now obvious from the fact that the composition 
of two K-isomorphisms is again a K-isomorphism. 

CoroUary 7.9 Let K(a) and K(b) be simple extensions oj K such that 
either a and b are both transcendental over K, or they are both algebraic 
and have the same minimal polynomial over K. Then there exists a unique 
K -isomorphism cp : K(a) --- K(b) with cp(a) = b. 0 

We will later on need the following more general version of the above 
corollary. 
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Corollary 7.10 Let Kl and K2 be fields, and cp : Kl -----? K2 an iso
morphism of fields. Let Kl(a) and K2(b) be simple algebraic extensions of 
Kl and K2, respectively, such that mint = cp'(min'K1), where cp' is the 
isomorphism 

m m 

L aiXi ~ L cp( ai)Xi 
i=O i=O 

of Lemma 2.17 (ii). Then cp extends to an isomorphism rp: Kl(a) -----? K2(b) 
with rp(a) = b. 

Proof By Proposition 7.8 and Lemma 1.30 (ii) there exists a K 1-isomor
phism 

1/;1 : Kl(a) -----? KdX]/Id(min'KJ 

with 1/;l(a) = X + Id(min'Kl) and a K 2-isomorphism 

1/;2 : K2[X]/Id(min~2) -----? K2(b) 

with 1/;2(X + Id(mint)) = b. From the fact that cp' : KdX] -----? K2[X] is 
an isomorphism with mint = cp'(min'K1), one easily concludes that 

Id(min~J = cp'(Id(min'KJ). 

Lemma 1.66 now provides an isomorphism 

1/;3 : KdX]/Id(min'KJ -----? K2[X]/Id(min~2) 

with 1/;3(f + Id(min'KJ) = cp'(f) + Id(mint)· Then rp = 1/;2 0 1/;3 0 1/;1 is an 
isomorphism from K 1 (a) to K 2 (b). Furthermore, we have 

and, for all c E Klo 

rp( a) = 1/;2 (1/;3 (1/;1 (a))) 

rp(c) 

= 1/;2(1/;3(X + Id(min'KJ) 

1/;2(CP'(X) + Id(min~2)) 
1/;2(X + Id(mint)) 

= b, 

= 1/;2 ( 1/;3 ( 1/;1 ( C ))) 

= 1/;2 (1/;3(c + Id(min'KJ) 

= 1/;2(cp'(C) + Id{mint)) 

= 1/;2{cp{C) + Id(mint)) 

cp{C). 0 
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Proposition 7.8 together with the reults of Section 4.6 tells us how to 
compute in any simple extension of a computable field K, provided we know 
whether the primitive element is algebraic or transcendental over K and, in 
the former case, we know what the minimal polynomial over K is: just treat 
a as an indeterminate, and compute with elements of K(a) as with rational 
functions in the transcendental case, as with polynomials modulo Id(minK) 
otherwise. In particular, in the algebraic case, every element of K(a) equals 
I(a) for some I E K[X] with deg(f) < deg(minK) (cf. Example 4.84 
and the comments following it). So if, for example, a is a real number 
which is algebraic over Q and whose minimal polynomial we know, then 
we can rewrite every expression I(a)/g(a) (f,g E Q[X] with g(a) =I 0) in 
such a way that only rational denominators occur. This is what is called 
"rationalizing the denominator" in elementary algebra. 

Exercise 7.11 Rationalize the denominator of 1/(a2 + a -1) where a = 1-~ 
(cf. Exercise 7.4). 

Now that we know how to compute in simple algebraic extensions, we can 
also do polynomial arithmetic and long division of polynomials over these 
fields. This means that we can compute in iterated algebraic extensions. 

Exercise 7.12 Let Zl, Z2 E C such that Zl is a zero of of X2 + X + 1 and Z2 is a 
zero of y3 - Zl. Find a polynomial! E Q[X, Yj such that !(Zl, Z2) = (z~ - Z!)-l. 
If you have a computer algebra system at your disposal, then check your answer 
by substituting Zl = (1/2}(1 + iva) and Z2 = ZP / 3). 

In view of Propositions 7.7 and 7.8, we may now speak of simple ex
tensions of the field K without specifying whether or not they sit in some 
previously given extension field K' of K. 

Proposition 7.13 Suppose a is algebmic over K and b is algebmic over 
K (a). Then b is algebmic over K. 

Proof Let 0 =I I E K[X] with I(a) = 0, e.g., I = minK' Let 0 =I 9 E 
K(a)[Y] monic with g(b) = 0, e.g., 9 = min~(a), say 

We set 

m-l 

9 = ym+ LCiyi 
i=O 
m-l 

= ym + L gi(a)yi 
i=O 

m-l 

(Ci E K(a)) 

(gi E K[X]). 

h = ym + L gi(X)yi E K[X, Y] 
i=O 

and view I as an element of K[X, Y] too. We see that I(a, b) = h(a, b) = o. 
I and h thus lie in the kernel I of the homomorphism 

K[X, Y] -+ K(a, b) 
p ~ p(a, b). 
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I is proper and satisfies condition (ii) of Corollary 6.56 if we take for::; the 
inverse lexicographical order, where X ~ Y. I thus contains a non-zero 
polynomial q E K[Y], and this has the desired property q(b) = O. 0 

Inspection of the proof above shows that in the situation of the proposi
tion, we can read off from a certain Grobner basis a polynomial q E K[Y] 
with q(b) = O. The question arises if we can actually find min~ in this way. 
The following proposition gives a positive answer. 

Proposition 7.14 Suppose a is algebraic over K and b is algebraic over 
K(a). Let f = minK E K[X] and h E K[X, Y] such that h(a, Y) = 
min~(a)' FUrthermore, let G be the reduced Grabner basis of Id(f, h) w.r.t. 
the lexicographical term order, where Y « X. Then 

GnK[Y] = {min~}. 

In particular, min~ can be computed from f and h if K is computable. 

Proof We have already argued in the proof of the last proposition that 
GnK[Y] is not empty, and that each ofits members vanishes at b. Moreover, 
since G is reduced, GnK[Y] has no more than one element, which is monic, 
and it remains to prove that this element is irreducible. We claim that it 
suffices to show that Id(f, h) is prime. Indeed, if this is the case, then, as 
one easily proves, Id(f, h) n K[Y] is prime too, and so its monic generator 
must be irreducible. By Proposition 6.15, this generator is the element of 
GnK[Y]. 

To see that Id(f, h) is prime, suppose pI, P2 E K[X, Y] with PIP2 E 
Id(f, h), say PIP2 = qlh + qd. From f(a) = 0 we conclude that 

Plea, y). P2(a, Y) = ql(a, Y) . h(a, Y), 

and thus, since h(a, Y) is an irreducible polynomial in K(a)[Y], at least 
one of PI (a, Y) and P2 (a, Y) must be a multiple of h( a, Y), say 

Plea, Y) = Q3(a, y). h(a, Y) with q3 E K[X, Y]. (*) 

Now consider the homomorphism 

'IjJ: K[X, Y] -- K(a)[Y] 
g t----+ g(a, Y). 

Viewing g E K[X, Y] as an element of K[X] [Y], we see that g E ker('IjJ) iff 
every coefficient of 9 vanishes at a iff every coefficient of 9 is a multiple of 
f iff 9 is a multiple of f. We have proved that ker('IjJ) is the ideal generated 
by f in K[X, Y]. Going back to (*), we see that PI - q3h E ker('IjJ) and so 

PI = q3h + q4f 

with q4 E K[X, YJ, i.e., PI E Id(f, h). 0 
We mention that primeness of the ideal Id(f, h) of the proof above will 

also be an immediate consequence of Proposition 7.44. 
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Exercise 7.15 Let K be a computable field, and let K(a) be a simple algebraic 
extension of K, given by the minimal polynomial min'k E KIX). Show how one 
may compute the minimal polynomial over K of an element g(a) of K(a) when 
9 E KIX) is given. (Hint: The minimal polynomial over K(a) of g(a) is Y - g(a).) 

Exercise 7.16 Redo Exercise 7.4, and try to see how you could have solved it 
even then with no effort at all. Now compute the minimal polynomial over <QI of 
W+?'2+ 1. 

Corollary 7.17 (i) Ifb is algebmic over K(all"" am) with aI, ... , am 
algebmic over K, then b is algebmic over K. 

(ii) If K' is an extension field of K, and A ~ K' such that K' = K(A) 
and each a E A is algebmic over K, then K' is algebmic over K. 
In particular, if a is algebmic over K, then K(a) is an algebmic 
extension of K. 

(iii) If K' is algebmic over K and Kif is algebmic over K', then Kif is 
algebmic over K. 

(iv) If Ko ~ KI ~ ... ~ Km and Ki is algebmic over K i- l for 1 ~ i ~ m, 
then Km is algebmic over Ko. 

Proof (i) We proceed by induction on m. For m = 0 there is nothing to 
prove. Now let m > O. Since am is algebraic over K, it is trivially algebraic 
over K(al,"" am-I), and b is algebraic over 

By Proposition 7.13 above, b is algebraic over K(al' ... , am-I), and so by 
induction hypothesis, it is algebraic over K. 

(ii) Let a E K'. By Lemma 7.1, there exist al, ... , am E A such that 
a E K(al,'''' am). In particular, a is algebraic over K(all"" am) and 
thus over K by (i) above. 

(iii) Let b E Kif and min~(' = E~o aiXi. Then rather obviously, b is 
already algebraic over the subfield K(ao, ... ,am) of K'. Since ao, ... , am 
are algebraic over K, so is b by (i) above. 

(iv) This is easy to prove from (iii) by induction on m. 0 
In view of (ii) above, we may now refer to simple extensions with algebraic 

primitive element as simple algebmic extensions. 

Exercise 7.18 Let K' be an extension field of K. Show that there exists a field 
K .. such that K C;;; K .. C;;; K', K .. is algebraic over K, and K' is transcendental 
over K ... 

Corollary 7.17 (iii) and (iv) have obvious analogues for the transcendental 
case: if K' is transcendental over K and Kif is transcendental over K', then 
Kif is trivially transcendental over K. We will now provide an analogue to 
Corollary 7.17 (ii) for the special case of a simple extension. 
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Proposition 7.19 Suppose a is transcendental over K and 

b = f(a) E K(a) \ K 
g(a) 

(f,g E K[X], 9 =I 0). 

Then the following hold: 

(i) b is transcendental over K and a is algebraic over K(b). 

(ii) K(b) = K(a) if and only if, after reduction of f /g to lowest terms, f 
and 9 are linear. 

Proof (i) The polynomial h = gb- f E K(b)[X] is not the zero polynomial 
since otherwise we could conclude b E K by comparing non-zero coefficients 
in gb and f. Obviously, h(a) = 0, and thus a is algebraic over K(b). Now b 
must be transcendental over K since otherwise a would be algebraic over 
K by Proposition 7.13. 

(ii) Let now f /g be reduced to lowest terms. Note that we already know 
that b is transcendental over K and thus "behaves like an indeterminate 
over K." We claim that the univariate polynomial 

h = gb - f E K(b)[X] 

is irreducible. If this were not so, then by Lemma 2.62 (i), h would have a 
factorization h = hlh2 with hb h2 rf. K(b) and hI, h2 E K[b][X] = K[X][b]. 
Since h is linear in b, one of the factors, say hI, would have to be in K[X], 
while the other would be linear in b, say h2 = g*b+ f*. It would follow that 

and we see that hI would have to be a common factor of f and g, a con
tradiction. 

For the direction "{::=" of (ii), suppose f and 9 are linear, i.e., 

b = sa+ t 
ua+v 

(s,t,u,v E K, u and v not both zero). 

We conclude that (ub-s)a = (-vb+t). From the fact that b rf. K, it follows 
easily that ub - s =I 0, and so 

-vb+t 
a----- ub-s . 

This shows that a E K(b), and together with K(b) ~ K(a) we obtain 
K(a) = K(b). For "===::>," assume that the latter equality holds. Then the 
minimal polynomial minK(b) of a over K(b) equals X-a. Now 

h = gb - f E K(b)[X] 
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is a polynomial that vanishes at a, and so (X -a) I h in K(b)[X) by Lemma 
7.5. But we have proved that h is irreducible as a polynomial in X, and so 
it must be linear in X. If we view h as an element of K[X) [b) and observe 
that b behaves like an indeterminate, we see that both f and g must be 
linear in X. 0 

In contrast to Corollary 7.17 (ii), it is not true that K(A) is a tran
scendental extension if every a E A is transcendental over K: if IR(T) is a 
simple transcendental extension of 1R, then T is clearly transcendental over 
the subfield Q of JR. Furthermore, T + v'2 E JR(T) is transcendental over IR 
and thus over Q by Proposition 7.19. So each member of A = {T,T+ v'2} 
is transcendental over Q, but Q(A) contains the algebraic element v'2. The 
following definition describes sets whose adjunction results in a transcen
dental extension. Let K' be any extension field of K. A subset {al' ... , an} 
of K' is called algebraically independent over K if f(al,"" an) :f 0 
for all 01= f E K[Xl"" ,Xn). An arbitrary subset A of K' is called alge
braically independent (over K) if every finite subset of A is algebraically 
independent (over K). It is clear that 0 is always algebraically independent. 
We will also refer to algebraically independent sets as simply "independent" 
if there is no danger of confusion. A dependent set is of course one that is 
not independent. 

Proposition 7.20 If K' is an extension field of K such that K' = K(A) 
for some algebraically independent set A over K, then K' is transcendental 
over K. 

Proof Let bE K' \ K, and assume for a contradiction that f(b) = 0 for 
some monic non-zero f E K[X), say 

m 

f = LCiXi (Ci E K for 0 ~ i ~ m) 
i=O 

where Cm = 1. By Lemma 7.1, we can write b = g(a) . (h(a»-l with g, 
hE K[Y) = K[Yb ... , Yn) and a = (al,"" an) E An. If we substitute this 
into the equation f(b) = 0 and multiply by (h(a»m, we see that p(a) = 0 
where 

m 

p = L Cihm-igi. 
i=O 

To obtain the desired contradiction, we need to show that p is not the zero 
polynomial. If Cm is the only non-zero coefficient of f, then p = gm :f O. If 
h is constant, then HT(gm) (w.r.t. any term order) occurs only in the first 
summand, and so p :f O. Finally, assume that Ci :f 0 for some i < m, and 
that h is not constant. Since K[Y] is a UFD, we may assume that g and h 
have no prime factors in common. Now if p were the zero polynomial, then 
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we could write 

m-l m-l 

gm = - 2: cihm-igi = -h· 2: cihm-(i+l)gi, 
i=O i=O 

and we see that hi gm contrary to our assumption that 9 and h are relatively 
prime. 0 

We say that an algebraically independent subset of K' over K is max
imal if it is not properly contained in any independent subset of K' over 
K. This is equivalent to saying that Au { a} is dependent for all a E K' \ A 
since subsets of independent sets are dearly again independent. 

We are now going to show that algebraically independent sets behave 
much like linearly independent subsets of a vector space do. The table of 
correspondences below will make the next two lemmas and the theorem 
following them more plausible. 

K' a field extension of K and A ~ K' 
A independent over K 
K' algebraic over K(A) 
A maximally independent over K 

V a K-vector space and B ~ V 
B linearly independent 
B a generating system for V 
B a basis of V 

Lemma 7.21 Let K' be an extension field of K, A ~ K' algebraically 
independent over K, and a E K'. Then the following are equivalent: 

(i) A U {a} is no longer independent over K. 

(ii) a fj. A and a is algebraic over K(A). 

Proof (i)==?(ii): There exist ai, ... , an E A such that f(at, ... , an, a) = 0 
for some polynomial 0 =f f E K[X I, ... , X n+ d. The degree of f in X n +1 

must be positive since otherwise A would be dependent over K. So if we 
regard f as a univariate polynomial in Xn +l over K(A), we see that a is 
algebraic over the latter field. 

(ii)==?(i): a is a zero of a non-constant univariate polynomial f over 
K(A). If we multiply f by the product of the denominators of all its co
efficients in K(A), we obtain a non-zero polynomial 9 E K[A)[X] with 
g( a) = 0, and this dearly shows the dependence of A U {a} over K. 0 

The next lemma is an immediate consequence of the last one. 

Lemma 7.22 Let K' be an extension field of K and A ~ K' independent 
over K. Then A is maximally independent over K iff K' is algebraic over 
K(A).D 

Theorem 7.23 Let K' be an extension field of K and assume that there 
exists a finite maximally independent subset B of K' over K. Then the 
following hold: 
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(i) Every algebraically independent subset A of K' over K is finite with 
IAI :::; IBI, and if in addition, A is maximal too, then IAI = IBI. 

(ii) If A ~ K' is such that K' is algebraic over K(A), then A has at least 
IBI many elements, and if it has exactly IBI many elements, then it 
is maximally independent over K. 

Proof (i) In view of Corollary 3.18, it suffices to prove that the collection of 
all independent subsets of K' over K satisfies axioms Ul and U2 of Section 
3.2. We have already observed that Ul holds trivially. Now let A ~ K' and 
a, b1 , b2 E K' be as in the premise of U2, and assume for a contradiction 
that both AU{b1,a} and AU{a,b2 } are dependent over K. Then by Lemma 
7.21, a is algebraic over K(A)(bt} and ~ is algebraic over K(A)(a) and thus 
over K(A)(bt}(a). It follows that b2 is algebraic over K(A)(b1 ), and thus 
again by Lemma 7.21, A U {bl'~} is dependent over K, a contradiction. 

(ii) Suppose K' is algebraic over K(A), and consider the set 

M = { C ~ A I C independent over K}. 

Let D E M be maximal w.r.t. inclusion. Then we may conclude from 
Lemma 7.21 that every a E A \ D is algebraic over K(D). Corollary 7.17 
(ii) tells us that K(D)(A \ D) = K(A) is algebraic over K(D), and (iii) 
of the same corollary says that K' is algebraic over K(D). So D ~ K' is 
maximally independent over K by the last lemma and thus has IBI many 
elements by (i) above. It follows that A had at least that many elements, 
and if IAI = IBI, then D = A and so A is maximally independent over K. 
o 

In view of the results above, a maximal algebraically independent subset 
of K' over K is called a transcendence base of K' over K. If there 
exists a finite transcendence base of K' over K, then the invariant number 
of elements of such a base is called the transcendence degree of K' 
over K. 

Exercise 7.24 Let K' be an extension field of K. Show the following: 
(i) There exists a transcendence base of K' over K (Hint: Zorn's lemma). 

(ii) If B ~ K' is a transcendence base over K, then K' is algebraic over K(B). 
(iii) There exists a field Kt such that K ~ Kt ~ K', Kt is transcendental over 

K, and K' is algebraic over Kt (cf. Exercise 7.18). 

We are now in a position to prove a property of prime ideals in multi
variate polynomial rings over K that we have mentioned before in Section 
6.3. With the notation K[ X] = K[X 1> ... , X n ], let I be a prime ideal of 
K[X]. Set R = K[Xl/I. Then R is an integral domain, and we may con
sider its field of fractions QR. For f E K[X], we will denote the residue 
class f + I E R by 7. The composition of canonical homomorphism and 
canonical inclusion gives a homomorphism 

K[X] --+ R --+ QR 
f I--t 7 I--t 7 
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from K[Xl to QR. The first homomorphism becomes injective when re
stricted to K, for otherwise I would contain a constant and thus not be 
proper. We may thus identify each a E K with its image a in Q R and oper
ate on the assumption that QR is an extension field of K. With this setup, 
we get the following connection between algebraic independence over K 
and independence modulo I (Definition 6.46). 

Lemma 7.25 Let {UI. ... , Ur } C;; {Xl, ... ,Xn}. Then the following are 
equivalent: 

(i) {UI , ... , Ur } is maximally independent modulo I. 

(ii) The residue classes UI , ... , Ur are pairwise different, and the set 

B = { Ui I 1 ~ i ~ r } 

is a transcendence base of Q Rover K. 

Proof Renumbering variables if necessary, we may assume w.l.o.g. that 
{UI. ... , Ur} = {XI, ... ,Xr }. 

(i)===>(ii): If Xi were equal to Xj for some 1 ~ i < j ~ r, then 

Xi - Xj = Xi - Xj = 0 

and thus 0 "I Xi - Xj E I, contradicting the independence of {X I, ... , X r } 
modulo I. If B were not algebraically independent over K, then there would 
be a polynomial 0 "I I E K[YI' ... , Yr 1 with 

and thus 0 "I I (X I, ... ,Xr) E I n K[X I, ... , X r l, again a contradiction. It 
remains to show that B is in fact a maximal algebraically independent set 
over K. Since {XI. ... ,Xr} is maximally independent modulo I, we can 
find, for each r < i ~ n, a non-zero polynomial Ii E In K[X I, ... ,Xr, Xil. 
Then 

0=7 = I(XI. ... ,Xr,Xi) 

in QR, and thus Xi is algebraic over K(XI , ... ,Xr ) by Lemma 7.21. It is 
not hard to see that 

QR = K(X I , ... ,Xn) = K(XI. ... ,Xr)(Xr+I , ... ,Xn). 

In view of Corollary 7.17 (ii), we may now conclude that Q R is an algebraic 
extension of K(X I , ..• ,Xr ), and it follows easily from Lemma 7.22 that B 
is maximal as an independent subset of QR over K. 

(ii)===>(i): To see that {XI. ... , X r } is independent modulo I, let I E 
In K[XI' ... ,Xrl. Then 

0= I(X I , ... , X r) = I(X I , ... , X r ), 
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and thus f = 0 by the algebraic independence of B. If r < i ::; n, then 
{X!o ... ,XroXi } is no longer algebraically independent over K, and thus 

0= f(X!o . .. ,Xro Xi) = f(Xb ... Xro Xi) 

for some 0 '" f E K[X1 , •.. , Xro Xi]' This means that 

fi E In K[X!o ... ,Xro Xi], 

and we have proved that the set {X!o ... , X r } is maximally independent 
modulo 1.0 

Together with Theorem 7.23 (i), we immediately obtain the following 
proposition. 

Proposition 7.26 If I is a prime ideal in a polynomial ring over a field, 
then every maximally independent set modulo I has dim (I) many elements. 

A second proof of this fact which does not use field theory will surface 
in Section 7.5. 

7.2 The Algebraic Closure of a Field 

Definition 7.27 A field K is called algebraically closed if every non
constant polynomial f E K[X] has a zero in K, i.e., there is a E K with 
f(a) = O. 

The fundamental theorem of algebm states that the field C of complex 
numbers is algebraically closed. This theorem can of course only be proved 
on the basis of a rigorous definition of C. Here, we show that assuming the 
axiom of choice, every field has an algebraic extension which is algebraically 
closed and has a universal embedding property. 

Following are some equivalent characterizations of algebraically closed 
fields. 

Lemma 7.28 Let K be a field. Then the following are equivalent: 

(i) K is algebraically closed. 

(ii) Every irreducible polynomial in K[X] has a zero in K. 

(iii) In K[X], every irreducible polynomial is linear. 

(iv) In K[X], every non-constant polynomial has a factorization into lin
ear polynomials. 

Proof (i)===>(ii): Every irreducible polynomial is a non-unit in K[X] and 
hence not constant. 
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(ii)=? (iii): Let I E K[X] be irreducible. Then I has a zero in K, say 
I(a) = 0 with a E K. By Proposition 2.95, there exists g E K[X] with 
1= g. (X - a), and g must be a constant by the irreducibility of I. 

(iii)=?(iv): This is immediate from Theorem 2.51. 
(iv)=?(i): Let I E K[X] be non-constant, and let aX + b with a, bE K 

be a non-constant linear factor of I, i.e., a =I O. Then -b/a E K is a zero 
of 1.0 

Theorem 7.29 Let K be a field. Then there exists an algebraically closed 
algebraic extension field K 01 K with the the lollowing universal embedding 
property over K: whenever K' is an algebraically closed extension field 01 
K, then there exists a K -embedding 'P : K --+ K', and if, in addition, K' 
is algebraic over K, then 'P is a K -isomorphism. 

Proof In preparation of the proof, we will, for arbitrary field L, define a 
certain set AL of extension fields of L. Let L[X] denote the polynomial ring 
in the variables {X f I I E L[X] \ L} over L as defined in the discussion 
following Lemma 2.22. We thus have one variable for each univariate non
constant polynomial over L. For each such I, there is an embedding 'Pf : 
L[X] --+ L[X] which is determined by the requirement 'Pf(X) = Xf. Then 
'Pf(f) = I(Xf ), and we set 

P = {/(Xf) I IE L[X] \ L }. 

We claim that the ideal Id(P) of L[X] is proper. Assume for a contradiction 
that Id( P) = L[X]. Then there exist It, ... , 1m E P and ql, ... , qm E L[ X] 
with 

i=l 

Let Yl , ... , Yr be the indeterminates occuring in ql, ... , qm, It, ... , 1m. 
The set F = {1t, ... ,lm} is a Grobner basis in L[Y] because any two 
elements of F have disjoint head terms. F does not contain a constant, 
and hence Id(F) is proper in L[Y] by Corollary 6.16, contradicting (*). 
We now define the set AL by setting 

AL = {L[X]/M I P ~ M a maximal ideal of L[X]}. 

Using the axiom of choice, we see from Lemma 4.9 that AL is not empty. 
Now let L' E A L , i.e., L' = L[X]/M for some maximal ideal M extending 
P, and denote by 7 the residue class of IE L[X] in L[Xl/M. L' is a field 
because M is maximal. It is easy to see that the canonical homomorphism 
I 1---+ 7 is injective when restricted to L (cf. the discussion on page 295), 
and so we may regard L' as an extension field of L. Under this point of 
view, every non-constant polynomial I E L[X] has a zero in L': from the 
homomorphism property of the bar, we see that I(Xf) = 7 = o. We claim 
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that L' is algebraic over L. Every element of L' is of the form 7 for some 
f E L[X], and thus we have 

L' = L( {Xf If E L[X] \ L}). 

Each X f is algebraic over L, and so L' is algebraic over L according to 
Corollary 7.17 (ii). 

We are now in a position to define the desired extension K of the given 
field K. According to the discussion at the end of Section 4.1, there exists 
an ascending chain 

K = Ko ~ Kl ~ K2 ~ ... 

of fields with Ko = K and Kn+1 E AKn for all n E N, and we let 

It is easy to see that K is a field: any two elements of K lie in some common 
Kn where they may be added, subtracted or multiplied in a well-defined 
manner, and one then verifies the field axioms by inspection. K obviously 
extends K. Moreover, it is an algebraic extension of K: if a E K, then 
a E Kn for some n E N and thus a is algebraic over K by Corollary 
7.17 (iv). If f is a non-constant polynomial in K[X], then, since it has only 
finitely many coefficients, f E Kn[X] for some n E N, and we may conclude 
that f has a zero in Kn+1 ~ K because Kn+l E AKn. We have proved that 
K is an algebraically closed algebraic extension of K. 

To verify the universal embedding property of K, let K' be an alge
braically closed extension of K. Let II be the set of all partial K-embeddin~ 
from K to K', i.e., the set of all K-embeddings from intermediate fields K 
with K ~ K ~ K to K'. Then II ~ P(K x K'), and II is not empty since 
idK E II. By Zorn's lemma, II has a maximal element c.p w.r.t. inclusion. 
We claim that the domain K of c.p equals K. To this end, we view c.p as a 
K-isomorphism from K to K' = c.p(K). 

K eKe K 

II c.p 1 
K ~ K' ~ K' 

Now assume for a contradiction that a E K \ K. Since a is algebraic over 
K, it is trivially algebraic over the extension field K of K. Let 

f = mini< E K[X], 

and consider 9 = c.p'(f) E K'[X] where c.p' is the isomorphism of Lemma 
2.17 (ii). Then 9 is monic and deg(g) > 1 because the same is true for f. 
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Moreover, 9 is irreducible in K'[X] since a proper factorization of 9 over 
K' would give rise to a proper factorization of f over K via the inverse 
isomorphism (cp,)-l. Since K' is algebraically closed, 9 has a zero bin K', 
and 9 = minRI by Corollary 7.6. Corollary 7.10 provides an extension 

rp: K(a) -- K'(b) 

of cp, contradicting the maximality of cp in TI. 
Finally, let K' be algebraic over K, and assume for a contradiction that 

there exists bE K' \ cp(K). Being algebraic over K, b is trivially algebraic 
over the extension field cp(K) of K, and 9 = min~O<) is a non-linear monic 

irreducible element of cp(K)[X] since b f. cp(K). But then the preimage of 
9 under the induced isomorphism 

cp' : K[X] -- cp(K)[X] 

would be a non-linear irreducible polynomial over the algebraically closed 
field K, contradicting Lemma 7.28 (iii). 0 

An algebraically closed algebraic extension of a field K is called an alge
braic closure of K. By the theorem above, every field K has an algebraic 
closure which is unique up to K-isomorphism. It is therefore referred to as 
the algebraic closure of K, and we will denote it by K. 

7.3 Separable Polynomials and Perfect Fields 

In this section, we discuss a class of fields that plays an important role in the 
theory of polynomial ideals. We will make liberal use of the elementary facts 
on zeroes of polynomials that were proved at the beginning of Section 2.7. 
Throughout this section, K will be a field. In view of Lemma 7.28, we now 
have the following result: there exists an extension field K of K, namely, 
the algebraic closure of K, such that every polynomial f E K[X] has a 
factorization into linear factors in K[X]. In this factorization, associated 
factors correspond to multiple zeroes of fin K, i.e., zeroes with multiplicity 
greater than 1. 

Definition 7.30 A polynomial f E K[X] is called separable if it is either 
a non-zero constant, or the factorization into non-constant linear polyno
mials of fin K[X] consists of pairwise non-associated factors. 

A separable polynomial is thus a polynomial that does not have multi
ple zeroes in K. Using the universal embedding property of the algebraic 
closure, it is easy to see that in this case, f cannot have multiple zeroes in 
any algebraically closed extension of K. 

Exercise 7.31 Let f E K[X] be separable, K' any extension field of K. 
Show that f is still separable when viewed as an element of K'[X], and 
that every zero of f in K' has multiplicity 1. (Hint: Consider K'.) 
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It is clear that a separable polynomial I must be squarefree, because if I 
has a non-constant factor g2, then the zeroes of 9 in K will be zeroes of I 
of multiplicity at least 2. We will later see a large class of fields over which 
every squarefree polynomial is separable. Let us first demonstrate how a 
squarefree polynomial can fail to be separable. 

Example 7.32 Let p be a prime number, and let K be the rational func
tion field Z/pZ(T). Consider the polynomial I = XP - T E K[X]. Since 
I is not constant, it has a zero a in K. Then aP = T, and using Lemma 
1.106, we obtain the factorization 

I = XP - T = XP - aP = (X - a)P 

in K[X]. We claim that I is irreducible (and hence squarefree) in K[X]. 
Assume for a contradiction that this is not the case. Then there are non
constant monic g, h E K[X] with I = gh. Passing to K[X], we conclude 
from the unique prime factor decomposition that there is 0 < i < p with 

9 = (X - a)i and h = (X - a)p-i. 

Looking at the constant coefficient of g, we see that ai E K, i.e., there exist 
s, q E Z/pZ[T] with ai = s/q. We conclude that 

sP = (aiq)P = aipqp = TiqP. 

The degree in T of the polynomial on the left-hand side is a multiple of p, 
whereas the one on the right is congruent i modulo p, a contradiction. 

Recall from Lemma 2.84 that a polynomial that is prime to its derivative 
is always squarefree. The next proposition refines this result. 

Proposition 7.33 Let I E K[X]. Then the lollowing are equivalent: 

(i) gcd(f, I') = 1. 

(ii) I is square free in K'[X] lor every extension field K' 01 K. 

(iii) I is separable. 

Proof (i)~(ii): Property (i) is invariant under field extensions by Prop<r 
sition 2.38, and it implies that I is squarefree by Lemma 2.84. 

(ii)~(iii): If I had multiple zeroes in K, then it would no longer be 
squarefree in K[X]. 

(iii)~(i): If I is a non-zero constant, then the claim is trivial. Else, 
assume for a contradiction that q I I' for some irreducible factor q of I in 
K[X]. Then I = qg for some 9 E K[X], and thus I' = q'g + qg'. We see 
that q I q' g, and so q I q' or q I g. The latter is impossible since the prime 
factors of I are pairwise non-associated, and the former is possible only if 
q' = 0 for reasons of the degree. Being irreducible, q is not constant, and 
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so by Lemma 2.79, q' = 0 implies that char(K) = P ::I 0, and that we can 
write 

m 

q = ~aiXiP 
i=O 

(aO,'" ,am E K). 

By the same argument that we have used in Example 7.32 above, ai has a 
pth root bi in K for 0 ::; i ::; m, and we obtain the factorization 

of q in K[X]. This contradicts the separability of f. 0 

Definition 7.34 A field K is called perfect if every irreducible polyno
mial f E K[X] is separable. 

From the fact that every irreducible polynomial over an algebraically 
closed field is linear, one easily deduces that every algebraically closed field 
is perfect. Example 7.32 shows that if P is a prime number, then the rational 
function field 7l./p7l.(T) is not perfect. We will soon see examples of perfect 
fields that are not algebraically closed. 

Lemma 7.35 A field K is perfect iff every squarefree polynomial in K[X] 
is separable. 

Proof The direction "{::=" is trivial because every irreducible polynomial 
is squarefree. For "=*," suppose K is perfect, and let f E K[X] be square
free. If f is a constant, then it must be non-zero and the claim is trivial. 
Otherwise, there are pairwise non-associated, irreducible polynomials PI, 
... , Pr E K[X] with f = Pl' .... Pro Assume for a contradiction that K' 
is an extension field of K and a E K' with (X - a)21 f in K'[X]. Then 
X - a I Pi in K'[X] for some 1 ::; i ::; r because X - a is irreducible and 
K'[X] is a UFD. We cannot have X - a I Pj for any j ::I i because the gcd of 
Pi and Pj equals 1 in K[X] and thus in K'[X] (Proposition 2.38). It follows 
easily that in fact (X - a)21 Pi, contradicting the fact that Pi is separable. 
o 

Theorem 7.36 Let K be a field. Then the following are equivalent: 

(i) K is perfect. 

(ii) A non-constant polynomial f E K[X] is squarefree iff gcd(f, 1') = 1. 

Proof (i)=*(ii): The direction "<==" is Lemma 2.84. If f is squarefree, 
then it is separable by the previous lemma, and so gcd(f, 1') = 1 by Propo
sition 7.33. 

(ii)=*(i): If K is not perfect, then there exists a squarefree polynomial 
f E K[X] which is not separable. Proposition 7.33 tells us that 1 is not a 
gcd of f and f', and we see that "=*" of (ii) is violated. 0 



312 7. Field Extensions and the Hilbert Nullstellensatz 

Example 7.32 shows that (ii) of the theorem above does not hold for 
arbitrary field K: here, f is squarefree because it is irreducible, but f' = 0 
and so gcd(J, f') = f =I- 1. The following corollary is immediate from 
Lemmas 2.84 and 2.85. 

Corollary 7.37 All fields of characteristic zero and all finite fields are 
perfect. 0 

Exercise 7.38 Show that a field K of characteristic p "lOis perfect iff every 
element of K has a pth root in K. 

Corollary 7.39 A field K is perfect iff every squarefree polynomial f E 
K[X] is still squarejree in K'[X] for every extension field K' of K. 

Proof If K is perfect, then by (ii) of the theorem, squarefreeness is pre
served under field extensions along with gcd's. If K is not perfect, then 
there exists an irreducible polynomial in K[X] which is not squarefree in 
K[X] because it has multiple zeroes in K. 0 

7.4 The Hilbert Nullstellensatz 

The main purpose of this section is to prove the following Nullstellensatz 
(theorem on zeroes). 

Theorem 7.40 (HILBERT NULLSTELLENSATZ) Let K be afield, L an al
gebraically closed extension field of K, and f, gl, ... , gm E K[Xl"" ,Xn]. 
Then the following are equivalent: 

(i) For all Z E Ln, gl(Z) = ... = gm(z) = 0 implies f(z) = O. 

(ii) There exists 0 < sEN with r E Id(gl, ... , gm). 

Condition (ii) above can also be read as "f E rad(Id(gl,'" ,gm»," and 
the validity of this condition can be decided by means of the algorithm 
RADICALMEMTEST of Corollary 6.41. The theorem thus allows us to 
decide a property of f, gl, ... , gm which concerns geometric configurations 
in Ln by means of a computation that takes place in K[Xl, ... ,Xn]. The 
most natural example to think of throughout this section is of course K = Q 
and L =C. 

Before we tackle the proof of the Hilbert Nullstellensatz, we give an al
ternate formulation which uses some terminology that is common in al
gebraic geometry. Let K' be an extension field of K, Z E (K')n, and 
P ~ K[X1 , ••. ,XnJ. Then we say that z is a zero of P if it is a zero 
of every pEP. The variety of P in (K,)n is the set of all zeroes of 
P in (K')n. It is clear that every zero of P is a zero of Id(P) and vice 
versa, so that the varieties of P and Id(P) are equal. If V ~ (K,)n and 
f E K[X1 , ••• ,Xn]' then we say, rather obviously, that f vanishes on V 
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if f(z) = 0 for all z E V. It is now easy to see that the statement of the 
Hilbert Nullstellensatz can be rephrased as follows. 

(HILBERT NULLSTELLENSATZ, ALTERNATE FORMULATION) Let L be an 
algebraically closed extension field of K and I an ideal of K[Xl, ... , Xn]. 
Then rad(I) consists of precisely those f E K[Xl , ... , Xn] that vanish on 
the variety of I in Ln. 

There is now an immediate corollary, which will of course not be used 
until the Hilbert Nullstellensatz has been proved. Recall that a radical ideal 
is an ideal that equals its radical. 

Corollary 7.41 Let L be an algebraically closed extension field of K. Then 
a radical ideal of K[Xl' ... ,Xn] consists of precisely those polynomials that 
vanish on its variety in Ln. If hand 12 are radical ideals of K[Xl' ... ,Xn], 
then h = 12 iff the varieties of hand 12 in Ln agree. 0 

Our proof of the Hilbert Nullstellensatz relies strongly on Grobner bases; 
only elementary ring and field theory are being used otherwise. We begin 
with several results that are instrumental in the proof and are also inter
esting in their own right. Throughout this section, K will be a field. 

Proposition 7.42 Let I be a zero-dimensional prime ideal of the polyno
mial ring K[Xlo •.• , Xn], and let G be the reduced Griibner basis of I w.r.t. 
the inverse lexicographical term order ::;, where Xn :» ... :» Xl. Then the 
following hold: 

(i) I is maximal. 

(ii) G has n elements gl, ... , gn, and HM(gi) = Xr' with Vi 2: 1 for 
1 ::; i ::; n. (In particular, gi E K[Xl' ... ,Xi] for 1 ::; i ::; n.) 

Proof We proceed by induction on n. The case n = 1 is trivial: K[X] 
is a PID, and every non-trivial prime ideal is maximal (Proposition 1.97). 
Now assume that n > 1. Let I n - l be the elimination ideal of I w.r.t. 
{Xlo ... , X n- l } and Gn- l = G n K[Xl , ... ,Xn - l ]. It is easy to see that 
In- l is a prime ideal of K[Xl , ... , X n- l ], and it is zero-dimensional by 
Lemma 6.50 (ii). By induction hypothesis and Proposition 6.15, I n - l is 
a maximal ideal of K[Xl , ... , X n- l ], and Gn- l = {gl, ... ,gn-d with 
HM(gi) = Xr i (Vi 2: 1) for 1 ::; i ::; n - 1. The set 

N = {f E I I HM(f) = X~, f in normal form modulo Gn - l } 

is not empty because I contains a non-constant univariate polynomial in 
X n. Let gn E N be of minimal degree in X n, say HM(gn) = X:;n. Then 
Vn 2: 1 since I is proper. {gl, ... ,gn} is a Grobner basis w.r.t. ::; by Lemma 
5.66, and it is even a reduced Grobner basis by the choice of gn. To prove 
(ii), it remains to show that I = Id(gl, ... , gn). The inclusion "2" is trivial. 
Assume for a contradiction that there exists 0 #- f E 1\ Id(glo ... ,gn). 
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We may assume w.l.o.g. that I is in normal form modulo {gll ... ,gn}' 
Regarding I as an element of K[XI' ... ,Xn-I][Xn), we may write 

r 

1= LhiX; 
i=O 

with hi E K[XI , ... , X n- l ) for 0 :s i :s r and hr =F O. Then we must 
have 0 < r < Vn because I is in normal form modulo gn. Furthermore, 
hr ¢ I n - I since otherwise I would have to be reducible modulo the Grob
ner basis Gn-l = {gl,'" ,gn-t} of In-I. Because of the maximality of 
In-I, there exist p E K[XI , ... , Xn-d and q E In- l with phr + q = 1. 
Then 9 = pI + qX~ E I, and 

r-l 

9 = phrX~ + p L hiX; + qX~ 
i=O 

r-l 

X~+PLhiX~, 
i=O 

We see that degxn (g) = r < Vn, contradicting the choice of gn. 
It remains to show that I is maximal. Assume for a contradiction that it is 

not. Then by Lemma 4.9, there exists a maximal ideal J of K[Xll ... ,Xn) 
with I ~ J and I =F J. Let I n - l be the elimination ideal of J w.r.t. 
{Xll ... ,Xn- l }. We trivially have In- I ~ I n- ll and this together with 
maximality of In- I and properness of I n- l implies In- I = I n- I . We see 
that Gn - l is a Grobner basis of I n - l . J is prime because it is maxi
mal, and it has dimension zero because it contains the zero-dimensional 
ideal I (Lemma 6.50). We can thus extend Gn - I to a Grobner basis G* = 

{gll'" ,gn-l,g~} of J in the exact same way as we did for I. From gn E J 
we may conclude that 

v~ = degxn (g~) :s degxn (gn) = Vn· 

For the same reason, gn must be reducible to 0 modulo the Grobner basis 
G* of J. Reducing gn completely modulo g~ first, we obtain hE J with 

for some q E K[Xll ... ,Xn), and degxJh) < degxJg~) = v~ or h = O. If 
h is not yet equal to zero, then it must reduce to zero modulo G*. Under 
the current term order, a reduction step does not increase the degree in 
X n . It follows easily that 

and thus h E I. We conclude that qg~ = gn - h E I, and thus q E I 
or g~ E I since I is prime. g~ E I would imply I = J contrary to our 
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assumption. The fact that 

h = 0 or degxJh) < v~ :5 Vn 

, 
implies that HT(gn -h) = X:;,n, and we see that HT(q) = x~n-II". Now if q 
were in I, we would either be contradicting the properness of I (if v~ = vn ), 

or the choice of gn (if v~ < vn). 0 

If I is a prime ideal, then the reduced Grabner basis of I w.r.t. the 
inverse lexicographical term order, of which the proposition above gives a 
description, is also called the prime basis of I. 

We will later show that a polynomial ideal is maximal if and only if 
it is zero-dimensional and prime. The direction "{:=" that we have just 
proved can also be shown using linear algebra arguments in the K -vector 
space K[Xb ... , XnJl I. The proof then becomes a little simpler, but it is 
noteworthy that using Grobner bases, one can do it within the theory of 
polynomial rings. 

Exercise 7.43 Use linear algebra in the K-vector space K[Xl, ... ,XnJ/I to 
show that every zero-dimensional prime ideal is maximal. (Hint: Use Lemma 
3.23 (ii) to imitate the proof of Lemma 1.19 (iii) to show that K[X1 , • •• , Xnl/ I 
is a field.) 

A natural question arising at this point is whether an ideal that has 
a basis that looks like a prime basis is actually a zero-dimensional prime 
ideal. The next proposition states that this is true under an additional 
assumption. 

Proposition 7.44 Let I be an ideal of the ring K[XI"'" X n], and as
sume that I has a basis G as described in (ii) of the previous proposition, 
where the head terms are taken w. r. t. the inverse lexicographical term order. 
Assume further that for 1 :5 i :5 n, there does not exist a representation 

i-I 

gi = hh + Lqjgj 
j=l 

with h, 12, ql, ... , qi-l E K[Xb . .. , Xi] such that h, 12 ",,0 and 

Then I is a zero-dimensional prime ideal. 

Proof All statements regarding Grobner bases will be referring to the 
inverse lexicographical term order. G is a Grobner basis of I since every 
two elements of G have disjoint head terms. It now follows from Theorem 
6.54 that I is zero-dimensional. Next, we note that if we mutually reduce 
the elements of G, then no top-reductions will take place, and it is now 
easy to see that the reduced Grobner basis G' of I still fits the description 
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of (ii) of the previous proposition. Moreover, using Lemma 6.14 and the 
fact that 

{gt. ... ,gil ~ K[Xt. ... ,Xi] for 1:5 i:5 n, 

it is not hard to prove by induction on n that G' still satisfies the additional 
hypothesis of the present proposition. We may thus assume w.l.o.g. that G 
is reduced. 

To show that I is a prime ideal, we will actually prove that it is max
imal. We proceed by induction on n. If n = 1, then I is generated by an 
irreducible polynomial and hence is maximal. Now let n > 1, and assume 
for a contradiction that I is not maximal. Lemma 4.9 provides the exis
tence of a maximal ideal J of K[X1 , ••• ,Xn] with I ~ J and I -# J. J is 
prime because it is maximal, and it has dimension zero because it contains 
the zero-dimensional ideal I. Let H = {hl' ... ' hn } be the prime basis 
of J, and let I n- l and In-l be the elimination ideals of I and J w.r.t. 
{Xt. ... , Xn - l }, respectively. Then by Proposition 6.15, the sets 

are the reduced Grobner bases of In-l and I n- l , respectively. By the induc
tion hypothesis, I n- 1 is a zero-dimensional prime ideal of K[Xl , ... , X n- 1], 

and hence it is maximal by the previous proposition. From the inclusion 
I n- l ~ I n- 1 and the properness of I n- 1 it now follows that I n- 1 = I n- 1, 

and so H n - 1 and Gn - 1 are equal by the uniqueness of the reduced Grobner 
basis. It is easy to see that we must in fact have gi = hi for 1 :5 i :5 n - 1. 
From gn E J we conclude that 

gn-1r 0. 

We see that degxn (gn) < degxn (hn) is impossible, because then gn would 
not be top-reducible modulo H. We may now perform the reduction of gn 
modulo H in such a way that we first reduce modulo hn until the degree 
in Xn is less than degxn (hn). Since reduction modulo {gl, .. . , gn-l} does 
not increase the degree in X n , the remaining reduction steps modulo H 
must actually be modulo {gt. ... ,gn-l}, and we arrive at a representation 

n-l 

gn = qnhn + L qigi, 
i=l 

where qt. ... , qn E K[Xt. ... , Xn], and either 

depending on whether 
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If qn = 1, then it follows that hn E I, contradicting the fact that I #- J. 
Otherwise, we are contradicting the additional assumption made on G. 0 

The following example shows how the criterion of the previous proposi
tion can often be verified for simple ideal bases. 

Example 7.45 Let K = Q, n = 2, and G = {X?+X?,X? -2}. We claim 
that Id(G) is a zero-dimensional prime ideal. G meets the description of 
Proposition 7.42 (ii). The polynomial Xf - 2 is clearly irreducible in Q[XIJ. 
Moreover, if we were given a representation 

with hI, h2' q E K[XI ,X2)) and degx2(hi) < 2 for i = 1, 2, then we 
could set Xl = v'2 and conclude that X? + 2 factors into linear polyno
mials over K = Q, which is clearly not true. Note that there may well be 
representations of the type (*) with degx2 (hi) ~ 2 for i = 1, 2, e.g., 

X~ + Xf = (Xf/2)(X~ + Xf) - ((X~ +Xf)/2)(Xf - 2). 

Exercise 7.46 Let I be an ideal of the ring K[Xl,." ,Xn ], and assume that I 
has a basis G as described in (ii) of Proposition 7.42, where the head terms are 
taken w.r.t. the inverse lexicographical term order. Show the following: 

(i) For 1:$ i:$ n, wehavegi ¢:. Id(gl, ... ,gi-d. (This means that the condition 
"/1, h =P 0" in Proposition 7.44 is not an essential one; it was only made 
to be able to express the degree condition on h and h without further 
ado.) 

(ii) The additional assumption on G of Proposition 7.44 is in fact equivalent to 
I being prime. Moreover, the following is a third equivalent condition: for 
1 :$ i :$ n, the residue class gi = gi + Id(gl, ... ,gi-d of gi is irreducible in 
in the ring K[X1 , ••• ,X;J/ld(gl,'" ,gi-d, i.e., gi is not a unit and cannot 
be written as a product of two non-units in that ring. 

The next proposition provides a generalization of Proposition 7.42 to 
prime ideals whose dimension is greater than zero. To this end, we need to 
discuss an important technique for reducing proofs in ideal theory to the 
zero-dimensional case. If 1 ~ d ~ n, then M = K[Xb .. . ,XdJ \ {O} is a 
multiplicatively closed subset of K[XI , ... , XnJ with 1 E M and 0 ¢:. M, 
and we may form the ring of quotients K[Xb'" ,XnJM of K[XI , ... , XnJ 
w.r.t. M. It is easy to see that 

We may now consider extensions to the ring of quotients K[XI"" ,XnJM 
and contractions to K[XI , ... ,XnJ of ideals as defined preceding Lemma 
1.122. In addition to the statements of Lemmas 1.122 and 1.123, we will 
need the following results that are specific to the present situation. 
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Lemma 7.47 Suppose 1::; d::; n, let I be an ideal of K[XI , ... ,XnJ, and 
let Ie be its extension to K[XI, ... , XnJM' where M = K[XI, ... ,XdJ\ {o}. 
Then the following hold: 

(i) Ie is proper iff {Xl. ... ,Xd} is independent modulo I. 

(ii) If {Xl," . ,Xd } is maximally independent modulo I, then Ie is a 
zero-dimensional ideal of K[XI, ... ,XnJM. 

(iii) If I is a prime ideal and Ie is zero-dimensional, then {Xl,'" ,Xd} is 
maximally independent modulo I. 

Proof (i) is immediate from Lemma 1.122 (ii) and the definition of inde
pendence. 

(ii) By (i) above, Ie is a proper ideal. Now I contains a non-zero element 
Ii of K[X I, ... , X d, XiJ for each d + 1 ::; i ::; n. If we view 

fi E K(Xb ... ,Xd)[Xd+1, ... ,Xn], 

then it is a univariate polynomial in Xi, and we see that dim(r) = o. 
(iii) {Xl. ... , Xd} is independent modulo I by (i) above. From dim(Ie) = 

o we conclude that there is a non-zero element 

for each d + 1 ::; i ::; n. If we multiply each fi by the product of the 
denominators of its coefficients in K(XI, ... ,Xd), then we obtain a non
zero element of 

r c n K[XI, ... ,Xd][XiJ 

for each d + 1 ::; i ::; n. Moreover, I = lee because I is prime according 
to Lemma 1.122 (iv) , and we see that {Xl,"" Xd} is in fact maximally 
independent modulo I. 0 

Proposition 7.48 Let I be a prime ideal of K[XI, . .. ,XnJ, and assume 
that {Xl, ... ,Xd} is maximally independent modulo I, where 1 ::; d < n. 
Then there exist polynomia16 f, gd+l, ... , gn E K[Xb ... , Xn], none of 
them equal to zero, with the following properties: 

(i) f E K[XI,'" ,Xd). 

(ii) gi E K[X1 , .•. , XiJ for d + 1 ::; i ::; n. 

(iii) If, for d + 1 ::; i ::; n, gi is viewed as an element of 

then its head coefficient lies in K[X b ... , Xd]. 

(iv) I = Id(gd+1,"" gn) : f· 
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Proof Let M = K[X1, . .. ,Xdl \ {O} and consider the extension Ie of I to 
K[X1 , ••• ,XnlM. Then Ie is a zero-dimensional prime ideal of 

K[Xl, . .. ,XnlM = K(Xl' ... ,Xd)[Xd+l, ... ,Xn], 

and thus, by Proposition 7.42, has a basis Ud+l,.'.' In} such that 

for d + 1 ~ i ~ n, and if we view 

then Ii is monic and non-constant. Clearing all denominators of coefficients 
in K(Xl, ... ,Xd), we obtain gd+l, ... , gn E I ec = I, none of them zero, 
with properties (ii) and (iii). The set {gd+l, ... ,gn} is still a basis of Ie in 
the ring 

K(X1, ... ,Xd)[Xd+l, ... ,Xn]. 

Now let {hl, ... ,hm } be any basis of I in K[X1, ... ,Xn]. Since I ~]8, 
there exist 

(1 ~ i ~ m, d + 1 ~ j ~ n) 

with 
n 

hi = L qijgj (1 ~ i ~ m). 
j=d+1 

We now define I to be the product of all denominators of coefficients in 
K(X1, ... ,Xd) of the qij, where 1 ~ i ~ m and d + 1 ~ j ~ n. Then 
I =f. 0, (i) holds, and it remains to prove (iv). Let gEl. Then there exist 
ql, ... , qm E K[Xl , ... ,Xnl with 

m m n 

9 = Lqihi = Lqi L qijgj, 
i=l i=l j=d+l 

and we see that Ig E Id(gd+l, ... ,gn). Conversely, let 9 E K[Xl , ... , Xnl 
with 

Ig E Id(gd+1, ... ,gn) ~ I. 

Then gEl because I is prime and moreover, I fj. I by the independence 
of{Xl, ... ,Xd} modulo!. 0 

Note that the above proof is constructive: I, gd+l, ... , gn can be found 
by a Gr6bner basis computation in the ring K(Xl , ... , Xd)[Xd+l, ... , Xnl. 

If an ideal I of K[Xl , ... , Xn] has a zero in some extension field K' 
of K, then clearly 1 fj. I and thus I is proper. The proof of the Hilbert 
Nullstellensatz rests upon the important fact that conversely, every proper 
ideal of K[Xl , ... , Xn] has at least one zero in L n for every algebraically 
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closed extension field L of K. This can be viewed as another instance of 
a univariate result carrying over to the multivariate case: for n = 1, we 
are looking at the fact that every non-constant univariate polynomial over 
K has a zero in L. For the proof we need four lemmas, each of which is 
interesting in its own right. 

Lemma 7.49 Let L be an algebraically closed field. Then L has infinitely 
many elements. 

Proof Assume for a contradiction that L is an algebraically closed field 
with finitely many elements. Then in particular, char(L) = p -I- O. Let n E Z 
be such that ILl < n and p t n, and set I = xn - 1. Then If = nxn-l -I- 0, 
and so gcd(J, 1') = 1 since the only prime factor occurring in If is X, which 
does not divide I. We know from Corollary 7.37 that L is perfect, and so 
I must be squarefree by Theorem 7.36. Since L is also algebraically closed, 
this means that I factors into n pairwise non-associated linear factors in 
L[X] and thus has n different zeroes in L, contradicting the fact that L has 
fewer than n elements. 0 

Lemma 7.50 Let R be a domain with infinitely many elements, and let 
o -I- I E R[X1, ... , Xn]. Then there are infinitely many different z E Rn 
with I(z) -I- O. 

Proof We proceed by induction on n. If n = 1, then by Corollary 2.97, 
I has at most finitely many zeroes in Q R and hence a fortiori in R itself. 
This leaves infinitely many Z E R with I(z) -I- O. Now let n > 1. We 
view I as an element of R[X1 , ••• , Xn-I][Xn] and let g E R[X1, ••• , Xn - l ] 

be any non-zero coefficient of I. By induction hypothesis, there exist Z1, 
... , Zn-l E R with g(ZI, . .. ,Zn-l) -I- O. Then l(z1, ... ,Zn-l! Xn) is a non
zero polynomial in R[Xn] and thus has only finitely many zeroes in R, and 
so we can find infinitely many Zn E R with I(ZI, .. , ,zn) -I- O. 0 

Lemma 7.51 Let L be an algebraically closed extension field of K, and let 
I be a zero-dimensional prime ideal of K[X1 , •.. , X n]. Then the following 
hold: 

(i) If G = {gl,'" ,gn} is the prime basis of I of Proposition 7.42, and 
(Zl,"" Zi) ELi is a zero of {gl,"" gi}, where 1 ::; i < n, then there 
exist Zi+l, ... , Zn E L such that (Zl,' .. ,zn) is a zero of I. 

(ii) I has a zero in Ln. 

Proof (i) We proceed by induction on n. If n = 1, then the claim follows 
from the fact that the polynomial gl, which cannot be a non-zero constant, 
has a zero in L. Next, suppose n > 1, and let (Zl, ... , Zi) E Li be a zero 
of {gl, ... , gi}, where 1 ::; i < n. By induction hypothesis, there exist Zi+ 1, 
... , Zn-l E L such that (Zl, ... ,Zn-l) is a zero of 

In K[X1, ... ,Xn - l] = Id({gl,'" ,gn-d). 
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The polynomial gn(Zl, ... , Zn-l, Xn) E L[XnJ is non-constant because the 
head term of gn was a power of X n, and so it has a zero Zn in the alge
braically closed field L. It is clear that z = (Zl," . , zn) is a zero of I. 

(ii) Let G be as in (i). The non-constant polynomial gl E K[XIJ has a 
zero Zl E L, which can be extended to a zero z E Ln by (i). 0 

A more hands-on way of looking at the proof of (ii) above is as follows: to 
obtain a zero of I, start with a zero Zl E L of the non-constant polynomial 
gl E K[Xd, plug it into g2 to obtain a non-constant polynomial g2(Zl, X 2), 
and continue the process in the obvious way. 

Lemma 7.52 Let L be an algebraically closed extension field of K, and 
let I be a prime ideal of K[X1 , •.. , XnJ such that {Xl,"" X d} is max
imally independent modulo I. Then there exists a non-zero polynomial 
p E K[Xb ... , Xd] such that every (Zb ... , Zd) E Ld with the possible 
exception of the zeroes of p extends to a zero (Zl"'" zn) E Ln of I. 

Proof Consider the polynomials I, gd+1, ... , gn of Proposition 7.48. For 
d + 1 $ i $ n, let hi E K[Xb ... , XdJ be the head coefficient of gi when 
viewed as a polynomial in Xi, and set 

n 

p = I· II hi' 
i=d+l 

Let Zlo •.. , Zd E L with P(Zl, ... , Zd) i= O. We consider the polynomials 

(d+1$i$n). 

The head coefficient of gi(Zl, . .. ,Zd, Xd+1,' .. , X.) when viewed as a poly
nomial in Xi is hi(Zl,'" ,Zd) i= O. Arguing as in the remark preceding 
the lemma, we can thus inductively find Zd+lo ... , Zn E L such that 
gi(Zb"" zn) = 0 for d + 1 $ i $ n. We claim that z = (Zl, ... , Zn) is 
a zero of I. Let 9 E I. Then Ig E Id(gd+1,"" gn) by Proposition 7.48, and 
thus 

0= (fg)(z) = I(zb.··, Zd)g(Z). 

But I(zl,"" Zd) i= 0 by the choice of Zl, ... , Zd, and so g(z) = O. 0 

Proposition 7.53 Let L be an algebraically closed extension field 01 K. 
Then every proper ideal 01 K[X 1, ... , Xn] has a zero in Ln. 

Proof Let I be a proper ideal of K[Xb ... ,Xnl with dim(I) = d. It clearly 
suffices to find a zero in Ln of some ideal J with I ~ J. 
Case 1: d = O. 
We extend I to a maximal ideal J of K[X1, ... ,Xn ]. Then J is a zero
dimensional prime ideal, and thus it has a zero by Lemma 7.51. 
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Case 2: d> O. 
Renumbering variables if necessary, we may assume that {Xl, ... , Xd} is 
maximally independent modulo I. Set 

Then I n M = 0, and we let J be a prime ideal with I ~ J and J n M = 0 
(Proposition 4.11). The set {Xl' ... ' Xd} is still maximally independent 
modulo J. Now let 

0=1- p E K[X1 , ••. , Xdj 

be as in Lemma 7.52. Lemma 7.50 together with Lemma 7.49 provides Zl, 

•.. , Zd E L with P(Zb •.• , Zd) =I- 0, and this extends to a zero of J by 
Lemma 7.52. 0 

Lemma 7.52 together with Corollary 2.97 provides a clue to the geometric 
meaning of the dimension of an ideal (and to the reason for the choice of the 
terms "dimension" and "independent set"). Suppose I is a two-dimensional 
prime ideal of Q[X, Y, Zj, and assume {X, Y} is maximally independent 
modulo I. Then every point (Zb Z2) E C2 with the possible exception of 
the zeroes of 0 =I- p E Q[X, Yj can be extended to a zero (Zl' Z2, Z3) E C3 

in at least one but at most finitely many different ways. But the set of 
zeroes of p forms what one would call a curve in C2 (a fixed choice for X 
leaves only finitely many possibilities for Y, or else there are only finitely 
many possibilities for X), and we see that the set of zeroes in C3 of I 
is-intuitively speaking-a surface, i.e., a two-dimensional configuration. 

Proof of the Hilbert Nullstellensatz The implication "(ii)===}(i)" is 
trivial. Now assume that (i) holds, and set 1= Id(gl, ... , gm). Let Y be a 
new indeterminate. The ideal 

J = Id{I, 1 - Y f) 

of the ring K[X1 , ••• ,Xn][Yj does not have a zero in L n+1 because the 
vanishing of gl, ... , gm at z implies that (1 - Y f)(z) = 1. We see that J 
is not proper and thus 1 E J. Proposition 6.37 now tells us that 

1EI:/,JO 

and thus rEI for some 0 < sEN. 0 
Another important consequence of Proposition 7.53 is the following ad

dition to Proposition 7.42 that we announced earlier. Recall that we denote 
by K the algebraic closure of K. 

Proposition 7.54 The zero-dimensional prime ideals of K[X 1, ... , Xnj 
are precisely the maximal ones. 
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Proof In view of Proposition 7.42 (i), it remains to show that every max
imal ideal is zero-dimensional. Let I be a proper ideal with dim(I) > O. 
Then In K[Xil = {O} for some 1 :$ i :$ n. Since I is proper, it has a zero 

Z = (Zl, ... ,zn) E/{. 

Since K is algebraic over K, there is 0 #- f E K[Xil with f(Zi) = o. Then 
J = Id(1, f) is proper because it has the zero z. Moreover, J properly 
extends I and thus I was not maximal. 0 

Exercise 7.55 Let I be a zero-dimensional ideal of K[X1 , ••• , X .. ], and let 1 :5 
i :5 n. Suppose Z E K' is a zero of the elimination ideal InK[Xl, ... ,Xi]. Show 
that z extends to a zero of I in K". (Hint: Reduce the problem to the case 
where I is radical, and use the fact that a radical ideal equals the intersection 
of all prime ideals containing it.) Demonstrate that the claim is false in higher 
dimensions. 

We close this section with an easy lemma which shows that the Hilbert 
Nullstellensatz can be strengthened considerably if the polynomials gb 
... , gm generate a maximal ideal. 

Lemma 7.56 Let L be an extension field of K and I a maximal ideal of 
K[X1, ... ,Xnl· 

(i) If f E K[XI' ... ,Xnl such that I and f have a common zero in Ln, 
then f E I. 

(ii) If J is another maximal ideal of K[XI , ••• ,Xnl such that I and J 
have a common zero in Ln, then I = J. 

Proof To prove (i), assume for a contradiction that f ¢ I. Then there 
exists g E K[Xb ... ,Xn] and h E I such that 1 = h + gf. Evaluating at 
the common zero of f and I, we arrive at the contradiction 1 = o. Part (ii) 
is an easy consequence of (i). 0 

7.5 Height and Depth of Prime Ideals 

The material of this section is not directly connected to the Hilbert Nullstel
lensatz, but the flavor of the proofs is similar to the ones in the preceding 
section. Of the material in this section, only Lemma 7.57 will ever be used 
again in this book. 

Throughout this section, K will be a field. We will repeatedly make use 
of Lemmas 1.122, 1.123, and 7.47. If 10, ... , 1m (m ~ 0) are prime ideals 
of K[XI , . •. ,Xnl with Ii ~ IHI and Ii #- IHI for 0 :$ i :$ m - 1, then 
we call (10, ... , 1m) a chain of prime ideals of length m. The depth 
d(I) of a prime ideal of K[Xb ... ,Xn] is the maximal length of a chain 
(10, ... ,1m) of prime ideals with 10 = I. The height hel) of a prime ideal 
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of K[Xl." . ,Xnl is the maximal length of a chain (1o, ... , 1m) of prime 
ideals with 1m = I. Our aim is now to show that d(I) = dim(I) and 
h(I) = n - dim (I) for every prime ideal I of K[Xlo ••. , Xnl. 

Lemma 7.57 Let I and J be prime ideals of K[Xl'" . ,Xn ] with I ~ J 
and I =f:. J. Then dim( J) < dim( J). 

Proof We have already observed in Lemma 6.49 that dim(J) ::; dim(I). 
Assume for a contradiction that dim(I) = dim(J) = d. W.l.o.g., we may 
assume that {Xl. ... ,Xd} is maximally independent modulo J. Then this 
set is a fortiori independent modulo I, and since dim(I) = d, it must 
even be maximally independent modulo I. So if we form j6 and Je w.r.t. 
M = K[Xl , ... ,Xd] \ {O}, then Ie and Je are both zero-dimensional prime 
ideals and hence maximal. This together with Ie ~ Je implies Ie = Je and 
thus I = Iec = Jee = J, a contradiction. 0 

As an immediate consequence, we obtain the following proposition. 

Proposition 7.58 Let (Io, ... ,Im ) be a chain of prime ideals in the ring 
K[Xl , ... ,Xn ]. Then m::; dim(Io) - dim(Im). 0 

Corollary 7.59 If I is a prime ideal of K[Xl. ... ,Xn ], then d(I) ::; dim(I) 
and h(I) ::; n - dim(I). 

Proof Let (lo, ... , 1m) be a chain of prime ideals. If I = 10, then m ::; 
dim(I) - dim(Im) ::; dim(I) and thus the maximal possible length of such 
a chain is dim(I). If I = 1m , then m ::; dim(lo) - dim (I) ~ n - dim(I) and 
thus the maximal length of such a chain is n - dim(I). 0 

The next two propositions will provide the reverse inequalities of the 
corollary above. 

Proposition 7.60 Let I be a prime ideal of K[X l, .•• ,Xn ] and ° ::; d ::; n 
such that {Xl'"'' Xd} is maximally independent modulo I. Then there 
exists a chain (lo, ... , Id ) of prime ideals with 10 = I. 

Proof We proceed by induction on d. If d = 0, then (1o) is the desired 
chain. Now let d > 0, and let M = K[Xl, ... ,Xd-l] \ {O}. Consider the 
extension Ie of I to 

Then 
j6 n K(Xl. ... ,Xd-l)[Xd] = {O} 

since otherwise we would obtain a non-zero element of I n K[Xlo ... ,Xd] 
by clearing denominators of coefficients in K(Xl , ... , Xd-d. We see that 
dim(Ie ) > 0, and thus Ie is not maximal by Proposition 7.54. Let J be a 
maximal ideal of K(Xlo . .. , Xd-l)[Xd, .. . ,Xn] with Ie ~ J. Then JC is a 
prime ideal of K[Xlo ... ,Xn] with I = lee ~ JC. Being maximal, J = Jce 
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has dimension zero, and thus {Xl, .. ' ,Xd-d is maximally independent 
modulo JC. In particular, I i- JC. The induction hypothesis provides a 
chain (10, ... ,Id-l) of prime ideals with 10 = J C , and hence (1,10,." ,Id- l ) 
is a chain with the desired properties. 0 

If dim(I) = d, then we may assume w.l.o.g. that {Xl, ... ,Xd} is maxi
mally independent modulo I, and so there exists a chain of prime ideals as 
described in the proposition. Together with Corollary 7.59 we thus obtain 
the following corollary. 

Corollary 7.61 d(l) = dim (I) for every prime ideal of K[XI, ... ,Xnl. 0 

To show that the height of a prime ideal I equals n - dim(I), we need 
two technical lemmas. 

Lemma 7.62 Let I be a zero-dimensional prime ideal of K[Xl!'" ,Xnl 
and G = {gl! . .. ,gn} the prime basis of I of Proposition 7.42. Let 1 < i ~ 
n, and set Gi = {gi,' .. gn}, Ii = Id( Gi), and 

Then Mi n Ii = {O}. 

Proof Let ~ be the inverse lexicographical term order, where Xn » ... » 
Xl. The head term of gj is a power of Xj for i ~ j ~ n, and so Gi is a Grab
ner basis of Ii w.r.t. ~ by Lemma 5.66. Now assume for a contradiction that 
o i- f E Mi nh Then f = gh with 9 E K[XI , ..• ,Xi-d and h ¢ I. Let ho 
be the unique normal form of h modulo Gi . Then ho i- 0 since otherwise 
h E Ii ~ I. Furthermore, h - ho E Ii and thus gh - gho = g(h - ho) E h 
It follows that gho E Ii, and so gho must be reducible modulo Gi • But ho 
was in normal form modulo Gi , i.e., 

degx.(t) < degx.(g3·) , , 
for all t E T(ho) and i ~ j ~ n. Since 9 E K[XI , ... ,Xi-ll, the latter 
inequality remains true for all t E T(gho), a contradiction. 0 

Lemma 7.63 Let I be a prime ideal of K[XI' ... ,Xnl and 0 ~ d < n such 
that {Xl,' .. , Xd} is maximally independent modulo I. Then there exists 
a prime ideal J of K[XI , ... ,Xnl such that J ~ I and {Xl! ... ,Xd+l} is 
maximally independent modulo J. 

Proof The univariate case n = 1 is trivial: then d = 0, Ii- {O}, and we 
may take J = {O}. So let n > 1. 
Case 1: d=O. 
Then 0 is maximally independent modulo I and so dim(I) = O. Let G2, 
h, and M2 be as defined in Lemma 7.62. K[Xll is trivially multiplicative, 
and so is K[XI , ... ,Xnl \ I since I is prime. It follows that their product 
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M2 is multiplicative too, and by Lemma 7.62, 12 n (M2 \ {O}) = 0. We can 
thus extend 12 to a prime ideal J with J n M2 = {O}. The inclusion 

implies that J ~ I, and from the inclusion 

we see that {Xd is independent modulo J. It remains to show that {Xl} is 
maximally independent modulo J. This follows from the fact that G2 ~ J 
and hence the extension Je of J to K[XI, ... , XnlM with M = K[XIJ \ {O} 
is a zero-dimensional ideal of 

by Corollary 6.56. 
Case 2: d> O. 
We consider Ie w.r.t. K[XI , ... ,Xdl \ {O}. Then Ie is a zero-dimensional 
prime ideal of the ring K(XI, ... ,Xd)[Xd+I,,,,,Xnl, and Case 1 above 
provides us with a prime ideal J of this ring such that J ~ Ie and 
{Xd+l} is maximally independent modulo J. Then JC is a prime ideal 
of K[XI, ... , XnJ with JC ~ I ec = I. We have 

since otherwise 
J n K(XI, ... , Xd)[Xd+IJ =f. {O}, 

and thus {X I, ... , Xd+l} is independent modulo JC. It remains to show 
that this latter set is maximally independent modulo JC. Let d + 1 < i :::; n. 
Then 

and since we can clear denominators of coefficients in K(XI, ... , X d), we 
see that 

JC n K[XI, ... , Xd+I, XiJ =f. {O}. 0 

The following proposition can now easily be proved by means of a re
peated application of the above lemma and an argument like the one we 
used to prove Corollary 7.61. 

Proposition 7.64 Let I be a prime ideal of K[XI"'" Xnl and 0:::; d :::; n 
such that {X!, ... , Xd} is maximally independent modulo I. Then there 
exists a chain (10, ... , In-d) of prime ideals with In-d = I. In particular, 
h(1) = n - dim(I). 0 

We can now give a second, independent proof of Proposition 7.26. 
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Corollary 7.65 Let I be a prime ideal of K[X1 , • •• ,XnJ, and suppose U ~ 
{XII." ,Xn } is maximally independent modulo I. Then lUI = dim(I). 

Proof Renumbering variables if necessary, we may assume w.l.o.g. that 
U = {Xl"" ,Xd} for some 0 ~ d ~ n. Then d ~ dim (I) by the definition 
of the dimension. By Proposition 7.64, there exists a chain (10 , • •• , In-d) 
of prime ideals with I = In-d' By Proposition 7.58, we must have n - d ~ 
dim(Io) - dim (I) ~ n - dim (I) and thus d ~ dim(I). 0 

Exercise 7.66 Use Corollary 7.65 to prove Theorem 7.23 without the use of the 
abstract theory of independent sets. 

7.6 Implicitization of Rational Parametrizations 

In this section, we demonstrate how the Hilbert Nullstellensatz can be 
used together with Grabner basis techniques to solve a problem that is 
geometric in nature. This section forms an aside within this bookj the 
material presented here will not be used again. 

Throughout, K will be a field, and we will use the nota.tion 

K[X] =K[XII ... ,Xn]. 

Recall that for an ideal I of K[ X] and an extension field L of K, we have 
called the set of zeroes of I in Ln the variety of I in Lnj in addition, we 
now introduce the notation VL(I) for this set. Moreover, we call a subset 
V of Ln a K-variety if V = VL{I) for some ideal I of K[X]. We will 
abbreviate n-tuples (ZI,"" zn) E Ln to z. Our first lemma is hardly more 
than another reformulation of the Hilbert Nullstellensatz. 

Lemma 7.67 Let It and 12 be ideals of K[ X J and L an algebraically 
closed extension field of K. Then the following are equivalent: 

(i) It ~ rad(h). 

(ii) VL(I2 ) ~ VdId. 

Proof (i)===>(ii): If z E VdI 2) , then every f E 12 vanishes at z. This 
trivially implies that every element of rad(I2) vanishes at z, and using (i), 
we see that z E VL(It). 

(ii)===>(i): If fEll, then by (ii), it vanishes on the variety of 12 in Ln 
and is thus an element of rad(I2) by the Hilbert Nullstellensatz. 0 

The next lemma relates elimination ideals to projections of varieties: it 
says that the variety of an elimination ideal of an ideal I is the smallest 
variety containing the projection of the variety of Ion the corresponding 
components. 
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Lemma 7.68 Let I be an ideal of K[X] and L an algebraically closed 
extension field of K. Let 1 ~ d ~ n, and set 

W = { (Zb .. . , Zd) E Ld I there exist Zd+b . .. , Zn E L with z E VdI) }. 

Then VL(I n K[Xb ... , XdJ) is the smallest K-variety in Ld extending W. 

Proof To prove that W ~ VdlnK[Xl, ... ,XdJ), let (Zb ... ,Zd) E W. 
Then there exist Zd+l, ... , Zn E L with z E VdI). In particular, 

J(Z1, ... ,Zd) = J(z) = 0 for J E In K[X1, ... ,Xd]. 

It remains to show that VL(I n K[X1, ... , XdJ) ~ VdJ) for all ideals J of 
K[Xb . .. , X d] with W ~ VdJ). Let J be such an ideal. According to the 
previous lemma, it suffices to prove that 

But if J E J, then we may consider J as an element of K[X]. The as
sumption W ~ VL(J) implies that J vanishes on the variety of I in Ln, 
and consequently, rEI n K[X1, ... ,Xd] for some sEN by the Hilbert 
Nullstellensatz. 0 

We know from elementary mathematics that subsets of R2 or R3 can 
often be described alternatively as varieties or by parametrizations: the 
unit circle, for example, has the representations 

{(x,y) E R2 I x2 + y2 = I} and {(cost,sint) It E R}. 

The following theorem shows how one can, in a certain restricted sense, 
transform a parametrization by rational functions into a representation as 
a variety. Here, T1 , •.• , Tm will be indeterminates, and the notations K[L] 
and K[L,X] will be used in the obvious sense. 

Theorem 7.69 Let ft, ... , In, g1, ... , gn E K[L] with 

9 = g1· .... gn::f. o. 

Let L be an extension field oj K with infinitely many elements, and set 

'P: Lm \ VL(g) --+ Ln 
a ~ (ft(a)/g1(a), ... ,Jn(a)/gn(a)). 

FUrthermore, let Y be a new indeterminate and set 

Then VL(I n K[ X]) is the smallest K -variety in Ln containing the image 
oj 'P. 



7.6. Implicitization of Rational Parametrizations 329 

Proof It is not hard to see that the image of r.p equals the "projection of 
VL(J) on the X-components," i.e., the set W of all those z E Ln such that 
the ideal 

Id(glZl - It,··· ,gnzn - fn,gY -1) ~ L[T, Y] 

has a zero in Lm+l. Now let J be an ideal of K[X] with W ~ VL(J). 
We must show that VL(JnK[X]) ~ VL(J). To this end, we lift the entire 
situation of the theorem to the algebraic closure L of L, i.e., we set 

rp: y;m \ V:c;{g) --+ r 
a 1-+ (It (a)/gl (a), ... , fn(a)/gn(a)) 

and let W be the image of rp in L. 
Claim: W ~ V£"(J). 
Proof: Let h E J. It is easy to see that there exist 11 E N and a polynomial 

q E K[T] such that 

From our assumption W ~ VL(J) and the fact that gq can be written in 
the form (*), one easily deduces that gq vanishes on all of Lm and must 
thus, in view of Lemma 7.50, be the zero polynomial. Going back to the 
representation (*), it is now easy to see that h vanishes on the image W of 
the map rp. 

Recalling that W is a projection of the variety of I in y;m+n+1, we find 
ourselves in a position to apply the previous lemma and conclude that 

Intersecting with Ln, we see that indeed 

In view of Corollary 6.17, it is clear that a basis of the elimination ideal 
of the theorem above can be computed from the fi and gi whenever K is 
a computable field. 

Exercise 7.10 Show that the unit circle is the smallest Q-variety in a2 that 
contains the set 

{ (:2 ~t: ' t2 ~ 1) I tEa} . 
Show that this implicitization adds the point (-1,0) to the given set. (Hint: This 
is about the upper limit of what you want to do by hand. A computer algebra 
system comes in handy.) 
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7.7 Invertibility of Polynomial Maps 

We conclude this chapter with the solution of a decision problem that is 
closely related to a famous open problem, namely, the Jacobian conjecture. 
Here, Grobner basis techniques will be combined with the result of Theorem 
7.23 which led to the definition of the transcendence degree. This section 
is another aside within this book; the material presented here will not be 
used in the sequel. We will once again be using the notation K[ X] = 
K[X1 , ••• ,Xn ]. 

According to Lemma 2.17 (i), an n-tuple f = (/I, ... ,/n) E (K[x])n 
gives rise to a map 

CP/: 

where a stands for (all .. . ,an), Here, CPI is called invertible if there exist 
g1. ... , gn E K[X] such that 

so that CPg 0 CPI = idKn. The Jacobian conjecture (which we won't go into 
here) states that over fields K of characteristic zero, CPI is invertible iff the 
determinant of the Jacobi matrix 

(ali) 
aXj ~=I, ... ,n 

J=I, ... ,n 

is in K\ {a}. Another way oflooking at the same problem is as follows. It is 
easy to see that every endomorphism 'if; of K[ X] that satisfies 1/J r K = idK 

is of the form 
h t---+ h(h, . .. , In), 

where Ii = 'if;(Xi ) for 1 ~ i ~ n. The existence of gl, ... , gn with 

gi(h, . .. ,In) = Xi for 1 ~ i ~ n 

is then equivalent to the surjectivity of the endomorphism in question. 
The next proposition shows how Grobner bases provide a means to de

cide, for given f, whether or not cP I is invertible. 

Proposition 7.71 Let f = (h, ... ,In) E (K[x])n, and let Y1 , ••• , Yn 
be new indeterminates. Set I = Id(F), where 

F = {Y1 - h, ... , Yn - In}. 

Furthermore, let ~ be a term order on T(X, Y) that satisfies Y «X. Then 
the lollowing are equivalent: 



7.7. Invertibility of Polynomial Maps 331 

(i) {{}f is invertible. 

(ii) The reduced Grabner basis G of I w.r.t. ~ is of the form 

G = {Xl - gl, ... ,Xn - gn} with gt, ... ,gn E K[Y]. 

Moreover, if (ii) holds, then gi(ft,· .. , fn) = Xi for 1 ~ i ~ n. 

Proof For the direction "(ii)==>(i)," suppose that the reduced Grabner 
basis G of I w.r.t. ~ is of the form 

G = {Xl - gl, ... ,Xn - gn} with gl,'" ,gn E K[Y]. 

Then there exist qij E K[ X , Y] with 

n 

Xi - gi = L%(Yj - /j) (1 ~ i,j ~ n), 
j=l 

and substitution of /j for Yj yields Xi - gi(ft, ... , fn) = 0 for 1 ~ i ~ n. 
Conversely, suppose that {{} f is invertible, and let gl, ... , gn E K[ Y ] 

such that 
gi(ft, ... ,fn)=Xi for l~i~n. 

Lemma 6.43 (i) tells us that 

gi(ft"",!n)-gi=Xi-giEI for l~i~n. 

The set G = {Xl - gt, ... ,Xn - gn} is thus a subset of I, and since our 
term order ~ satisfies Y « X, it is clearly reduced. In order to show that 
G is in fact a Grabner basis of I w.r.t. ~, it suffices by Proposition 5.38 to 
prove that every 0 :f:. h E I is reducible modulo G. This is obviously true 
whenever degx. (h) > 0 for some 1 ~ i ~ n. The proof will thus be finished 
once we have proved the following claim. 

Claim: InK[Y] = {a}. 
Proof: We first note that from (*), it follows that ring adjunction of It, 

... , fn to K within K[ X] = K[X1 , .•• , Xn] yields 

K[ft,···, fn] = K[Xl"" ,Xn]. 

Taking fields of quotients, we may apply Theorem 7.23 (ii) with 

K' = K(X), B = {Xl, ... , X n }, and A = {It,··., fn} 

to conclude that {It, ... , In} is algebraically independent over K. When
ever h E K[Y], then h(ft, ... , In) - h E I by Lemma 6.43 (i), and so 
hE In K[Y] implies 

h(ft,·· .,In) E InK[X]. 
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Now Lemma 6.43 (ii) says that h(!I, ... , In) = 0, and so h = 0 because of 
the algebraic independence of {!I, ... , In} over K. 0 

It is clear now that over a computable field K, one can decide the in
vertibility of CPI for any given f E (K[ x])n and compute an inverse if one 
exists. 

Exercise 7.72 Let /1, ... , In, gl, ... , gn E K[X 1 such that gi(/1, ... , In) = Xi 
for 1 ~ i ~ n. Show that then li(gl, ... ,gn) = Xi as well. Conclude that, with 
the notation for polynomial maps introduced at the beginning of this section, 
<pg 0 <PI = idKn implies <P I 0 <pg = idKn. Moreover, if an endomorphism 'I/J of 
K[ X 1 satisfying 'I/J r K = idK is surjective, then it is injective, whereas the 
converse fails in general. 

Notes 

The first comprehensive treatment of field extensions is Steinitz (1910). 
Kronecker (1882) introduced the idea of the purely symbolic construction 
of a simple algebraic field extension in the absence of an existing extension 
field. A crucial point in the theory of field extensions is the fact that every 
element b that is algebraic over a simple algebraic extension field K(a) of a 
field K is algebraic over K as well. Following the method of Steinitz, most 
algebra textbooks prove this non-constructively. One first shows that a 
simple algebraic extension field of a field L is finite-dimensional as a vector 
space over L, and that, conversely, an extension field of L whose vector 
space dimension over L is finite cannot contain transcendental elements 
over L. These results are then combined with the fact that the property 
of a field extension to be finite-dimensional in this sense is transitive. The 
approach via Grobner bases has the advantage of providing a means to 
compute min~ from minK and min~(a)' Another way to achieve this is by 
using resultants (see Loos, 1982). 

The first proof of the fundamental theorem of algebra that stands up to 
modern mathematical standards was given in 1799 by C.F. Gauss in his 
doctoral dissertation. The existence of the algebraic closure of a field is 
proved in Steinitz (1910). In order to fully appreciate the difficulties of the 
proof, one must first understand why the following set-theoretically naive 
proof is not legitimate: consider the collection of all algebraic extensions 
of the given field and choose a maximal one. The catch is of course the 
fact that the collection of all algebraic extensions of a given field is not a 
set in the sense of Zermelo and Fraenkel and therefore does not allow an 
application of Zorn's lemma. The proof that we have given here is that of 
Lang (1971), except that we have added a pinch of Grobner basis flavor. 
Lang's proof is an elegant one because it neatly separates the set-theoreti
cal part from the algebraic construction (see the discussion at the end of 
Section 4.1). 

The notion of separability is again due to Steinitz (1910). Steinitz himself 
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used the term "of the first kind"; the term "separable" was suggested by 
van der Waerden (1931) and has since come to be universally accepted. 

The Hilbert Nullstellensatz is proved in Hilbert (1893), Part II, §3. It is 
the pivotal point at the juncture of algebra and algebraic geometry, and 
there is hardly another theorem with stronger repercussions in commu
tative algebra. The relevance of the theorem in ideal theory will become 
obvious in Chapter 8 of this book; another important concept that it is 
related to, namely, quantifier elimination, will be briefly touched upon in 
Section "Grabner Bases and Automatic Theorem Proving" on p. 518 in 
the appendix. Our approach to the proof of the Nullstellensatz via prime 
bases follows Grabner (1970), Chapter I, §3 and Chapter II, §§2,3, except 
that we have used Grabner basis arguments in a number of places. The 
idea of introducing an additional variable in the actual proof of the Hilbert 
Nullstellensatz is due to Rabinowitsch (1930). 

Chains of prime ideals were first investigated by Krull (1928). We have 
collected here those results that can be proved in the spirit of the preceding 
section, using prime bases, Grabner bases, and extension-contraction argu
ments. A related result that does not seem to be accessible on that level is 
the fact that for two prime ideals h and h of K[X] with 11 ~ 12, there 
exists a chain of prime ideals of length dim(h) - dim(I2) connecting the 
two (see, e.g., Zariski and Samuel, 1958/1960, Vol. 2, VII, §7, Corollary 1; 
cf. also the remarks at the beginning ofthat paragraph). 

The solution of the implicitization problem by means of Grabner bases 
was initiated by Buchberger (1987a) and carried out by Kalkbrener (1990a). 
Kalkbrener considers varieties in the algebraic closure of the ground field; 
the generalization to infinite fields appears in Cox et al. (1992). 

The Jacobian conjecture is stated in Keller (1939); it has thus far resisted 
all attempts of proof or refutation. Our treatment of the Grabner basis ap
proach to the corresponding decision problem follows van den Essen (1990); 
see also Abhyankar and Li (1989) and Audoly et. al (1991). 
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Decomposition, Radical, and 
Zeroes of Ideals 

If R is a PID, 0 =I- a is a non-unit of R, and a = pr1 ••••• p~r is a prime 
factor decomposition of a, then, according to Proposition 1.89, we have 

r 

aR= np~'R. 
i=l 

We see that every ideal of R can be decomposed into an intersection of 
ideals that are generated by powers of pairwise non-associated irreducible 
elements of R. In particular, this is true for univariate polynomial rings over 
fields. In multivariate polynomial rings, we still have the unique prime fac
tor decomposition of non-zero non-units. It is easy to see that one still ob
tains a corresponding decomposition of principal ideals as described above. 
(This is in fact true in every UFD.) However, we know that multivari
ate polynomial rings over fields are noetherian but not PID's. The central 
theme of this chapter is the fact that in a noetherian ring, every ideal can 
be decomposed into an intersection of primary ideals, where a primary ideal 
is an ideal that "behaves like" an ideal that is generated by a power of an 
irreducible element. This primary decomposition of ideals is thus, in a man
ner of speaking, a generalization of the unique prime factor decomposition 
to non-principal ideals. 

We will also see how primary decompositions can be computed in poly
nomial rings over certain kinds of fields including the rational numbers. As 
it turns out, questions concerning radical and zeroes of polynomial ideals 
are closely related to the concept of the primary decomposition. 

8.1 Preliminaries 

In this section, we collect some definitions and results concerning ideals 
whose relevance will soon become apparent. Recall that by a ring, we always 
mean a commutative ring with unity. 

If h, ... , Ir are ideals of a ring R, then we understand by 11 .... ·Ir 
the set of all products a1 ..... ar E R with ai E Ii for 1 :::; i :::; r, and we 
define the ideal product of h, ... , Ir as Id(h' ... ·Ir). The ideal product 
of the Ii thus consists of all sums of mUltiples of elements of h ..... IT) 

335 
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and it is easy to see that it actually consists of all sums of elements of 
It· .... I r · Throughout the mathematical literature, the standard notation 
for the ideal product of I and J is I· J. The authors of this book, however, 
have been actively involved in too many errors and pointless discussions 
arising from this truly misleading notation to carry it any further. 

For an ideal I of a ring R and v E N+, we use the obvious notation 

Id(J") = Id(I . .... 1) and Id(Io) = R, 
~ 

II times 

and we refer to Id(JV) as an ideal power of I. 

Exercise 8.1 Show the following: 

(i) Ideal multiplication is associative, and 

Id{It . Id(I2 • 13 )) = Id(It .12 .13 ). 

(ii) If I is a principal ideal, then Id(I . J) = I . J for any ideal J. 

(iii) If both I and J are principal, say I = aR and J = bR, then Id(I· J) = 
abR. (In particular, this means that Id(aR· bR) is again principal, 
and that Id((aR)II) = all R.) 

(iv) If I and J are ideals with finite bases B and C, respectively, then 
Id(I· J) is generated by the finite set 

B . C = {ab E R I a E B, bEe}. 

It is clear that the ideal product of finitely many ideals is contained in 
their intersection. The converse is not true in general: if a is a non-unit in 
a domain R, then 

aR n a2 R = a2 R i= a3 R = aR . a2 R = Id( aR . a2 R). 

Recall that two ideals I and J are called comaximal if 1 E I + J. 

Lemma 8.2 If It, ... , Ir are pairwise comaximal ideals of a ring R, then 

Proof In view of the remarks preceding the lemma, it suffices to prove 
the inclusion "~." We proceed by induction on r. If r = 1, then there is 
nothing to prove. Let r > 1, and suppose a E Ii for 1 ~ i ~ r. By Lemma 
6.26, we have 

r 

1 E 11 + nIi' 
i=2 
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say 1 = 81 +82 with 81 and S2 in the first and second summand, respectively. 
From the induction hypothesis we may conclude that a, S2 E II=2 Ii, and 
we see that 

r 

a = a • 1 = aSI + aS2 E II Ii . 0 
i=1 

Note that the statement of the last lemma has already been proved for 
PID's in Proposition 1.89. 

Lemma 8.3 Let R be a ring, Ib ... , Ir ideals of R with radicals Ji = 
rad(Ii) for 1 ~ i ~ r, respectively. Assume further that P is a prime ideal 
of R which does not contain anyone of the Ji for 1 ~ i ~ r. Then there 
exists 

Proof Let bi E Ji \ P for 1 ~ i ~ r. Then there are Vi E N with br' E Ii 
for 1 ~ i ~ r, and so 

But b ¢ P since otherwise at least one of the bi would have to be in P. 0 

Lemma 8.4 Let R be a ring, M, M 1, ••• , Mr pairwise different maximal 
ideals of R. Then M does not contain the intersection n~=1 Mi , i.e., 

r r 

MnnMi1~ nMi. 
i=1 i=1 

Proof Since M and the Mi are pairwise different and maximal, M does 
not contain anyone of the Mi. We may now apply the previous lemma 
with Ii = Ji = Mi for 1 ~ i ~ r and P = M to obtain 

(The ideal product actually equals the intersection here because, as one 
easily sees, the Mi are pairwise comaximal.) 0 

Next, we prove a technical lemma that is a generalization to multivariate 
polynomial rings of Proposition 1.89. For the rest of this section, let K be 
a field and K[X] = K[X1, ••• ,Xn ]. 

Lemma 8.5 Let I be an ideal of K[X]. Assume that I, gl, ... , gr E 
K[X1] are such that f = gl ..... gr is a factorization of I in K[X1] into 
pairwise relatively prime factors. Then 

r 

Id(I,f) = nId(I,gi). 
i=1 
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Proof The inclusion "~" is trivial. For the reverse inclusion, let h be an 
element of the intersection on the right-hand side. Then for 1 ::; i ::; r, 
there exist qi E K[ X J and Si E I with h = qi9i + Si. Now if we set 

r 

Ii = II 9j for 1::; i ::; r, 
j=l 
Hi 

then it follows that hli E Id(I, I) for 1 ::; i ::; r. From the fact that 9i 
and 9j have no prime factor in common for 1 ::; i < j ::; r, one easily 
concludes that the gcd of h, ... , Ir in K[XlJ equals 1, and so there exist 
tI, ... , tr E K[Xd with 1 = tIll + ... + trfr' from which it follows that 

r 

h = L tihli E Id(I, I). D 
i=l 

We will now show how the previous lemma can be used to decompose a 
given zero-dimensional polynomial ideal I into an intersection of pairwise 
comaximal ideals h, ... , Ir such that for 1 ::; j ::; rand 1 ::; i ::; n, the 
unique monic generator of I j n K[X;J is a power of an irreducible polyno
mial. This decomposition is not itself of particular interest, but it is often 
used in practice in order to "preprocess" an ideal for certain purposes. Re
call that by Lemma 6.50, we can compute the monic univariate polynomial 
Ii of minimal degree in Id(F) n K[XiJ for 1 ::; i ::; n whenever F is a finite 
subset of K[ X], Id(F) is zero-dimensional, and K is computable. (Recall 
further that a more efficient method to achieve this will be given in Propo
sition 9.6.) The algorithm PREDEC of the following lemma computes these 
univariate polynomials, factorizes them into products of prime powers, and 
then forms all ideals Id(I,p~l, ... ,p~n), where for 1 ::; i ::; n, the prime 
power p:i is taken from the factorization of the univariate polynomial in 
the variable Xi. 

Lemma 8.6 Let I be a zero-dimensional ideal of K[X]. Then there exist 
pairwise comaximal ideals h, ... , Ir such that I = h n ... n In and for 
1 ::; j ::; r and 1 ::; i ::; n, the unique monic generator of I j n K[Xi ] is of the 
form pS with S E N+ and p irreducible in K[Xi ]. If K is computable and 
allows effective factorization of univariate polynomials, then the algorithm 
PREDEC of Table 8.1 computes finite bases of II, ... , Ir from any finite 
basis of I. 

Proof We will prove the correctness of the algorithm; for the general case 
of an arbitrary field, this amounts to a mathematical existence proof. It 
clearly suffices to prove that for 0 ::; k ::; n, after the run i = k through the 
for-loop, properties (ii) and (iii) as stated under "Find" hold, and (i) holds 
with n replaced by k. This claim is trivial for k = 0, i.e., upon initialization 
of H. Now suppose k > 0 and the claim was true after the run i = k - 1 
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TABLE 8.1. Algorithm PREDEC 

Specification: H +- PREDEC(F) 
Decomposition of a zero-dimensional ideal into an 
intersection of ideals each of which contains a power 
of an irreducible polynomial in each variable 

Given: a finite subset F of K[ X J with Id(F) zero-dimensional 
Find: a set H of finite subsets of K[XJ such that 

(i) for all G E H and 1 ~ i ~ n, there exists an irreducible 
p E K[XiJ and s E N+ with pS E Id(G) n K[XiJ, 

(ii) the ideals generated by the elements of H are pairwise 
comaximal, and 

(iii) Id(F) = n Id(G). 
GEH 

begin 
H +- {F} 
for i=l to n do 

end 

S +- H; H _ 0 
I +- the monic generator of Id(F) n K[XiJ 
while I is not constant do 

end 

p _ an irreducible factor of I 
s +- maxi r E N I prll} 
I _ !Ips 

T-S 
while T =/:- 0 do 

end 

select G from T 
T +- T\ {G} 
if PROPER(GU ipS}) then 

H +- H U { G U ipS} } 
end 

end PREDEC 

through the for-loop, and consider the run i = k through the loop. Each 
element that is placed into H during this run is of the form G U ipS} with 
G in the value of H after the previous run and p E K[XkJ irreducible. It 
is now obvious that property (i) will hold with n replaced by k after the 
present run. 

To see that property (ii) continues to hold, it suffices to prove that ev
ery time a new element G U {pS} is added to H, the ideals Id( G U {pS}) 
and Id( G') are comaximal for all G' that are already in H at the time. 
If G' entered H during the same run through the outer while-loop, then 
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G' = Gil U {pS} for some Gil i G, and G and Gil were both elements of 
H after the previous run through the for-loop. It follows that Id( Gil) and 
Id( G) are comaximal, and this property is trivially preserved when the ide
als are being enlarged. If G' was added to H during an earlier run through 
the outer while-loop, then, since G' has been processed through the inner 
while-loop, there exists qT E K[XkJ with qT E G' and gcd(pS, qT) = 1. The 
claim now follows from the fact that this gcd is a sum of multiples of pS 
and qT in K[XkJ. 

For property (iii), we first note that rather obviously, we have Id(F) ~ 
Id( G) for every G that is ever an element of H during the course of the 
computation. It follows that the polynomial f that is computed during the 
present run i = k through the for-loop is in Id( G) for all G that are in the 
value Hk of H as this run is entered. It is not hard to see that at the end 
of the run, the value of H has turned into 

where p~l, ... , p':;; are the powers of irreducible factors of f that the outer 
while-loop provides. Using Lemma 8.5, we thus obtain 

m n Id(G) = n n Id(G,p.?) = n Id(G) = Id(F). 0 

Exercise 8.7 The elements of the set H that PREDEC outputs are clearly of 
the form 

G = F U {p~l, ... ,p~n}, 

where Pi E K[X,j is a prime factor with multiplicity Si of the unique monic 
generator ofId(F)nK[Xij for 1:$ i:$ n. Explain why P:' may not be the unique 
monic generator of Id(G) n K[X,j. 

Exercise 8.8 Write an alternate version of PREDEC where the univariate poly
nomial that is used to further "branch" a set G E H on the level i is not a 
generator of Id(F) n K[Xi], but a generator of Id(G) n K[Xij. 

Exercise 8.9 Apply both the algorithm PREDEC and the version of the previ
ous exercise to the subset 

F = {X 2 -XY +X - Y,XY +2X + Y +2,y3 +4y2 +4Y} 

of Q[X, Yj. Here, PREDEC will actually come across improper ideals. Show that 
the version of the previous exercise need not worry about improper ideals. (Hint: 
you may want to look at the first part of the proof of Proposition 8.69.) 

8.2 The Radical of a Zero-Dimensional Ideal 

Throughout this section, K will be a field and K[XJ = K[X1, ... ,XnJ. 
Recall that the Hilbert Nullstellensatz characterizes the radical of an ideal 
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J of K[ X] as the set of all polynomials that vanish at every zero of I in L n , 

where L is any given algebraically closed extension of K. We have an algo
rithm RADICALMEMTEST that tests a given I E K[ X] for membership 
in the radical of a given ideal. What we do not yet have is an algorithm that 
decides whether a given ideal I is a radical ideal, i.e., whether 1= rad(I), 
nor one that computes a basis of the radical of I. In this section, we will 
solve these problems for zero-dimensional ideals. We remind the reader that 
some elementary results on the radical were given at the end of Section 4.1. 

It is immediate from the definition of the radical that a prime ideal I 
of any ring is a radical ideal. It is also easy to see that the intersection of 
radical ideals is again a radical ideal. We already know that the radical of 
any ideal I equals the intersection of all prime ideals containing I. Now if I 
is a zero-dimensional ideal of K[ X], then every ideal containing I is zero
dimensional too, and thus, in view of Proposition 7.42, every prime ideal 
containing J is maximal. These observations combine into the following 
lemma. 

Lemma 8.10 Let I be a zero-dimensional ideal of K[X]. Then rad(I) 
equals the intersection of all maximal ideals containing I. I is itself a radical 
ideal iff it is an intersection of maximal ideals. 0 

Following are two easy observations that will be needed below. 

Exercise 8.11 Show the following: 

(i) If I is an ideal of a UFD and a E I, then the squarefree part of a is 
in rad(J). 

(ii) If I and J are a ideals of any ring R with I ~ J ~ rad(I), then 
rad(J) = rad(J). 

Lemma 8.12 A zero-dimensional radical ideal I of K[ X] contains a uni
variate squarefree polynomial in each of the n variables. 

Proof Being zero-dimensional, I contains a univariate polynomial in each 
variable, and by (i) of the exercise above, it contains the squarefree part of 
each of these. 0 

Lemma 8.13 (SEIDENBERG'S LEMMA 92) Let I be a zero-dimensional 
ideal of K[X], and assume that for 1 ::; i ::; n, I contains a polynomial 
Ii E K[Xi ] with gcd(1i, If) = 1. Then I is an intersection of finitely many 
maximal ideals. In particular, I is then radical. 

Proof We first note that by Lemma 2.84, Ii is squarefree for 1 ::; i ~ n. 
To prove the lemma, we proceed by induction on n. If n = 1, then the 
generator I of I must be squarefree since every multiple of a polynomial 
that is not squarefree is not squarefree either. Let I = 91 .... ·9r with 
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pairwise non-associated, irreducible polynomials gl, ... , gr E K[X1J. Then 
the gi are pairwise relatively prime, and so 

r 

1= Id(f) = n Id(gi) 
i=l 

by Lemma 8.5 (applied with I of that lemma being the zero ideal), and the 
ideals occurring in the intersection are all maximal since their generators 
are irreducible. Now let n > 1. As before, we may write it = gl ..... gr 
with pairwise non-associated, irreducible polynomials gl, ... , gr E K[X1], 
and again by Lemma 8.5, we obtain 

r 

1= Id(I, It} = n Id(I, 9i). 
i=l 

It now suffices to prove that the ideals occuring in the intersection on the 
right-hand side are intersections of finitely many maximal ideals, and this 
obviously means that we may assume w.l.o.g. that it is in fact irreducible. 
Then K[X1J/Id(ft} is a field, and we may consider the canonical homo
morphism 

which induces a natural surjective homomorphism 

according to Lemma 2.17 (ii). The kernel of cp, as one easily proves, equals 
the ideal generated by it in K[ X J and is thus contained in I. Now J = cp(I) 
is an ideal of the ring on the right-hand side by Lemma 1.62 (ii), and 
we claim that the induction hypothesis applies to J. Indeed, according to 
the remarks preceding Proposition 7.7, we may view K[X1l/Id(it) as an 
extension field of K, whence cp r K = idK , and so the polynomials 

(2 :S i :S n) 

satisfy gcd(fi, ID = lover the field K[X1J/Id(ft} by Proposition 2.38. We 
conclude that J equals the intersection of finitely many maximal ideals M 1 , 

... , Ms , and so 
s 

1= cp-1(J) = n cp-1(Mi) 
i=l 

by Lemmas 1.62 (iii) and 0.10 (i). Moreover, it is easy to prove from Lemma 
1.62 (iii) that the ideals cp-1(Mi) on the right-hand side are maximal ideals 
of K[XJ. 0 

The following proposition is an immediate consequence of of the last two 
lemmas together with Theorem 7.36. 
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Proposition 8.14 If K is perfect, then a zero-dimensional ideal of K[X] 
is a radical ideal iff it contains a univariate square free polynomial in each 
variable. 0 

Together with Corollary 7.39, we obtain the following lemma on the 
invariance of the radical property under field extensions. 

Lemma 8.15 If K is perfect, then for every zero-dimensional radical ideal 
I of K[X] and every extension field K' of K, the ideal generated by I in 
K'[ X] is again radical. 0 

The following example shows that the last proposition is not true for an 
arbitrary field. 

Example 8.16 Let p be a prime number, let K be the rational function 
field Z/pZ(T), and consider G = {f,g} ~ K[X, Y] with f = XP - T and 
9 = yP - T. We have proved in Example 7.32 that f and 9 are irreducible 
and hence squarefree. Consider the polynomial h = X - Y. G is a Grabner 
basis w.r.t. every term order since the head terms of f and 9 are disjoint, 
and we see that h rt. Jd(G). But we have 

hP = (X - y)P = X P - yP = f - 9 E Jd(G), 

and so Jd( G) is not a radical ideal. 

Exercise 8.17 Show that for univariate polynomial ideals, the equivalence of 
Proposition 8.14 holds over arbitrary fields. 

If we want to use Proposition 8.14 in order to effectively test a zero
dimensional ideal for being radical, then we must know where to look for 
the univariate squarefree polynomials. 

Lemma 8.18 Let I be any proper ideal of K[X]. If I contains a square
free polynomial f in some variable Xi, then the unique monic univariate 
polynomial 9 of minimal degree in In K[XiJ is squarefree. 

Proof Since 9 is a generator ofthe ideal InK[XiJ, it divides the squarefree 
polynomial f and is thus itself squarefree. 0 

For the actual computation of the radical of a zero-dimensional ideal, we 
need one more lemma. 

Lemma 8.19 Assume that K is perfect, and let I be a zero-dimensional 
ideal of K[X]. For 1 $ i $ n, let fi be the unique monic polynomial of 
minimal degree in In K[Xi] with squarefree part gi. Then 

rad(I) = Jd(I,gt, ... ,gn)' 
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Proof If we set J = Id(I,gl, ... ,gn), then we have 

I ~ J ~ rad(I) 

according to Exercise 8.11 (i). Moreover, J is a radical ideal by Proposition 
8.14, and Exercise 8.11 (ii) tells us that rad{l) = rad(J) = J. 0 

If K is a computable field that is either finite or has characteristic zero, 
then it is perfect by Corollary 7.37, and it allows the computation of square
free decompositions of univariate polynomials by Proposition 2.86. The 
next two theorems will therefore apply. We will once again use the fact 
that one can compute the monic univariate polynomial fi of minimal de
gree in Id(F) nK[XiJ for 1 ~ i ~ n whenever F is a finite subset of K[X J, 
Id(F) is zero-dimensional, and K is computable. (Let us emphasize again 
that an efficient method to achieve this will be given in Proposition 9.6.) If 
K is perfect, then by Proposition 8.14 and Lemma 8.18, Id(F) is a radical 
ideal iff each fi is squarefree. In view of Theorem 7.36, this latter condition 
is equivalent to gcd(fi, fD = 1. We have proved the following theorem. 

Theorem 8.20 Assume that K is perfect and computable. Then the algo
rithm ZRADICALTEST of Table 8.2 decides, for given finite subset F of 
K[ X] with Id(F) zero-dimensional, whetherId(F) is radical. 0 

TABLE 8.2. Algorithm ZRADICALTEST 

Specification: v +- ZRADICALTEST(F) 
Decision whether a zero-dimensional ideal is radical 

Given: a finite subset F of K[X] with Id(F) zero-dimensional 
Find: v E {false, true} such that v = true iff Id(F) is radical 
begin 
for i=l to n do 

fi +- the monic generator of Id(F) n K[Xi] 
if gcd(fi' ID :f; 1 then return(false) end 

end 
return ( true) 
end ZRADICALTEST 

Exercise 8.21 Show that the ideal Id(X2 + Y, y2 + X) of Q[X, Y) is radical. 

The correctness of the next algorithm is immediate from Lemma 8.19. 

Theorem 8.22 Assume that K is perfect and computable and allows the 
computation of squarejree decompositions of univariate polynomials. Then 
the algorithm ZRADICAL of Table 8.3 computes a basis ofrad(Id(F» for 
a given finite subset F of K[ X] with Id(F) zero-dimensional. 0 
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TABLE 8.3. Algorithm ZRADICAL 

Specification: G +- ZRADICAL(F) 
Computation of zero-dimensional radical 

Given: a finite subset F of K[X] with Id(F) zero-dimensional 
Find: a finite basis G of rad(Id(F» 
begin 
G+-F 
for i=1 to n do 

fi +- the monic generator of Id(F) n K[Xi] 
9i +- the squarefree part of h 
G +- GU{9i} 

end 
end ZRADICAL 

Exercise 8.23 The algorithm ZRADICAL only calls for the computation of 
univariate squarefree parts rather than squarefree decompositions. Explain how 
the algorithms of Proposition 2.86 can be streamlined for this particular purpose. 

Another remarkable consequence of Lemma 8.19 is that given a zero
dimensional polynomial ideal I, it is possible to compute one natural num
ber J.L such that for all f E rad(I), the power P' is in I. 

Definition 8.24 Let I be a zero-dimensional ideal of K[ X]. For 1 ~ i ~ 
n, let h be the unique monic polynomial of minimal degree in In K[Xi ], 

and set 

J.Li = max{ v E N I pV I fi with P E K[Xi ] irreducible}, 

i.e., J.Li is the highest exponent that occurs non-trivially in the squarefree 
decomposition of k Then we call the natural number 

n 

J.L = 1 + L(J.Li - 1) 
i=l 

the univariate exponent of I. 

It is clear that the univariate exponent of a zero-dimensional ideal of 
K[ X] can be computed as soon as K is computable and allows effective 
squarefree decompositions of univariate polynomials. 

Exercise 8.25 Explain how the algorithms of Proposition 2.86 can be trimmed 
down to provide univariate exponents without actually computing the squarefree 
decomposition. 

Proposition 8.26 Assume that K is perfect, and let I be a zero-dimen
sional ideal of K[X] with univariate exponent J.L and mdical J = rad(I). 
Then Id(JI-') ~ I. In particular, f E rad(I) implies fl-' E I. 
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Proof It clearly suffices to prove that JIL S;;; I. For 1 :::; i :::; n, let Ii be the 
unique monic polynomial of minimal degree in In K[Xi] with squarefree 
part gi. Then 

J = Id(I,gl,'" ,gn) 

by Lemma 8.19, and thus every element f E JIL is of the form 

with Si E I and qij E K[ X] for 1 :::; i :::; J.l and 1 :::; j :::; n. Expanding the 
product in a suitable way, we see that there exists S E I with 

Now if we fully expand the product on the right-hand side of (*), then it 
is clear that every summand is of the form 

n II V· 
q. g/ 

j=l 

with q E K[ X] and Vl + ... + Vn = J.l. It follows that there must exist an 
index 1 :::; j :::; n such that Vj 2: J.lj, where J.lj is as in the definition of the 
univariate exponent, and one easily concludes that Ii I g? We have proved 
that every summand in the full expansion of the product in (*) is in I, and 
thus f E 1.0 

8.3 The Number of Zeroes of an Ideal 

Throughout this section, let K be a field, K[X] = K[Xl, ... ,Xn ], and I 
a proper ideal of K[X]. Recall from Section 6.3 that each of the following 
conditions is equivalent to I being zero-dimensional. 

(i) I contains a non-zero univariate polynomial in each of the n variables. 

(ii) Every Grabner basis of I contains n polynomials gl, ... , gn such that 
the head term of gi is a power of Xi. 

(iii) There exists a term order:::; and a Grabner basis of I w.r.t. :::; that 
contains n polynomials gl, ... , gn such that the head term of gi is a 
power of Xi. 

(iv) The vector space dimension dimK(K[X]/I) is finite. 
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Moreover, we have an upper bound for dimK(K[XJ/I) in this case 
(Corollary 6.55). We will now establish a connection between all this and 
the number of different zeroes of I in extension fields of K. 

Proposition 8.27 The following are equivalent: 

(i) dim (I) = o. 
(ii) There exists an algebmically closed extension L of K such that I has 

only finitely many different zeroes in Ln. 

(iii) For every algebmically closed extension L of K, I has only finitely 
many different zeroes in Ln. 

Proof (i)===?(iii): Assume that dim(I) = 0 and L is an algebraically closed 
extension of K. Then I contains an element 0 =f fi E K[XiJ for 1 :::; i :::; n. 
If Z = (ZI,.,.,Zn) E Ln is a zero of I, then fi(zi) = 0 for 1:::; i:::; n. By 
Corollary 2.97, this means that there are only finitely many possibilities 
for each Zi. 

(iii)===?(ii): This is trivial in view of the existence of the algebraic closure. 
(ii)===?(i): Suppose dim(I) = d > O. W.l.o.g., we may assume that 

{Xl' ... ' Xd} is maximally independent modulo I. Then I extends to a 
prime ideal J which is disjoint from the multiplicative set K[XI , ... , XdJ. 
By Lemma 7.52, every (Zl, ... , Zd) E Ld with the possible exception of the 
zeroes of a polynomial 0 =f p E K[XI , ... , XdJ can be extended to a zero of 
J and thus of I. By Lemma 7.50, there are infinitely many possibilities. 0 

The argument of (i)===?(iii) in the proof above can actually be refined to 
obtain an estimate on the number of zeroes of a zero-dimensional ideal. If, 
for 1 :::; i :::; n, we find that 0 =f Ii E InK[Xi], then by Corollary 2.97, Ii can 
have at most mi = deg(li) many different zeroes in any extension field K' 
of K. So there are at most m = ml . ... . mn possibilities for simultaneous 
zeroes of II, ... , fn in (K')n, and we have proved the following corollary. 

Corollary 8.28 Let K' be an extension field of K. If dim(I) = 0 and 
m = ml ..... m n, where for 1 :::; i :::; n, 

mi = min{ deg(li) I 0 =f Ii E In K[XiJ }, 

then I has at most m different zeroes in (K')n. 0 

Let us now compare this result to the upper bound for dimK(K[Xl!I) 
of Corollary 6.55. We fix a term order :::; and consider a Grabner basis 
G of I w.r.t. :::;. Corollary 6.55 tells us that dimK(K[Xl!I) :::; v where 
v = VI • ••• . Vn with 

Vi = min{JLi I xt i E HT(G)} 

for 1 :::; i :::; n. Now every 0 =f f E In K[XiJ is reducible modulo the Grob
ner basis G of I, and so we must have Vi :::; mi for 1 :::; i :::; n, where mi is 
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defined as in the corollary above. It follows that v ~ m, i.e., our bound m 
for the number of zeroes of I is worse in general than the bound v for the 
vector space dimension of K[X]/I. 

Our goal in this section is to prove that the number of zeroes of a zero
dimensional ideal I is actually less than or equal to the better bound 
dimK(K[ X]/ I), and that equality holds in case K is perfect and I is a 
radical ideal. Let us first illustrate the situation with two simple examples. 

Example 8.29 Let I be the ideal Id(G) of Q[X, Y], where 

G = {X2+ y,y2+X}. 

Then G is a Grabner basis w.r.t. every total degree order because the head 
terms X2 and y2 are disjoint. We see that v = 4, and the dimension of 
Q[X, Y]/ I actually equals 4 in this case because the univariate head terms 
are the only ones, and thus the canonical term basis consists of the residue 
classes of 1, X, Y, and XY. It is easy to compute by hand Grabner bases 
of I w.r.t. the two lexicographical orders, and this produces the univariate 
polynomials fx = X 4 + X and fy = y4 + Y of minimal degree. These are 
easily factored, and we see that each of them has the zeroes 

This leaves us with m = 16 possible combinations for simultaneous zeroes 
of fx and /y. But substitution into G shows that only (Zl, Zl), (Z2, Z2), 
(za, Z4), and (Z4, za) are zeroes of I, and we see that the number of zeroes 
equals diII1Q(Q[X, Y]/ I). 

Exercise 8.30 Let I be the ideal Id(G) of Q[X, YJ, where 

G = {X2 + y2 + 1,y2 +2X}. 

Explain why G is a Grabner basis w.r.t. the total degree-lexicographical order. 
Show that here, the number of zeroes of I is strictly less than dilllQ(Q[X, YJ/I). 

Exercise 8.31 Show that the number of zeroes of a zero-dimensional ideal, the 
bound v, and the bound m as defined above may all coincide. (Hint: Consider a 
set of n irreducible univariate polynomials, one in each variable.) 

In the proof of the following theorem, we will once again make use of 
the fact that for any proper ideal I of K[X], the canonical homomorphism 
from K[X] to K[X]/I becomes injective when restricted to K, and that 
we may thus identify a E K with a+I and view K as a subfield of K[X]/I. 

Theorem 8.32 Assume that dim(I) = 0, and let L be an algebraically 
closed extension field of K. Then the number of zeroes of I in L n is less 
than or equal to the vector space dimension dimK(K[X]/I). If K is perfect 
and I is a radical ideal, then equality holds. 
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Proof Let G be a Grobner basis of I w.r.t. any term order, and let J be the 
ideal generated by G in L[X]. Since the set of zeroes of an ideal obviously 
equals the set of zeroes of any basis of that ideal, I and J have exactly 
the same zeroes in Ln. Moreover, G is a Grobner basis of J by Corollary 
5.51 (i). It follows that the set of reduced terms is the same w.r.t. I and J, 
and we see from Proposition 6.52 that the canonical term bases of K[ X]j I 
and L[X]IJ have the same number of elements, i.e., 

Moreover, if I is radical and K is perfect, then J is again radical by Lemma 
8.15. All this together shows that we may assume w.l.o.g. that K = L (and 
thus I = J). 

Let now aI, ... , ak be the different zeroes of I in K n , where 

and set 
10,. = Id(Xl - ail,··· ,Xn - ain) for 1::; i::; k. 

By Lemma 1.116, the map 

'P: K[X] ~ n:=1 K[X]jla; 

I ~ (I + lau- .. , I + lak) 

is a homomorphism of rings with kernel n:=1 10". We claim that 'P is sur
jective. If 

k 

(II + lau· .. ,/k + lak) E IT K[ X JI lap 
i=1 

then Lemma 6.27 together with Lemma 6.28 (iv) provides the existence of 
a polynomial I E n:=1 Ii + 10". It is clear that then 

and we have proved that 'P is indeed surjective. 
Since I E I implies that I vanishes at ai for all 1 ::; i ::; k, we see with 

Lemma 6.28 (iii) that 
k 

I c;;; n fa; = ker('P). 
i=1 

The homomorphism theorem for rings now tells us that the map 

1/J: K[XJ/I ~ n:=IK[XJ/la; 

I + I ~ (I + lau···,f + lak) 
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is a surjective homomorphism of rings. Lemma 6.28 (ii) tells us that every 
f E K[ X 1 is congruent to some constant modulo Ia;. With our under
standing of viewing K as a subfield of K[ X l/ Iai' we thus have 

K[Xl/la• = K for 1::; i::; k, 

and so we may view TI7=1 K[XJlla, as the vector space Kk of Example 
3.2 (ii). It is now straightforward to prove from the definitions of the ring 
and vector space operations in Kk and the definitions of homomorphisms 
of rings and vector spaces that 1/J is in fact a homomorphism of K-vector 
spaces. Since 1/J is surjective and dimK{K k ) = k, we conclude with Lemma 
3.22 (ii) that k ::; dimK{K[ X JI I). 

Finally, assume that I is a radical ideal. To prove that 

k = dimK{K[XJ/1), 

it suffices to show that 1/J is bijective, which, in view of the homomorphism 
theorem, can be inferred from I = n~=l I ai . We have already proved the 
inclusion ~. If f is an element of the intersection on the right-hand side, 
then f vanishes at ai for 1 ::; i ::; k. Since these are all zeroes of I in Kn 
and K is algebraically closed, the Hilbert Nullstellensatz (applied to any 
basis of I) tells us that f E rad( I) = I. D 

Corollary 8.33 Let K be perfect. If dim{I) = 0 and L is an algebraically 
closed extension field of K, then the number of zeroes of I in L n equals 
dimK (K[ X l/rad{I)). 

Proof It is immediate from the definition of the radical that I and rad(1) 
have the same zeroes in any extension field of K. Moreover, we have already 
noted (Exercise 4.14) that rad(I) is a radical ideal. The claim is now an 
easy consequence of the theorem. D 

The condition that K is perfect is in fact equivalent to the statement 
concerning the number of zeroes of the radical: if K is not perfect, then 
there exists a univariate irreducible polynomial f over K with multiple 
zeroes in K, and we see that Id(f) is a maximal ideal with less than deg(f) 
many different zeroes in K, while dimK{K[XJ/Id(f)) = deg(f). 

Exercise 8.34 Explain why the ideal I of Example 8.29 had exactly four differ
ent zeroes, and why it was possible for the ideal I of Exercise 8.30 to have less 
than four zeroes. 

8.4 Primary Ideals 

In order to explain what this section is all about, let us once again consider 
a proper, non-trivial ideal I in a PID R, e.g., a univariate polynomial ring 
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over a field. Then I is generated by a non-zero non-unit a E R which has 
a unique prime factor decomposition 

where PI, ... , Pr E R are irreducible and pairwise non-associated, and 
u E R is a unit. By Proposition 1.89, 

r 

1= aR = npr'R, 
i=l 

and one easily proves that each ideal occurring in the intersection on the 
right-hand side has the following characteristic properties: whenever 

be E pro R and b ¢: pro R, 

then c'-' E pr'R for some J.L E N, and whenever b is an element of the 
prime ideal PiR, then bll, E pro R. These considerations do not apply to 
multivariate polynomial ideals because multivariate polynomial rings are 
not PID's. Our aim in this section and the next is to prove that nevertheless, 
the possibility of decomposing an ideal in the above manner belongs to those 
properties of univariate polynomial rings that carryover to the multivariate 
case, and, moreover, even to any noetherian ring. 

Recall that by our understanding, a ring is always a commutative ring 
with unity. 

Definition 8.35 An ideal Q of a ring R is called primary if it is proper 
and satisfies the following condition: whenever ab E Q and a ¢: Q, then 
bll E Q for some II E N. 

It is clear that every prime ideal is primary, but the following examples 
show that the converse is not true. 

Example 8.36 If R is a UFD and Q = pll R for some irreducible pER 
and some II E N+, then, using the unique prime factor decomposition, it is 
easy to see that Q is primary. Here, Q is not prime unless II = 1. 

If R is a PID, then {O} and the proper ideals of the type pll R with 
irreducible p are the only primary ideals: as soon as the generator a of 
a proper non-trivial ideal has two non-associated prime factors, we can 
write a = be with non-units b and c that have no prime factor in common. 
Then b is not in aR because it is a proper divisor of a, and no power of 
c is a multiple of a because taking powers cannot make the missing prime 
factor(s) show up. 

Example 8.37 For an example of a non-principal primary ideal, let K be 
a field, R = K[X, Y], and Q = Id(X2, XY, y2). An easy way to figure out 
what such an ideal looks like is as follows. Firstly, a set M of monomials 
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is always a Grobner basis (Corollary 5.49). Moreover, a reduction step 
modulo M does not change any terms other than the one it is eliminating, 
and so a polynomial is in Id(M) if and only if each of its terms is reducible 
modulo M. We see that here, Q consists of all those polynomials whose 
constant and linear coefficients are 0. Now if Ig E Q and I ~ Q, then I has 
a non-zero linear or constant coefficient. For Ig to be in Q, the constant 
coefficient of g must be 0, and so g2 E Q. Q is not prime since XY E Q 
but X, Y ~ Q. It is easy to make up similar examples using monomials of 
higher degree. 

Note that in the examples above, there is a uniform bound for the ex
ponent v occurring in the definition of a primary ideal. We will see shortly 
that this is in fact true whenever R is noetherian. 

Lemma 8.38 Let Q be a primary ideal of a ring R, and let P = rad(Q), 
i.e., 

P = {a E R I aV E Q for some v EN}. 

Then P is a prime ideal of R with Q ~ P. 

Proof We already know that P = rad(Q) is an ideal with Q ~ P. To see 
that P is prime in this case, we first note that P is proper since 1 E P 
would imply 1 E Q. Now assume that ab E P, and let v E N with (ab)V = 
aVbv E Q. Then either aV E Q, in which case a E P, or (bV)1l = bV+1l E Q 
for some J.I. EN, which implies that b E P. 0 

If Q is a primary ideal of a ring R, then the ideal P of the lemma above 
is called the associated prime ideal of Q. Using the unique prime factor 
decomposition, one easily sees that in Example 8.36, the associated prime 
ideal of Q = pV R is P = pRo We see that for fixed irreducible pER, 
the primary ideals pV R, which obviously form a chain, all share pR as 
their associated prime ideal. If R is a PID, then, in view of the remarks 
following Example 8.36, this is a complete description of primary ideals 
and associated primes. If R is not a PID, worse things can happen: two 
primary ideals may share the same associated prime although they are not 
contained one in the other either way. 

Example 8.39 Consider the ideal Ql = Id(X2, XY, y2) of Example 8.37, 
and let P be the associated prime. If I E R has a non-zero constant coef
ficient, then the same is true for every power of I, and so I ~ Pi on the 
other hand, as soon as I has constant coefficient 0, then P E Ql and thus 
IE P. We have proved that P = Id(X, Y). Now consider the ideals 

Q2 = Id(X2, Y) and Q3 = Id(X, y2). 

It is not hard to prove by the same reasoning as for Ql that both Q2 and 
Q3 are primary with associated prime P, and we have the situation 
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with both inclusions being proper, neither Q2 ~ Qa nor Qa ~ Q2, and 
everything properly contained in the common associated prime ideal P. 
However, if we consider Q 4 = Q2 n Qa, then it is easy to see that 

and that this is once again a primary ideal with associated prime P. We 
thus have the situation 

with all inclusions being proper, Q4 = Q2 n Qa, and everything properly 
contained in the common associated prime P. 

The next lemma shows that what happened in the example above was 
no coincidence. 

Lemma 8.40 If Ql and Q2 are primary ideals with the same associated 
prime ideal P, then Q = Ql nQ2 is again primary with associated prime P. 

Proof If ab E Q and a rt Q, then ab E Qi for i = I, 2, and at least one 
of art Ql and a rt Q2 holds, say a rt Ql. It follows that bIJ E Ql for some 
v E N and so b E P because P is the associated prime of Ql. Since P is also 
the associated prime of Q2, we must have bll- E Q2 for some IL EN, and we 
see that bmax(II,Il-) E Q. Now let pI be the associated prime of Q. If a E P, 
then a" E Ql and all- E Q2 for certain IL, v E N, and thus amax(IJ,Il-) E Q. 
This shows that a E P'. Conversely, if a E pI, then some power of a lies in 
Q and thus in both Ql and Q2, which means that a E P. We have proved 
that P = P'. 0 

It is clear from the definitions that if Ql and Q2 are primary ideals 
with associated primes Pl and P2, respectively, then Ql ~ Q2 implies that 
Pl ~ P2. Example 8.39 provides ample evidence that properness of the first 
inclusion does not imply properness of the second. Example 8.39 also shows 
that Pl ~ P2 does not in general imply Ql ~ Q2: we had the situation 
Pl = P2 with no inclusion between Ql and Q2. The next example shows 
how we can have a proper inclusion Pl ~ P2 between the associated primes 
without having Ql ~ Q2. The example also shows that the intersection of 
Ql and Q2 is then not necessarily primary. 

Example 8.41 Let R again be a polynomial ring in the variables X and 
Y over a field. Consider the following primary ideals Ql and Q2 with asso
ciated primes Pl and P2 : 

Ql = Id(X), Q2 = Id(X2, Y), 
Pl = Id(X), P2 = Id(X, Y). 
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Then clearly PI ~ P2 but not QI ~ Q2. QI consists of all polynomials that 
have a zero coefficient on 1 and all powers of Y, while Q2 consists of all 
those that have a zero coefficient on 1 and X. The intersection of QI and 
Q2 thus consists of all polynomials where the coefficients of 1, X, and all 
powers of Y are 0, and we see that 

QI n Q2 = Id(X) n Id(X2, Y) = Id(X2, XY). 

This latter ideal is not itself primary because it contains XY but neither 
X nor any power of Y. 

Exercise 8.42 Make up an example of two non-prime primary ideals that are 
not contained one in the other either way but have associated primes one of which 
is contained in the other. (Hint: Raise the powers of X in the previous example.) 

If K is a perfect field and I is a zero-dimensional ideal of a polynomial 
ring over K, then Proposition 8.26 states that there is a natural number J.l 
such that the J.lth ideal power ofrad(I) is contained in I. The next proposi
tion shows that this is in fact true for every ideal in a noetherian ring. (The 
point of Proposition 8.26 was that such a natural number could be obtained 
by means of Grabner basis computations and squarefree decompositions.) 

Proposition 8.43 Let R be a ring and I an ideal of R with radical J. If 
J has a finite basis, then there exists v E N with Id(JV) ~ I. 

Proof Let B = {bI, ... , bm} be a finite basis of J. Then there exist VI, 

... , Vm E N with WEI for 1 ~ i ~ m. Set 

m 

V = 1 + L(Vi - 1). 
i=l 

According to Exercise 8.1, the ideal JV is generated by the set 

B V = { al ..... av I aj E B for 1 ~ j ~ v}. 

If we look at any element of this set, then by the choice of v, there must 
be 1 ~ i ~ m such that bi occurs more than Vi - 1 times among the aj. We 
see that BV ~ I and hence Id(JV) ~ I. 0 

If I is an ideal with radical J and there exists v E N with Id(JV) ~ I, 
then the least v E N with this property is called the exponent of the 
ideal I. It is clear that Id(JIL) S;;; I then holds for all J.l ~ v. Although 
its definition pertains to arbitrary ideals, the concept of the exponent is 
relevant mostly for primary ideals. Note that the exponent of a primary 
ideal-if it exists at all-is necessarily positive because primary ideals are 
proper by definition. If R is a noetherian ring, then by the proposition 
above, every primary ideal Q has an exponent v. We then have the two 
inclusions 

Q S;;; P and Id(PV) ~ Q, 

where P is the associated prime. 
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Corollary 8.44 Let Q be a primary ideal of a ring R, and assume that Q 
has an exponent v EN. Then ab E Q and a f/. Q implies bll E Q. 

Proof Let P be the associated prime ideal of Q. If ab E Q and a f/. Q, 
then lI' E Q for some J.L E N, hence b E P and so bll E Id(PII) ~ Q. 0 

The following corollary is immediate from Proposition 8.26 and the def
inition of the exponent. 

Corollary 8.45 If K is a perfect field and I is a zero-dimensional ideal of 
a polynomial ring over K, then the exponent of I is less than or equal to 
the univariate exponent 0/ I. 0 

We will demonstrate below that the inequality of the corollary may be 
strict. 

If Q is an ideal of the form pll R with p irreducible in the UFD R, then we 
already know that the associated prime P is pR, and we see that here, the 
exponent of Q is v, and we even have Id(PII ) = Q. If R is even a PID, then 
every prime ideal is of the form pR, and the primary ideals are precisely 
the powers of prime ideals. 

The general situation for primary ideals is much more unpleasant, even 
if we restrict ourselves to polynomial rings over fields. First of all, Example 
8.39 shows that if v is the exponent of Q, then the inclusion Id(PII) ~ Q will 
in general be proper: here, the ideals QI-Q3 all have exponent 2, and Q4 
has exponent 3. We have Id(P2) = Ql, while the inclusions Id(P2) ~ Qi 
are proper for i = 2, 3, and so is the inclusion Id(P3) ~ Q4. Note that 
Corollary 8.45 applies to QI-Q4. We see that the univariate exponent is not 
in general equal to the exponent; it may come out greater than necessary 
for the inclusion Id(PII) ~ Q. 

univariate exponent 
exponent 

3 2 2 3 
222 3 

We will now show that in polynomial rings over a field the following 
holds: whenever the inclusion Id(PII ) ~ Q is proper for the exponent v and 
associated prime P of Q (which may happen as we just saw), then Q is not 
equal to an ideal power of a prime ideal at all. To this end, we need the 
following lemma. 

Lemma 8.46 Let K[X] be a polynomial ring over a field K. Then the 
following hold: 

(i) If I is a proper ideal of K[X], then dim (I) = dim(Id(III» for all 
vEN+. 

(ii) If Q is a primary ideal of K[ X] with associated prime P, then 
dim(Q) = dim(P). 
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Proof (i) The inequality "~" follows from the inclusion Id(JV) ~ Id(I). 
For the reverse inequality, we prove that every subset {Ul. ... , Ur } of 
{Xl. ... , Xn} that is independent modulo Id(JV) is independent modulo 
I. If {Ul , ... , Ur } is dependent modulo I, then there exists a non-zero 
polynomial 1 E In K[ U], which implies 

r E Id(JV) n K[ U], 

and so {Ul , ... , Ur } is dependent modulo Id(JV). Statement (ii) is proved 
in a very similar manner, using Q ~ P and the definition of P as the 
associated prime. 0 

To prove the claim preceding the lemma, let Q be a primary ideal of 
K[ X 1 and assume that the inclusion Id(PV) ~ Q is proper for the exponent 
v and associated prime P of Q. Suppose Q = Id(Pf) for some prime ideal 
Pl and J.L EN. Then 

Id(Pf) = Q ~ P, 

from which it is easy to conclude that Pl ~ P. By the lemma above, the 
dimensions of all ideals in question agree, and so Pl = P by Lemma 7.57. 
But from the fact that Id(PV) was properly contained in Q, it is easy to 
conclude that no power of P equals Q. 

Finally, we demonstrate that it is not even true in general in multivariate 
polynomial rings that an ideal power of a prime ideal is primary. 

Example 8.47 Let K be a field, £ = K(T) the rational function field 
in the variable T over K, and let G be the subset {ft, 12, h.J4, 15} of 
K[X, Y, Z], where 

ft=XZ_y2, 12=X3 -yZ, h=X2Y_Z2, 

14 = y5 - Z4, 15 = Xy3 - Z3. 

Let a = (T3 ,T4 ,T5) E £3. We claim that 

Id(G) = {p E K[X, Y, Zll p(a) = o}. 

The inclusion "~" is easily verified. Now let p E K[X, Y, Zl with p(a) = O. 
Let ~ be the lexicographical term order on T(X, Y, Z), where X:» Y :» Z. 
It is true that G is a Grabner basis w.r.t. ~, but even without knowing 
that, we may consider a normal form r of p modulo G. Then the terms 
of r must be among 1, X, X 2, Y, y2, y 3, y4, XY, XY2, and yiZi for 
o ::; i ::; 4 and j E N. If we substitute a into each of these terms, then we 
obtain a set of powers of T with pairwise different exponents. Because of 
the inclusion "~" of (*) and the fact that 

r =. p mod Id(G), 

we have r(a) = 0, and we may conclude that r = O. From the equality (*) 
it now follows that P = Id( G) is prime: if a product of two polynomials 
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vanishes at some point, then at least one of the factors must vanish there. 
The product 

(X5 - 3X2y Z + Xy3 + Z3)X = fi + fd3 

lies in Id(P2). The first factor is not in Id(P2) because a polynomial in 
Id(P2) cannot have a term of total degree less than 4, and no power of 
the second factor lies in Id(P2) because X does not vanish at a. We have 
proved that the ideal square Id(P2) of the prime ideal P is not primary. 

Note that the ideal P of the example above was not zero-dimensional. 
We will soon see that in polynomial rings over a field, ideal powers of 
zero-dimensional prime ideals are indeed always primary. This will come 
out of the following discussion of some properties that are shared by those 
primary ideals of a noetherian ring whose associated prime is maximal. 
Examples are all zero-dimensional primary ideals of a polynomial ring over 
a field: their associated primes are maximal because they are prime and 
zero-dimensional (Lemma 6.49 and Proposition 7.42). Note that we have 
actually encountered this situation: we have seen several primary ideals in 
K[X, Y] whose associated prime is the zero-dimensional ideal Id(X, Y). 

Lemma 8.48 Let R be a noetherian ring, I a proper ideal of R, and P a 
prime ideal of R. Then the following are equivalent: 

(i) I ~ P, and P is the only prime ideal that contains I. 

(ii) P is maximal, and I is primary with associated prime P. 

(iii) P is maximal, and Id(PV) ~ I for some v E N. 

Proof (i)===?(ii): I is contained in some maximal ideal (Lemma 4.9) which 
must equal P because it is prime. Now let ab E I with a ¢ I. Then the 
ideal Id(I, b) is proper, because otherwise we would have 1 = s + rb with 
s E I and r E R and thus 

a = as + rab E I. 

The proper ideal Id(I, b) extends to a maximal ideal pI which must equal 
P because it contains I, and so bE P. On the other hand, P equals rad(I) 
because the latter is the intersection of all prime ideals containing I. We 
see that bV E I for some v E N. 

(ii)===?(iii): Take for v the exponent of I. 
(iii)===?(i): I is contained in some maximal ideal, and hence in some prime 

ideal. Let pI be any such ideal, i.e., pI is a prime ideal with I ~ P'. We 
then have 

PV~I~pI. 

One easily concludes that P ~ pI, and so P = pI by the maximality of P. 
o 
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A primary ideal whose associated prime is maximal is called monadic. 
A monadic primary ideal Q thus satisfies the equivalent conditions of the 
lemma above with its associated prime taken for P. In the discussion pre
ceding the lemma, we have proved the following. 

Lemma 8.49 Every zero-dimensional primary ideal of a polynomial ring 
over a field is monadic. 0 

The following proposition is an immediate consequence of the implication 
"(iii)==}(ii)" of Lemma 8.48, applied with P maximal and I = Id(PV). 

Proposition 8.50 Let R be a noetherian ring, P a maximal ideal of R, 
and v E N+. Then Id(PV) is a monadic primary ideal with associated prime 
P. In particular, all proper ideal powers of a zero-dimensional prime ideal P 
of a polynomial ring over a field are monadic primary ideals with associated 
prime P. 0 

We can now summarize our knowledge about primary ideals and asso
ciated primes in polynomial rings over fields as follows. In the univariate 
case, the primary ideals come in descending chains {Id(pV)}vEN+, with ir
reducible p. The top element Id(p) is the associated prime of each element 
of the chain. Every primary ideal is thus an ideal power of a prime ideal, 
and every ideal power of a prime ideal is primary. In the multivariate case, 
the following pathologies are possible. 

(i) Two primary ideals that are not contained one in the other either 
way may share the same associated prime. Their intersection is then 
again primary with the same associated prime. 

(ii) Two primary ideals with no inclusion between them may also have 
associated primes one of which is properly contained in the other. We 
will see in the next section that in this case, the intersection of the 
two primary ideals is not primary. 

(iii) Not every primary ideal is an ideal power of a prime ideal, and for 
dimensions greater than zero, not every ideal power of a prime ideal 
is primary. 

8.5 Primary Decomposition in Noetherian Rings 

An ideal I of a ring R is called reducible if there exist ideals It and h of 
R such that 

I = It n I2 and I1,I2 =1= I, 

irreducible otherwise. Obvious examples of irreducible ideals are all max
imal ideals and R itself; for examples of reducible ones, read the first para
graph of the previous section. 
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Lemma 8.51 Let R be a noetherian ring. Then every ideal I of R is an 
intersection of finitely many irreducible ideals, i.e., there exist irreducible 
ideals h, ... , Ir of R with 

Proof Let N be the set of all those ideals of R that can not be written 
as an intersection of finitely many irreducible ideals, and assume for a 
contradiction that N =I- 0. Every I E N is reducible, for otherwise I itself 
would be the desired intersection. This means that there exist ideals II and 
12, both different from I, with 1= hnI2. Now at least one of h and 12 must 
be in N, because otherwise we could easily arrive at a representation of I as 
an intersection of irreducible ideals by concatenating the representations of 
hand 12 • What we have proved is that for each IE N, there exists J E N 
such that I is properly contained in J. Now if we define, for I EN, 

NI = {J E N I I C; J, I =I- J}, 

then the axiom of choice provides a function 

F : N --+ U NI C; N 
lEN 

with F(I) E NI for all I E N. The sequence {In}nEN defined by 10 E N 
arbitrary and In+l = F(In) is now a strictly ascending chain of ideals in 
R, which, in view of Lemma 4.5, contradicts the fact that R is noetherian. 
o 

Lemma 8.52 Every proper irreducible ideal of a noetherian ring R is pri
mary. 

Proof Suppose the proper ideal I of R is not primary. We show that I is 
reducible. Let a, b E R with ab E I, a ¢ I, and bV ¢ I for all v E N. By 
Lemma 6.36, there exists J.L E N with 

I : bl-' = I : bI-'+1. 

We claim that 
1= Id(I, a) n Id(I, bl-'), 

and that I is properly contained in each of the two ideals on the right-hand 
side. This latter claim is immediate from the fact that a, bl-' ¢ I. To see 
that the equality above holds, we first note that the inclusion "c;" is trivial. 
Now let c be an element of the intersection on the right. Then there exist 
81> 82 E I and tl, t2 E R with 



360 8. Decomposition, Radical, and Zeroes of Ideals 

'It follows that 
s2b + t21J1l+! = sIb + tlab E I, 

and so t2blS+! E I, meaning that t2 E I : bIS+!. By the choice of J-L, we have 
t2 E I : bIS, so that actually t2b1S E I, and we see that eEl. 0 

From the last two lemmas, we conclude immediately that every proper 
ideal of a noetherian ring R has a representation as a finite intersection of 
primary ideals. In order to have some sort of uniqueness property, however, 
we must try to obtain a representation that is in some sense minimal. So 
assume that I is an ideal of the noetherian ring R, and let 

i=l 

be any representation of I as an intersection of primary ideals. First of 
all, it could be that there is an ideal Qi occurring in the intersection that 
contains the intersection of the rest and may thus be dropped. To see how 
this can happen in a non-trivial way, consider the intersection 

Id(X2, XY) = Id(X) n Id(X2, Y) 

in K[X, Y] of Example 8.41. If we throw in the primary ideal Id(y2), then 
we obtain 

Id(Xy2) = Id(y2) n Id(X) n Id(X2, Y), 

and we see that Id(X2, Y) is now superfluous in the intersection. In order 
to "minimize" the representation (*), we may thus, in a first step, do the 
following as long as possible: pick an ideal occurring in the intersection that 
contains the intersection of the rest, and drop it. 

This done, we now look for pairs Qj, Qk with j =1= k of ideals occurring 
in the intersection that have the same associated prime ideal. To see that 
this may still be the case, simply look at the intersection 

Id(X2, y2) = Id(X2, Y) n Id(X, y2) 

of Example 8.39. According to Lemma 8.40, the intersection QinQj is now 
again primary with the same associated prime ideal. We may thus, as long 
as it is possible, find such pairs in the intersection (*) and replace them by 
their intersection. What we obtain is an intersection in which all primary 
ideals and all associated primes are pairwise different. 

Two questions arise naturally at this point. Firstly, is it possible that 
after performing the second step, we can go back to the first one and drop 
a redundant primary ideal from the intersection? The answer is no for a 
rather trivial set-theoretic reason. Assume for a contradiction that after 
replacing a pair Qj, Qk of primary ideals with associated prime P by the 
intersection Q = Qj n Qk, there is an ideal occt'lrring in the intersection 

r 

Qn n Qi 
i=l i:j!j,k 
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that is redundant, i.e., contains the intersection of the rest. If this ideal is 
Qi for some i =I j, k, then it was redundant before the replacement, and if 
it is Q, then both Qj and Qk were redundant before the replacement. 

The second, more interesting question is whether after performing the 
second step, it is possible to have a finite set of ideals occurring in the 
intersection (*) whose intersection is again primary, so that a replacement 
similar to the ones of step two could be made. The following lemma says 
that the answer is no. 

Lemma 8.53 Let 2 ~ r E N, and let Qb ... , Qr be primary ideals of a ring 
R such that the associated prime ideals of the Qi are pairwise different, and 
none of the Qi contains the intersection of the rest. Then the intersection 

r 

is not primary. 

Proof For 1 ~ i ~ r, we let Pi be the associated prime of Qi. Assume 
w.l.o.g. that PI is minimal w.r.t. inclusion among the Pi. Then there exist 
a2, ... , ar E R with 

Some power of ai lies in Qi for 2 ~ i ~ r, meaning there are J.Li E N 
with ar' E Qi for 2 ~ i ~ r. The inclusion I ~ QI must be proper since 
otherwise every Qi other than QI would contain the intersection of the 
rest. Let a E QI \ I, and consider the product 

r 

a· (a~2 ..... a~r) E n Qi = I. 
i=I 

The first factor a is not in I, and no power of the second can be in I either, 
for otherwise there would be v E N with 

and so ai E PI for some 2 ~ i ~ r, a contradiction. 0 
The lemma above is actually a step towards a uniqueness theorem. For 

the moment, we note that we have proved the following existence theorem. 

Theorem 8.54 (PRIMARY DECOMPOSITION-ExISTENCE) If R is a noe
therian ring and I is a proper ideal of R, then there exist primary ideals 
Ql, ... , Qr of R such that 

(i) I = n~=1 Qi, 

(ii) none of the Qi contains the intersection of the rest, and 



362 8. Decomposition, Radical, and Zeroes of Ideals 

(iii) the associated prime ideals of the Qi are pairwise different. 0 

Representations as described in the theorem are called primary decom
positions. Any primary ideal that occurs in a primary decomposition of 
an ideal I is called a primary component of I. A trivial but important 
observation that should be kept in mind is that whenever Q is a primary 
component of I, then I is contained in Q, which in turn is contained in its 
associated prime P: 

r 

I=nQ·CQ'CP' • - J - J (1 :S j :S r) . 
.=1 

If R is a PID, then it is clear from the uniqueness of the prime factor 
decomposition that the primary decomposition of a proper non-trivial ideal 
aR is-up to order-uniquely determined to be the decomposition 

r 

aR = npr'R 
i=1 

as described at the beginning of the previous section. In a multivariate 
polynomial ring, things are once again less smooth. To see how, consider 
the decomposition 

Id(X2,XY) = Id(X) n Id(X2, Y) 

of Example 8.41. The reader should have no trouble by now verifying that 

Id(X2,XY) = Id(X) n Id(X2,XY, y2) 

is another primary decomposition ofId(X2, XY). Note, however, that the 
number of primary ideals is 2 and the associated primes are Id(X) and 
Id(X, Y) for both representations. The following first uniqueness theorem 
says that this was no coincidence. Note that the definition of primary de
compositions was not tied to R being noetherian. 

Theorem 8.55 (PRIMARY DECOMPOSITION-UNIQUENESS 1) Any two 
primary decompositions of an ideal I of a ring R have the same number of 
components and the same set of associated primes. 

Proof Let QI, ... , Qr, Q~, ... , Q~ be primary ideals of R with associated 
primes PI. ... , Pr , P{, ... , P;, respectively, and suppose 

r 8 

1= nQi = nQj 
i=1 j=1 

are primary decompositions. We proceed by induction on r. If r = 1, then 
Q1 is primary, and it follows that s = 1 and thus QI = Q~ and PI = P{, 
because otherwise we would be contradicting Lemma 8.53. 
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Now let r > 1. Among the finitely many ideals Pl, ... , Pn P{, ... , P~, 
there must be one that is maximal w.r.t. inclusion. We claim that this ideal 
must occur on both sides, i.e., it must be among the Pi as well as among the 
Pj. Assume w.l.o.g. that Pl is the ideal in question. We are thus claiming 
that Pl must equal one of the Pj. Assume for a contradiction that this 
were not so. What we we are going to show is that then Ql can be dropped 
from the first intersection, contradicting one of the properties of a primary 
decomposition. In other words, we are claiming that now 

r s 

nQi = nQj· 
i=2 j=l 

The inclusion ";2" being trivial, let a be an element of the left-hand side, 
and let 1 :::; j :::; s. By our assumption on P l we can find bj such that 
bj E Pl \ Pj. Because of bj E Pl, there exists 1/ E N with bj E Qb whence 

r 

abj E nQi ~ Qj. 
i=l 

We may now conclude that a E Qj, for otherwise some power of bj and 
thus of bj would have to lie in Qj, which is not the case because of bj cj. Pj. 

We may now assume w.l.o.g. that P l = P{, and we claim that 

r s 

nQi = nQj, 
i=2 j=2 

which finishes the proof in view of the induction hypothesis. Because of the 
symmetry of the problem, it suffices to prove one inclusion. Let a be an 
element of the left-hand side, and let 2 :::; j :::; s. We know that P{ f:. Pj for 
2 :::; j :::; s, and that Pl = P{ is maximal w.r.t. inclusion among all prime 
ideals occurring. It follows that there exists bj E Pl \ Pj, and we may now 
argue literally as before to conclude that a E Qj. 0 

On the basis of the first uniqueness theorem, we may now state the 
following definition. A primary component of an ideal I is called isolated 
if its associated prime does not properly contain the associated prime of 
some other primary component of I, embedded otherwise. The associated 
prime ideal of an embedded primary is sometimes also called isolated, and 
the same goes for the embedded case. The choice of the terminology reflects 
a geometric point of view: if R is a polynomial ring over a field, then the 
inclusion Pl ~ P2 between prime ideals is equivalent to the variety of P2 

being contained in the variety of Pl (cf. the alternate version of the Hilbert 
Nullstellensatz on p. 313). 

We see that in the decomposition 

Id(X2, XY) = Id(X) n Id(X2, Y) 
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which we have mentioned several times before, the primary component 
Id(X) is isolated, while Id(X2, Y) is embedded: the associated primes are 
Id(X) and Id(X, Y), respectively. To see that there may, at the same time, 
also be isolated primary components whose associated primes do not have 
an embedded one above them (as is the case with Id(X) here), consider 
the example 

where the associated primes are Id(X), Id(X, Y), and Id(Z). 
In the example 

Id(X2, XY) = Id(X) n Id(X2, Y) = Id(X) n Id(X2, XY, y2) 

of a non-unique primary decomposition that we gave preceding the last 
theorem, the primary component that was modified was embedded. The 
second uniqueness theorem states that just as the example suggests, only 
embedded components can be modified in a primary decomposition. 

Theorem 8.56 (PRIMARY DECOMPOSITION-UNIQUENESS 2) Let R be 
a ring, I an ideal of R which posesses a primary decomposition, and P 
the associated prime of some isolated primary component of I. Then there 
exists a primary ideal Q p of R such that in every primary decomposition 
of I, the primary ideal whose associated prime is P equals Qp. 

Proof Let I = Q n n;=l Qi be a primary decomposition, and assume 
that Q is isolated with associated prime P. The claim is trivial if r = O. 
Otherwise, we set M = R \ P, and 

1M = { a E R I am E I for some m EM}. 

We claim that necessarily Q = 1M, which means that Q is uniquely deter
mined by P and I. Let a E Q. Since P and the Pi are pairwise different 
and P is isolated, we may apply Lemma 8.3 with Ii = Qi and Ji = Pi to 
obtain an element 

It follows that 
r 

am E Q n n Qi = I, 
i=l 

and we see that a E 1M. Conversely, suppose a E 1M. Let m E M with 
am E I. Then am E Q, but no power of m can be in Q because m would 
then have to be in P. It follows that a E Q. 0 

Exercise 8.57 Use the primary decomposition in PID's as described at the be
ginning of the previous section to visualize the proof of the proposition above. 
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Exercise 8.58 Let K be a field and I a proper ideal of K[Xl, ... ,Xn]. Show 
that the dimension of I equals the maximum of the dimensions of the associated 
primes of the primary components of I. 

We close this section with an important proposition concerning monadic 
primary components. Note that a monadic primary component of an ideal 
need not be isolated: the component Id(X2, Y) of 

Id(X2, XY) = Id(X) n Id(X2, Y) 

is monadic because its associated prime is the maximal ideal Id(X, Y), 
and it is also embedded because its associated prime Id(X, Y) contains the 
associated prime Id(X) of the primary component Id(X). All we can say is 
that if a primary component is monadic, then its associated prime cannot 
have an embedded one above it, as is the case with Id(X) in the above 
example. 

Proposition 8.59 Let R be a noetherian ring, I a proper ideal of R, and 
Q an isolated monadic primary component of I with associated prime P 
and exponent v EN. Then 

Q = I + Id(PJl) 

for all Jl ~ v, and the exponent v is in fact the least natuml number with 
this property. 

Proof The inclusion "~" is immediate from the inclusions 

For the reverse inclusion, we let 

be a primary decomposition of I. (Q must in fact occur in every primary 
decomposition of I because it is isolated.) If r = 0, then I = Q and the 
claim is trivial. Otherwise, we first note that by "(iii)==>(ii)" of Lemma 
8.48, I + Id(PJl) is primary with associated prime P. Since P and the Pi 
are pairwise different and P is isolated, Lemma 8.3 applies with Ii = Qi 
and Ji = Pi and provides an element 

Now let a E Q. Then 

r 

ab E Qn n Qi = I ~ I + Id(PJl) , 
i=l 
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but no power of b is in I + Id(P{t) because of b ¢ P, and so a E I + Id(P{t). 
To see that v is minimal with the property that we have just proved, let 
J-£ < v. By the definition of v as the exponent of Q, there exists 

a E Id(P{t) \ Q ~ (I + Id(P{t)) \ Q. 0 

A good example to visualize the statement of the proposition is once 
again given by the decomposition 

r 

I =aR= npriR 
i=l 

of a proper non-trivial ideal in a PID as described at the beginning of the 
previous section. Here, every primary component is monadic and isolated 
because of the equivalence of primeness and maximality for ideals of a PID. 
According to the proposition, we must have 

whenever 1 ~ j ~ rand J-£ ~ Vj. It is easy to see from an elementary point 
of view that this is true: the ideal on the right-hand side is generated by 
the gcd of a and Pj, which obviously equals p? . 

For more instances of the proposition, turn to the next section. 

8.6 Primary Decomposition of Zero-Dimensional 
Ideals 

Throughout this section, K will be a field with algebraic closure K, and 
K[X] = K[Xl, ... ,Xn]. Our ultimate goal in this section is to show how 
one may compute the primary decomposition of a zero-dimensional ideal 
of K[ X] for certain K. 

If I is a zero-dimensional ideal of K[ X], then every prime ideal con
taining I is zero-dimensional too and thus maximal. As we have mentioned 
before, it follows that the associated primes of the primary components 
of I are all maximal. We see that here, every primary component of I 
is monadic. For the same reason, I cannot have any embedded primary 
components, so that Proposition 8.59 does in fact apply to every primary 
component of I. By the second uniqueness theorem on the primary de
composition, we may also conclude that primary decompositions of I are 
uniquely determined up to the order of the components. We may thus speak 
of the primary decomposition of I. The next lemma collects this and some 
related information. 

Lemma 8.60 Let I be a zero-dimensional ideal of K[ X]. Then the fol
lowing hold: 
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(i) Any two primary decompositions of 1 differ only by the order of the 
components. 

(ii) Every primary component of 1 is isolated and monadic. 

(iii) If Q is a primary component of I with associated prime P, then 

Q = 1 + Id(PIl), 

where J..L is the exponent of Q. If in addition, K is a perfect field, then 

where a is the univariate exponent of I. 

(iv) Every prime ideal with I ~ P is the associated prime of some primary 
component of 1. 

(v) The primary components of rad(l) are precisely the associated primes 
of the primary components of I. 

(vi) If I is itself radical, then its primary components are precisely the 
prime ideals which it is contained in. 

Proof We have proved (i) and (ii) in the discussion preceding the lemma. 
(iii) The first statement is immediate from (ii) and Proposition 8.59. Now 

assume that K is perfect. Let J..L be the exponent of Q and p its univariate 
exponent. From I ~ Q it follows that for 1 ::; i ::; n, the monic generator 
of Q n K[XiJ divides the monic generator of In K[Xi], and one easily 
concludes that p ::; a. Corollary 8.45 says that J..L ::; p, and the claim is now 
obvious from Proposition 8.59 together with Corollary 8.45. 

(iv) Let I = n~=l Qi be the primary decomposition of 1, and let Pi, 
... , Pr be the associated primes of Ql, ... , Qn respectively. Assume for 
a contradiciton that there exists a prime ideal P with I ~ P tha.t is not 
among the Pi. Since P and the Pi are maximal ideals, it follows that P 
does not contain anyone of the Pi, and Lemma 8.3 applied with Ii = Qi 
and Ji = Pi provides an element 

a contradiction. 
(v) We first recall that the radical of an ideal is always the intersection 

of all prime ideals that contain the ideal. We may conclude that here, 

rad(I) = Pi n ... n Pr 

where Pt, ... , Pr are the different prime ideals that contain I. By (iv) 
above, these are the associated primes of the primary components of I. We 
claim that (*) is the primary decomposition of rad(1). The ideals occurring 
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in the intersection are pairwise different and primary. Moreover, they are 
identical with their associated primes, and Lemma 8.4 now tells us that 
none of them contains the intersection of the rest. 

(vi) This immediate from (iv) and (v). 0 

Exercise 8.61 (i) Prove (vi) of the last lemma directly from Lemma 8.4. 

(ii) Show that the primary components of a zero-dimensional ideal of K[ X 1 
are pairwise comaximal. 

We begin our investigation of how to compute primary decompositions of 
zero-dimensional ideals by discussing a special case, namely, the one where 
the zeroes of the ideal are in the ground field. For a univariate ideal I with 
generator f, this means that the irreducible factors of f are all linear, so 
that there is a one-to-one correspondence between zeroes and primary com
ponents of I. We are going to show that this remains true for multivariate 
ideals. Recall that for a = (aI, ... ,an) E Kn, the corresponding vanishing 
ideal was defined as 

Lemma 8.62 (i) If a E Kn, then Ia is a maximal ideal of K[ X] which 
contains every ideal of which a is a zero. 

(ii) If K is algebraically closed, then every maximal ideal of K[X] is of 
the form Ia. 

Proof (i) We have proved in Lemma 6.28 (iii) that for a E K n , the ideal 
Ia consists of all f E K[X] that vanish at a. Now a product of two 
polynomials in K[ X] vanishes at a given point iff at least one of the factors 
does, and we see that Ia is prime. Clearly, it is also zero-dimensional, and 
thus it is maximal. The second part of the claim is obvious from the fact 
that Ia consists of all those polynomials that vanish at a. 

(ii) Assume that K is algebraically closed, and let M be a maximal ideal 
of K[X]. Being proper, M has a zero a E Kn, and so M ~ Ia. The claim 
now follows from the maximality of M. 0 

Proposition 8.63 Let I be a zero-dimensional ideal of K[ X], and assume 
that a is a zero of I in Kn. Then Ia is the associated prime of some primary 
component Q of I. If the different zeroes aI, ... , a r of I in K' are all in 
K n, then the associated primes of the primary components of I are precisely 
lap ... , I ar · 

Proof To prove the first statement, it suffices by Lemma 8.60 (iv) to show 
that Ia is a prime ideal of K[ X] that contains I, and this is stated in (i) 
of the previous lemma. Now suppose the zeroes of I are all in Kn, and let 
Q be any primary component of I with associated prime P. Then P has 
a zero a in K', which must also be a zero of I. We may conclude that 
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p ~ la, and maximality of P implies that we must actually have equality. 
o 

Combining the last proposition with Lemma 8.60 (iii), we see that the 
primary component Q of 1 that corresponds to the zero a E Kn is given 
by 1 + Id(l1:) , where JL is the exponent of Q. Moreover, if K is perfect, then 
we may replace JL by the univariate exponent of 1, which can be effectively 
found in case K is computable and allows squarefree decomposition of 
univariate polynomials. We will now show that in this special case, where 
Q corresponds to a zero of 1 in Kn, we may use a possibly lower exponent 
whose computation requires no more than univariate polynomial division. 

Lemma 8.64 Let 1 and a = (ab" . ,an) E Kn be as in the proposition, 
and assume that K is perfect. For 1 ~ i ~ n, let Ii be the unique monic 
generator of 1 n K[Xi ]. Set 

n 

V = 1 + ~)Vi - 1), 
i=l 

where for 1 ~ i ~ n, the number Vi is the multiplicity of ai as a zero of Ii
Then the primary component Q of 1 whose associated prime is la equals 
1 + Id(l:;). 

Proof In view of Proposition 8.59, it suffices to prove that the exponent JL 
of Q is less than or equal to v. We claim that the unique monic generator 
of Q n K[Xi] is of the form (Xi - ai)Pi. Indeed, 1 n K[Xi ] contains the 
polynomial Ii that is divided by (Xi -ai)Vi, and 11: contains the polynomial 
(Xi - ai)J.&. Since Q = 1 + Id(l1:) contains the gcd of Ii and (Xi - ai)J.&, the 
unique monic generator of Q n K[Xi] must be of the desired form. From 
1 ~ Q we conclude that (Xi - ai)Pi Iii and thus Pi ~ Vi. But the exponent 
JL of Q is less than or equal to its univariate exponent p, and we get 

n n 

JL ~ P = 1 + L(Pi - 1) ~ 1 + L(Vi - 1) = v. 0 
i=l i=l 

Evaluating the lemma for the case of a univariate ideal, we see that the 
number V of the lemma is in a sense a measure for the multiplicity of a 
as a zero of 1. The lemma and the proposition preceding it show that over 
perfect computable fields, the primary decomposition of zero-dimensional 
ideals can be computed in the (admittedly unlikely) event that the zeroes 
of 1 are known and are all in Kn. 

Exercise 8.65 Find the primary decomposition in JR[X, Y) of the ideal 

Id({y2 _ 2, YX2 +X3 ,X4 _ 2X2}). 
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It should be noted that here, in contrast to the univariate case, specifying 
a zero and its "multiplicity" does not determine the corresponding primary 
component. As an easy example, let us once again consider the two ideals 

11 = Id({X2, y2}) and 12 = ({X2,XY, y2}) 

of Q[X, Y]. Each of these has but one zero which lies in Q. It follows 
that there can be only one primary component, and we have confirmed a 
result of Example 8.39: both 11 and 12 are primary. In both cases, (0,0) 
is a zero with "multiplicity" 3, but the corresponding primary components 
are 11 and 12 themselves, which are clearly different from each other. The 
associated prime is 1(0,0) = Id(X, Y), and we see that the "multipicity" v 
that the previous lemma uses as the exponent may still be greater than 
necessary: 

while 
12 = h + Ito,o) = 12 + Iro,o) = Iro,o)· 

We now turn to the general problem of computing primary decomposi
tions of zero-dimensional ideals. The results of the last four sections suggest 
that zero-dimensional ideals tend to be nicer than arbitrary polynomial ide
als: they often behave very much like univariate polynomial ideals. As an 
example, recall that if K is perfect, then the radical of a zero-dimensional 
ideal is computed by throwing in the squarefree parts of the univariate 
polynomials of minimal degree, just like the radical of a univariate polyno
mial ideal is found by adding in the squarefree part of its generator. This 
suggests that the primary decomposition of a zero-dimensional ideal can be 
found by doing something with the univariate polynomials that resembles 
the construction of the primary decomposition of a univariate ideal as de
scribed at the beginninp; of Section 8.4. The following example shows that 
there cannot be anything obvious along those lines in general. 

Example 8.66 Let K = Q and n = 2. Consider the ideal I that is gener
ated by G = {gl! g2}, where 

gl = xf - 2 and g2 = X~ - 2. 

G is a Grabner basis w.r.t. every term order because the head terms are 
disjoint. We see that the univariate polynomials in I are 91 and 92, both of 
which are irreducible over Q, and so there is nothing that could be done in 
the way of factoring univariate polynomials. According to the conjecture 
above, we would have to conclude that I is primary. We claim that this is 
not true. We first note that 

(Xl + X 2)(X1 - X 2) = xf - X~ = gl - g2 E I. 

The first factor is not in I because it is in normal form w.r.t. G. If any 
power of Xl - X 2 were in I, then every zero (Zl' Z2) of I in an extension 
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field of Q would have to satisfy Zl = Z2. This is not true because the zeroes 
of I are precisely 

(v'2, v'2), (v'2, -v'2), (-v'2, v'2), and (-v'2, -v'2). 

We are actually in a position to give the primary decomposition of I. In 
Exercise 6.22, you proved that 

Using the argument of Example 7.45, one easily verifies that the ideals 
ocurring on the right-hand side are both prime. The two are clearly differ
ent, and we see that I has exactly two primary components, each of which 
is actually prime. 

If a = (al,' .. , an) E Ir and 1 ~ i ~ n, then we will, rather obviously, 
call ai the Xi-component of a. Note that in the example above, neither the 
X 1- nor the X2-components of the zeroes of I in K are pairwise different. 

Definition 8.67 An ideal I of K[ X] is said to be in normal position 
w.r.t. Xi if the Xi-components of the zeroes of I in Ir are pairwise differ
ent. 

We have already encountered an example of an ideal in normal position 
in Example 8.29, where I is in normal position w.r.t. each variable. An 
easy observation which will be used repeatedly is as follows. If I and J are 
ideals of K[X] with I ~ J, then all zeroes of J are zeroes of Ij so if I is in 
normal position w.r.t. some Xi, then so is J. 

The next lemma and proposition show that for ideals that are in normal 
position w.r.t. some variable, the computation of the primary decomposi
tion bears a strong analogy to the univariate case. 

Lemma 8.68 Let I be a zero-dimensional ideal of K[ X] which is in nor
mal position w.r.t. Xl' Assume further that InK[Xd contains a polynomial 
of the form pV with p irreducible and v E N. Then I is primary. 

Proof We may of course assume that p is monic. Let PI be a prime ideal 
of K[X] that contains I. We verify condition (i) of Lemma 8.48. Suppose 
P2 is another prime ideal with I ~ P2 • Then p is in both PI and P2 • Being 
irreducible, p must actually be the unique monic generator of 

and hence it is the univariate polynomial in the prime bases of PI and P2 , 

respectively, whenever X I is the lexicographically least variable. We claim 
that PI and P2 have the same zeroes in Ir. Assume that 

Z = (ZI"",Zn) EIr 
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is a zero of Pl. Then p{zd = 0, and so {zt} extends to a zero 

, ( , ,)-=-=1lK z = Zl, Z2 .•• 'Zn E 

of P2 by Lemma 7.51 (i). Both z and z' are zeroes of I, and so they must 
be equal because I is in normal position w.r.t. Xl. We have proved that z 
is a zero of P2 • Symmetry of the problem implies that every zero of P2 in 
Ir' is a zero of Pl. We may now conclude from Corollary 7.41 or Lemma 
7.56 that PI = P2. 0 

Proposition 8.69 Let I be a zero-dimensional ideal 0/ K[ X 1 which is in 
normal position w. r. t. Xl' Let / be the unique monic univariate polynomial 
in In K[XI ], and let 

/ = pr1 ..... p~r 

with PI, ... , Pr E K[Xd irreducible and pairwise non-associated. Then the 
primary decomposition 0/ I is given by 

r 

I = n Id(I,pr;)· 
i=l 

Proof It is immediate from Lemma 8.5 that I is equal to the indicated 
intersection. We claim that the ideals occurring in the intersection are all 
proper. Assume for a contradiction that 1 E Id(I,p?) for some 1 ::; j ::; r. 
It is easy to see that then 

r 

II pri E Id{I, f) = I, 
i=l 
i#j 

contradicting the choice of /. (Note that this part of the proof does not 
depend on I being in normal position.) Containing I, the ideals occurring in 
the intersection are clearly zero-dimensional and in normal position w.r.t. 
Xl' The previous lemma now tells us that they are all primary. Assume for 
a contradiction that one of them, say Id{I,p?), contains the intersection 
of the rest. Then we have 

r 

p? E Id(I,p?) and IIpri E Id{I,p?). 
i=l 
i#i 

The ideal Id{I,p?) thus contains two univariate polynomials that are rel
atively prime, and so 1 E Id(I,p?), contradicting an earlier conclusion. 

It remains to show that the associated prime ideals Pi of the ideals 
Id{I,pri ) are pairwise different for 1 ::; i ::; r. From Pi = Pi with 1 ::; i < 
j ::; n it would follow that Pi, Pi E Pi, and thus 1 E Pi because Pi and 
Pi are univariate and relatively prime. Again, we obtain the contradiction 
1 E Id(I,pri). 0 
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Note how the statement of the proposition specializes to the now familiar 
univariate primary decomposition when applied with I = Id(f). As a non
trivial application, we can write down the primary decomposition of the 
ideal 1= Id(X2+y, Y2+X) of Example 8.29, which, as we have mentioned 
before, is in normal position w.r.t. both X and Y: 

I Id(I, Y) n Id(I, Y + 1) n Id(I, y2 - Y + 1) 
Id(X, Y) n Id(X + 1, Y + 1) n Id(X + Y - 1, y2 - Y + 1) 

Here, the primary components happen to be all prime, as one easily verifies 
using the criterion of Proposition 7.44 as in Example 7.45. This is of course 
a coincidence. (More precisely, it is because I is a radical ideal.) As a 
matter of fact, when it comes to associated primes, the analogy with the 
univariate case must be taken with a grain of salt: the associated primes Pi 

ofthe primary components Qi = Id{I,p~') are not found by simply setting 
Vi to 1. Rather, Pi has to be computed as what it is, namely, the radical of 
Qi. This is exemplified by the trivial example of Id(X2, y2), which is itself 
primary and has Id(X, Y) as its associated prime. 

The proposition above provides the correctness proof for the algorithm 
of the following theorem. Termination of the algorithm is trivial. Let us 
emphasize once again that an efficient method to compute univariate poly
nomials in zero-dimensional ideals will be given in Proposition 9.6. 

Theorem 8.70 Assume that K is computable and allows effective factor
ization of univariate polynomials. Then the algorithm NORMPRIMDEC 
of Table 8.4 computes, for a given finite subset F of K[ X 1 with Id(F) 
zero-dimensional, a set P of finite subsets of K[ X 1 with 

1= n Id(G) 
GEP 

in such a way that if Id(F) is in normal position w.r.t. Xi, then this is the 
primary decomposition of Id(F). 0 

Exercise 8.71 Let I be the ideal Id(G) of Q[X, Y], where 

G = {X2 + Y + 1,2XY + Y}. 

Show that I is in normal position w.r.t. X but not w.r.t. Y. Compute the primary 
decomposition of I. What happens when you try to apply NORMPRIMDEC 
w.r.t. the "bad variable" Y? 

The results of this section thus far are of course of extremely limited 
practical value, simply because they were proved under the hypothesis of I 
being in normal position. The idea behind our general strategy for finding 
the primary decomposition of a zero-dimensional ideal I is as follows. We 
introduce a new variable Z and try to extend I in such a way that the 
extended ideal is in normal position w.r.t. Z. We can then perform the 
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TABLE 8.4. Algorithm NORMPRlMDEC 

Specification: G - NORMPRIMDEC(F, Xd 
Computation of the primary components of 
a zero-dimensional ideal in normal position 

Given: a finite subset F of K[X] with Id(F) zero-dimensional 
Find: a set P of finite subsets of K[ X] such that Id(F) = nGEP Id( G), 

and this is the primary decomposition of Id(F) if Id(F) is in 
normal position w.r.t. Xi 

begin 
P-0 
f +-- the monic generator of Id(F) n K[Xi ] 

while f is not constant do 

end 

p - an irreducible factor of f 
JL - max{v E N I pVlf} 
f - f/pl'-
P - P U {F U {pIl-} } 

end NORMPRIMDEC 

primary decomposition and retrieve the one of I by means of an elimina
tion process. This idea will encounter difficulties that will call for certain 
refinements. 

Throughout, Z will be a new indeterminate. We will use the obvious 
convention that (al,' .. ,an) E K n is abbreviated by a, and the same goes 
for j("' and other letters of the alphabet. The starting point of the strategy 
that we have just described is the follwoing easy lemma. 

Lemma 8.72 Let I be an ideal of K[ X]. Let c E Kn, set 

g=Z-CIX1-"'-CnXn EK[X,Z], 

and let J be the ideal Id(I,g) of K[X ,Z]. Then the following are equiva
lent: 

(i) Whenever Zt. Z2 E j("' are two different zeroes of I, then 

n n 

L CiZli :f L CiZ2i • 

i=1 t=1 

(ii) The ideal J of K[K,Z] is in normal position w.r.t. Z. 

Proof The equivalence of (i) and (ii) is an easy consequence of the fact 
that the set of zeroes in j("'+l of J is given by 



8.6. Primary Decomposition of Zero-Dimensional Ideals 375 

Before we discuss how the lemma above can be exploited for the com
putation of the primary decomposition, we collect some technical results 
concerning the connection between I and J. 

Lemma 8.73 Let I be an ideal of K[ X]. Let c E Kn, set 

9 = Z - ClXl _ ... - cnXn E K[X, Z], 

and let J be the ideal Id(I,g) of K[X ,Z]. Then the following hold: 

(i) If [ is zero-dimensional, then so is J. 

(ii) J n K[X] = [. 

(iii) If h E K[X ,Z], then 

(iv) If [ is a radical ideal, then so is J. 

(v) Assume that [ is a zero-dimensional radical ideal, and let 

J= Pl n···nPr 

be the primary decomposition of J in K[X , Z]. If we set PI = Pi n 
K[ X] for 1 ::; i ::; r, then 

[=p{n···np~ 

is the primary decomposition of [in K[X]. 

Proof (i) This is immediate from the fact that by the proof of the previous 
lemma, the number of zeroes of I in K n is the same as the number of zeroes 
of J in Kn+1. 

(ii) The inclusion "2" is trivial. Now let f E JnK[X]. Then there exist 
hE I and ql, q2 E K[X ,Z] with f = qlh + q2g. If we set 

then the equation turns into f = Plh with Pl E K[X], and we see that 
f E [. 

(iii) This follows immediately from 

Z == ClXl + ... + cnXn mod Id(g). 

(iv) Let f E K[X ,Z] and v E N with r E J. If we set 

h = f(Xl, .. ,Xn,ClXl + ... + cnXn) E K[X] ~ K[X ,Z], 
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then we have h == f mod Id(g) by (iii). It follows that h" == f" mod Id(g), 
which means that 

h" E (I" + Id(g)) n K[X] ~ (I" + J) n K[X] = J n K[X] = I, 

and thus h E I because I was assumed to be radical. From f E h + Id(g) 
it now follows that f E J. 

(v) In view of (ii), it is clear that 

r r r 

I = J n K[ X] = K[ X] n n Pi = n (J~ n K[ X]) = n PI· 
i=1 £=1 i=1 

We claim that the PI are pairwise different. By (iv) and Lemma 8.60 (vi), 
the Pi are pairwise different zero-dimensional prime ideals and thus pairwise 
different maximal ideals. This means that if 1 :::; i < j :::; r, then there exist 
h E Pi and h E Pi with 1 = h + h. If we set 

Z = CIXI + ... +enXn 

in the equation, then we obtain 1 = gl + g2 with 

gl E (h + Id(g)) n K[X] ~ (h + I'i) n K[X] = Pi n K[X] = PI. 

The same argument shows that g2 E PJ, and we see that indeed PI and 
PJ are different. Lemma 8.4 now tells us that none of the Pi contains the 
intersection of the rest, and we have proved that the PI are the primary 
components of I. 0 

Exercise 8.74 Formulate and prove a statement that generalizes (v) of the 
lemma above to the case where I is not radical. 

Our next goal is to find an n-tuple c E Kn with the property of Lemma 
8.72 for a given zero-dimensional ideal. The following combinatorial lemma 
will enable us to determine a finite subset C of K n which must contain a 
winner. 

Lemma 8.75 Let AI. ... , An be finite subsets of K with IAil :::; mi for 
1 :::; i :::; n. For 2 :::; i :::; n, set 

m~ = mI· .... mi, and k i = (~~). 

Now whenever O2 , ••• , Gn are subsets of K with IGil > ki for 2 :::; i :::; n, 
then there exists (C2, ... ,en) E 02 X ••• X On with the following property: 
for all a, b E Al X ••• x An, 

n n 

a =f b implies al + L Ciai =f b1 + L Cibi • 

i=2 i=2 
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Proof The proof is by induction on n. If n = 1, then the claim is trivial. Let 
n> 1, and suppose G2 , ••• , Gn satisfy the requirement on the cardinalities. 
By induction hypothesis, there exists 

(C2, .. " en-I) E G2 X ... X Gn - l 

such that for all a, b E Al X ••• x An-I, 

n-l n-l 

a -:f b implies al + L Ciai -:f bl + L cibi . 
i=2 i=2 

If a, b E Al X ••• x An with a -:f b, then the linear equation 
n-l n-l 

al + LCiai + Yan = bl + LCibi + Ybn . 

i=2 i=2 

in the unknown Y has at most one solution, namely, 

"n-l b "n-l b Y = al + L...ti-2 Ciai - I - L...ti-2 Ci i 

bn - an 

in case an -:f bn. It is easy to see that there are at most kn such equations. 
The set Gn must thus contain an element en that is not a solution of anyone 
of these equations, and we see that (C2, ... , en) has the required property. 
o 

If Z E ~ is a zero of the zero-dimensional ideal I, then for 1 :$ i :$ n, 
Zi is a zero of the unique monic generator Ii of I n K[Xi ], which in turn 
has at most deg(/i) many different zeroes in K. This observation together 
with the lemma above yields the following result. 

Lemma 8.76 Let I be a zero-dimensional ideal of K[X], and for 1 :$ i :$ 
m, let mi = deg(fi), where Ii is the unique monic polynomial of minimal 
degree in In K[Xi]' For 2 :$ i :$ n, set 

m~ = mI' .... mi, and k i = (~~). 
Then whenever G2 , ••• , Gn are subsets of K with IGil > k i for 2 :$ i :$ n, 
there exists (C2"'" cn ) E G2 X ••• X Gn such that (1, C2, . .. , en) satisfies 
the equivalent conditions of Lemma 8.72. D. 

If K is computable, then given the ideal I, we can clearly determine the 
mi of the lemma. If in addition, K is infinite, then we can of course find 
suitable finite Gi c K. The lemma would thus appear to be constructive. 
The problem is that we can not in general determine which one of the 
finitely many (n - I)-tuples in the Cartesian product of the Gi is good. 
The next proposition and lemma state that the problem can be solved if 
K is perfect and I is a radical ideal. For our proposed strategy to compute 
the primary decomposition, this means that we will have to pass to the 
radical and then find a way to get back to the given ideal. 
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Proposition 8.77 Assume that K is perfect. Let I be a zero-dimensional 
radical ideal oj K[ X], and suppose I is in normal position w. r. t. Xl. Then 
the reduced Grobner basis G oj I w. r. t. any term order satisfyin9 {Xl} « 
{X2' ... ,Xn} is oj the Jorm 

G = {9I.X2 - 92,.·. ,Xn - 9n} 

with 91, ... , 9n E K[Xl ]. 

Proof By Proposition 6.15 and the fact that G is reduced, G n K[Xd 
has exactly one element h. Set d = deg(h), and let ml be the number of 
different zeroes of h in K and m the number of different zeroes of I in Ir. 
Then m ~ ml because I is in normal position w.r.t. Xl' Being reduced, G 
cannot contain another element whose head term is a power of Xl, and so 
the terms 1, Xl, ... , xt-1 are reduced. Since the number of elements in 
the canonical term basis ofthe K-vector space K[XJ!I equals the number 
of reduced terms by Proposition 6.52, it follows that d ~ dimK(K[X]/I). 
Theorem 8.32 tells us that dimK(K[X]/I) = m, and we have proved that 

d ~ dimK(K[XJ!I) = m ~ mI. 

On the other hand, h can have no more than d different zeroes in K, i.e., 
ml ~ d, and we see that actually 

d = dimK(K[XJ!I) = m = mI' 

Again using Proposition 6.52, we conclude that there are no reduced terms 
besides 1, XI. ... , xt-l , and so 

Xi E HT(I) = HT(G) for 2 ~ i ~ n. 

Since G was assumed to be reduced, it follows that besides 91, it contains 
nothing but exactly one element Ji with head term Xi for each index 2 ~ 
i ~ n, and 

T(Ji) ~ {Xi, 1, Xl,'" xt-l } for 2 ~ i ~ n. 0 

Exercise 8.78 Use the results of Sections 7.3 and 8.2 to show that at the very 
beginning of the proof of the above proposition, one may already conclude that 
d = ml, thus simplifying the rest of the argument slightly. 

The converse to the last proposition is in fact true in a more general 
situation. 

Lemma 8.79 Let I be any ideal of K[ X] where K is again an arbitrary 
field, and assume that I has a basis G of the form 

G = {9I.X2 - 92, ... ,Xn - 9n} 

with 9I. ... , 9n E K[Xl]. Then I is zero-dimensional and in normal position 
w.r.t. Xl' 
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Proof I is zero-dimensional because for 1 ~ i ~ n, it contains a polynomial 
whose head term w.r.t. any term order satisfying {Xd « {X2 , ••• , Xn} 
is a power of Xi. Moreover, if z E K is a zero of I, then Zl uniquely 
determines Zi to be gi(Zl) for 2 ~ i ~ n. 0 

Exercise 8.80 Use the last lemma and proposition to show once again that the 
ideal I = Id(X2 + Y + 1, 2XY + Y) of Exercise 8.71 is in in normal position w.r.t. 
X but not w.r. t. Y. Why is your new argument more elegant than your original 
one? 

From the last lemma, we conclude that if we chance upon an ideal ba
sis of the indicated form and K is computable and allows factorization 
of univariate polynomials, then we can go right ahead and compute the 
primary decomposition by means of the algorithm NORMPRlMDEC. The 
lemma together with the proposition preceding it states that over a com
putable perfect field, we can decide whether a given radical ideal is in 
normal position w.r.t. any variable by inspecting a suitable Grabner basis. 
Together with Lemma 8.76 and Lemma 8.73 (iv), this proves the correct
ness of the following algorithm whose termination is trivial. Note that ev
ery computable field of characteristic zero satisfies the assumptions of the 
theorem. 

Theorem 8.81 Assume that K is computable, infinite, and perfect. Then 
the algorithm NORMPOS of Table 8.5 computes, for given finite subset F 
of K[ X) with Id(F) zero-dimensional, a Grabner basis G of an extended 
ideal 

which is oftheformG = {g,Xl-gl , ... ,Xn-gn} withg, 91,.'" gn E K[Z) 
whenever Id( F) is mdical. 0 

Exercise 8.82 Recall that the ideal I = Id(X2 - 2, y2 - 2) of Example 8.66 is 
in normal position neither w.r.t. X nor w.r.t. Y. Find cEQ such that the ideal 

Id(X2 - 2, y2 - 2, Z - X - cY) 

of Q[X, Y, Zj is in normal position w.r.t. Z. 

We have in fact reached our goal of being able to compute zero-dimen
sional primary decompositions. Let K be a computable field and suppose a 
finite basis of the zero-dimensional ideal I of K[ X) is given. If K is perfect 
and allows squarefree decompositions of univariate polynomials, then we 
can apply the algorithm ZRADICAL to compute rad(I). If, in addition, K 
is infinite, then the algorithm NORMPOS computes for us the extended 
ideal J of K[ X, Z) which is radical too and in normal position w.r.t. Z. If K 
also allows factorization of univariate polynomials, then NORMPRlMDEC 
provides the primary components PI, ... , Pr of J in K[ X, Z). As a matter 
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TABLE 8.5. Algorithm NORMPOS 

Specification: G +- NORMPOS(F) 
Extending a zero-dimensional radical ideal 
to a radical ideal in normal position 

Given: a finite subset F of K[ X] with Id(F) zero-dimensional 
Find: a basis G of J = Id(F, Z - Xl - C2X2 - ... - CnXn) , where 

C2,··· ,Cn E K, such that G = {g,X l - gl, ... ,Xn - gn} with 
g, gt. ... , gn E K[Z] whenever Id(F) is radical 

begin 
I +- the monic generator of Id(F) n K[Xd 
m +- deg(/t) 
for i = 2 to n do 

Ii +- the monic generator of Id(F) n K[Xi] 
mi +- deg(fi) 
m+-m·mi 
Ci +- a finite subset of K with ICil = (r;) + 1 

end 
C +- {I} x C2 X .•• X Cn 

repeat select c from C 
C+-C\{c} 
G +- a reduced Grabner basis of 

Id( {F, Z - Xl - C2X2 - ... - cnXn}) w.r.t. 
a term order with {Z} «: {Xl. ... ,Xn } 

until C = 0 or G is of the form {g, Xl - gl, ... ,Xn - gn} 
with g, g1, . .. ,gn E K[Z] 

end NORMPOS 

of fact, NORMPOS has already provided a Grabner basis of J which is of 
the form 

{g,XI - gl,··· ,Xn - gn} 

with g, gl, ... , gn E K[Z], so that the monic generator g of J n K[Z] is 
at hand and need not be computed by NORMPRlMDEC. Moreover, we 
know that g is squarefrce because J is radical. By Lemma 8.73 (v), the 
elimination ideals PI = Pi n K[ X] are the primary components of rad(]) , 
and these in turn are the associated primes of the primary components of I 
by Lemma 8.60 (iv). All that remains to be done is to recover the primary 
components of ] from their associated primes. Since we can compute the 
univariate exponent of I by means of squarefree decompositions, Lemma 
8.60 (iii) shows how this can be done. 

The discussion above provides the correctness proof for the algorithm of 
the following theorem. Note that for all practical purposes, the requirement 
that K be infinite and perfect narrows it down to fields of characteristic 
zero. An example of a field to which the theorem applies is given by the 
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rationals. Recall that the univariate exponent of a zero-dimensional ideal 
can be computed whenever effective squarefree decomposition of univariate 
polynomials is available. 

Theorem 8.83 Assume that K is computable, infinite, and perfect and 
allows effective factorization of univariate polynomials. Then the algorithm 
ZPRlMDEC of Table 8.6 computes the primary components and associated 
primes of Id(F) whenever F is a finite subset of K[ X] with Id(F) zero
dimensional. 0 

TABLE 8.6. Algorithm ZPRlMDEC 

Specification: P +- ZPRlMDEC(F) 
Computation of primary components and associated 
primes of a zero-dimensional ideal 

Given: a finite subset F of K[ X] with Id(F) zero-dimensional 
Find: a set P of pairs (G, H) of finite subsets of K[ X] such that 

{Id(G) I (G,H) E P for some H} is the set of all primary 
components of Id(F), and Id(H) is the associated prime of 
Id(G) for all (G,H) E P 

begin 
R +- ZRADICAL(F) 
G +- NORMPOS(R) 
Q +-0 
g +- GnK[Z] 
while g is not constant do 

end 
P+- 0 

p +- an irreducible factor of g 
g +- g/p 
Q+-QU{GU{p}} 

m +- the univariate exponent of Id(F) 
while Q =I- 0 do 

end 

select A from Q 
Q+-Q\{A} 
H +- ELIMINATION(A,{Xl'" .Xn}) 
G+-FUHm 
P +- Pu {(G,H)} 

end ZPRlMDEC 

Exercise 8.84 Let I be the ideal Id(X2 - 2, y2 - 2) of Example 8.66. Use the 
algorithm ZPRlMDEC to confirm the result of Example 8.66. (Hint: You have 
done part of the work in Exercise 8.82.) 
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We mention that in the presence of effective primary decomposition and 
radical test, one also obtains, at least in principle, a primality test for ideals: 
it is easy to see that an ideal is prime if and only if it has one primary 
component that is radical. In a situation where the algorithm ZPRlMDEC 
is applicable, Id(F) is thus prime iff Id(F) is radical and the univariate 
polynomial in Z in NORMPOS(F) is irreducible. 

The most expensive part of the algorithm ZPRlMDEC in terms of time 
and space is the application of NORMPOS. The fact that a large number 
of Grabner bases may have to be computed until a normal position is found 
often makes inputs of no more than moderate size impossible to handle. 
For those with an interest in perfomance, we will now discuss a variant of 
the algorithm that has turned out to generally improve the running time in 
practice. The underlying principle here is that it seems to be more advan
tageous in general to do some univariate factoring and then compute many 
Grabner bases of ideals with "small" univariate polynomials than it is to 
compute fewer Grobner bases of ideals with "large" univariate polynomials. 
What this means in this case is that one should first decompose a given 
ideal I by means of the algorithm PREDEC of Lemma 8.6, then compute 
the primary decompositions of the non-trivial constituents of that decom
position, and finally collect all primary ideals thus obtained. It is clear 
that the passage to the radical that ZPRlMDEC calls for can be combined 
with the application of PREDEC: if PREDEC uses the squarefree parts 
of those univariate polynomials which it would otherwise use, then it has 
automatically passed to the radical of I. 

The idea that we have just described can actually be exploited further. To 
this end, we now show how the action of NORMPOS of getting the extended 
ideal J of Theorem 8.81 into normal position w.r.t. the new variable Z can 
be broken up into smaller steps so that one can try to apply PREDEC in 
between the steps. We begin with two observations that are almost trivial. 

Lemma 8.85 Let:::; be a term order on T(A.) and I an ideal of K[X] 
such that there exists f E I with HT(f) = Xi for some 1 :::; i :::; n. Let G 
be a Grabner basis w.r.t. :::; of I. Then the following hold: 

(i) There exists 9 E G with HT(g) = Xi. 

(ii) If G is reduced, then there exists exactly one 9 E G with HT(g) = 
Xi, and degxi (t) = 0 for every t occurring anywhere in G with the 
exception of HT(g) itself. 

Proof Statement (i) is immediate from the fact that f must be top
reducible modulo G. For (ii), it is clear that a reduced Grabner basis cannot 
have two different polynomials with the same head term. Furthermore, ev
ery term t E T(X) with t < Xi must satisfy degxi (t) = O. This proves the 
second claim of (ii) for all t E T(g) \ {Xi}. For all other terms occurring in 
G, it follows from the fact that G is reduced. 0 
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The following lemma will be used to perform a single step in our proposed 
"step-by-step" version of NORMPOS. 

Lemma 8.86 Let I be a zero-dimensional ideal of K[ X) and 1 :$ i1 < 
i2 :$ n, and assume that the elimination ideal I' = InK[X'I' X i2 ) is radical. 
Suppose :$ is a term order on T( X, Z) with 

where Z is a new variable. Set m1 = deg(lt) and m2 = deg(h), where It 
and h are the unique monic polynomials of minimal degree in In K[XiJ 
and In K[Xi2 ), respectively. Let 

Then whenever 0 is a subset of K with 101 > k, there exists cEO such 
that every Grabner basis G w.r.t. :$ of the extended ideal 

J = Id(I, Z + Xii + CX'2) 

contains polynomials g1 and g2 with HT(g1) = Xii and HT(g2) = X'2' 

Proof Consider the elimination ideal I' = InK[X,!, X'2] and the extended 
ideal 

J' = Id(I', Z + Xi! + CX'2)' 

Lemma 8.76 tells us that there exists cEO such that J' is in normal 
position w.r.t. Z. We may now conclude from Proposition 8.77 that J' 
contains polynomials h1 and h2 of the form 

with Pl, P2 E K[Z). We see that the head terms of h1 and h2 w.r.t. :$ are 
Xii and X i2 , respectively. The claim now follows from J' ~ J together 
with (i) of the previous lemma. 0 

It is clear that when actually looking for the c of the lemma, we do not 
need to know what the bound k for the maximal number of unsuccessful 
tries is. It suffices to try different c until a hit is scored. 

We will now give an informal description of the modified algorithm 
ZPRlMDEC, proving correctness and termination as we go along. Sup
pose the field K satisfies the requirements of the algorithm ZPRlMDEC. 
Let F be a finite subset of K[ X] such that Id(F) is zero-dimensional. As
sume that F has already been preprocessed by PREDEC combined with a 
computation of the radical, so that all generators of univariate elimination 
ideals are irreducible. (It should be clear by now how the primary decom
position of the original ideal can be recovered.) Then one may proceed as 
follows: 
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(1) Compute a reduced Grabner basis of Id(F) w.r.t. some term order. 
If, possibly after renumbering variables, G is of the form 

G = {91,X2 - 92, ... ,Xn - 9n} 

with 9I! ... , 9n E K[X1], then by Lemma 8.79, I in normal position 
w.r.t. Xl, and no further action is necessary. If G is not of this form, 
then, in view of (ii) of the lemma before the last one, there must be 
two variables XiI and X i2 that do not occur as linear head terms in 
G. By the previous lemma, there exists c E K such that the ideal 

J = Id(I, Zl + XiI + cXi2 ) 

contains polynomials 91 and 92 with HT(91) = XiI and HT(92) = 
X i2 • Furthermore, such a c can be found by trial and error, varying 
c and inspecting Grabner bases of J w.r.t. a term order that satisfies 
{Zt} « {XiI' X i2 }. Inspection of the proof of Lemma 8.73 (ii) shows 
that we again have J n K[ X] = I. 

(2) When step (1) has been performed, the generator f of J n K[Zl] 
is visible. This generator should now be factored and J should be 
decomposed according to Lemma 8.5. There is no point in applying 
PREDEC to its full extent because the generators of all other univari
ate elimination ideals were already irreducible, so they cannot have 
changed. Note also that the prime factors of f all have multiplicity 1 
because J is radical. 

(3) Now if we look at anyone constituent I' of the intersection obtained in 
step (2), then I' is an ideal of K[ X, Zl] that has the same properties 
as the input ideal Id(F) had as an ideal of K[ X]. We have one 
more variable, but since 91, 92 E I', we know that there are at least 
two more variables that occur as linear head terms. It follows that 
the number of variables that do not occur as linear head terms has 
decreased by at least one. At most n repetitions of the process will 
therefore take us to ideal bases H in K[Zl, ... , Zr, X] of the form 

with hI! ... , hr-I! 91, ... , 9n E K[Zr]. The set H is clearly a Grabner 
basis w.r.t. any term order with 

because that way, the head terms remain pairwise disjoint. Placing 
ZI! ... , Zr-l lexicographically high, we may therefore conclude that 

Id(H) n K[Zr, X] = {9r,Xl - 91,··. ,Xn - 9n}. 
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We see that this ideal is in normal position w.r.t. Zr, and since in 
the last run through step (2), we have already decomposed so as to 
make gr irreducible, we see that this last ideal is already primary, 
i.e., it is prime in this case because everything was done on the level 
of the radical. It is now not hard to see that the intersection of the 
elimination ideals w.r.t. {X}, ... , Xn} of the ideals that we have com
puted equals Id( F). This means that these elimination ideals are the 
primary components of Id(F). 

We mention that the choice between NORMPOS and the above step-by
step version involves yet another trade-off. On the one hand, the step-by
step version requires Grabner basis computations with up to 2n variables as 
opposed to n + 1 in NORMPOS. On the other hand, the maximal number 
of unsuccsessful tries in each of the at most n steps of the step-by-step 
version is 

k = (m12m2), 

where ml and m2 are the degrees of two univariate polynomials in the re
spective ideal. Comparison with NORMPOS shows that there, the number 
of tries is, in the worst case, by orders of magnitude larger. This is a kind 
of situation that occurs quite frequently when Grabner basis computations 
are involved: even the most sophisticated complexity theory is-at least 
at present-not strong enough to allow a clear decision between the two 
possible versions of the algorithm. One has therefore to rely on practical 
experience, and it is not impossible for different people to arrive at different 
conclusions. 

We will now show how at least in principle, we can compute zero-dimen
sional primary decompositions over finite fields. Let K be a computable 
finite field and I a zero-dimensional ideal of K[X]. We first note that all 
finite fields allow, at least in principle, effective univariate factorization be
cause there are only finitely many polynomials of each degree. Furthermore, 
all finite fields are perfect, and so we may, as before, pass to the radical 
of I, find its primary decomposition, and then recover the one of I using 
the univariate exponent of I. So let us assume that I is a zero-dimensional 
radical ideal. 

It is easy to see from Lemma 8.60 (vi) that the primary components of 
I have been found as soon as we have found pairwise different prime ideals 
Pb ... , Pr with 

I =P1 n···nPr . 

The strategy that we will describe arises from a careful analysis of the proof 
of Lemma 8.13. We begin by factoring the monic generator of I n K[Xd 
into its pairwise relatively prime factors and apply Lemma 8.5 to obtain a 
decomposition 

r 

1= n(I,Pi) 
i=l 
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with Pi E K[Xl ] irreducible for 1 ~ i ~ r. It is clear that it now suffices 
to decompose each one of the radical ideals that occur in the intersection 
into prime ideals. We are left with the task of finding the primary decom
position of a radical ideal I such that the monic generator ft of I n K[Xd 
is irreducible. 

In the remarks following Corollary 7.10, we have proved that the field 
K[XlJ/Id(ft) is again computable. It is clear that it is also finite, because 
a system of unique representatives for its elements is given by 

{ hE K[Xl ] I deg(h) < deg(ft) }, 

and this is clearly a finite set. We may thus call the entire procedure re
cursively on the image of I under the map 

of the proof of Lemma 8.13. (It was proved there that this image is again 
a zero-dimensional radical ideal.) If Mb ... , Mr are the prime ideals that 
this recursive call returns, then again by the proof of Lemma 8.13, their 
inverse images cp-l(Mt}, ... , cp-l(Mr ) are the primary components of I 
that we are looking for. The Mi are given to us by finite bases Gi , and 
each element of Gi comes as a representative in K[ X] of its residue class 
modulo ker(cp). So in practice, we have Gi ~ K[X], and it is now easy to 
see that bases Hi of cp-l(Mi ) are given by Hi = Gi U {It} for 1 :5 i :5 r. 
Correctness of the entire procedure now follows from the fact that it does 
the right thing in the univariate case. 

To conclude this section, we point out how a special case of a classical 
result on field extensions, namely, the theorem on the primitive element, 
can be deduced from the theory behind the algorithm PRIMDEC. (In its 
full strength, the theorem is not limited to infinite fields, and a weaker 
assumption than perfectness of K is used.) 

Theorem 8.87 (THEOREM ON THE PRIMITIVE ELEMENT) Let K be a 
perfect infinite field and K' a finite algebmic extension of K, say K' = 
K(at, ... , an) with at, ... , an E K' algebmic over K. Then K' is a simple 
extension of K, i.e., there exists b E K' with K' = K(b). Moreover, b can 
be chosen as 

b = al + C2a2 + ... + enan 

with C2, ••• , en E K. Finally, if K is also computable, then C2, ••• , Cn can 
be computed from the minimal polynomials of al, ... , an over K. 

Proof For 1 :5 i :5 n, let Ii E K[XiJ be the minimal polynomial of ai over 
K, and set 

1= Id(ft, ... ,In) ~ K[Xt, ... ,Xn] = K[X]. 
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Then I is a zero-dimensional radical ideal because it contains the irreducible 
(and hence squarefree) polynomial ii in the variable Xi for 1 :::; i :::; n. 
Lemma 8.76 provides an (n - I)-tuple (C2,".' en) E Kn-l such that the 
ideal Id(I, g) is in normal position w.r.t. the new variable Z, where 

Proposition 8.77 tells us that the reduced Grabner basis ofId(I,g) w.r.t. a 
suitable term order is of the form 

with h, hI, ... , hn E K[Z), and in the computable case, G can be computed 
from iI, ... , in by means of the algorithm NORMPOS. Now set b 
al + C2a2 + ... + cnan, and consider the substitution homomorphism 

cp: K[XI, ... ,Xn,Z) - K' 
i t--t i(al, ... ,an,b) 

Then clearly g, iI, ... , in E ker(cp), so Id(I,g) ~ ker(cp), and so in partic
ular, G ~ ker(cp). It follows that ai = hi(b) for 1 :::; i :::; n. This shows that 
K' ~ K(b), and the obvious fact that bE K' provides the reverse inclusion 
K(b) ~ K'. 0 

It is perhaps noteworthy that in the computable case of the theorem, 
the algorithm NORMPOS provides the Grabner basis G which contains 
the polynomial h E K[Z] that satisfies h(b) = 0 as well as hi E K[Z] with 
hi(b) = ai for I :::; i :::; n. 

Exercise 8.88 Show that Q( v'2, v'3) = Q( v'2 + va). Find the minimal polyno
mial of v'2 + v'3 over Q as well as hi, h2 E Q[Z) with hl(v'2 + v'3) = v'2 and 
h2 (v'2 + v'3) = v'3. 

Exercise 8.89 It is clear that the ideal I in the proof of the theorem on the 
primitive element can be replaced by any zero-dimensional radical ideal J that 
satisfies J ~ ker(r,o). Now suppose that we are in the situation of the theorem, 
but instead of the minimal polynomials Ji of the ai over K, we are given hand 
the minimal polynomials hi of at over K(al, ... ,ai-I) for 2:::; i :::; n, say 

mi-1 

hi = X m , + L qij(al, ... , ai-I) . X j 

j=O 

For 2 :::; i :::; n, we now set 

ffli- 1 

h; = X;"'i + L qijXl· 
j=O 

Show that J = Id(h, h;, ... ,h:') has the properties stated above. (Hint: Use 
Proposition 7.44.) 
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Exercise 8.90 (i) Let K be a field, and let K(a) and K(b) be simple algebraic 
extensions of K with K(a) ~ K(b). Show that K(a) = K(b) is equivalent 
to deg(min}) = deg(mint-). (Hint: Use Proposition 7.8, and argue with 
the vector space dimension over K.) 

(ii) Assume that K satisfies the hypotheses of the theorem on the primitive 
element, and suppose two simple algebraic extensions K(a) and K(b) of K 
are given by the minimal polynomials of a and b over K. Show how it can 
be effectively decided whether K(a) ~ K(b). 

8.7 Radical and Decomposition in Higher 
Dimensions 

As before, we let K be a field. The basic strategy for the computation of 
radicals and primary decompositions of arbitrary polynomial ideals over 
K is to reduce the problem to the zero-dimensional case by means of the 
extension/contraction method that was introduced in Lemmas 1.122,1.123, 
and 7.47. We begin by discussing some more general aspects of this method 
and its connection with Grabner bases. We let {Xl, ... , Xn} be a set of 
indeterminates, and {Ul , ... , Ur } ~ {Xl,'" ,Xn }. We will use the now 
familiar notation 

K[X] = K[Xb ... ,Xn ], 

and we denote by K(U) the rational function field over K in the variables 
that are in the set {Ul , ... , Ur }. Moreover, we set 

K(U)[X \ U] = K(U)[Vl , ... , Vn - r ] 

where {Vl , ... , Vn- r} = {Xl,"" Xn} \ {Ub ... , Ur}. Extensions of ideals 
of K[X] will be understood to be to K(U)[X \ U], and contractions are 
always to K[ X]. The notations T(U) and T(X \ U) have the obvious 
meanings (cf. the beginning of Section 6.2). 

We begin by showing how one can compute contractions of ideals of 
K(U)[X \ U]. Recall that we have introduced and discussed the notation 
I : foo following Lemma 6.36. 

Lemma 8.91 Let ~ be a term order on T(X \ U). Suppose J is an ideal of 
K(U)[X\U], and G is a Grabner basis w.r.t. ~ of J such that G ~ K[X]. 
Let I be the ideal generated by G in K[ X ], and set 

f = lcm{HC(g) I 9 E G}, 

where HC(g) E K[U] is taken of 9 as an element of K(U)[X \ U]. Then 
JC=I:foo. 

Proof The inclusion "2" would in fact be true for arbitrary f E K[ U]. 
To see this, let gEl: foo. Then jBg E I for some sEN. It follows that 

1 
9 = r . rg E JnK[Xj = JC. 



8.7. Radical and Decomposition in Higher Dimensions 389 

For the inclusion "~," let 9 E JC. Then 9 E J, and so 9 -ir O. We use 
induction on the minimal length n of such a reduction chain to prove that 
gEl : foo. If n = 0, then 9 = 0 and the claim is trivial. Now suppose 
n > 0 and gl E K(U)[X \ U] is such that 

n-1 
9 ---4 gl ---4 O. 

G G 

Then there exist pEG, h E K[ U], and s E T(X \ U) such that 

h 
gl = 9 - HC(p) . s· p. 

Since f is a constant in the polynomial ring K(U)[X \ U], we may con
clude that fg1 ~ O. Moreover, if we multiply the equation (*) by f and 
observe that HC(p) I fin K[ U], then we see that f91 E JC. The induction 
hypothesis tells us that f gl E I : ro. Again by looking at (*) multiplied 
by f, we conclude that fg E I : foo and so gEl: foo. D 

Now suppose G is any Grobner basis in K(U)[X \ U]. If we multiply 
each element of G with the lem of the denominators of all its coefficients 
in K(U), then it is clear that we obtain a Grobner basis H of the same 
ideal of K(U)[X \ U] with the additional property that H ~ K[X]. This 
observation together with the lemma above proves the correctness of the 
following algorithm. 

Proposition 8.92 The algorithm CONT of Table 8.7 computes, for any 
subset {UI, ... , Ur } of {Xl. ... , Xn} and finite subset F of K(U)[X \ U], 
a Grobner basis of the ideal (Id(F))C of K[ X]. D 

TABLE 8.7. Algorithm CONT 

Specification: G +- CONT(F, {U1 , ••• , Ur }) 

Computation of contraction ideal 
Given: a subset {UI, ... , Ur } of {Xl. ... , X n}, and 

a finite subset F of K(U)[X \ U] 
Find: a Grobner basis G ~ K[ X] of (Id(F))C 
begin 
H +- a Grobner basis of Id(F) w.r.t. any term order on T(X \ U) 
for all h E H do 

end 

q +- the lcm of all denominators of coefficients in K(U) of h 
h +- qh 

f +-lem{HC(h) I hE H} 
G +- a basis of Id(H) : foo (by means of IDEALDIV2) 
end CONT 
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Note that we needed no more than the first component of the pair that 
IDEALDIV2 outputs; the exponent 8 E N that satisfies Id(H) : r = 
Id(H) : foo is irrelevant here. We will later on also write CONT(F, U) for 
CONT(F, {Ub ... , Ur }). 

Recall from Lemma 1.122 that for an ideal f of K[ X], it is true that 
f ~ fee. To see that the reverse inclusion will fail in general in the present 
situation, consider the ideal f = Id(XY) of K[X, Y]. Then, taking the 
extension of f to K(X)[YJ, 

~.XY =Y E rnK[X,Y] =re , 

while clearly Y fI- f. The next proposition, which is preceded by a lemma, 
will show how fee relates to f. To this end, suppose $1 and $2 are term 
orders on T(U) and T(X \ U), respectively, and let $ be the term order 
where for 81, h E T(U) and 82, t2 E T(X \ U), we have 8182 $ t1t2 iff 

82 <2 t2, or 

82 t2 and 81 $1 t 1 . 

In the sequel, we will refer to this type of order as an inverse block order 
w.r.t. {U1 , ... , Ur }, or w.r.t. U for short. It is clear that here, with 811 82, 

h, t2 as above, 

Lemma 8.93 Let $ be an inverse block order on T(X) w.r.t. U, and 
suppose G ~ K[X) is a Grabner basis w.r.t. $. Then G is a also a Grab
ner basis in K(U)[X \ U) w.r.t. the restriction $' of $ to T(X \ U). 

Proof Let I be the ideal generated by G in K[ X) and J the one generated 
in K(U)[X \ U). We must show that for every f E J, there exists 9 E G 
with 

HT(g) I HT(J), 

where 9 too is viewed as an element of K (U) [X \ U], and head terms are 
taken w.r.t. $'. So let f E J. Then there is a representation of f as a sum 
of multiples in K(U)[ X \ U) of elements of G. All denominators occurring 
are in K[ U], and we see that there is q E K[ U) with qf E I. Since G 
is a Grabner basis w.r.t. $ of the ideal f of K[ X], there exists 9 E G 
with HT(g) I HT(qJ), where head terms are taken w.r.t. $. While we are 
viewing 9 and qf as elements of K[X], every term in T(g) and T(qJ) can 
be written uniquely as 8t with 

8 E T(U) and t E T(X \ U). 

Now we view 9 and qf as elements of K(U)[X \ U). This amounts to 
declaring the T(U)-part of each term to be part of the coefficient. From 
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the remark on inverse block orders preceding the lemma, it is easy to see 
that now the head terms of 9 and qf w.r.t. ~' are precisely the T(X \ U)
parts of what were the head terms before, in K[ X 1 and w.r.t. ~. It follows 
that the divisibility HT(g) I HT(qf) continues to hold under the new point 
of view, in K(U)[X \ Uj and w.r.t. ~'. Moreover, still under this point of 
view, q is a constant, and so HT(qf) = HT(f), and we are done. 0 

Proposition 8.94 Let ~ be an inverse block order on T(X) w.r.t. U, and 
suppose I is an ideal of K[Xj and G is a Grabner basis of I w.r.t. ~. Set 

f = Icm{HC(g) I 9 E G}, 

where HC(g) E K[Ilj is taken of 9 as an element of K(U)[X \ Uj and 
w. r. t. the restriction ~' of ~ to T(X \ Il). Then lee = I : foo. 

Proof It is an easy consequence of Lemma 1.122 (i) that G, when viewed 
as a subset of K(U)[X \ Uj, generates the ideal Ie of K(U)[X \ Uj. By 
the previous lemma, G is even a Grabner basis of Ie in K(U)[X\1l1 w.r.t. 
the restriction ~' of ~ to T( X \ U), and the first lemma of this section now 
asserts that lee = I : foo. 0 

The last proposition would allow us to compute lee from a Grabner basis 
of I, but this is not what we will be interested in. Rather, we will need an 
ideal I' such that I = I' nlee . This will be provided by the following lemma, 
which holds true in every commutative ring. 

Lemma 8.95 Let R be a. ring and I an ideal of R. Suppose q E R and 
sEN are such that 

Proof The inclusion "~" is easily seen to be trivial. For the reverse inclu
sion, let a E Id(I, q8) n (I : q8). Then q"a E I, and there exist bEl and 
r E R with a = b + q8r. We conclude that 

and thus rEI: q2s ~ I : qOO = I : qS. It follows that qSr E I, and hence 
a E I because of the equation a = b + qSr. 0 

Combining the last lemma and proposition, we see that in the situation 
of the proposition, we have 

I = (I,/,,) n lee 

for any 8 E N with I : f" = I : foo. Recall that the algorithm IDEAL
DIV2 computes such an 8 from f and any basis of I. We have proved the 
correctness of the following algorithm. 
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Proposition 8.96 If {U1, .•• , Ur} is a subset of {Xl"." Xn} and F is a 
finite subset of K[ X ], then the algorithm EXTCONT of Table 8.8 computes 
f E K[ U] and sEN such that 

Id(F) = Id(F,r) n (Id(F))ec. 0 

TABLE 8.8. Algorithm EXTCONT 

Specification: (f, s) t- EXTCONT(F, {Ul' ... ,Ur }) 

Cut Id(F)ec down to Id(F) 
Given: F = a finite subset of K[X], and 

{Ul , ... , Ur } = a subset of {Xl. .. " Xn} 
Find: f E K[ U] and sEN with Id(F) = Id(F, r) n (Id(F))ec 
begin 
:5 t- a decidable inverse block order on T(X) w.r.t. U 
:5' t- the restriction of :5 to T(X \ U) 
G t- a Grabner basis of Id(F) w.r.t. :5 
f t-Icm{HC(g) I 9 E G}, where HC(g) E K[U] is taken of 9 as an 

element of K(U)[X \ U] and w.r.t. :5' 
s t- a natural number with Id(F) : r = Id(F) : foo 

(by means of IDEALDIV2) 
return«(f, s)) 
end EXTCONT 

Again, we will allow ourselves to write EXTCONT(F, U) instead of 
EXTCONT(F, {Ul. ... ,Ur }). 

We can now describe more precisely the strategy for the computation 
of the radical and the primary decomposition of a polynomial ideal I. We 
are going to find a subset {Ul , ... , Ur } of {Xl. ... , Xn} which is maximally 
independent modulo I. We may then apply the methods of Sections 8.2 and 
8.6 to the zero-dimensional ideal Ie of K(U)[X\U]. We will then contract 
this radical or decomposition to K[ X] and finally repeat the procedure 
with the ideal I' that satisfies I = I' n Iec. The only thing we still need to 
prove is that the concepts of radical, primary decomposition, contraction, 
and intersection are sufficiently compatible with one another. 

Lemma 8.97 Let R be a ring and M a multiplicative subset of R. Taking 
extensions to RM and contractions to R, the following hold: 

(i) If J is an ideal of RM, then (radRM(Jnc = radR(JC), where the 
subscripts mean that the first radical is taken in RM and the second 
in R. 

(ii) If It and 12 are ideals of R, then rad(I1 n 1 2 ) = rad(Id n rad(I2 ). 

(iii) If J is a primary ideal of RM, then JC is a primary ideal of R. 
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(iv) If h and J2 are ideals of RM , then (J1 n J2 )C = Jf n Ji,. 

Proof (i) If a E (radRM (J))C, then as E J for some SEN, and a E R. 
We see that as is actually in JC, and thus a E radR(JC). Conversely, if 
a E radR(JC), then some power of a lies in JC ~ J, which shows that 
a E radRM(J). Together with a E R, this shows that a E (radRM(JW. 

(ii) If a E rad(h nI2 ), then some power of a lies in both II and 12 , and so 
a E rad(h) nrad(I2). Conversely, if a E rad(h) nrad(I2), then some power 
of a lies in h and another one in h. The higher one then lies in II n 12 , 

and we see that a E rad(h n 12)' 
(iii) Suppose J is a primary ideal of RM, and a and b are elements of R 

with ab E JC and a rI. JC. It follows that ab E J and a rI. J, and thus as E J 
for some sEN. But a E R implies as E R, and so as E JC. 

(iv) This is immediate from the definition of JC as J n R. 0 

Exercise 8.98 Show that under the hypothesis of the previous lemma, the fol
lowing hold: 

(i) If I is an ideal of R, then (radR(IW = radRM (r). 

(ii) If I is a primary ideal of R, then I = rc. 
We are now in a position to give the algorithms that we were looking 

for. Recall that in Section 2.6, we proved that squarefree decompositions of 
univariate polynomials can be computed over computable fields that either 
have characteristic zero or are finite. Furthermore, we know from Corollary 
7.37 that all fields of characteristic zero are perfect. The next theorem will 
require the hypothesis that squarefree decompositions can be computed 
over any rational function field K(U), and also that the latter is perfect. 
This is thus true whenever K is computable and has characteristic zero. 
Recall further that we can determine maximally independent sets modulo 
an ideal by means of lexicographical Grabner bases; a much more elegant 
way to achieve this will be presented in Section 9.3. Finally, we point out 
that the following algorithm uses the obvious convention that K(0) = K. 

Theorem 8.99 Assume that K is computable, and suppose that for any 
finite set {U1 , . .. ,Ur } of indeterminates, the rational function field K(U) 
is perfect and allows the computation of squarefree decompositions of uni
variate polynomials. Then the algorithm RADICAL of Table 8.9 computes 
a basis of rad(Id(F)) for any given finite subset F of K[ X]. 

Proof Termination: If 1 E Id(F), then the algorithm terminates trivially. 
Else, we note that by the choice of {U1 , ••. ,Ur }, we have Id(F) n K[ U] = 
{OJ. It follows that the inclusion Id(F) ~ Id(F,1) is proper. We see that 
the recursive calls of RADICAL give rise to a strictly ascending chain of 
ideals, which can not be infinite since K[ X] is noetherian. 

Correctness: Like every correctness proof of an algorithm that calls it
self recursively, the proof is by (noetherian) induction: we show that the 
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TABLE 8.9. Algorithm RADICAL 

Specification: G +- RADICAL(F) 
Computation of radical 

Given: a finite subset F of K[ X ] 
Find: a finite basis G of rad(Id(F» 
begin 
G +- {1} 
if 1 rf- Id(F) then 

{Ulo ... , Ur } +- a maximally independent set modulo Id(F) 
Z +- ZRADICAL(F), computed in K(U)[X \ U] 
C +- CONT(Z, U) 
f +- an element of K[ U] with Id(F) = Id(F, r) n {Id(F»ec 

for some 8 E N (by means of EXTCONT) 
G +- INTERSECTION(RADICAL(F U {f}), C) 

end 
end RADICAL 

algorithm runs correctly if 1 E Id(F) and then prove correctness for the 
case that Id(F) is proper under the assumption of correctness for all larger 
ideals. The algorithm is trivially correct if 1 E Id(F). Else, we must show 
that 

rad(Id{F») = rad(Id(F, I)) n Id(C) 

As we have mentioned before, Lemma 1.122 (i) easily implies that F, when 
viewed as a subset of K(U)[X \ U], generates the ideal 

(Id(F)r of K(U)[X \ U]. 

We may now conclude from Lemma 1.41 (ii) and Theorem 8.22 that Z is 
a basis of 

It follows that 

Id(C) = (rad( (Id(F)r) ) C = rad( (Id(F»)ec), 

the latter equation being true by (i) of the last lemma. Now f is computed 
such that Id(F) = Id(F, r) n (Id(F»ec for some 8 E N, and we obtain 

rad(Id{F» = rad(Id(F, r) n (Id(F»ec) 

rad(Id{F, I)) n rad( (Id(F»ec) 

= rad(Id{F,I))nId(C). 
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Note how in the passage from the first to the second line above, we have 
used the obvious fact that rad(ld(F, fB)) = rad(ld(F, f))j this is the reason 
why we did not have to let EXTCONT provide the exponent s. 0 

It is easy to see that in case the maximally independent set that RAD
ICAL chooses at the beginning of the if-block is empty, the last three 
lines of that block have no effect on Id(Z)j we may therefore let the algo
rithm return Z in that case. It is perhaps noteworthy that the algorithm 
ZRADICAL for the computation of zero-dimensional ideals applies to all 
computable finite fields, while RADICAL does not: we saw in Example 7.32 
that the rational function field ZjpZ(T) is not perfect. 

Exercise 8.100 Compute the radical of the ideal Id(X2 + 2XY Z + Z4, Y Z - Z2) 
of Q[X, Y, Z]. 

The following algorithm PRIMDEC pursues much the same strategy as 
RADICAL, except that on the extended level, it computes zero-dimensional 
primary decompositions rather than radicals. This will of course require 
that the hypotheses that ZPRIMDEC needs are satisfied for every rational 
function field K(U) over K. We note that this is the case for K = Q: the 
rational function field Q(U) is clearly computable and infinite, it is perfect 
because it has characteristic zero, and Corollary 2.104 applied with R = Z 
and i = n - 1 tells us that it allows effective factorization of univariate 
polynomials. 

Theorem 8.101 Assume that K is computable, and suppose that for any 
finite set {U1, . .. , Ur } of indeterminates, the rational function field K(U) 
is infinite and perfect and allows effective factorization of univariate poly
nomials. Suppose F is a finite subset of K[ X] which generates a proper 
ideal. Then the algorithm PRIMDEC of Table 8.10 computes a finite set of 
primary ideals with intersection Ide F) as well as the corresponding associ
ated primes. 

Proof Termination: The proof is essentially the same as in the case of 
RADICAL. We have Id(F) n K[U] = {O} while f E K[U], and so the 
inclusion Id(F) ~ Id(F, fB) is proper. An infinite sequence of recursive 
calls would thus contradict the fact that K[ X] is noetherian. 

Correctness: The structure of the proof is again similar to that of the 
correctness proof for RADICAL. Correctness is trivial if 1 E Id(F). Now 
let Id(F) be proper, and assume that correctness is guaranteed for all sets 
that generate a strictly larger ideal. We begin by proving properties (i) and 
(iii) as stated in the algorithm. We must show that after the algorithm has 
performed its tasks, the following hold: 

(1) For all (G, H) E C, the ideal Id(G) is primary with associated prime 
Id(H). 

(2) Id(F) = Id(F, fB) n n Id(G). 
(G,H)EC 
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TABLE 8.10. Algorithm PRIM DEC 

Specification: P - PRlMDEC(F) 
Computation of primary decomposition 

Given: a finite subset F of K[ X ) 
Find: a set P of pairs (G, H) of finite subsets of K[ X) such that P = 0 

if 1 E Id(F), while otherwise 

begin 
P-0 

(i) for all (G, H) E P, the ideal Id( G) is primary with associated 
prime Id(H), 

(ii) Id(Gd =1= Id(G2 ) and Id(H1 ) =1= Id(H2 ) whenever 
(G1,H1), (G2 ,H2 ) E P with (G1,H1) =1= (G2 ,H2 ), and 

(iii) Id(F) = n Id(G). 
(G,H)EP 

if 1 ¢ Id(F) then 
{Ul,"" Ur } - a maximally independent set modulo Id(F) 
Q - ZPRlMDEC(F), computed in K(U)[X \ U) 
C-0 
while Q =1= 0 do 

end 

select (A, B) from Q 
Q - Q \ {(A,B)} 
G - CONT(A,U) 
H - CONT(B,U) 
C - CU {(G,H)} 

(I,s) - EXTCONT(F) 
P - C U PRlMDEC(F U {fB}) 

end 
end PRlMDEC 

Recall that Lemma 1.122 (i) implies that F, when viewed as a subset of 
K(U)[X\U), generates the ideal (Id(F»e of K(U)[X\U). The application 
of ZPRlMDEC yields a set Q of pairs of finite subsets of K(U)[ X \ U) such 
that 

{A I (A,B) E Q for some B} 

is the set of primary components of the zero-dimensional ideal (Id(F»e, 
and (A,B) E Q means that 

Id(B) = rad(Id(A»). 

The while-loop contracts the elements of the pairs in Q to K[ X) and 
assembles them into pairs again. These are then collected in the set C. 
Property (1) above is now an immediate consequence of Lemma 8.97 (i) 
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and (iii). Furthermore, Lemma 8.97 (iv) tells us that 

(Id(F)tC = ( n Id(A) r 
(A,B)EQ 

n (Id(A)t 
(A,B)EQ 

n Id(G). 
(G,H)EC 

Finally, I and s are computed such that Id(F) = Id(F, r) n (Id(F))ec. 
Together, we obtain 

Id(F) Id(F, r) n (Id(F)tC 

Id(F, r) n n Id(G). 
(G,H)EC 

It remains to prove that property (ii) as stated under "Find" holds for 
the output P. To this end, we first prove that it is true for any two different 
pairs in C. Let (Gb HI), (G2, H2) E C be different pairs. We first note that 
since ZPRlMDEC computes primary decompositions, (AI, B I ), (A2' B2) E 
Q with (Ab B 1 ) =I (A2' B2) implies that Id(AI) =I Id(A2) since other
wise the decomposition would be redundant, and thus Id(B1) =I Id(B2) 
because otherwise the associated primes of two different primary ideals of 
the decomposition would coincide. From the construction of C as the "con
traction of Q" we see that there must exist two different pairs (AI, B I ), 
(A2' B2) E Q with 

Id(Gd = (Id(Ai)t and Id(Hi) = (Id(Bi)r for i = 1,2. 

Now Id(AI) and Id(A2) are two different ideals of K(U)[ X\U j, and so their 
contractions GI and G2 must be different by Lemma 1.124 (ii). Similarly, 
we must have HI =I H 2 • 

Finally, suppose (GbHt) E C and (G2 ,H2 ) E PRlMDEC(F,r). Then 
r fJ. Id(Gt} and I fJ. Id(Hd because both ideals are contractions of proper 
ideals of K(U)[X\Uj, while IS, IE K[ Uj. On the other hand, r E Id(G2) 
because G2 is an ideal that contains Id(F, r), and I E Id(H2) because the 
latter ideal is the radical ofId(Gd. We see that once again, Id(Gt} =I Id(G2) 
and Id(H1) =I Id(H2). 0 

If the maximally independent set that PRlMDEC chooses at the begin
ning of the if-block is empty, then we may, in analogy to the same situation 
in the algorithm RADICAL, let PRlMDEC return ZPRlMDEC(F). 

Exercise 8.102 Compute primary ideals whose intersection equals the ideal 

Id(X2 - Z2 - 6Z - 9, Y Z - 2Y - Z2 + 2Z) 



398 8. Decomposition, Radical, and Zeroes of Ideals 

of Q[X, Y, Z]. Check your answer by doing it again with a different choice for the 
first maximally independent set. 

For the output of PRIMDEC to be a primary decomposition, we would 
also have to know that none of the primary ideals in the output is redun
dant, i.e., contains the intersection of the rest. The following example shows 
that this is not the case in general, and that there does not seem to be a 
natural way to force it to happen. 

Example 8.103 Let F = {XY,XZ} ~ Q[X,Y,Zl, and suppose PRIM
DEC is applied to F. One possible choice for {Ub ... ,Ur } would be {X}. 
The algorithm would then find the primary ideal Id(Y, Z) on the extended 
level, and it would naturally take f = X and s = 1, which would give 
Id(F u {r}) = Id(X). The resulting decomposition 

Id(XY, X Z) = Id(Y, Z) n Id(X) 

is clearly a primary decomposition. On the other hand, there is no way to 
keep the algorithm from taking the course that is exhibited in the following 
table. (Here, the first line describes the original call of PRIMDEC with 
1= Id(F), while each subsequent line represents the recursive calIon the 
ideal Id(I, r) of the previous line.) 

{Y,Z} 
{Z} 
{Y} 
{X} 

Id(X) 
Id(X, Y) 
Id(X,Z) 
Id(Y,Z) 

f s Id(l,r) 
YZ 1 Id(XY,XZ, YZ) 
Z 1 Id(XY,Z) 
Y 1 Id(Y,Z) 
1 0 Q[X,Y,Zl 

The primary ideals of the output are now to be found in the column "Iec," 
and we see that the two ideals Id(X, Y) and Id(X, Z) have been added 
gratuitously. 

The algorithm PRIMDEC also sheds some light on why and how primary 
decompositions are not unique in general. An example that we have men
tioned several times in connection with the uniqueness theorems in Section 
8.5 is 

Id(X2,XY) = Id(X) n Id(X2, Y) = Id(X) n Id(X2,XY, y2) 

in K[X, Yl. The algorithm PRIMDEC applied to Id(X2, XY) would have 
to start with {Ub ... , Ur } = {Y}. It would find the ideal Id(X) on the 
extended level, and it would naturally take f = Y. The least sEN with 

Id(X2,XY) : ys = Id(X2,XY): yoo 

is s = 1, and this choice would result in the primary decomposition 

Id(X2, XY) = Id(X) n Id(X2, Y). 
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However, any s > 1 is just as good, and we obtain the infinitely many 
decompositions 

Id(X2, XY) = Id(X) n Id(X2, XY, Y S ) 

Exercise 8.104 Write an algorithm that decomposes a given polynomial ideal 
I into an intersection of finitely many proper ideals D i , ... , Dr such that 

(i) for each 1 ~ i ~ T, all primary components of Di have the same dimension, 
and 

(ii) dim(D i } f= dim(DJ ) for alII ~ i < j ~ T. 

Such a decomposition is called an unmixed decomposition. 

8.8 Computing Real Zeroes of Polynomial 
Systems 

In this section, we will exclusively consider polynomials over the field Q 
of rational numbers. As usual, we write Q[X] for Q[Xl, ... , XnJ. Perhaps 
the most important problem to which the theory of Grobner bases makes 
a contribution is the computation of the common zeroes in ]Rn of a finite 
set of polynomials F ~ Q[X], i.e., the computation of the real solutions of 
a system of possibly non-linear equations 

h(Xl, ... ,Xn) = 0 

!2(X1, ... , Xn) 0 

fm(X1"." Xn) 0 

with fi(Xl, ... ,Xn) E Q[X] for 1 :=:; i :=:; m. What we are looking for 
is of course the set of real zeroes of the ideal Id(F). If dim(Id(F)) > 0, 
then by Proposition 8.27, Id(F) has infinitely many zeroes in en and thus 
possibly in ]Rn. The problem of computing the real zeroes is thus not really 
a meaningful one unless it is further qualified. One could, for example, 
specify a rational value for each one in a set of maximally independent 
variables in such a way that substitution of these values leads to a zero
dimensional ideal. (In view of Lemma 7.50, it is an easy exercise to prove 
that there are always infinitely many such substitutions.) This takes us to 
the case which we will be discussing here, namely, the case dim(Id(F)) = O. 
Proposition 8.27 tells us that there can then be at most finitely many real 
zeroes of Id(F). 

If one is interested in no more than the rational zeroes of Id(F), then 
the problem can be solved as follows. First, compute a Grobner basis G of 
Id(F) w.r.t. a lexicographical term order, say the one where 

X I «···« X n · 
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Then compute the rational zeroes of the univariate polynomial 1 in Xl, 
using the well-known method of clearing denominators and then trying all 
linear factors pX - q where p and q are divisors of the head coefficient and 
the constant coefficient, respectively, of I. Substitute each of these into 
each element 9 of G n Q[Xl, X 2], and compute the rational zeroes of the 
resulting univariate polynomials in X 2 • The rational zeroes of GnQ[Xl , X 2 ] 

are then precisely the pairs (ql, q2), where ql was a zero of 1 and q2 was a 
common zero of 

{g(ql' X 2) I 9 E G n Q[Xl' X2]}. 

It is easy to see that the rational zeroes of Id(G) = Id(F) can be found by 
continuing this process of iterated substitutions in the obvious manner. 

Exercise 8.105 Write an algorithm that computes the set of all rational zeroes 
ofld(F) for any given finite subset F oflQ[ X J. Prove correctness and termination. 

In order to understand the problem of finding the real zeroes of a polyno
mial ideal over Q, we must first clarify what happens in the univariate case. 
So let 1 E Q[X], and suppose we want to know for which 0: E 1R we have 
1(0:) = o. There is an algorithm which for those 1 with deg(J) ::; 4 com
putes all real zeroes of 1 in terms of radicals depending on the coefficients 
of I. (This was essentially known in the sixteenth century.) One of the ma
jor achievements of modern mathematics is the proof-given by N.H. Abel 
(1802-1829)-that there cannot exist such an algorithm for any degree 
greater than or equal to 5. There is, however, a host of numerical methods 
for the approximation of real zeroes of univariate polynomials. One might 
therefore consider to simply imitate the procedure for the computation of 
rational zeroes as described above, working with approximations instead of 
precise solutions. To see where the catch lies, suppose we have computed 
an approximation q E Q of a zero 0: E 1R of a univariate polynomial in Xl 
and are now substitutin~ q into a bivariate polynomial 9 in Xl and X 2 with 
the intention of computing approximations of the zeroes of g(q, X 2). The 
fact that q was no more than an approximation will of course lead to an 
error propagation. Much worse, however, the variation of the coefficients of 
g(q,X2 ) which is caused by the shift from 0: to q may radically and uncon
trollably change the behavior of g(q, X 2) as far as real zeroes are concerned. 
It could for example happen that the number of such zeroes changes from 
many to none, thus rendering any result of the procedure meaningless. (See 
also the Notes to this chapter on p. 419.) 

The aim of this section is to demonstrate that there is a method to de
termine the real zeroes of a zero-dimensional ideal over Q to a degree of 
"certainty" which, in view of Abel's result on unsolvability, cannot be fur
ther improved. We will first exhibit an algebraic method of approximating 
the real zeroes of a univariate polynomial 1 in the following sense: we will 
show how one can compute the rational endpoints of pairwise disjoint in
tervals on the real line such that each interval contains exactly one real 
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zero of I, and every real zero of I lies in one of the intervals. Moreover, 
the maximal length of these intervals can be prescribed to be arbitrarily 
small. Such a set of intervals will be called a set of isolating intervals for 
the real zeroes of I. For a multivariate zero-dimensional ideal I, we must 
first recall that rather obviously, the set of real zeroes of I is a subset of 
the set 

N = {(a1,'" an) E JRn I li(ai) = 0 for 1 $ i $ n}, 

where h is a generator of I n Q[Xi ] for 1 $ i $ n. We will first compute 
sets R1, ... , Rn of isolating intervals for the real zeroes of h, ... , In, 
respectively. Then there is an obvious bijection between N and the set 

We will solve the problem of finding the real zeroes of I by giving an algo
rithm that selects those n-tuples from M whose corresponding element of 
N is in fact a zero of I. We mention that due to its practical importance, 
the problem of solving polynomial systems efficiently is the object of vig
orous mathematical research; here, we propose to prove no more than the 
non-trivial fact that the problem is solvable at all. 

We begin by discussing the univariate case, i.e., the computation of the 
real zeroes of a univariate polynomial over Q in terms of isolating intervals 
as described above. The algorithm that achieves this rests upon a classical 
result known as Sturm's theorem, which we will now discuss. Sturm's the
orem will allow us to compute the number of real zeroes of a polynomial in 
a given interval. We use the notation for intervals that distinguishes open 
intervals from pairs: 

[a,,6] = { l' E JR I a $ l' $ ,6} and ]a,,6[ = { l' E JR I a < l' < ,6}. 

We will use several results from calculus, namely, the continuity of polyno
mials as functions from JR to JR, the intermediate value theorem, and, later 
on, the mean value theorem. 

Definition 8.106 Let I E JR[X] and a, ,6 E JR with a $ ,6. A Sturm 
sequence for I and [a,,6] is an (r + I)-tuple (/0,"" Ir) E (JR[X]t+1 such 
that the following hold: 

SO {'I' E JR lib) = O} = { l' E JR I lob) = O}. 

SI Ir(1'):f 0 for all l' E [a,,6]. 

S2 lo(a)· 10(,6) :f O. 

83 !f0 < i < r and l' E [a,,6] with lib) = 0, then h-1b)' 1i+1b) < O. 

S4 Whenever l' E la, b[ with lob) = 0, then there exist 1'1. 1'2 E JR with 
1'1 < l' and l' < 1'2 such that 10 (8) . h (8) < 0 for all 8 E h1. l' [, and 
10(8)· h(8) > 0 for all 8 E h,1'2[. 
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The first and last element of a Sturm sequence cannot be the zero poly
nomial by properties SI and S2. The next lemma states that if an interme
diate polynomial is the zero polynomial, then it may be dropped from the 
sequence. 

Lemma 8.107 Let I E JR[X] and a, 13 E JR with a ::; 13, and let (1o, ... ,Ir) 
be a Sturm sequence for I and [a,f3]. Assume further that 0 < i < r is an 
index with Ii = O. Then the sequence 

(1o, ... , Ii-I. Ii+b"" Ir) 

is still a Sturm sequence for I and [a, 13]. 

Proof It is clear that conditions SO, SI, and S2 continue to hold for the 
shorter sequence. From S3 applied to the original sequence, it follows that 
Ii-l and Ii+'l have no zeroes in [a,f3]. This means that if we test the 
shortened sequence for compliance with S3, then for li-l and Ii+l' its 
hypothesis will never be satisfied. It now follows easily that S3 continues 
to hold. Condition S4 is critical only if i = 1. But we have already argued 
that then 1o has no zeroes in [a,f3], and so S4 is rendered moot for the 
shortened sequence. 0 

It will be shown below how a Sturm sequence can be computed if the 
coefficients of I are given rational numbers. Let us first show how a Sturm 
sequence for a polynomial I and an interval [a,f3] codes the information 
how many zeroes of I there are in [a, 13]. To this end, we define the number 
01 sign changes, or variations in sign, of an (r+ I)-tuple (ao, ... , ar) ofreal 
numbers as the output of the "algorithm" VARSIGN of Table 8.11 which 
becomes an actual algorithm when applied to an (r + I)-tuple of rational 
numbers. For real numbers, it amounts to a definition by recursion on r. 
Loosely speaking, the idea is to drop all zeroes and then to count the sign 
changes as one passes through the tuple. 

Exercise 8.108 Show that VARSIGN«1, 0, 0, -1, 2, 3, 0,1,0,0,0, -1» = 3. 

Proposition 8.109 Let I E JR[X] and a, 13 E JR with a ::; 13. Assume 
further that (1o, ... , Ir) is a Sturm sequence lor I and [a,f3]. Then the 
number 01 distinct zeroes 01 I in the interval [a,f3] equals 

VARSIGN((lo(a) , ... , Ir(a») - VARSIGN ((1o (13) , ... , Ir(f3»). 

Proof For simplicity, we will write 

Vp = VARSIGN ((1o (p) , ... , Ir{P») 

whenever P E JR. We first note that if we drop all zero polynomials from 
the sequence, then the result is still a Sturm sequence for I and [a,,6] by 
Lemma 8.107. Furthermore, the numbers of sign changes of the theorem 
are unaffected by dropping zero entries, and so we may assume w.l.o.g. that 
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TABLE 8.11. "Algorithm" VARSIGN 

Specification: v ~ VARSIGN((ao, ... ,ar )) 

Definition and computation of number of variations 
in sign 

Given: (ao, ... , a r) E ]Rr+1 with ao "I 0 
Define and find: the number v of variations in sign of (ao, ... , ar) 
begin 
v ~ 0; A ~ ao; i ~ 1 
while i ~ r do 

end 

repeat B ~ ai 
i ~i+l 

until B "I 0 or i > r 
if A . B < 0 then v ~ v + 1 end 
A~B 

end VARSIGN 

our Sturm sequence contains no zero polynomials. It is clear from SO that 
it suffices to discuss the number of zeroes of fo. Corollary 2.97 tells us that 
the set 

N = {p E [a, .8ll fi(P) = 0 for some 0 ~ i ~ r} 
has finitely many elements. We prove the theorem by induction on INI. 
H INI = 0, then the number of zeroes that we are looking for is O. But 
for 0 ~ i ~ r, the two values fi (a) and fi (.8) are not zero and, by the 
intermediate value theorem, have the same sign, so that Va = V,8 as desired. 
Next, let INI = 1, say N = {'Y}. 
Case 1: fob) "10, i.e., fo has no zero in [a,.8]. 
Set 

J = { i E {O, ... ,r} I lib) = 0 } ~ {I, ... ,r - I}. 

Now whenever i rJ. J, then from the intermediate value theorem and the 
fact that INI = 1, we see that fi cannot change its sign anywhere on [a, .8l. 
Moreover, if i E J, then by S3 of the definition of a Sturm sequence, i-I 
and i + 1 are not in J, and Ii-I ('Y) and fi+ 1 ('Y) have opposite signs. But we 
just saw that Ii-I and fi+I cannot change their sign anywhere on [a,.8], 
and so their signs at a and .8 are the same as at 'Y. We can now describe 
the difference in passing from 

(Jo(a), ... ,!r(a)) to (Jo(.8) , ... , fr(.8)) 

as follows. The only entries that can possibly change their sign, or change 
from zero to non-zero or vice versa, have indices i with 1 ~ i ~ r - 1. Each 
such entry is flanked by two non-zero entries with opposite signs, none 
of which changes its sign. A simple case distinction, as indicated below, 
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shows that the number of variations in sign has remained the same, so that 
Va = Vfj as desired. 

++- -- +-- -++ -- --+ 
++- -- +0- -++ -- -0+ 
+-- -- +0- --+ -- -0+ 
+-- -- ++- --+ -- -++ 
+0- -- ++- -0+ -- -++ 
+0- -- +-- -0+ -- --+ 

Case 2: loh) = o. 
Here, we first note that S3 implies that I1h) #- 0, and thus, once again 
from the intermediate value theorem and the fact that INI = 1, it follows 
that l1(a) and 11(13) have the same sign. Now if we consider the sequences 

(11 (a), ... ,Ir(a)) and (11 (13), ... ,lr(13)), 

then we can use property S3 in the exact same way as in Case 1 to argue 
that these two sequences have the same number of sign changes. So in order 
to prove the desired result Va - Vfj = 1, we must prove that lo(a) and 11 (a) 
have opposite signs, while 10(13) and 11(13) have the same sign. To this end, 
we first note that by S2, we must have 'Y E la, 13[. Condition S4 tells us that 
in a sufficiently small interval hll 'Y[ to the left, 10 and 11 have opposite 
signs, while in a sufficiently small interval h, 'Y2[ to the right, they have the 
same sign. But neither one of the two polynomials has a zero in [a, 131 \ {'Y }, 
and so by the intermediate value theorem, these relationships between the 
signs continue to hold at a to the left and at 13 to the right, respectively. 

Finally, let INI > 1. If all ... , alNI are the elements of N in ascending 
order, then we have 

a ::; al < ... < alNI ::; 13, 

and we may choose 'Y E lal, a2 [_ One easily proves by inspection of the 
definition that (fo, ---, Ir) is still a Sturm sequence for I and [a, 'Yl, and 
also for I and h, 131- The sets 

Nl = {p E [a,'Yll li(p) = 0 for some 0::; i ::; r} 

and 
N2 = {p E ['Y,1311 li(P) = 0 for some 0::; i ::; r} 

have 1 and INI - 1 elements, respectively. The induction hypothesis tells 
us that the number of zeroes of I in [a, 'Yl equals Va - V,,),, and the number 
of zeroes of I in ['Y,131 equals V1' - Vfj_ It follows that the number of zeroes 
of I in [a,131 equals 

(Va - V1') + (V1' - Vfj) = Va - Vfj_ 0 

Next, we show that Sturm sequences always exist and how they may be 
computed_ 
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Proposition 8.110 Let 0 #- f E R[X] with deg(f) > O. Then there exists 
an (r + I)-tuple 

(fo, ... , fr) E (R[XJr+l 

with fo squarefree and fr = 1 which is a Sturm sequence for f and every 
intenJal [a,.81 with a, .8 E R satisfying a ~ .8 and f(a), f(.8) #- O. More
over, if the coefficients of f are given rational numbers, then this Sturm 
sequence is in (Q[XW+l and can be computed from f. 

Proof We give an algorithm STURMSEQ (Table 8.12) for the computa
tion of the Sturm sequence for the rational casej in the general case, one 
easily infers a mathematical existence proof. The general idea is to perform 
the same successive long divisions that the Euclidean algorithm uses to 
find gcd(f, f'), with the exception that remainders are taken with opposite 
signs. One then divides gcd(f, f') out of the sequence of remainders thus 
obtained. Formally, we view the (r + I)-tuple S = (fo, ... , fr) as a func
tion from {O, ... , r} to Q[Xlj enlarging S by an additional entry g is thus 
achieved by the assignment S +- S u {( r + 1, g)}. 

TABLE 8.12. Algorithm STURMSEQ 

Specification: S +- STURMSEQ(f) 
Computation of a Sturm sequence 

Given: 0 #- f E Q[Xl with deg(f) > 0 
Find: S = (fo, ... , fr) E (Q[XW+1 which is a Sturm sequence for f 

and [a,.81 whenever a,.8 E R with a ~.8 and f(a), f(.8) #- 0 
begin 
F +- fj G +- f' 
i +- OJ T +- {(i,F)} 
while G#- 0 do 

end 
S+-0 

(QUOT, REM) +- DIV(F, G) 
F +- G; G +- -REM 
i +- i + 1; T +- T U {(i, P)} 

while T #- 0 do 

end 

select (j, h) from T 
T +- T \ {(j,h)} 
S +- S U {(j,hIF)} 

end STURMSEQ 

We claim that the first while-loop terminates, and that the value of F 
after the last run is gcd(f, f'). A rigorous proof would, up to a few minus 
signs, look exactly like the correcrtness proof of the algorithm EXTEUC 
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of Theorem 2.32. An easier way of understanding the claim is to observe 
that because of the equations 

qg+r=(-q)(-g)+r and -(qg+r) = (-q)g-r, 

the first while-loop makes, up to a possible factor of -1, the same as
signments to F and G as EXTEUC(f, I') would make to its variables A 
and B. Furthermore, we claim that the final value gcd(f, I') of F divides 
not only I and 1', but every value of F during the first while-loop, thus 
making the divisions of the second while-loop possible. This is immediate 
from the fact that the ideal Id(F, G) is a loop invariant (look up the proof 
of Theorem 2.32 if you don't see why), and that G = 0 at the end of the 
loop. 

It remains to be shown that the final value of S begins with a squarefree 
polynomial, ends with 1, and is a Sturm sequence for I and all intervals 
[a,.Bl as indicated. Let this final value be (fo, ... ,/r). For SO, it suffices to 
note that 10 = 1/ gcd(f, 1'), and so the irreducible factors of I and 10 in 
Q[Xl are the same by Lemma 2.82. This also shows that 10 is squarefree. 
SI holds because rather obviously, Ir = 1, and S2 holds by the assumption 
on [a, .Bl. For S3, let 1 < i < r. It is easy to see from the assignments of 
the two while-loops that 

li-l = qli - Ii+l 

for some q E Q[Xl, and we see that liC'Y) = 0 implies that li-lC'Y)·li+1C'Y) ::; 
0, and that li-lC'Y) = 0 if and only if li+lC'Y) = O. But the latter is easily 
seen to be impossible: from liC'Y) = 0 together with li+1C'Y) = 0 and the 
equation 

Ii = qli+l - 1i+2' 
we could conclude that 1i+2("Y) = 0, and, continuing in this way, eventually 
IrC'Y) = 0, a contradiction. 

Finally, for S4, suppose that 10C'Y) = 0 for some"Y E la,.B[. Then we may 
choose "Yl, "Y2 E IR with "Yl < "Y < "Y2 close enough to "Y so that neither I nor 
I' has a zero in hl,"Y2[ \ h}. Since 

I I' = (fo . gcd(f, /'») . (It . gcd(f, I'») = lolt . (gcd(f, I'») 2 

and 
(gcd(f,/,»)2 > 0 on hl,"Y2[ \ h}, 

it suffices to prove that II' < 0 on hI. "Y[ and I I' > 0 on h, "Y2 [. To see 
this, we write 

(h E Q[Xl, h("Y) 1: 0). 

Here, we must have e > 0 because "Y is a zero of I by SO. We obtain 

21 I' = (f2)' = 2e(X - "Y)2e-l . h2 + 2(X - "Y)2e . hh', 
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and so 

(X ! ~;2e-l = eh2 + (X - 'Y) . hh' for X t= 'Y. 

The value of the right-hand side at 'Y is eh2 b) > 0 because of hb) t= 0, 
and so it is positive on all of hl. 'Y2[. Looking at the left-hand side, we see 
that I I' must be negative to the left of 'Y and positive to the right. 0 

It is clear that given a polynomial I E Q[Xl, we can now compute 
STURMSEQ(f) and then, using the same sequence over again, count the 
zeroes of I in intervals [a, bl with a, bE Q and I(a), I(b) t= 0 by means of 
Proposition 8.109. 

In order to relate all this to the original version of Sturm's theorem, let us 
look at what happens if we try to use the sequence T that the first while
loop of STURMSEQ computes, thus refraining from dividing gcd(f, I') out 
of the sequence. It is clear that T will not in general be a Sturm sequence 
for I: as soon as the interval in question contains a common zero of I 
and I', property S3 will fail. But it is easy to see that Proposition 8.109 
continues to hold with T used instead of a Sturm sequence: T is obtained 
from the actual output S of STURMSEQ by multiplying gcd(f,I') back 
into the sequence, and for the evaluated sequences of Proposition 8.109, 
this amounts to multiplication by a non-zero constant. (Recall that we are 
assuming that I, and thus gcd(f, I'), vanishes neither at a nor at (3.) Such a 
multiplication will clearly not affect the number of variations in sign. This 
proves Sturm's theorem as stated below. It is important to note though 
that in practice, the number of variations in sign will usually have to be 
computed at a large number of points; from a computational point of view, 
one should therefore by all means divide the common factor gcd(f, I') out 
of the sequence before embarking on these evaluations. 

Corollary 8.111 (STURM'S THEOREM) Let 0 t= I E R[Xl with deg(f) > 
0, and a, {3 E R with a ~ (3 and I(a), 1({3) t= O. Define the sequence 
(fo, . .. ,Ir) recursively by setting 

10 =1, 
It = 1', and for i ~ 1, 

1i+1 = -R, where Ii-I = Q·1i + R with Q, R E Q[X] such that 
R t= 0 and deg(R) < deg(fi), 

with the understanding that Ir is the last non-zero remainder thus obtained. 
Then the number 01 distinct real zeroes 01 I in the interval [a, {3] is equal 
to 

VARSIGN ((fo (a) , ... , Ir(a))) - VARSIGN ((fo({3), ... , Ir([3))). 0 

We are now going to use Sturm's method to isolate the zeroes of DOD-zero 
polynomials over Q. 
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Definition 8.112 Let 0 =I- f E IR and a E IR a zero of f. Then an interval 
[a, b] is called an isolating interval for the zero a of f if a, b E Q, a E [a, b], 
and f({3) =I- 0 for all (3 E [a,b] \ {a}. A set of isolating intervals for the 
real zeroes of f is a set R of pairwise disjoint intervals such that each 
element of R is an isolating interval for some real zero of f, and R contains 
an isolating interval for each real zero a of f. 

Note that as part of the definition of an isolating interval, we have re
quired both endpoints to be rational. The strategy for computing a set of 
isolating intervals for the real zeroes of a non-zero polynomial over Q is now 
as follows. We start with an interval which we know will contain all real 
zeroes of f, if any. Such an interval will be provided by the next lemma. 
We then subdivide this interval further and further, counting zeroes as we 
go along, and drop those subintervals that contain no zero of f until every 
interval that is left contains exactly one zero of f. 

Lemma 8.113 Let 0 =I- f E JR[X] , say f = E:'o aiXi. Suppose m > 0 
and am> 0, and set 

Then 

f(-y) > 0 for 'Y > M, and 
(_l)m. f(-y) > 0 for 'Y < -M. 

Proof First, let 'Y > M. Using the facts that 'Y > M ~ 1 and x ~ -Ixl for 
all x E JR, we obtain 

f(-y) = ~ ani ~ am'Ym -I~ anil ~ am'Ym - ~ lail· 'Yi 

m-l m-l m-l 
> amM· 'Ym- 1 - L lail· 'Yi ~ L lail· 'Ym- 1 - L lail· 'Yi 

i=O i=O i=O 
m-l m-l 

~ L lail· 'Yi - L lail· 'Yi = O. 
i=O i=O 

If 'Y < -M, then we get 

m-l 
(-l)mf('Y) = (-l)mam'Ym+(-l)mLani 

i=O 

~ am(-'Y)m -I~ ani I 
&=0 
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m-l 
~ am ( -'Y)m - L lail bli 

i=O 
m-l 

am ( -'Y)m - L lad (-'Y)i > 0, 
i=O 

the last inequality being true because -'Y > M and the bound M is the 
same for the polynomial g = amXm + L:::~l lailXi as for f. 0 

Exercise 8.114 Let 0 I- f E IR[X], say f = L:::oaiXi. Suppose m > 0 
and am I- 0, and set 

M = max{l, laol/laml + ... + lam-ll/laml}. 
Show that f(a) = 0 implies -M $ a $ M. 

We are now in a position to give an algorithm ISOLATE for the com
putation of isolating intervals according to the strategy that was described 
preceding the last lemma. There are two points that need attention. One 
is the fact that in the process of subdividing the interval [-M, M] and 
counting zeroes, we may encounter a rational zero at some endpoint a E Q. 
We must then divide the linear factor (X - a) out of the first element of 
our Sturm sequence in order to be able to apply Proposition 8.109. (Recall 
that the first element of the output of STURMSEQ is always squarefree.) 
One could of course also compute the rational zeroes separately before even 
beginning to look for real ones. 

The other difficulty occurs when the algorithm encounters an interval 
[a, b] with two zeroes in it, then divides that interval in the middle at e = 
(a+b)/2 and finds that each of [a, e] and [e, b] contains one zero. It would be 
a mistake to end the process here, because the two intervals are not disjoint. 
One could of course fix this by working with half-open intervals [a, e[ and 
[e, b[. This is not good enough, however, because for a later application we 
must have the stronger separation of the zeroes by means of disjoint closed 
intervals. We will therefore have to make the algorithm continue its process 
of subdividing intervals in the situation described above. Another way to 
handle the problem would be to compute a lower bound for the minimal 
distance between any two distinct zeroes and then make the algorithm run 
until each interval is less than half as wide as this bound. 

The provisions described above will make a formal correctness proof of 
the mathematically plausible algorithm quite tedious; we therefore leave 
it to the reader to give such a proof if it is desired. If one disregards ef
fectivity and elegance altogether, then the algorithm ISOLATE below is 
too complicated; we give a version that does not do anything outrageously 
awkward. 

Theorem 8.115 The algorithm ISOLATE of Table 8.13 computes a set of 
isolating intervals for every non-zero polynomial f E Q[X]. 0 
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TABLE B.13. Algorithm ISOLATE 

Specification: R to- ISOLATE(J) 
Isolation of real zeroes (Uses Subalgorithms ISOREC 
and ISOREFINE of Tables 8.14 and 8.15) 

Given: 0 -I I E Q[Xj 
Find: a set R of ordered pairs of rational numbers such that 

{ [a, b) I (a, b) E R} is a set of isolating intervals for the 
real zeroes of I 

begin 
F to- Ij R to- 0 
M to- max{l, laolilaml + ... + lam-Ililaml}, where F = E:'oaiXi 
if (X - M) I F then 

F to- FI(X - M)I', where I' is the multiplicity of M as a zero of F 
R to- RU{(M,M)} 

end 
if (X + M) I F then 

F to- FI(X + M)", where 11 is the multiplicity of -M as a zero of F 
R to- Ru {(-M,-M)} 

end 
if F is constant then return(R) end 
S to- STURMSEQ(F) 
F to- the first entry of S 
R to- R U ISOREC( -M, M, F, S) 
while there exist pairs (u,e), (e,v) E R do 

select pairs (u, e), (e, v) E R 
R to- R \ {(u,e), (e, v)} 
R to- R U ISOREFINE(u, c, v, F, S) 

end 
end ISOLATE 

Exercise 8.116 Modify the algorithm ISOLATE in such a way that it computes 
real zeroes with arbitrary prescribed precision, i.e., it computes isolating intervals 
of prescribed maximal length. 

Exercise 8.117 Isolate the zeroes of 3X3 - X2 - 6X + 2 by means of the algo
rithm ISOLATE. Check your answer. 

We have now solved the problem of isolating real zeroes of univariate 
polynomials. The next two lemmas prepare the ground for the treatment 
of the multivariate case. First, we need an estimate for the absolute value 
of the value of a polynomial on an interval. 

Lemma 8.118 Let a, b E Q with a $ b and I E Q(X], say I = E:'o aiXi. 
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TABLE 8.14. Subalgorithm ISOREC 

Specification: R +- ISOREC( a, b, F, S) 
Isolation of real zeroes on an interval 

Given: a, b E Q with a ~ b, F E Q[X] squarefree, and 
a Sturm sequence S for F and [a, b] 

Find: a set R of pairs of rational numbers from the interval [a, b] 
such that the intervals corresponding to the pairs in R can 
be elements of a set of isolating intervals for the zeroes of F, 
covering the zeroes lying in la, b[, except that two intervals 
[Ul,Vl] and [U2,V2] with (UbVt) and (U2,V2) two different 
elements of R may still be overlapping by a single point 

Comment: The arguments F and S are understood to be called by 
reference. This means that any change that ISOREC 
makes to F and S affects the value of F and S in the 
procedure that is making the present call of ISOREC 

begin 
R+-0 
v +-VARSIGN«(fo(a) , ... , fr(a))) - VARSIGN«(fo(b), ... , fr (b))) , where 

S = (fo, ... , fr) 
if v = 0 then return(R) end 
if v = 1 then return(R U {(a, bn) end 
e +- (a + b)/2 
if (X - c) I F then 

F +- F/(X - c) 
R +- Ru {(e,en 
if F is constant then return(R) end 
S +- STURMSEQ(F) 
F +- the first entry of S 

end 
R +- R U ISOREC( a, e, F, S) U ISOREC( e, b, F, S) 
end ISOREC 

If we set M = max{lal, Ibl}, then 
m 

If(a)1 ~ L lail· Mi 
i=O 

for all a E [a, b]. 

Proof The statement of the lemma is immediate from the inequality 

I~aiail ~ ~Iaiail = ~Iaillali ~ ~lail'Mi 
which holds for all a E [a, b]. 0 
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TABLE 8.15. Subalgorithm ISOREFINE 

Specification: P +- ISOREFINE( 1.£, e, v, F, S) 

begin 

One step in the refinement of the output of ISOREC to 
a set of isolating intervals 

if e = v then 
d+-(u+e)j2 
if (X - d), F then return ( {(d, d), (e, en) end 
return( {( e, e)} U ISOREC( 1.£, d, F, S) U ISOREC( d, e, F, S» 

end 
ifu = ethen 

d+-(v+e)j2 
if (X - d), F then return( {(e, e), (d, dn) end 
return( {(e, en U ISOREC(e, d, F, S) U ISOREC(d, v, F, S» 

end 
dl +- (1.£ + e)j2j d2 +- (e + v)j2 
if (X - dt}' F then return ( {(db dt}, (e, vn) end 
if (X - d2)' F then return( {(u, e), (d2, d2)}) end 
P +- ISOREC(u,dl,F,S) UISOREC(dl,e,F,S) U 

ISOREC(e, d2 , F, S) U ISOREC(d2 , v, F, S) 
end ISOREFINE 

Exercise 8.119 Discuss how the estimate of the lemma above can be improved. 

The next lemma shows how we can, by means of refinement, control the 
variation of a polynomial 9 on an isolating interval for a real zero of some 
other polynomial f. 

Lemma 8.120 Let [a, b] be an isolating interval for a real zero a of a 
polynomial f E Q[X]. Furthermore, let 9 E Q[X] and 0 < t: E Q. Then 
the algorithm SQUEEZE of Table 8.16 refines [a, b] to an isolating interval 
[e, d] for a such that 

max{ 'g(a2) - g(al)'1 al,a2 E [e,d]} < t:. 

Proof Termination: The first five lines of the while-loop have the effect 
of leaving the loop or cutting the value of d - e in half. Furthermore, the 
interval [e, d] is replaced with a subinterval, and one easily sees that the 
value of B cannot incre88e during a run through the while-loop. It is ~ow 
clear that the condition B· (d - e) < t: must eventually be reached. 

Correctness: It is clear from the if-conditions that an invariant of the 
while-loop is given by: [e, d] is an isolating interval for the zero a of f 
with [e, d] ~ [a, b]. In view of the last lemma, it is easy to see that upon 
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TABLE 8.16. Algorithm SQUEEZE 

Specification: (e, d) - SQUEEZE( a, b, I, g, e) 
Limiting the variation of 9 on an isolating interval for a 
zero of I 

Given: a, b, e E Q and I, 9 E Q[Xj such that [a, bj is an isolating interval 
for a real zero 0 of I, and e > 0 

Find: e, d E Q such that [e, d) is an isolating interval for 
the real zero 0 of I with [e, d) ~ [a, bj, and 
\g(02) - g(Ol)\ < e for all 01,02 E [e, d) 

begin 
(e, d) - (a, b) 
if I(e) = 0 then return«e, e» end 
if I(d) = 0 then return«d,d» end 
(10, ... , /r) - STURMSEQ(I) 
M - max{\e\, \d\} 
B -\ao\ + \a1\· M + ... + \am\· Mm, where g' = E:OaiXi 
while B· (d - e) ~ e do 

end 

s-(e+d)/2 
if /(s) = 0 then return«s, s» end 
if VARSIGN«(lo(e), ... , Ir(e») - VARSIGN«(lo(s), ... '/r(S))) = 1 

then (e, d) - (e, s) 
else (e, d) - (s, d) end 
M - max{\e\, \d\} 
B -\ao\ + \a1\· M + ... + \am\· Mm, where g' = E:OaiXi 

end SQUEEZE 

termination, we also have \g'(.8). (01 - (2)\ < e for all 01, 02, .8 E [e,d). 
We claim that this implies 

To see this, let 011 02 E [e, d), and assume w.l.o.g. that 01 < 02. By the 
mean value theorem, there exists.8 E [01,02] such that 

It follows that 

Exercise 8.121 Show that the last two lines inside the while-loop of the algo
rithm SQUEEZE may be dropped. 
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Exercise 8.122 Write an algorithm with input f E Q[XJ and a, b E Q with 
a ::; b and output 0 < CEQ such that C has the following property: whenever 
0< c E 1R is given, then la2 - all < C· c implies If(a2) - f(adl < c for all aI, 
a2 E [a, bJ. (This shows that polynomials are "computably uniformly continuous" 
on bounded sets.) 

The following natural terminology and notation will be used in the next 
theorem and its proof. If I and J are intervals on the real line, then the 
distance between I and J is defined as 

dist(I, J) = inf{ la - .BII a E I, .B E J}. 

If I is an interval and a E JR, then the distance between a and I is 
defined as 

dist(a, I) = inf{ la - .BII.B E I}. 
Since we are working with closed intervals only, it is easy to see that the in
fima of the definitions of distances will always be assumed, and for non-zero 
distances, they will be assumed at certain endpoints. Moreover, if points 
and endpoints are given explicitly as rational numbers, then distances can 
always be computed. 

We are finally in a position to discuss the problem of computing the real 
zeroes of Id( F) for a finite subset F of Q[ X]. We know how to compute 
sets R1 , •.. , Rn of isolating intervals for the real zeroes of 11, ... , fn' 
respectively, where fi is the unique monic generator of Id(F) n Q[Xi ] for 
1 ::; i ::; n. What remains to be done is to select from the set 

M = { ([aI, bl ], ... , [an, bn]) I [ai, bi] E Ri for 1 ::; i ::; n} 
those n-tuples ([aI, bl ], ... , [an, bnD that have the property that the unique 
n-tuple (alo ... ,an) with 

ai E [ai, bi ] and fi(ai) = 0 (1 :::; i :::; n) 

is a zero ofId(F). We are thus faced with the problem to decide whether or 
not the polynomials in F, or, for that matter, the polynomials in any other 
basis of Id(F), vanish at (alo ... , an). It may not be immediately obvious 
what the algorithm REAL ZEROES of the next theorem does and why; the 
reader is advised to use the correctness proof as a comment. 

Theorem 8.123 The algorithm REAL ZEROES of Table 8.17 computes, 
for any finite subset F of Q[ X] such that Id(F) is zero-dimensional, a set 
M of n-tuples 

(al,bl), ... ,(an,bn») 
of pairs of rational numbers such that the following hold: 

(i) For each real zero (alo ... an) E JRn of Id(F), there exists exactly one 

(al,bd, ... ,(an,bn» EM 

with ai E [ai, bil for 1 ::; i :::; n. 



8.8. Computing Real Zeroes of Polynomial Systems 415 

(ii) For each «ab bd •...• (an. bn}) EM, there exists exactly one zero 

of Id(F) with 0i E [ai. bil for 1 $ i $ n. 

(iii) Whenever «aI, bd, ... , (an, bn}) and «Cb dd, ... , (en, dn}) are in M 
and 1 $ i $ n, then [ai, bil and [Ci, dil are either equal or disjoint. 
Moreover, [ai, bil = [Ci, dil implies that the ith components 0i and Pi 
of the corresponding zeroes of Id(F) are equal. 

TABLE 8.17. Algorithm REAL ZEROES 

Algorithm REALZEROES 
Specification: M +- REALZEROES(F) 

Computation of real zeroes of Id(F) 
Given: F = a finite subset of Q[ X 1 with Id(F) zero-dimensional 
Find: a set M of n-tuples of pairs of rational numbers (a, b) such that 

M hag properties (i)-(iii) ag stated in Theorem 8.123 
begin 
H +- ZRADICAL(F) 
for i = 1 to n do 

fi +- the monic generator of Id(H) n K[Xil 
(provided by ZRADICAL) 

~ +- ISOLATE(!i) 
di +- min{ dist([a, bl, [c, dj) I (a, b), (c, d) E ~ with (a, b) =F (c, d)} 

end 
G +- NORMPOS(H), say G = {g,X1 - gl,··. ,Xn - gn} 
R +- ISOLATE(g) 
M+-0 
while R =F 0 do 

end 

select (a, b) from R 
R +- R \ {(a, b)} 
fori=1tondo 

(a, b) +- SQUEEZE(a,b,g,gi,di/2) 
end 
M +- M U {«ab bl ), ... , (an, bn»}, where «aI, b1), ••• , (an, bn}) 

is the element of RI x ... x Rn that satisfies 

for1$i$n 

end REALZEROES 
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Proof It is clear that Id(F) and rad(Id(F» have the same zeroes in JRn, 
and so passage to the radical is legitimate. Furthermore, our ground field Q 
satisfies the hypothesis of Theorem 8.22, so that the application of ZRAD
ICAL does indeed yield a basis H of the radical of Id(F). Next, we observe 
that Q also satisfies the hypothesis of Theorem 8.81. The algorithm NORM
POS will therefore compute a Grabner basis of the extended ideal 

which is of the form 

with g, gl, ... , gn E Q[Z]. Lemma 8.73 (ii) tells us that JnQ[X] = Id(H), 
so that at this point, Ii is the unique monic generator of J n Q[Xi] for 
1 ~ i ~ n. From the fact that 

{g,X1 - gl,'" ,Xn - gn} and Hu {Z - Xl - C2X2 - ... - cnXn} 

are bases of J and that JnQ[Xj = Id(H), it is easy to see that the zeroes 
of Id(H)-which are the same as those of Id(F)-are given by 

{ (gl(a), ... ,gn(a») I a E JR, g(a) = o}. 

The zeroes of 9 are given to us by their isolating intervals which are collected 
in R. Moreover, whenever a zero a of 9 has been chosen, then gi (a) is a 
zero of Ii and thus lies in exactly one interval [ai, bi] with (ai, bi) E Ri for 
1 ~ i ~ n. The task of one run through the while-loop is to determine the 
n-tuple 

(a1,bt}, ... , (an, bn») E Rl x .. · x Rn 

that satisfies gi(a) E [ai, bij for 1 ~ i ~ n, and then to place this n-tuple 
in the output set M. Here, the zero a of 9 is given by an isolating interval 
[a, bj which is selected from the set R. 

To see that the while-loop performs its task correctly, let (a, b) E R, and 
let a be the zero of 9 that is isolated by the interval [a, b). The application 
of SQUEEZE shrinks [a, b) in such a way that it is still an isolating interval 
for the zero a of g, and that 

where di is the minimal distance between any two different intervals in Ri. 
For 1 ~ i ~ n, let now (ai, bi ) be the element of ~ that the algorithm is 
supposed to determine, i.e., the one with gi(a) E [ai,bi). We must show 
that [ai, bi) is the interval in ~ that gi(a) is closest to, i.e., that 
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for all (e, d) E ~ with (e, d) i- (ai, bi ). Assume for a contradiction that 
there exists (e, d) E ~ with (e, d) i- (ai, bd and 

dist (9i(a), [e, dJ) ~ dist(9i( a), [ai, bin· 

It follows that there exists f3 E [e, dJ with 

!f3 - 9i( a)! ~ dist(9i( a), [ai, bd)· 

From the inequality (*) and the fact that a, 0: E [a,bj and 9i(O:) E [ai,bij, 
we conclude that 

dist(9i(a), [ai, biD ~ !9i(a) - 9i(O:)! < ~i . 
Using the last two inequalities, we see that 

!f3 - 9i (o:)! I (f3 - 9i (a») + (9i (a) - 9i (0:») I 
< !f3 - 9i(a)! + !9i(a) - 9i(O:)! 

d· d· 
< 2'+2' = d., 

from which it follows that dist([e, dj, [ail biD < di , a contradiction. We have 
proved that the while-loop makes all the right choices for elements of M. 
Property (iii) of the theorem and the uniqueness properties in (i) and (ii) 
are easy consequences of the fact that M is a subset of Rl x ... x Rn. 0 

Exercise 8.124 Show that the algorithm REALZEROES will never try to place 
an n-tuple in the set M that is already in there. 

Exercise 8.125 Let I, g E Q[X], let [a, b] be an isolating interval for a real zero 
a of I, and let cEQ with c f:. g(a). Give an algorithm that decides whether 
g(a) > cor g(a) < c. 

Exercise 8.126 Modify the algorithm REALZEROES in such a way that it uses 
the previous exercise rather than the algorithm SQUEEZE in order to determine, 
for given zero a of g, the corresponding n-tuple of isolating intervals of the zeroes 
gl ( a), ... , gn (a) of b, ... , In. Discuss on an intuitive level the difference between 
the two versions as far as computational expense is concerned. 

Exercise 8.127 Write an algorithm that computes the complex zeroes of a poly
nomial ideal over Q. Here, a complex zero should be given as a pair of isolating 
intervals, one for the real and one for the imaginary part. 

Just as with the algorithm ZPRIMDEC, the algorithm REALZEROES 
is extremely time and space consuming in general because it calls for an ap
plication of NORMPOS. As with ZPRIMDEC, one should therefore try to 
decompose the given ideal as much as possible into an intersection of ideals 
with "smaller" univariate polynomials. The techniques described on pages 
382-385 apply verbatim. The following lemma shows how the real zeroes 
of the original ideal can be obtained from those of the ideals occurring in 
the decomposition. 
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Lemma 8.128 Let K be any field, L an extension field of K, and let I and 
J be ideals of K[X]. If we denote by N(I), N(J), and N(InJ) the set of 
zeroes in Ln of I, J, and In J, respectively, then N(In J) = N(J) UN(J). 

Proof The inclusion ";2" is an immediate consequence of the fact that 
In J ~ I and In J ~ J. Now let z E Ln be a zero of J n J, and assume 
for a contradiction that z is neither a zero of I nor a zero of J. Then there 
exist polynomials I E I and 9 E J with I(z) =I 0 and g(z) =I 0, and we see 
that h = Ig is an element of I n J with h(z) =I 0, a contradiction. 0 

Exercise 8.129 Let K, L, I, and J be as in the last lemma. Prove the dual 
statement N(I U J) = N(I) n N(J). 

A further potential improvement of the algorithm REALZEROES can 
be achieved if a more intricate procedure for the selection of the n-tuples 
of isolating intervals is available. Suppose we have found a Grabner basis 
G of some ideal I of Q[ X] which is of the form 

with gi bivariate in Xi and some other variable for 1 :5 i :5 n, say gi E 
Q[Xi , Xj ']' Assume further that we have computed the generators Ii of 
In Q[Xi] for 1 :5 i :5 n as well as sets ~ of isolating intervals for their real 
zeroes. Then an n-tuple 

isolates a zero of I in lR.n if and only if art - gi(ai, ajJ = 0 for 1 :5 i :5 n, 
where ai and aj, are the zeroes of Ii and!;. isolated by [ai, bi] and [aj" bj,], 
respectively. The decision whether or not this holds cannot be achieved 
with the procedures that we have discussed; it is, however, covered by an 
algorithm that should be available wherever real algebraic decision methods 
are implemented. 

Unfortunately, there does not seem to be a systematic way to compute 
bases of the form (*). But it may always be that a basis of this form is given, 
or that the algorithm NORMPOS which is called by REAL ZEROES finds 
one before it has found the normal position. The following lemma says that 
this expectation is not absurdly unfounded: whenever the given ideal has 
been preprocessed by PREDEC and its reduced Grabner basis G w.r.t. the 
lexicographical term order consists of bivariate polynomials only, then G 
will be of the form (*). The main argument of the proof has already been 
used in the proof of Proposition 7.42. 

Lemma 8.130 Let K be a field, and suppose I is a zero-dimensional ideal 
of K[X] such that for 1 :5 i :5 n, the ideals J n K[Xi ] are generated by 
irreducible polynomials. Assume further that the reduced Grabner basis G 
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of I w.r.t. the lexicographical term order consists of bivariate polynomials 
only. Then G is of the form 

G = {Xr1 - gb ... , X~n - gn} 

with gi bivariate in Xi and some other, lexicographically lesser variable for 
1 ~ i ~ n. 

Proof Since I is zero-dimensional and G contains only bivariate polyno
mials, G has a subset G' of the indicated form. Assume for a contradiction 
that there exists f E G \ G', say 

m 

(ho, ... , hm E K[Xj], 1 ~ i < j ~ n). 

Let 9 be the element of G' whose head term is univariate in Xi. From 
the fact that G is reduced, we may conclude that m < degx, (g), and that 
hm ¢. I. Since InK[Xj] is generated by an irreducible polynomial and thus 
is maximal, there exists p E K[Xj] and q E In K[Xj] with phm + q = l. 
Then h =pf +qXi E I, and 

m-l 

h = phmXi + p L hkXik + qXi 
k=O 

m-l 

= Xi + p L hkXf. 
k=O 

We see that degx, (h) = m < degx. (g). But h must be top-reducible 
modulo G, and so G must contain a polynomial with head term Xi with 
v < degx• (g), contradicting the fact that G was reduced. D 

Notes 

The results of the first three sections of Chapter 8 are more or less ideal 
theoretic folklore; the algorithm for the computation of the radical in the 
zero-dimensional case is based on Lemma 92 of Seidenberg (1974). 

The concept of the primary decomposition of an ideal originates with 
the so-called fundamental theorem of M. Noether (1873). Noether's theo
rem concerns ideals generated by two polynomials in two variables. It gives 
a sufficient condition for a polynomial to be in the ideal which, in a sense, 
amounts to saying that the polynomial must be in every primary compo
nent of the ideal. Subsequent improvements and generalizations of the fun
damental theorem are due to Bertini (1889), Lasker (1905), and Macaulay 
(1916). It was E. Noether (1921) who finally proved that the primary de
composition of ideals is not an intrinsically geometric phenomenon, but is 
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in fact possible in every ring that satisfies the ascending chain condition 
for ideals. 

A method for the computation of primary decompositions of polynomial 
ideals was given in Hermann {1926} {cf. the Notes to Chapter 6 on p. 291}; 
again, it is important to observe the corrections of Seidenberg {1974}. The 
method of Section 8.6 for the zero-dimensional case is based on Kredel 
{1987}; see also Lazard {1985} and Gianni et al. {1988}. 

The algorithms of Section 8.7 for the computation of radical and pri
mary decomposition in higher dimensions closely resemble those given in 
a preliminary version of Gianni et al. {1988}; in the final version of the 
paper, this part is modified. Recent improvements are due to Eisenbud 
et al. {1992}. 

Sturm published his theorem on the number of real zeroes of a polynomial 
in 1835. It can be viewed as an improvement on Descartes' rule of signs. 
Actual implementations tend to favor the Uspensky algorithm over Sturm 
chains for the computation of isolating intervals of real zeroes; see, e.g., 
Collins and Loos {1982}. The investigation of real zeroes of polynomials 
and-more generally-real algebraic geometry is one of the focal points 
of contemporary computational algebra; we refer the reader to Collins and 
Loos {1982} and Bochnak et al. {1987} for more information and references. 

The problem of solving systems of non-linear polynomial equations, i.e., 
of computing the zeroes of a given ideal, is treated systematically for the 
first time in Kronecker (1892) under the heading of elimination theory. 
Elimination theory continued to be a major topic in commutative algebra 
for several decades to come; see, e.g., Netto (1900) and Macaulay (1916). 
The classical point of view is that the zeroes of a univariate polynomial, i.e., 
the solutions of a univariate polynomial equation, have been found as soon 
as one has constructed an extension of the ground field over which the given 
polynomial decomposes into linear factors. The general problem is solved 
by successive elimination of variables by means of resultants, followed by 
a backsubstitution process that requires extending a field which has itself 
been obtained as an algebraic extension of the original ground field. For 
a lucid presentation of the classical theory, we refer the reader to van der 
Waerden (1931), Chapter 11. He remarks in a footnote that these methods 
are of little practical relevance due to their enormous complexity. It is 
interesting that the chapter on elimination theory was dropped altogether 
from the fourth edition of van der Waerden's book in 1959. 

In short, the relevance of Grabner bases in this context is that a single 
Grabner basis computation w.r.t. a lexicographical term order can replace 
the classical elimination procedure. Suppose such a Grabner basis of the 
given set of polynomials is at hand. Assuming that the system generates a 
zero-dimensional ideal (cf. the remarks at the beginning of Section 8.8), one 
may then adjoin to the ground field the zeroes of the univariate polynomial 
of minimal degree in the lexicographically least variable, substitute these 
into the bivariate ones, and continue the process in the obvious manner, 
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computing with polynomials over successively larger algebraic extensions of 
the ground field. (It is perhaps noteworthy that in contrast to the classical 
elimination method, the Grobner basis approach is not a recursive one 
by nature: if one substitutes a zero of the univariate polynomial into the 
remaining elements of the Grobner basis, then the result will not in general 
be a Grobner basis, and neither does it have to be for the method to be 
successful. ) 

The point of view that we have adopted is somewhat more specific; we 
are interested in polynomial systems over the rationals and their real ze
roes, which we wish to obtain in terms of isolating intervals. It is shown in 
Loos (1982) that one can indeed compute over finite algebraic extensions 
of Q with this understanding of what a zero is. These ideas were devel
oped for the purpose of real quantifier elimination via cylindrical algebraic 
decomposition; see also Collins (1975). 

The method that we have presented here, which was suggested by Kre
del (1988a), could perhaps be called the "primitive element version" of the 
straightforward one that uses a single Grobner basis. By first computing a 
Grobner basis of an extended ideal of the form {g, Xl - g1>"" Xn - gn} 
with 9 and the gi univariate in a new indeterminate, we have shifted most 
of the expenditure of computing in algebraic extensions to the Grobner 
bases part of the computation. The remaining selection of the n-tuple of 
isolating intervals corresponding to (gl ( 0: ), ... ,gn ( 0: ) ), where 0: is a zero of 
9 given by an isolating interval, is then a simple example of a computation 
in Q( 0:) that can be handled on an elementary level. It is for this reason that 
we have presented this method; our choice does not reflect any judgement 
concerning the efficiency of various algorithms. 

Using the Collins-Loos methods that we have mentioned above, one may 
also compute the real zeroes of a polynomial system in the spirit of real 
quantifier elimination without using Grobner bases at all; see also Grigor'ev 
and Vorobjov (1988), Renegar (1992), and the references given there. For 
another interesting approach that does not use Grobner bases, see Morgan 
(1987). 

Further references concerning the computation of zeroes of polynomial 
systems include '!rinks (1978), Lazard (1979, 1981, 1983, 1992), Pohst and 
Yun (1981), Grigor'ev and Chistov (1984), Buchberger (1985a), Bronstein 
(1986), Czapor (1987, 1989), Cannyet al. (1989), Boge et al. (1986), Wink
ler (1986), Gianni (1987), Kalkbrener (1987), Auzinger and Stetter (1988), 
Kobayashi, Fujise, and Furukawa (1988), Gianni and Mora (1989), Koba
yashi, Moritsugu, and Hogan (1988), Melenk et al. (1989), Gerdt et al. 
(1990), Kalkbrener (1990), Melenk (1990), and Yokoyama et al. (1992). 
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Linear Algebra in 
Residue Class Rings 

The K-vector space structure on residue class rings of polynomial rings has 
already been used in Section 6.3 in connection with zero-dimensional ideals. 
An important result was that an ideal I is zero-dimensional if and only if 
the residue class ring modulo I is finite-dimensional as a K-vector space. In 
this chapter we discuss a number of important algorithms that use linear 
algebra in connection with Grabner bases. The focus is on zero-dimensional 
ideals. 

9.1 Grabner Bases and Reduced Terms 

Throughout this section, K will be a field, I a proper ideal in K[ Xl = 

K[Xl, ... ,Xn)' and T = T(Xl, ... ,Xn). If f E K[X), then the residue 
class f + I E K[ X)I I of f modulo I will be denoted by ]. Recall that 
RT(I) stands for the set T \ HT(I) of reduced terms modulo I. We begin 
with an easy algorithm that computes the set of reduced terms up to a 
degree bound in each variable. 

Proposition 9.1 Let G be a Grabner basis in K[X). Assume that K is 
computable and the term orner::; is decidable, and let kl' ... , kn EN. Then 
the algorithm REDTERMS of Table 9.1 computes the set of all reduced 
terms t E RT(I(G)) that satisfy degx, (t) ::; k i . 

Exercise 9.2 Prove correctness and termination of the above algorithm. 

Suppose now we have established zero-dimensionality of I by computing 
a Grabner basis of I w.r.t. some term order::; and verifying criterion (iii) 
of Theorem 6.54 It is then clear that RT(I) w.r.t. ::; can be computed 
by applying REDTERMS to G and the minimal values Vi satisfying the 
criterion. Recall from Proposition 6.52 that RT(I) is a basis of the K
vector space K[ Xl/I. The fact that we can, for given zero-dimensional 
ideal I, actually compute a natural basis of K[ Xl/I from a Grabner basis 
of I will be of great importance in this chapter. The following exercise helps 
to visualize the situation. 

Exercise 9.3 Draw the first quadrant of a Cartesian coordinate system, and 
label the points 0-10 on each axis. Draw horizontal and vertical lines through 

423 
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TABLE 9.1. Algorithm REDTERMS 

Specification: R +- REDTERMS(G, (k1 , •.. , kn )) 

Construction of the set R of reduced terms 
t E RT(I(G)) such that degx. (t) ~ ki for I ~ i ~ n 

Given: a Grabner basis G for a proper ideal I(G) and k1, ... , kn EN 
Find: the set R ofreduced terms t E RT(I(G)) 

such that degx; (t) ~ ki for I ~ i ~ n 
begin 
R +- {I} 
for i = I to n do 

S+-R 

end 

while S f:. 0 do 

end 

t +- some element of S 
S+-S\{t} 
for l = I to ki do 

t +- t· Xi 

end 

if t is in normal form modulo G then 
R +- Ru it} end 

end REDTERMS 

these points. Consider the set 

and let J = Id(G). Then G is the reduced Grabner basis of J w.r.t. every term 
order because it consists of monomials with no divisibilities between them. We 
see that G = HT(G). Identifying the term Xiyj with the point (i,j), draw G into 
your coordinate system. Following the algorithm REDTERMS, determine RT(J) 
and add it into the picture. Now shade every square in your grid that has a point 
drawn at each of its corners. Point out where the set mult(HT( G)) = HT(I) is. 
If you had to make up a terminology for the set of head terms of the reduced 
Grabner basis of an ideal w.r.t. a term order, what would you choose? 

The stairs st(I) of I is the unique minimal finite basis of the set HT(I) 
w.r.t. the divisibility relation on T. Recall that the unique reduced Grab
ner basis G of I (w.r.t. ~) satisfies HT(G) = st(I). Moreover, each 9 E G 
is monic by our definition of the reduced Grobner basis, so that in fact 
HM(G) = st(I). 

If I is not zero-dimensional, i.e., the dimension of K[ XI/I is infinite, 
then the algorithm REDTERMS computes a basis of the subspace 

{f E K[XJ/I I f in normal form mod G and degx;(f) ~ ki } 



9.1. Grobner Bases and Reduced Terms 425 

of K [ X] / I. We will now look at a dual problem: it is easy to see that the 
ideal I itself is a subspace of the K-vector space K[ X], and so is 

Ik = {O =I f E I I deg(f) :s k} U {O} 

for each kEN. 

Proposition 9.4 Let G = {gl, ... , gm} be a Grobner basis of I w. r. t. a 
total degree order, and let kEN. For 1 :s i :s m set 

Then B = U~l Bi is a basis of the K -vector space h. 

Proof We have B ~ Ik by the choice of the term order. It is clear that 
the head terms of elements of Bi are pairwise different for fixed 1 :s i :s m. 
If there were tgi , sgj E B with i < j and HT(tgi) = HT(sgj), then we 
would have HT(gi) I HT(sgj) contrary to the construction of Bj . To prove 
the linear independence of B, let 

(Aq E K), 

where not all Aq equal zero. Then maxi HT(q) I Aq =I O} = HT(h) for 
exactly one h E B, and we see that HT(h) is a term in p. In particular, 
p =I O. It remains to show that B is a generating system for I k • Let f E 
h. Then f + o. Among all possible reduction chains, consider the one 
where each reduction step fk ~ fk+l is a top reduction and has the g. 
property HT(gj) f HT(ik) for all j < i. It is then easy to see that the 
resulting representation of f as a sum of monomial multiples of elements 
of G (Lemma 5.60) is in fact a linear combination of elements of B. 0 

If dim(I) = 0, then we know from Lemma 6.50 that I contains a unique 
non-zero monic univariate polynomial in Xi for 1 :s i :s n, namely, the 
monic generator of the ideal InK[Xi ]. It is often necessary to compute these 
univariate polynomials from a given finite ideal basis of I. We already know 
that in principle this can be done by computing the elimination ideals I n 
K[Xd by means of n Grobner basis computations for term orders satisfying 

We are now going to show how the same result can be achieved using a 
single Grobner basis together with some linear algebra computations in 
K[X]/I. 

As a matter of fact, the necessary theory and algorithms are already at 
our disposal. Suppose we have computed a Grobner basis of I w.r.t. any 
term order :s. To compute the univariate polynomial in anyone variable 
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. - 2 ----.n Xi, we consIder the sets Cm = {I, Xi, Xi , ... ,Xi } for mEN. By Lemma 
6.53 (i) and (ii), the polynomials 

{O =F f E InK[XiJI deg(f):::; m} 

correspond to the non-trivial linear combinations of elements of Cm that 
equal zero. By Lemma 6.53 (iv) and (v), we can express X ik as a linear 
combination of elements of the canonical term basis RT(I) w.r.t. :::; for 
each kEN. Using the algorithm LINDEP of Proposition 3.15, we can 
now, for each mEN, decide whether Cm is linearly dependent, and if so, 
produce a non-trivial linear combination of its elements that equals zero. 
So all we have to do is apply LINDEP to Cm for increasing m until we find 
it to be linearly dependent. The coefficients produced by LINDEP are then 
the coefficients of the desired polynomial. We will now show how one can 
actually avoid an explicit call of LINDEP by coding much of its action into 
a rather elegant computation with polynomials. 

Let G be any Grobner basis of I, let t, 81, .•• , 8 m E T, and let h, hI, 
... , hm' respectively, be normal forms of these modulo G. Let Y1 , ••• , Ym 

be new indeterminates, and set 

m 

p = h + EYihi E K[Y,XJ, 
i=l 

where K[Y,XJ stands for K[Yi, ... , Ym,X}, ... ,XnJ. Finally, let C be the 
set of all coefficients in K[ Y J of p E K [Y J [X J. It is clear that each f E C 
is linear in each Yi, and we may thus consider the system 

S={f=OlfEC} 

of linear equations in YI, ... , Y m. 

Lemma 9.5 In the situation explained above, an m-tuple (al, . .. ,am) E 
K m is a solution of S if and only if the polynomial 

lies in the ideal I. 

m 

9 =t+ E a i 8 i 

i=l 

Proof We have t - h E I and 8i - hi E I for 1 :::; i :::; m. It follows that 

for every m-tuple a = (a1, . .. ,am) E Km. Since the substitution of ai for 
Yi is a homomorphism, the expression in parenthesis equals pea, X). We 



9.1. Grobner Bases and Reduced Terms 427 

may now conclude that 

m 

t+ 2:aisi E I iff p(a, X) E I. 
i=l 

It is not hard to see from the definition of p(Y, X) that the terms of p( a, X) 
in T(X) are all reduced, so it is in I if and only if its coefficients 

{f(a) If E C} 

all equal zero. 0 

With the lemma and the discussion preceding it it is now easy to prove 
correctness and termination of the following algorithm. 

Proposition 9.6 Assume dim(I) = 0, K is computable, and a Grabner 
basis G of I w.r.t. some decidable term order has been computed. Let 1 ~ 
i ~ n. Then the algorithm UNIVPOL of Table 9.2 computes the monic 
polynomial f E In K[XiJ of minimal degree. 0 

Since the algorithm stops when it has found the first solvable system of 
linear equations, it is obviously advantageous to choose among the vari
ous algorithms for the treatment of such systems one that tends to detect 
unsolvability fast. 

Next, we show how a similar but more sophisticated algorithm uses linear 
algebra to convert a given Grobner basis of a zero-dimensional ideal to 
another one w.r.t. a different term order. This conversion process can be 
considerably less expensive than a new Grabner basis computation. Since 
Grabner bases w.r.t. total degree orders tend to be much easier to compute 
than those w.r.t.lexicographical orders, it is often advantageous to compute 
the former by means of a Buchberger algorithm and then convert to the 
latter. 

The conversion algorithm uses much the same ideas as UNIVPOL. It 
picks terms t by increasing new term order ~ and looks for polynomials in 
the ideal with head term t to be placed in the new Grobner basis. If it does 
not find one, it puts t in a set R which builds up to the set of reduced terms 
w.r.t. ~. Termination is assured by the facts that the ideal has dimension 
zero and that the algorithm skips all terms that are multiples of a head 
term that is already in the new Grobner basis. It should be obvious by now 
that the new term order will have to satisfy the following condition. 

(D) Whenever t E T and a finite subset S of T are given, then one can 
decide whether the set 

N = { U E Tit < u, and S f u for all s E S } 

is empty and compute its ~-minimal element if it is not. 
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TABLE 9.2. Algorithm UNIVPOL 

Specification: / +- UNIVPOL( G, i) 
Computation of univariate polynomial 

Given: a Grobner basis G w.r.t. any term order such that 
Id( G) is proper with dim(Id( G)) = 0, and 1 $ i $ n 

Find: the unique monic polynomial of minimal 
degree in I n K[Xi] 

begin 
N +- min{ v -11 Xi E HT(G)} 
create new indeterminates Yo, ... , YN 
q +- yNxf + ... + Y1Xi + Yo 
t +- x!V , 
loop t +- t . Xi 

end 

h +- a normal form of t modulo G 
p+-h+q 
C +- the set of coefficients in K[Yo, ... , YN] of 

p E K[Yo, ... , YN][Xl, ... ,XnJ 
if the system S = { / = 0 I / E C} of linear equations in 

the indeterminates Yo, ... , YN has a solution then 
{Cj E K I 0 $ j $ N} +- a solution of S 
/ X N+l "N xj 

+- i + L.Jj=O Cj i 

return(f) 
elseN+-N+I 

end 

create a new indeterminate Y N 

q+-YNh+q 

end UNIVPOL 

Whenever $ satisfies (D), it will be understood that MINTERM(S, t) 
is an algorithm that performs the computation described in (D): it out
puts false if N is empty, (true, u) where u is the $-least element of N 
otherwise. For the lexicographical term order, MINTERM will be given 
explicitly below. 

Proposition 9.7 Assume K is computable, and G is a Grobner basis 0/ 
a zero-dimensional ideal in K[X] w.r.t. some decidable term order. Let 
$ be a decidable term order on T that satisfies condition (D). Then the 
algorithm CONVGROBNER 0/ Table 9.3 computes the reduced Grobner 
basis 0/ Id(G) w.r.t. $. 

Proof Termination: Assume for a contradiction that the algorithm does 
not terminate for some input. Suppose first that the if-condition is satisfied 
infinitely many times, and let {tkhEN be the terms in H indexed in the 
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TABLE 9.3. Algorithm CONVGROBNER 

Specification: (F, R) +-CONVGROBNER( G) 
Conversion of an arbitrary Grabner basis of a 
zero-dimensional ideal to one w.r.t. ~ 

Given: a Grabner basis G w.r.t. some decidable term order ~' such 
that Id( G) is zero-dimensional, and a new term order ~ that 
satisfies (D) 

Find: the reduced Grabner basis F ofId(G) w.r.t. ~ and 
the set R of reduced terms w.r.t. Id(G) and ~ 

begin 
F +- 0; H +- 0 
t+-l; R+-{t} 
create a new indeterminate Y1 

Y +- {Yd; q +- Yi 
while MINTERM(H, t) =1= false do 

t +- u where MINTERM(H, t) = (true, u) 
h +- a normal form of t modulo G w.r.t. the old term order ~' 
p+-h+q 
C +- the set of coefficients in K[ Y J of 

p E K[Y][Xl"" ,XnJ 
if the system S = { f = 0 I fEe} of linear equations in 

the indeterminates Y has a solution then 
{ Cs E K I 8 E R} +- a solution of S 
9 +- t + ESER cs 8 

H+-HU{t} 
F +- Fu {g} 

else R +- R u it} 
create a new indeterminate yt 
Y +- Y U {yt} 
q +- yth+ q 

end 
end 
return(F,R) 
end CONVGROBNER 

order that they are placed into H. Then by the way MINTERM chooses 
the tk, the infinite sequence {tkhEN would have the property that ti f tj for 
all i < j, contradicting Dickson's lemma. Now assume the else-condition 
is satisfied infinitely many times. Note that the following invariant holds 
at the end of each run through the while-loop: 

(hs the normal form of 8 modulo G). 
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Now let {SdkEN be the terms in R indexed in the order that they are 
placed into R. Then by Lemma 9.5 and the fact that the if-condition was 
false when Sk was placed into R, the ideal Id(G) contains no polynomial of 
the form 

k-l 

fk = Sk + 2: a i s i 

i=l 

(k EN). 

From this we easily conclude that Si =I Sj for i =I j, and that {Sk IkE N} is 
linearly independent in K[ X ljId( G), contradicting the zero-dimensionality 
of Id(G). 

Correctness: We will repeatedly make use of the fact that the sequence 
of terms chosen by MINTERM in the successive runs through the while
loop is strictly ascending. A moment's thought shows that the following 
are invariants that hold at the end of each run through the while-loop: 

(i) F ~ Id(G), and 

(ii) R = { vET I v :::; t, and sf v for all S E H}. 

Now let the output set F consist of the polynomials {gl,"" gm} indexed 
in the order of their placement into F, let Si be the value of t at the time 
when gi was placed into F, and let Hi and Ri be the values of H and R, 

respectively, at that point in time. Then clearly 

Also, Sl < ... < Sm, and Sj f Sk for j < k. It follows that there are no 
divisibilities among the Si at all. FUrthermore, 

(1 :::; i :::; m) 

by the construction of gi, and so Si = HT(gi) w.r.t. :::; because the elements 
of Ri are earlier choices made by MINTERM. Moreover, the invariant (ii) 
above implies that gi is in normal form modulo {gl,"" gi-l} and thus 
modulo F \ {gd. 

We have proved that F is reduced. By (i) above, we also have F ~ I, 
where I = Id(G). To see that it is a Grobner basis of I, we show that 
for every S E HT(I), there exists 1 :::; i :::; m with Si I s. Assume for a 
contradiction that this is not the case for some S = HT(f) with f E I. 
We may assume w.l.o.g. that f is in normal form modulo F. Now S cannot 
be above the value of t in the last run through the loop because then the 
algorithm would have continued to run. Hence S must satisfy 

for two successive values tl and t2 of t. Since it is not divisible by any Sj 

(1 :::; j :::; m) at all, S is not divisible by any element of the value of H at 
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the time when t2 was chosen by MINTERM. It follows that t2 = s. Let 
S' E TU) \ {s}. Then S' < s, and S' is not divisible by anything in HT(F), 
hence not by anything in the current value of H. Everything that is strictly 
between tl and s is divisible by something in that value of H by the choices 
that MINTERM makes. We see that S' $ tl, and thus S' is in the current 
value of R by (ii) above. It now follows that the if-condition must detect 
f and place s into H, a contradiction. 

It remains to prove that the final value of R equals RT(I) w.r.t. $. This 
is immediate from (ii) above together with the fact that all terms above 
the final value of t are multiples of Hm = HT(F). 0 

We will now prove that the lexicographical term order satisfies (D) and 
give the algorithm MIN TERM for this special case. We need a combinato
rial lemma. 

Lemma 9.8 Let $ be the lexicographical term order on T (where Xl » 
X2 » ... » Xn). Suppose t = Xr' ..... X;.+i' for some 1 $ j < n with 
Vj+l =1= O. Then 

Proof From the fact that Vj+l =1= 0 we conclude that the term 

X IIi X",-i X", +1 Smin = 1 .•... j-l' j 

satisfies t < Smin and t t Smin. Now assume for a contradiction that sET 
with s < Smin also has these properties. Then we must have 

for at least one k with 1 $ k $ j + 1 since t t s. Furthermore, t < s < Smin 

implies that 

and 
Vj $ degx, (s) $ Vj + 1. 

If degx/s) = Vj, then (*) requires degx'+i (s) < Vj+1 and thus s < t which 
is a contradiction. If degxj(s) = Vj + 1, then S < Smin means degxk(s) < 0 
for some j + 1 $ k $ n, which is absurd. 0 

Lemma 9.9 Let $ be the lexicographical term order on T, S a finite 
subset of T, and t E T. Then the algorithm LMINTERM of Table 9.4 
decides whether the set 

M = { U E Tit < u, and stu for all S E S } 

is empty and computes its $-minimal element if it is not. 
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TABLE 9.4. Algorithm LMINTERM 

Specification: w +- LMINTERM(8, t) 
Given: a finite subset 8 of T and t E T 
Find: W E {false} U ({true} x T) such that 

{ false if M=0 
v = (true, u) otherwise, 
where U is the $-minimal element of M 

begin 
u+-t 
for i = n to 1 do 

U +- U· Xi 
if stu for all s E 8 then return«true,u» end 
U +- u/xy where v = degx.(u) 

end 
return(false) end 
end LMINTERM 

Proof Termination of the algorithm is trivial. It is also trivial that the 
division of U by xy with v = degx.(u) yields an element of T. For cor
rectness, let us now consider a call of the algorithm on a particular pair 
(8, t) of arguments. Let n ~ k ~ 1 be the least value assigned to i by the 
for-command, and for n ~ j ~ k, denote by Uj the value of U when testing 
the if-condition in the run i = j through the for-loop. Then we have, for 
n > j ~ k, 

Uj+l 
Uj = XV • X j ' (*) 

j+1 

where v = degxHl (uj+d. We first show that the following three statements 
are true for n ~ j ~ k: 

(i) Uj E T(X1, .•• ,Xj) with degx;Cuj) > 0, 

(ii) t < Uj, and 

(iii) for each term v with t < v < Uj, there exists s E S with s I v. 

When j = n, then (i) is trivial, and (ii) and (iii) follow immediately from 
the fact that Un = t . Xn is the immediate lexicographical successor of t. 
Now let j < n, and assume that the conditions hold for Uj+l. It follows 
immediately from (*) that (i) continues to hold and that Uj > Uj+l > t, 
i.e., (ii) continues to hold too. Since the loop was entered with i = j, we 
must have had s I Uj+ 1 for some s E 8. It follows that s I u' for each multiple 
u' ofuj+l. By the last lemma together with (i) for Uj+l and (*), the $-least 
term above Uj+l which is not a multiple of Uj+1 is Uj. This together with 
(iii) for Uj+l implies (iii) for Uj. 
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Now if the if-condition is found to be true for Uk, then correctness of this 
call of the algorithm follows easily from (ii) and (iii) for Uk. If not, then 
we must have k = 1, and Ul = Xr by (i) for Ul' Furthermore, since the 
if-condition is not satisfied, there exists s = Xi E S with IL ::; v. By (iii) for 
Ul, there is no possible true-output below Ul, Ul itself is not good, and all 
terms U above Ul obviously satisfy degx1 (u) ~ v, so they are divisible by 
s and thus not good either. We see that M is indeed empty, as our output 
would have us believe. 0 

Exercise 9.10 Let T = T(X, Y, Z), $ the lexicographical term order with X» 
Y » Z. Furthermore, let 

s = {X\Y3,YZ,Z2} 

and t = X3. Use repeated calls of LMINTERM to make a lexicographically 
ascending list of those terms above t that are not divided by any element of S. 
Why is the list finite? 

Exercise 9.11 Modify the algorithm CONVGROBNER in such a way that it 
converts a given Grabner basis w.r.t. any term order to a Grabner basis w.r.t. 
a total degree order of the same ideal. Do not require that this ideal must be 
zero-dimensional. (Hint: You can realize MINTERM in this case by simply going 
through all terms in ascending order and dumping those that are multiples of 
elements of H. This will work fine, except that it does not tell you when you're 
done, Le., when the new Grabner basis has been picked up completely. There is 
an easy way of checking this.) 

9.2 Computing in Finitely Generated Algebras 

Let 1 be a proper ideal in a multivariate polynomial ring K[ X] over a 
field K. We have discussed how we can compute in the residue class ring 
K[X]/1 (Theorem 5.55). Furthermore, we saw in Section 6.3 that the 
residue classes of the reduced terms (w.r.t. some term order) are a basis 
of the K-vector space K[Xl/1, and that this canonical term basis is finite 
and can be computed provided 1 is a zero-dimensional ideal. In order to 
fully capture this structural diversity and its computational aspects, we 
need to consider finitely generated K -algebras. Throughout, K will be a 
field. 

A (commutative) K -algebra is a commutative ring A containing K as 
a subring. Natural examples are thus the polynomial rings over K. More
over, if 1 is a proper ideal of such a polynomial ring K[ X], then the canon
ical homomorphism 

K[X] --- K[Xl/1 
1 ~ 1+1 

must be injective when restricted to K, for otherwise 1 would contain an 
element of K. Identifying K with its canonical image in K[X]/1, we may 
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thus operate on the assumption that K is a subring of K[ X]/ I and hence 
that K[X]/I is a K-algebra. 

The usual concepts in ring theory relativize in a natural way to K
algebras. Let A and B be K-algebras. Then B is called a K-subalge
bra of A if B is a subring of A with K ~ B. A K -ideal in A is a ring 
ideal I of A with InK = {O}j in other words I is a proper ideal of A. 
For any K-ideal I, the quotient ring A/I forms a K-algebra when the 
elements of K are identified with their residue classes modulo I. A K
algebra homomorphism cp : A ---+ B is a ring homomorphism cp : A ---+ 

B with cp r K = idK • A subset C of A generates A as a K -algebra if 
A = K[C], i.e., A equals the result of adjoining C to K within A in the 
sense of Definition 1.109. A is finitely generated if it is generated by 
some finite set. 

Every K-algebra A forms a K-vector space under the scalar multiplica
tion given by the multiplication between elements of K and elements of A. 
Note that in the example K[ X 111 described above, this yields the standard 
scalar multiplication of Example 3.2 (iii). Basis and dimension of A are 
defined in terms of A as K-vector space. 

Note that the statement "C generates A" as defined above does not mean 
that C is a generating system for A as a K-vector space in the sense of 
Definition 3.5 (ii). The difference becomes obvious if we consider the K
algebra A = K[ X]. Here, A is finitely generated because it is generated 
by the finite set {Xl! ... ,Xn }. On the other hand, there does not exist a 
finite generating system for A as a K-vector space: if this were the case, 
then A would have to be finite dimensional, which it cannot be because the 
infinite set of all terms is a basis in this case. 

Now let C be a basis of A. Then every product c· d of elements of C has 
a unique representation as a linear combination of the elements of C, 

I ~ 11 c· C = LJ (:tee'e" • C 

ellEC 

with (:tee'e" E K. (The sum is of course formally infinite in general, but only 
finitely many summands are non-zero.) The (:tee'e" are called the structure 
constants of A w.r.t. C. 

Lemma 9.12 Let A be a K-algebra and let C be a basis of A. Then 
multiplication in A is uniquely determined by the structure constants of A 
w.r.t. C. 

Proof Let {(:tee' e" I (c, d, d' ) E C3} be the family of structure constants 
of A, and let d = EeEC deC and e = EC'EC ee,d be arbitrary elements of 
A. Then 

de = L deec'cc' 
e,c'EC 
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= L deee, L aee'e"C" 
e,e'eC e"eC 

L ( L deec'aee'e")c". 0 
e"eC e,e'eC 

More generally, the next lemma shows that a K -algebra is determined 
up to isomorphism by its basis and its structure constants. 

Lemma 9.13 Let A and B be K-algebras with bases C and D and struc
ture constants ace' e" and {3dd'd'" respectively. Let ep : A -----+ B be a homo
morphism (an embedding, an isomorphism) of K-vector spaces such that 
ep r K = idK, and let 

{aed leE C, d ED} ~ K 

be such that ep(e) = EdeD acdd for all C E C. Then ep is a homomorphism 
(an embedding, an isomorphism) of K-algebras iff 

L acdae'd'· (3dd'd" = Lac" d" . ace' e" 
d,d'eD e"eC 

for all c,d E C and d" E D. 

Proof Clearly, ep(l) = 1 and ep(a + b) = ep(a) + ep(b) for all a, bE A. For 
multiplication, it suffices by the previous lemma to consider c, dEC. We 
have 

ep(cc' ) = ep ( Lace' e"c") 
e"eC 

= L aee'e" . ep(c") 
e"eC 

= Lace' e" Lac" d"d" 
e"eC d"eD 

= L ( L ae"d" . aee'e" )d", 
d"eD e"eC 

and 

ep( c) . ep( c') = ( L acdd) . ( L ae'd,d,) 
deD d'eD 

= L aedae'd' dd' 
d,d'eD 

= L ( L aedae'd'· (3dd'd" ) d!'. 0 

d"eD d,d'eD 
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We will now restrict our attention to finitely generated K -algebras A = 

K[bI,"" bnl. It is easy to see that any non-trivial homomorphic image of 
the polynomial ring K[Xl' ... ,Xnl is such a K-algebra if we identify K 
with its image under the homomorphism rp in question. We then have 

Conversely, if A = K[b1, . .. ,bnl is a K-algebra, then the map Xi 1---+ bi 

for 1 $ i $ n extends in a unique way to a surjective K -algebra homomor
phism 

rp: 
m 

~ a-XV,! ..... XVtn 
L..J tIn 
i=l 

A 
m 

~ a-bY'! . '" . bVtn 
L..Jtl n 
i=l 

So by the homomorphism theorem for rings, A is isomorphic as a K -algebra 
to B = K[X1 , .•. , Xnl/ I, where I = ker(rp), via the canonical isomorphism 
that maps Xi + I to bi . We see that up to isomorphic images, finitely 
generated K-algebras are quotient algebras of the form K[X1 , • .• ,Xnll I 
(I a proper ideal), which is the type of K-algebra that we were interested 
in to begin with. 

For the rest of this section, we let K[Xl = K[Xl. ... ,XnJ and $ a 
term order on T = T(X1, ... ,Xn). I is a proper ideal in K[X], and for 
f E K[X], the residue class f + I E K[XJII is denoted by f. Recall 
that HT(I) is the set of all head terms of polynomials in I, and RT(I) = 
T \ HT(I) is the set of reduced terms w.r.t. I and $. In Proposition 6.52, 
we saw that the map t 1---+ t is a bijection between RT(I) and the canonical 
term basis {t I t E RT(I) } of K[ X JI I. In view of this, we will write QWt" 

for the structure constant G:rtF t" . 

Let us recall how we compute in the residue class ring K[ X 11/. First, 
we need a Grabner basis of I which can be computed provided I is given 
by a finite generating set. Elements of K[ X l/ I are represented by their 
unique normal forms modulo C. Addition is performed by combining like 
terms, which, as one easily sees, results in a normal form because no re
ducible terms can be produced in the process. Two elements of K[ X l/ I 
are multiplied by multiplying them out as in K[ X 1 and then reducing the 
result-which may now well be reducible-back to normal form modulo G. 
Since every term in a normal form modulo G is an element of RT(I), a 
normal form can be viewed as a linear combination of elements of RT(I)j 
so in terms of the vector space structure, we are actually representing ele
ments of K[ X l! I as linear combinations of the canonical term basis. Now 
if the structure constants of K[Xl/I w.r.t. G are known to us, then we 
can use the formula given in the proof of Lemma 9.12 for multiplication. 
This will then eliminate the necessity of reducing back to normal form and 
thus potentially speed up computations. 
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Our goal is now to compute the structure constants for K[ X]/ I w.r.t. 
the canonical term basis RT(I) from a Grobner basis of I. If K[ X]/ I 
is finite-dimensional as a K-vector space, i.e., if I is a zero-dimensional 
ideal (Theorem 6.54), then computing in K[ X J/ I will thus be completely 
determined relative to the field operations by the finite set of data given by 
RT(I) and the corresponding structure constants. For the general case, we 
will see how we can still-by means of reduction modulo a Grobner basis
compute the structure constants needed for each specific instance of the 
multiplication formula. A computational gain, however, is achieved only in 
the zero-dimensional case, where the finitely many structure constants can 
be computed once and for all. 

It is easy to see how any structure constant Qtt't" (where t, t', t" E RT(I» 
can be computed once a Grobner basis of I is at hand. All we have to do 
is compute a normal form 

h= Lass 

sET(h) 

(as E K) 

of tt' modulo G. Then tt' = Ii in K[Xl/I, and since h is in normal form 
modulo G, Ii can be viewed as a linear combination of elements of RT(I): 

tt' = Ii = Lass = L as· '8. 
sET(h) sET(h) 

It is now clear that 

_ {at" if t" E T(h) 
Qtt't" - o otherwise. 

Two special cases are of particular importance. If tt' is itself in normal 
form, then h = tt', and we have 

Qtt't" = { I if t"=tt' 
o otherwise. 

For the other special case, recall that the stairs steIl of I is the unique 
minimal finite basis of the set HT(I) w.r.t. the divisibility relation on T. 
Recall further that the unique reduced Grobner basis G of I (w.r.t. $) 
satisfies HM(G) = st(I), and that 

T(g) \ {HT(g)} ~ RT(I) 

for all 9 E G. Now if we compute a normal form of tt' where tt' E st(I), 
then this computation will be one reduction step tt' 7 tt' - 9 where 9 is 
the unique element of G with HM(g) = tt'. We see that 

'" _ {the coefficient of t" in -g if t" E T(g) 
.... tt't" - o otherwise. (***) 
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We see that in the two special cases above, the structure constants can 
be obtained without any computation at all, whereas in the general case, a 
potentially lengthy reduction chain is required. Our aim is now to arrange 
the computation in such a way that the general case can be reduced to the 
special cases in a way that requires only modest computational effort. The 
following lemma will be instrumental. 

Lemma 9.14 If tt' ¢ RT(I), then att't" = 0 for all til ~ tt'. 

Proof Let h be as in the discussion above. Then h < tt' in the induced 
order on K[X), and tt' ¢ T(h), so we must have HT(h) < tt'. The claim 
is now obvious from the formula (*) for att't". 0 

It is clear that whenever t, t', s, s', til E T, with tt' = ss', then att't" = 
ass't". An effective computation should of course make use of this fact. 
We therefore define, for u E RT(I) . RT(I) and v E RT(I), the combined 
structure constant 

{3uv = att'v (t, t' E RT(I) with tt' = u), 

and the family of combined structure constants w.r.t. RT(I) as 

jj = {{3uv I u E RT(I) . RT(I), v E RT(I) }. 

It now clearly suffices to compute the set of combined structure constants. 
The idea behind the following algorithm is to arrange the computation of 
the {3uv by increasing first subscript. 

Proposition 9.15 Assume that the ground field K is computable, :5 is 
a decidable term order, the ideal I is zero-dimensional, and suppose the 
reduced Grobner basis G of I w.r.t. :5 and the set RT(I) of reduced terms 
have been ClJ...mputed. Then the algorithm STRCONST of Table 9.5 computes 
the family {3 of combined structure constants w.r.t. RT(I). 

Proof Termination of the algorithm is trivial. The algorithm clearly con
siders all pairs (u, v) for which a combined structure constant {3uv exists, 
and correctness is immediate from the formulas (**) and (***) in the if
and elsif-case. For the remaining case, we first note that here, u is a proper 
multiple of some element of HM( G) and can thus be written in the indi
cated form. Next, we claim that U E RT(I) ·RT(I) and u = U' Xi imply that 
u' E RT(I) . RT(I) and Xi E RT(I). Let u = st with s and t reduced, and 
assume w.l.o.g. that s = s' Xi. The claim now follows immediately from 
the facts that u' = s't and that a factor of a reduced term is again re
duced. This shows that the combined structure constants {3u'w and {3(wX,)v 
occurring in the sum are well-defined. Furthermore, they are available to 
us at that point of the computation: clearly, u' < u, and w < u' implies 
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TABLE 9.5. Algorithm STRCONST 

Specification: -g - STRCONST(RT(I) , G) 
Given: the reduced Grabner basis G of a zero-dimensional ideal I w.r.t. 

a decidable term order ::;, and the set RT(I) of reduced terms 
Find: the family -g of combined structure constants 
begin 
U - RT(I) . RT(I)j V - RT(I) 
create a matrix B with an entry {3uv for each u E U and v E V 
while U i= 0 do 

end 

u - the ::;-minimal element of U 
U-U\{u} 
if u E RT(I) then 

for all v E V do 

end 

{ 1 if U=V 

(3uv - 0 otherwise 

elsif u E HM( G) then 
9 - the element of G with HM(g) = u 
for all v E V do 

(3 { the coefficient of v in - 9 
uv - 0 

end 

if v E T(g) 
otherwise 

else write u = u' Xi for some 1 ::; i ::; n such that u' ¢. V 
for all v E V do 

end 
end 

(3uv - L {3u'w· {3(w.x,)v 
wEV 
w<u' 

end STRCONST 

wXi < u' Xi = u. Correctness now follows from the following equation 
which uses Lemma 9.14. 

u = U'Xi 

= L (3u'w· WXi 

wERT(I) 
w<u' 

= L {3u'w· ( L (3(wx.)v· v) 
wERT(I) vERT(I) 

w<u' 
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= 2: ( 2: {3u'W' (3(WXi)v ) • v 0 
vERT(I) wERT(I) 

w<u' 

Exercise 9.16 Show that from RT(I) and the structure constants w.r.t. RT(I), 
one can reconstruct the stairs steil and those elements of the reduced Grab
ner basis G of I whose head term is not of the form Xi. (Hint: Argue that 
every element of steil is either of the form Xi, or of the form 8X, with 8, Xj E 
RT(I). Form all products of the latter kind, weed out those that are still reduced, 
then those that are multiples of others. Use the results on computing structure 
constants to reconstruct the corresponding elements of G.) 

Concluding this section, we consider a question that arises naturally 
in connection with finitely generated K-algebras and Grabner bases. We 
have seen how Grabner bases can be used to decide the ideal membership 
problem for 1 and hence the equivalence problem for =J, where 1 is an ideal 
in the special K-algebra K[X]. We will now show how the same methods 
can be employed to decide the membership problem for ideals J in K[ X]/ 1 
provided finite bases of 1 and J are given. In view of the fact that every 
finitely generated K -algebra is isomorphic to such a quotient algebra, we 
are solving the ideal membership problem for suitably presented finitely 
generated K -algebras. As a first step, we prove that ideals in these algebras 
are always finitely generated. 

Lemma 9.17 Every finitely generated K-algebra A is noetherian as a ring. 

Proof Let A = K[X]/I for some proper ideal 1 of K[X] and let J be an 
ideal in A. Then by Proposition 1.63, the "lifting" 

J'" = { f E K[ X]I f + 1 E J} 

is an ideal in K[ X] with J'" 2 I. By the Hilbert basis theorem, J'" has a 
finite generating set H. It is now easy to see that H' = { f + 1 I f E H} is 
a finite generating set of J. 0 

Exercise 9.18 Derive the statement of the lemma above from Proposition 3.32. 

Suppose now 1 is given as Id(F) for some finite set F of polynomials in 
K[X]. Assume further that J is an ideal of K[X]/I. As a consequence 
of the lemma above, we may assume that J is given to us in the following 
way: H is a finite subset of K[X], H' = {f +1 I f E H}, and J = Id(H' ). 
With this setup, the ideal membership problem for J can now be solved 
algorithmically as follows. 

Theorem 9.19 Let F and H finite subsets of K[X]. Set 1 = Id(F) and 

J =Id({f+1 I f E H}), 

and let G be a Grobner basis of Id(FUH) with respect to some term order. 
Then f + 1 E J iff f + 0 for all f E K[ X]. 
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Proof It is easy to see from the definition of J that 

f + I E J iff f E Id(H U I). 

This together with Id(H U I) = Id(H U F) implies f + I E J iff f + O. 0 

9.3 Dimensions and the Hilbert Function 

.AI; in the previous section, we let I be a proper ideal of the polynomial 
ring K[X] = K[Xb ... ,Xn] over the field K, and we denote by A the 
K-algebra K[X]/I. Moreover, we will denote by T the set T(X) of all 
terms in the variables Xl, ... , X n . Whenever {Ub ... , Ur } is a subset of 
{Xb ... , Xn}, then we again denote by T(U) and K[ U] the set of all terms 
t E T and of all polynomials f E K[ X], respectively, that contain only 
variables Xi E {Ub ... ,Ur }. Recall that if I is a proper ideal of K[X], 
then {Ub ... , Ur } is independent modulo I if K[ U] n I = {O}, and the 
dimension dim(I) of I is the maximum of the cardinalities of independent 
sets modulo I. 

The only way to compute the dimension dim(I) that we have thus far 
is to compute all independent sets modulo I by means of Grabner basis 
computations and then determine what the largest cardinality is among all 
these. We do know, however, that deciding zero-dimensionality of I is much 
easier than that: all we have to do is look at any Grabner basis of I and 
see if it contains a univariate head term in each variable (Theorem 6.54). 
It is true that essentially the same method works for arbitrary dimensions: 
the dimension of I is the greatest cardinality of any set {Ub ... , Ur } of 
variables with T(U) n HT(G) = 0. The aim of this section is to prove this 
result for Grabner bases w.r.t. total degree orders. Since these tend to be 
the easiest to compute, this special case is the most relevant for actual 
computations of dimensions. The generalization of the proof to arbitrary 
term orders will be outlined in the Notes to this chapter on p. 451. 

The case of dimension zero being settled, we are mainly interested in the 
case dim(I) > o. By Theorem 6.54, this means we are considering infinite
dimensional K-algebras A = K[X1/I. Our goal is nevertheless to find a 
way to distinguish between the different "sizes" of these algebras. The idea 
is to consider, instead of all of A, subspaces Am of A obtained by bounding 
the total degree of polynomials by mEN. Then each Am is finite-dimen
sional, and we can measure the order of growth of dimK(Am) as m ---+ 00. 

This is the idea behind the Hilbert junction, a concept that has numerous 
applications in the theory of polynomial ideals. For mEN, we set 

Tm = {t E T I deg(t) ~ m} and Am = {f E A/I I degU) ~ m}. 

Then Am is closed under addition and under multiplication by elements of 
K and hence is a subspace of the K -vector space K[ X 1/ I. It is easy to 
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see that the finite set T m is a generating system for Am and thus Am is 
finite-dimensional. The function 

HI: N --+ N 
m t----+ dimK(Am) 

is called the Hilbert function of the ideal I. It is clear from Theorem 
6.54 that I is zero-dimensional iff the Hilbert function HI is eventually 
constant. Note that 1 :$ H[(m) for all mEN since Am is never empty. 

Our first goal now is to find upper and lower bounds for H[(m). To this 
end, we need to know what ITml is, i.e., how many terms there are of total 
degree:$ m. 

Lemma 9.20 ITml = (m~n) for all mEN. 

Proof Let B = {O, l}m+n, Le., the set of all (m + n)-tuples with entries 
from{O,I}. We define a map <p : Tm --+ B as follows. 1ft = Xrl .... ·X:;n E 
Tm, then we set <pet) = (al, ... ,am+n) with 

ak = {O if k = Vl + ... + Vi + i for some 1 :$ i :$ n 
1 otherwise. 

The definition of rp(t) can be visualized as follows: write down Vl many 
ones, then a zero to mark the end of the first exponent, then V2 many ones, 
and so on through Vn many ones, then another zero, and finally m - deg(t) 
many ones. 

rp(t) = (I, ... , 1,0, 1, ... ,1,0, ... ,1, ... ,1,0, 1, ... ,1) 
~ ~ ~---------
"1 times 112 times lin times m-deg(t) 

times 

It is now an easy exercise to prove that <p is injective, and that the image 
of rp consists of all those (a!, ... , am +n ) E B with ak = 0 for exactly n 
different indices k. It is clear that there are exactly (m~n) such tuples. 0 

Lemma 9.21 The Hilbert function HI of I satisfies 

(m; d) :$ HI{m):$ (m: n) 
for all mEN, where d = dim(I). 

Proof The second inequality is immediate from Lemma 9.20 and the fact 
that Tm is a generating system for the K-vector space Am. The first in
equality is trivial for d = 0 since 1 :$ HI(m) always holds. Now let d > O. 
Then there exists an independent set {U1 , .•. , Ur } modulo I with cardi
nality d. It is an easy consequence of Lemma 6.53 (ii) and the definition 
of independence that the set T(U) n Tm is linearly independent in Am. 
Furthermore, we must have 
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since otherwise I would contain a polynomial of the form 0 f. tl - t2 with 
tt, t2 E T(U). Together with Lemma 9.20 applied to T(U), we conclude 
that 

(m;d) = IT(U) nTml = IT(U) nTm 1$ dimK(Am) = HJ(m). 0 

Recall that when a term order $ has been fixed, we denote by RT(I) the 
set T \ HT(I) of reduced terms w.r.t. I. 

Definition 9.22 Let $ be a term order on T. A subset {Ul! ... , Ur } of 
{Xl! ... ,Xn } is called strongly independent modulo the ideal I (w.r.t. 
to $ ) if T(U) n HT(I) = 0, i.e., if T(U) ~ RT(I). The number 

d = max{ lUll U ~ X and U is strongly independent mod I} 

is called the strong dimension of I (w.r.t. $). 

Note that according to its definition, the strong dimension of I appears 
to depend on the term order in question, while the dimension of I obviously 
does not. What we are going to prove here is that for total degree orders, 
strong dimension and dimension coincide. It can actually be shown (cf. 
Section "Notes" on p. 451) that this is true for arbitrary term order, so that 
really the strong dimension does not depend on the term order at all. The 
following lemma tells us, among other things, that the strong dimension of 
I w.r.t. $ can be found by inspecting the head terms of a single Grabner 
basis of I w.r.t. $. 

Lemma 9.23 Let d and d' be the dimension and strong dimension of I, 
respectively. Suppose G is a Grabner basis of I w.r.t. any term order, and 
let {Ul! ... ,Ur } ~ {Xl! ... ,Xn }. Then the following hold: 

(i) If {Ul , .•. , Ur } is strongly independent mod I, then it is independent 
mod I. The converse fails in general. 

(ii) d' $ d. 

(iii) {Ul , ... , Ur } is strongly independent mod I iff T(U) n HT( G) = 0. 

(iv) The strong dimension d' equals the maximum of the cardinalities of 
those subsets {Ul , •. . ,Ur } of {Xl. ... , Xn} that satisfy 

T(U) n HT(G) = 0. 

Proof (i) If {Ul, ... , Ur } is dependent mod I, then there exists f E K[ U]n 
I with f f. O. It follows that HT(f) E T(U)nHT(I), and so {Ul,"" Ur } is 
not strongly independent mod I. To obtain a simple counterexample for the 
converse, consider the ideal 1= Id(X2 - Xl) of K[Xl ,X2] with Xl < X2' 
Then {X2} is independent but not strongly independent mod I. 
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Statement (ii) is an immediate consequence of (i). Part (iii) follows easily 
from the fact that HT{/) = mult(HT(G», and this easily implies (iv). 0 

We need a few more technicalities before we can relate the Hilbert func
tion, the dimension, and the strong dimension to obtain the main results 
of this section. Let MEN and t E T. Then we define 

i.e., tOPM(t) is the set of indices where lit tops M." Furthermore, we set 

shM(t) = IT X~ t 

n 

IT X degXi(t) 
i , 

i.e., shM(t) is lit shaved at M." It is easy to see that for t E T and MEN, 
we have 

shM(shM(t») = shM{t). 

With this observation in mind, the proof of the following lemma is elemen
tary and straightforward. 

Lemma 9.24 Let S be a subset of T and MEN. Then the following hold: 

(i) The relation", M defined by 

s "'M t iff shM(s) = shM(t) 

is an equivalence relation on S. 

(ii) If S is such that shM(s) E S for all S E S, then the set 

RM = {t E S I shM(t) = t} 

of "already shaved terms" is a system of unique representatives for 
the partition of S into equivalence classes w.r.t. "'M. The set RM can 
also be described as 

RM = {t E S I degx; (t) ~ M for 1 ~ i ~ n}. 

(iii) With [tj"'M denoting the equivalence class of tERM w.r.t. "'M, we 
have 

[tj"'M = {st 1st E S, degx; (s) = 0 for all i ¢. tOPM(t) }, 

i.e., the elements of [tj"'M are obtained by raising those exponents in 
t that equal M in such a way that the result remains in S. 0 
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Lemma 9.25 Let ~ be a term order on T and G a Grabner basis of I 
w.r.t. ~. Let d' be the strong dimension of I w.r.t ~, and set 

M = max{ degx.(HT(g)) I 9 E G, 1 ~ i ~ n}. 

Then the following hold for all t E T: 

(i) Whenever i E tOPM(t) and liEN, then t E RT(I) iff t . Xi E RT(I). 

(ii) If mEN with m ~ n . M, then 

max{ ItoPM(t) I I t E RT(I) nTm} = d'. 

Proof (i) This is immediate from the definition of M: divisibility of t by 
an element of HT( G) is not affected by changing an exponent that exceeds 
M to something else exceeding M. 

(ii) To prove the inequality "~," assume for a contradiction that there 
exists t E RT(I) n Tm with degx. (t) ~ M for more than d' many indices. 
Then there exists a subset {Ul, ... ,Ur } of {Xl, ... ,Xn } with more than 
d' many elements and a decomposition t = h . t2 with tl E T{U) and 
t2 E T{X \ U) such that 

degx,{tl) ~ M for all Xi E {Ul, ... ,Ur }. 

We must have tl E RT(I) because tl is a factor of t. On the other hand, 
the set {U1, ... , Ur } cannot be strongly independent, and so there exists 
9 E G with HT(g) E T(U). From the fact that the degree in each variable 
of HT(g) is less than or equal to M, it now follows that HT(g) I tl and thus 
t E HT(I), a contradiction. 

For the inequality "~" of (ii), let il, ... , id' be pairwise different indices 
such that {Xii' ... , X itt,} is strongly independent. Using the fact that m ~ 
n· M, it is easy to see that 

X!t4 ..... X!t4 E RT{I) n T.m and ItoPM{X!t4 ..... X!t4)1 = d' 0 
11 'tt' 11 'tt' • 

We are now getting to a point where we need to specialize to total degree 
orders (see Example 5.8 (iii». 

Lemma 9.26 Suppose ~ is a total degree term order on T, and let mEN. 
Then the following hold: 

(i) The set RT(I) n Tm is a basis of Am, and it has as many elements as 
RT{I)nTm. 

(ii) H[(m) = IRT{I) nTml for all mEN. 
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Proof (i) It is an immediate consequence of Proposition 6.52 that 

RT(l)nTm 

is linearly independent in Am and has as many elements as RT(I)nTm. To 
see that it generates Am, let f E K[X] with deg(f) $ m. From the fact 
that $ is a total degree order it is easy to see that the unique normal form 
h of f modulo any Grobner basis w.r.t. $ must satisfy the same degree 
bound 

deg(h) $ m. 

It follows that all residue classes of terms in the representation of 7 as a 
linear combination of elements of RT{l) (see Lemma 6.53 (iv» are actually 
in RT(l) nTm. 

(ii) This is immediate from (i). 0 
In the proof of the next theorem, which is the main theorem of this 

section, we will need the following elementary observation. If kEN, and 
we set 

X· (X - 1) ..... (X - k + 1) 
q= k! ' 

then q E Q[X] with deg(q) = k, and for all N E N with N ~ k, we obtain 

q(N) = (~). 

It is in fact customary to write q = (!) in this case. 

Theorem 9.27 Let $ be a total degree orner on T and G a Grabner basis 
of I w.r.t. $. Let d be the dimension of land d' the strong dimension of I 
w. r. t $. Finally, set 

M = max{ degxi(HT{g») I 9 E G, 1 $ i $ n}. 

Then the following hold: 

(i) d = d', so that in particular, the strong dimension does not depend 
on the choice of the term orner. 

(ii) There exists a unique polynomial h E Q[X] of degree d such that 
Hl{m) = hem) for allm ~ n·M. lfthe ground/ield K is computable, 
then h and the number n . M can be computed from any given basis 
of I. 

Proof We begin by showing (ii) with d replaced by d'j the actual claim 
(ii) will then clearly follow from (i). By the previous lemma, the desired 
polynomial h must satisfy 

hem) = /RT(I) n Tm/ 
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for all m ~ n . M. We will arrive at such a polynomial by counting the 
elements of RT(J) n Tm. To this end, we let mEN with m ~ n· M. 
Now RT(I) n Tm is the disjoint union of the equivalence classes w.r.t. the 
equivalence relation'" M of (i) of Lemma 9.24. Using the set RM of "shaved 
terms" of (ii) of that lemma as a system of unique representatives, we have 

IRT(J) n Tml = I: I!tj"'M I, 
tERM 

where of course [tj"'M is the equivalence class of t w.r.t. "'M. Note that 
deg(t) ::::; n· M for all tERM. We need a more explicit expression for the 
summands on the right hand side of (**). 

So given tERM, what is the size of [tj"'M' i.e., how many s are there 
in RT(J) n Tm with shM(s) = t? It easy to see from Lemma 9.24 (iii) and 
Lemma 9.25 (i) that 

[tj"'M = {st I sET, deg(s) ::::; m - deg(t), and 
degx. (s) = 0 for all i ¢. tOPM(t) } , 

i.e., [tj"'M is obtained by multiplying t by terms of total degree less than 
or equal to m - deg(t) that contain only variables with indices where "t 
reaches M." In view of Lemma 9.20, this means that 

I[ ] I = (m -deg(t) + ItOPM(t)l) 
t "'M ItoPM(t)I ' 

and we can thus improve (**) to 

IRT(J) n Tml = " (m -deg(t) + ItoPM(t)l) . 
L..JR ItoPM(t)1 

tE M 

According to the remark preceding the theorem, it is now clear that a 
polynomial in Q[X] satisfying (*) is given by h = q(X -deg(t)+ ItoPM(t)l), 
where 

(***) 

Moreover, a typical summand on the right hand side of (***) has degree 
ItoPM(t)1 and a positive head coefficient, and we see that 

deg(h) = max{ ItOPM(t)11 tERM} 

= max{ ItoPM(t) I I t E RT(I) n Tm}. 

Lemma 9.25 (ii) tells us that this maximum equals the strong dimension 
d'. The existence proof of the polynomial h that we have just given shows 
that the last statement of eii) concerning computability is true. It is clear 
that there can be only one h E Q[X] satisfying HJ(m) = hem) for infinitely 
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many mEN: if there were two different ones, then their difference would 
be a non-zero polynomial with infinitely many zeroes. 

In order to prove (i), we first recall from Lemma 9.23 (ii) that d' 5 d. 
Furthermore, (ii) and Lemma 9.21 tell us that 

( m+d) d 5 HJ(m) = h(m) 

for all sufficiently large mEN. By the remark preceding the theorem, there 
exists a polynomial f E Q[Xj of degree d and with positive head coefficient 
such that 

f(m) = (m;j 

for all mEN, and thus f(m) 5 hem) for all sufficiently large mEN. Now 
if d'-which equals deg(h)-were strictly less than d, then f - h would 
be a polynomial with positive head coefficent, and Lemma 8.113 would 
allow us to conclude that f(m) > hem) for all sufficiently large mEN, a 
contradiction. 0 

The polynomial described in (ii) of the theorem above is called the 
Hilbert polynomial of the ideal I. 

Corollary 9.28 Suppose 5 is a total degree term order on T, and let U be 
a strongly independent set mod I of maximal cardinality. Then lUI = dimI, 
and U is maximally independent mod I. 

Proof By definition, lUI equals the strong dimension of I, which in turn 
equals dime I) by the theorem above. U is independent mod I by Lemma 
9.23 (i), and having the greatest possible cardinality dim(I), it must be 
maximally independent. 0 

In view of Lemma 9.23 (ii) and the corollary above, it is now clear that 
the dimension of I can be computed from a Grabner basis w.r.t. a total 
degree order of I by determining the set 

M = { {UlI ... ,Ur } ~ {Xl,'" ,Xn } I T(U) nHT(G) = 0} 
of all strongly independent sets mod I and then finding the maximum of the 
cardinalities of elements of M. Furthermore, any element of M having this 
cardinality is maximally independent mod I. Let us emphasize again that 
by a similar but considerably deeper proof which is outlined in the Notes 
on p. 451, all this is true for arbitrary term orders. A maximal strongly 
independent set mod I is of course a strongly independent set mod I which 
is not properly contained in any strongly independent set mod I. The reader 
who has a background in computer science will recognize the algorithm of 
the following proposition as one that searches a finite tree for branches 
that are maximal with a certain property. The tree is 'P( {X 11 ... , Xn} ), 
partially ordered by the reflexive-transitive closure of the relation 

U r V iff V = U U {Xi} with minU I Xj E U} < i, 
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and the property is being strongly independent mod I. The correctness 
proof of the algorithm provides the necessary comment to understand the 
action of the subalgorithm DIMREC. 

Proposition 9.29 Assume that G is a Grabner basis of the proper ideal I 
of K[ Xl w. r. t. a decidable total degree order. Then the algorithm DIMEN
SION of Table 9.6 computes the set of all maximal strongly independent 
sets mod I, the dimension of I, and a maximally independent set mod I. 

TABLE 9.6. Algorithm DIMENSION 

Specification: (M,d,U) - DIMENSION(G) 
Given: a Grobner basis w.r.t. a decidable total degree order, 

with Id( G) proper 
Find: the dimension d of Id(G), 

the set M of all maximal strongly independent sets mod I, and 
a maximally independent set U mod Id( G) 

Subalgorithm DIMREC 
Specification: M' - DIMREC(S, k, U, M) 

where M',M ~ P({X1 , •.• ,Xn }), S ~ T(X1, ••• ,Xn ), 

kEN, and U E P({X1!.'. ,Xn }) 

begin DIMREC 
M'-M 
fori=ktondo 

if T(U U {Xi}) n S = 0 then 
M' - DIMREC(S, i + 1, U U {Xi}, M') end 

end 
if U is not contained in any V E M' then 

M' - M' U {U} end 
end DIMREC 

begin 
M - DIMREC(HT(G), 1,0,0) 
d - max{ lUll U EM} 
U - an element of M of cardinality d 
return(M, d, U) 
end DIMENSION 

Proof For simplicity, we call a (maximal) strongly independent set mod I 
an (m.)s.i. set. In view of the remarks preceding the proposition, it suffices 
to prove that DIMREC(HT(G), 1,O,O) is the set of all m.s.i. sets. This in 
tum is easily deduced from the following claim. 

Claim: Suppose DIMREC is called with input (HT(G), k, U, M), where 
1 ~ kEN, U is an s.i. set, and M is a set ofm.s.i. sets that already contains 
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all m.s.i. sets V with U ~ V with the possible exception of U itself and 
those with 

mini I I X, E V \ U} ~ k. 

Then DIMREC outputs the union of M and the set of all m.s.i. sets that 
contain u. 

Proof: Termination of DIMREC with any input is immediate from the 
fact that it calls itself only when k ~ n, and in that case, it does so at most 
n - k + 1 times, and with each recursive call, the value of k increases by l. 

To prove the correctness of DIMREC, we first consider the case k > n. 
Then M contains all m.s.i. sets V with U ~ V with the possible exception 
of U itself. The for-loop is skipped, and it is easy to see that U itself is 
added to M if and only if it is an m.s.i. set. We see that the algorithm is 
correct in the sense of the claim. 

Let now k ~ n. The case k > n being settled, we may use a "down
ward induction" on k and assume that DIMREC runs correctly as claimed 
whenever its second argument is strictly greater than k. It is not hard to 
see that it now suffices to prove the following statement. 

(*) During the run i = j through the for-loop, where k ~ j ~ n, M' is 
enlarged by all m.s.i. sets V with U ~ V, U =F V, and 

min{ll X, E V\U} =j, 

and that at the end, DIMREC adds U to M' if and only if U itself is 
an m.s.i. set. 

The second part of this statement is easily seen to be true once the first 
part has been proved. For the first part, we use induction on j, presenting 
the cases j = k and j > k simultaneously. So let us consider the run i = j 
of the for-loop. If 

T(UU {Xj}) nHT(G) =F 0, 

then U U {Xj} is dependent and there is nothing to be added to M' in this 
run. We claim that else, the input 

(HT(G),j + 1, U U {Xj}, M') 

of the recursive call of DIMREC satisfies the premise of the claim. If V is 
an m.s.i. set that satisfies U U {Xj} ~ V, is not equal to U U {Xj}, and has 
the property that 

min{ 'I X, E V \ (U U {Xj})} < j + 1, 

then it is easy to see that U ~ V, U =F V, and 

mini 1 I X, E V \ U} < j. 
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But this implies that V EM': for the case j = k, it follows from our 
assumption on the input (HT(G), k, U, M), and for the induction step j > 
k, it follows from that assumption together with the fact that M' has 
already been enlarged by all m.s.i. sets V with U ~ V, U =f. V, and 

k ~ mini II Xl E V \ U} < j. 

Since j + 1 > k, we may now use our "downward" induction hypothesis 
concerning k to conclude that the output of the recursive call 

DIMREC(HT(G),j + 1, U U {Xj}, M') 

is the union of M' and all m.s.i. sets V with U U {Xj} ~ V. Since M' 
already contained all m.s.i. sets V with U ~ V, U =f. V, and 

mini l I Xl E V \ U} < j, 

it is thus enlarged by all those with 

mini II Xl E V \ U} = j, 

and we have proved statement (*). 0 

Notes 

The fact that residue class rings of polynomial rings are also vector spaces 
over the ground field, i.e., the fact that they are actually commutative 
algebras over the ground field, was at the center of Buchberger's interest 
when he developed the theory of Grabner bases. Computing the canonical 
basis and the structure constants as discussed at the beginning of Section 
9.1 and in Section 9.2 of this chapter was actually the topic of his doctoral 
dissertation. The computation of the vector space basis of the ideal itself 
can be found in Billera and Rose (1989). The algorithm UNIVPOL for 
the computation of the univariate polynomials in a zero-dimensional ideal 
using linear algebra is also due to Buchberger (see, e.g., Buchberger, 1985a). 
The conversion of a given Grabner basis to a Grabner basis w.r. t. the 
lexicographical term order appears in Faugere et. al (1990). 

The Hilbert function was introduced by D. Hilbert in Hilbert (1890), 
§IV as the chamcteristic function of a module. Its connection with Grab
ner bases was for the first time explored in Maller and Mora (1983). Our 
method to compute dimensions via strongly independent sets is in the 
spirit of Kredel and Weispfenning (1988), where, however, the focus is on 
lexicographical term orders. 

The fact that the method works for arbitrary term orders can be proved 
as follows. It clearly suffices to prove that the strong dimension of an ideal 
w.r.t. any term order equals the dimension. To this end, one may repeat 
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the theory of Section 9.3 through Theorem 9.27 with the ordinary total 
degree replaced by a grading (weighted total degree) with positive integer 
weights. (Section 10.2 has details on gradings.) The only difficulty is that 
counting the terms in n variables of weighted degree less than or equal to 
m is not as easy in general as for the ordinary total degree; it is, however, 
easy and entirely sufficient to bound this number from above and below 
by polynomials in m of degree n. This proves the claim for term orders 
that are compatible with a grading with positive integer weights. If :5 is an 
arbitrary term order, then one can find a grading r with positive integer 
weights and a r-compatible term order :5' such that the reduced Grabner 
basis G w.r.t. :5 is also the reduced Grabner basis w.r.t. :5', and HT(G) 
is the same w.r.t. :5 and :5'. (References and some further explanations 
are to be found in Section "Term Orders and Universal Grabner Bases" 
of Chapter "Outlook on Advanced and Related Topics" at the end of this 
book.) It is clear that then the strong dimension of I w.r.t. :5 equals that 
w.r.t. :5', and we already know that the latter equals the dimension of I. 
See also Carra Ferro (1987a) and Bayer and Stillman (1992) on the subject 
of dimensions and the Hilbert function. 

Methods for the computation of the dimension of an ideal also appear in 
Giusti (1984) and Kandri-Rody (1985). Sturmfels and White (1991) prove 
a conjecture of Kredel and Weispfenning (1988), namely, the fact that for 
a prime ideal I, every maximal strongly independent set modulo I has 
cardinality dim(I). 



10 

Variations on Grabner Bases 

10.1 Grabner Bases over PID's and 
Euclidean Domains 

The material in this section is not needed for the remaining sections of this 
chapter. Here, we will generalize the theory of Grobner bases to polynomial 
rings over principal ideal domains. We will show that for every given finite 
subset F of such a polynomial ring, the equivalence problem for the ideal 
Id(F) is solvable by means of a Grobner basis construction. The reduction 
relation will not in general allow the computation of unique normal forms, 
but it will be such that j E Id( F) iff every normal form of j equals O. This is 
good enough for the solution ofthe equivalence problem (cf. Theorem 5.55). 
For Euclidean domains that allow the computation of unique remainders, 
we will even obtain a reduction relation with unique normal forms. 

Throughout this section, let R be a PID, R[X) = R[Xl, ... ,Xn ), and 
::; a fixed term order on the set T of terms in Xl, ... , X n . Since R[ X) <;;: 
QR[Xl , ... ,Xn ), we may assume that R[X) is endowed with the induced 
linear quasi-order of Theorem 5.12. For the same reason, we may regard 
every element of R[ X) as an element of QR[ X) and use the notation T(J), 
M(J), HT(f), HC(J), and HM(J) in the previously defined sense. We will 
make ample use of the results of Section 1.7. 

Let ml = altl and m2 = a2t2 be monomials in R[X). We say that m2 
divides ml and write m21 ml if there is a monomial m3 E R[ X) such that 
ml = m2m3' Since the type of reduction that will be used makes sense 
over any domain, we will call it D-reduction. 

Definition 10.1 Let j, g, p E R[X]. We say that j D-reduces to 9 
modulo p and write j --p+ g, if there exists m E M(J) with HM(p) I m, 
say m = m' . HM(P), and 9 = j - m'p. 

D-reduction modulo a finite subset of R[X), D-reducibilty, D-normal 
forms, and top-D-reduction are defined in the obvious way according to 
Definition 5.18. We will frequently use the notation for the various closures 
of --p+ and ---pt that was introduced in Definition 4.71. Recall that a field 
K is a PID since {O} = Id(O) and K = Id(l) are the only ideals. Now if R 
happens to be a field, then it is easy to see that D-reduction coincides with 
reduction as defined before. Moreover, it is always true that aD-reduction 

453 
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step in R[Xb ... ,Xn ] is an ordinary reduction step in Qn[Xt, .. . ,Xn ] in 
the sense of Definition 5.18. 

Lemma 10.2 Let P be a finite subset of R[X]. Then the following hold: 

(i) f --p+ 9 implies 9 < f· 

(ii) The relation --p+ is a noetherian reduction relation. 

(iii) f E ; I 9 implies f - 9 E Id(P). 

Proof The proof of (i) and (ii) is immediate from the fact that every D
reduction step is an ordinary reduction step in Q n [Xl, ... ,Xn ]. The proof 
of (iii) is literally the same as the proof of "<:=" in Lemma 5.26. 0 

It is clear that --p+ will not in general have unique normal forms. Unfor
tunately, this will not even be the case if P is a Grabner basis of the type 
that we will compute here. We will thus not be able to make use of the 
notion of confluence and Newman's lemma. We will have to rely on stan
dard representations instead. Let 0 =f:. f E R[X]. As before, a standard 
representation of f w.r.t. a finite subset P of R[X] is a representation 

k 

f= LmiPi 
i=l 

with monomials mi and Pi E P (1 ::; i ::; k) such that HT(miPi) ::; HT(J) 
for 1 ::; i ::; k. The next lemma shows that as with ordinary polynomial 
reduction over a field, D-reducibility to zero implies the existence of a 
standard representation. 

Lemma 10.3 Let P be a finite subset of R[X], 0 =f:. f E R[X], and 
assume that f + O. Then f has a standard representation w.r.t. P. 

Proof Let 0 =f:. f E R[ X] such that f + 0, but f does not have a standard 
representation. We may assume that f is minimal with this property. Since 
f + 0, there exists h E R[X] with f 7 h for some 9 E P, say h = 
f - mg. If h = 0, then f = mg is a standard representation of f. If not, 
then h has a standard representation 

k 

h= LmiPi 
i=l 

w.r.t. P by the minimality of f. Using the fact that HT(mg) is a term in 
f, one easily sees that 

k 

f=mg+ LmiPi 
i=l 

is a standard representation of f w.r.t. P. 0 
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Recall that a D-normal form of f modulo P is an h E R[ X] which is not 
reducible modulo P with f -+ h. What we need to solve the equivalence 
problem for Id(P) is a finite subset G of R[X] such that Id(G) = Id(P), 
and all D-normal forms modulo G of elements of Id( G) equal O. 

Definition 10.4 A D-Grobner basis is a finite subset G of R[ X] with 
the property that all D-normal forms modulo G of elements of Id( G) equal 
zero. If I is an ideal of R[ X], then a D-Grobner basis of I is a D-Grobner 
basis that generates the ideal I. 

Exercise 10.5 Let G be a finite subset of R[ X]. Show that the following 
are equivalent: 

(i) G is a D-Grobner basis. 

(ii) Every 0 f- f E Id(G) is D-reducible modulo G. 

(iii) Every 0 f- f E Id(G) is top-D-reducible modulo G. 

(iv) For each 0 f- f E Id(G), there exists g E G with HM(g) I HM(J). 

(v) The set of all monomial multiples of highest monomials of elements 
of G equals the set of all monomial multiples of highest monomials 
of clements of Id( G). 

Exercise 10.6 Let I be an ideal of R[X] and G a finite subset of I. Show 
that G is a D-Grobner basis of I if and only if for each 0 f- f E I, there 
exists g E G with HM(g) I HM(J). 

As with ordinary Grobner bases, it is much easier to give an abstract 
existence proof of D-Grobner bases than it is to find an algorithm that 
constructs them. Note that the next proposition also provides a proof of 
a special case of the Hilbert basis theorem, namely, the fact that every 
polynomial ring over a PID is noetherian. 

Proposition 10.7 Assume that R is a PID and let I be an ideal of R[X]. 
Then I has a D-Grabner basis. 

Proof For each term t E T, we set 

It = { a E R I at = HM(J) for some f E I} U {O}. 

From the fact that I is an ideal of R[ X], one easily concludes that each 
It is an ideal of R, and that sit implies Is ~ It for all s, t E T. We claim 
that the set 

{It It E T} 

is finite. Assume for a contradiction that there is a sequence {Si hEN of 
elements of T with lSi f- Is; for i f- j. By Proposition 4.45, we may assume 
that Si divides Sj whenever i < j, and it follows that {Is.hEN is a strictly 
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ascending sequence of ideals of R. Looking at a sequence of generators 
of these ideals, we see that we are contradicting Lemma 4.2. Let now tl, 
... , tr E T be such that 

{Itil" .. ,ltr} = {It / t E T} \ {{O}}. 

For 1 $ k $ r, we set 

and we let Bk be a finite basis of Ok w.r.t. divisibility, and ak ERa 
generator of the ideal I tk . It is easy to see from the choice of the Itk that 
for all 1 $ k $ r and t E B k, there exists fak t E I with HM(f) = akt. We 
claim that 

{fak t /1 $ k $ r, t E Bk} 

is a D-Grabner basis of I. We verify the condition of the last exercise. Let 
b E R and sET such that bs is the head monomial of some non-zero 
element of I. Then b E Is, and Is = Itlo for some index 1 $ k $ r. It follows 
that ak / b, and t /s for some t E Bk. We see that the head monomial akt of 
fak t divides bs. 0 

In the case of Grabner basis theory over a field, a sufficient condition for 
G to be a Grabner basis was that every non-zero polynomial in Id( G) have 
a standard representation w.r.t. G. The following lemma provides a similar 
criterion for D-Grabner bases. 

Lemma 10.8 Assume that G is a finite subset of R[ X 1 satisfying the 
following two conditions. 

(i) For all gb g2 E G there exists h E G with 

(ii) Every f E Id(G) has a standard representation w.r.t. G. 

Then G is a D-Grabner basis. 

Proof By Exercise 10.5 above, it suffices to show that every non-zero 
element of Id(G) is D-reducible. Let 0 -=F f E Id(G), and let 

k 

f= Lmigi 
i=l 

be a standard representation of f w.r.t. G. Let N ~ {I, ... ,k} be the set 
of all indices with the property that HT(f) = HT(migi). Then HM(f) = 
EiEN HM(migi), and thus 

lcm{ HT(gi) / i EN} / HT(f), and gcd{ HC(gi) / i EN} / HC(f). 
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It is an easy though slightly tedious exercise to conclude from assump
tion (i) that there exists h E G such that HT(h) divides the above lcm, 
and HC(h) divides the gcd. We see that HM(h) I HM(J), and thus f is 
D-reducible modulo G. 0 

In order to obtain a D-Grobner basis construction, we must ask ourselves 
how a finite subset P of R[ X] can fail to be a D-Grobner basis. First of 
all, there is the S-polynomial problem: the example given at the beginning 
of Section 5.3 can actually be viewed as an example in Z[X, Y, Z]. Now let 
R[X] = Z[X, Y], and P = {P1,P2} with Pl = 5X and P2 = 3Y. Then 
XY = 2Ypl - 3XP2 E Id(P) is in D-normal form modulo P. Here, we 
have lifted the head terms to their lcm while combining the gcd of the head 
coefficients. 

Definition 10.9 Let 0 -# gi E R[ X] with HC(gi) = ai and HT(gi) = ti. 
Let a = biai = Icm(a1,a2) with bi E R, and t = Siti = Icm(t1,t2) with 
Si E T for i = 1, 2. Then the S-polynomial of gl and g2 is defined as 

SpOI(gll g2) = blS1gl - b2s2g2. 

Now let ell C2 E R such that gcd(a1, a2) = C1a1 + C2a2. Then we define the 
G-polynomial of g1 and g2 w.r.t. C1 and C2 as 

gpol(cl,c2)(gllg2) = C1 S1g1 +C2s2g2. 

Strictly speaking, S-polynomials are only defined up to unit factors. As 
usual, there will be no harm in speaking of the S-polynomial. If R happens 
to be a field, then any two non-zero elements are associated, and any C -# 0 is 
an lcm of 0 -# a, bE R. The new definition of S-polynomials thus coincides 
with the old one. The G-polynomial of g1, g2 E R[ X] depends heavily 
on the choice of C1 and C2. If, for example, HM(gd = HM(g2), then both 
g1 and g2 are G-polynomials of g1 and g2. We will from now on assume 
that for each pair 0 -# a1, a2 E R, a fixed choice of a pair C1, C2 E R has 
been made such that C1a1 +C2a2 = gcd(all a2), and that G-polynomials are 
formed using this choice. The subscript (C1, C2) may then be suppressed. 
(It is of course advantageous to choose C1 = 0 or C2 = 0 whenever possible, 
i.e., whenever one of HC(g1) and HC(g2) divides the other.) 

Exercise 10.10 Let K be afield, G a finite subset of K[X1, ... ,Xn ], and 91, 92 E 
G with 91, 92 i- o. Assume that spol(91,92) + O. Show that gpol(91,92) + o. 

Note that condition (i) of Lemma 10.8 is equivalent to the G-polynomial 
of g1 and g2 being top-D-reducible modulo G. Our aim is to show that G is 
a D-Grobner basis if all S-polynomials D-reduce to 0 and all G-polynomials 
are top-D-reducible modulo G. The above exercise shows that we will re
cover Grobner basis theory over fields as a special case. 

Theorem 10.11 Let G be a finite subset of R[ X]. Assume that for all g1, 
g2 E G, spol(g1,g2) equals zero or has a standard representation w.r.t. G, 
and gpOI(gllg2) is top-D-reducible modulo G. Then every 0 -# f E Id(G) 
has a standard representation. 
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Proof Assume for a contradiction that 0 # f E Id( G) does not have a 
standard representation. Let 

k 

f = LmiUi (1) 
i=1 

with monomials 0 # mi = aiti and Ui E G for 1 ~ i ~ k. We may 
assume that 8 = maxi HT(miUi) 11 ~ i ~ k} is minimal among all such 
representations of f. Then HT(J) < s. For a contradiction, we will produce 
a representation 

k' 

f = Lm~u: 
i=1 

of the same kind such that 8' = maxi HT(m~uD I 1 ~ i ~ k'} < 8. We 
proceed by induction on the number ns of indices i with s = HT(miUi)' 
The case ns = 1 is impossible since 8 cancels out. Let ns = 2, and assume 
w.l.o.g. that HT(mIUI) = HT(m2U2) = 8. This means that 

8 = tl . HT(ud = t2 . HT(U2), 

and so lcm(HT(uI), HT(U2)) I 8, say 

8 = U .lcm(HT(ud,HT(U2)) 

with U E T. Since ns = 2, we must even have HM(mlud = -HM(m2U2), 
and so 

al . HC(ud = -a2 . HC(U2). 

It follows that there exists a E R with 

and it is now easy to see that 

By assumption, spol(Ub U2) = 0, or else it has a standard representation 

k" 

SPOI(UI, U2) = L m~' U:' 
i=l 

w.r.t. G. Substituting for mlUl + m2U2 in (1), we obtain a representation 

(2) 
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where the second sum is missing if the S-polynomial was zero. The max
imum of the head terms occurring in the first sum is less than s by our 
assumption ns = 2; the maximum sIt of the head terms in the second sum 
(if any) satisfies 

sIt < u . Icm(HT(gl), HT(g2)) = s. 

Together, we see that the maximum s' of the head terms in the representa
tion (2) satisfies s' < s, which means that (2) is the s'-representation that 
we were looking for. 

Now let ns > 2. Again we may assume w.l.o.g. that 

HT(mlgl) = HT(m2g2) = s. 

Moreover, we trivially have 

HC(mlgt} = al . HC(gt} and HC(m2g2) = a2 . HC(g2), (3) 

where as before, al and ~ are the coefficients of ml and m2, respectively. 
Top-D-reducibility of gpOI(glo g2) modulo G means that there exists h E G 
with 

HT(h) Ilcm(HT(gt},HT(g2») and HC(h) I gcd(HC(gt},HC(g2)). 

Since s is a common multiple of HT(gl) and HT(g2), we may conclude that 
HT(h) I s, and (3) shows that 

HC(h) I HC(mlgt} and HC(h) I HC(m2g2). 

We can thus find a term vET and bl , b2 E R such that 

HM(mlgt} = blv· HM(h) and HM(m2g2) = ~v· HM(h). (4) 

We can now modify our representation (1) of f as follows: 

k 

f = mlgl - bl vh + m2g2 - b2vh + (bl + b2)vh + L migi . 
i=3 

The equations (4) tell us that the head monomials of the first two sum
mands cancel, and so do the ones of the third and fourth. We may thus 
apply the induction hypothesis to the first two summands and also to the 
next group of two. In the remaining k -1 summands, the highest term s oc
curs at most ns -1 times: there are exactly ns - 2 occurrences in E~=3 migi, 
and the summand (bl + ~)vh contributes exactly one occurrence unless it 
happens to vanish. We see that the induction hypothesis applies here too. 
If we now add up these three representations to obtain, say, 

k' 

f = Lm~g~, 
i=l 

then it is easy to see that we get s' = max{ HT(m~gD 11 ~ i ~ k'} < s as 
desired. 0 
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Corollary 10.12 Let G be a finite subset of R[X], and assume that for 
all g1, g2 E G, 

SPOI(gl,g2) + 0 

andgpol(gl,g2) is top-D-reducible modulo G. Then G is a D-Grobner basis. 

Proof By Lemma 10.3, all non-zero S-polynomials have standard repre
sentations. By the above theorem, it follows that every 0 =f f E Id( G) has 
a standard representation w.r.t. G. As we have mentioned before, top-D
reducibility of gpOI(gl,g2) modulo G means that condition (i) of Lemma 
10.8 is satisfied. Hence the lemma applies, and thus G is a D-Grobner basis. 
o 

The above corollary provides a criterion for G to be a D-Grobncr ba
sis which can be effectively tested. More importantly, we will now use it 
to construct, from a finite subset P of R[ X J, a D-Grobner basis G with 
Id(P) = Id(G). 

Definition 10.13 A ring R is called a computable PID if it is a com
putable ring, a PID, and the following two conditions hold: 

(i) There is an algorithm that, upon input of 0 =f a, bE R, computes c, 
d E R such that ca + db is a gcd of a and b. 

(ii) There is an algorithm that, for a, b E R, decides whether b I a and if 
so, computes c E R with a = be. 

Note that in a computable PID, we can compute least common multiples 
according to Proposition 1.84. 

The following algorithm D-GROBNER for the computation of D-Grob
ner bases is a fairly obvious imitation of the Buchberger algorithm. It en
larges the input set by non-zero normal forms of S-polynomials and G
polynomials until all S-polynomials reduce to zero and all G-polynomials 
are top-D-reducible. It does, however, give preferential treatment to G
polynomials: after dealing with one S-polynomial, it runs through an inner 
while-loop which treats the G-polynomials of all critical pairs that are 
currently on the list. This will allow us to say, even before termination has 
been proved, that for any given point in time during computation, there 
is a point in the future where the G-polynomials of all critical pairs that 
were then on the list will have been looked at. The same effect could also 
be achieved by treating critical pairs in chronological order on a first-come 
first-go basis, but this would preclude the search for optimizing selection 
strategies. 

Theorem 10.14 Let R be a computable PID and assume that the term 
order is decidable. Then the algorithm D-GROBNER of Table 10.1 com
putes, for every finite subset F of R[ X], a D-Grobner basis G in R[ X J 
such that Id(G) = Id(F). 
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TABLE 10.1. Algorithm D-GROBNER 

Specification: G - D-GROBNER(F) 
Construction of a D-Grobner basis G for Id(F) 

Given: F = a finite subset of R[ X] 
Find: G = a finite subset of R[ X] such that G is a D-Grobner basis 

in R[X] with F ~ G and Id(G) = Id(F) 
begin 
G-F 
B - {{/t,h} I /t,h E G, /t i= h} 
D - 0 
C-B 
while B i= 0 do 

while C i= 0 do 

end 

select {It, h} from C 
C - C\ {{/t,h}} 
if there does not exist g E G with HT(g) I Icm(HT(/t) , HT(h)), 

HC(g) I HC(/t), and HC(g) I HC(h) then 
h - gpol(/t, h) 
ho - some D-normal form of h modulo G 
D - Du {{g,ho} I g E G} 
G - Gu {ho} 

end 

select {/t,h} from B 
B - B \ {{/t,h}} 
h - spol(/t, h) 
ha - some D-normal form of h modulo G 
if ha i= 0 then 

D - D U { {g, ha} I g E G} 
G - Gu {ha} 

end 
B - B U Dj C - Dj D - 0 
end 
end D-GROBNER 

Proof Correctness: The following is an invariant of the outer while-loop: 
spol(/t,h) -7;+ 0 for all It, 12 E G with {It, h} fj. B. For the inner while
loop, an invariant is given by: for all h, 12 E G with {h,h} fj. CUD, 
gpol(h, h) is top-D-reducible modulo G. Upon termination, we have B = 
C = D = 0. Correctness thus follows from the corollary to Theorem 10.11. 

Tennination: We first note that at the end of each run through the outer 
while-loop, the new pairs that have just been added to B are all in the 
set C, and all G-polynomials of pairs of elements of C are being treated 
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during the next run. Now assume that the algorithm does not terminate. 
Let {hn}nEN be the non-zero D-reduced G- and S-polynomials in the order 
that they are being added to G. For n E N, let an = HC(hn ), Sn = HT(hn ), 

mn = ansn , and 
Gn=FU{hi li<n}. 

By the above remark, there is a function cp : N ----t N such that for all i, n E 

N with i < n, gpol(hi' h n ) is top-D-reducible modulo G",(n)' Furthermore, 
hn is in D-normal form modulo Gn for all n E N. 

By Dickson's lemma and Proposition 4.45, there exists a strictly ascend
ing sequence {ndiEN of natural numbers such that 

sn.1 sn] for all i < j EN. 

It follows that an, f an] for all i < j EN. This will now lead to a contradic
tion due to the fact that we periodically treat all new G-polynomials. We 
will recursively define a sequence {kdiEN with the following properties. 

(i) For all i E N, there exists j E N with Sk, I Snj' 

(ii) akj properly divides ak, for all i < j E N. 

The second property is a contradiction by Lemma 4.2. Set kl = nl' Now as
sume that kl' ... , ki have been defined. Let j E N such that Ski I Snj' By (*) 
above, we may assume that k i < nj and thus ak, fan]. Now gpol(hki , hnj ) 

is top-D-reducible modulo G",(n])' This means that there exists n < cp(nj) 
such that 

Set ki+l = n. Then both (i) and (ii) follow immediately from (**): Sn I sn], 

and an I gcd( ak" an]) which is a proper divisor of aki since ak, fan]. 0 
It is clear from the definition of a D-Grobner basis that we can now 

decide the equivalence problem for Id(F) whenever a finite subset F of 
R[X] is given (cf. Theorem 5.55). Even for a D-Grobner basis G, however, 
---c;+ will not in general be adequate for =Id(F) in the sense of Definition 
4.78: take for R[X] any polynomial ring over IE, and let G = {2}. Then 
G is clearly a D-Grobner basis. But if the constant coefficient of some 
polynomial in R[ X] is odd, then D-reduction modulo G cannot change it, 
and so we cannot have 1 (;) 3 although 1 =(2) 3. Neither does ---c;+ have 
unique normal forms in general: let R[ X] = Z[X] and G = {2X + I}. Then 
f = 2X2 + 2X has the two normal forms hl = X and h2 = -X - 1. 

Exercise 10.15 Compute a D-Grobner basis of F = {3X + 1,5XY + X} in 
Z[X, Y]. Show that f = TXY + 2Y + 3X + 1 is not in Id(F) and does not have 
a unique normal form modulo the D-Grobner basis that you have computed. 

We are now going to show how the theory can be improved for Euclidean 
domains in such a way that in addition, we obtain adequacy and unique 
normal forms. As before, ~ is a fixed term order on T. To obtain unique 
normal forms, remainders in R will have to be unique in the following sense. 
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Definition 10.16 Let R be a Euclidean domain. We call R a Euclidean 
domain with unique remainders if for each pair a, b E R with b f= 0, 
a unique remainder of a upon division by b (remainder in the sense of the 
definition of Euclidean domains) has been chosen such that the following 
conditions are satisfied: 

(i) For fixed 0 f= b E R, the set of all unique remainders occurring when 
dividing by b is a unique set of representatives for the partition 

{a + Id(b) I a E R} 

of R. 

(ii) There is a well-ordered set Wand a function 'ljJ : R \ {O} --+ W such 
that for all divisions with remainder a = qb + r where a, b, q, r E R 
are all non-zero, we have 'ljJ(r) < 1/J(a). 

It is easy to see that K[X] for any field K is a Euclidean domain with 
unique remainders if we take W = N and 1/J(f) = deg(f) for all J E K[X] 
(Proposition 2.28). Now let R = Z, and set W = N U {oo} with m < 00 for 
all mEN. Let 1/J : Z --+ W be defined by 

1/J(m) = { m if m ~ 0 
00 otherwise. 

Then it is easy to see that Z with W and 1/J becomes a Euclidean domain 
with unique remainders if we specify remainders upon division by 0 f= m 
to be in the interval [0, m). 

It should be noted that the abstract degree function that comes with 
every Euclidean domain cannot in general serve as the 1/J of (ii) above: 
from the definition of a Euclidean domain, one easily derives that 1 and -1 
must have the same abstract degree, while 1/J must sometimes distinguish 
between 1 and -1 as we just saw. 

Exercise 10.17 Define a relation -::;,' on Z by setting m -::;,' n iff m = n, or 
Iml < Inl, or Iml = Inl and m < 0 (Le., we take the natural order on N and place 
negative integers right below their absolute value). Show that Z is a Euclidean 
domain with unique remainders if we specify remainders upon division by 0 i- m 
to be in the interval [-lm/21, Im/21} and take W = Z with -::;,' and 'f/J = idz. 

For the rest of this section, R will be a Euclidean domain with unique 
remainders, W with well-order ~ and 1/J as in the above definition, and 
R[ X] a polynomial ring over R. We now define a new type of reduction 
over Euclidean domains with unique remainders. 

Definition 10.18 Let J, g, p E R[XJ. We say that J E-reduces to 9 
modulo p and write J -pt 9 if there exists a monomial m = at E T(f) 
such that HT(P) I t, say t = s· HT(p), and 

9 = J - qsp 
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where 0 1= q E R is the quotient of a upon division with unique remainder 
by HC{p). 

As before, -}-+ denotes the reflexive-transitive closure of 7' E-reduction 
modulo a finite subset of R[ X], E-reducibilty, and E-normal forms are 
defined in the obvious way as before. It is clear that we still have I --p+ g 
implies (f - g) E Id(P). The proof of the following lemma is immediate 
from Lemma 2.29. 

Lemma 10.19 E-reduction extends D-reduction, i.e., every D-reduction 
step is an E-reduction step. 0 

Our first goal is to show that E-reduction modulo a finite set is noethe
rian. This will be achieved by well-ordering R[ X] in analogy to the case of 
polynomial rings over fields. We consider a lexicographical order on the set 
W x T: we let (v,s) ::; (w, t) iff either 8 < t, or 8 = t and v ::; w. (Note that 
this is different from the product order of Theorem 4.46.) The following 
lemma simply shows that a lexicographical product of well-orders is again 
a well-order. 

Lemma 10.20 (W x T) as defined above is a well-ordered set. 

Proof Assume that {(Wi, ti)}iEN is a strictly descending chain in (W x T). 
Then ti ~ tj for all i < j. Since the term order ::; is a well-order, there 
must be no E N with ti = tj for all no ::; i < j. We conclude that Wi > Wj 
for all no ::; i < j, a contradiction. 0 

We now define a map X from the set of monomials to (W x T) by setting 
x(at) = (tf;(a),t). Then we extend X to a map 

X': R[X] 

I 
-- Pfin((W X T») 
~ X{M(f»). 

Finally, we let ::;' be the induced order of Theorem 4.69 on Pfin ((W x T»), 
and we define a linear quasi-order ::; on R[ X 1 by setting 

I ::; g iff X' (f) ::;' X' (g). 

Then Lemma 4.35 with tf; = X' tells us that the quasi-order ::; on R[ X 1 is 
well-founded. 

Now let I, g, p E R[X] such that I 7 g is an E-reduction step. 
Then this either eliminates a term from I as in D-reduction, in which case 
g < I. Else, it replaces a coefficient by its remainder upon divison by HC(P) 
with non-zero quotient while leaving all higher coefficients unchanged. Then 
the tf;-value of that coefficient decreases, and we see that again g < I. 
Considering that the order on R[ X] is well-founded, we have thus proved 
the following theorem. 

Theorem 10.21 E-reduction is noetherian. 0 
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To obtain the desired bases that allow the computation of unique normal 
forms, we do not need another Grabner basis algorithm. It will suffice to 
take a D-Grobner basis and E-reduce modulo G. This is the content of the 
next theorem, whose proof hinges on the following lemma. 

Lemma 10.22 Let hI, h2, 9 E R[X] such that hI - h2 is D-reducible 
modulo g. Then hI or h2 is E-reducible modulo g. 

Proof Assume for a contradiction that both hI and h2 are in E-normal 
form (and thus in D-normal form) modulo g. Let m = at be a monomial in 
M(hl - h2) such that HM(g) I m. Then m = (al - a2)t with al =I a2, and 
for i = 1, 2, either ai = 0 or ait E M(hi ). If one of al and a2 equals 0, then 
m is in M(h l ) or in M(h2)' contradicting the fact that hI and h2 are in 
D-normal form. If all a2 =I 0, then they must both equal their own unique 
remainder upon division by HC(g). Since al =I a2, and the remainders 
occurring when dividing by HC(g) form a unique set of representatives for 
the residue classes 

b+Id(HC(g)) (b E R), 

it follows that HC(g) t (al - a2) = a, a contradiction. 0 

Theorem 10.23 Let R be a Euclidean domain with unique remainders, 
and suppose G C;;;; R[ X] is a D-Grobner basis. Then the following hold: 

(i) J + 0 Jor all f E Id(G), where cr denotes E-reduction modulo G. 

(ii) E-reduction modulo G is adequate for =Jd(G). 

(iii) E-reduction modulo G has unique normal forms. 

Proof (i) This is immediate from the definition of D-Grobner bases and 
the fact that E-reduction extends D-reduction. 

(ii) We must show that J ( ;:; I 9 iff f - 9 E Id(G). The direction "=?" 
follows easily by induction on the length of the +-a+-chain as in the proof 
of Lemma 5.26. For "<=," let f, 9 E R[X] with f-g E Id(G). Let hI and 
h2 be E-normal forms of J and 9 modulo G. Then we write 

The right-hand side is in Id(G) by "=?," f - 9 is in Id(G) by assumption, 
and thus we have h2 - hI E Id(G). Since G is a D-Grabner basis, it follows 
that hI - h2 is D-reducible modulo G, and Lemma 10.22 together with the 
fact that hI and h2 are in E-normal form implies hI = h2. This shows that 
f ( ;:; I g. If we repeat the argument with J = g, then we obtain a proof of 
statement (iii). 0 

For actual computations with E-reduction, we need of course computabil
ity of the unique remainder, in addition to computability of R as a ring. 
Examples of computable Euclidean domains with unique remainders are 



466 10. Variations on Grabner Bases 

obviously K[X] for computable field K, and Z with remainders specified 
as above. It is clear that in a computable Euclidean domain R with unique 
remainders we can compute gcd's (Euclidean algorithm) and thus lcm's, 
decide divisibility (zero remainder), and divide effectively. In particular, 
E-reduction of polynomials over R is decidable, and we can compute D
Grabner bases from given finite sets of polynomials over R. 

The Grabner basis theory for PID's and Euclidean domains can be fur
ther developed and applied in a similar manner as Grabner bases over fields. 
The following exercise provides an example. 

Exercise 10.24 Let R be a PID and G ~ R[X] a D-Grabner basis w.r.t. any 
term order. Show that G n R generates the ideal Id( G) n R of R. 

10.2 Homogeneous Grabner Bases 

Even with the improvements of Section 5.5, the time and space consumption 
of the algorithm GROBNER is often unsatisfactory. A natural attempt to 
improve the situation further is to look for degree bounds by means of which 
one could compute a partial Grabner basis for certain limited purposes. 
Unfortunately, there is no obvious way of achieving this. S-polynomials of 
high degree that occur during a run of the algorithm GROBNER may, 
after reduction, contribute a polynomial of much lower degree or even a 
constant. It is by no means clear how this phenomenon could be controlled. 
In this section, we show that homogeneous polynomials behave nicely in this 
respect. The next section will explain how the results for the homogeneous 
case can be put to use via homogenization, although most of the beauty of 
the homogeneous theory is lost in the process. We can obtain more powerful 
results at no extra cost by considering an arbitrary grading instead of the 
regular degree. Through.out this section, K will be a field, 

K[X] =K[X1!.'.'Xn ], 

and T the set of terms in the variables Xl, ... , X n . 

Definition 10.25 A grading r of K[ X] is a monoid homomorphism 

r : (T, 1,·) -+ (N, (0), +), 

i.e., a map r : T -+ N such that r(l) = 0 and r(s . t) = r(s) + r(t) for 
s,t E T. For 0 =I f E K[X], we define the r-degree of f as 

max{ r(t) I t E T(f) }. 

By an abuse of notation, we denote the r -degree of f by r(f) too. A non
zero polynomial f E K[X] is called r-homogeneous ifr(s) = r(t) for all 
s, t E T(f). A term order ~ on T is r-compatible if r(s) < r(t) implies 
s < t for all s, t E T. 
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Examples 10.26 Let at. ... , an E N and define r : T --+ N by 

Then r is obviously a grading of K[ X]. Taking in particular al = ... = 
an = 1, this yields the grading by total degree where r(f) is simply 
deg(f). This example should be used to visualize the statements and proofs 
in this section. If we fix an index j with 1 ::; j ::; n and set aj = 1 and 
ai = 0 for i oF j, then we obtain the grading by degree in the variable 
Xj. More generally, for any subset J of {1, ... ,n}, we may set ai = 1 for 
i E J and ai = 0 for i ~ J. The resulting grading r yields the total degree 
in the variables {Xi liE J}. Taking al = ... = an = 0, we get the 
trivial grading ro of K[ X] where all degrees are zero and every non-zero 
polynomial is r-homogeneous. In fact any grading r of K[X] arises from 
a linear form in this manner: set ai = r(Xi ) EN for 1 ::; i ::; n. Then 

This is expressed by saying that r is determined by the weights ai of the 
indeterminates Xi. 

For the rest of this section, whenever a grading r occurs in connection 
with a computation or an algorithm, we will assume that the weights r(Xi ) 

are given for 1 ::; i ::; n, so that we may actually compute r(t) for arbitrary 
t E T. 

Lemma 10.27 Let r be a grading of K[ X] and ::; a term order on T. 

(i) Define the relation ::;' on T by setting s ::;' t iff the following holds: 

r(s) < r(t), or 

r(s) = r(t) and s::; t. 

Then ::;' is a r-compatible term order on T. 

(ii) sit implies r(s) ::; r(t) for all s, t E T. 

(iii) r(f + g) ::; max(r(f),r(g)) for f, 9 E K[X] with f, 9 oF 0 and 
f + 9 oF O. 

(iv) r(fg) = r(f) + r(g) for 0 oF f,g E K[X]. 

(v) Let 0 oF c E K and let f, 9 E K[X] be r-homogeneous with r(f) = 
r(g) and f, g, f + 9 oF O. Then cf and f + 9 are r-homogeneous with 
r(cf) = r(f + g) = r(f). 

(vi) Let 0 oF f,g E K[X] be r-homogeneous. Then fg is r-homogeneous. 
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Proof Statements (i), (ii), (iii), (v), and (vi) are easy to verify. In order to 
prove (iv), we use (i) to find a r-compatible term order '5:' on T. Then we 
apply Lemma 5.17 to the head terms of Ig, I, and 9 w.r.t. '5:' and obtain: 

r(fg) = r(HT(fg») = r(HT(f). HT(g») 

r(HT(f» + r(HT(g») = r(f) + reg). 0 

Exercise 10.28 What is the relationship between the grading by total degree 
on K[ Xl, the total degree-lexicographical order on T, and the lexicographical 
order on T? 

For the rest of this section, we let r be a fixed grading and '5: a fixed 
term order on T. "Homogeneous" will from now on mean "r-homogeneous." 
Note that our fixed term order '5: need not be r-compatible. The following 
lemma is crucial to the theory of homogeneous Grobner bases. 

Lemma 10.29 Let dEN and 0 i= I, p, 9 E K[ X] with r(f) = d. Suppose 
p is homogeneous and 1 7 g. Then r(p), reg) '5: d. If, in addition, 1 is 
homogeneous too, then 9 is homogeneous with r(g) = d. 

Proof From 1 7 9 it follows that 9 = 1 - mp for some monomial 
m = at E K[X] such that t· HT(P) E T(f). It now follows from Lemma 
10.27 (ii), (iv), and (vi) and the homogeneity of p that r(p) '5: r(mp) '5: d. 
From Lemma 10.27 (iii), we then see that reg) '5: d. If 1 is homogeneous 
too, then 

r(mp) = r(t. HT(P») = d, 

and Lemma 10.27 (v) implies homogeneity of 9 with reg} = d. 0 

Exercise 10.30 Show that the previous proposition continues to hold with 
7 replaced by + where P is a set of homogeneous polynomials. 

The following lemma is immediate from the definition of S-polynomials 
together with Lemma 10.27 (v). 

Lemma 10.31 Let gb g2 E K[X] be homogeneous with SPOI(gl,g2) i= O. 
Then SpOI(gl,g2) is homogeneous and 

Exercise 10.32 Go back to Theorem 5.53 and make sure that you thor
oughly understand the algorithm GROBNER and the proof of its correct
ness and termination. 

In our treatment of Grobner bases thus far, we have considered the al
gorithm GROBNER only for computable fields and decidable term orders. 
The existence of Grobner bases in the general case had been proved earlier 
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by different means. The homogeneous case can be treated in the same man
ner. However, the theory becomes much more elegant if we note that an 
application of GROBNER to a finite set F ~ K[ X 1 can also be viewed as 
an abstract mathematical construction. It amounts to defining a sequence 
{GihEN such that Go = F, and for i > 0, Gi = Gi-l U {h} where h is a 
non-zero normal form of an S-polynomial of two elements in Gi- 1 if such 
a normal form exists, Gi = Gi- 1 otherwise. The termination proof of the 
algorithm shows that there exists mEN with G i = Gm for all i 2: m, 
and the correctness proof shows that Gm is a Grabner basis of Id(F). In 
the sequel, we will talk about variants of the algorithm GROBNER that 
treat only S-polynomials satisfying a certain degree bound. In the case of 
computable field and decidable term order, these are to be viewed as actual 
algorithms; else, they amount to mathematical existence proofs. It is not 
hard to translate arguments concerning the algorithm into abstract mathe
matics. If, for example, we say, "let g be the first polynomial with property 
P showing up during computation," then this translates into "let k be the 
least natural number such that Gk contains an element with property P, 
and let g be the element of Gk \ Gk-l." 

If d1 EN, and d2 EN or d2 is the symbol 00, then we define 

with the understanding that k < 00 for all kEN. With d1 and d2 as 
before, we let [d1 , d2l-GROBNER be the algorithm GROBNER with the 
sole modification that it considers only those critical pairs {gl, g2} that 
satisfy 

dl ~ r(lcm(HT(gd,HT(g2))) ~ d2 • 

Then [dl, d2l-GROBNER applied to any finite set of polynomials must 
terminate since an infinite loop would be an infinite loop of the algorithm 
GROBNER. It is also obvious that the output set of the algorithm is a 
superset of the input set that generates the same ideal as the latter. 

Proposition 10.33 Let d1 EN, and d2 EN or d2 = 00. Let F be a finite 
subset of K[ X 1 such that each f E F is homogeneous, and set 

Then the following hold: 

(i) Every g EGis homogeneous, and G \ F ~ K[ X 1 [d1 ,d2]. 

(ii) SPOl(gl, g2) + 0 for all gl, g2 E G that satisfy 
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Proof (i) The elements of F are homogeneous by assumption. Now assume 
for a contradiction that there is 9 E G \ F that is not homogeneous or 
does not satisfy d1 ~ r(g) ~ d2. We may assume that 9 is the first such 
polynomial that shows up during computation. Then 9 is a normal form 
modulo a set of homogeneous polynomials of an S-polynomial of a pair 
{gI, g2} of homogeneous polynomials with 

d1 ~ r(lcm(HT(gt},HT(g2))) ~ d2. 

By Lemmas 10.31 and 10.29, 9 is homogeneous and in K[Xhd1 ,d2]. Part (ii) 
is immediate from the fact that the algorithm terminates precisely when 
all S-polynomials of the indicated type reduce to zero. 0 

We do not claim that [d1,d21-GROBNER(F) does anything meaningful 
in the way of reducing arbitrary members of Id(F) to zero; the only inter
esting case will be d1 = o. It will soon be obvious why we chose the more 
general definition. Also, note that those / E F with r(f) > d2 play no role 
in the algorithm. They are carried along for no other reason than to pre
serve the generated ideal. Those / E F with r(f) < d1 can of course occur 
in critical pairs and may also be used during reduction of S-polynomials. 

Corollary 10.34 Let F be a finite subset 0/ K[ X 1 with f homogeneous 
for each / E F. Then [O,oo)-GROBNER(F) is a Grabner basis 0/ Id(F) 
that consists entirely of homogeneous polynomials. 0 

Lemma 10.35 Let dI, d2 E N, and d3 E N or d3 = 00, such that d1 ~ 

d2 ~ d3. Let F be a finite subset of K[ X 1 consisting of homogeneous 
polynomials, and set 

G = [d2 + 1, d31-GROBNER([d1 , d21-GROBNER(F)). 

Then G consists again of homogeneous polynomials, and 

[dI,d31-GROBNER(G) = G. 

Proof It is clear from the previous proposition that every 9 EGis homo
geneous. We must show that 

spol(gI,g2) + 0 

for all gl, g2 E G that satisfy d1 ~ d ~ d3, where 

d = r(lcm(HT(9t},HT(g2))). 

If d2 < d ~ d3, then this is immediate from Proposition 10.33 (ii) since G 
is an output of [d2 + 1, d31-GROBNER. If d1 ~ d ~ d2, then we must have 
r(gt}, r(g2) ~ d2. It follows that 

gl,g2 E [dl,~l-GROBNER(F) 
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since the application of [d2 + 1, d3]-GROBNER did not bring in anything 
of degree less than d2 + 1 by Proposition 10.33 (i). The claim now follows 
again from Proposition 10.33 (ii). 0 

Exercise 10.36 Show that the lemma above continues to hold if we modify the 
definition of G to 

G = [d1 ,d2]-GROBNER([d2 + 1,d3]-GROBNER(F)). 

Lemma 10.37 Let d E N+, and let F be a finite subset of K[ X hd,ooj with 
every f E F homogeneous. Then 

[d, d']-GROBNER(F} = [0, d']-GROBNER(F), 

and 
[d, d']-GROBNER(F) n K[ X hO,d-lj = 0 

whenever d S d' E N or d' = 00. 

Proof It is clear that [0, d-1]-GROBNER(F) = F. The claim now follows 
from Lemma 10.35 applied to F and 0, d-1, d', and from Proposition 10.33 
(i). 0 

Proposition 10.38 Let dEN, F a finite subset of K[ X] consisting of 
homogeneous polynomials, and set 

Gd = [0, dj-GROBNER(F). 

Then there exists a Criibner basis G of Id(F) that consists entirely of 
homogeneous polynomials and satisfies 

Cd :;2 GnK[Xho,dj' 

Proof It follows immediately from Lemma 10.35, Corollary 10.34, and 
Proposition 10.33 (i) that 

G = [d,oo]-GROBNER(Gd ) 

has the desired properties. 0 

We are now going to prove that the output of the algorithm [0, d]-GROB
NER with homogeneous input has all the nice properties of a Grobner basis 
for polynomials (not necessarily homogeneous) of degree less than or equal 
to d. For any finite set P ~ K[ X], we denote by + the restriction of ----p+ 
to K[X][O,dj' 

Theorem 10.39 Let G be a finite subset of K[ X] consisting of homoge
neous polynomials, and let dEN. Then the following are all equivalent: 

(i) + is locally confluent. 
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(ii) + is confluent. 

(iii) + has the Church-Rosser property. 

(iv) + has unique normal forms. 

(v) spol(9},92) + 0 for all 91,92 E G with 

r(lcm(HT(91), HT(92») < d. 

(vi) Every O:f:. f E Id(G) n K[Xho,d] is reducible modulo G. 

(vii) f + 0 for all f E Id(G) n K[X]ro,d]. 

(viii) Every 0 :f:. f E Id(G) n K[X l!o,d] is top-reducible modulo G. 

(ix) For every 8 E HT(Id(G) n K[X]ro,d]) there exists t E HT(G) with 
tl s. 

(x) HT(Id(G) n K[Xho,d]) ~ Mult(HT(G». 

(xi) The polynomials h E K[X]ro,d] that are in normal form w.r.t. --cr 
form a system of unique representatives for the partition 

{ (J + Id(G») n K[Xho,d] If E K[X]rO,dJ} 

of K[ X ]ro,d] . 

Proof It is clear that the restriction + of --cr to K[ X l!o,d] is still a 
noetherian reduction relation. The equivalence of (i), (ii), (iii), and (iv) is 
thus Newman's lemma. 

The equivalence of (vi), (vii), (viii), (ix) , (x), and (xi) is easy to prove 
(cf. the proof of Theorem 5.35) if we bear in mind that reduction modulo 
a homogeneous polynomial does not increase the r -degree. 
(iv)~(v): Assume for a contradiction that h is a non-zero normal form 

w.r.t --cr of spol(91, 92) for a pair 9}' 92 E G that satisfies the indicated con
dition on the r-degree. Then spol(9},92) E K[X]ro,d]. By Exercise to.30, h 
and each intermediate polynomial in the reduction chain spol(9}' 92) + h 
are in K[ X ho,d] too, so that in fact 

spol(91,92) -4r h. 

Let 
spol(9},92) = a2s291 - alS192 

with constants a}, ~ and terms s}, 82. Then a2S291, a18192 E K[Xlro,d]. 
We see that 

o 
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and thus h and 0 are two different normal forms of a282g1 w.r.t +. 
(v)~(vi): Let 0 # f E Id(G) n K[Xho,dj. By Proposition 10.38, there 

exists a Grobner basis G' of Id( G) consisting of homogeneous polynomials 
with 

G 2 G' nK[XJ[O,dj. 

Then f is reducible modulo G', and by Lemma 10.29, this reduction is 
modulo 9 for some 9 E G' n K[ X hO,dj. We see that f is indeed reducible 
modulo G. 

(vi)~(iv): Let g1 and g2 be two different normal forms of f w.r.t +. 
Then g1 and g2 must be in K[ X hO,dj by the definition of +. The difference 
g1 - g2 is in Id( G) by Lemma 5.26 and in K[ X hO,dj by Lemma 10.27 (iii). 
So g1 - 92 is reducible modulo G. It follows that at least one of g1 and g2 
is reducible modulo G, and this must in fact be a +-reduction step by 
Lemma 10.29, a contradiction. 0 

Definition 10.40 Let G be a finite subset of K[ X 1 consisting of homo
geneous polynomials, and let dEN. Then we call G a d-Grobner basis 
(w.r.t. r and ::;) if it satisfies the equivalent conditions of Theorem 10.39. 

We can now summarize the results of this section thus far as follows. 
Given a finite set F of polynomials each of which is homogeneous w.r.t. 
a given grading r, we can compute a d-Grobner basis (d E N) of Id(F) 
by running on F a truncated algorithm GROBNER which ignores all S
polynomials of r -degree greater than d. The result is good enough to test 
for membership in Id(F) any polynomial f with r(f) ::; d. Moreover, if a 
d-Grobner basis has already been computed, then this can be extended to 
a d'-Grobner basis (d < d') by applying an algorithm GROBNER which 
treats only those S-polynomials whose r-degree is in the interval [d+ 1, d'J. 
All polynomials that are being added in the process will have a r -degree 
in the same interval. In particular, if the polynomials in the original set F 
satisfy a lower r -degree bound l, then nothing happens below r -degree 1 
at all during any computation of a d-Grobner basis. 

A natural question that arises at this point is if we can use truncated 
versions of the algorithms GROBNERNEW1 and GROBNERNEW2 in
stead of GROBNER, i.e., if we can still eliminate superfluous critical pairs 
according to Buchberger's criteria. Buchberger's first criterion deletes crit
ical pairs {gl,g2} with disjoint head terms because they reduce to zero by 
means of g1 and 92 themselves. It is thus completely unaffected by any 
truncation of the algorithm. 

The second criterion skips {g1, g2} because of the presence of two other 
critical pairs, namely, {gl. h} and {h,g2} for some h with 

HT(h) I lcm(HT(gt} , HT(g2)). 
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We know that then 

Icm(HT(gl),HT(h)) I Icm(HT(gl) , HT(g2)) and 

Icm(HT(h),HT(g2)) Ilcm(HT(gd,HT(g2})' 

So if r(Icm(HT(gl), HT(g2))) was below the degree bound d, then so are the 
r-degrees of the other two lcm's, and thus the other two critical pairs will 
not be the victims of truncation. The only thing that must be observed is 
that when a d-Grobner basis is extended to a d'-Grobner basis for d' > d by 
means of GROBNERNEWl, then the critical pairs that have already been 
treated in the first computation must be properly marked at the beginning 
of the second computation. 

There is an obvious immediate application of d-Grobner basis computa
tions in practice. Suppose we know that each element in a given finite set 
of polynomials is homogeneous w.r.t. a grading r whose weights are known 
to us. Now if we wish to test a particular polynomial I for membership 
in Id(F), then it suffices to compute a r(f)-Grobner basis of Id(F). If, 
however, we do not have any a priori information on homogeneity w.r.t. 
any grading, then it will not usually be obvious to the eye whether or not 
there exists a grading that makes every I E F homogeneous. We will now 
explain how this question can be decided, and how the weights of a suitable 
grading can be computed in case of a positive answer. 

Let aI, ... , an be unknowns, and for any term t = Xyl ..... X~n, set 

n 

r a(t) = 2: aiVi· 

i=l 

For each I E F, pick a term tf E T(f). It is clear that the n-tuples of 
weights whose corresponding gradings will make each I E F homogeneous 
are precisely the non-negative integer solutions of the system 

(f E F, tJ'F t E T(f)) 

of linear equations. We have thus reduced the problem to deciding the 
solvability in the non-negative integers of a system of linear equations and 
computing a solution if it exists. This can be achieved by an algorithm 
known as integer linear programming (ILP). Although ILP is itself among 
the unpleasantly complex algorithms, experience has shown that checking 
for homogeneity takes only a neglible fraction of the time required for the 
full Grobner basis computation. 

We close this section with a discussion of the ideal theoretic aspects of 
homogeneity. As before, r is a fixed grading. If I E K[ X 1 and dEN, then 
we denote by I(d) the sum of all monomials of I whose r-degree equals d. 
It is clear that either I(d) = 0 or I(d) is homogeneous with r(f(d») = d. 
In the latter case, I(d) is called the d-homogeneous part of I. It is now 
easy to see that every polynomial has a unique representation as the sum of 
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its homogeneous parts by descending degree. An ideal I of K[ X 1 is called 
homogeneous if I( d) E I for all I E I and dEN. 

Proposition 10.41 (i) Suppose F ~ K[ X 1 and all I E F are homoge
neous. Then Id(F) is homogeneous. 

(ii) Every homogeneous ideal I in K[ X 1 has a finite basis consisting 01 
homogeneous polynomials. 

Proof (i) Every g E Id(F) is a sum of homogeneous polynomials of the 
form ml where m is a monomial and I E F, say g = L::=l mdi. Then for 
dEN, 

g(d) = L:{ mdi 11 :::; i:::; r, r(mdi) = d}, 

and so g(d) E Id(F). 
(ii) By the Hilbert basis theorem, there exists a finite set P of polynomials 

in K[X] such that Id(P) = I; let F = {P(d) I PEP, dEN}. Then F is 
finite, every I E F is homogeneous, and F ~ I. Moreover, every pEP is a 
sum of elements of F; so 1= Id(P) = Id(F). 0 

Bya d-Grobner basis of an ideal I we mean of course a d-Grobner basis 
G with Id(G) = I. If I is a homogeneous ideal and dEN, then I has a finite 
basis F of homogeneous polynomials, and [0, dj-GROBNER(F) is then a 
d-Grobner basis of I. We have thus proved the following corollary. 

Corollary 10.42 Every homogeneous ideal has a d-Grobner basis. 0 

The concept of homogeneous parts can also be used to make a connection 
between d-Grobner bases and standard representations. 

Lemma 10.43 Let F be a finite subset of K[ X 1 consisting of homoge
neous polynomials, and let IE Id(F), say 

k 

1= L:mdi 
i=l 

with monomials 0 =I- mi and Ii E F for 1 :::; i :::; k. Then it is possible 
to delete summands on the right-hand side such that equality is preserved 
and r(mdi) :::; r(f) for 1 :::; i :::; k. If I is itself homogeneous, then one can 
even achieve r(mdi) = r(f) for 1 :::; i :::; k. 

Proof It is clear that each summand mdi is again homogeneous. It follows 
that for all dEN, I(d) equals the sum of all those summands mdi with 
r(mdi) = d. We see that our goal is achieved if we drop each summand 
with I(['(m,fi» = o. 0 

Cutting off a degree overhang according to the lemma above does clearly 
not destroy the property of a representation I = L::=1 mdi to be a stan
dard representation. With this and Lemmas 5.60 and 5.61 in mind, the 
reader will find it easy to prove the following proposition. 
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Proposition 10.44 The lollowing two conditions may be added to the 
equivalent conditions 0/ Theorem 10.39: 

(xii) Every 1 E K[XlrO,d] has a standard representation w.r.t. G. 

(xiii) Every 1 E K[Xlro,d] has a standard representation w.r.t. G in which 
the r -degrees 01 the summands do not exceed the r -degree 011. 0 

In Exercise 5.40, we saw that the head terms of a Grobner basis of an ideal 
are a Grobner basis of the ideal generated by the head terms of elements of 
the ideal. The following exercise provides a similar result w.r.t. gradings. 

Exercise 10.45 If 0 # I E K[X], then the r(J)-homogeneous part of I is 
called the r-highest form of I, or highest form of I for short, and we will 
denote it by HF(J). The set of highest forms of elements of a subset F of K[ X] 
will be written as HF(F). Show the following: 

(i) Ifm E K[X] is a monomial and 0 # I E K[X], then m·HF(J) = HF(mf). 

(ii) If /1, ... , 1m E K[X] are all non-zero, all have the same r-degree, and 
satisfy 

HF(JI) + ... + HF(Jm) # 0, 

then 
HF(JI) + ... + HF(Jm) = HF(/1 + ... + 1m). 

(iii) If I is an ideal of K[X] and I is an element of the ideal Id(HF(I), then 
every r-homogeneous part of I is an element of HF(I). 

(iv) If G ~ K[ X] is a Grabner basis of the ideal I of K[ X] w.r.t. some r-com
patible term order ~, then HF(G) is a Grabner basis w.r.t. ~ of the ideal 
Id(HF(I» of K[X]. In fact, if I E Id(HF(I» , then every homogeneous 
part of I contains a term that is reducible modulo HF(G). 

If one wishes to develop the theory of homogeneous Grobner bases in 
perfect analogy to our general treatment of Grobner bases in Sections 5.2 
and 5.3, then one needs the following technical result. 

Exercise 10.46 Let P be a finite subset of K[ X] consisting of r-homogeneous 
polynomials. Show the following: 

(i) Let I, g, hE K[X], and assume 

1~9~h, 

where 9 = I + asp, h = 9 + btq with a, b E K, s, t E T, p, q E P, and 
r(sp) # r(tq). Set 91 = 1+ btq. Then 

1~91~h. 

(ii) Let dEN, I, 9 E K[Xl[o,d), and suppose I ' ;, , 9. Then there exists a 
chain 1+-];-+9 in which every intermediate polynomial is in K[Xl[o,d)' 
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10.3 Homogenization 

The results on homogeneous Grabner bases of the last section can be used 
to obtain a deeper understanding of the behavior of degrees in any non
homogeneous Grabner basis computation. This is achieved by means of 
homogenization with an additional variable. The technical details have a 
tendency of looking messy, but the theory is really quite simple. Given a 
polynomial f in the variables Xl. ... , X n , we look at its degree d, i.e., 
the maximum of the degrees of its terms. (Think of the ordinary total 
degree for the moment.) We then multiply each term of lesser degree by a 
suitable power of a new variable Z, thus bringing all degrees up to d. Setting 
Z = 1 will take us back to f. The whole point of this section is to find out 
what happens if, instead of computing a Grabner basis of a given set of 
polynomials, we first homogenize them as described above, then compute 
the Grabner basis, and finally set the homogenizing variable Z equal to 1. 

Let K[Xl = K[Xl. ... ,Xnl and r a grading on T(X) = T(Xl , •.• ,Xn). 
It is recommended for the reader to use the special example of the grading 
by total degree to visualize the results below. For convenience, we set r(O) = 
O. Now let Z be a new variable. Then we set 

K[X ,Zl = K[Xl , ... ,Xn,Zl, T(X ,Z) = T(Xl.'" ,Xn,Z), 

and we extend r to a grading r' of T(X ,Z) by setting r(Z) = 1. Suppose 
r(Xi) = ai for 1 ~ i ~ n. Since K is a subfield of QKIK,Zj, the field of 
fractions of K[X ,Zl, the map cp: K[Xl----+ QKIK.Zj defined by 

cp(J(Xl, ... ,Xn ») = f (~ll"'" ~:) 
is an instance of the substitution homomorphism of Lemma 2.17 (i), sat
isfying cp r K = idK. For f E K[ X 1 with r(f) = d, we now define 
r = Zd . cp(f). 

Lemma 10.47 Let f E K[Xl and d = r(f). Then r E K[X, Zl, and r 
is r'-homogeneous with r'(f*) = d. Moreover, 

M(f) = {atZd- d' I at E M(f), ret) = d'}, 

and the map m 1--+ m . zd-r(m) is a bijection between M(f) and M(r). 

Proof If t E T(f), then cp(t) = t/Zr(t) and ret) ::; d, and so 

Zd . cp(t) = tZd-r(t) E T(X ,Z). 

Since cp is a homomorphism acting as the identity on K, it follows that 
r = Zd. cp(f) E K[X]. Moreover, 

r'(Zd. cp(t») = r'(tZd-r(t») 

= ret) + r,(zd-r(t») 

= r(t)+d-r(t) = d 
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for all t E T(I). We see that /* is r'-homogeneous of degree d. It is clear 
that 

tt = tlZd-r(tt) 1: t 2Z d- r (t2 ) = t; 

whenever tb t2 E T(I) with tl 1: t2. So there will not be any like terms in 
the sum 

r = L atZd-r(t) , 

atEM(f) 

and the rest of the lemma is easy to prove from this observation. 0 
r is called the homogenization of I in K[X ,Z] (with respect to the 

homogenizing variable Z). 

Exercise 10.48 Show that (lg). = /*g. for all I, 9 E K[X]. 

Now let 9 E K[ X , Z]. Then we define g. E K[ X 1 by setting 

g.(Xll ... ,Xn ) = g(Xl, ... ,Xn , 1). 

Since K is a subfield of K[X], the map 9 1--+ g. is a substitution homo
morphism from K[X ,Zj to K[X] which acts as the identity on K. It is 
easy to see that it is in fact surjective. g. is called the dehomogenization 
of 9 w.r.t. Z. 

Lemma 10.49 If 9 E K[ X, Z], say 9 = EmEM(g) m, then 

g. = L m •. 
mEM(g) 

If in addition, 9 is r'-homogeneous, then the map m 1--+ m. from M(g) to 
M(g.) is bijective. 

Proof The first statement is immediate from the fact that the dehomoge
nization map is a homomorphism. Now assume that 9 is r' -homogeneous, 
and let til t2 E T(g), say 

with 81, 82 E T(X). Then 81 = 82 would imply d1 = d2 because of the 
homogeneity of g, and so we must have 

We see that there will not be any like terms in the sum EmEM(g) m., and 
this clearly implies the second claim. 0 

Lemma 10.50 (i) (/*). = I for all I E K[X]. 

(ii) Let 9 E K[X , Z] be r'-homogeneous of degree d, and let d' = reg.). 
Then d' ~ d, and 9 = Zd-d' (g.) •. 



10.3. Homogenization 479 

Proof ~i) Let m = at E M(f), and let d = r(f) and d' = r(t). Then 
(atZd- d )* = at = m. The claim is now easy to prove using the bijections 
of monomials of Lemmas 10.47 and 10.49. 

(ii) The inequality d' :5 d is immediate from the definition of g*. Now let 
m E M(g), say m = asZ' with s E T(X). Then the monomial in M(g .. ) 
corresponding to m is as. Since r(s) = d - i, the monomial in M((g .. )") 
corresponding to m .. is asZd'-(d-i). We see that Zd-d' (g .. )* = g. 0 

Whenever F ~ K[Xl and G ~ K[X ,Zl, we set 

F* = {r If E F} and G .. = {g* I g E G}. 

It is clear that f* and g.. can be computed from f E K[ X] and 9 E 
K[ X, Z] as soon as we can compute in K[ X] at all. 

Exercise 10.51 Let G ~ K[ X ,Z]. Show that Id( G .. ) = (Id( G)) .. when 
the former ideal is taken in K[ X]. (All you need to use is the fact that 
dehomogenization is a homomorphism.) 

Lemma 10.52 Let F = {fI, ... ,fm} ~ K[X] and f = E':::lqdi with 
qi E K[ X] for 1 :5 i :5 m. Set 

d = max{r(qdi) 11:5 i:5 m}, 

and d' = r(f). Then Zd-d' f* E Id(F*). 

Proof By Lemma 10.47, we have 

So if we set 
m m 

1 = ~)qili)* = Eq; It 
i=l i=l 

(Exercise 10.48), then 1 E Id(F*), and 1 is r'-homogeneous with d" = 
r' (j) :5 d. Moreover, 

(~(qdt)") .. 
m 

I .. = = E(q;)*(f;)* 
t=l 

m 

= Eqdi = f. 
i=l 

Using Lemma 10.50 (ii), we may now conclude that 

1 = Zd"-d' (1 .. )* = Zd"-d' f*. 

Since d" :5 d, we finally obtain 

Zd-d'r = Zd-d" Zd"-d' r = Zd-d" 1 E Id(F"). 0 
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Lemma 10.53 Let F be a finite subset of K[X]. Then (Id(F*»* = Id(F). 

Proof Let f E Id(F). Then by the previous lemma, Zk r E Id(F*) for 
some kEN, and so 

f = (1*)* = (Zk !*)* E (Id(F*})*. 

Conversely, if 9 E Id(F*), say 9 = L~=1 qdt with fi E F and qi E 
K[X ,Z], then 

g. = (t qdt ) * = 't..(qi)*Ut)* 

k 

= ~)qi)*fi E Id(F). 0 
i=1 

Lemma 10.54 Let F be a finite subset of K[ X], and let G ~ K[ X, Z] 
be a basis of Id(F*). Then Id(G.) = Id(F). 

Proof We have Id(G*) = (Id(G»* by Exercise 10.51. Moreover, by as
sumption, Id(G) = Id(F*), and finally (Id(F*»* = Id(F) by the previous 
lemma. Combining these equalities, we see that 

Id(G.) = (Id(G})* = (Id(F*». = Id(F). 0 

Recall from the previous section that a d-Grabner basis is a finite set 
G of homogeneous polynomials such that spol(g1,g2) * 0 whenever g1, 
g2 E G and r(spol(g1,g2» ~ d (all this for a fixed term order, a grading 
r and dEN). A d-Grobner basis is good enough to reduce to zero every 
f E Id( G) with ru) ~ d. Furthermore, if F is any finite set of homogeneous 
polynomials, then a d-Grobner basis of Id(F) can be computed by means 
of the algorithm [0, d]-GROBNER. 

Theorem 10.55 Let F be a finite subset of K[X], let dEN, and suppose 
G ~ K[X,Z] is a d-Grobner basis of Id(F·) w.r.t. r' and some term 
order on T(X ,Z). Furthermore, let p E K[X] with reP) = d'. Then the 
following are equivalent: 

(i) There exist q, E K[X] such that p = L,eF qJf and 

max{ r(qJf) I.J E F} ~ d. 

(:"J Zd-d'. • 0 n P--o+' 

Proof (i)===?(ii): If (i) holds, then Zd-d'p. E Id(F·) by Lemma 10.52. The 
claim is now obvious from the fact that 

r'(zd-d'p.) = r'(Zd-d') + r'(p*) = (d - d') + reP) = d. 
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(ii)=> (i): From (ii), it follows that Zd-d' p* E Id(G) = Id(F*). By 
Lemma 10.43, we can write 

k 

Zd-d' p* = L mdt 
i=l 

with Ii E F, monomials mi E K[X ,Z], and 

It follows that 

Furthermore, 

r'(mdt) ::; r'(Zd-d'p*) = d. 

k k 

L(mi)*Ut)* L(mi)di. 
i=l i=l 

r(mi)*Ii) = r(mi)*) + rUi) 

< r'(mi) + r'ut) 
r' (mdt> ::; d. 

The desired representation is now easily obtained by combining summands 
in the last sum above. 0 

Note that both the d-Grobner basis computation and the reduction of 
Zd-d' p* in the theorem take place in K[ X, Z]. We are not yet saying that 
(ii) above has anything to do with p * OJ if and how this is the case will be 
discussed below. Let us first look at potential practical uses of the theorem. 
Suppose we wish to test p E K[X] for membership in Id(F). Assume 
further that we have the a priori knowledge that if p E Id(F) at all, then 
it must have a representation p = L, fEF qf I where the r -degree of each 
summand does not exceed a certain bound dEN. We can then compute a 
d-Grobner basis of F* and the normal form h of Zd-d'p* modulo G, where 
d' = r(p). If h = 0, then the direction (ii)=>(i) of the theorem tells us 
immediately that p E Id(F). If h =I 0, then the other direction says that 
p cannot be written as a sum of multiples of elements of F with r-degree 
bound d, and thus p ¢. Id(F) by our a priori information. It is fairly obvious 
that there will not be an easy way to obtain such information in general 
if we do not even know whether I E Id(F) at all. There are, however, 
results for the special case p = 1. We will just state one here because not 
surprisingly, proofs are very difficult in the area of such bounds. (Cf. the 
Notes on p. 508.) 
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Theorem 10.56 (EFFECTIVE NULLSTELLENSATZ) Let K be a field, and 
let F be a finite subset 01 K[Xt, ... ,Xn]. II 1 E Id(F), then 1 = L..fEFq" 
with qf E K[X1, ... ,Xn] such that 

{ 
Dn il n > 1 and D ~ 3 

d = max{ deg(q") I IE F} ~ 3n il n> 1 and D = 2 
2D -1 il n = 1, 

where D = max{ deg(f) I I E F }. 

In order to decide whether 1 E Id(F), i.e., whether Id(F) is proper, we 
may thus compute a d-Grobner basis G of F* w.r.t. the grading by total 
degree and any term order on T(X , Z), with dEN as described above. 
We will then have 1 E Id(F) iff Zd + o. A sufficient condition for this to 
happen is that Zd' E G n K[Z] for some d' ~ dj If the term order is such 
that Z < t for all 1 -:f:. t E T(X), then it is easy to see that this is even an 
equivalent condition. 

It is clear that the procedure described above is at least potentially an 
improvement over a full Grobner basis computation in K[ X]: we do not 
have to do anything above degree d. The following discussion provides 
more insight into the connection between the computations in K[ X , Z] 
of Theorem 10.55 and an ordinary computation of a Grobner basis G' of 
Id(F) and subsequent reduction of I modulo G'. r will once again be an 
arbitrary grading on T(X). 

Let ~ be a term order on T(X). Then we extend ~ to a term order ~' 
on T(X, Z) by setting 

81Zi ~' 82Zi iff 81 < 82, or 

s 1 = 82 and i ~ j 

for 81, 82 E T(X). In other words, we let Z < t for all 1 -:f:. t E T(X). For 
tt, t2 E T(X), we then have t1 ~ t2 iff t1 ~' t2, so there will be no harm in 
using ~ also for ~'. 

The next lemma collects some facts concerning head terms, reduction, 
S-polynomials, and Grobner bases w.r.t. homogenization and dehomoge
nization. 

Lemma 10.57 (i) Let tb t2 E T(X ,Z) with r'(tl) = r'(t2). Then 
tl < h iff (t1)* < (t2) ... 

(ii) Let 9 E K[X ,Z] be r'-homogeneous. Then HT(g .. ) = (HT(g» ... 

(iii) Let I E K[X]. Then HT(f") = (HT(f»" . Zd-d' where d = r(f) 
and d' = r(HT(f». 

(iv) Let I, g, h E K[ X , Z] be r'-homogeneous such that I 7 h ttl in 
K[X ,Z]. Then I .. g;+ h .. [t .. ] in K[X]. 
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(v) Let G be a finite subset of K[X, Z] consisting of r'-homogeneous 
polynomials, and let f, h E K[ X, Z] with f + h. Then f* -IT; h*. 

(vi) Let g, hE K[X ,Z] be r'-homogeneous. Then 

(spol(g, h)t = spol(g., h.). 

(vii) Let F be a finite subset of K[X], and let G ~ K[X, Z] be a Grabner 
basis of Id(F*) consisting of r'-homogeneous polynomials. Then G. 
is a Grabner basis of Id(F). 

Proof (i) Let t1 = SlZi and t2 = S2Zj with Sl, S2 E T(X). Then (td* = Sl 
and (t2)* = S2, and so (td* = (t2)* implies i = j by the hypothesis on the 
r'-degrees. Using these facts, the equivalence is now easily proved from the 
definition of the term order on T(X ,Z). 

(ii) This is an immediate consequence of (i). 
(iii) Let HT(f) = t. Then s < t for all s E T(f) with s =F t. It follows 

that SZi < tZj for all i, j E N and s E T(f) with s =F t, and thus 
tZd - d' = HT(f·). 

(iv) Let h = f - asg with t = s . HT(g) E T(f). Then 

t* E T(f*), S*' HT(g*) = t., and h. = f. - as*g*, 

and so f .. g:;+ h .. [t .. ]. 
(v) This is an immediate consequence of (iv). 
(vi) Let HM(g) = as and HM(h) = bt with a, b E K and s, t E T(X ,Z), 

and let 
t' = lcm(s, t) = us = vt. 

Then spol(g, h) = bug - avh, HM(g*) = as*, HM(h.) = bt*, and 

lcm(s*, t*) = (t'). = u*s* = v*t ... 

It follows that 

(spol(g, h)t = bu .. g .. - av*h .. = spol(g*, h .. ). 

(vii) Lemma 10.54 tells us that G. is a basis of Id(F), and so it remains 
to show that G* is a Grabner basis. Let g, h E G. Then spol(g, h) + 0 
because G is a Grabner basis, and so we may conclude from (v) and (vi) 
above that 

spol(g .. ,h*) = (spol(g,h»).. -IT; O. 0 

As an immediate consequence of (v) above, we see that with the present 
setup of term orders on T(X) and T(X ,Z), condition (ii) of Theorem to.55 
implies p -IT; O. The converse cannot be true for rather trivial reasons. Let 
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K[X] = Q[Xb X 2], r the grading by total degree, F = {Xl + 1,Xd, and 
d = 1. Here, F* = {Xl + z, Xd, 

G = [0, l]-GROBNER(F*) = {Xl + Z,XI'Z}, 

and G* = {Xl + 1, Xb I}. Then X 2 -i: 0 and d' = deg(X2 ) = 1, so now if 
(ii) of Theorem 10.55 were true, we would have to have 

which is obviously false. 

Exercise 10.58 Show that in the situation of Theorem 10.55 and with the 
present setup of term orders, p * 0 still implies that p E Id(F). Conclude 
that for the "ideal membership test with a priori degree bound" that is described 
following Theorem 10.55, we may test the condition p * 0 instead of (ii) of 
Theorem 10.55. 

Finally, let us compare the computation [0, dJ-GROBNER(F*) that The
orem 10.55 calls for with the ordinary computation GROBNER(F). If d 
is greater than any degree occurring in the computation anyway, then the 
homogenized version is potentially worse than the regular one. To see this, 
suppose two polynomials 9 and h show up in the homogenized computation 
with HT(g) = SZi and HT(h) = tZj , sit, and i > j. Then the ordinary 
algorithm can top-reduce h modulo g, while the homogenized one can not. 
As d becomes smaller, the homogenized version will cut the top off the 
ordinary computation and therefore tend to run faster. But there is more 
to it than that. Suppose a critical pair {g, h} is up for treatment such that 
HT(g) = SZi, HT(h) = tZj , i > j, and 

r(lcm(s, t») < d < i + r(lcm(s, t») = r'(lcm(sZi, tZj ». 
Then the ordinary algorithm would treat the pair even if it were some
how aware of the degree bound d. The homogenized version, however, 
knows that the head terms that spol(g, h) might produce-although of low 
degree-will not be needed for the reduction to zero of polynomials p as 
in (i) of Theorem 10.55. Using the truncated homogenized version of the 
algorithm thus amounts not only to implementing a degree bound, but also 
a very intelligent criterion for the detection of superfluous S-polynomials. 

The concept of homogenization is also instrumental in a certain strategy 
for the selection of critical pairs in ordinary, non-homogenized Buchberger 
algorithms. Here, one performs all reductions according to the ordinary 
rules. At the same time, one carries along a "phantom degree" which in
dicates what the total degree of an input polynomial or a normal form of 
an S-polynomial would have been had the input been homogenized first. 
One then selects critical pairs in such a way that lower phantom degrees 
are preferred and ties are broken by the normal strategy. Under the nor
mal strategy, Grabner basis computations w.r.t. lexicographical orders tend 
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to be much slower than those w.r.t. total degree orders. Under the new 
strategy, especially when used in connection with GROBNERNEW2, this 
phenomenon tends to disappear. 

10.4 Grabner Bases for Polynomial Modules 

Throughout this section, K will be a field and K[X] = K[Xl'"'' Xn]. 
We will be using some of the definitions and results of Section 3.3. The 
m-fold Cartesian product (K[ x])m, which consists of all m-tuples of el
ements of K[ X], forms a K[ X ]-module in a natural way according to 
Example 3.28 (iv): here, addition is performed componentwise, and so is 
scalar multiplication by an element of K[ X]. In this section, we will denote 
this K[X]-module by M:;'n, i.e., 

M;;"n = K[Xb"" Xn] X ..• X K[Xl , ... , Xn]. 
, # 

" m times 

It is clear that for computable K, the module M:;'n is computable in the 
sense that we can effectively perform addition and scalar multiplication. 
Our goal in this section is to provide the obvious analogue of Grabner basis 
theory for modules of this type in case K is computable: we are looking for 
an algorithm, which, given an element f of M:;'n and a finite generating 
system of a submodule N of M:;'n, decides whether or not fEN. As a 
matter of fact, we will, just as with Grabner bases for polynomial ideals, 
be able to compute a unique normal form of f. In particular, this will 
allow us to decide whether or not f + N = 9 + N for given f, 9 E N by 
testing the condition f - 9 EN. This is the solution to the equivalence 
problem for submodules of M:;'n' In view of the fact that the operations in 
the factor module M:;'nl N are performed on representatives, this allows us 
to compute in such factor modules. 

Before we show how this goal can be achieved, let us recall from Sec
tion 3.3 that M;;"n is also called the free K[ X ]-module of rank mover 
K[ X], and that a basis-in the sense of Section 3.3-of M:;'n is given by 
{el,'" ,em}, where for 1 ~ j ~ m, we have set ej = (ejl, ... ,ejn) with 

{ I if i = j 
eji = 0 otherwise. 

Moreover, we know from Proposition 3.32 (iii) that M:;'n is noetherian, i.e., 
every submodule of M:;'n has a finite generating system. A second proof of 
this fact will be the subject of an exercise at the very end of this section. 
In view of Proposition 3.31, our solution to the equivalence problem for 
submodules of M:;'n will allow us to compute not only in factor modules 
of M!n, but in every finitely generated K[X]-module provided the kernel 
of the homomorphism of Proposition 3.31 is known to us. 
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Our proposed Grabner basis theory for polynomial modules is based on 
a combination of classical Grabner basis theory with the relativization of 
Section 10.2. Let Zl, ... , Zm be new indeterminates, and let us denote by 
K[ X, Z:) the polynomial ring over K in the old and new varaibles, i.e., 

K[X ,Z:) = K[Xl, ... ,Xn,Zl, ... ,Zm). 

Let f be the unique grading on K[ X , Z) that satisfies 

Let now Hl(K[X ,Z)) be the set of all r-homogeneous polynomials in 
K[X ,Z:J of f-degree 1, enlarged by 0, i.e., 

The proof of the following lemma is now straightforward from the defini
tions. 

Lemma 10.59 With the notation introduced above, the following hold: 

(i) H1(K[X ,Z:)) is a K[X)-module if we take for addition and scalar 
multiplication the restrictions of the respective operations in the ring 
K[X,Z). 

(ii) The map 

cp: -> Hl(K[X,Z)) 
1---4 h1Z1 + ... + hmZm 

is an isomorphism of K[ X )-modules. 0 

If K is computable, then it is clear that the isomorphism cp is "con
structive": we can effectively translate any given h E M!n into cp( h) E 
HI(K[X ,Z:)) and any given f E HI(K[X, Z)) into cp-I(J) E M;:"n' This 
together with the fact that cp is an isomorphism means that it suffices to 
solve the Grabner basis problem outlined at the beginning of the section 
for the K[X)-module HI(K[X ,Z:)). This problem will be reduced to the 
computation of I-Grabner bases (as defined in Section 10.2) in K[ X , Z) 
by means of the next lemma. 

Recall that for a subset F of a module M, lin(F) denotes the linear span 
of Fin M, i.e., the submodule of M that is generated by F. 

Lemma 10.60 Let F ~ HI(K[X ,Z)). Then 

lin (F) = Id(F) n Hl(K[X , Z)), 

where the linear span is taken in the K[ X J-module HI (K[ X, Z)) and the 
ideal is taken in the ring K[X, Z]. 
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Proof If g E lin(F), then we can write 

g= 'Eqtf 
JEF 

with qJ E K[X) S;;; K[X '"~) for all I E F, and we see that g E Id(F). 
Conversely, supposeg E Id(F)nHl(K[X, Z)). Then there exist monomials 
ml, ... , ms in K[X ,Z) such that 

s 

g= 'Emdi 
i=l 

with Ii E F, not necessarily pairwise different, for 1 :::; i :::; s. Since g 
is homogeneous of r-degree 1, we may, by Lemma 10.43, assume that 
r(mdi) = 1 for 1 :::; i :::; s. Since r(f) = 1 for all I E F, it follows 
that r(mi) = 0 and thus mi E K[X) for 1 :::; i :::; s, which shows that 
g E lin(F). 0 

It is now clear how the submodule membership problem for the K[ X )
module Hl (K[ X, Z)) can be solved in principle, provided that K is com
putable. Given a finite subset F of Hl(K[X ,Z)), let G be a Grobner basis 
ofld(F) in K[X ,Z)i an element I of H1(K[X ,Z)) is then in the linear 
span lin(F) of F in the K[X)-module H1(K[X, Z)) if and only if 1--&-+ O. 
In view of the results of Section 10.2, however, we can do a lot better than 
that. Let F be a finite subset of H1(K[X, Z)). Recall that a I-Grabner 
basis of Id(F) in K[ X, Z:) is obtained by running on F a Buchberger algo
rithm that considers only those S-polynomials whose r-degree is less than 
or equal to 1. We know that such a I-Grabner basis is good enough to 
test for membership in Id(F) any polynomial I E K[ X, Z )-not necessar
ily homogeneous-whose r -degree is less than or equal to 1. In particular, 
this test will work for the elements of H1(K[X ,Z)) (which happen to be 
homogeneous). We have proved the following theorem. 

Theorem 10.61 Let F be a finite subset 01 Hl(K[X ,Z)), and let G be 
a I-Grobner basis w.r.t. r (and any term order) 01 Id(F) in K[X,Z). 
Then an element 01 Hl(K[X ,Z)) is in the linear span 01 F, taken in the 
K[X)-module Hl(K[X ,Z)), il and only il 1--&-+ 0.0 

The Grabner basis construction of the theorem starts with a set of homo
geneous polynomials whose r -degrees equal 1. One of the results of Section 
10.2 was that then the output of the algorithm [O,I)-GROBNER (which 
is GROBNER truncated at r-degree 1) will again consist entirely of ho
mogeneous polynomials of r -degree 1. Moreover, it is easy to see that the 
monomials employed in the forming of S-polynomials as well as those oc
curring in reduction steps must all have r-degree 0, i.e., they must be in 
K[X). This means that the computations that the theorem above calls for 
all take place in the K[X)-module Hl(K[X ,Z)). The whole process may 
thus be viewed as a Grabner basis computation in a polynomial module. 
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In view of these observations, it is not hard to see that instead of coding 
the elements of the original K[X J-module M:!tn into r-homogeneous ele
ments of K[ X ,Z J, one may also develop a formalism to imitate Grabner 
basis theory directly in M:!tn' To this end, one observes that every element 
f of M:!tn can be written in the form 

s 

f = LCjtj, 
i=l 

where the Cj are in K and each tj is a positional term of the form 

(0, ... ,0, t, 0, ... ,0) (t E T(X)). 

Noting that in our setup, such an element of M:!tn corresponds to the term 
t· Zi, where i is the position of t in t, it is clear how one can now define 
positional term orders, induced order on elements of M:!tn, reduction of 
elements of M:!tn, etc., in such a way that one obtains the same algorithmic 
solution to the submodule membership problem as in the theorem above. 
For actual implementations, this positional-term viewpoint is perhaps more 
appropriate, but it is important to realize that mathematically speaking, 
the theory is nothing but a special case of homogeneous Grabner basis 
theory in polynomial rings. 

Finally, we mention that submodule membership is of course not the 
only computational problem that can be solved by means of the Grabner 
basis theory for modules that we have explained in this section. A large 
number of applications of Grabner bases in ideal theory have analogues 
for polynomial modules. In order to obtain these results, one may proceed 
as follows. First, translate the given module problem into a problem in 
ideal theory by means of Lemma 10.59. Then look at the solution of that 
problem by means of Grabner bases and see if and how it continues to 
work when relativized to homogeneous input with r-degree 1. The details 
of this process are necessarily unpleasant because it involves ruminating 
possibly lengthy proofs; two examples, namely, the extended Grabner basis 
algorithm and the computation of syzygies, will be commented on in the 
next section. 

Exercise 10.62 Use the results of this section to give an alternate proof of the 
fact that the K[ X ]-module M!n is noetherian. 

10.5 Systems of Linear Equations 

Recall that by a ring, we always mean a commutative ring with unity. Let R 
be a ring. We will write R[ Y J for R[Yl, ... , YnJ. Suppose h, ... , f m E R[ Y J 
are such that for 1 ~ j ~ m, the polynomial /j is either the zero polynomial 
or has total degree less than or equal to 1, i.e., 
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if Ii is not the zero polynomial. Then 

Ii = 0 (1 '5, j '5, m) 

is called a system of linear equations over the ring R. More explicitly, 
a system of linear equations can be written in the form 

allYl + al2Y2 + ... + alnYn + bl 0 
a2lYl + a22Y2 + ... + a2nY n + b2 = 0 

with aji, bj E R. A solution of such a system is a common zero of the 
fJ in Rn. The problem of solving the system is thus the problem of deter
mining all common zeroes of the fJ in Rn. In this context, the variables 
Yl , ... , Yn are referred to as unknowns. The system is called homoge
neous if bj = 0 for 1 '5, j '5, m, inhomogeneous otherwise. In the latter 
case, the system obtained by replacing each bj with 0 is referred to as the 
associated homogeneous system. 

A solution of a system of linear equations over R is by definition an 
element of Rn. Viewing Rn as an R-module in the sense of Example 3.28 
(iv), we obtain the following results on the set of solutions of the system. 
The proofs are straightforward from the definitions. 

Lemma 10.63 Let 8 ~ Rn be the set of all solutions of a given system 
of linear equations over a ring R, and let 8 0 be the set of solutions of the 
associated homogeneous system. Then the following hold: 

(i) 80 is a submodule of Rn. 

(ii) If 8 f. 0, then 8 = {c + did E 8 0 } for every c E 8. 

(iii) If 8 f. 0, then 181 = 1 iff 8 0 = {a}. 0 

With the notation of the lemma, the problem of solving a system of 
linear equations can now be made more precise. We must first decide if 
8 is non-empty, and if so, we must produce an element of 8 and a set of 
generators for the R-module 8 0 , 

The main purpose of this section is to show how Grabner bases can be 
employed to solve this problem when R is a polynomial ring over a field. 
Before doing so, we will discuss the "classical" case, where R is a field. We 
mention that the theory of Grabner bases is, in a sense, inappropriate here: 
the theory of systems of linear equations over a field really belongs with 
the theory of finite-dimensional vector spaces, and actual implementations 
should be specifically tailored to the problem. However, it is interesting 
to see how Grabner basis theory also provides the complete algorithmic 
solution. As a matter of fact, our results on polynomial reduction alone 
will suffice here. 
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In view of (iii) of the previous lemma, the set of all solutions of a ho
mogeneous system of linear equations over a field is a subspace of the 
K-vector space Knj we will refer to it as the solution space of the system. 
The following lemma basically says that the algorithm REDUCTION of 
Proposition 5.30, when applied to a set of polynomials of total degree at 
most 1, becomes the classical Gaussian elimination algorithm. 

Lemma 10.64 Let K be a computable field, and suppose 

F = {fI, ... ,fm} ~ K[Y) 

is a set of non-zero polynomials of total degree less than or equal to 1. 
Let ::; be a term order on T(Y) that satisfies Yn < ... < Y1. Then with 
G = REDUCTION(F), the following hold: 

(i) F and G have the same zeroes in Kn. In particular, if 1 E G, then F 
does not have a zero in Kn. 

(ii) Each 9 E G has total degree less than or equal to 1. 

(iii) If 1 rt. G, then G is of the form {gl,"" gr} with r ::; n, where for 
1 ::; j ::; r, we have HM(gj) = Yi for some 1 ::; i ::; n. Moreover, 
HM(gj) =I HM(gk) for 1 ::; j < k ::; r. 

(iv) If 1 rt. G, then a zero of Fin K n can be read off from G as follows. 
For 1 ::; j ::; r, let gj = aj1YI + ... + ajnYn + bj . Let 

N = {il, ... ,is } ~ {1, ... ,n} 

be the set of those indices i for which Yi rt. HT( G). Then the element 
C = (Cb'" ,Cn) of K n defined by 

{o if iEN 
Ci = -bj where Yi = HT(gj) otherwise 

is a zero of F. 

(v) If 1 rt. G, then with the notation of (iv) above, a basis for the solution 
space of the homogeneous system associated with the system 

Ii =0 (1::; j::; m) 

of linear equations is given by {VI, ... , vs}, where Vk = (Vkb ... , Vkn) 
with 

{ 
0 if i E N and i =I ik 

Vki = 1 if i = ik 
-ajik where Yi = HT(gj) otherwise. 
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Before we prove the lemma, we show how the implied algorithm may be 
visualized in case 1 ¢ G. Suppose we order the monomials of each 9 E G in 
descending order, then order the elements of G by descending head terms, 
and finally display G by writing the coefficients of each 9 E G in a row. We 
thus obtain an array of width n + 1 and height r which would typically be 
of the form 

1 * * * · .. * 
1 * * * · .. * 

1 * · .. * 
1 * · .. * 

1 · .. * 

where an * stands for a possibly non-zero entry, blank space stands for 
zeroes, and we have separated the constant coefficients from the linear 
ones by a vertical line. Next, we insert n - r rows each of which has one 
entry 1 and all other entries 0 in such a way that the entries on the diagonal 
of the square to the left of the vertical line all equal 1. Moreover, we switch 
the sign on all entries except those on the diagonal. This yields the array 

1 -* -* -* 
1 -* -* -* 

1 
1 

1 -* 
1 -* 

1 
1 

Items (iv) and (v) of the lemma now tell us that the rightmost column is 
a special solution of the system 

(1 ~ i ~ r), 

and that a basis of the solution space of the associated homogeneous system 
is given by the set of all those column vectors that share a diagonal element 
with one of the newly added rows. 

We also mention that in case 1 E G, i.e., when there is no solution, the 
application of REDUCTION destroys all information because it outputs 
G = {1}. If one is still interested in the solution space of the associated 
homogeneous system in this case, then this collapsing can be prevented by 
homogenizing the input first by means of an additional variable which must 
be placed less than all others in the term order. 
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Proof of Lemma 10.64 (i) This is immediate from the fact that F and 
G generate the same ideal in K[ Y ]. 

(ii) If f, p, 9 E K[Y] are such that the total degrees of f and p both 
equal 1 and f 7 g, say 9 = f - mp with a monomial m, then it is easy to 
see that m must be a constant. It follows easily that REDUCTION applied 
to a set of polynomials of total degree at most one will produce an output 
with the same property. 

(iii) Suppose 1 ~ G. Then HT(G) ~ {YI , ... , Yn } by (ii) above. Since G 
is reduced, no two elements of G can have the same variable as their head 
term, and this observation easily implies the claim. 

(iv) By (i) above, it suffices to show that g(c) = 0 for all 9 E G. Let 
1 ~ j ~ r, and suppose HM(gj) = Vi. Then ajl = 1, and since G is 
reduced, we have aji = 0 whenever i f= l and i ~ N. It follows easily that 

n 

g(c) = LajiCi + bj = 1· (-bj ) + bj = O. 
i=l 

(v) Let So be the solution space in question, and let So be the solution 
space of the homogeneous system 

(1 ~ j ~ r) 

associated with {gj = 0 11 ~ j ~ r}. We claim that So = So. With cas 
in (iv), we know from the previous lemma that the set of all zeroes of F 
in K n equals c + So, and the set of all zeroes of Gin Kn equals c + So. 
From the fact that F and G have the same zeroes in Kn, one now easily 
concludes that indeed So = So. We must thus prove that {VI, ... , VB} is a 
basis of the solution space of 

(1 ~ j ~ r), 

where we have set hj = ajlYI + ... + ajnYn' Note that HT(hj ) = HT(gj). 
We begin by showing that VI. ... , VB are indeed solutions of the homo-

geneous system (*). To this end, let 1 ~ j ~ rand 1 ~ k ~ s, and suppose 
HT(hj ) = Vi. Recall that here, ajl = 1, and aji = 0 whenever i f= l and 
i ~ N. Discussing the indices i between 1 and n according to whether they 
are in N or not, one easily proves that 

n 

hj(Vk) = L ajiVki = 1 . (-ajik) + ajik ·1 = 0, 
i=l 

where the subindexing of i refers to N = {iI, ... , is} as in the definition of 
Vk. To see that {VI, ... , Vs } are linearly independent, suppose 



10.5. Systems of Linear Equations 493 

This equation holds componentwise, and the ik-th component of the equa
tion reads Ak = 0 for 1 ~ k ~ T. 

It remains to prove that {V1, ... , VB} is a generating system for the so
lution space of (*). Suppose d = (d1, ••• , dn ) E K n is a solution of (*). We 
claim that 

8 

d = LdikVk. (**) 
k=l 

We first prove that this equation holds in the ith component for each i E N. 
But if i E N, then i = ik for some 1 ~ k ~ 8, and the ith component reads 
dik = dik ·1. To see that the equation (**) actually holds true in its entirety, 
we may assume w.l.o.g. that the indexing of the elements gl, ... , gr of G 
is such that the head terms are in descending order. Then looking at the 
equations of the system (*) from bottom up, one easily sees that for any 
solution e of (*), those components ei of e that satisfy i E N determine e 
completely: for 1 ¢ N, we must have 

n 

el = - L ajiei, 

i=l+l 

where j is such that Yi = HT(gj}. But the right-hand side of (**) is an ele
ment of the solution space of (*) which agrees with d on the ith component 
for all i EN, and so the two must be equal. 0 

As we have mentioned before in Section 5.5, the output of REDUCTION 
is already a Grabner basis here because the head terms are pairwise disjoint; 
however, this fact is not really relevant in this context. 

Exercise 10.65 Write an algorithm for the computation of the set of solutions 
of a system of linear equations over a computable field based on the last two 
lemmas. 

We will now discuss a type of system of linear equations where Grabner 
basis techniques are truly appropriate. It is the case where R is a polynomial 
ring over a field, say R = K[Xb ... ,Xr ], which, as usual, will be denoted 
by K[ X]. Here, we will move constant coefficients to the right-hand side, 
so that we are trying to solve a system of the form 

anY1 + a12Y2 + ... + a1nYn = b1 

a21 Y1 + a22Y2 + ... + a2nYn = b2 
(ajilbj E K[X]). 

The case m = 1 of one linear equation has been discussed already in 
Section 6.1. Ifm > 1, then we consider the K[X]-module (K[x])m, which 
we will once again denote by M!.r. For 1 ~ i ~ n, we define an element aj 
of M!.r by setting 
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and we let b = (bl , ... , bm ). Solving the system oflinear equations above 
then amounts to finding values in K[ X] for the unknowns YI, ... , Yn such 
that the equation 

holds in the module M!r. Such values obviously exist if and only if b lies 
in the linear span lin(al, ... , an) of ab ... , an in the module M!r. Let us 
recall from the previous section how this condition can be decided. We let 
Zl, ... , Zm be new indeterminates and consider the polynomial ring 

K[X ,Z] = K[XI, ... ,Xr,ZI, ... ,Zm]. 

We then let r be the grading on K[ X , Z] that assigns weight 0 to Xl, 
... , Xr and weight 1 to Zl, ... , Zm. We denote by HI(K[X ,Z]) the 
subset of K[ X, Z] consisting of 0 and all homogeneous polynomials of 
r-degree 1, i.e., 

Then HI(K[X ,Z]) is a K[X]-module under the obvious operations, and 
it is naturally isomorphic to M!r under the map 

cp: M!r -+ HI(K[X ,Z]) 
(hI, ... ,hm) 1------+ hlZI + ... + hmZm. 

In order to decide the condition 

cp(b) E lin ( cp(al), ... ,cp(an»), 
we must compute a I-Grabner basis G ofId(cp(al), ... , cp(an}) in K[X ,Z) 
and test whether cp(b) + o. A positive answer is equivalent to the solv
ability of (*). If this is tb.e case, then values for Yi, ... , Yn can be found as 
follows. For the computation of the I-Grabner basis G = {gl, ... ,gs}, we 
may employ a truncated version of the extended Grabner basis algorithm 
so that for 1 $ j $ s, we obtain representations 

n 

gj = L Cji . cp(ai) (Cji E K[X l.~]). 
i=l 

Moreover, when reducing cp(b) to 0 modulo G, we may let the algorithm 
REDPOL provide ql, ... , qs E K[X ,Z] with 

<pCb) = qlgl + ... + qsgs, 

and it follows easily that 

8 8 

LqjCjl· <p(ad + ... + LqjCjn· <p(an) = <pCb). 
j=l j=l 
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We have already mentioned in the previous section that all monomi
als that occur in the formation of S-polynomials and in reduction steps 
when computing the I-Grabner basis in the present situation are actually 
in K[ X], and the same holds true for the monomials that occur in the 
reduction steps of rp( b) + o. This means that for 1 ::; i ::; n, we have 

8 

LqjCji E K[X], 
j=1 

and this together with the fact that rp is an isomorphism of K[ X ]-modules 
shows that 

8 

Yi = LqjCji (1::; i ::; n) 
j=1 

solves the equation (*). 
It remains to discuss the solution of the equation 

Yl . al + ... + Yn . an = 0, 

which of course corresponds to the homogeneous system associated to our 
original system of linear equations over K[ X]. Once again, we use the fact 
that rp is an isomorphism of modules and investigate the equation 

instead. The rp( ai) are elements of K[ X ,Z]. The results of Section 6.1 tell 
us how to find the set of all solutions of (**) in K[ X ,Z]: this is precisely 
the module of syzygies of 

in K[X, Z]. What we are looking for is the intersection ofthis module with 
HI (K[ X, Z D. It is now a matter of retracing the proofs of Proposition 6.1 
and Theorem 6.4 to see that the following holds. The set of solutions in 
K[ X] of (**) is obtained by essentially the same procedure that lead to 
Theorem 6.4. Instead of a full Grabner basis computation, however, one 
uses the truncated one that computes the I-Grabner basis w.r.t. r. The 
elements of A of Theorem 6.4 will then come out to be in K[X]. AB for 
B* of the same theorem, one must include in the set B of Proposition 
6.I-which B* is a transformation of -only those rij that correspond to 
S-polynomials of r-degree 1. 

Exercise 10.66 Write an algorithm for the solution of systems of linear equa
tions over a polynomial ring K[ X J, where K is a computable field. 
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10.6 Standard Bases and the Tangent Cone 

Throughout this section, K will once again be a field, and we will write 
K[X] for K[Xl, ... ,Xn ]. The characteristic property of a Grabner basis 
Gin K[ X] w.r.t. some term order is that the head term of each f E Id( G) 
is divided by the head term of some 9 E G. In this section, we show how 
for a certain type of term order, one may compute ideal bases in K[ X] 
with a dual property. 

Definition 10.67 Let 5 be a term order on T(X). For 0 =I f E K[X], 
we call the s-least element of f the lowest term of f and denote it by 
LT~(f). A standard basis (w.r.t. 5) is a finite subset G of K[X] such 
that for each 0 =I f E Id(G), there exists 9 E G with LT ~(g) I LT ~(f). If I 
is an ideal of K[ X ], then a finite subset G of I is called a standard basis 
(w.r.t. 5) of I if it is a standard basis w.r.t. 5, and 1= Id(G). 

Throughout, we let r be a grading of K[ X] that satisfies r(Xi ) > 0 for 
lSi 5 n. Moreover,s will be a r-compatible term order on T(X). This is 
the type of term order for which we will obtain existence and construction 
of standard bases. The results on homogenization of Section 10.3 will be 
instrumental. We let Z be a new indeterminate, and as usual, we denote 
by T(X ,Z) the set of all terms in the variables Xl, ... , Xn. Z and write 

We extend r to a grading r' of K[ X ,Z] by setting r' (Z) = 1. For u, 
v E T(X ,Z), say u = s· Zk and v = t . zm with s, t E T(X), we set 

s . Zk 5' t . zm iff k < m, or 

k = m and res) < ret), or 

k = m, res) = ret), and t 5 s. 

It is a straightforward exercise to show that 5' is a term order on T(X ,Z). 
(The condition r(Xi ) > 0 for lSi 5 n is needed to ensure that 1 5' t for 
all t E T(X, Z).) The relevance of 5' for the problem of finding standard 
bases stems from the fact that it reverses 5 in the sense of the following 
lemma. 

Lemma 10.68 Let u, v E T(X , Z), say u = s . Zk and v = t· zm with s, 
t E T(X), and assume that r'(u) = r'(v). Then u 5' v iff t 5 s. 

Proof For the direction "=:::}," assume that s . Zk 5' t . zm. If k < m, 
then res) > ret) and so t 5 s since 5 is r-compatible. If k = m, then 
necessarily res) = ret) and so t 5 s by the definition of 5'. For the reverse 
implication, suppose t 5 s. If ret) < res), then we must have k < m and 
thus s· Zk 5' t· zm. If ret) = res), then also k = m, and t 5 s implies 
s·Zks't·Zm.D 
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The following lemma and theorem use the notation r for the homoge
nization w.r.t. Z of f E K[X] and g* for the dehomogenization w.r.t. Z 
of 9 E K[X, Z] as defined in Section 10.3. Moreover, we denote the head 
term w.r.t. ~' of 9 E K[X ,Z] by HT~,(g). 

Lemma 10.69 If 9 E K[ X, Z] is r'-homogeneous, then 

Proof If U E T(X ,Z), say U = t . Zk with t E T(X), then clearly u* = t. 
The previous lemma can thus be restated as saying that for u, v E T(X , Z) 
with r' (u) = r' (v), we have u ~' v iff v* ~ u*. The claim now follows easily 
from the fact that for h E K[ X , Z], say 

m 

h = Laiui 
i=l 

(ai E K, Ui E T(X ,Z», 

the dehomogenization is given by 

m 

h* = Lai(Ui)*. 0 
i=l 

The theorem below uses the fact that an ideal that is generated by a set 
of homogeneous polynomials has a Grabner basis that consists entirely of 
homogeneous polynomials (Corollary 10.34). 

Theorem 10.70 Let F be a finite subset of K[ X], and let G ~ K[ X, Z] 
be a Grabner basis of F* w. r. t. ~' such that each 9 EGis r' -homogeneous. 
Then G* is a standard basis of Id(F) in K[X] w.r.t. ~. 

Proof We have Id(G*) = Id(F) by Lemma 10.54. It remains to show 
that G* is a standard basis in K[X]. To this end, let f E Id(G .. ). Then 
f E Id(F) by the above equality, and so by Lemma 10.52, there exists kEN 
with 

Zk . r E Id(F*) = Id(G). 

Since G is a Grabner basis in K[ X, Z] w.r.t. ~', it follows that there exists 
9 E G such that 

HT~,(g) I HT~'(Zk . r). 
This divisibility is clearly preserved if we dehomogenize, i.e., set Z = 1, 
and the lemma preceding the theorem tells us that 

and 
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In view of the trivial fact that g* E G., this proves the claim. 0 

It is clear from the last theorem that for computable K, we may actually 
compute standard bases from given finite ideal bases w.r.t. every decidable 
term order that is compatible with some grading that assigns non-zero 
weights only. An example would be the total degree-lexicographical term 
order. 

The interest in standard bases actually stems from algebraic geometry. 
Let us consider a univariate polynomial ideal I generated by I E K[X], 
say 

(ai E K). 
i=O 

Let j be the least index with ai i O. The number j then describes the local 
behavior of I as a function from K to K at the point 0 E K: it is easy to 
see that j is the multiplicity of 0 as a zero of Ij moreover, it also equals 
the least natural number v with 1(11) (0) i O. In algebraic geometry, one 
defines the multipicity of (0, ... ,0) as a zero of the multivariate polynomial 
I E K[ X] to be the least dEN such that I contains a term of total degree 
d. Computing a standard basis of a multivariate ideal I may thus be viewed 
as an attempt to obtain information about the local behavior of I at the 
point (0, ... ,0) E Kn. (If c is any zero of I in Kn, then one may employ 
the same methods by passing from I to I(X 1 - Cl, ... , Xn - cn).) What 
one is interested in is the ideal generated by the lowest forms of the ideal. 

As before, r will be a grading with r(Xi ) > 0 for 1 :s i :s n, and :s 
will be a r-compatible term order. Since the extended term order :sf is no 
longer relevant here, we will write LT(f) instead of LT ~ (f). Let I E K[ X], 
and suppose d is the least natural number such that T(f) contains an 
element of r-degree d. Then the d-homogeneous part I(d) (i.e., the sum of 
all monomials of I of r-degree d) is called the r-Iowest form of I, or 
lowest form of I for short, and we denote it by LF(f). Furthermore, we 
write 

LF(F) = {LF(f) I IE F} 

whenever F is a subset of K[ X]. If I is an ideal of K[ X] and r is the 
standard grading by total degree, then the variety of the ideal Id(LF(I)) 
in Kn is called the tangent cone of I. In algebraic geometry, it is usually 
assumed that K is algebraically closed, but the tangent cone is perhaps 
better visualized in the case K = Q or K = JR. 

Exercise 10.11 Draw pictures of the varieties in IR? of the ideals Id(Y - X 2 ), 

Id(Y - X2 - 2X), Id(Y - X2 - 2X - 1), and Id«X - 3)2 + (Y - 4)2 - 25) as well 
as their respective tangent cones. 

What we are going to prove is that for every ideal I of K[ X J, the ideal 
Id(LF(I)) is generated by LF(G) whenever G is a standard basis of I w.r.t. 
:S, which-as it is important to keep in mind-is r-compatible. We could 
thus decide membership in Id(LF(I)) by computing a Grobner basis of 
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LF(G) w.r.t. any term order. We will see that this is not necessary; mem
bership in Id(LF(I» can be decided by means of an "upside-down" reduc
tion process using LF( G) as is. The theory below is in fact an upside-down 
version of the results of Exercise 10.45. 

Let f, p E K[X] be non-zero polynomials, and let m E K[X] be a 
monomial. We say that f LL-reduces to f - mp modulo p and write 

f--f-mp 
p 

if m is such that the product of m and the lowest monomial of p equals the 
lowest monomial of f. L1-reduction modulo a finite subset of K[X], L1-
reducibility, and LL-normal forms are defined in the obvious way according 
to Definition 5.18. 

The definition of a standard basis can now be rephrased as saying that 
every non-zero f E Id(G) is L1-reducible modulo G. Unfortunately, how
ever, LL-reduction is not noetherian in general: an infinite ascending chain 
is for example given by 

X __ X2 __ X3 __ .... 
l+X l+X l+X 

The next lemma and proposition show that all is well if we L1-reduce 
modulo homogeneous polynomials. The proof of the lemma should be easy 
for anybody who has studied other types of reduction. 

Lemma 10.72 Let f, g, p E K[X] such that f L1-reduces to g modulo 
p. Then the following hold: 

(i) LT(f) < LT(g). 

(ii) If in addition, p is r-homogeneous, then every term in T(g) \ T(f) 
has the same r-degree as LT(f). 0 

In the proof of the following proposition we will once again abuse the 
notation r by writing r(f) for the maximum of the r -degrees of the terms 
of f. The proposition shows that for a standard basis G consisting of ho
mogeneous polynomials, membership in Id( G) can be decided by means of 
LL-reduction. 

Proposition 10.73 If G is a set of r -homogeneous polynomials, then LL
reduction modulo G is a noetherian reduction relation. If in addition, G is 
a standard basis, then the following are equivalent for each f E K[ X]: 

(i) f E Id(G). 

(ii) 0 is an LL-normal form of f modulo G. 

(iii) Every LL-normal form of f modulo G equals O. 
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Proof It follows immediately from (i) of the lemma above that LL-reduc
tion is strictly antisymmetric. Now assume for a contradiction that {/i}iEN 
is an infinite sequence of elements of K[ X] such that Ii LL-reduces to li+l 
modulo G. From the previous lemma, one easily concludes that {LT(!i) hEN 
is strictly ascending, and an easy induction on i shows that r(t) :$ r(Jo) 
for all terms occurring anywhere in the Ii. We would thus have to have 
infinitely many different terms of r-degree less than or equal to r(Jo), 
which is easily seen to be impossible in view of the fact that r assigns 
non-zero weights only. 

Now assume that in addition, G is a standard basis, and let I E K[X]. 
Since LL-reduction modulo G is noetherian, there exists an LL-normal form 
of I modulo G. The direction "(iii)===>(ii)" is now trivial. Next, we note 
that clearly, the difference of any two polynomials that are connected by 
a chain of LL-reductions modulo G is in Id(G). The direction "(ii)===>(i)" 
is thus immediate from the fact that here, the difference of I and 0 lies in 
Id(G). For "(i)===>(iii)," let h be any normal form of IE Id(G). Then his 
an element of Id(G) in LL-normal form modulo G and must thus equal 0 
since G is a standard basis. 0 

Corollary 10.74 Let I be an ideal 01 K[X] and G a finite subset 01 I 
consisting 01 homogeneous polynomials only such that lor each 0 =f:- I E I, 
there exists g E G with LT(g) I LT(J)' Then G is a standard basis 01 I. 

Proof It follows immediately from the obvious inclusion Id( G) ~ I that G 
is a standard basis. To see that that the reverse inclusion holds as well, let 
I E I. Then I has an LL-normal form h modulo G. The difference 1- h 
is in Id(G) and thus in I, and so h is in I. The assumption on divisibilities 
says that 0 is the only LL-normal form modulo G in the ideal I, and so we 
have h = O. Using 1- hE Id(G) again, we see that IE Id(G). 0 

We are now in a position to prove the main theorem on the connection be
tween standard bases and the tangent cone. In view of the last proposition 
and the fact that lowest forms of polynomials are by definition homoge
neous, the theorem below allows us to decide membership in Id(LF(I» by 
means of LL-reduction in case K is computable. 

Theorem 10.75 Let G be a standard basis 01 the ideal I 01 K[X]. Then 
LF( G) is a standard basis of the ideal Id(LF(I» of K[ X]. 

Proof In view of the corollary above, it suffices to prove that for each 
o =f:- I E Id(LF(I», there exists h E LF(G) with LT(h) I LT(J). If I E 
Id(LF(I», then there exist monomials ml, ... , mk and non-zero polyno
mials h, ... , Ik E I with 

Each summand on the right-hand side is r-homogeneous. Now if I =f:-
0, then LF(J) is the sum of all those summands whose r -degree equals 
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r(LF(f)), say 

From the fact that the sum of the lowest forms of the polynomials mil IiI' 
... , mirlir is not zero, one easily sees that 

LF(m· f· ) + ... + LF(m· f· ) = LF(m· f· + ... + m· f· ) tl 11 tr tr 11 11 tr tr • 

Now milh + ... + mirhr E I, and since the term order S in question is 
r -compatible, the lowest term of this polynomial is the lowest term of its 
lowest form, i.e., the lowest term of LF(f). We may conclude that there 
exists 9 E G with 

LT(g) I LT(LF(f)). 

By the same argument as above, we also have 

LT(g) = LT(LF(g)) and LT(f) = LT(LF(f)). 

The divisibility above can thus be writen as 

LT(LF(g)) I LT(f), 

and thus h = LF(g) is the desired element of LF(G). 0 

Exercise 10.16 Let I be a zero-dimensional ideal of K[ X]. Show the following: 

(i) The set {t E T(X) I LT(f) t t for all f E I} is finite. 

(ii) Suppose (0, ... ,0) is a zero of I, and let Q be the primary component 
of I whose associated prime is Id(X1 , ... , Xn). Then LT(Q) = LT(I) and 
LF(Q) = LF(I). 

10.7 Symmetric Functions 

Throughout this section, we will use our usual notational conventions, 
where K is a field, T(X) the set of all terms in Xl, ... , X n , and K[X) = 
K[Xl , ... , X n ). If 7r is a permutation on the set {I, ... , n}, then according 
to Lemma 2.17 (i), the element 

gives rise to a homomorphism 

CP1r: K[X) ~ K[X) 
I r--.- I(X1r(l)"",X1r(n») 

satisfying CP1r(Xi ) = X 1r(i) for 1 SiS n, and and CP1r t K = idK. It is easy 
to see that we have CP1r 0 CP1r-1 = CP1r-1 0 CP1r = idK[K]' and so CP1r is in fact 
an automorphism of K[X). It is equally easy to see that the set 

F1r = {I E K[X] I CP1r(f) = I} 
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is a subring of K[ X]. Moreover, K ~ F'/r' so that F'/r is in fact a K-subal
gebra of K[ X]. It follows that the intersection 

S(K[X]) = n 
'/r a permuta

tion on {l, ... ,n} 

F'/r 

is again a K-subalgebra and thus, in particular, a subring of K[X]. The 
elements of this subring are called symmetric functions, or, more pre
cisely, symmetric polynomials (over K in Xl, ... , X n). A polynomial 
! E K[X] is thus symmetric if 

!(X1 , ••• ,Xn) = f(X1r(l),'" ,X1r(n») 

for every permutation 7r on {I, ... , n}. For I ~ i ~ n, we define 

and call O'i the ith elementary symmetric polynomial. The polynomial 
O'i is thus the sum of all possible distinct products of exactly i different 
variables, and one easily verifies that O'll ... , Un are indeed symmetric 
polynomials. More explicitly, we have 

0'1 Xl + .. , +Xn 

0'2 X I X2 + ... + XIXn + X 2 X 3 + ... + X 2 X n + ... + X n- 1X n 

Un = Xl····· X n· 

The main non-algorithmic result of this section is that the ring S(K[ X]) 
of symmetric polynomials is generated by O'll ... , Un, i.e., that 

From an algorithmic point of view, we could thus employ the algorithm 
SUBRlNGMEMTEST of Corollary 6.45 to compute, for symmetric ! E 
K[X], a polynomial P E K[X] with! = p(O'I"'" un). (This procedure 
would also yield a method to decide whether or not a given polynomial 
is symmetric, but this can of course also achieved directly by inspection.) 
We will see that we can do much better than that. We will define a type 
of polynomial reduction modulo {0'1,'" , Un} in such a way that we can 
compute a normal form 9 of ! E K[ X] with the property that 9 vanishes 
if and only if! is symmetric; moreover, the reduction process will provide 
P E K[X] with! = p(O'I,'" ,un) + g, so that in fact! = P(O'l"'" Un) in 
case of symmetry. 

For the rest of this section, we let ~ be the lexicographical term order 
on T(X), where Xl » ... » X n. A term t E T(X) is called descending 
if t = xt ..... X:;n with VI ~ ••• ~ Vn . 
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Lemma 10.77 (i) If V1I ••• , Vn EN and 911 ... , 9n E K[X], then 

(ii) If 0 1: I E K[ X 1 is symmetric, then HT(f) is descending. 

(iii) HT(O'i) = Xl . '" . Xi for 1 ~ i ~ n. 

(iv) If t = Xfl ..... X~n is descending, then 

Proof (i) This follows eagily from Lemma 5.17 together with induction on 
Vl + ",+vn • 

(ii) Let 0 1: I E K[ X 1 be symmetric, and let X~1 . '" . X;: be the 
head term of I, where {i1l ... ,in } = {1, ... ,n}, and the iz are such that 
Vl ~ ... ~ Vn ~ 0 and ij < ik whenever 1 ~ j < k ~ n with Vj = Vk. In 
other words, we write the variables by decre88ing exponents first and then 
break ties by increaging indices. We claim that iz = I for 1 ~ I ~ n, so that 
t is indeed descending. Assume for a contradiction that this is not so. Let j 
be the leagt index such that ij 1: j. Then i j > j because the map j 1--+ i j 
is clearly bijective. Moreover, we have j = ik for some k with j < k. Now 
ik < i j and j < k together imply Vj > Vk by our choice of the indexing. 
Let 11' be the permutation that does nothing but switch ij and i k • From the 
fact that 

I(X1I • •• , Xn) = I(X1r(l),' •• , X 1r(n» 

one eagily concludes that 

is a term in I. From the fact that iz = I for 1 ~ I < j together with j = ik 

and Vj > Vk we see that s > t, contradicting the fact that t = HT(f). 
(iii) This is immediate from (ii) together with the rather obvious fact 

that Xl ..... Xi is the only descending term in O'i. 
(iv) Using (i) and (iii) above, we see that 

HT(O'"I - 112 O'"n-l-"" 0'"") 1 . ••.• n-l . n 

= (HT(O'l) )"1-112 ••••• (HT(O'n-t> )",,-I-lIn ..... (HT(O'n»)"" 
= Xfl- 112 • (XI X2)1I2-113 ..... (Xl' .. X n _ I )",,-I-l n ..... (Xl" . X n )"n 

= Xfl .... ·X~". 0 

If t = Xfl . ... . X;:n is a descending term, then we write 

The polynomial Pt is thus symmetric with head term t. 
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Exercise 10.78 What is Pt if tis 1, Xl' .... Xi, Xr· .... X:,? 

We are now in a position to define the type of reduction that will lead to 
normal forms as described earlier in this section. Let f, g E K[X]. Then 
we say that f O'-reduces to g and write f --u+ g if there is a monomial at 
occurring in f such that t is descending and g = f - apt with Pt as defined 
above. We define O'-reducibility and O'-normal forms in the obvious way as 
in Definition 5.1B. The notations for the various closures of --u+ and --u+ 
will be as in Definition 4.71. It is clear that a O'-reduction step is a special 
case of an ordinary polynomial reduction step according to Definition 5.1B. 
The following lemma is therefore immediate from Theorem 5.21. 

Proposition 10.79 The relation --u+ is a noetherian reduction relation. 
o 

It should be noted that the definition of O'-reduction makes no reference 
to the term order at all. The sole reason for specifying a term order:::; is to 
turn O'-reduction into a restricted version of ordinary reduction w.r.t. :::;, so 
that results such as the above proposition need not be proved over again. 
The next lemma collects some results that are specific to O'-reduction as 
opposed to ordinary polynomial reduction. 

Lemma 10.80 Let f E K[X]. Then the following hold: 

(i) f is O'-reducible iff it contains a descending term. 

(ii) If f is symmetric and non-zero, then it is O'-reducible. 

(iii) If g E K[X] such that f + g, then there exists P E K[X] with 
f = P(O'lo ... ,O'n) + g. In particular, f - g is symmetric. 

(iv) If K is computable, then u-reduction is decidable. Moreover, the al
gorithm that performs O'-reduction can be devised in such a way that 
it computes a polynomial P as in (iii) when it O'-reduces f to g. 

Proof Part (i) is immedate from the definition of O'-reduction, while (ii) 
follows from (i) together with the fact that the head term of a symmetric 
polynomial is descending by Lemma 10.77 (iii). For statement (iii), assume 
that f + g. We first note that an easy induction on the length of the 
reduction chain shows that there exist descending terms tl, ... , tr with 

r 

g=f- LaiPt. 
i=l 

(alo'" ,ar E K). 

If we define, for an arbitrary descending term t = Xfl . ... . X:;n, 

S - X"1- 1 2 x"n-l -lin X"" t - 1 . ..•• n-l • n' 
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then it is easy to see from the definition of the Pt, that the polynomial 

r 

P = LaiSt, 
i=l 

has the desired property. The fact that 1-9 is symmetric is now immediate 
from the fact that the symmetric polynomials form a subring of K[ X]. The 
statements of (iv) on decidability and computability are easy consequences 
of the proof of of (iii) and of the definitions. 0 

Proposition 10.81 The relation 7 has unique nonnallonns. 

Proof Let I, gl, g2 E K[X] such that gl and g2 are u-normal forms of I, 
and assume for a contradiction that gl i= g2. Then by the previous lemma, 
both I - gl and I - 92 are symmetric, and thus 

is symmetric too. Lemma 10.77 (ii) now tells us that HT(gl - g2) is de
scending, and since this must have been a term in gl or g2, it follows with 
(ii) of the last lemma that gl or g2 was u-reducible, a contradiction. 0 

The main theorem of this section states that just as ordinary reducibility 
to zero modulo a Grabner basis is equivalent to ideal membership, u-re
ducibility to zero is equivalent to membership in the ring of symmetric 
polynomials. Moreover, the latter ring is generated by the elementary sym
metric functions. 

Theorem 10.82 Let I E K[X]. Then the lollowing are equivalent: 

(i) I is symmetric. 

(ii) There exists P E K[ X] with I = p(U1, . .. , un). 

(iii) 1+0. 

Proof For "(i)===>(iii)," let 9 be a u-normal form of I. Then 9 = (f - g) - I 
is symmetric by (iii) of the last lemma. Being in u-normal form, it must 
thus equal zero by (ii) of the last lemma. The implication "(iii)===>(ii)" is 
immediate from (iii) of the last lemma, and "(ii)===>(i)" follows from the 
fact that the symmteric polynomials form a subring of K[X]. 0 

Corollary 10.83 The elementary functions generate the ring 01 symmet
ric polynomials, i.e., 

S(K[X]) = {P(U1, ... ,un) I P E K[X]}. 0 

The next corollary is immediate from the theorem above together with 
the proposition and the lemma preceding it. 
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Corollary 10.84 Assume that K is computable. Then one can find an al
gorithm that computes, lor arbitrary I E K[X], polynomials p, 9 E K[X] 
such that 

1= p(Ul! ... ,un) + g, 

the polynomial 9 is uniquely determined by I, and I is symmetric iff 9 = O. 

Exercise 10.85 Let K = Q and n = 3, and let f = xl x~ + xl x~ + x~x~. 
Use u-reduction to confirm the obvious fact that f is symmetric, and compute 
P E K[Xl,X2,X3] with f = p(Ul,U2,U3). 

Knowing that every symmetric polynomial I can be represented in the 
form P(Ul, ... ,Un ) with p E K[X], we are now going to show that the 
polynomial p is uniquely determined by I. 

Lemma 10.86 Let Ill! .•. , lin E N. Then 

HT( ,..Vi ,..v .. ) _ XVi +···+V" X V2+"'+V" XV" Vl ••••• Vn - 1 • 2 . •••• n' 

Proof According to Lemma 10.77 (i) and (iii), we have 

HT(uri ..... u~,,) = Xri . (X1X2t2 ..... (Xl' .... xnt" 
-_ X Vi+"'+V" X II2+"+v" Xv" 0 1 . 2 . ••.. n' 

Lemma 10.87 Let Ill! ••• , lin, J.i.l! ••• , J.i.n E N such that IIi :f. J.i.i for at 
least one index i with 1 ~ i ~ n. Then 

Proof The claim follows easily from the last lemma together with the 
obvious fact that 

IIi + ... + lin :f. J.i.i + ... + J.i.n 

if i is maximal with 1 ~ i ~ n and IIi :f. J.i.i. 0 

Lemma 10.88 If O:f. P E K[XJ, then p(Ul, ... ,un) :f. O. 

Proof For each t = Xri ••••• X~" E T(P) we define 

Ut = HT(uri ..... u~"). 

By the previous lemma, we have Uh :f. Ut2 whenever tl! t2 E T(P) with 
tl :f. t2. It is now easy to see that U = maxi Ut I t E T(P) } must be a term 
in P(Ul, ... , un). 0 

Proposition 10.89 II I E K[ X] is symmetric, then the polynomial p E 
K[X] that satisfies P(Ul,'" ,un) is uniquely determined by I. 
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and so PI = P2 by the lemma above. 0 
We see that if we reduce a polynomial I E K[ X] to its a-normal form 9 E 

K[X], then the resulting polynomial p E K[X] with I -g = p(al,·.· ,an) 
will always be the same, regardless of the particular strategy that was used 
in the (non-deterministic) a-reduction algorithm. 

In addition to being uniquely determined by I, the polynomial p also 
satisfies an interesting degree bound. 

Proposition 10.90 Let 0 =I- p E K[X] and 1= p(al, ... ,an). Then the 
total degree 01 p equals the degree 01 I in Xi lor 1 :::; i :::; n. 

Proof From the fact that I is a symmetric polynomial, one easily concludes 
that degxi (I) = degxj (I) for 1 :::; i, j :::; n. If t = Xr1 ••••• X:;'n is a term, 
then we write 

With this notation, we have 

1= L att(al. ... , an) 
tET(p) 

Using Lemma 10.87, we may conclude that 

(at E K). 

HT(I) = max{ HT(t(al, ... ,an)) It E T(p)}. 

Looking at the left-hand side, we see that by the choice of the term order as 
the lexicographical one, this term has the same degree in Xl as the entire 
polynomial I. For the same reason, it also has maximal degree in Xl among 
all terms in the set on the right-hand side. But Lemma 10.86 tells us that 

We have proved that the degree in X I of the term in (*) equals both the 
degree in X I of I and the total degree of p. 0 

Corollary 10.91 Let I E K[X], and let 9 be the a-normal lorm 01 I. 
II I =I- g, then the total degree of the polynomial p E K [ X 1 that satisfies 
1- 9 = p(al, ... ,an) is less than or equal to the degree of I in Xl. 

Proof We have 9 < I, and so degx 1 (g) :::; degx 1 (I). It follows that 

degx1 (I - g) :::; degxl (I), 

and the claim is now immediate from the proposition above. 0 
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Exercise 10.92 Use O'-reduction to give an alternate proof of the corollary 
above. 

Exercise 10.93 (i) Let t = X~l . ... ·X~n be a term, and set / = O'rl ••.. • O'~n . 
Show that 

n 

L i . Vi = deg(f). 
i=1 

Conclude that deg(f) < n implies that v. = 0 for i > deg(f). (Hint: You 
want to use Lemmas 10.86 and the fact that the O'i are homogeneous.) 

(ii) Let p E K[X] and / = p(0'1, ... ,O'n). Give an example showing that in 
contrast to (i) above, it may happen that 

n 

L i· degxi (P) > deg(f). 
i=1 

(iii) Let p and / be as in (ii) above. Show that 

max{ ~? Vi I X? ..... x;:n E T(P) } = deg(f) 

if p 'I O. In particular, deg(f) < n implies that degx. (p) = 0 for i > deg(f). 
(Hint: You need Lemma 10.87 and the arguments that you used to prove 
(i) above.) 

(iv) Let / E K[X] with O'-normal form 9 E K[X], and suppose /, 9 'I o. Show 
that deg(g) :5 deg(f). 

(v) Let 0 'I / E K[ X] with O'-normal form 9 E K[ X], and let p E K[ X] such 
that / - 9 = p(O'l, ... ,Un). Show that 

if p 'I o. In particular, deg(f) < n implies that degxi (P) = 0 for i > deg(f). 

Notes 

Grabner bases over PID's and Euclidean domains were investigated by 
Zacharias (1978), Kandri-Rody and Kapur (1984, 1988), and Pan (1989) 
(cf. also Pauer, 1992). Our approach most closely resembles that of Pan 
(1989), except that we employ a different technique to ensure termination 
of the algorithm. A systematic investigation of possible refinements and 
applications of the theory in analogy to ordinary Grabner basis theory 
does not seem to have been undertaken yet; cf., however, Moller (1988), 
Gianni, et al. (1988), and Mark (1992). 

Homogeneous polynomials-also referred to as forms-seem to have en
joyed more attention in the early days of modern algebra than they do now; 
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however, they continue to be an important object of mathematical research. 
In Grabner basis theory, homogeneity and homogenization are mainly rel
evant in connection with complexity problems (Lazard, 1983; Maller and 
Mora, 1984). Our treatment in Sections 10.2 and 10.3 is hardly more than 
a systematic and mathematically rigorous account of what seems to belong 
to the folklore of the theory. The main reason why we have included a dis
cussion of homogeneity and homogenization here is that these techniques 
allow an elegant treatment of Grabner bases for modules and of the tangent 
cone algorithm. The degree bounds for the representation of 1 in terms of 
a given basis of an improper ideal that we have quoted were proved by 
Fitchas and Galligo (1988a). 

Grabner basis theory for modules and its application to systems of linear 
equations over the polynomial ring is perhaps the most important general
ization of ordinary Grabner basis theory. References include Bayer (1982), 
Lazard (1983), Maller and Mora (1986a), and Furukawa et al. (1986); see 
also Billera and Rose (1989) for an interesting application. 

The tangent cone belongs to the classical concepts in algebraic geometry. 
A method for the computation of its equations by means of standard bases 
is due to Mora (1982); the corresponding algorithm is therefore also called 
the Mom algorithm. Our approach is technically different because we use 
homogenization in order to reduce the theory of standard bases to ordinary 
Grabner basis theory as much as possible (see Schwartz, 1988). 

Our treatment of symmetric function consists of classical results (see, 
e.g., Weber, 1898 or van der Waerden, 1966) prepared in the more contem
porary style of reduction relations. The definitive work on the subject is 
Noether (1916), where rings of polynomials that are invariant under finite 
groups of linear transformations of the variables are treated in an algorith
mic manner. More recent results can be found in Lauer (1976), Giusti et al. 
(1988), Valibouze (1989), and Gabel (1992). 



Appendix: Outlook on 
Advanced and Related Topics 

As we have pointed out in the preface, the treatment of computational 
algebra offered by this book is not comprehensive. The purpose of this 
chapter is to round off the picture at least in and around the area that is 
at the core of this book, namely, the theory of Grabner bases. Each section 
will briefly outline a problem, give a rough idea of existing results, and get 
the reader started on the relevant literature. 

Complexity of Grabner Basis Constructions 

The complexity of a mathematical algorithm can be measured in different 
ways. The most straightforward approach is to implement the algorithm, 
run it on some computer, and measure the time and space required for 
getting the output on a number of examples. This method should not be 
belittled. If one duly takes into account such factors as the speed of the 
particular computer that one uses, the details of the implementation such 
as the choice of datatypes to represent the mathematical objects, and the 
fact that the size of the examples is necessarily within a limited range, then 
this method will allow precisely the kind of evaluation of the quality of the 
algorithm that matters in practice. 

The purpose of complexity theory is to provide a more precise concept 
of measurability for the comparison of different solutions to an algorithmic 
problem. The first step is to give a rigorous definition of a mathematically 
idealized computing machine on which all computations are to be per
formed, such as a 'lUring machine or a register machine. The mathematical 
objects in question are then coded into words over a finite alphabet. The 
computing machine is capable of holding the letters of the alphabet in in
dividual cells, with at most one letter in each cell. Each configuration of 
letters in cells is a state of the machine, and the machine modifies these 
states in well-defined single steps. This way, the number of steps and the 
number of cells required to run a particular algorithm on a particular input 
becomes well-defined. It is clear that the manner in which mathematical 
objects are represented by words may have considerable influence on these 
numbers. 

511 
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On the basis of this rigorous measurement of the time and space con
sumption of an application of an algorithm to a specific input, one may 
now ask for a way to evaluate the efficiency of the algorithm as such. One 
way to achieve this is to ask for upper bounds for the number of steps (time 
complexity) and the number of cells (space complexity) as functions of the 
size (number of cells required after coding) of the input. In case one obtains 
least upper bounds, this is also called the asymptotic worst case complexity. 
Apart from the fact that these bounds, by their nature, yield information 
only about the worst case, they also frequently contain multiplicative con
stants that are only insufficiently determined. It is therefore desirable to 
also obtain average complexities in the probabilistic sense. This requires of 
course a realistic probability measure of the input space. Examples can be 
found in Knuth (1969). For mathematically involved problems, the analy
sis of the propagation of probabilities that this approach calls for has been 
achieved only in rare cases (see, e.g., Borgwardt, 1980). 

The type of complexity measure that we have described thus far is, for 
rather obvious reasons, also called the bit complexity of the algorithm. The 
mathematics that is required to to deal with this type of complexity tends 
to be very hard. One must therefore often be content with weaker results 
such as an upper bound for the size of the output as a function of the size 
of the input. 

Turning to Grobner bases in particular, let us first note that a natural 
system of parameters to measure the size of a finite set F of polynomials is 
given by the number n of indeterminates, the number IFI of polynomials in 
the set, the maximal total degree maxdeg(F) of the polynomials in F, and 
the maximal size maxcoeff(F) of the coefficients of the polynomials under 
a given coding. 

Now let us look at the output G of the Buchberger algorithm as a func
tion of the size of the input F. In addition to the parameters explained 
above, we also consider the maximal degree D and the maximal size S of 
the coefficients of any polynomial occurring during computation. Then the 
following hold. Firstly, D as well as IGI are bounded by recursive functions 
of n, IFI, and maxdeg(F). These functions are independent of the ground 
field, the term order and the size of the input coefficients. Secondly, the 
maximal size M of any coefficient appearing in the construction is bounded 
by a recursive function of n, IFI, maxdeg(F), and maxcoeff(F), again in
dependently of the term order. If all coefficients are represented as rational 
expressions in the input coefficients, then this bound is also independent of 
the ground field. The proof of all this employs a coding of Grobner basis 
constructions in formulas of first-order logic together with an application 
of the compactness theorem for first-order logic (see Weispfenning, 1986). 
The bounds obtained by such general principles are of course in no way ex
plicit; they do, however, naturally extend to the construction of universal 
Grobner bases and comprehensive Grobner bases (see the next two sec
tions of this chapter), and also to Grobner bases over commutative regular 
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rings (see Weispfenning, 1987b) and non-commutative polynomial rings of 
solvable type over fields (see Kandri-Rody and Weispfenning, 1990). The 
arguments also show that the computing time (i.e., the number of steps) re
quired for a Grabner basis construction is bounded by a recursive function 
of n, IFI, and maxdeg(F) when an arithmetic operation and an equality 
test in the ground field and a comparison of terms in the term order are 
counted as one step each. (Interestingly, this is not true for Grabner bases 
over PID's.) When computations in the ground field are performed in poly
nomial time, then for fixed n, IFI, and maxdeg(F), the Grabner basis G 
of Id(F) can be constructed in polynomial time in maxcoeff(F), i.e., the 
number of steps is bounded by a polynomial function of maxcoeff (F). 

The search for explicit bounds concerning the size of Grabner bases re
quires a much more refined algebraic and combinatorial analysis. For the 
case of two variables the following upper bounds on the degrees and the 
number of the polynomials in a reduced Grabner basis G as functions of 
the size of the input F have been obtained in Buchberger (1983) and 
Lazard (1983). Let mindeg(F) denote the minimal degree of a polyno
mial in F; then IGI :::; mindeg(F) + 1, and for a total degree term order, 
D :::; 2· maxdeg( F) - 1, where D is as defined above. Both bounds are worst 
case optimal, i.e., they are least upper bounds. 

For the case of three variables, Winkler (1984) and Maller and Mora 
(1984) provide the following bounds: 

D:::; (8· maxdeg(F) + 1) ·2mindeg(F) 

for the total degree-lexicographical term order, and, under a conjecture 
of Lazard, maxdeg(G) :::; (maxdeg(F))2 for every total degree term order. 
Maller and Mora (1984) and Bayer (1982) also provide upper bounds for an 
arbitrary number of variables under further assumptions on the ideal con
sidered, in particular information on the Hilbert polynomial of the ideal (cf. 
Kondrat'eva and Pankrat'ev, 1987) or an H-basis of the ideal (cf. Macaulay, 
1916). Maller and Mora (1984) show that maxdeg(G) is bounded by a 
polynomial in maxdeg(F) for fixed number n of variables; under Lazard's 
conjecture, they give the explicit bound 

(n+l).2dim (Id(F)+1 
maxdeg(G) :::; (n + 1) . (maxdeg(F) + 1)) . (*) 

Giusti (1984) shows that for fixed number n of variables, there exists a 
polynomial f of degree an with a ~ V3 such that 

maxdeg( G) ~ f (maxdeg( F)) . 

Under the additional assumption that dime!) ~ 1 and the term order is 
compatible with some weighted degree, Giusti (1985) shows that 

maxdeg(G) :::; (n + 1) . (maxdeg(F)t. 
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The upper bounds discussed above may not be least upper bounds. Con
cerning lower bounds for these upper bounds, the following is known. Maller 
and Mora (1984) and Huynh (1986) show, in essence, that the doubly ex
ponential behavior in the number of variables that is exhibited in (*) and 
( **) cannot be improved. Their proof is based on a refinement of arguments 
of Mayr and Meyer (1982), where it is shown that the ideal membership 
problem in polynomial rings over arbitrary ground fields is exponential
space hard. This means that any algorithm that decides ideal membership 
requires space that grows exponentially in the input size. Huynh (1986a) 
shows that for fixed number of indeterminates, the ideal membership prob
lem is NP-hard. 

Finally, we mention that a bound on the maximal degree of a reduced 
Grabner basis G automatically yields a bound on IGI, simply because the 
head terms of the elements of G are pairwise different. 

Term Orders and Universal Grabner Bases 

The construction of a Grabner basis from a given finite set F of polynomials 
in K[ X 1 = K[Xl' ... ,Xnl depends on the choice of the term order:::; on 
the set T of terms in Xl, ... , X n . A reduced Grabner basis of Id(F) is in 
fact uniquely determined by F and the term order. This raises the following 
questions. 

1. How can the possible term orders on T be characterized? 

2. How many different reduced Grabner bases can an ideal have? 

3. Do ideals have bases that are Grabner bases simultaneously w.r.t. 
every term order, and if so, can these be constructed? 

4. Given a finite set of polynomials, is it possible to predict which term 
orders will yield fast or slow Grabner basis computations? 

It was shown in Lemma 4.64 how certain n-tuples of univariate polyno
mials with real coefficients induce admissible orders on Nn and thus, via 
the natural correspondence of Lemma 5.4, term orders on T. It is proved in 
Weispfenning (1987)-and, in a different setting, in Robbiano (1985)-that 
every admissible order on Nn and hence every term order arises in this way. 
This provides a satisfactory answer to the first question. 

For an answer to the second and third questions, one first considers a 
modification ofthe first one. Suppose a finite set S ofterms is given, and one 
wishes to find all orders on S that are restrictions of term orders on T. Since 
S is assumed to be finite, it is clear that there can be only finitely many 
different such restricted term orders on S. It can be shown that every such 
restriction is induced by an n-tuple of rational numbers in the same manner 
as global term orders are induced by n-tuples of univariate polynomials. 
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Moreover, it is possible to compute from S finitely many elements of Qn 
such that these induce precisely all the different restrictions of term orders 
on S. Proofs of these facts can be found in Mora and Robbiano (1988), 
Ritter and Weispfenning (1992), and Weispfenning (1987). 

The following construction shows that the answer to the third question 
is positive (cf. Weispfenning, 1987a). Given a finite subset F of K[X], 
compute all possible restrictions of term orders to the finite set T(F) of all 
terms occuring in elements of F. W.r.t. each of these, form an S-polynomial 
of a pair of elements of F, and compute its normal form modulo F. (Note 
that for the computation of a normal form modulo F, the only information 
that is needed is what the head terms of the elements of Fare.) Form a 
finite list of supersets of F, one for each restricted term order on F, by 
adding the respecective normal form of the S-polynomial to F unless the 
latter equals zero. For each set P in this list, compute the finitely many 
restricted term orders on the finite set T(P) that extend the restricted 
term order on T(F) which gave rise to P. Then do with P and these new 
term orders as before with F, making sure not to choose the same critical 
pair again for the formation of the S-polynomial. Continuing in this way as 
long as possible, one obtains a finitely branching tree, and each branch in 
this tree represents a possible course of the Buchberger algorithm w.r.t. at 
least one term order. From the fact that the Buchberger algorithm always 
terminates together with Kanig's lemma (Theorem 4.55), we may conclude 
that the tree is finite. It is now easy to see that each leaf of the tree is a 
Grabner basis of Id(F), that for each term order ~ on T, there exists a leaf 
which is a Grabner basis of Id(F) w.r.t. ~, and that the union of the leaves 
is a universal Grobner basis of Id(F), i.e., a simultaneous Grabner basis 
of Id(F) w.r.t. every term order. A slight modification of the construction 
shows that every ideal of K[ X] has only finitely many reduced Grabner 
bases, and that these may be computed from any given ideal basis. The 
mathematical fact behind these results is the compactness of the space 
of term orders on T w.r.t. to a certain topology; this can also be used 
to obtain an abstract proof of the existence of universal Grabner bases 
(Schwartz, 1988). 

Answers to the fourth question are still more or less at a heuristic level. 
Perhaps the best result for the time being is a dynamic version of the 
Buchberger algorithm which periodically modifies the term order during 
computation (Sturmfels, 1989). More precisely, it uses the Hilbert function 
of the head term ideal in order to determine the term order relative to 
which the current basis is "closest" to being a Grabner basis. 

Comprehensive Grobner Bases 

Classical Grabner basis theory solves certain problems concerning ideals
given by finite bases-in multivariate polynomial rings over fields. There 
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are a number of circumstances under which theses same problems arise 
for ideal bases containing parameters, in the following sense. Suppose F is 
a finite set of polynomials in the variables X I, •.. , Xn over a coefficient 
ring which is itself a polynomial ring over a domain R in the variables UI , 

... , Un, i.e., 

Given a term order ~ on T(X), one may now ask if there exists a finite 
subset G of R[ U] [X] such that for every homomorphism from R[ U] to 
some field K, the image in K[X] of G under the induced homomorphism 
is a Grabner basis w.r.t. ~ in K[X] and generates the same ideal as the 
image of F under the same homomorphism. Here, one would naturally call 
U1 , ••• , Un parameters and Xl, ... , Xn the main variables. A set G as 
described above is called a comprehensive Grabner basis for F. A com
prehensive Grabner basis for F is thus a subset of R[ U] [X] which, under 
every "specialization in a field" of the coefficients, becomes a Grabner basis 
of the ideal generated by the same specialization of F. The simplest, nat
ural case would be the one where R is already a field, and "specialization" 
means nothing but substitution for the parameters in some extension field 
of R; the more general situation is the one where R is a domain which is 
not a field, and "specialization" actually involves homomorphic mapping 
of elements of R, e.g., from Z to Z/pZ for some prime p. 

To see where the non-triviality of the problem lies, one must first under
stand that the ordinary Grabner basis property is not in general preserved 
under substitution for one or several of the variables. To see this, consider 
the subset G = {X +1, UY +X} ofQ[U, X, Y]. Then G is clearly a Grabner 
basis in Q[U,X, Y] w.r.t. every term order satisfying X < Y. Now let us 
view U as a parameter. If we take for our specialization the natural inclu
sion of Q[U] in Q(U), then G is still a Grabner basis in Q(U)[X, Y] for 
term orders with X < Y. The same holds if we specialize to Q by setting 
U = 1. However, if we set U = 0, then the Grabner basis property is lost. 

The example shows that any attempt to construct a comprehensive Grab
ner basis must take into account different cases according to whether or not 
certain coefficients vanish, simply because the vanishing or non-vanishing of 
coefficents determines what the head term of a polynomial will be. Rather 
surprisingly, it is possible to construct-and thus to actually compute in 
case R is computable--a comprehensive Grabner basis from any given finite 
subset of R[ U][ X]. Simplifying only slightly, the construction can be de
scribed as follows. For every polynomial in F, one considers all possibilities 
of what its head term could be, due to the vanishing of higher coefficients. 
One then considers the combined possibilities for all of F and starts out 
a Buchberger algorithm for each possibility, forming and reducing to nor
mal form the S-polynomial of some critical pair. This is possible on the 
basis of knowing what the head terms are. After this first step has been 
performed, the situation is similar to the one after the first step of the 
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construction of the universal Grabner basis of the previous section: if the 
normal form of the S-polynomial does not vanish, then this gives rise to a 
further branching of the tree of Buchberger algorithms, because one has to 
consider all possibilities of what the head term of the new arrival could be. 
Continuing the process in this way, one obtains a finitely branching tree. 
The existence of an infinite branch of this tree would contradict Dickson's 
lemma, because none of the terms of the polynomial that is being added 
when branching at a node is divisible by any term that has already been 
declared a head term in that branch. The Kanig tree lemma allows us to 
conclude that the construction must terminate after finitely many steps. It 
is perhaps noteworthy that this is true despite the fact that a large number 
of branches may be "virtual" Buchberger algorithms that are really non
sensical, because the corresponding choice of the head terms is based on 
an assumption like "U = 0 and U2 =1= 0." 

The point of the above construction is that the union G of the leaves 
of the tree is supposed to be a comprehensive Grabner basis for the in
put set. For this to happen, we must make two minor modifications to the 
procedure. First of all, polynomial reduction as we have defined it requires 
division by certain head coefficients, meaning that we were really passing 
to Q R[ Q 1 [ X]. This is not acceptable because that way, we would obtain 
coefficients that may become undefined under certain specializations. How
ever, the problem is easily amended by using a modified, denominator-free 
version of polynomial reduction, where one multiplies the polynomial that 
is being reduced by the head coefficient of the one that it is being reduced 
by. The second point is that by declaring a certain term of a polynomial 
to be the head term and dropping all higher monomials on the basis of the 
case assumption that their coefficients vanish, we will in general be leaving 
the ideal generated by F in R[ U] [ X]. As a consequence, the ideal gen
erated by G under a specialization may be larger than the one generated 
by F under that specialization. This problem is overcome by the following 
"schizophrenic" attitude. Whenever an S-polynomial is formed or a reduc
tion step is performed under a certain case assumption on head terms, then 
in each polynomial, the monomials above the presumed head monomial are 
carried along as dummies in the computation despite the fact that they are 
assumed not to be present at all. This does dearly not affect the termina
tion of the procedure. With these two modifications to the procedure, it 
is indeed true that the union of the leaves of the tree that was described 
above is a comprehensive Grabner basis for the input set. If one keeps track 
of the assumptions on the vanishing of coefficients that were made during 
computation, then each leaf of the tree provides a set of conditions together 
with a set of polynomials such that this set is a Grobner basis of the input 
ideal under every specialization that meets these conditions. The set of all 
leaves of the tree is then called a Grobner system for the input set. 

Comprehensive Grobner bases can be used to solve parametric versions 
of virtually all the problems to which ordinary Grabner bases provide so-
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lutions. A typical problem of this kind is the question of properness of an 
ideal of K[X], which we have seen to be equivalent to the existence of a 
zero of the ideal in the algebraic closure K of the ground field K. The para
metric version of this problem is known as the elimination problem: given a 
finite subset F of K[ U] [X], for which values in K of the parameters U do 
the polynomials in F have a common zero in '"K"'? In other words, we wish 
to decide for which values of the parameters the ideal generated by F is 
proper. Using comprehensive Grabner bases, the problem can be solved as 
follows. Let G be a comprehensive Grabner basis for F with respect to some 
fixed term order. Then for any specialization u : K[ U] ----+ L into some 
algebraically closed field L, the polynomial system u(F) obtained from F 
by specializing the coefficients according to u has a common zero in Ln iff 
the following condition holds for every 9 E G: whenever u(a) = 0 for all 
monomials a· t of 9 with t i- 1, then u(b) = 0 for the coefficient b of 1 in g. 
This can also be viewed geometrically as the computation of projections of 
varieties. (Recall from Section 7.6 that the problem of finding the smallest 
variety containing such a projection is much easier: it requires no more 
than a single Grabner basis computation.) 

Classically, the elimination problem is solved by means of resultants to
gether with the technique of introducing Kronecker variables (see van der 
Waerden, 1931). The approach via comprehensive Grabner bases is more 
direct and-at least in the case of several main variables--computationally 
easier. In the case where F consists of two univariate polynomials, the re
sultant is always part of a comprehensive Grabner basis for F. The theory 
of comprehensive Grabner bases is due to Weispfenning (1992); see also Sit 
(1991, 1992) on the subject of solving parametric systems. 

Grabner Bases and Automatic Theorem Proving 

Automatic theorem proving in mathematics is concerned with the problem 
of designing algorithms that prove or disprove conjectures about classes 
of mathematical structures. More precisely, such an algorithm is to decide 
whether or not formulas of a certain specified type in some first-order lan
guage L hold in a specified class of L-structures. Yet in other words, one is 
looking for a decision method for the validity of a certain type of formula 
in a class of structures. Examples are the word problems that were treated 
in the theorems of Section 6.4. There, the decision could be achieved by 
means of Grabner basis computations involving sets of polynomials that 
were implicit in the given formula. 

As an example, let us recall Theorem 6.59. Here, it is shown that for a 
given field K and polynomial expressions I, 91, ... , gm in Xl, ••• , Xn over 
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K, the validity of the formula 

VXl'" VXn (A gi(~) = 0 ---- f(~) = 0) 
t=l 

in the class of all extension fields of K is equivalent to membership of f in 
the radical of the ideal generated by the gi, a condition that can be algo
rithmically decided according to Corollary 6.41. The Hilbert Nullstellensatz 
tells us that membership of f in the radical of the ideal generated by the 
gi is in fact equivalent to the validity of (*) in anyone algebraically closed 
extension field of K, e.g., in C in case K = Q. This decision method has 
interesting applications in elementary real geometry. There, one is typically 
dealing with configurations consisting of finitely many lines, circles, ellipses, 
hyperplanes, spheres, and the like. Given a conjecture concerning such a 
configuration, one can often, using Cartesian coordinates, find a sentence 
of the type (*) above with rational parameters such that the conjecture is 
true if and only if the sentence holds true in JR.. What we have, according 
to the above, is an algorithm to decide whether or not the statement holds 
in C. Since C is an extension field of JR. and (*) is a universal statement, 
the decision method thus provides a sufficient condition for the conjecture 
to hold in JR.. Rather surprisingly, this sufficient condition is satisfied for 
many natural and classical geometric problems. 

One way to use the method described above is to look for valid geomet
rical theorems by trial and error, adding or removing hypotheses such as 
non-triviality conditions until a true statement has been found. A more am
bitious goal is to algorithmically generate additional conditions that turn 
an invalid statement into a valid one. This can be achieved by a method 
due to Wu (1984, 1986) that is based on a variant of Tarski's quantifier 
elimination method for algebraically closed fields, which will be discussed 
below. Wu's method is based on the concept of characteristic sets which is 
originally due to Ritt (1950) (see the section on characteristic sets below). 
A different way of finding missing hypotheses for a conjectured theorem 
of the form (*) is provided by the computation of comprehensive Grob
ner bases. One views some of the variables of the problem as parameters 
and then solves the corresponding elimination problem as discussed in the 
previous section. 

Let us now return to the general decision problem for the validity of 
formulas of a first-order language L in a class E of L-structures. Suppose 
that we have an effective quantifier elimination procedure, i.e., an algo
rithm that computes, for every formula cp of L, a quantifier-free formula 'I/J 
such that cp and 1/J are equivalent in E. Due to the absence of quantifiers, 
it is often possible to decide the validity of 1/J in E by inspection. This 
yields a solution to the decision problem w.r.t. E for all formulas of L. If, 
for example, L is the language of rings, then quantifier-free formulas are 
disjunctions of conjunctions of simple formulas such as 1 = 1, 1 =f:. 1, 1 = 0, 
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x + x = o. The validity in a given class of rings such as the class of fields, 
or the class of fields of a given characteristic, is then clearly decidable. 

Unfortunately, the possibility of quantifier elimination is not exactly a 
frequent phenomenon (see Weispfenning, 1983, for an overview). In the 
1930s, Tarski has given explicit but highly complex quantifier elimination 
methods for the class of algebraically closed fields and the class of real 
closed fields. Comprehensive Grobner bases provide a quantifier elimination 
procedure for the algebraically closed case that is much more efficient than 
Tarski's original algorithm. On the basis of elementary logical equivalences, 
one easily sees that it suffices to treat formulas of the form 

where the Ii and 9i are polynomial expressions over Q in the variables Xl, 

••• , Xn and possibly further free variables. Setting 9 = 91 .... ·98, this 
formula is equivalent to 

Introducing the new variable z, the latter formula becomes equivalent to 

This is an instance of the elimination problem as described in the previous 
section which can be dealt with using comprehensive Grobner bases. 

Characteristic Sets and Wu-Ritt Reduction 

The concept of a characteristic set was originally introduced by Ritt (1950) 
as a tool for studying solutions of algebraic differential equations (see the 
section on Grobner bases and differential algebra below). Wu (1984, 1986) 
transferred the algorithmic aspects of Ritt's method to ordinary polynomial 
rings with the intent of finding an effective method for automatic theorem 
proving in elementary geometry. His approach has since been developed 
extensivelyj see, e.g., Chou (1988). The problem studied by Wu is essentially 
the same as the one stated at the beginning of the previous section: given 
polynomial expressions I, ft, ... , 1m in the variables Xl. ... , Xn over Q, 
decide the validity of the formula 

VXl •.. VXn ( A li(~) = 0 -+ I(~) = 0) 
_=1 

in JR. Just like the Grobner basis approach, Wu's method actually decides 
the validity of (*) in C and thus provides no more than a sufficient crite
rion for its validity in Rj as we have noted before, however, this sufficient 
criterion is satisfied surprisingly often for theorems in geometry. 
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The basic features of Wu's theory are as follows. Let K be a field and 
K[ X] = K[Xl, . .. , X n ]. If 0 -=I- f E K[ X], then the class of f is defined 
as the maximal k such that the degree of f in Xk is not O. The head 
coefficient of f viewed as a polynomial in Xk is then called the initial 
of f. If f, 9 are non-zero polynomials in K[ X] and 9 has class k and 
initial p, then one may, by a rather obvious process called pseudo-division, 
find a polynomial r in K[ X] that is either zero or whose degree in Xk 
is less than that of 9 such that r = pdf - qg, where q E K[ X] and d = 
max{O, degxk(J) -degxk (g) + I}. Taking such a pseudo-division as a single 
reduction step, it should be clear how one defines Wu-Ritt reduction of a 
polynomial modulo a set of polynomials. It is easy to see that the pseudo
remainder of a single reduction step is less than the dividend in the quasi
order on K[ X] that is induced by the inverse lexicographical term order; 
it follows that Wu-Ritt reduction is noetherian. 

A finite sequence (h, ... , 1m) is called an ascending set if the corre
sponding sequence of the classes of the h is strictly increasing and Ii is 
Wu-Ritt-reduced modulo {h, ... , Ii-I}' One may now define a quasi-order 
on the set of ascending sets by comparing the entries of two sequences from 
left to right according to the quasi-order on K[ X] that is induced by the 
inverse lexicographical term order and letting the first strict inequality de
cide. If no such inequality is encountered, then the ascending set of greater 
length, if any, is declared less (sic!) than the other one. It is not hard to see 
that this quasi-order is well-founded. It follows that among the ascending 
sets that can be made up from the elements of a given subset F of K[ X], 
there must be a minimal one; such a minimal ascending set is then called 
a chamcteristic set of F. If F is finite, then one may actually construct a 
characteristic set of F by starting with an element of minimal class and 
then add, as long as this is possible, minimal elements of higher class than 
and reduced modulo the previous ones. 

The centerpiece of the theory is the following completion procedure. 
Starting with a finite subset F of K[ X], one constructs a characteristic set 
of F and then enlarges F by all Wu-Ritt normal forms-modulo the set 
of polynomials occurring in the characteristic set-of elements of F. The 
resulting enlarged set is clearly again finite, and so the procedure can be 
repeated. It is not hard to see that the next characteristic set is less than 
the previous one in the quasi-order defined above, and one concludes that 
the process must terminate after finitely many iterations. If the resulting 
set is G and the last characteristic set is B, then clearly G generates the 
same ideal as F, and every element of G Wu-Ritt reduces to zero modulo 
the underlying set of B. 

The idea now is to apply this completion procedure to F = {h, ... , 1m} 
and use Wu-Ritt reduction to decide the validity of (*). Let G and B be 
as in the previous paragraph. If it is found that I Wu-Ritt reduces to zero 
modulo the underlying set P of B, then all we may conclude is that ml E 
Id( F) for some power product of initials of elements of P, and this does 
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rather obviously not allow us to draw the desired conclusion that / vanishes 
on the variety of F. This problem is overcome by a further extension of 
the completion procedure which corresponds to a decomposition of the 
variety of G (which of course equals that of F). We will define a finitely 
branching tree of pairs (H, C), where H is a finite subset of K[ Xl, C is a 
characteristic set of H, and every h E H Wu-Ritt reduces to zero modulo 
the underlying set of C (Le., H cannot be further completed in the sense 
of the previous paragraph). The root of the tree is the result (G, B) of the 
completion procedure of the previous paragraph applied to the original set 
F. To obtain the first level of the tree, we set, for each 9 E B, 

Gg = (G\ {g}) u {p,red(g)}, 

where p is the initial of 9 and red (g) is the reductum of 9 as a polynomial in 
Xk where k is its class. To each Gg , we apply the aforementioned completion 
procedure, and we take for the first level of our tree the set of all pairs (H, C) 
thus obtained. It is easy to see that now the variety of G equals the union 
of the varieties V(H) of H, where H runs through the first level, and the 
set V (B) \ V ( {p} ), where p is the product of the initials of the entries of 
B. Moreover, each characteristic set C in the first level is less than B in 
the quasi-order on ascending sets because if nothing else, the entry 9 of B 
that gave rise to C can be replaced by its reductum. The higher levels of 
the tree are now obtained in the obvious way by doing with each leaf as 
we just did with (G, B). We cannot have an infinite branch because of the 
well-foundedness of the quasi-order on ascending sets. It follows that the 
tree has finitely many elements, say (HI. Bd, ... , (Hk' Bk). It is now easy 
to prove that 

k 

V(F) = V(G) = U(V(Bi) \ V({pd)) , 
i=l 

where Pi is the product of the initials of the entries of B i . A sufficient 
condition for / E K[ X 1 to vanish on V(F) is then obviously given by "/ 
Wu-Ritt reduces to 0 modulo Bi for 1 ::; i ::; k." This condition is not in 
general a necessary one, as exemplified by the trivial example F = {X2}, 
where the polynomial X will not be recognized as vanishing on V(F). 

Theoretically, the method can be pushed to the point where it does pro
vide a decision method for the validity of the statement (*) in all extension 
fields of Q. By intertwining the splitting procedure described above with 
successive factorization of polynomials in ascending sets over suitable ex
tension fields of Q, one can arrive at a a finite system of characteristic sets 
satisfying certain irreducibility conditions. These irreducible characteristic 
sets then provide a necessary and sufficient condition for / E K[ X 1 to van
ish on V (F). In practice, however, this last step of the method has turned 
out to be extremely time and space consuming. 
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As a sufficient criterion for the validity of certain theorems in elementary 
real geometry, the Wu-llitt method has been tested on some 150 examples 
in (see Chou, 1988). When successful, it tends to perform slightly better 
than Grabner basis methods. 

An interesting connection between characteristic sets and Grabner bases 
has been noted in Kandri-Rody (1984): if G is a reduced Grabner basis in 
K[X] w.r.t. the inverse lexicographical term order, then every character
istic set of G is in fact a characteristic set of Id(G). 

Term Rewriting 

In this section, the word "term" is used in the sense of its definition in 
logic and model theory, where it means a well-formed formal expression 
involving variables and function symbols of a first-order language. If, for 
example, L is the language of rings consisting of the constants 0 and 1 and 
the binary function symbols" + ," "- ," and"· ," and we use infix notation 
with the usual rules of preference, then (x· y - 1) . ((1 + x) + o· y) is an 
L-term. 

The problem of term rewriting has been posed in a number of variants; 
see, e.g., Jantzen (1988) for a comprehensive treatment. In its most basic 
form, the problem is as follows. Suppose we are given a first-order language 
L and finitely many equations between L-terms, say Ui = Vi for 1 ~ i ~ m. 
What one is looking for is a finite set of rules for rewriting L-terms such 
that for each L-term s and each rule, it can be decided whether the rule 
is applicable to s, and if so, application of the rule to s produces a term t 
such that the implication 

VX1 ... VXn ( A Ui = Vi) ----+ VX1 ... VXn(s = t) 
.=1 

holds in the class of all L-structures, where the variables occurring in s, t, 
and the Ui and Vi are among Xl, ... , X n . Equivalently, one could say that 
the equation s = t holds in the equational class of all L-structures in which 
the equations Ui = Vi hold for 1 ~ i ~ m. 

The point of doing all this is that one hopes to find a set of rules such 
that the relation 

s ----+ t iff t is the result of an application of a rule to s 

on the set of L-terms satisfies the following two conditions. 

(i) ----+ is a noetherian, confluent reduction relation. 

(ii) ----+ is adequate for the equational class ~ in question in the sense 
that s ~ t if and only if s = t holds in ~, i.e., is valid in every 
structure in ~. 
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If this is the case, then one may, according to Newman's lemma, compute 
unique normal forms of L-terms w.r.t. --+. Moreover, one can then decide 
whether 8 = t holds in E: this will be the case if and only if the normal 
forms of 8 and t agree. One has thus found a decision method in the sense 
of the section on automaic theorem proving for formulas of the form 8 = t 
w.r.t. E. 

In the section on automatic theorem proving, we have focused on Grab
ner basis methods as a tool for solving decision problems. The approach via 
term rewriting systems, which will be further described below, is not really 
an application of Grabner bases; what makes it interesting in this context 
is the fact that it uses a critical pair completion procedure which makes 
it resemble the Buchberger algorithm. As we have already pointed out in 
the notes to Chapter 5, the concept of critical pair completion was actually 
found independently by Buchberger (1965) for his Grabner basis algorithm 
and by Knuth and Bendix (1970) in connection with term rewriting. 

More precisely, the Knuth-Bendix approach proceeds as follows. One 
starts with an "orientation" of the given equations, i.e., a set of pairs 

R = { (Ui, vd I 1 ~ i ~ m }, 

the set of rewrite rules, such that { Ui = Vi 11 ~ i ~ m} is the set of given 
equations that define the class E. Then R induces a relation --+ on the 
set of L-terms as follows: 8 --+ t iff there exists a rule (u,v) E R and a 
substitution (T of terms for variables such that the term O'(u) obtained from 
U by the substitution (T has some occurrence in s, and t is obtained from 
s by replacing this specific occurrence of 0'( u) in 8 by 0'( V ). Unfortunately, 
--+ will not in general be a noetherian reduction relation: it is easy to see 
that for example, the presence of an equation expressing commutativity of 
a function will prevent --+ from being strictly antisymmetric. There are, 
however, many interesting instances where R is such that the relation R is 
indeed a noetherian reduction relation which is adequate for the class E. 
The hard part is to ensure confluence of --+. This is where the concept of 
critical pair completion comes in. 

Roughly speaking, a critical pair is a pair (s --+ h, s --+ t2) ofreduc
tions given by specializations of two rules via two substitutions that act on 
nested subterms 81 and S2 of s. One shows that if for every such ciritcal 
pair, one has tl ! t2, then the reduction is locally confluent and thus con
fluent by Newman's lemma. In analogy to the Buchberger algorithm, the 
strategy to achieve this situation is to complete the set R of rewrite rules 
as follows. For every critical pair (s --+ h, 8 --+ t2), one computes normal 
forms ti of tl and t; of t2. If these do not agree, then one forces tl ! t2 by 
adding to R the rule (ti, t;) or (t;, tn. There are two obvious problems to 
this procedure. Firstly, the new rules have to be selected in such a way that 
the induced relation --+ is still a noetherian reduction relation. Secondly, 
one must be able to prove termination. If and how this can be achieved will 
of course depend on the class E that one is talking about; in most cases, 
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the analogy to the Buchberger algorithm will come to an end at this point. 
For a more detailed discussion of the relationship between Knuth-Bendix 
algorithm and the Buchberger algorithm, we refer the reader to Winkler 
(1984, 1989). 

Of the many variants of term rewriting that one encounters in mathe
matics and computer science, we mention a more general version of the 
problem that we have just discussed: here, one modifies the definition of 
adequacy of -----+ in such a way that s ~ t is equivalent not to the validity 
of s = t, but of 

in the equational class E, where the Si and ti are L-terms. It is easy to 
see that this amounts to solving the word problem for E by means of term 
rewriting and normal forms. 

Standard Bases in Power Series Rings 

At the end of Section 2.1, we explained how one may define a formal power 
series over a ring R as a "polynomial with infinitely many monomials." We 
also saw how addition, subtraction and multiplication of power series can be 
defined in close analogy to the operations in the polynomial ring, and that 
the set of all formal power series over R forms a ring under these operations. 
This ring is commonly denoted by R[[Xb . .. ,Xn )), or R[[ X)) for short. We 
have also mentioned in the Notes to Chapter 5 that there exists an analogy 
to Grabner bases in power series rings over fields, namely, the concept 
of standard bases. Standard bases in power series rings are actually more 
directly analogous to standard bases in polynomial rings as described in 
Section 10.6; for easier reference, however, we will describe standard bases 
in power series rings in relationship to Grabner bases in polynomial rings. 
Standard bases were introduced by Hironaka (1964) as a tool in connection 
with the resolution of singularities in analytic spaces. Hironaka's work took 
place independently of Buchberger's development of Grabner basis theory; 
it was not until the seventies that the analogy was brought to light (Brian
t;on, 1973; Galligo, 1974, 1979; Robbiano, 1986; Mora 1988a; Becker 1990, 
1990a). 

There cannot of course be a plain analogue to Grabner basis theory in 
power series rings: since a power series may have infinitely many terms, 
it does not in general have a head term w.r.t. any term order. It does, 
however, have a lowest term w.r.t. every term order, simply because term 
orders are always well-orders. The theory of standard bases in power series 
rings can now be described in a hand-waving manner as follows. Formu
late the theory of Grabner bases in polynomial rings in a non-algorithmic 
way, i.e., without any reference to polynomial reduction as a terminating 
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process, and "turn it upside down" in the following sense: replace polyno
mials by power series and head terms by lowest terms, and turn around 
all inequalities in connection with term orders. This description of the re
sults of the theory is surprisingly accurate, although most of the proofs are 
substantially different from the polynomial case. 

For a more explicit description of the theory, we let K be a field. The first 
step is to prove a result that corresponds to the fact that every polynomial 
has a normal form modulo any finite set of polynomials. This result is ob
tained by stripping Proposition 5.22 of its algorithmic content and turning 
it upside down: if f is an element and G is a finite subset of K[[ X ]], then 
there exists a normal form r E K[[ X]J of f modulo G in the sense that 

f = L qgg + r (qg E K[[X]]) (*) 
gEG 

such that for all 9 E G, the lowest term of 9 does not divide any term of r, 
and the minimum of the lowest terms of the summands on the right-hand 
side equals the lowest term of f. The set G is called a standard basis if 0 
is such a normal form modulo G of every f E Id(G), a condition which, in 
analogy to Grobner basis terminology, is also expressed by saying that f 
has a standard representation modulo G. The normal form of (*) is then 
uniquely determined for every f E K[[X]J. An equivalent characterization 
of standard bases is that for every f E Id(G) , there exists 9 E G such 
that the lowest term of 9 divides the lowest term of f. This yields an 
easy existence proof for standard bases, i.e., a proof of the fact that every 
ideal has a basis which is a standard basis: take a Dickson basis of the 
set of lowest terms of elements of the ideal and then choose elements of 
the ideal with these lowest terms. The resulting set is clearly a standard 
basis, and an easy additional argument shows that it is also a basis of the 
given ideal. These basics of the theory settled, one then obtains further 
analogues to results from Grobner basis theory such as uniqueness of the 
reduced standard basis and existence of universal standard bases. 

Power series being infinitary objects by nature, problems concerning ac
tual computations are necessarily more difficult than in the polynomial 
case. It can be proved that with a natural definition of S-series which is 
modelled after the definition of S-polynomials, a finite subset G of K[[ X]] 
is a standard basis if and only if all S-series of pairs of elements of G 
have standard representations modulo G. On the basis of this result, one 
may then, for term orders of order type w, compute initial segments of the 
elements of a standard basis of Id( G) up to any prescribed total degree. 

Non-Commutative Grobner Bases 

Let us recall from Section 2.1 that the polynomial ring in Xl! ... , Xn 
over a field K was defined as the monoid ring over K and the additive 
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monoid Nn. It can be proved that the construction of monoid rings gen
eralizes naturally to non-Abelian monoids; however, the result will be a 
non-commutative ring. It is easy to see that the set of all tuples-of arbi
trary but finite length-of elements of the set {I, ... , n} forms a non-Abe
lian monoid M under concatenation, with the empty tuple as the neutral 
element. If K is a field, then one may consider the monoid ring K M. As 
in the commutative case, K can naturally be viewed as a subfield of KM. 
One may then introduce a notation that is similar to the one used in the 
commutative case. Here, X k is the element of KM that takes value 1 at 
the one-tuple (k) and value 0 everywhere else. It is not hard to see that 
with this notation, every element of K M has a representation of the form 
al h + ... + amtm, where the a. are in K and the ti are "non-commutative 
terms" that are of the form X~: ..... X~~. Moreover, the ring operations 
are, loosely speaking, performed as in the commutative polynomial ring 
except that variables no longer commute with each other. The ring K M is 
therefore called the non-commutative polynomial ring in Xl, ... , Xn over 
K, and it is denoted by K(Xl , ... , Xn). 

The definition of an ideal in a non-commutative ring is similar to the 
commutative case; however, one must distinguish left, right, and two-sided 
ideals, depending on whether I is closed under left, right, or two-sided 
multiplication with ring elements. It turns out that in contrast to the com
mutative case, K(X l , ... ,Xn} is not noetherian for n 2 2. Nevertheless, 
one may try to design algorithms that decide the membership of a poly
nomial f E K(X l , ... ,Xn) in a finitely generated left, right, or two-sided 
ideal of K(X1 , ... ,Xn}. The attempt to imitate Grobner basis theory in 
the non-commutative case works fine up to the point where the termination 
of the analogue to the Buchberger algorithm is to be proved. It turns out 
that due to the lack of a Dickson lemma for non-commutative terms, this 
"non-commutative Buchberger algorithm" does actually fail to terminate 
in general (see Mora, 1986, 1988). Worse still, the ideal membership prob
lem for two-sided ideals is algorithmically unsolvable already in Q(Xl , X 2 }. 

In other words, not only does the theory of Grobner bases fail, there can
not be any other algorithm solving this problem. This can be proved by 
showing how a solution would give rise to a solution of the halting problem 
for Turing machines (see Kandri-Rody and Weispfenning, 1990, and the 
references given there). 

A class of non-commutative rings for which the construction of finite 
Grabner bases for arbitrary ideals is possible is the class of solvable alge
bras. It comprises many algebras arising in mathematical physics such as 
Weyl algebras, enveloping algebras of finite-dimensional Lie algebras, and 
iterated skew polynomial rings. Grabner bases in these algebras were stud
ied for special cases by Apel and Lassner (1985) and in full generality by 
Kandri-Rody and Weispfenning (1990). Solvable algebras can be viewed as 
certain residue class rings of non-commutative polynomial rings; alterna
tively, they can be described as ordinary, commutative polynomial rings 
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K[ X] furnished with a new non-commutative multiplication "*" which 
is such that K[ X] becomes a ring when "*" replaces the commutative 
multiplication ". ," and that "*" yields the same result as "." except in 
the case where the first factor contains a variable with an index that is 
higher than the index of some variable occuring in the second factor. The 
relationship between "*" and "." for a product of this type is determined 
by the requirement that 

where 0 ~ Cij E K, and Pij E K[ X 1 is such that Pij = 0 or HT(Pij) < XiXj 
with respect to some fixed term order ~. A *-product 1* 9 of two non-zero 
polynomials I, 9 E K[ X 1 is then always of the form 

1* 9 = c· I . 9 + p, 

where 0 ~ C E K and P E K[X] with P = 0 or HT(P) < HT(f. g). 
This is essentially what makes Grabner basis theory work for left and right 
ideals in these algebras. Roughly speaking, this is because one may, at 
any point during polynomial reduction or the forming of an S-polynomial, 
switch variables at the cost of introducing lower terms, and these do not 
cause trouble in the end due to the fact that the key arguments used in the 
theory depend on the head terms only. For the construction of a two-sided 
Grabner basis one has to intertwine the construction of a one-sided Grabner 
basis with iterated multiplication of the polynomials in the current ideal 
basis by all indeterminates from the other side. 

Many applications of Grabner basis theory such as ideal membership 
test, computation of intersections of ideals, computation of syzygies, and 
computation in residue class rings and modules can be transferred readily 
from the commutative case to solvable algebras. Other applications such 
as the subring membership test fail to work. Rather surprisingly, the con
struction of comprehensive Grabner bases can be carried out in solvable 
algebras, even to the extent that the commutator relations may contain 
parameters (see Kredel and Weispfenning, 1990). This opens the way for 
developing a rudimentary algebraic geometry concerning varieties of "solv
able polynomials" over skewfields (see Kredel, 1992). 

Another class of non-commutative algebras that admit the construction 
of finite Grabner bases for finitely generated ideals is studied in Weispfen
ning (1992a). 

Grabner Bases and Differential Algebra 

Differential algebra arises from the study of differential equations in much 
the same way as algebra arises from the study of polynomial equations. 
The theory is largely due to Ritt (1950) and to Kolchin (1973). Just as the 
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algebraic theory of equations studies solutions of polynomial equations as 
abstract objects in algebraic structures such as rings or fields, differential 
algebra studies solvability and solutions of differential equations in differ
ential rings and differential fields. A differential ring is a commutative ring 
R together with one or several maps from R to itself, the so-called differen
tial operators, that satisfy the usual differentiation rules w.r.t. addition and 
multiplication. The concept of a polynomial ring is replaced by the concept 
of a differential polynomial ring R{ X b ... , Xn} over the differential ring R. 
The elements of R{X1 , .•. , Xn}, which are called differential polynomials, 
are polynomials with coefficients in R in the indeterminates Xi and further 
indeterminates that are obtained from the Xi by iterated application of 
the differential operators. R{Xb ... , Xn} is thus a polynomial ring over R 
in infinitely many indeterminates; in particular, it is no longer noetherian, 
even if R is a field: the ideal generated by all indeterminates, for example, 
is not finitely generated. 

From the differential viewpoint, however, noetherianity of the differential 
polynomial ring is not the point. To see why, let us consider the special 
case of a differential polynomial ring over a differential field K extending 
Q with only one differential operator D. This is the situation arising from 
the study of ordinary algebraic differential equations. A system 01 algebraic 
differential equations is now a system of equations of the form 

!I = 0, ... , 1m = 0, 

with Ii E K {X b ... , Xn} for 1 :::; i :::; m. Possible solutions of such a system 
are n-tuples of elements of some differential extension field L of K. Since 
D(O) = 0 holds in every differential ring, the variety of solutions in L of a 
system of differential equations is closed under differentiation, i.e., under 
application of D. Accordingly, one is led to the study of differential ideals 
in K {X b ... , Xn}, meaning ideals that are closed under differentiation. 
Similarly, radical differential ideals are defined as the analogue to radical 
ideals. It turns out that the counterpart of the Hilbert basis theorem (the 
Ritt-Raudenbush basis theorem) holds for radical differential ideals, but 
not for arbirary differential ideals: every radical differential ideal is finitely 
generated as a radical differential ideal, but not in general as a differential 
ideal. 

What is required next is a suitable Nullstellensatz. The following weak 
version (cf. Theorem 6.61) is due to Ritt: the implication 

VXl •.. VXn (i6 h(;!2) = 0 ----+ 10(;!2) = 0 ) 

holds in the class of all differential field extensions of K if and only if 10 
is in the radical differential ideal generated by !I, ... , 1m. Taking 10 = 1, 
we see that the system !I = 0, ... , 1m = 0 has a solution in some dif
ferential extension field of K if and only if the differential ideal generated 
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by II, ... , 1m does not contain 1. In its strong form, the Nullstellensatz is 
much more subtle. It requires the construction of differentially closed fields 
to replace the algebraically closed fields in the Hilbert Nullstellensatz (see 
Macintyre, 1977, for an overview and references). 

Deciding the solvability of a system of algebraic differential equations is 
thus equivalent to the problem of deciding whether 1 is in a differential 
ideal that is given by a finite basis. This problem may be viewed both as 
a special case of the radical differential ideal membership problem and of 
the differential ideal membership problem. The former has found an algo
rithmic solution in Seidenberg's elimination method for differential algebra 
(Seidenberg, 1956), which proceeds by eliminating one variable at a time. 
The resulting complexity of the procedure renders the method useless for 
all practical purposes. Unfortunately, despite several partial results (Carra 
Ferro, 1987), the attempt to imitate Grobner basis methods in the context 
of differential ideals and radical differential ideals has been unsuccessful 
to date. The main obstacle is a missing a priori bound on the order (Le., 
the number of iterated applications of D) of the differential polynomials 
involved in such a construction. Such a bound is needed to guarantee ter
mination. As a matter of fact, it is not even known whether the problem 
of deciding membership in the differential ideal has an algorithmic solution 
at all. 

One potential application of Grobner basis theory in differential algebra 
is as follows. If one considers the algebra that is generated by the differential 
operators and the differentiation variables, viewed as operators, then one 
obtains the commutator relations Di·Xi-Xi·Di = 1 and Di·Xj-Xj'Di = 0 
for i =f j. The resulting algebra is in fact a Weyl algebra, and one may 
apply the Grobner basis theory that was described in the section on non
commutative Grobner bases above. 

Finally, methods that are reminiscent of Grabner basis techniques have 
been used in partial differential algebra for a long time, namely, in what is 
known as Riquier-Janet theory (Riquier, 1910; Janet, 1929). Here, one is 
concerned with the transformation of a given system of partial differential 
equations into a special form from which power series solutions can be 
obtained easily. The role of terms as multipliers in Grobner basis theory 
is taken over by expressions obtained by composition of the differential 
operators. The relation between these methods and Grabner basis theory 
has not been clarified in a satisfactory manner to date. 
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linear 
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linear equation, 250 
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homogeneous, 489 
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linear map, 120 
linearly dependent set, 121 
linearly independent set, 121 

maximal,123 
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maximal linearly independent set, 

123 
maximal strongly independent set, 

448 
membership test 

ideal, 86, 215 
radical, 268 
subring, 269 
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R-module, 134 

finitely generated, 135 
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noetherian, 135 

module of syzygies, 136, 244 
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monoid,62 
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commutative, 62 
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ordered, 167 

monoid ring, 64 
monomial, 64, 191 
monomials of a polynomial, 71 
multivariate polynomial, 64 

narrow quasi-order, 160 
natural partial order on Nn , 189 
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induction, 157 
relation, 156 
ring, 144 
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Hilbert, 312 
weak,280 
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onto, 6 
operation, binary, 15 
order, 151 
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decidable, 179 
inverse lexicographical, 168 
lexicographical, 168 
linear, 151 
partial, 151 

associated with quasi-order, 
154 

Konig, 165 
natural on Nn , 189 
strict, 155 

quasi-, 150 
Dickson, 160 
linear, 151 
narrow, 160 

well-quasi-, 160 
ordered monoid, 167 
ordered set, 162 

partial order, 151 
associated with quasi-order, 

154 
Konig, 165 
natural on Nn , 189 
strict, 155 

partially ordered set, 162 
partition, 152 
perfect field, 311 
permutation, 7 
PID,41 

computable, 460 
polynomial, 64 

constant, 69 
r-homogeneous, 466 
irreducible, 88 
minimal,294 
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elementary, 502 
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polynomial reduction, 195 
polynomial ring, 64, 77 
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univariate, 64 

power set, 16 
PREDEC, 338 
primality test, 382 
primary component, 362 

embedded, 363 
isolated, 363 

primary decomposition, 362 
primary ideal, 351 

monadic, 358 
PRIMDEC, 395 
prime, 4, 88 
prime (ring element), 87 
prime basis, 315 
prime factor decomposition, 91 
prime field, 50 
prime ideal, 47 
prime number, 4, 88 
prime ring, 50 
primitive element, 293 

theorem on the, 386 
primitive part, 93 
primitive polynomial, 93 
principal ideal, 26 
principal ideal domain, 41 
principal ideal ring, 41 
product of relations, 150 
projection, 53 
PROPER,258 
proper ideal, 25 

quasi-order, 150 
Dickson, 160 
linear, 151 
narrow, 160 

quasi-ordered set, 162 
quotient, 79 
quotient (ideal), 264 
quotient field, 55 

RADICAL, 393 
radical, 147 
radical ideal, 147 
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RADICALMEMTEST,268 
range, 5 
rank, 134 
rational function field, 94 
REALZEROES, 414 
recursion principle, 9 
REDGROBNER, 216 
REDPOL,198 
REDTERMS, 423 
reduced (set of polynomials), 203 
reduced Grabner basis, 208 
reduced terms, 272 
reducible ideal, 358 
REDUCTION, 203 
reduction 

D-,453 
E-, 463 
LL-,499 
polynomial, 195 
u-,504 

reduction relation, 174 
adequate, 178 
confluent, 175 
decidable, 178 
locally confluent, 175 

reductum, 194 
reflexive relation, 150 
reflexive-transitive closure, 155 
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antisymmetric, 150 
binary, 149 
connex, 150 
inverse, 150 
irreflexive, 150 
noetherian, 156 
reflexive, 150 
strictly antisymmetric, 150 
symmetric, 150 
transitive, 150 
well-founded, 156 

relatively prime, 38, 43 
remainder, 79 
t-representation, 219 
representative, 27 
residue class, 27 
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Boolean, 283 
commutative, 19 
computable, 78, 178 
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principal ideal, 41 
with unity, 19 

ring of quotients, 55 
R-module, 134 

finitely generated, 135 
free, 134 
noetherian, 135 

scalar, 119 
scalar multiplication, 119, 134 
second isomorphism theorem, 36 
separable polynomial, 309 
set of isolating intervals, 408 
simple extension (field), 293 
S-polynomial, 211, 457 
squarefree, 100 
squarefree decomposition, 100 
squarefree part, 100 
SQUEEZE, 412 
a-reduction, 504 
stairs, 424 
standard basis, 496 
standard representation, 218, 454 
Steinitz exchange theorem, 132 
STRCONST, 438 
strict part of a relation, 155 
strictly antisymmetric relation, 150 
strictly ascending chain, 155 
strictly descending chain, 155 
strong dimension, 443 
strongly independent set, 443 

maximal, 448 
structure constants, 434 

combined, 438 
Sturm sequence, 401 
Sturm's theorem, 407 
STURMSEQ, 405 
K-subalgebra, 434 
subfield, 23 
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submodule, 135 
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substitution homomorphism, 75 
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symmetric difference, 17 
symmetric function, 502 
symmetric polynomial, 502 

elementary, 502 
symmetric relation, 150 
system of linear equations, 489 
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syzygies, 136 

(first) module of, 136, 244 
lifting of, 252 

tangent cone, 498 
term, 70, 188 

descending, 502 
lowest, 496 

term order, 189 
r -compatible, 466 
inverse lexicographical, 190 
lexicographical, 190 
total degree, 191 

terms of a polynomial, 71 
theorem on the primitive element, 

386 
top-reduction, 196 
total degree, 70, 71 
total degree order, 191 
transcendence base, 304 
transcendence degree, 304 
transcendental element, 293 
transcendental extension (field), 293 
transitive closure, 154 
transitive relation, 150 
translation lemma, 200 
t-representation, 219 
trivial ideal, 25 
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computable, 111 

unique factorization domain, 90 
computable, 111 
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univariate polynomial, 64 
UNIVPOL, 427 
unknown, 489 
unmixed decomposition, 399 
UPDATE,229 
upper set, 165 

vanishing ideal, 263 
variable, 69 

homogenizing, 478 
variety, 312 
K -variety, 327 
VARSIGN, 402 
K-vector space, 119 
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finite-dimensional, 130 
infinite-dimensional, 131 

weak Nullstellensatz, 280 
weight, 467 
well-founded relation, 156 
well-order, 156 
well-ordered set, 162 
well-quasi-order, 160 
word problem, 276 

zero 
of a polynomial, 75 
of an ideal, 312 
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zero-dimensional ideal, 271 
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