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To Mary 



Preface to the 
Springer Edition 

The reception given to the first edition of Algebra indicates that is has filled a 
definite need: to provide a self-contained, one-volume, graduate level algebra text 
that is readable by the average graduate student and flexible enough to accomodate 
a wide variety of instructors and course contents. Since it has been so well re
ceived, an extensive revision at this time does not seem warranted. Therefore, 
no substantial changes have been made in the text for this revised printing. How
ever, all known misprints and errors have been corrected and several proofs have 
been rewritten. 

I am grateful to Paul Halmos and F. W. Gehring, and the Springer staff, for 
their encouragement and assistance in bringing out this edition. It is gratifying to 
know that Algebra will continue to be available to the mathematical community. 
Springer-Verlag is to be commended for its willingness to continue to produce 
high quality mathematics texts at a time when many other publishers are looking 
to less elegant but more lucrative ventures. 

Seattle, Washington 
June, 1980 

THOMAS W. HUNGERFORD 

Note on the twelfth printing (2003): A number of corrections were incorporated in the fifth 
printing, thanks to the sharp-eyed diligence of George Bergman and his students at Berkeley and 
Keqin Feng of the Chinese University of Science and Technology. Additional corrections appear 
in this printing, thanks to Victor Boyko, Bob Cacioppo, Joe L. Mott, Robert Joly, and Joe 
Brody. 
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Preface 

Note: A complete discussion of possible 
ways of using this text, including sug
gested course outlines, is given on page xv. 

This book is intended to serve as a basic text for an algebra course at the beginning 
graduate level. Its writing was begun several years ago when I was unable to find 
a one-volume text which I considered suitable for such a course. My criteria for 
"suitability," which I hope are met in the present book, are as follows. 

(i) A conscious effort has been made to produce a text which an average (but 
reasonably prepared) graduate student might read by himself without undue diffi
culty. The stress is on clarity rather than brevity. 

(ii) For the reader's convenience the book is essentially self-contained. Con
sequently it includes much undergraduate level material which may be easily omitted 
by the better prepared reader. 

(iii) Since there is no universal agreement on the content of a first year graduate 
algebra course we have included more material than could reasonably be covered in 
a single year. The major areas covered are treated in sufficient breadth and depth 
for the first year graduate level. Unfortunately reasons of space and economics ha ve 
forced the omission of certain topics, such as valuation theory. For the most part 
these omitted subjects are those which seem to be least likely to be covered in a one 
year course. 

(iv) The text is arranged to provide the instructor with maximum flexibility in 
the choice, order and degree of coverage of topics. without sacrificing readability 
for the student. 

(v) There is an unusually large number of exercises. 

There are, in theory, no formal prerequisites other than some elementary facts 
about sets, functions, the integers, and the real numbers, and a certain amount of 
"mathematical maturity." In actual practice, however, an undergraduate course in 
modern algebra is probably a necessity for most students. Indeed the book is 
written on this assumption, so that a number of concepts with which the typical 
graduate student may be assumed to be acquainted (for example, matrices) are 
presented in examples, exercises, and occasional proofs before they are formally 
treated in the text. 
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x PREFACE 

The guiding philosophical principle throughout the book is that the material 
should be presented in the maximum useable generality consistent with good pedago
gy. The principle is relatively easy to apply to various technical questions. It is more 
difficult to apply to broader questions of conceptual organization. On the one hand, 
for example, the student must be made aware of relatively recent insights into the 
nature of algebra: the heart of the matter is the study of morphisms (maps); many 
deep and important concepts are best viewed as universal mapping properties. On 
the other hand, a high level of abstraction and generality is best appreciated and 
fully understood only by those who have a firm grounding in the special situations 
which motivated these abstractions. Consequently, concepts which can be character
ized by a universal mapping property are not defined via this property if there is 
available a definition which is more familiar to or comprehensible by the student. 
In such cases the universal mapping property is then given in a theorem. 

Categories are introduced early and some terminology of category theory is used 
frequently thereafter. However, the language of categories is employed chiefly as a 
useful convenience. A reader who is unfamiliar with categories should have little 
difficulty reading most of the book, even as a casual reference. Nevertheless, an 
instructor who so desires may give a substantial categorical flavor to the entire course 
without difficulty by treating Chapter X (Categories) at an early stage. Since it is 
essentially independent of the rest of the book it may be read at any time. 

Other features of the mathematical exposition are as follows. 
Infinite sets, infinite cardinal numbers, and transfinite arguments are used routine

ly. All of the necessary set theoretic prerequisites, including complete proofs of 
the relevant facts of cardinal arithmetic, are given in the Introduction. 

The proof of the Sylow Theorems suggested by R. J. Nunke seems to clarify an 
area which is frequently confusing to many students. 

Our treatment of Galois theory is based on that of Irving Kaplansky, who has 
successfully extended certain ideas of Emil Artin. The Galois group and the basic 
connection between subgroups and subfields are defined in the context of an ab
solutely general pair of fields. Among other things this permits easy generalization of 
various results to the infinite dimensional case. The Fundamental Theorem is proved 
at the beginning, before splitting fields, normality, separability, etc. have been 
introduced. Consequently the very real danger in many presentations, namely that 
student will lose sight of the forest for the trees, is minimized and perhaps avoided 
entirely. 

In dealing with separable field extensions we distinguish the algebraic and the 
transcendental cases. This seems to be far better from a pedogogical standpoint than 
the Bourbaki method of presenting both cases simultaneously. 

If one assumes that all rings have identities, all homomorphisms preserve identi
ties and all modules are unitary, then a very quick treatment of semisimple rings 
and modules is possible. Unfortunately such an approach does not adequately pre
pare a student to read much of the literature in the theory of noncommutative rings. 
Consequently the structure theory of rings (in particular, semisimple left Artinian 
rings) is presented in a more general context. This treatmen.t includes the situation 
mentioned above, but also deals fully with rings without identity, the Jacobson 
radical and related topics. In addition the prime radical and Goldie's Theorem on 
semiprime rings are discussed. 

There are a large number of exercises of varying scope and difficulty. My experi
ence in attempting to "star" the more difficult ones has thoroughly convinced me of 



PREFACE xi 

the truth of the old adage: one man's meat is another's poison. Consequently no 
exercises are starred. The exercises are important in that a student is unlikely to 
appreciate or to master the material fully if he does not do a reasonable number of 
exercises. But the exercises are not an integral part of the text in the sense that non
trivial proofs of certain needed results are left entirely to the reader as exercises. 

Nevertheless, most students are quite capable of proving nontrivial propositions 
provided that they are given appropriate guidance. Consequently, some theorems 
in the text are followed by a "sketch of proor' rather than a complete proof. Some
times such a sketch is no more than a reference to appropriate theorems. On other 
occasions it may present the more difficult parts of a proof or a necessary "trick" 
in full detail and omit the rest. Frequently all the major steps of a proof will be 
stated, with the reasons or the routine calculational details left to the reader. Some 
of these latter "sketches" would be considered complete proofs by many people. In 
such cases the word "sketch" serves to warn the student that the proof in question 
is somewhat more concise than and possibly not as easy to follow as some of the 
"complete" proofs given elsewhere in the text. 

Seattle, Washington 
September, 1973 

THOMAS w. HUNGERFORD 
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Suggestions 
on the Use of this Book 

GENERAL INFORMATION 

Within a given section all definitions, lemmas, theorems, propositions and corol
laries are numbered consecutively (for example, in section 3 of some chapter the 
fourth numbered item is Item 3.4). The exercises in each section are numbered in a 
separate system. Cross references are given in accordance with the following 
scheme. 

(i) Section 3 of Chapter V is referred to as section 3 throughout Chapter V and 
as section V.3 elsewhere. 

(ii) Exercise 2 of section 3 of Chapter V is referred to as Exercise 2 throughout 
section V.3, as Exercise 3.2 throughout the other sections of Chapter V, and as 
Exercise V.3.2 elsewhere. 

(iii) The fourth numbered item (Definition, Theorem, Corollary, Proposition, 
or· Lemma) of section 3 of Chapter V is referred to as Item 3.4 throughout Chapter V 
and as Item V.3.4 elsewhere. 

The symbol. is used to denote the end of a proof. A complete list of mathematical 
symbols precedes the index. 

For those whose Latin is a bit rusty, the phrase mutatis mutandis may be roughly 
translated: "by changing the things which (obviously) must be changed (in order 
that the argument will carryover and make sense in the present situation)." 

The title "proposition" is applied in this book only to those results which are not 
used in the sequel (except possibly in occasional exercises or in the proof of other 
"propositions"). Consequently a reader who wishes to follow only the main line of 
the development may omit all propositions (and their lemmas and corollaries) with
out hindering his progress. Results labeled as lemmas or theorems are almost always 
used at some point in the sequel. When a theorem is only needed in one or two 
places after its initial appearance, this fact is usually noted. The few minor excep
tions to this labeling scheme should cause little difficulty. 

INTERDEPENDENCE OF CHAPTERS 

The table on the next page shows chapter interdependence and should be read in 
conjunction with the Table of Contents and the notes below (indicated by super
scripts). In addition the reader should consult the introduction to each chapter for 
information on the interdependence of the various sections of the chapter. 
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NOTES 

1. Sections 1-7 of the Introduction are essential and are used frequently in the 
sequel. Except for Section 7 (Zorn's Lemma) this material is almost all elementary. 
The student should also know a definition of cardinal number (Section 8, through 
Definition 804). The rest of Section 8 is needed only five times. (Theorems 11.1.2 and 
IV.2.6; Lemma V.3.5; Theorems V.3.6 and VI. 1. 9). Unless one wants to spend a 
considerable amount of time on cardinal arithmetic, this material may well be 
postponed until needed or assigned as outside reading for those interested. 

2. A student who has had an undergraduate modern algebra course (or its 
equivalent) and is familiar with the contents of the Introduction can probably begin 
reading immediately anyone of Chapters I, III, IV, or V. 

3. A reader who wishes to skip Chapter I is strongly advised to scan Section 
I. 7 to insure that he is familiar with the language of category theory introduced 
there. 

4. With one exception, the only things from Chapter III needed in Chapter IV 
are the basic definitions of Section 111.1. However Section 111.3 is a prerequisite for 
Section IV.6. 

5. Some knowledge of solvable groups (Sections 11.7, 11.8) is needed for the 
study of radical field extensions (Section V.9). 

6. Chapter VI requires only the first six sections of Chapter V. 

7. The proof of the Hilbert Nullstellensatz (Section VIII.7) requires some 
knowledge of transcendence degrees (Section VI.1) as well as material from Section 
V.3. 

8. Section VIII.1 (Chain Conditions) is used extensively in Chapter IX, but 
Chapter IX is independent of the rest of Chapter VIII. 

9. The basic connection between matrices and endomorphisms of free modules 
(Section VII.1, through Theorem VII.1A) is used in studying the structure of rings 
(Chapter IX). 

to. Section V.3 is a prerequisite for Section IX.6. 

11. Sections 1.7, IVA, and IV.5 are prerequisites for Chapter X; otherwise 
Chapter X is essentially independent of the rest of the book. 

SUGGESTED COURSE OUTLINES 

The information given above, together with the introductions to the various chapters, 
is sufficient for designing a wide variety of courses of varying content and length. 
Here are some of the possible one quarter courses (30 class meetings) on specific 
topics. 

These descriptions are somewhat elastic depending on how much is assumed, the 
level of the class, etc. Under the heading Review we list background material (often 
of an elementary nature) which is frequently used in the course. This material may 
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be assumed or covered briefly or assigned as outside reading or treated in detail if 
necessary, depending on the background of the class. It is assumed without ex
plicit mention that the student is familiar with the appropriate parts of the Intro
duction (see note 1, p. xvii). Almost all of these courses can be shortened by omit
ting all Propostions and their associated Lemmas and Corollaries (see page xv). 

GROUP THEORY 

Review: Introduction, omitting most of Section 8 (see note 1, p. xvii). Basic 
Course: Chapters I and II, with the possible omission of Sections 1.9, 11.3 and the 
last half of 11.7 .It is also possible to omit Sections 11.1 and 11.2 or at least postpone 
them until after the Sylow Theorems (Section 11.5). 

MODULES AND THE STRUCTURE OF RINGS 

Review: Sections III.I and III.2 (through Theorem III.2.l3). Basic Course: the 
rest of Section I1I.2; Sections 1-5 of Chapter IVl; Section VII. 1 (through Theorem 
VII.1A); Section VIII. 1; Sections 1-4 of Chapter IX. Additional Topics: Sections 
IlIA, IV.6, IV.7, IX.5; Section IV.5 if not covered earlier; Section IX.6; material 
from Chapter VIII. 

FIELDS AND GALOIS THEORY 

Review: polynomials, modules, vector spaces (Sections I1I.5, 111.6, IV.I, IV.2). 
Solvable groups (Sections 11.7, 11.8) are used in Section V.9. Basic Course2: Sec
tions 1-3 of Chapter V, omitting the appendices; Definition VA.I and Theorems 
VA.2 and VA.I2; Section V.5 (through Theorem 5.3); Theorem V.6.2; Section 
V.7, omitting Proposition V.7.7-Corollary V.7.9; Theorem V.8.I; Section V.9 
(through Corollary V.9.5); Section Vl.l. Additional Topics: the rest of Sections 
V.5 and V.6 (at least through Definition V.6.1O); the appendices to Sections V.I
V.3; the rest of Sections VA, V.9, and V.7; Section V.8; Section V1.2. 

LINEAR ALGEBRA 

Review: Sections 3-6 of Chapter III and Section IV.I; selected parts of Section 
IV.2 (finite dimensional vector spaces). Basic Course: structure of torsion mod
ules over a PID (Section IV.6, omitting material on free modules); Sections 1-5 of 
Chapter VII, omitting appendices and possibly the Propositions. 

'If the stress is primarily on rings, one may omit most of Chapter IV. Specifically, one 
need only cover Section IV.I; Section IV.2 (through Theorem IV.2.4); Definition IV.2.8; 
and Section IV.3 (through Definition IV.3.6). 

2The outline given here is designed so that the solvability of polynomial equations can be 
discussed quickly after the Fundamental Theorem and splitting fields are presented; it re
quires using Theorem V. 7.2 as a definition, in place of Definition V. 7 .1. The discussion may 
be further shortened if one considers only finite dimensional extensions and omits algebraic 
closures, as indicated in the note preceding Theorem V.3.3. 
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COMMUTATIVE ALGEBRA 

Review: Sections 111.1,111.2 (through Theorem 111.2.13). Basic Course: the rest of 
Section 111.2; Sections I1I.3 and IlIA; Section IV.l; Section IV.2 (through Corollary 
IV.2.2); Section IV.3 (through Proposition IV.3.5); Sections 1-6 of Chapter VIII, 
with the possible omission of Propositions. Additional topics: Section VIII. 7 
(which also requires background from Sections V.3 and VI.l). 
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INTRODUCTION 

PREREQUISITES AND 
PRELIMINARIES 

In Sections 1-6 we summarize for the reader's convenience some basic material with 
which he is assumed to be thoroughly familiar (with the possible exception of the dis
tinction between sets and proper classes (Section 2), the characterization of the 
Cartesian product by a universal mapping property (Theorem 5.2) and the Recursion 
Theorem 6.2). The definition of cardinal number (first part of Section 8) will be used 
frequently. The Axiom of Choice and its equivalents (Section 7) and cardinal arith
metic (last part of Section 8) may be postponed until this information is actually 
used. Finally the reader is presumed to have some familiarity with the fields Q. R. 
and C of rational, real, and complex numbers respectively. 

1. LOGIC 
We adopt the usual logical conventions, and consider only statements that have a 

truth value of either true or false (not both). If p. and Q are statements, then the 
statement "P and Q" is true if both P and Q are true and false otherwise. The state
ment "P or Q" is true in all cases except when both P and Q are false. An implication 
is a statement of the form "P implies Q" or "if P, then Q" (written symbolically as 
P =:} Q). An implication is false if P is true and Q is false; it is true in all other cases. 
In particular, an implication with a false premise is always a true implication. An 
equivalence or biconditional is a statement of the form "P implies Q and Q im
plies P." This is generally abbreviated to "P if and only if Q" (symbolically P ¢::> Q). 
The biconditional "P ¢::> Q" is true exactly when P and Q are both true or both 
false; otherwise it is false. The negation of the statement P is the statement "it is not 
the case that P." It is true if and only if P is false. 

2. SETS AND CLASSES 
Our approach to the theory of sets will be quite informal. Nevertheless in order 

to define adequately both cardinal numbers (Section 8) and categories (Section 1.7) it 

1 
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will be necessary to introduce at least the rudiments of a formal axiomatization of 
set theory. In fact the entire discussion may, if desired, be made rigorously precise; 
see Eisenberg [8] or Suppes [10]. An axiomatic approach to set theory is also useful in 
order to avoid certain paradoxes that are apt to cause difficulty in a purely intuitive 
treatment of the subject. A paradox occurs in an axiom system when both a state
ment and its negation are deducible from the axioms. This in turn implies (by an 
exercise in elementary logic) that every statement in the system is true, which is 
hardly a very desirable state of affairs. 

In the Gooel-Bernays form of axiomatic set theory, which we shall follow, the 
primitive (undefined) notions are class, membership, and equality. Intuitively we con
sider a class to be a collection A of objects (elements) such that given any object x it 
is possible to determine whether or not x is a member (or element) of A. We write 
x E A for "x is an element of A" and x. A for "x is not an element of A." The axioms 
are formulated in terms of these primitive notions and the first-order predicate 
calculus (that is, the language of sentences built up by using the connectives and, 
or, not, implies and the quantifiers there exists and for all). For instance, equal
ity is assumed to have the following properties for all classes A, B, C: A = A; 
A = B==*B = A; A = Band B = C==*A = C; A = Band xEA==*XEB. The 
axiom of extensionality asserts that two classes with the same elements are equal 
(formally, [x E A ¢::} X E B] ==* A = B). 

A class A is defined to be a set if and only if there exists a class B such that A E B. 
Thus a set is a particular kind of class. A class that is not a set is called a proper class. 
Intuitively the distinction between sets and proper classes is not too clear. Roughly 
speaking a set is a "small" class and a proper class is exceptionally "large." The 
axiom of class formation asserts that for any statement P(y) in the first-order predi
cate calculus involving a variable y, there exists a class A such that x E A if and only 
if x is a set and the statement P(x) is true. We denote this class A by Ix I P(x)I, and 
refer to "the class of all x such that P(x)." Sometimes a class is described simply by 
listing its elements in brackets, for example, I a,b,c I. 

EXAMPLE.1 Consider the class M = IX I X is a set and X ,XI. The statement 
X + X is not unreasonable since many sets satisfy it (for example, the set of all books is 
not a book). M is a proper class. For if M were a set, then either ME M or M, M. 
But by the definition of M, ME M implies M, M and M, M implies ME M. Thus in 
either case the assumption that M is a set leads to an untenable paradox: ME M 
andM+M. 

We shall now review a number of familiar topics (unions, intersections, functions, 
relations, Cartesian products, etc.). The presentation will be informal with the men
tion of axioms omitted for the most part. However, it is also to be understood that 
there are sufficient axioms to guarantee that when one of these constructions is per
formed on sets, the result is also a set (for example, the union of sets is a set; a sub
class of a set is a set). The usual way of proving that a given class is a set is to show 
that it may be obtained from a set by a sequence of these admissible constructions. 

A class A is a subclass of a class B (written A C B) provided: 

for all x E A, x E A ==* X E B. (1) 

IThis was first propounded (in somewhat different form) by Bertrand Russell in 1902 as 
a paradox that indicated the necessity of a formal axiomatization of set theory. 
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By the axioms of extensionality and the properties of equality: 

A = B ¢::} A C Band B C A. 

A subclass A of a class B that is itself a set is called a subset of B. There are axioms to 
insure that a subclass of a set is a subset. 

The empty set or null set (denoted JZf) is the set with no elements (that is, given 
any x, x • JZf). Since the statement "x e: JZf" is always false, the implication (1) is al
ways true when A = JZf. Therefore JZf C B for every class B. A is said to be a proper 
subclass of B if A C B but A ~ JZf and A ~ B. 

The power axiom asserts that for every set A the class P(A) of all subsets of A is 
itself a set. P(A) is called the power set of A; it is also denoted 2A. 

A family of sets indexed by (the nonempty class) 1 is a collection of sets Ai, one 
for each i e: 1 (denoted {A; lie: I}). Given such a family, its union and intersection are 
defined to be respectively the classes 

U A; = {x I x e: A; for some i e: I} ; and 
ill 

nA; = {x I x e A; for every i e: I}. 
ill 

If 1 is a set, then suitable axioms insure that UAi and nAi are actually sets. If 
ill ill 

I = {I ,2, ... , n} one frequently writes Ai U A2 U··· U A .. in place of U Ai and 
ill 

similarly for intersections. If A n B = JZf, A and B are said to be disjoint. 
If A and B are classes, the relative complement of A in B is the following subclass 

ofB: 

B-A={xlxeB and x.A}. 

If all the classes under discussion are subsets of some fixed set U (called the universe 
of discussion), then U - A is denoted A' and called simply the complement of A. 
The reader should verify the following statements. 

A n (UBi) = U(A n B;) and (2) 
ill ill 

A U (nB;) = n(A U B;). 
ill ill 

(UA;)' = nA/ and (nA;)' = UA/ (DeMorgan's Laws). (3) 
ill i.l ill ill 

A U B = B ¢::} A C B ¢::} A n B = A. (4) 

3. FUNCTIONS 
Given classes A and B, a function (or map or mapping) ffrom A to B (written 

f: A ---+ B) assigns to each a e: A exactly one element b e B; b is called the value of the 
function at a or the image of a and is usually written f(a). A is the domain of the 
function (sometimes written Dom f) and B is the range or codomain. Sometimes it is 
convenient to denote the effect of the functionfon an element of A by a 1-+ f(a). Two 
functions are equal if they have the same domain and range and have the same 
value for each element of their common domain. 
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If I: A -+ B is a function and seA, the function from S to B given by 

a r+ I(a), for a e S 

is called the restriction of Ito S and is denoted liS: S -+ B. If A is any class, the 
identity function on A (denoted lA : A -+ A) is the function given by a ~ a. If SeA, 
the function lA IS: S -+ A is called the inclusion map of S into A. 

Let/: A -+ Band g : B -+ C be functions. The composite of land g is the function 
A -+ C given by 

a f--+ g( I(a» , a eA. 

The composite function is denoted g 0 lor simply gf If h : C -+ D is a third function, 
it is easy to verify that h(gn = (hg)/.If/:A-+B,then/olA =1= ho/:A-+B. 

A diagram of functions: 

A I .. B 

h'" ,/g C 

is said to be commutative if gl = h. Similarly, the diagram: 

is commutative if kh = gl. Frequently we shall deal with more complicated diagrams 
composed of a number of triangles and squares as above. Such a diagram is said to 
be commutative if every triangle and square in it is commutative. 

Let I: A -+ B be a function. If SeA, the image of Sunder f (denoted I(s» is 
the class 

{beBlb=f(a) forsome aeS}. 

The class I(A) is called the image of f and is sometimes denoted 1m f If T C B, the 
inverse image of T under f(denoted l-l(T» is the class 

{a e A I I(a) e T}. 

If T consists of a single element, T = fbI, we write I-l(b) in place of l-l(T). The 
following facts can be easily verified: 

for SeA, l-l(f(S» :::> S; 

for T C B, f(f-l(T» C T. 

For any family {To liE I} of subsets of B, 

f-l(UT;) = U l-l(T;); 
iO! i.1 

l-l(nT;) = n l-l(T;). 
i.1 iO! 

A function I: A -+ B is said to be injective (or one-to-one) provided 

for all a,a' e A, a;c a' ~ I(a);c I(a'); 

(5) 

(6) 

(7) 

(8) 
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alternatively, lis injective if and only if 

for all a,a' E A, I(a) = I(a') :=} a = a'. 

A function lis surjective (or onto) provided I(A) = B; in other words, 

for each b E B, b = I(a) for some a E A. 

A function I is said to be bijective (or a bijection or a one-to-one correspondence) if it 
is both injective and surjective. It follows immediately from these definitions that for 
any class A, the identity map IA : A -> A is bijective. The reader should verify that 
for maps I: A ->B and g :B-> C, 

I and g injective :=} glis injective; 

I and g surjective :=} glis surjective; 

g/injective :=} lis injective; 

glsurjective :=} g is surjective. 

Theorem 3.1; Let f: A - B be a junction, with A nonempty. 

(i) f is injective iland only ilthere is a map g : B -> A such that gf = lAo 

(9) 

(10) 

(11) 

(12) 

(ii) II A is a set, then f is surjective il and only ilthere is a map h : B -> A such that 
fh = lB. 

PROOF. Since every identity map is bijective, (11) and (12) prove the implica
tions (~) in (i) and (ii). Conversely if lis injective, then for each bE I(A) there is a 
unique a E A with I(a) = b. Choose a fixed ao E A and verify that the map g : B - A 
defined by 

g(b) = {a if bE/(A) and I(a) = b 
flo if b U(A) 

is such that gl= lAo For the converse of (ii) suppose lis surjective. Then/-1(b) C A 
is a nonempty set for every bE B. For each bE B choose ab E I-l(b) (Note: this re
quires the Axiom of Choice; see Section 7). Verify that the map h : B -> A defined by 
h(b) = ab is such that Ih = In. • 

The map g as in Theorem 3.1 is called a left inverse of land h is called a right in
verse of f. If a map I: A -> B has both a left inverse g and a right inverse h, then 

g = gin = g(fh) = (gf)h = IAh = h 

and the map g = h is called a two-sided inverse of f. This argument also shows that 
the two-sided inverse of a map (if it has one) is unique. By Theorem 3.1 if A is a set 
and I: A -> B a function, then 

lis bijective ~ Ihas a two-sided inverse.2 (13) 

The unique two-sided inverse of a bijection lis denoted 1-1; clearly lis a two-sided 
inverse of 1-1 so that 1-1 is also a bijection. 

,(13) is actually true even when A is a proper class; see Eisenberg [8; p. 146]. 
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4. RELATIONS AND PARTITIONS 
The axiom of pair formation states that for any two sets [elements] a,b there is a 

set P = {a,b I such that x E P if and only if x = a or x = b; if a = b then P is the 
singleton {a}. The ordered pair (a,b) is defined to be the set { {a}, {a,b} }; its first com
ponent is a and its second component is b.1t is easy to verify that (a,b) = (a',b') if and 
only if a = a' and b = b'. The Cartesian product of classes A and B is the class 

A X B = {(a,b) I aeA, beB}. 

Note that A X fO = fO = fO X B. 

A subclass R of A X B is called a relation on A X B. For example, iff: A -? B is 
a function, the graph of fis the relation R = {(a,/(a» I a e A}. Since fis a function, 
R has the special property: 

every element of A is the first component of 
one and only one ordered pair in R. 

(14) 

Conversely any relation R on A X B that satisfies (14), determines a unique function 
f: A -? B whose graph is R (simply define f(a) = b, where (a,b) is the unique 
ordered pair in R with first component a). For this reason it is customary in a formal 
axiomatic presentation of set theory to identify a function with its graph, that is, to 
define a function to be a relation satisfying (14). This is necessary, for example, in 
order to prove from the axioms that the image of a set under a function is in fact 
a set. 

Another advantage of this approach is that it permits us to define functions with 
empty domain. For since fO X B = fO is the unique subset of fO X B and vacuously 
satisfies (14), there is a unique function fO -? B. It is also clear from (14) that there 
can be a function with empty range only if the domain is also empty. Whenever con
venient we shall think of a function as a relation satisfying (14). 

A relation R on A X A is an equivalence relation on A provided R is: 

re8exive: (a,a) e R for all a e A; 

symmetric: (a,b) E R ~ (b,a) E R; 

transitive: (a,b) E Rand (b,c) e R ~ (q,c) e R. 

(15) 

(16) 

(17) 

If R is an equivalence relation on A and (a,b) e R, we say that a is equivalent to b 
under R and write a rv b or aRb; in this notation (15)-(17) become: 

arva; 

a rvb ~ brva; 

a rv band b rv c ~ a rv c. 

(15') 

(16') 

(17') 

Let R (rv) be an equivalence relation on A. If a e A, the equivalence class of a 
(denoted ii) is the class of all those elements of A that are equivalent to a; that is, 
ii = {b E A I b rv a}. The class of all equivalence classes in A is denoted AIR and 
called the quotient class of A by R. Since R is reflexive, a e ii for every a e A; hence 

ii 'jIf. fO, for every a e A; and if A is a set 

Uii = A = U ii. 
<leA ii,AIR 

(18) 

(19) 
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Also observe that 

li = E¢::>· a I"V b; (20) 

for if li = E, then a eli=> a e E => a I"V b. Conversely, if a I"V band c e li, then c l"Va 
and a I"V b => c I"V b => C e E. Thus li C E; a symmetric argument shows that E C li 
and therefore li = E. Next we prove: 

for a,b e A, either li n E = 0 or li = E. (21) 

If li n E ~ 0, then there is an element c e li n E. Hence c I"V a and c I"V b. Using 
symmetry, transitivity and (20) we have: a I"V c and c I"V b => a I"V b => li = E. 

Let A be a nonempty class and {Ai lie I} a family of subsets of A such that: 

Ai ~ 0, for each i e I; 
U Ai = A; 
ill 

Ai n Aj = 0 for all i ~ j e I; 

then I Ai lie I} is said to be a partition of A. 

Theorem 4.1. If A is a nonempty set, then the assignment R ~ AIR defines a bijec
tion from the set E(A) of all equivalence relations on A onto the set Q(A) of all parti
tions of A. 

SKETCH OF PROOF. If R is an equivalence relation on A, then the set AIR 
of equivalence classes is a partition of A by (18), (19), and (21) so that R ~ AIR de
fines a function f: E(A) --+ Q(A). Define a function g : Q(A) --+ E(A) as follows. If 
S = I Ai lie I} is a partition of A, let g(S) be the equivalence relation on A given by: 

a I"V b ¢::> a e Ai and be Ai for some (unique) i e I. (22) 

Verify that g(S) is in fact an equivalence relation such that li = Ai for a e Ai. Com
plete the proof by verifying that fg = lQ(A) and gf= lECA). Then f is bijective 
by (13). • 

5. PRODUCTS 
Note. In this section we deal only with sets. No proper classes are involved. 

Consider the Cartesian product of two sets Al X A 2• An element of Al X A2 is a 
pair (al,a2) with ai e Ai, i = 1,2. Thus the pair (al,a2) determines a function f: {1,2} 
--+ Al U A2 by:f(l) = al,J(2) = a2. Conversely, everyfunctionf: {l,2}--+A1 U A2 
with the property that f(l) e AI and f(2) e A2 determines an element (al,a2) = 
(f(1),J(2» of AI X A2. Therefore it is not difficult to see that there is a one-to-one 
correspondence between the set of all functions of this kind and the set AI X A 2• 

This fact leads us to generalize the notion of Cartesian product as follows. 

Definition 5.1. Let I Ai lie I} be a family ofsets indexed by a (nonempty) set I. The 
(Cartesian) product of the sets Ai is the set of all functions f : 1--+ U Ai such that 

i,l 

f(i) e Ai for all i E I. It is denoted II A. 
i.l 



8 PREREQUISITES AND PRELIMINARIES 

If 1= {l,2, ... , n}, the product IT Ai is often denoted by Al X A2 X ... X An 
i£l 

and is identified with the set of all ordered n-tuples (a l ,a2, ... , an), where ai e Ai for 
i = 1,2, ... , n just as in the case mentioned above, where 1= {1,2}. A similar 
notation is often convenient when I is infinite. We shall sometimes denote the 
functionfe IT Ai by {a;}/£1 or simply {ai}, wheref(z) = ai e Ai for each i e I. 

i£l 

If some Ai = 0, then II Ai = 0 since there can be no function f: 1---+ U Ai 
ill 

such that fO) E Ai' 
If {Ai liE II and {Hi liE l} are families of sets such that Hi C Ai for each i E I, 

then every function 1---+ U Hi may be considered to be a function 1---+ U Ai. There-
hl hl 

fore we consider II Hi to be a subset of II Ai. 
ill iol 

Let II Ai be a Cartesian product. For each k E I define a map 71'k : II Ai ---+ Ak 
hl hl 

by fl-> f(k), or in the other notation, {ad 1-+ ak. 71'k is called the (canonical) projec
tion of the product onto its kth component (or factor). If every Ai is nonempty, then each 
1T. is surjective (see Exercise 7.6). 

The product II Ai and its projections are precisely what we need in order 
ill 

to prove: 

Theorem 5.2. Let {Ai I i ell be a family of sets indexed by I. Then there exists a set 
D, together with a family of maps {7I'i : D ---+ A; liE II with the following property: for 
any set C andfamily of maps {'Pi: C ---+ Ai liE II, there exists a unique map 'P : C---+ D 
such that 71'i'P = 'Pdor all i E I. Furthermore, D is uniquely determined up to a bijection. 

The last sentence means that if D' is a set and {71'/ : D' ---+ Ai liE II a family of 
maps, which have the same property as D and { 71'i I, then there is a bijection D ---+ D'. 

PROOF OF 5.2. (Existence) Let D = II Ai and let the maps 71'i be the projec
i.I 

tions onto the ith components. Given C and the maps 'Pi, define 'P : C ---+ II Ai by 
i.I 

e 1-+ /C, where /CW = 'Pi(e) e Ai. It follows immediately that 71'i'P = 'Pi for all i e I. To 
show that 'P is unique we assume that 'P' : C ---+ II Ai is another map such that 

iaI 
71'i'P' = 'Pi for all i e I and prove that 'P = 'P'. To do this we must show that for each 
e e C, 'P(e), and 'P'(e) are the same element of II Ai - that is, 'P(e) and 'P'(e) agree as 

i.I 
functions on I: ('P(e»)(i) = ('P'(e»)(i) for all i e I. But by hypothesis and the definition 
of 71'i we have for every i e I: 

('P'(e»(i) = 71'i'P'(e) = 'Pi(e) = fcCi) = ('P(e»(i). 

(Uniqueness) Suppose D' (with maps 71'/ : D' ---+ Ai) has the same property as 
D = II Ai. If we apply this property (for D) to the family of maps {71'/ : D' ---+ Ai I 

ill 

and also apply it (for D') to the family {7I"i : D ---+ Ad, we obtain (unique) maps 
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cp : D' ~ D and y; : D ~ D' such that the following diagrams are commutative for 
each i E I: 

Combining these gives for each i E 1 a commutative diagram 

Thus cp1/; : D ~ D is a map such that 7ri( cp1/;) = 7ri for all i E I. But by the proof above, 
there is a unique map with this property. Since the map ID : D ~ D is also such that 
7ri1D = 7ri for all i E I, we must have cp1/; = ID by uniqueness. A similar argument 
shows that y;cp = ID'. Therefore, cp is a bijection by (13) and D = II Ai is uniquely 

i.I 

determined up to a bijection. • 

Observe that the statement of Theorem 5.2 does not mention elements; it in
volves only sets and maps. It says, in effect, that the product II Ai is characterized 

i.I 

by a certain universal mapping property. We shall discuss this concept with more pre
cision when we deal with categories and functors below. 

6. THE INTEGERS 
We do not intend to give an axiomatic development of the integers. Instead we 

assume that the reader is thoroughly familiar with the set Z of integers, the set 
N = {0,1,2, ... } of nonnegative integers (or natural numbers) the setN* = {l,2, ... } 
of positive integers and the elementary properties of addition, multiplication, and 
order. In particular, for all a,b,c E Z: 

(a + b) + c = a + (b + c) and (ab)c = a(bc) (associative laws); (23) 

a + b = b + a and ab = ba (commutative laws); (24) 

a(b + c) = ab + ac and (a + b)c = ac + be (distributive laws); (25) 

a + 0 = a and al = a (identity elements); (26) 

for each a E Zthere exists -a E Z such that a + (-a) = 0 (additive inverse); (27) 
we write a - b for a + (-b). 

ab = 0 <=? a = 0 or b = 0; 

a < b =} a + c < b + c for all c E Z; 

a < b =} ad < bd for all dE N*. 

(28) 

(29) 

(30) 

We write a < band b > a interchangeably and write a ~ b if a < b or a = b. The 
absolute value lal of a E Z is defined to be a if a ;::: 0 and -a if a < O. Finally we 
assume as a basic axiom the 



10 PREREQUISITES AND PRELIMINARIES 

Law of Well Ordering. Every nonempty subset S of N contains a least element (that 
is, an element bE S such that b :$ c for all c E S). 

In particular, 0 is the least element of N. 
In addition to the above we require certain facts from elementary number theory, 

some of which are briefly reviewed here. 

Theorem 6.1. (Principle of Mathematical Induction) IfS is a subset of the set N of 
natural numbers such that 0 E S and either 

(i) n E S =} n + 1 E S for all n E N; 

or 

(ii) m E S for all 0:$ m < n =} n E S for all n EN: 

then S = N. 

PROOF. If N - S ~ 9.5, let n ~ 0 be its least element. Then for every m < n, 
we must have m. N - S and hence mE S. Consequently either (i) or (ii) implies 
n E S, which is a contradiction. Therefore N - S = 9.5 and N = S. • 

REMARK. Theorem 6.1 also holds with 0, N replaced by c, Me = {X E Z I X ~ c} 
for any c E Z. 

In order to insure that various recursive or inductive definitions and proofs in the 
sequel (for example, Theorems 8.8 and 111.3.7 below) are valid, we need a technical 
result: 

Theorem 6.2. (Recursion Theorem) IfS is a set, a E S and for each n E N, fn : S -> S is 
afunction, then there is a unique function cp : N -> S such that cp(O) = a and cp(n + 1) = 

fn(cp(n» for every n E N. 

SKETCH OF PROOF. We shall construct a relation R on N X S that is the 
graph of a function cp : N -> S with the desired properties. Let 9 be the set of all 
subsets Y of N X S such that 

(O,a) E Y; and (n,x) E Y =} (n + 1,f,.(x» E Y for all n E N. 

Then 9 ~ 9.5 since N X S E g. Let R = n Y; then REg. Let M be the sub-
Y.S 

set ofN consisting of all those n E N for which there exists a unique Xn E S such that 
(n,x,,) E R. We shall prove M = N by induction. If 0 • M, then there exists (O,b) E R 
with b ~ a and the set R - {(O,b)} eN X S is in g. Consequently R = n Y 

Y.g 
c: R - {(O,b)}, which is a contradiction. Therefore, 0 E M. Suppose inductively that 
n E M (that is, (n,x.) E R for a unique x. E S). Then (n + IJ.(x.» E R also. If 
(n + I,c) E R with c ~ J.(x.) then R - {en + I ,c)} a 9 (verify!), which leads to a 
contradiction as above. Therefore, Xn+l = f,.(x,,) is the unique element of S such 
that (n + l,x,,+l) a R. Therefore by induction (Theorem 6.1) N = M, whence the 
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assignment n ~ x" defines a function cp: N -+ S with graph R. Since (O,a) e R 
we must have cp(O) = a. For each n e N, (n,x,,) = (n,cp(n» e R and hence 
(n + 1,.fn(cp(II» e R since Reg. But (n + 1,x"./-I) e R and the uniqueness of X,,+I 
imply that cp(n + 1) = X,,+I = .fn(cp(n». • 

If A is a nonempty set, then a sequence in A is a function N -+ A. A sequence is 
usually denoted (ao,a l , ••• ) or (a;};eN or (a;), where a; e A is the image of i e N. 
Similarly a function N* - A is also called a sequence and denoted (a1 ,a2, ... ) or 
(a;};eN. or (a;); this will cause no confusion in context. 

Theorem 6.3. (Division Algorithm) If a,b, e Z and a ~ 0, then there exists unique 
integers q andr such that b = aq + r, and 0 :5 r < lal. 

SKETCH OF PROOF. Show that the set S = {b - ax I xe Z, b - ax ~ 0 I is 
a nonempty subset of N and therefore contains a least element r = b - aq (for some 
q e Z). Thus b = aq + r. Use the fact that r is the least element in S to show 
o :5 r < lal and the uniqueness of q,r. • 

We say that an integer a ~ 0 divides an integer b (written a I b) if there is an integer 
k such that ak = b. If a does 110t divide b we write a ( b. 

Definition 6.4. The positive integer c is said to be the greatest common divisor of the 
integers al,a2, ... , an if" 

(1) c I ai for 1:5 i :5 n; 
(2) d e Z and d I ai for 1:5 i :5 n => d I c. 

Theorem 6.5. If aJ,a2, ... ,an are integers, not all 0, then (aJ,a2, ... , an) exists. 
Furthermore there are integers kJ,k2, ... , kn such that 

SKETCH OF PROOF. Use the Division Algorithm to show that the least posi
tive element of the nonempty set S = {xlal + X2U2 + ... + x"a" I Xi e Z, L xiai > 0 I 

• 
is the greatest common divisor of aI, ... , an. For details see Shockley [51,p.10j. • 

The integers aJ,a2, ... , an are said to be relatively prime if (aJ,a2, ... , a,,) = 1. A 
positive integer p > 1 is said to be prime if its only divisors are ± 1 and ±p. Thus if p 
is prime and a e Z, either (a,p) = p (if p I a) or (a,p) = 1 (if p( a). 

Theorem 6.6. If a and b are relatively prime integers and a I bc, then a I c. If P is 
prime and pi ala2' . ·an , then p I ai for some i. 
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SKETCH OF PROOF. By Theorem 6.5 1 = ra + sb, whence c = rac + sbc. 
Therefore a I c. The second statement now follows by induction on n. • 

Theorem 6.7. (Fundamental Theorem of Arithmetic) Any positive integer n > 1 may 
be written uniquely in the form n = PltlP2t2 •• 'Pktk, where PI < P2 < ... < Pk are 
primes and ti > 0 for all i. 

The proof, which proceeds by induction, may be found in Shockley [51, p.17J. 
Let m > 0 be a fixed integer. If a,b E Z and m I (a - b) then a is said to be con

gruent to b modulo m. This is denoted by a == b (mod m). 

Theorem 6.S. Let m > 0 be an integer and a,b,c,d E Z. 

(i) Congruence modulo m is an equivalence relation on the set of integers Z, which 
has precisely m equiv'alence classes. 

(ii) If a == b (mod m) and c == d (mod m), then a + c == b + d (mod m) and 
ac == bd (mod m). 

(iii) Ifab == ac (mod m) and a and m are relatively prime, then b == c (modm). 

PROOF. (i) The fact tht congruence modulo m is an equivalence relation is an 
easy consequence of the appropriate definitions. Denote the equivalence class of an 
integer a by li and recall property (20), which can be stated in this context as: 

li = h ¢::} a == b (mod m). (20') 

Given any a E Z, there are integers q and r, with 0 ~ r < m, such that a = mq + r. 
Hence a - r = mq and a == r (mod m); therefore, li = r by (20'). Since a was ar
bitrary and 0 ~ r < m, it follows that every equivalence class must be one of 
0,1,2,3, ... ,(i1i""'=J). However, these m equivalence classes are distinct: for if 
o ~ i < j < m, then 0 < U - i) < m and m -i'U - i). Thus i t= j (mod m) and hence 
i "e. j by (20'). Therefore, there are exactly m equivalence classes. 

(ii) We are given m I a - band m I c - d. Hence m divides (a - b) + (c - d) 
= (a + c) - (b + d) and therefore a + c == b + d (mod m). Likewise, m divides 
(a - b)c + (c - d)b and therefore divides ac - bc + cb - db = ac - bd; thus 
ac == bd (mod m). 

(iii) Since ab == ac (mod m), m I a(b - c). Since (m,a) = 1, m I b - c by Theo
rem 6.6, and thus b == c (mod m). • 

7. THE AXIOM OF CHOICE, ORDER, AND ZORN'S LEMMA 

Note. In this section we deal only with sets. No proper classes are involved. 

If I "e. )25 and {Ai liE II is a family of sets such that Ai "e. )25 for all i E I, then we 
would like to know that IT Ai "e. )25. It has been proved that this apparently in-

i.I 

nocuous conclusion cannot be deduced from the usual axioms of set theory (al
though it is not inconsistent with them - see P. J. Cohen [59)). Consequently we 
shall assume 
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The Axiom of Choice. The product of a family ofnonempty sets indexed by a non
empty set is nonempty. 

See Exercise 4 for another version of the Axiom of Choice. There are two propo
sitions equivalent to the Axiom of Choice that are essential in the proofs of a number 
of important theorems. In order to state these equivalent propositions we must 
introduce some additional concepts. 

A partially ordered set is a nonempty set A together with a relation R on A X A 
(called a partial ordering of A) which is reflexive and transitive (see (15), (17) in 
section 4) and 

antisymmetric: (a,b) E Rand (b,a) E R :=} a = b. (31) 

If R is a partial ordering of A, then we usually write a =:;; b in place of (a,b) E R. In 
this notation the conditions (15), (17), and (31) become (for all a,b,c E A): 

a =:;; a; 
a =:;; band b =:;; c :=} a =:;; c; 

a =:;; band b =:;; a :=} a = b. 

We write a < b if a =:;; b and a ~ b. 
Elements a,b E A are said to be comparable, provided a =:;; b or b =:;; a. However, 

two given elements of a partially ordered set need not be comparable. A partial 
ordering of a set A such that any two elements are comparable is called a linear 
(or total or simple) ordering. 

EXAMPLE. Let A be the power set (set of all subsets) of {I ,2,3,4,5}. Define 
C =:;; D if and only if C C D. Then A is partially ordered, but not linearly ordered 
(for example, {1,2} and /3,4} are not comparable). 

Let (A, ~) be a partially ordered set. An element a E A is maximal in A if for every 
c E A which is comparable to a, c ~ a; in other words, for all c E A, a =:;; c:=} a = c. 
Note that if a is maximal, it need not be the case that c =:;; a for all c E A (there may 
exist c E A that are not comparable to a). Furthermore, a given set may have many 
maximal elements (Exercise 5) or none at all (for example, Z with its usual ordering). 
An upper bound of a nonempty subset B of A is an element d E A such that b ~ d for 
every bE B. A nonerripty subset B of A that is linearly ordered by ~ is called a chain 
in A. 

Zorn's Lemma. If A is a 1I0nempty partially ordered set such that every chain in A 
has an upper bound in A, then A contains a maximal element. 

Assuming that all the other usual axioms of set theory hold, it can be proved that 
Zorn's Lemma is true if and only if the Axiom of Choice holds; that is, the two are 
equivalent - see E. Hewitt and K. Stromberg [57; p. 14]. Zorn's Lemma is a power
ful tool and will be used frequently in the sequel. 

Let B be a nonempty subset of a partially ordered set (A, ~). An element c E B is a 
least (or minimum) element of B provided c ~ b for every bE B. If every nonempty 
subset of A has a least element, then A is said to be well ordered. Every well-ordered 
set is linearly ordered (but not vice versa) since for all a,b E A the subset {a,b} must 
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have a least element; that is, a ~ b or b ~ a. Here is another statement that can be 
proved to be equivalent to the Axiom of Choice (see E. Hewitt and K. Stromberg 
[57; p.14]). 

The Well Ordering Principle. If A is a nonempty set, then there exists a linear 
ordering ~ of A such that (A,~) is well ordered. 

EXAMPLFS. We have already assumed (Section 6) that the set N of natural 
numbers is well ordered. The set Z of all integers with the usual ordering by magni
tude is linearly ordered but not well ordered (for example, the subset of negative 
integers has no least element). However, each of the following is a well ordering of Z 
(where by definition a < b ¢:} a is to the left of b): 

(i) 0,1,-1,2,-2,3,-3, ... , n,-n, ... ; 
(ii) 0,1,3,5,7, ... ,2,4,6,8, ... , -1,-2,-3,-4, ... ; 

(iii) 0,3,4,5,6, ... , -1,-2,-3,-4, ... ,1,2. 

These orderings are quite different from one another. Every nonzero element a in 
ordering (i) has an immediate predecessor (that is an element c such that a is the least 
element in the subset I x I c < x I). But the elements -1 and 2 in ordering (ii) and -1 
and 1 in ordering (iii) have no immediate predecessors. There are no maximal ele
ments in orderings (i) and (ii), but 2 is a maximal element in ordering (iii). The 
element ° is the least element in all three orderings. 

The chief advantage of the well-ordering principle is that it enables us to extend 
the principle of mathematical induction for positive integers (Theorem 6.1) to any 
well ordered set. 

Theorem 7.1. (Principle of Transfinite Inductioll) If B is a subset of a well-ordered 
set (A,~) such that for every a e A, 

Ic e A I c < al C B =? a e B, 

then B = A. 

PROOF. If A - B:;6 0, then there is a least element a e A-B. By the defini
tions of least element and A - B we must have Ice A I c < a I C B. By hypothesis 
then, a e B so that a e B n (A - B) = 0, which is a contradiction. Therefore, 
A - B = 0 and A = B. • 

EXERCISES 
1. Let (A, ~) be a partially ordered set and B a nonempty subset. A lower bound of B 

is an element d e A such that d ~ b for every b e B. A greatest lower bound (g.l.b.) 
of B is a lower bound do of B such that d ~ do for every other lower bound d of B. 
A least upper bound O.u.b.) of B is an upper bound to of B such that to ~ t for 
every other upper bound t of B. (A,~) is a lattice if for all a,b e A the set {a,bl 
has both a greatest lower bound and a least upper bound. 
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(a) If S .,t. 0, then the power set P(S) ordered by sf't-theoretic inclusion is a 
lattice, which has a unique maximal element. 

(b) Give an example of a partially ordered set which is not a lattice. 
(c) Give an example of a lattice \\lith no maximal element and an example of 

a partially ordered set with two maximal elements. 

2. A lattice (A,::;)(see Exercise 1) is said to be complete if every nonempty subset of 
A has both a least upper bound and a greatest lower bound. A map of partially 
ordered sets f: A ---> B is said to preserve order if a ::; a' in A implies f(a) ::; f(a') 
in B. Prove that an order-preserving map fof a complete lattice A into itself has 
at least one fixed element (that is, an a e A such that f(a) = a). 

3. Exhibit a well ordering of the set Q of rational numbers. 

4. Let S be a set. A choice function for S is a function f from the set of all nonempty 
subsets of S to S such that f(A) e A for all A .,t. 0, A C S. Show that the Axiom 
of Choice is equivalent to the statement that every set S has a choice function. 

5. Let S be the set of all points (x,y) in the plane with y ::; O. Define an ordering 
by (X"YI) ::; (X2,Y2) ~ Xl = X2 and YI ::; Y2. Show that this is a partial ordering 
of S, and that S has infinitely many maximal elements. 

6. Prove that if all the sets in the family {Ai lie I.,t. 01 are nonempty, then each 
of the projections 'Irk : II Ai ---> Ak is surjective. 

ieI 

7. Let (A,::;) be a linearly ordered set. The immediate successor of a e A (if it exists) 
is the least element in the set {x e A I a < X I. Prove that if A is well ordered by 
::;, then at most one element of A has no immediate successor. Give an example 
of a linearly ordered set in which precisely two elements have no immediate 
successor. 

8. CARDINAL NUMBERS 

The definition and elementary properties of cardinal numbers will be needed fre
quently in the sequel. The remainder of this section (beginning with Theorem 8.5), 
however, will be used only occasionally (Theorems 11.1.2 and IV.2.6; Lemma V.3.5; 
Theorems V.3.6 and VI.1.9). It may be omitted for the present, if desired. 

Two sets, A and B, are said to be equipollent, ifthere exists a bijective map A ---> B; 
in this case we write A '" B. 

Theorem 8.1. Equipollence is an equivalence relation on the class S of all sets. 

PROOF. Exercise; note that 0 '" 0 since 0 C 0 X 0 is a relation that is 
(vacuously) a bijective function. 3 • 

Let 10 = 0 and for each n e N* let In = {I ,2,3, ... ,n I. It is not difficult to prove 
that 1m and In are equipollent if and only if m = n (Exercise 1). To say that a set A 

3See page 6. 
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has precisely n elements means that A and In are equipollent, that is, that A and In are 
in the same equivalence class under the relation of equipollence. Such a set A (with 
A '" In for some unique n ~ 0) is said to be finite; a set that is not finite is infinite. 
Thus, for a finite set A, the equivalence class of A under equipollence provides an 
answer to the question: how many elements are contained in A? These considerations 
motivate 

Definition 8.2. The cardinal number (or cardinality) of a set A, denoted IAI, is the 
equivalence class of A under the equivalence relation of equipollence.IAI is an infinite or 
finite cardinal according as A is an infinite or finite set. 

Cardinal numbers will also be denoted by lower case Greek letters: ex.,fJ,'}', etc. 
For the reasons indicated in the preceding paragraph we shall identify the integer 
n ~ 0 with the cardinal number Ilnl and write Ilnl = n, so that the cardinal number 
of a finite set is precisely the number of elements in the set. 

Cardinal numbers are frequently defined somewhat differently than we have done 
so that a cardinal number is in fact a set (instead of a proper class as in Definition 8.2). 
We have chosen this definition both to save time and because it better reflects the 
intuitive notion of "the number of elements in a set." No matter what definition of 
cardinality is used, cardinal numbers possess the following properties (the first two 
of which are, in our case, immediate consequences of Theorem 8.1 and Defini
tion 8.2). 

(i) Every set has a unique cardinal number; 
(ii) two sets have the same cardinal number if and only if they are equipollent 

(IAI = IBI <=} A '" B); 
(iii) the cardinal number of a finite set is the number of elements in the set. 

Therefore statements about cardinal numbers are simply statements about equipol
lence of sets. 

EXAMPLE. The cardinal number of the set N of natural numbers is customarily 
denoted No (read "aleph-naught"). A set A of cardinality No (that is, one which is 
equipollent to N) is said to be denumerable. The set N* , the set Z of integers, and the 
set Q of rational numbers are denumerable (Exercise 3), but the set R of real numbers 
is not denumerable (Exercise 9). 

Definition 8.3. Let ex. and fJ be cardinal numbers. The sum ex. + fJ is defined to be the 
cardinal number IA UBI, where A and B are disjoint sets such that IAI = ex. and 
IBI = fJ. The product ex.fJ is defined to be the cardinal number IA X BI· 

It is not actually necessary for A and B to be disjoint in the definition of the 
product ex.fJ (Exercise 4). By the definition of a cardinal number ex. there always 
exists a set A such that IAI = ex.. It is easy to verify that disjoint sets, as required for 
the definition of ex. + fJ, always exist and that the sum ex. + fJ and product ex.fJ are in
dependent of the choice of the sets A,B (Exercise 4). Addition and multiplication of 
cardinals are associative and commutative, and the distributive laws hold (Exercise 
5). Furthermore, addition and multiplication of finite cardinals agree with addition 
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and multiplication of the nonnegative integers with which they are identified; for if 
A has m elements, B has n elements and A n B = )25, then A U B has m + n ele
ments and A X B has mn elements (for more precision, see Exercise 6). 

Definition B.4. Let a,{3 be cardinal numbers and A,B sets such that IAI = a, IBI = {3. 
a irl€ss than or equal to {3, denoted a :::; {3 or {3 ~ a, if A is equipollent with a subset of 
B (that is, there is an injective map A -t B). a is strictly less than {3, denoted a < {3 
or {3 > a, if a ~ {3 and a ~ {3. 

It is easy to verify that the definition of :::; does not depend on the choice of A 
and B (Exercise 7). It is shown in Theorem 8.7 that the class of all cardinal numbers 
is linearly ordered by :::;. For finite cardinals:::; agrees with the usual ordering ofthe 
nonnegative integers (Exercise 1). The fact that there is no largest cardinal number is 
an immediate consequence of 

Theorem B.5. If A is a set and P(A) its power set, then IAI < IP(A)I. 

SKETCH OF PROOF. The assignment a~ {a} defines an injective map 
A ~ P(A) so that IA I :::; IP(A)I. If there were a bijective map f: A ~ P(A), then for 
some ao E A, f(ao) = B, where B = {a E A I a tf(a)} C A. But this yields a con
tradiction: ao EBandao ,B. Therefore IAI ;= IP(A)I and hence IAI < IP(A)I. • 

REMARK. By Theorem 8.5, ~o = INI < IP(N)I. It can be shown that 
IP(N)I = IRI, where R is the set of real numbers. The conjecture that there is no 
cardinal number {3 such that tot < (3 < IP(N) I = IRI is called the Continuum Hy
pothesis. It has been proved to be independent of the Axiom of Choice and of the 
other basic axioms of set theory; see P. J. Cohen [59). 

The remainder of this section is devoted to developing certain facts that will be 
needed at several points in the sequel (see the first paragraph of this section). 

Theorem B.6. (Schroeder-Bernstein) If A and B are sets such that IAI :::; IBI and 
IBI :::; IAI, then IAI = IBI· 

SKETCH OF PROOF. By hypothesis there are injective maps f: A ~ Band 
g : B ~ A. We shU use fand g to construct a bijection h : A ~ B. This will imply 
that A roo.J B and hence IAI = IB!. If a E A, then since g is injective the set g-l(a) is 
either empty (in which case we say that a is parenr1ess) or consists of exactly one ele
ment bE B (in which case we write g-l(a) = b and say that b is the parent of a). 
Similarly for bE B, we have either f-1(b) = )25 (b is parentless) or f-1(b) = a' E A 
(a' is the parent of b). If we continue to trace back the "ancestry" of an element a E A 
in this manner, one of three things must happen. Either we reach a parentless ele
ment in A (an ancestor of a E A), or we reach a parentless element in B (an ancestor 
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of a), or the ancestry of a e A can be traced back forever (infinite ancestry). Now de
fine three subsets of A [resp. B] as follows: 

Al = {a e A I a has a parentless ancestor in A} ; 

A2 = {a e A I a has a parentless ancestor in B}; 

A3 = {a e A I a has infinite ancestry} ; 

Bl = {b e Bib has a parentless ancestor in A} ; 

B2 = {b e Bib has a parentless ancestor in B} ; 

B3 = {b e Bib has infinite ancestry}. 

Verify that the Ai [resp. Bi] are pairwise disjoint, that their union is A [resp. B]; that 
fl Ai is a bijection Ai ~ Bi for i = 1, 3; and that g I B2 is a bijection B2 ~ A2. Con
sequently the map h : A ~ B given as follows is a well-defined bijection: 

Theorem B.7. The class of all cardinal numbers is linearly ordered by :::;. If a and fJ 
are cardinal numbers, then exactly one of the following is true: 

a < fJ; a = fJ; fJ < a (Trichotomy Law). 

SKETCH OF PROOF. It is easy to verify that:::; is a partial ordering. Let a,fJ 
be cardinals and A,B be sets such that IAI = a, IBI = fJ. We shall show that:::; is a 
linear ordering (that is, either a :::; fJ or fJ :::; a) by applying Zorn's Lemma to the set 
5" of all pairs (f,x), where X C A and f: X ~ B is an injective map. Verify that 
5" -,,6 )25 and that the ordering of 5" given by (ii,Xl) :::; (12,X2) if and only if Xl C X2 
and 121 Xl = ii is a partial ordering of 5". If {(Ji,Xi) lie I} is a chain in 5", let 
X = U Xi and define f:X ~ B by f(x) = j;(x) for x eXi. Show that fis a well-de-w . 
fined injective map, and that (f,X) is an upper bound in 5" of the given chain. There
fore by Zorn's Lemma there is a maximal element (g,X) of 5". We claim that either 
X = A orIm g = B. For if both ofthese statements were false we could find a e A - X 
and be B - 1m g and define an injective map h : X U {a} ~ B by h(x) = "g(x) for 
xeX and h(a) = b. Then (h,X U I al) e 5" and (g,X) < (h,X U {aI), which contra
dicts the maximality of (g,X). Therefore either X = A so that I A I :::; IBI or 1m g = B 

in which case the injective map B ~ X C A shows that IBI :::; IA I. Use these facts, the 
Schroeder-Bernstein Theorem 8.6 and Definition 8.4 to prove the Trichotomy 
Law .• 

REMARKS. A family of functions partially ordered as in the proof of Theorem 
8.7 is said to be ordered by extension. The proof of the theorem is a typical example 
of the use of Zorn's Lemma. The details of similar arguments in the sequel will fre
quently be abbreviated. 

Theorem B.B. Every infinite set has a denumerable subset. In particular, Nu :::; a for 
every infinite cardinal number a. 



8. CARDINAL NUMBERS 19 

SKETCH OF PROOF. If B is a finite subset of the infinite set A, then A - B is 
nonempty. For each finite subset B of A, choose an element XB e A - B (Axiom of 
Choice). Let F be the set of all finite subsets of A and define a map f: F ---+ F by 
feB) = B U IXB). Choose aeA. By the Recursion Theorem 6.2 (with In = ffor 
all n) there exists a function cp : N :-+ F such that 

cp(O) = la) and <p(n + 1) = f(cp(n» = <p(n) U IXI'Cn») (n ~ 0). 

Let g : N ---+ A be the function defined by 

g(O) = a; g(1) = XI'CO) = X{a}; ••• ; g(n + 1) = XI'Cn);' ••• 

Use the order properties of N and the following facts to verify that g is injective: 

(i) g(n) e <p(n) for all n ~ 0; 
(ii) g(n), <p(n - 1) for all n ~ 1; 

(iii) g(n) ,<p(m) for all m < n. 

Therefore 1m g is a subset of A such that 11m gl = INI = ~o. • 

Lemma 8.9. IfAisaninfinitesetandFafinitesetthenlA U FI = IAI.Inparticular, 
a + n = a for every infinite cardinal number a and ecery natural number (finite 
cardinal) n. 

SKETCH OF PROOF. It suffices to assume A n F = 0 (replace F by F - A 
if necessary). If F = I bJ,b2, ••• , bn ) and D = I Xi lie N*) is a denumerable subset of 
A (Theorem 8.8), verify that f: A ---+ AUF is a bijection, where fis given by 

jbi for x=xi,l~i~n; 
f(x) = Xi-n for X = Xi, i > n; 

X for X e A-D. • 

Theorem 8.10. If a and (3 are cardinal numbers such that (3 ~ a and a is infinite, 
then a + (3 = a. 

SKETCH OF PROOF. It suffices to prove a + a = a (simply verify that 
a ~ a + (3 ~ a + a = a and apply the Schroeder-Bernstein Theorem to conclude 
a + (3 = a). Let A be a set with IAI = a and let 5' be the set of aU pairs (f,X), 
where X C A and f: X X 10,1) ---+ X is a bijection. Partially order 5' by extension 
(as in the proof of Theorem 8.7) and verify that the hypotheses of Zorn's Lemma are 
satisfied. The only difficulty is showing that 5' -.e 0. To do this note that the map 
N X 10,1) ---+ N given by (n,O) f-> 2n and (n, 1) f-> 2n + 1 is a bijection. Use this fact 
to construct a bijection f: D X 10,1) ---+ D, where D is a denumerable subset of A 
(that is, IDI = INI; see Theorem 8.8). Therefore by Zorn's Lemma there is a maximal 
element (g,C) e 5'. 

Clearly Co = I (c,O) Ice C) and Cl = I (c,l) Ice C) are disjoint sets such that 
ICol = let = ICd and Cx 10,1) = Co U C1• Themapg:CX 10,1)---+Cisa bi
jection. Therefore by Definition 8.3, 

let = IC X 10,1)1 = ICo U Cd = ICol + ICll = let + let· 



20 PREREQUISITES AND PRELIMINARIES 

To complete the proof we shall show that Ie! = a. If A - C were infinite, it would 
contain a denumerable subset B. by Theorem 8.8, and as above, there would be a bi
jection r : B X 10,1) --> B. By combining r with g, we could then construct a bijec
tion h : (C U B) X 10,1) --> CUB so that (g,C) < (h,C U B)e 5", which would 
contradict the maximality of (g,C). Therefore A - C must be finite. Since A is in
finite and A = C U (A - C), C must also be infinite. Thus by Lemma 8.9, ICI = 

IC U (A - C)I = IAI = a. • 

Theorem 8.11. If a and p are cardinal numbers such that 0 1= P s a and a is 
infinite, then ap = a; in particular, aNo = a and if p is finite NaP = No. 

SKETCH OF PROOF. Since a .:::; afJ .:::; aa it suffices (as in the proof of Theo
rem 8.10) to prove aa = a. Let A be an infinite set with IAI = a and let 5" be the set 
of all bijections f: X X X --> X, where X is an infinite subset of A. To show that 
5" rf' )25, use the facts that A has a denumerable subset D (so that IDI = INI = IN*I) 
and that the map N* X N* --> N* given by (m,n) ~ 2m- 1(2n - 1) is a bijection. 
Partially order 5" by extension and use Zorn's Lemma to obtain a maximal element 
g : B X B --> B. By the definition of g, IBIIBI = IB X BI = IBI. To complete the proof 
we shall show that IBI = IAI = a. 

Suppose IA - BI > IBI. Then by Definition 8.4 there is a subset C of A - B such 
that ICI = IBI. Verify that Ie! = IBI = IB X BI = IB X CI = IC X BI = IC xCi 
and that these sets are mutually disjoint. Consequently by Definition 8.3 and Theo
rem 8.10 I(B U C) X (B U C)i = I(B X B) U (B X C) U (C X B) U (C X C)i 
= IB X BI + IB xCi + IC X BI + IC xCi = (IBI + IBI) + (ICI + Ie!) = IBI + 
ICI = IB U CI and there is a bijection (B U C) X (B U C) --> (B U C), which con
tradicts the maximality of gin 5". Therefore, by Theorems 8.7 and 8.10 IA - B I,;;; IB I 
and IBI = IA - BI + IBI = I(A - B) UBI = IAI = a .• 

Theorem 8.12. Let A be a set and for each integer n ~ 1 let An = A X A X· .. X A 
(n factors). 

(i) If A is finite, then IAnl = lAin, and if A is infinite, then IAnl = IAI. 
(ii) I U NI = ~oIAI. 

neN* 

SKETCH OF PROOF. (i) is trivial if IAI is finite and may be proved by induc
tion on n if IAI is infinite (the case n = 2 is given by Theorem 8.11). (ii) The sets 
An (n ~ 1) are mutually disjoint. If A is infinite, then by (i) there is for each n a bijec
tionf,. : An --> A. The map U An --> N* X A, which sends U E An onto (n,f,.(u», is a 

neN· 

bijection. Therefore I U Ani = IN* X AI = IN*IIAI = ~oIAl. (ii) is obviously true 
naN* 

if A = )25. Suppose, therefore, that A is nonempty and finite. Then each An is non
empty and it is easy to show that No = IN*I .:::; I U Ani. Furthermore each An is 

neN* 

finite and there is for each n an injective map gn : An --> N*. The map U An--> 
noN* 

N* X N*, which sends U E An onto (n,gn(U» is injective so that I U Ani.:::; IN* X N*I 
noN· 

= IN"'I = ~o by Theorem 8.11. Therefore by the Schroeder-Bernstein Theorem 
I U Ani = ~o. But ~o = ~~IAI since A is finite (Theorem 8.11). • 
noN* 
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Corollary 8.13. If A is an infinite set and F(A) the set of all finite subsets of A, then 
IF(A)I = IAI· 

PROOF. The map A -. F(A) given by a ~ [a I is injective so that IA I :::; IF(A)I. 
For each n-element subset S of A, choose (al, ... , an) € An such that S = [al, ... , an I. 
This defines an injective map F(A) -. U An so that IF(A)I :::; I U Ani = ~~IAI = IAI 

n~N* nEN* 

by Theorems 8.11 and 8.12. Therefore, IAI = IF(A)I by the Schroeder-Bernstein 
Theorem 8.6. • 

EXERCISES 

1. Let I" = >25 and for each n € N* let In = [1,2,3, ... , nl. 
(a) In is not equipollent to any of its proper subsets [Hint: induction]. 
(b) 1m and In are equipollent if and only if m = n. 
(c) 1m is equipollent to a subset of In but In is not equipollent to any subset of 1m 

if and only if m < n. 

2. (a) Every infinite set is equipollent to one of its proper subsets. 
(b) A set is finite if and only if it is not equipollent to one of its proper subsets 

[see Exercise 1]. 

3. (a) Z is a denumerable set. 
(b) The set Q of rational numbers is denumerable. [Hint: show that 

IZI:::; IQI :::; IZ X ZI = IZI·] 

4. If A,A',B,B' are sets such that IAI = IA'I and IBI = IB'I, then IA X BI = lA' X B'I. 
If in addition A n B = >25 = A' n B', then IA UBI = lA' U B'I. Therefore 
multiplication and addition of cardinals is well defined. 

5. For all cardinal numbers a,/3;y: 
(a) a + /3 = /3 + a and a/3 = /3a (commutative laws). 
(b) (a + (3) + I' = a + (f3 + 1') and (a/3h = a(/3I') (associative laws). 
(c) a(/3 + 1') = a/3 + al' and (a + /3h = al' + /31' (distributive laws). 
(d) a + 0 = a and al = a. 
(e) If a .,t. 0, then there is no /3 such that a + /3 = 0 and if a .,t. 1, then there is 

no /3 such that a/3 = 1. Therefore subtraction and division of cardinal num
bers cannot be defined. 

6. Let In be as in Exercise 1. If A "-' 1m and B "-' In and A n B = >25, then (A U B) 
"-' Im+n and A X B "-' Imn. Thus if we identify IAI with m and IBI with n, then 
IAI + IBI = m + nand IAIIBI = mn. 

7. If A "-' A', B "-' B' and f: A --> B is injective, then there is an injective map 
A' --> B'. Therefore the relation:::; on cardinal numbers is well defined. 

8. An infinite subset of a denumerable set is denumerable. 

9. The infinite set of real numbers R is not denumerable (that is, ~o < IRI). [Hint: 
it suffices to show that the open interval (0,1) is not denumerable by Exercise 8. 
You may assume each real number can be written as an infinite decimal. If (0,1) is 
denumerable there is a bijection f: N* -. (0,1). Construct an infinite decimal (real 
number) .ala2· .. in (0,1) such that an is not the nth digit in the decimal expansion 
of fen). This number cannot be in 1m f.l 
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10. If a,{3 are cardinals, define afJ to be the cardinal number of the set of all functions 
B -+ A, where A,B are sets such that IAI = a, IBI = {3. 
(a) afJ is independent of the choice of A,B. 
(b) afJ+"r = (afJ)(a"r); (a{3)"r = (a"r)({3"r); afJ"r = (afJ)"r. 
(c) If a:::; {3, then a"r :::; {3"r. 
(d) If OI.,p are finite with 01. > 1, p > 1 and l' is infinite, then OI.Y = py. 
(e) For every finite cardinal n, a" = aa· .. a (n factors). Hence a" = a if a is 

infinite. 
(f) If P(A) is the power set of a set A, then IP(A) I = 21AI. 

11. If I is an infinite set, and for each i E 1 Ai is a finite set, then I U Ail :::; Ill. 
i.I 

12. Let a be a fixed cardinal number and suppose that for every i E I, Ai is a set with 
IAil = a. Then IU Ail:::; Ilia. 

i.I 



CHAPTER I 

GROUPS 

The concept of a group is of fundamental importance in the study of algebra. Groups 
which are, from the point of view of algebraic structure, essentially the same are said 
to be isomorphic. Ideally the goal in studying groups is to classify all groups up to 
isomorphism, which in practice means finding necessary and sufficient conditions for 
two groups to be isomorphic. At present there is little hope of classifying arbitrary 
groups. But it is possible to obtain complete structure theorems for various restricted 
classes of groups, such as cyclic groups (Section 3), finitely generated abelian 
groups (Section 11.2), groups satisfying chain conditions (Section 11.3) and finite 
groups of small order (Section 11.6). In order to prove even these limited structure 
theorems, it is necessary to develop a large amount of miscellaneous information 
about the structure of (more or less) arbitrary groups (Sections 1,2,4,5, and 8 of 
Chapter I and Sections 4 and 5 of Chapter II). In addition we shall study some classes 
of groups whose structure is known in large part and which have useful applications 
in other areas of mathematics, such as symmetric groups (Section 6), free [abelian] 
groups (Sections 9 and 11.1), nilpotent and solvable groups (Sections 11.7 and 11.8). 

There is a basic truth that applies not only to groups but also to many other 
algebraic objects (for example, rings, modules, vector spaces, fields): in order to 
study effectively an object with a given algebraic structure, it is necessary to study as 
well the functions that preserve the given algebraic structure (such functions are 
called homomorphisms). Indeed a number of concepts that are common to the 
theory of groups, rings, modules, etc. may be described completely in terms of ob
jects and homomorphisms. In order to provide a convenient language and a useful 
conceptual framework in which to view these common concepts, the notion of a 
category is introduced in Section 7 and used frequently thereafter. Of course it is 
quite possible to study groups, rings, etc. without ever mentioning categories. How
ever, the small amount of effort needed to comprehend this notion now will pay large 
dividends later in terms of increased understanding of the fundamental relationships 
among the various algebraic structures to be encountered. 

With occasional exceptions such as Section 7, each section in this chapter de
pends on the sections preceding it. 

23 
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1. SEMIGROUPS, MONOIDS AND GROUPS 

If G is a nonempty set, a binary operation on G is a function G X G ~ G. There 
are several commonly used notations for the image of (a,b) under a binary operation: 
ab (multiplicative notation), a + b (additive notation), a·b, a * b, etc. For con
venience we shall generally use the multiplicative notation throughout this chapter 
and refer to ab as the product of a and b. A set may have several binary operations 
defined on it (for example, ordinary addition and multiplication on Z given by 
(a,b) ~ a + band (a,b) ~ ab respectively). 

Definition 1.1. A semigroup is a non empty set G together with a binary operation 
on G which is 

(i) associative: a(bc) = (ab)c for all a, b, c E G; 

a monoid is a semigroup G which contains a 

(ii) (two-sided) identity element e E G such that ae = ea = a for all a E G. 

A group is a monoid G such that 

(iii) for every a E G there exists a (two-sided) inverse element a-I E G such that 
a-Ia = aa-I = e. 

A semigroup G is said to be abelian or commutative if its binary operation is 

(iv) commutative: ab = ba for all a,b E G. 

Our principal interest is in groups. However, semigroups and monoids are con
venient for stating certain theorems in the greatest generality. Examples are given 
below. The order of a group G is the cardinal number IGI. G is said to be finite 
[resp. infinite] if I GI is finite [resp. infinite]. 

Theorem 1.2. lfG is a monoid, then the identity element e is unique.lfG is a group, 
then 

(i) c E G and cc = c =} C = e; 
(ii) for all a, b, c E G ab = ac =} b = c and ba = ca =} b = c (left and right· 

cancellation) ; 
(iii) for each a E G, the inverse element a-I is unique; 
(iv) for each a E G, (a-I)-I = a; 
(v) for a, bEG, (ab)-I = b-Ia-I; 

(vi) for a, bEG the equations ax = band ya = b have unique solutions in 
G : x = a-Ib and y = ba-I. 

SKETCH OF PROOF. If e' is also a two-sided identity, then e = ee' = e'. 
(i) cc = c =} c-I(cc) = c-Ic =} (c-Ic)c = c-Ic =} ec = e =} c = e; (ii), (iii) and (vi) 
are proved similarly. (v) (ab)(b-Ia-I) = a(bb-I)a-I = (ae)a-I = aa-I = e =} (ab)-I 
= b-Ia-I by (iii); (iv) is proved similarly. • 
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If G is a monoid and the binary operation is written multiplicatively, then the 
identity element of G will always be denoted e. If the binary operation is written 
additively, then a + h (a, beG) is called the sum of a and b, and the identity element 
is denoted 0; if G is a group the inverse of a eGis denoted by -a. We write a - b 
for a + (-h). Abelian groups are frequently written additively. 

The axioms used in Definition 1.1 to define a group can actually be weakened 
considerably. 

Proposition 1.3. Let G be a semigroup. Then G is a group if and only if the following 
conditions hold: 

(i) there exists an element e € G such that ea = a for all a € G (left identity 
element); 

(ii) for each a E G, there exists an element a-I € G such that a-Ia = e (left inverse). 

REMARK. An analogous result holds for "right inverses" and a "right identity." 

SKETCH OF PROOF OF 1.3. (0=}) Trivial. (¢::=) Note that Theorem l.2(i) is 
true under these hypotheses. G =;t. 525 since e € G. If a € G, then by (ii) (aa-I)(aa-I) 
= a(a-Ia)a- I = a(ea-1) = aa-1 and hence aa-I = e by Theorem 1.2(i). Thus a-I is a 
two-sided inverse of a. Since ae = a(a-Ia) = (aa-I)a = ea = a for every a € G, e is a 
two-sided identity. Therefore G is a group by Definition 1.1. • 

Proposition 1.4. Let G he a sell1igroup. Then G is a group if and only if for all 
a, b € G the equations ax = band ya = b have solutions in G. 

PROOF. Exercise; use Proposition 1.3. • 

EXAMPLES. The integers Z, the rational numbers Q, and the real numbers R 
are each infinite abelian groups under ordinary addition. Each is a monoid under 
ordinary multiplication, but not a group (0 has no inverse). However, the nonzero 
elements of Q and R respectively form infinite abelian groups under multiplication. 
The even integers under multiplication form a semigroup that is not a monoid. 

EXAMPLE. Consider the square with vertices consecutively numbered 1,2,3,4, 
center at the origin of the x-y plane, and sides parallel to the axes. 

y 

2 

------+-~~~-x 

4 3 

Let D4* be the following set of "transformations" of the square. D4* = 
I R,R2,R3,I,Tx,Ty,Tl.3,T2.41 , where R is a counterclockwise rotation about the center of 
900 , R2 a counterclockwise rotation of 1800 , R3 a counterclockwise rotation of 2700 
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and I a rotation of 360° (= 0°); Tx is a reflection about the x axis, TI •3 a reflection 
about the diagonal through vertices 1 and 3; similarly for Ty and'T2•4• Note that 
each U € D4 * is a bijection of the square onto itself. Define the binary operation in 
D4* to be composition offunctions: for U, V e D4*, U ° Vis the transformation Vfol
lowed by the transformation U. D4* is a nonabelian group of order 8 called the group 
of symmetries of the square. Notice that each symmetry (element of D4*) is com
pletely determined by its action on the vertices. 

EXAMPLE. Let S be a nonempty set and A(S) the set of all bijections S ~ S. 
Under the operation of composition of functions, fo g, A(S) is a group, since com
position is associative, composition of bijections is a bijection, 1 s is a bijection, and 
every bijection has an inverse (see (13) of Introduction, Section 3). The elements of 
A(S) are called permutations and A(S) is called the group of permutations on the 
set S. If S = 11 ,2,3, ... , n I, then A(S) is called the symmetric group on n letters and 
denoted S". Verify that ISnl = n! (Exercise 5). The groups S. play an important 
role in the theory of finite groups. 

Since an element U of Sn is a function on the finite set S = {I ,2, ... , n I, it can be 
described by listing the elements of S on a line and the image of each element under U 

directly below it: (~ ~ ~ ... ~). The product UT of two elements of S. is the 
II 12 13 I. 

composition function T followed by u; that is, the function onS given by k f-> u(T(k».1 

For instance, let U = G ~ ; :) and T = (! ~ ; ~) be elements of S4. Then 

under UT, 1 ~ U(T(1» = u(4) = 4, etc.; thus UT = G ~ ; :)(! ~ ; ~) 

= (! ~ i ~); similarly, TU = (! ~ ; ~)G ~ ; :) = G ~ i ~) 
This example also shows that S. need not be abelian. 

Another source of examples is the following method of constructing new groups 
from old. Let G and H be groups with identities eG, ell respectively, and define the 
direct product of G and H to be the group whose underlying set is G X H and whose 
binary operation is given by: 

(a,b)(a',b') = (aa',bb'), where a,a' € G; b,b' € H. 

Observe that there are three different operations in G, Hand G X H involved in this 
statement. It is easy to verify that G X H is, in fact, a group that is abelian if both G. 
and Hare; (eG,ell) is the identity and (a-l,b- l ) the inverse of (a,b). Clearly I G X HI 
= I GIIHI (Introduction, Definition 8.3). If G and H are written additively, then we 
write G EB H in place of G X H. 

Theorem 1.5. Let R ("-') be an equivalence relation 0/1 a monoid G such that a) '" a2 
and bl "-' b2 imply alb! "-' a2b2 for all ai,bi € G. Then the set GjR of all equivalence 
classes ofG under R is a monoid under the binary operation defined by (a)(b) = ab, 
where x denotes the equivalence class ofx € G.lfG is an [abelian] group, thensoisGjR. 

lIn many books, however, the product qT is defined to be "17 followed by T." 
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An equivalence relation on a monoid G that satisfies the hypothesis of the theo
rem is called a congruence relation on G. 

PROOF OF 1.5. If al = a2 and DI = D2 (ai, bi e G), then al '" az and bl '" bz by 
(20) of Introduction, Section 4. Then by hypothesis albl '" azbz so that alb! = azbz 
by (20) again. Therefore the binary operation in G/ R is well defined (that is, inde
pendent of the choice of equivalence class representatives). It is associative since 
a(D e) = a(be) = a(be) = (ab)c = (ab)c = (a D)e. e is the identity element since 
(a)(e) = ae = a = ea = (e)(a). Therefore G / R is a monoid. If G is a group, then 
a e G/ R clearly has inverse a-I so that G/ R is also a group. Similarly, G abelian im
plies G / R abelian. • 

EXAMPLE. Let m be a fixed integer. Congruence modulo m is a congruence re
lation on the additive group Z by Introduction, Theorem 6.8. Let Zm denote the set 
of equivalence classes of Z under congruence modulo m. By Theorem 1.5 (with addi
tive notation)Zm is an abelian group, with addition given by a + D = a + b (a,b e Z). 
The proof ofIntroduction, Theorem 6.8 shows thatZm = {OJ, ... ,m - 1) so that 
Zm is a finite group of order m under addition. Zm is called the (additive) group of 
integers modulo m. Similarly since Z is a commutative monoid under multiplication, 
and congruence modulo m is also a congruence relation with respect to multiplica
tion (Introduction, Theorem 6.8), Zm is a commutative monoid, with multiplication 
given by (a)(D) = (i!j (a,b e Z). Verify that for all a, D, e eZm: 

a(D + e) = aD + lie and (li + D)e = lie + DC (distributivity). 

Furthermore if p is prime, then the nonzero elements of Zp form a multiplicative 
group of order p - 1 (Exercise 7). It is customary to denote the elements of Zm as 
0,1, ... ,m - 1 rather than 0,1, ... ,m - 1. In context this ambiguous notation 
will cause no difficulty and will be used whenever convenient. 

EXAMPLE. The following relation on the additive group Q of rational numbers 
is a congruence relation (Exercise 8): 

a",b~a-beZ. 

By Theorem 1.5 the set of equivalence classes (denoted Q/Z) is an (infinite) abelian 
group, with addition given by a + D = a + b. Q/Z is called the group of rationals 
modulo one. 

Given ai, ... , an e G (n ~ 3) it is intuitively plausible that there are many ways 
of inserting parentheses in the expression alaZ' .. an so as to yield a "meaningful" 
product in G of these n elements in this order. Furthermore it is plausible that any 
two such products can be proved equal by repeated use of the associative law. A 
necessary prerequisite for further study of groups and rings is a precise statement 
and proof of these conjectures and related ones. 

Given any sequence of elements of a semigroup G, {al,aZ ... J define inductively a 
meaningful product of aI, ... , an (in this order) as follows. If n = 1, the only mean
ingful product is al. If n > 1, then a meaningful product is defined to be any product 
of the form (al' .. am)(am+l ... an) where m < nand (al' .. am) and (am+l' .. an) are 
meaningful products of m and n - m elements respectively.z Note that for each 

21'0 show that this definition is in fact well defined requires a stronger version of the 
Recursion Theorem 6.2 of the Introduction; see C. W. Burrill [56; p. 57]. 
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n 2':: 3 there may be many meaningful products of ai, ... ,an. For each n e N* we 
single out a particular meaningful product by defining inductively the standard n 

n 

product IT aj of a!, ... ,an as follows: 
;=1 

1 n (n-l) g aj = al; and for n > 1, L~ aj = 11 aj an. 

The fact that this definition defines for each n e N* a unique element of G (which is 
clearly a meaningful product) is a consequence of the Recursion Theorem 6.2 of the 
Introduction (Exercise 16). 

Theorem 1.6. (Generalized Associative Law) IfG is a semigroupandal, ... ,an e G, 
then any two meaningful products ofaI, ... ,an in this order are equal. 

PROOF. We use induction to show that for every n any meaningful product 
n 

al· .. an is equal to the standard n product IT a.. This is certainly true for n = 1, 2. 
i= 1 

If n > 2, then by definition (al··· an) = (al· .. am)(am+1 ... an) for some m < n. 
Therefore, by induction and associativity: 

In view of Theorem 1.6 we can and do write any meaningful product of 
al, ... , an E G (G a semigroup) as ala2·· ·an without parentheses or ambiguity. 

Corollary 1.7. (Generalized Commutative Law) IfG is a commutative semigroup and 
al, ... , an e G, then for any permutation it, ... , in of 1, 2, ... n, ala2·· ·an = 

ailai2· .. ain· 

PROOF. Exercise. • 

Definition 1.8. Let G be a semigroup, a E G andn e N*. The element an e G is defined 
n 

to be the standard n product IT ai with ai = a for 1 ~ i ~ n. I/G is a monoid, aD is 
i=1 

defined to be the identity element e. I/G is a group, then for each n E N*, a-n is defined 
to be (a-I)n e G. 

The remarks preceding Theorem 1.6 and Exercise 16 show that exponentiation is 
well defined. By definition, then, al = a, a2 = aa, a3 = (aa)a = aaa, ... , an = an-Ia 
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= aa· .. a (n factors). Note that we may have am = an with m ,e n (for example, in 
C, -1 = i2 = i6). 

ADDITIVE NOTATION. If the binary operation in G is written additively, 
then we write na in place of an. Thus Oa = 0, 1a = a, na = (n - l)a + a, etc. 

Theorem 1.9. If G is a group [resp. semigroup. monoid] and a e G, then for all 
m, n e Z [resp. N*, NJ: 

(i) aman = am+n (additive notation: rna + na = (m + n)a); 
(ii) (am)n = amn (additive notation: n(ma) = mna). 

SKETCH OF PROOF. Verify that (an)-1 = (a-1)n for all n e N and that 
a-n = (a-1)n for all n e Z. (i) is true for m > 0 and n > 0 since the product of a 
standard n product and a standard m product is a meaningful product equal to the 
standard (m + n) product by Theorem 1.6. For m < 0, and n < 0 replace a, m, n by 
a-1, - m, - n and use the preceding argument. The case m = 0 or n = 0 is trivial and 
the cases m ~ 0, n < 0 and m < 0, n ~ 0 are handled by induction on m and n re
spectively. (ii) is trivial if m = O. The case when m > 0 and n e Z is proved by induc
tion on m. Use this result to prove the case m < 0 and n e Z. • 

EXERCISES 

1. Give examples other than those in the text of semigroups and monoids that are 
not groups. 

2. Let G be a group (written additively), S a nonempty set, and M(S,G) the set of 
all functions f: S ~ G. Define addition in M(S,G) as follows: (f + g) : S ~ G 
is given by sf--t f(s) + g(s) e G. Prove that M(S,G) is a group, which is abelian 
if Gis. 

3. Is it true that a semigroup which has a left identity element and in which every 
element has a right inverse (see Proposition 1.3) is a group? 

4. Write out a multiplication table for the group D4*. 

5. Prove that the symmetric group on n letters, Sn, has order n!. 

6. Write out an addition table for Z2 EB Z2. Z2 EB Z2 is called the Klein four group. 

7. If p is prime, then the nonzero elements of Z" form a group of order p - 1 under 
multiplication. [Hint: Zi,e 0 =? (a,p) = 1; use Introduction, Theorem 6.5.] 
Show that this statement is false if p is not prime. 

8. (a) The relation given by a '" b q a - be Z is a congruence relation on the 
additive group Q [see Theorem 1.5J. 
(b) The set Q/Z of equivalence classes is an infinite abelian group. 

9. Let p be a fixed prime. Let R" be the set of all those rational numbers whose de
nominator is relatively prime to p. Let R" be the set of rationals whose de
nominator is a power of p (pi, i ~ 0). Prove that both Rp and R" are abelian 
groups under ordinary addition of rationals. 
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10. Let p be a prime and let Z(pOO) be the following subset of the group Q/Z (see 
pg.27): 

Z(pOO) = Ian; a Q/Z I a,b a Z and b = pi for some i ~ OJ. 

Show that Z(pOO) is an infinite group under the addition operation of Q/Z. 

11. The following conditions on a group G are equivalent: (i) G is abelian; (ii) (ab)2 
= a2b2 for all a,b a G; (iii) (ab)-l = a-1b-1 for all a,b a G; (iv) (ab)" = anb" for 
all n a Z and all a,b a G; (v) (ab)" = a"b" for three consecutive integers nand 
all a,b a G. Show that (v) => (i) is false if "three" is replaced by "two." 

12. If G is a group, a,b a G and bab-1 = aT for some raN, then biab-i = aTi for all 
jaN. 

13. If a2 = e for all elements a of a group G, then G is abelian. 

14. If G is a finite group of even order, then G contains an element a ~ e such that 
a2 = e. 

15. Let G be a nonempty finite set with an associative binary operation such that 
for all a,b,c a G ab = ac => b = c and ba = ca => b = c. Then G is a group. 
Show that this conclusion may be false if G is infinite. 

16. Let a1,a2, ... be a sequence of elements in a semigroup G. Then there exists a 
unique function 1/1 : N* ---+ G such that 1/1(1) = a" 1/1(2) = a1a2, 1/1(3) = (a1a2)a3 
and for n ~ 1, 1/I(n + 1) = (1/I(n»an+1. Note that 1/I(n) is precisely the standard 

n 

n product II ai. [Hint: Applying the Recursion Theorem 6.2 of the Introduc-
.=1 

tion with a = aI, S = G and In : G ---+ G given by x ~ xan+2 yields a function 
cp : N ---+ G. Let 1/1 = cp8, where 8: N* ---+ N is given by k ~ k - 1.] 

2. HOMOMORPHISMS AND SUBGROUPS 

Essential to the study of any class of algebraic objects are the functions that pre
serve the given algebraic structure in the following sense. 

Definition 2.1. Let G andH be semigroups. A function f: G ---+ H is a homomorphism 
provided 

f(ab) = f(a)f(b) for all a,b a G. 

Iff is injective as a map of sets, f is said to be a monomorphism. Iff is surjective, f is 
called an epimorphism. Iff is bijective, f is called an isomorphism. In this case G and H 
are said to be isomorphic (writtenG '" H). A homomorphism f: G ---+ G is called an 
endomorphism ofG and an isomorphism f: G ---+ G is called an automorphism ofG. 

If f: G ---+ Hand g : H ---+ K are homomorphisms of semigroups, it is easy to see 
that g f: G ---+ K is also a homomorphism. Likewise the composition of monomor
ph isms is a monomorphism; similarly for epimorphisms, isomorphisms and auto
morphisms. If G and H are groups with identities eG and eH respectively and 
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f: G ---> His a homomorphism, thenf(eG) = eH; however, this is not true for mon
oids (Exercise 1). Furthermore f(a-1) = f(a)-1 for all a I; G (Exercise 1). 

EXAMPLE. The map f: Z ---> Zm given by x I-> x (that is, each integer is mapped 
onto its equivalence class in Zm) is an epimorphism of additive groups. fis called the 
canonical epimorphism of Z onto Zm. Similarly, the map g : Q ---> Q/Z given by 
r ~ r is also an epimorphism of additive groups. 

EXAMPLE. If A is an abelian group, then the map given by a I-> a-I is an auto
morphism of A. The map given by a f--> a2 is an endomorphism of A. 

EXAMPLE. Let 1 < m, k I; N*. The map g : Zm ---> Zmk given by x ~ kx is a 
monomorphism. 

EXAMPLE. Given groups G and H, there are four homomorphisms: 

G ti G X H ~ H, given by tl(g) = (g,e); h(h) = (e,h); 7rl(g,h) = g; 7r2(g,h) = h. 
"1 ... 

t; is a monomorphism and 7rj is an epimorphism (i,j = 1,2). 

Definition 2.2. Let f : G ---> H be a homomorphism of groups. The kernel off (de
noted Kerf) is {a I; G I f(a) = e I; HI. If A is a subset ofG, then f(A) = {b I; H I b = f(a) 
for some a I; A I is the image of A. f(G) is called the image off and denoted 1m f. IfB is 
a subset ofH, f-l(B) = {a I; G I f(a) I; BI is the inverse image ofB. 

Theorem 2.3. Let f : G ---> H be a homomorphism of groups. Then 

(i) f is a monomorphism if and only if Ker f = {e I; 
(ii) f is an isomorphism if and only if there is a homomorphism f-1 : H ---> G such 

that ff-1 = IH and f-If = 1G. 

PROOF. (i) If f is a monomorphism and a I; Ker f, then f(a) = eH = fee), 
whence a = e and Ker f = I el.IfKer f = leI andf(a) = feb), then eH = f(a)f(b)-1 
= f(a) f(b-1) = f(ab-1) so that ab-1 I; Ker f. Therefore, ab-1 = e (that is, a = b) and 
fis a monomorphism. 

(ti) Iff is an isomorphism, then by (13) of Introduction, Section 3 there is a map 
of sets f-1 : H ---> G such that f-lf = IG and ff-1 = IH. f-1 is easily seen to be a 
homomorphism. The converse is an immediate consequence of (13) ofIntroduction, 
Section 3 and Definition 2.1. • 

Let G be a semigroup and H a nonempty subset of G. If for every a,b I; H we have 
ab I; H, we say that H is closed under the product in G. This amounts to saying that 
the binary operation on G, when restricted to H, is in fact a binary operation on H. 

Definition 2.4. Let G be a group and H a nonempty subset that is closed under the 
product in G. If H is itself a group under the product in G, then H is said to be a sub
group ofG. This is denoted by H < G. 
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Two examples of subgroups of a group G are G itself and the trivial subgroup (e) 
consisting only of the identity element. A subgroup H such that H;;e G, H;;e (e) is 
called a proper subgroup. 

EXAMPLE. The set of all multiples of some fixed integer n is a subgroup of Z, 
which is isomorphic to Z (Exercise 7). 

EXAMPLE. In Sn, the group of all permutations of 11,2, ... , nl, the set of all 
permutations that leave n fixed forms a subgroup isomorphic to Sn-l (Exercise 8). 

EXAMPLE. In Z6 = 10,1,2,3,4,5 I, both 10,3 I and 10,2,4 I are subgroups under 
addition. If p is prime, (Zp,+) has no proper subgroups. 

EXAMPLE. Iff: G ~ H is a homomorphism of groups, then Ker fis a sub
group of G. If A is a subgroup of G, f(A) is a subgroup of H; in particular 1m fis a 
subgroup of H. If B is a subgroup of H, f-l(B) is a subgroup of G (Exercise 9). 

EXAMPLE. If G is a group, then the set Aut G of all automorphisms of G is a 
group, with composition of functions as binary operation (Exercise 15). 

By Theorem 1.2 the identity element of any subgroup H is the identity element of 
G and the inverse of a e H is the inverse a-I of a in G. 

Theorem 2.5. Let H be a nonempty subset ofa group G. Then H is a subgroup ofG 
if and only ifab-1 e H for all a,b e H. 

PROOF. (<=) There exists a € H and hence e = aa-1 € H. Thus for any b e H, b-1 

= eb-1 e H. If a,b € H, then b-1 ; H and hence ab = a(b-1)-1 e H. The product in H 
is associative since G is a group. Therefore H is a (sub)group. The converse is 
trivial. • 

Corollary 2.6. IfG is a group and 1 Hi I i € I I is a nonempty family of subgroups, then 
n H; is a subgroup of G. 
i<1 

PROOF. Exercise. • 

Definition 2.7. Let G be a group and X a subset ofG. Let 1 Hi I i € II be thejamily of 
all subgroups ofG which contain X. Then n Hi is called the subgroup ofG generated 

ioI 
by the set X and denoted (X): 

The elements of X are the generators of the subgroup (X), which may also be 
generated by other subsets (that is, we may have (X) = (Y) with X;;e Y). If 
X = 1 a!, ... , an I, we write (a!, ... , an) in place of (X). If G = (a!, ... , an), (ai € G), 
G is said to be finitely generated. If a e G, the subgroup (a) is called the cyclic (sub)
group generated by a. 
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Theorem 2.8. IfG is a group and X is a nonempty !'ubset ofG, then the subgroup (X) 
generated by X consists of aI/finite products aln'a2n, ... atnt (ai e X; ni e Z). In particular 
foreveryaeG,(a) = {anlneZI. 

SKETCH OF PROOF. Show that the set H of all such products is a subgroup 
of G that contains X and is contained in every subgroup containing X. Therefore 
H < (X) < H .• 

EXAMPLES. The additive group Z is an infinite cyclic group with generator 1, 
since by Definition 1.8 (additive notation), ml = m for all m e Z. Of course the 
"powers" of the generating element need not all be distinct as they are in Z. The 
trivial subgroup (e) of any group is cyclic; the multiplicative subgroup (i) in C is 
cyclic of order 4 and for each m the additive group Zm is cyclic of order m with 
generator 1 e Zm. In Section 3 we shall prove that every cyclic subgroup is isomorphic 
either to Z or Zm for some m. Also, see Exercise 12. 

If {Hi lie I} is a family of subgroups of a group G, then U Hi is not a subgroup 
i.I 

of G in general. The subgroup (U Hi) generated by the set U Hi is called the sub-
i.I ill 

group generated by the groups {Hi lie I I. If Hand K are subgroups, the subgroup 
(H U K) generated by Hand K is called the join of Hand K and is denoted H V K 
(additive notation: H + K). 

EXERCISES 

1. Iff: G ---7 His a homomorphism of groups, thenf(eG) = eH andf(a-I ) = f(a)-l 
for all a e G. Show by example that the first conclusion may be false if G, Hare 
monoids that are not groups. 

2. A group G is abelian if and only if the map G ---7 G given by x ~ X-I is an auto
morphism. 

3. Let Q8 be the group (under ordinary matrix multiplication) generated by the com

plex matrices A = (_~ ~) and B = (~ ~), where i2 = -1. Show that Q8 

is a nonabelian group of order 8. Q8 is called the quaternion group. [Hint: 
Observe that BA = A3B, whence every element of Q8 is of the form AiBi. Note 

also that A4 = B4 = I, where I = (~ ~) is the identity element of Q8.J 

4. Let Hbe the group (under matrix multiplication) of real matrices generated by 

C = (_ ~ ~) and D = (~ ~). Show that H is a nonabelian group of order 8 

which is not isomorphic to the quaternion group of Exercise 3, but is isomorphic 
to the group D4 *. 

5. Let S be a nonempty subset of a group G and define a relation on G by a "-' b if 
and only if ab-1 e S. Show that "-' is an equivalence relation if and only if S is a 
subgroup of G. 
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6. A nonempty finite subset of a group is a subgroup if and only if it is closed under 
the product in G. 

7. If n is a fixed integer, then {kn Ike Z I c Z is an additive subgroup of Z, which 
is isomorphic to Z. 

8. The set {u e Sn I u(n) = n I is a subgroup of Sn which is isomorphic to Sn-l. 

9. Let f: G ~ H be a homomorphism of groups, A a subgroup of G, and B a sub
group of H. 
(a) Ker fand f-l(B) are subgroups of G. 
(b) f(A) is a subgroup of H. 

to. List all subgroups of Z2 EBZ2. Is Z2 EBZ2 isomorphic to Z4? 

11. If G is a group, then C = {a e G I ax = xa for all x e G I is an abelian subgroup 
of G. C is called the center of G. 

12. The group D4* is not cyclic, but can be generated by two elements. The same is 
true of Sn (nontrivial). What is the minimal number of generators of the additive 
group ZEBZ? 

13. If G = (a) is a cyclic group and H is any group, then every homomorphism 
f: G ~ H is completely determined by the element f(a) e H. 

14. The following cyclic subgroups are all isomorphic: the multiplicative group (i) in 

C, the additive groupZ4 and the subgroup < G ~ ! ~) of S4. 

15. Let G be a group and Aut G the set of all automorphisms of G. 
(a) Aut G is a group with composition offunctions as binary operation. [Hint: 

IG e Aut G is an identity; inverses exist by Theorem 2.3.] 
(b) Aut Z '" Z2 and Aut Z6 '" Z2; Aut Zs '" Z2 EB Z2; Aut Zp '" Zp_l 

(p prime). 
(c) What is Aut Zn for arbitrary n e N*? 

16. For each primep the additivesubgroupZ(pOO) QfQ/Z (Exercise 1.10) is generated 
by the set {w I n e N*). 

17. Let G be an abelian group and let H,K be subgroups of G. Show that the join 
H V K is the set {ab I a e H, b e KI. Extend this result to any finite number of 
subgroups of G. 

18. (a) Let G be a group and {Hi lie II a family of subgroups. State and prove a 
condition that will imply that U Hi is a subgroup, that is, that U Hi = (U Hi). 

i.l ieI ieI 

(b) Give an example of a group G and a family of subgroups {Hi lie II such 
that U Hi y6. (U Hi). 

ieI i.l 

19. (a) The set of all subgroups of a group G, partially ordered by set theoretic in
clusion, forms a complete lattice (Introduction, Exercises 7.1 and 7.2) in which 
the g.l.b. of {Hi lie II is n Hi and the l.u.b. is (U Hi). 

i,1 i.l 

(b) Exhibit the lattice of subgroups of the groups Sa, D4*, Z6, Z27, and Za6. 



3. CYCLIC GROUPS 35 

3. CYCLIC GROUPS 

The structure of cyclic groups is relatively simple. We shall completely char
acterize all cyclic groups (up to isomorphism). 

Theorem 3.1. Every subgroup H of the additive group Z is cyclic. Either H = (0) or 
H = (m), where m is the least positive integer in H. IfH r! (0), then H is infinite. 

PROOF. Either H = (0) or H contains a least positive integer m. Clearly 
(m) = Ikm [k e Zj C H. Conversely if h e H, then h = qm + r with q, r e Z and 
o :s: r < m (division algorithm). Since r = h - qm e H the minimality of m implies 
r = 0 and h = qm. Hence He (m). If H r! (0), it is clear that H = (m) is in
finite. • 

Theorem 3.2. Every infinite cyclic group is isomorphic to the additive group Z and 
every finite cyclic group of order r.: is isomorphic to the additive group Zm. 

PROOF. If G = (a) is a cyclic group then the map a : Z -> G given by k ~ ak 

is an epimorphism by Theorems 1.9 and 2.8. If Ker a = 0, then Z '" G by Theorem 
2.3 (i). Otherwise Ker a is a nontrivial subgroup of Z (Exercise 2.9) and hence 
Ker a = (m), where m is the least positive integer such that am = e (Theorem 3.1). 
For all r, s e Z, 

aT = as {=} aT- S = e {=} r - s e Ker a = (m) 

{=} m [ (r - s) {=} r = s in Zm, 

(where k is the congruence class of k e Z). Therefore the map {l : Zm -> G given by 
k f-> ak is a well-defined epimorphism. Since 

{l(k) = e {=} ak = e = aD {=} k = () in Zm, 

{l is a monomorphism (Theorem 2.3(i», and hence an isomorphismZm '" G. • 

Definition 3.3. Let G be a group anda e G. The order ofa is the order of the cyclic 
subgroup (a) and is denoted [at. 

Theorem 3.4. Let G be a group and a e G. Ifa has infinite order, then 

(i) ak = e if and only ifk = 0; 
(ii) the elements ak (k e Z) are all distinct. 

Ifa has finite order m > 0, then 

(iii) m is the least positive integer such that am = e; 
(iv) ak = e if and only ifm [ k; 
(v) a r = as if and only ifr == s (mod m); 

(vi) (a) consists of the distinct elements a,a2, ••• , am-I,am = e; 
(vii) for each k such that k [ m, [ak [ = m/k. 
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SKETCH OF PROOF. (i)-(vi) are immediate consequences of the proof of 
Theorem 3.2. (vii) (ak)mlk = am = e aM (ak)" ~ e for all 0 < r < m/k since other
wise d'r = e with kr < k(m/k) = m contradicting (iii). Therefore, lak ! = m/k 
by (iii). • 

Theorem 3.5. Every homomorphic image and every subgroup of a cyclic group G is 
cyclic. Inparticular, ifH is a nontrivial subgroup ofG = (a) andm is the least positive 
integer such that am e H, then H = (am). 

SKETCH OF PROOF. If f: G --+ K is a homomorphism of groups, then 
Imf = (f(a). To prove the second statement simply translate-the proof of Theorem 
3.1 into multiplicative notation (that is, replace every t e Z by at throughout). This 
proof works even if G is finite. • 

Recall that two distinct elements in a group may generate the same cyclic sub
group. 

Theorem 3.6. Let G = (a) be a cyclic group. If G is infinite, then a and a-1 are the 
only generators ofG.lfG is finite of order m, then ak is a generator ofG if and only 
if(k,m) = 1. 

SKETCH OF PROOF. It suffices to assume either that G = Z, in which case 
the conclusion is easy to prove, or that G = Zm. If (k ,m) = 1, there are c ,d e Z such 
that ck + dm = 1; use this fact to show that k generatesZm • If (k,m) = r > 1, show 
that for n = m/r < m, nk = nk = 0 and hence k cannot generateZm • • 

A naive hope might be that the techniques used above could be extended to 
groups with two generators and eventually to all finitely generated groups, and thus 
provide a description of the structure of such groups. Unfortunately, however, even 
groups with only two generators may have a very complex structure. (They need not 
be abelian for one thing; see Exercises 2.3 and 2.4.) Eventually we shall be able to 
characterize all finitely generated abelian groups, but even this will require a great 
deal more machinery. 

EXERCISES 

1. Let a,b be elements of group G. Show that lal = la-11; labl = Ibal, and 
lal = !cac-11 for all c e G. 

2. Let G be an abelian group containing elements a and b of orders m and n re
spectively. Show that G contains an element whose order is the least common 
multiple of m and n. [Hint: first try the case when (m,n) = 1.) 

3. Let G be an abelian group of order pq, with (p,q) = 1. Assume there exist a,b e G 
such that lal = p, Ibl = q and show that G is cyclic. 

4. Iff: G --+ His a homomorphism, a e G, andf(a) has finite order in H, then lal is 
infinite or I f(a) I divides lal· 
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5. Let G be the multiplicative group of all nonsingular 2 X 2 matrices with rational 

entries. Show that a = (~ - ~) has order 4 and b = (_ ~ _ !) has order 3, 

but ab has infinite order. Conversely, show that the additive grOUPZ2 EB Z con
tains nonzero elements a,b of infinite order such that a + b has finite order. 

6. If G is a cyclic group of order nand kin, then G has exactly one subgroup of 
order k. 

7. Let p be prime and H a subgroup of Z(pCIJ) (Exercise 1.10). 
(a) Every element of Z(pCIJ) has finite order pn for some n ;::: o. 
(b) If at least one element of H has order pk and no element of H has order 

greater thanpk, then His the cyclic subgroup generated by 1lpk, whenceH'" Zpk. 
(c) If there is no upper bound on the orders of elements of H, then 

H = Z(pCIJ); [see Exercise 2.16). 
(d) The only proper subgroups of Z(pCIJ) are the finite cyclic groups 

Cn = (llpn) (n = 1,2, ... ). Furthermore, (0) = Co < Cl < C2 < Ca < .... 
(e) Let Xl,X2, . .. be elements of an abelian group G such that IXll = p, 

PX2 = XI, PXa = X2, ... ,PX,,+l = Xn , • • •• The subgroup generated by the 
Xi (i ;::: 1) is isomorphic toZ(pCIJ). [Hint: Verify that the map induced by Xi~ 11p i 

is a well-defined isomorphism.) 

8. A group that has only a finite number of subgroups must be finite. 

9. If G is an abelian group, then the set T of all elements of G with finite order is a 
subgroup of G. [Compare Exercise 5.) 

10. An infinite group is cyclic if and only if it is isomorphic to each of its proper subgroups. 

4. COSETS AND COUNTING 

In this section we obtain the first significant theorems relating the structure of a 
finite group G with the number theoretic properties of its order I GI. We begin by ex
tending the concept of congruence modulo m in the group Z. By definition a = b 
(mod m) if and only if m I a - b, that is, if and only if a - b is an element of the 
subgroup (m) = I mk Ike: Zl. More generally (and in multiplicative notation) 
we have 

Definition 4.1. Let H be a subgroup ofa group G anda,b e: G. a is right congruent to 
b modulo H, denoted a =r b (mod H) ifab-l e: H. a is left congruent to b modulo H, 
denoted a =1 b (mod H), ifa-lb e: H. 

If G is abelian, then right and left congruence modulo H coincide (since ab-l E H 
<=} (ab-l)-l E Hand (ab-l)-l = ba-l = a-lb). There also exist nonabelian groups G 
and subgroups H such that right and left congruence coincide (Section 5), but this is 
not true in general. 
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Theorem 4.2. Let H be a subgroup of a group G. 

(i) Right [resp. left) congruence modulo H is an equivalence relation on G. 
(ii) The equivalence class ofa € G under right [resp. left] congruence modulo H is 

the set Ha = {ha I h € HI [resp. aH = {ah I h € HI]. 
(iii) IHal = IHI = laHI for all a e G. 

The set Ha is called a right coset of H in G and aH is called a left coset of H in G. 
In general it is not the case that a right coset is also a left coset (Exercise 2). 

PROOF OF 4.2. We write a = b for a =r h (mod H) and prove the theorem for 
right congruence and right cosets. Analogous arguments apply to left congruence. 

(i) Let a,b,c € G. Then a = a since aa-1 = e € H; hence .= is reflexive. = is 
clearly symmetric (a = b =} ab-1 € H =} (ab-1)-1 € H =} ba-1 e H =} b == a). Finally 
a == band b == c imply ab-1 € Hand bc-1 € H. Thus ac-1 = (ab-1)(bc-1) € Hand 
a == c; hence == is transitive. Therefore, right congruence modulo H is an 
equivalence relation. 

(ii) The equivalence class of a e G under right congruence is I x e G i x == a I 
IX'e G I xa-1 e HI = Ix e G I xa-1 = h e HI = Ix e G I x = ha; he HI 
I ha I h e HI = Ha. 
(iii) The map Ha -+ H given by ha f-> h is easily seen to be a bijection. • 

Corollary 4.3. Let H be a subgroup of a group G. 

(i) G is the union afthe right [resp. left] cosets afH in G. 
(ii) Two right [resp. left] cosets afH in G are either disjOint or equal. 

(iii) For all a,b e G, Ha = Hb q ab-1 e Hand aH = bH q a-1b e H. 
(iv) If CR is the set of distinct right cosets ofH in G and £ is the set of distinct left 

cosets of H in G, then ICRI = I£!. 

PROOF. (i)--(iii) are immediate consequences of the theorem and statements 
(19)--(21) ofIntroduction, Section 4. (iv) The map CR -+ £ given by Ha f-> a-1H is a 
bijection since Ha = Hb q ab-1 e H q (a-1)-lb-1 e H q a-1H = b-1H. • 

ADDITIVE NOTATION. If H is a subgroup of an additive group, then right 
congruence modulo H is defined by: a ==T b (mod H) q a - bE H. The equivalence 
class of a eGis the right coset H + a = {h + a I h e HI; similarly for left congru
ence and left cosets. 

Definition 4.4. Let H be a subgroup of a group G. The index of H in G, denoted 
[G : H], is the cardinal number of the set of distinct right [resp.left] cosets ofH in G. 

In view of Corollary 4.3 (iv), [G : H] does not depend on whether right or left 
cosets are used in the definition. Our principal interest is in the case when [G : H] is 
finite, which can occur even when G and H are infinite groups (for example, 
[Z : (m)] = m by Introduction, Theorem 6.8(i». Note that if H = (e), then Ha = {al 
for every a e G and [G : H] = IGI. 
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A complete set of right coset representatives of a subgroup E in a group G is a 
set (ai I consisting of precisely one element from each right coset of E in G. Clearly 
the set (ai I has cardinality [G : E]. Note that such a set contains exactly one element 
of H since H = He is itself a right coset. Analogous statements apply to left cosets. 

Theorem 4.5. IfK,H,G are groups with K < H < G, then [G : K] = [G : H][H : K]. 
If any two of these indices are finite, then so is the third. 

PROOF. By Corollary 4.3 G = U Hai with ai E G, III = [G : E] and the cosets 
ieI 

Hai mutually disjoint (that is, Hai = Ha; ¢=;> i = j). Similarly H = U Kb; with b; E H, 
j.J 

IJI = [E: K] and the co sets Kb; are mutually disjoint. Therefore G = U Hai = 
i.J 

U (U Kb;)ai = U Kb;ai. It suffices to show that the cosets Kb;ai are mutually 
i.I jd (i,j).I Y J 

disjoint. For then by Corollary 4.3. we must have [G : K] = II X JI, whence [G : K] 
= II X JI = I/IIJI = [G : E][E: K]. If Kbjai = Kbrat, then b;a; = kbrat (k E K). 
Since b;.br,k E H we have Hai = Eb;ai = Hkbrat = Hat; hence i = t and b; = kbr. 
Thus Kb; = Kkbr = Kbr andj = r. Therefore, the cosets Kb;ai are mutually disjoint. 
The last statement of the theorem is obvious. • 

Corollary 4.6. (Lagrange). IfH is a subgroup of a group G, then IGI = [G : H]IHI. 
In particular ifG isfinite, the order lal ofa E G divides IGI. 

PROOF. Apply the theorem with K = (e) for the first statement. The second is a 
special case of the first with H = (a). • 

A number of proofs in the theory of (finite) groups rely on various "counting" 
techniques, some of which we now introduce. If G is a group and H,K are subsets of 
G, we denote by EK the set (ab I a E E, b E Kl ; a right or left coset of a subgroup is a 
special case. If H,K are subgroups, HK may not be a subgroup (Exercise 7). 

Theorem 4.7. Let Hand K be finite subgroups of a group G. Then IHKI = 

IHIIKI/IH n KI. 

SKETCH OF PROOF. C = H n K is a subgroup of K of index n = 

IKI/I H n KI and K is the disjoint union of right cosets Ck, U Ck2 U ... U Ck. for 
some k i E K. Since HC = H, this implies that HK is the disjoint union Hk, U Hk2 U 
... U Hkn • Therefore, IHKI = IHI'n = !HiIK\/IH n KI. • 

Proposition 4.8. If Hand K are subgroups of a group G, then [H : H n K] :::; 
[G : K]. If [G : K] is finite, then [H : H n K] = [G : K] if and only if G = KH. 

SKETCH OF PROOF. Let A be the set of all right cosets of H n Kin Hand B 
the set of all right cosets of K in G. The map cp : A -> B given by (H n K)h f-. Kh 
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(h E H) is well defined since (H n K)h' = (H n K)h implies h'h-1 E H n K c K 
and hence Kh' = Kh. Show that <p is injective. Then [H: H n KJ = IAI :::; IBI 
= [G : KJ. If [G : KJ is finite, then show that [H : H n KJ = [G : K] if and only if <p 

is surjective and that <p is surjective if and only if G = KH. Note that for h E H, 
k E K, Kkh = Kh since (kh)h-1 = k E K. • 

Proposition 4.9. Let Hand K be subgroups of finite index of a group G. Then 
[G : H n K] is finite and [G : H n K] :::; [G : H][G : KJ. Furthermore, [G : H n K] 
= [G : H][G : K] if and only ifG = HK. 

PROOF. Exercise; use Theorem 4.5 and Proposition 4.8. • 

EXERCISES 

1. Let G be a group and {Hi liE I} a family of subgroups. Then for any a E G, 
(n Hi)a = n Hia. 

i i" 

2. (a) Let H be the cyclic subgroup (of order 2) of Sa generated by G i D. 
Then no left coset of H (except H itself) is also a right coset. There exists a € S3 
such that aH n Ha = {a}. 

(b) If K is the cyclic subgroup (of order 3) of S3 generated by G ~ n, then 

every left coset of K is also a right coset of K. 

3. The following conditions on a finite group G are equivalent. 
(i) I GI is prime. 

(ii) G ¢ (e) and G has no proper subgroups. 
(iii) G r-o.J Zp for some prime p. 

4. (Euler-Fermat) Let a be an integer and p a prime such that p,( a. Then ap - 1 == 1 
(mod p). [Hint: Consider ii € Zp and the multiplicative group of nonzero elements 
of Zp; see Exercise 1.7.] It follows that aP == a (mod p) for any integer a. 

5. Prove that there are only two distinct groups of order 4 (up to isomorphism), 
namely Z4 and Z2 EB Z2. [Hint: By Lagrange's Theorem 4.6 a group of order 4 
that is not cyclic must consist of an identity and three elements of order 2.] 

6. Let H,K be subgroups of a group G. Then HK is a subgroup of G if and only if 
HK= KH. 

7. Let G be a group of order pkm, withp prime and (p,m) = 1. Let Hbe a subgroup 
of order pk and K a subgroup of order pd, with 0 < d :::; k and K)it H. Show 
that HK is not a subgroup of G. 

8. If Hand K are subgroups of finite index of a group G such that [G : H] and 
{G : K] are relatively prime, then G = HK. 

9. If H,K and N are subgroups of a group G such that H < N, then HK n N 
= H(K n N). 
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10. Let H,K,N be subgroups of a group G such that H < K, H n N = K n N, 
and HN = KN. Show that H = K. 

11. Let G be a group of order 2n; then G contains an element of order 2. If n is odd 
and G abelian, there is only one element of order 2. 

12. If Hand K are subgroups of a group G, then [H V K: H] ~ [K: H n K]. 

13. If p > q are primes, a group of order pq has at most one subgroup of order p. 
[Hint: Suppose H,K are distinct subgroups of order p. Show H n K = (e); use 
Exercise 12 to get a contradiction.] 

14. Let G be a group and a,b c G such that (i) lal = 4 = Ibl; (ii) a2 = b2; (iii) ba = a3b 
= a-Ib; (iv) a,c. b; (v) G = (a,b). Show that IGI = 8 and G "-' Qs. (See 
Exercise 2.3; observe that the generators A,B of Qs also satisfy (i)-(v).) 

5. NORMALITY, QUOTIENT GROUPS, AND HOMOMORPHISMS 

We shall study those subgroups N of a group G such that left and right con
gruence modulo N coincide. Such subgroups play an important role in determining 
both the structure ofa group G and the nature of homomorphisms with domain G. 

Theorem 5.1. IfN is a subgroup of a group G, then the folloWing conditions are 
eqUivalent. 

(i) Left and right congruence modulo N coincide (that is, define the same equiva-
lence relation on G); 

(ii) every left coset ofN in G is a right coset ofN in G; 
(iii) aN = Na for all a c G; 
(iv) for all a c G, aNa- 1 C N, where aNa-1 = I ana-I Inc N}; 
(v) for all a c G, aNa-1 = N. 

PROOF. (i) ¢=} (iii) Two equivalence relations Rand S are identical if and only if 
the equivalence class of each element under R is equal to its equivalence class under 
S. In this case the equivalence classes are the left and right cosets respectively of N. 
(ii) =? (iii) If aN = Nb for some beG, then a c Nb n Na, which implies Nb = Na 
since two right cosets are either disjoint or equal. (iii) =? (iv) is trivial. (iv) =? (v) 
We have aNa-1 C N. Since (iv) also holds for a-I c G, a-INa C N. Therefore for 
every n eN, n = a(a-Ina)a-I c aNa-1 and N C aNa-I. (0 =? (ii) is immediate. • 

Definition 5.2. A subgroup N of a group G which satisfies the equivalent conditions 
of Theorem 5.1 is said to be normal in G (or a normal subgroup of G); we write N <I G 
ifN is normal in G. 

In view of Theorem 5.1 we may omit the subscripts "r" and "I" when denoting 
congruence modulo a normal subgroup. 
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EXAMPLES. Every subgroup of an abelian group is trivially normal. The sub

group H generated by G ~ i) in S3 is normal (Exercise 4.2). More generally any 

subgroup N of index 2 in a group G is normal (Exercise 1). The intersection of any 
family of normal subgroups is a normal subgroup (Exercise 2). 

If G is a group with subgroups Nand M such that N <J M and M <J G, it does 
not follow that N <J G (Exercise 10). However, it is easy to see that if N is normal in 
G, then N is normal in every subgroup of G containing N. 

Recall that the join H V K oftwo subgroups is the subgroup (H U K) generated 
by Hand K. 

Theorem 5.3. Let K and N be subgroups of a group G with N normal in G. Then 

(i) N n K is a normal subgroup ofK; 
(ii) N is a normal subgroup of N V K; 

(iii) NK = N V K = KN; 
(iv) if K is normal in G and K n N = (e), then nk = kn for all k € K and n € N. 

PROOF. (i) If n € N n K and a € K, then ana-I € N since N <J G and afla-I € K 
since K < G. Thus a(N n K)a-' C N n K and N n K <J K. (ii) is trivial since 
N < N V K. (iii) Clearly NK C N V K. An element x of N V K is a product of the 
formn ,k ,n2k2·· ·nrk" with ni € N, ki € K (Theorem 2.8). Since N <J G, niki = kin!, 
n/ E N and therefore x can be written in the form n(k, ··· k r), n E N. Thus 
N V K C NK. Similarly KN = N V K. (iv) Let k € K and n E N. Then nkn-I E K 
since K <J G and kn-'k-' E N since N <l G. Hence (nkn-l)k-1 = n(kn-1k-l ) € N n 
K = (e), which implies kn = nk. • 

Theorem 5.4. IfN is a normal subgroup ofa group G andG/N is the set of all (left) 
cosetsofN in G, then G/N is a group of order [G : N] under the binary operation given 
by (aN)(bN) = abN. 

PROOF. Since the coset aN [resp. bN, abN] is simply the equivalence class of 
a E G [resp. bEG, ab E G] under the equivalence relation of congruence modulo N, it 
suffices by Theorem 1.5 to show that congruence modulo N is a congruence relation, 
that is, that al == a (mod N) and b, == b (mod N) imply a,bl == ab (mod N). By 
assumption ala-I = nl E N and bib-I = n2 E N. Hence (a,b,)(ab)-' = alb1b-1a-1 

= (aln2)a-1• But since N is normal, alN = Nat which implies that aln2 = 1/aal for 
some na EN. Consequently (albl)(ab)-l = (aln2)a-1 = naala-I = na1/1 e N, whence 
alb l == ab (mod N). • 

If N is a normal subgroup of a group G, then the group G/ N, as in Theorem 5.4, 
is called the quotient group or factor group of G by N. If G is written additively, then 
the group operation in G/ N is given by (a + N) + (b + N) = (a + b) + N. 

REMARK. If m > 1 is a (fixed) integer and k € Z, then the remarks preceding 
Definition 4.1 show that the equivalence class of k under congruence modulo m is 
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precisely the coset of (m) in Z which contains k; that is, as sets,Zm = Z/(m). Theo
rems 1.5 and 5.4 show that the group operations coincide, whence Zm = Z/(m) 
as groups. 

We now explore the relationships between normal subgroups, quotient groups, 
and homomorphisms. 

Theorem 5.5. Iff: G -> H is a homomorphism of groups, then the kernel off is a 
normal subgroup ofG. Conversely, ifN is a normal subgroup ofG, then the map 
7r : G -> GIN given by 7r(a) = aN is an epimorphism with kernel N. 

PROOF. If x E Ker fand a E G, then 

f(axa- I) = f(a) f(x) f(a-I) = f(a)ef(a)-I = e 

and axa-I E Ker f. Therefore a(Ker f)a-I C Ker f and Ker f <J G. The map 
7r : G -> GIN is clearly surjective and since 7r(ab) = abN = aNbN = 7r(a)7r(b), 
7r is an epimorphism. Ker 7r = {a E G 17r(a) = eN = NI = {a E G 1 aN = NI 
= {a E G 1 a E NI = N. • 

The map 7r : G -> GIN is called the canonical epimorphism or projection. Here
after unless stated otherwise G -> GIN (N <J G) always denotes the canonical 
epimorphism. 

Theorem 5.6. Iff: G -> H is a homomorphism of groups andN is a normal subgroup 
ofG contained in the kernel off, then there is a unique homomorphism [ : GIN -> H 
such that [(aN) = f(a) for all a E G. 1m f = 1m [and Ker [ = (Ker f)/N. [is an iso
morphism if and only iff is an epimorphism and N = Ker f. 

The essential part of the conclusion may be rephrased: there exists a unique 
homomorphism 1: GIN -> H such that the diagram: 

f 

r~H 
GIN 

is commutative. Corollary 5.8 below may also be stated in terms of commutative 
diagrams. 

PROOF OF 5.6. If bEaN, then b = an, n E N, and f(b) = f(an) = f(a) f(n) 
= f(a)e = f(a), since N < Ker f. Therefore, f has the same effect on every element 
of the coset aN and the map 1: GIN -> H given by J(aN) = f(a) is a well-defined 
function. Since J(aNbN) = J(abN) = f(ab) = f(a)f(b) = l(aN)l(bN), lis a 
homomorphism. Clearly 1m 1 = 1m f and 
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aN € Ker 1 ¢=} f(a) = e ¢=} a e Ker J, 

whence Ker 1 = {aN I a e Ker fI = (Ker f)l N. 1 is unique since it is completely 
determined by f. Finally it is clear that lis an epimorphism if and only if fis. By 
Theorem 2.31 is a monomorphism if and only if Ker 1 = (Ker f)l N is the trivial sub
group of GIN, which occurs if and only if Ker f = N. • 

Corollary 5.7. (First Isomorphism Theorem) If f: G ---> H is a homomorphism of 
groups, then f induces an isomorphism GI Ker f::::: 1m f. 

PROOF. f: G...-+lmfisanepimorphism. Apply Theorem 5.6 with N = Kerf.. 

Corollary 5.S. Iff: G ---> H is a homomorphism of groups, N <J G, M <J H, and 
f(N) < M, then f induces a homomorphism f: GIN ---> HIM, given by aN ~ f(a)M. 

f is an isomorphism if and only if 1m f V M = Hand f-1(M) C N. In particular 
iffis an epimorphism such that f(N) = M and Ker feN, then f is an isomorphism. 

SKETCH OF PROOF. Consider the composition G.!.." H ~ HIM and verify 
that N C f-1(A1) = Ker 7rf. By Theorem 5.6 (applied to 7rf) the map GIN ---> HIM 
given by aN~ (7rJ)(a) = f(a)M is a homomorphism that is an isomorphism if and 
only if 7rfis an epimorphism and N = Ker 7rf. But the latter conditions hold if and 
only if 1m f V M = Hand f-1(M) C N. If f is an epimorphism, then H = 1m f 
= 1m f V M. If f(N) = M and Ker feN, then f-1(M) C N, whence 1 is an 
isomorphism. • 

Corollary 5.9. (Second Isomorphism Theorem) IfK and N are subgroups of a group 
G, with N normal ill G, then K/(N n K) '" NK/N. 

PROOF. N <J NK = N V K by Theorem 5.3. The composition K ~ NK ~ 
NKI N is a homomorphism fwith kernel K n N, whence 1: KIK n N "-' 1m fby 
Corollary 5.7. Every element in NKI N is of the form nkN(n e N,k e K). The normal
ity of N implies that nk = knl (llJ. e N), whence nkN = knJN = kN = f(k). There
fore fis an epimorphism and hence 1m f = NKI N. • 

Corollary 5.10. (Third Isomorphism Theorem). If Hand K are normal subgroups 
of a group G such that K < H, then H/K is a normal subgroup of G/K and 
(G/K)/(H/K) '" G/H. 

PROOF. The identity map 10 : G ---> G has la(K) < H and therefore induces an 
epimorphism I: G I K ---> G I H, with l(aK) = aH. Since H = l(aK) if and only if 
a e H, Ker 1= {aK I a € HI = HIK. Hence HIK <J GIK by Theorem 5.5 and 
GIH = 1m I'" (GIK)IKer I = (GIK)/(HIK) by Corollary 5.7. • 
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Theorem 5.11. If f : G -- H is an epimorphism of groups, then the assignment 
K ~ f(K) defines a one-to-one correspondence between the set Sf(G) of all subgroups 
K ofG which contain Ker f and the set S(H) of all subgroups ofH. Under this corre
spondence normal subgroups correspond to normal subgroups. 

SKETCH OF PROOF. By Exercise 2.9 the assignment K~ f(K) defines a 
function tp : SAG) --S(H) andf-l(J) is a subgroup of G for every subgroup J of H. 
Since J < H implies Ker f < f-1(J) and f(f-l(J» = J, tp is surjective. Exercise 18 
shows that f-l(f(K) = K if and only if Ker f < K. It follows that tp is injective. To 
prove the last statement verify that K <J G implies f(K) <J Hand J <J H implies 
f-l(J) <J G. • 

Corollary 5.12. IfN is a normal subgroup of a group G, then every subgroup of GIN 
is of the form KIN, where K is a subgroup of G that contains N. Furthermore, KIN 
is normal in GIN if and only ifK is normal in G. 

PROOF. Apply Theorem 5.11 to the canonical epimorphism 7r : G -- GIN. If 
N < K < G, then 7r(K) = KIN. • 

EXERCISES 

t. If N is a subgroup of index 2 in a group G, then N is normal in G. 

2. If {Ni ! i e I} is a family of normal subgroups of a group G, then n Ni is a 
icI 

normal subgroup of G. 

3. Let N be a subgroup of a group G. N is normal in G if and only if (right) con
gruence modulo N is a congruence relation on G. 

4. Let '" be an equivalence relation on a group G and let N = {a E G I a '" e}. 
Then'" is a congruence relation on G if and only if N is a normal subgroup of G 
and '" is congruence modulo N. 

5. Let N < S4 consist of all those permutations 0' such that 0'(4) = 4. Is N normal 
inS4? 

6. Let H < G; then the set aHa-I is a subgroup for each a E G, and H '" aHa-I. 

7. Let G be a finite group and-H a subgroup of G of order n. If H is the only sub
group of G of order n, then H is normal in G. 

8. All subgroups of the quaternion group are normal (see Exercises 2.3 and 4.14). 

9. (a) If G is a group, then the center of G is a normal subgroup of G (see Ex
ercise 2.11); 
(b) the center of S" is the identity subgroup for all n > 2. 

10. Find subgroups Hand K of D4 * such that H <J K and K <J D4 *, but H is not 
normal in D4*' 

11. If H is a cyclic subgroup of a group G and H is normal in G, then every subgroup 
of H is normal in G. [Compare Exercise 10.] 
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12. If H is a normal subgroup of a group G such that Hand GI H are finitely gen
erated, then so is G. 

13. (a) Let H <l G, K <l G. Show that H V K is normal in G. 
(b) Prove that the set of all normal subgroups of G forms a complete lattice 
under inclusion (Introduction, Exercise 7.2). 

14. If NI <l G1, N2 <l G2 then (N1 X N2) <l (G1 X G2) and (G1 X G2)/(N1 X N2) 
'" (GIl N 1) X (G21 N 2). 

15. Let N <l G and K <l G. If N n K = (e) and N V K = G, then GIN'" K. 

16. If f: G -+ H is a homomorphism, H is abelian and N is a subgroup of G con
taining Ker f, then N is normal in G. 

17. (a) Consider the subgroups (6) and (30) of Z and show that (6)/(30) '" Zs. 
(b) For any k,m > 0, (k)/(km) '" Zm; in particular, .Z/(m) = (1)/(m) '" Zm. 

18. If f: G -+ H is a homomorphism with kernel Nand K < G, then prove that 
f-l(f(K» = KN. Hence f-l(f(K» = K if and only if N < K. 

19. If N <l G, [G : N] finite, H < G, IHI finite, and [G : N] and IHI are relatively 
prime, then H < N. 

20. If N <l G, INI finite, H < G, [G : H] finite, and [G : H] and INI are relatively 
prime, then N < H. 

21. If H is a subgroup of Z(pOO) and H ~ Z(pj, then Z(pOO)1 H '" Z(pOO). [Hint: if 
H = (lip"), let Xi = 1jp,,+i + H and apply Exercise 3.7(e).] 

6. SYMMETRIC, ALTERNATING, AND DIHEDRAL GROUPS 

In this section we shall study in some detail the symmetric group S" and certain 
of its subgroups. By definition Sn is the group of all bijections I" -+ I", where In = 
{ 1,2, ... , n}. The elements of S" are called permutations. In addition to the notation 
given on page 26 for permutations inS" there is another standard notation: 

Definition 6.1. Let h,i2, ... , in (r:5 n) be distinct elements of In = {1,2, ... n}. 
Then (hi2ia··· ir) denotes the permutation that maps it f--+ i2, i2 f--+ ia, i3 f--+ i., ... , 
ir-11--+ in and ir 1--+ it, and maps every other element of In onto itself. (iti2· .. ir) is called 
a cycle of length r or an r-cycle; a 2-cycle is called a transposition. 

The cycle notation is not unique (see below); indeed, strictly speaking, the cycle 
notation is ambiguous since (h· .. i,) may be an element of any S", n ~ r. In context, 
however, this will cause no confusion. A I-cycle (k) is the identity permutation. 
Clearly, an r-cycle is an element of order r in S". Also observe that if T is a cycle and 
r(x) ~ x for some X e I", then T = (XT(X)T2(X)· .. Td(X» for some d ~ 1. The inverse 
of the cycle (;';2· .. ir) is the cycle(i,ir- 1i,-2· .. Ml) = (itiTir- 1iT-2· •• i2)(verify !). 

EXAMPLES. The permutation T = (! i ; :) is a 4-cycle: T = (1432) 

= (432]) = (3214) = (2143). If 0" is the 3-cycle (125), then O"T = (125)(1432) = (1435) 
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(remember: permutations are functions and UT means T followed by u); similarly 
TU = (1432)(125) = (2543) so that UT ~ TU. There is one case, however, when two 
permutations do commute. 

Definition 6.2. The permutations UI,U2, ... ,Ur ofSn are said to be disjoint provided 
that for each 1 :::; i :::; r, and every k £ In, ui(k) ~ k implies uj(k) = k for all j ~ i. 

In other words UI,U2, ... , U r are disjoint if and only if no element of In is moved 
by more than one of UJ, ... ,Ur • It is easy to see that TU = UT whenever U and Tare 
disjoint. 

Theorem 6.3. Every nonidentity permutation in Sn is uniquely (up to the order of the 
factol's) a product of disjoint cycles, each of which has length at least 2. 

SKETCH OF PROOF. Let U £S", U ~ (1). Verify that the following is an 
equivalence relation on I,,: for X,y £ I", x'" y if and only if y = um(x) for some mE Z. 
The equivalence classes {B; 11 :::; i:::; sl of this equivalence relation are called the 
orbits of U and form a partition of I" (Introduction, Theorem 4.1). Note that if x £ Bi , 
then Bi = {u I x '" u I = {um(x) I m £ Z I. Let BI ,B2, .•. ,Br (1 :::; r :::; s) be those 
orbits that contain more than one element each (r 2:: 1 since U ~ (1». For each 
i :::; r define Ui £ S" by: 

Ui(X) = {u(X) !f xeB,; x If x, Bi • 

Each Ui is a well-defined nonidentity permutation of In since U I B, is a bijection 
Bi --+ Bi . UI,U2, ... , Ur are disjoint permutations since the sets BJ, ... ,Br are mu
tually disjoint. Finally verify that U = UI U2' .. Ur ; (note that x £ B;implies u(x) = Ui(X) 
if i :::; rand u(x) = x if i > r; use disjointness). We must show that each Ui is a cycle. 

If XE Bi (i :::; r), then since Bi is finite there is a least positive integer d such that 
ud(x) = ui(x) for somej (0 :::; j < d). Since ud-i(x) = x and 0 < d - j :::; d, we must 
have j = 0 and ud(x) = x. Hence (xu(x)u2(x)·· 'Ud-I(X» is a well-defined cycle of 
length at least 2. If u"'(x) £ Bi , then m = ad + b for some a,b £ Z such that 0 :::; b < d. 
Hence u"'(x) = ub+ad(x) = UbUad(X) = ub(x) £ {x,u(x),u2(x), ... , Ud-1(X) I.Therefore 
Bi = {x,u(x),u2(x), . .. , ud-l(x) I and it follows that Ui is the cycle 

. (xu(x)u2(x)· .. Ud-1(X». 

Suppose TI, ... , Tt are disjoint cycles such that U = TiT2' .. Tt. Let x £ I" be such 
that u(x) ~ x. By disjointness there exists a unique) (1 :::; j :::; t) with u(x) = T/{X). 
Since UTi = TjU, we have uk(x) = Tl(x) for all k £ Z. Therefore, the orbit of x under 
Tj is precisely the orbit of x under u, say Bi • Consequently, T;(Y) = u(y) for every 
y E Bi (since y = u"(x) = Tj"(X) for some n E Z). Since Tj is a cycle it has only one 
nontrivial orbit (verify!), which must be Bi since x ~ u(x) = Tj(X). Therefore 
T;(Y) = Y for all y tBi, whence Tj = Ui. A suitable inductive argument shows that 
r = t and (after reindexing) Ui = Ti for each i = 1,2, ... ,r. • 
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Corollary 6.4. The order of a permutation U e Sn is the least common multiple of the 
orders of its disjoint cycles. 

PROOF. Let U = UI' •. u" with 1 ud disjoint cycles. Since disjoint cycles com
mute, um = Ulm ••• uTm for all m E Z and um = (1) if and only if Uim = (1) for all i. 
Therefore um = (1) if and only if lUi! divides m for all i (Theorem 3.4). Since !ul is 
the least such m, the conclusion follows. • 

Corollary 6.5. Every permutation in Sn can be written as a product of (not necessarily 
disjoint) transpositions. 

PROOF. It suffices by Theorem 6.3 to show that every cycle is a product 
of transpositions. This is easy: (XI) = (XIXZ)(XIX2) and for r> 1, (XIXzXa" .xT) 

= (XIXr)(XIXr_I)' .. (XI Xa)(XIX2). • 

Definition 6.6. A permutation T E Sn is said to be even [resp. odd] if T can be written 
as a product of an even [resp. odd] number of transpositions. 

The sign of a permutation T, denoted sgn T, is 1 or -1 according as T is even or 
odd. The fact that sgn T is well defined is an immediate consequence of 

Theorem 6.7. A permutation in Sn (n 2 2) cannot be both even and odd. 

PROOF. Let iJ,i2, ... , in be the integers 1,2, ... , n in some order and define 
A(iJ, ... , in) to be the integer II (ij - h), where the product is taken over all pairs 
(j,k) such that 1 ~ j < k ~ n. Note that A(il, ... , in) ,e O. We first compute 
A(u(il ), ... , u(in» when u e Sn is a transposition, say u = (ieia) with c <: d. We have 
A(il , ... , in) = (ie - ia)ABCDEFG, where 

A = II (ij - h); 
j<k 

j,k ?'c,d 

D = II (ij - id); 

c <j <d 

B = II (ij - ic); 
j <c 

E = II (ie - h); 
c<k<d 

G = II (ia - h). 
d<k 

C = II (ij - ia); 
j <c 

F = II (ie - h); 
d<k 

We write u(A) for II (u(ii) - u(h» and similarly for u(B), u(C), etc. Verify that 
j<k 

j,k ?'c,d 

u(A) = A; u(B) = C and u(C) = B; u(D) = (-l)d-c-IE and u(E) = (-l)d-c-ID; 

u(F) = G, and u(G) = F. Finally, u(ie - ia) = u(ie) - U(id) = id - ie = -(ie - id). 
Consequently, 

A(u(i l ), ••• ,u(in» = u(ie - ia)u(A)u(B)· . ·u(G) = (-l)l+Z(d-c-1)(ie - id)ABCDEFG 

= -A(il , ..• , in). 

Suppose for some TESn , T = TI' "TT and T = 0'1' "0', with Ti, Ui transposi
tions, r even and s odd. Then for (iI, ... , in) = (l ,2, ... , n) the previous paragraph 
implies A(T(1), ... , T(n» = Ah·· . Tr(l), ... , TJ" • Tr(n» = -A(T2" 'TT(1), ... , 
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r2· .. rr(n)) = ... = (-1)r~(1,2, ... , n) = ~(1,2, ... , n). Similarly ~(T(l), ... , r(n)) 
= (-1)'~(1,2, ... , n) = -~(1,2, ... , n), whence ~(1,2, ... , n) = -~(1,2, ... , n). 
This is a contradiction since ~(1,2, ... , n) ~ o. • 

Theorem 6.S. For each n ~ 2, let An be the set of all even permutations of Sn. 
Then An is a normal subgroup ofSn of index 2 and order ISnl/2 = n!/2. Furthermore 
An is the only subgroup ofSn of index 2. 

The group An is called the alternating group on n letters or the alternating group of 
degree n. 

SKETCH OF PROOF OF 6.8. Let C be the multiplicative subgroup {I, -I} 
of the integers. Define a map f: Sn --+ C by CT f--+ sgn CT and verify that f is an epimor
phism of groups. Since the kernel of fis clearly An, An is normal in Sn. By the First 
Isomorphism Theorem Snl An ro.J C, which implies [Sn : An] = 2 and IAnl = IS,,1/2. 
An is the unique subgroup of Sn of index 2 by Exercise 6. • 

Definition 6.9. A group G is said to be simple ifG has no proper normal subgroups. 

The only simple abelian groups are theZp with p prime (Exercise 4.3). There are a 
number of nonabelian simple groups; in particular, we have 

Theorem 6.10. The alternating group An is simple if and only ifn ~ 4. 

The proof we shall give is quite elementary. It will be preceded by two lemmas. 
Recall that if r is a 2-cycle, T2 = (1) and hence T = r-1• 

Lemma 6.11. Let r,s be distinct elements of {1,2, ... , n}. Then An (n ~ 3) is gen
erated by the 3-cycles {(rsk) 11 ::; k ::; n, k ~ r,s}. 

PROOF. Assume n > 3 (the case n = 3 is trivial). Every element of An is a 
product of terms of the form (ab)(cd) or (ab)(ac), where a,b,c,d are distinct elements 
of {1,2, ... , n}. Since (ab)(cd) = (acb)(acd) and (ab)(ac) = (acb), An is generated by 
the set of all 3-cycIes. Any 3-cycIe is of the form (rsa), (ras), (rab), (sab), or (abc), 
where a,b,c are distinct and a,b,c ~ r,s. Since (ras) = (rsa)2, (rab) = (rsb)(rsa)2, 
(sab) = (rsb)2(rsa), and (abc) = (rsa)2(rsc)(rsb)2(rsa), An is generated by 

{(rsk) I 1 ::; k ::; n, k ~ r,s}. • 

Lemma 6.12. IfN is a normal subgroup of An (n ~ 3) and N contains a 3-cycle, then 
N = An. 

PROOF. If (rsc) eN, then for any k ~ r,s,c, (rsk) = (rs)(ck)(rsc)2(ck)(rs) 
= [(rs)(ck)](rsc)2[(rs)(ck)]-1 e N. Hence N = An by Lemma 6.11. • 
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PROOF OF THEOREM 6.10. A2 = (1) and Aa is the simple cyclic group of 
order 3. It is easy to verify that {(1),(12)(34),(13)(24),(14)(23) I is a normal subgroup 
of A4 (Exercise 7). If n ~ 5 and N is a nontrivial normal subgroup of An we shall 
show N = An by considering the possible cases. 

CASE 1. N contains a 3-cycle; hence N = An by Lemma 6.12. 

CASE 2. N contains an element u, the product of disjoint cycles, at least one of 
which has length r ~ 4. Thus u = (ala2· . ·a,)T (disjoint). Let 0 = (a\a~a) e An. Then 
u-I(OUO-I) e N by normality. But 

u-I(OUO-I) = T~I(ala,a'_I· •. a2)(ala~a)(ala2· .. a,)T(alaaa2) = (alaaa,) EN. 

Hence N = An by Lemma 6.12. 

CASE 3. N contains an element u, the product of disjoint cycles, at least two of 
which have length 3, so that u = (ala2aa)(a4a.a6)1:-(disjoint). Let 0 = (ala~4) e An. 
Then as above, N contains u-I(OUO-I) = T-l(a4a6a.)(alaaa2)(ala2a4)(ala2aa)(a4a.aS)T 
(a\a4a2) = (ala4aaasaa). Hence N = An by case 2. 

CASE 4. N contains an element u that is the product of one 3-cycle and some 
2-cycles, say u = (al02aa)T (disjoint), with T a product of disjoint 2-cycles. Then 
u2 e Nand u2 = (alaaaa)T(ala2aa)T = (ala2aa)2T2 = (a\aaaa)2 = (a\a3a2), whence N = An 
by Lemma 6.12. 

CASE 5. Every element of N is the product of (an even number of) disjoint 
2-cycles. Let u EN, with u = (a\a2)(aaa4)T (disjoint). Let 0 = (ala~3) e An; then 
u-1(OUO-I) E N as above. Now u-1(OUO-1) = T-1(aaa4)(a\a2)(a\aaaa)(ala2)(aaa4)T(alaaa2) 
= (alaa)(a~4). Since n ~ 5, there is an element bE {l,2, ... , nl distinct from 
a\,a2,a3,a4. Since ~ = (ala3b) e An and S = (alaa)(a2a4) e N, S(~S~-I) EN. But S(~S~-I) 
= (ala3)(aaa4)(alaab)(ala3)(a2a4)(albaa) = (alaab) EN. Hence N = An by Lemma 6.12. 

Since the cases listed cover all the possibilities, An has no proper normal sub
groups and hence is simple. • 

Another important subgroup of Sn (n ~ 3) is the subgroup Dn generated by 
a = (123·· ·n) and 

b _ (1 2 3 4 5 
- 1 n n-1 n-2 n-3 

... i ... n - 1 n) 

... n+2-i ... 3 2 

II (i n + 2 - i). Dn is called the dihedral group ofdegreen. The group 
2~i<n+2-i 

Dn is isomorphic to and usually identified with the group of all symmetries of a regular 
polygon with n sides (Exercise, 13). In particular D4 is (isomorphic to) the group D4* 
of symmetries of the square (see pages 25-26). 

Theorem 6.13. For each n ~ 3 the dihedral group Dn is a group of order 2n whose 
generators a and b satisfy: 

(i) an = (1); b2 = (1); ak ~ (1) if 0 < k < n; 
(ii) ba = a-lb. 
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Any group G which is generated by elements a,b e G satisfying (i) and (ii) for some 
n ~ 3 (with e e G in place of(1» is isomorphic to Dn. 

SKETCH OF PROOF. Verify that a,b e D" as defined above satisfy (i) and (ii), 
whence D" = (a,b) = {aib i I ° ~ i < n; j = 0,1} (see Theorem 2.8). Then verify 
that the 2n elements aibi (0 ~ i < n; j = 0,1) are all distinct (just check their action 
on 1 and 2), whence ID"I = 2n. 

Suppose G is a group generated by a,b e G and a,b satisfy (i) and (ii) for some 
n ~ 3. By Theorem 2.8 every element of G is a finite product am1bm'a""bm •• •• bmk (mieZ). 
By repeated use of (i) and (ii) any such product may be written in the form aibi with ° ~ i < nand j = 0,1 (in particular note that b2 = e and (ii) imply b = b-l and 
ab = ba- I ). Denote the generators of Dn by al,bl to avoid confusion and verify that 
the map/: Dn -+ G given by alib/ -+ aibi is an epimorphism of groups. To complete 
the proof we show that fis a monomorphism. Suppose f(alib1i ) = aibi = e e G with ° ~ i < nand j = 0,1. If j = 1, then ai = b and by (ii) aHI = aia = ba = a-lb 
= a-lai = ai-I, which implies a2 = e. This contradicts (i) since n ~ 3. Therefore 
j = ° and e = aibo = ai with ° ~ i < n, which implies i = ° by (i). Thus f(alibl') = e 
implies alib/ = alob1o = (1). Thereforefis a monomorphism by Theorem 2.3. • 

This theorem is an example of a characterization of a group in terms of "genera
tors and relations." A detailed discussion of this idea will be given in Section 9. 

EXERCISES 
1. Find four different subgroups of S4 that are isomorphic to S3 and nine iso

morphic to S2. 

2. (a) S" is generated by the n - 1 transpositions (12), (13), (14), ... , (In). [Hint: 
(1i)(1j)(1i) = (ij).] 
(b) S" is generated by the n - 1 transpositions (12), (23), (34), ... , (n - 1 n). 
[Hint: (lj) = (1 j - l)(j - 1 j)(1 j - 1); use (a).] 

3.' If fT = (id2' .. ir) 5 S" and T e S", then TfTT-1 is the r-cycle (T(it)T(i2)' •. T(ir». 

4. (a) S" is generated by fTl = (12) and T = (123·· ·n). [Hint: Apply Exercise 3 to 
fTh fT2 = TfTIT-l, fT3 = TfT2T-1, ... , fT,,_1 = TfTn_2T-1 and use Exercise 2(b).] 
(b) S" is generated by (12) and (23· .. n). 

5. L~t fT,T e S". If fT is even (odd), then so is TIn-I. 

6. An is the only subgroup of Sn of index 2. [Hint: Show that a subgroup of index 2 
must contain a1l3-cycles of S" and apply Lemma 6.11.] 

7. Show that N = {(1),(12)(34),(13)(24),(14)(23)} is a normal subgroup of S4 con
tained in A4 such that S4/ N "'"' S3 and A4/ N "'"' Z3. 

8. The group A4 has no subgroup of order 6. 

9. For n ~ 3 let Gn be the multiplicative group of complex matrices generated by 

x = (~ ~) and y = (~2ri/" ~-2ril"). where i2 = -1. Show that G" "'"' D". 

(Hint: recall that e2ri = 1 and ek2ri ~ 1, where k is real, unless k e Z.) 
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10. Let a be the generator of order n of Dn. Show that (a) <l Dn and Dn/(a) ......., Z2. 

11. Find all normal subgroups of Dn. 

12. The center (Exercise 2.11) of the group Dn is (e) if n is odd and isomorphic toZ2 

if n is even. 

13. For each n ~ 3 let Pn be a regular polygon of n sides (for n = 3, Pn is an equi
lateral triangle; for n = 4, a square). A~mmetry of Pn is a bijection Pn -t Pn 
that preserves distances and maps adjacent vertices onto adjacent vertices. 

(a) The set Dn * of all symmetries of Pn is a group under the binary operation 
of composition of functions. 

(b) Every fe Dn * is completely determined by its action on the vertices of Pn • 

Number the vertices consecutively 1,2, ..• , n; then each fe Dn * determines a 
unique permutation OJ of {1,2, ... ,n\. The assignment fl--+ 0", defines a mono
morphism of groups I{J : Dn * -t Sn. 

(c) Dn * is generated by fandg, wherefis a rotation of21r/ndegrees about the 
center of Pn and g is a reflection about the "diameter" through the center and 
vertex 1. 

(d) 0", = (123 .. . n) and 0" _ (1 2 3 
g- 1 n n-l 

n - 1 n) 3 2' whence 

1m I{J = Dn and Dn * ,....., Dn. 

7. CATEGORIES: PRODUCTS, COPRODUCTS, AND 
FREE OBJ ECTS 

Since we now have several examples at hand, this is an appropriate time to intro
duce the concept of a category. Categories will serve as a useful language and provide 
a general context for dealing with a number of different mathematical situations. 
They are studied in more detail in Chapter X. 

The intuitive idea underlying the definition of a category is that several of the 
mathematical objects already introduced (sets, groups, monoids) or to be introduced 
(rings, modules) together with the appropriate maps of these objects (functions for 
sets; homomorphisms for groups, etc.) have a number of formal properties in com
mon. For example, in each case composition of maps (when defined) is associative; 
each object A has an identity map lA : A -t A with certain properties. These notions 
are formalized in 

Definition 7.1. A category is a class e of objects (denoted A,B,C, ... ) together with 

(i) a class of disjoint sets, denoted hom(A,B), one for each pair of objects in e ;(an 
element'f of hom(A,B) is called a morphism from A to B and is denoted f : A -t B); 

(ii) for each triple (A,B,C) of objects ofe a function 

hom(B,C) X hom(A,B) -t hom(A,C); 

(for morphisms f: A -t B, g: B -t C, this function is written (g,O 1---+ g 0 f and 
g 0 f: A -t C is called the composite of f and g); all subject to the two axioms: 

(I) Associativity. Iff: A -t B g : B -t C, h : C -t Dare morphisms of e, then 
ho(goO=(hog)of. 
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(II) Identity. For each object B of e there exists a morphism IB : B - B such 

that for any f : A - B, g : B - C, 

h 0 f = f and g 0 1 B = g. 

In a category e a morphism f : A - B is called an equivalence if there is in e a 
morphism g : B - A such that g 0 f = lA and fog = h. The composite of two 
equivalences, when defined, is an equivalence. If f : A - B is an equivalence, A and 
B are said t-o be equivalent. 

EXAMPLE. Let S be the class of all sets; for A,B e S, hom(A,B) is the set of 
all functions f : A-B. Then S is easily seen to be a category. By (13) of Introduc
tion, Section 3, a morphism fof S is an equivalence if and only if fis a bijection. 

EXAMPLE. Let 9 be the category whose objects are all groups; hom(A,B) is 
the set of all group homomorphisms f: A-B. By Theorem 2.3, a morphismfis an 
equivalence if and only if f is an isomorphism. The category G, of all abelian groups 
is defined similarly. 

EXAMPLE. A (multiplicative) group G can be considered as a category with 
one object, G. Let hom( G, G) be the set of elements of G; composition of morphisms 
a,b is simply the composition ab given by the binary operation in G. Every morphism 
is an equivalence (since every element of G has an inverse). 10 is the identity element 
eof G. 

EXAMPLE. Let the objects be all partially ordered sets (S,:::;;). A morphism 
(S,:::;;) - (T,:::;;) is a functionf :S- Tsuch that for X,YeS, x:::;; y~ f(x):::;; f(y). 

EXAMPLE. Let e be any category and define the category ~ whose objects 
are all morphisms of e. If f : A - Band g : C - Dare morphisms of e, then 
hom(f,g) consists of all pairs (a,{3), where a : A ~ C, {3 : B ~ Dare morphisms 
of e such that the following diagram is commutative: 

Definition 7.2. Let e be a category and I Ai lie II a family of objects of e. A 
product for the family IAi I idl is an object P ofe together with a family ofmor
phisms l7ri : P - Ai lie II such that for any object B and family of morphisms 
I 'Pi : B - Ai lie I I, there is a unique morphism 'P : B - P such that 7ri 0 'P = 'Pi for 
all i d. 

A product P of I Ai lie II is usually denoted II Ai. It is sometimes helpful to de-
i.I 

scribe a product in terms of commutative diagrams, especially in the case I = 11,21. 
A product for I AI ,A21 is a diagram (of objects and morphisms) Al t!.. P ~ A2 such 

that: for any other diagram of the form Al t!.. B ~ A2, there is a unique morphism 
'P : B - P such that the following diagram is commutative: 
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A family of objects in a category need not have a product. In several familiar 
categories, however, products always exist. For example, in the category of sets the 
Cartesian product II Ai is a product of the family I Ai liE I} by Introduction, 

i.I 
Theorem 5.2. In the next section we shall show that products exist in the category of 
groups. 

Theorem 7.3. If(P,11I"d) and (Q,llPd) are both products of the family IAi liE I} of 
objects of a category e, then P and Q are equivalent. 

PROOF. Since P and Q are both products, there exist morphisms f : P -+ Q and 
g : Q -+ P such that the following diagrams are commutative for each i E I: 

Composing these gives for each i E I a commutative diagram: 

P gof P 

r~} .. 
:4; 

Thus g 0 f : P -+ P is a morphism such that 1I"i 0 (g 0 f) = 1I"i for all i E I. But by the 
definition of product there is a unique morphism with this property. Since the map 
Ip : P -+ P is also such that 11"; 0 Ip = 11"; for all i E I, we must have go f = Ip by 
uniqueness. Similarly, using the fact that Q is a product, one shows that fo g = lQ. 
Hence f : P -+ Q is an equivalence. • 

Since abstract categories involve only objects and morphisms (no elements), 
every statement about them has a dual statement, obtained by reversing all the 
arrows (morphisms) in the original statement. For example, the dual of Definition 
7.2 is 

Definition 7.4. A coproduct (or sum) for the family IAi liE I} of objects in a cate
gory e is an object S of e, together with a family of morphisms I Li : Ai -+ S I i EI} 
such that for any object B and family of morphisms IlPi : Ai -+ B liE I}, there is a 
unique morphism IP : S -+ B such that IP 0 Li = lPi for all i E I. 
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There is no uniform notation for coproducts, although II Ai is sometimes used. 
ill 

In the next two sections we shall discuss coproducts in the category g of groups 
and the category a of abelian groups. The following theorem may be proved by 
using the "dual argument" to the one used to prove Theorem 7.3 (do it!). 

Theorem 7.5. If(S,{Li})and(S',{'Ad)arebothcoproductsforthefamily {A; I iell of 
objects of a category e, then Sand S' are equivalent. 

In several of the categories mentioned above (for example, groups), every object 
in the category is in fact a set (usually with some additional structure) and every 
morphism f : A -+ B in the category is a function on the "underlying sets" (usually 
with some other properties as well). We formalize this idea in 

Definition 7.6. A concrete category is a category e together with a function u that 
assigns to each object A of e a set u(A) (called the underlying set of A) in such a way 
that: 

(i) every morphism A -+ B of e is a function on the underlying sets u(A) -+ u(B); 
(ii) the identity morphism of each object A of e is the identity function on the 

underlYing set u(A); 
(iii) composition of morphisms in e agrees with composition of functions on the 

underlying sets. 

EXAMPLES. The category of groups, equipped with the function that assigns to 
each group its underlying set in the usual sense, is a concrete category. Similarly the 
categories of abelian groups and partially ordered sets, with the obvious underlying 
sets, are concrete categories. However, in the third example after Definition 7.1, if 
the function u assigns to the group G the usual underlying set G, then the category in 
question is not a concrete category (since the morphisms are not functions on the 
set G). 

Concrete categories are frequently useful since one has available not only the 
properties of a category, but also certain properties of sets, subsets, etc. Since in 
virtually every concrete category we are interested in, the function u assigns to an 
object its underlying set in the usual sense (as in the examples above), we shall denote 
both the object and its underlying set by the same symbol and omit any explicit refer
ence to u. There is little chance of confusion since we shall be careful in a concrete 
category e to distinguish morphisms of e (which are by definition also functions 
on the underlying sets) and maps (functions on the underlying sets, which may not be 
morphisms of e). 

Definition 7.7. Let F be an object in a concrete category e, X a nonempty set, and 
i : X -+ F a map (of sets). F is free on the set X provided that for any object A of e 
and map (of sets ) f : X -+ A, there exists a unique morphism of e, f : F -+ A,such that 
fi = f (as a map of sets X -+ A), 
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The essential fact about a free object F is that in order to define a morphism with 
domain F, it suffices to specify the image of the subset i(X) as is seen in the following 
examples. 

EXAMPLES. Let G be any group and g E G. Then the map 1: Z ~ G defined 
by l(n) = gn is easily seen to be the unique homomorphism Z ~ G such that 1/-t g. 
Consequently, if X = {II and i : X ~ Z is the inclusion map, then Z is free on X in 
the category of groups; (given f :X ~ G, let g = f(1) and define 1 as above). In 
other words, to determine a unique homomorphism from Z to G we need only 
specify the image of 1 E Z (that is, the image of i(X». The (additive) group Q of ra
tional numbers does not have this property. It is not difficult to show that there is no 
nontrivial homomorphism Q ~ Sa. Thus for any set X, function i : X ~ Q and func
tion f : X ~ S3 with f(xI) ~ (1) for some XI E X, there is no homomorphism 
1 : Q ~ S3 with Ii = f. 

Theorem 7.8. If e is a concrete category, P and P' are objects of e such that P is 
free on the set X and F' is free on the set X' and I X I = I X'I, then P is equivalent to P'. 

Note that the hypotheses are satisfied when F and F' are both free on the same 
setX. 

PROOF OF 7.8. Since F, F' are free and IXI = IX'I, there is a bijection 
f:X ~X'andmaps i:X ~ Fandj :X' ~F'. Considerthemapjf:X ~ F'. Since 
F is free, there is a morphism I{) : F ~ F' such that the diagram: 

I{) 

F .. F' 

ti +j 
X .. X' 

f 

is commutative. Similarly, since the bijection fhas an inverse f- I : X' ~ X and F' is 
free, there is a morphism '1/1 : F' ~ F such that: 

'1/1 
F' "F tj ;i 
X' ... X 

f- I 

is commutative. Combining these gives a commutative diagram: 

'1/101{) 
F "'F ;i ;i 
X .. X 

f-If= Ix 
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Hence (if; 0 <p)i = ilx = i. But C"i = i. Thus by the uniqueness property of free ob
jects we must have if; 0 <p = h. A similar argument shows that <p 0 if; = IF" There
fore F is equivalent to F'. • 

Products, coproducts, and free objects are all defined via universal mapping proper
ties (that is, in terms of the existence of certain uniquely determined morphisms). We 
have also seen that any two products (or coproducts) for a given family of objects are 
actually equivalent (Theorems 7.3 and 7.5). Likewise two free objects on the same set 
are equivalent (Theorem 7.8). Furthermore there is a distinct similarity between the 
proofs of Theorems 7.3 and 7.8. Consequently it is not s.urprising that all of the no
tions just mentioned are in fact special cases of a single concept. 

Definition 7.9. An object I in a category e is said to be universal (or initial) if for 
each object C of e there exists one and only one morphism 1-+ C. An object T of e 
is said to be couniversal (or terminal) if for each object C of e . there exists one and 
only one morphism C -+ T. 

We shall show below that products, coproducts, and free objects may be con
sidered as (co)universal objects in suitably chosen categories. However, this char
acterization is not needed in the sequel. Since universal objects will not be mentioned 
again (except in occasional exercises) until Sections IlIA, 111.5, and IV.5, the reader 
may wish to omit the following material for the present. 

Theorem 7.10. Any two universal [resp. couniversall objects in a category e are 
equivalent. 

PROOF. Let 1 and J be universal objects in e. Since 1 is universal, there is a 
unique morphismf : I-+J. Similarly, sinceJis universal, there is a unique morphism 
g : J -+ I. The composition g 0 f : 1 -+ 1 is a morphism of e. But 1 I : 1 -+ 1 is also a 
morphism of'e. The universality of 1 implies that there is a unique morphism 1-+ I, 
whence g 0 f = 110 Similarly the universality of J implies that fo g = I J • Therefore 
f : 1 -+ J is an equivalence. The proof for couniversal objects is analogous. • 

EXAMPLE. The trivial group (e) is both universal and couniversal in the cate
gory of groups. 

EXAMPLE. Let F be a free object on the set X (with i : X -+ F) in a concrete 
category e. Define a new category :D as follows. The objects of :D are all maps of sets 
f : X -+ A, where A is (the underlying set of) an object of e. A morphism in :D from 
f : X -+ A to g : X -+ B is defined to be a morphism h : A -+ B of e such that the 
diagram: 



58 CHAPTER I GROUPS 

is commutative (that is, hi = g). Verify that lA : A -+ A is the identity morphism 
from Ito f in ~ and that h is an equivalence in ~ if and only if h is an equivalence 
in e. Since F is free on the set X, there is for each map I : X -+ A a unique mor
phism 1 : F -+ A such that Ii = f. This is precisely the statement that i : X -+ F 
is a universal object in the category ~. 

EXAMPLE. Let {Ai liE II be a family of objects in a category e. Define a 
categorye whose objects are all pairs (B,{ j; liE II), where B is an object of e and 
for each i,.Ii : B -+ Ai is a morphism of e. A morphism in e from (B,{ .Ii I i ell) to 
(D; {gi liE II) is defined to be a morphism h : B -+ D of e such that gi 0 h = .Ii for 
every i E I. Verify that h is the identity morphism from (B, {.iiI) to (B, {.liD in e and 
that h is an equivalence in e if and only if h is an equivalence in e. If a product 
exists in e for the family {Ai liE II (with maps 'lTk : II Ai -+ Ak for each k E I), then 
for every (B, { .Ii I) in e there exists a unique morphism I : B -+ IIAi such that 'lTi 0 I 
= .Ii for every i E I. But this says that (II Ai, {'lTi liE Ij) is a couniversal object in the 
category e. Similarly the coproduct of a family of objects in e may be considered 
as a universal object in an appropriately constructed category. 

Since a product II Ai of a family {Ai liE II in a category may be considered as a 
couniversal object in a suitable category, it follows immediately from Theorem 7.10 
that II Ai is uniquely determined up to equivalence. Analogous results hold for co
products and free objects. 

EXERCISES 

1. A pointed set is a pair (S,x) with S a set and XES. A morphism of pointed sets 
(S,x) -+(S',x') is a triple (f,x,x'), where/:S -+S' is a function such that/(x) = x'. 
Show that pointed sets form a category. 

2. If I : A -+ B is an equivalence in a category e and g : B -+ A is the morphism 
such that go I = lA, 10 g = IB, show that g is unique. 

3. In the category 9 of groups, show that the group GI X G2 together with the 
homomorphisms 'lT1 : GI X G2 -+ GI and 'lT2 : GI X G2 -+ G2 (as in the Example 
preceding Definition 2.2) is a product for {GI,G21. 

4. In the category ex of abelian groups, show that the group Al X A2, together with 
the homomorphisms 'I : Al -+ Al X A2 and '2 : A2 -+ Al X A2 (as in the Example 
preceding Definition 2.2) is a coproduct for {AI,A21. 

5. Every family {Ai liE II in the category of sets has a coproduct. [Hint: consider 
U Ai = {(a,i) E (U Ai) X II a E Ai I with Ai -+ U Ai given by a ~ (a,i). U Ai is 
called the disjoint I;Inion of the sets Ai.] 

6. (a) Show that in the category S* of pointed sets (see Exercise 1) products always 
exist; describe them. 
(b) Show that in S* every family of objects has a coproduct (often called a 
"wedge product"); describe this coproduct. 

7. Let F be a free object on a set X (i : X -+ F) in a concrete category e. If e con
tains an object whose underlying set has at least two elements in it, then i is an in
jective map of sets. 
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8. Suppose X is a set and F is a free object on X (with i : X --+ F) in the category of 
groups (the existence of F is proved in Section 9). Prove that i(X) is a set of 
generators for the group F. [Hint: If G is the subgroup of F generated by i(X), then 

there is a homomorphism <p : F --+ G such that <pi = i. Show that F ~ G ~ F is 
the identity map.) 

8. DIRECT PRODUCTS AND DIRECT SUMS 

In this section we study products in the category of groups and coproducts in the 
category of abelian groups. These products and coproducts are important not only 
as a means of constructing new groups from old, but also for describing the structure 
of certain groups in terms of particular subgroups (whose structure, for instance, 
may already be known). 

We begin by extending the definition of the direct product G X H of groups G 
and H (see page 26) to an arbitrary (possibly infinite) family of groups I G; lie II. 
Define a binary operation on the Cartesian product (of sets) II G; as follows. If 

i,I 

f,g e II G; (that is,f,g : 1--+ U Gi andf(i),g(i} e Gdor each i}, thenfg : 1--+ U G;is 
i.I i.I ioi 

the function given by i --+ f{i)g{i}. Since each G; is a group, f(i}g{i} e G; for every i, 
whence fg e II G; by Introduction, Definition 5.1. If we identify fe II G; with its 

i.I i.I 

image I ai I (a; = f(i) for each i e I} as is usually done in the case when I is finite, then 
the binary operation in II G; is the familiar component-wise multiplication: I a; II b; I 

ieI 

= I a;b; I. II G;, t",gether with this binary operation, is called the direct product 
i.I 

(or complete direct sum) of the family of groups I G; lie II. If I = 11,2, ... , n I, 
II G; is usually denoted G1 X G2 X ... X G" (or in additive notation, G1 EB G2 
ieI 

EB···EB Gn). 

Theorem 8.1. If I Gi lie I I is a family of groups, then 

(i) the direct product II Gi is a group; 
ieI 

(ii) for each k e I, the map 7rk : II Gi --+ Gk given by f 1--+ f(k} [or I ad 1--+ ak) is an 
i,I 

epimorphism of groups. 

PROOF. Exercise. • 

The maps 7rk in Theorem 8.1 are called the canonical projections of the direct 
product. 

Theorem 8.2. Let I Gi lie I I be a family of groups and I <Pi : H --+ Gi lie I I a family 
of group homomorphisms. Then there is a unique homomorphism <p : H --+ II Gi such 

i.I 

that 7ri<P = <Pi for all i e I and this property determines II Gi uniquely up to isomor
iel 

phism. In other words, II G i is a product in the category of groups. 
iEl 
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PROOF. By Introduction, Theorem 5.2, the map of sets I{) : H ~ II Gi given by 
i.I 

I{)(a) = {I{)i(a) lid E II G; is the unique function such that '/I'il{) = I{); for all i E I. It is 
ieI 

easy to verify that I{) is a homomorphism. Hence II G; is a product (in the categorical 
ill 

sense) and therefore determined up to isomorphism (equivalence) by Theorem 7.3 .• 

Since the direct product of abelian groups is clearly abelian, it follows that the 
direct product of abelian groups is a product in the category of abelian groups also. 

Definition 8.3. The (external) weak direct product of a family of groups {Gi liE II, 
denoted IIw Gi, is the set of all f E II Gi such that f(i) = ei, the identity in Gi, for all 

i.I ieI 

but ajinite number ofi E I. If all the groups Gi are (additive) abelian, IIw Gi is usual!.'v 
i,1 

called the (external) direct sum and is denoted L Gi. 
iEI 

If I is finite, the weak direct product coincides with the direct product. In any 
case, we have 

Theorem 8.4. If {G i liE I I is a family of groups, then 

(i) IIw Gi is a normal subgroup of II Gi; 
iaI i!I 

(ii) for each k E I, the map Lk : Gk ~ IIw Gi given by Lk(a) = I ad hI, where ai = e 
i.I 

for i ;t. k and ak = a, is a monomorphism of groups; 
(iii) for each i E I, Li(G i ) is a normal subgroup of II G i . 

iel 

PROOF. Exercise. • 

The maps Lk in Theorem 8.4 are called the canonical injections. 

Theorem 8.5. Lef {A lid) beafa.milyof abelian groups (written additively).IfBis 
an abelian group and {I/;i : Ai ~ B liE I I a family of homomorphisms, then there is a 
unique homomorphism I/; : L Ai ~ B such that I/;q = I/;i for all i e I and this property 

iEI 

determines L Ai uniquely up to isomorphism. In other words, L A is a coproduct in 
~I ~[ 

the category of abelian groups. 

REMARK. The theorem is false if the word abelian is omitted. The external 
weak direct product is not a coproduct in the category of all groups (Exercise 4). 

PROOF OF 8.5. Throughout this proof all groups will be written additively. If 
o ;t. {ai I E LAi, then only finitely many of the ai are nonzero, say ail,ai" ... , ai,. 
Define I/; : L Ai ~ B by I/; { 0 I = 0 and 1/;( { ad) = I/;il(ail) + l/;i,(aiJ + ... + I/;i,(ai,) 
= L I/;i(ai), where 10 is the set {il ,i2, ••• , iT I = {i E II ai ;t. 0 I. Since B is abelian, 

iElo 
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it is readily verified that 1/1 is a homomorphism and that 1/ILi = 1/Ii for all i e I. For 
each (ai I e I:Ai' (ai I = I: Li(ai), 10 finite as above. If ~ : L Ai -+ B is a homomor

ielo 

phism such that ~Li = 1/Ii for all i then HI ad) = HI: Li(a» = I: ~L;(ai) = I: 1/t;(ai) 
I. I. I. 

= I: 1/IL;(ai) = 1/I(I: Li(ai» = 1/1<1 ai I); hence ~ = 1/1 and 1/1 is unique. Therefore I: Ai 
I. I. 

is a coproduct in the category of abelian groups and hence is determined up to iso
morphism (equivalence) by Theorem 7.5. • 

Next we investigate conditions under which a group G is isomorphic to the weak 
direct product of a family of its subgroups. 

Theorem 8.6. Let (Ni I ie II be a family of normal subgroups ofa group G such that 

(i) G = (U Ni); 
i.I 

(ii) for each k e I, Nk n (U N i ) = (e). 
,.#k 

Then G '" IIw N i • 
ieI 

Before proving the theorem we note a special case that is frequently used: Ob
serve that for normal subgroups N 1,N2, ... , NT of a group G, (Nl U N2 U ... U NT) 
= N 1N2· .. NT = I nln2' .. nT I ni e Ni I by an easily proved generalization of Theorem 
5.3. In additive notation N 1N2· .. NT is written NI + N2 + ... + NT' It may be help
ful for the reader to keep the following corollary in mind since the proof of the 
general case is essentially the same. 

Corollary 8.7. If NJ,N2, ••• , N r are normal subgroups of a group G such that 
G = N1N2· .. N r and for each 1 .$ k.$ r, Nk n (Nl · .. Nk_1Nk+l · .. N r ) = (e), then 
G ,....., NI X N2 X· .. X N r • • 

PROOF OF THEOREM 8.6. If (ad e IIwNi, then ai = e for all but a finite 
number of i e l. Let 10 be the finite set lie I I ai ~ e I. Then II ai is a well-defined ele

ielo 

ment of G, since for a e Ni and be N j , (i ~ j), ab = ba by Theorem 5.3(iv). Conse
quently the map <p : IIw Ni -+ G, given by (ad f--> II ai e G (and (e I f--> e), is a homo

ie/o 
morphism such that <pLi(ai) = ai for ai c Ni. 

Since G is generated by the subgroups N i , every element a of G is a finite product 
of elements from various Ni. Since elements of Ni and N; commute (for i ~ j), a can 
be written as a product II ai, where ai e Ni and 10 is some finite subset of I. Hence 

ielo 

II Li(ai) e II W Ni and <p(II t;(ai» = II <PLi(ai) = II ai = a. Therefore, <p is an epi-
ielo ielo ie/o ielo 

morphism. 
Suppose <p( I ai I) = II ai = e e G. Clearly we may assume for convenience of no

iEI. 

tation that 10 = 11,2, ... , n I. Then II ai = ala2' .. an = e, with ai e Ni • Hence 
ie/o 

al-I = a2" ·an e NI n (U Ni ) = (e) and therefore al = e. Repetition of this argu
i#l 

ment shows that ai = e for all i e I. Hence <p is a monomorphism. • 
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Theorem 8.6 motivates 

Definition B.B. Let INi I iell be a family of normal subgroup sofa group Gsuch that 
G = (U Ni) and for each k e I, Nk n (U Ni) = (e). Then G is said to be the internal 

i.l i"k 
weak direct product of the family I Ni lie II (or the internal direct sum ifG is (additive) 
abelian). 

As an easy corollary of Theorem 8.6 we have the following characterization of 
internal weak direct products. 

Theorem 8.9. Let INi lie II be a family of normal subgroups ofagroup G. G is the 
internal weak direct product of the family I Ni lie I I if and only if every nonidentity 
element ofG is a unique product ailai2' .. ain with h, ... , in distinct elements of I and 
e;t. aik e Nik for each k = 1,2, ... ,n. 

PROOF. Exercise. • 

There is a distinction between internal and external weak direct products. If a 
group G is the internal weak direct product of groups Nt, then by definition each Nt 
is actually a subgroup of G and G is isomorphic to the external weak direct product 
II W N;. However, the external weak direct product II W N; does not actually contain 
io! ioI 

the groups Ni, but only isomorphic copies of them (namely the L;(N;) - see Theorem 
8.4 and Exercise to). Practically speaking, this distinction is not very important and 
the adjectives "internal" and "external" will be omitted whenever no confusion is 
possible. In fact we shall use the following notation. 

NOTATION. We write G = llwN; to indicate that the group Gistheinternal 
iEI 

weak direct product of the family of its subgroups I Nt lie II. 

Theorem B.l0. Let I fi : G i -> Hi lie II be a family of homomorphisms of groups 
and let f = II fi be the map II Gi -> II H;, given by I ai I ~ I fi(a;) I. Then f is a homo-

i.l i.I 

morphism of groups such that f(IIW Gi) c IIw Hi, Ker f = II Ker fi and 1m f 
ieI i.I i.I 

= II 1m f i . Consequently f is a monomorphism [resp. epimorphism] if and only if each 
ieI 

fi is. 

PROOF. Exercise. • 

Corollary B.ll. Let I Gi lie II and I Ni lie II be families of groups such that Ni is a 
normal subgroup ofGi for each i e I. 

(i) II Ni is a normal subgroup of II Gi and II G;/II Ni '" II G;/Ni. 
i.I i.I i.I i.I ill 

(ii) IIw Ni is a normal subgroup of IIw Gi and IIw G;/ IIw Ni '" IIw Gi/Ni. 
ill i,1 ieI i.I i.I 
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PROOF. (i) For each i, let 1I'i: G;---+ G;/Ni be the canonical epimorphism. By 
Theorem 8.1 0, the map II 11'; : II Gi ---+ II G;/ N; is an epimorphism with kernel 

i.I ill 

II Ni. Therefore II G;/IINi '" II G;/Ni by the First Isomorphism Theorem. (ii) 
i.I 
is similar. • 

EXERCISES 

1. S3 is not the direct product of any family of its proper subgroups. The same is 
true of Zpn (p prime, n ~ 1) and Z. 

2. Give an example of groups Hi, Ki such that HI X H2 ~ KI X K2 and no H; is 
isomorphic to any Ki . 

3. Let G be an (additive) abelian group with subgroups Hand K. Show that 
~ m n ~ 

G = H w K if and only if there are homomorphisms H ~ G i=± K such that 
1.1 '2 

1I'ILI = I H , 11'2L2 = I K , 1I'1L2 = 0 and 1I'2L! = 0, where 0 is the map sending every 
element onto the zero (identity) element, and L!1I'I(X) + L211'~x) = x for all x e G. 

4. Give an example to show that the weak direct product is not a coproduct in the 
category of all groups. (Hint: it suffices to consider the case of two factors 
G X H.) 

5. Let G, Hbe finite cyclic groups. Then G X His cycijcifand only if(IGI,IH/) = 1. 

6. Every finitely generated abelian group G ~ (e) in which every element (except e) 
has order p (p prime) is isomorphic to Zp EB Zp EB· .. EB Zp (n summands) for 
some n ~ 1. [Hint: Let A = {ai, ... ,anI be a set of generators such that no 
proper subset of A generates G. Show that (a;) '" Zp and G = (al) X (a2) X' .. 
X (an).] 

7. Let H,K,N be nontrivial normal subgroups of a group G and suppose 
G = H X K. Prove that N is in the center of G or N intersects one of H,K non
trivially. Give examples to show that both possibilities can actually occur when 
G is nonabelian. 

8. Corollary 8.7 is false if one of the N; is not normal. 

9. If a group G is the (internal) direct product of its subgroups H,K, then H '" G / K 
and G/H~ K. 

10. If { G; lie II is a family of groups, then II W G; is the internal weak direct product 
its subgroups {L;( G;) lie II. 

11. Let {N; lie l} be a family of subgroups of a group G. Then G is the internal 
weak direct product of {Ni lie l} if and only if: (i) a;ai = aiai for all i ~ j and 
ai e Ni, ai E Ni; (ii) every nonidentity element of G is uniquely a product ail' .. ai", 
where iI, ... , in are distinct elements of I and e ~ aik E Nik for each k. [Compare 
Theorem 8.9.] 

12. A normal subgroup H of a group G is said to be a direct factor (direct summand if 
G is additive abelian) if there exists a (normal) subgroup K of G such that 
G=HXK. 
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(a) If H is a direct factor of K and K is a direct factor of G, then H is normal 
in G. [Compare Exercise 5.10.] 

(b) If His a direct factor of G, then every homomorphism H -> G may be ex
tended to an endomorphism G -> G. However, a monomorphism H -> G need 
not be extendible to an automorphism G -> G. 

13. Let {Gi lie Ij be a family of groups and J C I. The map a : II Gi -> II Gi 
j,J i,1 

given by {ai 11--+ {bi I, where bi = ai for j e J and bi = ei (identity of G,) for i • J, 
is a monomorphism of groups and II Gila(II Gi) r-J II Gi. 

ieI jeJ i,1 -J 

14. For i = 1,2 let Hi <J Gi and give examples to show that each of the following 
statements may be false: (a) GI r-J G2 and HI r-J H2 =? Gil HI r-J G21 H~. 
(b) GI r-J G2 and Gil HI r-J G21 H2 =? HI ::: H2• (c) HI r-J H2 and Gil HI r-J Gd H2 
=? G) r-J G2• 

9. FREE GROUPS, FREE PRODUCTS, AND GENERATORS AND 
RELATIONS 

We shall show that free objects (free groups) exist in the (concrete) category of 
groups, and we shall use these to develop a method of describing groups in terms of 
"generators and relations." In addition, we indicate how to construct coproducts 
(free products) in the category of groups. 

Given a set X we shall construct a group F that is free on the setX in the sense of 
Definition 7.7. If X = 0, F is the trivial group (e). If X rf 0, let X-I be a set disjoint 
from X such that IXl = IX-II. Choose a bijection X -> X-I and denote the image of 
x e X by X-I. Finally choose a set that is disjoint from X U X-I and has exactly one 
element; denote this element by I. A word on X is a sequence (a l ,a2, ••• ) with ai e 
X U X-I U {I} such that for some n e N*, ak = 1 for all k 2: n. The constant 
sequence (1,1, ... ) is called the empty word and is denoted 1. (This ambiguous 
notation will cause no confusion.) A word (a l ,a2, ... ) on X is said to be reduced 
provided that 

(i) for all x e X, x and X-I are not adjacent (that is, a, = x=? ai+1 rf X-I and 
ai = X-I =? a;+1 rf X for all i:: N*, x e X) and 

(ii) ak = 1 implies a; = 1 for all i ;:::: ". 
In particular, the empty word 1 is reduced. 

Every nonempty reduced word is of the form (X/",X2 X" ... , Xn xn,l, 1, ... ), where 
n e N*, Xi e X and Ai = ± 1 (and by convention Xl denotes X for all x € X). Hereafter 
we shall denote this word by X/,IX/,2' .. x/". This new notation is both more tractable I 
and more suggestive. Observe that the definition of equality of sequences shows that 
two reduced words XIXt. .. xmXm and YIDt. .. Yn Dn (Xi,Yi eX; A;,(ij = ± I) are equal if and 
only if both are 1 or m = n and Xi = Yi, Ai = odor each i = 1,2,. "., , n. Consequently 
the map from X into the set F(X} of all reduced words onX given by x 1-> Xl = x is in
jective. We shall identify X with its image and consider X to be a subset of F(X). 

Next we define a binary operation on the set F = F(X) of all reduced words onx' 
The empty word 1 is to act as an identity element (wI = 1 w = w for all w € F). In
formally, we would like to have the product of non empty reduced words to be given 
by juxtaposition, that is, 
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Unfortunately the word on the right side of the equation may not be reduced (for 
example, if XmXm = YI-~')' Therefore, we define the product to be given by juxtaposi
tion and (if necessary) cancellation of adjacent terms of the form xx-lor X-IX; for 
example (XIIX£'IXal)(Xa-IX2IX41) = xllxl. More precisely, if XIX!. . ·xmXm and YI~l. •. Yn~" 

are nonempty reduced words on X with m ~ n, let k be the largest integer 
(0 ~ k ~ m) such that xX:::=i = Y-~i:t for j = 0,1, ... , k - 1. Then define 

m-k k+l n , IXIXl. • ·X Xm-ky ~k+I ... y ~n if k < m' 

(XI Xl. • 'xmXm)(YI~'" 'Yn~") = Ym+l~m+I .. ,yn~n if k = m < n; 
1 if k = m = n. 

If m > n, the product is defined analogously. The definition insures that the product 
of reduced words is a reduced word. 

Theorem 9.1. If X is a nonempty set and F = F(X) is the set of all reduced words on 
X, then F is a group under the binary operation defined above and F = (X). 

The group F = F(X) is called the free group on the setX. (The terminology "free" 
is explained by Theorem 9.2 below.) 

SKETCH OF PROOF OF 9.1. Since 1 is an identity element and XI~'" 'x,,~n 

has inverse xn- 6 •• •• x.-6" we need only verify associativity. This may be done by in
duction and a tedious examination of cases or by the following more elegant device. 
For each x e X and {j = ± 1 let [x~[ be the map F ~ F given by 11-+ x~ and 

~ ~ •. {x8XI8l.. ·Xn8n if X 6 +XI- 6,; 
:rl'···:r nr 
• • n X28, .. 'Xn8n if X6 =XI- 6,(= 1 ifn= 1). 

Since [xlix-II = 11<' = [x-I[[x[, every [x8[ is a permutation (bijection) of F (with in
verse [x-8[) by (13) of Introduction, Section 3. Let A(F) be the group of all permuta
tions of F (see page 26) and Fo the subgroup generated by {[x[ [ X e Xl. The map 
cp : F ~ Fo given by 1 f--. IF and XI~l. • ·xn8n t--+ [xI8,[ . .. [Xn~n[ is clearly a surjection 
such that CP(WIW2) = CP(WI)CP(W2) for all Wi e F. Since 1 t--+ XI~l. • 'Xn~n under the map 
[XI~'[' .. [Xn~'[, it follows that cP is injective. The fact that Fo is a group implies that 
associativity holds in F and that cp is an isomorphism of groups. Obviously 
F = (X). • 

Certain properties of free groups are easily derived. For instance if [XI 2:: 2, 
then the free group on X is nonabelian (x,y eX and X F- y => x-1y-1xy is reduced 
=> X-1y-1xy F- 1 => xy F- yx). Similarly every element (except 1) in a free group has 
infinite order (Exercise 1). If X = {a I, then the free group on X is the infinite cyclic 
group (a) (Exercise 2). A decidedly nontrivial fact is that every subgroup of a free 
group is itself a free group on some set (see J. Rotman [19]). 

Theorem 9.2. Let F be the free group on a set X and, : X ~ F the inclusion map. IfG 
is a group and f : X ~ G a map of sets, then there exists a unique homomorphism of 
groups r : F ~ G such that r, = f. In other words, F is a free object on the set X in the 
category of groups. 
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REMARK. IfF' is another free object on the setX in the category of groups (with 
X :X ~ F'), then Theorems 7.8 and 9.2 imply that there is an isomorphism cp : F'" F' 
such that cpL = X. In particular X(X) is a set of generators of F'; this fact may also be 
proved directly from the definition of a free object. 

SKETCH OF PROOF OF 9.2. Define 1(1) = e and if x.61 . .. x,,6n is a nonempty 
reduced word on X, define J(x.61. .. X" 6n) = f(Xl)6 If(X2)62. . -f(X,,)6n• Since G is a 
group and ~i = ±1, the product f(Xl)61. . ·f(x.)6. is a well-defined element of G. 
Verify that 1 is a homomorphism such that lL = f. If g : F ~ G is any homomor
phism such that gL = f, then g(x.61 .. ·x.6n) = g(XI 61) .. ·g(x,,6n) = g(Xl)61 •• ·g(xn )6n 

= gL(Xl)61 .. ·gL(X.)6n = f(Xl)61.. ·f(x.)6n = 1(x.61.. ·X,,6n). Therefore lis unique. • 

Corollary 9.3. Every group G is the homomorphic image ofa free group. 

PROOF. Let X be a set of generators of G and let F be the free group on the set 
X. By Theorem 9.2 the inclusion map X ~ G induces a homomorphism 1 : F ~ G 
such that x f--t x € G. Since G = (X), the proof of Theorem 9.2 shows that lis an 
epimorphism. • 

An immediate consequence of Corollary 9.3 and the First Isomorphism Theorem 
is that any group G is isomorphic to a quotient group FI N, where G = (X), F is the 
free group on X and N is the kernel of the epimorphism F ~ G of Corollary 9.3. 
Therefore, in order to describe G up to isomorphism we need only specify X, F, and 
N. But F is determined up to isomorphism by X(Theorem 7.8) and N is determined 
by any subset that generates it as a subgroup of F. Now if w = XI61 •• 'X,,6n € F is a 
generator of N, then under the epimorphism F ~ G, w f--+ Xl61. .. x" 6n = e € G. 
The equation Xl61. .. x" 6. = e in G is called a relation on the generators Xi. Clearly a 
given group G may be completely described by specifying a set X of generators of G 
and a suitable set R of relations on these generators. This description is not unique 
since there are many possible choices of both X and R for a given group G (see 
Exercises 6 and 9). 

Conversely, suppose we are given a set X and a set Y of (reduced) words on the 
elements of X. Question: does there exist a group G such tnat G is generated by X and 
all the relations w = e (w € Y) are valid (where w = X161 ••• x.6. now denotes a product 
in G)? We shall see that the answer is yes, providing one allows for the possibility 
that in the group G the elements of X may not all be distinct. For instance, if a,b € X 
and a1b-1 is a (reduced) word in Y, then any group containing a,b and satisfying 
a1b-1 = e must have a = b. 

Given a set of "generators" X and a set Y of (reduced) words on the elements of X, 
we construct such a group as follows. Let F be the free group onX and N the normal 
subgroup of F generated by Y. 3 Let G be the quotient group FIN and identify X with 
its image in FIN under the map X C F ~ FIN; as noted above, this may involve 
identifying some elements of X with one another. Then G is a group generated by X 
(subject to identifications) and by construction all the relations w = e (w € Y) are 
satisfied (w = Xl61. . 'X,,6n € Y ~ Xl61. . 'X,,6n € N ~ x.6IN· . ·x.6nN = N; that is, 
x.61.. ·x.6• = e in G = FIN). 

3The normal subgroup generated by a set S C F is the intersection of all normal subgroups 
of F that contain S; see Exercise 5.2. 
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Definition 9.4. Let X be a set andY a set of (reduced) words on X. A group G is said 
to be the group defined by the generators x E X and relations w = e (w E Y) provided 
G '" FIN, where F is the free group on X and N the normal subgroup of F generated 
byY. One says that (X I Y) is a presentation ofG. 

The preceding discussion shows that the group defined by given generators and 
relations always exists. Furthermore it is the largest possible such group in the 
following sense. 

Theorem 9.5. (Van Dyck) Let X be a set, Y a set of (reduced) words on X and G the 
group defined by the generators x E X and relations w = e (w E V). IfH is any group 
such that H = (X) and H satisfies all the relations w = e (w E V), then there is an 
epimorphism G --+ H. 

REMARK. The elements of Yare being interpreted as words on X, products in 
G, and products in H as the context indicates. 

PROOF OF 9.S. If F is the free group on X then the inclusion map X --+ H in
duces an epimorphism cp : F --+ H by Corollary 9.3. Since H satisfies the relations 
w = e (w E Y), Y C Ker cpo Consequently, the normal subgroup N generated by Yin 
F is contained in Ker cpo By Corollary 5.8 cp induces an epimorphism FIN --+ H/O. 
Therefore the composition G '" FIN --+ H/O '" H is an epimorphism. • 

The following examples of groups defined by generators and relations illustrate 
the sort of ad hoc arguments that are often the only way of investigating a given pre
sentation. When convenient, we shall use exponential notation for words (for ex
ample, x2y-a in place of x1x1y-Iy-Iy-I). 

EXAMPLE. Let G be the group defined by generators a,b and relations a4 = e, 
a2b-2 = e and abab-l = e. Since Q8, the quaternion group of order 8, is generated by 
elements a,b satisfying these relations (Exercise 4.14), there is an epimorphism 
tp : G --+ Q8 by Theorem 9.5. Hence I GI ~ I Q81 = 8. Let F be the free group on I a,b I 
and N the normal subgroup generated by I a4,a2b-2,abab-l l. It is not difficult to show 
that every element of FIN is of the form aibi N with 0 ~ i ~ 3 and j = 0,1, whence 
IGI = IF/HI ~ 8. Therefore IGI = 8 and cp is an isomorphism. Thus the group de
fined by the given generators and relations is (isomorphic to) Q8. 

EXAMPLE. The group defined by the generators a,b and the relations an = e 
(3 ~ n E N*), b2 = e and abab = e (or ba = a-1b) is the dihedral group Dn (Exercise 8). 

EXAMPLE. The group defined by one generator b and the single relation 
bm = e (m E N*) is Zm (Exercise 9). 

EXAMPLE. The free group F on a set X is the group defined by the generators 
x EX and no relations (recall that (0) = (e) by Definition 2.7). The terminology 
"free" arises from the fact that F is relation-free. 
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We close this section with a brief discussion of coproducts (free products) in the 
category of groups. Most of the details are left to the reader since the process is quite 
similar to the construction of free groups. 

Given a family of groups {Gi liE l} we may assume (by relabeling if necessary) 
that the G; are mutually disjoint sets. Let X = U Gi and let {I I be a one-element set 

i,I 

disjoint from X. A word on X is any sequence (aJ,a2, ... ) such that ai EX U {I I and 
for some n E N*, a, = 1 for all i ~ n. A word (al,a2, ... ) is reduced provided: 

(i) no a; E X is the identity element in its group G i; 
(ii) for all i,j ~ 1, a; and ai+1 are not in the same group Gi ; 

(iii) ak = 1 implies ai = 1 for all i ~ k. 
In particular 1 = (1,1, ... ) is reduced. Every reduced word (~1) may be written 
uniquely as ala2·· ·an = (al,a2, . .. , an ,I,I, .. . ), where ai EX. 

Let II* G, (or G1 * G2 * ... * Gn if I is finite) be the set of all reduced words on X. 
ieI 

II*Gi forms a group, called the free product of the family {G; liE II, under the 
i_I 

binary operation defined as follows. 1 is the identity element and the product of two 
reduced words (~1) essentially is to be given by juxtaposition. Since the juxtaposed 
product of two reduced words may not be reduced, one must make the necessary 
cancellations and contractions. For example, if ai,bi E G; for i = 1,2,3, then 
(ala2aaXaa-lb2blba) = alc2b1ba = (al,c2,bJ,ba,I,I, .. . ), where C2 = a2b2E G2. Finally, 
for each k E /the map 'k : Gk -+ II*Gi given by ef-t land af--+ a = (a,l,l, . .. ) is a 

ill 

monomorphism of groups. Consequently, we sometimes identify Gk with its iso
morphic image in II*G; (for example Exercise 15). 

1·11 

Theorem 9.6. Let {G i liE I I be a family of groups and II*Gi their free product. If 
i<l 

{1/Ii : Gi -+ H liE I I is a family of group homomorphisms, then there exists a unique 
homomorphism 1/1 : II*Gi -+ H such that 1/Iq = 1/Ii for all i E I and this property deter

i.1 
mines II*Gi uniquely up to isomorphism. In other words, II*Gi is a coproduct in the 

i.1 i_I 
category of groups. 

SKETCH OF PROOF. If ala2·· ·an is a reduced word in II*Gi with ak E G'k' 
i.1 

EXERCISES 

1. Every nonidentity element in a free group F has infinite order. 

2. Show that the free group on the set {a I is an infinite cyclic group, and hence 
isomorphic to Z. 

3. Let F be a free group and let N be the subgroup generated by the set {xn I x E F, 
n a fixed integer I. Show that N <J F. 

4. Let F be the free group on the set X, and let Y C X. If H is the smallest normal 
subgroup of F containing Y, then F / H is a free group. 
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5. The group defined by generators a,b and relations a8 = !J2a4 = ab-1ab = e has 
order at most 16. 

6. The cyclic group of order 6 is the group defined by generators a,b and relations 
a2 = b3 = a-1b-1ab = e. 

7. Show that the group defined by generators a,b and relations a2 0= e, bB = e is in
finite and nonabelian. 

8. The group defined by generators a,b and relations a" = e (3 ::;; n E N*), !J2 = e 
and abab = e is the dihedral group D". [See Theorem 6.13.] 

9. The group defined by the generator b and the relation bm = e (m E N*) is the 
cyclic group Zm. 

10. The operation of free product is commutative and associative: for any groups 
A,B,C, A * B '" B * A and A * (B * C) '" (A * B) * c. 

11. If N is the normal subgroup of A * B generated by A, then (A * B)/ N '" B. 

12. If G and H each have more than one element, then G * H is an infinite group 
with center (e). 

13. A free group is a free product of infinite cyclic groups. 

14. If G is the group defined by generators a,b and relations a2 = e, b3 = e, then 
G '" Z2 * Za. [See Exercise 12 and compare Exercise 6.] 

15. If I : G1 ~ G2 and g : HI ~ H2 are homomorphisms of groups, then there is a 
unique homomorphism h : G1 * HI ~ G2 * H2 such thath I GI = land h I HI = g. 



CHAPTER II 

THE STRUCTURE 
OF GROUPS 

We continue our study of groups according to the plan outlined in the introduction 
of Chapter I. The chief emphasis will be on obtaining structure theorems of some 
depth for certain classes of abelian groups and for various classes of (possibly non
abelian) groups that share some desirable properties with abelian groups. The 
chapter has three main divisions which are essentially independent of one another, 
except that results from one may be used as examples or motivation in the others. 
The interdependence of the sections is as follows. 

1 3 

~ 
2 

Most of Section 8 is independent of the rest of the chapter. 

1. FREE ABELIAN GROUPS 

We shall investigate free objects in the category of abelian groups. As is the usual 
custom when dealing with abelian groups additive notation is used throughout this 
section. The following dictionary may be helpful. 

ab ............................. a + b 
a- l •• •••••..•••••••.•...••..•. . -a 
e .... .......................... 0 
an ........................... . na 
ab-l ........................... a - b 
HK ............................ H+K 
aH ............................ a+ H 

70 
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G X H ........................ GEBH 
HV K ......................... H+K 
rr"'G; ..................... .... L G; 
i.I ill 

weak direct product .............. direct sum 

For any group G in additive notation, (m + n)a = ma + na (a e G; m,n e Z). If 
the group is abelian, then m(a + b) = ma + mb. If X is a nonempty subset of G, 
then by Theorem 1.2.8 the subgroup (X) generated by X in additive notation consists 
of all linear combinations nixi + n2X2 + ... + nkXk (n; e Z, x; e X). In particular, the 
cyclic group (x) is {nx I n e Zl. 

A basis of an abelian group F is a subset X of F such that (I) F = (X); and (ii) for 
distinct xt,x2, ... , Xk e X and n; e Z, 

nixi + n2X2 + ... + nkXk = 0 => n; = 0 for every i. 

The reader should not be misled by the tempting analogy with bases of vector spaces 
(Exercise 2). 

Theorem 1.1. The following conditions on an abelian group F are equivalent. 

(i) F has a nonempty basis. 
(ii) F is the {internal} direct sum of a family of infinite cyclic subgroups. 

(iii) F is (isomorphic to) a direct sum of copies of the additive group Z ofintegers. 
(iv) There exists a nonempty set X and a function L : X ~ F with the following 

property: given an abelian group G and function f : X ~ G, there exists a unique homo
morphism of groups f: F ~ G such that fL = f. In other words. F is a free object in the 
category of abelian groups. 

An abelian group F that satisfies the conditions of Theorem 1.1 is called a free 
abelian group (on the set X). By definition the trivial group 0 is the free abelian group 
on the null set )25. 

SKETCH OF PROOF OF 1.1. (i) => (ii) If X is a basis of F, then for each 
x eX, nx = 0 if and only if n = O. Hence each subgroup (x) (x eX) i') infinite cyclic 
(and normal since F is abelian). Since F = (X), we also have F = (U (x». If for 

",.x 
some zeX, (z) n (U (x» ~ 0, then for some nonzero neZ, nz = nixi + ... + nkXk 

XIX 
XFZ 

with Z,Xt, ... , Xk distinct elements of X, which contradicts the fact that X is a basis. 
Therefore (z) n (U (x» = 0 and hence F = L (x) by Definition 1.8.8. 

XIX x.x 
XFZ 

(ii) => (iii) Theorems 1.3.2, 1.8.6, and 1.8.10. 
(iii) => (i) Suppose F '" L Z and the copies of Z are indexed by a setX. For each 

x eX, let 8x be the element {u;l of L Z, where U; = 0 for i ~ x, and Uz = 1. Verify 
that {8x I x e Xl is a basis of L Z and use the isomorphism F '" L Z to obtain a 
basis of F. 

(i) => (iv) Let X be a basis of F and L : X ~ F the inclusion map. Suppose we are 
given a map f:X ~ G. If u e F, then u = nixi + ... + nkXk (n. e Z; x; eX) sinceX 

k 

generates F. If u = mixi + ... + mkXk, (mk e Z), then L (n; - m;)x; = 0, whence 
i=l 
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n. = m. for every i since X is a basis. Consequently the map 1 : F -+ G, given by 

l(u) = l(tlfl.xi) = fld(XI) + ... + nd(xk), is a well-defined function such that 

lL = f Since G is abelian 1 is easily seen to be a homomorphism. Since X generates 
F, any homomorphism F -+ G is completely detemined by its action on X. Thus 
if g : F -+ G is a homomorphism such that gL = f, then for any x eX g(x) = g(L(X» 
= f(x) = l(x), whence g = 1 and 1 is unique. Therefore, by Definition 1.7.7 F is 
a free object on the set X in the category of abelian groups. 

(iv) => (iii). Given L : X -+ F, construct the direct sum L Z with the copies of Z 
indexed by X. Let Y = {8x ! x e Xl be a basis of L Z as in the proof of (iii) => (i). 
The proof of (iii) => (i) => (iv) shows that L Z is a free object on the set Y. Since we 
clearly have !X! = !YI, F""' L Z by Theorem I.7.8. • 

Given any set X, the proof of Theorem 1.1 indicates how to construct a free 
abelian group F with basis X. Simply let F be the direct sumLZ, with the copies of Z 
indexed by X. As in the proof of (iii) => (i), {8x I x e Xl is a basis of F = LZ, and F is 
free on the set {8x I x e Xl. Since the map L : X -+ F given by x f-t 8x is injective it 
follows easily that F is free onX in the sense of condition (iv) of Theorem 1.1. In this 
situation we shall identify X with its image under L so that X C F and the cyclic sub
group (8x ) = {n8x ! n e Zl = ZOx is written (x) = Zx. In this notation F = L (8x ) is 

x.x 
written F = L Zx, and a typical element of F has the form nlXI + ... + nkXk 

x.x 
(n. e Z, Xi e X). In particular, X = L(X) is a basis of F. 

Theorem 1.2. Any two bases of a free abelian group F have the same cardinality. 

The cardinal number of any basis X of the free abelian group F is thus an invari
ant of F; !XI is called the rank of F. 

SKETCH OF PROOF OF 1.2. First suppose Fhas a basis X of finite cardinal
ity n so that F ""' Z EB· .. EB Z (n summands). For any subgroup G of F verify that 
2G = f2u I u e Gl is a subgroup of G. Verify that the restriction of the isomorphism 
F ""' Z EB· .. EB Z to 2F is an isomorphism 2F ""' 2Z EB· .. EB 2Z, whence 
F/2F ""' Z/2Z EB· .. EB Z/2Z '" Z2 EB· . ·EBZ2 (n summands) by Corollary I.8.11. 
Therefore IF/2FI = 2n. If Yis another basis of Fand r any integer such that IYI ~ r, 
then a similar argument shows that IF/2FI ~ 2', whence 2' :$ 2" and r :$ n. It follows 
that IYI = m :$ nand IF/2FI = 2m. Therefore 2m = 2" and IXI = n = m = In 

If one basis of F is infinite, then all bases are infinite by the previous paragraph. 
Consequently, in order to complete the proof it suffices to show that IXI = IFI, if X 
is any infinite basis of F. Clearly IXI :$ IFI. LetS = U X", where X" = X X' .. X X 

n.N* 
(n factors). For each s = (Xl> ... , x,,) e S let G, be the subgroup (Xl, ... , x,,). Then 
G. ""' ZYI EB· . ·EB ZYt where YI, .•. , Yt (t :$ n) are the distinct elements of 
f Xl, ••• , x"l. Therefore, I G.I = IZtl = IZI = N 0 by Introduction, Theorem 8.12. 
Since F = U G" we have IFI = IU G.I :$ ISINo by Introduction, Exercise 8.12 . 

•• s .oS 

But by Introduction, Theorems 8.11 and 8.12, lsi = lxi, whence IFI ~ IxlNo = Ixl· 
Therefore IFI = IX! by the Schroeder-Bernstein Theorem. • 
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Proposition 1.3. Let FI be the free abelian group on the set Xl andF2 the free abelian 
group on the set X 2• Then FI '" F2 if and only ifFI and F2 have the same rank (that is, 
!Xd = !X2!). 

REMARK. Proposition 1.3 is also true for arbitrary nonabelian free groups (as 
in Section 1.9); see Exercise 12. 

SKETCH OF PROOF OF 1.3. If a : FI '" F2, then a(Xl ) is a basis of F2, 

whence !XI ! = !a(Xl )! = !X2! by Theorem 1.2. The converse is Theorem 1.7.8. • 

Theorem 1.4. Every abelian group 0 is the homomorphic image of a free abelian 
group of rank lXI, where X is a set of generators ofO. 

PROOF. Let F be the free abelian group on the set X. Then F = .L: Zx and rank 
xu 

F = !XI. By Theorem 1.1 the inclusion map X ---> G induces a homomorphism 
J : F ---> G such that Ix ~ x € G, whence X elm J. Since X generates G we must 
havelmJ= G .• 

We now prove a theorem that will be extremely useful in analyzing the structure 
of finitely generated abelian groups (Section 2). We shall need 

Lemma 1.5. If{ xl, ... , Xn I is a basis of a free abelian group F and a € Z, then for all 
i ~ j {XI, ... , Xj_J,Xj + aXi,xj+J, ... , Xn I is also a basis ofF. 

PROOF. Since Xi = -aXi + (Xi + aXi), it follows that F = (Xl, . .. , Xi-J,Xi + 
aXi,Xi+I, ... ,Xn). If klxl + ... + ki(Xj + axi) + ... + knXn = 0 (ki € Z), then 
klxl + ... + (ki + kia)xi + ... + kjxj + ... + knxn = 0, which implies that k t = 0 
for all t. • 

Theorem 1.6. If F is a free abelian group offinite rank nandO is a nonzero subgroup 
of F, then there exists a basis {Xl, ... , Xn I of F, an integer r (1 ::; r ::; n) and positive 
integers dJ, . . . , d. such that dl ! d2 ! ... ! d. and 0 is free abelian with basis 
{dlxJ, ... ,d.x.l· 

REMARKS. Every subgroup of a free abelian group of (possibly infinite) rank a 
is free of rank at most a; see Theorem IV.6.1. The notation "dl I d2 1 ••• 1 d,," means 
"dl divides d2, d2 divides d3, etc." 

PROOF OF 1.6. If n = 1, then F = (Xl) '" Zand G = (dlxl) '" Z (di € N*) by 
Theorems 1.3.5, 1.3.1, and 1.3.2. Proceeding inductively, assume the theorem is true 
for all free abelian groups of rank less than n. Let S be the set of all those integers s 
such that there exists a basis {YI, ... , Ynl of F and an element in G of the form 
SYI + k 2Y2 + ... + knYn (ki € Z). Note that in this case {Y2,YJ,Y3, ... ,Ynl is also a 
basis of F, whence k 2 € S; similarly k j € S for j = 3,4, ... ,n. Since G ~ 0, we have 
S ~ 0. Hence S contains a least positive integer d l and for some basis {YJ, ... , Yn I 
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of F there exists v e G such that v = dlYI + k2yz + ... + knYn. By the division 
algorithm for each i = 2, ... , n, k i = dlqi + ri with 0:::; ri < dl , whence 
v = dl(YI + (/2Y2 + ... + q.Yn) + r2Y2 + ... + r.Yn. Let Xl = YI + q2Y2 + ... + qnY.; 

then by Lemma 1.5 W = {XI,Y2, • .• , y. I is a basis of F. Since v e G, ri < d l and Win 
any order is a basis of F, the minimality of dl in S implies that 0 = r2 = ra = ... = r" 
so that dlxl = v E G. 

Let H = (Y2,Ya, ... ,Yn). Then H is a free abelian group of rank n - 1 such that 
F = (XI) E8 H. Furthermore we claim that G = (v) E8 (G n H) = (dlxl) E8 (G n H). 
Since {XI,Y2, ••• ,Ynl is a basis of F, (v) n (G n H) = O. If u = IJXI + f2Y2 + ... + 
fny .. e G (f; e Z), then by the division algorithm tl = d,ql + rl with 0:::; rl <dl . 

Thus G contains u - qlv = rlXI + t2Y2 + ... + fn)'n. The minimality of d l in S im
plies that'l = 0, whence t2Y2 + ... + fnYn e G n Hand u = qlv + (f2Y2 + ... + fnYn). 

Hence G = (v) + (G n H), which proves our assertion (Definition 1.8.8). 
Either G n H = 0, in which case G = (dlxl) and the theorem is true or 

G n H,e O. Then by the inductive assumption there is a basis {X2,Xa, . •. ,x .. l of H 
and positive integers r,d2,da, ••• ,dr such that d2 1 dal' . ·1 dr and G n H is free 
abelian with basis {d2X2, .•. , drxr I. Since F = (Xl) E8 Hand G = (dlxl) E8 (G n H), 
it follows easily that {XI,X2, .•• , Xn I is a basis of F and {dlxl, ... , drxr I is a basis of 
G. To complete the inductive step of the proof we need only show that dl 1 d2• By the 
division algorithm d2 = qdl + ro with 0 :::; ro < dl . Since {X2,XI + qX2,Xa, .•• , Xn I 
is a basis of F by Lemma 1.5 and rOX2 + dl(xi + qX2) = dixi + d2X2 e G, the mini
mality of dl in S implies that ro = 0, whence d l I d2. • 

Corollary 1.7. lfG is ajiniteiy generated abelian group generated by n elements, then 

eve,y subgroup H of G may be generated by m elements with m :::; n. 

The corollary is false if the word abelian is omitted (Exercise 8). 

PROOF OF 1.7. By Theorem 1.4 there is a free abelian group F ofrank nand 
an epimorphism 7r : F -4 G. 7r-I (H) is a subgroup of F, and therefore, free of rank 
m :::; n by Theorem 1.6. The image under 7r of any basis of 7r-I(H) is a set of at most 
m elements that generates 7r(7r-1(H» = H. • 

EXERCISES 

1. (a) If G is an abelian group and me Z, then mG = {mu 1 u e Gl is a sub
group of G. 
(b) If G '" L Gi , then mG '" L mG; and G/mG '" L Gi/mG;. 

isr isr iEl 

2. A subset X of an abelian group F is said to be linearly independent if nixi + ... + 
n"Xk = 0 always implies ni = 0 for all i (where ni E Z and XI, ••• , Xk are distinct 
elements of X). 

(a) X is linearly independent if and only if every nonzero element of the sub
group (X) may be written uniquely in the form nlXl + ... + nkXk (ni E Z,n; ,e 0, 
XI, ••• ,Xk distinct elements of X). 

(b) If F is free abelian of finite rank n, it is not true that every linearly 
independent subset of n elements is a basis [Hint: consider F = Z]. 
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(c) If F is free abelian, it is not true that every linearly independent subset of 
F may be extended to a basis of F. 

(d) If F is free abelian, it is not true that every generating set of F contains a 
basis of F. However, if F is also finitely generated by n elements, Fhas rank 
m:S n. 

3. LetX = {ai I i ell be a set. Then the free abelian group onX is (isomorphic to) 
the group defined by the generators X and the relations (in mUltiplicative no
tation) {aiaiai-lai-l = e I i,j 10 I}. 

4. A free abelian group is a free group (Section 1.9) if and only if it is cyclic. 

5. The direct sum of a family of free abelian groups is a free abelian group. (A 
direct product of free abelian groups need not be free abelian; see L. Fuchs 
[13, p. 168].) 

6. If F = L Zx is a free abelian group, and G is the subgroup with basis 
x.x 

X' = X - {xo} for some Xo eX, then FIG '" Zxo• Generalize this result to ar
bitrary subsets X' of X. 

7. A nonzero free abelian group has a subgroup of index n for every positive 
integer n. 

8. Let G be the multiplicative group generated by the real matrices a = (~ ~) 

and b = G D· If H is the set of all matrices in G whose (main) diagonal 

entries are 1, then H is a subgroup that is not finitely generated. 

9. Let G be a finitely generated abelian group in which no element (except 0) has 
finite order. Then G is a free abelian group. [Hint: Theorem 1.6.] 

10. (a) Show that the additive group of rationals Q is not finitely generated. 
(b) Show that Q is not free. 
(c) Conclude that Exercise 9 is false if the hypothesis "finitely generated" is 
omitted. 

11. (a) Let G be the additive group of all polynomials in x with integer coefficients. 
Show that G is isomorphic to the group Q* of all positive rationals (under 
multiplication). [Hint: Use the Fundamental Theorem of Arithmetic to con
struct an isomorphism.] 
(b) The group Q* is free abelian with basis {pip is prime in Z}. 

12. Let Fbe the free (not necessarily abelian) group on a setX(as in Section 1.9) and 
G the free group on a set Y. Let F' be the subgroup of F generated by 
{ aba-1b-11 a,b 10 F} and similarly for G'. 

(a) F' <J F, G' <J G and FIF', GIG' are abelian [see Theorem 7.8 beloW]. 
(b) FIF' [resp. GIG'] is a free abelian group of rank IXI [resp. IYIl. [Hint: 

{xF' I x eX} is a basis of FIF'.] 
(c) F '" G if and only if IXI = IYI. [Hint: if <p : F '" G, then <p induces an 

isomorphism FIF' '" GIG'. Apply Proposition 1.3 and (b). The converse 
is Theorem I.7.8.] . 
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2. FINITELY GENERATED ABELIAN GROUPS 

We begin by proving two different structure theorems for finitely generated 
abelian groups. A uniqueness theorem (2.6) then shows that each structure theorem 
provides a set of numerical invariants for a given group (that is, two groups have the 
same invariants if and only if they are isomorphic). Thus each structure theorem 
leads to a complete classification (up to isomorphism) of all finitely generated abelian 
groups. As in Section 1, all groups are written additively. Many of the results (though 
not the proofs) in this section may be extended to certain abelian groups that are not 
finitely generated; see L. Fuchs [13) or I. Kaplansky [17). 

All of the structure theorems to be proved here are special cases of corresponding 
theorems for finitely generated modules over a principal ideal domain (Section IV.6). 
Some readers may prefer the method of proof used in Section IV.6 to the one used 
here, which depends heavily on Theorem 1.6. 

Theorem 2.1. Every finitely generated abelian group G is (isomorphic to) a finite 
direct sum of cyclic groups in which the finite cyclic summands (if any) are of orders 
m" ... , mt, where ml > 1 and ml 1 m2 I· . ·Imt. 

PROOF. If G ~ 0 and G is generated by n elements, then there is a free abelian 
group F of rank n and an epimorphism 7r : F ---> G by Theorem 1.4. If 7r is an iso
morphism, then G "'" F "'" Z EB· .. EB Z (n summands). If not, then by Theorem 1.6 
there is a basis I Xl, ••• , Xn I of F and positive integers dl, ... , dr such that 1 :::; r :::; n, 

n 

dl 1 d2 [ •• ·1 dr and I dlxl, ... , drxr I is a basis of K = Ker 7r. Now F = L (Xi) and 
r i= 1 

K = L (diXi), where (Xi) "-' Z and under the same isomorphism (diXi) "-' diZ 
i=l n 

= I diU 1 u e Zl. For i = r + 1, r + 2, ... ,n let di = 0 so that K = L (diXi). 
i=1 

Then by Corollaries 1.5.7,1.5.8, and 1.8.11 

n In n n 
G""'" F/K = {;l (Xi) 'f;l(diXi)""'" {;l (xi)/(diXi)""'" ~ Z/diZ. 

If di = 1, then Z/diZ = Z/Z = 0; if di > 1, then Z/diZ""'" Zdi; if di = 0, then 
Z/ diZ = Z/O "-' Z. Let ml, ... , m, be those di (in order) such that di ~ 0, 1 and let s 
be the number of di such that di = O. Then 

G "-' Zml EB·· ·EBZm, EB (Z EB···EB Z), 

where ml > 1, ml 1 m2 r. . ·1 m, and (Z EB· .. EB Z) has rank s. • 

Theorem 2.2. Every finitely generated abelian group G is (isomorphic to) a finite 
direct sum of cyclic groups, each of which is either infinite or of order a power ofa prime. 

SKETCH OF PROOF. The theorem is an immediate consequence of Theorem 
2.1 and the following lemma. Another proof is sketched in Exercise 4. • 
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Lemma 2.3. If m is a positive integer and m = P1n'P2n, ... Ptnt (PI, ... ,Pt distinct 
primes and each ni > 0), then Zm "-' Zp,D, EB ZP2D, EB· .. EB ZPtnt. 

SKETCH OF PROOF. Use induction on the number t of primes in the prime 
decomposition of m and the fact that 

Z,n "-' Z, EBZn whenever (r,n) = 1, 

which we now prove. The element n = nl €Zm has order r (Theorem 1.3.4 (vi i», 
whence Zr "-' (nl) < Zm and the map if;1: Zr -,Zrn given by k f-> nk is a monomor
phism. Similarly the map if;2: Zn -> Zm given by k f-> rk is a monomorphism. By the 
proof of Theorem 1.8.5 the map if; :Z, EBZn -> Zrngiven by (x,y) f-> if;b) + if;b) = 

nx + ry is a well-defined homomorphism. Since (r,n) = 1, ra + nb = 1 for some 
a,b € Z (Introduction, Theorem 6.5). Hence k = rak + nbk = if;(bk,ak) for all 
k € Z,n and if; is an epimorphism. Since IZ, EB Zn I = rn = IZrnl, if; must also be a 
monomorphism. • 

Corollary 2.4. IfG is afinite abelian group of order n, then G has a subgroup of order 
m for every positive integer m that divides n. 

k 

SKETCH OF PROOF. Use Theorem 2.2 and observe that G "-' L: Gi implies 
i=1 

that IGI = IGdIG21·· ·IGkl and for i ~ r,p,-iZpT "-' Zpi by Lemma 2.5 (v) below. • 

REMARK. Corollary 2.4 may be false if G is not abelian (Exercise 1.6.8). 

In Theorem 2.6 below we shall show that the orders of the cyclic summands in the 
decompositions of Theorems 2.1 and 2.2 are in fact uniquely determined by the group 
G. First we collect a number of miscellaneous facts about abelian groups that will be 
used in the proof. 

Lemma 2.5. Let G be an abelian group, man integerandp aprime integer. Then each 
of the following is a subgroup ofG: 

(i) mG = {mu I u E G l ; 
(ii)G[m]= {uEGlmu=Ol; 

(iii) G(p) = {u € G Ilul = pn for some n ~ Ol; 
(iv) G t = {u € G Ilul is finitel. 

In particular there are isomorphisms 
(v) Zpn[P] "-' Zp (n ~ 1) and pmZpn "-' Zpn-m (m < n). 

Let Hand G i (i € I) be abelian groups. 
(vi) Ifg : G -> L: G i is an isomorphism, then the restrictions ofg to mG andG[m] 

ir.I 

respectively are isomorphisms mG "-' L: mG i and G[m] :::: L: Gj[m]. 
i~I ir.I 

(vii) Iff: G -> H is an isomorphism, then the restrictions off 10 G t and U(p) re
spectively are isomorphisms G t "-' H t and G(p) "-' H(p). 
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SKETCH OF PROOF. (i)--(iv) are exercises; the hypothesis that G is abelian is 
essential (Sa provides counterexamples for (i)-(iii) and Exercise 13.5 for (iv». 
(v) pn-I eZpn has order p by Theorem 1.3.4 (vii), whence (pn-I) '" Zp and (pn-I) 
< Zpn[P). If u e Zpn[P) , then pu = 0 in Zpn so that pu == 0 (mod pn) in Z. But pn I pu 
impliespn-I I u. Therefore, inZpn, u e (pn-I) andZpn[p) < (pn-I). For the second state
ment note that pm e Zpn has order pn-m by Theorem 13.4 (vii). Therefore pmZpn 
= (pm) '" Zpn-m. (vi) is an exercise. (vii) If f:G -+ H is a homomorphism and x e G(p) 
has order pn, then pnf(x) = f(pnx) = f(O) = O. Therefore f(x) e H(P). Hence 
f: G(p) -+ H(P). If f is an isomorphism then the same argument shows that 
f- I : H(P) -+ G(p). Since ff- I = III (p) and f-If = lo(p), G(p) '" H(P). The other con
clusion of (vii) is proved similarly. • 

If G is an abelian group, then the subgroup G, defined in Lemma 2.5 is called the 
torsion subgroup of G. If G = G" then G is said to be a torsion group. If G, = 0, then 
G is said to be torsion-free. For a complete classification of all denumerable torsion 
groups, see 1 Kaplansky [17). 

Theorem 2.6. Let G be a finitely generated abelian group. 

(i) There is a unique nonnegative integer s such that the number of infinite cyclic 
summands in any decomposition ofG as a direct sum of cyclic groups is precisely s; 

(ii) either G is free abelian or there is a unique list of (not necessarily distinct) 
positive integers ml, ... ,mt such that ml > 1, ml I m21· . ·1 mt and 

with F free abelian; 
(iii) either G is free abelian or there is a list of positive integer~' PI"', ... , Pk8k, 

which is unique except for the order o/its members, such that PI, ... , Pk are (not 
necessarily distinct) primes, SI, ••• , Sk are (not necessarily distinct) positive integers 
and 

with F free abelian. 

PROOF. (i) Any decomposition of G as a direct sum of cyclic groups (and there is 
at least one by Theorem 2.1) yields an isomorphism G '" H EB F, where H is a direct 
sum of finite cyclic groups (possibly 0) and F is a free abelian group whose rank is 
precisely the number s of infinite cyclic summands in the decomposition. If 
, : H -+ H EB F is the canonical injection (h f--+ (h,O», then clearly ,(H) is the torsion 
subgroup of HEB F. By Lemma 2.5, Gt '" ,(H) under the isomorphism G'" HEB F. 
Consequently by Corollary 1.5.8, GIGt '" (F EB H)/,(H) '" F. Therefore, any 
decomposition of G leads to the conclusion that GIGt is a free abelian group whose 
rank is the number s of infinite cyclic summands in the decomposition. Since GIGt 

does not depend on the particular decomposition and the rank of GIGt is an 
invariant by Theorem 1.2, s is uniquely determined. 

(iii) Suppose G has two decompositions, say 

r 

G'" LZn.EBF and 
i=l 

rl 

G = LZkjEBF', 
;=1 
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with each n;,k i a power of a prime (different primes may occur) and F,F' free abelian; 
(there is at least one such decomposition by Theorem 2.2). We must show that r = d 
and (after reordering) ni = ki for every i. It is easy to see that the torsion subgroup of 
L Zn; EB F is (isomorphic to) L Zni and similarly for the other decomposition. 

T d 

Hence L Zn; "-' Gt '" ,L: Zk; by Lemma 2.5. For each prime p, (L Zni)(P) is obvi-
;=1 i=1 

ously (isomorphic to) the direct sum ofthoseZn; such that ni is a power of p andsim
ilarly for the other decomposition. Since (,L: Zn;)(P) '" (,L: Zk;)(P) for each prime p 
by Lemma 2.5, it suffices to assume that G = Gt and each ni,k i is a power of a fixed 
prime P (so that G = G(p». Hence we have 

T d 

L Zpa; '" G '" L Zpcll =:; al =:; a2 =:; ... =:; ar; 1 =:; Cl =:; C2 =:; ... =:; Cd). 
i=1 i=1 

We first show that in any two such decompositions of a group we must have 
r = d. Lemma 2.5 and the first decomposition of G show that 

T 

G[p) '" LZpa;[p) '" Zp EB·· ·EBzp (r summands), 
i=1 

whence 1 G[p) 1 = pro A similar argument with the second decomposition shows that 
IG[pli = pd. Therefore, pr = pd and r = d. 

Let v (1 ~ v ~ r) be the first integer such that ai = Ci for all i < v and av rf c •. 
We may assume that av < Cv. Since pavZpa; = 0 for ai =:; av, the first decomposi
tion and Lemma 2.5 imply that 

r r 

P"vG ~ " pav7 a' ~ " Z a·-n .. - L...t! Lp ,- L., p • .,., 
;=1 i=v+l 

with av+l - av =:; a"+2 - av =:; ... =:; ar - avo Clearly, there are at most r - (v + 1) + 
1 = r - v nonzero summands. Similarly since ai = C; for i < v and av < Cv the 
second decomposition implies that 

T 

PavG ~ " Z c'-a -£....J pS v, 
i=ll 

with 1 =:; c. - a. =:; Cv+l - av =:; ... =:; Cr - avo Obviously there are at lea!'>t r - v + 1 
nonzero summands. Therefore, we have two decompositions of the group pavG as a 
direct sum of cyclic groups of prime power order and the number of summands in 
the first decomposition is less than the number of summands in the second. This 
contradicts the part of the Theorem proved in the previous paragraph (and applied 
here to pavG). Hence we must have ai = Ci for all i. 

(ii) Suppose G has two decompositions, say 

with ml > 1, ml 1 m2 ! .. ·1 me, kl > 1, kl ! k2 !· . ·1 kd and F, F' free abelian; (one such 
decomposition exists by Theorem 2.1). Each mi,k i has a prime decomposition and 
by inserting factors of the form po we may assume that the same (distinct) primes 
PI, ... , Pr occur in all the factorizations, say 
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ml = p~l1p~l2 .. . p~I' kl = p~l1pgl2 .. . p~I' 

m2 = p~2!p~22 . . . p~" k2 = p~''pg'l'l . . . p~" 

Since ml 1 m2 I· . ·1 mt, we must have for each j, 0 ~ ali ~ a2i ~ ... ~ ati' Similarly 
o ~ Cli ~ C2] ~ ••• ~ Cdi for each j. By Lemmas 2.3 and 2.S 

t d 

L Zp/'j ,....., L Zmi ,....., Gt :: L Zki ,....., L Zp/'j, 
i,j i = 1 i = 1 i,j 

where some summands may be zero. It follows that for each; = 1,2, ... , r 

t d 

L Zp/,j""'" G(p,) ,....., L Zp/'j. 
i= 1 i=1 

t 

Since ml > 1, there is some Pi such that 1 ~ ali ~ ... ~ ati, whence L Zp/'j has t 
d i=1 

nonzero summands. By (iii) L Zp/'j has exactly t nonzero summands, whence 
i=1 

t ::5 d. Similarly kl > 1 implies that d ::5 t and hence d = t. By (iii) we now must have 
au = Cu for all i,j, which implies that mj = kj for i = 1,2, ... , t. • 

If G is a finitely generated abelian group, then the uniquely determined integers 
ml, ... , mt as in Theorem 2.6 (ii) are called the invariant factors of G. The uniquely 
determined prime powers as in Theorem 2.6 (iii) are called the elementary divisors 
of G. 

Corollary 2.7. Two finitely generated abelian groups G and H are isomorphic if and 
only ifG/Gt and H/Ht have the same rank and G and H have the same invariant 
factors [resp, elementary divisors). 

PROOF. Exercise. • 

EXAMPLE. All finite abelian groups of order IS00 may be determined up to 
isomorphism as follows. Since the product of the elementary divisors of a finite 
group G must be IGI and ISoo = 22.3. S3, the only possible families of elementary di
visors are {2,2,3,S31, /2,2,3,S,S21, {2,2,3,S,S,SI, {22,3,S31, {22,3,S,S21 and {22,3,S,S,SI. 
Each of these six families determines an abelian group of order IS00 (for example, 
{2,2,3,S31 determinesZ2 EBZ2 EBza EBZ125). By Theorem 2.2 every abelian group of 
order IS00 is isomorphic to one of these six groups and no two of the six are iso
morphic by Corollary 2.7. 

If the invariant factors ml, ... , mt of a finitely generated abelian group G are 
known, then the proof of Theorem 2.6 shows that the elementary divisors of G are 
the prime powers pn (n > 0) which appear in the prime factorizations of m" ... , mt. 
Conversely if the elementary divisors of G are known, they may be arranged in the 
following way (after the insertion of some terms of the form pO if necessary): 
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p~1l,p:12, ..• , p~lr 

p~21,p;", ... , P:" 

p~",p;", ... , p:". 

81 

where PI, ••• , p. are distinct primes; for eachj = 1,2, ... , r, 0 ~ nI; ~ n2j ~ •.• ~ nl; 

with some nil "" 0; and finally nlj "" 0 for some j. By the definition of elementary 
I r 

divisors (Theorem 2.6 (iii)), G '" L L ZPj"ii EB Fwhere F is free abelian (and some 
i-lj=1 

finite summands are 0, namely those with P'ti = pl = 1). For each i = 1,2, ... , I 
let mi = p~i'p;'" . . p~i. (that is, mi is the product of the ith row in the array above). 
Since some nlj "" 0, ml > 1 and by construction ml I m2 I· . ·1 mi. By Lemma 2.3 

I (r ) t 
G '" L L ZPi"ij EB F '" L: Zmi EB F. Therefore, mI, ... , ml are the invariant 

i~1 j-l <=1 

factors of G by Theorem 2.6 (ii). 

EXAMPLE. If G is the group Zs EB ZI6 EB Z2S EB ZaG EB ZM, then by Lemma 2.3 
G '" Zs EB (Zs EB Z3) EB Z25 EB (Zg EB Z4) EB (Z~ EB Z2). Hence the elementary divi
sors of G are 2,22,3,32,33,5,5,52 which may be arranged as explained above: 

5 
32, 5 

Consequently the invariant factors of G are 1·3·5 = 15, 2.32.5 = 90, and 
22.33 .52 = 2700 so that G '" ZI6 EB Z90 EB Z~OO. 

A topic that would fit naturally into this section is the determination of the struc
ture of a finitely generated abelian group which is described by generators and rela
tions. However, since certain matrix techniques are probably the best way to handle 
this question, it will be treated in the Appendix to Section VIi.2. The interested 
reader should have little or no difficulty in reading that material at the present time. 

EXERCISES 

1. Show that a finite abelian group that is not cyclic contains a subgroup which is 
isomorphic to Zp EB Zp for some prime p. 

2. Let G be a finite abelian group and x an element of maximal order. Show that (x) 
is a direct summand of G. Use this to obtain another proof of Theorem 2.1. 

3. Suppose G is a finite abelian p-group (Exercise 7) and x e G has maximal order. 
If y e G/(x) has order pr, then there is a representative y e G of the coset y such 
that Iyl = pro [Note that if Ixl = pI, then pIG = 0.] 

4. Use Exercises 3 and 7 to obtain a proof of Theorem 2.2 which is independent of 
Theorem 2.1. [Hint: If G is a p-group, let x E G have maximal order; G/(x) is a 
direct sum of cyclics by induction, G/(x) = (i l ) (:f) .•. (:f) (in), with I i, I = pr' 
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and 1 :::; rl :::; r2 :::; ... :::; rn. Choose representatives Xi of Xi such that IXil = IXil. 
Show that G = (XI) EB···EB (Xn) EB (x) is the desired decomposition.] 

5. If G is a finitely generated abelian group such that G/Gt has rank n, and H is a 
subgroup of G such that H/ H t has rank m, then m :::; nand (G/ H)/(G/ H)t has 
rank n - m. 

6. Letk,me:N*.If(k,m) = l,thenkZm =ZmandZ .. [k] = O.Ifklm,saym = kd, 
then kZm ~ Zd and Z .. [k] '" Zk. 

7. A (sub)group in which every element has order a power of a fixed prime p is 
called a jr(sub)group (note: 101 = 1 = ]f). Let G be an abelian torsion group. 

(a) G(p) is the unique maximump-subgroup of G (that is, every p-subgroup of 
G is contained in G(p». 

(b) G = L G(p), where the sum is over all primes p such that G(p) ~ O. 
[Hint: Iflul = Pin!.. 'Ptnt, letm. = lui/Pin •. Thereexistc. e: Zsuch thatclml + ... 
+ Cernt = 1, whence u = ClmlU + ... + cerntU; but C;miU e: G(Pi).] 

(c) If H is another abelian torsion group, then G '" H if and only if 
G(p) '" H(P) for all primes p. 

8. A finite abelian p-group (Exercise 7) is generated by its elements of maximal 
order. 

9. How many subgroups of order p2 does the abelian group Z p3 EB Zp2 have? 

10. (a) Let G be a finite abelian p-group (Exercise 7). Show that for each n 2': 0, 
p,,+lG n G[p] is a subgroup of pnG n G[p]. 
(b) Show that (p"G n G[p])/(pn+lG n G(p]) is a direct sum of copies of Zp; let 
k be the number of copies. 
(c) Write G as a direct sum of cyclics; show that the number k of part (b) is the 
number of summands of order p,,+l. 

11. Let G, H, and K be finitely generated abelian groups. 
(a) If G EB G '" H EB H, then G '" H. 
(b) If G EB H'" G EB K, then H'" K. 
(c) If GI is a free abelian group of rank No, then G1 EB Z EB Z '" GI EB Z, 

but ZEBZ~ Z. 
Note: there exists an infinitely generated denumerable torsion-free abelian group 
G such that G '" G EB G EB G, but G ~ G EB G, whence (a) fails to hold with 
H = G EB G. See A.L.S. Corner [60]. Also see Exercises 3.11, 3.12, and IV.3.12. 

12. (a) What are the elementary divisors of the group Z2 EBZ9 EBZas; what are its 
invariant factors? Do the same for Z26 EB Z42 EB Z49 EB Z200 EB ZUJO(). 
(b) Determine up to isomorphism all abelian groups of order 64; do the same for 
order 96. 
(c) Determine all abelian groups of order n for n :::; 20. 

13. Show that the invariant factors of Z .. EBZn are (m,n) and [m,n] (the greatest 
common divisor and the least common multiple) if (m,n) > 1 andmn if(m,n) = 1. 

14. If H is a subgroup of a finite abelian group G, then G has a subgroup that is 
isomorphic to G / H. 

15. Every finite subgroup of Q/Z is cyclic [see Exercises 1.3.7 and 7]. 
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3. THE KRULL·SCHMIDT THEOREM 

The groups Z andZp " (p prime) are indecomposable, in the sense that neither is a 
direct sum of two of its proper subgroups (Exercise 1.8.1). Consequently, Theorems 
2.2 and 2.6(iii) may be rephrased as: every finitely generated abelian group is the 
direct sum of a finite number of indecomposable groups and these indecomposable 
summands are uniquely determined up to isomorphism. We shall now extend this 
result to a large class of (not necessarily abelian) groupS.1 

For the remainder of this chapter we return to the use of multiplicative notation 
for an arbitrary group. 

Definition 3.1. A group Glrindecomposable ifG ¢ (e) and G is not the (internal) 
direct product of two of its proper subgroups. 

Thus G is indecomposable if and only if G ¢ (e) and G '" H X K implies 
H = (e) or K = (e) (Exercise 1). 

EXAMPLES. Every simple group (for example, A", n ¢ 4) is indecomposable. 
However indecomposable groups need not be simple: Z, Zp" (p prime) and S" are in
decomposable but not simple (Exercises 2 and 1.8.1). 

Definition 3.2. A group G is said to satisfy the ascending chain condition (ACC) on 
[normal] subgroups iffol' every chain G1 < G2 < ... oJ[normal] subgroups ofG there 
is an integer n such that G i = G ... for all i ~ n. G is said to satisfy the descending chain 
condition (DCC) on [normal] subgroups iffor every chain G 1 > G 2 > ... of [normal] 
subgroups ofG there is an integer n such that Gi = Gn for all i ~ n. 

EXAMPLES. Every finite group satisfies both chain conditions. Z satisfies the 
ascending but not the descending chain condition (Exercise 5) and Z(pOO) satisfies 
the descending but not the ascending chain condition (Exercise 13). 

Theorem 3.3. If a group G satisfies either the ascending or descending chain condition 
on normal subgroups, then G is the direct product of a finite number ofindecomposable 
subgroups. 

SKETCH OF PROOF. Suppose G is not a finite direct product of indecom
posable subgroups. Let S be the set of all normal subgroups H of G such that H is a 
direct factor of G (that is, G = H X TH for some subgroup TH of G) and His not a 
finite direct product of indecomposable subgroups. Clearly G E S. If H E S, then His 
not indecomposable, whence there must exist proper subgroups KH and J H of H such 
that H = KH X JH (= JH X K H ). Furthermore, one of these groups, say KH , must 
lie in S (in particular, KH is normal in G by Exercise 1.8.12). Let f: S -+ S be the map 

IThe results of this section are not needed in the sequel. 
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defined by f(H) = KH • By the Recursion Theorem 6.2 of the Introduction (with 
In = f for all n) there exists a function <p : N ~ S such that 

<p(0) = G and <pen + 1) = f(<p(n» = Krp(n) (n ~ 0). 

If we denote <p(n) by Gll , then we have a sequence of subgroups GO,GI,G2, ••• , of G 
(all of which are in S) such that 

G = Go; G1 = KGo; G2 = KGl; ••. ; Gn+1 = KGn ; ••• 

By construction each Gi is normal in G and 

G > G1 > G2 > G3 > .... 
~ ~ ~ ~ 

If G satisfies the descending chain condition on normal subgroups, this is a con
tradiction. Furthermore a routine inductive argument shows that for each 11 ~ 1, 
G = Gn X JGn-l X JGn-2 X· .. X JGo with each JG, a proper subgroup of G. Conse
quently, there is a properly ascending chain of normal subgroups: 

JGo < JGl X JGo < JG2 X JGl X JGo < .... 
~ ~ ~ 

If G satisfies the ascending chain condition on normal subgroups, this is a con
tradiction. • 

In order to determine conditions under which the decomposition of Theorem 3.3 
is unique, several definitions and lemmas are needed. An endomorphism fof a gt;oup 
G is called a normal endomorphism if af(b)a-1 = f(aba-1) for all a,b E G. 

Lemma 3.4. Let G be a group that satisfies the ascending [resp. descending] chain 
condition on normal subgroups and f a [normal] endomorphism ofG. Then f is an auto
morphism if and only iff is an epimorphism [resp. monomorphism]. 

PROOF. Suppose G satisfies the ACC and fis an epimorphism. The ascending 
chain of normal subgroups (e) < Ker f < Ker r < ... (where Jk = if- .. f) must 
become constant, say Ker fn = Ker rH. Sincefis an epimorphism, so isfn. If a E G 
and f(a) = e, then a = reb) for some bEG and e = f(a) = r+I(b). Consequently 
bE Ker r H = Ker r, which implies that a = reb) = e. Therefore,fis a monomor
phism and hence an automorphism. 

Suppose G satisfies the DCC and fis a monomorphism. For each k ~ 1, 1m Jk is 
normal in G since fis a normal endomorphism. Consequently, the descending chain 
G > 1m f > 1m r > ... must become constant, say 1m fn = 1m rH. Thus for any 
a E G,fn(a) = r+I(b) for some bEG. Sincefis a monomorphism, so isfn and hence 
fn(a) = r+I(b) = f"(f(b» implies a = feb). Therefore fis an epimorphism, and 
hence an automorphism. • 

Lemma 3.5. (Fitting) IfG is a group that satisfies both the ascending and descending 
chain conditions on normal subgroups and f is a normal endomorphism ofG, then for 
somen ~ 1, G = Kerfn X 1m fn. 
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PROOF. Sincefis a normal endomorphism each Imp (k ~ 1) is normal in G. 
Hence we have two chains of normal subgroups: 

G>lmf>lmp> .. · and (e) < Kerf< Kerp< .. ·. 

By hypothesis there is an n such that 1m p = 1m fro and Ker p = Ker I" for all 
k ~ n. Suppose a e Ker I" n 1m 1". Then a = I"(b) for some beG and P"(b) 
= f,,(l"(b» = I"(a) = e. Consequently, b e Ker P" = Ker I" so that a = f"(b) = e. 
Therefore, Ker I" n 1m I" = (e). For any c e G, I"(c) e 1m I" = 1m P", whence 
f"(c) = P"(d) for some de G. Thus fn(cl"(tr'» = l"(c)P"(trl) = f,,(c)P"(d)-' 
= l"(c)I"(C)-1 = e and hence cl"(trl) e Ker /". Since c = (cf"(tr'»f"(d), we 
conclude that G = (Ker I")(Im fn). Therefore G = Ker fro X 1m fn by Definition 
1.8.8. • 

An endomorphism f of a group G is said to be nilpotent if there exists a positive 
integer n such that I"(g) = e for all g e G. 

Corollary 3.6. IfG is an indecomposable group that satisfies both the ascending and 
descending chain conditions on normal subgroups and f is a normal endomorphism of G, 
then either f is nilpotent or f is an automorphism. 

PROOF. For some n ~ 1, G = Ker I" X 1m I" by Fitting's Lemma. Since G is 
indecomposable either Ker fn = (e) or 1m I" = (e). The latter implies that fis nil
potent. IfKer I" = (e), then Ker l= (e) andfis a monomorphism. Therefore,fis 
an automorphism by Lemma 3.4. • 

If G is a group and f, g are functions from G to G, then f + g denotes the function 
G ~ G given by a ~ f(a)g(a). Verify that the set of all functions from G to G is a group 
under + (with identity the map OG:G ~ G given by a ~ e for all a E G). When f and 
g are endomorphisms of G, f + g need not be an endomorphism (Exercise 7). So the 
subset of endomorphisms is not in general a subgroup. 

Corollary 3.7. Let G (¢ (e» be an indecomposable group that satisfies both the as
cending and descending chain conditions on normal subgroups. Iff" ... , fn are normal 
nilpotent endomorphisms ofG such that every fil + ... + fir (l ::; h < i2 < ... < ir ::; n) 
is an endomorphism, then fl + f2 + ... + fn is nilpotent. 

SKETCH OF PROOF. Since each fil + ... + fir is an endomorphism that is 
normal (Exercise 8(c», the proof will follow by induction once the case n = 2 is 
established. If fi + 12 is not nilpotent, it is an automorphism by Corollary 3.6. Verify 
that the inverse g of fi + 12 is a normal automorphism. If gl = fig and g2 = f2K, then 
la = gl + g2 and for all x e G, X-I = (gl + g2)(X-I) = gl(x-')gix-' ). Hence 
x = [gb-')gb-')]-' = gb)g,(x) = (g2 + gl)(x) and la = g2 + gl. Therefore, 
gl + g2 = g2 + gl and gl(gl + g2) = gila = lagl = (gl + g2)gl, which implies that 
glg2 = g2Kl. A separate inductive argument now shows that for each m ~ 1, 

m 

(gl + g2)m = L: ciKlig';-i (Ci e Z), 
i=O 
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where the Ci are the binomial coefficients (see Theorem III.1.6) and cih means 
h + h + ... + h (c, summands). Since each Ji is nilpotent, gi = Jig has a nontrivial 
kernel, whence gi is nilpotent by Corollary 3.6. Therefore for large enough m and all 

m m 

a E G, (gl + g2)m(a) = L: c;glig~-i(a) = II eC' = e. But this contradicts the facts 
i=O i=O 

that gl + g2 = 10 and G ;e (e). • 

The next theorem will make use of the following facts. If a group G is the internal 
direct product of its subgroups GI , •.. , G. then by the proof of Theorem 1.8.6 there 
is an isomorphism C{) : GI X' .. X G.,...., G given by (gl, ... , g.) f--> glg2' .. g •. Con
sequently, every element of G may be written uniquely as a product glg2' .. g. (gi E Gi ). 

For each i the map 7ri : G -- G. given by g]g2' .. g.1-> gi is a well-defined epimor
phism; (it is the composition of C{)-I with the canonical projection GI X' .. X 
G. -- Gi .) We shall refer to the maps 7ri as the canonical epimorphisms associated 
with the internal direct product G = GI X' .. X G •. 

Theorem 3.S. (Krull-Schmidt) Let G be a group that satisfies both the ascending and 
descending chain conditions on normal subgroups. IfG = GI X G2 X··· X G. and 
G = HI X H2 X· .. X Ht with each Gi,Hj indecomposable, then s = t and after 
reindexing Gi ,...., Hi for every i and for each r < t. 

G = GI X ... X Gr X Hr+1 X ... X HI. 

REMARKS. G has at least one such decomposition by Theorem 3.3. The unique
ness statement here is stronger than simply saying that the indecomposable factors 
are "determined up to isomorphism. 

SKETCH OF PROOF OF 3.8. Let P(O) be the statement G = HI X ... X HI. 
For 1 :$ r :$ min (s,t) let Per) be the statement: there is a reindexing of HI, ... , HI 
such that Gi """ Hi for i = 1,2, ... ,r and G = GI X··, X Gr X Hr+1 X··· X HI 
(or G = GI X' .. X GI if r = t). We shall show inductively that Per) is true for all r 
such that 0 :$ r :$ min (s,t). P(O) is true by hypothesis, and so we assume that 
Per - 1) is true: after some reindexing Gi ~ Hi for i = 1, ... , r - 1 and 
G = GI X' .. X Gr_1 X Hr X' .. X HI. Let 7r1, ... ,7r. [resp. 7r1', ..• ,7r/l be the 
canonical epimorphisms associated with the internal direct product 

G = G1 X' .. X G. [resp. G = G1 X' .. X Gr- I X Hr X' .. X Htl 

as in the paragraph preceding the statement of the Theorem. Let Ai [resp. All be 
the inclusion maps sending the ith factor into G. For each i let C{)i = Ai7ri : G -- G 
and let 1/1, = A/7r/ : G -- G. Verify that the following identities hold: 

<{Ii I G, = 10 .; 

1/11 + ... + 1/11 = 10 ; 

1m C{), = Gi ; 

C{)iC{), = C{)i; 

1/Ii1/li = 1/Ii; 
1m 1/1, = Gi (i < r); 

C{)iC{); = 00 (i ;e j)2; 

1/;i1/;; = 00 (i ;e j); 

1m 1/;i = Hi (i ? ~). 

It follows that C{)r1/;i = 00 for all i < r (since 1/;i(X) E Gi so that C{).y;i(X) = C{)r10,1/;i(x) 
= C{)rC{)i1/;i(X) = e). 

2See the paragraph preceding Corollary 3.7. 
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The preceding identities show that IPT = IPT1a = <PT(1/tl + ... + 1/t,) = <PT1/tr + ... 
+ <PT1/t,. Every "sum" of distinct <PT!{I; is a normal endomorphism (Exercises 8, 9). 
Since IPT I GT = laT is a (normal) automorphism of GT and GT satisfies both chain con
ditions on normal subgroups (Exercise 6), Corollaries 3.6 and 3.7 imply that <PT!{Ii I Gr 

is an automorphism of GT r5- (e) for somej (r ::; j ::; t). Therefore, for every n ~ 1 
{<p.1{Ii)n+l is also an automorphism of G. Consequently, since GT r5- (e) and (<Pr!{li)n+l 
= <PT(!{Ii<PT)n1{Ii for all n ~ 1, the normal endomorphism !{Ii<PT I Hi : Hi~ Hi cannot be 
nilpotent. Since H; satisfies both chain conditions (Exercise 6), !{I;<PT I H; must be an 
automorphism of H; by Corollary 3.7. Therefore !{Ii I Gr : GT ~ H; is an isomor
phism and so is <PT I H; : H; ~ GT. Reindex the Hk so that we may assume j = r 
and GT '" H T • We have proved the first half of statement per). 

Since G = G1 X··· X GT_1 X HT X··· X H, by the induction hypothesis the 
subgroup G1G2••• GT_1HT+1· .. H, is the internal direct product G1 X· .. GT_1 X 
HT+1 X· .. X H,. Observe that for j < r, !{IT{Gi) = !{IT1/t,{G) = (e) and for j> r, 
!{IT(Hi ) = !{IT!{I;(G) = (e), whence !{IT(G1·· ·GT_1HT+1·· ·H,) = (e). Since !{IT I GT is an 
isomorphism, we must have GT n (G1 ••• GT_1HT+1•· ·H,) = (e). It follows that the 
group G* = G1 • •• GT-lGTHT+l' .. H, is the internal direct product 

G* = G1 X· .. X Gr X HT+1 X' .. X H,. 

Define a map (J : G ~ G as follows. Every element g E G may be written g = gl' •• 

gT-1hT· .. ht with gi E G; and h; E Hi' Let (J(g) = gl' •. gr-l<PT(hT)hT+1· .. ht. Clearly 
1m 0 = G*. (J is a monomorphism (see Theorem 1.8.10) that is easily seen to be nor
mal. Therefore (J is an automorphism by Lemma 3.4 so that G = 1m 0 = G* 
= G1 X· .. GT X H T+1 X ... X H,. This proves the second part of per) and com
pletes the inductive argument. Therefore, after reindexing G; '" Hi forO::; i ::; min{s,t). 
If min (s,t) = s, then G1 X' .. X G. = G = G1 X· .. X G. X H.+1 X· .. X He, 
and if min (s,t) = t, then G1 X' .. X G. = G = G1 X' .. X Gt • Since G; r5- (e), 
Hi r5- (e) for alI i,j, we must have s = t in either case. • 

EXERCISES 

1. A group G is indecomposable if and only if G r5- (e) and G '" H X K implies 
H = (e) or K = (e). 

2. Sn is indecomposable for alI n ~ 2. [Hint: If n ~ 5 Theorems 1.6.8 and 1.6.10 and 
Exercise 1.8.7 may be helpful.] 

3. The additive group Q is indecomposable. 

4. A nontrivial homomorphic image of an indecomposable group need not be in
decomposable. 

5. (a) Z satisfies the ACC but not the DCC on subgroups. 
(b) Every finitely generated abelian group satisfies. the ACC on subgroups. 

6. Let H,K be normal subgroups of a group G such that G = H X K. 
(a) If N is a normal subgroup of H, then N is normal in G (compare Exercise 

1.5.10). 
(b) If G satisfies the ACC or DCC on normal subgroups, then so do Hand K. 
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7. If land g are endomorph isms of a group G, then 1+ g need not be an endo
morphism. [Hint: Let a = (123), b = (132) e S3 and define I(x) = axa-t, 
g(x) = bxb-1.] 

8. Let land g be normal endomorph isms of a group G. 
(a) Ig is a normal endomorphism. 
(b) H <J G implies I(H) <J G. 
(c) If I + g is an endomorphism, then it is normal. 

9. Let G = G1 X· .. X Gn • For each i let Ai: G; --> G be the inclusion map and 
1I"i : G --> Gi the canonical projection (see page 59). Let 'Pi = Ai1l"i. Then the 
"sum" 'Pil + ... + 'Pik of any k (1 :s; k :s; n) distinct 'Pi is a normal endomor
phism of G. 

to. Use the Krull-Schmidt Theorem to prove Theorems 2.2 and"2.6 (iii) for finite 
abelian groups. 

11. If G and H are groups such that G X G '" H X Hand G satisfies both the Aee 
and Dee on normal subgroups, then G '" H [see Exercise 2.11]. 

12. If G,H,K and J are groups such that G '" H X K and G '" H X J and G satis
fies both the Aee and Dee on normal subgroups, then K::: J [see Exercise 2.11] 

t 3. For each prime p the group Z(pOO) satisfies the descending but not the ascending 
chain condition on subgroups [see Exercise 1.3.7]. 

4. THE ACTION OF A GROUP ON A SET 

The techniques developed in this section will be used in the following sections to 
develop structure theorems for (nonabelian finite) groups. 

Definition 4.1. An action of a group G on a set S is a function G x S - S 
(usually denoted by (g,x) I-> gx) such that lor all xeS and gl,g2 e G: 

ex = x and (glg2)X = gl(g2X). 
When such an action is given, we say that G acts on the set S. 

Since there may be many different actions of a group G on a given set S, the nota
tion gx is ambiguous. In context, however, this will not cause any difficulty. 

EXAMPLE. An action of the symmetric group Sn on the set In = {1,2 .... , nJ 
is given by (u,x) ~ u(x). 

EXAMPLES. Let G be a group and H a subgroup. An action of the group H on 
the set G is given by (h,x) j-7 hx, where hx is the product in G. The action of he H on 
G is called a (left) translation. If K is another subgroup of G and S is the set of all left 
cosets of K in G, then H acts on S by translation: (h,xK) ~ hxK. 

EXAMPLES. Let Hbe a subgroup ofa group G. An action of H on the set Gis 
given by (h,x) ~ hxh-I ; to avoid confusion with the product in G, this action of he H 
is always denoted hxh-l and not hx. This action of h e H on G is called conjugation by 
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h and the element hxh-1 is said to be a conjugate of x. If K is any subgroup of G and 
h E H, then hKh-1 is a subgroup of G isomorphic to K (Exercise 1.5.6). Hence H acts 
on the set S of all subgroups of G by conjugation: (h,K) f--> hKh-l • The group hKh-1 is 
said to be conjugate to K. 

Theorem 4.2. Let G be a group that acts on a set S. 

(i) The relation on S defined by 

x '" x' q gx = x' for some g E G 

is an equivalence relation. 
(ii) For each XES, G x = 19 E G I gx = x} is a subgroup ofG. 

PROOF. Exercise. • 

The equivalence classes of the equivalence relation of Theorem 4.2(i) are called 
the orbits' of G on S; the orbit of XES is denoted x. The subgroup Gx is called vari
ously the subgroup fixing x, the isotropy group of x or the stabilizer of x. 

EXAMPLES. If a group G acts on itself by conjugation, then the orbit 
19x9-1 I g E G} of x EGis called the conjugacy class of x. If a subgroup H acts on G 
by conjugation the isotropy group Hx = I h E HI hxh-1 = x} = I h E HI hx = xh} is 
called the centralizer ofx in H and is denoted CH(x). If H = G, CG(x) is simply called 
the centralizer of x. If H acts by conj ugation on the set S of all subgroups of G, then 
the subgroup of H fixing K E S, namely! h E HI hKh-1 = Kl, is called the normalizer 
of K in H and denoted NI/(K). The group NG(K) is simply called the normalizer of K. 
Clearly every subgroup K is normal in NG(K); K is normal in G if and only if NG(K) = G. 

Theorem 4.3. If a group G acts on a set S, then the cardinal number of the orbit of 
XES is the index [G : Gxl. 

PROOF. Let g,h e G. Since 

it follows that the map given by gGx I-> gx is a well-defined bijection of the set of co-
sets of Gx in G onto the orbit 1'= !gx I g e Gl. Hence [G : Gxl = 11'1. • 

Corollary 4.4. Let G be a finite group and K a subgroup ofG. 

(i) The number of elements in the conjugacy class ofx EGis [G : CG(x)l, which 
divides IGI; 

(ii) if Xl, ... , Xu (Xi E G) are the distinct conjugacy classes ofG, then 

'This agrees with our previous use of the term orbit in the proof of Theorem 1.6.3, where 
the special case of a cyclic subgroup <"I of Sn acting on the set In was considered. 
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n 

/G/ = L [G: CG(Xj)]; 
i=l 

(iii) the number of subgroups ofG conjugate to K is [G : NG(K)], which divides /G/. 

PROOF. (i) and (iii) follow immediately from the preceding Theorem and 
Lagrange's Theorem 1.4.6. Since conjugacy is an equivalence relation on G (Theorem 
4.2), G is the disjoint union of the conjugacy classes Xl, ... , Xn, whence (ii) follows 
from (i). • 

n 

The equation / G/ = L [G : CG(Xi)] as in Corollary 4.4 (ii) is called the class 
i=l 

equation of the finite group G. 

Theorem 4.5. If a group G acts on a set S, then this action induces a homomorphism 
G -7 A(S), where A(S) is the group of all permutations of S. 

PROOF. If g e G, define To : S -7 S by xl-> gx. Since x = g(g-IX) for all xeS, 
To is surjective. Similarly gx = gy (x,yeS) implies x = g-l(gX) = g-l(gy) = y, 
whence To is injective and therefore a bijection (permutation of S). Since TOg' = TyTO' : 
S -7 S for all g,g' e G, the map G -7 A(S) given by g f-> To is a homomorphism. • 

Corollary 4.6. (Cayley) lfG is a group, then there is a monomorphism G -7 A(G). 
Hence every group is isomorphic to a group ofpermutations.lnparticular every finite 
group is isomorphic to a subgroup ofSn with n = /G/. 

PROOF. Let G act on itself by left translation and apply Theorem 4.5 to obtain a 
homomorphism T : G -7 A(G). If T(g) = Ty = la, then gx = T.(X) = x for all x e G. 
In particular ge = e, whence g = e and T is a monomorphism. To prove the last 
statement note if /G/ = n, then A(G) '" Sn. • 

Recall that if G is a group, then the set Aut G of all automorphisms of G is a 
group with composition of functions as binary operation (Exercise 1.2.15). 

Corollary 4.7. Let G be a group. 

(i) For each g e G, conjugation by g induces an automorphism ofG. 
(ii) There is a homomorphism G -7 Aut G whose kernel is qG) = ! g e G / gx = 

xg for all x e G I. 

PROOF. (1) If G acts on itself by conjugation, then for each g e G, the map 
To: G -7 G given by ToCX) = gxg-1 is a bijection by the proof of Theorem 4.5. It is 
easy to see that To is also a homomorphism and hence an automorphism. (ii) Let G 
act on itself by conjugation. By (i) the image of the homomorphism T : G -7 A( G) of 
Theorem 4.5 is contained in Aut G. Clearly 

g e Ker T {=} T. = 1G {=} gxg-1 = T.(X) = x for all x e G. 

But gxg-1 = x if and only if gx = xg, whence Ker T = C(G). • 
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The automorphism T. of Corollary 4.7(i) is called the inner automorphism in
duced by g. The normal subgroup C(G) = Ker T is called the center of G. An element 
g eGis in C( G) if and only if the conjugacy class of g consists of g alone. Thus 
if G is finite and x e C(G), then [G : Ca(x)] = 1 (Corollary 4.4). Consequently, 
the class equation of G (Corollary 4.4(ii)) may be written 

m 

IGI = IC(G)I + L: [G: Ca(Xi)], 
i-I 

where Xl, •.. ,Xm (Xi e G - C(G)) are distinct conjugacy classes of G and each 
[G : Ca(Xi)] > 1. 

Proposition 4.8. Let H be a subgroup of a group G and let G act on the set S of all 
left cosets ofH in G by left translation. Then the kernel of the induced homomorphism 
G ~ A(S) is contained in H. 

PROOF. The induced homomorphism G ~ A(S) is given by g ~ T., where 
T.:S ~S and Tu(xH) = gxH. Ifgis in the kernel, then Tg = Is and gxH = xHfor 
all x e G; in particular for x = e, geH = eH = H, which implies g e H. • 

Corollary 4.9. IfH is a subgroup of index n in a group G and no nontriviaillormal 
subgroup ofG is contained ill H, then G is isomorphic to a subgroup ofSn. 

PROOF. Apply Proposition 4.8 to H; the kernel of G ~ A(S) is a normal sub
group of G contained in Hand must therefore be (e) by hypothesis. Hence, G ~ A(S) 
is a monomorphism. Therefore G is isomorphic to a subgroup of the group of all 
permutations of the n left cosets of H, and this latter group is clearly isomorphic 
toSn •• 

Corollary 4.10. IfH is a subgroup ofafinite group G of index p, wherep is the small
est prime dividing the order ofG, then H is normal in G. 

PROOF. Let S be the set of all left cosets of H in G. Then A(S) '" Sp since 
[G : H] = p. If K is the kernel of the homomorphism G ~ A(S) of Proposition 4.8, 
then K is normal in G and contained in H. Furthermore G / K is isomorphic to a sub
group of Sp. Hence IG/KI divides ISpl· = p! But every divisor of IG/KI = [G : K] 
must divide IGI = IKI [G : K]. Since no number smaller thanp (except 1) can divide 
IGI, we must have IG/KI = p or 1. However IG/KI = [G: K] = [G: H][H: K] 
= p[H: K] ~ p. Therefore IG/KI = p and [H: K] = 1, whence H = K. But K is 
normal in G .• 

EXERCISES 

1. Let G be a group and A a normal abelian subgroup. Show that G / A operates on 
A by conjugation and obtain a homomorphism G/ A ~ Aut A. 

2. If H,K are subgroups of G such that H <l K, show that K < Na(H). 
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3. If a group G contains an element a having exactly two conjugates, then G has a 
proper normal subgroup N,e (e). 

4. Let Hbea subgroup ofG. The centralizer of His the set CG(H) = {ge G I hg=ghfor 
all h e HI. Show that CG(H) is a subgroup of NG(H). 

5. If H is a subgroup of G, the factor group NG(H)/CG(H) (see Exercise 4) is iso
morphic to a subgroup of Aut H. 

6. Let G be a group acting on a set S containing at least two elements. Assume that 
G is transitive; that is, given any x,y e S, there exists g e G such that gx = y. 
Prove 

(a) for XeS, the orbit x of x is S; 
(b) all the stabilizers Gx (for XeS) are conjugate; 
(c) if G has the property: {g e G I gx = x for all x e Sl = (e) (which is the 

case if G < Sn for some nand S = {I ,2, ... , n l) and if N <l G and N < Gx for 
some XeS, then N = (e); 

(d) for xeS, lSI = [G: Gxl; hence lSI divides IGI. 

7. Let G be a group and let In G be the set of all inner automorphisms of G. Show 
that In G is a normal subgroup of Aut G. 

8. Exhibit an automorphism of Zs that is not an inner automorphism. 

9. If G/C(G) is cyclic, then G is abelian. 

to. Show that the center of S4 is (e); conclude that S4 is isomorphic to the group of 
all inner automorphisms of S4. 

I I. Let G be a group containing an element a not of order 1 or 2. Show that G has a 
nonidentity automorphism. [Hint: Exercise 1.2.2 and Corollary 4.7.1 

12. Any finite group is isomorphic to a subgroup of An for some n. 

13. If a group G contains a subgroup (,e G) of finite index, it contains a normal sub
group (,e G) of finite index. 

14. If I GI = pn, with p > n, p prime, and H is a subgroup of order p, then H is 
normal in G. 

15. If a normal subgroup N of order p (p prime) is contained in a group G of order 
pn, then N is in the center of G. 

5. THE SYLOW THEOREMS 

Nonabelian finite groups are vastly more complicated than finite abelian groups, 
which were completely classified (up to isomorphism) in Section 2. The Sylow Theo
rems are a basic first step in understanding the structure of an arbitrary finite group. 

Our motivation is the question: if a positive integer m divides the order of a group 
G, does G have a subgroup of order m? This is the converse of Lagrange's Theorem 
1.4.6. It is true for abelian groups (Corollary 2.4) but may be false for arbitrary 
groups (Exercise 1.6.8). We first consider the special case when m is prime (Theorem 
5.2), and then proceed to the first Sylow Theorem which states that the answer to our 
question is affirmative whenever m is a power of a prime. This leads naturally to a 
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discussion of subgroups of maximal prime power order (second and third Sylow 
Theorems). 

Lemma 5.1. If a group H of order pn (p prime) acts on a finite set S and if 
So = {x a S I hx = x for all h a H), then lSI == ISol (mod p). 

REMARK. This lemma (and the notation So) will be used frequently in the 
sequel} 

PROOF OF 5.1. An orbit x contains exactly one element if and only if x a So. 
Hence S can be written as a disjoint union S = So U Xl U X2 U ... U Xn , with 
IXil > 1 for all i. Hence lSI = ISol + IXII + IX21 + ... + Ix.l. Now p Ilxil for each i 
since IXil > 1 and IXil = [H: HXil divides IHI = p". Therefore lSI == ISol (modp). • 

Theorem 5.2. (Cauchy) IfG is a finite group whose order is divisible by a prime p, 
then G contains an element of order p. 

PROOF. (J. H. McKay) Let S be the set of p-tuples of group elements 
{(al,a2, ... , ap) I ai a G and ala2'" ap = e I. Since ap is uniquely determined as 
(ala2' . ·ap_l)-l, it follows that lSI = np- l, where IGI = n. Sincep I n, lSI == 0 (modp). 
Let the group Zp act on S by cyclic permutation; that is, for k aZp, k(al,ah ... , ap) 
= (ak+l,ak+2, ... , ap,al, ... , ak). Verify that (ak+l,ak+2, ... , ak) a S (use the fact that 
in a group ab = e implies ba = (a-la)(ba) = a-l(ab)a = e). Verify that for O,k,k' aZp 
and x as, Ox = x and (k + k')x = k(k'x) (additive notation for a group action on 
a set!). Therefore the action of Zp on S is well defined. 

Now (at, ... , ap) a So if and only if al = a2 = ... = ap; clearly (e,e, ... ,e) a So 
and hence ISol ~ O. By Lemma 5.1, 0 == lSI == ISol (mod p). Since ISol ~ 0 there 
must be at least p elements in So; that is, there is a ~ e such that (a,a, ... , a) a So 
and hence aP = e. Since p is prime, lal = p. • 

A group in which every element has order a power (~ 0) of some fixed prime p is 
called a p-group. If H is a subgroup of a group G and H is a p-group, H is said to be 
a p-subgroup of G. In particular <e) is a p-subgroup of G for every prime p since 
l<e)1 = 1 = po. 

Corollary 5.3. A finite group G is a p-group if and only iflGI is a power ofp. 

PROOF. If G is a p-group and q a prime which divides I GI, then G contains an 
element of order q by Cauchy's Theorem. Since every element of G has order a power 
of p, q = p. Hence I GI is a power of p. The converse is an immediate consequence of 
Lagrange's Theorem 1.4.6. • 

41 am indebted to R. J. Nunke for suggesting this line of proof. 
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Corollary 5.4. The center qG) of a nontrivial finite p-group G contains more than 
one element. 

PROOF. Consider the class equation of G (see page 91): 

IGI = IC(G)I + L [G : Ca(Xi)]. 

Since each [G: Ca(xi)] > 1 and divides IGI = p" (n ~ 1),p divides each [G: Ca(Xi)] 
and IGI and therefore divides IC(G)I. Since IC(G)I ~ 1, C(G) has at least p ele
ments .• 

Lemma 5.5. If H is a p-subgroup of a finite group G, then [NG(H) : H] == [G : H] 
(mod p). 

PROOF. Let S be the set of left cosets of H in G and let H act on S by (left) 
translation. Then lSI = [G : HJ. Also, 

xH eSo <=} hxH = xH for all he H 

<=} x-1hxH = H for all h e H <=} x-1hx e H for all h e H 

<=} x-1Hx = H <=} xHx-1 = H <=} x e Na(H). 

Therefore ISol is the number of cosets xH with x e Na(ll); that is, ISol = [Na(H) : HI. 
By Lemma 5.1 [Na(H): H] = ISol == lSI = [G: H] (modp). • 

Corollary 5.6. IfH is p-subgroup ofafinite group G such that p divides [G : HI, then 
NG(H) ~ H. 

PROOF. 0 == [G: HI == [Na(H): HI (mod p). Since [Na(H): HI ~ 1 in any 
case, we must have [Na(H) : HI > 1. Therefore Na(H) ~ H. • 

Theorem 5.7. (First Sylow Theorem) Let G be a group of order pnm, with n ~ 1, p 
prime, and (p,m) = 1. Then G contains a subgroup of order pi for each 1 SiS nand 
every subgroup ofG of order pi (i < n) is normal in some subgroup of order pi+!. 

PROOF. Since p II GI, G contains an element a, and therefore, a subgroup (a) of 
order p by Cauchy's Theorem. Proceeding by induction assume H is a subgroup of G 
of order pi (1 S i < n). Then p I [G : HI and by Lemma 5.5 and Corollary 5.6 His 
normal in Na(H), H ~ Na(H) and 1 < I Na(H)/ HI = [Na(H) : H] == [G : HI == 0 
(mod p). Hence p I I Na(H)/ HI and Na(H)/ H contains a subgroup of order p as 
above. By Corollary 1.5.12 this group is of the form HI/ Hwhere HI is a subgroup of 
Na(H) containing H. Since H is normal in Na(H), H is necessarily normal in HI. 
Finally IHII = IHIIHI/ HI = pip = pHI. • 

A subgroup P of a group G is said to be a Sylow p-subgroup (p prime) if P is a 
maximal p-subgroup of G (that is, P < H < G with Hap-group implies P = H). 
Sylow p-subgroups always exist, though they may be trivial, and every p-subgroup 
is contained in a Sylow p-subgroup (Zorn's Lemma is needed to show this for infinite 
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groups). Theorem 5.7 shows that a finite group G has a nontrivial Sylow p-subgroup 
for every prime p that divides I GI. Furthermore, we have 

Corollary 5.S. Let G be a group of order pnm with pprime, n ~ 1 and(m,p) = 1. Let 
H be a p-subgroup ofG. 

(i) H is a Sylow p-subgroup ofG if and only iflHI = pn. 
(ii) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup. 

(iii) If there is only one Sylow p-subgroup P, then P is normal in G. 

SKETCH OF PROOF. (i) Corollaries 1.4.6 and 5.3 and Theorem 5.7. (ii) Exer
cise 1.5.6 and (i). (iii) follows from (ii). • 

As a converse to Corollary 5.8 (ii) we have 

Theorem 5.9. (Second Sylow Theorem) IfH is a p-subgroup of a finite group G, and 
P is any Sylow p-subgroup ofG, then there exists x e G such that H < XPx-l. In par
ticular, any two Sylow p-subgroups ofG are conjugate. 

PROOF. Let S be the set of left cosets of Pin G and let H act on S by (left) trans
lation. ISol == lSI = [G :P] (mod p) by Lemma 5.1. But pHG :P]; therefore 
ISol ~ 0 and there exists xP e So. 

xP eSo {=} hxP = xP for all he H 

{=} x-1hxP = P for all he H {=} x-1Hx < P {=} H < xPx-1. 

If His a Sylow p-subgroup IHI = IPI = IxPx-11 and hence H = xPx-1. • 

Theorem 5.10. (Third Sylow Theorem) IfG is a finite group and p a prime, then the 
number of Sylow p-subgroups ofG divides IGI and is of the form kp + 1 for some 
k ~ O. 

PROOF. By the second Sylow Theorem the number of Sylow p-subgroups is the 
number of conjugates of anyone of them, say P. But this number is [G : NG(P)], a 
divisor of I GI, by Corollary 4.4. Let S be the set of all Sylow p-subgroups of G and let 
P act on S by conjugation. Then Q e So if and only if xQr1 = Q for all x e P. The 
latter condition holds if and only if P < NG(Q). Both P and Q are Sylow p-subgroups 
of G and hence of NG(Q) and are therefore conjugate in NG(Q). But since Q is normal 
in NG(Q), this can only occur if Q = P. Therefore, So = lPI and by Lemma 5.1, 
lSI == ISol = 1 (mod p). Hence lSI = kp + 1. • 

Theorem 5.11. If P is a Sylow p-subgroup of a finite group G, then NG(NG(P» 
= NG(P). 

PROOF. Every conjugate of P is a Sylow p-subgroup of G and of any subgroup 
of G that contains it. Since P is normal in N = NG(P), P is the only Sylow p-subgroup 
of N by Theorem 5.9. Therefore, 
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X 5 Na(N) =} xNx-1 = N =} XPX-1 < N =} XPX-1 = P =} X 5 N. 

Hence Na(Na(P)) < N; the other inclusion is obvious. • 

EXERCISES 
1. If N <J G and N, G / N are both p-groups, then G is a p-group. 

2. If G is a finite p-group, H <J G and H ~ (e), then H n C(G) ~ (e). 

3. Let IGI = p". For each k, 0 ::::; k ::::; n, G has a normal subgroup of order pk. 

4. If G is an infinite p-group (p prime), then either G has a subgroup of order p" for 
each n 2:: 1 or there exists m 5 N* such that every finite subgroup of G has order 
::::;pm. 

5. If P is a normal Sylow p-subgroup of a finite group G and I : G -> G is an endo
morphism, then I(P) < P. 

6. If H is a normal subgroup of order pk of a finite group G, then H is contained in 
every Sylow p-subgroup of G. 

7. Find the Sylow 2-subgroups and Sylow 3-subgroups of Sa, S., Ss. 

8. If every Sylow p-subgroup of a finite group G is normal for every prime p, then G 
is the direct product of its Sylow subgroups. 

9. If I GI = p"q, with p > q primes, then G contains a unique normal subgroup of 
index q. 

10. Every group of order 12,28,56, and 200 must contain a normal Sylow subgroup, 
and hence is not simple. 

11. How many elements of order 7 are there in a simple group of order 168? 

12. Show that every automorphism of S. is an inner automorphism, and hence 
S. '" Aut S •. [Hint: see Exercise 4.10. Every automorphism of S. induces a per
mutation of the set {P1,P2,Pa,p.1 of Sylow 3-subgroups of S •. If 15 Aut S. has 
I(P;) = Pi for all i, then 1= 1 s •. ] 

13. Every group G of order p2 (p prime) is abelian [Hint: Exercise 4.9 and Corollary 
504]. 

6. CLASSIFICATION OF FINITE GROUPS 

We shall classify up to isomorphism all groups of order pq (p,q primes) and all 
groups of small order (n ::::; 15). Admittedly, these are not very far reaching results; 
but even the effort involved in doing this much will indicate the difficulty in deter
mining the structure of an arbitrary (finite) group. The results of this section are not 
needed in the sequel. 

Proposition 6.1. Let p and q be primes such that p > q. llq-rp - 1, then every 
group %rder pq is isomorphic to the cyclic group ZI>q.l/q I p - 1, then there are (up 
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/0 isomorphism) exactly two distinct groups of order pq: the cyclic group Zpq and a non
abelian group K generated by elements c and d such that 

Icl = p; Idl = q; dc = cad, 

where s ,p 1 (mod p) and sq == 1 (mod p). 

SKETCH OF PROOF. A nonabelian group K of order pq as described in the 
proposition does exist (Exercise 2). Given G of order pq, G contains elements a,b 
with lal = p, Ibl = q by Cauchy's Theorem 5.2. Furthermore, S = (a) is normal in G 
(by Corollary 4.10 or by counting Sylow p-subgroups, as below). The coset bS has 
order q in the group G/S. Since IG/SI = q, G/S is cyclic with generator bS, 
G/S = (bS). Therefore every element of G can be written in the form biai and 
G = (a,b). 

The number of Sylow q-subgroups is kq + 1 and dividespq. Hence it is 1 orp. If it 
is 1 (as it must be if q-rp - 1), then (b) is also normal in G. Lagrange's Theorem 1.4.6 
shows that (a) n (b) = (e). Thus by Theorems 1.3.2, 1.8.6, 1.8.10 and Exercise 1.8.5, 
G = (a) X (b) "" Zp EB Zq "" Zpq. If the number is p, (which can only occur if 
p I q - 1), then bab-1 = ar (since (a) <l G) and r 1= 1 (mod p) (otherwise G would 
be abelian by Theorem L3.4(v) and hence have a unique Sylow q-subgroup). Since 
bab-l = ar, it follows by induction that biab-i = ari. In particular for j = q, a = arq, 
which implies ~ == 1 (mod p) by Theorem 1.3.4 (v). 

In order to complete the proof we must show that if q I p - 1 and G is the non
abelian group described in the preceding paragraph, then G is isomorphic to K. We 
shall need some results from number theory. The congruence xq == 1 (mod p) has 
exactly q distinct solutions modulo p (see J. E. Shockley [51; Corollary 6.1, p. 67]). If 
r is a solution and k is the least positive integer such that rk == 1 (mod p), then k I q 
(see J.E. Shockley [51; Theorem 8, p. 70]). In our case r 1= 1 (mod p), whence k = 
q. It follows that l,r,r2, ... , rq- l are all the distinct solutions modulo p of XV == 1 
(mod p). Consequently, s == rt (mod p) for some t (1 ~ t ~ q - 1). If bl = b' E G, 
then Ibd = q. Our work above (with bl in place of b) shows that G = (a,b l ); that 
every element of G can be written b1ia i ; that lal = p; and that b1abl - 1 '"" b'ab- I 

= ar ' = a' (Theorem L3.4(v». Therefore, b1a = a'b l • Verify that the map G --+ K 
given by a ~ c and bl f-4 d is an isomorphism. • 

Corollary 6.2. Ifp is an odd prime, then every group of order 2p is isomorphic either 
to the cyclic group Z2p or the dihedral group Dp. 

PROOF. Apply Proposition 6.1 with q = 2. If G is not cyclic, the conditions on s 
imply s == -1 (mod p). Hence G = (c,d), Idl = 2, lei = p, and dc = c-1d by 
Theorem 1.3.4(v). Therefore, G "" Dp by Theorem 1.6.13. • 

Proposition 6.3. There are (up to isomorphism) exactly two distinct nonabelian 
groups of order 8: the quaternion group Qs and the dihedral group D4• 

REMARK. The quaternion group Qs is described in Exercise 1.2.3. 
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SKETCH OF PROOF OF 6.3. Verify that D. ~ Qs (Exercise 10). If a group G 
of order 8 is nonabelian, then it cannot contain an element of order 8 or have every 
nonidentityelement of order 2 (Exercise 1.1.13). Hence G contains an element a of 
order 4. The group (a) of index 2 is normal. Choose b, (a). Then b2 E (a) since 
/G/(a)/ = 2. Show that the only possibilities are b2 = a2 or b2 = e. Since (a) is nor
mal in G, bab-l E (a); the only possibility is bab-l = a3 = a-I. It follows that every 
element of G can be written biai . Hence G = (a,b). In one case we have lal = 4, 
b2 = a2, ba = a-Ib, and G""" Qs by Exercise 1.4.l4.; in the other case, lal = 4, 
Ibl = 2, ba = a-Ib and G""" D. by Theorem 1.6.l3. • 

Proposition 6.4. There are (up to isomorphism) exactly three distinct nonabelian 
groups 01 order 12: the dihedral group Ds, the alternating group A., and a group T 
generated by elements a,b such that lal = 6, b2 = a3, and ba = a-lb. 

SKETCH OF PROOF. Verify that there is a group T of order 12 as stated 
(Exercise 5) and that no two of Ds,A.,T are isomorphic (Exercise 6). If G is a non~ 
abelian group of order 12, let P be a Sylow 3-subgroup of G. Then IPI = 3 and 
[G : P] = 4. By Proposition 4.8 there is a homomorphism I : G -+ S4 whose kernel 
Kis contained inP, whence K = Por (e). If K = (e), lis a monomorphism and Gis 
isomorphic to a subgroup of order 12 of S4, which must be A4 by Theorem 1.6.8. 
Otherwise K = P and P is normal in G. In this case P is the unique Sylow 3-subgroup. 
Hence G contains only two elements of order 3. If c is one of these, then 
[G : Co(c)] = 1 or 2 since [G : Ca(c)] is the number of conjugates of c and every con
jugate of c has order 3. Hence Ca(c) is a group of order 12 or 6. In either case there 
is dE Ca(c) of order 2 by Cauchy's Theorem. Verify that /cdl = 6. 

Let a = cd; then (a) is normal in G and IG/(a)1 = 2. Hence there is an element 
bEG such that b, (a), b ~ e, b2 E (a), and bab-l E (a). Since G is nonabelian and 
lal = 6, bab-l = as = a-I is the only possibility; that is, ba = a-lb. There are six 
possibilities for b2 E (a). b2 = a2 or b2 = a4 lead to contradictions; b2 = a or b2 = as 
imply Ibl = 12 and G abelian. Therefore, the only possibilities are 

(i) lal = 6; b2 = e; ba = a-Ib, whence G""" Ds by Theorem 1.6.l3; 
(ii) lal = 6; b2 = a3; ba = a-Ib, whence G ,...., T by Exercise 5(b). • 

The table below lists (up to isomorphism) all distinct groups of small order. There 
are 14 distinct groups of order 16 and 51 of order 32; see M. Hall and J.K. Senior 
[16]. There is no known formula giving the number of distinct groups of order n, 
for every n. 

Order Distinct Groups Reference 

1 (e) 
2 Z2 Exercise 1.4.3 
3 Z3 Exercise 1.4.3 
4 Z2Ef)Z2, Z. Exercise 1.4.5 
5 Z5 Exercise 1.4.3 
6 Zs, D3 Corollary 6.2 
7 Z7 Exercise 1.4.3 
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Order Distinct Groups Reference 

8 Z2 EB Z2 EB Z2, Z2 EB Z4, Zs, Qs, D4 Theorem 2.1 and 
Proposition 6.3 

9 ZaEBZa, Z9 Exercise 5.13 and 
Theorem 2.1 

10 ZlO, D5 Corollary 6.2 
11 Zu Exercise 1.4.3 
12 Z2 EB Zs, Z12, Ah Ds, T Theorem 2.1 and 

Proposition 6.4 
13 Zla Exercise 1.4.3 
14 Z14, D7 Corollary 6.2 
15 ZI5 Proposition 6.1 

EXERCISES 
1. Let G and Hbe groups and () : H ~ Aut G a homomorphism. Let G X6 Hbe the 

set G X H with the following binary operation: (g,h)(g',h') = (g[(}(h)(g')],hh'). 
Show that G X6 H is a group with identity element (e,e) and (g,h)-I = 

«(}(h-I)(g-I),h-I). G X6 H is called the semidirect product of G and H. 

2. Let Cp = (a) and Cq = (b) be (multiplicative) cyclic groups of prime orders p and 
q respectively such that p > q and q I p - 1. Let s be an integer such that s ;f 1 
(mod p) and sq == 1 (mod p), which implies s =J. 0 (mod p). Elementary number 
theory shows that such an s exists (see J.E. Shockley [51; Corollary 6.1, p. 67]). 

(a) The map a : Cp ~ Cp given by ai ~ as; is an automorphism. 
(b) The map 0: CQ -+ Aut C" given by OW) = a l (a as in part (a)) is a homo

morphism (aO = Ie,,). 
(c) If we write a for (a,e) and b for (e,b), then the group C" X6 Cq (see Exer

cise 1) is a group of order pq, generated by a and b subject to the relations: 
lal = p, Ibl = q, ba = asb, where s , 1 (modp), and sq == 1 (modp). The group 
Cp X6 Cq is called the metacyclic group. 

3. Consider the set G = {±I,±i,±j,±k} with multiplication given by i2 = P = k 2 

= -1; ij = k;jk = i, ki =j;ji = -k, kj = -i, ik = -j, and the usual rules 
for multiplying by ± 1. Show that G is a group isomorphic to the quaternion 
group Qs. 

4. What is the center of the quaternion group Qs? Show that Qs/C(Qs) is abelian. 

5. (a) Show that there is a nonabelian subgroup T of Sa X Z4 of order 12 generated 
by elements a,b such that lal = 6, as = b2, ba = a-lb. 
(b) Any group of order 12 with generators a,b such that lal = 6, as = !J2, 
ba = a-Ib is isomorphic to T. 

6. No two of D6, A4, and T are isomorphic, where T is the group of order 12 de
scribed in Proposition 6.4 and Exercise 5. 

7. If G is a nonabelian group of order pS (p prime), then the center of G is the sub
group generated by all elements of the form aba-1b-1 (a,b E G). 

8. Let p be an odd prime. Prove that there are, at most, two nonabelian groups of 
order pS. [One has generators a,b satisfying lal = p2; Ibl = p; b-Iab = aHp ; 
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the other has generators a,b,c satisfying lal = Ibl = iel = p; c = a-1b-1ab; 
ca = ac; cb = be.] 

9. Classify up to isomorphism all groups of order 18. Do the same for orders 20 
and 30. 

10. Show that D4 is not isomorphic to Qs. [Hint: Count elements of order 2.] 

7. NILPOTENT AND SOLVABLE GROUPS 

Consider the following conditions on a finite group G. 

(i) G is the direct product of its Sylow subgroups. 
(ii) Ifm divides IGI, then G has a subgroup of order m. 

(iii) IflGI = mn with (m,n) = 1, then G has a subgroup of order m. 

Conditions (ii) and (iii) may be considered as modifications of the First Sylow Theo
rem. It is not difficult to show that (i) ~ (ii) and obviously (ii) ~ (iii). The fact that 
every finite abelian group satisfies (i) is an easy corollary of Theorem 2.2. Every p
group satisfies (i) trivially. On the other hand, A4 satisfies (iii) but not (ii), and S3 
satisfies (ii) but not (i) (Exercise 1). Given the rather striking results, achieved thus 
far with finite abelian and p-groups, the classes of groups satisfying (i), (ii), and (iii) 
respectively would appear to be excellent candidates for investigation. We shall re
strict our attention to those groups that satisfy (i) or (iii). 

We shall first define nilpotent and solvable groups in terms of certain "normal 
series" of subgroups. In the case of finite groups, nilpotent groups are characterized 
by condition (i) (Proposition 7.5) and solvable ones by condition (iii) (Proposition 
7.14). This approach will also demonstrate that there is a connection between nil
potent and solvable groups and commutativity. Other characterizations of nilpotent 
and solvable groups are given in Section 8. 

Our treatment of solvable groups is purely group theoretical. Historically, how
ever, solvable groups first occurred in connection with the problem of determining 
the roots of a polynomial with coefficients in a field (see Section V.9). 

Let G be a group. The center C(G) of G is a normal subgroup (Corollary 4.7). 
Let C2(G) be the inverse image of C(G/C(G» under the canonical projection 
G -+ G / C( G). Then by (the proof of) Theorem 1.5.11 C2( G) is normal in G and con
tains C(G}. Continue this process by defining inductively: C1(G) = C(G) and C;(G) 
is the inverse image of C( G / Ci - 1( G» under the canonical projection G -+ G / C;-l( G). 
Thus we obtain a sequence of normal subgroups of G, called the ascending central 
series of G: (e) < C1(G) < C2(G) < .... 

Definition 7.1. A group G is nilpotent ifCn(G) = G for some n. 

Every abelian group G is nilpotent since G = C(G) = C1(G). 

Theorem 7.2. Every finite p-group is nilpotent. 
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PROOF. G and all its nontrivial quotients arep-groups, and therefore, have non
trivial centers by Corollary 5.4. This implies that if G ;e Ci(G), then C;(G) is strictly 
contained in Ci +1( G). Since G is finite, Cn( G) must be G for some n. • 

Theorem 7.3. The direct product of a finite number of nilpotent groups is nilpotent. 

PROOF. Suppose for convenience that G = H X K, the proof for more than 
two factors being similar. Assume inductively that C;(G) = Ci(H) X C;(K) (the 
case i = 1 is obvious). Let 'lrJ[ be the canonical epimorphism H -4 H/Ci(H) and 
similarly for 'irK. Verify that the canonical epimorphism <p : G -4 GIC;(G) is the 
composition 

". '" HXK G = H X K -4 H/C;(H) X K/Ci(K) -4 ----

C;(H) X C;(K) 
H X K G/C(G) 

C;(H X K) = i, 

where'lr = 'lrJ[ X 'irK (Theorem 1.8.10), and 1jI is the isomorphism of Corollary 1.8.11. 
Cbnseq uently, 

Ci+1(G) = <p-1[C(G/Ci(G»] = 'Ir-l1jl-l[C(G/C;(G»] 

= 'Ir-1[C(H/Ci(H) X K/Ci(K)] 

= 'Ir-1[C(H/C;(H» X C(K/Ci(K)] 

= 'lrIl-1[C(H/Ci(H)] X 'lrK-1[C(K/C;(K)] 

= Ci+l(H) X Ci+1(K). 

Thus the inductive step is proved and C;(G) = Ci(H) X C;(K) for all i. Since H,K 
are nilpotent, there exists n E N* such that Cn(H) = Hand Cn(K) = K, whence 
Cn(G) = H X K = G. Therefore, G is nilpotent. • 

Lemma 7.4. IfH is a proper subgroup ofa nilpotent group G, then H is a proper sub
group of its normalizer NG(H). 

PROOF. Let Co(G) = (e) and let n be the largest index such that Cn(G) < H; 
(there is such an n since G is nilpotent and H a proper subgroup). Choose a E Cn+1(G) 
with a. H. Then for every hE H, Cnah = (Cna)(Cnh) = (Cnh)(Cna) = Cnh'a in 
G/Cn(G) since Cna is in the center by the definition of Cn+1(G). Thus ah = h'ha, 
where h' E Cn( G) < H. Hence aha-1 E H and a E NG(H). Since a • H, H is a proper 
subgroup of NG(H). • 

Proposition 7.5. A finite group is nilpotent if and only if it is the direct product of its 
Sylow subgroups. 

PROOF. If G is the direct product of its Sylow p-subgroups, then G is nilpotent 
by Theorems 7.2 and 7.3. If G is nilpotent and P is a Sylow p-subgroup of G for some 
prime p, then either P = G (and we are done) or P is a proper subgroup of G. In the 
latter case P is a proper subgroup of NG(P) by Lemma 7.4. Since NG(P) is its own 
normalizer by Theorem 5.11, we must have NG(P) = G by Lemma 7.4. Thus P is 
normal in G, and hence the unique Sylow p-subgroup of G by Theorem 5.9. Let 
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IGI = Pin!.. 'Pknk (Pi distinct primes, ni> 0) and let PI,P2, • •• ,Pk be the corre
sponding (proper normal) Sylow subgroups of G. Since IPil = Pin. for each i, 
Pi n Pi = (e) for i ¢ j. By Theorem 1.5.3 xy = yx for every x € Pi, Y € Pi (i ¢ j). 
It follows that for each i, PIP2 • • ·Pi-IPi+l • • 'Pk is a subgroup in which every element 
has order dividing Plnl .. ·P~~llp;:tl .. ·Pknk. Consequently, Pi n (PI' . ·p._IP.+I · . ·Pk) 

= (e) and PIP2 •• 'Pk = PI X··· X Pk. Since IGI = Pin!.. 'Pknk = IPI X··· X Pkl 
= IPI·· .Pkl we must have G = PIP2 • • 'Pk = PI X' .. X P k • • 

Corollary 7.6. IfG is ajinite nilpotent group and m divides IGI, then G has a sub
group of order m. 

PROOF. Exercise. • 

Definition 7.7. Let G be a group. The subgroup of G generated by the set 
{aba-Ib-1 I a,b € G I is called the commutator subgroup ofG and denoted G'. 

The elements aba-1b-1 (a,b € G) are called commutators. The commutators only 
generate G', so that G' may well contain elements that are not commutators. G is 
abelian if and only if G' = (e). In a sense, G' provides a measure of how much G 
differs from an abelian group. 

Theorem 7.8. IfG is a group, then G' is a normal subgroup ofG and GIG' is abelian. 
IfN is a normal subgroup ofG, then GIN is abelian ifand only ifN contains G'. 

PROOF. Let f : G ~ G be any automorphism. Then 

f(aba-1b- l ) = f(a)f(b)f(a)-lf(b)-l € G'. 

It follows thatf(G') < G'. In particular, if fis the automorphism given by conjuga
tion by a € G, then aG'a-1 = f(G') < G', whence G' is normal in G by Theorem 1.5.1. 
Since (ab )(ba)-l = aba-1b-1 € G', abG' = baG' and hence GIG' is abelian. If GIN is 
abelian, then abN = baN for all a,b € G, whence ab(ba)-I = aba-1b-1 € N. There
fore, N contains all commutators and G' < N. The converse is easy. • 

Let G be a group and let G(l) be G'. Then for i ;::: 1, define G( i) by G(i) = (G(i-l»),. 
G(i) is called ith derived subgroup of G. This gives a sequence of subgroups of G, 
each normal in the preceding one: G > G(I) > G(2) > .. '. Actually each G(i) is a 
normal subgroup of G (Exercise 13). 

Definition 7.9. A group G is said to be solvable ifG(n) = (e) for some n. 

Every abelian group is trivially solvable. More generally, we have 

Proposition 7.10. Every nilpotent group is solvable. 
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PROOF. Since by the definition of Ci(G) Ci(G)ICi-I(G) = C(GICi-I(G)) is 
abelian, Ci(G)' < C;-I(G) for all i> 1 and CI(G), = C(G)' = (e). For some n, 
G = Cn(G). Therefore, C(GICn_I(G» = Cn(G)/Cn_1(G) = GICn-I(G) is abelian 
and hence G(l) = G' < Cn-I(G). Therefore, G(2) = G(l)' < Cn-I(G)' < Cn_2(G); 
similarly G(S) < Cn _ 2(G)' < Cn-S(G); ... , G(n-l) < C2(G), < CI(G); G(n) < CI(G)' 
= (e). Hence G is solvable. • 

Theorem 7.11. (i) Every subgroup and every homomorphic image 01 a solvable group 
is solvable. 

(ii) lIN is a normal subgroup 01 a group G such that N and GIN are solvable, then 
G is solvable. 

SKETCH OF PROOF. (i) If I: G ---+ H is a homomorphism [epimorphism], 
verify that I( G(i) < H(i)[f( G(i) = H(i)] for all i. Suppose lis an epimorphism, and 
G is solvable. Then for some n, (e) = I(e) = I(G(n) = H(n), whence H is solvable. 
The proof for a subgroup is similar. 

(ii) Let I : G ---+ GIN be the canonical epimorphism. Since GIN is solvable, for 
some n I(G(n) = (GIN)(n) = (e). Hence G(n) < Ker 1= N. Since G(n) is solvable 
by (i), there exists k e N* such that G(nH) = (G(n))(k) = (e). Therefore, G is 
solvable. • 

Corollary 7.12. lIn ~ 5, then the symmetric group Sn is not solvable. 

PROOF. If Sn were solvable, then An would be solvable. Since An is nonabelian, 
An' rf (1). Since An' is normal in An (Theorem 7.8) and An is simple (Theorem 
1.6.10), we must have An' = An. Therefore An(i) = An rf (1) for all i ~ 1, whence An 
is not solvable. • 

NOTE. The remainder of this section is not needed in the sequel. 

In order to prove a generalization of the Sylow theorems for finite solvable 
groups (as mentioned in the first paragraph of this section) we need some definitions 
and a lemma. A subgroup H of a group G is said to be characteristic [resp. fully in
variant] if I(R) < H for every automorphism [resp. endomorphism] I: G ---+ G. 
Clearly every fully invariant subgroup is characteristic and every characteristic sub
group is normal (since conjugation is an automorphism). A minimal normal subgroup 
of a group G is a nontrivial normal subgroup that contains no proper subgroup 
which is normal in G. 

Lemma 7.13. Let N be a normal subgroup 01 a finite group G and H any sub
group olG. 

(i) IIH is a characteristic subgroup olN, then H is normal in G. 
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(ij) Every normal Sylow p-subgroup ofG is full.v inrariant. 
(iii) JfG is solvable and N is a minimal normal subgroup, then N is an abelian p

group for some prime p. 

PROOF. (i) Since aNa-1 = N for all a f G, conjugation by a is an automor
phism of N. Since H is characteristic in N, aHa-1 < H for all a f G. Hence His 
normal in G by Theorem 1.5.1. 

(ii) is an exercise. (iii) It is easy to see that N' is fully invariant in N, whence N' is 
normal in G by (i). Since N is a minimal normal subgroup, either N' = (e) or 
N' = N. Since N is solvable (Theorem 7.11), N' ~ N. Hence N' = (e) and N is a 
nontrivial abelian group. Let P be a nontrivial Sylow p-subgroup of N for some 
prime p. Since N is abelian, P is normal in N and hence fully invariant in N by (ii). 
Consequently P is normal in G by (i). Since N is minimal and P nontrivial we must 
have P = N .• 

Proposition 7.14. (P. Hall) Let G be a finite solrable group of order mn, with 
(m,n) = 1. Then 

(i) G contains a subgroup of order m; 
(ii) any two subgroups ofG of order m are conjugate; 

(iii) any subgroup ofG of order k, where kim, is contained in a subgroup of 
order m. 

REMARKS. If m is a prime power, this theorem merely restates several results 
contained in the Sylow theorems. P. Hall has also proved the converse of (i): if G is a 
finite group such that whenever I GI = mn with (lII,n) = 1, G has a subgroup of order 
m, then G is solvable. The proof is beyond the scope of this book (see M. Hall [15; 
p. 143]). 

PROOF OF 7.14. The proof proceeds by induction on IGI, the orders ~ 5 
being trivial. There are two cases. 

CASE 1. There is a proper normal subgroup H of G whose order is not divisible 
by n. 

(i) IHI = mini, wheremll m,nl I n, andnl < n. G/His a solvable group of order 
(m/ml)(n/nl) < mn, with (m/ml,n/nl) = I. Therefore by induction G/ H contains a 
subgroup A/ H of order (m/ml) (where A is a subgroup of G - see Corollary 1.5.12). 
Then IAI = IHI[A : H] = (nMI)(m/ml) = nml < mn. A is solvable (Theorem 7.11) 
and by induction contains a subgroup of order m. 

(ii) Suppose B,C are subgroups of G of order 111. Since H is normal in G, HB is a 
subgroup (Theorem 1.5.3), whose order k necessarily divides IGI = mn. Since 
k = IHlJl = IHIIBI/IH n BI = IIMlm/IH n BI, we have klH n BI = minim, 
whence k I minim. Since (m!,n) = 1, there are integers X,y such that mix + flY = 1, 
and hence mfllflhX + mnlflY = mfll. Consequently k I mnl. By Lagrange's Theorem 
1.4.6 m = IBI and mini = !HI divide k. Thus (lIl,n) = 1 implies mnl I k. Therefore 
k = mfll; similarly !He[ = mfll. Thus HB/ Hand HC/ H are subgroups of G/ H of 
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order m/ml. By induction they are conjugate: for some x E G/ H (where x is the coset 
of x E G), x(HB/II)x-I = IIC/ II. It follows that xHBx-I = HC Consequently 
xBx-I and C are subgroups of IIC of order m and are therefore conjugate in HC by 
induction. Hence Band C are conjugate in G. 

(iii) If a subgroup K of G has order k dividing m, then IIK/ H '" K/ H n K has 
order dividing k. Since HK/ II is a subgroup of G/ II, its order also divides IG/ HI 
= (m/mI)(n/nI)' (k,n) = 1 implies that the order of HK/ II divides mimi. By induc
tion there is a subgroup A/II of G/ H of order mimi which contains HK/ H (where 
A < G as above). Clearly K is a subgroup of A. Since 111 = IHIIA/ HI = mlnI(m/ml) 
= mnl < mn, K is contained in a subgroup of A (and hence of G) of order m by in
duction. 

CASE 2. Every proper normal subgroup of G has order divisible by n. If H is a 
minimal normal subgroup (such groups exist since G is finite), then IHI = pr for 
some prime p by Lemma 7.13 (iii). Since (m,n) = 1 and n IIHI, it follows that 
n = pr and hence that H is a Sylow p-subgroup of G. Since H is normal in G, H is the 
unique Sylow p-subgroup of G. This argument shows that H is the only minimal 
normal subgroup of G (otherwise n = pr and n = q8 for distinct primes p,q). In par
ticular, every nontrivial normal subgroup olG contains H. 

(i) Let K be a normal subgroup of G such that K/ H is a minimal normal sub
group of G/ II (Corollary 1.5.12). By Lemma 7.13 (iii) IK/ HI = q' (q prime, q :¢ p), 
so that IKI = prq'. LetS be a Sylow q-subgroup of K and let Mbe the normalizer of S 
in G. We shall show that IMI = m. Since II is normal in K, HS is a subgroup of K. 
Clearly H n S = (e) so that IHSI = IHIISIlIH n SI = prq' = IKI, whenceK = HS. 

Since K is normal in G and S < K, every conjugate of S in G lies in K. Since 
S is a Sylow subgroup of K, all these subgroups are already conjugate in K. Let 
N = NK(S); then the number c of conjugates of S in Gis [G : MJ = [K: NJ by 
Corollary 4.4. Since S < N < K, K > HN > HS = K, so that K = HN and 
c = [G : MJ = [K: NJ = [HN: NJ = [II: H n NJ (Corollary 1.5.9). We shall 
show that H n N = (e), which implies c = 1111 = pr and hence IMI = IGI/[G : MJ 
= mpr/pr = m. We do this by showing first that II n N < C(K) and second that 
C(K) = (e). 

Let x e H n Nand k E K. Since K = HS, k = hs (h E H, s E S). Since H is 
abelian (Lemma 7.13 (iii) and x e H, we need only show xs = sx in order to have 
xk = kx and x E C(K). Now (xsX-I)S'-I ES since x e N = NK(S). But x(SX-iS-I) E H 
since x E Hand H is normal in G. Thus XSX-IS-I E H n S = (e), which implies 
xs = sx. 

It is easy to see that C(K) is a characteristic subgroup of K. Since K is normal in 
G, C(K) is normal in G by Lemma 7.13 (i). If C(K) :¢ (e), then C(K) necessarily con
contains H. This together with K = HS implies that S is normal in K. By Lemma 
7.13 (ii) and (i) S is fully invariant in K and hence normal in G (since K <l G). This 
implies H < S which is a contradiction. Hence C(K) = (e). 

(ii) Let M be as in (i) and suppose B is a subgroup of G of order m. Now IBKI is 
divisible by IBI = m and IKI = prq'. Since (m,p) = 1, IBKI is divisible by prm = nm 
= I GI. Hence G = BK. Consequently G / K = BK/ K '" B/ B n K (Corollary 1.5.9), 
which implies that IB n KI = IBi/IG/KI = q'. By the Second Sylow Theorem 
B n K is conjugate to Sin K. Furthermore B n K is normal in B (since K <l G) and 
hence B is contained in Na(B n K). Verify that conjugate subgroups have conjugate 



106 CHAPTER II THE STRUCTURE OF GROUPS 

normalizers. Hence NG(B n K) and NG(S) = M are conjugate in G. Thus 
ING(B n K)I = IMI = m. But IBI = m; therefore B < NG(B n K) implies 
B = NG(B n K). Hence Band M are conjugate. 

(iii) Let D < G, where IDI = k and kim. Let M (of order m) and H (of order 
p', with (p,m) = 1) be as in (i). Then D n H = (e) and IDHI = IDIIHI/ID n HI 
= kp'. We also have IGI = mp', M n H = (e) and MH = G (since 
IMHI = IMIIHI/IM n HI = mp' = IGI). Hence M(DH) = G and therefore 
1M n DHI = IMIIDHI/IMDHI = m(kp')/mp' = k. Let M* = M n DH; then M* 
and D are conjugate (by (ii) applied to the group DH). For some a e G, aM*a-1 = D. 
Since M* < M, D is contained in aMa-l, a conjugate of M, and thus a subgroup of 
order m. • 

We close this section by mentioning a longstanding conjecture of Burnside: every 
finite group of odd order is solvable. This remarkable result was first proved by 
W. Feit and J. Thompson [61] in 1963. 

EXERCISES 

1. (a) A4 is not the direct product of its Sylow subgroups, but A4 does have the 
property: mn = 12 and (m,n) = 1 imply there is a subgroup of order m. 
(b) S3 has subgroups of orders 1, 2, 3, and 6 but is not the direct product of its 
Sylow subgroups. 

2. Let G be a group and a,b e G. Denote the commutator aba-1b-1 e G by [a,b]. 
Show that for any a,b,e, E G, [ab,e] = a[b,e]a-'[a,e]. 

3. If Hand K are subgroups of a group G, let (H,K) be the subgroup of G ~enerated 
by the elements {hkh-1k-1 I h e H, k e Kl. Show that 

(a) (H,K) is normal in H V K. 
(b) If (H,G') = (e), then (H',G) = (e). 
(c) H <l G if and only if (H,G) < H. 
(d) Let K <l G and K < H; then H/K < C(G/K) if and only if (H,G) < K. 

4. Define a chain of subgroups 'Yi(G) of a group G as follows: 'Yl(G) = G, 
'Y2(G) = (G,G), 'Yi(G) = (-Yi_l(G),G) (see Exercise 3). Show that G is nilpotent if 
and only if 'Ym(G) = (e) for some m. 

5. Every subgroup and every quotient group of a nilpotent group is nilpotent. 
[Hint: Theorem 7.5 or Exercise 4.]. 

6. (Wielandt) Prove that a finite group G is nilpotent if and only if every maximal 
proper subgroup of G is normal. Conclude that every maximal proper subgroup 
has prime index. [Hint: if P is a Sylow p-subgroup of G, show that any subgroup 
containing NG(P) is its own normalizer; see Theorem 5.11.] 

7. IfNisanontrivialnormalsubgroupofanilpotentgroupG,thenN n C(G);e (e). 

8. If Dn is the dihedral group with generators a of order nand b of order 2, then 
(a) a2 e Dn'. 
(b) Ifn is odd, Dn''''''''' Zn. 
(c) If n is even, Dn' ......., Zm, where 2m = n. 
(d) Dn is nilpotent if and only if n is a power of 2. 
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9. Show that the commutator subgroup of S4 is A4• What is the commutator 
group of A4? 

10. Sn is solvable for n ~ 4, but S3 and S4 are not nilpotent. 

11. A nontrivial finite solvable group G contains a normal abelian subgroup 
H rf (e). If G is not solvable then G contains a normal subgroup H such that 
H'= H. 

12. There is no group G such that G' = S4. [Hint: Exercises 9 and 5.12 may be 
helpful.] 

13. If G is a group, then the ith derived subgroup G(i) is a fully invariant subgroup, 
whence G(i) is normal. 

14. If N <l G and N n G' = (e), then N < C(G). 

15. If His a maximal proper subgroup ofa finite solvable group G, then [G : H] is a 
prime power. 

16. For any group G, C(G) is characteristic, but not necessarily fully invariant. 

17. If G is an abelian p-group, then the subgroup G[p] (see Lemma 2.5) is fully in
variant in G. 

18. If G is a finite nilpotent group, then every minimal normal subgroup of G is con
tained in C( G) and has prime order. 

8. NORMAL AND SUBNORMAL SERIES 

The usefulness of the ascending central series and the series of derived subgroups 
of a group suggests that other such series of subgroups should be investigated. We do 
this next and obtain still other characterizations of nilpotent and solvable groups, as 
well as the famous theorem of Jordan-HOlder. 

Definition B.l. A subnormal series ofa group G is a chain of subgroups G = Go> 
G I > ... > G n such that Gi+1 is normal in G; for 0 ~ i < n. The factors of the series 
are the quotient groups G;/G;+I. The length of the series is the number of strict inclu
sions (or alternatively, the number of non identity factors). A subnormal series such that 
G; is normal in G for all i is said to be normaJ.6 

A subnormal series need not be normal (Exercise 1.5.10). 

EXAMPLES. The derived series G > G(I) > ... > G(n) is a normal series for 
any group G (see Exercise 7.13). If G is nilpotent, the ascending central series 
CI(G) < ... < Cn(G) = G is a normal series for G. 

Definition B.2. Let G = Go > G I > ... > Gn be a subnormal series. A one-step re
finement of this series is any series of the form G = Go > ... > G; > N > Gi+1 > ... 

6Some authors use the terms "normal" where we use "subnormal." 
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> GnorG = Go>'" > G n > N, whereN is a normal subgroup ofGi and(ifi < n) 
G i +! is normal in N. A refinement of a subnormal series S is any subnormal series ob
tainedfrom S by a finite sequence of one-step refinements. A refinement ofS is said to 
be proper ifits length is larger than the length ofS. 

Definition 8.3. A subnormal series G = Go > G! > ... > G n = (e) is a composi. 
tion series if each factor G;/Gi+1 is simple. A subnormal series G = Go > G! > ... > 
G n = (e) is a solvable series if each factor is abelian. 

The following fact is used freq uentIy when dealing with composition series: if N is 
a normal subgroup of a group G, then every normal subgroup of GIN is of the form 
HI N where H is a normal subgroup of G which contains N (Corollary 1.5.12). There
fore, when G ¢ N, GIN is simple if and only if N is a maximal in the set of an 
normal subgroups M of G with M ¢ G (such a subgroup N is called a maximal 
normal subgroup of G). 

Theorem 8.4. (i) Every finite group G has a composition series. 
(ii) Every refinement of a solvable series is a solvable series. 

(iii) A subnormal series is a composition series if and only if it has no proper re
finements. 

PROOF. (i) Let G! be a maximal normal subgroup of G; then GIG! is simple by 
Corollary 1.5.12. Let G2 be a maximal normal subgroup of G" and so on. Since Gis 
finite, this process must end with Gn = (e). Thus G > G! > ... > Gn = (e) is a 
composition series. 

(ii) If GiIGi+! is abelian and Gi+1 <l H <l Gi, then HIGi+l is abelian since it is a 
subgroup of GiIGi+! and Gil H is abelian since it is isomorphic to the quotient 
(GiIGi+I)/(HIGi+!) by the Third Isomorphism Theorem 1.5.10. The conclusion now 
follows immediately. 

(iii) If Gi+1 <l H <l Gi are groups, then HIGi+1 is a proper normal subgroup of .. .. 
G;/ G;+! and every proper normal subgroup of Gil Gi+1 has this form by Corollary 
1.5.12. The conclusion now follows from the observation that a subnormal series 
G = Go > GI > ... > Gn = (e)' has a proper refinement if and only if there is a 
subgroup H such that for some i, Gi+1 <l H <l Gi . • .. .. 
Theorem 8.5. A group G is solvable if and only if it has a solvable series. 

PROOF. If G is solvable, then the derived series G > G(!) > G(2) > ... > G(n) 
= (e) is a solvable series by Theorem 7.8. If G = Go > GI > ... > Gn = (e) is a 
solvable series for G, then GIGI abelian implies that GI > G(I) by Theorem 7.8; 
Gil G2 abelian implies G2 > G/ > G(2). Continue by induction and conclude that 
G. > G(i) for all i; in particular (e) = Gn > G(n) and G is solvable. • 

EXAMPLES. The dihedral group Dn is solvable since Dn > (a) > (e) is a solv
able series, where a is the generator of order n (so that Dn/(a) '" Z2). Similarly if 
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IGI = pq (p > q primes), then G contains an element a of order p and (a) is normal 
in G (Corollary 4.10). Thus G > (a) > (e) is a solvable series and G is solvable. 
More generally we have 

Proposition 8.6. A finite group G is solvable ifand only ifG has a composition series 
whose factors are cyclic of prime order. 

PROOF. A (composition) series with cyclic factors is a solvable series. Con
versely, assume G = Go> GI > ... > Gn = (e) is a solvable series for G. If Go r! Gl, 
let HI be a maximal normal subgroup of G = Go which contains GI. If HI r! G1, let 
H2 be a maximal normal subgroup of HI which contains G1, and so on. Since G is 
finite, this gives a series G > HI > H2 > ... > Hk > GI with each subgroup a maxi
mal normal subgroup of the preceding, whence each factor is simple. Doing this for 
each pair (G;,G;+I) gives a solvable refinement G = No> NI > ... > N r = (e) of 
the original series by Theorem 8.4 (ii). Each factor of this series is abelian and simple 
and hence cyclic of prime order (Exercise 1.4.3). Therefore, G > NI > ... > Nr = (e) 
is a composition series. • 

A given group may have many subnormal or solvable series. Likewise it may have 
several different composition series (Exercise 1). However we shall now show that 
any two composition series of a group are equivalent in the following sense. 

Definition 8.7. Two subnormal series SandT ofa group G are equivalent if there is a 
one-to-one correspondence between the nontrivial factors ofS and the nontrivial factors 
ofT such that corresponding factors are isomorphic groups. 

Two subnormal series need not have the same number of terms in order to be 
equivalent, but they must have the same length (that is, the same number of non
trivial factors). Clearly, equivalence of subnormal series is an equivalence relation. 

Lemma 8.8. IfS is a composition series of a group G, then any refinement ofS is 
equivalent to S. 

PROOF. Let S be denoted G = Go> G1 > ... > Gn = (e). By Theorem 
8.4 (iii) S has no proper refinements. This implies that the only possible refinements 
of S are obtained by inserting additional copies of each G;. Consequently any re
finement of S has exactly the same nontrivial factors as S and is therefore equivalent 
to S .• 

The next lemma is quite technical. Its value will be immediately apparent in the 
proof of Theorem 8.10. 

Lemma 8.9. (Zassenhaus) Let A *, A, B*, B be subgroups of a group G such that A * 
is normal in A and B* is normal in B. 
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(i) A *(A n B *) is a normal subgroup 01 A *(A n B); 
(ii) B*(A * n B) is a normal subgroup oIB*(A n B); 

(iii) A *(A n B)/ A *(A n B*) "-' B*(A n B)/B*(A * n B). 

PROOF. Since B* is normal in B, A n B* = (A n B) n B* is a normal sub
group of A n B (Theorem 1.5.3 (i»; similarly A* n B is normal in A n B. Con
sequently D = (A * n B)(A n B*) is a normal subgroup of A n B (Theorem 
1.5.3 iii) and Exercise 1.5.13). Theorem 1.5.3 (iii) also implies that A*(A n B) 
and B*(A n B) are subgroups of A and B respectively. We shall define an 
epimorphism I: A*(A n B) -+ (A n B)/D with kernel A*(A n B*). This will 
imply that A*(A n B*) is normal in A*(A n B) (Theorem 1.5.5) and that 
A*(A n B)/ A*(A n B*) "-' (A n B)/ D (Corollary 1.5.7). 

Define I: A*(A n B) -+ (A n B)/ D as follows. If a E A*, C E A n B, let 
I(ac) = Dc. Then lis well defined since ac = aici (a,al E A*; C,CI E A n B) implies 
CIC-I = al-Ia E (A n B) n A* = A* n B < D, whence DCI = Dc. lis clearly sur
jective. I is an epimorphism since 1[(alcl)(a2C2)] = l(alaaClc2) = DClc2 = DcIDc2 
= l(alcl)/(a2C2), where ai E A*, Ci E A n B, and Cla2 = a3CI since A* is normal in A. 
Finallyac E Ker I if and only if c E D, that is, if and only if C = alCI, with al E A * n B 
and CI E A n B*. Hence ac E Ker I if and only if ac = (aal)cl E A*(A n B*). There
fore, Ker I = A*(A n B*), 

A symmetric argument shows that B*(A* n B) is normal in B*(A n B) and 
B*(A n B)/B*(A* n B) "-' (A n B)/ D, whence (iii) follows immediately. • 

Theorem B.10. (Schreier) Any two subnormal [resp. normal] series 01 a group G have 
subnormal [resp. normal] refinements that are equivalent. 

PROOF. Let G = Go > GI > ... > Gn and G = Ho > HI > ... > Hm be sub
normal [resp. normal] series. Let Gn+1 = (e) = Hm+1 and for each 0 ~ i ~ n con
sider the groups 

Gi = Gi+I(Gi n Ho) > Gi+I(Gi n HI) > ... > Gi+I(Gi n Hi) > Gi+I(Gi n H i+l ) 

> ... > Gi +l( Gi n Hm) > Gi +l( Gi n Hm+l ) = Gi+l. 

For each 0 ~ j ~ m, the Zassenhaus Lemma (applied to G;+I,Gi,Hi+l, and Hi) 
shows that Gi +l( Gi n HHI) is normal in Gi+I( Gi n Hi)' [If the original series were 
both normal, then each Gi+I(Gi n Hi) is normal in G by Theorem 1.5.3 (iii) and 
Exercises 1.5.2 and 1.5.13.] Inserting these groups between each Gi and Gi+h and 
denoting Gi+I(Gi n Hi) by G(i,j) thus gives a subnormal [resp. normal] refinement 
of the series Go> GI > ... > Gn : 

G = G(O,O) > G(O,I) > ... > G(O,m) > G(I,O) > G{l,I) > 
G(1,2) > ... > G(I,m) > G(2,0) > ... > G(n - I,m) > G(n,O) > ... > G(n,m), 

where GO,O) = Gi. Note that this refinement has (n + 1)(m + 1) (not necessarily 
distinct) terms. A symmetric argument shows that there is a refinement of G = Ho > 
HI>'" > Hm (where H(i,j) = Hi+I(Gi n Hi) and H(O,j) = Hi): 

G = H(O,O) > H(I,O) > ... > H(n,O) > H(O,I) > H(1,I) > H(2,1) > ... > 
H(n,l) > H(0,2) > ... > H(n,m - 1) > H(O,m) > ... > H(n,m). 
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This refinement also has (n + 1) (m + 1) terms. For each pair (i,j) (0 .::; i'::; n, 
o .::; j .::; m) there is by the Zassenhaus Lemma 8.9 (applied to Gi+l , Gi, Hi+I, and Hi) 
an isomorphism: 

G(i,j) _ Gi+l ( Gi n Hi) "-J Hi+I( Gi n Hi) _ H(i,j) 

G(i,j + 1) - Gi+I(Gi n Hi+l ) = Hi+I(Gi+1 n Hi) - H(i + l,j)" 
This provides the desired one-to-one correspondence of the factors and shows that 
the refinements are equivalent. • 

Theorem 8.11. (Jordan-Holder) Any two composition series of a group G are 
equivalent. Therefore every group having a composition series determines a unique list 
of simple groups. 

REMARK. The theorem does not state the existence of a composition series for a 
given group. 

PROOF OF 8.11. Since composition series are subnormal series, any two com
position series have equivalent refinements by the Theorem 8.10. But every refine
ment of a composition series S is equivalent to S by Lemma 8.8. It follows that any 
two composition series are equivalent. • 

The Jordan-HOlder Theorem indicates that some knowledge of simple groups 
might be useful. A major achievement in recent years has been the complete classifi
cation of all finite simple groups. This remarkable result is based on the work of a 
large number of group theorists. For an introduction to the problem and an outline 
of the method of proof, see Finite Simple Groups by Daniel Gorenstein (Plenum 
Publishing Corp., 1982). Nonabelian simple groups of small order are quite rare. It 
can be proved that there are (up to isomorphism) only two nonabelian simple 
groups of order less than 200, namely As and a subgroup of S7 of order 168 (see 
Exercises 13 -20). 

EXERCISES 

1. (a) Find a normal series of D4 consisting of 4 subgroups. 
(b) Find all composition series of the group D4• 

(c) Do part (b) for the group A 4• 

(d) Do part (b) for the group S3 X Z2. 
(e) Find all composition factors of S. and D6• 

2. If G = Go> G1 > ... > Gn is a subnormal series of a finite group G, then 

IGI = Cu I Gil Gi+d}Gnl· 

3. If N is a simple normal subgroup of a group G and GIN has a composition 
series, then G has a composition series. 

4. A composition series of a group is a subnormal series of maximal (finite) length. 
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5. An abelian group has a composition series if and only if it is finite. 

6. If H <l G, where G has a composition series, then G has a composition series one 
of whose terms is H. 

7. A solvable group with a composition series is finite. 

8. If Hand K are solvable subgroups of G with H <l G, then HK is a solvable sub
group of G. 

9. Any group of order p2q (p,q primes) is solvable. 

10. A group G is nilpotent if and only if there is a normal series G = Go > G1 > ... 
> Gn = (e) such that Gi/Gi+l < C(G/Gi+l) for every i. 

11. (a) Show that the analogue of Theorem 7.11 is false for nilpotent groups 
[Consider Sa]. 
(b) If H < C(G) and G/ H is nilpotent, then G is nilpotent. 

12. Prove the Fundamental Theorem of Arithmetic, Introduction, Theorem 6.7, by 
applying the Jordan-HOlder Theorem to the group Zn. 

13. Any simple group G of order 60 is isomorphic to As. [Hint: use Corollary 4.9; if 
H < G, then [G: H] ~ 5 (since IS" I < 60 for n ~ 4); if [G : H] = 5 then 
G '" As by Theorem 1.6.8. The assumption that there is no subgroup of index 5 
leads to a contradiction.] 

14. There are no nonabelian simple groups of order < 60. 

15. Let G be the subgroup of S7 generated by (1234567) and (26)(34). Show that 
IGI = 168. 

Exercises 16-20 outline a proof of the fact that the group G of Exercise 15 is 
simple. We consider G as acting on the setS = {1,2,3,4,5,6,71 as in the first example 
after Definition 4.1 and make use of Exercise 4.6. 

16. The group G is transitive (see Exercise 4.6). 

17. For each XES, Gz is a maximal (proper) subgroup of G. The proof of this fact 
proceeds in several steps: 

(a) A block of G is a subset T of S such that for each g E G either gT n T = 525 
or gT = T, where gT = {gx I x E Tl. Show that if T is a block, then ITI divides 7. 
[Hint: let H= {g e GJgT= T} and show that for x e T, Gx < Hand [H: Gx ] 

= IT!. Hence ITI divides [G: Gz] = [G : HJ[H: Gz]. But [G: Gz] = 7 by 
Exercise 4.6(a) and Theorem 4.3.] 

(b) If Gz is not maximal, then there is a block T of G such that ITI-l--7, con
tradicting part (a). [Hint: If Gz < H < G, show that H is not transitive on S ,.. 
(since 1 ~ [H: Gz ] < lSI, which contradicts Exercise4.6.(d». Let T = {hx I h EHI. 
Since H is not transitive, ITI < lSI = 7 and since H ~ Gz , ITI > 1. Show that T 
is a block.] 

18. If (1) ¢ N <l G, then 7 divides INI. [Hint: Exercise 4.6 (c) ==? Gz < NGz for all ,.. 
XES ==? NGz = G for all XES by Exercise 17 ==? N is transitive on S ==? 7 divides 
INI by Exercise 4.6 (d).] 
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19. The group G contains a subgroup P of order 7 such that the smallest normal sub
group of G containing P is G itself. 

20. If (1) ~ N <l G, then N = G; hence G is simple. [Use Exercise 1.5.19 and 
Exercise 18 to show P < N; apply Exercise 19.] 



CHAPTER III 

RINGS 

Another fundamental concept in the study of algebra is that of a ring. The problem 
of classifying all rings (in a given class) up to isomorphism is far more complicated 
than the corresponding problem for groups. It will be partially dealt with in Chapter 
IX. The present chapter is concerned, for the most part, with presenting those facts 
in the theory of rings that are most frequently used in several areas of algebra. The 
first two sections deal with rings, homomorphisms and ideals. Much (but not all) of 
this material is simply a straightforward generalization to rings of concepts which 
have proven l!seful in group theory. Sections 3 and 4 are concerned with commuta
tive rings that resemble the ring of integers in various ways. Divisibility, factoriza
tion, Euclidean rings, principal ideal domains, and unique factorization are studied 
in Section 3. In Section 4 the familiar construction of the field of rational numbers 
from the ring of integers is generalized and rings of quotients of an arbitrary com
mutative ring are considered in some detail. In the last two sections the ring of poly
nomials in n indeterminates over a ring R is studied. In particular, the concepts of 
Section 3 are studied in the context of polynomial rings (Section 6). 

The approximate interdependence of the sections of this chapter is as follows: 

1 

~ 
/2~ 3/} 5 
~~/ 

6 

Section 6 requires only certain parts of Sections 4 and 5. 

114 
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1. RINGS AND HOMOMORPHISMS 
The basic concepts in the theory of rings are defined and numerous examples 

given. Several frequently used calculational facts are presented. The only difficulty 
with this material is the large quantity of terminology that must be absorbed in a 
short period of time. 

Definition 1.1. A ring is a nonempty set R together with two binary operations 
(usually denoted as addition (+) and multiplication) such that: 

(i) (R,+) is an abelian group; 
(ii) (ab)c = a(bc) for all a,b,c e R (associative multiplication); 
(iii) a(b + c) = ab + ac and (a + b)c = ac + bc (left and right distributive 

laws). 

Ifin addition: 

(iv) ab = ba for all a,b e R, 

then R is said to be a commutative ring. IfR contains an element IR such that 
(v) IRa = aIR = a for all a e R, 

then R is said to be a ring with identity. 

REMARK. The symbol IR is also used to denote the identity map R --+ R. In 
context this usage will not be ambiguous. 

The additive identity element of a ring is called the zero element and denoted O. 
If R is a ring, a e Rand neZ, then na has its usual meaning for additive groups 
(Definition 1.1.8); for example, na = a + a + ... + a (n summands) when n > O. 
Before giving examples of rings we record 

Theorem 1.2. Let R be a ring. Then 

(i) Oa = aO = 0 for all a e R; 
(ii) (-a)b = a(-b) = -(ab)foralla,beR; 

(iii) (-aX-b) = ab for all a,b e R; 
(iv) (na)b = a(nb) = n(ab) for all n e Z and all a,b e R; 

(v) (i;la)(tlbi) = ~tlaibi forall ai,bieR. 

SKETCH OF PROOF. (i) Oa = (0 + O)a = Oa + Oa, whence Oa = O. 
(ii) ab + (-a)b = (a + (-a»b = Ob = 0, whence (-a)b = -(ab) by Theorem 
I.1.2(iii). (ii) implies (iii). (v) is proved by induction and includes (iv) as a special 
case .• 

The next two definitions introduce some more terminology; after which some 
examples will be given. 
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Definition 1.3. A nonzero element a in a ring R is said to be a left [resp. rightJ zero 
divisor if there exists a nonzero bE R such that ab = 0 [resp. ba = OJ. A zero divisor 
is an element ofR which is both a left and a right zero divisor. 

It is easy to verify that a ring R has no zero divisors if and only if the right and 
left cancellation laws hold in R; that is, for all a,b,c E R with a "" 0, 

ab = ac or ba = ca => b = c. 

Definition 1.4. An element a in a ring R with identity is said to be left [resp. rightJ in
vertible if there exists c E R [resp. b E RJ such that ca = IR [resp. ab = IRJ. The ele
ment c [resp. bJ is called a left [resp. rightJ inverse ofa. An element a E R that is both 
left and right invertible is said to be invertible or to be a unit. 

REMARKS. (i) The left and right inverses of a unit a in a ring R with identity 
necessarily coincide (since ab = IR = ca implies b = IRb = (ca)b = c(ab) = c1 R = c). 
(ii) The set of units in a ring R with identity forms a group under multiplication. 

Definition 1.5. A commutative ring R with identity In "" 0 and no zero divisors is 
called an integral domain. A ring D with identity ID "" 0 in which every nonzero ele
ment is a unit is called a division ring. A field is a commutative division ring. 

REMARKS. (i) Every integral domain and every division ring has at least two 
elements (namely 0 and IR)' (ii) A ring R with identity is a division ring if and only if 
the nonzero elements of R form a group under multiplication (see Remark (ii) after 
Definition 1.4). (iii) Every field F is an integral domain since ab = 0 and a "" 0 
imply that b = IFb = (a-Ia)b = a-l(ab) = a-IO = O. 

EXAMPLES. The ring Z of integers is an integral domain. The set E of even 
integers is a commutative ring without identity. Each of Q (rationals), R (real 
numbers), and C (complex numbers) is a field under the usual operations of addition 
and multiplication. The n X n matrices over Q (or R or C) form a noncommutative 
ring with identity. The units in this ring are precisely the nonsingular matrices. 

EXAMPLE. For each positive integer II the set Z" of integers modulo 11 is a ring. 
See the example after Theorem 1.1.5 for details. If 1/ is not prime, say 1/ = kr with 
k> 1, r > I, then k "" 0, r "" 0 and k,. = kr = ii = 0 in Zn, whence k and rare 
zero divisors. If p is prime, thenZp is a field by Exercise I.1.7. 

EXAMPLE. Let A be an abelian group and let End A be the set of endomor
phisms f : A --> A. Define addition in End A by (f + g)(a) = f(a) + g(a). Verify 
thatf + g sEnd A. Since A is abelian, this makes End A an abelian group. Let multi
plication in End A be given by composition of functions. Then End A is a (possibly 
noncommutative) ring with identity 1,\ : A --> A. 

EXAl\IPLE. Let G be a (multiplicative) group and R a ring. Let R(G) be the 
additive abelian group L R (one copy of R for each g 2 G). It will be convenient to 

gEG 
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adopt a new notation for the elements of R( G). An element x = {r U I u.G of R( G) has 
only finitely many nonzero coordinates, say rQU ..• , rUn (g; E G). Denote x by the 

n 

formal sum rolgl + rg7.K2 + ... + rongn or L ruig;. We also allow the possibility that 
;=1 

some of the rg, are zero or that some gj are repeated, so that an element of R(G) 
may be written in formally different ways (for example, rlgl + Og2 = rlgl or 
rlgl + slgl = (rl + SI) gl)' In this notation, addition in the group R(G) is given by: 

n n n 

L ruig; + L SUigi = L (rUi + SUi)gi; 
i-I i-I ;=1 

(by inserting zero coefficients if necessary we can always assume that two formal 
sums involve exactly the same indices g!, ... , gn). Define multiplication in R( G) by 

this makes sense since there is a product defined in both R (rjsj ) and G(gjhj ) and thus 
the expression on the right is a formal sum as desired. With these operations R( G) is 
a ring, called the group ring of Gover R. R( G) is commutative if and only if both R 
and G are commutative. If R has an identity h, and e is the identity element of G, 
then he is the identity element of R( G). 

EXAMPLE. Let R be the field of real numbers and S the set of symbols l,i,j,k. 
Let K be the additive abelian group R EB R EB R EB R and write the elements of K as 
formal sums (aO,al,a2,aa) = aol + ad + aJ + aak. Then aol + ad + a2j + a~ = 
bol + bd + bJ + bak if and only if ai = bi for every i. We adopt the conventions 
that aol E K is identified with ao E R and that terms with zero coefficients may be 
omitted (for example, 4 + 2j = 4·1 + 0; + 2j + Ok and; = 0 + Ii + OJ + Ok). 
Then addition in K is given by 

(ao + ali + aJ + aak) + (bo + bd + b2j + bak) 

= (ao + bo) + (al + bl); + (a2 + b2}j + (aa + ba)k. 

Define multiplication in K by 

(ao + ad + a2j + aak}(bo + bd + b2j + bak) 

= (aobo - albl - a2b2 - aaba) + (aobl'+ albo + a2ba - aab2)i 

+ (aobz + a2bo + aabl - alba)j + (aoba + aabo + alb2 - a2bl)k. 

This product formula is obtained by multiplying the formal sums term by term sub
ject to the following relations: (i) associativity; (ii) ri = ir; rj = jr, rk = kr (for all 
nR); (iii) P =j2 = k2 = ijk = -1; ij = -ji = k;jk = -kj = i; ki = -ik =j. 
Under this product K is a noncommutative division ring in which the multiplicative 
inverse of ao + ad + a2j + aak is (ao/ d) - (all d)i - (a2/ d)j - (a3/ d)k, where 
d = a02 + al2 + a22 + aa2• K is called the division ring of real quaternions. The 
quaternions may also be interpreted as a certain subring of the ring of all 2 X 2 
matrices over the field C of complex numbers (Exercise 8). 

Definition 1.1 shows that under multiplication the elements of a ring R form a 
semigroup (a monoid if R has an identity). Consequently Definition U.8 is appli
cable and exponentiation is defined in R. We have for each a E Rand n E N*, 
an = a· "a (n factors) and aO = lR if R has an identity. By Theorem 1.1.9 
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Subtraction in a ring R is defined in the usual way: a - b = a + (-b). Clearly 
a(b - c) = ab - ac and (a - b)c = ac - be for all a,b,c E R. 

The next theorem is frequently useful in computations. Recall that if k and n are 

integers with 0 ~ k ~ n, then the binomial coefficient (~) is the number 

n!/(n - k)!k!, where O! = 1 and n! = n(n - l)(n - 2)·· ·2·1 for n ~ 1. (~) is 

actually an integer (Exercise 10). 

Theorem 1.6. (Binomial Theorem). Let R be a ring with identity, n a positive integer, 
and a,b,aJ,a2, ... , as E R. 

(i) [Jab = ba, then (a + b)n = t (~)akbn-k; 
k=O 

where the sum is over all s-tuples (i l ,i2, ••• , is) such that h + i2 + ... + is = n. 

SKETCH OF PROOF. (i) Use induction on n and the fact that (~) + (k~ 1) 
= (~! ~) for k < n (Exercise 100c»; the distributive law and the commutativity of 

a and b are essential. (ii) Use induction on s. The case s = 2 is just part (i) since 

(al + a2)n = t (~)alka;-k = . L k~:' alka2i. If the theorem is true for s, note ,,= 0 k +J = n ;; • 

that 

(al + ... + a. + as+I)n = «al + ... + as) + as+I)n = t (~)(al + ... + a,)ka;:~ 
k=O 

L 
k+j=n 

compute . 

n! . 
k7t (al + ... + a,)ka~+l by part (i). Apply the induction hypothesis and 

!]. 

• 
Definition 1.7. Let Rand S be rings. A Junction f: R -> S is a homomorphism of 
rings provided that Jar all a,b E R: 

f(a + b) = f(a) + feb) and f(ab) = f(a)f(b). 

REMARK. It is easy to see that the class of all rings together with all ring homo
morphisms forms a (concrete) category. 

When the context is clear then we shall frequently write "homomorphism" in 
place of "homomorphism of rings." A homomorphism of rings is, in particular, a 
homomorphism of the underlying additive groups. Consequently the same termi
nology is used: a monomorphism [resp. epimorphism, isomorphism] of rings is a homo-
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morphism of rings which is an injective [resp. surjective, bijective] map. A mono
morphism of rings R -+ S is sometimes calted an embedding of R in S. An isomor
phism R -+ R is called an automorphism of R. 

The kernel of a homomorphism of rings f : R -+ S is its kernel as a map of addi
tive groups; that is, Ker f = Ir e R I fer) = oJ. Similarly the image of J, denoted 
1m f, is Is e Sis = fer) for some re "R}. If Rand S both have identities h and Is, we 
do not require that a homomorphism of rings map h to Is (see Exercises 15, 16). 

EXAMPLES. The canonical map Z -+ Zm given by k ~ k is an epimorphism of 
rings. The map Z3 -+ Z6 given by k ~ 4k is a well-defined monomorphism of 
rings. 

EXAMPLE. Let G and H be multiplicative groups and f : G -+ H a homomor
phism of groups. Let R be a ring and define a map on the group rings 1: R( G) -+ R(H) 
by: 

Then 1 is a homomorphism of rings. 

Definition 1.8. Let R be a ring. If there is a least positive integer n such that na = 0 
for all a e R, then R is said to have characteristic n. If no such n exists R is said to 
have characteristic zero. (Notation: char R = n). 

Theorem 1.9. Let R be a ring with identit)' JR and characteristic n > O. 

(i) If <P : Z -+ R is the map given by m ~ mlR, then <p is a homomorphism of 
rings with kernel (n) = I kn Ike Z}. 

(ii) n is the least positiL'e integer such that nlR = O. 
(iii) ffR has no zero divisors (in particular ifR is an integral domain), then n is 

prime. 

SKETCH OF PROOF. (ii) If k is the least positive integer such that klR = 0, 
then for all a /3 R: ka = k(lRa) = (kIR)a = O'a = 0 by Theorem 1.2. (iii) If n = kr 
with I < k < II, 1 < r < n, then 0 = Illu = (kr)IlII R = (kh)(r\u) implies that 
klu = 0 or rlu = 0, which contradicts (ii). • 

Theorem 1.10. Every ring R may be embedded ill a ring S with identity. The ring S 
(which is IIot unique) may be chosen to be either of characteristic zero or of the same 
characteristic as R. 

SKETCH OF PROOF. Let S.be the additive abelian group R EB Z and define 
multiplication in S by 

(rl,k 1)(r2,k2) = (rlr2 + k2rl + k 1r2,k 1k 2), (r, e R; ki e Z). 
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Verify that S is a ring with identity (0,1) and characteristic zero and that the map 
R ----> S given by r f--> (r,O) is a ring monomorphism (embedding). If char R = n > 0, 
use a similar proof with S = R EB Zn and multiplication defined by 

(rJ/'I)(r2,K2) = (rlr2 + k2rl + k 1rd,l(2), 

where ri E Rand K; E Zn is the image of k; E Z under the canonical map. Then 
charS = n .• 

EXERCISES 

1. (a) Let G be an (additive) abelian group. Define an operation of multiplication 
in G by ab = ° (for all a.b € G). Then G is a ring. 
(b) Let S be the set of all subsets of some fixed set U. For A,B E S, define 
A + B = (A - B) U (B - A) and AB = A n B. Then S is a ring. Is S com
mutative? Does it have an identity? 

2. Let I R; liE 1) be a family of rings with identity. Make the direct sum of abelian 
groups ~ Ri into a ring by defining multiplication coordinatewise. Does ~ Ri 

have an identity? 

3. A ring R such that a2 = a for all a E R is called a Boolean ring. Prove that every 
Boolean ring R is commutative and a + a =0 ° for all a E R. [For an example of a 
Boolean ring, see Exercise I(b).] 

4. Let R be a ring andS a nonempty set. Then the group M(S,R) (Exercise 1.1.2) isa 
ring with multiplication defined as follows: the product of f,g e M(S,R) is the 
function S ----> R given by s ~ f(s)g(s). 

5. If A is the abelian group Z EB Z, then End A is a noncommutative ring (see 
page 116). 

6. A finite ring with more than one element and no zero divisors is a division ring. 
(Special case: a finite integral domain is a field.) 

7. Let R be a ring with more than one element such that for each nonzero a E R 
there is a unique bE R such that aba = a. Prove: 

(a) R has no zero divisors. 
(b) bab = b. 
(c) R has an identity. 
(d) R is a division ring. 

8. Let R be the set of all 2 X 2 matrices over the complex field C of the form 

( ~ ~), -w z 

where i,iii are the complex conjugates of z and w respectively (that is, 
c = a + bR <=> c = a - bR). Then R is a division ring that is isomorphic 
to the division ring K of real quaternions. [Hint: Define an isomorphism K ----> R 
by letting the images of 1,i,j,k E K be respectively the matrices 

( 1 0) ( v=T 0) ( 0 1) ( 0 v=T) 
o l' 0 -v=T' -1 0' v=T 0 . 
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9. (a) The subset G = !I,-I,i,-i,j,-j,k,-kl of the division ring K of real 
quaternions forms a group under multiplication. 
(b) G is isomorphic to the quaternion group (Exercises 1.4.14 and 1.2.3). 
(c) What is the difference between the ring K and the group ring R(G) (R the 
field of real numbers)? 

10. Let k,n be integers such that 0 ~ k ~ nand (Z) the binomial coefficient 

I/!/(n - k)!k!, where O! = I and for 11 > 0, n! = n(n - l)(n - 2)·· ·2·1. 

(a) (~) = C~k) 
(b) (~) < (k~l) for k + 1 ~ n12. 

(c) (~) + (k~l) = (Z!D for k < n. 

(d) (~) is an integer. 

(e) if p is prime and I ~ k ~ p" - I, then (~n) is divisible by p. 

[Hints: (b) observe that C~I) = (Z); ~ ~;(d)notethat (~) = (:) = 1 

and use induction on n in part (c).] 

II. (The Freshman's Dreaml). Let R be a commutative ring with identity of prime 
characteristic p. If a,b € R, then (a ± b)i'" = al'" ± bl'" for all integers n ~ 0 [see 
Theorem 1.6 and Exercise 10; note that b = -b if p = 2]. 

12. An element of a ring is nilpotent if at! = 0 for some II. Prove that in a commuta
tive ring a + b is nilpotent if a and b are. Show that this result may be false if R 
is not commutative. 

13. In a ring R the following conditions are equivalent. 
(a) R has no nonzero nilpotent elements (see Exercise 12). 
(b) If a € Rand a2 = 0, then a = O. 

14. Let R be a commutative ring with identity and prime characteristic p. The map 
R ----> R given by r f--> rP is a homomorphism of rings called the Frobenius homo
morphism [see Exercise II]. 

15. (a) Give an example of a nonzero homomorphism f : R ---t S of rings with 
identity such that f(lR) ~ Is. 
(b) It f : R ----> S is an epimorphism of rings with identity, then f(h) = Is. 
(c) If f : R ----> S is a homomorphism of rings with identity and u is a unit in R 
such thatf(u) is a unit inS, then f(lu) = Is and f(u- l) = f(U)-I. [Note: there are 
easy examples which show that f(u) need not be a unit in S even though u is a 
unit in R.] 

16. Let f : R ----> S be a homomorphism of rings such that f(r) ~ 0 for some non
zero r € R. If R has an identity and S has no zero divisors, then S is a ring with 
identity f(lll). 

lTerminoiogy due to V. O. McBrien. 
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17. (a) If R is a ring, then so is Rop, where Rop is defined as follows. The underlying 
set of Rop is precisely R and addition in Rop coincides with addition in R. Multi
plication in R"J', denoted 0, is defined by a 0 h = ha, where ba is the product in R. 
Rop is called the opposite ring of R. 
(b) R has an identity if and only if Rop does. 
(c) R is a division ring if and only if Rop is. 
(d) (R"l')"l' = R. 
(e) If S is a ring, then R :::. S if and only if Rop "- SoP. 

18. Let Q be the field of rational numbers and R any ring. If f,g : Q -> R are homo
morphisms of rings such that fl Z = K I Z, then f = g. [Hint: show that for 
n E Z (n .,t. 0), f(\/I1}1((I/) = g(\), whence f(\/I1) = g(\/II).] 

2. IDEALS 

Just as normal subgroups played a crucial role in the theory of groups, so ideals 
play an analogous role in the study of rings. The basic properties of ideals are de
veloped, including a characterization of principal ideals (Theorem 2.5) and the vari
ous isomorphism theorems (2.9-2.13; these correspond to the isomorphism theorems 
for groups). Prime and maximal ideals are characterized in several ways. Direct 
products in the category of rings are discussed and the Chinese Remainder Theorem 
is proved. 

Definition 2.1. Let R be a ring and Sa non empty subset ofR that is closed under the 
operations of addition and multiplication in R. IfS is itself a ring under these operations 
then S is called a subring ofR. A subring I of a ring R is a left ideal provided 

r E R and x E I 

I is a right ideal provided 

r E R and x E I 

I is an ideal ifit is both a left and right ideal. 

rx E I; 

= xr E I; 

Whenever a statement is made about left ideals it is to be understood that the 
analogous statement holds for right ideals. 

EXAMPLE. If R is any ring, then the center of R is the set C = (c E R I cr = rc 
for all r E R I. C is easily seen to be a subring of R, but may not be an ideal (Exer
cise 6). 

EXAMPLE. Iff: R -> S is a homomorph ism of rings, then Ker fis an ideal in R 
(Theorem 2.8 below) and 1m fis a subring of S. 1m fneed not be an ideal in S. 

EXAMPLE. For each integer II the cyclic subgroup (II) = (kn IkE Z 1 is an 
ideal in Z. 

EXAMPLE. In the ring R of n X II matrices over a division ring D, let h be the 
set of all matrices that have nonzero entries only in column k. Then h is a left ideal, 
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but not a right ideal. If Jk consist of those matrices with nonzero entries only in row 
k, then Jk is a right idea I but not a left idea I. 

EXA\lPLE. Two ideals of a ring Rare R itself and the trivial ideal (denoted 0), 
which consists only of the zero element. 

REI\IARKS. A [left] ideal 1 of R such that 1 ~ 0 and 1 ~ R is called a proper [left] 
ideal. Observe that if R has an identity 11/ and 1 is a [left] ideal of R, then 1 = R if and 
only if 1/1 E I. Consequently, a nonzero [left] ideal 1 of R is proper ifand only if 1 con
tains no units of R; (for if 1/ a R is a unit and u z I, then 1/1 = u-1u E I). In particular, a 
division ring D has no proper left (or right) ideals since every nonzero element of Dis 
a unit. For the converse, see Exercise 7. The ring of n X n matrices over a division 
ring has proper left and right ideals (see above), but no proper (two-sided) ideals 
(Exercise 9). 

Theorem 2.2. A nonempty subset I of a ring R is a left [resp. right] ideal if and only if 
for alla,b e I andr E R: 

(i) a,b z I = a - b d; and 
(ii) a E I, r E R = ra E I [resp. ar E I]. 

PROOF. Exercise; see Theorem 1.2.5. • 

Corollary 2.3. Let I Ai liE 1\ be a Funily of [left] ideals in a ring R. Then n Ai is 
;,1 

also a [left] ideal. 

PROOF. Exercise. • 

Definition 2.4. Let X be a subset of a ring R. Let I Ai liE I I be the family of all 
[left] ideals in R which contain X. Then n Ai is called the [left] ideal generated by X. 

11.1 

This ideal is denoted (X). 

The elements of X are called generators of the ideal (X). If X = I Xl, .•• , Xfi I, 
then the ideal (X) is denoted by (x"x~, ... ,x .. ) and said to be finitely generated. An 
ideal (x) generated by a single element is called a principal ideal. A principal ideal ring 
is a ring in which every ideal is principal. A principal ideal ring which is an integral 
domain is called a principal ideal domain.2 

Theorem 2.5. Let R be a ring a E R and X C R. 

(i) The principal ideal (a) consists of all elements of the form ra + as + na + 
m 

~ fillS; (r ,s,ri ,S; Il R; m Il N"'; and n Il Z) . 
• -1 

2The term "principal ideal ring" is sometimes used in the literature to denote what we 
have called a principal ideal domain. 
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(ii) ffR has an identity, then (a) = {t riasi I r;'Si E R; n E N*} . 
• =1 

(iii) ffa is in the center ofR, then (a) = Ira + na IrE R, n E Zl. 
(iv) Ra = I ra IrE R l [resp. aR = I ar IrE R l] is a left [resp. right] ideal in R 

(which may not contain a). ffR has an identity, then a E Ra and a EaR. 
(v) ffR has an identity and a is in the center ofR, then Ra = (a) = aR. 

(vi) ffR has an identity and X is in the center ofR, then the ideal (X) consists of 
aI/finite sums rial + ... + rnan (n E N*; ri E R; ai EX). 

REMARK. The hypothesis of (iii) is always satisfied in a commutative ring. 

SKETCH OF PROOF OF 2.5. (i) Show that the set 

f = {ra + as + na + f riasi I r,s,ri,si E R;II e Z; m e N*} 
.=1 

is an ideal containing a and contained in every ideal containing a. Then f = (a). 
(ii) follows from the facts that ra = raI R, as = IRas, and na = n(1Ra) = (nIR)a, 
with nI R e R. • 

Let A I ,A2, ... , An be nonempty subsets of a ring R. Denote by Al + A2 + ... + An 
the set I al + a2 + ... + an I ai e Ai for i = 1,2, ... , n l. If A and Bare nonempty 
subsets of R let AB denote the set of all finite sums lalbl + ... + anbn I n e N*; 
ai e A; bi e Bl. If A consists of a single element a, we write aB for AB. Similarly 
if B = I bl, we write Ab for AB. Observe that if B [resp. A] is closed under addition, 
then aB = lab I b eBl [resp. Ab = lab I a E All. More generally let A IA2 •• ·An 
denote the set of all finite sums of elements of the form ala2'" an (a; E Ai for 
i = 1,2, ... ,n). In the special case when all Ai (1 :s: i:S: II) are the same set A we 
denote A I A2· .. An = AA· .. A by An. 

Theorem 2.6. Let A,AI,A2, ••• , All, Band C be [left] ideals in a ring R. 

(i) Al + A2 + ... + An alld AIA2· .. An are [left] ideals; 
(ii) (A + B) + C = A + (B + C); 

(iii) (AB)C = ABC = A(BC); 
(iv) B(AI + A2 + ... + All) = BAI + BA2 + ... BAll; and (AI + A2 + ... + 

All)C = AIC + A2C + ... + AnC. 

SKETCH OF PROOF. Use Theorem 2.2 for (i). (iii) is a bit complicated but 
straightforward argument using the definitions. Use induction to prove (iv) by first 
showing that A(B + C) = AB + AC and (A + B)C = AC + BC • 

Ideals play approximately the same role in the theory of rings as normal sub
groups do in the theory of groups. For instance, let R be a ring and f an ideal of R. 
Since the additive group of R is abelian, f is a normal subgroup. Consequently, by 
Theorem 1.5.4 there is a well-defined quotient group Rjf in which addition is 
given by: 

(a + f) + (b + I) = (a + b) + f. 
Rj f can in fact be made into a ring. 
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Theorem 2.7. Let R be a ring and I an ideal ofR. Then the additive quotient group 
R/I is a ring with multiplication given by 

(a + I)(b + I) = ab + I. 
ffR is commutative or has an identity, then the same is true ofR/1. 

SKETCH OF PROOF OF 2.7. Once we have shown that multiplication in 
R/ I is well defined, the proof that R/ I is a ring is routine. (For example, if R has 
identity h, then 1R + I is the identity in R/l.) Suppose a + I = a' + I and 
b + I = b' + I. We must show that ab + I = a'b' + I. Since a' e a' + I = a + I, 
a' = a + i for some i e I. Similarly b' = b + j with j e I. Consequently 
a'b' = (a + i)(b + j) = ab + ib + aj + ij. Since I is an ideal, 

a' b' - ab = ib + aj + ij e I. 

Therefore a'b' + I = ab + I by Corollary 1.4.3, whence mUltiplication in R/I is 
well defined. • 

As one might suspect from the analogy with groups, ideals and homomorphisms 
of rings are closely related. 

Theorem 2.8. Iff: R --> S is a homomorphism of rings, then the kernel off is an ideal 
in R. Conversely if I is an ideal in R, then the map 7r : R --> R/I gillen by r f--> r + I is 
an epimorphism of rings with kernel I. 

The map 7r is called the canonical epimorphism (or projection). 

PROOF OF 2.8. Ker fis an additive subgroup of R. If xc Ker fand r e R, then 
f(rx) = f(r)f(x) = f(r)O = 0, whence rx e Ker f. Similarly, xr e Ker f. Therefore, 
Ker fis an ideal. By Theorem 1.5.5 the map 7r is an epimorphism of groups with 
kernel I. Since 7r(ab) = ab + I = (a + I)(b + I) = 7r(a)7r(b) for all a,b e R, 7r is also 
an epimorphism of rings. • 

In view of the preceding results it is not surprising that the various isomorphism 
theorems for groups (Theorems 1.5.6-1.5.12) carryover to rings with normal sub
groups and groups replaced by ideals and rings respectively. In each case the desired 
isomorphism is known to exist for additive abelian groups. If the groups involved 
are, in fact, rings and the normal subgroups ideals, then one need only verify that 
the known isomorphism of groups is also a homomorphism and hence an isomor
phism of rings. Caution: in the proofs of the isomorphism theorems for groups all 
groups and cosets are written multiplicatively, whereas the additive group of a ring 
and the cosets of an ideal are written additively. 

Theorem 2.9. Iff: R --> S is a homomorphism of rings andI is an ideal ofR which is 
contained in the kernel off, then there is a unique homomorphism of rings r : R/I --> S 
such that r(a + I) = f(a) for all a € R. 1m r = 1m f and Ker r = (Ker f)/1. r is an iso
morphism if and only iff is an epimorphism and I = Ker f. 
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PROOF. Exercise; see Theorem 1.5.6. • 

Corollary 2.10. (First Isomorphism Theorem) If f : R ~ S is a homomorphism of 
rings, then f induces an isomorphism of rings Rj Ker f:::: 1m f. 

PROOF. Exercise; see Corollary 1.5.7. • 

Corollary 2.11. Iff: R - S is a homomorphism of rings, I is an ideal in Rand J is an 
ideal in S such that f(I) C J, then f induces a homomorphism of rings f: RjI ~ SjJ, 
given by a + I f--+ f(a) + J. f is an isomorphism if and only if 1m f + J = Sand 
f-1(J) C I. In particular, iff is an epimorphism such that f(I) = J and Ker f C I, then 
f is an isomorphism. 

PROOF. Exercise; see Corollary 1.5.8. • 

Theorem 2.12. Let I and J be ideals in a ring R. 

(i) (Second Isomorphism Theorem) There is an isomorphisms of rings Ij(l n J) '" 
(I + J)jJ; 

(ii) (Third Isomorphism Theorem) if I C J, then JjI is an ideal in RjI and there is 
an isomorphism of rings (Rjl)j(J/I) '" RjJ. 

PROOF. Exercise; see Corollaries 1.5.9 and 1.5.10. • 

Theorem 2.13. If I is an ideal in a ring R, then there is a one-to-one correspondence 
between the set of all ideals of R which contain I and the set of all ideals ofR/I, given 
by 11--- J/1. Hence every ideal in R/I is of the form JjI, where J is an ideal ofR which 
contains I. 

PROOF. Exercise; see Theorem 1.5.11, Corollary 1.5.12 and Exercise 13. • 

Next we shall characterize in several ways two kinds of ideals (prime and maxi
mal), which are frequently of interest. 

Definition 2.14. An idealP in a ring R is said to be prime ifP ;t. R and for any ideals 
A,B in R 

AB C P => A C P or B C P. 

The definition of prime ideal excludes the ideal R for both historical and technical 
reasons. Here is a very useful characterization of prime ideals; other characteriza
tions are given in Exercise 14. 
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Theorem 2.15. If P is an ideal in a ring R such that P ~ R and for all a,b e R 

ab e P ::} a e P or be P, (1) 

then P .is prime. Conversely ifP is prime and R is commutative, then P satisfies con
dition (1). 

REMARK. Commutativity is necessary for the converse (Exercise 9 (b». 

PROOF OF 2.15. If A and B are ideals such that AB C P and A ¢ P, then 
there exists an element a E A - P. For every be B, ab e AB C P, whence a e P or 
be P. Since a, P, we must have be P for all be B; that is, B C P. Therefore, P is 
prime. Conversely, if P is any ideal and ab e P, then the principal ideal (ab) is con
tained in P by Definition 2.4. If R is commutative, then Theorem 2.5 implies that 
(a)(b) C (ab), whence (a)(b) C P. If P is prime, then either (a) C P or (b) C P, 
whence a e P or b e P. • 

EXAMPLES. The zero ideal in any integral domain is prime since ab = 0 if and 
only if a = 0 or b = O. If p is a prime integer, then the principal ideal (p) in Z is 
prime since 

ab e (p) ::} P I ab ::} p I a or p I b ::} a e(p) or be (p). 

Theorem 2.16. In a commutative ring R with identity lR ~ 0 an ideal P is prime 
if and only if the quotient ring RIP is an integral domain. 

PROOF. RIP is a commutative ring with identity h + P and zero element 
0+ P = P by Theorem 2.7. If P is prime, then h + P ~ P since P ~ R. Further
more, RIP has no zero divisors since 

(a + P)(b + P) = P ::} ab + P = P ::} ab e P ::} a e P or 

b e P ::} a + P = P or b + P = P. 

Therefore, RIP is an integral domain. Conversely, if RIP is an integral domain, then 
lR + P ~ 0 + P, whence lR' P. Therefore, P ~ R. Since RIP has no zero divisors, 

ab e P ::} ab + P = P ::} (a + P)(b + P) = P ::} a + P = P or 

b + P = P ::} a E P or b e P. 

Therefore, P is prime by Theorem 2.15. • 

Definition 2.17. An ideal [resp. left ideal] M in a ring R is said to be maximal if 
M ~ Rand for every ideal [resp. left ideal] N such that MeN C R, either N = M 
orN = R. 

EXAMPLE. The ideal (3) is maximal in Z; but the ideal (4) is not since (4) C ,.. 
(2) C Z. 

'" 
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REMARK. If R is a ring and S is the set of all ideals I of R such that I ~ R, then 
S is partially ordered by set-theoretic inclusion. M is a maximal ideal (Definition 2.17) 
if and only if M is a maximal element in the partially ordered set S in the sense of 
Introduction, Section 7. More generally one sometimes speaks of an ideal I that is 
maximal with respect to a given property, meaning that under the partial ordering of 
set theoretic inclusion, 1 is maximal in the set of all ideals of R which have the given 
property. In this case 1 need not be maximal in the sense of Definition 2.17. 

Theorem 2.18. In a nonzero ring R with identity maximal [left] ideals always exist. 
In fact every [left] ideal in R (except R itself) is contained in a maximal [Ieltl ideal. 

PROOF. Since 0 is an ideal and 0 ~ R, it suffices to prove the second statement. 
The proof is a straightforward application of Zorn's Lemma. If A is a [left] ideal in R 
such that A ~ R, let S be the set of all [left] ideals B in R such that A C B ~ R. Sis 
nonempty since A e S. Partially order S by set theoretic inclusion (that is, 
Bl S B2 {=} Bl C B2). In order to apply Zorn's Lemma we must show that every 
chain ~ = I Ci lie II of [left] ideals in S has an upper bound in S. Let C = U Ci • 

i,I 

We claim that C is a [left] ideal. If a,b e C, then for some i,j e I, a e Ci and b e Cj • 

Since e is a chain, either Ci C C j or C j C C; say the latter. Hence a,b e Ci • Since C 
is a left ideal, a - b e Ci and ra e C for all r e R (if C is an ideal ar e C as well). 
Therefore, a,b e C imply a - band ra are in C; C C. Consequently, C is a [left] ideal 
by Theorem 2.2. Since A C C; for every i, A C U C; = C. Since each C is in S, 
Ci ~ R for all i e I. Consequently, IR • C; for every i (otherwise Ci = R), whence 
lR , U C = C. Therefore, C ~ R and hence, C e S. Clearly C is an upper bound of 
the chain e. Thus the hypotheses of Zorn's Lemma are satisfied and hence S contains 
a maximal element. But a maximal element of S is obviously a maximal [left] ideal in 
R that contains A. • 

Theorem 2.19. IfR is a commutative ring such that R2 = R (in particular ifR has an 
identity), then every maximal ideal M in R is prime. 

REMARK. The converse of Theorem 2.19 is false. For example, 0 is a prime 
ideal in Z, but not a maximal ideal. See also Exercise 9. 

PROOF OF 2.19. Suppose ab e M but a • M and b • M. Then each of the ideals 
M + (a) and M + (b) properly contains M. By maximality M + (a) = R = M + (b). 
Since R is commutative and ab eM, Theorem 2.5 implies that (a)(b) C (ab) C M. 
Therefore, R = R2 = (M + (a»(M + (b» C M2 + (a)M + M(b) + (a)(b) C M. 
This contradicts the fact that M ~ R (since M is maximal). Therefore, a e M or 
be M, whence M is prime by Theorem 2.15. • 

Maximal ideals, like prime ideals, may be characterized in terms of their quotient 
rings. 

Theorem 2.20. Let M be an ideal in a ring R with identity lR ~ o. 
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(i) IfM is maximal and R is commutative, then the quotient ring RjM is a field. 
(ii) If the quotient ring RjM is a division ring, then M is maximal. 

REMARKS. (i) is false if R does not have an identity (Exercise 19). If M is maxi
mal and R is not commutative, then Rj M need not be a division ring (Exercise 9). 

PROOF OF 2.20. (i) If Mis maximal, then Mis prime (Theorem 2.19), whence 
Rj M is an integral domain by Theorem 2.16. Thus we need only show that if 
a + M ,c M, then a + M has a multiplicative inverse in Rj M. Now a + M ,c M 
implies that a • M, whence M is properly contained in the ideal M + (a). Since Mis 
maximal, we must have M + (a) = R. Therefore, since R is commutative, 
lR = m + ra for some me M and r e R, by Theorem 2.5(v). Thus h - ra = me M, 
whence 

h + M = ra + M = (r + M)(a + M). 

Thus r + M is a multiplicative inverse of a + M in RIM, whence RjM is a field. 
(ii) If Rj M is a division ring, then h + M ,c 0 + M, whence h ~ M and 

M ,c R. If N is an ideal such that MeN, let a e N - M. Then a + M has a multi-.. 
plicative inverse in Rj M, say (a + M)(b + M) = h + M. Consequently, ab + M 
= lR + M and ab - lR = c e M. But a eN and MeN imply that 1R e N. Thus 
N = R. Therefore, M is maximal. • 

Corollary 2.21. The following conditions on a commutative ring R with identity 
lR ,c 0 are equivalent. 

(i) R is a field; 
(ii) R has no proper ideals; 

(iii) 0 is a maximal ideal in R; 
(iv) every nonzero homomorphism of rings R -+ S is a monomorphism. 

REMARK. The analogue of Corollary 2.21 for division rings is false (Exercise 9). 

PROOF OF 2.21. This result may be proved directly (Exercise 7) or as follows. 
R '" RjO is a field if and only if 0 is maximal by Theorem 2.20. But clearly 0 is maxi
mal if and only if R has no proper ideals. Finally, for every ideal 1(,cR) the canonical 
map 11" : R -+ Rj I is a nonzero homomorphism with kernel I (Theorem 2.8). Since 11" 

is a monomorphism if and only if I = 0, (iv) holds if and only if R has no proper 
ideals. • 

We now consider (direct) products in the category of rings. Their existence and 
basic properties are easily proved, using the corresponding facts for groups. Co
products of rings, however, are decidedly more complicated. Furthermore co
products in the category of rings are of less use than, for example, coproducts (direct 
sums) in the category of abelian groups. 

Theorem 2.22. Let I Ri lie I I be a nonempty family of rings and II Ri the direct 
i.l 

product of the additive abelian groups Ri ; 
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(i) II Ri is a ring with multiplication defined by 1 ad i,I I bd i.I = 1 aibd i,I; 
i£1 

(ii) ifRi has an identity [resp. is commutative] for every i € I, then II Ri has an 
ie.! 

identity [resp. is commutative]; 
(iii) for each k € I the canonical projection 7rk: II Ri ----> Rk given by I ai ll--> ak, is 

ie.I 

an epimorphism of rings; 
(iv) for each k € I the canonical injection Lk : Rk ----> II Ri, given by ak f-+ 1 ai 1 

ieI 

(where ai = 0 for i ,e k), is a monomorphism of rings. 

PROOF. Exercise. • 

II Ri is called the (external) direct product of the family of rings I Ri I i € II. If the 
ieI 

index set is finite, say I = 11, ... , n 1 , then we sometimes write RI X R2 X ... X Rn 
instead of II Ri . 

If I Ri I i € II is a family of rings and for each i € I, Ai is an ideal in Ri, then it is 
easy to see that II Ai is an ideal in II Ri . If Ai = 0 for all i,e k, then the ideal 

is! iel 

II Ai is precisely LiAk)' If the index set I is finite and each Ri has an identity, then 
iel 

every ideal in II Ri is of the form IIAi with Ai an ideal in Ri (Exercise 22). 
itl ie.I 

Theorem 2.23. Let 1 Ri I i € I 1 be a nonempty family of rings, S a ring and 
I <Pi : S ----> Ri I i € Il a family of homomorphisms of rings. Then there is a unique homo
morphism of rings cp : S ----> II Ri such that 7ri<P = <Pi for all i € I. The ring II Ri is 

ieI ill 

uniquely determined up to isomorphism by this property. In other words II Ri is a 
i,1 

product in the category of rings. 

SKETCH OF PROOF. By Theorem 1.8.2 there is a unique homomorphism of 
groups <P : S ----> II Ri such that 7ri<P = <Pi for all i € I. Verify that <P is also a ring 

ieI 

homomorphism. Thus II Ri is a product in the category of rings (Definition 1.7.2) 
iel 

and therefore determined up to isomorphism by Theorem 1.7.3. • 

Theorem 2.24. Let AI,A2, ... , An be ideals in a ring R such that (i) Al + A2 + ... + 
An = R and (ii)for each k (1 :::; k :::; n), Ak n (AI + ... + Ak- l + Ak+l + ... + An) 
= O. Then there is a ring isomorphism R '" Al X A2 X ... X An. 

PROOF. By the proof of Theorem 1.8.6 the map <P : Al X A2 X' .. X An ----> R 
given by (ai, ... , an) f-+ al + a2 + ... + an is an isomorphism of additive abelian 
groups. We need only verify that <P is a ring homomorphism. Observe that if i ,e j 
and ai € Ai, aj € A j, then by (ii) aiaj € Ai n Aj = O. Consequently, for all ai,bi € Ai: 

whence <p is a homomorphism of rings. • 
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If R is a ring and AI, ... , An are ideals in R that satisfy the hypotheses of Theo
rem 2.24, then R is said to be the (internal) direct product of the ideals Ai. As in the 
case of groups, there is a distinction between internal and external direct products. 
If a ring R is the internal direct product of ideals AI, ... , An, then each of the Ai is 
actually an ideal contained in Rand R is isomorphic to the external direct product 
Al X' .. X An. However, the external direct product Al X' .. X An does not contain 
the Ai, but only isomorphic copies of them (namely the Lj(A j) - see Theorem 2.22). 
Since this distinction is unimportant in practice, the adjectives "internal" and 
"external" will be omitted whenever the context is clear and the following notation 
will be used. 

NOTATION. We write R = II Ai or R = Al X A2 X··· X An to indicate that 
the ring R is the internal direct product of its ideals AI, ... , An. 

Other characterizations of finite direct products are given in Exercise 24. 
We close this section with a result that will be needed in Chapters VIII and IX. 

Let A be an ideal in a ring Rand a,b e R. The element a is said to be congruent to b 
modulo A (denoted a E b (mod A» if a - be . •. Thus 

a E b (mod A) {:::} a - be A {:::} a + A = b + A. 

Since Rj A is a ring by Theorem 2.7, 

al E a2 (mod A) and bl E b2 (mod A) =? 

al + bl E a2 + b2 (mod A) and albl E a2b2 (mod A). 

Theorem 2.25. (Chinese Remainder Theorem) Let AI, ... ,An be ideals in a ring R 
such that R2 + Ai = R for all i and Ai + Aj = R for all i ;o/i j. IfbI, . .. , bn e R, 
then there exists b e R such that 

b E bi (mod Ai) (i = 1,2, ... , n). 

Furthermore b is uniquely determined up to congruence modulo the ideal 

REMARK. If R has an identity, then R2 = R, whence R2 + A = R for every 
ideal A of R. 

SKETCH OF PROOF OF 2.25. Since Al + A2 = R and Al + Aa = R, 

R2 = (AI + A2)(A I + Aa) = AI2 + AIAa + A2AI + A2Aa 

C Al + A2Aa C Al + (A 2 n Aa). 

Consequently, since R = Al + R2, 

R = Al + R2 C Al + (AI + (A2 n Aa» = Al + (A2 n Aa) C R. 

Therefore, R = Al + (A2 n Aa). Assume inductively that 

R = AI + (A2 n Aa n ... n A k _ l). 

Then 
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R2 = (AI + (A 2 n ... n Ak-l»(AI + Ak) C Al + (A2 n Aa n ... n Ak) 

and hence 

R = R2 + Al CAl + (A2 n··· n Ak) C R. 

Therefore, R = Al + (A2 n ... n Ak) and the induction step is proved. Con-
sequently, R = Al + (A2 n ... nAn) = Al + (n Ai). A similar argument 

i;><1 

shows that for each k = 1,2, ... ,n, R = Ak + (n Ai). Consequently for each k 
i;><k 

there exist elements ak e Ak and rk e n Ai such that hk = ak + rk. Furthermore 
i;><k 

rk == hk (mod Ak) and rk == 0 (mod Ai) for i;e k. 

Let h = rl + r2 + ... + rn and use the remarks preceding the theorem to verify that 
h == hi (mod Ai) for eViY i. Finally if c e R is such that c == hi (mod Ai) for every i, 

n 

then h == c (mod Ai) for each i, whence h - c e Ai for all i. Therefore, h - c e n Ai 
;=1 

and h == c (mod n Ai). • .-1 
The Chinese Remainder Theorem is so named because it is a generalization of the 

following fact from elementary number theory, which was known to Chinese mathe
maticians in the first century A.D. 

Corollary 2.26. Let ml,m2, ... ,mn he positive integers such that (mj,mj) = 1 for 
i rf j. Ifbl,b2, . .. ,bn are any integers, then the system of congruences 

x == bl (mod ml); x == b2 (mod m2); ... ; x == bn (mod mn ) 

has an integral solution that is uniquely determined modulo m = mlm2· . ·mn • 

n 

SKETCH OF PROOF. Let Ai = (mi); then n Ai = (m). Show that 
i=1 

(mi,mi) = 1 implies Ai + Ai = Z and apply Theorem 2.25. • 

Corollary 2.27. If AI, ... , An are ideals in a ring R, then there is a monomorphism 
of rings 

(J : R/(AI n ... nAn) -> R/ Al X R/ A2 X· .. X R/ An. 

IfR2 + Ai = R for all i and Ai + Aj = R for all i rf j, then () is an isomorphism 
of rings. 

SKETCH OF PROOF. By Theorem 2.23 the canonical epimorphisms 'Irk : R -> 

R/ Ak (k = 1, ... , n) induce a homomorphism of rings (}I : R -> R/ Al X· .. X R/ An 
with (JI(r) = (r + Al, ... , r + An). Clearly ker (JI = Al n ... n An. Therefore, (JI 
induces a monomorphism of rings () : R/(AI n ... nAn) -> R/ Al X ... X R/ An 
(Theorem 2.9). The map () need not be surjective (Exercise 26). However, if the 
hypotheses of Theorem 2.25 are satisfied and (hi + Al, ... , hn + An) e R/ Al 
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x ... X RI An, then there exists b e R such that b == bi (mod Ai) for all i. Thus 
8(b + n Ai) = (b + A" ... , b + An) = (b l + A" ... , bn + An), whence 8 is an 

i 

epimorphism. • 

EXERCISES 

1. The set of all nilpotent elements in a commutative ring forms an ideal [see 
Exercise 1.12]. 

2. Let I be an ideal in a commutative ring R and let Rad I = {r e R I r" e I for 
some n j. Show that Rad I is an ideal. 

3. If R is a ring and a e R, then J = [r e R I ra = OJ is a left ideal and 
K = Ire R I ar = OJ is a right ideal in R. 

4. If I is a left ideal of R, then A(l) = Ire R I rx = 0 for every x e lj is an ideal in R. 

5. If I is an ideal in a ring R, let [R : I] = {r e R I xr e I for every x e Rj. Prove that 
[R : /] is an ideal of R which contains I. 

6. (a) The center of the ring S of all 2 X 2 matrices over a field F consists of all 

matrices of the form (~ ~). 
(b) The center of S is not an ideal in S. 
(c) What is the center of the ring of all n X n matrices over a division ring? 

7. (a) A ring R with identity is a division ring if and only if R has no proper left 
ideals. [Proposition 1.1.3 may be helpful.] 
(b) If S is a ring (possibly without identity) with no proper left ideals, then either 
S2 = 0 or S is a division ring. [Hint: show that {a eS I Sa = Ol is an ideal. If 
cd ¢ 0, show that {r e S I rd = 0 l = O. Find e e S such that ed = d and show 
that e is a (two-sided) identity.] 

8. Let R be a ring with identity and S the ring of all n X n matrices over R. J is an 
ideal of S if and only if J is the ring of all n X n matrices over I for some ideal I 
in R. [Hint: GivenJ, let I be the set of all those elements of R that appear as the 
row I-column 1 entry of some matrix in J. Use the matrices Er ." where 1 S r S n, 
1 S s S n, and Er •8 has IR as the row r-column s entry and 0 elsewhere. Observe 
that for a matrix A = (ai;), Ep.rAE,.q is the matrix with aT. in the row p-column 
q entry and 0 elsewhere.) 

9. Let S be the ring of all n X n matrices over a division ring D. 
(a) S has no proper ideals (that is, 0 is a maximal ideal). [Hint: apply Exercise 

8 or argue directly, using the matrices ET ., mentioned there.] 
(b) S has zero divisors. Consequently, (i) S '" SIO is not a division ring and 

(ii) 0 is a prime ideal which does not satisfy condition (1) of Theorem 2.15. 

10. (a) Show that Z is a principal ideal ring [see Theorem 1.3.1]. 
(b) Every homomorphic image of a principal ideal ring is also a principal ideal 
ring. 
(c) Zm is a principal ideal ring for every m > O. 
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11. If N is the ideal of all nilpotent elements in a commutative ring R (see Exercise 1), 
then Rj N is a ring with no nonzero nilpotent elements. 

12. Let R be a ring without identity and with no zero divisors. Let S be the ring 
whose additive group is R X Z as in the proof of Theorem 1.10. Let 
A = I (r,n) e S I rx + nx = 0 for every x e R I. 

(a) A is an ideal in S. 
(b) Sj A has an identity and contains a subring isomorphic to R. 
(c) Sj A has no zero divisors. 

13. Let f : R ---4 S be a homomorphism of rings, 1 an ideal in R, and J an ideal in s. 
(a) f-I(J) is an ideal in R that contains Ker f. 
(b) If fis an epimorphism, then f(l) is an ideal in S. If fis not surjective, f(l) 

need not be an ideal in S. 

14. If P is an ideal in a not necessarily commutative ring R, then the following con
ditions are equivalent. 

(a) P is a prime ideal. 
(b) Ifr,s e R are such thatrRs C P, then r e.Por s e.P. [Hint: If (a) holds and 

rRs C P, then (RrR)(RsR) C P, whence RrR C P or RsR C P, say RrR C P. 
If A = (r), then A3 C RrR C P, whence r e. A C P.] 

(c) If (r) and (s) are principal ideals of R such that (r)(s) C P, then r e. P or 
se.P. 

(d) If U and V are right ideals in R such that UV C P, then U C P or V C P. 
(e) If U and V are left ideals in R such that UV C P, then U C P or V C P. 

15. The set consisting of zero and all zero divisors in a commutative ring with 
identity contains at least one prime ideal. 

16. Let R be a commutative ring with identity and suppose that the ideal A of R is 
contained in a finite union of prime ideals PI U··· U Pn • Show that A C Pi for 
some i. [Hint: otherwise one may assume that A n Pi ¢ U Pi for all j. Let 

i'l"i 

ai e. (A n Pi) - (U Pi). Then a( + a2a3· .. a" is in A but not in PI U ... UP".] 
i'l"i 

17. Let f : R ---4 S be an epimorphism of rings with kernel K. 
(a) If P is a prime ideal in R that contains K, then f(P) is a prime ideal in S 

[see Exercise 13]. 
(b) If Q is a prime ideal inS, thenf-I(Q) is a prime ideal in R that contains K. 
(c) There is a one-to-one correspondence between the set of all prime ideals 

in R that contain K and the set of all prime ideals in S, given by P~ f(P). 
(d) If 1 is an ideal in a ring R, then every prime ideal in Rj 1 is of the form P j 1, 

where P is a prime ideal in R that contains 1. 

18. An ideal M ~ R in a commutative ring R with identity is maximal if and only if 
for every r e. R - M, there exists x e. R such that In - rx e. M. 

19. The ring E of even integers contains a maximal ideal M such that Ej M is not 
a field. 

20. In the ring Z the following conditions on a nonzero ideal 1 are equivalent: (i) 1 is 
prime; (ii) 1 is maximal; (iii) 1 = (P) with p prime. 

21. Determine all prime and maximal ideals in the ring Zm. 
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22. (a) If R I, ... , Rn are rings with identity and I is an ideal in RI X ... X R n, then 
I = Al X' .. X Am, where each Ai is an ideal in R i. [Hint: Given Ilet Ak = 7rk(l), 
where trk : RI X· .. X Rn ---> Rk is the canonical epimorphism.) 
(b) Show that the conclusion of (a) need not hold if the rings Ri do not have 
identities. 

23. An element e in a ring R is Siiid to be idempotent if e2 = e. An element of the 
center of the ring R is said to be central. If e is a central idempotent in a ring R 
with identity, then 

(a) IR - e is a central idempotent; 
(b) eR and (IR - e)R are ideals in R such that R = eR X (h - e)R. 

24. Idempotent elements eI, ... ,en in a ring R [see Exercise 23) are said to be 
orthogonal if eiei = ° for i ~ j. If R, R I, ... , Rn are rings with identity, then the 
following conditions are equivalent: 

(a) R '" RI X ... X Rn. 
(b) R contains a set of orthogonal central idempotents [Exercise 23) 

1 eI, ... , en) such that el + e2 + ... + en = IR and eiR '" Ri for each i. 
(c) R is the internal direct product R = Al X· .. X An where each Ai is an 

ideal of R such that Ai '" Ri. 

[Hint: (a) =} (b) The elements el = (hl,O, ... ,0), e2 = (0,IR2'0, ... ,0), ... , en 
= (0, ... ,0,IRn) are orthogonal central idempotents in S = RI X· .. X Rn 
such that el + ... + en = Is and eiS '" Ri. (b) =} (c) Note that Ak = ekR is the 
principal ideal (ek) in R and that ekR is itself a ring with identity ek.) 

25. If m to Z has a prime decomposition m = plkl. .. pl' (k, > 0; Pi distinct primes), 
then there is an isomorphism of rings Zm '" Zplkl X· .. X ZPtkt. [Hint: Corollary 
2.27.] 

26. If R = Z, Al = (6) and A2 = (4), then the map (J : Rj Al n A2 ---> Rj Al X Rj A2 
of Corollary 2.27 is not surjective. 

3. FACTORIZATION IN COMMUTATIVE RINGS 

In this section we extend the concepts of divisibility, greatest common divisor and 
prime in the ring of integers to arbitrary commutative rings and study those integral 
domains in which an analogue of the Fundamental Theorem of Arithmetic (Intro
duction, Theorem 6.7) holds. The chief result is that every principal ideal domain is 
such a unique factorization domain. In addition we study those commutative rings 
in which an analogue of the division algorithm is valid (Euclidean rings). 

Definition 3.1. A nonzero element a of a commutative ring R is said to divide an 

element b to R (notation: a I b) if there exists x to R such that ax = b. Elements a,b ofR 
are said to be associates if a I band b I a. 

Virtually all statements about divisibility may be phrased in terms of principal 
ideals as we now see. 
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Theorem 3.2. Let a,b and u be elements of a commutatiz:e ring R with identity. 

(i) a I b if and only if(b) C (a). 
(ii) a and b are associates if and only if(a) = (b). 
(iii) u is a unit if and only ifu I r for all r E R. 
(iv) u is a unit if and only if(u) = R. 
(v) The relation "a is an associate ofb" is an equivalence relation on R. 

(vi) ffa = br with r eRa unit, then a and b are associates. ffR is an integral 
domain, the converse is true. 

PROOF. Exercise; Theorem 2.5(v) may be helpful for (i) and (ii). • 

Definition 3.3. Let R be a commutative ring with identity. An element c ofR is 
irreducible provided that: 

(i) c is a nonzero nonunit; 
(ii) c = ab =} a or b is a unit. 

An element p ofR is prime provided that: 

(i) P is a nonzero nonunit; 
(ii) p I ab =} p I a or p I b. 

EXAMPLES. If p is an ordinary prime integer, then both p and -p are irre
ducible and prime in Z in the sense of Definition 3.3. In the ringZ6, 2 is easily seen to 
be a prime. However 2 E Zs is not irreducible since 2 = 2·4 and neither 2 nor 4 are 
units in Zs (indeed they are zero divisors). For an example of an irreducible element 
which is not prime, see Exercise 3. 

There is a close connection between prime [resp. irreducible] elements in a ring R 
and prime [resp. maximal] principal ideals in R. 

Theorem 3.4. Let p and c be nonzero elements in an integral domain R. 

(i) p is prime if and only if(p) is nonzero prime ideal; 
(ii) c is irreducible if and only if(c) is maximal in the set S of all proper principal 

ideals ofR. 
(iii) Every prime element ofR is irreducible. 
(iv) ffR is a principal ideal domain, then p is prime if and only if p is irreducible. 
(v) Every associate of an irreducible [resp. prime] element of R is irreducible 

[resp. prime]. 
(vi) The only divisors of an irreducible element of Rare ·its associates and the 

units ofR. 

REMARK. Several parts of Theorem 3.4 are true for any commutative ring with 
identity, as is seen in the following proof. 

SKETCH OF PROOF OF 3.4. (i) Use Definition 3.3 and Theorem 2.15. (ii) If 
c is irreducible then (c) is a proper ideal of R by Theorem 3.2. If (c) C (d), then 
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c = dx. Since c is irreducible either dis a unit (whence (d) = R) or x is a unit (whence 
(c) = (d) by Theorem 3.2). Hence (c) is maximal inS. Conversely if (c) is maximal in 
S, then c is a (nonzero) nonunit in R by Theorem 3.2. If c = ab, then (c) C (a), 
whence (c) = (a) or (a) = R. If (a) = R, then a is a unit (Theorem 3.2). If (c) = (a), 
then a =' cy and hence c = ab = cyb. Since R is an integral domain 1 = yb, whence 
b is a unit. Therefore, c is irreducible. (iii) If p = ab, then p I a or p I b; say pia. 
Then px = a and p = ab = pxb, which implies that 1 = xb. Therefore, b is a unit. 
(iv) If p is irreducible, use (ii), Theorem 2.19 and (i) to show that p is prime. (v) If cis 
irreducible and d is an associate of c, then c = du with u eRa unit (Theorem 3.2). If 
d = ab, then c = abu, whence a is a unit or bu is a unit. But if bu is a unit, so is b. 
Hence d is irreducible. (vi) If c is irreducible and a I c, then (c) C (a), whence 
(c) = (a) or (a) = R by (ii). Therefore, a is either an associate of c or a unit by 
Theorem 3.2. • 

We have now developed the analogues in an arbitrary integral domain of the 
concepts of divisibility and prime integers in the ring Z. Recall that every element in 
Z is a product of a finite number of irreducible elements (prime integers or their 
negatives) according to the Fundamental Theorem of Arithmetic (Introduction, 
Theorem 6.7). Furthermore this factorization is essentially unique (except for the 
order of the irreducible factors). Consequently, Z is an example of: 

Definition 3.5. An integral domain R is a unique factorization domain provided that: 

(i) every nonzero nonunit element a of R can be written a = CtC2· • ·cn , with 
Ct, ••• , Cn irreducible. 

(ii) If a = CtC2·· ·Cn and a = dtd2•• ·dm (c;,d; irreducible), then n = m and for 
some permutation u of { 1,2, ... , n I, C; and d"(i) are associates for every i. 

REMARK. Every irreducible element in a unique factorization domain is neces
sarily prime by (ii). Consequently, irreducible and prime elements coincide by 
Theorem 3.4 (iii). 

Definition 3.5 is nontrivial in the sense that there are integral domains in which 
every element is a finite product of irreducible elements, but this factorization is not 
unique (that is, Definition 3.5 (ii) fails to hold); see Exercise 4. Indeed one of the 
historical reasons for introducing the concept of ideal was to obtain some sort of 
unique factorization theorems (for ideals) in rings of algebraic integers in which 
factorization of elements was not necessarily unique; see Chapter VIII. 

In view of the relationship between irreducible elements and principal ideals 
(Theorem 3.4) and the example ofthe integers, it seems plausible that every principal 
ideal domain is a unique factorization domain. In order to prove that this is indeed 
the case we need: 

Lemma 3.6. IfR is a principal ideal ring and (at) C (a2) c· .. is a chain a/ideals in 
R, then for some positive integer n, (aj) = (an) for all j ~ n. 
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PROOF. Let A = U (ai). We claim that A is an ideal. If b,c € A, then b € (ai) 
i~l 

and c € (a;). Either i :::; j or i ~ j; say i ~ j. Consequently (a;) C (ai) and b,c € (ai). 
Since (ai) is an ideal b - c € (ai) C A. Similarly if r € Rand b € A, then b € (ai), 
whence rb € (ai) C A and br € (a;) C A. Therefore, A is an ideal by Theorem 2.2. 
By hypothesis A is principal, say A = (a). Since a € A = U(ai), a € (an) for some n. 
By Definition 2.4 (a) C (aJ. Therefore, for every j ~ n, (a) C (an) C (aj) C A = 
(a), whence (aj) = (aJ. • 

Theorem 3.7. Every principal ideal domain R is a unique factorization domain. 

REMARK. The converse of Theorem 3.7 is false. For example the polynomial 
ring Z[x] can be shown to be a unique factorization domain (Theorem 6.14 below), 
but Z[x] is not a principal ideal domain (Exercise 6.1). 

SKETCH OF PROOF OF 3.7. Let S be the set of all nonzero nonunit ele
ments of R which cannot be factored as a finite product of irreducible elements. 
We shall first show that S is empty, whence every nonzero nonunit element of R has 
at least one factorization as a finite product of irreducibles. Suppose S is not empty 
and a € S. Then (a) is a proper ideal by Theorem 3.2(iv) and is contained in a maximal 
ideal (c) by Theorem 2.18. The element c € R is irreducible by Theorem 3.4(ii). Since 
(a) C (c), c divides a. Therefore, it is possible to choose for each a € S an irreducible 
divisor Ca of a (Axiom of Choice). Since R is an integral domain, Ca uniquely deter
mines a nonzero Xa € R such that CaXa = a. We claim that Xa € S. For if Xa were a 
unit, then a = CaXa would be irreducible by Theorems 3.2(vi) and 3.4(v).If xaisanon
unit and not in S, then Xa has a factorization as a product of irreducibles, whence a 
also does. Since a € S this is a contradiction. Hence Xa € S. Furthermore, we claim 
that the ideal (a) is properly contained in the ideal (Xa). Since Xa I a, (a) C (Xa) by 
Theorem 3.2(i). But (a) = (xa) implies that Xa = ay for some y € R, whence 
a = XaCa = ayca and 1 = yca• This contradicts tht; fact that Ca is irreducible (and 
hence a nonunit). Therefore (a) C (Xa). 

"" 
The preceding remarks show that the function f : S --+ S given by f(a) = Xa is 

well defined. By the Recursion Theorem 6.2 of the Introduction (with f = In for all n) 
there exists a function q; : N --+ S such that 

q;(0) = a and q;(n + 1) = f(q;(n» = X,,(n) (n ~ 0). 

If we denote q;(n) by an, we thus have a sequence of elements ofS:a,aJ,a2, ... such that 

Consequently, the preceding paragraph shows that there is an ascending chain 
of ideals 

contradicting Lemma 3.6. Therefore, the setS must be empty, whence every nonzero 
non unit element in R has a factorization as a finite product of irreducibles. 
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Finally if CIC2· •• Cn = a = d1d2 • •• dm (c;,d; irreducible), then Cl divides some d; by 
Theorem 3.4(iv). Since Cl is a nonunit, it must be an associate of d; by Theorem 3.4 
(vi). The proof of uniqueness is now completed by a routine inductive argument. • 

Several important integral domains that we shall meet frequently have certain 
properties not shared by all integral domains. 

Definition 3.8. Let N be the set of nonnegative integers and R a commutative ring. 
R is a Euclidean ring if there is a function <p : R - 101 ~ N such that: 

(i) ifa,b e Rand ab =t= 0, then qJ(a) ::5 qJ(ab); 
(ii) ifa,b e Rand b ~ 0, then there exist q,r e R such that a = qb + r with r = 0, 
or r ~ 0 and <p(r) < <p(b). 

A Euclidean ·ing which is an integral domain is called a Euclidean domain. 

EXAMPLE. The ring Z of integers with <p(x) = /x/ is a Euclidean domain. 

EXAMPLE. If F is a field, let <p(x) = 1 for all XI:! F, x .,&. O. Then F is a Euclidean 
domain. 

EXAMPLE. If F is a field, then the ring of polynomials in one variable FIx] is a 
Euclidean domain with <p(J) = degree of f; see Corollary 6.4 below. 

EXAMPLE. Let Z[iJ be the following subset of the complex numbers 
Zli] = I a + bi / a, be Zl. Zli] is an integral domain called the domain of Gaussian 
integers. Define <p(a + bi) = a2 + b2• Clearly cp(a + bi) .,&. 0 if a + bi.,&. 0; it is also 
easy to show that condition (i) of the definition is satisfied. 'The proof that <p satisfies 
condition (ii) is left to the readrc (Exercise 6). 

Theorem 3.9. Every Euclidean ring R is a principal ideal ring with identity. Con
sequently every Euclidean domain is a unique factorization domain. 

REMARK. The converse of Theorem 3.9 is false since there are principal ideal 
domains that are not Euclidean domains (Exercise 8). 

PROOF OF 3.9. If I is a nonzero ideal in R, choose a E I such that <p(a) is the 
least integer in the set of nonnegative integers I cp(x) / x .,&. 0; x e II. If bEl, then 
b = qa + r with r = 0 or r .,&. ° and <p(r) < <p(a). Since bEl and qa E I, r is necessarily 
in I. Since <p(r) < <p(a) would contradict the choice of a, we must have r = 0, whence 
b = qa. Consequently, by Theorem 2.5 I C Ra C (a) C I. Therefore I = Ra = (a) 
and R is a principal ideal ring. 

Since R itself is an ideal, R = Ra for some a E R. Consequently, a = ea = ae for 
some e E R. If bE R = Ra, then b = xa for some x E R. Therefore, be = (xa)e 
= x(ae) = xa = b, whence e is a mUltiplicative identity element for R. The last 
statement of the theorem is now an immediate consequence of Theorem 3.7. • 

We close this section with some further observations on divisibility that will be 
used occasionally in the sequel (Sections 5, 6 and IV.6). 
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Definition 3.10. Let X be a nonempty subset of a commutative ring R. An element 
dE R is a greatest common divisor of X provided: 

(i) d I a for all a EX; 
(ii) c I a for all a E X ~ c I d. 

Greatest common divisors do not always exist. For example, in the ring E of even 
integers 2 has no divisors at all, whence 2 and 4 have no (greatest) common divisor. 
Even when a greatest common divisor of aI, ... , an exists, it need not be unique. 
However, any two greatest common divisors of X are clearly associates by (ii). 
Furthermore any associate of a greatest common divisor of X is easily seen to be a 
greatest common divisor of X. If R has an identity and al ,a2' ... , an have 1 R as a 
greatest common divisor, then al ,a2' ... an are said to be relatively prime. 

Theorem 3.11. Let aI, ... , an be elements of a commutative ring R with identity. 

(i) d E R is a greatest common divisor of I aI, ... , an I such that d = rIal 
+ ... + r nan for some ri E R if and only if(d) = (al) + (a2) + ... + (an); 

(ii) ifR is a principal ideal ring, then a greatest common divisor of aI, ... ,an 
exists and everyone is of the form rIal + ... + rnan (ri E R); 

(iii) ifR is a unique factorization domain, then there exists a greatest common 
divisor of aI, ... , an. 

REMARK. Theorem 3.11(i) does not state that every greatest common divisor of 
aI, ... ,an is expressible as a linear combination of ah ... ,an' In general this is not 
the case (Exercise 6.15). See also Exercise 12. 

SKETCH OF PROOF OF 3.11. (i) Use Definition 3.10 and Theorem 2.5. 
(ii) follows from (i). (iii) Each aihas a factorization: ai-= C'{'/lC~I2· •• c;",uwithc l , ... ,ct 

distinct irreducible elements and each mi; :?: O. Show that d = clk1cl'· .. clk! is a 
greatest common divisor of ah ... ,an, where k i = min Iml;,m2;,m3;, ... ,mnil. • 

EXERCISES 

1. A nonzero ideal in a principal ideal domain is maximal if and only if it is prime. 

2. An integral domain R is a unique factorization domain if and only if every non
zero prime ideal in R contains a nonzero principal ideal that is prime. 

3. Let R be the subring I a + b'l/10 I a,b E Z I of the field of real numbers. _ 
(a) The map N: R ---> Z given by a + b-VW 1-+ (a + b-VW)(a - b'l/lO) 

= a2 - 10b2 is such that N(uv) = N(u)N(v) for all u,v E Rand N(u) = 0 if and 
only if u = O. 

(b) u is a unit in R if and only if N(u) = ±1. 
(c) 2, 3, 4 + .yf6 and 4 - '1/10 are irreducible elements of R. 
(d) 2, 3,4 + '1/10 and 4 - -JfO are not prime elements of R. [Hint: 3·2 = 6 

= ~4 + .ytO)(4 - -VW).j 
4. Show that in the integral domain of Exercise 3 every element can be factored 

into a product of irreducibles, but this factorization need not be unique (in the 
sense of Definition 3.5 (ii». 
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5. Let R be a principal ideal domain. 
(a) Every proper ideal is a product PIP2· . . p" of maximal ideals, which are 

uniquely determined up to order. 
(b) An ideal P in R is said to be primary if ab e P and a 4 Pimply b" e P for 

some n. Show that P is primary if and only if for some n, P = (P"), where peR is 
prime (= irreducible) or p = o. 

(c) If p\,P2 , ••• ,Pn are primary ideals such that Pi=(Pin.) and the Pi are 
distinct primes, then PIP2 •• .p" = PI n P2 n ... n P". 

(d) Every proper ideal in R can be expressed (uniquely up to order) as the 
intersection of a finite number of primary ideals. 

6. (a) If a and n are integers, n > 0, then there exist integers q and r such that 
a = qn + r, where Irl S n/2. 
(b) The Gaussian integers Z[i] form a Euclidean domain with q;(a + bi) 
= a2 + b2• [Hint: to show that Definition 3.8(ii) holds, first let y = a + bi and 
assume x is a positive integer. By part (a) there are integers such that a = qlx + rl 
and b = q~ + r2, with Irll S x/2, Ir21 S x/2. Let q = ql + q2i and r = rl + r2i; 
then y = qx + r, with r = 0 or q;(r) < q;(x). In the general case, observe that for 
x = c + di ~ 0 and x = c - di, xX > O. There are q,ro e Z[i] such that 
yx = q{xx) + ro, with ro = 0 or q;(ro) < q;(xx). Let r = y - qx; then y = qx + r 
and r = 0 or q;(r) < q;(x).] 

7. What are the units in the ring of Gaussian integers Z[iJ? 

8. Let R be the following subring of the complex numbers: 
R = {a + b(l + v'I9 i)/2 I a,b e Z}. Then R is a principal ideal domain 
that is not a Euclidean domain. 

9. Let R be a unique factorization domain and d a nonzero element of R. There are 
only a finite number of distinct principal ideals that contain the ideal (d). [Hint: 
(d) C (k) ==} k I d.] 

10. If R is a unique factorization domain and a,b e R are relatively prime and a I be, 
then a I c. 

11. LetR beaEuclideanringandaeR. Thenaisa unitinR if and only if q;(a) =q;(ln). 

12. Every nonempty set of elements (possibly infinite) in a commutative principal 
ideal ring with identity has a greatest common divisor. 

13. (Euclidean algorithm). Let R be a Euclidean domain with associated function 
q; : R - {O I --> N. If a,b e Rand b ~ 0, here is a method for finding the greatest 
common divisor of a and b. By repeated use of Definition 3.8(ii) we have: 

a = qob + rio with rl = 0 or q;(rl) < q;(b); 

b = qlrl + r2, with r2 = 0 or q;(r2) < q;(rl); 

rl = q2r2 + ra, with ra = 0 or q;(r3) < q;(r2); 
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Let ro = b and let n be the least integer such that rn+1 = 0 (such an n exists since 
the lP(rk) form a strictly decreasing sequence of nonnegative integers). Show that 
rn is the greatest common divisor a and b. 

4. RINGS OF QUOTIENTS AND LOCALIZATION 
In the first part of this section the familiar construction of the fielo of rational 

numbers from the ring of integers is considerably generalized. The rings of quotients 
so constructed from any commutative ring are characterized by a universal mapping 
property (Theorem 4.5). The last part of this section, which is referred to only oc
casionally in the sequel, deals with the (prime) ideal structure of rings of quotients 
and introduces localization at a prime ideal. 

Definition 4.1. A nonempty subset S of a ring R is multiplicative provided that 

a,b € S ~ ab € S. 

EXAMPLFS. The set S of all elements in a nonzero ring with identity that are 
not zero divisors is multiplicative. In particular, the set of all nonzero elements in an 
integral domain is multiplicative. The set of units in any ring with identity is a 
multiplicative set. If P is a prime ideal in a commutative ring R, then both P and 
S = R - P-are multiplicative sets by Theorem 2.15. 

The motivation for what follows may be seen most easily in the ring Z of integers 
and the field Q of rational numbers. The set S of all nonzero integers is clearly a 
multiplicative subset of Z. Intuitively the field Q is thought of as consisting of all 
fractions alb with a € Z and b € S, subject to the requirement 

alb = cld <=} ad = be (or ad - bc = 0). 

More precisely, Q may be constructed _as follows (details of the proof will be 
supplied later). The relation on the set Z X S defined by 

(a,b) '" (c,d) <=} ad - bc = 0 

is easily seen to be an equivalence relation. Q is defined to be the set of equivalence 
classes of Z X S under this equivalence relation. The equivalence class of (a,b) is 
denoted alb and addition and multiplication are defined in the usual way. One 
verifies that these operations are well defined and that Q is a field. The map Z ~ Q 
given by aJ---+ all is easily seen to be a monomorphism (embedding). 

We shall now extend the construction just outlined to an arbitrary multiplicative 
subset of any commutative ring R (possibly without identity). We shall construct a 
commutative ring S-IR with identity and a homomorphism IPs : R ~ S-IR. If S is 
the set of all nonzero elements in an integral domain R, then S-IR will be a field 
(S-IR = Q if R = Z) and IPs will be a monomorphism embedding R in S-IR. 

Theorem 4.2. Let S be a multiplicative subset of a commutative ring R. The relation 
defined on the set R X S by 

(r,s) '" (r',s') <=} sl(rs' - r's) = 0 for some Sl € S 
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is an equivalence relation. Furthermore ifR has no zero clivisors and 0 • S, then 

(r ,s) - (r:s/) ¢::} rs' - r's = O. 

PROOF. Exercise. • 
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Let S be a multiplicative subset of a commutative ring Rand", the equivalence 
relation of Theorem 4.2. The equivalence class of (r,s) e R X S will be denoted r/ s. 
The set of all equivalence classes of R X Sunder'" will be denoted by S-lR. Verify 
that 

(i) r/s = r'/s' ¢::} sl(rs' - r's) = 0 for some Sl eS; 
(ii) tr/ts = r/s for all r e Rand s,t eS; 

(iii) If 0 e S, then S-lR consists of a single equivalence class. 

Theorem 4.3. Let S be a multiplicative subset of a commutative ring R and let S-lR 
be the set of equivalence classes ofR X S under the equivalence relation of Theorem 4.2. 

(i) S-lR is a commutative ring with identity, where addition and multiplication are 
defined by 

r/s + r' /s' = (rs' + r's)/ss' and (r/s)(r' /s') = rr' /ss'. 

(ii) ffR is a nonzero ring with no zero divisors and 0 • S, then S-lR is an integral 
domain. 

(iii) ffR is a nonzero ring with no zero divisors and S is the set of all nonzero ele
ments ofR, then S-lR is afield. 

SKETCH OF PROOF. (i) Once we know that addition and mUltiplication in 
S-lR are well-defined binary operations (independent of the choice of r,s,r',s'), the 
rest of the proof of (i) is routine. In particular, for all s,s' e S, O/s = O/s' and O/s is 
the additive identity. The additive inverse of r/s is -r/s. For any s,s' eS, s/s = s'/s' 
and s/s is the mUltiplicative identity in S-lR. 

To show that addition is well defined, observe first that since S is multiplicative 
(rs' + r's)/ss' is an element of S-IR. If r/s = rtfsl and r'/s' = r~/s~, we must show 
that (rs' + r' s)/ ss' = (rlsl' + rl' SI)j SISI'. By hypothesis there exist S2,S3 e S such that 

s2(rsl - r1s) = 0, 
s3(r'st' - rl's') = O. 

Multiply the first equation by SaS'Sl' and the second by S2SSI. Add the resulting equa
tions to obtain 

Therefore, (rs' + r's)/ss' = (rlsl' + rl'sl)/slsl' (since S2SaeS). The proof that 
multiplication is independent of the choice of r,s,r',s' is similar. 

(ii) IfR has no zero divisors and 0 ,S, then r/s = O/sifandonlyifr = OinR. 
Consequently, (r/s)(r'/s') = 0 in S-lR if and only if rr' = 0 in R. Since I"r' = 0 if 
and only if r = 0 or r' = 0, it follows that S-IR is an integral domain. (iii) If r :;e 0, 
then the multiplicative inverse of r/s eS-IR is s/r eS-lR. • 
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The ring S-I R in Theorem 4.3 is called the ring of quotients or ring of fractions or 
quotient ring of R by S. An important special case occurs when S is the set of all non
zero elements in an integral domain R. Then S-IR is a field (Theorem 4.3(iii» which 
is called the quotient field of the integral domain R. Thus if R = Z, the quotient field 
is precisely the field Q of rational numbers. More generally suppose R is any non
zero commutative ring and S is the set of all nonzero elements of R that are not zero 
divisors. If S is nonempty (as is always the case if R has an identity), then S-IR is 
called the complete (or full) ring of quotients (or fractions) of the ring R.8 Theorem 4.3 
(iii) may be rephrased: if a nonzero ring R has no zero divisors, then the complete 
ring of quotients of R is a field. Clearly the complete ring of quotients of an integral 
domain is just its quotient field. 

If cP : Z --+ Q is the map given by n f--> nil, then cP is clearly a monomorphism 
that embeds Z in Q. Furthermore, for every nonzero n, cp(n) is a unit in Q. More 
generally, we have: 

Theorem 4.4. Let S be a multiplicative subset of a commutative ring R. 

(i) The map CPs : R --+ S-IR given by r f--> rsls (for any s e S) is a well-defined 
homomorphism of rings such that cps(s) is a unit in S-IR for every s a S. 

(ii) If 0 • Sand S contains no zero divisors, then CPs is a monomorphism. In par
ticular, any integral domain may be embedded in its quotient field. 

(iii) IfR has an identity and S consists of units, then CPs is an isomorphism. In par
ticular, the complete ring of quotients (= quotient field) of afield F is isomorphic to F. 

SKETCH OF PROOF. (i) If s,s' as, then rsls = rs'ls', whence cps is well de
fined. Verify that CPs is a ring homomorphism and that for each sa S, sl S2 a S-IR is 
the multiplicative inverse of s21 s = CPs(s). (ii) If cps(r) = rsl s = 0 in S-IR, then 
rsl s = 01 s, whence rs2s1 = 0 for some Sl a S. Since S2S1 as, S2S1 ¢ O. Since S has no 
zero divisors, we must have r = O. (iii) CPs is a monomorphism by (ii).1f rls as-IR 
with s a unit in R, then rls = cps(rs-1), whence CPs is an epimorphism. • 

In view of Theorem 4.4 (ii) it is customary to identify an integral domain R with 
its image under CPs and to consider R as a subring of its quotient field. Since lR a Sin 
this case, r a R is thus identified with rllR a S-IR. 

The next theorem shows that rings of quotients may be completely characterized 
by a universal mapping property. This theorem is sometimes used as a definition of 
the ring of quotients. 

Theorem 4.5. Let S be a multiplicative subset of a commutative ring R and let T be 
any commutative ring with identity. Iff : R --+ T is a homomorphism of rings such that 
f(s) is a unit in T for all s E S, then there exists a unique homomorphism of rings 
f : S-IR --+ T such that fcps = f. The ring S-IR is completely determined (up to iso
morphism) by this property. 

SKETCH OF PROOF. Verify that the map 1: S-IR --+ T given by l(rl s) 
= f(r)f(s)-l is a well-defined homomorphism of rings such that lcps = f. If 

3For the noncommutativc analogue, see Definition IX.4.7. 
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g : S-IR --) T is another homomorphism such that gcps = f, then for every s e S, 
g(cps(s» is a unit in T. Consequently, g(CPS(S)-I) = g(<f!s(S»-1 for every seS by 
Exercise 1.15. Now for each s eS, cps(s) = S2/S, whence CPS(S)-I = S/S2 eS-'R. Thus 
for each r/seS-'R: 

g(r/ s) = g(cps(r)<f!s(s)-I) = g(cps(r»g(cps(s)-I) = g(<f!s(r»g(<f!s(s»-I 

= f(r)f(s)-' = l(r/s). 
Therefore, 1= g. 

To prove the last statement of the theorem let e be the category whose objects 
are all (f,T), where T is a commutative ring with identity and f : R --) T a homomor
phism of rings such that f(s) is a unit in T for every s e S. Define a morphism in e 
from (ji.,T,) to (h,T2) to be a homomorphism of rings g : TI --) T2 such that g ji. = h. 
Verify that e is a category and that a morphism g in e (ji.,T1) --) (h,T2) is an equiv
alence if and only if g : TI --) T2 is an isomorphism of rings. The preceding paragraph 
shows that (cps,s-'R) is a universal object in the category e, whence S-'R is com
pletely determined up to isomorphism by Theorem 1.7.10. • 

Corollary 4.6. Let R be an integral domain considered as a subring of its quotient 
field F. IfE is a field and f : R --) E a monomorphism of rings, then there is a unique 
monomorphism of fields f : F --) E such that fiR = f. In particular any field EI con
taining R contains an isomorphic copy FI ofF with R C FI eEl. 

SKETCH OF PROOF. Let S be the set of all nonzero elements of R and apply 
Theorem 4.5 to f: R --) E. Then there is a homomorphism 1 : S-'R = F -4 E such 
that 1 CPs = f. Verify that lis a monomorphism. Since R is identified with cps(R), this 
means that 11 R = f. The last statement of the theorem is the special case when 
f : R --) E, is the inclusion map. • 

Theorems 4.7-4.11 deal with the ideal structure of rings of quotients. This 
material will be used only in Section V1I1.6. Theorem 4.13, which does not depend 
on Theorems 4.7-4.11, will be referred to in the sequel. 

Theorem 4.7. Let S be a multiplicative subset of a commutative ring R. 

(i) If I is an ideal in R, then S-lI = {a/sla E I; s E S} is an ideal in S-IR. 
(ii) IfJ is another ideal in R, then 

S-l(I + J) = S-II + S-IJ; 
S-l(lJ) = (S-IJ)(S-IJ); 

S-'(I n J) = S-'I n S-IJ. 

REMARKS. S-II is called the extension of I in S-'R. Note that r/ s e S-II need 
not imply that reI since it is possible to have a/ s = r/ s with a E I, r' I. 

n 

SKETCH OF PROOF OF 4.7. Use the facts that in S-'R, L (c./s) 
i=-l 

( 
n ) m m 

= {;1 Ci /s; r; (aibi/s) = r; (ai/s)(bis/s); and 
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Theorem 4.8. Let S be a mUltiplicative subset of a commutative ring R with identity 
and let I be an ideal ofR. Then S-II = S-IR ifand only ifS n I ~ 0. 

PROOF. If se.S n I, then 1s-1R = slse.S-II and hence S-II = S-IR. Con
versely, if S-II = S-IR, thenips-I(S-II) = Rwhenceips(1R) = als for some a e I, s e S. 
Since ipS(1R) = hsls we have S2Sl = assl for some Sl eS. But S2Sl eS and assl e I 
implyS n I ~ 0 .• 

In order to characterize the prime ideals in a ring of quotients we need a lemma. 
Recall that if I is an ideal in a ring of quotients S-IR, then ipS-I(J) is an ideal in R 
(Exercise 2.13). ipS-I() is sometimes called the contraction of I in R. 

lemma 4.9. Let S be a multiplicative subset of a commutative ring R with identity 
and let I be an ideal in R. 

(i) I C ipS-I(S-II). 
(ii) If I = ipS-I(J) for some ideal 1 in S-IR, then S-II = 1. In other words every 

ideal in S-IR is of the form S-II for some ideal I in R. 
(iii) IfP is a prime ideal in Rand S n P = 0, then S-I P is a prime ideal in S-IR 

and ipS-I(S-IP) = P. 

PROOF. (i) If a e I, then as e /for every se. S. Consequently, ips(a) = asl S e S-II, 
whence a e ips-I(S-II). Therefore, Ie ips-I(S-II). (ii) Since 1= ips-I() every ele
ment of S-II is of the form rls with ips(r) e I. Therefore, rls = (lRls)(rsls) 
= (lRI s)ips(r) e I, whence S-II C I. Conversely, if rise I, then ips(r) = rsl s 
= (rls)(s2Is) e I, whence re ips--I() = I. Thus rlse.S-II and hence Ie S-II. 
(iii) S-IP is an ideal such that S-IP ~ S-I R by Theorem 4.8. If (r I s)(r' Is') e S-IP, 
then rr'lss' = alt with a E P, t eS. Consequently, sltrr' = slss'a e P for some Sl e S. 
Since Sit e Sand S n P = 0, Theorem 2.15 implies that rr' e P, whence rEP or 
r' eP. Thus rlse.S-IP or r'ls' eS-IP. Therefore, S-IP is prime by Theorem 2.15. 
Finally P C ips -I(S-IP) by (i). Conversely if r e ¢s -I(S-IP), then ips(r) e S-IP. Thus 
ipsCr) = rsl s = al t with a e P and s, t e S. Consequently) slstr = slsa e P for some 
SleS. Since SIStsS and S n P = 0, reP by Theorem 2.15. Therefore, 
ips-I(S-IP) C P. • 

Theorem 4.10. Let S be a multiplicative subset of a commutative ring R with identity. 
Then there is a one-to-one correspondence between the set 'U of prime ideals ofR which 
are disjoint from S and the set '0 of prime ideals ofS-IR, gh'en by P f---> S-IP. 

PROOF. By Lemma 4.9(iii) the assignment P'r--> S-IP defines an injective map 
'U ----> '0. We need only show that it is surjective as well. Let I be a prime ideal of 
S-IR and let P = ips-I(J). Since S-IP = ) by Lemma 4.9(ii), it suffices to show that 
Pis prime. If ab eP, then ips(a)ips(b) = ips(ab) e)sinceP = ips-I(I). Sincelis prime 
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in S-IR, either cps(a) e J or cps(b) e J by Theorem 2.15. Consequently, either 
a e CPS-l(l) = P or be P. Therefore, P is prime by Theorem 2.15. • 

Let R be a commutative ring with identity and P a prime ideal of R. Then 
S = R - P is a multiplicative subset of R by Theorem 2.15. The ring of quotients 
S-IR is called the localization of R at P and is denoted Rp. If I is an ideal in R, then 
the ideal S-II in Rp is denoted I p. 

Theorem 4.11. Let P be a prime ideal in a commutative ring R with identity. 

(i) There is a one-to-one correspondence between the set of prime ideals ofR which 
are contained in P and the set of prime ideals ofRp, given by Q ~ Qp; 

(ii) the ideal Pp in Rp is the unique maximal ideal ofRp. 

PROOF. Since the prime ideals of..R contained in P are precisely those which are 
disjoint fromS = R - P, (i) is an immediate consequence of Theorem 4.10. If Mis a 
maximal ideal of Rp, then M is prime by Theorem 2.19, whence M = Qp for some 
prime ideal Q of R with Q C P. But Q C P implies Qp C Pp. Since Pp ~ Rp by 
Theorem 4.8, we must have Qp = Pp. Therefore, Pp is the unique maximal ideal 
inRp •• 

Rings with a unique maximal ideal, such as Rp in Theorem 4.11, are of some 
interest in their own right. 

Definition 4.12. A local ring is a commutative ring with identity which has a unique 
maximal ideal. 

REMARK. Since every ideal in a ring with identity is contained in some maximal 
ideal (Theorem 2.18), the unique maximal ideal of a local ring R must contain every 
ideal of R (except of course R itself). 

EXAMPLE. If p is prime and n ~ 1, then Z pn is a local ring with unique maxi
mal ideal (p). 

Theorem 4.13. If R is a commutative ring with identity then the following conditions 
are eqUivalent. 

(i) R is a local ring; 
(ii) all nonunits ofR are contained in some ideal M ~ R; 

(iii) the nat/units ofR form an ideal. 

SKETCH OF PROOF. If I is an ideal of R and a e I, then (a) C Iby Theorem 
2.5. Consequently, I ~ R ifand only if I consists only of non units (Theorem 3.2(iv». 
(ii) =} (iii) and (iii) =} (i) follow from this fact. (i) =} (ii) If a e R is a nonunit, then 
(a) ~ R. Therefore, (a) (and hence a) is contained in the unique maximal ideal of R 
by the remark after Definition 4. I 2. • 
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EXERCISES 

1. Determine the complete ring of quotients of the ring Zn for each n 2 2. 

2. LetS be a multiplicative subset of a commutative ring R with identity and let Tbe a 
multiplicative subset of the ringS-IR. LetS* = Ire R I rise Tfor some s eSI. 
Then S* is a multiplicative subset of R and there is a ring isomorphism 
S* -IR ,...., 11(S-IR). 

3. (a) The set E of positive even integers is a multiplicative subset of Z such that 
E-I(Z) is the field of rational numbers. 
(b) State and prove condition(s) on a multiplicative subset S of Z which insure 
that S-IZ is the field of rationals. 

4. If S = P,41 and R = Z6, then S-IR is isomorphic to the field Z3. Consequently, 
the converse of Theorem 4.3(ii) is false. 

5. Let R be an integral domain with quotient field F. If Tis an integral domain such 
that ReT C F, then F is (isomorphic to) the quotient field of T. 

6. Let S be a multiplicative subset of an integral domain R such that 0 • S. If R is a 
principal ideal domain [resp. unique factorization domain], then so is S-IR. 

7. Let RI and R2 be integral domains with quotient fields FI and F2 respectively. If 
f : RI --+ R2 is an isomorphism, then f extends to an isomorphism FI ,...., F2. 
[Hint: Corollary 4.6.] 

8. Let R be a commutative ring with identity, I an ideal of Rand 11' : R --+ R/ I the 
canonical projection. 

(a) If S is a multiplicative subset of R, then 71'S = lI'(S) is a multiplicative 
subset of R/ I. 

(b) The mapping (J : S-IR --+ (lI'S)-I(R/ I) given by r/ s f-+ lI'(r)/lI'(s) is a well
defined function. 

(c) (J is a ring epimorphism with kernel S-Il and hence induces a ring iso
morphism S-IR/S-II""" (lI'S)-I(R/ I). 

9. Let S be a multiplicative subset of a commutative ring R with identity. If I is an 
ideal in R, then S-I(Rad I) = Rad (S-II). [See Exercise 2.2.] 

10. Let R be an integral domain and for each maximal ideal M (which is also prime, 
of course), consider R},{ as a subring of the quotient field of R. Show that 
n R},{ = R, where the intersection is taken over all maximal ideals M of R. 

11. Let p be a prime in Z; then (p) is a prime ideal. What can be said about the rela
tionship of Zp and the localization Z(p)? 

12. A commutative ring with identity is local ifand only if for all r, S E R, r + S = 11/ 
implies r or s is a unit. 

13. The ring R consisting of all rational numbers with denominators not divisible by 
some (fixed) prime p is a local ring. 

14. If M is a maximal ideal in a commutative ring R with identity and n is a positive 
integer, then the ring R/ Mn has a unique prime ideal and therefore is local. 

15. In a commutative ring R with identity the following conditions are equivalent 
(i) R has a unique prime ideal; (ii) every nonunit is nilpotent (see Exercise 1.12); 
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(iii) R has a minimal prime ideal which contains all zero divisors, and all non
units of R are zero divisors. 

16. Every nonzero homomorphic image of a local ring is local. 

5. RINGS OF POLYNOMIALS AND FORMAL POWER SERIES 

We begin by defining and developing notation for polynomials in one indeter
minate over a ring R. Next the ring of polynomials in n indeterminates over R is 
defined and its basic properties are developed. The last part of the section, which is 
not needed in the sequel, is a brief introduction to the ring of formal power series in 
one indeterminate over R. 

Theorem 5.1. Let R be a ring and let R[x) denote the set of all sequences of elements 
ofR (ao,a!, ... ) such that ai = ° for all but a finite number of indices i. 

(i) R[x) is a ring with addition and multiplication defined by: 

(aO,al, ... ) + (bo,bl, ... ) = (ao + bo,al + bl, ... ) 

and 

(aO,al, ... )(bo,bl, ... ) = (co,c!, ... ), 
where 

n 

Cll = L: an_ibi = anbo + an_lbl + ... +albn_1 + aobn = L: akbj • 
i~O k+j=n 

(ii) ffR is commutative [resp. a ring with identity or a ring with no zero divisors or 
an integral domain), then so is R[x). 

(iii) The map R -+ R[x) given by r f-> (r,O,O, ... ) is a monomorphism of rings. 

PROOF. Exercise. If R has an identity h, then (lR,O,O, ... ) is an identity in R[x). 
Observe that if (aO,al, ... ), (bo,b!, ... ) e R[x) and k [resp.j) is the smallest index such 
that ak ~ ° [resp. bi ~ 0), then 

The ring R[x) of Theorem 5.1 is called the ring of polynomials over R. Its elements 
are called polynomials. The notation R[x) is explained below. In view of Theorem 
5.1(iii) we shall identify R with its isomorphic image in R[xj and write (r,O,O, ... ) 
simply as r. Note that r(aO,al, ... ) = (raO,ral, ... ). We now develop a more familiar 
notation for polynomials. 

Theorem 5.2. Let R be a ring with identity and denote by x the element (O,lR,O,O, ... ) 
ofR[x). 

(i) xn = (0,0, ... ,0,lR,0, ... ), where 1R is the (n + l)st coordinate. 
(ii) Ifr e R, then for each n ~ 0, rxn = xnr = (0, ... ,0,r,0, ... ), where r is the 

(n + l)st coordinate. 
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(iii) For every nonzero polynomial f in R[x) there exists an integer n E N and ele
ments ao, ... , an E R such that f = aoxo + alxl + ... + anxn. The integer nand 
elements ai are unique in the sense that f = boxo + b1xl + ... + bmxm (bi E R) implies 
m ~ n; ai = bi lor i = 1,2, ... , n; and bi = ° lor n < i :5 m. 

SKETCH OF PROOF. Use induction for (i) and straightforward computation 
for (ii). (iii) If 1= (ao,alo ... ) E R[x), there must be a largest index n such that a" ~ 0. 
Then aO,al, ... ,a" E R are the desired elements. • 

If R has an identity, then X O = In (as in any ring with identity) and we write the 
polynomial 1= aoX° + alxl + ... + a"x" as 1= ao + alx + ... + a"x". It will be 
convenient to extend the notation of Theorem 5.2 to rings without identity as follows. 
If R is a ring without identity, then R may be embedded in a ring S with identity by 
Theorem 1.10. Identify R with its image under the embedding map so that R is a sub
ring of S. Then R[x) is clearly a subring of Six). Consequently, every polynomial 
f = (Go,al , ... ) e R[x) may be written uniquely as! = Go + alxl + ... + a"x", where 
a, ERe S, an ~ 0, and x = (0,1 8,0,0, ... ) E Six). The only important difference 
between this and the case when R has an identity is that in this case the element x is 
not in R[x). 

Hereafter a polynomial lover a ring R (with or without identity) will always be 
written in the form I = ao + alX + a2X2 + ... + a"x" (a, E R). In this notation addi
tion and multiplication in R[x) are given by the familiar rules: 

n n n 
2: a,x' + 2: bix' = 2: (a, + b,)x' 
i=O ;=0 ;=0 

( n )(m ) m+n 2: a,x' 2: bjx i = 2: CkXk, where Ck = 2: a,bj. 
i-O ;=0 k=O i+j=k 

n 

If 1= 2: a,x' E R[x), then the elements a, E R are called the coefficients of f. The 
.=0 

element ao is called the 'constant term. Elements of R, which all have the form 
n 

r = (r, 0, 0, ... ) = rxO are called constant polynomials. If 1= 2: a,x' = ao + 
i=O 

alX + ... + a"x" = a"x" + ... + alX + ao has a" ~ 0, then a" is called the leading 
coefficient of I. If R has an identity and leading coefficient 1R , then lis said to be a 
monic polynomial: 

Let R be a ring (with identity). For historical reasons the element x = (O,lR,O, ... ) 
of R[x) is called an indeterminate. One speaks of polynomials in the indeterminate x. 
If S is another ring (with identity), then the indeterminate x E Six) is not the same ele
ment as x E R[x). In context this ambiguous notation will cause no confusion. 

If R is any ring, it is sometimes convenient to distinguish one copy of the poly
nomial ring over R from another. In this situation the indeterminate in one copy is 
denoted by one symbol, say x, and in the other copy by a different symbol, say y. In 
the latter case the polynomial ring is denoted R[y] and its elements have the form 
ao + alY + ... + anY". 

We shall now define polynomials in more than one indeterminate. For con
venience the discussion here is restricted to the case of a finite number of indeter
minates. For the general case see Exercise 4. The definition is motivated by the fact 
that a polynomial in one indeterminate is by definition a particular kind of sequence, 
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that is, a function N --> R. For each positive integer n let Nn = N X ... X N (n 
factors). The elements of Nn are ordered n tuples of elements of N. N" is clearly an 
additive abelian monoid under coordinate-wise addition. 

Theorem 5.3. Let R be a ring and denote by R[xJ, ... , xnl the set of all functions 
f: Nn --> R such that f(u) -;t. 0 for at most a finite number of elements u ofNn. 

(i) R[Xl, ... , xnl is a ring with addition and multiplication defined by 

(f + g)(u) = f(u) + g(u) and (fg)(u) = L f(v)g(w), 

where f,g E R[Xl' ... , xnl and u END. 

v+w-u 
v,weN" 

(ii) ffR is commutative [resp. a ring with identity or a ring without zero divisors or 
an integral domainl, then so is R[Xl, ... , xnl. 

(iii) The map R --> R[xJ, ... ,xnl given by r 1-+ fro where f..(O, ... ,0) = rand 
f(u) = 0 for all other u E Nn, is a monomorphism of rings. 

PROOF. Exercise .• 

The ring R[Xl, ... , xnl of Theorem 5.3 is called the ring of polynomials in n in
determinates over R. R is identified with its isomorphic image under the map of 
Theorem 5.3(iii) and considered as a subring of R[Xl, ... , xnl. If n = I, then R[Xll is 
precisely the ring of polynomials as in Theorem 5.1. As in the case of polynomials in 
one indeterminate, there is a more convenient notation for elements of R[Xl, ... ,x~l. 

Let n be a positive integer and for each i = 1,2, ... , n, let 

Ei = (0, ... ,0,1,0, ... , 0) EN", 

where I is the ith coordinate of Ei. If kEN, let hi = (0, ... , O,k,O, ... 0). Then 
every element of N" may be written in the form klEI + k2E2 + ... + knEn. 

Theorem 5.4. Let R be a ring with identity and n a positive integer. For each 
i = 1,2, ... , n let Xi E R[xJ, ... , xnl be defined by Xi(Ei) = IR and Xi(U) = 0 for u -;t. Ei. 

(i) For each integer kEN, xNhi) = IR and xNu) = 0 for u -;t. hi; 
(ij) for each (kl, ... , kn) E Nn, Xlk'X2k, .. ·xnkn(kIEI + ... + knEn) = IR and 

Xlk'X2k, •• ·xnkn(u) = 0 for u -;t. klEI + ... + knEn; 
(iii) Xi"Xjt = XjtXi" for all s,t E N and all i,j = 1,2, ... ,n; 
(iv) Xitr = rXit for all r E R and all tEN; 
(v) for every polynomial f in R[x" ... ,x"] there exist unique elements a. .... "k" E R, 

indexed by all (k" ... ,kn) E N" and nonzero for at most a finite number of (k" ... ,k.) E 

N", such that 

f = 2: a." ... , .. x~" .. x~, 

where the sum is over all (k, •... ,k.) EN". 

SKETCH OF PROOF. (v) Let ak }> •• • 'k. = f(kl • •••• k.}. • 
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If R is a ring with identity, then the elements XI,X2, ... , Xn e R(XI, ... , xnl as in 
Theorem 5.4 are called indeterminates. As in the case of one indeterminate symbols 
different than Xl, ... ,Xn may be used to denote indeterminates whenever convenient. 
The elements ao,a!, ... , am in Theorem 5.4(v) are called the coefficients of the poly-
nomial f. A polynomial of the form aX/lxl2. .. Xn kn (a e R) is called a monomial in 
XI,X2, ... , xn. Theorem 5.4(v) shows that every polynomial is a sum of monomials. It 
is customary to omit those Xi that appear with exponent zero in a monomial. For ex
ample, aoXloX2oXao + alXj2X20Xa + a2xIX23Xa is written ao + alXj2Xa + a2XjX23Xa. The 
notation and terminology of Theorem 5.4 is extended to polynomial ring 
R[XI, ... ,Xn ], where R has no identity, just as in the case of one indeterminate. The 
ring R is embedded in a ring S with identity and R[XI, ... , xnl is considered as a sub
ring of S[xJ, ... ,xnl. If R has no identity then the indeterminates XJ,X2, ... ,Xn and 
the monomials X[k1Xl" •• Xn kn (ki e N) are not elements of R[x[, ... , xnl. 

'" 
If R is any ring, then the map R[xd --> R[xJ, ... , xnl defined by L aiXj' ~ 

m m i=O 

L aixlix2o ... xno = L aixli e R[XI, ... ,xnl is easily seen to be a monomorphism 
i-O i=O 

of rings. Similarly, for any subset 1 ii, ... , h l of 11,2, ... ,n l there is a monomor
phism R[XiJ> ... , xid --> R[xJ, ... , xnl. R[XiJ> ... ,xikl is usually identified with its 
isomorphic image and considered to be a subring of R[xJ, ... , xnl. 

Let'P : R --> S be a homomorphism ofrings, fe R[Xl, ... ,xnl and Sl,S2, ... ,Sn e S. 
m 

By Theorem 5.4 f = L aix~'l . .. x~in with ai e Rand kii e N. Omit all Xi that appear 
i=O m 

with exponent zero. Then 'Pf(Sl,S2, ... , Sn) is defined to be L 'P(ai)s~·l . .. s~in e S; 
i=O 

that is, 'Pf(Sl, ... , Sn) is obtained by substituting 'P(ai) for ai and s~ij for x~;; (kij > 0). 
Since the ai and kij are uniquely determined (Theorem 5.4), 'Pf(Sl, ... , Sn) is a well
defined element of S. If R is a subring of Sand 'P is the inclusion map, we write 
f(SI, ... , Sn) instead of 'P f(sJ, ... , Sn). 

As is the case with most interesting algebraic constructions, the polynomial ring 
R[Xl, ... , xnl can be characterized by a universal mapping property. The following 
Theorem and its corollaries are true in the noncommutative case if appropriate hy
potheses are added (Exercise 5). They are also true for rings of polynomials in an in
finite number of indeterminates (Exercise 4). 

Theorem 5.5. Let RandS be commutatire rings with identity and'P : R --> S a homo
morphism of rings such that 'P(I R ) = Is. If S"S2, ... , Sn e S, then there is a unique 
homomorphism of rings ip : R[XI, ... , x"l--> S such that ip I R = 'P and ip(Xi) = Si 
for i = 1,2, ... ,n. This property completely determines the polynomial rin/? 
R[xJ, ... , x"l up to isomorphism. 

SKETCH OF PROOF. If fe R[xJ, ... ,Xn], then 

m 

f= L aixfll ... X~ln (ai e R;kij e N) 
i-O 

by Theorem 5.4. The map <f; given by <f;(f) = 'Pf(sJ, ... , Sn) is clearly a well-defined 
map such that <f; I R = 'P and ip(Xi) = Si. Use the fact that <p is a homomorphism, the 
rules of exponentiation and the Binomial Theorem 1.6 to verify that ip is a homomor-
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phism of rings. Suppose that 1/; : R[x\, ... , xnl -> S is a homomorphism such that 
1/; I R = 'P and 1/;(Xi) = Si for each i. Then 

1/;(f) = 1/;(to aix~i1 . .. x~in) . = to 1/;(ai)1/;(x~'I) . . ·1/;(x!,n) 

m 

= L 'P(ai)1/l(x\)kil. . ·1/;(xn)kin 
i-O 

m 

= L 'P(ai)s~i1· .. s~'n = 'Pf(S\,S2, ... , Sn) = ;:P(f); 
;=0 

whence 1/; = ;:P and ;:P is unique. Finally in order to show that R[xl, ... , xnl is com
pletely determined by this mapping property define a category e whose objects are 
all (n + 2)-tuples (1/;,K,sl, ... , s.) where K is a commutative ring with identity, Si E K 
and 1/; : R -> K is a homomorphism with 1/;(ln) = I K • A morphism in e from 
(1/;,K,s\, ... , s.) to (B,T,tl, ... , tn ) is a homomorphism of rings f : K -> T such that 
f(Ix) = IT, N = Band f(Si) = ti for i = 1,2, ... , n. Verify that f is an equivalence 
in e if and only if f is an isomorphism of rings. If L : R -> R[x\, ... ,xnl is the in-
clusion map, then the first part of the proof shows that (L,R[x\, ... , x.],x\, ... , x.) 
is a universal object in e. Therefore, R[x\, ... , x.] is completely determined up to 
isomorphism by Theorem 1.7.10. • 

Corollary 5.6. If 'P : R -> S is a homomorphism of commutative rings and 
SI,S2, ••• , Sn 10 S, then the map R[x\, ... , xn]-> S given by f~ 'Pf(s!, ... , Sn) is a 
homomorphism of rings. 

SKETCH OF PROOF OF 5.6. The proof of Theorem 5.5 showing that the 
assignment f f--> 'P f(s\, ... , s.) defines a homomorphism is valid even when Rand S 
do not have identities. • 

REMARKS. The map R[x!, ... , xnl-> S of Corollary 5.6 is called the evaluation 
or substitution homomorphism. Corollary 5.6 may be false if Rand S are not commu
tative. This is important since Corollary 5.6 is frequently used without explicit 
mention. For example, the frequently seen argument that if f = gh (/,g,h E R[x]) and 
c 10 R, then f(c) = g(c)h(c), need not be valid if R is not commutative (Exercise 6). 

Another consequence of Theorem 5.5 can be illustrated by the following example. 
Let R be a commutative ring with identity and consider the polynomial 

f = x2y + x 3y + X4 + xy + y2 + rIO R[x,y]. 

Observe that f = y2 + (x2 + x3 + x)y + (x4 + r), whence flO R[x](Yl. Similarly, 
f = X4 + yx3 + yx2 + yx + (y2 + r) 10 R[yJ[xl. This suggests that R[x,y] is iso
morphic to both R[xJ[y] and R[yJ[x]. More generally we have: 

Corollary 5.7. Let R be a commutative ring with identity and n a positive integer. 
For each k (I ~ k < n) there are isomorphisms of rings R[x\, ... , Xk][Xk+\, ... , xn] '" 
R[x\, ... , xnl '" R[Xk+\ .... , xnJ[x\, ... , Xk]. 
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PROOF. The corollary may be proved by directly constructing the isomor
phisms or by using the universal mapping property of Theorem 5.5 as follows. 
Given a homomorphism cp: R --> S of commutative rings with identity and 
elements S" ... , Sn E S, there exists a homomorphism iP : R[x" ... ,xkl--> S such 
that iP I R = cp and iP(Xi) = Si for i = 1,2, ... ,k by Theorem 5.5. Applying 
Theorem 5.5 with R[x" ... , xd in place of R yields a homomorphism 
qi : R[x" ... , xkl [Xk+I, ... , x.l--> S such that qi I R[XI, ... ,xd = iP and qJ(Xi) = 

s. for i = k + I, ... ,n. By construction qi I R = iP I R = cp and qi(Xi) = Si for 
i = 1,2, ... ,n. Suppose that if;: R[XI, ... , Xd[Xk+I, ... , xnl--> S is a homo-
morphism such that if; I R = cp and if;(Xi) = Si for i = 1,2, ... ,n. Then the same ar-
gument used in the proof of uniqueness in Theorem 5.5 shows that if; [ R[X" ... , xd 
= iP. Therefore, the uniqueness statement of Theorem 5.5 (applied to R[x" ... , xd) 
implies that if; = qi. Consequently, R[x" ... , xkl[xk+l, ... ,x.l has the desired uni-
versal mapping property, whence R[x" ... ,Xk][Xk+I, ... ,x.l '" R[XI, ... ,x.l by 
Theorem 5.5. The other isomorphism is proved similarly. • 

Since R[x" ... , xkl is usually considered as a subring of R[X" ... , xnl (see page 
152) it is customary to identify the various polynomial rings in Corollary 5.6 under 
the isomorphisms stated there and write, for example, R[XI, ... , Xk][Xk+I, ... , x.l 
= R[XI, ... , xnl. 

We close this section with a brief introduction to rings of formal power series, 
which is not needed in the sequel. 

Proposition 5.8. Let R be a ring and denote by R[[xlJ the set of all sequences of ele
ments ofR (aO,aI, ... ). 

(i) R[[xlJ is a ring with addition and multiplication defined by: (ao,a" ... ) + 
(bo,bI , ••• ) = (ao + bo,aI + bI, ... ) and (ao,a" ... )(bo,b" ... ) = (CO,CI, ... ), where 

n n 

Cn = L: ajbn_ j = L: akbj • 

;=0 k+j=n 

(ii) The polynomial ring R[xl is a subring ofR[[xlJ. 
(iii) IfR is commutative [resp. a ring with identity or a ring with no zero divisors or 

an integral domainl, then so is R[[xlJ. 

PROOF. Exercise; see Theorem 5.1. • 

The ring R[[xlJ of Proposition 5.8 is called the ring offormal power series over the 
ring R. Its elements are called power series. If R has an identity then the polynomial 
x = (O,ln,O, ... ) E R[[xlJ is called an indeterminate. It is easy to verify that xir = rxi 
for all r E Rand i eN. If (aO,al, ... ) E R[[xlJ, then for each n, (ao,a" ... , an,O,O, ... ) 
is a polynomial, whence (ao, ... , an,O,O, ... ) = ao + a,x + a2x2 + ... + anxn by 
Theorem 5.2. Consequently, we shall adopt the following notation. The power series 

'" 
(aO,al, ... ) e R[[xlJ is denoted by the formal sum L: aixi. The elements ai are called 

;=0 
coefficients and ao is called the constant term. Just as in the case of polynomials this 
notation is used even when R does not have an identity (in which case x ~ R[[xlJ). 
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Proposition 5.9. Let R be a ring with identity and f = L aixi e R[[x)]. 
i=O 

(i) f is a unit in R[[xlJ if and only if its constant term ao is a unit in R. 
(ii) lfao is irreducible in R, then f is irreducible in R[[xlJ. 

REMARK. If fe R[[x)) is actually a polynomial with irreducible [resp. unit) con
stant term then fneed not be irreducible [resp. a unit) in the polynomial ring R[x) 
(Exercise 8). 

PROOF OF 5.9. (i) If there exists g = Lbixi e R[[x)] such that 

fg = gf= he R[[x)], 

it follows immediately that aobo = boac = IR' whence ao is a unit in R. Now suppose 
ao is a unit in R. If there were an element g = I)iXi e R[[x)] such that fg = h, then 
the following equations would hold: 

aobo = h 
aObl + albo = 0 

Conversely if a solution (bo,bl,b2, ••• ) for this system of equations in R exists, then 
'" 

g = L: bixi e R[[xll clearly has the property that fg = h. Since ao is a unit (with 
i=O 

multiplicative inverse ao-l), the first equation can be solved: bo = ao-I; similarly, 
bl = ao-l( -albo) = ao-l( -alao-l). Proceeding inductively, if bo, ... , b,,_l are 
determined in terms of the ai, then aobn = -albn_1 - ••• - anbo implies that 
bn = ao-1( -alb.~l - ... - a.bo). Thus, if ao is a unit this system of equations can be 
solved and there is a g such that fg = IR e R[[xll. A similar argument shows that 
there exists h e R[[xlJ such that hf = IR. But h = hI n = hUg) = (hf)g = IRg = g, 
whence g is a two-sided inverse of f. Therefore fis a unit in R[[xll. (ii) is an immediate 
consequence of (i). • 

Corollary 5.10. If R is a division ring, then the units in R[[xll are precisely lnose 
power series with nonzero constant term. The principal ideal (x) consists precisely of the 
nonunits in R[[x)] and is the unique maximal ideal of R [[xli. Thus ifR is afield, R[[x)] is 
a local ring. 

PROOF. The first statement follows from Proposition 5.9 (i) and the fact that 
every nonzero element of R is a unit. Since x is in the center of R[[x)], 

(x) = {xf I fe R[[xlll 

by Theorem 2.5. Consequently, every element xf of (x) has zero constant term, 
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whence xlis a non unit. Conversely every nonunit IE R[[x II is necessarily of the form 
~ ~ 

1= L: aix' with ao = O. Let g = L: bixi where bi = ai+\ for all i. Then xg = J, 
i=O \=0 

whence IE (x). Therefore, (x) is .the set of nonunits. Finally, since In, (x), 
(x) ~ R[(xll. Furthermore, every ideal I of R[(xll with I ~ R[[xll necessarily consists 
of nonunits (Remarks, p. 123). Thus every ideal of R[(x]] except R[[xll is contained 
in (x). Therefore, (x) is the unique maximal ideal of R[(xll. • 

EXERCISES 

1. (a) If 1(1 : R ---+ S is a homomorphism of rings, then the map iP : R[(xll---+ S[[xll 
given by iP(L:a;xi) = L:l(J(ai)xi is a homomorphism of rings such that iP(R[xj) C 
S[x]. 
(b) iP is a monomorphism [epimorphism] if and only if 1(1 is. In this case 
iP : R[x] ---+ S[x] is also a monomorphism [epimorphism]. 
(c) Extend the results of (a) and (b) to the polynomial rings Rfx\, ... ,xn ], 

S[x\, ... ,x.]. 

2. Let MatnR be the ring of n X n matrices over a ring R. Then for each n ;::: 1: 
(a) (MatnR)[x]"'" MatnR[xl. 
(b) (MatnR)[(x]] ,..., MatnR[(xll. 

3. Let R be a ring and G an infinite multiplicative cyclic group with generator de
noted x. Is the group ring R(G) (see page 117) isomorphic to the polynomial 
ring in one indeterminate over R? 

4. (a) Let S be a nonempty set and let NS be the set of all functions 1(1 : S ---+ N such 
that l(1(s) ~ 0 for at most a finite number of elements S 10 S. Then NS is a multi
plicative abelian monoid with product defined by 

(1(11/;)(s) = l(1(s) + 1/;(8) (1(1,1/; 10 NS;s 10 S). 

The identity element in NS is the zero function. 
(b) For each XES and i 10 N let Xi 10 NS be defined by xi(x) = i and x'(s) = 0 for 
s ~ x. If 1(110 NS and x!, ... , Xn are the only elements of S such that I(1(Xi) ~ 0, 
then in NS, 1(1 = X\'IX2'" . ,xn'·, where ii = I(1(Xi)' 
(c) If R is a ring with identity let R[S] be the set of all functions I: NS ---+ R such 
that 1(1(1) ~ 0 for at most a finite number of 1(1 10 NS. Then R[S] is a ring with 
identity, where addition and multiplication are defined as follows: 

(f + g)(I(1) = 1(1(1) + g(1(1) (J,g 10 R[S];1(1 10 NS); 

(fgXI(1) = L: I(U)g(n (J,g 10 R[S];Ul,1(1 ENS), 

where the sum is over all pairs (U,n such that Ur = 1(1. R[S] is called the ring of 
polynomials in S over R. 
(d) For each tp = XliI ... x ni• e NS and each' e R we denote by 'XliI ... xni• the 
function NS ---+ R which is r at 1(1 and 0 elsewhere. Then every nonzero element I 

m 

of R[S] can be written in the form! = ~ 'iXt'IX~'" .. x~" with the 'i e R, Xi e S 
:=6 

and k ij e N all uniquely determined. 
(e) If S is finite of cardinality n, then R[S] ,..., R[XI, ... , xn]. [Hint: if Nn is con
sidered as an additive abelian monoid as in the text, then there is an isomorphism 



6. FACTORIZATION IN POLYNOMIAL RINGS 157 

of monoids NS '" N" given by cp f--+ (CP(SI), .•• , cp(s,,», where S = {Sh" • , s"l.) 
(f) State and prove an analogue of Theorem 5.5 for R[S). 

5. Let Rand S be rings with identity, cp : R -t S a homomorphism of rings with 
cp(ln) = 1 s, and SI,S2, •.• , s" e S such that SiSj = sjsdor all ij and cp(r)si = siCP(r) 
forallreRandalli. Thenthereisa uniquehomomorphism;p :R[Xl, ... ,xn)-tSsuch 
that lPlR = 'P and 1p(xJ = Sj. This property completely determines R[xl>' .. ,xn] 

up to isomorphism. 

6. (a) If R is the ring of all 2 X 2 matrices over Z, then for any A e R, 

(x + A)(x - A) = x2 - A2 e R[x). 

(b) There exist C,A e R such that (C + AXC - A) ~ C2 - A2. Therefore, 
Corollary 5.6 is false if the rings involved are not commutative. 

7. If R is a commutative ring with identity andl = a"x" + ... + ao is a zero divisor 
in R[x), then there exists a nonzero b e R such that ba" = ba,,_1 = ... = bao = O. 

8. (a) The polynomial x + 1 is a unit in the power series ring Z[[xll, but is not a 
unit in Z[x). 
(b) x2 + 3x + 2 is irreducible in Z[[xll, but not in Z[x). 

9. If F is a field, then (x) is a maximal ideal in F[x), but it is not the only maximal 
ideal (compare Corollary 5.10). 

10. (a) If F is a field then every nonzero element of F[[xll is of the form xku with 
u e F[[xll a unit. 
(b) F[[xll is a principal ideal domain whose only ideals are 0, F[[x)] = (IF) = (XO) 

and (Xk) for each k ? 1. 

11. Let e be the category with objects all commutative rings with identity and 
morphisms all ring homomorphisms I: R -tS such that I(1R) = Is. Then 
the polynomial ring Z[xt, ... , xn] is a free object on the set {Xl, ... , X" I in the 
category e. [Hint: for any R in e the map Z -t R given by n \---> nI R is a ring 
homomorphism; use Theorem 5.5.] 

6. FACTORIZATION IN POLYNOMIAL RINGS 

We now consider the topics introduced in Section 3 (divisibility, irreducibility, 
and unique factorization) in the context of polynomial rings over a commutative 
ring. We begin with two basic tools: the concept of the degree of a polynomial and 
the division algorithm. Factors of degree one of a polynomial are then studied; 
finding such factors is equivalent to finding roots of the polynomial. Finally we con
sider irreducible factors of higher degree: Eisenstein's irreducibility criterion is 
proved and it is shown that the polynomial domain D[xt, ... , xn) is a unique factor
ization domain if Dis. 

Let R be a ring. The degree of a nonzero monomial aXlk'x2k, . .. x"kn e R[Xl, ... , x,,] 
is the nonnegative integer kl + k2 + ... + kn • If I is a nonzero polynomial in 

m 
R[x, • ...• x.], then! = 2: ai"''' . .. x';.in by Theorem 5.4. The (total) degree of the 

i=O 

polynomial! is the maximum of the degrees of the monomials ai-"". . . x';.i' such 
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that a; ~ 0 (i = 1,2, ... ,m). The (total) degree of f is denoted deg f. Clearly a 
nonzero polynomial f has degree zero if and only if f is a constant polynomial 
f= ao = aoXlo . . ·xno. A polynomial which is a sum of monomials, each of which has 
degree k, is said to be homogeneous of degree k. Recall that for each k (1 ~ k ~ n), 
R[XI, ... , Xk_I,Xk+l, ... , xnl is a subring of R[XI, ... , xnl (see page 152). The degree 
off in Xk is the degree of fconsidered as a polynomial in one indeterminate Xk over 
the ring R[Xh ... , Xk-I,Xk+I, ... , xnl. 

EXAMPLE. The polynomial 3XI2X22X32 + 3XIX34 - 6X2'Xa e Z[xl has degree 2 in 
XI, degree 3 in X2, degree 4 in Xa and total degree 6. 

For technical reasons it is convenient to define the degree of the zero polynomial 
to be - co and to adopt the following conventions about the symbol deg 0 = - (X) : 

(-00) < nand (-00) + n = -00 = n + (- co) for every integer n; (-00) + 
(-00) = -00. 

Theorem 6.1. Let R be a ring and f,g e R[Xh ... , xnl. 

(i) deg(f + g) ~ max (deg f, deg g). 
(ii) deg(fg) ~ deg f + deg g. 

(iii) IfR has no zero divisors, deg(fg) = deg f + deg g. 
(iv) Ifn = 1 and the leading coefficient off or g is not a zero divisor in R (in par

ticular, if it is a unit), then deg(fg) = deg f + deg g. 

REMARK. The theorem is also true if deg fis taken to mean "degree of fin Xk." 

SKETCH OF PROOF OF 6.1. Since we shall apply this theorem primarily 
when n = 1 we shall prove only that case. (i) is easy (ii) is trivial if f = 0 or g = o. If 

n m 

o ~ f = L a,xi has degree nand 0 ~ g = L bix' has degree m, then fg = aobo 
;=0 i=O 

+ ... + (an-Ibm + anbm_I)Xn+m-1 + anbmxm+n has degree at most m + n. Since 
an ;& 0 ~ bm, fg has degree m + n if one of an,bm is not a zero divisor. • 

Theorem 6.2. (The Division Algorithm) Let R be a ring with identity and f,g e R[xl 
nonzero polynomials such that the leading coefficient ofg is a unit in R. Then there exist 
unique polynomials q,r e R[xl such that 

f = qg + rand deg r < deg g. 

n 

PROOF. Ifdegg > degj, letq = Oand r = f. Ifdegg ~ degj, thenf= L aixi , 
m i=O 

If = L b.xi , with an ~ 0, bm ~ 0, m ~ n, and bm a unit in R. Proceed by induction 
i=O 

on n = deg f. If n = 0, then m = 0, f = ao, g = bo and bo is a unit. Let q = aobo-I 

and r = 0; then deg r < deg g and qg + r = (aobo-I)bo = ao = f. 

Assume that the existence part of the theorem is true for polynomials of degree 
less than n = deg f. A straightforward calculation shows that the polynomial 
(anbm -Ixn-m)g has degree n and leading coefficient a •. Hence 
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f - (anbm -IXn-m)g = (anXn + ... + aO) - (anXn + ... + anbm-IboXn-m) 

is a polynomial of degree less than n. By the induction hypothesis there are poly
nomials q' and r such that 

f - (anbm-Ixn-m)g = q'g + rand deg r < deg g. 

Therefore, if q = anbm-Ixn-m + q', then 

f= (anbm-Ixn-m)g + q'g + r = qg + r. 
(Uniqueness) Suppose f = qIg + r1, and f = q-zg + r2 with deg rl < deg g and 

deg r2 < deg g. Then q1g + rl = q-zg + r2 implies 

(qI - q2)g = r2 - rl. 

Since the leading coefficient bm of g is a unit, Theorem 6.1 implies 

deg (qI - q2) + deg g = deg (qI - q2)g = deg(r2 - r1). 

Since deg(r2 - r1) :::; max (deg r2, deg rI) < deg g, the above equality is true 
only if deg(qI - q2) = (- 00) = deg(r2 - rI). In other words qI - q2 = 0 and 
r2 - rl = O. • 

Corollary 6.3. (Remainder Theorem) Let R be a ring with identity and 

n 

f(x) = L aixi € R[x]. 
i=O 

For any c € R there exists a unique q(x) € R[x] such that f(x) = q(x)(x - c) + f(c). 

PROOF. If f = 0 let q = O. Suppose then that f ~ O. Theorem 6.2 implies that 
there exist unique polynomials q(x), rex) in R[x] such that f(x) = q(x)(x - c) + rex) 
and deg rex) < deg (x - c) = 1. Thus rex) = r is a constant polynomial (possibly 0). 

n-l 

If q(x) = L: bixi, then f(x) = q(x)(x - c) + r = 
j=O 

bn __ 1xn + r, whence 
n-I 

n-l 

-br:,e + L: (-bkc + bk_1)Xk + 
k=1 

f(c) = -br:,e + L: (-bkc + bk_1)Ck + bn_Icn + r 
k=l 

n-l n 

- L: bkckH + L: b"_lCk + r = 0 + r = I. • 

k=O k=1 

Corollary 6.4. If F is a field, then the polynomial ring F[x] is a Euclidean domain, 
whence F[x] is a principal ideal domain and a unique factorization domain. The units in 
F[x] are precisely the nonzero constant polynomials. 

SKETCH OF PROOF. F[x] is an integral domain by Theorem 5.1. Define 
r.p : F[x] - 101 ---> N by 'PU) = deg f. Since every nonzero element of F is a unit, 
Theorems 6.1(iv) and 6.2 imply that F[x] is a Euclidean domain. Therefore, F[x] is a 
principal ideal domain and a unique factorization domain (Theorem 3.9). Finally 
Theorem 6.1 (iv) implies that every unit fin F[x] has degree zero, whence fis a non
zero constant. The converse is obvious. • 
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If F is a field, then F[XI, ... , xn ] is not a principal ideal domain (Exercise 1), but 
it is a unique factorization domain (Theorem 6.14 below). Before proving this latter 
fact we shall discuss factors of degree one in polynomial rings. 

Definition 6.5. Let R be a subring of a commutative ring S, CI,C2, ••• , Cn E Sand 
m 

f= 1: aix~"·· . x!" E R[XI, ... ,xn ] a polynomial such that f(cl,c2, ... cn) = o. 
i=O 

Then (CI,C2, ... ,cn ) is said to be a root or zero off (or a solution of the polynomial 
equation f(xl, ... , xn) = 0).4 

Theorem 6.6. Let R be a commutative ring with identity and f E R[x]. Then c E R is a 
root off if and only if x - c divides f. 

SKETCH OF PROOF. We have f(x) = q(x)(x - c) + f(c) by Corollary 
6.3. If x - c I f(x), then h(x)(x - c) = f(x) = q(x)(x - c) + f(c) with hE R[x], 
whence (h(x) - q(x»(x - c) = f(c). Since R is commutative, Corollary 5.6 (with 
cp = 1R ) implies f(c) = (h(c) - q(c»(c - c) = o. Commutativity is not required for 
the converse; use Corollary 6.3. • 

Theorem 6.7. If D is an integral domain contained in an integral domain E and 
f E D[x] has degree n, then f has at most n distinct roots in E. 

SKETCH OF PROOF. Let CI,C2, ... be the distinct roots of finE. By Theorem 
6.6 f(x) = ql(x)(x - CI), whence 0 = f(c2) = ql(C2)(C2 - CI) by Corollary 5.6. Since 
CI ,e C2 and E is an integral domain, ql(C2) = O. Therefore, x - C2 divides q2 and 
f(x) = q3(X)(X - C2)(X - CI). An inductive argument now shows that whenever 
Cl, ... ,Cm are distinct roots of f in E, then gm = (x - CI)(X - C2)· .. (x - Cn,) 
divides f. But deg gm = m by Theorem 6.1. Therefore m S n by Theorem 6.1 
again .• 

REMARK. Theorem 6.7 may be false without the hypothesis of commutativity. 
For example, x 2 + 1 has an infinite number of distinct roots in the division ring of 
real quaternions (induding ±i, ±j and ±k). 

If D is a unique factorization domain with quotient field F and fE D[x], then the 
roots of fin F may be found via 

Proposition 6.8. Let D be a unique factorization domain with quotient field F and let 
n 

f = L aixi E D[x]. Ifu = cld E F with c and d relatively prime, ar,d u is a root off, 
i=O 

then c divides ao and d divides an. 

'Commutativity is not essential in the definition provided one distinguishes "left roots" 
and "right roots" (the latter occur when f is written f = L X~il • •• X~'nai). 
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SKETCH OF PROOF. feu) = 0 implies that aodn = c(j; (-ai)cHdn-) and 

-ancn = (l:l Cidn-i-1)d. Consequently, if (c,d) = lR then ciao and d I a" by 
,=0 

Exercise 3.10. • 

EXAMPLE. Iff= X4 - 2x3 -7x2 - (11/3)x - 4/3EQ[x],thenfhasthesame 
roots in Q as does 3f = 3x4 - 6x3 - 2lx2 - llx - 410 Z[x]. By Proposition 6.8 
the only possible rational roots of 3fare ±1, ±2, ±4, ±1/3, ±2/3 and ±4/3. Sub
stitution shows that 4 is the only rational root. 

Let D be an integral domain and flO D[x]. If clOD and c is a root of J, then re
peated application of Theorem 6.6 together with Theorem 6.7 shows that there is a 
greatest integer m (0 ~ m ~ deg f) such that 

f(x) = (x - c)mg(x), 

where g(x) e R[x] and x - c{g(x) (that is, g(c) r6 0). The integer m is called the 
multiplicity of the root c of f. If c has mUltiplicity 1, c is said to be a simple root. If c 
has multiplicity m > 1, c is called a multiple root. In order to determine when a poly
nomial has mUltiple roots we need: 

n 

Lemma 6.9. Let D be an integral domain andf = l: aixi 10 D[x]. Let f' 10 D[x] be the 
n 1=0 

polynomial f' = L kakxk- 1 = al + 2a2x + 3a3x2 + ... + nanxn- I • Then for all 
k=l 

f,g 10 D[x] and clOD: 

(i) (ef)' = ef'; 
(ii) (f + g)' = f' + g'; 

(iii) (fg)' = f'g + fg'; 
(iv) (gn)' = ngn-lg'. 

PROOF. Exercise. • 

The polynomial f' is called the formal derivative of f The word "formal" em
phasizes the fact that the definition of f' does not involve the concept of limits. 

According to Definition 3.3 a nonzero polynomial fE R[x] is irreducible pro
vided fis not a unit and in every factorization f = gh, either g or h is a unit in R[x]. 

Theorem 6.10. Let D be an integral domain which is a subring of an integral domain 
E. Let flO D[x] and c 10 E. 

(i) c is a multiple root off if and only iff(c) = 0 and f'(c) = O. 
(ii) IfD is a field and f is relatively prime to f', then f has no multiple roots in E. 

(iii) IfD is a field, f is irreducible in D[x] and E contains a root off, then f has no 
multiple roots in E if and only iff' r6 O. 

PROOF. (i) f(x) = (x - c)mg(x) where m is the multiplicity of f(m ~ 0) and 
g(c) r6 O. By Lemma 6.9 f'(x) = m(x - c)m-lg(x) + (x - c)mg'(x). If c is a multiple 
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root of J, then m > 1, whencef'(c) = 0. Conversely, if f(c) = 0, then m ~ 1 (Theo
rem 6.6). If m = 1, then /'(x) = g(x) + (x - c)g'(x). Consequently, if f'(c) = 0, 
then ° = f'(c) = g(c) by Corollary 5.6, which is a contradiction. Therefore, m > 1. 

(ii) By CoroIlary 6.4 and Theorem 3.11 kf+ hf' = 1D for somek,h eD[x1 C E[x1. 
If c is a multiple root of J, then by CoroHary 5.6 and (i) 1 D = k(c) f(c) + h(c) f'(c) = 0, 
which is a contradiction. Hence c is simple root. 

(iii) If fis irreducible and/, ~ 0, thenfandf' are relatively prime since degf' < 
deg f. Therefore, fhas no multiple roots in E by (ii). Conversely, suppose fhas no 
multiple roots in E and b is a root of fin E. If/,= 0, then b is a mUltiple root by (i), 
which is a contradiction. Hence /' ~ 0. • 

This completes the discussion of linear factors of polynomials. We now consider 
the more general question of determining the units and irreducible elements in the 
polynomial ring D[x1, where D is an integral domain. In general this is quite difficult, 
but certain facts are easily established: 

(i) The units in D[x1 are precisely the constant polynomials that are units in D 
[see the proof of Corollary 6.41. 

(ii) If c e D and c is irreducible in D, then the constant polynomial c is irreducible 
in D[x1 [use Theorem 6.1 and (i)l. 

(iii) Every first degree polynomial whose leading coefficient is a unit in D is irre
ducible in D[x1. In particular, every first degree polynomial over a field is irreducible. 

(iv) Suppose D is a subring of an integral domain E and fe D[x1 C E[x1. Then f 
may be irreducible in E[x1 but not in D[x1 and vice versa, as is seen in the following 
examples. 

EXAMPLES. 2x + 2 is irreducible in Q[x1 by (iii) above. However, 2x + 2 
= 2(x + 1) and neither 2 nor x + 1 is a unit in Z[x1 by (i), whence 2x + 2 is re
ducible in Z[x1. x 2 + 1 is irreducible over the real field, but factors over the complex 
field as (x + i)(x - i). Since x + i and x - i are not units in c[x1 by (i), x 2 + 1 is 
reducible in c[x1. 

In order to obtain what few general results there are in this area the rest of the 
discussion will be restricted to polynomials over a unique factorization domain D. 
We shall eventually prove that D[xI, ... , x"l is also a unique factorization domain. 
The proof requires some preliminaries, which will also provide a criterion for irre
ducibility in D[x1. 

n 

Let D be a unique factorization domain and f = L aixi a nonzero polynomial in 
;=0 

D[x1. A greatest common divisor of the coefficients aO,al, ... ,a" is called a content of 
fand is denoted C(f). Strictly speaking, the notation C(f) is ambiguous since great
est common divisors are not unique. But any two contents of fare necessarily associ
ates and any associate of a content of fis also a content of f We shall write b = c 
whenever band c are associates in D. Now = is an equivalence relation on D and 
since D is an integral domain, b = c if and only if b = cu for some unit u e D by 
Theorem 3.2 (vi). If a e D and fe D[x1, then C(af) = aC(f) (Exercise 4). If fe D[x1 
and C(f) is a unit in D, then fis said to be primitive. Clearly for any polynomial 
g e D[x1, g = C(g)gl with gl primitive. 

Lemma 6.11. (Gauss) If D is a unique factorization domain and f,g e D[x1, then 
C(fg) = C(f)C(g). In particular, the product of primitive polynomials is primitive. 
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PROOF. f = C(f)fi and g = C(g)gl with fi,gl primitive. Consequently, 
C(fg) = C(C(f)fiC(g)gl) = C(f)C(g)C(figl). Hence it suffices to prove that f~l is 

n m 

primitive (that is, C(figl) is a unit). If fi = L aix' and gl = L bixi, then 
m+n ;=0 j-O 

figl = L CkXk with Ck = L aibi· If figl is not primitive, then there exists an irre-
k=O i+j=k 

ducible element pin R such that PiCk for all k. Since C(fi) is a unit P{ C(fi), whence 
there is a least integer s such that 

plai for i<s and p{a •. 

Similarly there is a least integer t such that 

pi bi for j < t and p{bt • 

Since p divides C.+, = aobs+I + ... + a,_lb'+l + a,b, + a,+lb,-l + ... + a.+,bo, P 
must divide a,b,. Since every irreducible element in D is prime, p ! a, or p I b,. This is 
a contradiction. Therefore figl is primitive. • 

Lemma 6.12. Let D be a unique factorization domain with quotient field F and let f 
andg be primitive polynomials in D[x]. Then f andg are associates in D[x] ifandonly if 
they are associates in F[x]. 

PROOF. If fand g are associates in the integral domain F[x], then f= gu for 
some unit u e F[x] (Theorem 3.2 (vi». By Corollary 6.4 u e F, whence u = b/c with 
b,c e D and c "e O. Therefore, cf = bg. Since C(f) and C(g) are units in D, 

c = cC(f) = C(cf) = C(bg) = bC(g) = b. 

Therefore, b = cv for some unit v e D and cf= bg = vcg. Consequently, f= vg 
(since c "e 0), whence f and g are associates in D[x]. The converse is trivial. • 

Lemma 6.13. Let D be a unique factorization domain with quotient field F and f a 
primitive polynomial of positive degree in D[x]. Then f is irreducible in D[x) ifand only 
iff is irreducible in F[x). 

SKETCH OF PROOF. Suppose f is irreducible in D[xr and f = gh with 
n m 

g,h e F[x] and deg g ;::: 1, deg h ;::: 1. Then g = L (ai/bi)x' and h = L (Ci/di)Xi 
;=0 ;=0 

with ai,bi,c ;,d; e D and bi "e 0, d; "e O. Let b = bobl ·· . bn and for each i let 
n 

bi* = bobl ·· ·bi-lb,+l·· ·bn • If gl = L aibi*x' e D[x], then gl = ag2 with a = C(gl), 
;=0 

g2 e D[x] and g2 primitive. Verify that g = (In/b)gl = (a/b)g2and deg g = deg g2. 
Similarly h = (c/ d)h2 with c,d eD, h2 e D[x], h2 primitive and deg h = deg h2. Con
sequently,f = gh = (a/b)(c/d)g2h2' whence bdf = acg2h2. Since fis primitive by hy
pothesis and g~2 is primitive by Lemma 6.11, 

bd = bdC(f) = C(bdf) = C(acg~2) = acC(g~2) = ac. 

As in the proof of Lemma 6.12, bd and ac associates in D imply that fand g~2 are 
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associates in D[x]. Consequently, fis reducible in D[x], which is a contradiction. 
Therefore, fis irreducible in F[x]. 

Conversely if fis irreducible in F[x] and f = gh with g,h E D[x], then one of g,h 
(say g) is a constant by Corollary 6.4. Thus C(f) = gC(h). Since f is primitive, g 
must be a unit in D and hence in D[x]. Therefore, fis irreducible in D[x]. • 

Theorem 6.14. IfD is a unique factorization domain, then so is the polynomial ring 
D[xl, ... ,xn ]. 

REMARK. Since a field Fis trivially a unique factorization domain, F[xl, ... ,xn] 
is a unique factorization domain. 

SKETCH OF PROOF OF 6.14. We shall prove only that D[x] is a unique 
factorization domain. Since D[xI, ... ,xn] = D[XI, ... ,Xn_I](Xn] by Corollary 5.7, a 
routine inductive argument then completes the proof. If f E D[x] has positive degree, 
then f = C(f) fi with fi a primitive polynomial in D[x] of positive degree. Since D is a 
unique factorization domain, either C(f) is a unit or C(f) = CIC2" 'Cm with each Ci 

irreducible in D and hence in D[x]. Let F be the quotient field of D. Since F[x] is a 
unique factorization domain (Corollary 6.4) which contains D[x], fi = PI *P2*' .. pn * 
with eachpi* an irreducible polynomial in F[x]. The proof of Lemma 6.13 shows that 
for each i, Pi* = (ai/bi)Pi with ai,bi E D, bi ~ 0, ai/bi E F, Pi E D[x] and Pi primitive. 
Clearly each Pi is irreducible in F[x], whence each Pi is irreducible in D[x] by Lemma 
6.13. If a = ala2" ·an and b = blb2·· ·bn , then fi = (a/b)PIP2" ·pn. Consequently, 
bfi = aplP2' . ·pn. Sincefi andplP2' . ·pn are primitive (Lemma 6.11), it follows (as in 
the proof of Lemma 6.12) that a and b are associates in D. Thus alb = u with u a 
unit in D. Therefore, if C(f) is a non unit, f = C(f) fi = CIC2' .. Cm(UPI)P2' .. Pn with 
each Ci,pi, and UPI irreducible in D[x]. Similarly, if C(f) is a unit, fis a product of 
irreducible elements in D[x]. 

(Uniqueness) Suppose fis a nonprimitive polynomial in D[x] of positive degree. 
Verify that any factorization of fas a product of irreducible elements may be written 
f= CIC2" 'CmPI" 'Pn with each Ci irreducible in D, C(f) = CI" 'Cm and each Pi irre
ducible (and hence primitive) in D[x] of positive degree. Suppose f = dl • •• d"c/I' . 'q. 
with each dj irreducible in D, C(f) "" dl · .. dT and each qj irreducible primitive in 
D[x] of positive degree. Then CIC2" 'Cn and dld2·· ·dT are associates in D. Unique 
factorization in D implies that n = r, and (after reindexing) each Ci is an associate of 
di. Consequently, PIP2' . ·pn and qlq2' . 'q. are associates in D[x] and hence in F[x]. 
Since each Pi [resp. qj] is irreducible in F[x] by Lemma 6.13, unique factorization in 
F[x] (Corollary 6.4) implies that n = s and (after reindexing) each Pi is an associate of 
qi in F[x]. By Lemma 6.12 each Pi is an associate of qi in D[x]. • 

Theorem 6.15. (Eisenstein's Criterion). Let D be a unique factorization domain with 
n 

quotient field F. Iff = L: ajxi E D[xJ, deg f 2:: 1 and p is an irreducible element ofD 
i=O 

such that 

p.fan ; pi aj for i = 0,1, ... , n - 1; p2{ao, 
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then f is irreducible in F[x). Iff is primitive, then f is irreducible in D[x). 

PROOF. f= C(f)1t with It primitiveinD[x) and C(f) e D; (in particular It = f 
if fis primitive). Since C(f) is a unit in F (Corollary 6.4), it suffices to show that It is 
irreducible in F[x). By Lemma 6.13 we need only prove that It is irreducible in D[x). 
Suppose on the contrary that It = gh with 

g = bTxT + ... + bo e D[x), deg g = r ;::: 1; and 
h = c.x· + ... + Co e D[x), deg h = s ;::: 1. 

n 

Now p does not divide C( f) (since p.r an), whence the coefficients of It = L ",*x' 
1=0 

satisfy the same divisibility conditions with respect to p as do the coefficients of f. 
Since p divides ao* = boCo and every irreducible in D is prime, either pi bo or p I co, 
say p I boo Since p2 {' ao *, c~ is not divisible by p. Now some coefficient bk of g is not 
divisible by p (otherwise p would divide every coefficient of gh = It, which would 
be a contradiction). Let k be the least integer such that 

pi bi for i < k and p,fbk. 

Then 1 ~ k ~ r < n. Since ak * = boCk + blck_l + ... + bk-1CI + bkco and p I ak *, P 
must divide bkco, whence p divides bk or co. Since this is a contradiction, It must be 
irreducible in D[x). • 

EXAMPLE. If f = 2x· - 6x3 + 9x2 - 15 e Z[x), then the Eisenstein Criterion 
with p = 3 shows thatfis irreducible in both Q[x) and Z[x). 

EXAMPLE. Let f = y3 + x2y2 + x3y + x e R[x,y) with R a unique factorization 
domain. Then x is irreducible in R[x) and fconsidered as an element of (R[xD[Y) is 
primitive. Therefore, f is irreducible in R[x][y) = R[x,y) by Theorem 6.14 and 
Eisenstein's Criterion (with p = x and D = R[xD. 

For another application of Eisenstein's Criterion see Exercise 10. There is a 
lengthy method, due to Kronecker, for finding all the irreducible factors of a poly
nomial over a unique factorization domain, which has only a finite number of units, 
such as Z (Exercise 13). Other examples and techniques appear in Exercises 6-9. 

EXERCISES 

1. (a) If D is an integral domain and c is an irreducible element in D, then D[x) is 
not a principal ideal domain. [Hint: consider the ideal (x ,c )generated by x and c.) 
(b) Z[x) is not a principal ideal domain. 
(c) If F is a field and n ;::: 2, then F[xJ, ... , xn ) is not a principal ideal domain. 
[Hint: show that Xl is irreducible in F[Xl, ... ,Xn-I).J 

2. If F is a field and f,g e F[x) with deg g ;::: 1, then there exist unique polynomials 
/0'/;, ... ,f, e F[x) such that deg j; < deg g for all i and 

f= /0 + Itg + f~2+ ... + f,gT. 

3. Let fbe a polynomial of positive degree over an integral domain D. 
(a) If char D = 0, then f' :F- O. 
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(b) If char D = p ~ 0, then f' = 0 if and only if fis a polynomial in x P (that 
is, f = aD + apXP + a2px2P + ... +ajpxjp). 

4. If D is a unique factorization domain, a e D and fe D[x), then C(af) and aC(f) 
are associates in D. 

n 

5. Let R be a commutative ring with identity and f= L aix' e R[x). Then fis a 
.=0 

unit in R[xj if and only if ao is a unit in R and ai, ... , an are nilpotent elements of 
R (Exercise 1.12). 

6. [Probably impossible with the tools at hand.] Let p E Z be a prime; let F be a field 
and let C E F. Then;xl' - C is irreducible in F[x] if and only if xP - C has no root 
in F. [Hint: consider two cases: char F = p and char F ~ p.] 

7. Iff = L a,x' e Z[xj andp is prime, let 1= L ii,xi eZp[x), where ii is the image 
of a under the canonical epimorphism Z --+Zp. 

(a) If fis monic and lis irreducible in Zp[x) for some prime p, then fis irre
ducible in Z[x). 

(b) Give an example to show that (a) may be false if fis not monic. 
(c) Extend (a) to polynomials over a unique factorization domain. 

8. [Probably impossible with the tools at hand.] (a) Let C E F, where F is a field of 
characteristic p (p prime). Then xP - x - C is irreducible in F[x] if and only if 
;xl' - x - C has no root in F. 
(b) If char F = 0, part (a) is false. 

9. Let f = L a.x' e Z[x] have degree n. Suppose that for some k (0 < k < n) and 
i-O 

some primep :p{a,,;p{ ak; pi ador all 0:5 i:5 k - I; and p 2,j'ao. Show thatf 
has a factor g of degree at least k that is irreducible in Z[x]. 

n 

10. (a) Let D be an integral domain and c e D. Let f(x) = L aix' e D[x] and 
n .=0 

f(x - e) = L a.(x - e)i e D[xJ. Then f(x) is trreducible in D[xJ if and only if 
.=0 

f(x - c) is irreducible. 
(b) For each prime p, the cyclotomic polynomial f = x p- I + x p- 2 + ... + x + 1 
is irreducible in Z[x). [Hint: observe that f = (xp - I)/(x - I), whence 
f(x + I) = «x + l)P - I)/x. Use the Binomial Theorem 1.6 and Eisenstein's 
Criterion to show that f(x + I) is irreducible in Z[x).) 

11. If Co, C" •.• , Cn are distinct elements of an integral domain D and do, ... , dn are 
any elements of D, then there is at most one polynomial f of degree:::;; n in D[x] 
such that I(cj) = dj for i = 0, I, ... ,n. [For the existence of I, see Exercise 12]. 

12. Lagrange's Interpolation Formula. If F is a field, aO,al, ... ,an are distinct ele
ments of F and CO,Ch ••• , Cn are any elements of F, then 

~ (x - aD)' .. (x - al_l)(x - Q.+I)· .. (x - an) 
M=~ ~ 

i=O (ai - ao)" ·(al - a._I)(a/ - a.+I)·· . (a. - an) 

is the unique polynomial of degree:::;; n in F[x] such that f(aj) = Cj for all i [see 
Exercise 11]. 

13. Let D be a unique factorization domain with a finite number of units and 
quotient field F. If Ie D[x) has degree nand CO,Ch ••• , en are n + 1 distinct ele-



6. FACTORIZATION IN POLYNOMIAL RINGS 167 

ments of D, then fis completely determined by f(CO),f(Cl), ... ,f(cn) according 
to Exercise 11. Here is Kronecker's Method for finding all the irreducible factors 
of fin D[x]. 

(a) It suffices to find only those factors g of degree at most n12. 
(b) If g is a factor of J, then g(c) is a factor of f(c) for all C E D. 
(c) Let m be the largest integer 5.n12 and choose distinct elements CO,Cl, ••• , 

Cm E D. Choose do,dl, ... , dm E D such that di is a factor of f(Ci) in D for all i. Use 
Exercise 12 to construct a polynomial g e F[x] such that g(Ci) = di for all i; it is 
unique by Exercise 11. 

(d) Check to see if the polynomial g of part (c) is a factor of fin F[x]. If not, 
make a new choice of do, ... ,dm and repeat part (c). (Since D is a unique fac
torization domain with only finitely many units there are only a finite number of 
possible choices for ck, ... , dm .) If g is a factor of J, say f = gh, then repeat the 
entire process on g and h. 

(e) After a finite number of steps, all the (irreducible) factors of fin F[x] will 
have been found. If g E F[x] is such a factor (of positive degree) then choose rED 
such that rg E D[x] (for example, let r be the product of the denominators of the 
coefficients of g). Then r-1(rg) and hence rg is a factor of f. Then rg = C(rg)gl 
with gl E D[x) primitive and irreducible in F[x). By Lemma 6.13, gl is an irre
ducible factor of fin D[x). Proceed in this manner to obtain all the nonconstant 
irreducible factors of f; the constants are then easily found. 

14. Let R be a commutative ring with identity and c,b E R with C a unit. 
(a) Show that the assignment x ~ cx + b induces a unique automorphism of 

R[x) that is the identity of R. What is its inverse? 
(b) If D is an integral domain, then show that every automorphism of D[x) 

that is the identity on Dis of the type described in (a). 

15. If F is a field, then x and yare relatively prime in the polynomial domain F[x,y), 
but F[x,y) = (IF) :J (x) + (y) [compare Theorem 3.11 (i»). 

'" 
16. Let f = a"x" + ... + ao be a polynomial over the field R of real numbers and let 

I{! = la~lx" + ... + laol E R[x). 
(a) If lui .;;; d, then Iflu) I ';;;<p(d). [Recall that la + bl.;;; lal + Ibl and 

that I a I .;;; a', I b I .;;; b':::} I ab I .;;; a' b' .] 
(b) Given a,c e R with C > 0 there exists MER such that I f(a + h) - f(a) I 5. 

Mlhl for all hER with Ihl 5. c. [Hint: use part (a).) 
(c) (Intermediate Value Theorem) If a < band f(a) < d < f(b), then there 

exists C E R such that a < C < band f(c) = d. [Hint: Let c be the least upper 
bound of S = I x I a < x < band f(x) 5. dl. Use part (b).] 

(d) Every polynomial g of odd degree in R[x) has a real root. [Hint: for suit
able a,b E R, g(a) < 0 and g(b) > 0; use part (c).] 



CHAPTER IV 

MODULES 

Modules over a ring are a generalization of abelian groups (which are modules over 
Z). They are basic in the further study of algebra. Section 1 is mostly devoted to 
carrying over to modules various concepts and results of group theory. Although the 
classification (up to isomorphism) of modules over an arbitrary ring is quite difficult, 
we do have substantially complete results for free modules over a ring (Section 2) and 
finitely generated modules over a principal ideal domain (Section 6). Free modules, of 
which vector spaces over a division ring are a special case, have widespread applica
tions and are studied thoroughly in Section 2. Projective modules (a generalization of 
free modules) are considered in Section 3; this material is needed only in Section 
VIII.6 and Chapter IX. 

With the exception of Sections 2 and 6, we shall concentrate on external struc
tures involving modules rather than on the internal structure of modules. Of particu
lar interest are certain categorical aspects of the theory of modules: exact sequences 
(Section 1) and module homomorphisms (Section 4). In addition we shall study vari
ous constructions involving modules such as the tensor product (Section 5). Algebras 
over a commutative ring K with identity are introduced in Section 7. 

The approximate interdependence of the sections of this chapter is as follows: 

1 

t 
/l2~ 

6 __ --3 --_4 --__ 5 

t 
7 

A broken arrow A ---; B indicates that an occasional result from Section A is used 
in Section B, but that Section B is essentially independent of Section A. 

168 
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1. MODULES, HOMOMORPHISMS AND EXACT SEQUENCES 
Modules over a ring are a generalization of abelian groups (which are modules 

over Z). Consequently, the first part of this section is primarily concerned with 
carrying over to modules various concepts and results of group theory. The re
mainder of the section presents the basic facts about exact sequences. 

Definition 1.1. Let R be a ring. A (left) R-module is an additive abelian group A to
gether with a function R X A -> A (the image of(r,a) being denoted by ra) such that 
for all r,s e Rand a,b e A: 

(i) r(a + b) = ra + rb. 
(ii) (r + s)a = ra + sa. 

(iii) r(sa) = (rs)a. 
ffR has an identity element lR and 

(iv) IRa = a for all a e A, 
then A is said to be a unitary R-module.lfR is a division ring, then a unitary R-module 
is called a (left) vector space. 

A (unitary) right R-module is defined similarly via a function A X R -> A de
noted (a,r) f-+ ar and satisfying the obvious analogues of (i)-(iv). From now on, un
less specified otherwise, "R-module" means "left R-module" and it is understood 
that all theorems about left R-modules also hold, mutatis mutandis, for right R
modules. 

A given group A may have many different R-module structures (both left and 
right). If R is commutative, it is easy to verify that every left R-module A can be given 
the structure of a right R-module by defining ar = ra for r e R, a e A (commutativity 
is needed for (iii); for a generalization of this idea to arbitrary rings, see Exercise 16). 
Unless specified otherwise, every module A over a commutative ring R is assumed to 
be both a left and a right module with ar = ra for all r e R, a e A. 

If A is a module with additive identity element OA over a ring R with additive 
identity OR, then it is easy to show that for all r e R, a e A: 

In the sequel OA,OR,O e Z and the trivial module {O I will all be denoted O. 
It also is easy to verify that for all r e R, n e Z and a e A: 

(-r)a = -(ra) = r( -a) and n(ra) = r(na), 

where na has its usual meaning for groups (Definition 1.1.8, additive notation). 

EXAMPLE. Every additive abelian group G is a unitary Z-module, with 
na (n e Z,a e G) given by Definition 1.1.8. 

EXAMPLE. If S is a ring and R is a subring, then S is an R-module (but not 
vice versa!) with ra (r e R,a e S) being multiplication in S. In particular, the rings 
R[Xl, ... , xml and R[[xll are R-modules. 
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EXAMPLES. If I is a left ideal of a ring R, then I is a left R-module with 
ra (r e R,a e l) being the ordinary product in R. In particular, 0 and Rare R-modules. 
Furthermore, since I is an additive subgroup of R, R/ I is an (abelian) group. R/ I is 
an R-module with r(r, + I) = rr, + I. R/ I need not be a ring, however, unless I is a 
two-sided ideal. 

EXAMPLE. Let Rand S be rings and cp : R --> S a ring homomorphism. Then 
every S-module A can be made into an R-module by defining rx (x e A) to be cp(r)x. 
One says that the R-module structure of A is given by pullback along cpo 

EXAMPLE. Let A be an abelian group and End A its endomorphism ring (see 
p. 116). Then A is a unitary (End A)-module, with fa defined to be f(a) (for a e A, 
fe End A). 

EXAMPLE. If R is a ring, every abelian group can be made into an R-module 
with trivial module structure by defining ra = 0 for all r e R and a e A. 

Definition 1.2. Let A and B be modules over a ring R. A function f : A --> B is an 
R-module homomorphism provided that for all a,c e A and r e R: 

f(a + c) = f(a) + fCc) and f(ra) = rf(a). 

If R is a division ring, then an R-module homomorphism is called a linear trans
formation. 

When the context is clear R-module homomorphisms are called simply homo
morphisms. Observe that an R-module homomorphism' f: A --> B is necessarily a 
homomorphism of additive abelian groups. Consequently the same terminology is 
used: fis an R-module monomorphism [resp. epimorphism, isomorphism] if it is in
jective [resp. surjective, bijective] as a map of sets. The kernel of fis its kernel as a 
homomorphism of abelian groups, namely Ker f = I ~ e A I f(a) = 0 I. Similarly 
the image of fis the set 1m f = I be Bib = f(a) for some a e A I. Finally, Theorem 
1.2.3 implies: 

(i) fis an R-module monomorphism if and only if Ker f = 0; 
(ii) f : A --> B is an R-module isomorphism if and only if there is an R-module 

homomorphism g : B --> A such that gf = 1.1 and fg = 11/. 

EXAMPLES. For any modules the zero map 0 : A --> B given by a ~ 0 (a e A) is 
a module homomorphism. Every homomorphism of abelian groups is a Z-module 
homomorphism. If R is a ring, the map R[x]--> R[x] given by f f-+ xf(for example, 
(x2 + 1) ~ x(x2 + 1» is an R-module homomorphism, but not a ring homo
morphism. 

REMARK. For a given ring R the class of all R-modules [resp. unitary 
R-modules] and R-module homomorphisms clearly forms a (concrete) category. In 
fact, one can define epimorphisms and monomorphisms strictly in categorical terms 
(objects and morphisms only - no elements); see Exercise 2. 
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Definition 1.3. Let R be a ring, A an R-module andB a nonempty subset of A. B is a 
submodule of A provided that B is an additive subgroup of A and rb E B for all r E R, 
bE B. A submodule of a vector space over a division ring is called a subspace. 

Note that a submodule is itself a module. Also a submodule of a unitary module 
over a ring with identity is necessarily unitary. 

EXAMPLES. If R is a ring andf: A ---7 B is an R-module homomorphism, then 
Ker fis a submodule of A and 1m fis a submodule of B. If C is any submodule of B, 
then f-I(C) = (a E A I f(a) E C} is a submodule of A. 

EXAMPLE. Let I be a left ideal of the ring R, A an R-module and Sa nonempty 

subset of A. Then IS = {tl riai I ri E I; ai E S; n E N*} is a submodule of A (Exer

cise 3). Similarly if a E A, then la = (ra IrE II is a submodule of A. 

EXAMPLE. If (Bi liE II is a family of submodules of amodule A, then n Bi is 
i.l 

easily seen to be a submodule of A. 

Definition 1.4. If X is a subset of a module A over a ring R, then the intersection of 
all submodules of A containing X is called the submodule generated by X (or. spanned 
by X). 

If X is finite, and X generates the module B, B is said to be finitely generated. If 
X = SZ5, then X clearly generates the zero module. If X consists of a single element, 
X = (al. then the submodule generated by X is called the cyclic (sub)module gen
erated by a. Finally, if ! Bi liE II is a family of submodules of A, then the submodule 
generated by X = U Bi is called the sum of the modules Bi • If the index set I is finite, 

i.l 

the sum of BI, ... ,Bn is denoted BI + B2 + ... + Bn. 

Theorem 1.5. Let R be a ring, A an R-module, X a subset of A, {Bi liE 1\ a family 
of sub modules of A and a E A. Let Ra = Ira IrE Rj. 

(i) Ra is a submodule of A and the map R ---7 Ra given by r f-7 ra is an R-module 
epimorphism. 

(ii) The cyclic submodule C generated by a is {ra + na IrE R; n E Z}. IfR has an 
identity and C is unitary, then C = Ra. 

(iii) The submodule D generated by X is 

{~ riai + it njbj I s,t E N*; ai,bj EX ;ri E R; nj E z}. 
IfR has an ide1l1ity and A is unitary, then 

D = RX = {t riailsEN*;aiEx;riER}. 
,=1 
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(iv) The sum of the family {Bi lie I) consistsofall/initesums bil + ... + bin with 
bik e Bik• 

PROOF. Exercise; note that if R has an identity IB and A is unitary, then nIB E R 
for all n E Z and na = (nh)a for all a E A. • 

Theorem 1.6. Let B be a submodule of a module A over a ring R. Then the quotient 
group AlB is an R-module with the action ofR on AlB given by: 

r(a + B) = ra + B for all r E R,a E A. 

The map 7r : A -> AlB given by a f-t a + B is an R -module epimorphism with kernel B. 

The map 7r is called the canonical epimorphism (or projection). 

SKETCH OF PROOF OF 1.6. Since A is an additive abelian group, B is a 
normal subgroup, and AlB is a well-defined abelian group. If a + B = a' + B, 
then a - a' E B. Since B is a submodule ra - ro' = r(a - a') E B for all r E R. Thus 
ra + B = ra' + B by Corollary 1.4.3 and the action of R on AlB is well defined. The 
remainder of the proof is now easy. • 

In view of the preceding results it is not surprising that the various isomorphism 
theorems for groups (Theorems 1.5.6-1.5.12) are valid, mutatis mutandis, for modules. 
One need only check at each stage of the proof to see that every subgroup or homo
morphism is in fact a submodule or module homomorphism. For convenience we 
list these results here. 

Theorem 1.7. IfR is a ring andf: A -> B is an R-module homomorphism andC is a 
~ubmodule of Ker f, then there is a unique R-module homomorphism f : Ale -> B such 
that f(a + C) = f(a) for al/ a E A; 1m f = 1m f and Ker f = Ker f/C. f is an R-module 
isomorphism if and only iff is an R-module epimorphism and e = Ker f. In particular, 
AI Ker f ""' 1m f. 

PROOF. See Theorem 1.5.6 and Corollary 1.5.7. • 

Corollary 1.8. IfR is a ring and A' is a submodule of the R-module A and B' a sub
module of the R-module Band f: A -> B is an R-module homomorphism such that 
f(A') C B', then f induces an R-module homomorphism f: AI A' -> BIB' given by 
a + A' f-t f(a) + B'. f is an R-module isomorphism if and only if 1m f + B' = Band 
f-1(B') C A'.lnparticular iff is an epimorphism such that f(A') = B' and Ker f C A', 
then f is an R-module isomorphism. 

PROOF. See Corollary 1.5.8. • 
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Theorem 1.9. Let Band C be submodules of a module A over a ring R. 

(i) There is an R-module isomorphism B/(B n C) '" (B + c)/C; 
(ii) ifC C B, then B/C is a submodule of A/C, and there is an R-module isomor

phism (A/c)/(B/c) '" AlB. 

PROOF. See Corollaries 1.5.9 and 1.5.10. • 

Theorem 1.10. If R is a ring and B is a submodule of an R-module A, then there is a 
one-to-one correspondence between the set of all submodules of A containing B and the 
set of all submodules of AlB, given by C f-> C/B. Hence every submodule of AlB is of 
the form C/B, where C is a submodule of A which contains B. 

PROOF. See Theorem 1.5.11 and Corollary 1.5.12. • 

Next we show that products and coproducts always exist in the category of 
R-modules. 

Theorem 1.11. Let R be a ring and (Ai lie II a nonempty family ofR-modules, 
II Ai the direct product of the abelian groups A;, and L: Ai the direct sum of the 
ieI i.I 

abelian groups Ai. 

(i) II Ai is an R-module with the action ofR given by r( ad (rad. 
ieI 

(ii) L Ai is a submodule of II Ai. 
ieI ieI 

(iii) For each k e I, the canonical projection 1l"k : II Ai --> Ak (Theorem 1.8.1) is 
an R-module epimorphism. 

(iv) For each k e I, the canonical injection 'k : Ak --> L Ai (Theorem I.8.4) is an 
R-module monomorphism. 

PROOF. Exercise. • 

II Ai is called the (external) direct product of the family of R-modules (Ai lie I) 
iE.I 

and L Ai is its (external) direct sum. If the index set is finite, say I = (1,2, ... ,n I, 
ieI 

then the direct product and direct sum coincide and will be written Al EB A2 EB· .. EB An. 
The maps 1l"k [resp. 'k] are called the canonical projections [resp. injections]. 

Tneorem 1.12. IfR is a ring, (Ai lie I I a family ofR-modules, C an R-module, and 
1 'Pi : C --> Ai lie I) a family of R-module homomorphisms, then there is a unique 
R-module homomorphism 'P : C --> II Ai such that 1l"i'P = 'Pi for all i e I. II Ai is 

ie:I ie! 

uniquely determined up to isomorphism by this property. In other words, II Ai is a 
ie:I 

product in the category ofR-modules. 

PROOF. By Theorem I.8.2 there is a unique group homomorphism 'P : C --> II Ai 
which has the desired property, given by 'P(c) = ('Pi(C)}i.l. Since each 'Pi is an R-
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module homomorphism, <p(rc) = {<Pi(rc)}i,I = {r<p;(c)}i.I = d<Pi(C)}ioI = r<p(c) and 
<p is an R-module homomorphism. Thus II Ai is a product in the category of 
R-modules (Definition 1.7.2) and therefore determined up to i~omorphism by 
Theorem 1.7.3. • 

Theorem 1.13. IfR is a ring, {Ai liel} a family ofR-modules, Dan R-module, and 
{~i : Ai ~ D liE I} a family of R-module homomorphisms, then there is a unique 
R-module homomorphism ~ : L A ~ D such that ~ti = ~i for all i ELL Ai is 

i.I id 

uniquely determined up to isomorphism by this properly. In other words, L Ai is a co
i.I 

product in the category ofR-modules. 

PROOF. By Theorem 1.8.5 there is a unique abelian group· homomorphism 
~ : L Ai ~ D with the desired property, given by ~({ ai}) = L ~.{a;), where the sum 

i 

is taken over the finite set of indices i such that ai ¢ O. It is easy to see that ~ is an 
R-module map. Hence LAi is a coproduct in the category of R-modules (Definition 
1.7.4), and therefore, determined up to isomorphism by Theorem 1.7.5. • 

Finite direct sums occur so frequently that a further description of them will be 
useful. We first observe that if fand g are R-module homomorphisms from an R
module A to an R-module B, then the map f + g : A ~ B given by a\--? f(a) + g(a) 
is also an R-module homomorphism. It is easy to verify that the set HomR(A,B) of 
all R-module homomorphisms A ~ B is an abelian group under this addition (Exer
cise 7). Furthermore addition of module homomorphisms is distributive with respect 
to composition of functions; that is, 

h(f + g) = hf + hg and (f + g)k = fk + gk, 

where f,g : A ~ B, h : B ~ C, k : D ~ A. 

Theorem 1.14. Let R be a ring and A,AJ,A2, ••• ,An R-modules. Then A '" Al EEl 
A2 EEl· .. EEl An if and only if for each i = 1,2, ... , n there are R-module homomor
phisms 1I"i : A ~ Ai and ti : Ai ~ A such that 

(i) 1I"iti = 1Ai for i = 1,2, ... , n; 
(ii) 1I"jti = 0 for i ¢ j; 

(iii) h1l"1 + t211"2 + ... + t n1l"n = 1A • 

PROOF. (~) If A is the .module Al EEl A2 EEl···EEl An, then the canonical in
jections ti and projections 1I"i satisfy (i)-(iii) as the reader may easily verify. Likewise 
if A '" Al EEl···EEl An, under an isomorphism f: A ~ Al EEl···EEl An, then the 
homomorphisms 1I"d: A ~ Ai and f-Iti : Ai ~ A satisfy (i)-(iii). 

(<=:) Let 1I"i : A ~ Ai and ti: Ai ~ A (i = 1,2, ... ,n) satisfy (i)-(iii). Let 
11";' : Al EEl· .. EB An ~ Ai and t;' : Ai ~ Al EB· .. EEl An be the canonical projections 
and injections. Let <p : Al EB· .. EEl An ~ A be given by <p = h1l"I' + h1l"2' + ... + t,,1I" n' 

and ~ : A ~ AI EEl···EB An by = t/1I"1 + h'1I"2 + ... + tn'1I"n. Then 

<p~ = L t;1I";' L t/1I"; = L L ti1l"/t/1I"j = L L;1I";'t;'1I"i ( 
n )( n ) n n n 

i=1 i=1 i=1 i=1 i=1 
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n n 

= L: 'ilAi1l'"i = L: 'i1l'"i = lA. 
i=1 i=1 

n n n 

Similarly y;cp = L: L: ';'1I'""i1l'";' = L:' ';'11'";' = lAI Ell ... Ell An' Therefore, cp is an 
i=1 i=1 i=1 

isomorphism by Theorem 1.2.3. • 

Theorem 1.15. Let R be a ring and I Ai liE I} a family of sub modules of an R-module 
A such that 

(i) A is the sum of the family IAi liE II; 
(ii) for each k d, Ak n Ak * = 0, where Ak * is the sum of the family I Ai I i ~ k}. 

Then there is an isomorphism A '" L: Ai. 
i.I 

PROOF. Exercise; see Theorem 1.8.6. • 

A module A is said to be the (internal) direct sum of a family of submodules 
I Ai I i eI} provided that A and I A;J satisfy the hypotheses of Theorem 1.15. As in 
the case of groups, there is a distinction between internal and external direct sums. If 
a module A is the internal direct sum of modules Ai, then by definition each of the A, 
is actually a submodule of A and A is isomorphic to the external direct sum L: A,. 

'eI 
However the external direct sum L: Ai does not contain the modules Ai, but only 

ieI 

isomorphic copies of them (namely the 'i(Ai) - see Theorem 1.11 and Exercise 
1.8.10). Since this distinction is unimportant in practice, the adjectives "internal" 
and "external" will be omitted whenever the context is clear and the following nota
tion will be used. 

NOTATION. We write A = L Ai to indicate that the module A is the internal 
i.I 

direct sum of the family of submodules I A, liE I}. 

Definition 1.16. A pair of module homomorphisms, A ~ B.!. C, is said to be exact 

at B provided 1m f = Ker g. A finite sequence of module homomorphisms, Ao ~ Al ~ 
A2 ~ ... ~I An_I ~ An, is exact provided 1m fi = Ker fi+1 for i = 1,2, ... , n - 1. An 
• oF; • l' d l h h' fi-I A fi A fi+1 A fi+' . lnJ.mte sequence 0 mo u e omomorp Isms, ... -+ i-I -+ i -+ i+1 -+ ... IS exact 
provided 1m fi = Ker fi+1 for all i E Z. 

When convenient we shall abuse the language slightly and refer to an exact se
quence of modules rather than an exact sequence of module homomorphisms. 

EXAMPLES. Note first that for any module A, there are unique module homo
morphisms 0 -+ A and A -+ O. If A and B are any modules then the sequences 

0-+ A ...:. A EB B ~ B -+ 0 and 0 -+ B ~ A EB B ~ A -+ 0 are exact, where the ,'s 
and 1I'"'S are the canonical injections and projections respectively. Similarly, if e is a 

submodule of D, then the sequence 0 -+ e ~ D ~ Die -+ 0 is exact, where i is the 
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inclusion map and p the canonical epimorphism. If f: A ~ B is a module homo
morphism, then A/Ker f[resp. B/lm fl is called the coimage of f[resp. cokernel of fl 
and denoted Coim f [resp. Coker fl. Each of the following sequences is exact: 
o ~ Ker f ~ A --> Coim f --> 0, 0 --> 1m f ~ B ~ Coker f --> 0 and 0 ~ Ker f--> 

A !... B ~ Coker f --> 0, where the unlabeled maps are the obvious inclusions and 
projections. 

REMARKS. 0 ~ A !... B is an exact sequence of module homomorphisms jf and 

only if fis a module monomorphism. Similarly, B.!!-. C ~ 0 is exact if and only if g 

is a module epimorphism. If A !... B .!!-. C is exact, then gf = O. Finally if A !... B .!!... 
C --> 0 is exact, then Coker f = B/lm f = B/Ker g = Coim g '" C. An exact se

quence of the form 0 --> A !... B .!!-. C ~ 0 is called a short exact sequence; note that f 
is a monomorphism and g an epimorphism. The preceding remarks show that a short 
exact sequence is just another way of presenting a submodule (A '" 1m f) and its 
quotient module (B/lm f = B/Ker g '" C). 

Lemma 1.17. (The Short Five Lemma) Let R be a ring and 

a commutative diagram ofR-modules and R-module homomorphisms such that each 
row is a short exact sequence. Then 

(i) O:,'Y monomorphisms =) P is a monomorphism; 
(ii) O:,'Y epimorphisms =) P is an epimorphism; 

(iii) O:,'Y isomorphisms =) P is an isomorphism. 

PROOF. (i) Let b e B and suppose P(b) = 0; we must show that b = O. By com
mutativity we have 

'Yg(b) = g'(3(b) = g'(O) = O. 

This implies g(b) = 0, since 'Y is a monomorphism. By exactness ofthe top row at B, 
we have be Ker g = 1m J, say b = /(a), a e A. By commutativity, 

f'o:(a) = (3/(a) = P(b) = O. 

By exactness of the bottom row at A', f' is a monomorphism (Theorem 1.2.3(i»; 
hence o:(a) = O. But 0: is a monomorphism; therefore a = 0 and hence b = /(a) 
= /(0) = O. Thus (3 is a monomorphism. 

(ii) Let b' e B'. Then g'(b') e C'; since 'Y is an epimorphism g'(b') = 'Y(c) for some 
c e C. By exactness of the top row at C, g is an epimorphism; hence c = g(b) for 
some b e B. By commutativity, 

g'(3(b) = 'Yg(b) = 'Y(c) = g'(b'). 
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Thus g'({3(b) - b'] = 0 and (3(b) - b' € Ker g' = 1m f' by exactness, say 
f'(a') = (3(b) - b', a' € A'. Since a is an epimorphism, a' = a(a) for some a € A. 
Consider b - f(a) € B: 

(3(b - f(a)] = (3(b) - (3f(a). 

By commutativity, (3f(a) = f'a(a) = f'(a') = (3(b) - b'; hence 

(3[b - f(a)] = (3(b) - (3f(a) = (3(b) - ((3(b) - b') = b' 

and {3 is an epimorphism. 

(iii) is an immediate consequence of (i) and (ii). • 

Two short exact sequences are said to be isomorphic if there is a commutative 
diagram of module homomorphisms 

O-A-B-C-O 

k tg th 
O-A'-B'-C'-O 

such that /,g, and h are isomorphisms. In this case, it is easy to verify that the 
diagram 

O-A-B-C-O 

t I-I 1 g-I lh-I 

O-A'-B'-C'-O 

(with the same horizontal maps) is also commutative. In fact, isomorphism of short 
exact sequences is an equivalence relation (Exercise 14). 

Theorem 1.18. Let R be a ring and 0 ~ Al !... B ~ Az ~ 0 a short exact sequence of 
R-module homomorphisms. Then the following conditions are equivalent. 

(i) There is an R-module homomorphism h : Az ~ B with gh = lA2; 
(ii) There is an R-module homomorphism k : B ....... Al with kf = lAI; 

(iii) the given sequence is isomorphic (with identity maps on Al and Az) to the 

direct sum short exact sequence 0 ....... Al ~ Al EB Az ~ Az ....... 0; in particular 
B '" Al EB Az. 

A short exact sequence that satisfies the equivalent conditions of Theorem 1.18 is 
said to be split or a split exact sequence. 

SKETCH OF PROOF OF 1.18. (i) => (iii) By Theorem 1.13 the homomor
phisms f and h induce a module homomorphism cp: Al EB Az ....... B, given by 
(a!,az) 1-+ f(al) + h(az). Verify that the diagram 
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is commutative (use the fact that gf = 0 and gh = IA2). By the Short Five 
Lemma 'P is an isomorphism. 

(ii) => (iii) The diagram 

is commutative, where if; is the module homomorphism given by if;(b) = (k(b),g(b» 

(see Theorem 1.12). Hence the short Five Lemma implies if; is an isomorphism. 
(iii) => (i), (ii) Given a commutative diagram with exact rows and <p an isomor

phism: 

define h : A2 -+ B to be <pL2 and k : B -+ AI to be 7r1<p-1. Use the commutativity 
of the diagram and the facts 7riLi = lA" ip-lip = IAIEBA2 to show that kf= IAI and 
gh = lAt. • 

EXERCISES 

Note: R is a ring. 

1. If A is an abelian group and n > 0 an integer such that na = 0 for all a € A, 
then A is a unitary Zn-module, with the action of Zn on A given by ka = ka, 
where k € Z and k ~ k € Zn under the canonical projection Z -+ Z •. 

2. Let f: A -+ B be an R-module homomorphism. 
(a) fis a monomorphism if and only if for every pair of R-module homomor

phisms g,h : D -+ A such that fg = fh, we have g = h. [Hint: to prove (-:=), let 
D = Ker f, with g the inclusion map and h the zero map.] 

(b) fis an epimorphism if and only if for every pair of R-module homomor
phisms k,t : B -+ C such that kf = tf, we have k = t. [Hint: to prove (-:=), let k 
be the canonical epimorphism B -+ Bjlm fand t the zero map.] 

3. Let I be a left ideal of a ring R and A an R-module. 

(a) If S is a nonempty subset of A, then IS = {~r,a, I n € N*; r, € I; a, € s} 
is a submodule of A. Note that if S = ! a l , then IS = Ia = ! ra Ire Il. 
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(b) If I is a two-sided ideal, then AlIA is an Rll-module with the action of RII 
given by (r + I)(a + IA) = ra + IA. 

4. If R has an identity, then every unitary cyclic R-module is isomorphic to an 
R-module of the form RIJ, where J is a left ideal of R. 

5. If R has an identity, then a nonzero unitary R-module A is simple ifits only sub
modules are 0 and A. 

(a) Every simple R-module is cyclic. 
(b) If A is simple every R-module endomorphism is either the zero map or an 

isomorphism. 

6. A finitely generated R-module need not be finitely generated as an abelian group. 
[Hint: Exercise 11.1.10.] 

7. (a) If A and Bare R-modules, then the set HomR(A,B) of all R-module homo
morphisms A -t B is an abelian group with 1+ g given on a E A by (f + g)(a) 
= I(a) + g(a) E B. The identity element is the zero map. 
(b) HomR(A,A) is a ring with identity, where multiplication is composition of 
functions. HomR(A,A) is called the endomorphism ring of A. 
(c) A is a left HomR(A,A)-module with la defined to be 

I(a) (a E A,JE HomR(A,A». 

8. Prove that the obvious analogues of Theorem 1.8.10 and Corollary 1.8.11 are 
valid for R-modules. 

9. If I: A -t A is an R-module homomorphism such that.lf = /, then 

A = Ker IrJJ 1m I. 

10. Let A,A I , • •• , An be R-modules. Then A '" Al rJJ···rJJ An if and only if for 
each i = 1,2, ... , n there is an R-module homomorphism <Pi : A -t A such that 
1m <Pi:::: Ai; <Pi<Pi = 0 for i,e j; and <PI + <P2 + ... + <Pn = 1A • [Hint: If 
A '" A I rJJ· .. rJJ An let 1I"i,Li be as in Theorem 1.14 and define <Pi = Li1l"i. Con
versely, given I <Pi I, show that <Pi<Pi = <Pi. Let 1/;i = <Pi I 1m <Pi : 1m <Pi -t A and 
apply Theorem 1.14 with A, 1m <Pi, <Pi, and 1/;i in place of A, Ai, 1I"i, and Li.] 

11. (a) If A is a module over a commutative ring R and a E A, then Oa = {r 8 Rlra 
= O} is an ideal of R. If Oa of 0, a is said to be a torsion element of A. 
(b) If R is an integral domain, then the set T(A) of all torsion elements of A is a 
submodule of A. (T(A) is called the torsion submodule.) 
(c) Show that (b) may be false for a commutative ring R, which is not an integral 
domain. 

In (d) - (0 R is an integral domain. 

(d) If I: A -t B is an R-module homomorphism, then I(T(A» C T(B); hence 
the restriction IT of I to T(A) is an R-module homomorphism T(A) -t T(B). 

(e) If 0 -t A ~ B ~ C is an exact sequence of R-modules, then so is 

o -t T(A) f!... T(B) ~ T(C). 
(0 If g : B -t C is an R-module epimorphism, then gT : T(B) -t T(e) need not 
be an epimorphism. [Hint: consider abelian groups.] 
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12. (The Five Lemma). Let 

AI-A2-A3-A4-A5 

l al ! ~2 ! a3 ! a4 l a5 

81-82-83-84-85 

be a commutative diagram of R-modules and R-module homomorphisms, with 
exact rows. Prove that: 

(a) al an epimorphism and C¥2,a4 monomorphisms =* aa is a monomorphism; 
(b) as a monomorphism and a2,a4 epimorphisms =* aa is an epimorphism. 

13. (a) If 0 -+ A -+ 8 ~ C -+ 0 and 0 -+ C ~ D -+ E -+ 0 are short exact sequences 

of modules, then the sequence 0 -+ A -+ 8 ~ D -+ E -+ 0 is exact. 
(b) Show that every exact sequence may be obtained by splicing together suit
able short exact sequences as in (a). 

14. Show that isomorphism of short exact sequences is an equivalence relation. 

15. If f : A -+ 8 and g : 8 -+ A are R-module homomorphisms such that gf = lA, 
then 8 = 1m fffi Ker g. 

16. Let R be a ring and Rop its opposite ring (Exercise III.1.17). If A is a left [resp. 
right] R-module, then A is a right [resp.left] Rop-module such that ra = ar for all 
aeA, reR, reRop. 

17. (a) If R has an identity and A is an R-module, then there are submodules 8 and 
C of A such that 8 is unitary, RC = 0 and A = 8 ffi C. [Hint: let 
B = I ha I a e A I and C = I a e A I iRa = 0 I and observe that for all a e A, 
a - hae C.] 
(b) Let Al be another R-module, with AI = 8 1 ffi CI (81 unitary, RCI = 0). If 
f: A -+ AI is an R-module homomorphism then f(8) C HI and f(C) C CI . 

(c) Ifthe map fof part (b) is an epimorphism [resp. isomorphism], then so are 
f 18 : 8 -+ 8 1 and f I C : C -+ CI • 

18. Let R be a ring without identity. Embed R in a ring S with identity and char
acteristic zero as in the proof of Theorem 111.1.10. Identify R with its image inS. 

(a) Show that every element of S may be uniquely expressed in the form 
rls + n1s (r e R, n e Z). 

(b) If A is an R-module and a E A, show that there is a unique R-module 
homomorphism f: S-+A such that f(ls) = a. [Hint: Let f(rls + nls) = ra + 
na.] 

2. FREE MODULES AND VECTOR SPACES 
In this section we study free objects in the category of modules over a ring. Such 

free modules, the most important examples of which are vector spaces over a division 
ring (Theorem 2.4), have widespread applications in many areas of mathematics. The 
special case of free abelian groups (Z-modules) will serve as a model for the first 
part of this section. The remainder of the section consists of a discussion of the di
mension (or rank) of a free module (Theorems 2.6-2.12) and an investigation of 
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the special properties of the dimension of a vector space (Theorems and Corollaries 
2.13-2.16). 

A subset X of an R-module A is said to be linearly independent provided that for 
distinct XI, ••• , x" E X and ri E R. 

rlXl + r2X2 + ... + r"x" = 0 =} ri = 0 for every i. 

A set that is not linearly independent is said to be linearly dependent. If A is generated 
as an R-module by a set Y, then we say that Y spans A. If R has an identity and A is 
unitary, Y spans A if and only if every element of A may be written as a linear com
bination: rlYl + r2YZ + ... + r,.y" (ri e R, Yi e Y); see Theorem 1.5. A linearly inde
pendent subset of A that spans A is called a basis of A. Observe that the empty set is 
(vacuously) linearly independent and is a basis of the zero module (see Defini
tion 1.4). 

Theorem 2.1. Let R be a ring with identity. The following conditions on a unitary 
R-module F are equivalent: 

(i) F has a nonempty basis; 
(ii) F is the internal direct sum of a family of cyclic R-modules, each of which is 

isomorphic as a left R-module to R; 
(iii) F is R-module isomorphic to a direct sum of copies of the left R-module R; 
(iv) there exists a nonempty set X and a function L : X -+ F with the following 

property: given any unitary R-module A and function f : X -+ A, there exists a unique 
R-module homomorphism f : F -+ A such that f L = f. In other words, F is a free object 
in the category of unitary R-modules. 

The theorem is proved below. A unitary module F over a ring R with identity, 
which satisfies the equivalent conditions of Theorem 2.1, is called a free R-module on 
the set X. By Theorem 2.1 (iv), F is a free object in the category of all unitary left 
R-modules. But such an F is not a free object in the category of aI/left R-modules 
(Exercise 15). By definition the zero module is the free module on the empty set. 

It is possible to define free modules in the category of all left R-modules over an 
arbitrary ring R (possibly without identity); see Exercise 2. Such a free module is not 
isomorphic to a direct sum of copies of R, even when R does have an identity (Exer
cise 2). In a few carefully noted instjinces below, certain results are also valid for 
these free modules in the category of all left R-modules. However, unless stated 
otherwise, the term "free module" will always mean a unitary free module in the 
sense of Theorem 2.1. 

SKETCH OF PROOF OF 2.1. (i) =} (ii) Let X be a basis of F and x EX. The 
map R -+ Rx, given by r H rx, is an R-module epimorphism by Theorem 1.5. If 
rx = 0, then r = 0 by linear independence, whence the map is a monomorphism and 
R ::: Rx as left R-modules. Verify that F is the internal direct sum of the cyclic 
modules Rx (x EX). 

(ii) =} (iii) Theorem 1.15 and Exercise 1.8. 
(iii) =} (i) Suppose F '" LR and the copies of R are indexed by a set X. For each 

x EXletO% be the element {r;l ofLR, wherer; = o for i ~ x and r% = h. Verify that 
{O% [ x EXI is a basis of LR and use the isomorphism F '" LR to obtain a basis of F. 

(i) =} (iv) Let X be a basis of F and L : X -+ F the inclusion map. Suppose we are 
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n 

given a map f : X ~ A. If u e F, then u = L riXi (ri e R,Xi e X) since X spans F. If 
n i=1 

U = L SiXi (Si e R), then L (ri - S.)Xi = 0, whence ri = Si for every i by linear in-
i=1 i 

dependence. Consequently, the map 1 : F ~ A given by 

leu) = let rix.) = ~ r;J(x.) 

is a well-defined function such that 1, = f Verify that lis an R-module homomor
phism. Since X generates F, any R-module homomorphism F ~ A is uniquely deter
mined by its action on X. Thus, if g : F ~ A is an R-module homomorphism such 
that g' = f, then for every x eX, g(x) = g(,(x» = f(x) = lex), whence g = 1 and 
lis unique. Therefore, by Definition 1.7.7 Fis a free object on the set X in the cate
gory of unitary R-modules. 

(iv) ==? (iii) Given, : X ~ F construct the direct sum LR, with one copy of R for 
each x ex' Let Y = {O", I x eXI be the basis ofthe (unitary) R-module LR as in the 
proof of (iii) ==? (i). The proof of (iii) ==? (i) ==? (iv) shows that LR is a free object on 
the set Y in the category of R-modules (with Y ~ LR the inclusion map). Since 
IXI = IYI, the proof of Theorem 1.7.8 implies that there is an R-module isomorphism 
f : F '" LR such that f('(X» = Y. • 

REMARKS. (a) If F is a free R-module on a set XC' : X ~ F), then the proof of 
(iv) ==? (iii) of Theorem 2.1 implies that ,(X) is actually a basis of F. 

(b) Conversely, the proof of (i) ==? (iv) of Theorem 2.1 shows that if X is a basis of 
a unitary module F over a ring R with identity, then Fis free on X, with, :X ~ Fthe 
inclusion map. 

(c) If X is any nonempty set and R is a ring with identity, then the proof of 
Theorem 2.1 shows how to construct a free R-module on the set X. Simply let F be 
the direct sum LR, with the copies of R indexed by the set X. In the notation of the 
proof, {O", I x e Xl is a basis of F so that F = L ROx • Since the map , : X ~ F, given 

x.x 
by x f-4 Ox, is injective it follows easily that F is free onX in the sense of condition (iv) 
of Theorem 2.1. In this situation we shall usually identify X with its image under t, 

writing x in place of 0"" so that X C F. In this notation F = L RO", is written as 
x.x 

L Rx and a typical element of F has the form rjXI + ... + rnxn (ri e R;Xi EX). In 
xox 
particular, X = ,(X) is a basis of F. 

(d) The existence of free modules on a given set in the category of all modules 
over an arbitrary ring (possibly without identity) is proved in Exercise 2. 

Corollary 2.2. Every (unitary) module A over a ring R (with identity) is the homomor
phic image of a free R-module F. If A is finitely generated, then F may be chosen to be 
finitely generated. 

REMARK. Corollary 2.2 and its proof are valid if the words in parentheses are 
deleted and "free module" is taken to mean a free module in the category of all left 
modules over an arbitrary ring (as defined in Exercise 2). 
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SKETCH OF PROOF OF 2.2. Let X be a set of generators of A and F the free 
R-module on the setX. Then the inclusion map X ~ A induces an R-module homo
morphism 1 : F ~ A such that X C 1m l(Theorem 2.1 (iv». Since X generates A, 
we must have 1m 1 = A. • 

REMARK. Unlike the situatiQn with free abelian groups, a submodule of a free 
module over an arbitrary ring need not be free. For instance {O,2,4} is a submodule 
of z;' but is clearly not a free Z6-module; compare Theorem 11.1.6 and Theorem 6.1 
below. 

Vector spaces over a division ring D (Definition 1.1) are important, among other 
reasons, because every vector space over D is in fact a free D-module. To prove this 
we need 

Lemma 2.3. A maxima/linearly independent subset X of a vector space V over a 
division ring D is a basis of V. 

PROOF. Let W be the subspace of V spanned by the setX. Since X is linearly in
dependent and spans W, X is a basis of W. If W = V, we are done. If not, then there 
exists a nonzero a e V with a • W. Consider the set X U I a}. If ra + rlXI + ... + 
r"x" = 0 (r,ri e D,Xi eX) and r ;e 0, then a = r-l(ra) = -r-1rlxl - ... - r-1r .. x" e W, 
which contradicts the choice of a. Hence r = 0, which implies ri = 0 for all i since X 
is linearly independent. Consequently X U I a} is a linearly independent subset of V, 
contradicting the maximality of X. Therefore W = V and X is a basis. • 

Theorem 2.4. Every vector space V over a division ring D has a basis and is therefore 
a free D-module. More generally every linearly independent subset of V is contained in 
a basis ofV. 

The converse of Theorem 2.4 is also true, namely, if every unitary module over a 
ring D with identity is free, then D is a division ring (Exercise 3.14). 

SKETCH OF PROOF OF 2.4. The first statement is an immediate con
sequence of the second since the null set is a linearly independent subset of every 
vector space. Consequently, we assume thatX is any linearly independent subset of V 
and let S be the set of all linearly independent subsets of V that contain X. Since 
XeS, S ;e 0. Partially order S by set theoretic inclusion. If { C; lie I} is a chain in S 
verify that the set C = U Ci is linearly independent and hence an element of S. 

ieI 

Clearly C is an upper bound for the chain I C; lie I}. By Zorn's Lemma S contains a 
maximal element B that contains X and is necessarily a maximal linearly inde
pendent subset of V. By Lemma 2.3 B is a basis of V. • 

Theorem 2.5. If V is a vector space over a division ring D and X is a subset that 
spans V, then X contains a basis ofV. 
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SKETCH OF PROOF. Partially order the set S of all linearly independent 
subsets of X by inclusion. Zorn's Lemma implies the existence of a maximal linearly 
independent subset Y of X. Every element of X is a linear combination of elements of 
Y (otherwise, as in Lemma 2.3, we could construct a linearly independent subset of X 
that properly contained Y, contradicting maximality). Since X spans V, so does Y. 
Hence Y is a basis of V. • 

In the case of free abelian groups (Z-modules) we know that any two bases of a 
free Z-module have the same cardinality (Theorem 11.1.2). Unfortunately, this is not 
true for free modules over arbitrary rings with identity (Exercise 13). We shall now 
show that vector spaces over a division ring and free modules over a commutative 
ring with identity have this property. 

Theorem 2.6. Let R be a ring with identity and F a free R-module with an infinite 
basis X. Then every basis ofF has the same cardinality as X. 

PROOF. If Y is another basis of F, then we claim that Y is infinite. Suppose on 
the contrary that Y were finite. Since Y generates F and every element of Y is a 
linear combination of a finite number of elements of X, it follows that there is a finite 
subset I XI, ... , Xm I of X, which generates F. Since X is infinite, there exists 

X eX - I Xl, ... , Xm I. 

Then for some ri e R, X = rixi + ... + rmxm , which contradicts the linea~ inde
pendence of X. Therefore, Y is infinite. 

Let K(Y) be the set of all finite subsets of Y. Define a map f : X ---> K(Y) by 
X r-> I YI, ... ,Yn I, where X = rlYI + ... + r.Yn and ri "" 0 for all i. Since Y is a basis, 
the Yi are uniquely determined and fis a well-defined function, (which need not be 
injective). If 1m fwere finite, then U S would be a finite subset of Y that would 

Salmi 

generate X and hence F. This leads to a contradiction of the linear independence of Y 
as in the preceding paragraph. Hence 1m fis infinite. 

Next we show that f-I(T) is a finite subset of X for every T elm fe K(Y). If 
x e f-I(T), then x is contained in the submodule FT of F generated by T; that is, 
f-I(T) e FT (see Theorem 1.5). Since T is finite and each yeT is a linear combina
tion of a finite number of elements of X, there is a finite subset S of X such that FT is 
contained in the submodule Fs of F generated by S. Thus x ef-I(T) implies x e Fs 
and x is a linear combination of elements of S (Theorem 1.5). Since x e X and sex, 
this contradicts the linear independence of X unless XeS. Therefore, f-I(T) e S, 
whence f-I(T) is finite. 

For each T elm f, order the elements of f-I(T), say XI, ... , Xn, and define an in
jective map gT : f-I(T) ---> 1m f X N by xd--+ (T,k). Verify that the sets f-I(T) 
(T e 1m f) form a partition of X. It follows that the map X ---> 1m f X N defined 
by x f--+ gT(X), where x e f-I(T), is a well-defined injective function, whence 
IXI :::; 11m f X NI. Therefore by Definition 8.3, Theorem 8.11, and Corollary 8.13 of 
the Introduction: 

IXI:::; IlmfX NI = IImfl No = IImfl:::; IK(Y)I = IYI· 
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Interchanging X and Y in the preceding argument shows that I YI ~ IXI. Therefore 
IYI = IXI by the Schroeder-Bernstein Theorem. • 

Theorem 2.7. If V is a vector space over a division ring D, then any two bases of V 
have the same cardinality. 

PROOF. Let X and Y be bases of V. If either X or Y is infinite, then IXI = I YI by 
Theorem 2.6. Hence we assume X and Yare finite, say X = {Xl, •.• , X,,}, and 
Y = {Yh'" ,Ym}. Since X and Yare bases, O,e Ym = rlXI + ... + r"x" for some 
ri E D. If rk is the first nonzero ri, then Xk = rk-IYm - rk-Irk+lxk+l - ... - rk-Ir"xn. 

Therefore, the set X' = {Ym,XI, • .. ,Xk-hXk+h . •. ,xn} spans V (since X does). In 
particular 

Ym-l = SmYm + tlXI + ... + fk-IXk-1 + tk+IXk+1 + ... + t"x" (Sm,ti ED). 

Not all of the ti are zero (otherwise Ym-l - SmYm = 0, which contradicts the linear in
dependence of Y). If ti is the first nonzero ti, then Xi is a linear combination of 
Ym-l,ym and those Xi with i ,e j,k. Consequently, the set {Ym-hYm} U {Xi I i ,e j,k} 
spans V (since X' does). In particular, Ym-2 is a linear combination of Ym-I,Ym and the 
Xi with i ,e j,k. The above process of adding a Y and eliminating an X may therefore 
be repeated. At the end ofthe kth step we have a set consisting of Ym,Ym-l, .•• , Ym-k+l 
and n - k of the Xi, which spans V. If n < m, then at the end of n steps we would 
conclude that {Ym, ... ,Ym-n+l} spans V. Since m - n + 1 ~ 2, YI would be a linear 
combination of Ym, ..• , Ym-n+l, which would contradict the linear independence of 
Y. Therefore, we must have m ~ n. A similar argument with the roles of X and Y re
versed shows that n ~ m and hence m = n. • 

Definition 2.8. Let R be a ring with identity such that for every free R-module F, any 
two bases ofF have the same cardinality. Then R is said to have the invariant dimension 
property and the cardinal number of any basis of F is called the dimension (or rank) of 
F over R. 

Theorem 2.7 states that every division ring has the invariant dimension property. 
We shall follow the widespread (but not universal) practice of using "dimension" 
when referring to vector spaces over a division ring and "rank" when referring to free 
modules over other rings. The dimension of a vector space V over a division ring D 
will be denoted here by dimDV. The properties of dimDV will be investigated after 
Corollary 2.12. Results 2.9-2.12 are not needed in the sequel, except in Sections 
IV.6 and VII.5. 

Proposition 2.9. Let E and F be free modules over a ring R that has the invariant 
dimension property. Then E '" F if and only ifE and F have the same rank. 

PROOF. Exercise; see Proposition 11.1.3. • 

Lemma 2.10. Let R be a ring with identity, I (,e R) an ideal ofR, F a free R-module 
with basis X and 11' : F ---> F JIF the canonical epimorphism. Then F jIF is a free RjI
module with basis 1I'(X) and 11I'(X)1 = IXI. 
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Recall that IF = {t riai / ri , I, ai E F, n E N*} and that the action of R/ I on 
0=1 

F / IF is given by (r + l)(a + IF) = ra + IF (Exercise 1.3). 

n 

PROOF OF 2.10. If u + IF E F/ IF, then u = L rixi with rj E R, Xi EX since 
'=1 

UE FandXisa basisofF.ConsequentIy, U + IF = (f r,Xi) + IF = L (riXi + IF) 
j i 

= L (rj + 1)(Xi + IF) = 1: (r, + l)7r(Xj), whence ?T(X) generates F/IF as an 
j j m 

R/ I-module. On the other hand, if 1: (r" + l)7r(x,,) = 0 with r" E R and Xl, ... , Xm 
1:-1 

distinct elements of X, then 0 = L (rk + l)7r(Xk) = 1: (rk + I)(xk + IF) 
k k 

= 1: rkXk + IF, whence L rkXk E IF. Thus L rkXk = L SiUj with Si E I, Uj E F. 
k k k j 

Since each Ui is a linear combination of elements of X and I is an ideal, L SiUi is a 
j m 

linear combination of elements of X with coefficients in I. Consequently, L rkXk 
d k-1 

= L SjUi = 1: CrY, with c, E I, y, EX. The linear independence of X implies that 
j '~l 

(after reindexing and inserting terms OXk, Oy, if necessary) m = d, Xk = Yk and 
rk = Ck E I for every k. Hence rk + I = 0 in R/ I for every k and 7r(X) is linearly in
dependent over R/ I. Thus F / IF is a free R/ I-module with basis 7r(X) (Theorem 2.1). 
Finally ifx, x' EXand 7r(x) = 7r(x') in F/IF, then (IR + 1)7r(x) - (I R + 1)7r(x') = O. 
If X ;c x', the preceding argument implies that IR E I, which contradicts the fact that 
I ;c R. Therefore, x = x' and the map 7r: X ~ 7r(X) is a bijection, whence 
IX/ = 1?T(x)I· • 

Proposition 2.11. Let f : R ~ S be a nonzero epimorphism of rings with identity. If 
S has the invariant dimension property, then so does R. 

PROOF. Letl = Ker f; thenS '" R/I(CorollaryIII.2.10). LetXand Ybe bases 
of the free R-module F and 7r : F ~ F / IF the canonical epimorphism. By Lemma 
2.10 F/IFis a free R/I-module (and hence a free S-module) with bases 7r(X) and 7r(Y) 
such that /XI = /7T(X) I , I f/ = I 71'( f)l. Since S has the invariant dimension property, 
I 7r(X) I = 17r(Y)I. Therefore, IXI = If I and R has the invariant dimension property .• 

Corollary 2.12. IfR is a ring with identity that has a homomorphic image which is a 
division ring, then R has the invariant dimension property. In particular, every com
mutative ring with identity has the invariant dimension property. 

PROOF. The first statement follows from Theorem 2.7 and Proposition 2.11. If 
R is commutative with identity, then R contains a maximal ideal M (Theorem 
III.2.18) and R/ M is a field (Theorem III.2.20). Thus the second statement is a 
special case of the first. • 

We return now to vector spaces over a division ring and investigate the properties 
of dimension. A vector space V over a division ring D is said to be finite dimensional 
if dimnV is finite. 
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Theorem 2.13. Let W be a subspace of a vector space V over a division ring D. 

(i) dimDW::; dimDV; 
(ii) ifdimDW = dimDV and dimDV isjinite, then W = V; 

(iii) dimD V = dimD W + dimD(V /W). 

187 

SKETCH OF PROOF. (i) Let Y be a basis of W. By Theorem 2.4 there is a 
basis X of V containing Y. Therefore, dimD W = I YI ::; IXI = dimDV. (ii) If I YI = IXI 
and IXI is finite, then since Y C Xwe must have Y = X, whence W = V. (iii) We shall 
show that V = Ix + W I x eX - YI is a basis of V/W. This will imply (by Defini
tion 8.3 of the Introduction) that dimDV = IXI = IYI + IX - YI = IYI + IVI 
= dimDW + dimD(V/W). If ve V, then v = L: riYi + L: SjX; (ri,si e D; Yi e Y; 

i i 
Xj eX - Y) so that v + W = L: S;(Xi + W). Therefore, V spans V/W. If 

j 

L: rj(xi + W) = 0 (ri e D; Xi eX - Y), then L: riXj e W, whence L: rixi = L: SkYk 
j i j k 

(Sk e D; Yk e Y). This contradicts the linear independence of X = Y U (X - Y) unless 
rj = 0, Sk = 0 for allj,k. Therefore, Vis linearly independent and I VI = IX - YI. • 

Corollary 2.14. Iff: V -> V' is a linear transformation of vector spaces over a divi
sion ring D, then there exists a basis X of V such that X n Ker f is a basis ofKer f and 
I f(x) I f(x) ,e 0, X € X I is a basis of 1m f. In particular, 

dimD V = dimD(Ker f) + dimD(Jm f). 

SKETCH OF PROOF. To prove the first statement let W = Ker fand let Y,X 
be as in the proof of Theorem 2.13. The second statement follows from Theorem 2.13 
(iii) since V/ W '" 1m fby Theorem 1.7. • 

Corollary 2.15. If V and Ware finite dimensional subs paces of a vector lpace over a 
division ring D, then 

dimD V + dimD W = dimD(V n W) + dimD(V + W). 

SKETCH OF PROOF. Let X be a basis of V n w, Ya (finite) basis of V that 
contains X, and Z a (finite) basis of W that contains X (Theorem 2.4). Show that 
X U (Y - X) U (Z - X) is a basis of V + w, whence 

dimD(V + W) = IXI + IY - XI + IZ - XI = dimD(V n W) 

+ (dimDV - dimD(V n W» 

+ (dimDW - dimD(V n W» .• 

Recall that if a division ring R is contained in a division ring S, then S is a vector 
space over R with rs (s € S,r € R) the ordinary product in S. The following theorem 
will be needed for the study of field extensions in Chapter V. 
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Theorem 2.16. Let R,S,T be diDision rings such that ReS C T. Then 

dimR T = (dims T)(dimRS). 

Furthermore, dimRT is finite if and only ifdimsT and dim RS are finite. 

PROOF. Let V be a basis of T over S, and let Va basis of S over R. It suffices 
to show that ! vu I v e V,u e V} is a basis of T over R. For the elements vu are all 
distinct by the linear independence of V over S. Consequently, we may conclude 
that dimRT = IVIIVI = (dimsT)(dimRS). The last statement of the theorem then 
follows immediately since the product of two finite cardinal numbers is finite and the 
product of an infinite with a finite cardinal number is infinite (Introduction, Theorem 
8.11). 

n 

If u e T, then u = L S,u, (s, e S,u, e U) since V spans T as a vector space over S. 
i=l mi 

Since S is a vector space over Reach s, may be written as Si = 1: riivi (Tii e R,Vi E V). 
;=1 

Thus U = L SiUi = L (L rijv)ui = L L rijvjui , Therefore, {vulv e V,u e U} 
i i j i j 

spans T as a vector space over R. 
n m 

Suppose that L L r,i(viui) = 0 (Tii e R,v; e V,Ui e V). For each i, let 
m .=1;=1 

Si = L rtiV; e S. Then 0 = L 2: ri;(V;Ui) = L (L Ti;V;)Ui = L SiUi. The linear 
i-I i j i j i 

independence of V over S implies that for each i, 0 = Si = l: TiiVi' The linear inde
] 

pendence of V over R implies that r,; = 0 for all i,j. Therefore, ! vu I v e V,u E V} is 
linearly independent over R and hence a basis. • 

EXERCISES 

1. (a) A set of vectors! XI, ... , Xn} in a vector space V over a division ring R is 
linearly dependent if and only if some Xk is a linear combination of the pre
ceding Xi. 
(b) If !XJ,X2,X3} is a linearly independent subset of V, then the set !XI + X2, 
X2 + X3, X3 + XI} is linearly independent if and only if Char R ¢ 2. [See Defini
tion III.1.8]. 

2. Let R be any ring (possibly without identity) and X a nonempty set. In this exer
cise an R-module F is called a free module on X if F is a free object on X in the 
category of alII eft R-modules. Thus by Definition 1.7.7, F is the free module on 
X if there is a function L : X -> F such that for any left R-module A and function 
f : X -> A there is a unique R-module homomorphism I : F -> A with IL = f 

(a) Let IXi lie I} be a collection of mutually disjoint sets and for each i E I, 
suppose Fi is a free module on Xi, with Li : X; -> F;. Let X = U Xi and F = L' 

. W W 
F;, with lPi : Fi -> Fthe canonical injection. Define L : X -> Fby L(X) = lPiL;(X) for 
X E Xi; (tis well defined since the Xi are disjoint). Prove that F is a free module on 
X. [Hint: Theorem 1.13 may be useful.] 

(b) Assume R has an identity. Let the abelian group Z be given the trivial 
R-module structure (rm = 0 for all r e R, m e Z), so that R EB Z is an Rcmodule 
with r(r',m) = (rr', 0) for all r,r' e R, m e Z. If X is anyone element set,X = It}, 
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let, : X ~ R EB Z be given by ,(t) = (tR,I). Prove that R EB Z is a free module 
on X. [Hint: given f:X ~ A, let A = B EB C as in Exercise 1.17, so that 
f(t) = b + e (b EO B,e EO C). Define f(r,m) = rb + me.] 

(c) If R is an arbitrary ring andX is any set, then there exists a free module 
on X. [Hint. Since X is the disjoint union of the sets / t I with t EO X, it suffices 
by (a) to assume X has only one element. If R has an identity, use (b). If R 
has no identity, embed R in a ring S with identity and characteristic 0 as in 
the proof of Theorem 111.1.10. Use Exercise 1.18 to show that S is a free 
R-module on X.] 

3. Let R be any ring (possibly without identity) and F a free R-module on the set 
X, with , : X ~ F, as in Exercise 2. Show that ,(X) is a set of generators of the 
R-module F. [Hint: let G be the submodule of F generated by ,(X) and use the 
definition of "free module" to show that there is a module homomorphism <p 

such that 

is commutative. Conclude that <p = IF.] 

4. Let R be a principal ideal domain, A a unitary left R-module, and p EO R a prime 
(=)rreducible). LetpA = {pa I a EO A} and A[P] = /a EO A I pa = OJ. 

(a) R/(p) is a field (Theorems II1.2.20 and II1.3.4). 
(b) pA and A[p] are submodules of A. 
(c) A/pA is a vector space over R/(p), with (r + (p»(a + pA) = ra + pA. 
(d) A[p] is a vector space over R/(p), with (r + (p»a = ra. 

5. Let V be a vector space over a division ring D and S the set of all subspaces of V, 
partially ordered by set theoretic inclusion. 

(a) S is a complete lattice (see Introduction, Exercise 7.2; the l.u.b. of VI ,V2 is 
VI + V2 and the g.l.b. VI n V2). 

(b) S is a complemented lattice; that is, for each VI EO S there exists V2 EO S such 
that V = VI + V2 and VI n V2 = 0, so that V = VI EB V2. 

(c) S is a modular lattice; that is, if VI ,V2,V3 EO S and Va C VI, then 

VI n (V2 + V3) = (VI n V:i) + Va. 

6. Let Rand C be the fields of real and complex numbers respectively. 
(a) dimRC = 2 and dimRR = 1. 
(b) There is no field K such that R eKe C. 

7. If G is a nontrivial group that is not cyclic of order 2, then G has a nonidentity 
automorphism. [Hint: Exercise 11.4.11 and Exercise 4(d) above.] 

8. If V is a finite dimensional vector space and Vm is the vector space 

V EB V EB· .. EB V (m summands), 

then for each m ~ 1, Vm is finite dimensional and dim Vm = m(dim V). 
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9. If Fl and F2 are free modules over a ring with the invariant dimension property, 
then rank (Fl EB F2) = rank F~ + rank F2. 

10. Let R be a ring with no zero divisors such that for all r,s E R there exist a,b E R, 
not both zero, with ar + bs = O. 

(a) If R = K EB L (module direct sum), then K = 0 or L = O. 
(b) If R has an identity, then R has the invariant dimension property. 

11. Let F be a free module of infinite rank ex over a ring R that has the invariant di
mension property. For each cardinal {3 such that 0 ~ {3 ~ ex, F has infinitely 
many proper free submodules of rank {3. 

12. If F is a free module over a ring with identity such that F has a basis of finite 
cardinality n 2:: 1 and another basis of cardinality n + 1, then F has a basis of 
cardinality m for every m 2:: n (m E N*). 

13. Let K be a ring with identity and F a free K-module with an infinite denumerable 
basis I eJ,e2, ..• 1. Then R = HomK(F,F) is a ring by Exercise 1.7(b). If n is any 
positive integer, then the free left R-module R has a basis of n elements; that is, 
as an R-module, R "-' REB· .. EB R for any finite number of summands. 
[Hint: IIRI is a basis of one element; l./i,h} is a basis of two elements, where 
./i(e2.) = en, Ji(e2n-l) = 0, h(e2rJ = 0 and h(e2n-l) = en. Note that for any g E R, 
g = gl./i + g2h, where gl(en) = g(e2n) and g2(en) = g(e2n-l).) 

14. Let f : V -+ V' be a linear transformation of finite dimensional vector spaces V 
and V' such that dim V = dim V'. Then the following conditions are equivalent: 
(i) fis an isomorphism; (ii) fis an epimorphism; (iii) fis a monomorphism. 
[Hint: Corollary 2.14.) 

15. Let R be a ring with identity. Show that R is not a free module on any set in the 
category of all R-modules (as defined in Exercise 2). [Hint. Consider a nonzero 
abelian group A with the trivial R-module structure (ra = 0 for all r E R, 
a E A). Observe that the only module homomorphism R -+ A is the zero map.] 

3. PROJECTIVE AND INJECTIVE MODULES 

Every free module is projective and arbitrary projective modules (which need not 
be free) have some of the same properties as free modules. Projective modules are 
especially useful in a categorical setting since they are defined solely in terms of 
modules and homomorphisms. Injectivity, which is also studied here, is the dual 
notion to projectivity. 

Definition 3.1. A module P over a ring R is said to be projective ifgiven any diagram 
ofR-module homomorphisms 
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with bottom row exact (that is, g an epimorphism), there exists an R-module homo
morphism h : P -7 A such that the diagram 

is commutative (that is, gh = f). 

The theorems below will provide several examples of projective modules. We 
note first that if R has an identity and P is unitary, then P is projective if and only if 
for every pair of unitary modules A, B and diagram of R-module homomorphisms 

with g an epimorphism, there exists a homomorphism h : P -7 A with gh = f. For 
by Exercise 1.17, A = AI EB A2 and B = BI EB B2 with A"BI unitary and RA2 = 0 
= RB2. Exercise 1.17 shows further that f(P) C BI and g ! AI is an epimorphism 
AI -7 B" so that we have a diagram of unitary modules: 

Thus the existence of h : P -7 A with gh = f is equivalent to the existence of 
h : P -7 AI with gh = f. 

Theorem 3.2. Every free module F over a ring R with identity is projective. 

REMARK. The Theorem is true if the words "with identity" are deleted and F is 
a free module in the category of all left R-modules (as defined in Exercise 2.2). The 
proof below carries over verbatim, provided Exercise 2.2 is used in place of Theo
rem 2.1 and the word "unitary" deleted. 

PROOF OF 3.2. In view of the remarks preceding the theorem we may assume 
that we are given a diagram of homomorphisms of unitary R-modules: 
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with g an epimorphism and F a free R-module on the set X (L : X -+ F). For each 
x eX, f(L(X» e B. Since g is an epimorphism, there exists az e A with g(az) = f(L(X». 
Since F is free, the map X -+ A given by x f-> az induces an R-module homomor
phism h : F -+ A such that h(L(x» = az for all x eX. Consequently, ghL(x) = g(az ) 

= fL(X) for all x E X so that ghL = ji : X -+ B. By the uniqueness part of Theorem 
2.1 (iv) we have gh = f. Therefore F is projective. • 

Corollary 3.3. EL,ery module A over a ring R is the homomorphic image ofaprojec
tive R-module. 

PROOF. Immediate from Theorem 3.2 and Corollary 2.2. • 

Theorem 3.4. Let R be a ring. The following conditions on an R-module Pare 
equivalent. 

(i) P is projective; 

(ii) every short exact sequence 0 -+ A ~ B .!. P -+ 0 is split exact (hence 
B '" A EEl P); 

(iii) there is a free module F and an R-module K such that F '" KEEl P. 

REMARK. The words "free module" in condition (iii) may be interpreted in 
the sense of Theorem 2.1 if R has an identity and P is unitary, and in the sense of 
Exercise 2.2 otherwise. The proof is the same in either case. 

PROOF OF 3.4. (i) ==} (ii) Consider the diagram 

with bottom row exact by hypothesis. Since P is projective there is an R-module 
homomorphism h : P -+ B such that gh = Ip. Therefore, the short exact sequence 

o -+ A ~ B -!b. P -+ 0 is split exact by Theorem r .18 and B '" A EB P. 
h 

(ii) ==} (iii) By Corollary 2.2 there is a free R-module F and an epimorphism 

g: F -Po If K = Ker g, then 0 - K ~ F -4 P - 0 is exact. By hypothesis the se
quence splits so that F '" KEEl P by Theorem 1.18. 

(iii) ==} (i) Let 7r be the composition F '" KEEl P -+ P where the second map is the 
canonical projection. Similarly let L be the composition P -+ KEEl P '" F with the 
first map the canonical injection. Given a diagram of R-module homomorphisms 
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with exact bottom row, consider the diagram 

Since F is projective by Theorem 3.2, there is an R-module homomorphism 
hI : F ~ A such that ghl = frr. Let h = hlL : P ~ A. Then gh = ghlL = (frr)L 
= f(-lrL) = fIp = f. Therefore, P is projective. • 

EXAMPLE. If R = Z6, then Za and Z2 are Z6-modules (see Exercise 1.1) and 
there is a Z6-module isomorphism Z6 ,...", Z2 EEl Za. Hence both Z2 and Za are projec
tive Zs-modules that are not free Z6-modules. 

Proposition 3.5. Let R be a ring. A direct sum ofR-modules L Pi is projective if 
icI 

and only if each Pi is projective. 

SKETCH OF PROOF. Suppose LPi is projective. Since the proof of (iii) => (i) 
in Theorem 3.4 uses only the fact that F is projective, it remains valid with ~ Pi' 

L p. and Pi in place of F,K, and P respectively. The converse is proved by similar 
i'i"; 

techniques using the diagram 

Pi 

dhi 
LP; 
V 

A..!B-O 

If each P; is projective, then for eachj there exists h; : P; ~ A such that gh; = fL; By 
Theorem 1.13 there is a unique homomorphism h : L Pi ~ A with hL; = h; for 
every j. Verify that gh = f. • 

Recall that the dual of a concept defined in a category (that is, a concept defined 
in terms of objects and morphisms), is obtained by "reversing all the arrows." 
Pushing this idea a bit further one might say that a monomorphism is the dual of an 
epimorphism, since A ~ B is a monomorphism if and only if 0 ~ A ~ B is exact and 
B ~ A is an epimorphism if and only if B ~ A ~ 0 (arrows reversed!) is exact. This 
leads us to define the dual notion of projectivity as follows. 

Definition 3.6. A module J over a ring R is said to be injective ifgiven any diagram 
ofR-module homomorphisms 
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with top row exact (that is, g a monomorphism), there exists an R-module homomor
phism h : B ~ J such that the diagram 

is commutative (that is, hg = f). 

Remarks analogous to those in the paragraph following Definition 3.1 apply here 
to unitary injective modules over a ring with identity. It is not surprising that the 
duals of many (but not all) of the preceding propositions may be readily proved. For 
example since in a category products are the dual concept of coproducts (direct 
sums), the dual of Proposition 3.5 is 

Proposition 3.7. A direct product ofR-modules IT J i is injective ifand only ifJi is 
iel 

injective for every i E I. 

PROOF. Exercise; see Proposition 3.5. • 

Since the concept of a free module cannot be dualized (Exercise 13), there are no 
analogues of Theorems 3.2 or 3.4 (iii) for injective modules. However, Corollary 3.3 
can be dualized. It states, in effect, that for every module A there is a projective 
module P and an exact sequence P ~ A ~ O. The dual of this statement is that for 
every module A there is an injective module J and an exact sequence 0 ~ A ~ J; in 
other words, every module may be embedded in an injective module. The remainder 
of this section, which is not needed in the sequel, is devoted to proving this fact for 
unitary modules over a ring with identity. Once this has been done the dual of Theo
rem 3.4 (i), (ii), is easily proved (Proposition 3.13). We begin by characterizing in
jective R-modules in terms of left ideals (submodules) of the ring R. 

Lemma 3.S. Let R be a ring with identity. A unitary R-module J is injective if and 
only if for every left ideal L ofR, any R-module homomorphism L ~ J may be ex
tended to an R-module homomorphism R ~ J. 

SKETCH OF PROOF. To say that f : L ~ J may be extended to R means 
that there is a homomorphisn h : R ~ J such that the diagram 
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is commutative. Clearly, such an h always exists if J is injective. Conversely, suppose 
J has the stated extension property and suppose we are given a diagram of module 
homomorphisms 

with top row exact. To show that J is injective we must find a homomorphism 
h : B ~ J with hg = f Let S be the set of all R-module homomorphisms h : C ~ J, 
where 1m gee C B. Sis nonempty since fg-l : 1m g ~ J is an element of S (g is a 
monomorphism). Partially order S by extension: hi ~ hz if and only if Dom hi C 
Dom hz and hzl Dom hi = hi. Verify that the hypotheses of Zorn's Lemma are satis
fied and conclude that S contains a maximal element h : H ~ J with hg = f We 
shall complete the proof by showing H = B. 

If H ~ Band b e B - H, then L = Ire R I rb e HI is a left ideal of R. The map 
L ~ J given by r I--> herb) is a well-defined R-module homomorphism. By hypothesis 
there is an R-module homomorphism k : R ~ J such that k(r) = herb) for all r e L. 
Let c = k(1R) and define a map h : H + Rb ~ J by a + rb I--> h(a) + rc. We claim 
that h is well defined. For if al + rib = az + rzb e H + Rb, then al - az = (rz - rl) b 
e H n Rb. Hence rz - rl eLand h(al) - h(az) = h(al - az) = h«rz - rl)b) = 
k (r2 - rl) = (r2 - rl)k(h) = (rz - rl)c. Therefore, h(al + rib) = h(al) + ric = h(a2) 
+ r2C = h(az + r2b) and h is well defined. Verify that h : H + Rb ~ J is an R-module 
homomorphism that is an element of the set S. This contradicts the maximality of h 
since b, H and hence H C H + Rb. Therefore, H = Band J is injective. • 

~ 

An abelian group D is said to be divisible if given any y e D and 0 ~ n s Z, there 
exists xeD such that nx = y. For example, the additive group Q is divisible, but Z 
is not (Exercise 4). It is easy to prove that a direct sum of abelian groups is divisible 
if and only if each summand is divisible and that the homomorphic image of a 
divisible group is divisible (Exercise 7). 

Lemma 3.9. An abelian group D is divisible if and only ifD is an injective (unitary) 
Z-module. 

PROOF. If D is injective, ye D and 0 ~ neZ, let f: (n) ~ D be the unique 
homomorphism determined by n I--> y; «n) is a free Z-module by Theorems 1.3.2 
and 11.1.1). Since D is injective, there is a homomorphism h : Z ~ D such that the 
diagram 
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C 
0 .... (n)--Z 

f\f 
D 

is commutative. If x = h(1), then nx = nh(1) = h(n) = f(n) = y. Therefore, D is 
divisible. To prove the converse note that the only left ideals of Z are the cyclic 
groups (n), n E Z. If D is divisible and f : (n) --. D is a homomorphism, then there 
exists xED with nx = f(n). Define h : Z --. D by 1 ~ x and verify that h is a 
homomorphism that extends f. Therefore, D is injective by Lemma 3.8. • 

REMARK. A complete characterization of divisible abelian groups (injective 
unitary Z-modules) is given in Exercise 11. 

Lemma 3.10. Every abelian group A may be embedded in a divisible abelian group. 

PROOF. By Theorem 11.1.4 there is a free Z-module F and an epimorphism 
F--. A with kernel K so that F/K"'-' A. Since F is a direct sum of copies of Z 
(Theorem 11.1.1) and Z C Q, F may be embedded in a direct sum D of copies of the 
rationals Q (Theorem 1.8.10). But D is a divisible group by Proposition 3.7, 
Lemma 3.9, and the remarks preceding it. Iff: F --. D is the embedding monomor
phism, thenfinduces an isomorphism F/ K:::: f(F)/ f(K) by Corollary 1.5.8. Thus the 
composition A "'-' F/K"'-' f(F)/f(K) C D/f(K) is a monomorphism. But D/f(K) is 
divisible since it is the homomorphic image of a divisible group. • 

If R is a ring with identity and J is an abelian group, then Homz(R,J), the set of 
all Z-module homomorphisms R -. J, is an abelian group (Exercise 1.7). Verify that 
Homz(R,J) is a unitary left R-module with the action of R defined by (rf)(x) = f(xr), 
(r,x E R; fE Homz(R,J). 

Lemma 3.11. If J is a divisible abelian group and R is a ring with identity, then 
Homz(R,J) is an injective left R-module. 

SKETCH OF PROOF. By Lemma 3.8" it suffices to show that for each left 
ideal L of R, every R-module homomorphism f : L --. Homz(R,J) may be extended 
to an R-module homomorphism h : R --. Homz(R,J). The map g : L --. J given by 
g(a) = [f(a)](1R) is a group homomorphism. Since J is an injective Z-module by 
Lemma'3.9 and we have the diagram 

C 
O--L--R 

g! 
J 

there is a group homomorphism g: R --.J such that giL = g. Define h : R--. 
Homz(R,J) by r I-> h(r), where h(r) : R --. J is the map given by [h(r)](x) = g(xr) 
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(x EO R). Verify that h is a well-defined function (that is, each h(r) is a group homo
morphism R -> J) and that h is a group homomorphism R -> Homz(R,J). If 
s,r,x EO R, then 

h(sr)(x) = g(x(sr» = g«xs)r) = h(r)(xs). 

By the definition of the R-module structure of Homz(R,J), h(r)(xs) = [sh(r»)(x), 
whence h(sr) = sh(r) and h is an R-module homomorphism. Finally suppose rEO L 
and x EO R. Then xr EO Land 

h(r)(x) = g(xr) = g(xr) = [f(xr»)(h). 

Since fis an R-module homomorphism and Homz(R,J) an R-module, 

[f(xr»)(lR) = [xf(r»)(1R) = f(r)(1Rx) = f(r)(x). 

Therefore, h(r) = f(r) for rEO Land h is an extension of f. • 

We are now able to prove the duals of Corollary 3.3 and Theorem 3.4. 

Proposition 3.12. Every unitary module A over a ring R with identity may be em
bedded in an injective R-module. 

SKETCH OF PROOF. Since A is an abelian group, there is a divisible group J 
and a group monomorphism f: A ->J by Lemma 3.10. The map]: Homz(R,A) 
-> Homz(R,J) given on g EO Homz(R,A) by](g) = fg EO Homz(R,J) is easily seen to 
be an R-module monomorphism. Since every R-module homomorphism is a 
Z-module homomorphism, we have HomR(R,A) C Homz(R,A). In fact, it is 
easy to see that HomR(R,A) is an R-submodule of Homz(R,A). Finally, verify 
that the map A -> HomR(R,A) given by a 1-+ la, where Ia(r) = ra, is an R-module 
monomorphism (in fact it is an isomorphism). Composing these maps yields an 
R-module monomorphism 

c 1 
A -> HomR(R,A) -> Homz(R,A) -> Homz(R,J). 

Since Homz(R,J) is an injective R-module by Lemma 3.11, we have embedded A in 
an injective. • 

Proposition 3.13. Let R be a ring with identity. The following conditions on a 
unitary R-module J are equivalent. 

(i) J is injective; 

(ii) every short exact sequence 0 -> J ~ B ~ C -> 0 is split exact (hence 
B :::: J EB C); 

(iii) J is a direct summand of any module B of which it is a submodule. 

SKETCH OF PROOF. (i) =} (ii) Dualize the proof of (i) =} (ii) ofTheorem 3.4. 

(ii) =} (iii) since the sequence 0 -> J ~ B ~ BI J -> 0 is split exact, there is a homo
morphism g:BjJ- B such that ng= IBp, By Theorem 1.18 «i) = (iii» there is an 
isomorphism J EB BIJ""" B given by (x,y) 1-+ x + g(y). It follows easily that B is the 
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internal direct sum of J and g(B/ J). (iii) =? (i) It follows from Proposition 3.12 that J 
is a submodule of an injective module Q. Proposition 3.7 and (iii) imply that J is 
injective. • 

EXERCISES 

Note: R is a ring. If R has an identity, all R-modules are assumed to be unitary. 

1. The following conditions on a ring R [with identity] are equivalent: 
(a) Every [unitary] R-module is projective. 
(b) Every short exact sequence of [unitary] R-modules is split exact. 
(c) Every [unitary] R-module is injective. 

2. Let R be a ring with identity. An R-module A is injective if and only if for every 
left ideal L of Rand R-module homomorphism g : L -+ A, there exists a E A such 
that g(r) = ra for every r E L. 

3. Every vector space over a division ring D is both a projective and an injective 
D-module. [See Exercise 1.] 

4. (a) For each prime p, Z(pj (see Exercise 1.1.10) is a divisible group. 
(b) No nonzero finite abelian group is divisible. 
(c) No nonzero free abelian group is divisible. 
(d) Q is a divisible abelian group. 

5. Q is not a projective Z-module. 

6. If G is an abelian group, then G = D EB N, with D divisible and N reduced 
(meaning that Nhas no nontrivial divisible subgroups). [Hint: Let D be the sub
group generated by the set theoretic union of all divisible subgroups of G.] 

7. Without using Lemma 3.9 prove that: 
(a) Every homomorphic image of a divisible abelian group is divisible. 
(b) Every direct summand (Exercise 1.8.12) of a divisible abelian group is 

divisible. 
(c) A direct sum of divisible abelian groups is divisible. 

8. Every torsion-free divisible abelian group D is a direct sum of copies of the ra
tionals Q. [Hint: if 0 ~ n E Z and U ED, then there exists a unique hE D such 
that nh = u. Denote b by O/n)a. For 111, n E Z (n ~ 0), define (m/n)a = mO/n)u. 
Then D is a vector space over Q. Use Theorem 2.4.] 

9. (a) If D is an abelian group with torsion subgroup De, then D/ Dt is torsion free. 
(b) If D is divisible, then so is De, whence D = Dt EB E, with E torsion free. 

10. Let p be a prime and D a divisible abelian p-group. Then D is a direct sum of 
copies of Z(poo). [Hint: let X be a basis of the vector space. D[p] over Zp (see 
Exercise 2.4). If x EX, then there exists XI,X2,X3, ••• E D such that Xl = x, 
Ixd = p, PX2 = Xl, PX3 = X2, ••• ,PXn+l = X,,, • • •• If Hz is the subgroup 
generated by the Xi, then Hz ,...." Z(poo) by Exercise 1.3.7. Show that D '" L Hz.) 

x.X 

11. Every divisible abelian group is a direct sum of copies of the rationals Q and 
copies ofZ(poo) for various primesp. [Hint: apply Exercise 9 to D and Exercises 
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7 and S to the torsion-free summand so obtained. The other summand D, is a 
direct sum of copies of various Z(poo) by Exercises 7,10 and II.2.7.) 

12. Let G,H,K be divisible abelian groups. 
(a) If G EB G :: H EB H, then G '" H [see Exercise II}. 
(b) If G EB H '" G EB K, then H:: K [see Exercises 11 and II.2.11.}. 

13. If one attempted to dualize the notion of free module over a ring R (and called 
the object so defined "co-free") the definition would read: An R-module F is co
free on a set X if there exists a function, : F ~ X such that for any R-module A 
and function 1 : A ~ X, there exists a unique module homomorphism 1 : A ~ F 
such that ,1 = I(see Theorem 2.1(iv». Show that for any set X with IXI ~ 2 no 
such R-module F exists. If IXI = 1, then 0 is the only co-free module. [Hint: If 
F exists and IXI ~ 2, arrive at a contradiction by considering possible images of 
o and constructing I: R ~ X such that ,1 ~ 1 for every homomorphism 
1:R~F.) 

14. If D is a ring with identity such that every unitary D-module is free, then D is a 
division ring. [Hint: it suffices by Exercise I1I.2.7 and Theorem III.2.1S to show 
that D has no nonzero maximal left ideals. Note that every left ideal of D is a 
free D-module and hence a (module) direct summand of D by Theorem 3.2, 
Exercise 1, and Proposition 3.13.} 

4. HOM AND DUALITY 
We first discuss the behavior of HomR(A,B) with respect to induced maps, exact 

sequences, direct sums, and direct products. The last part of the section, which is 
essentially independent of the first part, deals with duality. 

Recall that if A and B are modules over a ring R, then HomR(A,B) is the set of all 
R-module homomorphisms 1 : A ~ B. If R = Z we shall usually write Hom(A,B) in 
place of Homz(A,B). HomR(A,B) is an abelian group under addition and this addi
tion is distributive with respect to composition of functions (see p. 174). 

Theorem 4.1. Let A,B,C,D be modules over a ring R and I{! : C ~ A andl/l : B ~ D 
R-module homomorphisms. Then the map 0 : HomR(A,B) ~ HomR(C,D) given by 
f ~ I/Ifl{! is a homomorphism 01 abelian groups. 

SKETCH OF PROOF. 0 is well defined since composition of R-module homo
morphisms is an R-module homomorphism. 0 is a homomorphism since such com
position of homomorphisms is distributive with respect to addition .• 

The map 0 of Theorem 4.1 is usually denoted Hom(I{!,I/I) and called the homomor
phism induced by I{! and 1/1. Observe that for homomorphisms I{!I : E ~ C, 1{!2 : C ~ A, 
1/11 :B~D,1/I2 :D~F, 

Hom(1{!101/l2) Hom(1{!2,l/Il) = Hom(1{!21{!1,1/I21/11) : HomR(A,B) ~ HomR(E,F). 

There are two important special cases of the induced homomorphism. If B = D 
and 1/1 = lB, then the induced map Hom(l{!,lB) : HomR(A,B) ~ HomR(C,B) is given 
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by ff-'. frp and is denoted cpo Similarly if A = C and rp = lA the induced-map 
Hom(1A,,y) : HomR(A,B) ---t HomR(A,D) is given by ff-'.,yfand is denoted I/i. 

We now examine the behavior of HomR with respect to exact sequences. 

Theorem 4.2. Let R be a ring. 0 ---,'> A.!. B ~ C is an exact sequence ofR-modules if 
and only if for every R-module D 

o ---t HomR(D,A) ~ HomR(D,B) L HomR(D,C) 

is an exact sequence of abelian groups. 

PROOF. If 0 ---t A.!. B ~ Cis exact we must prove: (i) Ker cp = 0 (that is, cp is a 
monomorphism); (ii) 1m cp C Ker I/i; and (iii) Ker I/i C 1m cpo (i) fe Ker cp =} rpf 

= 0 =} rpf(x) = 0 for·all xeD. Since 0 ---t A.!. B is exact, rp is a monomorphism, 
whence f(x) = 0 for all xeD and f = O. Therefore, Ker cp = O. (ii) Since 
1m rp = Ker ,y by exactness, we have ,yrp = 0 and hence l/icp = ,yrp = O. Therefore, 
1m cp C Ker I/i. (iii) geKer I/i=},yg = O=}lm g C Ker,y = 1m rp. Since rp is a 

monomorphism, rp : A ---t 1m rp is an isomorphism. If h is the composite D ~ 1m g C 
11'-1 

1m rp ---t A, then h e HomR(D,A) and g = rph = cp(h). Therefore, Ker I/i C 1m cpo 

Conversely, assume that the Hom sequence of induced maps is exact for every D. 
First let D = Ker rp and let i : D ---t A be the inclusion map. Since Ker cp = 0 
(exactness) and cp{i) = rpi = 0, we must have i = 0, which implies that 0 = D = Ker rp. 

Therefore, 0 ---t A .!. B is exact. Next let D = A. Since Ker I/i = 1m cp we have 
o = I/icp(1A) = ,yrplA = ,yrp, whence 1m rp C Ker ,y. Finally let D = Ker ,y and let 
j : D ---t B be the inclusion map. Since 0 = 1/tj = l/i(j) and Ker lit = 1m i{J, we have 
j = cp(f) = rpffor some f : D ---t A. Therefore, for every xeD = Ker ,y, x = j(x) 
= rpf(x) e 1m rp and Ker ,y C 1m rp. Thus Ker ,y = 1m rp and 0 ---t A .!. B!.... Cis 
exact. • 

Proposition 4.3. Let R be a ring. A ~ B ~ C -t 0 is an exact sequence ofR-mod
ules if and only if for every R-module D 

f i o -t HomR(C,D) ---t HomR(B,D) ---t HomR(A,D) 

is an exact sequence of abelian groups. 

SKETCH OF PROOF. If A ~ B ~ C -t 0 is exact, we shall show that 
Ker 8 C Im"f. If fe Ker 8, then 0 = 8(f) = f8, whence 0 = f(lm 8) = f(Ker n By 
Theorem 1.7 finduces a homomorphism 1 : BIKer S ---t D such that l(b + Ker n 
= f(b). By Theorem 1.7 again there is an isomorphism rp : BIKer S '" C such that 
rp(b + Ker n = s(b). Then the map 1 rp-l : C -t D is an R-module homomorphism 
such that fUrp-l) = J. Hence Ker 8 C 1m f. The remainder of this half of the proof 
is analogous to that of Theorem 4.2. 

Conversely if the Hom sequence is exact for every D, let D = C/lm S and let 
7r : C ---t D be the canonical projection. Then f(7r) = 7rs = 0 and Ker f = 0 imply 

7r = 0, whence C = 1m sand B ~ C -t 0 is exact. Similarly, show that Ker S C 1m 8 
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by considering D = B/lm (J and the canonical epimorphism B -t D. Finally, if 
-- 8 t 

D = C, then 0 = (Jr(1c) = r(J, whence 1m (J C Ker r. Therefore, A -t B -t C -t 0 
is exact. • 

One sometimes summarizes the two preceding results by saying that HomR(A,B) 
is left exact. It is not true in general that a short exact sequence 0 -t A -t B -t C -t 0 
induces a short exact sequence 0 -t HomR(D,A) -t HomR(D,B) -t HomR(D,C) -t 0 
(and similarly in the first variable; see Exercise 3). However, the next three theorems 
show that this result does hold in several cases. 

Proposition 4.4. The following conditions on modules over a ring R are equivalent. 

(i) 0 -t A ~ B ~ C -t 0 is a split exact sequence ofR-modules; 

(ii) 0 -t HomR(D,A) L HomR(D,B) L HomR(D,C) -t 0 is a split exact se
quence of abelian groups for every R-module 0; 

(iii) 0 -t HomR(C,D) '1 HomR(B,D) L HomR(A,D) -t 0 is a split exact se
quence of abelian groups for every R-module D. 

SKETCH OF PROOF. (i) =} (iii) By Theorem 1.18 there is a homomorphism 
a : B -t A such that acp = lA. Verify that the induced-homomorphism 

a : HomR(A,D) -t HomR(B,D) 

is such that cpa = lHoffiR(A,D). Consequently, cp is an epimorphism (Introduction, 
Theorem 3.1) and the HomR sequence is split exact by Proposition 4.3 and Theorem 
1.18. (iii) =} (i) If D = A and f : B -t A is such that lA = cp(n = fcp, then cp is a 

monomorphism (Introduction, Theorem 3.1) and 0 -t A ~ B ~ C -t 0 is split 
exact by Proposition 4.3 and Theorem 1.18. The other implications are proved 
similarly. ill 

Theorem 4.5. The following conditions on a module P over a ring R are eqUivalent 

(i) P is projective; 
(ii) if1/; : B -t C is any R-module epimorphism then 1ft: HomR(P,B) -t HomR(P,C) 

is an epimorphism of abelian groups; 

(iii) if 0 -t A ~ B ~ C -t 0 is any short exact sequence of R-modules, then 

o -t HomR(P,A) L HomR(P,B) L HomR(P,C) -t 0 is an exact sequence of abelian 
groups. 

SKETCH OF PROOF. (i) <==? (ii) The map 1ft: HomR(P,B) -t HomR(P,C) 
(given by g /--+ 1/;g) is an epimorphism if and only if for every R-module homomor
phism f : P -t C, there is an R-module homomorphism g : P -t B such that the 
diagram 
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is commutative (that is, f = I/;g = 'f(g». (ii) ==} (iii) Theorem 4.2. (iii) ==} (ii) Given 
an epimorphism I/; : B ---t C let A = Ker I/; and apply (iii) to the short exact sequence 

c of o ---t A ---t B ---t C ---t O. • 

Proposition 4.6. The following conditions on a module J over a ring R are equivalent. 

(i) J is injective; _ 
(ii) if 0 :A --7 B is any R-module monomorphism, then 0 :HomR(B,J) --7 HomR(A,J) 

is an epimorphism of abelian groups; 

(iii) if 0 ---t A ~ B -S C ---t 0 is any short exact sequence of R-modules, then 

o ---t HomR(C,J) 1. HomR(B,J) ~ HomR(A,J) ---t 0 is an exact sequence of abelian 
groups. 

PROOF. The proof is dual to that of Theorem 4.5 and is left as an exercise. • 

Theorem 4.7. Let A,B, {Ai I i € II and {B j I j € JI be modules over a ring R. Then 
there are isomorphisms of abelian groups: 

(i) HomRCE- A;,B) '" II HomR(A;,B); 
i,1 i,1 

(ii) HomR(A, II Bj ) '" II HomR(A,B j ). 

i.J i,J 

REMARKS. If I and J are finite, then L Ai = II Ai and L Bi = II Bi. If I 
i,l i,1 j,J i,J 

and J are infinite, however, the theorem may be false if the direct product II is re
placed by the direct sum L (see Exercise 10). 

SKETCH OF PROOF OF 4.7. (i) For each i E I let ti : Ai ---t L Ai be the 
ill 

canonical injection (Theorem 1.11). Given {g;} € II HomR(Ai,B), there is a unique 
ill 

R-module homomorphism g : L Ai ---t B such that gti = gi for every i € I (Theorem 
ill 

1.11). Verify that the map I/; : II HomR(Ai,B) ---t HomR(LAi,B) given by {g;} f--> g 
is a homomorphism. Show that the map 'P: HomR(LAi,B) ---t II HomR(Ai,B), 
given by f~ { fti I, is a homomorphism such that 'PI/; and I/;'P are the respective iden
tity maps. Thus 'P is an isomorphism. (ii) is proved similarly with Theorem 1.12 
in place of Theorem 1.13. • 

In order to deal with duality and other concepts we need to consider possible 
module structures on the abelian group HomR(A,B). We begin with some remarks 
about bimodules. Let Rand S be rings. An abelian group A is an R-S bimodule 
provided that A is both a left R-module and a right S-module and 

r(as) = (ra)s for all a E A, r E R, s E S. 

We sometimes write RAS to indicate the fact that A is an R-S bimodule. Similarly 
RB indicates a left R-module Band Cs a right S-module C. 
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EXAMPLES. Every ring R has associative multiplication and hence is an R-R 
bimodule. Every left module A over a commutative ring R is an R-R bimodule 
with ra = ar (a e A, r e R). 

Theorem 4.8. Let Rand S be rings and let RA, RBs, RCS, RD be (bi)modules as in
dicated. 

(i) HomR(A,B) is a right S-module, with the action ofS given by (fs)(a) = (f(a»s 
(s a S; a e A; f e HomR(A,B». 

(ii) If I{) : A -> A' is a homomorphism of left R-modules, then the induced map 
cp : HomR(A',B) -> HomR(A,B) is a homomorphism of right S-modules. 

(iii) HomR(C,D) is a left S-module, with the action ofS given by (sg)(c) = g(cs) 
(s e S; c e C; g a HomR(C,D». 

(iv) If1/; : D -> D' is a homomorphism of left R-modules, then 1fi: HomR(C,D)-> 
HomR(C,D') is a homomorphism of left S-modules. 

SKETCH OF PROOF. (0 The verification that fs is a well-defined module 
homomorphism and that HomR(A,B) is actually a right S-module is tedious but 
straight-forward; similarly for (iii). (ii) cp is an abelian group homomorphism by 
Theorem 4.1. If fe HomR(A',B), a a A and s as, then 

cp(fs)(a)=«fs)I{)(a) = (fs)(I{)(a» = (f(I{)(a»)s = (fl{)(a»s = «cpf)(a»s. 

Hence cp(fs) = (cpf)s and cp is a right S-module homomorphism. (iv) is proved an
alogously. • 

REMARK. An important special case of Theorem 4.8 occurs when R is 
commutative and hence every R-module C is an R-R bimodule with rc = cr 
(r e R, c a C). In this case for every r e R, a a A, and fa HomR(A,B) we have 

(rf)(a) = fear) = f(ra} = rf(a} = (f(a}}r = (fr)(a). 

It follows that HomR(A,B) is an R-R bimodule with rf = fr for all r a R, 
fe HomR(A,B). 

Theorem 4.9. If A is a unitary left module over a ring R with identity then there is 
an isomorphism of left R-modules A::: HomR(R,A). 

SKETCH OF PROOF. Since R is an R-R bimodule, the left module structure 
of HomR(R,A) is given by Theorem 4.8(iii). Verify that the map I{) : HomR(R,A) 
-> A given by f'p f(1R) is an R-module homomorphism. Define a map 1/; : A-> 
HomR(R,A) by a I-t la, where Ia(r) = ra. Verify that 1/; is a well-defined R-module 
homomorphism such that <Pl/I = lA and 1/;1{) = 1 HomR(R.A). • 

Let A be a left module over a ring R. Since R is an R-R bimodule, HomR(A,R) 
is a right R-module by Theorem 4.8(i). HomR(A,R) is called the dual module of A 
and is denoted A *. The elements of A * are sometimes called linear functionals. 
Similarly if B is a right R-module, then the dual B* of B is the left R-module 
HomR(B,R) (Exercise 4(a». 
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Theorem 4.10. Let A,B and C be left modules over a ring R. 

(i) If <p : A ~ C is a homomorphism of left R-modules, then the induced map 
'fJ: C* = HomR(C,R) ~ HomR(A,R) = A* is a homomorphism of right R-modules. 

(ii) There is an R-module isomorphism (A EB C)* '" A * EB C*. 

(iii) ffR is a division ring and 0 ~ A ~ B ~ C ~ 0 is a short exact sequence of 

left vector spaces, then 0 ~ C* L B* ~ A * --> 0 is a short exact sequence of right 
vector spaces. 

PROOF. Exercise; see Theorems 2.4, 3.2, 4.1, 4.5, and 4.7. The map 'fJ of (i) is 
called the dual map of <p. • 

If A is a left module over a ring R, a e A, and f e A * = HomR(A ,R), then one fre
quently denotes f(a) e R by (a,J). Since f is a left R-module homomorphism, 

(rIal + r2112o!) = rl(al,J) + r2(a2,J) (ri e R, fe A*, ai e A). (1) 

Similarly since A* is a right R-module with (fr)(a) = f(a)r, we have 

(ri e R, ji e A*, a e A). (2) 

In the proofs below we shall use the brackets notation for linear functionals as 
well as the Kronecker delta notation: for any index set I and ring R with identity the 
symbol Oi; (i,j e I) denotes 0 e R if i ~ j and lR e R if i = j. 

Theorem 4.11. Let F be a free left module over a ring R with identity. Let X be a 
basis ofF and for each x e X let fx : F --> R be given by fx(y) = OXY (y e X). Then 

(i) I fx I x e X I is a linearly independent subset ofF* of cardinality IXI; 
(ii) if X is fillite, then F* is a free right R-module with basis I fx I x e X I. 

REMARKS. The homomorphisms f. are well defined since F is free with basis X 
(Theorem 2.1). In part (ii), I f. I x e XI is called the dual basis to X. This theorem is 
clearly true for any vector space V over a division ring by Theorem 2.4. In particular, 
if V is finite dimensional, then Proposition 2.9 and Theorem 4.11 imply that dim V 
= dim V* and V '" V*. However, if V is infinite dimensional then dim V* > dim V 
(Exercise 12). More generally, if F is a free module over an arbitrary ring (for ex
ample, Z), F* need not be free (see Exercise 10). 

PROOF OF 4.11. (i) If Ix! r1 +- IX2r2 + ... + f.b = 0 (ri e R; Xi e X), then for 
eachj = 0,1,2, ... ,n, 

o = (x;,O) = <~,' t f.il'i) = r: (x;,f.)ri = ~ oi;ri = rio 
t= 1 t t 

Since r; = 0 for all j, I f.1 x eXI is linearly independent. If x ~ y eX, then f.(x) 
= h ~ 0 = /';(x), whence f. ~ /,;. Therefore, IXI = II h I x eXII· 

(ii) If X is finite, say X = IXI, ... , XnJ, and fe F*, let Si = f(xi) = (xi,f) e R 
and denote hi by jj. If u e F, then u ,= rlxl + rzX2 + ... + r"xn e F for some ri e Rand 



4. HOM AND DUALITY 205 

<u, f liSi) = <f riXi, L liSi) 
)=1 .=1) 

= L L ri(Xi,J,;Si = L L r/JiiSi = L riSi 
iii i i 

= L ri(X;'/) = (L riXi,!) = (u,!). 
i i 

Therefore, f = !iSl + j;S2 + ... + f"sn and I J,l = I Ix I x EXI generates F*. Hence 
I Ix I x E Xl is a basis and F* is free. • 

The process of forming duals may be repeated. If A is a left R-module, then A* is 
a right R-module and A** = (A*)* = HomR(HomR(A,R),R) (where the left hand 
HomR indicates all right R-module homomorphisms) is a left R-module (see Exercise 
4(a». A ** is called the double dual of A. 

Theorem 4.12. Let A be a left module over a ring R. 

(i) There is an R-module homomorphism (j: A --> A**. 
(ii) ffR has an identity and A is free, then (j is a monomorphism. 

(iii) ffR has an identity and A is free with ajinite basis, then 8 is an isomorphism. 

A module A such that 8 : A --> A ** is an isomorphism is said to be reflexive. 

PROOF OF 4.12. (i) For each a E A let (j(a) : A* --> R be the map defined by 
[8(a»)(f) = (a,!) E R. Statement (2) after Theorem 4.1 0 shows that 8(a) is a homo
morphism of right R-modules (that is, 8(a) E A**). The map 8 : A --> A** given by 
a I--t 8(a) is a left R-module homomorphism by (1) after Theorem 4.10. 

(ii) Let X be a basis of A. If a E A, then a = rixi + r2X2 + ... + rnxn (ri e R; Xi eX). 
If O(a) = 0, then for all IE A*, 

o = (a,!) = (f riXi,!) = ~ ri(Xi,!). 
1.= 1 'I 

In particular, for f = Ix i (j = 1,2, ... ,n), 

o = L r,(xi,Ix;) = L rioi; = rio 
i i 

Therefore, a = L riXi = L OXi = 0 and 8 is a monomorphism. 
i i 

(iii) If X is a finite basis of A, then A * is free on the (finite) dual basis I Ix I x E Xl 
by Theorem 4.11. Similarly A ** is free on the (finite) dual basis I gz I x E Xl, where for 
each x EX, gz : A* --> R is the homomorphism that is uniquely determined by the 
condition: gih) = ox. (y EX). But (j(x) E A** is a homomorphism A* --> R such that 
for every y EX 

(j(X)(h) = (X,h) = oz. = gx(h). 

Hence gx = 8(x) and 18(x) I x eXI is a basis of A**. This implies that 1m 8 = A**, 
whence 8 is an epimorphism. • 
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EXERCISES 

Note: R is a ring. 

1. (a) For any abelian group A and positive integer m, Hom(Zm,A) "" A[m] 

= (a E A I ma = 0 I. 
(b) Hom(Zm,Zfi) "" Z(m.n). 

(c) The Z-module Zm has Zm * = o. 
(d) For each k :::: 1, Zm is aZmk-module (Exercise 1.1); as aZmk-module,Zm * "-' Zm. 

2. If A,B are abelian groups and m,n integers such that mA = 0 = nB, then every 
element of Hom(A,B) has order dividing (m,n). 

3. Let 'IT' : Z -->Z2 be the canonical epimorphism. The induced map 7r : Hom(Z2,Z) 
--> Hom(Z2,Z2) is the zero map. Since Hom(Z2,Z2) -.e 0 (Exercise 1 (b», 7r is not an 
epimorphism. 

4. Let R,S be rings and AR, SBR, SCR, DR (bi)modules as indicated. Let HomR de
note all right R-module homomorphisms. 

(a) HomR(A,B) is a left S-module, with the action of S given by (sf)(a) = 

s(f(a». 
(b) If 'P : A --> A' is an homomorphism of right R-modules, then the induced 

map <p: HomR(A',B) --> Homfl(A,B) is an homomorphism at left S-modules. 
(c) Homfl(C,D) is a right S-module, with the action of S given by 

(gs)(c) = g(sc). 
(d) If if; : D --> D' is an homomorphism of right R-modules, then 

ifi : Homfl (C,D) --> HomR(C,D') is an homomorphism of right S-modules. 

5. Let R be a ring with identity; thl~n there is a ring isomorphism HomR(R,R) "" Rop 
where Homfl denotes left R-module homomorphisms (see Exercises 111.1.17 and 
1.7). In particular, if R is commutative, then there is a ring isomorphism 
Homfl(R,R) ::::::: R. 

6. Let S be a nonempty subset of a vector space V over a division ring. The annihila-
tor of S is the subset SO of V* given by So = (Ie V* I (s,f) = 0 for all s e Sl. 

(a) 0° = V*; VO = 0; S -.e (01 =,>So -.e V*. 
(b) If W is a subspace of V, then WO is a subspace of V*. 
(c) If W is a subspace of Vand dim V is finite, then dim WO = dim V - dim W. 
(d) Let W,V be as in (c). There is an isomorphism W* "" V* / Woo 
(e) Let W,V be as in (c) and identify V with V** under the isomorphism (J of 

Theorem 4.12. Then (WO)O = we V**. 

7. If V is a vector space over a division ring and f e V*, let W = 1 a e V I (a,f) = 0 I , 
then W is a subspace of V. If dim V is finite, what is dim W? 

8. If R has an identity and we denote the left R-module R by RR and the right 
R-module R by RR, then (RR)* "" RR and (RfI )* "" fiR. 

9. For any homomorphism I : A-> B of left R-modules the diagram 

(JA 
A---;~~A** 

f ~ ~f* 
B (JB ~ B** 
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is commutative, where 8,(,81J are as in Theorem 4.12 and f* is the map induced on 
A** = Homll(HomH(A,R),R) by the map 1 : HomR(B,R) -> HomR(A,R). 

10. Let F = L Zx be a free Z-module with an infinite basis X. Then !Ix I x e xl 
XEX 

(Theorem 4.11) does not form a basis of F*. [Hint: by Theorems 4.7 and 4.9, 
F* ~ II Zx; but under this isomorphism Iv f-> ! oxux I e II Zx-.] 

uX uX 
Note: F* = IIZx is not a free Z-module; see L. Fuchs [13; p. 168]. 

11. If R has an identity and P is a finitely generated projective unitary left R-module, 

then 
(a) P* is a finitely generated projective right R-module. 
(b) P is reflexive. 

This proposition may be false if the words "finitely generated" are omitted; see 
Exercise 10. 

12. Let F be a field, X an infinite set, and V the free left F-module (vector space) on 
the set X. Let FX be the set of all functions. f : X -> F. 

(a) pX is a (right) vector space over F (with (f + g) (x) = f(x) + g(x) and 
(fr)(x) = rf(x». 

(b) There is a vector-space isomorphism V* "-' FX. 
(c) dimF FX = IFI'x, (see Introduction, Exercise 8.10). 
(d) dimF V* > dimF V [Hint: by Introduction, Exercise 8.10 and Introduc

tion, Theorem 8.5 dimp V* = dimp FX = IFI'x, ~ 21x1 = IP(X) I > IXI = dimF v.] 

5. TENSOR PRODUCTS 

The tensor product A ®u B of modules AR and IlB over a ring R is a certain 
abelian group, which plays an important role in the study of multilinear algebra. It is 
frequently useful to view the tensor product A ®Il B as a universal object in a certain 
category (Theorem 5.2). On the other hand, it is also convenient to think of A ®R B 
as a sort of dual notion to Homu(A,B). We shall do this and consider such topics as 
induced maps and module structures for A ®R B as well as the behavior of tensor 
products with respect to exact sequences and direct sums. 

If All and liB are modules over a ring R, and C is an (additive) abelian group, then 
a middle linear map from A X B to C is a function f : A X B -> C such that for all 
a,ai E A, h,hi 10 B, and r e R: 

f(a, + a"h) = f(a"h) + f(a2,h); 

f(a,h, + h,) = f(a,h,) + f(a,h 2); 

f(ar,h) = f(a,rh). 

(3) 

(4) 

(5) 

For fixed AR,RB consider the category ;m(A,B) whose objects are all middle linear 
maps on A X B .. By definition a morphism in ;m(A,B) from the middle linear map 
f : A X B -> C to the middle linear map g : A X B -> D is a group homomorphism 
h : C -> D such that the diagram 
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is commutative. Verify that ;m(A,8) is a category, that Ie is the identity morphism 
from f to f, and that II is an equivalence in ;m(A,B) if and only if II is an isomorphism 
of groups. In Theorem 5.2 we shall construct a universal object in the category 
;m(A,B) (see Definition 1.7.9). First, however, we need 

Definition 5.1. Let A be a right module and B a left module over a ring R. Let F be 
the free abelian group on the set A X B. Let K be the subgroup ofF generated by all 
elements of the following forms (for all a,a' € A; b,b' € B; r € R): 

(i) (a + a',b) ...:.. (a,b) - (a',b); 
(ii) (a,b + b') - (a,b) - (a,b'); 

(iii) (ar,b) - (a,rb). 

The quotient group F /K is called the tensor product of A and B; it is denoted A ®R B 
(or simply A ® B ifR = Z). The coset (a,b) + K of the element (a,b) in F is denoted 
a ® b; the coset of(O,O) is denoted O. 

Since F is generated by the set A X B, the quotient group F/ K = A ®R B is 
generated by all elements (cosets) of the form a ® b (a € A, b € B). But it is not true 
that every element of A ®R B is of the form a ® b (Exercise 4). For the typical ele-

r 

ment of F is a sum L n.(ai,bi) (ni € Z, ai € A, bi € B) and hence its coset in A ®R B 
i= 1 

T 

= F/K is of the form L ni(ai ® b.). Furthermore, since it is possible to choose 
i=1 

different representatives for a coset, one may have a ® b = a' ® b' in A ®R B, but 
a ~ a' and b ~ b' (Exercise 4). It is also possible to have A @R B = 0 even though 
A ~ 0 and B ~ 0 (Exercise 3). 

Definition 5.1 implies that the generators a @ b of A @R B satisfy the follow
ing relations (for all a,ai e A, b,b. e B, and r e R): 

(al + a2) @ b = al ® b + a2 @ b; 

a @ (bl + b2) = a @ bl + a @ b2; 

ar®b = a®rb. 

(6) 

(7) 

(8) 

The proof of these facts is straightforward; for example, since (al + a2,b) - (a!,b) -
(a2,b) € K, the "zero coset," we have 

[(al + a2,b) + K) - [(al,b) + K) - [(a2,b) + K) = K; 

or in the notation (a,b) + K = a ® b, 

(al + a2) ® b - al ® b - Q2 ® b = O. 

Indeed an alternate definition of A ®R B is that it is the abelian group with genera
tors all symbols a ® b (a e A, b € B), subject to the relations (6)-(8) above. Further
more, since 0 is the only element of a group satisfying x + x = x, it is easy to see 
that for all a e A, b e B: 

a ® 0 = 0 ® b = 0 ® 0 = O. 
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Given modules AR and RB over a ring R, it is easy to verify that the map 
i : A X B ---> A @R B given by (a,b) I--> a @ b is a middle linear map. The map i is 
called the canonical middle linear map. Its importance is seen in 

Theorem 5.2. Let AR and RB be modules over a ring R, and let C be an abelian group. 
Ifg : A X B ---> C is a middle linear map, then there exists a unique group homomor
phism g : A @R B ---> C such that gi = g, where i : A X B ---> A @R B is the canonical 
middle linear map. A@R B is uniquely determined up to isomorphism by this property. 
In other words i : A X B ---> A @R B is universal in the category :m(A,B) of all middle 
linear maps on A X B. 

SKETCH OF PROOF. Let F be the free abelian group on the set A X .(1, and 
let K be the subgroup described in Definition 5.1. Since F is free, the assignment 
(a,b) I--> g(a,b) e C determines a unique homomorphism gl : F ---> C by Theorem 2.1 
(iv). Use the fact that g is middle linear to show that gl maps every generator of K to 
O. Hence K C Ker gl. By Theorem 1.7 gl induces a homomorphism g: F/K ---> C 
such that g[(a,b) + K] = gl[(a,b)) = g(a,b). But F/K = A @R Band (a,b) + K 
= a @ b. Therefore, g: A @R B ---> C is a homomorphism such that gi(a,b) 
= g(a @ b) = g(a,b) for all (a,b) e A X B; that is, gi = g. If h : A @R B ---> C is any 
homomorphism with hi = g, then for any generator a @ b of A @R B, 

h(a @ b) = hi(a,b) = g(a,b) = gi(a,b) = g(a @ b). 

Since hand g are homomorphisms that agree on the generators of A @R B, we must 
have h = g, whence g is unique. This proves that i : A X B ---> A @RB is a universal 
object in the category of all middle linear maps on A X B, whence A @R B is 
uniquely determined up to isomorphism (equivalence) by Theorem 1.7.10. • 

Corollary 5.3. If AR, AR', RB and RB' are modules over a ring R andf: A ---> A', 
g : B ---> B' are R-module homomorphisms, then there is a unique group homomorphism 
A @R B ---> A' @R B' such that a @ b I--> f(a) @ g(b) for all a e A, be B. 

SKETCH OF PROOF. Verify that the assignment (a,b) f-> f(a)@g(b) defines 
a middle linear map h : A X B ---> C = A' @RB'. By Theorem 5.2 there is a unique 
homomorphism !r: A @R B ---> A' @R B' such that !r(a @ b) = !ri(a,b) = h(a,b) 
= f(a) @ g(b) for all a € A, be B. • 

The unique homomorphism of Corollary 5.3 is denoted f@ g : A @R B ---> 

A' @R B'. Iff' : AR' ---> AR" and g' : RB' ---> RB" are also R-module homomorphisms, 
then it is easy to verify that 

(f' @g'){f@ g) = (f'f@g'g) : A @RB ---> A" @nB". 

It follows readily that if fand g are R-module isomorphisms, then f@g is a group 
isomorphism with inverse f-I @ g-I. 

Proposition 5.4. If A -!.. B .!. C ---> 0 is an exact sequence of left modules over a ring 
Rand D is a right R-module, then 
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is an exact sequence of abelian groups. An analogous statement holds for an exact se
quence in thefirst variable. 

PROOF. We must prove: (i) 1m (tv @ g) = D @R C; (ii) 1m (1v @f) C 
Ker (Iv @ g); and (iii) Ker (Iv @ g) C 1m (Iv @f). 

(i) Since g is an epimorphism by hypothesis every generator d@cof D@R Cis 
of the formd@g(b) = (Iv @g)(d@b)forsomebEH. Thus 1m (1v @g)contains 
all generators of D@R C, whence 1m (Iv @g) = D@R C. (ii) Since Ker g = Imf 
we have gf= 0 and (Iv@g)(Iv@f) = Iv@gf= Iv@O = 0, whence 
1m (In @f) c: Ker (In @g). (iii) Let 7r: D @RH-+ (D @RH)jlm (1 D @f) 
be the canonical epimorphism. By (ii) and Theorem 1.7 there is a homomorphism 
a : (D @R B)jlm (t n @f) -+ D @R C such that a(7r(d@ b» = (In @ g)(d@ b) 
= d@ g(b). We shall show that a is an isomorphism. This fact and Theorem 1.7 will 
imply Ker (In @g) = 1m (In @f) and thus complete the proof. 

We show first that the map {3 : D X C -+ (D@RB)jlm(In @f) given by (d,c) f--. 
7r(d@b), where g(b) = c, is independent of the choice of b. Note that there is at 
least one sllch b since g is an epimorphism. If g(b') = c, then g(b - b') = 0 and 
b - b' s Ker g = 1m f, whence b - b' = f(a) for some as A. Since d@ f(a) s 
1m (tn ®f) and 7r(d@f(a» = 0, we have 

7r(d@ b) = 7r(d@b' + f(a» = 7r(d® b' + d@f(a» 

= 7r(d@b') + 7r(d@f(a» = 7r(d@b'). 

Therefore {3 is well defined. Verify that {3 is middle linear. Then by Theorem 5.2 there 
is a unique homomorphism 13 : D 0R C -+ (D 0RB)jlm(lD 0 f) such that 
~(d® c) = fji(d,c) = (3(d,c) = 7r(d ® b), where g(b) = c. Therefore, for any gener
ator d@c of D@R C, a~(d@c) = a(7r(d@b» = d@g(b) = d@c, whence 
a~ is the identity map. Similarly ~a is the identity so that a is an isomorphism. • 

REMARKS. If h : AR -+ AR' and k : RH -+ RB' are module epimorphisms, then 
Proposition 5.4 implies that lA ® k and h @ In are group epimorphisms. Hence 
h ® k:A ®R H - A' ®R H' is an epimorphism since h ® k = (lA' ® k)(h ® IB ). 

However, if hand k are monomorphisms, h 0 1/1 and 1.1 @ k need not be monomor
ph isms (Exercise 7). 

Theorem 5.5. Let Rand S be rings and sAR, RB, CR, RDS (bi)modules as indicated. 

(i) A @R B is a left S-module such that s(a @ b) = sa @ b for all s E S, a E A, 
b s B. 

(ii) If f: A -+ A' is a homomorphism of S-R bimodules and g : B -+ B' is an 
R-module homomorphism, then the induced map f@ g : A@R B -+ A' @R B' is a 
homomorphism of left S-modules. 

(iii) C 0R D is a right S-module such that (c 0 d)s = c @ ds for all c E C, 
dE D, s E S. 

(iv) Ifh : C -+ C' is an R-module homomorphism and k : D -+ D' a homomor
phism of R-S bimodules, then the induced map h @ k : C @R D -+ C' @R D' is a 
homomorphism of right S-modules. 
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SKETCH OF PROOF. (i) For each s e S the map A X B ~ A @RB given by 
(a,b) I--> sa @ b is R-middle linear, and therefore induces a unique group homomor
phism a. : A @R B ~ A @R B such that a.(a @ b) = sa@ b. For . each element 

n n 

U = ~ ai @ bi e A @R B define su to be the element a,(u) = L a,(ai @ bi) 
;=1 i=1 

n 

= L sai @ bi. Since a, is a homomorphism, this action of S is well defined (that is, 
i=1 

inaependent of how u is written as a sum of generators). It is now easy to verify that 
A @R B is a left S-module. • 

REMARK. An important special case of Theorem 5.5 occurs when R is a com
mutative ring and hence every R-module A is an R-R bimodule with ra = ar 
(r e R,a e A). In this case A @R B is also an R-R bimodule with 

r(a @ b) = ra @ b = ar @ b = a @ rb = a @ br = (a @ b)r 

for all r e R, a e A, be B. 

If R is a commutative ring, then the tensor product of R-modules may be char
acterized by a useful variation of Theorem 5.2. Let A,B,C be modules over a com
mutative ring R. A bilinear map from A X B to C is a function f : A X B ~ C such 
that for all a,ai e A, b,b; e B, and r e R: 

f(al + az,b) = f(al,b) + f(a2,b); 

f(a,b1 + b2) = f(a,b1) + f(a,b2); 

f(ra,b) = rf(a,b) = f(a,rb). 

(9) 

(10) 

(11) 

Conditions (9) and (10) are simply a restatement of(3) and (4) above. For modules 
over a commutative ring (11) clearly implies condition (5) above, whence every bi
linear map is middle linear. 

EXAMPLE. If A * is the dual of a module A over a commutative ring R, then the 
map A X A * ~ R given by (a,J) I--> f(a) = (a,J> is bilinear (see p. 204). 

EXAMPLE. If A and B are modules over a commutative ring R, then so is 
A @R B and the canonical middle linear map i : A X B ~ A @R B is easily seen to 
be bilinear. In this context i is called the canonical bilinear map. 

Theorem 5.6. If A,B,C are modules over a commutative ring Rand g : A X B ~ C 
is a bilinear map, then there is a unique R-module homomorphism g : A @R B ~ C 
such that gi = g, where i : A X B ~ A @R B is the canonical bilinear map. The 
module A @R B is uniquely determined up to isomorphism by this property. 

SKETCH OF PROOF. Verify that the unique homomorphism of abelian 
groups g : A @R B ~ C given by Theorem 5.2 is actually an R-module homomor
phism. To prove the last statement let CB(A,B) be the category of all bilinear maps on 
A X B (defined by replacing the groups C,D and group homomorphism h : C ~ D 
by modules and module homomorphisms in the definition of mI(A,B) on p. 207). 
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Then first part of the Theorem shows that i : A X B --+ A ®R B is a universal object 
in CB(A,B), whence A ®R B is uniquely determined up to isomorphism by Theo
rem 1.7.10. • 

Theorem 5.6 may also be used to provide an alternate definition of A ®R B when 
R is a commutative ring with identity. Let Fl be the free R-module on the set A X B 
and Kl the submodule generated by all elements of the forms: 

(a + a',b) - (a,b) - (a' ,b); 

(a,b + b') - (a,b) - (a,b'); 

(ra,b) - r(a,b); 

(a,rb) - r(a,b); 

where a,a' e: A; b,b' e: B; and r e: R; (compare Definition 5.1). We claim that there is 
an R-module isomorphism A ®R B '" F1/K1. The obvious analogue of the proof of 
Theorem 5.2 shows that the map A X B --+ Ft/ Kl given by (a,b) 1-+ IR(a,b) + Kl is a 
universal object in the category CB(A,B) of bilinear maps on A X B. Consequently, 
A ®R B '" F1/ Kl by Theorem 5.6: 

We return now to modules over arbitrary rings. 

Theorem 5.7. ffR is a ring with identity and AR, RB are unitary R-modules, then 
there are R-module isomorphisms 

A®RR"'A and R®RB"'B. 

SKETCH OF PROOF. Since R is an R-R bimodule R ®R B is a left R
module by Theorem 5.5. The assignment (r,b) I---> rb defines a middle linear map 
R X B --+ B. By Theorem 5.2 there is a group homomorphism a: R ®R B --+ B 
such that a(r ® b) = rb. Verify that a is in fact a homomorphism of left R-modules. 
Then verify that the map fj : B --+ R ®R B given by b 1-+ IR ® b is an R-module 
homomorphism such that afj = hand fja = IR®RB. Hence a : R ®R B '" B. The 
isomorphism A ®R R '" A is constructed similarly. • 

If Rand S' are rings and AR, RBs, se are (bi)modules, then A ®R B is a right 
S-module and B ®s e is a left R-module by Theorem 5.5. Consequently, both 
(A ®R B) ® se and A ®R (B @ sC) are well-defined abelian groups. 

Theorem 5.S. ffR and S are rings and AR, RBs, sC are (bi)modules, then there is an 
isomorphism 

(A ®R B) @s C '" A ®R (B ®s C). 

PROOF. By definition every element v of (A ®R B) ®s e is a finite sum 
n m. 

L U, ® C, (UI e: A ®R B, C, e: e). Since each u, e: A ®R B is a finite sum L a'j ® b,; 
~_I i-I 
(a,; e: A, b,; e: B), we have 

v = LUI®Ci = L (Lai;®bi;)®cI = LL [(ai;®b,;)®C'). 
i i j i j 
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Therefore, (A @n B) @s C is generated by all elements of the form (a @ b) @ e 
(a E A, bE B, e E C). Similarly, A @n (B @s C) is generated by all a @ (b @ c) with 

a E A, b E B, e E C. Verify that the assignment (i1. ai @ bi,e) ~ tl [ai @ (bi @ c)] 

defines an S-middle linear map (A @n B) X C ~ A @n (B @s C). Therefore, by 
Theorem 5.2 there is a homomorphism 

a : (A @n B) @s C ~ A @n (B @s C) 

with ~[(a @ b) @ el = a @ (b @ c) for all a E A, bE B, e E C. Similarly there is an 
R-middle iinear map A X (B @s C) ~ (A @n B) @s C that induces a homo
morphism 

{3 : A @n (B @s C) ~ (A @n B) @s C 

such that {3[a @ (b @ e)1 = (a @ b) @ e for all a e A, b E B,e E C. For every genera
tor (a @ b) @e of (A @n B) @s C, (3a[(a@ b) @ el = (a@ b) @ e, whence {3a is 
the identity map on (A @nB) @s C. A similar argument shows that {3a is the identity 
on A @n (B @s C). Therefore, a and {3 are isomorphisms. • 

In the future we shall identify (A @n B) @s C and A @n (B @s C) under the 
isomorphism of Theorem 5.8 and simply write A @n B @s c. It is now possible to 
define recursively the n-fold tensor product: 

Al @nl A2 @R2· .. @nn An+1, 

where RI, ... , Rn are rings and Anll,R1An22, ... , RnAn+! are (bi)modules. Such iter
ated tensor products may also be characterized in terms of universal n-linear maps 
(Exercise to). 

Theorem 5.9. Let R be a ring, A and {A; liE II right R-modules, Band {Bj I j E JI 
left R-modules. Then there are group isomorphisms: 

(L A;) @R B '" L (A; @R B); 
i.l i.l 

PROOF. Let Lk, 'Irk be the canonical injections and projections of L Ai. By 
iET 

Theorem 1.8.5 the family of homomorphisms Lk @ h : Ak @n B ~ cL Ai) @n B 
i.l 

induce a homomorphism a : L (Ai @R B) ~ (L Ai) @n B such that a[ {ai @ b II 
i.l ieI 

= L (Li(ai) @ b) = (L Li(ai»@ b, where 10 = {i Ell ai@ b ¢ 01. The assign-
ilIa ie.lo 

ment (u,b) ~ {'lri(U) @ bl iBl defines a middle linear map (L Ai) X B ~ 
i.l 

L (Ai @n B) and thus induces a homomorphism {3 : (L Ai) @n B ~ L (Ai @n B) 
i.l 

such that (3(u @ b) = {'lri(U) @ bl i•l • We shall show that a{3 and {3a are the respec
tive identity maps, whence a is an isomorphism. 
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Recall that if u 10 L: Ai and 10 = {i 10 I 11I"i(u) ~ OJ, then u = L: £;1I"i(U). Thus 
illo 

for every generator u ® b of <L: Ai) ®R B we have 

a{3(u®b);= a[{1I"i(u)®bll = (L: Li1l",(U»®b = u®b. 
i.l. 

Consequently a{3 is the identity map. 
For each j 10 I let L;* : A; ® RB ---+ L: (Ai ®R B) be the canonical injection and 

i 

verify that L: (Ai ®R B) is generated by all elements of the form L;*(a ® b) = 
i 

{1I";L,(a) ® bj,.r (j 10 I, a 10 Ai, blOB). For each such generator we have (1I"iL ,(a» ® b 
= 0 if i ~ j and (1I";L,(a» ® b = a ® b, whence 

(3a[L;*(a ® b)] = (3a[{ 1I",L;(a) ® bll = (3[L,11";Lj(a) ® b] 

= ,B[L,(a) ® b] = {1I"iL;(a) ® bj;.r = L;*(a ® b). 

Consequently the map,Ba must be the identity. The second isomorphism is proved 
similarly .• 

Theorem 5.10. (Adjoint Associativity) Let Rand S be rings and AR , RBS, Cs (bi)
modules. Then there is an isomorphism of abelian groups 

a : Homs(A ®R B,C) ....., HomR(A,Homs(B,C», 

defined for each f : A ®R B ---+ C by 

[(af)(a)](b) = f(a ® b). 

Note that HomR(_,_) and Homs(_,_) consist of homomorphisms of right 
modules. Recall that the R-module structure of Homs(B,C) is given by: (gr)(b) = 
g(rb) (for r e R, be B, g e Homs(B, C); see Exercise 4.4(c». 

SKETCH OF PROOF OF S.lO. The proof is a straightforward exercise in the 
use of the appropriate definitions. The following items mLlst be checked . 

. (i) For each a 10 A, and flO Homs(A ®R B,C), (af)(a) : B ---+ C is an S-module 
homomorphism. 

(ii) (af) : A ---+ Homs(B,C) is an R-module homomorphism. Thus a is a well
defined function. 

(iii) a is a group homomorphism (that is, a(fi + h.) = a(fi) + a(12». To show 
that a is an isomorphism, construct an inverse map ,B : HomR(A,Homs(B,C» ---+ 

Homs(A ®R B,C) by defining 

({3g)(a ® b) = [g(a)](b), 

where a 10 A, blOB, and g 10 HomR(A,Homs(B,C». Verify that 
(iv) {3g as defined above on the generators determines a unique S-module homo

morphism A ®R B ---+ c. 
(v) ,B is a homomorphism. 

(vi) {3a and a{3 are the respective identities. Thus a is an isomorphism. • 

We close this section with an investigation of the tensor product of free modules. 
Except for an occasional exercise this material will be used only in Section IX.6. 
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Theorem 5.11. Let R be a ring with identity. If A is a unitary right R-module and F 
is a free left R-module with basis Y, thell every element u of A ®R F may be written 

n 

uniquelY'in the form u = L ai ® Yi, where ai E A and the Yi are distinct elementsofY. 
i=1 

t m 

REMARK. Given u = L ak @. Yk and v = L bi ® Zi (ak,b; E A, Yk,Zi € Y), 
k=1 j=1 

we may, if necessary, insert terms of the form 0 ® Y (y E Y) and assume that 
n n 

U = L ai ® Yi and v = L bi ® Yi. The word "uniquely" in Theorem 5.11 means 
;=1 ;=1 

n n n 

that if L ai ® Yi = L bi ® Yi, then Ui = bi for every i. In particular, if L ai ® Yi 
;=1 ;=1 ;=1 

n 

= 0 = L 0 ® Yi, then ai = 0 for every i. 
;=1 

PROOF OF S.U. For each Y € Y, let Ay be a copy of A and consider the direct 
sum L Au. We first construct an isomorphism 8: A ®R F '" L All as follows. 

y.Y • yeY 

Since Y is a basis, IYI is a linearly independent set for each Y E Y. Consequently, 
the R-module epimorphism cp : R ~ Ry given by r f--+ ry (Theorem 1.5) is actually 
an isomorphism. Therefore, by Theorem 5.7 there is for each Y € Yan isomorphism 

lA®q>-' 
A ®R Ry ----. A ®R R '" A = Au. 

Thus by Theorems 5.9 and 1.8.10 there is an isomorphism 8: 

A ®R F = A ®R (L Ry) '" L A ®R Ry '" LAy. 
y.y y.Y yeY 

Verify that for every a E A, Z E Y, 8(a ® z) = I uy I E LAy, where u, = a and Uy = 0 
for y ~ z; in other words, (J(a ® z) = ,.(a), with " : A. ~ L Au the canonical in
jection. Now every nonzero VEL Au is a finite sum v = ,.,(al) + ... + 'u,,(an ) 

= 8(al ® Yl) + ... + 8(an ® Yn) with Yl, ... , Yn distinct elements of Y and a; 
uniq uely determined nonzero elements of A. It follows that every element of A ®R F 

n 

(which is necessarily (J-l(V) for some v) may be written uniquely as L ai ® Yi. • 
i=1 

Corollary 5.12. IfR is a ring with identity and AR and RB are free R-modules with 
bases X and Y respectively, then A ®R B is a free (right) R-module with basis 
W = Ix ® y I x E X,y E YI of cardinality IXIIYI. 

REMARKS. Since R is an R-R bimodule, so is every direct sum of copies of R. 
In particular, every free left R-module is also a free right R-module and vice versa. 
However, it is not true in general that a free (left) R-module is a free object in the cat
egory of R-R bimodules (Exercise 12). 

SKETCH OF PROOF OF S.12. By the proof of Theorem 5.11 and by Theo
rem 2.1 (for right R-modules) there is a group isomorphism 

(J : A ®R B '" L A. = L A = L <L xR). 
yeY y.Y y.Y x.x 
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Since B is an R-R bimodule by the remark preceding the proof, A ®R B is a right 
R-module by Theorem 5.5. Verify that 0 is an isomorphism of right R-modules such 
that O(W) is a basis of the free right R-module L (L xR). Therefore, A ®R B is a 

y x 
free right R-module with basis W. Since the elements of Ware all distinct by Theo
rem 5.11, IWI = IXIIYJ. • 

Corollary 5.13. Let S be a ring with identity andR a subring ofS that contains Is. IfF 
is a free left R-module with basil> X, then S ®R F is a free left S-module with basis 
{Is ® x I x e XI of cardinality IXI. 

SKETCH OF PROOF. Since S is clearly an S-R bimodule, S ®R F is a left 
S-module by Theorem 5.5. The proof of Theorem 5.11 shows that there is a group 
isomorphism 0 : S ®R F r-.J L S .. with each S. = S. Furthermore, if for z eX, 

xeX 

£z : S = Sz ~ L s. is the canonical injection, then O(ls ® z) = £z(Is) for each z ex' 
x.x 

Verify that 0 is in fact an isomorphism of left S-modules. Clearly, {!",(Is) I x EXI 
is a basis of cardinality IXI of the free left S-module L S." whence S ®R F is 

x.x 
a free S-module with basis {Is ® x I x EX} of cardinality IXI. • 

EXERCISES 

Note: R is a ring and ® = ®z. 
1. If R = Z, then condition (iii) of Definition 5.1 is superfluous (that is, (i) and (ii) 

imply (iii». 

2. Let A and B be abelian groups. 
(a) For each m > 0, A ®Zm '" A/mA. 
(b) Zm ®Zn ~Zc, where c = (m,n). 
(c) Describe A ® B, when A and B are finitely generated. 

3. If A is a torsion abelian group and Q the (additive) group of rationals, then 
(a) A®Q = O. 
(b) Q ® Q '" Q. 

4. Give examples to show that each of the following may actually occur for suitable 
rings R and modules AR , RB. 

(a) A ®R B ~ A ®z B. 
(b) u E A ®R B, but u ~ a ® b for any a E A, bE B. 
(c) a ® b = al ® bl but a ~ al and b ~ bl • 

5. If A' is a &ubmodule of the right R-module A and B' is a submodule of the left 
R-module B, then A/A' ®R B/B' '" (A ®R B)/C, where C is the subgroup of 
A ®R B generated by all elements a' ® b and a ® b' with a E A, a' E A', bE B, 
b' EB'. 

6. Let f : AR ~ AR' and g : RB ~ RB' be R-module homomorphisms. What is the 
difference between the homomorphism f® g (as given by Corollary 5.3) and the 
element f® g of the tensor product of abelian groups 

HomR(A,A') ® HomR(B,B')? 
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7. The usual injection a : Z2 -> Z4 is a monomorphism of abelian groups. Show that 
1 Q9a :Z2Q9Z2->Z2Q9Z4isthezeromap(butZ2Q9Z2,t. OandZ2Q9Z4,t. 0; 
see Exercise 2). 

8. Let 0 -> A ~ B ~ C -> 0 be a short exact sequence of left R-modules and D a 
. IV. ID®! ID®g IV. . 

fIght R-module. Then 0 -> D \C:;R A ----. D Q9R B ----. D \C:;R C -> 0 IS a short 
exact sequence of abelian groups under anyone of the following hypotheses: 

(a) 0 -> A ~ B ~ C -> 0 is split exact. 
(b) R has an identity and D is a free right R-module. 
(c) R has an identity and D is a projective unitary right R-module. 

9. (a) If I is a right ideal of a ring R with identity and B a left R-module, then there 
is a group isomorphism R/ I Q9R B '"""-J B/IB, where IB is the subgroup of B 
generated by all elements rb with reI, be B. 
(b) If R is commutative and I,J are ideals of R, then there is an R-module iso
morphism R/ I Q9R R/ J '"""-J R/(1 + J). 

10. If R,S are rings, AR, RBs, sC are (bi)modules and D an abelian group, define a 
middle linear map to be a function I : A X B X C -> D such that 

(i) f(a + a',b,c) = f(a,b,c) + f(a',b,c); 
(ii) f(a,b + b',c) = f(a,b,c) + I(a,b',c); 

(iii) f(a,b,c + c') = f(a,b,c) + I(a,b,c'); 
(iv) l(ar,b,c) = f(a,rb,c) for r e R; 
(v) f(a,bs,c) = f(a,b,sc) for s e S. 

(a) The map i : A X B X C -> (A Q9R B) Q9s C given by (a,b,c) f--4 (a Q9 b) Q9 c 
is middle linear. 

(b) The middle linear map i is universal; that is, given a middle linear map 
g : A X B X C -> D, there exists a unique group homomorphism 
if: (A Q9R B) Q9s C -> D such that ifi = g. 

(c) The map j: A X B X C -> A Q9R (B Q9s C). given by 
(a,b,c) r> a ® (b ® c) is also a universal middle linear map. 

(d) (A ®R B) ®s C '"""-J A ®R (B ®s C) by (b), (c), and Theorem 1.7.10. 
(e) Define a middle linear function on n (bi)modules (n ~ 4) in the obvious 

way and sketch a proof of the extension of the above results to the case of n (bi)
modules (over n - 1 rings). 

(f) If R = S, R is commutative and A,B,C,D are R-modules, define a trilinear 
map A X B X C -> D and extend the results of (a),(b),(c) to such maps. 

11. Let A,B,C be modules over a commutative ring R. 
(a) The set £(A,B;C) of all R-bilinear maps A X B -> C is an R-module with 

(f + g)(a,b) = l(a,b) + g(a,b) and (rf)(a,b) = rf(a,b). 
(b) Each one ofthe following R-modules is isomorphic to £(A,B;C): 

(i) HomR(A ®R B,C); 
(ii) HomR(A,HomR(B,C»; 

(iii) HomR(B,HomR(A,C». 

12. Assume R has an identity. Let e be the category of all unitary R-R bimodules 
and bimodule homomorphisms (that is, group homomorphisms f : A -> B such 
that f(ras) = rf(a)s for all r,se R). Let X = {IR I and let L : X -> R be the in
clusion map. 
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(a) If R is noncommutative, then R (equipped with L :X ~ R) is not a free 
object on the set X in the category e. 

(b) R @zR is an R-R bimodule (Theorem 5.5). If L:X ~ R @zR is 
given by In ~ In @ In, then R @z R is a free object on the set X in the cate
gory e. 

6. MODULES OVER A PRINCIPAL IDEAL DOMAIN 

The chief purpose of this section, which will be used again only in Sections 
VIl2 and VII.4, is to determine the structure of all finitely generated modules over a 
principal ideal domain. Virtually all of the structure theorems for finitely generated 
abelian groups (Sections 1I.l ,11.2) carryover to such modules. In fact, most of the 
proofs in Sections 11.1 and Il2 extend immediately to modules over Euclidean 
domains. However, several ofthem must be extensively modified in order to be valid 
for modules over an arbitrary principal ideal domain. Consequently, we shall use a 
different approach in proving the structure theorems here. We shall show that just as 
in the case of abelian groups every finitely generated module may be decomposed in 
two ways as a direct sum of cyclic submodules (Theorem 6.12). Each decomposition 
provides a set of invariants for the given module (that is, two modules have the same 
invariants if and only if they are isomorphic (Corollary 6.13». Thus each method of 
decomposition leads to a complete classification (up to isomorphism) of all finitely 
generated modules over a principal ideal domain. Here and throughout this section 
"module" means "unitary module". 

We begin with free modules over a principal ideal domain R. Since R has the in
variant dimension property by Corollary 2.12, the rank of a free R-module (Defini
tion 2.8) is well defined. In particular, two free R-modules are isomorphic if and 
only if they have the same rank (Proposition 2.9). Furthermore we have the follow
ing generalization of Theorem 11.1.6. 

Theorem 6.1. Let F be a free module over a principal ideal domain Rand G a sub
module ofF. Then G is a free R-module and rank G :$ rank F. 

SKETCH OF PROOF. Let I Xi liE II be a basis of F. Then F = ~ Rx; with 
ieI 

each RXi isomorphic to R (as a left R-module). Choose a well ordering :$ of the set I 
(Introduction, Section 7). For each i E I denote the immediate successor of i by i + 1 
(Introduction, Exercise 7.7). Let J = I U I a I, where a +1 and by definition·i < a 
for all i E I. Then J is well ordered and every element of I has an immediate successor 
inJ.i For eachj E J define Fi to be the submodule of F generated by the set I Xi I i < j}. 
Verify that the submodules Fi have the following properties: 

(i) j < k ~ Fi C Fk ; 

(ii) U Fi = F; 
j.J 

iThe set J is a technical device needed to cope with the possibility that some (necessarily 
unique) element of I has no immediate successor in I. This occurs, for example, when 1 
is finite. 
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(iii) for each i e I, Fi+1/ Fi '" RXi '" R. [Apply Theorem 1.7 to the canonical pro
jection Fi+1 = L RXk --+ RXi.J 

k<i+l 

For eachj eJ let Gj = G n Fj and verify that: 

(iv)j<k= Gj C Gk ; 

(v) U Gj = G; 
ioJ 

(vi) for each i e I, Gi = Gi+1 n F;. 

Property (vi) and Theorem 1.9(i) imply that Gi+1/Gi = Gi+l/(Gi+l n Fi) 
'" (Gi +1 + Fi)/ F;. But (Gi+1 + Fi)/ Fi is a submodule of Fi+1/ F;. Therefore, 
Gi+l/ Gi is isomorphic to a submodule of R by (iii). But every submodule of 
R is necessarily an ideal of R and hence ofthe form (c) = Rcfor some c e R. If c F- 0, 
then the R-module epimorphism R --+ Rc of Theorem 1.5(i) is actually an isomor
phism. Thus every submodule of R (and hence each Gi +1/ Gi ) is free of rank 0 or 1. By 

Theorems 3.2 and 3.4 the sequence 0 --+ Gi ~ Gi+1 --+ Gi+1/Gi --+ 0 is split exact for 
every i e I. Theorem 1.18 and Exercise 1.15 imply that each Gi+1 is an internal direct 
sum Gi+1 = Gi EB Rbi, where bi e Gi+1 - Gi and Rbi '" R if Gi +1 F- Gi , and bi = 0 
if Gi +1 = Gi (that is, Gi+1/Gi = 0). Thus bi eGis defined for each i e I. Let 
B = Ibi I bi F- OJ. Then IBI ~ III = rank F. To complete the proof we need only 
show that B is a basis of G. 

Suppose u = L rjbj = 0 U e I; r, e R; finite sum). Let k be the largest index (if 
i 

one exists) such that rk F- O. Then u = L: rjbj + rkbk e Gk EB Rbk = Gk+1• But 
i<k 

U = 0 implies that rk = 0, which is a contradiction. Hence rj = 0 for allj. Therefore, 
B is linearly independent. 

Finally we must prove that B spans G. It suffices by (v) to prove that for each 
k e J the subset Bk = I bj e B I j < k j of B spans Gk • We shall use transfinite induc
tion (Introduction, Theorem 7.1). Suppose, therefore, that Bj spans Gj for allj <k 
and let u e Gk • If k = j + 1 for some j e I, then Gk = Gj+1 = Gj EB Rb j and 
u = v + rb i with ve G,. By the induction hypothesis v is a finite sum v = L rib; 
with ri e Rand bi e Bi C Bk • Therefore, u = L ribi + rbk, whence Bk spans Gk • Now 
suppose that k F- j + 1 for all j e I (and this may happen; see the examples pre
ceding Theorem 7.1 of the Introduction). Since u e Gk = G n Fk , u is a finite sum 
u = L riXj with j < k. If t is the largest index such that r, F- 0, then u e F'+1 with 
t + 1 < k by hypothesis. Therefore, u e G n F,+1 = G'+1 with t + 1 < k. By the 
induction hypothesis u is a linear combination of elements pf B,+1, which is a subset 
of Bk. Hence Bk spans Gk. • 

Corollary 6.2. Let R be a principal ideal domain. If A is afinitely generatedR-module 
generated by n elements, then every submodule of A may be generated by m elements 
with m ~ n. 

PROOF. Exercise; see Corollary 11.1.7 and Corollary 2.2. • 

Corollary 6.3. A unitary module A over a principal ideal domain is free if and only if 
A is projective. 
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PROOF. (=}) Theorem 3.2. ({=) There is a short exact sequence 0 -+ K ~ F ~ 
A -+ 0 with F free, fan epimorphism and K = ker fby Corollary 2.2. If A is projec
tive, then F '" K EB A by Theorem 3.4. Therefore, A is isomorphic to a submodule of 
F, whence A is free by Theorem 6.1. • 

We now develop the analogues of the order of an element in a group and of the 
torsion subgroup of an abelian group. 

Theorem 6.4. Let A be a left module over an integral domain R and for each a e A 
let fl. = Ire R I ra = OJ. 

(i) e. is an ideal ofR for each a e A. 
(ii) At = I a e A I e. ~ OJ is a submodule of A. 

(iii) For each a e A there is an isomorphism of left modules 

Rj e •. " Ra = I ra Ire R j. 

Let R be a principal ideal domain and peR a prime. 

(iv) Ifpia = 0 (equivalently (pi) c e.), then e. = (pi) with 0 ::; j ::; i. 
(v) If fl. = (pi), then pia ~ 0 for all j such that 0 ::; j < i. 

REMARK. Prime and irreducible elements coincide in a principal ideal domain 
by Theorem 111.3.4. 

SKETCH OF PROOF OF 6.4. (iii) Use Theorems 1.5(i) and 1.7. (iv) By hy
pothesis fla = (r) for some r e R. Since pi E fla, r divides pi. Unique factorization in R 
(Theorem 111.3.7) implies that r = piu with 0 ::; j ::; i and u a unit. Hence ea = (r) 
= (piu) = (pi) by Theorem 111.3.2. (v) If pia = 0 with j < i, then pi e fl. = (pi), 
whence pi I pi. This contradicts unique factorization in R. • 

Let A be a module over an integral domain. The ideal fla in Theorem 6.4 is 
called the order ideal of a e A. The submodule At in Theorem 6.4 is called the 
torsion submodule of A. A is said to be a torsion module if A = At and to be torsion
free if At = O. Every free module is torsion-free, but not vice versa (Exercise 2). 

Let A be a module over a principal ideal domain R. The order ideal of a E A is a 
principal ideal of R, say fla = (r), and a is said to have order r. The element r is 
unique only up to multiplication by a unit (Theorem III.3.2). The cyclic submodule 
Ra generated by a (Theorem 1.5) is said to be cyclic of order r. Theorem 6.4(iii) shows 
that a e A has order 0 (that is, Ra is a cyclic module of order 0) if and only if Ra '" R 
(that is, Ra is free of ran~ one). Also a e A has order r, with r a unit, if and only if 
a = 0; (for a = Ina = r-I(ra) = r-IO = 0). 

EXAMPLE. If R is a principal ideal domain and r e R, then the quotient ring 
Rj(r) is a cyclic R-module with generator a = 1 R + (r). Clearly Oa = (r), whence a 
has order rand Rj(r) is cyclic of order r. Theorem 6.4(iii) shows that every cyclic 
module C over a principal ideal domain R is isomorphic to R/(r), where (r) = Oa and 
a is a generator of C. 
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EXAMPLE. Let R = Z and let A be an (additive) abelian group. Suppose the 
group theoretic order of a e A (Definition 1.3.3) is finite. Then 19. = (n), where Inl is 
the group theoretic order of a. If a e A has infinite order, then 19. = (0). In either case 
Za is the cyclic subgroup (a) generated by a (Theorem 1.2.8). Furthermore, Za""" 
Z/(n) ,...., Zn if 19. = (n), n ~ 0; and Za ,...., Z/(O) ,...., Z if 19. = (0). 

Theorem 6.5. A finitely generated torsion-free module A over a principal ideal do
main R is free. 

REMARK. The hypothesis that A is finitely generated is essential (Exercise 
11.1.10). 

PROOF OF 6.5. We may assume A ~ O. Let X be a finite set of nonzero 
generators of A. If x eX, then rx = 0 (r E R) if and only if r = 0 since A is torsion-free. 
Consequently, there is a nonempty subset S = {Xt, . .. ,xkl of X that is maximal 
with respect to the property: 

rtXt + ... + rkxk = 0 (ri e R) =} ri = 0 for all i. 

The submodule F generated by S is clearly a free R-module with basis S. If y eX - S, 
then by maximality there exist ry,r!, ... , rk E R, not all zero, such that rvY + rtXt 

k 

+ ... + rkXk = O. Then ryy = - L: riXi E F. Furthermore, ry ~ 0 since otherwise 
;=1 

ri = 0 for every i. SinceX is finite, there exists a nonzero r E R (namely r = II ry) 
y.x-s 

such that rX = {rx I x e XI is contained in F. Therefore, r A = {ra I a e A I C F. The 
map f : A -> A given by a ~ ra is easily seen to be an R-module homomorphism 
with image rA. Since A is torsion-free Ker f= 0, whence A""" 1m f= rA C F. 
Therefore, A is free by Theorem 6.1. • 

Determining the structure of a finitely generated module A over a principal ideal 
domain now proceeds in three steps. We show first that A is a direct sum of a torsion 
module and a free module (Theorem 6.6). Every torsion module is a direct sum of 
"p-primary modules" (Theorem 6.7). Finally every p-primary module is a direct sum 
of cyclic modules (Theorem 6.9). 

Theorem 6.6. If A is a finitely generated module over a principai ideal domain R, 
then A = At E9 F, where F is a free R-module of finite rank and F""" AI At. 

SKETCH OF PROOF. The quotient module AI A, is torsion-free since for 
each r ~ 0, 

r(a + A,) = A, =} ra E A, =} rl(ra) = 0 for some rl ~ 0 =} a E AI 

Furthermore, AI A, is finitely generated since A is. Therefore, AI A, is free of finite 

rank by Theorem 6.5. Consequently, the exact sequence 0 -> At ~ A -> AI A, -> 0 
is split exact and A ,...., A, E9 AI A, (Theorems 3.2 and 3.4). Under the isomorphism 
A, EB AI A, ,...., A of Theorem 3.4 the image of A, is A, and the image of AI A, is a 
submodule F of A, which is necessarily free of finite rank. It follows that A is the 
internal direct sum A = A, EB F (see Theorem 1.15). • 
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Theorem 6.7. Let A be a torsion module over a principal ideal domain R and for 
each prime peR let A(p) = I a e A I a has order a power o/p I. 

(i) A(p) is a submodule of A for each prime peR; 
(ii) A = L: A(p), where the sum is over all primes peR. If A is finitely gener

ated, only finitely many of the A(p) are nonzero. 

PROOF. (i) Let a,b e A(p). If 0 a = (PT) and 0b = (p.) let k = max (r,s). Then 
pk(a + b) = 0, whence 0a-tb = (pi) with 0 ~ i ~ k by Theorem 6.4(iv). Therefore, 
a,b e A(p) imply a + b a A(p). A similar argument shows that a e A(p) and r E R 
imply ra e A(P). Therefore, A(P) is a submodule. 

(ii) Let O.,c. aEA with 0 a = (r). By Theorem·III.3.7 r = Pin!.. 'Pknkwithp,dis
tinct primes in R andeachni > O. For each i, let ri = pln!·· .p?!~lp~+itl .. ·Pknk. Then 
rio ... , rk are relatively prime and there exist Sh ••. , Sk e R such that Slrl + ... + 
Skrk = 11/ (Theorem 111.3.11). Consequently, a = ha = slrla + ... + skrka.But 
Pi·isiria = Sira = 0, whence Siria E A(Pi). We have proved that the submodules A(p) 
(p prime) generate the module A. 

Let peR be prime and let Al be the submodule of A generated by all A(q) with 
q .,c. p. Suppose a E A(p) n AI. Thenpma = 0 for some m ~ 0 and a = al + ... + at 
with ai e A(qi) for some primes q!, ... , qt all distinct from p. Since ai e A(qi), there are 
integers mi such that qr'a, = 0, whence (qlm!. . . q,mt)a = O. If d = qlm!. . . q,mt, then 
pm and d are relatively prime and rpm + sd = h for some r,s E R. Consequently, 
a = II/a = rpma + sda = O. Therefore, A(p) n Al = 0 and A = L: A (p) by Theo
rem 1.15. The last statement of the Theorem is a consequence of the easily verified 
fact that a direct sum of modules with infinitely many nonzero summands cannot be 
finitely generated. For each generator has only finitely many nonzero coordi
nates. • 

In order to determine the structure of finitely generated modules in which every 
element has order a power of a prime p (such as A(p) in Theorem 6.7), we shall need a 
lemma. If A is an R-module and r E R, then r A is the set I ra I a E A I. 

Lemma 6.B. Let A be a module over a principal ideal domain R sueh that pnA = 0 
and pn-IA .,c. 0 for some prime pER and positive integer n. Let a be an element of A of 
order pn. 

(i) If A .,c. Ra, then there exists a nonzero bE A such that Ra n Rb = O. 
(ii) There is a submodule C of A sueh that A = Ra EB c. 

REMARK. The following proof is quite elementary. A more elegant proof of (ii), 
which uses the concept of injectivity, is given in Exercise 7. 

PROOF OF 6.S. (G. S. Monk) (i) If A .,c. Ra, then there exists e E A - Ra. 
Since pne to pnA = 0, there is a least positive integer j such that pie ERa,. whence 
pi-Ie. Ra and pie = ria (rl E R). Since R is a unique factorization domain rl = rpk 
for some k ~ 0 and r E R such that p,j'r. Consequently, 0 = pne = pn-i(pie) 
= pn-irpka. Sincep,j'r andpn-Ia .,c. 0 (Theorem 6.4(v», we must have n - j + k ~ n, 
whence k ~ j ~ 1. Therefore, b = pi-Ie - rpk-Ia is a well-defined element of A. 
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Furthermore, b,e.O (since pi-lc f Ra) and pb = pic - rpka = pic - ria = O. If 
Ra n Rb ,e 0, then there exists s e R such that sb e Ra and sb ,e O. Since sb ,e 0 
and pb = 0, p does not divide s. Therefore, sand p" are relatively prime and 
sx + p"y = h for some X,y e R (Theorem 111.3.11). Thus since p"A = 0, b = hb 
= sxb + p"yb = x(sb) eRa. Consequently, pi-lc = b + rpk-la eRa. If j - 1 ,e 0, 
this contradicts the minimality of j, and if j - 1 = 0, this contradicts the fact that 
c f Ra. Therefore, Ra n Rb = O. 

(ii) If A = Ra, let C = O. If A ,e Ra, then let S be the set of all submodules B of 
A such that Ra n B = O. S is nonempty since by (i) there is a nonzero b e A such that 
Ra n Rb = O. Partially order S by set-theoretic inclusion and verify that every chain 
in S has an upper bound in S. By Zorn's Lemma there exists a submodule C of A that 
is maximal in S. Consider the quotient module AIC. Clearly p"(Alc) = 0 and 
p"(a + C) = O. Since Ra n C = 0 and pn-Ia,e 0, we have p,,-I(a + C) ,e C, 
whence a + C has order pn in AI C and p"-'(AI C) ,e O. Now if AI C is not the cyclic 
R-module generated by a + C (that is, AIC ,e R(a + C», then by (i) there exists 
d + C e AI C such that d + C ,e C and R(a + C) n R(d + C) = C. Since 
Ra n C = 0, it follows that Ra n (Rd + C) = O. Since d, C, Rd + C is in Sand 
properly contains C, which contradicts the maximality of C. Therefore, AIC is the 
cyclic R-module generated by a + C (that is, AIC = R(a + C». Consequently, 
A = Ra + C, whence A = Ra EB C by Theorem 1.15. • 

Theorem 6.9. Let A be a finitely generated module over a principal ideal domain R 
such that every element of A has order a power of some prime peR. Then A is a direct 
sum of cyclic R-modules of orders pDI, ... , pDk respectively, where nl ~ n2 ~ ... ~ 
nk ~ 1. 

PROOF. The proof proceeds by induction on the number r of generators of A, 
with the case r = 1 being trivial. If r > 1, then A is generated by elements ai, ... , aT 
whose orders are respectively pn',pm',pm" ... ,pmT • We may assume that 

Thenpn'A = 0 andpn'-'A ~ O. By Lemma 6.8 there is a submodule C of A such that 
A = Ra, EB c. Let 7r be the canonical epimorphism 7r : A -> C. Since A is generated 
by al,a2, •.• ,aT, C must be generated by 7r(al),7r(a2), •.. , 7r(aT). But 7r(al) = 0, 
whence C may be generated by r - lor fewer elements. Consequently, the induction 
hypothesis implies that C is a direct sum of cyclic R-modules of orders p"',p"', ... ,pnk 
respectively with n2 ~ na ~ ... ~ nk ~ 1. Thus C contains an element of order n2. 

Since p"'A = 0, we have pn·C = 0, whence nl ~ n2. Since Ral is a cyclic R-module of 
order pnl, A is a direct sum of cyclic R-modules of orders p"',pn" ... ,pnk respectively 
with nl ~ n2 ~ ... ~ nk ~ I. • 

Theorems 6.6, 6.7, and 6.9 immediately yield a structure theorem for finitely 
generated modules over a principal ideal domain (see Theorem 6.l2(ii) below). Just 
as in the case of abelian groups (Section II.2), there is a second way of decomposing 
a finitely generated module as a direct sum of cyclic submodules. In order to obtain 
this second decomposition and to prove a uniqueness theorem about each of the de
compositions, we need two lemmas. 
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Lemma 6.10. Let A,B, and Aj (Ii E I) be modules over a principal ideal domain R. 
Let r E R and let pER be prime. 

(i) rA = Ira I a E Al and A[r] = {a E A I ra = 01 are submodules of A. 
(ii) Rj(p) is a field and A[p] is a vector space over Rj(p). 

(iii) For each positive integer n there are R-module isomorphisms 

(Rj(pn»[p] rv Rj(p) and pm(Rj(pn» rv Rj(pn-m) (0 ~ m < n). 

(iv) If A rv L: Aj, then rA rv L: rAj and A[r] rv L: Aj[r]. 
i<l i,/ i<l 

(v) Iff: A -+ B is an R-module isomorphism, then f: At rv Btandf: A(p) rv B(p). 

SKETCH OF PROOF. (ii) Exercise 2.4. (v) See Lemma 11.2.5 (vii). (iii) The 
first example preceding Theorem 6.5 may be helpful. Verify that (Rj(pn»[p] is 
generated as an R-module (and hence as a vector space over Rj(p» by the single 
nonzero element p"-I + (p"). Therefore, (Rj(p"»[p] rv Rj(p) by Theorems 2.5 and 
2.1. The submodule of Rj(p") generated by pm + (p") is precisely pm(Rj(pn». Since 
pm + (p") has order p,,-m, we have pm(Rj(p"» rv Rj(p,,-m) by Theorem 6.4(iii). • 

Lemma 6.11. Let R be a principal ideal domain. Ifr E R factors as r = Pln1 ••• Pk nk 

with Ph ... , Pk E R distinct primes and each nj > 0, then there is an R-module iso
morphism 

Consequently every cyclic R-module of order r is a direct sum ofk cyclic R-modules of 

orders Pin" .•. , Pknk respectively. 

SKETCH OF PROOF. We shall prove that if S,I E R are relatively prime, then 
Rj(st) ::: Rj(s) EEl Rj(t). The first part of the lemma then follows by induction on 
the number of distinct primes in the prime decomposition of r. The last statement of 
the lemma is an immediate consequence of the fact that Rj(c) is a cyclic R-module of 
order c for each c E R by Theorem 6.4. The map (J : R -+ R given by x~ tx is an 
R-module monomorphism that takes the ideal (s) onto the ideal (st). By Corollary 1.8 
(J induces an R-module homomorphism Rj(s) -+ Rj(st) given by x + (s) I--> tx + (st). 
Similarly there is a homomorphism Rj(l) -+ Rj(st) given by x + (f) I--> sx + (Sf). 
By the proof of Theorem 1.13 the map ex: Rj(s) EEl Rj(f) -+ Rj(Sf) given by 
(x + (s),y + (f» f-+ [tx + sy] + (Sf) is a well-defined R-module homomorphism. 
Since (s,t) = 1R , there exist u,v E R such that su + tv = h (Theorem I1I.3.tt). If 
c E R, then c = suc + Ivc:whence ex(vc + (s), uc + (I» = c + (Sf). Therefore, ex is 
an epimorphism. In order to show that ex is a monomorphism we must show that 

ex(x + (s), y + (I») = 0 =? X E (s) and y E (1). 

If ex(x + (s), y + (I» = 0, then Ix + sy = SIb E (Sl) for some b E R. Hence utx + usy 
= uSlb. But y = lRY = (SU + tv)y" whence utx + (y - IVY) = ustb and y = usfb -
ufx + tvy E (I). A similar argument shows that x E (s). • 
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Theorem 6.12. Let A be afinitely generated module over a principal ideal domain R. 

(i) A is the direct sum of a free submodule F of finite rank and a finite number of 
cyclic torsion modules. The cyclic torsion summands (if any) are of orders r!, ... , rt, 
where fl, ..• , rt are (not necessarily distinct) nonzero nonunit elements ofR such that 
f, I r21· . ·1 rt. The rank ofF and the list of ideals (r,), ... ,(ft) are uniquely determined 
by A. 

(ii) A is the direct sum afafree submodule E of finite rank and a finite number of 
cyclic torsion modules. Th? cyclic torsion summands (ifany) are of orders PI·', ... , PkSk , 

where PI, ... , Pk are (not necessarily distinct) primes in Rand Sl, ... , Sk are (not 
necessarily distinct) positive integers. The rank ofE and the !istof ideals (PI·'), ... , (Pk Sk) 

are uniquely determined by A (except for the order of the pJ. 

The notation rlh I· . ·Ir! means rl divides r2, r2 divides r3, etc. The elements 
rl, ... , r! in Theorem 6.12 are called the invariant factors of the module A just as in 
the special case of abelian groups. Similarly PI", ... , Pk'k are called the elementary 
divisors of A. 

SKETCH OF PROOF OF 6.12. The existence of a direct sum decomposition 
of the type described in (ii) is an immediate consequence of Theorems 6.6, 6.7, and 
6.9. Thus A is the direct sum of a free module and a finite family of cyclic R-modules, 
each of which has order a power of a prime. In the case of abelian groups these prime 
powers are precisely the elementary divisors of A. The method of calculating the in
variant factors of an abelian group from its elementary divisors (see pp. 80-81) may 
be used here, mutatis mutandis, to prove the existence of a direct sum decompo
sition of A of the type described in (i). One need only make the followiIig modifica
tions. The role of Zpn '" Z/(pn) (p e Z prime) is played by a cyclic torsion submodule 
of A of order pn (p e R prime). Such a cyclic torsion module is isomorphic to R/(pn) 
by Theorem 6.4(iii). Lemma 11.2.3 is replaced by Lemma 6.11. 

The proof of the uniqueness of the direct sum decompositions in (i) and (ii) is 
essentially the same as the proof of the corresponding facts for abelian groups 
(Theorem 11.2.6). The following modifications of the argument are necessary. 
First of all prime factorization in R is unique only up to multiplication by a unit 
(Definition 111.3.5 and Theorem 111.3.7). This causes no difficulty in Z since the only 
units are ± 1 and primes are defined to be positive. In an arbitrary principal ideal 
domain R, however, an element a e R may have order p and order q with p,q distinct 
primes. However, since (P) = ea = (q), p and q are associates by Theorem III.3.2; 
that is, q = pu with u eRa unit. Hence the uniqueness statements in (i) and (ii) deal 
with ideals rather than elements. Note that a r6 0 implies that ea r6 R and that a 
cyclic module Ra is free if and only if ea = (0). Thus the elements ri in (i) are non
zero nonunits. Other modifications: as above replace each finite cyclic summand 
Zn '" Z/(n) with n > 1 by a cyclic torsion module R/(r) (r ERa nonzero nonunit). 
Replace the subgroup generated by the infinite cyclic summands Z by a free 
R-module of finite rank. Use Lemmas 6.10 and 6.11 in place of Lemmas II.2.3 and 
11.2.5. Instead of the counting argument on p. 79 (showing that r = d) use the fact 
that A[p] is a vector space over R/(p). Hence the number of summands R/(p) is pre
cisely dimRJ(p)A[p], which is invariant by Theorem 2.7. • 
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Corollary 6.13. Two finitely generated modules over a principal ideal domain, A and 
B, are isomorphic if and only if A/ At andB/Bt have the same rank and A and B have 
the same invariant factors [resp. elementary divisors]. 

PROOF. Exercise. • 

EXERCISES 

Note: Unless stated otherwise, R is a principal ideal domain and all modules are 
unitary. 

1. If R is a nonzero commutative ring with identity and every submodule of every free 
R-module is free, then R is a principal ideal domain. [Hint: Every ideal I of R is a 
free R-module. If u,v E I (u #- O,v #- 0), then uv + (-v)u = 0, which implies that 
I has a basis of one element; that is, I is principal.] 

2. Every free module over an arbitrary integral domain with identity is torsion-free. 
The converse is false (Exercise H.l.lO). 

3. Let A be a cyclic R-module of order r € R. 
(a) If s € R is relatively prime to r, then sA = A and A[s) = O. 
(b) If s divides r, say sk = r, then sA "" R/(k) and A[s) "" R/(s). 

4. If A is a cyclic R-module of order r, then (i) every submodule of A is cyclic, with 
order dividing r; (ii) for every ideal (s) containing (r), A has exactly one submodule, 
which is cyclic of order s. 

5. If A is a finitely generated torsion module, then [rc R I rA = 01 is a nonzero 
ideal in R, say (rl). rl is called the minimal annihilator of A. Let A be a finite 
abelian group with minimal annihilator m € Z. Show that a cyclic subgroup of A 
of order properly dividing m need not be a direct summand of A. 

6. If A and B are cyclic modules over R of nonzero orders rand s respectively, and r 
is not relatively prime to s, then the invariant factors of A EB B are the greatest 
common divisor of r,s and the least common multiple of r,s. 

7. Let A and a € A satisfy the hypotheses of Lemma 6.8. 
(a) Every R-submodule of A is an R/(pn)-module with (r + (pn»a = ra. Con

versely, every R/(pn)-submodule of A is an R-submodule by pullback along 
R __ R/(pn). 

(b) The submodule Ra is isomorphic to R/(pn). 
(c) The only proper ideals of the ring R/(pn) are the ideals generated by 

pi + (pn) (i = 1,2, ... ,n - 1). 
(d) R/(pn) (and hence Ra) is an injective R/(pn)-module. [Hint: use (c) and 

Lemma 3.8.) 
(e) There exists an R-submodule C of A such that A = Ra EB C. [Hint: Propo

sition 3.13.) 

7. ALGEBRAS 

Algebras are introduced and their basic properties developed. Tensor products 
are used extensively in this discussion. Algebras will be studied further in Chapter IX. 



7. ALGEBRAS 227 

Definition 7.1. Let K be a commutative ring with identity. A K-algebra (or algebra 
over K) A is a ring A such that: 

(i) (A,+) is a unitary (left) K-module; 
(ii) k(ab) = (ka)b = a(kb) for all k € K and a,b € A. 

A K-algebra A which, as a ring, is a division ring, is called a division algebra. 

The classical theory of algebras deals with algebras over a field K. Such an 
algebra is a vector space over K and hence various results of linear algebra are ap
plicable. An algebra over a field K that is finite dimensional as a vector space over K 
is called a finite dimensional algebra over K. 

EXAMPLE. Every ring R is an additive abelian group and hence a Z-module. It 
is easy to see that R is actually a Z-algebra. 

EXAMPLES. If K is a commutative ring with identity, then the polynomial ring 
K[xI, ... , XnJ and the power series ring K[(xll are K-algebras, with the respective 
K-module structures given in the usual way. 

EXAMPLE. If V is a vector space over a field F, then the endomorphism ring 
HomAV,V) (Exercise 1.7) is an F-algebra. The F-module structure of HomF(V,V) is 
discussed in the Remark after Theorem 4.8. 

EXAMPLES. Let A be a ring with identity and K a subring of the center of A 
such that lA € K. Then A is a K-algebra, with the K-module structure being given by 
multiplication in A. In particular, every commutative ring K with identity is a 
K-algebra. 

EXAMPLE. Both the field of complex numbers C and the division ring of real 
quaternions (p. 117) are division algebras over the field R of real numbers. 

EXAMPLE. Let G be a multiplicative group and K a commutative ring with 
identity. Then the group ring K( G) (p. 117) is actually a K-algebra with K-module 
structure given by 

(k,ri € K; gi € G). 

K( G) is called the group algebra of Gover K. 

EXAMPLE. If K is a commutative ring with identity, then the ring MatnK of all 
n X n matrices over K is a K-algebra with the K-module action of K given in the 
usual way. More generally, if A is a K-algebra, then so is MatnA. 

REMARK. Since K is commutative, every left K-module (and hence every 
K-algebra) A is also a right K module with ka = ak for all a € A, k € K. This fact is 
implicitly assumed in Theorems 7.2 and 7.4 below, where tensor products are used. 

The motivation for the next theorem, which provides another means of defining 
K algebras, is the fact that for any ring R the unique map R @z R -> R, defined on 
a generator r @ s by r @ s 1-+ r,\', is a homomorphism of additive abelian groups. 
Since rings are simply Z-algebras, this fact is a special case of 
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Theorem 7.2. Let K be a commutative ring with identity and A a unitary left 
K-module. Then A is a K-algebra ifand only if there exists a K-module homomorphism 
7r : A ®K A ----t A such that the diagram 

is commutative. In this case the K-algebra A has an identity if and only if there is a 
K-module homomorphism I : K ----t A such that the diagram 

is commutative, where ~,(J are the isomorphisms of Theorem 5.7. 

SKETCH OF PROOF. If A is a K-algebra, then the map A X A ----t A given 
by (a,b) J--'1 ab is K-bilinear, whence there is a K-module homomorphism 

7r :A®KA----tA 

by Theorem 5.6. Verify that 7r has the required properties. If A has an identity lA, 
then the map I : K ----t A given by k f-> klA is easily seen to be a K-module homo
morphism with the required properties. Conversely, given A and the map 
7r : A ®K A ----t A, define ab = 7r(a ® b) and verify that A is a K-algebra. If I: K ----t A 
is also given, then I(lK) is an identity for A. • 

The homomorphism 7r of Theorem 7.2 is called the product map of the K-algebra 
A. The homomorphism I is called the unit map. 

Definition 7.3. Let K be a commutative ring wilh identity and A, B K-algebras. 

(i) A subalgebra of A is a subring of A that is also a K-submodule of A. 
(ii) A (left, right, two-sided) algebra ideal of A is a (left, right, two-sided) ideal of 

the ring A that is also a K-submodule of A. 
(iii) A homomorphism [resp. isomorphism] of K-algebras f : A ----t B is a ring ho

momorphism [isomorphism] that is also a K-module homomorphism [isomorphism]. 

REMARKS. If A is a K-algebra, an ideal of the ring A need not be an algebra 
ideal of A (Exercise 4). If, however, A has an identity, then for all k E K and a E A 

ka = k(lAa) = (kIA)a and ka = (ka)IA = a(kIA), 

with klA E A. Consequently, for a left [resp. right] ideal J in the ring A, 

kJ = (kIA)J C J [resp. kJ = J(kI A) C J]. 
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Therefore, if A has an identity, every (left, right, two-sided) ideal is also a (left, right, 
two-sided) algebra ideal. 

The quotient algebra of a K-algebra A by an algebra ideal I is now defined in the 
obvious way, as are the direct product and direct sum of a family of K-algebras. 

Tensor products furnish another way fo manufacture new algebras. We first 
observe that if A and Bare K-modules, then there is a K-module isomorphism 
a : A @K B -> B @K A such that a(a @ b) = b @ a (a e A,b e B); see Exercise 2. 

Theorem 7.4. Let A andB be algebras [with identity) over a commutative ring K with 
identity. Let 7r be the composition 

lA®a®lB "A®"B 
(A@KB)@K(A@KB) ) (A@KA)@K(B@KB)-+ A@KB, 

where 7r A, 7rB are the product maps of A and B respectively. Then A @K B is a K
algebra [with identity) with product map T. 

PROOF. Exercise; note that for generators a @ band al @ bl of A @KB the 
product is defined to be 

(a @ b)(al @ bl) = 7r(a @ b @ al @ bl) = aal @ bbl. 

Thus if A and B have identities lA, IB respectively, then IA @ IB is the identity 
inA@KB .• 

The K-algebra A @K B of Theorem 7.4 is called the tensor product of the K
algebras A and B. Tensor products of algebras are useful in studying the structure of 
division algebras over a field K (Section IX.6). 

EXERCISES 
Note: K is always a commutative ring with identity. 

1. Let e be the category whose objects are all commutative K-algebras with identity 
and whose morphisms are all K-algebra homomorphisms f: A -> B such that 
f(lA) = lB. Then any two K-algebras A, B of e have a coproduct. [Hint: consider 
A -> A @[( B <- B, where a f-> a @ IB and b 1--+ IA @ b.J 

2. If A and B are unitary K-modules [resp. K-algebrasJ, then there is an isomorphism 
of K-modules [resp. K-algebras) a: A @K B -> B @K A such that a(a @ b) 
= b @ a for all a e A,b e B. 

3. Let A be a ring with identity. Then A is a K-algebra with identity if and only if 
there is a ring homomorphism of K into the center of A such that IK f-> IA. 

4. Let A be a one-dimensional vector space over the rational field Q. If we define 
ab = 0 for all a,b e A, then A is a Q-algebra. Every proper additive subgroup of A 
is an ideal of the ring A, but not an algebra ideal. 

5. Let e be the category of Exercise 1. If X is the set {Xl, ... , Xn I, then the poly
nomial algebra K[XI, ..• ,xn) is a free object on the set X in the category e. 
[Hint: Given an algebra A in e and a map g : {Xl, ... , Xn I -> A, apply Theorem 
III.5.5 to the unit map I : K -> A and the elements g(XI), ••. , g(Xn) eA.) 



CHAPTER V 

FIELDS AND GALOIS THEORY 

The first principal theme of this chapter is the structure theory of fields. We shall 
study a field F in terms of a specified subfield K (F is said to be an extension field 
of K). The basic facts about field extensions are developed in Section 1, in particular, 
the distinction between algebraic and transcendental extensions. For the most part 
we deal only with algebraic extensions in this chapter. Arbitrary field extensions are 
considered in Chapter VI. The structure of certain fields and field extensions is 
thoroughly analyzed: simple extensions (Section 1); splitting fields (normal exten
sions) and algebraic closures (Section 3); finite fields (Section 5); and separable 
algebraic extensions (Sections 3 and 6). 

The Galois theory of field extensions (the other main theme of this chapter) had 
its historical origin in a classical problem in the theory of equations, which is dis
cussed in detail in Sections 4 and 9. Various results of Galois theory have important 
applications, especially in the study of algebraic numbers (see E. Artin [48]) and 
algebraic geometry (see S. Lang [54]). 

The key idea of Galois theory is to relate a field extension KeF to the group of 
all automorphisms of F that fix K elementwise (the Galois group of the extension). A 
Galois field extension may be defined in terms of its Galois group (Section 2) or in 
terms of the internal structure of the extension (Section 3). The Fundamental Theo
rem of Galois theory (Section 2) states that there is a one-to-one correspondence 
between the intermediate fields of a (finite dimensional) Galois field extension and 
t~e subgroups of the Galois group of the extension. This theorem allows us to trans
late properties and problems involving fields, polynomials, and field extensions into 
group theoretic terms. Frequently, the corresponding problem in groups has a solu
tion, whence the original problem in field theory can be solved. This is the case, for 
instance, with the classical problem in the theory of equations mentioned in the pre
vious paragraph. We shall characterize those Galois field extensions whose Galois 
groups are finite cyclic (Section 7) or solvable (Section 9). 

The approximate interdependence of the sections of this chapter is as follows: 

230 



1. FIELD EXTENSIONS 231 

A broken arrow A ---+ B indicates that an occasional result from section A is used in 
section B, but that section B is essentially independent of section A. See page xviii 
for a description of a short basic course in fields and Galois theory. 

1. FIELD EXTENSIONS 

The basic facts needed for the study of field extensions are presented first, 
followed by a discussion of simple extensions. Finally a number of essential proper
ties of algebraic extensions are proved. In the appendix, which is not used in the 
sequel, several famous geometric problems of antiquity are settled, such as the tri
section of an angle by ruler and compass constructions. 

Definition 1.1. A field F is said to be an extension field ofK (or simply an extension 
ofK) provided that K is a sub field ofF. 

If F is an extension field of K, then it is easy to see that IK = IF. Furthermore, F 
is a vector space over K (Definition IV. 1.1). Throughout this chapter the dimension 
of the K-vector space F will be denoted by [F : K] rather than dimKF as previously. F 
is said to be a finite dimensional extension or infinite dimensional extension of K 
according as [F : K] is finite or infinite. 

Theorem 1.2. Let F be an extension field ofE and E an extension field ofK. Then 
[F: K] = [F: E][E : K]. Furthermore [F: K] isfinite ifandonly if[F: E] andrE : KJ 
are finite. 

PROOF. This is a restatement of Theorem IV.2.16. • 

In the situation K C E C F of Theorem 1.2, E is said to be an intermediate field 
of Kand F. 

If F is a field and X C F, then the subfield [resp. subringJ generated by X is the 
intersection of all subfields [resp. subringsJ of F that contain X. If F is an extension 
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field of K and X C F, then the subfield [resp. subringl generated by K U X is called 
the subfield [resp. subringl generat1ed by X over K and is denoted K(X) [resp. K[X]]. 
Note that K[Xl is necessarily an integral domain. 

If X = I u" .. _ , Un l, then the subfield K(X) [resp_ subring K[X]] of F is denoted 
K(u" ... , Un) [resp. K[u!, ... , unll. The field K(u" ... , un) is said to be a finitely 
generated extension of K (but it need not be finite dimensional over K; see Exercise 2). 
If X = I u l, then K(u) is said to be a simple extension of K. A routine verification 
shows that neither K(Ul, ... , Un) nor K[uJ, ... , unl depends on the order of the Ui 
and that K(UI, ... , Un_l)(Un) = K(u" ... , un) and K[uJ, ... ,un-d[unl = K[u" ... , unl 
(Exercise 4). These facts will be used frequently in the sequel without explicit 
mention. 

NOTATION. If F is a field U,V ~ F, and v rf 0, then Uv-l e F will sometimes be 
denoted by u/v. 

Theorem 1.3. If F is an extension field of a field K, u, Uj e F, and X C F, then 

(i) the subring K[ul consists of all elements of the form f(u) , where f is a poly
nomial with coefficients in K (that is, f e K[x]); 

(ii) the subring K[ UI, ... , uml consists of all elements of the form g( UI,U2, ... , um), 
where g is a polynomial in m indeterminates with coefficients in K (that is, 
geK[xl, ... , x m ]); 

(iii) the subring K[Xl consists of all elements of the form h(uI, ... , Un), where each 
Uj e X, n is a positive integer, andh is a polynomial in n indeterminates with coefficients 
in K (that is, n e N*, h e K[x" ... , xn]); 

(iv) the subfield K(u) consists of all elements of the form f(u)/g(u) = f(u)g(u)-l, 
where f,g E K[x] and g(u) ;;.f 0; 

(v) the sub field K(u" ... , u"') consists of all elements of the form 

where h,k e K[x!, ... , xml and k(u" ... , u ln ) rf 0; 
(vi) the sub field K(X) consists of all elements of the form 

f(uI, ... , un)/g(UI, ... , Un) = f(u" ... , Un)g(UI, ... , Un)-l 

where n e N*, f,g e K[xl, ... , xnl, Ul, ... , Un e X and g(ul, ... , Un) rf 0. 
(vii) For each v e K(X) (resp. K[X]) there is a finite subset X' of X such that 

v e K(X') (resp. K[X']). 

SKETCH OF PROOF. (vi) Every field that contains K andX must contain the 
set E = lI(UI, . .. ,un)/g(UI, ... ,Un) I n e N*; f,g e K[XI, ... ,Xnl; Ui eX; 
g(UI, ... , un) rf ° l, whence K(X):J E. Conversely, if f,g e K[XI, ... ,xml and 
h,gl e K[x!, ... , xnl, then define h,k e K[XI, ... ,xm+nl by 

hex!, ... ,Xm+n) = f(xl, ... , Xrn)gl(Xm+l, ... , Xm+n) 

·-g(x" .. . , Xm)j;(Xm+I, ... , Xrn+n); 

k(XI, ... ,Xm+n) = 6"(XI, ... , Xm)gl(Xrn+l, ... , Xrn+n). 

Then for any UI, ... , Um, v" ... , Vn e X such that g(UI, ... ,Urn) rf 0, gl(VI, ... , Dn) rf 0, 

f(u" ... ,Urn) _ h(v" ... ,Vn) = h(uI, ... , Um,VI, ... , Vn) e E. 

g(UI, ... , urn) gl(VI, ... , Vn) k(UI, ... , U""VI, ... , Vn) 
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Therefore, E is a group under addition (Theorem 1.2.5). Similarly the nonzero ele
ments of E form a group under multiplication, whence E is a field. Since XC E and 
K C E, we have K(X) C E. Therefore, K(X) = E. (vii) If U ~ K(X), then by (vi) 
U = f(ul, ... , un)/ g(UI, ••. , un) € K(X'), where X' = ! UI, ••• , Un lex. • 

If Land Mare subfields of a field F, the composite of Land Min F, denoted LM 
is the subfield generated by the set L U M. An immediate consequence of this defini
tion is that LM = L(M) = M(L). It is easy to show that if K is a subfield of L n M 
such that M = K(S) where SCM, then LM = L(S) (Exercise 5). The relationships 
of the dimensions [L : K], [M : K], [LM : K], etc. are considered in Exercises 20-21. 
The composite of any finite number of subfields EI ,E2, ••• ,En is defined to be the 
subfield generated by the set El U E2 U··· U En and is denoted E1E2 •• ·En (see 
Exercise 5). 

The next step in the study of field extensions is to distinguish two fundamentally 
different situations that occur. 

Definition 1.4. Let F be an extension field ofK. An element u ofF is said to be 
algebraic oeer K provided that u is a root of some nonzero polynomial f € K[x]. Ifu is 
not a root of any nonzero f € K[x], u is said to be transcendental over K. F is called an 
algebraic extension ofK if every element ofF is algebraic over K. F is called a trans
cendental extension if at least one element ofF is transcendental over K. 

REMARKS. If U € K, then u is a root of x - U € K[x] and therefore algebraic 
over K. If U € F is algebraic over some subfield K' of K, then U is algebraic over K 
since K'[x] C K[x]. If U € F is a root of f€ K[x] with leading coefficient c ~ 0, then u 
is also a root of c-1J, which is a monic polynomial in K[x]. A transcendental extension 
may contain elements that are algebraic over K (in addition to the elements of K 
itself). 

EXAMPLES. Let Q,R and C be the fields of rational, real, and complex numbers 
respectively. Then i € C is algebraic over Q and hence over R; in fact, C = R(i). It is 
a nontrivial fact that 7[, e € R are transcendental over Q; see, for instance, I. Her
stein [4]. 

EXAMPLE. If K is a field, then the polynomial ring K[Xl, ... , Xn] is an integral 
domain (Theorem 111.5.3). The quotient field of K[XI, ... , xn] is denoted 
K(x" ... ,xn ). It consists of all fractionsf/g, with J,g € K[X" ... ,xn ] and g ~ 0, and 
the usual addition and multiplication (see Theorem 111.4.3). K(X" ... , xn ) is called 
the field of rational functions in xl, ... , Xn over K. In the field extension 

K C K(xI, ... ,xn) 

each Xi is easily seen to be transcendental over K. In fact, every element of 
K(x" ... , x n ) not in K itself is transcendental over K (Exercise 6). 

In the next two theorems we shall characterize all simple field extensions up to 
isomorphism. 

Theorem 1.5. IfF is an extension field ofK and u € F is transcendental over K, then 
there is an isomorphism offields K(u) ~ K(x) which is the identity on K. 
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SKETCH OF PROOF. Since u is transcendental feu) ~ 0, g(u) ~ 0 for all 
nonzero f,g E K[x]. Consequently, the map cp : K(x) ~ F given by fig f--7 f(u)lg(u) 
= f(U)g(U)-1 is a well-defined monomorphism of fields which is the identity on K. 
But 1m cp = K(u) by Theorem 1.3, whence K(x) "-' K(u). • 

Theorem 1.6. If F is an extension field ofK and u E F is algebraic over K, then 

(i) K(u) = K[u]; 
(ii) K(u) '" K[x]/(f), where f E K[x] is an irreducible monic polynomial of degree 

n ~ 1 uniquely determined by the conditions that feu) = 0 and g(u) = 0 (g E K[x]) if 
and only iff divides g; 

(iii) [K(u) : K] = n; 
(iv) [h,u,u2, ••• , un-II is a basis of the vector space K(u) over K; 
(v) every element ofK(u) can be written uniquely in the form ar. + alu + ... + 

an_1 un- I (aj E K). 

PROOF. (i) and (ii) The map cp : K[x] ~ K[u] given by g f--7 g(u) is a nonzero 
ring epimorphism by Theorems III.5.5. and 1.3. Since K[x] is a principal ideal 
domain (Corollary III.6.4), Ker cp = (f) for some fe K[x] with feu) = O. Since u is 
algebraic, Ker cp ~ 0 and since cp ~ 0, Ker cp ~ K[x]. Hencef~ 0 and degf~ 1. 
Furthermore, if c is the leading coefficient of f, then c is a unit in K[x] (Corollary 
III.6.4), c-Ifis monic, and (f) = (c-If) (Theorem III.3.2). Consequently we may 
assume that f is monic. By the First Isomorphism Theorem (Corollary 111.2.1 0), 

K(xJl(f) = K[x]/Ker cp '" 1m cp = K[u]. 

Since K[u] is an integral domain, the ideal (f) is prime in K[x] by Theorem III.2.l6. 
Theorem HI.3.4 implies that fis irreducible and hence that the ideal (f) is maximal. 
Consequently, K[x]I(f) is a field (Theorem III.2.20). Since K(u) is the smallest 
subfield of F containing K and u and since K(u) :::) K[u] '" K[x]I(f), we must have 
K(u) = K[u]. The uniqueness of ffollows from the facts that fis monic and 

g(u) = 0 ¢=} g e Ker cp = (f) ¢=} fdivid~s g. 

(iv) Every element of K(u) = K[u] is of the form g(u) for some g E K[x] by Theo
rem 1.3. The division algorithm shows that g = q f+ h with q,h E K[x) and deg h < 
degf. Therefore, g(u) = q(u) feu) + h(u) = 0 + h(u) = h(u) = bo + blu + ... + bmum 

with m < n = deg f. Thus IIK,u, .... ,un-II spans the K-vector space K(u). To see 
that II K,U, ... ,un-II is linearly independent over K and hence a basis, suppose 

(a; E K). 

Then g = ao + alx + ... + an_IXn- 1 E K[x] has u as a root and has degree ::s: n - 1. 
Since fig by (ii) and deg f = n, we must have g = 0; that is, a; = 0 for all i, whence 
IIK,u, ... ,un-II is linearly independent. Therefore, Ilx,u, ... ,un-Il is a basis of 
K(u). 

(iii) is an immediate consequence of (iv). The equivalence of (iv) and (v) is a 
routine exercise. • 

Definition 1.7. Let F be an extension field ofK and u e F algebraic over K. The 
monic irreducible polynomial f of Theorem].6 is called the irreducible (or minimal or 
minimum) polynomial of u. The degree of u over K i~ deg f = [K(u) : K]. 
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The following example illustrates how Theorem 1.6 and the techniques of its 
proof may be used for specific computations. 

EXAMPLE. The polynomial x 3 - 3x - 1 is irreducible over Q (Theorem 
111.6.6 and Proposition 111.6.8) and has real root u (Exercise III.6.16(d». By Theorem 
1.6 u has degree 3 over Q and l1,u,u2 j is a basis of Q(u) over Q. The element 
u4 + 2u3 + 3 E Q(u) = Q[ul may be expressed as a linear combination (over Q) of 
the basis elements as follows. The division algorithm (that is, ordinary long division) 
in the ring Q[xl shows that 

whence 

X4 + 2x3 + 3 = (x + 2)(x3 - 3x - 1) + (3x 2 + 7x + 5), 

u4 + 2u3 + 3 = (u + 2)(u3 - 3u - 1) + (3u2 + 7u + 5) 

= (u + 2)0 + (3u2 + 7u + 5) 

= 3u2 + 7u + 5. 

The multiplicative inverse of 3u2 + 7u + 5 in Q(u) may be calculated as follows. 
Since x 3 - 3x - 1 is irreducible in Q[xl, the polynomials x 3 - 3x - 1 and 
3x2 + 7x + 5 are relatively prime in Q[x). Consequently, by Theorem 111.3.11 there 
exist g(x), hex) e Q[x] such that 

(x3 - 3x - l)g(x) + (3x2 + 7x + 5)h(x) = 1. 

Therefore, since u3 - 3u - 1 = 0 we have 

(3u2 + 7u + 5)h(u) = 1 

so that h(u) e Q[u] is the inverse of 3u2 + 7u + 5. The polynomials g and h may be 
explicitly computed via the Euclidean algorithm (Exercise I1I.3.13): g(x) = -7/37x 
+ 29/111, and hex) = 7/111 x 2 - 26/111 x + 28/111. Hence h(u) = 7/111 u2 -

26/111 u + 28/111. 

Suppose E is an extension field of K, F is an extension field of L, and u : K -> L is 
an isomorphism of fields. A recurrent question in the study of field extensions is: 
under what conditions can u be extended to an isomorphism of E onto F. In other 
words, is there an isomorphism T : E -> F such that T I K '= u? We shall answer this 
question now for simple extension fields and in so doing obtain criteria for two 
simple extensions K(u) and K(v) to be isomorphic (also see Exercise 16). 

Recall that if u : R -> S is an isomorphism of rings, then the map R[x]-> SIx] 
given by L rixi ~ L u(ri)xi is also a ring isomorphism (Exercise 111.5.1). Clearly 

i i 

this map extends u. We shall denote the extended map R[x]-> SIx] by u also and the 
image of fe. R[x] by uf. 

Theorem 1.8. Let u : K -> L be an isomorphism offields, u an element of some ex
tension field ofK and van element of some extension field of L. Assume either 

(i) u is transcendental over K and v is transcendental ODer L; or 
(ii) u is a root of an irreducible polynomial f e K[x] and v is a root of uf e. L[x]. 

Then u extends to an isomorphism of fields K(u) '" L(v) which maps u onto v. 
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SKETCH OF PROOF. (i) By the remarks preceding the theorem u extends to 
an isomorphism K[x) '"-J L[x). Verify that this map in turn extends to an isomorphism 
K(x) -+ L(x) given by hi g \--> uhl ug. Therefore, by Theorem 1.5 we have K(u) rv 

K(x) == L(x) == L(v). The compositt: map extends (]" and maps u onto v. 

(ii) It suffices to assume that fis monic. Since u : K[x) rv L[x) this implies that 
ufe L[x) is monic irreducible. By the proof of Theorem 1.6 the maps 

tp : K[xJl(f) ~ K[u) = K(u) and !/I : L[xJl(uf) -+ L[v) = L(v), 

given respectively by 'f[g + (f») = g(u) and !/I[h + (uf)) = h(v), are isomorphisms. 
The map 0 : K[xJl(f) -+ L[xJl(uf) given by O[g + (f)) = ug + (uf) is an isomor
phism by Corollary 111.2.11. Therefore the composite 

K(u) ~ K[xJ/(f).!.. L[xJ/(uf)!... L(v) 

is an isomorphism of fields such that g(u) 1-+ (ug)(v). In particular, !/IOtp-l agrees with 
a on K and maps u onto v (since a(lK) = lL by Exercise III. 1.15). • 

Corollary 1.9. Let E and F each be extension fields ofK and let u e E and v e F be 
algebraic over K. Then u and v are roots of the same irreducible polynomial f e K[x) if 
and only if there i~ an isomorphism offields K(u) rv K(v) which sends u onto v and is 
the identity on K. 

PROOF. (~) Apply Theorem 1.8 with u = In: (so that uf= ffor all fe K[x)}. 
(<=) Suppose u : K(u) rv K(v) with u(u) = v and u(k) = k for all k e K. Let 

n 

fe K[x) be the irreducible polynomial of the algebraic element u. If f = L: kixi, 
i=O 

then 0 = f(u) = to kiUi. Therefore, 0 = u(i; kiU) = ~ u(kiui) = ~ u(ki)u(Ui) 

n 

= L: k;u(U)i = L: kivi = f(v). • 
i i=O 

Up to this point we have always dealt with a root ofa polynomialfe K[x) in some 
given extension field F of K. The next theorem shows that it really is not necessary to 
have F given in advance. 

Theorem 1.10. IfK is afield andf E K[x) polynomial of degree n, then there exists a 
simple extension field F = K(u) ofK such that: 

(i) u E F is a root off; 
(ii) [K(u) : K) ::; n, with equality holding if and only iff is irreducible in K[x); 

(iii) iff is irreducible in K[x], then K(u) is unique up 10 an isomorphism which is the 
identity on K. 

REMARK. In view of (iii) it is customary to speak of the field F obtained Qyad
joining a root of the irreducible polynomial fE K[x) to the field K. 

SKETCH OF PROOF OF 1.10. We may assume that fis irreducible (if not, 
replace fby one of its irreducible factors). Then the ideal (f) is maximal in K[x) 
(Theorem III.3.4 and Corollary 111.6.4) and the quotient ring F = K[xJ/(f) is a 
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field (Theorem 111.2.20). Furthermore, the canonical projection 7r : K[x]-> K[x]/(f) 
= F, when restricted to K, is a monomorphism (since 0 is the only constant in a 
maximal ideal of K[x]). Thus F contains 7r(K) "-' K, and therefore may be considered 
as an extension field of K (providing that K is identified with 7r(K) under the iso
morphism). For x e K[x], let U = 7r(x) e F. Verify that F = K(u) and that f(u) = 0 
in F. Theorem 1.6 implies statement (ii) and Corollary 1.9 gives (iii). • 

In the remainder of this section we shall develop the essential basic facts about 
algebraic field extensions. 

Theorem 1.11. IfF is afinite dimensional exten:sionfield ofK, then F is finitely 
generated and algebraic over K. 

PROOF. If[F: KJ = nand U e F, then the set ofn + 1 elements {lK,U,U2, .. . , unl 
must be linearly dependent. Hence there are ai e K, not all zero, such that ao + alu + 
a2u2 + ... + anU" = 0, which implies that u is algebraic over K. Since u was arbi
trary, F is algebraic over K. If { VI, ••• , Vn I is a basis of F over K, then it is easy to see 
that F = K(VI, . .. ,vn ). • 

Theorem 1.12. If F is an extension field of K and X is a subset of F such that 
F = K(X) and every element of X is algebraic over K, then F is an algebraic extension 
ofK. If X is afinite set, then F isfinite dimensional overK. 

PROOF. If v e F, then v e K(UI, ... , un) for some Ui eX (Theorem 1.3) and there 
is a tower of subfields: 

K C K(uI) C K(UI,U2) C ... C K(UI, ... , Un_I) C K(UI, ... , Un). 

Since u, is algebraic over K, it is necessarily algebraic over K(UI, ... , Ui_l) for each 
i ~ 2, say of degree rio Since K(UI, ... , Ui_I)(Ui) = K(UI, ... ,Ui) we have 
[K(uI, ... , Ui) : K(uI, ... , Ui-I)] = ri by Theorem 1.6. Let rl be the degree of UI over 
K; then repeated application of Theorem 1.2 shows that [K(uI, ... , u,,) : KJ 
= rlr2" ·rn • By Theorem 1.11 K(UI, . .. ,Un) (and hence v) is algebraic over K. Since 
v e F was arbitrary, F is algebraic over K. If X = {UI, . .. ,unl is finite, the same 
proof (with F = K(uI, ... , Un» shows that [F : K] = rlr2' .. rn is finite. • 

Theorem 1.13. If F is an algebraic extension field of E andE is an algebraic exten
sion field of K, then F is an algebraic extension of K. 

PROOF. Let U e F; since U is algebraic over E, bnu" + ... + blu + bo = 0 for 
some bi e E (bn ~ 0). Therefore, U is algebraic over the subfield K(bo, ... , b,,). Con
sequently, there is a tower of fields 

K C K(bo, ... , bn) C K(bo, .•. , b,,)(u), 

with [K(bo, ... , bn)(u):K(bo, ... , bJ] finite by Theorem 1.6 (since u is algebraic over 
K(bo, ... ,bn» and [K(bo, ... ,h,,) : K] finite by Theorem 1.12 (since each bi e E is 
algebraic over K). Therefore, [K(bo, ... , hn)(u) : K] is finite (Theorem 1.2). Hence 
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u e K(bo, ••• , bn)(u) is algebraic over K (Theorem 1.11). Since u was arbitrary, F is 
algebraic over K. • 

Theorem 1.14. Let F be an extension field ofK and E the set of all elements ofF 
which are algebraic over K. Then E is a subfield ofF (which is, of course, algebraic 
over K). 

Clearly the subfield E is the unique maximal algebraic extension of K contained 
inFo 

PROOF OF 1.14. If u,v e E, then K(u,v) is an algebraic extension field of K by 
Theorem 1.12. Therefore, since u - v and uv-1 (v,,&. 0) are in K(u,v), U - v and 
uv-1 e E. This implies that E is a field (see Theorem 1.2.5). • 

APPENDIX: RULER AND COMPASS CONSTRUCTIONS 

The word "ruler" is to be considered as a synonym for straightedge (as is cus
tomary in geometric discussions). We shall use field extensions to settle two famous 
problems of antiquity: 

(A) Is it possible to trisect an arbitrary angle by ruler and compass constructions? 
(8) Is it possible via ruler and compass constructions to duplicate an arbitrary 

cube (that is, to construct the side of a cube having twice the volume of the given 
cube)? 

We shall assume as known all the standard ruler and compass constructions as 
presented in almost any plane geometry text. Example: given a straight line L and a 
point P not on L, the unique straight line through P and parallel L [resp. perpen
dicular to LJ is constructible. Here and below "constructible" means "constructible 
by ruler and compass constructions." 

Furthermore we shall adopt the viewpoint of analytic geometry as follows. 
Clearly we may construct with ruler and compass two perpendicular straight lines 
(axes). Choose a unit length. Then we can construct all points of the plane with 
integer coordinates (that is, locate them precisely as the intersection of suitable con
structible straight lines parallel to the axes). As will be seen presently, the solution to 
the stated problems will result from a knowledge of what other points in the plane 
can be constructed via ruler and compass constructions. 

If F is a subfield of the field R of real numbers, the plane of F is the subset of the 
plane consisting of all points (c,d) with c e F, de F. If P,Q are distinct points in the 
plane of F, the unique line through P and Q is called a line in F and the circle with 
center P and radius the line segment PQ is called a circle in F. It is readily verified 
that every straight line in F has an equation of the form ax + by + c = 0 (a,b,c e F) 
and every circle in F an equation of the form X2 + y2 + ax + by + c = 0 (a,b,c e F) 
(Exercise 24). 

Lemma 1.15. Let F be a subfield of the field R of real numbers and let L"L2 be 
nonparallel lines in F and C"C2 distinct circles in F. Then 
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(i) Ll n L2 is a point in the plane ofF; 
(ii) Ll n C1 = )25 or consists of one or two points in the plane ofF( -{tI) for some 

u E F (u ~ 0); 
(iii) C n C2 = )25 or consists of one or two points in the plane ofF( -{tI) for some 

u e F (u ~ 0). 

SKETCH OF PROOF. (i) Exercise. (iii) If the circles are C1 : X2 + y2 + alx + 
bly + CI = 0 and C2 : x2 + y2 + a2X + b2y + C2 = 0 (ai,bi,ci e F by the remarks pre
ceding the lemma), show that C1 n C2 is the same as the intersection of CI or C2 

with the straight line L : (al - a2)x + (bl - b2)y + (C1 - C2) = O. Verify that L is a 
line in F; then case (iii) reduces to case (ii). 

(ii) Suppose LI has the equation dx + ey + f = 0 (d,e,Je F). The case d = 0 is 
left as an exercise; if d"e 0, we can assume d = 1 (why?), so that x = (-ey - I). If 
(x,y) E L1 n Cl, then substitution gives the equation of C1 as 0 = (-ey - 1)2 + 
y2 + a1( -ey - f) + b1y + CI = Ay2 + By + C = 0, with A,B,C E F. If A = 0, 
then y E F; hence x E F and x,y E F(~l) = F. If A "e 0, we may assume A = 1. Then 
y2 + By + C = 0 and completing the square yields (y + B/2)2 + (C - B2/4) = O. 
This implies that either L1 n C1 = )25 or x,y E F(~u) with u = - C + B2/4 ~ O. • 

A real number c will be said to be constructible if the point (c,O) can be con
structed (precisely located) by a finite sequence of ruler and compass constructions 
that begin with points with integer coordinates. The constructibility of c (or (c,O» is 
clearly equivalent to the constructibility (via ruler and compass) of a line segment of 
length 1 c I. Furthermore the point (c,d) in the plane may be constructed via ruler 
and compass if and only if both c and d are constructible real numbers. The integers 
are obviously constructible, and it is not difficult to prove the following facts (see 
Exercise 25): 

(i) every rational number is constructible; 
(ii) if c ~ 0 is constructible, so is ~~; 

(iii) if c,d are constructible, then c ± d, cd, and c/ d (d "e 0) are constructible, so 
that the constructible numbers form a subfield of the real numbers that contains 
the rationals. 

Proposition 1.16. If a real number c is constructible, then c is algebraic of degree a 
power of2 over the field Q of rationals. 

PROOF. The preceding remarks show that we may as well take the plane ofQ as 
given. To say that c is constructible then means that (c,O) may be located (con
structed) by a finite sequence of allowable ruler and compass constructions be
ginning with the plane of Q. In the· course of these constructions various points ofthe 
plane will be determined as the intersections of lines and/or circles used in the con
struction process. For this is the only way to arrive at new points using only a ruler 
and compass. The first step in the process is the construction of a line or circle, 
either of which is completely determined by two points (center P and radius PT for 
the circle). Either these points are given as being in the plane of Q or else they may be 
chosen arbitrarily, in which case they may be taken to be in the plane of Q also. 
Similarly at each stage of the construction the two points that determine the line or 
circle used may be taken to be either points in the plane of Q or points constructed 



240 CHAPTER V FIELDS AND GALOIS THEORY 

in previous steps. In view of Lemma 1.15 the first new point so constructed lies in the 
plane of an extension field Q( -vu) of Q, with u E Q, or equivalently in the plane of an 
extension Q(v) with v2 E Q. Such an extension has degree 1 = 2° or 2 over Q (de
pending on whether or not v E Q). Similarly the next new point constructed lies in the 
plane of Q(v,w) = Q(v)(w) with w2 E Q(v). It follows that a finite sequence of ruler 
and compass constructions gives rise to a finite tower of fields: 

with Vi2 E Q(VI, ... , Vi_I) and [Q(Vl, ... , Vi) : Q(VI, ... , Vi-I») = 1 or 2 (2 ~ i ~ n). 
The point (c,O) constructed by this process then lies in the plane of F = Q(v" . .. ,vn ). 

By Theorem 1.2, [F : Q) is a power of two. Therefore, c is algebraic over Q (Theo
rem 1.11). Now Q C Q(c) C F implies that [Q(c) : Q) divides [F : Q) (Theorem 1.2), 
whence the degree [Q(c) : Q) of cover Q is a power of 2. • 

Corollary 1.17. An angle of 60° cannot be trisected by ruler and compass con
structions. 

PROOF. If it were possible to trisect a 60° angle, we would then be able to 
construct a right triangle with one acute angle of 20°. It would then be possible to 
construct the real number (ratio) cos 20° (Exercise 25). However for any angle a, 
elementary trigonometry shows that 

cos 3a = 4 cos3 a - 3 cos a. 

Thus if a = 20°, then cos 3a = cos 60° = ! and cos 20° is a root of the equation 
! = 4x3 - 3x and hence of the polynomial 8x3 - 6x - 1. But this polynomial is 
irreducible in Q[x) (see Theorem III. 6.6 and Proposition 111.6.8). Therefore cos 20° 
has degree 3 over Q and cannot be constructible by Proposition 1.16. • 

Corollary 1.18. It is impossible by ruler and compass constructions to duplicate a cube 
of side length 1 (that is, 10 construct the side ofa cube of volume 2). 

PROOF. If s is the side length of a cube of volume 2, then s is a root of x3 - 2, 
which is irreducible in Q[x) by Eisenstein's Criterion (Theorem 1II.6.15). Therefore 
s is not constructible by Proposition 1.16. • 

EXERCISES 

Note: Unless specified otherwise F is always an extension field of the field K and 
Q,R,C denote the fields of rational, real, and complex numbers respectively. 

1. (a) [F: K) = 1 if and only if I' = K. 
(b) If [I' : K) is prime, then there are no intermediate fields between F and K. 
(c) If u E F has degree n over K, then n divides [F: K). 

2. Give an example of a finitely generated field extension, which is not finite di
mensional. [Hint: think transcendental.) 
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3. If UI, .•• , Un E F then the field K(uJ, ... , Un) is (isomorphic to) the quotient field 
of the ring K[uJ, ... , unl. 

4. (a) For any UJ, • • • , Un E F and any permutation (f E Sn, K(UI, . . . , Un) 
= K(ua(l) , ... , ua(.). 
(b) K(UI, ... , Un_I)(U.) = K(uJ, ... , Un). 
(c) State and prove the analogues of (a) and (b) for K[UI, ... , unl. 
(d) If each Ui is algebraic over K, then K(uJ, ... , Un) = K[UI, ... , unl. 

5. Let Land M be subfields of F and LM their composite. 
(a) If K C L n M and M = K(S) for some S· C M, then LM = L(S). 
(b) When is it true that LM is the set theoretic union L U M? 
(c) If E I , ••• , En are subfields of F, show that 

EIE2 •• ·En = EI(E2(E3(·· ·(En_I(£,.»)·· .). 

6. Every element of K(XI, ... , Xn) which is not in K is transcendental over K. 

7. If v is algebraic over K( U ) for some U E F and v is transcendental over K, then U is 
algebraic over K(v). 

8. If U E F is algebraic of odd degree over K, then so is u2 and K(u) = K(u2). 

9. If x" - a E K[x I is irreducible and U E F is a root of xn - a and m divides n, then 
prove that the degree of urn over K is n/ m. What is the irreducible polynomial for 
urn over K? 

10. If F is algebraic over K and D is an integral domain such that KeD C F, then 
D is a field. 

11. (a) Give an example of a field extension KeF such that u,v E F are transcen
dental over K, but K(u,v) ~ K(XI,X2). [Hint: consider v over the field K(u).1 
(b) State and prove a generalization of Theorem 1.5 to the case of n transcen
dental elements UI, ••• , u". 

12. If d 2: 0 is an integer that is not a square describe the field Q(-Vd) and find a set 
of elements that generate the whole field. 

l3. (a) Consider the extension Q(u) of Q generated by a real root U of X3 - 6x2+ 
9x + 3. (Why is this irreducible?) Express each of the following elements in 
terms of the basis! l,u,u2 1 : u4 ;u5;3u5 - u4 + 2; (u + 1)-1; (u2 - 6u + 8)-1. 
(b) Do the same with respect to the basis! l,u,u2,u3,u4 1 of Q(u) where u is a real 
root of X5 + 2x + 2 and the elements in question are: (u2 + 2)(u3 + 3u);u-1; 

U4(U4 + 3u2 + 7u + 5);(u + 2)(u2 + 3)-1. 

14. (a) If F = Q('V2,'V3), find [F: QI and a basis of F over Q. 
(b) Do the same for F = Q(i,'V3,w), where iEC, j2 = -1, and w is a com
plex (nonreal) cube root of 1. 

15. In the field K(x), let u = x 3/(x + 1). Show that K(x) is a simple extension of the 
field K(u). What is [K(x) : K(u)l? 

16. In the field C, Q(i) and Q('V2) are isomorphic as vector spaces, but not as fields. 

17. Find an irreducible polynomial f of degree 2 over the field Z2. Adjoin a root u of 
ftoZ2 to obtain a fieldZ2(u) of order 4. Use the same method to construct a field 
of order 8. 
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18. A complex number is said to be an algebraic number if it is algebraic over Q and 
an algebraic integer if it is the root of a monic polynomial in Z[xJ. 

(a) If u is an algebraic number, there exists an integer n such that nu is an 
algebraic integer. 

(b) If r E Q is an algebraic integer, then r E Z. 
(c) If u is an algebraic integer and nEZ, then u + nand nu are algebraic 

integers. 
(d) The sum and product of two algebraic integers are algebraic integers. 

19. If U,V E F are algebraic over K of degrees m and n respectively, then 
[K(u,v) : KJ S mn. If (m,n) = 1, then [K(u,v) : KJ = mn. 

20. Let Land M be intermediate fields in the extension KeF. 
(a) [LM: KJ is finite if and only if [L : KJ and [M: K] are finite. 
(b) If [LM: K] is finite, then [L : KJ and [M: K] divide [LM: KJ and 

[LM : KJ S [L : KJ[M : K]. 

(c) If [L : K] and [M: K] are finite and relatively prime, then 

[LM:K] = [L :KJ[M:KJ. 

(d) If Land M are algebraic over K, then so is LM. 

21. (a) Let Land M be intermediate fields of the extension KeF, of finite dimen
sion over K. Assume that [LM : K] = [L : KJ[M : KJ and prove that L n M = K. 
(b) The converse of (a) holds if [L : K] or [M : KJ is 2. 
(c) Using a real and a nonrealcube rootof2 give an example whereL n M = K, 
[L : K] = [M : KJ = 3, but [LM : K] < 9. 

22. F is an algebraic extension of K if and only if for every intermediate field E every 
monomorphism q : E --+ E which is the identity on K is in fact an automorphism 
of E. 

23. If u E F is algebraic over K(X) for some X C F then there exists a finite subset 
X' C X such that u is algebraic over K(X'). 

24. Let F be a subfield ofR and P,Q points in the Euclidean plane whose coordinates 
lie in F. 

(a) The straight line through P and Q has an equation of the form 
ax + by + c = 0, with a,b,c E F. 

(b) The circle with center P and radius the line segment PQ has an equation 
of the form x 2 + y2 + ax + by + c = ° with a,b,c E F. 

25. Let c,d be constructible real numbers. 
(a) c + d and c - d are constructible. 
(b) If d ~ 0, then c/ d is constructible. [Hint: If (x,O) is the intersection of the 

x axis and the straight line through (0,1) that is parallel the line through (O,d) 
and (c,O), then x = c/d.] 

(c) cd is constructible [Hint: use (b)]. 
(d) The constructible real numbers form a subfield containing Q. 
(e) If c ~ 0, then ..[c is constructible. [Hint: If y is the length of the straight 

line segment perpendicular to the x axis that joins (1,0) with the (upper half of 
the) circle with center «c + 1)/2,0) and radius (c + 1)/2 then y = .ye.] 
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26. Let EI and E2 be subfields of F and X a subset of F. If every element of El is 
algebraic over E2 , then every element of EI(X) is algebraic over EiX). [Hint: 
EI(X) c (E2(X)(E1); use Theorem 1.12.] 

2. THE FUNDAMENTAL THEOREM 
The Galois group of an arbitrary field extension is defined and the concept of a 

Galois extension is defined in terms of the Galois group. The remainder of the section 
is devoted to proving the Fundamental Theorem of Galois Theory (Theorem 2.5), 
which enables us to translate problems involving fields, polynomials, and extensions 
into group theoretical terms. An appendix at the end of the section deals with sym
metric rational functions and provides examples of extensions having any given finite 
group as Galois group. 

Let F be a field. The set Aut F of all (field) automorphisms F -7 F forms a group 
under the operation of composition of functions (Exercise 1). In general, it is not 
abelian. It was Galois' remarkable discovery that many questions about fields 
(especially about the roots of polynomials over a field) are in fact equivalent to cer
tain group-theoretical questions in the automorphism group of the field. When these 
questions arise, they usually involve not only F, but also a (suitably chosen) subfield 
of F; in other words we deal with field extensions. 

If F is an extension field of K, we have seen in Section I that the K-module (vector 
space) structure of F is of much significance. Consequently, it seems natural to con
sider those automorphisms of F that are also K-module maps. Clearly the set of all 
such automorphisms is a subgroup of Aut F. 

More generally let E and F be extension fields of a field K. If u : E -7 F is a non
zero homomorphism of fields, then U(lE) = 11" by Exercise 111.1.15. If u is also a 
K-module homomorphism, then for every k E K 

u(k) = u(klE) = kU(lE) = kip = k. 

Conversely, if a homomorphism of fields u : E -7 F fixes K elementwise (that is, 
u(k) = k for all k E K), then u is nonzero and for any u E E, 

u(ku) = u(k)u(u) = ku(u) 

whence u is a K-module homomorphism. 

Definition 2.1. Let E and F be extension fields ofafieldK. A nonzero map u : E --? F 
which is both a field and a K-module homomorphism is called a K-homomorphism. 
Similarly if a field automorphism u E Aut F is a K-homomorphism, then u is called a 
K-automorphism ofF. The group of all K-automorphisms ofF is called the Galois 
group ofF over K and is denoted AutKF. 

REMARKS. K-monomorphisms and K-isomorphisms are defined in the obvious 
way. Here and below the identity element of AutKF and its identity subgroup will 
both be denoted by 1. 

EXAMPLE. Let F = K(x), with K any field. For each a E K with a ¢ 0 the map 
Ua : F --? F given by f(x)/g(x) f--> f(ax)/g(ax) is a K-automorphism of F; (this may 
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be verified directly or via Corollaries II1.2.21(iv), II1.4.6, and II1.5.6, and Theorem 
II1.4.4(ii». If K is infinite, then there are infinitely many distinct automorphisms Ua , 

whence AutKF is infinite. Similarly for each bE K, the map Tb : F ----> F given by 
f(x)/g(x) ~ f(x + b)/g(x + b) is a K-automorphism of F. If a ~ lK and b ~ 0, 
then UaTb ~ TbUa, whence AutKF is nonabelian. Also see Exercise 6. 

Theorem 2.2. Let F be an extensionjield ofK andf E K[xl.lfu 10 F is a root off and 
U 10 AutKF, then u(u) 10 F is also a root off. 

n 

PROOF. If f = L k,xi, then f(u) = 0 implies 0 = u(f(u» = u(Lkiui) 
i=1 

= Lu(k;)u(ui) = L kiu(U)i = f(u(u». • 
i 

One of the principal applications of Theorem 2.2 is in the situation where u is 
algebraic over K with irreducible polynomial flO K[xl of degree n. Then any 
U 10 AutKK(u) is completely determined by its action on u (since 11 K,u,u2, • •• , un-I} 
is a basis of K(u) over K by Theorem 1.6). Since u(u) is a root of fby Theorem 2.2, 
I AutKK(u) I ::; m, where m is the number of distinct roots of fin K(u); (m ::; n by 
Theorem 1II.6.7). 

EXAMPLES. Obviously if F = K, then AutKF consists of the identity element 
alone. The converse, however, is false. For instance, if u is a real cube root of 2 (so 
that Q C Q(u) C R), then AutQQ(u) is the identity group. For the only possible 

".. 

images of u are the roots of x 3 - 2 and the other two roots are complex. Similarly, 
AutQR is the identity (Exercise 2). 

EXAMPLES. C = R(i) and ±i are the roots of x 2 + 1. Thus AutRe has order 
at most 2. It is easy to verify that complex conjugation (a + bi I---> a - bi) is a non
identity R-automorphism of e, so that IAutRCi = 2 and hence AutRe '" Z2. Simi
larly AutQQ( .y3) ~ Z2. 

EXAMPLES. If F = Q(.y2,.y3) = Q(.y2)(.y3), then since x 2 - 3 is irreducible 
over Q( .y2)the proof of Theorem 1.2 and Theorem 1.6 show that II, .y2, .y3, ~6} is 
a basis of F over Q. Thus if u E AutQF, then u is completely determined by u( .y2) and 
u(.y3). By Theorem 2.2 u(.y2) = ±.y2 and u(.y3) = ±.y3 and this means that there 
are at most four distinct Q-automorphisms of F. It is readily verified that each of the 
four possibilities is indeed a Q-automorphism of F and that AutQF '" Z2 EBZ2. 

It is shown in the appendix (Proposition 2.16) that for any given finite group G, 
there is an extension with Galois group G.1t is still an open question as to whether or 
not every finite group is the Galois group of some extension over a specific field 
(such as Q). 

The basic idea of what is usually called Galois Theory is to set up some sort of 
correspondence between the intermediate fields of a field extension KeF and the 
subgroups of the Galois group AutKF. Although the case where F is finite dimen
sional over K is of the most interest, we shall keep the discussion as general as 
possible for as long as we can. The first step in establishing this correspondence is 
given by 
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Theorem 2.3. Let F be an extension field of K, E an intermediate field and H a sub
group of AutKF. Then 

(i) H' = (v E F I a-(v) = v for all (j E H 1 is an intermediate field of the extension; 
(ii) E' = ((j E AutKF I (j(u) = u for all u E EJ = AutEF is a subgroup of AutKF. 

PROOF. Exercise. • 

The field H' is called the fixed field of H in F (although this is a standard term 
there is no universal notation for it, but the "prime notation" will prove useful). 
Likewise, whenever it is convenient, we shall continue to denote the group AutEF in 
this context as E'. If we denote A ut[{F by G, it is easy to see that on the one hand, 

F' = AutFF = 1 and K' = AutKF = G; 

and on the other, I' = F (that is, F is the fixed field of the identity subgroup). It is 
not necessarily true, however, that G' = K (as can be seen in the first examples after 
Theorem 2.2, where G = 1 and hence G' = F,c. K; also see Exercise 2). 

Definition 2.4. Let F be an extension field ofK such that the fixedfield of the Galois 
group AutKF is K itself. Then F is said to be a Galois extension (field) ofK or to be 
Galois over K.l 

REMARKS. F is Galois over K if and only if for any u E F - K, there exists a 
K-automorphism (j E AutKF such that (j(u) ,c. u. If F is an arbitrary extension field of 
K and Ko is the fixed field of AutKF (possibly Ko ,c. K), then it is easy to see that F is 
Galois over Ko, that K C Ko, and that AutKF = AUtKoF. 

EXAMPLES. C is Galois over Rand Q( ~3) is Galois over Q (Exercise 5). If K 
is an infinite field, then K(x} is Galois over K (Exercise 9). 

Although a proof is still some distance away, it is now possible to state the 
Fundamental Theorem of Galois Theory, so that the reader will be able to see just 
where the subsequent discussion is headed. If L,M are intermediate fields of an ex
tension with L C M, the dimension [M : L] is called the relative dimension of Land 
M. Similarly, if H,J are subgroups of the Galois group with H < J, the index [J : H] 
is called the relative index of Hand J. 

Theorem 2.5. (Fundamental Theorem of Galois Theory) If F is a finite dimensional 
Galois extension of K, then there is a one-to-one correspondence between the set of all 

lA Galois extension is frequently required to be finite dimensional or at least algebraic 
and is defined in terms of normality and separability, which will be discussed in Section 3. 
In the finite dimensional case our definition is equivalent to the usual Ode. Our definition is 
essential1y due to Artin, except that he cal1s such an extension "normal." Since this use of 
"normal" conflicts (in case char F 7"'- 0) with the definition of "normal" used by many 
other authors, we have chosen to fol1ow Artin's basic approach, but to retain the (more or 
less) conventional terminology. 
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intermediate fields of the extension and the set of all subgroups of the Galois group 
AutKF (given by E f-> E' = AutEF) such that: 

(i) the relative dimension of two intermediate fields is equal to the relative index of 
the corresponding subgroups; in particular, AutKF has order [F : KJ; 

(ii) F is Galois over every intermediate field E, but E is Galois over K if and only if 
the corresponding subgroup E' = AutEF is normal in G = AutKF; in this case GjE' is 
(isomorphic to) the Galois group AutKE ofE over K. 

The proof of the theorem (which begins on p. 251) requires some rather lengthy 
preliminaries. The rest of this section is devoted to developing these. We leave the 
problem of constructing Galois extension fields and the case of algebraic Galois ex
tensions of arbitrary dimension for the next section. The reader should note that 
many of the propositions to be proved now apply to the general case. 

As indicated in the statement of the Fundamental Theorem, the so-called Galois 
correspondence is given by assigning to each intermediate field E the Galois group 
AutEF of F over E.1t will turn out that the inverse of this one-to-one correspondence 
is given by assigning to each subgroup H of the Galois group its fixed field in F. It 
will be very convenient to use the "prime notation" of Theorem 2.3, so that E' de
notes AutEF and H' denotes the fixed field of H in F. 

It may be helpful to visualize these priming operations schematically as follows. 
Let Land M be intermediate fields of the extension KeF and let J,H be subgroups 
of the Galois group G = AutKF. 

F .. 1 F<if I 1 

U /\ U /\ 

MI .. M' H' .. IH 
U /\ U /\ 

L • L' J' .. I J 

U /\ U /\ 

K .. G; K G. 

Formally, the basic facts about the priming operations are given by 

Lemma 2.6. Let F be an extension field ofK with intermediate fields Land M. Let H 
and J be subgroups ofG = AutKF. Then: 

(i) F' = 1 andK' = G; 
(i') l' = F; 
(ii) L eM=} M' < L'; 

(ii') H < J=}J' C H'; 
(iii) L C L" and H < H" (where L" = (L')' and H" = (H')'); 
(iv) L' = L'" and H' = H"'. 

SKETCH OF PROOF. (i)-(iii) follow directly from the appropriate definitions. 
To prove the first part of (iv) observe that (iii) and (ii) imply L'" < L' and that (iii) 
applied with L' in place of H implies L' < L"'. The other part is proved similarly. • 



~ THE FUNDAMENTAL THEOREM 247 

REMARKS. It is quite possible for L" to contain L properly (similarly for H" 
and H). F is Galois over K (by definition) if G' = K. Thus since K' = G in any case, 
F is Galois over K if and only if K = K". Similarly F is Galois over an intermediate 
field E if and only if E = E". 

Let X be an intermediate field or subgroup of the Galois group. X will be called 
closed provided X = X". Note that F is Galois over K if and only if K is closed. 

Theorem 2.7. IfF is an extension field 0 fK, then there is a one-to-one correspondence 
between the closed intermediate fields of the extension and the closed subgroups of the 
Galois group, given by E f-. E' = AutEF. 

PROOF. Exercise; the inverse of the correspondence is given by assigning to 
each closed subgroup H its fixed field H'. Note that by Lemma 2.6(iv) all primed 
.objects are closed. • 

This theorem is not very helpful until we have some more specific information as 
to which intermediate fields and which subgroups are closed. Eventually we shall 
show that in an algebraic Galois extension all intermediate fields are closed and that 
in the finite dimensional case all subgroups of the Galois group are closed as well. 
We begin with some technical lemmas that give us estimates of various relative di
mensions. 

Lemma 2.B. Let F be an extension field of K and L,M intermediate fields with 
L C M. If [M : L] is finite, then [V : M'] ~ [M : L]. In particular, if [F : K] is 
finite, then IAutKFI ~ [F : K]. 

PROOF. We proceed by induction on n = [M : LJ, with the case n = 1 being 
trivial. If n > 1 and the theorem is true for all i < n, choose u e M with u • L. Since 
[M : L] is finite, u is algebraic over L (Theorem 1.11) with irreducible polynomial 
feL[x] of degree k > 1. By Theorems 1.6 and 1.1, [L(u) : L) = k and [M: L(u)] = n/k. 
Schematically we have: 

MI .M' 
n/k U /I. 

n 

k U /I. 

L I • L'. 

There are now two cases. If k < n, then 1 < n/k < n and by induction [L' : L(u),) ~ k 
and [L(u)' : M'] ~ n/k. Hence [L' : M'] = [L' : L(u)'][L(u)' : M') ~ k(n/k) = n 
= [M: L] and the theorem is proved. On the other hand if k = n, then [M: L(u)] = 1 
and M = L(u). In order to complete the proof in this case, we shall construct an in
jective map from the set of S of all left cosets of M' in L' to the set T of all distinct 
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roots (in F) of the polynomial fe L[x], whence lSI:::; ITI. Since ITI :::; n by Theorem 
III.6.7 and lSI = [L' : M'] by definition, this will show that [L' : M'] :::; ITI :::; n 
= [M : L]. The final statement of the theorem then follows immediately since 
IAutKFI = [AutKF: 1] = [K' : F'] :::; [F : K]. 

Let TM' be a left coset of M' in L'. If u E M' = AutMF, then since U eM, 

TU(U) = T(U). Thus every element of the coset TM' has the same effect on U and maps 
U f-> T(U). Since TeL' = AutLF, and u is a root of fE L[x], T(U) is also a root of fby 
Theorem 2.2. This implies that the map S -> T given by TM' f-> T(U) is well defined. 
If T(U) = To(U) (T,To E LJ, then To-IT(U) = U and hence To-IT fixes u. Therefore, To-IT 

fixes L(u) = M elementwise (see Theorem 1.6(iv» and To-IT EM'. Consequently by 
Corollary 1.4.3 ToM' = TM' and the map S -> T is injective. • 

Several important applications of Lemma 2.8 are treated in tne appendix. We 
now prove an analogue of Lemma 2.8 for subgroups of the Galois group. 

Lemma 2.9. Let F be an extension field ofK and let H,J be subgroups of the Galois 
group AUtKF with H < J. If[J : H] is finite, then [H' : J'] :::; [J : H]. 

PROOF. Let [J: H] = n and suppose that [H': J'] > n. Then there exist 
UI,U2, ••• , Un+1 E H' that are linearly independent over J'. Let /Tl,T2, •.. , Tnl be a 
complete set of representatives of the left cosets of H in J (that is, J = TIH U T2H 
U ... U T,.H and T i-IT; e H if and only if i = j) and consider the system of n homo
geneous linear equations in n + I unknowns with coefficients Ti(Uj) in the field F: 

TI(UI)XI + TI(U2)X2 + TI(U3)X3 + ... + TI(Un+I)Xn+1 = 0 

T2(UI)XI + T2(U2)X2 + T2(U3)X3 + ... + T~Un+I)Xn+1 = 0 

(1) 

Such a system always has a nontrivial solution (that is, one different from the zero 
solution XI = X2 = ... = Xn+1 = 0; see Exercise VII.2.4(d». Among all such non
trivial solutions choose one, say XI = ai, ..• ,Xn+1 = an+1 with a minimal number of 
nonzero ai. By reindexing if necessary we may assume that XI = ai, .•. , Xr = ar, 

Xr+1 = ... = Xn+1 = 0 (ai "c 0). Since every multiple of a solution is also a solution 
we may also assume al = IF (if not multiply through by ai-I). 

We shall show below that the hypothesis that UI, ••. ,Un+1 E H' are linearly inde
pendent over J' (that is, that [H' : J'] > n) implies that there exists U E J such that 
XI = Ual, X2 = ua2, .•. , Xr = uar, Xr+1 = ... = Xn+1 = 0 is a solution of the system 
(1) and ua2 "c a2. Since the difference of two solutions is also a solution, XI = al - ual, 

X2 = a2 - ua2, ••• ,Xr = a r - uar, Xr+1 = ... = Xn+1 = 0, is also a solution of (1). 
But since al - ual = IF - IF = 0 and a2 "c ua2, it follows that XI = 0, X2 = a2 -

ua2, •.• ,Xr = ar - uar, Xr~1 = ... == Xn+1 = 0 is a nontrivial solution of(1) (X2 "c 0) 
with at most r - I nonzero entries. This contradicts the minimality of the solution 
XI = al, .•. , Xr = a., Xr+1 = ... = Xn+1 = O. Therefore [H' :J'] :::; n as desired. 
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To complete the proof we must find U E J with the desired properties. Now exactly 
one of the T;, say TI, is in H by definition; therefore TI(Ui) = Ui E H' for all i. Since the 
ai form a solution of (1), the first equation of the system yields: 

The linear independence of the Ui over JI and the fact that the ai are nonzero imply 
that some ai, say a2, is not in JI. Therefore there exists U E J such that ua2 F- a2. 

Next consider the system of equations 

UTI(UI)XI + UTt(U2)X2 + ... + UTI(Un+I)Xn+1 = 0 

UT2(UI)XI + uTiu2)X2 + ... + uTiun+I)Xn+1 = 0 

(2) 

It is obvious, since U is an automorphism and Xl = aI, ... , XT = aT, XT+I = ... = 
Xn+l = 0 is a solution of (1), that Xl = ua!, ... ,XT = uaT, XT+I = ... = Xn+l = 0 is a 
solution of (2). We claim that system (2), except for the order of the equations, is 
identical with system (1) (so that XI = Ual, ... ,XT = uaT, Xr+1 = ... = X,,+I = 0 is a 
solution of (1)). To see this the reader should first verify the following two faets. 

(i) For any U E J, {UTt,UT2, ... , UTn I C J is a complete set of coset representa
tives of H in J; 

(ii) if t and (J are both elements in the same coset of H in J, then (since U; E H') 
t(Ui) = (J(Ui) for i = 1,2, ... ,n + 1. 
It follows from (i) that there is some reordering it, ... , i,,+1 of 1,2, ... , n + 1, so 
that for each k = 1,2, ... , n + 1 UTk and Tik are in the same coset of H in J. By (ii) 
the kth equation of (2) is identical with the ikth equation of (1). • 

Lemma 2.10. Let F be an extension field ofK, Land M intermediate fields with 
L C M, and H,J subgroups of the Galois group AutKF with H < J. 

(i) IfL is closed and [M : L] finite, then M is closed and [L' : M/] = [M : L]; 
(ii) ifH is closed and [J : H] finite, then J is closed and [H' : J/] = [J : H]; 

(iii) if F is a finite dimensional Galois extension ofK, then all intermediate fields 
and all subgroups of the Galois group are closed and AUtKF has order [F : K]. 

Note that (ii) (with H = 1) implies that every finite subgroup of AutKFis closed. 

SKETCH OF PROO .. ' OF 2.10. (ii) Applying successively the facts that 
;/ C J" and H = H" and Lemmas 2.8 and 2.9 yields 

[J: H] :s; [J" : H] = [JII : H"] :s; [H' : JI] :s; [J: H]; 

this implies that J = J" and [H' : JI] = [J: H]. (i) is proved similarly. 
(iii) If E is an intermediate field then [E : K] is finite (since [F : K] is). Since F is 

Galois over K, K is closed and (i) implies that E is closed and [K' : E'] = [E: K]. In 
particular, if E = F, then IAutKFI = [AutKF: 1] = [K' : F'] = [F: K] is finite. 
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Therefore, every subgroup J of AutKF is finite. Since lis closed (ii) implies that J is 
closed. • 

The first part of the Fundamental Theorem 2.5 can easily be derived from Theo
rem 2.7 and Lemma 2.10. In order to prove part (ii) of Theorem 2.5 we must deter
mine which intermediate fields correspond to normal subgroups of the Galois group 
under the Galois correspondence. This will be done in the next lemma. 

If E is an intermediate field of the extension KeF, E is said to be stable (relative 
to K and F) if every K-automorphism u e: AutKF maps E into itself. If E is stable and 
u-1 E AutKF is the inverse automorphism, then u-1 also maps E into itself. This im
plies that u I E is in fact a K-automorphism of E (that is, u lEe: AutKE) with inverse 
u-1 I E. It will turn out that in the finite dimensional case E is stable if and only if E is 
Galois over K. 

Lemma 2.11. Let F be an extension field ofK. 

(i) IfE is a stable intermediate field of the extension, then E' = AUtEF is a normal 
subgroup of the Galois group AUtKF; 

(ii) if H is a normal subgroup of AUtKF, then the fixed field H' of H is a stable 
intermediate field of the extension. 

PROOF. (i) If u e: E and u e: AutKF, then u(u) e: E by stability and hence 
TU(U) = u(u) for any T e: E' = AU1EF. Therefore, for any u e: AutKF, T e: E' and u e: E, 
U-1TU(U) = u-1u(u) = u. Consequently, U-1TU e: E' and hence E' is normal in AutKF. 

(ii) If u e: AutKF and T e: H, then U-1TU e: H by normality. Therefore, for any 
u e: H', U-1TU(U) = u, which implies that TU(U) = o{u) for all T e: H. Thus u(u) e: H' 
for any u e: H', which means that H' is stable. • 

In the next three lemmas we explore in some detail the relationships between 
stable intermediate fields and Galois extensions and the relationship of both to the 
Galois group. 

Lemma 2.12. IfF is a Galois extension field ofK and E is a stable intermediate field 
of the extension, then E is Galois ODer K. 

PROOF. If u e E - K, then there exists u e: AutKF such that u(u) ~ u since F is 
Galois over K. But u lEe: AutKE by stability. Therefore, E is Galois over K by the 
Remarks after Definition 2.4. • 

Lemma 2.13. IfF is an extension field ofK and E is an intermediate field of the ex
tension such that E is algebraic and Galois over K, then E is stable (relative to F andK). 

REMARK. The hypothesis that E is algebraic is essential; see Exercise 13. 

PROOF OF 2.13. If u e: E, let fe: K[xj be the irreducible polynomial of u and let 
u = U1, U2, . .. ,Ur be the distinct roots of fthat lie in E. Then r :::; n = degfby Theo-
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rem 111.6.7. If T e AutKE, then it follows from Theorem 2.2 that T simply permutes 
the Ui. This implies that the coefficients of the monic polynomial g(x) = (x - Ul) 

(x - U2)' .• (x - ur) e E[xl are fixed by every T e AutKE. Since E is Galois over K, we 
must have g e K[xl. Now U = Ul is a root of g and hence fig (Theorem 1.6(ii)). 
Since g is monic and deg g ::; deg f, we must have f = g. Consequently, all the roots 
of fare distinct and lie in E. Now if u e AutKF, then u(u) is a root of fby Theorem 2.2, 
whence u(u) e E. Therefore, E is stable relative to F and K. • 

Let E be an intermediate field of the extension KeF. A K-automorphism 
T e AutKE is said to be extendible to F if there exists u e AutKF such that u IE = T. 

It is easy to see that the extendible K-automorphisms form a subgroup of AutKE. 
Recall that if E is stable, E' = AutEF is a normal subgroup of G = AutKF (Lemma 
2.11). Consequently, the quotient group G/E' is defined. 

Lemma 2.14. Let F be an extensionjield ofK and E a stable in termediatejield of the 
extension. Then the quotient group AutKF / AutEF is isomorphic to the group of all 
K-automorphisms of E that are extendible to F. 

SKETCH OF PROOF. Since E is stable, the assignment u ~ u I E defines a 
group homomorphism AutKF ~ AutKE whose image is clearly the subgroup of all 
K-automorphisms of E that are extendible to F. Observe that the kernel is AutEF and 
apply the First Isomorphism Theorem 1.5.7. • 

PROOF OF THEOREM 2.5. (Fundamental Theorem of Galois Theory) Theo
rem 2.7 shows that there is a one-to-one correspondence between closed intermediate 
fields of the extension and closed subgroups of the Galois group. But in this case all 
intermediate fields and all subgroups are closed by Lemma 2.10(iii). Statement (i) of 
the theorem follows immediately from Lemma 2.10(i). 

(ii) F is Galois over E since E is closed (that is, E = E"). E is finite dimensional 
over K(since Fis) and hence algebraic over K by Theorem 1.11. Consequently, if Eis 
Galois over K, then E is stable by Lemma 2.13. By Lemma 2.11(i) E' = AutEF is 
normal in AutKF. Conversely if E' is normal in AutKF, then E" is a stable inter
mediate field (Lemma 2.1 1 (ii». But E = E" since all intermediate fields are closed 
and hence E is Galois over K by Lemma 2.12. 

Suppose E is an intermediate field that is Galois over K (so that E' is normal in 
AutKi'). Since E and E' are closed and G' = K (F is Galois over K), Lemma 2.10 
implies that IG/E'I = [G : E'l = [E" : G'J = [E : KJ. By Lemma 2.14 G/E' = 
AutKF / AutEF is isomorphic to a subgroup (of order [E: K]) of AutKE. But part 
(i) of the theorem shows that I AutKE I = [E : KJ (since E is Galois over K). This 
implies that G / E' '" AutKE. • 

The modern development of Galois Theory owes a great deal to Emil Artin. Al
though our treatment is ultimately due to Artin (via I. Kaplansky) his approach 
differs from the one given here in terms of emphasis. Artin's viewpoint is that the 
basic object is a given field F together with a (finite) group G of automorphisms of F. 
One then constructs the subfield K of F as the fixed field of G (the proof that the sub
set of F fixed elementwise by G is a field is a minor variation of the proof of Theo
rem 2.3). 
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Theorem 2.15. (Artin) Let F be afield, G a group of aut om or ph isms ofF and K the 
fixed field ofG in F. Then F is Galois over K. If G is finite, then F is afinite dimen
sional Galois extension of K with Galois group G. 

PROOF. In any case G is a subgroup of Aut[{F. If u E F - K, then there must be 
a u € G such that u(u) ~ u. Therefore, the fixed field of Aut[{F is K, whence F is 
Galois over K. If G is finite, then Lemma 2.9 (with H = 1, J = G) shows that 
[F: K] = [I' : G'] ::::; [G : I] = IGI. Consequently, F is finite dimensional over K, 
whence G = G" by Lemma 2.10(iii). Since G' = K (and hence G" = K') by hy
pothesis, we have Aut[{F = K' = G" = G. • 

APPENDIX: SYMMETRIC RATIONAL FUNCTIONS 

Let K be a field, K[Xl, ... , Xn] the polynomial domain and K(XI, ... , Xn) 
the field of rational functions (see the example preceding Theorem 1.5). Since 
K(xJ, ... , xn) is by definition the quotient field of K[Xl, ... , xn], we have 
K[XI, ... , xnl C K(XI, ... , Xn) (under the usual identification of fwith f/I[{). Let Sn 
be the symmetric group on n letters. A rational function <p € K(Xl, ... , Xn) is said to 
be symmetric in Xl, ••• , Xn over K if for every u E Sn, 

Trivially every constant polynomial is a symmetric function. If n = 4, then the poly
nomials j; = Xl + X2 + Xa + X4, fz = XlX2 + XIXa + XlX4 + X2Xa + X2X4 + XaX4, 
13 = XlX2Xa + XjX2X4 + XlXaX4 + X2XaX4 and /4 = XlX2XaX4 are all symmetric func
tions. More generally the elementary symmetric functions in Xl, ••• , Xn over K are 
defined to be the polynomials: 

n 

j; = Xl + X2 + ... + Xn = LXi; 
i=1 

f2 = L XiXi; 
1 :5:i<i:5:n 

13 = ~= XiXiXk; 
1 :5:i<i<k:5:n 

The verification that the fi are indeed symmetric follows from the fact that they are 
simply the coefficients of y in the polynomial g(y) E K[xl, ... , Xn][Y], where 

g(y) = (y - XI)(Y - X2)(y - Xa)" .(y - Xn) 

= yn _ j;yn-l + f,yn-2 - ... + ( - I )n-11n_IY + ( -1)n In. 

If U E Sn, then the assignments Xi f-> XU(i)(i = 1,2, ... , n) and 

I(xl , ••• , xn)jg(xl , ••• , xn)f- l(xU(l)' ... , x(I(n»/g(x(I(l)' ... , x(I(n» 
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define a K-automorphism of the field K(XI, ... , Xn) which will also be denoted u 
(Exercise 16). The map Sn ~ AutKK(xJ, ... ,xn) given by u I-> u is clearly a mono
morphism of groups, whenceSn may be considered to be a subgroup of the Galois 
group AutKK(xJ, ... , Xn). Clearly, the fixed field E of Sn in K(XI, ... ,xn) consists 
precisely of the symmetric functions; that is, the set of all symmetric functions is a 
subfield of K(XI, ... , Xn) containing K. Therefore, by Artin's Theorem 2.15 
K(XI, ... , Xn) is a Galois extension of E with Galois group Sn and dimension iSni 
= n!. 

Proposition 2.16. lfG is a finite group, then there exists a Galois field extension 
with ,Galois group isomorphic to G. 

PROOF. Cayley's Theorem 11.4.6 states that for n = iGi, G is isomorphic to a 
subgroup of Sn (also denoted G). Let K be any field and E the subfield of symmetric 
rational functions in K(xJ, ... ,xn). The discussion preceding the theorem shows 
that K(XI, ... , Xn) is a Galois extension of E with Galois group Sn. The proof of the 
Fundamental Theorem 2.5 shows that K(XI, ... , Xn) is a Galois extension of the 
fixed field EI of G such that AutEIK(XI, ... ,xn) = G. • 

The remainder of this appendix (which will be used only in the appendix to Sec
tion 9) is devoted to proving two classical theorems about symmetric functions. 
Throughout this discussion n is a positive integer, K an arbitrary field, E the subfield 
of symmetric rational functions in K(xJ, ... , Xn) and /i., ... ,In E E the elementary 
symmetric functions in XI, ... ,Xn over K. We have a tower of fields: 

K C K(Ji., ... ,In) C E C K(XI, ... , Xn). 

In Theorem 2.18 we shall show that E = K( /i., ... ,In). 
If UJ, ... , Ur E K(XI, ... , xn), then every element of K(UI, ... , ur) is of the form 

g(UI, ... , ur)/ h(u" ... , ur) with g, hE K[X', ... , XrJ by Theorem 1.3. Consequently, 
an element of K(uJ, ... , ur) [resp. K[U" ... , urll is usually called a rational function 
[resp. polynomialJ in UI, ... ,Ur over K. Thus the statement E = K(/i., ... ,In) may 
be rephrased as: every rational symmetric function is in fact a rational function of the 
elementary symmetric functions /i., ... ,In over K. In order to prove that 
E = K(/i., ... ,In) we need 

Lemma 2.17. Let K be a field, f" ... ,fn the elementary symmetric functions in 
xl, ... , Xn over K and k an integer with 1 ~ k ~ n - l.lJhI' ... , hk E K[X" ... , xnJ 
are the elementary symmetric functions in XI, ... , Xk, then each hi can be written as a 
polynomial over K in fl,f2' ... , fn and Xk+J,Xk+2, ... , xn. 

SKETCH OF PROOF. The theorem is true when k = n - 1 since in that case 
hi = /i. - Xn and hi = /; - hi-Ixn (2 ~ j ~ n). Complete the proof by induction on 
k in reverse order: assume that the theorem is true when k = r + 1 and 
r + 1 ~ n -1. Let g" . . . , gr+I be the elementary symmetric functions in 
Xl, ... , Xr+1 and hI, ... , hr the elementary symmetric functions in Xl, ... , xr. Since 
hI = gl - Xr+I and hi = gi - hi-lxr+1 (2 ~ j ~ r), it follows that the theorem is also 
true for k = r. • 
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Theorem 2.18. If K is a field, E the sub field of all symmetric rational functions 
in K(x!, ... , Xn) and fl' ... , fn the elementary symmetric functions, then 
E = K(f!, ... , fn)' 

SKETCH OF PROOF. Since [K(XI, ... ,xn ) : E] = n! and K(ji, ... , In) C E C 
K(xl, ... ,x,,), it suffices by Theorem 1.2 to show that [K(x!, ... , Xn) : K(ji, ... ,In)] 
::; nL Let F = K(ji, ... ,In) and consider the tower of fields: 

Since F(Xk,Xk+l, ... ,xn) = F(Xk+I, ... , Xn)(Xk), it suffices by Theorems 1.2 and 1.6 
to show that x" is algebraic over F of degree::; n and for each k < n, Xk is algebraic 
of degree ::; k over F(Xk+I, ... ,x,,). To do this, let g,,(y) e F[y] be the polynomial 

Since g" e F[y] has degree n and x" is a root of g", x" is algebraic of degree at most n 
over F = K(ji, ... ,In) by Theorem 1.6. Now for each k (1 ::; k < n) define a monic 
polynomial: 

Clearly each gk(y) has degree k, Xk is a root of gly) and the coefficients of giy) are 
precisely the elementary symmetric functions in XI, ... ,Xk. By Lemma 2.17 each 
gk(y) lies in F(Xk+l, ... ,x,,)[y], whence Xk is algebraic of degree at most k over 
F(Xk+l, ... , x,,). • 

We shall now prove an analogue of Theorem 2.18 for symmetric polynomial func-
tions, namely: every symmetric polynomial in XI, ... , x" over K is in fact a poly-
nomial in the elementary symmetric functions ji, ... , In over K. In other words, 
every symmetric polynomial in K[XI, ... , x,,] lies in K[ji, ... , f.]. First we need 

Lemma 2.19. Let K be afield andE the sub field of a II symmetric rational junctions in 
K(XI, ... , xn)' Then the set X = {XlilX2i2 ... xllin I 0 ::; ik < k for each kl is a basis of 
K(x!, ... , Xn) over E. 

SKETCH OF PROOF. Since [K(XI, ... , x,,) : E] = n! and IXI = n!, it suffices 
to show that X spans K(XI, ... , Xn) (see Theorem IV.2.S). Consider the tower of 
fields E C E(x,,) C E(x,,_I,x.) c· .. C E(XI, ... ,x,,) = K(XI, ... , x,,). Since x. is al
gebraic of degree::; n over E (by the proof of Theorem 2.18), the set {x"i I 0 ::; j < n I 
spans E(x,,) over E (Theorem 1.6). Since E(x"_,,xn) = E(xn)(X,,_I), and X,,_I is algebra
ic of degree::; n - lover E(xn), the set {X~_I I 0 ::; i < n - 11 spans E(xn_l,Xn) over 
E(x.). The argument in the second paragraph of the proof of Theorem IV.2.16 shows 
that the set {x~_lx"i I 0 ::; i < n - [; 0 ::; j < n I spans E(Xn_I,X.) over E. This is the 
first step in an inductive proof, which is completed by similar arguments. • 

Proposition 2.20. Let K be a field and let f l , ... , f" be the elementary symmetric 
junctions in K(XI, ... , x,,). 
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(i) Erer), polynomial in K[xl, ... , Xn] can be written uniquely as a linear combina-
tion of the n! elements XlilX2i, ... xn in (0 ~ ik < k for each k) with coefficients in 
K[fl, ... ,fn]; 

(ii) every symmetric polynomial in K[xl, .. ", xn]lies in K[f" ... , fn]' 

PR OOF. Let gk (y)( k = 1, ... , n) be as in the proof of Theorem 2.18. As noted 
there the coefficients of giy) are polynomials (over K) in j;, ... ,In and Xk+l, ... ,Xn. 

Since gk is monic of degree k and gk(Xk) = 0, Xkk can be expressed as a polynomial 
over K in j;, ... ,In, Xk+l, ••• ,Xn and Xki (i ~ k - 1). If we proceed step by step 
beginning with k = 1 and substitute this expression for Xk k in a polynomial 
h € K[x" ... , Xn], the result is a polynomial in j;, ... ,/., x" ... , Xn in which the 
highest exponent of any Xk is k - 1. In other words h is a linear combination of the 
n! elements Xli1Xi, .. ·xn in (ik < k for each k) with coefficientsinK[j;, ... ,/..]. Fur
thermore these coefficient polynomials are uniquely determined since 

{XliI.. 'Xn in I 0 ~ h < k for each kl 

is linearly independent over E = K(j;, . .. ,In) by Lemma 2.19. This proves (i) and 
also implies that if a polynomial h € K[XI, ... ,xn ] is a linear combination of the 
XliI. . 'Xni » (h < k) with coefficients in K(j;, ... ,In), then the coefficients are in fact 
polynomials in K[j;, ... ,/.]. In particular, if h is a symmetric polynomial (that is, 
h € E = K(j;, . .. ,/.», then h = hxh20 ... xno necessarily lies in K[j;, . .. , /.]. This 
proves (ii). • 

EXERCISES 

Note: Unless stated otherwise F is always an extension field of the field K and E is 
an intermediate field of the extension. 

1. (a) If F is a field and (J : F -+ F a (ring) homomorphism, then (J = 0 or (J is a 
monomorphism. If (J ~ 0, then (J(h) = IF. 
(b) The set Aut F of all field automorphisms F -+ F forms a group under the 
operation of composition of functions. 
(c) AutKF, the set of all K-automorphisms of F is a subgroup of Aut F. 

2. AutQR is the identity group. [Hint: Since every positive element ofR is a square, 
it follows that an automorphism of R sends positives to positives and hence that 
it preserves the order in R. Trap a given real number between suitable rational 
numbers.] 

3. If 0 ~ d € Q, then AutQQ(.yd) is the identity or is isomorphic to Z2. 

4. What is the Galois group of Q(.y2,.y3,.yS) over Q? 

5. (a) If 0 ~ de Q, then Q( .yd) is Galois over Q. 
(b) C is Galois over R. 

6. Let fig e K(x) with fig 1 K and f,g relatively prime in K[x] and consider the ex
tension of K by K(x). 

(a) X is algebraic over K(JIg) and [K(x): K(JIg)] = max (deg f,deg g). 
[Hint: X is a root of the nonzero polynomial 'P(y) = (JIg)g(y) - f(y) e K(.Ilg)[y]; 
show that 'P has degree max (deg f,deg g). Show that 'P is irreducible as follows. 
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Since fig is transcendental over K (why?) we may for convenience replace 
KUIg) by K(z) (z an indeterminate) and consider cp = zg(y) - fey) e K(z)[y]. By 
Lemma II1.6.13 cp is irreducible in K(z)[y] provided it is irreducible in K[z][y]. 
The truth of this latter condition follows from the fact that cp is linear in z and J.g 
are relatively prime.] 

(b) If E ¢ K is an intermediate field, then [K(x) : E] is finite. 
(c) The assignment x f--. fig induces a homomorphism q : K(x) -+ K(x) such 

that cp(x)N(x) ~ cp(flg)NUlg). q is a K automorphism of K(x) if and only if 
max (deg J.deg g) = 1. 

(d) AutKK(x) consists of all those automorphisms induced (as in (c» by the 
assignment 

x ~ (ax + b)/(cx + d), 

where a,b,c,d e K and ad - be ¢ O. 

7. Let G be the subset of AutKK(x) consisting of the three automorphisms induced 
(as in 6 (c» by x f-> x, x t-> lKI(lK - x), x f-+ (x - lK)1 x. Then G is a subgroup 
of AutKK(x). Determine the fixed field of G. 

8. Assume char K = 0 and let G be the subgroup of AutKK(x) that is generated by 
the automorphism induced by x ~ x + lK. Then G is an infinite cyclic group. 
Determine the fixed field E of G. What is [K(x) : E]? 

9. (a) If K is an infinite field, then K(x) is Galois over K. [Hint: If K(x) is not Galois 
over K, then K(x) is finite dimensional over the fixed field E of AutKK(x) by 
Exercise 6(b). But AutEK(x) = AutKK(x) is infinite by Exercise 6(d), which con
tradicts Lemma 2.8.] 
(b) If K is finite, then K(x) is not Galois over K. [Hint: If K(x) were Galois over 
K, then AutKK(x) would be infinite by Lemma 2.9. But AutKK(x) is finite by 
Exercise 6(d).] 

10. If K is an infinite field, then the only closed subgroups of AutKK(x) are itself and 
its finite subgroups. [Hint: see Exercises 6(b) and 9.] 

II. In the extension of Q by Q(x), the intermediate field Q(x2) is closed, but Q(x3) 

is not. 

12. If E is an intermediate field of the extension such that E is Galois over K, Fis 
Galois over E, and every q e AutKE is extendible to F, then F is Galois over K. 

13. In the extension of an infinite field K by K(x,y), the intermediate field K(x) is 
Galois over K, but not stable (relative to K(x,y) and K). [See Exercise 9; compare 
this result with Lemma 2.13.] 

14. Let F be a finite dimensional Galois extension of K and let Land M be two inter-
mediate fields. 

(a) AuhMF = AutLF n AutA{F; 
(b) AuhnMF = AutLF V A,uiJ1F; 
(c) What conclusion can be dfawn if AuhF n AutMF = I? 

15. If F is a finite dimensional Galois extension of K and E is an intermediate field, 
then there is a unique smallest field L such that EeL C F and L is Galois over 
K; furthermore 
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U 

where (J runs over AutKF. 

16. If (J e Sn, then the map K(xl, ... , xn) ~ K(XI, ... , Xn) given by 

f(xl, ..• , Xn) 1---+ f(xu(l)' •.• , Xu(n») 

g(XI, ••. , Xn) g(XU(I)' ... , Xu(n») 

is a K-automorphism of K(xl, ... , Xn). 

3. SPLITTING FIELDS, ALGEBRAIC CLOSURE AND NORMALITY 

We turn now to the problem of identifying and/or constructing Galois exten
sions. Splitting fields, which constitute the principal theme of this section, will enable 
us to do this. We first develop the basic properties of splitting fields and algebraic 
closures (a special case of splitting fields). Then algebraic Galois extensions are char
acterized in terms that do not explicitly mention the Galois group (Theorem 3.11), 
and the Fundamental Theorem is extended to the infinite dimensional algebraic case 
(Theorem 3.12). Finally normality and other characterizations of splitting fields are 
discussed. The so-called fundamental theorem of algebra (every polynomial equation 
over the complex numbers has a solution) is proved in the appendix. 

Let F be a field and f e F[x] Ii polynomial of positive degree. fis said to split over F 
(or to split in F[x]) if f can be written as a product of linear factors in F[x]; that is, 
f = uo(x - Ul)(X - U2)' .. (x - un) with Ui e F. 

Definition 3.1. Let K be afield and f e K[x] a polynomial of positive degree. An ex
tension field F ofK is said to be a splitting field over K of the polynomial f iff splits in 
F[x) and F = K(ul, ... , Un) where Ulo .•• , Un are the roots off in F. 

Let S be a set ofpolynomials of positive degree in K[x). An extensionfieldF ofK is 
said to be a splitting field over K of the set S of polynomials if every polynomial in S 
splits in F[x) and F is generated over K by the roots of all the polynomials in S. 

EXAMPLES. The only roots of X2 - 2 over Q are -V2 and - -.J2 and X2 - 2 
= (x - -V2)(x + -V2). Therefore Q( -V2) = Q( -V2, - -V2) is a splitting field of X2 - 2 
over Q. Similarly C is a splitting field of x 2 + lover R. However, if U is a root of an 
irreducible fe K[x), K(u) need not be a splitting field of f. For instance if u is the real 
cube root of 2 (the others being complex), then Q(u) C R, whence Q(u) is not a 
splitting field of x 3 - 2 over Q. 

REMARKS. If F is a splitting field of S over K, then F = K(X), where X is the 
set of all roots of polynomials in the subset S of K[x). Theorem 1.12 immediately 
implies that F is algebraic over K (and finite dimensional if S, and hence X, is a finite 
set). Note that if S is finite, say S = \ ji,j;, ... , In I, then a splitting field of S coin
cides with a splitting field of the single polynomial f = j;j; . . ·In (Exercise 1). This 
fact will be used frequently in the sequel without explicit mention. Thus the splitting 
field of a set S of polynomials will be chiefly of interest when S either consists of a 
single polynomial or is infinite. It will turn out that every [finite dimensional) 
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algebraic Galois extension is in fact a particular kind of splitting field of a [finite) set 
of polynomials. 

The obvious question to be answered next is whether every set of polynomials 
has a splitting field. In the case of a single polynomial (or equivalently a finite set of 
polynomials), the answer is relatively easy. 

Theorem 3.2. IfK is afieldandf E K[x) has degree n ;::: 1, then there exists a splitting 
field F off with [F : K) S n! 

SKETCH OF PROOF. Use induction on n = degf If n = 1 or if fsplits over 
K, then F = K is a splitting field. If n > 1 and fdoes not split over K, let g e K[x) be 
an irreducible factor off of degree greater than one. By Theorem 1.10 there is a simple 
extension field K(u) of K such that u is a root of g and [K(u) : K) = deg g > 1. Then 
by Theorem III. 6.6, f = (x - u)h with h e K(u)[x) of degree n - 1. By induction 
there exists a splitting field F of hover K(u) of dimension at most (n - 1)! Show that 
Fis a splitting field of fover K(Exercise 3) of dimension [F: K) = [F: K(u)J[K(u) : K) 
S (n - I)! (degg) S n! • 

Proving the existence of a splitting field of an infinite set of polynomials is con
siderably more difficult. We approach the proof obliquely by introducing a special 
case of such a splitting field (Theorem 3.4) which is of great importance in its own 
right. 

Note.' The reader who is interested only in splitting fields of a single polynomial 
(i.e. finite dimensional splitting fidds) should skip to Theorem 3.8. Theorem 3.12 
should be omitted and Theorems 3.8-3.16 read in the finite dimensional case. The 
proof of each of these results is either divided in two cases (finite and infinite dimen
sional) or is directly applicable to both cases. The only exception is the proof of 
(ii) =? (i) in Theorem 3.14; an alternate proof is suggested in Exercise 25. 

Theorem 3.3. The following conditions on a field F are equivalent. 

(i) Every nonconstant polynomial f e F[x) has a root in F; 
(ii) every nonconstant polynomial f e F[x) spli(s over F; 

(iii) every irreducible polynomial in F[x) has degree one; 
(iv) there is no algebraic extension field ofF (except F itself); 
(v) there exists a subfield K ofF such that F is algebraic over K and every poly

nomial in K[x) splits in F[x). 

PROOF. Exercise; see Section III. 6 and Theorems 1.6, 1.10,1.12 and 1.13. • 

A field that satisfies the equivalent conditions of Theorem 3.3 is said to be 
algebraically closed. For example, we shall show that the field C of complex num
bers is algebraically closed (Theorem 3.19). 

Theorem 3.4. If F is an extension field of K, then the following conditions are 
equivalent . 
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(i) F is algebraic over K and F is algebraically closed; 
(ii) F is a splitting field over K of the set of all [irreducible] polynomials in K[x]. 

PROOF. Exercise; also see Exercises 9, 10. • 

An extension field F of a field K that satisfies the equivalent conditions of Theo
rem 3.4 is called an algebraic closure of K. For example, C = R(i) is an algebraic 
closure of R. Clearly, if F is an algebraic closure of K and S is any set of polynomials 
in K[x], then the subfield E of F generated by K and all roots of polynomials in S is a 
splitting field of S over K by Theorems 3.3 and 3.4. Thus the existence of arbitrary 
splitting fields over a field K is equivalent to the existence of an algebraic closure of K. 

The chief difficulty in proving that every field K has an algebraic closure is set
theoretic rather than algebraic. The basic idea is to apply Zorn's Lemma to a 
suitably chosen set of algebraic extension fields of K.2·To do this we need 

Lemma 3.5. IfF is an algebraic extension field ofK, then IFI ::s; )(oIKI. 

SKETCH OF PROOF. Let T be the set of monic polynomials of positive de
gree in K[x). We first show that ITI = )(oIKi. For each n e N* let Tn be the set of all 
polynomials in T of degree n. Then IT"I = IK"I, where K" = K X K X· :·K (n 
factors), since every polynomial f = x" + a,,_lx,,-l + ... + ao e T" is completely 
determined by its n coefficients aO,al, ... , a,,_1 e K. For each n e N* let f" : T" --+ K" 
be a bijection. Since the sets Tn [resp. Kn) are mutually disjoint, the map 
f : T = U Tn --+ U Kn, given by f(u) = f,.(u) for u e Tn, is a well-defined bijection. 

n&N* naN· 

Therefore ITI = I U Knl = )(olKi by Introduction, Theorem 8.l2(ii). 
noN" 

Next we show that IFI ::; ITI, which will complete the proof. For each irreducible 
f e T, choose an ordering of the distinct roots of fin F. Define a map F --+ T X N* as 
follows. If a e F, then a is algebraic over K by hypothesis, and there exists a unique 
irreducible monic polynomialfe Twith f(a) = 0 (Theorem 1.6). Assign to a e Fthe 
pair (f,i) e T X N* where a is the ith root of fin the previously chosen ordering of 
the roots of fin F. Verify that this map F --+ T X N* is well defined and injective. 
Since T is infinite, IFI ::s; I T X N*I = I TIIN*I = I TI)( 0 = I T I by Theorem 8.11 of the 
Introduction. • 

Theorem 3.6. Every fieldK has an algebraic closure. Any two algebraic closures ofK 
are K-isomorphic. 

SKETCH OF PROOF. Choose a set S such that )(olKi < lSI (this can always 
be done by Theorem 8.5 of the Introduction). Since IKI::S; )(olKi (Introduction, 
Theorem 8.11) there is by Definition 8.4 of the Introduction an injective map 
8: K --+ S. Consequently we may assume K C S (if not, replace S by the union of 
S - 1m 8 and K). 

2As anyone familiar with the paradoxes of set theory (Introduction, Section 2) might 
suspect, the class of all algebraic extension fields of K need not be a set, and therefore, cannot 
be used in such an argument. 



260 CHAPTER V FIELDS AND GALOIS THEORY 

Let S be the class of all fields E such that E is a subset of Sand E is an algebraic 
extension field of K. Such a field E is completely determined by the subset E of Sand 
the binary operations of addition and multiplication in E. Now addition [resp. 
multiplication] is a function rp : EX E --> E [resp.1/! : E X E --> E]. Hence rp [resp.1/!] 
may be identified with its graph, a certain subset of E X E X E C S X S X S (see 
Introduction, Section 4). Consequently, there is an injective map T from S into the 
set P of all subsets ofthe set S X (S X S X S) X (S X S X S), given by E f--+ (E,rp,1/!). 
Now 1m T is actually a set since 1m T is a subclass of the set P. Since S is the image of 
1m T under the function T-1 : 1m T --> S, the axioms of set theory guarantee that S is 
in fact a set. 

Note that S ~ )25 since K E S. Partially order the set S by defining EI ~ E2 if and 
only if E2 is an extension field of E1• Verify that every chain in S has an upper bound 
(the union of the fields in the chain will do). Therefore by Zorn's Lemma there exists 
a maximal element F of S. 

We claim thai F is algebraically closed. If not, then some fE F[x] does not split 
over F. Thus there is a proper algebraic extension Fo = F(u) of F, where u is a root of 
fwhich does not lie in F (Theorem 1.10). Furthermore Fo is an algebraic extension of 
K by Theorem 1.13. Therefore, IFo - FI ~ IFol ~ NolKl < lSI by Lemma 3.5. Since 
IFI ~ IFol < lSI and lSI = I(S - F) U FI = IS - FI + IFI, we must have lSI = IS - FI 
by Theorem 8.10 ofthe Introduction. Thus IFo - FI < IS - FI and the identity map 
on F may be extended to an injective map of sets r : Fo --> S. Then FI = 1m r may be 
made into a field by defining r(a) -I- r(b) = r(a + b) and r(a>nb) = r(ab). Clearly 
FI is an extension field of F, Fl C Sand r : Fo --> Fl is an F-isomorphism of fields. 
Consequently, since Fo is a proper algebraic extension of F (and hence of K), so is Fl. 
This means that Fl ; Sand F < Flo which contradicts the maximality of F. Therefore, 
F is algebraically closed and algebraic over K and hence an algebraic closure of K. 
The uniqueness statement of the theorem is proved in Corollary 3.9 below. • 

Corollary 3.7. IfK is a field and S a set of polynomials (o/positive degree) in K[x], 
then there exists a splitting field ofS over K. 

PROOF. Exercise. • 

We turn now to the question of the uniqueness of splitting fields and algebraic 
closures. The answer will be an immediate consequence of the following result on the 
extendibility of isomorphisms (see Theorem 1.8 and the remarks preceding it). 

Theorem 3.8. Let u : K --> L be an isomorphism of fields, S = {fi I a set of poly
nomials (of positive degree) in K[x], and S' = {Ufi I the corresponding set of poly
nomials in L[x].lfF is a splittingfieldofS over K andM is a splillingfieldojS' over L, 
then u is extendible to an isomorphism F '" M. 

SKETCH OF PROOF. Suppose first that S consists of a single polynomial 
fe K[x] and proceed by induction on n = [F: KJ. If n = 1, then F = K and fsplits 
over K. This implies that ufsplits over L and hence that L = M. Thus u itself is the 

desired isomorphism F = K ~ L = M. If n > 1, then fmust have an irreducible 
factor g of degree greater than 1. Let u be a root of gin F. Then verify that ug is ir-
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reducible in L[x]. If v is a root of ug in M, then by Theorem 1.8 u extends to an iso
morphism T : K(u) ~L(v) with T(U) = v. Since [K(u.) : K] = deg g > 1 (Theorem 
1.6), we must have [F : K(u)] < n (Theorem 1.2). Since F is a splitting field of fover 
K(u) and M is a splitting field of ufover L(v) (Exercise 2), the induction hypothesis 
implies that T extends to an isomorphism F '" M. 

If S is arbitrary, let S consist of all triples (E,N, T), where E is an intermediate field 
of F and K, N is an intermediate field of M and L, and T : E -> N is an isomorphism 
that extends u. Define (E!,N!,TI) ~ (E2,N2,T2) if EI C E2, NI C N2 and T21 EI = TI. 

Verify that S is a nonempty partially ordered set in which every chain has an upper 
bound in S. By Zorn's Lemma there is a maximal element (Fo,Mo,To) of S. We claim 
that Fo = F and Mo = M, so that To : F '" M is the desired extension of u. If Fo ~ F, 
then some f e S does not split over Fo. Since all the roots of flie in F, F contains a 
splitting field Fl of f over Po. Similarly, M contains a splitting field MI of To f = u f 
over Mo. The first part of the proof shows that To can be extended to an isomorphism 
TI : FI '" MI. But this means that (FI,MI,TI) C Sand (Fo,Mo,To) < (FI,MI,TI) which 
contradicts the maximality of (Fo,Mo,To). A similar argument lIsing To-1 works if 
Mo rf M .• 

Corollary 3.9. Let K be afield andS a set of polynomials (of positive degree) in K[x]. 
Then any two splitting fields ofS over K are K-isomorphic. In particular, any two 
algebraic closures ofK are K-isomorphic. 

SKETCH OF PROOF. Apply Theorem 3.8 with u = lK. The last statement is 
then an immediate consequence of Theorem 3.4(ii). • 

In order to characterize Galois extensions in terms of splitting fields, we must first 
consider a phenomenon that occurs only in the case of fields of nonzero char
acteristic. Recall that if K is any field, f is a nonzero polynomial in K[x], and c is a 
root of f, then f = (x - c)mg(x) where g(c) rf 0 and m is a uniquely determined 
positive integer. The element c is a simple or multiple root of faccording as m = lor 
m> 1 (see p. 161). 

Definition 3.10. Let K be a field and f E K[x] an irreducible polynomial. The poly
nomial f is said to be separable ifin some splitting field of f over K every root off is a 
simple root. 

IfF is an extension field ofK and u e F is algebraic over K, then u is said to be 
separable over K provided its irreducible polynomial is separable. If every element ofF 
is separable over K, then F is said to be a separable extension ofK. 

REMARKS. (i) In view of Corollary 3.9 it is clear that a separable polynomial 
fe K[x] has no mUltiple roots in any splitting field of fover K. (ii) Theorem III.6.10 
shows that an irreducible polynomial in K[x] is separable if and only if its derivative 
is nonzero, whence every irreducible polynomial is separable if char K = 0 (Exercise 
III.6.3). Hence every algebraic extension field of a field of characteristic 0 is separable. 
(iii) Separability is defined here only for irreducible polynomials. (iv) According to 
Definition 3.10 a separable extension field of K is necessarily algebraic over K. There 
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is a definition of separability for possibly nonalgebraic extension fields that agrees 
with this one in the algebraic case (Section VI.2). Throughout this chapter, however, 
we shall use only Definition 3.10. 

EXAMPLES. x 2 + 1 E Q[x] is separable since x 2 + 1 = (x + i)(x - i) in C[x]. 
On the other hand, the polynomial x 2 + lover Z2 has no simple roots; in fact it is 
not even irreducible since x 2 + 1 = (x + 1)2 in Zdx]. 

Theorem 3.11. If F is an extension field of K, then the following statements are 
equivalent. 

(i) F is algebraic and Galois over K; 
(ii) F is separable over K and F is a splitting field over K of a set S of polynomials 

in K[x]; 
(iii) F is a splitting field over K ofa set T of separable polynomials in K[x]. 

REMARKS. If F is finite dimensional over K, then statements (ii) and (iii) can be 
slightly sharpened. In particular (iii) may be replaced by: F is a splitting field over K 
of a polynomial fE K[x] whose irreducible factors are separable (Exercise 13). 

PROOF OF 3.11. (i) =} (ii) and (iii). If U E F has irreducible polynomial f, then 
the first part of the proof of Lemma 2.13 (with E = F) carries over verbatim and 
shows that fsplits in F[x] into a product of distinct linear factors. Hence U is separ
able over K. Let {Vi liE 1\ be a basis of F over K and for each i E I let j; E K[x] be the 
irreducible polynomial of Vi. The preceding remarks show that each j; is separable 
and splits in F[x]. Therefore F is a splitting field over K of S = {j; liE 1\. 

(ii) =} (iii) Let fE S and let g E K[x] be a monic irreducible factor of f. Since f 
splits in F[x], g must be the irreducible polynomial of some U E F. Since F is separable 
over K, g is necessarily separable. It follows that F is a splitting field over K of the set 
T of separable polynomials consisting of all monic irreducible factors (in K[xD of 
polynomials in S (see Exercise 4). 

(iii) =} (i) F is algebraic over K since any splitting field over K is an algebraic ex
tension. If U E F - K, then U E K(/J.l, ... , vn ) with each Vi a root of some j; E T by the 
definition of a splitting field and Theorem l.3(vii). Thus U E E = K(Ul, ... , ur) 

where the Ui are all the roots of ii, ... ,In in F. Hence [E : K] is finite by Theorem 
1.12. Since each j; splits in F, E is a splitting field over K of the finite set { ii, ... , Inl , 
or equivalently, of f = iif2· .. In. Assume for now that the theorem is true in the 
finite dimensional case. Then E is Galois over K and hence there exists T E AutKE 
such that T(U) .,e u. Since F is a splitting field of T over E (Exercise 2), T extends to an 
automorphism U E AutKF such that u(u) = T(U) .,e U by Theorem 3.8. Therefore, U 

(which was an arbitrary element of F - K) is not in the fixed field of AutKF; that is, 
F is Galois over K. 

The argument in the preceding paragraph shows that we need only prove the 
theorem when [F : K] is finite. In this case there exist a finite number of polynomials 
gl, ... ,gt E Tsuch that F is a splitting field of {gl, . .. ,gd over K (otherwise F 
would be infinite dimensional over K). Furthermore Aut[(F is a finite group by 
Lemma 2.8. If Ko is the fixed field of AutKF, then F is a Galois extension of Ko with 
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[F: Ko] = IAutKFI by Artin's Theorem 2.15 and the Fundamental Theorem. Thus 
in order to show that F is Galois over K (that is, K = Ko) it suffices to show that 
[F : K] = IAutKFI. 

We proceed by induction on n = [F: K], with the case n = 1 being trivial. If 
n > 1, then one of the gi, say gh has degree s > 1 (otherwise all the roots of the gi 
lie in K and F = K). Let u e F be a root of gl; then [K(u) : K] = deg gl = s by Theo
rem 1.6 and the number of distinct roots of gl is s since gl is separable. The second 
paragraph of the proof of Lemma 2.8 (with L = K, M = K(u) and f = gl) shows 
that there is an injective map from the set of all left cosets of H = AutK(ulF in 
AutKF to the set of all roots of gl in F, given by (f H ~ (f(u). Therefore, 
[AutKF: H) ~ s. Now if v e F is any other root of gl, there is an isomorphism 
T : K(u) '" K(v) with T(U) = v and T I K = lK by Corollary 1.9. Since F is a splitting 
field of {gl, ... ,gd over K(u) and over K(v) (Exercise 2), T extends to an automor
phism (f e AutKF with (f(u) = v (Theorem 3.8). Therefore, every root of gl is the im
age of some coset of Hand [AutKF : H] = s. Furthermore, F is a splitting field over 
K(u) of the set of all irreducible factors hi (in K(u)[x)) of the polynomials gi (Exer
cise 4). Each hi is clearly separable since it divides some gi. Since [F : K(u)] = n/ s < n, 
the induction hypothesis implies that [F: K(u») = IAutK(ulFI = IHI. Therefore, 

[F: K] = [F : K(u)][K(u) : K] = IHls = IHI[AutKF: H] = IAutKFI 

and the proof is complete. • 

Theorem 3.12. (Generalized Fkndamental Theorem) IfF is an algebraic Galois ex
tension field of K, then there is a one-to-one correspondence between the set of all 
intermediate fields of the extension and the set of all closed subgroups of the Galois 
group AutKF (given by E ~ E' = AutEF) such that: 

(ii') F is Galois over every intermediate field E, but E is Galois over Kif and only if 
the corresponding subgroup E' is normal in G = AutKF; in this case G/E' is (iso
morphic to) the Galois group AU/KE ofE over K. 

REMARKS. Compare this Theorem, which is proved below, with Theorem 2.5. 
The analogue of (i) in the Fundamental Theorem is false in the infinite dimensional 
case (~xercise 16). If [F : K] is infinite there are always subgroups of AutKF that are 
not closed. The proof of this fact depends on an observation of Krull [64] : when F is 
algebraic over K, it is possible to make AutKF into a compact topological group in 
such a way that a subgroup is topologically closed if and only if it is closed in the 
sense of Section 2 (that is, H = H"). It is not difficult to show that some infinite 
compact topological groups contain subgroups that are not topologically closed. A 
fuller discussion, with examples, is given in P. J. McCarthy [40; pp. 60-63). Also see 
Exercise 5.11 below. 

PROOF OF 3.12. In view of Theorem 2.7 we need only show that every inter
mediate field E is closed in order to establish the one-to-one correspondence. By 
Theorem 3.11 F is the splitting field over K of a set T of separable polynomials. 
Therefore, F is also a splitting field of Tover E(Exercise 2). Hence by Theorem 3.11 
again, F is Galois over E; that is, E is closed. 
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(ii') Since every intermediate field E is algebraic over K, the first paragraph of the 
proof of Theorem 2.5(ii) carries over to show that E is Galois over K if and only if E' 
is normal in AutKF. 

If E = E" is Galois over K, so that E' is normal in G = AutKF, then E is a 
stable intermediate field by Lemma 2.11. Therefore, Lemma 2.14 implies that 
G/E' = AutKF/ AuiEF is isomorphic to the subgroup of AutKE consisting of those 
automorphisms that are extendible to F. But F is a splitting field over K (Theorem 
3.11) and hence over E also (Exercise 2). Therefore, every K-automorphism in 
AutKE extends to F by Theorem 3.8 and G/E' '" AutKE. • 

We return now to splitting fields and characterize them in terms of a property 
that has already been used on several occasions. 

Definition 3.13. An algebraic extension field F ofK is normal over K (or a normal 
extension) if every irreducible polynomial in K[x] that has a root in F actually splits 
in F[x]. 

Theorem 3.14. IfF is an algebraic extension field ofK, then the following statements 
are equivalent. 

(i) F is normal over K; 
(ii) F is a splitting field over K of some set of polynomials in K[x]; 

(iii) ifK is any algebraic closure ofK containing F, then for any K-monomorphism 
affields u : F ----> K, 1m u = F so that u is actually a K-autamorphism ofF. 

REMARKS. The theorem remains true if the algebraic closure K in (iii) is re
placed by any normal extension of K containing F (Exercise 21). See Exercise 25 
for a direct proof of (ii) ~ (i) in the finite dimensional case. 

PROOF OF 3.14. (i) ~ (ii) F is a splitting field over K of I j; e K[x] I i ell, 
where I Ui lie Il is a basis of F over K and j; is the irreducible polynomial of Ui. 

(ii) ~ (iii) Let F be a splitting field of I j; lie Il over K and u : F ----> K a K-mono
morphism of fields. If u e F is a root of ii, then so is u(u) (same proof as Theorem 2.2). 
By hypothesis ii splits in F, say ii = c(x - U1)' •• (x - Un) (Ui e F; c e K). Since K[x] is 
a unique factorization domain (Corollary 111.6.4), U(Ui) must be one of UI, ••• , Un for 
every i (see Theorem 111.6.6). Since u is injective, it must simply permute the Ui. But 
F is generated over K by all the roots of all the k It follows from Theorem 1.3 that 
u(F) = F and hence that u e AUtKF. 

(iii) ~ (i) Let K be an algebraic closure of F (Theorem 3.6). Then K is algebraic 
over K (Theorem 1.13). Therefore K is an algebraic closure of K containing F 
(Theorem 3.4). Let f E K[x] be irreducible with a root u E F. By construction K co~
tains all the roots of f. If v E K is any root of fthen there is a K-isomorphism of fields 
u : K(u) '" K(v) with u(u) = v (Corollary 1.9), which extends to a K-automorphism 
of K by Theorems 3.4 and 3.8 and Exercise 2. u I F is a monomorphism F ----> K and 
by hypothesis u(F) = F. Therefore, v = u(u) E F, which implies that f splits in F. 
Hence F is normal over K. • 
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Corollary 3.15. Let F be an algebraic eXfensionfield ofK. Then F is Galois over Kif 
and only if F is normal and separable ODer K. If char K = 0, then F is Galois over Kif 
and only ifF is normal over K. 

PROOF. Exercise; use Theorems 3.11 and 3.14. • 

Theorem 3.16. IfE is an algebraic extension field ofK, then there exists an extension 
field F of E such that 

(i) F is normal over K; 
(ii) no proper sub field ofF containing E is normal over K; 

(iii) ifE is separable over K, then F is Galois over K; 
(iv) [F : KJ isfinite if and only if[E : K] is finite. 

The field F is uniquely determined lip /0 an E-isomorphisrn. 

The field F in Theorem 3.16 is sometimes called the normal closure of E over K. 

PROOF OF 3.16. (i) Let X = \ Ui liE Il be a basis of E over K and let j; E K[x] be 
the irreducible polynomial of ui.If F is a splitting field of S = \ j; liE Il over E, then 
F is abo a splitting field of S over K (Exercise 3), whence F is normal over K by 
Theorem 3.14. (iii) If E is separable over K, then each j; is separable. Therefore F is 
Galois over K by Theorem 3.1 I. (iv) If [E : K] is finite, then so is X and hence S. This 
implies that [F : Kj is finite (by the Remarks after Definition 3.1). (ii) A subfield Fo 
of F that contains E necessarily contains the root Ui of j; E S for every i. If Fo is 
normal over K (so that each J, splits in Fo by definition), then F C Fo and hence 
F = Fo. 

Finally let Fl be another extension field of E with propertie~ (i) and (ii). Since Fl 
is normal over K and contains each IIi, FJ must contain a splitting field Fz of S over K 
with E C F,. F, is normal over K (Theorem 3.14), whence F, = FJ by (ii). Therefore 
both F and FJ are splitting fields of S over K and hence of S over E (Exercise 2). By 
Theorem 3.8 the identity map on E extends to an E-isomorphism F '" Fl. • 

APPENDIX: THE FUNDAMENTAL THEOREM OF ALGEBRA 

The theorem referred to in the title states that the field C of complex numbers is 
algebraically closed (that is, every polynomial equation over C can be completely 
solved.) Every known proof of this fact depends at some point on results from 
analysis. We shall assume: 

(A) every positive real number has a real positive square root; 
(8) every polynomial in R[xj of odd degree has a root in R (that is, every irre

ducible polynomial in R[xj of degree greater than one has even degree). 
Assumption (A) follows from the construction of the real numbers from the rationals 
and assumption (8) is a corollary of the Intermediate Value Theorem of elementary 
calculus; see Exercise 111.6.16. We begin by proving a special case of a theorem that 
will be discussed below (Proposition 6.15). 
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Lemma 3.17. If F is a finite dimensional separable extension of an infinite field K, 
then F = K(u) for some u E F. 

SKETCH OF PROOF. By Theorem 3.16 there is a finite dimensional Galois 
extension field FI of K that contains F. The Fundamental Theorem 2.5 implies that 
Aut/fl is finite and that the extension of K by F, has only finitely many intermediate 
fields. Therefore, there can be only a finite number of intermediate fields in the ex
tension of K by F. 

Since [F: KJ is finite, we can choose u E F such that [K(u) : KJ is maximal. If 
K(u) -,.! F, thert: exists v E F - K(u). Consider all intermediate fields of the form 
K(u + ar) with a E K. Since K is infinite and there are only finitely many intermediate 
fields, there exist a,b E K such that a ~ band K(u + ar) = K(u + be). Therefore 
(a - b)r = (u + Qt.) - (u + be) E K(u + ar). Since 0 -,.! b, we have r = 
(0 - b)-' (a - b)L- E K(u + ar), whence u = (u + ar) - ar E K(u + ar). Conse
quently K C K(u) C K(u + ac), whence [K(u + ar) : KJ > [K(u) : KJ. This contra-.. 
diets the choice of u. Hence K(u) = F. • 

Lemma 3.18. There are no extension fields of dimension 2 orer rhe field of complex 
numbers. 

SKETCH OF PROOF. It is easy to see that any extension field F of dimension 
2 over C would necessarily be of the form F = C(u) for any u E F - C. By Theorem 
1.6 u would be the root of an irreducible monic polynomial fE ClxJ of degree 2. To 
complete the proof we need only show that no such fcan exist. 

For each a + hi E C = R(i) the positive real numbers I(a + \/a' + b')?21 and 
I( -a + {a' + ir)/21 have real positive square roots c and d respectively by a~
sumption (A). Verify that with a proper choice of signs (±c ± di)' = a + bi. Hence 
every element of C has a square root in C. Consequently, if f = x' + sx + t E Clx), 
then f has roots (- s ± "';S2 - 4t)/2 in C, whence f splits over C. Thus there are no 
irreducible monic polynomials of degree 2 in Clx]. • 

Theorem 3.19. (The Fundamental Theorem of Algebra) The field of complex numbers 
is algebraically closed. 

PROOF. In order to show that every nonwnstant fE Clx] splits over C, it 
suffices by Theorem 1.10 to prove that C has no finite dimensional extensions except 
itself. Since [C : R] = 2 and char R = 0 every finite dimensional extension field E, of 
C is a finite dimensional separable extension of R (Theorem 1.2). Consequently, E, 
is contained in a finite dimensional Galois extension field F of R by Theorem 3.16. 
We need only show that F = C in order to conclude EI = C. 

The Fundamental Theorem 2.5 shows that AutRF is a finite group. By Theorems 
11.5.7 and 2.5 AutRF has a Sylow 2-subgroup H of order 2" (n ~ 0) and odd index, 
whose fixed field E has odd dimension, [E : RJ = [AutRF: HJ. E is separable over R 
(since char R = 0), whence E = R(u) by Lemma 3.17. Thus the irreducible poly
nomial of u has odd degree [E : R] = [R(u) : R] (Theorem) .6). This degree must be ) 
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by assumption (B). Therefore, u E Rand [AutRF: H] = [E : R] = 1, whence 
AutRF = Hand IAutRFI = 2n. Consequently, the subgroup AutcF of AutRF has 
order 2m for some m (0 :::; m :::; n). 

Suppose m > O. Then by the First Sylow Theorem 11.5.7 AutcFhas a subgroup J 
of index 2; let Eo be the fixed field of J. By the Fundamental Theorem Eo is an ex
tension of C with dimension [AutcF: J] = 2, which contradicts Lemma 3.18. 
Therefore, m = 0 and AutcF = 1. The Fundamental Theorem 2.5 implies that 
[F: C] = [AutcF: 1] = IAutcFI = 1, whence F = C. • 

Corolla ry 3.20. Every proper algebraic extension field of the field of real numbers is 
isomorphic to the field of complex numbers. 

PROOF. If F is an algebraic extension of Rand u E F - R has irreducible poly
nomial fE R[x) of degree greater than one, then fsplits over C by Theorem 3.19. If 
v E C is a root off, then by Corollary 1.9 the identity map on R extends to an isomor
phism R(u) "-' R(v) C C. Since [R(v) : R] = [R(u) : R] > 1 and [C: R] = 2, we 
must have [R(v) : R] = 2 and R(v) = C. Therefore, Fis an algebraic extension ofthe 
algebraically closed field R(u) '" C. But an algebraically closed field has no algebraic 
extensions except itself (Theorem 3.3). Thus F = R(u) '" C. • 

EXERCISES 

Note: Unless stated otherwise F is always an extension field of the field K and S 
is a set of polynomials (of positive degree) in K[x). 

1. F is a splitting field over K of a finite set I ii, ... , In} of polynomials in K[x) if 
and only if F is a splitting field over K of the single polynomialf = iif2' . ·fn. 

2. If F is a splitting field of S over K and E is an intermediate field, then F is a 
splitting field of S over E. 

3. (a) Let E be an intermediate field of the extension KeF and assume that 
E = K(u!, ... , ur) where the Ui are (some of the) roots of fE K[x]. Then F is a 
splitting field of f over K if and only if F is a splitting field of f over E. 
(b) Extend part (a) to splitting fields of arbitrary sets of polynomials. 

4. If F is a splitting field over K of S, then F is also a splitting field over K of the set 
T of all irreducible factors of polynomials in S. 

5. If Ie K[x] has degree nand Fis a splitting field of fover K, then [F : K) dividesn!. 

6. Let K be a field such that for every extension field F the maximal algebraic ex
tension of K contained in F (see Theorem 1.14) is K itself. Then K is algebraically 
closed. 

7. If F is algebraically closed and E consists of all elements in F that are algebraic 
over K, then E is an algebraic closure of K [see Theorem 1.14]. 

8. No finite field K is algebraically closed. [Hint: If K = lao, . .. , an} consider 
al + (x - ao)(x - al)" ·(x - an) E K[x], where al ¢. 0.) 
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9. F is an algebraic closure of K if and only if F is algebraic over K and for every 
algebraic extension E of K there exists a K-monomorphism E -> F. 

to. F is an algebraic closure of K if and only if F is algebraic over K and for every 
algebraic field extension E of another field Kl and isomorphism of fields 
u : Kl -> K, u extends to a monomorphism E -> F. 

11. (a) If Ut, ••• , Un E F are separable over. K, then K(uJ, ... , Un) is a separable ex
tension of K. 
(b) If F is generated by a (possibly infinite) set of separable elements over K, 
then F is a separable extension of K. 

12. Let E be an intermediate field. 
(a) If U E F is separable over K, then u is separable over E. 
(b) If F is separable over K, then F is separable over E and E is separable 

over K. 

13. Suppose [F : K] is finite. Then the following conditions are equivalent: 
(i) F is Galois over K; 
(ii) F is separable over K and a splitting field of a polynomial I E K[x]; 

(iii) F is a splitting field over K of a polynomial IE K[x] whose irreducible 
factors are separable. 

14. (Lagrange's Theorem on Natural Irrationalities). If Land M are intermediate 
fields such that L is a finite dimensional Galois extension of K, then LM is finite 
dimensional and Galois over M and AutMLM "-' AuhnML. 

15. Let E be an intermediate field. 
(a) If F is algebraic Galois over K, then F is algebraic Galois over E. [Exercises 

2.9 and 2.11 show that the "algebraic" hypothesis is necessary.] 
(b) If F is Galois over E, E is Galois over K and F is a splitting field over E of a 

family of polynomials in K[x], then F is Galois over K [see Exercise 2.12J. 

16. Let F be an algebraic closure of the field Q of rational numbers and let E C F be 
a splitting field over Q of the set S = I x 2 + a I a E Q 1 so that E is algebraic and 
Galois over Q (Theorem 3.11). 

(a) E = Q(X) where X = I -Vp I p = -1 or p is a prime integer I. 
(b) If U E AutQE, then u2 == IE. Therefore, the group AutQE is actually a 

vector space over Z2 [see Exercises 1.1.13 and IV.l.lJ. 
(c) AutQEis infinite and not denumerable. [Hint: for each subset YofXthere 

exists U E AutQE such that u(-Vp) = --Vp for -VP E Y and u(-Vp) = -VP for 
-VP EX - Y. Therefore, IAutQEI = I P(X) I > IXI by Introduction, Theorem 8.5. 
But IXI = ~o.] 

(d) If B is a basis of AutQE over Z2, then B is infinite and not denumerable. 
(e) AutQE has an infinite nondenumerable number of subgroups of index 2. 

[Hint: If b E B, then B-1 b 1 generates a subgroup of index 2.] 
(f) The set of extension fields of Q contained in E of dimension 2 over Q is 

denumerable. 
(g) The set of closed subgroups of index 2 in AutQE is denumerable. 
(h) [E: QJ .::; ~o, whence [E: QJ < IAutQEI· 
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17. If an intermediate field E is normal over K, then E is stable (relative to F and K). 

18. Let F be normal over K and E an intermediate field. Then E is normal over Kif 
and only if E is stable [see Exercise 17]. Furthermore Autr:FjE' "-' AutKE. 

19. Part (ii) or (ii)' of the Fundamental Theorem (2.5 or 3.12) is equivalent to: an 
intermediate field E is normal over K if and only if the corresponding subgroup 
£' is normal in C = Aut/I in which case CjE'::: AutJ,E. [See Exercise 18.] 

20. If F is normal over an intermediate field E and E is normal over K, then F need 
not be normal over K. [Hint: Let y2 be a real fourth root of 2 and consider 
Q(y2)::) Q(~2)::) Q; use Exercise 23.] Compare Exercise 2. 

21. Let Fbe algebraic over K. Fis normal over K if and only if for every K-monomor
phism of fields (]" : F ....... N, where N is any normal extension of K containing F, 
(]"(F) = Fso that (]" is a K-automorphism of F. [Hint: Adapt the proof of Theo
rem 3.14, using Theorem 3.16.] 

22. If F is algebraic over K and every element of F belongs to an intermediate field 
that is normal over K, then F is normal over K. 

23. If [F : K] = 2, then F is normal over K. 

24. An algebraic extension F of K is normal over K if and only if for every irre
ducible fs K[x], ffactors in F[x] as a product of irreducible factors all of which 
have the same degree. 

25. Let F be a splitting field of fE K[x]. Without using Theorem 3.14 show that Fis 
normal over K. [Hints: if an irreducible g s K[x] has a root u E F, but does not 
split in F, then show that there is a K-isomorphism 'P: K(u) "-' K(v), where 
L' f F and v is a root of g. Show that 'P extends to an isomorphism F "-' F(v). 
This contradicts the fact that [F : K] < [F(r) : K].] 

4. THE GALOIS GROUP OF A POLYNOMIAL 

The primary purpose of this section is to provide some applications and examples 
of the concepts introduced in the preceding sections. With two exceptions this ma
terial is not needed in the sequel. Definition 4.1 and Theorem 4.12, which depends 
only on Theorem 4.2, are used in Section 9, where we shall consider the solvability 
by radicals of a polynomial equation. 

Definition 4.1. Let K be a field. The Galois group of a polynomial f E K[x] is the 
group AutKF, where F is a splitting field off orer K. 

By virtue of Corollary 3.9, the Galois group of fis independent of the choice of F. 
Before giving any examples we first develop some useful facts. Recall that a subgroup 
C of the symmetric group Sn is said to be transitive if given any i ~ j (1 ~ i,j ~ n), 
there exists (]" E C such that (]"(i) = j. 
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Theorem 4.2. Let K be afield and f E K[x] a polynomial with Galois group G. 

(i) G is isomorphic to a subgroup of some symmetric group Sn. 
(ii) Iff is (irreducible) separable of degree n, then n dicides IGI and G is isomor

phic to a transitive subgroup ofSn; 

SKETCH OF PROOF. (i) If u!, ... ,lin are the distinct roots of f in some 
splitting field F (1 ::; n ::; deg f), then Theorem 2.2 implies that every U E AutKF in
duces a unique permutation of {UI, ... , Un 1 (but not necessarily vice versa !). 
Consider Sn as the group of all permutations of {UI' ... , Un 1 and verify that the 
assignment of U E AutKF to the permutation it induces defines a monomorphism 
AUtKF ----> Sn. (Note that F = K(Ul, ... , u").) 

(ii) Fis Galois over {«Theorem 3.11) and [K(uI) : K] = n = degf(Theorem 1.6). 
Therefore, G has a subgroup of index n by the Fundamental Theorem 2.5, whence 
n I ! GI. For any i ~ j there is a K-isomorphism U : K(Ui) '" K(Ui) such that U(Ui) = Ui 
(Corollary 1.9). U extends to a K-automorphism of F by Theorem 3.8, whence Gis 
isomorphic to a transitive subgroup of S". • 

Hereafter the Galois group of polynomial fwill frequently be identified with the 
isomorphic subgroup of Sn and considered as a group of permutations of the roots 
off. Furthermore we shall deal primarily with polynomialsfE K[x] all of whose roots 
are distinct in some splitting field. This implies that the irreducible factors of fare 
separable. Consequently by Theorem 3.11 (and Exercise 3.13) the splitting field F of 
f is Galois over K. If the Galois groups of such polynomials can always be calculated, 
then it is possible (in principle at least) to calculate the Galois group of an arbitrary 
polynomial (Exercise 1). 

Corollary 4.3. Let K be afield and f E K[x] an irreducible polynomial of degree 2 with 
Galois group G. Iff is separable (as is always the case when char K ~ 2), then G '" Z2; 
otherwise G = 1. 

SKETCH OF PROOF. Note that S2 = Z~. Use Remark (ii) after Definition 
3.10 and Theorem 4.2. • 

Theorem 4.2 (ii) immediately yields the fact that the Galois group of a separable 
polynomial of degree 3 is either S3 or A3 (the only transitive subgroups of S3). In 
order to get a somewhat sharper result, we introduce a more general consideration. 

Definition 4.4. Let K be a field with char K ~ 2 and f E K[x] a polynomial of 
degree n with n distinct roots Ul, ... , Un in some splitting field F of f over K. Let 
.1 = II (Uj - Uj) = (UI - U2)(UI _. Ua)' .. (Un-I - Un) E F; the discriminant of f is 

i <j 

the element D = .12• 

Note that .1 is an element of a specific splitting field F and therefore, a priori, 
D = .12 is also in F. However, we have 
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Proposition 4.5. Let K, f, F and fl be as in Definition 4.4. 

(i) The discriminant fl2 off actually lies in K. 

Z71 

(ii) For each IT E AutKF < Sa, IT is an even [resp. odd] permutation if and only if 

IT(fl) = fl [resp. IT(~) = -~]. 

SKETCH OF PROOF. For (ii) see the proof of Theorem I.6.7. Assuming (ii) 
note that for every IT E AutKF, (T(fl2) = 1T(~)2 = (±fl)2 = fl2. Therefore, fl2 E K since 
F is Galois over K (Theorem 3.11; Exercise 3.13). • 

Corollary 4.6. Let K, f, F, fl be as in Definition 4.4 (so that F is Galois over K) and 
consider G = AutKF as a subgroup ofS". In the Galois correspondence (Theorem 2.S) 
the sub field K(~) corresponds to the subgroup G n An. In particular, G consists of 
eL'en permutations if and only if ~ E K. 

PROOF. Exercise. • 

Corollary 4.7. Let K be a field and f E K[x] an (irreducible) separable polynomial of 
degree 3. The Galois group off is either Sa or Aa. If char ~ -,6- 2, it is Aa if and only if 
the discriminant off is the square of an element ofK. 

PROOF. Exercise; use Theorem 4.2 and Corollary 4.6. • 

If the base field K is a subfield of the field of real numbers, then the discriminant 
of a cubic polynomial fE K[x] can be used to find out how many real roots fhas 
(Exercise 2). 

Let f be as in Corollary 4.7. If the Galois group of f is Aa "'" Z3 there are, of 
course, no intermediate fields. If it is Sa, then there are four proper intermediate 
fields, K(fl), K(Ul), K(u,), and K(U3) where UJ,U2,U3 are the roots of I K(fl) corresponds 
to A'l and K(Ui) corresponds to the subgroup! (1 ),(jk) I (i -,6- j,k) of 53, which has order 
2 and index 3 (Exercise 3). 

Except in the case of characteristic 2, then, computing the Galois group of a 
separable cubic reduces to computing the discriminant and determining whether or 
not it is a square in K. The following result is sometimes helpful. 

Proposition 4.8. Let K he a field with char K -,6- 2,3. If f(x) = x3 + bx2 + ex + 
d 2 K[x] has three distinct roots in ~ome splirring field, then the polynomial 
g(x) = f(x - b/3) E K[x] has the form x3 + px + q and the discriminant of f is 
-4p3 - 27q2. 

SKETCH OF PROOF. Let F be a splitting field of f over K and verify that 
U 2 F is a root of fif and only if u + b/3 is a root of g = fex - h/3). This implies 
that g has the same discriminant asI Verify that g has the form .'13 + px + q (p,!! 2 K). 
Let ["f "ra be the roots of gin F. Then (x - L'I)(X - ['2)(.'1 - l'J) = g(.\) = ,\3 + px + (1 
which implies 
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VI + V2 + V3 = 0; 

VIV2 + VIV3 + 1:21:3 = p; 

-VtV2V3 = q. 

Since each Vi is a root of g 

Vi3 = -PVi - q (i = 1,2,3). 

The fact that the discriminant Ll2 of g is -4p 3 - 27q2 now follows from a gruesome 
computation involving the definition Ll2 = (VI - V2)2(VI - V3)2(V2 - V3)2, the equa-
tions above and the fact that (Vi -- VY = (Vi + V;)2 - 4ViV;. • 

EXAMPLE. The polynomial x 3 - 3x + 1 E Q[x] is irreducible by Theorem 
111.6.6 and Proposition 111.6.8 and separable since char Q = O. The discriminant is 
-4( -3)3 - 27(1)2 = 108 - 27 = 81 which is a square in Q. Hence the Galois group 
is A3 by Corollary 4.7. 

EXAMPLE. If f(x) = x 3 + 3x2 - X - 1 E Q[x], then 

g(x) = f(x - 3/3) = f(x - 1) = x3 - 4x + 2, 

which is irreducible by Eisenstein's Criterion (Theorem 111.6.15). By Proposition 4.8 
the discriminant of f is -4(-4)3 - 27(2)2 = 256 - 108 = 148, which is not a 
square in Q. Therefore the Galois group is S3. 

We turn now to polynomials of degree four (quartics) over a field K. As above, 
we shall deal only with those fE K[x] that have distinct roots U!,UZ,U"U4 in some 
splitting field F. Consequently, F is Galois over K and the Galois group of fmay be 
considered as a group of permutations of I ut,uz,u3,lI41 and a subgroup of S4. The sub
set V = l(l),(12)(34),(l3)(24),(l4)(23) 1 is a normal subgroup of S4 (Exercise 1.6.7), 
which will play an important role lin the discussion. Note that V is isomorphic to the 
four group Z2 EEl Z2 and V n G is a normal subgroup of G = AutKF < S4. 

Lemma 4.9. Let K, f, F, Ui, V, and G = AutKF < S4 be as in the preceding para
graph. If a = UtU2 + U3U4, {3 = UIU3 + UZU4, -y = UIU4 + U2U3 E F, then under the 
Galois correspondence (Theorem 2.5) the subjield K(a,{3,-y) corresponds 10 the normal 
subgroup V n G. Hence K(a,{3,-y) is Galois over K and AutK K(a,{3,-y) ~ G/(G n V). 

SKETCH OF PROOF. Clearly every element in G n V fixes a,{3,-y and hence 
K(a,{3,-y). In order to complete the proof it suffices, in view of the Fundamental 
Theorem, to show that every element of G not in V moves at least one of a,{3,-y. For 
instance if u = (12) E G and u({3) = (3, then U2U3 + UIU4 = UIU3 + UZU4 and hence 
ulu3 - U4) = ulu3 - U4)' Consequently, lit = Uz or U3 = U4, either of which is a 
contradiction. Therefore u({3) rf- {3. The other possibilities are handled similarly. 
[Hint: Rather than check all 20 possibilities show that it suffices to consider only one 
representative from each coset of V in S4]. • 

Let K, f, F, Ui and a,{3,-y be as in Lemma 4.9. The elements a,{3,-y playa crucial 
role in determining the Galois groups of arbitrary quartics. The polynomial 
(x - a)(x - (3)(x - -y) E K(a,{3,-y)[x] is called the resolvant cubic off. The resolvant 
cubic is actually a polynomial over K: 
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Lemma 4.10. If K is afield and f = X4 + bx3 + cx2 + dx + e E K[x), then the 
resolDant cubic off is the polynomialx3 - cx2 + (bd - 4e)x - b2e + 4ce - d2 f K[x). 

SKETCH OF PROOF. Let fhave roots Ul, ... , U4 in some splitting field F. 
Then use the fact that f = (x - Ul)(X - U2)(X --: U3)(X - U4) to express b,c,d,e in 
terms ofthe Ui. Expand the resolvant cubic (x - a)(x - (3)(x - ,,) and make appro
priate substitutions, using the definition of a,{3,,, (Lemma 4.9) and the expressions 
for b,c,d,e obtained above. • 

We are now in a position to compute the Galois group of any (irreducible) 
separable quartic flO K[x). Since its Galois group G is a transitive subgroup of S4 
whose order is divisible by 4 (Theorem 4.2), G must have order 24, 12, 8 or 4. Verify 
that the only transitive subgroups of orders 24, 12, aM 4 are S4, A4, V (rv Z2 EB Z2) 
and the various cyclic subgroups of order 4 generated by 4-cycles; see Exer
cise 1.4.5 and Theorem 1.6.8. One transitive subgroup of S4 of order 8 is the 
dihedral group D4 generated by (1234) and (24) (page 50). Since D4 is not normal in 
S4, and since every subgroup of order 8 is a Sylow 2-subgroup, it follows from the 
second and third Sylow Theorems that S4 has precisely three subgroups of order 
8, each isomorphic to D4• 

Proposition 4.11. Let K be a field and f E K[x) an (irreducible) separable quartic 
with Galois group G (considered as a subgroup ofS4). Let a,{3,,, be the roots of the 
resolDant cubic off and let m = [K(a,{3,,,) : K). Then: 

(i) m = 6 {=} G = S4; 
(ii) m = 3 {=} G = A4; 

(iii) m = 1 {=} G = V; 
(iv) m = 2 {=} G rv D4 or G rv Z4; in this case G rv D4 if f is irreducible ODer 

K(a,j3,,,) and G rv Z4 otherwise. 

SKETCH OF PROOF. Since K(a,j3,'Y) is a splitting field over K of a cubic, the 
only possibilities for mare 1,2,3, and 6. In view of this and the discussion preceding 
the theorem, it suffices to prove only the implications ~ in each case. We use the 
fact that m = [K(a,{3,,,) : K) = IG/G n VI by Lemma 4.9. 

If G = A4, then G n V = V and m = IG/VI = IGIlIVI = 3. Similarly, if 
G = S4, then m = 6. If G = V, then G n V = G and m = IG/GI = 1. If G rv D4, 

then G n V = V since V is contained in every Sylow 2-subgroup of S4 and m = I G / VI 
= I GI/IVI = 2. If G is cyclic of order 4, then G is generated by a 4-cycle whose 
square must bein Vsothat IG n VI = 2andm = IG/G n VI = IGI/IG n VI = 2. 

Since f is either irreducible or reducible and D4;;t Z4, it suffices to prove the con
verse of the last statement. Let U!,U2,U3,U4 be the roots of f in some splitting field F 
and suppose G rv D4, so that G n V = V. Since V is a transitive subgroup and 
G n V = AutK(a,~."y)F (Lemma 4.9), there exists for each pair i ,e j (1 s: i,j s: 4) 
a U E G n V which induces an isomorphism K(a,j3,'Y)(Ui) rv K(a,{3,'Y)(Uj) such that 
U(Ui) = Uj and U I K(a,{3,'Y) is the identity. Consequently for each i ,e j, Ui and Uj are 
roots of the same irreducible polynomial over K(a,j3,,,) by Corollary 1.9. It follows 
that fis irreducible over K(a,{3,'Y). On the other hand if G rv Z4, then G n V = 
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AutK(a.~.'Y)F has order 2 and is not transitive. Hence for some i ~ j there is no 
u c G n V such that U(Ui) = Uj. But since F is a splitting field over K(a,(3;Y)(Ui) and 
K(a,(3;y)(Uj), if there were an isomorp~ism K(a,(3;Y)(Ui) "-' K(a,(3;Y)(Uj), which was 
the identity on K(a,(3;y) and sent Ui to Uj, it would be the restriction of some 
U c Aut"(a.~.'Y)F = G n V by Theorem 3.8. Therefore, no such isomorphism exists, 
whence Ui and Uj cannot be roots of the same irreducible polynomial over K(a,(3;y) 
by Corollary 1.9. Consequently, Imust be reducible over K(a,(3;y). • 

EXAMPLE. The polynomial 1= X4 + 4x2 + 2 € Q[x] is irreducible by Eisen
stein's Criterion (Theorem 111.6.15); lis separable since char Q = O. Using Lemma 
4.10 the resolvant cubic is found to be x3 - 4x2 - 8x + 32 = (x - 4)(x2 - 8) so 
that a = 4, (3 = -VB, ')' = --vB and Q(a,(3,')') = Q(-VB) = Q(2-.J2) = Q(-.J2) is of 
dimension 2 over Q. Hence the Galois group is (isomorphic to) D4 or Z4. A substitu
tion z = x2 reduces Ito Z2 + 4z + 2 whose roots are easily seen to be z = - 2 ± -.J2; 
thus the roots of lare x = ±...jz = ±...j-2 ± ...j2. Hence 

1= (x - ...j-2 + ...j2)(x + ...j--2 + -.J2)(x - ...j-2 - ...j2)(x + ...j-2 - ...j2) 

= (x2 - (-2 + ...j2) (x2 - (-2 - -.J2») € Q(...j2)[x]. 

Therefore, I is reducible over Q( ...j2) and hence the Galois group is cyclic of order 
4 by Proposition 4.11 (iv). 

EXAMPLE. To find the Galois group of 1= X4 - IOx2 + 4 c Q[x] we first 
verify that lis irreducible (and hence separable as well). Now Ihas no roots in Q, and 
thus no linear or cubic factors, by Theorem 11I.6.6 and Proposition 111.6.8. To check 
for quadratic factors it suffices by Lemma 111.6.13 to show that I has no quadratic 
factors in Z[xJ. It is easy to verify that there are no integers a,b,e,d such that 
1= (x2 + ax + b)(x2 + ex + d). Thus lis irreducible in Q[x]. The resolvant cubic 
of lis x3 + 10x2 - 16x - 160 = (x + 1O)(x + 4)(x - 4), all of whose roots are in 
Q. Therefore, m = [Q(a,(3,')') : QJ = 1 and the Galois group of lis V ("-' Z2 8jZ2) 
by Proposition 4.11. 

EXAMPLE. The polynomial X4 - 2 € Q[xJ is irreducible (and separable) by 
Eisenstein's Criterion. The resolvant cubic is x3 + 8x = x(x + 2...j2i) (x - 2-.J2i) 
and Q(a,(3;y) = Q(-.J2i) has dimension 2 over Q. Verify that X4 - 2 is irre
ducible over Q( -.J2i) (since -.J2, V'2 • Q( ...j2i». Therefore the Galois group is 
isomorphic to the dihedral group D4 by Proposition 4.11. 

EXAMPLE. Consider I = X4 - 5x2 + 6 € Q[xJ. Observe that lis reducible over 
Q, namely 1= (x2 - 2)(x2 - 3). Thus Proposition 4.11 is not applicable here. 
Clearly F = Q( ...ji, ...j3) is a splitting field of lover Q and since x2 - 3 is irreducible 
over Q(...j2) , [F: QJ = [F: Q(...j2)J [Q(...j2) : QJ = 2·2 = 4. Therefore AutQF, the 
Galois group of f, has order 4 by the Fundamental Theorem. It follows from the 
proof of Theorem 4.2 and Corollary 4.3 that A utoQ( fi,) consists of two elements: 
the identity map 1 and a map U with u( ...j2) = - ...j2. By Corollary 1.9,1 and U each 
extend to a Q-automorphism of F in two different ways (depending on whether 
...j3 t--> ...j3 or ...j31-> - ...j3). This gives four distinct elements of AutQF(determined by 
the four possible combinations: ,'21-> ±...j2 and ...j3 f-> ±...j3). Since IAutoFI = 4 
and each of these automorphisms has order 2 the Galois group of I must be isomor
phic to the four group Z2 EB Z2 by Exercise 1.4.5. 
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Determining the intermediate fields and corresponding subgroups of the Galois 
group of a separable quartic is more complicated than doing the same for a separable 
cubic. Among other things one may have K(Ui) = K(uj) even though Ui r"- Uj (see the 
last example above). There is no easily stated proposition to cover the quartic case 
and each situation must be attacked on an ad hoc basis. 

EXAMPLE. Let FCC be a splitting field over Q of J= X4 - 2 E Q[xl. If U is 
the positive real fourth root of 2, then the roots of Jare u, -U, ui, -ui. In order to 
consider the Galois group G = AutQF of Jas a subgroup of S4, we must choose an 
ordering of the roots, say Ul = U, U2 = -U, U3 = ui, U4 = -ui. We know from the 
third example after Proposition 4.11 that G is one of the three subgroups of order 8 
in S4, each of which is isomorphic to the dihedral group D4• Observe that complex 
conjugation is an R-automorphism of C which clearly sends u /-t u, - u f-+ - u, 
ui f-t - ui and - ui /-t ui. Thus it induces a Q-automorphism T of F = Q(u,ui). As 
an element of S4, T = (34). Now every subgroup of order 8 in S4 is conjugate to D4 
(Second Sylow Theorem) and an easy calculation shows that the only one containing 
(34) is the subgroup D generated by cr = (1324) and T = (34). It is easy to see that 
F = Q(u,ui) = Q(u,i), so that every Q-automorphism of F is completely determined 
by its action on u and i. Thus the elements of D may be described either in terms of cr 
and T or by their action on u and i. This information is summarized in the table: 

(1) (34) (1324) (12)(34) (1423) (13)(24) (12) (14)(23) 
T cr cr2 cra crT cr2T craT 

uf---> u u ui -u -ui ui -u -ui 
if---> i -i i i i -i -i -i 

It is left to the reader to verify that the subgroup lattice of D and the lattice of 
intermediate fields are as given below, with fields and subgroups in the same relative 
position corresponding to one another in the Galois correspondence. 

Subgroup lattice (H --> K means H < K): 

Intermediate field lattice (M --> N means MeN): 
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~f\~ 
Q(u) Q(ui) Q(u2,i) Q«(1 + i)u) Q«(1 - i)u) 

~r/f~r/ 
Q(U2) Q(i) Q(u2i) 

~f/ 
Q 

Specific techniques for computing Galois groups of polynomials of degree greater 
than 4 over arbitrary fields are rather scarce. We shall be content with a very special 
case. 

Theorem 4.12. If P is prime and f is an irreducible polynomial of degree p over the 
field of rational numbers which has precisely two nonreal roots in the field of complex 
numbers, then the Galois group off is (isomorphic to) Sp. 

SKETCH OF PROOF. Let G be the Galois group of fconsidered as a sub
group of Sp. Since p II GI (Theorem 4.2), G contains an element u of order p by 
Cauchy's Theorem 11.5.2. u is a p-cyc1e by Corollary 1.6.4. Now complex conjuga
tion (a + bi f--. a - bi) is an R-automorphism of C that moves every nonreal ele
ment. Therefore, by Theorem 2.2 it interchanges the two nonreal roots of f and fixes 
all the others. This implies that G contains a transposition T = (ab). Since u can be 
written u = (ah- . . jp), some power of u is of the form d-k = (abia• .• ip) e G. By 
changing notation, if necessary, we may assume T = (12) and Uk = (123·· .p). But 
these two elements generate Sp by Exercise 1.6.4. Therefore G = Sp. • 

EXAMPLE. An inspection of the graph of f = X S - 4x + 2 e Q[x] shows that 
it has only three real roots. The polynomial f is irreducible by Eisenstein's Criterion 
(Theorem III.6.15) and its Galois group is Ss by Theorem 4.12. 

It is still an open question as to whether or not there exists for every finite group 
G a Galois extension field of Q with Galois group G. If G = Sn. however, the answer 
is affirmative (Exercise 14). 

EXERCISES 

Note: Unless stated otherwise K is a field, fe K[xl and F is a splitting field of f 
over K. 

1. Suppose fe K[xl splits in F as f = (x - Ul)nl.. ·(x - Uk)nk (Ui distinct; ni ~ 1). 
Let vo, ... , Vk be the coefficients ofthe polynomial g = (x - u,)(x - u2) ••• (x - Uk) 

and let E = K(vo • ... Vk)' Then 
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(a) F is a splitting field of g over E. 
(b) F is Galois over E. 
(c) AutEF = AutKF. 

277 

2. Suppose K is a subfield of R (so that F may be taken to be a subfield of C) and 
that fis irreducible of degree 3. Let D be the discriminant of f. Then 

(a) D > 0 if and only if fhas three real roots. 
(b) D < 0 if and only if fhas precisely one real root. 

3. Let fbe a separable cubic with Galois group S3 and roots UI,UZ,U3 s F. Then the 
distinct intermediate fields of the extension of K by Fare F, K(t:,.), K(Ul), K(uz), 
K(U3), K. The corresponding subgroups of the Galois group are I ,A3, Tl, Tz, T3 
andS3 where Ti = 1 (l),(jk) U,e i,e kl. 

4. If char K ,e 2,3 then the discriminant of x 3 + bxz + ex + dis -4e3 - 27d2 + 
!J2(e2 - 4bd) + ISbed. 

5. If char K,e 2 and/s K[x] is a cubic whose discriminant is a square in K, then I 
is either irreducible or factors completely in K. 

6. Over any base field K, x 3 - 3x + I is either irrtducible or splits over K. 

7. 54 has no transitive subgroup of order 6. 

S. Let j be an (irreducible) separable quartic over K and U a root of f. There is no 
field properly between K and K(u) if and only if the Galois group of lis either 
A4 or S4. 

9. Let X4 + ax' + b s K[x] (with char K ,e 2) be irreducible with Galois group G. 
(a) If b is a square in K, then G = V. 
(b) If b is not a square in K and b(a2 - 4b) is a square in K, then G "-' Z4. 
(c) If neither b nor b(a2 - 4b) is a square in K, then G ~ D4• 

10. Determine the Galois groups of the following polynomials over the fields 
indicated: 

(a) X4 - 5 over Q; over Q(~5); over Q(~5i). 
(b) (x 3 - 2)(x 2 - 3)(x2 - 5)(x2 - 7) over Q. 
(c) x 3 - X - lover Q; over Q(~23i). 
(d) x 3 - 10 over Q; over Q(~2). 
(e) X4 + 3x3 + 3x - 2 over Q. 
(f) x 5 - 6x + 3 over Q. 
(g) x 3 - 2 over Q. 
(h) (x 3 - 2)(x2 - 5) over Q. 
(i) X4 - 4x2 + 5 over Q. 
(j) X4 + 2x2 + X + 3 over Q. 

11. Determine all the subgroups of the Galois group and all of the intermediate 
fields of the splitting field (over Q) of the polynomial (x3 - 2)(x2 - 3) s Q[x]. 

12. Let K be a subfield of the real numbers and Is K[x] an irreducible quartic. If I 
has exactly two real roots, the Galois group of lis 54 or D 4 • 

13. Assume that I(x) E K[x] has distinct roots li1,U2, ... , Un in the splitting field F 
and let G = AutKF < 5 n be the Galois group of f. Let Yh ... , Yn be indeter
minates and define: 
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g(x) = II (x - (Uu(l)Yl + Uu(2)Y2 + ... + Uu(n)Yn» 
(1!Sft 

(a) Show that 

g(x) = II (x - (u'Yu(l) + U2Yu(2) + ... + unYu(n»). 
tT!S,. 

(b) Show that g(x) E K[y" ... ,Yn,X]. 
(c) Suppose g(x) factors as g,(x)gb)' .. g,(x) with gi(X) E K(y" ... ,Yn)[X] 

monic irreducible. If x - L: Uu(i»'i is a factor of g,(x), then show that 
i 

Show that this implies that deg gi(X) = iG!. 
(d) If K = Q, fE Z[x] is monic, and p is a prime, let IEZp[x] be the poly

nomial obtained from f by reducing the coefficients of f(mod p). Assume lhas 
distinct roots 121, ••• , Un in some splitting field F over Zp. Show that 

g(x) = II (x - L uiYt(i» e F[x,y" ... , Ynl· 
TESn i 

If the 12; are suitably ordered, then prove that the Galois group G of I is a sub
group of the Galois group G of f. 

(e) Show that x 6 + 22xs - 9x4 + 12x3 - 37x2 - 29x - IS E Q[x] has 
Galois group S6. [Hint: apply (d) with p = 2,3,5.] 

(f) The Galois group of X S - x-I E Q[x] is Ss. 

14. Here is a method for constructing a polynomialfE Q[x] with Galois groupSn for 
a given n > 3. It depends on the fact that there exist irreducible polynomials of 
every degree in ZAx] (p prime; Corollary 5.9 below). First choose f"j;,/a E Z[x] 
such that: 

(i) deg f, = nand]; E Zz[x] is irreducible (notation as in 13(d». 
(ii) deg j; = nand J; E Z3[X] factors in Z3[X] as gh with g an irreducible of 

degree n - I and h linear; 
(iii) deg f3 = nand]'; E Z5[X] factors as gh or gh,h2 with g an irreducible 

quadratic in Zs[x] and II,I11,IIz irreducible polynomials of odd degree in Zs[xJ. 

(a) Let f = -15h + lOj; + 6/J. Then f == II (mod 2), f == h (mod 3), and 
f == fa (mod 5). 

(b) The Galois group G of fis transitive (since lis irreducible in Zdx]). 
(c) G contains a cycle of the type S = (id~· .. in_I) and element CTA where CT is a 

transposition and A a product of cycles of odd order. Therefore CT E G, whence 
(hi,,) E G for some k(1 .:s: k .:s: n - 1) by Exercise I.6.3 and transitivity. 

(d) G = Sn (see part (c) and Exercise I.6.4(b». 

5. FINITE FIELDS 

In this section finite fields (sometimes called Galois fields) are characterized in 
terms of splitting fields and their structure completely determined. The Galois group 
of an extension of a finite field by a finite field is shown to be cyclic and its generator 
is given explicitly. 
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We begin with two theorems and a lemma that apply to fields which need not be 
finite. In each case, of course, we are interested primarily in the implications for 
finite fields. 

Theorem 5.1. Let F be afield and let P be the intersection of all subfields ofF. Then P 
is a field with no proper sub fields. If char F = P (prime), then P '" Zp. If char F = 0, 
then P '" Q, the field of rational numbers. 

The field P is called the prime subfield of F. 

SKETCH OF PROOF OF 5.1. Note that every subfield of F must contain 0 
and IF. It follows readily that P is a field that has no proper subfields. Clearly P con
tains all elements of the form mh (m E Z). To complete the proof one may either 
show directly thatP = (mIl" 1m E Zl if char F = p andP = {(mIl")(nh)-1 I m,n E Z, 
n r£. 01 if char F = 0 or one may argue as follows. By Theorem 111.1.9 the map 
cp : Z ~ P given by m I-> mIl" is a ring homomorphism with kernel (n), where 
n = char F and n = 0 or n is prime. If n = p (prime), then Zp '" Z/(p) = Z/Ker cp 
'" 1m cp C P. Since Zp is a field and P has no proper subfields, we must have 
Zp '" 1m cp = P. If n = 0, then cp : Z ~ P is a monomorphism and by Corollary 
111.4.6 there is a monomorphism of fields -:P : Q ~ P. As before, we must have 
Q '" 1m ~ = P .• 

Corollary 5.2. If F is a finite field, then char F = pr£.O for some prime p and 
IFI = pn for some integer n ~ 1. 

PROOF. Theorem 111.1.9 and Theorem 5.1 imply that F has prime character
istic p r£. O. Since F is a finite dimensional vector space over its prime subfield 
Zp, F '" Zp EB· .. EBZp (n summands) by Theorem IV.2.4 and hence IFI = pn. • 

In the sequel the prime subfield of a field F of characteristic p will always be 
identified with Zp under the isomorphism of Theorem 5.1. For examplt>, we shall 
write Zp C F; in particular, Ip coincides with I EZp • 

Theorem 5.3. IfF is afield and Gis a finite subgroup of the multiplicative group of 
nonzero elements of F, then G is a cyclic group. In particular, the multiplicative group 
of all nonzero elements of a finite field is cyclic. 

PROOF. If G (r£.I) is a finite abelian group, G '" Zmt EBZm2 EB· . ·EBZmk where 
ml > 1 and nh I mzl· . ·1 mk by Theorem 11.2.1. Since mk(L Zm,) = 0, it follows that 
every u EGis a root of the polynomial x mk - Ip E F[x] (G is a multiplicative group). 
Since this polynomial has at most mk distinct roots in F (Theorem 111.6.7), we must 
have k = 1 and G '" Zmk. • 

Corollary 5.4. IfF is afinite field, then F is a simple extension of its prime subfield 
Zp; that is, F = Zp(u) for some u E F. 
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SKETCH OF PROOF. Let u be a generator of the multiplicative group of 
nonzero elements of F. • 

Lemma 5.5. IfF is a field of characteristic p and r ~ 1 is an integer, then the map 

I{J : F ----> F given by u f--+ upr is a Zp-monomorphism of fields. If F is finite, then I{J is a 
Zp-automorphism of F. 

SKETCH OF PROOF. The key fact is that for characteristic p, (u ± V)pT 
= upT ± vpT for all u,v e F (Exercise III.l.ll). Since h f--+ IF, I{J fixes each element in 
the prime subfield Zp of F. • 

We can now give a useful characterization of finite fields. 

Proposition 5.6. Let p be a prime and n ~ 1 an integer. Then F is a finite field with 
pn elements if and only if F is a splitting field ofxpn - x over Zp. 

PROOF. If IFI = pn, then the multiplicative group of nonzero elements of Fhas 
order pn - 1 and hence every nonzero u e F satisfies upn- 1 = IF. Thus every nonzero 
u E F is a root of x pn- 1 - lJ.. and therefore a root of x(xpn- 1 - IF) = xpn - x eZ,,[xj 
as well. Since 0 e F is also a root of xpn - x, xpn - x has pn distinct roots in F (that is, 
it splits over F by Theorem 111.6.7) and these roots are precisely the elements of F. 
Therefore, F is a splitting field of xpn - x over Zp. 

If F is a splitting field of f = xpn - x over Zp, then since char F = char Zp = p, 
f' = -I and fis relatively prime to f'. Therefore fhas p" distinct roots in F by Theo
rem III.6.l0(i;). If cp is the monomorphism of Lemma 5.5 (with r = n), it is easy to 
see that u e F is a root of fif and only if cp(u) = u. Use this fact to verify that the set E 
of all roots of fin F is a subfield of F of order pn, which necessarily contains the prime 
subfield Zp of F. Since F is a splitting field, it is generated over Zp by the roots of f 
(that is, the elements of E). Therefore, F = Zp(E) = E. • 

Corollary 5.7. lfp is a prime and n ~ 1 an integer, then there exists a jield with pn 
elements. Any two jinite fields with the same number of elements are isomorphic. 

PROOF. Given p and n, a splitting field F of xl''' - x over Zp exists by Theorem 
3.2 and has order pn by Proposition 5.6. Since every finite field of order p" is a 
splitting field of xpn - x over Zp by Proposition 5.6, any two such are isomorphic by 
Corollary 3.9. • 

Corollary 5.8. IfK is ajinite jield and n ~ 1 is an integer, then there exists a simple 
extensionjield F = K(u) of K such that F isjinite and [F : K] = n. An), two n-dimen
sional extension fields ofK are K-isomorphic. 
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SKETCH OF PROOF. Given K of order pr let F be a splitting field of 
f = xP'" - x over K. By Proposition 5.6 every u e K satisfies uP' = u and it follows in
ductively that up'" = u for all u E K. Therefore, F is actually a splitting field of f over 
Zp (Exercise 3.3). The proof of Proposition 5.6 shows that F consists of precisely the 
p"' distinct roots of f Thus p"' = IFI = IKIIF:Kl = (pr)IF:Kl, whence [F: K) = n. 
Corollary 5.4 implies that F is a simple extension of K. If FJ is another extension field 
of K with [FJ: K) = n, then [Fl :Zp) = n[K :Zp) = nr, whence IFll = p"r. By 
Proposition 5.6 FJ is a splitting field of x pn, - x over Zp and hence over K. Conse
quently, F and FJ are K-isomorphic by Corollary 3.9. • 

Corollary 5.9. IfK is a finite field and n ~ 1 an integer, then there exiMS an irre
ducible polynomial of degree n in K[x). 

PROOF. Exercise; use Corollary 5.8 and Theorem 1.6. • 

Proposition 5.10. IfF is afinite dimensional extension field ofafinitefieldK, then F 
is finite and is Galois over K. The Galois group AutKF is cyclic. 

SKETCH OF PROOF. Let Zp be the prime subfield of K. Then F is finite di
mensional over Zp (Theorem 1.2), say of dimension n, which implies that IFI = p". 
By the proof of Proposition 5.6 and Exercise 3.2 F is a splitting field over Zp and 
hence over K, of xpn - x, all of whose roots are distinct. Theorem 3.11 implies that 
F is Galois over K. The map ip : F -> F given by u r-+ uP is a Zp-automorphism by 
Lemma 5.5. Clearly ipn is the identity and no lower power k of ip can be the identity 
(for this would imply that Xpk - x had p" distinct roots in F with k < n, contradict
ing Theorem III.6.7). Since IAutzpFI = n by the Fundamental Theorem, AutzpF 
must be the cyclic group generated by ip. Since AutKF is a subgroup of AutzpF, 
AutKF is cyclic by Theorem 1.3.5. • 

EXERCISES 

Note: F always denotes an extension field of a field K. 

1. If K is a finite field of characteristic p, describe the structure of the additive 
group of K. 

2. (Fermat) If p E Z is prime, then aP = a for all a EZp or equivalently, cP == c 
(mod p) for all c E Z. 

3. If IKI = p", then every element of K has a unique pth root in K. 

4. If the roots of a monic polynomial fE K[x) (in some splitting field of fover K) 
are distinct and form a field, then char K = p and f = xpn - x for some n ~ 1. 

5. (a) Construct a field with 9 elements and give its addition and multiplication 
tables. 
(b) Do the same for a field of 25 elements. 

6. If I KI = q and (n,q) = 1 and F is a splitting field of xn - 1 Kover K, then [F : K) 
is the least positive integer k such that n I (qk - 1). 
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7. If IKI = q and fE K[x1 is irreducible, then fdivides xq" - x if and only if deg f 
divides n. 

8. If IKI = pT and IFI = p", then r I nand AutKF is cyclic with generator I{) given by 
u f-> upT• 

9. If n 2': 3, then x2" + x + I is reducible over Z2' 

10. Every element in a finite field may be written as the sum of two squares. 

II. Let F be an algebraic closure of Zp (p prime). 
(a) F is algebraic Galois over Zp. 
(b) The map I{) : F -> F given by u f-> uP is a nonidentity Zp-automorphism 

of F. 
(c) The subgroup H = (I{» is a proper subgroup of AutzpF whose fixed field 

is Zp, which is also the fixed field of AutzpF by (a). 

12. If K is finite and F is an algebraic closure of K, then AutKF is abelian. Everyele
ment of AutKF (except IF) has infinite order. 

6. SEPARABILITY 

Our study of separability will be greatly facilitated by the simultaneous con
sideration of a concept that is, in a sense, the complete opposite of separability. 
Consequently the section begins with purely inseparable extensions, which are char
acterized in several different ways in Theorem 6.4. These ideas are then used to prove 
all the important facts about separability of algebraic extensions (principally Theo
rem 6.7). The degree of (in)separability of an algebraic extension is discussed in 
detail (most of this material, however, is not needed in the sequel). Finally the 
Primitive Element Theorem is proved (Proposition 6.15). This result is independent 
of the rest of the section and may be read at any time. 

Definition 6.1. Let F be an extension field ofK. An algebraic element u E F is purely 
inseparable over K ifits irreducible polynomial f in K[x1 factors in F[x1 as f = (x - U)ffi. 
F is a purely inseparable extension ofK if every element ofF is purely inseparable 
over K. 

Thus u is separable over K if its irreducible polynomial fof degree n has n distinct 
roots (in some splitting field) and purely inseparable over K if fhas precisely one 
root. It is possible to have an element that is neither separable nor purely inseparable 
over K. 

Theorem 6.2. Let F be an extension field ofK. Then u E F is both separable and 
purely inseparable over K if and only ifu E K. 

PROOF. The element u E F is separable and purely inseparable over K if and 
only if its irreducible polynomial is of the form (x - u)m and has m distinct roots in 
some splitting field. Clearly this occurs only when m = 1 so that x - u E K(x1 
and u E K .• 
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If char J( = 0, then every algebraic element over K is separable over K. There
fore, Theorem 6.2 implies that the only elements that are purely inseparable over K 
are the elements of K itself. Thus purely inseparable extensions of K are trivial if 
char K = O. Consequently, we usually restrict our attention to the case of nonzero 
(prime) characteristic. We shall frequently use the following fact about characteristic 
p without explicit mention: if char K = p ~ 0 and u,v E K, then (u ± v)pn = upn ± vpn 

for all n ::::: 0 (Exercise 111.1.11). In order to characterize purely inseparable exten
sions we need: 

Lemma 6.3. Let F be an extension field of K with char K = p ~ O. If u E F is 
algebraic over K, then upn is separable over K for some n ::::: o. 

SKETCH OF PROOF. Use induction on the degree of u over K. If deg u = 1 
or u is separable, the lemma is true. If fis the irreducible polynomial of a nonsepar
able u of degree greater than one, then!' = 0 (Theorem 111.6.10), whencefis a poly
nomial in x P (Exercise 111.6.3). Therefore, uP is algebraic of degree less than deg u 

over K, whence by induction (up)pln is separable over K for some m ::::: O. • 

Theorem 6.4. IfF is an algebraic extensionjield of ajield K of characteristic f' ~ 0, 
then the following statements are equivalent: 

(i) F is purely inseparable over K; 
(ii) the irreducible polynomial of any u E F is of the form xpn - a E K[x]; 

(iii) ifu E F, then upn E K for some n ::::: 0; 
(iv) the only elements ofF which are separable over K are the elements ofK itself; 
(v) F is generated over K by a set of purely imeparable elements. 

SKETCH OF PROOF OF 6.4. (i) =} (ii) Let (x - u)m be the irreducible poly
nomial of u E F and let m = npr with (n,p) = 1. Then (x - u)m = (x - u)prn 
= (x pr - upT)n by Exercise III.1.1I. Since (x - u)m E K[x], the coefficient of xpr(n-Jl, 

namely ±nupr (Theorem 111.1.6), must lie in K. Now (p,n) = 1 implies that upr E K 
(Exercise I). Since (x - u)m = (x pT - upT)n is irreducible in K[x], we must have 
n = 1 and (x - u)m = XpT - a, where a = upr E K. 

The implications (ii) =} (iii) and (i) =} (v) are trivial. (iii) =} (i) by Exercise 
III. 1.1 I ; (i) =} (iv)·by Theorem 6.2; and (iv) =} (iii) by Lemma 6.3. (v) =} (iii) If u is 
purely inseparable over K, then the proof of (i) =} (ii) shows that upn E K for some 
n ::::: O. If u E F is arbitrary use Theorem 1.3 and Exercise 111.1.11. • 

Corollary 6.5. IfF is ajinite dimensional purely inseparable extensionjield ofK and 
char K = p ~ 0, then [F : K] = pn for some n ::::: O. 

PROOF. By Theorem 1.11 F = K(uJ, ... , Um). By hypothesis each Ui is purely 
inseparable over K and hence over K(ul, ... , Ui_l) as well (Exercise 2). Theorems 1.6 
and 6.4 (ii) imply that every step in the tower K C K(Ul) C K(Ul,U2) c· .. C 
K(ul, ... , Um) = F has dimension a power of p. Therefore [F : K] = pn by Theo
rem 1.2. • 
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One more preliminary is needed for the principal theorem on separability. 

Lemma 6.6 IfF is an extension field ofK, X is a subset ofF such that F = K(X), 
and every element of X is separable over K, then F is a separable extension ofK. 

PROOF. If v E F, then there exist Ul. ... , Un EX such that v ~ K(ul, ... , Un) by 
Theorem 1.3. Let fi E K[x] be the irreducible separable polynomial of Ui and E a 
splitting field of { ft .... ,f" I over K(ul, ... ,un). Then E is also a splitting field of 
{ ft, ... ,In lover K (Exercise 3.3). By Theorem 3.11 E is separable (in fact Galois) 
over K, which implies that v E K(UI, ... , Un) C E is separable over K. • 

Theorem 6.7. Let F be an algebraic extension field ofK, S the set of a II elements ofF 
which are separable over K, and P the set of all elements of F which are purely in
separable over K. 

(i) S is a separable extension field ofK. 
(ii) F is purely inseparable over S. 

(iii) P is a purely inseparable extension field ofK. 
(iv) P n S = K. 
(v) F is separable over P if and only if F = SP. 

(vi) If F is normal over K, then S is Galois orer K, F is Galois over P and AutKS '" 
AutpF = AutKF. 

REMARKS. It is clear that S is the unique largest subfield of F separable over K 
and that S contains every intermediate field that is separable over K; similarly for P 
and purely inseparable intermediate fields. If char K = 0, then S = F and P = K 
(Theorem 6.2). 

SKETCH OF PROOF OF 6.7. (i) If u, v E S and v ,e 0, then K(u,v) is separable 
over K by Lemma 6.6, which implies that u - v, UI:-1 E S. Therefore, S is a subfield. 
Lemma 6.3 and Theorem 6.4 imply (ii). (iii) is a routine exercise using Exercise 
III .1.11 if char K = p and thefact that P = K if char K = 0. Theorem 6.2 implies (iv). 

(v) If F is separable over P, then F is separable over the composite field SP (Exer
cise 3.12) and purely inseparable over SP «ii) and Exercise 2). Therefore, F = SP by 
Theorem 6.2. Conversely, if F = SP = P(S), then F is separable over P by Exercise 
3.12 and Lemma 6.6. 

(vi) We show first that the fixed field Ko of AutKF is in fact P, which immediately 
implies that F is Galois over P and AutpF = AutKF. Let u e F have irreducible poly
nomial f over K and let U E AutKF; u(u) is a root of f (Theorem 2.2). If u E P, then 
f = (x - u)m and hence u(u) = u. Therefore. P C Ko. If u e Ko and v E F is any other 
root of f, then there is a K-isomorphism T : K(u) ---> K(v) such that r(u) = v (Corollary 
1.9). By Theorems 3.8 and 3.14 and Exercise 3.2 r extends to a K-automorphism of F. 
Since u E Ko, we have u = r(u) = v. Since f splits in F[x] by normality, this argument 
shows that f = (x - u)m for some m. Therefore, u E P and P :::J Ko. Hence P = Ku. 

Every u E AutpF = AutKF must send separable elements to separable elements 
(Theorem 2.2). Therefore, the assignment u f-> u I S defines a homomorphism 
() : Autl'F ---> AUtKS. Since F is normal over S, () is an epimorphism (Theorems 3.8 
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and 3.14 and Exercise 3.2). Since F is Galois over P, F = SP by (v), which implies 
that e is a monomorphism. Hence AutpF ~ AuthS. Finally suppose U c S is fixed by 
all if c Aut}{S. Since e is an epimorphism, U is in the fixed field P of AutpF, whence 
l/ c P n S = K. Therefore, S is Galois over K. • 

Corolla ry 6.8. IfF is a separable extension field of E and E is a separable extension 
field oj K, then F is separable oeer K. 

PROOF. If S is as in Theorem 6.7, then E C Sand F is purely inseparable over 
S. But F is separable over E and hence over S (Exercise 3.12). Therefore, F = S by 
Theorem 6.2. • 

Let F be a field of characteristic p ,,0 o. Lemma 5.5 shows that for each n :2: 1, the 
set p" = (UI,n I U c F\ is a subfield of F. By Theorem 6.4 (iii), F is purely inseparable 
over F"" and hence over any intermediate field as well (Exercise 2). 

Corollary 6.9. Let F be an algebraic extension field of K, with char K = p ,,0 o. If F 
is separable orer K, then F = KpnjiJr each n :2: 1. If [F : K] is finite and F = KFP, 
then F is separable orer K. In particular, us F is separable orer K if and only if 
K(u P) = K(u). 

SKETCH OF PROOF. Let S be as in Theorem 6.7. If [F: K] is finite, then 
F = K(ut, ... , Um) = S(Ut, ... , II",) by Theorem 1.11. Since each lIi is purely in
separable over S (Theorem 6.7), there is an n :2: 1 such that Ui"n c S for every i. Since 
F = S(u I , ... , lim), Exercise III .1.11 and Theorem 1.3 imply that pn C S. Clearly 
every element of S is purely inseparable over Fpn, and hence over Kpn. S is separ
able over K, and hence over Kpn. Therefore S = Kpn by Theorem 6.2. Use the 
fact that char K = p and Theorem 1.3 to show that for any t 2: 1, pt = 

[K(u I , ... , um)]pt = Kpt(lI/, ... , lImpt ). Consequently for any t 2: 1 we have 
KFpt = K(Kpt(u IPt , ••• , umpt ) = K(UI Pt , ... , umP \ Note that this argument 
works for any generators UI , ... ,Um of F over K. Now if F = KP, then 
K(u " ... , 11m) = F = KFP = K(u ,P , ••• , umP ). An iterated argument with the 
generators ut' in place of Ui [t = I, 2, ... , n] shows that F = K(u I , ... , urn) = 
K(u l

pn , . . • , umpn ) = KFpn = S, whence F is separable over K. Conversely, if 
F is separable over K, then F is both separable and purely inseparable over Kpn 

(for any n 2: 1). Therefore F = KP" by Theorem 6.2. • 

Next we consider separability and inseparability from a somewhat different point 
of view. Although Proposition 6.12 is used at one point in Section 7, all that is really 
essential for understanding the sequel is Definition 6.10 and the subsequent remarks. 

Definition 6.10. Let F be an algebraic extension field of K and S the largest subfield 
of F separable orer K (as in Theorem 6.7). The dimension [S : K] is called the separable 
degree of F orer K and is denoted IF : Kl,. The dimension [F : S] is called the in
separable degree (or degree of inseparability) of F orer K and is denoted IF : KL. 

REMARKS. IF: KJ, = [F: K] and IF : K]; = I if and only if F is separable over 
K. [F : KL = 1 and [F : Kj, = [F: Kj if and only if F is purely inseparable over K. In 
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any case, [F: K] = [F : KJ.[F : KJ, by Theorem 1.2. If [F : KJ is finite and char K 
= p ~ 0, then [F: KJ, is a power of p by Corollary 6.5 and Theorem 6.7(ii). The 
following lemma will enable us to give an alternate description of [F : KJ. and to 
show that for any intermediate field E, [F : El.[E : KJ. = [F: KJ •. 

Lemma 6.11. Let F be an extension field of E, E an exten~ion field ofK and N a 
normalextensionfieldofKcontaining F.lfr is the cardinal number of distinct E-mono
morphisms F ~ Nand t is the cardinal number of distinct K-monomorphisms E ~ N, 
then rt is the cardinal number of distinct K-monomorphisms F -+ N. 

PROOF. For convenience we assume that r, t are finite. The same proof will 
work in the general case with only slight modifications of notation. Let 7'1, ••• ,7', be 
all the distinct E-monomorphisms F ~ Nand UI, ... ,u, all the distinct K-mono
morphisms E ~ N. Each u, extends to a K-automorphism of N (Theorems 3.8 and 
3.14 and Exercise 3.2) which will also be denoted Ui. Each composite map U,7'; is a 
K-monomorphism F ~ N. If U,7'; = Ua7'b, then ua- Iu.7'; = 7'b which implies that 
ua-Iu, I E = h. Consequently, we have (f, = (fa and i = a. Since u, is injective 
U,7'j = Ui7'b implies that 7'; = 7'& and j = b. Therefore, the rt K-monomorphisms 
U,7'; : F ~ N (l ::; i ::; t, 1 ::; j ::; r) are all distinct. Let u : F ~ N be any K-mono
morphism. Then u I E = u, for some i and U,-IU is a K-monomorphism F ~ N, 
which is the identity on E. Therefore, urlu = 7'; for somej, whence U = O'i7';. Thus 
the rt distinct maps U.7'; are all of the K-monomorphisms F ~ N. • 

Proposition 6.1Z. Let F be afinite dimensional extension field ofK and N a normal 
exter.sionfield ofK containing F. The number of distinct K-monomorphisms F ~ N is 
precisely [F : K]., the separable degree ofF over K. 

SKETCH OF PROOF. Let S be the maximal subfield of F separable over K 
(Theorem 6.7(i». Every K-monomorphism S ~ N extends to a K-automorphism of 
N (Theorems 3.8 and 3.14 and Exercise 3.2) and hence (by restriction) to a K-mono
morphism F ~ N. We claim that the number of distinct K-monomorphisms F ~ N 
is the same as the number of distinct K-monomorphisms S ~ N. This is trivially true 
if char K = 0 since F = S in that case. So let char K = p ~ 0 and suppose u, 7' are 
K-monomorphisms F ~ N such that U I S = 7' I s. If u £ F, then uP" £ S for some 
n ~ 0 by Theorems 6.4 and 6.7(ii). Therefore, 

u(u)pn = a{up") = 7'(u"") = 7'(u)"", 

whence u(u) = 7'(u). Thus u IS = 7' I S implies u = T, which proves our claim. Con
sequently, it suffices to assume that F is separable over K (that is, F = S), in which 
case we have [F : KJ = [F: KJ .. [F :- EJ = [F : EJ. and [E : KJ = [E: KJ. for any inter
mediate field E (Exercise 3.12). 

Proceed now by induction on n = [F: KJ = [F: Kl. with the case n = 1 being 
trivial. If n > 1 choose U EF - K; then [K(u) : K] = r > 1. If r < n use the induction 
hypothesis and Lemma 6.11 (with E = K(u)) to prove the theorem. If r = n then 
F = K(u) and [F: K] is the degree of the (separable) irreducible polynomial f E K[x] 
of u. Every K-monomorphism a: F --+ N is completely determined by v = a(u). 
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Since v is a root of f(as in Theorem 2.2) there are at most [F: K] = deg fsuch 
K-monomorphisms. Since fsplits in N by normality and is separable, Corollary 1.9 
shows that there are exactly [F : K] distinct K-monomorphisms F -> N. • 

Corollary 6.13. IfF is an extension field ofE and E is an extension field ofK, then 

[F : E].[E : K]. = [F : K]. and [F: EUE : KL = [F : KJ;. 

PROOF. Exercise; use Lemma 6.11 and Proposition 6.12. • 

Corollary 6.14. Let f E K[x] be an irreducible monic polynomial over a field K, F a 
splitting field off over K and Ul a root off in F. Then 

(i) every rOOI off has multiplicity [K(Ul) : KL so that in F[x], 

f = [(x - Ul)" ·(x - un)]IK(u,):Klt, 

where Ul, ... , Un are all the distinct roots off and n = [K(Ul) : KJ.; 
(ii) Ul1K(u,): KIt is separable over K. 

SKETCH OF PROOF. Assume char K = p ~ 0 since the case char K = 0 is 
trivial. (i) For any j > I there is a K-isomorphism (1 : K(Ul) ~ K(u,) with (1(Ul) = u; 

that extends to a K-isomorphism u of F (Corollary 1.9, Theorem 3.8, and Exercise 
3.2). Since fE K[xJ we have by Theorem 2.2 

Since Ul, ... , Un are distinct and (1 is injective, unique factorization in K[xJ implies 
that (x - u.y· = (x - u(udY', whence rl = r •. This shows that every root of fhas 
multiplicity r = r, so that f = (x - u,),· .. (x - Un)' and [K(Ul) : KJ = deg f = nr. 
Now Corollary 1.9 and Theorem 2.2 imply that there are n distinct K-monomor
ph isms K(uI) -> F, whence [K(uI) : KJ. = n by Proposition 6.12 and Theorem 3.14. 
Therefore, 

(ii) Since r is a power of p = char K, we have f = (x - UI)"" (x - un)' = 

(x' - U{)· .. (x' - Un'). Thus f is a polynomial in x' with coefficients in K, say 
n n 

f = L (l,X". Consequently, UI' is a root of g(x) = L a,x' = (x - u{)· . (x - Un') 
,=0 .-0 

E K[xJ. Since Ul, ... ,Un are distinct, g(x) E K[xJ is separable. Therefore u{ ~ 
uI1K "ll Kli is separable over K. • 

The following result is independent of the preceding material and is not needed 
in the sequel. 

Proposition 6.1S. (Primitive Element Theorem) Let F be a finite dimensional ex
tension field ofK. 
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(i) IfF is separable over K, then F is a simple extension ofK. 
(ii) (Artin) More generally, F is a simple extension ofK if and only if there are only 

finitely many intermediate fields. 

REMARK. An element u such that F = K(u) is said to be primitive. 

SKETCH OF PROOF OF 6.15. The first paragraph of the proof of Lemma 
3.17, which is valid even if the field K is finite, shows that a separable extension has 
only finitely many intermediate fields. Thus it suffices to prove (ii). Since (ii) clearly 
holds if K is finite (Corollary 5.8), we assume that K is infinite. One implication of (ii) 
is proved in the second paragraph of the proof of Lemma 3.17. Conversely assume 
F = K(u) with u algebraic over K (since [F : KJ is finite). Let E be an .intermediate 
field and g e E[xJ the irreducible monic polynomial of u over E. If g = xn + an_IXn- 1 

+ ... +alx + aQ, then [F : EJ = n. Show that E = K(aQ,al, ... ,an_I) by verifying 
that [F: K(aQ, ... ,an-I)J = n. Thus every intermediate field E is uniquely deter
mined by the irreducible monic polynomial g of u over E. If fis the monic irreducible 
polynomial of u over K, then g I f by Theorem 1.6. Since f factors uniquely in any 
splitting field (Corollary 111.6.4), f can have only a finite number of distinct monic 
divisors. Consequently, there are only a finite number of intermediate fields. • 

EXERCISES 

Note: Unless stated otherwise F is always an extension field of a field K. 

1. Let char K = p ;t. 0 and let n ::::: 1 be an integer such that (p,n) = 1. If c € F and 
nv € K, then v E K. 

2. If u E F is purely inseparable over K, then u is purely inseparable over any inter
mediate field E. Hence if F is purely inseparable over K, then F is purely in
separable over E. 

3. If F is purely inseparable over an intermediate field E and E is purely inseparable 
over K, then F is purely inseparable over K. 

4. If U E F is separable over K and c z F is purely inseparable over K, then 
K(u,r) = K(u + r). If u r!- 0, r r!- 0, then A.·(II,C) = K(ur). 

5. If char K = pr!-O and a z K but a f K", then xl''' - a E K[x) is irreducible for 
every n > 1. 

6. Iff e K[x] is monic irreducible, degf2:: 2, andfhas all its roots equal (in a splitting 
field), then char K = p ;t. 0 and f = xpn - a for some n ::::: 1 and a € K. 

7. Let F, K, S, P be as in Theorem 6.7 and suppose E is an intermediate field. Then 
(a) F is purely inseparable over E if and only if seE. 
(b) If F is separable over E, then peE. 
(c) If EnS = K, then E C P. 

8. If char K = pr!-O and [F : K1 is finite and not divisible by p, then F is separable 
over K. 

9. Let char K = p r!- O. Then an algebraic element II::: F is separable over K if and 
only if K(u) = K(u"") for all n :::: I. 
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10. Let char K = p ~ 0 and let fe K[x] be irreducible of degree n. Let m be the 
largest nonnegative integer such that f is a polynomial in x pffl but is not a poly
nomial in Xpffl+l. Then n = nopm. If u is a root of J, then [K(u) : K], = no and 
[K(u) : K]; = pm. 

11. Iff e K[xj is irreducible of degree m > 0, and char K does not divide m, then fis 
separable. 

12. F is purely inseparable over K if and only if F is algebraic over K and for any ex
tension field E of F, the only K-monomorphism F ---> E is the inclusion map. 

13. (a) The following conditions on a field K are equivalent: 

(i) every irreducible polynomial in K[x] is separable; 
(ii) every algebraic closure K of K is Galois over K; 

(iii) every algebraic extension field of K is separable over K; 
(iv) either char K = 0 or char K = p and K = Kp. 

A field K that satisfies (i)-(iv) is said to be perfect. 
(b) Every finite field is perfect. 

14. If F = K(u,v) with u,v algebraic over K and u separable over K, then F is a simple 
extension of K. 

15. Let char K = p ~ 0 and assume F = K(u,v) where uP e K, vP e K and IF: K] = p2. 
Then F is not a simple extension of K. Exhibit an infinite number of intermediate 
fields. 

16. Let F be an algebraic extension of K such that every polynomial in K[x] has a 
root in F. Then F is an algebraic closure of K. [Hint: Theorems 3.l4 and 6.7 and 
Proposition 6.l5 may be helpful.] 

7. CYCLIC EXTENSIONS 

The basic idea in Sections 7-9 is to analyze Galois field extensions whose Galois 
groups have a prescribed structure (for example, cyclic or solvable). In this section 
we shall characterize most finite dimensional Galois extensions with cyclic Galois 
groups (Propositions 7.7 and 7.8; Theorem 7.11). In order to do this it is first 
necessary to develop some information about the trace and norm. 

Definition 7.1. Let F be ajinite dimensional extensionjield ofK andK an algebr'!!! 
closure ofK containing F. Let UJ, ••• , 'Tr be all the distinct K-monomorphisms F ---> K. 
[fu E F, the norm ofu, denoted, NKF(U) is the element 

NKF(U) = (ulu)uiu)·· . ur(u»[F:KI;. 

The trace ofu, denoted T KF(U), is the element 

T KF(U) = [F : Kli(Ul(U) + uiu) + ... + ur(u». 

REMARKS. Theorem 7.3 below shows that the definition does not depend on 
the choice of K. It can be shown that an equivalent definition is obtained if one re-



290 CHAPTER V FIELDS AND GALOIS THEORY 

places K by any normal extension of K containing F (Exercise 1). K is normal over K 
(Theorems 3.4 and 3.14), whence r = [F: K], is finite by Proposition 6.12. If the con
text is clear NKF and TKF will sometimes be written simply as Nand T. 

Note that the trace is essentially the additive analogue of the norm. In many in
stances this means that a proof involving the one will translate directly into a proof 
of the analogous fact for the other. There are some exceptions, however. For 
instance if F is not separable over K, then char K = p ~ 0 and [F : K]i = p' (t ;::: 1). 
Consequently, TKF(u) = 0 for every u E F, but NKF(U) may not be zero. 

EXAMPLE. Let F = C and K = R and take K = C. It is easy to see that the 
only R-monomorphisms C --7 C are the identity and complex conjugation. Conse
quently N(a + bi) = [(a + bi)(a - hi)]1 = a2 + b2• 

The principal applications to be given here of the norm and trace occur when F is 
Galois over K. In this case the Galois group is finite and there is a more convenient 
description of the norm and trace, which is sometimes taken as a definition. 

Theorem 7.2. IfF is ajinite dimensional Galois eXfensionjield ofK and 

AutKF = IuI, ... , Un}, 

then for any u E F, 
NKF(U) = ul(u)uiu)·· ·un(u); and 

T KF(U) = UI(U) + uiu) + ... + Un(U). 

PROOF. Let K be an algebraic closure of K which contains F. Since F is normal 
over K (Corollary 3.15), the K-monomorphisms F --7 K are precisely the elements of 
AutKF by Theorem 3.14. Since F is also separable over K (Corollary 3.15), 
[F : K]; = I. The conclusion of the theorem now follows directly from Defini
tion 7.1. • 

Suppose F is Galois over K and AutKF = {UI, ... , Un I. Since AutKF is a group, 
the elements UiUI, UiU2, ••• , UiU" (for any fixed Ui E AUtKF) are simply UI,U2, ••• , Un 

in a possibly different order. This implies that for any u E F, NKF(U) and TKF(u) are 
fixed by every Ui E AUtKF. Therefore, NKF(U) and TKF(u) must lie in K. The next 
theorem shows that this is true even if F is not Galois over K. The first two parts will 
be used frequently; the last two parts are not needed in the sequel. 

Theorem 7.3. Let F be ajinite dimensional extensionjield ofK. Then for allu,v E F: 

(i) NKF(U)NKF(V) = NKF(UV) and T KF(U) + T KF(V) = T KF(U + v); 
(ii) ifu E K, then NKF(U) = U[F:K) andTKF(u) = [F: KJu; 

(iii) NKF(u) and T KF(U) are elements ofK. More precisely, 

NKF(U) = « _1)nao)[F:K(u») E K andTKF(u) = -[F: K(u)]an_1 E K, 

where f = xn + an-I xn- 1 + ... + ao E K[x] is the irreducible polynomial ofu; 
(iv) ifE is an intermediate jield, then 

NKE(NEF(U» = NKF(U) andTKE(TEF(u» = TKF(u). 
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SKETCH OF PROOF. (i) and (ii) follow directly from Definition 7.1 and the 
facts that r = IF: KJ. and IF: KJ.IF: KJi = IF: KJ. 

(iii) Let E = K(u). An algebraic closure K of K which contains F is also an 
algebraic closure of E. The proof of Lemma 6.11 shows that the distinci K-mono
morpltisms F -+ K are precisely the maps O'kTj (1 :$ k :$ t;1 :$ j :$ r), where the O"s 
are all the K-automorphisms of K whose restrictions to E are distinct and the T'S are 
all the distinct E-monomorphisms F -+ K. Thus by Proposition 6.12, t = [E: K)., 
whence n = [E : K] = t[E : Klj (see Remarks after Definition 6.10). 

Use (ii) and Corollary 6.13 to show that NKF(U) = (IT O'k(U») (F:ElIE:KJ. and 
k-l 

hF(U) = IF: E][E: KJi(t O'k(U»). Since O'i: K(u) ~K(O'i(U» Corollary 1.9 im-
k=l 

plies that O'I(U) , ...• , O',(u) are all the distinct roots of f. By Corollary 6.14 

f = I(x - O'I(U»(X - 0'2(U»' .. (x - O',(U»)]IE:KJi 

= [XI - (tl O'k(U»)X1- 1 + ... + (-1)1 n O'k(U») TE:KJi. 

If [E : KJi = 1, then n = t and the conclusion is immediate. If [E : KJi > I, then 
IE : KJi is a positive power of p =' char K. It is easy to calculate ao and to see that 
an-I = 0 = TKF(U); use Exercise 111.1.11. 

(iv) Use the notation in the first paragraph of the proof of (iii), with E any inter
mediate field. Apply the appropriate definitions and use Corollary 6.13. • 

In addition to the trace and norm we shall need 

Definition 7.4. Let S be a nonempty set of aut om or ph isms of a field F. S is linearly 
independent provided that for any alo •.• , an e F and 0'1, ••• , Un e S (n ~ 1): 

atO't(u) + ... + allO'n(u) = 0 for all u e F => ai = 0 for every i. 

Lemma 7.5. IfS is a set of distinct automorphisms of a field F, then S is linearly 
independent. 

PROOF. If S is not linearly independent then there exist nonzero ai e F and 
distinct O'i e S such that 

(1) 

Among all such "dependence relations" choose one with n minimal; clearly" > 1. 
Since 0'1 and 0'2 are distinct, there exists v E F with O'I(V) F- O'~v). Applying (1) to the 
element uv (for any U E F) yields: 

aIO'I(U)O'I(V) + a2O'2(u)O'2(V) + ... + a .. O' .. (u)O' .. (v) = 0; 

and multiplying (1) by O'I(V) gives: 

atO't(u)O't(v) + a2O'~u)O'I(V) + ... + a"O' .. (u)O'I(V) = O. 

The difference of (2) and (3) is a relation: 

(2) 

(3) 

a2[0'2(v) - 0'1(V)]0'2(U) + a3[0'3(v) - 0'1(V)]0'3(U) + ... + a,,[O',,(v) -·O'I(V)]O',,(u) = 0 
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for all u e F. Since a2 ~ 0 and u~v) ~ UI(V) not all the coefficients are zero and this 
contradicts the minimality of n. • 

An extension field F of a field K is said to be cyclic [resp. abelian] if F is algebraic 
and Galois over K and AutKF is a cyclic [resp. abelian] group. If in this situation 
AutKF is a finite cyclic group of order n, then F is said to be a cyclic extension of 
degree n (and [F : K] = n by the Fundamental Theorem 2.5). For example, Theorem 
5.10 states that every finite dimensional extension of a finite field is a cyclic extension. 
The next theorem is the crucial link between cyclic extensions and the norm and trace. 

Theorem 7.6. Let F be a cyclic extension field ofK of degree n, u a generator of 
AutKF and u e F. The" 

(i) TKF(u) = o ifandonly ifu = v - u(v)forsomeveF; 
(ii) (Hilbert's Theorem 90) NKF(u) = IK if and only if u = VU(V)-I for some 

nonzero v e F. 

SKETCH OF PROOF. For convenience write u(x) = ux. Since u generates 
AutKF, it has order nand U,u2,U3, ... , u .. -I,u" = IF = UO are n distinct automor
phisms of F. By Theorem 7.2, T(u) = u + uu + u2u + ... + u .. -Iu and N(u) = 

u(uu) (u2u)·· . (u .. -Iu). 
(0 If u = v - uv, then use the definition and the facts that 

T(v - uv) = T(v) - T(uv) and u"(v) = v 

to show that T(u) = O. Conversely suppose T(u) = O. Choose we F such that 
T(w) = IK as follows. By Lemma 7.5 (since IK ~ 0) there exists z e F such that 

o ~ IFz + uz + u2z + ... + u .. -Iz = T(z). 

Since T(z) e K by the remarks after Theorem 7.2, we have u[T(z)-lzj = T(Z)-IU(Z). 
Consequently, if w = T(Z)-IZ, then 

Now let 

T(w) = T(Z)-IZ + T(Z)-IUZ + ... + T(Z)-IU .. -IZ 

= T(Z)-IT(z) = I K. 

v = uw + (u + uu)(uw) + (u + uu + U2U)(U2W) 

+ (u + uu + u2u + U3U)(U3W) + ... + (u + uu + ... + u"-2U)(Un- 2w). 

Use the fact that u is an automorphism and that 

o = T(u) = u + uu + u2u + ... + u .. -Iu, 

which implies that u = -(uu + u2u + ... + un-Iu), to show that 

v - uv = uw + u(uw) + u(u2w) + u(u3w) + ... + u(U"-2W) 

+ U(U"-IW) = uT(w) = UIK = u. 

(ii) If u = vu(v)-I, then since u is an automorphism of order n, u"(v-I) = v-I, 
u(v-I) = U(V)-I and for each I ::; i::; n - I, ui(VU(V)-I) = Ui(V)uiH(V)-I. Hence: 

N(u) = (VU(V)-I)(uvu2{vt-I)(U2VU3(V)-I) . .. (U"-IVU"(V)-I) = I K • 
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Conversely suppose N(u) = lK, which implies u r£ O. By Lemma 7.5 there exists 
y e F such that the element v given by 

v = uy + (uuu)uy + (uUUU2U)u2y + ... + (uuu· .. un- 2u)un- 2y 

+ (uuu . .. un- 1u)un- 1y 

is nonzero. Since the last summand of v is N(u)u n- 1y = hun - 1y = un - 1y, it is easy to 
verify that u-1v = uv, whence u = VU(V)-1 (u(v) r£ 0 since v r£ 0 and 17 is injec
tive). • 

We now have at hand all the necessary equipment for an analysis of cyclic ex
tensions. We begin by reducing the problem to simpler form. 

Proposition 7.7. Let F be a cyclic extension field ofK of degree n and suppose 
n = mpt where 0 r£ P = char K and (m,p) = 1. Then there is a chain of intermediate 
fields F ::> Eo ::> El ::> ... ::> E t _ 1 ::> Et = K such that F is a cyclic extension of Eo 
of degree m and for each 0 .:::; i .:::; t, Ei - 1 is a cyclic extension ofEi of degree p. 

SKETCH OF PROOF. By hypothesis F is Galois over K and AutKF is cyclic 
(abelian) so that every subgroup is normal. Recall that every subgroup and quotient 
group of a cyclic group is cyclic (Theorem 1.3.5). Consequently, the Fundamental 
Theorem 2.5(ii) implies that for any intermediate field E, F is cyclic over E and E is 
cyclic over K. It follows that for any pair L,M of intermediate fields with L C M, 
M is a cyclic extension of L; in particular, M is algebraic Galois over L. 

Let H be the unique (cyclic) subgroup of order m of AutKF (Exercise 1.3.6) and 
let Eo be its fixed field (so that H = H" = Eo' = AutEoF). Then F is cyclic over Eo of 
degree m and Eo is cyclic over K of degree pt. Since AutKEo is cyclic of order pi it has a 
chain of subgroups 

1 = Go < GI < G2 < ... < Gt- I'< Gt = AutKEo 

with I Gil = pi, [Gi : Gi-d = p and Gil Gi - I cyclic of order p (see Theorem I.3.4(vii». 
For each i let Ei be the fixed field of Gi (relative to Eo and AutKEo). The Fundamental 
Theorem 2.5 implies that: (i) Eo ::> EI ::> E2 ::> ... ::> E t- 1 ::> E t = K; (ii) [Ei_1 : Ei] 
= [Gi : Gi-d = p; and (iii) AutE.Ei_1 :::::::: Gil Gi - I . Therefore, E;_I is a cyclic extension 
of Ei of degree p (0 ::::: i::::: t - 1). • 

Let F be a cyclic extension field of K of degree n. In view of Proposition 7.7 we 
may, at least in principle, restrict our attention to just two cases: (i) n = char K 
= p r£ 0; (ii) char K = 0 or char K = p r£ 0 and (p,n) = 1 (that is, char K1'n). The 
first of these is treated in 

Proposition 7.8. Let K be afield of characteristic pr£ O. F is a cyclic extension field 
ofK of degree p if and only ifF is a splitting field over K of an irreducible polynomial 
of the form xP - x - a e K[x].ln this case F = K(u) where u is any root ofxP - x-a. 

PROOF. (=*) If 17 is a generator of the cyclic group AutKF, then 

TKF(1K) = [F: K]IK = ph = 0 
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by Theorem 7.3(ii), whence lK = v - u(v) for some v E F by Theorem 7.6(i). If 
u = -v, then u(u) = u + lK ,c. u, whence u f K. Since [F: KJ = p there are no 
intermediate fields, and we must have F = K(u). Note that u(uP) = (u + lx)p 
= uP + lxp = uP + lK which implies that u(up - u) = (up + Ix) - (u + l K ) 

= uP - u. Since F is Galois over K and AutxF = (u), a = uP - u must be in K. 
Therefore, u is a root of x P - x - a E K[xJ, which is necessarily the irreducible 
polynomial of u over K since the degree of u over K is [K(u) : KJ = [F: KJ = p. 

Recall that the prime subfield Zp of K consists of the p distinct elements 0,1 = 1 K, 

2 = lK + lx, ... , p - 1 = lK + ... + Ix (Theorem 5.1). The first paragraph of 
the proof of Theorem 5.6 shows that iP = i for all i E Zp. Since u is a root of 
x P - x - a, we have for each i EZp: (u + i)p - (u + i) - a = UV + iP - U - i -
a = (up - u - a) + (iP - i) = 0 + 0 = O. Thus u + i E K(u) = F is a root of 
xP - x - a for each i E Zp, whence F contains p distinct roots of XV - x-a. 
Therefore, F = K(u) is a splitting field over K of xP - x-a. Finally if u + i 
(i E Zp C K) is any root of x P - x - a, then clearly K(u + i) = K(u) = F. 

(<=) Suppose F is a splitting field over K of x P - x - a E K[xJ. We shall not as
sume that x P - x - a is irreducible and shall prove somewhat more than is stated in 
the theorem. If u is a root of x P - x - a, then the preceding paragraph shows that 
K(u) contains p distinct roots of x P - x - a: u, u + 1, ... , u + (p - 1) E K(u). 
But x P - x - a has at most p roots in F and these roots generate F over K. There
fore, F = K(u), the irreducible factors of x P - x - a are separable and F is Galois 
over K(Theorem 3.11 and Exercise 3.13). Every T E AutKF = AutKK(u) is completely 
determined by T(U). Theorem 2.2 implies that T(U) = u + i for some i EZp C K. 
Verify that the assignment T I---> i defines a monomorphism of groups (J : AutKF --> ZI'. 

Consequently, AutKF '" 1m (J is either 1 or Zp. If AutxF = I, then [F : KJ = 1 by the 
Fundamental Theorem 2.5, whence u E K and x P - x - a splits in K[xJ. Thus if 
x P - x - a is irreducible over K, we must have AutxF '" Zp. In this case, therefore, 
F is cyclic over K of degree p. • 

Corollary 7.9. If K is a field of characteristic p ,c. 0 and xP - x - a E K[xl, then 
xP - x - a is either irreducible or splits in K[xJ. 

PROOF. We use the notation of Proposition 7.8. In view of the last paragraph of 
that proof it suffices to prove that if AutxF '" 1m (J = Zv, then x P - x - a is irre
ducible. If u and v = u + i (i EZp C K) are roots of XV - x - a, then there exists 
T E AutxF such that T(U) = v and hence T : K(u) '" K(l') (choose T with (J(T) = i). 
Therefore, u and v are roots of the same irreducible polynomial in K[xJ (Corollary 
1.9). Since v was arbitrary this implies that x P - x - a is irreducible. • 

Proposition 7.8 completely describes the structure of a cyclic extension of the 
first type mentioned on p. 293. In order to determine the structure of a cyclic exten
sion of degree n of the second type it will be necessary to introduce an additional 
assumption on the ground field K. 

Let K be a field and n a positive integer. An element S- E K is said to be an nth root 
of unity provided s-n = lK (that is, S- is a root of xn - lK E K[x]). It is easy to see that 
the set of all nth roots of unity in K forms a multiplicative subgroup of the multiplica
tive group of nonzero elements of K. This subgroup is cyclic by Theorem 5.3 and has 
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order at most n by Theorem III.6.7. ?" € K is said to be a primitive nth root of unity 
provided?" is an nth root of unity and?" has order n in the multiplicative group of nth 
roots of unity. In particular, a primitive nth root of unity generates the cyclic group 
of all nth roots of unity. 

REMARKS. If char K = p and pin, then n = pkm with (p,m) = 1 and m < n. 
Thus xn - lK = (x'" - lK)pk (Exercise III.l.1I). Consequently the nth roots of unity 
in K coincide with the mth roots of unity in K. Since m < n, there can be no primitive 
nth root of unity in K. Conversely, if char K1'n (in particular, if char K = 0), then 
nxn- 1 r!- 0, whence xn - IK is relatively prime to its derivative. Therefore x" - lK 
has n distinct roots in any splitting field F of x" - lK over K (Theorem 111.6.10). 
Th us the cyclic group of nth roots of unity in F has order nand F (but not necessarily 
K) contains a primitive nth root of unity. Note that if K does contain a primitive 
nth root of unity, then K contains n distinct roots of x" - lK, whence F = K. 

EXAMPLES. IK is an nth root of unity in the field K for all n ~ 1. If 
char K = pr!-O and n = pk, then IK is the only nth root of unity in K. The subfield 
Q(i) of C contains both primitive fourth roots of unity (±i) but no cube roots of 
unity except I, (the others being - 1/2 ± "';"3 i/2). For each n > 0, e2ri/ .. € C is a 
primitive nth root of unity. 

In order to finish our characterization of cyclic extensions we need 

Lemma 7.10. Let n be a positive integer and K a field which contains a primitive nth 
root of unity r. 

(i) If din, then ,n/d= 11 is a primitive dth root of unity in K. 
(ii) lfd I nand u is a nonzero root ofxd - a € K[x), then xd - a has d distinct 

roots, namely U,7]U,7]2U, ••• , 7]d-l U, where 7] € K is a primitive dth root of unity. Fur 
thermore K(u) is a splitting field ofxd - a over K and is Galois over K. 

PROOF. (i)?" generates a multiplicative cyclic group of order n by definition. If 
din, then 7] = ?"nld has order d by Theorem I.3.4, whence 7] is a primitive dth root of 
unity. (ii) If u is a root of xd - a, then so is 7]i u. The elements 7]0 = lK, 7], ••• ,7]d-l 

are distinct (Theorem 1.3.4). Consequently since 7] € K, the roots u, 7JU, ••• , 7Jd-lU of 
x d - a are distinct elements of K(u). Thus K(u) is a splitting field of x d - a over K. 
The irreducible factors of x d - a are separable since all the roots are distinct, whence 
K(u) is Galois over K by Theorem 3.11 and Exercise 3.13. • 

Theorem 7.11. Let n be a positive integer and K a field which contains a primitive 
nth root of unity r Then the following conditions on an extensionfieldF of K are equiv~ 
alent. 

(i) F is cyclic of degree d, where din; 
(ii) F is a splitting field over K ofa polynomial of the form xn - a € K[x) (in which 

case F = K(u), for any root u ofxn - a); 
(iii) F is a splitting field over K of an irreducible polynomial of the form 

xd - b z K[x], where din (in which case F = K(v), for any root v ofxd - b). 
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PROOF. (ii) ==} (i) Lemma 7.10 shows that F = K(u) and F is Galois over K for 
any root u of xn - a. If (f € Auh:F = Aut[{K(u), then (f is completely determined by 
(f(u) , which is a root of xn - a by Theorem 2.2. Therefore, (f(u) = ?;iU for some 
i (0 :::: i :::: n - 1) by Lemma 7.10. Verify that the assignment (f I--> ?;i defines a mono
morphism from Aut[{F to the multiplicative cyclic group (of order n) of nth roots of 
unity in K. Consequently, Aut[{F is a cyclic group whose order d divides n (Theorem 
1.3.5 and Corollary I.4.6). Hence F is cyclic of degree dover K. 

(i) ==} (iii) By hypothesis Aut[{F is cyclic of order d = [F: KJ with generator (f. 
Let TJ = ?;nld E K be a pri mitive dth root of unity. Since N [{F( TJ) = TJ IF:K 1 = TJd = 1 K, 

Theorem 7.6(ii) implies that TJ = W(f(W)-1 for some W € F. If v = w-I , then (f(v) = TJV 
and (f(vd) = (TJV)d = TJdVd = Vd. Since F is Galois over K, vd = b mu.st lie in K so that 
v is a root of xd - b € K[xJ. By Lemma 7.10 K(v) C F and K(v) is a splitting field 
over K of xd - b (whose distinct roots are V,TJl", ... ,TJd-IV). Furthermore for each 
i (0 :::: i :::: d - 1), (fi(V) = TJiV so that (fi : K(v) ~ K(TJiV). By Corollary 1.9 v and TJiV 

are roots of the same irreducible polynomial over K. Consequently, x d - b is irre
ducible in K[xJ. Therefore, [K(v) : K] = d = [F: Kj, whence F = K(v). 

(iii) ==} (ii) If v E F is a root of xd - b € K[x], then F = K(v) by Lemma 7.10. Now 
(?;v)" = ?;nvn = l Kvd(nld) = bnld € K so that ?;v is a root of xn - a € K[x], where 
a = bnld. By Lemma 7.10 again K(?;v) is a splitting field of x" - a over K. But?; € K 
implies that F = K(v) = K(?;"v). • 

It is clear that the primitive nth roots of unity play an important role in the 
proof of the preceding results. Characterization of the splitting fields of polynomials 
of the form xn - a E K[x] is considerably more difficult when K does not contain a 
primitive nth root of unity. The case when a = 1" is considered in Section 8. 

EXERCISES 

1. If K is replaced by any normal extension N of K containing F in Definition 7.1, 
then this new definition of norm and trace is equivalent to the original one. In 
particular, the new definition does not depend on the choice of N. See Exercise 
3.21. 

2. Let F be a finite dimensional extension of a finite field K. The norm N[{p and the 
trace TKF (considered as maps F -> K) are surjective. 

3. !:.et Q be a (fixed) algebraic closure of Q and CEQ, v ~ Q. Let E be a subfield of 
Q maximal with respect to the condition r ~ E. Prove that every finite dimen
sional extension of E is cyclic. 

4. Let K be a field, K an algebraic closure of K and (f E AutKK. Let 

F = (u E K I (f(u) = ul. 

Then F is a field and every finite dimensional extension of F is cyclic. 

5. If F is a cyclic extension of K of degree p" (p prime) and L is an intermediate 
field such that F = L(u) and L is cyclic over K of degree pn-l, then F = K(u). 

6. If char K = p ~ 0, let Kp = (up - u I u E Ki. 
(a) A cyclic extension field F of K of degree p exists if and only if K oF Kp. 
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(b) If there exists a cyclic extension of degree p of K, then there exists a cyclic 
extension of degree pn for every n ~ 1. [Hint: Use induction; if E is cyclic over 
K of degree pn-l with Aut[(E generated by u, show that there exist u,v E E such 
that T ?(v) = lK and a(u) - u = vP - v. Then xP - x - u e E[x] is irreducible 
and if w is a root, then K( w) is cyclic of degree pn over K.] 

7. If n is an odd integer such that K contains a primitive nth root of unity and char 
K i' 2, then K also contains a primitive 2nth root of unity. 

8. If F is a finite dimensional extension of Q, then F contains only a finite number 
of roots of unity. 

9. Which roots of unity are contained in the following fields: Q(i), Q(.y2), Q(.y3), 
Q( .y5), Q(.y - 2), Q(.y - 3),1 

10. (a) Let p be a prime and assume either (i) char K = p or (ii) char K ~ p and K 
contains a primitive pth root of unity. Then x P - a E K[x] is either irreducible or 
splits in K[x]. 
(b) If char K = p ~ 0, then for any root u of x P - a E K[x], K(u) ~ K(up) if and 
only if [K(u) : K] = p. 

8. CYCLOTOMIC EXTENSIONS 

Except for Theorem 8.1 this section is not needed in the sequel. We shall examine 
splitting fields of the polynomial x· - IJ{, with special attention to the case K = Q . • These splitting fields turn out to be abelian extensions whose Galois groups are 
well known. 

A splitting field F over a field K of xn - 1/( a K[x] (where n ~ 1) is called a 
cyclotomic extension of order n. If char K = p ~ 0 and n = mp' with (p,m) = I, 
then x" - 1/( = (xm - I )pl (Exercise IlL I. II ) so that a cyclotomic extension of order 
n coincides with one of order III. Thus we shall usually assume that char K does not 
divide II (that is, char K = 0 or is relatively prime to n). 

The dimension of a cyclotomic extension field of order n is related to the Euler 
function <{ of elementary number theory, which assigns to each positive integer n the 
number <((n) of integers i such that I ::::: i ::::: nand (i,n) = I. For example, <p(6) = 2 
and <p(p) = JI - I for every prime p. Let I be the image of i E Z under the canonical 
projection Z ---> Z". It is easily verified that (i,n) = I if and only if i is a unit in the ring 
Z" (Exercise I). Therefore the multiplicative group of units in Z. has order <p(n); for 
the structure of this group see Exercise 4. 

Theorem 8.1. Let n he a positire integer, K afield such that char K does not divide n 
and F a cyclotomic extension ofK of order n. 

(i) F = K(n. where rEF is a pril1litire nth root of unity. 
(ii) F is an abelian extension of dimension d, where d l <{(n) (op the Euler function); 

ifn is prime F is actually a cyclic extension. 
(iii) AutKF is iso/llorphic to a subgroup of order d of the multiplicatire group of 

units ofZ". 
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REMARKS. Recall that an abelian extension is an algebraic Galois extension 
whose Galois group is abelian. The dimension of F over K may be strictly less than 
tp(n). For example, if ~ is a primitive 5th root of unity in C, then R C R(n C C, 
whence, IRm : R) = 2 < 4 = tp(5). If K = Q, then the structure of the group 
AutQF is completely determined in Exercise 7. 

SKETCH OF PROOF OF 8.1. (i) The remarks preceding Lemma 7.10 show 
that F contains a primitive nth root of unity ~. By definition 1 K l, ... , ~n-l € K(n are 
the n distinct roots of xn - IK, whence F = Km. (ii) and (iii). Since the irreducible 
factors of xn - IK are clearly separable, Theorem 3.11 and Exercise 3.13 imply that 
F is Galois over K. If u e AutKF, then u is completely determined by u(t). For some 
i (l ::; i::; n - I), um = ~i by Theorem 2.2. Similarly u-1m = ~i so that ~ = u-1um 
= ~ii. By Theorem I.3.4(v), ij == 1 (mod n) and hence i € Zn is a unit (where i I---- I 
under the canonical projection Z -..... Zn). Verify that the assignment u I---- i defines a 
monomorphism ffrom AutKF to the (abelian) multiplicative group of units of the 
ring Zn (which has order tp(n) by Exercise I). Therefore, AutKF '" 1m fis abelian 
with order d dividing tp(n). Thus IF : K) = d by the Fundamental Theorem 2.5. If n is 
prime, then Zn is a field and AutKF '" 1m f is cyclic by Theorem 5.3. • 

Let n be a positive integer, K a field such that char K does not divide n, and Fa 
cyclotomic extension of order n of K. The nth cyclotomic polynomial over K is the 
monic polynomial gn(x) = (x - ~l)(X - ~2)·· ·(x - ~r) where ~J, ••• '~r are all the 
distinct primitive nth roots of unity in F. 

EXAMPLES. gl(X) = x - IK and gb) = (x - (-IK» = x + IK. If K = Q, 
then ga(X) = (x - (-1/2 + "";3i/2»(x - (-1/2 - "";3i/2» = x2 + X + 1 and 
g4(X) = (x - i)(x + i) = x 2 + I. These examples suggest several properties of the 
cyclotomic polynomials. 

Proposition 8.2. Let n be a positive integer, K a field such that char K does not 
divide nand gn(x) the nth cye/otomic polynomial over K. 

(i) xn - IK = II gb). 
din 

(ii) The coefficients ofgn(x) lie in the prime subfieldP ofK. Ifchar K = o and P is 
identified with the field Q of rationals, then the coefficients are actually integers. 

(iii) Deg gn(X) = tp(n), where tp is the Euler function. 

PROOF. (i) Let F be a cyclotomic extension of K of order n and ~ € F a primitive 
nth root of unity. Lemma 7.10 (applied to F) shows that the cyclic group G = (~> of 
all nth roots of unity contains all dth roots of unity for every divisor d of n. Clearly 
TJ eGis a primitive dth root of unity (where din) if and only if ITJI = d. Therefore for 
each divisor d of n, gix) = II (x - TJ) and 

~.G 
1~I=d 

xn - h = II (x - TJ) = II (II (x - TJ» = II gd(X). 
~.G d ~.G d 

din I~I = d din 
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(ii) We prove the first statement by induction on n. Clearly gl(X) = x - lK E P[xJ. 
Assume that (ii) is true for all k < n and let f(x) = II gix). Then fE P[xJ by the 

d 
din 

d<n 

induction hypothesis and in F[x], xn - lK = f(x)gn(X) by (i). On the other hand 
xn - lK E P[xJ and fis monic. Consequently, the division algorithm in P[xJ implies 
that xn - lK = fh + r for some h, r E P[xJ C F[xJ. Therefore by the uniqueness of 
quotient and remainder (of the division algorithm applied in F[xJ) we must have r = 0 
and gn(X) = h E P[xJ. This completes the induction. If char K = 0 and P = Q, then a 
similar inductive argument using the division algorithm in Z[xJ and Q[xJ (instead of 
P[x], F[xJ) shows that gn(x) E Z[xJ. 

(iii) deg gn is clearly the number of primitive nth roots of unity. Let r be such a 
primitive root so that every other (primitive) root is a power of r Then 
ti (1 ::::; i ::::; n) is a primitive nth root of unity (that is, a generator of G) if and only 
if (i,n) = 1 by Theorem 1.3.6. But the number of such i is by definition precisely 
<p(n). :iI 

REMARKS. Part (i) of the theorem gives a recursive method for determining 
gn(X) since 

For example if p is prime, then gp(x) = (x p - l K )/gl(X) = (xv - l K )/(x - l K ) 

= x p- 1 + x p- 2 + ... + x2 + X + l K • Using the example preceding Theorem 8.2 we 
have for K = Q: 

g6(X) = (x6 - 1)/ glx)gb)ga(x) 

similarly 

= (x6 - I)/(x - I)(x + 1)(x2 + X + 1) 

= x2 - X + 1; 

g12(X) = (X 12 - 1)/(x - I)(x + 1)(x2 + X + 1)(x2 + l)(x2 - X + 1) 

= X4 - x2 + 1. 

When the base field is the field Q, we can strengthen the previous results 
somewhat. 

Proposition 8.3. Let F be a cye/otomic extension of order n ofthefieldQ of rational 
numbers and gn(X) the nth cye/otomic polynomial over Q. Then 

(i) gn(X) is irreducible in Q[xJ. 
(ii) [F : QJ = <p(n), where <p is the Euler function. 

(iii) AutQF is isomorphic to the multiplicative group of units in the ring Z". 

SKETCH OF PROOF. (i) It suffices by Lemma III.6.13 to show that the monic 
polynomial gn(X) is irreducible in Z[xJ. Let h be an irreducible factor of gn in Z[xJ 
with deg h ;" 1. Then gn(x) = f(x)h(x) withf,h E Z[x] monic. Let ~ be a root of hand 
p any prime integer such that (p,n) = 1. 
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We shall show first that tp is also a root of h. Since t is a root of gn(X), t is a 
primitive nth root of unity. The proof of Proposition 8.2(iii) implies that t p is also a 
primitive nth root of unity and therefore a root of either for h. Suppose tp is not a 

r r 

root of h. Then tp is a root of f(x) == L aixi and hence tis a root of f(xp ) = L aixiP. 
i=O i=O 

Since h is irreducible in Q[xJ (Lemma III.6.13) and has t as a root, h must divide 
f(x p ) by Theorem 1.6, say f(x p ) = h(x)k(x) with k E Q[xJ. By the division algorithm 
in Z[x], f(x p ) = h(x)kl(x) + rl(x) with kl,rl E Z[xJ. The uniqueness statement of the 
division algorithm in Q[xJ shows that k(x) = kb) E Z[xJ. Recall that the canonical 
projection Z ---> Zp (denoted on elements by b ~ b) induces a ring epimorphism 

t t 

Z[xJ---> Zp[xJ defined by g = L bix' ~ g = L b;xi (Exercise 111.5.1). Conse-
i='O i=O 

quently, in Zp[x], .f(xp ) = h(x)k(x). But in Zp[x]'l(x p ) = f(x)p (since char Zp = pl. 
Therefore, 

Consequently, some irreducible factor of hex) of positive degree must divide l(x)p 

and hence f(x) inZp[xJ. On the other hand, since gn(X) is a factor of xn - 1, we have 
xn - 1 = gn(x)r(x) = f(x)h(x)r(x) for some rex) E Z[xJ. Thus in Zp[xJ 

xn - I =, xn - 1 = f(x)h(x)r(x). 

Since land h have a common factor, xn - I EZp[XJ must have a multiple root. This 
contradicts the fact that the roots of xn - I are all distinct since (p,n) = 1 (see the 
Remarks preceding Lemma 7.10). Therefore t p is a root of hex). 

If r E Z is such that 1 :::; r:::; nand (r,n) = 1, then r = Plkl.. 'p,k. where k, > 0 
and each Pi is a prime such that (pi,n) = 1. Repeated application of the fact that t p is 
a root of h whenever f is, shows that fr is a root of hex). But the fr (1 :::; r s: nand 
(r,n) = 1) are precisely all of the primitive nth roots of unity by the proof of Proposi
tion 8.2(iii). Thus hex) is divisible by II (x - tr) = gn(x), whence gn(X) = hex). 

Therefore, gn(X) is irreducible. 

1 <r <n 
(r;;):;;; 1 

(ii) Lemma 7.10 shows that F = Q(t), whence 

[F : QJ = [Q(t) : QJ = deg gn = cp(n) 

by Proposition 8.2 and (i). (iii) is a consequence of (ii), Theorem 8.1, and Exer
cise 1. • 

REMARK. A nontrivial theorem of Kronecker states that every abelian exten
sion of Q is contained in a cyclotomic extension. 

EXERCISES 

1. If i E Z, let i denote the image of i in Zn under the canonical projection Z ---> Zn. 
Prove that i is a unit in the ringZn if and only if (i,n) = 1. Therefore the multipli
cative group of units in Zn has order cp(n). 

2. Establish the following properties of the Euler function cpo 
(a) If P is prime and n > 0, then cp(pn) = pn(l - lip) = pn-l(p - 1). 
(b) If (m,n) = 1, then cp(mn) = cp(m)cp(n). 
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(c) If n = p,kl.. ·Prkr (Pi distinct primes; ki > 0), then rp(n) = 

n{l - lip,) (l - Ilp2)·· ·(1 - IIPr). 
(d) L: rp(d) = n. 

din 

(e) cp(n) = L: dp.(nl d), where p. is the Moebius function defined by 
din 

1
1 if n = 1 

p.(n) = (-I)t if n is a product of t distinct primes 
o if p2 divides n for some prime p. 

3. Let rp be the Euler function. 
(a) rp(n) is even for n > 2. 
(b) Find all n > 0 such that rp(n) = 2. 
(c) Find all pairs (n,p) (where n,p > 0, and p is prime) such that rp(n) = nip. 
[See Exercise 2.1 

4. (a) If p is an odd prime and n > 0, then the multiplicative group of units in the 
ring Zpn is cyclic of order pn-,(p - 1). 
(b) Part (a) is also true if p = 2 and 1 ::; n ::; 2. 
(c) If n ~ 3, then the multiplicative group of units in Z.n is isomorphic to 
Z2EB Z2n- 2• 

t t 

5. If f(x) = L: aixi, let f(x') be the polynomial L: a;x". Establish the following 
i=O i=O 

properties of the cyclotomic polynomials gn(x) over Q. 
(a) If p is prime and k ~ 1, then gpk(X) = gp(xPk-'). 

(b) If n = p{l. . ·Pk,k (Pi distinct primes; ri > 0), then 

gn(X) = gPl ... pixp,r,-, ... Pk'k-'). 

(c) If n is odd, then g2n(X) = gn( - x). 
(d) If p is a prime and p-/'n. then gpn(X) = g,,(xp)lg,,(x). 
(e) gn(X) = IT (Xn1d -1)I'(d), where p. is the Moebius function of Exercise 2 (e). 

din 

(f) gn(l) = p if n = p" (k > 0), 0 if n = I, and I otherwise. 

6. Calculate the nth cyclotomic polynomials over Q for all positive n with n ::; 20. 

7. Let Fn be a cyclotomic extension of Q of order n. Determine the structure of 
AutQFn for every n. [Hint: if Un • denotes the multiplicative group of units in Zn, 

r 

then show that Un· = II Up,n,· where n has prime decomposition n = Pin, . .. Pr"'. 
i=l 

Apply Exercise 4.1 

8. Let F" be a cyclotomic extension of Q of order n. 
(a) Determine AutQF5 and all intermediate fields. 
(b) Do the same for Fs. 
(c) Do the same for F1 ; if ~ is a primitive 7th root of unity what is the irre

ducible polynomial over Q of ~ + ~-l? 

9. If n > 2 and ~ is a primitive nth root of unity over Q, then [Q(~ + ~-l) : Q1 
= rp(n)/2. 
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10. (Wedderburn) A finite division ring D is a field. Here is an outline of the proof 
(in which E* denotes the multiplicative group of nonzero elements of a division 
ring E). 

(a) The center K of D is a field and D is a vector space over K, whence IDI = qn 
where q = IKI ~ 2. 

(b) If 0 ~ a E D, then N(a) = IdE D I da = ad) is a subdivision ring of D 
containing K. Furthermore, I N(a) I = qr where r I n. 

(c) If 0 1= a e D - K, then N(a)* is the centralizer of a in the group D* and 
[D* : N(a)*] = (qn - 1)/(qr - 1) for some r such that 1 ~ r < nand r I n. 

(d) qn - 1 = f/ - 1 + L (qn - I)/(qr - I), where the last sum taken over a 
T 

finite number of integers r such that 1 ~ r < nand r I n. [Hint: use the class 
equation of D*; see pp. 90-91.] 

(e) For each primitive nth root of unity .I E C, Iq - .II > q - I, where 
la + bil = -va2 + b2 for a + bi E C. Consequently, Ign(q) I > q - I, where gn is 
the nth cyclotomic polynomial over Q. 

(f) The equation in (d) is impossible unless n = 1, whence K = D. [Hint: 
Use Proposition 8.2 to show that for each positive divisor r of n with r ~ n, 
ffJ() = (xn - l)/(xr - 1) is in Z[x] andf,(x) = gn(x)h,(x) for some hr(x) E Z[x]. 
Consequently, for each such r g,,(q) divides f,(q) in Z, whence gn(q) I (q - 1) 
by (d). This contradicts (e).] 

9. RADICAL EXTENSIONS 

Galois theory had its historical origin in a classical problem in the theory of 
equations, which may be intuitively but reasonably accurately stated as follows. 
Given a field K, does there exist an explicit "formula" (involving only field opera
tions and the extraction of nth roots) which gives all the solutions of an arbitrary 
polynomial equation f(x) = 0 (fE K[x])? If the degree of f is at most four, the 
answer is affirmative (for example, the familiar "quadratic formula" when degf = 2 
and char K ~ 2; see also Exercise 5). We shall show, however, that the answer is 
negative in general (Proposition 9.8). In doing so we shall characterize certain field 
extensions whose Galois groups are solvable (Theorem 9.4 and Proposition 9.6). 

The first task is to formulate a precise statement of the classical problem-in field
theoretic terms. Throughout the discussion we shall work in a fixed algebraic closure 
of the given base field K. Intuitively the existence of a "formula" for solving a 
specific polynomial equation f(x) = 0 means that there is a finite sequence of steps, 
each step being a field operation (addition, multiplication, inverses) or the extraction 
of an nth root, which yields all solutions of the given equation. Performing a field 
operation leaves the base field unchanged, but the extraction of an nth root of an 
element c in a field E amounts to constructing an extension field E(u) with un E E 

(that is, u = {Y~). Thus the existence of a "formula" for solvingf(x) = 0 would in 
effect imply the existence of a finite tower of fields 

K = Eo C EI C ... C En 

such that En contains a splitting field of f over K and for each i ~ I, E. = E._lUi) 
with some positive power of lIi lying in Ei_ l • 
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Conversely suppose that there exists such a tower of fields and that En contains 
a splitting field of f(that is, En contains all solutions of f(x) = 0). Then 

En = K(u1, ... , Un) 

and each solution is of the form 

(f,g E K[XI' ... , xnD 

by Theorem 1.3. Thus each solution is expressible in terms of a finite number of ele
ments of K, a finite number offield operations and UJ, ••• ,Un (which are obtained by 
extracting roots). But this amounts to saying that there is a "formula" for the solu
tions of the particular given equations. These considerations motivate the next two 
definitions. 

Definition 9.1. An extension field F of a field K is a radical extension oj K if 
F = K(UI, ... ,Un), some power oful lies in K and for each i ~ 2, some powerofui 
lies in K(u" ... , Ui_I). 

REMARKS. If ur E K(u" ... , Ui_l) then Ui is a root of 

xm - ur E K(u" ... , Ui_I)[X]. 

Hence K(UI, ... ,Ui) is finite dimensional algebraic over K(UI, ... ,Ui_l) by Theorem 
1.12. Therefore every radical extension F of K is finite dimensional algebraic over K 
by Theorems 1.2 and 1.11. 

Definition 9.2. Let K be a field and f E K[x]. The equation f(x) = 0 is solvable by 
radicals if there exists a radical extension F ofK and a splitting field E off over K 
such that F ::J E ::J K. 

Definition 9.2 is the first step in the formulation of the classical problem of find
ing a "formula" for the solutions of f(x) = 0 that is valid for every polynomial 
fE K[x] of a given degree r (such as the quadratic formula for r = 2). For whatever 
the precise definition of such a "formula" might be, it is clear from the discussion 
preceding Definition 9.1 that the existence of such a "formula" should imply that 
every polynomial equation of degree r is solvable by radicals. 

Thus in order to demonstrate the nonexistence of such a formula, it suffices to 
prove that a specific polynomial equation is not solvable by radicals. We shall now 
develop the necessary information in order to do this (Corollary 9.5) and shall leave 
the precise formulation of the classical problem for the appendix. 

Lemma 9.3. IfF is a radical extension field ofK andN is a normal closure ofF over 
K (Theorem 3.16), then N is a radical extension ofK. 

SKETCH OF PROOF. The proof consists of combining two facts. (i) If F is 
any finite dimensional extension of K (not necessarily radical) and N is the normal 
closure of F over K, then N is the composite field E IE2 • • ·E" where each Ei is a sub
field of N which is K-isomorphic to F. (ii) If E1, ... , Er are each radical extensions of 
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K (as is the case here since F is radical), then the composite field E1E2· .. ET is a radical 
extension of K. These statements are justified as follows. 

(i) Let ! WI, •.• , Wn I be a basis of F over K and let fi be the irreducible poly
nomial of Wi over K. The proof of Theorem 3.16 shows that N is a splitting field of 
\ /r, ... ,In lover K. Let v be any root of Ii in N. Then there is a K-isomorphism 
0" : K(w,) ~ K(v) such that O"(w,} = v by Theorem 1.8. By Theorem 3.8 0" extends to a 
K-automorphism T of N. Clearly 1-(F) is a subfield of N which is K-isomorphic to F 
and contains T(W,) = O"(wj} = v. In this way we can find for every root v of every Ii 
a subfield E of N such that vEE and E is K-isomorphic to F. If E1, ... , ET are the 
subfields so obtained, then E1E2· . ·Ey is a subfield of N which contains all the roots of 
/r,/z, ... ,In, whence E1E2 • •• Er = N. 

(ii) Suppose r = 2, El = K(Ul, ... , Uk) and E2 = K(v!, ... , vm) as in Definition 
9.1. Then E1E2 = K(ul, ... , Uk,Vl, ... , Vm) is clearly a radical extension of K. The 
general case is similar. • 

Theorem 9.4. IfF is a radical extension field ofK andE is an intermediate field, then 
AutKE is a solvable group. 

PROOF. If Ko is the fixed field of E relative to the group AutKE, then E is Galois 
over Ko, AutKoE = AutKE and F is a radical extension of Ko (Exercise I). Thus we 
may assume to begin with that E is algebraic Galois over K. Let N be a normal 
closure of Fover K(Theorem 3.16). Then Nis a radical extension of Kby Lemma 9.3 
and E is a stable intermediate field by Lemma 2.13. Consequently, restriction 
(0" ~ 0" I E) induces a homomorphism e : AutKN ---> AutKE. Since N is a splitting 
field over K (and hence over E) every 0" € AutKE extends to a K-automorphism of N 
by Theorem 3.8. Therefore e is an epimorphism. Since the homomorphic image of a 
solvable group is solvable (Theorem n.7.l1), it suffices to prove that AutKN is 
solvable. If Kl is the fixed field of N relative to Autj{N, then N is a radical Galois 
extension of Kl (Exercise I) and AutK1N = AutKN. Therefore, we may return to our 
original notation and with no loss of generality assume that F = E and F is a Galois 
radical extension of K. 

If F = K(Ul, ... , un) with Ulml E K and Uimi € K(ul, ... ,Ui_l) for i ;;::: 2, then we 
may assume that char K does not divide mi. This is obvious if char K = O. If char K 
= p ~ 0 and mi = rp' with (r,p) = I, then u?' € K(ul, ... , Ui_l) so that u{ is purely 
inseparable over K(Ul, ... ,Ui_l). But F is Galois and thus separable over K (Theo
rem 3.11), whence F is separable over K(Ul, ... , Ui-l) (Exercise 3.12). Therefore 
ur e K(u1, ••• 'Ui - 1) by Theorem 6.2, and we may assume mi = r. 

If m = mlm2' .. mn , then by the previous paragraph char K (= char F) does not 
divide m. Consider the cyclotomic extension F(n of F, where r is a primitive mth 
root of unity (Theorem 8.l). The situation is this: 

/F(t~ 
F Ken 
~/ 

K 
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where F(/;) is Galois over F (Theorem 8.1) and hence over K as well (Exercise 
3.l5(b». The Fundamental Theorem 2.5 shows that AutKF:::: AutKFC\)/ AutFFC\). 
Consequently, it suffices by Theorem 11.7.11 to prove that AutKF(n is solvable. Ob
serve that K(n is an abelian Galois extension of K (Theorem 8.1), whence 
AutKKCn ""' AutKF(n/ AutKwFCn by the Fundamental Theorem 2.5. If we knew 
that AutKWF(n were solvable, then Theorem II.7.11 would imply that AutKF(n is 
solvable (since AutKK(n is abelian, hence solvable). Thus we need only prove that 
AutKWF(n is solvable. 

By assumption, F(n is Galois over K and hence over any intermediate field. Let 
Eo = KG;) and 

Ei = K(I;,UI, ... , Ui) (i = 1,2, ... , n) 

so that En = K(I;,ul, ... , Un) = F(/;). Let Hi = AutE,F(I;), the corresponding sub
group of AutKcnF(n under the Galois correspondence. Schematically we have: 

Ei If----i~~ Hi = AutE,F(I;) 
U 

By Lemma 7.10(i) K(n contains a primitive mith root of unity for each 
i (i = 1,2, ... , n). Since Uim , C £i-I and Ei = Ei_I(Ui), each Ei is a cyclic extension of 
Ei _ 1 by Lemma 7.10 (ii) (with d = lIli) and Theorem 7.11(ii) (with n = mi). In par
ticular, Ei is Galois over Ei_l • The Fundamental Theorem 2.5 implies that for each 
i = 1,2, ... , n Hi <J Hi_1 and Hi-,J Hi :::: AutEi_IEi , whence Hi_l / Hi is cyclic 
abelian. Consequently, 

I = Hn < Hn_1 < ... < Ho = AutKcnF(/;) 

is a solvable series (Definition 11.8.3). Therefore, AutKWF(/;) is solvable by Theo
rem 11.8.5. • 

Corollary 9.5. Let K be a field and [c K[x]. If the equation [(x) = 0 is solvable by 
radicals, then the Galois group off is a solvable group. 

PROOF. Immediate from Theorem 9.4 and Definition 9.2. • 

EXAMPLE. The polynomial f = x 5 - 4x + 2 c Q[x] has Galois group S5 (see 
the example following Theorem 4.12), which is not a solvable group (Corollary 
11.7.12). Therefore, x 5 - 4x + 2 = 0 is not solvable by radicals and there can be no 
"formula" (involving only field operations and extraction of roots) for its solutions. 
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Observe that the base field plays an important role here. The polynomial 
x 5 - 4x + 2 = 0 is not solvable by radicals over Q, but it is solvable by radicals 
over the field R of real numbers. In fact, every polynomial equation over R is solvable 
by radicals since all the solutions lie in the algebraic closure C = R(i) which is a 
radical extension of R. 

We close this section by proving a partial converse to Theorem 9.4. There is no 
difficulty if K has characteristic zero. But if char K is positive, it will be necessary to 
place some restrictions on it (or alternatively to redefine "radical extension" - see 
Exercise 2). 

Proposition 9.6. Let E be a finite dimensional Galois extension field of K with 
solvable Galois group AutKE. Assume that char K does not divide [E : KJ. Then there 
exists a radicalextem'ion F ofK such that F :J E :J K. 

REMARK. The requirement that E be Galois over K is essential (Exercise 3). 

SKETCH OF PROOF OF 9.6. Since AutKE is a finite solvable group, it has a 
normal subgroup H of prime index p by Proposition 11.8.6. Since E is Galois over K, 
IAutKEI = [E: KJ (Theorem 2.5), so that char K{'p. Let N = Em be a cyclotomic 
extension of E, where t is a primitive pth root of unity (Theorem 8.1). Let M = K(n; 
then we have 

N is finite dimensional Galois over E (Theorem 8.1) and hence over K as well (Exer
cise 3.15(b)). Now M is clearly a radical extension of K. Consequently, it will suffice 
(by Exercise 4) to show that there is a radical extension of M that contains N. 

First observe that E is a stable intermediate field of Nand K (Lemma 2.13). Thus 
restriction (u ~ u I E) induces a homomorphism (J : AutMN --> AutKE. If u E AutMN, 
then u(t) = r Hence if u E Ker (J, we have u = 1x. Therefore (J is a monomorphism. 

We now prove the theorem by induction on n = [E: KJ. The case n = 1 is trivial. 
Assume the theorem is true for all extensions of dimension k < n and consider the 
two possibilities: 

(i) AutMN is isomorphic under (J to a proper subgroup of AutKE; 
(ii) (J: AutMN'" AutKE. 

In either case Auh1N is'solvable (Theorem 11.7.11) and N is a finite dimensional 
Galois extension of K and hence of M. In case (i) [N: MJ = IAutMNI < IAutKEI 
= [E : KJ = n, whence the inductive hypothesis implies that there is a radical exten
sion of M that contains N. As remarked in the first paragraph, this proves the theo
rem in case (i). In case (ii), let J = O-l(H). Since H is normal of index p in Autll.E, J is 
normal of index pin AutMN. Furthermore J is solvable by Theorem 11.7.11. If P 
is the fixed field of J (relative to AutMN), then we have: 
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N. • 1 

U l:::. 

P • • J = AutpN 

U l:::. 

M· • AutMN 

The Fundamental Theorem 2.5 implies that P is Galois over M and that 
AutMP '" AUtMN/J. But [AutMN: J] = p by construction, whence AutMP '" Zp. 
Therefore, P is a cyclic extension of M and P = M(u), where u is a root of some (irre~ 
ducible) xP - a e M[x] (Theorem 7.11). Thus P is a radical extension of M and 
[N : P] < [N: M] = [F : K] = n. Since AutpN = J is solvable and N is Galois over 
P (Theorem 2.5), the induction hypothesis implies that there is a radical extension F 
of P that contains N. F is a clearly radical extension of M (Exercise 4). This completes 
the proof of case (ii). • 

Corollary 9.7. Let K be a field and f e K[x] a polynomial of degree n > 0, where 
char K does not divide n! (which is always true when char K = 0). Then the equation 
f(x) = 0 is solvable by radicals if and only if the Galois group off is solvable. 

SKETCH OF PROOF. (=) Let E be a splitting field of fover K. In view of 
Proposition 9.6 we need only show that E is Galois over K and char K{[E : K]. Since 
char K,(n! the irreducible factors of fare separable by Theorem 111.6.10 and Exercise 
III.6.3, whence E is Galois over K (Theorem 3.11 and Exercise 3.13). Since every 
prime that divides [E: K] necessarily divides n! (Theorem 3.2), we conclude that 
char K{[E : K]. • 

APPENDIX: THE GENERAL EQUATION OF DEGREE n 

The motivation for our discussion can best be seen by examining polynomial 
equations of degree 2 over a field K with char K ¢ 2. Here and below there will be 
no loss of generality in restricting consideration to monic polynomials. If tl and 12 are 
indeterminates, then the equation 

x2 - IIX + 12 = 0 

over the field K(tr,t2) of rational functions in Ir,t2 is called the general quadratic equa
tion over K. Any (monic) quadratic equation over K may be obtained from the 
general quadratic equation by substituting appropriate elements of K for II and 12. It 
is easy to verify that the solutions of the general quadratic equation (in some 
algebraic closure of K(tI,/2)) are given by: 

X=tI±...j~ 
2 ' 



308 CHAPTER V FIELDS AND GALOIS THEORY 

where n = nlK for n E Z. This is the well known quadratic formula. It shows that the 
solutions of the general quadratic equation lie in the radical extension field K(tl,t2)(U) 
with u2 = t[2 - 4t2. In order to find the solutions of X2 - bx + c = 0 (b,c e K) one 
need only substitute b,c for t['(2. Clearly the solutions lie in the radical extension K(u) 
with u2 = b2 - 4c e K. We now generalize these ideas to polynomial equations of 
arbitrary degree. 

Let K be a Geld and n a positive integer. Consider the field K(t[, ... , tIl) of ra
tional functions over K in the indeterminates t[, ... , tn. The polynomial 

Pn(x) = xn - t[xn- 1 + t2xn-2 + ... + (_l)n-[tn_1X + (-I)nt" E K(t!, ... , tn)[xj 

is called the general polynomial of degree n over K and the equation Pn(X) = 0 is 
called the general equation of degree n over K.3 Note that any (monic) polynomial of 
degree n in K[x], say f(x) = xn + a[xn- 1 + ... + an_ix + an may be obtained from 
the general polynomial Pn(x) by substituting (-l) iai for ti. 

The preceding discussion makes the following definition quite natural. We say 
that there is a formula for the solutions of the general equation of degree n provided 
that this equation is solvable by radicals over the field K(t[, ... , tn). If Pn(X) = 0 is 
solvable by radicals, then the solutions of any (monic) polynomial equation of degree 
n over K may be found by appropriate substitutions in the solutions of Pn(X) = O. 
Having precisely formulated it, we can now settle the classical problem with which 
this section was introduced. 

Proposition 9.8. (Abel) Let K be a field andn a positive integer. The general equa
tion of degree n is solvable by radicals only ifn :s: 4. 

REMARKS. The words "only if" in Proposition 9.8 may be replaced by "if and 
only if" when char K = O. If radical extensions are defined as in Exercise 2, then 
"only if" may be replaced by "if and only if" for every characteristic. The fact that 
the general equation of degree n is not solvable by radicals for n ~ 5 does not exclude 
the possibility that a particular polynomial equation over K of degree n ~ 5 is 
solvable by radicals. 

SKETCH OF PROOF OF 9.8. Let the notation be as above and let U[, ••• , Un 

be the roots of Pn(X) in some splitting field F = K(t[, ... , tn)(u[, ... , un). Since 
Pn(X) = (x - u[)(x - U2)' .. (x - Un) in F, a direct calculation shows that 

n 

t[ = LUi; t2 = L UiUi;' .. , tn = U\U2" ·Un; 
i-I ISi<iSn 

that is, ti = ji(u[, ... , lin) where It, ... ,In are the elementary symmetric functions in 
n indeterminates (see the appendix to Section 2). It follows that F = K(u\, ... , un). 
Now consider a new set of indeterminates I Xl, ... , Xn I and the field K(x[, ... , Xn). 
Let E be the subfield of all symmetric rational functions in K(x[, ... ,xn). The basic 
idea of the proof is to construct an isomorphism of fields F ~ K(Xl, ... , Xn) such 
that K(tl, ... , tn) is mapped onto E. Then the Galois group AutK(tl ..... tn)F, of Pn(X) 
will be isomorphic to AutEK(Xl, ... ,xn). But Autr;K(Xl, ... , xn) is isomorphic to 

3The signs (_1)i are inserted for convenience in order to simplify certain calculations 
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Sn (see p. 253). Sn is solvable if and only if n :::; 4 (Corollary 11.7.12 and Exercise 
11.7.10). Therefore, if Pn(X) = 0 is solvable by radicals then n :::; 4 by Corollary 9.5. 
[Conversely if n :::; 4 and char K = 0, then Pn(X) = 0 is solvable by radicals by 
Corollary 9.7.) 

In order to construct the isomorphism F ~ K(X1, ... , Xn) we first observe that 
the subfield E of K(Xh .. . , Xn) is precisely K(j;, ... ,J,.) by Theorem 2.18, where 
j;, ... , J,. are the elementary symmetric functions. Next we establish a ring isomor
phism K[fh ... , fn) '" K[j;, ... , J,.) as follows. By Theorem III.5.5 the assignment 
g(fh ... , fn) ~ g( j;, ... , J,.) (in particular fi ~ fi) defines an epimorphism of rings 
(J : K[fh ... , fn) --> K[j;, ... , J,.). Suppose g(f1, ... , fn) ~ 0, so that g(j;, ... ,J,.) = 0 
in K[j;, ... , J,.) C K(X1, ... , Xn). By definition 

h: = h(x!, ... , Xn) = L Xi1Xi2· .. Xik 
1 ~il < ... <ik~n 

and hence 0 = g(j;, ... ,J,.) = g(j;(X1, ... , Xn), ... , J,.(X1, ... ,xn». Since 
g(j;, ... , J,.) is a polynomial in the indeterminates Xl, ... , Xn over K and 
F = K(Uh ... , Un) is a field containing K, substitution of Ui for Xi yields: 

o = g(j;(Ul, ... , Un), ... , J,.(Ul, ... ,Un» = g(th ... , fn); 

thus (J is a monomorphism and hence an isomorphism. Furthermore (J extends to an 
isomorphism of quotient fields (J: K(th ... , fn) '" K(j;, ... ,J,.) = E (Exercise 
II1.4.7). Now F = K(Ul, ... , Un) is a splitting field over K(lt, ... , tn) of Pn(X) and 
under the obvious map on polynomials induced by (J,Pn(X) ~ pix) = xn - j;xn- 1 + 
J2xn-2 - ..• + (_l)nJ,. = (X - X1)(X - X2)· .. (X - Xn) (see p. 252). Clearly 
K(Xh ... , Xn) is a splitting field of Pn(X) over K(j;, ... ,J,.) = E. Therefore by Theo
rem 3.8 the isomorphism (J extends to an isomorphism F '" K(Xh ... , Xn) which by 
construction maps K(lt, ... , fn) onto E as desired. • 

EXERCISES 
1. If F is a radical extension field of K and E is an intermediate field, then F is a 

radical extension of E. 

2. Suppose that "radical extension" is defined as follows: F is a radical extension of 
K if there is a finite tower of fields K = Eo C E1 C ... C En = F such that for 
each 1 :::; i :::; n, Ei = Ei_lui) and one of the following is true: (i) uri e E.-I for 
some mi > 0; (ii) char K = P and uP - U e Ei _ 1• State and prove the analogues of 
Theorem 9.4. Proposition 9.6, Corollary 9.7, and Proposition 9.S. 

3. Let K be a field, fe K[x) an irreducible polynomial of degree n ~ 5 and F a.split
ting field of fover K. Assume that AutKF '" Sn. (See the example following Theo
rem 4.12). Let U be a root of fin F. Then 

(a) K(u) is not Galois over K; [K(u) : K) = nand AutKK(u) = 1 (and hence is 
solvable). 

(b) Every normal closure over K that contains U also contains an isomorphic 
copy of F. 

(c) There is no radical extension field E of K such that E ::> K(u) ::> K. 

4. If F is a radical extension field of E and E is a radical extension field of K, then F is 
a radical extension of K. 
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5. (Cardan) Let K be a field with char K ¢ 2,3 and consider the cubic equation 
al2 2al3 ala2 

x3 + alx2 + a2X + a3 = 0 (aj e K). Let p = a2 - - and q = - - - + a3. 
3 27 3 

Let P = V -q/2 + J J!/27 + ri/4 and Q = V -q/2 - J pl/27 + ri/4 (with 
cube roots chosen properly). Then the solutions of the given equation are 
P + Q - al/3; wP + w2Q - al/3; and w2p + wQ - al/3 where w is a primitive 
cube root of unity. 



CHAPTER VI 

THE STRUCTURE OF FIELDS 

In this chapter we shall analyze arbitrary extension fields of a given field. Since 
algebraic extensions were studied in some detail in Chapter V, the emphasis here will 
be on transcendental extensions. As the first step in this analysis, we shall show that 
every field extension KeF is in fact a two-step extension K C E C F, with F 
algebraic over E and E purely transcendental over K (Section 1). The basic concept 
used here is that of a transcendence base, whose cardinality (called the transcendence 
degree) turns out to be an invariant oftheextension of Kby F(Section 1). The notion 
of separability is extended to (possibly) nonalgebraic extensions in Section 2 and 
separable extensions are characterized in several ways. 

1. TRANSCENDENCE BASES 

The first part of this section is concerned with the concept of algebraic inde
pendence, which generalizes the idea of linear independence. A transcendence base 
of a field F over a subfield K is the analogue (with respect to algebraic independence) 
of a vector space basis of F over K (with respect to linear independence). The cardi
nality of a transcendence base of F over K (the transcendence degree) is shown to be 
an invariant and its properties are studied. In this section we shall frequently use the 
notation ulv for uv-1, where u,v are elements of a field and v ~ O. Throughout this 
section K denotes a field. 

Definition 1.1. Let F be an extensionjield ofK. andS a subset ofF. S is algebraically 
dependent over K if for some positive integer n there exists a nonzero polynomial 
f 5 K[XI •.•• , xol such that f(sl, ... , so) = 0 for some distinct SI, •.. , So 5 S. S is 
algebraically independent over K ifS is not algebraically dependent over K. 

3ll 
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REMARKS. The phrase "over 1(" is frequently omitted when the context is 
clear. A subset S of F is algebraically independent over K if for all n > 0, 
fe K[Xh .. . , x .. ] and distinct Sh . .. , S .. eS, 

f(sl, ... ,s .. ) = 0 => f = O. 

Every subset of an algebraically independent set is algebraically independent. In 
particular, the null set is algebraically independent. Every subset of K is clearly 
algebraically dependent. The set {u I is algebraically dependent over K if and only if 
u is algebraic over K. Clearly every element of an algebraically independent set is 
necessarily transcendental over K. Hence if F is algebraic over K, the null set is the 
only algebraically independent subset of F. 

Algebraic (in)dependence may be viewed as an extension of the concept of linear 
(in)dependence. For a set S is linearly dependent over K provided that for some 
positive integer n there is a nonzero polynomial f of degree one in K[XI, ... , x .. ] such 
that f(sl, ... ,s .. ) = 0 for some distinct s, 0. S. Consequently, every algebraically 
independent set is also linearly independent, but not vice versa; (see the Example 
after Definition 1.4 below). 

EXAMPLE. Let K be a field. In the field of rational functions K(XI, ... , x .. ) the 
set of indeterminates {Xh"" x" I is algebraically independent over K. More 
generally, we have: 

Theorem 1.2. Let F be an extension field ofK and {Sh ••• ,Sn I a subset ofF which is 
algebraically independent over K. Then there is K-isomorphism K(SI, ... , Sn) ::: 
K(XI, ... , xn). 

SKETCH OF PROOF. The assignment Xi ~ s, defines a K-epimorphism of 
rings 8 : K[XI, ... , xnl-> K[SI, ... , Sn] by Theorems 111.5.5 and V.1.3. The algebra
ic independence of lSI, ... , Sn I implies that 8 is a monomorphism. By Corol
lary 111.4.6 8 extends to a K-monomorphism of fields (also denoted 8) 
K(xl, ... , xn) -> K(SI, ... , Sn) such that 8( f / g) = f(sl, ... , Sn)/ g(sl, ... ,Sn) = 
f(sl, ... , Sn)g(SI, ... ,S.)-I. 8 is an epimorphism by Theorem V.1.3(v). • 

Corollary 1.3. For i = 1,2 let F j be an extension field ofK j and Sj C Fi with Si 
algebraically independent over K j • If cp : SI -> S2 is an injective map of sets and 
u: KI-> K2 a monomorphism offields, then u extends to a monomorphism offields 
jj : KlS1) -> KiS2) such that jj(s) = cp(s) for every s 0. SI. Furthermore if cp is bijective 
and u an isomorphism, then jj is an isomorphism. 

REMARK. In particular, the corollary implies that every permutation of an 
algebraically independent set S over a field K extends to a K-automorphism of K(S); 
(just let KI = K = K2 and u = 1K). 

SKETCH OF PROOF OF 1.3. For each n ;?: 1 u induces a monomorphism of 
rings K1[XI, ... , xnl-> K2[XI, ... , Xn] (also denoted u; see p. 235). Every element of 
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K1(SI) is of the form f(sl, ... , Sn)/ g(SI, ... , Sn) (Si e SI) by Theorem V.1.3. For con
venience we write cps for cp(s) and define q : K1(SI) ~ KI..S2) by 

f(SI, ... , s,,)! g(SI, ... , Sft) ~ u f( CPS1, ... , cps,,)/ ug( cpSI, ... , cps,,) e K(S2). 

For any finite subset {SI' ... , sr} of SI the restriction of (j to KI(sl, ... , sr) is the 
composition 

where the 8i are the Ki-isomorphims of Theorem 1.2 and It is the unique monomor
phism of quotient fields induced by (T: KI [Xl> ... , xr] -+ K2[xl> ... , xr] and given by 
11(f/g) = (uf)/(ug) (Corollary I1IA.6). It follows that q is a well-defined monomor
phism of fields. By construction q extends u and agrees with cp on SI. If u is an iso
morphism then so is each 11, whence each 821181- 1 is an isomorphism. If cp is bijective 
as well then it follows that q is an isomorphism. • 

Definition 1.4. Let F be an extension field ofK. A transcendence base (or basis) ofF 
over K is a subset S ofF which is algebraically independent over K and is maximal 
(with respect to set-theoretic inclusion) in the set of all algebraically independent sub
sets ofF. 

The fact that transcendence bases always exist follows immediately from a Zorn's 
Lemma argument (Exercise 2). If we recall the analogy between algebraic and linear 
independence, then a transcendence base is the analogue of a vector-space basis 
(since such a basis is precisely a maximal linearly independent subset by Lemma 
IV.2.3). Note, however, that a transcendence base is not a vector-space basis, al
though as a linearly independent set it is contained in a basis (Theorem IV.2A). 

EXAMPLE. If fig = f(x)/g(x) e K(x) with f,g"t. 0, then the nonzero poly
nomial h(Yl,Y2) = g(y1)Y2 - f(YI) e K[YI,y2] is such that h(x,f/ g) = g(x)[f(x)/ g(x)] -
f(x) = O. Thus Ix,f/g} is algebraically dependent in K(x). This argument shows that 
{x} is a transcendence base of K(x) over K. The set {x} is not a basis since 
{lK,x,x2,x3, ••• } is linearly independent in K(x). 

In order to obtain a useful characterization of transcendence bases we need 

Theorem 1.5. Let F be an extension field ofK, S a subset ofF algebraically inde
pendent over K, and u e F - K(S). Then SUI u} is algebraically independent over K 
if and only ifu is transcendental over K(S). 

PROOF. (~) If there exist distinct SI, . .. , S,,_1 eS and an fe K[XI, ••. , x,,] 
such that f(SI, ... , s,._l,u) = 0, then u is a root of f(sl, ... , S,,_I,X,,) E K(S)[x,,]. Now 
fe K[xl, ... ,X,.] = K[xl, ... ,x,,_d[x,,], whence f = h,x"r + hr_Ix:-1 + ... + 
hlx,. + ho with each hi e K[xl, ... , X,._I]. Since u is transcendental over K(S), we have 
f(SI, ... ,s,._l,x,.) = O. Consequently, hi(SI, ... ,S,,_I) = 0 for every i. The algebraic 
independence of S implies that hi = 0 for every i, whence f = O. Therefore S U {u} 
is algebraically independent. 
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n 

(~) Suppose feu) = 0 wheref = L a;x' E K(S)[x]. By Theorem V.U there is a 
.-0 

finite subset lSI, •.• , S, I of S such that ai E K(SI, ... ,s,) for every i, whence 
a, = I.{SI, ... , S,)/gi(Sh . .. , s,) for some fi,gi E K[Xh ... , x,]. Let g = g)g2·· ·gn 
E K[Xh ... , x,] and for each i let I; = figl· .. gi-lgi+l· .. gn E K[xI, ... , x,J. Then ai = 

I.{SI, .•• ,s,)/g(s), ... ,s,) and 

f(x) = L a;x' = L I.{Sh ... ,S,)/g(SI, ... ,s,)xi 

= g(SI' ... , s,)-1(L I;(s), ... , s,)x'). 

(All we have done is to factor out a "common denominator" for the coefficients of f.) 
Let h(Xh ... , x"x) = L I.{Xh ... , x,)xi e K[XI, ... ,x"xJ. Since feu) = 0 and 
g(Sh ... , S,)-I '¢ 0, we must have h(s), ... ,s"u) = O. The algebraic independence 
of SUI u I implies that h = 0, whence I; = 0 for every i. Thus each aj = 0 and 
f = O. Therefore u is transcendental over K(S). • 

Corollary 1.6. Let F be an extension field ofK andS a subset ofF that is algebraically 
independent over K. Then S is a transcendence base ofF over K if and only ifF is 
algebraic over K(S). 

PROOF. Exercise. • 

REMARKS. A field F is called a purely transcendental extension of a field K if 
F = K(S), where S C F and S is algebraically independent over K. In this case S is 
necessarily a transcendence base of F over K by Corollary 1.6. If F is an arbitrary ex
tension field of K, let S be a transcendence base of F over K and let E = K(S). 
Corollary 1.6 shows that F is algebraic over E and E is purely transcendental over K. 
Finally Corollary 1.6 and the remarks after Definition 1.1 show that F is an algebraic 
extension of K if and only if the null set is a transcendence base of F over K. In this 
case the null set is clearly the unique transcendence base of F over K. 

Corollary 1.7. IfF is an extension field ofK and F is algebraic over K(X) for some 
subset X ofF (in particular, ifF = K(X», then X contains a transcendence base ofF 
over K. 

PROOF. Let S be a maximal algebraically independent subset of X (S exists by a 
routine Zorn's Lemma argument). Then every u EX - S is algebraic over K(S) by 
Theorem 1.5, whence K(X) is algebraic over K(S) by Theorem V.l.I2. Consequently, 
F is algebraic over K(S) by Theorem V.I; 13. Therefore, S is a transcendence base of 
F over K by Corollary 1.6. • 

As one might suspect from the analogy with linear independence and bases, any 
two transcendence bases have the same cardinality. As in the case of vector spaces, 
we break the proof into two parts. 

Theorem 1.8. Let F be an extension field of K. If S is a finite transcendence base 
of F over K, then every transcendence base of F over K has the same number of 
elements as S. 
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SKETCH OF PROOF. Let S = (SI, ... , snl and let T be any transcendence 
base. We claim that some fl e T is transcendental over K(S2, ... , Sn). Otherwise every 
element of T is algebraic over K(S2, ... , Sn), :.vhence K(S2, ... , sn)(T) is algebraic 
over K(S2, ... , Sn) by Theorem V.1.12. Since F is algebraic over K(T) by Corollary 
1.6, F is necessarily algebraic over K(T)(S2, ... , Sn) = K(S2, ... , Sn)(T). Therefore, F 
is algebraic over K(S2, ... , Sn) by Theorem V.l.l3. In particular, SI is algebraic over 
K(S2, ... , Sn), which is a contradiction (Theorem 1.5). Hence some II e T is transcen
dental over K(S2, ... ,Sn). Consequently, (f!,S2, ... , Sn 1 is algebraically independent 
by Theorem 1.5. 

Now if SI were transcendental over K(II,S2, ... , Sn), then (1!,SI,S2, ... , Sn 1 would 
be algebraically independent by Theorem 1.5. This is obviously impossible since S is 
a transcendence base. Therefore, SI is algebraic over K(fl,S2, ... , Sn). Consequently, 
K(S)(II) = K(I!,S2, ... ,Sn)(SI) is algebraic over K(I!,S2, ... ,Sn) (Theorem V.1.12), 
whence F is algebraic over K(II,S2, ... ,Sn) (Theorem V.1.13 and Corollary 1.6). 
Therefore, (P,S2,"" Sn 1 is a transcendence base of F over K by Corollary 1.6. 

A similar argument shows that some f2 e Tis transcendental over K(II,S3, ..• ,Sn), 
whence (f2,1!,S3, ... , Sn 1 is a transcendence base. Proceeding inductively (inserting a 
Ii and omitting an s, at each stage) we eventually obtain 11,12, ••. , In e T such that 
(II, ..• , fn 1 is a transcendence base of F over K. Clearly, we must have 
T = (fl, ... , In 1 and hence lSI = ITI. • 

Theorem 1.9. LeI F be an eXlensionfield ofK. IfS is an infinite franscendence base of 
F over K, Ihen every Iranscendence base ofF over K has Ihe same cardinalily as S. 

PROOF. If Tis another transcendence base, then Tis infinite by Theorem 1.8. If 
S e S, then S is algebraic over K(T) by Corollary 1.6. The coefficients ofthe irreducible 
polynomial f of S over K(T) all lie in K(T.) for some finite subset T, of T (Theorem 
V.I.3). Consequently,fe K(T,)[xj and S is algebraic over K(T.). Choose such a finite 
subset T, of T for each S e S. 

We shall show that U T. is a transcendence base of F over K. Since U T. c T, 
saS 8 

this will imply that U T, = T. As a subset of T the set U T, is algebraically in-
s 8 

dependent. Furthermore every element of S is algebraic over K(U T,). Conse-
8 

quently, K(U T,XS) is algebraic over K(U T,) by Theorem V.l.l2. Since K(S) C 
8 8 

K(U T,)(S), every element of K(S) is algebraic over K(U T,). Since F is algebraic 
s 8 

over K(S) by Corollary 1.6, F is also algebraic over K(U T,) (see Theorem V.1.13). 
8 

Therefore, by Corollary 1.6 again U T, is a transcendence base, whence U T. = T. 
8 8 

Finally we shall show that ITI ::; lSI. The sets T, need not be mutually disjoint 
and we remedy this as follows. Well order the set S (Introduction, Section 7) and de
note its first element by 1. Let Ti' = TI and for each 1 < S e S, define To' = T. -
U Ti . Clearly each To' is finite. Verify that U T. = U To' and that the To' are 

i <8 S 8 

mutually disjoint. For each S f S, choose a fixed ordering of the elements of To' : 11,12, 
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••• , tk •• The assignment ti I-> (s,i) defines an injective map U To' ~ S X N"'. There-
• 

fore by Definitions 8.3 and 8.4 and Theorem 8.11 of the Introduction we have: 

ITI = IU T.I = IU To'l :::; IS X N"'I = ISIIN"'I = ISINo = lSI. 
B 8 

Reversing the roles of Sand T in the preceding argument shows that lSI:::; ITI, 
whence lSI = ITI by the Schroeder-Bernstein Theorem 8.6 of the Introduction. • 

Definition 1.10. Let F be an eXlensionfield ofK.. The transcendence degree ofF over 
K (denoted tr.d.F IK) is the cardinal number lSI, where S is any transcendence base ofF 
overK. 

The two preceding theorems show that tr .d.F I K is independent of the choice of S. 
In the analogy between algebraic and linear independence tr .d.F I K is the analogue 
of the vector space dimension [F:K). The remarks and examples after Definition 1.4 
show that tr.d.FIK :::; [F: KJ and that tr.d.FIK = 0 if and only if F is algebraic 
over K. 

Theorem 1.11. I[F is an extension field olE and E an extension field o[K, then 

tr.d.F IK = (tr.d.F IE) + (tr.d.E/K). 

PROOF. Let S be a transcendence base of E over K and T a transcendence base 
of F over E. Since SeE, S is algebraically dependent over E, whence S n T = f2f. 
It suffices to show that S U T is a transcendence base of F over K, since in that case 
Definition 1.10 and Definition 8.3 of the Introduction imply 

tr.d.FIK = IS U TI = ITI + lSI = (tr.d.FlE) + (tr.d.EIK)· 

First of all every element of E is algebraic over K(S) (Corollary 1.6) and hence over 
K(S U n. Thus K(S U T)(E) is algebraic over K(S U T) by Theorem V.1.12. Since 

K(S U T) = K(S)(T) C E(T) C K(S U T)(E), 

E(T) is algebraic over K(S U T). But F is algebraic over E(T) (Corollary 1.6) and 
therefore algebraic over K(S U T) by Theorem V.1.13. Consequently, it suffices by 
Corollary 1.6 to show that S U T is algebraically independent over K. 

Let [be a polynomial over K in n+ m variables (denoted for convenience 
xl, ... , X .. ,Yl, ... ,Y_)' such that l(sI, ... , S .. ,I1, ... , I ... ) = 0 for some distinct 
Sl, ••• , s .. e S, 11, ••• , 1m e.T. Let g = g(YI, ... ,Y .. ) = [(Sl, ... , S .. ,YI, ... , y",) e 
K(S)[Yl, ... ,y",l C E[y!, ... ,y ... l. Since g(tI, ... , I ... ) = 0, the algebraic inde-
pendence of T over E implies that g = O. Now [= [(XI, ... , X .. ,Yl, ... ,y",) 

r 

= 1: h,(xl, ... , X .. )k'(YI, .•. , Y ... ) with h, e K[x1, ... , x .. l, ki e K[y1, ... ,y .. j. Hence 
i=l 

o = g(y1, ... ,Y ... ) = [(SI, ... , S .. ,YI, ... ,y",) implies that hi(sl, ... , s .. ) = 0 for 
every i. The algebraic independence of S over K implies that h, = 0 for all i, whence 
[(XI, ... , X .. ,YI, ••. , Y ... ) = O. Therefore S U T is algebraically independent 
over K .• 
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If KI and K2 are fields with algebraic closures, F1,F2 respectively, then Theorem 
V.3.8 implies that every isomorphism KI ,...., K2 extends to an isomorphism FI ~ F2. 
Under suitable hypotheses this result can now be extended to the case where the 
fields Fi are algebraically closed, but not necessarily algebraic over Ki . 

Theorem 1.12. Let FI [resp. F2J be an algebraically closed field extension of a field 
KI [resp. K2J. If tr.d.Ft/KI = tr.d.F2/K2, then every isomorphism offields KI ~ K2 
extends to an isomorphism FI ,...., F2. 

PROOF. Let S; be a transcendence base of Fi over K i • Since ISII = IS21, 
q : KI ,...., K2 extends to an isomorphism ii : K1(SI) ~ K.J..S2) by Corollary 1.3. F; is 
algebraically closed and algebraic over Ki(Si) (Corollary 1.6) and hence an algebraic 
closure of K.{Si). Therefore ii extends to an isomorphism FI ::: F2 by Theorems V.3.4 
and V.3.8 .• 

EXERCISES 

Note: F is always an extension field of a field K. 

1. (Exchange property) Let S be a subset of F. If U E F is algebraic over K(S) and 
U is not algebraic over K(S - {v)), where v E S, then v is algebraic over 
K«S - {v)) U {ul). 

2. (a) Use Zorn's Lemma to show that every field extension possesses a trans
cendence base. 
(b) Every algebraically independent subset of F is contained in a transcendence 
base. 

3. I Xl, ••• ,x .. l is a transcendence base of K(XI, ... , x .. ). 

4. If E1,E2 are intermediate fields, then 
(i) tr.d.E1E2/K 2 tr.d.E;/K for i = 1,2; 

(ii) tr.d.E1E2/K::; (tr.d.E1/K) + (tr.d.&/K). 

5. If F = K(Ul, ... , un) is a finitely generated extension of K and E is an inter
mediate field, then E is a finitely generated extension of K. [Note: the algebraic 
case is trivial by Theorems V.U1 and V.U2.J 

6. (a) If S is a transcendence base of the field C of complex numbers over the field Q 
of rationals, then S is infinite. [Hint: Show that if S is finite, then 

1Q(s)1 = IQ(Xl, ... ,x,,)1 = IQ[Xl, ... , xnJI = IQI < ICJ 

(see Exercises 8.3 and 8.9 of the Introduction and Theorem 1.2). But Lemma 
V.3.5 implies IQ(s)1 = ICJ.J 
(b) There are infinitely many distinct automorphisms of the field C. 
(c) tr.d.C/Q = ICI. 

7. If F is algebraically closed and E an intermediate field such that tr.d.E/K is 
finite, then any K-monomorphism E -+ F extends to a K-automorphism of F. 

8. If F is algebraically closed and tr .d.F / K is finite, then every K-monomorphism 
F -+ F is in fact an automorphism. 
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2. LINEAR DISJOINTNESS AND SEPARABILITY 
The chief purpose of this section is to extend the concept of separability to 

(possibly) nonalgebraic field extensions. This more general concept of separability 
will agree with our previous definition in the case of algebraic extensions (Theorem 
2.8). We first introduce the idea oflinear disjointness and develop its basic properties 
(Theorems 2.2-2.7). Separability is defined in terms of linear disjointness and char
acterized in several ways (Theorem 2.10). Other properties of separability are de
veloped in the corollaries of Theorem 2.10. 

In the following discussion all fields are assumed to be subfields of some (fixed) 
algebraically closed field C. 

Definition 2.1. Let C be an algebraically closed field with sub fields K,E,F such that 
K C E n F. E and F are linearly disjoint over K ifevery subset ofE which is linearly 
independent over K is also linearly independent over F. 

REMARKS. An alternate definition in terms of tensor products is given in Ex
ercise 1. Note that a subset X of E is linearly independent over a subfield of C if and 
only if every finite subset of X is. Consequently, when proving linear disjointness, we 
need only deal with finite linearly independent sets. 

EXAMPLE. If K C E then E and K are trivially linearly disjoint over K. This 
fact will be used in several proofs. Other less trivial examples appear in the theorems 
and exercises below. 

The wording of Definition 2.1 suggests that the definition of linear disjointness is 
in fact symmetric in E and F. We now prove this fact. 

Theorem 2.2. Let C be an algebraically closed field with sub fields K,E,F such that 
K C E n F. Then E and F are linearly disjoint over K if and only if F and E are 
linearly disjoint over K. 

PROOF. It suffices to assume E and F linearly disjoint and show that F and E are 
linearly disjoint. Suppose X C F is linearly independent over K, but not over E so 
that rlUI + ... + rnUn = 0 for some Ui EX and ri E E not all zero. Choose a subset of 
I rl, ... , rn l which is maximal with respect to linear independence over K; reindex if 

t 

necessary so that this set is \rt,r2, ... ,rd(t ~ I). Then for eachj > t, rj = 2: aijri 
;=1 

with aij E K (Exercise IV.2.1). After a harmless change of index we have: 

o = t rjUj = ± rjUi + t (± aiiri)Ui 
j=1 j=1 j=t+l i=1 

= ± (Uk + t akiUi)rk. 
k=l j=t+l 

Since E and F are linearly disjoint, I rl, ... , rt l is linearly independent over F which 
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n 

implies that Uk + L akiui = 0 for every k ~ t. This contradicts the linear inde
j=t+l 

pendence of X over K. Therefore X is linearly independent over E. • 

The following lemma and theorem provide some useful criteria for two fields to 
be linearly disjoint. 

Lemma 2.3. Let C be an algebraically closed field with sub fields K,E,F such that 
K C E n F. Let R be a subring ofE such that K(R) = E and K C R (which implies 
that R is a vector space over K). Then the following conditions are equivalent: 

(i) E and F are linearly disjoint over K; 
(ii) every subset of R that is linearly independent over K is also linearly inde

pendent Oller F; 
(iii) there exists a basis ofR over K which is linearly independent over F. 

REMARK. The lemma is true with somewhat weaker hypotheses (Exercise 2) 
but this is all that we shall need. 

PROOF OF 2.3. (i) =} (ii) and (i) =} (iii) are trivial. (ii) =} (i) Let X = {Ul' ... , Un I 
be a finite subset of E which is linearly independent over K. We must show that X is 
linearly independent over F. Since Ui e E = K(R) each Ui is of the form Ui = cidi-! 
= ci/di, where Ci = I;(rl, ... ,rt;}, 0 rf di = gi(rl, . .. ,rt;} with ri e Rand J;,gi e 
K[xI, . .. ,Xt,] (Theorem V.I.3). Let d = d1d2 •• ·dn and for each i let Vi = 

cid! ... di_ldi+1 ••• dn E R. Then Ui = Vier! and the subset X' = ! v!, ... , Vn I of R is 
linearly independent over a subfield of C if and only if X is. By hypothesis X and 
hence X' is linearly independent over K. Consequently, (ii) implies that X' is linearly 
independent over F, whence X is linearly independent over F. 

(iii) =} (ii) Let V be a basis of Rover K which is linearly independent over F. We 
must show that every finite subset X of R that is linearly independent over K is also 
linearly independent over F. Since X is finite, there is a finite subset VI of V such that 
X is contained in the K-subspace V of R spanned by VI; (note that VI is a basis of V 
over K). Let VI be the vector space spanned by VI over F. V and hence VI is linearly 
independent over F by (iii). Therefore VI is a basis of VI over F and dimKV = dimFVI. 
Now X is contained in some finite basis W of V over K (Theorem IV.2.4). Since W 
certainly spans VI as a vector space over F, W contains a basis WI of VI over F. Thus 
IWII ~ IWI = dimKV = di%,VI = IWII, whence W = WI. Therefore, the subset X 
of W is necessarily linearly independent over F. • 

Theorem 2.4. Let C be an algebraically c10sedfield with sub fields K,E,L,F such that 
K C E and K C L C F. Then E and F are linearly disjoint over Kif and only if(i) E 
and L are linearly disjoint over K and (ii) EL and F are linearly disjoint over L. 

PROOF. The situation looks like this: 
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EF 

/\ 
EL F 

/\/ 
E L 

\/ 
K 

(¢:) If a subset X of E is linearly independent over K, thenX is linearly inde
pendent over L by (i). Therefore (since X C E eEL), X is linearly independent over 
F by (ii). 

(=» If E and F are linearly disjoint over K, then E and L are automatically linearly 
disjoint over K. To prove (ii) observe that EL = L(R), where R is the subring 
L[E] of C generated by Land E. By Theorem V.I.3 every element of R is of the form 
f(el, ... , en) (ei e E;fe L[Xl, ... ,xnD. Therefore, any basis U of E over K spans R 
considered as a vector space over L. Since E and L are linearly disjoint over K, U is 
linearly independent over L. Hence U is a basis of Rover L. But U is linearly inde
pendent over F by the linear disjointness of E and F. Therefore, EL and F are linearly 
disjoint over L by Lemma 2.3. • 

Next we explore linear disjointness with respect to certain extension fields of K 
that will play an important part in the definition of separability. 

Definition 2.5. Let K be afield of characteristic p ¢ 0 and let C be an algebraically 
closed field containing K. For each integer n ~o 

Kl/pn = (ueC/upneK). 

Kl/p'" = U Kl/pn = (u e C I uPll e K for some n ~ 0). 
n <,:0 

REMARKS. Since (u ± v)pn = uP" ± vpn in a field of characteristic p (Exercise 
III.l.ll) each Kllpn is actually a field. Since K = Kl/po C Kl/p" C Kl/pm C Kl/p'" for 
all n,m such that 0 S n S m, it follows readily that Kl/p'" is also a field. The fact that 
C is algebraically closed implies that Kl/pn is a splitting field over K of the set of poly
nomials (xp1l - k / k e K) (Exercise 5). In particular, every k e K is of the form vpll 

for some v e Kl/p". Since Kl/pn is a splitting field over K, it is essentially independent of 
C (that is, another choice C' would yield an isomorphic copy of Kllp" by Theorem 
V.3.8). 

Lemma 2.6. IfF is an extension field ofK of characteristic p ¢ 0 andC is all alge
braically closedfield containing F, then for any n ~ 0 a subset X ofF is linearly inde
pendent over Kl/pn if and only ifxpn = (uPIl / u eX) is linearly independent over K. 
Furthermore X is linearly independent over K lip'" if and only if X is linearly independent 
over Kl/pn for all n ~ o. 
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SKETCH OF PROOF. Every a E K is of the form a = vpn for some v e KI/pn 

(Exercise 5). For the first statement note that L aiuiPn = 0 (ai E K; Ui eX) {=} , 
L VipnUipn = ° (Vi E Klipn and Vi pn = ai) {=} (L ViUi)pn = 0 {=} L ViUi = O. For the 
iii 

t 

second statement observe that if L WiUi = 0 (Wi E KI/ pOO ; £Ii eX), then for a large 
;=1 

enough n, WI, ••• , Wt e Kl/pn. • 

Theorem 2.7. Let F be a field contained in an algebraically closed field C. IfF is a 
purely transcendental extension of afield K of characteristic p .,c. 0, then F and Kl/pn 
are linearly disjoint over K for all n ;::: 0 and F and Kl/poo are linearly disjoint over K. 

PROOF. Let F = K(S) with S a transcendence base of F over K. If S = >0, then 
F = K and every linearly independent subset of F over K consists of exactly one 
nonzero element of K. Such a nonzero singleton is clearly linearly independent over 
any subfield of C whence the theorem is true if S = >0. If S is not empty let M be the 
set of monomials over S (that is, the set of all finite products of elements of S). Then 
M is linearly independent over K since S is algebraically independent over K. By 
Theorem V.I.3 M spans the subring K[S] (considered as a vector space over K). 
Therefore, M is a basis of K[S] over K. The algebraic independence of S implies that 
for every n ;::: 0, Mpn = i mpn I m E Ml is linearly independent over K. By Lemma 2.6 
M is linearly independent over Kl/pn for every n and hence over KI/pOO. Therefore, for 
each 0 ::; n ::; CD, F and Kl/pn are linearly disjoint over K by Lemma 2.3 (with K[S], 
F, KI/pn in place of R, E, F respectively). • 

The next theorem shows the connection between linear disjointness and separable 
algebraic extensions and will motivate a definition of separability in the case of ar
bitrary (possibly nonalgebraic) extensions. 

Theorem 2.8. Let F be an algebraic extension field of a field K of characteristic 
p ~ 0 and C an algebraically closed field containing F. Then F is separable over Kif 
and only ifF and Kl/p are linearly disjoint over K. 

PROOF. We shall prove here only that separability implies that F and Kl/p are 
linearly disjoint. The other half of the proof will be an easy consequence of a result 
below (see the Remarks after Theorem 2.10). Let X = ~ £II, .•• , Un l be a finite subset 
of F which is linearly independent over K. We must show that X is linearly inde
pendent over KII". The subfield E = K(uI, ... ,Un) is finite dimensional over K 
(Theorem V.1.12) and has a basis i £II, .•. , Un,Un+l, ... , £I, l which contains X (Theo-

r 

rem, IV.2.4). If r E E and k is a positive integer, then vk = L aiUi (ai E K) and hence 
;=1 

Vk" = (L aiLli)" = La/'ui'" Since v is separable over K, K(e) is both separable 
i 

algebraic and purely inseparable over K(e") (Theorem V.6.4 and Lemma V.6.6). 
whence K(r) = K(r") = K[v"] (Theorems V.I.6 and V.6.2). Thus v is a linear com
bination of the ckp and hence of the £I,". Therefore E is spanned by i £111', ••• , uTP l. 
Since [E: K] = r, i £lIP, ... , II," I must be a basis by Theorems IV.2.5 and IV.2.7. 
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Thus {U1 P, •.. ,uTPI and henceXp is linearly independent over K. By Lemma 2.6X is 
linearly independent over K1Ip , whence F and K1Ip are linearly disjoint over K. • 

Definition 2.9. Let F be an extension field ofK. A transcendence base S ofF over K 
is called a separating transcendence base ofF over K ifF is separable algebraic over 
K(S). IfF has a separating transcendence base over K, then F is said to be separably 
generated over K. 

REMARKS. Recall that F is algebraic over K(S) (Corollary 1.6). If F is separably 
generated over K, it is not true that every transcendence base of F over K is neces
sarily a separating transcendence base (Exercise 8). 

EXAMPLES. If F is separable algebraic over K, then the null set is a separating 
transcendence base. Every purely transcendental extension is trivially separably 
generated since F = K(S). 

In order to make the principal theorem meaningful in the case of characteristic 
zero we define (for any field K of characteristic 0) K1IO = Kl/On = Kl/0r0 = K. 

Theorem 2.10. IfF is an extension field of afield K of characteristic p ;::: 0 and Cis 
an algebraically closed field containing F, then the following conditions are equivalent. 

(i) F and Kl/p are linearly disjoint over K; 
(ij) F and Kl/pn are linearly disjOint over K for some n ;::: 1; 

(iii) F and Kl/p'" are linearly disjoint over K; 
(iv) every finitely generated intermediate field E is separably generated over K; 
(v) Ko and F are linearly disjOint over K, where Ko is the fixed field (relative to 

C and K) of AutKC. 

REMARKS. The theorem is proved below. The implication (i) => (iv) provides a 
proof of the second half of Theorem 2.8 as follows. For every u e F, K(u) is a finitely 
generated intermediate field and thus separably generated over K. But F (and hence 
K(u» is assumed algebraic over K and the only transcendence base of an algebraic 
extension is the null set. Therefore K(u) is separable algebraic over K()25) = K. 
Hence every u e F is separable algebraic over K. 

SKETCH OF PROOF OF 2.10. Except in proving (iii) ~ (v) we shall assume 
that char K = p ¢ 0 since the case when char K = 0 is trivial otherwise. (iii) => 
(ii) => (i) is immediate since Kl/p C Kl/pn C Kl/p'" for every n ;::: 1. 

(i) => (iv) Let E = K(SI, . .• , Sn) and tr.d.E/K = r. By Corollary 1.7 r .:::; nand 
some subset of {SI' ... , Sn 1 is a transcendence basis of E over K, say {SI, ..• , s, I. 
If r = n, then {SI, ... , Sn 1 is trivially a separating transcendence base, whence (iv) 
holds. If r < n, then S,+1 is algebraic over K(SI, ... ,ST) (Corollary 1.6) and therefore 

m 

the root of an irreducible monic polynomial f(x) = L: aixi e K(sl, ... ,s,)[xj. A 
;=1 

"least common denominator argument" such as that used in the proof of Theorem 
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1.5 shows that f(x) = d-{tl ViXi) with 0 ~ de K[Sl, ... ,s,], Vi = hi(Sl, .•• ,s,) 

m 

and hi EO K[Xl, •.• ,x,]. Thus Ji = L: hi(xl, ••• , X,)X;+l e K[xI, ••. ,X,+l] and 
i=O 

Ji(SI, ... ,Sr,S'+l) = O. It follows that there exists a polynomial g e K[Xl, ... , XT+l] of 
least positive degree sllch that g(SI' ... , ST+l) = O. Clearly g is irreducible in 
K[Xl, ... ,XT+l]. Recall that Xi is said to occur in g(Xl' ... , x fl ) if some nonzero term 
of g contains a factor Xim with m ~ 1. 

We claim that some Xi OCCllrs in g with an exponent that is not divisible by p. 

Otherwise g = Co + clml(x1, ... ,XT+1)P + ... + Ckmk(X1, ... ,Xr+l)P, where Cj EO K, 
the Cj are not all zero, and each mj(xI, ... ,Xr+1) is a monomial in Xl, .•. ,XT+l. Let 
mo(xI, ..• ,XT+1) = lK and for each j ~ 0 choose d; EO Kl/p such that d;P = Cj. Then 

g = (t djmj(xl, ... ,XT+l»)P and g(SI, ... ,S,+l) = 0 imply that 
)=0 

k 

L: djmj(sl, •.• ,S,+I) = 0, 
;=0 

whence the subset {mj(sl, .. . ,S,+l) U ~ 01 of Fis linearly dependent over Kl/p. But 
[m;(sI, ..• , S,+l) I j ~ 01 is necessarily linearly independent over K (otherwise there 
would exist a gl EO K[Xl' •.. , x,+d with deg gl < deg g and gl(SI, .•• , ST+l) = 0). This 
fact contradicts the linear disjointness of F and Kl/p. Therefore some Xi, say Xl, 
occurs in g with an exponent that is not divisible by p. 

The polynomial g(X,S2,"" ST+1) e K(S2, .•• ,ST+l)[X] is necessarily nonzero. 
Otherwise, since Xl occurs in g(XI, ... , XT+1) by the previous paragraph, we could 
obtain a polynomial g2 EO K[X1, ... , XT+l] such that 0 < deg g2 < deg g and 
g2(SI,S2, •.. ,ST+1) = O. Such a g2 would contradict the choice of g. Therefore, 
g(X,S2, ... ,ST+l) ~ O. Since g(SI,S2, ... ,ST+l) = 0, SI is algebraic over K(S2, ... , ST+l). 
But S2, ... , ST+l are obviously algebraic over K(S2, ... , ST+1) and E is algebraic over 
K(Sl, . .• , S,+I). By Theorems V.l.12 and V.l.l3 E is algebraic over K(S2, ... ,ST+l). 
Since tr.d.E/ K = r, I S2, ... , ST+1\ is a transcendence base of E over K (Corollary 1.7). 

The proof of Theorem 1.2 shows that the assignment Xi f--> Si determines a K-iso
morphism cp : K[x~, ... , xT+d '" K[S2, ... , sT+d. Clearly cp extends to a K-isomor
phism K[XI,X2, ... ,xT+d = K[X2, ... , xT+l][xd '" K[S2, ... , s,+d[x] such that Xl f--> X 
and g(XI, ..• ,XT+l) f--> g(X,S2, ... ,ST+1)' Since cp is an isomorphism, g(X,S2, ... , ST+l) 
must be irreducible in K[S2, ... , sT+d[x]. Consequently g(X,S2, ... , ST+l) is primitive 
in K[S2, ... ,ST+l][X] and hence irreducible in K(S2, ... , ST+l)[X] by Lemma ill.6.13 
and Theorem 111.6.14. Since cp is an isomorphism x must occur in g(X,S2, ... ,ST+l) 
with an exponent not divisible by p. Thus the derivative of g(X,S2, .•• , ST.p) is non
zero (Exercise 111.6.3), whence g(X,S2, ... ,ST+l) is separable by Theorem 111.6.10. 
Therefore SI is separable algebraic over K(S2, ... , ST+l) and hence over K(S2, ... , Sn). 
In particular, E = K(sI, ... , Sn) is separable algebraic over K(S2, ... , sn) by 
Lemma V.6.6. Thus if I S2, •.. , S" 1 is a transcendence base of E over K, then E is 
separably generated over K. If not, then I S2, ••• , s.1 contains a transcendence base 
(Corollary 1.7), which we may assume (after reindexing if necessary) to be 
[S2' ... , ST+1\. A repetition of the preceding argument (with S;+1 in place of Si for 
i = 1,2, ... ,r + 1 and possibly more reindexing) shows that S2 (and hence 
K(S2, .•. ,Sn» is separable algebraic over K(S3, ... , s.). Hence E is separable 
algebraic over K(sa, ••. ,Sn) by Corollary V.6.8. Continuing this process we must 
eventually find Sl, ... , St such that E is separable algebraic over K(S!+I, ... , s.) 
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and {SI+I, ..• , s" I is a transcendence base of E over K. Therefore E is separably 
generated over K. 

(iv) ~ (iii) Let W be a finite subset of F that is linearly independent over K. We 
must show that W is linearly independent over K1/p''''. Let E = K( W). We need only 
show that E and KlIper> ar:e linearly disjoint over K, since this fact immediately implies 
that W is linearly independent over KlIp"". Since W is finite, E has a separating tran
scendence base S over K by (iv). We shall prove the linear disjointness of E and KlIP"" 
by applying Theorem 2.4 to the extensions K C KlIP"" and K C K(S) C E as follows. 
K(S) and KI/per> are linearly disjoint over KbyTheorem 2.7. Let X be a subset of Ethat 
is linearly independent over K(S). Since E is separable algebraic over K(S), X is 
linearly independent over K(S)I/p by the half of Theorem 2.8 already proved. There
fore XP is linearly independent over K(S) by Lemma 2.6. The last three sentences 
form the heart of an inductive argument which shows that Xl"" is linearly indepen
dent over K(S) for all m ~ 0; (note that (XP')P = XpT+I). Hence X is linearly inde
pendent over K(S)I/pm for all m ~ 0 by Lemma 2.6 again. Therefore X is linearly 
independent over K(S)l/Per> and hence over its subfield KlIP""K(S). We have proved 
that E and KlIP""K(S) are linearly disjoint over K(S). Consequently E and KlIP"" are 
linearly disjoint over K by Theorem 2.4. 

(iii) <=? (v). It suffices to prove that Ko = KlIp"". Let u e Ko. If u is transcendental 
over K, then there exists v e C with v "'" u and v transcendental over K (for example, 
take v = u2). The composition K(u) '" K(x) '" K(v) (where the isomorphisms are 
given by Theorem V.U) is a K-isomorphism 0' such that u(u) = v. We thus have 
I = tr.d.K(x)/K = tr.d.K(u)/K = tr.d.K(v)/K. Theorem 1.11 (and Introduction, 
Lemma 8.9 iftr.d.C/K(u) is infinite) implies that tr.d.C/K(u) = tr.d.C/K(v). There
fore 0' extends to a K-automorphism of C by Theorem 1.12. But u(u) = V "'" u, which 
contradicts the fact that u e Ko. Therefore, u must be algebraic over K with irre
ducible polynomial fe K[xJ. If v e C is another root of f, then there is a K-isomor
phism T : K(u) '" K(v) such that"T(u) = v (Corollary V.1.9). An argument similar to 
the one in the transcendental case shows that T extends to a K-automorphism of C. 
Since u e Ko we must have u = T(U) = v, whence fhas only one root in C. Thus u is 
purely inseparable over K. If char K = 0, then f (which is necessarily separable) 
must have degree 1. Hence u e K = K1If1". If char K = p #- 0, then uP" e K for some 
n ~ 0 by Theorem V.6.4. Thus u e Kl/p" C Kl/p"'. We have proved that Ko C KlIp"". 
Conversely suppose that char K = p "'" 0, Ie e Kl/p" C KlIper> and 0' e AutKC. Then 
u(u)p" = u(upn) = uP", whence 0 = u(u)p" - uP" = (u(u) - u)p" and u(u) = u. 
Therefore, KI/per> C Ko. • 

Definition 2.1.1. An extension field F ofafieldK is said 10 be separable over K (or 
a separable extension of K) if F satisfies the eqUivalent conditions of Theorem 2.10. 

REMARKS. Theorem 2.8 shows that this definition is compatible with our 
previous use of the term "separable" in the case of algebraic extensions (Definition 
V.3.10). Since the first condition of Theorem 2.10 is trivially satisfied when 
char K = 0, every extension field of characteristic 0 is separable. 

The basic properties of separability are developed in the following corollaries of 
Theorem 2.10. 
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Corollary 2.12. (Mac Lane's Criterion) IfF is an extension field ofafieldK andF is 
separably generated over K, then F is separable over K. Conversely, ifF is separable 
and finitely generated over K, say F = K(Ul, ... ,Un), then F is separably generated 
over K. In fact some subset of lUI, ... , Un I is a separating transcendence base ofF 
over K. 

SKETCH OF PROOF. The proof of (iv) =? (iii) =? (i) in Theorem 2.10 is valid 
here with F = E since it uses only the fact that E is separably generated. The last two 
statements are consequences of the proof of (i) =? (iv) in Theorem 2.10. • 

Corollary 2.13. Let F be an extension field ofK and E an intermediate field. 

(i) IfF is separable over K, then E is separable over K; 
(ii) ifF is separable over E and E is separable over K, then F is separable over K; 

(iii) ifF is separable over K and E is algebraic over K, then F is separable over E. 

REMARK. (iii) may be false if E is not algebraic over K (see Exercise 8). 

SKETCH OF PROOF OF 2.13. (ii) Use Theorems 2.4 and 2.10. (iii) If char K 
= p ~ 0, let X be a subset of F which is linearly independent over E. Extend X to a 
basis U of F over E and let V be a basis of E over K. The proof of Theorem IV.2.16 
shows that UV = I uv I U E U,v E VI is a basis of F over K, whence UV is linearly inde
pendent over Kllp by separability. Lemma 2.6 implies that (UV)p = {upvp I U e U,V e VI 
is linearly independent over K. We claim furthermore that VP is a basis of E over K. 
For E is separable over K by (i). Consequently, the linear disjointness of E and K1/p 
shows that V is linearly independent over Kllp, whence vP is linearly independent 
over K by Lemma 2.6. Since E = KEp by Corollary V.6.9, VP necessarily spans E 
over K. Therefore, VP is a basis of E over K. To complete the proof we must show that 
X is linearly independent over £lIP. If L aiUi = 0 (ai e EI/P;Ui eX C U), then 

L aiPUiP = O. Since each aiP E E is of thei form L CiiV/ (Cii e K; Vi e V) we have 
i j 

o = 2: (2: Ci,l'iP)UiP = 2: Ci,UiPVjP. The linear independence of (UV)p implies 
i j ~j 

that Ci; = 0 for all i,j and hence that ai = 0 for all i. Therefore, X is linearly inde
pendent over £lIP. • 

EXERCISES 

Note. E and F are always extension fields of a field K, and C is an algebraically 
closed field containing E and F. 

I. The subring E[F] generated by E and F is a vector space over K in the obvious 
way. The tensor product E ®K F is also a K-vector space (see Theorem IV.5.5 
and Corollary IV.5.12). E and F are linearly disjoint over K if and only if the 
K-linear transformation E ®K F --> E[F] (given on generators of E ®K F by 
a ® b f-. ab) is an isomorphism. 

2. Assume E and F are the quotient fields of integral domains Rand S respectively. 
Then C is an R-module and an S-module in the obvious way. 
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(a) E and F are linearly disjoint over K if and only if every subset of R that 
is linearly independent over K is also linearly independent over S. 

(b) Assume further that R is a vector space over K. Then E and F are linearly 
disjoint over K if and only if every basis of Rover K is linearly independent 
over F. 

(c) Assume that both Rand S are vector spaces over K. Then E and Fare 
linearly disjoint over K if and only if for every basis X of Rover K and basis Yof 
S over K, the set (uv I u eX; /) e YI is linearly independent over K. 

3. Use Exercise 1 to prove Theorem 2.2. 

4. Use Exercise 1 and the associativity of the tensor product to prove Theorem 2.4. 

5. If char K = p ;& 0, then 
(a) KlIpn is a field for every n 2': O. See Exercise 111.1.11. 
(b) KI/p"> is a field. 
(c) KlIpn is a splitting field over K of (xpn - k Ike KI. 

6. If (ut, ••• , Un I is algebraically independent over F, then F and K(Ul, ... , Un) are 
linearly disjoint over K. 

7. If E is a purely transcendental extension of K and F is algebraic over K, then E 
and F are linearly disjoint over K. 

8. Let K = Zp, F = Zp(x), and E = Zp(xp). 
(a) F is separably generated and separable over K. 
(b) E;& F. 
(c) F is algebraic and purely inseparable over E. 
(d) (xpl is a transcendence base of F over K which is not a separating tran

scendence base. 

9. Let char K = p ;& 0 and let U be transcendental over K. Suppose F is generated 
over K by (U,Vt,V2, ••• 1, where Vi is a root of Xpi - U e K(u)[xl for i = 1,2, .... 
Then F is separable over K, but F is not separably generated over K. 

10. (a) K is a perfect field if and only if every field extension of K is separable (see 
Exercise V.6.l3). 
(b) (Mac Lane) Assume K is a perfect field, F is not perfect and tr.d.FIK = 1. 
Then F is separably generated over K. 

11. F is purely inseparable over K if and only if the only K-monomorphism F ---> Cis 
the inclusion map. 

/ 

12. E and F are free over K if every subset X of E that is algebraically independent 
over K is also algebraically independent over F. 

(a) The definition is symmetric (that is, E and F are free over K if and only if 
F and E are free over K). 

(b) If E and F are linearly disjoint over K, then E and F are free over K. Show 
by example that the converse is false. 

(c) If E is separable over K and E and F are free over K, then EF is separable 
over F. 

(d) If E and F are free over K and both separable over K, then EF is separable 
over K. 



CHAPTER VII 

LINEAR ALGEBRA 

Linear algebra is an essential tool in many branches of mathematics and has wide 
applications. A large part of the subject consists of the study of homomorphisms of 
(finitely generated) free modules (in particular, linear transformations of finite di
mensional vector spaces). There is a crucial relationship between such homomor
phisms and matrices (Section 1). The investigation of the connection between two 
matrices that represent the same homomorphism (relative to different bases) leads to 
the concepts of equivalence and similarity of matrices (Sections 2 and 4). Certain 
important invariants of matrices under similarity are considered in Section 5. Deter
minants of matrices (Section 3) are quite useful at several points in the discussion. 

Since there is much interest in the applications of linear algebra, a great deal of 
material of a calculational nature is included in this chapter. For many readers the 
inclusion of such material will be well worth the burden of additional length. How
ever, the chapter is so arranged that the reader who wishes only to cover the im
portant basic facts of the theory may do so in a relatively short time. He need only 
omit those results labeled as propositions and observe the comments in the text as to 
which material is needed in the sequel. The approximate interdependence of the 
sections of this chapter is as follows: 

1 

/~\ 
3--4 ..... -2 

\l 
) 

As usual a broken arrow A ---> B indicates that an occasional result of Section A is 
used in Section B, but that Section B is essentially independent of Section A. 

327 
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1. MATRICES AND MAPS 

The basic properties of matrices are briefly reviewed. Then the all important rela
tionship between matrices and homomorphisms of free modules is explored. Except 
in Theorem 1.1 all rings are assumed to have identity, but no other restrictions are 
imposed. Except for the discussion of duality at the end of the section all of this 
material is needed in the remainder of the chapter. 

Let R be a ring. An array of elements of the form 

all al2 al3 aim 
a21 a22 a23 a2m 

with ai, E R, n rows (horizontal), and m columns (vertical), is called an n X m matrix 
over R. An n X n matrix is called a square matrix. For brevity of notation an arbi
trary matrix is usually denoted by a capital letter, A,B,C or by (ai;), which indicates 
that the i-jth entry (row i, columnj) is the element ai; E R. Two n X m matrices (ai;) 
and (bi;) are equal if and only if ai; = bi; in R for all i,j. The elements al1,a22,a33, ... 
are said to form the main diagonal of the matrix (ai;). An n X n matrix with ai; = 0 
for all i ~ j is called a diagonal matrix. If R has an identity element, the identity 
matrix In is the n X n diagonal matrix with IR in each entry on the main diagonal; 
that is, In = (Oi;) where 0 is the Kronecker delta. The n X m matrices with all entries 
o are called zero matrices. The set of all n X n matrices over R is denoted MatnR. 
The transpose of an n X m matrix A = (ai;) is the m X n matrix At = (bi;) (note 
size!) such that bi ; = a;i for all i,j. 

If A = (ai;) and B = (hi;) are n X m matrices, then the sum A + B is defined to 
be the n X m matrix (cd, where Ci; = ai; + bi;. If A = (ai;) is an m X n matrix and 
B = (hi;) is an n X p matrix then the product AB is defined to be the m X p matrix 

n 

(cij) where cij = ~ aikbkj. Multiplication is not commutative in general. If A = (aij) 
(:.. 

is an n X m matrix and r E R, rA is the n X m matrix (rai;) and Ar is the n X m 
matrix (ai;r); rln is called a scalar matrix. 

If the matrix product AB is defined, then so is the product of transpose matrices 
BtAt. If R is commutative, then (ABY = BtAt. This conclusion may be false if R is 
noncom mutative (Exercise J). 

Theorem 1.1. IfR is a ring, then the set of all n X m matrices over R forms an 
R-R bimodule under addition, with the n X m zero matrix as the additive identity. 
Multiplication of matrices, when defined, is associative and distributive over addition. 
For each n > 0, MatnR is a ring. If R has an identity, so does MatnR (namely the 
identity matrix In). 

PROOF. Exercise. • 

One of the important uses of matrices is in describing homomorphisms of free 
modules. 
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Theorem 1.2. Let R be a ring with identity. Let E be a free left R-module with ajinite 
basis of n elements and F a free left R-module with ajinite basis ofm elements. Let 
M be the left R-module of all n X m matrices over R. Then there is an isomorphism 
of abelian groups: 

HomR(E,F) '" M. 

ffR is commutative this is an isomorphism of left R-modules. 

PROOF. Let {UI, •.• , u,,1 be a basis of E, {VI, ... , vml a basis of F and 
fe HomR(E,F). There are elements ri; of R such that 

f(uI) = rllVI + rl2V2 + ... + rjmVm; 
f(u2) = r21VI + r22V2 + ... + r2mVm; 

The ri; are uniquely determined since {VI, ..• , Vm 1 is a basis of F. Define a map 
(3 : HomR(E,F) -> M by ff-> A, where A is the n X m matrix (rii)' It is easy to verify 
that {3 is an additive homomorphism. If (3( f) = 0, then f(ui) = 0 for every basis 
element Ui, whence f = O. Thus (3 is a monomorphism. Given a matrix (rii) e M, de
fine f: E -> F by f(ui) = rilVj + ri2V2 + ... + rimVm (i = 1,2, ... ,n). Since E is free, 
this uniquely determines fas an element of HomR(E,F) by Theorem IV.2.1. By con
struction (3(f) = (rii)' Therefore (3 is surjective and hence an isomorphism. If R is 
commutative, then HomR(E,F) is a left R-module with (rf)(x) = r(l(x)) by the 
Remark after Theorem IV.4.8. It is easy to verify that {3 is an R-module isomor
phism .• 

Let R,E,F and (3 be as in Theorem 1.2. The matrix of a homomorphism 
f e HomR(E,F) relative to the ordered bases U = I Ut,- ••• , u" I of E and V = 

{ VI, ... , Vm 1 of F is the n X m matrix (rii) = (3( f) as in the proof of Theorem 1.2. 
Thus the ith row of the matrix of f consists of the coefficients of f(ui) e F relative to 
the ordered basis {VI, ..• , Vm I. In the special case when E = F and U = V we refer 
to the matrix of the endomorphism frelative to the ordered basis U. 

REMARK. Let E,F,f,U,V be as in the previous paragraph. The image under fof 
an arbitrary element of E may be conveniently calculated from the matrix A = (rii) 

of f as follows. If U = XIUI + X2U2 + ... + x"u" e E (Xi e R), then 

feu) = f(f XiUi) = t X;f(Ui) = ± x/ t riiVi) 
;=1 ;=1 ;=1 \]=1 

m (n ) m 
= L L Xirii Vi = LYiVi, 

j=1 ;=1 j=1 

n 

where Yi = L Xirii. Thus if X is the 1 X n matrix (XI X2 ••• x,,) and Y is the 1 X m 
;=1 

matrix (Yl Y2 ... Ym), then Y is precisely the matrix product XA. X and Yare some
times called row vectors. 
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Theorem 1.3. Let R be a ring with identity and leI E,F,G, be free left R-modules with 
finite ordered bases U = lu!"", Un!. V = Iv!'"" vm!. W = (Wl, ... , wpl re
spectively. If f c HomR(E,F) has n X m matrix A (relative to bases U and V) and 
g c HomR(F,G) has m X p matrix 8 (relative to bases V andW), then gf c HomR(E,G) 
has n X p matrix AB (relative to bases U and W). 

PROOF. If A = (ri;) and B = (Sk;), then for each i = 1,2, ... ,n 

gf(u,) = g(f rikUk) = f ri,g(vk) = i: rik(£ Sk;W;) 
k=1 k=1 /,=1 j=1 

= £ (f rikSk;)W;. 
j=1 k=1 

m 

Therefore the matrix of gfrelative to U and W has i-jth entry L r"sk;. But this is 
!'-=1 

precisely the i-jth entry of the matrix AB. • 

Let R be a ring with identity and E a free left R-module with a finite basis U of n 
elements. Then HomR(E,E) is a ring with identity, where the product of maps fand g 

is simply the composite function fg : E --; E (Exercise IV.I.7). We wish to note for 
future reference the connection between the ring Homu(E,E) and the matrix ring 
MatnR. If Sand T are any rings, then a function 0 : S --; T is said to be an anti
isomorphism if 0 is an isomorphism of additive groups such that 0(SIS2) = 0(S2)O(SI) for 
all Si c S. The map HomR(E,E) --; MatnR which assigns to each fe Homu(E,E) its 
matrix (relative to U) is an anti-isomorphism of rings by Theorems 1.2 and 1.3. It 
would be convenient if Homu(E,E) were actually isomorphic to some matrix ring. In 
order to show that this is indeed the case, we need a new concept. 

If R is a ring, then the opposite ring of R, denoted Rop, is the ring that has the same 
set of elements as R, the same addition as R, and multiplication 0 given by 

a 0 b = ba, 

where ba is the product in R; (see Exercise III. 1.l 7). The map given by rf---. r is 
clearly an anti-isomorphism R --; Rop. If A = (ai') and B = (bi;) are n X n matrices 
over R, then A and B may also be considered to be matrices over Rap. Note that in 

n 

MatnR, AB = (Ci;) where Ci; = L aikbk ;; but in MatnRop, AB = (di;), where 
k=1 

n n 

di ; = L aik 0 bk; = L bk;aik. 
k=! k=1 

Theorem 1.4. Let R be a ring with identity and E a free left R-module with a finite 
basis ofn elements. Then there is an isomorphism of rings: 

In particular, this isomorphism exists for every n-dimensional vector space E over a 
division ring R, in which case R op is also a division ring. 

REMARK. The conclusion of Theorem 1.4 takes a somewhat nicer form when R 
is commutative, since in that case R = Rop. 
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SKETCH OF PROOF OF 1.4. Let rp: HomR(E,E) -> MatnR be the anti
isomorphism that assigns to each map fits matrix relative to the given basis. Verify 
that the map 1/; : MatnR -> MatnRop given by 1/;(A) = AI is an anti-isomorphism of 
rings. Then the composite map 1{Irp : HomR(E,E) -> Mat"Rop is an isomorphism of 
rings. The last statement of the theorem is a consequence of Theorem IV.2.4 and 
Exercise III .1.17 . • 

Let R be a ring with identity and A E MatnR. A is said to be invertible or non
singular if there exists B E MatnR such that AB = In = BA. The inverse matrix B, if 
it exists, is easily seen to be unique; it is usually denoted A-I. Clearly B = A-I is in
vertible and (A-l)-1 = A. The product AC of two invertible matrices is invertible with 
(AC)-1 = C-IA-l. If A is an invertible matrix over a commutative ring, then so is its 
transpose and (A')-1 = (A-l)1 (Exercise 1). 

The matrix of a homomorphism of free R-modules clearly depends on the choice 
of (ordered) bases in both the domain and range. Consequently, it will be helpful to 
know the relationship between matrices that represent the same map relative to 
different pairs of ordered bases. 

Lemma 1.5. Let R be a ring with identity and E,F free left R-modules with ordered 
bases V,V respectively such that IVI = n = IVI. Let A e MatnR. Then A is invertible if 
and only if A is the matrix of an isomorphism f: E - F relative to V and V. In this 
case A-I is the matrix off- I relative to V andV. 

SKETCH OF PROOF. An R-module homomorphism f: E -> F is an isomor
phism if and only if there exists an R-module homomorphism f- 1 : F -> E such that 
f-If = IE and ff-1 = IF (see Theorem 1.2.3). Suppose fis an isomorphism with 
matrix A relative to U and V. Let B be the matrix of f- 1 relative to Vand U. Sche
matically we have 

map: 

module: 

basis: 

matrix: 

I I-I 
E ------+ F ------+ E 

U V U 

A B 

By Theorem 1.3 AB is the matrix of f-If = IE relative to U. But In is clearly the 
matrix of IE relative to U. Hence AB = In by the proof of Theorem 1.2. Similarly 
BA = In, whence A is invertible and B = A-I. The converse implication is left as 
an exercise. • 

Theorem 1.6. Let R be a ring with identity. Let E and F be free left R-modules with 
finite ordered bases V and V respectively such that IVI = n, IVI = m. Let f e 
HomR(E,F) have n X m matrix A relative to V and V. Then f has n X m matrix B 
relative to another pair of ordered bases ofE and F if and only ifB = PAQfor some 
invertible matrices P and Q. 

PROOF. (=) If B is the n X m matrix offrelative to the bases U' of E and V' of 
F, then !U'! = n and IV'! = m. Let P be the 1/ X n matrix of the identity map IE rela-
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tive to the ordered bases V' and V. P is invertible by Lemma 1.5. Similarly let Q be 
the m X m invertible matrix of IF' relative to V and V' (note order). Schematically 
we have: 

map: 

module: 

basis: 

matrix: 

V' V 

P 

V V' 
A Q 

By Theorem 1.3 the matrix of f = h fh relative to V' and V'is precisely P A Q. 
Therefore B = P A Q by the proof of Theorem 1.2. 

(<=) We are given V,V,J,A as above and B = PAQ with P,Q invertible. Let 
g : E ~ E be the isomorphism with matrix P relative to V and h : F ~ F the iso
morphism with matrix Q-I relative to V (Lemma 1.5). If V = {UI, ... , Un I, then 
g(U) = {g(UI), . .. ,g(u.)l is also an ordered basis of E and P is the matrix of IE 
relative to the ordered bases g(V) and V. Similarly Q-I is the matrix of IF relative to 
the ordered bases h(V) and V, whence Q = (Q-I)-I is the matrix of h relative to V 
and h(V) (Lemma 1.5). Schematically we have 

map: 

module: 

basis: 

matrix: 

g(V) V 

P 

V h(V) 

A Q 

By Theorem 1.3 the matrix of f = 1 F fll? relative to the ordered bases g(U) and h(V) 
isPAQ = B .• 

Corollary 1. 7 Let R be a ring with identity and E a free left R-module with an 
ordered basis U offmite cardinality n. Let A be the n X n matrix off e HomR(E,E) 
relative to U. Then f has n X n matrix B relative to another ordered basis ofE if and 
only ifB = PAp-1 for some invertible matrix P. 

SKETCH OF PROOF. If E = F, V = V, and V' = V' in the proof of Theorem 
1.6, then Q = p-I by Lemma 1.5. • 

The preceding results motivate: 

Definition 1.8. Let R "be a ring with identity. Two matrices A,B e MatnR are said to 
be similar if there exists an invertible matrix P such that B = PAp-I. Two n X m 
matrices C,D are said to be equivalent if there exists invertible matrices P and Q such 
that D = PCQ. 

Theorem 1.6 and Corollary 1.7 may now be reworded in terms of equivalence 
and similarity. Equivalence and similarity are each equivalence relations (Exercise 7) 
and will be studied in more detail in Sections 2 and 4. 
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We close this section with a discussion of right modules and duality. 
If R is commutative, then the preceding results are equally valid for right R

modules. There are important cases, however, in which R is not commutative (for 
example, vector spaces over a division ring). In order to prove the analogue of 
Theorem 1.3 for right modules in the noncommutative case it is necessary to define 
the matrix of a homomorphism somewhat differently. 

Let R be a ring with identity and let E and F be free right R-modules with finite 
ordered bases U = 1 UI, ..• , Un I and V = 1 VI, ••• , 17m I respectively. The matrix of 
the homomorphism fs Hom/i(E,F) relative to U and V is defined to be the m X n 
matrix (note size): 

SI! SI2 SIn 

S21 S22 S2n 

where the Si] E R are uniquely determined by the equations: 

f(uI) = VISIl + V2S21 + U3S31 + ... + VmSml 

Thus the coefficients of f(uj) with respect to the ordered basis V form thejth column 
of the m X n matrix (Sij) of f(compare the proof of Theorem 1.2). 

The action of fmay be described in terms of matrices as follows. Let U = UIX + 
UzXz + ... + UnXn (Xi € R) be any element of E and let X be the n X 1 matrix (or 

,.Iom. "ct .. ) (I:)- L,t A be th' matd, of f ,dativ"o th, ba", U and V. Then 

(YI) 
f(u) ~ "'Y' + "v, + ... + '.Y., wh", y,' R .. d y. " th, m X I matnx 

(column vector) AX. 
The analogues of results 1.2-1.5 above are now easily proved, in particular, 

Theorem 1.9. Let R be a ring with identity and E,F free right R-modules with finite 
bases U and V of cardinality nand m respectively. Let N be the right R-module of all 
m X n matrices over R. 

(i) There is an isomorphism of abelian groups HomR(E,F) "-' N, which is an iso
morphism ofri[:ht R-modules ifR is commutative; 
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(ii) let G be a free right R-module with a finite basis W of cardinality p. If 
f to HomR(E,F) has m X n matrix A (relative to U and V) and g to HomR(F,G) has 
p X m matrix B (relative to V and W), then gf e HomR(E,G) has p X n matrix BA 
(relative to U and W); 

(iii) there is an isomorphism of rings HomR(E,E) '" MatnR. 

PROOF. Exercise; see Theorems 1.2-1.4. Note that for right modules (iii) is 
actually an isomorphism rather than an anti-isomorphism. • 

Proposition 1.10. Let R be a ring with identity and f : E -+ F a homomorphism of 
finitely generated free left R-modules. If A is the matrix off relative to (ordered) bases 
U and V, then A is also the matrix of the dual homomorphism f: F* -+ E* offree right 
R-modules relative to the dual bases V* and U*. 

REMARK. Dual maps and dual bases are defined in Theorems IVA.lO and 
IVA.II. If R is commutative (for example, a field) it is customary to consider the dual 
M* of a left R-module M as a left R-module (with rm* = m*r for r e R, m* to M* as 
usual). In this case the matrix of the dual map lis the transpose At (Exercise 8). 

PROOF OF 1.10. Recall that the dual basis V* = I VI *, ... , Vm * 1 of 
F* = Homn(F,R) is determined by: 

Vi*(Vj) = Oij (Kronecker delta; I :::; i,j :::; m), 

and similarly for the dual basis U* = IUI*, . .. ,Un *1 of E* (Theorem IV.4.lI). Ac
cording to the definition of the matrix of a map of right R-modules we must show 

n 

that for eachj = I,2, ... , m,l(vj*) = .L ui*rij, where A = (rij) is the n X m matrix 
;=1 

of f: E -+ F relative to U and V. Since both sides ofthe preceding equation are maps 
E -+ R, it suffices to check their action on each Uk e U. By Theorem IVA.lO we have: 

f(Vj*)(Uk) = Vj*(f(Uk» = Vj*(f rklVt) = i: rklv;*(Vt) = rkj. 
1=1 1=1 

On the other hand, 

EXERCISES 

Note: All matrices are assumed to have entries in a ring R with identity. 

1. Let R be commutative. 
(a) If the matrix product AB is defined, then so is the product BIAI and 

(AB)! = BIAI. 
(b) If A is invertible, then so is AI and (At)-I = (A-I)!. 
(c) If R is not commutative, then (a) and (b) may be false. 
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2. A matrix (aii) c MatnR is said to be 

(upper) triangular {=} aii = 0 for j < i; 
strictly triangular {=} aii = 0 for j:; i. 
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Prove that the set of all diagonal matrices is a subring of MatnR which is (ring) 
isomorphic to R x ... x R(n factors). Show that the set T of all triangular 
matrices is a subring of MatnR and the set I of all strictly triangular matrices is 
an ideal in T. Identify the quotient ring T /1. 

3. (a) The center ofthe ring MatnR consists of all matrices of the form rIn, where r is 
in the center of R. [Hint: every matrix in the center of MatnR must commute with 
each of the matrices Br.s, where Br.s has I R in position (r,s) and 0 elsewhere.] 
(b) The center of MatnR is isomorphic to the center of R. 

4. The set of all m X n matrices over R is a free R-module with a basis of mn ele
ments. 

5. A matrix A c MatnR is symmetric if A = At and skew-symmetric if A = -At. 
(a) If A and B are [skew] symmetric, then A + B is [skew] symmetric. 
(b) Let R be commutative. If A,B are symmetric, then AB is symmetric if and 

only if AB = BA. Also show that for any matrix B e MatnR, BB' and B + B' are 
symmetric and B - Bt is skew-symmetric. 

6. If R is a division ring and A,B c MatnR are such that BA = In, then AB = In and 
B = A-I. [Hint: use linear transformations.] 

7. Similarity of matrices is an equivalence relation on MatnR. Equivalence of ma
trices is an equivalence relation on the set of all m X n matrices over R. 

8. Let E,F be finite dimensional (left) vector spaces over a field and consider the dual 
spaces to be left vector spaces in the usual way. If A is the matrix of a line&r trans
formation f : E --> F, then At is the matrix of the dual map 1: F* --> E*. 

2. RANK AND EQUIVALENCE 

The main purpose of this section is to find necessary and sufficient conditions for 
matrices over a division ring or a principal ideal domain to be equivalent. One such 
condition involves the concept of rank. In addition, useful sets of canonical forms for 
such matrices are presented (Theorem 2.6 and Proposition 2.11). Finally, practical 
techniques are developed for finding these canonical forms and for calculating the 
inverse of an invertible matrix over a division ring. Applications to finitely generated 
abelian groups are considered in an appendix, which is not needed in the sequel. 

Definition 2.1. Let f : E --> F be a linear transformation of (left) veclOr spaces over a 
division ring D. The rank off is the dimension of 1m f and the nullity off is the dimen
sion of Ker f. 

REMARK. If f: E --> F is as in Definition 2.1, then by Corollary IV.2.14, 
(rank f) + (nullity f) = dimnE. 
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If R is a ring with identity and n a positive integer, then Rn will denote the free 
R-module REB· .. EB R (n summands). The standard (ordered) basis of Rn consists of 
the elements el = (tR,O, ... ,0), e2 = (O,I R ,O, ... ,0) •... , E. = (0, ... ,O,h). 

Definition 2.2. The row space [resp. column space] of an n X m matrix A over a ring 
R with identity is the submodule of the free left [resp. right] module Rm [resp. Rn] 
generated by the rows [resp. columns] of A considered as elements ofRm [resp. Rn]. If 
R is a division ring, then the row rank [resp. column rank] of A is the dimension of 
the row [resp. column] space of A. 

Theorem 2.3. Let f: E --. F be a linear transformation of finite dimensional left 
[resp. right] vector spaces over a division ring D. If A is the matrix off relative to some 
pair of ordered bases, then the rank off is equal to the row [resp. column] rank of A. 

REMARK. "Row rank" is replaced by "column rank" in the case of right vector 
spaces because of the definition of the matrix of a map of right vector spaces (p. 333). 

PROOF OF 2.3. Let A be the n X m {resp. m X n] matrix of frelative to or
dered bases U = lUI, • •. , Un I of E and V = I VI, ••• , v .. I of F. Then under the usual 
isomorphism F '" IJm given by L riVi ~ (rl' ... , r .. ) the elements f(uI), ... ,f(un ) 

i 

are mapped onto the rows [resp. columns] of A (considered as vectors in Dm). Since 
1m fis spanned by f(uI), ... ,f(u.), 1m f is isomorphic to the row [resp. column] 
space of A, whence the rank of fis equal to the row [resp. column] rank of A. • 

We now digress briefly to prove that the row and column rank of a matrix over a 
division ring are in fact equal. This fact, which is proved in Corollary 2.5, is not 
essential for understanding the sequel since "row rank" is all that is actually used 
hereafter. 

Proposition 2.4. Any linear transformation f: E --. F of finite dimensional left 
veclOr spaces over a division ring D has the same rank as its dual map f: F* --. E*'. 

The dual map is defined in Theorem IV.4.10. 

PROOF OF 2.4. Let rank f = r. By Corollary IV.2.14 there is a basis 
X = lUI, ... , unl such that lu.+I, ... , unl is a basis of Ker f and YI = 

I f(uI), ... ,f(u.) I is a basis of 1m f. Extend YI to a basis Y = lit = f(ul), ... ,t. = 

f(u,),t'+I' ... , tm} of F. Consider the dual bases X* of E* and y* of F* (Theorem 
IV.4.l1). Verify that for each i = 1,2, ... , m, 

J(ti*)(Uj) = ti*(f(Uj» = {ti:U j) : 5ij . if J _ = 1,2, ... , r; 
I, (0) - 0 If ] - r + 1,r + 2, ... ,n. 

where 5ij is the Kronecker delta. Consequently for each j = 1, 2, ... , n, 

f-( .*)( .) - {5i j = Ui*(Uj) if i = 1,2, ... , r 
t, U1 - 'f' o I 1= r + l,r + 2, ... , m. 
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Therefore, l(t;*) = u/' for i = 1,2, ... , rand l(t;*) = 0 for i = r + 1, ... , m. 
1m lis spanned by ](Y*) and hence by IUI*' .. " ur*}. Since IUI*,"" ur*} is a 
subset of X*, it is linearly independent in E*. Therefore lUI *, ... , Ur *} is a basis of 
1m 1. whence rank 1 = r = rank I. • 

Corollary 2.5. II A is an n X m matrix over a division ring 0, then row rank 
A = column rank A. 

PROOF. Let I: Dn ~ Dm be a linear transformation of left vector spaces with 
matrix A relative to the standard bases. Then the dual map 10f right vector spaces 
also has matrix A (Proposition 1.10). By Theorem 2.3 and Proposition 2.4 row 
rank A = rank I = rank 1 = column rank A. • 

REMARK. Corollary 2.5 immediately implies that row rank A = row rank A' 
for any matrix A over a field. 

In view of Corollary 2.5 we shall hereafter omit the adjectives "row" and 
"column" and refer simply to the rank of a matrix over a division ring. 

In Theorem 2.6 below equivalent matrices over a division ring D will be char
acterized in terms of rank and in terms of the following matrices. If m,n are 
positive integers, then Po,m is defined to be the n X m zero matrix, For each 
r (1 ::; r ::; min (n,m», E;,m is defined to be the n X m matrix whose first r rows are 
the standard basis vectors EI, ••• , Er of Dm and whose remaining rows are zero: 

lR 0 0 •• 0"0 •••••••••••••••••• 0 
0 h 0 ...................... 0 

En,m = . 0 ........... 0 h 0 0 = (ci ~). r 

0 ........... 0 0 0 0 

o o 

Clearly rankE;,m = r. Furthermore if E;,m is the matrix of an R-module homo
morphism I : E --+ F of free R-modules, relative to bases lUI, ... , Un} of E and 
I VI" •• , vm } of F, then 

I(u;) = {v; ~f ~: 1,2, ... , r; 
o If I - r + 1,r + 2, ... , n. 

An immediate consequence of Theorem 1.6 and Theorem 2.6 below is that every 
linear transformation of finite dimensional vector spaces has this convenient form 
for some pair of bases (Exercise 6). 

A set of canonical forms for an equivalence relation R on a set X is a subset C of X 
that consists of exactly one element from each equivalence class of R. In other words, 
for every x E X there is a unique c E C such that x is equivalent to c under R. We now 
show that the matrices E;,m form a set of canonical forms for the relation of equiva
lence on the set of all n X m matrices over a division ring. 
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Theorem 2.6. Let M be the set of all n X m matrices over a division ring D and let 
A,BeM. 

(i) A is equivalent to E~'·1ll if and only if rank A = r. 
(ii) A is equivalent to B if and only ifrank A = rank B. 

(iii) The matrices E~·1Il (r = 1,2, ... ,min (n,m» constitute a set of canonical 
forms for the relation of equivalence on M. 

SKETCH OF PROOF. (i) A is the matrix of some linear transformation 
f : Dn -> Dm relative to some pair of bases by Theorem 1.2. If rank A = r, then 
Corollary IV.2.14 implies that there exist bases U = lUI, • •• , Un I of Dn and 
V = I VI, ••• , Vm I of Dm such that f(ui) = Vi for i = 1,2, ... , rand f(ui) = 0 for 
i = r + I, ... ,n. Clearly the matrix of frelative to U and V is E;·"'. Therefore A is 
equivalent to E;·m by Theorem 1.6. Conversely suppose A is equivalent to E;·m. By 
Theorem 1.6 there is a linear transformation g : D" -> Dm such that A is the matrix of 
g relative to one pair of bases and E;·m is the matrix of g relative to another pair of 
bases. Consequently, rank A = rank g = rank E;"" = r by Theorem 2.3. (ii) and 
(iii) are consequences of (i). • 

The following definition, theorem, and corollaries have a number of useful con
sequences, including practical methods for constructing: 

(i) canonical forms under equivalence for matrices over a principal ideal do
main (Proposition 2.11); 

(ii) the canonical forms E;·m under equivalence for matrices over a division ring; 
(iii) the inverse of an invertible matrix over a division ring (Proposition 2.12). 

Proposition 2.11 is used only in the proof of Proposition 4.9 below. The remainder of 
the material is independent of Proposition 2.11 and is not needed in the sequel. 

We shall frequently consider the rows [resp. columns] of a given n X m matrix 
over a ring R as being elements of Rm [resp. Rn]. We shall speak of adding a scalar 
multiple of one row [resp. column] to another; for example, 

r(al,a2, ... , am) + (bl, ... , bm) = (ral + bl, ... , ram + bm ). 

Definition 2.7. Let A be a matrix over a ring R with identity. Each of the follm"ing 
is called an elementary row operation on A: 

(i) interchange two rows of A; 
(ii) left multiply a row of A by a unit c e R; 

(iii) for r E Rand i ¢ j, add r times row j to row i. 

Elementary column operations on A are defined analogously (with left multiplication 
in (ii), (iii) replaced by right multiplication). An n X n elementary (transformation) 
matrix is a matrix that is obtained by performing exactly one elementary row (or 
column) operation on the identity matrix In. 

Theorem 2.B. Let A be an n X m matrix over a ring R with identity and let En 
[resp. Em] be the elementary matrix obtained by performing an elementary row [resp. 
column] operation T on In [resp. 1m] .. Then EnA [resp. AEm] is the matrix obtained by 
performing the operation T on A. 

PROOF. Exercise. • 
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Corollary 2.9. Every n X n elementary matrix E over a ring R with identity is in
vertible and its inverse is an elementary matrix. 

SKETCH OF PROOF. Verify that In may be obtained from E by performing a 
single elementary row operation T. If F is the elementary matrix obtained by per
forming T on In, then FE = In by Theorem 2.8. Verify directly that EF = In. • 

Corollary 2.10. IfB is the matrix obtained from an n X m matrix A over a ring R 
with identity by performing a finite sequence of elementary row and column operations, 
then B is equivalent ta A. 

PROOF. Since each row [column] operation used to obtain B from A is given by 
left [right] multiplication by an appropriate elementary matrix (Theorem 2.8), we 
have B = (Ep' .. El)AfFI ... Fq) = P A Q with each E; F j an elementary matrix and 
P = Ep' .. EI, Q = Fl' .. Fq. P and Q are products of invertible matrices (Corollary 
2.9) and hence invertible. • 

We now consider canonical forms under equivalence of matrices over a principal 
ideal domain R. The rank of a free module over R is a well-defined invariant by 
Corollary IV.2.12. Since every submodule of a free R-module is free (Theorem 
IV.6.1), we may define the rank of a homomorphism f : E --> F of free R-modules to 
be the rank of 1m f. Similarly the row rank of a matrix A over R is defined to be the 
rank of the row space A (see Definition 2.2). The proof of Theorem 2.3 is easily seen 
to be valid here, whence the rank of a mat} f of finitely generated free R-modules is 
the row rank of any matrix of frelative to some pair of bases. Consequently, if A is 
equivalent to a matrix B, then row rank A = row rank B. For A and B are matrices 
of the same homomorphism f : Rn --> Rm relative to different pairs of bases by Theo
rem 1.6, whence row rank A = rank f = row rank B. Here is the analogue of Theo
rem 2.6 for matrices over a principal ideal domain. 

Proposition 2.11. If A is an n X m matrix of rank r > 0 over a principal ideal do

main R, then A is equivalent to a matrix of the form (~r ~), where L is an r X r 

diagonal matrix with nonzero diagonal entries dl , ••• , dr such that dl 1 d2 I· . ·1 dr. The 
ideals (d l ), ... , (d r) in R are uniquely determined by the equivalence class of A. 

REMARKS. The proposition provides sets of canonical forms for the relation of 
equivalence on the set of n X m matrices over a principal ideal domain (Exercise 5). 
If R is actually a Euclidean domain, then the following proof together with Exercise 7 

and Theorem 2.8 shows that the matrix (~r ~) may be obtained from A by a 

finite sequence of elementary row and column operations. 

SKETCH OF PROOF OF 2.11. (i) Recall that a,b e R are associates if alb 
and b 1 a. By Theorem 111.3.2 a and b are associates if and only if a = bu with u a 
unit. We say that c e R is a proper divisor of a E R if cia and c is not an associate of a 
(that is, a{ c). By a slight abuse of language we say that two proper divisors Cl and C2 
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of an element a are distinct if CI and C2 are not associates. Now R is a unique fac
torization domain by Theorem I1I.3.7. If a = p~lp;2 . .. p~t (Pi distinct irreducibles 
and each ni > 0), then every divisor of a is an associate of an element of the form 
p~lp~2 ... p~t with 0 .:::; k i .:::; ni for each i. Consequently a nonzero element of R 
has only finitely many distinct proper divisors. 

(ii) If a and b are nonzero elements of R, let c be their greatest common divisor. 
By Definition I1I.3.10 and Theorem III.3.11 there exist r,s E R such that ar + bs = c, 

cal = a and cbl = b, whence air + bls = hand bal - abl = o. Consequently the 
m X m matrix 

T~ (: 
-bl l:J al 

0 

is invertible with inverse 

(", bl l:J r-I = -s r 
0 

If the first row of A is (a,b,au, ... , aim), then A is equivalent to AT = [nAT, whose 
first row is (c,O,au, ... , aim). If the first columnl of A is (a,d,a31, ... , ani)', then an 
analogous procedure yields an invertible matrix S such that A is equivalent to SA 

and SA has first column (e,0,a31, ... ,anl)t, where e is the greatest common divisor of 
a and d. A matrix such as S or T is called a secondary matrix. 

(iii) Since A ~ 0 a suitable sequence of row and column interchanges and multi
plications on the right by secondary matrices changes A into a matrix AI which has 
first row (al,O,O, ... ,0) with al ~ O. A is equivalent to AI by (ii) and Corollary 2.10. 

(iv) If at divides all entries in the first column of AI. then a finite sequence of 
elementary row operations produces a matrix B of the form 

B= 

o bn2 ... bnm 

which is equivalent to AI, and hence to A, by Corollary 2.10. 
(v) If al does not divide some first column entry b of AI, then a sequence of row 

and column interchanges and multiplications on the left by secondary matrices 
changes Al into a matrix A2 which has first column (a2,0,0, ... , 0)' with a2 a common 
divisor of al and b (see (ii». Note that A2 may well have many nonzero entries in the 

IFor typographical convenience we shall frequently write an n X 1 column vector as the 

transpose of a 1 X n row vector; for example, (::) = (U1U2)t. 
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first row. However since a2\ ai, a2\ band altb, a2 is a proper divisor of al by (i). A2 
is equivalent to AI, and hence to A, by (ii) and Corollary 2.10. 

(vi) If a2 divides every entry in the first row of A2 then a sequence of elementary 
column operations produces a matrix equivalent to A and of the same general form 
as B above. 

(vii) If a2 fails to divide some entry k in the first row of Az, then repeat (iii) and 
obtain a matrix A3 which is equivalent to A and has first row (aa,O,O, ... , 0) with aa a 
common divisor of a2 and k. Aa may have nonzero entries in its first column. But 
since a3 I a2, aal k and a2{ k, aa is a proper divisor of a2 by (i). Furthermore, a2 and a3 
are distinct proper divisors of al by (v). Aa is equivalent to Az, and hence to A, by (ii) 
and Corollary 2.10. 

(viii) Since al has only finitely many distinct proper divisors, a finite number of 
repetitions of (iii)-(vii) must yield a matrix C which is equivalent to A and has 
the form 

SI 0 0 

C= 

with SI ¢ O. 
(ix) If SI does not divide some Cij, add row i to row 1 and repeat (iii)-(viii). The 

result is a matrix D that is equivalent to A, has the same general form as the matrix C 
above, and has for its (1,1) entry an element S2 which is a common divisor of SI and 
Ci; and a proper divisor of Sl. 

(x) If S2 does not divide every entry in D, then a repetition of (ix) yields a matrix 
that is equivalent to A, has the same general form as C and has(1,I) entry Sa such that 
Sa is a proper divisor of Sz, whence S2 and Sa are distinct proper divisors of SI. Since 
SI has only finitely many distinct proper divisors, a finite number of repetitions of 
this process produces a matrix that is equivalent to A, has the same general form as 
C, and has a (1,1) entry which divides all other entries of the matrix. 

(xi) Use induction and (x) to show that A is equivalent to a diagonal matrix 

F = (~r ~) as in the statement of the theorem. Since the rank of F is obviously 

r, the rank of A is r by Theorem 2.6. 
(xii) (uniqueness) Let A and F be as in (xi), with dl , •.• , dr, the diagonal ele

ments of Lr • Suppose M is a matrix equivalent to A (so that rank M = r) and N is a 

matrix equivalent to M of the form (~/ ~) where L/ is an r X r diagonal matrix 

with nonzero diagonal entries ki such that kl I k2 I· . ·1 k r• By Theorem 1.2 F is the 
matrix of a homomorphism f : Rm ~ Rn relative to bases {UI, ••• , Un I of Rn and 
I VI, ••• , v'" I of Rm. Consequently, feu;) = diVi for i = 1,2, ... , rand feu;) = 0 for 
i = r + I, ... , n, whence 1m f = Rdivi ffi· .. ffi Rdrvr. By the analogue for 
modules of Corollary 1.8.11, Rm/lmf~ RvtlRdlvl EB ... EB Rvr/Rdrvr EB RVr+l 
EB ... EB RVn ~ R/(d1) ffi ... EB R/(dr) EB REB· . . EB R (m summands; 
d11d2 1' . '1 dr). Since F is equivalent to N by hypothesis, Theorem 1.6 implies that N 
is the matrix off relative to a different pair of bases. A repetition of the preceding 
argument then shows that Rm/lmf~ R/(k1) EB' .. EB R/(kr) EB REB· .. EB R 
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(m summands; k1Ik2 1" ·Ik,). The structure Theorem IV.6.12 for modules over a 
principal ideal domain implies that (d;) = (k;) for i = 1,2, ... , r. • 

A simplified version of the techniques used in the proof of Proposition 2.11 may 
be used to obtain the canonical form £;.m of an n X m matrix A over a division ring 
D. If A = 0 = E;;.m, there is nothing to prove. If tlti is a nonzero entry in A, then 
interchanging rows i and 1 and columnsj and 1 moves tlti to position (1,1). Multi
plying row 1 by tltrl yields a matrix with first row of the form (h,c2, ... , cm). Sub
tract suitable multiples of row 1 [resp. column 1] from each subsequent row [resp. 
column] and obtain a matrix of the form: 

lR 0 0 

o e22 C2 .. 

C .. 2 '" Cn .. 

If every Cii = 0, we are done. If some Cii ~ 0, then we may repeat the above proce
dure on the (n - 1) X (m - 1) submatrix (Cii). Since row [column] operations on 
rows 2, ... ,n [columns 2, ... ,m] do not affect the first row or column, we obtain 
a matrix 

lR 0 0 0 
o lR 0 0 
o 0 do 

o 0 d..3 ... d"m 

Continuing this process eventually yields the matrix £;.m for some r. By Corollary 
2.10 A is equivalent to £;.tn, whence r = rank A and £;.m is the canonical form of A 
under equivalence by Theorem 2.6. 

A modified version of the preceding technique gives a constructive method for 
finding the inverse of an invertible matrix, as is seen in the proof of: 

Proposition 2.12. The following conditions on an n X n matrix A over a division 
ring D are equivalent: 

(i) rank A = n; 
(ii) A is equivalent to the identity matrix In; 

(iii) A is invertible; 
(iv) A is the product of elementary transformation matrices. 

SKETCH OF PROOF. (i) <=> (ii) by Theorem 2.6 since .e:'" = I ... (i) => (iii) 
The rows of any matrix of rank n are necessarily linearly independent (see Theorem 
IV.2.5 and Definition 2.2.) Consequently, the first row of A = (Oii) is not the zero 
vector and ali ~ 0 for some j. Interchange columns j and 1 and multiply the new 
column 1 by ali-I. Subtracting suitable multiples of column 1 from each succeeding 
column yields a matrix 
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B= 

B is equivalent to A by Corollary 2.10. Assume inductively that there is a sequence of 
elementary column operations that changes A to a (necessarily equivalent) matrix 

h-l 0 

c= 

C"k .•• C,," 

For some j ~ k,Cki ~ 0 since otherwise row k would be a linear combination of 
rows 1,2, ... , k - 1. This would contradict the fact that rank C = rank A = n by 
Theorem 2.6. Interchange columnsj and k, mUltiply the new column k by Cki-1 and 
subtract a suitable multiple of column k from each of columns 1,2, ... , k - 1, 
k + 1, ... , n. The result is a matrix D that is equivalent to A (Corollary 2.10): 

h 0 

dk+ll dk+1 k+1 dk+1 n 

D= 

dnl ... d" k+1 dnn 

This completes the induction and shows that when k = n, A is changed to In by 
a finite sequence of elementary column operations. Therefore by Theorem 2.8 
A(FIF2 • •• Fe) = In with each Fi an elementary matrix. The matrix F1F2 • •• F t is a two
sided inverse of A by Exercise 1.7, whence A is invertible. Corollary 2.9 and the fact 
that A = Ft-I . . -F2- IFI -I show that (i) =? (iv). (iii) =? (i) by Lemma 1.5 and Theo
rem 2.3. (iv) =? (iii) by Corollary 2.9. • 

REMARK. The proof of (i) =? (iii) shows that A-I = F IF2 • •• Fe is the matrix ob
tained by performing on 1ft the same sequence of elementary column operations used 
to change A to 1ft • As a rule this is a more convenient way of computing inverses than 
the use of determinants (Section 3). 

APPENDIX: ABELIAN GROUPS DEFINED BY GENERATORS 
AND RELATIONS 

An abelian group G is said to be the abelian group defined by the generators 
ai, ... , am (ai E G) and the relations 
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rHal + rl.2a2 + ... + rlmam = 0, 
r21al + r22a2 + ... + r2mam = 0, 

(rii e Z) provided that G '" F / K, where F is the free abelian group on the set 
{a!, ••. , am I and K is the subgroup of F generated by hi = rHal + ... + rima»" 
b2 = r21a1 + ... + r2mam, ... , bn = rn1a1 + ... + rnmam' Note that the same 
symbol ai denotes both an element of the group G and a basis element of the free 
abelian group F (see Theorem 11.1.1). This definition is consistent with the concept 
of generators and relations discussed in Section 1.9 (see Exercise 10). 

The basic problem is to determine the structure ofthe abelian group G defined by 
a given finite set of generators and relations. Since G is finitely.generated, G is 
necessarily a direct sum of cyclic groups (Theorem 11.2.1). We shall now determine 
the orders of these cyclic summands. 

Let G be the group defined by generators a!, ... , am and relations L: rijai = 0 
J 

as above. We shall denote this situation by the n X m matrix A = (rii)' The rows of 
A represent the generators hi, ... , bn of the subgroup K relative to the ordered basis 
{ai, ..• , am I of F. We claim that elementary row and column operations performed 
on A have the following effect. 

(i) If B = (Sii) is obtained from A by an elementary row operation, then the 
elements Cl = SUal + ... + Slmam, ••. , en = Snlal + ... + Snmam of F (that is, the 
rows of B) generate the subgroup K. (Exercise 11 (a». 

(ii) If B = (Sii) is obtained from A by an elementary column operation, then 
there is an easily determined basis I ai', ... , am' I of F such that hi = silal' + s;2a2' + 
... + Simam' for every i (Exercise 11 (b), (c». 

If K ~ 0, then by Proposition 2.11 and Exercise 7, A may be changed via a finite 
sequence of elementary row and column operations, to a diagonal matrix 

d1 

o 
o 

o 0 

such that d; ~ 0 for all i and d1 1 d2 1 d3 1· . ·1 dr. In other words a finite sequence of 
elementary operations yields a basis {Ul, ... , Um I of F such that {d1ul,d2U2, ... , drur I 
generates K. Consequently by Corollary 1.8.11 

G '" F/K'" (Zu1 EB···EB Zum)/(Zdlul EB···EB Zdrur EB 0 EB·· . EB' 0) 

'" Z/dI Z EB···EB Z/drZ EB Z/O EB···EB Z/O 

'" Zdl EB· .. EB Zdr EB Z EB· .. EB Z, 

where the rank of (Z EB· .. EB Z) is m - rand d1 1 d2 1· . ·1 dr (see Theorem 11.2.6). 
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EXAMPLE. Determine the structure of the abelian group G defined by genera
tors a,b,c and relations 3a + 9b + 9c = 0 and 9a - 3b + 9c = O. Let F be the free 
abelian group Za + Zb + 'Zc and K the subgroup generated by bl = 3a + 9b + 9c 
and b2 = 9a - 3b + 9c. Then G is isomorphic to FjK and we have the matrix 

A = (3 9 9) 
9 -3 9. 

We indicate below the various stages in the diagonalization of the matrix A by ele
mentary operations; (sometimes several operations are performed in a single step). 
At each stage we indicate the basis of F and the generators of K represented by the 
given matrix; (this can be tricky; see Exercise 11). 

Generators of K, expressed as 
Matrix Ordered basis of F linear combinations of this basis 

G 9 ~) a;b;c bl = 3a + 9b + 9c 
-3 b2 = 9a - 3b + 9c 

(~ 0 ~) a + 3b; b; c bl = 3(a + 3b) + 9c 
-30 b2 = 9(a + 3b) - 30b + 9c 

(~ 0 -1~) a + 3b + 3c; b; C bl = 3(a + 3b + 3c) 
-30 b2 = 9(a + 3b + 3c) - 30b - 18c 

(~ 0 -1~) a + 3b + 3c; b; C bl = 3(a + 3b + 3c) 
-30 b2 - 3bl = -30b - 18c 

G 0 3~) a + 3b + 3c; c; b bl = 3(a + 3b + 3c) 18 -(b2 - 3bl ) = 18c + 30b 

(~ 0 1~) a + 3b + 3c; c + b; b bl = 3(a + 3b + 3c) 18 -b2 + 3bl = 18(c + b) + 12b 

(~ 0 1~) a + 3b + 3c; c + b; bl = 3(a + 3b + 3c) 
6 b + (c + b) -b2 + 3bl = 6(c + b) + 12(2b + c) 

(~ 0 ~) a + 3b + 3c; 5b + 3c; bl = 3(a + 3b + 3c) 
6 2b+ c -b2 + 3bl = 6(5b + 3c) 

Therefore G '" F j K ""' Zj3Z EB Zj 6Z EB ZjOZ '" Za EB Zs EB z. If v EGis the 
image of v + K e F/K under the isomorphism F/K ~G, then G is the internal direct 
sum of a cyclic subgroup of order three with generator a + 3b + 3c, a cyclic sub
group of order six with generator 5b + 3c, and an infinite cyclic subgroup with 
generator 2b + c. 

EXERCISES 

1. Let f, g : E ~ E, h : E ~ F, k : F ~ G be linear transformations of left vector 
spaces over a division ring D with dimDE = n, dimDF = m, dimDG = p. 

(a) Rank (f + g) ::::; rank f + rank g. 
(b) Rank (kh) ::::; min {rank h, rank kl. 
(c) Nullity kh ::::; nullity h + nullity k. 
(d) Rank f + rank g - n ::::; rank fg ::::; min {rank f, rank gl. 
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(e) Max! nullity g, nullity h I ~ nullity hg. 
(f) If m ~ n, then (e) is false for hand k. 

2. An n X m matrix A over a division ring D has an m X n left inverse B (that is, 
BA = 1m) if and only if rank A = m. A has an m X n right inverse C (with 
AC = In) if and only if rank A = n. 

3. If (Cil,Ci2' . 'Cim) is a nonzero row of a matrix (Cij), then its leading entry is Cit 

where t is the first integer such that Cit ~ O. A matrix C = (Cii) over a division 
ring D is said to be in reduced row echelon form provided: (i) for some r ~ 0 the 
first r rows of C are nonzero (row vectors) and all other rows are zero; (ii) the 
leading entry of each nonzero row is ID; (iii) if Cij = ID is the leading entry of 
row i, then Cki = 0 for all k ~ i; (iv) if Clh,C2i .. .•. , CTiT are the leading entries of 
rows 1,2, ... ,r, then/t < j2 < ... < jT' 

(a) If C is in reduced row echelon form, then rank C is the number of nonzero 
rows. 

(b) If A is any matrix over D, then A may be changed to a matrix in reduced 
row echelon form by a finite sequence of elementary row operations. 

4, (a) The 'system of n linear equations in In unknowns Xi over a field K 

has a (simultaneous) solution if and only if the matrix equation AX = B has a 
solution X, where A is the n X m matrix (aii), X is the m X 1 column vector 
(XIX2" ,xm)t and B is the n X 1 column vector (blb2 , , ·bn)t. 
(b) If AJ,BI are matrices obtained from A,B respectively by performing the 
same sequence of elementary row operations on both Al and BI then X is a solu
tion of AX = B if and only if X is a solution of AIX = B I • 

(c) Let C be the n X (m + 1) matrix 

Then AX = B has solution if and only if rank A = rank C. In this case the solu
tion is unique if and only if rank A = m. (Hint: use (b) and Exercise 3.) 
(d) The system AX = B is homogeneous if B is the zero column vector. A 
homogeneous system AX = B has a nontrivial solution (that is, not all Xi = 0) 
if and only if rank A < m (in particular, if n < m). 

5. Let R be a principal ideal domain. For each positive integer r and sequence of 
nonzero ideals II :::> 12 :::> ••. => IT choose a sequence dl , ••• , dT e R such that 
(di ) = Ii and dl 1 d2 I· . ·1 dT' For a given pair of positive integers (n,m), let S be 

the set ofalln X m matrices of the form (~T ~), where r = 1,2, . , . , min (n,m) 

and LT is an r X r diagonal matrix with main diagonal one of the chosen se-



APPENDIX: ABELIAN GROUPS DEFINED BY GENERATORS AND RELATIONS 347 

quences d l , ••• , dr. Show that S is a set of canonical forms under equivalence 
for the set of all n X m matrices over R. 

6. (a) If ! : E -> F is a linear transformation of finite dimensional vector spaces 
over a division ring, then there exist bases {Ul, ••• , Un I of E and I VI, ••• , Vm I of 
F and an integer r (r :::; min (m,n)) such that !(Ui) = Vi for i = 1,2, ... , rand 
!(Ui) = 0 for i = r + 1, ... , n. 
(b) State and prove a similar result for free modules of finite rank over a 
principal ideal domain [see Proposition 2.11]. 

7. Let R be a Euclidean domain with "degree function" cf>: R - 10) -> N 
(Definition III.3.8). (For example, let R = Z). 

(a) If A = (:!) is a 2 X 2 matrix over R then A can be changed to a diagonal 

matrix D by a finite sequence of elementary row and column operations. [Hint: 
If a .,e 0, b.,e 0, then b = aq + r with r = 0, or r.,e 0 and cf>(r) < cf>(a). 
Performing suitable elementary column operations yields: 

(~ !)->(~ !=:) = (~ ~)->(: ~). 
Since cf>(r) < cf>(a), repetitions of this argument change A toB = (: ~) with 

cf>(s) < cf>(a) if s .,e o. If U .,e 0, a similar argument with rows changes B to 

C = (~ :) with cf>(t) < cf>(s) < cf>(a) if t ~ 0; (and possibly w ~ 0). Since 

the degrees of the (1, 1) entries are strictly decreasing, a repetition of these argu

ments must yield a diagonal matrix D = (gl ~2) after a finite number of steps.] 

(b) If A is invertible, then A is a product of elementary matrices. [Hint: By (a) 
and the proof of Corollary 2.10 D = PAQ with P,Q invertible, whence D is in-

vertibleand dl,d2 are units in R. Thus A = p-{gl ~J(~R ~2)Q-l; use 

Corollary 2.9.] 
(c) Every n X m secondary matrix (see the proof of Proposition 2.11) over a 

Euclidean domain is a product of elementary matrices. 

8. (a) An invertible matrix over a principal ideal domain is a product of elementary 
and secondary matrices. 
(b) An invertible matrix over a Euclidean domain is a product of elementary 
matrices [see Exercise 7]. 

9. Let nJ, n2, ... , nt, n be positive integers such that nl + n2 + ... + nt = nand 
for each i let Mi be an ni X ni matrix. Let M be the n X n matrix 

o 
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where the main diagonal of each Mi lies on the main diagonal of M. For each 
permutation u of 11,2, ... , t I, M is similar to the matrix 

uM= 

o 

(
0 1,,3) (0 1,,1) 

[Hint: If t = 3, u = (13), and P = 1"2 ,then p-I = 1"2 and 

1"1 0 1"3 0 
PMP-I = aM. In the general case adapt the proof of results 2.8-2.10.] 

10. Given the set I ai, ... , anI and the words Wt,W2, ... , Wr (on the ai), let F* be the 
free (nonabelian multiplicative) group on the set I at, ... , a" I and let M be the 
normal subgroup generated by the words Wt,W2, ... , Wr (see Section I.9). Let N 
be the normal subgroup generated by all words of the form aiajai-Iaj-l. 

(a) F* 1M is the group defined by generators I ai, ... ,anI and relations 
I WI = W2 = ... = Wr = el (Definition I.9.4). 

(b) F*IN is the free abelian group on lal, ... , anI (see Exercise 11.1.12). 
(c) F* I(M V N) is (in multiplicative notation) the abelian group defined by 

generators I at, ... , an I and relations I WI = W2 = ... = Wr = e I (see p. 343). 
(d) There are group epimorphisms F* --+ F* IN --+ F* I(M V N). 

11. Let F be a free abelian group with basis {at, ... , am I. Let K be the subgroup of 
F generated by bl = rual + ... + rlmam, ... ,b" = r"lal + ... + r"mam (rii E Z). 

(a) For each i, both I bt, ... , bi-t, - bi,bi+t, ... , b" I and I bl, ... , bi-t,bi + rbi, 
bi+l , ••• , b,,} (r E Z; i r6 j) generate K. [See Lemma II.1.5.] 

(b) For each i I at, ... , ai-t, - a; ,ai+t, ... , a" I is a basis of F relative to which 
bi = rilal + ... + ri,i-Iai-I - rji(-ai) + ri,i+la;+1 +: .. + rimam. 

(c) For each i andj r6 i {ai, ... , ai_l,aj - rai,ai+t, ..• , am} (r E Z) is a basis 
of F relative to which bk = rklal + ... + Tk,i-Ia;-I + (rki + rrk;)a, + rk,'+la;+l + 
... + rk,;_laj_1 + rkj(aj - ra,) + rk.i+lai+1 + ... + rkmam. 

12. Determine the structure of the abelian group G defined by generators la,b} and 
relations 2a + 4b = 0 and 3b = O. Do the same for the group with generators 
la,b,e,d} and relations 2a + 3b = 4a ~ 5e + lId = 0 and for the group with 
generators la,b,e,d,e} and relations 
la - 7b + 14d - 21e = 0; Sa - 7b - 2e + 10d - 15e = 0; 3a - 3b - 2e + 
6d - ge = 0; a - b + 2d - 3e = OJ. 

3. DETERMINANTS' 

The determinant function Mat,.R --+ R is defined as a particular kind of R-multi
linear function and its elementary properties are developed (Theorem 3.5). The re
mainder of the section is devoted to techniques for calculating determinants and the 
connection between determinants and invertibility. With minor exceptions this ma-
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terial is not needed in the sequel. Throughout this section all rings are commutative 
with identity and all modules are unitary. 

If B is an R-module and n 2: 1 an integer, JJn will denote the R-module 
B EB B EB· .. EB B (n summands). Of course, the underlying set of the module JJn is 
just the cartesian product B X' .. X B. 

Definition 3.1. Let BJ, ... , Bn and C be modules over a commutative ring R with 
identity. A function f: Bl X' .. X Bn -> C is said to be R-multilinear if for each 
i = 1,2, ... , n and all r,s ~ R, bj e Bj and b,b' ~ Bi: 

f(bJ, ... , bi_l,rb + sb',bi+J, ... , bn) = rf(bJ, ... , bi-J,b,bi+J, ... , bn) + 
sf(bJ, ... , bi_l,b' ,bi+l, ... , bn). 

IfC = R, then f is called an n-linear or R-multiIinear form. If C = Rand Bl = B2 
= ... = Bn = B, then f is called an R-multilinear form on B. 

The 2-linear functions are usually called bilinear (see Theorem IV.5.6). Let Band 
C be R-modules and f : Bn -> Can R-multilinear function. Then fis said to be sym
metric if 

f(b v !' ••• , bvn) = f(bJ, ... , bn) for every permutation u ~ Sn, 

and skew-symmetric if 

f(bvl , ••• , bvn) = (sgn u) f(b l , ••• , bn) for every u ~ S". 

fis said to be alternating if 

f(bJ, ... , bn ) = 0 whenever bi = b i for some i ~ j. 

EXAMPLE. Let B be the free R-module REB R and let d : B X B -> R be de
fined by «an,aI2),(a2!,a22» I-> ana22 - al2 a21. Then d is a skew-symmetric alternating 
bilinear form on B. If one thinks of the elements of B as rows of 2 X 2 matrices over 
R, then d is simply the ordinary determinant function. 

Theorem 3.2. IfB and C are modules over a commutative ring R with identity, then 
every alternating R-multilinear function f: Bn -> C is skew-symmetric. 

SKETCH OF PROOF. In the special case when n = 2 and u = (1 2), we have: 

o = f(b l + b2,bl + b2) = f(bl,bl) + f(bJ,b2) + f(b2,bl) + f(b2,b2) 

= 0 + f(b!,b2) + f(b2,bl) + 0, 

whence f(b 2,bl) = - f(bJ,b2) = (sgn u) f(b!,b2). In the general case, show that it 
suffices to assume u is a transposition. Then the proof is an easy generalization of 
the case n = 2. • 

Our chief interest is in alternating n-linear forms on the free R-module R". Such a 
form is a function from (Rn)n = Rn EB···EB Rn (n summands) to R. 
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Theorem 3.3. IfR is a commutative ring with identity and r E R, then there exists a 
unique alternating R-multilinear form f: (Rn)n ---+ R such that f(EI,E2, ... ,En) = r, 
where {EI, ... , Enl is the standard basis ofRn. 

REMARK. The standard basis is defined after Definition 2.1. The following 
facts may be helpful in understanding the proof. Since the elements of R" may be 
identified with 1 X n row vectors, it is clear that there is an R-module isomorphism 
(R")" '" Mat"R given by (XI,X2, ... ,X,,)f-+ A, where A is the matrix with rows 
X 1,X2, ••• ,X". If {EI, ... , E" l is the standard basis of Rn, then (EI,E2, ... , EnH-+ In 
under this isomorphism. Thus the multilinear form fofTheorem 3.3 may be thought 
of as a function whose n arguments are the rows of n X n matrices. 

PROOF OF 3.3. (Uniqueness) If such an alternating n-linear form fexists and 
if (XI, ... ,X,,)e (Rn)n, then for each ithere exist ai; E R such thatX; = (a;l,ai2, ... , a;,,) 

n 

= L ailE;. (In other words, under the isomorphism (Rn)" '" Mat"R, (XI, ... ,X"H-+ 
i=1 

(ai;).) Therefore by multilinearity, 

f(XI, ... ,X,,) = f(L alilE;H L a2;2E;~, ••• ,L ani"E,,,) 
;1 i2 jn 

= LL'" L alila212" 'an;nf(E;HEi2"'" EiJ· 
it it jn 

Since fis alternating the only possible nonzero terms in the final sum are those where 
h,h, ... ,j" are all distinct; that is, {jl, .-.. ,j" I is simply the set { 1 ,2, ... , n l in some 
order, so that for some permutation 0' ES", (k ... ,j,,) = (0'1, ... , un). Conse-
quently by Theorem 3.2, 

f(XI, . .. ,X .. ) = L al,,102,,2" 'a"""f(E"I,E,,2,' .. , E",,) 
"oS. 

= L (sgn u)al<7I' .. a""" f(EI,E2, ... , En). 
"oS. 

Since f(EI, ... , 10,,) = r, we have 

f(XI, ... ,Xn ) = L (sgn u)ral"la2,,2" ·a." •. 
alBn 

(1) 

Equation (1) shows that f(XI, ... ,Xn ) is uniquely determined by XI, ... ,X" and r. 
(Existence) It suffices to define a function f : (R")" ---+ R by formula (I) (where 

Xi = (ail, ... ,ai"» and verify that f is an alternating n-linear form with 
f(Eh ... , E .. ) = r. Since for each fixed k every summand of L (sgn u)ral"I' . ·a"". 

(TrS,. 

contains exactly one factor ai; with i = k, it follows easily that fis R-multilinear. 
n 

Since 10; = L Oi;E; (Kronecker delta), f(EI, ... ,0. .. ) = r. Finally we must show that 
i=1 

f(XI, ... ,X,,) = 0 if Xi = Xi and i ~ j. Assume for convenience of notation that 
i = I,j = 2. If p = (12), then the map An ---+ Sn given by 0' f-+ up is an injective func
tion whose image is the set of all odd permutations (since 0' even implies up odd and 
IAnl = IS"I/2). ThusS" is a union of mutually disjoint pairs {u,upl with 0' E An. If 0' is 
even, then the summand of f(XhX I,x3, ... ,Xn ) corresponding to 0' is 
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Since Xl = X2, alaI ~ C-2al, and a2a2 = ala2, whence the summand corresponding to 
the odd permutation up is: 

- ralapla2ap~36p3' .. ana",. = - rala~2alaaa3' .. ana" 

= - ralala2.,~363· .. ana..-

Thus the summands of f(XI,xI,x3, ... ,Xn) cancel pairwise and 

f(XI,xI,xa, ... ,Xn) = O. 

Therefore fis alternating. • 

We can now use Theorem 3.3 and the Remark following it to define determinants. 
In particular, we shall frequently identify Mat"R and (Rn)n under the isomorphism 
(given in the Remark), which maps (El, ... , E,,) ~ In. Consequently, a multilinear 
form on MatnR is an R-multilinear form on (Rn)" whose arguments are the rows of 
n X n matrices considered as elements of Rn_ 

Definition 3.4. Let R be a commutative ring with identity. The unique alternating 
R-multilinear form d : MatnR ---+ R such that d(ln) = lR is called the determinant 
function on MatnR. The determinant of a matrix A E MatnR is the element d(A) E R 
and is denoted IAI. 

Theorem 3.5. Let R be a commutative ring with identity and A,B E MatnR. 

(i) Every alternating R-multilinear form fan MatnR is a unique scalar multiple of 
the determinant function d. 

(ii) If A = (aij), then IAI = L (sgn u)alala2a2' .. anan. 
(fIS" 

(iii) IABI = IAIIBI. 
(iv) If A is invertible in MatnR, then IAI is a unit in R. 
(v) If A and B are similar, then IAI = IBI. 
(vi) IAtl = IAI. 
(vii) If A = (ail) is triangular, then IA! = al1a22" ·ann . 
(viii) IfB is obtained by interchanging two rows [columns] of A, then IBI = -IAI. 

IfB is obtained by multiplying one row [column] of A by r E R, then IBI = rlAI.lfB is 
obtained by adding a scalar multiple of row i [column i] to row j [column j] (i ~ j), then 
IBI = IAI· 

SKETCH OF PROOF. (i) Let fUn) = rE R. Let dbe the determinant function. 
Verify that the function rd: MatnR ---+ R given by A ~ riAl = rd(A) is also an 
alternating R-multilinear form on MatnR such that rdUn) = r, whencef = rdby the 
uniqueness statement of Theorem 3.3. The uniqueness of r follows immediately. 

(ii) is simply a restatement of equation (1) in the proof of Theorem 3.3. (iii) Let B 
be fixed and denote the columns of B by Yl,Y2 , ••• , Yn. If C is any n X m matrix with 
rows XI, ... ,Xn, then the (i,j) entry of CB is precisely the element (1 X 1 matrix) 
X;lj. Thus the ith row of CB is (XjY1,XjY2, ••• , XjYn). Use this fact to 
verify that the map MatnR - R given by q-iCBI is an alternating R-multilinear 
formfon Mat"R. By (i)f= rdfor some rE R. Consequently, ICBI = fCC) = rd(C) 
= ric[. In particular, IBI = IlnBI = rlInl = r, whence IABI = riAl = IAIIBI. 
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(iv) AA-I = I" implies lAllA-II = IAA-'I = 1/.1 = 1 by (iii). Hence IAI is a unit 
in R with IAI-' = lA-II. (v) Similarly, B = PAIH implies IBI = IPIIAIIPI-' = IAI 
since R is commutative. 

(vi) Let A = (aii)' If ih ••• , in are the integers 1,2, ... , n in some order, then 
since R is commutative any product aillll;22' .. ll;.n may be written as alila2i2' .. ani •. If 
u is the permutation such that u(k) = ik , then u-I is the permutation such that 
u-'(k) = jk' Furthermore, it is easy to see that for any u e S", sgn u = sgn u-I. Let 
A' = (bii); then since S" is a group, 

IA'I = L (sgn u)bl•l ·· ·bn." = L (sgn u)a.w· . a.".. 
t1tS.. O'IS,. 

= L (sgn u-I)al,,-Il · . 'an"-l,, = IAI. 
tt-ltS. 

(vii) By hypothesis either aii = 0 for all j < i or aii = 0 for all j > i. In either 
case show that if u e S" and u ~ (1), then al"I' .. an"" = 0, whence 

IAI = L (sgn u)al"l" 'a""" = alla22" ·ann . 
ITIS" 

(viii) Let Xl> ... , Xi> ... , ~, ... , Xn be the rows of A. If B has rows Xl> ... ~, 
... , Xi, ... , X .. , then since d is skew-symmetric by Theorem 3.2, 

IBI = d(Xh'" ,Xi,'" ,Xi, ... ,X .. ) 

= -d(X" ... ,Xi, ... ,Xi,'" ,Xn) = -IAI. 

Similarly if B has rows Xl, ... , Xi, ... , rXi + Xi, ... , X" then since d is multilinear 
and alternating 

IBI = d(Xh' .. ,Xi, ... , rXi + Xi,' .. ,X.) 
= rd(X" ... ,Xi, ... ,Xi, ... ,X,,) + d(Xh" . ,Xi, ... ,Xi, ... ,X .. ) 
= rO + IAI = IAI. 

The other statement is proved similarly; use (v) for the corresponding statements 
about columns. • 

If R is a field, then the last part of Theorem 3.5 provides a method of calculating 
IAI. Use elementary row and column operations to change A into a diagonal matrix 
B = (bii), keeping track at each stage (via (viii» of what happens to IAI. By (viii), 
IBI = riAl for some 0 ~ re R. Hence riAl = bllb22 ·· ·bnn by (vii) and 

IAI = r-'bll' .. b .. n • 

More generally the determinant of an n X n matrix A over any commutative ring 
with identity may be calculated as follows. For each pair (iJ) let Aii be the 
(n - I) X (n - 1) matrix obtained by deleting row i and column j from A. Then 
IAiil e R is called the minor of A = (aii) at position (i,j) and (-I)i+iIAii l e R is called 
the cofactor of aii' 

Proposition 3.6. If A is an n X n matrix over a commutative ring R with identity, 

then for each i = 1,2, ... , n, 
n 

IAI = L (-I)i+iaiiIAiil 
j=l 
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and for each j = 1,2, ... , n, 
n 

IAI = L (-I)i+iaiMiil· 
i=l 

The first [second] formula for IA'I is called the expansion of IAI along row i 
[column j]. 

PROOF OF 3.6. We letj be fixed and prove the second statement. By Theorem 
3.3 and Definition 3.4 it suffices to show that the map q, : MatnR -+ R given by 

n 

A = (aii) 1-+ L: (-I)i+iaiiIAiil is an alternating R-multilinear form such that 
i=l 

q,(ln) = h. Let XI, ... ,Xn be the rows of A. If Xk = XI with 1 ::; k < t::; n, then 
/Aiil = 0 for i ;t6. k,t since it is the determinant of a matrix with two identical rows. 
Since Aki may be obtained from Ati by interchanging row t successively with rows 
t - 1, ... ,k + I, IAkil = (- I) t-k-IIAtil by Theorem 3.5. Thus q,(A) = (-I)k+iIAkil 
t (-I)t+iIAtil = (-I)k+i+t-k-lJAtil + (-I)t+iIAtil = O. Hence q, is alternating. If 
for some k, X k = rYk + sWk, let B = (bii) and C = (Cii) be the matrices with rows 
XI, . .. ,Xn-I,Yk,Xk+h . .. ,Xn, and XI, . .. ,Xk_I,Wk,Xk+I, .. . ,X" respectively. To 
prove that q, is R-multilinear we need only show that q,(A) = rq,(B) + sq,(C). If 
i = k, then IAkil = IBkil = ICkil, whence akilAkil = (rbki + sCki)!Akil = rbkilBki! + 
sCkilCkil. If i ;t6. k, then since each IAiil is a multilinear function of the rows of Aii and 
aii = hii = Cii for i ;t6. k, we have aiilAiil = aii(rlBiil + SICil) = rbiilBiil + SCiilCil. 
It follows that q,(A) = rq,(B) + sq,(C); hence q, is R-multilinear. Obviously q,(ln) = 

h. Therefore, q, is the determinant function. The first statement of the theorem 
follows readily through the use of transposes. • 

Proposition 3.7. If A = (aij) is an n X n matrix over a commutative ring R with 
identity and Aa = (bij) is the n X n matrix with bij = (-I)i+iIAjil, then AN = IAlln 
= AaA. Furthermore A is invertible in MatnR if and only if IAI is a unit in R, in 
which case A-I = IAI-IAa. 

The matrix Aa is called the classical adjoint of A. Note that if R is a field, then IA I 
is a unit if and only if IAI ;t6. O. 

n 

PROOF OF 3.7. The (i,j) entry of AAa is Cii = L: (-I)iHaikIAikl. If i =j, 
k=l 

then Cii = IA I by Proposition 3.6. If i ;t6. j (say i < j) and A has rows XI, ... ,Xn, let 
B = (bii) be the matrix with rows XI, . .. ,Xi, . .. ,Xi-I,Xi,Xi+h" . ,X". Then 
bik = aik = b,k and IAikl = IBikl for all k; in particular, IBI = 0 since the determinant 
is an alternating form. Hence 

n n 

Cii = L: (-I)iHaikIAikl = L: (- l)iHbiklBikl = IBI = O. 
k=l k=l 

Therefore, Cii = oiilAI (Kronecker delta) and AAa = IAlln. In particular, the last 
statement holds with At in place of A : At(At)a = IAtl/". Since (Aa)t = (At)a, we have 
IAII" = lAflIn = At(At)a = At(Aa)t = (AaA)" whence AaA = (jAlln)t = IAlln. Thus 
if IAI is a unit in R, IAI-IAa E Mat"R and clearly (IAI-IAa)A = In = A(IAI-IAa). 
Hence A is invertible with (necessarily unique) inverse A-I = IAI-IAa. Conversely if 
A is invertible, then IAI is a unit by Theorem 3.5. • 
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Corollary 3.8. (Cramer's Rule) Let A = (aij) be the matrix of coefficients of the 
system ofn linear equations in n unknowns 

over a field K. If !AI 7"'- 0, then the system has a unique solution which is given by: 

j = 1,2, ... ,n. 

PROOF. Clearly the given system has a solution if and only if the matrix equa
tion AX = B has a solution, where X and B are the column vectors X = (Xl' .. Xn)', 
B = (b I · .. bn )'. Since IAI 7"'- 0, A is invertible by Proposition 3.7, whence X = A-IB 
is a solution. It is the unique solution since AY = B implies Y = A-lB. To obtain the 
formula for Xj simply compute, using the equation 

EXERCISES 

Note: Unless stated otherwise all matrices have entries in a commutative ring R 
with identity. 

1. If r + r 7"'- 0 for all nonzero r E R, then prove that an n-Iinear form Bn --> R is 
alternating if and only if it is skew-symmetric. What if char R = 2? 

2. (a) If m > n, then every alternating R-muItilinear form on (Rn)m is zero. 
(b) If m < n, then there is a nonzero alternating R-muItilinear form on (Rn)m. 

3. Use Exercise 2 to prove directly that if there is an R-module isomorphism 
Rm '" Rn, then m = n. 

5. If R is a field and A,B E MatnR are invertible then the matrix A + rB is invertible 
for all but a finite number of r E R. 

6. Let A be an n X n matrix over a field. Without using Proposition 3'.7 prove that A 
is invertible if and only if IA I 7"'- O. [Hint: Theorems 2.6 and 3.5 (viii) and Proposi
tion 2.12.] 

7. Let F be a free R-module with basis U = luI, ... , Un I. If cp : F --> F is an R-mod
ule endomorphism with matrix A relative to U, then the determinant of the endo
morphism cp is defined to be IAI E R and is denoted [cpl. 

(a) Icpl is independent of the choice of U. 
(b) Icp[ is the unique element of R such that f(cp(b,),cp(b2), ••• , cp(bn )) 

= Icpl f(bl, ... ,bn ) for every alternating R-multiIinear form on P and all 
boEF. 

8. Suppose that (bI, ... , b,,) is a solution of the system of homogeneous linear 
equations 
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allxl + ... + alnxn = 0 

and that A = (ai;) is the n X n matrix of coefficients. Then IAlb; = 0 for every i. 
[Hint: If B; is the n X n diagonal matrix with diagonal entries h, ... , lR,bi , 

h, ... , lR, then IABil = IAlbi . To show that IABil = 0 add bi times columnj of 
ABi to column i for every j ,e i. The resulting matrix has determinant IAB;I and 
(k,i) entry ak1b1 + ak2b2 + ... + aknbn = 0 for k = 1,2, ... ,n.] 

4. DECOMPOSITION OF A SINGLE LINEAR TRANSFORMATION 
AND SIMILARITY 

The structure of a finite dimensional vector space E over a field K relative to a 
linear transformation E ----> E is investigated. The linear transformation induces a de
composition of E as a direct sum of certain subspaces and associates with each such 
decomposition of E a set of polynomial invariants in K[x] (Theorem 4.2). These sets 
of polynomial invariants enable one to choose various bases of E relative to each of 
which the matrix of the given linear transformation is of a certain type (Theorem 
4.6). This leads to several different sets of canonical forms for the relation of similar
ity in MatnK (Corollary 4.7). 

Note. The results of this section depend heavily on the structure theorems for 
finitely generated modules over a principal ideal domain (Section IV.6). 

Let K be a field and ef>: E ----> E a linear transformation of an n-dimensional 
K-vector space E. We first recall some facts about the structure of HomK(E,E) and 
MatnK. HomK(E,E) is not only a ring with identity (Exercise IV.I.7), but also a 
vector space over K with (k1/;)(u) = k1/;(u) (k E K,u E E,1/; E HomK(E,E»; see the Re
mark after Theorem IVA.8). Therefore if f = L kixi is a polynomial in K[x], then 
f(ef» = L kief>i is a well-defined element of HomK(E,E) (where ef>o = h as usual). 
Similarly the ring MatnK is also a vector space over K. If A E MatnK, then 
f(A) = L kiAi is a well-defined n X n matrix over K (with AO = In). 

Theorem 4.1. Let E be an n-dimensional vector space over a field K, ef> : E -----> E a 
linear transformation and A un n X n matrix OL'er K. 

(i) There exists a unique monic polynomial of positive degree, qoj> E K[x], such that 
qoj>(ef» = 0 and qoj> I f for all f E K[x] such that f(ef» = O. 

(ii) There exists a unique monic polynomial of positive degree, qA E K[x], such 
that qA(A) = 0 and qA I f for all f E K[x] such that f(A) = o. 

(iii) If A is the matrix of ef> relative to some basis ofE, then qA = qoj>. 

PROOF. (i) By Theorem 111.5.5 there is a unique (nonzero) ring homomorphism 
t = t oj> : K[x] ----> HomK(E,E) such that x f-> ef> and k ~ kh for all k E K. Conse
quently, if fE K[x], then t(f) = f(ef». t is easily seen to be a linear transformation 
of K-vector spaces. Since dimKE is finite, HomK(E,E) is finite dimensional over K by 
Theorems IV.2.!, IV. 204, IVA.7, and IVA.9. Thus 1m t is necessarily finite dimen-
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sional over K. Since K[x] is infinite dimensional over K, we must have Ker .I ¢ 0 by 
Corollary IV.2.14. Since K[x] is a principal ideal domain whose units are precisely 
the nonzero elements of K (Corollary 1II.6.4), Ker .I = (q) for some monic q e K[x]. 
Since .I is not the zero map, (q) ¢ K[x], whence deg q ~ 1. If Ker r = (ql) with 
ql E K[x] monic, then q I ql and ql I q by Theorem 111.3.2, whence q = ql since both 
are monic. Therefore q", = q has the stated properties. 

(ii) The proof is the same as (i) with A in place of c/J and MatnK in place of 
HomK(E,E). qA e K[x] is the unique monic polynomial such that (qA) = Ker .lA, 
where .I A : K[x] ~ MatnK is the unique ring homomorphism given by f~ f(A). 

(iii) Let A be the matrix of c/J relative to a basis U of E and let (J : HomK(E,E) '" 
MatnR be the isomorphism of Theorem 1.2, so that (J(c/J) = A. Then the diagram 

is commutative by Theorem III.5.5 since (Jt",(x) = (J(c/J) = A = tA(X) and (Jr",(k) 
= O{kh') = kIn = r A(k) for all ke K. Since (J is an isomorphism, (q",) = Ker r '" 
= Ker (Jr", = Ker r A = (qA). Therefore, q", I qA and qA I q"" whence q", = qA since 
both are monic. • 

If K, E, and c/J are as in Theorem 4.1, then the polynomial q", [resp. qA] is called 
the minimal polynomial of the linear transformation c/J [matrix A]. In general, q", is 
not irreducible. Corollary 1.7 and Theorem 4.1(iii) immediately imply that similar 
matrices have the same minimal polynomial. 

Let K, E, and c/J be as above. Then c/J induces a (left) K[xJ-module structure on E 
as follows. If fe K[xJ and u e E, then f(c/J) e Homk(E,E) and fu is defined by 
fu = f(c/J)(u). A K-subspace F of E is said to be invariant under c/J (or cp..invariant) 
if c/J(F) C F. Clearly F is a c/J-invariant K-subspace if and only if F is a K[xJ-sub
module of E. In particular, for any l' e E the subspace E(c/J,v) spanned by the set 
{c/Ji(V) I i ~ 0) is c/J-invariant. It is easy to see that E(c/J,v) is precisely the cyclic 
K[xJ-submodule K[xJv generated by v. E(c/J,v) is said to be a cI»-cyclic (sub)space. 

Theorem 4.2. Let c/J : E ~ E be a linear transformation of an n-dimensional vector 
space E over a field K. 

(i) There exist monic polynomials of positive degree ql,q2, ... , qt e K[xJ and 
cp-cyc/ic subs paces E1, ••• , Et of E such that E = EI EB E2 EB· .. EB Et and 
ql I q21· . ·1 qt. Furthermore qi is the minimal polynomial of c/J I Ei : Ei ~ Ei. The se
quence (qh ... , qt) is uniquely determined by E and c/J and qt is the minimal polynomial 

ofc/J· 
(ii) There exist monic irreducible polynomials PI, ... , p. e K[x] and cp-cyc/ic sub

s Iai 

spaces Ell, ... , E1kIJE21, ... , E2k",E3h ... , E.k• of E such that E = L L Eii and 
i=li=1 

for each i there is a nonincreasing sequence of integers mil ~ mi2 ~ ... ~ miki ~ 0 
such that p:"ii is the minimal polynomial of c/J 1 Eij : Eii ~ Eii. The family of poly-
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nomials 1 P:r';j 11 ::; i ::; s; 1 ::; j ::; kd is unique(v determined by E and tj> and 
p~llp~21 ... p:OSl is the minimal polynomial of cp. 

The polynomials ql, ... , qt in part (i) of the theorem are called the invariant 
factors of the linear transformation cf>. The prime power polynomials p';'i in part (ii) 
are called the elementary divisors of cf>. 

SKETCH OF PROOF OF 4.2. (i) As indicated above E is a left module over 
the principal ideal domain K[xl with fu = f(tj»(u) (fE K[xl, u E E). SinceEis finite di
mensional over K and K C K[x], E is necessarily a finitely generated nonzero 
K[x]-module. If q", is the minimal polynomial of tj>, then q", r! ° and q",E = 0, 
whence E is a torsion K[xl-module. By Theorem IV.6.12(i) E is the internal 
direct sum E = EI EEl· .. EEl Et, where each Ei is a nonzero cyclic K[x]-module 
of order qi (qi E K[x]) and ql I q21· . ·1 qt. By the remarks preceding the theorem 
each Ei is a cp-cyclic subspace. Since Ei has order qi, there is a K[x]-module 
isomorphism Ei ~ K[Xl!(qi) by Theorem IV.6.4 and the example following it. 
Since Ei r! ° and every nonzero ideal in K[x] has a unique monic gent:rator (Theo
rem 111.3.2 and Corollary 111.6.4), we may assume that each qi is monic of positive 
degree. The uniqueness statement of Theorem IV.6.12(i) and the fact that 
ql I q21· . ·1 qt imply that qJ, ... ,qt are uniquely determined by the K[x]-module E 
(that is, by E and tj». Use the K[x]-module structure of Ei and the fact that Ei is 
cyclic of order qi to verify that the minimal polynomial of tj> I Ei is qi. Finally 
qtE = qt( tj»EI EEl· .. EEl qt( cf»Et = 0, whence (qt) C (q",). Since q",E = 0, we have 
q",Et = 0, whence (q",) C (qt). Consequently, qt = q", since both are monic and 
(qt) = (q",). The second part of the theorem is proved similarly by decompos
ing E as a direct sum of cyclic K[x]-submodules of prime power orders (Theo
rem IV.6.12(ii». • 

REMARK. If tj> = 0, then the proof of Theorem 4.2 shows that the minimal 
polynomial of cf> is x and its invariant factors [resp. elementary divisors] are ql = X, 

q2 = x, ... ,qn = x. (Exercise 2). 

The proof of Theorem 4.2 shows that the invariant factors and elementary di
visors of a linear transformation tj> : E -? E are simply the invariant factors and ele
mentary divisors of the K[xl-module E. Consequently, one can obtain the elementary 
divisors from the invariant factors and vice versa just as in the proof of Theorem 
IV.6.12 (see also pp. 80-81). A technique for calculating the invariant factors of a 
specific linear transformation is discussed in Proposition 4.9 below. 

EXAMPLE. Let K = Q and dimKE = 15 and suppose the invariant factors of 
cf> are ql = X4 - x 2 - 2, q2 = x' - x3 - 2x and q3 = x 6 - X4 - 2x2. Then 
ql = (x2 - 2)(x2 + 1), q2 = Xql and q3 = Xq2, whence the elementary divisors of tj> 
are: x2 - 2, x 2 + 1, x, x 2 - 2, x2 + 1, x\ x2 - 2, x2 + 1. See the proof of Theorem 
IV.6.12 and also p. 80. Conversely if the elementary divisors of a linear transforma
tion 1/t are x T 1, x-I, x - 2, x - 3, (x - 2)2, x 2 + 1, x2 + 1, x2 + 1, and (x - 1)3, 
then the invariant factors are ql = (x - 1)(x2 + 1), q2 = (x - l)(x - 2)(x2 + 1) 
and q3 = (x - 3)(x - 2)2(X2 + 1)(x - 1)3. 

In view of Theorem 4.2 the next step in our analysis should be an investigation of 
cf>-cyclic spaces. 
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Theorem 4.3. Let c/J : E ----> E be a linear transformation of a finite dimensional vec
tor space E over a field K. Then E is a cjJ-cyclic space and c/J has minimal polynomial 
q = xr + ar_Ixr-! + ... + aD € K[x] if and only if dimKE = rand E has an ordered 
basis V relative to which the matrix of c/J is 

0 lK 0 0 0 0 0 
0 0 h 0 0 0 0 
0 0 0 lK 0 0 0 

A= 

0 0 0 0 0 0 h 
-aD -al -a2 -aa -a4 -ar-2 -ar_1 

In this case V = I v,cjJ(v),cf>2(v), ... , c/Jr-l(v) I for some v € E. 

The matrix A is called the companion matrix of the monic polynomial q € K[xV 
Note that if q = x + aD, then A = (-ao). 

PROOF OF 4.3. (=;) If Eis cjJ-cyclic, then the remarks preceding Theorem 4.2 
show that for some v z E, E is the cyclic K[x]-module K[x]v, with the K[x]-module 
structure induced by c/J. If kov + klcjJ(v) + ... + k,-_Ic/Jr-l(V) = 0 (ki € K), then 
f = ko + klx + ... + kr_IXr-l is a polynomial such that f(c/J)(v) = 0, whence 
f(c/J) = 0 onE = K[x]v. Since deg f~ r - 1 < degq andq I f by Theorem 4.1(i), 
we must have ki = 0 for all i. Therefore, I v,c/J(u), ... , c/Jr-l(v) I is linearly inde
pendent. If fv = f( c/J)(v)( f E K[xj) is an arbitrary element of E = K[xjv, then by the 

t 

division algorithm f = qh + s, where s = L: kixi has degree t with t < deg q. 
i= 1 

Consequently, f(c/J) = q(c/J)h(c/J) + s(c/J) = 0 + s(c/J) = s(c/J)andfv = f(c/J)(v) = s(c/J)(v) 
= ko + klcjJ(v) + ... + ktc/JI(V) with t ~ s - 1. Therefore, 

I v,cjJ(v), ... , c/Jr-l(v) I 

spans E and hence is a basis. Since q(c/J) = 0 we have cjJ(c/Jr-l(v» = c/Jr(v) = -aov 
- alcjJ(u) - ... - ar_Ic/Jr-l(U). It follows immediately that the matrix of c/J relative 
to I v,c/J(v), ... , c/Jr-l(v) I is the companion matrix of q. 

(<==) If A is the matrix of c/J relative to the basis I v = VI, U2, ••• , vr ), then a 
simple computation shows that Vi = c/Ji-l(v) for i = 2, ... ,r and that c/Jr(v) = cjJ(ur) 
= -aov - alcjJ(v) - ... - ar_lc/Jr-l(v). Consequently, E is the c/J-cyclic space gener
ated by v and E = K[x]v. Since q(c/J)(v) = 0, q(c/J) = 0 on E. Since 

I v,cjJ(v), ... , c/Jr-l(v) I 

is linearly independent there can be no nonzero f € K[x] of degree less than r such that 
f(c/J) = O. A routine division algorithm argument now implies that q is the minimal 
polynomial of c/J. • 

2If E is considered as a right K-vector space and matrices of maps are constructed accord
ingly (as on p. 333) then the companion matrix of q must be defined to be At in order to 
make the theorem true. 
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Corollary 4.4. Let I/; : E ---+ E be a linear transformation ofafinite dimensional vector 
space E over a field K. Then E is a I/;-cyclic space and I/; has minimal polynomial 
q = (x - b)r (b 0: K) if and only if dimKE = rand E has an ordered basis relative to 
which the matrix of I/; is 

b lK 0 0 o 0 
0 b lK 0 o 0 
0 0 b lK o 0 

B= 

0 0 0 0 
0 0 0 0 

The r X r matrix B is called the elementary Jordan matrix associated with 
(x - bY 0: K[x]. Note that for r = 1, B = (b). 

SKETCH OF PROOF OF 4.4. Let t/> = I/; - bh 0: HomK(E,E). Then 
q = (x - bY is the minimal polynomial of I/; if and only if xr is the minimal poly
nomial of t/> (for example, t/>r = (I/; - bh)r = q(l/;) = 0). E has two K[x]-module 
structures induced by t/> and I/; respectively. For every fo: K[x] and v 0: E, f(x)v in the 
t/>-structure is the same element as f(x - b)v in the I/;-structure. Therefore, E is 
t/>-cyclic if and only if E is l/I-cyclic. Since l/I = q, + b IE, Theorem 1.2 shows that the 
matrix of t/> relative to a given (ordered) basis of E is the companion matrix A of xr 
if and only if the matrix of I/; relative to the same basis is the elementary Jordan 
matrix B = A + bIn associated with (x - by. To complete the proof simply apply 
Theorem 4.3 to t/> and translate the result into statements about 1/;, using the facts 
just developed. • 

In order to use the preceding results to obtain a set of canonical forms for the 
relation of similarity on MatnK we need 

Lemma 4.5. Let t/> : E ---+ E be a linear transformation of an n-dimensional vector 
space E over a field K. For each i = 1, ... , t let Mi be an ni X ni matrix over K, with 
nl + n2 + ... + nt = n. Then E = EI EB E2 EB· .. EB Et , where each Ei is a t/>-in
variant subspace ofE and for each i, Mi is the matrix of t/> I Ei relative to some 
ordered basis of E;, if and only if the matrix of t/> relative to some ordered basis 
ofE is 

M= 

o 

where the main diagonal of each Mi lies on the main diagonalofM. 
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A matrix of the form M as in Lemma 4.5 is said to be the direct sum of the ma
trices M I , ••• , M t (in this order). 

SKETCH OF PROOF OF 4.5. (=) For each i let Vi be an ordered basis of 
Ei such that the matrix of cP / Ei relative to Vi is Mi. Since E = EI EB···EB Et, it 

t 

follows easily that V = U Vi is a basis of E. Verify that M is the matrix of cP rela-
i=1 

tive to V (where V is ordered in the obvious way). (<=) Conversely suppose 
U = lUI, ... , Un 1 is a basis of E and M the matrix of cp relative to U. Let EI be the sub
space of E with basis I u" ... ,un, 1 and for i > 1 let Ei be the subspace of E with 
basis I lir+" ... , U,+ni 1 where r = n, + n2 + ... + ni_'. Then E = E, EB E2 EB· .. EB Et, 
each Ei is cp-invariant and Mi is the matrix of cp / Ei relative to I u,+!, ... , U,+ni I. • 

Theorem 4.6. Let cp : E ----> E be a linear transformation of an n-dimensional vector 
space E over a field K. 

(i) E has a basis relative to which the matrix of cp is the direct sum of the com
panion matrices of the invariant factors ql, ... , qt € K[x] of cpo 

(ii) E has a basis relative to which the matrix of cp is the direct sum of the com
panion matrices of the elementary divisors p;U", ... ,p:r',ks E K[x] ofcp. 

(iii) If the minimal polynomial q ofcp factors as q = (x - bl)r,(x - b2)r2. .. (x - bd)rd 

(bi € K), which is always the case ifK is algebraically closed, then every elementary 
divisor of cp is of the form (x - bd i (j ::::; ri) and E has a basis relative to which the 
matrix ofcp is the direct sum of the elementary Jordan matrices associated with the ele
mentary divisors of cpo 

The proof, which is an immediate consequence of results 4.2-4.5 (and unique 
factorization in K[xl for (iii», is left to the reader. The next corollary immediately 
yields two (or three if K is algebraically closed) sets of canonical forms for the rela
tion of similarity on MatnK. 

Corolla ry 4.7. Let A be an n X n matrix over a field K. 

(i) A is similar to a matrix D such that D is the direct sum of the companion 
matrices ofa unique family of polynomials q" ... , qt € K[x] such that ql / q2/' .. / qt. 
The matrix D is uniquely determined. 

(ii) A is similar to a matrix M such that M is the direct sum of the companion 
matrices of a unique family of prime power po~vnomials p;U", ... , p:r"ks € K[x], where 
each Pi is prime (irreducible) in K[x]. M is uniquely determined except for the order of 
the companion matrices of the p:U ij along its main diagonal. 

(iii) IfK is algebraically closed, then A is similar to a matrix J such that J is a direct 
sum of the elementary Jordan matrices associated with a unique family of polynomials 
of the form (x - b)m (b € K). J is uniquely determined except for the order 'of the ele
mentary Jordan matrices along its main diagonal. 

The proof is given below. The matrix D in part (i), is said to be in rational canoni
cal form or to be the rational canonical form of the matrix A. Similarly, the matrix M 
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in part (ii) is said to be in primary rational canonical form and the matrix J in (iii) is 
said to be in Jordan canonical form.3 The word "rational" refers to the fact that the 
similarity of matrices occurs in the given field K and not in an extension field of K 
(see Exercise 7). The uniquely determined polynomials qJ, ... ,qt in part (i) are 
called the invariant factors of the matrix A. Similarly, the unique prime power poly
nomials p1["; in part (ii) are called the elementary divisors of the matrix A. 

SKETCH OF PROOF OF 4.7. (ii) Let rp : Kn ....... Kn be the linear transforma
tion with matrix A relative to the standard basis (Theorem 1.2). Corollary 1.7 and 
Theorem 4.6 show that A is similar to the matrix D that is the direct sum in some 
order of the companion matrices of the elementary divisors p'!"; of rp. If A is also 
similar to DJ, where D, is the direct sum of the companion matrices of a family of 
prime power polynomials ii, ... ,fb e K[x], then D, is the matrix of rp relative to 
some basis of Kn (Corollary 1.7). By Theorem 4.3 and Lemma 4.5 Kn = E, EBE2 
EB· .. EB Eb, where each Ei is a rp-cyclic subspace and Ji is the minimal polynomial of 
rp I E;. The uniqueness statement of Theorem 4.2 implies that the polynomials Ji are 
precisely the elementary divisors p"!'; of rp, whence D differs from D, only in the 
order of the companion matrices of the p"!'; along the main diagonal. The proof of (i) 
and (iii) is similar, except that in (i) a stronger uniqueness statement is possible since 
the invariant factors (unlike the elementary divisors) may be uniquely ordered by 
divisibility. • 

Corollary 4.8. Let rp : E ....... E be a linear transformation of an n-dimensional vector 
space E over a field K. 

(i) If rp has matrix A e MatnK relative to some basis, then the invariant factors 
[resp. elementary divisors] of rp are the invariant factors [elementary divisors] of A. 

(ii) Two matrices in MatnK are similar if and only if they have the same invariant 
factors [resp. elementary divisors]. 

PROOF. Exercise. • 

REMARK. If k is an element of a field K, then the matrix kin is a direct sum of 
the 1 X 1 companion matrices of the irreducible polynomials x - k, ... ,x - k. 
Therefore, x - k, ... ,x - k are the elementary divisors of kIn by Corollary 4.7. 
Consequently, if k, rf k2' then kdn and k21n are not similar by Corollary 4.8. Thus if 
K is infinite there are infinitely many distinct equivalence classes under similarity in 
MatnK. On the other hand, there are only n + 1 distinct equivalence classes under 
equivalence in MatnK by Theorem 2.6. 

EXAMPLE. Let E be a finite dimensional real vector space and rp : E ....... E a 
linear transformation with invariant factors q, = X4 - 4x3 + 5x2 - 4x + 4 = 

(x - 2)2(X2 + 1) e R[x] and q2 = x7 + 6x6 + 14x5 - 20x4 + 25x3 - 22x2 + 12x -
8 = (x - 2)3(X2 + 1)2 e R[x]. By Theorem 4.6(i) dimRE = 11 and the minimal poly
nomial of rp is q2. The remarks after Theorem 4.2 show that the elementary divisors 

3Warning: rational and Jordan canonical forms are defined somewhat differently by 
some authors. 
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of cp in R[x] are (x - 2)3 = x3 - 6x2 + 12x - 8, (x - 2)2 = x2 - 4x + 4, 
(x2 + 1)2 = X4 + 2x2 + 1, and x2 + 1. By Theorem 4.6 E has two bases relative to 
which the respective matrices of cp are 

0 1 0 0 
0 0 1 0 0 
0 0 0 1 

-4 4 -5 4 
0 1 0 0 0 0 0 

D= 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
8 -12 22 -25 20 -14 -6 

0 1 0 
0 0 1 0 
8 -12 6 

0 
-4 4 

M= 0 1 0 0 
0 0 1 0 

0 0 0 0 1 
-1 0 -2 0 

0 1 
-1 0 

The matrix D is in rational canonical form and M is in primary rational canonical 
form. If Eis actually a complex vector space and 1/1 : E ~ Eis a linear transformation 
with the same invariant factors ql = (x - 2)2(X2 + 1) € C[x] and q2 = (x - 2)3(X2 + 1)2 
€ C[x), then since x2 + 1 = (x + i)(x - i) in C[x), the elementary divisors of 1/1 in 
C[x) are (x - 2)3, (x - 2)2, (x + i)2, (x + i), (x - i)2, and (x - i). Therefore, 
relative to some basis of E, 1/1 has the following matrix in Jordan canonical form 

2 0 
0 2 
0 0 2 o 

2 
0 2 

J= -i 
0 -i 

0 -j 

o 

REMARK. The invariant factors in K[x) of a matrix A € Mat"K are the same as 
the invariant factors of A in F[x), where F is an extension field of K (Exercise 6). As 
the previous example illustrates, however, the elementary divisors of A over K may 
differ from the elementary divisors of A over F. 
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We close this section by presenting a method of calculating the invariant factors 
of a given matrix A, and hence by Corollary 4.8 of any linear transformation that 
has matrix A relative to some basis. This method is a consequence of 

Proposition 4.9. Let A be an n X n matrix over afield K. Then the matrix ofpoly
nomials xln - A e MatnK[x) is equivalent (over K[x)) to a diagonal matrix D with 
nonzero diagonal entries f" ... , fn e K[x) such that each fi is monic and f, 1 f2 1· . ·1 fn • 

Those polynomials fi which are not constants are the invariant factors of A. 

REMARK. If K is a field, then K[x) is a Euclidean domain (Corollary III.6.4). 
Consequently, the following proof together with the Remarks after Proposition 2.11 
show that the matrix D may be obtained from xIn - A by a finite sequence of ele
mentary row and column operations. Thus Proposition 4.9 actually provides a con
structive method for finding invariant factors. An example is given after the proof. 

SKETCH OF PROOF OF 4.9. Let <p : Kn -+ Kn be the K-linear transforma
tion with matrix A = (aii) relative to the standard basis {ei I of K". As usual K" is a 
K[x)-module with structure induced by <p. Let F be a free K[x)-module with basis 
U = {u" ... , Un I and let 7r : F -+ K" be the unique K[x)-module homomorphism 
such that 7r(Ui) = ei for i = 1,2, ... ,n (Theorem IV.2.1). Let I/t : F -+ F be the 

n 

unique K[x)-module homomorphism such that I/t(Ui) = XUi - L aiiUj. Then the 
i=1 

matrix of I/t relative to the basis U is xIn - A. 

We claim that the sequence of K[x)-modules F ~ F ~ K" -+ 0 is exact. Clearly 7r 

is a K[x)-module epimorphism. Since A is the matrix of <p and the K[x)-module 
structure of Kn is induced by <p, 

n 

7r(XUi) = X7r(Ui) = xei = q,(ei) = L aijEj. 
j-l 

Consequently, for each i 

7rI/t(Ui) = 7r(XUi - t aijUj) = 7r(XUi) - 4: aij7r(Uj) 
,=1 , 

= L aij;j - L aijEj = 0, 
j i 

whence 1m I/t C Ker 7r. To show that Ker 11" C 1m I/t it suffices to prove that every 
n 

element w of F is of the form w = I/t(v) + L kjuj (v E F, k j E K). For in this case if 
i=1 

w; Ker 7r, then 

o = 7r(w) = 7rI/t(v) + 1I"(L kjuj) = 0 + L k,;j. 
i i 

Since {Ejl is a basis of Kn, k j = 0 for all j. Consequently, w = I/t(v) and hence 
Ker 7r C 1m I/t. Since every element of F is a sum of terms of the form fUi with 
fe K[x), we need only show that for each i and t, there exist Vi! e F and k j E K such 

n 

that XtUi = I/t(Vil) + L kjuj. For each i and t = 1, we have XUi = I/t(Ui) + L aijUj 
i=1 i 
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(aii € K). Proceeding inductively assume that for eachj there exist Vi. 1-1 € F and kiT € K 
n 

such that XI-lUi = 1/I(Vi.I-1) + L: kiTu,. Then for each i 
r=1 

XIUi = XI-I(XUi) = xt-l(1/I(u;) + L: aiiui) = 1/I(xt-lu;) + L: aiixl-Iui 
i i 

= 1/I(xt-lUi) + L: ai,(1/l(vi.I-1) + L: ki,u,) 
i r 

= 1/I(xt-lUi + L: aiivi.I-1) + L: (L: aiikji)u,. 
i r i 

Thus XIUi = 1/I(Vit) + L: cru, with ViI = XI-lUi + L: aiivi.I-1 € F and Cr = L: aiiki, € K 
r i j 

and the induction is complete. Therefore F ~ F ~ K" --+ 0 is exact and hence 
K" '" FIKer 7r = Film 1/1. 

Since K[x] is a principal ideal domain, Proposition 2.11 shows that xl" - A is 

equivalent to a diagonal matrix D = (~r ~),whereristherankofxl" - AandLT 

is an r X r diagonal matrix with nonzero diagonal entries ji, ... ,f, € K[x] such that 
ji I h.1· . ·1 f,. We may assume each j; is monic (if necessary, perform suitable ele
mentary row operations on D). Clearly the determinant Ixln :.... AI in K[x] is a monic 
polynomial of degree n. In particular, Ixl" - AI ~ O. By Definition 1.8 and Theorem 
3.5(iii), (iv), IDI is a unit multiple of IxI" - AI, whence IDI ~ O. Consequently, all 
the diagonal entries of D are nonzero. Thus Lr = D and r = n. Since D is equivalent 
to xl" - A, D is the matrix of 1/1 relative to some pair of ordered bases V = {V1o ••• , Vn I 
and W = {WI, . .. , Wn I of F (Theorem 1.6). This means that 1/I(Vi) = j;Wi for each 
iandlm 1/1 = K[X]jiWl EB···EB K[x]lnw". Consequently, 

K[xlw1 EB···EB K[xlwn 

K"'" F/Ker7r = F/lm1/l = K[X]jiW1EB ... EBK[x]lnw" 

'" K[x]wdK[x]J; WI EB· .. EB K[x]wn/K[x]f"wn 
'" K[x]/(ji) EB· . ·EB K[xl/(In), 

where each j; is monic and ji I h I· . ·1 In. For some t (0 ~ t ~ n), ji = h. = ... 
= it = 1K andit+1o ... ,In are nonconstant. Thus for i ~ t, K[xll(j;) = K[xl/OK) = 0 
and for i > t, K[xl/(j;) is a cyclic K[xl-module of order k Therefore, K" is the in
ternal direct sum of nonzero torsion cyclic K[x]-submodules (q,-cyclic subspaces) 
EI+1o ... , E" of orders it+lo ... , In respectively such that it+1 I it+21· . ·1 In- Since the 
K[xl-module structure of Kn is induced by 41,0 = j;Ei = j;(q,)Ei. It follows readily 
that j; is the minimal polynomial of 41 I E;. Therefore, it+1o ... ,In are the invariant 
factors of 41 (and hence of A) by Theorem 4.2. • 

EXAMPLE. If 41 : Q3 --+ Q3 is a linear transformation and relative to some basis 

( 0 4 2) (x -4 -2) 
thematrixofq,isA= -1 -4 -1 ,thenxI3-A= 1 x+4 1. 

o 0 -2 0 0 x + 2 
Performing suitable elementary row and column operations yields: 

(
X -4 -2) (1 
1 x+4 1 --+ x 
o 0 x+2 0 

x+ 4 1) 
-4 -2--+ 

o x+2 
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G 
x+4 1) (' 0 

-(XO+ 2»)~ - 4 - x(x + 4) - 2 - x -+ 0 -(x + 2)2 

o X + 2 0 0 x+2 

G 
0 0) (' 0 

(x 1,) -(x + 2)2 o -+ 0 x+2 

0 x + 2 0 0 

Therefore by Corollary 4.8 and Proposition 4.9 the invariant factors of A and rJ> are 
x + 2 and (x + 2)2 and their minimal polynomial is (x + 2)2. 

EXERCISES 

Note: Unless stated otherwise, E is an n-dimensional vector space over a field K. 

1. If A and Bare n X n matrices over K with minimum polynomials ql and q2 re
spectively, then the minimal polynomial of the direct sum of A and B (a 2n X 2n 
matrix) is the least common multiple of ql and q2. 

2. The 0 linear transformation E -+ E has invariant factors [resp. elementary 
divisors] ql = x, q2 = x, ... , qn = x. 

3. (a) Let a,b,c be distinct elements of K and let D c Mat6K be the diagonal matrix 
with main diagonal a,a,a,b,b,c. Then the invariant factors of Dare ql = X - a, 
q2 = (x - a)(x - b) and q3 = (x - a) (x - b)(x - c). 
(b) Describe the invariant factors of any diagonal matrix in MatnK. 

4. If q is the minimal polynomial of a linear transformation rJ> : E -+ E, with 
dimKE = n, then deg q ::; n. 

5. The minimal polynomial of the companion matrix of a monic polynomial 
fE K[xl is precisely f. 

6. Let F be an extension field of K. The invariant factors in K[x] of a matrix 
A E MatnK are the same as the invariant factors in F[x] of A considered as a 
matrix over F. [Hint: A K-basis of Kn is an F-basis of Fn. Use linear transforma
tions.] 

7. Let F be an extension field of K. A,B E MatnK C MatnF are similar over Fif and 
only if they are similar over K [see Exercise 6]. 

8. A c MatnK is similar to a diagonal matrix if and only if the elementary divisors of 
A are all linear. 

9. If A c MatnK is nilpotent (that is, AT = 0 for some r > 0), then A is similar to a 
matrix all of whose entries are zero except for certain entries h on the diagonal 
next above the main diagonal. 

10. Find all possible [primary] rational canonical forms for a matrix A c Mat"Q 
such that (i) A is 6 X 6 with minimal polynomial (x - 2)2(X + 3); (ii) A is 7 X 7 
with minimal polynomial (x 2 + 1)(x - 7). Find all possible Jordan canonical 
forms of A considered as a matrix over C. 
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II. If A is the companion matrix of a monic polynomial fe K[xj, with deg f = n, 
show explicitly that A - xl" is similar to a diagonal matrix with main diagonal 
IK,IK' ... , IK,j. 

12. A E MatnK is idempotent provided A2 = A. Show that two idempotent matrices 
in Mat"K are similar if and only if they are equivalent. 

13. An n X n matrix A is similar to its transpose A'. 

5. THE CHARACTERISTIC POLYNOMIAL, EIGENVECTORS 
AN D EIGENVALU ES 

In this section we investigate some more invariants of a linear transformation of a 
finite dimensional vector space over a field. Since several of these results are valid 
more generally we shall deal whenever possible with free modules of finite rank over 
a commutative ring with identity. 

If A is an n X n matrix over a commutative ring K with identity, then xl" - A is 
an n X n matrix over K[xj, whence the determinant Ixl" - AI is an element of K[xj. 
The characteristic polynomial ofthe matrix A is the polynomialpA = Ixl" - AI E K[xj. 
Clearly, PA is a monic polynomial of degree n. If B E Mat"K is similar to A, say 
B = PA~I, then since xl" is in the center of the ring Mat"K[xj, 

PB = Ixl" - BI = Ixl" - PA~'I = IP(xl" - A)~'I 

= IP!lxl" - AI!PI-' = Ixl" - AI = PA; 

that is, similar matrices have the same characteristic polynomial. 
Let q, : E ---+ E be an endomorphism of a free K-module E of finite rank n (see 

Definition IV.2.S and Corollary IV.2.l2). The characteristic polynomial of the endo
morphism q, (denoted pq,) is defined to be PA, where A is any matrix of q, relative to 
some ordered basis. Since any two matrices representing q, are similar by Corollary 
1. 7, pq, is independent of the choice of A. 

Lemma 5.1. (i) If AI,A2, ... , Ar are square matrices (of various sizes) Ol'er a com
mutative ring K with identity and Pi E K[xj is the characteristic polynomial of Ai, then 
PIP2" 'Pr E K[xj is the characteristic polynomial of the matrix direct sum of 
A"A2, ... , Ar. 

(ii) The companion matrix C of a monic polynomial f E K[xj has characteristic 
polynomial f. 

SKETCH OF PROOF. (i) If A E Mat"K and B E MatmK, then 

(A 0) (A 0 )(/n 0) IA 01 IA °llln 01 o B = 0 1m 0 B' whence 0 B = 0 I", 0 B = IAIIBI· 

An inductive argument now shows that the determinant of a direct sum of matrices 
BI, ... ,Bk is IB,IIB21' . ·IBkl. (ii) To show thatfis the characteristic polynomial of C, 
expand Ixln - q along the last row. • 
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Theorem 5.2. Let q, : E -+ E be a linear transformation of an n-dimensional vector 
space over a field K with characteristic polynomial pq, E K[x], minimal polynomial 
qq, E K[x], and invariant factors ql, ... , qt E K[x]. 

(i) The characteristic polynomial is the product of the invariant factors; that is, 
pq, = qlq2" ·qt = qlq2" ·qt-lqq,. 

(ii) (Cayley-Hamilton) q, is root of its characteristic polynomial; that is, pq,(q,) = O. 
(iii) An irreducible polynomial in K[x] divides pq, if and only if it divides qq,. 

Conclusions (i)-{iii) are valid, mutatis mutandis, for any matrix A E MatnK. 

PROOF. By Theorem 4.6 q, has a basis relative to which q, has the matrix D 
that is the direct sum of the companion matrices of ql, ... ,q,. Therefore, pq, = PD 
= qlq2" .q, by Lemma 5.1. Furthermore, qq, = q, by Theorem 4.2, whence 

pq,(q,) = 0 since qq,(q,) = O. (iii) is an immediate consequence of (i) and the fact 
that ql I q2 I· . ·1 q,. The analogous statements about A E MatnK are proved similarly 
using Corollaries 4.7 and 4.8. • 

REMARK. The Cayley-Hamilton Theorem (Theorem 5.2(ii» is valid over any 
commutative ring with identity (Exercise 2). 

Definition 5.3. Let q, : E -+ E be a linear transformation of a vector space E over a 
field K. A nonzero vector u E E is an eigenvector (or characteristic vector or proper 
vector) of q, if q,(u) = ku for some k E K. An element k E K is an eigenvalue (or 
proper value or characteristic value) of q, if q,(u) = ku for some nonzero u E E. 

It is quite possible for two distinct (even linearly independent) eigenvectors to 
have the same eigenvalue. On the other hand, a set of eigenvectors whose corre
sponding eigenvalues are all distinct is necessarily linearly independent (Exercise 8). 

Theorem 5.4. Let q, : E -+ E be a linear transformation of a finite dimensional vector 
space E over a field K. Then the eigenvalues of q, are the roots in K of the char
acteristic polynomial pq, of q,. 

REMARK. The characteristic polynomial pq, E K[xj need not have any roots in 
K, in which case q, has no eigenvalues or eigenvectors. 

SKETCH OF PROOF OF 5.4. Let A be the matrix of q, relative to some 
ordered basis. If k E K, then kIn - A is the matrix of klE - q, relative to the same 
basis. If q,(u) = ku for some nonzero u E E, then (kh - q,)(u) = 0, whence 
klE - q, is not a monomorphism. Therefore, kIn - A is not invertible (Lemma 1.5) 
and hence Ikln - AI = 0 by Proposition 3.7 or Exercise 3.6. Thus k is a root of 
pq, = Ixln - AI. Conversely, if k is a root of Pq" then Ikln - AI = O. Consequently, 
klE - q, is not an isomorphism by Lemma 1.5 and Proposition 3.7 (or Exercise 3.6). 
Since E is finite dimensional, klE - q, is not a monomorphism (Exercise IV.2.14). 
Therefore, there is a nonzero u E E such that (klE - q,)(u) = 0, whence q,(u) = ku 
and k is an eigenvalue of q,. • 
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If k E K is an eigenvalue of an endomorphism r/> of a K-vector space E, then it is 
easy to see that C(r/>,k) = 1 vEE I r/>(v) = kv I is a nonzero subspace of E; C(r/>,k) is 
called the eigenspace or characteristic space of k. 

Theorem 5.5. Let r/> : E ~ E be a linear transformation of a finite dimensional vector 
space E over afield K. Then r/> has a diagonal matrix D relative to some ordered basis 
ofE if and on'v if the eigenvectors ofr/> span E. In this case the diagonal entries ofD 
are the eigenvalues of r/> and each eigenvalue k e K appears on the diagonal 
dimKC(r/>,k) times. 

PROOF. By Theorem IV.2.5 the eigenvectors of r/> span E if and only if E has a 
basis consisting of eigenvectors. Clearly U = 1 UI, ••• , Un I is a basis of eigenvectors 
with corresponding eigenvalue kl , ••• , kn E K if and only if the matrix of r/> relative 
to Uis the diagonal matrix D with main diagonal k l ,k2, ••• , kn • In this case suppose 

n 

that v = 1: riUi is an eigenvector of r/> with r/>(v) = kv. Since U is linearly inde
i-I 

n n n 

pendent and 1: kriui = kv = r/>(v) = 1: rirJ>(ui) = 1: rikiui, we have kri = riki 
;=1 i-I ;=1 

for all i. Thus for each i such that ri ~ 0, k = ki; (since v ~ 0, at least one ri ~ 0). 
Therefore, k!, ... , kn are the only eigenvalues of r/>. Furthermore, if k is an eigen
value of rf> that appears t times on the diagonal of D and uj " ••• , uj , are those ele
ments of U with eigenvalue k, then this argument shows that 1 Uih ... , Uit I spans 
C(r/>,k). Since IUih"" uill is linearly independent it is a basis of C(r/>,k). There
fore. dimKC(r/>,k) = t. • 

The eigenvalues and eigenvectors of an n X n matrix A over a field K are defined to 
be respectively the eigenvalues and eigenvectors of the unique linear transformation 
r/> : Kn ~ Kn that has matrix A relative to the standard basis. Theorem 5.4 shows 
that the eigenvalues of A are the eigenvalues of any endomorphism of an n-dimen
sional vector space over K which has matrix A relative to some basis. 

We close this section with a brief discussion of another invariant of a matrix 
under similarity. 

Proposition 5.6. Let K be a commutative ring with identity. Let r/> be an endomor
phism of a free K-module of rank n and let A = (aij) E MatnK be the matrix of 
r/> relative to some ordered basis. If the characteristic polynomial of r/> and A is 
PI/> = PA = xn + Cn_lXn- 1 + ... + CIX + Co E K[x), then 

(-l)nco = IAI and -Cn-l = all + a22 + ... + a"". 

PROOF. Co = Pl/>(O) = lOIn - AI = I-AI = (-I)nIAI by Theorem 3:5(viii). 
Expand PI/> = IxIn - AI along the first row. One term of this expansion is 
(x - all)(x - a22)' .. (x - ann) = xn - (all + a22 + ... + ann)xn- 1 + bn_~n-2 + 
... + bo for some bi E K. No other term of this expansion contains any terms with 
a factor of xn- I , whence -Cn-l = all + ... + ann. • 
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Let K be a commutative ring with identity. The trace of an n X n matrix A = (a'i) 
over K is all + a22 + ... + ann E K and is denoted TrA. The trace of an endomor
phism I/> of a free K-module ofrank n (denoted Trl/» is TrA, where A is the matrix 
of I/> relative to some ordered basis. Since pq, = PA is independent of the choice of 
the matrix A, so is Trl/> by Proposition 5.6. Similar matrices have the same trace by 
Corollary 1.7 (or by an easy direct argument using (iii) below). It is easy to see that 
for any A,B 10 MatnK and k 10 K: 

(i) Tr(A + B) = TrA + TrB; 
(ii) Tr(kA) = kTrA; 

(iii) Tr(AB) = Tr(BA). 

The connection between the trace as defined here and the trace function of Galois 
Theory (Definition Y.7.1) is explored in Exercise 9. 

EXERCISES 

Note: Unless stated otherwise K is a commutative ring with identity. 

I. Prove directly that a matrix over K and its transpose have the same characteristic 
polynomial. 

2. (Cayley-Hamilton) If I/> is an endomorphism of a free K-module E of finite 
rank, thenpq,(I/» = O. [Hint: if A is the matrix of I/> andB = xln - A, thenBaB = 

IBI1n = pq,ln in MatnK[x]. If E is a K[x]-module with structure induced by I/> and '" 
is the K[x]-module endomorphism E --> E with matrix B, then ",(u) = xu - I/>(u) 
= I/>(u) - I/>(u) = 0 for all u 10 E.] 

3. If A is an n X m matrix over K and B an m X n matrix over K, then 
XmPAB = XnpBA. Furthermore, if m = n, then PAB = PBA. [Hint: let C,D be the 

. (xln A) (In 0) (m + n) X (m + n) matnces over K[x]: C = B 1m and D = -B xlm 

and observe that ICDI = IDCI.] 

4. (a) Exhibit three 3 X 3 matrices over Q no two of which are similar such that 
- 2 is the only eigenvalue of each of the matrices. 
(b) Exhibit a 4 X 4 matrix whose eigenvalues over Rare ±I and whose eigen
values over Care ±I and ±i. 

5. Let K be a field and A 10 MatnK. 
(a) 0 is an eigenvalue of A if and only if A is not invertible. 
(b) If kJ, ... , k, ; K are the (not necessarily distinct) eigenvalues of A and 

flO K[x], then f(A) 10 MatnK has eigenvalues f(k 1), ••• ,f(k,). 

6. If I/> and", are endomorph isms of a finite dimensional vector space over an 
algebraically closed field K such that 1/>'" = "'I/>, then I/> and", have a common 
eigenvector. 

7. (a) Let I/> and", be endomorphisms of a finite dimensional vector space E 
such that 1/>'" = "'I/>. If E has a basis of eigenvectors of I/> and a basis of eigen
vectors of "', then E has a basis consisting of vectors that are eigenvectors for 
both I/> and "'. 
(b) Interpret (a) as a statement about matrices that are similar to a diagonal 
matrix. 
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8. Let fjJ : E -+ E be a linear transformation of a vector space E over a field K. If U 
is a set of eigenvectors of fjJ whose corresponding eigenvalues are all distinct, 
then U is linearly independent. [Hi1l1: If U were linearly dependent, there would 
be a relation rlUl + ... + r,u, = 0 (Ui € U; 0 ~ r; € K) with t minimal. Apply the 
transformation kdE - fjJ, where .p(Ul) = k,uJ, and reach a contradiction.] 

9. Let F be an extension field of a field K and U € F. Let fjJ : F -+ F be the endo
morphism of the vector space F given by v 1---+ uv. 

(a) Then TrfjJ is the trace of u, TKF(U), as in Definition V.7.l. [Hint: first try 
the case when F = K(u)]. 

(b) The determinant of fjJ is the norm of u, NKF(U), 

10. Let K be a field and A € Mat"K. 
(a) If A is nilpotent (that is, Am = 0 for some m), then TrAr = 0 for all r ~ 1. 

[Hint: the minimal polynomial of A' has the form x, and Ar is similar to a matrix 
in rational or Jordan canonical form.] 

(b) If char K = 0 and Tr AT = 0 for all r ~ I, then A is nilpotent. 



CHAPTER VIII 

COMMUTATIVE RINGS 
AND MODULES 

For the most part this chapter is a brief introduction to what is frequently called 
commutative algebra. We begin with chain conditions (Section 1) and prime ideals 
(Section 2), both of which playa central role in the study of commutative rings. 
Actually no commutativity restrictions are made in Section 1 since this material is 
also essential in the study of arbitrary rings (Chapter IX). 

The theory of commutative ringsJollows a familiar pattern: we attempt to obtain 
a structure theory for those rings that possess, at least in some generalized form, 
properties that have proven useful in various well-known rings. Thus primary de
composition of ideals (the analogue of factorization of elements in an integral do
main) is considered in Sections 2 and 3. We then study rings that share certain de
sirable properties with the ring of integers, such as Dedekind domains (Section 6) 
and Noetherian rings (Section 4). The analysis of Dedekind domains requires some 
knowledge about ring extensions (Section 5). This information is also used in proving 
the Hilbert Nullstellensatz (Section 7), a famous classical result dealing with ideals 
of the polynomial ring K[Xl, ... ,XnJ. 

Except in Section 1, all rings are commutative. The approximate interdepen
dence of the sections of this chapter (subject to the remarks below) is as follows: 

1~ 
2 ----------- .... 5 

"'3~ /\ 
4---+- 6 7 

A broken arrow A --~ B indicates that an occasional result from Section A is used in 
Section B, but that Section B is essentially independent of Section A. Section 1 is not 
needed for Section 5 but is needed for Section 4. Only one important result in Section 
4 depends on Sections 2 and 3. This dependence can be eliminated by using an al
ternate proof, which is indicated in the exercises. 

371 
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1. CHAIN CONDITIONS 

In this section we summarize the basic facts about the ascending and descending 
chain conditions for modules and rings that will be needed in the remainder of this 
chapter and in Chapter IX. Rings are not assumed to be commutative, nor to have 
identity elements. 

Definition 1.1. A module A is said to satisfy the ascending chain condition (ACC) on 
submodules (or to be Noetherian) iffor every chain Al C A2 C Aa C··· of sub mod
ules of A, there is an integer n such that Ai = An for all i ;:::: n. 

A module B is said to satisf~' the descending chain condition (ncC) on submodules 
(or to be Artinian) iffor every chain BI ::J B2 ::J Ba ::J ... of sub modules ofB, there is 
an integer m such that Bi = Bm for all i ;:::: m. 

EXAMPLE. The Z-module (abelian group) Z satisfies the ascending but not the 
descending chain condition on submodules (Exercise 11.3.5). The Z-module Z(pa» 
satisfies the descending but not the ascending chain condition (Exercise 11.3.13). 

If a ring R is considered as a left [resp. right) module over itself, then it is easy to 
see that the submodules of R are precisely the left [resp. right) ideals of R. Con
sequently, in this case it is customary to speak of chain conditions on left or right 
ideals rather than submodules. 

Definition 1.2. A ring R is left [resp. right) Noetherian ifR satisfies the ascending 
chain condition on left [resp. right) ideals. R is said to be Noetherian ifR is both left 
and right Noetherian. 

A ring R is left [resp. right) Artinian ifR satisfies the descending chain condition on 
left [resp. right) ideals. R is said to be Artinian ifR is both left and right Artinian. 

In other words, a ring R is (left or right) Noetherian if it is a (left or right) Noe
therian R-module, and similarly for Artinian. Consequently, all subsequent defini
tions and results about modules that satisfy the ascending or descending chain 
condition on sub modules apply, mutatis mutandis, to (left or right) Noetherian or 
Artinian rings. 

EXAMPLES. A division ring D is both Noetherian and Artinian since the only 
left or right ideals are D and 0, (Exercise 111.2.7). Every commutative principal ideal 
ring is Noetherian (Lemma 111.3.6); special cases include Z, Zfl' and F[x) with Fa 

field. 

EXAMPLE. The ring Mat"D of all n X n matrices over a division ring is both 
Noetherian and Artinian (Corollary 1.12 below). 

REMARKS. A right Noetherian [Artinian) ring need not be left Noetherian 
[Artinian) (Exercise 1). Exercise 11.3.5 shows that a Noetherian ring need not be 
Artinian. However every left [right) Artinian ring with identity is left [right) Noether
ian (Exercise IX.3.13 below). 
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A maximal element in a partially ordered set (C,::;) was defined in Section 7 of the 
Introduction. A minimal element is defined similarly: b € C is minimal if for every 
c € C which is comparable to b, b ::; c. Note that it is not necessarily true that b ::; c 
for all c € C. Furthermore, C may contain many minimal elements or none at all. 

Definition 1.3. A module A is said to satisfy the maximum condition [resp. minimum 
condition] on submodules if every nonempty set of sub modules of A contains a maximal 
[resp. minimal] element (with respect to set theoretic inclusion). 

Theorem 1.4. A module A satisfies the ascending [resp. descending] chain condition 
on submodules if and only if A satisfies the maximal [resp. minimal] condition on 
submodules. 

PROOF. Suppose A satisfies the minimal condition on submodules and 
Al ::::> A2 ::::> ••. is a chain of submodules. Then the set I Ai I i ~ I} has a minimal 
element, say An. Consequently, for i ~ n we have An ::::> Ai by hypothesis and 
An C Ai by minimality, whence Ai = An for each i ~ n. Therefore, A satisfies the 
descending chain condition. 

Conversely suppose A satisfies the descending chain condition, and S is a non
empty set of submodules of A. Then there exists Bo € S. If S has no minimal element, 
then for each submodule B in S there exists at least one submodule B' in S such that 
B ::::> B'. For each B inS, choose one such B' (Axiom of Choice). This choice then de-

r' 

fines a function f : S --- S by B ~ B'. By the Recursion Theorem 6.2 of the Introduc
tion (with f = In for all n) there is a function 'P : N --- S such that 

'P(O) = Bo and 'P(n + 1) = f('P(n» = 'P(n)'. 

Thus if Bn € S denotes 'P(n), then there is a sequence Bo,BI, ... such that Bo ::::> BI ::::> 
r' r' 

B2 ::::> •• '. This contradicts the descending chain condition. Therefore, S must have a 
r' 

minimal element, whence A satisfies the minimum condition. 
The proof for the ascending chain and maximum conditions is analogous. • 

f g 
Theorem 1.5. Let 0 --- A --- B ___ C --- 0 be a short exact sequence of modules. Then 
B satisfies the ascending [resp. descending] chain condition on submodules if and only if 
A and C satisfv it. 

SKETCH OF PROOF. If B satisfies the ascending chain condition, then so 
does its submodule f(A). By exactness A is isomorphic to f(A), whence A satisfies 
the ascending chain condition. If CI C C2 C· .. is a chain of submodules of C, then 
g-I( CI) C g-I( C2) C· .. is a chain of submodules of B. Therefore, there is an n such 
that g-I( C;) = g-I( Cn) for all i ~ n. Since g is an epimorphism by exactness, it follows 
that C; = Cn for all i ~ n. Therefore, C satisfies the ascending chain condition. 

Suppose A and C satisfy the ascending chain condition and BI C B2 C ... is a 
chain of submodules of B. For each i let 

Ai = f-I(f(A) n Bi) and Ci = g(Bi). 
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Let/; = f I Ai and gi = g I Bi. Verify that for each i the following sequence is exact: 

Verify that Al C A2 c· .. and CI C C2 C· ... By hypothesis there exists an integer 
n such that Ai = An and C; = Cn for all i 2 n. For each i 2 n there is a commutative 
diagram with exact rows: 

fn gn 
O-An .... Bn-C .. -O 

J a !fJi I'Y 
/; gi 

O-Ai-Bi-Ci-O, 

where a and 'Yare the respective identity maps and fJi is the inclusion map. The Short 
Five Lemma IV.1.17 implies that fJi is the identity map, whence B satisfies the ascend
ing chain condition. The proof for descending chain condition is analogous. • 

Corollary 1.6. If A is a submodule of a module B, then R satisfies the ascending [resp. 
descending] chain condition if and only if A and BI A satisfiy it. 

c 
PROOF. Apply Theorem 1.5 to the sequence 0 ---> A ---> B ---> BI A ---> O. • 

Corollary 1.7. If AI, ... , An are modules, then the direct sum Al EEl A2 EEl· .. EEl An 
satisfies the ascending [resp. descending] chain condition on submodules if and only if 
each Ai satisfies it. 

SKETCH OF PROOF. Use induction on n. If n = 2, apply Theorem 1.5 to the 
il ffi 71"2 

sequence 0 ---> Al ---> Al W A2 ---> A2 ---> O. • 

Theorem 1.8. IfR is a left Noetherian [resp. Artinian] ring with identity, then every 
finitely generated unitary left R-module A satisfies the ascending [resp. descending) 
chain condition on submodules. 

An analogous statement is true with "left" replaced by "right." 

PROOF OF 1.8. If A is finitely generated, then by Corollary IV.2.2 there is a 
free R-module F with a finite basis and an epimorphism 71' : F ---> A. Since F is a direct 
sum of a finite number of copies of R by Theorem IV.2.1, F is left Noetherian [resp. 
Artinian] by Corollary 1.7. Therefore A ,....., FIKef7r is Noetherian [resp. Artinian] by 
Corollary 1.6. • 

Here is a characterization of the ascending chain condition that has no analogue 
for the descending chain condition. 
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Theorem 1.9. A module A satisfies the ascending chain condition on submodules if 
and only if every submodule of A is finitely generated. In particular, a commutative 
ring R is Noetherian if and only if every idealofR is finitely generated. 

PROOF. (=» If B is a submodule of A, let S be the set of all fmitely generated 
submodules of B. Since S is nonempty (0 e S), S contains a maximal element C by 
Theorem 1.4. C is finitely generated by CI,C2, ••• , cn • For each b e B let Db be the sub
module of B generated by b,CI,C2, ••• , cn • Then Db e Sand C C Db. Since C is maxi
mal, Db = C for every b e B, whence b e Db = C for every b e Band B C C. Since 
C C B by construction, B = C and thus B is finitely generated. 

(¢==) Given a chain of submodules Al C A2 C Aa c· . " then it is easy to verify 
that U Ai is also a submodule of A and therefore finitely generated, say by 

i>1 

ai, .. ~,ak. Since each ai is an element of some Ai, there is an index n such that 
ai e An for i = 1,2, ... ,k. Consequently, U Ai C An, whence Ai = An for i 2: n. • 

We close this section by carrying over to modules the principal results of Section 
11.8 on subnormal series for groups. This material is introduced in order to prove 
Corollary 1.12, which will be useful in Chapter IX. We begin with a host of defini
tions, most of which are identical to those given for groups in Section 11.8. 

A normal series for a module A is a chain of submodules: A = Ao :::> Al :::> 
A2 :::> ... :::> An. The factors of the series are the quotient modules 

Ai/Ai+1 (i = O,l, ... ,n - 1). 

The length of the series is the number of proper inclusions (= number of nontrivial 
factors). A refinement of the normal series Ao :::> Al :::> .•. :::> An is a normal series 
obtained by inserting a finite number of additional submodules between the given 
ones. A proper refinement is one which has length larger than the original series. Two 
normal series are equivalent if there is a one-to-one correspondence between the non
trivial factors such that corresponding factors are isomorphic modules. Thus 
equivalent series necessarily have the same length. A composition series for A is a 
normal series A = Ao :::> Al :::> A2 :::> ... :::> An = 0 such that each factor Ad A k+1 

(k = 0,1, ... , n - 1) is a nonzero module with no proper submodules.1 

The various results in Section 11.8 carryover readily to modules. For example, a 
composition series has no proper refinements and therefore is equivalent to any of its 
refinements (see Theorems IV.1.10 and 11.8.4 and Lemma 11.8.8). Theorems of 
Schreier, Zassenhaus, and Jordan-Holder are valid for modules: 

Theorem 1.10. Any two normal series of a module A have refinements that are 
eqUivalent. Any two composition series of A are equivalent. 

PROOF. See the corresponding results for groups (Lemma 11.8.9 and Theorems 
11.8.10 and 11.8.11). • 

IIf R has an identity, then a nonzero unitary module with no proper submodules is said 
to be simple. In this case a composition series is a normal series A = Ao :J •.. :J An = 0 
with simple factors. If R has no identity simplicity is defined somewhat differently; see Defini
tion IX.l.1 and the subsequent Remarks. 
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Theorem 1.11. A nonzero module A has a composition series if and only if A satisfies 
both the ascending and descending chain conditions on submodules. 

PROOF. (==» Suppose A has a composition series S of length n. If either chain 
condition fails to hold, onercan find submodules 

A = Ao :::> Al :::> A2 :::> ... :::> An :::> An+l, 
~ ~ ~ ~ ~ 

which form a normal series Tof length n + 1. By Theorem 1.10S and Thave refine
ments that are equivalent. This is a contradiction since equivalent series have equal 
length. For every refinement of the composition series S has the same length n as S, 
but every refinement of T necessarily has length at least n + 1. Therefore, A satisfies 
both chain conditions. 

(<=) If B is a nonzero submodule of A, let S(B) be the set of all submodules C of 
B such that C ~ B. Thus if B has no proper submodules, S(B) = {O I. Also define 
S(O) = {O I. For each B there is a maximal element B' of S(B) by Theorem 1.4. Let S 
be the set of all submodules of A and define a map f : S -> S by f(B) = B'; (the 
Axiom of Choice is needed for the simultaneous selection of the B'). By the Recur
sion Theorem 6.2 of the Introduction (with f = In for all n) there is a function 
I{J : N ->S such that 

I{J(O) = A and l{J(n + 1) = j{l{J(n» = l{J(n)'. 

If Ai denotes 1{J(i), then A :::> Al :::> A2 :::> ... is a descending chain by construction, 
whence for some n, Ai = An for all i 2: n. Since An+! = An' = f(An), the definition of 
fshows that An+! = An only if An = 0 = A n+!. Let m be the smallest integer such 
that Am = O. Then m ~ nand Ak ~ 0 for all k < m. Furthermore for each k < m, 
Ak+1 is a maximal submodule of Ak such that A< :::> A k+!. Consequently, each Akl A k+1 

~ 

is nonzero and has no proper submodules by Theorem IV.1.lO. Therefore, 
A :::> Al :::> ... :::> Am = 0 is a composition series for A. • 

Corollary 1.12. If D is a division ring, then the ring MatnD of all n X n matrices 
over D is both Artinian and Noetherian. 

SKETCH OF PROOF. In view of Definition 1.2 and Theorem 1.11 it suffices 
to show that R = MatnD has a composition series of left R-modules and a composi
tion of right R-modules. For each i let ei E R be the matrix with ID in position (i,i) 
and 0 elsewhere. Verify that Rei = {Aei I A E R I is a left ideal (submodule) of R con
sisting of all matrices in R with columnj zero for allj ~ i. Show that Rei is a minimal 
nonzero left ideal (that is, has no proper submodules). One way to do this is via ele
mentary transformation matrices (Definition VII.2.7 and Theorem VII.2.S). Let 
Mo = 0 and for i 2: 1 let Mi = R(el + e2 + ... + ei). Verify that each Mi is a left 
ideal of R and that Mil M i_1 ~ Rei, whence R = Mn :::> M n _ 1 :::> ... :::> MI :::> Mo = 0 
is a composition series of left R-modules. A similar argument with the right ideals 
eiR = {eiA I A E R I shows that R has a composition series of right R-modules. • 
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EXERCISES 

1. (a) The ring of all 2 X 2 matrices (~ ~) such that a is an integer and b,c are 

rational is right Noetherian but not left Noetherian. 

(b) The ring of all 2 X 2 matrices (g :) such that d is rational and r,s are real 

is right Artinian but not left Artinian. 

2. If I is a nonzero ideal in a principal ideal domain R, then the ring R/ I is both 
Noetherian and Artinian. 

3. Let S be a multiplicative subset of a commutative Noetherian ring R with identity. 
Then the ring S-lR is Noetherian. 

4. Let R be a commutative ring with identity. If an ideal I of R is not finitely gener
ated, then there is an infinite properly ascending chain of ideals J I C J2 C ... 

". ". 
such that Jk C I for all k. The union of the Jk need not be I. 

5. Every homomorphic image of a left Noetherian [resp. ArtinianJ ring is left 
Noetherian [resp. ArtinianJ. 

6. A ring R is left Noetherian [resp. ArtinianJ if and only if MatnR is left Noetherian 
[resp. Artinian] for every n 2: 1 [nontrivial]. 

7. An Artinian integral domain is a field. [Hint: to find an inverse for a :F 0, con
sider (a) ::J (a2) ::J (a3) ::J .... J 

2. PRIME AND PRIMARY IDEALS 

Our main purpose is to study the ideal structure of certain commutative rings. 
The basic properties of prime ideals are developed. The radical of an ideal is intro
duced and primary ideals are defined. Finally primary decomposition of ideals is 
discussed. Except for Theorem 2.2, all rings are commutative. 

We begin with some background material that will serve both as a motivation 
and as a source of familiar examples of the concepts to be introduced. The motiva
tion for much of this section arises from the study of principal ideal domains. In 
particular such a domain D is a unique factorization domain (Theorem 111.3.7). 

The unique factorization property of D can be stated in terms of ideals: every 
proper ideal of D is a product of maximal (hence prime) ideals, which are deter
mined uniquely up to order (Exercise 111.3.5). Every nonzero prime ideal of D is 
of the form (p) with P prime (= irreducible) by Theorem III.3.4 and (p)" = (pn). 
Consequently, every proper ideal (a) of D can be written uniquely (up to order) 
in the form 

(a) = (Plnl)(P2n,) . . '(Prnr) = (PI"') n (P2n,) n ... n (Prnr), 

where each ni > 0 and the Pi are distinct primes (Exercise 111.3.5). Now an ideal 
Q = (p") (p prime) has the property: ab € Q and a f Q imply bk € Q for some k 
(Exercise 111.3.5). Such an ideal is called primary. The preceding discussion shows 
that every ideal in a principal ideal domain is the intersection of a finite number of 
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primary ideals in a unique way. Furthermore there is an obvious connection between 
these primary ideals and the prime ideals of D; in fact every primary ideal (p") = (p)" 
is a power of a prime ideal. 

In the approach just outlined the viewpoint has switched from consideration of 
unique factorization of elements as products of primes in D to a consideration of the 
"primary decomposition" of ideals in the principal ideal domain D. We shall now 
investigate the "primary decomposition" of ideals in more general commutative 
rings (where, for instance, ideals need not be principal and primary ideals may not 
be powers of prime ideals). We begin with some facts about prime ideals. 

Theorem 2.1. An ideal P (¢ R) in a commutative ring R is prime ifand only ifR - P 
is a multiplicative set. 

PROOF. This is simply a restatement of Theorem I1I.2.15; see Definition 
I1IA.1. • 

REMARK. The set of all prime ideals in a ring R is called the spectrum of R. 

Theorem 2.2. If S is a multiplicative subset of a ring R which is disjoint from an 
ideal I ofR, then there exists an ideal P which is maximal in the set of all ideals of 
R disjoint from S and containing I. Furthermore any such ideal P is prime. 

The theorem is frequently used in the case I = O. 

SKETCH OF PROOF OF 2.2. The set S of all ideals of R that are disjoint 
from S and contain I is nonempty since I e S. Since S ¢ )25 (Definition 111.4.1) every 
ideal in S is properly contained in R. S is partially ordered by inclusion. By Zorn's 
Lemma there is an ideal P which is maximal in S. Let A,B be ideals of R such that 
AB C P. If A ¢ P and B ¢ P, then each of the ideals P + A and P + B properly 
contains P and hence must meet S. Consequently, for some Pi e P, a e A, be B 

PI + a = Sl e Sand P2 + b = S2 e S. 

Thus SlS2 = jJljJ2 + Plb + ap2 + ab e P + AB C P. This is a contradiction since 
SlS2 e Sand S n P = )25. Therefore A C P or B C P, whence P is prime. • 

Theorem 2.3. Let K be a subring of a commutative ring R. IfP!> ... , Pn are prime 
ideals ofR such that KePI U P2 U ... U Pn , then KePi for some i. 

REMARK. In the case n 5 2, the following proof does not use the hypothesis 
that each Pi is prime; the hypothesis is needed for n > 2. 

PROOF OF 2.3. Assume K sZ Pi for every i. It then suffices to assume that 
n > 1 and n is minimal; that is, for each i, K ¢ U Pi' For each i there exists 

i1'i 
ai e K - U P" Since K C U Pi, each ai e Pi. The element al + a~3' . 'a" lies in K 

j"'i i 
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and hence in U Pi. Therefore al + a2a3' .. an = bi with bi E Pi' If j > 1, then al E Pi, 
; 

which is a contradiction. If j = 1, then a2a3' .. an E Ph whence ai E PI for some i > 1 
by Theorem 111.2.15. This also is a contradiction. • 

Proposition 2.4. IfR is a commutative ring with identity and P is an ideal which is 
maximal in the set of all ideals ofR which ar~ not finitely generated, then P is prime. 

PROOF. Suppose ab E P but a ~ P and b f P. Then P + (a) and P + (b) are 
ideals properly containing P and therefore finitely generated (by maximality). 
Consequently P + (a) = (PI + ria, ... ,Pn + rna) and P + (b) = (PI' + rl'b, ... , 
Pm' + rm'b) for some Pi,P/ E P and ri,r/ E R (see Theorems 111.2.5 and 111.2.6). If 
J = Ir e R Ira e PI, then J is an ideal. Since ab EP, (p/ + r/b)a = p/a + r/ab EP 
for all i, whence PCP + (b) C J. By maximality, J is finitely generated, say J = 

~ n 

(jI, ... ,A). If x e P, then x e P + (a) and hence for some Si e R, x = L: S,(Pi + ria) 
n n i=l 

= L: SiP, + L: siria. Consequently, cL: Siri)a = x - L SiPi e P, whence L Siri e J. 
;=1 ;=1 ; ; ; 

n k n k 

Thus for some ti E R, L Sir, = L tdi and x = L SiPi + L: tJia. Therefore, P is 
;=1 ;=1 i=l ;=1 

generated by Ph . .. ,Pn,jla, . .. ,Aa, which is a contradiction. Thus a e P or be P 
and P is prime by Theorem III.2.15. • 

Definition 2.5. Let I be an ideal in a commutative ring R. The radical (or nilradical) 
of I, denoted Rad I, is the ideal n P, where the intersection is taken over all prime 
ideals P which contain I. If the set of prime ideals containing I is empty, then Radl is 
defined to be R. 

REMARKS. If R has an identity, every ideal I (~R) is contained in a maximal 
ideal M by Theorem 111.2.18. Since M ~ Rand M is necessarily prime by Theorem 
111.2.19, Rad I ~ R. Despite the inconsistency of terminology, the radical of the zero 
ideal is sometimes called the nilradical or prime radical of the ring R. 

EXAMPLES. In any integral domain the zero ideal is prime; hence Rad 0 = O. 
In the ring Z, Rad (12) = (2) n (3) = (6) and Rad (4) = (2) = Rad (32). 

Theorem 2.6. If I is an ideal in a commutative ring R, then Rad I = Ire R I rn e I 
for some n > 01. 

PROOF. If Rad I = R, then Ire R I rn e II C Rad I. Assume Rad I ~ R. If 
rn e I and P is any prime ideal containing I, then rn e P whence reP by Theorem 
III.2.15. Thus Ire R I rn e II C Rad I. 

Conversely, if t E Rand tn • /for all n > 0, then S = I tn + x I n E N*; x ell is a 
multiplicative set such that S n I = 0. By Theorem 2.2 there is a prime ideal P dis
joint from S that contains I. By construction, t, P and hence t, Rad I. Thus 
t fIre R I rn E II implies t t Rad I, whence Rad I eIre R I rn ell. • 
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Theorem 2.7. If I, II, 12, ••• , III are ideals in a commutative ring R, then: 

(i) Rad(RadI) = RadI; 

(ii) Rad(M2" ·In ) = Rad (61 Ii) = /J RadIi; 

(iii) Rad (1m) = Rad I. 

SKETCH OF PROOF. In each case we prove one ofthe two required contain
ments. (i) If r e Rad (Rad I), then rn e Rad I and hence rn", = (rn)'" e I for some 
n, m > O. Therefore, r e Rad I and Rad(Rad I) C Rad I. (ii) If r e n Rad Ii, then 

j 

there are mI,m2, ... ,mn > 0 such that r"'i e Ii for eachj. If m = ml + m2 + ... + m., 
then rm = r"'lrm, . .. rmn e Itl2' . ·In, whence n Rad Ii C Rad (II' .. In). Finally since 

j 

II' . ·In C n h we have Rad(ll" ./.) C Rad(n IJ (iii) is a special case of 
j j 

(ii). • 

Definition 2.1. An ideal Q (~ R) in a commutative ring R is primary if for any 
a,beR: 

ab e Q and a f Q ~ bn e Q for some n > O. 

EXAMPLE. Every prime ideal is clearly primary. If p is a prime integer and 
n ;::: 2 a positive integer, then (p)n = (pn) is a primary ideal in Z which is not prime 
(Exercise 17). In general, a power pn of a prime ideal P need not be primary. 

EXAMPLE. If F is a field, the ideal (x,y) is maximal in F[x,yj (Exercise 12) and 
therefore prime (Theorem 111.2.19). Furthermore (X,y)2 = (x2,xy,y2) C (x2, v) C (x,y). ,e . ,e 

The ideal (x2,y) is primary and (x,y) is the only (proper) prime ideal containing (x2,y) 
(Exercise 12). Hence the primary ideal (x~,y) is not a power of any prime ideal in 
F[x,yj. 

In the rest of this section aU rings have identity. 

Theorem 2.9. IfQ is a primary ideal in a commutative ring R, then Rad Q is a prime 
ideal. 

PROOF. Suppose ab e Rad Q and a, Rad Q. Then anbft = (ab)n e Q for some n. 
Since a, Rad Q, aft f Q. Since Q is a primary, there is an integer m > 0 such that 
(bn)m e Q, whence be Rad Q. Therefore, Rad Q is prime by Theorem I1I.2.1S. • 

In view of Theorem 2.9 we shall adopt the following terminology. If Q is a 
primary ideal in a commutative ring R, then the radical P of Q is called the associated 
prime ideal of Q. One says that Q is a primary ideal belonging to the prime P or that Q 
is primaryior P or that Q is P-primary. For a given primary ideal Q, the associated 
prime ideal Rad Q is clearly unique. However, a given prime ideal P may be the 
associated prime of several different primary ideals. 

EXAMPLE. If p is a prime in Z, then each of the primary ideals (p2), (P3), ... 
belongs to the prime ideal (p). In the ring Z[x,y] the ideals (X2,y), (r,y2), (r,y3). etc. 
are all primary ideals belonging to the prime ideal (x,y) (Exercise 13). 
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Theorem 2.10. Let Q and P be ideals in a commutative ring R. Then Q is primary for 
P if and only if 

(i) Q C PC RadQ; and 
(ii) ifab e Q and a, Q, then be P. 

SKETCH OF PROOF. Suppose (i) and (ii) hold. If ab e Q with a, Q, then 
be PC Rad Q, whence bn e Q for some n > O. Therefore Q is primary. To 
show that Q is primary for P we need only show P = Rad Q. By (i), PC Rad Q. 
If be Rad Q, let n be the least integer such that bn e Q. If n = 1, be Q C P. If 
n > 1, then bn-1b = bn e Q, with bn- 1 • Q by the minimality of n. By (ii), b e P. Thus 
be Rad Q implies be P, whence Rad Q C P. The converse implication is easy. • 

Theorem 2.11. IIQhQ2, .. . , Qn are primary ideals in a commutative ring R, all of 
n 

which are primary for the prime ideal P, then n Qi is also a primary ideal belonging 
;=1 

to P. 

n n 

PROOF. Let Q = n Qi. Then by Theorem 2.7(ii), Rad Q = n Rad Qi 
n i=1 ;=1 

= n P = P; in particular, Q C P C Rad Q. If ab e Q and a ~ Q, then ab e Qi and 
i=1 a, Qi for some i. Since Qi is P-primary, b e P by Theorem 2.1O(ii). Consequently, Q 

itself is P-primary by Theorem 2.10. • 

Definition 2.12. An ideal I in a commutative ring R has a primary decomposition if 
I = Ql n Q2 n ... n QII with each Qiprimary.lfno Qi contains Ql n ... n Qi-l n 
Qi+l n ... n Qn and the radicals of the Qi are all distinct, then the primary decomposi
tion is said to be reduced (or irredundant). 

Theorem 2.13. Let I be an ideal in a commutative ring R. If I has a primary decom
position, then I has a reduced primary decomposition. 

PROOF. If I = Ql n ... n Qn (Qi primary) and some Qi contains Ql n ... n 
Qi-l n Qi+l n ... n Qn, then I = Ql n ... n Qi-l n Qi+l n ... n Qn is also a 
primary decomposition. By thus eliminating the sU'perfluous Qi (and reindexing) we 
have I = Ql n ... n Qk with no Qi containing the intersection of the other Qj. Let 
Ph ... ,Pr be the distinct prime ideals in the set 1 Rad Qh .. " Rad Qk \. Let 
Q/ (l ::s; i ::s; r) be the intersection of all the Q's that belong to the prime Pi. By Theo
rem 2.11 each Q/ is primary for Pi. Clearly no Q/ contains the intersection of all the 

k 

other Q/. Therefore, 1= n Qi = n Q/, whence I has a reduced primary de-
;=1 ;=1 

composition. • 

At this point there are two obvious questions to ask. Which ideals have a reduced 
primary decomposition? Is a reduced primary decomposition unique in any way? 
Both questions will be answered in a more general setting in the next section (Theo
rems 3.5 and 3.6). 
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EXERCISES 

Note: R is always a commutative ring. 

1. Let R be a commutative Artinian ring with identity. 
(a) Every prime ideal of R is maximal [Hint: Theorems 111.2.16 and III.2.20 

and Exercises 1.5 and 1.7). 
(b) R has only a finite number of distinct prime ideals. 

2. If R has an identity and I Pi liE Il is a nonempty family of prime ideals of R 
which is linearly ordered by inclusion, then U Pi and n Pi are prime ideals. 

i,I i.I 

3. If PI,P2, ••• , Pn are prime ideals in Rand 1 is any ideal such that 1 r;Z Pi for all i, 
then there exists rEI such that r f Pi for all i. 

4. If R has an identity and Ml, ... , Mr are distinct maximal ideals in R, then show 
that MI n M2 n ... n Mr = M1M2 • •• Mr. Is this true if "maximal" is replaced 
by "prime"? 

5. If R has an identity, then the set of all zero divisors of R is a union of prime 
ideals. 

6. Let R have an identity. A prime ideal P in R is called a minimal prime ideal of the 
ideal 1 if 1 C P and there is no prime ideal P' such that 1 C P' C P. 

;c 

(a) If an ideal 1 of R is contained in a prime ideal P of R, then P contains a 
minimal prime ideal of I. [Hinl: Zornify the set of all prime ideals P' such that 
ICP' CP.) 

(b) Every proper ideal possesses at least one minimal prime ideal. 

7. The radical of an ideal I in a ring R with identity is the intersection of all its min
imal prime ideals [see Exercise 6]. 

8. If R has an identity, 1 is an ideal and J is a finitely generated ideal such that 
J C Rad I, then there exists a positive integer n such that In C I. 

9. What is the radical of the zero ideal in Zn? 

10. If S is a multiplicative subset of a commutative ring Rand 1 is an ideal of R, 
then S-I(Rad I) = Rad (S-I/) in the ring S-IR. 

11. Let Q (r! R) be an ideal in R. Then Q is primary if and only if every zero divisor 
in R/Q is nilpotent (see Exercise III.1.12). 

12. If F is a field, then: 
(a) the ideal (x,y) is maximal in F[x,y]; 
(b) (x,y)2 = (x2,xy,y2) ~ (X2,y) s: (x,y); 

(c) the ideal (x2,y) is primary and the only proper prime ideal containing it 
is (x,y). 

13. In the ring Z[x,y] the ideals (x2,y),(x\r2),(x2,y3), ... , (x;,y;), ... are all primary 
ideals belonging to the prime ideal (x,y). 

14. The conclusion of Theorem 2.11 is false if infinite intersections are allowed. 
[Hint: consider Z.] 
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15. Letf:R - S be an epimorphism of commutative rings with identity. If J is an 
ideal of S, let I = f-1(1). 

(a) Then I is primary in R if and only if J is primary in S. 
(b) If J is primary for P, then I is primary for the prime ideal f-l(P). 

16. Find a reduced primary decomposition for the ideal 1= (x2,xy,2) in Z[x,yj and 
determine the associated primes of the primary ideals appearing in this decom
position. 

17. (a) If p is prime and n > 1, then (p") is a primary, but not a prime ideal of Z. 
(b) Obtain a reduced primary decomposition of the ideal (12600) in Z. 

18. If F is a field and I is the ideal (x2,xy) in F[x,yj, then there are at least three dis
tinct reduced primary decompositions of I; three such are: 

(i) I = (x) n (x2,y); (ii) I = (x) n (x2,x + y); (iii) I = (x) n (x2,xy,y2). 

19. (a) In the ring Z[x], the following are primary decompositions: 

(4,2x,x2) = (4,x) n (2,x2); 

(9,3x + 3) = (3) n (9,x + 1). 

(b) Are the primary decompositions of part (a) reduced? 

3. PRIMARY DECOMPOSITION 

We shall extend the results of Section 2 in a natural way to modules. A unique
ness statement for reduced primary decompositions (of submodules or ideals) is 
proved as well as the fact that every submodule [ideal] of a Noetherian module [ring] 
has a primary decomposition. Throughout this section all rings are commutative 
with identity and all modules are unitary. 

Definition 3.1. Let R be a commutative ring with identity and B an R-module. A sub
module A (¢ B) is primary provided that 

r € R, b 4 A andrb € A => rnB C A for some positive integer n. 

EXAMPLE. Consider the ring R as an R-module and let Q be a primary ideal 
(and hence a submodule) of R. If rb € Q with r € Rand b f Q, then rn € Q for some n. 
Since Q is an ideal, this implies rnR C Q. Hence Q is a primary submodule of the 
module R. Conversely every primary submodule of R is a primary ideal (Exercise 1). 
Therefore, all results about primary submodules apply. to primary ideals as well. 

Theorem 3.2. Let R be a commutative ring with identity and A a primary submodule 
of an R-module B. Then QA = I r € R I rB C A I is a primary ideal in R. 

PROOF. Since A ¢ H, In ~ QA, whence QA ¢ R. If rs € QA and s. QA, then 
sH ~ A. Consequently, for some be H, sb' A but r(sb) e A. Since A is primary 
r"H C A for some n; that is, rn e Q.~. Therefore, QA is primary. • 
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Let R,A,B, and QA be as in Theorem 3.2. By Theorem 2.9 Rad QA = PI is a 
prime ideal. It is easy to see that PI = {r E R I rnB C A for some n > 0 I. A primary 
submodule A of a module B is said to belong to a prime ideal P or to be a P-primary 
submodule of B if P = Rad QA = {r E R I rnB C A for some n > 01. This termi
nology is consistent with that used for ideals. In particular, if J is a primary ideal, 
then QJ = J. 

Definition 3.3. Let R be a commutative ring with identity and Ban R-module. A sub
module C ofB has a primary decomposition ifC = Al n A2 n ... n An, with each 
Ai a Pi-primary submodule of B for some prime ideal Pi of R. If no A; contains 
Al n ... n Ai-I n Ai+1 n ... n An and if the ideals Ph' . ~ ,Pn are all distinct, 
then the primary decomposition is said to be reduced. 

Again the terminology here is consistent with that used for ideals. If C,Ai and Pi 
are as in the definition and Pi ¢ Pi for allj ;06 i, then Pi is said to be an isolated prime 
ideal of C. In other words, Pi is isolated if it is minimal in the set {Ph, .. , Pn \. If Pi 
is not isolated it is said to be embedded. 

Theorem 3.4. Let R be a commutative ring with identity and B an R-module. If a 
submodule C ofB has a primary decomposition, then C has a reduced primary decom
position. 

SKETCH OF PROOF. The proof is similar to that ofTheorem 2.13. Note that 
n 

if QA = /r E R I rB CAl, then n QAi = QnA •. Thus if AI, ... , Ar are all 
i=l 

P-primary submodules for the same prime ideal P, then n Ai is also P-primary by 
i= 1 

Theorem 2.11. • 

Theorem 3.5. Let R be a commutative ring with identity and B an R-module. Let 
C (;06 B) be a submodule ofB with two reduced primary decompositions, 

Al n A2 n ... n Ak = C = AI' n A2' n '" n As', 

where Ai is Pi-primary and A;' is P;'-primary. Then k = s and (after reordering if 
necessary) Pi = Pi' for i = 1,2, ... ,k. Furthermore if Ai and Ai' both are Pi-primary 
and Pi is an isolated prime, then Ai = Ai'. 

PROOF. By changing notation if necessary we may assume that PI is maximal 
in the set / Ph ... , Pk,PI ', ••• , P,' I. We shall first show that PI = P/ for some j. 
Suppose, on the contrary, that PI ~ P/ for j = 1,2, ... , s. Since PI is maximal we 
have PI ¢ P/ for j = 1,2, ... , s. Since the first decomposition is reduced, 
PI,P2, ••• , Pk are distinct, whence PI ¢ Pi for i = 2,3, ... , k. By the contrapositive 
of Theorem 2.3, PI ¢ P2 U ... U Pk U PI' U ... UP,'. Consequently, there exists 
r E PI such that r. Pi (i 2 2) and r t P/ (j 2 O. Since Al is PI-primary rnB C Al for 
some positive integer n. Let C* be the submodule {x E B I rnx E CI. If k = 1, then 
C = Al and hence C* = B. We claim that for k 2 1, C* = C and for k> 1, 
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C* = A2 n ... n Ak. Now it is easy to see that A2 n ... n Ak C C* and 
AI' n A2' n ... n As' = C C C* for k > 1. Conversely, if x' Ai (i ~ 2), then 
rnx t Ai (otherwise rn E Pi since Ai is Pi-primary, whence r € Pi since Pi is prime). Con
sequently, rnx' C, whence x, C*. Therefore, C* C A2 n ... n Ak for k > 1. A 
similar argument shows that C* CAl' n A2' n ... n As' = C, so that C* = C 
(k ~ l)andC* = A2 n ... n Ak(k > 1).iJk = l,thenasobservedaboveC* =B. 
Thus C = C* = B, which contradicts the fact that C ~ B. If k > 1, then 

whence A2 n ... n Ak C AI. This conclusion contradicts the fact that the first de
composition is reduced. Thus the assumption that PI ~ P;' for every j always leads 
to a contradiction. Therefore PI = P;' for somej, say j = 1. 

The proof now proceeds by induction on k. If k = 1, then we claim s = 1 also. 
For if s > 1, then the argument above with PI = PI' and the roles of Ai,A;' reversed) 
shows that B = C* = A2' n ... n As', whence A;' = B for some j ~ 2. Thus the 
second decomposition of C is not reduced, a contradiction. Therefore, s = 1 = k 
and Al = C = AI'. Now assume that k > 1 and the theorem is true for all sub
modules that have a reduced primary decomposition of less than k terms. The argu
ment of the preceding paragraph (with PI = PI') shows that for k > 1 the sub
module C* has two reduced primary decompositions: 

A2 n A3 n ... n Ak = C* = A2' n ... n A.'. 

By induction k = s, and (after reindexing) Pi = P;' for all i. This completes the in
duction and the proof of the first part of the theorem. 

Suppose Ai and A;' are both Pi-primary and Pi is an isolated prime. For con
venience of notation assume i = 1. Since PI is isolated, there exists for each j ~ 2, 
ri € Pi - Pl. Then t = r2r3· . ·rk e Pi for j > 1, but t, Pl. Since Ai is Pi-primary, there 
exists for each j ~ 2 an integer ni such that tniB C Ai. Similarly, for each j ~ 2 
there is an mi such that tmiB C A;'. Let n = max {n2, . .. ,nk,nl2, ... ,md; then 
tnB C Ai and tnB C A;' for allj ~ 2. Let D be the submodule Ix € B I tnx e Cl. To 
complete the uniqueness proof we shall show Al = D = AI'. If x € AI, then 
tnx e Al n A2 n ... n Ak = C, whence x € Dand Al C D. If xeD, thentnx e C CAl. 
Since Al is PI-primary and t, Ph we have tmB ¢ AI, for all m > o. Since Al is primary, 
we must have x e AI, (otherwise tnx e Al and x' Al imply tnqB C Al for some positive 
q by Definition 2.1). Hence D = AI. An identical argument shows that AI' = D. 
Therefore, Al = AI'. • 

Thus far we have worked with a module that was assumed to have a primary de
composition. Now we give a partial answer to the question: which modules [ideals] 
have primary decompositions? 

Theorem 3.6. Let R be a commutative ring with identity and B an R-module satisfy
ing the ascending chain condition on submodules. Then every submodule A (~B) has a 
reduced primary decomposition. In particular, every submodule A (~B) of a finitely 
generated module B over a commutative Noetherian ring R and every ideal (~R) 
of R has a reduced primary decomposition. 
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PROOF OF 3.6. Let S be the set of all submodules of B that do not have a 
primary decomposition. Clearly no primary submodule is in S. We must show that S is 
actually empty. If Sis nonempty, then S contains a maximal element C by Theorem 
1.4. Since C is not primary, there exist rEO Rand b EO B - C such that rb EO C but 
rnB ~ C for all n > O. Let Bn = Ix EO B I rnx EO Cl. Then each Bn is a submodule of B 
and BI C B2 C B3 C .... By hypothesis there exists k > 0 such that Bi = Bk for 
i ~ k. Let D be the submodule Ix EO B I x = rky + c for some y EO B,c EO Cl. Clearly 
C C Bk n D. Conversely, if x EO Bk n D, then x = rky + c and rkx EO C, whence 
r2ky = rk(rky) = rk(x - c) = rkx - rkc EO C. Therefore, y c B2k = Bk • Consequently, 
rky E C and hence x = rky + eEOC. Therefore Bk n DeC, whence Bk n D = C. 
Now C ."t Bk ."t Band C .,t. D .,t. B since b EO BI: - C and rkB ~ C. By the maximal
ity of C in S, Bk and D must have primary decompositions. Thus C has a primary 
decomposition, which is a contradiction. Therefore S is empty and every submodule 
has a primary decomposition. Consequently, every submodule has a reduced 
primary decomposition by Theorem 3.4. The last statement of the theorem is now an 
immediate consequence of Theorems 1.8 and 1.9. • 

EXERCISES 

Note: Unless otherwise stated R is always a commutative ring with identity. 

1. Consider the ring R as an R-module. If Q is a primary submodule of R, then Q is 
a primary ideal. 

2. (a) Letf: B ~ D bean R-module epimorphism and C(.,t.D) a submodule of D. 
Then C is a primary submodule of D if and only if f-l( C) is a primary submodule 
of B. 
(b) If C and f- 1(C) are primary, then they both belong to the same prime 
ideal P. 

3. If A (.,t.B) is a submodule of the R-module Band P is an ideal of R such that 
(i) rx EO A and x • A (r EO R,x EO B) => rIO P; and 

(ii) rEP => rnB C A for some positive integer n, 
then P is a prime ideal and A is a P-primary submodule of B. 

4. If A is a P-primary submodule of an R-module Band rx E A (r EO R,x EO B), then 
either r EP or x e A. 

5. If A is a P-primary submodule of an R-module Band C is any submodule of B 
such that C ¢ A then IrE R I rC CAl is a P-primary ideal. [Hint: Exercise 3 
may be helpful.] 

6. Let A be a P-primary submodule of the R-module B and let C be any submodule 
of B such that C ¢ A. Then A n Cis a P-primary submodule of C. [Hint: Exer
cise 3 may be helpful.] 

7. If B is an R-module and xc B, the annihilator of x, denoted ann x, is 
Ir EO R I rx = 01. Show that ann x is an ideal. 

8. If B .,t. 0 is an R-module and P is maximal in the set of ideals I ann x I 0 .,t. X EO B I 
(see Exercise 7), then P is prime. 
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9. Let R be Noetherian and let B be an R-module. If P is a prime ideal such that 
P = ann x for some nonzero x E B (see Exercise 7), then P is called an associated 
prime of B. 

(a) If B -,e 0, then there exists an associated prime of B. [Hint: use Exercise 8.] 
(b) If B -,e 0 and B satisfies the ascending chain condition on submodules, then 

there exist prime ideals P" ... , PT- l and a sequence of submodules B = B, :::> 
B2 :::> ... :::> BT = 0 such that BilBi+1 "-' RIPi for each i < r. 

to. Let Rand B be as in Exercise 9(b). Then the following conditions on r E Rare 
equivalent: 

(i) for each x E B there exists a positive integer n(x) such that rn(x)x = 0; 
(ii) r lies in every associated prime of B (see Exercises 9 and 15). 

11. Let R be Noetherian, r E R, and B an R-module. Then rx = 0 (x E B) implies 
x = 0 if and only if r does not lie in any associated prime of B (see Exercises 8 
and 9). 

12. Let R be Noetherian and let B be an R-module satisfying the ascending chain 
condition on submodules. Then the following are equivalent: 

(i) There exists exactly one associated prime of B (see Exercise 9); 
(ii) B -,e 0 and for each r E R one of the following is true: either rx = 0 im

plies x = 0 for all x E B or for each x E B there exists a positive integer n(x) such 
that r"(x)x = O. [See Exercises 10 and 11.] 

13. Let Rand B be as in Exercise 12. Then a submodule A of B is primary if and only 
if BI A has exactly one associated prime P and in that case A is P-primary; (see 
Exercises 9 and 12). 

14. Let Rand B be as in Exercise 12. If A (-,eB) is a submodule of B, then every 
associated prime of A is an associated prime of B. Every associated prime of B 
is an associated prime of either A or BI A; (see Exercise 9). 

15. Let Rand B be as in Exercise 12. Then the associated primes of B are precisely 
the primes P" ... ,Pn, where 0 = A, n ... n An is a reduced primary de
composition of 0 with each Ai Pi-primary. In particular, the set of associated 
primes of B is finite. [Hint: see Exercises 9, 13, 14.] 

16. Let S be a multiplicative subset of R and let A be a P-primary submodule of an 
R-module B. If P n S = 0, then S-IA is an S-IP-primary submodule of the 
S-IR-module S-IB. 

4. NOETHERIAN RINGS AND MODULES 

This section consists of two independent parts. The first part deals primarily with 
Noetherian modules (that is, modules satisfying the ascending chain condition). A 
rather strong form of the Krull Intersection Theorem is proved. Nakayama's Lemma 
and several of its interesting consequences are presented. In the second part of this 
section, which does not depend on the first part, we prove that if R is a commutative 
Noetherian ring with identity, then so are the polynomial ring R[x" ... ,xn ] and the 
power series ring R[[xll. With few exceptions all rings are commutative with identity. 

We begin by recalling that a commutative ring R is Noetherian if and only if R 
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satisfies the maximum condition on (two-sided) ideals (Definition 1.2 and Theorem 
1.4), or equivalently if and only if every ideal of R is finitely generated (Theorem 1.9). 
As a matter of fact, one need only consider prime ideals of R: 

Proposition 4.1. (I. S. Cohen). A commutative ring R with identity is Noetherian if 
and only if every prime ideal ofR is finitely generated. 

SKETCH OF PROOF. (¢=) Let S be the set of all ideals of R which are not 
finitely generated. If Sis nonempty, then use Zorn's Lemma to find a maximal ele
ment P of S. P is prime by Proposition 2.4 and hence finitely generated by hypothesis. 
This is a contradiction unless S = 525. Therefore, R is Noetherian by Theorem 
1.9. • 

We now develop the preliminaries needed to prove the Krull Intersection Theo
rem. If B is a module over a commutative ring R, then it is easy to see that 
I = {r E R I rb = 0 for all b E BI is an ideal of R. The ideal I is called the annihilator 
of Bin R. 

Lemma 4.2. Let B be a finitely generated module over a commutative ring R with 
identity and let I be the annihilator ofB in R. Then B satisfies the ascending [resp. 
descending] chain condition on submodules if and only ifR/I is a Noetherian [resp. 
Artinian] ring. 

SKETCH OF PROOF. Let B be generated by hI, ... , hn and assume B satisfies 
the ascending chain condition. Then B = Rbi + ... + Rbn by Theorem IV.1.S. Con
sequently, I = II n 12 n ... n In, where Ii is the annihilator of the submodule Rbi. 
By Corollary III.2.27 there is a monomorphism of rings 8 : R/ 1-> R/ II X ... X R/ In. 
It is easy to see that 8 is also an R-module monomorphism. Verify that for eachj the 
map R/ Ii -> Rbi given by r + Ii ~ rb j is an isomorphism of R-modules. Since the 
submodule Rbi of B necessarily satisfies the ascending chain condition, so does R/I j • 

Therefore, RIll EB· . ·EB R/In satisfies the ascending chain condition on R-sub
modules by Corollary 1.7. Consequently its submodule 1m 8""'" R/ I satisfies the 
ascending chain condition on R-submodules. But every ideal of the ring R/ I is an 
R-submodule of R/ I. Therefore, R/ I is Noetherian. 

Conversely suppose R/ I is Noetherian. Verify that B is an R/ I-module with 
(r + l)b = rb and that the R/ I submodules of B are precisely the R-submodules. 
Consequently, B satisfies the ascending chain condition by Theorem 1.8. • 

Recall that if I is any ideal in a ring R with identity and B is an R-module, then 

IB = {tl ribi I ri E I; bi E 8; n E N*} is a submodule of B (Exercise IV.1.3). 

Lemma 4.3. Let P be a prime ideal in a commutative ring R with identity. IfC is a 
P-primary submodule of the Noetherian R-module A, then there exists a positive 
integer m such that pmA C C. 
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PROOF. Let I be the annihilator of A in R and consider the ring 'R = RI I. De
note the coset r + Ie R by r. Clearly I C Ire R IrA C Cl C P, whenceP = Pllis 
an ideal ofR. A and C are each R-modules with ra = ra (r e R,a e A). We claim that 
C is a primary R-submodule of A. If ra e C with r e R and a e A - C, then ra e C. 
Since C is a primary R-submodule, rnA C C for some n, whence rnA C C and 
C is 'R-primary. Since Ire 'R I rkA C C for some k > 01 = Ire R I rkA C Cl 
= {r e R Ire P} = P, P is a prime ideal of Rand C is a p-primary R-submodule of A 
(see Theorems 2.9 and 3.2). 

Since R is Noetherian by Lemma 4.2, P is finitely generated by Theorem 1.9. 
Let ih, ... ,p, (pi e P) be the generators of P. For each i there exists ni such that 
Pi"iA C C. If m = nI + ... + n" then it follows from Theorems III.1.2(v) and 
I1I.2.5( vi) that pm A C C. The facts-ttfit P = PI I and I A = 0 now imply that 
pmA C C. • 

Theorem 4.4. (Krull Intersection Theorem). Let R be a c01:;mutative ring with 

identity, I an idealofR and A a Noetherian R-module.lfB = n InA, then IB = B. 
n=l 

Theorem 4.4 was first proved in the case where R is a Noetherian local ring with 
maximal ideal I. The proof we shall give depends on primary decomposition (as did 
the original proof). However, if one assumes that R is Noetherian, there are a num
ber of proofs that do not use primary decomposition (Exercise 2). 

PROOF OF 4.4. If IB = A, then A = IB C B, whence B = A = IB. If 
IB ~ A, then by Theorem 3.6 IB has a primary decomposition: 

IB = Al n A2 n ... n A" 

where each Ai is a Pi-primary submodule of A for some prime ideal Pi of R. Since 
IB C B in any case, we need only show that B C Ai for every i in order to conclude 
that B C IB and hence that B = lB. 

Let i (l ~ i ~ s) be fixed. Suppose first that I C Pi. By Lemma 4.3 there is an 
integer m such that PimA C Ai, whence B = nInA C ImA C PrA C Ai. Now 

n 

suppose I q: Pi. Then there exists reI - Pi. If B q: Ai, then there exists b e B - Ai. 
Since rb e IB C Ai, b * Ai and Ai is primary, rnA C Ai for some n > O. Conse
quently, r e Pi since Ai is a Pi-primary submodule. This contradicts the choice of 
reI - Pi. Therefore B C Ai. • 

Lemma 4.5. (Nakayama) IfJ is an ideal in a commutative ring R with identity, then 
the following conditions are equivalent. 

(i) J is contained in every maximal ideal ofR; 
(ii) IR - j is a unit for every j e J; 

(iii) If A is a finitely generated R-module such that JA = A, then A = 0; 
(iv) IfB is a submodule ofafinitely generatedR-module A sitch that A = JA + B, 

then A = B. 

REMARK. The Lemma is true even when R is noncommutative, provided that 
(i) is replaced by the condition that J is contained in the Jacobson radical of R 
(Exercise IX.2.17). 
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PROOF OF 4.5. (i) =* (ii) if j d and h - j is not a unit, then the ideal 
OR - j) is not R itself (Theorem 1II.3.2) and therefore is contained in a maximal 
ideal M ¢ R (Theorem III.2.18). But 11/ - j E M and j E J C M imply that hEM, 
which is a contradiction. Therefore, h' - j is a unit. 

(ii) =* (iii) Since A is finitely generated, there must be a minimal generating set 
X = I at, ... , an I of A (that is, no proper subset of X generates A). If A ¢ 0, then 
a[ ¢ 0 by minimality. Since JA = A, a[ = jlal + j2a2 + ... + jnan (ji cJ), whence 
IRa I = al so that OR - jl)al = 0 if n = 1 and 

Since h - jl is a unit in R, £/1 = OR - h)-I(h - jl)al. Thus if n = 1, then a[ = 0 
which is a contradiction. If n > 1, then al is a linear combination of a2, ... , an. 
Consequently, I a2, ... , an I generates A, which contradicts the choice of X. 

(iii) = (iv) Verify that the quotient module AlB is such that J(AIB) = AlB, 
whence AlB = 0 and A = B by (iii). 

(iv) =* (i) If M is any maximal ideal, then the ideal JR + M contains M. But 
JR + M ¢ R (otherwise R = M by (iv». Consequently, JR + M = M by maxi
mality. Therefore J = J ReM. • 

We now give several applications of Nakayama's Lemma, beginning with a result 
that is the starting point of the theory of completions. 

Proposition 4.6. Let J be an ideal in a commutative ring R with identity. Then J is 
contained in every maximal ideal of R if and only if for every R-module A satisfying 

'" 
the ascending chain condition on submodules, n JnA = O. 

1l=1 

PROOF. (=*) If B = n JnA, then JB = B by Theorem 4.4. Since B is finitely 
n 

generated by Theorem 1.9, B = 0 by Nakayama's Lemma 4.5. 
(<=) We may assume R ¢ O. If M is any maximal ideal of R, then M ¢ Rand 

A = RI Mis a nonzero R-module that has no proper submodules (Theorem IV.1.lO). 
Thus A trivially satisfies the ascending chain condition, whence n JnA = 0 by hy-

n 

pothesis. Since JA is a submodule of A, either JA = A or JA = O. If JA = A, then 
JnA = A for all n. Consequently, n JnA = A ¢ 0, which is a contradiction. Hence 

n 

JA = O. But 0 = JA = J(RI M) implies that J C JR C M. • 

Corollary 4.7. IfR isa Noetherian local ring with maximalidealM, then n Mn = O. 
n=1 

PROOF. If J = M and A = R, then JnA = Mn; apply Proposition 4.6. • 

Proposition 4.8. IfR is a local ring, then every finitely generated projective R-mod
ule is free. 
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Actually a much stronger result due to I. Kaplansky [63) is true, namely: every 
projective module over a (not necessarily commutative) local ring is free. 

PROOF OF 4.8. If P is a finitely generated projective R-module, then by 
Corollary IV.2.2 there exists a free R-module F with a finite basis and an epimor
phism 11" : F ---; P. Among all the free R-modules F with this property choose one with 
a basis! XI,X2, ... , Xn I that has a minimal number of elements. Since 11" is an epimor-
phism !1I"(XI), ... , 1I"(Xn) I necessarily generate P. We shall first show that K = Ker 11" 

is contained in MF, where M is the unique maximal ideal of R. If K ¢ MF, then 
there exists k E K with k, MF. Now k = riXI + r2X2 + ... + rnXn with ri 10 R 
uniquely determined. Since k + MF, some ri, say rl, is not an element of M. By Theo
rem 11104.13, rl is a unit, whence XI - rl-1k = -rI-1r2x2 - ... - rl-IrnXn. Conse-

quently, since k 10 Ker 11", 1I"(XI) = 1I"(XI - rl-1k) = 1I"(t2 -ri-iriXi) = t2 -rIri1l"(xi). 

Therefore, !1I"(X2), ... , 1I"(Xn) I generates P. Thus if F' is the free submodule of F with 
basis ! X2, ... , Xn I and 11"' : F' ---; P the restriction of 11" to F' , then 11"' is an epimor
phism. This contradicts the choice of F as having a basis of minimal cardinality. 
Hence KC MF. 

Since 0 ---; K':=' F ~ P ---; 0 is exact and P is projective K E8 P '" F by Theorem 
IV.3A. Under this isomorphism (k,O) f-. k for all k 10 K (see the proof of Theorem 
IV.US), whence F is the internal direct sum F = K E8 pI with pI '" P. Thus 
F = K + pI C MF + P'. If u e F, then u = L: miVi + Pi with m; 10 M, Vi 10 F, Pi 10 P'. 

i 

Consequently, in the R-module F/P' , 

l/ + pI = L: miVi + pI = L: m;(vi + PI) e M(F/PI), 
i i 

whence M(F/PI) = F/PI. Since F is finitely generated, so is F/PI. Therefore 
K '" F/PI = 0 by Nakayama's Lemma 4.5. Thus P '" pI = F and P is free. • 

We close this section with two well known theorems. The proofs are independent 
of the preceding part of this chapter. 

Theorem 4.9. (Hilbert Basis Theorem) IfR is a commutative Noetherian ring with 
identify, then so is R[xJ, ... , xn ). 

PROOF. Clearly it suffices to show that R[x) is Noetherian. By Theorem 1.9 we 
need only show that every ideal J in R[x) is finitely generated. 

For each n ~ 0, let In be the set of all r e R such that r = 0 or r is the leading co
efficient of a polynomial flO J of degree n. Verify that each In is an ideal of R. If r is a 
nonzero element of In and f e J is a polynomial of degree n with leading coefficient r, 
then r is also the leading coefficient of xf, which is a polynomial in J of degree n + 1. 
Hence 10 C II C 12 C· ... Since R is Noetherian, there exists an integer t such that 
In = It for all n ~ f; furthermore, by Theorem 1.9 each In (n ~ 0) is finitely generated 
say In = (rn l,rn2, ... , rnin). For each rni with 0 :::; n :::; t and 1 :::; j :::; in, let fni 10 J be 
a polynomial of degree n with leading coefficient rni' Observe thatfoi = rOi eRe R[x). 
We shall show that the ideal J of R[x) is generated by the finite set of polynomials 
X = {fn; I 0 :::; n :S f; 1 :S j :S in l. 
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Clearly (X) C J. Conversely, the polynomials of degree 0 in J are precisely the 
elements of 10 and hence are contained in (X). Proceeding by induction assume that 
(X) contains all polynomials of J of degree less than k and let g c J have degree k and 
leading coefficient r r!- O. 

If k ~ t, then r chand hence r = Slrkl + S2rk2 + ... + Sii!'kik for some Si c R. 
i. 

Therefore the polynomial L Sihei c (X) has leading coefficient r and degree k. Con
;=1 

sequently, g - L Sihei has degree at most k - 1. By the induction hypothesis 
; 

g - L Sihei e (X), whence g e (X). 
j it it 

If k ~ t, then r c It = It and r = L Sjrti(si e R). Furthermore L sixk'-IJii e (X) 
;=1 ;=1 

has leading coefficient r and degree k. Thus g - 2: SiXI:-tJij has degree at most 
} 

k - 1 and lies in (X) by the induction assumption. Consequently, g e (X) and the in-
duction is complete. Therefore, J == (X). • 

Proposition 4.10. If R is a commutafice Noetherian ring Wifh identity, then so is 
R[[xlJ. 

REMARK. Our proof makes use of Proposition 4.1. Although we shaH not do 
so, the technique used to prove Theorem 4.9 may also be used here, with nonzero 
coefficients of lowest degree replacing those of highest degree in the argument. How
ever, great care must be used to insure that certain power series constructed in
ductively in the course of the proof are in fact validly defined. The Axiom of Choice 
and some version of the Recursion Theorem are necessary (this part is frequently 
obscured in many published proofs of Proposition 4.10). 

PROOF OF 4.10. It suffices by Proposition 4.1 to prove that every prime ideal 
P in R[[xlJ is finitely generated. Define an epimorphism of rings R[[xlJ-> R by 

'" 
mapping each power seriesf = L aixi onto its constant term ao. Let P* be the image 

i=O 
of P under this map. Then P* is a finitely generated ideal in R (Exercise 111.2.13 and 
Theorem 1.9), say P* = (r1, ... , r.). For each ri choose Ji c P with constant term rio 

If x c P, we claim that P is generated by r1, . .. , rn,x. First note that if 

he = rk + f aixi, then rk = he - x(f ai+lxi) c P. If g = i bix' E P, then 
1=1 }=O 1=0 

n 

bo = SIr1 + ... + Snrn for some Si e R. Consequently, g - L Siri has 0 constant 
i= 1 

term; that is, g - L Siri = xgl (gl c R[[x]]). Therefore g = L Siri + xgl and P is 
i i 

generated by r1, ... , r.,x. 

If x $ P, we claim that P is generated by It, ... ,In E P. If h = L CiXi c P, then 
n i=O 

Co = flrl + ... + t.rn for some ti E R. Consequently, h - L t;Ji = xh* for some 
i= 1 

h* c R[[xJJ. Since x f P and xh* = h - L tiJi e P and P is prime, we have h* c P. 
i m 

For each h c P, choose fi c Rand 17* c P such that h = L tiJi + xh* (Axiom of 
i=1 
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Choice). Let A : P --> P be the map defined by h ~ h*. Let g be any element of P. 
Then by the Recursion Theorem 6.2 of the Introduction (with A = In for all n) there 
is a function cf> : N --> P such that 

cf>(O) = g and cf>(k + 1) = A(cf>(k)) = <f>{k)* 

Let cf>(k) = hk e R[[x]] and denote by tki the previously chosen elements of R 
such that 

n n 

hk = L: tkif; + Xhk* = L: tkif; + xhk+1• 
i=l i=l 

For each i (1 ~ i ~ n) let gi = L: tkixk e R[[xll. Then 
k=O 

Consequently, for each m ~ 0 the coefficient of xm in gdl + ... + gnln is the same 
m 

as the coefficient of xm in L: (hk - Xhk+l)Xk. Since 
k=O 

m 

L: (h k - xhk+1)X" = ho - xmHhm+1 = g - xmHhmTh 
k=O 

the coefficient of xm in j;gl + ... + .f.g" is precisely the coefficient of xm in g. There
fore, g = gl j; + gzf; + ... + g. In and j;, ... ,f" generate P. • 

EXERCISES 

1. Let R be a commutative ring with identity and I a finitely generated ideal of R. 
LetCbe a submodule of an R-moduleA. Assume that for each r B Ithereexists a 
positive integer m (depending on r) such that rmA C C. Show that for some 
integer n, InA C C. [Hint: see Theorems III.1.2(v) and I1I.2.5(vi)]. 

2. Without using primary decomposition, prove this version of the Krull Inter
section Theorem. If R is a commutative Noetherian ring with identity, I an ideal 

of R, A a finitely generated R-module, and B = n InA, then IB = B. [Hints: 
n=1 

Let C be maximal in the set S of all submodules S of A such that B n S = lB. It 
suffices to show ImA C C for some m. By Exercise 1 it suffices to show that for 
each rEI, rn A C Cfor somen(dependingonr). Foreachk, let Dk = {aeA I rkae C\. 

Do C Dl C D2 c· .. is an ascending chain of R-submodules; hence for some n, 
Dk = Dn for all k ~ n. Show that (rnA + C) n B = lB. The maximality of C 
implies rnA + C = C, that is, rnA C C.] 

3. Let R be a Noetherian local ring with maximal ideal M. If the ideal M/M2 in 
R/M2 is generated by {at + M2, ... , an + M2}, then the ideal M is generated 
in R by {at, ... , an}. 
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4. (Nakayama's Lemma, second version) Let R be a commutative ring with identity, 
J an ideal that is contained in every maximal ideal of R, and A a finitely generated 
R-module. If RIJ Q9R A = 0, then A = O. [Hint: use the exact sequence 
o ~ J ~ R ~ RI J ~ 0 and the natural isomorphism R Q9R A '" A to show 
JA = A.] 

5. Let Rand J be as in Exercise 4; let A be a finitely generated R-module and 
I : C ~ A an R-module homomorphism. Then I induces a homomorphism 
1: CIJC ~ AIJA in the usual way (Corollary IV.l.8). Show that if lis an epimor
phism, then lis an epimorphism. 

6. (a) Let R be a commutative ring with identity. If every ideal of R can be generated 
by a finite or denumerable subset, then the same is true of R[x]. 
(b) State and prove an analogue of part (a) for R[[xll; (the answer is not quite 
the same here). 

7. Let R be a commutative ring with identity and let f,g E R[[xll. Denote by In f, the 

initial degree of I(that is, the smallest n such that an ¢ 0, where 1= L aixi). 

Show that 
(a) In (f + g) 2 min (In f, In g). 

(b) In (fg) 2 In 1+ In g. 
(c) If R is an integral domain, In (fg) = In 1+ In g. 

;=0 

8. Let R be a commutative Noetherian ring with identity and let Q1 n ... n Qn = 0 
be a reduced primary decomposition of the ideal 0 of R with Qi belonging to the 
prime ideal Pi. Then PI U P2 U ... U Pn is the set of zero divisors in R. 

9. Let R be a commutative ring with identity. If every maximal ideal of R is of the 
form (c), where c2 = c, for some c E R, then R is Noetherian. [Hint: show that 
every primary ideal is maximal; use Proposition 4.1.] 

5. RING EXTENSIONS 

In the first part of this section ring extensions are defined and the essential 
properties of integral extensions are developed. The last part is devoted to the study 
ofthe relations between prime ideals in rings Rand S, where S is an extension ring of 
R. Throughout this section all rings are commutative with identity. 

Definition 5.1. Let S be a commutative ring with identity and R a subring olS con
taining Is. Then S is said to be an extension ring oiR. 

EXAMPLES. Every extension field F of a field K is obviously an extension ring 
of K. If R is a commutative ring with identity, then R[[xll and R[xt, ... , xn ] are ex
tension rings of R. The ring Z is notan extension of the subring E of even integers 
since E does not contain 1. 
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Definition 5.2. Let S be an extension ring ofR and s E S. If there exists a monic 
polynomial f(x) E R[xj such that s is a root off (that is, f(s) = 0), then s is said to be 
integral over R. If eL'ery element ofS is integral over R, S is said to be an integral ex
tension ofR. 

The key feature of Definition 5.2 is the requirement that fhe monic. 

EXAMPLES. Every algebraic extension field F of a field K is an integral exten
sion ring (see the Remarks after Definition V.l.4). The ring R is integral over itself 
since r E R is a root of x - r E R[xj. In the extension of Z by the real field R, 1/-V3 is 
algebraic over Z since it is a root of 3x2 - 1 but 1/~ is not integral over Z. How
ever, 1/~3 is integral over the rational field Q since it is a root of x2 - 1/3. 

Let S be an extension ring of R and X a subset of S. Then the subring generated by 
X over R is the intersection of all subrings of S that contain X U R; it is denoted 
R[X]. The first half of Theorem V.1.3 is valid for rings and shows that R[X]con
sists of all elements f(SI, ... , Sn) with n E N*, fE R[XI, ... ,xn] and s. EX. In par
ticular, for any SJ, ••• , St E S the subring generated by I SJ, ••• , sd over R, which is 
denoted R[SI, ... , St], consists of all elements f(SI, ... , St) with f E R[XI, ... , Xt]. An 
element of R[sJ, ... , stl is sometimes called a polynomial in St, ••. , St. Despite this 
terminology R[sJ, ... ,St] need not be isomorphic to the polynomial ring R[xJ, ... , Xt] 
(for example, f(sJ, ... , St) may be zero even though fis a nonzero polynomial). It is 
easy to see that for each i (1 ::; i ::; t), R[sJ, ... , S._IJ[S.] = R[sJ, ... , silo Since 
R[sJ, ... , St] is a ring containing R, R[SI, ... , St] is an R-module in the obvious way. 
Likewise every module over R[sl, ... , Sl] is obviously an R-module. 

Theorem 5.3. Let S be an extension ring ofR ands E S. Then the following conditions 
are equivalent. 

(i) s is integral over R; 
(ii) R[s] is a finitely generated R-module; 

(iii) there is a subring T ofS containing Is andR[s] which is finitely generated as an 
R-module; 

(iv) there is an R[s]-submodule B ofS whiCh is finitely generated as an R-module 
and whose annihilator in R[s] is zero. 

SKETCH OF PROOF. (i) =} (ii) Suppose s is a root of the monic polynomial 
fE R[x] of degree n. We claim that In = SO,S,S2, ... ,sn-l generate R[s] as an 
R-module. As observed above, every element of R[s] is of the form g(s) for some 
g E R[x]. By the Division Algorithm 1II.6.2 g(x) = f(x)q(x) + r(x) with deg r < degf. 
Therefore in S, g(s) = f(s)q(s) + r(s) = 0 + r(s) = r(s). Hence g(s) is an R-linear 
combination of 1 n,S,S2, ... , sm with m = deg r < deg f = n. 

(ii) =} (iii) Let T = R[s]. 
(iii) =} (iv) Let B be the subring T. Since R C R[s] C T, B is an R[s]-module 

that is finitely generated as an R-module by (iii). Since Is E B, uB = 0 for any u E S 
implies u = uls = 0; that is, the annihilator of Bin R[s] is O. 

(iv) =} (i) Let B be generated over R by bl , ••• , bn. Since B is an R[s]-module 
sbi E B for each i. Therefore there exist ri; E R such that 
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sbl = rubl + r12h2 + ... + r'nbn 
sb2 = r21bl + ·r22b2 + ... + rznbn 

Consequently, 

(ru - s)bl + r12,b2 + ... + rln bn = 0 
r21 bl + (r22 - s)b2 + ... + r2n bn = 0 

Let M be the n X n matrix (rij} and let d ~ R[sl be the determinant of the matrix 
M - sIn. Then db i = 0 for all i by Exercise VII.3.8. Since B is generated by the 
bi, dB = o. Since the annihilator of Bin R[sl is zero by (iv) we must have d = O. If J 
is the polynomial 1M - xlnl in R[x], then one of f, - Jis monic and 

± J(s) = ±IM - sIn I = ±d = o. 

Therefore s is integral over R. • 

Corollary 5.4. IJS is a ring-extension oJR andS isjinitely generated as an R-module, 
then S is an integral extension oJR. 

PROOF. For any s ~ S let S = T in part (iii) of Theorem 5.3. Then s is integral 
over R by Theorem 5.3(i). • 

The proofs of the next propositions depend on the following fact. If Res C T 
are rings (with 1r ~ R) such that T is a finitely generated S-module and S is a finitely 
generated R-module, then T is a finitely generated R-module. The second paragraph 
of the proof of Theorem IV.2.16 contains a proof of this fact, mutatis mutandis. 

Theorem 5.5. IJS is an extension ring oJR and SI, ••• , St E S are integral over R, 
then R[sJ, ... , stl is ajinitely generated R-module and an integral extension ring oJR. 

PROOF. We have a tower of extension rings: 

For each i, Si is integral over R and hence integral over R[sJ, ... ,si-d. Since 
R[sJ, ... ,s,] = R[sJ, ... , si-d[s,], R[sJ, ... ,sd is a finitely generated module over 
R[sJ, ... , si-d by Theorem 5.3 (i), (ii). Repeated application of the remarks preced-
ing the theorem shows that R[sJ, ... , snl is a finitely generated R-module. Therefore, 
R[sJ, ... , snl is an integral extension ring of R by Corollary 5.4. • 
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Theorem 5.6. 1fT is an integral extension ring ofS and S is an integral extension 
ring ofR, then T is an integral extension ring ofR. 

PROOF. Tis obviously an extension ring of R. If t e T, then t is integral over S 
n 

and therefore the root of some monic polynomial fe S[x], say f = L SiXi. Since fis 
i=O 

also a polynomial over the ring R[so,sI, ... , sn-d, t is integral over R[so, ... , sn-d. 
By Theorem 5.3 R[so, ... , sn-d[t] is a finitely generated R[so, ... , sn_d-module. But 
since S is integral over R, R[so, ... , sn-d is a finitely generated R-module by Theorem 
5.5. The remarks preceding Theorem 5.5 show that 

R[so, ... ,sn_d[t] = R[so, ... , Sn-I,t] 

is a finitely generated R-module. Since R[t] C R[so, ... , so-I,d, t is integral over R 
by Theorem 5.3(iii). • 

Theorem 5.7. Let S be an extension ring ofR and let R be the set of all elements ofS 
that are integral over R. Then R is an integral extension ring ofR which contains every 
subring ofS that is integral over R. 

PROOF. If s,t e R, then s,t e R[s,tj, whence t - s e R[s,tj and ts e R[s,tj. Since s 
and t are integral over R, so is the ring R[s,tj (Theorem 5.5). Therefore t - s e Rand 
ts e R. Consequently, R is a subring of S (see Theorem 1.2.5). R contains R since 
every element of R is trivially integral over R. The definition of R insures that R is 
integral over R and contains all subrings of S that are integral over R. • 

If S is an extension ring of R, then the ring R of Theorem 5.7 is called the integral 
closure of R in S. If R = R, then R is said to be integrally closed in S. 

REMARKS. (i) Since 1 R eRe R, S is an extension ring of R. Theorems 5.6 and 
5.7 imply that R is itself integrally closed in S. (ii) The concepts of integral closure 
and integrally closed rings are relative notions and refer to a given ring R and a par
ticular extension ringS. Thus the phrase "R is integrally closed" is ambiguous unless 
an extension ring S is specified. There is one case, however, in which the ring S is 
understood without specific mention. An integral domain R is said to be integrally 
closed provided R is integrally closed in its quotient field (see p. 144). 

EXAMPLE. The integral domain Z is integrally closed (in the rational field Q; 
Exercise 8). However, Z is not integrally closed in the field C of complex numbers 
since i e C is integral over Z. 

EXAMPLE. More generally, every unique factorization domain is integrally 
closed (Exercise 8). In particular, the polynomial ring F[xI, ... ,x;,] (F a field) is 
integrally closed in its quotient field F(xI, ... , x.). 

The following theorem is used only in the proof of Theorem 6.10. 

Theorem 5.8. Let T be a multiplicative subset of an integral domain R such that O. T. If R is integrally closed, then T-IR is an integrally closed integral domain. 
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SKETCH OF PROOF. T-IR is an integral domain (Theorem III.4.3(ii» and R 
may be identified with a subring of T-IR (Theorem III.4.4(ii». Extending this identi
fication, the quotient field Q(R) of R may be considered as a subfield of the quotient 
field Q(T-IR) of T-IR. Verify that Q(R) = Q(T-IR). 

Let u E Q(T-IR) be integral over T-IR; then for some ri E Rand Si E T, 

Multiply through this equation by sn, where s = So$l· . ·Sn-_I E T, and conclude that 
su is integral over R. Since su E Q(r-1R) = Q(R) and R is integrally closed, su E R. 
Therefore, U = su/s E r-1R, whence r-1R is integrally closed. • 

The remainder of this section is devoted to exploring the relationships between 
(prime) ideals in rings Rand S, where S is an extension ring of R. The only point in 
the sequel where this material is used is in the proof of Lemma 7.3. 

If S is an extension ring of R and I (~S) is an ideal of S, it is easy to see that 
I n R ~ R and I n R is an ideal of R (Exercise 10). The ideal J = I n R is called 
the contraction of I to R and I is said to lie over J. 

If Q is a prime ideal in an extension ring S of a ring R, then the contraction 
Q n R of Q to R is a prime ideal of R (Exercise 10). The converse problem is: given 
a prime ideal P in R does there exist a prime ideal Q in S that lies over P (that is, 
Q n R = P)? There are many examples where the answer is negative (for example, 
the extension of Z by the field Q of rationals). A partial solution to the problem is 
given by the next theorem, which is due to Cohen-Seidenberg. 

Theorem 5.9. (Lying-over Theorem) Let S be an integral extension ring ofR and P a 
prime ideal ofR. Then there exists a prime ideal Q in S which lies over P (that is, 
Q n R = P). 

PROOF. Since P is prime, R -. P is a multiplicative subset of R (Theorem 2.1) 
and hence a multiplicative subset of S. Clearly 0 ~ R - P. By Theorem 2.2 there is an 
ideal Q of S that is maximal in the set of all ideals I of S such that I n (R - P) = >25; 
furthermore any such ideal Q is prime in S. Clearly Q nRC P. If Q n R ~ P, 
choose U E P such that U. Q. Then the ideal Q + (u) in S properly contains Q. By 
maximality there exists e E (Q + (u» n (R - P), saye = q + su (q E Q;s E S). Since 
s is integral over R, there exist ri E R such that 

Multiplying this equation by un yields 

Since su = e - q the Binomial Th(~orem III.1.6 implies that 

But v E R and hence v ERn Q C P. But u E P and v E P imply en E P. Since P is 
prime, e must lie in P, which is a contradiction. • 
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Corollary 5.10. (Going-up Theorem) Let S be an integral extension ring ofR and PI, 
P prime ideals in R such that PI C P./fQI is a prime idealofS lying ooer PI, then there 
exists a prime ideal Q ofS such that QI C Q and Q lies ooer P. 

SKETCH OF PROOF. As in the proof of Theorem 5.9, R - P is a multiplica
tive set in S. Since QI n R = PI C P, we have QI n (R - P) = 0. By Theorem 
2.2 there is a prime ideal Q of S that contains QI and is maximal in the set of all ideals 
1 of S such that QI eland 1 n (R - P) = 0. The proof of Theorem 5.9 now 
carries over verbatim to show that Q n R = P. • 

Theorem 5.11. Let S be an integral extension ring ofR andP a prime ideal in R.lfQ 
and Q' are prime ideals in S such that Q C Q' and both Q and Q' lie ooer P, then 
Q = Q'. 

PROOF. It suffices to prove the following statement: if Q is a prime ideal in S 
such that Q n R = P, then Q is maximal in the set S of all ideals 1 in S with the 
property 1 n (R - P) = 0. 

If Q is not maximal in S, then there is an ideal 1 in S with 

Q eland 1 n (R - P) = 0. 
'" 

Consequently,1 nRC P. Choose u E 1 - Q. Since u is integral over R, the set of 
all monic polynomialsfE R[xl such that degf2: 1 andf(u) E Q is nonempty. Choose 

n 

such an f of least degree, say f = L riXi. Then 
i=O 

un + rn_IUn- 1 + ... + rlu + roE Q C I, 

whence ro E 1 nRC P = Q nRC Q. Therefore 

u(un- 1 + rn_Iun- 2 + ... + r2U + rl) E Q. 

By the minimality of deg f, (un - I + rn _Iun - 2 + ... + r1)' Q, and u + Q by choice. 
This is a contradiction since Q is prime (Theorem 111.2.15). Therefore Q is maximal 
inS .• 

Theorem 5.12. Let S be all integral extension ring ofR and let Q be a prime ideal in S 
which lies ooer a prime ideal P in R. Then Q is maximal in S ifand only ifP is maximal 
in R. 

PROOF. Suppose Q is maximal in S. By Theorem 111.2.18 there is a maximal 
ideal M of R that contains P. M is prime by Theorem 1II.2.19. By Corollary 5.10 
there is a prime ideal Q' in S such that Q C Q' and Q' lies over M. Since Q' is prime, 
Q' ~ S (Definition III.2.14). The maximality of Q implies that Q = Q', whence 
P = Q n R = Q' n R = M. Therefore, P is maximal in R. 

Conversely suppose P is maximal in R. Since Q is prime in S,Q ~ S and there is 
a maximal ideal N of S containing Q (Theorem 111.2.18). N is prime by Theorem 
III.2.19, whence lR = Is 4 N. Since P = R n Q eRn NCR, we must have 

'" P = R n N by maximality. Thus Q and N both lie over P and Q C N. Therefore, 
Q = N by Theorem 5.11. • 
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EXERCISES 

Note: Unless otherwise specified, S is always an extension ring of R. 

I. Let S be an integral extension ring of R and suppose Rand S are integral do
mains. Then S is a field if and only if R is a field. [Hint: Corollary III.2.21.] 

2. Let R be an integral domain. If the quotient field F of R is integral over R, then 
R is a field. 

3. Let R be an integral domain with quotient field F. If 0 ¢ a e R and hi a e F is 
integral over R, then a is a unit in R. 

4. (a) Let R be an integral domain with quotient field F. If 0 ¢ a e R, then the 
following are equivalent: 

(i) every nonzero prime ideal of R contains a; 
(ii) every nonzero ideal of R contains some power of a; 

(iii) F = R[hla] (ring extension). 
An integral domain R that contains an element a ¢ 0 satisfying (i)-(iii) is called 
a Goldmann ring. 

(b) A principal ideal domain is a Goldmann ring if and only if it has only finitely 
many distinct primes. 
(c) Is the homomorphic image of a Goldmann ring also a Goldmann ring? 

5. If S is an integral extension ring of R and I : S -+ S is a ring homomorphism, 
such that l(1s) = Is, then I(S) is an integral extension ring of I(R). 

6. If S is an integral extension ring of R, then S[xJ, ... , x.] is an integral extension 
ring of R[xI, ... , xn ]. 

7. If S is an integral extension ring of Rand T is a mUltiplicative subset of R (0 ~ T), 
then lIS is an integral extension of liR. [Hint: If sit e T-1S, then sit = 

tPT(s)(IRlt), where tPT : S -+ T-IS is the canoni!;al map (Theorem III.4.4). Show 
that tPT(S) and IRlt are integral over T-1R, whence sit is integral over llR by 
Theorem 5.5.] 

8. Every unique factorization domain is integrally closed. [Hint: Proposition 
1II.6.8.] 

9. Let T be a commutative ring with identity and lSi lie J), I R; lie II families of 
subrings such that T is an extension ring of Si and S; is an extension ring of Ri for 
every i. If each Ri is integrally closed inS;, then n R; is integrally closed in n S;. 

i i 

10. (a) If I (¢S) is an ideal of S, then I n R ¢ R and I n R is an ideal of R. 
(b) If Q is a prime ideal of S, then Q n R is a prime ideal of R. 

6. DEDEKIND DOMAINS 

In this section we examine the class of Dedekind domains. It lies properly be
tween the class of principal ideal domains and the class of Noetherian integral 
domains. Dedekind domains are important in algebraic number theory and the 
algebraic theory of curves. The chief result is Theorem 6.1 0 which characterizes 
Dedekind domains in several different ways. 
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The definition of a Dedekind domain to be given below is motivated by the 
following facts. Every principal ideal domain D is Noetherian (Lemma III.3.6). Con
sequently, every ideal (r! D) has a primary decomposition (Theorem 3.6). The intro
duction to Section 2 shows that a particularly strong form of primary decomposition 
holds in a principal ideal domain, namely: every proper ideal is (uniquely) a prod
uct of prime ideals. 

Definition 6.1.A Dedekind domain is an integral domain R in which every ideal(~ R) 
is the product of a finite number of prime ideals. 

EXAMPLE. The preceding discussion shows that every principal ideal domain 
is Dedekind. The converse, however, is false. There is an example after Theorem 6.10 
below of a Dedekind domaJn that is not a principal ideal domain. 

It is not immediately evident from the definition that every Dedekind domain is 
in fact Noetherian. In order to prove this fact and to develop other properties of 
Dedekind domains we must introduce the concept of a fractional ideal. 

Definition 6.2. Let R be an integral domain with quotient field K. A fractional ideal 
ofR is a nonzero R-submodule I ofK such that aI C R for some nonzero a e R. 

EXAMPLE. Every ordinary nonzero ideal I in an integral domain R is an R-sub
module of R and hence a fractional ideal of R. Conversely, every fractional ideal of R 
that is contained in R is an ordinary ideal of R. 

EXAMPLE. Every nonzero finitely generated R-submodule I of K is a fractional 
ideal of R. For if I is generated by b!, ... , bn e K, then I = Rbi + ... + Rbn and for 
each i, bi = Cjai with 0 r! ai, Ci e R. Let a = ala2·· ·an. Then a r! 0 and 
aI = Ra2· .. anCI + ... + Ral· .. an_ICn C R. 

REMARK. If I is a fractional ideal of a domain Rand aI C R (0 r! a e R), then 
al is an ordinary ideal in R and the map 1-> al given by x f--> ax is an R-module 
isomorphism. 

Theorem 6.3. If R is an integral domain with quotient field K, then the set of all 
fractional ideals ofR forms a commutative monoid, with identity R and multiplication 

given by IJ = {± ajbi I ai e I; bi e J; n.e N*}. 
t= 1 

PROOF. Exercise; note that if I andJ are ideals in R, then IJis the usual product 
of ideals. • 

A fractional ideal I of an integral domain R is said to be invertible if IJ = R for 
some fractional ideal J of R. Thus the invertible fractional ideals2 are precisely those 
that have inverses in the monoid of all fractional ideals. 

2In the literature invertible fractional ideals are sometimes called simply invertible ideals. 
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REMARKS. (i) The inverse of an invertible fractional ideal I is unique and is 
I-I = (a E K I aI C R l. Indeed for any fractional ideal I the set I-I = (a E K I aI C R l 
is easily seen to be a fractional ideal such that I-II = II-I C R. If I is invertible and 
IJ = JI = R, then clearly J C 1-1. Conversely, since I-I and J are R-submodules of 
K,I-l = RI-l = (JI)I-I = J(/I-I) C JR = RJ C J, whence J = 1-1. 

(ii) If I,A,B are fractional ideals of R such that IA = IB and I is invertible, then 
A = RA = (/-II)A = I-l(lB) = RB = B. 

(iii) If I is an ordinary ideal in R, then ReI-I. 

EXAMPLE. Every nonzero principal ideal in an integral domain R is invertible. 
If K is the quotient field of R and I = (b) with b ~ 0, let J = Rc C K where c = 1 RI b. 
Then J is a fractional ideal of R such that IJ = R. 

Invertible fractional ideals playa key role in characterizing Dedekind domains. 
The next five results develop some facts about them. 

Lemma 6.4. Let I, II, 12, ••• , In be ideals in an integral domain R. 

(i) The ideal 1112 , •• In is invertible if and only if each I j is invertible. 

(ii) If Pl' . 'Pm = I = QI" 'Q", where the Pi and Qj are prime ideals in Rand 
every Pi is invertible, then m = nand (afterreindexing) Pi = QJor each i = 1, ... , m. 

PROOF. (i) If J is a fractional ideal such that J(/I' .. In) = R, then for each 
j = 1,2, ... ,n, IlJII· .. Ij_dj+I' .. In) = R, whence I j is invertible. Conversely, if 
each I j is invertible, then (/1" . In) (/1-1 ... In -I) = R, whence II" . In is invertible. 

(ii) The proof is by induction on m with the case m = 1 being left to the reader. 
If m > 1, choose one of the Pi, say PI, such that PI does not properly contain Pi for 
i = 2, ... ,m. Since Q,' .. Qn = Pl" 'Pm C p, and P, is prime some Q" say Q" is 
contained in PI (Definition III.2.l4). Similarly since Pl' . 'Pm = QI" . Qn C QI, 
Pi C QI for some i. Hence Pi C Q, C PI. By the minimality of P, we must have 
Pi = QI = Pl. Since PI = Ql is invertible, Remark (ii) after Theorem 6.3 implies 

P2P3·· 'Pm = QZQ3'" Qn. 

Therefore by the induction hypothesis m = n and (after reindexing) Pi = Qi for 
i = 1,2, ... ,m. • 

The example preceding Lemma 6.4 and Theorem 111.3.4 show that every nonzero 
prime ideal in a principal ideal domain is both invertible and maximal. M0re generally 
we have 

Theorem 6.5. IfR is a Dedekind domain, then ecery nonzero prime ideal ofR is in
vertible and maximal. 

PROOF. We show first that every invertible prime ideal P is maximal. If 
a E R - P, we must show that the ideal P + Ra generated by P and a is R. If 
P + Ra ~ R, then since R is Dedekind, there exist prime ideals Pi and Qj such that 
P + Ra = P1P2 • • 'Pm and P + Ra2 = QIQ2" . Qn. Let 7r : R ---> RIP be the canoni
cal epimorphism and consider the principal ideals in RIP generated respectively by 
7r(a) and 7r(a2). Clearly 

(7r(a» = 7r(P1), •• 7r(Pm) and (7r(a2» = 7r(QI)' . ·7r(Qn). 
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Since ker rr = P C Pi and P C Qi for each i, the ideals rr(Pi) and rr(Qi) are prime in 
R/ P (Exercise III.2.17(a». Since R/ P is an integral domain (Theorem II1.2.l6), every 
principal ideal in R/P is invertible (see the example preceding Lemma 6.4). Con
sequently, rr(Pi) and rr(Qi) are invertible by Lemma 6.4(i). Since 

rr(QI)" ·rr(Qn) = (rr(a2» = (rr(a»2 = rr(PI)2 .. ·rr(Pm)2, 

Lemma 6.4(ii) implies n = 2m and (after reindexing) rr(Pi) = rr(Q2i) = rr(Q2i-l) for 
i = 1,2, ... , m. Since Ker rr = Pc Pi and Pc Qi for all i,i, 

Pi = rr-l(rr(Pi» = rr-l(rr(Q2i» = Q2i 

and similarly Pi = Q2i-1 for i = 1,2, ... , m. Consequently, P + Ra2 = (P + Ra)2 
and PcP + Ra2 C (P + Ra)2 C p2 + Ra. If b = c + ra e P (c e p2,r e R), then 
ra e P. Thus reP since P is prime and a, P. Therefore, P C p2 + Pa C P, which 
implies P = p2 + Pa = PcP + Ra). Since P is invertible, R = JHP = P-IP(P + Ra) 
= R(P + Ra) = P + Ra. This is a contradiction. Therefore every invertible prime 
ideal P is maximal. 

Now suppose P is any nonzero prime ideal in Rand c is a nonzero element of P. 
Then (c) = P I P2 • • 'Pn for some prime ideals Pi. Since P IP2· . 'Pn = (c) C P, we have 
for some k, Pk C P (Definition II1.2.14). The principal ideal (c) is invertible and 
hence so is Pk (Lemma 6.4(i». By the first part of the proof Pk is maximal, whence 
Pk = P. Therefore, P is maximal and invertible. • 

EXAMPLE. If F is a field, then the principal ideals (Xl) and (X2) in the poly
nomial domain F[XI,X2J are prime but not maximal (since (Xi) C (XI,X2) C F[XI,X2]). 

-F -F 

Consequently, F[XI,X2J is not Dedekind (Theorem 6.5). Since F[XI,X2J is Noetherian 
by Theorem 4.9, the class of Dedekind domains is properly contained in the class of 
Noetherian domains. 

Lem rna 6.6. Ifl is a fractional ideal of an-integral domain R with quotient field K and 
f e HomR(I,R), then for all a,b e I: af(b) = bf(a). 

PROOF. Now a = r/s and b = v/t (r,s,v,t e R; s,t,= 0) so sa = rand tb = v. 
Hence sab = rb e I and tab = va e I. Thus sf{tab) = f(stab) = tf(sab) in R. 
Therefore, af(b) = saf(b)/ s = f(sab)/ s = f(tab)/ t = tbf(a)/ t = bf(a). • 

Lemma 6.7. Every invertible fractional ideal of an integral domain R with quotient 
field K is a finitely generated R-module. 

n 

PROOF. Since I-II = R, there exist ai e I-I,bi e I such that lR = L aib;. If 
n 1=1 

C e I, then c = L (cai)bi. Furthermore each cai e R since ai e I-I = I a e K I aI C R I. 
i=l 

Therefore I is generated as an R-module by bI, ... , bn (Theorem IV.1.5(iii». • 

We have seen that every nonzero ideal I in a principal ideal domain D is in
vertible. Furthermore I is isomorphic to D as a D-module (see Theorem IV.l.5(i». 
Thus I is a free and hence projective D-module. This result also holds in arbitrary 
integral domains. 
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Theorem 6.8. Let R be an integral domain and I a fractional ideal ofR. Then I is in
vertible if and only if I is a projective R-module. 

PROOF. (=) By Lemma 6.7 and Theorem IV.l.5, I = Rbi + ... + Rbn with 
n 

bi € I and IR = L: aibi (ai € I-I). Let F be a free R-module with a basis of n elements 
i=l 

el, ... , en. Then the map 7r : F ---- I defined by ei ~ bi is an R-module epimorphism 

(see Theorem IV.2.l), and there is a short exact sequence: 0 ---- Ker 7r ---- F ~ 1----0. 
Define r : 1---- Fby r(c) = calel + ... + canen (c € I) and verify that r is an R-module 
homomorphism such that 7rr = II; (note that cai E R for each i since ai E I-I). Con
sequently the exact sequence splits and 1 is a direct summand of a free R-module 
(Theorem IV.l.18). Therefore, I is projective by Theorem IV.3.4. 

(<=) Let X = {bi I j E JI be a (possibly infinite) set of nonzero generators of the 
projective R-module I. Let bo be a fixed element of X. Let F be a free R-module with 
basis {ei I j E J\ and let I/> : F ---- I be the R-module epimorphism defined by ei ~ bi 
(Theorem IV.2.l). Since I is projective there is an R-module homomorphism 
if; : 1 ---- F such that I/>if; = 1 I. For each j E J let 7r i : F ---- Rei '" R be the canonical 
projection that maps L: riei E F onto ri E R (see Theorem IV.2.l). Then for eachj the 

i 

map 0i = 7riif; : 1---- R is an R-module homomorphism. Let Ci = Oi(bo). For any 
c E I, cCi = cOi(bo) = boO;(c) by Lemma 6.6, whence in the quotient field K of R, 
C(Ci/bO) = CCi/bO = boO;(c)/bo = 0i(C) E R. Therefore 

c;/ bo E I-I = {a E K I aI C R I. 

Consequently, for any c E I 

if;(c) = L O;(c)ei = L c(c;/bO)ei' 
jeJl jeJl 

where JI is the finite subset (j E J I lI i (c) rf' 0 \. Therefore, for any nonzero c E I, 

c = I/>if;(c) = I/>(L: C(ci/bo)ei) = L c(c;/bo)bi = c(L: (c;/bo)bi), 
j.J 1 j.J 1 jeJ, 

whence In = L (Ci/bO)bi with Ci/bO E I-I. It follows that ReI-II. Since I-lIe R 
j.J, 

is always true, R = I-II. Therefore I is invertible. • 

The characterization of Dedekind domains to be given below requires us to intro
duce another concept. A discrete valuation ring is a principal ideal domain that has 
exactly one nonzero prime ideal; (the zero ideal is prime in any integral domain). 

Lemma 6.9. If R is a Noetherian, integrally closed integral domain and R has a 
unique nonzero prime ideal P, then R is a discrete valuation ring. 

PROOF. We need only show that every proper ideal in R is principal. This re
quires the following facts, which are proved below: 

(i) Let K be the quotient field of R. For every fractional ideal I of R the set 
1 = {a E K I aI C II is precisely R; 

(ii) Rep-I. 
;0' , 

(iii) P is invertible; 
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(iv) n pn = 0; 
n.N* 

(v) p is principal. 

Assuming (i)-(v) for now, let/be any properideal of R. Then lis contained in a non
zero maximal ideal M of R (Theorem 111.2.18), which is necessarily prime (Theorem 
III.2.19). By uniqueness M = P, whence I C P. Since n pn = 0 by (iv), there is a 

nlN* 
largest integer m such that I C pm and I ¢ pm+l. Choose be 1- pm+!. Since 
p = (a) for some a e R by (v), pm = (a)m = (am). Since be pm, b = uam. Further
more, u, P = (a) (otherwise be pm+! = (am+I». Consequently, u is a unit in R; 
(otherwise (u) would be a proper ideal by Theorem 111.3.2 and hence contained in P 
by the argument used above). Therefore by Theorem 111.3.2 pm = (am) = (uam) 
= (b) C I, whence I is the principal ideal pm = (am). 

Statements (iHv) are justified as follows. 
(i) Clearly R C 1. It is easy to see that j is a subring of K and a fractional ideal 

of R, whence j is isomorphic (as an R-module) to an ideal of R (Remark preceding 
Theorem 6.3). Thus since R is Noetherian, j is finitely generated (Theorem 1.9). 
Theorem 5.3 (with T = 1) implies that every element of 1 is integral over R. There
fore, 1 C R since R is integrally closed. Hence 7 = R. 

(ii) Recall that R C J-I for every ideal J in R. Let 5" be the set of all ideals J in.R 
such that R C J-I. Since P is a proper ideal (Definition III.2.14), every nonzero ele

;" 

ment of P is a nonunit by Theorem 111.3.2. If J = (a), (0 ~ a e P), then 1RI a e J-I, 
but 1Rla. R, whence R C J-I. Therefore, 5" is nonempty. Since R is Noetherian, 5" 

;" 

contains a maximal element M (Theorem 1.4). We claim M is a prime ideal of R. If 
ab e M with a,b e R and a, M, choose c e M-I - R. Then c(ab) e R, whence 
bc(aR + M) C Rand bc daR + M)-I. Therefore, bc e R (otherwise, aR + Me 5", 
contradicting the maximality of M). Consequently, c(bR + M) C R, and thus 
c e (bR + M)-I. Since c, R the maximality of M implies that bR + M = M, 
whence be M. Therefore M is prime by Theorem 111.2.15. Since M ~ 0, we must 
have P = M by uniqueness. Thus R C M-I = ~I. 

;" 

(iii) Clearly P C p~1 C R. The argument in the first paragraph of the proof 
shows that P is the unique maximal ideal in R, whence P = p~1 or p~1 = R. 
But if P = p~l, then ~I C P and by (i) and (ii), R C ~I C P = R, which is a 

;" 

contradiction. Therefore pp-I = Rand P is invertible. 
(iv) If n pn ~ 0, then n pn is a fractional ideal of R. Verify that 

nr.N* neN* 

~I C n pn. Then by (i) and (ii) R C P-I C n pn = R, which is a contra-
nlN* ;" neN* 

diction. 
(v) There exists a e P such that a f Pl; (otherwise P = p2, whence n pn = 

noN* 
p ~ 0 contradicting (iv». Then ap-I is a nonzero ideal in R such that ap-I ¢ p 
(otherwise, a e aR = a~lp C P2). The first paragraph of the proof shows that 
every proper ideal in R is contained in P, whence ap-I = R. Therefore by 
(iii), (a) = (a)R = (a)P-IP = (ap-I)P = RP = P. • 

Theorem 6.10. The following conditions on an integral domain R are equivalent. 

(i) R is a Dedekind domain; 
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(ii) every proper ideal in R is uniquely a product of a finite number of prime 
ideals; 

(iii) every nonzero ideal in R is invertible; 
(iv) every fractional ideal ofR is invertible; 
(v) the set of all fractional ideals ofR is a group under multiplication; 

(vi) every ideal in R is projective; 
(vii) every fractional ideal ofR is projective; 

(viii) R is Noetherian, integrally closed and every nonzero prime ideal is maximal; 
(ix) R is Noetherian and for every nonzero prime ideal P ofR, the localization 

Rp ofR at P is a discrete valuation ring. 

PROOF. The equivalence (iv) ¢::} (v) is trivial (see Theorem 6.3). (i) ==> (ii) and 
(ii) ==> (iii) follow from Lemma 604 and Theorem 6.5. (iii) ¢::} (vi) and (vii) ¢::} (iv) are 
immediate consequences of Theorem 6.S. (vi) ==> (vii) follows from the Remark 
preceding Theorem 6.3. In order to complete the proof we need only prove the 
implications (iv) ==> (viii), (viii) ==> (ix) and (ix) ==> (i). 

(iv) ==> (viii) Every ideal of R is invertible by (iv) and hence finitely generated by 
Lemma 6.7. Therefore R is Noetherian by Theorem 1.9. Let K be the quotient field 
of R. If u E K is integral over R, then R[u] is a finitely generated R-submodule of K 
by Theorem 5.3. Consequently, the second example after Definition 6.2 shows that 
R[u] is a fractional ideal of R. Therefore, R[u] is invertible by (iv). Thus since 
R[u]R[u] = R[u], R[u] = RR[u] = (R[U]-IR[u])R[u] = R[UJ-IR[u] = R, whence u E R. 
Therefore R is integrally closed. Finally if P is a nonzero prime ideal in R, then there 
is a maximal ideal M of R that contains P (Theorem II1.2.lS). M is invertible by (iv). 
Consequently M-IP is a fractional ideal of R with M-IP eM-1M = R, whence 
M-IP is an ideal in R. Since M(M--IP) = RP = P and P is prime; either M C P or 
M-IP C P. But if M-IP C P, then R C M-I = M-IR = M-IPp--I C pp--I C R, 
whence M-I = R. Thus R = MM-I = MR = M, which contradicts the fact that M 
is maximal. Therefore M C P and hence M = P. Therefore, P is maximal. 

(viii) ==> (ix) Rp is an integrally closed integral domain by Theorem 5.S. By 
Lemma II1A.9 every ideal in Rp is of the form Ip = ! il s liE I;s' Pj, where I is an 
ideal of R. Since every ideal of R is finitely generated by (viii) and Theorem 1.9, it 
follows that every ideal of Rp is finitely generated. Therefore, Rp is Noetherian by 
Theorem 1.9. By Theorem IIIA.ll every nonzero prime ideal of Rpis of the form Ip, 
where I is a nonzero prime ideal of R that is contained in P. Since every nonzero 
prime ideal of R is maximal by (viii), Pp must be the unique nonzero prime ideal in 
Rp. Therefore, Rp is a discrete valuation ring by Lemma 6.9. 

(ix) ==> (i) We first show that every ideal I (~O) is invertible. II-I is a fractional 
ideal of R contained in R (Remark (i) after Theorem 6.3), whence II-I is an ideal in R. 
If II-I ~ R, then there is a maximal ideal M containing II-I (iheorem III.2.lS). 
Since M is prime (Theorem III.2.19), the ideal 1M in RM is principal by (ix); say 
1M = (al s) with a E I and s E R - M. Since R is Noetherian, I is finitely generated, 
say I = (bl, ... ,bn), by Theorem 1.9. For each i, b;/h E 1M , whence in RM , 

bi/l R = (r;/si)(als) for some ri e R, Si E R - M. Therefore sisbi = ria E I. Let 
t = SSlS2' .. Sn. Since R - M is multiplicative, t E R - M. In the quotient field of R 
we have for every t, (tfa)b; = tbda = SI ... S;-IS;+1 ... s.r; E R, whence tfa E rl. 
Consequently t = (11 a)a E I-II C M, which contradicts the fact that t E R - M. 
Therefore II-I = R and I is invertible. 

For each ideal I (~R) of R choose a maximal ideal M/ of R such that 
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Ie M j C R (Theorem III.2.1S; Axiom of Choice). If I = R, let MR = R. Then 

'" IMj-1 is a fractional ideal of R with IMj-1 C MjMI-I C R. Therefore, IMj-1 is an 
ideal of R that clearly contains I. Also, if I is proper, then I C IMj-1 (otherwise 

'" since I and MJ are invertible, R = RR = (J-I/)(MI-IMJ) = I-I(IMJ-I)MI = I-IIMI 
= RMI = M I, which contradicts the choice of M I). Let S be the set of all ideals of R 
and define a function f : S -> S by I f--+ IMj-l. Given a proper ideal 1, there exists by 
the Recursion Theorem 6.2 of the Introduction (with In = ffor all n) a function 
cp : N -> S such that cp(O) = 1 and cp(n + 1) = f(cp(n». If we denote cp(n) by In and 
MJ n by Mn, then we have an ascending chain of ideals 1 = 10 ell C 12 C·· . 
such that 1 = 10 and In+1 = f(ln) = lnMn -I. Since R is Noetherian and 1 is proper, 
there is a least integer k such that 

1 = 10 C 11 C ... elk_I C lk = l k+l. 

'" '" '" '" 
Thus lk = l k+1 = f(lk) = hMk-l. The remarks above show that this can occur only 
if h = R. Consequently, R = lk = f(lk- l) = h_IM'~I' whence 

l k_1 = l k_IR = l k_IM;;'1 M k- I = RMk_1 = M k_l • 

Since M k_1 = l k- I C lk = R, M k- I is a maximal ideal. The minimality of k in

'" sures that each of Mo, ... , M k - 2 is also maximal (otherwise Mi = R, whence 
li+1 = l iM i-1 = l i R-1 = l,R = li)' It is easy to verify that 

M k_1 = l k_ 1 = l k_2M".\ = lk-3M"~3Mk~2 = ... = lMo-IMI-I .. ·M"~2· 

Consequently, since each Mi is invertible, 

Mk_I(Mo" . M k_2) = lMo-I .. ·M"~lMo·· . M k_ 2) = 1. 

Thus 1 is the product maximal (hence prime) ideals. Therefore R is Dedekind. • 

We close with an example showing that the class of principal ideal domains is 
properly contained in the class of Dedekind domains. 

EXAMPLE. The integral domain Z[-vtO] = la + b~10 I a,b e Zl has quotient 
field Q( ~1 0) = I r + s-..j1O I r,s e Q l. A tedious calculation and elementary number 
theory show that Z[~10] is integrally closed (Exercise 14). Since the evaluation map 
Z[x]-> Z[~lO] given by f(x) f--+ f(~lO) is an epimorphism and Z[x] is Noetherian 
(Theorem 4.9), Z[~lO] is also Noetherian (Exercise 1.5). Finally it is not difficult to 
prove that every nonzero prime ideal of Z[ -..j1O] is maximal (Exercise 15). Therefore 
Z[~10] is a Dedekind domain by Theorem 6.l0(viii). However Z[-..j1O] is not a 
principal ideal domain (Theorem III.3.7 and Exercise 111.3.4). 

EXERCISES 

1. The ideal generated by 3 and 1 + {5i in the subdomain Z[~5i] of C is in
vertible. 

2. An invertible ideal in an integral domain that is a local ring is principal. 

3. If I is an invertible ideal in an integral domain Rand S is a multiplicative set in 
R with 0 f S, then S-II is invertihle in S-IR. 
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4. Let R be any ring with identity and P an R-module. Then P is projective if and 
only if there exist sets I ai liE Il C P and I fi liE Il C HomR(P,R) such that 
for all a E P, a = L: j;(a)ai. [See the proof of Theorem 6.8.] 

i.J 

5. (Converse of Lemma 6.9) A discrete valuation ring R is Noetherian and in
tegrally closed. [Hint: Exercise 5.8.] 

6. (a) If every prime ideal in an integral domain R is invertible, then R is Dedekind. 
(b) If R is a Noetherian integral domain ill which every maximal ideal is in
vertible, then R is Dedekind. 

7. If S is a multiplicative subset of a Dedekind domain R (with hE S,O, S), then 
S-l R is a Dedekind domain. 

8. If R is an integral domain and P a prime ideal in R[x] such that.P n R = 0, 
then R[x]p is a discrete valuation ring. 

9. If a Dedekind domain R has only a finite number of nonzero prime ideals 
P lo • •• ,Pn , then R is a principal ideal domain. [Hint: There exists ai E Pi - Pi2 

and by the Chinese Remainder Theorem 111.2.25 there exists bi E P, such that 
bi == ai (mod Pi) and bi == IR (mod Pi) for j 'f"!. i. Show that Pi = (bi ), which im
plies that every ideal is principal.] 

10. If I is a nonzero ideal in a Dedekind domain R, then Rj I is an Artinian ring. 

11. Every proper ideal in a Dedekind domain may be generated by at most two 
elements. 

12. An R-module A is divisible if rA = A for all nonzero r E R. If R is a Dedekind 
domain, every divisible R-module is injective. [N.B. the converse is also true, 
but harder.] 

13. (Nontrivial) If R is a Dedekind domain with quotient field K, F is a finite di
mensional extension field of K and S is the integral closure of R in F (that is, the 
ring of all elements of F that are integral over R), then S is a Dedekind domain. 

14. (a) Prove that the integral domain Z[~IO] is an integral extension ring of Z with 
quotient field Q( -vtO). 
(b) Let u E Q(~10) be integral over Z[~iO]. Then u is integral over Z (Theorem 
5.6). Furthermore if U E Q, then U E Z (Exercise 5.8). Prove that if U E Q(~IO) 
and U i Q, then u is the root of an irreducible monic polynomial of degree 2 in 
Z[x]. [Hint: Corollary III.6.13 and Theorem V.1.6.] 
(c) Prove that if u = r + s~10 E Q(-vtO) and u is a root of x 2 + ax + bE Z[x], 
then a = -2r and b = r2 - IOS2. [Hint: note that u2 - 2ru + (r2 - lOs2) = 0; 
if u 4 Q use Theorem V.1.6.] 
(d) Prove that Z[~lO] is integrally closed. [Hint: if u = r + s~10 E Q(-vtO) is a 
root of x 2 + ax + bE Z[x] and a is even, then r E Z by (c); it follows that s E Z. 
The assumption that a is odd leads to a contradiction.] 

15. (a) If P is a nonzero prime ideal of the ring Z[~iO], then P n Z is a nonzero 
prime ideal of Z. [Hint: if 0 'f"!. u E P, then u is a root of x 2 + ax + bE Z[x] by 
Exercise 14. Show that one of a,b is nonzero and lies in P.] 
(b) Every nonzero prime ideal of Z[~] is maximal. [Use (a), Theorem 111.3.4 
and either an easy direct argument or Theorem 5.12.] 
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16. A valuation domain is an integral domain R such that for all a,b 10 R either a I b or 
b I a. (Clearly a discrete valuation ring is a valuation domain.) A Priifer domain is 
an integral domain in which every finitely generated ideal is invertible. 

(a) The following are equivalent: (i) R is a Priifer domain; (ii) for every prime 
ideal P in R, Rp is a valuation domain; (iii) for every maximal ideal Min R, RM 
is a valuation domain. 

(b) A Priifer domain is Dedekind if and only if it is Noetherian. 
(c) If R is a Priifer domain with quotient field K, then any domainS such that 

ReS C K is Priifer. 

7. THE HILBERT NULLSTELLENSATZ 

The results of Section VI.1 and Section 5 are used to prove a famous result of 
classical algebraic geometry, the Nullstellensatz (Zeros Theorem) of Hilbert. Along 
the way we also prove the Noether Normalization Lemma. We begin with a very 
brief sketch of the geometric background (this discussion is continued at the end of 
the section). 

Classical algebraic geometry is the study of simultaneous solutions of systems of 
polynomial equations: 

(fES) 

where K is a field and S C K[XI, ... , xnl. A solution of this system is an n-tuple, 
(al, ... , an) 10 Fn = F X F X ... X F (n factors), where F is an algebraically closed ex-
tension field of K and /(al, ... , a.) = 0 for all /10 S. Such a solution is called a zero 
of S in Fn. The set of all zeros of S is called the affine K-variety (or algebraic set) in £n 
defined by S and is denoted V(S). Thus 

V(S) = l(al, ... ,a.)E£n1 /(al, ... ,an) = 0 for all/lOS]. 

Note that if I is the ideal of K[xl, ... , xnl generated by S, then V(/) = V(S). 
The assignment S f-> V(S) defines a function from the set of all subsets of 

K[xl, ... , x.l to the set of all subsets of £no Conversely, define a function from the 
set of subsets of Fn to the set of subsets of K[xl, ... , xnl by Y f---> J(Y), where Y C Fn 
and 

J(Y) = I flO K[x\, ... , x.ll f(al, ... , an) = 0 for all (al, ... , an) 10 YI. 

Note that J(Y) is actually an ideal of K[xl, ... , x.l. The correspondence given by V 
and J has the same formal properties as does the Galois correspondence (priming 
operations) between intermediate fields of an extension and subgroups of the Galois 
group. In other words we have the following analogue of Lemma V.2.6. 

Lemma 7.1. Let F be an algebraically closed extensionjield o/K and let S, T be sub
sets o/K[xl, ... , xnl and X,Y subsets ofFn. Then 

(i) V(K[xl, ... , Xn]) = 50; J(Fn) = 50; J(50) = K[xl, ... , xnl; 
(ii) SeT =? V(T) C V(S) and X C Y =? J(Y) C J(X); 

(iii) S C J(V(S)) and Y C V(J(Y)); 
(iv) YeS) = V(J(V(S))) and J(Y) = J(V(J(Y))). 

PROOF. Exercise. • 
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It is natural to ask which objects are closed under this correspondence, that is, 
which Sand Y satisfy J(V(S» = Sand V(J( Y» = Y. Closed subsets of Fn are easily 
described (Exercise 1), but the characterization of closed subsets of K[x 1, ... ,Xn] re
quires the Nullstellensatz, which states that J(V(l» = Rad I for every properideall 
of K[XI, ... ,xnl. In order to prove the Nullstellensatz we need two preliminary 
results, the first of which is of interest in its own right. 

Theorem 7.2. (Noether Normalization Lemma) Let R be an integral domain which is 
a finitely generated extension ring of a field K and let r be the transcendence degree 
over K of the quotient field F of R. Then there exists an algebraically independent 
subset I tl,t2, ... , tf I ofR such that R is integral over K[tl' ... , tf). 

PROOF. Let R = K[ul, ... , Un); then F = K(UI, ... , Un). If lul, ... , unl is 
algebraically independent over K, lUI, ... , Un I is a transcendence base of F over K 
by Corollary VI.1.6, whence r = 11 and the theorem is trivially true. If luI, ... , Un I 
is algebraically dependent over K, then r ~ n - 1 (Corollary V1.1.7) and 

" k· . UI;'u.;2···u;n = 0 L.J 11 ... 1" .. 11 , 

(i., ... ,in).I 

where I is a finite set of distinct n-tuples of nonnegative integers and k il . .. in is a non
zero element of K for every (it, ... , in) E I. Let c be a positive integer that is greater 
than every component i. of every element (h, ... , in) of I. If (h, ... , in), 
U •... ,j,,) E I are such that 

then c I iI - h which is impossible unless iI = h (since c > h 2:: 0 and c > h 2:: 0 
implye> /il - jI/). Consequently, i2 + ei3 + ... + cn- 2in = h + ch + ... + cn-2jn. 

As before e / i2 - h. whence i2 = j2' Repetition of this argument shows tha t 
(iI, ... , in) = (j" ... ,j .. ). Therefore, the set 

Iii + ci2 + &i3 + ... + en-Ii .. / (iI, ... , i .. ) E I} 

consists of /1/ distinct nonnegative integers; in particular, it has a unique maximum 
elementjl + ch + ... + e"-lj" for some (jI, ... ,jn) E I. Let 

If we expand the algebraic dependence relation above, after making the substitutions 
Ui = Vi + ~i-l (2 ~ i ~ n), we obtain 

where the degree of fE I([XI, ... ,xnl in Xl is strictly less thanjl + Cj2 + ... + cn-ljn' 
Therefore, UI is a root of the monic polynomial 

Xil+ c;,+ ... +Cn-I;n + kj; ... inf(x,v2, ... , rn) E K[V2' ... , vn][x). 

Consequently, UI is integral over K[V2, ... ,vn). By Theorem 5.5 K[UI,r2, ... , unl 
= K[V2, ... , v .. ][ull is integral over K[V2, ... , vnl. Since each Ui (2 ~ i ~ n) is ob-
viously integral over K[UI,V2, ...• vnl, Theorems 5.5 and 5.6 imply that 

R = K[ul, ... , unl 
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is integral over K[V2, ... , vn) (whence F is algebraic over K(V2, ... ,vn». If 
I V2, ... , Vn I is algebraically independent, then r = n - 1 by Corollary VI.l.6 and 
the theorem is proved. If not, the preceding argument with K[V2, ... , vn) in place of 
R shows that for some W3, ... , Wn to R, K[V2, ... , Un) is integral over K[W3, ... , wnl. 
By Theorem 5.6 R is integral over K[W3, ... , wnl (whence F is algebraic over 
K(w3, ••• ,wn) and r:::; n - 2). If {w3, ••• , wn} is algebraically independent, we are 
finished. If not, the preceding process may be repeated and an inductive argument 
will yield an algebraically independent subset I Zn-T+I, ... , Zn I of r elements of R such 
that R is integral over K[Zn_T+\' ... , znl. • 

Now let K be a field and F an algebraically closed extension field of K. If a proper 
ideal I of K[XI, ... , xnl is finitely generated, say I = (g!, ... , gk), then the affine 
variety V(l) clearly consists of every (aI, ... , an) E Fn that is a common root of 
gl, ... , gk (see Exercise 4). If n = I, K[xd is a principal ideal domain and it is ob
vious that V(l) is nonempty. More generally (and somewhat surprisingly) we have: 

Lemma 7.3. If F is an algebraically closed extension field of a field K and I is a 
proper ideal ofK[x!, ... , xn ], then the affine variety V(I) defined by I in Fn is nonempty. 

PROOF. By Theorems I1I.2.18 and III.2.19 I is contained in a proper prime 
ideal P, whence V(P) C V(l). Consequently, it suffices to prove that V(P) is non
empty for every proper prime ideal P of K[XI, ... , xnl. Observe that P n K = 0; 
(otherwise 0 ~ a to P n K, whence lK = a-1a to P, contradicting the fact that P 
is proper). 

Let R be the integral domain K[x\, ... , xnl/ P (see Theorem III.2.l6) and let 
7r : K[XI, ... , xnl -> R be the canonical epimorphism. If we denote 7r(x;) E R by U;, 

then R = 7r(K)[u\, ... , unl. Furthermore since K n P = 0, 7r maps K isomor
phically onto 7r(K); in particular, 7r(K) is a field. By the Noether Normalization 
Lemma there exists a subset It\, ... , IT I of R such that I tl, ••• , IT I is algebraically 
independent over 7r(K) and R is integral over S = 7r(K)[II, ... , tTl. If M is the ideal 
of S generated by f\, ... , fT, then the map 7r(K) -> S/ M given by 7r(a) f-+ 7r(a) + M 
is an isomorphism (see Theorem VI .1.2). Consequently M is a maximal ideal of S by 
Theorem m.2.20. Therefore, there is a maximal ideal N of R such that N n S = M 
(Theorems 5.9 and 5.12). Let T : R -> R/ N be the canonical epimorphism. Then 
T(R) = R/ N is a field by Theorem 111.2.20. The Second Isomorphism Theorem 
I1I.2.12 together with the maps defined above now yields an isomorphism 

K "-' 7r(K) "-' S/ M = S/(N n S) "-' (S + N)/ N = T(S), 

which is given by a f-> 7r(a) ~ 7r(a) + M~ 7r(a) + N = T(7r(a». Let T(R) be an 
algebraic closure of T(R). Since R is integral over S, T(R) is an algebraic field exten
sion of T(S), whence T(R) is also an algebraic closure of T(S) (Theorem V.3.4). Now F 
contains an algebraic closure K of K (Exercise V.3.7). By Theorem V.3.8 the isomor
phism K "-' T(S) extends to an isomorphism K "-' T(R). Restriction of the inverse of 
this isomorphism yields a monomorphism (J : T(R) -> KeF. Let 4> be the compo

sition K[XI, ... , xnl ~ R ~ T(R) ~ F and verify that 4> I K = Ix and 4> I P = O. 
Consequently, for any f(x!, ... , Xn) e P C K[xJ, ... , xnl, f(4)(xI), .. '' q,(xn» = 
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cf>(f(XI, ... ,Xn» = 0, whence (cf>(XI), ... ,cf>(xn» is a zero of P in Fn. Therefore, 
V(P) is nonempty. • 

Proposition 7.4. (Hilbert Nullstellensatz) Let F be an algebraically closed extension 
field of a field K and I a proper ideal ofK[XI, ... , Xn). Let V(I) = I (aI, ... , an) E 
Fn I g(al, ... ,an) = 0 for all gEl}. Then 

Rad I = J(V(I» 

= If E K[xI, ... , xn)1 f(al, ... ,all) = 0 for all (al, ... , an) E V(I)}. 

In other words, f(al, ... ,an) = 0 for ever.v zer(l (ai, ... , all) ofl in po if and only if 
pn E I for some m ~ 1. 

REMARK. We shall use Lemma 7.3 to prove the theorem. Since the theorem im
plies the lemma (Exercise 6), the two are actually equivalent. 

PROOF OF 7.4. If fe Rad I, then fm E I for some m ~ 1 (Theorem 2.6). If 
(al, ... , an) is a zero of I in P, then 0 = fm(al, ... , an) = (f(al, ... , an»m. Con
sequently, since F is a field, f(al, ... ,an) = O. Therefore, Rad I C JV(J). 

Conversely, suppose fE JV(J). We may assume f.,t. 0 since 0 E Rad I. Consider 
K[XI, ... , Xn) as a subring of the ring K[XI, ... , xn,y) of polynomials in n + 1 in
determinates over K. Let L be the nonzero ideal of K[xl, ... ,xn,y) generated by I 
and yf - IF. Clearly if (al; ... , an,b) is a zero of L in pH then (aI, ... , an) must be 
a zero of I in P. But (yf - IF)(al, ... ,an,b) = bf(al, ... ,an) - IF = -IF for all 
zeros (al, ... , an) of lin P. Therefore, L has no zeros in FnH; that is, VeL) is empty. 
Consequently, L = K[xl, ... ,x",y) by Lemma 7.3, whence IF E L. Thus 

1-1 

IF = 'L gif; + gbf - IF)' 
i=1 

where f; E I (l ~ i ~ t - 1) and gi E K[xI, ... , xn,y). Define an evaluation 
homomorphism K[XI, ... , xn,y) -~ K(xI, ... ,xn) by Xi f--7 Xi and y ~ f- I = 

lK/ f(Xl, ... , Xn) (Corollary III.S.6). Then in the field K(XI, .. , , Xn) 

t-l 

IF = L g;{Xl, . .. , xn,f-l)f;(x!, . .. , Xn). 
i=l 

Let m be a positive integer larger than the degree of gi in y for every i (l ~ i ~ t - 1). 
Then for each i, fm(x!, ... ,xn)g;(XI, ... , xn,j-l) lies in K[x!, ... , xn), whence 

t-l 

fm = fmI l" = L fm(XI, ... ,xn)g;(XI, ... , Xn, f-I)f;(Xl, ... , Xn) e I. Therefore 
i=1 

f E Rad 1 and hence JV(J) C Rad I. • 

The determination of closed objects as mentioned in the introduction of this 
section is now straightforward (Exercises 1-3). 

We close this section with an informal attempt to establish the connection be
tween geometry and algebra which characterizes the classical approach to algebraic 
geometry. Let Kbe a field. Every polynomialfE K[xI, ... ,xn ) determines a function 
P -> F by substitution: (aI, ... , an) f--7 lea!, ... , an). If V = V(J) is an affine variety 
contained in P, the restriction of this function to Vis called a regular function on V. 
The regular functions V -> F form a ring rev) which is isomorphic to 
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(Exercise 10). This ring is called the coordinate ring of V. Since I C J(V(I» = Rad I 
the ring reV) has no nonzero nilpotent elements. Furthermore reV) is a finitely 
generated algebra over K (since K[xl, ... , Xn] and the ideal J(V(I» are; see Section 
IV.7). Conversely it can be proved that every finitely generated K-algebra with no 
nonzero nilpotent elements is the coordinate ring of some affine variety. Therefore, 
there is a one-to-one correspondence between affine varieties and a rather special 
class of commutative rings. With a suitable definition of morphisms the affine 
varieties form a category as do the commutative rings in question and this corre
spondence is actually an "equivalence" of categories. Thus statements about affine 
varieties are equivalent to certain statements of commutative algebra. For further 
information see W. Fulton [53] and I. G. MacDonald [55]. 

EXERCISES 

Note: F is always an algebraically closed extension field of a field K; J, V, and pn 
are as above. 

1. A subset Y of pn is closed (that is, V(J(Y» = Y) if and only if Y is an affine 
K-variety determined by some subset S of K[xl, ... ,xfl ]. 

2. A subset S of K[xl, ... ,xn ] is closed (that is, J(V(S» = S) if and only if S is a 
radical ideal (that is, S is an ideal and S = Rad S). 

3. There is a one-to-one inclusion reversing correspondence between the set of 
affine K-varieties in pn and the set of radical ideals of K[xl, ... ,xn ]. [See Exer
cises 1, 2.] 

4. Every affine K-variety in pn is of the form V(S) where S is a finite subset of 
K[xl, ... ,xn ]. [Hint: Theorems 1.9 and 4.9 and Exercise 3.] 

5. If VI :::J V2 :::J ... is a descending chain of K-varieties in pn, then Vm = Vm+l = ... 

for some m. [Hint: Theorem 4.9 and Exercise 3.] 

6. Show that the Nullstellensatz implies Lemma 7.3. 

7. If II, ... , h are ideals of K[xl, ... ,xn ], then V(II n 12 n ... n h) = V(II) U 
V(I2) U ... U V(h) and V(Id2· . ·Ik) = V(II) n V(I2) n ... n V(h). 

8. A K-variety V in pn is irreducible provided that whenever V = WI U W2 with 
each Wi a K-variety in P, either V = WI or V = W2• 

(a) Prove that V is irreducible if and only if J(V) is a prime ideal in 
K[xl, ... , x n ]. 

(b) Let F = C and S = (X12 - 2x221. Then V(S) is irreducible as a Q-variety 
but not as an R-variety. 

9. Every nonempty K-variety in pn may be written uniquely as a finite union 
VI U V2 U ... U h of affine K-varieties in pn such that Vi sz: Vi for i r!= j and 
each Vi is irreducible (Exercise 8). 

10. Thecoordinateringofanaffine K-variety V(I) is isomorphic to KtXI, ... ,xnl/J(V(l). 



CHAPTER IX 

THE STRUCTURE OF RINGS 

In the first part of this chapter a general structure theory for rings is presented. Al
though the concepts and techniques introduced have widespread application, com
plete structure theorems are available only for certain classes of rings. The basic 
method for determining such a class of rings might be described intuitively as follows. 
One singles out an "undesirable" property P that satisfies certain conditions, in 
particular, that every ring has an ideal which is maximal with respect to having 
property P. This ideal is called the P-radical of the ring. One then attempts to find 
structure theorems for the class of rings with zero P-radical. Frequently one must in
clude additional hypotheses (such as appropriate chain conditions) in order to obtain 
really strong structure theorems. These ideas are discussed in full detail in the intro
ductions to Sections 1 and 2 below. The reader would do well to read both these dis
cussions before beginning serious study of the chapter. 

We shall investigate two different radicals, the Jacobson radical (Section 2) and 
the prime radical (Section 4). Very deep and useful structure theorems are obtained 
for left Artinian semisimple rings (that is, left Artinian rings with zero Jacobson 
radical) in Section 3. Goldie's Theorem is discussed in Section 4. It includes a char
acterization of left Noetherian semiprime rings (that is, left Noetherian rings with 
zero prime radical). The basic building blocks for all of these structure theorems are 
the endomorphism rings of vector spaces over division rings and certain "dense" sub
rings of such rings (Section 1). 

The last two sections of the chapter deal with algebras over a commutative ring 
with identity. The Jacobson radical and related concepts and results are carried over 
to algebras (Section 5). Division algebras are studied in Section 6. 

A theme that occurs continually in this chapter is the close interconnection be
tween the structure of a ring and the structure of modules over the ring. The use of 
modules in the study of rings has resulted in a host of new insights and deep theo
rems. 

414 
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The interdependence of the sections of this chapter is as follows: 

Much of the discussion here depends on the results of Section VIII.1 (Chain con
ditions). 

1. SIMPLE AND PRIMITIVE RINGS 

In this section we study those rings that will be used as the basic building blocks 
in the structure theory of rings. 

We begin by recalling several facts that motivate a large part of this chapter. 

(i) If Vis a vector space over a division ring D, then HomD(V,V) is a ring (Exer
cise IV.1.7), called the endomorphism ring of V. 

(ii) The endomorphism ring of a finite dimensional vector space over a division 
ring is isomorphic to the ring of all n X n matrices over a (possibly different) division 
ring (Theorem VII.I.4). 

(iii) If D is a division ring, then MatnD is simple (that is, has no proper ideals; 
Exercise 111.2.9) and is both left and right Artinian (Corollary VIII.1.12). Conse
quently by (ii) every endomorphism ring of a finite dimensional vector space over a 
division ring is both simple and Artinian. 

(iv) The endomorphism ring of an infinite dimensional vector space over a divi
sion ring is neither simple nor Artinian (Exercise 3). However, such a ring is primi
tive, in a sense to be defined below. 

Matrix rings and endomorphism rings of vector spaces over division rings arise 
naturally in many different contexts. They are extremely useful mathematical con
cepts. Consequently it seems reasonable to take such rings, or at least rings that 
closely resemble them, as the basis of a structure theory and to attempt to describe 
arbitrary rings in terms of these basic rings. 

With the advantage of hindsight we single out two fundamental properties of the 
endomorphism ring of a vector space V: simplicity (Definition 1.1) and primitivity 
(Definition 1.5). As noted above these two concepts roughly correspond to the cases 
when V is finite or infinite dimensional respectively. In this section we shall analyze 
simple and primitive rings and show that in several important cases they coincide 
with endomorphism rings. In other cases they come as close to being endomorphism 
rings as is reasonably possible. 

More precisely, an arbitrary primitive ring R is shown to be isomorphic to a par
ticular kind of subring (called a dense subring) of the endomorphism ring of a vector 
space V over a division ring D (Theorem 1.12). R is left Artinian if and only if dimDV 
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is finite (Theorem 1.9). In this classical case, simple and primitive rings coincide and 
R is actually isomorphic to the complete endomorphism ring of V (Theorem 1.14). 
Furthermore in this situation dimDV is uniquely determined and Vis determined up 
to isomorphism (Proposition 1.17). These results amply justify the designation of 
simplicity and primitivity as fundamental concepts. 

As noted in the introduction to this chapter modules playa crucial role in ring 
theory. Consequently we begin by defining and developing the elementary properties 
of simplicity for both rings and modules. 

Definition 1.1. A (left) module A over a ring R is simple (or irreducible) provided 
RA rf' 0 and A has no proper submodules. A ring R is simple ifR2 rf' 0 and R has no 
proper (two-sided) ideals. 

REMARKS. (i) Every simple module [ring] is nonzero. 
(ii) Every simple module over a ring with identity is unitary (Exercise IV.1.17). 

A unitary module A over a ring R with identity has RA rf' 0, whence A is simple if 
and only if A has no proper submodules. 

(iii) Every simple module A is cyclic; in fact, A = Ra for every nonzero a e A. 
[Proof: both Ra (a e A) and B = {c e A I Rc = 0 I are submodules of A, whence 
each is either 0 or A by simplicity. But RA rf' 0 implies B rf' A. Consequently B = 0, 
whence Ra = A for all nonzero a E A.] However a cyclic module need not be simple 
(for example, the cyclic Z-module Z6). 

(iv) The definitions of "simple" for groups, modules, and rings can be subsumed 
into one general definition, which might be roughly stated as: an algebraic object C 
that is nontrivial in some reasonable sense (for example, RA rf' 0 or R2 rf' 0) is 
simple, provided that every homomorphism with domain C has kernel 0 or C. The 
point here is that the absence of nontrivial kernels is equivalent to the absence of 
proper normal subgroups of a group or proper sub modules of a module or proper 
ideals of a ring as the case may be. 

EXAMPLE. Every division ring is a simple ring and a simple D-module (see the 
Remarks preceding Theorem 111.2.2). 

EXAMPLE. Let D be a division ring and let R = MatnD (n > 1). For each 
k (1 :s: k :s: n), h = (ail) e R I aij = 0 for j rf' k I is a simple left R-module (see the 
proof of Corollary VIII.1.12). 

EXAMPLE. The preceding example shows that MatnD (D a division ring) is not 
a simple left module over itself if n > 1. However, the ring MatnD (n ~ 1) is simple 
by Exercise 111.2.9. Thus by Theorem VII.lA the endomorphism ring of any finite 
dimensional vector space over a division ring is a simple ring. 

EXAMPLE. A left ideal 1 of a ring R is said to be a minimal left ideal if 1 rf' 0 and 
for every left ideal J such that 0 C J C I, either J = 0 or J = I. A left idea!' 1 of R 
such that RI rf' 0 is a simple left R-module if and only if 1 is a minimal left ideal. 

EXAMPLE. Let F be a field of characteristic zero and R the additive group of 
polynomials F[x,y]. Define multiplication in R by requiring that multiplication be 
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distributive and that xy = yx + 1 and ax = xa, ay = ya for a E F. Then R is a well
defined simple ring that has no zero divisors and is not a division ring (Exercise 1). 

Let A = Ra be a cyclic R-module. The map 0 : R -> A defined by r ~ ra is an 
R-module epimorphism whose kernel I is a left ideal (submodule) of R (Theorem 
IV.l.5). By the First Isomorphism Theorem IV.1.7 R/I is isomorphic to A. By 
Theorem IV.UO every submodule of R/Iis of the formJ/I, whereJis a left ideal of 
R that contains I. Consequently R/ I (and hence A) has no proper submodules if and 
only if I is a maximal left ideal of R. Since every simple R-module is cyclic by Re
mark (iii) above, every simple R-module is isomorphic to R/ I for some maximal left 
ideal I. Conversely, if I is a maximal left ideal of R, R/I will be simple provided 
R(R/ I) r!- O. A condition that guarantees that R(R/ I) r!- 0 is given by 

Definition 1.2. A left ideal I in a ring R is regular (or modular) if there exists e E R 
such that r - re E I for every r E R. Similarly, a right ideal J is regular if there exists 
e E R such that r - er E J for every r E R. 

REMARK. Every left ideal in a ring R with identity is regular (Iet e = h). 

Theorem 1.3. A left module A over a ring R is simple if and only if A is isomorphic to 
R/I for some regular maximal left ideal I. 

REMARKS. If R has an identity, the theorem is an immediate consequence of 
the discussion above. The theorem is true if "left" is replaced by "right" throughout. 

PROOF OF 1.3. The discussion preceding Definition 1.2 shows that if A is 
simple, then A = Ra ,...., R/ I where the maximal left ideal I is the kernel of 8. Since 
A = Ra, a = ea for some e E R. Consequently, for any r E R, ra = rea or 
(r - re)a = 0, whence r - re E Ker 8 = I. Therefore I is regular. 

Conversely let I be a regular maximal left ideal of R such that A '" R/ /.In view 
of the discussion preceding Definition 1.2 it suffices to prove that R(R/ I) r!- O. If this 
is not the case, then for all r E R r(e + I) = I, whence re E I. Since r - re E I, we have 
rEI. Thus R = I, contradicting the maximality of I. • 

Having developed the necessary facts about simplicity we now turn to primitivity. 
In order to define primitive rings we need: 

Theorem 1.4. Let B be a subset of a left module A over a ring R. Then 
a(B) = IrER I rb = OforallbEBJ isaleftidealofR.lfBisasubmoduleofA,then 
a(B) is an ideal. 

a(B) is called the (left) annihilator of B. The right annihilator of a right module is 
defined analogously. 

SKETCH OF PROOF OF 1.4. It is easy to verify that a(B) is a left ideal. Let 
B be a submodule. If r E Rand s E a(B), then for every bE B (sr)b = s{rb) = 0 since 
rb e B. Consequently, sr E a(B), whence a(B) is also a right ideal. • 
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Definition 1.5. A (left) module A is faithful ifits (left) annihilator a(A) is O. A ring R 
is (left) primitive if there exists a simple faithful left R-module. 

Right primitive rings are defined analogously. There do exist right primitive rings 
that are not left primitive (see G. Bergman (58]). Hereafter "primitive" will always 
mean "left primitive." However, all results proved for left primitive rings are true, 
mutatis mutandis, for right primitive rings. 

EXAMPLE. Let V be a (possibly infinite dimensional) vector space over a divi
sion ring D and let R be the endomorphism ring HomD(V,V) of V. Recall that V is a 
left R-module with (Jv = (J(v) for ve V, (J E R (Exercise IV.l .7). If u is a nonzero 
vector in V, then there is a basis of V that contains u (Theorem IV.2.4). If v E V, then 
there exists (Jv E R such that (Jvu = c (just define (J,.(u) = v and (Jv(w) = 0 for all other 
basis elements w; then (Jv e R by Theorems IV .2.1 and IV.2.4). Therefore Ru = V for 
any nonzero u E V, whence V has no proper R-submodules. Since R has an identity, 
RV ~ O. Thus V is a simple R-module. If (JV = 0 «(J E R), then clearly (J = 0, whence 
a(V) = 0 and V is a faithful R-module. Therefore, R is primitive. If V is finite dimen
sional over D, then R is simple by Exercise III .2.9 and Theorem VII.l.4. But if V is 
infinite dimensional over D, then R is not simple: the set of all (J E R such that 1m (J is 
finite dimensional subspace of V is a proper ideal of R (Exercise 3). 

The next two results provide other examples of primitive rings. 

Proposition 1.6. A simple ring R with identity is primitive. 

PROOF. R contains a maximal left ideall by Theorem III.2.18. Since R has an 
identity l is regular, whence R/ l is a simple R-module by Theorem 1.3. Since a(R/ I) 
is an ideal of R that does not contain h, a(R/ I) = 0 by simplicity. Therefore R/ l 
is faithful. • 

Proposition 1.7. A commutative ring R is primitive if and only ifR is a field. 

PROOF. A field is primitive by Proposition 1.6. Conversely, let A be a faithful 
simple left R-module. Then A "-' R/ l for some regular maximal left ideal l of R. 
Since R is commutative, l is in fact an ideal and l C a(R/1) = a(A) = o. Since 
I = 0 is regular, there is an e E R such that r = re (= er) for all r E R. Thus R is a 
commutative ring with identity. Since l = 0 is maximal, R is a field by Corollary 
III.2.21. • 

In order to characterize noncommutative primitive rings we need the concept 
of density. 

Definition 1.8. Let V be a (left) vector space over a division ring D. A subring R of 
the endomorphism ring Homn(V,V) is called a dense ring of endomorphisms of V (or a 
dense subring of Homn(V ,V)) if for every positive integer n, every linearly independent 
subset luI, ... , Un I of V and every arbitrary subset I v!, ... , Vn I of V, there exists 
(J E R such that (J(Ui) = Vi (i = 1,2, ... , n). 
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EXAMPLE. HomDW,V) is a dense subring of itself. For if {til, ... , tin} is a 
linearly independent subset of V, then there is.a basis U of V that contains UI, ••• , Un 

by Theorem IV.2A. If Vio ••• , Vm E V, then the map 0 : V -7 V defined by O(Ui) = Vi 

and O(u) = 0 for U E U - {UI' ••• , Un} is a well-defined element of Homn(V,V) by 
Theorems IV.2.1 and IV.2A. In the finite dimensional case, HomnW,V) is the only 
dense subring as we see in 

Theorem 1.9. Let R be a dense ring of endomorphisms of a vector space V over a 
division ring D. Then R is left [resp. right] Artinian if and only if dimn V is finite, in 
which case R = Homn(V,V). 

PROOF. If R is left Artinian and dimnV is infinite, then there exists an infinite 
linearly independent subset {UI,U2, ... J of v. By Exercise IV.1.7 V is a left 
HomDW,V)-module and hence a left R-module. For each n let In be the left an
nihilator in R of the set {UI' ... , Un J. By Theorem lA, II ::J 12 ::J ... is a descending 
chain of left ideals of R. Let w be any nonzero element of V. Since {UI, ••• , Un+IJ is 
linearly independent for each nand R is dense, there exists 0 E R such that 

OUi = 0 for i = 1,2, ... ,n and OUn+1 = w;r6 O. 

Consequently 0 E In but 0 fln+l. Therefore II ::J 12 ::J ... is a properly descending ... ... 
chain, which is a contradiction. Hence dimDV is finite. 

Conversely if dimDV is finite, then V has a finite basis -{ VI, ••• , Vm J. If fis any 
element of HomD(V,V), then fis completely determined by its action on v!, ... , Vm 

by Theorems IV.2.1 and IV.2A. Since R is dense, there exists 0 E R such that 

O(Vi) = f(vi) for i = 1,2, ... ,m, 

whence f = 0 E R. Therefore HomD(V,V) = R. But HomD(V,V) is Artinian by 
Theorem VlI.lA and Corollary VIII.1.12. • 

In order to prove that an arbitrary primitive ring is isomorphic to a dense ring of 
endomorph isms of a suitable vector space we need two lemmas. 

Lemma 1.10. (Schur) Let A be a simple module over a ring R and let B be any 
R-module. 

(i) Every nonzero R-module homomorphism f : A -7 B is a monomorphism; 
(ii) every nonzero R-module homomorphism g : B -7 A is an epimorphism; 

(iii) the endomorphism ring D = HomR(A,A) is a division ring. 

PROOF. (i) Ker fis a submodule of A and Ker f;r6 A since f;r6 O. Therefore 
Ker f = 0 by simplicity. (ii) 1m g is a nonzero submodule of A since g ;r6 0, whence 
1m g = A by simplicity. (iii) If hE D and h ;r6 0, then h is an isomorphism by (i) and 
(ii). Thus f has a two-sided inverse f-1 E HomR(A,A) = D (see the paragraph after 
Definition IV.1.2). Consequently every nonzero element of D is a unit, whence D is a 
division ring. • 
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REMARK. If A is a simple R-module, then A is a vector space over the division 
ring HomR(A,A) with fa = f(a) (Exercise IV.1.7 and Lemma 1.10). 

Lemma 1.11. Let A be a simple module over a ring R. Consider A as a vector space 
over the division ring D = HomR(A,A). If V is a finite dimensional D-subspace of the 
D-vector space A and a e A - V, then there exists r e R such that ra ~ 0 and rV = O. 

PROOF. The proof is by induction on n = dimDV. If n = 0, then V = 0 and 
a ~ o. Since A is simple, A = Ra by Remark (iii) after Definition 1.1. Consequently, 
there exists r e R such that ra = a ~ 0 and rV = rO = o. Suppose dimDV = n > 0 
and the theorem is true for dimensions less than n. Let lUI, ... ,Un-hU} be aD-basis 
of V and let W be the (n - 1 )-dimensional D-subspace spanned by lUI, ... , Un-I} 
(W = 0 if n = 1). Then V = WEB Du (vector space direct sum). Now W may not 
be an R-submodule of A, but in any case the left annihilator I = a( W) in R of W is a 
left ideal of R by Theorem 104. Consequently, Iu is an R-submodule of A (Exercise 
IV.1.3). Since U e A - W, the induction hypothesis implies that there exists r e R 
such that ru ~ 0 and rW = 0 (that is, rei = a(W». Consequently 0 ~ ru e Iu, 
whence Iu ~ O. Therefore A = Iu by simplicity. 

fNote: The contra positive of the inductive argument used above shows that if 
v e A and rv = 0 for all rei, then v e w.j 

We must find r e R such that ra ~ 0 and rV = o. If no such r exists, then we can 
define a map 8 : A ---+ A as foIlows. For ru e lu = A let 8(ru) = ra!; A. We claim that 
8 is weIl defined. If rlu = r2U (ri e I = a(W», then (rl - r2)u = 0, whence (rl - r2)V 
= (rl - r2)(WEB Du) = O. Consequently by hypothesis (r\ - r2)a = O. Therefore, 
8(rlu) = ria = r2a = 8(r2u). Verify that 8 e HomR(A,A) = D. Then for every rei, 

o = 8(ru) - ra = r(}(u) - ra = r«(}(u) - a). 

Therefore 8(u) - a e W by the parenthetical Note above. Consequently 

a = 8u - (8u - a) e Du + W = V, 

which contradicts the fact that a , V. Therefore, there exists r e R such that ra ~ 0 
and rV = o .• 

Theorem 1.12. (Jacobson Density Theorem) Let R be a primitive ring and A afaithful 
simple R-module. Consider A as a vector space over the division ring HomR(A,A) = D. 
Then R is isomorphic to a dense ring of endomorphisms of the D-vector space A. 

REMARK. A converse of Theorem 1.12 is also true, in fact in a much 
stronger form (Exercise 4). 

PROOF OF 1.12. For each r e R the map aT : A ---+ A given by aT(a) = ra is 
easily seen to be a D-endomorphism of A: that is, aT e HomD(A,A). Furthermore for 
all r,s e R 

Consequently the map a : R ---+ HomD(A,A) defined by a(r) = aT is a weIl-defined 
homomorphism of rings. Since A is a faithful R-module, aT = 0 if and only if 
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r E (t(A) = O. Therefore a is a monomorphism, whence R is isomorphic to the sub
ring 1m a of HomD(A,A). 

To complete the proof we must show that 1m a is a dense subring of HomD(A,A). 
Given a D-linearly independent subset U = {UI, . .. , Un I of A and an arbitrary sub-
set (vr, ... , Vn J of A we must find ar E 1m a such that ar(Ui) = Vi for i = 1,2, ... , n. 
For each i let Vi be the D-subspace of A spanned by (UI, . .. , Ui-I,Ui+r, ... , Un J. 
Since U is D-linearly independent, Ui • Vi. Consequently, by Lemma 1.11 there exists 
ri E R such that riUi ~ 0 and r;Vi = O. We next apply Lemma 1.11 to the zero sub
space and the nonzero element riUi: there exists Si E R such that SiriUi ~ 0 and siO = O. 
Since SiriUi ~ 0, the R-submodule Rriui of A is nonzero, whence Rriui = A by 
simplicity. Therefore exists ti E R such that tiriUi = Vi. Let 

r = t,r, + t2r2 + ... + tnrn E R. 

Recall that for i ~ j, Ui E Vi, whence tiriui E t;(riVi) = t,D = O. Consequently for 
each i = 1,2, ... , n 

Therefore 1m a is a dense ring of endomorphisms of the D-vector space A. • 

REMARK. The only point in the proof of Theorem 1.12 at which the faithfulness 
of A is used is to show that a is a monomorphism. Consequently the proof shows 
that any ring that has a simple module A also has a homomorphic image that is a 
dense ring of endomorphisms of the D-vector space A. 

Corollary 1.13. If R is a primitive ring, then for some division ring D either R is 
isomorphic to the endomorphism ring of a finite dimensional vector space over D or for 
every positive integer m there is a subring Rm of R and an epimorphism of rings 
Rill ~ HomD(Vm,Vm), where Vm is an m-dimensional vector space over D. 

REMARK. The Corollary may also be phrased in terms of matrix rings over a 
division ring via Theorem VII.1.4. 

SKETCH OF PROOF OF 1.13. In the notation of Theorem 1.12, 

a : R ~ HomD(A,A) 

is a monomorphism such that R = 1m a and 1m a is dense in HomD(A,A). If 
dimDA = n is finite, then 1m a = HomD(A,A) by Theorem 1.9. If dimDA is infinite 
and (U"U2, ... J is an infinite linearly independent set, let V m be the m-dimensional 
D-subspace of A spanned by {ur, ...• Um J. Verify that Rm = (r E R I rVm C Vm J is a 
subring of R. Use the density of R '" 1m a in HomD(A,A) to show that the map 
Rm ~ Homn(Vm,Vm) given by r ~ ar I Vm is a well-defined ring epimorphism. • 

Theorem 1.14. (Wedderburn-Artin) The following conditions on a left Artinian ring R 
are equivalent. 

(i) R is simple; 
(ii) R is primitive; 
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(iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional 
vector space V over a division ring D; 

(iv) for some positive integer n, R is isomorphic to the ring of all n X n matrices 
over a division ring. 

PROOF. (i) => (ii) We first observe that I = IrE R I Rr = OJ is an ideal of R, 
whence I = R or I = O. Since R2 .,,& 0, we must have I = O. Since R is left Artinian 
the set of all nonzero left ideals of R contains a minimal left ideal J. J has no proper 
R-submodules, (an R-submodule of J is a left ideal of R). We claim that the left 
annihilator (t(J) of J in R is zero. Otherwise (t(J) = R by simplicity and Ru = 0 for 
every nonzero u eJ. Consequently, each such nonzero u is contained in 1= 0, which 
is a contradiction. Therefore (t(J) = 0 and RJ"'& O. Thus J is a faithful simple 
R-module, whence R is primitive. 

(ii) => (iii) By Theorem 1.12 R is isomorphic to a dense ring Tof endomorphisms 
of a vector space V over a division ring D. Since R is left Artinian, R '" T = 

HomD(V'V) by Theorem 1.9. 
(iii) ¢=> (iv) Theorem VII.1.4. 
(iv) => (i) Exercise 111.2.9. • 

We close this section by proving that for a simple left Artinian ring R the integers 
dimDV and n in Theorem 1.14 are uniquely determined and the division rings in 
Theorem 1.14 (iii) and (iv) are determined up to isomorphism. We need two lemmas. 

Lemma 1.15. Let V be afinite dimensional vector space over a division ring D. If A 
andB are simple faithful modules over the endomorphism ring R = HomD(V,V), then 
A and B are isomorphic R-modules. 

PROOF. By Theorems V11.1.4, VIII.1.4 and Corollary V1II.1.12, the ring R 
contains a (nonzero) minimal left ideal I. Since A is faithful, there exists a E A such 
that Ia .,,& O. Thus Ia is a nonzero submodule of A (Exercise IV.1.3), whence Ia = A 
by simplicity. The map (J : I ~ Ia = A given by if-> ia is a nonzero R-module epi
morphism. By Lemma 1.10 (J is an isomorphism. Similarly I '" B. • 

Lemma 1.16. Let V be a nonzero vector space over a division ring D and let R be the 
endomorphism ring HomD(V,V). Ifg: V ~ V is a homomorphism of additive groups 
such that gr = rgforallr E R, then there exists d E D such that g(v) = dv for all v E V. 

PROOF. Let u be a nonzero element of V. We claim that u and g(u) are linearly 
dependent over D. If dimDV = 1, this is trivial. Suppose dimDV ~ 2 and I u, g(u) J is 
linearly independent. Since R is dense in itself (Example after Definition 1.8), there 
exists r E R such that r(u) = 0 and r(g(u» .,,& O. But by hypothesis 

r(g(u» = rg(u) = gr(u) = g(r(u» = g(0) = 0, 

which is a contradiction. Therefore for some dE D, g(u) = duo If v E V, then there 
exists s E R such that s(u) = v by density. Consequently, since s E R =HomD(V,V), 
g(v) = g(s(u» = gs(u) = sg(u) = s(du) = ds(u) = dv. • 
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Proposition 1.17. Fori = 1,2 let Vi be a vector space of finite dimension ni over the 
division ring D i . 

(i) If there is an isomorphism of rings HomDl(VI,Vl) '" HomD2(V2,V2), then 
dimD1V1 = dimDzV 2 andDI is isomorphic to D 2• 

(ii) If there is an isomorphism of rings Matn1DI '" Matn2D2, then nl = n2 andDI is 
isomorphic to D 2• 

SKETCH OF PROOF. (i) For i = 1,2 the example after Definition 1.5 shows 
that Vi is a faithful simple HomDi(Vi,Vi)-module. Let R = HomDl(VI,VI) and let 

0' : R -> HomD2(V2,V2) 

be an isomorphism. Then V2 is a faithful simple R-module by pullback along 0' (that 
is, rv = O'(r)v for rIO R, v 10 V2). By Lemma 1.15 there is an R-module isomorphism 
4> : VI -> V2• For each v 10 VI and flO R, 

4>[[(v)] = f4>(v) = (O'f)[4>(v)], 

whence 
4>f4>-1 = O'(f) 

as a homomorphism of additive groups V2 -> V2. For each dEDi let ad : Vi -> Vi be 
the homomorphism of additive groups defined by x /-4 dx. Clearly ad = 0 if and only 
if d = O. For every flO R = HomDl(VI,VI) and every d 10 D1,/ad = ad! Consequently, 

[4>ad4>-I](O'f) = I/>a:d4>-l4>f4>-l = I/>a:df4>-l = 4>fad4>-1 

= 4>f4>-I4>ad4>-l = (O'f)[l/>a:d4>-l]. 

Since 0' is surjective, Lemma 1.16 (with V = V2, g = I/>a:d4>-l) implies that there exists 
d* 10 D2 such that I/>a:d4>-l = ad*. Let T : DI -> D2 be the map given by T(d) = d*. 
Then for every dEDI, 

4>aa4>-l = aT(d). 

Verify that T is a monomorphism of rings. Reversing the roles of DI and D2 in the 
preceding argument (and replacing 4>,0' by 4>-1,0'-1) yields for every k 10 D2 an ele
ment dE D such that 

whence ak = 4>ad4>-1 = aT(d). Consequently k = T(d) and hence T is surjective. 
Therefore T is an isomorphism. Furthermore for every dEDI and v 10 VI, 

4>(dv) = 4>aa{v) = aT(d)4>(v) = T(d)4>(V). 

Use this fact to show that {UI, ... , Uk I is D1-linearly independent in VI if and only if 
{ 4>(UI), ... , 4>(Uk) I is D2-linearly independent in V2• It follows that dimDIVI = dimD2V2. 

(ii) Use (i), Exercise III.1.17(e) and Theorem VII.1.4. • 

EXERCISES 

1. Let F be a field of characteristic 0 and R = F[x,y] the additive group of poly
nomials in two indeterminates. Define multiplication in R by requiring that 
multiplication be distributive, that ax = xa, ay = ya for all a 10 F, that the 
product of x and y (in that order) be the polynomial xy as usual, but that the 
product of y and x be the polynomial xy + 1. 
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(a) R is a ring. 
(b) yxk = xky + kXk- 1 and ykx = xyk + kyk-l. 

(c) R is simple. (Hint: Let fbe a nonzero element in an ideal I of R; then 
either fhas no terms involving y or g = xf - fx is a nonzero element of I that 
has lower degree in y than does f. In the latter case, consider xg - gx. Eventually, 
find a nonzero he I, which is free of y. If his nonconstant, consider hy - yh. In a 
finite number of steps, obtain a nonzero constant element of I; hence I = R.) 

(d) R has no zero divisors. 
(e) R is not a division ring. 

2. (a) If A is an R-module, then A is also a well-defined R/6,(A)-module with 
(r + 6,(A»a = ra (a e A). 
(b) If A is a simple left R-module, then R/6,(A) is a primitive ring. 

3. Let V be an infinite dimensional vector space over a division ring D. 
(a) If F is the set of all () e HomD(V,V) such that 1m () is finite dimensional, then 

F is a proper ideal of HomD(V,V). Therefore HomD(V,V) is not simple. 
(b) F is itself a simple ring. 
(c) F is contained in every nonzero ideal of HomD(V,V). 
(d) HomD(V,V) is not (left) Artinian. 

4. Let V be a vector space over a division ring D. A subring R of Homn(V,V) is said 
to be n-fold transitive if for every k (1 ~ k ~ n) and every linearly independent 
subset luI, ... , uk/ of Vand every arbitrary subset I VI, ••• , Vk I of V, there exists 
() e R such that ()(Ui) = Vi for i == 1,2, ... , k. 

(a) If R is one-fold transitive, then R is primitive. [Hint: examine the example 
after Definition 1.5.] 

(b) If R is two-fold transitive, then R is dense in HomD(V,V). [Hints: Use (a) to 
show that R is a dense subring of HomA(V,V), where ~ = HomR(V,V). Use two
fold transitivity to show that .1 = I fJd Ide D I, where fJd : V --> V is given by 
x f-+ dx. Consequently HomA(V,V) = HOI11n(V,V).] 

5. If R is a primitive ring such that for all a,b e R, a(ab - ba) = (ab - ba)a, then R 
is a division ring. [Hint: show that R is isomorphic to a dense ring of endomor
phisms of a vector space V over a division ring· D with dimDV = 1, whence 
R'"""D.] 

6. If R is a primitive ring with identity and e e R is such that e2 = e I- 0, then 
(a) eRe is a subring of R, with identity e. 
(b) eRe is primitive. [Hint: if R is isomorphic to a dense ring of endomorph isms 

of the vector space V over a division ring D, then Ve is a D-vector space and eRe 
is isomorphic to a dense ring of endomorph isms of Ve.] 

7. If R is a dense ring of endomorphisms of a vector space V and K is a nonzero 
ideal of R, then K is also a dense ring of endomorphisms of V. 

2. THE JACOBSON RADICAL 

The Jacobson radical is defined (Theorem 2.3) and its basic properties are de
veloped (Theorems 2.12-2.16). The interrelationships of simple, primitive, and semi
simple rings are examined (Theorem 2.10) and numerous examples are given. 
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Before pursuing further our study of the structure of rings, we summarize the 
general technique that we shall use. There is little hope at present of classifying all 
rings up to isomorphism. Consequently we shall attempt to discover classes of rings 
for which some reasonable structure theor~ms are obtainable. Here is a classic 
method of determining such a class. Single out some "bad" or "undesirable" 
property ofrings and study only those rings that do not have this property. In order 
to make this method workable in practice one must make some additional as
sumptions. 

Let P be a property of rings and call an ideal [ring) I a P-ideal [P-ring) if I has 
property P. Assume that 

(i) the homomorphic image of a P-ring is a P-ring; 
(ii) every ring R (or at least every ring in some specified class e) contains a 

P-ideal P(R) (called the P-radical of R) that contains all other P-ideals of R; 
(iii) the P-radical of the quotient ring RI P(R) is zero; 
(iv) the P-radical of the ring P(R) is P(R). 

A property P that satisfies (i)-(iv) is called a radical property. 
The P-radical may be thought of as measuring the degree to which a given ring 

possesses the "undesirable" property P. If we have chosen a radical property P, we 
then attempt to find structure theorems for those "nice" rings whose P-radical is 
zero. Such a ring is said to be P-radical free or P-semisimple. In actual practice we are 
usually more concerned with the P-radical itself rather than the radical property P 
from which it arises. By condition (iii) every ring that has a P-radical has a P-semi
simple quotient ring. Thus the larger P-radical is, the more one discards (or factors 
out) when studying P-semisimple rings. The basic problem is to find radicals that en
able us to discard as little as possible and yet to obtain reasonably deep structure 
theorems. 

Wedderburn first introduced a radical in the study of finite dimensional algebras. 
His results were later extended to (left) Artinian rings. However, the radical of 
Wedderburn (namely the maximal nilpotent ideal) and the remarkably strong struc
ture theorems that resulted applied only to (left) Artinian rings. In subsequent years 
many other radicals were introduced. Generally speaking each of these coincided 
with the radical of Wedderburn in the left Artinian case, but were also defined for 
non-Artinian rings. 

The chief purpose of this section is to study one such radical, the Jacobson 
radical. Another radical, the prime radical, is discussed in Section 4; see also Ex
ercise 4.11. For an extensive treatment of radicals see N. J. Divinsky [22) or M. Gray 
[23). The host of striking theorems that have resulted from its use provide ample 
justification for studying the Jacobson radical in some detail. Indeed Section 1 was 
developed with the Jacobson radical in mind. Rings that are Jacobson semisimple 
(that is, have zero Jacobson radical) can be described in terms of simple and primi
tive rings (Section 3). 

Two preliminaries are needed before we define the Jacobson radical. 

Definition 2.1. An ideal P ofa ring R is said to be left [resp. right) primitive if the 
quotient ring RIP is a left [resp. right) primitire ring. 

REMARK. Since the zero ring has no simple modules and hence is not primitive, 
R itself is not a left (or right) primitive ideal. 
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Definition 2.2. An element a in a ring R is said to be left quasi-regular if there exists 
r E R such that r + a + ra = O. The element r is called a left quasi-inverse ofa. A 
(right, left or two-sided) ideal I ofR is said to be left quasi-regular ifevery element of I 
is left quasi-regular. Similarly, a E R is said to be right quasi-regular if there exists 
r E R such that a + r + ar = O. Right quasi-inverses and right quasi-regular ideals are 
defined analogously. 

REMARKS. It is sometimes convenient to write r 0 a for r + a + ra. If R has 
an identity, then a is left [resp. right] quasi-regular if and only if IR + a is left [resp. 
right] invertible (Exercise 1). 

In order to simplify the statement of several results, we shall adopt the following 
convention (which is actually a theorem of axiomatic set theory). 

If the class e of those subsets ofa ring R that satisfy a given property is empty, then 
n I is defined to be R. 
I.e 

Theorem 2.3. If R is a ring, then there is an ideal J(R) of R such that: 

(i) J(R) is the intersection of all the left annihilators of simple left R-modules; 
(ii) J(R) is the intersection of all the regular maximal left ideals ofR; 

(iii) J(R) is the intersection of all the left primitive ideals of R; 
(iv) J(R) is a left quasi-regular left ideal which contains every left quasi-regular 

left idealofR; 
(v) Statements (i)-(iv) are also true if"left" is replaced by "right". 

Theorem 2.3 is proved below (p. 428). The ideal J(R) is called the Jacobson 
radical of the ring R. Historically it was first defined in terms of quasi-regularity 
(Theorem 2.3 (iv)), which turns out to be a radical property as defined in the intro
ductory remarks above (see p. 431). As the importance of the role of modules in the 
study of rings became clearer the other descriptions of J(R) were developed (Theo
rem 2.3 (i)-(iii)). 

REMARKS. According to Theorem 2.3 (i) and the convention adopted above, 
J(R) = R if R has no simple left R-modules (and hence no annihilators of same). If R 
has an identity, then every ideal is regular and maximal left ideals always exist 
(Theorem 1II.2.l8), whence J(R) ~ R by Theorem 2.3(ii). Theorem 2.3(iv) does not 
imply that J(R) contains every left quasi-regular element of R; see Exercise 4. 

The proof of Theorem 2.3 (which begins on p. 428) requires five preliminary 
lemmas. The lemmas are stated and proved for left ideals. However, each of Lemmas 
2.4-2.8 is valid with "left" replaced by "right" throughout. Examples are given after 
the proof of Theorem 2.3. 

Lemma 2.4. If I (~R) is a regular left ideal of a ring R, then I is contained in a 
maximal left ideal which is regular. 

SKETCH OF. PROOF. Since I is regular, there exists e E R such that r - re E I 
for all r E R. Thus any left ideal J containing I is also regular (with the same element 



2. THE JACOBSON RADICAL 427 

e E R). If I C J ar.j e E J, then r - re E I C J implies r E J for every r E R, whence 
R = J. Use this fact to verify that Zorn's Lemma is applicable to the set S of all left 
ideals L such that I C L C R, partially ordered by inclusion. A maximal element of 

"" S is a regular maximal left ideal containing I. • 

Lemma 2.5. Let R be a ring and let K be the intersection of all regular maximal left 
ideals ofR. Then K is a left quaSi-regular left idealofR. 

PROOF. K is obviously a left ideal. If a E K let T = {r + ra IrE RI. If T = R, 
then there exists r E R such that r + ra = -a. Consequently r + a + ra = 0 and 
hence a is left quasi-regular. Thus it suffices to show that T = R. 

Verify that T is a regular left ideal of R (with e = -a). If T ~ R, then T is con
tained in a regular maximal left ideal 10 by Lemma 2.4. (Thus T ~ R is impossible if 
R has no regular maximal left ideals.) Since a EKe 10, ra E 10 for all r E R. Thus 
since r + ra ETC 10, we must have r E 10 for all r E R. Consequently, R = 10, which 
contradicts the maximality of 10• Therefore T = R. • 

Lemma 2.6. Let R be a ring that has a simple left R-module. If I is a left quasi
regular left ideal of R, then I is contained in the intersecl;on of all the left annihila
tors of simple left R-modules. 

PROOF. If I ¢ n a(A), where the intersection is taken over aU simple left 
R-modules A, then IB ~ 0 for some simple left R-module B, whence Ib ~ 0 for 
some nonzero bE B. Since I is a left ideal, Ib is a nonzero submodule of B. Con
sequently B = Ib by simplicity and hence ab = -b for some a E I. Since I is left 
quasi-regular, there exists r E R such that r + a + ra = O. Therefore, 0 = Ob 
= (r + a + ra)b = rb + ab + rab = rb - b - rb = -b. Since this conclusion 
contradicts the fact that b ~ 0, we must have len a(A). • 

Lemma 2.7. An ideal P ofa ring R is leji primitive ifand only ifP is the left annihila
tor of a simple left R-module. 

PROOF. If P is a left primitive ideal, let A be a simple faithful RIP-module. 
Verify that A is an R-module, with ra (r E R,a E A) defined to be (r + P)a. Then 
RA = (RIP)A ~ 0 and every R-submodule of A is an RIP-submodule of A, whence 
A is a simple R-module. If r E R, then rA = 0 if and only if (r + P)A = O. But 
(r + P)A = 0 if and only if rEP since A is a faithful RIP-module. ThereforeP is the 
left annihilator of the simple R-module A. 

Conversely suppose that P is the left annihilator of a simple R-module B. Verify 
that B is a simple RIP-module with (r + P)b = rb for r E R,b E B. Furthermore if 
(r + P)B = 0, then rB = 0, whence r E a(B) = P and r + P = 0 in RIP. Conse
quently, B is a faithful RIP-module. Therefore RIP is a left primitive ring, whence P 
is a left primitive ideal of R. • 
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Lemma 2.S. Let I be a left ideal of a ring R. If I is left quasi-regular, then I is right 
quasi-regular. 

PROOF. If I is left quasi-regular and a e I, then there exists r e R such that 
r 0 a = r + a + ra = 0. Since r = -a - ra e I, there exists s e R such that 
s 0 r = s + r + sr = 0, whence s is right quasi-regular. The operation 0 is easily 
seen to be associative. Consequently 

a = 0 0 a = (s 0 r) 0 a = so (r 0 a) = so ° = s. 

Therefore a, and hence I, is right quasi-regular. • 

PROOF OF THEOREM 2.3. Let J(R) be the intersection of all the left an
nilators of simple left R-modules. If R has no simple left R-modules, then J(R) = R 
by the convention adopted above. J(R) is an ideal by Theorem 1.4. We now show 
that statements (ii)-(iv) are true for all left ideals. 

We first observe that R itself cannot be the annihilator of a simple left R-module 
A (otherwise RA = 0). This fact together with Theorem 1.3 and Lemma 2.7 implies 
that the following conditions are equivalent: 

(a) J(R) = R; 
(b) R has no simple left R-modules; 
(c) R has no regular maximal left ideals; 
(d) R has no left primitive ideals. 

Therefore by the convention adopted above, (ii), (iii), and (iv) are true if J(R) = R. 
(ii) Assume J(R) ~ R and let K be the intersection of all the regular maximal 

left ideals of R. Then K C J(R) by Lemmas 2.5 and 2.6. Conversely suppose c e J(R). 
By Theorem 1.3, J(R) is the intersection of the left annihilators of the quotients R/ I, 
where I funs over all regular maximal left ideals of R. For each regular maximal 
ideal I there exists e e R such that c - ce e I. Since c e (j;(R/ I), cr e 1 for all r e R; 
in particular, ce e I. Consequently, eel for every regular maximal ideal I. Thus 
J(R) C n 1 = K. Therefore J(R) = K. 

(iii) is an immediate consequence of Lemma 2.7. 
(iv) J(R) is a left quasi-regular left ideal by (ii) and Lemma 2.5. J(R) contains 

every left quasi-regular left ideal by Lemma 2.6. 
To complete the proof we must show that (i)-(iv) are true with "right" in place of 

"left." Let NR) be the intersection of the right annihilators of all simple right 
R-modules. Then the preceding proof is valid with "right" in place of "left," whence 
(i)-(iv) hold for the ideal J 1(R). Since J(R) is right quasi-regular by (iv) and Lemma 
2.8, J(R) C NR) by (iv). Similarly NR) is left quasi-regular, whence NR) C J(R). 
Therefore, J(R) = J1(R). • 

EXAMPLE. Let R be a local ring with unique maximal ideal M (consisting of all 
nonunits of R; see Theorem 111.4.13). We shall show that J(R) = M. Since R has an 
identity, J(R) ~ R. Since a proper ideal contains only nonunits by Theorem 111.3.2, 
J(R) c: M. On the other hand if reM, then lR + r. M (otherwise heM). Conse
quently, IR + r is a unit, whence r is left quasi-regular (Exercise 1). Thus M C J(R) 
by Theorem 2.3 (iv). Therefore J(R) = M. Here are two special cases: 
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EXAMPLE. The power series ring F[[x]] over a field F is a local ring with 
principal maximal ideal (x) by Corollary III.S.10. Therefore J(F[[xJl) = (x). 

EXAMPLE. If p is prime, thenZpn (n ~ 2) is a local ring with principal maximal 
ideal (p), which is isomorphic as an abelian group to Zpn-l. Therefore J(Zpn) = (P). 
The radical of Zm (m arbitrary) is considered in Exercise 10. 

Definition 2.9. A ring R is said to be (Jacobson) semisimple ifits Jacobson radical 
J(R) is zero. R is said to be a radical ring ifJ(R) = R. 

REMARK. Throughout this book "radical" always means "Jacobson radical" 
and "semisimple" always means "Jacobsonsemisimple." When reading the literature 
in ring theory, one must determine which notion of radical and semisimplicity is 
being used in a particular theorem. A number of definitions of radical (and semi
simplicity) require that the ring be (left) Artinian. This is not the case with the Jacob
son radical, which is defined for every ring. 

EXAMPLE. Every division ring is semisimple by Theorem 2.3 (ii) since the only 
regular maximal left ideal is the zero ideal. 

EXAMPLE. Every maximal ideal in Z is of the form (P) with p prime by Theo
rem III.3.4. Consequently, J(Z) = n (P) = 0, whence Z is Jacobson semisimple. 

p 

For a generalization, see Exercise 9. 

EXAMPLE. If D is a division ring, then the polynomial ring 

is semisimple. For if f E J(R), then fis both right and left quasi-regular by Theorem 
2.3 (iv). Consequently lR + f = ID + fis a unit in R by Exercise 1. Since the only 
units in R are the nonzero elements of D (see Theorem 111.6.1), it follows that fE D. 
Thus J(R) is an ideal of D, whence J(R) = 0 or J(R) = D by the simplicity of D. 
Since -ID is not left quasi-regular (verify!), -ID peR). Therefore J(R) = 0 and R 
is semisimple. 

Theorem 2.10. Let R be a ring. 

(i) IfR is primitive, then R is semisimple. 
(ii) IfR is simple and semisimple, then R is primitive. 

(iii) IfR is simple, then R is either a primitive semisimple or a radical ring. 

PROOF. (i) R has a faithful simple left R-module A, whenceJ(R) C a(A) = O. 
(ii) R ,e 0 by simplicity. There must exist a simple left R-module A; (otherwise 

by Theorem 2.3 (i) J(R) = R ,e 0, contradicting semisimplicity). The left annihilator 
(t(A) is an ideal of R by Theorem 1.4 and (t(A) ,e R (since RA ,e 0). Consequently 
(t(A) = 0 by simplicity, whence A is a simple faithful R-module. Therefore R is 
primitive. 
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(iii) If R is simple then the ideal J(R) is either R or zero. In the former case R is a 
radical ring and in the latter R is semisimple and primitive by (ii). • 

EXAMPLES. The endomorphism ring of a (left) vector space over a division ring 
is semisimple by Theorem 2.10 (i) and the example after Definition 1.5. Conse
quently by Theorem VlI.1.4 the ring of all n X n matrices over a division ring is 
semisimple. 

EXAMPLE. An example of a simple radical ring is given in E. Sasiada and 
P. M. Cohn [66]. 

The classical radical of Wedderburn (in a left Artinian ring) is the maximal nil
potent ideal. We now explore the connection between this radical and the Jacobson 
radical. 

Definition 2.11. An element a of a ring R is nilpotent ifan = 0 for some positive 
integer n. A (left, right, two-sided) ideal I ofR is nil ifevery element ofl is nilpotent; I 
is nilpotent if In = 0 for some integer n. 

Every nilpotent ideal is nil since In = 0 implies an = 0 for all a e I. It is possible, 
however, to have a nil ideal that is not nilpotent (Exercise 11). 

Theorem 2.12. IfR is a ring, then every nil right or left ideal is contained in the 
radical J(R). 

REMARK. The theorem immediately implies that every nil ring is a radical ring. 

PROOF OF 2.12. If an = 0, let r = - a + a2 - a3 + ... + (_1)n- Ian- l • 

Verify that r + a + ra = 0 = a + r + ar, whence a is both left and right quasi
regular. Therefore every nil left [right] ideal is left [right] quasi-regular and hence is 
contained in J(R) by Theorem 2.3 (iv). • 

Proposition 2.13. IfR is a left [resp. right) Artinian ring, then the radical J(R) is a 
nilpotent ideal. Consequently every nil left or right idealofR is nilpotent and J(R) is the 
unique maximal nilpotent left (or right) idealofR. 

REMARK. If R is left [resp. right) Noetherian, then every nil left or right ideal 
is nilpotent (Exercise 16). 

PROOF OF 2.13. Let J = J(R) and consider the chain of (left) ideals 
J :::::> J2 :::::> J3 :::::> •. '. By hypothesis there exists k such that Ji = Jk for all i ~ k. We 
claim that Jk = O. If Jk ;t. 0, then the set S of all left ideals I such that JkI ;t. 0 is non
empty (since JkJk = J2k = Jk ;t. 0). By Theorem VIII. 1.4 S has a minimal element/o• 

Since JkIo ;t. 0, there is a nonzero a e 10 such that Jka ;t. O. Clearly Jka is a left ideal of 
R that is contained in 10• Furthermore Jka e S since Jk(Jka) = J2ka = Jka ;t. O. Con-
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sequently Pa = 10 by minimality. Thus for some nonzero r E Jk, ra = a. Since 
-reJk C J(R), -r is left quasi-regular, whence s - r - sr = ° for some SE R. 
Consequently, 

a = ra = -[-ra) = -[-ra + 0) = -[-ra + sa - sa) 

= -[-ra + sa - sera») = -[-r + s - sr)a = -Oa = 0. 

This contradicts the fact that a ~ 0. Therefore Jk = 0. The last statement of the 
theorem is now an immediate consequence of Theorem 2.12. • 

Finally we wish to show that left quasi-regularity is a radical property as defined 
in the introduction to this section. By Theorem 2.3 (iv) its associated radical is clearly 
the Jacobson radical and a left quasi-regular ring is precisely a radical ring (Defini
tion 2.9). Since a ring homomorphism necessarily maps left quasi-regular elements 
onto left quasi-regular elements, the homomorphic image of a radical ring is also a 
radical ring. To complete the discussion we must show that RIJ(R) is sernisimple and 
that J(R) is a radical ring. 

Theorem 2.14. IfR is a ring, then the quotient ring R/J(R) is semisimple. 

PROOF. Let 11' : R --+ RIJ(R) be the canonical epimorphism and denote 1I'(r) by 
r (r E R). Let(~ be the set of all regular maximalleft ideals of R. If lEe, thenJ(R) C I 
by Theorem 2.3 (ii) and 11'(1) = IIJ(R) is a maximal left ideal of RIJ(R) by Theorem 
IV.t.tO. If e E R is such that r - re E I for all r E R, then r - re E 1I'(l) for all r E RjJ(R). 
Therefore, 1I'(1) is regular for every I in e~ Since J(R) = n I it is easy to verify that if 

I.e 
r E n 1I'(1) = n II J(R), then r E J(R). Consequently, by Theorem 2.3 (ii) (applied to 

I.e I.e 
RIJ(R» 

J(RIJ(R» C n 1I'(l) C 1I'(J(R» = 0, 
I.e 

whence RI J(R) is sernisimple. • 

Lemma 2.15. Let R be a ring and a E R. 

(i) If -a2 is left quasi-regular, then so is a. 
(ii) a E J(R) if and only ifRa is a left quasi-regular left ideal. 

PROOF. (i) If r + (-a2) + r( -a2) = 0, let s = r - a - ra. Verify that 
s + a + sa = 0, whence a is left quasi-regular. 

(ii) If a E J(R), then Ra C J(R). Therefore, Ra is left quasi-regular since J(R) is. 
Conversely suppose Ra is left quasi-regular. Verify that K = Ira + na IrE R, n E Zj 
is a left ideal of R that contains a and Ra. If s = ra + na, then -S2 ERa. By hy
pothesis - S2 is left quasi-regular and hence so is s by (i). Thus K is a left quasi
regular left ideal. Therefore a EKe J(R) by Theorem 2.3 (iv). • 

Theorem 2.16. (i) If an ideal I of a ring R is itself considered as a ring, then 
J(I) = I n J(R). 
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(ii) IfR is semisimple, then so is every ideal ofR. 
(iii) J(R) is a radical ring. 

PROOF. (i)l n J(R) is clearly an ideal of!. If ad n J(R), then ais left quasi
regular in R, whence r + a + ra = 0 for some r 5 R. But r = -a - ra 51. Thus 
every element of I n J(R) is left quasi-regular in I. Therefore I n J(R) C J(I) by 
Theorem 2.3 (iv) (applied to I). 

Suppose a 5 J(I). For any r 5 R" -(ra)2 = -(rar)a 5IJ(I) C J(I), whence -(ra)2 
is left quasi-regular in I by Theorem 2.3 (iv). Consequently by Lemma 2.15 (i) ra is 
left quasi-regular in I and hence in R. Thus Ra is a left quasi-regular left ideal of R, 
whence a 5 J(R) by Lemma 2.15 (ii). Therefore a 5 J(I) n J(R) C I n J(R). Conse
quently J(I) C I n J(R), which completes the proof that J(I) = I n J(R). State
ments (ii) and (iii) are now immediate consequences of (i). • 

Theorem 2.17. If I Ri I i 5 I I is a family of rings, then J(II Ri) = II J(Ri). 
i.I iel 

SKETCH OF PROOF. Verify that an element I ai I 5 II Ri is left quasi-regular 
in IIRi if and only if ai is left quasi-regular in Ri for each i. Consequently IIJ(R;) 
is a left quasi-regular ideal of IIR;, whence IIJ(Ri) C J(II R;) by Theorem 2.3 (iv). 

For each k 51, let 'Irk : IIRi -> Rk be the canonical projection. Verify that 
h = 'Irk(J(IIRi» is a left quasi-regular ideal of Rk • It follows that h C J(Rk ) and 
therefore that J(II R;) C IIJ(R;). • 

EXERCISES 

Note: R is always a ring. 

1. For each a,b 5 R let a 0 b = a + b + abo 
(a) 0 is an associative binary operation with identity element 0 5 R. 
(b) The set G of all elements of R that are both left and right quasi-regular 

forms a group under O. 

(c) If R has an identity, then a 5 R is left [resp. right) quasi-regular if and only 
if IR + a is left [resp. right) invertible. [Hint: (h + r)(h + a) = h + r 0 a 
and r(1R + a) - h = (r - I R) 0 a.) 

2. (Kaplansky) R is a division ring if and only if every element of R except one is 
left quasi-regular. [Note that the only element in a division ring D that is not left 
quasi-regular is -In; also see Exercise 1.] 

3. Let I be a left ideal of R and let (I : R) = I r 5 R I r R C II· 
(a) (I: R) is an Ideal of R. If I is regular, then (I : R) is the largest ideal of R 

that is contained in I. 
(b) If I is a regular maximal left ideal of R and A '" Rj I, then ('t(A) = (I : R). 

Therefore J(R) = n (I : R), where I runs over all the regular maximal left ideals 
of R. 

4. The radical J(R) contains no nonzero idempotents. However, a nonzero idem
potent may be left quasi-regular. [Hint: Exercises 1 and 2]. 
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5. If R has an identity, then 
(a) J(R) = (rs R 11 n + sr is left invertible for all SE R}. 
(b) J(R) is the largest ideal K such that for all r E K, In + r is a unit. 

6. (a) The homomorphic image of a semisimple ring need not be semisimple. 
(b) If f : R -> S is a ring epimorphism, then f(J(R» C J(S). 
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7. If R is the ring of all rational numbers with odd denominators, then J(R) consists 
of all rational numbers with odd denominator and even numerator. 

8. Let R be the ring of all upper triangular n X n matrices over a division ring D 
(see Exercise VII.l.2). Find J(R) and prove that R/J(R) is isomorphic to the 
direct product D X D X· .. X D (n factors). [Hint: show that a strictly tri
angular matrix is nilpotent.] 

9. A principal ideal domain R is semisimple if and only if R is a field or R contains 
an infinite number of distinct nonassociate irreducible elements. 

10. Let D be a principal ideal domain and d a nonzero nonunit element of D. Let R 
be the quotient ring D/(d). 

(a) R is semisimple if and only if d is the product of distinct nonassociate 
irreducible elements of D. [Hint: Exercise VIII.1.2.] 

(b) What is J(R)? 

11. If p is a prime, let R be the subring L Zp" of II Zp". The ideal I = LIn, 
n~l n~l n~l 

where I" is the ideal of Zp" generated by p EZp'" is a nil ideal of R that is not 
nilpotent. 

12. Let R be a ring without identity. Embed R in a ring S with identity which has 
characteristic zero, as in Theorem 111.1.1 o. Prove thatJ(R) = J(S). Consequently 
every semisimple ring may be embedded in a semisimple ring with identity. 

13. J(MatnR) = MatnJ(R). Here is an outline of a proof: 
(a) If A is a left R-module, consider the elements of An = A E8 A E8 ... E8 A 

(n summands) as column vectors; then An is a left (MatnR)-module (under 
ordinary matrix multiplication). 

(b) If A is a simple R-module, An is a simple (MatnR)-module. 
(c) J(MatnR) C MatnJ(R). 
(d) MatnJ(R) C J(MatnR). [Hint: prove that Mat.J(R) is a left quasi-regular 

ideal of MatnR as follows. For each k = 1,2, ... , n let Kk consist of all matrices 
(ai;) sllch that ai; E J(R) and ai; = 0 if j ."r, k. Show that Kk is a left quasi-regular 
left ideal of MatnR and observe that Kl + K2 + ... + Kn = MatnJ(R).] 

14. (a) Let I be a nonzero ideal of R[x] and p(x) a nonzero polynomial of least 
degree in I with leading coefficient a. If f(x) E R[x] and amf(x) = 0, then 
an-1p(x)f(x) = O. 
(b) If a ring R has no nonzero nil ideals (in particular, if R is semisimple), then 
R[x] is semisimple. [Hint: Let M be the set of nonzero polynomials of least 
degree in J(R[x D. Let N be the set consisting of 0 and the leading coefficients of 
polynomials in M. Use (a) to show that N is a nil ideal of R, whence J(R[x]) = 0.) 
(c) There exist rings R such that R[x] is semisimple, but R is not. [Hint, consider 
R = F[(xll, with F a field.] 
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15. Let L be a left ideal and K a right ideal of R. Let M(R) be the ideal generated by 
all nilpotent ideals of R. 

(a) L + LR is an ideal such that (L + LR)n C Ln + LnR for all n ~ l. 
(b) K + RK is an ideal such that (K + RK)n C Kn + RKn for all n ~ l. 
(c) If L [resp. K] is nilpotent, so is the ideal L + LR [resp. K + RK], whence 

L C M(R) [resp. K C M(R)]. 
(d) If N is a maximal nilpotent ideal of R, then Rj N has no nonzero nilpotent 

left or right ideals. [Hint: first show that Rj N has no nonzero nilpotent ideals; 
then apply (c) to the ring Rj N.] 

(e) If K [resp. L] is nil, but not nilpotent and 'Tr : R ~ Rj N is the canonical 
epimorphism, then 'Tr(K) [resp. 'Tr(L)] is a nil right [resp.left] ideal of Rj N which is 
not nilpotent. 

16. (Levitsky) Every nil left or right ideal I in a left Noetherian ring R is nilpotent. 
[Sketch of Proof. It suffices by Exercise 15 to assume that R has no nonzero nil
potent left or right ideals. Suppose I is a left or a right ideal which is not nilpo
tent and 0 ~ a z I. Show that aR is a nil right ideal (even though I may be a left 
ideal), whence the left ideal <t(u) is nonzero for all u EaR. There exists a nonzero 
Uo EaR with <t(uo) maximal, whence <t(uo) = <t(uoX) for all x E R such that UoX ~ o. 
Show that (uoy)uo = 0 for all y E R, so that (RUO)2 = O. Therefore Ruo = 0, which 
implies that Ire R I Rr = 0 I isa nonzero nilpotent right ideal of R; contradiction.] 

17. Show that Nakayama's Lemma VIIIA.5 is valid for any ring R with identity, 
provided condition (i) is replaced by the condition 

(i') J is contained in the Jacobson radical of R. 

[Hint: Use Theorem 2.3(iv) and Exercise 1 (c) to show (i') ~ (ii).] 

3. SEMISIMPLE RINGS 

In accordance with the theory of radicals outlined in the first part of Section 2 we 
now restrict our study to rings that are Jacobson semisimple. Arbitrary semisimple 
rings are characterized as particular kinds of subrings of direct products of primitive 
rings (Proposition 3.2). Much stronger results are proved for semisimple (left) 
Artinian rings. Such rings are actually finite direct products of simple rings (Theorem 
3.3). They may also be characterized in numerous ways in terms of modules (Theo
rem 3.7). Along the way semisimple modules over arbitrary rings are defined and 
their basic properties developed (Theorem 3.6). 

Definition 3.1. A ring R is said to be a subdirect product of the family of rings 
I Ri liE I I ifR is a subring of the direct product II Ri such that'Trk(R) = Rk for every 

ieI 

k E I, where'Trk : II Ri -7 Rk is the canonical epimorphism. 
i.l 

REMARK. A ring S is isomorphic to a sub direct product of the family of rings 
I Ri liE II if and only if there is a monomorphism of rings t/> : S -7 II Ri such that 

i.l 

'Trkt/>(S) = Rk for every k E I. 
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EXAMPLE. Let P be the set of prime integers. For each k E Z and PEP let 
kp E Zp be the image of k under the canonical epimorphism Z -> Zp. Then the map 
cp : Z -> II Zp given by k f-+ Ikplp,p is a monomorphism of rings such that 

peP 

7(' pcp(Z) = Z p for every pEP. Therefore Z is isomorphic to a sub direct product of the 
family of fields IZp I p E Pl. More generally we have: 

Proposition 3.2. A nonzero ring R is semisimple if and only ifR is isomorphic to a 
subdirect product of primitive rings. 

REMARK. Propositions 1.7 and 3.2 imply that a nonzero commutative serni
simple ring is a subdirect product of fields. 

SKETCH OF PROOF OF 3.2. Suppose R is nonzero semisimple and let <P be 
the set of all left primitive ideals of R. Then for each P E <P, RIP is a primitive ring 
(Definition 2.1). By Theorem 2.3 (iii), 0 = J(R) = n P. For each P let 'Ap : R -> RIP 

Pe<P 

and 7(' p : II R/ Q --> R/ P be the respective canonical epimorphisms. The map 
Qe<P 

cp : R -> II RIP given by r f-> I 'ApCr) I p,<p = I r + PI P.<p is a monomorphism of 
Pe<P 

rings such that 7('pcp(R) = R/ P for every P E <P. 
Conversely suppose there is a family of primitive rings I Ri liE Il and a mono

morphism of rings cp : R -> II Ri such that 7('kCP(R) = Rk for each k E I. Let 1/;k be the 
ieI 

epimorphism 7('kCP. Then RIKer 1/;k is isomorphic to the primitive ring Rk (Corollary 
I1I.2.l0), whence Ker 1/;k is a left primitive ideal of R (Definition 2.1). Therefore 
J(R) c n Ker 1/;k by Theorem 2.3 (iii). However, if r E Rand 1/;lr) = 0, then the kth 

kef 

component of cp(r) in IIRi is zero. Thus if r En Ker 1/;k, we must have ¢(r) = O. 
kef 

Since cp is a monomorphism r = O. Therefore J(R) C n Ker 1/;k = 0, whence R is 
kef 

semisimple. • 

In view of the results on primitive rings in Section 1, we can now characterize 
semis imp Ie rings as those rings that are isomorphic to subdirect products of families 
of rings, each of which is a dense ring of endomorphisms of a vector space over a 
division ring. Unfortunately subdirect products (and dense rings of endomorph isms) 
are not always the most tractable objects with which to deal. But in the absence of 
further restrictibns this is probably the best one can do. In the case of (left) Artinian 
rings, however, these results can be considerably sharpened. 

Theorem 3.3. (Wedderburn-Artin). The following conditions on a ring Rare 
equivalent. 

(i) R is a nonzero semisimple left Artinian ring; 
(ii) R is a direct product ofafinite number of simple ideals each of which is iso

morphic to the endomorphism ring of afinire dimensional vector space over a division 
ring; 

(iii) there exist division rings DJ, ... , D t and positive integers nt, ... , nt such that 
R is isomorphic to the ring MatnlD} X Matn2D2 X' .. X MatntDt. 
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REMARK. By a simple ideal of R we mean an ideal that is itself a simple ring. 

PROOF OF 3.3. (ii) ~ (iii) Exerdse 111.2.9 and Theorem VII.1.4. 
t 

(ii) => (i) By hypothesis R '" II Ri with each Ri the endomorphism ring of a 
i=1 

vector space. The example after Definition 1.5 shows that each Ri is primitive, 
whence J(Ri) = 0 by Theorem 2.1 0 (i). Consequently by Theorem 2.17 

I 

J(R) '" II J(Ri) = O. 
i=1 

Therefore R is semisimple. R is left Artinian by Theorem VII.1.4 and Corollaries 
VIII.1.7 and VIII.1.12. 

(i) => (ii) Since R ~ 0 and J(R) = 0, R has left primitive ideals by Theorem 2.3 
(iii). Suppose that R has only finitely many distinct left primitive ideals: PI, P2, ... ,P,. 
Then each RIP; is a primitive ring (Definition 2.1) that is left Artinian (Corollary 
VIII.1.6). Consequently, by Theorem 1.14 each RIP; is a simple ring isomorphic to 
an endomorphism ring of a finite dimensional left vector space over a division ring. 
Since RIPiis simple, each Pi is a maximal ideal of R (Theorem 111.2.13). Furthermore 
R2 ~ P; (otherwise(RIPi)2 = 0), whence R2 + Pi = R by maximality. Likewise if 
i ~ j, then Pi + Pi = R by maximality. Consequently by Corollary 111.2.27 (of 
the Chinese Remainder Theorem) and Theorem 2.3 (iii) there is an isomorphism 
ofrings: 

I 

R = RIO = RIJ(R) = Rln Pi '" RIPI X··· X RIP,. 
;=1 

I 

If Lk : RI Pk ---> II RIP; is the canonical monomorphism (Theorem 111.2.22), then 
i=1 t t 

each Lk(RIPk) is a simple ideal of II RIPi. Under the isomorphism II RIPi '" R, 
i=1 i-I 

the images of the LiRIPk) are simple ideals of R. Clearly R is the (internal) direct 
product of these ideals. 

To complete the proof we need only show that R cannot have an infinite number 
of distinct left primitive ideals. Suppose, on the contrary, that PI, P2, Pa, ••• is a se
quence of distinct left primitive ideals of R. Since 

PI ::> PI n P2 ::> PI n P2 n Pa ::> ... 

is a descending chain of (left) ideals there is an integer n such that PI n ... n Pn 

= PI n ... n Pn n Pn+h whence PI n ... n Pn C Pn+i' The previous paragraph 
shows that R2 + Pi = R and Pi + Pi = R (i ~ j) for i,j = 1,2, ... , n + 1. The 
proof of Theorem 111.2.25 shows that Pn+1 + (PI n ... n Pn ) = R. Consequently 
P,,+I = R, which contradicts the fact that Pn+1 is left primitive (see the Remark after 
Definition 2.1). Therefore R has only finitely many distinct primitive ideals and the 
proof is complete. • 

Corollary 3.4. (i) A semisimple left Artinian ring has an identity. 
(ii) A semisimple ring is left Artinian if and only if it is right Artinian. 

(iii) A semisimple left Artinian ring is both left and right Noetherian. 
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REMARK. Somewhat more is actually true: any left Artinian ring with identity 
is left Noetherian (Exercise 13). 

SKETCH OF PROOF OF 3.4. (i) Theorem 3.3. (ii) Theorem 3.3 is valid 
with "left" replaced by "right" throughout. Consequently the equivalence of condi
tions (i) and (iii) of Theorem 3.3 implies that R is left Artinian if and only if R is 
right Artinian. 

(iii) Corollaries VIII.I.7 and VIII.1.12 and Theorem 3.3 (iii). • 

The following corollary is not needed in the sequel. Recall that an element e of a 
ring R is said to be idempotent if e2 = e. 

Corollary 3.5. Ifl is an ideal in a semisimple left Artinian ring R, then I = Re, where 
e is an idempotent which is in the center ofR. 

SKETCH OF PROOF. By Theorem 3.3 R is a (ring) direct product of simple 
ideals, R = II X' .. X In. For eachj, I n Ii is either 0 or Ii by simplicity. After re
indexing if necessary we may assume that I n Ii = Ii for j = 1,2, ... ,t and 
I n Ii = 0 for j = t + 1, ... , n. Since R has an identity by Corollary 3.4, there exist 
ei e Ii such that h = el + e2 + ... + en. Since I;Ik = 0 for j ,c k we have 

whence ei2 = ei for eachj. It is easy to verify that each ei lies in the center of Rand 
that e = el + e2 + ... + et is an idempotent in I which is in the center of R. Since I 
is an ideal, Re C I. Conversely if u e I, then u = uh = uel + ... + uen. But for 
j > t, uei e I n Ii = O. Thus u = uel + ... + uet = ue. Therefore I eRe. • 

Theorem 3.3 is a characterization of semisimple left Artinian rings in ring 
theoretic terms. As one might suspect from the close interrelationship of rings and 
modules, such rings can also be characterized strictly in terms of modules. In order 
to obtain these characterizations we need a theorem that is valid for modules over an 
arbitrary ring. 

Theorem 3.6. The following conditions on a nonzero module A over a ring Rare 
equivalent. 

(i) A is the sum ofafamily of simple submodules. 
(ii) A is the (internal) direct sum of a family of simple submodules. 

(iii) For every nonzero element a of A, Ra ,c 0; and every submodule B of A is a 
direct summand (that is, A = B EB C for some submodule C). 

A module that satisfies the equivalent conditions of Theorem 3.6 is said to be 
semisimple or completely reducible. The terminology semisimple is motivated by 
Theorem 3.3 (ii) and the fact (to be proved below) that every module over a (left) 
Artinian semisimple ring is semisimple. 
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SKETCH OF PROOF OF 3.6. (i) ~ (ii) Suppose A is the sum of the family 
{Bi liE II of simple submodules (that is, A is generated by UBi). Use Zorn's Lemma 

i<l 
to show that there is a nonempty subset J of I which is maximal with respect to the 
property: the submodule generated by {Bi Ij EJI is in fact a direct sum L Bi • We 

j.J 

claim that A = L Bi. To prove this we need only show that Bi C L Bi for every 
j.J jEJ 

i E I. Since Bi is simple and Bi n (L Bi) is a submodule of Bi, either Bi n (L Bi) = 

Bi, which implies Bi C L Bi, or B; n (L Bi) = O. The second case cannot occur. 
For if it did, K = {i} U J would be a set such that the submodule generated by 
{B~ IkE K} is a direct sum (Theorem IV.U.5), which contradicts the maximality of J. 

(ii) =} (iii) Suppose A is the direct sum L: Bi with each Bi a simple submodule. If 
iel 

a is a nonzero element of A, then a = bil + ... + bik with 0 .,t. bik E Bik (iI, ... ,h E I). 
Clearly Ra = 0 if and only if Rbik = 0 for each ik • But Remark (iii) after Definition 
1.1 shows that Rbik = Bik .,t. o. Therefore Ra .,t. O. 

Let B be a nonzero submodule of A. By simplicity B n Bi is either 0 or Bi. If 
B n Bi = Bi for all i, then A = Band B is trivially a direct summand, A = B EB o. 
Otherwise B n Bi = 0 for some i. Use Zorn's Lemma to find a subset J of I which is 
maximal with respect to the property: B n (L: B i ) = O. We claim that 

j.J 

A = B EB (L: Bi). It suffices by Theorem IV.l.l5 to show that Bi C B EB (L: Bi) 
j.J j.J 

for each i. If i E J, then Bi C L: Bi and we are done. If i ~ J and Bi ¢ B EB L Bi, 
jEJ jeJ 

then Bi n (B EB L: B i ) = 0 by thl: simplicity of Bi • It follows that J U {iJ is a set 
jEJ 

that contradicts the maximality of J. Therefore Bi C B EB L: B i • 
j.J 

(iii) =} (i) We first observe that if N is any submodule of A, then every submodule 
K of N is a direct summand of N. For by hypothesis K is a direct summand of A, 
say A = K EB L. Verify that N = N n A = (N n K) EB (N n L) = K EB (N n L). 

Next we show that A has simple submodules. Since A .,t. 0, there exists a nonzero 
element a of A. Use Zorn's Lemma to find a sub module B of A that is maximal with 
respect to the property that a • B. By hypothesis A = B EB C for some nonzero sub
module C and RC .,t. o. We claim that C is simple. If it were not, then C would have 
a proper submodule D, which would be a direct summand of C by the previous para
graph. Consequently C = DEBE with E .,t. 0, whence A = B EB C = B EB DEBE, 
with D .,t. 0 and E .,t. O. Now B EB D and B EEl E both contain B properly. Therefore 
by the maximality of B we must have a E B EB D and a E B EB E. Thus b + d = a 
= b' + e (b,b' E B; dE D; e E E). Now 0 = a - a = (b - b') + d - e E B EB DEBE 
implies that d = 0, e = 0, and b - b' = O. Consequently, a = bE B which is a con
tradiction. Therefore C is simple. 

Let Ao be the submodule of A generated by all the simple submodules of A. Then 
A = Ao EB N for some submodule N. N satisfies the same hypotheses as A by the 
paragraph before last. If N .,t. 0, then the argument in the immediately preceding 
paragraph shows that N contains a nonzero simple submodule T. Since T is a simple 
submodule of A, T C Ao. Thus T C Ao n N = 0, which is a contradiction. There
fore N = 0, whence A = Ao is the sum of a family of simple submodules. • 

We are now able to give numerous characterizations of semisimple left Artinian 
rings in terms of modules. Since the submodules of a ring R (considered as a left 
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R-module) are precisely the left ideals of R, some of these characterizations are 
stated in terms of left ideals. A subset {eJ, ... , em} of R is a set of orthogonal idem
potents if e; = ei for all i and eiei = 0 for all i ~ j. 

Theorem 3.7. The following conditions on a nonzero ring R with identity are equiv
alent. 

(i) R is semisimple left Artinian; 
(ii) every unitary left R-module is projective; 

(iii) every unitary left R-module is injective; 
(iv) every short exact sequence of unitary left R-modules is split exact; 
(v) every nonzero unitary left R-module is semisimple; 

(vi) R is itself a unitary semisimple left R-module; 
(vii) every left ideal ofR is of the form Re with e idempotent; 

(viii) R is the (internal) direct sum (as a left R-module) of minimal left ideals 
KI, ••• ,Km such that Ki = Rei (ei E R) for i = 1,2, ... ,m and {el' ... ,em} is a set 
of orthogonal idempotents with el + e2 + ... + em = 1 R. 

REMARKS. Since a semisimple ring is left Artinian if and only if it is right 
Artinian (Corollary 3.4), each condition in Theorem 3.7 is equivalent to its obvious 
analogue for right modules or right ideals. There is no loss of generality in assuming 
R has an identity, since every semisimple left Artinian ring necessarily has one by 
Corollary 3.4. The theorem is false if the word "unitary"is omitted (Exercise 10). 

SKETCH OF PROOF OF 3.7. (ii) ¢::} (iii) ¢::} (iv) is Exercise IV.3.!' To com
plete the proof we shall prove the implications (iv) ¢::} (v) and (v) => (vii) =-~ (vi) => 
(i) => (viii) => (v). 

(iv) => (v) If B is a submodule of a nonzero unitary R-module A, then 

o -+B ~A -+ AlB -+ 0 

is a short exact sequence, which splits by hypothesis. The proof of Theorem IV.1.18 
shows that A = B EB C with C ro.J AlB. Since A is unitary, Ra ~ 0 for every non
zero a E A. Therefore A is semisimple by Theorem 3.6. 

(v) => (iv) Let 0 -+ A ~ B !!.... C -+ 0 be a short exact sequence of unitary R-mod
ules. Then f : A -+ f(A) is an isomorphism. Since B is semisimple by (v), f(A) is a 
direct summand of B by Theorem 3.6. If 7r : B -+ f(A) is the canonical epimorphism, 
then 7rf = fandf- l 7r : B -+ A is an R-module homomorphism such that (f- I 7r) f = IA. 
Therefore the sequence splits by Theorem IV.1.18. 

(v) => (vii) The left ideals of R are precisely its submodules. If L is a left ideal, 
then R = L EB 1 for some left ideal I by (v) and Theorem 3.6. Consequently, there 
are el ELand e2 E 1 such that h = el + e2. Since el E L, ReI C L. If r E L, then 
r = reI + re2, whence re2 = r - rei E L n I = O. Thus r = rei for every r E L; in 
particular, elel = el and L C Rei. Therefore, L = Rei with el idempotent. 

(vii) => (vi) A submodule L of R is a left ideal, whence L = Re with e idempotent. 
Verify that ROB - e) is a left ideal of R such that R = Re EB R(h - e). Therefore, 
R is semisimple by Theorem 3.6. 

(vi) => (i) By hypothesis R is a direct sum L Bi , with each Bi a simple submodule 
id 

(left ideal) of R. Consequently there is a finite subset 10 of 1 (whose elements will be 
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labeled 1,2, ... , k for convenience) such that lR = e, + e2 + ... + ek (ei e Bi). Thus 
k k 

for every r e R, r = re, + re2 + ... + rek e L Bi, whence R = L Bi. If r e J(R), 
i=l i=l 

then rBi = 0 for all i by Theorem 2.3 (i). Consequently, 

r = rh = re, + re2 + ... + rek = O. 

Therefore, J(R) = 0 and R is semisimple. Since Bi is simple and 

the series 

is a composition series for R. Therefore, R is left Artinian by Theorem VIII.1.1l. 
t 

(i) => (viii) In view of Theorem 3.3 it suffices to assume that R = II Mat"Pi 
i=l 

with each ni > 0 and each Di a division ring. For each fixed i and eachj = 1,2, ... , n, 
let eij be the matrix in Mat"iDi with 1Di in position (j,j) and 0 elsewhere. Then 
I eiI, ... ,ein.} is a set of orthogonal idempotents in MatnPi = Ri whose sum is the 
identity matrix. The proof of Corollary VIII. 1.12 shows that each Rieii is a minimal 
left ideal of Ri and Ri = Riei, EEl· .. EEl Riei".. Since R is the ring direct product 
R, X ... X Rio it follows that RiRi = 0 for i ,,&. j; that Reii = R,eii; that Reii is a 
minimal left ideal of R; and that I e,i [I SiS t; 1 S j S nd is a set of orthogonal 

t t t n, 

idempotents in R whose sum is L (L e'i) = L l R• = l R • Clearly R = L L Reii. 
i=l j i=l i=lj=l 

(viii) => (v) Let A be a unitary R-module. For each a e A and each i, Kia is a sub
module of A (Exercise IV.1.3) and a = ha = e,a + ... + ema € Kia + ... + Kma. 
Consequently the submodules Kia (a e A, 1 SiS m) generate A. For each a e A 
and each i, the map f : Ki -> Kia given by k f-> ka is an R-module epimorphism. 
Since Ki is a minimal left ideal of a ring with identity, Ki is a simple R-module. Con
sequently if Kia"&' 0, then f is an isomorphism by Schur's Lemma 1.10. Thus 
I Kia [ 1 SiS m; a e A; Kia,,&. 0 I is a family of simple submodules whose sum is A. 
Therefore A is semisimple by Theorem 3.6. • 

Theorems 3.3 and 3.7 show that a semisimple left Artinian ring may be decom
posed as a direct product [resp. sum] of simple ideals [resp. minimal left ideals]. We 
turn now to the question of the uniqueness of these decompositions. 

Proposition 3.8. Let R be a semisimple left Artinian ring. 

(i) R = I, X' .. X In where each Ij is a simple idealofR. 
(ii) IfJ is any simple ideal ofR, then J = h for some k. 

(iii) IfR = J, X··· X Jm with each Jk a simple ideal ofR, then n = m and (after 
reindexing) Ik = Jk fur k = 1,2, ... , n. 

REMARKS. The conclusion J = Ii [resp. Jk = h] is considerably stronger than 
the statement "J [resp. Jd is isomorphic to h." The uniquely determined simple 
ideals II, ... , In in Proposition 3.8 are called the simple components of R. 
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PROOF OF 3.8. (i) is true by Theorem 3.3. (ii) If I is a simple ideal of R, then 
RI ,e 0, whence hI ,e ° for some k. Since hI is a nonzero ideal that is contained in 
both h and I, the simplicity of h and I implies h = IJ = 1. (iii) The ideals Ii> ... , In 
[resp. h ... ,1m] are nonzero and mutually disjoint by hypothesis. Define a map () 
from the m element set {Ii> ... ,1m I to the n element set {Ii> . .. , In I by Jk 1-+ h, 
where Jk = h. () is well defined and injective hy (ii), whence m :::; n. The same argu
ment with the roles of Jk and h reversed shows that n :::; m. Therefore n = m and () is 
a bijection. • 

A semisimple left Artinian ring R is a direct sum of minimal left ideals by Theo
rem 3.7 (viii). The uniqueness (up to isomorphism) of this decomposition will be an 
immediate consequence of the following proposition. For R is a semisimple R-mod
ule (Theorem 3.7 (vi» and the minimal left ideals of R are precisely its simple 
submodules. 

Proposition 3.9. Let A be a semisimple module over a ring R. If there are direct sum 
decompositions 

where each Bi, C j is a simple submodule of A, then m = n and (after reindexing) 
Bj rv C j for i = 1,2, ... , m. 

REMARK. The uniqueness statement here is weaker than the one in Proposi
tion 3.8. Proposition 3.9 is false if "Bi rv C/' is replaced by "Bi = C" (Exercise 11). 

PROOF OF 3.9. The series 

is a composition series for A with simple factors BI , B2, ••• ,Bm (see p. 375). Similarly 
A = CI EB· .. EB Cn ::::> C2 EB· .. EB Cm ::::> •.• ::::> Cm ::::> 0 is a composition series for 
A with simple factors CI , •.• , Cn. The Jordan-Holder Theorem VIII.1.10 implies 
that m = n and (after reindexing) Bi rv C; for i = 1,2, ... ,m. • 

The following theorem will be used only in the proof of Theorem 6.7. 

Theorem 3.10. Let R be a semisimple left Artinian ring. 

(i) Every simple left [resp. right] R-module is isomorphic to a minimal left [resp. 
right] idealofR. 

(ii) The number of non is omorphic simple left [resp. right] R-modules is the same as 
the number of simple components ofR. 

PROOF. R is right Artinian by Corollary 3.4. Since the preceding results are 
left-right symmetric, it suffices to prove the theorem for left modules. 

(i) By Theorem 3.7, R = KI EB· . ·EB Km with each K; a nonzero minimal left 
ideal (simple submodule) of R. R has an identity (Corollary 3.4) and every simple 
R-module A is unitary by Remark (ii) after Definition 1.1. The proof of (viii) => (v) 
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of Theorem 3.7 shows that for some i (1 ~ i ~ m) and a E A, A contains a nonzero 
submodule Kia such that Kia "-' Ki. The simplicity of A implies that A = Kia "-' Ki. 

(ii) The simple components of R are the unique simple ideals Ij of R such that 
R = II X· .. X In (Proposition 3.8). In view of (i) it suffices to prove: 

(a) each Ki is contained in some I,; 
(b) each It contains some K i ; 

(c) K; "-' K; as R-modules if and only if K; and K; are contained in the same 
simple component It. 
These statements are proved as follows. 

(a) Since R has an identity, Ki = RKi = 11K; X· .. X InKi. Since each I;K. is a 
left ideal of R contained in K;, we must have I tK; = K; for some 1 and I;K; = 0 for 
j"e t by minimality. Therefore K; = ItKi C It. 

(b) If It contains no Ki , then R = L: K; is contained in 

II X· .. X It-I X It+1 X· .. X In 

by (a). Since It "e 0 by simplicity and R = II I;, 
o "e It = It n R = It n (11 X· .. X 1'_1 X It+1 X· .. X In) = 0, 

which is a contradiction. 
(c) If Ki C It I and K; C 1'2 with 11 "e 12, then by (a), 0 "e Ki = ItlKi and 

o "e K; = It2Kj. Since R = III;, It/ t2 = 0 = 1'2/tl. Consequently, there can be no 
R-module isomorphism Ki "-' Kj. Conversely suppose Ki C It and Kj C It. Then Ki 
and Kj are It-modules. Since It is simple and 0 "e K; = I,Ki by (a), the left anni
hilator ideal of Ki in It must be zero. Consequently, KjK. "e 0 since 0 "e Kj C It. 
Thus for some a E Ki, Kia "e O. Since Ki and Ki are left ideals of R, Kia is a nonzero 
left ideal of R and Kia C Ki. Therefore Kia = Ki by minimality. The proof (viii) =} 

(v) of Theorem 3.7 shows that Kia "-' K j , whence K; "-' K j • • 

EXERCISES 

1. A ring R is isomorphic to a subdirect product of the family of rings {Ri liE Il if 
and only if there exists for each i e I an ideal K. of R such that R/ K. '" Ri and 
n Ki = O. 
ill 

2. A ring R is subdirectly irreducible if the intersection of all nonzero ideals of R is 
nonzero. 

(a) R is subdirectly irreducible if and only if whenever R is isomorphic to a 
subdirect product of {Rili e I}, R == Ri for some i e I [see Exercise 1]. 

(b) (Birkhoff) Every ring is isomorphic to a subdirect product of a family of 
subdirectly irreducible rings. 

(c) The zero divisors in a commutative subdirectly irreducible ring (together 
with 0) form an ideal. 

3. A commutative semisimple left Artinian ring is a direct product of fields. 

4. Determine up to isomorphism all semisimple rings of order 1008. How many of 
them are commutative? [Hint: Exercise V.8.10.J 

5. An element a of a ring R is regular (in the sense of Von Neumann) if there exists 
Xc R such that axa = a. If every element of R is regular, then R is said to be a 
regular ring. 
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(a) Every division ring is regular. 
(b) A finite direct product of regular rings is regular. 
(c) Every regular ring is semisimple. [The converse is false (for example, Z).] 
(d) The ring of all linear transformations on a vector space (not necessarily 

finite dimensional) over a division ring is regular. 
(e) A semisimple left Artinian ring is regular. 
(f) R is regular if and only if every principal left [resp. right] ideal of R is 

generated by an idempotent element. 
(g) A nonzero regular ring R with identity is a division ring if and only if its 

only idempotents are 0 and 1R • 

6. (a) Every nonzero homomorphic image and every nonzero submodule of a 
semisimple module is semisimple. 
(b) The intersection of two semisimple submodules is 0 or semisimple. 

7. The following conditions on a semisimple module A are equivalent: 
(a) A is finitely generated. 
(b) A is a direct sum of a finite number of simple submodules. 
(c) A has a composition series (see p. 375). 
(d) A satisfies both the ascending and descending chain conditions on sub

modules (see Theorem VIII.1.11). 

8. Let A be a module over a left Artinian ring R such that Ra .,c 0 for all nonzero 
a E A and let J = J(R). Then JA = 0 if and only if A is semisimple. [Hints: if 
JA = 0, then A is an RIJ-module, with RIJ sernisimple left Artinian; see 
Exercise IV.1.17.] 

9. Let R be a ring that (as a left R-module) is the sum of its minimal left ideals. 
Assume that {r E R I Rr = 0 I = o. If A is an R-module such that RA = A, then 
A is semisimple. [Hint: if f is a minimal left ideal and a E A, show that fa is either 
zero or a simple submodule of A.] 

10. Show that a nonzero R-module A such that RA = 0 is not semisimple, but may 
be projective. Consequently Theorem 3.7 may be false if the word "unitary" is 
omitted. [See Exercise IV.2.2, Theorem IV.3.2 and Proposition IV.3.5.] 

11. Let R be the ring of 2 X 2 matrices over an infinite field. 
(a) R has an infinite number of distinct proper left ideals, any two of which 

are isomorphic as left R-modules. 
(b) There are infinitely many distinct pairs (B,C) such that Band Care rnini

mal left ideals of Rand R = B EB c. 

12. A left Artinian ring R has the same number ofnonisomorphic simple left R-mod
ules as nonisomorphic simple right R-modules. [Hint: Show that A is a simple 
R-module if and only if A is a simple RIJ(R)-module; use Theorem 2.14 and 
Theorem 3.10.] 

13. (a) (Hopkins) If R is a left Artinian ring with identity, then R is left Noetherian. 
[Hints: Let n be the least positive integer such that In = 0 (Proposition 2.13). 
Let JO = R. Since J(J'I J'+1) = 0 and R is left Artinian each Jil Ji+l (0 ::::; i ::::; n - 1) 
has a composition series by Exercises 7 and 8. Use these and Theorem IV.1.10 to 
construct a composition series for R; apply Theorem VIII.1.1l.] 
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Remark. Hopkins' Theorem is valid even if the hypothesis" R has an identity" 
is replaced by the much weaker hypothesis that Ire R I r R = 0 and Rr = 0 I = 
0; see L. Fuchs [13; pp. 283-286]. 

(b) The converse of Hopkins' Theorem is false. 

4. THE PRIME RADICAL; PRIME AND SEMIPRIME RINGS 

We now introduce the prime radical of a ring and call a ring semiprime if it has 
zero prime radical (Definition 4.1). We then develop the analogues of the results 
proved in Sections 2 and 3 for the Jacobson radical and semisimple rings (Proposi
tions 4.2-4.4). There is a strong analogy between the prime radical, prime ideals, 
semiprime rings, prime rings, and the Jacobson radical, left primitive ideals, semi
simple rings, and primitive rings respectively. 

The remainder of the section is devoted to a discussion of Goldie's Theorem 4.8, 
which is a structure theorem for semiprime rings satisfying the ascending chain con
dition on certain types of left ideals. Goldie's Theorem plays the same role here as do 
the Wedderburn-Artin Theorems 1.14 and 3.3 for rings with the descending chain 
condition on left ideals. In fact Goldie's Theorem may be considered as an extension 
of the Wedderburn-Artin Theorems to a wider class of rings. A fuller explanation of 
these statements is contained in discussions after Proposition 4.4, preceding Theo
rem 4.8 and after Corollary 4.9. 

This section is not needed in the sequel. 

Definition 4.1. The prime radical peR) of a ring R is the intersection of all prime 
ideals oIR.IIR has no-prime ideals, then peR) = R. A ring R such that peR) = 0 is 
said to be semi prime. 

REMARKS. The prime radical (also called the Haer lower radical or the McCoy 
radical) is the radical with respect to a certain radical property, as defined in the in
troduction to Section 2; for details, see Exercises 1 and 2. A semiprime ring is one 
that is semisimple with respect to the prime radical (see the introduction to Section 2). 
We use the term "semiprime" to avoid both awkward phrasing and confusion with 
Jacobson semisimplicity. The relationship of the prime radical with the Jacobson 
radical is discussed in Exercise 3. 

Just as in the case of the Jacobson radical, there is a close connection between the 
prime radical of a ring R and the nilpotent ideals of R. In order to prove one such 
result, we must recall some terminology. 

Let S be a subset of a ring R. By Theorem 1.4 the set Ire R I rS = 0 I is a left 
ideal of R, which is actually an ideal if S is a left ideal. The set {r e R I rS = 0 I is 
called the left annihilator of S and is denoted a(S). Similarly the set 

a,.(S) = {reRISr=OI 

is a right ideal of R that is an ideal if S is a right ideal. areS) is called the right 
annihilator of S. A left [resp. right] ideal I of R is said to be a left [resp. right] 
annihilator if 1= a(S) [resp.l = <Xr(S)] for some subsetS of R. 
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REMARK. The intersection of two left [resp. right) annihilators is also a left 
[resp. right) annihilator since a(S) n aCT) = a(s U T). If Sand T are actually left 
ideals, then a(S) n aCT) = a(s U T) = a(s + T). 

Proposition 4.2. A ring R is semiprime if and only ifR has no nonzero nilpotent 
ideals. 

SKETCH OF PROOF. (=}) If I is a nilpotent ideal and K is any prime ideal, 
then for some n, In = 0 E K, whence I C K. Therefore I C peR). Consequently, if R 
is semi prime, so that peR) = 0, then the only nilpotent ideal is the zero ideal. 

(¢=) Conversely suppose that R has no nonzero nilpotent ideals. We must show 
that peR) = O. It suffices to prove that for every nonzero element a of R there is a 
prime ideal K such that a , K, whence a 4 peR). We first observe that a(R) n R is a 
nilpotent ideal of R since 

(a(R) n R)(a(R) n R) C a(R)R = O. 

Consequently, a(R) = a(R) n R = O. Similarly aT(R) = O. If b is any nonzero 
element of R, we claim that RbR ,t. O. Otherwise Rb C a(R) = 0, whence Rb = O. 
Thus b E ar(R) = 0, which is a contradiction. Therefore RbR is a nonzero ideal of R 
and hence not nilpotent. Consequently bRb ,t. 0 (otherwise (RbR)2 C RbRbR = 0). 
For each nonzero b E R choose f(b) E bRb such that f(b) ,t. O. Then by the Recursion 
Theorem 6.2 of the Introduction there is a function cp : N -t R such that 

cp(O) = a and cp(n + 1) = f(cp(n». 

Let an = cp(n) so that an+l = f(an) ,t. O. Let S = I ai I i ~ 0 l. Use Zorn's Lemma to 
find an ideal K that is maximal with respect to the property K n S = 5Z5 (since 0 f S 
there is at least one ideal disjoint from S). 

Since a = ao E S, a 4 K and K,t. R. To complete the proof we need only show 
that K is prime. If A and B are ideals of R such that A ¢ K and B ¢ K, then 
(A + K) n S ,t. 5Z5 and (B + K) n S ,t. 0 by maximality. Consequently for some 
i,j, ai E A + K and aj E B + K. Choose m > max {i,j}. Since an+l = f(a,,) E a"Ran 

for each n, it follows that am E (aiRai) n (aiRai) C (A + K) n (B + K). Con
sequently, 

am+l = f(am) E amRam C (A + K)(B + K) C AB + K. 

Since am+l 4 K, we must have AB ~ K. Therefore K is a prime ideal. • 

A ring R is said to be a prime ring if the zero ideal is a prime ideal (that is, if I, J 
are ideals such that lJ = 0, then I = 0 or J = 0). The relationships among prime 
ideals, prime rings, and semiprime rings are analogous to the relationships between 
left primitive ideals, primitive rings, and semisimple rings. In particular, we note 
the following: 

(i) The prime [resp. Jacobson) radical is the intersection of all prime [resp. 
primitive) ideals (see Theorem 2.3(iii». 

(ii) Every prime ring is serniprime since 0 is a prime ideal. This corresponds to 
the fact that every primitive ring is semisimple (Theorem 2.1O(i». 
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Proposition 4.3. K is a prime ideal of a ring R if and only ifR/K is a prime ring. 

REMARK. This is the analogue of Definition 2.1 (left primitive ideals). 

SKETCH OF PROOF OF 4.3. If R/ K is prime, let 7r: R -t R/ K be the 
canonical epimorphism. If I and J are ideals of R such that IJ C K, then 7r(l), 7r(J) 
are ideals of R/ K (Exercise III.2.13(b)) such that 7r(l)7r(J) = 7r(lJ) = O. Since R/ K is 
prime, either 7r(l) = 0 or 7r(J) = 0; that is, I C K or J C K. Therefore, K is a prime 
ideal (Definition 111.2.14). The converse is an easy consequence of Theorem 111.2.13 
and Definition I1I.2.14. • 

The final part of the semiprime-semisimple analogy is given by 

Proposition 4.4. A ring R is semiprime if and only ifR is isomorphic to a subdirect 
product of prime rings. 

SKETCH OF PROOF. Proposition 4.4 is simply Proposition 3.2 with the 
words "semisimple" and "primitive" changed to "semiprime" and "prime" re
spectively. With this change and the use of Propo:.ition 4.3 in place of Definition 2.1, 
the proof of Proposition 3.2 carries over verbatim to the present case. • 

We have seen that primitive rings are the basic building blocks for semisimple 
rings. Proposition 4.4 shows that the basic building blocks for semiprime rings are 
the prime rings. At this point the analogy between primitive and prime rings fails. 
Primitive rings may be characterized in terms of familiar matrix rings and endomor
phism rings of vector spaces (Section 1). There are no comparable results for prime 
rings. But the situation is not completely hopeless. We have obtained very striking 
results for primitive and semisimple left Artinian rings (Sections 1 and 3). Conse
quently it seems plausible that one could obtain useful characterizations of prime 
and semiprime rings that satisfy certain chain conditions. We shall now do precisely 
that. 

We first observe that in a left Artinian ring the prime radical coincides with the 
Jacobson radical (Exercise 3(c)). Consequently, left Artinian semiprime rings are 
also semisimple, whence their structure is determined by the Wedderburn-Artin 
Theorem 3.3. Since every semiprime (semisimple) left Artinian ring is also left 
Noetherian by Corollary 3.4, the next obviolls candidate to consider is the class of 
semiprime left Noetherian rings (that is, semiprime rings that satisfy the ascending 
chain condition on left ideals). Note that there are semi prime left Noetherian rings 
that are not left Artinian (for example, Z). Consequently, a characterization of semi
prime left Noetherian rings would be a genuine extension of our previous results. 

We shall actually characterize a wider class of rings that properly includes the 
class of all semiprime left Noetherian rings. The class in question is the class of all 
semiprime left Goldie rings, which we now define. 

A family of left ideals of R (Ii I j e Jl is said to be independent provided that for 
each k e J, h n h * = 0, where h #. is the left ideal generated by \Ii I j 7'" k I. In 
other words, (Ii I j e Jl is independent if and only if the left ideal I generated by 
IIi \j ell is actually the internal direct sum I = I: Ii (see Theorem IV.US). 

jeJ 



4. THE PRIME RADICAL; PRIME AND SEMI PRIME RINGS 447 

Definition 4.5. A ring R is said to be a (left) Goldie ring if 

(i) R satisfies the ascending chain condition on left annihilators; 
(ii) every independent set of left ideals ofR is finite. 

REMARKS. (i) Condition (i) of Definition 4.5 means that given any chain of 
left annihilators a(S,) c a(S2) c ... , there exists an n such that a(Si) = aeSn) for 
all i ~ n. This condition is equivalent to the condition 

(i') R satisfies the maximum condition on left annihilators (that is. every non
empty set of left annihilators contains a maximal element with respect to set 
theoretic inclusion). 

To see this one need only observe that the proof of Theorem VIII.1.4 carries over to 
the present situation, mutatis mutandis. 

(ii) Right Goldie rings are defined in the obvious way. A right Goldie ring need 
not be a left Goldie ring; see A. W. Goldie [62]. 

EXAMPLE. Every left Noetherian ring R is a left Goldie ring. Condition (i) is 
obviously satisfied. If (/j I j c Jl were an infinite Independent set of left ideals, then 
there would exist 1,'/2, ... such that 11 C II X 12 C 11 X 12 X la c· .. , which con-

r! r! r! 

tradicts the ascending chain condition. Therefore (ii) is satisfied and R is a Goldie 
ring. There do exist left Goldie rings that are not left Noetherian rings. 

The preceding example shows that the class of semiprime left Goldie rings con
tains the class of semi prime left Noetherian rings. Our characterization of semiprime 
left Goldie rings will be given in terms of their left quotient rings, in the sense of 
the following definitions. 

Definition 4.6. A nonzero element a in a ring R is said to be regular if a is neither a 
left nor right zero divisor. 

Definition 4.7. A ring Q(R) with identity is said to be a left quotient ring ofa ring R if 

(i) R c Q(R); 
(ii) every regular element in R is a unit in Q(R); 

(iii) every element c ofQ(R) is of the form c = a-Ib, where a,b c R and a is regular. 

REMARKS. (i) A ring R need not have a left quotient ring. If it does, however, it 
is easy to see that Q(R) is determined up to isomorphism by Definition 4.7. 

(ii) A right quotient ring of R is defined in the same way, except that "c = a-W' 
is replaced by. "c = ba-l" in condition (iii). A ring may have a right quotient ring, 
but no left quotient ring (see N. J. Divinsky [22; p. 71]). 

(iii) If R is a ring that has a left quotient ring Q(R) = T, then R is said to be a 
left order in T. 

EXAMPLE. Let R be a commutative ring that has at least one regular element. 
Let S be the set of all regular elements of R. Then the complete ring of quotients S-l R 
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is a ring with identity (Theorem 111.4.3) that contains an isomorphic copy 'Ps(R) of R 
(Theorem III.4.4(ii)). If we identify Rand <ps(R) as usual, then R C S-lR, every 
regular element of R is a unit in S-;lR (Theorem III.4.4(i)) and every element of S-lR 
is of the form s-lr (r e R, s eSC R). Therefore S-l R is a left quotient ring of R. 
Special case: the rational field Q is a left quotient ring of the left Noetherian ring Z. 

EXAMPLE. Every semisimple left Artinian ring is its own left quotient ring 
(Exercise 6). 

It is clear from Definition 4.7 that the structure of a left quotient ring Q(R) is 
intimately connected with the structure ofthe ring R. Consequently, if one cannot ex
plicitly describe the ring R in terms of well-known rings, the next ·best thing is to 
show that R has a left quotient ring that can be explicitly described in such terms. 
This is precisely what Goldie's Theorem does. 

Theorem 4.8. (Goldie) R is a semiprime [resp. prime] left Goldie ring if and only if 
R has a left quotient ring Q(R) which is semisimple [resp. simple] left Artinian. 

Theorem 4.8 will not be proved here for reasons of space. One of the best proofs 
is due to C. Procesi and L. Small [65]; a slightly expanded version appears in 1. Her
stein [24]. Although long, this proof is no more difficult than many proofs presented 
earlier in this chapter. It does use Ore's Theorem, a proof of which is sketched in 
1. N. Herstein [24; p. 170] and given in detail in N. J. Divinsky [22; p. 66]. 

Since the structure of semisimple left Artinian rings has been completely deter
mined, Theorem 4.8 gives as good a description as we are likely to get of semiprime 
left Goldie rings (special case: semiprime left Noetherian rings). The "distance" 
between the rings Rand Q(R) is the price that must be paid for replacing the 
descending chain condition with the ascending chain condition. For as we observed 
in the discussion after Proposition 4.4 and in Exercise 3.13, the latter is a consider
ably weaker condition than the former. 

Corollary 4.9. R is a semiprime [resp. prime] left Goldie ring if and.only ifR has a 
quotient ring Q(R) such that Q(R) "-' Mat"p, X· .. X MatnkDk , [resp. Q(R) "-' 
MatnIDI], where nr, ... , nk are positive integers and DJ, ... , Dn are division rings. 

PROOF. Theorems 1.14, 3.3, and 4.8. • 

Goldie's Theorem, as rephrased in Corollary 4.9, may be thought of as an exten
sion of the Wedderburn-Artin Theorems 1.14 and 3.3 to a wider class of rings. For 
instance, Theorem 3.3.states that a semisimple left Artinian ring is a direct product of 
matrix rings over division rings. Goldie's Theorem states that every semiprime left 
Goldie ring has a quotient ring that is a direct product of matrix rings over division 
rings. But every semisimple left Artinian ring is a semi prime left Goldie ring (Corol
lary 3.4, Exercise 3(a), and the Example after Definition 4.5). Furthermore every 
semisimple left Artinian ring is its own quotient ring (Exercise 6). Thus Goldie's 
Theorem reduces to the Wedderburn-Artin Theorem in this case. An analogous ar
gument holds for simple left Artinian rings and Theorem 1.14. 
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EXERCISES 

Note: R is always a ring. 

1. A subset T of R is said to be an m-system (generalized multiplicative system) if 

c,d E T =} cxd E T for some x E R. 

(a) P is a prime ideal of R if and only if R - P is an m-system. [Hint: Exercise 
III.2.14.] 

(b) Let 1 be an ideal of R that is disjoint from an m-system T. Show that 1 is 
contained in an ideal Q which is maximal respect to the property that 
Q n T = 0. Then show that Q is a prime ideal. [Hint: Adapt the proof of 
Theorem VIII.2.2.] 

(c) An element r of R is said to have the zero property if every m-system that 
contains r also contains O. Show that the \,rime radical peR) is the set M of all 
elements of R that have the zero property. [Hint: use (a) to show M C peR) and 
(b) to show peR) eM.] 

(d) Every element c of peR) is nilpotent. [Hint: {ci I i ~ I} is an m-system.] If 
R is commutative, peR) consists of all nilpotent elements of R. 

2. (a) If 1 is an ideal of R, then pel) = I n peR). In particular, pepeR»~ = peR). 
[Hint: Exercise l(c).] 
(b) peR) is the smallest ideal K of R such that P(R/K) = O. In particular, 
peR/peR»~ = 0, whence RIP(R) is semiprime. [Hint: Exercise II1.2.17(d).] 
(c) An ideal 1 is said to have the zero property if every element of 1 has the zero 
property (Exercise 1 (c». Show that the zero property is a radical property (as 
defined in the introduction to Section 2), whose radical is precisely peR). 

3. (a) Every semisimple ring is semiprime. 
(b) peR) C J(R). [Hint: Exercise led); or (a) and Exercise 2(b).] 
(c) If R is left Artinian, peR) = J(R). [Hint: Proposition 2.13.] 

4. R is semiprime if and only if for all ideals A, B 

AB = 0 =} A n B = O. 

5. (a) Let R be a ring with identity. The matrix ring MatnR is prime if and only if R 
is prime. 
(b) If R is any ring, then P(MatnR) = MatnP(R). [Hint: Use Exercise 2 and part 
(a) if R has an identity. In the general case, embed R in a ring S with identity via 
Theorem III.UO; then peR) = R n peS) by Exercise 2.] 

6. If R is semisimple left Artinian, then R is its own quotient ring. [Hint: Since R 
has an identity by Theorem 3.3, it suffices to show that every regular element ofR 
is actually a unit. By Theorem 3.3 and a direct argument it suffices to assume 
R = MatnD for some division ring D. Theorem VII.2.6 and Proposition VII.2.12 
may be helpful.] 

7. The following are equivalent: 
(a) R is prime; 
(b) a,b E R and aRb = 0 imply a = 0 or b = 0; 
(c) the right annihilator of every nonzero right ideal of R is 0; 
(d) the left annihilator of every nonzero left ideal of R is o. 
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8. Every primitive ring is prime [see Exercise 7]. 

9. The center of a prime ring with identity is an integral domain. [See Exercise 7; 
for the converse see Exercise io.] 

10. Let J be an integral domain and let F be the complete field of quotients of J. Let 
R be the set of all infinite matrices (row, columns indexed by N*) of the form 

An 
d 

d 

o 

where An € Matn(F) and d € J C F. 
(a) R is a ring. 

o 
d 

(b) The center of R is the set of all matrices of the form 

d 
d 0 

d 

o 

with de J and hence is isomorphic to J. 
(c) R is primitive (and hence prime by Exercise 8). 

11. The nil radical N(R) of R is the ideal generated by the set of all nil ideals of R. 
(a) N(R) is a nil ideal. 
(b) N(N(R» = N(R). 
(c) N(R/ N(R» = O. 
(d) peR) C N(R) C J(R). 
(e) If R is left Artinian, peR) = N(R) = J(R). 
(f) If R is commutative peR) = N(R). 

5. ALGEBRAS 

The concepts and results of Sections 1-3 are carried over to algebras over a com
mutative ring K with identity. Inparticular, the Wedderburn-Artin Theorem is 
proved for K-algebras (Theorem 5.4). The latter part of the section deals with 
algebras over a field, including algebraic algebras and the group algebra of a 
finite group. Throughout this section K is always a commutatice ring with identity. 

The first step in carrying over the results of Sections 1-3 to K-algebras is to review 
the definitions of a K-algebra, a homomorphism of K-algebras, a subalgebra and an 
algebra ideal (Section IV.7). We recall that if a K-algebra A has an identity, then (left, 
right, two-sided) algebra ideals coincide with (left, right, two-sided) ideals of the ring A 
(see the Remarks after Definition IV.7.3). This fact will be used frequently without 
explicit mention. 
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A left Artinian K-algebra is a K-algebra that satisfies the descending chain condi
tion on left algebra ideals. A left Artinian K-algebra may not be a left Artinian ring 
(Exercise 1). 

EXAMPLE. If D is a division algebra over K, then MatnD is a K-algebra (p. 
227) which is left Artinian by Corollary VIII.l.12. 

Definition 5.1. Let A be an algebra over a commutatuve ring K with identity. 

(i) A left (algebra) A-module is a unitary left K-module M such that M is a left 
module over the ring A and k(rc) = (kr)c = r(kc) for all k e K, reA, c e M. 

(ii) An A-submodule of an A-module M is a subset ofM which is itself an algebra 
A-module (under the operations in M). 

(iii) An algebra A-module M is simple (or irreducible) if AM ~ 0 and M has no 
proper A-submodules. 

(iv) A homomorphism f: M --t N of algebra A-modules is a map that is both a 
K-module and an A-module homomorphism. 

REMARKS. If A is a K-algebra the term "A-module" will always indicate an 
algebra A-module. Modules over the ring A will be so labeled. A right A-module N is 
defined analogously and satisfies k(cr) = (kc)r = c(kr) for all k e K, rEA, c E N. 

Simple K-algebras, primitive K-algebras, the Jacobson radical of a K-algebra, 
semisimple K-algebras, etc. are now defined in the same way the corresponding con
cepts for rings were defined, with algebra ideals, modules, homomorphisms, etc. in 
place of ring ideals, modules, and homomorphisms. In order to carryover the results 
of Sections 1-3 to K-algebras (in particular, the Wedderburn-Artin Theorems) the 
following two theorems are helpful. 

Theorem 5.2. Let A be a K-algebra. 

(i) A subset I of A is a regular maximal left algebra ideal if and only if I is a 
regular maximal left ideal of the ring A. 

(ii) The Jacobson radical of the ring A coincides with the Jacobson radical of the 
algebra A. In particular A is a semisimple ring if and only if A is a semisimple algebra. 

REMARK. Theorem 5.2 is trivial if A has an identity since algebra ideals and 
ring ideals coincide in this case. 

PROOF OF 5.2. (i) If I is a regular maximal left ideal of the ring A, it suffices 
to show that kI C I for all k E K. Suppose kI fZ. I for some k E K. Since r(kI) = k(rI) 
by Definition 5.l(i), 1+ kI is a left ideal of A that properly contains I. Therefore, 
A = 1+ kI by maximality. By hypothesis there exists e E A such that r - re E I for 
all rEA. Let e = a + kb (a,b E I). Then 

e2 = e(a + kb) = ea + e(kb) = ea + (ke)b E I. 

Since e - e2 E I and e2 E I, we must have eEl. Consequently, the fact that r - re E I 
for all rEA implies A = I. This contradicts the maximality of I. Therefore, kI C I 
for all k E K. 
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Conversely let I be a regular maximal left algebra ideal and hence a regular left 
ideal of the ring A. By Lemma 2.4 1 is contained in a regular maximal left ideal I, of 
the ring A. The previous paragraph shows that I, is actually a regular left algebra 
ideal, whence I = I, by maximality. 

(ii) follows from (i) and Theorem 2.3(ii). • 

Theorem 5.3. Let A be a K-algebra. Every simple algebra A-module is a simple 
module over the ring A. Every simple module M over the ring A can be given a unique 
K-module structure in such a way that M is a simple algebra A-module. 

PROOF. Let N be a simple algebra A-module, whence AN ~ O. If N, is a sub
module of N, then AN, is an algebra submodule of N, whence AN, = N or AN, = O. 
If AN, = N, then N, = N. If AN, = 0, then N, C D = {c to N I Ac = 0 I. But Dis 
an algebra submodule of Nand D ~ N since A N ~ O. Therefore D = 0 by sim
plicity, whence N, = O. Consequently, N has no proper submodules and hence is a 
simple module over the ring A. 

If M is a simple module over the ring A, then M is cyclic, say M = Ac (c to M), 
by Remark (iii) after Definition 1.1. Define a K-module structure on M = Ac by 

k(rc) = (kr)c, (k to K, reA). 

Since kr to A, (kr)c is an element of Ac = M. In order to show that the action of K 
on M is well defined we must show that 

rc = ric ==} (kr)c = (kr,)c, (k to K; r,r, to A). 

Clearly it will suffice to prove 

rc = 0 ==} (kr)c = 0, (k to K, r to A). 

Now by the proof of Theorem 1.3, M '" A/I where the regular maximal left ideal lis 
the kernel of the map A ~ Ac = M given by x f-+ xc. Cons~quently, rc = 0 implies 
r to I. But I is an algebra ideal by Theorem 5.4, whence kr I; I. Therefore (kr}c = 0 and 
the action of K on M is well defined. It is now easy to verify that M is a K-module 
and an algebra A-module. The K-module structure of M is uniquely determined 
since any K-module structure on M that makes M = Ac an A-module necessarily 
satisfies k(rc) = (kr)c for all k to K, r to A. • 

Theorem 5.4. A is a semisimple left Artinian K-algebra if and only if there is an 
isomorphism ofK-algebras 

A :" Matn,D, >< Matn2D2 >< ... X MatntDt, 

where each nj is a positive integer and each Di a division algebra over K. 

REMARK. Theorem 5.4 is valid for any semisimple finite dimensional algebra A 
over a field K since any such A is left Artinian (Exercise 2). 

SKETCH OF PROOF OF 5.4. Use Theorems 5.2 and 5.3 and Exercises 3 and 
4 to carryover the proof of the Wedderburn-Artin Theorem 3.3 to K-algebras. • 
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The remainder of this section deals with selected topics involving algebras over a 
field. We first obtain a sharper version of Theorem 5.4 in case K is an algebraically 
closed field and finally we consider group algebras over a field. 

If A is a nonzero algebra with identity over a field K, then the map a : K -+ A, de
defined by k f-> kIA, is easily seen to be a homomorphism of K-algebras. Since 
a(1K) = lA ~ 0, ker a ~ K. But the field K has no proper ideals, whence Ker a = O. 
Thus a is a monomorphism. Furthermore the image of a lies in the center of A since 
for all k E K, rEA: 

Consequently we adopt the following convention: 

If A is a nonzero algebra with identity ouer afield K, then K is to be identified with 
1m a and considered to be a subalgebra of the center of A. 

Under this identification the K-module action of K on A coincides with multiplica
tion by elements of the subalgebra K in A since ka = (klA)a = a(k)a. 

Definition 5.5. An element a of an algebra A ouer a field K is said to be algebraic 
ouer K if a is the root of some polynomial in K[x]. A is said to be an algebraic algebra 
ouer K if euery element of A is algebraic ouer K. 

EXAMPLE. If A is finite dimensional then A is an algebraic algebra. For if 
dimKA = n and a E A, then the n + 1 elements a,a\a3, ••• ,an+! must be linearly 
dependent. Thus k1a + k2a2 + ... + kn+1a"+! = 0 for some ki E K, not all zero. Thus 
f(a) = 0 where f is the nonzero polynomial k1x + kzX2 + ... + kn+1xn+! E K[x]. 

EXAMPLE. The algebra of countably infinite matrices over a field K with only a 
finite number of nonzero entries is an infinite dimensional simple algebraic algebra 
(Exercise 5). 

REMARK. The radical of an algebraic algebra is nil (Exercise 6). 

Lemma 5.6. IjD is an algebraic diuision algebra ouer an algebraically closed field K, 
then D = K. 

PROOF. K is contained ill the center of D by the convention adopted above. 
If a ED, then f(a) = 0 for some fE K[x]. Since K is algebraically closed 
f(x) = k(x - k1)(x - k 2)· .. (x - k n) (k,ki E K; k ~ 0), whence 

o = f(a) = k(a - k1)(a - k 2)· . ·(a - k n). 

Since D is a division ring, a - k i = 0, for some i. Therefore a = k i E K and thus 
DC K. • 

Theorem 5.7. Let A be a finite dimensional semisimple algebra ouer an algebraically 
closed field K. Then there are positiue integers nl, ... , nt and an isomorphism of 
K-algebras 
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PROOF. By Theorem 5.4 (and the subsequent Remark) A"""" MatnlDl X 
MatnaD2 X ... X Matn,D t where each Di is a division algebra over K. Each Di is 
necessarily finite dimensional over K; (otherwise Matn,Di and hence A would be 
infinite dimensional). Therefore D,i = K for every i by Lemma 5.6. • 

A great deal of research over the years has been devoted to group algebras over a 
field (see p. 227). They are useful, among other reasons, because they make it 
possible to exploit ring-theoretic techniques in the study of groups. 

Proposition 5.S. (Maschke) Let K(G) be the group algebra of a finite group G over a 
fieldK.lfK has characteristic 0, then K(G) is semisimpie.lfK has prime characteristic 
p, then K(G) is semisimple ifand only ifp does not divide IGI. 

SKETCH OF PROOF. Suppose char K = 0 or p, where p{IGI. If B is any 
K-algebra with identity (in particular K( G», verify that there is a well-defined mono
morphism of K-algebras a : B ----. HomK(B,B) given as follows: a(b) is defined to be 
the map ab : B ----. B, where ab(x) = bx. 

If g 5 G, we denote the element lKg of K(G) simply by g. By definition K(G) is a 
K-vector space with basis X = {g I g 5 G} and finite dimension n = IGI. For each 
u 5 K(G) let M" be the matrix of a" relative to the basis X. Let g 5 G with g r£ e. 
Then for aU g, 5 G, ag(gl) = ggl r£ gl (since G is a group). Thus a g simply permutes 
the elements of the basis X and leaves no basis element fixed. Consequently, the 
matrix My of a g relative to the basis X may be obtained from the identity matrix In by 
an appropriate permutation of the rows that leaves no row fixed (see Theorem 
VII.1.2). Recall that the trace, Tr M", is the sum of the main diagonal entries of M" 
(see p. 369). It is easy to see that 

(i) Tr My = 0 for g 5 G, g r£ ~; 

(ii) M. = In, whence Tr M. = nh; 
(iii) if u = k,g, + ... + kngn 5 K(G), then 

n n 

a" = 1: kiag• and Tr M" = 1: ki Tr Mg •. 
i=l i=l 

If the radical J of K( G) is nonzero, then there is a nonzero element v 5 J with 
v = k1g1 + ... + kngn. We may assume g, = e and k, = lK (if not, replace v by 
k.-1gi-1V, where ki r£ 0, and relabel). Since K(G) is finite dimensional over K, K(G) 
is left Artinian (Exercise 2). Consequently J is nilpotent by Proposition 2.13 (for 
algebras). Therefore v 5 J is nilpotent, whence av is nilpotent. Thus by Theorem 
VII.1.3 Mv is a rulpotent matrix. Therefore Tr Mv = 0 (Exercise VII.5.10). On the 
other hand (i)-(iii) above imply 

n n 

Tr Mv ~ L ki Tr Mg; = lK Tr M. + L ki Tr Mg. 
i=l i=2 

= Tr Me + 0 = nlK. 

But nh r£ 0 since char K = 0 or char K = p and p does not divide I GI = n. This is a 
contradiction. Therefore J = 0 and K(G) is semisimple. 

Conversely suppose char K = p and pin. Let w be the sum in K( G) of all the ele
ments of the basis X; that is, W = K, + g2 + ... + gn 5 K( G). Clearly w r£ O. Verify 
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that wg = gw for all g e G, which implies that w is in the center of K(G). Show that 
w2 = nw = (n1K)w, whence }\.-2 = 0 (since pin). Thus (K(G)w)(K(G)w) = 0 so that 
the nonzero left ideal K( G)w is nilpotent. Since K( G)w C J by Theorem 2.12, J ;t. O. 
Therefore K( G) is not semisimple. • 

The following corollary (with K the field of complex numbers) is quite useful in 
the study of representations and characters of finite groups. 

Corollary 5.9. Let K(G) be the group algebra of afinite group G over an algebraically 
closed field K. If char K = 0 or char K = P and p1'IGI, then there exist positive 
integers nl, ... , nt and an isomorphism ofK-algebras 

PROOF. Since G is finite, K(G) is a finite dimensional K-algebra and hence left 
Artinian (Exercise 2). Apply Theorem 5.7 and Proposition 5.8. • 

EXERCISES 

Note: K is always a commutative ring with identity and A a K-algebra. 

1. The Q-algebra A of Exercise IV.7.4 is a left Artinian Q-algebra that is not a left 
Artinian ring. 

2. A finite dimensional algebra over a field K satisfies both the ascending and de
scending chain conditions on left and right algebra ideals. 

3. (a) If M is a left algebra A-module, then a(M) = {r e A I rc = 0 for all c e Ml is 
an algebra ideal of A. 
(b) An algebra ideal P of A is said to be primitive if the quotient algebra RIP is 
primitive (that is, has a faithful simple algebra RIP-module). Show that every 
primitive algebra ideal is a primitive ideal of the ring A and vice versa. 

4. Let M be a simple algebra A-module. 
(a) D = HomA(M,M) is a division algebra over K, where HomAM,M) de-

notes all endomorphisms of the algebra A-module M. 
(b) M is a left algebra D-module. 
(c) The ring HomD(M,M) of all D-algebra endomorphisms of M is a K-algebra. 
(d) The map A ..... HomD(M,M) given by rf-t aT (where aT(x) = rx) is a 

K-algebra homomorphism. 

5. Let A be the set of all denumerably infinite matrices over a field K (that is, ma
trices with rows and columns indexed by N*) which have only a finite number of 
nonzero entries. 

(a) A is a simple K-algebra. 
(b) A is an infinite dimensional algebraic K-algebra. 

6. The radical J of an algebraic algebra A over a field K is nil. [Hint: if r e J and 
knrn + kn_1rn- 1 + ... + ktr' = 0 (k, ;t. 0), then rl = rlu with u = -kt-lknrn-t 
- ... -kt-1kt+1r, whence -u is right quasi-regular, say -u + v - uv = O. 
Show that 0 = rl( -u + v - uv) = -rl.] 
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7. Let A be a K-algebra and C the center of the ring A. 
(a) C is a K-subalgebra of A. 
(b) If K is an algebraically closed field and A is finite dimensional sernisimple, 

then the number t of simple components of A (as in Theorem 5.7) is precisely 
dimKC. 

6. DIVISION ALGEBRAS 

We first consider certain simple algebras over a field and then turn to the special 
case of division algebras over a field. We show that the structure of a division algebra 
is greatly influenced by its maximal subfields. Finally the Noether-Skolem Theorem 
(6.7) is proved. It has as corollaries two famous theorems due to Frobenius and 
Wedderburn respectively (Corollaries 6.8 and 6.9). The tensor product of algebras 
(Section IV.7) is used extensively throughout this section. 

Definition 6.1. An algebra A with identity over afieldK is said to be central simple if 
A is a simple K-algebra and the center of A is precisely K. 

EXAMPLE. Let D be a division ring and let K be the center of D. It is easy to 
verify that if d is a nonzero element of K, then d-1 E K. Consequently K is a field. 
Clearly D is an algebra over K (with K acting by ordinary multiplication in D). 
Furthermore since D is a simple ring with identity, it is also simple as an algebra. 
Thus D is a central simple algebra over K. 

Recall that if A and Bare K-algebras with identities, then so is their tensor prod
uct A @KB(TheoremIV.7.4). The product of a@bandal @blisaal @bbl. Here 
and below we shall denote the set 11 A @ bib E B I by I A @J.: B and I a @ h I a E A I 
by A @K In. Note that A @K B = (A @II: In)(1,4 @K B); see p. 124. 

Theorem 6.2. If A is a central simple algebra orer a field K and B is a simple K-al
gebra with identity, then A @K B is a simple K-algebra. 

PROOF. Since B is a vector space over K, it has a basis Y and by Theorem 
n 

IV.5.!1 every element u of A @K B can be written L ai @ Yi, with Yi E Y and the ai 
i=1 

unique. If U is any nonzero ideal of A @K B, choose a nonzero u E U such that 
n 

U = L ai @ Yi, with all ai ~ 0 and n minimal. Since A is simple with identity,and 
.=1 

AalA is a nonzero ideal, AalA = A. Consequently there are elements rl, ... , 
t 

r"sl, ... ,s, E A such that lA = L rialSi' Since U is an ideal, the element v = 
t ;=1 

L(rj @lB)u(s;@Is)isinU. Now 
;=1 
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v = L (ri @ IB)(L ai @ Yi)(Si @ IB) = L cL r,aisi) @ Yi 
;; ; ; 

n n 

= L rialsi @ Yl + L (L: riaisi) @ Yi = lA @ YI + L iii @ Yi, 
; ;=2 j i=2 

t 

where iii = L riaiSi' By the minimality of n, iii .= 0 for all i 2:: 2. If a E A, then 
;=1 

the element w = (a @ IB)v - v(a @ IB) is in U and 

w = (a@Yl + t aiii@Yi) - (a@YI+ t iiia@Yi) 
.=2 1=2 

n 

= L (aiii - iiia) @ Yi. 
i=2 

By the minimality of n, w = 0 and alii - iiia = 0 for all i 2:: 2. Thus aiii = iiia for all 
a E A and each iii is in the center of A, which by assumption is precisely K. Therefore 

n n 

V = lA @ YI + L iii @ Yi = lA @ Yl + L lA @ ii;y; = lA @ b, 
i=2 ;=2 

where b = Yl + ii2Y2 + ... + iinYn E B. Since each iii .= 0 and the Yi are linearly in
dependent over K, b .= O. Thus, since B has an identity, the ideal BbB is precisely B 
by simplicity. Therefore, 

IA @K B = 1 A @BbB = (1A @K B)(lA @ b)(1A @K B) 

= (1A @K B)V(1A @K B) C U. 

Consequently, 

A@KB = (A@K h)(1A@KB) C (A@K IB)U CU. 

Therefore U = A @K B and there is only one nonzero ideal of A @K B. Since 
A @K B has an identity lA @ h,(A @K B)2 .= 0, whence A @K B is simple. • 

We now consider division rings. If D is a division ring and F is a subring of D 
containing ID that is a field, F is called a subfield of D. Clearly D is a vector space 
over any subfield F. A subfield F of D is said to be a maximal subfield if it is not 
properly contained in any other subfield of D. Maximal subfields always exist (Exer
cise 4). Every maximal subfield F of D contains the center K of D (otherwise F and K 
would generate a subfield of D properly containing F; Exercise 3). It is easy to see 
that F is actually a simple K-algebra. The maximal subfields of a division ring 
strongly influence the structure of the division ring itself, as the following theorems 
indicate. 

Theorem 6.3. Let D be a division ring with center K and let F be a maximal sub field 
of D. Then D @K F is isomorphic (as a K-algebra) to a dense subalgebra of 
HomF(D,D), where D is considered as a vector space over F. 

PROOF. HomF(D,D) is an F-algebra (third example after Definition IV.7.1) 
and hence a K-algebra. For each a E P let aa : D -t D be defined by aix) = xa. For 
each c E F let flc : D -t D be defined by (3c(x) = ex. Verify that aa,(3c E HomAD,D) 
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and that aa/3c = (3caa for all a E D, C E F. Verify that the map D X F ----. HomF(D,D) 
given by (a,c) ~ aa/3c is K-bilinear. By Theorem IV.5.6 this map induces a K-module 
homomorphism () : D @K F ----. HomAD,D) such that 

n n 

() (L: ai @ Ci) = L: aai{3'i (ai E D, Ci E F). 
;=1 ;=1 

Verify that () is a K-algebra homomorphism, which is not zero (since (}(1D @ lD) is 
the identity map on D). Since D is a central simple and F a simple K-algebra, D @K F 
is simple by Theorem 6.2. Since (J r! 0 and Ker () is an algebra ideal, Ker () = 0, 
whence () is a monomorphism. Therefore D @K F is isomorphic to the K-subalgebra 
1m () of HomF(D,D). We must show that A = 1m () is dense in HomF(D,D). 

D is clearly a left module over HomAD,D) with fd = f(d) (fE HomF(D,D), dE D). 
Consequently D is a left module over A = 1m (). If dis a nonzero element of D, then 
since D is a division ring, 

Ad= {(J(u)(d)lueD@KFI = {L:cidailiEN*;ciEF;aiEDI =D. 
; 

Consequently, D has no nontrivial A-submodules, whence D is a simple A-module. 
Furthermore D is a faithful A-module since the zero map is the only element f of 
HomF(D,D) such that fD = O. Therefore by the Density Theorem 1.12 A is isomor
phic to a dense subring of Hom<1(D,D), where ~ is the division ring HomA(D,D) and 
D is a lett ~-vector space. Under the monomorphism A ----. Hom<1(D,D) the image of 
fE A is fconsidered as an element of Hom<1(D,D). 

We now construct an isomorphism of rings F '" ~. Let (3 : F ----. ~ = HomA(D,D) 
be given by C ~ {3c (notation as above). Verify that {3c E ~ and that (3 is a monomor
phism of rings. If fE ~ and xED, then ax = (}(X@ ID) E A and 

f(x) = f(lnx} = f[a.(ID}] = ax(f(1D}} = f(ID}x = (3c(x), 

where C = f(1D). In order to show that (3 is an epimorphism it suffices to prove that 
C e F; for in that case f(x) = cx = (3c(x) for all xeD, whence f = {3c = (3(c). If 
Y e F, then (311 = B(1D@Y) e A and a y = (}(Y@ lD) E A and 

cy = f(1D)Y = a y(f(1D}) = f(a y(1D» = f(1DY) = f(ylD) 

= f((3y(1D» = (3YJ(1D) = (3y(c) = yc. 

Therefore C commutes with every element of F. If C • F, then C and F generate a sub
field of D that properly contains the maximal subfield F (Exercise 3). Since this 
would be a contradiction, we must have C E F. Therefore {3: F '" ~. 

To complete the proof, let VI, •.. , Vn E D and let {UI' ... , Un I be a subset of D 
that is linearly independent over F. We claim that {UI, .•. , Un I is also linearly inde-

n 

pendent over ~. If L: giUi = 0, (gi e ~), then 
;=1 

o = L: giUi = L: (3c;(Ui) = L: CiUi, 

where Ci E F and gi = (3(Ci) = {3ci' The F-linear independence of {UI, ..• , Un I implies 
that every Co = 0, whence gi = (3(0) = 0 for all i. Therefore {UI' ••• , Un I is linearly 
independent over.:1. By the density of A in Hom<1(D,D) (Definition 1.7), there exists 
h E A such that h(Ui) = Vi for every i. Therefore A is dense in HomF(D,D). • 

Theorem 6.3 has an interesting corollary that requires two preliminary lemmas. 
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lemma 6.4. Let A be an algebra with identity over afieldK andF afield containing 
K; then A Q9K F is an F-algebra such that dimKA = dimF(A Q9K F). 

SKETCH OF PROOF. Since F is commutative and a K-F bimodule, A Q9K F 
is a vector space over F with b(a Q9 bl) = (a Q9 bl)b = a Q9 b,b (a e A; b,b, e F; 
see Theorem IV.5.5 and the subsequent Remark). A Q9K F is a K-algebra by Theo
rem IV.7.4 and is easily seen to be an F-algebra as well. If X is a basis of A over K, 
then by (the obvious analogue of) Theorem IV.5.1I every element of A Q9K F can 
be written 

LXi Q9 Ci = L (Xi Q9 IF)Ci = L Ci(Xi Q9 IF) (Xi eX; Ci e F), 
iii 

with the elements Xi and Ci uniquely determined. It follows that 

XQ9K IF = jXQ9 IF! xeX) 

is a basis of A Q9K F over F. Clearly dimKA = !X! = !XQ9K IF! = dimp(A Q9K F) • 

lemma 6.5. Let D be a division algebra over a field K and A a finite dimensional 
K-algebra with identity. Then D Q9K A is a left Artinian K-algebra. 

SKETCH OF PROOF. D Q9K A is a vector space over D with the action of 
deDonageneratordl Q9aof DQ9KA givenbyd(d1 Q9a) = dd1 Q9a = (dQ9IA)(dl Q9a) 
(Theorem IV.5.5). Consequently every left ideal of D Q9K A is also a D-subspace of 
D Q9K A. The proof of Lemma 6.4 is valid here, mutatis mutandis, and shows 
that dimD(D Q9K A) = dimKA. Since dimKA is finite, a routine dimension argument 
shows that D Q9K A is left Artinian. • 

Theorem 6.6. Let D be a division ring with center K and maximal sub field F. Then 
dimKD is finite if and only if dimKF is finite, in which case dimFD = dimKF and 
dimKD = (dimKF)2. 

PROOF. If dimKF is infinite, so is dimKD. If dimKF is finite, then D Q9K F is a 
left Artinian K-algebra by Lemma 6.5. Thus D Q9K F is isomorphic to a dense left 
Artinian subalgebra of HomAD,D) by Theorem 6.3. The proof of Theorem 6.3 
shows that this isomorphism is actually an F-algebra isomorphism. Consequently, 
there is an F-algebra isomorphism D Q9K F '" HomF(D,D) and n = dimFD is finite 
by Theorem 1.9. Therefore D Q9K F '" HomF(D,D) '" MatnF by Theorem VII.1.4 
(and the subsequent Remark). Lemma 6.4 now implies 

dimKD = dimF(D Q9K F) = dimF(MatnF) = n2 = (dimFD)2. 

On the other hand dimKD = (dimpD)(dimKF) by Theorem IV.2.16. Therefore 
dimKF = dimpD. • 

Recall that if u is a unit in a ring R with identity, then the map R ---t R given by 
r f--. uru-' is an automorphism of the ring R. It is called the inner automorphism in
duced by u. 
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Theorem 6.7. (Noether-Skolem) Let R be a simple left Artinian ring and let K be the 
center of R (so that R is a K-algebra). Let A and B be finite dimensional simple 
K-subalgebras ofR that contain K. If a : A -> B is a K-algebra isomorphism that 
leaves Kfixed elementwise, then a extends to an inner automorphism ofR. 

PROOF. It suffices by the Wedderburn-Artin Theorem 1.14 to assume 
R = HomD(V,V), where V is an n-dimensional vector space over the division ring D. 
The remarks after Theorem VILt.3 show that there is an anti-isomorphism of rings 
R = HomD(V,V) -> Mat"D. Under this map the center K of R is necessarily mapped 
isomorphical/y onto the center of MatnD. But the center of MatnD is isomorphic to 
the center of D by Exercise VII .1.3. Consequently we shall identify K with the center 
of D so that D is a central simple K-algebra. 

Observe that V is a left R-module with rv = r(v) (v E V; r E R = HomD(V,V»). 
Since V is a left D-vector space, it follows that V is a left algebra module over the 
K-algebra D Q9K R, with the action of a generator d Q9 r of D Q9K R on v E V 
given by 

(dQ9 r)v == d(rv) = d(r(v)) = r(dv). (i) 

If A is the subalgebra D Q9K A of D Q9K R, then V is clearly a left A-module. Simi
larly if B = D Q9K B, then V is a left B-module. Now the map Ii = 1 D Q9 a : A -> jj 
is an isomorphism of K-algebras. Consequently, V has a second A-module structure 
given by pullback along Ii; (that is, av is defined to be Ii(a)v for v E V, a E A; see p. 
170). Under this second A-module structure the action of a generator d® r of 
A = D Q9K A on v E V is given by 

(dQ9 r)v = li(dQ9 r)v = (dQ9 a(r))v = d(a(r)(v)) = a(r)(dv). (ii) 

By Theorem 6.2 and Lemma 6.5 A is a simple left Artinian K-algebra. Conse
quently by Theorem 3.10 there is (up to isomorphism) only one simple A-module. 
Now V with either the A-modllie structure (i) or (ii) is semisimple by Theorem 3.7. 
Consequently there are A-module isomorphisms 

V = L Vi (corresponding to structure (i)) and (iii) 
i.I 

V = L Wi (corresponding to structure (ii)), (iv) 
iaJ 

with each Vi, Wi a simple A-module and Vi ro.J Wi for all i,j. Since dv = (dQ9 h)v 
(d E D,v E V), every A-submodule of V is a D-subspace of V and every A-module iso
morphism is an isomorphism of D-vector spaces. Since dimDV = n is finite, each 
Vi, Wi has finite dimension t over D and the index sets I, J are finite, say 

I = {I ,2, ... , m 1 and J = {I ,2, ... , s I. 

Therefore 

dimDV = dimD (t Vi) = t dimDVi = mt, and 
i=l i=l 

dimDV = dimD (± Wi) = ± dimD Wi = st, 
i=1 i=1 

m m 

whence m = s. Since Vi ro.J Wi for all i,j, L Vi ro.J L Wi. This isomorphism com-
;=1 i=1 
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bined with the isomorphisms (iii) and (iv) above yields an A-module isomorphism {3 
of V (with the A-module structure (i» and V (with the A-module structure (ii». Thus 
for all a c A and v c V 

(3(av) = a(a)({3(v». 

In particular, for de D and a = d ® 1A c A, 

(3(dv) = (3(av) = a(iJ)({3(v» = (d® ls){3(v) = d{3(v), 

whence (3 c HomD(V,V) = R. Since {3 is an isomorphism, {3 is a unit in R. Further
more for rcA and r = 1D ® rcA, 

(3r(v) = (3[r(v)] = (3[rv] = a(r){3(v) 

= (lD ® a(r»{3(v) = a(r)[{3(v)] = [a(r){3](v), 

whence (3r = a(r){3 in R = HomD(V,V), In other words, 

(3r{3-1 = a(r) for all rcA. 

Therefore the inner automorphism of R induced by {3 extends the map a : A -+ B. • 

The division algebra of real quaternions, which is mentioned in the following 
corollary is defined on pages 117 and 227. 

Corollary 6.B. (Frobenius) Let D be an algebraic division algebra over the jield R of 
real numbers. Then D is isomorphic to either R or thejieldC of complex numbers or the 
division algebra T of real quaternions. 

SKETCH OF PROOF. Let K be the center of D and F a maximal subfield. We 
have R eKe FeD, with F an algebraic field extension of R. Consequently 
dimKF'::::: dimRF'::::: 2 by Corollary V.3.20. By Theorem 6.6 dimFD = dimKF and 
dimKD = (dimKF)2. Thus the only possibilities are dimKD = 1 and dimKD = 4. If 
dimKD = 1, then D = F, and D is isomorphic to R or C by Corollary V.3.20. 

If dimKD = 4, then dimKF = 2 = dimFD, whence K = Rand F is isomorphic 
to C by Corollary V.3.20. Furthermore Dis noncommutative; otherwise D would be 
a proper algebraic extension field of the algebraically closed field C. Since F is iso
morphic to C, F = R(i) for some i c F such that /'2 = -1. The map F -+ F given by 
a + bi f--> a - bi is a nonidentity automorphism of F that fixes R elementwise. By 
Theorem 6.7 it extends to an inner automorphism (3 of D, given by (3(x) = dxd-1 for 
some nonzero de D. 

Since -i = (3(i) = did-1, -id = di and hence id2 = cPi. Consequently cP c D 
commutes with every element of F = R(i). Therefore d2 c F; otherwise cJ2 and F 
would generate a subfield of D that properly contained the maximal subfield F. 
Since the only elements of F that are fixed by {3 are the elements of Rand (3(tJ2) 
= dtJ2d-1 = cP, we have tJ2 c R. If d2 > 0, then de R. This is impossible since de R 
implies {3 is the identity map. Thus d2 = -r2 for some nonzero r c R, whence 
(d/r)2 = -1. Let j = d/ rand k = ij. Verify that { 1 ,i,j,k I is a basis of Dover Rand 
that there is an R-algebra isomorphism D '"'" T. • 
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Corollary 6.9. (Wedderburn) Every finite dir;isioll ring D is afield. 

REMARK. An elementary proof of this fact, via cyclotomic polynomials, is 
given in Exercise V.8.10. 

PROOF OF 6.9. Let K be the center of D and F any maximal subfield. By 
Theorem 6.6 dimKD = n2, where dimKF = n. Thus every maximal subfield is a finite 
field of order qn, where q = IKI. Hence any two maximal subfields F and F' are iso
morphic under an isomorphism ,6 : F --> F' that fixes K elementwise (Corollary 
V.5.8). By Theorem 6.7, (3 is given by an inner automorphism of D. Thus 
F' = aFa-1 for some nonzero a E D. 

If u E D, then K(u) is a subfield of D (Exercise 3). K(u) is contained in some 
maximal subfield that is of the form aFa-1 (for some a E D). Thus D = U aFa-1 

Or'aeD 

and D* = U aF*a-1 (where D*,F* are the multiplicative groups of nonzero ele-
aED* 

ments of D, F respectively). This is impossible unless F = D according to Lemma 
6.10 below. • 

Lemma 6.10. fiG is a finite (multiplicative) group and H is a proper subgroup, then 

U xHx-1 C G. 
xeG r' 

PROOF. The number of distinct conjugates of His [G : N], where N is the 
normalizer of H in G (Corollary 11.4.4). Since H < N < G and H,e G, [G : N] :::; 
[G : H] and [G : H] > 1. If r is the number of distinct elements in U xHx-t, then 

XeG 

r:::; 1 + (IHI - 1)[G : N] :::; 1 + (IHI - l)[G : H] 

= 1 + IHI[G: H]-- [G: H] = 1 + IGI - [G: H] < IGI, 

since [G : H] > 1. • 

EXERCISES 

1. If A is a finite dimensional central simple algebra over the field K, then 
A @K Aop '" MatnK, where n = dimKA and Aop is defined in Exercise III.l.l7. 

2. If A and B are central simple algebras over a field K, then so is A @K B. 

3. Let D be a division ring and Fa subfield. If dE D commutes with every element of 
F, then the subdivision ring F(d) generated by F and d (the intersection of all 
subdivision rings of D containing F and d) is a subfield. [See Theorem V.I.3.] 

4. If D is a division ring, then D contains a maximal subfield. 

5. If A is a finite dimensional central simple algebra over a field K, then dimKA is a 
perfect square. 

6. If A and B are left Artinian algebras over a field K, then A @K B need not be left 
Artinia n. [Hint: let A be a division algebra with center K and maximal subfield B 
such that dimBA is infinite.] 
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7. If D is finite dimensional division algebra over its center K and F is a maximal 
subfield of D, then there is a K-algebra isomorphism D ®K F '" MatnF, where 
n = dimFD. 

8. If A is a simple algebra finite dimensional over its center, then any automorphism 
of A that leaves the center fixed elementwise is an inner automorphism. 

9. (Dickson) Let D be a division ring with center K. If a,b E D are algebraic over the 
field K and have the same minimal polynomial, then b = dad-1 for some dE D. 



CHAPTER X 

CATEGORIES 

This chapter completes the introduction to the theory of categories, which was begun 
in Section 1.7. Categories and functors first appeared in the work of Eilenberg-Mac
Lane in algebraic topology in the 1940s. It was soon apparent that these concepts 
had far wider applications. Many different mathematical topics may be interpreted in 
terms of categories so that the techniques and theorems of the theory of categories 
may be applied to these topics. For example, two proofs in disparate areas frequently 
use "similar" methods. Categorical algebra provides a means of precisely expressing 
these similarities. Consequently it is frequently possible to provide a proof in a cate
gorical setting, which has as special cases the previously known results from two 
different areas. This unification process provides a means of comprehending wider 
areas of mathematics as well as new topics whose fundamentals are expressible in 
categorical terms. 

In this book category theory is used primarily in the manner just described - as 
a convenient language of unification. In recent years, however, category theory has 
begun to emerge as a mathematical discipline in its own right. Frequently the source 
of inspiration for advances in category theory now comes to a considerable extent 
from within the theory itself. This wider development of category theory is only 
hinted at in this chapter. 

The basic notions of functor and natural transformation are thoroughly dis
cussed in Section 1. Two especially important types of functors are representable 
functors (Section 1) and adjoint pairs of functors (Section 2). Section 3 is devoted to 
carrying over to arbitrary categories as many concepts as possible from well-known 
categories, such as the category of modules over a ring. 

This chapter depends on Section I. 7, but is independent of the rest of this book, 
except for certain examples. Sections 1 and 3 are essentially independent. Section 1 is 
a prerequisite for Section 2. 

464 
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1. FUNCTORS AND NATURAL TRANSFORMATIONS 

As we have observed frequently in previous chapters the study of any mathe
matical object necessarily requires consideration of the "maps" of such objects. In 
the present case the mathematical objects in question are categories (Section 1.7). A 
functor may be roughly described as a "map'; from one category to another which 
preserves the appropriate structure. A natural transformation, in turn, is a "map" 
from one functor to another. 

We begin with the definition of covariant and contravariant functors and numer
ous examples. Natural transformations are then introduced and more examples 
given. The last part of the section is devoted to some important functors in the theory 
of categories, the representable functors. 

The reader should review the basic properties of categories (Section 1.7), par
ticularly the notion of universal object (which is needed in the study of representable 
functors). We shall frequently be dealing with several categories simultaneously. 
Consequently, if A and B are objects of a category e, the set of all morphisms in e 
from A to B will sometimes be denoted by home(A,B) rather than hom(A,B) as previ
ously. 

Definition 1.1. Let e and:D be categories. A covariant functor T from e to :D (de
noted T : e -->:D) is a pair of functions (both denoted by T), an object function that 
assigns to each object Cafe an object T(C) of:D and a morphism function which as
signs to each morphism f: C -+ C' of@ a morphism 

T(O : T(C) --> T(C') 

of 1), such that 

(i) T(lr;) = h(c) for ecery identity morphism lc ofe; 
(ii) T(g 0 0 = T(g) 0 T(O for any two morphisms f, g of e whose composite g of 

is defined. 

EXAMPLE. The (covariant) identity functor Ie: e --> e assigns each object and 
each morphism of the category e to itself. 

EXAMPLE. Let R be a ring and A a fixed left R-module. For each R-module C, 
let T(C) = Homfl(A,C). For each R-module homomorphism f : C --> C', let T(f) be 
the usual induced map 1: HomR(A,C) --> Homll(A,C') (see the remarks after Theo
rem IVA.I). Then T is a covariant functor from the category of left R-modules to the 
category of abelian groups. 

EXAMPLE. More generally, let A be a fixed object in a category e. Define a co
variant functor hA from e to the category S of sets by assigning to an object C of e 
the set h.1(C) = hom(A,C) of all morphisms in e from A to C. If f : C --> C' is a 
morphism ofe, let hA!) : hom(A,C) --> hom(A,C') be the function given by gf-. fo g 
(g € hom(A,C». The functor h,t, which will be discussed in some detail below, is 
called the covariant hom functor. 

EXAMPLE. Let F be the following covariant functor from the category of sets 
to the category of left modules over a ring R with identity. For each set X, F(X) is 
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the free R-module on X (see the Remarks after Theorem IV.2.l). If f:X ~X' is 
a function, let F(f) : F(X) ~ F(X') be the unique module homomorphism 
I : F(X) ~ F(X') such that Ii = f, where i is the inclusion map X ~ F(X) (Theorem 
IV.2.1). 

EXAMPLE. Let e be a concrete category (Definition 1.7.6), such as the category 
of left R-modules or groups or rings. The (covariant) forgetful functor from e to the 
category S of sets assigns to each object A its underlying set (also denoted A) and to 
each morphism f : A ~ A' the function f : A --> A' (see Definition 1.7.6). 

Definition 1.2. Let e and ~ he categories. A contravariant functor S from e to ~ 
(denoted S : e ~ ~) is a pair of functions (both denoted by S), an object function which 
assigns to each object Cafe an object seC) of~ and a morphism function which as
signs to each morphism f : C ~ c' ofe a morphism 

S(f) : S(C') ~ seC) 
of~ such that 

(i) S(1c) = Is(c) for every identity morphism Ic ofe; 
(ii) S(g 0 f) = S(f) 0 S(g) for any two morphisms f, g ofe whose composite g 0 f 

is defined. 

Thus the morphism function of a contravariant functor S : e ~ ~ reverses the 
direction of morphi!>ms. 

EXAMPLE. Let R be a ring and B a fixed left R-module. Define a contravariant 
functor S from the category of left R-modules to the category of abelian groups by 
defining S(C) = HomR(C,B) for each R-module C. If f : C ~ C' is an R-module 
homomorphism, then S(f) is the induced map I: HomR(C',B) ~ HomR(C,B) (see 
the Remarks after Theorem IV.4.l). 

EXAMPLE. More generally, let B be a fixed object in a category e. Define a con
travariant functor hB from e to the category S of sets by assigning to each object C of 
e the set hB(C) = hom(C,B) of all morphisms in e from C to B'1f f : C ~ C' is a 
morphism of e, let hB(f) : home C',B) ~ home C,B) be the function given by g f---> g 0 f 
(g E hom(C',B». The functor hB is called the contravariant hom functor. 

The following method may be used to reduce the study of contravariant functors 
to the study of covariant functors. If e is a category, then the opposite (or dual) cate
gory of e, denoted eop, is defined as follows. The objects of eop are the same as the 
objects of e. The set homeDP(A,B) of morphisms in eop from A to B is defined to be 
the set home(B,A) of morphisms in e fromB to A. When a morphism fE home(B,A) 
is considered as a morphism in homeop(A,B), we denote it by r p • Composition 
of morphisms in eop is defined by 

gOP 0 r p = (fo g)OP. 

If S : e ~ ~ is a contravariant functor, let S : eop ~ ~ be the unique covariant 
functor defined by 

SeA) .= SeA) and S(rp ) = S(f) 
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for each object A and morphism f of eop . Conversely, it is easy to verify that every co
variant functor on eop arises in this way from a contravariant functor on e. 

Recall that every statement involving objects and morphisms in a category has a 
dual statement obtained by reversing the direction of the morphisms (see p. 54). It 
follows readily that a statement is true in a category e if and only if the dual state
ment is true in eop . Consequently a statement involving objects, morphisms and a 
contravariant functor S on e is true provided the dual statement is true for the co
variant functor Son eop . For this reason many results in the sequel will be proved 
only for covariant functors, the contravariant case being easily proved by dualization. 

In order to define functors of several variables, it is convenient to introduce the 
concept of a product category. If e and 1) are categories, their product is the category 
e X 1) whose objects are all pairs (C,D), where C and D are objects of e and 1) re
spectively. A morphism (C,D) -> (C' ,D') of e X 1) is a pair (f,g), where f : C -> C' 
is a morphism of e and g : D -> D' is a morphism of 1). Composition is given by 
(f',g') 0 (f,g) = (I' 0 f, g' 0 g). The axioms for a category are readily verified. The 
product of more than two categories is defined similarly. 

Functors of several variables are defined on an appropriate product category. 
Such a functor may be covariant in some variables and contravariant in others. For 
example, if e,1),8 are categories, a functor T of two variables (contravariant in the 
first and covariant in the second variable) from e X 1) to 8 consists of an object 
function, which assigns to each pair of objects (C,D) in ex 1) an object T(C,D) of 8, 
and a morphism function, which assigns to each pair of morphisms f : C -> C', 
g : D -> D' of e X 1) a morphism of 8: 

T(f,g) : T(C',D) -> T(C,D'), 

subject to the conditions: 

(i) T(1c,h) = IT(c.D) for all (C,D) in e X 1); 

(ii) T(f' 0 f, g' 0 g) = T(f,g') 0 T(f',g), whenever the compositions I' 0 f, g' 0 g 
are defined in e and 1) respectively. The second condition implies that for each fixed 
object C of e the object function T( C, - ) and the morphism function T(1c, - ) con
stitute a covariant functor 1) -> 6. Similarly for each fixed object D of 1), T( - ,D) 
and T( -,In) constitute a contravariant functor e -> 8. 

EXAMPLE. HomR( -, -) is a functor of two variables, contravariant in the 
first and covariant in the second, from the category ~ of'Ieft R-modules1 to the cate
gory of abelian groups. 

EXAMPLE. More generally let e be any category. Consider the functor that 
assigns to each pair (A,B) of objects of e the set homc(A,B) and to each pair of mor
phisms f : A -> A', g : B -> B' the function 

hom(f,g) : home(A',B) -> home(A,B') 

given by h f-+ g 0 h 0 f. Then home( -, -) is a functor of two variables from e to the 
category S of sets, contravariant in the first variable and covariant in the second. 
Note that for a fixed object A, home(A,-) is just the covariant hom functor hA and 
hA(g) = hom(C1,g). Similarly for fixed B home( - ,B) is the contravariant hom 
functor hB and hB(f) = hom(f,IIJ). 

IStrictly speaking HomR( -, -) is a functor on mr X mr, but this abuse of language is 
common and causes no confusion. 
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EXAMPLE. Let K be a commutative ring with identity. Then the functor 
given by 

T(AI, ... , An) = Al (8)x- .. ®K An 

T(Ji,···,fn) =Ji®···®fn 

is a functor of n covariant variables from the category of K-modules to itself. 

If TI : e -> :D and T2 : :D -> 8 are fl!nctors, then their composite (denoted T2T1) is 
the functor from e to 8 with object and morphism functions given by 

C -> T2(T1(C»; 

f -> T2(TI(f». 
T2TI is covariant if Tl and T2 are both covariant or both contravariant. T2Tl is con
travariant if one Ti is covariant and the other is contravariant. 

Definition 1.3. Let e and :D be categories and S : e ->:D, T : e ->:D covariant 
functors. A natural transformation a : S -> T is a function that assigns to each object C 
of e a morphism ac : S(C) -> T(C) of:D in such a way that for every morphism 
f : C -> C' of e, the diagram 

S(C)~T(C) 

t S(f) ! T(f) 

S(C) - T(C') 
ac' 

in :D is commutative. If €Xc is an equivalence for every C in e, then €X is a natural iso
morphism (or natural equivalence) of the functors SandT-. 

A natural transformation [isomorphism] (3 : S -> T of contravariant functors 
S,T : e ->:D is defined in the same way, except that the required commutative dia
gram is: 

S(C)~T(C) 
tS(f) t T(f) 

S( C) ---;3? T( C), 

for each morphism f : C -> C' of e. 

REMARKS. The composition of two natural transformations is clearly a natural 
transformation. Natural transformations of functors of several variables are defined 
analogously. 

EXAMPLE. If T: e -> e is any functor, then the assignment C r-. IT(c) defines a 
natural isomorphism IT : T -> T, called the identity natural isomorphism. 
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EXAMPLE. Let ~rr be the category of left modules over a ring Rand T : ;m ---> ;m 
the double dual functor, which assigns to each module A its double dual module 
A** = Homn(Homu(A,R),R). For each module A let (JA : A ---> A** be the homo
morphism of Theorem IVA.12. Then the assignment A I--> (J A defines a natural trans
formation from the identity functor I;m to the functor T (Exercise IVA.9). If the cate
gory ~)rr is replaced by the category i.J of all finite dimensional left vector spaces over 
a division ring and T considered as a functor i.J ---> i.J, then the assignment A I--> (JA 

(A E i.J) defines a natural isomorphism from I'IJ to T by Theorem IVA.l2 (iii). Also 
see Exercise 5. 

Natural transformations frequently appear in disguised form in specific cate
gories. For example, in the category of R-modules (and similarly for groups, rings, 
etc.), a statement may be made that a certain homomorphism is natural, without any 
mention of functors. This is usually a shorthand statement that means: there are two 
(reasonably obvious) functors and a natural transformation between them. 

EXAMPLE. If B is a unitary left module over a ring R with identity, then there 
is a natural isomorphism of modules all : R ®n R '" B (see Theorem IV.5.7). It is 
easy to verify that for any module homomorphism f: B --t C, the diagram 

is commutative. Thus the phrase "natural isomorphism" means that the assignment 
B I--> all defines a natural isomorphism a : T ---> I;m, where ;m is the category of uni
tary left R-modules and T : ;m ---> ;m is given by B I--> R ®n B and f~ In ® f. 

EXAMPLE. If A,B,C are left modules over a ring R, then the isomorphism of 
abelian groups 

q, : Homn(A EEl B,C) :::: Homn(A,C) EEl Homn(B,C) 

of Theorem IVA.7 is natural. One may interpret the word "natural" here by fixing 
any two variables, say A and C, and observing that for each module homomorphism 
f: B -> B' the diagram 

Homn(A EEl B' ,C) ~ Homn(A,C) EEl Homn(B' ,C) 

Hom(1A EEl f,lc) ! ! Hom(1A,lc) EEl Hom (f,lc) 
q, 

Homn(A EEl B,C) -- Homn(A,C) EEl Homn(B,C) 

is commutative, where lA EEl f: A EEl B -> A EB B' is given by (a,b) I--> (a,j(b». Thus 
q, defines a natural isomorphism of the contravariant functors Sand T, where 

S(B) = Homn(A EEl B,C) and T(B) = Homn(A,C) EB Homn(B,C). 

One says that the isomorphism q, is natural in B. A similar argument shows that q, is 
natural in A and C as well. 

Other examples are given in Exercise 4. 
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Definition 1.4. Let T be a covariant functor from a category e to the category S of 
sets. T is said to be a representable functor if there is an object A in e and a natural 
isomorphism a from the covariant hom functor hA = homf!,(A,-) to the functor T. 
The pair (A,a) is called a representation ofT and T is said to be represented by the 
object A. 

Similarly a contravariant functor S : e ~ S is said to be representable if there is an 
object B of e and a natural isomorphism (3 : hB ~ S, where hB = home( - ,B). The 
pair (B,fj) is said to be a representation ofS. 

EXAMPLE. Let A and B be unitary modules over a commutative ring K with 
identity and for each K-module C let T( C) be the set of all K-bilinear maps A X B ~ C. 
If f : C ~ C' is a K-module homomorphism, let T( n : T( C) ~ T( C) be the function 
that sends a bilinear map g : A X B ~ C to the bilinear map fg : A X B ~ C'. 
Then Tis a covariant functor from the category mt of K-modules to the category S of 
sets. We claim that Tis represented by the K-module A @KB. To see this, define for 
each K-module C a function 

ac : HomK(A @K B,C) ~ T(C) 

by ac(f) = fi, where i : A X B ~ A @K B is the canonical bilinear map (see p. 
21 I). Now ac(n : A X B ~ C is obviously bilinear for each fe HomK(A @K B,C). 
By Theorem IV.5.6 every bilinear map g : A X B ~ C is of the form gi for a unique 
K-module homomorphism g : A @K B ~ C. Therefore ac is a bijection of sets (that 
is, an equivalence in the category S). It is easy to verify that the assignment C ~ ac 
defines a natural isomorphism from hA®KB to T, whence (A@KB,a) is a representa
tion of T. It is not just coincidence that A @K B is a universal object in an appropri
ate category (Theorem IV.5.6). We shall now show that a similar fact is true for any 
representable functor. 

Let (A,a) be a representation of a covariant functor T: e ~ S. Let eT be the 
category with objects all pairs (C,s), where C is an object of e and s 0. T( C). A mor
phism in eT from (C,s) to (D,t) is defined to be a morphism f : C ~ D of e such that 
T(n(s) = t E T(D). Note that fis an equivalence in eT if and only if fis an equiva
lence in e. A universal object in the category eT (see Definition 1.7.9) is called a 
universal element of the functor T. 

EXAMPLE. In the example after Definition 1.4 the statement that (A @K B,a) 
is a representation ofthe functor T : ;)Tl ~ S clearly implies that for each K-module C 
and bilinear map f : A X B ~ C(that is, for each pair (C,f) withfe T(C», there is a 
unique K-module homomorphism 1 : A @K B ~ C such that Ii = f(that is, such 
that T(1)(i) = f with i = aA®Kl/(I.4®KB) e T(A @KB». Consequently the pair 
(A @K B,i) = (A @K B,aA®KB(lA®KB» is a universal object in the category ;)TlT, 

that is, a universal element of T. 

With the preceding example as motivation we shall now show that representa
tions of a functor T : e ~ S are essentially equivalent to universal elements of T. We 
shall need 

Lemma 1.5. Let T : e ~ S be a covariant functor from a category e to the category 
S of sets and let A be an object ofe. 
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(i) If a : hA ---4 T is a natural transformation from the covariant hom functor hA to 
T and u = aA(1A) e T(A), then for any object C ofe and g e home(A,C) 

ac(g) = T(g)(u). 

(ii) Ifu e T(A) and for each object C ofe !3c : homeJA,C) ---4 T(C) is the map de
fined by g f-> T(g)(u), then!3 : hA ---4 T is a natural transformation such that !3A(IA) = u. 

PROOF. (i) Let C be an object of e and g e home(A,C). By hypothesis the 
diagram 

a.~ 

hA(A) = home(A,A) - T(A) 

hA(g) ~ ~ T(g) 

hA(C) = homclA,C)- T(C) 

is commutative. Consequently, 

ac(g) = ac(g 0 1A) = ac[hA(g)(1A)] 

= [achA(g)] (IA) = (T(g)aA)(1A) = T(g)[aA(1A)] 

= T(g)(u). 

(ii) We must show that for every morphism k : B ---4 C of e the diagram 

(3B 
hA(B) = home(A,B) -T(B) 

hAk) ~ ~ T(k) 

hAC) = home(A,C) -T(C) 
(3c 

is commutative. This fact follows immediately since for any fo. home(A,B) 

[(3chA(k)](f) = (3c(k 0 f) = T(k 0 f)(u) = [T(k)T(f)](u) 

= T(k)[T(f)(u)] = T(k)[{3B(f)] 

= [T(k){3B](f). 

Therefore (3 is a natural transformation. Finally, 

Theorem 1.6. Let T : e ---4 S be a covariant functor from a category e to the category 
S of sets. There is a one-to-one correspondence between the class X of all representa
tions ofT and the class Y of all universal elements ofT, given by (A,a) ~ (A,aA(IA». 

REMARK. Since aA: home(A,A) ---4 T(A), aA(1A) is an element of T(A). 

PROOF OF 1.6. Let (A,a) be a representation of T and let aA(1A) = u 0. T(A). 
Suppose (B,s) is an object of e T • By hypothesis aB : hA(B) = home(A,B) ---4 T(B) is a 
bijection, whence s = aB( f) for a unique morphism f : A ---4 B. By Lemma 1.5, 
T(f)(u) = aB(f) = s. Therefore, fis a morphism in eT from (A,u) to (B,s). If g is an
other morphism in eT from (A,u) to (B,s) then g e home(A,B) and T(g)(u) = s. 
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Consequently, by Lemma 1.5 CXB(g) = T(g)(u) = s = CXB(f). Since CXB is a bijection, 
f = g. Therefore, fis the unique morphism in eT from (A,u) to (B,s), whence (A,u) is 
universal in eT. Thus (A,u) is a universal element of T. 

Conversely suppose (A,u) is a universal element ofT. Let f3 : hA ---> Tbe the natural 
transformation of Lemma 1.5 (ii) such that for any object C of e, f3c : homclA,C) ---> 

T(C) is given by f3df) = T(f)(u). If se T(C), then (C,s) is in e T • Since (A,u) is univer
sal in e T , there exists fe homelA,C) such that s = T(f)(u) = f3c(f). Therefore (3c is 
surjective. If (3c(j;) = (3c(h), then T(II)(u) = (3c(lI) = (3c(h) = T(h)(u), whence II 
and h are both morphisms in eT from (A,u) to (C,T(II)(u» = (C,T(h)(u». Conse
quently, II = h by universality. Therefore each {3c is injective and hence a bijection 
(equivalence in S). Thus {3 is a natural isomorphism, whence (A,{3) is a representation 
ofT. 

To complete the proof use Lemma 1.5 to verify that cp,p = 1 y and ,pcp = lx, 
where cp : X ---> Y is given by (A,cx) f--> (A,CXA(1A» and,p : Y ---> X is given by (A,u) f--> 
(A,{3) ({3 as in the previous paragraph). Therefore cp is a bijection. • 

Corollary 1.7. Let T : e ---> S be a covariant functor from a category e to the category 
S of sets. If(A,cx) and (B,{3) are representations ofT, then there is a unique equivalence 
f : A ---> B such that the following diagram is commutative for all objects C of e: 

PROOF. Let u = CXA(1A) and v = (3B(1B). By Theorem 1.6 (A,u) and (B,v) are 
universal elements of T, whence by Lemma 1.7.1 0 there is a unique equivalence 
f : A ---> B in e such that T(f)(u) = v. Lemma 1.5 (i) implies that for any object C of 
e and g e home(B,C) 

[cxchom(f,lc)](g) = cxc(g 0 f) = T(g 0 f)(u) 

= [T(g)T(f)](u) = T(g)[T(f)(u)] = T(g)(v) 

= (3c(g), 

so that the required diagram is commutative. Furthermore if II : A ---> B also makes 
the diagram commutative, then for C = Band g = h, 

T(II)(u) = CXB(j;) = CXB(h 0 II) = cxB[hom (lI,l B)(lB)] = f3B(1B) = v. 

Therefore Ji = fby uniqueness. • 

Corollary 1.8. (Yoneda) Let T : e ---> S be a covariant functor from a category e to 
the category S of sets and let A be an objectofe. Then there is a one-to:one corre
spondence between the set T(A) and the set Nat(hA,T) of all natural transformations 
from the covariallt hom functor hA to the functor T. This bijection is natural in A andT. 

SKETCH OF PROOF. Define a function,p = ,p A : Nat(hA,T) ---> T(A) by 

cx ~ CXA(1A) e T(A) 
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and a function cp : T(A) ---> Nat(hA,T) by 

u f-+ {3, 

where (3 is given by Lemma 1.5 (ii). Verify that # and if;cp are the respective identity 
maps. Therefore if; A is a bijection. 

The naturality statement of the corollary means that the diagrams 

if;A 
Nat(hA,T) _T(A) 

N*(f) ~ ! T(f) 

Nat(hB,T} 'hT(B) 

if;A 
Nat(hA,T) _T(A) 

N.(a) ~ ~ aA 

Nat(hA,s) ~ S(A) 

are commutative, where f : A ---> B is any morphism of e, a : T ---> S is any natural 
transformation of functors and N*(f), N.(a) are defined as follows. For each object 
C of e and (3 e Nat(hA,T), 

N*(f)({3)c : hB(C) = home(B,C) ---> T(C) 

is given by g f--+ (3c(g 0 f). The map N.(a): Nat(hA,T} ---> Nat(hA,S) is given by 
{3 f--+ a{3. • 

A representable functor is a functor of one variable that is naturally isomor
phic to the covariant (or contravariant) hom functor. But for a given category :D, 
hom:o< -, -) is a functor of two variables. We now investigate conditions under 
which a functor T of two variables is naturally isomorphic to hom:o( -, - ). 

We shall deal with the following somewhat more general situation. Let e and :D 
be categories and T: e X :D ---> S a functor that is contravariant in the first variable 
and covariant in the second. If S : e --->:D is a covariant functor, then it is easy to 
verify that the assignments (C,D) f--> hom:o(S(C),D) and (f,g) f-> hom:o(S(f),g) de
fine a functor e X :D ---> S that is contravariant in the first variable and covariant in 
the second. 

Theorem 1.9. Let e and:D be categories and T a functor from the product category 
e X :D to the category S of sets, contravariant in the first variable and covariant in the 
second, such that for each object C ofe, the covariant functor T(C, -) ::D ---> S has a 
representation (Ac,aC). Then there is a unique covariant functor S : e ---> :D such that 
S(C) = Ac and there is a natural isomorphism from hom:o(S( - ), -) to T, given by 

aCn : hom:o(S(C),D) ---> T(C,D). 

REMARK ON NOTATION. For each object C ofe, Ac is an object in:D and 
(XC is a natural isomorphism from hom1l(Ac,-) to T(C,-). Thus for each D in 1) 

there is an equivalence a C D : hom:o(Ac,D) -> T(C,D). 
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PROOF OF 1.9. The object function of the functor S is defined by S( C) = Ac 
for each object C of e. The morphism function of S is defined as follows. For each 
object C of e a C AC : hom:n(Ac,Ac) ---> T(C,Ac) and Uc = a C,lc(1AC) e T(C,Ac). By 
Theorem 1.6 (Ac,uc) is a universal element of the functor T( C, -). If f : C ---> C' is 
a morphism of e, let v = T(f,l Ac')(ud e T(C,Ac'). By the universality of (Ac,uc) in 
:n there exists a unique morphism]: Ac- Ac in:n such that 

Define S(I) to be the morphism 1. 
Clearly S(lc) = lAC = l s(c). If C ~ C'.!!... C" are morphisms of e, then by 

definition S(g) is the unique morphism g : Ac' ---> Ac" such that 

Similarly S(g 0 I) is the unique morphism Ii : Ac ---> Ac" such that 

Consequently S(g) 0 S(f) = go lis a morphism Ac ---> Ac" such that 

T(lc,g 0 l)(uc) = T(1c,g)T(lc.l)(uc) = T(lc,g)T(f,I Ac')(uc') 

= T(f,g)(uc') = T(f.1Ac")T(lc,,g)(uc') 

= T(f.1Ac,,)T(g,I Ac,,)(ur") = T(g 0 f,I Ac")(uc") 

= T(lc,Ii}(uc). 

Therefore by the uniqueness property of universal objects in ~T(C.-) we must have 

S(g) 0 S(j) = g 0 1 = 11 = S(g 0 I). 

Thus S : e -> ~ is a covariant functor. 
In order to show that a : hom:n(S( - ), - ) ---> T is a natural isomorphism we need 

only show that for morphisms f : C -> C' in e and g : D -> D' in ~ the diagram 

a C' 
hom:n(Ac' ,D) -! T( C' ,D) 

hom(S(f},I D ) I 1 T(f,lD) 

aCD 
hom:n(Ac,D)_ T(C,D) 

hom(lAc,g) I I T(lc,g) 

hom:n(Ac,D') 7 T(C,D') 
a D' 

is commutative. The lower square is commutative since for fixed C, 

aC : hom:n(Ac, - ) -> T( C, - ) 

is a natural isomorphism by hypothesis. As for the upper square let k e hom:n(Ac' ,D). 
Then by Lemma 1.5 (i): 
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T(f,ln)(Pn(k) = T(f,ln)T(lc',k)(uc') = T(f,k)(uc') 

= T(lc,k)T(f,lAc')(uc') = T(lc,k)T(lc,J)(uc) 

= T(lc,k 0 J)(uc) = T(lc,k 0 S(f)(uc) 

= a C n,(k 0 S(f» 

= a C D,hom(S(f),ln)(k). • 

EXERCISES 

475 

Note: In these exercises S is the category of sets and functions; (R is the category of 
rings and ring homomorphisms; R is a ring; ~ is the category of left R-modules and 
R-module homomorphisms; 9 is the category of groups and group homomorphisms. 

1. Construct functors as foHows: 
(a) A covariant functor 9 ~ S that assigns to each group the set of all its 

subgroups. 
(b) A covariant functor (R --. (R that assigns to each ring N the polynomial 

ring N[x]. 
(c) A functor, covariant in both variables ~ X ~ ~ ~ such that 

(A,B)~ A EBB. 
(d) A covariant functor 9 ~ 9 that assigns to each group G its commutator 

subgroup G' (Definition 11.7.7). 

2. (a) If T: e ~:D is a covariant functor, let 1m T consist of the objects 
I T(C) ICE e I and the morphisms I T(f) : T(C) ~ T(C') If: C ~ C' a mor
phism in e I. Then show that 1m T need not be a category. 
(b) If the object function of T is injective, then show that 1m T is a category. 

3. (a) If S : e ~:D is a functor, let u(S) = 1 if S is covariant and -1 if S is con
travariant. If T : :D ~ f, is another functor, show that TS is a functor from e to f, 
whose variance is given by u(TS) = a-(T)a(S). 
(b) Generalize part (a) to any finite number of functors, SI : e l ~ e2, S2 : e2 ~ 
e3, ••• , Sn : en ~ en+l • 

4. (a) If A,B,C are sets, then there are natural bijections: A X B ~ B X A and 
(A X B) X C ~ A X (B X C). 
(b) Prove that the isomorphisms of Theorems IVA.9, IV.5.8, IV.5.9, and IV.5.10 
are all natural. 

5. Let '0 be the category whose objects are all finite dimensional vector spaces over 
a field F (of characteristic ~2,3) and whose morphisms are all vector-space 
isomorphisms. Consider the dual space V* of a left vector space V as a left 
vector space (see the Remark after Proposition VII.1.1 0). 

(a) If ep : V ~ VI is a vector-space isomorphism (morphism of '0), then so is 
the dual map if> : VI * ~ V* (see Theorem IVA.I0). Hence if>-l : V* ~ VI * is 
also a morphism of '0. 

(b) D : '0 ~ '0 is a covariant functor, where D(V) = V* and- D(ep) = if>-l. 
(c) For each V in '0 choose a basis I Xl, ••• , Xn I and let I Ixl> ... ,lxnl be the 

dual bases of V* (Theorem IV.4.!I). Then the map ay : V ~ V* defined by 
Xi ~ Ixi is an isomorphism. Thus ay : V '" D(V). 
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(d) The isomorphism ay is not natural; that is, the assignment V ~ ay is not a 
natural isomorphism from the identity functor I'll to D. [Hint: consider a one 
dimensional space with basis {xl and let q,(x) = ex with e..,& 0, ±h,.) 

6. (a) Let S : e ---+ :D and T : e ---+ :D be covariant functors and a : S ---+ T a natural 
isomorphism. Then there is a natural isomorphism fj : T ---+ S such that fja = Is 
and afj = IT, where Is : S ---+ S is the identity natural isomorphism and similarly 
for IT. [Hint: for each C of e, ac : S(C) ---+ T(C) is an equivalence and hence has 
an inverse morphism fjc : T(C) ---+ S(C).) 
(b) Extend (a) to functors of several variables. 

7. Covariant representable functors from S to S preserve surjective maps. 

8. (a) The forgetful functor :m -+ S (see the Example preceding Definition 1.2) is 
representable. 
(b) The forgetful functor 9 ---+ S is representable. 

9. (a) Let P : S ---+ S be the functor that assigns to each set X its power set (set of all 
subsets) P(X) and to each function!: A - B the map P(f) : P(B) - P(A) that 
sends a subset X of B onto f-l(X) C A. Then P is a representable contravariant 
functor. 
(b) Let the object function of Q : S ---+ S be defined by Q(A) = P(A). Iff: A ---+ B, 
let Q(f) : Q(A) ---+ Q(B) be given by X~ f(X). Then Q is a covariant functor. Is 
Q representable? 

10. Let (A,a) and (B;fj) be representations of the covariant functors S : e ---+ Sand 
T: e ---+ S respectively. If T :S ---+ T is a natural transformation, then there is a 
unique morphism f : A ---+ A in e such that the following diagram is commuta
tive for every object C of e: 

ac 
home<A,C) - S( C) 

hom(J,l c) ! ! TC 

home(B,C)[i;' T(C) 

2. ADJOINT FUNCTORS 
Adjoint pairs of functors are defined and discussed. Although they occur in many 

branches of mathematics formal descriptions of them are relatively recent. 

Let S : e ---+:D and T::D ---+ e be covariant functors. As observed in the dis
cussion preceding Theorem 1.9, the assignments (C,D)f-+ hom:o(S(C),D) and 
(J,g) f--+ hom!l)(S(f),g) define a functor e X :D ---+ S which is contravariant in the 
first variable and covariant in the second. We denote this functor by hom:o(S( - ), - ). 
Similarly the functor home< - ,T( -» : e X :D ---+ S is defined by 

(C,D) f-+ home( C,T(D» and (f,g) ~ home(J,T(g». 
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Definition 2.1. Let S : e ->:D andT ::D -> e be covariant functors. S is said to be a 
left adjoint ofT (or T a right adjoint ofS, or (S,T) an adjoint pair) if there is a natural 
isomorphism from the functor homJ...S( - ), -) to the functor home( - ,T( - ». 

Thus if S is a left adjoint of T, there is for each C of e and D of:D a bijection 

OIC.D : hom!l)(S(C),D) -> home(C,T(D», 

which is natural in C and D. The theory of adjoint functors was first suggested by the 
following example. 

EXAMPLE. Let R, S be rings and AR, RBs, Cs (bi)modules as indicated. By 
Theorem IV.5.10 there is an isomorphism of abelian groups 

Homs(A ®R B,C) ro.J HomR(A, Homs(B,C», 

which is easily shown to be natural in A and C (also in B). Note that A ®R B is a 
right S-module by Theorem IV.5.5 (iii) and Homs(B,C) a right R-module by 
Exercise IVAA (c). Let B be a fixed R-S bimodule. Let- e be the category of right 
R-modules and :D the category of right S-modules so that home<X,Y) = HomR(X,Y) 
and homt) (U, V) = Homs ( U, V). Then the isomorphism above simply states that the 
functor - ®RB from e to :D is a left adjoint of the functor homs(B, - ) from :D to e. 

EXAMPLE. Let R be a ring with identity and mI. the category of unitary left 
R-modules. Let T : :m. -> S be the forgetful functor, which assigns to each module 
its underlying set. Then for each set X and module A, hom,,(X, T(A» is just the set 
of all functions X -> A. Let F : S -> mI. be the functor that assigns to each X the free 
R-module F(X) on the set X (see p. 182). Let ix : X -> F(X) be the canonical map. 
For each set X and module A, the map 

OIX.A : HomR(F(X),A) -> homs(X,T(A» 

defined by gl--> gix is easily seen to be natural inX and A. Since F(X) is free onX, OIX.A 
is injective (Theorem IV.2.1 (iv». Furthermore every functionf:X -> T(A) is of the 
form f = Jix for a unique homomorphism J : F(X) -> A (Theorem IV.2.1 (iv». Con
sequently OIX.A is surjective and hence a bijection. Therefore F is a left adjoint of T. 

Other examples are given in the exercises. 

There is a close connection between adjoint pairs of functors and representable 
functors. 

Proposition 2.2. A covariant functor T : :D -> e has a left adjoint if and only if for 
each object C in e the functor home(C,T( -» ::D -> S is representable. 

PROOF. If S : e ->:D is a left adjoint of T, then there is for each object C of e 
and D of:D a bijection 

OIC.D : hom!l)(S( C),D) -> home( C,T(D», 

which is natural in C and D. Thus for a fixed C, (S( C),OIC._) is a representation of the 
functor home<C,T( - ». 
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Conversely suppose that for each C, Ac is an object of 1> that represents 
home(C,T( - ». By Theorem 1.9 there is a covariant functor S : e --+ 1> such that 
S( C) = Ac and there is a natural isomorphism of functors 

hom:o{S{ -- ), - ) --+ home{ - ,T( - ». 

Therefore S is a left adjoint of T. • 

Corollary 2.3. A covariant functor T : 1> --+ e has a left adjoint if and only if there 
exists for each object C ofe an object S(C) of1> and amorphism Uc : C --+ T{S(C» 
such that (S{C),uc) is a universal element of the functor home{C,T( -» : 1> --+ s. 

PROOF. Exercise; see Theorem 1.6. • 

Corollary 2.4. Any two left adjoints of a covariant functor T : 1> --+ e are naturally 
isomorphic. 

PROOF. If Sl : e --+ 1> and S. : e --+ 1> are left adjoints of T, then there are 
natural isomorphisms 

a : hom:o(SI( -), -) --+ home{ - ,T( - », 

(3 : hom:o{S.( - ), - ) --+ home{ - ,T( - ». 

For each object C of e the objects SI(C) and S.(C) both represent the functor 
home{ C,T( -» by the first part of the proof of Proposition 2.2. Consequently for 
each object C of e there is by Corollary 1.7 an equivalence fc : SI(C) --+ S.(C). We 
need only show that fc is natural in C; that is, given a morphism g : C --+ C' of ewe 
must prove that 

SI(C)J!:...S.(C) 

Sl(g) l l S.(g) 

SI(C')7 S.(C') 
jC' 

is commutative. We claim that it suffices to prove that 

hom:o(SI(C'),S.(C'» ~om(fc',l) hom:o(S.(C'),S.(C'» 

hom(SI(g),l) 1 l hom(S.(g),l) 

hom:o(SI(C),S,(C'» hom(fc,l) hom:o{S.(C),S.(C'» 

is commutative (where 1 = lS2(c'». For the image of ls.(c') in one direction is 
S~(g) 0 fc and in the other direction fc' 0 Sl(g). 

Consider the following three-dimensional diagram (in which 1 = 1 s.(c')' 
ax = aX,S2(C') and the induced map hom(k,l) is denoted Ii: for simplicity): 
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We must prove that the left rear rectangle is commutative. The top and bottom tri
angles are commutative by Corollary 1.7. The front and right rear rectangles are 
commutative since 0: and (3 respectively are natural. Consequently 

Since O:c = O:C,S2(C') is injective by hypothesis, we must have Sl(g) lc' = !cSlg). 
Therefore the left rear rectangle is commutative. • 

EXERCISES 

Note: S denotes the category of sets. 

1. If T : e --> S is a covariant functor that has a left adjoint, then T is representable. 

2. Let e be a concrete category and T : e --> S the forgetful functor. If T has a left 
adjoint F : S --> e, then F is called a free-object functor and F(X) (X € S) is called a 
free F-object on X. 

(a) The category of groups has a free-object functor. 
(b) The category of commutative rings with identity and identity preserving 

homomorphisms has a free-object functor. [If X is finite, use Exercise 111.5.11 to 
define F(X).] 

3. Let X be a fixed set and define a functor S : S --> S by Y f--+ X X Y. Then S is a left 
adjoint of the covariant hom functor hx = homs(X, - ). 

4. Let 9 be the category of groups, ex the category of abelian groups, g: the category 
of fields, ;0 the category of integral domains, ~ the category of unitary left 
K-modules, and ill the category of unitary K-K bimodules (K,R rings with 
identity). 

In each of the following cases let T be the appropriate forgetful functor (for 
example, T : g: --> ;0 sends each field F to itself, considered as an integral domain). 
Show that (S,T) is an adjoint pair. 

(a) T: ex --> g, S : 9 --> ex, where S(G) = GIG' with G' the commutator sub-
group of G (Definition 11.7.7). 

(b) T: g:-->;o, S :;0--> g:, whereS(D) is the field of quotients of D (Section lIlA). 
(c) T: ;:m: --> ex, S : ex --> ;m:, where SeA) = K@z A (see Theorem IV.5.5). 
(d) T: ill --> ;)11, S : ;))"[ --> ill, where SCM) = M@z R. 
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3. MORPH ISMS 

A significant part of the elementary theory of categories is the attempt to general
ize as many concepts as possible from well-known categories (for example, sets or 
modules) to arbitrary categories. In this section we extend to (more or less) arbitrary 
categories the concepts of monomorphisms, epimorphisms, kernels and cokernels 
of morphisms. 

NOTATION. Hereafter we shall usually denote the composite of two mor
phisms of a category by gfinstead of go fas previously. 

We begin by recalling that a morphism f : C ~ D in a category is an equivalence 
if and only if there is a morphism g : D ~ C such that gf = Ie and fg = I D• This 
definition is simply a reflection of the fact that a homomorphism in the category of 
groups (or rings, or modules, etc.) is an isomorphism if and only if it has a two sided 
inverse (see Theorem 1.2.3). In a similar fashion we may extend the concepts of 
monomorphisms and epimorphisms to arbitrary categories as follows. 

Definition 3.1. A morphism f: C ~ D of a category e is monic (or a monomor
phism) if 

fh = fg :=} h = g 

for all objects Band morphisms g,h e hom(B,C). The morphism f is epic (or an epi
morphism) if 

kf=tf:=} k=t 

for all objects E and morphisms k, t e hom(D,E). 

EXAMPLE. A morphism in the category of sets is monic [resp. epic] if and only 
if it is injective [resp. surjective] (Exercise 1). 

EXAMPLES. Let e be anyone of the following categories: groups, rings, left 
modules over a ring. If f : C ~ D and g,h : B ~ C are homomorphisms (that is, 
morphisms of e), then by Exercise IV.l.2(a), fh = fg implies h = g if and only if fis 
an injective homomorphism (that is, a monomorphism in the usual sense).2 Thus the 
categorical definition of monomorphism agrees with the previous definition in these 
familiar categories. 

EXAMPLES. Exercise IV.l.2(b) shows that a morphism fin the category of left 
modules over a ring R is epic if and only if fis a surjective homomorphism (that is, an 
epimorphism in the usual sense). The same fact is true in the category of groups, but 
the proof is more difficult (Exercise 2). Thus the categorical definition of epimor
phism agrees with the previous definition in these two categories. 

EXAMPLES. In the category of rings every surjective homomorphism is easily 
seen to be epic. However, if f,g : Q ~ R are homomorphisms of rings such that 

2The Exercise deals only with modules, but the same argument is valid for groups and 
rings. 
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f I Z = g I Z, then f = g by Exercise II1.1.18. Consequently the inclusion map 
Z ~ Q is epic in the category of rings. But this map is obviously not surjective. 

EXAMPLE. In the category of divisible abelian groups (p. 195) and group 
homomorphisms the canonical map 7r ~ Q ~ Q/Z is monic, but clearly not injective. 
To see this, suppose g,h : A ~ Q are homomorphisms with A divisible and 7rg = 7rh. 
Ifg ~ h, then there exist a EA,r,se Z(s ~ ±1) such thatg(a) - h(a) = rls ~ O. By 
hypothesis rb = a for some bE A. Consequently, r(g(b) - h(b» = g(a) - h(a) 
= r(11 s), whence g(b) - h(b) = II s. Therefore 0 = 7rg(b) - 7rh(b) = 7r(g(b) - h(b» 
= 7r(1ls). Thus lise Ker 7r = Z, which is a contradiction since s ~ ±1. There
fore g = h and hence 7r is monic. 

Proposition 3.2. Let f: B ~ C and g : C ~ D be morphisms of a category e. 
(i) f and g monic =} gf monic; 

(ii) gf monic =} f monic; 
(iii) f and g epic =} gf epic; 
(iv) gf epic =} g epic; 
(v) f is an equivalence =} f is monic and epic. 

PROOF. Exercise. • 

REMARK. The two examples preceding Proposition 3.2 show that the converse 
of (v) is false. 

An object 0 in a category e is said to be a zero object if 0 is both universal and 
couniversal in e (see Definition 1.7 .9). Thus for any object C of e there is a unique 
morphism 0 ~ C and a unique morphism C ~ O. 

EXAMPLE. The zero module is a zero object in the category of left modules 
over a ring; similarly for groups and rings. The category of sets has no zero objects. 

Proposition 3.3. Let e be a category and C an object' ofe. 

(i) Any two zero objects ofe are eqUivalent. 
(ii) If 0 is a zero object, then the unique morphism 0 - C is monic and the 

unique morphism C - 0 is epic. 

SKETCH OF PROOF. (i) Theorem 1.7.10. (ii) If Oc 0 f = Oc 0 g, where 
Oc : 0 ~ C, then f = g by the couniversality of O. Therefore Oc is monic. • 

Proposition 3.4. Let e be a category which has a zero object O. Then for each pair 
C,D of objects ofe there is a unique morphism Oe.D : C ~ D such that 

f 0 <>C.D = Oe.E and <>C.D 0 g = OB.D 

for all morphisms f e hom(D,E), g E hon;z(B,C). 
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REMARK. OC,D is called a zero morphism. 

PROOF OF 3.4. (Uniqueness) If I O~ ,D 1 and I OC,D 1 are two families of mor
phisms with the stated properties, then for each pair C,D 

OC,D = O~,DOC,D = O~,D' 

(Existence) For each object A of e let LA : 0 ~ A and 71' A : A ~ 0 be the unique 
morphisms. For any fE hom(D,E), fLD = LE : 0 ~ E by universality. For any 
gO. hom(B,C) 71'cg = 71'B : B ~ 0 by couniversality. Define OC,D to be the composition 

C ~ 0 ~ D. Then for fE hom(D,E),fo OC,D = fLD7I'C = LE7I'C = OC,E and similarly in 
the other case. • 

The final step in extending properties of morphisms in familiar categories to mor
phisms in arbitrary categories is to develop reasonable definitions of kernels and co
kernels of morphisms. We begin in a somewhat more general setting. 

Definition 3.5. Let f: C ~ D and g: C ~ D be morphisms of a category e. A 
difference kernel (or equalizer) for the pair (f,g) is a morphism i : B ~ C such that: 

(i) fi = gi; 
(ii) ifh : A ~ C is a morphism with fh = gh, then there exists a unique morphism 

Ii : A ~ B such that iIi = h. 
A difference cokernel (or coequalizer) for the pair (f,g) is a morphism j : D ~ E 

such that: 
(iii) jf = jg; 
(iv) ilk: D ~ F is a morphism with kf = kg, then there exists a unique morphism 

'K: E ~ F such that 'Kj = k. 

EXAMPLES. In the category S of sets a difference kernel of f : C ~ D and 
g : C ~ D is the inclusion map B - .. C, where B = ICE C I f(c) = g(c) I. The same 
construction shows that every pair of morphisms has a difference kernel in the cate
gories of groups, rings, and modules respectively. 

EXAMPLE. Let f : G ~ Hand g : G ~ H be homomorphisms of groups. Let 
N be the smallest normal subgroup of H containing I f(a)g(a)-l I a E GI. Then the 
canonical epimorphism H ~ HI N is a difference cokernel of (f,g) by Theorem 1.5.6. 

Proposition 3.6. Let f : C ~ D and g : C ~ D be morphisms of a category e. 
(i) Ifi : B ~ C is a difference kernel of(f,g), then i is a monomorphism. 

(ii) Ifi : B ~ C and j : A ~ C are difference kernels of(f,g), then there is a unique 
equivalence h : A ~ B such that ih = j. 

PROOF. (i) Let h, k : F ~ B be morphisms such that ih = ik. Then 
f(ih) = (fi)h = (gi)h = g(ih). Since i is a difference kernel of (f,g), there is a unique 
morphism t : F ~ B such that it = ih. But both t = hand t = k satisfy this condi
tion, whence h = k by uniqueness. Therefore i is monic. 
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(ii) By hypothesis there exist unique morphisms h : A -+ Band k : B -+ A such 
that ih = j and jk = i respectively. Consequently ihk = jk = i = i 0 Is and 
jkh = ih = j = j 0 IA. Since i and j are monomorphisms by (i), hk = Is and 
kh = IA. Therefore h is an equivalence. • 

REMARK. Difference cokernels are epimorphisms and the dual of Proposition 
3.6 (ii) holds for difference cokernels. 

Suppose that e is a category with a zero object 0 and hence zero morphisms 
(Proposition 3.4). A kernel of a morphism I: C -+ D (if one exists) is defined to be 
any difference kernel of the pair (f,OC,D); it is sometimes denoted Ker I. Definition 
3.5 and Propositions 3.4 and 3.6 show that k : K -+ C is a kernel of I : C -+ D if and 
only if 

(i) k is a monomorphism with fk = OK,D; and 
(ii) if h : B -+ C is a morphism such that Ih = OB,D, then there is a unique mor

phism h : B -+ K such that kh = h. 
By Proposition 3.6 K is unique up to equivalence. 

A cokernel t : D -+ E of a morphism I : C -+ D is defined dually as a difference 
cokerne1 of the pair (f,OC,D); it is sometimes denoted Coker f. As above t is char
acterized by the conditions: 

(iii) t is an epimorphism with tl = OC,E; and 
(iv) if g : D -+ F is a morphism such that g 1= OC,F, then there is a unique mor

phism g : E -+ F such that gt = g. 

EXAMPLES. In the categories of groups, rings and modules, a kernel of the 
morphism I : C -+ D is the inclusion map K -+ C, where K is the usual kernel, 
K = Ie € C I I(c) = 0 J. In the category of modules, the canonical epimorphism 
D -+ DjIm lis a cokernel of I .. 

EXERCISES 

1. A morphism in the category of sets is monic [resp. epic] if and only if it is injective 
[resp. surjective]. 

2. A morphism I : G -+ H in the category of groups is epic if and only if lis a sur
jective homomorphism (that is, an epimorphism in the usual sense). [Hint: If lis 
epic, K = 1m f, andj : K -+ H is the inclusion map, thenj is epic by Proposition 
3.2. Show that lis surjective (that is, K = H) as follows. Let S be the set of left co
sets of Kin H; let T = SUI u I with u'S. Let A be the group of all permutations 
of T. Let t : H -+ A be given by t(h)(h' K) = hh' K and t(h)(u) = u. Let s : H -+ A 
be given by ut(h)u, where u € A is the transposition interchanging u and K. Show 
that sand t are homomorphisms such that sj = tj, whence s = t. Show that 
hK = K for all h € H; therefore K = H.] 
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3. A commutative diagram 

B~CI 

g:! ! ! Ji 
C2-D 

/2 

of morphisms of a category e is called a pullback for Ji and h if for every pair of 
morphisms hI : B' ----> CI, h2 : B' --> C2 such that Jih l = hh2 there exists a unique 
morphism t : B' ----> B such that hI = glt and h2 = g2t. 

(a) If there is another pullback diagram for h,f2 with BI in the upper left-hand 
corner, then Band BI are equivalent. 

(b) In the pullback diagram above, if h is a monomorphism, then so is gl. 
(c) Every pair of functions h : C) ----> D, h : C2 ----> D in the category of sets has a 

pullback. 

4. Show that every pair of functions J, g : C ----> D has a difference co kernel in the 
category of sets. 

5. Let J, g : C ----> D be morphisms of a category e. For each X in e let 

Eq(X, J,g) = I h E hom(X,C) I/h = gh I. 

(a) Eq( - ,J,g) is a contravariant functor from e to the category of sets. 
(b) A morphism i : K ----> C is a difference kernel of(J,g) if and only ifEq( - ,J,g) 

is representable with representing object K (that is, there is a natural isomorphism 
T : home( - ,K) ----> Eq( - ,J,g)). [Hint.' show that for h : X ----> K, Tx(h) = ih, where 
i = TK(1K).] 

6. If each square in the following diagram is a pullback. and B' ----> B is a monomor
phism, then the outer rectangle is a pullback. [Hint.' See Exercise 3.] 

P---Q--B' 

~ t t 
A-__ I_B. 

7. In a category with a zero object, the kernel of a monomorphism is a zero mor
phism. 
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SYMBOL MEANING PAGE REFERENCE 

Q field of rational numbers 1 

R field of real numbers 1 

C field of complex numbers 1 
==} implies 
<=} if and only if 

E is an element of 2 

• is not an element of 2 

Ix I P(x)} the class of all x such that P(x) is true 2 

C is a subclass (or subset) of 2 

525 empty set 3 
peA) or 2A power set of A 3 

UAi union of the sets Ai 3 
i.I 

nAi intersection of the sets Ai 3 
iel 

B-A relative complement of A in B 3 

A' complement of A 3 

I: A---+B fis a function from A to B 3 

a~ I(a) the function Imaps a to I(a) 3 

liS restriction of the function Ito S 4 

lA 
{ identity function on the set A 4 

identity element of the ring A 115 

golor gl {composite function of land g 4 
composite morphism of I and g 52 

Iml image of the function I 4,31 
l-l(T) inverse image of the set T 4 

485 
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SYMBOL MEANING PAGE REFERENCE 

A XB 
{ Cartesian product of sets A and B 6 

direct product of groups A and B 26 
{ is equivalent to 6 

is equipollent with 15 
a equivalence class of a 6 

(Cartesian) product of the sets Ai; 7 

IT Ai 
! product of the fomUy of obi""" I A, I i ,II 53 

iol direct product of the family of groups 

[or rings or modules] {Ai liE II 59,130,173 
Z set of integers 9 
N set of nonnegative integers (natural numbers) 9 
N* set of positive integers 9 
alb a divides b 11, 135 
a{'b a does not divide b 11, 135 
(a"a2, . . . , an) { greatest common divisor of a" . . . , an 11 

ideal generated by a" . . . , an 123 
a== b (mod m) a is congruent to b modulo m 12 

r'dina' number of the "t A 16 
IAI order of the group A 24 

determinant of the matrix A 351 
No aleph-naught 16 
D4* group of symmetries of the square 26 
Sn symmetric group on n letters 26 
G(£JH direct sum of additive groups G and H 26 
Zm integers modulo m 27 

Q/Z group of rationals modulo one 27 
Z(p"") Sylow p-subgroup of Q/Z 30, 37 

'" is isomorphic to 30 

Ker f kernel of the homomorphism f 31, 119, 170 

H<G H is a subgroup of G 31 

<X> subgroup generated by the set X 32 
<a> cyclic (sub)group generated by a 32 
H V K,H+K the join of subgroups Hand K 33 
Qs quaternion group 33 

lal order of the element a 35 
a=Tb(modH) ab-1 E H 37 
a =Ib (mod H) a-1b E H 37 
Ha,aH right and left cosets of a 38 
[G:H] index of a subgroup H in a group G 38 
HK {ab la E H, b E K} 39 

N<JG N is a normal subgroup of G 41 

GIN factor group of G by N 42 
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SYMBOL MEANING PAGE REFERENCE 

sgn T sign of the permutation T 48 

An alternating group on n letters 49 

Dn dihedral group of degree n 50 

() Ai disjoint union of the sets Ai 58 
i.l 

rrGi weak direct product of the groups Gi 60 
i.I 

L: Gi direct sum of the groups (or modules) Gi 60,173 
i.I 

II* Gi free product of the groups Gi 68 
i.1 

G[m] {u E G I mu = 01 77, 224 
G(p) {u EG I u has order a power of p 1 77,222 
G, torsion subgroup [submodule] of G 78,220 
G;r; stabilizer of x 89 
CH(x) centralizer of x in H 89 
NH(K) normalizer of Kin H 89 
C(G) center of G 91 
C .. (G) n-th term of ascending central series 100 
G' commutator subgroup of G 102 
G(n) n-th derived subgroup of G 102 
End A endomorphism ring of A 116 

G) binomial coefficient 118 

char R characteristic of the ring R 119 
Rop opposite ring of R 122, 330 
(X) ideal generated by the set X 123 
(a) principal ideal generated by a 123 
S-lR ring of quotients of R by S 143 
Rp localization of R at P 147 
R[x] ring of polynomials over R 149 
R[xJ, ... , x n] ring of polynomials in n indeterminates over R 151 
R[[x)] ring of formal power series over R 154 
degf degree of the polynomial f 157, 158 

C(f) content of the polynomial f 162 

HomR(A,B) set of all R-module homomorphisms A -+ B 174 

dimDV dimension of the D-vector space V 185 

RAs R-S bimodule A 202 

RA,[AR] left [resp. right] R-module A 202 
A* dual module of A 203 

<a,f> f(a) 204 

~ii Kronecker delta 204 
mt(A,B) category of middle linear maps on A X B 207 
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SYMBOL MEANING PAGE REFERENCE 

A@RB tensor product of modules A and B 208 

/@g induced map on the tensor product 209 

0. order ideal of a 220 

[F:Kl dimension of field F as a K-vector space 231 

K[ul, ... , Un], subring generated by K and u), ... , Un [resp. Xl 232 
[resp. K[Xll 

K(ul, ... , Un) subfield generated by K and Ul, ••• , Un 
[resp. K(X)l [resp. Xl 232 

K(xl, ... , xn) field of rational functions in n indeterminates 233 

AutKF Galois group of F over K 243 

~ discriminant of a polynomial 270 
Fpn {upn I u E F; char F = pI 285 

[F:Kl, separable degree of F over K 285 

[F:Kli inseparable degree of F over K 285 

NKF(U) norm of u 289 

TKF(U) trace of u 289 

gnCx) n-th cyclotomic polynomial 298 

tr.d. F/K transcendence degree of F over K 316 
KI/pn { U Eel upn E Kl 320 
K1I pco { u Eel upn E K for some n :2: 0 I 320 

In n X n identity matrix 328 

MatnR ring of n X n matrices over R 328 
At transpose of the matrix A 328 
A-I inverse of the invertible matrix A 331 
En,m 

r a certain matrix 337 
Aa classical adjoint of the matrix A 353 

q.p(x), qA(X) minimal polynomial of 4J [resp. Al 356 

TrA trace of the matrix A 369 

Rad I radical of the ideal I 379 

V(S) affine variety determined by S 409 

a(B) left annihilator of B 417 

roa r + a + ra 426 

J(R) Jacobson radical of R 426 

peR) prime radical of R 444 

hom(A,B) or set of morphisms A ---> B in a category e 52,465 
home(A,B) 

hA covariant hom functor 465 
hB contravariant hom functor 466 

eT category formed from e and T 470 

°C,D zero morphism from C to D 482 
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-rings 372, 387ff p-group 93 -element 136 
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embedded-ideal 384 
-ideal 126ff, 377ff 
-integer 11 
isolated-ideal 384 
minimal-ideal 382 
-radical 379, 444ff 
relatively-integers 11 
relatively-elements 140 
-ring 445ff 
subfield 279 

primitive 
-element theorem 287, 

288 
-ideal 425 
-polynomial 162 
-ring 418ff 
-root of unity 295 

principal 
-ideal 123 
-ideal ring 123 
-ideal domain 123 
modules over a-ideal 

domain 218ff 
principle 

-of mathematical 
induction 10 

-of transfinite induc
tion 14 

-of well ordering 14 
product 

--<:ategory 467 
Cartesian- 6, 7ff 
direct- 59ff, 130, 131, 

173 
-in a category 53ff 
-map 228 
semidirect- 99 
subdirect- 434 
weak direct- 60, 62 

projection 
canonical- 8,59,130, 

173 
projective module 190ff 
proper 

--<:lass 2 
-ideal 123 
-refinement 108,375 
-subgroup 32 
-values 367 
-vectors 367 

Prufer domain 409 
pullback 170, 484 
purely inseparable 

-element 282 
-extension 282ff 

INDEX 

purely transcendental ex
H:nsion 314 

quasi-inverse, 426 
quasi-regular 426 

quaternion group 33, 97, 99 
quaternions 

division ring of real-
117,461 

quotient 
--<:Iass 6 
-field 144 
-group 42ff 
-ring 125, 144ff, 447 

r-cycle 46 
R-module, see module 

Rad 1379 
radical 

-extension field 303ff 
Jacobson- 426ff 
nil-- 379, 450 
-of an ideal 379 
P-radical 425 
prime- 379, 444ff 
-property 425 
-ring 429 
solvable by-s 303 

range of a function 3 
rank 

column- 336, 339 
-of a free abelian group 

n 
-of a free module 185 
-of a homomorphism 

335ff,339 
row- 336, 339 
-of a matrix 337ff 

rational 
--<:anonical form 360 
-function 233 
symmetric-function 

252ff 
rationals modulo one 27 
Recursion Theorem 10 
reduced 

-abelian group 198 
-primary decomposi-

tion 381, 384 
-row echelon form 346 
-word 64, 68 

refinement of a series \08, 
375 

reflexive 
-module 205 
-relation 6 

regular 
-element 447 
-function 412 
-left ideal 417 
-left quasi- -, 426 
Von Neumann-ring 

442 
relative complement 3 
relation 6, 66 

antisymmetric- 13 
congruence- 27 
equivalence- 6 
generators and-s, 67ff, 

343ff 
r~flexive- 6 
symmetric- 6 
transitive- 6 

relative 
--dimension 245 
-index 245 

relatively prime 
-integers II 
-ring elements 140 

Remainder Theorem 159 
Chinese- 131 

representable functor 470 
representation 470 
resolvant cubic 272 
restriction 4 
right 

-adjoint 477 
-annihilator 444 
--<:oset 38 
-Goldie ring 447 
-ideal 122 
-inverse of a function 5 
-invertible element 116 
-quasi-regular 426 
-quotient ring 447 

ring(s) 115ff, 371ff, 414ff 
Artinian- 372, 421, 435 
Boolean- 120 
commutative- 115, 

371ff 
direct product of - 130, 

131 
discrete valuation- 401 
division- 116, 462 
endomorphism- 415 
Euclidean- 139 
-extensions 394ff 
Goldmann- 400 
group- 117 
homomorphism of-

118 



integrally closed- 397 
left quotient- 447 
local- 147 
Noetherian- 372, 387ff 
-of formal power series 

154ff 
-of polynomials 149ff 
-of quotients or frac-

tions 144ff 
opposite- 122, 330 
primitive- 418ff 
prime- 44 5ff 
quotient- 125, 447 
radical- 429 
regular- 442 
semi prime- 444ff 
semisimple- 429, 434ff 
simple- 416ff 
subdirectly irreducible-

442 
root 

adjoining a- 236 
multiple-161,261 
multiplicity of a- 161 
-of unity 294 
simple- 161, 261 

row 
-echelon form 346 
elementary-operation 

338 
-rank 336, 339 
-space 336 
-vector 329 

ruler and compass con
structions 238 

Russell's Paradox 2 

scalar matrix 328 
Schreier's Theorem 110,375 
Schroeder-Bernstein 

Theorem 17 
Schur's Lemma 419 
second isomorphism 

theorem 44,126,173 
secondary matrix 340 
semidirect product 99 
semigroup 24 
semi prime ring 444ff 
semisimple 

-module 437 
-ring 429, 434ff 

separable 
-degree 285ff 
-element 261 

INDEX 

-extension 261, 282ff, 
324 

-polynomial 261 
separably generated exten

sion 322 
separating transcendence 

base 322 
sequence II 

exact- 175ff 
short exact- 176 

series 
ascending central- 100 
composition- 108, 375 
equivalent- 109, 375 
formal power-154ff 
normal- 107ff, 375 
refinement of a- 108, 

375 
solvable- 108 
subnormal- 107ff 

set(s) 
denumerable- 16 
disjoint- 3 
empty- 3 
equipollent- 15 
finite- 16 
infinite- 16 
linearly ordered- 13 
multiplicative- 142 
null- 3 
partially ordered- 13 
power- 3 
underlying- 55 
well ordered- 13 

Short 
-Five Lemma 176 
-exact sequence 176 

sign of a permutation 48 
similar matrices 332, 355ff 
simple 

-components 440 
-extension field 232 
-group 49 
-module 179, 375, 416ff 
-ordering 13 
-ring 416ff 
-root, 161,261 

singleton 6 
skew-symmetric 

-matrix 335 
-multilinear form 349 

solvable 
-by radicals 303 
-group 102ff, 108 
-series 108 

span 181 
spectrum 378 
split exact sequence 177 
splitting fields 257ff 
stabilizer 89 
stable intermediate field 

250 
standard 

-basis of R" 336 
-n-product 28 

subalgebra 228 
subclass 2 
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subdirect product 434 
subdirectly irreducible ring 

442 
su bfield( s) 

composite- 233 
-generated by a set 231, 

232 
linearly disjoint- 318ff 
maximal- 457 
prime- 279 

subgroup(s) 31ff 
characteristic- 103 
c1osed- 247 
commutator- 102 
cyc1ic- 32 
derived- 102 
fully invariant- 103 
-generated by a set 32 
-generated by groups 

33 
join of- 33 
maximal normal- 108 
minimal normal- 103 
normal- 41ff 
proper- 32 
Sylow-94 
transitive- 92, 269 
trivial- 32 

submodule(s) 171 
chain conditions on-

372ff 
cyclic-l71 
finitely generated-171 
-generated (or spanned) 

by a set 171 
primary- 383ff 
sum of-l71 
torsion- 220 

subnormal series 107ff 
subring 122 

-generated by a set 231, 
232,395 
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subset 3 total -mapping property 9, 
subspace 171 -degree 157 57 

q,-invariant- 356 -ordering 13 -object 57 
substitution homomor- trace 289, 369 upper bound 13 

phism 153 transcendence valuation 
successor -base 313ff -domain 409 

immediate- 15 -degree 316 discrete-ring 404 
sum (= coproduct) 54ff separating-base 322 

Van Dyck's Theorem 67 sum transcendental 
direct- 60, 62,173,175 --element 233 variety 409 

-of submodules 171 --extension 233, 311ff vector 

summand purely--extension 314 column- 333 

direct- 63, 437 transfinite induction 14 row- 329 

surjective function 5 transformation 
vector space 169, 180ff 

Swords, RJ., xiii linear- 170, 355ff 
finite dimensional- 186 

Sylow natural- 468ff 
Von Neumann regular ring 

-p-subgroup 94 transitive 
442 

-theorems 92ff -relation 6 weak direct product 60, 62 
symmetric -subgroup 92, 269 Wedderburn's Theorem on 

-group 26, 46ff -subring 424 finite division rings 
-matrix 335 translation 88 462 
-multilinear function transpose of a matrix 328 Wedderburn-Artin 

349 transposition 46 Theorems 421, 435 
-rational function 252ff triangular matrix 335 well ordered set 13 
-relation 6 trichotomy law 18 well ordering 
symmetries of the square trivial ideal 123 law of-lO 

26 -principle 14 
U.F.D., see unique factori- word 64, 68 

tensor product 208ff zation domain reduced- 64, 68 
-of algebras 229 underlying set 55 empty- 64 
induced homomorphism 

union 3 
on the- 209 disjoint- 58 Yoneda, N. 472 

terminal object 57 
unique factorization do-third isomorphism theorem Zassenhaus Lemma, 109, 

44, 126, 173 main 137 375 
torsion unit 116 zero 409 

-group 78 -map 228 -divisor 116 
-module 179, 220 unitary module 169 --element II 5 
-subgroup 78 unity -matrix 328 
-submodule 179, 220 root of- 294 -morphism 482 

torsion-free primitive root of- 295 -object 481 
-group 78 universal -of a polynomial 160 
-module 220 --element 470 Zorn's Lemma, 13 
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